
MCA13

KRISHNA KANTA HANDIQUI STATE OPEN UNIVERSITY
Housefed Complex, Dispur, Guwahati - 781 006

Master of Computer Applications

ADVANCED DATABASE MANAGEMENT SYSTEM

CONTENTS

Unit–1 : Introduction to Database System
Unit–2 : Database Design using ER Model
Unit–3 : Relational Model
Unit–4 : Introduction to SQL
Unit–5 : Elements of SQL
Unit–6 : Relational Database Design
Unit–7 : Transaction Processing Concepts
Unit–8 : Concurrency Control and Recovery
Unit–9 : Security and Privacy

Subject Expert
Prof. Anjana Kakati Mahanta, Deptt. of Computer Science, Gauhati University
Prof. Jatindra Kr. Deka, Deptt. of Computer Science and Engineering,

Indian Institute of Technology, Guwahati
Prof. Diganta Goswami, Deptt. of Computer Science and Engineering,

 Indian Institute of Technology, Guwahati
Course Coordinator

Tapashi Kashyap Das, Assistant Professor, Computer Science, KKHSOU
Arabinda Saikia, Assistant Professor, Computer Science, KKHSOU

SLM Preparation Team
Units Contributors

1 Arabinda Saikia
2 Jonalee Barman Kakoti, Assistant Professor, NERIM

3,9 Biswajit Das, Assistant Professor, Cotton College

 4,5 Irani Hazarika, Guest Lecturer, Gauhati University
 6,7 Pritam Medhi, Gauhati University
 8 Ujjal Sarma, Assistant Professor, NERIM

July 2009

© Krishna Kanta Handiqui State Open University.

No part of this publication which is material protected by this copyright notice may be produced or
transmitted or utilized or stored in any form or by any means now known or hereinafter invented,
electronic, digital or mechanical, including photocopying, scanning, recording or by any information
storage or retrieval system, without prior written permission from the KKHSOU.

Printed and published by Registrar on behalf of the Krishna Kanta Handique State Open University.

The university acknowledges with thanks the financial support provided
by the Distance Education Council, New Delhi, for the preparation
of this study material.

Housefed Complex, Dispur, Guwahati- 781006 Web: www.kkhsou.in

COURSE INTRODUCTION

In today’s competitive environment, database and database management systems have become
essential for managing our business, governments, banks, universities and every other kind of human
endeavour. This course is on Advanced Database Management System. DBMS is a software pack-
age that allows data to be effectively stored, retrieve and manipulated. The course is divided into the
following units :

Unit - 1 concentrates on an overview of database, database management systems(DBMS), types
of DBMS and data models.

Unit - 2 deals with Entity-Relationship model and its use in database design.

Unit - 3 concentrates on relational model. Differerent types of integrity constraints are also discussed
in this unit.

 Unit - 4 introduces one important query language namely Structured Query Language(SQL). SQL
characteristics, SQL data types and different SQL commands are discussed in this unit.

Unit - 5 deals with the basic building elements of Structured Query Language.
Unit - 6 concentrates on relational database design. Most important concept ER to Relational

conversion, functional dependency and normalization is discussed in this unit.

Unit - 7 introduces the concept of transaction processing.

Unit - 8 deals with the concept of concurrency and database recovery.

Unit - 9 concentrates on the issue of database security and privacy.

Each unit of these blocks includes some along-side boxes to help you know some of the difficult,
unseen terms. Some “EXERCISE” have been included to help you apply your own thoughts. You may
find some boxes marked with: “LET US KNOW”. These boxes will provide you with some additional
interesting and relevant information. Again, you will get “CHECK YOUR PROGRESS” questions.
These have been designed to self-check your progress of study. It will be helpful for you if you solve
the problems put in these boxes immediately after you go through the sections of the units and then
match your answers with “ANSWERS TO CHECK YOUR PROGRESS” given at the end of each unit.

MASTER OF COMPUTER APPLICATIONS

Advanced Database Management System

DETAILED SYLLABUS

Unit 1: Introduction to Database System
Database, DBMS, Characteristics of DBMS, Merits and Demerits of DBMS, Database Architecture:3-
tier Architecture of DBMS (its advantages over 2-tier), Data Independence, DBMS language, Types of
DBMS, Database Administrator, Data Models;

Unit 2: Database Design using ER Model
Entities, Relationships, Representation of Entities, Attributes, Relationship Attributes, Relationship
Set, Generalization, Aggregation, Structure of Relational Database and different types of Keys,
Expressing M: N relation

Unit 3: Relational Model
Codd’s rules, Relational Data Model & Relational Algebra, Relational Model Concept, Relational Model
Constraints, Relational Algebra, Relational Calculus.

Unit 4: Introduction to SQL
SQL, Characteristics of SQL, Advantages of SQL, SQL data types and literals, Types of SQL
commands.

Unit 5: Elements of SQL
SQL operators and their procedure, Tables, Views and Indexes, Queries and Sub Queries, Aggregate
Functions, Insert, Update and Delete Operations, Joins, Unions, Intersection, Minus.

Unit 6: Relational Database design
Database Design – ER to Relational model, Functional dependencies, Normalization, Normal forms
based on Primary keys (1 NF, 2 NF, 3 NF, BCNF, 4 NF, 5 NF), Loss less joins and dependency,
preserving decomposition

Unit 7: Transaction Processing Concepts
Introduction to transaction processing; transaction and system concepts; desirable properties of transaction;
characteristics schedule based on recoverability; characteristics schedule based on serializability.

Unit 8: Concurrency Control and Recovery
Two phase locking techniques for concurrency control; Concurrency control based on time stamp ordering;
multi-version concurrency control techniques; Validation concurrency control techniques; granularity of
data items and multi granularity locking, recovery concepts and recovery techniques.

Unit 9: Security and Privacy
Database security issues, Discretionary access control based on grant & revoking privilege,
Mandatory access control and role based access control for multilevel security, Encryption & public
key infrastructures.

7Advanced Database Management System

UNIT-1 : INTRODUCTION TO DATABASE SYSTEM

UNIT STRUCTURE

1.1 Learning Objectives
1.2 Introduction
1.3 Traditional File Approach
1.4 Database Approach

1.4.1 Advantage of Database
1.5 Database Management System

1.5.1 Merits and Demerits of DBMS
1.6 Database Architecture
1.7 Data Independence

1.7.1 Logical Data Independence
1.7.2 Physical Data Independence

1.8 DBMS Language
1.9 Types of DBMS

1.9.1 Centralised DBMS
1.9.2 Parallel DBMS
1.9.3 Distributed DBMS
1.9.4 Client-Server DBMS

1.10 Database Administrator
1.11 Data Models

1.11.1 Types of Data Models
1.11.2 Traditional Data Models

1.12 Let Us Sum Up
1.13 Answer to Check Your Progress
1.14 Further Readings
1.15 Model Questions

1.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

 • define a database and a DBMS

 • describe DBMS Architecture

 • illustrate data independence and data dictionary

 • explain DBMS language

8Advanced Database Management System

Unit-1

 • identify the components of database system environment

 • describe the role of DBA

 • describe data models

1.2 INTRODUCTION

This is the first unit of the course Advanced Database Management System,
In this unit, we will learn some elementary concepts of database along with
the concept of DBMS, database architecture, etc. Learners might have
already learned these elementary concepts while studying the course
“Fundamentals of Database Management System”.

The responsibilities of a database administrator and the concept of
data models will also be discussed at the end.

1.3 TRADITIONAL FILE APPROACH

In earlier days, an organization’s information was stored as group of records
in separate files. These file processing systems consisted with few data
files and many application programs as shown in the figure below. Each
file, called a flat file, contained and processed information for one specific
function, such as accounting or inventory. At that time programmers used
programming languages such as COBOL to write application programs
that can directly accessed flat files to perform data management services
and provide information for users. Each application files and programs were
created and maintained independent of another applications.

For example, if we consider the students data in a Universitiy then

– student address may be needed for the applications like registering,
library management, financial office, grade reporting...etc.

– each application separately maintains its data files and programs to
manipulate those files

– possibly the same data (e.g., length of names, address etc.) are
stored in different format in the above applications

– whenever some information regarding a group of students are updated

Introduction to Database System

9Advanced Database Management System

in one application that updation may not be done simultaneously in
the different applications where students records are stored.

As a result, the system will provide wrong information about students. In
addition, potentially different values and/or different formats for the same
data are stored in different files which lead to not only wastage of space but
also cause the redundancy.

 Fig. 1.1: Traditional File Approach

On creating the files and programs for the file oriented system, the developers
focused on business processes, or how business was transacted, and
their interaction. However, business processes are dynamic, requiring
continous changes in files and applications. Moreover, programmers
designed the codes in accordance with the physical storage structure of
data and access procedures also depends on it. Therefore, any physical
changes resulted the programmer to again rewriting the code to adjust the
change.
The file-based approaches, which came into being as the first commercial
applications of computers, suffered from the following significant
disadvantages :

Data redundancy :

In a file system if an information is needed by two distinct applications, then
it may be stored in two or more files. Repetition of same data item in more
than one file is known as data redundancy. This leads to increase in cost
of data entry and data storage.

Introduction to Database SystemUnit-1

1 0Advanced Database Management System

Data integrity problem :

Data redundancy also leads to data inconsistency or loss of data integrity.
Data integrity refers to consistency of data in all files. That is, any change in
a data item must be carried out in every file containing that field for
consistency.

Lack of data independence :

In file processing systems, files and records were described by specific
physical formats that were coded into the application program by
programmer. If the format of a certain record was changed, the code in
each file containing that format must be updated.

Poor data control :

A file oriented system is decentralised in nature, it means there was no
centralised control at the data element level.

Incompatible file formats :

As the structure of file is embedded in the application programs, the
structures are dependent on the application programming language. For
example, the structure of a file generated by a COBOL program may be
different from the structure of a file generated by a ‘C’ program. The direct
incompatibility of such files makes them difficult to process jointly.

1.4 DATABASE APPROACH

An alternative approach to the traditional file processing system is the modern
concept, known as the database approach. A database is an organised
collection of records and files which are related to each other. In a database
system, a common pool of data can be shared by a number of applications
as it is data and program independant. Thus, unlike a file processing system,
data redundancy and data inconsistency in the database system approach
are minimised. In database approach the user is free from the detailed and
complicated task of keeping up with the physical structure of data. A clear-
cut distinction between traditional file system and database system is

Unit-1Introduction to Database System

1 1Advanced Database Management System

depicted by the following diagram.

Fig.1.2: Traditional file approach

Here in the figure 1.2, the traditional record keeping system in a University is
shown, where every applications are interrelated and caused repetation of
same data in different files which leads to the problem of data redundancy
and inconsistency.

In the following figure(Fig.1.3) it is shown that several applications share
common data in a database approach.

Fig.1.3: Database approach
It should be remembered that - a database is organised in such a way that
a computer program can quickly select the desired piece of data. A database
can further be defined as, it

 is a collection of interrelated data stored together without harmflul or
unnecessary redundancy.

 stores data indepedent of programs, and any changes in data storage

 Student
Administration

Course
Administration

Financial
Management

Faculty
Administration

 Student
Administration

Course
Administration

Financial
Management

Faculty
Administration

DATA
BASE

1 2Advanced Database Management System

structure or access strategy donot require changes in accessiing
programs or queries.

 serves multiple applications in which each user has its own view of
data. The data is protected from unauthorised access by security
mechanism and concurrent access to data is provided with recovery
mechanism.

Broadly, the objectives of the database approach are to make information
access easy, fast, relatively inexpensive and flexible for the user. The specific
objectives may be listed as follows :

 controlled data redundancy

 enhanced data consistency

 data independence

 application independence

 ease of use

 economical, and

 recovery from failure

1.4.1 Advantage of Database

Database approach provides the following benefits over the traditional
file processing system :
Redundancy control :

In a file processing system, each application has its own data, which
causes duplication of common data item in more than one file. This
data duplication needs more storage space as well as multiple
updation for a single transaction. This problem is overcome in
database approach where data is stored only once.
Data consistency :

The problem of updating multiple files in file processing system leads
to inaccurate data as different files may contain different information
of the same data item at a given point of time. In database approach,
this problem of inconsistent data is automatically solved wiith the

1 3Advanced Database Management System

control of redundancy.
Thus, in a database, data accuracy or integrity or accessibility of data
is enhanced to a great extent.
Data Independence :

This means that data and programs are independent. Most of the file
processing systems are data dependent, which implies that the file
structures and accessing programs are interrelated to each other.
Sharing of data and security :

Data in a database are shared among users and applications. In
database approach data are protected from unauthorised access by
some security mechanism.

1.5 DATABASE MANAGEMENT SYSTEM

The database management system (DBMS) is the interface between the
users(application programmers) and the database(the data). A database
management system is a program that allows user to define, manipulalte
and process the data in a database, in order to produce meaningful
information.
A DBMS is a set of software programs that controls the organization, stor-
age, management, and retrieval of data in a database. It is a set of pre-
written programs that are used to store, update and retrieve a database.
The DBMS accepts requests for data from the application program and
instructs the operating system to transfer the appropriate data. The follow-
ings are the examples of DBMS software :

Microsoft Visual FoxPro MonetDB, MySQL , Oracle Database,
PostgreSQL, SQL Anywhere, SQLite, FileMaker, IBM DB2, IBM UniVerse,
Firebird, Microsoft Access, Microsoft SQL Server etc.
The following are examples of database applications :

 • reservation systems, banking systems

 • record/book keeping (corporate, university, medical), statistics

 • bioinformatics, e.g., gene databases

1 4Advanced Database Management System

 • criminal justice

 o fingerprint matching

 • multimedia systems

o image/audio/video retrieval

 • satellite imaging; require petabytes (1015 bytes) of storage

 • the web

o almost all data-intensive websites are database-driven;

 • data mining (Knowledge Discovery in Databases) etc.

To complete our initial definitions, we will call the database and DBMS soft-
ware together as a database system. The following figure depicts a data-
base system.

Fig. 1.4: A simplified database syste

DBMS
Software Software to Process

Queries/Programs

Software to Access
Stored Data

Application Program/Queries

Stored Database
Definition(meta-

data)

Stored
Database

Users/Programmers

1 5Advanced Database Management System

1.5.1 Merits and Demerits of DBMS
Due to the centralised management and control, the database
management system has numerous advantages, some of which are
explained below :
Minimal data redundancy :

Centralized control of data avoids unnecessary duplication of data
and effectively reduces the total amount of required data storage. It
also eliminates the extra processing necessary to trace the required
data in a large storage of data. Another advantage of avoiding
duplication is the elimination of the inconsistencies that tend to be
present in redundant data files.
Program-data independence :

The separation of metadata(data description) from the application
programs that use the data is called data independence. In the
database environment, it allows for changes at one level of the database
without affecting the other levels. With the database approach,
metadata are stored in a central location called repository. This
property of data systems allows an organizations data to change and
develop without changing the application programs that process the
data.
Efficient data access :

DBMS utilizes a variety of sophisticated techniques to store and retrieve
data efficiently. This feature is especially important if the data is stored
on external storage devices.
Improved data sharing :

Since, database system is a centralised repository of data belonging
to the entire organiszation(all departments), it can be shared by all
authorised users. Existing application programs as well as new
application programs can share the data in the database.
Data Integrity :

Integrity of data means that data in database is always accurate, such
that incorrect information cannot be stored in database. In order to
maintain the integrity of data, some integrity constraints are enforced
on the database.

1 6Advanced Database Management System

Data security :

Database security is the protection of database from unauthorised
users. The DBA(DataBase Administrator, we will discuss the
responsibility of DBA in the next section) can define security rules to
chueck unauthorised access to data. Some users may be given rights
to only retrieve data, whereas others may be permitted to retrieve and
edit the data. The DBA can formulate different rules for each type of
access (retrieve, modify, delete, etc) to each piece of information in
the database.

Enforcement of standards :

With the central control of the database, a DBA can defines and
enforces the necessary standards. Applicable standards might include
any or all of the following : departmental, organizational, industry,
corporate, national or international. Standards can be defined for data
formats to facilitate exchange of data between systems, naming
conventions, display formats, terminology, report structure etc. The
data repository provides DBAs with a powerful set of tools for
developing and enforcing these standards.

Providing Backup and Recovery :

A DBMS must provide the facilities for recovering from hardware or
software failures. The backup and recovery subsystem of the DBMS
is responsible for recovery. For example, if the computer system fails
in the middle of a complex update program, the recovery subsystem
is responsible for making sure that the database is restored to the
state it was in before the program started executing.

The demerits of the database approach are summarized below :

Complexity:

The provision of the functionality that is expected for a good DBMS
makes the DBMS an extremely complex piece of software. Database
designers, developers, database administrators and end-users must

1 7Advanced Database Management System

understand this functionality to take full advantage of it. Failure to
understand the system can lead to bad design decisions, which can
have serous consequences for an organization.

Size :

The complexity and functionality makes the DBMS an extremely large
piece of software, occupying many megabytes of disk space and
requiring substantial amounts of memory to run efficiently.

 Performance :

Typically, a file-based system is written for a specific application, such
as invoicing. As a result, performance is generally very good. However,
the DBMS is written to be more general, to cater for many applications
rather than just one. The effect is that some applications may not run
as fast as they used to.
Higher impact of a failure :

The centralization of resources increases the vulnerability of the
system. Since all users and applications rely on the availability of the
DBMS, the failure of any component can bring operations to a halting
position.
Cost of DBMS :

The cost of DBMS varies significantly, depending on the environment
and functionality provided. There is also the recurrent annual
maintenance cost.

 Additional Hardware cost :

The disk storage requirements for the DBMS and the database many
necessitate the purchase of additional storage space. Furthermore,
to achieve the required performance it may be necessary to purchase
a large machine, perhaps even a machine dedicated to running the
DBMS. The procurement of additional hardware results in further
expenditure.
Cost of Conversion:

The cost of the DBMS and extra hardware may be significant compared
with the cost of converting existing applications to run on the new
DBMS and hardware. This cost also includes the cost of training staff

1 8Advanced Database Management System

to use these new systems and possibly the employment of specialist
staff to help with conversion and running of the system. This cost is
one of the main reason why some organisations feel tired to their
current systems and cannot switch to modern database technology.

CHECK YOUR PROGRESS

1. Select the correct answer :

(a) Which is not a DBMS package?

(i) Unify (ii) Ingress

(iii) IDMS (iv) All are DBMS packages

(b) Find the wrong statement
Database software

(i) provides facilities to create, use and maintain database.

(ii) supports report generation, statistical output, graphical
output.

(iii) provides routine for backup and recovery.

(iv) all are correct.

(c) Which one of the following is not a valid relational data-
base?

(i) SYBASE (ii) IMS
(iii) ORACLE (iv) UNIFY

(d) Centralized control is

(i) advantage of a DBMS (ii) disadvantage of a DBMS
(iii) Both (i) and (ii) (iv) None of the above

(e) Data are

(i) Raw facts and figures (ii) Information

(iii) Electronic representation of facts

(iv) None of these

1 9Advanced Database Management System

1.6 DATABASE ARCHITECTURE
So far, we have come to know that a DBMS is a collection of interrelated
files and a set of programs that allow several users to access and modify
these files. A major purpose of a database system is to provide users with
an abstract view of the data. That is the system hides certain details of how
the data is stored and maintained. We can imagine that the whole database
system is divided into levels. The generalised architecture of a database
system is called the ANSI/SPARC (American National Standards Institute -
Standards Planning and Requirements Committee) model. ANSI/SPARC
three-tier database architecture is shown in the Fig.1.5.

Fig.1.5: Three-tier database architecture
It consists of the following three levels :

 • External level or view level,

 • Conceptual level,

 • Internal level or physical level.
External level :

The external level is the user’s view of the database and closest to the
users. This level describes that part of the database that is relevant to the
user. Most of the users of database are not concerned with all the information

INTERNAL SCHEMA

CONCEPTUAL SCHEMA

EXTERNAL SCHEMA

 …… User User User User view n

 File
 File

 File

 File

 File
 File

Phys ical Database

External level

Conceptual level

Internal level

Physical level

2 0Advanced Database Management System

contained in the database. Instead, they need only a part of the database
relevant to them. For example, even though the bank database stores a lot
of information, an account holder would be interested only in the account
details such as the current balance and the transactions made. They may
not need the rest of the information stored in the account holders database.
An external schema describes each external view. The external schema
consists of the definition of the logical records and the relationships in the
external view.

In the external level, the different views may have different
representations of the same data. The figure (Fig.1.6) describes the different
views of the database related to different users.

Fig.1.6: View of data at three-tier database architecture

View 1

Item_Name

Price

View 2

Item_Name
Price
ReOrderQuantity

Conceptual level

Item_Number Character (6)

Item_Name Character (20)
Price Numeric (5+2)
ReOrderQuantity Numeric (4)

Internal level

Stored_Item Length = 40
Number Type = Byte (6), Offset = 0, Index = Ix
Name Type = Byte (20), Offset = 6
Price Type = Byte (8), Offset = 26
ReOrderQuantity Type = Byte (4), Offset = 34

External Level
(individual views for
individual users)

Application Programs are
used to fetch the desired
information

(for customer) (for purchase manager)

2 1Advanced Database Management System

Conceptual level :

Conceptual level is the middle level of the three-tier architecture. At this
level of database abstraction, all the database entities and relationships
among them are included. Conceptual level provides the community view
of the database and describes what data is stored in the database and the
relationships among the data. One conceptual view represents the entire
database of an organization. It is a complete view of the data requirements
of the organization that is independent of any storage consideration. The
conceptual schema defines conceptual view. It is also called the logical
schema. There is only one conceptual schema per database.

Internal level or physical level :

The lowest level of abstraction is the internal level. It is the one closest to
physical storage device. This level is also termed as physical level, because
it describes how data are actually stored on the storage medium such as
hard disk, magnetic tape etc. This level indicates how the data will be stored
in the database and describe the data structures, file structures and access
methods to be used by the database. The internal schema defines the internal
level. The internal schema contains the definition of the stored record, the
methods of representing the data fields and accessed methods used.

1.7 DATA INDEPENDENCE

Data independence is the characteristics of a database system to change
the schema at one level without having to change the schema at the next
higher level. This characteristic of DBMS insulates the application programs
from changing the data. The data independence is achieved by DBMS
through the use of the three-tier architecture of data abstraction. There are
two types of data independence -

(i) Logical data independence

(ii) Physical data independence

2 2Advanced Database Management System

NOTE
Practically, DDL &
DML are not two
separate languages,
instead they simply
form parts of a single
database language.
SQL represents
combination of DDL,
DML and VDL.

1.7.1 Logical Data Independence
Logical data independence is the ability to change the conceptual
schema without having to change the external schema or application
program. We may change the conceptual schema to expand the
database(by adding a record type or data item) or to reduce the
database(by removing a record type or data item). Only the view
definition and the mapping need to be changed in a DBMS that
supports logical data independence. After a logical change in the
conceptual schema, the application program that refers to the external
schema construct must work as before.

1.7.2 Physical Data Independence

Physical data independence implies the ability to change the internal
schema without changinig the conceptual(or external) schemas.
Changes to the internal schema may be required for improving the
performance of the retrieval or updation operations. In other words,
physical data independence indicates that the physical storage
structures or devices used for storing the data could be changed
without changing the conceptual view or any of the external views.

1.8 DBMS LANGUAGE

A DBMS must provide appropriate languages and interfaces for each
category of users to express database queries and updates. After completing
the design of a database, a DBMS is choosen to implement the database. It
is important to first specify the conceptual and internal schemas for the
database. Following languages are used for specifying database schemas
:
 • Data Definition Language (DDL)

 • Storage Definition Language (SDL)

 • View Definition Language (VDL)

 • Data Manipulation Language (DML)

2 3Advanced Database Management System

Data Definition Language (DDL)

DDL is a special language which specify the database conceptual schema
using set of definitions. DDL allows the DBA or user to describe and name
the entities, attributes and relationships required for the application, together
with any associated integrity and security constraints. The DBMS has a
DDL compiler whose function is to process DDL statements inorder to
identify descriptions of the schema constructs. For example, look at the
following DDL statements :

CREATE TABLE EMPLOYEE

(
 Fname varchar(50 NOT NULL,
 Lastname varchar(50) NOT NULL,
 Eno char(9) NOT NULL,
 DOB date,
 Address varchar(60),
 PRIMARY KEY (Eno),

);

The execution of the above DDL statements will create a EMPLOYEE table
as shown below :

Storage Definition Language (SDL)
Storage definition language is used to specify the internal schema in the
database. In SDL, the storage structure and access methods used by the
database system is specified by set of statements.

EMPLOYEE

Fname Lastname Eno DOB Address

2 4Advanced Database Management System

View Definition Language (VDL)

View definition language is used to specify user’s views(external schema)
and their mappings to the conceptual schema. There are two views of data
- logical view (refers to the programmers view) and physical view (reflects
the way how the data are stored on disk).

Data manipulation language (DML)

DML provides a set of operations to support the basic data manipulation
operations on data in a database. Data manipulation is applied to all the
three(conceptual, internal, external)l levels of schema. The part of DML that
provides data retrieval is called query language. DML provides the following
data manipulation operations on a database :

 retrive data or records from database

 insert (or add) records to database

 delete records from database

 retrieve records sequentially in the key sequence

 retrieve records in the physically recorded sequence

 retrieve records that have been updated

 modify data or record in the database file
In other words, we can say that DML helps in communicating with the DBMS.

1.9 TYPES OF DBMS

The modern business environment revolves around the accuracy and
integrity of information. The advancements in computer technology and rapid
development of graphical user interface (GUI)-based applications, networking
and communications have resulted in new dimensions in database
management systems. A DBMS can be classified according to the number
of users, the database site locations and the type and extent of use. These
classifications are as follows:
On the basis of number of users :

 Single-user DBMS
 Multi-user DBMS

2 5Advanced Database Management System

Onthe basis of site locations :

 Centralised DBMS
 Parallel DBMS
 Distributed DBMS
 Client/Server DBMS

On the basis of the type and extent of use:

 Transactional DBMS
 Decision support DBMS
 Data Warehouse

1.9.1 Centralised DBMS

The centralised database system consists of a single computer system
associated with its peripherals, physically located in a single location.
The computer system offers data processing facilities to the users
located either at the same site, or, at geographically dispersed sites,
through remote terminials. The management of the system and its
data are controlled centrally from any one or central site. The following
figure(Fig.1.7) shows a centralised database system.

Fig.1.7: Centralised DBMS
Advantage of such a centralised system are given below :

 Most of the functions such as update, backup, query, control
access etc. are easier with this system.

 Single database is shared accross the several different users.

2 6Advanced Database Management System

Ofcourse, when the central site computer goes down, then every user
is blocked from using the system untill it recover.

1.9.2 Parallel Database System

Parallel database system architecture consists of a multiple central
processing units (CPU) and data storage disk in parallel as shown in
the following figure(Fig.1.8). Hence, in such a system data processing
speed is fast as well as input/output speed is also fast. The system
which needs to process an extremely large number of transactions
per second, in such a system parallel database system is used.

Advantage of such system is given below :

 Useful in the applications, which have to process an extremely large
number of transactions per seconds (of the order of thousands of
transactions per seconds)

 Performance of such database system is very high.

Fig.1.8: Parallel database system

1.9.3 Distributed DBMS

In a distributed database system, data are spread across a variety of
different databases. These are managed by a variety of different DBMS
softwares running on a variety of different computing machines having

Storage
disk

Storage
disk

Memory

Processor

Processor

Processor

Data Bus

2 7Advanced Database Management System

different operating systems. These machines are actlually located on
different sites and connected with some kind of communication
networks as shown in the figure below (Fig.1.9). Thus, in a distributed
database system, the organisation of data might be distributed on
different computers in such a way that data for one portion (or
department) of the organisation is stored in one computer and data
for another department is stored in another computer. Each machine
can have own data and applications and users of one machine can
access the data of several other computers. The following figure
(Fig.1.9) shows a distributed database system.

Fig.1.9: Distributed database

Advantages of distributed DBMS system is given below :

 Efficiency and performancce of this system is high.

 A single database can be shared across several distinct client
systems.

 As data volume and transaction rates increase, users can grow

2 8Advanced Database Management System

the system incrementally.

1.9.4 Client-Server DBMS

The client-server database system has two logical components
namely - client and server. Clients are generally personal computers
or workstations and the servers are the large workstations or
mainframe computer system. The applications and tools of DBMS
run on one or more client plateforms, while the DBMS softwares reside
on the server. The server computer is called backend and the client
computer is called front-end. The server and the clients are connected
through networks. The clients send request to the server for performing
some special tasks. The DBMS in the server side, in turn, process
these requests and returns the results to the clients. The server handles
parts of the job that are common to many clients, for example,
database access and updates. The following figure(Fig.1.10) shows
a client-server database model.

Advantages of such system is given below :

 Performance is high.

 A single database (on server) can be shared accross several distinct
client system.

 More flexible as compared to the centralised system.

Server Machine

Fig. Client-Server database model

2 9Advanced Database Management System

 Facilitates in more productive work by the users and making better
use of existing data.

1.10 DATABASE ADMINISTRATOR

A database administrator (DBA) is a person or a group of person who is
responsible for the environmental aspects of a database. A DBA is the cen-
tral controller of the batabase system who designs database, controls and
manages all the resources of database as well as provides necessary tech-
nical support for implementing policy decisions of database.

The role of a database administrator has changed according to the technol-
ogy of database management systems as well as the needs of the owners
of the databases.

Some of the roles of the DBA may include

 Installation of new software — It is primarily the job of the DBA to
install new versions of DBMS software, application software, and other
software related to DBMS administration.

 Configuration of hardware and software with the system
administrator — In many cases the system software can only be
accessed by the system administrator. In this case, the DBA must
work closely with the system administrator to perform software
installations, and to configure hardware and software so that it functions
optimally with the DBMS.

 Security administration — One of the main duties of the DBA is to
monitor and administer DBMS security. This involves adding and
removing users, administering quotas, auditing, and checking for
security problems.

 Data analysis — The DBA will frequently be called on to analyze the
data stored in the database and to make recommendations relating to
performance and efficiency of that data storage.

3 0Advanced Database Management System

 Database design (preliminary) — The DBA is often involved at the
preliminary database-design stages. Through the involvement of the
DBA, many problems that might occur can be eliminated. The DBA
knows the DBMS and system, can point out potential problems, and
can help the development team with special performance
considerations.

 Data modeling and optimization — By modeling the data, it is possible
to optimize the system layouts to take the most advantage of the I/O
subsystem.

 Responsible for the administration of existing enterprise databases
and the analysis, design, and creation of new databases.

CHECK YOUR PROGRESS

2. Select TRUE or FALSE in the following statements:

(i) The conceptual view is a view of the total database content.

(ii) User’s view is also called external view.

(iii) The database schema and an instance of the database are
the same thing.

(iv) A view of a database that appears to an application pro-
gram is known as schema.

(v) Logical data independence indicates that the conceptual
schema can be changed without affecting the existing ex-
ternal schemes.

(vi) A database is a computer-based record keeping system
whose over all purpose is to record and maintain informa-
tion.

3 1Advanced Database Management System

3. Multiple Choice

(a) A view of database that appear to an application program is
known as –

(i) schema (ii) sub schema
(iii) virtual table (iv) none of these

(b) User’s view is also called

(i) external view (ii) conceptual view
(iii) internal view (iv) none of these

(c) Which of the following schemas defines the stored data
structures in terms of the database model used -

(i) external (ii) conceptual
(iii) internal (iv) none of these

(d) Data is processed by using

(i) DDL (ii) DML
(iii) DCL (iv) DPL

(e) Immunity of the conceptual (or external) schemas to
changes the internal schemas is referred to as

(i) physical data independance
(ii) logical data independence
(iii) both (i) and (ii)
(iv) none of these

1.11 DATA MODELS

There are many basic structures that exist in a database system to organise
the data. One of the fundamental characteristics of the database approach
is that it provides some level of data abstraction by hiding details of data
storage that are not needed by most database users. Data model is the
main tool for providing this abstraction. A data model is a set of concept
that can be used to describe the structure of a database. By structure
of a database, we mean the data type, relationships, and constraints that
should hold on the data. Most data models include a set of operation for

3 2Advanced Database Management System

specifying retrievals and updates on the database. So, a data model defines :

 The logical data structure

 Data relationships

 Data consistency constraints.

1.11.1 Types of Data Models

Data models are categorised in different ways. The most general
category is on the basis of the concepts they provide to describe the
database structure. They are:
a) High level or Conceptual data model: It provides concepts

that are close to the way many users perceive data. It uses
concepts such as entities, attributes and relationships. An entity
is an object that is represented in the databases. An attribute is a
property that describes some aspects of an object. Relationship
among objects is easily represented in high level data models
which is sometimes called Object-Based Model because it uses
objects as key data representation components that contains both
data members/values and operations that are allowed on the data.
The interrelationships and constraints are implemented through
objects, links and message passing mechanisms. Object-Models
are useful for databases where data interrelationships are complex,
for example, Computer Assisted Design based components. The
popular high level data model is Entity-Relationship Model.

b) Logical or implementation data model: It provides concepts
understandable by end users but is not too far removed from the
way data is organised within the computer. It hides some details
of data storage but can be implemented on a computer system in
a direct way. This model is sometimes called Record-based data
model because it uses records as the key data representation
components. It is used most frequently in current commercial
DBMSs and includes the three most widely used data models –
Relational, Network and Hierarchical data model.

c) Low-level or physical data model: It provides concepts that

3 3Advanced Database Management System

describe the details of how data is stored in the computer by
representing information such as record formats, record orderings
and access paths. An access path is a structure that makes the
search for particular database records much faster.

1.11.2 Traditional Data Models

The main classification of DBMSs on which it is based is the data
model and the most often used data models in current commercial
DBMSs are Relational, Network and Hierarchical models. Following
are the brief discussions of these data models.

Relational data model

This is the most widely used database model that represents data as
well as relationship among data in the form of tables. It looks like a
file. Constraints are stored in a meta-data table. This is a very simple
model and is based on a proven mathematical theory. Most relational
data bases have high-level query languages and support a limited
form of user views. Usually, the conceptual and internal schemas are
not distinguishable, and a single DDL is used to describe all aspects
of the database structure. We will be discussed more details in the
subsequent unit. Fig.1.11 shows the relational representation of
student database.

STUDENT Name Rno Class Major
Smith 20 1 COSC
John 18 2 COSC

Fig.1.11: Relational representation of student data base
Advantages of Relational data model:

a) The relational data model can be implemented with a personal
computer having limited main memory and processing capability.

b) Very effective for small databases.

3 4Advanced Database Management System

c) Much easier to use because it enables a computer system to
accommodate a variety of enquiries in an efficient manner.

d) Very easy to represent the logical relationship among the data
items since it use primary key to represent record relationships
instead of pointers.

e) Relational model is very useful for representing most of the real
world objects and the relationships among them.

Disadvantages of Relational data model:

In this model, as the size of the database increases, several problems
may come into existence – system slowdown, performance
degradation and data corruption.

Network data model

In this model, data is represented as records and relationship as links.
Figure 1.12 shows the network representation for the database
STUDENT with grade, course and section. In the figure(Fig.1.12),
record types are shown as rectangles and set types are shown as
labelled directed arcs. The network model is also known as the
Computer Data System Language DataBase Task Group (CODASYL
DBTG) model. It has an associated record-at-a-time language that
must be embedded in a host programming language.

