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COURSE INTRODUCTION

This course is on Design and Analysis of Algorithms.  An algorihm is a systematic method containing
a sequence of instructions to solve a computational problem. It takes some inputs, performs a well
defined sequence of steps and produces some output. Algorithm design and analysis form a central
theme in computer science. With this course we illustrate various concepts associated with algorithm
design and analysis. The course consists of the following seven units:

Unit - 1  is an introductory unit on algorithms.With this unit learners will be acquainted with analysis of
algorithm, complexity, various notations etc.
Unit - 2  concentrates on divide and conquer.
Unit - 3 is on Greedy method.
Unit - 4 concentrates on dynamic programming. .
Unit - 5  deals with backtracking.
Unit - 6 is on branch and bound.
Unit - 7  is on NP-Hard and NP-complete problems.

Each unit of this course includes some along-side boxes to help you know some of the difficult,
unseen terms. Some “EXERCISES” have been included to help you apply your own thoughts. You
may find some boxes marked with: “LET US KNOW”. These boxes will provide you with some additional
interesting and relevant information. Again, you will get “CHECK YOUR PROGRESS” questions.
These have been designed to make you self-check your progress of study. It will be helpful for you if
you solve the problems put in these boxes immediately  after you go through the sections of the units
and then match your answers with “ ANSWERS TO CHECK YOUR PROGRESS” given at the end of
each unit.
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DETAILED SYLLABUS

Unit 1 : Introduction to Algorithms (Marks: )
Algorithm, analysis, time complexity and space complexity, O-notation, Omega notation and Theta
notation, Heaps and Heap sort, Sets and disjoint set, union and find algorithms. Sorting in linear time.

Unit 2 : Divide and Conquer (Marks: )
Divide and Conquer: General Strategy, Exponentiation. Binary Search, Quick Sort and Merge Sort

Unit 3 : Greedy Method (Marks: )
General Strategy, Knapsack problem, Job sequencing with Deadlines, Optimal merge patterns, Minimal
Spanning Trees and Dijkstra’s algorithm.

Unit 4 : Dynamic Programming (Marks: )
General Strategy, Multistage graphs, OBST, 0/1 Knapsack, Traveling Salesperson Problem, Flow
Shop Scheduling

Unit 5 : Backtracking (Marks: )
Backtracking: General Strategy, 8 Queen’s problem, Graph Coloring, Hamiltonian Cycles, 0/1 Knapsack

Unit 6 : Branch and Bound  (Marks: )
General Strategy, 0/1 Knapsack, Traveling Salesperson Problem

UNit 7 : P, NP-HARD AND NP-COMPLETE PROBLEMS (Marks: )
Basic concepts, non-deterministics algorithms, NP-HARD and NP-COMPLETE classes, COOKS
theorem
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UNIT – 1 INTRODUCTION TO ALGORITHM 
 
UNIT STRUCTURE 

 
1.1 Learning Objectives 
1.2 Introduction 
1.3 Definition of Algorithm  
1.4 Algorithm Analysis 
1.5 Complexity 

1.5.1 Space Complexity 
1.5.2 Time Complexity 

1.6 Asymptotic Notation 
1.7 Heaps and Heap Sort 
1.8 Set and Disjoint Set 
1.9 Union Find Algorithm 
1.10 Sorting in Linear Time 
1.11 Let Us Sum Up 
1.12 Further Readings 
1.13 Answer to Check Your Progress 
1.14 Model Questions 

 

1.1 LEARNING OBJECTIVES 

After going through this unit, you will be able to: 

 understand the concept of algorithm 

 know  the process of algorithm analysis 

 know the notations for defining the complexity of algorithm 

 learnthe method to calculate time complexity of algorithm 

 know the different operations on disjoint set 

 learn methods for sorting data in linear time 

 

 

 

 

1.2 INTRODUCTION 

The concept of an algorithm is the basic need for any programming 
development in computer science. Algorithm exists for many 
common problems, but designing an efficient algorithm is a 
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challenge and it plays a crucial role in large scale computer 
system. In this unit we will discuss about the algorithm analysis. 
Also we will discuss few algorithms for sorting data in linear time. 
We will also discuss algorithm for disjoint set operations. 
 
 

 

1.3DEFINITION OF ALGORITHM 

Definition:An algorithm is a well-defined computational method, 
which takes some value(s) as input and produces some value(s) 
as output.In other words, an algorithm is a sequence of 
computational steps that transforms input(s) into output(s). 
 
Each algorithm must have  

  
 Specification: Description of the computational procedure.  
 Pre-conditions: The condition(s) on input.  
 Body of the Algorithm: A sequence of clear and 

unambiguous instructions. 
 Post-conditions: The condition(s) on output.  

 
Consider a simple algorithm for finding the factorial of n.  
 
 
 
 
 
 
 
 
 
In the above algorithm we have: 
Specification: Computes n!. 
Pre-condition: n>= 0  
Post-condition: FACT = n!  
 
 

 

1.4 ALGORITHM ANALYSIS 

Programming is a very complex task, and there are a number of 
aspects of programming that make it so complex. The first is that 
most programming projects are very large, requiring the 
coordinated efforts of many people. (This is the case of software 
engineering.) The next is that manyprogramming projects involve 
storing and accessing large quantities of data efficiently. (This is 
the case of data structures and databases.) The last is that many 
programming projects involve solving complexcomputational 
problems, for which simplistic or naive solutions may not be 
efficient enough. The complexproblems may involve numerical 
data which need to computed accurately up to high precision (in 

Algorithm Factorial (n) 

Step 1: FACT = 1  
Step 2: for i = 1 to n do  
Step 3: FACT = FACT * i  
Step 4: print FACT    
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caseof numerical analysis). This is where the topic of algorithm 
design and analysis is important. 

Although the algorithms discussed in this course will often 
represent only a tiny fraction of the code that isgenerated in a large 
software system, this small fraction may be very important for the 
success of the overallproject.  

If unfortunately someonedesign an inefficient algorithm 
anddata structure to solve the problem, and then take the poor 
design and attempt to fine-tune its performance, then often no 
amount of fine-tuning is going to make a substantialdifference. So 
at the design phase of the algorithm itself care should be taken to 
design an efficient algorithm. 

The focus of this course is on how to design good 
algorithms, and how to analyze their efficiency. This is one of the 
most basic aspects of good programming. 
 
 
 
1.5 COMPLEXITY 

Once we develop an algorithm, it is always better to check whether 
the algorithm is efficient or not. The efficiency of an algorithm 
depends on the following factors: 

 Accuracy of the output 

 Robustness of the algorithm 

 User friendliness of the algorithm 

 Time required to run the algorithm 

 Space required to run the algorithm  

 Reliability of the algorithm 

 Extensibility of the algorithm 
To be a good program, all the above mentioned factors are very 
important. When we design some algorithm it should be user 
friendly and produce correct output(s) for all the possible set of 
input(s). A well designed algorithm should not take very long 
amount of time and also it should not uselarge amount of main 
memory. A well design algorithm is always reliable and it can be 
extended as per requirement.  
In case of complexity analysis, we mainly concentrate on the time 
and space required by a program to execute.So complexity 
analysis is broadly categorized into two classes 

 Space complexity 

 Time complexity 
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1.5.1 SPACE COMPLEXITY 

 
Now a day’s,memory is becoming more and more cheaper, even 
though it is very much important to analyze the amount of memory 
used by a program. Because, if the algorithm takes memory 
beyond the capacity of the machine, thenthe algorithm will not 
beable to execute. So, it is very much important to analyze the 
space complexity before execute it on the computer. 
 
Definition [SpaceComplexity]: The Space complexity of an 
algorithm is the amount of main memory needed to run the 
program till completion.  

To measure the space complexity in absolute memory unit has the 
following problems  

The space required for an algorithm depends on space required by 
the machine during execution, they are 

i) Programspace 
ii) Data space.  

i) The program space is fixed and it is used to store the 
temporary data, object code,etc. 

ii) The data space is used to store the different variables, data 
structures defined in the program.  

In case of analysis we consider only the data space, since program 
space is fixed and dependon the machine where it is executed. 

Consider the following algorithms for exchange two numbers: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first algorithm uses three variables a, b and tmpand the 
second one take only two variables, so if we look from the space 
complexity perspective the second algorithm is better than the first 
one. 

Algo1_exchange (a, b) 

Step 1: tmp = a;   
Step 2: a = b; 
Step 3: b = tmp; 
 
 

Algo2_exchange (a, b) 

Step 1: a = a + b; 
Step 2: b = a - b; 
Step 3: a = a - b; 
 
 



Introduction to Algorithms Unit 1 
 

Design and Analysis of Algorithm   9

 
1.5.2TIME COMPLEXITY 
 
Definition [Time Complexity]:The Time complexity of an 
algorithm is the amount of computer time it needs to run the 
program till completion.  
 
To measure the time complexity in absolute time unit has the 
following problems  

1. The time required for an algorithm depends on number of 
instructions executed by the algorithm.  

2. The execution time of an instruction depends on 
computer's power. Since, different computers take different 
amount of time for the same instruction.  

3. Different types of instructions take different amount of time 
on same computer. 

For time complexity analysis we design a machine by removing all 
the machine dependent factors called Random Access Machine 
(RAM). The random access machine model of computation was 
devised by John von Neumann to study algorithms. The design of 
RAM is as follows    

1. Each “simple” operation (+, -, =, if, call) takes exactly 1 unit 
cost. 

2. Loops and subroutine calls are not simple operations, they 
depend upon the size of the data and the contents of a 
subroutine.   

3. Each memory access takes exactly 1 unit cost.   
 
Consider the following algorithm for add two number 
 
 
 
 
 
 
 
 
Here this algorithm has only two simple statements so the 
complexity of this algorithm is 2 
 
Consider another algorithm for add n even number 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algo_addeven (n) 

Step 1. i = 2; 
Step 2.sum = 0; 
Step 3.while i <= 2*n  
Step 4.sum = sum + i 
Step 5. i = i + 2; 
Step 6.end while; 
Step 7.return sum; 
 

Algo_add (a,b) 

Step 1. C = a + b; 
Step 2.return C;  
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1. State True or False 

a) Time complexity is the time taken to design an 
algorithm. 

b) Space complexity is the amount of space required by 
a program during execution 

c) An algorithm may not produce any output. 
d) Algorithm are computer programs which can be 

directly run into the computer. 
e) If an algorithm is designed for a problem then it will 

work for all the valid inputs for the problem. 

 CHECK YOUR PROGRESS   

Here, 
Step 1, Step 2 and Step 7 are simple statements and they will 
execute only once. 
Step 3 is a loop statement and it will execute as many times as the 
loop condition is true and one more time for check the condition is 
false. 
Step 5 and Step 6 are inside the loop so it will run as much as the 
loop condition is true 
Step 6 just indicate the end of while and no cost associated with it. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Total cost      3n+4 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Statement      Cost     Frequency         Total cost 

Step 1. i = 2;        1  1  1  
Step 2.sum = 0;       1  1  1  
Step 3.while i <= 2*n       1  n+1  n+1 
Step 4.sum = sum + i       1  n  n 
Step 5. i = i + 2;       1  n  n 
Step 6.end while;       0  1  0 
Step 7.return sum;       1  1  1 
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1.6ASYMPTOTIC NOTATION 
 
When we calculate the complexity of an algorithm we often get a 
complex polynomial. To simplify this complex polynomial we use 
some notation to represent the complexity of an algorithm called: 
Asymptotic Notation. 
 
 
Θ (Theta) Notation 
 
For a given function g(n), Θ(g(n)) is defined as 
 
 f(n) : there exist constants c1> 0, c2> 0 and n0ϵ N 
Θ(g(n)) =  
  such that 0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n) for all n ≥ n0 
 
In other words a function f(n) is said to belongs to Θ(g(n)), if there 
exists positive constants c1 and c2 such that 0 ≤ c1 g(n) ≤ f(n) ≤ 
c2g(n) for  sufficiently large value of n. Fig 1.1 gives a intuitive 
picture of functions f(n) and g(n), where f(n) = Θ (g(n)). For all the 
values of n at and to right of n0, the values of f(n) lies at or above 
c1g(n)and at or below c2g(n).In other words, for all n ≥n0, the 
function f(n) is equal to g(n) to within a constant factor. So,g(n) is 
said an asymptotically tight bound for f(n). 
 

 
Fig 1.1 : Graphic Example of Θ notation. 
 
For example  

f(n) = ½ n2 -3 n  

let, g(n) = n2 

to proof f(n) = Θ (g(n)) we must determine the positive constants 

c1, c2 and n0 such that  

c1 n2 ≤ ½ n2 -3 n ≤ c2 n2 for all n ≥ n0 
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dividing the whole equation by n2, we get 

c1 ≤ ½ -3/n  ≤ c2 
 
We can make the right hand inequality hold for any value of n ≥ 1 
by choosing c2 ≥ ½. Similarly we can make the left hand inequality 
hold for any value of n ≥ 7 by choosing c1≤1/14. Thus, by choosing 
c1=1/14, c2= ½.  And n0 = 7 we can have f(n) = Θ (g(n)). That is  ½n2 
-3 n = Θ (n2) . 
 
 
O (Big O) Notation 
 
For a given function g(n), O(g(n)) is defined as 
 
 f(n) : there exist constants c > 0, and n0 ϵ N 
O(g(n)) =  
  such that 0 ≤ f(n) ≤ c g(n) for all n ≥ n0 
 
In other words a function f(n) is said to belongs to O(g(n)), if there 
exists positive constant c such that 0 ≤ f(n) ≤ c g(n) for  sufficiently 
large value of n.Fig 1.2 gives a intuitive picture of functions f(n) and 
g(n), where f(n) = O (g(n)). For all the values of n at and to the right 
of n0, the values of f(n) lies at or below cg(n). Sog(n) is said  an 
asymptotically upper bound for f(n).  
 

 
Fig 1.2 : Graphic Example of O notation. 
 
 
Ω (Big Omega) Notation 
 
For a given function g(n), Ω (g(n)) is defined as 
 
 f(n) : there exist constants c > 0, and n0 ϵ N 
Ω(g(n)) =  
  such that 0 ≤ c g(n) ≤ f(n)  for all n ≥ n0 
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In other words, a function f(n) is said to belongs to Ω (g(n)), if there 
exists positive constant c such that 0 ≤ c g(n) ≤ f(n)  for  sufficiently 
large value of n. Fig 1.3 gives a intuitive picture of functions f(n) 
and g(n), where f(n) = Ω (g(n)). For all the values of n at and to the 
right of n0, the values of f(n) lies at or above cg(n). Sog(n) is said 
an asymptotically lower bound for f(n). 

 
Fig 1.3 : Graphic Example of  notation 
 
 
The growth patterns of order notations have been listed below: 
 
O(1) < O(log(n)) < O(n) < O(n log(n)) < O(n2)  <  O(n3)… <O(2n). 
 
The common name of few order notations is listed below: 
 

Notation   Name   
O(1) Constant 
O(log(n)) Logarithmic 
O(n) Linear 
O(n log(n)) Linearithmic 
O(n2) Quadratic 
O(cn) Exponential 
O(n!) Factorial 

 
 
 A Comparison of typical running time of different order notations 
for different input size listed below: 
 

n2log  n  nn 2log  2n  3n  n2  
0 1 0 1 1 2 
1 2 2 4 8 4 
2 4 8 16 64 16 
3 8 24 64 512 256 
4 16 64 256 4096 65536 
5 32 160 1024 32768 4294967296 
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Now let us take few examples of above asymptotic notations 
 

1. Prove that   3n3 + 2n2 + 4n + 3 = O (n3) 
 

Here, 
f(n) = 3n3 + 2n2 + 4n + 3 
g(n) = O (n3) 

to proof f(n) = O (g(n)) we must determine the positive constants c 
and n0 such that  
 

3n3 + 2n2 + 4n + 3 ≤ c n3 for all n ≥ n0 
 
dividing the whole equation by n3, we get 
 

3 + 2/n + 4/n2 + 3/n3 ≤ c  
 
We can make the inequality hold for any value of n ≥ 1 by choosing 
c ≥ 12. Thus, by choosing c ≥ 12and n0 = 1 we can have  
f(n) = O(g(n)).  
 
Thus,3n3 + 2n2 + 4n + 3 = O (n3).   

 
 
2. Prove that   3n3 + 2n2 + 4n + 3 = Ω (n3) 

 
Here, 

f(n) = 3n3 + 2n2 + 4n + 3 
g(n) = O (n3) 

to proof f(n) =  Ω (g(n)) we must determine the positive constants c 
and n0 such that  
 

c n3 ≤ 3n3 + 2n2 + 4n + 3 for all n ≥ n0 
 
dividing the whole equation by n3, we get 
 

c ≤ 3 + 2/n + 4/n2 + 3/n3 
 
We can make the inequality hold for any value of n ≥ 1 by choosing 
c ≤ 3. Thus, by choosing c = 3 and n0 = 1 we can have  
f(n) = Ω (g(n)).  
 

Thus,  3n3 + 2n2 + 4n + 3 = Ω (n3).   
 

3. Prove that   7n3 + 7 = Θ (n3) 
 

Here, 
f(n) = 7n3 + 7 
g(n) = O (n3) 
 

to proof f(n) = Θ (g(n)) we must determine the positive constants 
c1, c2 and n0 such that  
 

c1 n3 ≤ 7n3 + 7 ≤ c2 n3 for all n ≥ n0 
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dividing the whole equation by n3, we get 
 

c1 ≤ 7 + 7/n3 ≤ c2 
 
We can make the right hand inequality hold for any value of n ≥ 1 
by choosing c2 ≥ 14. Similarly we can make the left hand inequality 
hold for any value of n ≥ 1 by choosing c1 ≤ 7. Thus, by choosing 
c1 = 7, c2 = 14.  And n0 = 1 we have f(n) = Θ (g(n)).  
 

Thus,7n3 + 7 = Θ (n3).   
 
 
Now let us take few examples of Algorithms and represent their 
complexity in asymptotic notations 
 
Example 1. Consider the following algorithm to find out the sum of 
all the elements in an array 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Total Cost     3n + 4 
 
So,  
Here  f(n) = 3n + 4 
 Let,  g(n) = n  
If we want to represent it in O notation then we have to show that 
for some positive constant c and n0 
 
      0 ≤ f(n) ≤ c g(n) 

=> 0 ≤ 3n + 4 ≤ c n 
 

Now if we take n = 1 and c = 7  
 

=> 0 ≤ 3 x 1 + 4 ≤ 7 x 1  
 
Which is true, so we can say that for n0 = 1 and c = 7 
 

f(n) = O (g(n)) that is 
3n+4 = O(n) 
 
 
 
 
 

Statement      Cost     Frequency         Total cost 

Sum_Array(arr[], n) 
Step 1. i = 0;        1  1  1  
Step 2. s = 0;        1  1  1  
Step 3.while i < n       1  n+1  n+1 
Step 4. s = s + arr [i]       1  n  n 
Step 5. i = i + 1;       1  n  n 
Step 6.end while;       0  1  0 
Step 7.return s;       1  1  1 
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Example 2. Consider the following algorithm to addtwo square 
matrix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Total Cost     3n2 + 3n + 4 
 
Here  f(n) = 3n2 + 3n + 4 
 Let,  g(n) = n2 
If we want to represent it in Ω notation then we have to show that 
for some positive constant c and n0 
 
      0 ≤ c g(n) ≤ f(n)  
 

=>0  ≤ c n2 ≤ 3n2 + 3n + 4 
 

Now if we take n = 1 and c = 3 
 

=> 0 ≤ 3 x 1 ≤ 3 x 12 + 3 x 1+ 4 
 
Which is true, so we can say that for n0 = 1 and c = 3, 
 

f(n) = Ω (g(n))  
i.e.3n2 + 3n + 4 = O(n2) 
 
 
In analysis of algorithms three different cases may be considered 
depending on the input to the algorithms.These are, 
 
Worst Case: This is the upper bound for execution time with 
anyinput(s). It guarantees that irrespective of the type of input(s), 
the algorithm will not take any longer than the worst case time. 
 
Best Case: This is the lower bound for execution time with any 
input(s). It guarantees that under any circumstances,the algorithm 
will beexecuted at leastfor best case time. That is the minimum 
time required by the algorithm to execute for any input.  
 
Average case:This is the execution time taken by thealgorithm 
forany random input(s)to the algorithm. In this case, for the inputs, 
the algorithm takes a time which is in between the upper and lower 
bound. 
 

Statement   Cost  Frequency Total cost 

Mat_add( a[],n,b[]) 
Step 1. i = 0         1  1 1  
Step 2. j = 0;         1  1 1  
Step 3.while i < n        1  n+1 n+1 
Step 4.while j < n        1          n(n+1) n(n+1) 
Step 5.c[i][j] = a[i][j] + b[i][j]         1  n*n n*n 
Step 6. j = j + 1        1  n*n n*n 
Step 7.end inner while;       0  n 0 
Step 8. i = I + 1        1  n n 
Step 9.end outer while       0  1 0 
Step 10.return c;        1  1 1 
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Example 2. Consider the following Insertion sort algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Worst case Analysis of Insertion Sort 
 
In worst case, inputs to the algorithm will be reversely sorted.Sothe 
loop statementswill run for maximum time. In worst case, every 
time we will find a[j-1]>num in statement 5 as true, so statement 5 
will run for 2 + 3 + 4 + … + n times total n(n+1) - 1 times. 
Statement 6 will run for 1 + 2 + 3 + … + n-1 times total n(n-1) 
times. Same time as statement 6 will be taken by statement 7. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Total Cost                 3n2 + 4n - 4 

 
 

Here  f(n) = 3n2 + 4n - 4 
 Let,  g(n) = n2 
 
If we want to represent it in O notation then we have to show that 
for some positive constant c and n0, the following must be true, 
 
      0 ≤ f(n) ≤ c g(n) 
 

Algorithm Insertion_Sort (a[n]) 

Step 1: i = 2  
Step 2: while i < n 
Step 3: num = a[i]  
Step 4: j = i  
Step 5: while (( j>1) && (a[j-1] >num))  
Step 6: a[j] = a[j-1]  
Step 7: j = j-1  
Step 8: end while (inner) 
Step 9: a[j] = num 
Step 10: i = i + 1 
Step 11: end while (outer)  
 

Statement   Cost       Frequency   Total cost 

Step 1        1  1   1  
Step 2        1  n   n  
Step 3        1  n-1   n-1 
Step 4        1  n-1   n-1 
Step 5         1  n(n+1)-1  n(n+1)-1  
Step 6        1  n(n-1)   n(n-1) 
Step 7        1  n(n-1)   n(n-1) 
Step 8        0  n-1   0 
Step 9        1  n-1   n-1 
Step 10            1  n-1   n-1 
Step 11       0  1   0 
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=> 0 ≤ 3n2 + 4n - 4 ≤ c n2 

Now if we take n = 1 and c = 7  
 

=> 0 ≤ 3x12 + 4x1- 4 ≤ 7 x 12 
 
Which is true.So we can say that for n0 = 1 and c = 7 
 

f(n) = O (g(n))  
i.e3n2 +4n - 4  = O(n2) 
The worst case time complexity of insertion sort is O(n2). 

