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COURSE INTRODUCTION

This is a course on Formal Languages and Automata. Automata theory is the study of abstract
computing devices or machines. In this course, we look at models that represent features at the core
of all computers and their applications. To model the hardware of a computer, we introduce the notion
of an automaton. An automaton is a contruct that processes all the indispensable features of a digital
computer. A formal language is an abstraction of the general characteristics of programming
languages.

This course contains eight essential units. The first unit is an introductory unit on finite automaton. The
second unit is on Regular expressions. The third unit is on Regular languages and their properties.
The fourth unit focuses on context-free grammar and languages. The fifth unit concentrates on push-
down automata. The sixth unit discusses the properties of Context-free languages. The seventh unit
gives us an introduction to turing machines. The eight unit is the last unit and it discusses the
undecidability.

While going through a unit, you will notice some boxes along-side, which have been included

to help you know some of the difficult, unseen terms.  Some “ACTIVITY’ (s) have been included to help

you apply your own thoughts. Again, we have included some relevant concepts in “LET US KNOW”

along with the text. And, at the end of each section, you will get “CHECK YOUR PROGRESS” questions.

These have been designed to self-check your progress of study. It will be better if you solve the given

problems in these boxes immediately, after you finish reading the section in which these questions

occur and then match your answers with “ANSWERS TO CHECK YOUR  PROGRESS” given at the

end of each unit.
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DETAILED SYLLABUS

Unit 1: Introduction to Finite Automata (Marks: 15)
Introduction to Finite Automata; The central concepts of Automata theory; Deterministic finite automata;
Nondeterministic finite automata.

Unit 2: Finite Automata and Regular Expressions (Marks:15)
An application of finite automata; Finite automata with Epsilon-transitions;  Regular expressions; Finite
Automata and Regular Expressions; Applications   of Regular Expressions.

Unit 3: Regular Languages and Properties of Regular Languages (Marks:15)
Regular languages; Proving languages not to be regular languages; Closure properties of regular
languages; Decision properties of regular languages; Equivalence and minimization of automata.   

Unit 4: Contex-Free Grammars and Languages (Marks:15)
Context –free grammars; Parse trees; Applications; Ambiguity in grammars and Languages.

Unit 5: Pushdown Automata (Marks: 12 )
Definition of the Pushdown automata; The languages of a PDA; Equivalence of   PDA’s and CFG’s;
Deterministic Pushdown Automata.

Unit 6: Properties of Context-Free Languages (Marks:12 )
Normal forms for CFGs; The pumping lemma for CFGs; Closure properties of CFL 

Unit 7: Introduction to Turing Machine (Marks: 8)
Problems that Computers cannot solve; The turning machine;  Programming techniques for Turning
Machines; Extensions to the basic Turning Machines; Turing Machine and Computers.  

Unit 8: Undecidability ( Marks:8)
A Language that is not recursively enumerable; An Undecidable problem that is RE;   Post’s
Correspondence problem; other undecidable problems.



Introduction to Finite Automata  Unit 1 
 

Formal Language and Automata                               1

UNIT - 1: INTRODUCTION TO FINITE AUTOMATA  
 
UNIT STRUCTURE 

 
1.1 Learning Objectives 
1.2 Introduction 
1.3 Some Basic Definitions  
1.4 Grammar   
1.5 Deterministic Fine Automata 
1.6 Nondeterministic Finite Automata 
1.7 Let Us Sum Up 
1.8 Further Readings 
1.9 Answers to Check Your Progress 
1.10 Probable Questions 

 

1.1 LEARNING OBJECTIVES 

After going through this unit, you will be able to 

 understand the basic concept of automata theory 

 requirement of automata theory 

 basic terms related to automata theory  

 define DFA 

 define NFA 
 

 

 

 

1.2  INTRODUCTION 

The main objective of this course is to study limitations of 
computers and computation. We are going to investigate limitations 
of computers and computations by studying the essence of 
computers and computations rather than all the variations of 
computer and computation. This essence is a device called Turing 
machine. It was first conceived of by Alan Turing in early 20-th 
century. It is a very simple device but remarkably, every task 
modern computers perform can also be accomplished by Turing 
machines. Though it has not been proven, it is generally believed 
that any "computation" humans do can be done by Turing machines 
and that "computation" is the computation performed by Turing 
machines. Thus by studying Turing machines we can learn 
capabilities hence limitations of computers. 
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Before proceeding to the study of Turing machines and their 
computations in this course, we study a simpler type of computing 
device called finite automata. Finite automata are very similar to 
Turing machines but a few restrictions are imposed on them. 
Consequently they are less capable than Turing machines but then 
their operations are simpler. So they provide a good introduction to 
our study of Turing machines. In addition finite automata can 
model a large number of systems used in practice. Thus they are a 
powerful tool to design and study those systems with.  
 

Our first and one of the main topic for this course is 
language. A language is, in this course, a set of strings of symbols. 
Programming languages we use are a language in that sense. Others 
such as languages of logics, languages of mathematics, natural 
languages etc. are all languages in that sense.  

 
What we are going to study on languages in this course are 

four classes of languages called (Chomsky) formal languages and 
their properties. The four classes are regular (or type 3) languages, 
context-free (or type 2) languages, context-sensitive (or type 1) 
languages and phrase structure (or type 0) languages. 

 
These formal languages are characterized by grammars 

which are essentially a set of rewrite rules for generating strings 
belonging to a language as we see later. Also there are various 
kinds of computing devices called automata which process these 
types of languages 

 
These formal languages and automata capture the essence of 

various computing devices and computation in a very simple way. 
Also for some important classes of problems, solving them can be 
seen as recognizing languages i.e. checking whether or not a string 
is in a language.  
 

 

1.3  SOME BASIC DEFINITIONS    

Symbol or letters: Symbols are indivisible objects or entity of a 
language. A symbol is any single object such as a, 0, 1, #, etc. 
Usually, characters from a typical keyboard are only used as 
symbols. 
 
Alphabet: An alphabet is a finite, nonempty set of symbols. The 
alphabet of a language is normally denoted by ∑. The elements of 
∑ are called letters. 
Example: 

∑ = {0,1} 
∑ = {a, b, c} 
∑ = {a, b, c,…,z} 
∑ = {%, ^, &, *, $, #} 
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Word or String: A word or string over an alphabet ∑ is a finite 
sequence of concatenated symbols of ∑. 
Example: if ∑ = {0, 1} is the given alphabet then the sequence 01, 
001, 101, 1001, 11110001 are words on ∑ but 012 is not a word 
since 2 is not an element of ∑. 
 
Length of a String: Length of a string ω, denoted by |ω| or l (ω), is 
the number of symbols in the string. If 1001 is a word over            
∑ ={0,1} then |1001|=4   
 
Empty Word or Empty String: The string of length zero is known 
as empty word or empty string, denoted by ε. | ε |=0.   
 
Concatenation of strings: Let x = a1 a2 a3 … an and y = b1 b2 b3 … 
bn be two strings. The concatenation of x and y denoted by xy, is the 
string a1 a2 a3 … an b1 b2 b3 … bn. That is, the concatenation of 
x and y denoted by xy is the string that has a copy of x followed by 
a copy of y without any intervening space between them. For 
example the concatenation of 1011 and 001 is 1011001 and if ω is a 
string then ω = εω = ωε where ε is the empty string. If |x|=m and 
|Y|= n then |xy|= m+n. 
 
Prefix, Suffix and substring: If ω is a string over some alphabet ∑ 
and if we can write that ω = ux, where u and x are two different 
strings then we can say that u is a prefix of ω. Similarly we can say 
that x is a suffix of ω and any string u is a substring of ω if ω=xuy. 
The empty string ε is always a substring of any string. For example 
if ω=010011 is a string over ∑ ={0,1} then 0, 01, 010 are the prefix 
of ω and 1, 11, 011 are suffix of ω. 0, 00, 1001 are substring of ω. 
 
Power of a string: For any string x and integer n ≥ 0, we use xn to 
denote the string formed by sequentially concatenating n copies 
of x. in other words xn = ε, if n = 0 ; otherwise xn = xxn-1. For 
example if x = 01 then x3 = 010101. 
 
Power of Alphabets: We write ∑k (for some integer k) to denote 
the set of strings of length k with symbols from ∑. In other words, 
∑k ={ x | x is a string over ∑ and  |x|= k}. Hence, for any 
alphabet, ∑0 denotes the set of all strings of length zero. That 
is, ∑0  = { ε }. For the binary alphabet { 0, 1 } we have the 
following- 

∑0  = { ε } 
∑1  = { 0, 1} 
∑2  = { 00, 01, 10, 11} 
∑3  = { 000, 001, 010, 011, 100, 101, 110, 111} 

The set of all strings over an alphabet ∑ is denoted by  ∑*. That is, 
∑* = ∑0 ∪ ∑1 ∪ ∑2 ∪ … ∪ ∑n ∪ … 
     =  ∪∑k 
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The set ∑* contains all the strings that can be generated by 
iteratively concatenating symbols from ∑ any number of times. 
 
Example : If ∑ = { a, b }, then 
 ∑*  =  { ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, …}. 
The set of all nonempty strings over an alphabet ∑ is denoted by 
∑+. That is, 
∑+ = ∑1 ∪ ∑2 ∪ … ∪ ∑n ∪ … 
 
Reversal of strings: For any string  ω = x1 x2 x3 … xn-1 xn the 
reversal of the string is ωR = xn xn-1 … x3 x2 x1. For example reverse 
of 1101 is 1011. 
 
Language: A language L over an alphabet ∑ is a collection of 
words over ∑. Since ∑* is the set of all words on ∑. Thus, a 
language L is simply a subset of ∑*. 
For example if ∑= {0,1} is a alphabet then 
L1 = {0, 01, 012, 013, …}  
L1 consist of all the strings starting with a 0 followed by any 
number of 1  
L2 = {0m1m : m>0} 
L2 consist of words beginning with one or more 0’s followed by 
same number of  1’s.   
L3 = {0m1n : m>0, n>0} 
L3 consist of words beginning with one or more 0’s followed by 
one or more 1’s. 
L4 = {ε} 
L4 is an empty language. 
 
Operations on Languages 
 
Since languages are set of strings we can apply set operations to 
languages. 
 
Union : If L1 and L2 are two languages then the union of L1 and L2 
denoted by L1 ∪ L2, any word  x ∈ L1 ∪ L2 iff x ∈ L1 or x ∈ L2. 
Example: {0, 11, 01, 011} ∪ {1, 01, 110} = {0, 11, 01, 011, 111} 
 
Intersection: If L1 and L2 are two languages then the intersection 
of L1 and L2 denoted by L1 ∩ L2, any word x ∈ L1 ∩ L2 iff x ∈ L1 
and x ∈ L2  
Example: {0, 11, 01, 011 } ∩ {1, 01, 110 } = { 01 } 
 
Complement: Usually, ∑* is referred as the universe of all the 
languages over the alphabet over ∑. So complement of any 
language is taken with respect to ∑*. Thus for a language L, the 
complement is  Lത = {x ∈ ∑* and x ∉ L}. 
Example: Let L = { x : |x| is even }. Then its complement is the 
language  Lത = {x ∈ ∑* : |x| is odd }. Similarly we can define other 
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usual set operations on languages like relative complement, 
symmetric difference, etc. 
 
Reversal of a language: The reversal of a language L, denoted as 
LR, is defined as - 
 LR = {ωR : ω ∈ L } 
Example :  

1. If L = {0, 01, 011}. Then  LR = {0, 10, 110 }. 
2. If L = { an bn : n is an integer }. Then LR =  { bn an : n is an 

integer }. 
 
Concatenation: The concatenation of languages L1 and L2 over an 
alphabet ∑ is defined as- 
 L1L2 = { xy : x ∈ L1 and y ∈ L2 } 
Example:  if L1 = {a, ab} and L2 = {b, ba } then  

L1L2 = {ab, aba, abb, abba}. 
Some Properties of language concatenation 
     1.    L1L2 ≠ L2 L1 in general.  
     2.    L∅ = ∅ 
     3.    L{ε} = L = {ε}L 
The operation Ln denotes the concatenation of L with itself n times. 
This is defined formally as follows: 
 L0 = {ε} 
 Ln = LLn-1 

Example:  if L = {0, 01}. Then according to the definition, we have 
 L0 = {ε} 
 L1 = {0, 01} 
 L2 = {0, 01}{0, 01} = {00, 001, 010, 0101} 
 L3 = {0, 01}{00, 001, 010, 0101} 

   = {000, 0001, 0010, 00101, 0001, 00101, 01001, 010101} 
 
Kleene's Star operation:  The Kleene star operation on a language 
L, denoted as L* is defined as follows:  
       L*  = ∪ Lk  
     =  L0 ∪ L1 ∪ L2 ∪ … ∪ Ln ∪ … 

= {x : x is the concatenation of zero or more strings from L} 
Also  
       L+  = L1 ∪ L2 ∪ … ∪ Ln ∪ … 
Example: If L = { a, ab }. Then we have, 
       L*  =  L0 ∪ L1 ∪ L2 ∪ …  
            = {e} ∪ {a, ab} ∪ {aa, aab, aba, abab} ∪ … 
       L+  = L1 ∪ L2 ∪ … ∪ Ln ∪ … 
     = {a, ab} ∪ {aa, aab, aba, abab} ∪ … 
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1.4  GRAMMAR   

A grammar is a mechanism used for describing languages. This is 
one of the most simple but yet powerful mechanism.  

In everyday language, like English, we have a set of symbols 
(alphabet), a set of words constructed from these symbols, and a set 
of rules using which we can group the words to construct 
meaningful sentences. The grammar for English tells us what are 
the words in it and the rules to construct sentences. It also tells us 
whether a particular sentence is well-formed (as per the grammar) 
or not. 

These concepts are generalized in formal language leading to 
formal grammars. The word 'formal' here refers to the fact that the 
specified rules for the language are explicitly stated in terms of 
what strings or symbols can occur.  
 
Formal definitions of a Grammar 

A grammar G is defined as a quadruple. 

G = (N, Σ, P, S) 

N is a non-empty finite set of non-terminals or variables, 

Σ is a non-empty finite set of terminal symbols such that N ∩ Σ = Φ 

S ∈  N, is a special non-terminal (or variable) called the start 
symbol, and P ⊆ ( ܰ ∪ Σ)+ x ( ܰ ∪ Σ)*  is a finite set of 
production rules. 

The binary relation defined by the set of production rules is denoted 
by → , i.e. α → β iif  (α, β ) ∈ P . 

In other words, P is a finite set of production rules of the form α → 
β, where α ⊆ ( ܰ ∪ Σ)+  and β ⊆ ( ܰ ∪ Σ)* 

Automata and Grammars  

The production rules specify how the grammar transforms one 
string to another. Given a string δαy , we say that the production 
rule α → β is applicable to this string, since it is possible to use the 
rule α → β  to rewrite the α (in δαy ) to β obtaining a new 
string δβy  . We say that δαy derives δβy and is denoted as 
 
δαy ⇒  δβy  



Introduction to Finite Automata  Unit 1 
 

Formal Language and Automata                               7

Successive strings are derived by applying the productions rules of 
the grammar in any arbitrary order. A particular rule can be used if 
it is applicable, and it can be applied as many times as described. 

We write α 
∗
⇒  β if the string β can be derived from the string α in 

zero or more steps; α 
ା
⇒  β if β can be derived from α in one or 

more steps. 

By applying the production rules in arbitrary order, any given 
grammar can generate many strings of terminal symbols starting 
with the special start symbol, S, of the grammar. The set of all such 
terminal strings is called the language generated (or defined) by the 
grammar. 

Formally, for a given grammar G = (N, Σ, P, S) the language 
generated by G is 

L(G) = { ω ∈ Σ* | S 
∗
⇒ ω } 

That is ω ∈ L(G) iff S 
∗
⇒ ω. 

If ω ∈ L(G), we must have for some n≥0, S = α1 ⇒ α2 ⇒ α3 ⇒ … ⇒ 
αn = ω denoted as a derivation sequence of ω, The strings S = α1, 
α2, α3, … αn = ω are denoted as sentential forms of the derivation. 

Example : Consider the grammar G = (N, Σ, P, S), where N = 
{S}, Σ={a, b} and P is the set of the following production rules 

{ S→ab, S→aSb} 

Some terminal strings generated by this grammar together with 
their derivation is given below. 

S ⇒ab 

S ⇒aSb⇒aabb 

S ⇒aSb⇒aaSbb⇒aaabbb 

It is easy to prove that the language generated by this grammar is 

L(G) = {aibi | i ≥ 1} 

By using the first production, it generates the string ab ( for i =1 ). 

To generate any other string, it needs to start with the 
production S→aSb and then the non-terminal S in the RHS can be 
replaced either by ab (in which we get the string aabb) or the same 
production S→aSb can be used one or more times. Every time it 
adds an 'a' to the left and a 'b' to the right of S, thus giving the 
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State True or False 
 

1. L* = L+L 

2. |aa|=2 if  Σ ={aa, b} 

3. L0 = empty set for any Language L 

4. {a,b}k  is set of all strings of length k 

5. (L*)* = L* 

6. L+ is a subset of L*  

7. If L* = L+ then L is a empty set 

8.  L1(L2 ∩ L3) = L1L2 ∩ L1L3 

 CHECK YOUR PROGRESS   

sentential form aiSbi, i ≥ 1. When the non-terminal is replaced 
by ab (which is then only possibility for generating a terminal 
string) we get a terminal string of the form aibi, i ≥ 1 

There is no general rule for finding a grammar for a given 
language. For many languages we can devise grammars and there 
are many languages for which we cannot find any grammar. 

Example: Find a grammar for the language L= {anbn+1 | n ≥ 1} 

It is possible to find a grammar for L by modifying the previous 
grammar since we need to generate an extra b at the end of the 
string anbn, n ≥ 1. We can do this by adding a 
production S→Bb where the non-terminal B generates aibi, i ≥ 1 as 
given in the previous example. 

Using the above concept we devise the following grammar for L. 

G = (N, Σ, P, S), where 

N = { S, B } 

P = { S→Bb, B→ab, B→aBb } 

 
 
 
 
 
 1 
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1.5   DETERMINISTIC FINITE AUTOMATA 

Finite Automata: Automata (singular: automation) are a 
particularly simple, but useful, model of computation. They were 
initially proposed as a simple model for the behavior of neurons. 
The concept of a finite automaton appears to have arisen in the 
1943 paper “A logical calculus of the ideas immanent in nervous 
activity", by Warren McCullock and Walter Pitts. In 1951 Kleene 
introduced regular expressions to describe the behavior of finite 
automata. He also proved the important theorem saying that regular 
expressions exactly capture the behaviors of finite automata. In 
1959, Dana Scott and Michael Rabin introduced non-deterministic 
automata and showed the surprising theorem that they are 
equivalent to deterministic automata.  
 
States, Transitions and Finite-State Transition System: 
Informally, a state of a system is an instantaneous description of 
that system which gives all relevant information necessary to 
determine how the system can evolve from that point on. 
Transitions are changes of states that can occur spontaneously or in 
response to inputs to the states. Though transitions usually take 
time, we assume that state transitions are instantaneous. A system 
containing only a finite number of states and transitions among 
them is called a finite-state transition system. Finite-state transition 
systems can be modeled abstractly by a mathematical model 
called finite automation. 

We said that automata are a model of computation. That 
means that they are a simplified abstraction of the real thing. We 
merely deal with states and transitions between states. One could 
say that an automaton is the machine and the program. This makes 
automata relatively easy to implement in either hardware or 
software. From the point of view of resource consumption, the 
essence of a finite automaton is that it is a strictly finite model of 
computation. Everything in it is of a fixed, finite size and cannot be 
modified in the course of the computation. 

 
Deterministic Finite Automata 

Informally, a DFA (Deterministic Finite State Automaton) is a 
simple machine that reads an input string, one symbol at a time and 
then, after the input has been completely read, decides whether to 
accept or reject the input. As the symbols are read from the tape, 
the automaton can change its state, to reflect how it reacts to what it 
has seen so far. 

Thus, a DFA conceptually consists of 3 parts: 

1. A tape to hold the input string. The tape is divided into a 
finite number of cells. Each cell holds a symbol from ∑. 
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2. A tape head for reading symbols from the tape 
3. A control , which itself consists of 3 things: 

 finite number of states that the machine is allowed to be 
in (zero or more states are designated as 
accept or final states), 

 a current state, initially set to a start state, 
 a state transition function for changing the current state. 

An automaton processes a string on the tape by repeating the 
following actions until the tape head has traversed the entire string:  

1. The tape head reads the current tape cell and sends the 
symbol s found there to the control. Then the tape head 
moves to the next cell.  

2. The control takes s and the current state and consults the 
state transition function to get the next state, which becomes 
the new current state.  

Once the entire string has been processed, the state in which the 
automation enters is examined. If it is an accept state, the input 
string is accepted; otherwise, the string is rejected. Summarizing all 
the above we can formulate the following formal definition:  

Deterministic Finite State Automaton: A Deterministic Finite State 
Automaton (DFA) is a 5-tuple:  D=(Q, Σ, δ, q0, F) 

 Q is a finite set of states.  
 Σ is a finite set of input symbols or alphabet. 
 δ : Q x Σ → Q is the “next state” transition function. 

Intuitively, δ is a function that tells which state to move to 
in response to an input, i.e., if M is in state q and sees input 
a, it moves to state δ(q, a).  

 q0 ∈ Q is the start state.  
 F ⊆ Q is the set of accept or final states.  

Transition table: 

It is basically a tabular representation of the transition function that 
takes two arguments (a state and a symbol) and returns a value (the 
“next state”). 

 Rows correspond to states, 
 Columns correspond to input symbols, 
 Entries correspond to next states 
 The start state is marked with an arrow 
 The accept states are marked with a star (*). 
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  0 1 
→ q0 q0 q1 

* q0 q1 q1 

 
Transition diagram : 

A state transition diagram or simply a transition diagram is a 
directed graph which can be constructed as follows: 

1. For each state in Q there is a node. 
2. There is a directed edge from node q to 

node p labeled a iff δ(q, a) = p. (If there are several input 
symbols that cause a transition, the edge is labeled by the 
list of these symbols.) 

3. There is an arrow with no source into the start state. 
4. Accepting states are indicated by double circle. 

 

Here is an informal description how a DFA operates. An input to a 
DFA can be any string ω ∈ Σ*. Put a pointer to the start state q. 
Read the input string ω from left to right, one symbol at a time, 
moving the pointer according to the transition function, δ. If the 
next symbol of ω is a and the pointer is on state p, move the pointer 
to δ (p, a). When the end of the input string ω is encountered, the 
pointer is on some state, r. The string is said to be accepted by the 
DFA if r ∈ F and rejected if r ∉ F. Note that there is no formal 
mechanism for moving the pointer. 

A language L ∈ Σ* is said to be regular if L = L(M) for some 
DFA M. 

Example 1: Q = {0, 1, 2 }, Σ = { a }, F = {1 }, the initial state is 0 
and δ is as shown in the following table.  
 

 
 
 
 
 

 

A state transition diagram for this DFA is given below. 
 

State (q) Input (a) Next State ( δ (q, a) ) 
0 A 1 
1 A 2 
2 A 2 
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Example 2: Q = { 0, 1, 2 }, Σ = { a, b }, F = { 1 }, the initial state 
is 0 and δ is as shown in the following table.  
             

 
 
 
 
 
 
 
 
 
 

Note that for each state there are two rows in the table 
for δ corresponding to the symbols a and b, while in the Example 1 
there is only one row for each state. 

A state transition diagram for this DFA is given below. 

               
 
Example 3: Q = { 0, 1 }, Σ = { a, b }, F = { 0 }, the initial state is 0 
and δ is as shown in the following table.  
             

 
 
 
 
 
 
 

 

A state transition diagram for this DFA is given below.  

State (q) Input (a) Next State ( δ (q, a) ) 
0 A 1 
0 B 2 
1 A 2 
1 B 2 
2 A 2 
2 B 2 

State (q) Input (a) Next State ( δ (q, a) ) 
0 A 0 
0 B 1 
1 A 1 
1 B 1 
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δ* Definition 

It is convenient to introduce the extended transition function δ* : Q 
x Σ* → Q. the second argument of δ* is a string rather than a single 
symbol, and its value will be in after reading that string. For 
example, if  

δ (q0, a) = q1  

δ (q1, b) = q2 

then δ* (q0, ab) = q2 

Formally we can define δ* recursively by 

δ* (q, ε) = q 

δ* (q, ωa) = δ(δ* (q, ω), a), 

for all q ∈ Q, ω ∈ Σ*, a ∈ Σ. 

String accepted by DFA  

A string ω is accepted by a DFA   < Q , Σ , q0 , δ , F > ,   if and 
only if     δ*( q0 , ω ) ∈ F . That is a string is accepted by a DFA if 
and only if the DFA starting at the initial state ends in an accepting 
state after reading the string.  

