
MCA16

KRISHNA KANTA HANDIQUE STATE OPEN UNIVERSITY
Housefed Complex, Dispur, Guwahati - 781 006

MASTER OF COMPUTER APPLICATION

PROGRAMMING IN JAVA

CONTENTS

UNIT 1 Introduction to Java
UNIT 2 Programming Basic
UNIT 3 OOP in Java
UNIT 4 Arrays, Strings and Vectors
UNIT 5 Interfaces and Packages
UNIT- 6 Exception Handling
UNIT- 7 File Handling
UNIT- 8 Introduction to Applets
UNIT- 9 AWT and Swings
UNIT- 10 Introduction to JDBC

Subject Experts

Prof. Anjana Kakati Mahanta, Deptt. of Computer Science, Gauhati University
Prof. Jatindra Kr. Deka, Deptt. of Computer Science and Engineering,

Indian Institute of Technology, Guwahati
Prof. Diganta Goswami, Deptt. of Computer Science and Engineering,

 Indian Institute of Technology, Guwahati

Course Co-ordinator

Tapashi Kashyap Das, Assistant Professor, Computer Science, KKHSOU

Arabinda Saikia, Assistant Professor, Computer Science, KKHSOU

SLM Preparation Team

Units Contributors

 1, 4, 5 Arabinda Saika, KKHSOU

2, 3,6 Tapashi Kashyap Das, KKHSOU
 7, 8, 9, 10 Prnajit Baruah

Technical Manager
 Zaloni International Pvt. Ltd, Guwahati

January 2013

© Krishna Kanta Handique State Open University

No part of this publication which is material protected by this copyright notice may be produced or

transmitted or utilized or stored in any form or by any means now known or hereinafter invented,

electronic, digital or mechanical, including photocopying, scanning, recording or by any information

storage or retrieval system, without prior written permission from the KKHSOU.

Printed and published by Registrar on behalf of the Krishna Kanta Handique State Open University.

The University acknowledges with thanks the financial

support provided by the Distance Education Council, New
Delhi, for the preparation of this study material.

Housefed Complex, Dispur, Guwahati - 781006; Website : www.kkhsou.in

COURSE INTRODUCTION

This is a course on “Programming in Java”. This course is designed as an introduction to
Java Programming. Java was developed at Sun Microsystems. Work on Java originally began
with the goal of creating a platform-independent language and operating system for consumer
electronics. What we know today as Java is both a programming language and an environment
for executing programs written in the Java language. Java has become very popular because
of its natural applicability to programming network software for the World Wide Web (WWW).
Java is best known as a language for programming applets. An applet is a “miniapplication”
that runs within the context of a larger application, such as a network browser, which facilitates
the supporting of animation, graphics, games and wide range of special effects.

This block comprises the following five units :

Unit - 1 introduces the basics of Java programming. This unit also discusses how to install Java
Development Kit into your computer.
Unit - 2 concentrates on the discussion of Java tokens, keywords, operators and variables. In
addition, this unit elaborates on the decision making and control statements.
Unit - 3 describes the object oriented features of Java. The concept of class, object, methods,
constructors and modifiers are elaborated in this unit. Moreover, an important propery of an object
oriented language, inheritance, is illustrated here.
Unit - 4 discusses the three important concept of Java - Arrays, Strings and Vectors.
Unit - 5 is the last unit of this block. This unit focuses on the creation and use of the Java interfaces
and Java packages.
Unit - 6 discusses how to handle exceptions in Java. Examples of different built-in exceptions are
presented in this unit. At the end, how can we use user-defined exception is discussed.
Unit - 7 deals with one most important Java package .io and the concept of file handling. How to
read console input and how to write console output are also covered in this unit.
Unit – 8 introduces the concept of Applets which can be included in an HTML page. How programs
can be written for Internet application is discussed in this unit.
 Unit - 9 explains the AWT and Swing which are two important paint mechanism in Java. The
AWT supports GUI Java programming. Its purpose is to help developers write correct and efficient
GUI painting code.
Unit - 10 is the last unit of this block. This unit introduces you with JDBC which is a programming
interface between Java programs and DBMS.

Each unit of these blocks includes some along-side boxes to help you know some of the
difficult, unseen terms. Some “EXERCISES” have been included to help you apply your own
thoughts. You may find some boxes marked with: “LET US KNOW”. These boxes will provide
you with some additional interesting and relevant information. Again, you will get “CHECK
YOUR PROGRESS” questions. These have been designed for a self-check of your progress
of study. It will be helpful for you if you solve the problems put in these boxes immediately
after you go through the sections of the units and then match your answers with “ANSWERS
TO CHECK YOUR PROGRESS” given at the end of each unit.

MASTER OF COMPUTER APPLICATION

PROGRAMMING IN JAVA

DETAILED SYLLABUS

Unit - 1 Introduction to JAVAMarks : 8
An overview of JAVA, Basic features of Java, JAVA Environment, Installing the
Java SDK, Writing Java Programs.

Unit - 2 Programming Basic Marks : 12
Java Token & Keywords, Constants, Data types; Declaring a variable, The scope
and lifetime of variable, Various Operators, Decision Making and Control Statements
: if statement, If-else, else-if, switch statement; the for, while, do-while statements.

Unit - 3 OOP in Java Marks : 15
Class fundamentals : Defining class, Accessing class members, Declaring
objects, Constructors, copy constructor; Passing Arguments to Methods,
Modifiers, Inheritance : the super class, Multilevel Inheritance, Final and abstract
keyword, Static Members.

Unit - 4 Arrays, Strings and VectorsMarks : 10
Declaring Arrays, Creating Arrays, Initializing Arrays, Multi-Dimensional Arrays,
Strings: string arrays, string methods, StringBuffer class, Vectors.

Unit - 5 Interfaces and Packages Marks : 8 P
Interfaces: Defining an Interface, Implementing interfaces, Applying Interfaces,
Packages: Defining a package, Accessing and Importing Packages.

Unit - 6 Exception Handling (Marks : 9)
Exception Handling fundamentals, Exception types, Using try and catch, built-
in exceptions in Java, User-defined exception

Unit - 7 File Handling (Marks : 8)
I/O Basics: Streams, The Stream classes, The predefined streams, Reading
console input, Writing console output, Reading and writing files

Unit – 8 Introduction to Applets (Marks : 12)
Applets and the World Wide Web, The Applet Class, Applets and HTML , The
Life Cycle of an Applet, Using Window Components, Event Handling, Adding
Audio and Animation

Unit – 9 AWT and Swings (Marks : 10)
AWT Basics, AWT Components, Event Handling, Application and Menus; Introduc

 tion to Swings, Swing Components, Event Handling, Display text and image in a
 window, Layout manager.

UNIT – 10 Introduction to JDBC (Marks : 8)
Basic steps to JDBC, API, JDBC Drivers, Connection Management, JDBC
Design Considerations, Two Tier and Three Tier client server model, Resultset,
Prepared statement and callable statement, Resultset MetaData Object

UNIT 1: INTRODUCTION TO JAVA

UNIT STRUCTURE

1.1 Learning Objectives

1.2 Introduction

1.3 Overview of Java

1.4 Basic Features of Java

1.5 C/C++ and Java Language Family

1.6 Platform Independence of Java

1.7 Java Environment

1.8 Installing the Java SDK

1.9 Creating and Running Java Programs

1.10 Let Us Sum Up

1.11 Answers to Check Your Progress

1.12 Further Readings

1.13 Model Questions

1.1 LEARNING OBJECTIVES
After going through this unit, you will be able to :

 define combinational circuit

 gain the concept of Java

 differentiate Java as Object Oriented Language

 illustrate the basic features of Java

 know the Java environment

 know how to install Java SDK

 create Java Programs and compile & run them

1.2 INTRODUCTION

The greatest challenges and most exciting opportunities for software

developers today lie in tackling the power of networks. Most of the

applications created today, will almost certainly be run on machines

connected to the global networks i.e. Internet.

We know that by the mid 1990s, the World Wide Web had transformed

the online world. Through a system of hypertext, users of the Web

Computer Organization (Block 1) 7

8 Programming in Java

Unit 1 Introduction toJava

were able to select and view information from all over the world.

However, while this system of hypertext gave users a high degree of

selectivity over the information they chose to view, their level of

interactivity with that information was low. Moreover, the Web lacked

true interactivity—real-time, dynamic, and visual interaction between

the user and application.

Sun Microsystems, a company best known for its high-end Unix

workstations, developed a programming language named Java to create

software that can run on many different kinds of devices. Java language

was designed to be small, simple, and portable across platforms and

operating systems, both at the source and at the binary level.

Java brings this missing interactivity to the Web. With a Java-enabled

Web browser, you can encounter animations and interactive

applications. Java programmers can make customized media formats

and information protocols that can be displayed in any Java-enabled

browser. Java’s features enrich the communication, information, and

interaction on the Web by enabling users to distribute executable

content—rather than just HTML pages and multimedia files—to users.

This ability to distribute executable content is the power of Java.

In this unit, we will introduce you to the Java programming language.

We will discuss the basic features of Java and how to install the Java

Development Kit. We will also discuss how to write a Java program

and the procedure for compiling and running a Java program.

1.3 OVERVIEW OF JAVA

Java was conceived by James Gosling, Patrick Naughton, Chris Warth,

Ed Frank, and Mike Sheridan at Sun Microsystems, Inc. in 1991. It

took 18 months to develop the first working version. Work on Java

originally began with the goal of creating a platform-independent

language and operating system for consumer electronics. The original

intent was to use C++, but as work progressed in this direction, the

Java developers realized that they would be better served by creating

their own language rather than extending C++. This language was

Programming in Java 9

Introduction toJava Unit 1

initially called “Oak” but was renamed “Java” in 1994 as the Web

emerged. Then after Java was used as the basis for a Web browser,

called WebRunner. WebRunner was successfully demonstrated, and

the Java/HotJava project took off.

HotJava, Java, and the Java documentation and source code were

made available over the Web, as an alpha version, in early 1995.

Initially Java was hosted on SPARC Solaris, and then on Windows NT.

In the summer of 1995, Java was ported to Windows 95 and Linux.

In the fall of 1995 the Java Beta 1 version was released through Sun’s

Web site, and Java support was introduced in the Netscape 2.0 browser.

The Java Beta 1 release led scores of vendors to license Java

technology, and Java porting efforts were initiated for all major operating

systems.

In December 1995 the Java Beta 2 version was released, and

JavaScript was announced by Sun and Netscape. Java’s success

became inevitable when, in early December, both Microsoft and IBM

announced their intention to license Java technology.

On January 23, 1996, Java 1.0 was officially released and made

available for download over the Internet. JavaScript was also released.

Netscape 2.0 now provides support for both Java and JavaScript.

1.4 BASIC FEATURES OF JAVA

The Java team has summed up the basic features of Java with the

following list of buzzwords :

 Simple

Java was designed to be easy for the professional programmer to

learn and use effectively. Assuming that you have some programming

experience, you will not find Java hard to master. If you already

understand the basic concepts of object-oriented programming, learning

Java will be even easier. Best of all, if you are an experienced C++

programmer, moving to Java will require very little effort. Because Java

inherits the C/C++ syntax and many of the object-oriented features of

C++, most programmers have little trouble learning Java.

NOTE

HotJava

HotJava is a Web browser
that is written in Java.
HotJava is a Java-enabled
browser. This means that
HotJava can execute Java
applets contained on
Web pages. In order to
accomplish this, HotJava
calls the Java runtime
system. The Netscape
2.0 browser, like HotJava,
is also Java enabled. It
contains a copy of the
Java runtime system
embedded within it.

10 Programming in Java

Unit 1 Introduction toJava

 Object-oriented

Java is a true object-oriented language. Many of Java’s object-oriented

concepts are inherited from C++, the language on which it is based,

but it borrows many concepts from other object-oriented languages as

well. Like most object-oriented programming languages, Java includes

a set of class libraries that provide basic data types, system input and

output capabilities, and other utility functions. These basic classes are

part of the Java development kit, which also has classes to support

networking, common Internet protocols, and user interface toolkit

functions.

 Robust

Java is a robust language. The multiplatform environment of the Web

places extraordinary demands on a program, because the program

must execute reliably in a variety of systems. Thus, the ability to

create robust programs was given a high priority in the design of Java.

To gain reliability, Java restricts you in a few key areas, to force you

to find your mistakes early in program development. At the same time,

Java frees you from having to worry about many of the most common

causes of programming errors. Because Java is a strictly typed

language, it checks your code at compile time. However, it also checks

your code at run time.

 Secure

Prior to Java, most users did not download executable programs

frequently from Internet, and those who did scanned them for viruses

prior to execution. Even so, most users still worried about the possibility

of infecting their systems with a virus. In addition to viruses, another

type of malicious program exists that must be guarded against. This

type of program can gather private information, such as credit card

numbers, bank account balances, and passwords, by searching the

contents of your computer’s local file system. Java answers both of

these concerns by providing a “firewall” between a networked application

and your computer. When you use a Java-compatible Web browser,

Programming in Java 11

Introduction toJava Unit 1

you can safely download Java applets without fear of viral infection or

malicious intent. Java achieves this protection by confining a Java

program to the Java execution environment and not allowing it access

to other parts of the computer.

 Multithreaded

Java was designed to meet the real-world requirement of creating

interactive, networked programs. To accomplish this, Java supports

multithreaded programming, which allows you to write programs that

do many things simultaneously. The Java run-time system comes with

an elegant yet sophisticated solution for multiprocess synchronization

that enables you to construct smoothly running interactive systems.

 Architecture-neutral

A central issue for the Java designers was that of code longevity and

portability. One of the main problems facing programmers is that no

guarantee exists that if you write a program today, it will run tomorrow—

even on the same machine. Operating system upgrades, processor

upgrades, and changes in core system resources can all combine to

make a program malfunction. The Java designers made several hard

decisions in the Java language and the Java Virtual Machine in an

attempt to alter this situation. Their goal was “write once; run anywhere,

any time, forever.” To a great extent, this goal was accomplished.

 Portable

In addition to being architecture-neutral, Java code is also portable. It

was an important design goal of Java that it be portable so that as

new architectures (due to hardware, operating system, or both) are

Java and the runtime environment is written in POSIX-compliant C.

 Distributed

Java is designed for the distributed environment of the Internet, because

it handles TCP/IP protocols. In fact, accessing a resource using a

URL is not much different from accessing a file. The original version

of Java (Oak) included features for intra-address space messaging.

12 Programming in Java

Unit 1 Introduction toJava

This allowed objects on two different computers to execute procedures

remotely. Java has recently revived these interfaces in a package called

Remote Method Invocation (RMI). This feature brings an unparalleled

level of abstraction to client/server programming.

 Dynamic

Java programs carry with them substantial amounts of run-time type

information that is used to verify and resolve accesses to objects at

run time. This makes it possible to dynamically link code in a safe and

expedient manner. This is crucial to the robustness of the applet

environment, in which small fragments of bytecode may be dynamically

updated on a running system.

1.5 C/C++ AND JAVA LANGUAGE FAMILY

C was developed to meet general system programming needs. It was

quickly adapted for general use and found widespread acceptance. C

is a high-level procedural language that has many low-level features.

These features help to make it versatile and efficient. However, many

of these features give it a reputation for being cryptic and hard to

maintain. C++ extends the C language to provide object-oriented fea-

tures. The language is backward compatible with C, and code from the

two languages can be used with each other with little difficulty. C++

has found quick acceptance and is supported by a number of pre-built

specialized classes.

Java can be considered the third generation of the C/C++ family. It is

not backward compatible with C/C++ but was designed to be very

similar to these languages. The creators of Java intentionally left out

some of the features of C/C++ that have been problematic for pro-

grammers. Java is strongly object-oriented. In fact, one cannot create

Java code that is not object-oriented. Java’s portability is a key advan-

tage and is the reason why Java is often used for Web development.

1.6 PLATFORM INDEPENDENCE OF JAVA

We are already familiar how to compile a C or C++ program. With

Programming in Java 13

Introduction toJava Unit 1

most programming languages, you either compile or interpret a program

so that you can run it on your computer. The Java programming

language is unusual in that a program is both compiled and interpreted.

It means - Java combines both these approaches thus making

Java a two-stage system. The Java development environment has

two parts : a Java compiler and a Java interpreter.

In the Java programming language, all source code is first written in

plain text files ending with the .java extension. Those source files are
then compiled into .class files by the javac compiler. With the compiler,

first you translate a program into an inter-mediate code called Java

bytecodes. Bytecodes are not machine instructions and therefore, in

the second stage, Java interpreter generates machine code that can

be directly executed by the machine that is running the Java program.

The interpreter parses and runs each Java bytecode instruction on the

computer. Compilation happens just once; interpretation occurs each

time the program is executed.

 myProgram.java

Compile

myProgram.class

Interpreter

Fig. 1.1 A Java program first compiled and then interpreted

Java bytecodes help make “write once, run anywhere” possible. You

can compile your program into bytecodes on any platform that has a

Java compiler. The bytecodes can then be run on any implementation

of the Java VM. That means that as long as a computer has a Java

VM, the same program written in the Java programming language can

run on Windows 2000, a Unix workstation, or on an iMac, as shown

in Fig 1.2

 01011100101

14 Programming in Java

Unit 1 Introduction toJava

 class HelloWorld {
 Public static void main(String[] args) {
 System.out.printIn(“Hello World !”);
 }
 }

HelloWorld.java

Compiler

JVM JVM JVM

Win32 Unix MacOS

Fig1.2 Program written once and can run on almost any plateform

Normally, when you compile a program written in C or C++ or in most

other languages, the compiler translates your program into machine

codes or processor instructions. Those instructions are specific to the

processor your computer is running—so, for example, if you compile

your code on a Pentium system, the resulting program will run only on

other Pentium systems. If you want to use the same program on

another system you have to go back to your original source, get a

compiler for that system, and recompile your code.

1.7 JAVA ENVIRONMENT

Java environment includes a large number of development tools and

hundreds of classes and methods. The development tools are part of

NOTE

Java Virtual Machine
(JVM)

Java compiler produces
an intermediate code
known as bytecode for a
machine that does not
exist. This machine is
called the JVM and it
exists only inside the
computer memory. The
bytecodes are also known
as virtual machine code
which are not the actual
machine code. The actual
machine codes are
generated by the Java
interpreter only.

Programming in Java 15

Introduction toJava Unit 1

the system known as Java development Kit (JDK) and the classes

and methods are part of the Java Standard Library (JSL), also known

as the Application Programming Inteface (API).

Java development Kit

The Java development Kit comes with a collectlion of tools that

are used for development and running Java programs. Some of they

are :

 java The loader for Java applications. This tool is an interpreter

and can interpret the class f iles generated by

the javac compiler.

 javac The compiler, which converts source code into Java

bytecode

 jar The archiver, which packages related class libraries into

a single JAR file.

 javadoc The documentation generator, which automatically

generates documentation from source code comments

 jdb The Java debugger

 jps The process status tool, which displays process

information for current Java processes

 javap The class file disassembler

appletviewer This tool can be used to run and debug Java applets

without a web browser.

 javah The C header and stub generator, used to write native

methods

An application programming interface (API) is an interface

16 Programming in Java

Unit 1 Introduction toJava

implemented by a software program to enable interaction with other

software, similar to the way a user interface facilitates interaction

between humans and computers. Java APIs include hundreds of

classes and methods grouped into several functional packages. Most

commonly used packages are :

 Language support package

 Utility package

 Input/Output Package

 Networking Package

 AWT(Abstract Window Tool Kit) Package

 Applet Package

1.8 INSTALLING THE JAVA SDK

Java is a programming language that allows programs to be

written that can then be run on more than one type of

operating system. A program written in Java can run on

Windows, UNIX, Linux etc. as long as there is a Java runtime

environment installed.

For the first time, you just want to run Java programs so, download

the Java Runtime Environment, or JRE. Suppose, you want to develop

applications for Java, download the Java Development Kit, or JDK.

The JDK includes the JRE, so you do not have to download both

separately.

You can download the JDK from the Sun Microsystems, free of charge

by using this URL http://java.sun.com/javase/downloads/index.jsp . The

first download page should look like the top page shown in fig 1.3.

Programming in Java 17

Introduction toJava Unit 1

Fig 1.3 Download page for JDK

Click on the Download JDK tab shown, and this will save the

jdk-6u18-windows-i586.exe file on your computer.

After the download is complete, for installing the software, double click

the .exe file, and this will automatically install the software by giving

some instruction.

The JDK has the diectory structure as shown in the fig 1.4.

To compile a Java program on the command line, you will use the

command javac and to run a compiled program on the command line

you will use the java command. These two commands are executed

by running the javac.exe and java.exe programs that are located in

the bin folder of the folder jdk1.6.0_18 in C drive. For your operating

system (e.g. Windows or Linux) to be able to run these programs, you

have to tell it where they are i.e. you can set the PATH variable if you

want to be able to conveniently run the JDK executables (javac.exe,

java.exe, javadoc.exe, etc.) from any directory.

18 Programming in Java

Unit 1 Introduction toJava

 Fig. 1.4 JDK directory structure

If you don't set the PATH variable, you need to specify the full path to

the executable every time you run it, such as:

C:> "\Program Files\Java\jdk1.6.0_<version>\bin\javac" MyClass.java

Procedure for setting the PATH variable :

 a) Click Start > Control Panel > System on Windows XP or

Start > Settings > Control Panel > System on Windows 2000.

 b) Click Advanced > Environment Variables.

 c) Add the location of bin folder of JDK installation for PATH in User
Variables and System Variables.

i) For adding User variable Click New and type

 Variable name - PATH

 Variable value - C:\Program Files\Java\jdk1.6.0_18\bin

Programming in Java 19

Introduction toJava Unit 1

Fig 1.5 Setting the User variable

ii) For adding the System variable first select the path variable, click

on Edit tab and add the above variable value (which we have add

for User variable) by giving ; to the existing values. Figure for setting

the system variable is shown below :

Fig. 1.6 Setting the System Variable

20 Programming in Java

Unit 1 Introduction toJava

1.9 CREATING AND RUNNING JAVA PROGRAMS

So far you have learn a few basic about Java and the way of installing

the Java SDK. Now, we will concentrate how to write programs using

Java programming language. We can develop two types of Java Pro-

grams :

 Stand alone applications

 Java applets

Stand alone applications are java programs that can carry out certain

tasks on local computer. Java applets are small programs that are

used to developed Internet applications. Java applets can be downloaded

from a Web server and run on your computer by a Java-compatible

Web browser, such as Netscape Navigator or Microsoft Internet

Explorer. We will discuss about the Java applets in next unit.

We are already familiar, how to write programs and how to compile

and run them. In case of Java also, we will follow the three steps

givlen below :

 Create a source file. A source file contains text, written in the

Java programming language, that you and other programmers

can understand. You can use any text editor (e.g. Notepad) to

create and to edit source files.

 Compile the source file into a bytecode file. The compiler

takes your source file and translates the text into instructions

that the Java VM can understand. The compiler converts these

instructions into a bytecode file.

 Run the program contained in the bytecode file. The Java

interpreter installed on your computer implements the Java VM.

This interpreter takes your bytecode file and carries out the

instructions by translating them into instructions that your

computer can understand.

Let us try to write the following simple Java program using Notepad:

Programming in Java 21

Introduction toJava Unit 1

class Test

 {

public static void main(String[] args)

 {

 System.out.println("I am A Simple Program!");

 }

 }

After typing the program, save it in a folder named as JavaPrograms
in C drive by giving the file name same as the class name (here it is

Test) with the extension .java. Here, in our example the name of our

file will be Test.java. The following figure shows how you will save.

Fig.1.7 Saving Test.java file

For compiling the source file, from the Start menu select the

Command Prompt. Change your current directory to the one in which

your file is located. For example, we have created the directory

JavaPrograms in the C drive where we keeps the source files, so we

need to change the current directory by typing(press Enter) the following

command :

cd \JavaPrograms

22 Programming in Java

Unit 1 Introduction toJava

After entering the above command your Command Prompt will looks

like the following figure 1.8.

Now, for compiling the source file i.e. Test.java enter the following

command at Command Prompt -

javac Test.java

If your prompt reappears without error messages, then you have

successfully compiled your program. It means the compiler has

generated a Java bytecode file Test.class in the same directory. You

can see the .class file by typing dir command at Command Prompt

as shown in the Fig. 1.8.

Fig. 1.8 Compiling a Java Program

Now, you can run your program by typing the following command -

java Test

Fig. 1.9 shows the result what you will see -

Programming in Java 23

Introduction toJava Unit 1

Fig. 1.9 Running a Java Program

Class Declaration

A class is the basic building block of an object-oriented language,

such as the Java programming language. The above Java program

consists of a main class, named Test, which contains a main function,

named main(). The following bold text begins the class definition block

for the application :

class Test
 {
 public static void main(String[] args)

{
 System.out.println("I am A Simple Program!");
}

 }

The main() Method or Fuction

The following bold text begins the definition of the main method :

 class Test
 {
 public static void main(String[] args)

 {
 System.out.println("I am A Simple Program!");
 }

 }

24 Programming in Java

Unit 1 Introduction toJava

Every Java program must include the main() function declared like

this:

public static void main(String[] args)

Conceptually, this is similar to the main() function in C / C++ and

it's the entry point for your application and will subsequently invoke

all the other methods required by your program.

The main method declaration starts with three modifiers whose

meanings are given below :

public : means allows any class to call the main method

static : means that the main method is associated with the Test class

as a whole instead of operating on an instance or object of

the class

void : indicates that the main method does not return a value

As you can see from the declaration of the main() function,

public static void main(String[] args)

it accepts a single argument i.e. String[] means an array of elements

of type String. The name of this array is args (for “arguments”).This

array is the mechanism through which the Java Virtual Machine passes

information to your application.

The Output Line

The only executable statement in the program is

System.out.println("I am A Simple Program!");

This is similar to the “printf()” statement of C or “cout <<“ of C++.

The printIn method is a member of the out object, which is a static

data member of System class. This line prints the string -

I am A Simple Program!

to the screen. The method printIn always appends a newline character

to the end of the string. This means that every output will be start on

Programming in Java 25

Introduction toJava Unit 1

a new line. Always remember that every java statement must end with

a semicolon.

CHECK YOUR PROGRESS

1. What command invokes the Java compiler from the command
line?
..
..
..

2. What program usually runs a Java applet ? Name another program
that can run a Java applet.
..
..
..

3. What is a Java virtual machine ?
..
..
..

4. What kind of files contain Java bytecode ?
..
..
..

5. What is JDK ?
..
..
..

1.10 LET US SUM UP

Java is purely object-oriented. Java borrows C++ syntax, but avoids

many of C++’s problem areas. Java produces programs that are robust

and secure. The Java development environment has two parts : a

Java compiler and a Java interpreter. To compile a Java program on

the command line, use the command javac and to run a compiled

program on the command line use the java command. There are two

26 Programming in Java

Unit 1 Introduction toJava

categories of Java programs : Java applications and Java applets.

Applets are Java programs that are downloaded and run as part of a

Web page. Applets can create animations, games, interactive programs,

and other multimedia effects on Web pages. Every Java program must

include the main() function declared like this: public static void

main(String[] args).

1.11 ANSWERS TO CHECK YOUR
PROGRESS

 1. javac

 2. Browsers usually run Java applets, though several programs

(including appletviewer and HotJava) can also run Java applets.

 3. A Java virtual machine is a software system that translates and

executes Java bytecodes

 4. A Java source code file is saved in a file with the extension

.java
 5. JDK stands for Java Development Kit. It describes the set of

files that can be downloaded from Sun Microsystems for

developing Java applications. It includes the Java compiler and

the Java API.

1.12 FURTHER READINGS

 1.Java Programming Language Handbook by Anthony Potts,

David H. Friedel Jr. , Coriolis Group Books

 2.Programming with Java- A Primer by E Balagurusamy, Tata

McGrawHill

1.13 MODEL QUESTIONS

 1. Describe any three basic features of Java programming

language.

Programming in Java 27

Introduction toJava Unit 1

 2. Why Java is called a platform independent language ?

 3. How Java is mmore secure than other programming

language ?

 4. What is a Java applet ? What is its function ?

 5. How is Java strongly associated with the Internet ?

 6. What is the task of the main() function in a Java program ?

 7. Describe the typical structure of a Java program.

 8. Write short notes onthe following :

a) Java virtual machine

b) Java applets

 9. Write and run a program that initializes a String object with

the text ‘KKHSOU’ and then print it on three separate line.

 10. Write and run a Java program that prompt the user for his or

her last name and first name separately and then prints the

name like this :

Enter your last name : Barman

Enter your first name : Hemanga

Hello, Hemanga Barman

UNIT 2 PROGRAMMING BASIC

UNIT STRUCTURE
2.1 Learning Objectives

2.2 Introduction

2.3 Java Tokens

2.4 Variables

 2.4.1 The Scope of Variables

2.5 Constants

2.6 Data Types

2.7 Operators and Expressions

2.8 Control Flow Statements

 2.8.1 Decision Making Statements

 2.8.2 Looping

 2.8.3 Branching Statements

2.9 Let Us Sum Up

2.10 Answers to Check Your Progress

2.11 Further Readings

2.12 Possible Questions

2.1 LEARNING OBJECTIVES
After going through this unit, you will be able to :

 learn about Java tokens

 learn about the variables, constants and data types in Java

 declare and define variables in Java

 learn about the various operators used in Java programming

 describe and use the control flow statements in Java

2.2 INTRODUCTION

The previous unit is an introductory unit where you have acquainted

with the object-oriented features of the programming language Java.

The installantion procedure of Java SDK is also described in the unit.

You have learnt how to write, save, compile and execute programs in

Java from the previous unit.

28 Programming in Java (Block 1)

In this unit we will discuss the basics of Java programming language

which include tokens, variables, data types, constants etc. This might

be a review for learners who have learnt the languages like C/C++

earlier. We extend this discussion by adding some new concepts

associated with Java. Different control flow statements like if, if-else,

while, for, break, continue etc. will also be covered in this unit.