 
 
Average case Analysis of Insertion Sort 
 
In Average case, inputs to the algorithm will be random. Here, half 
of the time we will find a[j-1]>num is true and false in other half. So 
statement 5 will run for (2 + 3 + 4 + … + n)/2 times total  (n(n+1)–
1)/2 times. Statement 6 will run for (1 + 2 + 3 + … + n-1)/2 times 
total (n(n-1))/2 times. Same for statement 7 as statement 6. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Total Cost    3/2n2 + 7/2n - 4 
 

Now, 3/2n2 + 7/2n – 4 = O(n2) 
 
The average case time complexity of insertion sort is O(n2). 
 
 
Best case Analysis of Insertion Sort 
 
In best case, inputs will be already sorted. So a[j-1]>num will be 
false always. Statement 5 will run for n times (only to check the 
condition is false). Statement 6 will run for 0 times since while loop 
will be false always. Statement 7 will also run for same times as 
statement 6. 
 
 
 
 
 

Statement   Cost       Frequency   Total cost 

Step 1        1  1   1  
Step 2        1  n   n  
Step 3        1  n-1   n-1 
Step 4        1  n-1   n-1 
Step 5         1  (n(n+1)-1)/2         (n(n+1)-1)/2  
Step 6        1  (n(n-1))/2  (n(n-1))/2 
Step 7        1  (n(n-1))/2  (n(n-1))/2 
Step 8        0  n-1   0 
Step 9        1  n-1   n-1 
Step 10            1  n-1   n-1 
Step 11       0  1   0 
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 CHECK YOUR PROGRESS   
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Total Cost                  5n- 3 

 
Now  5n-3 = O(n) 
 
The best case time complexity of insertion sort is O(n) 

 
 
 
 
 

  
 

 2. State True or False. 
a) 7 n3 + 4n + 27 = O (n3) 
b) 2n2 + 34 = Ω (n3) 
c) 2n2 + 34 = O (n3) 
d) 2n2 + 34 = Θ (n3) 
e) 2n2 + 34 = Ω (n) 
f) 2n2 + 34 = Θ (n2) 
g) 2n7 + 4n3 + 2n = Ω (n3) 
h) 2n4 + 3n3 + 17n2 = O (n3) 

 

 

 
 
1.7 HEAPS AND HEAP SORT 

Statement   Cost       Frequency   Total cost 

Step 1        1  1   1  
Step 2        1  n   n  
Step 3        1  n-1   n-1 
Step 4        1  n-1   n-1 
Step 5         1  n   n 
Step 6        1  0   0 
Step 7        1  0   0 
 Step 8        0  n-1   0 
Step 9        1  n-1   n-1 
Step 10            1  n-1   n-1 
Step 11       0  1   0 
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A heap is a complete binary tree, which follows either the 
max-heap or min-heap properties. If the children(s) of every node 
have  value less than the value of its parent node, then the heap is 
called max-heap.On the other hand if the value of children(s) of 
every node are greater than the value of its parent node, then the 
heap is called min-heap.  

Forthese two cases, the root will always have either the 
highest or lowest value of the heap. For further discussion we will 
consider only the max-heap. 

Heap Representation: 

 A Heap can be efficiently represented in an array.  
 The root is stored at the first place, i.e. a[1].  
 The children of the node i are located at 2*i and 2*i +1.  
 Theparent of a node stored in ith location is at floor (i/2).  

The array representation of a heap is given in the figure below.  

 

   

Fig 1.4 A Max Heap 

Insertion: 

To insert an element x into the heap, we first place the data into 
the next available location of the heap, so that it is still a complete 
binary tree but not necessarily a heap. If x can be placed in that 
position without violating heap property, then we are done with the 
insertion. Otherwise we have to exchange the element with its 
parent.We need to continue this process until x can be placed in 
the right position. Figure 1.5 to 1.7 shows different steps involving 
in insertion of 16 in the heap shown in fig 1.4. 
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Fig 1.5 Adding 16 to the previous heap. 

After adding the node 16 in to the next available location of the 
heap shown in fig 1.4, the new tree will be as shown in Fig 
1.5.Since it follows all the properties of complete binary tree, but it 
does  notsatisfy the properties of max heap since the parent of 16 
is 4. To make it a heap we need to exchange the newly inserted 
element 16 with its parent. Fig 1.6 shows the new tree after 
exchange of 16 and 4 

 

Fig 1.6 Steps of Insertion 

Now after exchange of 16 and 4, it is still not a heap since the 
parent of 16 is 8, which violate the max heap property. To make it 
a heap we need to exchange 16 with its parent 8. Fig 1.7 shows 
the new tree after exchange of 16 and 8. 

 

Fig 1.7 Heap after inserting 16 
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Now after exchange of 16 and 8 it follows the property of max 
heap. So Fig 1.7 is the heap after inserting 16 into the heap at fig 
1.4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Deletion: 

In the delete process of a heap, we only delete the root element 
from the heap. In this process, we first delete the root element and 
replace it by the last element of the heap, so that it is still a 
complete binary tree but not necessarily a heap. After replacing the 
root by the last element, if it maintains the heap properties, then 
we are done with the deletion. Otherwise we exchange the 
element with its children.Incase of Max-heap we exchange the 
element with the  child having maximum value and in case of Min-
heap we exchange the element with the child having minimum 
value, we have to continue this process until the element can be 
placed in the right position of the heap.  Figure 1.8 to 1.10 shows 
different steps involving in deletionin the heap in fig 1.7. 

 

 Fig 1.8After replacing root by the last element  

Algorithm Heap_Insertion (arr[], item,N) 

Step 1:  set N=N+1 and ptr=N; 
Step 2:  while ptr ≥ 1 
Step 3:     par = floor (prt/2) 
Step 4:     if item ≤ arr[par] 
Step 5:  arr[ptr]=item and return; 
Step 6:     end if 
Step 7:     arr[ptr]=arr[par] 
Step 8:     ptr=par 
Step 9:   end while 
Step 10: arr[1]=item 
Step 11: return  
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After replacing root by the last element in the heap at fig 1.7,we 
have a complete binary treeas shown in fig 1.8.But it is not a heap, 
since the children of 4 violates the max heap property. To make it 
a heap we need to exchange the 4 with the child having maximum 
value, which is 16. Fig 1.9 shows the tree after exchange of 4 and 
16 

 

Fig 1.9Intermediate steps of deletion 

Now after exchange of 16 and 4 it is still not a heap since children 
of 4 violate the max heap property. To make it a heap we need to 
exchange 4 with its child having maximum value, which is 8. Fig 
1.10 shows tree after exchange 4 and 8. 

 

Fig 1.10 Heap after deletion 

Now after exchange of 4 and 8 it follows the property of max heap. 
Fig 1.10 is the heap after deletion. 
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Heap Sort 

Suppose an array A with N element is given. The heap sort 
algorithm consist of two phases to sort A 

Phase 1: Build heap from the elements of A 

Phase 2: Repeatedly delete the root from the heap 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 
 
Suppose we want to sort the following elements by using heap sort 
  44, 30, 50, 22, 60, 55, 77 
This can be accomplished by, first inserting the elements in to a 
heap one after another and then delete the root repeatedly until the 
heap is not empty. 

Algorithm Heap_Deletion (arr[], item, N) 

Step 1:  item= arr[1] 
Step 2:  last = arr[N] 
Step 3:  ptr=1, left = 2 and right =3 
Step 4:  while right ≤ N 
Step 5:       if last ≥ arr[left]and last ≥ arr[right] 
Step 6:  arr[ptr] = last and return 
Step 7:       end if 
Step 8:       if arr[right] ≤ arr[left] 
Step 9:   arr[ptr]= arr[left] and ptr = left 
Step 10:     else 
Step 11:  arr[ptr] = arr[right] and ptr = right 
Step 12:     end if 
Step 13:     left=2*ptr and right= left+1 
Step 14:  end while 
Step 15:  if left==N and if last <arr[left] 
Step 16:     ptr=left 
Step 17:  end if 
Step 18:  arr[ptr]= last 
Step 19:  return 

Algorithm Heap_Sort (arr[], N) 

Step 1:  for i=1 to N-1 
Step 2:      call Heap_insert(arr, arr[i+1], i) 
Step 3:  end for 
Step 4:  while N>1 
Step 5:       call Heap_delete(arr, item , N) 
Step 6:       arr[N+1]=item 
Step 7:   end while 
Step 8:   EXIT 



Introduction to Algorithms Unit 1 
 

Design and Analysis of Algorithm   25
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Fig 1.11 Heap Sort  
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1.8  SET AND DISJOINT SET  
 
In this section we will study the representation ofsets as forests. 
Here we assume that the elements of sets are the numbers 1,2,3, 
.... n, and we also assume that sets represented here are pair wise 
disjoint. For example if n=7, then the elements can be partitioned 
into two disjoint sets S1 = {1,4,7} and S2 = {2,3,5,6}. Fig 1.12 shows 
one possible representation of these sets. Here the usual method 
for representing child- parent relationship is not used, instead the 
links are maintain from child to parent. 
 

 
 
Fig 1.12 Possible tree representation of sets 
 
 
 
1.9   UNION FIND ALGORITHM 
 
Disjoint set Union: If Siand Sj are two disjoint sets then their 
union SiU Sj= all elements x such that x is in Si or Sj.Thus S1U S2 = 
{1,2,3,4,5,6,7}. After union of any two sets Siand Sj, the sets Siand 
Sj do not exist independently anymore.They are replaced by SiU Sj 
as a collection of sets. 
 
Find(i): Given the element i, find the set containing i,eg. 4 isin S1. 
 
To obtain the union of two sets , all we need to do is, set the 
pointer of one of the roots to point the other root.For example,in fig 
1.13 two possible representation of S1U S2 are shown. 
 

 
Fig: 1.13 Possible Representation of S1U S2 
 
In computer representation of sets each set has a name with the 
elements of the set. In link representation of sets a pointer is 
maintained to point the root of the tree representing the set, and in 
addition each root also maintain a pointer to the set name.To 
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determine which set an element is currently in, we follow the 
parent links to the root of its tree and use the pointer to find the set 
name. In fig 1.14 linkrepresentation of S1and S2 is shown. 
 

 
 
Fig 1.14 Data representation for S1 and S2 
 
Since the set elements are numbered 1 through n, we can 
represent, the tree nodes using an array p [1 : n], where n is the 
maximum number of elements. The ith element of this array 
represents the tree node that contains element i. The array 
elements give the parent pointer of the corresponding tree node. 
Fig 1.15 shows representation of sets S1 and S2, where the root 
node have parent -1. 
 
I [1] [2] [3]  [4] [5] [6] [7] 
P 4 3 -1 -1 3 3 4 
 
Fig: 1.15 Array representation of S1 and S2 
 
Now we can implement Find(i), by following the indices, starting at 
i until we reach a node with parent value -1. For example Find(6) 
starts at 6 and then moves to 6’s parent 3. Since p[3] is –ve , we 
have reached the root. The operation Union(i, j) is also equally 
simple, we pass the two trees root i and j, by adopting the 
convention first tree become the sub-tree of the second, the 
statement p[i]=j; accomplished the union.  
 
 
1.10   SORTING IN LINEAR TIME 

We have already discussed several sorting algorithms which can 
sort data in O(n log n) time,merge sort and heapsort achieve this 
upper bound in the worst case; quicksort achieves it on average. 
Moreover, for each of these algorithms, we can produce a 
sequence of n inputs that causes the algorithm to run in Ω(n log n) 
time. 

These algorithms share an interesting property, that is, the 
sorted order defined is based on comparisons between the input 
elements. We call such sorting algorithms comparison sorts. All the 
sorting algorithms introduced this far are comparison sorts. 

Now we will discuss two sorting algorithms-counting sort 
and radix sort, that run in linear time. Needless to say, these 
algorithms use operations other than comparisons to determine the 
sorted order 
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Counting Sort   

Counting sort assumes that each of the n input elements is an 
integer in the range 1 to k, for some integer k. When k = O(n), the 
sort runs in O(n) time. 

The basic idea of counting sort is to determine the number 
of elements less than each of the input element. This information 
can be used to place element x directly into its position in the 
output array. For example, if there are 17 elements less than x, 
then x belongs to output position 18. This scheme need to modified 
slightly to handle the situation when several elements have the 
same value, since we don't want to put them all in the same 
position. 

In the algorithm of counting sort, we assume that the input 
is an array A[1 . . n], and length[A] = n. We require two other 
arrays: the array B[1 . . n] holds the sorted output, and the array 
C[1 . . k] provides temporary working space. 

 
 
 
 
 
 
 
 
 
 

 

 

 

An example of counting sort is shown below: 

 

Algorithm Counting-Sort  (A, B, k) 
 

1. for i = 1 to k 
2.     do C[i] = 0 
3. for j = 1 to length[A] 
4.     do C[A[j]] = C[A[j]] +1 
5. // C[i] now contains no of element equal to i 
6. for j = 2 to k 
7.     do C[i] = C[i] +C[i-1] 
8.  
9. for j = length[A] down to 1 
10.     do B[C[A[j]]] = A[j] 
11.          [A[j]] = C[A[j]] -1 
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Fig: 1.16 counting sort 

In Fig 1.16,the operation of COUNTING-SORT of an input 
array A[1 . . 8] is shown, where each element of A is a positive 
integer no larger than k = 6. In fig 1.16 (a) the array A and the 
auxiliary array C after execution of step 4 is shown. In fig 1.16 (b) 
the array C after execution of step 7 is shown. In fig 1.16(c)-(e) the 
output array B and the auxiliary array C after one, two, and three 
iterations of the loop in steps 9-11, respectively. In fig 1.16 (f) the 
final sorted output array B is shown. 

How much time does counting sort require? The for loop of 
steps 1-2 takes time O(k), the for loop of steps 3-4 takes time O(n), 
the for loop of steps 6-7 takes time O(k), and the for loop of steps 
9-11 takes time O(n). Thus, the overall time is O(k + n). In practice, 
we usually use counting sort when we have k = O(n), in which 
case the running time is O(n). So counting sort beats the lower 
bound of Ω(n 1g n). 

 

Radix Sort  

Radix sort is a small method that many people intuitively use when 
alphabetizing a large list of names. (In case of names Radix is 26, 
since there are 26 letters in the alphabet). Specifically, the list of 
names is first sorted according to the first letter of each names, 
that is, the names are arranged in 26 classes. Intuitively, one might 
want to sort numbers on their most significant digit. But Radix sort 
do counter-intuitively by sorting on the least significant digits first. 
On the first pass entire numbers are sorted on the basis of least 
significant digit and iscombined in an array. Then on the second 
pass, the entire numbers are sorted again based on the second 
least-significant digits and is combined in an array and so on. 

RADIX-SORT(A, d) 
1. for i  1 to d 
2. do use a stable sort to sort array A on digit i 

The code for radix sort is straightforward. The following 
procedure assumes that each element in the n-element array A 
has d digits, where digit 1 is the lowest-order digit and digit d is the 
highest-order digit. 
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 CHECK YOUR PROGRESS   

The analysis of the running time depends on the stable sort 
used as the intermediate sorting algorithm. When each digit is in 
the range 1 to k, and k is not too large, counting sort is the obvious 
choice. Each pass over n d-digit numbers takes time θ(n + k). 
There are d passes, so the total time for radix sort is θ(dn + kd). 
When d is constant and k = O(n), radix sort runs in linear time. 

Following example shows how Radix sort operates on seven 3-
digits number : 

 

Fig 1.17 Radix sort example. 

Figure 1.17shows the operation of radix sort on a list of seven 3-
digit numbers. 

 
 
 

  
 

3. State True or False. 
a) The find operation can be performed even if the sets 

are not disjoint. 
b) Counting sort is efficient when the range of numbers to 

be sort is small. 
c) In Max-Heap root always contain the minimum value of 

the heap. 
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1.11 LET US SUM UP 
 

 An algorithm is a sequence of computational steps that 
start with a set of input(s) and finish with valid output(s) 

 An algorithm is correct if for every input(s), it halts with 
correct output(s). 

 Computational complexity of algorithms are generally 
referred to by space complexity and time complexity of the 
program 

 The Space complexity of an algorithm is the amount of 
main memory is needed to run the program till completion. 

 The Time complexity of an algorithm is the amount of 
computer time it needs to run the program till completion.  

 O(1) < O(log(n)) < O(n) < O(n log(n)) < O(n2)  <  O(n3)… 
<O(2n). 

 Heap is a complete binary tree with the properties of either 
Max heap or Min heap 

 Union operation on set combine two set by making one of 
the root as the child of the other root. 

 Find operation on set returns the set-name of the set where 
the node belongs. 

 Radix sort and counting sort are linear time sorting 
algorithm 
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1.  

a) False b)True  c)False d)False e)True 
 
2.  

a) True b)False c)True  d)False e) 
Truef) True  g) Trueh) False 

 
3. 

a) False b)True  c)False 
 

 
1. Given an array of n integers, write an algorithm to find the 

smallest element. Find number of instruction executed by 
your algorithm. What are the time and space complexities?  

2. Write a algorithm to find the median of n numbers. Find 
number of instruction executed by your algorithm. What are 
the time and space complexities? 

3. Write an algorithm to sort elements by bubble sort 
algorithm. What are the time and space complexities? 

4. Explain the need of Analysis of Algorithm. 
5. Prove the following 

ii) 3n5 - 7n + 4 = Θ (n5) 
iii) 1/3n4  - 7n2 + 3n = Θ (n4) 
iv) 2n2  + n + 4 = Θ (n2) 
v) 3n5 - 7n + 4 = O (n5) 
vi) 3n5 - 7n + 4 = Ω (n5) 

6. Sort the following element by using Heap sort algorithm 

17, 19,13, 16,12, 9, 14, 18, 6 15, 22, 27, 8 

7. Sort the following elements by using counting sort algorithm 

7, 9, 9, 6, 4, 2, 8, 6, 4, 3, 7, 2, 1 

8. Sort the following element by using Radix sort algorithm 

177, 129,153, 196,122, 339, 514, 188, 666 245, 292, 207 

 
***** 

1.13  ANSWERS TO CHECK YOUR    
       PROGRESS 
 

1.14 MODEL QUESTIONS 
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UNIT- 2 :   DIVIDE AND CONQUER 
 
UNIT STRUCTURE 
 

2.1 Learning  Objective 

2.2 Introduction 
2.3 Divide and Conquer General Strategy 

2.4 Divide and Conquer Algorithm Applied in Binary Search 

2.5 Divide and Conquer Algorithm Applied in Merge Sort 

2.5.1 Pseudo Code of Merge Sort Algorithm 

2.6 Divide and Conquer Algorithm Applied in Quick Sort 

2.6.1 Algorithm for Quick Sort  

2.6.2 Pseudo Code for Quick Sort 

2.7 Exponentiation 

2.8 Let Us Sum Up 
2.9 Answers to Check Your Progress 

2.10 Further Readings 

2.11 Model Questions 
 

 

 2.1 LEARNING OBJECTIVE 
    

 After going through this unit, you will be able to: 

 know the concept divide and conquer  

 describe the application of divide and conquer method in 

binary search, quick sort and merge sort techniques  

 elaborate the application of divide and conquer technique 

in exponentiation 
 

                 2.2 INTRODUCTION 
In the previous unit, you are acquainted with the basic idea about 

the algorithms, time complexity of algorithms and some other 
related issues. In this unit, we will introduce you the ‘divide and 
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conquer’ approach that is used in the  design of algorithms. This 

technique is the basis of designing efficient algorithms for all kinds 

of problems, such as sorting techniques like  quick sort, merge 

sort and in searching techniques like binary search etc. 
 

                 2.3 DIVIDE AND CONQUER GENERALSTRATEGY 

 

Divide and conquer algorithm is an important algorithm designed 
paradigm based on multi-branched recursion. A divide and 

conquer algorithm works by recursively breaking down a problem 

into two or more independent sub-problems of the same type, until 

they become simple enough to solved directly. Generally, the sub-

problems solved by a divide and conquer is non-overlapping i.e 

solution to a problem is depend upon only on sub-problems, but is 

not depend upon sub-sub-problems.  

The general methodology applied in the divide and conquer 

technique is as follows : 

         
 Step 1: Divide the problem into two or more independent sub-      

              Problems (not necessarily same type). 

Step 2: Solve (conquer) the each sub-problem recursively to the  

             Smallest possible size. 

Step 3: Combine these solution of the sub-problems into a 

solution to the whole problem. 

 

2.4 DIVIDE AND CONQUER ALGORITHM APPLIED 
IN BINARY SEARCH 

 
Binary search is a well known instance of divide and conquer 
method. For binary search divide and conquer strategy is applied 

recursively for a given sorted array is as follows: 
 
Divide:  Divide the selected array at the middle. It creates two        



                       Divide and Conquer 

                     Design and Analysis of Algorithm                                                   36 

             sub-array, one left sub-array and other right sub-array. 

                       Conquer: Find out the appropriate sub-array. 

                       Combine: Check for the solution to key element.  

  
For a given sorted array of N element and for a given key element 

(value to be searched in the sorted array), the basic idea of binary 

search is as fallows – 

 

1. First find the middle element of the array 

2. Compare the middle element with the key element. 

3. There are three cases 

 If it is the key element then search is successful. 

 If it is less than key element then search only the 

lower half of the array. 

 If it is greater than key element then search only 

the upper half of the array. 
 4.     Repeat 1, 2 and 3 until the key element found or sub-array 

sizes become one. 

   

Algorithm for binary search 

1. Set Lower = 0, Upper = N -1 

2. Mid = ( Lower + Upper ) / 2 

3. while ( Lower ≤Upper) and A [ Mid ] != Item repeat  

           Steps 4 and 5 

4. if ( Item < A [ Mid ] )  then 

5. Upper = Mid -1 

6. else   Lower = Mid +1 
7. Mid = ( Lower + Upper ) / 2 

8. if ( A [ Mid ] = = Item ) then 

9. Print  “Search successful” 

10. else   Print  “Item is not found” 

11. end 
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Here, Lower, Upper and Mid denotes the beginning, ending and 

middle index of an array A [ ] respectively. Item means the key 

element to be searched in the given array A [ ]. If size of A [ ] is N 

then beginning and the ending indices are 0 and N -1 respectively.  
         

