
MCA(S5)17

KRISHNA KANTA HANDIQUI STATE OPEN UNIVERSITY
Housefed Complex, Dispur, Guwahati - 781 006

Master of Computer Applications

 SOFTWARE ENGINEERING

CONTENTS

UNIT- 1: Basics of Software Engineering
UNIT- 2: Software Requirement Specifications
UNIT- 3:Structured System Design
UNIT- 4: Software Testing
UNIT- 5: Software Maintenance and Software Project Management

Subject Expert
Prof. Anjana Kakati Mahanta, Deptt. of Computer Science, Gauhati University
Prof. Jatindra Kr. Deka, Deptt. of Computer Science and Engineering,

 Indian Institute of Technology, Guwahati
Prof. Diganta Goswami, Deptt. of Computer Science and Engineering,

 Indian Institute of Technology, Guwahati

Course Coordinator
Tapashi Kashyap Das, Assistant Professor, Computer Science, KKHSOU
Arabinda Saikia, Assistant Professor, Computer Science, KKHSOU

SLM Preparation Team
Units Contributor
1 Tulika Baruah, Lecturer, Don Bosco Institute
2 Jonalee Barman Kakoti,
 Lecturer, Deptt. of Business Administration,NERIM
3 Abhijit Adhyapak, Asst. System Administrator,

 Centre for Computer Studies, Dibrugarh University
4 & 5 Pritam Medhi, Instructor, ICT Centre, Deptt. of Disabilities Studies,
 Gauhati University

July 2013
© Krishna Kanta Handiqui State Open University
No part of this publication which is material protected by this copyright notice may be produced or
transmitted or utilized or stored in any form or by any means now known or hereinafter invented,
electronic, digital or mechanical, including photocopying, scanning, recording or by any information
storage or retrieval system, without prior written permission from the KKHSOU.
 Printed and published by Registrar on behalf of the Krishna Kanta Handiqui State Open University.

The university acknowledges with thanks the financial support pro-
vided by the Distance Education Council, New Delhi, for the
preparation of this study material.

Housefed Complex, Dispur, Guwahati- 781006; Web: www.kkhsou.net

COURSE INTRODUCTION
This is a course on “Software Engineering”. Software engineering is about the creation of

large pieces of software that consist of thousands of lines of code and involve many person months of

human effort. The IEEE Computer Society’s Software Engineering Body of Knowledge defines “Software

Engineering” as the application of a systematic, disciplined, quantifiable approach to the development,

operation, and maintenance of software, and the study of these approaches; that is, the application of

engineering to software.

This course contains five essential units.
Unit 1 introduces the basic concepts of software engineering like software characteristics, software
crisis, software engineerig process etc. At the end, it discusses various software development life
cycle model. Unit 2 discusses the software requirement specifications. Unit 3 concentrates on
structured system design. Unit 4 focuses on software testing. Unit 5 describes software maintenance
as well as software project management.

While going through a unit, you will notice some boxes along-side, which have been included
to help you know some of the difficult, unseen terms. Some “ACTIVITY’ (s) have been included to help
you apply your own thoughts. Again, we have included some relevant concepts in “LET US KNOW”
along with the text. And, at the end of each section, you will get “CHECK YOUR PROGRESS” questions.
These have been designed to self-check your progress of study. It will be better if you solve the given
problems in these boxes immediately, after you finish reading the section in which these questions
occur and then match your answers with “ANSWERS TO CHECK YOUR PROGRESS” given at the
end of each unit.

MASTER OF COMPUTER APPLICATIONS
Software Engineering
DETAILED SYLLABUS

Unit 1: Basics of Software Engineering
Introduction to Software Engineering, Software Components, Software Characteristics, Software
Crisis, Software Engineering Processes, Similarity and Differences from Conventional
Engineering Processes, Software Quality Attributes. Software Development Life Cycle (SDLC)
Models: Water Fall Model, Prototype Model, Spiral Model, Evolutionary Development Models,
Iterative Enhancement Models.

Unit 2: Software Requirement Specifications
Requirement Engineering Process: Elicitation, Analysis, Documentation, Review and
Management of User Needs, Feasibility Study, Information Modeling, Data Flow Diagrams, Entity
Relationship Diagrams, Decision Tables, SRS Document, IEEE Standards for SRS. Software
Quality Assurance (SQA): Verification and Validation, SQA Plans, Software Quality Frameworks,
ISO 9000 Models, SEI-CMM Model.

Unit 3: Structured System Design
Modules Concepts and Types of Modules, Structured Chart, Qualities of Good Design:Coupling,
Types of Coupling, Cohesion, Types of Cohesion

Unit 4: Software Testing
Testing Objectives, Unit Testing, Integration Testing, Acceptance Testing, Regression Testing,
Testing for Functionality and Testing for Performance, Top-Down and Bottom-Up Testing
Strategies: Test Drivers and Test Stubs, Structural Testing (White Box Testing), Functional Testing
(Black Box Testing), Test Data Suit Preparation, Alpha and Beta Testing of Products. Static
Testing Strategies: Formal Technical Reviews (Peer Reviews), Walk Through, Code Inspection,
Compliance with Design and Coding Standards.

Unit 5: Software Maintenance and Software Project Management
Software as an Evolutionary Entity, Need for Maintenance, Categories of Maintenance: Preventive,
Corrective and Perfective Maintenance, Cost of Maintenance, Software Re-Engineering, Reverse
Engineering. Software Configuration Management Activities, Change Control Process, Software
Version Control, an Overview of CASE Tools. Estimation of Various Parameters such as Cost,
Efforts, Schedule/Duration, Constructive Cost Models (COCOMO), Resource Allocation Models,
Software Risk Analysis and Management.

Unit-1: BASICS OF SOFTWARE ENGINEERING

UNIT STRUCTURE

1.1 Learning Objectives

1.2 Introduction

1.3 Software Components

1.4 Software Characteristics

 1.4.1 Operational Characteristics

 1.4.2 Transition Characteristics

 1.4.3 Revision Characteristics

1.5 Software Crisis

1.6 Software Engineering Processes

 1.6.1 Desired Characteristics of a software process

1.7 Software quality attributes

1.8 SDLC

 1.8.1 Waterfall Model

 1.8.2 Prototyping Model

 1.8.3 Evolutionary Model

1.8.4 Spiral Model

1.9 Let Us Sum Up

1.10 Answers to Check your Progress

1.11 Further Readings

1.12 Model Questions

1.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 learn the concepts and components of software engineering

 learn about software characteristics and software crisis

 define software engineering processes

 categorize different software quality attributes

 describe different Software Development Life Cycle models

1.2 INTRODUCTION

Software Engineering is an engineering discipline which is used to solve larger and more

complex problem in cost-effective and efficient ways. It is mainly related with software system

implementation, operation and maintenance etc. Software engineering uses systematic

approaches, methods, tools and procedure to solve a problem.

In this unit we will introduce you a brief description of software components, software

characteristics, different software attributes, software processes and also the phases of a

software development life cycle (starting from software requirement specification to design,

testing, implementation and maintenance phase) and different software development life cycle

models.

1.3 SOFTWARE COMPONENTS

A software component is an independent software unit that can be composed with other

components to create a software system.
Component characteristics:

 Independent: A component should be independent

 Composable: It means that all the external instruction must take place through publicly

defined interfaces.

 Deployable: A component has to be self-contained and must be able to operate as a

stand-alone entity.

Fundamental Principle of component:
 Independent Software development:

 Large software system are necessarily assembled from components develop by
different people.

 To facilitate independent development, it is essential to decouple developers and

users of components.

 Reusability:
 Some parts of a large system will necessarily be special-purpose software, it is

essential to design and assemble pre-existing components in developing new

components.

 Software quality:
 A component or system needs to be shown to have desired behavior, either

through logical reasoning or testing.

Terms & attributes used in Software component model:

 Syntax: It refers to the grammar or rules followed in the code as per the specific

programming language.

 Semantics: It refers to the actual meaning and view of components .A component is

associated with name, an interface and body that includes the code.

 Composition: This relates to the construction and working together of components.

Component Based Software development (CBSD) or Component Based Software
engineering (CBSE)
 Component-based software engineering (CBSE) is an approach to software that relies

on software reuse. It is based on the idea to develop software system by selecting appropriate

off-the-shelf components and then to assemble them with a well-defined software architecture.

Here Efficiency and flexibility is improved due to the fact that component can easier be added or
replaced. CBSD is best implemented using more modern software technologies like:

 COM

 JAVA

 EJB

 Active X

 CORBA etc.

Note: CBSE vs Traditional software engineering
1. SE can fulfill requirements more easily. In CBSE requirements is based on available

components

2. CBSE life cycle is shorter than traditional SE

CBSE Waterfall

Find

Select

Requirement analysis

 Design

Adapt

Test
Deploy

Implementation

Test
Replace

Replace Maintenance

3. CBSE is less expensive

1.4 SOFTWARE CHARECTERSTICS
Now we are going to discuss about the different software characteristics that the good

software should have. While developing any kind of software product, the first question in
developers mind is, “What are the characteristics that good software should have?”In a simple

way the answer is that good software must meet all the requirement of customer and the cost of

developing and maintaining the software is low.

But these are the obvious things which are expected from any software. If we observe

the technical characteristics of software then there are different characteristics. Following are

the different characteristics which can be easily explain with the help of software quality triangle

(Fig.1.1)

The three characteristics of good application software are:-

 1) Operational Characteristics

 2) Transition Characteristics
 3) Revision Characteristics

 Fig.1.1: Software Quality Triangle

Fig.1.1 : Software Quality Triangle

1.4.1 OPERATIONAL CHARACTERISTICS

These are functionality based factors and related to 'exterior quality' of software. Various

Operational Characteristics of software are:
a) Correctness: The software which we are making should meet all the specifications

stated by the customer.
b) Usability: The amount of efforts or time required to learn how to use the software should

be less. This makes the software user-friendly even for IT-illiterate people.
c) Integrity: Just like medicines have side-effects, in the same way software may have a

side-effect i.e. it may affect the working of another application. But quality software

should not have side effects.
d) Reliability: The software product should not have any defects. Not only this, it shouldn't

fail while execution.

Operation Transition

Correctness Usability
Usability Portability
Integrity Transferability
Efficiency
Reliability
Security
Safety
 Revision

Maintainability Extensibility
Testability Scalability
Flexibility Modularity

e) Efficiency: This characteristic relates to the way software uses the available resources.

The software should make effective use of the storage space and execute command as

per desired timing requirements.
f) Security: With the increase in security threats nowadays, this factor is gaining

importance. The software shouldn't have ill effects on data / hardware. Proper measures

should be taken to keep data secure from external threats.
g) Safety: The software should not be hazardous to the environment/life.

1.4.2: TRANSITION CHARACTERISTICS OF THE SOFTWARE

Various transition characteristics of software are:
a) Interoperability: Interoperability is the ability of software to exchange information with other

applications and make use of information transparently.
b) Reusability: If we are able to use the software code with some modifications for different

purpose then we call software to be reusable.
c) Portability: The ability of software to perform same functions across all environments and

platforms, demonstrate its portability.

1.4.3 REVISION CHARACTERISTICS OF SOFTWARE
Revision characteristics relate to 'interior quality' of the software like efficiency, documentation

and structure etc. Various Revision Characteristics of software are:-
a) Maintainability: Maintenance of the software should be easy for any kind of user.

b) Flexibility: Changes in the software should be easy to make.

c) Extensibility: It should be easy to increase the functions performed by it.

d) Scalability: It should be very easy to upgrade it for more work (or for more number of users).

e) Testability: Testing the software should be easy.

f) Modularity: Any software is said to make of units and modules which are independent of

each other. These modules are then integrated to make the final software. If the software is
divided into separate independent parts that can be modified, tested separately, it has high

modularity.

1.5 SOFTWARE CRISIS
 Software crisis is a term which is used to describe

the rapid increase of software failure. A software project is

failed because of different reasons such as:-

 Project running over budget

 Project running overtime

 Many software project produced software which did

not satisfy the requirement of the customer

 Complexity of software project increase as hardware

capability increase.

 Larger software system is more difficult and

expensive to maintain.

SOFTWARE CRISIS CAN BE CLASSIFIED IN TWO WAYS

 From Programmers point Of View.

 From User point Of View

From programmers point of view:

1. PROBLEM OF COMPATIBILITY

2. PROBLEM OF PORTABILITY

3. PROBLEM OF DOCUMENTATION

4. PROBLEM OF PIRACY OF SOFTWARE

5. PROBLEM IN COORDINATION TO WORK WITH OTHER PEOPLE

6. PROBLEM THAT ARISE DURING ACTUAL RUN TIME IN THE ORGANIZATION
7. PROBLEM OF MAINTENANCE IN PROPER MANNER.

From user point of View:

1. HOW TO CHOOSE SOFTWARE FROM TOTAL MARKET AVAILABILITY

2. HOW TO ENSURE THAT WHICH SOFTWARE IS COMPATIBLE WITH THERE

HADRWARE.

3. PROBLEM OF VIRUSES.

4. PROBLEMS OF SOFTWARE BUGS.

5. CERTAIN SOFTWARE RUNS ON SPECIFIC OS.

6. PROBLEM OF DIFFERENT VERSIONS OF SOFTWARE.

7. ECURITY PROBLEM FOR PROTECTED DATA IN SOFTWARE

1.6 SOFTWARE ENGINEERING PROCESSES
 The term process means “a particular method of doing something, generally involving a
number of steps or operations”. In Software engineering, the phrase software process refers to

the methods of developing software. The process that deals with the technical and management
issues of software development is called software process. Many different types of activities

need to be performed to develop software. All these activities together comprise the software

process.

1.6.1 DESIRED CHARACTERISTICS OF A SOFTWARE PROCESS
Let us discuss some of the important desirable characteristics of the software process:

 Predictability: Predictability of a project determines how accurately the outcome of

process in a project can be predicted (About quality, cost estimation, LOC etc) before

the project is completed. Predictability can be considered a fundamental property of

any process.

 Support testability and Maintainability: In software Engineering maintenance cost

generally exceed the development costs. Clearly, one of the objectives of the

development project should be to produce software that easy to maintain. And the

process used should ensure this maintainability. The Second importance about process
is testing. Overall we can say that the goal of the process should not be to reduce the

effort of design and coding, but to reduce the cost of testing and maintenance. Both

testing and maintenance depend heavily on the quality of design and code, and this cost

can be considerably reduced if the software is designed and coded to make testing and

maintenance easier.
 Support change: Software change for a variety of reasons. Though changes were

always a part of life, change in today’s world is much faster. As organization a business

change, the software supporting the business has to change. Hence, any model that
builds software and makes change very hard will not be suitable in many situations.

 Early defect removal: Software development is actually going through some phases

(see 1.8). Error can occur at any phase during development. We should attempt to detect

errors that occur in phase during phase itself and should not wait until testing phase to
detect errors. Error detection and correction should be a continuous process that is done

throughout software development.

 Process improvement and Feedback: A process is not a static entity. Improving the

quality and reducing the cost of product are fundamental goal of any engineering discipline.

Process improvement is also an objective in a large project where feedback from early

parts of the project can be used to improve the execution of the rest of the project.

1.7 SOFTWARE QUALITY ATTRIBUTES

Like all engineering discipline, software engineering has also three major attributes:

 Cost

 Schedule

 Quality

The cost of developing a system is the cost of the resources used for system. Which in the

case of software is determined by the manpower cost, as development is largely labor-intensive.

Hence, the cost of a software project is often measured in terms of person-month spent in a
project.

Person-month: In software engineering Person-month is a measure of work effort. It can be

converted into dollar amount by multiplying it with average dollar cost.

Calculation:

If a project will take 2 months to finish with 3 people working full time on it, the project requires

2*3=6 person-month effort.

If an employee worked 20 days on a project, his contribution to the project is 1*20/30 = 0.6666

person-month. (Note that month is considered 30 days in such calculations.)

Schedule is also an important factor in software projects. Business trends are dictating

that the time to market of a product should be reduced; i.e. the cycle time from concept to

delivery should be small. For software this means that it needs to be developed faster.

 The other major attribute of any production discipline is quality. Today, quality is the

main thing. So, clearly developing high quality Software is another fundamental goal of software

Software
Quality

Functionality

Reliability

Usability

Efficiency

Maintainabilit
y

Portability

engineering. However the concept of quality in the context of software needs further discussion.

We use the international standard on software product quality as the basis of our discussion

here. According to the quality model adopted by this standard, software quality comprise of six

main attributes as shown in the fig 1.2-

Fig.1.2: Software quality attributes

 Functionality: The Capability to provide functions which meet stated and implied needs

when the software is used.

 Reliability: The capability to maintain a specified level of performance.

 Usability: The capability to be understood, learned, and used.

 Efficiency: The capability to provide appropriate performance relative to the amount of

resources used.

 Maintainability: The capability to be modified for the purpose of making corrections,

improvements etc.

 Portability: The capability of the software to be work properly in different environment

without applying any action.

1.8 SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

A software life cycle is the series of identifiable stages that a software product undergoes

during its lifetime. The first stage in the life cycle of any software product is usually the feasibility

study stage. Commonly, the subsequent stages are

 Requirement analysis and Specification

 Software Design

 Coding

 Software testing

 Software maintenance and software project management

Fig.1.3: Different phases of SDLC

Now the question is why we need life cycle model? Why it is necessary for a

development team to use a suitable life cycle model?

 The primary advantages of using a life cycle model are that it encourages development

of software in a systematic and disciplined manner. When software is developed by a single

programmer he has the freedom to decide the exact steps through which he will develop the
program. However, when a software is developed by a team, it is necessary to have a precise

understanding among the team members that when to do what. Otherwise, it may lead to chaos

and project failure. Suppose, a software development problem is divided into several parts and

the parts are assigned to the different team members. Then suppose the team members are

allowed to the freedom to develop the parts assigned to them in whatever way they like. It is

Possible that one member must start writing the code for his part, another might decide to

prepare the test document first, and some other engineer might begin with the design phase of

the parts assign to him. This allowed to be one of perfect reason for project failure.

Now we discuss four different types life cycle model. Different life cycle models are:-
 Waterfall Model

 Prototype model

Requirement analysis and
Specification

Software Design

Coding

Software testing

Software
maintenance

 Evolutionary Development Model

 Spiral Model

1.8.1 WATERFALL MODEL
The waterfall model is intuitively the most obvious way to develop software. It was the

first process model to be introduced. It is very simple to understand and use. In a waterfall

model, each phase must be completed fully before the next phase can begin. At the end of each

phase, a review takes place to determine if the project is on the right path and whether or not to

continue or discard the project.

Now let us discuss about the phases of a waterfall model. Waterfall model divides its life

cycle into the phases as shown below (Fig 1.4):

Note:

1. In waterfall model phases

are not overlap i.e. each

phases are individually

done.

2. Waterfall model cannot

be used in actual

software development

project. It is considered

as theoretical way of

developing software.

3. All other models are

essentially derived from

waterfall model.

Fig.1.4: Waterfall Model
Feasibility Study: Feasibility study is the first phase of waterfall model. This phase is

considered to be a very important stage because during this stage it is determined that whether

that project would be financially and technically feasible to develop or not.

The feasibility study activity involve the analysis of problem and collection of all relevant

information relating to the product such as –

 The different data items which would be input to the system

 The processing required to be carried out on these data.

 The output data required to be produced by the system as well as various constraints on

the behavior of system.
Requirement analysis and specification: This phase is the next phase of feasibility study

phase. The main aim of this phase is to understand the exact requirements of the customer and
to document them properly. This phase consists of two distinct activities, namely requirement

gathering and analysis, and requirement specification.

Requirement gathering and analysis:

Coding and unit
testing

Integration and
system testing

Design

Maintenance

Feasibility
study

Requirement
Analysis and
specification

 The goal of the requirement gathering activity is to collect all relevant information from

the customer regarding the product to be developed. The data collected from the customer

usually contain several contradictions and ambiguities. So, it is necessary to identify all

ambiguities and contradiction in the requirement and resolve them through further discussion
with the customer. After all ambiguities, inconsistencies and incompleteness have been

removed and all the requirement properly understood, the requirement specification activity can

start. During this activity, the user requirement is systematically organize into a software

requirement specification document (SRS).
Requirement specification:
 After identifying customer requirement during the requirement gathering and analysis

activity it is written into a document called SRS (software requirement specification).The

important component of a SRS are the functional requirement, non functional requirement and

goal of implementation. Functional requirement means the identification of the functions to be
supported by the system. Each function can be characterized by input data, the processing

required on input data, the output data to be produced. The non-functional requirement

identifies the performance requirements, the standards to be followed etc. The SRS document

is written using the end user terminology. This makes the SRS document understandable by the

customer. The SRS document normally serves as a contract between the development team

and customer. Any future dispute between the customer and the development team can be

settled by examining the SRS document not only provide the basic for carrying out all the

development activities, but also the basis for several other documents such as design

document, the users manuals, the system test plan etc.
Design: After successful completion of requirement analysis phase design phase start. The

goal of design phase is to transform the requirement specified in the SRS document into a

structure that is suitable for implementation in some programming language. We say that in

design phase the software architecture is derived from SRS document.
Coding and Unit Testing: The purpose of the coding and unit testing phase of software

development is to translate the software design into source code. Each component of the

design is implemented as a program module. The end-product of this phase is a set of program

modules that have been individually tested.