Language accepted by DFA  

The language accepted by a DFA M =(Q, Σ, δ, q0, F) is the set of all 
strings on Σ accepted by M, in formal notation  

 L(M) = {ω ∈ Σ* | δ* (q0, ω) ∈ F } 

Example 1: 

          

This DFA accepts { ε } because it can go from the initial state to 
the accepting state (also the initial state) without reading any 
symbol of the alphabet i.e. by reading an empty string ε . It accepts 
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nothing else because any non-empty symbol would take it to state 
1, which is not an accepting state, and it stays there. 

Example2: 

                  

 This DFA does not accept any string because it has no accepting 
state. Thus the language it accepts is the empty set Φ. 

Example3: 

        

This DFA has a cycle: 1 - 2 - 1 and it can go through this cycle any 
number of times by reading substring ab repeatedly. To find the 
language it accepts, first from the initial state go to state 1 by 
reading one a. Then from state 1 go through the cycle 1 - 2 - 1 any 
number of times by reading substring ab any number of times to 
come back to state 1. This is represented by (ab)*. Then from state 
1 go to state 2 and then to state 3 by reading aa. Thus a string that is 
accepted by this DFA can be represented by a(ab)*aa .  

Example 4: 

       

This DFA has two accepting states: 0 and 1. Thus the language that 
is accepted by this DFA is the union of the language accepted at 
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state 0 and the one accepted at state 1. The language accepted at 
state 0 is b*. To find the language accepted at state 1, first at state 0 
read any number of b's. Then go to state 1 by reading one a. At this 
point (b*a) will have been read. At state 1 go through the cycle 1 - 2 
- 1 any number of times by reading substring ba repeatedly. Thus 
the language accepted at state 1 is b*a(ba)* . 

 
 
1.6  NONDETERMINISTIC FINITE AUTOMATA   
 
In the previous section we have seen DFAs that accept some simple 
languages such as ∅ , {ε} , and { a }. As you might have noticed, 
those DFAs have states and transitions which do not contribute to 
accepting strings and languages. For example all we need about an 
FA that accepts {a } is the following regardless of the alphabet 
(whether be it { a } , { a , b } or any other). 

        
If Σ= {a, b}, it is not a DFA. A DFA that accepts { a } from Σ= {a, 
b} would need more states and transitions as shown in the example 
below 

  
To avoid those redundant states and transitions and to make 
modeling easier we use finite automata called nondeterministic 
finite automata (NFA). Below we are going to formally define 
nondeterministic finite automata and see some examples. 
Nondeterminism is an important abstraction in computer science. 
Importance of nondeterminism is found in the design of algorithms. 
For examples, there are many problems with efficient 
nondeterministic solutions but no known efficient deterministic 
solutions. (Travelling salesman, Hamiltonian cycle, clique, etc). 
Because the behavior of a process might depend on some messages 
from other processes that might arrive at arbitrary times with 
arbitrary contents. 

It is easy to construct and comprehend an NFA than DFA for a 
given regular language. The concept of NFA can also be used in 
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proving many theorems and results. Hence, it plays an important 
role in this subject. 

In the context of FA nondeterminism can be incorporated naturally. 
That is, an NFA is defined in the same way as the DFA but with the 
following two exceptions: 

 multiple next state. 
 ε - transitions. 

Multiple Next State: In contrast to a DFA, the next state is not 
necessarily uniquely determined by the current state and input 
symbol in case of an NFA. (Recall that, in a DFA there is exactly 
one start state and exactly one transition out of every state for each 
symbol in Σ). 

This means that, in a state q and with input symbol 0, there could 
be one, more than one or zero next state to go, i.e. the value of 
δ(q,a) is a subset of Q. Thus δ(q,a) = (q1, q2,… ,qk) which means 
that any one of q1, q2,… ,qk could be the next state. 

The zero next state case is a special one giving δ(q,a)=Φ, which 
means that there is no next state on input symbol when the 
automata is in state q. In such a case, we may think that the 
automata "hangs" and the input will be rejected. 

ε- transitions : 

In an -transition, the tape head doesn't do anything- it doesn’t read 
and it doesn’t move. However, the state of the automata can be 
changed - that is can go to zero, one or more states. This is written 
formally as δ(q, ε) = (q1, q2, …, qk) implying that the next state 
could by any one of q1, q2,… ,qk without consuming the next input 
symbol. 

Acceptance : 

Informally, an NFA is said to accept its input ω if it is possible to 
start in some start state and process ω, moving according to the 
transition rules and making choices along the way whenever the 
next state is not uniquely defined, such that when ω is completely 
processed (i.e. end of ω is reached), the automata is in an accept 
state. There may be several possible paths through the automation 
in response to an input ω since the start state is not determined and 
there are choices along the way because of multiple next states. 
Some of these paths may lead to accept states while others may not. 
The automation is said to accept ω if at least one computation path 
on input ω starting from at least one start state leads to an accept 
state- otherwise, the automation rejects input ω. Alternatively, we 
can say that, ω is accepted iff there exists a path with label ω from 
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some start state to some accept state. Since there is no mechanism 
for determining which state to start in or which of the possible next 
moves to take (including the ω -transitions) in response to an input 
symbol we can think that the automation is having some "guessing" 
power to chose the correct one in case the input is accepted.  

 
Formal definition of NFA : 

Formally, an NFA is a quadruple N = (Q, Σ, δ, q0, F) 
where Q, Σ, q0, and F bear the same meaning as for a DFA, 
but δ, the transition function is redefined as follows: 

δ : Q x {Σ ∪ {ε}} → p(Q) 

where P(Q) is the power set of Q i.e. 2Q. 

 As in the case of DFA the set Q in the above definition is 
simply a set with a finite number of elements. Its elements 
can be interpreted as a state that the system (automaton) is in. 

 The transition function is also called a next state function. 
Unlike DFAs an NFA moves into one of the states given 
by δ(q, a) if it receives the input symbol ‘a’ while in state q. 
Which one of the states in δ(q, a) to select is determined 
nondeterministically. 

 Note that δ is a function. Thus for each state q of Q and 
for each symbol ‘a’ of Σ, δ(q, a) must be specified. But it can 
be the empty set, in which case the NFA aborts its operation. 

 As in the case of DFA the accepting states are used to 
distinguish sequences of inputs given to the finite automaton. 
If the finite automaton is in an accepting state when the input 
ends i.e. ceases to come, the sequence of input symbols given 
to the finite automaton is "accepted". Otherwise it is not 
accepted. 

 Note that any DFA is also a NFA. 

 
Example 1: Q = { 0, 1 }, Σ = { a }, F = { 1 }, the initial state is 0 
and δ is as shown in the following table.  
 
             

 
 
 
 
 

 
A state transition diagram for this finite automaton is given below.  
 
 

State (q) Input (a) Next State ( δ (q, a) ) 
0 a { 1 } 
1 a Φ 
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If the alphabet Σ is changed to {a, b} instead of { a }, this is still an 
NFA that accepts { a } .  
 
Example 2: Q = { 0, 1, 2 }, Σ = { a, b }, F = { 2 }, the initial state 
is 0 and δ is as shown in the following table. 
             

 
 
 
 
 
 
 
 

Note that for each state there are two rows in the table 
for δ corresponding to the symbols ‘a’ and b, while in the Example 
1 there is only one row for each state. 
 
A state transition diagram for this finite automaton is given below.  
 

               
              
The Extended Transition function δ* : 

To describe acceptance by an NFA formally, it is necessary to 
extend the transition function, denoted as δ*, takes a state q ∈ Q and 
a string ω ∈ Σ*, and returns the set of states, S ⊆ Q, that the NFA is 
in after processing the string ω if it starts in state q. 

Formally, δ* is defined as follows: 

1. δ*(q, ε) = {q} that is, without rending any input symbol, an 
NFA doesn’t change state. 

2. Let ω = xa for some ω, x ∈ Σ* and a ∈ Σ. Also assume that 

δ*(q, x) = {p1, p2, …, pk}  

Then  δ*(q, ω) = ⋃ ௜݌)ߜ , ܽ)௞
௜ୀଵ  

State (q) Input (a) Next State ( δ (q, a) ) 
0 a { 1 , 2 } 
0 b Φ 
1 a Φ 
1 b { 2 } 
2 a Φ 
2 b Φ 
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That is, δ(q, ω) can be computed by first computing δ*(q0, x), and 
by then following any transitive from any of these stats that is 
labeled a. 
 
The Language accepted by an NFA : 

From the discussion of the acceptance by an NFA, we can give the 
formal definition of a language accepted by an NFA as follows: 

If N = (Q, Σ, δ, q0, F) is an NFA, then the language accepted 
by N is written as L(N) is given by 

L(N) = {ω | δ*(q0, ω) ∩ F = Φ } 

That is, L(N) is the set of all strings ω in Σ* such that δ*(q0, 
ω) contains at least one accepting state. 

Example  
 
For example consider the NFA with the following transition table:  
 

 
 
 
 
 
 
 
 
 
 
 
 

The transition diagram for this NFA is as given below. 

 
  
the language it accepts is   a*( ab + a + ba )(bb)* . 
 

State (q) Input (a) Next State ( δ (q, a) ) 
0 a { 0 , 1 , 3 } 
0 b { 2 } 
1 a Φ 
1 b { 3 } 
2 a { 3 } 
2 b Φ 
3 a Φ 
3 b { 1 } 
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State True or False 
 

1. In a DFA all states have the same number of transition 

2. A DFA cannot have more than one accepting states 

3. A DFA has finite number of states 

4. A DFA accepts a Language 

5. In a DFA δ*(0,abb) = 0 is possible 

6. In a NFA all states have the same number of transition 

7. An NFA cannot have more than one accepting states 

8. An NFA has finite number of states 

9. In an NFA δ*(0,a)= δ(0,a) = {1,2} is possible 

10. In an NFA δ*(0,abaa)) = {1,2} is possible 

 CHECK YOUR PROGRESS   

 
 
 
 
 
 2 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.7  LET US SUM UP 
 

 A language L over an alphabet ∑ is a collection of words 
over ∑. Since ∑* is the set of all words on ∑. Thus, a 
language L is simply a subset of ∑*. 

 A grammar is a mechanism used for describing languages. 
This is one of the most simple but yet powerful mechanism. 

 A DFA (Deterministic Finite State Automaton) is a simple 
machine that reads an input string, one symbol at a time and 
then, after the input has been completely read, decides 
whether to accept or reject the input. 

 The language accepted by a DFA M =(Q, Σ, δ, q0, F) is the 
set of all strings on Σ accepted by M, in formal notation  

 L(M) = {ω ∈ Σ* | δ* (q0, ω) ∈ F } 

 An NFA is defined in the same way as the DFA but it can 
have multiple next states and it can also move to next state 
without reading any symbol from input. 
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CHECK YOUR PROGRESS – 1 
 

1. False 
2. False 
3. False 
4. True 
5. True 
6. True 
7. False 
8. False 
 

 
CHECK YOUR PROGRESS – 2 
 

1. True 
2. False 
3. True 
4. True 
5. False 
6. False 
7. False 
8. True 
9. True 
10. True 
 

1.9  ANSWERS TO CHECK YOUR    
       PROGRESS 
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1. Prove that (xy)R = yRxR ,  for all x, y ∈ Σ* 
2. Consider the language L={ 01, 11, 011}. Which of the 

following strings are in L*  
 
 010101, 0001, 110, 010111101, 0111111110, 
11010111111101, 110111110011, 11101101? 

3. 4. Let L1={ 00,11} and L2={ ε, 0, 01 } 
 
    a) List the strings in the set L1L2. 
 
    b) List the strings of the set L2

* of length three or less. 
 
    c) How many strings of length 5 are there in L1

*? 
4. Design DFA and NFA to recognize the following set of 

strings 

abb, abaa, ab*, a*b assuming that Σ = {a,b} 

 

 
***** 

1.10  PROBABLE QUESTIONS 
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UNIT - 2: FINITE AUTOMATA AND REGULAR 
EXPRESSIONS    
 
UNIT STRUCTURE 

 
2.1      Learning Objectives 
2.2      Introduction 
2.3 Application of Finite Automata 
2.4 NFA with ε Transition  
2.5 Regular Language 
2.6 Regular Grammar  
2.7 Application of Regular Expression 
2.8 Let Us Sum Up 
2.9 Further Readings 
2.10 Answers to Check Your Progress 
2.11 Probable Questions 

 

2.1 LEARNING OBJECTIVES 

After going through this unit, you will be able to 

 define NFA with ε transition 

 define regular expression 

 application of regular expression 

 application of finite automata 
 

 

 

 

2.2  INTRODUCTION 

In this chapter we are going to learn about regular expression which 
is one of the ways to describe regular languages and different 
operations on regular expression. Here we also going to look at 
some of the application of finite automata and regular expression. 
One of the objectives of this chapter is to show that there is a one-
to-one correspondence between regular languages and finite 
automata. We are going to do that by showing that a finite 
automaton can be constructed from a given regular expression by 
combining simpler FAs using union, concatenation and Kleene star 
operations. These operations on FAs can be described conveniently 
if ε-Transitions are used. Basically an NFA with ε-Transitions is an 
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NFA but can respond to an empty string ε and move to the next 
state. Here we are going to formally define NFA with ε-Transitions 
(abbreviated as NFA-ε) and see some examples. As we are going to 
see later, for any NFA-ε there is a NFA (hence DFA) which accepts 
the same language and vice versa.  
 

 

2.3  APPLICATION OF FINITE AUTOMATA 

Soft drink vending machine 
 
Let us consider the operation of a soft drink vending machine 
which charges 15 Rs for a can. The machine initially waiting for a 
customer to come and put some coins, that is, waiting-for-customer 
state.  For simplicity let us assume that only 5 Rs and 10 Rs coins 
are used. When a customer comes and puts in the first coin, say 5 
Rs, machine no longer in the waiting-for-customer state. Now it has 
received 5 Rs and waiting for more coins to come. So we might say 
it in the 5 Rs state. If the customer puts 10 Rs, then it received 15 
Rs and wait for the customer to select a soft drink. So it in another 
state, say 15-Rs state. When the customer selects a soft drink, 
machine delivers the soft drink. After that it back to its initial state 
that state until another coin is put in to start the process. The states 
and the transitions between them of this vending machine can be 
represented with the diagram below. In the figure, circles represent 
states and arrows state transitions.  
 

 
 
Nondeterministic finite automata for text search 
 
 Suppose we are given a set of words, which we shall call 
keywords, and we need to find out whether the input word is a 
keyword or not. For that we can define a NFA which have an initial 
state q0 and it reads the keywords symbol by symbol. On q0 if it 
receives a keyword first match the first symbol of the keyword with 
the available outgoing transitions from q0. If it finds so it proceeds 
and read the next symbol of the keyword and so on. After reading 
all the symbols from the keywords if it reaches a final state then the 
NFA will accept the keyword otherwise reject it.     
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 For example if we want to design a NFA to accept the 
following keywords web, www, ebay then the NFA will look like 
 

 
 
 
Number Recognizer 
Our third example is a system that recognizes numbers with or 
without a sign such as 5.378, -15, +213.8 etc. One such system 
initially waits for the first symbol to come in. If the first symbol is a 
sign, then it goes into a state, denote it by G, that indicates that a 
sign has been received. 
  
If the first digit is received before a decimal point, regardless of 
whether a sign has been read or not, it goes into a state, denote it by 
D, that indicates a digit has been read before a decimal point. 
  
If a decimal point is received before a digit, then it goes into a state, 
denote it by P, that indicates that a decimal point has been read. 
  
If a decimal point has been read (i.e. in state P), then it must receive 
at least one digit after that. After one digit it can continue receiving 
digits. Therefore from state P it goes to another state, denote it by 
Q, after reading a digit and stays there as long as digits are read. 
This Q is an accepting state.  
 
On the other hand if a digit has been read before a decimal point, 
i.e. it is in state D, then it can continue receiving digits and stay in 
D. D is another accepting state. If a decimal point is read while in 
D, then it goes to state P indicating that a decimal point has been 
read.  
 
This system can also be described by a regular expression.  
Since these numbers are represented by strings consisting of a 
possible sign, followed by zero or more digits, followed by a 
possible decimal point, followed by one or more digits, they can be 
represented by the following regular expression:  
 
        (s+ + s- + ε ) (d+.d+ + d+ + .d+ ), 
  
where s+ and s- represent the positive and negative signs, 
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respectively and d ∈ { 0 , 1 , 2 , . . . , 9 } . This system can be 
modeled by the following finite automaton:  
 
 

 
 

 

2.4  NFA WITH ε TRANSITION   

Definition of nondeterministic finite automaton with ε-
Transitions 
Let Q be a finite set and let Σ be a finite set of symbols. Also 
let δ be a function from Q x Σ ∪ {ε} to 2Q,   let q0 be a state in Q 
and let F be a subset of Q. We call the elements of Q a state, δ the 
transition function, q0 the initial state and F the set of accepting 
states.  
 
Then a nondeterministic finite automaton with ε-Transitions is a   
5-tuple < Q , Σ , q0 , δ , A > 
  
Notes on the definition  

1. A transition on reading ε means that the NFA-ε makes the 
transition without reading any symbol in the input. Thus the 
tape head does not move when ε is read. 

2. Note that any NFA is also a NFA-ε. 

Example of NFA-ε 
Q = { 0, 1, 2, 3, 4, 5 }, Σ = { a, b }, F = Φ , the initial state is 0 
and δ is as shown in the following table.  
             
State (q) Input (a) Next State ( δ (q, a) ) 
0 A { 1 } 
0 Ε { 4 } 
1 Ε { 2 } 
2 Ε { 3, 4 } 
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Here the transitions to Φ are omitted from the table. A state 
transition diagram for this finite automaton is given below.  

 
 
When a symbol ‘a’ is read at the initial state 0, for example, it can 
move to any of the states other than 0. For once you are in state 1, 
for example, you can go to state 2, 3, 4 and 5 without reading any 
symbol on the tape. If you read string ab, then you come to state 4. 
For though you go to states 1, 2, 3, 4 and 5 by reading a, there are 
no transitions on reading b except from state 3. Thus 4 is the only 
state you can go to from the initial state by reading ab.  

δ* for NFA - ε 
To formally define δ* for NFA-ε , we start with the concept of       
ε-closure for a state which is the set of states reachable from the 
state without reading any symbol. Using that concept we 
define δ* and then strings and languages accepted by NFA-ε. 

 
Definition of ε-closure  

Let < Q , Σ , q0 , δ , A > be an NFA-ε . Let us denote the ε-closure 
of a set S of states of Q by ε(S). Then ε( S ) is defined recursively 
as follows:  

Basis Clause: S ⊆ ε( S )  

Inductive Clause: For any state q of Q, if q ∈ ε(S), then 

 δ(q , ε)  ⊆ ε( S ) .  

External Clause: Nothing is in ε(S) unless it is obtained by the 
above two clauses. 

3 Ε { 5 } 
3 B { 4 } 
4 A { 5 } 
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For the NFA-ε of the above figure, ε ({2}) is obtained as follows: 

First { 2 } ⊆ ε ({2}), that is, 2 ∈ ε ({2}). Then since 2 ∈ ε ({2}), by 
the Inductive Clause,  

δ (2, ε) ⊆ ε ({2}). 

Since δ(2, ε) = {3, 4}, we now have {2, 3, 4}⊆ ε ({2}). 
Since 3 and 4 have been added to ε ({2}) , δ(3, ε) = {5} and    
δ(4, ε) = Φ must be included in ε ({2}). 

Thus now {2, 3, 4, 5} ⊆ ε ({2}). 

Though 5 has become a member of the closure, since δ(5, ε)  is 
empty, no new members are added to ε ({2}). Since δ(q, ε)  has 
been examined for all the states currently in ε({2}) and no more 
elements are added to it, this process of generating the ε-closure 
terminates and ε({2}) = {2, 3, 4, 5} is obtained.  

As we can see from the example, ε ( S ) is the set of states 
that can be reached from the states of S by traversing any number 
of ε arcs. That is, it is the set of states that can be reached from the 
states of S without reading any symbols in Σ. 

Now with this ε-closure, we can define δ* recursively as follows: 
As in the cases of DFA and NFA, δ* gives the result of applying the 
transition function δ repeatedly as dictated by the given string. 
  

Definition of δ* 

δ* is going to be defined recursively. 

Let < Q , Σ, q0 , δ , F > be an NFA-ε. 
Basis Clause: For any state q of Q,  

δ* ( q , ε ) = ε ({q}) .  
Inductive Clause: For any state q, a string y in Σ* and a symbol ‘a’ 
in Σ, 

δ* ( q , ya ) =  ε ( ⋃  (  ௣∈ఋ∗(௤,௬)(ܽ,݌)ߜ

What the Inductive Clause means is that δ* ( q , ya ) is obtained by 
first finding the states that can be reached from q by reading y       
( δ* ( q , y ) ), then from each of those states p by reading ‘a’ (i.e. by 
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finding δ ( p , a ) ), and then by reading ε's ( i.e. by taking 
the ε closure of the δ( p , a )'s ). 
Example : For the NFA-ε of the following figure, δ* (0, ab) can be 
obtained as below: 

 
 
 
First let us compute δ* ( 0 , a ) 

For that we need  ε({0}). 
Since it is the set of states reached by traversing the ε arcs from 
state 0, ε({0}) = {0, 3, 4}. 
Next from each of the states in ε({0}) we read symbol a and move 
to another state (i.e. apply δ). They are  
δ (0, a) = {1}, 

 δ(3, a) = δ(4, a) = {5}.  

Hence  ⋃  .௣∈ఋ∗(௤,௬)   = {1, 5} for q = 0(ܽ,݌)ߜ

We then traverse the ε arcs from {1, 5} to get to the states in     
δ*(0, a). Since ε({1}) = {1, 2, 3} and ε({5}) = {5},   

δ*(0, a) = {1, 2, 3, 5}. 
Then to find δ*(0, ab) read b from each of the states in δ*(0, a) and 
then take the ε arcs from there. 
Now δ(1, b),  δ(3, b) and δ(5, b) are empty sets, and δ(2, b) = {4}. 
Thus Since ε({4}) = {3, 4}, δ*(0, ab) = {3, 4}. 

 
A string x is accepted by an NFA-ε  < Q , Σ, q0 , δ , F > if and only 
if δ*( q0 , x ) contains at least one accepting state. 

The language accepted by an NFA- ε  < Q , Σ, q0 , δ , F > is the set 
of strings accepted by the NFA-ε. 
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State True or False 
 

1. In an NFA-ε all states have the same number of 

transition 

2. An NFA-ε cannot have more than one accepting states 

3. An NFA-ε has finite number of states 

4. An NFA-ε can modify its input 

5. When a is read at q, NFA-ε goes to a state in δ(q,a) 

 CHECK YOUR PROGRESS   

 

 
 
 
 
 
 
 1 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.5   REGULAR LANGUAGE  

 
The set of regular languages over an alphabet Σ is defined 
recursively as below. Any language belonging to this set is 
a regular language over Σ. 
  
Definition of Set of Regular Languages: 

1. ϕ, {ε} and {a} for any symbol a ∈ Σ  are regular languages.  
2. If Lr and Ls are regular languages, then Lr ⋃ Ls, LrLs and 

Lr
* are regular languages.  

3.  Nothing is a regular language unless it is obtained from the 
above two. 
  

For example, let Σ = {a, b}. Then since {a} and {b} are regular 
languages, {a, b} ({a}∪{b}) and {ab} ({a}{b}) are regular 
languages. Also since {a} is regular, {a}* is a regular language 
which is the set of strings consisting of a's such as ε, a, aa, aaa, aaaa 
etc. Note also that Σ*, which is the set of strings consisting of a's 
and b's, is a regular language because {a, b} is regular. 
 
Regular expression 
 
Regular expressions are used to denote regular languages. They can 
represent regular languages and operations on them succinctly.  
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The set of regular expressions over an alphabet Σ is defined 
recursively as below. Any element of that set is a regular 
expression.  
 

1. ϕ , ε and a are regular expressions corresponding to 
languages ϕ , {ε} and {a}, respectively, where a is an 
element of Σ. 

2. If r and s are regular expressions corresponding to 
languages Lr and Ls, then (r+s), (rs) and (r*) are regular 
expressions corresponding to languages Lr ⋃ Ls, LrLs and 
Lr

* respectively.  
3. Nothing is a regular expression unless it is obtained from 

the above two. 
 
Conventions on regular expressions  

 
1. The operation * has precedence over concatenation, which 

has precedence over union. Thus the regular expression 
(a+(b(c*)))  is written as   a + bc* 

2.  The concatenation of k r's , where r is a regular expression, 
is written as rk. Thus for example rr = r2. The language 
corresponding to rk is Lr

k, where Lr is the language 
corresponding to the regular expression r. 

3. We use ( r+) as a regular expression to represent Lr
+ .  

 
Examples of regular expression and regular languages 
corresponding to them 

 ( a + b )2 corresponds to the language {aa, ab, ba, bb}, that 
is the set of strings of length 2 over the alphabet {a, b}. In 
general ( a + b )k corresponds to the set of strings of length 
k over the alphabet {a, b}. (a + b)* corresponds to the set of 
all strings over the alphabet {a, b}.  

 a*b* corresponds to the set of strings consisting of zero or 
more a's followed by zero or more b's.  

 a*b+a* corresponds to the set of strings consisting of zero or 
more a's followed by one or more b's followed by zero or 
more a's.  