 In step 1  the algorithm initially sets the value of Lower = 0 and  

                 Upper = N -1. 

 In step 2  it calculate Mid, the index of the middle element, for the  

                 array A [ ]. 

 In step 3  while the beginning index (Lower) is less then end  

                 index (Upper) and middle element ( A [ Mid ] ) is not  

                 equal key element (Item) then repeat step 4 and 5.  

 In step 4  if A [ Mid ] is less than the Item, then the algorithm    
                 searches in the left sub-array. So, the beginning index  

                 remain same and the end index of the left sub-array            

                 becomes  Mid -1. Hence, ‘Upper’ is set as Mid -1. Else  

                 if A [Mid]  is greater than Item, then the algorithm  

                 searches in the right sub-array. So, the beginning index  

                 of the right sub-array becomes Mid+1 and end index  

                 remain same. Hence the ‘Lower’ is set as Mid+1. 

 In step 5   again middle element (Mid) is calculated for the  

                   selected sub-array in step 4. 

 In step 6   algorithm is terminated either if middle element     
                   (A[Mid ] ) is equal  to Item or beginning index ( Lower )   

                   is greater than end index ( Upper )( i.e when subarray  

                   sizes become one) . In first case , terminate when   

                   search element is found and in later case terminate  

                   when search is not  successful. 

 
Example 2.5.1: Suppose A is an array of 6 elements. Search an 

element 10 in the array using binary search. 
0               1              2              3              4              5 

3 4 7 10 12 13 
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 Solution:           
 Step 1:   Here Lower = 0, Upper = 5, Item = 10 

 Step 2:   First we have to calculate middle element for the array A 

                       Mid = ( Lower + Upper ) / 2 
                              = ( 0 + 5 ) / 2 

                              =2 

 
                  Mid divides the array into two subarray as follows 

 
              Lower= 0   1            Mid = 2        3              4          Upper=5 

3 4 7 10 12 13 

            
                       Step 3:  Here Lower < Upper and A [Mid] ! =10. So continue Step4                 

                                     and Step 5  

                       Step 4:  Select (Conquer) an appropriate subarray. 

                                     Here A [Mid] =7 
             7<10 , select the right subarray to search for the element. 

                           Lower = Mid+1 

                                      =2 +1 

                                      =3 

             Now the subarray is- 

 
                             Lower = 3            4                    Upper = 5 

10 12 13 

                         

     Step 5:          Mid = (Lower + Upper) / 2 

                                  = ( 3 + 5 ) / 2 

                                     = 4 
                          
        Lower = 3          Mid = 4            Upper = 5 

10 12 13 

                            

                          
                    divide the array again in Mid = 4. 
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                    Here, Lower < Upper   and A [Mid] != 10 So, repeat    

                    step 4 and Step 5  again                         

                              A [4] =12 
                    12 >10, So search in the left subarray. 

                              Upper = Mid -1 

                                         = 4 -1 

                                         =3 

                     New subarray is- 

                          

                        Lower=3     Upper=3 

 10 

 
Step 6:   Mid = (Lower + Upper) / 2 

                      = ( 3 + 3 ) / 2 

                      = 3 

                                          
                 Here, Lower = Upper and A [ Mid ] = =10  
                 So, PRINT “Search successful” 

Step 7: End 

                                               

CHECK YOUR PROGRESS                        

                      1. Fill in the blanks 

   a) Binary search is applied in already------------array. 

b) In binary search each time the algorithm finds out 

the --------   
         element. 

c) The algorithm divide the array into two halves in ---------. 

d) Divide and conquer algorithm is applied in a problem when  

sub-problems are------. 

   e)  Divide and conquer algorithm divide the problem into -------- 

          sub-problems. 
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2.5 DIVIDE AND CONQUER ALGORITHM APPLIED 
IN MERGE SORT 
 
Merge sort is also one of the ‘divide and conquer’ class of 

algorithms. This is a sorting algorithm to sort an unordered list of 

element. Merge sort is a recursive algorithm that splits the array 

into two sub-arrays, sorts each sub-array, and then merges the 

two sorted arrays into a single sorted array. The base case of the 

recursion is when a subarray of size 1 (or 0). Merge sort algorithm 

also closely follow divide and conquer strategy. It is an external 

sorting algorithm. 

  
Divide : Divide N element array to be sorted into two subarray of  

             N / 2 element each. 

Conquer : Sort the subarrays recursively using merge sort. 

  Combine : Merge the two sorted sub-array to produce final sorted     

    array. 

Suppose we have to sort a array of N element, A [ p…..r ]. Initially 

p = 1 and r=N  
 
To sort A [p .. r] 
 
1. Divide Step:  If a given array A has zero or one element,    

               simply return; it is already sorted. Otherwise, split            
                                      A [p .. r ] into two subarrays A [ p  .. q ] and A [ q + 1 .. r ],  

                                      each containing about half of the elements of A [p .. r].  

                                     That is, q is the halfway point of A [p .. r]. 
2. Conquer Step: Conquer by recursively sorting the two   

                subarrays  A [ p .. q ] and A [ q  + 1 .. r ]. 
3. Combine Step: Combine the elements back in A [ p .. r ]  

                 by merging the two sorted subarrays A [ p .. q ] and       
                 A [ q + 1 .. r ] into a  unique sorted sequence.  
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Example 2.6.1: Sort the following data using merge sort 
   

     
Solution:    

                        The merge sort strategy is applied as fallows- 

       

 
 

 
 
This is the final sorted array. 

 

17 11 12 3 8 6 22 19 20 

17 11 12 3 8 6 22 19 20 

12 11 3 8 6 17 22 19 20 

12 11 3 8 6 17 22 19 20 

20 19 

Divide 

17 11 12 3 8 6 22 19 20 

17 22 

19 20 

19 20 11 3 8 6 12 

20 17 11 6 8 3 12 

8 3 12 6 17 11 

19 22 

19 20 22 

6 3 12 17 19 8 11 20 22 

Conquer 

   and 

Combine 
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2.7 PSEUDO CODE FOR MERGE SORT ALGORITHM 
 

 MERGE_SORT ( A , p , r) 

     1.  if ( p < r )  

     2.  then q = ( p + r ) / 2 

     

     3.             MERGE_SORT ( A , p , q ) 

     4.             MERGE_SORT ( A , q + 1 , r ) 

     5.             MERGE ( A , p , q , r ) 

 

  MERGE ( A , p , q , r ) 

     1.   n1 = q – p + 1 

     2.   n2  = r - q 

     3.   create arrays L [ 1…..n1 + 1 ]   and   R [ 1……n2 + 1 ] 

     4.   for i=1 to n1 

     5.            do    L [ i ] = A [ p + i – 1 ] 

     6.   for  j=1 to n2 

     7.            do   R [ j ] = A [ q + j ] 
     8.  L [ n1 +1 ] = ∞ 

     9.R [ n2 + 1 ] = ∞ 

     10.  i =1 

     11. j =1 
     12. for k = p to r 

      13.       do if L [ i  ] ≤ R [ i ] 

      14.            then  A [ k ] = L [ i ] 

      15.            i = i +1 

      16.       else   A [ k ] = R [ j ] 

      17.            j = j + 1 

 

Here the procedure MERGE_SORT ( A , p , r ) sorts the element 

in the subarray A [ p….r ] . i.e p is the first element index and r is 

the last element index of the subarray.  If p ≥ r , the subarray is 

atmost one element and is already sorted. Otherwise, the divide 
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step (step 2 in MERGE_SORT (A, p, r) procedure) simply 

computes an index q that partition A [ p….r ] into two subarray     

A [ p …..q ] and A [ q + 1…..r ] containing n/2 elements in each 

subarray  
To sort a sequence A of N element , the initial call is 

MERGE_SORT( A,1, N ). 

Next, we have to merge the sorted subarrays obtain from the 

MERGE_SORT  ( A , p , r ) procedure using MERGE( A , p , q , r), 

where A is an sorted array, p , q and r  indices of the element such 

that p ≤ q < r. This procedure merge two sorted sub-array A[p..q ] 

and A [ q + 1….r ] and form a single sorted subarray and replaces 

the current subarray A [ p..r ]. 

           
 In details the MERGE procedure is work as follows- 

  

 Line 1 compute the length n1 of the subarray A [ p…q ] . 

 Line 2 compute the length n2 of the subarray A [ q + 1…r ].  

 Line 3 create array ‘L’ (left) and ‘R’ (right) of length n1+1 and n2+1    

              respectively.  

 Line 4-5 the for loop copies the subarray A [ p…q ] into L [ 1..n1 ]. 

 Line 6-7 it copies the subarray A [ q + 1…r ] into R [ 1..n2 ].  

 Line 8-9 put ‘∞’ at the end of the array L ( i.e in n1+1)and R ( i.e in  

                n2 + 1 ). 
 Line12-17 find the smallest element between L[ i ] and R [ j ],              
                 where i =1….n1 and  j =1….n2.  

 If L [ i ] ≤ R [ j ] then it copies L [ i ] to A and 

increase i to i +1, 

 Otherwise, copies R [ j ] to A and  increase j to     

j +1. 

 
Example: 
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Let us see, how merging is done between two sorted subarrays 

using the MERGE procedure. After merging is done the subarrays 

are combined to one sorted array.  

                        
                       In the following sequence the procedure calls MERGE(A,13,15,17)     

                       works as below .  

 

Here p = 13  

         q = 15 

          r = 17 

          L= left subarray 

          R= right subarray 

          i = index of element’s of left subarray L 
          j = index of element’s of right subarray R 

 

                                                       A           k=13           14         15            16          17        

.... 10 11 14 9 13 … 

 
          

                                                        L   i=1           2                       3                   4 

10 11 14 ∞ 

                            

 

         R     j=1              2                        3 

9 13 ∞ 

 

     

 Here, k = 13,   i =1 and    j = 1 

        R [ 1 ] < L [ 1 ]  i.e  9 < 10. 

        So, A [ 1 ] = R [ 1 ] 

                         = 9   

                j = j + 1  =1 + 1  = 2 
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                                               A             k=13    14                15            16           17              

… 9 11 14 9 13 … 

           

                          

                          Next,    k = 14,  i = 1,  j = 2 

                          L [ 1 ] < R [ 2 ] i.e  10 < 13 

 

    So,  A [ 14 ] = L [ 1 ] 

                        =10  
            i = i + 1  = 1 + 1  = 2 

                            

                                                  A         13        k=14           15            16           17              

… 9 10 14 9 13 … 
 

   

Next,  k = 15, i = 2,  j = 2 

                        L [ 2 ] < R [ 2 ], i.e 11 < 13  

 

So, A [ 15 ] = L [ 2 ] 

                   =11  

        i = i + 1  = 2 + 1 = 3 

   

A         13        14               k=15            16           17              

… 9 10 11 9 13 … 
 

 

Next,    k = 16 ,  i = 3,  j = 2 

 R [ 2 ] < L [ 3 ] , i.e 13 < 14  

 

So,   A [ 16 ] = R [ 2 ] 

                     =13  

         j = j + 1  = 2 + 1 = 3 
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A         13          14              15          k = 16           17              

… 9 10 11 13 13 … 

 

 

Next,  k = 17,  i = 3,  j = 3 

 L [ 3 ] < R [ 3 ], i.e  14 < ∞ 

So,  A [ 17 ] = L [ 3 ] 

                    =14 

          i = i + 1  = 3 + 1  = 4 
 

    A         13          14              15         16         k = 17              

… 9 10 11 13 14 … 

 
Next,  k=18 which is greater then r(i.e 17). So the MERGE 

procedure is terminated here. 

 

CHECK YOUR PROGRESS  
 

2.  Fill in the blanks 

   a. In divide step merge sort algorithm divides the array elements  

        to be sorted up to array size becomes ---- or -----. 

   b. Merge sort algorithm merges two ----- subarrays. 

   c. For merging two subarrays merge sort algorithm uses another  

       ----- subarray. 

   d. Merge sort algorithm is an-------sorting algorithm. 

 

 
 

2.7 DIVIDE AND CONQUER ALGORITHM APPLIED IN 
QUICK SORT 
 
It is one of the widely used internal sorting algorithm. In its basic 

form it was developed by C.A.R Hoare in 1960. The basis of quick 
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sort is divide and conquer strategy, i.e divide the problem (list to 

be sorted) into sub-problems (sub-lists) , until solved sub-problems 

(sorted sub-list) are found. The divide and conquer approach can 

be used in quick sort differently from merge sort. In merge sort , 
the list to be sorted is divided at its midpoint into subarrays which 

are independently sorted and later merged. In quick sort, the 

division to the sorted subarrays is made, so that the sorted 

subarrays do not need to merge later. 

 

Divide and conquer strategy for quick sort to sort an array A [ p…r] 

is as follows: 
 
Divide: partition the array A [ p…r ] into two sub-arrays A[ p…q -1] 

and A [q + 1…..r ] such that each element of A [ p…q -1 ] 

is less than or equal to A [ q ], which in turn, less than or 

equal to each element of A [ q + 1…r ]. Compute the index 

q as part of this partitioning procedure. 
 
Conquer: Sort the two subarrays A[p…q-1] and A[q+1…r] by 

recursive calls to quick sort . 
 
Combine: Since the subarrays are sorted in place, no work is 

needed to combine them.  The entire array A [p…r] is now 
sorted. 

           

 
 
 
2.7.1 ALGORITHM FOR QUICK SORT  

 
Quick_Sort : 
Step 1 : If First < Last then begin       /* here First and Last are the        

                                                           index of the first and last                                                        
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                                                          elements in the array*/ 
Step 2 : Partition the elements in the subarray  First….Last 

Step 3 :  Apply Quick_Sort to the first subarray. 

Step 4 :  Apply Quick_Sort to the second subarray. 

              end 

 
 

For this algorithm two stopping cases are- 

 If First = Last . i.e. only one element in the subarray to be 

sorted. 

 if First > Last. i.e. no element in the subarray to be sorted. 

 
 
Partition algorithm: 
To partition an array A[ ] partition algorithm is 

 
Step 1:  Define the Pivot value as the contents of the Array,            

              A [ First ]. 

Step 2:  Initialize Up to the First and Down to the Last 

Step 3:  Repeat step 4,5,6 until Up  ≥ Down 

Step 4:  Increment Up until Up selects the first element greater   
              than the Pivot value. 

Step 5:  Decrement Down until it selects the first element less  

               than or equal to the Pivot value. 

Step 6:   If Up < Down exchange their values. 

Step 7:   Exchange A [ First ] and A [ Down ]. 

Step 8:   Define PivotIndex as Down  

 
 
Example :  
 

Sort the following data  of array A using quick sort. 

 A =  44    75    23    43   55   12   64   77   33 
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Solution: 
1. Assign  First to first element and  Last to last element. 

 

 
2. First < Last,   

So,  assign Pivot to First . 
Pivot = First 

 

 
   

3.   Assign Up to first element and   Down to last element. 

                          

        

a) if ( A [ Pivot ]  ≥ A [ Up ] )  then  Up++                               

                  

 
 

 

b) if ( A [ Pivot ] < A [ Down ] )  Down -- 

             

 

44 75 23 

first 

64 12 55 43 33 77 

last 

44 75 23 

First 

64 12 55 43 33 77 

Last Pivot 

44 75 23 

First 

64 12 55 43 33 77 

Last Pivot Up Down 

44 75 23 

First 

64 12 55 43 33 77 

Last Pivot Up Down 

44 75 23 

First 

64 12 55 43 33 77 

Last Pivot Up Down 
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c) if ( Up < Down ) exchange  A [ Up ]  and  A [ Down ] 

                 

 
 

d) Repeat  a), b)  and c)  if Up < Down        

                     

  

 
           

           

    

e) Here, Up > Down 

          Exchange A [ Pivot] and A [ Down ] and assign Down as 

PivotIndex 

                  
                

        

44 33 23 

First 

64 12 55 43 75 77 

Last Pivot Up Down 

44 33 23 

First 

64 55 12 43 75 77 

Last Pivot Up Down 

44 33 23 

First 

64 12 55 43 75 77 

Last Pivot Up Down 

44 33 23 

First 

64 55 12 43 75 77 

Last Pivot Up Down 

12 33 23 

First 

64 55 44 43 75 77 

Last PivotIndex 



                       Divide and Conquer 

                     Design and Analysis of Algorithm                                                   51 

4.  This gives  two subarrays , Left subarray and Right subarray. 

Again we have to apply Quick Sort procedure in these sub 

arrays to sort it. 

       

 
   

             

 
 

 

 
 
 

 
 
                 

 

12 33 23 

First1 

64 55 44 43 75 77 

Last2 Last1 First2 

Left subarray Right subarray 

12 33 23 

First1 

64 55 44 43 75 77 

Last2 Last1 First2 Pivot
Up2 

Down2 
Pivot1 Up1 Down1 

12 33 23 

First1 

64 55 44 43 75 77 

Last2 Last1 First2 Pivot Up2 
Down2 Pivot1 Up1 Down1 

12 23 33 

First1 

64 55 44 43 75 77 

Last3 Last1 First3 Pivot3 Pivot1 Up1 Down1 
Up3 

Down3 

12 23 33 

First1 

64 55 44 43 75 77 

Last2 Last1 First2 
PivotIndex2 

Pivot1 Up1 Down1 
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12 23 33 

First1 

64 55 44 43 75 77 

Last3 Last1 First3 Pivot3 PivotIndex1 Up3 
Down3 

12 23 33 

First5 

64 55 44 43 75 77 

Last3 Last5 First3 PivotIndex3 Pivot5 
Up5 

Down5 

12 23 33 

First5 

64 55 44 43 75 77 

Last6 
Last5 First6 Pivot6 Pivot5 Up6 Down6 

Down5 

12 23 33 64 55 44 43 75 77 

First6 Pivot6 Up6 Up5 

12 23 33 

First5 

64 55 44 43 75 77 

Last6 
Last5 

First6 Pivot6 PivotIndex5 Up6 Down6 

12 23 33 64 55 44 43 75 77 

First6 Pivot6 Up6 

12 23 33 

First7 

64 55 44 43 77 75 

Last6 Last7 First6 Pivot7 

33 64 55 44 43 7 7 

First6 PivotIndex6 
Up7 

Down7 

12 23 33 

First7 

64 55 44 43 77 75 

Last8 Last7 First8 Pivot7 

33 64 55 44 43 

Up7 

Down7 
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 2.7.2 PSEUDO CODE FOR QUICK SORT 
 The pseudo code for the quick sort algorithm is given below : 
 

QUICKSORT ( A , p , r)                        
1. if p < r                                              

2.  then q = PARTITION ( A , p , r )     

3.       QUICKSORT  ( A , p , q – 1 )  

4.          QUICKSORT ( A ,q + 1 , r )        

 

To sort an entire array A, the initial call is                      

QUICKSORT ( A ,1, length [ A ] ) 

 
Next, the PARTITIONING procedure which rearranges the 

subarray  A [ p….r ] in place. 

 

PARTITION (A , p , r) 

12 23 33 

First7 

64 55 44 43 77 75 

Last7 PivotIndex7 

33 64 55 44 43 

12 23 

First9 

64 55 44 43 77 75 

Last9 

33 64 55 

12 23 64 55 44 43 77 75 33 64 55 

Final Sorted Array 
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1. x = A [ r ] 

2. i = p -1 

3. for j = p to r -1 

4.    do if A [ j ] ≤ x 

5.         then i = i +1                       

6.             exchange A [ i ] = A [ j ] 

7. exchange A [ i + 1 ] = A [ r ] 

8. return i + 1 

 

 
CHECK YOUR PROGRESS  

 
3. What is the type of quick sort algorithm? External or internal? 

4. Why does not quick sort algorithm need to combine the sorted 

subarrays later? 

 

 
 
2.8 EXPONENTIATION 
 

Let a  and n are two integers. Suppose that we need to compute 

an for some reasonably large n. For simplicity we can assume that    

n > 0. 
The simplest algorithm perform n-1 multiplication by computing    

a x a x….x a. 

Using divide and conquer strategy the problem can be solved by 

another way. We can consider as  

         n = n / 2 + n / 2 

 If n is even then  an = ( an/2 )2 

                        If n is odd then an =a x (an/2)2 
 

 The function is as follows- 
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      function Power ( a , n ) 

       {     

            if ( n==0)  

                return 1; 

            X = Power ( a , n/2 ); 

            if n is even then  

               return ( X2 ); 

            else  

               return ( a x X2 ); 

        } 

              

 The above algorithm illustrate divide and conquer principle by 

divide the problem as evenly as possible.  

 In divide step, the problem is divided into  two sub-problems     

 exponent ( X , n/2 ) and exponent ( X, (n+1)/2 ).  

 In conquer step, the sub-problems are solved recursively.  

 In combine step, solution of the sub-problems are combine by   
 multiplying them. 

 
Example:  
 To compute a29 the above algorithm will work as follows- 

     Here n is odd. So first calculate a x (an/2)2 

         a29=a x a28                         here, n=28 

             =a x (a14)2 

             = a x ((a7)2)2 

             =a x ((a x (a3)2)2)2 

             =a x ((a x (a x (a2))2)2)2   
 
 
 
Example: 
  Compute  28 using divide and conquer method. 

      Here a=2, n=8 

      N is even . So it calculate (an/2)2 
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         28= (24)2 

            = ((22)2)2 

            = (42)2 

            =162 

            =256 
Example: 
   Compute  37 using divide and conquer method. 

        Here a=3, n=5 

        N is odd. So, calculate a x (an/2)2 

         35= 3 x (33)2 

            =3 x (3 x (32))2 

            =3 x (3 x 9)2 

            =3 x (27)2 

            =3 x 729 

            =2187 

 

 

2.9   LET  US SUM UP 
 

 Divide and conquer algorithm has three steps.  

 Divide the problem into smaller independent sub-problems.  

 Conquer by solving these sub-problems.  

 Combine these sub-problems to together.  

 The sub-problems solved by a divide and conquer is non 

overlapping. 

 For binary search divide and conquer strategy is applied 

recursively for a given sorted array. 

 Merge sort is a recursive algorithm that splits the array into two 

subarrays , sorts each subarray , and then merges the two 

sorted arrays into a single sorted array. The array is divided 
until its size becomes 0 or 1. 

 Merge sort is an external sorting algorithm. 
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 In merge sort in divide step sub-problems are divided into two 

halves.  

 In conquer step sub-problems are sorted individually. 

 In combine Step sub-problems are combine to find the 

resultant sorted array. 

 Quick sort is an internal sorting algorithm. In its basic form it 

was developed by C.A.R Hoare in 1960. 

 In merge sort , the list to be sorted is divided at its midpoint 

into subarrays which are independently sorted and later 
merged. In quick sort, the division to the sorted subarrays is 

made, so that the sorted subarrays do not need to merged 

later. 