During this phase, each module is unit tested to determine the correct working of all the
individual modules.
Integration and System testing: Integration of different module is started once they have been

coded and unit tested. During the integration and system testing phase, the module is integrated

in a planned manner. Integration is normally carried out incrementally over a number of steps.

During each integration step, the partially integrated system is tested and a set of previously

planned module are added to it. Finally, when the entire module have been successfully

integrated and tested, system testing is carried out. System testing usually consists of three

different kind of testing activities:
α-testing: It is the system testing perform by development team.
β-testing:It is the system testing performed by friendly set of customers.

Acceptance testing: It is the system testing performed by the customer himself after the

product delivery to determine whether to accept or reject the delivered product.

 System testing is normally carried out in a planned manner according to the system test

plan document. The system test plan identifies all testing-related activities that must be

performed, specifies the scheduled of testing, allocate resources. It also lists all the test cases

and the expected output for each test case. A system test plan can be prepared immediately

after the requirement specification phase, which documents the plan for system testing. It is

possible to prepare the system test plan just after the requirements phase, solely based on SRS

document. The result of integration and system testing are documented in the form of test
report. The test report summarizes the outcome of all the testing activities that were carried out

during this phase.
Maintenance: Maintenance of a typical software product requires much effort than the effort

necessary to develop the product itself. Maintenance involves performing any one or more of

the following kind of activities:

 Corrective maintenance: Correcting error that was not discovered during the product

development phase. This is called Corrective maintenance.

 Perfective maintence: Improving the implementation of the system and enhancing the

functionalities of the system according to the customer’s requirements.

 Adaptive maintenance: Porting the software to work in a new environment (ex: to work

on different operating system).

Advantages of waterfall model:

 Simple and easy to understand and use.

 Easy to manage due to the rigidity of the model – each phase has specific deliverables

and a review process.

 Phases are processed and completed one at a time.

 Works well for smaller projects where requirements are very well understood.

 Disadvantages of waterfall model:

 Once an application is in the testing stage, it is very difficult to go back and change

something that was not well-thought out in the concept stage.

 No working software is produced until late during the life cycle.

 High amounts of risk and uncertainty.

 Not a good model for complex and object-oriented projects.

 Poor model for long and ongoing projects.

 Not suitable for the projects where requirements are at a moderate to high risk of

changing.

When to use the waterfall model:

 Requirements are very well known, clear and fixed.

 Product definition is stable.

 Technology is understood.

 There are no ambiguous requirements

 Ample resources with required expertise are available freely

 The project is short.

1.8.2 PROTOTYPING MODEL
 Let us discus another model which name is prototyping model. The basic idea here is

that instead of freezing the requirements before any design or coding can proceed, a throwaway

prototype is built to help understand the requirements. This prototype is developed based on the

currently known requirements. Development of the prototype obviously undergoes design,

coding, and testing, but each of these phases is not done very formally or thoroughly. After

making this prototype it is submitted to the customer for evaluation. Based on the customer

feedback, the requirements are refined and the prototype is suitably modified. This cycle of

obtaining customer feedback and modifying the prototype is continue till the customer approves

the prototype.

Fig.1.5 Prototyping Model

However, in the prototyping model of development the requirement analysis and specification

phase becomes redundant as the working prototype approved by the customer and the next

phases are design, coding and testing as shown in the Fig1.5.

Advantages of Prototype model:

 Users are actively involved in the development

 Since in this methodology a working model of the system is provided, the users get a
better understanding of the system being developed.

 Errors can be detected much earlier.

 Quicker user feedback is available leading to better solutions.

 Missing functionality can be identified easily

 Confusing or difficult functions can be identified

Requirements validation, Quick implementation of, incomplete, but

functional, application.

Disadvantages of Prototype model:

 Possibly higher cost

Design

Code

Test

Requirement
Analysis

Design

Code

Test

Requirement
Analysis

 Practically, this methodology may increase the complexity of the system as scope of the

system may expand beyond original plans.

 Incomplete application may cause application not to be used as the

full system was designed Incomplete or inadequate problem analysis.

When to use Prototyping model:

 Prototype model should be used when the desired system needs to have a lot of

interaction with the end users.

 Typically, online systems, web interfaces have a very high amount of interaction with

end users, are best suited for Prototype model. It might take a while for a system to be

built that allows ease of use and needs minimal training for the end user.

 Prototyping ensures that the end users constantly work with the system and provide a

feedback which is incorporated in the prototype to result in a useable system. They are
excellent for designing good human computer interface systems.

1.8.3 EVOLUTIONARY MODEL
This life cycle model is also known as incremental model. In this model the software is first

broken down into several module (or functional unit) which can be incrementally constructed

and delivered as shown in the fig1.6. The development team first develops the core modules of
the system and this initial product is refined into increasing levels of capability by adding new

functionalities in successive versions.

Each successive version of product is fully functioning software capable of performing more

useful work than previous one. The following two fig describe the evolutionary model:

Fig.1.6: Evolutionary Development of a software product

A
B

 A

A
B

C

Fig.1.7: Evolutionary model of Software Development

Advantages of Incremental model:

 Generates working software quickly and early during the software life cycle.

 More flexible – less costly to change scope and requirements.

 Easier to test and debug during a smaller iteration.

 Customer can respond to each built.

 Lowers initial delivery cost.

 Easier to manage risk because risky pieces are identified and handled during it’d

iteration.

Rough Requirement specification

Maintenance

Develop the next identified features using an
iterative waterfall model

Identify the core and other parts to be developed
incrementally

Develop the core part using Waterfall model

Collect customer feedback and modify requirements

All Features complete

Disadvantages of Incremental model:

 Needs good planning and design.

 Needs a clear and complete definition of the whole system before it can be broken down

and built incrementally.

 Total cost is higher than waterfall.

When to use the Incremental model:

 Requirements of the complete system are clearly defined and understood.
 Major requirements must be defined; however, some details can evolve with time.

 There is a need to get a product to the market early.

 A new technology is being used

 Resources with needed skill set are not available

 There are some high risk features and goals.

1.8.4 SPIRAL MODEL

The spiral model is similar to the incremental model, with more emphasis placed on risk

analysis. The spiral model has four phases: Planning, Risk Analysis, Engineering and

Evaluation. A software project repeatedly passes through these phases in iterations (called

Spirals in this model). The baseline spiral, starting in the planning phase, requirements is

Gathered and risk is assessed. Each subsequent spiral builds on the baseline
spiral. Requirements are gathered during the planning phase. In the risk analysis phase, a

process is undertaken to identify risk and alternate solutions. A prototype is produced at the
end

of the risk analysis phase.
Software is produced in the engineering
phase, along with testing at the end of the
phase. The evaluation phase allows the

customer to evaluate the output of the

project to date before the project continues

to the next spiral.
The spiral model is called Meta

model because it subsumes all the

discussed models. For example a single

loop spiral model can be viewed as

waterfall model. The spiral model uses a
prototyping approach by first building a

prototype before embarking on the actual

product development effort. Also the spiral

model can be considered as supporting the

evolutionary model-the iteration along the spiral can be considered as evolutionary levels

through which the complete system is built. The spiral model uses prototyping as risk reduction

mechanism and also systematic step-wise approach of waterfall model.
Advantages of Spiral model:
 High amount of risk analysis hence, avoidance of Risk is enhanced.

 Good for large and mission-critical projects.
 Strong approval and documentation control.

 Additional Functionality can be added at a later date.

 Software is produced early in the software life cycle.
Disadvantages of Spiral model:
 Can be a costly model to use.

 Risk analysis requires highly specific expertise.

 Project’s success is highly dependent on the risk analysis phase.

 Doesn’t work well for smaller projects.

When to use Spiral model:
 When costs and risk evaluation is important

 For medium to high-risk projects
 Long-term project commitment unwise because of potential changes to economic

priorities

 Users are unsure of their needs

 Requirements are complex

 New product line

 Significant changes are expected (research and exploration

CHECK YOUR PROGRESS

1. Reusability is ________ type of characteristics

2. Person month is measure of ____________ in software engineering.

3. Software crisis means ________________

4. Cost, schedule and quality are software ___________
5. Which of the following is not an type of software quality attribute

 a) Efficiency b) Scalability c) Dependability d) Usability

 6. ___________determines whether the project should go forward

A. Feasibility study

B. System evaluation

C. Design

D. None of these

 7. SRS stands for-

1. Software requirement

solution

2. Software requirement
specification

3. System requirement

specification

4. None of these

8. Requirement can be refine using

B. Waterfall Model

C. Evaluation Model

D. Prototyping Model

E. None of these

9. Software feasibly is based on which of the following

A. Business and marketing

concern

B. Scope, constraints, market

C. Technology, finance, time,

resources

D. Technical power of developer

10. Which of the following model is called Meta Model
B. Prototyping

C. Spiral

D. Waterfall

E. Evolutionary

1.9 LET US SUM UP

 Software engineering is the discipline that aims to provide methods and procedures for

systematically developing industrial strength software. Software engineering uses

systematic approaches, methods, tools and procedure to solve a problem.

 Software components are independent software unit that can be composed with other

components to create a full software system.

 The term component-based software Development (CBSD) or component-based

software Engineering (CBSE) can be refereed as a process for building a system using

components. Here reliability is increased since components have previously been tested

in various contexts.

 The three characteristics of good application software are:-

 1) Operational Characteristics

 2) Transition Characteristics
 3) Revision Characteristics

 Software crisis (Software Failure) refers to the difficulty of writing correct,

understandable, and verifiable computer programs. The roots of the software crisis are

complexity, expectations, and change. The crisis manifested itself in several ways:

Projects running over-budget, Projects running over-time, Software was very inefficient

etc.

 In Software engineering, the phrase software process refers to the methods of

developing software.

 Like all engineering discipline, software engineering has also three major attributes:

Cost, Schedule and Quality.

 A software life cycle is the series of identifiable stages that a software product

undergoes during its lifetime. The first stage in the life cycle of any software product is
usually the feasibility study stage. Commonly, the subsequent stages are Requirement

analysis and Specification, Software Design, Coding, Software testing, Software

maintenance.

 Name of different life cycle models are Waterfall Model, Prototype model, Evolutionary,

Development Model, Spiral Model.

1.10 ANSWERS TO CHECK YOUR PROGRESS

1. Transition

2.Work Effort

 3.Software Failure

 4.Attribute

 5.c)Dependability
6. A. Feasibly study

 7. C. Software requirement specification
 8. C. Prototyping model

 9. C .Technology, finance, time, recourses

 10.B. Spiral

1.11 FURTHER READINGS

1. An Integrated Approach to Software engineering—Pankaj Jalote

2. Software Engineering—Rajib Mall

MODEL QUESTIONS
1. What do you mean by Software Engineering? Why we need software engineering

techniques?

2. What do you mean by software components? How CBSE is different from traditional

software engineering?

3. Define the characteristics of good software?

4. Explain the term software crisis?

5. What do you mean by the term person-month? Explain the software quality model?

6. Why we need SDLC model?
7. What are the different life cycle models? Explain Waterfall model? Write down the

advantages and disadvantages of waterfall model?

8. Explain the prototyping model with their advantages and disadvantages?

9. Explain the spiral model of software engineering with their advantages? Why it is called

Meta model?

10. Write down the concept of evolutionary Development model?

11. Explain Iterative Enhancement Model of software development?

12. Compare all the life cycle models with their advantage and disadvantages?

UNIT- 2 SOFTWARE REQUIREMENT SPECIFICATIONS (SRS)

UNIT STRUCTURE

2.1 Learning Objectives
2.2 Introduction

2.3 Requirement Engineering Process

 2.3.1 Elicitation

 2.3.2 Analysis

 2.3.3 Documentation

 2.3.4 Review and Management of User Needs

2.4 Feasibility Study

2.5 Information Modeling

2.6 Data Flow Diagrams

2.7 Entity Relationship Diagrams
2.8 Decision Tables

2.9 SRS Document

2.10 IEEE Standards for SRS

2.11 Software Quality Assurance (SQA)

 2.11.1 Verification and Validation

 2.11.2 SQA Plans

2.12 ISO 9000 Models

2.13 SEI-CMM Model

2.14Let Us Sum Up
2.15Further Readings

2.16 Answers To Check Your Progress

2.17 Possible Questions

2.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 • Know about the requirement engineering process of software development

• Describe feasibility study and why it needs to be done.

• Learn about Data Flow Diagrams and Entity Relationship Diagrams

• Know about what is SRS Document and the IEEE Standards

2.3 Requirement Engineering Process
The requirement engineering is an important aspect of software engineering. The software
development life cycle starts with requirements analysis. A requirement is a description of what

the system should perform in order to solve the problem faced by the users in an organization. It
is more specific than a need. Requirements Engineering is the process of establishing the

services that the customer requires from the system and the constraints under which it is to be

developed and operated. Requirement engineering is considered to be the most important stage

in designing and developing software as it addresses the critical problem of developing the right

software for the customer. It is a set of processes by which the requirements for a software

project are collected, documented and managed throughout the software development life
cycle.

The figure below illustrates the process of determining the requirements for a system:

Figure: The process of determining requirements

Requirements engineering describes “what to do” and not the “how to do” of a software system.

The problem statement that is prepared by the customer is the input to the requirement

engineering and the output of this process is a system requirement specification, also termed as

Requirement Definition and description (RDD). This RDD then forms the basis for designing the
software solutions.

Requirements can be categorized based on their priority and functionality. Based on priority
they are of three types.

 Those that has to met absolutely,

 Those that are desirable but not necessary,

 Those that are possible but could also be eliminated.
Again based on their functionality, the requirements are of two different types.

 Functional Requirements defines what type of functionality the system to be developed

offers. Usually these are again divided into functional requirements, behavioral

requirements and data requirements.

 Non-functional Requirements defines the desired qualities of the system to be

developed like usability, efficiency, performance, reliability etc. They affect the system

more than the functional requirements. The non-functional requirements are also known

as the quality requirements.
Apart from these there is another type of requirement called Constraints. Although they are not

implemented as the other types of requirements but they limit the solution space that is
available during the development process.

The requirement engineering processes can be described by considering three fundamental
concerns:

 Understanding the problem (‘what the problem is’)

 Formally describing the problem,

 Attaining an agreement on the nature of the problem.
Each of the above mentioned concerns implies that there must be some activities corresponding
to each of these. The requirement engineering thus consists of the following processes:

1. Requirements gathering (Elicitation),

2. Requirements Analysis,

3. Requirements Documentation,

4. Requirements Review,

5. Requirements Management.
The different steps are shown in the figure below.

Figure : Steps of Requirement Engineering

2.3.1 Elicitation
Elicitation is the first activity that takes place and continues through the requirement engineering

lifecycle. The purpose is to gain knowledge that is relevant to the problem. The analyst should

have a sound knowledge of the problem domain. Otherwise it may happen that some important

parameters of the problem were not considered and thereby the software will not provide the

best solution to the users’ problem. This is a communication process between the analyst and

the users of the existing system.

There are various information gathering tools in elicitation and each of the tool has a different
function depending on the type of the information that is needed. Some of the tools are

1. Review of Literature, Procedures and Forms

2. On-site observation

3. Interviews and Questionnaires.

About 90 - 95% elicitation should be completed in the initiation stage while the remaining 5% is
completed in the developing stage.

Review of Literature, Procedures and Forms

The procedures, manuals and forms are some of the useful sources of information for the

analyst. These describe the formats and functions of the present working system. Forms are

widely used for capturing and providing information. The main objective of using this tool in

elicitation is to find out how the forms are used in dealing with the information in the system.

The main disadvantage of this search is time. Up-to-date manuals save much of the

requirements-gathering time but unfortunately, in many cases, either they do not exist or are

out-of-date.

On-site observation

It is an observational technique that can be used to understand social and organizational

requirements. The advantage of this technique is that the analyst can get a close picture of the
system being studied. The analyst observes the day-to-day work and makes a note of the work

performed. What the system is and what it does, who are the people that are running the

system and so on are some of the questions that can be answered by using the on-site

observation tool. There are four different types of observation methods that are considered in
on-site observation technique:

 Natural or Contrived: A natural observation takes place in the employee’s work place

while a contrived observation takes place in a place such as a laboratory.

 Obtrusive or Unobtrusive: An observation where the respondent knows that he is being

observed is an obtrusive observation, whereas if the observation takes place in a

contrived way such as behind a one-way mirror, is an unobtrusive observation.

 Direct or Indirect: When the analyst actually observes the system at work is a direct

observation whereas indirect is that in which cameras or video recorders are used to

capture the information.

 Structured or Unstructured: In structured the observer studies and records a specific

action in the system. Unstructured methods place the observer in a situation to observe

whatever might be pertinent at the time.

The main problem with this technique is that intruding into the users area might result in adverse
reaction by the staff.

Interviews and Questionaires

An interview is a direct face-to-face attempt in which questions are asked by a person called the

interviewer to a person being interviewed to gather information about the system or the problem

area of the system. It is a conversation in which the roles of the interviewer and the respondent
change continually. The art of interviewing is mostly developed through experience. In this

method, they can directly obtain the information from the domain expert by asking them how

they do their job.

Interviews can be unstructured, semi-structured or structured.

The success of an interview is dependent on the questions asked and the ability of the expert to

articulate and willing to share the knowledge. The information has to be easily expressed by the

expert, which is often difficult when tasks that are frequently performed often become

‘automatic’. Indirect methods are then used to obtain the information that otherwise cannot be
expressed directly.

Another tool used is the questionnaire. It consists of a series of questions to which the

individuals responds. It is self administered and is much economical than interview. A

questionnaire can be given to a large number of the system users at the same time. Questions
in a questionnaire can be open-ended or closed ended.

2.3.2 ANALYSIS
The next step after elicitation is requirement analysis. After gathering the requirements in the

elicitation stage, each of them is then analyzed to get a clear picture of the exact customer

requirements and also the product to be developed. This is done by checking the validity,

consistency and feasibility of the gathered requirements. The validity checks and confirms its

relevance to goals and objectives, consistency confirms that the requirements does not conflict

with the other requirements and then feasibility ensures that the inputs and the required
technology support is available for the project development.

A process model of elicitation and analysis is shown in the figure below:

This is a general model and each organization will have its different versions depending on
many factors of it like the staff, the type of the proposed system, standards used etc.

In Domain understanding, the analyst must properly understand the domain for which a system

has to be developed. After that the requirements of the stakeholders of the organization must be
gathered. The requirements should be organized accordingly in classification. There are again

chances for requirements conflict in the organization as different stakeholders have different

types of requirements. Basically there are three types of requirements that the analyst needs to
identify and resolve in conflict resolution. They are ambiguity, inconsistency and

incompleteness. Anomaly is an ambiguity in the requirement. If there is anomalous requirement,

then several interpretation of that requirement is possible which may lead to finally an incorrect

system. Requirements can be incomplete if some of them has been overlooked by the stake

holders. The analyst can suggest those requirements to the users for their consideration and
approval to incorporate those in the requirements lists. Conflict resolution requires effort and
experience of the analyst to detect them.

In prioritization, the requirements are to be given priority based on their importance. Finally in

the requirements checking, the requirements are checked to discover if they are complete,
consistent and in accordance with what is actually wanted from the system.

2.3.3 DOCUMENTATION

After gathering the required information needed to develop the new system and analyzing each

of them by removing the anomalies, inconsistencies and incompleteness, the analyst organizes

the requirements in a proper format in the form of an SRS (Software Requirement Specification)
document. The SRS document usually contains all the users’ requirements. It also serves as a

contract document between the customer and the developer.

2.3.4 REVIEW AND MANAGEMENT OF USER NEEDS
A requirement review is a manual process of evaluation or examination of the requirements

documents. It involves people from both the client and contractor organization so as to check

the documents for anomalies and omissions. Requirements review can be informal or formal.
These techniques are used to examine the requirements before developing the new system.

1. Informal review: In this type of reviews, the contractor meets as many stakeholders as

possible and discusses the requirements. This type of meeting is not structured and the

meeting time is not prepared and distributed. Some problems can be detected by simply

talking about the system to the stakeholders before a formal review.

2. Formal review: In formal review, the meetings and schedules are properly planned. The

development team makes the client understand the system requirements and the

implications of each of the requirements. The review team checks each of the

requirement for consistency and completeness.
Any conflicts, contradictions, errors and omissions in the requirements should be pointed out
by the review team and formally recorded in the review report.

CHECK YOUR PROGRESS 1
1. Fill in the blanks:

a. The process of establishing the services that the customer requires from the system and
the constraints under which it is to be developed and operated is called

_____________________________.

b. The input to requirement engineering is _________________ and the output of this

process is a ______________________.

c. Based on priority, requirements are of _____________________ types.

d. Requirements are of two different types based on their functionality

_______________________ and ______________________.

e. Elicitation is a communication process between the ________________and the

_______________ of the existing system.
f. An _________________ is a direct face-to-face attempt in which questions are asked by

a person to another person.

g. Interviews may be__________, ________________ or__________________.

h. In________________________, the analyst must properly understand the domain for

which a system has to be developed.

i. The three types of requirements that the analyst needs to resolve in conflict resolution

are_____________, _________________ and________________.

j. ______________ serves as a contract document between the customer and the

developer.