Fig1.12: A network schema

COURSE_OFFERED

STUDENT_GRADE

STUDENT
COURSE

SECTION

GRADE

3 5Advanced Database Management System

Advantages of network model:

a) Useful to represent the records having many-to-many relationships.

b) Problem of inconsistency does not exist in this model because a
data element is physically located at just one place.

c) Searching a record is easy since there are multiple access paths
to a data element.

Disadvantages of network model:

a) All the records are maintained using pointers and hence the whole
database structure becomes very complex.

b) Insertion, modification (update) and deletion of any record require
pointer adjustments.

Hierarchical data model: It represents data as hierarchical tree structures.
Each hierarchy represents a number of related records. There is no standard
language for the hierarchical model, although most hierarchical DBMSs
have record-at-a-time languages. For example, an institute has a number
of programmes to offer, each programme has a number of courses, and
each course has a number of students registered in it. The following
figure(Fig.1.13) depicts, the four entity types Institute, Programme, Course
and Student make up the four different levels of hierarchical structure.

Institute

Programmes

Courses

Students

Fig.1.13: A simple hierarchy

3 6Advanced Database Management System

Advantages of Hierarchical Model:
a) It is a simple, straightforward and natural method of implementing

record relationships.
b) Useful when there is some hierarchical character in a database.
Disadvantages of Hierarchical Model:
a) It cannot represent all the relationship that occurs in the real world.
b) It cannot demonstrate the over-all data model for the enterprise

because of the non availability of actual data at the time of designing
the model.

c) Used only when hierarchical structure in the databases.
d) Insertion, modification (update) and deletion of any record require

lots of adjustments.

CHECK YOUR PROGRESS

4. State whether the following are true or false (T/F)

i) Data model gives logical as well as physical data structure

ii) Entity relationship model is the example of conceptual data
model

iii) Conceptual data model is also called object-based model.

iv) High level data model use records as the key data
representation component.

v) Low level data model describes the details of how to store
data in computer.

vi) Logical data model provide concept which is complicated
for end users.

vii) Implementation data model is also a record-based data
model.

viii) Access path can search database record much faster.

ix) Network model represents data as hierarchical tree structure.

x) Hierarchical model is the current commercial DBMS.

3 7Advanced Database Management System

1.12 LET US SUM UP

1. The traditional file approach to information processing has for each
application a separate master file and its own set of application
programs, COBOL language used to write these application programs.

2. A database is a single organized collection of instructed data, stored
with a minimum of duplication of data items so as to providea
consistent and controlled pool of data.

3. A database management system (DBMS) is a collection of programs
that enables users to store, modify and extract information from a
database as per the requirements. DBMS is an intermediate layer
between programs and the data. Programs access the DBMS, which
then accesses the data.

4. According to the ANSI/SPARC architecture of a database system the
whole database is divided into the following three levels :

 External level or view level

 Conceptual level

 Internal level or physical level

5. Logical data independence indicates that the conceptual schema can
be changed without affecting the existing external schema.

6. Physical data independence indicates that the physical storage
structures or devices used for storing the data could be changed
without necessitating a change in the conceptual view or any of the
external views.

7. DBMS provide appropriate languages and interfaces for each category
of users to express database queries and updates.

8. Following laguages are used for specifying database schemas :

 Data definition language (DDL)

 Storage definition language (SDL)

 View definition language (VDL)

 Data manipulation language (DML)

9. DBMS can be classified according to the number of users, the

3 8Advanced Database Management System

database site locations and the type and extent of use.

On the basis of site locations, the followings are types of DBMS :

 Centralised DBMS

 Parallel DBMS

 Distributed DBMS

 Client/Server DBMS

On the basis of the type and extent of use DBMS are of following
types :

 Transactional DBMS

 Decision support DBMS

 Data Warehouse

10. DBA is database administrator who is responsible for maintaining
database. A DBA provides the necessary technical support for
implementing policy decisions of database.

11. A data model is a set of concept that can be used to describe the
structure of a database.

 Data models are of three types: Logical, Physical and Conceptual.

 The most often used data models in current commercial DBMSs are
Relational, Network and Hierarchical models.

1.13 ANSWERS TO CHECK YOUR PROGRESS

1. a. (iv) b. (iv) c. (ii) d. (i) e. (i)

2. (i) F (ii) T (iii) F (iv) F (v) T (vi) T

3. a. (ii) b. (i) c. (ii) d. (ii) e. (i)

 4. (i) F (ii) T (iii) T (iv) F (v) T
vi) F vii) T viii) T ix) F x) T

3 9Advanced Database Management System

1.14 FURTHER READINGS

1. An introduction to Database Systems, C. J. Date, Pearson Education.

2. An introduction to Database Systems, B.C. Desai.

3. Database System Concepts, S. K. Singh, Pearson Education.

4. Principles of Database systems, J.D. Ullman.

1.15 MODEL QUESTIONS

1. What is file based approach of database? Explain its limitations?

2. Explain three level database architecture. What are its objectives?

3. What do data independence and its types? How data indep-endence
is achieved?

4. What are advantages of DBMS?

5. Discuss the main disadvantages of a Traditional file approach?

6. Discuss the main disadvantages of DBMS?

7. Difference between DBMS approach & traditional file approach.

8. Mention the differences between text files and database files. Why
are database files preferred in a commercial organization?

9. Write short notes on :

(i) Data independence

(ii) Database

(iii) DBMS

(iv) DBMS Architecture

(v) Client-server database model

(vii) Distributed database system

(vii) Physical Data Independence

(viii) traditional File Approach

(ix) Centralised database system

4 0Advanced Database Management System

(x) DBMS language

10. What is logical data independence and why is it important?

11. Explain the difference between logical and physical data independence.

12. Describe the three levels of data abstraction?

13. What do you mean Database Language? What are the different types
of data base language?

14. Explain the role of a Database Administrator.

 15. Describe conceptual, logical and physical data model.

Unit-2 Database Design using ER Model

Advanced Database Management System 41

UNIT- 2 DATABASE DESIGN USING ER MODEL

UNIT STRUCTURE

2.1 Learning Objectives
2.2 Introduction

2.3 Basic ER Concepts

 2.3.1 Entities and Attributes

 2.3.2 Entity type and Entity Sets

 2.3.3 Relationship

 2.3.4 Constraints

2.4 Relationship Set

2.5 Entity-Relationship Diagram

2.6 Generalization and Specialization

2.7 Aggregation
2.8 Structure of Relational Database

2.9 Different types of keys

2.10 Expressing M:N Relation

2.11 Let Us Sum Up

2.12 Answers to Check Your Progress

2.13 Further Readings

2.14 Model Questions

2.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 • explain the need of Entity-Relationship modeling;

• define the terms entity, entity type, attribute, attribute value, primary key,

relationship, relationship type;

• describe how entities, attributes and relationship are used to model data;

• determine the degree of a relationship;

• produce an entity-relationship diagram based on a simple description of a

domain

Unit-2 Database Design using ER Model

Advanced Database Management System 42

2.2 INTRODUCTION

Previous unit is an introductory unit on database management system. We are

already acquainted with databases and various introductory concepts associated

with database. In this unit we will present a high-level conceptual data model, the

Entity-Relationship (ER) model. It was first introduced by Peter Chen in 1976 to

facilitate database design. Conceptual modeling is an important phase in

designing a successful database. A conceptual data model is a set of concepts

that describe the structure of a database and associated retrieval and updating

transactions on the database. ER modeling should always be completed before
we implement a database. We also discuss about ER diagrams which are the
diagrammatic notation associated with the ER model.

2.3 BASIC CONCEPTS OF ENTITY RELATIONSHIP

The database is a collection of entities and relationship among the entities. The
Entity-Relationship(ER) model is an effective as well as standard method of

communication amongst different programmers, designers and end-users who

tend to view data and its use in different ways. The ER model describes data as

entities, their relationships and attributes.

2.3.1 Entities and Attributes

An entity is an object or a thing in the real world with an independent existence

which can be uniquely identified. An entity may be an object with a physical

existence such as a person, employee, car, book, or plant. Or, it may be an

object with a conceptual existence such as a company, an organization, a job or

an event. An entity in ER model is represented by a rectangle containing the

entity type name, such as Employee.

Unit-2 Database Design using ER Model

Advanced Database Management System 43

A database may contain many different types of related entities. An entity is

represented by a set of attributes, that is, descriptive properties possessed by
all members of an entity set. The Employee entity, for example, has the attributes

Employee_id, Name, Designation, Salary and Contact_no.Attributes are
represented as oval in ER model. The following figure shows two entities

Employee and Student with their attributes and attribute values:

 Employee_id = kkhsou01
 Name = AnkurDutta
Employee Designation = Manager
 Salary = 45000
 Contact_no = 9864765463

 Roll_no = 01
 Name = KaveriBaruah
Student Sex = female
 District = Kamrup
 Pin = 781006
 State = Assam

 Fig.2.1: Two entities with their attributes

Several types of attributes occur in ER model which are as follows:

Simple and Composite attribute,
Singlevalued and Multivalued attribute,

Stored and Derived attribute,

Complex attribute.

Simple and Composite Attribute

Attributes that are not divisible are termed as simple or atomic attributes. The

attributes age, sex, etc. are examples of simple attributes.

An attribute is considered composite if it comprises two or more other attributes.

i.e., a composite attribute is an attribute that can be further subdivided. For

Unit-2 Database Design using ER Model

Advanced Database Management System 44

example, the attribute address can be subdivided into Street, City, State, and Pin

code.

Fig. 2.2: Composite Attribute

Singlevalued and Multivalued Attribute

Most attribute have a single value for a particular entity; such attributes are called
singlevalued. For example, a person can have only one 'date of birth', 'age' etc.

But it can be simple or composite attribute.That is, the 'date of birth' is a

composite attribute , 'age' is a simple attribute. But both are singlevalued

attributes.

Multivalued attributes can have multiple values. For instance, a person

may have multiple degrees, phone numbers, email address etc.

Stored and Derived Attribute
An attribute that supplies a value to the related attribute is called stored

attribute.For example 'Date of birth' of a person is a stored attribute. The value

for the attribute 'age' can be derived by subtracting the 'Date of Birth' from the

current date.
 Derived attributes are the attributes which are computed from other
attributes. For example, age, and it’s value is derived from the stored attribute

Date of Birth.

Address

Street City State Pin

Unit-2 Database Design using ER Model

Advanced Database Management System 45

Complex Attribute

A complex attribute are attribute that is both composite and multivalued.

Composite and multivalued attributes can be nested arbitrarily. Arbitrary nesting

is done by grouping components of a composite attribute between parentheses ()
and separating the components with commas, and by displaying multivalued

attributes between braces { }.
For example, for an entity person, let us consider an attribute Person_info

which will give the full name and address of a particular person. The attribute,
Person_info for a person can be specified as shown in the following figure. In the

figure, we can see that the Name and Address are themselves composite

attributes.

{Person_info({Name(First_name, Middle_name, Last_name)},
{Address(House_no, Street_no,Street_name), City, State, Pin}}
Fig.2.3: A complex attributesPerson_info

2.3.2 Entity Type and Entity Set

The set of all entities that have the same properties or attributes is called an

Entity Type. The entity type is described by its name and its attributes.

For example, to store the records of the employees working in an organization,
the Employee entity has the same attributes, like employee_id, name, address,

salary and so on. Each entity has its own values for each of its attribute.

An Entity Set is the collection of all the entities of a particular entity type.
Sometimes, the entity set is also known as Extensionof the entity type.For

example, EMPLOYEE refers to both an Entity type and the set of all the

employee entities in the database. The figure below illustrates this.

Unit-2 Database Design using ER Model

Advanced Database Management System 46

ENTITY TYPE Name: EMPLOYEE
ATTRIBUTES: Employee id, Name, Address

ENTITY SET:

Fig.2.3

Each entity in the entity set of a particular entity type has an attribute whose

value is distinct and can uniquely identify each entity in the set. Such attributes

are called Key attributes.

Entity types can be classified as

 Strong entity or Regular entity

 Weak entity

Those entities that have an independent existence and can be uniquely identified

by key attributes are called Strong entities and those entitieswhose existence

depend on the existence of some other entity and cannot be uniquely identified

by key attributes are called weak entities. As an example, the Employees

working in the different branches of an organization may have dependents. In

this case, the entities EMPLOYEE and BRANCH are Strong entities as they can

exist independently. But the entity DEPENDENT is a Weak entity as it can exist
only if the EMPLOYEEs have dependents.

 Emp1, Priya, Guwahati

 Emp2, Saurav, Jorhat

 Emp3, Ronak, Tezpur

 Emp4, Kaushik, Nagaon

 .
 .

Unit-2 Database Design using ER Model

Advanced Database Management System 47

 CHECK YOUR PROGRESS

1. Fill in the blanks:
a. Any object that has existence in the real world is called

______________________.
b. The characteristics or a property of the entities is defined as

_____________________.
c. The _________________ attribute can be further subdivided into other

attributes.
d. Multivaluedattributes can have _______________ values.
e. The attribute which are computed from other attribute values is called

___________________.
f. The set of all entities that have the same properties or attributes is called

an ________________.
g. An ____________________ is the collection of all the entities of a

particular entity type.
h. ______________ is the distinct attribute of an entity, in an entity set,

whose value can uniquely identify each entity in the set.
i. ___________________ are the entities that have an independent

existence and can be uniquely identified by its key attributes.
j. Weak entity is ________________ on other entities.

2.3.3 Relationship

A relationship is defined as an association among two or more entities. The

entities that are involved in a relationship are called the participants of that

relationship. The number of entities or participants in a relationship is called the

degree of that relationship. If the relationship is between two entities then the
relationship is a Binary relationship, that is, the degree of the relationship is 2. If

the number of participating entities is three, then the relationship is a Ternary

relationship. Relationships are denoted by a diamond shape in the ER model.

The Fig.2.4 (a) below shows an example of a binary relationship between two

entities Employee and Branch.

Unit-2 Database Design using ER Model

Advanced Database Management System 48

 Fig.2.4(a) : Binary Relationship

The Fig.2.5(b) below shows an example of a ternary relationship “Supplies”,

between the entities Supplier, Project and Part. Suppose each part is supplied by

a unique supplier, and is used for a given project within the organization.

 Fig.2.4(b) : Ternary Relationship

A particular occurrence of a relationship is called a relationship instance. It

includes one occurrence from each of the participating entity types.

2.3.4 Constraints

There are certain constraints on the relationship types that limit the possible

combinations of entities participating in the corresponding relationship set. For

example, suppose an employee may be appointed to only one department in the

organization. This is a constraint and it needs to be described in the relational
schema.

There are two main types of relationship constraints ---- cardinality ratio, and

participation.

EMPLOYEE BRANCH WorksIn

SUPPLIER PROJECT Supplies

PART

Unit-2 Database Design using ER Model

Advanced Database Management System 49

Cardinality Ratios for Binary Relationships:
The maximum number of relationship instances that an entity can participate in is

called the cardinality ratio. The possible cardinality ratios for binary

relationships are

 One-to-one (1:1),

 One-to-many (1:N)

 Many-to-many (M:N)

The cardinality ratios on ER diagrams are shown by displaying 1, N and M on

the diamonds. Suppose in an organization if an employee supervises only

one branch, then the cardinality ratio of the relationship between the

participating entities, Employee and Branch is 1:1 and is shown in the figure
below.

 1 1

Fig.2.5(a)

A branch can have many employees working in it, or in other words many

employees’ works in a branch of the organization. The cardinality ratio for the
Dept_Emp relationship is 1:N. This can be illustrated by the following figure.

 1 N

Fig.2.5(b)

If many employees can work in many projects, then the cardinality ratio for the
relationship isM: N and can be shown as:

 M N

Fig.2.6(c)

 EMPLOYEE BRANCH Supervises

 BRANCH EMPLOYEE Dept_Emp

 EMPLOYEE PROJECT Emp_Proj

Unit-2 Database Design using ER Model

Advanced Database Management System 50

Participation:

The participation constraint of a relationship determines whether the existence of

an entity depends on its being related to another entity through the relationship.

Participation constraints are of two types: totalandpartial participation. In ER

model, total participation is represented by a double line connecting the

participating entity types, and the partial participation is represented by a single
line.

If every entity, in the entity set E1, must be related to another entity E2 through a

relationship, then the participation of E1 in the relationship is said to be total.
Total participation is also known as existence dependency. For

example,Fig.2.5(d)the employees working in an organization may have

dependents on them. This means that the Dependent entity can exist only if there

is aEmployeeentity, otherwise not. So in this case, the participation of the
Dependent entity in the relationship is total.

Fig.2.5(d)

Participation of an entity in a relationship can also be partial. Let us take the

example of Fig.2.5(a). All the employees working in the branch are not

supervising the branch. So here the participation of the Employee entity in the

‘Supervises’ relationship is partial, that is, only a part of the employee is given the
responsibility to supervise the works of the branch.

2.4 RELATIONSHIP SET

A relationship type is a set of associations among entity types. For example,

the employee entity type is related to the branch entity type because each

employee is a member of a branch.Relationship set is the collection of similar

relationships. An n-array relationship set R relates n entity sets E1 ... En.Each

DEPENDENT EMPLOYEE DependsOn

Unit-2 Database Design using ER Model

Advanced Database Management System 51

relationship in R involves entities e1E1, ….., en En. Same entity set can

participate in different relationship sets.

CHECK YOUR PROGRESS

2. Say True or False:

i. Association among the attributes of an entity is relationship.
ii. Participants of a relationship are the number of entities that are

involved in the relationship.

iii. If the degree of a relationship is three, then it is a Ternary relationship.

iv. A particular occurrence of a relationship is called a relationship

instance.

v. Constraints do not put any limit on the combinations of entities

participating in the corresponding relationship set.

3. Fill in the blanks:

a. _____________________ and ______________________ are the two

types of constraints on a relationship.

b. Cardinality ratio is the ___________________ number of relationship

instances that an entity can participate in.

c. In an ER-diagram, the entities, attributes and relationships are

represented as _____________, _______________ and

_________________ respectively.

d. Participation constraints in relationships are of two types, _____________
and _______________ participation.

e. __________________ is the collection of similar relationships.

Unit-2 Database Design using ER Model

Advanced Database Management System 52

2.5 ENTITY RELATIONSHIP DIAGRAM

The Entity-Relationship (ER) diagram illustrates the logical structure of a

database. It defines the relationships between the different entities of the

database application. It is a graphical representation of an ER model. The figure

below shows the symbols or notations that are used for ER diagrams. They are
the building blocks of ER diagram.

 SYMBOL MEANING

ENTITY

WEAK ENTITY

RELATIONSHIP

ATTRIBUTE

KEY ATTRIBUTE

MULTIVALUED ATTRIBUTE

COMPOSITE ATTRIBUTE

DERIVED ATTRIBUTE

Unit-2 Database Design using ER Model

Advanced Database Management System 53

 1 N

An example of an ER-diagram of a conceptual model for the database of an

organization is depicted in Fig.2.6.Suppose only a part of the organization is to
be represented in the database.

 N 1

 1

 M

 N

 N

R E1 E2 TOTAL PARTICIPATION OF E2 IN R

R E1 E2 CARDINALITY RATIO 1:N FOR E1:E2 IN R

 EMPLOYEE

 DEPENDENT

 BRANCH

 PROJECT

WorksIn

 Has
Control

Proj_Work

Ename

E_id

Address

Salary Ph_No

Street
 City State

Bname

B_id

Location

Name Relation

P_id Pname
BirthDate

No_of_Dep

Pin

Unit-2 Database Design using ER Model

Advanced Database Management System 54

Fig.2.6

It can be seen from the above diagram that ER diagram includes entity sets,
attributes, and relationship sets.

2.6 GENERALIZATION AND SPECIALIZATION

There are some extensions to the basic ER Model. These are generalization,
specialization and aggregation. Generalization and Specialization are

important concepts in database modeling. These are different approaches to the
design processes of the logical database.

Generalization is a bottom-up design process of the logical database. It

is a process of extracting shared characteristics from two or more entities (or

classes) and combining those entities into a higher level or generalized entity set.

The entity sets that are combined are called the lower-level entity sets. It is used

to emphasize the similarities among the low-level entity sets and to minimize
their differences. Let us consider the example of an Employee entity. The

attributes of Employee may be emp_id, emp_name, contactNo. There may be

different types of employees working for the organization. Then Employee is the

higher level entity and Full-time employee and Part-time employee are the lower-

level entity sets. It is denoted by a triangular component labeled as “IS A” as
shown below(Fig.2.7)

Unit-2 Database Design using ER Model

Advanced Database Management System 55

Fig. 2.7

In the above diagram, the lower-level entities, such as, Full_time Employee and
Part_Time Employee are generalized to form a higher-level entity called
Employee.

Specialization, on the other hand, is a top-down design process. It is the

reverse of generalization and the process of maximizing the differences between

members of an entity by identifying their distinguishing characteristics. It means

creating new entities from existing ones. If certain attributes or relationships

apply only to some of the entities from the entity set, then a subclass or a low-

level entity can be created from that entity. In specialization, the subsets of the
higher level entity sets forms the lower-level entity sets. The higher-level entity

set is also called the superclass. For example, the Employee entity can be

specialized into full time and part time employees or as Manager, Assistants and

Executives. The subclasses are formed based on some properties of the entities
in the superclass.

Unit-2 Database Design using ER Model

Advanced Database Management System 56

2.7 AGGREGATION

Aggregation treats a relationship set as an entity set so that the relationship set

can participate in other relationships.Thus aggregation is an abstraction which

allows relationships to be viewed as higher-level entities. Suppose in an

organization, at the most one employee monitors the projects that are sponsored

by the branches.

Fig.2.9:ER diagram with aggregation

Fig.2.8

In the above example, the relationship set ‘Sponsors’ and the entity sets Branch

and Projects are treated as a higher-level entity so as to participate in the

relationship ‘Monitors’.

2.8 STRUCTURE OF RELATIONAL DATABASE

A relational database consists of a collection of tables. Tables in Relational

Database Systems are known as relations. A relation can be defined by a set of

rows and columns. Rows and columns in RDBMS are known as tuples and

EMPLOYEE

Emp_id

Ename

Address

Monitor

BRANCH Sponsors PROJECTS

B_id Bname
P_id Pname

Unit-2 Database Design using ER Model

Advanced Database Management System 57

fields respectively. Each relation in the database has a unique name. The

entities form the relations and the attributes are the attributes or fields of that

relation.

In a relational model, all data are kept in a relation. Each tuple of a relation

represents an instance of the entity set. The number of attributes is called the

degree and the number of tuples is called the cardinality.

2.9 DIFFERENT TYPES OF KEYS

There are different types of keys in relational database model. Key is the

attribute of an entitythat identifies one or more instances of the entity set. It can

be a single attribute or a combination of attributes of the entity set. In other
words, a key is used to uniquely identify the tuples of a relation in the relational

database system.

Candidate Keys

If a relation schema has more than one key, each of the key is called a
candidate key. A candidate key K must have the property of being Unique and

Irreducible in a relation R. Uniqueness property means no two distinct tuples in R

must have the same value for the key K. If t1 and t2 are two tuples in any legal

relation state r of R, then t1[K] t2[K]. Irreducible defines that any proper

subset of keycannot have the uniqueness property.

Super Key

A key K in a relation schema R is called a super key if it has the uniqueness
property but not necessarily the irreducible property. Every relation has atleast

one superkey – the set of all the attributes in the relation. A key is the minimal

superkey. Suppose, EMP_ID is a key of the EMPLOYEE relation. Then any set

of attributes of the EMPLOYEE relation that includes EMP_ID are all super keys.

For example, {emp_id}, {emp_id, ename}, {emp_id, address, salary} are super

keys of EMPLOYEE.

Unit-2 Database Design using ER Model

Advanced Database Management System 58

Primary Keys and Alternate Keys

Primary key is one of the candidate key that is selected to uniquely identify the

tuples of a relation. For example, in the relation Employee, out of the candidate

keys --- EMP_ID, PH_NO, the Emp_id attribute can be chosen to be the primary

key of Employee relation. In such a case, the remaining candidate key PH_NO of

the relation is called the Alternate key.

Foreign Keys

A foreign key is a set of attributes of a relation R2that matches the values of the

candidate key of a relation R1. R1 and R2 may not be distinct. An example of a
foreign key is given below:

EMPLOYEE (R1)
Emp_id Ename Salary

E1 Ishita 18000

E2 Suparna 25000

Emp_Proj (R2)
Proj_id E_id No_of_Hours

 P 1 E1 6

P2 E2 8

P1 E1 2

 Fig.2.9

In the above example, Emp_id is the primary key in the Employee relation and in
Emp_Proj it is the foreign key. The foreign key may be simple or composite
according to the candidate key it matches.

2.10 EXPRESSING M:N RELATION

The Many-to-Many relationship is one of the common cardinality ratios for binary
relationships in a conceptual database schema. For example, in an organization,

Unit-2 Database Design using ER Model

Advanced Database Management System 59

 An employee is associated with several projects through the Emp_Proj
relationship.

 A project is associated with many employees via the Emp_Proj
relationship.

In ER diagram, the M:N relationship can be expressed by putting the cardinality
ratios on the relationship.

 M N

Fig.2.10

The M:N relation can also be expressed as a semantic net diagram as follows:

Fig.2.11

 EMPLOYEE PROJECT Emp_Proj

Ename P_id

E_id

Salary
Pname

Unit-2 Database Design using ER Model

Advanced Database Management System 60

CHECK YOUR PROGRESS
4. Fill in the blanks:

a. The graphical representation of the logical database structure is the

__________________. ER model
b. __________________ is a bottom-up design process

and_________________ is a top-down design process. Generalization,

Specialization

c. Specialization ___________________ the differences between members

of an entity by identifying their distinguishing characteristics. Maximizes

d. _____________________ treats a relationship set as an entity set.

Aggregation

e. In a relational model, the tables, rows and columns are known as

______________, ________________ and ________________.
Relations, tuples, attributes

f. ____________ is the attribute of an entity that identifies one or more

instances of the entity set. Key

g. Once the primary key is selected from the candidate keys of a relation,

the remaining candidate keys are called

___________________________. Alternate keys

h. A ______________ is a set of attributes of a relation that matches the

values of the candidate key of the other relation.

2.11 LET US SUM UP

1. An entity is an object or a thing in the real world with an independent

existence. It may have physical or conceptual existence.

Unit-2 Database Design using ER Model

Advanced Database Management System 61

2. An entity is represented by a set of attributes. Attributes are the

properties or characteristics of an entity.

3. There are types of attributes - Simple and Composite attribute,

Singlevalued and Multivalued attribute, Stored and Derived attribute,
Complex attribute.

4. The set of all entities that have the same properties or attributes is called

an Entity Type. Entity Set is the collection of all the entities of a

particular entity type.

5. Entities can be Strong or Regular, and Weak.

6. Entities that have an independent existence and can be uniquely

identified by key attributes are called Strong entities.

7. Entities whose existence depend on the existence of some other entity

and cannot be uniquely identified by key attributes are called weak
entities.

8. A relationship is defined as an association among two or more entities.

9. The entities that are involved in a relationship are called the participants

of that relationship.

10. The number of entities or participants in a relationship is called the

degree of that relationship.

11. Two main types of relationship constraints are cardinality ratio, and

participation.

12. The common cardinality ratios for binary relationships are One-to-one

(1:1), One-to-many (1:N) and Many-to-many (M:N)
13. The participation constraint of a relationship determines whether the

existence of an entity depends on its being related to another entity
through the relationship. Participation constraints are of two types: total

and partial participation.

14. A relationship type is a set of associations among entity types.

Relationship set is the collection of similar relationships

15. The Entity-Relationship (ER) diagram is a graphical representation of the
logical structure of a database.

16. Generalization, specialization and aggregation are the extensions to the
basic ER model.

Unit-2 Database Design using ER Model

Advanced Database Management System 62

17. Generalization is a bottom-up design process of the logical database. On

the other hand, specialization is a top-down design process and it is the
reverse of generalization.

18. Aggregation is an abstraction which treats a relationship set as an entity
set so that the relationship set can participate in other relationships.

19. Aggregation is an abstraction which allows relationships to be viewed as

higher-level entities.

20. A relation can be defined by a set of tuples. The entities form the relations

and the attributes are the columns or fields of that relation.

21. Key is the attribute of an entity that identifies one or more instances of the

entity set.

2.13 ANSWERS TO CHECK YOUR PROGRESS

1. a) entity b) attributes c) composite d) multiple

e) derived attribute f) Entity Type g) Entity Set h)Key attribute

i) Strong attributes j) dependent

2. i. False ii. False iii. True iv. True v. False

3. a. Cardinality ratios, Participation constraints

b. maximum

c. rectangle, oval, diamond shape
d. total, partial

e. Relationship set
4. a. ER model

b. Generalization, Specialization

c. Maximizes

Unit-2 Database Design using ER Model

Advanced Database Management System 63

d. Aggregation

e. Relations, tuples, attributes

f. Key

g. Alternate keys

h. foreign key

2.12 FURTHER READINGS

1. “An introduction to Database Systems”, C J Date, Pearson Education
2. “Database Systems – Concepts, Design and Applications”, S K Singh,

Pearson

3. “Fundamentals of Database Systems”, Elmasri, Navathe, Somayajulu,

Gupta, Pearson Education

2.14 MODEL QUESTIONS

1. Draw the ER diagram for a Library management system.

2. What is the difference between strong entity and weak entity?

3. Define entity type and entity set.

4. Briefly describe specialization and generalization in ER model with the

help of a suitable example.
5. Define cardinality ratio in ER model.

6. Write short notes on composite and derived attributes in an ER model.

7. Write a short note on aggregation.

64

UNIT-3: RELATIONAL MODEL

UNIT STRUCTURE

3.1 Learning Objectives

3.2 Introduction

3.3 Codd’s Rule

3.4 Relational Model

3.5 Relational Model Constraints

3.5.1 Domain Constraints

3.5.2 Key Constraints and Constraints on Null Values

3.5.3 Relational Databases and Relational Database Schemas

3.5.4. Entity Integrity, Referential Integrity Constraints and Foreign Key

 3.5.5. Other Types of Constraints

3.6 Relational Algebra and Algebraic Operations

 3.6.1 Select

 3.6.2 Project

 3.6.3 Rename

 3.6.4 Union, Intersection and Difference

 3.6.5 Cartesian Product

 3.6.6 Division

 3.6.7 Join Operation

3.7 Relational Calculus

3.8 Let Us Sum Up

3.9 Answers to Check Your Progress

3.10 Further Readings

3.11 Model Questions

3.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 describe Codd’s rule

 define Relational Model

 describe Relational Model Constraints

65

 describe Relational Algebra

 describe Relational Calculus

3.2 INTRODUCTION

In the previous unit we have studied about the Entities, their relationships and

the representation of entities, attributes, relationship attributes, relationship

set etc. In this unit we are going to discuss about Relational Model. The
relational model for database management is a database model based on

first order predicate logic, first formulated and proposed in 1969 by Edgar F.

Codd. In the relational model of a database, all data is represented in terms of

tuples, grouped into relations. A database organized in terms of the relational

model is a relational database.

The purpose of the relational model is to provide a declarative method for

specifying data and queries: users directly state what information the

database contains and what information they want from it, and let the

database management system software take care of describing data

structures for storing the data and retrieval procedures for answering queries.

Most implementations of the relational model use the SQL data definition and

query language.

3.3 CODD’S RULE

Codd’s rules are a set of twelve rules proposed by Edgar F. Codd. He places
the relational model’s characteristics in three broad categories:

 Structural features that support the view of data. They include

relations and their underlying components, views and queries.

 Integrity features such as entity and referential integrity and also

application specific constraints.

 Data manipulation features for data retrieval, insertion, deletion, and
update.

66

Following are twelve Codd’s Rule:

Rule 1: Information Rule

All information in a relational database including table names and column

names are represented by values in tables. This simple view of data speeds
up design and learning process.

Rule 2: Guaranteed Access Rule

Every piece of data in a relational database can be accessed by using a

combination of a table name, a primary key value that identifies the row and a
column name, which identifies a cell.

Rule 3: Systematic Treatment of Nulls Rule

The RDBMS handles records that have unknown or inapplicable values in a

predefined fashion. Also, RDBMS distinguishes between zeros, blanks, and

nulls in the records and handles such values in a consistent manner that
produces correct answers, comparison, and calculations.

Rule 4: Active On-line Catalog based on the Relational Model

The description of a database and its contents are database tables and

therefore, can be queried on-live via the data manipulation language. The

database administrator’s productivity is improved since the changes and

addition can be done with the same commands that are used to access any
other table.

Rule 5: Comprehensive Data Sublanguage Rule

The RDBMS may support several languages. But at least one of them should

allow the user to do all the following: define tables and views, query and

update data, set integrity constraints, set authorizations, and define
transactions.

Rule 6: View Updating Rule

Any view that can be updated theoretically can be updated using the RDBMS.

Data consistency is ensured since the changes made in the view are
transmitted to the base table and vice-versa.

67

Rule 7: High level Insert, Update, and Delete

The RDBMS supports insertion, updating, and deletion at a table level. The

performance is improved since the commands act on a set of records rather
than one record at a time.

Rule 8: Physical Data Independence

The execution of ad hoc requests and application programs is not affected by

changes in the physical data access and storage methods. Database

administrators can make changes to the physical access and storage method,

which improve performance and do not require changes in the application

programs or requests.

Rule 9: Logical Data Independence

Logical changes in tables and views such as adding/deleting columns or

changing field lengths need not necessitate modification in the programs or in

the format of ad-hoc requests. The database can change and grow to reflect

changes in reality without requiring the user intervention or changes in the
applications.

Rule 10: Integrity Independence

Like table and view definitions, integrity constrain are stored in the online

catalog and can therefore be changed without necessitating changes in the

application programs. Integrity constrains specific to a particular Relational

Database must be definable in the relational data sublanguage and storable
in the catalog.

Rule 11: Distribution Independence

Application programs and ad-hoc requests are not affected by the changes in
the distribution of physical data.

Rule 12: Nonsubversion Rule

If the RDBMS has a language that access the information of a record at a
time, this language should not be used to bypass the integrity constraints.

68

3.4 RELATIONAL MODEL

Relational model stores data in the form of a table. Relational database are

powerful because they requires few assumptions about how data is related or

how it will be extracted from the database. As a result, the same database

can be viewed in the different ways. Another feature of relational system is

that a single database can be spread across several tables. This differs from
flat-file database, in which each database is self-contained in a single table.

The relational model uses tables to organize data elements. Each table

corresponds to an application entity and each row represents an instance of

that entity. In the formal relational model terminology, a row is called tuple, a
column header is called attribute, and each table is called relation.

Advantages of the relational model:

 Structural independence – The relational model does not depend on

the navigational data access system thus freeing the database

designers, programmers, and end user from learning the details of

data storage. Changes in the database structure do not affect the data

access. When it is possible to make change to the database structure

without affecting the DBMS’s capability to access data, we can say

that structural independence has been achieved. So relational
database model has structural independence.

 Conceptual simplicity - Since the relational data model frees the

designer from the physical data storage details, the designer can
concentrate on the logical view of the database.

 Design, implementation, maintenance, and usage ease – The

relational database model achieves both data independence and

structural independence making the database design, maintenance,
administration, and usage much easier than other models.