2.3 JAVA TOKENS

The smallest individual units in a program are known as tokens. A

Java program is basically a collection of classes. There are five types

of tokens in Java language. They are: Keywords, Identifiers, Literals,

Operators and Separators.

 Keywords: Keywords are some reserved words which have

some definite meaning. Java language has reserved 60 words as

keywords. They cannot be used as variable name and they are

written in lower-case letter. Since Java is case-sensitive, one can

use thse word as identifiers by changing one or more letters to

upper-case. But generally it should be avoided. Java does not

use many keywords of C/C++ language but it has some new

keywords which are not present in C/C++. A list of Java

keywords are given in the following table:

Programming in Java (Block 1) 29

Programming Basic Unit 2

abstract
case
const
else
float
if
int
null
protected
static
threadsasafe
try

boolean
cast
continue
extends
for
implements
interface
operator
public
super
throw
var

break
catch
default
false
future
import
long
outer
rest
switch
throws
void

byte
char
do
final
generic
inner
native
package
return
syncrhronized
transient
volatile

byvalue
class
double
finally
goto
instanceof
new
private
short
this
true
while

Table 2.1 : Java Keywords

30 Programming in Java

Unit 2 Programming Basic

 Identifiers : Java Identifers are used for naming classes, meth-

ods, variables, objects, labels in a program. These are actually

tokens designed by programmers. There are a few rules for

naming the identifiers. These are:

 Identifier name may consists of alphabets, digits, dolar

($) character, underscore(_).

 Identifier name must not begin with a digit

 Upper case and lowercase letters are distinct.

 Blank space is not allowed in a identifier name.

 They can be of any length.

While writing Java programs, the following naming conventions should

be followed by programmers :

 All local and private variables use only lower-case letters. Under-

score is combined if required. For example,

total_marks

average

 When more than one word are used in a name, the second and

subsequent words are marked with a leading upper-case letter.

For example,

dateOfBirth,

totalMarks,

studentName

 Names of all public methods and interface variables start with a

leading lower-case letters. For example,

total, average

 All classes and interfaces start with a leading upper-case letter.

For example,

HelloJava

Employee

ComplexNumber

Programming in Java 31

Programming Basic Unit 2

 Variables that represent constant values use all upper-case letters

and underscore between word if required. For example,

PI

RATE

MAX_VALUE

 Literals: Literals in Java are a sequence of characters such as

digits, letters and other characters that represent constant values

to be stored in a variable.

 Operators: An operator is a symbol that takes one or more

arguments and opeates on them to produce a result. We will

explain various operators in section 2.7.

 Separators: Separators are symbols used to indicate where

groups of code are arranged and divided. Java separators are as

follows:

{ } Braces

() Parentheses

[] Brackets

; Semicolon

, Comma

. Period

2.4 VARIABLES

A variable is an identifier that denotes a storage location where a value

of data can be stored. The value of a variable in a particular program

may change during the execution of the program.

We must provide a name and a type for each variable we want to use

in our program. The variable’s name must be a legal identifier. The

variable’s type determines what values it can hold and what operations

can be performed on it. Some valid variable names are: sum,

student_age, totalMarks etc. The rules for naming a variable are same

as for the the identifiers which are already discussed in the previous

32 Programming in Java

Unit 2 Programming Basic

section. Blank space is not allowed in a variable name. Like other

language C, C++ , the general syntax of the variable declaration in

Java looks like this:

type name ;

2.4.1 THE SCOPE OF VARIABLES

In addition to the name and the type that we explicitly give to a

variable, a variable has scope. The section of code where the

variable’s simple name can be used is the variable’s scope.

The variable’s scope is determined implicitly by the location of

the variable declaration, that is, where the declaration appears

in relation to other code elements. We will learn more about the

scope of Java variables in this section.

Java variables are categorized into three groups according to

their scope. These are: local variable , instance variable and

class variable.

 Local variables are variables which are declared and used

inside methods.Outside the method definition they are not

available for use and so they are called local variables.

Local variables can also be declared inside program blocks

that are defined between an opening { and a closing brace

}. These variables are visible to the program only.

 Instance variables are created when the class objects

are instantiated. They can take different values for each

object.

 Class variables are global to a class and belong to the

entire set of object that class creates. Only one memory

location is reserved for each class variable. Instance and

class variables are declared inside a class.

2.5 CONSTANTS

While a program is running, different values may be assigned to a

variable at different times (thus the name variable, since the values it

Programming in Java 33

Programming Basic Unit 2

contains can vary), but in some cases we donot want this to happen.

If we want a value to remain fixed, then we use a constant. Constants

in Java refer to fixed values that donot change during the execution of

a program. A constant is declared in a manner similar to a variable

but with additional reserved word final. A constant must be assigned

a value at the time of its declaration. Thus, the general syntax is:

final type name = value ;

Here’s an example of declaring some constants:

final double PI = 3.14159;

final int PASS_MARK = 200 ;

Java supports several types of contants such as Integer constants,

Real constants, Single Character constants, String constants,

Backslash Character constants.

 Integer constant : An integer constant refers to a sequence of

dig its. For example, Decimal integer constants: 5, -5, 0, 254321

Octal: 0, 025, 0125

Hexadecimal: 0X2, 0X9F, Ox etc.

 Real constant : Real or floating point constants are represented

by numbers containing fractional parts. For example,

0.125, -.25, 124.75, .8, 450.,-85 etc.

Exponential notation: 1.5e+4, 0.55e4 etc.

 Single Character constant : Character constant contains a

single character enclosed within a pair of single quote marks.

For example,

'1' , '15' , 'A', 'c' , ' ' , ' ; ' etc.

 String constant : It is a sequence of characters enclosed be-

tween double quotes. Characters may be alphabets, digits,

special characters, blank spaces. For example,

"2010", "KKSHOU", "3+4", "Hello Java", "$5", "A"

34 Programming in Java

Unit 2 Programming Basic

 Backslash Character constant : Java supports some backslash

character constants that are used in output methods. These are

also known as escape sequences. For example,

' \b ' back space

' \n ' new line

' \f ' form feed

' \r ' carriage return

' \t ' horizontal tab

' \' ' single quote

' \ " " ' double quote

' \\ ' backslash

2.6 DATA TYPES

Every variable must have a data type. A data type determines the

values that the variable can contain and the operations that can be

performed on it. A variable’s type also determined how its value is

stored in the computer’s memory. The JAVA programming language

has the following categories of data types(Fig 2.1):

 Data Types in
JAVA

Primitive
(Intrinsic)

Non-Primitive
(Derived)

Numeric Non-Numeric Classes

Interface Integer Floating Point Character Boolean

Arrays

Fig. 2.1 : Data types in Java

A variable of primitive type contains a single value of the appropriate

size and format for its type: a number, a character, or a boolean value.

Primitive types are also termed as intrinsic or built-in types. The primitive

types are described below:

Programming in Java 35

Programming Basic Unit 2

 Integer type

Integer type can hold whole numbers like 1,2, 3,.... -4, 1996 etc. Java

supports four types of integer types: byte, short, int and long. It

does not support unsigned types and therefore all Java values are

signed types. This means that they can be positive or negative.

For example, the int value 1996 is actually stored as the bit pattern

00000000000000000000011111001100 as the binary equivalent of 1996

is 11111001100. Similary, we must use a byte type variable for storing

a number like 20 instead of an int type. It is because that smaller

data types require less time for manipulat ion.

We can specify a long integer by putting an ‘L’ or ‘l’ after the number.

‘L’ is preferred, as it cannot be confused with the digit ‘1’.

 Floating Point type

Floating point type can hold numbers contaning fractorial parts such

as 2.5, 5.75, -2.358. i.e., a series of digits with a decimal point is of

type floating point. There are two kinds of floating point storage in

Java. They are: float (Single-precision floating point) and double(Double-

precision floating point).

In general, floating point numbers are treated as double-precision

quantities. To force them to be in single-precision mode, we must

append ‘f’ or ‘F’ to the numbers. For example, 5.23F, 2.25f

 Character type

Java provides a character data type to store character constants in

memory. It is denoted by the keyword char. The size of char type is

2 bytes.

 Boolean type

Boolean type can take only two values: true or false. It is used when

we want to test a particular condition during the execution of the

program. It is denoted by the keyword boolean and it uses 1 byte of

storage.

36 Programming in Java

Unit 2 Programming Basic

The memory size and range of all eight primitive data types are given

in the following table 2.2 :

Type Size Minimum Value Maximum Value

byte 1 byte -128 127

short 2 bytes -32,768 32,767

int 4 bytes -2,147,483, 648 2,147,483,647

long 8 bytes -9,223,372,036,854,775,808 9,223,372,036,854,775,807

float 4 bytes 3.4e-038 3.4e+038

double 8 bytes 1.7e-308 1.7e+308

char 2 bytes a single Unicode character

boolean 1 byte a boolean value (true or false)

Table 2.2: Size and Range of Primitive type

In addition to eight primitive types, there are also three kinds of

non-primitive types in JAVA. They are also termed as reference or

derived types. The non-primitive types are: arrays, classes and

interfaces. The value of a non-primitive type variable, in contrast to

that of a primitive type, is a reference to (an address of) the value or

set of values represented by the variable.These are discussed later as

and when they are encountered.

CHECK YOUR PROGRESS 1

1. Which of the following are valid variable names?
char, float, anInt, p, 4, total-marks, total_matks, sum10digit,
num2, MARKS, super

..

..

..
2. What are the eight Java primitive types?

..

..

..

Programming in Java 37

Programming Basic Unit 2

3. Write true or false :

(i) A constant is declared in a manner similar to a variable
but with additional reserved word final. (True /False)

(ii) Boolean and it uses 2 bytes of storage. (True /False)

(iii) Array is an example of non-primitive type. (True /False)
(iv) Identifier name must not begin with a digit. (True /False)

(v) Variable name may consists of only alphabets and
digits. (True /False)

2.7 OPERATORS AND EXPRESSIONS

Operators are special symbols that are commonly used in expressions.
An operator performs a function on one, two, or three operands. An
operator that requires one operand is called a unary operator. For
example, ++ is a unary operator that increments the value of its operand
by 1. An operator that requires two operands is a binary operator. For
example, = is a binary operator that assigns the value from its right-
hand operand to its left-hand operand. And finally, a ternary operator is
one that requires three operands. The Java programming language
has one ternary operator (?:) .

Expressions are the simplest form of statement in Java that actually
accomplishes something. Expressions are statements that return a
value.

Many Java operators are similar to those in other programming
languages. Java supports most C++ operators. In addition, it supports
a few that are unique to it. Operators in Java include arithmetic,
assignment, increment and decrement, Relational and logical
operations. This section describes all these things.

Arithmetic Operators : Java has five operators for basic arithmetic
(Table 2.3):

Operator Meaning Example
+ Addition 2 + 3
- Subtraction 5 - 2
* Multiplication 2 * 3
/ Division 14 / 4

% Modulus 14 % 4

Table 2.3. Arithmetic operators

38 Programming in Java

Unit 2 Programming Basic

In the table, each operator takes two operands, one on either side of

the operator. Integer division results in an integer. Because integers

don not have decimal fractions, any remainder is ignored. The

expression 14 / 4, for example, results in 3. The remainder 2 is ignored

in this case. Modulus (%) gives the remainder once the operands

have been evenly divided. For example, 14 % 4 results in 2 because

4 goes into 14 three times, with 2 left over. A sample program for

arithmetic operation is given below:

//Program 1: OperatorDemo.java

public class OperatorDemo

{

 public static void main(String[] args){

 int a = 5, b =3;

 double x = 25.50, y = 5.25;

 System.out.println("Variable values are :\n");

 System.out.println(" a = " + a);

 System.out.println(" b = " + b);

 System.out.println(" x = " + x);

 System.out.println(" y = " + y);

//Addition

 System.out.println("\nAddition...");

 System.out.println(" a + b = " + (a + b));

 System.out.println(" x + y = " + (x + y));

//Subtraction

 System.out.println("\nSubtraction...");

 System.out.println(" a - b = " + (a - b));

 System.out.println(" x - y = " + (x - y));

//Multiplication

 System.out.println("\nMultiplication...");

 System.out.println(" a * b = " + (a * b));

 System.out.println(" x * y = " + (x * y));

//Division operation

 System.out.println("\nDivision...");

 System.out.println(" a / b = " + (a / b));

Programming in Java 39

Programming Basic Unit 2

System.out.println(" x / y = " + (x / y));

//Modulus operation

 System.out.println("\nModulus...");

 System.out.println(" a % b = " + (a % b));

 System.out.println(" x % y = " + (x % y));

 }

}

The output of the above program will be:

Assignment Operators :

Assignment operators are used to assign the value of an expression to a
variable. The usual assignment operator is ‘=’. The general syntax is:

variableName = value;

For example, sum = 0; // 0 is assigned to the variable sum

x = x + 1;

Like C/C++, Java aslo supports the shorthand form of assignments. For
example, the statement x = x + 1; can be written as x += 1; in shorthand
form.

40 Programming in Java

Unit 2 Programming Basic

Increment and Decrement Operators :

The unary increment and decrement operators ++ and -- comes in two
forms, prefix and postfix. They perform two operations. They increment
(or decrement) their operand, and return a value for use in some larger
expression.

In prefix form, they modify their operand and then produce the new value.
In postfix form, they produce their operand’s original value, but modify the
operand in the background. For example, let us take the following two
expressions:

y = x++;
y = ++x;

These two expressions give very different results because of the difference
between prefix and postfix. When we use postfix operators (x++ or x--), y
gets the value of x before before x is incremented; using prefix, the value
of x is assigned to y after the increment has occurred.

Relational Operators :

Java has several expressions for testing equality and magnitude. All of
these expressions return a boolean value (that is, true or false). Table 2.4
shows the relational operators:

Operator Meaning Example

== Equal x == 5
!= Not equal x != 10
< Less than x < 7
> Greater than x > 4
<= Less than or equal to y <= 8
>= Greater than or equal to z >= 15

Table 2.4. Relational operators

Logical Operators :

Expressions that result in boolean values (for example, the Relational

operators) can be combined by using logical operators that represent

the logical combinations AND, OR, XOR, and logical NOT.

For AND operation, the && symbol is used. The expression will be

Programming in Java 41

Programming Basic Unit 2

true only if both operands tests are also true; if either expression is

false, the entire expression is false.

For OR expressions, the || symbol is used. OR expressions result in

true if either or both of the operands is also true; if both operands are

false, the expression is false.

In addition, there is the XOR operator ^, which returns true only if its

operands are different (one true and one false, or vice versa) and

false otherwise (even if both are true).

For NOT, the ! symbol with a single expression argument is used.

The value of the NOT expression is the negation of the expression; if

x is true, !x is false.

Bitwise Operators :

Bitwise operators are used to perform operations on individual bits in

integers. Table 2.5 summarizes the bitwise operators available in the

JAVA programming language. When both operands are boolean, the

bitwise AND operator (&) performs the same operation as logical AND

(&&). However, & always evaluates both of its operands and returns

true if both are true. Likewise, when the operands are boolean, the

bitwise OR (|) performs the same operation as is similar to logical OR

(||). The | operator always evaluates both of its operands and returns

true if at least one of its operands is true. When their operands are

numbers, & and | perform bitwise manipulations.

42 Programming in Java

Unit 2 Programming Basic

Operator Meaning

& Bitwise AND
| Bitwise OR
^ Bitwise XOR
<< Left shift
>> Right shift
>>> Zero fill right shift
~ Bitwise complement
<<= Left shift assignment (x = x << y)
>>= Right shift assignment (x = x >> y)
>>>= Zero fill right shift assignment (x = x >>> y)
x&=y AND assignment (x = x & y)
x|=y OR assignment (x + x | y)
x^=y NOT assignment (x = x ^ y)

Table 2.5: Bitwise operators in Java

A shift operator performs bit manipulation on data by shifting the bits

of its first operand right or left. For example if op1 and op2 are two

operands, then the statement

op1 << op2;

shift bits of op1 left by distance op2; fills with zero bits on the right-

hand side and op1 >> op2; shift bits of op1 right by distance op2; fills

with highest (sign) bit on the left-hand side.

op1 >>> op2;

shift bits of op1 right by distance op2; fills with zero bits on the left-

hand side. Each operator shifts the bits of the left-hand operand over

by the number of positions indicated by the right-hand operand. The

shift occurs in the direction indicated by the operator itself.

For example, the statement 25 >> 1; shifts the bits of the integer 25

to the right by one position. The binary representation of the number

25 is 11001. The result of the shift operation of 11001 shifted to the

right by one position is 1100, or 12 in decimal.

The Java programming language also supports the following

operators (Table 2.6):

Programming in Java 43

Programming Basic Unit 2

Operator Description

?: Conditional operator (a ternary operator)

[] Used to declare arrays, to create arrays, and to

access array elements

. Used to form qualified names

(params) Delimits a comma-separated list of parameters

(type) Casts (converts) a value to the specified type

new Creates a new object or array

instanceof Determines whether its first operand is an instance

of its second operand

Table 2.6: Other Operators

CHECK YOUR PROGRESS 2

1. Write true or false :
(i) Logical XOR operator returns true only if its operands are

different.
(ii) Logical AND operator returns true only if both operands tests

are false.
(iii) x+=7; has the same effect as x = x+7;
(iv) && is the symbol of logical AND and & is the symbol of bitwise

AND operator.

2. Determine the value of each of the following logical expressions if
x = 5, y =10 and z = - 6
(i) x > y && x < z
(ii) x == z || y > x
(iii) x < y && x > z

2.8 CONTROL FLOW STATEMENTS

When we write a program, we type statements into a file. Without

control flow statements, the compiler executes these statements in

the order they appear in the file from left to right, top to bottom in a

sequence. We can use control flow statements in our programs to

44 Programming in Java

Unit 2 Programming Basic

conditionally execute statements, to repeatedly execute a block of

statements, and to otherwise change the normal, sequential flow of

control.

Flow control in Java uses similar syntax as in C and C++. The Java

programming language provides several control flow statements, which

are listed below :

Decision making : if, if-else, switch-case

Looping : while, do-while, for

Branching : break, continue, label :, return

2.8.1 Decision Making Statements

While programing, we have a number of situations where we

may have to change the order of execution of statements based

on certain cosditions/decisions. This involves a kind of decision

making to see whether a particular condition has occured or not

and then direct the computer to execute certain statements

accordingly. The statements used to handle those situation are

called decision making statement.

The if and if-else Statements

The if statement enables our program to selectively execute

other statements, based on some criteria. The syntax of if

statement is:

if (boolean_expression)
{
 statement-block ;
}
statement;

The statement-block may be a single statement or a group of

statements. If the boolean-expression evaluates to true, then the

block of code inside the if statement will be executed. If not the

Programming in Java 45

Programming Basic Unit 2

first set of code after the end of the if statement(after the closing

curly brace) will be executed. For example,

if (percentage>=40)
{
 System.out.println(“Pass“);
}

In this case, if percentage contains a value that is greater than or

equal to 40, the expression is true, and println() will execute. If

percentage contains a value less than 40, then the println() method

is bypassed. What if we want to perform a different set of statements

if the expression is false? We use the else statement for that.

The general syntax of if-else statement is:

 if (Boolean_expression)
 statement; //executes when the expression is true

 else
 statement; //executes when the expression is false

Let us consider the same example but at this time the output should

be Pass or Fail depending on percentage of marks. i.e., if percentage

is equal to or more than 40 then the output should be Pass; otherwise

Fail. This can be done by using an if statement along with an else

statement. Here is the segment of code :

if (percentage>=40)

 System.out.println(“Pass”);

else

 System.out.println(“Fail”);

When a series of decisions are involved, we may have to use more

than one if-else statements in nested form.

The switch statement

We have seen that when one of the many alternatives is to be selected,

we can design a program using if statements to control the selection.

However, the program becomes difficult to read and follow when the

number of alternatives increases. Like C/C++, JAVA has a built-in

multiway decision statement known as a switch.

46 Programming in Java

Unit 2 Programming Basic

The switch statement provides variable entry points to a block. It tests

the value of a given variable or expression against a list of case

values and when a match is found, a block of statements associated

with that case is executed. The general form of switch statement is

as follows :

switch(expression)
{

case value : statements;
 break;

case value : statements
 break;

...
default : statements // optional default section

 break;
}

The expression is evaluated and compared in turn with each value

prefaced by the case keyword. The values must be constants (i.e.,

determinable at compile-time) and may be of type byte, char, short,

int, or long.

2.8.2 Looping

In looping, a sequence of statements are executed until some

conditions for the termination of the loop are satisfied. The

process of repeatedly executing a block of statements is known

as looping. At this point, we should remember that Java does

not support goto statement. Like C/C++, Java also provides the

three different statements for looping. These are:

 while

 do-while

 for

The while and do-while statements

We use a while statement to continually execute a block while

Programming in Java 47

Programming Basic Unit 2

a condition remains true. The general syntax of the while

statement is:

while(expression)
{
 statement(s);
}

First, the while statement evaluates expression , which must

return a boolean value. If the expression returns true, the while

statement executes the statement(s) in the while block. The

while statement continues testing the expression and executing

its block until the expression returns false.

The Java programming language provides another statement that

is similar to the while statement : the do-while statement. The

general syntax of do-while is:

do
{
 statement(s);
}while (expression);

Statements within the block associated with a do-while are

executed at least once. Instead of evaluating the expression at

the top of the loop, do-while evaluates the expression at the

bottom. Here is the previous program rewritten to use do-while

loop.

A program of while loop is shown below :

48 Programming in Java

Unit 2 Programming Basic

Program 2.2: Fibo.java

class Fibo

{

 public static void main(String args[])

 {

 System.out.println("0\n1");

int n0=0,n1=1,n2=1;

while(n2<50)

{

System.out.println(n2);

n0=n1;

n1=n2;

n2=n1+n0;

}

System.out.println(n2);

 }

}

The output of the above program will be the Fibonacci series

between 0 to 50 (i.e., 0 1 1 2 3 5 8 13 21 34).

The for statement

The for statement provides a compact way to iterate over a

range of values. The general form of the for statement can be

expressed like this:

for (initialization; termination_condition; increment)
{
 statement(s);
}

The initialization is an expression that initializes the loop. It is

executed once at the beginning of the loop. The

termination_condition determines when to terminate the loop.

This condition is evaluated at the top of each iteration of the

Programming in Java 49

Programming Basic Unit 2

loop. When the condition evaluates to false, the loop terminates.

Finally, increment is an expression that gets invoked after each

iteration through the loop. All these components are optional. In

fact, to write an infinite loop, we can omit all three expressions:

for (; ;)

{

 // infinite loop

}

Often, for loops are used to iterate over the elements in an

array or the characters in a string. The following program segment

uses a for loop to calculate the summation of 1 to 50:

for (i =1; i <= 50 ; i + +)

{

 sum = sum + i ;

}

2.8.3 BRANCHING STATEMENTS

The Java programming language supports three branching

statements:

 The break statement

 The continue statement

 The return statement

The break statement

In JAVA, the break statements has two forms: unlabelled and

labelled. We have seen the unlabelled form of the break

statement used with switch earlier. As noted there, an unlabelled

break terminates the enclosing switch statement, and the flow of

control transfers to the statement immediately following the

switch. It can be used to terminate a for, while, or do-while loop.

A break (unlabelled form) statement, causes an immediate jump

out of a loop to the first statement after its end. When the break

statement is encountered inside a loop, the loop is immediately

50 Programming in Java

Unit 2 Programming Basic

exited and the program continues with the statement immediately

following the loop. When the loop is nested, the break would

only exit from the loop containing it. This means, the break will

exit only a single loop.

The continue statement

The continue statement causes an immediate branch to the

end of the innermost loop that encloses it, skipping over any

intervening statements. It is written as:

continue ;

A continue does not cause an exit from the loop. Instead, it

immediately initiates the next iteration. We can use the continue

statement to skip the current iteration of a for, while, or do-while

loop.

In Java, we can give a label to a block of statements. A label is any

valid Java variable name. To give a label to a loop, we have to place the

label name before the loop with a colon at the end. For example,

 loop1: for(...............)

 {

 }

We have seen that a simple break statement causes the control

to jump outside the nearest loop and a simple continue state-

ment returns the current loop. If we want to jump outside a

nested loop or to continue a loop that is outside the current one,

then we may have to use the labelled break and labelled con-

tinue statement. The labelled form of break and continue can be

used as follows:

Programming in Java 51

Programming Basic Unit 2

Program 2.3: breakDemo.java

class breakDemo

{

 public static void main(String[] args)

 {

 outer: for(int i=1;i<100;i++)

 {

 System.out.println(" ");

 if(i>=10)

 break;

 for(int j=1;j<100;j++)

 {

 System.out.print("* ");

 if(j==i)

 continue outer; //labelled continue

 }

 }

 }

}

The output of the above program will be like this:

The return statement

The last of the branching statements is the return statement. We can

use return to exit from the current method. The flow of control returns

to the statement that follows the original method call. The return

statement has two forms: one that returns a value and one that doesnot.

52 Programming in Java

Unit 2 Programming Basic

To return a value, simply put the value (or an expression that calculates

the value) after the return keyword:

return sum;

The data type of the value returned by return must match the type of

the method’s declared return value. When a method is declared void,

use the form of return that doesnot return a value:

return;

CHECK YOUR PROGRESS 3

1. What is wrong with this code :

switch(n){

 case 1: a=5;

 b=10;

 break;

 case 2:

 c=15;

 break;

 d=20;

}

2. Explain the difference between these three blocks of code

(i) if (a>5)

 if(a<10) System.out.println(a);

(i) if (a>5) System.out.println(a);

 if (a<10) System.out.println(a);

(iv) if (a>5) System.out.println(a);

 else System.out.println(a);

3. Write true or false:

(i) A program stops its execution when a break statement is

encountered.

Programming in Java 53

Programming Basic Unit 2

(ii) One if can have more than one else if clause.

(iii) A continue cause an exit from the loop

(iv) A break statement causes an immediate jump out of a loop to

the first statement after its end.

4. Write a Java program to display the multiplication table of a particular

number using for loop.

...

...

...

...

2.9 LET US SUM UP

In this unit we have discussed all the basic data types and operators

in Java and their use in expressions. The control flow statements are

the backbone of any programming language. Here, we have covered

the discussion of if, if-else, while, do-while and for statements with their

appropriate syntax. We have also seen how to use the break and

continue statements to skip or jump out of loop, if need be. We have

learnt to use the labelled form of break and continue in Java program-

ming.

The key points yoy are to keep in mind in this unit are:

 Java variables are categorized into three groups according to their

scope: local variable , instance variable and class variable.

 In Java, constants are declared in the manner similar to variables

but with additional reserved word final.

 Goto statement is not supported by Java programming language.

 In Java, break and continue statements can be used with a label.

54 Programming in Java

Unit 2 Programming Basic

2.10 ANSWERS TO CHECK YOUR
 PROGRESS

Check Your Progress- 1
1. anInt, p, total_marks, sum10digit, num2, MARKS

2. The eight Java primitive types are boolean, char, byte, short, int,

long, float and double

3. (i)True, (ii) False (iii) True (iv) True (v)False

Check Your Progress- 2

1. (i) True (ii) False (ii)True (iv) True

2.(i) FALSE (ii) TRUE (iii) TRUE

Check Your Progress - 3

1. The statement d=20; is unreachable

2. (i) the value of a is printed if a is greater than 5 but less than

 10 (i.e., 5 < a <10).

(ii) the value a is printed if a>5, and then again if a<10.

(iii) the value a is printed regardless of its value

3. (i) False (ii) True (iii) False (iv) True

4. class Multi

{

 public static void main(String args[])

 {

 System.out.println("\nMultiplication Table of 5\n");

int i,n=5;

 for(i=1;i<=10;i++)

 {

 System.out.println(n+"*"+i+"="+n*i);

 }

 }

 }

Programming in Java 55

Programming Basic Unit 2

2.11 FURTHER READINGS

1. “The Complete Reference -Java 2 ” by Herb Hchildt, McGraw-Hill

2. “JAVA How to Program”, Deitel & Deital, PHI Publication

3. “Programming with JAVA- a Primer ”, E.Balagurusamy, TATA

McGRAW Hill Publication.

2.12 MODEL QUESTIONS

1. (a) Consider the following code :

int x = 10;

int n = x++%5;

What are the values of x and n after the code is executed ?What are

the final values of x and n if instead of using the postfix increment

operator (x++), you use the prefix version (++x)?

(b) What is the value of i after the following code executes?

 int i = 8;

 i >>=2;

(c) What is the value of i after the following code executes?

 int i = 17;

 i >>=1;

2. What are the rules for naming a Java varibles?

3. What do you mean by looping? What are the different types of

loop in the Java programming language. Briefly explain with their

syntax.

4. What are the branching statements associted with the language

Java?

5. Compare the statements break and continue in terms of their

functions.

6. What are the different types of constants in Java? Explain with

examples.

56 Programming in Java

Unit 2 Programming Basic

7. What is scope of a variable?

8. Write a program that computes and displays the factorial for any

given number n.

9. Write a program to compute the sum of the digits of a given

integer number.

10. Write a program using while loop to reverse the digits of a given

number. For example, the number 2345 should be written as 5432.

11. Write a Java program to print the following output using for loop:

1

2 2

3 3 3

4 4 4 4

5 5 5 5 5

12. Write a Java program that will reverse a given number declared

as a constant in the program and display the reversed number.