 ( ab )+ corresponds to the language {ab, abab, ababab, ... }, 
that is, the set of strings of repeated ab's. 

Note: A regular expression is not unique for a language. That is, a 
regular language, in general, corresponds to more than one regular 
expressions. For example (a + b)* and ( a*b* )* correspond to the 
set of all strings over the alphabet {a, b}.  
 
Definition of Equality of Regular Expressions  
 
Regular expressions are equal if and only if they correspond to the 
same language. 
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Thus for example (a + b)* = ( a*b* )* , because they both represent 
the language of all strings over the alphabet {a, b}. 
 
In general, it is not easy to see by inspection whether or not two 
regular expressions are equal.  
 
Ex. 1: Find the shortest string that is not in the language 
represented by the regular expression a*(ab)*b*. 
 
Solution: It can easily be seen that ε, a, b, which are strings in the 
language with length 1 or less. of the strings with length 2 aa, bb 
and ab are in the language. However, ba is not in it. Thus the 
answer is ba. 
 
Ex. 2: For the two regular expressions given below, 

(a) find a string corresponding to r2 but not to r1 and  
(b) find a string corresponding to both r1 and r2.  

r1 = a* + b*  
r2 = ab* + ba* + b*a + (a*b)*  

 
Solution: (a) Any string consisting of only a's or only b's and the 
empty string are in r1. So we need to find strings of r2 which 
contain at least one a and at least one b. For example ab and ba are 
such strings. 
(b) A string corresponding to r1 consists of only a's or only b's or 
the empty string. The only strings corresponding to r2 which 
consist of only a's or b's are a, b and the strings consisting of only 
b's (from(a*b)*). 
 
Ex. 3: Let r1 and r2 be arbitrary regular expressions over some 
alphabet. Find a simple (the shortest and with the smallest nesting 
of * and +) regular expression which is equal to each of the 
following regular expressions. 
 
(a) (r1 + r2 + r1r2 + r2r1)*  
(b) (r1(r1 + r2)*)+ 
 
Solution: One general strategy to approach this type of question is 
to try to see whether or not they are equal to simple regular 
expressions that are familiar to us such as a, a*, a+, (a + b)*,          
(a + b)+ etc.  
 
(a) Since (r1 + r2)* represents all strings consisting of strings 
of r1 and/or r2 , r1r2 + r2r1 in the given regular expression is 
redundant, that is, they do not produce any strings that are not 
represented by (r1 + r2)*. Thus (r1 + r2 + r1r2 + r2r1)* is reduced 
to (r1 + r2)*. 
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(b) (r1(r1 + r2)*)+ means that all the strings represented by it must 
consist of one or more strings of (r1(r1 + r2)*). However, the strings 
of (r1(r1 + r2)*) start with a string of r1 followed by any number of 
strings taken arbitrarily from r1 and/or r2. Thus anything that comes 
after the first r1 in (r1(r1 + r2)*)+ is represented by (r1 + r2)*. 
Hence (r1(r1 + r2)*) also represents the strings of (r1(r1 + r2)*)+, and 
conversely (r1(r1 + r2)*)+ represents the strings represented 
by (r1(r1 + r2)*). Hence (r1(r1 + r2)*)+ is reduced to (r1(r1 + r2)*). 
  
Ex. 4: Find a regular expression corresponding to the 
language L over the alphabet { a , b } defined recursively as 
follows:  

1.  ε ∈ L 
2.  If x ∈ L, then aabx ∈ L  and xbb ∈ L. 
3. Nothing is in L unless it can be obtained from the above two 

clauses.  

Solution: Let us see what kind of strings are in L. First of all ε ∈ L 
 . Then starting with ε, strings of L are generated one by one by 
preceding aab or appending bb to any of the already generated 
strings. Hence a string of L consists of zero or more aab's in front 
and zero or more bb's following them. Thus (aab)*(bb)* is a regular 
expression for L. 
  
Ex. 5: Find a regular expression corresponding to the 
language L defined recursively as follows:  

1.  ε ∈ L and a ∈ L  .  
2. If x ∈ L , then aabx ∈ L and bbx ∈  L . 
3. Nothing is in L unless it can be obtained from the above. 

Solution: Let us see what kind of strings are in L. First of all ε and 
a are in L . Then starting with ε or a, strings of L are generated one 
by one by preceding aab or bb to any of the already generated 
strings. Hence a string of L has zero or more of aab's and bb's in 
front possibly followed by ‘a’ at the end. Thus (aab + bb)*(a + ε) is 
a regular expression for L. 
 
Ex. 6: Find a regular expression corresponding to the language of 
all strings over the alphabet {a, b} that contain exactly two a's.  
 
Solution: A string in this language must have at least two a's. Since 
any string of b's can be placed in front of the first ‘a’, behind the 
second ‘a’ and between the two a's, and since an arbitrary string of 
b's can be represented by the regular expression b*, b*a b*a b* is a 
regular expression for this language.  
 
Ex. 7: Find a regular expression corresponding to the language of 
all strings over the alphabet {a, b} that do not end with ab.  
 
Solution: Any string in a language over { a , b } must end in a or b. 
Hence if a string does not end with ab then it ends with a or if it 
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ends with b the last b must be preceded by a symbol b. Since it can 
have any string in front of the last a or bb, ( a + b )*( a + bb ) is a 
regular expression for the language. 
Ex. 8: Find a regular expression corresponding to the language of 
all strings over the alphabet {a, b} that contain no more than one 
occurrence of the string aa. 
 
Solution: If there is one substring aa in a string of the language, 
then that aa can be followed by any number of b. If an a comes 
after that aa, then that a must be preceded by b because otherwise 
there are two occurences of aa. Hence any string that follows aa is 
represented by ( b + ba )*. On the other hand if an a precedes the 
aa, then it must be followed by b. Hence a string preceding the aa 
can be represented by ( b + ab )*. Hence if a string of the language 
contains aa then it corresponds to the regular expression                  
( b + ab )*aa( b + ba )* . 
If there is no aa but at least one a exists in a string of the language, 
then applying the same argument as for aa to a,                                 
( b + ab )*a( b + ba )* is obtained as a regular expression 
corresponding to such strings. 

If there may not be any a in a string of the language, then 
applying the same argument as for aa to ε, ( b + ab )*( b + ba )* is 
obtained as a regular expression corresponding to such strings. 

Altogether ( b + ab )*( ε + a + aa )( b + ba )* is a regular 
expression for the language.  
 
Ex. 9: Find a regular expression corresponding to the language of 
strings of even lengths over the alphabet of { a, b }.  
 
Solution: Since any string of even length can be expressed as the 
concatenation of strings of length 2 and since the strings of length 2 
are aa, ab, ba, bb, a regular expression corresponding to the 
language is ( aa + ab + ba + bb )*. Note that 0 is an even number. 
Hence the string ε is in this language.  
 
Ex. 10: Describe as simply as possible in English the language 
corresponding to the regular expression a*b(a*ba*b)*a* .  
 
Solution: A string in the language can start and end with a or b, it 
has at least one b, and after the first b all the b's in the string appear 
in pairs. Any numbe of a's can appear any place in the string. Thus 
simply put, it is the set of strings over the alphabet { a, b } that 
contain an odd number of b's.  
 
Ex. 11: Describe as simply as possible in English the language 
corresponding to the regular expression (( a + b )3)*( ε + a + b ). 
 
Solution: (( a + b )3) represents the strings of length 3. Hence         
(( a + b )3)* represents the strings of length a multiple of 3. Since (( 
a + b )3)*( a + b ) represents the strings of length 3n + 1, where n is 
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a natural number, the given regular expression represents the 
strings of length 3n and 3n + 1, where n is a natural number.  
Ex. 12: Describe as simply as possible in English the language 
corresponding to the regular expression ( b + ab )*( a + ab )*.  
 
Solution: ( b + ab )* represents strings which do not contain any 
substring aa and which end in b, and ( a + ab )* represents strings 
which do not contain any substring bb. Hence altogether it 
represents any string consisting of a substring with no aa followed 
by one b followed by a substring with no bb.  
 
Theorems Related to Regular Languages 
 
We say a set of languages is closed under an operation if the result 
of applying the operation to any arbitrary language(s) of the set is a 
language in the set.  
 
For example a set of languages is closed under union if the union of 
any two languages of the set also belongs to the set. 
  
The following theorem is immediate from the Inductive Clause of 
the definition of the set of regular languages.  
 
Theorem 1: The set of regular languages over an alphabet Σ is 
closed under operations union, concatenation and Kleene star.  
 
Proof: Let Lr and Ls be regular languages over an alphabet . Then 
by the definition of the set of regular languages, Lr ∪ Ls, LrLs 
and Lr

* are regular languages and they are obviously over the 
alphabet Σ. Thus the set of regular languages is closed under those 
operations. 
Note 1: Later we shall see that the complement of a regular 
language and the intersection of regular laguages are also regular.  
Note 2: The union of infinitely many regular languages is not 
necessarily regular. For example while { akbk } is regular for any 
natural number k , { anbn | n is a natural number } which is the 
union of all the languages { akbk } , is not regular as we shall see 
later. 
 
The following theorem shows that any finite language is regular. 
We say a language is finite if it consists of a finite number of 
strings, that is, a finite language is a set of n strings for some 
natural number n.  
 
Theorem 2: A finite language is regular.  
 
Proof: Let us first assume that a language consisting of a single 
string is regular and prove the theorem by induction. We then prove 
that a language consisting of a single string is regular. 
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Claim 1: A language consisting of n strings is regular for any 
natural number n (that is, a finite language is regular) if { w } is 
regular for any string w. 
Proof of the Claim 1: Proof by induction on the number of strings. 
Basis Step: ϕ (corresponding to n = 0) is a regular language by the 
Basis Clause of the definition of regular language. 
Inductive Step: Assume that a language L consisting of n strings is 
a regular language (induction hypothesis). Then since { ω } is a 
regular language as proven below, L ∪ { ω } is a regular language 
by the definition of regular language. 
End of proof of Claim 1 
  
Thus if we can show that { ω } is a regular language for any string 
w, then we have proven the theorem.  
Claim 2: Let ω be a string over an alphabet Σ. Then { ω } is a 
regular language.  
Proof of Claim 2: Proof by induction on strings.  
Basis Step: By the Basis Clause of the definition of regular 
language, {ε} and { a } are regular languages for any arbitrary 
symbol a of Σ . 
Inductive Step: Assume that { ω } is a regular language for an 
arbitrary string w over Σ. Then for any symbol a of Σ, { a } is a 
regular language from the Basis Step. Hence by the Inductive 
Clause of the definition of regular language { a }{ ω} is regular. 
Hence { aω } is regular. 
End of proof for Claim 2 
 
Note that Claim 2 can also be proven by induction on the length of 
string. 
End of proof of Theorem 2.  
 
 
 
2.7  REGULAR GRAMMAR  
 
We have learned three ways of characterizing regular languages: 
regular expressions, finite automata and construction from simple 
languages using simple operations. There is yet another way of 
characterizing them, that is by something called grammar. A 
grammar is a set of rewrite rules which are used to generate strings 
by successively rewriting symbols. For example consider the 
language represented by a+, which is {a, aa, aaa, . . . } . One can 
generate the strings of this language by the following procedure: 
Let S be a symbol to start the process with. Rewrite S using one of 
the following two rules: S → a , and S → aS . These rules mean 
that S is rewritten as a or as aS. To generate the string aa for 
example, start with S and apply the second rule to replace S with 
the right hand side of the rule, i.e. aS, to obtain aS. Then apply the 
first rule to aS to rewrite S as a. That gives us aa. We write S → aS 
to express that aS is obtained from S by applying a single 
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production. Thus the process of obtaining aa from S is written as S 
→ aS → aa. If we are not interested in the intermediate steps, the 
fact that aa is obtained from S is written as S =>* aa , In general if a 
string β is obtained from a string α by applying productions of a 
grammar G, we write α 

∗
 β and say that β is derived from α . If ࡳ→

there is no ambiguity about the grammar G that is referred to, then 
we simply write α 

∗
→ β  

Formally a grammar consists of a set of non-terminals (or 
variables) V, a set of terminals Σ(the alphabet of the language), a 
start symbol S, which is a non-terminal, and a set of rewrite rules 
(productions) P. A production has in general the form γ → α, 
where γ is a string of terminals and non-terminals with at least one 
non-terminal in it and α is a string of terminals and non-terminals. 
A grammar is regular if and only if γ is a single non-terminal 
and α is a single terminal or a single terminal followed by a single 
non-terminal, that is a production is of the form X → a or X → aY, 
where X and Y are non-terminals and ‘a’ is a terminal. 
 For example, Σ = {a, b}, V = { S } and P = { S → aS, S → bS, S 
→ ε } is a regular grammar and it generates all the strings 
consisting of a's and b's including the empty string. 
The following theorem holds for regular grammars 
 
Theorem: A language L is accepted by an FA i.e. regular, if L - 
{ε} can be generated by a regular grammar.  
This can be proven by constructing an FA for the given grammar as 
follows: For each non-terminal create a state. S corresponds to the 
initial state. Add another state as the accepting state Z. Then for 
every production X → aY, add the transition δ( X, a ) = Y and for 
every production X → a add the transition  δ ( X, a ) = Z. 
For example Σ = {a, b}, V = {S} and P = { S → aS, S → bS, S → 
a, S → b } form a regular grammar which generates the language ( 
a + b )+. An NFA that recognizes this language can be obtained by 
creating two states S and Z, and adding transitions δ ( S, a ) = { S, 
Z } and δ ( S, b ) = { S, Z } , where S is the initial state and Z is the 
accepting state of the NFA.  
The NFA thus obtained is shown below.  

 
       
 
Thus L - {ε} is regular. If L contains ε as its member, then since 
{ ε } is regular , L = ( L -{ε}) ∪ {ε} is also regular. 
  
Conversely from any NFA < Q, Σ, δ, q0, F> a regular grammar       
< Q, Σ, P, q0 > is obtained as follows: 
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for any ‘a’ in Σ, and non-terminals X and Y, X → aY is in P if and 
only if δ (X, a) = Y , and for any ‘a’ in Σ and any non-terminal X, 
X → a is in P if and only if δ (X, a) = Y for some accepting state 
Y.  
Thus the following converse of Theorem 3 is obtained. 
 
Theorem : If L is regular i.e. accepted by an NFA, then L - {ε} is 
generated by a regular grammar. 
 
For example, a regular grammar corresponding to the NFA given 
below is < Q, { a, b }, P, S > , where Q = { S, X, Y } , P = { S → 
aS, S → aX, X → bS, X → aY, Y → bS, S → a }. 

  
 
In addition to regular languages there are three other types of 
languages in Chomsky hierarchy: context-free languages, context-
sensitive languages and phrase structure languages. They are 
characterized by context-free grammars, context-sensitive 
grammars and phrase structure grammars, respectively.  
 
These grammars are distinguished by the kind of productions they 
have but they also form a hierarchy, that is the set of regular 
languages is a subset of the set of context-free languages which is 
in turn a subset of the set of context-sensitive languages and the set 
of context-sensitive languages is a subset of the set of phrase 
structure languages. 
 
 
2.7  APPLICATION OF REGULAR EXPRESSION  
 
Regular expressions are used in many programming languages and 
tools. They can be used in finding and extracting patterns in texts 
and programs. For example, using regular expressions, we can also 
specify and validate forms of data such as passwords, e-mail 
addresses, user IDs, etc. Here we will study the regular expression 
and their relationship with finite automata. In particular, we will 
describe methods that convert regular expressions to finite 
automata, and finite automata to regular expressions. 
Regular expressions are useful in the production of syntax 
highlighting systems, data validation, and many other tasks. 
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State True or False 
 

1. The empty set and ε are regular expression 

2. If {a}, {b} are regular then {ab} and {a}{b} are regular 

3. If L1, L2 are regular then union of L1 and L2 are regular 

4. aba + ba + aaa = a(ba + b + aa) 

5. (a+b)* = a+b)* + a+b)* 
6. ‘b’  is in the language (a*b)+ a* 
7. (ab)*a = a(ba)* 
8. If L is a regular language then L* is also regular 
9. aab is in the language (a+b)*(a+bb) 
10. abaa is in the language  (a+b)*(a+bb) 
11. (a*+b)*= (a+b)* 
12. (b+ab*a)* is set of strings containing even no of ‘a’ 
13. (aa)*(ε+a)=a* 
14. If L over Σ1 is regular then L over Σ containing Σ1 is 

regular 
15. If L1 over Σ1 and L2 over Σ2 are regular then L1 ∪ L2 is 

regular 

 CHECK YOUR PROGRESS   

While regular expressions would be useful on Internet search 
engines, processing them across the entire database could consume 
excessive computer resources depending on the complexity and 
design of the regular expression. Although in many cases system 
administrators can run regular expression-based queries internally, 
most search engines do not offer regular expression support to the 
public. 

A regular expression is a string that is used to describe or match a 
set of strings according to certain syntax rules. The specific syntax 
rules vary depending on the specific implementation, programming 
language, or library in use. Additionally, the functionality of 
regular expression implementations can vary between versions. 
 
Lexical Analyser: 
  
 This is one of the oldest applications of regular expressions 
for specifying the components of a compiler called “lexical 
analyser”. This component scans the source program and 
recognizes all tokens (substrings of consecutive characters that 
belong together logically). Keywords and identifiers are common 
examples of tokens but there are many others. 
 
 
 
 
 
 2 
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2.8  LET US SUM UP 
 

 Regular expression: this algebraic notation describes exactly 
the same language as finite automata. The regular 
expression operator are union, concatenation and closure(*). 

 NFA-ε is a NFA with ε moves. In NFA-ε the automata can 
move to the next state without reading the next symbol.  

 The set of regular languages over an alphabet Σ is closed 
under operations union, concatenation and Kleene star.  

 Regular expressions are equal if and only if they correspond 
to the same language 

 A grammar is regular if and only if γ is a single non-
terminal and α is a single terminal or a single terminal 
followed by a single non-terminal, that is a production is of 
the form X → a or X → aY, where X and Y are non-
terminals and ‘a’ is a terminal. 
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Check your progress 1 
 

1. False 
2. True 
3. True 
4. False 
5. True 

 
Check your progress 2 
 

1. True 
2. True 
3. True 
4. False 
5. True 
6. True 
7. True 
8. True 
9. False 
10. True 
11. True 
12. True 
13. True 
14. True 
15. True 

 

 
 

1. Explain the use of finite automata with the help of an 
example. 

2. Explain NFA with ε transition. 
3. Explain the use of regular expression. 
4. Prove or disprove the following  

a) (R + S)* = R* + S* 

b) (RS + R)*R = R(SR+R) 

c) (R + S)*S = (R* S)* 
 

 
 

***** 

2.10  ANSWERS TO CHECK YOUR    
       PROGRESS 
 

2.11 PROBABLE QUESTIONS 
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UNIT - 3: REGULAR LANGUAGES AND 
PROPERTIES OF REGULAR LANGUAGES     
 
UNIT STRUCTURE 

 
3.1      Learning Objectives 
3.2      Introduction 
3.3 Limitations of Finite Automata and Non regular 

Languages  
3.4 Properties of Regular Language 
3.5 Equivalence of Automata 
3.6 Minimization of DFA 
3.7 Let Us Sum Up 
3.8 Further Readings 
3.9 Answers to Check Your Progress 
3.10 Probable Questions 

 

3.1 LEARNING OBJECTIVES 

After going through this unit, you will be able to 

 learn the property of regular language 

 convert NFA to DFA 

 minimize DFA 
 

 

 

 

3.2  INTRODUCTION 

In this chapter we will go through the different properties of regular 
language. We also going to look at the equivalence of different 
automata, how we can convert from one form to the other. We also 
going to look how we can minimize a DFA. We will look on the 
limitation of finite automata, language that ca not be defined by 
automata and prove that with a help of pumping lemma.  
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3.3 LIMITATIONS OF FINITE AUTOMATA AND 
NON REGULAR LANGUAGES   

The class of languages recognized by FA s is strictly the regular 
set. There are certain languages which are non regular i.e. cannot be 
recognized by any FA 

Consider the language L = { anbn | n ≥ 0 } 

In order to accept is language, we find that, an automaton seems to 
need to remember when passing the center point between a's 
and b's how many a's it has seen so far. Because it would have to 
compare that with the number of b's to either accept (when the two 
numbers are same) or reject (when they are not same) the input 
string. 

But the number of a's is not limited and may be much larger than 
the number of states since the string may be arbitrarily long. So, the 
amount of information the automaton need to remember is 
unbounded. 

A finite automaton cannot remember this with only finite memory 
(i.e. finite number of states). The fact that FA shave finite memory 
imposes some limitations on the structure of the languages 
recognized. Inductively, we can say that a language is regular only 
if in processing any string in this language, the information that has 
to be remembered at any point is strictly limited. The argument 
given above to show that anbn is non regular is informal. We now 
present a formal method for showing that certain languages such 
as anbn are non regular 

We can prove that a certain language is non regular by 
using a theorem called “Pumping Lemma”. According to this 
theorem every regular language must have a special property. If a 
language does not have this property, than it is guaranteed to be not 
regular. The idea behind this theorem is that whenever a FA 
process a long string (longer than the number of states) and accepts, 
there must be at least one state that is repeated, and the copy of the 
sub string of the input string between the two occurrences of that 
repeated state can be repeated any number of times with the 
resulting string remaining in the language. 

Pumping Lemma: 

Let L be a regular language. Then the following property holds 
for L. 
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There exists a number k ≥ 0 (called, the pumping length), where, 
if ω is any string in L of length at least k i.e. |ω| = k , then ω may be 
divided into three sub strings ω = xyz, satisfying the following 
conditions: 

1. y ≠ ε i.e. |y| > 0 
2. |xy| ≤ k 
3. For all i ≥ 0 xyiz ∈ L 

Proof : Since L is regular, there exists a DFA  M = (Q, Σ, δ, q0, 
F) that recognizes it, i.e. L = L(M) . Let the number of states 
in M is n. 

Say,  Q = {q0, q1, q2, … qn} 

Consider a string ω ∈ L such that |ω| ≥ k (we consider the 
language L to be infinite and hence such a string can always be 
found). If no string of such length is found to be in L , then the 
lemma becomes vacuously true. 

Since  ω ∈ L, δ*(q0, ω) ∈ F . Say δ*(q0, ω) = qm  while processing 
the string ω, the DFA M goes through a sequence of states of states. 
Assume the sequence to be 

q0, q3, q4, q2, …qi, … ql, ... qm 

start state to final state 

Since |ω| ≥ n, the number of states in the above sequence must be 
greater than n + 1. But number of states in M is only n. hence, by 
pigeonhole principle at least one state must be repeated. 

Let qi and ql be the ql same state and is the first state to repeat in the 
sequence (there may be some more, that come later in the 
sequence). The sequence, now, looks like 

q0, q3, q4, q2, …qi, … ql, ... qm 

which indicates that there must be sub strings x, y, z of w such that 

δ*(q0, x) =qi 

δ*(qi, y) =qi 

δ*(qi, z) =qm 

This situation is depicted in the figure 

Since ql (=qi) is the first repeated state, we have, |xy| ≤ n and at the 
same time y cannot be empty i.e  |y| > 0. From the above, it 
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immediately follows that δ*(q0, xz) =qm. Hence xz = xy0z ∈ L. 
Similarly, 

δ*(q0, xy2z) =qm  implying xy2z ∈ L 

δ*(q0, xy3z) =qm  implying xy3z ∈ L 

and so on. 

That is, starting at the loop on state can be omitted, taken once, 
twice, or many more times, (by the DFA M ) eventually arriving at 
the final state 

Thus, accepting the string xz, xyz, xy2z,... i.e. xyiz for all i ≥ 0 

Hence For all i ≥ 0 xyiz ∈ L. 

We can use the pumping lemma to show that some languages are 
non regular. 

 
3.4   PROPERTIES OF REGULAR LANGUAGE 

Closure properties 
            Closure properties are theorems, which show that the class 
of regular language is closed under the operation mentioned. The 
theorems are of the form “if certain languages are regular, and a 
language L is formed from them by certain operation such as union, 
intersection etc. then L is also regular”. In general closure 
properties convey the fact that when one (or several) languages are 
regular, then certain related languages are also regular. 
 
The principal closure properties of regular languages are: 

1. The union of two regular languages is regular. 
If L and M are regular languages, then so is L ∪ M. 

2. The intersection of two regular languages is regular. 
If L and M are regular languages, then so is L ∩ M. 

3. The compliment of two regular languages is regular. 
If L is a regular language over alphabet Σ, then Σ*- L is also 
regular language. 