 The quick sort algorithm stop when there is only one element 

in the subarray to be sorted or if there is no element in the 

subarray to be sorted. 

 

  
2.10 ANSWERS TO CHECK YOUR 
PROGRESS  

   
1.  

a)  sorted,  b)  middle, c)  middle, d)  non-overlapping,            

e)  independent 
   

CHECK YOUR PROGRESS – 2 
2. 

a)  1,0, b)  sorted, c)  temporary  d)  external 
 
3.   Internal 

4.   In quick sort  sorting is done in place. So, there is no need to     

      combine the sub array  later. 
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2.11  FURTHER  READINGS 
 

  T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein, 
"Introduction to Algorithms", Second Edition, Prentice Hall of India 
Pvt. Ltd, 2006. 

 Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, 
Computer Algorithms/ C++, Second Edition, Universities Press, 
2007. 

 
2.12 MODEL  QUESTIONS 

 
1. What is divide and conquer strategy?  

2. What is external and internal sorting? Give examples. 

3. How does the binary search algorithm follow the divide and 

conquer method? Explain with an example 

4. Write a recursive and non recursive function for binary search 

algorithm. 

5. How does merge sort follow the divide and conquer strategy? Give 

one example. 

6. What are the difference between quick sort and merge sort 

algorithm? 
7. Write a recursive function to sort elements using merge sort. 

8. Write quick sort algorithm and explain with an example. 

9.      Sort the following element using quick sort. 

      34   12   45   67   55   23   11   17    19   38   28    44   40   

10. Compute 210 using divide and conquer method. 

11.  What are the sub-problems for compute 39 using divide and 

conquer method? Also find out how the sub-problems are 

combined. 
12.  In the following element search the key element 12 using binary  

search, which uses divide and conquer method. 

            3    4     6     7      9      10     12      13     14      18 

13.   Sort the following elements using merge sort 

        23    45    19    14     16     12    30    34    15    18   10   9 
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UNIT – 3 : GREEDY METHOD 
     
UNIT STRUCTURE 

 
 3.1  Learning Objective 

 3.2  Introduction 

 3.3  General Strategy of Greedy Algorithm 

 3.4  Knapsack Problem 

 3.5  Greedy Strategy Applied in 0-1 Knapsack Problem 

 3.6  Greedy Strategy Applied in Fractional Knapsack Problem 
 3.7  Job Sequencing with Deadline 

 3.8  Optimal Merge Pattern 

 3.9  Minimum Spanning Tree 

 3.10  Prim’s Algorithm 

 3.11  Kruskal Algorithm 

 3.12  Dijkstra’s Algorithm 

      3.13   Let Us Sum Up 

      3.14   Answers to Check Your Progress 

      3.15   Further Readings 

 3.16  Model Questions 

 
3.1 LEARNING OBJECTIVE 

After going through this unit, you will be able to: 

 know about the greedy algorithm 

 describe the greedy method applied in knapsack problem 

 elaborate the job sequencing with deadline  

 define minimum spanning tree problem 

 describe application of minimum spanning  tree problem in Prim’s   

    and Kruskal algorithm  

 elaborate the shortest path problem using Dijkstra algorithm 
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3.2 INTRODUCTION 
 

Greedy algorithm is typically used in optimization problem. 

Algorithm for optimization problems go through a sequence of 

steps. All of these problems have n inputs and require us to obtain 

a subset that satisfies some constraints. Any subset that satisfies 

some constraints is called feasible solution. The solution finds a 

given objective function which value is either maximizes or 
minimizes. A feasible solution that does this is called an optimal 

solution. In this unit, we will discuss about the concept of greedy 

methods and its application in various problems like Knapsack 

problems and minimum spanning tree etc.  
 

3.3 GENERAL STRATEGY OF GREEDY 
ALGORITHM 

 
A greedy algorithm always makes the choice that looks best at the 

moment. That is it makes a locally optimal choice that may be lead 

to a globally optimal solution.  This algorithm is simple and more 

efficient compared to other optimization algorithm. This heuristic 

strategy does not always produce an optimal solution, but 

sometimes it does. 

There are two key ingredients in greedy algorithm that will solve a 

particular optimization problem. 

1. Greedy choice property 
2. Optimal substructure 

 
1.  Greedy choice property: 
 

A globally optimal solution can be arrived at by making a 

locally optimal (greedy) choice. In other words, when a choice 

is to be made, then it looks for best choice in the current 

problem, without considering results from the sub-problems. In 
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this algorithm choice is made that seems best at the moment 

and solve the sub-problems after the choice is made. The 

choices made by a greedy algorithm may depend on choices 

so far, but it can not depend on any future choice or solution to 
the sub-problems. The algorithm progress in a top down 

manner, making one greedy choice one after another, 

reducing each given problem instances into smaller one. 
        
2.  Optimal substructure: 
 

A problem is said to have optimal substructure if an optimal 

solution can be constructed efficiently from optimal solution to 

its sub-problem. The optimal substructure varies across 
problem domain in two ways- 

 i)    How many sub-problems are used in an optimal  

       solution to the original problem. 
 ii)   How many choices we have in determining which  

             sub-problem to use in an optimal solution. 

In Greedy algorithm a sub-problem is created by having made 

the greedy choice in the original problem. Here, an optimal 

solution to the sub-problem, combined with the greedy choice 

already made, yield an optimal solution to the original problem. 
 

3.4 KNAPSACK PROBLEM  
 
There are n items, ith item is worth vi dollars and weight wi pounds, 
where vi and wi are integers. Select item to put in knapsack with 

total weight is less than W, So that the total value is maximized. 

This problem is called knapsack problem.  

This problem finds, which items should choice from n item to 

obtain maximum profit and total weight is less than W. 

 

The problem can be explained as follows- 
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A thief robbing a store finds n items, the ith item is worth vi dollar 

and weight w pounds, where vi and wi are integers. He wants to 

take as valuable load as possible, but he can carry atmost W 

pounds in his knapsack, where W is an integer. Which item should 

he take?  

 

There are two types of knapsack problem. 
1.    0-1 knapsack problem: 

 In 0-1 knapsack problem each item either be taken or left  

       behind.                
 
2.   Fractional knapsack problem:  

In fractional knapsack problem fractions of items are allowed 
to choose. 

       

3.5 GREEDY STRATEGY APPLIED IN 0-1  
      KNAPSACK PROBLEM 
 

The greedy algorithm in 0-1 knapsack problem can be applied as 

follows- 

1. Greedy choice:  
      Take an item with maximum value per pound. 

2. Optimal substructure:  

      Consider the most valuable load that weights atmost W 

pounds. These W pounds can be choose from n item. If jth 

item is choose first then remaining weight W-wi can be 

choose from n-1 remaining item excluding j. 

 

3.6 GREEDY STRATEGY APPLIED IN   
       FRACTIONAL KNAPSACK PROBLEM 
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1. Greedy choice:  
      Take an item or fraction of item with maximum value per    

       pound. 

2. Optimal substructure:  
      If we choose a fraction of weight w of the item j, then the 

remaining weight atmost W-w can be choose from the n-1 

item plus wi-w pounds of item j. 

Although, both the problems are similar, the fractional knapsack 

problem is solvable by greedy strategy, but 0-1 knapsack problem 

are not solvable by greedy algorithm.  

 

Consider the following problem- 
 
There are 3 items. The knapsack can hold 50 pounds. Item1 

weight 10 pounds and its worth is 60 dollar, item2 weight  20 

pounds and its worth 100 dollars, item3 weight 30 pounds and its 

weight 120 dollars. Find out the items with maximum profit which 

the knapsack can carry. 

Solution: 
Here, 

 W = 50 pounds 

       
Item Weight 

(w pound) 
Worth 
( v dollar) 

Item1 10 60 

Item2 20 100 

Item3 30 120 

  
Let, an  item I has weight wi pounds and worth vi dollar. 
Value per pound of I =  vi / wi . 

Thus, value per pound for-   

           

          Item1 = w1 / v1 

                    = 60 dollars / 10 pounds 
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                    = 6 dollars/pounds 

          Item2 = w2 / v2  

                    = 100 dollars / 20 pounds 

                    = 5 dollars/pounds 
           

          Item3 = w3 / v3 

                               = 120 dollars / 30 pounds 

                    = 4 dollars/pounds 

 

We can select maximum of 50 pounds. 

So, using greedy strategy in 0-1 knapsack problem 

           1st  choice is Item1. 

           2nd  choice is Item2. 
   

Total weight = 10 + 20 pounds 

                    = 30 pounds 

Total worth  = 60 +100 dollars 

                    =160 dollars 

   

But this is not the optimal choice. 

The optimal choice will choose item 2 and 3. Then, 

 

Total weight = 20 + 30 pounds 
                    = 50 pounds 

Total worth  = 100 + 120 dollars  

                    = 220 dollars. 

 Hence , 0-1 knapsack problem is not solved by greedy strategy. 

 

 Now, using greedy strategy in fractional knapsack problem – 

             1st choice is item1. 

             2nd choice is item2 

Total weight = 30 pounds 
But the size of the knapsack is 50 pounds. 
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So, it will take remaining 20 pounds from item3 (fraction of item3) 

and its worth is 4 x 20=80 dollars. 

Hence,  

Total weights = 50 pounds. 
Total worth  = 60+100+ 80 dollars 

                      =240 dollars. 

Hence , an optimal solution can be obtain from fractional knapsack 

problem using greedy strategy. 

 
CHECK YOUR PROGRESS  
1. Write True or False 

a) Greedy choice always looks for the best choice in the 
current problem. 

b) 0-1 knapsack problem is solvable by greedy algorithm.                           

2.  What is optimal substructure?                            

3. What is greedy strategy for knapsack problem? 

 
3.7 JOB SEQUENCING WITH DEADLINE 
 

Now, we will discuss about the job sequencing problem. The 
problem is stated as below- 

1. There are n jobs to be processed on a machine 

2. Each job i has a deadline di ≥ 0 and profit pi ≥ 0 

3. pi is earned iff the job is completed by its deadline 

4. To complete the job, it is processed in one machine for a 

unit of time. 

5. Only one machine is available for processing job 

6. Only one job is processed at a time on the machine. 

7. A feasible solution is a subset of job J such that each job 
is completed by its deadline. 

8. An optimal solution is a feasible solution with a maximum 

profit. 
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This problem can be solved by greedy algorithm. For the optimal 

solution, after choosing a job , it will add the next job to the subset 

such that ∑i € J pi , increases and resulting subset become feasible. 

pi is the total profit of ith subset of jobs. In other words we have to 
check all possible feasible subset J with their total profit value, for 

a given set of jobs. 

 

Feasible solution for a set of job J is such that, if the jobs of set J 

can be processed in the order without violating any deadline then 

J is a feasible solution. 

 
Example : 
Let , 
        no. of job, n = 4 and  

        jobs are 1, 2, 3, 4  

        profit (p1,p2,p3,p4) = (100,10,15,27) 

        deadline  (d1,d2,d3,d4) = (2,1,2,1).  

Find the optimal solution set. 
                       Solution: 

     
SL 
No. 

Feasible 
Solution 

Processing 
Sequence 

Profit 

1  ( 2,1 ) (1,2 )  110 

2  ( 1,3 ) ( 1,3 ) or( 3,1 )  115 

3  ( 1,4 ) ( 4,1 )  127 

4  ( 2,3 )                                                               ( 2,3 )  25 

5  ( 3,4 ) ( 4,3 )  42 

6  ( 1 ) ( 1 )  100 

7  ( 2 ) ( 2 )  10 

8  ( 3 ) ( 3 )  15 

9  ( 4 ) ( 4 )  27 

 

Here solution 3 is optimal. The optimal solution is got by 

processing the job 1 and 4 in the order job 4 followed by job 1. The 
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maximum profit is  127. Thus, the job 4 begins at time zero and job 

1 end at time 2.   

 

Consider solution 3 i.e maximum profit job subset J = ( 1,4 )    
                        Here , at first J= Ø and ∑i € J pi=0.  

 

Job 1 is added to J as it has the largest profit and is a feasible 

solution. 

 

Next add job 4 .Then also J = ( 1,4 ) is feasible because if the job 

processes in the sequence ( 4,1 ) then job 4 will start in zero time 

and job 1 will finish in 2 time within its deadline. 

 
Next if job 3 is added then j=(1,3,4) is not feasible because all the 

job 1,3,4 can not be completed within its deadline. So job 3 is not 

added to the set. Similarly after adding job 2 J=(1,2,4) is not 

feasible. 

 

Hence J = ( 1,4 ) is a feasible solution set with maximum profit 

127. This is an optimal solution. 

 

 
CHECK YOUR PROGRESS  

 

4. True/False 

     i. In job sequencing, a feasible solution is a subset of job    

        such that each job is completed by its deadline. 

                            ii. In job sequencing an optimal solution is a feasible solution     

                                with a minimum profit. 
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3.8 OPTIMAL MERGE PATTERNS 
 
Now let us discuss about the optimal merge patterns. It can be 
stated as follows :    

 Two sorted file containing n and m records respectively 

could be merged together to obtain one sorted file in time 

O( n + m ).  When more than two sorted files are merged 

together then merge can be done by repeatedly merging 

the sorted files in pairs.  

            For example- 

Problem 1: There are 5 sorted files F1,F2,F3,F4,F5 and each file 
has  20,30,10,5,30 records respectively.  

                  If merge these files pair wise then- 

                   M1 = F1&F2    

                        = 20 + 30 

                        = 50 ( i.e merging F1 and F2 requires 50 moves ) 

                

                   M2 = M1&F3   

                         = 50 +10 

                         =60 
                

                   M3 = M2&F4  

                         = 60 + 5 

                         = 65 

                

                   M4 = M3&F5   

                         = 65 + 30 

                         = 95 

  Hence Total time required to  moves records  is – 

           50+60+65+95 = 270 
 

 Different pairing requires different amount of computing 

time. The problem can be stated as- 
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            What is the optimal way to pair wise merge n sorted files?       

            Or  What is the minimum time needed to pair wise merge n  

            sorted files? 

        
  We can solved this problem using greedy algorithm. The greedy    

  algorithm attempt to find an optimal merge pattern.  

   

  Greedy method for optimal merge pattern: 
  Sorts the list of file and at each step merge the two smallest size  

  files together. 

 
 Example: The above given problem 1 can be solved as        

follows- 
 

 Sort the files according to their number of records. 

       ( 5,10,20,30,30 ) = ( F4,F3,F1,F2,F5 ) 

   

Merge the first two files-    

       ( 5,10,20,30,30 ) => ( 15,20,30,30 ) 

Merge the next two files- 

       (15,20,30,30 ) => ( 30,30,35 ) 

 Merge the next two files- 

        ( 30,30,35 ) => ( 35,60 ) 
 Merge the last two files- 

        ( 35,60 ) => ( 95 ) 

 Hence, total time require is  15+35+60+95= 205 

 

 This is the optimal merge pattern for the given problem instance.    

 This merging is also called two way merge pattern because each   

  merge step involve merging of two files. 

 

The two way merge pattern can be represented by  binary merge    
 trees. For the above problem1 the binary merge tree representing 

the optimal merge pattern  is as follows-                         
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. 

Here the leaf nodes are given as square and represent the five 

given files. These nodes are called external nodes. The remaining  

nodes are drawn as circle and is called internal nodes. Each  
internal node has exactly two children and it represent file  

obtained by merging the files represented by its two children.  The  

 number in the each node is the length (i.e the number of records ) 

of the file represented by that record.                                              

     

 
         Fig 3.1 Binary merge tree representing a merge pattern. 

 
Here a node at level i is at a distance of i -1 from the root (In the 

above tree x4 is at a distance 3 from root z4 ). 

 

If di is the distance from the root to external node for a file xi and qi 

is the length of the file xi , then the total number of records move 

for the binary merge tree is- 

                   ∑ i=1..n di gi 

This sum is called the weighted external path length of the tree. An 

optimal two way merge pattern is minimum weighted external path 

length of a binary merge tree. 
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CHECK YOUR PROGRESS  
5. How does the greedy choice property applied in 

optimal merge pattern problem? 

6. True/False 

   i. Optimal merge pattern is also called two way merge pattern. 

   ii. In optimal merge pattern, in each step two largest files are 

merged.  

 

3.9 MINIMUM SPANNING TREE 
 

Before going to the definition of the minimum spanning tree let us 

define what a spanning tree is : 
Spanning tree: 
A spanning tree is a connected graph, say G = ( V, E ) with V as 

set of vertices and E as set of edges, is its connected acyclic sub-

graph that contain all the vertices of the graph. 

 

Now the minimum spanning tree can be defined as: 
Minimum spanning tree: 
A minimum spanning tree T of a positive weighted graph G  is a 

minimum weighted spanning tree in which total weight of all edges 
are minimum  
w(T) = ∑    w (u, v) is minimized. 
           ( u,v) € T 

                       Where w(u, v) is the cost of the edge (u, v).  

 
For example; 

Let us consider connected graph G given in fig 
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Fig. 3.2 A Connected graph G 

 

Now, the minimum spanning trees are for the graph G is- 
 

 
  Fig. 3.3 A spanning tree for the graph G 
 

Application of Minimum spanning tree: 

i. In design of  electric circuit network . 

ii. It is used in traveling salesman problem. 

 

The minimum spanning tree problem is the problem of finding a 

minimum spanning tree for a given weighted connected graph 

 

 There are two algorithms to solve minimum spanning tree problem 
1. Kruskal algorithm 

2. Prim algorithm 
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The general approaches of these algorithms are- 

 The tree is built edge by edge.  
 Let T be the set of edges selected so far.  
 Each time a decision is made. Include an edge e to T s.t.  

                                   Cost (T) + w (e) is minimized, and T U {e} does not create   

                                   a cycle. 

 

Both these algorithms are greedy algorithm. Because at each step 

of an algorithm, one of the best possible choices must be made. 

The greedy strategy advocates making the choice that is best at 

the moment. Such a strategy is not generally guaranteed to 
globally optimal solution to a problem. 
 

 
3.10  PRIM’S ALGORITHM 
 

The prim’s algorithm uses greedy method to build the sub-tree 

edge by edge to obtain a minimum cost spanning tree. The  edge 

to include is chosen according to some optimization criterion. 
Initially the tree is just a single vertex which is selected arbitrarily 

from the set V of vertices of a given graph G. Next edge is added 

to the tree by selecting the minimum weighted edge from the 

remaining edges and which does not form a cycle with the earlier 

selected edges. The tree is represented by a pair (V’, E’) where V’ 

and E’ represent set of vertices and set of edges of the sub-tree of 

minimum spanning tree. 

 

The algorithm is as follows- 
The algorithm continuously increases the size of a tree, one edge 

at a time, starting with a tree consisting of a single vertex, until it 

finds all vertices. 

 Input:  A non-empty connected weighted graph with 

vertices V and edges E (the weights are positive). 
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 Initialize:  V’ = {x}, where x is an arbitrary node (starting 

point) from V,  

     E’ = { } 

 Repeat until V’ = V;  
 Choose an edge (u, v) with minimal weight such that u is in 

V’ and v is not in V’ ( if there are multiple edges with the 

same weight, any of them may be picked ) 
 Add v to V’ and (u, v) to E’ if edge (u, v) will not make a 

cycle with the edges already in E’.  

 Output: V’ and E’ describe a minimal spanning tree 

 
Example: 
Let us consider the following graph G. 

      

 
  Fig. 3.4 Prim’s algorithm applied on the Graph G 

 
Initially vertex a is selected. So, V’ will contain a.  
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Fig. 3.5 Vertex a is selected 

 

V’ = {a} 

E’ = Ø                                                   

 
After first iteration, the minimum weight edge connected a and 

other vertices of V is selected. In this case from vertex a there are 

two edges ab and ad to vertex b and d.  

 

 
Fig. 3.6 Finds the minimum weighted edge 

 

 
Between ab and ad weight of ab is minimum. Hence, after first 
iteration vertex b is include to V’ and edge ab is included to E’. 
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Fig. 3.7 Minimum weighted edge selected 

                    V’ = {a, b} 

                        E’ ={ ab } 

  

In the next iteration we select the minimum weight edge, which 

does not make a cycle with previously selected edges in E’, from 
the edges not included in E’ and edges connected  one vertex 

from V’ and another vertex not in V’. Here edges  from  a and b to 

any other vertex. Here, edges are ad, bd, be, bc from which we 

can select the minimum weight edge.  

 

 
Fig. 3.8 Finds the minimum weighted edge 
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Here, weight of bc is minimum and it does not make a cycle with 

ab. Thus  bc is selected in this iteration.  

 

 
Fig. 3.9 Minimum weighted edge selected 

 

   V’ = { a, b, c } 

                            E’ = { ab, bc } 
 

In the next iteration  we can consider the edges that have a,b or c 

as one of the vertex . Here the edges are ad, bd, be, ce, cf. we 

can not consider ab and bd because they are already selected. 

 
Fig. 3.10 Finds minimum weighted edge  
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 From these edges weight of bd is minimum and it does not make 

a cycle with the edge in E’. Thus bd is selected. 

 

 
Fig. 3.11 Minimum weighted edge selected 

                              V’ = { a, b, c, d } 

                                    E’ = { ab, bc, bd } 

 

 In the next iteration we consider the edges (excluding already 
selected edges) that have a, b, c, d as one vertex. Here edges are  

ad, be, ce, cf, de, dh, dg.  

 

 
Fig. 3.12 Finds Minimum weighted edge  

 
The weight of dg is minimum and it does not make a cycle with the 

edges in E’. Thus dg is selected. 
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Fig. 3.13 Minimum weighted edge selected 

 

                                V’ = { a, b, c, d, g } 

                                E’ = { ab, bc, bd, dg } 

  

In the next iteration considered edges are ad, be, de, gh, dh, ce, cf 

. 

 
Fig. 3.14 Finds Minimum weighted edge  

 

  

Among  these edges weight of gh is minimum and it does not 

make any cycle with already selected edges in E’. Thus, gh is 
selected.  
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Fig. 3.15 Minimum weighted edge selected 

                                 V’ = { a, b, c, d, g, h } 

                                 E’ = { ab, bc, bd, dg, gh } 

 

In the next iteration consider the edges that has one vertex from V’ 

and connect another vertex excluding already selected edges. 

Here edges are ad, be, ce, cf, de, dh, hf.  

 
Fig. 3.16 Finds Minimum weighted edge  

 

Among these weight  ad and ce are minimum. If select ad then it 
make a cycle with the already selected edge ab and bd of E’. So, 
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ad can not be selected. If we select ce it will not make a cycle with 

the edges of E’. 

Thus ce is selected. 