UNIT 3: OOP IN JAVA

UNIT STRUCTURE
3.1 Learning Objectives
3.2 Introduction
3.3 Class Fundamentals
 3.3.1 Declaring and Defining a Class

3.3.2 Adding Methods to a Class
3.3.3 Creating Objects
3.3.4 Accessing Class Members

3.4 Constructors
 3.4.1 Default and Copy Constructor
 3.4.2 Overloading of Constructors
3.5 Passing Arguments to Methods
3.6 Recursive Method
3.7 Inheritance

3.7.1 Single Inheritance
3.7.2 Multilevel Inheritance

3.8 Modifiers
3.9 Final Keyword
3.10 Abstract Class and Method
3.11 Static Members
3.12 Let Us Sum Up
3.13 Answers to Check Your Progress
3.14 Further Readings
3.15 Model Questions

3.1 LEARNING OBJECTIVES
After going through this unit, you will be able to :

 learn how to write your own classes in Java
 access class members in Java
 learn to declare objects, pass arguments to methods
 learn to use recursive methods in Java
 learn the different types of Java modifiers
 describe and use constructors, copy constructor etc.
 learn and use the concept of inheritance in Java
 learn about abstract method and abstract class

 describe static members

Programming in Java (Block 1) 57

58 Programming in Java

Unit 3 OPP in Java

3.2 INTRODUCTION

We have already learnt the concepts of tokens, data types, variables,

constants, decision and control statements, operators etc. along with

their types as they relate to Java language.

Anything we wish to represent in a Java program must be encapsulated

in a class. Classes are the building blocks of a Java application. In

this unit, we will explore the object-oriented aspects of Java. We will

learn about the concept of classes in Java, how to access class

members, how to create instance of classses etc. Some other important

concepts like inheritance, super classes, contructors etc. are also

covered in this unit. At the end of this unit, we will acquiant you with

the concept of recursion.

3.3 CLASS FUNDAMENTALS

Classes provide a convenient method for grouping together logically

related data items and functions that work on them. A class can contain

methods or functions, variables, initialization code etc. In case of Java,

the data items are termed as fields and the functions are termed as

methods.

Class serves as a blueprint for making class instances, which are

runtime objects that implement the class structure. Thus, an object is

defined to be an instance of a class. An object consists of attributes

and behaviors. An attribute is a feature of the object, something the

object “has.” A behavior is something the object “does”.

3.3.1 DECLARING AND DEFINING A CLASS

A class in Java is declared using the class keyword. A source

code file in Java can contain exactly one public class, and the

name of the file must match the name of the public class with

a . java extension.

We can declare more than one class in a . java file, but at most

one of the classes can be declared public. The name of the

Programming in Java 59

OPP in Java Unit 3

source code file must still match the name of the public class.

If there are no public classes in the source code file, the name

of the file is arbitrary. The general form of a class definition is

as follows:

class classname

{
 type instanceVariable1;
 type instanceVariable2;

 type instanceVariableN;
 type methodname1(parameterList)
 {
 // body of method

 }
 type methodname2(parameterList)
 {
 // body of method

 }

 type methodnameN(parameterList)
 {
 // body of method

 }
}

Here, we can see that, there is no semicolon after closing brace

of class in Java. But in case of C++ language, class definition

ends with a semicolon. The data or variables, defined within a

class are called fields or instance variables as each instance

of the class (that is, each object of the class) contains its own

copy of these variables. Thus, the data for one object is separate

and unique from the data for another. The methods are used

60 Programming in Java

Unit 3 OPP in Java

for manipulating the instance variables(data items) contained in

the class. The methods and variables defined within a class are

collectively called members of the class. A class may contain

three kinds of members: fields, methods and constructors.

Constructor specify how the objects are to be created.

Java classes do not need to have a main() method. The general

form of a class does not specify a main() method. We only

specify one if that class is the starting point for our program.

The fields and methods of a class appear within the curly

brackets of the class declaration.

A class may not contain anything inside the curly brace

{ and }. Thus we can have empty classes in Java. An empty

class cannot do anything as it does not contain any properties.

But it is possible to create objects of such classes. The structure

of an empty class is as follows:

class classname
{
}

Let us consider another class Triangle which has two float type

instance variables base and height.

class Triangle

{
 float base; //instance variable base

 float height; //instance variable height

}

Until object of Triangle class is created, there is no storage

space has been created in the memory for these two variables

base and height. When an object of Triangle class is created,

memory will be allocated for each of these two fields.

Programming in Java 61

OPP in Java Unit 3

3.3.2 ADDING METHODS TO A CLASS

A method is a sequence of declarations and executable state-

ments encapsulated together like independent mini program. For

the manipulation of data fields inside a class we have to add

methods into the class. Method contains local variable declara-

tions and other Java statements that are executed when the

method is invoked.

 The name of the method, which can be any valid identifier

 Return value (i.e., the type of the value the method re-

turns)

 List of parameters, which appears within parentheses

 Definition of the method (i.e., the body of the method)

A Java application must contain a main() method whose signature

looks like this :

 public static void main(String args[])

 {

 // body;

 }

The meaning of the keywords public, static etc. are already

outlined in Unit-1. void indicates that the main() method has no

return value.

In Java, the definition (often referred to as the body) of a method

must appear within the curly brackets that follow the method

declaration. For example, let us add two methods in the Triangle

class.

class Triangle

{

 float base, height;

62 Programming in Java

Unit 3 OPP in Java

 void readData(float b, float h) //definition of method

 {

 base=b;

 height=h;

 }

 float findArea()//definition of another method

 {

 float area = 0.5*(base *height);

 return area;

 }

}

In the above code, the Triangle class demonstrates how to add

methods to a class. In the above class there are two methods,

readData() and findArea(). The method readData() has a

return type of void because it does not return any value. We

pass two float type values to the method which are then assigned

to the instance variables base and height. The method findArea()

calculates area of the triangle and returns the result. Here, we

can directly use base and height inside the method readData()

and findArea().

Let us consider another method primeCheck() for the illustration

of method. The following program tests a boolean method that

checks its arguments for primality. The main() method prints

those integers for which the checkPrime() returns true:

Program 3.1: checkPrime.java

class checkPrime

{

 public static void main(String [] args)

 {

 for(int i=0;i<50;i++)

 if(isPrime(i))

Programming in Java 63

OPP in Java Unit 3

 System.out.print(i+ " ");

 System.out.println();

 }

 static boolean isPrime(int n) //static method

 {

 if(n<2)

 return false;

 if(n==2)

 return true;

 if(n%2==0)

 return false;

 for(int j=3;j<=Math.sqrt(n);j=j+2)

 if(n%j==0)

 return false;

 return true;

 }

}

The output will give the prime numbers from 2 to 47 as follows:

3.3.3 CREATING OBJECTS

It is important to remember that a class declaration only creates

a template; it does not create an actual object. Java allocates

storage for an object when we create it with the new operator.

Creating an object is also referred to as instanting an object.

The new operator creates an object of the specified class and

returns a reference to that object.

64 Programming in Java

Unit 3 OPP in Java

Thus, the preceding code does not cause any objects of type

Triangle to come into existence. To create a Triangle object,

we will use a statement like the following:

Triangle t1 = new Triangle(); //t1 is an object of Triangle

class

Here, the Triangle() is the default constructor of the class. The

above statement can also be written by splitting it into to two

statements. This can be written as follows :

Triangle t1; // declares variable t1 to hold the object reference

t1 = new Triangle(); //assigns the object reference to the

//variable t1

Again, each time we create an instance of a class, we are

creating an object that contains its own copy of each instance

variable defined by the class. Thus, every Triangle object will

contain its own copies of the instance variables base and height.

3.3.4 ACCESSING CLASS MEMBERS

Now we can say that when an object is created, each object

contains its own set of variables. After creating objects of a

class, we should assign values to these variables in order to

use them in our program. Instance variables and methods cannot

be accessible directly outside the class. For this, we have to

use concerned object and the dot(.) operator. The dot operator

links the name of the object with the name of an instance variable

or method. The syntax of accessing class member is as follows:

objectName.instanceVariableName ;
objectName.methodName(parameterList);

For example, suppose we have created t1 object with the

following statement

Triangle t1 = new Triangle();

Programming in Java 65

OPP in Java Unit 3

Now to assign the value 20.5 to the base variable of t1, we

would use the following statement:

t1.base = 20.5;

This statement tells the compiler to assign the copy of base

that is contained within the t1 object the value of 20.5. Here is

a complete program that uses the Triangle class.

Program 3.2: Area.java

class Triangle

{

 double base, height;

 void readData(double b, double h) //definition of method

 {

 base=b;

 height=h;

 }

 double findArea()//definition of another method

 {

 double a = 0.5*(base *height);

 return a;

 }

}

class Area //class with the main() method

{

 public static void main(String args[])

 {

 double area1, area2;

 Triangle t1=new Triangle();

 Triangle t2=new Triangle();

 t1.base=20.5;

 t1.height=15.5;

 area1= t1.base * t1.height;

 t2.readData(30.0,15.0);

66 Programming in Java

Unit 3 OPP in Java

 area2=t2.findArea();

 System.out.println("Area of the first triangle is =

"+area1);

 System.out.println("\nArea of the second triangle is =

"+area2);

 }

}

The Triangle class has no main() method. So it cannot be

executed as Java program. We need a separate class that does

have a main() method. In the above program, the class Area

contains the main() method. The name of the file where we

write the program should have the name Area.java . If we execute

the program with the above data, the output will look like:

If we write these two classes Triangle and Area into two separate

files namely Triangle.java and Area.java, then these two files

should be saved in the same folder in the computer. To compile

Area.java program, we must first compile the Triangle class

as:

javac Triangle.java

This will create the bytecode file Triangle.class in the same

folder. Now, we can compile and execute the Area.java file with

the following statements: javac Area.java
java Area

If we look at the contents of the folder, we will find four files: the

source code and bytecode for Triangle and the source code and

bytecode for Area. The statements

Programming in Java 67

OPP in Java Unit 3

Triangle t1=new Triangle();

Triangle t2=new Triangle();

will create two Triangle objects t1 and t2 in memory, which

reserves memory for two base fields , two height fields, two

readData() methods and two findArea() methods. They are

distinguished by which reference we use. Each of the fields is

initialized in both objects using the dot operator with the following

statements:

t1.base=20.5;

t1.height=15.5;

The Triangle reference t1 points to the Triangle object whose

base is 20.5 and height is 15.5. The base and height field of t2

object is initialized to 30.0 and 15.0 with the statement

t2.readData(30.0,15.0);

To compute the area of the triangle t1, we can use any one of

the following statements:

area1= t1.base * t1.height;

area1=t1.findArea();

Similarly, for t2, we can use

area2=t2.base * t2.height;

area2=t2.findArea();

3.4 CONSTRUCTORS

It would be simpler and more concise to initialize an object when it is

first created. Java supports constructors that enable an object to initialize

itself when it is created. This section provides a brief introduction

about the Constructor and how constructors are overloaded in Java.

Constructor is always called by new operator. Constructors are

declared just like as we declare methods, except that the constructor

does not have any return type. The name of the constructors must be

68 Programming in Java

Unit 3 OPP in Java

the same with the class name where it is declared. It is called when

a new class instance is created, which gives the class an opportunity

to set up the object for use. Constructors, like other methods, can

accept arguments and can be overloaded but they cannot be inherited.

For example, let us consider the same Triangle class. We can replace

the readData() method by a constructor. This can be accomplished as

follows:

Program 3.3: TriangleArea.java

class Triangle

{

 double base, height;

 Triangle(double b, double h) //constructor with two arguments

 {
 base=b;
 height=h;
 }
 double findArea() //definition of method findArea()

 {

 double area = 0.5*(base *height);

 return area;

 }

}

class TriangleArea //class with the main() method

{

 public static void main(String args[])

 {

 Triangle t1=new Triangle(20.5, 15.5); // call of constructor

 double area1= t1.findArea();

 System.out.println("Area of the triangle is = "+area1);

 }

}

Programming in Java 69

OPP in Java Unit 3

The output of the program will be:

Area of the triangle is 317.75

The Triangle class contains a single constructor. We can recognize a

constructor because its declaration uses the same name as the class

and it has no return type. The constructor in the Triangle class takes

two arguments. The statement Triangle t1= new Triangle(20.5, 15.5);

provides 20.5 and 15.5 as values for those arguments.

3.4.1 DEFAULT AND COPY CONSTRUCTOR

There are two special kinds of constrcutors that a class may

have: a default constructor and a copy constructor.

The default constructor is what gets called whenever we create

an object by calling its constructor with no arguments. If we

donnot define a constructor for a class, a default constructor is

automatically created by the compiler. It initializes all instance

variables to default value(zero for numeric types, null for object

references, and false for booleans). There may be only one

default constructor in a class.

The copy constructor is a constructor whose only parameter

is a reference to an object of the same class to which the

constructor belongs. It is called copy constructor as it is used

to duplicate an existing object of the class.

Let us consider another example to illustrate these two

constructors:

Program 3.4: CircleArea.java

class Circle

{

 double radius;

 Circle() //default constructor

 {
 radius =10.0;

70 Programming in Java

Unit 3 OPP in Java

 }
 Circle(Circle c) //copy constructor

 {
 radius = c.radius;
 }
 double findArea() //for calculation of area

 {

 double area = 3.14 *radius *radius;

 return area;

 }

}

class CircleArea //class with the main() method

{

 public static void main(String args[])

 {

 double p_area,q_area;

 Circle p = new Circle(); //invokes the default constructor

 Circle q = new Circle(p); //invokes copy constructor

 p_area= p.findArea();

 q_area =q.findArea();

 System.out.println("Area of circle p = "+p_area);

 System.out.println("\nArea of circle q = "+q_area);

 }

}

Programming in Java 71

OPP in Java Unit 3

The output of the above program will be like this:

The statement Circle p = new Circle(); invokes the default

constructor and it creates a Circle object p with radius 10.0. The

statement Circle q = new Circle(p); invokes the copy

constructor and it also creates another Circle object q with the

same radius value 10.0. The object p and q are two separate

but equal objects. In the output we can see that the area of both

the circles are same. All fields in a class will automatically be

initialized with their type’s default values unless the constructor

explitcitly uses other values.

3.4.2 OVERLOADING OF CONSTRUCTORS

Overloading of constructors means multiple constructors in a

single class. Program 3.4 is also an example of constructor

overloading as there are two constructors in that program.

Constructor can be overloaded provided they should have different

arguments because Java compiler differentiates constructors on

the basis of arguments passed in the constructor.

Let us consider the following Rectangle class for the

demonstration of constructor overloading. After you going through

it the concept of constructor overloading will be more clear. to

you. In the example below we have written four constructors

each having different arguments types.

72 Programming in Java

Unit 3 OPP in Java

Program 3.5: ConstructorOverloading.java

class Rectangle
{

int l, b; // for int type length and breadth

float p, q; // for float type length and breadth

Rectangle(int x, int y) // two int type argument constructor

 {

 l = x;

 b = y;

 }

 int first() { //method

 return(l * b);

 }

Rectangle(int x) { //one int type argument constructor

 l = x;

 b = x;

 }

 int second() { //method

 return(l * b);

 }

Rectangle(float x) { //one float type argument constructor

 p = x;

 q = x;

 }

 float third()

 {

 return(p * q);

 }

Rectangle(float x, float y) {

 p = x;

 q = y;

Programming in Java 73

OPP in Java Unit 3

 }

 float fourth() {

 return(p * q);

 }

}

class ConstructorOverloading {

 public static void main(String args[]) {

Rectangle r1=new Rectangle(2,4);
int area1=r1.first();

System.out.println(“ Area in first constructor : “ + area1);

Rectangle r2=new Rectangle(5);
int area2=r2.second();

System.out.println(“\nArea in second constructor: “ + area2);

Rectangle r3=new Rectangle(2.0f);
float area3=r3.third();

System.out.println(“\nArea in third constructor: “ + area3);

Rectangle r4=new Rectangle(3.0f,2.0f);
float area4=r4.fourth();

System.out.println(“\nArea in fourth constructor: “ + area4);

 }

}

The output will be like this:

Constructor can also invoke other constructors with the this

and super keywords. We will discuss the first case here, and

return to that of the superclass constructor after we have talked

74 Programming in Java

Unit 3 OPP in Java

more about subclassing and inheritance. A constructor can invoke

another, overloaded constructor in its class using the reference

this() with appropriate arguments to select the desired

constructor. If a constructor calls another constructor, it must do

so as its first statement: this() calls another constructor in same

class. Often a constructor with few parameters will call a

constructor with more parameters, giving default values for the

missing parameters. We can use this to call other constructors

in the same class.

class Triangle

{

 double base, height;

 Triangle(double b,double h) {

 base = b;

 height=h;

 }

 Triangle(double b)
 {

 this(b, 20.50);
 }

}

In the above code, the class Triangle has two constructors. The

first, accepts arguments specifying the triangles’s base and

height. The second constructor takes just the base as an

argument and, in turn, calls the first constructor with a default

value 20.50 for height. We have considered a simple example

for clear understanding but the advantage of this approach is

that we can have a single constructor do all the complicated

setup work; other auxiliary constructors simply feed the

appropriate arguments to that constructor. The call to this() must

appear as the first statement in our second constructor. It should

be remembered that we can invoke a second constructor only

as the first statement of another constructor.

Programming in Java 75

OPP in Java Unit 3

3.5 PASSING ARGUMENTS TO METHODS

In Java, we can pass an argument of any valid Java data type into a

method similar to functions in other programming languages like C,

C++ etc. This includes simple data types such as characters, integers,

floats, doubles and boolean as well as complex types such as arrays,

objects etc. Arguments provide information to the method from outside

the scope of the method. A method in Java always specifies a return

type. The returned value can be a primitive type, a reference type, or

the type void , which indicates no returned value.

The declaration for a method or a constructor declares the number

and the type of the arguments for that method or constructor.

For example, let us consider the following method that computes the

area of a rectangle:

 int computeArea(int width, int height) //method header

 {

 int area; // area is a local variable

 area = width * height;

 return area;

 }

The first int indicates that the value this method returns is going to be

an integer. The name of the method is “computeArea”, and it has two

integer parameters: length and breadth. The body of the method starts

with the left brace, “{“ and end with the right brace, “}”. The method

is returning the area with the return statement. For calling the method,

we can write :

 int a= r1.computeArea(16,8); //method call

 Formal and Actual parameter :

We use the term formal parameters to refer to the parameters in the

definition of the method. In the example, width and height are the

formal parameters. We use the term actual parameters to refer to

76 Programming in Java

Unit 3 OPP in Java

variables in the method call. They are called “actual” because they

determine the actual values that are sent to the method.

Let us consider what happens when we pass arguments to a method.

In Java, all primitive data types (e.g., int, char, float) are passed by

value. The reference types (i.e., any kind of object, including arrays

and strings) are used through references. An important distinction is

that the references themselves (the pointers to these objects) are

actually primitive types and are passed by value too.

 Pass-by-Value

Pass-by-value means that when we call a method, a copy of the

value of each actual parameter is passed to the method. We can

change that copy inside the method, but this will have no effect on the

actual parameter. Unlike many other languages, Java has no

mechanism for changing the value of an actual parameter.

Java has eight primitive data types. Let us consider the following

example for the demonstration of pass-by-value:

Program 3.6: PassPrimitiveByValue.java

class PassPrimitiveByValue

 {

 public static void main(String[] args)

 {

 int p = 3;

 System.out.println("Before calling passValue, p = " + p);

 passValue(p); //call passValue() with p as argument

 System.out.println("\nAfter calling passValue, p = " + p);

 }

Programming in Java 77

OPP in Java Unit 3

 public static void passValue(int p) //passValue() definition to

 { //change the value of parameter

 p = 10;

 }

}

When we run this program, the output will be:

Here, we can see that the outputs are same before and after calling

the method passValue(). When Java calls a method, it makes a copy

of its actual parameters’ values and sends the copies to the method

where they become the values of the formal parameters. Then when

the method returns, those copies are discarded and the actual

parameters have remained unchanged.

Passing variables by value affords the programmer some safety.

Methods cannot unintentoially modify a variable that is outside of its

scope. However, we often want a method to be able to modify one or

more of its arguments. In the passValue() method, the caller wants

the method to change the value through its arguments. However, the

method cannot modify its arguments, and, furthermore, a method can

only return one value through its return value. So, it is necessary to

learn how a method can return more than one value, or have an effect

(modify some value) outside of its scope.

To allow a method to modify a argument, we must pass in an object.

Objects in Java are also passed by value; however, the value of an

object is a reference. So, the effect is that the object is passed in by

reference. When passing an argument by reference, the method gets

a reference to the object. A reference to an object is the address of

78 Programming in Java

Unit 3 OPP in Java

the object in memory. Now, the local variable within the method is

referring to the same memory location as the variable within the caller.

For example, if a parameter to a method is an object reference. We

can manipulate the object in any way, but we cannot make the reference

refer to a different object.

Program 3.7: Record.java (demonstration of passing object to method)

class Record

{

 int roll;

 String name;

 static void tryObject(Record r) //parameter is an object

 { //reference

 r.roll = 1;

 r.name = "Anuj";

 }

 public static void main(String [] args)

 {

 Record obj = new Record(); //object obj of Record class

 obj.roll = 2;

 obj.name = "Rahul";

 System.out.println("Before calling tryObject(), the record is: "+

 obj.name + " " + obj.roll);

 tryObject(obj); //method call

 System.out.println("After calling tryObject(), the record is: " +

 obj.name + " " + obj.roll);

 }

}

Programming in Java 79

OPP in Java Unit 3

In the output, we observe different records before and after calling the

method.

The first print statement displays “Rahul 2”. The second print statement

displays “Anuj 1”. Thus the object has been changed in this case.

The reference to obj is the parameter to the method, so the method

cannot be used to change that reference; i.e., it cannot make obj

reference a different Record. But the method can use the reference to

perform any allowed operation on the Record that it already references.

 It is often not good programming style to change the values of instance

variables outside an object. Normally, the object would have a method

to set the values of its instance variables.

3.6 RECURSIVE METHOD

Java supports recursion. Recursion is the process of defining something

in terms of itself. As it relates to Java programming, recursion is the

attribute that allows a method to call itself. A method that calls itself

is said to be recursive method.

One of the suitable examples of recursion is the computation of the

factorial of a number. The factorial of a number N is the product of all

the whole numbers between 1 and N. for example, 4 factorial is

1×2×3×4, or 24. Here is how a factorial can be computed by use of

a recursive method.

80 Programming in Java

Unit 3 OPP in Java

Program 3.8 : findFactorial.java

class findFactorial

{

 public static void main(String [] args)

 {

 for(int i=1;i<=10;i++)

 System.out.println("Factorial("+ i +") =" + fact(i)); //method call

 }

 static long fact(int n)//method definition

 {

 if(n<2)

 return 1;

 return n*fact(n-1); //Recursive call

 }

}

The output will display the factorial of 1 to 10 as follows:

When fact() is called with an argument of 1, the function returns 1;

otherwise it returns the product of n* fact(n-1). To evaluate this

expression, fact() is called with n-1.

The main advantage of recursive methods is that they can be used to

create clearer and simpler versions of several algorithms than can

their iterative relatives.

Programming in Java 81

OPP in Java Unit 3

CHECK YOUR PROGRESS 1

1. Fill in the blanks :

(i) In Java, data items are called_________.

(ii) An _______ is defined to be the instance of a class.

(iii) The extention of java file name should be ________

(iv) Class containg the main() method shold have the _______

name with the . file name with .java extension.

(v) Java allocates storage for an object with the______ operator.

(vi) The ________ operator links the name of the object with the

name of an instance variable or method.

(vii) Contructors have no ___________ .

(viii) ______ calls another constructor in same class.

(ix) In Java, all primitive data types are _________to a method.

(x) __________ is the process of defining something in terms

of itself

(xi) Objects in Java are also passed __________.

(xii) A copy of the value of each ________ parameter is passed

to the method in case of pass by value.

(xiii) A class can have only ______ default constructor.

(xiv) A ________constructor is a constructor that replicates an

 existing object.

(xv) Constructors are used to ________ an object of a class.

2. Write the method definition that implements the power function:

 static double Power (double x, int n)

The method should return the value of x raised to the power n.

For example Power(2.0,-3) would return 2-3=0.125.

3. What is a constructor signature ?

..

..

..

82 Programming in Java

Unit 3 OPP in Java

3.7 INHERITANCE

Reusability is one of the important feature of object-oriented-

programming and it can be achieved through inheritance. Java

supports the concepts of inheritance. With the use of inheritance the

information is made manageable in a hierarchical order. Inheritance

can be defined as the process where one object acquires the properties

of another. When we want to create a new class and there is already

a class that includes some of the code that we want, we can derive

the new class from the existing class. In doing this, we can reuse the

fields and methods of the existing class without rewriting them again.

A class that is derived from another class is called a subclass

(also a derived class, extended class, or child class). A subclass

inherits all the members (fields, methods, and nested classes) from

its superclass. The class from which the subclass is derived is called

a superclass (also a base class or a parent class). Constructors

cannot be inherited by subclasses, but the constructor of the superclass

can be invoked from the subclass. In Java, inheritance is implemented

by the process of extension. To define a new class as an extension

of an existing class, we simply use an extend clause in the header

mof the new classes definition. The concept of inheritance is used to

make the things from general to more specific.

For example, when we hear the word 'vehicle' then we get an

image in our mind that it moves from one place to another and that

is used for traveling or carrying goods but the word vehicle does not

specify whether it is two or three or four wheeler because it is a

general word. But the word car makes a more specific image in mind

than vehicle, that the car has four wheels . It concludes from the

example that car is a specific word and vehicle is the general word.

If we think technically about this example then vehicle is the super

class (or base class or parent class) and car is the subclass or child

class because every car has the features of its parent (in this case

vehicle) class. At this point, we are going to describe the types of

inheritance supported by Java.

Programming in Java 83

OPP in Java Unit 3

3.7.1 SINGLE INHERITANCE

When a subclass is derived from its parent class then this

mechanism is known as single inheritance. In case of single

inheritance there is only a sub class and its parent class. It is

also called one level inheritance. The pictorial representation of

single inheritance is as follows:

For example, let us consider a simple example for the

demonstration of single inheritance:

//Program 3.9 : B.java (Program showing Single Inheritance)

class A // super class A

{

 int x;

 int y;

 int getValue(int p, int q) {

 x = p;

 y = q;

 return(0);

 }

 void Show() {

 System.out.println(x);

 }

}

class B extends A // subclass B inheriting getValue A

{

 public static void main(String args[]) {

 A a = new A();

 a.getValue(5,10);

 a.Show();

Vehicle

Car

Single Inheritance

84 Programming in Java

Unit 3 OPP in Java

 }

 void display() {

 System.out.println("I am in B");

 }

}

The output will display only 5. The getValue() and show() are

members of superclass A. With the statement a.getValue(5,10);

the getValue() is inherited from class A. As the Show()

method of class A is displaying only the first parameter so it is

displaying only one value in the subclass B although it is taking

two values 5 and 10 when it invoked by the statement a.Show()

in class subclass B .

3.7.2 MULTILEVEL INHERITANCE

It is the enhancement of the concept of inheritance. When a

subclass is derived from a derived class then this mechanism

is known as the multilevel inheritance. The derived class is

called the subclass or child class for its parent class and this

parent class works as the child class for its just above (parent

) class. Multilevel inheritance can go up to any number of level.

The pictorial representation of multilevel inheritance is as follows:

// Program 3.10 : C.java (Program showing Mutilevel

Inheritance)

class A

{

 int x;

Vehicle

Car

Racing Car

Multilevel Inheritance

Programming in Java 85

OPP in Java Unit 3

 int y;

 int get(int p, int q)

 {

 x = p;

 y = q;

 return(0);

 }

 void show()

 {

 System.out.println(x);

 }

}

class B extends A //subclass B inheriting from A

{

 void Showb()

 {

 System.out.println("I am in B ");

 }

}

class C extends B //subclass C inheriting from B

{

 void Display()

 {

 System.out.println("I am in C");

 }

 public static void main(String args[])

 {

 A a = new A();

 a.get(5,10);
 a.show();
 }

}

86 Programming in Java

Unit 3 OPP in Java

The output of the above program will be 5. Here, a is an object

of superclass A and it is inheriting get() and show() methods

of A. The subclass B has one method Showb(). The class C

is the subclass of B and it has one Display() method. We can

also create objects of class B and C and use these two method

Showb() and Display() for displaying the messages “I am in B”

and “I am in C” respectively.

The mechanism of inheriting the features of more than one

base class into a single class is known as multiple inheritance.

Java does not support multiple inheritance. But the multiple

inheritance can be achieved by using the interface. In Java

Multiple Inheritance can be achieved through use of Interfaces

by implementing more than one interfaces in a class. The

concept of interface will be discussed in the next unit of this

block.

3.8 MODIFIERS

Modifiers are keywords that we add to those definitions to change their

meanings. To use a modifier, we include its keyword in the definition

of a class, method, or variable etc. The Java language has a wide

variety of modifiers. These are listed in the following table:

Programming in Java 87

OPP in Java Unit 3

 Class Modeifier Meaning
 abstract The class cannot be instantiated i.e.,

 we cannot create objects of that class.
final The class cannot be extended.
public Its members can be accessed from any

 other class.

 Field Modifier Meaning
private It is accessible only from within its own class.

 protected It is accessible only from within its own
 class and its extensions.

public It is accessible from all classes.
final It must be initialized and cannot be changed
transient It is not part of persistent state of an object
volatile It may be modified by asychronous threads

 Method Modifier Meaning
 final It cannot be overridden in class extensions
 native Its body is implemented in another
 programming language
 private It is accessible only from within its own class.
 protected It is accessible only from within its own class
 and its extensions.
 public It is accessible from all classes.
 static It has no implicit argument.
 synchronized It must be locked before it can be invoked
 by a thread.
 volatile It may be modified by asynchronous threads.

 Constructor Modifier Meaning
 private It is accessible.
 protected It is accessible only from within
 its own class and it extensions.
 public It is accessible from all classes.

 Local Variable Modifier Meaning
 final It must be initialized and cannot
 be changed.

Table: 3.1: List of Modifiers

88 Programming in Java

Unit 3 OPP in Java

Some of the modifiers listed in the table 3.1 are used to set access

levels in the declaration of classes, fields, methods, constrctors and

local variables etc. These are termed as access control modifiers

which include :

private (Visible to the class only)

public (Visible to all)

protected (Visible to the package and all subclasses).