2.4 FEASIBILITY STUDY

In case the system proposal is accepted by the management after the review of the users’

requirements, the next step is to examine the feasibility of the system. A feasibility study is

carried out to identify, describe and evaluate the candidate systems and select the best system

that meets performance requirements. A proper feasibility study will show the strengths and

deficits before the project is planned or budgeted for. By doing the research beforehand,

companies can save money and resources in the long run by avoiding projects that are not
feasible.

 It is basically the test of the proposed system in the light of its workability, meeting user’s

requirements, effective use of resources and of course, the cost effectiveness. These are

categorized as economic, technical and operational feasibility.
Economic feasibility: This is more commonly known as the cost/benefit analysis. The benefits

and savings that are expected from the candidate system is determined and then compared

with the cost. If benefits outweigh costs, then the decision is made to design and implement the

system.
Technical feasibility: The technical requirements of the proposed project are considered in

technical feasibility. It studies whether the problem can be solved using existing technology and

available resources. The technical requirements of the proposed system are compared to the

technical capability of the organization. The systems project is considered technically feasible if

the internal technical capability is sufficient to support the project requirements. The analyst

must also find out to whether the existing resources can be upgraded to fulfill the request under

consideration.

Operational feasibility: It examines the users’ and the management’s acceptance and support

for the new system. It is also known as behavioral feasibility because it measures the behavior

of the users. If the users do not accept the new technology or system then it will definitely fail to

serve the purpose of developing the software product. One of the common method of obtaining

user acceptance and support is through user involvement by communicating, educating and

involving them. Thus the introduction of a candidate system requires effort to educate and train

the staff on new ways of conducting business.

2.5 INFORMATION MODELING

An information model is used to describe the flow of information in a system. The sources and

destination of the information flow in an organization can be understood with the help of
information modeling. In Information flow Model (IFM), the medium of the flow may be

documents or emails and its contents may be text, images or diagrams. The IFM is a high-level

model which shows only the main flows and the internal information are assumed to be present.

A business process can be modeled, for example, to describe the progression of an order from

the entry of the order by the customer to the final invoicing. This would describe the order

process and not the specific orders that has been placed by the customer.

An example of a IFM for an order process is shown in the figure below.

Figure : Information Flow Model

2.6 DATA FLOW DIAGRAMS

The Data Flow Diagrams (abbreviated as DFD) was introduced by De Marco and Gane and
Sarson and it is an important tool of structured analysis. The Data Flow Diagram is also known

as the ‘Bubble chart’. It is a graphical representation of the flow of data through the system. It

identifies the major transformations that later in system design will become the programs.

A DFD models a system by using external entities from which data flows to a process. The

process then transforms the data and creates output data flows which go to other processes or

other external entities or some data stores. The stored data may also flow as input to some

processes. The advantage of DFD is that it provides an overview of what data the system would

process, what transformations are done on the data, which data are stored and where the

results flow. In other words, a DFD describes what data flow rather than how they are

processed. The DFD is simple to understand by both programmers and non-programmers. It
specifies only what processes are performed and not how they are performed.

There are different types of symbols that are used to construct a DFD. They are listed below
along with the meanings.

1. Process symbol: A process is represented using a circle. It transforms the input data into

output data.

2. External entity: A square defines an external entity. They are the source or destination of

the system data.

3. Data store symbol: A data store symbol is represented by open-ended rectangle. They
are the temporary repositories of data. It is a logical file.

4. Data flow symbol: A directed arc or arrow is used as a data flow symbol. The data flow

represents the movement of data from one component to another.

There are some rules how to draw a DFD. They are as follows:

a. The processes should be named and numbered for reference.

b. The direction of the data flow should be from top to bottom and from left to right.
Generally the data flows from the source (upper left corner) to the destination (lower

right corner).

c. When a process is divided into lower levels, then the sublevels should also be

numbered. For example, if the process 1 is divided further into two different processes,

then the lower level processes should be numbered as process 1.1 and process 1.2

d. The names of the source, destination and data stores are written in capital letters, while

the process and data flow names should have the first letter of each word capitalized.

There are different levels of a data flow diagram. The initial level is known as the context

diagram or the 0 level DFD. This 0 level DFD can be expanded to show the system into more

details to get the 1st level DFD, which can be further expanded to get the 2nd level DFD and so
on.

2.7 ENTITY RELATIONSHIP DIAGRAMS

An entity-relationship (ER) model is a detailed, logical representation of the data for an

organization. It describes the data as entities, attributes and relationships. An entity is

something that has an existence in the real world, attributes are the properties that describe the

entities and relationships are the associations among the entities. The ER model is expressed

as an ER diagram. Thus the ER diagram is a graphical representation of ER model. There are

some notations for drawing an ER diagram. Some of those symbols are given as below.

 Symbol Meaning

 Entity

 Weak entity

 Relationship

 Attribute

 Key Attribute

 Multivalued Attribute

 Composite attribute

 Derived attribute

An example of an ER diagram of a company which keeps information about its employees, the

projects it has in hand, the parts used in the project, the supplier who supplies the projects and
the warehouses where the parts are stored is given in the figure below.

The entities in the above figure are Employee, Project, Parts, Supplier and Warehouses.

Attached to each of the entities are its attributes and the relationships among them.

There may be several types of attributes in an ER model – simple versus composite, single-

valued versus multivalued and stored versus derived attribute.

Simple versus Composite attribute: Those attributes that can be further divided into subparts are

called composite attribute. For example, the address attribute can be divided into House

Number, Street, City, State, District and Pincode. Attributes that are not divisible are called

Simple or Atomic attributes.

Require

Single-valued versus Multivalued attribute: Those attributes that have a single value for a

particular entity are called Single-valued attribute. For example, the age of a person is a single

valued attribute. In some cases, an attribute can have a set of values for the same entity. For

example, the attribute CollegeDegree for a person may be different for different persons. A
person may have 0, 1 or more number of degrees.

Stored versus Derived attribute: Sometimes two (or more) attribute values may be related. For

example, the DateOfBirth and Age attributes of a person are related. The age of a person can

be determined from his DateOfBirth and the current date. Hence, the Age attribute is called a

derived attribute and the DateOfBirth attribute is called a stored attribute.

An entity type is a collection of entities that have the same attributes. Each entity type is

described by its name and attributes. The collection of all entities of a particular entity type at an
instance is called an entity set. An entity type EMPLOYEE with its attributes is shown below:

Entity Type name: EMPLOYEE

Attributes : Emp_id, Name, Age

Entity Set :
 (E1, Aashish Bora, 26)

 (E2, Binod Das, 35)

 (E3, Rahul Purkayastha, 28)

 (E4, Snigdha Kapoor, 30)

 .
 .
 .

An entity type usually has an attribute with a distinct value for each individual entity in the entity
set. Such type of attributes are called key attribute. They are used to uniquely identify each

entity. For example, in the above case, the entity type EMPLOYEE has the attribute Emp_id as

the key attribute because it can uniquely identify each of the entities in the set.

2.8 DECISION TABLES

A decision table is a two-dimensional matrix with one row for each possible action and one

row for each relevant condition and one column for each combination of condition states.

They are useful when there are different sets of conditions and a number of combinations

of actions that can take place. To represent and analyze complex logical relationships, the

decision tables are used.

A decision table consists of two parts – stub and entry. The stub part is divided into an
upper quadrant called condition stub and a lower quadrant called action stub. The entry
part is also divided into a upper and a lower quadrant namely condition entry and action

entry. These four elements are shown in the figure below:

 Condition Stub Condition Entry

 Action Stub Action Entry

 Figure : Decision table

CHECK YOUR PROGRESS 2

A. Say whether True or False.
1. A feasibility study is carried out to identify, describe and evaluate the candidate systems

and select the best system that meets performance requirements.

2. Technical feasibility is more commonly known as the cost/benefit analysis.
3. Operational feasibility is also known as behavioral feasibility because it measures the

behavior of the users.

Condition

 Action

4. The Information Flow Model is a low-level model which shows detailed flows in the

system.

5. The DFD is a graphical representation of the flow of data through the system.

6. A DFD describes what data flow rather than how they are processed.

7. A data store symbol is represented by a circle.

8. The direction of the data flow in a DFD should be from bottom to top.

9. An entity is something that has an existence in the real world.

10. Attributes that have a single value for a particular entity are called Multivalued attribute.

11. Key attribute of an entity may not be unique.

12. A decision table is a two-dimensional matrix with one row for each possible action and

one row for each relevant condition and one column for each combination of condition
states.

2.9 SRS DOCUMENT
After elicitation and analysis, the analyst systematically organizes the requirements in the form

of a document called the Software Requirements Specification (SRS) document. This document

includes both the user requirements and a detailed specification of the system requirements. It

enlists all the necessary requirements that are required for the project development. The

possible users of the SRS document are
Users and Customers:

The users refer to the document to ensure that the requirements specified will meet their

needs. The customers specify changes to the requirements.
Software developers:

They refer to the document to ensure that the software is developed according to the

requirements.
System Test Engineers:

They use the document to use the requirements to develop validation tests for the

system.
Project Managers:

 They use the document to estimate the cost of the project.

System Maintenance engineers:

 This document helps them to understand the functionalities of the system and also gives

them a clear picture of the user requirements. They can then determine what modifications to

the functionalities of the system are required for a specific purpose.

Characteristics of a good SRS document

1. Concise: The SRS document should be concise, complete, unambiguous and consistent

at the same time.

2. Structured: It should be well-structured to make it easy to understand and modify.

3. Traceable: It should be possible to trace a requirement to the design elements that

implements it and vice versa.

4. Verifiable: An SRS is verifiable if, and only if, every requirement stated therein is

verifiable. This means it should be possible to determine whether or not the
requirements are met in the implementations. Requirements such as ‘user friendly’,

‘shall usually happen’ are not verifiable. The non-verifiable requirements should be

separately listed in the goals of implementation section of the SRS document.

5. Modifiable: An SRS is modifiable if, and only if, its structure and style are such that any

changes to the requirements can be made easily, completely, and consistently while

retaining the structure and style.

Sometimes an SRS document may have some problems like over-specification, forward
references and wishful thinking. These should be avoided while writing and SRS document.

2.10 IEEE STANDARDS FOR SRS
The most widely known standard for SRS document is IEEE/ ANSI 830-1998 (IEEE,1998). This

standard suggests the following structure for SRS document.

1. Introduction

 1.1. Purpose of the SRS document

 1.2. Scope of the product

 1.3. Definitions, acronyms & abbreviations

 1.4. References

 1.5. Overview

2. Overall description

 2.1. Product perspective

 2.2. Product functions

 2.3. User characteristics

 2.4. Constraints

 2.5. Assumptions and dependencies

3. Specific Requirements

3.1 External interface requirements
3.2 Specific requirements
3.3 Performance requirements

3.4 Design constraints

3.5 Software system attributes

3.6 Other requirements

4. Supporting information

4.1 Table of contents and index

4.2 Appendixes

The specific requirements cover the functional, non-functional and the interface requirements.

2.11 SOFTWARE QUALITY ASSURANCE (SQA)

The aim of Software Quality Assurance (SQA) is to develop high quality software product.

A good quality product does exactly what the users want it to do. Software Quality Assurance is

a set of activities that defines how software quality can be achieved and how the development

organization knows that the software has the required level of quality. If the quality in the

software development process is high then the errors are reduced in the developed product.

SQA includes the process of assuring that standards and procedures are established and are

followed throughout the software acquisition life cycle.

The main task of quality assurance is to define or select standards. There are two types of

standards that may be established as part of the quality assurance process:

1. Product standard: These apply to the software product being developed. It includes

standard of the document, the documentation and the coding standard.
2. Process standard: These define the processes that should be followed during the

software development process.

2.11.1 Verification and Validation
During the development of the product and after its implementation, the programs must be

checked to ensure that they meets the specification given by the customer and delivers the

functionality expected by them. This checking and analysis processes are known as the

verification and the validation (V&V) processes.

Verification determines whether the output of one phase of software development confirms to

that of its previous phase. The validation process, on the other hand, determines whether the

fully developed system confirms to its requirements specification. The ultimate goal of these

processes is to establish the confidence that the system is ‘fit for the purpose’.

2.11.2 SQA Plans
A Software Quality Assurance (SQA) plan consists of those procedures, techniques and tools

used to ensure that a product meets the requirements specified in software requirements

specification. It lays out the steps that has been planned to ensure quality levels in the system.

The SQA plan provides framework and guidelines for development of maintainable and

understandable code. Quality may cover areas such as correctness, usability, performance and

security. The SQA plan should identify which areas are more important and how to plan to
achieve high quality. The SQA plan is developed by the software quality assurance group.

There are some steps how to develop and implement an SQA plan.

1. Document the plan

2. Obtain management acceptance: The management is responsible for both ensuring

the quality of the project and for providing the necessary resources required for

developing the software.
3. Obtain development acceptance: The software project development team members

are the main users of the plan and so their approval and cooperation in implementing

the plan is essential. They must accept the SQA plan and follow it.
4. Plan for implementation of the SQA plan: A schedule for drafting, reviewing and

approving the SAQ plan should be developed.
i. Execute the SQA plan: The SQA plan is actually executed by the

software development and maintenance team.

2.12 ISO 9000 Models

International Standards Organization (ISO) is a consortium of 63 countries established to

formulate and foster standardization. The 9000 series of standards by ISO was published in

1987. The ISO 9000 is the set of standards that can be used in the development of a quality

management system (QMS) in the organizations. The ISO 9000 standards establish a standard

framework for a Quality System.

 The guidelines for maintaining a quality system is specified in the ISO 9000 standard. These

standards define the quality systems or models applicable to design, development, production,

installation and servicing, final inspection and test. As all endeavors do not encompass all of

these business aspects, three standards were developed covering different combinations of

these disciplines. Guidelines were also issued to assist the industries in choosing the correct

standard. The aims of such standards are to assure consistency in the quality of products and
services combined with continual improvement in customer satisfaction and error rates.

These three standards are ISO 9001, ISO 9001 and ISO 9003.

 ISO 9001: This is the most general of the above standards. It applies to organizations
concerned with the quality process in organizations engaged in design, development,

production and servicing of goods. ISO 9001 requires the development of quality

manual and documented procedures which define the organization and operation of the

quality system.

 ISO 9002: This standard applies to those organizations which are involved in production,

installation and servicing. It is the model for quality systems that include production but

do not include design. For example, manufacturing industries such as car and steel who

buy the design from external sources and are only involved in its production. Thus the

ISO 9002 is not applicable to software development organizations.

 ISO 9003: This standard applies to those organizations which are involved only in

installation and testing of the products.

2.13 SEI-CMM Model
The Carnegie-Mellon University, USA created the SEI (Software Engineering Institute). It was

originally initiated by the U.S. Defense Department to help improve software development
processes.

The Capability Maturity Model (CMM) was developed by the SEI. It was developed to assist the

US Department of Defence (US DoD) in purchasing software. This model helped the

organizations to improve the quality of the software they developed and thus the adoption of the
SEI CMM model helped the organizations to gain competitive advantage.

The Capability Maturity Model is a reference model for apprising the software process maturity

into different levels. The SEI CMM has 5 levels of organizational ‘maturity’ that determine
effectiveness in delivering quality software.

Level 1: Initial

At this level almost no software development processes are defined and followed. Software

engineers follow their own processes of development and so this level is characterized by

chaos, periodic panics, and heroic efforts required by individuals to successfully complete the
projects.

Level 2: Repeatable

At this level, the basic management practices like software project cost tracking and scheduling

are established. The size and cost estimation techniques such as function point analysis,
COCOMO etc are used. The success story of the development of a product can be repeated for
the others.

Level 3: Defined

At this level, standard software development and maintenance processes are defined and also

documented. Organization-wide understanding of the roles and responsibilities exist. Periodic
training programs are used to ensure understanding and compliance.

Level 4: Managed

Software metrics is used in this level. Tools like fishbone diagrams, Pareto charts etc are used
to measure product and process quality. Project performance is evaluated in this level.

Level 5: Optimizing

The focus is on continuous process improvement. This is achieved by analyzing the quantitative

feedback from the process measurements and it can also be achieved from new and innovative
ideas and technologies.

CHECK YOUR PROGRESS 3
1. Fill up the blanks:

a. The __________________ enlists all the necessary requirements that are required for

the project development.

b. The set of activities that defines how software quality can be achieved and how the

development organization knows that the software has the required level of quality is

called _______________________.

c. The two types of standards that may be established as part of the quality assurance

process are ____________________ and _______________________.
d. __________________process determines whether the fully developed system confirms

to its requirements specification.

e. A ___________________________ is made to ensure that a product meets the

requirements specified in software requirements specification.
f. The guidelines for maintaining a quality system is specified in the ___________

standard.
g. The three standards of ISO 9000 are_________, ___________and_____________.

h. The ____________ is not applicable to software development organizations.

i. The __________________ was developed to assist the US Department of Defence in

purchasing software.

j. The SEI CMM has _______________ of organizational ‘maturity’ that determine

effectiveness in delivering quality software.

2.14Let Us Sum Up

1. Requirements Engineering is the process of establishing the services that the customer

requires from the system and the constraints under which it is to be developed and

operated.

2. It describes “what to do” and not the “how to do” of a software system.
3. The requirements are of two different types - Functional Requirements and Non-

functional Requirement

4. The steps in requirement engineering are – Elicitation, Analysis, Documentation, Review

and requirements management.

5. Elicitation is the first activity that takes place and continues through the requirement

engineering lifecycle.

6. Some information gathering tools in elicitation are Review of Literature, Procedures and

Forms, On-site observation and Interviews and Questionnaires.

7. In the analysis phase, each of the requirement is analyzed to understand the exact

customer requirements and also the software product to be developed.

8. In the documentation, the analyst organizes the requirements in a proper format in the

form of an SRS (Software Requirement Specification) document. The SRS document
usually contains all the users’ requirements.

9. A requirement review is a manual process of evaluation or examination of the

requirements documents. It involves people from both the client and contractor

organization so as to check the documents for anomalies and omissions.

10. Requirements review can be informal or formal.
11. A feasibility study is carried out to identify, describe and evaluate the candidate systems

and select the best system that meets performance requirements.

12. Feasibility study can be categorized as economic, technical and operational feasibility.

13. An information model is used to describe the flow of information in a system.

14. The DFD is a graphical representation of the flow of data through the system. It identifies

the major transformations that later in system design will become the programs.

15. An entity-relationship (ER) model is a detailed, logical representation of the data for an

organization. It describes the data as entities, attributes and relationships.

16. There may be different types of attributes in an ER model : simple versus composite,
single-valued versus multivalued and stored versus derived attribute.

17. An entity type usually has an attribute with a distinct value for each individual entity in

the entity set. Such type of attributes are called key attribute.

18. A decision table is a two-dimensional matrix with one row for each possible action and

one row for each relevant condition and one column for each combination of condition

states.

19. The Software Requirements Specification (SRS) document includes both the user

requirements and a detailed specification of the system requirements. It enlists all the

necessary requirements that are required for the project development.

20. The aim of Software Quality Assurance (SQA) is to develop high quality software
product.

21. The main task of quality assurance is to define or select standards.

22. Verification determines whether the output of one phase of software development

confirms to that of its previous phase. The validation process, on the other hand,

determines whether the fully developed system confirms to its requirements

specification.

23. A Software Quality Assurance (SQA) plan consists of those procedures, techniques and

tools used to ensure that a product meets the requirements specified in software
requirements specification.

24. The ISO 9000 is the set of standards that can be used in the development of a quality

management system (QMS) in the organizations. The ISO 9000 standards establish a

standard framework for a Quality System.

25. The Capability Maturity Model is a reference model for apprising the software process
maturity into different levels. The SEI CMM has 5 levels of organizational ‘maturity’ that
determine effectiveness in delivering quality software.

2.15 Further Readings

1. Systems Analysis and Design, 2nd Edition, Elias M Awad, Galgotia Publication

2. Software Engineering by Bharat Bhushan Agarwal, Sumit Prakash Tayal.

2.16 Answers To Check Your Progress

Check Your Progress 1

1.a. Requirements Engineering

b. problem statement, system requirement specification

c. three

d. functional requirements and non-functional requirements

e. analyst, users

f. interview

g. Unstructured, semi-structured, structured.
h. Domain understanding

i. Ambiguity, inconsistency, incompleteness

j. SRS document

Check Your Progress 2

A.1. True

 2. False

 3. True

4. False

5. True

6. True

7. False
8. False

9. True

10. False

11. False
12. True

Check Your Progress 3

1. a. SRS Document

b. Software Quality Assurance (SQA)

c. Product standard and Process standard

d. Validation

e. SQA Plan

f. ISO 9000

g. ISO 9001, ISO 9001, ISO 9003

h. ISO 9002

i. Capability Maturity Model

j. 5 levels

2.17 POSSIBLE QUESTIONS

1. What is requirement engineering? Explain the requirement engineering process.

2. Explain feasibility study and its different types.

3. What is Data flow Diagram? Draw the DFD for a Student Information System.
4. What is the importance of Software Quality Assurance?