 
Fig. 3.17 Minimum weighted edge selected 

 

                                                                V’ = { a, b, c, d, e, g, h } 

                                         E’ = { ab, bc, bd, dg, gh, ce } 
 

In the next iteration considered edges are ad, be, de, dh, cf, hf.  

 
 

Fig. 3.18 Finds Minimum weighted edge  
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Among these weight of ad  is minimum. But it makes a cycle with 

already selected edges ad and ab. So, ad is rejected. Next 

minimum weight is of edge de, be and hf. But this two edges will 

also  make cycle. So de and be are also rejected. hf will not make 
a cycle. Thus hf is considered.  

 

 
Fig. 3.19 Minimum weighted edge selected 

                                           V’ = { a, b, c, d, e, f, g, h } 
                                            E’ = { ab, bc, bd, dg, gh, ce, hf } 

 

Next, the edges  be, de, cf ,ad, dh can not included to form the 

tree because they make a cycle with already selected edges. 

Hence the final spanning tree is- 

 

 
Fig. 3.20 Final spanning tree of graph G 
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3.11 KRUSKAL ALGORITHM 
        

Another method of finding minimum spanning tree is Kruskal 

algorithm. In this algorithm the edges of the graph are considered 

in non decreasing order. The result is a forest of trees that grows 

until all the trees in a forest (all the components) merge in a single 

tree. 

The algorithm is as follows- 

 create a forest F (a set of trees), where each vertex in the 

graph is a separate tree 
 create a set S containing all the edges in the graph 

 while S is nonempty and F is not yet spanning  
 remove an edge with minimum weight from S 

 if that edge connects two different trees, then add it to the  

forest, combining two trees into a single tree 

 otherwise discard that edge. 

Example: 
 Let us consider the following graph- 

      

 
  Fig. 3.21 Krushkal algorithm applied on graph G 
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Initially there are 8 vertices. So initially there are 8 trees in the 

forest F and S contains all the edges in the graph. 

                             F = a    b     c     d     e     f    g    h  

                             S = ab, bc, ad, ae, be, ce, dh, cg, ef, fg, he   
 

In the first iteration we consider the smallest weight edge from the 

set S. If the both vertex of the edge connect two different trees in 

the forest F then that edge is selected and combined the two trees 

into a single tree. Here, in first iteration weight of fg edge is 1, 

which is minimum. It connects two vertices f and g. In the forest F, 

f and g belongs to two separate tree. Thus, fg edge is selected 

and fg is removed from the set S and f and g trees are combined 

into a single tree fg in F. 
 

 

 
Fig. 3.22 

   F =  a   b   c    d  gf   e   h 

                        S = ab, bc, ad, ae, be, ce, dh, cg, ef, he   

 

In the second iteration, after removing fg edge form S we consider 

the minimum weight edge from the new set S i.e from remaining 

edges we consider the minimum weight edge. Next the minimum 
weight edges are ab and dh. Each of which has weight 2. We can 

consider any one of the edge. Because for each edges their 



Greedy Method                                                             Unit 3 

      Design and Analysis of Algorithm                                                     85 

connected vertices belongs to two different tree. Let us select the 

edge ab. Thus, 

                             

 

 
Fig. 3.23 

                           F = ab   c    d   gf   e   h 

                            S = bc, ad, ae, be, ce, dh, cg, ef, he   

 

In third iteration minimum weight edge in S is dh of weight 2. Now 

vertex  d and h of edge dh belongs to two different tree. Hence, we 

can select edge dh. Thus, F and S becomes 

 

 
Fig. 3.24 
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 F = ab   c     dh    gf     e 

                  S = bc, ad, ae, be, ce, cg, ef, he 

 
In fourth iteration from the remaining edges set S minimum edge is 

ad of weight 3.Now the vertices a and d belongs to two different 

tree ab and dh respectively in F. So. Edge ad is selected. Now 

 

, 

 
Fig. 3.25 

 

F = abdh       c     gf      e 

                        S = bc, ae, be, ce, cg, ef, he 
 

Now, in next iteration the minimum weight edge in S is ae. Here a 

and e belongs to two different tree abdh and e respectively in F. 

Hence, ae is selected and removed from S and two tree combined 

to a single tree abdhe. Thus, 
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Fig. 3.26 

 

F = abdhe            c       gf   

                                 S = bc, be, ce, cg, ef, he 
 

In next iteration minimum weight edge in S is he of weight 5. Now, 

h and e belongs to same tree abdhe. So, edge he is not selected. 

Simply remove he from S. So, S becomes 

                                    S = bc, be, ce, cg, ef 

Now, from S the minimum weight edges are be and ce of weight 7 

in each. For edge be , b and e is from same tree abdhe in F. So, 

be can’t selected. So, this be remove from S. 

                                     S = bc, ce, cg, ef 
 We can select ce because c and e belongs to two different tree in 

F. Hence 
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 Fig. 3.27 

F = abcdeh       gf 

                                S = bc, cg, ef 

 
In next iteration minimum weight edge is bc of weight 8.We can’t 

consider bc because b and c is in same tree in F. Thus  

                                 S = cg, ef 

Next minimum weight edge in S is ef. Edge ef can selected 

because vertices e and f belongs to two different trees in F. Thus 

 

 
Fig. 3.28 

 
           F = abcdefgh 

                                   S = cg 
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In next iteration edge is cg. Edge cg is not selected because 

vertices c and g is in one tree in F. Hence the final tree is- 

 

 
Fig. 3.29 Final tree of graph G 

                                        F = abcdefgh 

                                        S = nil 

 

 
CHECK YOUR PROGRESS  

 
7. What is minimum spanning tree? 

8. What are the algorithms to solve minimum spanning tree 

problem ? 

 

 

3.12 DIJKSTRA’S ALGORITHM 
       

Shortest path problem:  
For a given weighted and directed graph G= (V, E), the shortest 
path problem is the problem of finding a shortest path between 

any two vertex v ϵ V in graph G.  The property of the shortest path 

is such that a shortest path between two vertices contains other 
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shortest path within it i.e any other sub-path of a shortest path is 

also a shortest path. 

  
Single source shortest path problem: 
 In a single source shortest path problem , there is only one source 

vertex S in the vertex set V of graph G=(V, E). Now this single 

source shortest path problem finds out the shortest path from the 

source vertex  S to any other vertex in v € V. 

 

Optimal substructure of a shortest path: 
Optimal substructure of a shortest path can be stated that any 

other sub-path of a shortest path is also a shortest path. Here is 

the lemma- 
  

Lemma: 
 Given a weighted directed graph G=(V, E) with weight function   

w: E -> R, let p = ( v1,v2 ----, vk ) be a shortest path from vertex v1 

to vertex vk, and for any i and j such that          1 ≤ i ≤ j ≤ k,          

let Pij = ( v1,vi+1, ------,vj ) be the sub-path of P from vertex vi to 

vertex vj. Then Pij is a shortest path from vi to vj. 

  

Dijsktra algorithm solves the single source shortest path problem. 

But the algorithm works only on  a directed and positive weighted 
graph. Positive weighted graph means where weights of all edges 

are non negative i.e  G=(V, E) is a positive weighted graph then  

w( u, v) ≥ 0. Dijsktra algorithm is a greedy algorithm. 

 

Dijkstra algorithm is as follows- 
  

For a given graph G=(V, E) and  a source vertex s, it maintains a 

set F of vertices .Initially no vertex is in F. For  a vertex u ϵ V - F,     

(i.e for a vertex which is in V, but is not in F) if  it has minimum 
shortest distance from source s  to u  then u is added to F. This 

process is continue till V - F is not equal to null.              
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DIJKSTRA( G, w, s) 

1. INITIALIZE_SINGLE_SOURCE(G,s) 

            1.1 for each vertex v € V[G] 
           1.2 do d [v] = ∞ 

           1.3  Π [v] = NIL 

           1.4  d [s] = 0 

2. F = Ø 

3. Q = V [G] 

4. while Q != Ø 

5.      do u = EXTRACT_MIN(Q) 

6.        F = F U {u} 

7.         for each vertex v € Adj [u] 
8.          do RELAX (u, v, w) 

                          8.1 if d [v] > (d [u] + w(u, v)) 

                          8.2  then d [v] = d [u] + w(u, v) 

                          8.3 Π [v] = u; 

 

In line 1 (from line 1.1 to 1.4 ) initialize the value of d and π . Here 

d [v] means distance from source to  vertex v and π [v] 

means parent of vertex v. Initially source to source 

distance is 0. So,        d [s] = 0 . Also for all vertices v € V , 

d[v] is set as ∞ and π [v] as NIL.  
 In line 2 it initializes set F to empty set as initially no vertex is  

              added to it. 

In line 3  Q is a min-priority queue and initially it contains all  

              vertices set V[G] of graph G. 

In line 4 the while loop of line 4-8 will continue until the min-priority  

              queue Q become empty. 

In line 5 it extracts the minimum distance vertex u from source s  

               i.e  u € V - F for which d [u] is minimum.   

In line 6 u is added to F. 
In line 7-8 ( from line 8.1 to 8.3)  for all vertex v which is adjacent 

to u , calculate the distance to v through vertex u. If this 
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value is less than d[v] then update d [v] to this new value. 

Make parent of v, π [v] = u. 

 
 
3.12.1 Example: 
 Apply dijkstra algorithm for the following graph G. 

 
 

                               Fig. 3.30 Dijkstra algorithm applied on G 

                      Initially 

d[s]=0; 

[s]=NIL; 

And distance of all other vertices set as ∞. 

 d[a]= ∞, π [a]=NIL; 

  d[b]= ∞, π [b]=NIL; 
  d[c]= ∞, π [c]=NIL; 

  d[d]= ∞, π [d]=NIL; 

s is added to F. 

 F={s} 
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Fig. 3.31 

             
In 2nd  iteration  

Adj[s]={a, b} and they are not in F. 

   Now d[a]=d[s]+w(s,a) 

                  =0+10 

                   =10 

            This new d[a] value is less than previous d[a] value i.e 

10<∞ 

    Hence d[a] is updated to 10 

            d[a]=10; 
              π [a]=s; 

  Similarly d[b]=d[s]+w(s,b) 

                       =0+5 

                       =5<previous d1[b] 

                       =5<∞ 

                   d[b]=5; 

                       π [b]=s; 

 

               and  d[c]=∞, π [c]=NIL; 

                 d[d]=∞, π [d]=NIL; 
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 Fig. 3.32 

      

Now, among these d[a],d[b],d[c],d[d] minimum value is d[b]i.e 

distance of vertex b is minimum from source. 

 Hence b is added to F 

F={s,b} 

 

 
Fig. 3.33 

 

In 3rd iteration, 

  Adj[b]={a,c,d} and they are not in F 

For vertex a, 

      d[a]=d[b]+w(b,a) 

               =5+3 

                =8< previous d[a] 
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                =8<10 

    Hence,  

       d[a]=8; 

           π [a]=b; 
 

For vertex c 

     d[c]=d[b]+w(b,c) 

            =5+9 

            =14< previous d[c] 

            =14<∞ 

     d[c]=14; 

        π [c]=b; 

For vertex d 
     d[d]=d[b]+w(b,d) 

           =5+2 

           =7< previous d[d] 

           =7<∞ 

      d[d]=7; 

        π [d]=b; 

 

 
    

 Fig. 3.34 

 

Now among d[a],d[c],d[d] the minimum d value is d[d] 

So, vertex d is added to F. 
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  F={s,b,d} 

 

 
    

 Fig. 3.35 

In 4th iteration  

Adj[d]={c} and c is not in F 

Now  d[c]=d[d]+w(d,c) 

                 = 7+6 
                 =13< previous d[c] 

                  =13<14 

           d[c]=13; 

             π [c]=d; 

And     d[a]=8; 

              π [a]=s; 

 
Fig. 3.36 
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Now the minimum of d[a] and d[c] is d[a]. 

So, vertex a is added to F 

F={s,b,d,a} 

 
Fig. 3.37 

In 5th iteration last added vertex is a. 

Adj[a]={b,c},  

Here c is not in F. But b is in F i.e b is already selected. 
So, we will consider vertex c only. 

    d[c]=d[a]+w(a,c) 

          =8+1 

          =9< previous d[c] 

     So, d[c]=9 

              π [c]=a 

 

 
Fig. 3.38 
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Hence c is added to F 

     F={s,b,d,a,c} 

 

 
 

Fig. 3.39 

 

 There is no vertex to added in F.So, the algorithm terminate here. 

 

 

CHECK YOUR PROGRESS  
9. What is single source shortest path problem? 

10. True/False 

i. In Dijkstra algorithm there are two source vertices. 

ii. Dijkstra algorithm can solve shortest path problem. 
  

 
3.13   LET  US SUM UP 

 Greedy algorithm is typically used in optimization problem. 

 Optimal solution finds a given objective function which 

value is either maximizes or minimizes. 

 A greedy algorithm always makes the choice that looks 

best at the moment. That is it makes a locally optimal 

choice that may be lead to a globally optimal solution.   
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 In Greedy algorithm choice is made that seems best at the 

moment and solve the sub-problems after the choice is 

made. 

 Greedy algorithm progress in a top down manner, 

 A problem is said to have optimal substructure if an optimal 

solution can be constructed efficiently from optimal solution 

to its sub-problem. 

 Knapsack problem: There are n items, ith item is worth vi 

dollars and weight wi pounds, where vi and wi are integers. 

Select item to put in knapsack with total weight is less than 
W, So that the total value is maximized 

 There are two types of knapsack problem. 
i. 0-1 knapsack problem 

                                         ii.  fractional knapsack problem: 
 In  0-1 knapsack problem each item either be taken or left  

      behind.                
 In fractional knapsack  problem fractions of items are 

allowed to choose. 

 the fractional knapsack problem is solvable by greedy 

strategy, but 0-1 knapsack problem are not solvable by 
greedy algorithm.  

 In the job sequencing with deadline problem, a feasible 

solution is a subset of job J such that each job is 

completed by its deadline and optimal solution is a feasible 

solution with a maximum profit. 

 the optimal way to pair wise merge n sorted files 

 A spanning tree is a connected graph , say G = ( V, E ) 
with V as set of vertices and E as set of edges, is its 

connected acyclic sub-graph that contain all the vertices of 

the graph. 

 A minimum spanning tree T of a positive weighted graph G  

is a minimum weighted spanning tree in which total weight 

of all edges are minimum  
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 Two algorithm to solve minimum spanning tree problem 

are-      Kruskal algorithm and Prim algorithm 

 For a given weighted and directed graph G= (V, E), the 
shortest path problem is the problem of finding a shortest 

path between any two vertex v € V in graph G.   

 In a single source shortest path problem , there is only one 

source vertex S in the vertex set V of graph G=(V, E). 

 

  
3.14 ANSWERS TO CHECK YOUR 
PROGRESS  

   

CHECK YOUR PROGRESS – 1 
                                       1. a)  True, b)  True 

  2. A problem is said to have optimal substructure if an optimal 

solution can be constructed efficiently from optimal solution to its 

sub problem. 

3. i)Greedy choice           ii) Optimal substructure 
4. i. True     ii. False 

5. According to greedy choice property at each step it looks for its 

best solution in the current set. In optimal merge pattern sorts the 

list of file and at each step merge the two smallest size files( best 

choice at that moment) together from the current file sets. 

6.  i. True   ii. False 

7. A minimum spanning tree T of a positive weighted graph G  is a 

minimum weighted spanning tree in which total weight of all edges 
are minimum  

w(T) = ∑    w (u, v) is minimized. 
           ( u,v) € T 

                       Where w(u, v) is the cost of the edge (u, v). 

8. Prim’s algorithm and Kruskal algorithm  
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9. Single source shortest path problem of graph G=(V, E)  is to 

finds out the shortest path from the only source vertex  S to any 

other vertex in v € V. Here,only one source vertex S in the vertex 

set V 

10. i.  False     ii. True 

 

 

3.15 FURTHER READINGS 
 
  T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein, 
"Introduction to Algorithms", Second Edition, Prentice Hall of India 
Pvt. Ltd, 2006. 

 Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, 
Computer Algorithms/ C++, Second Edition, Universities Press, 
2007. 
 
 

3.16 MODEL  QUESTIONS 
 

1. What is optimal substructure? 

2. What is greedy strategy?  

3. Write briefly about knapsack problem. Explain with an example 

that  greedy algorithm does not work for 0-1 knapsack 

problem. 

4. What is optimal substructure for 0-1 knapsack and fractional 

knapsack problem? 

5. Consider the following job sequencing problem. Find the 

feasible solution set. 

Job         1        2       3       4 
Profit      10     20     15      5 

     Deadline  2       3        3         2 

6. What is minimum spanning tree? Find the minimum spanning 

tree for the following graph using Prim’s and Kruskal algorithm. 
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7. Find out the shortest path using Dijkstra algorithm for the 

following graph 

 
 
 
8.  “A globally optimal solution can be arrived at by making a  

      locally optimal choice “. Explain briefly. 

a 

e 
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c 

b 
7 

1 

3 

2 

5 

4 

1 

source 

a 

e 

d 
c 

b 
7 

1 

3 

3 

5 

2 

1 



Dynamic Programming                                                       Unit 4 
 

Design and Analysis of Algorithm   103

UNIT - 4DYNAMIC PROGRAMMING 
 
UNIT STRUCTURE 

 
4.1 Learning Objectives 
4.2 Introduction 
4.3 General Strategy 
4.4 Multistage Graphs 
4.5 Optimal Binary Search Tree 
4.6 0/1 Knapsack Problem using Dynamic Programming 
4.7 Travelling Salesman Problem 
4.8 Flow Shop Scheduling 
4.9 Let Us Sum Up 
4.10 Further Readings 
4.11 Answers to Check Your Progress 
4.12 Model Questions 

 

4.1 LEARNINGOBJECTIVES 

After goingthrough this unit, you will be able to: 

 understand the concept of Dynamic Programming 

 solve problems using dynamic programming approach  

 get familiarize with optimality conditions  

 

 

 

4.2 INTRODUCTION 

Intheprecedingunits,wehaveseensomeelegantdesignprinciplessuch
asdivide-and-conquer, greedy algorithm- 
thatyielddefinitivealgorithmsfor avariety ofimportant 
computationaltasks.Thedrawbackofthesetechniquesisthattheycano
nlybeusedonveryspecific typesofproblems.In this unit, we will 
introduce you the dynamic programming technique. We will 
concentrate on elaborating 0/1 Knapsack problem and travelling 
salesman problem in this unit. 
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4.3GENERAL STRATEGY 

The first step in solving an optimization problem by dynamic 
programming is to characterize the structure of an optimal solution. 
A problem issaid to possess an optimal substructure if an optimal 
solution to the problem contains within the optimal solutions of its 
sub-problems. Whena problem exhibits optimal substructure, is a 
good clue that dynamic programming might apply. In dynamic 
programming, we build an optimal solution to the problem from 
optimal solutions of its sub-problems. Consequently, we must take 
care that, the range of sub-problems we consider includes those 
sub-problemswhich are used in the optimal solution.Some 
important concept of dynamic programming are : 
 
Stage of a Problem 
 
The dynamic programming problem can be divided in to a 
sequence of smaller sub-problems called stages of the original 
problem.  
 
State of a Problem 
 
The condition of decision process at a stage is called its state. The 
decision variable which specify the condition of decision process at 
a particular stage is called state variable. 
 
Principle of Optimality  
 
A problem is said to satisfy the Principle of Optimality if the sub-
solutions of an optimal solution of the problem are themselves 
optimal solutions for their sub-problems. For examples: The 
shortest path problem satisfies the Principle of Optimality. This is 
because if a,x1,x2,...,xn,b is a shortest path from node a to node b 
in a graph, then the portion of xi to xj on that path is a shortest path 
from xi to xj.  
 
Characteristics of Dynamic Programming 
 

i) The Problem can be divided into stages, with a policy 
decision at each stage 

ii) Each stage consist of a number of states associated with it 
iii) Decision at each stage convert the current stage in to a 

state associated with next stage. 
iv) The state of the system at a stage is described by state 

variable. 
v) When the current state is known, an optimal policy for the 

remaining stages is independent of the policy of the 
previous ones. 

vi) The solution procedure begins by finding the optimal 
solution of each state from the optimal solutions of its 
previous stage. 
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Steps of Dynamic Programming 

Dynamic programming design involves 4 major steps:  

1. Develop a mathematical notation that can express any 
solution and sub-solution for the problem at hand.  

2. Prove that the Principle of Optimality holds.  
3. Develop a recurrence relation that relates a solution to its 

sub-solutions, using the mathematical notation of step 1. 
Indicates the initial values for that recurrence relation, and 
terms that signifies the final solution.  

4. Write an algorithm to compute the recurrence relation.  
 

4.4MULTISTAGE GRAPHS 

A multistage graph G = (V, E)is a directed graph in which the 
vertices are partitioned into k ≥ 2 disjoint sets Vi, 1 ≤ i ≤ k. In 
addition, if <u,v> is an edge in E, then u∈ Vi and v∈ Vi+1 for some i, 
1≤i ≤ k. The set V1 and Vk are such that |V1| = |Vk| = 1. Let s and t 
respectively, be the vertices in V1 and Vk. The vertex s is the 
source and t the sink. Let c( i , j ) be the cost of edge <i,j>. The 
cost of a path from s to t is the sum of the costs of the edges on 
the path. The multistage graph problem is to find a minimum-
costpath from s to t. Each set Vi defines a stage in the graph. 
Because of the constraints on E, every path from s to t starts in 
stage 1, goes to stage 2, then to stage 3 and so on until it 
terminates at stage k. Fig 4.1 shows a five-stage graph. A 
minimum-cost path from s to t is indicated by the broken edges in 
the figure. 
 

 
Fig 4.1 Five stage graph 
 
A dynamic programming formulation for a k-stage graph problem is 
obtained by noticing the fact that, every path from s to tconsistof a 
sequence of k-2 decisions. The ith decision involves determining 
which vertex in Vi+1, 1 ≤ i ≤ k-2, is to be on the path. It is easy to 
see that the principle of optimality holds for this problem. Let p(i, j) 
be a minimum cost path from vertex j in Vi to vertex t. Let cost(i, 
j)be the cost of this path. Then using the forward formulation 
approach, we obtain: 
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 cost(i, j) =
Elj

Vil
MIN




,
1

 { c(j, l) + cost (i+1, l)} (Eq 4.1) 

Since cost(k-1, j ) = c(j, t), if <j,t>∈ E and cost(k-1, j) = α,               if 
<j,t>∉E, the above equation may be solved for cost (1,s) by first 
computing cost(k-2, j) for all j∈Vk-2, then cost(k-3, j) for all   j∈Vk-3, 
etc. and finally cost (1,s) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the above algorithm we need to index the vertices of V from 1 
to n. Indices are assigned according to stages. First index 1 is 
assigned to s, then the vertices in V2 are indexed, then vertices in 
V3, and so on, vertex t has index n.  
 