If none of these three is specified, i.e., the default, then the entity

(class, field, constructor or method) has package access, which

means that it can be accessed from any class in the same package.

 private

Private access modifier is the most restrictive access level. Variables,

methods and constructors that are declared private can only be

accessed within the declared class itself. Class and interfaces cannot

be private.

 public

A class, method, constructor, interface etc. declared public can be

accessed from any other class. Therefore fields, methods, blocks

declared inside a public class can be accessed from any other class.

However, if the public class we are trying to access is in a different

package, then the public class still need to be imported. Because of

class inheritance, all public methods and variables of a class are

inherited by its subclasses. For example, The main() method of an

application has to be public. Otherwise, it could not be called by a

Java interpreter (such as java) to run the class. Thus we write:

public static void main(String[] arguments)

{

// statements

}

Programming in Java 89

OPP in Java Unit 3

 protected

Variables, methods and constructors which are declared protected in

a superclass can be accessed only by the subclasses in other package

or any class within the package of the protected members’ class.The

protected access modifier cannot be applied to class and interfaces.

Methods, fields can be declared protected, however methods and fields

in a interface cannot be declared protected.

To achieve another functionality Java provides a number of non-access

modifiers which include static, final, abstract, synchronized, volatile.

 static

The modifier static is used to specify that a method is a class method.

Without it, the method is an instant method. An instance method is a

method that can be invoked only when it is bound to an object of the

class. A class method (also called static method) is a method that is

invoked without being bound to any specific object of the class.

  final

The modifier final has differnent role depending upon which kind of

entity it modifies. If it modifies a class, it indicates that class cannot

have subclasses. If it modifies a field or local variable, it means that

the variable must be initialized and cannot be changed (i.e., it is a

constant).

We will learn how to use the modifiers like abstract, transient, volatile,

native, synthonized etc. while describing diffiernet programs through

out this course.

3.9 FINAL KEYWORD

The final keyword is used in several different contexts. Some of them

are described below :

90 Programming in Java

Unit 3 OPP in Java

final classes

Sometimes we may like to prevent a class from being further sub-

classes for security reason. If we write the final keyword infront of a

class name in the class declaration then that class cannot be inherited

i.e., we cannot create sub classes from that class. This is written as

follows:

final class A // A cannot be extended further

{

 //statements

}

final methods

We can also declare a method with the final keyword. A method that

is declared final cannot be overridden in a subclass. The main reason

for declaring a method to be final is to guarabtee that it cannot be

changed. For this, we have to just put keyword final after the access

specifier and before the return type like this:

public final String convertText()

 {

 //statements

 }

final fields

We may also declare fields to be final. This is not the same thing as

declaring a method or class to be final. When a field is declared final,

it is a constant which will not and cannot change. It can be set once

(for instance when the object is constructed, but it cannot be changed

after that). Attempts to change it will generate a compile-time error.

final arguments

We can declare a method arguments as final. This means that the

method will not directly change them. Since all arguments are passed

by value, this is not absolutely required, but it is occasionally helpful.

Programming in Java 91

OPP in Java Unit 3

3.10 ABSTRACT CLASS AND METHOD

An abstract class is a class that has atleast one abstract method.

An abstract class cannot be instantiated. An abstract method is not

actually implemented in the class. It is merely declared there. The

body of the method is then implemented in subclasses of that class.

. Java allows classes and methods declared to be abstract by means

of abstract modifier.

Let us consider the following example for the demonstration of abstract

class and method. The program defines one abstract class Shape

and two general classes Circle and Rectangle.

//Program 3.11: DemoAbstract.java

abstract class Shape //abstract class

{

 abstract double Area(); //abstract method

 abstract double Circumference(); //abstract method

}

//The abstract class Shape has two abstract methods: Area() and

//Circumference(). As abstract methods, they are declared with

//only their prototypes.

class Circle extends Shape //derive class Circle

{

 double radius; //field

 Circle(double radius) //constructor

 {

 this.radius=radius;

 }

 double Circumference() //method

 {

 return 2*3.14*radius;

 }

92 Programming in Java

Unit 3 OPP in Java

 double Area() //method

 {

 return 3.14*radius*radius;

 }

}

//The Circle class has one fields, one constructor and two methods.

//The methods Circumference() and Area() implement the corresponding

// abstract methods declared in the superclass Shape.

class Rectangle extends Shape //Derive class Rectangle

{

 double length; //field for specifying length

 double breadth; //field for specifying breadth

 Rectangle(double length, double breadth) //constructor

 {

 this.length=length;

 this.breadth=breadth;

 }

 double Area() //method

 {

 return length*breadth;

 }

 double Circumference() //method

 {

 return 2*length*breadth;

 }

}

//the Rectangle class has two fields specifying length and breadth,

//one constructor and two methods.The two methods Circumference()

// and Area() implement the corresponding abstract methods

// declared in the superclass Shape.

class DemoAbstract
{

 public static void main(String[] args)

Programming in Java 93

OPP in Java Unit 3

 {

 Rectangle r = new Rectangle(10.0,6.0);

 Circle c = new Circle(4.0);

System.out.println("The area of the rectangle is = "+ r.Area());

System.out.println("The circumference of the rectangle is = "+

 r.Circumference());

System.out.println("The area of the circle is = "+ c.Area());

System.out.println("The circumference of the cicle is = "+

 c.Circumference());

 }

}

The ouput will be like this:

In the program, the abstract Area() method is declared in the Shape

class above, because we want every subclass to have complete

method that returns the areas of its instances and we want all those

methods to have the same signature double Area(). Similary for the

abstract Circumference() method.

An abstract method is one that is intended to be overridden in each

subclass. The abstract method specifies what its subclasses have to

implement, but leaves the actual implementation up to them. Thus an

abstract method can be regarded as an outline or a specification contact.

3.11 STATIC MEMBERS

There may be some situation where we may want to define a class

member that will be used independently without any object of that

class. Generally, a class member must be accessed only in conjunction

with an object of its class. However, it is possible to create a member

Method Overriding :
A method is
overridden when
another method with
the same signature is
declared in a
subclass.

94 Programming in Java

Unit 3 OPP in Java

that can be used by itself, without reference to a specific instance. To

create such a member, we have to precede its declaration with the

keyword static. When a member is declared static, it can be accessed

before any objects of its class are created, and without reference to

any object. We can declare both methods and variables to be static.

Static methods (class methods), like static variables, belong to the

class and not to an individual instance of the class. It can be invoked

by name, through the class name, without any objects around. Because

it is not bound to a particular object instance, a static method can

directly access only other static members of the class. It cannot directly

see any instance variables or call any instance methods.

The most common example of a static member is main(). Method

main() is declared as static because it must be called before any

objects exist. Instance variables declared as static are, essentially,

global variables. When objects of its class are declared, no copy of a

static variable is made. Instead, all instances of the class share the

same static variable. Methods declared as static have several

restrictions:

 They can only call other static methods.

 They must only access static data.

CHECK YOUR PROGRESS 2

1. What is the difference between public member and private

member of a class ?

..

..

..

2. What is the difference between class method and an instance

method.

..

Programming in Java 95

OPP in Java Unit 3

..

..

3. State True or False :

(i) A static (class) method is a method that is invoked without

being bound to any specific object of the class.

(ii) Protected members are accessible only from within its own

class and its extensions.

(iii) Private members are accessible only from within its own

class.

(iv) It is possible to instantiate an abstract class.

(v) An abstract method may must be part of an abstract class.

(vi) Final classes cannot be inherited.

(vii) An abstract class is a class that has atleast one abstract

method.

(viii) Public members are not accesiible by all classes.

3.12 LET US SUM UP

The key points you are to keep in mind in this unit are :

 Java programs are organized by classes, which specify the

behaviour of of objects, which control the actions of the program.

 Classes, objects and methods are basic components used in

Java programming. A class can contain methods, fields,

initialization codes etc. It serves as a blueprint for making class

instances, which are runtime objects that implement the class

structure.

 A Java program is a collection of one or more text files that

define Java classes, atleast one of which is public and contains

a main() method that has this specific form:

public static void main(String[] args)

{

 //statements

}

96 Programming in Java

Unit 3 OPP in Java

 A class definition specifies the variables and methods that are

members of the class.

 Each class must be saved in a file with the same name as the

class, and with the extension .java.

 A method is a sequence of declaration and executable statements

that performs some individual task just like functions in C/C++.

 Method definition have some basic parts like return type, name

of the method, parameter list(optional), return statement(if the

method returns a value). If the method is not returning any value

then the return type will be void.

 A method is said to be recursive when it calls itself.

 In Java, we can pass arguments to a method. Parameters which

appear in the method call are actual parameters and the

parameters which appear in the method definition are termed as

formal parameters.

 The primitive types (e.g., byte, short, int, long, char, float, double,

boolean) are passed by value to a method.

 Reference to an object can also be passed to a method as

argument.

 Constructors are used to create new objects. Constructors must

have the same name as that of the class when it is declared.

It has no return type. Constructors are invoked with the new

operator The this keyword calls another constructor in same

class.

 Constructor with no argument is termed as default constructor.

It is special as because if there is no other constructor in the

class, the compiler will automatically define a public default

constructor and initializes all fields to their type’s default values.

Programming in Java 97

OPP in Java Unit 3

 The copy constructor is one whose only parameter is a reference

to an object of the same class to which the constructor belongs.

It is usually used to duplicate an existing object of the class.

 When there are more than one constructor in a class then it is

said to be constructor overloading. The name of all constructors

should be same with the class name to which they belong but

they should have different types and number of arguments.

 We can define one class based on another. This is called class

inheritance. The base class is called a superclass and the derived

class is called a subclass. A superclass can also be a subclass

of another superclass.

 The first statement in the body of a constructor for a subclass

should call a constructor for the superclass. If it does not, the

compiler will insert a call for the default constructor for the

superclass.

 Modifiers are some keywords which are used in the declaration

of classes, fields, methods, constructors local variables etc. The

use of different types of modifiers like public, private, protected,

final, abstract, static etc. are described in this unit.

 Methods that are specified as static can be called even if no

class objects exist, but a static method cannot refer to instance

variables.

 An abstract method is a method that has no body defined for it,

and is declared using the keyword abstract.

 An abstract class is a class that contains one or more abstract

methods. It must be defined with the attribute abstract.

98 Programming in Java

Unit 3 OPP in Java

3.13 ANSWERS TO CHECK YOUR
YOUR PROGRESS

Check Your Progress -1
1. (i) fields (ii) instance (iii) .java (iv) same (v) new (vi) dot

 (vii) return type (viii) this() (ix) passed by value (x) Recursion

 (xi) by value (xii) actual (xiii) one (xiv) copy (xv) initialize

2.

static double power(double x, int n)

{

 int i;

 double p=1.0;

 for(i=0; i<n; i++)

 p = p*x;

 for(i=0; i<-n; i++)

 p=p/x;

 return p;

}

3. A constructor signature consists of the constructor’s name,

number of parameters and type of parameter. The constructor

signature must be unique when constructors are overloaded.

Check Your Progress - 2

1. A public class member can be accessed from methods of other

classes. A private class member can be accessed only from

methods of the class.

2. A class method is declared static and is invoked using the

class name. For example,

 double p = Math.abs(q);

invokes the class abs() that is defined in the Math class. An instance

method is declared without the static modifier and is invoked using

the name of the object to which it is bound. For example,

double p = obj. nextDouble();

Programming in Java 99

OPP in Java Unit 3

invokes the class method nextDouble() that is defined in the Random

class and is bound to the object obj which is an instance of that class.

3. (i) True (ii) True (iii) True (iv) False

 (v)True (vi) True (vii) True (viii) False

3.14 FURTHER READINGS

1. “The Complete Reference -Java 2 ” by Herb Hchildt, McGraw-Hill

2. “JAVA How to Program”, Deitel & Deital, PHI Publication

3. “Programming with JAVA- a Primer ”, E.Balagurusamy, TATA

McGRAW Hill Publication.

3.15 MODEL QUESTIONS

1. What is a class? How does it accomplish data hiding?

2. What are objects? How are they created?

3. What is a constructor? How do we invoke a constructor? What

are its special properties?

4. What is recursive method? Explain with example.

5. What is inheritance and how does it help us creating new classes

quickly?

6. When do we declare a method or class final?

7. When do we declare a method or class abstract?

8. Discuss different levels of access protection available in Java.

9. What is inheritance? Explain single inheritance with an appropriate

program.

10. What do you mean by abstract class? Write down a suitable

example showing abstract class and abstract methods.

100 Programming in Java

Unit 3 OPP in Java

11. Design a class to represent a bank account. Include the following

data members: Annount number, Depositor name, Account type,

Balance amount in the account .

Methods: To assign initial value

To deposit an amount

To withdraw an amount after checking balance

To display depositor name and balance

UNIT 4: ARRAYS, STRINGS AND VECTORS

UNIT STRUCTURE
4.1 Learning Objectives

4.2 Introduction

4.3 Arrays

4.3.1 Declaring Array Variables

4.3.2 Creating an Array

4.3.3 Initializing Arrays

4.4 Multidimensional Arrays

4.5 Strings

4.5.1 String Methods

4.5.2 StringBuffer Class

4.6 Vectors

4.7 Let Us Sum Up

4.8 Answers to Check Your Progress

4.9 Further Readings

4.10 Model Questions

4.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

 declare and initialize arrays for Java programming

 know the method arraycopy ()

 define multi-dimensional arrays

 describe strings

 illustrate the vectors

4.2 INTRODUCTION

In the previous unit, we have discussed the object-oriented nature of

Java. We are already familiar with the array data structure. Array is a

linear and homogenous data structure. In this unit, we will discuss the

arrays, how the arrays are declared and initialized in Java language.

In addition, the discussion of the strings and vectors are also covered

in this unit.

Programming in Java (Block 1) 101

102 Programming in Java

Unit 4 Arrays, Strings and Vectors

4.3 ARRAYS

With the basic built-in Java data types, each identifier corresponds to

a single variable. But when you want to handle sets of values of the

same type, say, the first 1000 primes for example – you really don’t

want to have to name them individually. What you need is an array.

An array is a named set of variables of the same type. Each variable

in the array is called an array element. To refer to a particular element

in an array you use the array name combined with an integer value of

type int, called an index. You are already familiar with how to declare

an array in C or C++. In Java, it is slightly different from C/C++. There

are three steps to create an array in Java :

a) Declare a variable to hold array

b) Create memory locations

c) Put values into the memory locations

4.3.1 DECLARING ARRAY VARIABLES

You are not obliged to create the array itself when you declare

the array variable. The array variable is distinct from the array

itself. There are two ways to declare the array variables in Java:

data type arrayname[];

or

data type[] arrayname;

For example,

int sum[];

float percentage[];

int roll_number[];

int primes[];

Programming in Java 103

Arrays, Strings and Vectors Unit 4

The above declaration can be written as :

int[] sum;

float[] percentage;

int[] roll_number;

int[] primes;

Remember that in such types of declarations no memory has

been allocated to store the array itself and the number of

elements has not been defined.

4.3.2 CREATING AN ARRAY

Creating an array means allocating memory for it. Java allows

us to create arrays using new operator. The syntax is given

below :

arrayname = new type[size];

For example,

sum = new int[4];

percentage = new float[10];

roll_number = new float[15];

primes = new int[10];

The keyword new indicates that you are allocating new memory

for the array, and int[4] specifies you want capacity for 4 variables

of type int in the array. Since each element in the sum array is

an integer variable requiring 4 bytes, the whole array will occupy

16 bytes, plus 4 bytes to store the reference to the array.

When an array is created like this, all the array elements are

initialized to a default value automatically. Similarly, for the

percentage, roll_number and primes array also a fixed size will

be allocated. The above declared and created arrays are one-
dimensional array since each of its elements is referenced

using one index.

104 Programming in Java

Unit 4 Arrays, Strings and Vectors

The following figure depicts the meaning of the declaring and

creating an integer array named sum.

 Statement What it means

int sum[];
or
int[] sum; sum

sum = new int[4];

points
no where

number[0]

number[1]

number[2]

number[3]

sum

points to
int object

Fig. 4.1 Allocation of memory for an array

4.3.3 INITIALIZING ARRAYS

You can initialize an array with your own values when you declare

it, and at the same time determine how many elements it will

have. Following the declaration of the array variable, simply add

an equal sign followed by the list of element values enclosed

between braces.

For example,

int[] primes = {2, 3, 5, 7, 11, 13, 17};

Here, primes is an array of 7 elements. The array size is

determined by the number of initial values; so no other statement

is necessary to define the array.

If you specify initializing values for an array, you must include

values for all the elements. If you only want to set some of the

Programming in Java 105

Arrays, Strings and Vectors Unit 4

array elements to values explicitly, you should use an assignment

statement for each element.

For example:

int[] primes = new int[100];

primes[0] = 2;

primes[1] = 3;

The first statement declares and defines an integer array of 100

elements, all of which will be initialized to zero. The two

assignment statements then set values for the first two array

elements.

You can also initialize an array with an existing array. For

example,

int[] even = {4, 6, 8, 10};

int[] number = even;

Here, both arrays refer to the same set of elements and you

can access the elements of the array through either variable

name – for example, even[2] refers to the same variable as

number[2].

The following program demonstrates the initialization of one

dimensional array :

Program 1: To find the average of given list of numbers.

class Average

 {

 public static void main(String args[])

 {

 double nums[] = {50.1, 51.2, 52.3, 53.4, 54.5, 55.6, 56.7, 57.8,

58.9, 59.0};

 double result = 0;

 int i;

 for(i=0; i<10; i++)

106 Programming in Java

Unit 4 Arrays, Strings and Vectors

 result = result + nums[i];

 System.out.println("Average is " + result / 10);

}

 }

Output :

Average is 54.95

Array Length

You can refer to the length of the array using length, a data

member of the array object. In our array example i.e. the array

sum, its length can e assigned to an another variable as follows:

int size = sum.length

The following program 2 & 3 demonstrates the use of length

object for computing the largest and the smallest number from

a given list of numbers.

Program 2: To find the smallest and largest number from a
given list of number.

 class FindNumber

 {

 public static void main(String[] args)

 {

//array of 10 numbers

 int numbers[] = new int[]{12,83,50,18,22,72,41,29,43,21};

//assign first element of an array to largest and smallest

int smallest = numbers[0];

int largetst = numbers[0];

Programming in Java 107

Arrays, Strings and Vectors Unit 4

for(int i=1; i< numbers.length; i++)

 {

if(numbers[i] > largetst)

largetst = numbers[i];

else if (numbers[i] < smallest)

smallest = numbers[i];

 }

System.out.println("Largest Number is : " + largetst);

System.out.println("Smallest Number is : " + smallest);

 }

}

Output :

Largest Number is : 83

Smallest Number is : 12

Program 3 : To check whether a given number is palindrome
or not.

class Palindrome

 {

 public static void main(String[] args)

 {

//array of numbers

int numbers[] = new int[]{2332,42,11,223,24};

//iterate through the numbers

for(int i=0; i < numbers.length; i++)

{

108 Programming in Java

Unit 4 Arrays, Strings and Vectors

int number = numbers[i];

int reversedNumber = 0;

int temp=0;

/*

* If the number is equal to it's reversed number, then

* the given number is a palindrome number.

* 121 is a palindrome number while 12 is not.

 */

//reverse the number

 while(number > 0)

 {

temp = number % 10;

number = number / 10;

reversedNumber = reversedNumber * 10 + temp;

 }

 if(numbers[i] == reversedNumber)

System.out.println(numbers[i] + " is a palindrome number");

 else

System.out.println(numbers[i] + " is not a palindrome number");

}

 }

 }

Output :

2332 is a palindrome number

42 is not a palindrome number

11 is a palindrome number

223 is not a palindrome number

24 is not a palindrome number

Programming in Java 109

Arrays, Strings and Vectors Unit 4

Reusing Array Variables :

you can use an array variable to reference different arrays at

different points in your program. Suppose you have declared

and defined the variable primes as before:

int[] primes = new int[10];
// Allocate an array of 10 integer elements

This produces an array of 10 elements of type int. Perhaps you

want the array variable primes to refer to a larger array, with 50

elements say. You would simply write :

primes = new int[50];
// Allocate an array of 50 integer elements

Now the variable primes refer to a new array of values of type

int that is entirely separate from the original. When this statement

is executed, the previous array of 10 elements is discarded,

along with all the data values you may have stored in it. The

variable primes can now only be used to reference elements of

the new array.

4.4 MULTIDIMENSIONAL ARRAYS

A table organized in rows and columns is a very effective means for

communicating many different types of information. In Java, we

represent table as two-dimensional arrays. The general syntax for

allocating a two dimensional array is :

type [][] arrayname = new type[rows][cols];

For example,

int [][] matrix = new int [3][5];

This creates a two dimensional matrix having 3 rows and 5 columns

that can store 15 integer values. We are already familiar with C or

C++ how to access the elements of a two dimensional array. In Java

110 Programming in Java

Unit 4 Arrays, Strings and Vectors

also, the same techniques are used. For example, to refer to the

elements at the second column of the third row we will indicate it as:

matrix [2][1]

We can also initialize a two dimensional array as shown below :

int [] [] matrix = {

{ 10, 5, -3, 9, 2 },

{ 1 , 0, 14, 5, 6 },

{ -1, 7, 4, 9, 2 }

 };

There is no limit to the number of dimensions an array can have. We

can declare three-dimensional, four-dimensional, and higher dimensional

arrays. However, arrays with a dimension higher than 2 are not frequently

used in object-oriented languages.

The following figure depicts the representation of the matrix array in

memory :

 10 5 -3 9 2

 1 0 14 5 6

[0][0] [0][1] [0][2] [0][3] [0][4]

[1][0] [1][1] [1][2] [1][3] [1][4]

 -1 7 4 9 2

[2][0] [2][1] [2][2] [2][3] [2][4]

Column1 column2 column3 column4 column5

row 0

row 1

row 2

Fig. 4.2 Representation of matrix array

The following program demonstrate the use of two dimensional array

in Java programming. This program will simply display the initialized

list of elements as output.

Programming in Java 111

Arrays, Strings and Vectors Unit 4

Program 4 : To display the elements of a two dimensional array
in matrix form.

class Matrix

 {

public static void main(String args[])

 {

int mat[][] = {

{ 10, 5, -3, 9, 2 },

{ 1, 0, 14, 5, 6 },

{ -1, 7, 4, 9, 2 },

 };

int i, j;

for(i=0; i<3; i++)

{

 for(j=0; j<5; j++)

 System.out.print(mat[i][j] + " ");

 System.out.println();

}

 }

 }

Output :
10, 5, -3, 9, 2

 1, 0, 14, 5, 6

-1, 7, 4, 9, 2

Multidimensional arrays are actually arrays of arrays. It means we can

create or allocate the sub arrays (columns). It is possible to create

sub arrays of different lengths which will look like a triangle. For

example, the following program creates a two dimensional array in

which the sizes of the second dimension are unequal or the array

looks like a triangle :

112 Programming in Java

Unit 4 Arrays, Strings and Vectors

Program 5 : To display the elements of a two dimensional matrix
in triangular form.

class TriangularArray

 {

 public static void main(String args[])

 {

int arr[][] = new int[4][];

int i;

for(i=0; i<4; i++) // Creates triangular array

arr[i] = new int[i+1];

int j, k = 0;

for(i=0; i<4; i++) // Assigns the elements

for(j=0; j<i+1; j++)

 {

arr[i][j] = k;

k++;

 }

 for(i=0; i<4; i++) // Display the elements

 {

for(j=0; j<i+1; j++)

System.out.print(arr[i][j] + " ");

System.out.println();

 }

 }

 }

Output :

0

1 2

3 4 5

6 7 8 9

Programming in Java 113

Arrays, Strings and Vectors Unit 4

CHECK YOUR PROGRESS 1

1. Choose the correct answer from the following :

(i) Which of the following statements about arrays are true?

A. Arrays are a group of variables containing values that

all have the same type.

B. Elements are located by index or subscript.

C. The length of an array c is determined by the

expression c.length();.

D. The zeroth element of array c is specified by c[0].

a. A, C, D. b. A, B, D.

c. C, D. d. A, B, C, D.

(ii) Consider the code segment below. Which of the following

statements is not true?

int g[];

g = new int[23];

a. The first statement declares an array reference.

b. The second statement creates the array.

c. g is a reference to an array of integers.

d. The value of g[3] is -1.

(iii) Which of the following initializer lists would correctly set

the elements of array n?

a. int n[] = { 1, 2, 3, 4, 5 };.

b. array n[int] = { 1, 2, 3, 4, 5 };.

c. int n[5] = { 1; 2; 3; 4; 5 };.

d. int n = new int(1, 2, 3, 4, 5);.

114 Programming in Java

Unit 4 Arrays, Strings and Vectors

(iv) Consider the following Java Program :

public class Test

 {

 public static void main(String args[])

 {

int a[] = { 99, 22, 11, 3, 11, 55, 44, 88, 2, -3 };

int result = 0;

for (int i = 0; i < a.length; i++)

{

 if (a[i] > 30)

result += a[i];

}

 System.out.println("Result is: " +result);

 }

 }

The output of this Java program will be:

a. Result is: 280. b. Result is: 154.

c. Result is: 286. d. Result is: 332.

(v) Which statement below initializes array items to contain

3 rows and 2 columns?

a. int items[][] = { { 2, 4 }, { 6, 8 }, { 10, 12 } };.

b. int items[][] = { { 2, 6, 10 }, { 4, 8, 12 } };.

c. int items[][] = { 2, 4 }, { 6, 8 }, { 10, 12 };.

d. int items[][] = { 2, 6, 10 }, { 4, 8, 12 };.

(vi) 26. For the array in the previous question, what is the

value returned by items[1][0]?

a. 4. b. 8. c. 12. d. 6.

Programming in Java 115

Arrays, Strings and Vectors Unit 4

(vii)Which of the fol lowing statements creates a

multidimensional array with 3 rows, where the first row

contains 1 value, the second row contains 4 items and

the final row contains 2 items?

a. int items[][] = { { 1, null, null, null }, { 2, 3, 4, 5},

{ 6, 7, null, null } };.

b. int items[][] = { { 1 }, { 2, 3, 4, 5 }, { 6, 7 } };.

c. int items[][] = { { 1 }, { 2, 3, 4, 5 }, { 6, 7},

{});.

d. int items[][] = { { 1 }, { 4 }, { 2 } };.

4.5 STRINGS

The strings are nothing but a sequence of characters. In Java, strings
are objects of the class String. The String and StringBuffer classes

are standard class that comes with Java, and they are specifically

designed for creating and processing strings. A sequence of characters

separated by double quotes is called String constants. Java handles

String constants in the same way that other computer languages

handle “normal” strings. Objects of type String are immutable it means

that once a String object is created, its contents cannot be altered.

As String is a class, we can create an instance or object and give it

a name. For example,

String name;

name = new String(“KKHSOU”);

Unlike in other classes, the explicit use of new to create an instance

or object is optional for the String class. So, we can create a new

String object in this way :

String name;

name = “KKHSOU”;

or

String name = “KKHSOU”;

116 Programming in Java

Unit 4 Arrays, Strings and Vectors

Once you have created a String object, you can use it any where

that a string is allowed. For example, the following statement displays

‘KKHSOU’ :

System.out.println(name);

We are already using the length method which is under the String

class to get the length of an array. In case of finding the length of a

string also we can use it. For example,

int i = name.length();

Java defines one operator for String objects: +. It is used to

concatenate two strings. For example, this statement

String myString = “I” + “ like “ + “Java.”;

results in myString containing “I like Java.”

The following program demonstrates the above concept :

Program 6 : To concatenate two strings using the + operator.

class StringJoin

 {

public static void main(String args[])

 {

 String str1 = "Krishna Kanta Handique";

 String str2 = "State Open University";

// str3 holds the resultant string

 String str3 = str1 + " and " + str2;

 System.out.println("\n First String :" +str1);

 System.out.println("\n Second String :" +str2);

 System.out.println("\n Resultant String :" +str3);

 }

 }

Programming in Java 117

Arrays, Strings and Vectors Unit 4

Output :

First String : Krishna Kanta Handique

Second String : State Open University

Resultant String : Krishna Kanta Handique State Open University

4.5.1 STRINGS METHODS

The String class defines a number of methods that allow us to

accomplish a variety of string manipulation tasks. The following

table lists some of the commonly used string methods.

Method Call Task Performed

s2=s1.toLowerCase; Converts the String s1 to all lowercase

s2=s1.toUpperCase; Converts the String s1 to all Uppercase

s2=s1.replace(‘x’,’y’); replaces all appearances of x with y

s2=s1.trim(); removes white spaces at the begining

and end of the String s1

s1.equals (s2) Returns true if s1 equals to s2

s1.equalsIgnoreCase(s2) Returns true if s1=s2, ignoring the case

of Characters

s1.length() gives the length of s1

s1.CharAt(n) gives the nth character of s1

s1.compareTo(s2) returns negative if s1<s2, positive if

s1>s2, and zero if s1 is equal to s2

s1.concat (s2) concatenates s1 and s2

s1.substring(n) gives the substring starting from nth

character

s1.substring(n,m) gives the substring starting from nth

character upto mth (not including mth)

The following program demonstrates the use of some string methods:

118 Programming in Java

Unit 4 Arrays, Strings and Vectors

Program 7 : A string is given below :
 BACHELOR OF COMPUTER APPLICATION FOURTH SEMESTER
Find the folllowing :

a) its length,
b) the character at index 6
c) convert it to lowercase letter
d) a substring from 2 to 15
e) length of the substring
f) the character at index 3

class TestString

 {

 public static void main(String[] args)

 {

String text = " BACHELOR OF COMPUTER APPLICATION

FOURTH SEMESTER";

System.out.println("\n\nThis string is :" +text);

// calculates length of the string

System.out.println("Length of the String is :" +text.length());

// finds the character at index 6 position

System.out.println("The character at index 6 is :" +text.charAt(6));

// Converts the string into lowecase letter

System.out.println("The string in lowercase letter is :"

+text.toLowerCase());

// Finding the substring of the main string

String sub = text.substring(2, 15);

System.out.println("sub=text.substring(2, 15)) :" +sub);

// Length of the sub string

System.out.println("sub.length :" +sub.length());

// character at position 3

System.out.println("sub.charAt(3) :" +sub.charAt(3));

 }

 }

Programming in Java 119

Arrays, Strings and Vectors Unit 4

Output :

Fig. 4.1 Output of Program 7

You can also test two strings for equality by using the method

equals(). The general form of this method is s1.equals (s2) which

means it will return true if s1 equals to s2.