4. The difference of two regular languages is regular. 
If L and M are regular languages, then so is L - M. 

5. The reversal of a regular language is regular. 
The reversal of a string means that the string is written 
backward, i.e. reversal of abcde is edcba. 
The reversal of a language is the language consisting of 
reversal of all its strings, i.e. if L={001,110} then LR = 
{100,011}. 

6. The closure of a regular language is regular. 
If L is a regular language, then so is L*. 
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7. The concatenation of regular languages is regular. 
If L and M are regular languages, then so is L M. 

8. The homomorphism of a regular language is regular. 
A homomorphism is a substitution of strings for symbol. 
Let the function h be defined by h(0) =a and h(1) = b then h 
applied to 0011 is simply aabb. 
If h is a homomorphism on alphabet S and a string of 
symbols w = abcd…z then 

h (w) = h (a) h (b) h(c) h (d)…h (z)  
The mathematical definition for homomorphism is 

h: Σ* → Γ* such that for all x, y ∈ Σ* 
A homomorphism can also be applied to a language by 
applying it to each of strings in the language. Let L be a 
language over alphabet Σ, and h is a homomorphism on Σ, 
then 

h (L) = { h(ω) | ω is in L } 
The theorem can be stated as “ If L is a regular language 
over alphabet Σ, and h is a homomorphism on Σ, then h(L) 
is also regular ” . 

9. The inverse homomorphism of two regular languages is 
regular. 
Suppose h be a homomorphism from some alphabet Σ to 
strings in another alphabet T and L be a language 
over T then   h inverse of L, h’(L) is set of strings ω in Σ* 
such that h(ω) is in L.    
The theorem states that “If h is a homomorphism from 
alphabet Σ to alphabet T, and L is a regular language on T, 
then h’(L) is also a regular language. 

 
 
 
3.5  EQUIVALENCE OF AUTOMATA  

ε -closures: 

The concept used in the above construction can be made more 
formal by defining the ε-closure for a state (or a set of states). The 
idea of ε-closure is that, when moving from a state p to a state q (or 
from a set of states Si to a set of states Sj ) an input a ∈ Σ, we need 
to take account of all ε-moves that could be made after the 
transition. Formally, for a given state q, 

ε-closures(q) = {p| p can be reached from q by zero or more ε-
moves} 

Similarly, for a given set R⊆ Q 

ε-closures(R)= {p ∈ Q | p can be reached from any q ∈ R by 
following zero or more ε-moves} 
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So, in the construction of equivalent NFA N' without ε-transition 
from any NFA with ε moves. the first rule can now be written 
as δ’(q, a)= ε-closure(δ(q,a)) 

Conversion of NFA-ε to NFA  

Let M1 = < Q1, Σ , q0
1, δ1 , F1 > be an NFA-ε that recognizes a 

language L. Then the NFA M2 = < Q2, Σ, q0
2, δ2, F2 > that satisfies 

the following conditions recognizes L: 
  
Q2 = Q1,  
q0

2 = q0
1 

 δ2(q, a) = δ1*(q, a) = ε ( ⋃ ,݌)ଵߜ ܽ)௣∈ఌ(௤)  ) 

F2 = F1  { q0
1 } if ε( { q0

1 } ) ∩ F1 ≠ Φ  
      = F1 otherwise .  

Thus to obtain an NFA M2 = < Q2, Σ, q0
2, δ2, F2 > which accepts 

the same language as the given NFA-ε M1 = < Q1, Σ , q0
1, δ1 , F1 >  

does,  first copy the states of Q1 into Q2.  
Then for each state q of Q2 and each symbol a of Σ find δ2(q , a) as 
follows:  
Find ε({q}), that is all the states that can be reached from q by 
traversing ε arcs. Then collect all the states that can be reached 
from each state of ε ({q}) by traversing one arc labeled with the 
symbol a. The ε closure of the set of those states is δ2(q, a). 
The set of accepting states F2 is the same as F1 if no accepting 
states can be reached from the initial state q0

1 through ε arcs in M1. 
Otherwise, that is if an accepting state can be reached from the 
initial state q0

1 through ε arcs in M1, then all the accepting states of 
M1 plus state q0

1 are the accepting states of M2.  

 
Removing ε transition 

ε- transitions do not increase the power of an NFA . That is, 
any NFA-ε ( NFA with ε transition), we can always construct an 
equivalent NFA without ε-transitions. The equivalent NFA must 
keep track where the  NFA-ε goes at every step during computation. 
This can be done by adding extra transitions for removal of every ε- 
transitions from the NFA-ε as follows. 

If we removed the ε - transition δ(p, ε) = q from the NFA-ε, then we 
need to moves from state p to all the state γ on input symbol q ∈ 
Σ which are reachable from state q (in the  NFA-ε ) on same input 
symbol q. This will allow the modified NFA to move from 
state p to all states on some input symbols which were possible in 
case of NFA-ε on the same input symbol. This process is stated 
formally in the following theories. 
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Theorem: if L is accepted by an NFA-ε N, then there is some 
equivalent NFA N’ without ε transitions accepting the same 
language L 

Ex: Consider the following NFA with ε transition. 

 

 

 
 

 

 
The equivalent NFA is- 

 
 

 0 1 
→q0 
F {q0, q2} {q0, q1, q2} 

q1 {q2} {q2} 
F q2 {q2} {q2} 

 

    
 

Since δ(q0, ε) = q2 in NFA-ε the start state q0 must be final state in 
the equivalent NFA . 

Since δ(q0, ε) = q2 and δ(q2, 0) = q2 and δ(q2, 1) = q2 we add moves 
δ(q0, 0) = q2  and δ(q0, 1) = q2 in the equivalent NFA . Other moves 
are also constructed accordingly. 

Example : Let us convert the following NFA-ε to NFA.  

 0 1 Ε 
→q0 {q0} {q0, q1} {q2} 
q1 {q2} Φ {q2} 
F q2 {q2} Φ {q2} 
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The set of states Q2 of NFA is { 0, 1, 2, 3 ), the initial state is 0 and 
the accepting states are 1 and 0, since 1 is in ε({0}). The transition 
function δ2 is obtained as follows:  
 
δ2(0, a): First ε({0}) = {0, 1}. Then from the transition function of 
the NFA-ε 
  
δ1( 0 , a ) = Φ , and δ1(1, a) = {1, 2}.  
 
Hence δ2(0, a) = ε({1, 2}) = {1, 2}.  
For δ2(0, b), since  ε({0}) = {0, 1} and δ1(0, b) = δ1(1, b) = Φ, δ2(0, 
b) = Φ.  
Similarly δ2 can be obtained for other states and symbols. They are 
given in the table below together with ε({q}) and ⋃ ௣∈ఌ(௤)(ܽ,݌)ଵߜ . 
 
 
State 
q Input ‘a’ ε({q}) ⋃ ௣∈ఌ(௤),݌)ଵߜ . δ2(q,a) (= ε(⋃ ௣∈ఌ(௤)(ܽ,݌)ଵߜ )) 

0 A {0, 1} { 1 , 2 } { 1 , 2 } 
0 B {0, 1} Φ Φ 
1 A { 1 } { 1 , 2 } { 1 , 2 } 
1 B { 1 } Φ Φ 
2 A { 2 } Φ Φ 
2 B { 2 } { 3 } { 1 , 3 } 
3 A {1, 3} { 1 , 2 } { 1 , 2 } 
3 B {1, 3} Φ Φ 
 
The NFA thus obtained is shown below.  
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Equivalence of NFA and DFA 

It is worth noting that a DFA is a special type of NFA and hence the 
class of languages accepted by DFA is a subset of the class of 
languages accepted by NFAs. Surprisingly, these two classes are in 
fact equal. NFAs appeared to have more power than DFAs because 
of generality enjoyed in terms of ε-transition and multiple next 
states. But they are no more powerful than DFAs in terms of the 
languages they accept. 

Converting DFA to NFA 

Theorem: Every DFA has as equivalent NFA 

Proof: A DFA is just a special type of an NFA . In a DFA , the 
transition functions is defined from QxΣ to Q whereas in case of 
an NFA it is defined from QxΣ to 2Q  and D=(Q, Σ, q0, δ, F) be a 
DFA . We construct an equivalent NFA N=(Q’, Σ, q0, δ’, F) as 
follows. 
 
 {qi} ∈ Q’ for all qi ∈ Q 
 δ’({p}, a)= {(δ(p,a)} i.e. 

If  δ(p,a) = q and δ’({p}, a) = {q} 

All other elements of N are as in D. 

If ω = a1, a2, …, an ∈  L(D) then there is a sequence of states q0, q1, 
q2, …, qn such that 

δ(qi-1, ai) = qi and qn ∈ F 

Then it is clear from the above construction of N that there is a 
sequence of states (in N) {q0}, {q1}, {q2}, …, {qn} such that δ’(qi-1, 
ai) = {qi} and {qn} ∈ F and hence ω ∈  L(N)  
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Similarly we can show the converse. 

Hence , L(N) = L(D) 

Converting NFA to DFA 

Given any NFA we need to construct as equivalent DFA i.e. 
the DFA need to simulate the behavior of the NFA. For this, 
the DFA have to keep track of all the states where the NFA could 
be in at every step during processing a given input string. 

There are 2n possible subsets of states for any NFA with n states. 
Every subset corresponds to one of the possibilities that the 
equivalent DFA must keep track of. Thus, the equivalent DFA will 
have 2n states. 

Now, given any NFA with ε-transition, we can first construct an 
equivalent NFA without ε-transition and then use the above 
construction process to construct an equivalent DFA, thus, proving 
the equivalence of NFA s and DFAs. 

It is also possible to construct an equivalent DFA directly from any 
given NFA with ε-transition by integrating the concept of ε-closure 
in the above construction. 

Recall that, for any R⊆ Q 

ε-closures(R)= {p ∈ Q | p can be reached from any q ∈ R by 
following zero or more ε-moves} 

In the equivalent DFA , at every step, we need to modify the 
transition functions δD to keep track of all the states where 
the NFA can go on ε-transitions. This is done by replacing δ(q, 
a) by ε-closure(δ(q, a)) , i.e. we now compute δD(qD, a) at every 
step as follows: 

δD(qD, a) = {q ∈ Q | q ∈ ε-closure(δ(qD, a))} 

Besides this the initial state of the DFA D has to be modified to 
keep track of all the states that can be reached from the initial state 
of NFA on zero or more -transitions. This can be done by changing 
the initial state q0

D to ε-closure (q0
D). 

It is clear that, at every step in the processing of an input string by 
the DFA D , it enters a state that corresponds to the subset of states 
that the NFA N could be in at that particular point. This has been 
proved in the constructions of an equivalent NFA for any ε-NFA 
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If the number of states in the NFA is n , then there are 2n states in 
the DFA . That is, each state in the DFA is a subset of state of 
the NFA . 

But, it is important to note that most of these 2n states are 
inaccessible from the start state and hence can be removed from 
the DFA without changing the accepted language. Thus, in fact, the 
number of states in the equivalent DFA would be much less than 2n. 

Example : Consider the NFA given below. 
 
 

 
 

 

 
 

Since there are 3 states in the NFA 

There will be 23 = 8 states (representing all possible subset of 
states) in the equivalent DFA . The transition table of 
the DFA constructed by using the subset constructions process is 
produced here. 

 

                       

 

  

 

 

 

The start state of the DFA is ε- closures(q0) = {q0} 

 0 1 Ε 
→q0 {q0, q1} Φ Φ 
F q1 {q1} Φ {q2} 
q2 Φ Φ {q0} 

 0 1 
Φ Φ Φ 
→q0 {q0, q1, q2}  Φ 
 F {q1} {q1, q2} {q0} 
{q2}  Φ {q0} 
 F {q0, q1} {q0, q1, q2} {q0} 
{q1, q2} {q0, q1, q2} {q0} 
F {q1, q2} {q1, q2} {q0} 
F {q0, q1, q2} {q0, q1, q2} {q0} 
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The final states are all those subsets that contains q1 (since q1 ∈ F in 
the NFA). 

Let us compute one entry 

δD(qo, 0) = ε-closure(δ(qo, 0)) 

 = ε-closure(δ(qo, q1)) 

 = {q0, q1, q2} 

Similarly, all other transitions can be computed. 

Corresponding transition fig. for the DFA is shown as 

 

Note that states {q1}, {q2}, {q1, q2}, {q0, q2}, and {q0, q1} are not 
accessible and hence can be removed. This gives us the following 
simplified DFA with only 3 states. 
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It is interesting to note that we can avoid encountering all those 
inaccessible or unnecessary states in the equivalent DFA by 
performing the following two steps inductively. 

1. If q0 is the start state of the NFA, then make ε-closure ( q0) 
the start state of the equivalent DFA . This is definitely the 
only accessible state. 

2. If we have already computed a set δ of states which are 
accessible. Then for all a ∈ Σ. compute  δD(S, a) because 
these set of states will also be accessible. 

Following these steps in the above example, we get the transition 
table given below 

 0 1 
→q0 {q0, q1, q2}  Φ 
F {q0, q1, q2} {q0, q1, q2} {q0} 

 
 
 
3.6  Minimization of DFA  
 
For any regular language L it may be possible to design different 
DFAs to accept L. Given two DFAs accepting the same language L, 
it is now natural to ask, which one is more simple? In this case, 
obviously, the one with less number of states would be simpler than 
the other. So, given a DFA accepting a language, we might wonder 
whether the DFA could further be simplified i.e. can we reduce the 
number of states accepting the same language. 

Consider the following DFA M1, 
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A minute observation will reveal that it accepts the language of the 
regular expression 

a*b(a+b)*   

The same language is accepted by the following simpler 
DFA M2 as well. 

 

It is a fact that, for any regular language L there is a unique 
minimal state DFA, the uniqueness is up to isomorphism to be 
defined next. 
For any given DFA M accepting L we can construct the minimal 
state DFA accepting L by using an algorithm which uses following 
steps. 

 First, remove all the states (of the given DFA M) which are 
not accessible from the start state i.e. sates P for which there 
is no string x ∈ Σ* such that δ*(q0, x) = p. Removing these 
states, clearly, will not change the language accepted by the 
DFA. 

 Second, remove all the trap states, i.e. all states P from 
which there is no transition out of it. 

 Finally, merge all states which are "equivalent" or 
"indistinguishable". We need to define formally what is 
meant by equivalent or indistinguishable states; but at this 
point we assume that merging these states would not change 
the accepted language. 
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Inaccessible states can easily be found out by using a simple 
research e.g. depth first search. Removing trap states are also 
simple. In the example, states 5 and 6 are inaccessible and hence 
can be removed; states 1 and 2 are equivalent and can be merged. 
Similarly states 3 & 4 are also equivalent and can be merged 
together to have the minimal DFA M2 as produced above. 

To construct the minimal DFA we need to see how to find 
out indistinguishable or equivalent states for merging. 

we start with a definition and then proceed to find method to 
construct minimal state DFAs. 
 
DFA Isomorphism: 

Two DFAs are said to be isomorphism if they are identical up to 
renaming of the states. Formally, DFA isomorphisms are defined as 
follows. 

Definition: Two DFAs M1 = (Q1, Σ, δ1, q1, F1) and M2 = (Q2, Σ, δ2, 
q2, F2)   are isomorphic if there is a bijection  f : Q1 → Q2  such that 
the following hold. 

1. f (q1) = q2 
2. for all q ∈ Q1, q ∈ F1, iff  f (q) = F2 
3. for all q ∈ Q1, for all a ∈ Σ, 

f ( δ1(q, a))=δ2(f(q), a)  
 

Theorem : For any regular language L there is a unique DFA that 
has a minimum number of states. In fact, the minimum DFA is the 
same as the one that has as states the equivalence classes of  ≡L (as 
defined in the context of Myhill-Nerode Theorem). 

Proof : Let ML = (QL, Σ, δL, qL, FL)  be the DFA which states are 
equivalence classes of  ≡L. Let M = (Q, Σ, δ, q0, F) be any other 
DFA recognizing L. we have already shown that 

 ≡M is a right invariant equivalence relation of finite index 
such that L is the union of some of its equivalence classes. 

 ≡M is a refinement of ≡L. 
 This implies, the number of equivalence classes 

of ≡M (which is equal to the number of states in M) must be 
greater than or equal to the number of equivalence classes 
of ≡L  (which is equal to the number of states in ML, by 
construction ). 

 That is |Q| ≥ |QL| 
 If  |Q| > |QL|, then we are done, i.e. ML is the minimum state 

DFA for L. 
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 If  |Q| = |QL|, then to prove the theorem we need to show 
that DFAs ML and M are isomorphism. 

 
Showing that ML and M  are isomorphic 

To show that ML and M are isomorphic we have to define a 
bijection  f : QL → Q that satisfies all the three conditions given in 
the definition of DFA isomorphism. 

 Recall that the states of ML are [x1], [x2], …, [xk] where x1, 
x2, …, xk  are the representatives of each k-equivalence 
classes of ≡L. 

 Let us define f : QL → Q  as follows 

f ([xi]) = δ(q0, xi) 

That is, f maps state [xi] of ML to the state in M which can 
be arrived at processing the string xi from the start state 
of M. we know that for all xi ∈ Σ*, δ(q0, xi) ∈ ܳ. Hence f is 
well-defined. 

 f is onto since |Q| = |QL| 
 To show that f is one-to-one, we need to show that for all 

p,q ∈ QL if f(p)=f(q) then p = q . That means, we need to 
show that all x, y ∈ Σ*  if f([x]) = f([y]), then x ≡L y. 
(since x1, x2, …, xk   are the representative of different 
equivalence classes of ≡L, this proves that f is one-to-one ). 

Let f([x]) = f([y])= p∈ Q . 

Then  δ(q0, x) = δ(q0, y) = p  

Therefore δ(q0, xz) = δ(q0, yz) = δ(p, z) for any  z ∈ Σ*. 

Hence, by definition of ≡L, 

xz ∈ L iff  yz ∈ L  or x ≡L y. 

This shows that f is a bijection. 
 
 
we now show in the following that it satisfies all the three 
conditions. 

1. Note that, since f is a bijection, x ≡L y ⇒ f([x]) = f([y]). 
Also note that q0L ≡L [ε]. Hence, f(q0L)= f([ε]) = δ (q0, ε) = 
q0 . Therefore, the initial state [ε] of M2 is mapped to the 
initial state q0 of M thus satisfying the first condition. 
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2. We know that for any xi ∈ Σ* 

 xi ∈ F 

⇔ xi ∈ L ( by definition)  

⇔ δ (q0, xi) ∈ F (Since M accepts L) 

⇔ f([xi]) ∈ F ( by definition of  f ) 

Thus final state of ML are mapped to final stat of M , 
satisfying the second condition. 

3. Observe that, for any xi ∈ Σ*, a ∈ Σ  

f([xi], a) = δ (δ (q0, xi), a) (by definition of f ) 

 = δ (q0, xia) 

 = f([xia])  (by definition of f ) 

 =f( δL ( xia))  (since [xia] ≡L δ( xia)) 

This satisfies the third condition of the definition, thus proving 
that ML and M are isomorphic. This also completes the prove 
that ML is the minimal state DFA for L since, now, |Q| ≥ |QL|, ( i.e. 
the number of state Q in any arbitrary DFA M accepting the 
language L must be greater than or equal to the number of states QL 
of the DFA ML that has as states the equivalence classes of ≡L.) 
 
The minimal DFA 

Given DFA M accepting a regular language L, we observe that 

 ML is the minimal state DFA accepting L. 
 ≡M refines ≡L, implying 

Each equivalence classes of ≡L  is the union of some 
equivalence classes of ≡M. 

 Hence, each state of ML  ( which correspond to the 
equivalence class of  ≡L) can be obtained by merging states 
of M. ( which correspond to equivalence classes of ≡M) 

 But, how do we decide in general when two states can be merged 
without changing the language accepted? 
we now going to devise an algorithm for doing this until no more 
merging is possible. we start with the following observations. 
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 It is not possible to merge an accept state p and a non-
accepting state q. Because if p=δ*(q0, x) ∈ F and q=δ*(q0, y) 
∉ F for some x,y ∈ Σ*, then x must be accepted and y must 
be rejected after merging p and q. But, now, the resulting 
merged state can neither be considered as an accept state 
nor as a non-accepting one. 

 If p and q are merged, then we need to merge δ(p, 
a) and δ(q, a), for every a∈ Σ, as well, to maintain 
determinism. 

From the above two observations we conclude that states p and q 
cannot be merged if δ*(p, x) ∈F  and δ*(q, x) ∉ F  for some x ∈ Σ*. 
Using the concept in the previous page, we now define an 
indistinguishability relation as follows: 

Definition : States p and q are indistinguishable if for all x ∈ Σ* 

δ*(p, x) ∈ F iff δ*(q, x) ∈ F, and is denoted as p ≡ q. It is easy to see 
that indistingushability is an equivalence relation. 

In other words we say that states p and q are "distinguishable" if ∃ 
x ∈ Σ*  such that  δ*(p, x) ∈F  and δ*(q, x) ∉ F and is denoted as p ≢ 
q . 

we say that, states p and q of a DFA M accepting a language L can 
be merged safely (i.e. without changing the accepted language L) 
if p ≡ q i.e. if p and q are indistinguishable. we can prove this by 
showing that when p and q are merged. Then they correspond to the 
same state in ML. 

Formally, p ≡ q  iff ∀ x,y ∈ Σ*, δ*(q0, x) = p and δ*(q0, x) = q ⇒ x 
≡L y . 

 
A Minimization Algorithm : 

We now produce an algorithm to construct the minimal state DFA 
from any given DFA accepting L by merging states inductively. 

The algorithm assume that all states are reachable from the start 
state i.e. there is no inaccessible states. The algorithm keeps on 
marking pairs of states ( p, q ) as soon as it determines 
that p and q are distinguishable i.e. p ≢ q . The pairs are, of course, 
unordered i.e. pairs ( p, q ) and ( q , p) are considered to be 
identical. The steps of the algorithm are given below. 

1. For every p, q ∈ Q , initially unmark all pairs ( p, q ). 
2. If p ∈ F  and q ∉ F (or vice versa ) then mark ( p, q ). 
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3. Repeat the following step until no more changes occur: If 
there exists an unmarked pair ( p, q ) such that (δ(p,a), 
δ(q,a)) is marked for some a ∈ Σ , then mark ( p, q ). 

4. p ≡ q  iff ( p, q ) is unmarked. 

The algorithm correctly computes all pairs of states that can be 
distingusihed i.e. unmarked. 
 
It is easy to show (by induction ) that the pair ( p, q ) is mraked by 
the above algorithm iff ∃ x ∈ Σ*  such that  δ*(p, x) ∈F  and δ*(q, x) 
∉ F (or vice versa ) i.e. if p ≢ q. 

Example : Let us minimize the DFA given below 

 

we execute the algorithm and mark a pair by putting an X on the 
table as shown in following figure. (Note that the table is a diagonal 
one having ൫௡ଶ൯ entries for a DFA having n states.) 

 

Initially, all cells are unmarked. (i.e. at step 1 of the algorithm) . 
After step 2, all cells representing  pairs of states of which one is 
accepting and the other is non-accepting are marked by putting an 
X. The table above shows the status after this step. 
In step 3, we consider all unmarked pairs one by one. Considering 
the unmarked pair (q0, q3), we find that q0 & q3 go to q1 and q5, 
respectively, on input 0. we use the notation (q0,q3) 

଴
→ (q1,q5)  to 

indicate this. Since the pair (q1,q5) is not marked, (q0,q3)  cannot be 
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marked at this point. Again, we see that,  (q0,q3) 
ଵ
→ (q2,q5)   and 

(q2,q5) is unmarked. Hence, we cannot mark (q0,q3) and since we 
have considered all input symbols (0 & 1) we need to examine 
other unmarked pairs. The observations and actions are shown 
below. 

 (q0,q4) 
଴
→ (q1,q5) 

 (q0,q4) 
ଵ
→ (q2,q5) cannot mark (q0,q4) since (q1,q5) & 

(q2,q5) are unmarked.   

 (q1,q2) 
଴
→ (q3,q4) 

 (q1,q2) 
ଵ
→ (q3,q4) cannot mark (q1,q2) since (q3,q4) is 

unmarked. 

 (q1,q5) 
଴
→ (q3,q5), (q1,q5) is marked since (q3,q5) is already 

marked. 

 (q2,q5) 
଴
→ (q4,q5), (q2,q5) is marked since (q3,q5) is already 

marked. 

 (q3,q4) 
଴
→ (q5,q5), (q5,q5) is never marked since it is not in 

the table hence (q3,q4) is not marked. 

   (q3,q4) 
ଵ
→ (q5,q5) 

The resulting table after this pass is given below. 

 

In the next pass we find that (q0,q3) 
଴
→ (q1,q5)  and (q1,q5) is 

marked in the previous pass. Hence, (q0,q3) can be marked now. 

Similarly, (q0,q4)  
ଵ
→ (q2,q5) and hence (q0,q4) can be marked 

since (q2,q5)  has been marked in the previous pass. Other pairs 
cannot be marked and the resulting table is shown below. By 
executing step 3 again we observe that no more pairs can be 
marked and hence the algorithm stops with this table as the 
final result. 