The multistage graph problem can also be solved using the 
backwardapproach. Let bp(i,j) be a minimum-cost path from vertex 
s to a vertex jin Vi. Let bcost(i,j) be the cost of bp(i,j). From the 
backward approach weobtain 
 

 bcost(i, j) =
Elj

Vil
MIN




,
1

 { c(j, l) + bcost (i-1, l)} (Eq 4.2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm Graph_sortest_path (Graph G, k, n, p[ ]) 

Step 1:  cost[n] = 0.0 
Step 2:  for j= n-1 to 1 

    //let r be a vertex such that <j,r> is an edge of G   
    //and c[j][r] + cost [r] is minimum; 

Step 3:     cost[j] = c[j][r] + cost [r] 
Step 4:     d[j]=r; 
Step 5:   end for 
Step 6:   p[1]=1, p[k] =n 
Step 7:   for j=2 to k-1   
Step 8:      p[j]= d[p[j-1]] 
Step 9:   end for 

Algorithm BGraph_sortest_path (Graph G, k, n, p[ ]) 

Step 1:  bcost[1] = 0.0 
Step 2:  for j= 2 to n 

    //let r be a vertex such that <r, j> is an edge of G   
    //and c[r][j] + bcost [r] is minimum; 

Step 3:     bcost[j] = c[r][j] + bcost [r] 
Step 4:     d[j]=r; 
Step 5:   end for 
Step 6:   p[1]=1, p[k] =n 
Step 7:   for j=k-1 to 2  
Step 8:      p[j]= d[p[j +1]] 
Step 9:   end for 



Dynamic Programming                                                       Unit 4 
 

Design and Analysis of Algorithm   107

 
Since bcost(2,j) = c(1, j) if (1,j)∈E and bcoat(2,j) = ∞ if (1,j)∉ 
E,bcost(i,j) can be computed using (4.2) by first computing bcost 
for i = 3,then for i = 4, and so on.  
 
 
All-pairs shortest paths 
 
Ifwewantto find the shortest pathnotjust betweensandt 
butbetweenall pairs of vertices then,oneapproachwouldbeto 
execute our generalshortest-path algorithmfrom |V| times, oncefor 
eachstartingnode. The totalrunningtime wouldthen beO(|V|2|E|). 
We'llnowseeabetteralternative, theO(|V|3)dynamicprogramming-
basedFloyd-Warshall algorithm.  

Finding a better algorithm by using dynamic programming 
approach, the first question came to our mind is that, whether a 
better sub-problem exists for 
computingdistancesbetweenallpairsofverticesin agraph? 
Simplysolvingtheproblemformoreandmorepairsorstartingpointsis 
unhelpful,becauseit leadsrightbacktotheO(|V|2|E|)algorithm. 

Oneidea comesto mind isthat, the shortest pathu w1 …. 
wl vbetweenuandvusessomenumberof intermediate 
nodespossiblynone. 
Supposewedisallowintermediatenodesaltogether. 
Thenwecansolveall-
pairsshortestpathsatonce,theshortestpathfromuto vis simplythe 
directedge(u, v), if it exists. Now let 
usgraduallyexpandthesetofpermissibleintermediate nodes. 
Wecandothisonenodeatatime,updatingtheshortestpathlengths 
ateachstage. Eventuallythissetgrowsto allofV, atwhichpointallthe 
verticesareallowedtobeonallpaths, andwehavefound 
thetrueshortestpathsbetweenverticesof thegraph. 

Moreconcretely, numbertheverticesin Vas {1, 2,3 ….,n}, 
andlet dist(i;j;k)denotethelengthoftheshortestpathfrom 
itojinwhichonlynodes {1,2,…,k} canbeusedasintermediates. 
Initially,dist(i;j;0)isthelengthofthedirectedgebetween i andj, ifit exist, 
andis α otherwise. 

Ifweexpandtheintermediatesettoinclude 
anextranodek,wemustreexamineallpairs 
i,jandcheckwhetherusingkasanintermediatepointgivesusashorterpa
thfrom i toj. Butthisis easy:ashortestpathfrom i 
tojthatuseskalongwithpossiblyother lower 
numberedintermediatenodesgoesthroughkis justonce. 
Andwehavealreadycalculatedthelength oftheshortestpathfromi 
tokandfromktojusingonly lowernumbered vertices. 

 

 
Fig 4.2 Computing Path 



Dynamic Programming                                                       Unit 4 
 

Design and Analysis of Algorithm   108

 
Thus, usingkgivesusashorterpathfromi tojifandonlyif 

dist(i, k, k-1)+dist(k, j, k-1) <dist(i;j;k 1); 
inwhichcasedist(i, j, k)shouldbeupdatedaccordingly. 
HereistheFloyd-Warshallalgorithm – andit takesO(|V|3)time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Single Source Shortest Path 
 
Problem: Given a directed graph G(V,E) with weighted 
edgesw(u,v), define the path weight of a path p as 
 

 
 
For a given source vertex s, find the minimum weight paths to 
every vertex reachable from s denoted 
 

 
 
The final solution will satisfy certain caveats: 

 The graph cannot contain any negative weight cycles 
(otherwise there would be no minimum path since we could 
simply continue to follow the negative weight cycle 
producing a path weight of -∞). 

 The solution cannot have any positive weight cycles 
 The solution can be assumed to have no zero weight 

cycles (since they would not affect the minimum value). 
 

Algorithm All Path(cost, n) 
 
Step 1:  for i := 1 to n  
Step 2:      for j :=1 to n  
Step 2:           dist(I,j,0) := 1; 
Step 3:       end for 
Step 5:  end for 
Step 4:  for all (i, j) ∈ E 
Step 5:       dist (i, j, 0) = l (i, j) 
Step 6:  end for   
Step 7:  for k:=1 to n 
Step 8:        for i:=1 to n 
Step 7:    for j :=1 to n 
Step 8: dist(i, j,k) = min {dist(i,k,k-1) + dist(k, j, k-1), dist(i,j,k-1)} 
Step 9:  end for 
Step 11:      end for 
Step 12: end for 



Dynamic Programming                                                       Unit 4 
 

Design and Analysis of Algorithm   109

Therefore given these caveats, we know that the shortest paths 
must be acyclic (with ≤ |V| distinct vertices) ⇒ ≤ |V| - 1 edges in 
each path. 
 
We can use this observation on the maximum number of edges on 
a cycle-free shortest path to obtain an algorithm to determine a 
shortest path from a source vertex to all remaining vertices in the 
graph. 
 
Let distl[u] be the length of a shortest path from the source vertex v 
to vertex u under the constraint that the shortest path contains at 
most l edges. Then, dist1[u] = cost[v,u], 1 ≤ u ≤ n. As noted earlier, 
when there are no cycles of negative length, we can limit our 
search for shortest paths to paths with at most n - 1 edges. Hence, 
distn-1[u] is the length of an unrestricted shortest path from v to u. 
 
Our goal then is to compute distn-1[u] for all u. This can be done 
using the dynamic programming methodology. First, we make the 
following observations: 
 
1. If the shortest path from v to u with at most k, k > 1, edges has 
not more than k - 1 edges, then distk[u] - distk-1[u]. 
 
2. If the shortest path from v to u with at most k, k > 1, edges has 
exactly k edges, then it is made up of a shortest path from v to 
some vertex j followed by the edge (j,u). The path from v to j has k 
- 1 edges, and its length is distk-1[j]. All vertices j such that the edge 
(j, u) is in the graph are candidates for j. Since we are interested in 
a shortest path, the i that minimizes distk-1[i] + cost[i, u] is the 
correct value for j. 
 
These observations result in the following recurrence for dist: 

distk[u] = min {distk-1[u], min {distk-1[i] + cost[i,u]}} 
This recurrence can be used to compute distk from distk-1, for k= 2, 
3,... ,n - 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm BellmanFord(v, cost, dist, n) 
 
Step 1:  for i := 1 to n do 
Step 2:       dist[i] := cost[v, i]; 
Step 3:  end for 
Step 4:  for k := 2 to n - 1 do 
Step 5:       for each u such that u≠v and u has at least  

one incoming edge 
Step 6:   for each <i, u> in the graph 
Step 7:        if dist[u] >dist[i] + cost[i,u] 
Step 8:   dist[u] := dist[i] + cost[i,u]; 
Step 9:       end if 
Step 10: end for 
Step 11:      end for 
Step 12: end for 
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4.5OPTIMAL BINARY SEARCH TREE 

 
A binary search tree is a tree where the key values are stored in 
the internal nodes,  the external nodes (leaves) are null nodes, and 
the keys are ordered lexicographically,  i.e. For each internal node 
all the keys in the left sub-tree are less than the keys in  the node, 
and all the keys in the right sub-tree are greater.  
When we know the frequency of searching each one of the keys, it 
is quite easy to compute the expected cost of accessing each node 
in the tree. An optimal binary search tree is a binary search tree 
which has minimal expected cost of locating each node.  In our 
problem, we are not concerned with the frequency of searching for 
a missing node. For example: 
 

Node ID 0 1 2 3 4 5 

Key A B C D E F 

Frequency 4 1 1 2 8 16 

 
 
Fig 4.3: Optimal Binary search tree ex1.  
 
[ 2*1 + (1+8)*2 + (4+1+16)*3] = 83 
The expected cost of successful search is 83, is computed by 
multiplying each frequency by its level (starting w ith the root at 1).   
A different tree will have a different expected cost:  
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Fig 4.4: Optimal Binary search tree ex2 
[ 8*1 + (1+16)*2 + (4+2)*3 + 1 *4] = 64 
 
It's clear that the tree in fig 4.3 is not optimal. - It is easy to see that 
the nodes having higher frequencies are closer to the root, then 
the  tree will have a lower expected cost. 

In obtaining a cost function for binary search trees, it is 
useful to add a external node in place of every empty sub-tree in 
the search tree. If a binary search tree represents n identifiers, 
then there will be exactly n internal nodes and n+1 external nodes.  

If a successful search terminates at an internal node at 
level l, then the expected cost contribution from the internal node 
aiis p(i) * level(ai). 

Unsuccessful searches terminates the external nodes, let 
the unsuccessful searches terminates at node Ei, if the failure node 
is at level l, then only l-1 comparisons will be made, so the cost 
contribution of this node is q(I) * (level(Ei) -1) 

The preceding decision leads to the following formula for 
the expected cost of a binary search tree. 


 ni1

p(i) * level(ai) + 
 ni1

q(i) *  (level (Ei) - 1)  (Eq 4.3) 

We define a optimal binary search tree for the identifier set { a1, a2, 
…., an} to be a binary search tree for which Eq 4.3 is minimum. 
 
To solve this problem by dynamic programming we need to view 
the construction of such a tree as the result of a sequence of 
decisions and then observe that the principle of optimality holds 
when applied to the problem state resulting from a decision. A 
possible approach to this would be to make a decision as to which 
of the ai’s should be assigned to the root of the tree. If we choose 
ak, then it is clear that the internal nodes for a1, a2, …., ak-1 as well 
as external nodes for the classes E1, E2, …., Ek-1 will be in the left 
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subtree, l, of the root. The remaining nodes will be in the right 
subtree, r. Define    

cost(l) = 
 ki1

p(i) * level(ai) + 
 ki1

q(i) *  (level (Ei) - 1) 

cost(r) = 
 nik

p(i) * level(ai) + 
 nik

q(i) *  (level (Ei) - 1) 

In both cases the level is measured by regarding the root of the 
respective subtree to be at level 1. 

 Using w(I,j) to represent the sum   q(i) + ∑j
l=i+1 (q(l)+p(l)), 

we obtain the following as the expected cost of the search tree 
 p(k) + cost(l) + cost(r) + w(0, k-1) + w(k, n)  Eq4.4 

If the tree is optimal then Eq4.4 must be minimum. Hence, 
cost(l) must be minimum over all the binary search trees containing 
a1, a2, …., ak-1 and E1, E2, …., Ek-1. Similarly cost(r) must be 
minimum. If we use c(I,j) to represent the cost of an optimal binary 
search tree, tij, containing ai+1, ai+2, …., aj and Ei+1, Ei+2, …., Ej, then 
for the tree to be optimal, we must have cost(l) = c(0, k-1) and 
cost(r) = c(k,n). In addition k must be choose such that 

p(k) + c(0, k-1) + c(k,n) + w(0, k-1) + w(k, n) 
is minimum. Hence c(0,n) we obtain 

c(0,n) =
nki 

min {p(k) + c(0, k-1) + c(k,n) + w(0, k-1) + w(k, n)}  Eq 4.5 

wegan generalize Eq 4.5 to obtain any c(i,j) 

c(i,j) =
jki 

min {p(k) + c(i, k-1) + c(k,j) + w(i, k-1) + w(k, j)} 

c(i,j) =
jki 

min {c(i, k-1) + c(k,j)} + w(i,j)   Eq 4.6 

Equation 4.6 can be solved for c(0,n) by first computing all 
c(i,j) such that j-i=1. Next we can compute all c(i,j) such that j-i =2, 
then all c(i,j) with j-i=3, etc. if during this computation we record the 
root r(i,j) of each tree tij, then an optimal binary search tree can be 
constructed from these r(i,j). 
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1. State True or False 
 

a) All the problems can be solved by using dynamic 
programming technique. 

b) To solve a problem by using dynamic programming, the 
problem must have to possess principle of optimality. 

c) A multistage graph can have a cycle. 
d) A optimal binary search tree is a binary search tree which 

has minimal expected cost of locating each node 
 

 CHECK YOUR PROGRESS   

 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.6 0/1 KNAPSACK PROBLEM USING DYNAMIC  
PROGRAMMING 

 
In the previous unit, we have discussed about the Knapsack 
problem, and found that fractional knapsack problem can be 
solved by using greedy strategy. The 0-1 knapsack problem can 
only be solved by using dynamic programming. Below we will 
discuss methods for solving 0-1 knapsack problem. 
 

The naive way to solve this problem is to cycle through all 
2n subsets of the n items and pick the subset with a legal weight 
that maximizes the value of the knapsack. But, we can find a 
dynamic programming algorithm that will usually do better than this 
brute force technique. 
 
Our first attempt might be to characterize a sub-problem as 
follows: 

 
Let Sk be the optimal subset of elements from {I0, I1,...Ik}. 

But what we find is that the optimal subset from the elements {I0, 
I1,... Ik+1} may not correspond to the optimal subset of elements 
from {I0, I1,...Ik} in any regular pattern. Basically, the solution to the 
optimization problem for Sk+1 might NOT contain the optimal 
solution from problem Sk. 
 
 
To illustrate this, consider the following example: 
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Item  Weight  Value 
I0  3   10 
I1  8   4 
I2  9   9 
I3  8   11 
 
The maximum weight the knapsack can hold is 20. 
 

The best set of items from {I0, I1, I2} is {I0, I1, I2} but the best 
set of items from {I0, I1, I2, I3} is {I0, I2, I3}. In this example, note that 
this optimal solution, {I0, I2, I3}, does NOT build upon the previous 
optimal solution, {I0, I1, I2}. Instead it builds upon the solution, {I0, 
I2}, which is really the optimal subset of   {I0, I1, I2} with weight 12. 
 

So, now, let us rework on our examplewith the following 
idea:Let B[k, w] represents the maximum total value of a subset Sk 
with weight w. Our goal is to find B[n, W], where n is the total 
number of items and W is the maximal weight, the knapsack can 
carry. 
 
Using this definition, we have B[0, w] = w0, if w ≥ w0. 
     = 0, otherwise 
 
Now, we can derive the following relationship that B[k, w] obeys: 
 
B[k, w] = B[k - 1,w], if wk> w 
 = max { B[k - 1,w], B[k - 1,w - wk] + vk} 
 
In general: 
 

1) The maximum value of a knapsack with a subset of items 
from {I0, I1, ...Ik} with weight w is the same as the maximum 
value of a knapsack with a subset of items from {I0, I1, ... Ik-

1} with weight w, if weights of item k is greater than W. 
Basically, we can NOT increase the value of our 

knapsack with weight w if the new item we are considering 
weighs more than W – because it WON'T fit!!! 

 
2) The maximum value of a knapsack with a subset of items 

from {I0, I1, ... Ik} with weight w could be the same as the 
maximum value of a knapsack with a subset of items from 
{I1, I2, ... Ik-1} with weight w, if item k should not be added 
into the knapsack. 

 
3) The maximum value of a knapsack with a subset of items 

from {I0, I1, ... Ik} with weight w could be the same as the 
maximum value of a knapsack with a subset of items from 
{I0, I1, ... Ik-1} with weight w-wk, plus item k. 
 

 
You need to compare the values of knapsacks in both case 2 

and 3 and take the maximal one. 
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Recursively, we will still have an O(2n) algorithm. But, using 
dynamic programming, we simply perform in just two loops - one 
loop running n times and the other loop running W times. 
 
Here is a dynamic programming algorithm to solve the 0/1 
Knapsack problem: 
 
Input: S, a set of n items as described earlier, W the total weight of 
the knapsack. (Assume that the weights and values are stored in 
separate arrays named w and v, respectively.) 
 
Output: The maximal value of items in a valid knapsack. 
 
int i, k; 
for (i=0; i<= W; i++) 
     B[i] = 0 
 
for (k=0; k<n; k++)  
{ 
for (i = W; i>= w[k]; i--)  

{ 
if (B[i – w[k]] + v[k]> B[i]) 

      B[i] = B[i – w[k]] + v[k] 
 } 
} 
 
Clearly the run time of this algorithm is O(nW), based on the 
nested loop structure and the simple operation inside of both 
loops. When comparing this with the previous O(2n), we find that 
depending on W, either the dynamic programming algorithm is 
more efficient or the brute force algorithm could be more efficient.  
 
Let's run through an example: 
 
I Item wi vi 
0 I0 4 6 
1 I1 2 4 
2 I2 3 5 
3 I3 1 3 
4 I4 6 9 
5 I5 4 7 

 
W = 10 
 
 
Item 0 1 2 3 4 5 6 7 8 9 10 
0 0 0 0 0 6 6 6 6 6 6 6 
1 0 0 4 4 6 6 10 10 10 10 10 
2 0 0 4 5 6 9 10 11 11 15 15 
3 0 3 4 7 8 9 12 13 14 15 18 
4 0 3 4 7 8 9 12 13 14 16 18 
5 0 3 4 7 8 10 12 14 15 16 19 
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4.7 TRAVELLING SALESMAN PROBLEM 

 
We have seen how to apply dynamic programming to a subset 
selectionproblem (0/1 knapsack). Now we turn our attention to a 
permutation problem.Note that permutation problems usually are 
much harder to solve thansubset problems as there are n! different 
permutations of n objects whereasthere are only 2ndifferent 
subsets of n objects (n!> 2n). Let G = (V,E)be a directed graph with 
edge costs cij. The variable cijis defined such thatcij> 0 for all i and j 
and  cij = α if (i,j) ∉ E. Let |V| = n and assumen > 1. A tour of G is a 
directed simple cycle that includes every vertex inV. The cost of a 
tour is the sum of the cost of the edges on the tour. Thetraveling 
salesperson problem is to find a tour of minimum cost. 
  

Different problems can be viewed as the traveling 
salesman problem.For example, suppose we have to define the 
route a postal van to pick up mail from mail boxes located at n 
different sites. If we represent the situation by graphs then the 
vertices of the graph will be different cities and the edges of the 
graph are the paths between two cities and the weight of a edge 
can be the distance between the cities. Our task is to find the route 
taken by the postal van is a tour with minimum cost or length. 

 
 In the following discussion, without losing the main concept, 
we takethe tour as a simple path that starts and ends at thestarting 
vertex. Every tour consists of an edge (1,k) for some k ∈ V - {1} 
and a path from vertex k to vertex 1. The path from vertex k to 
vertex 1 goes through each vertex in V - {1, k} exactly once. It is 
easy to see that if the tour is optimal, then the path from k to 1 
must be a shortest k to 1 path going through all vertices in V - 
{1,k}. Hence, the principle of optimality holds. Let g(i,S) be the 
length of a shortest path starting at vertex i, going through all 
vertices in S, and terminating at vertex 1. The function g(1, V - {1}) 
is the length of an optimal salesman’s tour. From the principal of 
optimality it follows that 
 
 g(1, V-{1}) = 

nk2
min  {c1k + g(k, V - {1, k})}  

 
In general 
 
 g( i, S ) = 

Sj
min  {cij + g( j, S - {j})} 

The above equation can be solved for g(1, V - {1}) if we know g(k, 
V - {1, k}) for all choices of k. The g values can be obtained by 
using this equation. Clearly, g(i, Ø) = cj1, 1≤ i ≤ n. Hence, we can 
use this equation to obtain g(i, S) for all S of size 1. Then we can 
obtain g(i,S) for S with |S| = 2, and so on. When |S|< n - 1, the 
values of i and S for which g(i, S) is needed are such that i ≠ 1, 1∉ 
S, and i ∉S. 
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Consider the directed graph of Fig 4.5(a). The edge lengths are 
given by matrix c of Fig 4.5(b) 
 

 
Fig 4.5: Directed graph and Edge matrix c 
 
Thus,  

g(2,Ø)  = c21 = 5 
g(3,Ø) = c31 = 6 
g(4,Ø)  = c41 = 8. 

Using the above equation we obtain 
g(2,{3}) = c23+ g(3,Ø) = 15   g(2,{4}) = 18 
g(3,{2}) = 18     g(3,{4}) = 20 
g(4,{2}) = 13     g(4,{3}) = 15 
 
Next, we compute g(i, S) with |S| =2, i ≠ 1, 1∉ S  and i ∉ S. 
g(2,{3,4}) = min {c23+g(3,{4}),c24+g(4,{3})} = 25 
g(3,{2,4}) = min {c32+g(2,{4}),c34+g(4,{2})} = 25 
g(4,{2,3}) = min {c42 + g(2,{3}),c43+ g(3,{2})} = 23 
 
Finally, we obtain 
g(1, {2,3,4}) = min {c12+g(2, {3,4}), c13+g(3, {2,4}), c14+g(4, {2, 3})} 

= min {35,40,43} 
= 35 

An optimal tour of the graph of Figure has length 35. A tour of this 
length can be constructed if we retain with each g(i, S) the value of 
j that minimizes the right-hand side of the graph. Let J(i,S) be this 
value. Then, J(1,{2,3,4}) = 2. Thus the tour starts from 1 and goes 
to 2. The remaining tour can be obtained from g(2, {3, 4}). SoJ(2, 
{3, 4}) = 4. Thus the next edge is (2,4). The remaining tour is for 
g(4, {3}). So J(4, {3}) = 3. The optimal tour is 1, 2, 4, 3, 1. 
 