The following program demonstrates the equality of two string.

Program 8 : To check equality of two strings.

class EqualString

 {

public static void main(String args[])

 {

 String str1 = "BCA Second Semester";

 String str2 = "BCA Third Semester";

 String str3 = str1; //str1 string assigns to str3

// Finds the length of strings

 System.out.println("\nLength of str1: " + str1.length());

 System.out.println("\nLength of str2: " + str2.length());

 System.out.println("\nLength of str3: " + str3.length());

120 Programming in Java

Unit 4 Arrays, Strings and Vectors

if(str1.equals(str2))

System.out.println("str1 == str2");

else

System.out.println("str1 != str2");

if(str1.equals(str3))

System.out.println("str1 == str3");

else

System.out.println("str1 != str3");

 }

 }

Output :

Fig 4.2 Output of Program 8

In the program, you see the equality operator “==” which is used to

test whether two references refer to the same object. Here in our

expression, if str1 and str2 are both String references, then the

expression str1 == str2 will be true only if str1 and str2 are synonyms.

Here in the example, str1 and str2 are not equivalent so it will return

false and hence prints the else statement.

String Arrays :

We can also create and use arrays for storing strings. The following

statement will create an string array named arraySt of size 5 to hold

5 string constant.

Programming in Java 121

Arrays, Strings and Vectors Unit 4

String arraySt[] = new String[5];

We can assign the strings to the arraySt element by element using

five different statements or more efficiently using a for loop.

The following program demonstrates the use of the string array :

Program 9 :

class arrayStr

 {

static String arraySt[] ={"BCA 1st Sem","BCA 2nd Sem","BCA

3rd Sem","BCA 4th Sem","BCA

5th Sem", "BCA 6th Sem"};

public static void main(String args[])

 {

for(int i=0;i<6;i++)

{

 System.out.println(arraySt[i]);

 }

 }

 }

Output :

BCA 1st Sem

BCA 2nd Sem

BCA 3rd Sem

BCA 4th Sem

BCA 5th Sem

BCA 6th Sem

122 Programming in Java

Unit 4 Arrays, Strings and Vectors

4.5.2 StringBuffer Class

The string class is one of the most useful classes in Java. But

its instances or objects are immutable i.e. they cannot be changed.

In the above examples, whenever a string is modified, it has to

be done by constructing a new String object, either explicitly or

implicitly. Java provides another standard class for defining strings

called StringBuffer, and its object can be altered directly. Strings

that can be changed are often referred to as mutable strings.

We will use the StringBuffer objects when we are transforming

strings i.e. adding, deleting, or replacing substrings in a string.

The following are the commonly used StringBuffer methods :

capacity()
Returns the current capacity of the String buffer.

length()
Returns the length (character count) of this string buffer.

toString()
Converts to a string representing the data in this string buffer

insert(int offset, char c)
Inserts the string representation of the char argument into

this string buffer.

delete(int start, int end)
Removes the characters in a substring of this StringBuffer

replace(int start, int end, String str)
Replaces the characters in a substring of this StringBuffer

with characters in the specified String.

reverse()
The character sequence contained in this string buffer is

replaced by the reverse of the sequence.

Programming in Java 123

Arrays, Strings and Vectors Unit 4

append(String str)
Appends the string to this string buffer.

setLength(int newLength)
Sets the length of this String buffer.

The following program demonstrates the using of StringBuffer

methods :

Program 10 :

public class FunctionStrbf

 {

 public static void main(String[] args)

 {

// Creation of Strings

StringBuffer strBuf1 = new StringBuffer("KKHSOU");

StringBuffer strBuf2 = new StringBuffer(40); //With capacity 40

StringBuffer strBuf3 = new StringBuffer(); //Default Capacity 16

System.out.println("\n\n strBuf1 : " + strBuf1);

// Finds the capacity of StringBuffer

System.out.println("strBuf1 capacity : " + strBuf1.capacity());

System.out.println("strBuf2 capacity : " + strBuf2.capacity());

System.out.println("strBuf3 capacity : " + strBuf3.capacity());

// Finds the length of Buffer1

System.out.println("strBuf1 length : " + strBuf1.length());

// Finds the character at position 2

System.out.println("strBuf1 charAt 2 : " + strBuf1.charAt(2));

// Appends a string to strBuf 3

strBuf3.append("Fourth Semester BCA");

System.out.println("strBuf3 when appended with a String : "

+ strBuf3.toString());

strBuf3.insert(16, 'M'); // insert ‘M’ at position 16

 NOTE

Note that a vector can be
declared without specify-
ing any size explicitly. A
vector can accomodate
an unknown number of
items. Even, when a size
is specified, this can be
overlooked and a different
number of items may be
put into the vector. Re-
member, in contrast, an
array must always have
its size specified.

124 Programming in Java

Unit 4 Arrays, Strings and Vectors

System.out.println("strBuf3 when M is inserted at 16 : "

+ strBuf3.toString());

strBuf3.delete(11, 's'); // delete the substring from 11 position

System.out.println("strBuf3 when s is deleted at 11 : "

+ strBuf3.toString());

strBuf3.reverse(); // reverse the string constant of strBuf3

System.out.println("Reversed strBuf3 : " + strBuf 3);

strBuf2.setLength(12); //set the length of strBuf 2 to 12

strBuf2.append("java programs"); // appends the string to strBuf2

System.out.println("strBuf2 : " + strBuf2);

}

 }

Output :

 Fig. 4.3 Output of Program 10

4.6 VECTORS

You can consider a Vector as an expansible array. Before you can

use an array, you need to know the maximum number of elements in

order to declare it. If the array is full and it turns out that you need to

add another element, you need to declare a bigger one, copy all the

elements and add that element.

Programming in Java 125

Arrays, Strings and Vectors Unit 4

A Vector hides all that things. Internally, a Vector stores its elements

also in an array but it will increase its capacity automatically to ensure

all elements be stored. So, use a Vector when you don’t know the

number of elements ahead of time. A Vector is a standard class that

resides in the java.util package.

The key difference between Arrays and Vectors in Java is that Vectors

are dynamically-allocated. They aren’t declared to contain a type of

variable; instead, each Vector contains a dynamic list of references
or pointers to other objects. Since Vector stores pointers to the

objects, and not the objects themselves, these Vector items could be

any kind of object. We can add and delete objects from the list as and

when required. Always remember we can not directly store simple

data types (int, float...etc) in vectors.

Arrays can be easily implemented as vectors. Vectors are created like

arrays as follows :

Vector V = new Vector(); //declaring without size

or
Vector V = new Vector(3); // declaring with size

The vector class supports a number of methods that can be used to

manipulate the vectors created. Important ones are listed below :

Method Call Task Performed

v.addElement (item) Add the item specified to the list at the

end

v.elementAt(10) Give the name of the 10th object

v.size() Give the number of objects present

v.removeElement (item) Removes the specified item from the list

v.removeAllElements() Removes all the elements in the list

v.copyInto (array) Copies all items from list to array

v.insertElementAt (item, n) Inserts the item at n th position

126 Programming in Java

Unit 4 Arrays, Strings and Vectors

Wrapper Classes

Always remember that vectors can not handle primitive data types like

int, float, long, char and double. Primitive data types may be converted

into object types by using the wrapper classes contained in the java.lang
package. In the following shows the simple data types and their

corresponding wrapper class types.

Wrapper Classes for Converting Simple Types

 Simple Type Wrapper Class
 boolean Boolean

 char Char

 double Double

 float Float

 int Int

 long Long

CHECK YOUR PROGRESS 2

(i) Character strings are represented by the class ___. (Fill in

the blank)

(ii) An ___ is a container object that holds a fixed number of

values of a single type. (Fill in the blank)

(iii) Consider the following string:

String strTest = “Programming in Java is easy”;
a. What is the value displayed by the expression

strTest.length()?
b. What is the value returned by the method call

strTest.charAt(12)?
c. Write an expression that refers to the letter J in the string

referred to by strTest.

(iv) Show two ways to concatenate the following two strings

together to get the string “KKHSOU”:

Programming in Java 127

Arrays, Strings and Vectors Unit 4

String str1= “KKH “;

String str2 = “SOU”;

(v) What is the main difference between String class and

StringBuffer class

...

...

...

(vi) Which package of Java contains Vector Class?

...

...

...

4.7 LET US SUM UP

 1. An array holds multiple values of the same type, identified

through a single variable name.

 2. Individual elements of an array referred by using an index value

of type int. The index value for an array element is the offset

of that element from the first element in the array.

 3. An array element can be used in the same way as a single

variable of the same type.

 4. You can obtain the number of elements in an array by using

the length member of the array object.

 5. A String object stores a fixed character string that cannot be

changed. However, you can assign a given String variable to a

different String object.

 6. You can obtain the number of characters stored in a String

object by using the length() method for the object.

 7. The String class provides methods for joining, searching, and

modifying strings – the modifications being achieved by creating

a new String object.

128 Programming in Java

Unit 4 Arrays, Strings and Vectors

 8. A StringBuffer object can store a string of characters that can

be modified.

 9. You can change both the length and the capacity for a

StringBuffer object.

 10. Java does not support the concept of variable arguments to a

function. This feature can be achieved in Java through the use

of the Vector class contained in java.util package.

4.8 ANSWERS TO CHECK YOUR
PROGRESS

Check Your Progress -1
1. i) b ii) d iii) a iv) c v) a vi) d vii) b

Check Your Progress - 2
i) java.lang.String

ii) array

iii) a) 26

b) i

c) strTest.charAt(15)

iv) str1.concat(str2) and str1 + str2

v) Instance (objects) of the String class are immutable : they cannot

be changed. Instances of the StringBuffer class donot have

constraints i.e. they are mutable.

vi) java.util package

4.9FURTHER READINGS

 1. Java Programming Language Handbook by Anthony Potts,

David H. Friedel Jr. , Coriolis Group Books

 2. Programming with Java- A Primer by E Balagurusamy, Tata

McGrawHill

Programming in Java 129

Arrays, Strings and Vectors Unit 4

4.10 MODEL QUESTIONS

1. What is an array?

2. Write a statement to declare and instantiate an array to hold

marks obtained by students in different subjects in a class.

Make your own assumptions.

3. Write a program to add two matrices.

4. Write a program to extract a portion of a character string and

print the extracted string.

5. What is a vector? How is it different from an array?

6. How does a String class differ from a StringBuffer class?

7. Write a program which will read a text and count all occurrences

of a particular word.

8. Write a program to demonstrate the use of arraycopy() function.

UNIT 5: INTERFACES AND PACKAGES

UNIT STRUCTURE
5.1 Learning Objectives

5.2 Introduction
5.3 Interfaces

5.3.1 Defining an Interface
5.3.2 Extending Interfaces
5.3.3 Implementing Interfaces

5.4 Packages
5.4.1 Java API Packages
5.4.2 Creating User Defined Packages
5.4.3 Accessing and Using Packages

5.5 Let Us Sum Up
5.6 Answers to Check Your Progress
5.7 Further Readings
5.8 Model Questions

5.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

 define an interface

 know the technique of extending an interface

 implement an interface

 illustrates the Java packages

 creating and accessing Java Packages

5.2 INTRODUCTION

So far, you have learned the object-oriented nature of Java. We have

also discussed about the arrays, how the arrays are defined and also

the String class, StringBuffer class for creating strings. Moreover, we

have also came to know the vectors which are nothing but dynamic

arrays.

In this unit, we will discuss two important concept of Java namely

interfaces and packages. We will illustrate how to define interfaces and

implement them. In addition, creating and accessing Java Packages

are also covered in this unit.

130 Programming in Java (Block 1)

5.3 INTERFACES

An interface is a collection of methods and variables like a class but

it is not a class. An interface defines a set of methods but does not

implement them. Writing an interface is similar to writing a class still

there exists some differences. A class describes the attributes and

behaviours of an object. An interface contains behaviours that a class

implements.

Definition

An interface is a named collection of method definitions (without imple-

mentations). An interface can also declare constants.

 An interface can contain any number of methods.

 An interface is written in a file with a .java extension, with the

name of the interface matching the name of the file.

 The bytecode of an interface appears in a .class file.

 Interfaces appear in packages, and their corresponding bytecode

file must be in a directory structure that matches

the package name.

However, an interface is different from a class in several ways, including:

 You cannot instantiate an interface.

 An interface does not contain any constructors.

 All of the methods in an interface are abstract.

 An interface cannot contain instance fields. The only fields that

can appear in an interface must be declared both static and final.

 An interface is not extended by a class; it is implemented by a

class.

 An interface can extend multiple interfaces.

Programming in Java (Block 1) 131

Interfaces and Packages Unit 5

132 Programming in Java

Unit 5 Interfaces and Packages

Remember that - to implement an interface, a class must create the

complete set of methods defined by the interface.

5.3.1 Defining an Interface

The syntax for defining an interface is very similar to that for

defining a class, which is shown below :

interface interfaceName

 {

return-type methodName1(parameter-list);

return-type methodNname2(parameter-list);

type final-varname1 = value;

type final-varname2 = value;

return-type methodNameN(parameter-list);

type final-varnameN = value;

 }

From the above syntax we have seen that an interface definition

has two components: the interface declaration and the inter-
face body. The interface declaration declares various attributes

about the interface, such as its name and whether it extends

other interfaces. The interface body contains the constant and

the method declarations for that interface.

Variables declared inside of interface declarations are implicitly

final and static, meaning they cannot be changed by the imple-

menting class. They must also be initialized with a constant

value. All methods and variables are implicitly public if the inter-

face, itself, is declared as public.

Programming in Java 133

Interfaces and Packages Unit 5

Example of interface Area and Shape are shown below :

interface Area

 {

 final static float pi =3.142F;

 float compute (float x, float y);

 void show();

 }

 and

interface Shape

 {

public double area();

public double volume();

 }

5.3.2 Extending Interfaces

Like classes, interfaces can be extended i.e. an interface can

be subinterfaced from other interfaces. The extends keyword is

used to extend an interface, and the child interface inherits the

methods of the parent interface. The syntax for using the extend

keyword is shown below :

interface name2 extends name1

 {

body of name2

 }

Here, name2 is the child interface and name1 is the parent

interface.

In following the Sports interface is extended by the Hockey and

the Football interfaces.

134 Programming in Java

Unit 5 Interfaces and Packages

 public interface Sports

 {

 public void setHomeTeam(String name);

 public void setVisitingTeam(String name);

 }

 public interface Football extends Sports

 {

 public void homeTeamScored(int points);

 public void visitingTeamScored(int points);

 public void endOfQuarter(int quarter);

 }

 public interface Hockey extends Sports

 {

 public void homeGoalScored();

 public void visitingGoalScored();

 public void endOfPeriod(int period);

 public void overtimePeriod(int ot);

 }

Here, in the Hockey interface has four methods, but it inherits

two method from Sports. So, the class that implements Hockey

needs to implement all six methods. Similarly, a class that

implements Football needs to define the three methods from

Football and the two methods from Sports.

The public access specifier indicates that the interface can be

used by any class in any package. If you do not specify that the

interface is public, your interface will be accessible only to

classes defined in the same package as the interface.

An interface can extend other interfaces, just as a class can

extend or subclass another class. However, whereas a class

can extend only one other class, an interface can extend any

Programming in Java 135

Interfaces and Packages Unit 5

number of interfaces. The interface declaration includes a

comma-separated list of all the interfaces that it extends.

5.3.3 Implementing Interfaces

When a class implements an interface, you can think of the

class as signing a contract, agreeing to perform the specific

behaviors of the interface. If a class does not perform all the

behaviors of the interface, the class must declare itself as

abstract class.

To declare a class that implements an interface, you include an

implements clause in the class declaration as shown in the

following :

class classname implements Interfacename

 {

// body of classname

 }

For example, we have already define the interface Shape. Let

us try to implement it using the Point class.

Program 1 : Implementation of Shape interface

// Point.java

interface Shape

 {

 public double area();

 public double volume();

 }

136 Programming in Java

Unit 5 Interfaces and Packages

public class Point implements Shape

 {

static int x, y;

public Point()

 {

x = 0;

y = 0;

 }

 public double area()

 {

return 0;

 }

 public double volume()

 {

return 0;

 }

 public static void print()

 {

System.out.println("\n Point: " + x + "," + y);

 }

 public static void main(String args[])

 { // object declaration

Point p = new Point();
p.print();

 }

 }

Programming in Java 137

Interfaces and Packages Unit 5

Output :

Fig 5.1 Output of Program 1

One class can implement more than one interface, so the

implements keyword is followed by a comma-separated list of

the interfaces implemented by the class.

5.4 PACKAGES

As we begin to develop more complex programs, we’ll start to use

more and more classes. Some classes will be from standard libraries;

others will be classes which we develop ourselves. When writing a

program, often we need to put several subroutine units (e.g. functions)

together in a file as a unit, so that the program is manageable. A set

of functions as a unit can be loaded and used as needed, and also

distributed for other programers to use. This idea of a set of functions

as a unit in a file is variously known as “library”, “package”,

“module”, “add-on”.

In Java, it's called “package”.

A Java package is a set of classes and interfaces which are grouped

together. The grouping is usually done according to functionality. An

example of a package is the JDK Package of Sun Java is shown

below :

138 Programming in Java

Unit 5 Interfaces and Packages

Fig 5.2 JDK Package

5.4.1 Java API Packages

Java packages are classified into two types, they are -

  Java API packages

  User defined packages

Java API provides a large number of classes grouped into different

packages according to functionality. Most of the time we use the

packages available with the Java API. The following figure shows

the frequently used packages in programs.

 Java

lang util io awt net applet

Fig. 5.3 Some API Packages

Java API provides a large number of classes grouped into different

packages according to functionality.

java.lang : Language support classes. These are the classes

Programming in Java 139

Interfaces and Packages Unit 5

that Java compiler itself uses and therefore they are auto-

matically imported. They include classes of primitive types, strings,

math functions, threads and exceptions.

java.util : Language utility classes such as vector, hash

tables, random numbers, data etc.

java.io : Input/output support classes. They provide

facilities for the input and output of data

java.awt : set of classes for implementing graphical user

interface. They include classes for windows, buttons, lists, menus

and so on.

java.net : Classes for networking. They include classes for

communicating with local computers as well as with internet

servers.

java.applet : Classes for creating and implementing applets.

Actually the Java Packages are organised in a hierarchical

structure. Java awt package is shown in the following fig where

it contains the various classes in hierarchical manner.

Fig. 5.3 Structure of java.awt packages

Accessing the classes from packages

140 Programming in Java

Unit 5 Interfaces and Packages

The syntax for accessing the package is :

import packagename.classname;

or

import packagename.*;

These are known as import statement and should be used at

the top of the file, before any class declaration. Its meaning is

that we are using the classname in our program more than one

times.

The second statement means for all the classes under the awt
packages. If we need all the classes under the awt package in

our program we will use such statement.

For example -

import java.awt.Color; // only import the class color

import java.awt.*; // import all the class

In some situations, suppose we need to access the class only

once in our program, then we can make use of it as follows

instead of writing import java.awt.Color.

java.awt.Color

5.4.2 Creating User Defined Packages

First declare the name of the package using the package

keyword followed by a package name. This must be the first

statement in a java source file.

Declare the package at the beginning of a file using the syntax:

package packagename;

Then define the class which is to be put in the package and

declare it as public.

Create a subdirectory under the directory where the main source

files are stored.

Programming in Java 141

Interfaces and Packages Unit 5

Store the listing as the classname.java in the subdirectory created.

Compile the file. This creates .class file in the subdirectory.

For example, suppose we have a file called Test.java, and we

want to put this file in a package say DemoPack. First thing we

have to do is to specify the keyword package with the name of

the package we want to use (DemoPack in our case) on top of

our source file, before the code, that defines the real classes in

the package as shown in our Test class below :

// only comments can be here

package DemoPack;

public class Test

 {

 public static void main(String[] args)

 {

 System.out.println("I am A Simple Program!");

 }

 }

One thing you must do after creating a package for the class is

to create nested subdirectories to represent package hierachy of

the class. In our case, we have the DemoPack package, which

requires only one directory. So, we create a directory DemoPack

and put our Test.java into it.

Fig. 5.4 Creating Packages

142 Programming in Java

Unit 5 Interfaces and Packages

5.4.3 Accessing and Using Packages

We have already know, how a class can be imported from a

package and used in a program. The import statement is used

to search a list of packages for a particular class.

In the case of user defined package also, for accessing a prticular

class we will use the import statement. The general form of

import statement for searching a class is as follows:

import package1 [.package2] [.package3].classname;

Here pakcage1 is the name of the top level package, package2

is the name of the package that is inside the package1, and so

on.

Now, let us try how to import a user defined package in a

program.

We have already created a package named DemoPack under

the DemoPack directory in C dlrive. We will now add an another

class to this package by writing and saving the following program

in the same directory. While writing you should not forget to add

the statement package DemoPack; at the top of the class.

package DemoPack;

public class myClass

 {

 public void displayAll ()

 {

System.out.println("Demonstration of Packages !!!");

System.out.println("I Am from myClass !!!");

 }

 }

Now, let us write and save the following program in the directory

where DemoPack is a subdirectory of it (here in our case

Programming in Java 143

Interfaces and Packages Unit 5

DemoPack is a subdirectory of C drive, so we will save the file

in C drive).

import DemoPack.myClass;

class TestClass

 {

 public static void main(String args[])

 {

// new object created

 myClass obj1 = new myClass();

 obj1.displayAll(); //invokes the method displayAll()

 }

 }

Now, we can compile and run the program which produce the

output as shown below :

Fig. 5.5 Output of importing Package

Thus, you have learned how to write and import packages.

144 Programming in Java

Unit 5 Interfaces and Packages

CHECK YOUR PROGRESS

1. Find the mistake in the following declaration public interface
DemoInterface

 {

 void TestMethod(int value)

{

 System.out.println("I am A Simple Interface !");

}

 }

2. Write the correct form of it.

3. Fill in the blanks of the following :

(a) support the concept multiple inheritance in Java.

(b) All the methods of an interface are automatically

(c) clause is used in class declaration for implementing

an interface.

(d) package include the classes of primitive types, strings,

math functions, threads and exceptions.

(e) We will use statement to use all the class under util

package.

5.5 LET US SUMUP

 1. An interface is a named collection of method definitions (without

implementations).

 2. An interface can also declare constants.

 3. A class can implement one or more interfaces by declaring them

in the class definition, and including the code to implement each

of the interface methods.

 4. A class that does not define all the methods for an interface it

implements must be declared as abstract.

Programming in Java 145

Interfaces and Packages Unit 5

 5. Classes can be grouped into a package. If a class in a package is

to be accessible from outside the package the class must be

declared using the keyword public.

 6. To designate that a class is a member of a package we will use a

package statement at the beginning of the file containing the class

definition.

 7. To add classes from a package to a file we will use an import

statement immediately following any package statement in the file

like import package1 [.package2] [.package3].classname;.

5.6 ANSWERS TO CHECK YOUR
PROGRESS

1. Inside the body of any interface there should have declaration of

methods and variables. Implementation of the methods of interface

are done inside the body of the class which implements the

interface. Here, in the code, that method should be a declaration

but it is given as implementation which is wrong.

2. The correct form of the interface is :

public interface DemoInterface

 {

void TestMethod(int value);

 }

3. a) interface b) public c) implement d) java.lang

e) import java.util.*

5.7 FURTHER READINGS

 1. Java Programming Language Handbook by Anthony Potts, David

H. Friedel Jr. , Coriolis Group Books

 2. Programming with Java- A Primer by E Balagurusamy, Tata

McGrawHill

146 Programming in Java

Unit 5 Interfaces and Packages

5.8 MODEL QUESTIONS

1. What is an interface? Why interface are used ?

2. What is the major difference between an interface and a class?

3. Give an example where interface can be used to support multiple

inheritance. Develop a Java program for the example.

4. What are the similarities between interfaces and classes?

5. What is a package? What is its function ?

6. How do we add a class or an interface to a package?

7. How do we design a package?

8. Discuss the Java API Packages.

5Programming in Java

Exception Handling Unit - 6

UNIT- 6 EXCEPTION HANDLING

UNIT STRUCTURE

6.1 Learning Objectives
6.2 Introduction
6.3 Errors and Exceptions
6.4 Exception Hierarchy

6.4.1 Checked versus Unchecked Exceptions
6.5 Handling Exceptions

6.5.1 Multiple Catch Blocks
6.5.2 The finally Block

6.6 User-Defined Exceptions
6.7 Let Us Sum Up
6.8 Answers to Check Your Progress
6.9 Further Readings
6.10 Possible Questions

6.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :
 • learn the concept of exceptions in Java

 • learn to use the keywords throw, try, catch, and finally in
exception handling

 • learn about the Throwable class hierarchy
 • learn about unchecked and checked exception in Java

• throw exceptions implicitly as well as explicitly
• learn about how to catch exceptions
• learn to handle user-defined exceptions and will be able to
 create your own exception

6 Programming in Java

Unit - 6 Exception Handling

6.2 INTRODUCTION

By now, you must have been acquainted with so many concepts of Java
programming language such as data types and variables, operators, control
flow statements etc. We have also presented the concept of classes,
objects, methods, constructors, inheritance, various types of modifiers,
arrays, strings, vectors as well as the interfaces and packages. These
concepts will help the learners to write and develop suitable programs.
While writing program there may arise some errors for some mistakes. An
error may produce an incorrect output or may terminate the execution of
the program abruptly. It is therefore important to detect and manage those
errors. Java facilitates the management of such situation by handling
exceptions.

In this unit, we will discuss how exceptions can be handled in Java
programming language. The unit describes when and how to use exceptions.

6.3 ERRORS AND EXCEPTIONS

We can define an exception as an event, which occurs during the execution
of a program that disrupts the normal flow of the program’s instructions.
The Java programming language uses exceptions to handle errors and
other exceptional events. Exceptions are used in a program to signal that
some error or exceptional situation has occurred, and that it does not make
sense to continue the program flow until the exception has been handled.

There are two categories of errors: Compile-time errors and Run-time
errors. All syntax errors detected and displayed by the Java compiler are
termed as Compile-time errors. If the compiler detects an error while
compiling a program, then the .class file will not be created. For successful
compilation we have to correct the syntax error first. Let us consider the
following example for the demostration of compile time error:

7Programming in Java

Exception Handling Unit - 6

Program 6.1: Test.java (Program showing Compile-time error)
class Test
{
 public static void main(String args[])
 {
 System.out.println(“KKHSOU”);
 System.out.println(“\nAssam”)
 }
}

While compiling the above program Test.java, the following message will
be displayed on the screen:

We can see that the statement
 System.out.println(“\nAssam”)
has no semicolon at the end. The Java compiler displays where the errors
are in the program. We can then correct the errors in the appropriate line
and recompile the program. If there is no other error in the program then it
will create .class file (here, Test.java). We can then run the program to
see the output. Some of the most common compile-time errors are:

• Use of variable without declaration
• Missing brackets in classes and methods
• Missing semicolons
• Incompatible assignment statements etc.

Sometimes, a program may compile successfully creating .class file but
may not execute properly i.e., they may produce wrong result or may
terminate abruptly. These errors may occur due to wrong logic of the
program and many more reasons like

8 Programming in Java

Unit - 6 Exception Handling

• Dividing an integer by zero
• Converting invalid strings to number
• Trying to store a value into an array of incompatible class or type etc.

Such types of errors are termed as Run-time errors. Let us consider the
following example for the demonstration of run-time error:

//Program 6.2: Error.java (Demonstration of Run-time error and
// Implicitly throwing an exception)

class Error
{
 public static void main(String args[])
 {
 int p, q, r, result;
 p = 20;

q = 6;
r = 6;
result = p / (q-r); //(q-r) is equal to zero
System.out.println(“The result is : “ + result);

}
}

When we compile the above program, then it will create the Error.class file
as the compilation is successful. The compiler will not display any error
message as there is no syntax error in the code. When we try to run the
program then it will display the following error message and terminate the
execution of the program. In the statement Result = p/(q-r); we are dividing
p by zero. When the Java interpreter encounters an error such as dividing
an integer by zero, it creates an exception object and throws it (i.e., informs
us that an error has occurred)

9Programming in Java

Exception Handling Unit - 6

An exception in Java is an object that is created when an abnormal
situation arises in a program. When an error occurs within a method, the
method creates an object and hands it off to the runtime system. This
exception object has data members that store information about the nature
of the problem. Such an object can be instantiated by a running program in
two ways:

explicitly by a throw statement in the program
or implicitly by the Java run-time system when it is unable
to execute a statement in a program(as in Program 6.2).

One major benefit of having an error signaled by an exception is that it
separates the code that deals with errors from the code that is executed
when things are moving along smoothly. Another positive aspect of
exceptions is that they provide a way of enforcing a response to particular
errors – with many kinds of exceptions, we must include code in our program
to deal with them, otherwise our code will not compile. One important idea to
grasp is that not all errors in our programs need to be signaled by exceptions.

At this point we will discuss the basics of Java’s exception throwing and
catching mechanism. When an error occurs in a Java program it usually
results in an exception being thrown. A method may throw an exception for
many reasons, for instance if the input parameters are invalid (negative
when expecting positive etc.). How we throw, catch and handle these
exception matters. There are several different ways to do so.