Disadvantages of relational model:

As compared to the advantages of the relational model, the disadvantages of

the relational model are very minor

69

 Hardware overheads – Relational database system hide the

implementation complexities and the physical data storage details from

the users. For doing this, i.e., for making things easier for the users, the

relational database system need more powerful hardware- computers
and data storage devices.

 Ease of the design can lead to bad design- The relational database

is an easy to design and use system. The user need not know the

complex details of the physical data storage. They need not know how

the data is actually stored to access it. This ease of design and use can

lead to the development and implementation of very poorly design

database management systems. Since the database is efficient, these

design inefficiencies will not come to light when the database is design

and when there is only a small amount of data. As the database grows,

the poorly designed database will slow the system down and will result
in performance degradation and data corruption.

Relational Model Notation

Generally following notation are used to denote relational model:

 A relation scheme R of degree n is denoted by R (A1, A2 …An).

 An n-tuple t in a relation r(R) is denoted by t=<v1,v2,…..vn>, where vi is

the value corresponding to attribute Ai.

 The letter Q, R, S denote relation name.

 The letter q, r, s denote relation states.

70

CHECK YOUR PROGRESS

1. Choose the correct answer:

 i) Who is called the father of the relational database system?

(a) E.F. Codd. (b) Donald Chamberlain

(c) C.J. Date (d) H.F. Korth

ii) What is the RDBMS terminology for a row?

 (a) Tuple. (b) Relation.

 (c) Attribute. (c) Domain.

iii) What is the RDBMS terminology for a table?

 (a) Tuple. (b) Relation.

 (c) Attribute. (c) Domain.

iv) What is the RDBMS terminology for the number of attribute in a relation?

 (a) Cardinality. (b) Relation.

 (c) Attribute. (d) Degree.

3.5 RELATIONAL MODEL CONSTRAINTS

There are many restrictions or constraints on the actual values in a database

state. Constraints on database can generally be divided into three categories:

1. Constraints those are inherent in the data model. We call these
inherent model based constraints.

2. Constraints that can be directly expressed in the schemas of the

data model, typically by specifying them in Data Definition
Language (DDL). We call these schema based constraints.

71

3. Constraints that cannot be directly expressed in the schemas of

the data model, and hence must be expressed and enforced by

the application program. We call these application based
constraints.

The main constraints that can be expressed in the relational model is the

schema based constraints. Theses include domain constraints, key

constraints, constraints on null, entity integrity constraints, and referential
integrity constraints.

3.5.1 Domain Constraints

Domain constraints specify that within each tuple, the value of each attribute
A must be an attribute value from the domain dom(A). The data types

associated with domains typically include standard numeric data types for

integers (such as short integer, integer, and long integer) and real numbers

(float and double-precision float). Characters, booleans, fixed length strings,

and variable length strings are also available, as are date, time, time-stamp,

and in some cases, money data types. Other possible domains may be

described by a sub range of values from a data type or as an enumerated

data type in which all possible values are explicitly listed.

 3.5.2 Key Constraints and Constraints on Null Values

 No two tuples can have the same combination of values for all their
attributes.

Super key: No two distinct tuples in any state r of R can have the same value

for SK. That is, for any distinct tuples t1 and t2 in r(R), t1[SK] ≠t2[SK]. This
condition must hold in any valid state r(R)

Key: Key of R is a "minimal" super key. That is, a key is a super key K such

that removal of any attribute from K results in a set of attributes that is not a
super key (does not possess the super key uniqueness property).

72

Candidate key: A candidate key can be any fields or a combination of fields

that uniquely identifies each record in the table. There can be multiple

Candidate Keys in one table. Each candidate key can qualify as Primary Key.

For example, the relation CAR has two candidate keys: Reg._No and

Engine_No.

Primary Key: If a relation has several candidate keys, one is chosen to be

the primary key. This is usually the best among the candidate keys. The primary

key attributes are underlined. Example: Consider the CAR relation schema:

CAR (State, Reg#, SerialNo, Make, Model, Year) .We chose SerialNo as the
primary key. The primary key value is used to uniquely identify each tuple in a

relation and provides the tuple identity. It is also used to reference the tuple

from another tuple.

Another constraint on attribute specifies whether null values are or are not

permitted. For example, if every STUDENT tuple must have a valid, nonnull
value for the Name attribute, then Name of STUDENT is constrained to be
not null.

3.5.3 Relational Databases and Relational Database
Schemas

A Relational Database Schema S a set of relation schemas S = {R1, R2, ...,

Rn} that belong to the same database. S is the name of the whole database
schema. R1, R2, …, Rn are the names of the individual relation schemas
within the database S

A COMPANY database schema with 6 relation schemas is shown below

73

3.5.4. Entity Integrity, Referential Integrity Constraints
 and Foreign Key

Entity Integrity: The primary key attributes PK of each relation schema R in

S cannot have null values in any tuple of r(R). This is because primary key
values are used to identify the individual tuples. t[PK] ≠ null for any tuple t in

r(R). If PK has several attributes, null is not allowed in any of these attributes.

 Note: Other attributes of R may be constrained to disallow null values, even

though they are not members of the primary key.

Referential Integrity: It is a constraint that involving two relations. It is used

to specify a relationship among tuples in two relations. The two relations are

termed as referencing relation and the referenced relation. Tuples in the

referencing relation R1 have attributes FK (called foreign key attributes) that

reference the primary key attributes PK of the referenced relation R2. A tuple

t1 in R1 is said to reference a tuple t2 in R2 if t1[FK] = t2[PK]. A referential

integrity constraint can be displayed in a relational database schema as a
directed arc from R1.FK to R2.PK

74

Foreign key: A set of attribute FK in a relation schema R1 is a foreign key of

R1 that reference relation R2 if it satisfies the following two conditions:
1. The attributes in FK have the same domain(s) as the primary key

attributes PK
2. Value of FK in a tuple t1 of the current state r1 (R1) either occurs as

a value of PK for
 some tuple t2 in the current state r2(R2) or is NULL

3.5.5 Other Types of Constraints

Semantic integrity constraints may have to be specified and enforced on a

relational database. Such constraints can be specified and enforced within
the application programs that update the data base. Sometime triggers and

assertions can be used.

Functional dependency constraint establishes a functional relationship

among two sets of attributes X and Y. Value of X determines a unique value

of Y

State constraints define the constraints that a valid state of the database

must satisfy.
Transition constraints define to deal with state changes in the database

CHECK YOUR PROGRESS

2. Choose the correct answer:
(i) DDL stand for
 (a) Data Design Language (b) Data Dictionary Language

 (c) Data Define Language (d) Data Definition Language

(ii) If a relational schema has more than one key, then in this case each key is
called

 (a) Primary key (b) Foreign key

 (c) Candidate key (d) Super Key

(iii) A key that uniquely identify different entity among entity set is called

75

 (a) Primary key (b) Foreign key

 (c) Candidate key (d) Super Key

(iv)A primary key attribute in a relation cannot have null value, this condition is

 (a) Referential integrity (b) Entity integrity

 (c) Foreign key (d) Domain constraint

3.6 RELATIONAL ALGEBRA AND ALGEBRAIC

 OPERATIONS
Relational algebra constitutes a basic set of operations for manipulating

relational data. These operations enable the users to perform basic retrieval

operations. The result of a retrieval operation on a table (or relation) is

another relation. Thus, the relational algebraic operations produce new

relations, which can be further manipulated using the same relational
algebraic operation.

Relational Algebraic Operation

The relational algebraic operations are divided into two groups-unary and

binary. Unary operations are those operations which operate on single
relation and binary operations are those which operate on two relations.

Unary operation include

 SELECT

 PROJECT

 RENAME

Binary operation include

UNION

INTERSECTION

SET DIFFERENCE

CARTESIAN PRODUCT

76

DIVISION

JOIN

 3.6.1 SELECT

The SELECT operation is used to select a subset of the tuples from a relation

that satisfy a selection condition. So we can consider the SELECT operation

to be a filter that keeps only those tuples that satisfy a qualifying condition. It
is represented as follows:

σ<select condition> (R)

The symbol σ (sigma) is used to denote the SELECT operator and the

<select condition> is a Boolean expression specified on the attributes of the

relation R. The Boolean expression specified in select condition is made up

of a number of clauses of the form

 <attribute name><comparison operator><constant value>

where <attribute name> is the name of attribute (column) of relation R;

<comparison operator> is one of the following comparison operator;
=,≠,<,≤,> or ≥ ; <constant value> is constant value from the attribute domain.

 Following is the example of SELECT operation

σ DNO=4 (EMPLOYEE) -Select the tuples for all employee whose

department is 4.

3.6.2 PROJECT

The PROJECT operation is used to select certain columns (attribute) from a

table, while discarding others. So if we interested in certain columns

(attribute) of a table, we can use PROJECT operation to project the relation
over these attribute. The PROJECT operation is represented as follows:

 π<attribute list>(R)

The symbol π (pi) is used to denote the POJECT operation and the

<attribute list> is a list of attributes from the attribute of the relation R. The

result of the PROJECT operation has only the attributes specified in the

77

attribute list and in the same order as they appear in the list. Hence the

degree (number of columns) of the result is equal to the number of attribute
specified in the attribute list..

Following is the example of PROJECT operation

π EANME,ADDRESS (EMPLOYEE) -Get the column ENAME and

ADDRESS from the EMPLOYEE table.

3.6.3 RENAME

The RENAME operation is used to rename a relation or attribute. The general

RENAME operation when applied to a relation can take any of the following
forms

ρ S(new attribute names)(R)

ρS(R)

ρ(new attribute names)(R)

The symbol ρ(rho) is used to denote the RENAME operator. S is the new

relation name and R original relation. The first expression renames both the

relation and its attribute, the second expression renames the relation only and
the third one renames only the attributes.

Following are the example of RENAME operation

ρ TEMP(SNAME,SADDRESS)(EMPLOYEE) - Here both the relation name

and attribute names are rename.

ρ TEMP(EMPLOYEE) - Here only the relation name is renamed

ρ (SNAME, SADDRESS)(EMPLOYEE) -In this case only the attribute

names are renamed.

3.6.4 UNION, INTERSECTION, and DIFFRERENCE

These three operations are represented by the following pictures

78

 RUS R∩S
 R-S

UNION INTERSECTION DIFFERENCE

The operations UNION, INTERSECTION, and DIFFEENCE –requires that the

tables (relation) involved be union compatible. Two relations are said to be
union compatible if the following conditions are satisfied.

 The two relations/tables must contain the same number of
columns (have the same degree).

 Each column of the first relation/table must be either same data

type as the corresponding column of the second relation/table

or convertible to the same data type as the corresponding
column of the second.

Suppose there are two relations R and S

 R S

UNION- The result of this operation denoted by RUS is the relation that

includes all tuples that are either in the relation R or in the relation S, or in

both R and S. Duplicates are eliminated.

ROHIT KOLKATA
HARISH DELHI
JEEVAN MUMBAI
KRISH GHY

KRISH GHY
RAM DELHI
ROHIT KOLKATA
RITESH MUMBAI
HARSH CHENNAI

R

S

R

S

R

S

79

INTERSECTION- The result of this operation is a relation that includes all

tuples that are in both R and S. The intersection operation is denoted by
R∩S.

DIFFERENCE- The difference operation is denoted by R-S. The result of this
operation is the relation that includes all tuples that are in R but not in S

 R∩S

 R-S
 RUS

3.6.5 CARTESIAN PRODUCT

The CARTESIAN PRODUCT is also known as CROSS PRODUCT or

CROSS JOIN. It is denoted by ‘X’. The CARTESIAN PRODUCT between

relations R and S is denoted by R X S. The relations on which we are

performing this operation need not to be union compatible. This operation is
used to combine tuples from two relations in a combinational fashion.

 The result of CARTESIAN PRODUCT of two relations, which have m

and n columns, is a relation that has m+n columns. The resulting relation will

have one tuple for each combination of tuples one from each participating
relation. Hence, if the relations have mR and nS tuples, respectively, then the

CARTESIAN PRODUCT will have mR*nS tuples. Consider the following two

tables BORROWER and LOAN, one containing the borrower details and the

other containing loan details.

 BORROWER LOAN

ROHIT KOLKATA
KRISH GHY

HARISH DELHI
JEEVAN MUMBAI ROHIT KOLKATA

HARISH DELHI
JEEVAN MUMBAI
KRISH GHY

BName Blno
JHON L-102
ROHIT L-201
KRISH L-315

Loanno Branch Amount
L102 GUWAHATI 30000
L-201 PANBAZAR 40000

80

The BORROWER has 2 columns and 3 tuples and LOAN has 3 columns and
2 tuples. So the CARTESIAN PRODUCT has 5 columns and 6 tuples.

3.6.6 DIVISION (÷)

The division is a binary operation that is written as R ÷ S. The result consists

of the restrictions of tuples in R to the attribute names unique to R, i.e., in the

header of R but not in the header of S, for which it holds that all their

combinations with tuples in S are present in R. For an example see the tables

Completed, DBProject and their division:

Completed

Student Task

Fred Database1

Fred Database2

Fred Compiler1

Eugene Database1

Eugene Compiler1

Sarah Database1

Sarah Database2

DBProject

Task

Database1

Database2

Completed ÷ DBProject

Student

Fred

Sarah

If DBProject contains all the tasks of the Database project, then the result of

the division above contains exactly the students who have completed both of

the tasks in the Database project.

More formally the semantics of the division is defined as follows:

BORROWER X LOAN
BName Blno Loanno Branch Amount
JHON L-102 L-102 GUWAHATI 30000
JHON L-102 L-201 PANBAZAR 40000
ROHIT L-201 L-102 GUWAHATI 30000
ROHIT L-201 L-201 PANBAZAR 40000
KRISH L-315 L-102 GUWAHATI 30000
KRISH L-315 L-201 PANBAZAR 40000

81

R ÷ S = { t[a1,...,an] : t R s S ((t[a1,...,an] s) R) }

where {a1,...,an} is the set of attribute names unique to R and t[a1,...,an] is the

restriction of t to this set. It is usually required that the attribute names in the

header of S are a subset of those of R because otherwise the result of the

operation will always be empty.

The simulation of the division with the basic operations is as follows. We
assume that a1,...,an are the attribute names unique to R and b1,...,bm are the

attribute names of S. In the first step we project R on its unique attribute

names and construct all combinations with tuples in S:

T := πa1,...,an(R) × S

In the prior example, T would represent a table such that every Student

(because Student is the unique key / attribute of the Completed table) is

combined with every given Task. So Eugene, for instance, would have two

rows, Eugene -> Database1 and Eugene -> Database2 in T.

In the next step we subtract R from this relation:

U := T − R

Note that in U we have the possible combinations that "could have" been in

R, but weren't. So if we now take the projection on the attribute names unique

to R then we have the restrictions of the tuples in R for which not all

combinations with tuples in S were present in R:

V := πa1,...,an(U)

So what remains to be done is take the projection of R on its unique attribute

names and subtract those in V:

W := πa1,...,an(R) − V

3.6.7 JOIN OPERATION

82

Join operation is denoted by ‘ ’ is used to combine related tuples from two

relations in to a single tuple. The general form of join operation on two
relations R(A1, A2,…..Am) and S(B1,B2,…..Bn) is R <join condition>S.

The result of the join is a relation Q with m+n attributes. The order of the

relation Q will be Q(A1, A2,…..Am, B1,B2,…..Bn). Q has one tuple for each

combination of tuple, one from R and one from S whenever the join condition

satisfied. Let us take two relations

BORROWER LOAN

BORROWE <Loanno=Blno>LOAN

Theta join: A general join condition is of the AiθBj, where Ai is an attribute of

the relation R and Bj is an attribute of the relation S, Ai and Bj have common

domain and θ is one of the comparison operator {=,≠,>,<,>=,<=}. A join
operation with such general join condition is called theta join.

Natural Join: Natural join is an equijoin of two relations R and S over all

common attributes. One occurrence of each common attribute is eliminated

from the result. The Natural Join operation performs an Equijoin over all the

attributes in the two relations that have the same name. The degree of the

Natural Join is the sum of the degree of the two relations R and S less the
number of common attributes

Outer join: Often in the joining two relations, a tuple in one relation does not

have a matching tuple in other relation: in other words, there is no matching

value in the join attributes. We may want a tuple from one of the relations to

appear in the result even when there is no matching value in the other
relation. This may be accomplished by using Outer join. The left outer join is

a join in which the tuple from R that do not have matching value in the

common attributes of S are also included in the result relation. Missing value

BName Blno
 JHON L-102
ROHIT L-201
KRISH L-315

Loanno Branch Amount
L102 GUWAHATI 30000
L-201 PANBAZAR 40000
L-301 MALIGAON 50000

BName Blno Loanno Branch Amount
JHON L-102 L-102 GUWAHATI 30000
ROHIT L-201 L-201 PANBAZAR 40000

83

in the second relation are set to null. A left outer join keeps every tuple in the
left-hand relation in the result. Similarly, there is a right outer join that keeps

every tuple in the right-hand relation in the result. There is also a full outer join

that keeps all tuples in both relations, padding tuples with null values when no
matching tuples are found.

CHECK YOUR PROGRESS

3. Choose the correct answer

(i) Which operation is used to select subset of tuples from a relation?

(a) Project (b) Select

(c) Rename (d) Join

(ii) Which operation is used to select attributes from a relation?

(a) Project (b) Select

(c) Rename (d) Join

(iii)If R and S are two relations, then intersection between two relations is
denoted by

 (a) R∩S (b) R-S

 (c) RUS (d) S-R

(iv) JOIN operation is denoted by the symbol

 (a) σ (b) π

 (c) ρ (d)

3.7 REALATIONAL CALCULUS

Relational calculus is a formal query language. It can be categories into
Procedural Query Language and Declarative Query Language. In

Procedural Query language, query specification involves giving a step by step
process of obtaining the query result. E.g. Relational Algebra. It is difficult for

the use of non-experts. In Declarative Query language, query specification

84

involves giving the logical conditions the results are required to satisfy. It is

easy for the use of non-experts. Relational calculus is of two types 1) Tuple

Relation Calculus and 2) Domain Relation Calculus.
Tuple Relation Calculus: The Tuple Relation Calculus is based on

specifying a number of tuple variables. Each tuple variable usually ranges

over a particular database relation, meaning that the variable may take as its

value any individual tuple from that relation. A simple tuple relational calculus

query is of the form {t | Cond(t)}where t is the tuple variable and Cond(t) is a

conditional expression involving t. { T | R(T) }: returns all tuples T such that T

is a tuple in relation R.

{ T.name | FACULTY (T) AND T.DeptId =” CS”}.returns the values of name

field of all faculty tuples with the value ’CS’ in their department id field.

The variable T is said to be free since it is not bound by a quantifier (for all,

exists). The result of this statement is a relation (or a set of tuples) that

correspond to all possible ways to satisfy this statement. It will find all

possible instances of T that make this statement true.

QUERY:

Retrieve the birth date and address of the employee whose name is ‘Jhon B.
Smith’

{t.bdate,t.address | EMPLOYEE(t) AND t.Fname=’Jhon’ AND t.Mname= ‘B’
AND t.Lname=’Smith’}

In the Tuple Relation Calculus, we first specify the requested attributes

t.bdate and t.address for each selected tuple t. Then we specify the condition

for selecting a tuple following the bar (|)- namely, that t be a tuple of the

EMPLOYEE relation whose Fname, Mname and Lname attribute values are

’Jhon’, ‘B’ and ‘’Smith’ respectively.

Expressions and Formulas in Tuple Relation Calculus

A general expression of the tuple relation calculus is of the from

{t1.Aj, t2,Ak, ….. , tn.Am | COND(t1,t2, …., tn, tn+1, tn+2, …., tn+m)}

85

Where t1,t2, …., tn, tn+1, tn+2, …., tn+m are tuple variables, each Ai is an attribute

of the relation on which ti ranges, and COND is a condition or formula of the
relational calculus. A formula is made up of the predicate calculus atoms,
which can be one of the following

1. An atom of the form R(ti), where R is a relation name and ti is a tuple

variables. This atom identifies the range of the tuple variable ti as the
relation whose name is R.

2. An atom of the form ti.A op tjB, where op is one of the comparison

operators in the set {=, ≠, >, >=, <, <=}, ti and tj are the tuple variables.

A is an attribute of the relation on which ti ranges, B is an attribute of
the relation on which tj ranges.

3. An atom of the form ti.A op c or c op tjB, where op is one of the

comparison operators in the set {=, ≠, >, >=, <, <=}, ti and tj are the

tuple variables. A is an attribute of the relation on which ti ranges, B is
an attribute of the relation on which tj ranges and c is a constant value.

A formula (condition) is made up of one or more atoms connected via the
logical operator AND, OR, and NOT and define recursively as follows:

1. Every atom is a formula.

2. If F1 and F2 are formulas, then so are (F1 AND F2), (F1 OR F2), NOT
(F1), and NOT (F2). The truth values of these formulas are derived

from their component formula F1 and F2 as follows:

a. (F1 AND F2) is TRUE if both F1 and F2 are TRUE; otherwise, it is

FALSE.

b. (F1 OR F2) is FALSE if both F1 and F2 are FALSE; otherwise, it is

TRUE.

c. NOT (F1) is TRUE if both F1 is FALSE; otherwise, it is TRUE.

d. NOT (F2) is TRUE if both F2 is FALSE; otherwise, it is TRUE.

The Existential and Universal Quantifiers

Variables can be constrained by quantified statements to tuples in a single

relation:

86

Existential Quantifier- ∃T ∈ R(Cond) will succeed if Cond succeeds for at

least one tuple in T.
Universal Quantifier -∀ T ∈ R(Cond) will succeed if Cond succeeds for at all

tuples in T.

Any variable that is not bounded by any quantifier is termed as free tuple
variable; otherwise it is a bound variable.

Example Queries using the existential Quantifiers
Query: Retrieve the name and address of all employees who works for the

‘Research’ department.

Q: {t.FNAME, t.LNAME, T.ADDRESS | EMPLOYEE (t) AND (∃d)

(DEPARTMENT (d) AND d.DNAME =’Research’ AND d.DNUMBER=t.DNO)}

The only free tuple variables in a relational calculus expression should be

those that appear to the left of the bar (|). In the above query, t is the only free

variable; it is then successively bound to each tuple. If a tuple satisfies the

conditions specified in the query, the attributes FNAME, LNAME, and

ADDRESS are retrieved for each such tuple. The conditions EMPLOYEE (t)

and DEPATMENT (d) specify the range relations for t and d. the condition

d.DNAME =’Research’ is a selection condition and corresponds to a SELECT

operation to relation algebra, whereas the join condition d.DNUMBER=t.DNO
is a join condition.

Example Queries using the Universal Quantifiers
Query: Find the name of employees who works on all the project controlled

by the department number 5.

Q: {e.LNAME, e.FNAME |EMPLOYEE (e) AND ((∀ x)(NOT(PROJECT(x))

OR NOT(x.DNUM=5)

Safe Expressions

Whenever we use universal quantifiers, existential quantifies, or negation of

predicates in a calculus expression, we must make sure that the resulting

expression makes sense. A safe expression in a relational calculus is one

that is guaranteed to yield a finite number of tuples as its result; otherwise,
the expression is called unsafe. For example, the expression {t | NOT

87

(EMPLOYEE (t))} is unsafe because it yields all tuples in the universe that are
not EMPLOYEE tuples, which are infinitely numerous.

Domain Relation Calculus

Domain Relation Calculus differs from tuple relation calculus in the type of

variables used in formulas: rather than having variables range over tuples, the

variables range over the single values from the domains attributes. To form a

relation of degree n for a query result, we must have n of these domain

variables- one for each attribute. An expression of the domain calculus is of
the form

 {x1,x2,…xn | COND (x1,x2,…xn,xn+1,xn+2,……xn+m)} where

x1,x2,…xn,xn+1,xn+2,……xn+m are domain variable that range over domains (of
attribute), and COND is condition or formula of the domain relation

calculus.

A formula is made up of atoms. The atoms of a formula are slightly different
from those for the tuple calculus and can be one of the following

1. An atom of the form R(x1,x2,…xj), where R is the relation name and j is

the degree and each xi ,1≤i≤j, is a domain variable. This atom states

that a list of values of < x1,x2,…xj> must be a tuple in the relation

whose name is R, and xi is the value of the ith attribute value of the

tuple. To make domain relation calculus more concise, we can drop
the comas in a list of variables; thus we can write

{ x1,x2,…xn, | R(x1x2x3) AND …}

Instead of

{ x1,x2,…xn, | R(x1,x2,x3) AND …}

2. An atom of the form xi op xj, where op is one of the comparison

operators in the set {=, ≠, >, >=, <, <=}, xi and xj are the domain
variables.

3. An atom of the form xi. op xj, where op is one of the comparison

operators in the set {=, ≠, >, >=, <, <=}, xi and xj are the domain
variables and c is a constant value.

88

Example Query

Query: Retrieve the name and address of all employees who works for the

‘Research’ department.

Q: {qsv | (∃.z) (∃.l) (∃.m) (EMPLOYEE (qrstuvwxyz) AND DEPARTMENT

(lmno) AND l=’Reasearch’ AND m=z)}

A condition relating two domain variables that range attributes from two

relations, such as m=z in the Query, is a join condition; whereas a condition

that relates a domain variable to a constant, such as l=’Research’, is a
selection condition.

CHECK YOUR PORGRESS 4

4. Choose the correct option:

(i) Tuple relational calculus is based on

(a) Domain (b)Tuple variable

(c) Column (d) Entity

(ii) Every atom is a

 (a) Expression (b) Formula

 (c) Solution (d) Operation.

(iii) Existential quantifier is denoted by

 (a) ρ (b) σ

 (c) ∃ (d) ∀

(iv)Universal quantifier is denoted by

 (a) ρ (b) σ

89

 (c) ∃ (d) ∀

3.8 LET US SUM UP

 Relational model for database management is a database model

based on first order predicate logic, first formulated and proposed in
1969 by Edgar F. Codd.

 Codd’s rules are a set of twelve rules proposed by Edgar F. Codd.

 Application programs are not affected by changes in the physical data
access and storage methods are the Physical Data Independence.

 Logical Data Independence is the logical changes in tables and views

such as adding/deleting columns or changing field lengths need not

necessitate modification in the programs or in the format of ad-hoc
requests.

 In relational model terminology, a row is called tuple, a column header
is called attribute, and each table is called relation.

 Domain constraints specify that within each tuple, the value of each
attribute A must be an attribute value from the domain dom(A).

 A relation schema may have more than one key. In this case, each of
the key is called candidate key.

 The relational algebraic operations are divided into two groups-unary
and binary.

 Unary operations are those operations which operate on single
relation.

 Binary operations are those which operate on two relations.

 The operations UNION, INTERSECTION, and DIFFEENCE –requires
that the tables (relation) involved be union compatible.

 Join operation is denoted by ‘ ’ is used to combine related tuples

from two relations in to a single tuple.

90

 Relational Calculus can be categories into Procedural Query
Language and Declarative Query Language.

 Tuple Relation Calculus is based on specifying a number of tuple
variables.

 Any variable that is not bounded by any quantifier is termed as free
tuple variable; otherwise it is a bound variable.

 A safe expression in a relational calculus is one that is guaranteed to
yield a finite number of tuples as its result

3.9 ANSWERS TO CHECK YOUR PROGRESS

1.(i) (a) (ii)(a) (iii)(b) (iv)(d)

2.(i) (d) (ii) (c) (iii) (a) (iv)(d)

3.(i)(b) (ii)(a) (iii) (a) (iv)(d)

4.(i)(b) (ii)(b) (iii)(c) (iv)(d)

3.10 FURTHER READINGS

1. R. Elmasri, S.B. Navathe, Fundamentals of Database System, Pearson

2. A. Leon, M. Leon, Fundamentals of Database Management System, Tata
McGraw Hill.

3.11 MODEL QUESTIONS

1. What are Codd’s rules?

91

2. What is logical data independence?

3. What is physical data independence?

4. What is primary, candidate, foreign key?

5. What are the constraints include in relational model?

6. What is entity and referential integrity constraint?

7. What are the advantages and disadvantages of relational model?

8. What are the notations used to denote Relational model?

9. What is relational algebra and what are its uses?

10. What is SELECT, PROJECT and RENAME operation? How is it

represented? Explain with example.

11. What is a JOIN operation? How is it represented? Explain with

example.

 12. How does a tuple relational calculus differ from domain relational
calculus?

 13. Discuss the meaning of the existential quantifier (∃) and universal

quantifier (∀).

14. Define the following terms with respect to the domain relational
calculus: tuple variable, range relation, atom, formula, and expression.

15. What is mean by safe expression in relational calculus?

Introduction to SQL Unit 4

92

UNIT - 4 INTRODUCTION TO SQL

UNIT STRUCTURE

4.1 Learning Objectives
4.2 Introduction
4.3 Characteristics of SQL
4.4 Advantages of SQL
4.5 Disadvantages of SQL
4.6 SQL Data Type and Literal
4.7 SQL Commands

4.7.1 Data Definition Language (DDL) Commands
4.7.2 Data Manipulation Language (DML) Commands
4.7.3 Transaction Control Commands

4.8 Let Us Sum Up
4.9 Answers to Check Your Progress
4.10 Further Readings
4.11 Model Questions

4.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 learn about the Structured Query Language

 know the data types and literals in SQL

 learn the different SQL commands

4.2 INTRODUCTION

The language used to communicate with a database is called
Structured Query Language (SQL). SQL has clearly established
itself as the standard relational database language. It is a very
easy language and looks as simple as normal English. The
Structured Query Language (SQL) is the standard relational
database language. Originally it was the interface of an
experimental relational system SYSTEM R, which was
implemented by IBM research. Earlier SQL was called SEQEUEL
(Structured English QUEry Language). Today, SQL is used by all
modern relational databases, (Microsoft Access, Microsoft SQL

Introduction to SQL Unit 4

93

Server, Oracle etc) as the basic building block. It is used to access
and manipulate database operations. All data entry operations
performed by graphical user interface use SQL translator to
convert them to SQL commands understood by the database.

 SQL is a standard language for accessing and
manipulating databases.

 SQL stands for Structured Query Language.
 SQL lets you access and manipulate databases.
 SQL is an ANSI (American National Standards Institute)

standard language.

The main parts of SQL are –

 Data definition language (DDL) – It provides commands

to define relation schemes, delete relations, create relation,

modify relation etc.

 Data manipulation language (DML) – It is a query

language based on both relational algebra and tuple

relational calculus. It has commands to insert, delete and

modify tuples.

 Transaction control – It specifies beginning and end of

transactions.

4.3 CHARACTERISTICS OF SQL

 SQL is a very powerful ANSI and ISO standard high level

computer language for creating and manipulating databases.
 Using SQL, end users and system administrators can execute

queries like CREATE, UPDATE, DELETE, and retrieve data
from a database.

 SQL is a non procedural language used for table-oriented and
record-oriented operations.

 SQL is an abstract language consisting of statements for data
definition, query and updates.

 SQL is very simple and easy to learn.
 Databases like DB2, Oracle, MS Access, Sybase, MS SQL

Server etc use SQL.

4.4 ADVANTAGES OF SQL

 High Speed –

SQL Queries can retrieve records from a database
quickly and efficiently.

Introduction to SQL Unit 4

94

 Well Defined Standards Exist –

SQL databases use an established standard
adopted by ANSI & ISO.

 No Coding Required –

Standard SQL uses substantial amount of code for
different database operations. Hence, it is easier to manage
database systems.

 Emergence of ORDBMS –

In early days SQL databases were identical to
relational databases. In presence of Object Oriented DBMS, object
storage capabilities are extended to relational databases.

4.5 DISADVANTAGES OF SQL

 Difficulty in Interfacing –

Interfacing an SQL database is more complex than
adding a few lines of code.

 More Features Implemented in Proprietary way –

Although SQL databases conform to ANSI & ISO
standards, some databases go for proprietary extensions to
standard SQL to ensure vendor look-in.

 1. Fill in the blanks.

(i) SQL means ________.

(ii) DDL means ________

(iii) DML means _________.

(iv) SQL is an __________ and __________ standard.

CHECK YOUR PROGRESS

Introduction to SQL Unit 4

95

4.6 SQL DATA TYPE AND LITERAL

SQL includes the following data types.

1. Character strings –
Character string data types are of either fixed length or varying
length. CHAR (n), CHARACTER (n) are data types for fixed
length string field and VARCHAR (), CHAR VARYING (),
CHARACTER VARYING () are data types for variable length
string fields; where n is the maximum number of characters.
For fixed length string, a shorter string is added with blank
characters to the right. Specifying a string value is case
sensitive and it is placed between single quotation marks.

Some character string data types are.

 CHARACTER(n) or CHAR(n) — fixed-n-character string
field and added blank character as needed.

 CHARACTER VARYING(n) or VARCHAR(n) — variable-
string field of a maximum size n characters.

 NATIONAL CHARACTER(n) or NCHAR(n) — fixed string
field size, supporting an international character set.

 NATIONAL CHARACTER- VARYING(n) or
NVARCHAR(n) — variable-string size NCHAR string.

2. Bit strings –

Bit string data types are either of fixed length BIT (n) or varying
length BIT VARYING(n), where n is the maximum number of
bits. The default length of character string or bit string is 1.
Litarel bit strings are preceded by a B and placed between
single quotes.

 BIT(n) — an array of n bits.
 BIT VARYING(n) — an array of up to n bits.

3. Numbers –

Numeric data types include integer numbers of various sizes
and floating point numbers of various precessions. For floating
point numbers data types are FLOAT, REAL, DOUBLE
PRECESION and for integer number data types are INTEGER,
INT, and SMALLINT. Formatted numbers can be declared by
using DECIMAL(), NUMERIC(), DEC(i,j), where i the precision,
is the total number of decimal digits and j the scale is the
number of digits after the decimal point. Precision is a positive
integer that determines the number of significant digits in a
particular radix (binary or decimal). Scale is a non-negative
integer. A scale of 0 indicates that the number is an integer.

Introduction to SQL Unit 4

96

The default for scale is zero, and the default for precision is
implementation defined.
A Boolean data type in SQL has value TRUE, FALSE or
UNKNOWN. This UNKNOWN is used for NULL value presents
in SQL.

4. Date and time –

In SQL, there are two data type DATE and TIME for date and
time. The DATE data type has ten width and format is YYYY-
MM-DD where YYYY for YEAR, MM for MONTH and DD for
DAY. The TIME data type has at least eight position, and
format is HH:MM:SS where HH for HOUR, MM for MINUTE
and SS for SECOND. SQL allows only valid date and time.

Some date and time data types are.

 DATE — for date values (e.g., 2010-03-03)
 TIME — for time values (e.g., 17:49:36).
 TIME WITH TIME ZONE or TIMETZ — the same as TIME

data type and also includes details about the time zone.

5. Additional data type –

(a) TIMESTAMP data type put together the DATE and TIME
fields. It also includes minimum of six positions for decimal
fractions of seconds and an optional WITH TIME ZONE
qualifier. Literal values are represented by single quoted
strings preceded by keyword TIMEZONE with a blank
space between data and time.
i. TIMESTAMP — this data type is used to put together a

DATE and a TIME in one variable (e.g., 2010-03-03
17:49:36).

ii. TIMESTAMP WITH TIME ZONE or TIMESTAMPTZ —
the same as TIMESTAMP data type and also includes
details about the time zone.