The unmarked pairs left in the table after execution of the 
algorithm are (q1,q2)  and (q3,q4)  implying q1 ≡ q2 and q3 ≡ q4 . 
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State True or False 
 

1. δ(q, ε) always contains q 
2. δ*(q, ε) does not always contain q 
3. In the recursive definition of ε(S) the basis is a empty set 
4. In the minimization of algorithm initially the states are 

grouped into two accepting and non-accepting states 
5. For each regular language there is a unique DFA with 

smallest number of states 

 CHECK YOUR PROGRESS   

Now, we merge q1 & q2 and q3 & q4  to have new states q12 & 
q34, respectively. 

Transitions are adjusted appropriately to obtain the following 
minimal DFA. 

 

q12 is a final state, since both q1 & q2 were final states. 
Similarly q34 is a non-final state. 

q0 goes to q12 on input 0 and 1, since q0 go to q1 and q2 respectively 
on 0 and 1.Similar, justifications suffice for other adjusted 
transitions. 
 
 
 
 
 
 
 1 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.9  LET US SUM UP 
 

 ε-closure of a state is the set of states which are reachable 
from the states by ε-moves without reading the input.  

 The union of two regular languages is regular. The 
intersection of two regular languages is regular. The 
compliment of two regular languages is regular. The 
difference of two regular languages is regular. The reversal 
of a regular language is regular. The closure of a regular 
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language is regular. The concatenation of regular languages 
is regular. The homomorphism of a regular language is 
regular. The inverse homomorphism of two regular 
languages is regular. 

 We can convert the different automata from one from to 
other by following certain number of steps. 

 For every DFA we can design a DFA with minimized 
states.   
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Check your progress 1 
 
Check your Progress 2 

1. False 
2. False 
3. False 
4. True 
5. True 

 
 
 

3.11  ANSWERS TO CHECK YOUR    
       PROGRESS 
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1. Explain how we can convert a NFA to DFA. 

2. Explain how we can convert a NFA-ε to DFA 

3. For the following transition table construct the minimum 

state equivalent DFA 
 
 0 1 
→A B A 
B A C 
C D B 
*D D A 
E D F 
F G E 
G F G 
H G D 
 

 
***** 

3.12 PROBABLE QUESTIONS 
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UNIT - 4: CONTEXT FREE GRAMMAR AND 
LANGUAGE     
 
UNIT STRUCTURE 

 
4.1      Learning Objectives 
4.2      Introduction 
4.3 Context free Grammar 
4.4 Pushdown Automata  
4.5 Parsing and Parse Tree 
4.6 Let Us Sum Up 
4.7 Further Readings 
4.8 Answers to Check Your Progress 
4.9 Probable Questions 

 

4.1 LEARNING OBJECTIVES 

After going through this unit, you will be able to 

 define context free grammar 

 work on push down automata 

 design parse tree 

 know the problems related to context free grammar 
 

 

 

 

4.2  INTRODUCTION 

In addition to regular languages there are three other types 
of languages in Chomsky hierarchy: context-free languages, 
context-sensitive languages and phrase structure languages. They 
are characterized by context-free grammars, context-sensitive 
grammars and phrase structure grammars, respectively.  

These grammars are distinguished by the kind of 
productions they have but they also form a hierarchy, that is the set 
of regular languages is a subset of the set of context-free languages 
which is in turn a subset of the set of context-sensitive languages 
and the set of context-sensitive languages is a subset of the set of 
phrase structure languages. 
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  A grammar is a context-free grammar if and only if its 
production is of the form X → α, where α is a string of terminals 
and non-terminals, possibly the empty string. For example              
P = { S → aSb, S → ab } with Σ = { a, b } and V = { S } is a 
context-free grammar and it generates the language { anbn | n is a 
positive integer } . As we shall see later this is an example of 
context-free language which is not regular. 

  A grammar is a context-sensitive grammar if and only if 
its production is of the form α1xα2 → α1βα2, where X is a non-
terminal and α1, α2 and β are strings of terminals and non-terminals, 
possibly empty except β .Thus the non-terminal X can be rewritten 
as β only in the context of α1xα2. For example                                  
P = { S → XYZS1, S → XYZ, S1 → XYZS1,                             
S1 → XYZ, YX → XY, ZX → XZ, ZY → YZ, X → a, aX → aa, 
aY → ab, BY → bb, bZ → bc, cZ → cc } with Σ = { a, b, c } and   
V = { X, Y, Z, S, S1 } is a context-sensitive grammar and it 
generates the language { anbncn | n is a positive integer } . It is an 
example of context-sensitive language which is not context-free.  
Context-sensitive grammars are also characterized by productions 
whose left hand side is not longer than the right hand side, that is, 
for every production α → β , |α| ≤ |β|.  

For a phrase structure grammar, there is no restriction on 
the form of production, that is a production of a phrase structure 
grammar can take the form α-> β, where α and β can be any string, 
but α must contain at least one non-terminal.  

Here we are going to discuss about context-free grammars. 
Context free grammars are those whose productions have the form 
X → α, where X is a nonterminal and α is a nonempty string of 
terminals and nonterminals. The set of strings generated by a 
context-free grammar is called a context-free language and context-
free languages can describe many practically important systems. 
Most programming languages can be approximated by context-free 
grammar and compilers for them have been developed based on 
properties of context-free languages. Let us define context-free 
grammars and context-free languages here. 

 

4.3  CONTEXT-FREE GRAMMAR  

 
Definition (Context-Free Grammar) :  
A context-free grammar G is a 4-tuple G = < V , Σ , S , P >  is 
a context-free grammar (CFG) if V and Σ are finite sets sharing no 
elements between them, S ∈ V is the start symbol, and P is a finite 
set of productions of the form X →α , where X ∈ V , and           
α ∈ ( V ∪ Σ )*. 
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A language is a context-free language (CFL) if all of its 
strings are generated by a context-free grammar.  
 
Example 1: L1 = { anbn | n is a positive integer } is a context-free 
language. For the following context-free grammar                       
G1 = < V1 , Σ, S, P1 > generates L1 : 
V1 = { S } , Σ = { a , b } and P1 = { S → aSb , S → ab }.  
 
Example 2: L2 = { wwr| w ∈  {a, b }+ } is a context-free language , 
where w is a non-empty string and wr denotes the reversal of string 
w, that is, w is spelled backward to obtain wr . For the following 
context-free grammar G2 = < V2 , Σ, S, P2 > generates L2 : 
V2 = { S } , Σ = { a, b } and  
P2 = { S → aSa , S → bSb , S → aa , S → bb }. 
  
Example 3: Let L3 be the set of algebraic expressions involving 
identifiers x and y, operations + and * and left and right 
parentheses. Then L3 is a context-free language. For the following 
context-free grammar G3 = < V3 ,  Σ3, S , P3 > generates L3 : 
V3 = { S } , Σ 3 = { x, y, (, ), +, * } and  
P3 = { S → ( S + S ) , S → S*S , S → x , S → y }. 
 
Example 4: Portions of the syntaxes of programming languages 
can be described by context-free grammars. For example  
{ < statement > → < if-statement > , 
 < statement > → < for-statement > , 
 < statement > → < assignment > , . . . , 
 < if-statement >→ if ( < expression > ) < statement > ,  
 < for-statement > → for ( < expression > ; < expression > ;             

       < expression > ) < statement > , . . . , 
 < expression > → < algebraic-expression > , 
 < expression > → < logical-expression > , . . . }. 
 
Properties of Context-Free Language 
 
Theorem 1: Let L1 and L2 be context-free languages. Then 
L1 ∪ L2 , L1L2 , and L1

* are context-free languages.  
 
Proof  
This theorem can be verified by constructing context-free 
grammars for union, concatenation and Kleene star of context-free 
grammars as follows:  
 
Let G1 = < V1 , Σ , S1 , P1 > and G2 = < V2 , Σ , S2 , P2 > be context-
free grammars generating L1 and L2 , respectively.  
 
Then for L1 ∪ L2 , first relabeled symbols of V2, if necessary, so 
that V1 and V2 don't share any symbols. Then let Su be a symbol 
which is not in V1 ∪  V2.  Next define Vu = V1 ∪  V2 ∪  { Su } and 
Pu = P1 ∪  P2 ∪  {Su  → S1 , Su  → S2 }. 
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Then it can be easily seen that Gu = < Vu , Σ , Su , Pu > is a context-
free grammar that generates the language L1 ∪  L2 . 
 
Similarly for L1L2, first relabeled symbols of V2 , if necessary, so 
that V1 and V2 don't share any symbols. Then let Sc be a symbol 
which is not in V1 ∪  V2 . Next define Vc = V1 ∪  V2 ∪  { Sc } and 
Pc = P1 ∪  P2 ∪  {Sc  → S1S2 }. 
  
Then it can be easily seen that Gc = < Vc , Σ , Sc , Pc > is a context-
free grammar that generates the language L1L2 .  
 
For L1

*, let Ss be a symbol which is not in V1. Then let                 
Ps = P1 ∪ { Ss → SsS1 , Ss →ε } . It can be seen that the grammar 
Gs = < Vs , Σ , Ss , Ps > is a context-free grammar that generates the 
language L1

* . 
 

 

4.4  PUSHDOWN AUTOMATA   

Like regular languages which are accepted by finite 
automata, context-free languages are also accepted by automata but 
not finite automata. They need a little more complex automata 
called pushdown automata. 
  
 Let us consider a context-free language anbn . Any string of 
this language can be tested for the membership for the language by 
a finite automaton if there is a memory such as a pushdown stack 
that can store a's of a given input string. For example, as a's are 
read by the finite automaton, push them into the stack. As soon as 
the symbol b appears stop storing a's and start popping a's one by 
one every time a b is read. If another a (or anything other than b) is 
read after the first b, reject the string. When all the symbols of the 
input string are read, check the stack. If it is empty, accept the 
string. Otherwise reject it. 

 
This automaton behaves like a finite automaton except the 

following two points: First, its next state is determined not only by 
the input symbol being read, but also by the symbol at the top of 
the stack. Second, the contents of the stack can also be changed 
every time an input symbol is read. Thus its transition function 
specifies the new top of the stack contents as well as the next state.  
 
Let us define this new type of automaton formally. 
  
A pushdown automaton ( or PDA for short ) is a 7-tuple              
M = < Q, Σ, Γ, q0, Z , F, δ > , where  
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Q is a finite set of states,  
Σ and Γ are finite sets (the input and stack alphabet, respectively ). 
q0 is the initial state, 
Z0 is the initial stack symbol and it is a member of  Γ, 
F is the set of accepting states 
δ is the transition function and  
δ : Q x (Σ ∪ ε ) x Γ → 2Q x Γ*.  
 
Thus δ(p , a , X ) = ( q , α) means the following:  
 
The automaton moves from the current state of p to the next state q 
when it sees an input symbol ‘a’ at the input and X at the top of the 
stack, and it replaces X with the string α at the top of the stack.  
 
Example 1 :  
 
Let us consider the pushdown automaton < Q, Σ, Γ, q0 , Z0, F, δ > , 
where Q = { q0 , q1 , q2 }, Σ = { a, b }, Γ = { A, Z0 }, F = { q2 } and 
let δ be as given in the following table: 
 
State Input Top of Stack Move 
q0 A Z0 ( q0 , AZ0 ) 
q0 A A ( q0 , AA ) 
q0 B A ( q1 , ε ) 
q1 B A ( q1 , ε ) 
q1 Ε Z0 ( q2 , Z0 ) 
 
 
This pushdown automaton accepts the language anbn . To describe 
the operation of a PDA we are going to use a configuration of PDA. 
A configuration of a PDA M = < Q, Σ, Γ, q0, Z0, A, δ > is a triple  
( q , x , α ) , where q is the state the PDA is currently in, x is the 
unread portion of the input string and α is the current stack 
contents, where the input is read from left to right and the top of the 
stack corresponds to the leftmost symbol of α. To express that the 
PDA moves from configuration ( p , x , α ) to configuration              
( q , y , β ) in a single move (a single application of the transition  
function) we write 
 

( p, x, α )  ⊢ ( q, y,  β ). 
  
If ( q , y , β ) is reached from ( p , x , α ) by a sequence of zero or 
more moves, we write 
  

( p, x, α )  ⊢∗ ( q, y,  β ). 
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Let us now see how the PDA of Example 1 operates when it is 
given the string aabb, for example.  
 
Initially its configuration is ( q0 , aabb , Z0 ). After reading the first 
‘a’, its configuration is ( q0 , abb , AZ0 ). After reading the second 
‘a’, it is ( q0 , bb , AAZ0 ). Then when the first ‘b’ is read, it moves 
to state q1 and pops ‘A’ from the top of the stack. Thus the 
configuration is ( q1 , b , AZ0 ). When the second ‘b’ is read, 
another ‘A’ is popped from the top of the stack and the PDA stays 
in state q1. Thus the configuration is (q1, ε, Z0 ). Next it moves to 
the state q2 which is the accepting state. Thus aabb is accepted by 
this PDA. This entire process can be expressed using the 
configurations as 

 
( q0, aabb, Z0) ⊢ ( q0, abb, AZ0 ) ⊢ ( q0, bb, AAZ0) ⊢            
( q1, b, AZ0) ⊢ ( q1, ε , Z0) ⊢ ( q2, ε, Z0). 

  
If we are not interested in the intermediate steps, we can also write 

 
( q0 , aabb, Z0 ) ⊢* ( q2 , ε , Z0 )   

  
A string x is accepted by a PDA if   (q0, x, Z0) ⊢* (q, ε, α),   for 
some α in Γ *, and an accepting state q.  
 

Like FAs, PDAs can also be represented by transition 
diagrams. For PDAs, however, arcs are labeled differently than 
FAs. If  δ( q, a, X) = ( p, α), then an arc from state p to state q is 
added to the diagram and it is labeled with ( a , X / α ) indicating 
that X at the top of the stack is replaced by α upon reading ‘a’ from 
the input. For example the transition diagram of the PDA of 
Example 1 is as shown below. 
  

 
         
 
Example 2 :  
 
Let us consider the pushdown automaton < Q, Σ, Γ, q0 , Z0, F, δ > , 
where Q = { q0, q1, q2 }, Σ = { a, b, c }, Γ = { A, B, Z0 }, F = { q2 } 
and let δ be as given in the following table:  
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State Input Top of Stack Move 
q0 A Z0 ( q0 , AZ 0 ) 
q0 B Z0 ( q0 , BZ 0 ) 
q0 A σ ( q0 , A σ ) 
q0 B σ ( q0 , B σ ) 
q0 C σ ( q1 , σ ) 
q1 A A ( q1 , ε ) 
q1 B B ( q1 , ε ) 
q1 Ε Z0 ( q2 , Z0 ) 

 
In this table σ represents either a or b.  
 
This pushdown automaton accepts the language                               
{ wcwr | w ∈ { a, b}* } , which is the set of palindromes with c in 
the middle.  
 
For example for the input abbcbba, it goes through the following 
configurations and accepts it.  

 
( q0 , abbcbba , Z0 ) ⊢ ( q0 , bbcbba , AZ0 ) ⊢  
( q0 , bcbba , BAZ0 ) ⊢ ( q0 , cbba , BBAZ0 ) ⊢  
( q1 , bba , BBAZ0 ) ⊢ ( q1 , ba , BAZ0 ) ⊢  
( q1 , a , AZ0 ) ⊢ ( q1 , ε , Z0 ) ⊢ ( q2 , ε , Z0 ) .  

 
This PDA pushes all the a's and b's in the input into stack until c is 
encountered. When c is detected, it ignores c and from that point on 
if the top of the stack matches the input symbol, it pops the stack. 
When there are no more unread input symbols and Z0 is at the top 
of the stack, it accepts the input string. Otherwise it rejects the input 
string. 
  
The transition diagram of the PDA of Example 2 is as shown 
below. In the figure σ, σ1 and σ2 represent a or b.  
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4.5   PARSING AND PARSE TREE  

Consider the algebraic expression x + yz. Though we are 
accustomed to interpreting this as x + (yz) i.e. compute yz first, 
then add the result to x, it could also be interpreted as ( x + y ) z 
meaning that first compute x + y, then multiply the result by z. 
Thus if a computer is given the string x + yz, it does not know 
which interpretation to use unless it is explicitly instructed to 
follow one or the other. Similar things happen when English 
sentences are processed by computers. For example in the sentence 
"A man bites a dog", native English speakers know that it is the dog 
that bites and not the other way round. "A dog" is the subject, 
"bites" is the verb and "a man" is the object of the verb. However, a 
computer like non-English speaking people must be told how to 
interpret sentences such as the first noun phrase ("A dog") is 
usually the subject of a sentence, a verb phrase usually follow the 
noun phrase and the first word in the verb phrase is the verb and it 
is followed by noun phrases representing object(s) of the verb.  

Parsing is the process of interpreting given input strings according 
to predetermined rules i.e. productions of grammars. By parsing 
sentences we identify the parts of the sentences and determine the 
structures of the sentences so that their meanings can be understood 
correctly.  
 
Context-free grammars are powerful grammars. They can describe 
much of programming languages and basic structures of natural 
languages. Thus they are widely used for compilers for high level 
programming languages and natural language processing systems. 
The parsing for context-free languages and regular languages have 
been extensively studied. 
 
 
Parsing is a process to determine how a string might be derived 
using productions of a given grammar. It can be used to check 
whether or not a string belongs to a given language. When a 
statement written in a programming language is input, it is parsed 
by a compiler to check whether or not it is syntactically correct and 
to extract components if it is correct. Finding an efficient parser is a 
nontrivial problem and a great deal of research has been conducted 
on parser design. 
 
Here basic parsing techniques are introduced with examples and 
some of the problems involved in parsing are discussed together 
with brief explanations of some of the solutions to those problems 
Two basic approaches to parsing are top-down parsing and bottom-
up parsing. In the top-down approach, a parser tries to derive the 
given string from the start symbol by rewriting nonterminals one by 
one using productions. The nonterminal on the left hand side of a 
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production is replaced by it right hand side in the string being 
parsed. In the bottom-up approach, a parser tries to reduce the 
given string to the start symbol step by step using productions. The 
right hand side of a production found in the string being parsed is 
replaced by its left hand side. 
 
Let us see how string aababaa might be parsed by these two 
approaches for the following grammar as an example: 
 

S → aSa | bSb | a | b  
 
This grammar generates the palindromes of odd lengths. 
 
Top-down approach proceeds as follows: 

 The start symbol S is pushed into the stack without reading 
any input symbol. 

 S is popped and aSa is pushed without reading any input 
symbol. 

 As the first a in the input is read, a at the top of the stack is 
popped. 

 S is popped and aSa is pushed without reading any input 
symbol. 

 As the second a in the input is read, a at the top of the stack 
is popped. 

 S is popped and bSb is pushed without reading any input 
symbol. 

 As the first b in the input is read, b at the top of the stack is 
popped. 

 S is popped and a is pushed without reading any input 
symbol. 

 As the unread input symbols are read, abaa in the stack is 
popped one by one.  

Since the stack is empty when the entire input string is read, the 
string is found to be in the language. 
 
If we use configuration without state, that is, (unread portion of 
input, stack contents), this top-down parsing can be expressed as 
follows:  
 

(aababaa, Z0) ⊢ (aababaa, SZ0) ⊢ (aababaa, aSaZ0) ⊢ 
(ababaa, SaZ0) ⊢ (ababaa, aSaaZ0) ⊢ (babaa, SaaZ0) ⊢ 
(babaa, bSbaaZ0) ⊢ (abaa, SbaaZ0) ⊢ (abaa, abaaZ0) ⊢  
(baa, baaZ0) ⊢ (aa, aaZ0) ⊢ (a, aZ0) ⊢ (ε, Z0) 

 
In general a PDA for top-down parsing has the following four types 
of transitions:  
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 For each production, pop the nonterminal on the left hand 
side of the production at the top of the stack and push its 
right hand side string;  

 Pop the stack if the top of the stack matches the input 
symbol being read; 

 Initially push the start symbol into the stack; 
 Go to the final state if the entire input has been read and the 

stack is empty. 
 

Bottom-up approach proceeds as follows: 
 

 The string aababaa is read into the stack one by one from 
left until the middle a is reached. 

 The middle a is replaced by S at the top of the stack without 
reading any input symbol. 

 The second b is read and pushed into the stack.  
 bSb at the top of the stack is replaced by S.  
 The fourth a is read and pushed into the stack.  
 aSa at the top of the stack is replaced by S.  
 The last a is read and pushed into the stack.  
 aSa at the top of the stack is replaced by S.  

 
Since the stack has S when the entire input string is read, the string 
is found to be in the language.  
 
If we use configuration without state, this bottom-up parsing can be 
expressed as follows:  
 

(aababaa, Z0) ⊢ (ababaa, aZ0) ⊢ (babaa, aaZ0) ⊢  
(abaa, baaZ0) ⊢ (baa, abaaZ0) ⊢ (baa, SbaaZ0) ⊢  
(aa, bSbaaZ0) ⊢ (aa, SaaZ0) ⊢ (a, aSaaZ0) ⊢  
(a, SaZ0) ⊢ (ε, aSaZ0) ⊢ (ε, SZ0)  

  
Note that the rightmost symbol on the right hand side of a 
production appears at the top of the stack. 
 
In general a PDA for bottom-up parsing has the following four 
types of transitions:  
 

 Push input symbol being read into the stack -- this is 
called shift; 

 Replace the right hand side of a production at the top of the 
stack with its left hand side -- this is called reduce; 

 Pop the stack if the top of the stack matches the input 
symbol being read;  

 If the entire input has been read and only the start symbols 
is in the stack, then pop the stack and go to the final state. 
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The structure of a derivation of a string can be represented by a tree 
called parse tree or a derivation tree. A parse tree has the start 
symbol at its root. Its internal nodes correspond to the nonterminals 
that appear in the derivation. The children of a node are the 
symbols appearing on the right hand side of the production used to 
rewrite the nonterminal corresponding to the node in the derivation. 
For example the following figure shows the parse tree of the 
string aababaa of the above example.  

 
 
The top-down parsing traverses this tree from the root down to the 
leaves, while the bottom-up parsing goes from the leaves up to the 
root 
 
Example 2 for top-down and bottom-up parsing:  
 
Given the grammar  
 

S → S + X | X;  
X → X * Y | Y; 
Y → (S) | id 

 
let us parse the expression a + b*c.  
 
Top-down parsing:  

(a + b * c, Z0) ⊢ (a + b * c, S Z0) ⊢ (a + b * c, S+X Z0) ⊢  
(a + b * c, X + X Z0) ⊢ (a + b * c, Y + X Z0) ⊢  
(a + b * c, a + X Z0) ⊢ ( + b * c, + X Z0) ⊢ ( b * c,  X Z0) ⊢  
( b * c,  X * Y Z0) ⊢ ( b * c,  b * Y Z0) ⊢ ( * c,  * Y Z0) ⊢  
( c,  Y Z0) ⊢ ( c,  c Z0) ⊢ ( ε,  Z0) 

 
Bottom-up parsing: 

(a + b * c, Z0) ⊢ ( + b * c, a Z0) ⊢ ( + b * c, Y Z0) ⊢  
( + b * c,  X Z0) ⊢ ( + b * c, S Z0) ⊢ ( b * c, + S Z0) ⊢  
( * c, b + X Z0) ⊢ ( * c,  Y + S Z0) ⊢ ( * c,  X + S Z0) ⊢  
( c,  * X + S Z0) ⊢ ( ε,  c * X + S Z0) ⊢ ( ε,  Y * X + S Z0) ⊢  
( ε, X + S Z0) ⊢ ( ε, S Z0) 
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Note again that the rightmost symbol on the right hand side of a 
production appears at the top of the stack. 
 
Difficulties in parsing  
The main difficulty in parsing is nondeterminism. That is, at some 
point in the derivation of a string more than one productions are 
applicable, though not all of them lead to the desired string, and one 
cannot tell which one to use until after the entire string is generated. 
For example in the parsing of aababaa discussed above, when S is 
at the top of the stack and a is read in the top-down parsing, there 
are two applicable productions, namely S → aSa and S → a. 
However, it is not possible to decide which one to choose with the 
information of the input symbol being read and the top of the stack. 
Similarly for the bottom-up parsing, it is impossible to tell when to 
apply the production S → a with the same information as for the 
top-down parsing. Some of these nondeterminisms are due to the 
particular grammar being used and they can be removed by 
transforming grammars to other equivalent grammars while others 
are the nature of the language the string belongs to. Below several 
of the difficulties are briefly discussed. 
 
Factoring:  
Consider the following grammar:  
 

S → T; T → aTb | abT | ab. 
 
With this grammar when string aababaa is parsed top-down, 
after S is replaced by T in the first step, there is no easy way of 
telling which production to use to rewrite T next. However, if we 
change this to the following grammar which is equivalent to this 
grammar, this nondeterminism disappears: 
 

S → aU;  U → Sb | bT;  T → S | ε. 
 
 This transformation operation is called factoring as a on the right 
hand side of productions for T  in the original grammar are factored 
out as see n in the new grammar.  
 