Creating an exception object and handing it to the runtime system is called
throwing an exception. When an exception is thrown, it can be caught by
a catch clause of try statement. If the exception object is not caught and
handled properly, the interpreter will display an error message (e.g., like the
output of Program 6.2) and terminate the program. If we want the program
to continue with the execution of the remaining code, then we should try to
catch the exception object thrown by the error condition and display an
appropriate message. This process is known as exception handling.

6.4 EXCEPTIONS HIERARCHY

The hierarchy of exception classes commence from Throwable class which
is the base class for an entire family of exception classes, declared in

1 0 Programming in Java

Unit - 6 Exception Handling

java.lang package as java.lang.Throwable. An exception is always an
object of some subclass of the standard class Throwable. Two direct
subclasses of the Throwable class are the Error class and the Exception
class which cover all the standard exceptions. Both these classes
themselves have subclasses which identify specific exception conditions.
The following figure 6.1 shows the exception hierarchy which gives some
of the standard exception in Java.

Object
 Throwable
 Error
 AssertionError

LinkageError
 NoClassDefFoundError
VirtualMachineError

OutOfMemoryError
 Exception

ClassNotFoundException
InstantiationException
IOException

EOFException
FileNotFoundException

Run-timeException
ArithmeticException
IllegalArgumentException
IndexOutOfBoundsException

Array IndexOutOfBoundsException
NullPointerException

Fig. 6.1: Exception Hierarchy in Java

6.4.1 Checked versus Unchecked Exceptions

In Java there are basically two types of built-in exceptions: Unchecked
exceptions and checked exceptions. Exception in Java are classified on
the basis of the exception handled by the java compiler.

Checked
 Exceptions

Unchecked
 Exceptions

Unchecked
 Exceptions

1 1Programming in Java

Exception Handling Unit - 6

EXCEPTIONS DESCRIPTION CHECKED UNCHECKED

ArithmeticException
Arithmetic errors

such
 as a divide by zero

 - YES

ArrayIndexOutOfBoundsException Arrays index is not
within array.length - YES

ClassNotFoundException Related Class
not found YES -

IOException InputOuput field
not found YES -

IllegalArgumentException
Illegal argument

when
 calling a method

- YES

InterruptedException

One thread has
been

interrupted by
another thread

YES -

NoSuchMethodException Nonexistent
method YES -

NullPointerException Invalid use of
null reference - YES

NumberFormatException
Invalid string for

conversion to
number

- YES

 • Unchecked Exceptions
The kinds of exception that can be prevented by writing better code are
unchecked exceptions. They are instances of the Error class, the Run-
timeException class, and their extensions. These exception arises during
run-time ,that occur due to invalid argument passed to method.

 • Checked Exceptions
The checked exceptions are checked by the compiler before the program
is run. At compile time, the Java compiler checks that a program contains
handlers for checked exceptions. These exception are the object of the
Exception class or any of its subclasses except Run-timeException class.
These condition arises due to invalid input, problem with our network
connectivity and problem in database. The statements that throw them either
must be placed within try statement or they must be declared in their
method’s header.

The java.lang package defines several classes and exceptions. Some of
these classes are not checked while some other classes are checked (Table
6.1).

Table 6.1

1 2 Programming in Java

Unit - 6 Exception Handling

6.5 HANDLING EXCEPTIONS

If we want to deal with the exceptions where they occur, there are three
kinds of code block that we can include in a method to handle them. These
are try, catch, and finally. At this point we will first discuss the detail of try
and catch blocks and will come to the application of a finally block a little
later.

 • The try Block
When we want to catch an exception, the code in the method that might
cause the exception to be thrown must be enclosed in a try block. A try
block is simply the keyword try, followed by braces enclosing the code that
can throw the exception:

try
 {

 // Code that can throw one or more exceptions
}

The try block can have one or more statements that could generate an
exception. If any one statement generates an exception, the remaining
statements in the block are skipped and execution jumps to the catch block
that is placed next to the try block. It should be remebered that every try
statement should be followed by at least one catch statement if there is no
finally block.

 • The catch Block
We enclose the code to handle an exception of a given type in a catch
block. The catch block must immediately follow the try block that contains
the code that may throw that particular exception. A catch block consists of
the keyword catch followed by a parameter between parentheses that
identifies the type of exception that the block is to deal with. This is followed
by the code to handle the exception enclosed between braces:

1 3Programming in Java

Exception Handling Unit - 6

try
 {

 // Code that can throw one or more exceptions
 }

 catch(ArithmeticException e)
 {

 // Code to handle the exception
 }

The above catch block only handles ArithmeticException exceptions. This
implies that, this is the only kind of exception that can be thrown in the try
block. If others can be thrown, this will not compile. Let us modify Program
6.2 for the demonstration of try and catch blocks to handle an arithmetic
expression.

//Program 6.3: Demo.java
class Demo
{
 public static void main(String args[])
 {
 int p, q, r, x, y;
 p = 20;
 q = 5;
 r = 5;
 try
 {
 x = p / (q-r); //exception here
 }
 catch(ArithmeticException e)
 {
 System.out.println("Testing an exception");
 }
 y = p / (q+r);
 System.out.println("\nThe result is = "+y);
 }
}
If we run the above program, the following output will be displayed

1 4 Programming in Java

Unit - 6 Exception Handling

The execution of the program does not stop at the point of exceptional
condition. It catches the error condition, displays the message “Testing an
exception”. The execution continues and gives the result without terminating
the program as if nothing has happened.

Program 6.3 is an example of implicitly throwing and catching an unchecked
exception. Let us consider the following program for an illustration of
unchecked exception that is thrown by an explicit throw statement.

//Program 6.4: Calculate.java (Explict throw of unchecked exception)
class Calculate
{

static double sqrt(double n)
{

 if(n<0)
 throw new IllegalArgumentException();
 return Math.sqrt(n);
 }
 public static void main(String[] args)
 {
 System.out.println(sqrt(-16));
 System.out.println("\nEnd of Calculate Method");
 }
}

When we run the program after compiling, then it will display the following
and terminate the program.

1 5Programming in Java

Exception Handling Unit - 6

The output is showing what happens when an exception is not caught.
It can be prevented with the help of try and catch statement. The following
program is a modification of Program 6.4 to handle such unchecked
exception.

//Program 6.5: Calculate.java (Catching an unchecked exception
//which is thrown explicitly)
class Calculate
{
 static double sqrt(double n)
 {
 if(n<0)
 throw new IllegalArgumentException();
 return Math.sqrt(n);
 }
 public static void main(String[] args)
 {
 try
 {
 System.out.println(sqrt(-16));
 }
 catch(Exception exception)
 {
 System.out.println("exception: "+ exception);
 }
 System.out.println("\nThe exception was caught");
 System.out.println("\nEnd of Calculate Method");
 }
}

1 6 Programming in Java

Unit - 6 Exception Handling

The output will be like this:

The IllegalArgumentException object is thrown with the statement throw
new IllegalArgumentException(); and that exception is caught with the
statement catch(Exception exception) as it is generated by the statement
System.out.println(sqrt(-16)); within that try block. The exception in the
Program 6.5 can be handled by writing proper program code.

Normally, the try statement should be used only for checked exceptions.
That is because the purpose of try statement is to handle unanticipated
errors. Exceptions should be reserved for the unusual or catastrophic
situations that can arise. The reason for this is that dealing with exceptions
involves quite a lot of processing overhead, so if our program is handling
exceptions a lot of the time it will be a lot slower than it needs to be.

Following are the list of various checked exception that defined in the java.
lang package.

 Exception Reason for Exception

 ClassNotFoundException This Exception occurs when Java
run-time system fail to find the
specified class mentioned
in the program

 Instantiation Exception This Exception occurs when you
 create an object of an abstract
 class and interface

1 7Programming in Java

Exception Handling Unit - 6

 Illegal Access Exception This Exception occurs when you
create an object of an abstract
class and interface.

 Not Such Method Exception This Exception occurs when the
 method you call does not exist
 in class

6.5.1 Multiple Catch Blocks

If a try block can throw several different kinds of exception, we can put
several catch blocks after the try block to handle them.

try
{

// Code that may throw exceptions
}
catch(ArithmeticException e)
{

// Code for handling ArithmeticException exceptions
}
catch(IndexOutOfBoundsException e)
{
 // Code for handling IndexOutOfBoundsException exceptions
}
 // Execution continues here...

Exceptions of type ArithmeticException will be caught by the first catch
block, and exceptions of type IndexOutOfBoundsException will be caught
by the second. Of course, if an ArithmeticException exception is thrown,
only the code in that catch block will be executed.When it is complete,
execution continues with the statement following the last catch block.When
we need to catch exceptions of several different types for a try block, the
order of the catch blocks is important. When an exception is thrown, it will

1 8 Programming in Java

Unit - 6 Exception Handling

be caught by the first catch block that has a parameter type that is the
same as that of the exception, or a type that is a superclass of the type of
the exception.

An extreme case would be if we specify the catch block parameter as type
Exception. This will catch any exception that is of type Exception, or of a
class type that is derived from Exception. This includes virtually all the
exceptions we are likely to meet in the normal course of events.This has
implications for multiple catch blocks relating to exception class types in a
hierarchy. The catch blocks must be in sequence with the most derived
type first, and the most basic type last. Otherwise our code will not
compile. The simple reason for this is that if a catch block for a given class
type precedes a catch block for a type that is derived from the first, the
second catch block can never be executed and the compiler will detect that
this is the case

Suppose we have a catch block for exceptions of type ArithmeticException,
and another for exceptions of type Exception . If we write them in the following
sequence, exceptions of type ArithmeticException could never reach the
second catch block as they will always be caught by the first.

// Invalid catch block sequence – will not compile!
try
{

// try block code
}
catch(Exception e)
{

// Generic handling of exceptions
}
catch(ArithmeticException e)
{

// Specialized handling for these exceptions
}

The above code will not compile.Thus if we have catch blocks for several
exception types in the same class hierarchy, we must put the catch blocks

1 9Programming in Java

Exception Handling Unit - 6

in order, starting with the lowest subclass first, and then progressing to the
highest superclass.In principle, if you are only interested in generic
exceptions, all the error handling code can be localized in one catch block
for exceptions of the superclass type. However, in general it is more useful,
and better practice, to have a catch block for each of the specific types of
exceptions that a try block can throw.

6.5.2 The finally Block

The immediate nature of an exception being thrown means that execution
of the try block code breaks off, regardless of the importance of the code
that follows the point at which the exception was thrown. This introduces
the possibility that the exception leaves things in an unsatisfactory state.
We might have opened a file, for instance, and because an exception was
thrown, the code to close the file is not executed.

The finally block provides the means to clean up at the end of executing a
try block. We use a finally block when we need to be sure that some
particular code is run before a method returns, no matter what exceptions
are thrown within the previous try block. A finally block is always executed,
regardless of what happens during the execution of the method. If a file
needs to be closed, or a critical resource released, we can guarantee that
it will be done if the code to do it is put in a finally block. The finally block has
a very simple structure:

finally
{

// Clean-up code to be executed last
}

Just like a catch block, a finally block is associated with a particular try
block, and it must be located immediately following any catch blocks for the
try block. If there are no catch blocks then we position the finally block
immediately after the try block. If we do not do this, our program will not
compile. Java provides the finally statement that can be used handle an
exception that is not caught by any of the previous catch statement. i.e., a
try statement does not have to have a catch block if it has a finally block. If

2 0 Programming in Java

Unit - 6 Exception Handling

the code in the try statement has multiple exit points and no associated
catch clauses, the code in the finally block is executed no matter how the
try block is exited. Thus, it makes sense to provide a finally block whenever
there is code that must always be executed.

6.6 USER- DEFINED EXCEPTIONS

As we come across Built-in exception, we create own customized exception
as per requirements of the application. On each application there is a
specific constraints. Error-handling become necessary while developing a
constraint application. For example, suppose in the case of a banking
application, a customer whose age is less than 18 need to open Joint
Account. The Exception class and its subclass in Java is not able to meet
up the required constraint in application. For this, we create our own
customized exception to over address these constraints and ensure the
integrity in the application. Let us see how to handle and create user-defined
exception. The keywords try, catch and finally are used in implementing
user-defined exceptions. This Exception class inherits all the method from
Throwable class.

In the following program, a class MyException is created which is a
subclass of the Exception class. The MyException class has one
constructor,i.e MyException().

//Program 6.7: UserDefinedException.java
import java.lang.Exception;
class MyException extends Exception
{
 MyException(String m)
 {
 super(m);
 }
}
class UserDefinedException
{
 public static void main(String args[])
 {

2 1Programming in Java

Exception Handling Unit - 6

 int a=5, b=5000;
 try
 {
 float c =(float)a/(float)b;
 if(c<0.01)
 {
 throw new MyException("\nNumber is too small");
 }
 }
 catch(MyException e)
 {
 System.out.println("\nCaught my exception");
 System.out.println(e.getMessage());
 }
 finally
 {
 System.out.println("\nFinally block executed");
 }
 }
}

The object e which contain the error message “Number is too small” is
caught by the catch block which then displays the message using the
getMessage() method. The output will be like this:

We can also learn how to use the statement finally with the above program.
The last line of the output is produced by the finally block.

2 2 Programming in Java

Unit - 6 Exception Handling

CHECK YOUR PROGRESS

 1. Is the following code legal?

try
 {

 }
 finally {

 }

 2. What exception types can be caught by the following handler?
catch (Exception e) {
}

 What is wrong with using this type ofexception handler?

3. Is there anything wrong with the following exception handler as
written? Will this code compile?

try
 {

}
 catch (Exception e)
 {

 }
 catch (ArithmeticException a)
 {

 }
4. How many catch clauses can a try statement have?
5. What happens if a thrown exception is not caught?

 6.8 LET US SUM UP

The important concepts we have explored in this unit are:
• Exception that means exceptional errors. Actually exceptions are used

2 3Programming in Java

Exception Handling Unit - 6

for handling errors in programs that occurs during the program
execution.

• Error that occurs during the program execution generate a specific
object which has the information about the errors occurred in the
program. Exceptions are objects of subclasses of the class Throwable.

• Java includes a set of standard exceptions that may be thrown
automatically, as a result of errors in our code, or may be thrown by
methods in the standard classes in Java.

• If a method throws exceptions that are not caught, and are not
represented by subclasses of the class Error, or by subclasses of the
class RuntimeException, then we must identify the exception classes
in a throws clause in the method definition.

• If we want to handle an exception in a method, we must place the code
that may generate the exception in a try block. A method may have
several try blocks.

• Exception handling code is placed in a catch block that immediately
follows the try block that contains the code that can throw the exception.
A try block can have multiple catch blocks that deal with different types
of exception.

• A finally block is used to contain code that must be executed after the
execution of a try block, regardless of how the try block execution ends.
A finally block will always be executed before execution of the method
ends.

 • We can define our own exception classes that, in general, should be
derived from the class Exception.

6.9 ANSWERS TO CHECK YOUR PROGRESS

Answer 1 : Yes, it is legal and very useful. A try statement does not have to
have a catch block if it has a finally block. If the code in the try statement
has multiple exit points and no associated catch clauses, the code in the
finally block is executed no matter how the try block is exited. Thus it makes
sense to provide a finally block whenever there is code that must always be
executed. This include resource recovery code, such as the code to close
I/O streams.
Answer 2 : This handler catches exceptions of type Exception; therefore, it

2 4 Programming in Java

Unit - 6 Exception Handling

catches any exception. This can be a poor implementation because we
are losing valuable information about the type of exception being thrown
and making our code less efficient. As a result, our program may be forced
to determine the type of exception before it can decide on the best recovery
strategy.
Answer 3 : This first handler catches exceptions of type Exception; therefore,
it catches any exception, including ArithmeticException. The second handler
could never be reached. This code will not compile.
Answer 4: A try statement may have any number of catch clauses, as long
as it has atleast one or a finally clause. Each catch clause must catch a
different type of exception.
Answer5: If a thrown exception is not caught, then the program will terminate
immediately.

6.10 FURTHER READINGS

1. “Java Programming Language Handbook ”, by Anthony Potts, David H.
Friedel Jr. , Coriolis Group Books
2. “JAVA How to Program”, Deitel & Deital, PHI Publication
3. “Programming with Java-A Primer” by E Balagurusamy, Tata McGrawHill

6.11 POSSIBLE QUESTIONS

1. What is an exception?
2. Is it essential to catch all types of exception?
3. How many catch blocks can we use with one try block?
4. What is a finally block? When and how is it used? Give a suitable example.
5. How do we define a try block?
6. How do we define a catch block?
7. List some of the common types of exceptions that might occur in Java.

Give examples.
8. What do you mean by checked and unchecked exceptions? Give

examples.

2 5Programming in Java

File Handling Unit - 7

UNIT - 7 FILE HANDLING

UNIT STRUCTURE

7.1 Learning Objectives
7.2 Introduction
7.3 I/O Basics: Streams
7.4 The Stream Classes
7.5 The Predefined Streams
7.6 Reading Console Input
7.7 Writing Console Output
7.8 Reading and Writing Files
7.9 Let Us Sum Up
7.10 Answer to Check Your Progress
7.11 Further Readings
7.12 Possible Questions

7.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:
 learn about the most important io package in Java
 learn about the predefined streams
 learn about console input and output
 describe how to read data from file and how to write data to file

7.2 INTRODUCTION

In this unit we will learn one of the Java’s most important package io. We
will learn about the streams, different stream classes. Besides this how to
read data from input and how to write data into output. We also give a brief
introduction of file handling in Java.

The io package supports Java’s basic I/O (Input/Output) system including
file I/O. Java program perform I/O through streams. A stream is linked to a
physical device by the Java I/O system. Java define 2 types of stream, byte

2 6 Programming in Java

Unit - 7 File Handling

and character. In Java 1.0, the only way to perform console input was to
use a byte stream. The preferred method of reading console input for Java
2 is use a character oriented stream, which makes the program easier to
internationalize and maintain.

Java provides a number of classes and methods that allow to read and
write files. In Java all files are byte oriented, and Java provides method to
read and write bytes from and to a file.

7.3 I/O BASICS : STREAMS

Java views each file as a sequential stream of bytes. Each operating system
provides a mechanism to determine the end of a file, such as an end-of-file
marker or count of the total bytes in the file that is recorded in a system-
maintained administrative data structure.

A Java program processing a stream of bytes simply receives an indication
from the operating system when the program reaches the end of the stream-
the program does not need to know how the underlying platform represents
files or streams.

The Java Input/Output (I/O) is a part of java.io package. The java.io
package contains a relatively large number of classes that support input
and output operations. The classes in the package are primarily abstract
classes and stream-oriented that define methods and subclasses which
allow bytes to be read from and written to files or other input and output
sources. The InputStream and OutputStream are central classes in the
package which are used for reading from and writing to byte streams,
respectively.

 0 1 2 3 n-1 4 ……..
…….. End-of-file-marker

Fig: Java’s view of a
file of n bytes

2 7Programming in Java

File Handling Unit - 7

The java.io package can be categorised along with its stream classes in a
hierarchy structure as shown below:

InputStream:

The InputStream class is used for reading the data such as a byte and
array of bytes from an input source. An input source can be a file, a string,
or memory that may contain the data. It is an abstract class that defines the
programming interface for all input streams that are inherited from it. An
input stream is automatically opened when we create it. We can explicitly
close a stream with the close() method, or let it be closed implicitly when
the object is found as a garbage.

The subclasses inherited from the InputStream class can be seen in a
hierarchy manner as shown below:

2 8 Programming in Java

Unit - 7 File Handling

InputStream is inherited from the Object class. Each class of the
InputStreams provided by the java.io package is intended for a different
purpose.

The OutputStream class is a sibling to InputStream that is used for writing
byte and array of bytes to an output source. Similar to input sources, an
output source can be anything such as a file, a string, or memory containing
the data. Like an input stream, an output stream is automatically opened
when you create it. You can explicitly close an output stream with the close()
method, or let it be closed implicitly when the object is garbage collected.

The classes inherited from the OutputStream class can be seen in a
hierarchy structure shown below:

OutputStream is also inherited from the Object class. Each class of the
OutputStreams provided by the java.io package is intended for a different
purpose.
How Files and Streams Work:

2 9Programming in Java

File Handling Unit - 7

Java uses streams to handle I/O operations through which the data is flowed
from one location to another. For example, an InputStream can flow the
data from a disk file to the internal memory and an OutputStream can flow
the data from the internal memory to a disk file. The disk-file may be a text
file or a binary file. When we work with a text file, we use a character
stream where one character is treated as per byte on disk. When we work
with a binary file, we use a binary stream.

The working process of the I/O streams can be shown in the given diagram.

7.4 THE STREAM CLASSES

There are two types of streams
1. Byte –for Binary I/O
2. Character – for Character I/O

Programs use byte streams to perform input and output of 8-bit bytes.

There are many byte stream classes. To demonstrate how byte streams
work, we’ll focus on the file I/O byte streams, FileInputStream and
FileOutputStream. Other kinds of byte streams are used in much the same
way, they differ mainly in the way they are constructed.
We’ll explore FileInputStream and FileOutputStream by examining an
example program named CopyBytes.java, which uses byte streams to copy
kkhsou.txt, one byte at a time and write the content of the file on outagain.txt.

3 0 Programming in Java

Unit - 7 File Handling

Kkhsou.java
import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

public class CopyBytes {

 public static void main(String[] args) throws IOException {

 FileInputStream in = null;

 FileOutputStream out = null;

 try {

 in = new FileInputStream(“kkhsou.txt”);

 out = new FileOutputStream(“outagain.txt”);

 int c;

 while ((c = in.read()) != -1) {

 out.write(c);

 }

 } finally {

 if (in != null) {

 in.close();

 }

 if (out != null) {

 out.close();

 }

 }

 }

}

We need to create one file kkhsou.txt which contains the test “DISHPUR

GUWAHATI”. The program will copy this text into a new file called

outagain.txt.
CopyBytes spends most of its time in a simple loop that reads the input
stream and writes the output stream, one byte at a time, as shown in the
following figure.

3 1Programming in Java

File Handling Unit - 7

Fig: Simple byte stream input and output.

We can notice that read() returns an int value. Using a int as a return type
allows read() to use -1 to indicate that it has reached the end of the stream.

The primary advantage of character streams is that they make it easy to
write programs that are not dependent upon a specific character encoding,
and are therefore easy to internationalize.

Java represents strings in Unicode, an International standard character
encoding that is capable of representing most of the world’s written
languages. Typical human-readable text files, however, use encodings that
are not necessarily related to Unicode, or even to ASCII, and there are many
such encodings. Character streams hide the complexity of dealing with
these encodings by providing two classes that serve as bridges between
byte streams and character streams. The InputStreamReader class
implements a character-input stream that reads bytes from a byte-input
stream and converts them to characters according to a specified encoding.

D I S H P U R G U W A H A T I

D I S H P U R G U W

read(w)

W

write(w)

Integer
Variable

InInput stream

output stream

3 2 Programming in Java

Unit - 7 File Handling

Similarly, the OutputStreamWriter class implements a character-output
stream that converts characters into bytes according a specified encoding
and writes them to a byte-output stream.

A second advantage of character streams is that they are potentially much
more efficient than byte streams. The implementations of many of Java’s
original byte streams are oriented around byte-at-a-time read and write
operations. The character-stream classes, in contrast, are oriented around
buffer-at-a-time read and write operations. This difference, in combination
with a more efficient locking scheme, allows the character stream classes
to more than make up for the added overhead of encoding conversion in
many cases.

7.5 THE PREDEFINED STREAMS

All Java programs automatically import java.lang package. This package
defines a class called System, which encapsulates several aspects of the
run-time environment. For example, using some of its method we can obtain
the current time and the settings of various properties associated within
the system. System also contains three predefined system variables, in,
out and err.

System.out refers to the standard output stream, which is console by default.
System.in refers to standard input, which is the keyboard by default.
System.err refers to the standard error stream, which is the console.

System.in is an object of type InputStream, System.out and System.err
are object of type PrintStream. These are byte stream.

3 3Programming in Java

File Handling Unit - 7

CHECK YOUR PROGRESS -1

1. Java views each file as a sequential of bytes.
2. The Java Input/Output (I/O) is a part of package.
3. Java uses to handle I/O operations through

which the data is flowed from one location to another
4. Java represents strings in
5. java.lang package defines a class called..................................
6. State whether the following statements are true or false:

a. Each operating system provides a mechanism to
determine the end of a file, such as an end-of-file marker or
count of the total bytes in the file Applet are not supported
by web browser.

b. The InputStream class is used for reading the data such as
a byte and array of bytes from an input source.

c. There are three types of streams: byte, character, float

7.6 READING CONSOLE INPUT

Java also supports three Standard Streams:
 Standard Input: Accessed through System.in which is used to

read input from the keyboard.
 Standard Output: Accessed through System.out which is used

to write output to be display.
 Standard Error: Accessed through System.err which is used to

write error output to be display.

Working with Reader classes:

Java provides the standard I/O facilities for reading text from either the file
or the keyboard on the command line. The Reader class is used for this
purpose that is available in the java.io package. It acts as an abstract class
for reading character streams. The only methods that a subclass must
implement are read(char[], int, int) and close(). the Reader class is further
categorized into the subclasses.

3 4 Programming in Java

Unit - 7 File Handling

The following diagram shows a class-hierarchy of the java.io.Reader
class.

This program illustrates you how to use standard input stream to read the
user input.
import java.io.*;
public class ReadStandardIO{
public static void main(String[] args) throws IOException{

InputStreamReader inp=new
InputStreamReader(System.in);

BufferedReader br = new BufferedReader(inp);
System.out.println(“Enter text : “);
String str = br.readLine();
System.out.println(“You entered String : “);
System.out.println(str);

}
}

3 5Programming in Java

File Handling Unit - 7

7.7 WRITING CONSOLE OUTPUT

We can write programs that write text lines to the “console”, which is typically
a DOS command window.

ConsoleOutput.java:

public class ConsoleOutput {
 public static void main(String[] args) {
 System.out.println(“Hello, GoodMOrning”);
 }
}

No imports are required, The System class is automatically imported (as
are all java.lang classes).

You can write one complete output line to the console by calling the
System.out.println() method. The argument to this method will be printed.
println comes from Pascal and is short for “print line”. There is also a similar
print method which writes output to the console, but doesn’t start a new
line after the output.

7.8 READING AND WRITING FILES

Java provides a number of classes and methods that allow us to read and
write files. In Java all files are byte oriented, and Java provides methods to
read and write bytes from and to a file.

3 6 Programming in Java

Unit - 7 File Handling

The File class deals with the machine dependent files in a machine-
independent manner i.e., it is easier to write platform-independent code
that examines and manipulates files using the File class. This class is
available in the java.lang package.

The java.io.File is the central class that works with files and directories.
The instance of this class represents the name of a file or directory on the
host file system.

When a File object is created, the system does not check to the existence
of a corresponding file/directory. If the file exist, a program can examine its
attributes and perform various operations on the file, such as renaming it,
deleting it, reading from or writing to it.

Lets understand some I/O streams that are used to perform reading and
writing operation in a file.

Java supports the following I/O file streams.

 FileInputStream

 FileOutputStream

 FileInputstream

This class is a subclass of Inputstream class that reads bytes from a
specified file name . The read() method of this class reads a byte or array
of bytes from the file. It returns -1 when the end-of-file has been reached.
We typically use this class in conjunction with a BufferedInputStream and
DataInputstream class to read binary data. To read text data, this class is
used with an InputStreamReader and BufferedReader class. This class
throws FileNotFoundException, if the specified file is not exist. We can use
the constructor of this stream as:

FileInputstream(File filename);

FileOutputStream:

This class is a subclass of OutputStream that writes data to a specified file
name. The write() method of this class writes a byte or array of bytes to the
file. We typically use this class in conjunction with a BufferedOutputStream
and a DataOutputStream class to write binary data. To write text, we typically

3 7Programming in Java

File Handling Unit - 7

use it with a PrintWriter, BufferedWriter and an OutputStreamWriter class.
You can use the constructor of this stream as:

FileOutputstream(File filename);

DataInputStream:

This class is a type of FilterInputStream that allows you to read binary data
of Java primitive data types in a portable way. In other words, the
DataInputStream class is used to read binary Java primitive data types in a
machine-independent way. An application uses a DataOutputStream to write
data that can later be read by a DataInputStream. You can use the
constructor of this stream as:

DataInputStream(FileOutputstream finp);

The following program demonstrate, how the contains are read from a file.
import java.io.*;

public class ReadFile{
 public static void main(String[] args) throws IOException{
 File f;
 f=new File(“demo.txt”);
 if(!f.exists()&& f.length()<0)
 System.out.println(“The specified file is not exist”);

 else{
 FileInputStream finp=new FileInputStream(f);
 byte b;
 do{
 b=(byte)finp.read();
 System.out.print((char)b);
 }
 while(b!=-1);
 finp.close();
 }
 }
 }

3 8 Programming in Java

Unit - 7 File Handling

In the section, we will learn how to write data to a file. As we have discussed,
the FileOutputStream class is used to write data to a file.

Let us consider an example that writes the data to a file converting into the
bytes.This program first check the existence of the specified file. If the file
exist, the data is written to the file through the object

of the FileOutputStream class.

import java.io.*;

public class WriteFile{

 public static void main(String[] args) throws IOException{

 File f=new File(“textfile1.txt”);
 FileOutputStream fop=new FileOutputStream(f);

 if(f.exists()){
 String str=”This data is written through the program”;
 fop.write(str.getBytes());

 fop.flush();
 fop.close();
 System.out.println(“The data has been written”);
 }

 else
 System.out.println(“This file is not exist”);
 }

 }

3 9Programming in Java

File Handling Unit - 7

CHECK YOUR PROGRESS - 2

1. Java supports Standard Streams
2. In Java all files are ……............……………..... oriented.
3. Java supports the andI/O

file streams
4. State whether true or false:

a. You can write one complete output line to the console by
calling the System.out.println() method.

b. Java provides methods to read and write bytes from and to
a file.