(b) Another data type is the interval data type. This is related to
DATE, TIME and TIMESTAMP data types. This specifies a
relative value that can be used to change an absolute value
of a date, time or timestamp. This relative value is called
an interval that are either YEAR/MONTH interval or
DAY/TIME interval.

Introduction to SQL Unit 4

97

 2. Fill in the blanks.

(i) Data types for date and time are ______ and _______.

(ii) Character string data types are either _______ or _______

(iii) TIMESTAMP data type put together _______ and ______
field.

(iv) A Boolean data type in SQL has values TRUE FALSE or
______.

4.7 SQL COMMANDS

Data in a database has to be operated on in order to obtain the
desired result. For this purpose we need to insert the data in the
tables, and later update the data as needed. Data can also b
deleted from the tables. To do that we need various SQL
commands that operate on data in the tables. Apart from data
manipulation in table SQL commands also allow for some more
advanced operations to be performed that make it easier for users
to maintain and use the data in a desired organized way. This
section discusses the different types of SQL commands that make
possible the task of performing such operations on database
tables.

4.7.1 DATA DEFINITION LANGUAGE (DDL)
COMMANDS

Data definition language (DDL) commands enable us to perform
the following tasks-

 Create, alter, and drop schema objects

 Grant and revoke privileges and roles

 Add comments to the data dictionary
CREATE, ALTER, and DROP commands are used to create, alter,
and drop a schema, while GRANT and REVOKE command are
used for privatization tasks.
ALTER COMMAND –

CHECK YOUR PROGRESS

Introduction to SQL Unit 4

98

ALTER is the command used to add, modify data from tables,
databases, and views. ALTER TABLE is the command responsible
for making changes to an SQL table by renaming, adding or
dropping columns etc.
The ALTER TABLE syntax,

(a) To add a column in a table is:
ALTER TABLE table_name
ADD column_name datatype;

(b) To delete a column in a table is:
ALTER TABLE table_name
DROP COLUMN column_name;

For example-
To delete the column named "Date_Of_Birth" in the "Persons"
table, the ALTER TABLE statement shall be –

ALTER TABLE Persons
DROP COLUMN Date_Of_Birth;

(c) To change the data type of a column in a table is:
ALTER TABLE table_name
ALTER COLUMN column_name datatype;

CREATE COMMAND –
The main SQL command for data definition is the CREATE
statement, which can be used to create schema, tables, and
domains.

 CREATE SCHEMA
To identify SQL schema, each schema has a schema name,
descriptor for each element and an authorization identifier to
indicate the user and account that owns the schema. Schema
element includes tables, constraints, views, domains and other
constraints.
A schema is created using the CREATE SCHEMA statement as –
The following schema creates a schema called PERSON, owned
by the user with authorization identifier ‘SMITH’.
CREATE SCHEMA PERSON AUTHORIZATION SMITH;
In general, not all users are authorization to create schemas and
schema elements. The privilege to create schema, tables and
other constructs must be explicitly granted to the relevant user
accounts by the system administrator or DBA.

 CREATE TABLE
The CREATE TABLE command is used to create a new relation by
giving it a name and specifying its attributes and initial constraints.
The attributes are specified first and each attribute is given a

Introduction to SQL Unit 4

99

name, a data type to specify its domain of values and any attribute
constraints. The key, entity integrity and referential integrity
constraints can be specified within the CREATE TABLE statement
after the attributes are declared or they can be added later using
the ALTER TABLE command.
The syntax of this command is,

CREATE TABLE tablename (col1name datatype
[constraint], col2name datatype [constraint],
……….colnname datatype [constraint]);

Here,
tablename specifies the name of the table to be created.
datatype specifies-

 char(size) - Fixed length string of characters of the set size.
The size of the string is limited to 255 characters.

 Date

 Number (maxsize) - Number with a maximum number of
digits specified by "maxsize".

 Number (maxdigits, maxright) - A decimal number with a
maximum number of "maxdigits" with "a maximum number
of digits to the right of the decimal, "maxright".

 varchar(maxsize) - A character string with variable lingth
limited to "maxsize".

constraints are rules for the column. Possible values are:

 not null - The column values cannot be null.

 primary key - Each record is uniquely identified by this
value.

 unique - No two values may be the same in the column
For Example
The statement to create a table EMPLOYEE_INFO with column
NAME, DEPENDENT_NO, STATE, PIN is as follows-

CREATE TABLE EMPLOYEE_INFO (NAME
varchar(20), DEPENDENT_NO number(5), STATE
varchar(8), PIN number(5) unique);

DROP COMMAND –
The DROP command can be used to drop table, domain,
constraints etc.

 DROP SCHEMA
The DROP SCHEMA command can be used to remove the whole
schema.
 There are two drop options

1. CASCADE

Introduction to SQL Unit 4

100

2. RESTRICT
CASCADE is used to remove the schema and all its tables,
domains and other elements.
RESTRICT option is used to remove the schema only if it has no
elements in it; otherwise DROP command will not be executed.
For example-

DROP SCHEMA EMPLOYEE CASCADE;

This will remove the EMPLOYEE database schema and its entire
table, domain and other element.

 DROP TABLE
To delete a table within a schema the DROP TABLE command is
used. This command deletes all records in the table and also
removes the table definition from the schema.
For example: If we no longer needed to keep track of dependent
of EMPLOYEE database then DROP TABLE command can be
used to delete the DEPENDENT table as follows-
DROP TABLE DEPENDENT CASCADE;
If RESTRICT is applied then the table is dropped only if it is not
referenced in any constraints or views.

GRANT COMMAND –
SQL GRANT is a command used to provide access or privileges
on the database objects to the users.
The Syntax for the GRANT command is:

GRANT privilegename
ON tablename
TO username
[WITH GRANT OPTION];

 privilegename is the access right or privilege granted to the
user. Some of the access rights are ALL, EXECUTE, and
SELECT.

 tablename is the name of an database object like TABLE,
VIEW etc.

 username is the name of the user or users to whom an
access right is being granted. This can be also declared as
PUBLIC to grant access rights to all users.

 WITH GRANT OPTION - allows a user to grant access
rights to other users.

For Example:

GRANT EXECUTE
ON EMPLOYEE_INFO
TO USER_JOY;

Introduction to SQL Unit 4

101

This command grants execute permission on EMPLOYEE_INFO
table to USER_JOY.

REVOKE COMMAND –
The REVOKE command is used to remove user access rights and
privileges to the database objects.
The Syntax for the REVOKE command is:

REVOKE privilegename
ON tablename
FROM username

 privilegename is the access right or privilege remove from
the user. Here commands are ALL, EXECUTE, and
SELECT.

 tablename is the name of an database object like TABLE,
VIEW etc.

 username is the name of the user or users from whom an
access right is being removed. This can be also declared
as PUBLIC to remove access rights from all users.

 WITH GRANT OPTION - allows a user to grant access
rights to other users.

For Example:
REVOKE SELECT
ON EMPLOYEE_INFO
FROM USER_JOY;

This command will remove a SELECT privilege on employee table
from user USER_JOY. If REVOKE SELECT privilege is used on a
table from a user, then the user will not be able to SELECT data
from that table anymore.

 4. Fill in the blanks.

(i) _________ command is used to remove user access rights
and privileges to the database objects

(ii) We use the ________ command To delete a table within a
schema

(iii) ______ command is used to create a new relation

(iv) __________ command is responsible for making changes
to a SQL table.

CHECK YOUR PROGRESS

Introduction to SQL Unit 4

102

4.7.2 DATA MANIPULATION LANGUAGE (DML)
COMMANDS

Data manipulation language (DML) commands are used to query
and manipulate data in existing schema objects.

DELETE command –
The DELETE Statement is used to delete rows from a table. The
Syntax of DELETE statement is:

DELETE
FROM <tablename>
WHERE <condition>;

Here <tablename> specifies name of the table. The optional
WHERE condition identifies the rows in the column that get
deleted. If it is not included then all the rows in the table are
deleted.
For Example:
 To delete an employee record with EMP_id 100 from the

EMPLOYEE_INFO table, the DELETE command is,
DELETE FROM EMPLOYEE_INFO WHERE EMP_id = 100;

 To delete all the rows from the EMPLOYEE_INFO table
DELETE FROM EMPLOYEE_INFO;

INSERT COMMAND –
The INSERT command is used to insert data as row into a
table.
Syntax for INSERT is-

INSERT
INTO <tablename> [(col1, col2, col3,...,coln)]
VALUES (value1, value2, value3,...,valuen);

Here, col1, col2,..,.coln are the names of the columns in the
table into which data are inserted.

To insert data into a row i.e to all the columns of the table, the
 [(col1, col2,..,.coln)] need not be specify. The command is as
follows-

INSERT
INTO <tablename>
VALUES (value1, value2, value3,...,valuen);

For Example:
To insert a row to the EMPLOYEE_INFO table, the query is-
INSERT INTO EMPLOYEE_INFO (ID, NAME, DEPEDENT_NO,
STATE, PIN) VALUES (105, 'Srinath', 3, ‘Assam’, 784164);

Introduction to SQL Unit 4

103

If we insert data to all columns in a row then the above INSERT
statement can also be written as,
INSERT INTO EMPLOYEE_INFO VALUES (105, 'Srinath', 3,
‘Assam’, 784164);

Now, the table shall be –
Table: EMPLOYEE_INFO

ID NAME DEPENDENT_NO STATE PIN

105 Srinath 3 Assam 784164

Inserting data to a table through a SELECT statement:
Syntax –

INSERT
INTO <tablename> [(col1, col2 , ... ,coln)]
SELECT col1, col2, ...,coln
FROM < tablename> [WHERE condition];

Here, [(col1, col2, ...,coln)] and [WHERE condition] is optional.

For Example,
To insert a row into the EMPLOYEE_INFO table from a temporary
table TEMP_INFO,

TEMP_INFO

ID NAME DEPENDENT_NO STATE PIN AGE
15 koo 2 Assam 7841 20

The INSERT command is-
INSERT INTO EMPLOYEE_INFO (ID, NAME, DEPEDENT_NO,
STATE, PIN) SELECT (ID, NAME, DEPEDENT_NO, STATE, PIN)
FROM TEMP_INFO;

Now, the table is-
EMPLOYEE_INFO

ID NAME DEPENDENT_NO STATE PIN
105 Srinath 3 Assam 784164

15 koo 2 Assam 7841

If data is inserted in all the columns, the above insert statement
can also be written as-
INSERT INTO EMPLOYEE_INFO
SELECT * FROM TEMP_INFO;

SELECT COMMAND –
The most commonly used SQL command SELECT is used to
query or retrieve data from a table in the database. A query may

Introduction to SQL Unit 4

104

retrieve information from specified columns or from all of the
columns in the table.
Syntax of SQL SELECT Statement is:

SELECT <col1,col2,..,coln>
 FROM <tablename>
 [WHERE <condition>]

Here,

 <tablename> is the name of the table from which the
information is retrieved.

 <col1,col2,..,coln> include columns from which data is
retrieved.

 Where clause is optional.

For example
To select the NAME from EMPLOYEE_INFO table the query is as
follows-
SELECT NAME, PIN FROM EMPLOYEE_INFO;
This query will select the NAME and PIN columns from
EMPLOYEE_INFO table.

NAME PIN
Srinath 74164

Koo 7841

UPDATE COMMAND –
The UPDATE Statement is used to modify the existing rows in a
table.
The Syntax for UPDATE Command is:

UPDATE <tablename>
SET <col1 = value1, col2=value2, ...>
[WHERE <condition>]

 tablename - the table name which has to be updated.
 col1, col2.. - the columns that gets changed.
 value1, value2... - are the new values.
 WHERE clause is optional. It identifies the rows that

get affected. If it do not include then column values for
all the rows get affected.

For Example:
To update the name of an employee in the table
EMPLOYEE_INFO the UPDATE query is as follows,

UPDATE EMPLOYEE_INFO
SET NAME ='JOY'
WHERE id = 105;

Now the table is-
EMPLOYEE_INFO

Introduction to SQL Unit 4

105

ID NAME DEPENDENT_NO STATE PIN
105 JOY 3 Assam 784164
15 Koo 2 Assam 7841

4.7.3 TRANSACTION CONTROL COMMANDS

Transaction control commands manage changes made by DML
commands. When a transaction successfully completes,
transactional control commands finalize the transaction, either
saving the changes made by the transaction to the database or
reversing the changes made by the transaction. Transactional
control commands are only used with
the DML commands INSERT, UPDATE, and DELETE.
COMMIT COMMAND –
The COMMIT command is the transactional command used to
save changes made by a transaction to the database since the last
COMMIT or ROLLBACK command.
The syntax for COMMIT command is -

COMMIT;
ROLLBACK COMMAND –
The ROLLBACK command is used to abort transactions that have
not already been saved to the database since the last COMMIT or
ROLLBACK command was issued.
The syntax for ROLLBACK command is as follows:

ROLLBACK;
SAVEPOINT COMMAND –

A SAVEPOINT is a point in a transaction to rollback the transaction
to a certain point without rolling back the entire transaction.
The syntax for SAVEPOINT command is -

SAVEPOINT <SAVEPOINTNAME>;
Where <SAVEPOINTNAME> is the name of the point to which
rollback is needed.
SET TRANSACTION –
The SET TRANSACTION command can be used to initiate a
database transaction and specify characteristics for the
transaction.
The syntax for SET TRANSACTION is -

 SET TRANSACTION [READ WRITE | READ ONLY];

Introduction to SQL Unit 4

106

5. Fill in the blanks.

(i). ______ statement is used to delete rows from a table.
(ii). The most commonly used SQL command is ______
(iii). ________ command is used to abort transactions
(iv). _________ command can be used to initiate a database

transaction.

4.8 LET US SUM UP

 The Structured Query Language (SQL) is the standard

relational database language.

 Earlier SQL is called as SEQEUEL(Structured English QUEry
Language)

 SQL is a standard language for accessing and manipulating

databases

 Main parts of SQL are- Data definition language (DDL), Data
manipulation language (DML).

 SQL databases use a n established standard adopted by

ANSI & ISO.

 Character string data types are either fixed length or varying
length.

 For fixed length string, a shorter string is filled with blank

character to the right.

 Bit string data types are either of fixed length BIT(n) or
varying length BIT VARYING(n), where n is the maximum
number of bits.

 Numeric data types include integer numbers of various sizes

and floating point numbers of various precessions

 A Boolean data type in SQL has value TRUE, FALSE or
UNKNOWN.

 The DATE data type has ten width and format is YYYY-MM-

DD

CHECK YOUR PROGRESS

Introduction to SQL Unit 4

107

 The TIME data type has at least eight position, and format is
HH:MM:SS

 TIMESTAMP data type put together the DATE and TIME field

 ALTER is the command used to add, modify data from tables,

databases, and views.

 CREATE statement can be used to create schema, tables,
and domains.

 The DROP command can be used to drop table, domain,

constraints etc.

 There are two drop options CASCADE and RESTRICT.

 To delete a table within a schema the DROP TABLE
command is used.

 DELETE Statement is used to delete rows from a table.

 INSERT command is used to insert data as row into a table.

 UPDATE Statement is used to modify the existing rows in a

table.

 Transactional control commands are only used with
the DML commands INSERT, UPDATE, and DELETE.

 COMMIT command is the transactional command used to

save changes made by a transaction.

 ROLLBACK command is used to abort transactions.

1. (i) Structured Query Language
 (ii) Data Definition Language
 (iii) Data Manipulation Language
 (iv) ANSI, ISO

2. (i) DATE, TIME
 (ii) fixed length, variable length
 (iii) DATE, TIME
 (iv) UNKNOWN

3. (i) REVOKE
 (ii) DROP
 (iii) CREATE

4.9 ANSWERS TO CHECK YOUR
 PROGRESS

Introduction to SQL Unit 4

108

 (iv) ALTER TABLE

4. (i) DELETE
 (ii) SELECT
 (iii) ROLLBACK
 (iv) SET TRANSACTION

 4.10 FURTHER READINGS

Fundamentals of Database Systems
- R. Elmasri, S. B. Navathe. Pearson Education

Database System Concept
- A. Silberschatz, H. F. Korth, S. Sudarshan. MC

Graw Hill, 5th edition

1. What is SQL?

2. What are the characteristics of SQL?

3. What are the advantage and disadvantage of SQL?

4. What are the data types and literals in SQL?

5. What is Boolean data type?

6. What is timestamp data type?

7. Create a table PROJECT (PRO_ID, PRO_NAME,

LOCATION, STATE).

8. Add a new column COUNTRY to PROJECT. Insert data

into 5 rows.

9. Delete the first row from the table PROJECT.

10. Select project name with project number 100 from the table

PROJECT.

4.11 MODEL QUESTIONS

Introduction to SQL Unit 4

109

11. Update the project name with project number 100 to
‘water’.

12. Consider Hotel schema consisting of three tables Hotel,

Booking and Guest having the following Schema. Create all
the tables in SQL.
Hotel (HotelID, HotelName, HotelCity). The primary key of
the table is the HotelID.
Guest (GuestID, GuestName, GuestAddress,
GuestPhone). The primary key of the table is the GuestID.
Booking (HotelID, GuestID, DateFrom, DateTo, RoomNo).
Identify the Primary key to this table and all the Foreign
keys.
Room (RoomNo, HotelID, RoomType, RoomRent) Identify
the Primary key to this table and all the Foreign keys.

13. Insert some sample meaningful data into the tables created
above making sure that the Integrity rules are not violated.

Elements of SQL Unit 5

110

UNIT - 5: ELEMENTS OF SQL

UNIT STRUCTURE

5.1 Learning Objectives
5.2 Introduction
5.3 SQL operators
5.4 Table and View
5.5 SQL Joins
5.6 UNION Operator
5.7 INTERSECTION operator
5.8 EXCEPT/MINUS
5.9 SQL query and subquery
5.10 Aggregate function
5.11 Cursors
5.12 Triggers
5.13 Procedure
5.14 Let Us Sum Up
5.15 Answers To Check Your Progress
5.16 Further Readings
5.17 Model Questions

5.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 know about SQL operators and procedures

 know the different SQL operations

 learn about triggers in SQL

 know what are SQL Views

5.2 INTRODUCTION

Data can be designed, manipulated and implemented in a variety
of ways to obtain the required and desired results. We know about
the design of data, and the storing of data in tables. In this unit we
will learn how to insert, modify, and delete data in tables, and also
how to view the data in tables. In other words, in this unit we will
learn how to communicate with a database. We will learn about

Elements of SQL Unit 5

111

the different operator in SQL that can be used to operate on data.
The concept of a View, which in the SQL terminology is a single
table that is derived from other tables, shall also be discussed in
this unit. The various forms of JOINs that can be performed in a
table shall be discussed in this unit. After that some of the SQL
operators that are used to perform certain operations that are
used to retrieve a specific set of desired result will be dealt with.
Aggregate functions which are used to perform mathematical
calculation shall also be dealt with. Another important concept in
data manipulation is cursors which can be considered as a pointer
that points to a single tuple (row) from the result of a query that
retrieves multiple tuples. Later we deal with this important concept
of cursors. Finally we deal with two important concepts related to
databases which are Triggers and Procedures which can be used
to perform some important tasks with the data in the database
tables.

5.3 SQL OPERATORS

An operator is a reserved word or a character used in an SQL
statement's (WHERE clause) to perform different operations. It is
mainly used to specify conditions in an SQL statement. Some SQL
operators are-
 Arithmetic operators
 Comparison operators
 Logical operators

Arithmetic Operators

Operator Description

+ Addition - Adds two values

- Subtraction - Subtracts two values

* Multiplication - Multiplies two values

/ Division – divide two values

% Modulus - Divides left hand operand by right
hand operand and returns remainder

Comparison Operators

Operator Description

= Check if the value of two operands are equal
then condition becomes true, Otherwise false.

!=
Check if the value of two operands are not

equal then condition becomes true, Otherwise
false.

Elements of SQL Unit 5

112

>
Check if the value of left operand is greater
than right operand then condition becomes

true, Otherwise false.

<
Check if the value of left operand is less

than right operand then condition becomes
true, Otherwise false.

>=
Check if the value of left operand is greater
than or equal to right operand then condition

becomes true, Otherwise false.

<=
Check if the value of left operand is less

than or equal to right operand then
condition becomes true, Otherwise false.

!<
Check if the value of left operand is not
less than right operand then condition
becomes true, Otherwise false.

!>
Checks if the value of left operand is not
greater than right operand then condition
becomes true, Otherwise false.

Logical Operators

Operator Description

ALL Compare a value to all values in
another set.

AND Used to give multiple conditions in
WHERE clause.

ANY Compare a value to any value in
the list according to the condition.

BETWEEN Search for values that are within a
range of values.

EXISTS
Search for an existing of a tuple in
a specified table that meets certain

condition.

IN Compare a value to a list of literal
values that have been specified.

LIKE
Compare a value to similar

values
using wildcard operators.

NOT Complementing the meaning of the
logical operator.

OR Combine multiple conditions in
WHERE clause.

IS NULL Check the value is NULL or not.

UNIQUE Searches for no duplicate row of a
specified table.

OR Operator Example

SELECT * FROM EMPLOYEE_INFO
WHERE NAME='JOY' OR NAME='KOO';

This query will select all the information of employee named JOY
and KOO from EMPLOYEE_INFO.

Elements of SQL Unit 5

113

1. Fill in the blanks
(i). != is a _____ operator in SQL
(ii). _________ operator is used to give multiple conditions in

WHERE clause.
(iii). _________ operator searches for values that are within a

range of values

5.4 TABLE AND VIEW

Table
SQL uses the term table, row and column for the formal relational
term relation, tuple and attribute respectively. Tables are created
by CREATE TABLE command. Already existing table can be
altered and deleted using ALTER TABLE and DELETE table
command respectively.

Views
A VIEW is a virtual table, through which a selective portion of
the data from one or more tables can be seen. Views do not
contain data of their own. They are used to restrict access to the
database or to hide data complexity. A view is stored as a
SELECT statement in the database. DML operations on a view
like INSERT, UPDATE, DELETE affects the data in the original
table upon which the view is based.
The Syntax to create a VIEW is

CREATE VIEW <viewname>
AS
SELECT <col1,col2….coln>
FROM tablename
 [WHERE condition];

viewname is the name of the VIEW.
For Example:
To create a view on the EMPLOYEE_INFO table the query is-

CREATE VIEW EMPLOYEE_VIEW
AS
SELECT NAME, PIN
FROM EMPLOYEE_INFO;

CHECK YOUR PROGRESS

Elements of SQL Unit 5

114

5.5 SQL JOINS

SQL Joins are used to combine related tuples from different
tables. A Join condition is a part of the SQL query that retrieves
rows from two or more tables. A SQL Join condition is used in
the SQL WHERE Clause of select, update, delete statements.
The Syntax for joining two tables is:

SELECT <col1, col2, col3..., coln >
FROM <tablename1, tablename2>
WHERE <tablename1.col2 = tablename2.col1>;

If a SQL join condition is omitted or if it is invalid the joint
operation will result in a Cartesian product. The Cartesian
product returns a number of rows equal to the product of all
rows in all the tables being joined. For example, if the first table
has 20 rows and the second table has 10 rows, the result will be
20 * 10, or 200 rows.
SQL Joins can be classified into-

 Equi join and
 Non-Equi join.

Equijoins –
In equi join, join condition uses the only one

comparison operator i.e equal operator (=) as the comparison
operator.
There are two types of equijoins-

1. Inner join –
This inner join returns all the rows that satisfy the join condition
which is specified within the query.
For example:
Given two tables DEPERTMENT and EMPLOYEE, display the
project information for each employee the query will be as given
below.
DEPERTMENT

DEPT_NO DNAME PRO_NAME
1 PHY XY
2 CHE AB

EMPLOYEE

EMP_ID DEPT_NO NAME
100 1 JOY
101 1 RAM
102 3 JONY

The query is as follows-

SELECT PRO_NAME
FROM DEPARTMENT, EMPLOYEE

Elements of SQL Unit 5

115

WHERE DEPARTMENT.DEPT_NO = EMPLOYEE.DEPT_NO;

Here attribute DEPT_NO is called join attribute. This attribute value
is common to both the relation DEPARTMENT and EMPLOYEE.
Now, the result of the join query is-

EMP_ID DEPT_NO DNAME PRO_NAME NAME
100 1 PHY XY JOY

101 1 PHY XY RAM

If the join attributes have the same name in both relations then
the join is called natural join. It is denoted by ‘*’.
The number of join conditions is (n-1), if there are more than two
tables joined in a query where 'n' is the number of tables
involved. The rule must be true to avoid Cartesian product.

2. Outer Join –
This outer join returns all rows from both tables which satisfy the
join condition and also keeps rows which do not satisfy the join
condition in other tables.
Two types of outer join-

 Left outer join –

Left outer join keeps every rows from left relation. If no matching
rows found in right relation then that attributes are filled with
NULL.
For example- If we apply LEFT OUTER JOIN to the above query
then it will be,
SELECT PRO_NAME
FROM DEPARTMENT LEFT OUTER JOIN EMPLOYEE
WHERE EPARTMENT.DEPT_NO = EMPLOYEE.DEPT_NO;

 Right outer join –
Right outer join keeps every rows from right relation. If no
matching rows found in left relation then that attributes are filled
with NULL.
If we apply RIGHT OUTER JOIN to the above query then it will
be,

SELECT PRO_NAME
FROM DEPARTMENT RIGHT OUTER JOIN
EMPLOYEE
WHERE DEPARTMENT.DEPT_NO =
EMPLOYEE.DEPT_NO;

Non-equijoin –
A non-equi join is a join whose condition can use all comparison
operators like >=, <=, <, > except the equal (=) operator.
For example:

Elements of SQL Unit 5

116

If you want to find the names of students from
STUDENT_DETAIL table, who are not studying either
Economics, the SQL query would be,

SELECT first_name, last_name, subject
FROM STUDENT_DETAIL
WHERE subject != 'Economics'

 1. Fill in the blanks.

(i) A VIEW is a ________ table.

(ii) In equijoin, join condition uses the only ________ operator

(iii) Inner join returns all the rows that satisfy the _________.

(iv) Right outer join keeps every row from ________ relation.

5.6 UNION OPERATOR

The UNION operator is used to combine the result-set of two or
more SELECT statements. For union operation the relations must
be union compatible i.e each SELECT statement within the UNION
must have the same number of columns and the columns must
have similar data types. Also, the columns in each SELECT
statement must be in the same order. The UNION operator selects
only distinct values. Column names in the resultant table after a
UNION are always from the column names in the first SELECT
statement in the UNION.

 Syntax of UNION operator is-
SELECT <col1,col2,…,coln> FROM tablename1
UNION
SELECT <col1,col2…,coln> FROM tablename2
UNION ALL operator selects duplicate values-

 Syntax of UNION ALL is-
SELECT <col1, col2,…,coln> FROM tablename1
UNION ALL
SELECT <col1, col2…,coln> FROM tablename2

CHECK YOUR PROGRESS

Elements of SQL Unit 5

117

The order of rows may not maintain after UNION operation i.e rows
from the second table may appear before, after, or mixed with rows
from the first table. To find a specific order ORDER BY is used.

5.7 INTERSECTION OPERATOR

The SQL INTERSECT operator returns only rows that appear in
both relations. The INTERSECT operator removes duplicate rows
from the output relation. To keeps duplicate roes INTERSECT
ALL operator is used.

SELECT EMP_ID FROM EMP_INFO
INTERSECT
SELECT EMP_ID FROM DEPERTMENT;

5.8 EXCEPT/MINUS

The EXCEPT operator takes the distinct rows of one relation and
returns the rows that do not appear in a second relation.
The EXCEPT ALL operator does not remove duplicates.
EXCEPT operator does not distinguish between NULLs.

SELECT EMP_ID FROM EMP_INFO
MINUS
SELECT EMP_ID FROM DEPERTMENT;

5.9 SQL QUERY AND SUBQUERY

A SQL query is an operation defined on one or more tables or
views to retrieves data from it. Usually a SELECT statement is
called a query. A query nested within another SQL query is called
a sub-query. For example- The SELECT sub-query is a query that
is nested in the main SELECT statement. The sub-query can be
nested inside a SELECT, INSERT, UPDATE, or DELETE
statement or inside another sub-query.
The places where a sub-query can be used in the place of a query
are:
 Within the list of columns in the SELECT statement
 With the FROM clause
 With the WHERE clause
 With the HAVING clause
 With the GROUP BY clause.
A sub-query is an inner query, which is executed first before its
outer query i.e the main query. The result is passed to outer query
from inner query.

Elements of SQL Unit 5

118

5.10 AGGREGATE FUNCTION

Aggregate functions are used to perform a calculation on a set of
values. It returns a single value. Except COUNT, any other
aggregate functions do not take null values. Aggregate functions
are frequently used with the GROUP BY clause of the SELECT
statement.

Aggregate functions are as follows-

Aggregate Function Meaning

min(x) Find the smallest value in a
column.

max(x) Find the largest value in a
column.

avg(x) Find the average value in a
column.

stdev(x) Find the standard deviation
of the values in a column.

count(x) Find the number of values in
a column.

count(*) Find the number of records
in the table being searched.

 2. Fill in the blanks.

(i) Aggregate returns a single value except ______ function.

(ii) For union operator the relation must be ________

(iii) INTERSECT operator returns only rows that appear in

5.11 CURSORS

A cursor is a temporary work area created in the system memory
when a SQL statement is executed. A cursor contains information
on a select statement and the rows of data accessed by it. This
temporary work area is used to store the data retrieved from the
database, and manipulate this data. A cursor can hold more than
one row, but can process only one row at a time. The set of rows
the cursor holds is called the active set.

CHECK YOUR PROGRESS

Elements of SQL Unit 5

119

There are two types of cursors in PL/SQL:
1. Implicit cursors –
To process DML statements like, INSERT, UPDATE, and
DELETE, implicit cursors are created by default. If a SELECT
statement returns just one row then also implicit cursors are
created. To check whether any row has been returned by the
SELECT statement or not, implicit cursor is used.

2. Explicit cursors –

To execute a SELECT statement that returns more than one row
an explicit cursor must be created. This cursor can store multiple
rows records, but at time only the current row record can proceed.
Both implicit and explicit cursors have the same functionality, but
they differ in the way they are accessed. The status of the cursor
for each of these attributes are defined in the below table.

Attributes Return Value Example

%FOUND

The return value is
TRUE, if the DML
statements like INSERT,
DELETE and UPDATE
affect at least one row
and if SELECT ….INTO
statement return at least
one row. SQL%FOUND The return value is
FALSE, if DML
statements like INSERT,
DELETE and UPDATE
do not affect row and if
SELECT….INTO
statement do not return
a row.

%NOTFOUND

The return value is
FALSE, if DML
statements like INSERT,
DELETE and UPDATE
at least one row and if
SELECT ….INTO
statement return at least
one row. SQL%NOTFOUND The return value is
TRUE, if a DML
statement like INSERT,
DELETE and UPDATE
does not affect even one
row and if SELECT
….INTO statement does
not return a row.

%ROWCOUNT

Return the number of
rows affected by the
DML operations
INSERT, DELETE,
UPDATE, SELECT

SQL%ROWCOUNT

Elements of SQL Unit 5

120

For Example:
Implicit cursor attribute is as follows-

DECLARE rows_no number(5);
BEGIN
 UPDATE EMP_INFO
 SET age = age + 5;

 IF SQL%NOTFOUND THEN
 dbms_output.put_line(' none of the age is not updated');

 ELSIF SQL%FOUND THEN
 Rows_no := SQL%ROWCOUNT;
 dbms_output.put_line('age for ' || rows_no || 'Employee
 are updated');
 END IF;
END;

This PL/SQL block, updates the age of all the employees in the
‘EMP_INFO’ table. If ages do not get updated then a message
saying 'None of the age is updated' is received. Else a message
for age updates is received.

5.12 TRIGGERS

A trigger is triggered automatically when an associated DML
statement like Insert, Delete, Update is executed.
There are two types of triggers –

 Row level trigger – An event is triggered for each row
updated, inserted or deleted.

 Statement level trigger – An event is triggered for each SQL
statement executed.

Syntax of Triggers-
 CREATE [OR REPLACE] TRIGGER trigger_name
 {BEFORE | AFTER | INSTEAD OF }
 {INSERT [OR] | UPDATE [OR] | DELETE}
 [OF column_name]
 ON table_name
 [REFERENCING OLD AS m NEW AS n]
 [FOR EACH ROW]
 WHEN (condition)
 BEGIN
 SQL statements
 END;

Here,

 CREATE [OR REPLACE] TRIGGER trigger_name –

Creates a trigger named as trigger_name.

Elements of SQL Unit 5

121

 {BEFORE | AFTER | INSTEAD OF} – Indicates the time for

the trigger.

 {INSERT [OR] | UPDATE [OR] | DELETE} – Determines

the triggering event. For more than one triggering events

OR keyword can be used.

 [OF column_name] – Used only with update triggers to

update a specific column.

 [ON table_name] – Identifies the name of the table to

which the trigger is associated.

 [REFERENCING OLD AS m NEW AS n] – Reference the

old and new values of the data being changed.

 [FOR EACH ROW] – Determine whether a trigger is a Row

Level Trigger or level Trigger.

 WHEN (condition) – The trigger is triggered only for rows

that satisfy the condition specified.

For Example:
The price of a product changes constantly. It is important to
maintain the history of the prices of the products. We can create a
trigger to update the 'product_price_history' table when the price
of the product is updated in the 'product' table.
1. Create the 'product' table and 'product_price_history' table

CREATE TABLE product
(product_id number(5),
product_name varchar2(32),
supplier_name varchar2(32),
unit_price number(7,2));

CREATE TABLE product_price_history
(product_id number(5),
product_name varchar2(32),
supplier_name varchar2(32),
unit_price number(7,2));

2. Create the price_history_trigger and execute it.
CREATE or REPLACE TRIGGER
price_history_trigger
BEFORE UPDATE OF unit_price
ON product
FOR EACH ROW
BEGIN
INSERT INTO product_price_history
VALUES
(:old.product_id,

Elements of SQL Unit 5

122

 :old.product_name,
 :old.supplier_name,
 :old.unit_price);
END;

3. Lets update the price of a product.

UPDATE PRODUCT SET unit_price = 800 WHERE product_id =
100

5.13 PROCEDURE

A stored procedure or in simple a proc is a named PL/SQL block
which performs one or more specific task. A procedure has a
header and a body. The header consists of the name of the
procedure and the parameters or variables passed to the
procedure. The body consists or declaration section, execution
section and exception section similar to a general PL/SQL Block.
A procedure is similar to an anonymous PL/SQL Block but it is
named for repeated usage. A procedure may or may not return
any value.
General Syntax to create a procedure is:

CREATE [OR REPLACE] PROCEDURE
proc_name [list of parameters]
IS
 Declaration section
BEGIN
 Execution section
EXCEPTION
 Exception section
END;

 4. Fill in the blanks.

(i) The set of rows the cursor holds is called __________

(ii) ________ cursor can store multiple rows record, but at time
only the current row record can procede

CHECK YOUR PROGRESS

Elements of SQL Unit 5

123

5.14 LET US SUM UP

 An operator is a reserved word or a character used in an

SQL statement's (WHERE clause) to perform different
operations

 SQL operators are- arithmetic operators, comparison

operators, logical operators

 SQL uses the term table, row and column for the formal
relational term relation, tuple and attribute respectively.