 
 
 
4.8 FLOW SHOP SCHEDULING 

 
Often the processing of a job requires the performance of several 
distincttasks. Computer programs run in a multiprogramming 
environment areinput and then executed. Following the execution, 
the job is queued for outputand the output is eventually printed. In 
a general flow shop we may have n jobs each requiring m tasks 
T1i,T2i,... ,Tmi, 1 ≤i≤ n, to be performed.Task Tji is to be performed 
on processorPj 1< j < m . The time requiredto complete task Tji is 
tji. A schedule for the n jobs is an assignment of tasksto time 
intervals on the processors. Task Tji must be assigned to 
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processorPj. No processor may have more than one task assigned 
to it in any timeinterval. Additionally, for any job i the processing of 
task Tji, j > 1, cannotbe started until task Tj-1,i has been completed. 
For exampleTwo jobs have to be scheduled on three processors, 
the task times are given by the matrix J 

 
Two possible schedules for the jobs are shown in Figure 4.6 
 

 
Fig 4.6: Two possible schedules for above example  
 

 
A non-preemptive schedule is a schedule in which the 

processing of a task on any processor is not terminated until the 
task is complete. A schedule for which this need not be true is 
called preemptive. The schedule of Fig 4.6 (a) is a preemptive 
schedule. Fig 4.6(b) shows a non-preemptive schedule. The finish 
time fi(S) of job i is the time at which all tasks of job i have been 
completed in schedule S. In Figure 4.6(a), f1(S) = 10 and f2(S) = 
12. In Figure 4.6(b), f1(s) = 11 and f2(S) = 5, The finish timeF(S) of 
a schedule S is given by 

 
F(S)=

ni1
max  {fi(S)}   

 
The mean flow time MFT(S) is defined to be 
 

MFT(S) = 
nin 


1

1
fi(S)   

 
An optimal finish time (OFT) schedule for a given set of 

jobs is a non-preemptive schedule S for which F(S) is minimum 
over all non-preemptiveschedules S. A preemptive optimal finish 
time (POFT) schedule, optimalmean finish time schedule (OMFT), 
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and preemptive optimal mean finish(POMFT) schedule are defined 
in the obvious way. 

Although the general problem of obtaining OFT and POFT 
schedules form > 2 and of obtaining OMFT schedules is 
computationally difficult, dynamic programming leads to an efficient 
algorithm to obtainOFT schedules for the case m = 2. In this 
section we consider this specialcase. 

For convenience, we shall use ai to represent t1i, and bi to 
representt2i. For the two-processor case, one can readily verify that 
nothing is tobe gained by using different processing orders on the 
two processors (this isnot true for m > 2), Hence, a schedule is 
completely specified by providinga permutation of the jobs. Jobs 
will be executed on each processor in thisorder. Each task will be 
started at the earliest possible time. The schedule of Figure 4.7 is 
completely specified by the permutation (5, 1, 3, 2, 4).We make the 
simplifying assumption that ai≠ 0, 1 ≤ i ≤ n. Note that ifjobs with ai = 
0 are allowed, then an optimal schedule can be constructedby first 
finding an optimal permutation for all jobs with ai≠ 0 and 
thenadding all jobs with ai =0 (in any order) in front of this 
permutation (seethe exercises). 

 

 
Fig 4.7: A Schedule 

 
 
It is easy to see that an optimal permutation (schedule) has 

the propertythat given the first job in the permutation, the 
remaining permutation isoptimal with respect to the state of the two 
processors. Let σ1, σ2,...,σk be a permutation prefix defining a 
schedule for jobs T1, T2,..., Tk. For this schedule let f1 and f2 be the 
timesat which the processing of jobs T1,T2,... ,Tk is completed on 
processors P1and P2 respectively. Let t = f2 - f1. The state of the 
processors following the sequence of decisions T1, T2,...,Tk is 
completely characterized by t. Letg(S, t) be the length of an optimal 
schedule for the subset of jobs S underthe assumption that 
processor 2 is not available until time t. The length ofan optimal 
schedule for the job set {1, 2,..., n} is g({1, 2,... ,n},0). 
Since the principle of optimality holds, we obtain 
 
g({1, 2, . . . , n}, 0) = 

ni1
min {a, + g({l, 2, . . . , n} - {i}, bi)} (4.7) 

 
Equation 4.7 generalizes to 4.8 for arbitrary S and t. 
Thisgeneralization requires that g(Φ, t) = max{t, 0} and that ai≠ 0, 1 
≤ i ≤ n. 
 
g(S, t) = 

Si
min  {ai + g(S - {i}, bi + max{t - ai, 0})}   (4.8) 

The term max {t - ai,0} comes into (4.8) as task T2i cannot start 
untilmax{ai,t} (P2 is not available until time t). Hence f2 - f1 = bi + 
max{ai,t} - ai = bi +max{t -ai,0}. We can solve for g(S,t) using an 
approach similarto that used to solve travelling salesman problem. 
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However, it turns out that (4.8) can be solvedalgebraically and a 
very simple rule to generate an optimal schedule obtained. 
 

Consider any schedule R for a subset of jobsS, Assume 
that P2 is notavailable until time t. Let i and j be the first two jobs in 
this schedule.Then, from (4.8) we obtain 
 
g(S,t) = ai + g(S - {i}, bi +max {t-ai,0}) 
g(S,t) = ai + aj + g(S - {i,j},bj + max {bi + max {t - ai,0} - aj,0}) (4.9) 
 
Equation 4.9 can be simplified using the following result: 
 
tij = bj + max {bi + max {t - ai, 0} -aj, 0} 
= bj + bi- aj + max {max {t - ai, 0}, aj - bi} 
= bj + bi- aj + max {t -ai, aj-bi, 0} 
tij = bj + bi -aj- ai + max {t, ai + aj - bi, ai} 
 
If jobs i and j are interchanged in R, then the finish time g'(S,t) is 
 

g'(S,t) = ai + aj+g(S - {i,j},tji) 
 

where,tji = bj + bi-aj- ai + max {t, ai + aj-bj,aj} 
 
Comparing g(S,t) and g'(S,t), we see that if (4.10) below holds, 
then 
g(S,t) ≤ g'(S,t). 
 
max { t, ai + aj-bi, ai} ≤ max {t, ai + aj-bj, aj}   (4.10) 
 
In order for (4.10) to hold for all values of t, we need 
 
max {ai + aj- bi, aj} ≤ max {ai + aj-bj,aj} 
 
orai + aj + max {-bi, -aj} ≤ ai+ aj + max {-bj, -aj} 
 
or min {bi,aj} ≥ min {bj,ai}      (4.11) 
 
From (4.11) we can conclude that there exists an optimal schedule 
inwhich for every pair (i,j) of adjacent jobs, min{bi, aj} ≥ 
min{bj,ai}.Hence, it suffices to generate any schedule for which 
(4.11) holds for everypair of adjacent jobs. We can obtain a 
schedule with this property by makingthe following observations 
from (4.11). If min{a1, a2,..., an, b1,b2,... ,bn} is ai, then job i should 
be the first job in an optimal schedule. If min {a1, a2,..., an,b1,b2,... 
,bn} is bj, then job j should be the last job in an optimalschedule. 
This enables us to make a decision as to the positioning of oneof 
the n jobs. Equation 4.11 can now be used on the remaining n - 1 
jobs 
to correctly position another job, and so on. The scheduling rule 
resultingfrom (4.11) is therefore: 
 

1. Sort all the ai and bj into nondecreasing order. 
2. Consider this sequence in this order. If the next number 

in the sequence is aj and job j hasn't yet been scheduled, schedule 
job j at the leftmostavailable spot. If the next number is bj and job j 
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 CHECK YOUR PROGRESS   

hasn't yet beenscheduled, schedule job j at the rightmost available 
spot. If j hasalready been scheduled, go to the next number in the 
sequence. 
 
Note that the above rule also correctly positions jobs with ai = 0. 
Hence,these jobs need not be considered separately. 
 
 
 
 

  
 
 2. Sate True or False. 

a) 0/1 knapsack problem can also be solved by using greedy 
strategy.   

b) Travelling Salesman problem is to find out the shortest 
cycle in the graph covering all the vertices 

c) 0/1 knapsack does not possess a optimal substructure. 
d) Flow shop scheduling problem is to find out the optimal 

sequence to run n jobs in m processors.   

 

 

 
4.9  LET US SUM UP 
 

 A problem can be solved by dynamic programming only 
when it possesses optimal substructure. 

 A problem is said to satisfy the principle of optimality, if the 
sub solutions of an optimal solution of the problem are 
themselves optimal solution for their sub problems. 

 In dynamic programming wefirst solve the sub-problems 
and then use these solutions to get the optimal solution in 
recursive manner. 

 

4.10 FURTHER READINGS 
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1. a) Falseb)Truec) Falsed) True 
 

1. a) Falseb) Truec) Falsed) True 
 
 
 

 
 

1. Explain the characteristics of dynamic programming.  
2. Describe the steps of dynamic programming algorithm. 
3. Solve 0/1 knapsack problem using dynamic programming. 
4. Flow shop scheduling algorithm possess the optimal sub-

structure, explain it. 
5. With an example explain how 0/1 knapsack problem can be 

solved by using dynamic programming. 
6. Describe the method of solving travelling salesman 

problem using dynamic programming. 
7. Explain, what optimal binary search tree is.  

4.11  ANSWERS TO CHECK YOUR    
       PROGRESS 
 

4.12 PROBABLE QUESTIONS 
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UNIT 5 :    BACKTRACKING 
 
5.1 Learning Objective 

5.2 Introduction 

5.3 General Strategy for Backtracking 

5.4 Tree Organization for Solution Space in Backtracking 

5.5 Main Idea for Backtracking 

5.6 8-Queen’s Problem 

5.7 Graph Coloring Problem 

5.8 Hamiltonian Cycle 

                        5.9 Backtracking Method for 0-1 Knapsack Problem 

                        5.10  Let Us Sum Up 

                        5.11 Answers to Check Your Progress 

                        5.12 Further Readings 

5.13 Model Questions 

 

5.1 LEARNING OBJECTIVE 
 
   After going through this unit, you will be able to: 

 describe about the concept of backtracking 

 know the 8-Queen problem and its solution using 

backtracking 

 elaborate the graph coloring problem 

 know the Hamiltonian cycle and its solution  using 

backtracking 
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5.2 INTRODUCTION 
Backtracking is a method for searching a set of solutions or find an 

optimal solution for satisfies some given constraint to a problem. 

The name backtrack was first introduce by D. H. Lehmer in 1950’s. 

In this unit we will introduce you the backtracking method. 

Moreover, we will discuss here about a set of new problems like 8-

Queens problem, Graph coloring problem and Hamiltonian Cycle. 

 

5.3 GENERAL STRATEGY FOR BACKTRACKING 
 
 In backtracking method the solution set can be represented by an 
n tuple (x1,x2,…….,xn ), where xi are chosen from some finite set 

Si. This method can be used for optimization problem to find one 

or more  solution vector that maximize  or minimize or satisfy  a 
given criterion function C( x1, x2,….,xn ). For example sorting n 

data of an array A [1:n] is a problem to find the solution set, that 
has an   n- tuple ( x1, x2,…xi, xi+1,……..,xn) . For this problem  xi is 

the index of ith smallest element in the array A .The criterion 
function is  C( a [ xi ] ≤ a [ xi+1] ) and Si is the finite set of integers 

in the range [1,n]. 
 
Let the set Si has size mi. There are m = m1 m2…mn , n- tuples for 

the solution set that satisfy the criterion function C. If brute force 

approach is applied to find the solution then it will form all n-tuple 

and solve each on to determine optimal solutions. But if 
backtracking methods applied here instead of brute force it will 

take less than m trial to determine the solution. Back tracking 
method at each step forms a partial solution set (x1, x2,……,xi )  
and check it if this has any chances to find a solution depending 

upon the criterion function C. If this partial solution set no way lead 
to an optimal solution, then ignore the test vectors from mi+1 to mn 

entirely. 
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 All the solutions in backtracking require a set of constraints to 

satisfy. It is divided into two categories:  

1. Explicit constraint :  
Explicit constraints are rules that restrict each xi to take 
on values only from a given set. This constraint 

depends on the particular instance I of problem being 
solved – All tuples that satisfy the explicit constraints 

define a possible solution space for I. 
                Examples of explicit constraints  

i) xi  ≥ 0, or all nonnegative real numbers  

ii) xi  = {0, 1}  

 

2. Implicit constraints:  
      Implicit constraints are rules that determine which of 

the tuples in the solution space of I satisfy the criterion 

function. Implicit constraints describe the way in which 

the xi must relate to each other.  
                

There are two types of solution space tuple formulation: 

1. Variable size tuple: 
In this method for the  solution vector ( x1, x2,…..,xk ),  

xi will represent indices of ith choices for 1 ≤ i ≤ k. Here 

size of the solution vector can varies for a problem. 
 

2.  Fixed sized tuple: 
 In this method for solution vector( x1, x2, x3,…..xn ),      

xi  € { 0,1 } and 1 ≤ i ≤ n, such that xi is 0 if ith element 

not chosen and 1 otherwise. Here solution vector sizes 

are same for a problem. 

  

5.4 TREE ORGANIZATION FOR SOLUTION 
SPACE IN BACKTRACKING 
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 Backtracking method determine solution of a problem by 

searching for the solution set in the solution space. This 

searching can be organized in a tree called state space 
tree.  

 Each node in the tree can be defined as problem state.   

 A path from root to any other node defines a partial 
solution vector, can be called as state space.  

 A solution state is a node s for which each node from 
root node to node s  together can represent a tuple in 

solution set.  

 Answer states are solution state which satisfies an implicit 

constraint.   

 The tree organization of solution space is referred to as 

state space tree. 

 In state space tree problem state are generated from root 

node and then generated other nodes. 

 A live node is a generated node, for which all of its 

children node have not yet generated. 

 A E-node (Expanded node) is a live node, whose children 

are currently being generated. 

 A dead node is that , which is not expanded further and all 

of its children is generated. 

 Bounding functions are used to bound the searching in 
the tree. It kills a live node without generating children 
if it does not lead to a feasible solution. 

 Depth first node generated with bounding function is called 

backtracking. 

 In state space tree 

i. root of the tree represent 0 choices. 

ii. 1st level node represents 1st choices 

iii. 2nd level node represent 2nd choices. 
iv. nth level node represent nth choices. 
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 A node n is called non-promising if it can not lead to a 

feasible solution and for this node n bounding function  

B(n) = 0. Otherwise, it is called promising node and 
bounding function B(n)=1. 

 If node is non-promising then it is bounded or kill using 

bounding function. Then for this node its sub-trees are not 

generated. 

 A state space tree is called pruned state space tree if it 

consist of only expanded node . 

                 

5.5  MAIN IDEA FOR BACKTRACKING 
   

Backtracking method do depth first search of a state space tree. If 

a node is promising i.e B(n)=1 then search is continue to its child 

node , otherwise if a node is non promising i.e B(n)=0 ,backtrack 
to its parent node. 

                 

Recursive algorithm for general backtracking is- 
                

 Backtrack (node n) 
  { 

       if C(n) = 1 
               Report feasible solution n 

      else 

               Stop 

      if (B(n) = 0) return; 

      for every child n’ of n Backtrack(n’) 

   } 

   The procedure is invoked by Backtrack(root) 
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CHECK YOUR PROGRESS  
1. State True/False: 

   i. Backtracking method can reduced search space in the state 

space tree. 

   ii. Nodes whose children are being generated is called live 

nodes. 

   iii. In variable sized tuple method size of solution vector can 

varies.  
   iv. Pruned state space tree consist only expanded node.           

 

5.6 8-QUEEN’S PROBLEM 
 
Given a chess board of field 8 x 8. The 8-Queen problem is to 

place 8-Queen on the chess board, so that no two Queen can 

“attack” each other. A Queen can attack vertically, horizontally and 

diagonally. 

  

 N-Queen Problem: 
It is a generalized problem of 8-Queen problem. N Queens are 

placed on a chess board of size n x n, without having attack 

each other. 

   

In chess, queens can move all the way horizontally, vertically or 

diagonally (if there is no other queen in the way).But, no two 

Queen can attack each other. So, due to this restriction, each 

queen must be on a different row and column. 

                 

Backtracking strategy for 8-Queen problem is as follows- 
 

1. Let us, in the chess board rows and columns are numbered 

from 1 to 8 and also queens are numbered from 1 to 8. 
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2. Without loss of generality, assume that ith queen can be 

placed in ith row, because no two queen can place in the 

same row. 

3. All solution can represented as 8-tuple ( x1, x2,…. x8 ), where 
xi is the column number of the ith row of ith queen placed. 

4. Here explicit constraints are Si = {1, 2, 3, 4, 5, 6, 7, 8},           

1 ≤ i ≤ 8 and the solution space will consist of 88  8-tuple. 

5. According to the implicit constraints no two queen can on the 

same row. 

6. So, all solution are permutation of 8-tuple(1, 2, 3, 4, 5, 6, 7, 

8) 

7. Thus the searches is reduce to 88 8-tuple to 8! tuple. 

    
We know from the above that, in 8 -Queen problem all the solution 

can represented as 8-tuple ( x1, x2,….,x8 ), where xi is the column 

number of ith row where.ith queen placed. These all xi’s are distinct 

because of the implicit constraint that no two queen can placed in 

same column. We assume already in no. 2 that ith queen can be 

placed in ith row only. So, no two queen can placed in same row.  

Now, we have only to decide whether two queens are on the same 

diagonal or not. 

 

If chess board square fields are numbered as two dimensional 
array a [1:8] [1:8] then we find that for all diagonal element “row-

column” value is same. For example if 1st queen is placed in         

a [1,3] square then the 2nd queen will placed diagonally if it placed 

in a [2,4] square. Here “row-column” values are 2 and it is same 

for both queen.  

 

Let two queen are placed in position (m, n) and (x, y) 

Then two queens can placed diagonally if 
        m - n = x - y----------------------(1) 
        m + n = x + y---------------------(2) 

 



                     Backtracking                                                                              Unit 5 

                         Design and Analysis of Algorithm                                             130 

(1) => n – y = m - x 
 (2) => n – y = x – m 
 
Therefore two queens can be on the same diagonal if and only if  
  | n – y | = | m – x | 

This is  an another implicit constraint . 

 
Example: 
Here is an example of 4-queen problem- 

The state space tree generated by 4-queen problem is as follows- 

Here node at level i represent ith queen placed at ith row. i.e at level 

1 it represents as 1st queen places in 1st row. Xi in ith level 

represents column number of ith queen placed in ith row. i.e  x2 = 3 
at level 2 means  2nd queen is in 3rd column of the 2nd row. 

Nodes are generated in depth first search manner. 

 

A the path from root to leaf will represent a tuple in solution space. 

All tuples are distinct and some tuples may not lead to a feasible 

solution. 
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                            Fig. 5.1 State space tree 

 

Now by using backtracking method we can bound the search of 

the state space tree using some constraint so that  searching  

require less time.  

 
For this problems to bound a node n constraints or bounding 

conditions B(n) are- 

 

1. No two queens can place in same row i.e xi always 

represents ith queen is in ith row. 

2. No two queen in same column i.e values of xi’s are always 

distinct. 

3. For two queen placed in (m, n)  and (x, y) position in the 

chess , value of | n – y | cannot same as | m – x | 
When a node is bounded using bounding condition it will not 

generate any nodes in its sub-tree because nodes in its sub-tree 

will not give a feasible solution any more. 
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The portion of pruned state space tree after applying bounding 

condition is as follows: 

 

 

   Fig. 5.2 Pruned state space tree 

 Here node 3 is bounded because- 

 At level 1, x1=1 means first time 1st queen is placed in 1st  row, 1st 

column i.e position is (1,1) 

 At level 2 , x2=2 means second time 2nd queen is placed in 2nd 

row, 2nd column i.e position(2,2) 

 
Thus they will place in diagonally. It will violet the implicit 

constraint or bounding condition. So this combination can not give 

a feasible solution any more. So, the children of node 3 will not 

generated further. Hence node 3 will bound. 

 

Here is a path from root 1 to leaf 31 and this will generate one 

feasible solution set (2, 4, 1, 3) where x1=2, x2=4, x3=1, x4=3. 
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Position of the 4 queens are (1,2), (2,4), (3,1) and(4,3) 

respectively. 

 

                      A recursive backtracking function for n-Queen problem: 
                  /* placed search for a new queen*/  

       bool QPlace ( int k, int i ) 

            { 

                for ( int m = 1; m < k; m++ ) 

                    { 

                    if (( x [m] == i ) || (abs ( x[m] – i ) == abs ( m – k ))) 

                    return (false); 
                    return (true); 

                   }  

             } 

 

/* Solution to n queen*/   

          void nQueen ( int k,  int i ) 

           {  

              for ( int i =1; i ≤ n; i++) 

                 if ( QPlace( k, i )) 

                  { 

                         x [k] = i; 

                          if ( k == n ) 

                             { 
                                for ( int m = 1; m ≤ n; m++ ) 

                                {cout << x [m] <<’ ‘<<; 

                                    cout<<endl; 

                               } 

                     } 

                          else 

                              nQueen ( k + 1, n ); 

                      }  

                  } 
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Here QPlace ( k, i ) will return a boolean value true or false. The 

function return true if kth queen can placed in ith column and 
assigned it to x [k]. This value x [k] = i is distinct from x [1]……      

x [k-1]. It also ensures that no two queen is placed in same 

diagonal. 

 

Next nQueen ( k, n) will solve the n-Queen problem recursively 

using backtracking method. 

 

. CHECK YOUR PROGRESS  
 
2. State True/False: 
     i. In n- Queen Problem two Queens can attack each other. 

ii. If two Queens placed diagonally it will violet the implicit        

    constraint. 

 

 

5.7 GRAPH COLORING PROBLEM 
 

Let G be a graph and m be a given integer. Is there any way to 

color the vertices of graph G using m color in such a way that no 

two adjacent vertices have same color? This is called as m-color 

ability decision problem.  According to the graph coloring theory if 
d is the degree of a given graph, then it can be colored with d +1 

color. The minimum number of color required in graph coloring 

problem to color vertices is called chromatic number. The m-color 

ability optimization problem is to determine the chromatic number 

of the graph G. This is called graph coloring problem. 

 

For example graph in the following fig can be colored with 

minimum 3 colors 1, 2, 3. So, chromatic number is 3. 
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    Fig. 5.3 A graph G 

 
Solution using backtracking: 
   

Suppose we represent graph G of n vertices by adjacency matrix 

G [1:n] [1:n], where G [i] [j] =1,if there is an edge between vertex i 

and j in G and G [i] [j] =0, otherwise. 