7.9 LET US SUM UP

 Java views each file as a sequential stream of bytes.
 Java uses streams to handle I/O operations through which the data

is flowed from one location to another
 There are two types of streams Byte and Character
 Programs use byte streams to perform input and output of 8-bit bytes
 The primary advantage of character streams is that they make it

easy to write programs that are not dependent upon a specific
character encoding, and are therefore easy to internationalize.

4 0 Programming in Java

Unit - 7 File Handling

 Java supports three Standard Streams: Standard Input,Standard
Output,Standard Error

 Java provides a number of classes and methods that allow you to
read and write files

7.10 ANSWER TO CHECK YOUR PROGRESS

CHECK YOUR PROGRESS -1
1. stream 2. java.io 3. Streams 4. Unicode 5. System
6. a) True b) true c) false

CHECK YOUR PROGRESS -2
1. three 2. Byte 3. FileInputstream, FileOutputStream

 4. a) true b) true.

7.11 FURTHER READINGS

1. “The Complete Reference, Java 2”, Tata McGraw-Hill Edition
 2. “JAVA How to Program”, Deitel & Deital, PHI Publication

3. You can alo visit the site www.java.sun.com

7.12 POSSIBLE QUESTIONS

1. What is stream in java? How Java represents a file?
2. How file and stream work in Java?
3. What are the two different types of streams? What are the

advantages of character streams?
4. What is predefined stream?

4 1Programming in Java

Introduction to Applets Unit - 8

UNIT – 8 INTRODUCTION TO APPLETS

UNIT STRUCTURE

8.1 Learning Objectives
8.2 Introduction
8.3 Applets and the World Wide Web
8.4 The Applet Class
8.5 Applets and HTML
8.6 The Life Cycle of an Applet
8.7 Event Handling
8.8 Using Window Components
8.9 Adding Audio and Animation
8.10 Let Us Sum Up
8.11 Answers to Check Your Progress
8.12 Further Readings
8.13 Possible Questions

8.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:
 learn how to write applets in Java and their advantages and

disadvantages in programming
 describe the life cycle of applet
 learn about event handling
 add Windows components to applets
 add audio file as well as animation to applets

8.2 INTRODUCTION

In the previous unit, we discussed the io package as well as the different
stream classes in Java. Besides these we also presented how to read and
write console input/output and handle files in Java.

4 2 Programming in Java

Unit - 8 Introduction to Applets

Today internet has become an inevitable part of life. It is used for accessing
libraries, getting information on latest happening, to transfer information,
send email and communicate with others. Java has become a prime
language today in making web pages interactive and user friendly. Java
programs written to run on World Wide Web (WWW) are known as applets.
In this unit we will learn how to write applets and how to include them in web
pages. The life cycle of applet will also be discussed in this unit. It is possible
to change the colors, font of the text, set different background colors for
different applets and make them look more attractive.

8.3 APPLETS AND THE WORLD WIDE WEB

An applet is a Java program that we can embed in a web page. Java
applications are run by using a Java interpreter. Applets can run on any
browser that supports Java. Applet can also be tested using the applet
viewer tool included in the Java Development Kit. In order to run an applet it
must be included in a web page, using HTML tags. Since Java’s bytecode
is platform independent, Java applets can be executed by browsers for
many platforms, including Windows, Unix, Mac OS and Linux. When a Java
technology-enabled web browser views a page that contains an applet, the
applet’s code is transferred to the clients system and executed by the
browser’s Java Virtual Machine (JVM).

Advantages of Applet :
 Applets are cross platform and can run on Windows, Mac OS and

Linux platform
 Applets can work all the version of Java Plug-in
 Applets are supported by most web browsers
 Applets are cached in most web browsers, so will be quick to load

when returning to a web page.
 User can also have full access to the machine if user allows.

Disadvantages of Applet :
 Java plug-in is required to run applet.
 Java applet requires JVM so first time it takes significant startup

time.

4 3Programming in Java

Introduction to Applets Unit - 8

 If applet is not already cached in the machine, it will be downloaded
from internet and will take time.

 It is difficult to design and build good user interface in applets
compared to HTML technology.

8.4 THE APPLET CLASS

The java.applet package is the smallest package in the Java API. The Applet
class is contained in the java.applet package. Applet contains several
methods that gives us detailed control over the execution of the applet. In
addition, java.applet also define three interfaces: AppletContext, AppletStub,
and AudioClip.

All applets are subclasses of Applet. Thus, all applets must import
java.applet. applets must also import java.awt. all applets run in a window,
it is necessary to include support for that window. Applets are not executed
by the console-based Java run-time interpreter, they are executed by either
a Web Browser or an applet viewer.

The Applet class contains a single default parameterless constructor, which
is generally not used. Applets are constructed by the runtime environment
when they are loaded and do not have to be explicitly constructed.

Applet provides all necessary support for applet execution, such as starting
and stopping. It also provides methods that load and display images, and
methods and methods that load and play audio clips.

8.5 APPLETS AND HTML

In order to run a Java applet, it is first necessary to have a web page that
references the applet. The <Applet> tag supplies the name of the applet to
be loaded and tells the browser how much space the applet requires. Applet
tag takes zero or more parameters.

4 4 Programming in Java

Unit - 8 Introduction to Applets

Syntax

<APPLET

CODE=”name of the class file that extends java.applet.Applet”

CODEBASE=”path of the class file” HEIGHT=”maximum height of the
applet, in pixels”

WIDTH=”maximum width of the applet, in pixels”

VSPACE=”vertical space between the applet and the rest of the HTML”

HSPACE=”horizontal space between the applet and the rest of the HTML”

ALIGN=”alignment of the applet with respect to the rest of the web page”

ALT=”alternate text to be displayed if the browser does not support applets”>

<PARAM NAME=”parameter_name” value=”value_of_parameter”>

</APPLET>

The most commonly used attributes of the Applet tag are CODE, HEIGHT,
WIDTH, CODEBASE and ALT. Also you can send parameter to the applet
using the PARAM tag. The PARAM tag must be written between <APPLET>
and </APPLET> .

CODE: this is required attribute that gives the name of the file containing
your applet’s compiled .class file.

CODEBASE: this is an optional attribute, that specifies the base URL of
the applet code.

HEIGHT AND WIDTH : these two are required attributes that gives the
size in pixels of the applet display area.

VSPACE AND HSPACE: These attributes are optional. VSPACE specifies
the space, in pixels, above and bellow the applet. HSPACE specifies the
space, in pixels, on each side of the applet.

ALIGN: this is an optional attribute that specifies the alignment of the applet.
The possible values are LEFT, RIGHT, TOP, BOTTOM, MIDDLE, BASELINE,
TEXTTOP, ABSMIDDLE and ABSBOTTOM.

ALT: this is also an optional attribute used to specify a short text message
that should be displayed if the browser can not run the Java Applet.

4 5Programming in Java

Introduction to Applets Unit - 8

PARAM NAME AND VALUE: the PARAM tag allows to specify applet specific
arguments in an HTML page.

Example 1 : Simple Applet displaying HELLO WORLD

SimpleJavaApplet.java
import java.awt.Graphics; //This imports our Graphics class , which is used
for drawing lines , squares, circles, text.

public class SimpleJavaApplet extends java.applet.Applet { //This means
that our custom HelloWorld class extends the Applet class. That is , it is a
subclass of Applet. Therefore we have access to all the methods of Applet,
and we can extend our custom class to do further things.

public void paint(Graphics g) { //This method is our drawing method. This
method draws anything that is in our applet to the screen. Note that we
have passed an instance(g) of the Class Graphics to it.

g.drawString(“HELLO WORLD”, 5, 25); //drawString is a method of the
Graphics class. We have an instance of the Graphics class - g. drawString
takes a String and an x and a y coordinate.

}
}

simpleapplet.html

<html>

<head>

<body>

 <APPLET CODE=”SimpleJavaApplet.class” HEIGHT=250 WIDTH=250 >

 </APPLET>

 </body>

</html>

Both this file needs to stay in the same directory.

The HTML (Hyper Text Marked up Language) code tells the browser to
load the compiled java applet SimpleJavaApplet.class that is in the same
directory as this HTML file. It specifies the display area for the applet output
as 250 pixels width and 250 pixels height.

4 6 Programming in Java

Unit - 8 Introduction to Applets

To run an applet, we require one of the following tools:

a) Java Applet Viewer

b) Java enabled Web Brower (such as IE or Firefox)

Before running the program we need to compile the program. The next
section demonstrate how to compile and run an applet in a graphical way.
The example shows here are keep in a directory under c:\html.

a) Using Java Applet Viewer:

Fig: Compiling the Java program SimpleJavaApplet.java
The applet viewer is available as a part of the JDK. We can now run our
applet as follows:

Fig: running applet using Applet Viewer.

4 7Programming in Java

Introduction to Applets Unit - 8

OUTPUT:

When the browser encounters an <Applet> tag, it reserves a display area
of the specified width and height for the class in the browser window, loads
the bytecodes for the specified Applet subclass, creates an instance of the
subclass and then calls for the instances init and start method.

b) Using Java enabled browser (Firefox)
Run the browser and then go to File->Open File , it will open a screen
looks bellow. Select the file simpleapplet.htm and click on open.

Fig: Select the html file that included the applet class

4 8 Programming in Java

Unit - 8 Introduction to Applets

The applet is run on the browser and displays the word “HELLO WORLD”
as bellow.

Fig: run the applet on the browser.

We can embed applets into Web pages in two ways.

 One way is that we can write our own applets and embed them
into web pages. An applet developed locally and stored in a local
system is known as a local applet.

 Secondly, we can download an applet from a remote computer
system and then embed it into a web page. A remote applet is that
which is developed by someone else and stored on a remote
computer (web server) connected to the Internet. In order to locate
and load a remote applet, we must know the applets address on
the web. This address is known as the URL and must be
specified in the applet’s HTML document as the value of the
CODEBASE attribute.

Drawing Shapes Example:
In this program we will see how to draw the different types of shapes like
line, circle and rectangle. There are different types of methods for
the Graphics class of the java.awt.*; package have been used to draw the
appropriate shape.
Here is the java code of the program:

CircleLine.java:

import java.applet.*;

import java.awt.*;

public class CircleLine extends Applet{

4 9Programming in Java

Introduction to Applets Unit - 8

int x=300,y=100,r=50;

public void paint(Graphics g){

g.drawLine(3,300,200,10); // used to draw the line in the applet.

g.drawString(“Line”,100,100); // draws the given string as the parameter

g.drawOval(x-r,y-r,100,100); // draws the circle

g.drawString(“Circle”,275,100); // draws the given string as parameter

g.drawRect(400,50,200,100); // draws the rectangle

g.drawString(“Rectangel”,450,100); // draws the given string as parameter

 }

}

Here is the HTML code of the program:

CircleLine.html:

<HTML>

<HEAD>

</HEAD>

<BODY>

<div align=”center”>

<APPLET CODE=”CircleLine.class” WIDTH=”800" HEIGHT=”500"></
APPLET>

</BODY>

</HTML>

Output :

5 0 Programming in Java

Unit - 8 Introduction to Applets

CHECK YOUR PROGRESS -1

1. Fill in the blanks:
i. The packages is the smallest

package in the Java API.
ii. .. is used to execute an Applet.
iii. The Applet tag is written the of an

HTML document.
2. State whether the following statements are true or false:

a. Applet can be run using Applet Viewer.
b. Applet are not supported by web browser.
c. Applet can run on Linux platform.

8.6 THE LIFE CYCLE OF AN APPLET

In this section we will learn about the lifecycle of an applet. Applet runs in
the browser and its lifecycle method are called by JVM when it is loaded
and destroyed. The lifecycle of an Applet are:

 init(): This method is called to initialized an applet
 start(): This method is called after the initialization of the applet.
 stop(): This method can be called multiple times in the life cycle of

an Applet.
 destroy(): This method is called only once in the life cycle of the

applet when applet is destroyed.

init () method:
The life cycle of an applet is begin on that time when the applet is first
loaded into the browser and called the init() method. The init() method is
called only one time in the life cycle on an applet. The init() method is basically
called to read the PARAM tag in the html file. The init () method retrieve the
passed parameter through the PARAM tag of html file using get Parameter()
method All the initialization such as initialization of variables and the objects
like image, sound file are loaded in the init () method .After the initialization
of the init() method user can interact with the Applet and mostly applet
contains the init() method.

5 1Programming in Java

Introduction to Applets Unit - 8

Start () method:
The start method of an applet is called after the initialization method init().
This method may be called multiples time when the Applet needs to be
started or restarted. For Example if the user wants to return to the Applet, in
this situation the start() Method of an Applet will be called by the web browser
and the user will be back on the applet. In the start method user can interact
within the applet.

Stop () method:
The stop() method can be called multiple times in the life cycle of applet
like the start () method. Or should be called at least one time. There is only
miner difference between the start() method and stop () method. For
example the stop() method is called by the web browser on that time When
the user leaves one applet to go another applet and the start() method is
called on that time when the user wants to go back into the first program or
Applet.

destroy() method:
The destroy() method is called only one time in the life cycle of Applet like
init() method. This method is called only on that time when the browser
needs to Shut down.
The following diagram depicts the life cycle of an applet

Fig: Life Cycle of An APPLET

A user open the
web page for the

first time

After init

The applet loses the
focus

The user moves
to another page

 init

 Start

 Stop

 Destroy

5 2 Programming in Java

Unit - 8 Introduction to Applets

Loading the Applet :

As a result of the applet being loaded, you should see the text
“initializing... starting...”. When an applet is loaded, here’s what happens:

* An instance of the applet’s controlling class (an Applet subclass)
is created.

* The applet initializes itself.
* The applet starts running.

Leaving and Returning to the Applet’s Page :
When the user leaves the page, for example, to go to another page, the
browser stops and destroys the applet. The state of the applet is not
preserved. When the user returns to the page, the browser intializes and
starts a new instance of the applet.

Reloading the Applet :
When you refresh or reload a browser page, the current instance of the
applet is stopped and destroyed and a new instance is created.

Quitting the Browser:
When the user quits the browser, the applet has the opportunity to stop
itself and perform a final cleanup before the browser exits.

CHECK YOUR PROGRESS - 2

1. The ... method is called the first time an
applet is loaded into the memory of a computer.

2. The method is called by the browser when
the user moves to another page.

5 3Programming in Java

Introduction to Applets Unit - 8

8.7 EVENT HANDLING

Event handling is essential to GUI programming. The program waits for a
user to perform some action. The user controls the sequence of operations
that the application executes through a GUI. This approach is called event
driven programming.

 Components of an Event
An event comprises of three components.

 Event Object- When a user interacts with a application by
clicking a mouse or pressing a key from the keyboard, an event
is generated. The operating system keep track of this event
and the data associated with it. For example the time at which
the event occurred, the event type (like a mouse click).

 In Java events are represented by objects that describes the
events themselves. Java has a number of classes that
describes and handle different categories of event.

 Event Source- An event source ia an object that generates an
event. For example if you click on a button, an ActionEvent object
is generated. The object of the ActionEvent class contains
information about the event.

 Event-handler- An event handler is a method that understands
the event and processes it. The event-handler method takes
an Event object as a parameter

5 4 Programming in Java

Unit - 8 Introduction to Applets

Start

Create the Graphical User Interface
object – A Window

Listen for an event

Is
event=Window
closing

Yes

End

No

Process the event

 Event Classes

The EventObject class is at the top of the event class hierarchy. It belongs
to the java.util package. Most other event classes are present in the
java.util.event package.

 Event Listener
An object delegates the task of handling an event to an event listner. When
an event occurs, an event object of the appropriate type is created. This
object is passed to the listener. A listener must implement the interface that
has the method for event-handling. A component can have multiple listeners.

5 5Programming in Java

Introduction to Applets Unit - 8

 Event-Handling
When an event occurs, it is sent to the component from where the event
originated. The component registers a listener, which contains event-
handler. Event-handler receives and process events.

Every event has a corresponding listener interface that specifies the
methods that are required to handle the event. Event object are reported to
registered listener. To enable a component to handle events, you must
register an appropriate listener for the components.

8.8 USING WINDOW COMPONENT

Window components can be added to the applet to create a friendly user
interface. Java provides a number of window components, which can be
found in the java.awt library.

All of the window components added to an applet are confined to the applet
window area in the current browser document. The applet window contains
the entire paintable region; anything that does not fit inside that region is
clipped.

Using the provided window components, applets have the capability to
contain the same look and feel of other window application programs. Applets
can use all GUI components that can be used by Panel objects. In addition,
applets have access to many of the capabilities provided by the browser. In
the next section this functionality is discussed in details.

Button

Window
Action
Event

Action Event-
Handler

5 6 Programming in Java

Unit - 8 Introduction to Applets

8.9 ADDING AUDIO AND ANIMATION

Adding Audio
The Applet class provides the capability to play audio files. The play() method
of the Applet class can be used to play an audio file that is identified by an
URL. A more flexible approach is to load an object that implements the
AudioClip interface and then invoke the object’s play(), loop(), and stop()
methods. The getAudioClip() method can be used to load an audio file by
identifying its URL.

The example describe bellow plays the testsound once and continues in
an endless loop playing the testingsound sound clip.

sound.java
import java.applet.AudioClip; // This allows us to use the Audioclip and
play methods in the Applet class of the Java Abstract Windowing toolkit.

public class sound extends java.applet.Applet { // We want to generate an
applet .

public void init(){ // initialization

play(getCodeBase(),”testsound.au”); // Play the testsound directly once.
The file is in the same directory as the applet.

AudioClip clip = getAudioClip (getCodeBase(), “testingsound.au”); //
Declare clip as an instance of the class AudioClip and loop to repeat the
call of the testingsound. This sound file is also in the same directory as
the applet itself.
clip.loop();
 }

}

.au = Sun audio format

5 7Programming in Java

Introduction to Applets Unit - 8

Sound.html

<html>

<head>

<body>

 <APPLET CODE=”sound.class” HEIGHT=150 WIDTH=150>

 You can not see this brilliant Java Applet.

 </APPLET>

 </body>

</html>

To run this code we need to type this code in a text editor and save the file
as “sound.java”. After compiling this program we need to create a HTML file
with a reference to the class file. Save the HTML file in the same directory
as the class file. Also the 2 sound file needs to place on the same directory.

Adding animations
We can also create animations using Applet code. Let us take one simple
example of scrolling marquee. The animation needs to do three things.
Draw the string, wait for some length of time and then change the location
where the string is to be drawn to the left one pixel. Repeating this process
will appear to animate the string from right to left. The output of the program
is shown bellow and the text will scroll from right to left.

5 8 Programming in Java

Unit - 8 Introduction to Applets

The code of the above output is given bellow:

import java.awt.Graphics;
import java.awt.Color;

import java.awt.Font;

import java.awt.Image;

//include the Graphics font
and color capabilities

public class marquee extends

java.applet.Applet implements

Runnable

{

//create an applet that is

'runnable'

allowing multithreading

String mesag ="Simple Animation";

Font mfont = new

Font("TimesRoman",Font.BOLD, 36);

int Xposition = 600;
Image scrnBuf;

Graphics scrnG;

//These Declarations set up

the string that will scroll the

font and size The x

coordinate

Thread runner; //a thread to control the flow

of the program.

public void init()

{

scrnBuf = createImage(600,50);

scrnG = scrnBuf.getGraphics();

}

public void start()

 {
 if (runner == null);

 {

 runner = new Thread(this);

 runner.start();

 }

 }

The thread will not start until

the parent thread calls this

Thread. The new thread

begins executing the run

method of our runnable

class.

5 9Programming in Java

Introduction to Applets Unit - 8

public void stop()

 {

 if (runner != null);

 {

 runner.stop();

 runner = null;

 }

 }

//This stops the thread from

executing. Returning from

the run method causes an

automatic call to stop

public void run()

{

 while(true)

 {

 repaint();

 try {Thread.sleep(30);}

 catch(InterruptedException e) { }

 }

}

//Control passes here as

soon as the thread starts

When this method returns

the thread stops

We simply set the

background color Paint the

screen with the paint method

Put the thread to sleep and

check for any errors

public void update(Graphics g)

{

 paint(g);

}

public void paint(Graphics g)

{

 Color c = new Color(128,128,192);

 scrnG.setColor(c);

 scrnG.fillRect(0,0,600,50);

 scrnG.setColor(Color.red);

 scrnG.setFont(mfont);

//The paint method actually

places the text on the screen

First set the font Draw the

string at the current x

position and decrement the

x position If the text has

scrolled off the screen reset

the x position to start the

process over on the right

side

6 0 Programming in Java

Unit - 8 Introduction to Applets

scrnG.drawString(mesag,Xposition,40);

 Xposition--;

 if (Xposition < -290)

 {

 Xposition = 600;

 }

 g.drawImage(scrnBuf, 0 , 0 , this);

}

}

8.10 LET US SUM UP

 An Applet runs in a webpage.
 The Applet class is the only class of the java.applet package.
 An Applet can be executed using the appletviewer or a Java-enabled

browser.
 The Applet tag is used to embed an applet in a web page.
 The init() method is called the first time the applet is loaded into the

memory of a computer.
 The start() method is called immediately after the init() method and

every time the applet receives focus .
 The stop() method is called every time the user moves on to another

web page.
 The destroy() method is called just before the browser is shut down.
 The components of an event are: Event Object, Event Source, Event

Handler.

6 1Programming in Java

Introduction to Applets Unit - 8

8.10 ANSWER TO CHECK YOUR PROGRESS

CHECK YOUR PROGRESS -1

1. (i)Java.applet (ii) Appletviewer (iii) Body tag
2. a) True b) False c) True

CHECK YOUR PROGRESS -2
1. init 2. destroy

8.4 FURTHER READINGS

1. “The Complete Reference, Java 2”, Tata McGraw-Hill Edition
 2. www.java.sun.com

8.5 POSSIBLE QUESTIONS

1. Explain the life cycle of an appet?
2. What are the components of Event Handler?
3. What are the advantages and disadvantages of APPLET?

6 2 Programming in Java

Unit - 9 AWT and Swings

UNIT - 9 AWT AND SWINGS

UNIT STRUCTURE

9.1 Learning Objectives
9.2 Introduction
9.3 AWT Basics
9.4 AWT Components
9.5 Event Handling
9.6 Introduction to Swing
9.7 Swing Components
9.8 Event Handling
9.9 Display Text and Image in a Window
9.10 Layout Manager
9.11 Let Us Sum Up
9.12 Answer to Check Your Progress
9.13 Further Readings
9.14 Possible Questions

9.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:
 learn about the concept of AWT and its components
 describe event handling
 learn about Swing and its components
 display test and images in a window
 learn about layout manager

9.2 INTRODUCTION

In this unit we will learn about the AWT package of the Java and a brief
description of Swing. The AWT is Java’s original platform-independent
windowing, graphics, and user-interface widget toolkit. The AWT is now
part of the Java Foundation Classes (JFC) — the standard API for providing
a graphical user interface (GUI) for a Java program. Here we will provide a

6 3Programming in Java

AWT and Swings Unit - 9

brief description about different AWT components, event handling in AWT
and Swing. At the end we will learn about Layout Manager.

9.3 AWT BASICS

AWT stands for Abstract Windowing Toolkit. It contains all classes to
write the program that interface between the user and different windowing
toolkits. We can use the AWT package to develop user interface objects
like buttons, checkboxes, radio buttons and menus etc.

Now a days developer are using Swing components instead of AWT to
develop good GUI for windows applications.

9.4 AWT COMPONENTS

In this section we will learn about the different components available in the
Java AWT package for developing user interface for our program. Following
are some of the components of Java AWT:

Labels: This is the simplest component of Java Abstract Window Toolkit.
This component is generally used to show the text or string in our application
and label never perform any type of action. Syntax for defining the label is:

Label label_name = new Label (“This is the label text”);

Above code simply represents the text for the label.

Label label_name = new Label (“This is the label text.”,
Label.CENTER);

label can be left, right or centered. Above declaration used the center
justification of the label using the Label.CENTER

Buttons: This is the component of Java Abstract Window Toolkit and is
used to trigger actions and other events required for our application. The
syntax of defining the button is as follows:

6 4 Programming in Java

Unit - 9 AWT and Swings

Button button_name = new Button (“This is the label of the button.”);
We can change the Button’s label or get the label’s text by using the
Button.setLabel(String) and Button.getLabel() method. Buttons are added
to its container using the add (button_name) method.

Check Boxes: This component of Java AWT allows us to create check
boxes in our applications. The syntax of the definition of Checkbox is as
follows:

CheckBox checkbox_name = new Checkbox (“Optional check box 1”, false);

Above code constructs the unchecked Checkbox by passing the Boolean
valued argument false with the Checkbox label through the Checkbox()
constructor. Defined Checkbox is added to its container using add
(checkbox_name) method. We can change and get the checkbox’s label
using the setLabel (String) and getLabel() method. We can also set and get
the state of the checkbox using the setState(boolean) and getState() method
provided by the Checkbox class.

Radio Button: This is the special case of the Checkbox component of
Java AWT package. This is used as a group of checkboxes which group
name is same. Only one Checkbox from a Checkbox Group can be selected
at a time. Syntax for creating radio buttons is as follows :

CheckboxGroup chkgp = new CheckboxGroup();

add (new Checkbox (“One”, chkgp, false);

add (new Checkbox (“Two”, chkgp, false);

add (new Checkbox (“Three”,chkgp, false);

In the above code we are making three check boxes with the label “One”,
“Two” and “Three”. If we mention more than one true valued for checkboxes
then our program takes the last true and show the last check box as
checked.

Text Area: This is the text container component of Java AWT package.
The Text Area contains plain text. TextArea can be declared as follows:

TextArea txtArea_name = new TextArea();
We can make the Text Area editable or not using the setEditable (Boolean)
method. If we pass the Boolean valued argument false then the text area

6 5Programming in Java

AWT and Swings Unit - 9

will be non-editable otherwise it will be editable. The text area is by default
in editable mode. Text are set in the text area using the setText(string)
method of the TextArea class.

Text Field: This is also the text container component of Java AWT package.
This component contains single line and limited text information. This is
declared as follows:

TextField txtfield = new TextField(20);

We can fix the number of columns in the text field by specifying the number
in the constructor. In the above code we have fixed the number of columns
to 20.

As shown in the example below, a button is represented by a single label.
That is the label shown in the example can be pushed with a click of a
mouse.

MyButton.java

import java.awt.*;

import java.applet.Applet;

public class MyButton extends Applet

 {

 public void init()

 {

 Button button = new Button(“SUBMIT”);

 add(button);

 }

}

Here is the HTML code:

<HTML>

<HEAD>

</HEAD>

<BODY>

<APPLET ALIGN=”CENTER” CODE=”MyButton” W IDTH=”400"
HEIGHT=”200"></APPLET>

</BODY>

</HTML>

6 6 Programming in Java

Unit - 9 AWT and Swings

CHECK YOUR PROGRESS -1

1.Fill in the blanks :
i. ……............…….is generally used to show the text or string

in your application.
ii. ……........……. never perform any type of action
iii. …….........…….. component of Java AWT allows you to create

check boxes in your applications
iv. …….................…….. is the special case of the Checkbox

component of Java AWT package.
v. ………........….. and …….......………… is the text container

component.

6 7Programming in Java

AWT and Swings Unit - 9

9.5 EVENT HANDLING

There are many types of events that are generated by our AWT Application.
These events are used to make the application more effective and efficient.
Generally, there are twelve types of event are used in Java AWT. These are
as follows:

1. ActionEvent : It indicates the component-defined events occurred i.e.
the event generated by the component like Button, Checkboxes etc.

2. AdjustmentEvent : This is the AdjustmentEvent class extends from
the AWTEvent class. When the Adjustable Value is changed then the
event is generated.

3. ComponentEvent : This is the low-level event which indicates, if the
object moved, changed and its states (visibility of the object). This
class only performs the notification about the state of the object.

4. ContainerEvent : This is a low-level event which is generated when
container’s contents changes because of addition or removal of a
components.

 5. FocusEvent : This indicates about the focus where the focus has
gained or lost by the object

6. InputEvent : This event class handles all the component-level input
events. This class acts as a root class for all component-level input
events.

7. ItemEvent : The ItemEvent class handles all the indication about the
selection of the object i.e., whether selected or not.

8. KeyEvent : It handles all the indication related to the key operation in
the application if we press any key for any purposes of the object then
the generated event gives the information about the pressed key. These
types of events check whether the pressed key left key or right key, ‘A’
or ‘a’ etc.

9. MouseEvent : It handle all events generated during the mouse
operation for the object. That contains the information whether mouse

6 8 Programming in Java

Unit - 9 AWT and Swings

is clicked or not if clicked then checks the pressed key is left or right.

10. PaintEvent : The PaintEvent class only ensures that the paint() or
update() are serialized along with the other events delivered from the
event queue.

11. TextEvent : TextEvent is generated when the text of the object is
changed.

12. WindowEvent : If the window or the frame of our application is
changed (Opened, closed, activated, deactivated or any other events
are generated), WindowEvent is generated.

9.6 INTRODUCTION TO SWING

The Java Swing provides the multiple platform independent APIs interfaces
for interacting between the users and GUIs components. Java provides an
interactive feature for design the GUIs toolkit or components like: labels,
buttons, text boxes, checkboxes, combo boxes, panels and sliders etc. All
AWT flexible components can be handled by the Java Swing. The Java
Swing supports the plugging between the look and feel features. The look
and feel that means the dramatically changing in the component like JFrame,
JWindow, JDialog etc. for viewing it into the several types of window.

9.7 SWING COMPONENTS

There are many components which are used for the building of GUI in Swing.
The Swing Toolkit consists of many components for the building of GUI.
These components are also helpful in providing interactivity to Java
applications. Following are the some of the components which are included
in Swing toolkit:
1. list controls
2. buttons
3. labels
4. tree controls
5. table controls

6 9Programming in Java

AWT and Swings Unit - 9

All AWT flexible components can be handled by the Java Swing. Swing
toolkit contains far more components than the simple component toolkit. In
the next section we are going to show some examples.