 A VIEW is a virtual table, through which a selective portion
of the data from one or more tables can be seen

 SQL Joins are used to combine related tuples from different
tables.

 A Join condition is a part of the SQL query that retrieves
rows from two or more tables

 In equi join, join condition uses the only one comparison
operator(=).

 Two types of equi join are- Outer join and Inner join.

 Inner join returns all the rows that satisfy the join condition
which is specified within the query.

 This outer join returns all rows from both tables which
satisfy the join condition and also keeps rows which do not
satisfy the join condition in other tables.

 The UNION operator is used to combine the result-set of
two or more SELECT statements.

 The order of rows may not maintain after UNION operation.

 The SQL INTERSECT operator returns only rows that
appear in both relation.

 The EXCEPT operator takes the distinct rows of one
relation and returns the rows that do not appear in a
second relation.

 A query nested within another SQL query is called a sub-
query

 Aggregate functions are used to perform a calculation on a
set of values.

 A cursor is a temporary work area created in the system
memory when a SQL statement is executed.

Elements of SQL Unit 5

124

 A trigger is triggered automatically when an associated
DML statement like Insert, Delete, Update is executed

1.

(i). Comparsion operator
(ii). AND
(iii). BETWEEN

2.

(i). Virtual
(ii). Equal
(iii). join condition
(iv). right

3.

(i). COUNT
(ii). union compatible
(iii). both relation

4.

(i). active set
(ii). Explicit

 5.16 FURTHER READINGS

Fundamentals of Database Systems
- R. Elmasri, S. B. Navathe. Pearson Education

Database System Concept
- A. Silberschatz, H. F. Korth, S. Sudarshan. MC

Graw Hill, 5th edition

5.15 ANSWERS TO CHECK YOUR
 PROGRESS

Elements of SQL Unit 5

125

1. What are procedures in SQL?

2. What are the workings of the various SQL operators?

3. What is a JOIN in SQL?

4. What are INNER JOIN and OUTER JOIN in SQL?

5. Explain LEFT OUTER JOIN and RIGHT OUTER JOIN.

6. What are TRIGGERS and CURSORS in SQL?

7. What is an AGGREGATE function? Illustrate the workings

of the different AGGREGATE functions

8. What is EQUIJOIN and NATURAL JOIN?

9. Create two tables EMPLOYEE (EMP_ID, NAME, AGE,

STATE, PIN, WORK_ID) and WORK (WORK_ID, WNAME,
LOCATION). Find out the all employees information who
works in location ‘Assam’.

10. Find out all the employee names who do not work as a

“teacher”.

11. Consider the following table

SNO
(Supplier
Number)

SNAME
(Supplier Name) STATUS CITY

NOPUB (No
of

publications)
S1 Wiley 20 Kolkata 4000
S2 Pearson 20 Delhi 5500
S3 Prentice Hall 10 Chennai 4500
S4 McGraw Hill 30 Mumbai 5000
S5 Thompson Learning 10 Delhi 4200

(a) List the supplier number of the suppliers who have a status
of 20 or more.

(b) List the suppliers whose NOPUB is more than 4300.
(c) List the number of Publishers whose NOPUB is more than

4500.
(d) Find the total and average number of publications.
(e) Find the details of publisher with maximum number of

publication.

12. Consider the following relational database.

5.17 MODEL QUESTIONS

Elements of SQL Unit 5

126

Employees (eno, ename, address, basic_salary)
Projects (Pno, Pname, enos-of-staff-alotted)
Workin (pno, eno, pjob)

Two queries regarding the data in the above database have
been formulated in SQL. Describe the queries in English
sentences.

(a) SELECT ename
FROM employees
WHERE eno IN (SELECT eno
FROM workin
GROUP BY eno
HAVING COUNT (*) = (SELECT COUNT (*) FROM
projects));

(b) SELECT Pname
FROM projects
WHERE Pno IN (SELECT Pno
FROM projects
MINUS
GROUP BY eno
(SELECT DISTINCT Pno FROM workin));

13. CONSIDER the following relational schema.

Specify the following views in SQL on the database
schema given.
a. A view that has the department name, manager

name and manager salary for every department.
b. A view that has the employee name, supervisor

name, and employee salary for each employee who
works in the ‘Research’ department.

Elements of SQL Unit 5

127

c. A view that has the project name, controlling
department name, number of employees, and total
hours worked per week on the project for each
project.

d. A view that has the project name, controlling
department name, number of employees, and total
hours worked per week on the project for each
project with more than one employee working on it.

14. Consider the following relational schema and specify the

given queries below.

Elements of SQL Unit 5

128

a. Retrieve the names of all senior students majoring
in ‘CS’.

b. Retrieve the names of all courses taught by
Professor Jain in 1998 and 1999.

c. For each section taught by Professor Jain, retrieve
the course number, semester, year, and number of
students who took the section.

d. Retrieve the name and transcript of each senior
student (Class 5) majoring in CS. A transcript
includes course name, course number, credit hours,
semester, year, and grade for each course
completed by the student.

e. Retrieve the names and major department of all
straight-A students (students having a grade A in all
their courses).

f. Retrieve the names and major departments of all
students who do not have a grade of A in any of
their courses.

 Relational Database design Unit 6

Advanced Database Management System 129

UNIT - 6: RELATIONAL DATABASE DESIGN

UNIT STRUCTURE

6.1 Learning Objectives
6.2 Introduction
6.3 Relational Database Design using ER-to-Relational

Mapping
6.4 Functional Dependencies
6.5 Normalization
6.6 Normal forms based on primary keys
6.7 Dependency Preserving Decomposition
6.8 Lossless Join Property of a Decomposition
6.9 Let Us Sum Up
6.10 Answers to Check Your Progress
6.11 Further Readings
6.12 Model Questions

6.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 learn about relational database design

 know what is ER-to-Relational mapping

 know what are functional dependencies in a relation

 know about the concept of normalization

 know the different normal forms of a relation

 learn about some properties of a decomposition

6.2 INTRODUCTION

In the previous units we were introduced to some of the few basic
concepts related to relational database design. We got to know
what a relational model is and the different elementary
components of any standard relational model. In this unit we focus
further on some more advanced issues that relate to relational
database design concepts.

We start this unit with a discussion on how to design a relational
database schema based on a conceptual schema design, by
presenting a 7-step algorithm to create a relational schema from

 Relational Database design Unit 6

Advanced Database Management System 130

an entity-relationship (ER) schema which includes converting the
basic ER-model constructs-entity types (strong and weak), binary
relations (with various structural constraints), n-ary relationships,
and attributes (simple, composite and multivalued into relations).

Then we define the concept of functional dependency, a formal
constraint among attributes that is the main tool for formally
measuring the appropriateness of attribute groupings into relational
schemas. A relational schema is in a normal form when it satisfies
certain desirable properties. The process of normalization consists
of analyzing relations to meet increasingly more stringent normal
forms leading to progressively better grouping of attributes. Normal
forms are specified in terms of functional dependencies – which
are identified by the database designer – and key attributes of
relation schemas. We also describe the two desirable properties of
decompositions, namely, the dependency preservation property
and the lossless join property, which are both used by the design
algorithms to achieve desirable decompositions.

6.3 RELATIONAL DATABASE DESIGN USING
ER-TO-RELATIONAL MAPPING

In this section we describe an algorithm for ER-to-Relational
mapping. We will use a COMPANY database example to illustrate
the mapping procedure. The COMPANY ER schema is shown in
Fig 6.1 below, and the corresponding COMPANY relational
database schema is shown in Fig 6.2 to illustrate the mapping
steps.

 Relational Database design Unit 6

Advanced Database Management System 131

1 N

supervisor supervisee

N

1

N
1

1 1

M N

N

1

Fig 6.1: The ER conceptual schema diagram for a COMPANY
database

Employee

Name

Initial
Lname

Fname

Sex

Address

Salary

ENO

DOB

SUPERVISION

DEPENDENTS_OF

DEPENDENT

Sex

Name

DOB

Relationship

WORKS_FOR

MANAGES

StartDate DEPARTMENT NumberOfEmployees

WORKS_ON

Hours

PROJECT

Name

Number

Location

CONTROLS

Number

Name

Locations

 Relational Database design Unit 6

Advanced Database Management System 132

Fig 6.2: Result of mapping the COMPANY ER schema into a
relational database schema

ER-to-Relational Mapping Algorithm

Step 1: Mapping of Regular Entity Types –

For each regular entity type E in the ER schema, create a
relation R that includes all the simple attributes of E. include only
the simple component attributes of a composite attribute. Choose
one of the key attributes of E as primary key for R. if the chosen
key of E is composite, the set of simple attributes that form it will
together form the primary key of R. if multiple keys were identified
for E during the conceptual design, the information describing the
attributes that form each additional key is kept in order to specify
secondary keys of relation R. knowledge about keys is also kept
for indexing purposes and other types of analysis.

In our example, we create the relations EMPLOYEE,
DEPARTMENT and PROJECT in Fig 6.2 to correspond to the
regular entity types EMPLOYEE, DEPARTMENT, and PROJECT
from Fig 6.1. The foreign key and relationship attributes, if any, are
not included yet; they will be added during subsequent steps.
These include the attributes SUPERENO and DNO of
EMPLOYEE, MGRENO and MGRSTARTDATE of DEPARTMENT,
and DNUM of PROJECT. In our example, we choose ENO,
DNUMBER, and PNUMBER as primary keys for the relations
EMPLOYEE, DEPARTMENT, and PROJECT respectively.
Knowledge that DNAME of DEPARTMENT and PNAME of
PROJECT are secondary keys is kept for possible use later in the
design.

 Relational Database design Unit 6

Advanced Database Management System 133

The relations that are created from the mapping of entity
types are sometimes called entity relations because each tuple
represents an entity instance.

Step 2: Mapping of Weak Entity Types –

For each weak entity type W in the ER schema with owner
entity type E, create a relation R and include all simple attributes of
W as attributes of R. in addition, include as foreign key attributes of
R the primary key attributes(s) of the relation(s) that correspond to
the owner entity type(s); this takes care of the identifying
relationship type of W. The primary key of R is the combination of
the primary key(s) of the owner(s) and the partial key of the weak
entity type W, if any. If there is a weak entity type E2 whose owner
is also a weak entity type E1, then E1 should be mapped before
E2 to determine its primary key first.

In our example, we create the relation DEPENDENT in this
step to correspond to the weak entity type DEPENDENT. We
include the primary key ENO of the EMPLOYEE relation – which
corresponds to the owner entity type – as a foreign key attribute of
DEPENDENT; we renamed it EENO, although this is not
necessary. The primary key of the DEPENDENT relation is the
combination {EENO, DEPENDENT_NAME} because
DEPENDENT_NAME is the partial key of DEPENDENT.

Step 3: Mapping of Binary 1:1 Relationship Types –

For each binary 1:1 relationship type R in the ER schema,
identify the relations S and T that correspond to entity types
participating in R.
There are three possible approaches:

1. Foreign key approach – Choose one of the relations S,
and include as a foreign key in S the primary key of T. it is
better to choose an entity type with total participation in R in
the role of S. include all the simple attributes of the 1:1
relationship type R as attributes of S.

In our example, we map the 1:1 relationship type
MANAGES from Fig 6.1 by choosing the participating entity
type DEPARTMENT to serve in the role of S, because its
participation in the MANAGES relationship type is total
(every department has a manager). We include the primary
key of the EMPLOYEE relation as foreign key in the
DEPARTMENT relation and rename it MGRENO. We also
include the simple attribute STARTDATE of the MANAGES
relation type in the DEPARTMENT relation and rename it
MGRSTARTDATE.

2. Merged relationship approach – An alternative mapping
of a 1:1 relationship type is possible by merging the two
entity types and the relationship into a single relation. This
may be appropriate when both participations are total.

3. Cross-reference or relationship relation approach – The
third alternative is to set up a third relation R for the

 Relational Database design Unit 6

Advanced Database Management System 134

purpose of cross-referencing the primary keys of the two
relations S and T representing the entity types. The relation
R is called a relationship relation, because each tuple in R
represents a relationship instance that relates one tuple
from S with one tuple of T.

Step 4: Mapping of Binary 1:N Relationship Types –

For each regular binary 1:N relationship type R, Identify the
relation S that represents the participating entity type at the N-side
of the relationship type. Include as foreign key in S the primary key
of the relation T that represents the other entity type participating in
R; this is done because each entity instance on the N-side is
related to at most one entity instance on the 1-side of the
relationship type. Include any simple attributes of the 1:N
relationship type as attributes of S.

In our example, we now map the 1:N relationship types
WORKS_FOR, CONTROLS and SUPERVISION from Fig 6.1. For
WORKS_FOR we include the primary key DNUMBER of the
DEPARTMENT relation as foreign key in the EMPLOYEE relation
and call it DNO. For SUPERVISION we include the primary key of
the EMPLOYEE relation as foreign key in the EMPLOYEE relation
itself – because the relationship is recursive – and call it
SUPERENO. The CONTROLS relationship is mapped to the
foreign key attribute DNUM of PROJECT, which references the
primary key DNUMBER of the DEPARTMENT relation

Another alternative approach that can be used here is
again the relationship relation option as in the case of binary 1:1
relationships. We create a separate relation R whose attributes are
the keys of S and T, and whose primary key is the same as the key
of S. this option can be used if few tuples in S participate in the
relationship to avoid excessive null values in the foreign key.

Step 5: Mapping of Binary M:N Relationship Types –

For each binary M:N relationship type R, create a new
relation S to represent R. Include as foreign key attributes in S the
primary keys of the relations that represent the participating entity
types; their combination will form the primary key of S. Also include
any simple attributes of the M:N relationship type as attributes of S.
Notice that we cannot represent an M:N relationship type by a
single foreign key attribute in one of the participating relations
because of the M:N cardinality ratio; we must create a separate
relationship relation S.

In our example we map the M:N relationship type
WORKS_ON from Fig 6.1 by creating the relation WORKS_ON in
Fig 6.2. We include the primary keys of the PROJECT and
EMPLOYEE relations as foreign keys in WORKS_ON and rename
them PNO and EENO respectively. We also include an attribute
HOURS in WORKS_ON to represent the HOURS attribute of the
relationship type. The primary key of the WORKS_ON relation is
the combination of the foreign key attributes {EENO, PNO}.

 Relational Database design Unit 6

Advanced Database Management System 135

Step 6: Mapping of Multi-valued attributes –

For each multi-valued attribute A, create a new relation R.
this relation R will include an attribute corresponding to A, plus the
primary key attribute K – as a foreign key in R – of the relation that
represents the entity type or relationship type that has A as an
attribute. The primary key of R is the combination of A and K. If the
multi-valued attribute is composite, we include its simple
components.

In our example, we create a relation DEPT_LOCATIONS.
The attribute DLOCATION represents the multi-valued attribute
LOCATIONS of DEPARTMENT, while DNUMBER – as foreign key
– represents the primary key of the DEPARTMENT relation. The
primary key of DEPT_LOCATIONS is the combination of
{DNUMBER, DLOCATION}. A separate tuple will exist in
DEPT_LOCATIONS for each location that a department has.

Step 7: Mapping of N–ary relationship types –

For each n–ary relationship type R, where n>2, create a
new relation S to represent R. include as foreign key attributes in S
the primary keys of the relations that represent the participating
entity types. Also include any simple attributes of the n–ary
relationship type as attributes of S. the primary key of S is usually
a combination of all the foreign keys that reference the relations
representing the participating entity types. However, if the
cardinality constraints on any of the entity types E participating in R
is 1, then the primary key of S should not include the foreign key
attribute that references the relation E corresponding to E.

5.4 FUNCTIONAL DEPENDENCIES

The single most important concept in relational schema design
theory is that of a functional dependency. A functional dependency
is a constraint between two sets of attributes from the database.
Suppose that our relational database schema has n attributes A1,
A2,….An; let us think of the whole database as being described by
a single universal relation schema R = {A1, A2, …. An}. We do not
imply that we will actually store the database as a single universal
table; we use this concept only in developing the formal theory of
data dependencies.

Definition – A functional dependency denoted by X→Y, between
two sets of attributes X and Y that are subsets of R specifies a
constraint on the possible tuples that can form a relation state r of
R. the constraint is that, for any two tuples t1 and t2 in r that have t1
[X] = t2 [X], they must also have t1 [Y] = t2 [Y].

This means that the values of the Y component of a
tuple in r depend on, or are determined by, the values of the X
component; alternatively, the values of the X component of a tuple
uniquely determine the values of the Y component. We also say
that there is a functional dependency X to Y, or that Y is
functionally dependent on X. the abbreviation for functional

 Relational Database design Unit 6

Advanced Database Management System 136

dependency is FD or fd. The set of attributes X is called the left
hand side of the FD, and Y is called the right hand side. Thus, X
functionally determines Y in a relation schema R if, and only if,
whenever two tuples of r(R) agree on their X–value, they must
necessarily agree on their Y–value.

Consider the relation schema EMP_PROJ in Fig 6.3 (b); from the
semantics of the attributes, we know that the following functional
dependencies should hold:

a. ENO → ENAME
b. PNUMBER → {PNAME, PLOCATION}
c. {ENO, PNUMBER} → HOURS

These functional dependencies specify that (a) the value of

an employee’s employee number (ENO) uniquely determines the
employee name (ENAME), (b) the value of a project’s number
(PNUMBER) uniquely determines the project name (PNAME) and
location (PLOCATION), and (c) a combination of ENO and
PNUMER values uniquely determines the number of hours the
employee currently works on the project per week (HOURS).
Alternatively, we say that ENAME is functionally determined by
ENO, or given a value of ENO, we know the value of ENAME.

A functional dependency is a property of the relation
schema R not of a particular legal relation state r of R. hence an
FD cannot be inferred automatically from a given relation extension
r but must be defined explicitly by someone who knows the
semantics of the attributes of R.

(a) EMP_DEPT

(b) EMP_PROJ

Fig 5.3: Two relation schemas

FD1

FD2

FD3

 Relational Database design Unit 6

Advanced Database Management System 137

5.5 NORMALIZATION

Database normalization is the process of organizing the fields and
tables of a relational database to minimize redundancy and
dependency. Normalization usually involves dividing large tables
into smaller (and less redundant) tables and defining relationships
between them. The objective is to isolate data so that additions,
deletions, and modifications of a field can be made in just one
table and then propagated through the rest of the database via the
defined relationships.

Edgar F. Codd, the inventor of the relational model,
introduced the concept of normalization and initially he proposed
three normal forms, which he called first, second and third normal
form. A stronger definition of 3NF – called Boyce-Codd Normal
Form (BCNF) was proposed later by Codd and Raymond F.
Boyce. Informally, a relational database table is often described as
"normalized" if it is in the Third Normal Form. Most 3NF tables are
free of insertion, update, and deletion anomalies.

Objectives of normalization:

A basic objective of the first normal form defined by Codd was to
permit data to be queried and manipulated using a "universal data
sub-language" grounded in first-order logic (SQL is an example of
such a data sub-language).

The objectives of normalization beyond 1NF (First Normal Form)
were stated as follows by Codd:

1. To free the database of modification anomalies –

When an attempt is made
to modify (update, insert into, or delete from) a table, undesired
side-effects may follow. Not all tables can suffer from these
side-effects; rather, the side-effects can only arise in tables that
have not been sufficiently normalized. An insufficiently
normalized table might have one or more of the following
characteristics:

(a) The same information can be expressed on multiple rows;

therefore updates to the table may result in logical
inconsistencies. For example, each record in an
"Employees' Skills" table of Fig 6.4 might contain an
Employee ID, Employee Address, and Skill; thus a change
of address for a particular employee will potentially need to
be applied to multiple records (one for each of his skills). If
the update is not carried through successfully — if, that is,
the employee's address is updated on some records but
not others — then the table is left in an inconsistent state.
Specifically, the table provides conflicting answers to the
question of what this particular employee's address is. This
phenomenon is known as an update anomaly.

 Relational Database design Unit 6

Advanced Database Management System 138

Employee ID Employee address Skill
426 87 Syncamore Typist
426 87 Syncamore Shorthand
519 94 Park Street Carpentry
519 96 Hall Avenue Acting

Fig 6.4: Employees' Skills – An update anomaly,
Employee 519 has different addresses on different

records
(b) There are circumstances in which certain facts cannot be

recorded at all. For example, each record in a "Faculty and
Courses" table of Fig 6.5 might contain a Faculty ID,
Faculty Name, Faculty Hire Date, and Course Code—thus
we can record the details of any faculty member who
teaches at least one course, but we cannot record the
details of a newly hired faculty member who has not yet
been assigned to teach any courses except by setting the
Course Code to null. This phenomenon is known as an
insertion anomaly.

Faculty ID Faculty name Hire date Course code

389 Dr. Giddins 12-04-1987 CS-765
407 Dr. Saperson 17-12-1999 CS-381
407 Dr. Saperson 17-12-1999 CS-592

332 Dr. Nilson 18-09-98 null

Fig 6.5: Faculty and Courses table – An insertion
anomaly, until the new faculty member with ID 332 is

assigned to teach at least one course, his details
cannot be inserted

(c) Under certain circumstances, deletion of data representing
certain facts necessitates deletion of data representing
completely different facts. The "Faculty and Courses"
table in Fig 6.5 suffers from this type of anomaly, for if a
faculty member temporarily ceases to be assigned to any
courses, we must delete the last of the records on which
that faculty member appears, effectively also deleting the
faculty member. This phenomenon is known as a deletion
anomaly.

2. To minimize redesign in extending the database structure

–

When a fully normalized database structure is
extended to allow it to accommodate new types of data, the
pre-existing aspects of the database structure can remain
largely or entirely unchanged. As a result, applications
interacting with the database are minimally affected.

 Relational Database design Unit 6

Advanced Database Management System 139

3. To make the relational model more informative to users –

Normalized tables, and the relationship between
one normalized table and another, mirror real-world concepts
and their interrelationships.

4. To avoid bias towards any particular pattern of querying –

Normalized tables are suitable for general-
purpose querying. This means any queries against these
tables, including future queries whose details cannot be
anticipated, are supported. In contrast, tables that are not
normalized lend themselves to some types of queries, but not
others.

Background to normalization: definitions

1. Trivial functional dependency –

 A trivial functional dependency is a functional dependency of an
attribute on a superset of itself. {Employee ID, Employee Address}
→ {Employee Address} is trivial, as is {Employee Address} →
{Employee Address}.

2. Full functional dependency –

 An attribute is fully functionally dependent on a set of attributes
X if it is:

 functionally dependent on X, and
 not functionally dependent on any proper subset of X.

{Employee Address} has a functional dependency on
{Employee ID, Skill}, but not a full functional dependency,
because it is also dependent on {Skill}.Even by the removal
of {Employee ID} functional dependency still holds between
{Employee Address} and {Skill}.

3. Transitive dependency –
 A transitive dependency is an indirect functional dependency,
one in which X→Z only by virtue of X→Y and Y→Z.

4. Multi-valued dependency –

 A multi-valued dependency is a constraint according to which
the presence of certain rows in a table implies the presence of
certain other rows.

5. Join dependency –
 A table T is subject to a join dependency if T can always be
recreated by joining multiple tables each having a subset of the
attributes of T.

 Relational Database design Unit 6

Advanced Database Management System 140

6. Superkey –
 A superkey is a combination of attributes that can be used to
uniquely identify a database record. A table might have many
superkeys.

7. Candidate key –
 A candidate key is a special subset of superkeys that do not
have any extraneous information in them: it is a minimal superkey.
 Example:
 A table with the fields <Name>, <Age>, <SSN> and <Phone
Extension> has many possible superkeys. Three of these are
<SSN>, <Phone Extension, Name> and <SSN, Name>. Of those,
only <SSN> is a candidate key as the others contain information
not necessary to uniquely identify records ('SSN' here refers to
Social Security Number, which is unique to each person).

8. Non-prime attribute –
 A non-prime attribute is an attribute that does not occur in any
candidate key. Employee Address would be a non-prime attribute
in the "Employees' Skills" table.

9. Prime attribute –

 A prime attribute, conversely, is an attribute that does occur in
some candidate key.

10. Primary key –

 One candidate key in a relation may be designated the primary
key. While that may be a common practice (or even a required one
in some environments), it is strictly notational and has no bearing
on normalization. With respect to normalization, all candidate keys
have equal standing and are treated the same.

 Relational Database design Unit 6

Advanced Database Management System 141

 1. Fill in the blanks

(a) A ____________ is a formal constraint among attributes.

(b) ____________ consists of analyzing relations to meet
increasingly more stringent normal forms.

(c) Normalization is the process of organizing tables to
minimize ____________ and ___________.

(d) A ___________ dependency is a functional dependency
of an attribute on a superset of itself.

(e) A ______________ is an indirect functional dependency.

(f) A ______________ is a constraint due to which the
presence of certain rows in a table implies the presence
of certain other rows.

(g) A __________ is a __________ of attributes that can be
used to uniquely identify a database record.

(h) A candidate key is a minimal __________.

(i) A ________ attribute is an attribute that does not occur
in any __________.

6.6 NORMAL FORMS BASED ON PRIMARY
KEYS

The normal forms of relational database theory provide
criteria for determining a table's degree of vulnerability to logical
inconsistencies and anomalies. The higher the normal form
applicable to a table, the less vulnerable it is. Each table has a
"highest normal form" (HNF): by definition, a table always meets
the requirements of its HNF and of all normal forms lower than its
HNF; also by definition, a table fails to meet the requirements of
any normal form higher than its HNF.

The normal forms are applicable to individual tables; to say
that an entire database is in normal form n is to say that all of its
tables are in normal form n. Newcomers to database design
sometimes suppose that normalization proceeds in an iterative
fashion, i.e. a 1NF design is first normalized to 2NF, then to 3NF,

CHECK YOUR PROGRESS

 Relational Database design Unit 6

Advanced Database Management System 142

and so on. This is not an accurate description of how normalization
typically works. A sensibly designed table is likely to be in 3NF on
the first attempt; furthermore, if it is 3NF, it is overwhelmingly likely
to have an HNF of 5NF. Achieving the "higher" normal forms
(above 3NF) does not usually require an extra expenditure of effort
on the part of the designer, because 3NF tables usually need no
modification to meet the requirements of these higher normal
forms.

The main normal forms are summarized below.

 Normal Form Brief definition

1NF First Normal Form Table faithfully represents a relation, primarily
meaning it has at least one candidate key

2NF Second Normal Form
No non-prime attribute in the table is

functionally dependent on a proper subset of
any candidate key

3NF Third Normal Form

Every non-prime attribute is non-transitively
dependent on every candidate key in the

table. The attributes that do not contribute to
the description of the primary key are

removed from the table. In other words, no
transitive dependency is allowed.

BCNF Boyce-Codd Normal Form Every non-trivial functional dependency in the
table is a dependency on a superkey

4NF Fourth Normal Form Every non-trivial multivalued dependency in
the table is a dependency on a superkey

5NF Fifth Normal Form Every non-trivial join dependency in the table
is implied by the superkeys of the table

First Normal Form –

First normal form (1NF) is a property of a relation in a relational
database. A relation is in first normal form if the domain of each
attribute contains only atomic values, and the value of each
attribute contains only a single value from that domain. Edgar
Codd defined a relation in first normal form to be one such that
none of the domains of that relation should have elements which
are themselves sets.

First normal form is an essential property of a
relation in a relational database. Database normalization is the
process of representing a database in terms of relations in
standard normal forms, where first normal is a minimal requirement

The following scenario illustrates how a database design
might violate first normal form.

Suppose a designer wishes to record the names and telephone
numbers of customers. He defines a customer table which looks
like this:

 Relational Database design Unit 6

Advanced Database Management System 143

Customer

CustID First Name Surname Telephone Number
123 Robert Ingram 555-861-2025
456 Jane Wright 555-403-1659
789 Maria Fernandez 555-808-9633

The designer then becomes aware of a requirement to record
multiple telephone numbers for some customers. He reasons that
the simplest way of doing this is to allow the "Telephone Number"
field in any given record to contain more than one value:

Customer

CustID First Name Surname Telephone Number
123 Robert Ingram 555-861-2025

456 Jane Wright 555-403-1659
555-776-4100

789 Maria Fernandez 555-808-9633

Assuming, however, that the Telephone Number column is defined
on some telephone number-like domain, such as the domain of 12-
character strings, the representation above is not in first normal
form. It is in violation of first normal form as a single field has been
allowed to contain multiple values. A typical relational database
management system will not allow fields in a table to contain
multiple values in this way.

A design that complies with 1NF

A design that is unambiguously in first normal form makes use of
two tables: a Customer Name table and a Customer Telephone
Number table.

Customer Name

Customer_ID First Name Surname
123 Robert Ingram
456 Jane Wright
789 Maria Fernandez

Customer Telephone Number
Customer ID Telephone Number

123 555-861-2025
456 555-403-1659
456 555-776-4100
789 555-808-9633

 Relational Database design Unit 6

Advanced Database Management System 144

Repeating groups of telephone numbers do not occur in this
design. Instead, each Customer-to-Telephone Number link
appears on its own record. With Customer ID as key fields, a
"parent-child" or one-to-many relationship exists between the two
tables. A record in the "parent" table, Customer Name, can have
many telephone number records in the "child" table, Customer
Telephone Number, but each telephone number belongs to one,
and only one customer. It is worth noting that this design meets the
additional requirements for second and third normal form.

Second Normal Form –
A table that is in first normal form (1NF) must meet additional
criteria if it is to qualify for second normal form. Specifically: a table
is in 2NF if and only if it is in 1NF and no non-prime attribute is
dependent on any proper subset of any candidate key of the table.
A non-prime attribute of a table is an attribute that is not a part of
any candidate key of the table.
Put simply, a table is in 2NF if and only if it is in 1NF and every
non-prime attribute of the table is either dependent on the whole of
a candidate key, or on another non-prime attribute.
Note that when a 1NF table has no composite candidate keys
(candidate keys consisting of more than one attribute), the table is
automatically in 2NF.

Consider a table describing employees' skills

Employees' Skills
Employee Skill Current Work Location

Jones Typing 114 Main Street
Jones Shorthand 114 Main Street
Jones Whittling 114 Main Street
Bravo Light Cleaning 73 Industrial Way
Ellis Alchemy 73 Industrial Way
Ellis Flying 73 Industrial Way

Harrison Light Cleaning 73 Industrial Way

Neither {Employee} nor {Skill} is a candidate key for the table. This
is because a given Employee might need to appear more than
once (he might have multiple Skills), and a given Skill might need
to appear more than once (it might be possessed by multiple
Employees). Only the composite key {Employee, Skill} qualifies as
a candidate key for the table.

The remaining attribute, Current Work Location, is
dependent on only part of the candidate key, namely Employee.
Therefore the table is not in 2NF. Note the redundancy in the way
Current Work Locations are represented: we are told three times
that Jones works at 114 Main Street, and twice that Ellis works at
73 Industrial Way. This redundancy makes the table vulnerable to
update anomalies: it is, for example, possible to update Jones'
work location on his "Typing" and "Shorthand" records and not
update his "Whittling" record. The resulting data would imply

 Relational Database design Unit 6

Advanced Database Management System 145

contradictory answers to the question "What is Jones' current work
location?"
A 2NF alternative to this design would represent the same
information in two tables: an "Employees" table with candidate key
{Employee}, and an "Employees' Skills" table with candidate key
{Employee, Skill}:

Employees
Employee Current Work Location

Jones 114 Main Street
Bravo 73 Industrial Way
Ellis 73 Industrial Way

Harrison 73 Industrial Way

Employees’ Skills
Employee Skill

Jones Typing
Jones Shorthand
Jones Whittling
Bravo Light Cleaning
Ellis Alchemy
Ellis Flying

Harrison Light Cleaning

Neither of these tables can suffer from update anomalies.
Not all 2NF tables are free from update anomalies, however. An
example of a 2NF table which suffers from update anomalies is:

Tournament Winners
Tournament Year Winner Winner Date of Birth

Des Moines
Masters 1998 Chip Masterson 14 March 1977

Indiana
Invitational 1998 Al Fredrickson 21 July 1975

Cleveland
Open 1999 Bob Albertson 28 September 1968

Des Moines
Masters 1999 Al Fredrickson 21 July 1975

Indiana
Invitational 1999 Chip Masterson 14 March 1977

Even though Winner and Winner Date of Birth are determined by
the whole key {Tournament, Year} and not part of it, particular
Winner / Winner Date of Birth combinations are shown redundantly
on multiple records. This leads to an update anomaly: if updates
are not carried out consistently, a particular winner could be shown
as having two different dates of birth. The underlying problem is
the transitive dependency to which the Winner Date of Birth
attribute is subject. Winner Date of Birth actually depends on
Winner, which in turn depends on the key Tournament / Year.

 Relational Database design Unit 6

Advanced Database Management System 146

This problem is addressed by third normal form (3NF).

Third normal form –
In computer science, the third normal form (3NF) is a normal
form used in database normalization. 3NF was originally defined
by E.F. Codd. Codd's definition states that a table is in 3NF if and
only if both of the following conditions hold:

 The relation R (table) is in second normal form (2NF)
 Every non-prime attribute of R is non-transitively dependent

(i.e. directly dependent) on every superkey of R.
A non-prime attribute of R is an attribute that does not belong to
any candidate key of R. A transitive dependency is a functional
dependency in which X → Z (X determines Z) indirectly, by virtue
of X → Y and Y → Z (where it is not the case that Y → X).

A 3NF definition that is equivalent to Codd's, but expressed
differently, was given by Carlo Zaniolo. This definition states that a
table is in 3NF if and only if, for each of its functional dependencies
X → A, at least one of the following conditions holds:

 X contains A (that is, X → A is trivial functional
dependency), or

 X is a superkey, or
 Every element of A-X, the set difference between A and X,

is a prime attribute (i.e., each column in A-X is contained
in some candidate key)

Zaniolo's definition gives a clear sense of the difference between
3NF and the more stringent Boyce–Codd normal form (BCNF).
BCNF simply eliminates the third alternative ("A is a prime
attribute").
An example of a 2NF table that fails to meet the requirements
of 3NF is:

Tournament Winners
Tournament Year Winner Winner Date of Birth

Indiana
Invitational 1998 Al Fredrickson 21 July 1975

Cleveland
Open 1999 Bob Albertson 28 September 1968

Des Moines
Masters 1999 Al Fredrickson 21 July 1975

Indiana
Invitational 1999 Chip Masterson 14 March 1977

Because each row in the table needs to tell us who won a
particular Tournament in a particular Year, the composite key
{Tournament, Year} is a minimal set of attributes guaranteed to
uniquely identify a row. That is, {Tournament, Year} is a candidate
key for the table.
The breach of 3NF occurs because the non-prime attribute Winner
Date of Birth is transitively dependent on the candidate key

 Relational Database design Unit 6

Advanced Database Management System 147

{Tournament, Year} via the non-prime attribute Winner. The fact
that Winner Date of Birth is functionally dependent on Winner
makes the table vulnerable to logical inconsistencies, as there is
nothing to stop the same person from being shown with different
dates of birth on different records.
In order to express the same facts without violating 3NF, it is
necessary to split the table into two.