UNIT 3 : STRUCTURED SYSTEM DESIGN

UNIT STRUCTURE

3.1 Learing Objectives

3.2 Introduction

3.3 What is Module?

3.3.1 Module Specifications

3.3.2 Advantages of Module Sharing

3.4 Structured Charts

3.5 Qualities of Good Design

3.6 Coupling

3.6.1 Types of Coupling

3.7 Cohesion

3.7.1 Types of Cohesion

3.8 Let Us Sum Up

3.9 Answer to Your Check Progress

3.10 Further Readings

3.11 Model Questions

3.1 LEARNING OBJECTIVES

After going through this unit, you will learn about

 Modules and its specifications

 Structured Charts

 Qualities of Good Design

 Coupling and its types

 Cohesion and its types

3.2 INTRODUCTION

The structured design approach was first developed by Stevens,

Myers and Constantine. It is a data-flow-based methodology that indentifies

inputs and ouputs and describes the functional aspects of the system. It

partitions a system into a number of integrated components that provides

functionality to the system by which the system can implement tasks.

Modularity makes the system modifiable, extendable and maintainable.

3.3 WHAT IS A MODULE?

Modules represent manageable components of the software which

can be easily integrated to satisfy the problem requirements. The modules

should be designed so that they have minimum effect on other modules of

the software. The connection of the modules should be limited and the

interaction of data should also be minimal. Such design objectives are

intended to improve the software quality while easing with maintenance tasks.

Every system should consist of a hierarchy of modules. Lower-level modules

are generally smaller in scope and size compared to higher-level modules

and they serve to partition processes into separate functions.

Different methods are used to define modules within a system. Meyer

defines five criteria for evaluating a design method with respect to its ability

for an effective modular system :

i) Modular decomposability : If a design method provides a

systematic mechanism for decomposing the problem into

subproblems, it will reduce the complexity of the overall problem,

thereby achieving an effective modular solution.

ii) Modular composability : If a design method enables existing design

components to be assembled into a new system, it will yield a modular

solution.

iii) Modular understandability : If a module can be understood as a

standalone unit (without reference to other modules), it will be easier

to build and easier to change.

iv) Module continuity : If small changes to the system requirements

result in changes to individual modules, rather than systemwide

changes, the impact of change-induced side effects will be

minimized.

v) Modular protection: If an aberrant condition occurs within a module

and its effects are constrained within that module, the impact of

error-induced side effects will be minimized.

3.3.1 Module Specifications

Modules have the following specifications:

 They may have little or no dependence on other modules in

a system

 They should carry out a single processing function.

 They should interact with and manage functions of a limited

number of lower-level modules

 The number of instructions contained in a module should be

limited so that module size is generally small.

 Functions should not be duplicated in separate modules.

They should be established in a single module that can be

invoked by any other module when needed.

 Failure or change in one module shouldn’t affect other

modules.

3.3.2 Advantages of Modules Sharing

1. Sharing modules minimizes the amount of software that must

be designed and written.

2. It minimizes the number of changes that must be made

during the software maintenance.

3. It reduces the chance of error.

3.4 STRUCTURED CHARTS

Structure charts are important tool for the software designer in

representing the software architecture. They visually display the relationship

between program modules making up the system and graphically show the

data communicated between each module. It shows which module within a

system interacts. Structure charts are developed prior to the writing of

program code. Since the main focus in a structure chart representation is

on the module structure of the software and the interactions among different

modules, the procedural aspects are not represented here.

For convenience and ease of communication among software

designers, a common notation is used in the construction of structure charts.

The following basic building blocks are used to design structure charts:

 Rectangular boxes : Rectangular boxes represents a module with

the module name wriiten inside the rectangle.

 Module invocation arrows : Arrows indicates calls, which are any

mechanisms used to invoke a particular module. Control is passed

from one module to another module in the direction of the connecting

arrow.

 Data flow arrows : Arrows are annotated with data name; named

data passes from one module to another module in the direction of

the arrow.

 Library modules : Library modules are represented by a rectangle

with double edges.

 Selection : Selctions are represented by a diamond symbol.

 Repetition : Repetitions are represented by a loop around the control

flow arrow.

Data passing between two modules : When one module calls

another, the calling module can send data to the called module so that it can

perform the functions described in its name. Similarly, the called module

can produce data that are passed back to the calling module.

In general, two types of data are transmitted. The first, parameter

data, consists of data items needed in the called module to perform the

necessary processing. A small arrow with an open circle at the end is used

to note the passing of data parameters. The second type of data passed is

the control information or flag data. Its purpose is to assist in the control of

processing by indicating the occurrence of errors or conditions that affect

process such as the end-of-file conditions etc. A small arrow with closed

circle indicates control information.

3.5 QUALITIES OF GOOD DESIGN

Software design deals with transforming the customer requirements,

as described in the SRS document, into a form that is suitable for

implementation in a programming language. A good software design is

seldom arrived by using a single step procedure but rather through several

iterations through a series of steps. Design activities can be broadly

classified into two important parts:

 Preliminary (or high-level) design and

 Detailed design.

Preliminary design means identification of different modules and their

control relationships and the definition of the interfaces among these

modules. Program structure or software architecture is the outcome of the

preliminary design. Many different types of notations are used to represent

a preliminary design. A popular method is to use a tree-like diagram called

the structure chart to represent the control hierarchy in a high-level design.

However, other notations such as Jackson diagram or Warnier-Orr diagram

can also be used. During detailed design, the data structure and the

algorithms of the different modules are designed. The outcome of the detailed

design stage is usually known as the module-specification document.

Characteristics of a good software design : A software design is

a description of the structure of the software to be implemented, the data

Data
Parameters Control

Information
or

Flag Data

Module
 A

Module
 B

which is the part of the system, the interfaces between system components

and, sometimes, the algorithms used. Designers do not arrive at a finished

design immediately but develop the design iteratively through a number of

versions. The design process involves adding formality and detail as the

design is developed with constant backtracking to correct earlier designs.

The definition of a good software design can vary depending on the

application being designed. For example, the memory size used by a

program may be an important issue to characterize a good solution for

embedded software development – since embedded applications are often

required to be implemented using memory of limited size due to cost, space,

or power consumption considerations. Similarly, a simple user interactivity

may be a mojor issue in case of ATMs of a bank. Therefore, the criteria

used to judge a software design can vary widely depending upon the

application. Not only is the goodness of design dependent on the targeted

application, but also the notion of goodness of a design itself varies widely

across software engineers and academicians. However, most researchers

and software engineers agree on a few desirable characteristics that every

good software design for general application must possess. The

characteristics are listed below:

 Correctness : A good design should implement all the functionalities

identified in the SRS document in a correct way.

 Understandability : A good design should be easily understandable.

 Efficiency : It should be efficient.

 Maintainability : It should be easily amenable to change.

The most important criterion for a good design is its correctness. A

correct design is easily acceptable. When a design solution is correct, next

important issue in judging the goodness of a design is understandability of

the design. A design that is easy to understand is also easy to develop,

maintain and change. Thus, unless a design is easily understandable, it

would require tremendous effort to implement and maintain it.

CHECK YOUR PROGRESS

Q.1. What are modules?

...

Q.2. Mention three specifications of a module.

...

...

...

Q.3. What are the differences between structured charts and flow

charts?

...

...

...

Q.4. Write two features of a structured design.

...

...

3.6 COUPLING

Coupling refers to the strength of the relationship between modules

in a system. It is a measure of interconnection among modules in software

structure. Thus, module coupling refers to the number of connections

between a “calling” and a “called” module and the complexity of these

connections. There must be at least one connection between a module and

a calling module. In general, good designers seek to develop the structure

of a system so that one module has the little dependence on any other

module. If two modules interchange large amount of data, then they are

highly interdependent. Loose coupling minimizes the interdependence

between modules. This can be achieved in the following ways:

 Control the number of parameters passed between modules

 Avoid passing unnecessary data to called modules

 Pass data (whether upward or downward) only when needed

 Maintain superior or subordinate relationship between calling and

called modules

 Pass data, not control information.

Let us consider the manner in which data are passed in an accounting

system. We can have two alternative designs for editing a vendor record for

the accounts payable portion. In first type, we can have a tight coupling.

Here the calling function passes the vendor name, vendor identification

number, address, tax status and date. The called module returns the

customer record. In the second type, we can have a loose coupling in which

only the vendor identification number is passed to retrieve the same record

of information. This design moves less data as well as there is far less

dependence between modules. Only the vendor identification number is

needed to distinguish between one vendor’s records from another. The

vendor identification number in a record does not change. Other items in

the record may change. Hence the loosely couple alternative is better suited

to achieve the required design and maintenance objectives.

Floating data occurs when one module produces data that are not

needed by the calling module; but are required by another module elsewhere

in the system. This should be avoided. The details are passed through the

Edit
vendor
record

Edit
vendor
record

Retrieve
vendor
record

Retrieve
vendor
record

Poor : Tight Coupling Good : Loose Coupling

 Vendor name
Vendor ID

Vendor address
tax status

date

vendor
record
EOF

vendor
ID

vendor
record
EOF

system until they finally reach the function that requires them. Redesigning

to establish loose coupling, along with the creation of more cohesive modules

will avoid this difficulty.

3.6.1 Types of Coupling

There are different types of coupling, each having its

consequences on design. In order of high to low coupling following

types of couplings can occur:

Content coupling : When a module modifies the internal state or

behaviour of another module, i.e. if one module alters the contents

of another, then the process is called content coupling.

Common coupling : In common coupling, two modules share the

same global data items or resourcces. This coupling forces changes

in all modules sharing a particular resource when any modifications

in the resource type or its name occur.

External coupling : External coupling occurs when two modules

share an externally imposed data format, communication protocol,

or device interface. For example, two communicating modules on a

network share a common packet format and any change in the packet

format of one module must be implemented in the other too; or else

the communication will fail or be faulty.

Control coupling : When one module controls the logic of another

module, then the process is termed as control module. It occurs

when one module provides information to the other and the other

takes the action based on this information. For example, flag set in

one module and tested in another module.

Stamp coupling : Two modules are stamp coupled, if they

communicate by sharing a composite data structure but preferably

using the the different part. For example, a record in PASCAL and a

structure in C are stamp coupling.

Data coupling : Two couples are data coupled, if they communicate

using an elementary data item that is passed as parameters between

the two. The parameters that are passed are usually atomic or intrinsic

data types of programming language, e.g. an integer, a character, a

float etc.

Message coupling : This is the loosest type of coupling. In this

coupling, modules are not dependent on each other; rather they use

a static interface to communicate. This communication is via

parameter-less messages. Message coupling is an important

feature of object-oriented programming.

3.7 COHESION

Module cohesion refers to the relationship among elements within a

module. If a module does more than one discrete task, the instructions in

that module are said not to be bound together very closely. Modules that

perform only one task are said to be more cohesive and is less error-prone

than modules that perform multiple tasks.

Cohesion is a measure of the strength of the relationships between

the responsibilities of components of a module. A module is said to be higly

cohesive if its components are strongly related to each other by some

means of communication or resource sharing or the nature of

responsibilities. Therefore, the cohesion may be understood as a measure

of relatedness of elements of a module. High cohesion is a symbol of good

design as it facilitates execution of a task by maximum intra-modular

communication and least inter-module dependencies. It promotes

independencies among the modules.

Designer should create strong cohesive modules with loose coupling,

i.e. the elements of a module should be tightly related to each other and

elements of one module should not be strongly related to the elements of

other modules. He should maintain a trade-off so that the modularity of the

system is conserved with optimum cohesion and bearable coupling. For

this, the partitioning of the system into modules should be done carefully

and modules should be clearly seperated from each other.

3.7.1 Types of Cohesion

The different types of cohesion that a module may possess

in order of worst to best type are given below :

Coincidental cohesion : A module is said to possess coincidental

cohesion if it performs a set of tasks that relate to each other very

loosely, if at all. Their activities are related neither by flow of data nor

by flow of control and they do not contribute any meaningful

relationship. In fact, the module contains a randeom collection of

functions which have least relations among them.

Logical cohesion : A module is said to be logically cohesive, if all

elements of the module perform similar operations even they are

diffrent by nature. For example, grouping mouse and keyboard as

input handling routine is a logical cohesion.

Temporal cohesion : When a module contains functions that are

related by the fact that all the functions must be executed in the

same time span, the module is said to exhibit temporal cohesion.

They binds the components which are processed at a particular

time or event in the program execution. For example, all the

exceptions, like closing all files, creating an error log and notifing the

users, may be kept in a single module, called ‘exception handler’,

which will be proceesed when the system encounters an exception.

Procedural cohesion : A module is said to have procedural

cohesion if all the elements follow certain sequence of occurrence

to be carried out for achieving an objective. The elements may be

involved in different and mostly unrelated activities. For example, a

function that checks the file permissions of a file and then opens the

file, possess a procedural cohesion.

Communicational cohesion : A module is said to have

communicational cohesion, if all components of the module operate

on same data elements, e.g. components working on the same

records of a database.

Sequential cohesion : A module is said to have sequential

cohesion, if components of the module are grouped such that output

of a component serves as input to another component. For example,

a function which reads data from a file and processes the data is a

sequential cohesion.

Functional cohesion : Functional cohesion is said to exist, if the

components of the module contribute to a single task of the module.

For example, a module containing all the function required to manage

employees’ payroll possesses functional cohesion.

What relates the
activities within the

module?

No

Data

Flow of
control

Neither

Is sequence
important?

Are the
activities in
the same
general

category?

Yes

No

Yes

No

Can the module be
considered to be doing

one problem-related
funtion?

1. Functional

Yes

4. Procedural

6. Logical

7. Coincidental

2. Sequential

3. Communicational

Is sequence
important?

Yes

No

5. Temporal

Source: Meilir (1998)

CHECK YOUR PROGRESS

Q.5. Fill in the blanks:

i) __________ is a measure of the strength of the

relationships between the responsibilities of components

of a module.

ii) __________ is the weakest coupling.

iii) Coincidental cohesion has the __________ priority.

Q.6. Give two advantages of tightly coupled systems.

...

...

...

Q.7. What are the different types of coupling?

...

...

Q.8. Give an example of logical cohesion.

...

...

3.8 LET US SUM UP

 Modules represent manageable components of the software which

can be easily integrated to satisfy the problem requirements.

 The modules should be designed so that they have minimum effect

on other modules of the software.

 Meyer defines five criteria for evaluating a design method with respect

to its ability for an effective modular system: decomposability,

composability, understandability, continuity and protection.

 Structure charts visually display the relationship between program

modules making up the system and graphically show the data

communicated between each module. It shows which module within

a system interacts. They are developed prior to the writing of program

code.

 The definition of a good software design can vary depending on the

application being designed.

 Coupling refers to the strength of the relationship between modules

in a system. It is a measure of interconnection among modules in

software structure.

 Different types of coupling are : Content coupling, Common coupling,

External coupling, Control coupling, Stamp coupling, Data coupling

and Message coupling.

 Module cohesion refers to the relationship among elements within a

module. Modules that perform only one task are said to be more

cohesive and is less error-prone than modules that perform multiple

tasks.

 Different types of cohesion are : Coincidental, Logical, Temporal,

Procedural, Communicational, Sequential and Functional.

3.9 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1. Modules are manageable components of the software

which can be easily integrated to satisfy the problem requirements.

Ans. to Q. No. 2. i) They may have little or no dependence on other

modules in a system

ii) They should carry out a single processing function.

iii) The number of instructions contained in a module should be limited

so that module size is generally small.

Ans. to Q. No. 3. i) Structured charts visually display the relationship

between program modules making up the system

and graphically show the data communicated between each module.

But, Flow chart is a convenient technique to represent the flow of

control in a program.

ii) Data interchange among different modules is not represented in a

flow chart.

iii) Sequential ordering of tasks inherent in a flow chart is suppressed

in a structure chart.

Ans. to Q. No. 4. i) The design should be modular.

ii) It should neatly arrange the modules in a hierarchy, e.g. in a tree-like

diagram.

Ans. to Q. No. 5. i) Cohesion, ii) Message coupling, iii) lowest

Ans. to Q. No. 6. i) Assembly of modules might require more effort and

time due to the increased inter-module dependency.

ii) A particular module might be harder to reuse because dependent

modules must be included.

Ans. to Q. No. 7. Content coupling, Common coupling, External coupling,

Control coupling, Stamp coupling, Data coupling and Message coupling.

Ans. to Q. No. 8. Grouping mouse and keyboard as input handling routine

is an example of logical cohesion.

3.10 FURTHER READINGS

 Pressman, Roger S., Software Engineering : A Practitioner’s

Approach, McGraw Hill Internation Edition.

 Mall, Rajiv, Fundamentals of Software Engineering.

 Awad, Elias M., Systems Analysis and Design,Galgotia Publication

Pvt. Ltd.

3.11 MODEL QUESTIONS

Q.1. What is/are the cause(s) of coupling in modules?

(i) Inter-module linkages (ii) Intra-module linkages

(iii) Environmental linkages (iv) All of the above

(v) None of the above

Q.2. What is/are the cause(s) of cohesion in module?

(i) Inter-module linkages (ii) Intra-module linkages

(iii) Environmental linkages (iv) All of the above

(v) None of the above

Q.3. Which of the follwing facts is/are true?

(i) Increase in cohesion would decrease coupling

(ii) Highest cohesion is most preferred

(iii) Lowest coupling is most preferred

(iv) All of the above

(v) None of the above

Q.4. Module A writes in some attributes of module B. What type of coupling

is there between A and B?

(i) Content (ii) Common

(iii) External (iv) Control

(v) Data

Q.5. Explain and illustrate the key elements of a structure chart.

Q.6. Differentiate between cohesion and coupling.

Q.7. Explain different types of cohesion and coupling with examples.

Software Testing Unit 4

 1

UNIT - 4: SOFTWARE TESTING

UNIT STRUCTURE

4.1 Learning Objectives
4.2 Introduction
4.3 Testing Objectives
4.4 Unit Testing

4.4.1 Unit Test considerations
4.4.2 Unit Test procedures

4.5 Integration Testing
4.5.1 Top-down integration
4.5.2 Bottom up integration

4.6 Acceptance (Alpha and Beta) Testing
4.7 Regression Testing
4.8 Structural Testing (White Box Testing)
4.9 Functional Testing (Black Box Testing)
4.10 Test Data Suit Preparation
4.11 Static Testing Strategies

4.11.1 Formal Technical Reviews
4.11.2 Code Walk Through
4.11.3 Code Inspection

4.12 Let Us Sum Up
4.13 Answers to Check Your Progress
4.14 Further Readings
4.15 Possible Questions

4.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 learn what software testing is

 know software testing and the software testing processes

 learn about the different software testing techniques

 understand the top down testing strategy

 know the bottom up testing technique

 differentiate between black box and white box testing

Software Testing Unit 4

 2

4.2 INTRODUCTION

After going through the previous units of this course, we learnt
many concepts involved with the subject of Software Engineering.
The various components that were associated with the process of
Software Engineering have already been discussed at length. Also
in the previous unit, we came to know about some basic concepts
of the Software design process like architectural design, low-level
designs, Pseudo codes, flow charts, coupling and cohesion
measures etc. Apart from that, few other topics relating to software
measurement and metrics that enable us to gain insight by
providing a mechanism for objective evaluation were also
discussed at length.

In this unit, we get introduced to the concept of Software
testing which is a very important phase in the process of any kind
of software development process in order to ensure the successful
production of a fully functional and error-free final product.
Software testing is a critical element of software quality assurance
and represents the ultimate review of specification, design, and
code generation. The increasing visibility of software as a system
element and the attendant "costs" associated with a software
failure are motivating forces for well-planned, thorough testing. In
this unit we discuss software testing fundamentals and techniques
for software test case design. Software testing fundamentals
define the overriding objectives for software testing.

4.3 TESTING OBJECTIVES

Testing presents an interesting anomaly for the software engineer.
During the earlier software engineering activities, the engineer
attempts to build software from an abstract concept to a tangible
product. Then comes the testing process where the engineer
creates a series of test cases that are intended to "demolish" the
software that has been built. In fact, testing is the one step in the
software process that could be viewed as destructive rather than
constructive. Software engineers are by their nature constructive
people. Testing requires that the developer discard preconceived
notions of the "correctness" of software just developed and
overcome a conflict of interest that occurs when errors are
uncovered.
Testing is intended to show that a program does what it is intended
to do and to discover program defects before it is put into use.
When we test software, we execute a program using artificial data.
We check the results of the test run for errors, anomalies, or
information about the program’s non-functional attributes.
The testing process has two distinct goals:

1. To demonstrate to the developer and the customer that the
software meets its requirements. For custom software, this
means that there should be at least one test for every
requirement in the requirements document. For generic
software products, it means that there should be tests for

Software Testing Unit 4

 3

all of the system features, plus combinations of these
features, that will be incorporated in the product release.

2. To discover situations in which the behavior of the software
is incorrect, undesirable, or does not conform to its
specification. These are a consequence of software
defects. Defect testing is concerned with rooting out
undesirable system behavior such as system crashes,
unwanted interactions with other systems, incorrect
computations, and data corruption.

These objectives imply a dramatic change in viewpoint. They move
counter to the commonly held view that a successful test is one in
which no errors are found. Our objective is to design tests that
systematically uncover different classes of errors and to do so with
a minimum amount of time and effort. If testing is conducted
successfully, it will uncover errors in the software. As a secondary
benefit, testing demonstrates that software functions appear to be
working according to specification, that behavioral and
performance requirements appear to have been met. In addition,
data collected as testing is conducted provide a good indication of
software reliability and some indication of software quality as a
whole. But testing cannot show the absence of errors and defects,
it can show only that software errors and defects are present. It is
important to keep this statement in mind as testing is being
conducted.