Text Field: The following example shows how to create a text field. The
swing text field is encapsulated by the JTextComponent class which extends
JComponent. One of its subclass JTextField allows to edit one line of text
box.

JTextFields.java:

import java.awt.*;
import javax.swing.*;

public class JTextFields extends JApplet
{

JTextField jtf;
public void init()
{
//Get content pane
Container contentPane=getContentPane();
contentPane.setLayout(new FlowLayout());

//Add Text field
jtf= new JTextField(25);
//add Textbox to the content pane
contentPane.add(jtf);
}

}

JTextField.html

 <html>

 <applet code=”JTextFields.class” height=200 width=320>

 </applet>
 </html>

7 0 Programming in Java

Unit - 9 AWT and Swings

Output:

Buttons:
Swing buttons are subclasses of the AbstructButton class, which extends
JComponent. The JButton class provides the functionality of a push button.
The following example shows a push button.

JButtonDemo.java:

import java.awt.*;
import javax.swing.*;

public class JButtonDemo extends JApplet{

public void init(){
//Get content pane
Container contentPane=getContentPane();
contentPane.setLayout(new FlowLayout());
//Add button to the content pane
JButton jb=new JButton(“kkhsou”);
contentPane.add(jb);

}
}

7 1Programming in Java

AWT and Swings Unit - 9

JButton.html:

<html>

 <applet code=”JButtonDemo.class” height=200 width=320>

 </applet>
 </html>

Output:

Check Boxes: The JCheckBox class, which provides the functionality of a
check box, is a concrete implementation of AbstractButton. The following
example shows how to create an applet that displays three check boxes.

JCheckBoxDemo.java

import java.awt.*;
import javax.swing.*;

public class JCheckBoxDemo extends JApplet
{

public void init()
{

7 2 Programming in Java

Unit - 9 AWT and Swings

//Get content pane
Container contentPane=getContentPane();
contentPane.setLayout(new FlowLayout());
//Add checkbox to the content pane
JCheckBox cb=new JCheckBox(“C”);
contentPane.add(cb);
cb=new JCheckBox(“C++”);
contentPane.add(cb);
cb=new JCheckBox(“JAVA”);
contentPane.add(cb);

}
}

JCheckBox.html:

<html>
 <applet code=”JCheckBoxDemo.class” height=200 width=320>

 </applet>
 </html>

Output:

7 3Programming in Java

AWT and Swings Unit - 9

9.9 EVENT HANDLING

Events are an important part in any GUI program. All GUI applications are
event-driven. An application reacts to different event types which are
generated during its life. Events are generated mainly by the user of an
application. But they can be generated by other means as well. e.g., internet
connection, window manager, timer. In the event model, there are three
participants:

 event source
 event object
 event listener

The Event source is the object whose state changes. It generates Events.
The Event object (Event) encapsulates the state changes in the event
source. The Event listener is the object that wants to be notified. Event
source object delegates the task of handling an event to the event listener.
Event handling in Java Swing toolkit is very powerful and flexible. Java uses

Event Delegation Model. We can specify the objects that are to be notified
when a specific event occurs.

Event object: When something happens in the application, an event object
is created. For example, when we click on the button or select an item from
list. There are several types of events. An ActionEvent, TextEvent,
FocusEvent, ComponentEvent etc. Each of them is created under specific
conditions. Event object has information about an event, that has happened.

9.9 DISPLAY TEXT AND IMAGE

The following example shows how to create and display a label consisting
of both text and image. The applet started by getting ist content pane. Then
an ImageIcon object created for the file kkhsou_logo.jpg. On the JLabel
constructor first argument is text, seconf argument is ImageIcon object
and the third argument is alignment. The align argument is LEFT, RIGHT,
CENTER, LEADING or TRAILING. Finally the label is added to the content
pane.

7 4 Programming in Java

Unit - 9 AWT and Swings

JLabelDemo.java
import java.awt.*;
import javax.swing.*;
public class JLabelDemo extends JApplet{

public void init(){
//Get content pane
Container contentPane=getContentPane();
//create icon
ImageIcon ii=new ImageIcon(“kkhsou_logo.jpg”);

//create label
JLabel jl=new JLabel(“KKH Open University”, ii, JLabel.CENTER);

//add label to the content pane
contentPane.add(jl);
}

}
JLabelDemo.html
<html>
<applet code=”JLabelDemo.class” height=200 width=320>
</applet>
</html>

Output

7 5Programming in Java

AWT and Swings Unit - 9

9.10 LAYOUT MANAGER

To create layouts, we use layout managers. Layout managers are one of
the most difficult parts of modern GUI programming. We can use no layout
manager, if we want. There might be situations, where we might not need a
layout manager. But to create truly portable, complex applications, we need
layout managers. Without layout manager, we position components using
absolute values.

There are some of the common tasks associated to use layout managers:
 Setting Layout Manager
 Adding Components to a Container
 Providing Size and Alignment Hints
 Putting Space Between Components
 Setting the Container’s Orientation
 Tips on Choosing a Layout Manager
 Third-Party Layout Managers

In Java a layout manager class implements the LayoutManager interface. It
is used to determine the position and size of the components within a
container. Components can provide size and alignment hints, still the
container’s layout manager has the final authority on the size and position
of the components within the container.

FlowLayout manager : This is the simplest layout manager in the Java
Swing toolkit. It is mainly used in combination with other layout managers.
When calculating its children size, a flow layout lets each component
assume its natural (preferred) size.

The manager puts components into a row. In the order, they were added. If
they do not fit into one row, they go into the next one. The components can
be added from the right to the left or vice versa. The manager allows aligning
the components.

GridLayout: The GridLayout layout manager lays out components in a
rectangular grid. The container is divided into equally sized rectangles. One
component is placed in each rectangle.

7 6 Programming in Java

Unit - 9 AWT and Swings

BorderLayout: A BorderLayout manager is a very handy layout manager.
It divides the space into five regions. North, West, South, East and Centre.
Each region can have only one component. If we need to put more
components into a region, we can simply put a panel there with a manager
of our choice. The components in N, W, S, E regions get their preferred
size. The component in the centre takes up the whole space left.

BoxLayout: BoxLayout is a powerful manager that can be used to create
sophisticated layouts. This layout manager puts components into a row or
into a column. It enables nesting, a powerful feature, which makes this
manager very flexible. It means that we can put a box layout into another
box layout.

CHECK YOUR PROGRESS -2

1.Fill in the blanks:
i., the event generated by the component like

Button, Checkboxes etc.
ii. ……...........……. is the low-level event which indicates, if the

object moved, changed and it’s states
iii. ……...........…….. handle all events generated during the

mouse operation for the object.
iv. Events are an important part in any program.
v. The layout manager lays out components in

a rectangular grid.
vi. can be used to create sophisticated layouts.
vii. a layout manager class implements theinterface.

7 7Programming in Java

AWT and Swings Unit - 9

9.11 LET US SUM UP

 AWT stands for Abstract Windowing Toolkit
 You can use the AWT package to develop user interface objects like

buttons, checkboxes, radio buttons and menus etc.
 Some components of Java AWT are Labels, Buttons, Check Boxes,

Radio Button, Text Area, Text Field.
 There are many types of events that are generated by your AWT

Application. Generally, there are twelve types of event are used in
Java AWT.

 The Java Swing provides the multiple platform independent APIs
interfaces for interacting between the users and GUIs components.

 The Swing Toolkit consists of many components for the building of
GUI.

 All AWT flexible components can be handled by the Java Swing.
 Events are generated mainly by the user of an application. But they

can be generated by other means as well. e.g. internet connection,
window manager, timer.

 Event handling in Java Swing toolkit is very powerful and flexible.
Java uses Event Delegation Model.

 Layout managers are one of the most difficult parts of modern GUI
programming

9.12 ANSWER TO CHECK YOUR PROGRESS

CHECK YOUR PROGRESS – 1
1. i) Label ii) label iii)check boxes

 iv)radio button v)text area , text field

CHECK YOUR PROGRESS – 2
1. i)ActionEvent ii)Component Event

iii)MouseEvent v)GUI
v)GridLayout vi)BoxLayoutv
vii)LayoutManager

7 8 Programming in Java

Unit - 9 AWT and Swings

9.13 FURTHER READINGS

1. “The Complete Reference, Java 2”, Tata McGraw-Hill Edition
2. “JAVA How to Program”, Deitel & Deital, PHI Publication
3. You can visit the site www.java.sun.com

9.14 POSSIBLE QUESTIONS

1. What is AWT? List 5 AWT components.
2. Briefly discuss about three Layout manager.
3. What are the two different types of event used in Java AWT?
4. Describe some components of Java AWT.
5. What do you mean by event handling? What are the types of eve6nts

used in Java AWT?

7 9Programming in Java

Introductions to JDBC Unit - 10

UNIT - 10 INTRODUCTIONS TO JDBC

UNIT STRUCTURE

10.1 Learning Objectives
10.2 Introduction
10.3 Basic Steps to JDBC
10.4 API
10.5 JDBC Drivers
10.6 Connection Management
10.7 JDBC Design Considerations
10.8 Two Tier and Three Tier Client Server Model
10.9 Understanding Data Source
10.10 Resultset
10.11 Prepared Statement and Callable Statement
10.12 Resultset MetaData Object
10.13 Let Us Sum Up
10.14 Answer to Check Your Progress
10.15 Further Readings
10.16 Possible Questions

10.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :
 learn about the database connectivity in Java,­ API
 learn about different types of JDBC Drivers
 describe Client Server architecture
 define data source
 learn about resultset
 learn about prepared statement and callable statement

8 0 Programming in Java

Unit - 10 Introductions to JDBC

10.2 INTRODUCTION

In the earlier unit we became familiar with the AWT and its different
components. We also learn how to handle an event, introduction of SWING
and its components.

This unit describes the Java database connectivity. It also introduced the
different types of JDBC drivers and a brief introduction of client server modal.

10.3 BASIC STEPS TO JDBC

Java provides a mechanism for handling database known as JDBC (Java
Database Connectivity). Using JDBC it is possible to communicate with
a wide variety of database management system using SQL. JDBC is a
programming interface between Java programs and database management
system.

Java application calls the JDBC library. JDBC loads a driver which talks to
the database. We can change database engines without changing database
code.

A program uses a Java class known as JDBC driver to connect to a
database. A special JDBC driver, known as JDBC-ODBC bridge, makes it
possible to a vast number of ODBC drivers usable from JDBC.

The main advantage of JDBC is it provides a standard interface to all
database management system.

There are four basic steps required to work with JDBC. The four steps are
as follows:

1. Load a JDBC driver for your DBMS. This involves a statement
Class.forName(), specifying the driver class name.

2. Use the driver to open a connection to a particular database.

Applicatio
n

JDBC Driver Database

8 1Programming in Java

Introductions to JDBC Unit - 10

3. Issue SQL statements through the connection. Once the connection
established, it can be used to create objects through which SQL
commands can be made.

4. Process result sets required by the SQL operations.

10.4 API

An application programming interface (API) is an interface implemented
by a software program to enable interaction with other software, much in
the same way that a user interface facilitates interaction between humans
and computers.

The Java API is the set of classes included with the Java Development
Environment. These classes are written using the Java language and run
on the JVM. The Java API includes everything from collection classes to
GUI classes.

 Driver Manager

Driver

Connection

Statement

ResultSet

Database

1. Load the JDBC Driver Class

2. Open a databse connection

3. Issue SQL statements

4. Process result set

 Fig.10.1 : Basic steps involved in JDBC operations

8 2 Programming in Java

Unit - 10 Introductions to JDBC

The JDBC API is a Java API for accessing virtually any kind of tabular data.
The JDBC API consists of a set of classes and interfaces written in the
Java programming language that provide a standard API for tool/database
developers and makes it possible to write industrial-strength database
applications entirely in the Java programming language.

The JDBC API makes it easy to send SQL statements to relational database
systems and supports all dialects of SQL. But the JDBC API goes beyond
SQL, also making it possible to interact with other kinds of data sources,
such as files containing tabular data.

10.5 JDBC DRIVERS

A driver is Java class, usually supplied by the database vendor, which
implements the java.sql.Driver interface. The primary function of the driver
is to connect to a databse and return a connection object.

There are four types of driver classified according to their architecture.

Type 1 - JDBC-ODBC bridge: This type of driver connect to database
through an intermediate ODBC driver. Several drawbacks are involved with
this approach and so it is used where there is no other driver is available.

Advantage
1. The JDBC-ODBC Bridge allows access to almost any database,

since the database’s ODBC drivers are already available.

8 3Programming in Java

Introductions to JDBC Unit - 10

Disadvantages
1. Since the Bridge driver is not written fully in Java, Type 1 drivers are

not portable.
2. A performance issue is seen as a JDBC call goes through the bridge

to the ODBC driver, then to the database, and this applies even in
the reverse process. They are the slowest of all driver types.

3. The client system requires the ODBC Installation to use the driver.
4. Not good for the Web.

Type 2 – Native API: This type of driver use native method to call vendor
specific API functions.

Advantage
The distinctive characteristic of type 2 jdbc drivers are that they are typically
offer better performance than the JDBC-ODBC Bridge as the layers of
communication (tiers) are less than that of Type1 and also it uses Native
api which is Database specific.

Disadvantage
1. Native API must be installed in the Client System and hence type 2

drivers cannot be used for the Internet.
2. Like Type 1 drivers, it’s not written in Java Language which forms a

portability issue.
3. If we change the Database we have to change the native api as it is

specific to a database
4. Mostly obsolete now
5. Usually not thread safe.

Type 3 –Pure Java to database middleware: This driver communicates
using a network protocol to a middleware server, which in turn,
communicates to one or more database management systems.

Advantage
1. This driver is server-based, so there is no need for any vendor

database library to be present on client machines.
2. This driver is fully written in Java and hence Portable. It is suitable

for the web.

8 4 Programming in Java

Unit - 10 Introductions to JDBC

3. There are many opportunities to optimize portability, performance,
and scalability.

4. The protocol can be designed to make the client JDBC driver very
small and fast to load.

5. The type 3 driver typically provides support for features such as
caching (connections, query results, and so on), load balancing,
and advanced system administration such as logging and
auditing.

6. This driver is very flexible allows access to multiple databases
using one driver.

7. They are the most efficient amongst all driver types.

Disadvantage
It requires another server application to install and maintain. Traversing the
recordset may take longer, since the data comes through the backend
server.

Type 4 – Pure Java direct to database: This type of driver call directly.

Advantage
1. The major benefit of using a type 4 jdbc drivers are that they are

completely written in Java to achieve platform independence and
eliminate deployment administration issues. It is most suitable for
the web.

2. Number of translation layers is very less i.e. type 4 JDBC drivers
don’t have to translate database requests to ODBC or a native
connectivity interface or to pass the request on to another server,
performance is typically quite good.

3. You don’t need to install special software on the client or server.
Further, these drivers can be downloaded dynamically.

Disadvantage

With type 4 drivers, the user needs a different driver for each database.

8 5Programming in Java

Introductions to JDBC Unit - 10

10.6 JDBC CONNECTION MANAGEMENT

A Connection is the session between your java program and database.
whenever you do anything with database you have to have a connection
object.

A Connection object represents a connection with a database. When we
connect to a database by using connection method, we create a Connection
Object, which represents the connection to the database. An application
may have one or more than one connections with a single database or
many connections with the different databases also.

There are many ways we can establish the connection. The connection
object is obtained by the DriverManager.getConnectyion method by supplying
the Database location and authentication credentials.

The following are the ways to obtain a Connection object of the database:-
1. DriverManager.getConnection(String URL)
2 DriveManager.getConnection(String URL,String Username, String

Password)
3. DriverManager.getConnection (String URL, java.util.Properties props)
4. Driver.connect(String URL, java.util.Properties props)

10.7 JDBC DESIGN CONSIDERATIONS

Starting at 1995, the developers of the Java Technology at Sun start working
on extending the standard java library to deal with SQL access to database.
But there is simply too many databases on the market like Microsoft Access,
Oracle, MySql, PostgreSql, using too many protocols. So it is necessary to
provide one standard network protocol for database access. So SUN
provide a pure Java API for SQL access along with a driver manager to
allow third-party drivers to connect to specific databases. Database vendors
provide their own drivers to plug in to the driver manager. There is a simple
mechanism for registering third-party drivers with the driver manager.

So two interfaces were created JDBC API and JDBC Driver API. Application
programmers use the JDBC API and database vendors use the JDBC Driver
API.

8 6 Programming in Java

Unit - 10 Introductions to JDBC

Databas
e

Databas
e

Java Application Java Application

JDBC Driver
Manager

JDBC/OD
BC bridge

ODBC
driver

Vendor
supplied
JDBC driver

JDBC Driver
API

JDBC API

CHECK YOUR PROGRESS -1

1. JDBC is a programming interface between.................... and
database management system..

2. A program uses a Java class known as to connect
to a database.

3. is an interface implemented by a software program
to enable interaction with other software

4. The primary function of the driver is to connect to a
.......................................and return a connection object.

5. Type 1 drivers are not..
6. Ais the session between your java

program and database
7. When we connect to a database by using connection method,

we create a... Object, which represents
the connection to the database

8 7Programming in Java

Introductions to JDBC Unit - 10

10.8 TWO TIER AND THREE TIER CLIENT SERVER MODAL

Let us suppose we are going to write a piece of software that students of a
school can use to find out what their current grade is in all their classes.
We can structure the program so that a database of grades resides on the
server, and the application resides on the client.

When the student wants to know his grades, he manipulates the program
by clicking buttons, menu options, etc. The program fires off a query to the
database, and the database responds with all the student’s grades. Now
our application uses all these data to calculate the student’s grade, and
displays it for him.

This is an example of two-tier architecture. Another example of a two-tier
architecture implementation is a Java user interface (Swing/AWT) and batch
data processing.

The two tiers are:

1. Data server : the database serves up data based on SQL queries
submitted by the application.

2. Client application: the application on the client computer consumes
the data and presents it in a readable format to the student.

This architecture is fine, if we have got the case of a school with 50 students.
But suppose the school has 10,000 students. In those case, problem arises.
Because every time a student queries the client application, the data server
has to serve up large queries for the client application to manipulate.

For this, we create a three-tier architecture by inserting another program at
the server level. We call this the server application. Now the client application
no longer directly queries the database; it queries the server application,
which in turn queries the data server.

8 8 Programming in Java

Unit - 10 Introductions to JDBC

Client

Presentation logic
and business rules

Server Database

Fig.10.3: Two- Tier Architecture

Now when the student wants to know his final grade, the following steps
would occur:

1. The student asks the client application.
2. The client application asks the server application.
3. The server application queries the data server.
4. The data server serves up a record set with all the student’s grades.
5. The server application does all the calculations to determine the grade.
6. The server application serves up the final grade to the client application.
7. The client application displays the final grade for the student.

It is a lengthy process on paper, but in reality it is much faster. In Step 6, we
can notice that instead of serving up an entire record set of grades, which
has to be passed over a network, the server application is serving up a
single number, which is a tiny amount of network traffic in comparison.

There are other advantages to the 3-tier architecture, but that at least gives
us a general idea of how it works.

The three-tiers are

Tier 1: the client contains the presentation logic, including simple control
and user input validation. This application is also known as a thin client.

Tier 2: the middle tier is also known as the application server, which provides
the business processes logic and the data access.

Tier 3: the data server provides the business data.

8 9Programming in Java

Introductions to JDBC Unit - 10

An example of 3 tier architecture is online banking website. The client
application is the web browser we use. The server application is the code
written in ASP or JSP or PHP which queries the database (the third tier) for
the question-and-answer we request.

Middle tier server
Business Rules

Presentation logic

Data Server
Business Data

Client

2 tier Advantages

 Less Expensive

2 tier Disadvantages

 One can only connects a limited number of users to a server
before Database Server spends more time managing connections
than processing requests

 it is not scalable, because each client requires its own database
session.

3-Tier Advantages

 Improved Security Since the client doesnot have direct access to
the database, Data layer is more secure.

 Business Logic is generally more secure since it is placed on a
secured central server.

 It is easier to modify or replace any tier without affecting the other
tiers.

 Separating the application and database functionality means better
load balancing.

3-Tier disadvantages

 Increased Complexity / Effort In General 3-tier Architecture is more
complex to build compared to 2-tier Architecture.

9 0 Programming in Java

Unit - 10 Introductions to JDBC

10.9 UNDERSTANDING DATA SOURCE

The JDBC API provides the DataSource interface as an alternative to the
DriverManager for establishing the connection. A DataSource object is the
representation of database or the data source in the Java programming
language. DataSouce object is mostly preferred over the DriverManager
for establishing a connection to the database.

DataSource has a set of properties that identify and describe the real world
data source that it represents. The properties include information about the
location of the database server, the network protocol use to communicate
with the server the name of the database and so on.

DataSource object works with JNDI (Java Naming and Directory interface)
naming service so application can use the JNDI API to access the
DataSource object.

In short we can say that the DataSource interface is implemented to provide
three kinds of connections:

1. Basic DataSource class
This class is provided by the driver vendor. It is used for portability and
easy maintenance.

2. To provide connection pooling
It is provided by the application server vendor or driver vendor. It works
with ConnectionPoolDataSource class provided by a driver vendor. Its
advantage is portability, easy maintenance and increased performance.

3. To provide distributed transactions
This class works with an XADataSource class, which is provided by
the driver vendor. Its advantages are easy maintenance, portability
and ability to participate in distributed transactions.

10.10 RESULTSET

ResultSet is a java object that is used for database connectivity to hold the
data returned by a select query.

9 1Programming in Java

Introductions to JDBC Unit - 10

When we run a select query it returns us the data in a table format with
each row representing one logical group of data with a number of columns.
The result set would contain this table of data and each row can be accessed
one by one. We can use the resultset.get() methods to get the data from it.
The number of rows returned in a result set can be zero or more. A user
can access the data in a result set using a cursor one row at a time from
top to bottom. A cursor can be thought of as a pointer to the rows of the
result set that has the ability to keep track of which row is currently being
accessed.

Types of Result Sets
The ResultSet interface provides methods for retrieving and manipulating
the results of executed queries, and ResultSet objects can have different
functionality and characteristics. These characteristics are result set type,
result set concurrency, and cursor holdability.

The type of a ResultSet object determines the level of its functionality in
two areas: the ways in which the cursor can be manipulated, and how
concurrent changes made to the underlying data source are reflected by
the ResultSet object.

The sensitivity of the ResultSet object is determined by one of three different
ResultSet types:

TYPE_FORWARD_ONLY — the result set is not scrollable i.e. the cursor
moves only forward, from before the first row to after the last row.

TYPE_SCROLL_INSENSITIVE — the result set is scrollable; its cursor
can move both forward and backward relative to the current position,and it
can move to an absolute position.

TYPE_SCROLL_SENSITIVE — the result set is scrollable; its cursor can
move both forward and backward relative to the current position, and it can
move to an absolute position.

Result Set Methods
When a ResultSet object is first created, the cursor is positioned before
the first row. To move the cursor, you can use the following methods:

9 2 Programming in Java

Unit - 10 Introductions to JDBC

next() - moves the cursor forward one row. Returns true if the cursor is
now positioned on a row and false if the cursor is positioned after the last
row.

previous() - moves the cursor backwards one row. Returns true if the
cursor is now positioned on a row and false if the cursor is positioned before
the first row.

first() - moves the cursor to the first row in the ResultSet object. Returns
true if the cursor is now positioned on the first row and false if the ResultSet
object does not contain any rows.

last() - moves the cursor to the last row in the ResultSet object. Returns
true if the cursor is now positioned on the last row and false if the ResultSet
object does not contain any rows.

beforeFirst() - positions the cursor at the start of the ResultSet object,
before the first row. If the ResultSet object does not contain any rows, this
method has no effect.

afterLast() - positions the cursor at the end of the ResultSet object, after
the last row. If the ResultSet object does not contain any rows, this method
has no effect.

relative(int rows) - moves the cursor relative to its current position.
absolute(int n) - positions the cursor on the n-th row of the ResultSet
object.

10.11 PRAPERED STATEMENTS AND COLLABLE
STATEMENTS

Prepared statements:

Java JDBC Prepared statements are pre-compiled SQL statements.
Precompiled SQL is useful if the same SQL is to be executed repeatedly,
for example, in a loop. Prepared statements in java only save our time if
we expect to execute the same SQL over again. Every java SQL prepared
statement is compiled at some point.

9 3Programming in Java

Introductions to JDBC Unit - 10

To use a java prepared statement, we must first create a object by calling
the Connection.prepareStatement() method. JDBC PreparedStatements
are useful especially in situations where we can use a lengthy for loop or
while loop to set a parameter to a succession of values. If we want to execute
a Statement object many times, it normally reduces execution time to use
a PreparedStatement object instead.

The syntax is straightforward: just we have to insert question marks for
any parameters that we will be substituting before we send the SQL to the
database. As with CallableStatements, we need to call close() to make
sure database resources are freed as soon as possible.

An important feature of a PreparedStatement object is that, unlike a Statement
object, it is given an SQL statement when it is created. This SQL statement
is sent to the DBMS right away, where it is compiled. As a result, the
PreparedStatement object contains not just an SQL statement, but an SQL
statement that has been precompiled. This means that when the
PreparedStatement is executed, the DBMS can just run the
PreparedStatement SQL statement without having to compile it first.

Using Prepared Statements in JDBC, objects can be used for SQL
statements with no parameters, we probably use them most often for SQL
statements that take parameters. The advantage of using SQL statements
that take parameters is that we can use the same statement and supply it
with different values each time we execute it.

Callable Statement:

The CallableStatement interface extends PreparedStatement and provides
support for output and input/output parameters. The CallableStatement
interface also has support for input parameters that is provided by the
PreparedStatement interface.

The CallableStatement interface allows the use of SQL statements to call
stored procedures. Stored procedures are programs that have a database
interface. These programs possess the following:

9 4 Programming in Java

Unit - 10 Introductions to JDBC

 They can have input and output parameters, or parameters that are
both input and output.

 They can have a return value.
 They have the ability to return multiple ResultSets.

Conceptually in JDBC, a stored procedure call is a single call to the
database, but the program associated with the stored procedure may
process hundreds of database requests. The stored procedure program
may also perform a number of other programmatic tasks not typically done
with SQL statements.

Because CallableStatements follow the PreparedStatement model of
decoupling the preparation and processing phases, they have the potential
for optimized reuse. Since SQL statements of a stored procedure are bound
into a program, they are processed as static SQL and further performance
benefits can be gained that way. Encapsulating a lot of database work in a
single, reusable database call is an example of using stored procedures
optimally. Only this call goes over the network to the other system, but the
request can accomplish a lot of work on the remote system.

10.12 RESULTSET METADATA OBJECT

A ResultSetMetaData object provides information about the columns in a
particular ResultSet instance. One method in the ResultSetMetaData
interface returns the number of columns in the ResultSet object as a whole,
and the rest of the methods return information about a particular column in
the ResultSet object. The column information includes the name of the
column, what data type the column can hold, and everything from whether
the column value is writable to whether the column value can be used as a
search criterion in a WHERE clause. Note that because a RowSet object
is derived from a ResultSet object, any of the ResultSetMetaData methods
for getting information about a column in a ResultSet object can also be
used to get information about a column in a RowSet object.

9 5Programming in Java

Introductions to JDBC Unit - 10

CHECK YOUR PROGRESS -2

Fill in the blanks :
1. The database serves data based on

submitted by the application.
2. The middle tier is also known as theserver
3. the data server provides the
4. The .. provides the DataSource

interface as an alternative to the DriverManager for
establishing the connection.

5. is a java object that is used for database
connectivity to hold the data returned by a select query.

6. Java JDBCstatements are pre-compiled
SQL statements.

7. Theinterface allows the use of SQL
statements to call stored procedures

10.13 LET US SUM UP

 Using JDBC it is possible to communicate with a wide variety of
database management system using SQL.

 A program uses a Java class known as JDBC driver to connect to a
database.

 The main advantage of JDBC is it provides a standard interface to
all database management system.

 An application programming interface (API) is an interface
implemented by a software program to enable interaction with other
software

 The JDBC API is a Java API for accessing virtually any kind of tabular
data.

 The primary function of the driver is to connect to a databse and
return a connection object.

9 6 Programming in Java

Unit - 10 Introductions to JDBC

 A Connection is the session between your java program and
database.

 The JDBC API provides the DataSource interface as an alternative
to the DriverManager for establishing the connection

 ResultSet is a java object that is used for database connectivity to
hold the data returned by a select query.

 Java JDBC Prepared statements are pre-compiled SQL statements.

10.14 ANSWER TO CHECK YOUR PROGRESS

CHECK YOUR PROGRESS - 1
1. Java programs, 2. JDBC driver, 3. API 4.Database
5. Portable, 6. Connection 7.Connection

CHECK YOUR PROGRESS - 2
1. SQL queries 2. Application 3.data 4. JDBC API
5. ResultSet 6. Prepared 7. CallableStatement

10.15 FURTHER READINGS

1. “Java- How to Program”, Pearson Education.
2. “The Complete Reference -Java 2 “ by Herb Hchildt, McGraw-Hill
3. “JAVA How to Program”, Deitel & Deital, PHI Publication

10.16 POSSIBLE QUESTIONS

1. Write down the four basic steps to JDBC.
2. What are the different types of JDBC driver? Briefly discuss each of

them.
3. Discuss 2-tier and 3-tier client server model.
4. What are the advantage and disadvantage of 2-tier and 3-tier client

server modal?
5. What are the main difference between prepared statement and collable

statement?

	CreditPage
	Unit 1
	Unit 2
	Unit 3
	Unit 4
	Unit 5
	Unit 6
	Unit 7
	Unit 8
	Unit 9
	Unit 10