Tournament Winners
Tournament Year Winner

Indiana Invitational 1998 Al Fredrickson
Cleveland Open 1999 Bob Albertson

Des Moines Masters 1999 Al Fredrickson
Indiana Invitational 1999 Chip Masterson

Player Dates of Birth
Player Date of Birth

Chip Masterson 14 March 1977
Al Fredrickson 21 July 1975
Bob Albertson 28 September 1968

Update anomalies cannot occur in these tables, which are both in
3NF.

Boyce–Codd normal form –
Boyce–Codd normal form (or

BCNF or 3.5NF) is a normal form used in database normalization.
It is a slightly stronger version of the third normal form (3NF).
BCNF was developed by Raymond F. Boyce and Edgar F. Codd to
address certain types of anomaly not dealt with by 3NF as
originally defined.
If a relational scheme is in BCNF then all redundancy based on
functional dependency has been removed, although other types of
redundancy may still exist. A relational schema R is in Boyce–
Codd normal form if and only if for every one of its dependencies X
→ Y, at least one of the following conditions hold:

 X → Y is a trivial functional dependency (Y ⊆ X)
 X is a superkey for schema R

3NF tables not meeting BCNF
Only in rare cases does a 3NF table not meet the requirements of
BCNF. A 3NF table which does not have multiple overlapping
candidate keys is guaranteed to be in BCNF. Depending on what
its functional dependencies are, a 3NF table with two or more
overlapping candidate keys may or may not be in BCNF

An example of a 3NF table that does not meet BCNF is:

 Relational Database design Unit 6

Advanced Database Management System 148

Today's Court Bookings
Court Start Time End Time Rate Type

1 09:30 10:30 SAVER
1 11:00 12:00 SAVER
1 14:00 15:30 STANDARD
2 10:00 11:30 PREMIUM-B
2 11:30 13:30 PREMIUM-B
2 15:00 16:30 PREMIUM-A

 Each row in the table represents a court booking at a tennis
club that has one hard court (Court 1) and one grass court
(Court 2)

 A booking is defined by its Court and the period for which
the Court is reserved

 Additionally, each booking has a Rate Type associated with
it. There are four distinct rate types:

 SAVER, for Court 1 bookings made by members
 STANDARD, for Court 1 bookings made by non-members
 PREMIUM-A, for Court 2 bookings made by members
 PREMIUM-B, for Court 2 bookings made by non-members

The table's superkeys are:
 S1 = {Court, Start Time}
 S2 = {Court, End Time}
 S3 = {Rate Type, Start Time}
 S4 = {Rate Type, End Time}
 S5 = {Court, Start Time, End Time}
 S6 = {Rate Type, Start Time, End Time}
 S7 = {Court, Rate Type, Start Time}
 S8 = {Court, Rate Type, End Time}
 ST = {Court, Rate Type, Start Time, End Time}, the trivial

superkey
Note that even though in the above table Start Time and End Time
attributes have no duplicate values for each of them, we still have
to admit that in some other days two different bookings on court 1
and court 2 could start at the same time or end at the same time.
This is the reason why {Start Time} and {End Time} cannot be
considered as the table's superkeys.
However, only S1, S2, S3 and S4 are candidate keys (that is,
minimal superkeys for that relation) because e.g. S1 ⊂ S5, so S5
cannot be a candidate key.
Recall that 2NF prohibits partial functional dependencies of non-
prime attributes (i.e. an attribute that does not occur in ANY
candidate key) on candidate keys, and that 3NF prohibits transitive
functional dependencies of non-prime attributes on candidate keys.

 Relational Database design Unit 6

Advanced Database Management System 149

In Today's Court Bookings table, there are no non-prime
attributes: that is, all attributes belong to some candidate key.
Therefore the table adheres to both 2NF and 3NF. The table does
not adhere to BCNF. This is because of the dependency Rate
Type → Court, in which the determining attribute (Rate Type) is
neither a candidate key nor a superset of a candidate key.
Dependency Rate Type → Court is respected as a Rate Type
should only ever apply to a single Court.
The design can be amended so that it meets BCNF.

Rate Types
Rate Type Court Member Flag

SAVER 1 Yes
STANDARD 1 No
PREMIUM-A 2 Yes
PREMIUM-B 2 No

Today's Bookings

Rate Type Start Time End Time

SAVER 09:30 10:30
SAVER 11:00 12:00

STANDARD 14:00 15:30
PREMIUM-B 10:00 11:30
PREMIUM-B 11:30 13:30
PREMIUM-A 15:00 16:30

The candidate keys for the Rate Types table are {Rate Type} and
{Court, Member Flag}; the candidate keys for the Today's
Bookings table are {Rate Type, Start Time} and {Rate Type, End
Time}. Both tables are in BCNF. Having one Rate Type associated
with two different Courts is now impossible, so the anomaly
affecting the original table has been eliminated.

Fourth normal form –
Fourth normal form (4NF) is a normal

form used in database normalization. Introduced by Ronald Fagin,
4NF is the next level of normalization after Boyce–Codd normal
form (BCNF). Whereas the second, third, and Boyce–Codd normal
forms are concerned with functional dependencies, 4NF is
concerned with a more general type of dependency known as a
multivalued dependency. A Table is in 4NF if and only if, for every
one of its non-trivial multivalued dependencies X Y, X is a
superkey—that is, X is either a candidate key or a superset
thereof.

Multivalued dependencies
If the column headings in a relational database table are divided
into three disjoint groupings X, Y, and Z, then, in the context of a
particular row, we can refer to the data beneath each group of
headings as x, y, and z respectively. A multivalued dependency X

Y signifies that if we choose any x actually occurring in the table

 Relational Database design Unit 6

Advanced Database Management System 150

(call this choice xc), and compile a list of all the xcyz combinations
that occur in the table, we will find that xc is associated with the
same y entries regardless of z.
A trivial multivalued dependency X Y is one where either Y is
a subset of X, or X and Y together form the whole set of attributes
of the relation.
A functional dependency is a special case of multivalued
dependency. In a functional dependency X → Y, every x
determines exactly one y, never more than one.
Example

Pizza Delivery Permutations
Restaurant Pizza Variety Delivery Area

A1 Pizza Thick Crust Springfield
A1 Pizza Thick Crust Shelbyville
A1 Pizza Thick Crust Capital City
A1 Pizza Stuffed Crust Springfield
A1 Pizza Stuffed Crust Shelbyville
A1 Pizza Stuffed Crust Capital City

Elite Pizza Thin Crust Capital City
Elite Pizza Stuffed Crust Capital City

Vincenzo's Pizza Thick Crust Springfield
Vincenzo's Pizza Thick Crust Shelbyville
Vincenzo's Pizza Thin Crust Springfield
Vincenzo's Pizza Thin Crust Shelbyville

Each row indicates that a given restaurant can deliver a given
variety of pizza to a given area.
The table has no non-key attributes because its only key is
{Restaurant, Pizza Variety, Delivery Area}. Therefore it meets all
normal forms up to BCNF. If we assume, however, that pizza
varieties offered by a restaurant are not affected by delivery area,
then it does not meet 4NF. The problem is that the table features
two non-trivial multivalued dependencies on the {Restaurant}
attribute (which is not a superkey). The dependencies are:

 {Restaurant} {Pizza Variety}
 {Restaurant} {Delivery Area}

These non-trivial multivalued dependencies on a non-superkey
reflect the fact that the varieties of pizza a restaurant offers are
independent from the areas to which the restaurant delivers. This
state of affairs leads to redundancy in the table: for example, we
are told three times that A1 Pizza offers Stuffed Crust, and if A1
Pizza starts producing Cheese Crust pizzas then we will need to
add multiple rows, one for each of A1 Pizza's delivery areas. There
is, moreover, nothing to prevent us from doing this incorrectly: we
might add Cheese Crust rows for all but one of A1 Pizza's delivery
areas, thereby failing to respect the multivalued dependency
{Restaurant} {Pizza Variety}.

 Relational Database design Unit 6

Advanced Database Management System 151

To eliminate the possibility of these anomalies, we must place the
facts about varieties offered into a different table from the facts
about delivery areas, yielding two tables that are both in 4NF:

Varieties By Restaurant
Restaurant Pizza Variety

A1 Pizza Thick Crust
A1 Pizza Stuffed Crust

Elite Pizza Thin Crust
Elite Pizza Stuffed Crust

Vincenzo's Pizza Thick Crust
Vincenzo's Pizza Thin Crust

Delivery Areas By Restaurant
Restaurant Delivery Area

A1 Pizza Springfield
A1 Pizza Shelbyville
A1 Pizza Capital City

Elite Pizza Capital City
Vincenzo's Pizza Springfield
Vincenzo's Pizza Shelbyville

Fifth normal form –
Fifth normal form (5NF), also known as

project-join normal form (PJ/NF) is a level of database
normalization designed to reduce redundancy in relational
databases recording multi-valued facts by isolating semantically
related multiple relationships. A table is said to be in the 5NF if and
only if every join dependency in it is implied by the candidate keys.
A join dependency *{A, B, … Z} on R is implied by the candidate
key(s) of R if and only if each of A, B, …, Z is a superkey for R.

Example
Traveling Salesman Product Availability By Brand

Traveling Salesman Brand Product Type
Jack Schneider Acme Vacuum Cleaner
Jack Schneider Acme Breadbox

Willy Loman Robusto Pruning Shears
Willy Loman Robusto Vacuum Cleaner
Willy Loman Robusto Breadbox
Willy Loman Robusto Umbrella Stand

Louis Ferguson Robusto Vacuum Cleaner
Louis Ferguson Robusto Telescope
Louis Ferguson Acme Vacuum Cleaner
Louis Ferguson Acme Lava Lamp
Louis Ferguson Nimbus Tie Rack

 Relational Database design Unit 6

Advanced Database Management System 152

The table's predicate is: Products of the type designated by
Product Type, made by the brand designated by Brand, are
available from the traveling salesman designated by Traveling
Salesman.
In the absence of any rules restricting the valid possible
combinations of Traveling Salesman, Brand, and Product Type,
the three-attribute table above is necessary in order to model the
situation correctly.
Suppose, however, that the following rule applies: A Traveling
Salesman has certain Brands and certain Product Types in his
repertoire. If Brand B is in his repertoire, and Product Type P is in
his repertoire, then (assuming Brand B makes Product Type P),
the Traveling Salesman must offer only the products of Product
Type P made by Brand B.
In that case, it is possible to split the table into three:

Product Types By Traveling Salesman
Traveling Salesman Product Type

Jack Schneider Vacuum Cleaner
Jack Schneider Breadbox

Willy Loman Pruning Shears
Willy Loman Vacuum Cleaner
Willy Loman Breadbox
Willy Loman Umbrella Stand

Louis Ferguson Telescope
Louis Ferguson Vacuum Cleaner
Louis Ferguson Lava Lamp
Louis Ferguson Tie Rack

Brands By Traveling Salesman
Traveling Salesman Brand

Jack Schneider Acme
Willy Loman Robusto

Louis Ferguson Robusto
Louis Ferguson Acme
Louis Ferguson Nimbus

Product Types By Brand
Brand Product Type

Acme Vacuum Cleaner
Acme Breadbox
Acme Lava Lamp

Robusto Pruning Shears
Robusto Vacuum Cleaner
Robusto Breadbox
Robusto Umbrella Stand
Robusto Telescope
Nimbus Tie Rack

 Relational Database design Unit 6

Advanced Database Management System 153

5.7DEPENDENCY PRESERVING
 DECOMPOSITION

It would be useful if each functional dependency X → Y

specified in F either appeared directly in one of the relation
schemas R, in the decomposition D or could be inferred from the
dependencies that appear in some R. informally, this is the
dependency preservation condition. We want to preserve the
dependencies because each dependency in F represents a
constraint on the database. If one of the dependencies is not
represented in some individual relation R of the decomposition, we
cannot enforce this constraint by dealing with an individual relation:
instead, we have to join two or more of the relations in the
decomposition and then check that the functional dependency
holds in the result of the JOIN operation. This is clearly an
inefficient and impractical procedure.

It is not necessary that the exact dependencies specified in
F appear themselves in individual relations of the decomposition D.
it is sufficient that the union of the dependencies that hold on the
individual relations in D be equivalent to F. we now define these
concepts more formally.
Definition: Given a set of dependencies F on R, the projection of F
on R, denoted by πRi(F) where R, is a subset of R, is the set of
dependencies X → Y in F such that the attributes in X → Y are all
contained in R. hence, the projection of F on each relation schema
R, in the decomposition D is the set of functional dependencies in
F+, the closure of F, such that all their left-and right-hand-side
attributes are in R. We say that a decomposition D={R1, R2,…, Rm}
of R is dependency-preserving with respect to F if the union of the
projections of F on each R, in D is equivalent to F; that is,

((πR1(F)) U … U (πRm(F)))+ = F4

If a decomposition is not dependency-preserving, some
dependency is lost in the decomposition. To check that a lost
dependency holds we must take the join of two or more relations in
the decomposition to get a relation that includes all left-and right-
hand-side attributes of the lost dependency, and then check that
the dependency holds on the result of the JOIN – an option that is
not practical.

An example of a decomposition that does not preserve
dependencies is show in Fig 6.6, in which the functional
dependency FD2 is lost when LOTS1A is decomposed into
{LOTS1AX, LOTS1AY}. The decomposition in Fig 6.7, however
are dependency preserving.

 Relational Database design Unit 6

Advanced Database Management System 154

LOTS1A

LOTS1AX LOTS1AY

Fig 6.6: Boyce-Codd Normal form. BCNF Normalization of
LOTS1A with the Functional Dependency FD2 being lost in the

decomposition

(a) LOTS

BCNF Normalization

 Relational Database design Unit 6

Advanced Database Management System 155

(b) LOTS1

LOTS2

(c) LOTS1A

LOTS1B

(d)

Fig 6.7: Normalization into 2NF and 3NF. (a) The LOTS relation

with its functional dependencies FD1 through FD4 (b)
Decomposing into the 2NF relations LOTS1 and LOTS2. (c)
Decomposing LOTS1 into the 3NF relations LOTS1A and

LOTS1B. (d) Summary of the progressive normalization of
LOTS

 Relational Database design Unit 6

Advanced Database Management System 156

6.8 LOSSLESS JOIN PROPERTY OF A
DECOMPOSITION

Another property that a decomposition D should possess is the
lossless join or non-additive join property, which ensures that no
spurious tuples are generated when a NATURAL JOIN operation is
applied to the relations in the decomposition.
Definition:
Formally a decomposition D = {R1, R2, … , R} of R has the lossless
(non-additive) join property with respect to the set of dependencies
F on R if, for every relation state r of R that satisfies F, the
following holds where * is the NATURAL JOIN of all the relations in
D.

*(πR1(r), …, πRm(r)) = r
The word loss in lossless refers to loss of information, not to loss of
tuples. If a decomposition does not have the lossless join property,
we may get additional spurious tuples after the PROJECT (π) and
NATURAL JOIN (*) operations are applied; these additional tuples
represent erroneous information. We prefer the term non-additive
join because it describes the situation more accurately. If the
property holds on a decomposition we are guaranteed that no
spurious tuples bearing wrong information are added to the result
after the project and natural join operations are applied.

Algorithm to test for lossless join property:
Input: A universal relation R, a decomposition D={R1, R2, … , Rm}
of R, and a set F of functional dependencies.

1. Create an initial matrix S with one row i for each relation Ri
in D, and one column j for each attribute Aj in R.

2. Set S(I , j) := bij for all matrix entries. (* each bij is a distinct
symbol associated with indices (i, j) *)

3. For each row i representing relation schema R,

{ for each column j representing attribute A,
{ if (relation R includes attribute A,) then set S (I, j).. = aj; } ; };
(* each a is a distinct symbol associated with index (j) *)

4. Repeat the following loop until a complete loop execution

results in no changes to S

{ for each functional dependency X → Y in F
{ for all rows in S that have the same symbols in the
columns corresponding to attributes in X
{ make the symbols in each column that correspond to an
attribute in Y be the same in all these rows as follows: if
any of the rows has an “a” symbol for the column, set the
other rows to the same “a” symbol in the column. If no “a”
symbol exists for the attribute in any of the rows, choose
one of the “b” symbols that appears in one of the rows for

 Relational Database design Unit 6

Advanced Database Management System 157

the attribute and set the other rows to that same “b” symbol
in the column; } ; } ; } ;

5. If a row is made up entirely of “a” symbols, then the
decomposition has the lossless join property; otherwise, it
does not.

Given a relation R that is decomposed into a number of
relations R1, R2, …, Rm, The above Algorithm to test for lossless
join property begins the matrix S that we consider to be some
relation state r of R. row i in S represents a tuple ti (corresponding
to relation Ri) that has “a” symbols in the columns that correspond
to the attributes of R, and “b” symbols in the remaining columns.
The algorithm then transforms the rows of this matrix (during the
loop of step 4) so that they represent tuples that satisfy all the
functional dependencies in F. at the end of step 4, any two rows in
S – which represent two tuples in r – that agree in their values for
the left-hand-side attributes X of a functional dependency X → Y in
F will also agree in their values for the right-hand-side attributes Y.
it can be shown that after applying the loop of step 4, if any row in
S ends up with all “a” symbols then the decomposition D has the
lossless join property with the respect to F.

2. Fill in the blanks:

(a) In a ____ table no non-prime attribute in the table is
______________ on a proper subset of any ________ key.

(b) In a ____ table every non-trivial functional dependency in

the table is a dependency on a ________.

(c) In a ___ table every non-trivial join dependency in the table

is implied by the __________ of the table.

(d) If a decomposition is not ________________, some

dependency is lost in the decomposition.

(e) The ___________ property of a decomposition which

ensures that no spurious tuples are generated when a
_____________ operation is applied to the relations in the
decomposition

CHECK YOUR PROGRESS

 Relational Database design Unit 6

Advanced Database Management System 158

6.9 LET US SUM UP

 A relational schema is in a normal form when it satisfies

certain desirable properties.

 Normal forms are specified in terms of functional

dependencies.

 A functional dependency is a constraint between two sets

of attributes from the database.

 Normalization usually involves dividing large tables into

smaller tables and defining relationships between them.

 The normal forms of relational database theory provide

criteria for determining a table's degree of vulnerability to
logical inconsistencies and anomalies.

 First normal form (1NF) is a property of a relation in a

relational database.

 A table is in 2NF if and only if it is in 1NF and no non-

prime attribute is dependent on any proper subset of any
candidate key of the table.

 If a relational scheme is in BCNF then all redundancy

based on functional dependency has been removed.

1.

(a) functional dependency.
(b) Normalization.
(c) redundancy, dependency.
(d) trivial functional.
(e) transitive dependency.
(f) multi-valued dependency.
(g) superkey, combination.
(h) superkey.
(i) non-prime, candidate key.

2.
(a) 2NF, functionally dependent, candidate.
(b) BCNF, superkey
(c) 5NF, superkeys
(d) dependency-preserving
(e) lossless join, NATURAL JOIN

6.10 ANSWERS TO CHECK YOUR
 PROGRESS

 Relational Database design Unit 6

Advanced Database Management System 159

 6.11 FURTHER READINGS

- Prof. Sushant S. Sundikar: Introduction to Database
Management System

- Elmasri, Navathe, Somayajulu, Gupta: Fundamentals of
Database Systems

1. What do you mean by relational database schema?

Illustrate an example.

2. Discuss insert, delete and update anomalies.

3. Discuss the relation between the ER model constructs and

the relational model constructs. Show how each ER model
construct can be mapped to the relational model.

4. What is Functional Dependency? Explain.

5. Define First, Second and Third normal forms with

examples.

6. Define BCNF? How does it differ from 3NF, and why is it

considered a stronger form of BCNF?

7. Consider the relational schema R(ABC) with FDs AB → C,

C → A. show that the schema R is in 3NF but not in BCNF.

8. What is the dependency preserving property of

decomposition and what is its importance?

9. What is lossless join property of decomposition?

6.12 MODEL QUESTIONS

Transaction Processing Concepts Unit 7

Advanced Database Management 160

UNIT - 7: TRANSACTION PROCESSING
CONCEPTS

UNIT STRUCTURE

7.1 Learning Objectives
7.2 Introduction
7.3 Introduction to Transaction Processing

7.3.1 Single–User V/S Multiuser Systems
7.3.2 Transactions, R/W Operations and DBMS Buffers
7.3.3 Need of Concurrency Control
7.3.4 Need of Recovery

7.4 Transaction and System Concepts
7.4.1 Transaction States and Additional Operations
7.4.2 The System Log
7.4.3 Commit Point of a Transaction

7.5 Desirable Properties of Transactions
7.6 Characterizing Schedules Based on Recoverability
7.7 Characterizing Schedules Based on Serializability
7.8 Let Us Sum Up
7.9 Answers To Check Your Progress
7.10 Further Readings
7.11 Model Questions

7.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 learn the basics of transaction processing

 differentiate between single-user and multiuser systems

 know some basic concepts of DBMS transactions

 know the concepts of concurrency and recovery

 learn the different elements and operations of a transaction

 learn about characterizing schedules

Transaction Processing Concepts Unit 7

Advanced Database Management 161

7.2 INTRODUCTION

In the previous units we came to know about several basic
concepts of a Database Management System. We got to know the
different database models, their different architectures, the relation
between elements etc. We were also introduced to the relational
model that uses the advantage of the Structured Query Language
to perform several database operations. Normalization, which is a
primary operation to be performed in a database, was also
discussed along with its different forms.

In this unit we discuss the concept of transaction
processing systems. We also define the concept of a transaction,
which is used to represent a logical unit of database processing
that must be completed in its entirety to ensure correctness. We
also discuss the concurrency control problem, which occurs when
multiple transactions submitted by various users interfere with one
another in a way that produces incorrect results.

7.3 INTRODUCTION TO TRANSACTION
PROCESSING

Transaction Processing Systems are the systems with large
databases and hundreds of concurrent users executing database
transactions. The concept of transaction provides a mechanism for
describing logical units of database processing. Examples of
Transaction Processing Systems include systems for reservations,
banking, credit card processing, stock markets, supermarket
checkouts etc. Such systems require high availability and fast
response time for hundreds of concurrent users.

7.3.1 SINGLE USER V/S MULTIUSER SYSTEMS

In this section we compare single-user and multiuser database
systems and demonstrate how concurrent execution of
transactions can take place in multiuser systems.

One criterion for classifying a database system is
according to the number of users who can use the system
concurrently-that is, at the same time. A DBMS is single-user if at
most one user at a time can use the system, and it is multiuser if
many users can use the system-and hence access the database-
concurrently. Single-user DBMSs are mostly restricted to personal
computer systems; most other DBMSs are multiuser. For example,
an airline reservations system is used by hundreds of travel agents
and reservation clerks concurrently.

Multiple users can access databases-and use computer
systems-simultaneously because of the concept of
multiprogramming, which allows the computer to execute multiple
programs-or processes-at the same time. If only a single central
processing unit (CPU) exists, it can actually execute at most one
process at a time. However, multiprogramming operating systems
execute some commands from one process, then suspend that

Transaction Processing Concepts Unit 7

Advanced Database Management 162

process and execute some commands from the next process, and
so on. A process is resumed at the point where it was suspended
whenever it gets its turn to use the CPU again. Hence, concurrent
execution of processes is actually interleaved. Figure 7.1 shows
two processes A and B executing concurrently in an interleaved
fashion. Interleaving keeps the CPU busy when a process requires
an input or output (I/O) operation, such as reading a block from
disk. The CPU is switched to execute another process rather than
remaining idle during I/O time. Interleaving also prevents a long
process from delaying other processes.

Fig 5.1: Interleaved processing versus parallel processing of
concurrent transactions

If the computer system has multiple hardware processors (CPUs),
parallel processing of multiple processes is possible, as illustrated
by processes C and D in Figure 7.1

7.3.2 TRANSACTIONS, R/W OPERATIONS AND
DBMS BUFFERS

A transaction is an executing program that forms a logical unit of
database processing. A transaction includes one or more database
access operations-these can include insertion, deletion,
modification, or retrieval operations. The database operations that
form a transaction can either be embedded within an application
program or they can be specified interactively via a high-level
query language such as SQL.

One way of specifying the transaction boundaries is
by specifying explicit begin transaction and end transaction
statements in an application program; in this case, all database

CPU1

CPU2

t1 t2 t3 t4 Time

Transaction Processing Concepts Unit 7

Advanced Database Management 163

access operations between the two are considered as forming one
transaction. A single application program may contain more than
one transaction if it contains several transaction boundaries. If the
database operations in a transaction do not update the database
but only retrieve data, the transaction is called a read-only
transaction.

The basic database access operations that a transaction can
include are as follows:

 read_item(X): Reads a database item named X into a
program variable.

 write_item(X): Writes the value of program variable X into
the database item named X.

Executing a read_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.
2. Copy that disk block into a buffer in main memory (if that

disk block is not already in some main memory buffer).
3. Copy item X from the buffer to the program variable named

X.

Executing a write_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.
2. Copy that disk block into a buffer in main memory (if that

disk block is not already in some main memory buffer).
3. Copy item X from the program variable named X into its

correct location in the buffer.
4. Store the updated block from the buffer back to disk (either

immediately or at some later point in time).

The DBMS will generally maintain a number of buffers in main
memory that hold database disk blocks containing the database
items being processed. When these buffers are all occupied, and
additional database blocks must be copied into memory, some
buffer replacement policy is used to choose which of the current
buffers is to be replaced. If the chosen buffer has been modified, it
must be written back to disk before it is reused.

A transaction includes read_item and write_item operations to
access and update the database. Figure 7.2 shows examples of
two very simple transactions. The read-set of a transaction is the
set of all items that the transaction reads, and the write-set is the
set of all items that the transaction writes. For example, the read-
set of T1 in Figure 7.2 is {X, Y} and its write-set is also {X, Y}.

Transaction Processing Concepts Unit 7

Advanced Database Management 164

7.3.3 NEED OF CONCURRENCY CONTROL

Several problems can occur when concurrent transactions execute
in an uncontrolled manner. Figure 7.2(a) shows a transaction T1
that transfers N reservations from one flight whose number of
reserved seats is stored in the database item named X to another
flight whose number of reserved seats is stored in the database
item named Y. Figure 7.2(b) shows a simpler transaction T2 that
just reserves M seats on the first flight (X) referenced in transaction
T1.

Fig 7.2: Two sample transactions. (a) Transaction T1 (b)
Transaction T2

The types of problems that may be encountered with these two
transactions if they are run concurrently are as follows.

The Lost Update Problem –

This problem occurs when two
transactions that access the same database items have their
operations interleaved in a way that makes the value of some
database items incorrect. Suppose that transactions T1 and T2 are
submitted at approximately the same time, and suppose that their
operations are interleaved as shown in Figure 7.3 (a); then the
final value of item X is incorrect, because T2 reads the value of X
before T1 changes it in the database, and hence the updated value
resulting from T1 is lost.

Time

Item X has an incorrect
value because its
update by T1 is
lost/overwritten

Transaction Processing Concepts Unit 7

Advanced Database Management 165

Fig 7.3: (a) The lost update problem (b) The temporary update

problem (c) The incorrect summary problem

T1 fails and must change the
value of X back to its old value;
meanwhile T2 has read the
temporary incorrect value of X

Time

T3 reads X after N is
subtracted and reads Y
before N is added;
resulting in a wrong
summary

Transaction Processing Concepts Unit 7

Advanced Database Management 166

The Temporary Update (or Dirty Read) Problem –
This problem

occurs when one transaction updates a database item and then
the transaction fails for some reason. The updated item is
accessed by another transaction before it is changed back to its
original value. Figure 7.3 (b) shows an example where T1 updates
item X and then fails before completion, so the system must
change X back to its original value. Before it can do so, however,
transaction T2 reads the "temporary" value of X, which will not be
recorded permanently in the database because of the failure of T1.
The value of item X that is read by T2 is called dirty data, because
it has been created by a transaction that has not completed and
committed yet; hence, this problem is also known as the dirty read
problem.

The Incorrect Summary Problem –
If one transaction is

calculating an aggregate summary function on a number of records
while other transactions are updating some of these records, the
aggregate function may calculate some values before they are
updated and others after they are updated. For example, suppose
that a transaction T3 is calculating the total number of reservations
on all the flights; meanwhile, transaction T1 is executing. If the
interleaving of operations shown in Figure 7.3 (c) occurs, the
result of T3 will be off by an amount N because T3 reads the value
of X after N seats have been subtracted from it but reads the value
of Y before those N seats have been added to it.

Another problem that may occur is called unrepeatable read,
where a transaction T reads an item twice and the item is changed
by another transaction T' between the two reads. Hence, T
receives different values for its two reads of the same item.

7.3.4 NEED OF RECOVERY

Whenever a transaction is submitted to a DBMS for execution, the
system is responsible for making sure that either (1) all the
operations in the transaction are completed successfully and their
effect is recorded permanently in the database, or (2) the
transaction has no effect whatsoever on the database or on any
other transactions. The DBMS must not permit some operations of
a transaction T to be applied to the database while other
operations of T are not. This may happen if a transaction fails after
executing some of its operations but before executing all of them.

Types of Failures –
Failures are generally classified as

Transaction, system, and media failures. There are several
possible reasons for a transaction to fail in the middle of execution:

Transaction Processing Concepts Unit 7

Advanced Database Management 167

 A computer failure (system crash) – A hardware,
software, or network error occurs in the computer system
during transaction execution. Hardware crashes are usually
media failures-for example, main memory failure.

 A transaction or system error – Some operation in the

transaction may cause it to fail, such as integer overflow or
division by zero. Transaction failure may also occur
because of erroneous parameter values or because of a
logical programming error. In addition, the user may
interrupt the transaction during its execution.

 Local errors or exception conditions detected by the

transaction – During transaction execution, certain
conditions may occur that necessitate cancellation of the
transaction. For example, data for the transaction may not
be found. An exception condition, such as insufficient
account balance in a banking database, may cause a
transaction, such as a fund withdrawal, to be canceled.
This exception should be programmed in the transaction
itself, and hence would not be considered a failure.

 Concurrency control enforcement – The concurrency
control method may decide to abort the transaction, to be
restarted later, because it violates serializability or because
several transactions are in a state of deadlock.

 Disk failure – Some disk blocks may lose their data
because of a read or write malfunction or because of a disk
read/write head crash. This may happen during a read or a
write operation of the transaction.

 Physical problems and catastrophes – This refers to an
endless list of problems that includes power or air-
conditioning failure, fire, theft, sabotage, overwriting disks
or tapes by mistake, and mounting of a wrong tape by the
operator.

Transaction Processing Concepts Unit 7

Advanced Database Management 168

1. Fill in the blanks:

(a) Transaction Processing Systems are the systems with
large _________ and hundreds of concurrent users
executing database ____________.

(b) Multiple users can access databases and use computer
systems simultaneously because of the concept of
_____________.

(c) __________ reads a database item named X into a
program variable.

(d) __________ writes the value of program variable X into the
database item named X.

(e) A _________ includes read_item and write_item operations
to ______ and _______ the database.

(f) The ________ of a transaction is the set of all items that
the transaction reads, and the _______ is the set of all
items that the transaction writes.

(g) The _________________ problem occurs when one
transaction ________ a database item and then the
transaction fails for some reason

(h) During _______________ a transaction T reads an item
twice and the item is changed by another transaction T'
between the two reads

CHECK YOUR PROGRESS

Transaction Processing Concepts Unit 7

Advanced Database Management 169

7.4 TRANSACTION AND SYSTEM CONCEPTS

While discussing about Transaction Processing Systems there are
some other relevant concepts that form the basis of effective and
efficient transaction processing. Such issues include some
discussion on the relevant operations like the different states that a
transaction goes through while it is being executed during
transaction processing. The system log, which keeps information
needed for recovery, is the key player in case the need of a system
recovery arises.

7.4.1 Transaction States and Additional
Operations

A transaction is an atomic unit of work that is either completed in
its entirety or not done at all. For recovery purposes, the system
needs to keep track of when the transaction starts, terminates, and
commits or aborts. Hence, the recovery manager keeps track of
the following operations:

 BEGIN_TRANSACTION: This marks the beginning of
transaction execution.

 READ OR WRITE: These specify read or write operations
on the database items that are executed as part of a
transaction.

 END_TRANSACTION: This specifies that READ and
WRITE transaction operations have ended and marks the
end of transaction execution. However, at this point it may
be necessary to check whether the changes introduced by
the transaction can be permanently applied to the database
(committed) or whether the transaction has to be aborted
because it violates serializability or for some other reason.

 COMMIT_TRANSACTION: This signals a successful end
of the transaction so that any changes (updates) executed
by the transaction can be safely committed to the database
and will not be undone.

 ROLLBACK (OR ABORT): This signals that the
transaction has ended unsuccessfully, so that any changes
or effects that the transaction may have applied to the
database must be undone.

Figure 7.4 shows a state transition diagram that describes how a
transaction moves through its execution states. A transaction goes
into an active state immediately after it starts execution, where it
can issue READ and WRITE operations. When the transaction
ends, it moves to the partially committed state. At this point,
some recovery protocols need to ensure that a system failure will
not result in an inability to record the changes of the transaction
permanently. Once this check is successful, the transaction is said
to have reached its commit point and enters the committed state.

Transaction Processing Concepts Unit 7

Advanced Database Management 170

END
TRANSACTION

BEGIN
TRANSACTION

READ/WRITE

ABORT ABORT

COMMIT

Once a transaction is committed, it has concluded its execution
successfully and all its changes must be recorded permanently in
the database.

However, a transaction can go to the failed state if
one of the checks fails or if the transaction is aborted during its
active state. The transaction may then have to be rolled back to
undo the effect of its WRITE operations on the database. The
terminated state corresponds to the transaction leaving the
system.

Fig 7.4: State transition diagram of states for transaction
execution

7.4.2 THE SYSTEM LOG

The system maintains a log to keep track of all transaction
operations that affect the values of database items in order to be
able to recover from failures that affect transactions. This
information may be needed to permit recovery from failures. We
now list the types of entries – called log records – that are written
to the log and the action each performs. In these entries, T refers
to a unique transaction-id that is generated automatically by the
system and is used to identify each transaction:

 [start-transaction, T]: Indicates that transaction T has
started execution.

 [write_item, T, X, old_value, new_value]: Indicates that
transaction T has changed the value of database item X
from old_value to new_value.

 [read_item, T, X]: Indicates that transaction T has read the
value of database item X.

ACTIVE PARTIALLY
COMMITTED

COMMITTED

FAILED TERMINATED

Transaction Processing Concepts Unit 7

Advanced Database Management 171

 [commit, T]: Indicates that transaction T has completed
successfully, and affirms that its effect can be committed
(recorded permanently) to the database.

 [abort, T]: Indicates that transaction T has been aborted.