Left-recursion:  
Consider the following grammar:  
 

S → Sa | Sb | a 
 
When a string, say aaba, is parsed top-down for this grammar, 
after S is pushed into the stack, it needs to be replaced by the right 
hand side of some production. However, there is no simple way of 
telling which production to use and a parser may go into infinite 
loop especially if it is given an illegal string (a string which is not 
in the language). This kind of grammar is called left-recursive. 
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Left-recursions can be removed by replacing left-recursive pairs of 
productions with new pairs of productions as follows: 
If X → Xα1 | Xα2 | β1 | β2 are left-recursive productions, where β's 
don't start with X, then replace them with X → β1X’ | β2X’ and    
X’ → α1X’ | α2X’ | ε. 
For example the left-recursive grammar given above can be 
transformed to the following non-recursive grammar:  
 

S → aS’;  S’ → aS’ | bS’ | ε 
 
Ambiguous grammar :  
A context-free grammar is called ambiguous if there is at least one 
string that has more than one distinct derivations (or, equivalently, 
parse trees). For example, the grammar 
 

S → S + S | S * S | (S) | id  
 
where id represents an identifier, produces the following two 
derivations for the expression x + y * z  
 

S => S + S => id + S => id + S * S  
   => id + id * S => id + id * id,  

 
which corresponds to x + (y * z)  and 
 

S => S * S => S + S * S => id + S * S 
   => id + id * S => id + id * id,  

 
which corresponds to (x + y) * z .  
 
Though some context-free languages are inherently ambiguous and 
no unambiguous grammars can be constructed for them, it is often 
possible to construct unambiguous context-free grammars for 
unambiguous context-free languages. For example, for the 
language of algebraic expressions given above, the following 
grammar is unambiguous:  
 

S → S + X | X;  
X → X * Y | Y; 
Y → (S) | id 

 
Nondeterministic language :  
Lastly there are context-free languages that cannot be parsed by a 
deterministic PDA. This kind of languages need nondeterministic 
PDAs. Hence guess work is necessary in selecting the right 
production at certain steps of their derivation. For example take the 
language of palindromes. When parsing strings for this language, 
the middle of a given string must be identified. But it can be shown 
that no deterministic PDA can do that. 
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State True or False 
 

1. {S → aSb; S→ab} generates a context free language that 

is not regular 

2. A PDA is a finite automata with a pushdown stack 

3. A language is context free if and only if it is accepted by 

a PDA 

4. {S → aS; S→bS; aSb→bX; X→a; X→b} is context free 

5. Any number of nonterminal can appear on the right side 

of a production of a CFG 

 CHECK YOUR PROGRESS   

 
 
 
 
 
 1 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.6  LET US SUM UP 
 

 A CFG is a way to describing languages by recursive rules 
called productions. A CFG consist of a set of variables, a set 
of terminal symbols and a start symbol, as well as the 
productions. Each production consist of a head variable and 
a body consisting of a string 0f zero or more variable and/or 
terminals. 

 Two basic approaches to parsing are top-down parsing and 
bottom-up parsing.  

 In the top-down approach, a parser tries to derive the given 
string from the start symbol by rewriting nonterminals one 
by one using productions. 

 In the bottom-up approach, a parser tries to reduce the given 
string to the start symbol step by step using productions.  

 The structure of a derivation of a string in CFG can be 
represented by a tree called parse tree or a derivation tree 

 A context-free grammar is called ambiguous if there is at 
least one string that has more than one distinct derivation. 
From which more than one parse tree for same set of strings 
can be generated.  
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1. True 
2. True 
3. True 
4. False 
5. True 

 
 
 
 

 
 
1. Design CFG for the following 

a) {0n1n n >0} 
b) {an b2n n>0} 

2. The following grammar generates the language 
0*1(0+1)* 
S → A1B 
A→0A | ε 
B→0B | 1B |ε 

4.8  ANSWERS TO CHECK YOUR    
       PROGRESS 
 

4.11 PROBABLE QUESTIONS 
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Give the leftmost and rightmost derivation for the 
following 
a) 00100 
b) 1001 
c) 00011 

3. For each of the string draw the parse tree for the 
grammar given in the question no 2. 

 
***** 



UNIT 5 : PUSHDOWN AUTOMATA

UNIT STRUCTURE

5.1 Learning Objectives
5.2 Introduction
5.3 Definition of the Pushdown automata
5.4 The languages of a PDA
5.5 Equivalence of   PDA’s and CFG’s
5.6 Deterministic Pushdown Automata
5.7 Let Us Sum Up
5.8 Answers to Check Your Progress
5.9 Further Readings
5.10 Possible Questions

5.1   LEARNING OBJECTIVES

After going through this unit, you will able to

· Understand Pushdown automata
· Know the languages accepted by Pushdown automata
· Build PDA using Context Free Grammar
· Understand the relationship between CFG and PDA
· Define Deterministic Pushdown Automata

5.2   INTRODUCTION

In the previous units we discussed about FA and CFG , but  there are
certain limitations of FA . Finite Automata (FA) accept regular lan-
guages such as ab* . However, FA do not accept Context-Free Lan-
guages such as L= {       ancbn  : where n >= 0      }. It is to be noted that
L has strings with a matching number of a's and b's separated by a c
. What is interesting about L is that it has a string pattern that is simi-



lar but not exactly the same to that of programming languages such
as Java and C++. In fact, syntactic structures of a programming lan-
guage are defined by Context-Free Grammars in a way that is similar
to that of the Context-Free Grammar (CFG) of L given below:

SaSb|c

This CFG generates or derives a balanced number of a's and b's.
Pushdown Automata are designed to accept languages with strings
that have similar patterns. That is, a Pushdown Automaton will ac-
cept strings like acb, aacbb, aaacbbb, . . . ., (that is, the strings of L).
Pushdown Automata use a stack data structure for matching equal
number of a's and b's without counting them directly. A stack is an
interesting data-structure which allows operations such as push and
pop and increase or decrease its stored contents in a Last-In-First-
Out (LIFO) manner. Stacks are used for processing Context-Free
Languages.

    

A diagram of the pushdown automaton

Pushdown automata differ from finite state machines in two ways:
They can use the top of the stack to decide which transition to take.
They can manipulate the stack as part of performing a transition.
Pushdown automata choose a transition by indexing a table by input
signal, current state, and the symbol at the top of the stack. This
means that those three parameters completely determine the transi-



tion path that is chosen. Finite state machines just look at the input
signal and the current state: they have no stack to work with. Push-
down automata add the stack as a parameter for choice.

The PDA is used in theories about what can be computed by ma-
chines. It is more capable than a finite-state machine but less ca-
pable than a Turing machine. Because its input can be described
with a formal grammar, it can be used in parser design. The deter-
ministic pushdown automaton can handle all deterministic context-
free languages while the nondeterministic version can handle all con-
text-free languages.

5.3 DEFINITION OF THE PUSHDOWN AUTOMATA

A PDA is formally defined as a 7-tuple:
 P=(Q, q0, Z, F) where

 Q is a finite nonempty set of states
 is a finite set which is called the input alphabet
 is a finite set which is called the stack alphabet
 is the transition function from Q X ( {}) X to the set of finite
    subsets Q X .
 q0 is the start state
 Z  is the initial stack symbol
 F  Q is the set of accepting states.

Example 1:  Let M=(Q, q0, Z, F)  where

Q={q0,q1,qf} , a,b={a, Z} , F={qf}

is given by q0,a,Zq0,aZq1,b,aq1,
q0,a,aq0,aaq1,,Zq1,
q0,b,aq1,

In the above example to push a symbol on the stack i.e to push ‘a’  on
to the stack q0,a,Zq0,aZis used .Similarly to pop a symbol ‘a’



from stack q1,b,aq1,is used. PDA can also behave as do
nothing machine, just read the input from the tape and don’t make
any change to the state and symbol at the stack like q0,a,Zq0,Z.

Instantaneous  Description (ID) :
Let  A=(Q, q0, Z, F) be a pda. An ID is q,x,where q 
Q, x ,For example q,abcde....k,m is  an
ID.This describes the pda when the current state is q, the input string
to be processed is abcde.....k. The pda will process abcde....k in that
order.The pushdown store/stack (PDS) has m  with
at the top. is the second element from the top etc. and  m is the
lowest element in PDS.

The relation i1 |-- i2 means:
PDA P can move in one step from ID i1 to ID i2

The relation i1 |--* i2 means:
PDA P can move in zero or more steps from ID i1 to ID i2

Example 2: Design PDA for the language L={wcwr | w a,b}.
Let  P=(Q, q0, Z, F)  be the pda
Q={s,f}
={a,b,c}
={a,b}
F={f}

s,a,s,as,b,s,b
s,c,f, s,c,af,a s,c,bf,b
s,a,as,aas,a,bs,ab
s,b,as,bas,b,bs,bb
f,a,af,f,b,bf, f,f,

This automata works in the following way. As it reads the first half of
its input, it remains in its initial state and keeps on pushing the sym-
bol on the stack until it reaches the middle symbol ‘c’. At this stage it
moves to state ‘f’ and then keeps on poping the symbol it reads from



the tape.
State Input Stack
s abcba 

s bcba a
s cba ba
f ba ba
f a a
f  

5.4 THE LANGUAGES OF A PDA

We have assumed that a PDA accepts its input by consuming it and
entering an accepting state. We call this approach acceptance by
final state. We may also define for any PDA the language accepted
by empty stack, that is, the set of strings that cause the PDA to empty
its stack, starting from the initial ID. These two methods are equiva-
lent, in the sense that a language L has a PDA that accepts it by final
state if and only if L has a PDA that accepts it by empty stack. How-
ever for a given PDA P, the languages that P accepts by final state
and by empty stack are usually different. We will show conversion of
a PDA accepting L by final state into another PDA that accepts L by
empty stack, and vice-versa.

Acceptance by Final State
Let P = (Q, ,  , , q0, Z, F ) be a PDA. Then L(P), the language
accepted by P. By final state, is
L(P) = {w|(q0, w, Z) |--* (q,) }
for some state q  F and any stack string . That is, starting in the
initial ID with w waiting on the input, P consumes w from the input
and enters an accepting state. The content of the stack at that time
is irrelevant.

Acceptance by Empty Stack
Let P = (Q, ,  , , q0, Z, F ) be a PDA. Then L(P), the language
accepted by P. By empty stack, is



N(P) = {w|(q0, w, Z) |--* (q,) }
for any state q. That is, N(P) is the set of inputs w that P can con-
sume and at the same time empty its stack. The N in N(P) stands for
null stack, a synonym for empty stack.

From Empty Stack to Final State
Objective of this section is show the conversion from a PDA Pn that
accepts a language L by empty stack to a PDA Pf that accepts L by
final state.

Theorem: If L = N(Pn) for some PDA Pn =  (Qn, , n, n, q0 , Z0 , Fn ),
then there is a PDA Pf = (Qf  , , f, f, p0, X0, Ff ) such that L = L(Pf).
Proof: The idea behind the proof is in Figure 1. We use a new sym-
bol X0, which must not be a symbol of n; X0 is both the start symbol
of Pf and a marker on the bottom of the stack that lets us know when
Pn has reached an empty stack. That is, if Pf sees X0 on top of the
stack, then it knows that Pn would empty its stack on the same input.
We also need a new start state, p0, whose sole function is to push
Z0, the start state of Pn, onto the top of the stack and enter state q0,
the start state of Pn. Then, Pf simulates Pn, until the stack of Pn is
empty, which Pf detects because it sees X0 on the top of the stack.
Finally, we need another new state, Pf, which is the accepting state
of Pf; this PDA transfers to state Pf whenever it discover that Pn

would have emptied its stack.

    

    Figure 1: Pf simulates Pn and accepts if Pn empties its stack



The specification of Pf is as follows:
Qf = Qn [ {p0, pf}.
f=nU {X0}.
Ff = {pf}.

f  is defined by
1. f (p0, ,X0) = {(q0, Z0X0)}. In its start state, Pf makes a spontane-
ous transition to the start state of Pn, pushing its start symbol Z0 onto
the stack.
2. For all state q Qn, inputs a  n ora = , and stak symbol Y n

, f (q, a ,Y) contains all the pairs in n (q, a ,Y).
3. In addition to rule (2), f(q, ,X0) contains (pf , ) for every state q
  Qn.

We must show that w is in L(Pf ) if and only if w is in N(Pn).
(If) We are given that (q0,w, Z0) |--*pn  (q , ) for some state q. Insert
X0 at the bottom of the stack and conclude (q0,w, Z0X0) |--*Pn (q,  ,X0).
Since by rule (2) above, Pf has all the moves of Pn, we may also
conclude that (q0,w, Z0X0) |--*Pf (q,  ,X0). If we put this sequence of
moves with the initial and final moves from rules (1) and (3) above,
we get:
(p0,w,X0) |--pf(q0,w, Z0X0) |--*Pf (q,  ,X0)|--Pf (q,  ,)

Thus, Pf accepts w by final state.

5.5 EQUIVALENCE OF   PDA’S AND CFG’S

From Grammar to Pushdown Automata: Given a CFG G, we
construct a PDA that simulates the leftmost derivations of G. Any left-
sentential form that is not a terminal string can be written as xA,
where A is the leftmost variable, x is whatever terminals appear to its
left, and  is the string of terminals and variables that appear to the
right of A. We call A the tail of this left-sentential form. If a left-sentential
form consists of terminals only, then its tail is .
The idea behind the construction of a PDA from a grammar is to
have the PDA simulate the sequence of left-sentential forms that the



grammar uses to generate a given terminal string w. The tail of each
sentential form xA appears on the stack, with A at the top. At that
time, x will be represented by having consumed x from the input,
leaving whatever of w follows its prefix x. That is, if w = xy, then y will
remain on the input.
Suppose the PDA is in an ID (q, y,A), representing left-sentential
form xA. It guesses the production to use to expand A, say A   .
The move of the PDA is to replace A on the top of the stack by ,
entering ID (q, y, ). Note that there is only one state, q, for this
PDA.
Now, (q, y, ) may not be a representation of the next left-sentential
form, because may have a prefix of terminals. In fact, may have
no variables at all, and  may have a prefix of terminals. Whatever
terminals appear at the beginning of need to be removed, to expose
the next variable at the top of the stack. These terminals are compared
against the next input symbols, to make sure our guesses at the
leftmost derivation of input string w are correct; if not, this branch of
the PDA dies. If we succeed in this way to guess a leftmost derivation
of w, then we shall eventually reach the left-sentential form w. At that
point, all the symbols on the stack have either been expanded (if they
are variables) or matched against the input (if they are terminals).
The stack is empty, and we accept by empty stack.

The above informal construction can be made precise as follows.
Let G = (V, T,R, S)
be a CFG. Construct the PDA P that accepts L(G) by empty stack
as follows:
P = ({q}, T, V  T, , q, S)
where transition function  is defined by:
1. For each variable A, (q, ,A) = {(q, ) | A  is a production of
P}.
2. For each terminal a, (q, a, a) = {(q, )}.

Example: Consider the grammar G = (V, T,R, S) with V = {S}, T =
{a, b, c}, and R = {S  aSa, S  bSb, S  c}, which generates



the language {wcwR|w {a, b}* }. The corresponding pushdown
automaton acceptance by empty stack is
P = ({q}, T, V T, , q, S), where the transition function  is given
by:
a) (q, , S) = {(q, aSa), (q, bSb), (q, c)}
b) (q, a, a) = (q, ), (q, b, b) = (q, ), (q, c, c) = (q, )

From PDA’s to Grammar
The construction of an equivalent grammar uses variables each of
which represent an event consisting of:
1. The net popping of some symbol X from the stack.
2. A change in state from some p at the beginning to q when X has
finally been replaced by  on the stack.

If P=(Q, q0, Z0, F) is a PDA, then there is a context-free
grammar G = (V,,R, S) such that L(G) = N(P), where the set of
variables V consists of :
1. The special symbol S, which is the start symbol of G and
2. All symbols of the form [pXy], where p, q  Q and x .

The rules R of G are as follows:
a) For all states p, G has the rules S  [q0z0p]
(since (q0,w, z0) |--*(p, , )).
b) Let (q, a,X) contains the pair (r, Y1Y2 . . . Yk), where
1. a is either a symbol in  or a = .
2. k be any number, including 0, in which case the pair is (r, ).
Then for all lists of states r1, r2, . . . , rk, G has the rules
[qXrk]  a[rY1r1][r1Y2r2] . . . [rk-1Ykrk]
This rules says that one way to pop X and go from state q to state rk

is to read a (which may be ), then use some input to pop Y1 off the
stack which going from state r to state r1, then read some more input
that pops Y2 off the stack and goes from state r1 to state r2, and so
on.
Example: Consider the PDA PN = ({q}, {0, 1}, {Z,A,B}, N, q, Z) in



Figure 2.The corresponding context-free grammar G = (V, {0, 1},R,
S) is given by:

    
Figure 2: Example of PDA

V = {S, [qZq], [qAq], [qBq]}.
R =
1. S   [qZq]
2. [qZq]    0[qAq][qZq] (since N(q, 0, Z) contains (q,AZ))
3. [qZq]   1[qBq][qZq] (since N(q, 1, Z) contains (q,BZ))
4. [qAq]    0[qAq][qAq] (since N(q, 0,A) contains (q,AA))
5. [qBq]    1[qBq][qBq] (since N(q, 1,B) contains (q,BB))
6. [qAq]    1 (since N(q, 1,A) contains (q, ))
7. [qBq]    0 (since N(q, 0,B) contains (q, ))
8. [qZq]    (since N(q, , Z) contains (q, ))

5.6 DETERMINISTIC PUSHDOWN AUTOMATA

A deterministic pushdown automaton (DPDA or DPA) is a variation
of the pushdown automaton . The DPDA accepts the deterministic
context-free languages, a proper subset of context-free languages .
A deterministic pushdown automaton: (DPDA) is a 7-tuple P=(Q,
 q0, Z0, F) where Q, , q0, and F are defined as they are for a
deterministic finite automaton,  is a finite state (the stack alphabet),
and maps Q X ( {}) X to the set of finite  subsets Q X .We
can use any symbols we want in the stack alphabet, . As with state
labels, in designing a DPDA, it is important to give symbols names
that have meaning. Typically, we use  as a special symbol, Z0 often
meaning the bottom of the stack.

We use label arrows in a DPDA as ;  a  ;  b, c 



 a, b   c means if the current input is a and the top-of-stack is b,
follow this transition and pop the b off the stack, and push the c.
 a,   c means if the current input is a, follow this transition and
push c on the stack. (It doesn’t matter what is on the stack.)
 a, b    means if the current input is a and the top-of-stack is b,
follow this transition and pop the b off the stack.
 a,    means if the current input is a, follow this transition and
don’t modify the stack.



CHECK YOUR PROGRESS -1
1. PDA is the machine format of
(a) Type o language    (b) Type 1 language
(c) Type 2 language    (d) Type 3 language.

2. Which is not true for mechanical diagram of PDA?
(a) PDA contains a stack
(b) The head reads as well as writes
(c) The head moves from left to right
(d) Input string is surrounded by infinite number of blank in both side.

3. The difference between finite automata and PDA is in .
(a) Reading Head    (b) Input tape    (c) Finite Control    (d) Stack

4. Which of the following is not true?
(a) Power of deterministic automata is equivalent to power of non-
deterministic automata.
(b) Power of deterministic pushdown automata is equivalent to power
of non-deterministic pushdown automata.
(c) Power of deterministic turing machine is equivalent to power of
non-deterministic turing machine.
(d) All the above

5.he PDA is called non-deterministic PDA when there are more than
one out going edges from……… state
(a)START or READ
(b)POP or REJECT
(c)READ or POP
(d)PUSH or POP

6. Identify the TRUE statement:
(a)A PDA is non-deterministic, if there are more than one READ
states in PDA
(b)A PDA is never non-deterministic
(c)Like TG, A PDA can also be non-deterministic



(d)A PDA is non-deterministic, if there are more than one REJECT
states in PDA

7. ___________ states are called the halt states.
(a)ACCEPT and REJECT
(b)ACCEPT and READ
(c)ACCEPT AND START
(d)ACCEPT AND WRITE

8.Select correct option:
(a)All representations of a regular language are equivalent.
(b)All representations of a context free language are equivalent.
(c)All representations of a recursive language are equivalent
(d)Finite Automata are less powerful than Pushdown Automata.



5.7 LET US SUM UP

1.Pushdown Automata uses a stack data structure.

2. Pushdown automata differ from finite state machines in two
ways:They can use the top of the stack to decide which transition to
take.They can manipulate the stack as part of performing a transi-
tion.

3.A PDA is formally defined as a 7-tuple:
 P=(Q, q0, Z, F) where

 Q is a finite nonempty set of states
 is a finite set which is called the input alphabet
 is a finite set which is called the stack alphabet
 is the transition function from Q X ( {}) X to the set of finite
    subsets Q X .
 q0 is the start state
 Z  is the initial stack symbol
 F  Q is the set of accepting states.

4.There are two methods , in the sense that a language L has a PDA
that accepts it by final state if and only if L has a PDA that accepts it
by empty stack.

5..Given a CFG G, we  can construct a PDA that simulates the leftmost
derivations of G.

6.A deterministic pushdown automaton (DPDA or DPA) is a variation
of the pushdown automaton . The DPDA accepts the deterministic
context-free languages, a proper subset of context-free languages .



5.8  Answers to Check Your Progress-1

1. c, 2. b, 3. d,     4. b,     5.c ,    6.c  , 7.a ,  8.d
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4. J.C. Martin, Introduction to Languages and the Theory of
Automata, Tata McGraw-Hill.
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  5.10 POSSIBLE QUESTIONS

Q1. Construct a PDA accepting by empty stack/store each of the
languages.
a) {anbman  | m,n }
b) {anb2n  | n }
c) {ambmcn  | m,n 
d{ambn  | m > n 

Q2. Construct a PDA accepting by final state each of the languages
given in question 1.

Q3. Construct a PDA accepting the set of all even length palindromes
over {a,b} by empty stack.

Q4. Show that the set of all strings over {a,b}  consisting of equal
number of a’s and b’s is accepted by a deterministic PDA.

Q5. Show that every regular set accepted by a finite automataon with
n states is accepted by a deterministic PDA with one one state and n
pushdown symbols.

Q6. Construct the equivalent PDA for the following CFGs.
a) S  Saa | aSa | aaS
b) S  (S) (S) | a
c) S  XaY | YbX
     X  YY | aY | b
     Y  b | bb

Q7. Find the nondeteministic PDA that accepts the following language:

      L= {ab(ab)n b (ba)n : n 0}

Q8.Design a PDA which converts infix to prefix.



UNIT 6 : PROPERTIES OF CONTEXT-FREE LANGUAGES

UNIT STRUCTURE

6.1 Learning Objectives
6.2 Introduction
6.3 Normal forms for CFGs
6.4 The pumping lemma for CFGs
6.5 Closure properties of CFL  
6.6 Let Us Sum Up
6.7 Answers to Check Your Progress
6.8 Further Readings

6.1   LEARNING OBJECTIVES

After going through this unit, you will able to

· understand the types of normal forms for Context free Gram-
mar

. Convert a Context free grammaras to Chomsky normal form.

. Convert a Context free grammaras to Greibach Normal Form

. Understand how pumping lemma can be used to prove
whether a language is context free or not.

. Understand various Closure properties of CFL

6.2   INTRODUCTION
We have seen in previous unit, the class of languages defined by
context free grammar and the machine  for acceepting those
languagesi.e. pushdown automata. Also we have seen how Push-
down Automata can be constructed from a  given CFG . Equivalence
of CFG and PDA.  In this section, we see different normal forms of
CFG i.e., one can express the rules of the CFG in a particular form.
These normal form grammars are easy to handle and are useful in
proving results. The most popular normal forms are  Chomsky Nor-



mal Form (CNF),  and Greibach Normal Form (GNF). Also we will
discuss the properties of context free languages.

6.3    NORMAL FORMS FOR CFGS

It is often convenient to simplify a CFG .One of the simplest and
most useful simplified forms of CFG is called the Chomsky  normal
form.  Another normal form usually used in algebraic specifications
is Greibach normal form.

Definition
A context-free grammar G is in Chomsky normal form if every rule is
of the form:
A   BC
A  a
where a is a terminal, A,B,C are nonterminals, and B,C may not be
the start variable .
Theorem : Any context-free language is generated by a context-free
grammar in Chomsky normal form.
Proof :
• Show that any CFG G can be converted into a CFG G’ in Chomsky
normal form;
• Conversion procedure has several stages where the rules that
violate Chomsky normal form conditions are replaced with equivalent
rules that satisfy these conditions.
• Order of transformations:(1) add a new start variable, (2) eliminate
all -rules, (3) eliminate unit-rules, (4) convert other rules.
• Check that the obtained CFG G’  define the same language as the
initial CFG G.

Let G = (N,,R, S) be the original CFG.
Step 1: add a new start symbol S0 to N, and the rule
S0  S to R
This change guarantees that the start symbol of G’  does not occur
on the rhs of any rule.