4.4 UNIT TESTING

Unit testing is the process of testing program components, such as
methods or object classes. Individual functions or methods are the
simplest type of component. Unit testing focuses verification effort
on the smallest unit of software design—the software component
or module. Using the component-level design description as a
guide, important control paths are tested to uncover errors within
the boundary of the module. The relative complexity of tests and
uncovered errors is limited by the constrained scope established
for unit testing.

4.4.1 UNIT TEST CONSIDERATIONS

The tests that occur as part of unit tests are illustrated
schematically in Figure 4.1. The module interface is tested to
ensure that information properly flows into and out of the program
unit under test. The local data structure is examined to ensure that
data stored temporarily maintains its integrity during all steps in an
algorithm's execution. Boundary conditions are tested to ensure
that the module operates properly at boundaries established to
limit or restrict processing. All independent paths (basis paths)
through the control structure are exercised to ensure that all
statements in a module have been executed at least once. And
finally, all error handling paths are tested.

Software Testing Unit 4

 4

Fig 4.1: Unit Test

Tests of data flow across a module interface are required before
any other test is initiated. If data do not enter and exit properly, all
other tests are doubtful. In addition, local data structures should be
exercised and the local impact on global data should be
ascertained during unit testing. Selective testing of execution paths
is an essential task during the unit test. Test cases should be
designed to uncover errors due to erroneous computations,
improper comparisons, or improper control flow. Basis path and
loop testing are effective techniques for uncovering a broad array
of path errors.

Among the more common errors in computation are
1. misunderstood or incorrect arithmetic precedence
2. mixed mode operations
3. incorrect initialization,
4. precision inaccuracy,
5. incorrect symbolic representation of an expression

Comparison and control flow are closely coupled to one another
(i.e., change of flow frequently occurs after a comparison). Test
cases should uncover errors such as

1. comparison of different data types
2. incorrect logical operators or precedence
3. expectation of equality when precision error makes

equality unlikely
4. incorrect comparison of variables
5. improper or nonexistent loop termination
6. failure to exit when divergent iteration is encountered, and

Software Testing Unit 4

 5

7. improperly modified loop variables

Good design dictates that error conditions be anticipated and error-
handling paths set up to reroute or cleanly terminate processing
when an error does occur. Unfortunately, there is a tendency to
incorporate error handling into software and then never test it.
Among the potential errors that should be tested when error
handling is evaluated are

1. Error description is unintelligible.
2. Error noted does not correspond to error encountered.
3. Error condition causes system intervention prior to error

handling.
4. Exception-condition processing is incorrect.
5. Error description does not provide enough information to

assist in the location of the cause of the error.
Boundary testing is the last (and probably most important) task of
the unit test step. Software often fails at its boundaries. That is,
errors often occur when the nth element of an n-dimensional array
is processed, when the ith repetition of a loop with i passes is
invoked, when the maximum or minimum allowable value is
encountered. Test cases that exercise data structure, control flow,
and data values just below, at, and just above maxima and minima
are very likely to uncover errors.

Fig 4.2: Unit Test environment

4.4.2 UNIT TEST PROCEDURES

Unit testing is normally considered as an adjunct to the coding
step. After source level code has been developed, reviewed, and

Software Testing Unit 4

 6

verified for correspondence to component-level design, unit test
case design begins. A review of design information provides
guidance for establishing test cases that are likely to uncover
errors in each of the categories discussed earlier. Each test case
should be coupled with a set of expected results.
Because a component is not a stand-alone program, driver and/or
stub software must be developed for each unit test. The unit test
environment is illustrated in Figure 4.2. In most applications a
driver is nothing more than a "main program" that accepts test
case data, passes such data to the component (to be tested), and
prints relevant results. Stubs serve to replace modules that are
subordinate (called by) the component to be tested. A stub or
"dummy subprogram" uses the subordinate module's interface,
may do minimal data manipulation, prints verification of entry, and
returns control to the module undergoing testing. Drivers and stubs
represent overhead. That is, both are software that must be written
(formal design is not commonly applied) but that is not delivered
with the final software product. If drivers and stubs are kept simple,
actual overhead is relatively low. Unfortunately, many components
cannot be adequately unit tested with "simple" overhead software.
In such cases, complete testing can be postponed until the
integration test step (where drivers or stubs are also used). Unit
testing is simplified when a component with high cohesion is
designed. When only one function is addressed by a component,
the number of test cases is reduced and errors can be more easily
predicted and uncovered.

4.5 INTEGRATION TESTING

Integration testing is a systematic technique for constructing the
program structure while at the same time conducting tests to
uncover errors associated with interfacing. The objective is to take
unit tested components and build a program structure that has
been dictated by design. There is often a tendency to attempt non-
incremental integration; that is, to construct the program using a
"big bang" approach. All components are combined in advance
and the entire program is tested as a whole. So, chaos usually
results and a set of errors is encountered. Correction is difficult
because isolation of causes is complicated by the vast expanse of
the entire program. Once these errors are corrected, new ones
appear and the process continues in a seemingly endless loop.
Incremental integration is the converse of the big bang approach.
The program is constructed and tested in small increments, where
errors are easier to isolate and correct; interfaces are more likely to
be tested completely; and a systematic test approach may be
applied. In the sections that follow, a number of different incre-
mental integration strategies are discussed.

4.5.1 TOP-DOWN INTEGRATION

Software Testing Unit 4

 7

Top-down integration testing is an incremental approach to
construction of program structure. Modules are integrated by
moving downward through the control hierarchy, beginning with the
main control module (main program). Modules subordinate (and
ultimately subordinate) to the main control module are incorporated
into the structure in either a depth-first or breadth-first manner.

Fig 4.3: Top-down integration

Referring to Figure 4.3, depth-first integration would integrate all
components on a major control path of the structure. Selection of a
major path is somewhat arbitrary and depends on application-
specific characteristics. For example, selecting the left-hand path,
components M1, M2, M5 would be integrated first. Next, M8 or (if
necessary for proper functioning of M2) M6 would be integrated.
Then, the central and right-hand control paths are built. Breadth-
first integration incorporates all components directly subordinate at
each level, moving across the structure horizontally. From the
figure, components M2, M3, and M4 (a replacement for stub S4)
would be integrated first. The next control level, M5, M6, and so
on, follows.
The integration process is performed in a series of five steps:

1. The main control module is used as a test driver and stubs
are substituted for all components directly subordinate to
the main control module.

2. Depending on the integration approach selected (i.e., depth
or breadth first), subordinate stubs are replaced one at a
time with actual components.

3. Tests are conducted as each component is integrated.
4. On completion of each set of tests, another stub is replaced

with the real component.
5. Regression testing may be conducted to ensure that new

errors have not been introduced.

Software Testing Unit 4

 8

The process continues from step 2 until the entire program
structure is built. The top-down integration strategy verifies major
control or decision points early in the test process. In a well-
factored program structure, decision making occurs at upper levels
in the hierarchy and is therefore encountered first. If major control
problems do exist, early recognition is essential. If depth-first
integration is selected, a complete function of the software may be
implemented and demonstrated. For example, let us consider a
classic transaction structure in which a complex series of
interactive inputs is requested, acquired, and validated via an
incoming path. The incoming path may be integrated in a top-down
manner. All input processing (for subsequent transaction
dispatching) may be demonstrated before other elements of the
structure have been integrated. Early demonstration of functional
capability is a confidence builder for both the developer and the
customer.
Top-down strategy sounds relatively uncomplicated, but in
practice, logistical problems can arise. The most common of these
problems occurs when processing at low levels in the hierarchy is
required to adequately test upper levels. Stubs replace low-level
modules at the beginning of top-down testing; therefore, no
significant data can flow upward in the program structure.
The tester is left with three choices:

1. delay many tests until stubs are replaced with actual
modules

2. develop stubs that per-form limited functions that simulate
the actual module, or

3. integrate the software from the bottom of the hierarchy
upward.

The first approach (delay tests until stubs are replaced by actual
modules) causes us to loose some control over correspondence
between specific tests and incorporation of specific modules. This
can lead to difficulty in determining the cause of errors and tends
to violate the highly constrained nature of the top-down approach.
The second approach is workable but can lead to significant
overhead, as stubs become more and more complex. The third
approach, called bottom-up testing, is discussed in the next
section.

4.5.2 BOTTOM-UP INTEGRATION

Bottom-up integration testing, as its name implies, begins
construction and testing with atomic modules (i.e., components at
the lowest levels in the program structure). Because components
are integrated from the bottom up, processing required for
components subordinate to a given level is always available and
the need for stubs is eliminated.
A bottom-up integration strategy may be implemented with the
following steps:

Software Testing Unit 4

 9

1. Low-level components are combined into clusters
(sometimes called builds) that perform a specific software
sub-function.

2. A driver (a control program for testing) is written to
coordinate test case input and output.

3. The cluster is tested.
4. Drivers are removed and clusters are combined moving

upward in the program structure
Integration follows the pattern illustrated in Figure 4.4.
Components are combined to form clusters 1, 2, and 3. Each of
the clusters is tested using a driver (shown as a dashed block).
Components in clusters 1 and 2 are subordinate to Ma. Drivers D1
and D2 are removed and the clusters are interfaced directly to Ma.
Similarly, driver D3 for cluster 3 is removed prior to integration with
module Mb. Both Ma and Mb will ultimately be integrated with
component Mc, and so forth.

Fig 4.4: Bottom-up integration

As integration moves upward, the need for separate test drivers
lessens. In fact, if the top two levels of program structure are
integrated top down, the number of drivers can be reduced
substantially and integration of clusters is greatly simplified.

Software Testing Unit 4

 10

1. Fill in the blanks:
(a) Unit testing focuses __________ effort on the smallest unit

of software design.
(b) Selective testing of execution paths is an essential task

during the __________.
(c) Basis path and loop testing are effective techniques for

uncovering a broad array of __________.
(d) _______________ is the last task of the unit test step.
(e) Drivers and stubs represent __________.
(f) If drivers and stubs are kept _______, actual overhead is

relatively ____.
(g) Unit testing is ________ when a component with high

________ is designed.
(h) Integration testing is a systematic technique for

constructing the __________ while at the same time
conducting tests to uncover errors associated with
_________.

(i) The top-down integration strategy verifies major _______
or _______ points early in the test process.

(j) In bottom up integration _________ components are
combined into _________ that perform a specific software
sub-function.

4.6 ACCEPTANCE (ALPHA AND BETA) TESTING

This is the final stage in the testing process before the system is
accepted for operational use. The system is tested with data
supplied by the system customer rather than with simulated test
data. Acceptance testing may reveal errors and omissions in the
system requirements definition, because the real data exercise the
system in different ways from the test data. Acceptance testing
may also reveal requirements problems where the system’s
facilities do not really meet the user’s needs or the system
performance is unacceptable.
It is virtually impossible for a software developer to foresee how
the customer will really use a program. Instructions for use may be
misinterpreted; strange combinations of data may be regularly
used; output that seemed clear to the tester may be unintelligible

CHECK YOUR PROGRESS

Software Testing Unit 4

 11

to a user in the field. When custom software is built for one
customer, a series of acceptance tests are conducted to enable
the customer to validate all requirements. Conducted by the end-
user rather than software engineers, an acceptance test can range
from an informal "test drive" to a planned and systematically
executed series of tests. In fact, acceptance testing can be
conducted over a period of weeks or months, thereby uncovering
cumulative errors that might degrade the system over time. If
software is developed as a product to be used by many customers,
it is impractical to perform formal acceptance tests with each one.
Most software product builders use a process called alpha and
beta testing to uncover errors that only the end-user seems able to
find.
The alpha test is conducted at the developer's site by a customer.
The software is used in a natural setting with the developer
"looking over the shoulder" of the user and recording errors and
usage problems. Alpha tests are conducted in a controlled
environment.
The beta test is conducted at one or more customer sites by the
end-user of the software. Unlike alpha testing, the developer is
generally not present. Therefore, the beta test is a "live" application
of the software in an environment that cannot be controlled by the
developer. The customer records all problems (real or imagined)
that are encountered during beta testing and reports these to the
developer at regular intervals. As a result of problems reported
during beta tests, software engineers make modifications and then
prepare for release of the software product to the entire customer
base.

4.7 REGRESSION TESTING

Regression testing involves running test sets that have
successfully executed after changes have been made to a system.
The regression test checks that these changes have not
introduced new bugs into the system and that the new code
interacts as expected with the existing code. Regression testing is
very expensive and often impractical when a system is manually
tested, as the costs in time and effort are very high. In such
situations, we have to try and choose the most relevant tests to re-
run and it is easy to miss important tests. However, automated
testing, which is fundamental to test-first development, dramatically
reduces the costs of regression testing.
Each time a new module is added as part of integration testing, the
software changes. New data flow paths are established, new I/O
may occur, and new control logic is invoked. These changes may
cause problems with functions that previously worked flawlessly. In
the context of an integration test strategy, regression testing is the
re-execution of some subset of tests that have already been
conducted to ensure that changes have not propagated
unintended side effects. In a broader context, successful tests (of
any kind) result in the discovery of errors, and errors must be

Software Testing Unit 4

 12

corrected. Whenever software is corrected, some aspect of the
software configuration (the program, its documentation, or the data
that support it) is changed. Regression testing is the activity that
helps to ensure that changes (due to testing or for other reasons)
do not introduce unintended behavior or additional errors.
Regression testing may be conducted manually, by re-executing a
subset of all test cases or using automated capture/playback tools.
Capture/playback tools enable the software engineer to capture
test cases and results for subsequent playback and comparison.
The regression test suite (the subset of tests to be executed)
contains three different classes of test cases:

 A representative sample of tests that will exercise all
software functions.

 Additional tests that focus on software functions that are
likely to be affected by the change.

 Tests that focus on the software components that have
been changed.

As integration testing proceeds, the number of regression tests can
grow quite large. Therefore, the regression test suite should be
designed to include only those tests that address one or more
classes of errors in each of the major program functions. It is
impractical and inefficient to re-execute every test for every
program function once a change has occurred.

4.8 STRUCTURAL TESTING (WHITE BOX
TESTING)

White-box testing, sometimes called glass-box testing, is a test
case design method that uses the control structure of the
procedural design to derive test cases. Using white-box testing
methods, the software engineer can derive test cases that (1)
guarantee that all independent paths within a module have been
exercised at least once, (2) exercise all logical decisions on their
true and false sides, (3) execute all loops at their boundaries and
within their operational bounds, and (4) exercise internal data
structures to ensure their validity.
This test method tests internal structures or workings of an
application, as opposed to its functionality (i.e. black-box testing).
In white-box testing an internal perspective of the system, as well
as programming skills, are used to design test cases. The tester
chooses inputs to exercise paths through the code and determine
the appropriate outputs. While white-box testing can be applied at
the unit, integration and system levels of the software testing
process, it is usually done at the unit level. It can test paths within
a unit, paths between units during integration, and between
subsystems during a system–level test. Though this method of test
design can uncover many errors or problems, it might not detect
unimplemented parts of the specification or missing requirements.
White-box testing's basic procedures involve the understanding of
the source code that is being tested at a deep level to be able to

Software Testing Unit 4

 13

test them. The programmer must have a deep understanding of
the application to know what kinds of test cases to create so that
every visible path is exercised for testing. Once the source code is
understood then the source code can be analyzed for test cases to
be created. These are the three basic steps that white-box testing
takes in order to create test cases:

1. Input, involves different types of requirements, functional
specifications, detailed designing of documents, proper
source code, security specifications. This is the preparation
stage of white-box testing to layout all of the basic
information.

2. Processing unit, involves performing risk analysis to guide
whole testing process, proper test plan, execute test cases
and communicate results. This is the phase of building test
cases to make sure they thoroughly test the application the
given results are recorded accordingly.

3. Output, preparing final report that encompasses all of the
above preparations and results.

White-box testing is one of the two biggest testing methodologies
used today. It primarily has three advantages:

1. Side effects of having the knowledge of the source code is
beneficial to thorough testing.

2. Optimization of code by revealing hidden errors and being
able to remove these possible defects.

3. Gives the programmer introspection because developers
carefully describe any new implementation.

Although White-box testing has great advantages, it is not perfect
and contains some disadvantages. It has two disadvantages:

1. White-box testing brings complexity to testing because to
be able to test every important aspect of the program, one
must have great knowledge of the program. White-box
testing requires a programmer with a high-level of
knowledge due to the complexity of the level of testing that
needs to be done.

2. On some occasions, it is not realistic to be able to test
every single existing condition of the application and some
conditions will be untested.

4.9 FUNCTIONAL TESTING (BLACK BOX
TESTING)

Functional testing is a quality assurance (QA) process and a type
of black box testing that bases its test cases on the specifications
of the software component under test. Functions are tested by

Software Testing Unit 4

 14

feeding them input and examining the output, and internal program
structure is rarely considered. Functional Testing also called Black-
box testing, focuses on the functional requirements of the software.
That is, black-box testing enables the software engineer to derive
sets of input conditions that will fully exercise all functional
requirements for a program. Black-box testing is not an alternative
to white-box techniques. Rather, it is a complementary approach
that is likely to uncover a different class of errors than white-box
methods.
Black-box testing attempts to find errors in the following categories:

1. incorrect or missing functions
2. interface errors
3. errors in data structures or external data base access
4. behavior or performance errors
5. initialization and termination errors.

Unlike white-box testing, which is performed early in the testing
process, black-box testing tends to be applied during later stages
of testing. Because black-box testing purposely disregards control
structure, attention is focused on the information domain. Tests are
designed to answer the following questions:

 How is functional validity tested?

 How is system behavior and performance tested?

 What classes of input will make good test cases?

 Is the system particularly sensitive to certain input values?

 How are the boundaries of a data class isolated?

 What data rates and data volume can the system tolerate?

 What effect will specific combinations of data have on
system operation?

By applying black-box techniques, we derive a set of test cases
that satisfy the following criteria:

1. Test cases that reduce, by a count that is greater than one,
the number of additional test cases that must be designed
to achieve reasonable testing and

2. Test cases that tell us something about the presence or
absence of classes of errors, rather than an error
associated only with the specific test at hand.

Functional testing typically involves five steps:
1. The identification of functions that the software is expected

to perform.
2. The creation of input data based on the function's

specifications.
3. The determination of output based on the function's

specifications.

Software Testing Unit 4

 15

4. The execution of the test case.
5. The comparison of actual and expected outputs.

2. Fill in the blanks:

(a) Acceptance testing may reveal ______ and ________ in

the system requirements definition.
(b) _________ testing is conducted by the end-user rather

than software engineers.
(c) The _______ test is conducted at the developer's site by a

customer.
(d) The ____ test is conducted at one or more customer sites

by the end-user of the software.
(e) _________ testing may be conducted manually, by re-

executing a subset of all test cases or using automated
capture/playback tools.

(f) ___________ tools enable the software engineer to capture
test cases and results for subsequent playback and
comparison.

(g) The __________ suite contains three different classes of
test cases.

(h) White box testing tests _____________ or workings of an
application.

(i) In functional testing ________ are tested by feeding them
input and examining the output,

(j) Functional Testing focuses on the __________
requirements of the software.

CHECK YOUR PROGRESS

Software Testing Unit 4

 16

4.10 TEST DATA SUITE PREPARATION

A test suite is the accumulation of test cases that will be run in a
test progression until some stopping criteria are met.
Test suite preparation involves the construction and allocation of
test cases in some systematic way based on the specific testing
techniques used. For instance, when usage-based statistical
testing is planned, the test case allocation will be defined by the
operational profiles created as the testing models.
When coverage-based testing is planned, the specific coverage
criteria would dictate the allocation of test cases. For instance, in
control flow testing the precise quantity of test cases is defined by
the quantity of paths for all-path coverage.
There is also another way to receive a test suite. It is with the help
of reuse of test cases for earlier versions of the equal product.
Such type of software testing is generally considered as regression
testing. It guarantees that general functionalities are still supported
well.
Commonly all the test cases should form an integrated suite,
regardless of their background, in what way they are obtained and
what models are used.
It happens so that the test suite may evolve over time and its
creation may overlap with the actual testing. Actually, in some
testing techniques test cases can be created dynamically at the
time of test implementation.
But even in such cases planning of the test cases and test suite is
required. It is necessary at least to define the means for dynamic
test case structure and the exact stopping criteria. For the majority
of software testing techniques a great part of test preparation
should be performed before actual testing begins.

4.11 STATIC TESTING STRATEGIES

Static testing is the systematic examination of a program structure
for the purpose of showing that certain properties are true
regardless of the execution path the program may take.
Consequently, some static analyses can be used to demonstrate
the absence of some faults from a program. Static testing
represents actual behavior with a model based upon the program’s
semantic features and structure. Human comparison often consists
of people exercising little discipline in comparing their code against
notions of intent that are only loosely and imprecisely defined. But
human comparisons may also be quite structured, rigorous, and
effective as is the case of inspection and walkthroughs, which are
carefully defined and administered processes orchestrating groups
of people to compare code and designs to careful specification of
intent. Static testing strategies include:

1. Formal technical reviews
2. Code walkthroughs

Software Testing Unit 4

 17

3. Code inspections

4.11.1 FORMAL TECHNICAL REVIEWS

A review can be defined as – A meeting at which the software
element is presented to project personnel, managers, users,
customers, or other interested parties for comment or appraisal.

Software review –

A Software review can be defined as a filter for the software
engineering process. The purpose of any review is to discover
errors in the analysis, design, and coding, testing and
implementation phases of the software development cycle. The
other purpose of a review is to see whether procedures are applied
uniformly and in a manageable manner.