7.4.3 COMMIT POINT OF A TRANSACTION

A transaction T reaches its commit point when all its operations
that access the database have been executed successfully and the
effect of all the transaction operations on the database have been
recorded in the log. Beyond the commit point, the transaction is
said to be committed, and its effect is assumed to be permanently
recorded in the database. The transaction then writes a commit
record [commit, T] into the log. If a system failure occurs, we
search back in the log for all transactions T that have written a
[start_transaction, T] record into the log but have not written their
[commit, T] record yet; these transactions may have to be rolled
back to undo their effect on the database during the recovery
process. Transactions that have written their commit record in the
log must also have recorded all their WRITE operations in the log,
so their effect on the database can be redone from the log records.
It is important to note that the log file must be kept on disk.
Updating a disk file involves copying the appropriate block of the
file from disk to a buffer in main memory, updating the buffer in
main memory, and copying the buffer to disk. It is also common to
keep one or more blocks of the log file in main memory buffers
until they are filled with log entries and then to write them back to
disk only once, rather than writing to disk every time a log entry is
added. This saves the overhead of multiple disk writes of the same
log file block. At the time of a system crash, only the log entries
that have been written back to disk are considered in the recovery
process because the contents of main memory may be lost.
Hence, before a transaction reaches its commit point, any portion
of the log that has not been written to the disk yet must now be
written to the disk. This process is called force-writing the log file
before committing a transaction.

7.5 DESIRABLE PROPERTIES OF
TRANSACTION

Transactions should possess several properties. These are often
called the ACID properties, and they should be enforced by the
concurrency control and recovery methods of the DBMS. The
following are the ACID properties:
1. Atomicity: A transaction is an atomic unit of processing; it is

either performed in its entirety or not performed at all.

Transaction Processing Concepts Unit 7

Advanced Database Management 172

2. Consistency preservation: A transaction is consistency
preserving if its complete execution takes the database from
one consistent state to another.

3. Isolation: A transaction should appear as though it is being
executed in isolation from other transactions. That is, the
execution of a transaction should not be interfered with by any
other transactions executing concurrently.

4. Durability or permanency: The changes applied to the
database by a committed transaction must persist in the
database. These changes must not be lost because of any
failure.

The atomicity property requires that we execute a transaction to
completion. It is the responsibility of the transaction recovery
subsystem of a DBMS to ensure atomicity. If transaction fails to
complete for some reason, such as a system crash in the midst of
transaction execution, the recovery technique must undo any effect
of the transaction on the database.
The preservation of consistency is generally considered to be the
responsibility of the programmers who write the database
programs or of the DBMS module that enforces integrity
constraints. A database state is a collection of all the stored data
items in the database at a given point in time. A consistent state of
the database satisfies the constraints specified in the schema as
well as any other constraints that should hold on the database. A
database program should be written in a way that guarantees that,
if the database is in a consistent state before executing the
transaction, it will be in a consistent state after the complete
execution of the transaction, assuming that no interference with
other transaction occurs.
Isolation is enforced by the concurrency control system of the
DBMS. If every transaction does not make its updates visible to
other transactions until it is committed, one form of isolation is
enforced that solves the temporary update problem and eliminates
cascading rollbacks. There have been attempts to define the level
of isolation of a transaction. A transaction is said to have Level 0
isolation if it does not overwrite the dirty reads of higher level
transaction. Level 1 isolation has no lost of updates; and Level 2
isolation has no lost updates and no dirty reads. Finally, Level 3
isolation has in addition to degree 2 properties, repeatable reads.
Finally, durability property is the responsibility of the recovery
subsystem of the DBMS.

Transaction Processing Concepts Unit 7

Advanced Database Management 173

 2. Fill in the blanks:

(a) A transaction is an _____ unit of work that is either
completed in its entirety or not done at all

(b) ______________ marks the beginning of transaction

execution.

(c) _______________ specifies that READ and WRITE

transaction operations have ended and marks the end of
transaction execution.

(d) ___________________ signals a successful end of the

transaction.

(e) __________________ signals that the transaction has

ended unsuccessfully.

(f) A transaction is ________________ if its complete

execution takes the database from one consistent state to
another.

(g) A ________________ is a collection of all the stored data

items in the database at a given point in time.

(h) A transaction is said to have _________ isolation if it does

not overwrite the dirty reads of higher level transaction.

CHECK YOUR PROGRESS

Transaction Processing Concepts Unit 7

Advanced Database Management 174

7.6 CHARACTERIZING SCHEDULES BASED ON
RECOVERABILITY

When transactions are executing concurrently in an interleaved
fashion, then the order of execution of operations from the various
transactions is known as a schedule (or history).
Schedules (Histories) of Transactions
A schedule (or history) S of n transactions T1, T2, ... , Tn is an
ordering of the operations of the transactions subject to the
constraint that, for each transaction Ti that participates in S, the
operations of Ti in S must appear in the same order in which they
occur in Ti. For the purpose of recovery and concurrency control,
we are mainly interested in the read_item and write_item
operations of the transactions, as well as the commit and abort
operations. A shorthand notation for describing a schedule uses
the symbols r, w, c, and a for the operations read_item, write_item,
commit, and abort, respectively, and appends as subscript the
transaction id (transaction number) to each operation in the
schedule. In this notation, the database item X that is read or
written follows the r and w operations in parentheses. For example,
the schedule of Fig 7.3(a), which we shall call Sa, can be written as
follows in this notation:

Sa: r1(X); r2(X); w1(X); r1(Y); w2(X); w1(Y);

Two operations in a schedule are said to conflict if they satisfy all
three of the following conditions: (1) they belong to different
transactions; (2) they access the same item X; and (3) at least one
of the operations is a write_item(X).
A schedule S of n transactions T1, T2,..….Tn, is said to be a
complete schedule if the following conditions hold:
1. The operations in S are exactly those operations in T1, T2,..…

Tn, including a commit or abort operation as the last operation
for each transaction in the schedule.

2. For any pair of operations from the same transaction Ti, their
order of appearance in S is the same as their order of
appearance in T;

3. For any two conflicting operations, one of the two must occur
before the other in the schedule.

For some schedules it is easy to recover from transaction failures,
whereas for other schedules the recovery process can be quite
involved. Hence, it is important to characterize the types of
schedules for which recovery is possible, as well as those for
which recovery is relatively simple. First, we would like to ensure
that, once a transaction T is committed, it should never be
necessary to roll back T. The schedules that theoretically meet this
criterion are called recoverable schedules and those that do not
are called non recoverable, and hence should not be permitted. A
schedule S is recoverable if no transaction T in S commits until all

Transaction Processing Concepts Unit 7

Advanced Database Management 175

transactions T’ that have written an item that T reads have
committed.
Recoverable schedules require a complex recovery process, but if
sufficient information is kept (in the log), a recovery algorithm can
be devised. In a recoverable schedule, no committed transaction
ever needs to be rolled back. However, it is possible for a
phenomenon known as cascading rollback (or cascading abort)
to occur, where an uncommitted transaction has to be rolled back
because it read an item from a transaction that failed. Because
cascading rollback can be quite time-consuming (since numerous
transactions can be rolled back), it is important to characterize the
schedules where this phenomenon is guaranteed not to occur. A
schedule is said to be cascadeless, or to avoid cascading
rollback, if every transaction in the schedule reads only items that
were written by committed transactions.
Finally, there is a third, more restrictive type of schedule, called a
strict schedule, in which transactions can neither read nor write
an item X until the last transaction that wrote X has committed (or
aborted). Strict schedules simplify the recovery process. In a strict
schedule, the process of undoing a write_item(X) operation of an
aborted transaction is simply to restore the before image
(old_value or BFIM) of data item X. This simple procedure always
works correctly for strict schedules, but it may not work for
recoverable or cascadeless schedules.

7.7 Characterizing Schedules Based on
Serializability

In the case of characterizing schedules based on Serializability we
characterize the type of schedules that are considered correct
when concurrent transactions are being executed. Let us suppose
that two users – two airline reservation clerks – submit to the
DBMS transactions T1 and T2 of Figure 7.5 at the same time. If no
interleaving of operations is permitted, there are only two possible
outcomes:
1. Execute all the operations of transaction T1 followed by all the

operations of transaction T2.
2. Execute all the operations of transaction T2 followed by all the

operations of transaction T1.

Transaction Processing Concepts Unit 7

Advanced Database Management 176

Time

Time

Time

(a)

Schedule A
(b)

Schedule B

(c)

Schedule C

Transaction Processing Concepts Unit 7

Advanced Database Management 177

(d)

Schedule D

Fig 7.5: Examples of serial and non-serial schedules involving
transactions T1 and T2. (a) Serial schedule A: T1 followed byT2

(b) Serial schedule B: T2 followed by T1 (c) Two non-serial
schedules C and D with interleaving of operations

Serial, non-serial, and conflict-serializable schedules –
Schedules A and B in Fig 7.5 (a) and (b) are called serial because
the operations of each transaction are executed consecutively,
without any interleaved operations from the other transaction. In a
serial schedule, entire transactions are performed in serial order:
T1 and then T2 in Fig 7.5 (a), and T2 and then T1 in Fig 7.5 (b).
Schedules C and D in Fig 7.5 (c) are called non-serial because
each sequence interleaves operations from the two transactions.

Formally, a schedule S is serial if, for every transaction T
participating in the schedule, all the operations of T are executed
consecutively in the schedule; otherwise, the schedule is called
non-serial. Hence in a serial schedule, only one transaction at a
time is active – the commit/abort of the active transaction initiates
execution of the next transaction. No interleaving occurs in a serial
schedule. One reasonable assumption we can make, if we
consider the transactions to be independent, is that every serial
schedule is considered correct. We can assume this because
every transaction is assumed to be correct if executed on its own.
Hence, it does not matter which transaction is executed first. As
long as every transaction is executed from beginning to end
without any interference from the operations of other transactions,
we get a correct end result on the database. The problem with
serial schedules is that they limit concurrency or interleaving of
operations. In a serial schedule, if a transaction waits for an I/O
operation to complete, we cannot switch the CPU processor to
another transaction, thus wasting valuable CPU processing time.
In addition, if some transaction T is quite long, the other
transactions must wait for T to complete all its operations before
commencing. Hence, serial schedules are generally considered
unacceptable in practice.

Transaction Processing Concepts Unit 7

Advanced Database Management 178

A schedule S of n transactions is serializable if it is
equivalent to some serial schedule of the same n-transactions.
There are n! possible serial schedules of n transactions and many
more possible non-serial schedules. We can form two disjoint
groups of the non-serial schedules: those that are equivalent to
one or more of the serial schedules, and hence are serializable;
and those that are not equivalent to any serial schedule and hence
are not serializable.

Two schedules are called result equivalent if they produce
the same final state of the database. However, two different
schedules may accidently produce the same final state. For
example, in Figure 7.6 schedules S1 and S2 will produce the same
final database state if they execute on a database with an initial
value of X=100; but for other initial values of X, the schedules are
not result equivalent. For two schedules to be equivalent, the
operations applied to each data item affected by the schedules
should be applied to that item in both schedules in the same order.
Two definitions of equivalence of schedules are generally used:
conflict equivalence and view equivalence.

Two schedules are said to be conflict equivalent if the
order of any two conflicting operations is the same in both
schedules. Two operations in a schedule are said to conflict if they
belong to different transactions, access the same database item
and at least one of the two operations is a write_item operation. If
two conflicting operations are applied in different orders in two
schedules, the effect can be different on the database or on other
transactions in the schedule, and hence the schedules are not
conflict equivalent.

Using the notion of conflict equivalence, we define a
schedule S to be conflict serializable if it is (conflict) equivalent to
some serial schedule S. in such a case, we can reorder the non-
conflicting operation in S until we form the equivalent serial
schedule S.

Fig 7.6: Two schedules that are result equivalent for the initial

value of X=100 but are not result equivalent in general

Two schedules S and S’ are said to be view equivalent if the
following three conditions hold:
1. The same set of transactions participates in S and S’, and S

and S’ include the same operations of those transactions.
2. For any operation r1(X) of T1 in S, if the value of X read by the

operation has been written by an operation w1(X) of T1, the

Transaction Processing Concepts Unit 7

Advanced Database Management 179

same condition must hold for the value of X read by operation
r1(X) of T1 in S’.

3. If the operation wk(Y) of Tk is the last operation to write item Y
in S, then wk(Y) of Tk must also be the last operation to write
item Y in S’.

The idea behind view equivalence is that, as long as each
read operation of a transaction reads the result of the same write
operation in both schedules, the write operations of each
transaction must produce the same result. The read operations are
hence said to see the same view in both schedules. Condition 3
ensures that the final write operation on each data item is the
same in both schedules, so the database state should be the same
at the end of both schedules. A schedule S is said to be view
serializable if it is view equivalent to a serial schedule.

 3. Fill in the blanks:

(a) In ____________ an uncommitted transaction has to be
rolled back because it read an item from a transaction that
failed.

(b) A schedule is said to be ___________ if every transaction

in the schedule reads only items that were written by
committed transactions.

(c) Two schedules are called ___________ if they produce

the same final state of the database.

(d) Two schedules are said to be ____________ if the order

of any two conflicting operations is the same in both
schedules.

(e) A schedule is ______________ if it is (conflict) equivalent

to some serial schedule.

(f) A schedule is said to be ___________ if it is view

equivalent to a serial schedule.

CHECK YOUR PROGRESS

Transaction Processing Concepts Unit 7

Advanced Database Management 180

7.8 LET US SUM UP

 The concept of transaction provides a mechanism for

describing logical units of database processing
 A transaction is an executing program that forms a logical

unit of database processing
 The lost update problem occurs when two transactions that

access the same database items have their operations
interleaved in a way that makes the value of some
database items incorrect

 Failures are generally classified as Transaction, system,
and media failures

 The concurrency control method may decide to abort the
transaction, to be restarted later

 For recovery purposes, the system needs to keep track of
when the transaction starts, terminates, and commits or
aborts

 The system maintains a log to keep track of all transaction
operations that affect the values of database items in order
to be able to recover from failures that affect transactions

 A transaction T reaches its commit point when all its
operations that access the database have been executed
successfully and the effect of all the transaction operations
on the database have been recorded in the log

 A schedule S of n transactions is serializable if it is
equivalent to some serial schedule of the same n-
transactions

1.

(a) databases, transactions.
(b) multiprogramming.
(c) read_item(X).
(d) write_item(X).
(e) transaction, access, update.
(f) read-set, write-set.
(g) temporary update, updates.
(h) unrepeatable reads.

7.9 ANSWERS TO CHECK YOUR
 PROGRESS

Transaction Processing Concepts Unit 7

Advanced Database Management 181

2.
(a) atomic.
(b) BEGIN_TRANSACTION.
(c) END_TRANSACTION
(d) COMMIT_TRANSACTION.
(e) ROLLBACK (OR ABORT)
(f) consistency preserving.
(g) database state
(h) Level 0

3.

(a) cascading rollback
(b) cascadeless
(c) result equivalent
(d) conflict equivalent
(e) conflict serializable
(f) view serializable

 7.10 FURTHER READINGS

- Prof. Sushant S. Sundikar: Introduction to Database
Management System

- Elmasri, Navathe, Somayajulu, Gupta: Fundamentals of
Database Systems

Transaction Processing Concepts Unit 7

Advanced Database Management 182

1. What is a database transaction? Describe the different

operations that are performed during a transaction

2. What is the need of concurrency control? Discuss the

problems that may occur when two transactions run
concurrently

3. Discuss the different types of failures? What is meant by

catastrophic failure?

4. Draw a state diagram, and discuss the typical states that a

transaction goes through during execution.

5. What is a System log used for? What are the typical kinds

of records in a system log?

6. Discuss the ACID properties of a database transaction

7. What is a schedule (history)? Define the concepts of

recoverable, cascadeless and strict schedules.

8. Discuss how Serializability is used to enforce concurrency

control in a database system.

9. Discuss serial, non-serial and conflict serializable

schedules

7.11 MODEL QUESTIONS

Concurrency Control and recovery Unit 8

 Advanced Database Management System 1

UNIT-8 CONCURRENCY CONTROL AND RECOVERY

UNIT STRUCTURE

8.1 Learning Objectives
8.2 Introduction
8.3 Two phase locking techniques for concurren

cycontrol
8.4 Types of Two phase Locking

8.5 Concurrency control based on Timestamp Ordering
8.5.1 Basic Timestamp Ordering
8.5.2 Strict Timestamp Ordering

8.6 Multi-version concurrency control (MVCC)
8.6.1 The schedulers for MVCC based Timestamp

 Ordering
8.6.2 Multiversion Two-Phase Locking

8.7 Validation (optimistic) concurrency control tech
niques

8.8 Granularity of Data Item
8.9 Database Recovery Concept

8.9.1 Category of recovery algorithm
8.10 Let Us Sum Up
8.11 Answers to Check Your Progress
8.12 Further Readings
8.13 Model Questions

8.1 LEARNING OBJECTIVES

After going through this unit, you will able to
 learn the meaning of concurrency
 learn the Concurrency Control Techniques
 describe the idea of Controlling Concurrency
 learn the types of timestamp ordering
 describe the concept of Granularity
 describe the database recovery and different recovery

techniques

2 Advanced Database Management System

Concurrency Control and recovery Unit 8

8.2 INTRODUCTION

In the previous chapter we learnt about transaction and serializability
of transaction. This chapter discusses about the different concurrency
control techniques and locking how locking helps in transaction
isolation. Most of the techniques discussed ensures the serializabality
by using different protocols. The chapter discusses about the
techniques like two phase locking, timestamp ordering, optimistic
protocols etc. The effect of granularity, in currency control is also
discussed. The completes with the discussion about database
recovery

8.3 TWO PHASE LOCKING TECHNIQUES FOR
 CONCURRENCY CONTROL

In case of shared data, locking is a mechanism commonly used to
solve the problem of synchronized access. Conceptually, it is a
variable associated with a data item. It is important here to note that
each data item has a lock associated with it. Before a transaction
T1, access a data item, the scheduler first examines the associated
lock with the data item. If no transaction holds the lock on the data
item, then the scheduler obtains the lock on behalf of T1. If another
transaction T2, hold the lock, then T1, has to wait until T2 gives up
the lock. That is, the scheduler will not give T1, the lock until T2,
releases it. The scheduler thereby ensures that only one transaction
can hold the lock at a time, so only one transaction can access the
data item at a time. Locking can be used by a scheduler to ensure
serializability of transaction. To present such a locking protocol, we
need some notation.

Transactions access data items either for reading or for writing them.
We therefore associate two types of locks with data items: read locks
and write locks. Let us assume that rl[x] denote a read lock on data
item x and wl[x] denote a write Iock on x. rl[x] (or wl[x]) to indicate that
transaction T, has obtained a read (or write) lock on x. We use rli[x]
(or wli[x]) to denote the operation by which Ti releases its read (or

Concurrency Control and recovery Unit 8

 Advanced Database Management System 3

write) lock on x. In this case, we say Ti unlocks x. It is the job of a two
Phase Locking (2PL) scheduler to manage the locks by controlling
when transactions obtain and release their locks. A transaction is
said to follow the Two Phase Locking protocol, if all locking operations
(either read or write lock) first perform the unlock operation in any
transaction. The rules according to which a basic 2PL scheduler
manages and uses its locks:

1. When it receives an operation pi[x] from the Transaction
Manager, the scheduler tests if pli[x] conflicts with some qli[x]
that is already set. If so, it delays pi[x], forcing Ti to wait until it
can set the lock it needs. If not, then the scheduler sets pli[x],
and then sends pi[x] to the Database Manager.

2. Once the scheduler has set a lock for Ti, say pli[x], it may
not release that lock at least until after the Database Manager
acknowledges that it has processed the lock’s corresponding
operation, pi[x].

3. Once the scheduler has released a lock for a transaction,
it may not subsequently obtain any more locks for that
transaction on any data item.

from the above rule it has been noticed that, according to rule (1),
prevents two transactions from concurrently accessing a data item
in conflicting modes. Thus, conflicting operations are scheduled in
the same order in which the corresponding locks are obtained.

The rule (2) supports rule (1) by ensuring that the Database Manager
processes operations on a data item in the order that the scheduler
submits them. For example, suppose Ti obtains rl[x], which it releases
before the Database Manager has confirmed that ri[x] has been
processed. Then it is possible for Tj to obtain a conflicting lock on x,
wlj[x], and send wj[x] to the Database Manager. Although the scheduler
has sent the Database Manager ri[x] before wj[x]. Without rule (2)
there is no guarantee that the Database Manager will receive and
process the operations in that order.

RuIe (3), called the two phase rule, is the base for the name two

4 Advanced Database Management System

Concurrency Control and recovery Unit 8

phase locking. Each transaction may be divided into two phases: a
growing phase or expanding phase (first phase) during which it
obtains locks, and a shrinking phase (second phase) during which
it releases locks.

8.4 TYPES OF TWO PHASE LOCKING

There are basically two types of Two Phase Locking. They are :

Conservative 2PL
It is possible to construct a Two Phase Locking scheduler

that never aborts transactions. This technique is known as
Conservative Two Phase Locking or Static 2X. As, Two Phase
Locking most of the time causes abortions because of deadlocks;
Conservative Two Phase Locking avoids deadlocks by requiring each
transaction to obtain all of its locks before any of its operations are
submitted to the Database Manager. This is done by having each
transaction to declare its readset and writeset in advanced.
Specifically, each transaction Ti first tells the scheduler all the data
items it will want to Read or Write, for example as part of its Start
operation. The scheduler tries to set all of the locks needed by Ti. It
can do this by ensuring that none of these locks conflicts with a lock
held by any other transaction. If the scheduler succeeds in setting all
of Ti’s locks, then it submits Ti’s operations to the Database Manager
as soon as it receives them. After the Database Manager
acknowledges the processing of Ti’s last database operation, the
scheduler may release all of Ti’s locks. If, on the other hand, any of
the locks requested in Ti’s Start conflicts with locks presently held by
other transactions, then the scheduler does not grant any of Ti’s locks.
Instead, it inserts Ti along with its lock requests into a waiting queue.
Every time the scheduler releases the locks of a completed
transaction, it examines the waiting queue to see if it can grant all of
the lock requests of any waiting transactions. If so, it then sets all of
the locks for each such transaction and continues processing as
just described. In Conservative Two Phase Locking, if a transaction
Ti is waiting for a lock held by Tj, then Ti is holding no locks. Therefore,

Concurrency Control and recovery Unit 8

 Advanced Database Management System 5

no other transaction Tk can be waiting for Ti. Since deadlock is the
only reason that a Two Phase Locking scheduler ever rejects an
operation and thereby causes the corresponding transaction to abort,
Conservative Two Phase Locking never aborts a transaction. By
delaying operations sooner than it has to, namely, when the
transaction begins executing, the scheduler avoids abortions that
might otherwise be needed for concurrency contro1 reasons.

Strict Two Phase Locking

Almost all implementations of Two Phase Locking use a variant called
Strict Two Phase Locking. This differs from the Basic 2PL scheduler
described in the previous section that it requires the scheduler to
release all of a transaction’s locks together, when the transaction
terminates. More specifically, Ti’s locks are released after the
Database Manager acknowledges the processing of ci or aj, depending
on whether Ti commits or aborts respectively. The reasons for
adopting this policy is Firstly, consider when a Two Phase Locking
scheduler can release some oli[x]. To do so the scheduler must know
that: (1) Ti has set all of the locks it will ever need, and (2) Ti will not
subsequently issue operations that refer to X. One point in time at
which the scheduler can be sure of (1) and (2) is when Ti terminates,
that is, when the scheduler receives the ci or ai operation. In fact, in
the absence of any information from the Transaction Manager aside
from the operations submitted, this is the earliest time at which the
scheduler can be assured that (1) and (2) hold. A second reason for
the scheduler to keep a transaction’s locks until it ends, and specifically
until after the Database Manager processes the transaction’s Commit
or Abort, is to guarantee a strict execution.

Distributed Two Phase Locking

Two phase locking can also be realized in a distributed Database
Management System. A distributed Database Management System
consists of a collection of communicating nodes, each of which is a
centralized Database Management System. Each data item is stored
at exactly one node. The scheduler manages the data items stored
at its site. This means that the scheduler is responsible for controlling
access to the items. A transaction submits its operations to a

6 Advanced Database Management System

Concurrency Control and recovery Unit 8

Transaction Manager. The Transaction Manager then delivers each
Read(x) or Write(x) operation of that transaction to the scheduler
that manages x. When a scheduler decides to process the Read(x)
or Write(x), it sends the operation to its local Database Manager,
which can access x and return its value (for a Read) or update it (for
a Write). The Commit or Abort operation is sent to all nodes where
the transaction accessed data items. The schedulers at all nodes,
taken together, constitute a distributed scheduler. The task of the
distributed scheduler is to process the operations submitted by the
Transaction Managers in a globally serializable and recoverable
manner. It is possible to build a distributed scheduler based on Two
Phase Locking. Each scheduler maintains the locks for the data items
stored at its node and manages them according to the Two Phase
Locking rules. In Two Phase Locking, a Read(x) or Write(x) is
processed when the appropriate lock on x can be obtained, which
only depends on what other locks on x are presently owned.
Therefore, each local Two Phase Locking scheduler has all the
information it needs to decide when to process an operation, without
communicating with the other sites. It is problematic to decide when
to release a lock. To enforce the two phase rule, a scheduler cannot
release a transaction Ti’s lock until it knows that T, will not submit any
more operations to it or any other scheduler. Otherwise, one scheduler
might release Ti’s lock and sometime later another scheduler might
set a lock for Ti, thereby violating the two phase rule.

It would appear that enforcing the two phase rule requires
communication among the schedulers at different nodes. However,
if schedulers use Strict Two Phase Locking, then they can avoid such
communication. Because, the Transaction Manager that manages
transaction T, sends Ti’s Commit to all nodes where Ti accessed
data items. By the time the Transaction Manager decides to send
T i’s Commit to all those sites, it must have received
acknowledgments to all of Tj’s operations. Therefore, Ti has surely
obtained all the locks it will ever need. Thus, if a scheduler releases
Ti’s locks after it has processed Tj’s Commit (as it must under Strict
Two Phase Locking), it knows that no scheduler will subsequently
set any locks for Ti. To prove that the distributed Two Phase Locking

Concurrency Control and recovery Unit 8

 Advanced Database Management System 7

scheduler is correct we simply ensure that any history H it could
have produced satisfies the properties of Two Phase Locking histories.

 CHECK YOUR PROGRESS

1. Fill up the gapes
a) A lock is a ____________ associated with a data item.
b) Changing the state of lock from one type to another is known as
 ________.
c) In __________ phase of locking, new locks on item can be granted.
d) in _______ phase, existing locks are released.
e) In conservative two phase locking technique, it never _______
 transaction.

8.5 CONCURRENCY CONTROL BASED ON
 TIMESTAMP ORDERING

In timestamp ordering, the Transaction Manager assigns a unique
timestamp, ts(Ti), to each transaction Ti. It generates timestamps
using some of the efficient techniques, in the context of timestamp-
based deadlock prevention. The Transaction Manager attaches a
transaction’s timestamp to each operation issued by the transaction.
It will therefore be convenient to speak of the timestamp of an
operation oi[x], which is simply the timestamp of the transaction that
issued the operation. A Timestamp Ordering (TO) scheduler orders
conflicting operations according to their timestamps. More precisely,
it applies the following rule, called the TO rule.

TO Rule: If pi[x] and qi[x] are conflicting operations, then the
Database Manager processes pi[x] before qi[x] if and only if ts(Ti) <
ts(Ti). By enforcing the TO rule, it can be ensured that every pair of
conflicting operations is executed in timestamp order. Thus, a TO

8 Advanced Database Management System

Concurrency Control and recovery Unit 8

execution has the same effect as a serial execution in which the
transactions appear in timestamp order.

Variations of TO :
8.5.1 Basic Timestamp Ordering

The Basic TO is a simple and aggressive implementation of the TO
rule. It accepts operations from the Transaction Manager and
immediately outputs them to the Database Manager in first-come-
first-served order. To ensure that this order does not violate the TO
rule, the scheduler rejects operations that it receives too late. An
operation pi[x] is too late if it arrives after the scheduler has already
output some conflicting operation qi[x] with ts(Ti) > ts(Tj). If pi[x] is too
late, then it cannot be scheduled without violating the TO rule. Since
the scheduler has already output qj[x], it can only solve the problem
by rejecting pi[x].

If ei[x] is rejected, then Ti must abort. When Ti is submitted again, it
must be assigned a timestamp sufficiently large so that its operations
are less likely to be rejected during its second execution.
To determine if an operation has arrived too late, the Basic TO
scheduler maintains for every data item x the maximum timestamps
of Reads and Writes on x that it has sent to the Database Manager,
denoted by max-r-scheduled[x] and max-w-scheduled[x] respectively.
When the scheduler receives ei[x], it compares ts(Ti) to max-q-
scheduled[x] for all operation types q that conflict with p. If ts(Ti) <
max-q-scheduled[x], then the scheduler rejects ei[x], since it has
already scheduled a conflicting operation with a larger timestamp.
Otherwise, it schedules ei[x] and, if ts(Ti) > max-p-scheduled[x], it
updates max-p-scheduled[x] to ts(Ti).

The scheduler must communicate to the Database Manager to
guarantee that operations are processed by the Database Manager
in the order that the scheduler sent them. Even if the scheduler
decides that ei[x] can be scheduled, it must not send it to the Database
Manager until every conflicting qj[x] that it previously sent has been
acknowledged by the Database Manager.

Concurrency Control and recovery Unit 8

 Advanced Database Management System 9

For proper maintenance of the communication with the Database
Manager, the Basic TO scheduler also maintains, for each data
item x, the number of Reads and Writes that have been sent to the
Database Manager, but not yet acknowledged. These are denoted
as r-in-transit[x] and w-in-transit[x] respectively. For each data item
x the scheduler also maintains a queue, queue[x], of operations
that can be scheduled in so far as the TO rule is concerned, but
are waiting for acknowledgments from the Database Manager to
previously sent conflicting operations.

8.5.2 Strict Timestamp Ordering

An improved version of Basic TO is the Strict TO, which is both Strict
ensuring easy recoverability and serializable. Although the TO rule
enforces serializability, it does not necessarily ensure recoverability.
If w-in-transit[x] denotes the number of w[x] operations that the
scheduler has sent to the Database Manager but that the Database
Manager has not yet acknowledged. Since two conflicting operations
cannot be “in transit” at any time and Writes on the same data item
conflict, w-in-transit[x] at any time is either 0 or 1. The Strict TO
scheduler is similar to Basic TO in every respect, except that it does
not set w-in-transit[x] to 0 when it receives the Database Mamnager’s
acknowledgment of a w[x]. Instead it waits until it has received
acknowledgment of ai or ci. It then sets w-in-transit[x] to zero for
every x for which it had sent wi[x] to the Database Manager. This
delays all rj[x] and wj[x] operations with ts(Tj) > ts(Ti) until Ti has
committed or aborted. This means that the execution output by the
scheduler to the Database Manager is strict.

 CHECK YOUR PROGRESS

2. State True or False
a) Timestamp is an unique identifier used to identify a transaction
when it is aborted.
b) Arranging of transaction based on timestamp value is known
as Timestamp ordering.

10 Advanced Database Management System

Concurrency Control and recovery Unit 8

8.6 MULTI-VERSION CONCURRENCY CONTROL
 (MVCC)

In a multiversion concurrency control algorithm, each Write on a data
item x produces a new copy or version of x, thereby keeping the
original copy intact. The Database Manager that manages x keeps a
list of copies or versions of x, which is the history of values that the
Database Manager has assigned to x. For each Read(x), the
scheduler not only decides when to send the Read to the Database
Manager, but it also tells the Database Manager which one of the
copy or version of x to read.

The main benefit of multiple versions for controlling concurrency is
to help the scheduler avoid rejecting operations that arrive too late.
For example, the scheduler normally rejects a Read because the
value it was supposed to read has already been overwritten. With
multiversions, such old values are never overwritten and are therefore
always available for Reads. The Database Manager makes the
different versions explicitly available to the scheduler. The
disadvantage of MVCC is the utilization of storage space in turn
wasting valuable memory space and for better processing, it is also
important to do the archiving thereby incurring processing overhead.

It is important to note here that when a transaction is aborted, the
scheduler does not create a new version. The new versions are only
created for the transaction which is either active or committed. Thus,
when the scheduler decides to assign a particular version of x to
Read(x), the value returned is not one produced by an aborted trans-
action.

 8.6.1 The schedulers for MVCC based
Timestamp Ordering

Concurrency Control and recovery Unit 8

 Advanced Database Management System 11

According the TO algorithm, each transaction has a unique
timestamp, denoted ts(Ti). Each operation carries the timestamp of
its corresponding transaction. Each version is labeled by the
timestamp of the transaction that wrote it. A Multiversion TO (M VTO)
scheduler processes operations on first-come-first-served basis. The
scheduler processes ri[x] by first translating it into ri[xk], where xk is
the version of x with the largest timestamp less than or equal to ts(Ti),
and then sending rj[xk] to the Database Manager. It processes wi[X]
by considering two cases.

If it has already processed a Read rj[xk] such that ts(Tk) < ts(Ti) < ts(
Tj), then it rejects wi[x]. Otherwise, it translates wi[x] into wj[xj] and
sends it to the Database Manager. Finally, to ensure recoverability,
the scheduler must delay the processing of ci until it has processed
Cj for all transactions Tj that wrote versions read by Ti.

8.6.2 Multiversion Two-Phase Locking

According to this concept there are three locking modes read, write
instead of two namely read and write. So, the state of LOCK(X) for
an item X can be read-lock, write-lock or certify. According to the
locking concept, write_lock is considered as an exclusive lock, i.e.
when a transaction holds a write_lock on an item, that item cannot
be locked by any other transaction.

The idea behind multiversion Two Phase Locking is to allow other
transactions T/ to read an item x while a single transaction T holds a
write lock on x. This is accomplished by having two versions for each
item x. One version must always have been written by some com-
mitted transaction, while the second version is created when a trans-
action T acquires a write lock on the item. So, other transaction can
continue accessing the item from the committed version of x. Any
transaction T can write the value of x/ when required, without affect-
ing the value of the committed version of x. Once T is ready to com-
mit, it must obtain a certify lock on all items that it currently holds
write locks on before it can commit. To obtain a certify lock, a trans-
action may have to delay its commit, until all its write locked items
are released by any reading transactions. Once certify lock is ob-

12 Advanced Database Management System

Concurrency Control and recovery Unit 8

tained, the committed version of the data is updated with the new
value and the certify lock is released.

Thus, in case of multiversion Two Phase Locking, read can proceed
concurrently with a single write operation, which is not permitted in
case of standard Two Phase Locking.

 CHECK YOUR PROGRESS

3. Fill Up the gapes

a) In Multi Version Concurrency Control, old value of data items
 are kept, even after __________ of data item.
b) In Multi Version two phase locking, ______ types of locking is
 present.
c) In Multi Version Concurrency Control, a ______ version is
 created, whenever there is an update.

8.7 VALIDATION (OPTIMISTIC) CONCURRENCY
 CONTROL TECHNIQUES

In all the concurrency control techniques that we discussed so far,
some kind of checking is done, before a database operation can be
executed. These kind of checking adversely affect the performance
of the database by slowing down the transaction execution process.
For example in case of locking, a check is done to verify whether the
item accessed by the transaction is locked or not. This gives extra
overhead, thereby slowing down the transaction execution time.

In case of validation concurrency control technique, which is also
known as Optimistic concurrency control technique, no checking is
done while transaction is executing. . That is a transaction is started
without locking the database item. For example, in case of update
operation in a transaction, it is not directly applied to the database,

Concurrency Control and recovery Unit 8

 Advanced Database Management System 13

until the transaction reaches the end. During the execution phase of
a transaction, all updates are applied to the local copy of the database.
when transaction reaches the end of the execution, it goes through a
phase known as validation phase, which checks whether any of
the transaction update violate serializability. The information needed
by the validation phase is kept in the system.