Step 2: eliminate -rules
Repeat
1. Eliminate the - rule A  from R where A is not the start symbol;
2. For each occurrence of A on the rhs of a rule, add a new rule to R
with that occurrence of A deleted.
Examples: (1) replace B  uAv by B  uAv|uv;

      (2) replace B  uAvAw by B  uAvAw|uvAw|aAvw|uvw.
3. Replace the rule B  A, (if it is present) by B  A| unless the
rule B   has been previously eliminated;
until all rules are eliminated.
Step 3: remove unit rules
Repeat:
1. Remove a unit rule A  B  R;
2. For each rule B  u  R, add the rule A  u to R, unless
B  u was a unit rule previously removed.
until all unit rules are eliminated, u is a string of variables and terminals.

Convert all remaining rules
Repeat:
1. Replace a rule A  u1u2 . . . uk, k  3, where each ui, 1  i  k, is
a variable or a terminal, by:
A  u1A1 ; A1  u2A2, . . .    ;    Ak-2  uk-1uk

where A1,A2, . . ., Ak-2 are new variables;
2. If k 2 replace any terminal ui with a new variable Ui and add the
rule Ui  ui; until no rules of the formA  u1u2 . . . uk with k  3,
remain.

Consider the grammar G6 whose rules are:
S  ASA|aB
A  B|S
B  b|

After first step of transformation we get:
S0 SS



S   ASA|aB
A   B|S
B   b|

Removing B   
S0 SS
S   ASA | aB | a
A   B|S|
B   b|

Removing A  

S0 SS
S   ASA | aB | a | AS | SA | S
A   B|S
B   b

Removing S SS
S0 SS
S  ASA|aB|a|SA|AS
A   B|S
B   b

Removing S0 S
S  ASA|aB|a|SA|AS
S0  ASA|aB|a|SA|AS
A   B|S
B   b

Removing A  B: and Removing A  S:
S  ASA|aB|a|SA|AS
S0  ASA|aB|a|SA|AS
A   ASA|aB|a|SA|AS|b
B   b



Converting the remaining rules
S0  AA1|UB|a|SA|AS
S  AA1|UB|a|SA|AS
A  b|AA1|UB|a|SA|AS
A1  SA
U  a
B  b

Greibach Normal Form (GNF)
A CFG G = (V, T,R, S) is said to be in GNF if every production is of
the form A  a, where a  T and   V* , i.e.,  is a string of
zero or more variables.
Definition: A production A  A is said to be in the form left recur-
sion, if  for some A  V .

• If A  A1|A2| . . . |Ar|1|2| . . . |s, then replace the above rules
by (i) Z  i | iZ , 1 i r and (ii) A  i | iZ, 1 i s
• If G = (V, T,R, S) is a CFG, then we can construct another CFG
G1 = (V1, T, R1, S) in Greibach Normal Form (GNF) such that
L(G1) = L(G) - {}.

The stepwise algorithm is as follows:
1. Eliminate null productions, unit productions and useless symbols
from the grammar G and then construct a G = (V, T , R, S) in
Chomsky Normal Form (CNF) generating the language
L(G’) = L(G) - {}.
2. Rename the variables like A1,A2, . . .An starting with S = A1.
3. Modify the rules in R so that if Ai Aj  R then j > i
4. Starting with A1 and proceeding to An this is done as follows:
(a) Assume that productions have been modified so that for
1 i k, Ai Aj  R only if j > i
(b) If Ak Aj is a production with j < k, generate a new set of
productions substituting for the Aj the body of each Aj production.
(c) Repeating (b) at most k - 1 times we obtain rules of the form Ak

App k



(d) Replace rules Ak Ak by removing left-recursion as stated above.
5. Modify the Ai Aj for i = n-1, n-2, ...., 1 in desired form at the same
time change the Z production rules.

Example: Convert the following grammar G into Greibach Normal
Form (GNF).
S  XA|BB
B  b|SB
X  b
A  a
To write the above grammar G into GNF, we shall follow the
following steps:
1. Rewrite G in Chomsky Normal Form (CNF)
It is already in CNF.
2. Re-label the variables
S with A1

X with A2

A with A3

B with A4

After re-labeling the grammar looks like:
A1  A2A3|A4A4

A4  b|A1A4

A2  b
A3  a
3. Identify all productions which do not conform to any of the types
listed below:
Ai  Ajxk such that j > i

4. A4  A1A4 ................ identified
5. A4  A1A4|b.
To eliminate A1 we will use the substitution rule A1  A2A3|A4A4.
Therefore, we have A4  A2A3A4|A4A4A4|b
The above two productions still do not conform to any of the types
in step 3. Substituting for A2  b
A4  bA3A4|A4A4A4|b



Now we have to remove left recursive production A4  A4A4A4

A4  bA3A4|b|bA3A4Z|bZ
Z  A4A4|A4A4Z
6. At this stage our grammar now looks like
A1  A2A3|A4A4

A4  bA3A4|b|bA3A4Z|bZ
Z  A4A4|A4A4Z
A2  b
A3  a
All rules now conform to one of the types in step 3.
But the grammar is still not in Greibach Normal Form!
7. All productions for A2,A3 and A4 are in GNF
for A1  A2A3|A4A4

Substitute for A2 and A4 to convert it to GNF
A1  bA3|bA3A4A4|bA4|bA3A4ZA4|bZA4

for Z  A4A4|A4A4Z
Substitute for A4 to convert it to GNF
Z  bA3A4A4|bA4|bA3A4ZA4|bZA4|bA3A4A4Z|bA4Z|bA3A4ZA4Z|bZA4Z
8. Finally the grammar in GNF is
A1  bA3|bA3A4A4|bA4|bA3A4ZA4|bZA4

A4  bA3A4|b|bA3A4Z|bZ
Z  bA3A4A4|bA4|bA3A4ZA4|bZA4|bA3A4A4Z|bA4Z|bA3A4ZA4Z|bZA4Z
A2  b
A3  a

6.4 THE PUMPING LEMMA FOR CFGS

The pumping lemma gives us a technique to show that certain
languages are not context free .But the pumping lemma for CFL’s is
a bit more complicated than the pumping lemma for regular
languages. Informally- The pumping lemma for CFL’s states that for
sufficiently long strings in a CFL, we can find two, short, nearby
substrings that we can “pump” in tandem and the resulting string
must also be in the language.



The Pumping Lemma for CFL’s
Let L be a CFL. Then there exists a constant p such that if z is any
string in L where |z|  p, then we can write z = uvwxy subject to the
following conditions:
1. |vwx|   p. This says the middle portion is not larger than p.
2. vx  . We’ll pump v and x. One may be empty, but both may not
be empty.
3. For all i  0, uviwxiy is also in L. That is, we pump both v and x.

Example 1
Let L be the language { 0n1n2n | n  1 }. Show that this language is
not a CFL.
Suppose that L is a CFL. Then some integer p exists and we pick z
= 0p1p2p.
Since z=uvwxy and |vwx|   p, we know that the string vwx must
consist of either:
– all zeros
– all ones
– all twos
– a combination of 0’s and 1’s
– a combination of 1’s and 2’s
• The string vwx cannot contain 0’s, 1’s, and 2’s because the string
is not large enough to span all three symbols.
• Now “pump down” where i=0. This results in the string uwy and can
no longer contain an equal number of 0’s, 1’s, and 2’s because the
strings v and x contains at most two of these three symbols. Therefore
the result is not in L and therefore L is not a CFL.

Example 2
Let L be the language { aibjck | 0  i  j  k }. Show that this language
is not a CFL. This language is similar to the previous one, except
proving that it is not context free requires the examination of more
cases.

Suppose that L is a CFL.



Pick z = apbpcp as we did with the previous language.
 As before, the string vwx cannot contain a’s, b’s, and c’s. We then
pump the string depending on the string vwx as follows:
– There are no a’s. Then we try pumping down to obtain the string
uv0wx0y to get uwy. This contains the same number of a’s, but fewer
b’c or c’s. Therefore it is not in L.
– There are no b’s but there are a’s. Then we pump up to obtain the
string uv2wx2y to give us more a’s than b’s and this is not in L.
– There are no b’s but there are c’s. Then we pump down to obtain
the string uwy. This string contains the same number of b’s but fewer
c’s, therefore this is not in C.
– There are no c’s. Then we pump up to obtain the string uv2wx2y to
give us more b’s or more a’s than there are c’s, so this is not in C.
Since we can come up with a contradiction for any case, this language
is not a CFL language.

6.5 CLOSURE PROPERTIES OF CFL  

The class of CFLs is closed under the union () operation.

Proof: Let L1, L2 be any two CFL, we will show that L = L1  L2 is a
CFL. Since L1; L2 are CFLs, there must exist CFGs which generate
these two languages. Let G1 and G2 generate the languages L1 and
L2 respectively, where:
G1 = (V1; 1; R1; S1), and
G2 = (V2; 2; R2; S2)
We assume that the sets V1 and V2 are disjoint, or V1  V2 = 
(we can always assume this because if the sets are not disjoint we
can make them so, by renaming variables in one of the grammars).
Consider the following grammar:
G = (V1  V2  {S}; 1  2; R1  R2  {S  S1|S2}; S)
The above grammar is basically a combination of the grammars G1
and G2 in which we have added the new start state S and a new
production rule S  S1|S2. Now we need to show that G generates L.
For this we need to show the following two things:



1. For any string s  L, G generates s: We know that either s 
 L1 or s  L2 which implies that either S1 s or S2 s. Since G
has the production S  S1|S2 we can conclude that S s .So G
generates s.

2. Let s be any string generated by G, then s  L,: We have S s,
this means that either S1 s or S2 s Now since we have made
sure that V1  V2= , s is either derived from S1 using the rules R1

only or it is derived from S2 using rules R2 only. This means that
s  L1  L2

Example  L = { 0m1n  | m  n, m, n > 0}
L = { 0m1n  | m  n, m > n > 0} U { 0m1n  | m  n, n > m > 0}
Hence, L = L(G) for G = ({S, SA, SB}, {0,1}, R, S)
where
R = { S  SA | SB,
         SA   0 | 0SA | 0SA1,
         SB  1 | SB1 | 0SB1}

The class of CFLs is closed under concatenation.
Proof: Suppose A = L(GA) and B = L(GB) where
           GA = (VA, A, RA, SA)
           GB = (VB, B, RB, SB)
Without loss of generality, assume VA  VB= 
(Otherwise, we may change some nonterminal
 symbols.)
Then AB = L(G) for G=(V, , R, S) where
V = VA  VB  {S}
 = A  B

R = RA  RB  {S  SASB }

Example :  L = {xxR w | x  (0+1)+, w  (0+1)*}
L = {xxR  | x    (0+1)*  }{0,1}*
L=L(G) for G = ({S, SA, SB}, {0, 1}, R, S)
where



R = { S  SASB,
         SA  00 | 11 | 0SA0 | 1SA1,
         SB  | 0SB | 1SB }

The class of CFLs is closed under the kleene operation (*).
Proof : Suppose L = (G) for G=(V, , R, S)
           Then L* = L(G*) for G* =(V, , R*, S)
            where R* = R  {  S  | SS}.

S represent L and S* represents L*.
Then S*  | S*S. So S*  S.

Example L= (0+1)*00
L=L(G) for G=({S, A}, {0,1}, R, S)
where
R={S  A00
      A  | AA | 0 | 1 }

R* = R U { S  | SS }
     = { S  A00 | | SS
          A  | AA | 0 | 1 }



CHECK YOUR PROGRESS -1
1. The intersection of CFL and regular language is
(a) is always regular
(b) is always context free
(c) both (a) and  (b)
(d) need not be regular

2. Context free grammer is not closed under
(a) product
(b) union
(c) complementation
(d) kleene star

3.Context free languages are closed under
(a) union,intersection
(b) union,kleene closure
(c) intersection,complement
(d) complement, kleene closure

4. If L1 = {x  | x is a palindrome in (0 + 1)*}               
 L2 = {letter (letter + digit)* };    L3 = (0n 1n 2n | n > 1}             
 L4 = {ambnam+n | m, n > 1} then which of the following statement is
incorrect ?
(a)L1 is context free language and L3 is context sensitive language
(b)L2 is a regular set and L4 is not a context free language
(c)Both L1 and L2 are regular sets
(d)Both L3 and L4 are context-sensitive languages.

5. Given A = (0,1) and L = A*. If R = (0n 1n, n > 0) , then language
L U R and R are respectively.
(a)regular, regular
(b)not regular, regular
(c)regular, not regular
(d)context free, not regular



6. Define for a context free language L  {0 ; 1} init (L) = {u/uv  
 L for some v in {0,1}}(in other words, init (L) is the set of prefixes
of L)Let L {w/w is noempty and has an equal number of 0’s and
1’s)Then init (L) is
(a)set of all binary strings with unequal number of 0’s and 1’s
(b)set of all binary strings including the null string
(c)set of all binary strings with exactly one more 0’s than the
number of 1’s or 1 more  than the number of 0’s
(d)none of these

7.L = (an bn an | n = 1,2,3)  is an example of a language that is
(a)context free
(b)not context free
(c)not context free but whose complement is CF
(d)both (b) and (c)

8.Pumping lemma is used for proving that
(a) given grammar is regular
(b) given grammar is not regular
(c) whether two given regular expressions are equivalent or not.
(d) None of these



6.6 LET US SUM UP

1.A context-free grammar G is in Chomsky normal form if every rule
is of the form:
A   BC
A  a
where a is a terminal, A,B,C are nonterminals, and B,C may not be
the start variable .

2.A CFG G = (V, T,R, S) is said to be in GNF if every production is of
the form A  a, where a  T and  aV* , i.e.,  is a string of zero
or more variables.

3.The pumping lemma gives us a technique to show that certain
languages are not context free .

4.The Pumping Lemma for CFL’s
Let L be a CFL. Then there exists a constant p such that if z is any
string in L where |z|  p, then we can write z = uvwxy subject to the
following conditions:
i). |vwx|   p. This says the middle portion is not larger than p.
ii). vx  . We’ll pump v and x. One may be empty, but both may not
be empty.
iii). For all i  0, uviwxiy is also in L. That is, we pump both v and x.

5. The class of CFLs is closed under the union (È) operation.

6.  The class of CFLs is closed under concatenation.

7. The class of CFLs is closed under the kleene operation (*).



6.7 ANSWERS TO CHECK YOUR PROGRESS

1. b, 2. c, 3. b,     4. a,     5. d,    6. b,  7.d ,  8.b
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3. H.E. Hopcraft and J.D. Ullamn, Introduction to Automata
Theory, Languages and Computation,Narosa
Publications.

4. J.C. Martin, Introduction to Languages and the Theory of
Automata, Tata McGraw-Hill.

5. C.H. Papadimitriou, Computation Complexity, Addison-
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  6.9 Possible Questions

Q1. Find a reduced grammar equivalent to the grammar
S  aAa
A  bBB
B  ab
C  aB

Q2. Given the grammar
       S  AB ,  A  a , B  C|b, C  D , D  E,
       E  a
       find an equivalent grammar which is reduced and has no unit
       productions.

Q3. Reduce the following grammars to chomsky normal form
a) S 1A | 0B, A 1AA | 0S | 0, B 0BB | 1S | 1
b) S  a | b | cSS
c) S  abSb | a | aAb, A  bS | aAAb

Q4. Reduce the following grammars to Greibach normal form:
a)S  SS, S  0S1 | 01
b)S  SB, A  aAb
    B a, A b
c) S    

Q4. Show that the following are not context free languages:
a)The set of all strings over {a,b,c} in which the number of occur-
rences of a,b,c is the same.

b) { ambmcn | m n  2m }

c) { ambn | n=m2 }



UNIT 7 : INTRODUCTION TO TURING MACHINE

UNIT STRUCTURE

7.1 Learning Objectives
7.2 Introduction
7.3 Problems that Computers cannot solve
7.4 The turning machine
7.5 Programming techniques for Turning Machines
7.6 Extensions to the basic Turning Machines
7.7 Turing Machine and Computers
7.8 Let Us Sum Up
7.9 Answers to Check Your Progress
7.10 Further Readings

7.1   LEARNING OBJECTIVES

After going through this unit, you will able to

· understand the most powerful abstract model of a computing
device,the Turing machine.

· understand undecidable problems , the problems that com-
puter cannot solve

· Understand Turing machine
· Understand the programming techinques to recognize any

language by computer program.
· describe multi tape Turing machine
· understand the concept of Universal Turing machine

7.2   INTRODUCTION

           We have seen several abstract models of computing devices:
Deterministic Finite Automata, Nondeterministic Finite Automata,
Nondeterministic Finite Automata with -Transitions, Pushdown
Automata,and Deterministic Pushdown Automata.However, none of
the above “seem to be” as powerful as a real computer.We now turn



our attention to a much more powerful abstract model of a comput-
ing device: a Turing machine. This model is believed to do everything
that a real computer can do.

        Turing machines are extremely simple calculating devices. A
Turning machine remembers only one number, called its state. It
moves back and forth along an infinite tape, scanning and writing
symbols and changing its state. Its action at a given step in the calcu-
lation is based on only two factors: its current state number and the
symbol that it is currently scanning on the tape. It continues in this
way until it enters a special state called the halt state. In spite of their
simplicity, Turing machines can perform any calculation that can be
performed by any computer. In fact, certain individual Turing machines,
called universal Turing machines, can actually execute arbitrary pro-
grams, just as a computer can.

7.3 PROBLEMS THAT COMPUTERS CANNOT SOLVE

It is important to know whether a program is correct, namely that it
does what we expect. It is easy to see that the following C program
main()
{
printf(‘‘hello, world\n’’);
}
prints hello, world and terminates.

Femat’s theorem expressed the hello-world program as
main()
{
int n, total, x, y, z;
scanf(“%”, &n);
total = 3;
while (1) {
for (x = 1; x <= total -2; x++)
for (y = 1; y <= total -1 ; y++) {



z = total - x -y;
if (exp(x, n) + exp (y, n) == exp(z, n))
printf (“hello, word”);
}
total ++
}
}

The program (Fermat) takes an input n and looks for positive integer
solutions to equation

If the program finds a solution, it prints hello, world . If it never finds
integer x, y, z to satisfy the equation, then it continues searching
forever, and never prints hello, world .If the value of n is 2, then it will
find combinations of integers and thus:
For input n = 2 the program prints hello, world
For any integer n > 2, the program will never find a triple of positive
integers to satisfy xn + yn = zn.

The Hypothetical “Hello World” Tester

Is it possible to have a program that could examine any program P
and input I for P, and tell whether P, run with I as its input, would print
hello,world?

          

Assume there is a program (H) that takes as input  , a program P,
input I  and tells whether P within input I prints hello, world (Output is
either Yes or No) .If a problem has an algorithm like H, that always
tells correctly whether an instance of the problem has answer Yes or
No, then the problem is said to be decidable. Otherwise, the problem



is undecidable. We need to prove that H does not exist.

7.4 THE TURNING MACHINE

  

Finite control: can be in any of a finite set of states
Tape: divided into cells; each cell can hold one of a finite number of
symbols.Initially the input (a finite-length string) is placed on the tape
All other tape cells initially hold a special symbol: blank (B)
Blank is tape symbol (not an input symbol)
Tape head: always positioned at one of the tape cell. Initially, the
tape head is at the leftmost cell that holds the input.

A move of the TM is a function of the state of the finite control and
the tape symbol scanned. In one move the TM will
1. Change state
2. Write a tape symbol in the cell scanned.
3. Move the tape head left or right.

Definition : A Turing Machine is a 7 tuple
M = (Q, ,, q0,B, F) where

Q : The finite set of states of the finite control
: The finite set of input symbols
: The complete set of tape symbols . is always a subset of 
: The transition function. The arguments of (q,X) are: a state q
and a tape symbol X. The value of (q,X), if it is defined, is (p, Y, D)



where: p is the next state, in Q .Y is the symbol, in , written in the
cell being scanned, replacing whatever symbol was there.D is a
direction (either Left or Right), telling us the direction in which the
head moves.
q0 : The start state (q0  Q) in which the finite control is found initially.
B : blank symbol (B  but B  ).
F : the set of final or accepting states (F  Q).

Instantaneous Descriptions for TM
We use the instantaneous description to describe the configura-
tion.
An ID is represented by the string:
X1X2 . . .Xi-1qXiXi+1 . . .Xn

where:
1. q is the state of the TM.

2. The tape head is scanning the ith symbol from the left.

3. X1X2 . .  . .Xn is the portion of the tape between the leftmost
and the rightmost nonblank.

Moves in TM

Let M = (Q, ,, q0,B, F)
We use the notation |--M (or |--) to represent moves of a TM M from
one configuration to another.|--*M is used as usual.
The next move is leftward:

If (q,Xi) = (p, Y, L) then:
X1X2 . . .Xi-1 q Xi Xi+1 . . .Xn  |--M  X1 X2 . . .Xi-2 p Xi-1 Y Xi+1 . . .Xn

Exceptions:
1. If i = 1, then M moves to the blank to the left of X1

q X1X2 . . . . . .Xn  |--M  p B Y X2 . . .Xn

2. If i = n and Y = B, then the symbol B written over Xn joins the
infinite sequence of trailing blanks and does not appear in the next
ID.



X1X2 . . . . . .Xn-1qXn  |--M  X1X2 . . . . . .Xn-2pXn-1

The next move is rightward:

If (q,Xi) = (p, Y, R) then:
X1X2 . . .Xi-1 q Xi Xi+1 . . .Xn  |--M  X1 X2 . . .Xi-2 Xi-1 Y p Xi+1 . . .Xn

Exceptions:
1. If i = n, then the i + 1st cell holds a blank, and that cell was not
part of the previous ID.

X1X2 . . .Xn-1 q Xn  |--M  X1 X2 . . .Xn-2 Xn-1 Y p B

2. If i = 1 and Y = B, then the symbol B written over X1 joins the
infinite sequence of trailing blanks and does not appear in the next
ID.
q X1X2 . . . . Xn  |--M  p X2 . . . . . .Xn

Example :
A TM for the language {0n1n | n  1}
M = ({q0, q1, q2, q3, q4}, {0, 1}, {0, 1,X, Y, B}, , q0,B, {q4})

q00011 |-- Xq1011 |-- X0q111 |-- Xq20Y 1 |-- q2X0Y 1 |-- Xq00Y 1
|-- XXq1Y 1 |-- XXY q11 |-- XXq2Y Y |-- Xq2XY Y |-- XXq0Y Y
|-- XXY q3Y |-- XXY Y q3B |-- XXY Y Bq4B



7.5 PROGRAMMING TECHNIQUES FOR TURNING
MACHINES

Writing down Turing machines for complicated languages can be
dificult and boring. But one can use some programming techniques.
The goal of this section is to convince the reader that Turing ma-
chines are indeed powerful enough to recognize any language that a
computer program can recognize.
1. Storing a tape symbol in the finite control: We can build a TM
whose states are pairs [q , X] where q is a state, and X is a tape
symbol. The second component can be used in remembering a par-
ticular tape symbol. Consider the following TM that recognizes the
language
L = ab* + ba*
The machine reads the first symbol, remembers it in the finite con-
trol, and checks that the same symbol does not appear anywhere
else in the input word:
(q0, a) = ([q, a], a, R)
(q0, b) = ([q, b], b, R)
([q, a], b) = ([q, a], b, R)
([q, b], a) = ([q, b], a, R)
([q, a] B) = (qF, B, R)
([q, b], B) = (qF, B, R)
2. Multiple tracks: Sometimes it is useful to imagine that the tape
consists of multiple tracks. We can store different intermediate in-
formation on different tracks:

  

For example, we can construct a TM with 3 track tape that recog-



nizes the language L = { ap |  p is a prime number } as follows. Initially
the input is written on the first track and the other two tracks contain
B's. (This means we identify a with [a, B, B] and B with [B, B, B].)
The machine operates as follows.
It first checks the small cases: If the input is empty or a then the
machine halts in a non-final state; if the input is aa it halts in the final
state. Otherwise, the machine starts by placing two a's on the sec-
ond track. Then it repeats the following instructions:
1. Copy the content of the first track to the third track.
2. Subtract the number on the second track from the third track as
many times as possible. If the third track becomes empty, halt in a
non-final state. (The number on the first track was divisible by the
number on the second track.)
3. Increment the number on the second track by one. If the number
becomes the same as the number on the first track halt in the final
state . Else go back to step 1.
3. Checking of symbols. This simply means that we introduce a
second track where we can place blank B or symbol . The tick
mark can be conveniently used in remembering which letters of the
input have been already processed. It is useful when we have to
count or compare letters.
For example, consider the language
L = {ww | w  (a + b)* }
We first use the tick mark to find the center of the input word: Mark
alternatively the first and last unmarked letters, one-by-one. The last
letter to be marked is in the center. So we know where the second w
should start. Using the "Storing a tape symbol in the finite control" -
technique,one can check one-by-one the letters to verify that the let-
ters in the first half and the second half are identical.
4. Shifting over: This means adding an new cell at the current loca-
tion of the tape. This can be established by shifting all symbols one
position to the right by scanning the tape from the current position to
the right, remembering the content of the previous cell in the finite
control, and writing it to the next cell on the right. Once the rightmost
non-blank symbol is reached the machine can return to the new va-



cant cell that was introduced. (In order to recognize the rightmost
non-blank symbol, it is convenient to introduce an end-of-tape sym-
bol that is written in the first cell after the last non-blank symbol.)