Objectives of reviews –

Review objectives are used:

 To ensure that the software elements conform to their
specifications.

 To ensure that the development of the software element is
being done as per plan, standards, and guidelines
applicable for the project.

 To ensure that the changes to the software elements are
properly implemented and affect only those system areas
identified by the change specification.

Types of Reviews –
Reviews are of two types:

 Informal Technical Reviews – An informal meeting and
informal desk checking.

 Formal Technical Reviews – A formal software quality
assurance activity through various approaches, such as
structured walkthroughs, inspections, etc.

Formal Technical Reviews –

A formal technical review is a software quality assurance activity
performed by software-engineering practitioners to improve
software product quality. The product is scrutinized for
completeness, correctness, consistency, technical feasibility,
efficiency, and adherence to established standards and guidelines
by the client organization.

The formal technical review serves as a training ground, enabling
junior engineers to observe different approaches to software
analysis, design and implementation. Each formal technical review
is conducted as a meeting and will be successful only if it is
properly planned, controlled, and attended.

Objectives of Formal Technical Review –

Software Testing Unit 4

 18

The various objectives of a Formal Technical Review are as
follows:

 To uncover errors in logic or implementation.
 To ensure that the software has been represented

according to predefined standards.
 To ensure that the software under review meets the

requirements.
 To make the project more manageable.

The Review Meeting –
The meeting should consist of two to five people and should be
restricted to not more than two hours. The aim of the review is to
review the product/work and the performance of the people. When
the product is ready, the developer informs the project leader
about the completion of the product and requests for review. The
project leader contacts the review leader for the review. The review
leader asks the reviewer to perform an independent review of the
product/work before the FTR.

Results of FTR –
 Meeting decisions

1. Whether to accept the product/work without any
modifications.

2. Accept the product/work with certain changes.
3. Reject the product/work due to errors.

 Review summary report
1. What are reviewed?
2. Who reviewed it?
3. Findings of the review.
4. Conclusion.

4.11.2 CODE WALK THROUGH

A code walk through is an informal analysis of code as a
cooperative, organized activity by several participants. The
analysis is based mainly on the game of ‘playing the computer’.
That is, participants select some test cases and simulate execution
of the code by hand. This is the reason for the name walk-through:
participants ‘walk through the code’ or through any design notation.

In general, the following prescriptions are recommended:

 Everyone’s work should be reviewed on a scheduled basis.
 The number of people involved in the review should be

small.
 The participants should receive written documentation from

the designer a few days before the meeting.

Software Testing Unit 4

 19

 The meeting should last a predefined amount of time.
 Discussion should be focused on the discovery of errors,

not on fixing them, nor on proposing alternative design
decisions.

 Key people in the meeting should be the designer, who
presents and explains the rationale of the work, a
moderator for the discussion, and a secretary, who is
responsible for writing a report to be given to the designer
at the end of the meeting.

 In order to foster cooperation and avoid the feeling that the
designers are being evaluated, managers should not
participate in the meeting.

4.11.3 CODE INSPECTION

A Code Inspection, originally introduced by Fagan (1976) at IBM, is
similar to a walk-through but is more formal. In Fagan’s
experiment, three separate inspections were performed: one
following design, but prior to implementation; one following
implementation, but prior to unit testing; and one following unit
testing. The inspection following unit testing was not considered to
be cost effective in discovering errors; therefore, it is not
recommended.

The organization aspects of code inspection are similar to those of
code walk-through, but there is a difference in goals. In code
inspection, the analysis is aimed explicitly at the discovery of
commonly made errors. In such a case, it is useful to state
beforehand the type of errors for which we are searching. For
instance, consider the classical error of writing a procedure that
modifies a formal parameter and calling the procedure with a
constant value as the actual parameter.

The following is a list of some classical programming errors, which
can be checked for during code inspection –

 Use of uninitialized variables

 Jumps into loops

 Non-terminating loops

 Incompatible arguments

 Array indices out of bounds

 Improper storage allocation and de-allocation

 Mismatches between actual and formal parameters in
procedures calls

 Use of incorrect logical operators or incorrect precedence
among operators

 Improper modification of loop variables

 Comparison of equality of floating point values, etc

Software Testing Unit 4

 20

Checklist for Code Inspection
Inspections or reviews are more formal and conducted with the
help of some kind of checklist. The steps in the inspections or
reviews are:

 Is the number of actual parameters and formal parameters
in agreement?

 Do the type attributes of actual and formal parameters
match?

 Do the dimensional units of actual and formal parameters
match?

 Are the number of attributes and ordering of arguments to
built-in functions correct?

 Are constants passed as modifiable argument?
 Are global variables definitions and usage consistent

among modules?
 Application of a checklist specially prepared for the

development plan, SRS, design and architecture
 Noting observation: ok, not ok, with comments on mistakes

or inadequacy
 Repair-rework
 Checklists prepared to countercheck whether the subject

entity is correct, consistent, and complete in meeting the
objectives

Software Testing Unit 4

 21

3. Fill in the blanks:

(a) A test suite is the accumulation of __________.

(b) When coverage-based testing is planned, the specific
___________ would dictate the allocation of test cases.

(c) ________ testing is the systematic examination of a
program structure for the purpose of showing that certain
properties are true regardless of the __________ the
program may take.

(d) Static analyses can be used to demonstrate the absence of
some ______ from a program.

(e) _______ testing represents actual behavior with a model
based upon the program’s _______ features and structure.

(f) The purpose of any review is to discover errors in the
________, _______, _______, ______ and _________
phases of the software development cycle.

(g) A formal technical review is a ______________ activity
performed to improve software product quality.

(h) A ____________ is an informal analysis of code.

(i) The ___________ aspects of code inspection are similar to
those of code walk-through, but there is a difference in
_____.

(j) In __________ the analysis is aimed explicitly at the
discovery of commonly made errors.

4.12 LET US SUM UP

 Unit testing is the process of testing program components,

such as methods or object classes.

 Unit testing is normally considered as an adjunct to the

coding step.

CHECK YOUR PROGRESS

Software Testing Unit 4

 22

 Drivers and Stubs are software that must be written but that
is not delivered with the final software product.

 The objective of integration testing is to take unit tested

components and build a program structure that has been
dictated by design.

 Top-down integration testing is an incremental approach to

construction of program structure.

 Bottom-up integration testing, as its name implies, begins

construction and testing with atomic modules.

 Acceptance testing is the final stage in the testing process

before the system is accepted for operational use.

 Regression testing involves running test sets that have

successfully executed after changes have been made to a
system.

 Structural testing is a test case design method that uses

the control structure of the procedural design to derive test
cases.

 Functional testing is a quality assurance (QA) process and

a type of black box testing that bases its test cases on the
specifications of the software component under test.

 Test suite preparation involves the construction and

allocation of test cases in some systematic way based on
the specific testing techniques used.

 A Software review can be defined as a filter for the software

engineering process.

1.

(a) Verification
(b) unit test.
(c) path errors.
(d) Boundary testing.
(e) overhead.
(f) simple, low.
(g) simplified, cohesion
(h) program structure, interfacing
(i) control, decision

4.13 ANSWERS TO CHECK YOUR
 PROGRESS

Software Testing Unit 4

 23

(j) Low-level, clusters

2.

(a) errors, omissions
(b) Acceptance
(c) alpha
(d) beta
(e) Regression
(f) Capture/playback
(g) regression test
(h) internal structures
(i) functions
(j) functional

3.
(a) test cases
(b) coverage criteria
(c) Static, execution path
(d) faults
(e) Static, semantic
(f) analysis, design, coding, testing, implementation.
(g) software quality assurance
(h) code walk through
(i) organization, goals
(j) code inspection

 4.14 FURTHER READINGS

1. Software Engineering – A PRACTITIONER’S APPROACH:
Roger S. Pressman.

2. Software Engineering: Ian Sommerville.
3. Software Engineering and Testing: Bharat Bhushan

Agarwal, Sumit Prakash Tayal.
4. Software Engineering: A. A. Puntambekar.

Software Testing Unit 4

 24

1. What is Software testing and what are its objectives?

2. What is unit testing? Discuss the unit test considerations

that one must follow.

3. What is Integration testing? Explain its different types.

4. Explain Acceptance testing. What are Alpha and Beta

Testing strategies?

5. Discuss Regression testing.

6. What is White-box testing? What are the steps involved in

such testing?

7. Discuss the advantages and disadvantages of White-box

testing.

8. What are the objectives of Black-box testing?

9. Write a note on Test data suite preparation.

10. What are Software reviews? What are the objectives of

such reviews?

11. What is code inspection? Mention some errors that can be

checked by code inspection.

12. What is a formal technical Review? What are its objectives
and types?

4.15 POSSIBLE QUESTIONS

Software Maintenance and Software Project ManagementUnit5

 1

UNIT - 5: SOFTWARE MAINTENANCE AND
SOFTWARE PROJECT MANAGEMENT

UNIT STRUCTURE

5.1 Learning Objectives
5.2 Introduction
5.3 Software as an Evolutionary Entity
5.4 Need for Software Maintenance
5.5 Categories of Maintenance (Preventive, Corrective and

Perfective Maintenance)
5.6 Cost of Maintenance
5.7 Software Re-Engineering
5.8 Reverse Engineering
5.9 Software Configuration Management Activities

5.9.1 Change Control Process
5.9.2 Software Version Control

5.10 An overview of CASE Tools
5.11 Parameter Estimation (Cost, Efforts, Schedule)
5.12 Constructive Cost Model (COCOMO)
5.13 Risk Analysis and Management
5.14 Let Us Sum Up
5.15 Answers To Check Your Progress
5.16 Further Readings
5.17 Possible Questions

5.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 know the evolutionary nature of software.
 learn the need to maintain software.
 know the various costs involved in maintaining software.
 know the process of software reengineering.
 learn about the reverse-engineering process.
 the different software configuration management activities.
 know the importance of CASE tools in any software

engineering activity.
 learn about the various software parameter estimation.
 study the COCOMO model of cost estimation.

Software Maintenance and Software Project ManagementUnit5

 2

 learn about the various risks involved with any software
development process and the procedures of managing
them.

5.2 INTRODUCTION

In the previous units, we learnt about the testing process of any
software. This gave us an introduction to the various software
testing methods depending upon the software type and nature that
are used to perform valid tests and analysis in order to produce a
high quality and error-free software product.

The evolution of any software system is a series of successful
steps that any kind of software has to go through in order to meet
the user needs. For software to successfully evolve through its
lifespan, it has to be maintained successfully which involves
different costs associated with maintaining it over a period of time.
Some other issues like re-engineering and reverse engineering of
software will also be discussed in this unit. Also the various
activities associated with the process of Software configuration
management will be dealt with in this unit. An overview of the
CASE tools that assist in the process of managing any Software
development process is also discussed in this unit. The COCOMO
model, a software estimation model, which is one of the most
widely used and discussed software cost estimation models in the
software development industry will also be discussed in this unit.

In this unit we go further into the study of the process of software
development, and know more about the issues and techniques
involved in the software maintenance process and the various
issues related to the effective management of any software project
to produce any software.

5.3 SOFTWARE AS AN EVOLUTIONARY ENTITY

Software development does not stop when a system is delivered
but continues throughout the lifetime of the system. After a system
has been deployed, it inevitably has to change if it is to remain
useful. Business changes and changes to user expectations
generate new requirements for the existing software. Parts of the
software may have to be modified to correct errors that are found
in operation, to adapt it for changes to its hardware and software
platform, and to improve its performance or other non-functional
characteristics. Software evolution is important because
organizations have invested large amounts of money in their
software and are now completely dependent on these systems.
Their systems are critical business assets and they have to invest
in system change to maintain the value of these assets.
Consequently, most large companies spend more on maintaining
existing systems than on new systems development. Some
software industry surveys suggest that about two-thirds of software
costs are evolution costs. For sure, the costs of software change
are a large part of the IT budget for all companies.

Software Maintenance and Software Project ManagementUnit5

 3

Software evolution may be triggered by changing business
requirements, by reports of software defects, or by changes to
other systems in a software system’s environment. The term
‘brownfield software development’ has been coined to describe
situations in which software systems have to be developed and
managed in an environment where they are dependent on many
other software systems. Therefore, the evolution of a system can
rarely be considered in isolation.
Changes to the environment lead to system change that may then
trigger further environmental changes. Of course, the fact that
systems have to evolve in a ‘systems-rich’ environment often
increases the difficulties and costs of evolution. As well as
understanding and analyzing an impact of a proposed change on
the system itself, one may also have to assess how this may affect
other systems in the operational environment. Useful software
systems often have a very long lifetime. For example, large military
or infrastructure systems, such as air traffic control systems, may
have a lifetime of 30 years or more. Business systems are often
more than 10 years old. Software cost a lot of money so a
company has to use a software system for many years to get a
return on its investment. Obviously, the requirements of the
installed systems change as the business and its environment
change. Therefore, new releases of the systems, incorporating
changes, and updates, are usually created at regular intervals.
One should, therefore, think of software engineering as a spiral
process with requirements, design, implementation, and testing
going on throughout the lifetime of the system (Figure 5.1).

Fig 5.1: A spiral model of development and evolution

We start by creating release 1 of the system. Once delivered,
changes are proposed and the development of release 2 starts
almost immediately. In fact, the need for evolution may become
obvious even before the system is deployed so that later releases
of the software may be under development before the current
version has been released.

Software Maintenance and Software Project ManagementUnit5

 4

This model of software evolution implies that a single organization
is responsible for both the initial software development and the
evolution of the software. Most packaged software products are
developed using this approach. For custom software, a different
approach is commonly used. A software company develops
software for a customer and the customer’s own development staff
then takes over the system. They are responsible for software
evolution. Alternatively, the software customer might issue a
separate contract to a different company for system support and
evolution.
In this case, there are likely to be discontinuities in the spiral
process. Requirements and design documents may not be passed
from one company to another. Companies may merge or
reorganize and inherit software from other companies, and then
find that this has to be changed. When the transition from
development to evolution is not seamless, the process of changing
the software after delivery is often called ‘software maintenance’.
An alternative view of the software evolution life cycle, is shown in
Figure 5.2.

Fig 5.2: Evolution and servicing

This model distinguishes between evolution and servicing.
Evolution is the phase in which significant changes to the software
architecture and functionality may be made. During servicing, the
only changes that are made are relatively small, essential
changes. During evolution, the software is used successfully and
there is a constant stream of proposed requirements changes.
However, as the software is modified, its structure tends to
degrade and changes become more and more expensive. This
often happens after a few years of use when other environmental
changes, such as hardware and operating systems, are also often
required. At some stage in the life cycle, the software reaches a
transition point where significant changes, implementing new
requirements, become less and less cost effective.

Software Maintenance and Software Project ManagementUnit5

 5

Fig 5.3: Change identification and evolution processes

At that stage, the software moves from evolution to servicing.
During the servicing phase, the software is still useful and used but
only small tactical changes are made to it. During this stage, the
company is usually considering how the software can be replaced.
In the final stage, phase-out, the software may still be used but no
further changes are being implemented. Users have to work
around any problems that they discover.

5.4 NEED FOR SOFTWARE MAINTANENCE

The term maintenance, when accompanied to software, assumes
a meaning profoundly different from the meaning it assumes in any
other engineering discipline. In fact, many engineering disciplines
intend maintenance as the process of keeping something in
working order, in repair. The key concept is the deterioration of an
engineering artifact due to the use and the passing of time; the aim
of maintenance is therefore to keep the artifact’s functionality in
line with that defined and registered at the time of release. Of
course, this view of maintenance does not apply to software, as
software does not deteriorate with the use and the passing of time.
Nevertheless, the need for modifying a piece of software after
delivery has been with us since the very beginning of electronic
computing.

Software is infinitely malleable and, therefore, it is often perceived
as the easiest part to change in a system. Software maintenance is
the general process of changing a system after it has been
delivered. The term is usually applied to custom software in which
separate development groups are involved before and after
delivery. The changes made to the software may be simple
changes to correct coding errors, more extensive changes to
correct design errors, or significant enhancements to correct
specification errors or accommodate new requirements. Changes
are implemented by modifying existing system components and,
where necessary, by adding new components to the system.

Software Maintenance and Software Project ManagementUnit5

 6

Software maintenance is a very broad activity often defined as
including all work made on a software system after it becomes
operational. This covers the correction of errors, the enhancement,
deletion and addition of capabilities, the adaptation to changes in
data requirements and operation environments, the improvement
of performance, usability, or any other quality attribute. The IEEE
definition is as follows: “Software maintenance is the process of
modifying a software system or component after delivery to correct
faults, improve performances or other attributes, or adapt to a
changed environment.” This definition reflects the common view
that software maintenance is a post-delivery activity: it starts when
a system is released to the customer or user and encompasses all
activities that keep the system operational and meet the user’s
needs. This view is well summarized by the classical waterfall
models of the software life cycle, which generally comprise a final
phase of operation and maintenance. Several authors disagree
with this view and affirm that software maintenance should start
well before a system becomes operational. Schneidewind states
that the myopic view that maintenance is strictly a post-delivery
activity is one of the reasons that make maintenance hard.
Osborne and Chikofsky affirm that it is essential to adopt a life
cycle approach to managing and changing software systems, one
which looks at all aspects of the development process with an eye
toward maintenance.

Pigoski captures the needs to begin maintenance when
development begins in a new definition: “Software maintenance is
the totality of activities required to provide cost-effective support to
a software system. Activities are performed during the pre-delivery
stage as well as the post-delivery stage. Pre-delivery activities
include planning for post-delivery operations, supportability, and
logistics determination. Post-delivery activities include software
modification, training, and operating a help desk.”

This definition is consistent with the approach to software
maintenance taken by ISO in its standard on software life cycle
processes. It definitively dispels the image that software
maintenance is all about fixing bugs or mistakes.

5.5 CATEGORIES OF MAINTANANCE

Across the 70’s and the 80’s, several authors have studied the
maintenance phenomenon with the aim of identifying the reasons
that originate the needs for changes and their relative frequencies
and costs. As a result of these studies, several classifications of
maintenance activities have been defined; these classifications
help to better understand the great significance of maintenance
and its implications on the cost and the quality of the systems in
use. Dividing the maintenance effort into categories has first made
evident that software maintenance is more than correcting errors.
Ideally, maintenance operations should not degrade the reliability
and the structure of the subject system, neither should they
degrade its maintainability otherwise future changes will be
progressively more difficult and costly to implement. Unfortunately,

Software Maintenance and Software Project ManagementUnit5

 7

this is not the case for real-world maintenance, which often
induces a phenomenon of aging of the subject system.

Preventive maintenance –
Computer software deteriorates due to change, and because of
this, preventive maintenance must be conducted to enable the
software to serve the needs of its end users. In essence,
preventive maintenance makes changes to computer programs so
that they can be more easily corrected, adapted, and enhanced.

Corrective maintenance –
Corrective maintenance includes all the changes made to remove
actual faults in the software, and it can be called a reactive
modification of a software product performed after delivery to
correct discovered faults. Corrective maintenance changes the
software to correct defects. ‘Corrective maintenance’ is universally
used to refer to maintenance for fault repair.
Perfective maintenance –
Perfective maintenance refers to changes that originate from user
requests; examples include inserting, deleting, extending, and
modifying functions, rewriting documentation, improving
performances, or improving ease of use. Perfective maintenance
sometimes means perfecting the software by implementing new
requirements; in other cases it means maintaining the functionality
of the system but improving its structure and its performance. As
software is used, the customer/user will recognize additional
functions that will provide benefit. Perfective maintenance extends
the software beyond its original functional requirements.

5.6 COST OF MAINTENANCE

However one decides to categorize the maintenance effort, it is still
clear that software maintenance accounts for a huge amount of the
overall software budget for an information system organization.
Since 1972, software maintenance was characterized as an
“iceberg” to highlight the enormous mass of potential problems and
costs that lie under the surface. Although figures vary, several
surveys indicate that software maintenance consumes 60% to 80%
of the total life cycle costs; these surveys also report that
maintenance costs are largely due to enhancements (often 75–
80%), rather than corrections.
Several technical and managerial problems contribute to the costs
of software maintenance. Among the most challenging problems of
software maintenance are: program comprehension, impact
analysis, and regression testing.
Whenever a change is made to a piece of software, it is important
that the maintainer gains a complete understanding of the
structure, behavior and functionality of the system being modified.
It is on the basis of this understanding that modification proposals
to accomplish the maintenance objectives can be generated. As a

Software Maintenance and Software Project ManagementUnit5

 8

consequence, maintainers spend a large amount of their time
reading the code and the accompanying documentation to
comprehend its logic, purpose, and structure. Available estimates
indicate that the percentage of maintenance time consumed on
program comprehension ranges from 50% up to 90%. Program
comprehension is frequently compounded because the maintainer
is rarely the author of the code (or a significant period of time has
elapsed between development and maintenance) and a complete,
up-to-date documentation is even more rarely available.
One of the major challenges in software maintenance is to
determine the effects of a proposed modification on the rest of the
system. Impact analysis is the activity of assessing the potential
effects of a change with the aim of minimizing unexpected side
effects. The task involves assessing the appropriateness of a
proposed modification and evaluating the risks associated with its
implementation, including estimates of the effects on resources,
effort and scheduling. It also involves the identification of the
system’s parts that need to be modified as a consequence of the
proposed modification. Of note is that although impact analysis
plays a central role within the maintenance process, there is no
agreement about its definition and the IEEE Glossary of Software
Engineering Terminology does not give a definition of impact
analysis.
Once a change has been implemented, the software system has to
be retested to gain confidence that it will perform according to the
(possibly modified) specification. The process of testing a system
after it has been modified is called regression testing. The aim of
regression testing is twofold: to establish confidence that changes
are correct and to ensure that unchanged portions of the system
have not been affected. Regression testing differs from the testing
performed during development because a set of test cases may be
available for reuse. Indeed, changes made during a maintenance
process are usually small (major rewriting are a rather rare event in
the history of a system) and, therefore, the simple approach of
executing all test cases after each change may be excessively
costly. Alternatively, several strategies for selective regression
testing are available that attempt to select a subset of the available
test cases without affecting test effectiveness.
Most problems that are associated with software maintenance can
be traced to deficiencies of the software development process.
Sneidewind affirms that “the main problem in doing maintenance is
that we cannot do maintenance on a system which was not
designed for maintenance”. However, there are also essential
difficulties, i.e. intrinsic characteristics of software and its
production process that contribute to make software maintenance
an unequalled challenge. Brooks identifies complexity, conformity,
changeability, and invisibility as four essential difficulties of
software and Rajlich adds discontinuity to this list.