If serializability is not break or violated, the transaction is committed
and the database is updated from the local copies, otherwise, the
transaction is aborted and restarted later.

The different phases of validation check concurrency control
protocol are:

1. Read Phase : A transaction read values of committed
data items from the database. However, because
transaction is committed, the updates or writes are
applied only to the local copies of the data item kept in the
transaction workspace.

2. Validation Phase : Checking is performed to ensure that
update from a transaction will not violate the serializability.

3. Write Phase : Based on the status of the validation phase,
if the validation phase is successful, the transaction
updates are applied to the database and if it is
unsuccessful, the updates are discarded and the
transaction is restarted later.

In optimistic concurrency control technique, a transaction proceeds
without any checking, thereby proceeds with a minimum overhead,
until it reaches the validation phase. If the interference between the
transaction is less, they are validated successfully, and result is
updated to the database. On the other hand, when the interference
among the transaction is high, it results in unsuccessful validation,
and the results are discarded and restarted later. The optimistic
technique assumes that, there is less interference among the
transactions and hardly needs any checking during the transaction
execution.
In optimistic algorithm, during the validation phase of the Transaction
Ti, the algorithm checks that Ti does not interfere with any committed

14 Advanced Database Management System

Concurrency Control and recovery Unit 8

transactions or with any transaction which is currently running in their
validation phase. The validation phase of ant transaction Ti, checks
that for any other transaction Tj that is either committed or it is in its
validation phase holds one of the following conditions:

1. Tj completes its write phase, before Ti starts its read
 phase.
2. Ti starts its write phase only after Tj completes its

 write phase and read_set of Ti has no item
 in common with the write_set of Tj.
3. The read_set and write_set of Ti have no item is
 common with the write_set of Tj and Ti completes its
 read phase before Ti completes its read phase.

The above three conditions checked serially, and stars with the
condition 1. If it is false, it checks the condition 2, and if it is also
false, then only it checks the condition 3. If any one of the above
three conditions held, it means there is no interference and Ti is
validated successfully. On the other hand, it none of the above three
conditions holds, the validation phase of Ti fails and is aborted and
restarted later.

 CHECK YOUR PROGRESS3

4. State True or False
a) Optimistic Concurrency Control is also known as validation
 1technique.
b) In Optimistic Concurrency Control technique, a check is done
 while a transaction is executing.
c) In read phase, a transaction read values of committed data
 items from the database.
d) Validation phase ensures that serializability is not maintained.
e) In Optimistic Concurrency Control, transaction execution
 proceeds with a minimum overhead until the validation phase is
 reached.

Concurrency Control and recovery Unit 8

 Advanced Database Management System 15

8.8 GRANULARITY OF DATA ITEM

All the concurrency control technique categorize a database in the
form of a set of data items. The different data items that may be
considered are as follows :

a) It may as small as a field value of a database record.
b) It may be a database record.
c) A disk block.
d) A whole file.
e) A whole database.

The granularity of database is very important as far as the
performance of concurrency and recovery concerned.

The size of the data item is called data item granularity. The granularity
can be considered as - fine granularity, which refers to the smallest
size of the data items and coarse granularity which refers to the
largest size of the data items.

It is to be mentioned here that the degree of concurrency is dependent
on the granularity of data item. When the size of the data item is
large, it lowers the degree of concurrency, so the number of
concurrent transaction is less. This is because, when the entire disk
block is locked by a transaction, any other transaction trying to access
items belongs to the same disk block is forced to wait. On the other
hand if the database size is small, for example if it is a single record
only, then many transactions can proceed parallelly, because it would
be locking a different data item record.

On the other hand, when the size of the data item is small, more
number of data item is present in the database. Since, every item is
associated with a lock, there will be more number of lock and the
lock manager need to manage a large number of locks which may
be active at the same time. Since, more number of lock and unlock
operations need to be performed, It increases the overall overhead

16 Advanced Database Management System

Concurrency Control and recovery Unit 8

on the database. At the same time, size of the lock table also
increases.
The appropriate size of the data item is very difficult to decide and it
depends on the type and number of transactions executing at one
point of time. As the best size of the granularity depends on the
transaction, so database system should support different level of
granularity for a set of transactions. A hierarchy of granularity is
depicted in the figure below:

Suppose a transaction T1 wants to update some of the records under
the file F1. So, it will lock all the items down the hierarchy starting
from F1. Now, suppose another transaction T2 want to read a record,
which is also belongs to the file F1. The transaction manager of the
Database System will check the compatibility of the requested lock,
with the locks that are already held. While verifying the compatibility,
if at any point of time, a conflict occurs, the request for the
read(shared) lock is denied and the transaction T2 is denied and
must wait.

But when T2 request for the read (shared) lock comes first, T2’s
request is granted. At this time, it is very difficult to check all the need
for a lock conflict, and the time consumption is also very high. So, it
becomes very much in efficient and in tern defeat the purpose of
having multiple granularity locks.

To overcome the above problem and to implement multiple granularity
level locking, another type of lock known as intention lock is
implemented. The objective of this type of lock is to indicate along
the path from the root to the desired node, what type of lock it would
required. There are three types of intention locks namely,

disadvantages of it.

database

F1
F2

P11 P12 P13 P22 P23 P24

r121
r122 r231

r232

Concurrency Control and recovery Unit 8

 Advanced Database Management System 17

1. Intention-Shared (IS)- which indicates that a shared lock
will be requested on some descendent nodes.

2. Intention-Exclusive (IX)- which indicates that a shared lock
will be requested on some descendent nodes.

3. Shared-Intention-Exclusive (SIX) – it indicates that the
current node is locked in shared lock but an exclusive
lock will be requested on some descendent nodes.

Apart from the different types of intention lock some appropriate locking
protocol also need to be implemented for better performance.

 CHECK YOUR PROGRESS

5. Fill up the gapes
a) Field value is the _______ granularity of data item.
b) Fine grain refers to the _________ data item size.
c) _________ grain refers to the large data item size.
d) Best data item size depends on the _________ type involved.
e) Intention lock is a type of lock applied to _______ granularity
 lock.

8.9 DATABASE RECOVERY CONCEPT

Recovery from transaction failure can be defined as the restoring of
the database to the most recent consistent state just before the time
of failure. To ensure this, the system must keep a record of all the
changes that took place to the database due to the execution of
various transactions. This information is maintained by the transaction
log. In case of failure, with the help of this lock, the database can be
recovered.

8.9.1 Category of recovery algorithm

18 Advanced Database Management System

Concurrency Control and recovery Unit 8

There may be various possibilities due to which recovery becomes
an important issue. In case of huge damage, which mainly causes
due to the catastrophic failure, the database can be recovered by
restoring the database kept as a backup or from the archive and
reconstruct a more current state by reapplying or redoing the
operations of committed transaction from the backup log up to the
time of failure. On the other hand when the database is not physically
damaged but has become inconsistent due to various
inconsistencies by undoing some operations. There may be a need
of redoing some of the operation in order to restore a consistent
state of the database.

 a) Differed Update / Immediate Update

To recover from the non-catastrophic failure, there are two main
techniques applied. They are :

1. Differed Update: According to deferred update, the
database is not physically updated to the disk until a
database reaches its commit point. When a transaction
reaches a commit point, then only the transaction update
is recorded. Before reaching the commit point, all
transaction updates are recorded to the local database.
In case transaction fails before reaching the commit point,
it is not required to make any changes to that database,
so no undo is needed. There may be a necessity to redo
some of the operations from the transaction logs.
Because their effect may not have been recorded in the
database. So, differed update is also sometime known
as no-undo / redo algorithm.

2. Immediate Update: In this technique, the database may
be update by some operations of the transaction before
the transaction reaches its commit point. However these
operations are also recorded in the log on the disk by force
writing before they are applied to the database, thereby
making the recovery still possible. In case a transaction
fails before reaching the commit point, the effect of its

Concurrency Control and recovery Unit 8

 Advanced Database Management System 19

operation on the database must be undone i.e. the
transaction must be rolled back. So, in case of immediate
update, both undo and redo is needed. So, this algorithm
is also known as UNDO/REDO algorithm. There may be
another variation of the algorithm where all updates are
recorded in the database before a transaction is committed
requiring undo only, so it is known as undo/no-redo
algorithm.

b) Caching of disk Blocks:

The caching of disk block typically is an operating system
function. But as it is one of the important parameter as
far as the efficiency of recovery procedure is concerned,
it is handled by the DBMS by calling low level operating
system routines. Typically a collection of in-memory buffer
called the DBMS cache, is kept under the control of the
DBMS for the purpose of holding these buffers. Associated
with each buffer in the cache is a dirty bit, which can be
included in the directory entry to indicate whether or not
the buffer has been modified. When a page is first read
from the database disk into a cache buffer, the cache
directory is updated with the new disk address, the dirty
bit is set to 0. As soon as the buffer is modified the dirty
bit for the corresponding directory entry is set to 1. When
the buffer content are replaced from the cache, the content
must first be written back to the corresponding disk page
only if its dirty bit is set to 1.

Another bit known as pin-unpin bit also used to indicate
whether a page in the cache can be written back to the
disk or not. Here, pinned (bit value 1) indicates page
cannot be written back.

As far as flashing of modified buffer back to the disk is
concerned, two main strategies are employed. They are:

i. In-place updating

ii. Shadowing

20 Advanced Database Management System

Concurrency Control and recovery Unit 8

In case of in-place updating, it writes the buffer to the some original
disk location, thus overwriting the old value of any changed data item
on disk. Hence only a single copy of each database disk block is
maintained.
In the case of shadowing on the other hand, it writes an updated
buffer at a different disk location, so multiple versions of data items
can be maintained. The old value of data item before updating is
called the before image (BFIM) and the new value after update is
called after image (AFIM). In shadowing both BFIM and AFIM are
maintained so the necessity of maintaining log in eliminated.

 c) Write-ahead logging

 When in place updating is used, it is necessary to use a log for
recovery. Here the recovery mechanism must ensure that the
BFIM of the data item is recorded in the appropriate log entry and
the log entry is flushed to disk before the BFIM is overwritten with
the AFIM in the database on the disk. This process in known as
write_ahead logging.

 d) Steal/No-Steal approach

In No-Steal approach a cache page updated by a transaction
cannot be written to disk before the transaction commits. The
pin-unpin bit is used to realize the approach. The bit indicates if a
page cannot be written back to the disk. On the other hand, in
Steal approach, a cache page updated by a transaction can be

written to disk before the
 transaction commits. Steal is use when the database cache
manager needs a buffer frame for another transaction and the
buffer manager replaces an existing page that had been updated
but whose transaction has not committed.

 e) Force/No-Force approach:

Concurrency Control and recovery Unit 8

 Advanced Database Management System 21

In Force approach all cache pages updated by a transaction
are immediately written to disk when the transaction commits
and otherwise it is called No-Force. A Typical Database systems
use a Steal/No-Force strategy because of the following
advantages:
– Steal approach avoids the need for a very large buffer space
to store all updated pages in memory.
– No-Force approach provides the advantage of keeping an
updated page of a committed transaction in the memory when
another transaction needs to update it, thus eliminates the I/O
cost of reading that page again from disk.

 f) Check point :
Check point is another type of entry that is maintained in the
log. The recovery manager of a DBMS must decide at what
intervals to put a check point. The interval may be measured
in terms of time say every after ‘m’ second or minute or in the
number ‘t’ of committed transactions since the last checkpoint.
Here both ‘t’ or ‘m’ are system parameters. All transactions
committed before a checkpoint entry do not need to redo their
write operations.

Checkpoint creating process consists of the following actions:
a. Suspend execution of transactions temporarily.
b. Force-write all main memory buffers that have been modified

to disk.
c. Write a checkpoint record to the log, and force-write the log

to disk.
d. Resume executing transactions.
The time needed to force-write buffers to disk may delay

transactions execution and can be a big performance issue.
 g) Transaction Rollback
There may be the necessity of roll back the transaction in some
situation when a transaction fails after updating the database. In
case of transaction rollback the write operations are undone, and
it must be restored to their previous values (BFIS).
Another variation of rollback known as cascading rollback is also
there where if transaction T1 is rolled back, any Transaction T2
that has read the value of some data item X written by T1 must
also be rolled back and so on.

22 Advanced Database Management System

Concurrency Control and recovery Unit 8

To improve the performance, Fuzzy checkpoint is used to reduce the
delay by resuming the execution of the transactions after the
checkpoint record is written to the log without having to wait for force-
write step to be completed. The previous checkpoint is valid until the
force-write step is completed. This in done by the system by
maintaining a pointer to the valid checkpoint and changes it to the
new checkpoint after the success of the force-write step.

 CHECK YPUR PROGRESS

6. Fill up the gaps
a) The information about the changes applied to the database
 item by various transactions are kept by the ____________.
b) Deferred update, updates the database only after the
 transaction is _____.
c) In case of immediate update, the database is updated
 ________ a transaction is committed.
d) AFIM stands for ________.
e) BFIM stands for __________.

7. State True or False
a) Dirty bit indicates whether the buffer is modified or not.
b) In shadowing, the updated buffer is written at one location.
c) In case of Force Approach, database updates are written to the
disk immediately.
d) Creation of checkpoint is the responsibility of recovery
manager.
e) Rollback refers to restoring of the database to their previous
value.

8.10 LET US SUM UP

• Locking is a mechanism commonly used to solve the problem
of synchronized access.

Concurrency Control and recovery Unit 8

 Advanced Database Management System 23

• Transactions access data items either for reading or for
writing them. We therefore associate two types of locks with
data items: read locks and write locks.

• There are basically two types of Two Phase Locking :
conservative two phase locking and strict two phase locking.

• In timestamp ordering technique, the Transaction Manager
assigns a unique timestamp, ts(Ti), to each transaction Ti .

• In Optimistic concurrency control technique, no checking is
done while transaction is executing.

8.11 ANSWER TO CHECK YOUR
PROGRESS

1. a) variable b) lock conversion c) Growing Phase
 d) shrinking phase e) aborts

2. a) F b) T
3. a) updation b) three c) new
4. a) T b) F c) T d) F e) T
5. a) smallest b) small c) Coarse d) transaction

e) multilevel
6. a) system log b) committed c) before d) After Image

e) Before Image
7. a) T b) F c) T d) T e) T

8.12 FURTHER READINGS

- Prof. Sushant S. Sundikar: Introduction to Database
Management System

- Elmasri, Navathe, Somayajulu, Gupta: Fundamentals of
Database Systems

24 Advanced Database Management System

Concurrency Control and recovery Unit 8

 8.13 MODEL QUESTIONS

a) What is a lock? Explain the function of lock in
concurrency.

b) What is two phase locking protocol?
c) Explain how two phase locking protocol guaranty

serializability.
d) What is a timestamp? explain.
e) What is certify lock? Explain the advantages and

disadvantages of it.
f) What is intention lock? Describe its different types.
g) What do you mean by catastrophic failure?
h) Describe the function of a Dirty bit.

Concurrency Control and recovery Unit 8

 Advanced Database Management System 25

UNIT 9: SECURITY AND PRIVACY

UNIT STRUCTURE

9.1 Learning Objectives

9.2 Introduction

9.3 Database Security Issue
9.4 Discretionary Access Control based

 on Granting and Revoking Privileges

9.5 Mandatory Access Control

9.6 Role Based Access Control

9.7 Encryption and Public Key Infrastructures

9.8 Let Us Sum Up

9.9 Answers to Check Your Progress

9.10 Further Readings

9.11 Model Questions

9.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 describe database security

 definediscretionary access control.

 describe mandatory access control.

 describe role based access control

 describe encryption and public key infrastructures

9.2 INTRODUCTION

In previous chapter you have studied different concurrency technique such as two

phase locking techniques; concurrency control based on timestamp ordering; multi-version

concurrency control techniques; validation (optimistic) concurrency control techniquesetc. This

unit discusses the techniques used for protecting the database against the

person who are not authorized to access either certain part of database or the

whole database.

9.3 DATABASE SECURITY ISSUE

Database security is a very broad area that addresses many issues, including the

following

 Legal and ethical issue regarding the right to access certain information.

Sometime information may be deemed to private and cannot be accessed

legally by unauthorized persons.

 Policy issue at the governmental, institutional, or corporate level as to

what kind of information should not be made publicly available- for

example credit rating and personal medical record.

 System related issues such as the system levels at which various security
functions should be enforced. For example-where a security functions

should be handled at the physical hardware level, the operating system

level or the DBMS level.

 The need in some organizations to identify multiple security levels and to

categorize the data users based on these classifications- for example, top

secret, secret, confidential, and unclassified. The security policy of the

organization with respect to permitting access to various classifications

must be enforced.

Threats to Databases Threat to database result in the loss or degradation of

some or all of the following security goals: integrity, availability, and

confidentiality.

 Loss of integrity: Database integrity refers to the requirement that

information be protected from improper modification. Modification of

data includes creation, insertion, modification, changing the status

of data, and deletion. Integrity is loss if unauthorized changes are
made to data by either intentional or accidental acts. If the loss of

the system or dataintegrity is not corrected, continued use of the

contaminated system or corrupted data could result in accuracy,

fraud, or erroneous decision.
 Loss of availability: Database availability refers to making objects

available to human user or a program to which they have a

legitimate right.
 Loss of confidentiality: Database confidentiality refers to the

protection of data from unauthorized disclosure. The impact of

unauthorized disclosure of confidential information can range from

violation of the Data Privacy Act to the jeopardization of national

security.

Database Security and the DBA: The database administrator (DBA) is the

central authority for managing a database system. The DBA’s responsibilities

include granting privileges to users who need to use the system and classifying

users and data in accordance with the policy of the organization. The DBA has a

DBAaccount in the DBMS, sometimes called a system or superuser account,

which provides powerful capabilities. The DBA is responsible for the overall
security of the database system.

Access Protection, User Accounts, and Database Audits
Whenever a person or group of persons need to access a database system, the
individual or group must first apply for a user account. The DBA will then create a
new account number and password for the user if there is a legitimate need to

access the database. The user must log in to the DBMS by entering account

number and password whenever database access is needed.

The database system must also keep track of all operations on the database that
are applied by a certain user throughout each login session.

To keep a record of all updates applied to the database and of the particular user
who applied each update, we can modify system log, which includes an entry for

each operation applied to the database that may be required for recovery from a

transaction failure or system crash.

If any tampering with the database is suspected, a database audit is performed,

which consists of reviewing the log to examine all accesses and operations

applied to the database during a certain time period. A database log that is used
mainly for security purposes is sometimes called an audit trail.

CHECK YOUR PROGRESS

1. Choose the correct answer
i) Modification of data includes

(a) Creation (b) Insertion

(c) Modification (d) All of the above

 ii) DBA stands for

 (a) Data Base Access. (b) Data Base Administrator.

 (c) Data Bound Administrator. (d) Non of the above.

 iii). A database log that is used mainly for security purposes is sometimes

 called

 (a) System log. (b) Database Audit.

 (c) Database trial. (d) Audit trial.

9.4 DISCRETIONARY ACCESS CONTROL BASED ON
GRANTING AND REVOKING PRIVILEGES

The typical method of enforcing discretionary access control in a database

system is based on the granting and revoking privileges.

There are two levels for assigning privileges
- Theaccount level: At this level, the DBA specifies the particular

privileges that each account holds independently of the relations in the

database.

- The relation level: At this level, the DBA can control the privilege to

access each individual relation or view in the database
The privileges at the account level apply to the capabilities provided to the

account itself and can include the CREATE SCHEMA or CREATE TABLE
privilege, to create a schema or base relation; the CREATE VIEW privilege; the

ALTER privilege, to apply schema changes such as adding or removing

attributes from the relation; the DROP privilege, to delete relations or view; the

MODIFY privilege, to insert, delete, or update tuples, and the SELECT privilege,

to retrieve information from the database using a SELECT query. Notice that

these account privileges apply to the account in general. If a certain account

does not have the CREATE TABLE privilege, no relations can be created from

that account.

The second level of privileges applies to the relational level, whether they are

base relations or virtual relations.

To control the granting and revoking of relation privileges, each relation R in a

database is assigned an owner account, which is typically the account that was

used when the relation was created in the first place. The owner relation is given

all the privileges on that relation.

In SQL the following types of privileges can be granted to each individual relation

R:

 SELECT privilege on R: Gives the account retrieval privilege.

 MODIFY privileges on R: This gives the account the capability to modify

the tuples of R.

 REFERENCE privilege on R: This gives the account the capability to

reference relation R when specifying integrity constraints. This privilege

can also restricted specific attributes of R.
The mechanism of views is an important discretionary authorization mechanism

in its own right. For example if the owner A of relation R wants another account B

to be able to retrieve only some field of R, then A can create a view V of R that

includes only those attribute and then grant SELECT on V to B.

Revoking privilege- In some case it is desirable to grant privilege to a user

temporarily. For example, the owner of relation may want to grant the SELECT

privilege to a user for a specific task and revoke the privilege once the task is

completed. Hence, a mechanism for revoking privileges is needed. In SQL
REVOKE command is included for the purpose of cancelling privileges.

Propagation of privileges using the GRANT OPTION- Whenever the owner A

of relation R grants privilege on R to another account B, the privilege can be

given to B with or without the GRANT OPTION. If the GRANT OPTION is given,

this means that B can also grant privilege on R to other accounts. Suppose that

B is given the GRANT OPTION by A and that B grants the privilege on R to a

third account C, also with GRANT OPTION. In this way, privilege on R can

propagate to other account without the knowledge of the owner of R. If the o
owner account A now revoke the privilege granted to B, all the privilege that B

propagate based on that privilege should automatically be revoked by the

system.

An example
Suppose that the DBA creates four accounts --A1, A2, A3, and A4-- and wants

only A1 to be able to create base relations; then the DBA must issue the

following GRANT command in SQL:

 GRANT CREATETAB TO A1;

In SQL2 the same effect can be accomplished by having the DBA issue a
CREATE SCHEMA command as follows:

 CREATE SCHAMA EXAMPLE AUTHORIZATION A1;

Now user account A1 can create tables under the schema called EXAMPLE.

Suppose that A1 creates the two base relations EMPLOYEE and

DEPARTMENT; A1 is then owner of these two relations and hence all the

relation privileges on each of them.

Suppose that A1 wants to grant A2 the privilege to insert and delete tuples in

both of these relations, but A1 does not want A2 to be able to propagate these

privileges to additional accounts:
GRANT INSERT, DELETE ON EMPLOYEE, DEPARTMENT TO A2;

EMPLOYEE
NAME SSN BDATE ADDRESS SEX SALARY DNO

DEPARTMENT
DNUMBER DNAME MGRSSN

Suppose that A1 wants to allow A3 to retrieve information from either of the two

tables and also to be able to propagate the SELECT privilege to other accounts.

A1 can issue the command:

GRANT SELECT ON EMPLOYEE, DEPARTMENT TO A3 WITH GRANT

OPTION;

A3 can grant the SELECT privilege on the EMPLOYEE relation to A4 by issuing:

GRANT SELECT ON EMPLOYEE TO A4;

(Notice that A4 cannot propagate the SELECT privilege because GRANT

OPTION was not given to A4.)

Suppose that A1 decides to revoke the SELECT privilege on the EMPLOYEE

relation from A3; A1 can issue:

REVOKE SELECT ON EMPLOYEE FROM A3;

(The DBMS must now automatically revoke the SELECT privilege on

EMPLOYEE from A4, too, because A3 granted that privilege to A4 and A3 does

not have the privilege any more.)

Suppose that A1 wants to give back to A3 a limited capability to SELECT from

the EMPLOYEE relation and wants to allow A3 to be able to propagate the
privilege. The limitation is to retrieve only the NAME, BDATE, and ADDRESS

attributes and only for the tuples with DNO=5.

A1 then create the view:

CREATE VIEW A3EMPLOYEE AS

SELECT NAME, BDATE, ADDRESS

FROM EMPLOYEE

WHERE DNO = 5;

After the view is created, A1 can grant SELECT on the view A3EMPLOYEE to

A3 as follows:

GRANT SELECT ON A3EMPLOYEE TO A3 WITH GRANT OPTION;

Finally, suppose that A1 wants to allow A4 to update only the SALARY attribute

of EMPLOYEE;

A1 can issue:

GRANT UPDATE ON EMPLOYEE (SALARY) TO A4;

(The UPDATE or INSERT privilege can specify particular attributes that may be

updated or inserted in a relation. Other privileges (SELECT, DELETE) are not

attribute specific.)

CHECK YOUR PROGRESS

2. Choose the correct answer

i). To create a schema or base relation _______________ privilege used.

(b) Create table (b) Drop.

(d) Select (d) Delete.

ii) To apply schema changes such as adding or removing attributes from
the relation _________ privilege used.

 (a) Alter. (b) Modify.

 (c) Delete. (d) Non of the above.

 iii) To insert, delete, or update tuples ________________ privilege used.

 (a) Alter. (b) Modify.

 (c) Delete. (d) Insert.

iv) ___________ command is used for the purpose of cancelling privileges
 (a) Grant. (b) Revoke.

 (c) Delete. (d) Non of the above.

9.5 MANDATORY ACCESS CONTROL

It is a security policy that classifies data and users based on security class.

Typical security classes are top secret (TS), secret (S), confidential (C), and

unclassified (U), where TS is higher level and U is lower level. Other security

classifications exist, in which the security classes are organized in a lattice. The

commonly used model for multilevel security, known as the Bell-LaPadula model,

classifies each subject (user, account, programs) and object (relation, tuple,
column, view, operation) in to one of the security classifications TS, S, C, or U.
We will refer to the clearance (classification) of a subject S as class(S) and to

the classification of an object O as class (O). Two restrictions are enforced on

data access based on the subject/object classifications

1. A subject S is not allowed read access to an object O unless class(S) ≥

class(O). This is known as the simple security property.

2. A subject S is not allowed to write an object O unless class(S) ≤ class(O).

This is known as star property (or *-property).

Mandatory policy ensure a high degree of protection- in a way, they prevent any

illegal flow of information. They are therefore suitable for military types of

applications, which require a high degree of protection. However, mandatory

policies have the drawback of being too rigid in that they require a strict

classification of subjects and objects into security levels, and therefore they are

applicable to very few environments.

To incorporate multilevel security notions into the relational database model, it is

common to consider attribute values and tuples as data objects. Hence, each
attribute A is associated with a classification attribute C in the schema, and

each attribute value in a tuple is associated with a corresponding security
classification. In addition, in some models, a tuple classification attribute TC is

added to the relation attributes to provide a classification for each tuple as a
whole. Hence, a multilevel relation schema R with n attributes would be

represented as

R(A1,C1,A2,C2, …, An,Cn,TC)

where each Cirepresents the classification attribute associated with attribute Ai.

The value of the TC attribute in each tuple t – which is the highest of all attribute

classification values within t – provides a general classification for the tuple itself,

whereas each Ci provides a finer security classification for each attribute value

within the tuple.

The apparent key of a multilevel relation is the set of attributes that would have

formed the primary key in a regular (single-level) relation.

A multilevel relation will appear to contain different data to subjects (users) with

different clearance levels. In some cases, it is possible to store a single tuple in
the relation at a higher classification level and produce the corresponding tuples
at a lower-level classification through a process known as filtering.

In other cases, it is necessary to store two or more tuples at different

classification levels with the same value for the apparent key. This leads to the

concept of polyinstantiation where several tuples can have the same apparent

key value but have different attribute values for users at different classification

levels.

In general, the entity integrity rule for multilevel relations states that all

attributes that are members of the apparent key must not be null and must have
the same security classification within each individual tuple.

In addition, all other attribute values in the tuple must have a security

classification greater than or equal to that of the apparent key. This constraint

ensures that a user can see the key if the user is permitted to see any part of the

tuple at all.

Other integrity rules, called null integrity and interinstanceintegrity, informally

ensure that if a tuple value at some security level can be filtered (derived) from a

higher-classified tuple, then it is sufficient to store the higher-classified tuple in

the multilevel relation.

9.6 ROLE BASED ACCESS CONTROL

Role–based access control (RBAC) emerged rapidly in 1990s as a proven

technology for managing and enforcing security in large scale enterprisewide

systems. Its basic notion is that permissions are associated with roles, and users

are assigned to appropriate roles. Roles can be created using the CREATE

ROLE and DESTROY ROLE commands. The GRANT and REVOKE commands
can be used to assigned and revoke privileges from role.

RBAC ensures that only authorize user can access to the certain data or

resources. Users create session during which they may active a subset of roles

to which they belong. Each session can be assigned to many roles, butit maps to

only one user or a single subject.

Role hierarchy in RBAC is a natural way of organizing roles to reflect the

organization’s lines of authority and responsibility.

Another important consideration in RBAC systems is the possible temporal

constraints that may exist on roles, such as time and duration of role activations,

and timed triggering of a role by an activation of another role.

Using an RBAC model is highly desirable goal for addressing the key security

requirements of Web-based applications.

9.7 ENCRYPTION AND PUBLIC KEY INFRASTRUCTURES

Encryption is a means of maintaining secure data in an insecure
environment.Encryption consists of applying an encryption algorithm to data

using some prespecifiedencryption key. The resulting data has to be decrypted
using a decryption key to recover the original data.

In 1976 Diffie and Hellman proposed a new kind of cryptosystem, which they
called public key encryption. Public key algorithms are based on mathematical

functions rather than operations on bit patterns.They also involve the use of two

separate keys, in contrast to conventional encryption, which uses only one

key.The use of two keys can have profound consequences in the areas of

confidentiality, key distribution, and authentication.The two keys used for public
key encryption are referred to as the public key and the private key. The private

key is kept secret, but it is referred to as private key rather than a secret key (the

key used in conventional encryption) to avoid confusion with conventional
encryption.

A public key encryption scheme, or infrastructure, has six ingredients:

1. Plaintext : This is the data or readable message that is fed into the

algorithm as input.

2. Encryption algorithm : Theencryption algorithm performs various

transformations on the plaintext.

3. and 4.Public and private keys: These are pair of keys that have been

selected so that if one is used for encryption, the other is used for

decryption. The execttransformations performed by the encryption
algorithm depend on the public or private key that is provided as input.

5. Ciphertext : This is the scrambled message produced as output. It

depends on the plaintext and the key. For a given message, two different
keys will produce two different ciphertexts.

6. Decryption algorithm: This algorithm accepts the ciphertext and the

matching key and produces the original plaintext.

Public key is made for public and private key is known only by owner.

A general-purpose public key cryptographic algorithm relies on one key for
encryption and a different but related one for decryption. The essential steps are
as follows:

1. Each user generates a pair of keys to be used for the encryption and
decryption of messages.

2. Each user places one of the two keys in a public register or other
accessible file. This is the public key. The companion key is kept private.

3. If a sender wishes to send a private message to a receiver, the sender
encrypts the message using the receiver’s public key.

4. When the receiver receives the message, he or she decrypts it using the

receiver’s private key. No other recipient can decrypt the message
because only the receiver knows his or her private key.

The RSA Public Key Encryption algorithm, oneof the first public key schemes

was introduced in 1978 by Ron Rivest, Adi Shamir, and Len Adleman at MIT and

is named after them as the RSA scheme.The RSA encryption algorithm
incorporates results from number theory, combined with the difficulty of

determining the prime factors of a target.The RSA algorithm also operates with
modular arithmetic – mod n.

Two keys, d and e, are used for decryption and encryption.An important property

is that d and e can be interchanged.nis chosen as a large integer that is a

product of two large distinct prime numbers, a and b.The encryption key e is a

randomly chosen number between 1 and n that is relativelyprime to (a-1) x (b-1).

The plaintext block P is encrypted as Pemod n.Becausethe exponentiation is

performed mod n, factoringPeto uncover the encrypted plaintext is

difficult.However, the decryption key d is carefully chosen so that (Pe)dmod n =

P.Thedecryption key d can be computed from the condition thatd x e= 1 mod ((a-

1)x(b-1)).Thus, the legitimate receiver who knows d simply computes(Pe)d mod n

= P and recovers P without having to factor Pe.

CHECK YOUR PROGRESS

3. Choose the correct answer

i) Typical security classes are top secret (TS), secret (S), confidential (C),
and_____________.

(a) Simple (b) Unclassified.

(c) Classified (d) Non of the above.

ii) A subject S is not allowed to write an object O unless class(S) ≤ class(O). This

is known as

 (a) Star property. (b) Close property.
 (c) Simple Access. (d) Non of the above.

iii) RBAC stand for

 (a) Role–based access control. (b) Role–based action control.

 (c) Role–based access concurrency. (d) Non of the above.

iv) __________is a means of maintaining secure data in an insecure

environment.
 (a) Encryption. (b) Decryption.

 (c) Encoding. (d) Decoding.

9.8 LET US SUM UP

 Database security issues are legal and ethical issue, policy issue, system

related issues.

 Threat to database result in the loss or degradation of integrity,

availability, and confidentiality.

 The database administrator (DBA) is the central authority for managing a

database system.

 If any tampering with the database is suspected, a database audit is

performed.

 A database log that is used mainly for security purposes is sometimes
called an audit trail.

 The typical method of enforcing discretionary access control in a
database system is based on the granting and revoking privileges.

 In SQL REVOKE command is included for the purpose of cancelling

privileges.

 Typical security classes are top secret (TS), secret (S), confidential (C),

and unclassified (U).

 A subject S is not allowed read access to an object O unless class(S) ≥

class(O). This is known as the simple security property.

 A subject S is not allowed to write an object O unless class(S) ≤ class(O).

This is known as star property (or *-property).

 The apparent key of a multilevel relation is the set of attributes that

would have formed the primary key in a regular (single-level) relation.

 Role hierarchy in RBAC is a natural way of organizing roles to reflect the

organization’s lines of authority and responsibility.

 Encryption is a means of maintaining secure data in an insecure

environment.

 Public and private keys: These are pair of keys that have been selected

so that if one is used for encryption, the other is used for decryption.

9.9 ANSWERS TO CHECK YOUR PROGRESS

1. i)(d) ii)(b) iii) (d)

 2.i) (a) ii) (a) iii) (b) iv) (b)

 3.i)(b) ii)(a) iii) (a) iv)(a)

9.10 FURTHER READINGS

1. R. Elmasri, S.B. Navathe, Fundamentals of Database System, Pearson

2. A. Leon, M. Leon, Fundamentals of Database Management System,
Tata McGraw Hill.

9.11 MODEL QUESTIONS

1. What is database security?

2. What are the different database security issues?
3. What do you mean by Loss of Integrity?

4. What is meant by granting a privilege?

5. What is meant by revoking a privilege?

6. List the type of privilege available in SQL.

7. What is the difference between discretionary and mandatory access control?

8. Define the following terms: apparent key, polyinstantiation, filtering.

9. What are the relative merits of using DAC and MAC?

10. What is role-based access control? In what ways is it superior DAC and

MAC?
11. What is the goal of encryption? What process is involved in encrypting

data and then recovering it at the other end?

12. What is public key infrastructure? How does it provide security?
13. Give an example of an encryption algorithm and explain how it works.

	CreditPage(final)
	Unit 1(final)
	Unit 2_final_
	Unit 3_final_
	Unit 4
	Unit 5
	Unit 6
	Unit 7
	Unit 8
	Unit 9_final_