5. Subroutines: We can use subroutines in TM in an analogous
way as they are used in normal programming languages. A subrou-
tine uses its own set of states, including its own "initial state" q and
a return state qr. To call a subroutine, the calling TM simply changes
the state to q  and makes sure the read-write head is positioned on
the leftmost symbol of the "parameter list" to the subroutine.
Constructing TM to perform specific tasks can be quite complicated.
Even to recognize some simple languages may require many states
and complicated constructions. However, TM are powerful enough
to be able to simulate any computer program. The claim that Turing
machines can compute everything that is computable using any
model of computation is known as Church-Turing thesis. Since the
thesis talks about any model of computation, it can never be proved.
But so far TM  have been able to simulate all other models of compu-
tation that have been proposed. As an example, let us see how a
Turing machine would simulate a register machine, a realistic model
of a conventional computer. The tape contains all data the computer
has in its memory. The data can be organized for example in such a
way that word vi in memory location i is stored on the tape as the
word

# 0i * vi #
where # and * are special marker symbols. The contents of the reg-
isters of the CPU are stored on their own tracks on the tape.
To execute the next instruction, the TM finds the memory location
addressed by the specific Program Counter register. In order to do
that the TM goes through all memory locations one by one and -
using the tick marks - counts if the address i is the same as the
content of the Program Counter register. When it finds the correct
memory location i, it reads the instruction vi and memorizes it in the
finite control. There are only finitely many different instructions. To
each instruction corresponds its own subroutine. To simulate the



instruction, the TM can use the same tick marking to find any re-
quired memory locations, and then execute the particular task. The
task may be adding the content of a register to another register, for
example. Adding two numbers can be easily implemented (espe-
cially if we decide to represent all number in the unary format so that
number n is represented as the word an ). Loading a word from the
memory to a register is simple as well. To write a word to the memory
may require shifting all cells on the right hand side of the memory
location, but we know how to do that.

7.6 EXTENSIONS TO THE BASIC TURNING MACHINES

In this section one modifications to our TM model are briefly described.
The variations are equivalent: They recognize exactly the same fam-
ily of r.e. languages as the basic model.

Multiple tape TM : We can allow the TM to have more than one
tape. Each tape has its own independent R/W head. This is different
from the one tape TM with multiple tracks since the R/W heads of
different tapes can now be at different positions.

   

Depending on the state of the finite control and the current tape
symbols on all tapes the machine can change the state,overwrite



the currently scanned symbols on all tapes, and move each R/W
head to left or right independently of each other.
Formally, the transition function  is now a (partial) function from
(Q \ { f }) X n

to Q X n X { L , R }n

where n is the number of tapes. The transition
(q ,X1 ,X2 .........,Xn) = (p, Y1 ,Y2 ,.............Yn , d1 , d2.........,dn)
(where d1 , d2.........,dn   { L ,R } ) means that the machine, in state
q, reading symbols X1 ,X2 .........,Xn  on the n tapes, changes its state
to p, writes symbols Y1 ,Y2 ,.............Yn  on the tapes, and moves the
first, second, third, etc. R/W head to the directions indicated by d1 ,
d2.........,dn , respectively. Initially,the input is written on tape number
one, and all other tapes are blank. A word is accepted if the machine
eventually enters the final state f.
Let us see how a one tape TM can simulate an n-tape TM M. The
single tape will have 2n tracks -- two tracks for every tape of M: One
of the tracks contains the data of the corresponding tape in M; The
other one contains a single symbol # indicating the position of the R/
W head on that tape. The single R/W-head of the one-tape machine
is located on the leftmost indicator #. For example, the 3-tape con-
figuration illustrated above would be represented by the following ID
with six tracks:

    

To simulate one move of the multitape machine M, the one-tape
machine scans the tape from left to right, remembering in the finite



control the tape symbols indicated by the symbols #. Once all #’s
have been encountered, the machine can figure out the new state p
and the action taken on each tape. During another sweep over the
tape, the machine can execute the instruction by writing the required
symbols and moving the #’s on the tape left or right.
If, for example, we have
(q ,X ,B ,B) = (p , Y, Y, B, L, L ,R)
after one simulation round the one tape machine will be in the ID

      

Note that simulating one step of the multitape machine requires scan-
ning through the input twice,so the one-tape machine will be much
slower. But all that matters is that the machines accept exactly the
same words. It is clear that multitape TM recognize exactly the fam-
ily of r.e. languages,and multitape TM that halt with all inputs recog-
nize exactly the family of recursive languages.

7.7 TURING MACHINE AND COMPUTERS

A Turing Machine is the mathematical tool equivalent to a digital com-
puter. It was suggested by the mathematician Turing in the 30s, and
has been since then the most widely used model of computation in
computability and complexity theory. The problem with Turing Ma-
chines is that a different one must be constructed for every new
computation to be performed, for every input output relation.This is



why the notion of a universal turing machine (UTM), was introduce
which along with the input on the tape, takes in the description of a
machine M. The UTM can go on then to simulate M on the rest of the
contents of the input tape. A universal turing machine can thus simu-
late  any other specific Turing machine, by defining states and sym-
bols. The UTM is defined with certain capabilities. The UTM can de-
fine the symbols that the specific Turing machine will use. It can
define the symbols that encode the states and transition rules for the
specific Turing machine. It can encode the rules for that specific Tur-
ing machine onto the input tape. A single-tape UTM needs to define a
marker to mark the end of the “specific” program and the start of the
specific machine’s initial tape. It must also shuffle the read/write head
between the specific TM’s program and its data. As noted, it is sim-
pler to describe a UTM with multiple tapes.

The Universal Turing Machine is remarkably similar to the Von
Neumann model of a computer, where both programs and data can
be stored on the same medium. Any modern computer capable of
copying a program file from one medium to another, and later run-
ning that program, follows this architecture.

The Universal Turing Machine Emulates Other Turing Machines
As noted, it is easier to describe any UTM as having three tapes,
although  it does not require them. The first tape encodes the set of
states for the specific Turing machine to be emulated. The second
tape is an input for that specific TM. The third tape is a working memory
for the current state of the emulated machine.
The UTM’s program must begin by reading the “program tape” to
learn the initial state, and note this on the “status” tape. The UTM’s
states follow the following processes.
1. Read the current cell in the “data tape”.
2. Read the “program tape” to find the instruction for the current
status and the current data cell, and note this on the “status tape”.
This instruction includes the new state.
3. If the new state is “halt”, then set the UTM itself into the “halt”



state; otherwise proceed to step 4.
4. Apply the instruction from the state to the “data tape”. This
might rewrite a cell, and move the “data tape” to the right or left.
5. Update the “status tape”.
6. Continue at step #1 above.

Eventually the Universal Turing machine’s “data tape” will be identi-
cal to the tape produced by the standard Turing machine it is emulat-
ing, if the UTM is programmed correctly and given the same initial
“data tape” as that regular Turing machine.
As well, both should either halt or continue processing forever. If they
halt, they would do so in the same “accept” or “reject” state.
The statement that “the UTM emulates the specific Turning machine”
means that the final state, and the data tape at completion, will be
identical between the UTM and the specific Turing machine it is emu-
lating. Clearly, the UTM must perform more steps than the machine
it emulates. In the list above, steps 2 and 5 are extra. A single-tape
UTM takes many extra steps to shuffle between the emulated pro-
gram and the data,  both of which are stored on the one tape. Of
course, if a specific machine should fail to halt (for a particular input),
then the UTM also would continue processing forever.



CHECK YOUR PROGRESS -1

1.Please choose the statement which is true?
(a)The tape of turing machine is infinite.
(b)The tape of turing machine is finite.
(c)The tape of turing machine is infinite when the language is regular
(d)The tape of turing machine is finite when the language is
nonregular.

2.The language { ww| w(0 +1)*) is
(a) not accepted by an Turing machine
(b) accepted by some Turing machine, but by no push down
automation
(c) accepted by some push down automation, but not context free
(d) context-free, but not regular.

3.Which of the following questions is ambiguous, according to Turing?
(a) Can a machine play the imitation game?
(b) Can a machine think?
(c) Can a machine be self-aware?
(d) Can a machine express emotions?

4.The statement, “A TM can’t solve halting problem” is
(a) true (b) false (c) still an open question
(d) all of these

5. If there exists a TM which when applied to any problem in the
class, terminates, if correct answer is yes and may or may not
terminate otherwise is called
(a)stable (b)unsolvable
(c)partially solvable (d)unstable

6.Given a Turing machine T and a step-counting function f, is the
language accepted by T in Time(f) ?This decision problem is



(a) solvable (b)unsolvable
(c)uncertain (d)none of these

7. A total recursive function is a
(a) partial recursive function (b)premitive recursive function
(c) both (a) and (b) (d)none of these

8. Bounded minimalization is a technique for
(a)proving whether a promotive recursive function is turning
computable or not
(b)proving whether a primitive recursive function is a total function or
not
(c)generating primitive recursive functions
(d)generating partial recursive functions

9.Universal TM influenced the concept of
(a) stored program computers
(b)interpretative implementation of program¬ming language
(c)computability
(d)all of these

10.A FSM can be considered, having finite tape length without
rewinding capability and unidirectional tape movement
(a.) Turing machine
(b.) Pushdown automata
(c.) Context free languages
(d.) Regular languages



7.8 LET US SUM UP

1.If a problem has an algorithm like H, that always tells correctly
whether an instance of the problem has answer Yes or No, then the
problem is said to be decidable.

2.A Turing Machine is a 7 tuple: M = (Q, å ,G , d, q0,B, F)

3.An ID is represented by the string:X1X2 . . .Xi-1qXiXi+1 . . .Xn

where q is the state of the TM.  The tape head is scanning the ith
symbol from the left.. X1X2 . .  . .Xn is the portion of the tape between
the leftmost and the rightmost nonblank.

4. The notation |--M (or |--) to represent moves of a TM M from one
configuration to another.|--*M is used as usual.

5.We can build a TM whose states are pairs [q , X] where q is a
state, and X is a tape symbol. The second component can be used
in remembering a particular tape symbol.

6.Sometimes it is useful to imagine that the tape consists of multiple
tracks. We can store different intermediate information on different
tracks:

7.We can use subroutines in TM in an analogous way as they are
used in normal programming languages.

8.We can allow the TM to have more than one tape. Each tape has
its own independent R/W head. This is different from the one tape
TM with multiple tracks since the R/W heads of different tapes can
now be at different positions.

9. A universal turing machine can  simulate  any other specific Turing
machine, by defining states and symbols. The UTM is defined with
certain capabilities.



7.9 ANSWERS TO CHECK YOUR PROGRESS

1. a, 2.b , 3.b ,     4. a,     5.c ,    6.b  ,   7.d ,    8.c,   9.d,   10.a

  7.10 FURTHER READINGS

1. K.L.P. Mishra, N. Chandrasekaran, Theory of Computer
Science, BPB Publication, Prentice-Hall of India, Second
Edition.

2. H.R. Lewis and C.H.Papadimitriou, Elements of the Theory
of Computation, Second Edition, Prentice Hall of India.

3. H.E. Hopcraft and J.D. Ullamn, Introduction to Automata
Theory, Languages and Computation,Narosa
Publications.

4. J.C. Martin, Introduction to Languages and the Theory of
Automata, Tata McGraw-Hill.

5. C.H. Papadimitriou, Computation Complexity, Addison-
Wesley.



  7.111 POSSIBLE QUESTIONS

Q1. Build a Turing Machine that accepts the language
L={  anbn+1  }

Q2. Build a Turing Machine that accepts the language
L={  bnc2n  }

Q3.Build a Turing machine that accepts the language of all words
that contain the substring bbb.

Q4. Build a Turing machine that accepts the language ODD PALIN-
DROME.

Q5. Build a Turing machine that accepts all strings with more a’s
than b’s, the language MORE.

Q6.Construct the Turing machine for the following languages:
a) aba*b
b) L = { w :  |w| is even }
c) L = { w :  |w| is a multiple of 3 }
d)L= { anbman+m : nm

Q7. Prove that the following functions are computable functions :
a) f(x)=3x
b) f(a,b)=2a+3b
c) f(a)=a mod 5
d) f(a,b) = a-b if a>b
    f(a,b) = 0 if a  b
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8.1   LEARNING OBJECTIVES

After going through this unit, you will able to

· understand Recursively enumerable languages.
· understand Undecidable problem those are Recursively enu-

merable.
· understand and solve Post’s Correspondence problem.
· understand Other Undecidable problems.

8.2   INTRODUCTION

In the previous unit we discussed about undecidable problems , the
problems that computer cannot solve also the programming
techinques to recognize any language by computer program and the
multi tape Turing machine. In this unit we will discuss recursively
enumerable languages and see if there exists a Turing machine that
accepts every string of the language. We will also see how to find a
non-r.e. language, using diagonalization.



8.3 A LANGUAGE THAT IS NOT RECURSIVELY
ENUMERABLE

There are three possible outcomes of executing a Turing machine
over a given input. The Turing machine may
1.Halt and accept the input.
2.Halt and reject the input or   3. Never halt.
A language is recursive if there exists a Turing machine that accepts
every string of the language and rejects every string (over the same
alphabet) that is not in the language.Note that, if a language L is re-
cursive, then its complement must also be recursive.

A language is recursively enumerable if there exists a Turing ma-
chine that accepts every string of the language, and does not accept
strings that are not in the language. Strings that are not in the lan-
guage may be rejected or may cause the Turing machine to go into
an infinite loop.Clearly, every recursive language is also recursively
enumerable. It is not obvious whether every recursively enumerable
language is also recursive.

              



Theorem: Some languages are not recursively enumerable.
Proof: The set of strings is an infinite countable set. The set of lan-
guages is not countable because it is the powerset of the set of strings.
Recursively enumerable languages are countable because TMs are
countable. Therefore, recursively enumerable languages is a subset
of all languages.

In this section, we will use a technique called diagonalization to find a
natural language that isn’t recursively enumerable. This will lead us
to a language that is recursively enumerable but is not recursive. It
will also enable us to prove the undecidability of the halting problem.

Diagonalization
To find a non-r.e. language, we can use diagonalization. Let  be the
alphabet used to describe programs: the letters and digits, plus the
elements of { comma, perc, tilde, openPar, closPar, less, great}. Every
element of  either describes a unique closed program, or describes
no closed programs.
Given w  , we write L(w) for:
• , if w doesn’t describe a closed program; and
• L(pr), where pr is the unique closed program described by w, if
w does describe a closed program. Thus L(w) will always be a set of
strings, even though it won’t always be a language.

Consider the infinite table of 0’s and 1’s in which both the rows and
the columns are indexed by the elements of “, listed in ascending
order according to our standard total ordering, and where a cell
(wn,wm) contains 1 iff wn  L(wm), and contains 0 iff wn  L(wm).
Each recursively enumerable language is L(wn) for some (non-unique)
n, but not all the L(wn) are languages.

Here is how part of this table might look, where wi, wj and wk are
sample elements of 

Because of the table’s data, we have that wi  L(wj) and wj  L(wi)



   

To define a non r.e. language, we work our way down the diagonal
of the table, putting wn into our language just when cell (wn,wn) of the
table is 0, i.e., when wn   L(wn).
With our example table:
• L(wi) is not our language, since wi  L(wi), but wi is not in our
language;
• L(wj) is not our language, since wj  L(wj), but wj is in our
language; and
• L(wk) is not our language, since wk  L(wk), but wk is not in
our language.
In general, there is no n  N such that L(wn) is our
language.Consequently our language is not recursively enumerable.

We formalize the above ideas as follows. Define languages Ld (“d”
for“diagonal”) and La (“a” for “accepted”) by:
Ld = {w  | w  L(w) }, and La = {w  | w  L(w) }.
Thus Ld =  La.
We have that, for all w  , w  La iff w  L(pr), where pr is the



unique closed program described by w.

Theorem : Ld is not recursively enumerable.
Proof. Suppose, toward a contradiction, that Ld is recursively
enumerable. Thus, there is a closed program pr such that Ld = L(pr).
Let w   be the string describing pr. Thus L(w) = L(pr) = Ld.
There are two cases to consider.
• Suppose w  Ld. Then w  L(w) = Ld—contradiction.
• Suppose w  Ld. Since w  , we have that
w  L(w) = Ld—contradiction.
Since we obtained a contradiction in both cases, we have an overall
contradiction. Thus Ld is not recursively enumerable.

8.4 AN UNDECIDABLE PROBLEM THAT IS RE

An Undecidable problem that is RE : Halting Problem

Decidability : The problem of decidability may be stated roughly as
follows: is it possible for an algorithm to correctly answer a yes/no
question for all possible input?

For example:
Is there an algorithm that will tell us whether or not two arbitrary DFAs
recognize the same language?

Is there an algorithm that will tell us whether or not two arbitrary con-
text-free grammars generate the same language?

Given an arbitrary Turing machine and initial tape, will the Turing
machine reach the Halt state?

A problem is decidable if such an algorithm exsits. The first problem
(deciding whether or not two DFAs are equivalent) is decidable. The
second two problems are undecidable: there is no algorithm that
can correctly answer these questions for all possible input. The last
problem (whether or not a Turing machine will reach the Halt state



for some initial tape) is known as the Halting Problem, and is a very
famous problem in the theory of computation.
Theorem : The halting problem is undecidable.

Proof : This is going to be proven by "proof by contradiction".
Suppose that the halting problem is decidable. Then there is a Turing
machine T that solves the halting problem. That is, given a descrip-
tion of a Turing machine M (over the alphabet   ) and a string w, T
writes "yes" if M halts on w and "no" if M does not halt on w, and then
T halts.

   

We are now going to construct the following new Turing machine Tc.
First we construct a Turing machine Tm by modifying T so that if T
accepts a string and halts, then Tm goes into an infinite loop (Tm halts
if the original T rejects a string and halts).

  

Next using Tm we are going to construct another Turing machine Tc
as follows: Tc takes as input a description of a Turing machine M,
denoted by d(M), copies it to obtain the string d(M)*d(M), where * is a
symbol that separates the two copies of d(M) and then supplies
d(M)*d(M) to the Turing machine Tm .



 

Let us now see what Tc does when a string describing Tc itself is
given to it. When Tc gets the input d(Tc) , it makes a copy, constructs
the string d(Tc)*d(Tc) and gives it to the modified T. Thus the modified
T is given a description of Turing machine Tc and the string d(Tc).

    

The way T was modified the modified T is going to go into an infinite
loop if Tc halts on d(Tc) and halts if Tc does not halt on d(Tc).
Thus Tc goes into an infinite loop if Tc halts on d(Tc) and it halts if Tc

does not halt on d(Tc). This is a contradiction. This contradiction has
been deduced from our assumption that there is a Turing machine
that solves the halting problem. Hence that assumption must be wrong.
Hence there is no Turing machine that solves the halting problem.

8.5 POST CORRESPONDENCE PROBLEM

An instance to Post correspondence problem (PCP) consists of two
lists of words over some alphabet §:
L1 : w1 , w2 , .......... wk

L2 : x1 , x2 ,.......... xk

Both lists contain equally many words. We say that each pair (wi , xi)



forms a pair of corresponding words. A solution to the instance is
any non-empty string i1 i2 ..... im of indices from {1, 2 ,........., k }
such that
wi1wi2 ............wim = xi1xi2 ........... xim:
In other words, we concatenate corresponding words wi and xi to
form two words. We have a solution if the concatenated wi’s form
the same word as the corresponding concatenated xi’s. The PCP
asks whether a given instance has a solution or not. It turns out that
PCP is undecidable.

Example  Consider the following two lists:
L1 : a2 , b2 , ab2

L2 : a2b , ba , b
This instance has solution 1213 because
w1w2w1w3 = aa bb aa abb
x1x2x1x3 = aab ba aab b
are identical.

Example : The PCP instance
L1 : a2b , a
L2 : a2  , ba2

does not have a solution: If it would have a solution, the solution would
need to start with index 1. Since w1 = a2b and x1 = a2, the second list
has to catch up the missing b: The second index has to be 2. Because
w1w2 = a2ba and x1x2 = a2ba2 the first list has to catch up. The next
index cannot be 1 because w1w2w1 = a2baa2b and x1x2x1 = a2ba2a2

differ in the 7’th letter. So the third index is 2, yielding w1w2w2 = a2baa
and x1x2x2 = a2ba2ba2. Now the first list has to catch up ba2 which is
not possible since neither w1 nor w2 starts with letter b.



8.6 UNDECIDABLE PROBLEMS

1. The problem of determining if a word w is in the language
generated by a grammar G is undecidable.

2. The problem of deciding if two grammars G1 and G2 gener
-ate the same language is undecidable.

3. The problem of determining validity in the predicate calculus
is undecidable language is undecidable.

4. The problem of determining the universality of a context-free
language, i.e., the problem of determining if for a context-free
grammar G one has L(G) =  is undecidable.

5. The problem of determining the emptiness of the intersec
-tion of context-free languages is undecidable.

6. The problem is to determine if, for two context-free gram
mars G1 and G2, one has L(G1)  L(G2) = .

7. Hilbert's tenth problem is undecidable. This problem is to de
-termine if an equation

p(x1 , x2   ,............. , xn) = 0.



CHECK YOUR PROGRESS-1
1. The following problem(s) ------------- is/are called decidable
problem(s).
(a)The two regular expressions define the same language
(b)The two FAs are equivalent
(c) Both a and b
(d)None of given

2.If there exists a language L, for which there exists a TM, T, that
accepts every word in L and either rejects or loops for every word
that is not in L, is called
(a)recursive
(b)recursively enumerable
(c)NP-HARD
(d)none of these

3.Which of the following statement(s) is/are correct?
(a)L = {an bn an | n = 1, 2, 3...} is recursively enumerable
(b)Recursive languages are closed under union
(c)Every recursive is closed under union
(d) All of these

4.Recursively enumerable languages are not closed under
(a) Complementation
(b) Union
(c) Intersection
(d) None of the above

5.Which of the following statement is wrong ?
(a) Recursive languages are closed under union.
(b) Recursive languages are closed under complementation.
(c) If a language and its complement are both regular then the
language must be recursive.
(d) A language is accepted by FA if and only if it is recursive



8.7 LET US SUM UP

1.There are three possible outcomes of executing a Turing machine
over a given input. The Turing machine may Halt and accept the in-
put, Halt and reject the input or Never halt.

2.A language is recursively enumerable if there exists a Turing ma-
chine that accepts every string of the language, and does not accept
strings that are not in the language.

3.Some languages are not recursively enumerable.

4.To find a non-r.e. language, we can use diagonalization.

5.The problem of decidability may be stated roughly as follows: is it
possible for an algorithm to correctly answer a yes/no question for
all possible input?

6.The halting problem is undecidable.

7.The problem of determining if a word w is in the language gener-
ated by a grammar G is undecidable.

8.The problem of deciding if two grammars G1 and G2 generate the
same language is undecidable.

9.The problem of determining validity in the predicate calculus is
undecidable language is undecidable.

10.The problem of determining the emptiness of the intersection of
context-free languages is undecidable.

11.The problem is to determine if, for two context-free grammars G1
and G2, one has L(G1)   L(G2) = .



8.8  Answers to Check Your Progress-1

1. c, 2. b, 3. d,     4. a,     5. d,    6.
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Edition.

2. H.R. Lewis and C.H.Papadimitriou, Elements of the Theory
of Computation, Second Edition, Prentice Hall of India.

3. H.E. Hopcraft and J.D. Ullamn, Introduction to Automata
Theory, Languages and Computation,Narosa
Publications.

4. J.C. Martin, Introduction to Languages and the Theory of
Automata, Tata McGraw-Hill.

5. C.H. Papadimitriou, Computation Complexity, Addison-
Wesley.



    8.10 Possible Questions

Q1. Prove that PCP with { (01,011), (1,10), (1,11)} has no solution.

Q2. Does the PCP with x=(b3,ab2) and y=(b3,bab3) have a solution.

Q3.Prove that there is no algorithm that can determine whether or
not a given TM  evantually halts with complete blank tape when it
starts with a given tape configuration.

Q4.Prove that the problem of determining  whether or not aa TM over
{0,1} will ever print the symbol 1, with a given tape configuration is
unsolvable.

Q5.Comment on the following : “We have developed an algorithm  so
complicated that no Turing machine can be constructed  to execute
the algorithm no matter how much (tape) space and time is allowed”.

Q6.Prove that PCP is solvable if ||=1.

Q7.Let x=(x1.........xn) and y=(y1.................yn) be two list of non empty
strings over and ||>2.
i) Is PCP solvable for n=1?
ii) Is PCP solvable for n=2?