Software Maintenance and Software Project ManagementUnit5

 9

1. Fill in the blanks:

(a) Software evolution may be triggered by changing business

___________.
(b) Software __________ is the general process of changing a

system after it has been delivered.
(c) Maintenance operations should not degrade the

__________ and the _________ of the subject system.
(d) ___________ maintenance is universally used to refer to

maintenance for fault repair.
(e) Several ________ and _______ problems contribute to the

costs of software maintenance

5.7 SOFTWARE RE-ENGINEERING

The process of system evolution involves understanding the
program that has to be changed and then implementing these
changes. However, many systems, especially older legacy
systems, are difficult to understand and change. The programs
may have been optimized for performance or space utilization at
the expense of understandability, or, over time, the initial program
structure may have been corrupted by a series of changes. To
make legacy software systems easier to maintain, one can
reengineer these systems to improve their structure and
understandability. Reengineering may involve re-documenting the
system, refactoring the system architecture, translating programs
to a modern programming language, and modifying and updating
the structure and values of the system’s data.
Software re-engineering is a complex process that re-engineering
tools can only support, not completely automate. There is a good
deal of human intervention with any software re-engineering
project. Re-engineering tools can provide help in moving a system
to a new maintenance environment, for example one based on a
repository, but they cannot define such an environment nor the
optimal path along which to migrate the system to it. These are
activities that only human beings can perform. Another problem
that re-engineering tools only marginally tackle is the creation of an
adequate test-bed to prove that the end product of re-engineering
is fully equivalent to the original system. This still involves much
hand-checking, partially because very rarely an application is re-
engineered without existing functions being changed and new
functions being added. Finally, re-engineering tools often fail to

CHECK YOUR PROGRESS

Software Maintenance and Software Project ManagementUnit5

 10

take into account the unique aspects of a system, such as the
accesses to a particular DBMS or the presence of embedded calls
to modules in other languages.
Success in software re-engineering requires much more than just
buying one or more re-engineering tools. Defining the re-
engineering goals and objectives, forming the team and training it,
preparing a testbed to validate the re-engineered system,
evaluating the degree to which the tools selected can be integrated
and identifying the bridge technologies needed, preparing the
subject system for re-engineering tools (for example, by stubbing
DBMS accesses and calls to assembler routines) are only a few
examples of activities that contribute to determining the success of
a re-engineering project. Sneed suggests that five steps should be
considered when planning a re-engineering project: project
justification, which entails determining the degree to which the
business value of the system will be enhanced; portfolio analysis,
that consists of prioritizing the applications to be re-engineered
based on their technical quality and business value; cost
estimation that is the estimation of the costs of the project; cost-
benefit analysis, in which costs and expected returns are
compared, and; contracting, which entails the identification of tasks
and the distribution of effort.
There are two important benefits from reengineering rather than
replacement:

1. Reduced risk – There is a high risk in redeveloping
business-critical software. Errors may be made in the
system specification or there may be development
problems. Delays in introducing the new software may
mean that business is lost and extra costs are incurred.

2. Reduced cost – The cost of reengineering may be
significantly less than the cost of developing new software.
Ulrich (1990) quotes an example of a commercial system
for which the reimplementation costs were estimated at $50
million. The system was successfully reengineered for $12
million. I suspect that, with modern software technology,
the relative cost of reimplementation is probably less than
this but will still considerably exceed the costs of
reengineering.

Figure 5.4 is a general model of the reengineering process. The
input to the process is a legacy program and the output is an
improved and restructured version of the same program.

Software Maintenance and Software Project ManagementUnit5

 11

Fig 5.4: The Re-Engineering process

The activities in this reengineering process are as follows:
1. Source code translation – Using a translation tool, the

program is converted from an old programming language to
a more modern version of the same language or to a
different language.

2. Reverse engineering – The program is analyzed and
information extracted from it. This helps to document its
organization and functionality. Again, this process is usually
completely automated.

3. Program structure improvement – The control structure
of the program is analyzed and modified to make it easier
to read and understand. This can be partially automated
but some manual intervention is usually required.

4. Program modularization – Related parts of the program
are grouped together and, where appropriate, redundancy
is removed. In some cases, this stage may involve
architectural refactoring (e.g., a system that uses several
different data stores may be refactored to use a single
repository). This is a manual process.

5. Data reengineering – The data processed by the program
is changed to reflect program changes. This may mean
redefining database schemas and converting existing
databases to the new structure. You should usually also
clean up the data. This involves finding and correcting
mistakes, removing duplicate records, etc. Tools are
available to support data reengineering.

Program reengineering may not necessarily require all of the steps
in Figure 5.4. We do not need source code translation if we still
use the application’s programming language. If we can do all
reengineering automatically, then recovering documentation
through reverse engineering may be unnecessary. Data
reengineering is only required if the data structures in the program
change during system reengineering. To make the reengineered
system interoperate with the new software, we may have to
develop adaptor services. These hide the original interfaces of the
software system and present new, better-structured interfaces that

Software Maintenance and Software Project ManagementUnit5

 12

can be used by other components. This process of legacy system
wrapping is an important technique for developing large-scale
reusable services.

Fig 5.5: Re-engineering approaches

The costs of reengineering obviously depend on the extent of the
work that is carried out. There is a spectrum of possible
approaches to reengineering, as shown in Figure 5.5. Costs
increase from left to right so that source code translation is the
cheapest option. Reengineering as part of architectural migration is
the most expensive.
The problem with software reengineering is that there are practical
limits to how much one can improve a system by reengineering. It
is not possible, for example, to convert a system written using a
functional approach to an object-oriented system. Major
architectural changes or radical reorganizing of the system data
management cannot be carried out automatically, so they are very
expensive. Although reengineering can improve maintainability, the
reengineered system will probably not be as maintainable as a
new system developed using modern software engineering
methods.

5.8 REVERSE ENGINEERING

The term reverse engineering has its origins in the hardware world.
A company disassembles a competitive hardware product in an
effort to understand its competitor's design and manufacturing
"secrets." These secrets could be easily understood if the
competitor's design and manufacturing specifications were
obtained. But these documents are proprietary and unavailable to
the company doing the reverse engineering. In essence,
successful reverse engineering derives one or more design and
manufacturing specifications for a product by examining actual
specimens of the product.
Reverse engineering for software is quite similar. In most cases,
however, the program to be reverse engineered is not a
competitor's. Rather, it is the company's own work (often done
many years earlier). The "secrets" to be understood are obscure
because no specification was ever developed. Therefore, reverse
engineering for software is the process of analyzing a program in

Software Maintenance and Software Project ManagementUnit5

 13

an effort to create a representation of the program at a higher level
of abstraction than source code. Reverse engineering is a process
of design recovery. Reverse engineering tools extract data,
architectural, and procedural design information from an existing
program.
Reverse engineering has been defined as “the process of
analyzing a subject system to identify the system’s components
and their interrelationships and to create representations of the
system in another form or at a higher level of abstraction”.
Accordingly, reverse engineering is a process of examination, not
a process of change, and therefore it does not involve changing
the software under examination. Reverse engineering as a process
is difficult to define in rigorous terms because it is a new and
rapidly evolving field. Traditionally, reverse engineering has been
viewed as a two-step process: information extraction and
abstraction. Information extraction analyses the subject system
artifacts – primarily the source code – to gather row data, whereas
information abstraction creates user-oriented documents and
views.
Reverse engineering conjures an image of the "magic slot." We
feed an unstructured, undocumented source listing into the slot
and out the other end comes full documentation for the computer
program. Unfortunately, the magic slot does not exist. Reverse
engineering can extract design information from source code, but
the abstraction level, the completeness of the documentation, the
degree to which tools and a human analyst work together, and the
directionality of the process are highly variable. The abstraction
level of a reverse engineering process and the tools used to effect
it refers to the sophistication of the design information that can be
extracted from source code. Ideally, the abstraction level should be
as high as possible. That is, the reverse engineering process
should be capable of deriving procedural design representations (a
low-level abstraction), program and data structure information (a
somewhat higher level of abstraction), data and control flow
models (a relatively high level of abstraction), and entity
relationship models (a high level of abstraction). As the abstraction
level increases, the software engineer is provided with information
that will allow easier understanding of the program. The
completeness of a reverse engineering process refers to the level
of detail that is provided at an abstraction level. In most cases, the
completeness decreases as the abstraction level increases. For
example, given a source code listing, it is relatively easy to develop
a complete procedural design representation. Simple data flow
representations may also be derived, but it is far more difficult to
develop a complete set of data flow diagrams or entity-relationship
models. Completeness improves in direct proportion to the amount
of analysis performed by the person doing reverse engineering.
Interactivity refers to the degree to which the human is "integrated"
with automated tools to create an effective reverse engineering
process. In most cases, as the abstraction level increases,
interactivity must increase or completeness will suffer. If the
directionality of the reverse engineering process is one way, all
information extracted from the source code is provided to the
software engineer who can then use it during any maintenance

Software Maintenance and Software Project ManagementUnit5

 14

activity. If directionality is two way, the information is fed to a
reengineering tool that attempts to restructure or regenerate the
old program.
The reverse engineering process is represented in Figure 5.6.
Before reverse engineering activities can commence, unstructured
(“dirty”) source code is restructured so that it contains only the
structured programming constructs. This makes the source code
easier to read and provides the basis for all the subsequent
reverse engineering activities.
The core of reverse engineering is an activity called extract
abstractions. The engineer must evaluate the old program and
from the (often undocumented) source code, extract a meaningful
specification of the processing that is performed, the user inter-
face that is applied, and the program data structures or database
that is used.

Fig 5.6: The Reverse Engineering process

Software Maintenance and Software Project ManagementUnit5

 15

5.9 SOFTWARE CONFIGURATION
MANAGEMENT ACTIVITIES

In software development, change happens all the time, so change
management is absolutely essential. When a team of people are
developing software, it has to be made sure that team members do
not interfere with each other’s’ work. That is, if two people are
working on a component, their changes have to be coordinated.
Otherwise, one programmer may make changes and overwrite the
other’s work. It also has to be ensured that everyone can access
the most up-to-date versions of software components, otherwise
developers may redo work that has already been done. When
something goes wrong with a new version of a system, one has to
be able to go back to a working version of the system or
component.
Configuration management is the name given to the general
process of managing a changing software system. The aim of
configuration management is to support the system integration
process so that all developers can access the project code and
documents in a controlled way, find out what changes have been
made, and compile and link components to create a system. There
are, therefore, three fundamental configuration management
activities:

1. Version management, where support is provided to keep
track of the different versions of software components.
Version management systems include facilities to
coordinate development by several programmers. They
stop one developer from overwriting code that has been
submitted to the system by someone else.

2. System integration, where support is provided to help
developers define what versions of components are used to
create each version of a system. This description is then
used to build a system automatically by compiling and
linking the required components.

3. Problem tracking, where support is provided to allow
users to report bugs and other problems, and to allow all
developers to see who is working on these problems and
when they are fixed.

5.9.1 CHANGE CONTROL PROCESS

Change Control Process is a formal process used to ensure that
changes to a product or system are introduced in a controlled and
coordinated manner. It reduces the possibility that unnecessary
changes will be introduced to a system without forethought,
introducing faults into the system or undoing changes made by
other users of software. The goals of a change control procedure
usually include minimal disruption to services, reduction in back-

Software Maintenance and Software Project ManagementUnit5

 16

out activities, and cost-effective utilization of resources involved in
implementing change.
Change control in a modern software engineering context is vital.
But the forces that make it necessary also make it annoying. We
worry about change because a tiny perturbation in the code can
create a big failure in the product. But it can also fix a big failure or
enable wonderful new capabilities. We worry about change
because a single bad developer could sink the project; yet brilliant
ideas originate in the minds of those developers, and a
burdensome change control process could effectively discourage
them from doing creative work. Too much change control and we
create problems. Too little, and we create other problems. For a
large software engineering project, uncontrolled change rapidly
leads to chaos. For such projects, change control combines human
procedures and automated tools to provide a mechanism for the
control of change. The change control process is illustrated
schematically in Figure 5.7.

Software Maintenance and Software Project ManagementUnit5

 17

Fig 5.7: The change control process

A change request is submitted and evaluated to assess technical
merit, potential side effects, overall impact on other configuration
objects and system functions, and the projected cost of the
change. The results of the evaluation are presented as a change
report, which is used by a change control authority (CCA) – a
person or group who makes a final decision on the status and
priority of the change. An engineering change order (ECO) is
generated for each approved change. The ECO describes the
change to be made, the constraints that must be respected, and
the criteria for review and audit. The object to be changed is
"checked out" of the project database, the change is made, and
appropriate SQA activities are applied. The object is then "checked
in" to the database and appropriate version control mechanisms
(Section 5.9.2) are used to create the next version of the software.

The "check-in" and "check-out" process implements two important
elements of change control – access control and synchronization
control. Access control governs which software engineers have the
authority to access and modify a particular configuration object.
Synchronization control helps to ensure that parallel changes,
performed by two different people, do not overwrite one another.
Access and synchronization control flow are illustrated
schematically in Figure 5.8.

Fig 5.8: Access and synchronization control

Based on an approved change request and ECO, a software
engineer checks out a configuration object. An access control
function ensures that the software engineer has authority to check
out the object, and synchronization control locks the object in the
project database so that no updates can be made to it until the
currently checked-out version has been replaced. Note that other

Software Maintenance and Software Project ManagementUnit5

 18

copies can be checked-out, but other updates cannot be made. A
copy of the base lined object, called the extracted version, is
modified by the software engineer. After appropriate SQA and
testing, the modified version of the object is checked in and the
new baseline object is unlocked.
Prior to an SCI becoming a baseline, only informal change control
need be applied. The developer of the configuration object (SCI) in
question may make whatever changes are justified by project and
technical requirements (as long as changes do not affect broader
system requirements that lie outside the developer's scope of
work).
Once the object has undergone formal technical review and has
been approved, a baseline is created. Once an SCI becomes a
baseline, project level change control is implemented. Now, to
make a change, the developer must gain approval from the project
manager (if the change is "local") or from the CCA if the change
affects other SCIs. In some cases, formal generation of change
requests, change reports, and ECOs is dispensed with. However,
assessment of each change is conducted and all changes are
tracked and reviewed.
When the software product is released to customers, formal
change control is instituted. The formal change control procedure
has been outlined in Figure 5.7. The change control authority
plays an active role in the second and third layers of control.
Depending on the size and character of a software project, the
CCA may be composed of one person – the project manager – or
a number of people (e.g., representatives from software, hardware,
database engineering, support, and marketing). The role of the
CCA is to take a global view, that is, to assess the impact of
change beyond the SCI in question. How will the change affect
hardware? How will the change affect performance? How will the
change modify customer's perception of the product? How will the
change affect product quality and reliability? These and many
other questions are addressed by the CCA.

5.9.2 SOFTWARE VERSION CONTROL

Version control combines procedures and tools to manage
different versions of configuration objects that are created during
the software process. Configuration management allows a user to
specify alternative configurations of the software system through
the selection of appropriate versions. This is supported by
associating attributes with each software version, and then
allowing a configuration to be specified [and constructed] by
describing the set of desired attributes. These "attributes"
mentioned can be as simple as a specific version number that is
attached to each object or as complex as a string of Boolean
variables (switches) that indicate specific types of functional
changes that have been applied to the system. One representation
of the different versions of a system is the evolution graph
presented in Figure 5.9.

Software Maintenance and Software Project ManagementUnit5

 19

Fig 5.9: Evolution graph

Each node on the graph is an aggregate object, that is, a complete
version of the software. Each version of the software is a collection
of SCIs (source code, documents, data), and each version may be
composed of different variants. To illustrate this concept, consider
a version of a simple program that is composed of entities 1, 2, 3,
4, and 5. Entity 4 is used only when the software is implemented
using color displays. Entity 5 is implemented when monochrome
displays are available. Therefore, two variants of the version can
be defined: (1) entities 1, 2, 3, and 4; (2) entities 1, 2, 3, and 5.
To construct the appropriate variant of a given version of a
program, each entity can be assigned an "attribute-tuple" – a list of
features that will define whether the entity should be used when a
particular variant of a software version is to be constructed. One or
more attributes is assigned for each variant. For example, a color
attribute could be used to define which entity should be included
when color displays are to be supported.
Another way to conceptualize the relationship between entities,
variants and versions (revisions) is to represent them as an object
pool. Referring to Figure 5.10, the relationship between
configuration objects and entities, variants and versions can be
represented in a three-dimensional space. An entity is composed
of a collection of objects at the same revision level. A variant is a
different collection of objects at the same revision level and
therefore coexists in parallel with other variants. A new version is
defined when major changes are made to one or more objects.
A number of different automated approaches to version control
have been proposed over the past decade. The primary difference
in approaches is the sophistication of the attributes that are used to
construct specific versions and variants of a system and the
mechanics of the process for construction.

Software Maintenance and Software Project ManagementUnit5

 20

Fig 5.10: Object pool representation of components, variants,

and versions

2. Fill in the blanks:

(a) ___________ may involve re-documenting the system.

(b) _______________ is a process of design recovery.

(c) Before reverse engineering activities can commence,
__________ source code is __________.

(d) ___________________ include facilities to coordinate
development by several programmers.

(e) ____________ management allows a user to specify
alternative configurations of the software system through
the selection of appropriate ________.

CHECK YOUR PROGRESS

Software Maintenance and Software Project ManagementUnit5

 21

AN OVERVIEW OF CASE TOOLS

Computer Aided Software Engineering (CASE) tools assist
software engineering managers and practitioners in every activity
associated with the software process. They automate project
management activities; manage all work products produced
throughout the process, and assist engineers in their analysis,
design, coding and test work. CASE tools can be integrated within
a sophisticated environment. Software engineering is difficult and
so tools that reduce the amount of effort required to produce a
work product or accomplish some project milestone have
substantial benefit. But there is something that is even more
important. Tools can provide new ways of looking at software
engineering information – ways that improve the insight of the
engineer doing the work. This leads to better decisions and higher
software quality. CASE tools assist a software engineer in
producing high-quality work products. In addition, the availability of
automation allows the CASE user to produce additional
customized work products that could not be easily or practically
produced without tool support. CASE provides the software
engineer with the ability to automate manual activities and to
improve engineering insight. Like computer-aided engineering and
design tools that are used by engineers in other disciplines, CASE
tools help to ensure that quality is designed in before the product is
built.
Tools –

CASE tools are a class of software that automates many of the
activities involved in various life cycle phases. For example, when
establishing the functional requirements of a proposed application,
prototyping tools can be used to develop graphic models of
application screens to assist end users to visualize how an
application will look after development. Subsequently, system
designers can use automated design tools to transform the
prototyped functional requirements into detailed design
documents. Programmers can then use automated code
generators to convert the design documents into code. Automated
tools can be used collectively, as mentioned, or individually. For
example, prototyping tools could be used to define application
requirements that get passed to design technicians who convert
the requirements into detailed designs in a traditional manner
using flowcharts and narrative documents, without the assistance
of automated design software.
Categories of CASE Tools –
On the basis of their activities, sometimes CASE tools are
classified into the following categories:
1. Upper CASE tools
2. Lower CASE tools
3. Integrated CASE tools

Software Maintenance and Software Project ManagementUnit5

 22

Upper CASE: Upper CASE tools mainly focus on the analysis and
design phases of software development. They include tools for
analysis modeling, reports and forms generation.
Lower CASE: Lower CASE tools support implementation of
system development. They include tools for coding, configuration
management, etc.
Integrated CASE Tools: Integrated CASE tools help in providing
linkages between the lower and upper CASE tools. Thus creating a
cohesive environment for software development where
programming by lower CASE tools may automatically be
generated for the design that has been developed in an upper
CASE tool.
Need of CASE Tools –

The software development process is expensive and as the
projects become more complex in nature, the project
implementations become more demanding and expensive. The
CASE tools provide the integrated homogenous environment for
the development of complex projects. They allow creating a shared
repository of information that can be utilized to minimize the
software development time. The CASE tools also provide the
environment for monitoring and controlling projects such that team
leaders are able to manage the complex projects.

Specifically, the CASE tools are normally deployed to –

 Reduce the cost as they automate many repetitive manual
tasks.

 Reduce development time of the project as they support
standardization and avoid repetition and reuse.

 Develop better quality complex projects as they provide
greater consistency and coordination.

 Create good quality documentation.

 Create systems that are maintainable because of proper
control of configuration item that support traceability
requirements.

Characteristics of a successful CASE Tool –
A CASE tool must have the following characteristics in order to be
used efficiently:

 A standard methodology: A CASE tool must support a
standard software development methodology and standard
modeling techniques. In the present scenario most of the
CASE tools are moving towards UML.

 Flexibility: Flexibility in use of editors and other tools. The
CASE tool must offer flexibility and the choice for the user
of editors’ development environments.

 Strong Integration: The CASE tools should be integrated
to support all the stages. This implies that if a change is
made at any stage, for example, in the model, it should get

Software Maintenance and Software Project ManagementUnit5

 23

reflected in the code documentation and all related design
and other documents, thus providing a cohesive
environment for software development.

 Integration with testing software: The CASE tools must
provide interfaces for automatic testing tools that take care
of regression and other kinds of testing software under the
changing requirements.

 Support for reverse engineering: A CASE tools must be
able to generate complex models from already generated
code.

 On-line help: The CASE tools provide an online tutorial.

5.11 PARAMETER ESTIMATION (cost, effort,
schedule)

Software project estimation is the process of estimating various
resources required for the completion of a project. Effective
software project estimation is an important activity in any software
development project. Underestimating software projects and
understaffing it often leads to low quality deliverables, and the
project misses the target deadline leading to customer
dissatisfaction and loss of credibility to the company. On the other
hand, overstaffing a project without proper control will increase the
cost of the project and reduce the competitiveness of the company.
Software project estimation mainly encompasses the following
activities:

1. Estimating the size of the project – There are many
procedures available for estimating the size of a project,
which are based on quantitative approaches, such as
estimating lines of code or estimating the functionality
requirements of the project called function points.

2. Estimating efforts based on person-months or person-
hours – Person-month is an estimate of the personal
resources required for the project.

3. Estimating Schedule in calendar Days/Months/Year
based on total person-months required and manpower
allocated to the project – The duration in calendar month
= total person-months / total manpower allocated.

4. Estimating total cost of the project depending on the
above and other resources – In a commercial and
competitive environment, software project estimation is
crucial for managerial decision making. Table 5.1 gives the
relationship between various management functions and
software metrics/indicators. Project estimation and tracking
helps to plan and predict future projects and provide
baseline support for project management and supports
decision-making.

Software Maintenance and Software Project ManagementUnit5

 24

Activity Tasks involved

Planning

Cost estimation, planning
for training of manpower,
project scheduling and
budgeting the project.

Controlling

Size metrics and schedule
metrics help the manager
to keep control of the
project during execution.

Monitoring/improving

Metrics are used to monitor
progress of the project and
wherever possible sufficient
resources are allocated to
improve it.

Table 5.1

Fig 5.11: Software project estimation

Estimating Size –

Estimating the size of the software to be developed is the very first
step to make an effective estimation of the project. Customer
requirements and system specifications form a baseline for
estimating the size of software. At a later stage of the project,
system design documents can provide additional details for
estimating the overall size of the software.
 The ways to estimate project size can be through past data

from an earlier developed system. This is called estimation
by analogy.

 The other way of estimation is through product
feature/functionality. The system is divided into several
subsystems depending on functionality, and the size of
each subsystem is calculated.

Software Maintenance and Software Project ManagementUnit5

 25

Estimating Effort –

Once the size of software is estimated, the next step is to estimate
the effort based on the size. The estimation of effort can be made
from the organizational specifics of the software-development life-
cycle. The development of any application software system is more
than just the coding of the system. Depending on deliverable
requirements, the estimation of effort for a project will vary.
Efforts are estimated in the number of person-months.
 The best way to estimate effort is based on the

organization’s own historical data of development
processes. Organizations follow a similar development life-
cycle when developing various applications.

 If the project is of a different nature, which requires the
organization to adopt a different strategy for development,
then different models based on algorithmic approaches can
be devised to estimate the required effort.

Estimating Schedules –
The next step in the estimation process is estimating the project
schedule from the effort estimated. The schedule for a project will
generally depend on human resources involved in a process.
Efforts in person-months are translated to calendar months.
Schedule estimation in calendar months can be calculated using
the following model:

Schedule in calendar months = 3.0 * (person-months)1/3
The parameter 3.0 is variable, used depending on the situation that
works best for the organization.

Estimating Cost –
Cost estimation is the next step for projects. The cost of a project
is derived not only from the estimates of effort and size but from
other parameters, such as hardware, travel expenses,
telecommunication costs, training costs, etc. Figure 5.12 depicts
the cost-estimation process.

Fig 5.12: Cost estimation process

Software Maintenance and Software Project ManagementUnit5

 26

Fig 5.13: Project-estimation process

Once the estimation is complete, we may be interested to know
how accurate the estimates are. The answer to this is “we do not
know until the project is complete”. There is always some
uncertainty associated with all estimation techniques. The
accuracy of project estimation will depend on the following:

 Accuracy of historical data used to project the estimation.

 Accuracy of input data to various estimates.

 Maturity of an organization’s software-development
process.

The following are some of the reasons cost estimation can be
difficult:

 Software cost estimation requires a significant amount of
effort. Sufficient time is usually not allocated for planning.

 Software cost estimation is often done hurriedly, without an
appreciation for the actual effort required and is far from
realistic.

 Lack of experience for developing estimates, especially for
large projects.

 An estimator uses the extrapolation technique to estimate,
ignoring the non-linear aspects of the software
development process.

Reasons for Poor/Inaccurate Estimations –

The following are some of the reasons for poor and inaccurate
estimation:

 Requirements are imprecise, and they change frequently.

 The project is new and is different from past projects
handled.

 Non-availability of enough information about past projects.

Software Maintenance and Software Project ManagementUnit5

 27

 Estimates are forced to be based on available resources.

 Cost and time tradeoffs.
If we elongate the project, we can reduce overall costs. Usually,
customers and management do not like long project durations.
There is always the shortest possible duration for a project, but it
comes at a cost.
The following are some of the problems associated with estimates:

 Estimating size is often skipped and a schedule is
estimated, which is of more relevance to management.

 Estimating size is perhaps the most difficult step, which has
a bearing on all other estimates.

 Let us not forget that even good estimates are only
projections and subject to various risks.

 Organizations often give less importance to collection and
analysis of historical data of past development projects.
Historical data is the best input to estimate a new project.

 Project managers often underestimate the schedule
because management and customers often hesitate to
accept a prudent realistic schedule.

5.12 CONSTRUCTIVE COST MODEL (COCOMO)

The Constructive Cost Model (COCOMO) is an algorithmic
software cost estimation model developed by Barry W. Boehm.
The model uses a basic regression formula with parameters that
are derived from historical project data and current as well as
future project characteristics.

COCOMO was first published in Boehm's 1981 book Software
Engineering Economics as a model for estimating effort, cost, and
schedule for software projects. It drew on a study of 63 projects at
TRW Aerospace where Boehm was Director of Software Research
and Technology. The study examined projects ranging in size from
2,000 to 100,000 lines of code, and programming languages
ranging from assembly to PL/I. These projects were based on the
waterfall model of software development which was the prevalent
software development process in 1981.

COCOMO consists of a hierarchy of three increasingly detailed
and accurate forms. The first level, Basic COCOMO is good for
quick, early, rough order of magnitude estimates of software costs,
but its accuracy is limited due to its lack of factors to account for
difference in project attributes (Cost Drivers). Intermediate
COCOMO takes these Cost Drivers into account and Detailed
COCOMO additionally accounts for the influence of individual
project phases.

Software Maintenance and Software Project ManagementUnit5

 28

Basic COCOMO –

Basic COCOMO computes software development effort (and cost)
as a function of program size. Program size is expressed in
estimated thousands of source lines of code (SLOC).

COCOMO applies to three classes of software projects:

 Organic projects – "small" teams with "good" experience
working with "less than rigid" requirements.

 Semi-detached projects – "medium" teams with mixed
experience working with a mix of rigid and less than rigid
requirements.

 Embedded projects – developed within a set of "tight"
constraints. It is also combination of organic and semi-
detached projects. (hardware, software, operational, ...).

The basic COCOMO equations take the form

Effort Applied (E) = ab(KLOC)b
b [man-months]

Development Time (D) = cb(Effort Applied)d
b [months]

People required (P) = Effort Applied / Development Time
[count]

where, KLOC is the estimated number of delivered lines
(expressed in thousands) of code for project. The coefficients ab,
bb, cb and db are given in the following table:

Software Project ab bb cb db

Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

Basic COCOMO is good for quick estimate of software costs.
However it does not account for differences in hardware
constraints, personnel quality and experience, use of modern tools
and techniques, and so on.

Intermediate COCOMO –

Intermediate COCOMO computes software development effort as
function of program size and a set of "cost drivers" that include
subjective assessment of product, hardware, personnel and project
attributes. This extension considers a set of four "cost drivers”,
each with a number of subsidiary attributes:-

 Product attributes
 Required software reliability
 Size of application database

Software Maintenance and Software Project ManagementUnit5

 29

 Complexity of the product
 Hardware attributes

 Run-time performance constraints
 Memory constraints
 Volatility of the virtual machine environment
 Required turnabout time

 Personnel attributes
 Analyst capability
 Software engineering capability
 Applications experience
 Virtual machine experience
 Programming language experience

 Project attributes
 Use of software tools
 Application of software engineering methods
 Required development schedule

Each of the 15 attributes receives a rating on a six-point scale that
ranges from "very low" to "extra high" (in importance or value). An
effort multiplier from the table below applies to the rating. The
product of all effort multipliers results in an effort adjustment factor
(EAF). Typical values for EAF range from 0.9 to 1.4.

The Intermediate COCOMO formula now takes the form:
E = ai (KLoC) (bi

) . EAF
where E is the effort applied in person-months, KLoC is the
estimated number of thousands of delivered lines of code for the
project, and EAF is the factor calculated above. The coefficient ai
and the exponent bi are given in the next table.

Software Project ai bi

Organic 3.2 1.05

Semi-detached 3.0 1.12

Embedded 2.8 1.20

The Development time D calculation uses E in the same way as in
the Basic COCOMO.

Detailed COCOMO –

Detailed COCOMO incorporates all characteristics of the
intermediate version with an assessment of the cost driver's impact
on each step (analysis, design, etc.) of the software engineering
process. The detailed model uses different effort multipliers for
each cost driver attribute. These Phase Sensitive effort multipliers
are each to determine the amount of effort required to complete
each phase. In detailed COCOMO, the effort is calculated as
function of program size and a set of cost drivers given according

Software Maintenance and Software Project ManagementUnit5

 30

to each phase of software life cycle. A Detailed project schedule is
never static.

The five phases of detailed COCOMO are:-

 plan and requirement.
 system design.
 detailed design.
 module code and test.
 integration and test.

5.13 RISK ANALYSIS AND MANAGEMENT

Risk analysis and management are a series of steps that help a
software team to understand and manage uncertainty. Many
problems can plague a software project. A risk is a potential
problem – it might happen, it might not. But, regardless of the
outcome, it is a good idea to identify it, assess its probability of
occurrence, estimate its impact and establish a contingency plan
should the problem actually occur.
Risk is defined as an exposure to the change of injury or loss. That
is, risk implies that there is a possibility that something negative
may happen. In the context of software projects, negative implies
that there is an adverse effect on cost, quality, or schedule.
Risk Management –
Risk management is the area that tries to ensure that the impact of
risks on cost, quality, and schedule is minimal.
Risk management is a scientific process based on the application
of game theory, decision theory, probability theory and utility
theory. The Software Engineering Institute classifies the risk
hierarchy as in Figure 5.14.

Fig 5.14: Risk hierarchy

Risk scenarios may emerge out of management challenges and
technical challenges in achieving specific goals and objectives.

Software Maintenance and Software Project ManagementUnit5

 31

Risk management must be performed regularly throughout the
achievement life-cycle. Risks are dynamic, as they change over
time. Risk management should not be treated as an activity
outside the main process of achievement. Risk is managed best
when risk management is implemented as a mainstream function
in the software development and goal achievement process.

Management of Risks –
Risk management plays an important role in ensuring that the
software product is error-free. Firstly, risk management takes care
that the risk is avoided, and if it is not avoidable, then the risk is
detected, controlled and finally recovered.

Risk management categories –

A priority is given to risk and the highest priority risk is handled
first. Various factors of the risk include who are the involved team
members, what hardware and software items are needed, where,
when and why. The risk manager does scheduling of risks. Risk
management can be further categorized as follows:

1. Risk Avoidance

 Risk anticipation

 Risk tools
2. Risk detection

 Risk analysis

 Risk category

 Risk prioritization
3. Risk Control

 Risk pending

 Risk resolution

 Risk not solvable
4. Risk recovery

 Full

 Partial

 Extra/alternate feature

Software Maintenance and Software Project ManagementUnit5

 32

Fig 5.15: Risk management tool

From Figure 5.15, it is clear that the first phase is to avoid risk by
anticipating and using tools from previous project histories. In the
case where there is no risk, the risk manager stops. In the case of
risk, detection is done using various risk analysis techniques and
further prioritizing risks. In the next phase, risk is controlled by
pending risks, resolving risks, and in the worst case lowering the
priority. Lastly, risk recovery is done fully, partially, or an alternate
solution is found.

1. Risk Avoidance –
a) Risk Anticipation: Various risk anticipation rules are

listed according to standards from previous projects,
experience, and also as mentioned by the project
manager.

b) Risk Tools: Risk tools are used to test whether the
software is risk-free. The tools have a built-in
database of available risk areas and can be
updated depending upon the type of project.

2. Risk Detection –

The risk-detection algorithm detects a risk and it can
be categorically stated as:

a) Risk Analysis: In this phase, the risk is analyzed
with various hardware and software parameters as
probabilistic occurrence (pr), weight factor (wf),
(hardware resources, lines of code, people), and
risk exposure (pr * wf).

Software Maintenance and Software Project ManagementUnit5

 33

Table 5.2: Risk Analysis table

The maximum value of risk exposure indicates that
the problem has to be solved as soon as possible
and be given high priority. A risk-analysis table is
maintained as shown in Table 5.2.

b) Risk Category: Risk identification can come from
various factors, such as persons involved in the
team, management issues, customer specification
and feedback, environment, commercial,
technology, etc. Once the proper category is
identified, priority is given depending upon the
urgency of the product.

c) Risk Prioritization: Depending upon the entries of
the risk-analysis table, the maximum risk exposure
is given high priority and has to be solved first.

3. Risk Control – Once the prioritization is done, the next
step is to control various risks as follows:

a) Risk Pending: According to the priority, low-priority
risks are pushed to the end of the queue with a view
of various resources (hardware, manpower,
software) and if it takes more time their priority is
made higher.

b) Risk Resolution: The risk manager decides how to
solve the risk.

c) Risk Elimination: This action leads to serious errors
in the software.

d) Risk Transfer: If the risk is transferred to some part
of the module, then the risk-analysis table entries
get modified. And again, the risk manager will
control high-priority risks.

e) Disclosures: Announce the smaller risks to the
customer or display message boxes as warnings so
that the user take proper steps during data entry,
etc.

Software Maintenance and Software Project ManagementUnit5

 34

f) Risk not Solvable: If a risk takes more time and
more resources, then it is dealt with in its totality on
the business side of the organization and thereby
the customer is notified, and the team member
proposes an alternate solution. There is a slight
variation in the customer specifications after
consultation.

4. Risk Recovery –

a) Full: The risk-analysis table is scanned and if the
risk is fully solved, then the corresponding entry is
deleted from the table.

b) Partial: The risk-analysis table is scanned and due
to partially solved risks, the entries in the table are
updated and thereby priorities are also updated.

c) Extra/alternate features: Sometimes it is difficult to
remove risks, and in that case, we can add a few
extra features, that solve the problem. Therefore,
some coding is done to resolve the risk this is later
documented or the customer is notified.

Sources of Risks –
There are two major sources of risks:

1. Generic Risks: Generic risks are the risks common to all
software projects. For example, requirement
misunderstanding, allowing insufficient time for testing,
losing key personnel, etc.

2. Project-Specific Risks: A vendor may be promising to
deliver particular software by a particular date, but is unable
to do it.

Types of Risks –
There are three types of risks:

1. Product Risks: These are the risks that affect the quality
or performance of the software being developed. This
originates from conditions, such as unstable requirement
specifications, not being able to meet the design
specifications affecting software performance, and
uncertain test specifications. In view of the software product
risks, there is a risk of losing the business and facing
strained customer relations. For example, CASE tools
under performance.

2. Business Risks: These risks affect the organization
developing or procuring the software. For example,
technology changes and product competition. The top five
business risks are:

 Building an excellent product or system that no one
really wants (market risks).

Software Maintenance and Software Project ManagementUnit5

 35

 Building a product that no longer fits into the overall
business strategy for the company (strategic risk).

 Building a product that the sales force does not
understand how to sell.

 Losing the support of senior management due to a
change in focus or a change in people
(management risk).

 Losing budgetary or personnel commitment (budget
risks).

3. Project Risks: These risks affect the project schedule or
resources. These risks occur due to conditions and
constraints about resources, relationship with vendors and
contractors, unreliable vendors, and lack of organizational
support. Funding is the significant project risk management
has to face. It occurs due to initial budgeting constraints
and unreliable customer payments. For example, staff
turnover, management change, hardware uninvertibility.

Software Maintenance and Software Project ManagementUnit5

 36

3. Fill in the blanks:

(a) ______ tools assist software engineering managers and
practitioners in every software process activity.

(b) Upper CASE tools mainly focus on the _______ and
_______ phases of software development.

(c) Software project estimation is the process of __________
various resources required for the completion of a project.

(d) Customer _________ and system _________ form a
baseline for estimating the size of software.

(e) The schedule for a project will generally depend on ______
resources involved in a process.

(f) ______ is an algorithmic software cost estimation model.

(g) Risk management is a _______ process based on the
application of ________, ________, ________ and
______.

(h) _______ value of risk exposure indicates that the problem
has to be solved as soon as possible and be given high
________.

(i) ________ are the risks that affect the quality or
performance of the software being developed.

(j) ________ risks affect the project schedule or resources.

CHECK YOUR PROGRESS

Software Maintenance and Software Project ManagementUnit5

 37

5.14 LET US SUM UP

 Software evolution is the phase in which significant

changes to the software architecture and functionality may
be made.

 Software maintenance is a very broad activity often

defined as including all work made on a software system
after it becomes operational.

 Preventive maintenance makes changes to computer

programs so that they can be more easily corrected,
adapted, and enhanced.

 Corrective maintenance includes all the changes made to

remove actual faults in the software.

 Perfective maintenance refers to changes that originate

from user requests.

 Software re-engineering is a complex process that re-

engineering tools can only support.

 Reverse engineering is a process of examination, not a

process of change.

 Configuration management is the name given to the

general process of managing a changing software system.

 Version control combines procedures and tools to

manage different versions of configuration objects that are
created during the software process.

 CASE tools are a class of software that automates many

of the activities involved in various life cycle phases.

 Estimating the size of the software to be developed is the

very first step to make an effective estimation of the
project.

 The COCOMO model uses a basic regression formula with

parameters that are derived from historical project data and
current as well as future project characteristics.

Software Maintenance and Software Project ManagementUnit5

 38

 Risk analysis and management are a series of steps that

help a software team to understand and manage
uncertainty.

1.
(a) requirements
(b) maintenance
(c) reliability, structure
(d) Corrective
(e) technical, managerial

2.
(a) Reengineering
(b) Reverse engineering
(c) unstructured, restructured
(d) Version management systems
(e) Configuration, versions

3.
(a) CASE
(b) analysis, design
(c) estimating
(d) requirements, specifications
(e) human
(f) COCOMO
(g) scientific, game theory, decision theory, probability

theory, utility theory
(h) maximum, priority
(i) Product Risks
(j) Project

 5.16 FURTHER READINGS

1. Software Engineering – A PRACTITIONER’S APPROACH:
Roger S. Pressman.

2. Software Engineering: Ian Sommerville.
3. Software Engineering and Testing: Bharat Bhushan

Agarwal, Sumit Prakash Tayal.
4. Software Engineering: A. A. Puntambekar.
5. Software Engineering Economics, Barry Boehm.

5.15 ANSWERS TO CHECK YOUR
 PROGRESS

Software Maintenance and Software Project ManagementUnit5

 39

1. Describe Software Evolution.

2. What do you mean by Software maintenance? What are

the Software maintenance categories?

3. Write a note on Software Cost.

4. Explain the process of Software Re-engineering and the

activities associated with it.

5. Write a note on Reverse-engineering.

6. Explain the Software Configuration management activities.

7. Describe the Change control process with diagram.

8. Explain Software version control.

9. What are CASE tools? Explain their types.

10. Describe the Project Estimation process.

11. Explain how the different Software development

parameters are estimated.

12. Explain the COCOMO model.

13. What is Risk Analysis and Management? State its
importance.

14. Explain the Risk Management categories

15. What are the different types of risks associated with a
Software project?

5.17 POSSIBLE QUESTIONS