             

The colors of the graph can be numbered from 1 to m.  The 
solution set are represented by (x1, x2,…..,xn), where xi is the color 

of vertex i. The state space tree for this problem has degree m and 

height n + 1. Each node at level i has m children correspond to m 

color and represents ith vertex of graph G. The left most node  has 

assigned color 1 and rightmost vertex has assigned color m. Node 

at level n + 1 is leaf. 
 
Example: 
  

G is a graph which has 3 vertices (n = 3) and we have to solve the 
graph coloring problem for this graph G using 3 color (m = 3) 

a 
e 

b 

c d 

1 

2 

3 

1 3 
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Fig. 5.4 A graph with 3-vertices 

The general state space tree for this problem is as follows- 

 

 

    Fig. 5.5 A state space tree 

 There are possible three color to color vertex A. Hence x1 has 

three values, x1=1, x1=2, x1=3. 

If we color the vertex A using color 1 then for 2nd vertex B there 

are three possible colors1, 2,3. Hence, x2=1,x2=2,x2=3 and 
similarly for vertex C .  

Now if we apply backtracking method to solve the problem then it 

will use a bound in function to kill a node in the state space tree. 

The bounding function for this problem is that no two adjacent 

vertexes have same color.  

 

The pruned state space tree after applying bounding function is as 

follows-   

A C 

B 
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    Fig. 5.6 A pruned state space tree 

For the graph in fig  vertex 1 is the adjacency  of vertex 2.So, if we 

color vertex 1 using color 1 i.e x1=1 then we cannot color vertex 2 

with color 2 i.e x2=1 because it will violet the bounding condition. 

Hence node 3 can not lead to a feasible solution and it will 

bounded. Other nodes are bounded similarly. 

 
Some feasible solution sets are 

 i)          (1,2,3), where x1=1,x2=2,x3=3,  

ii) (2,1,3), where x1=2,x2=1,x3=3 

iii) (3,2,1), where x1=3,x2=2,x3=1 

Here xi represents ith vertex color value. 

 
 
 
 
Recursive algorithm for graph coloring problem: 

                    

                     /* finding color value of all vertex*/ \ 
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void mcoloring ( int k ) 

{      do 

        {  
            NextValue ( k ); 

                if ( ! x [ k ] )  break; 

                     if ( k == n ) 

                            {  for ( int i =1; i ≤ n; i++ ) 

                                 cout  <<  x[ i ] ; 

                                 cout << endl; 

                             } 

                       else 

                           mcoloring ( k + 1 );  
 }  

   while (1); 

   } 

 
/* Generating next color */ 
 

 void NextValue ( int k ) 

  {      do 

         { 

            x [ k ] = x [ k + 1] % ( m + 1 ); 

              if ( ! x [ k ] ) return; 

                for ( int j = 1; j ≤ n; j++ ) 

                       { 

                           if (G [ k ] [ j ] && (x [ k ] == x [ j ] )) 
                             break; 

                         } 

                  if ( j == n + 1 ) return; 

              } 

               while(1); 

    }  

 
Here k is the next vertex to color 
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         n is the number of vertices 

         x [ i ] is the color of ith vertex. 

                 

The function mcoloring first create the adjacency matrix G [ i ] [ j ] 
of the graph G and then initialize x [ k ] = 0, for all 1 ≤ k ≤ n . First 

invoke the procedure by mcoloring (1). Function NextValue 

produces possible color for vertex k and assign it to xk. Function 

mcoloring repeatedly picks a color value and assign it to xk and 

then calls mcoloring recursively. 

  

 

CHECK YOUR PROGRESS  
 

3. What is the decision problem of graph coloring? 

4. What is the chromatic number of a graph? 

 

 
5.8 HAMILTONIAN CYCLE 
 

A Hamiltonian cycle of a connected undirected graph with n 

vertices is a cyclic path along n edges, such that each vertex visits 

once in graph G and return to the starting vertex. It is named after 

William Hamilton. 

 
Example : 
 Following is graph G with 8 vertices. 
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    Fig. 5.7 A graph with 8 vertices 

 

The Hamiltonian cycle of this graph is- 1, 2, 8, 7, 6, 5, 4, 3, 1 

 

 
 

    Fig. 5.8 Hamiltonian cycle 

 
Backtracking method for Hamiltonian cycle: 
   

Now, using backtracking method we can find out the Hamiltonian 

cycles in a graph which has n vertices. The solution set can 

represented as (x1, x2,……….,xn), where 1 ≤ i ≤ n and  xi 
represents the ith visited vertex of the current considered cycle.  

             

We have to determine value of xi i.e possible vertex to select. For  

i =1, x1 can be any vertex chooses from n vertex. To determine 

value of xi we have already determine x1, x2,……..,xi-1. Hence, the 

xi can be choose as  
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i)  any vertex v which is not assigned to x1, x2…..and xi-1  

                                    from the n vertices. 

   ii)  v is connected by an edge to xi-1 

                       The last vertex xn must be connected to both xn-1 and x1. 
 

Example: 
 Consider the following graph and find out all the Hamiltonian    

 cycle. 

 
The state space tree for the graph is- 

 

 
 

   Fig. 5.9 State space tree 

For using backtracking the bounding functions are- 

i) The solution vector ( x1, x2,……xn ) is defined such that    

 value of xi’s are distinct, for all 1 ≤ i ≤ n, because one    

 vertex visit only once. 

1 3 

2 
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ii)  There is an edge between (xi-1, xi )and ( xi, xi+1 ) 

iii) There is an edge between xn and x1, ( for Hamiltonian 

cycle ). 

Now, the pruned state space tree is as follows- 
 

 
 

    Fig. 5.10 Pruned state space tree 

 

 
Recursive function for Hamiltonian cycle: 
 

/* for finding Hamiltonian cycle*/ 

  

void Hamiltonian ( int k ) 

{   

     do 
       {  

             NextValue ( k ); 

                 if ( ! x [ k ] )  return; 
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                  if ( k == n ) 

                      { 

                         for ( int i =1; i ≤ n; i++) 

                             cout << x [ i ] <<” ”<<”\n”; 

                        } 

                   else  

                        Hamiltonian ( k + 1 ) 

           } 

      while(1); 

} 

    

 

/* generating next vertex*/ 

 

void NextValue ( int k ) 
       { 

           do 

               { 

                   x [ k ] = ( x [ k ] + 1 ) % ( n + 1 );            //Next vertex 

                    if ( ! x [ k ] ) return; 

                    if ( G [ x [ k – 1 ] [ x [ k ] ]) 

                       { 

                          for ( int j = 1; j ≤ k - 1; j++) 

                             if ( x [ j ] == x [ k ] )  break ;                                   
                      if ( j == k ) 

                      if ( ( k < n ) || (( k == n ) && G [ x [ n ] ] [ x [ 1] ] )) 

                      return; 

                   } 

            } 

     while(1); 

  } 
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This program first initializes the adjacency matrix G [ 1:n ] [ 1:n ] 

and x [ 1 ] = 1 and x [ 2:n ] = 0.  

 

Hamiltonian function is invoked by Hamiltonian (2). 

 
5.9 BACKTRACKING METHOD FOR                     
0-1 KNAPSACK PROBLEM 
 
0-1knapsack problem : 
 

Given  n items, for which weight set is W = ( w1, w2,….,wn ), where 

wi is positive weight of ith item. There are n profits ( p1, p2,….,pn ), 

where pi represents profit of ith item and capacity of knapsack is m, 

m > 0. 

 The 0-1 knapsack problem chooses subset of weight set W such 

that 
              ∑   wi xi  ≤ m       and     ∑      pi xi  is maximized     

            1 ≤ i ≤ n                       1 ≤ i ≤ n 

       Where xi  € { 0, 1 } 

               i.e ith item is selected then xi = 1,    

                                                             = 0, Otherwise  

         

There are two tree organizations possible for this problem. 

Variable tuple sized formulation and fixed tuple sized formulation. 

In solution vector xi can be assigned with 0 or 1 in  2n distinct 
ways.  

 

Here bounding function is that total profit of the chooses item is 

maximized and total weight of chooses item is atmost m .  

 

This bounding function for a live node can be obtained by using an 

upper bound on the value of the best feasible solution. If a upper 
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bound for a live node is not higher than the value of the best 

solution then the node can bounded or kill. 

 

Here we consider fixed tuple sized formulation. For a node S at 
level k+1, the value of xi, 1 ≤ i ≤ k has already determined. The 

upper bound for a node S can be obtained by making xi = 0 or 1 for 

k + 1 ≤ i ≤ n. 

 
A recursive function for 0-1 knapsack using backtracking: 
 

                      /* bounding function for 0-1 knapsack*/ 

 

float Bound ( float cp, float cw, int k ) 

{  

     float b = cp, c = cw; 

      for ( int i = k + 1; i ≤ n; i++ ) 

      c = c + w [ i ]; 

       if ( c < m ) 

        b = b + p [ i ]; 

        else 

        
 return ( b + ( 1 - ( c – m ) / w [ i ] * p [ i ] ); 

     } 

 return(b); 

} 

 

 /* Backtracking method for 0-1 knapsack*/ 

 

void Knap( int k, float cp, float cw) 

{ 

    if ( cw + w [ k ] ≤ m ) 

       y [ k ] = 1; 

         if ( k < n ) 

           Knap ( k + 1, cp + p [ k ], cw + w [ k ] ); 
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          if (( cp + p [ k ] > fp ) && ( k == n )) 

              { 

                 fp = cp + p [ k ]; 
                 fw = cw + w [ k ]; 

                    for ( int j = 1; j ≤ k ; j++) 

                      x [ j ] = y [ j ]; 

                 } 

     } 

if ( Bound (cp, cw, k ) ≥ fp ) 

   { 

       y [ k ] = 0; 

         if ( k < n )  
            Knap ( k + 1, cp, cw ); 

               if (( cp > fp ) &&( k == n )) 

                  { 

                      fp = cp; 

                      fw = cw ; 

                         for ( int j = 1; j ≤ k; j++) 

                     

               x [ j ] = y [ j ]; 

                     } 
                  } 

            } 

                    

                        Here  

cp =  current total profit of the chosen items,  

                           cw =  current total weight of all chosen items. 

                            k  =  index of last considered item . 

                             m  = capacity of knapsack 
                            w[i] = weight of ith item. 

                            p[i] = profit of ith item.  

 

                             P[i]/w[i] ≥ p[i+1]/w[i+1],  for all 1≤i<n 

                             n= total item numbers 
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                              fw= final total weights in knapsack 

                              fp= final maximum profit 

                              x[k]==0, if w[k] is not in knapsack, 

                                     == 1 ,Otherwise.  
 

The above method to determine an upper bound for a node at 

level k+1 of state space tree, function Bound(cp, cw, k) is used. 

 

 Initially fp is set to -1. This method s invoked by Knap(1,0,0). 

When fp != -1 , x[k],1≤k<n , is such that  ∑  p[i] x[i] = fp.                                                                                                              

i=1..n 

  

The path y[j],1 ≤ j ≤ k is the path to the current node. 
The current weight cw = ∑ w[ i ] y[ i ]  

                                      i=1..k-1 

 

The current profit    cp = ∑ p[ i ] y[ i ] 

                                      i=1..k-1 

            

 

CHECK YOUR PROGRESS  
 

5. What is Hamiltonian cycle? 

 

 

 
 
5.10 LET US SUM UP 

 Backtracking  is a method for searching a set of solutions or find 

an optimal solution for satisfy some given constraint to a 

problem 



                     Backtracking                                                                              Unit 5 

                         Design and Analysis of Algorithm                                             148 

 In backtracking method the solution set can be represented by 

an n tuple (x1,x2,…….,xn ), where xi are chosen from some finite 

set Si. 

 Backtracking method can be used for optimization problem to 

find one or more  solution vector that maximize  or minimize or 

satisfy  a given criterion function 

 In backtracking constraint to be satisfied can be divided into two 

categories- Implicit constraint and Explicit constraint 

 Two types of  tuple formulation-  Variable size tuple and Fixed 

sized tuple 

 In backtracking method searching can be organized in a tree 

called state space tree. 

 A solution state is a node s for which each node from root node 

to nodes  together can represent a tuple in solution set.  

 A live node is a generated node, for which all of its children node 

have not yet generated. 

 A E-node (Expanded node) is a live node, whose children are 

currently being generated. 

 A dead node is that , which is not expanded further and all of its 

children is generated 

 Bounding functions are used to bound the searching in the tree. 

 A node n is called non-promising if it can not lead to a feasible 

solution. Otherwise, it is called promising node 

 A state space tree is called pruned state space tree if it consist 

of only expanded node 

 Backtracking method do depth first search of a state space tree. 

 It is a generalized problem of 8-Queen problem. N Queens are 

placed on a chess board of size n x n, without having attack 

each other. 

 According to the graph coloring theory if d is the degree of a 
given graph, then it can be colored with d +1 

 The minimum number of color required in graph coloring 

problem to color vertices is called chromatic number 
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 A Hamiltonian cycle of a connected undirected graph with n 

vertices is a cyclic path along n edges, such that each vertex 

visits once in graph G and return to the starting vertex 
 

 

5.11 ANSWERS TO CHECK YOUR 
PROGRESS  

   
1. i. True,  ii. False,  iii. True,  iv. True 

2. i. False,  ii. True 

3. Let G be a graph and m be a given integer. Is there any way to 
color the vertices of graph G using m color in such a way that 

no two adjacent vertices have same color. This is called as m-

color ability decision problem. 

4. The minimum number of color required in graph coloring 

problem to color vertices is called chromatic number. 

5. A Hamiltonian cycle of a connected undirected graph with n 

vertices is a cyclic path along n edges, such that each vertex 

visits once in graph G and return to the starting vertex. It is 

named after William Hamilton. 
 

 

5.12 FURTHER READINGS 

Ellis Horowitz, Sartaj Sahni and Sanguthevar 
Rajasekaran, Computer Algorithms/ C++, Second Edition, 
Universities Press, 2007. 

 

5.13 MODEL QUESTIONS 
 
1.  What is backtracking method? 

2.  Write about state space tree organization of backtracking 

method. 
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3.  What is 8-queen problem? How can it solved using 

backtracking? 

4.  What is the bounding condition for n-queen problem? 

5.  What s graph coloring problem? What is the bounding 
condition for graph coloring problem? 

6.  How does backtracking method find Hamiltonian cycle in a 

graph?  
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UNIT - 6:BRANCH AND BOUND 
 
UNIT STRUCTURE 

 
6.1 Learning Objectives 
6.2 Introduction 
6.3 General Strategy 
6.4 0/1 Knapsack Problem 
6.5 Travelling Salesman Problem 
6.6 Let Us Sum Up 
6.7 Further Readings 
6.8 Answers to Check Your Progress 
6.9 Model Questions 
 

 

6.1 LEARNINGOBJECTIVES 

After goingthrough this unit, you will be able to: 

 understand the concept of Branch and Bound 

 solve 0/1 knapsack problem by this method 

 solve travelling salesman problem by this method 

 

 

 

 

 

 

6.2 INTRODUCTION 

We have already covered the most important techniques 
such as backtracking, greedy strategy, divide and conquer, 
dynamic programming etc. In this chapter, we will discuss about 
the branch and bound technique. 
 

Branch and bound is an algorithm design technique that is 
often implemented for finding the optimal solutions in case of 
optimization problems; it is mainly used for combinational and 
discrete global optimizations of problems. In a nutshell, we opt this 
technique when the domain of possible candidates is way too large 
and all of the other algorithms fail.  
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6.3 GENERAL STRATEGY  

Out of the techniques that we have learned both the 
backtracking and divide and conquer traverse the decision tree in 
the depth first order, though they take opposite routes. The greedy 
strategy picks a single route and forgets about the rest. Dynamic 
programming approach is most likely similar to breadth-first 
search. 

Now if the decision tree of the problem that we are planning 
to solve has practically unlimited depth, then backtracking and 
divide and conquer algorithms cannot be used. Also we shouldn't 
rely on greedy because that is problem-dependent and never 
promises to deliver a global optimum, unless we prove it 
mathematically.  

As our last resort we may even think about dynamic 
programming. The truth is that maybe the problem can indeed be 
solved with dynamic programming, but the implementation 
wouldn't be an efficient one. Additionally, it would be very hard 
to implement. If we have a complex problem where we need lots of 
parameters to describe the solutions of sub-problems, dynamic 
programming becomes inefficient. 

In backtracking, we used depth-first search with pruning to 
traverse the (virtual) state space. Breadth first search with pruning 
can also be used for better performance in some problems. This 
process of using breadth first search with pruning is known as 
branch and bound. In breadth-first search, queue is used as an 
auxiliary data structure. 

The drawback of breadth first search is that the complexity 
of it is exponential. We need an algorithm that ameliorates this 
issue by reducing some candidates which arenot satisfactory and, 
won't contribute to the optimal solution. Branch and bound is a 
such type of technique. Branch and bound algorithm injects some 
intelligence into the naive but complex breadth-first search. Instead 
of searching throughout the entire decision/search tree structure, it 
instills some sort of criteria, according to which the complexity of 
the breadth-first search can be reduced. For example, if we 
calculate the distance of each node in terms of "how far" it is 
located from the initial root node and "how close" it is from the 
solution, then the distance/cost is the sum of these two distances. 
However, as we can surely see, the second distance relies on 
heuristics. Thus, it's just a guess.Moreover, we can move through 
this tree based on the instilled costs, a node is a more possible 
candidate toward the solution if its cost is less than the other 
nodes. What we did here is, we add an essence of depth-search to 
the breath-first meaning.Here we are going to maintain a priority 
queue, according to which we are going to runthe breath-first 
search. The traditional breath first search runs from left to right, but 
now it will run according to the priority queue. 

The beauty of this approach is that we haven't lost the not-
so-possible candidates, they will be stored somewhere on the end 
of the priority queue, so this algorithm doesn't neglect the rest of 
the possible options. Summing these up, this is in fact a typical 
branch and bound algorithm techniqueand it relies on the guess. 
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Branch and bound is composed of two main 
actions.Firststep,branching, where we define the tree structure 
from the set of candidates in a recursive manner. The second step 
isbounding,where we calculates the upper and lower bounds of 
each node from the tree.Furthermore, there is a additional pruning 
step,where depending on the values of upper bound and lower 
bound some node can be discarded from the search. 

All in all, branch and bound is very similar to backtracking. 
The main differences are that the branch and bound is used only in 
case of optimization problems, whereas backtracking cannot be, 
and branch and bound doesn't limit us to a particular way of 
traversing the tree. Backtracking always picks one single 
successor from the candidates, while branch and bound always 
has the entire list of successors in the queue. 

A branch and bound algorithm is based on an advanced 
breadth-first search, where breath- first search is performed with 
the help of apriority queue instead of the traditional list. Inbranch 
and bound it is crucial to understand the importance of two 
functions: g(x) and h(x). The first function, g(x), calculates the 
distance between the x node and the root node. Whereas, h(x), is 
a heuristic function because it estimates how close the x node to 
the solution.Moreover, we can say that f(x) = g(x) + h(x). The g(x) 
part is the path-cost function, while the h(x) part is the admissible 
heuristic estimate; the sum of these two is the f(x).  

 

6.40/1 KNAPSACK PROBLEM 

We are already familiar with the knapsack problem in unit 3. Let us 
consider a knapsack of size K and we want to select a set of 
objects fromn objects , where the ith object has size si and value 
visuch that it maximizesthe value contained in the knapsack with 
the contents of the knapsack less than or equal to K. 
  
Suppose that K = 16 and n = 4, and we have the following set of 
objects ordered by their value density. 
  
            i                       vi                      si                      vi/si       
            1                      $45                  3                      $15 
            2                      $30                  5                      $  6 
            3                      $45                  9                      $  5 
            4                      $10                  5                      $  2 
  
We will construct the state space where each node contains the 
total current value in the knapsack, the total current size of the 
contents of the knapsack, and maximum potential value that the 
knapsack can hold.  In the algorithm, we will also keep a record of 
the maximum value of any node found so far.  When we perform 
the depth-first traversal of the state-space tree, a node is 
"promising" if its maximum potential value is greater than this 
current best value. 
  
We begin the state space tree with the root consisting of the empty 
knapsack.  The current weight and value are obviously 0.  To find 
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the maximum potential value we treat the problem as if it were the 
fractional knapsack problem and we were using the greedy 
algorithmic solution to that problem.  We have already discuss that 
the greedy approach to the fractional knapsack problem yields an 
optimal solution.  We place each of the remaining objects, into the 
knapsack until the next selected object is too big to fit into the 
knapsack.  We then use the fractional amount of that object that 
could be placed in the knapsack to determine the maximum 
potential value. 
  
            totalSize = currentSize + size of remaining objects that can  

be fully placed 
  
bound (maximum potential value)  

= currentValue + value of remaining objects fully placed +   
(K - totalSize) * (value density of item i.e  partially placed) 

  
In general, for a node at level i in the state space tree the first i 
items have been considered for selection and for the kth object as 
the one that will not completely fit into the remaining space in the 
knapsack, these formulae can be written: 
  

            totalSize = currentSize + 




1

1

k

jj
 sj     

            bound = currentValue  + 




1

1

k

jj
 vj   + (K - totalSize) * 

(vk/sk) 
 For the root node currentSize = 0 and  currentValue = 0 
  
            totalSize = 0 + s1 + s2 = 0 + 3 + 5 = 8 
  
            bound = 0 + v1 + v2 + (K - totalSize) * (v3/s3) 

= 0 + $45 + $30 + (16 - 8) * ($5)  
= $75 + $40  
= $115 

  
The computation of the bound and the selection criteria for 
promising nodes is the same as before.  We must replace the 
depth-first traversal of the state space tree with a breadth first 
traversal.  In the depth-first traversal the auxiliary data structure 
used to store the nodes was the stack.  In breath-first traversal, the 
auxiliary data structure is explicitly the queue. 
 
  
6.5TRAVELLING SALESMAN PROBLEM 

Instead of using a Queue to perform a breadth-first 
traversal of the state space, we will use a PriorityQueue and 
perform a "best-first" traversal.  For the TSP we first compute the 
minimum possible tour by finding the minimum edge exiting each 
vertex.  The sum of these edges may not form a possible tour, but 
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since every vertex must be visited once and only once, every 
vertex must be exited once.  Therefore, no tour can be shorter than 
the sum of these minimum edges.    

At each subsequent node, the lower bound for a "tour in 
progress" is the length of the tour to that point plus the sum of the 
minimum edge exiting the end vertex of the partial tour and each of 
the minimum edges leaving all of the remaining unvisited vertices.  
If this bound is less than the current minimum tour, the node is 
"promising" and the node is added to the queue.  Initially the 
minTour is set to infinity.  When a node whose path includes all of 
the vertices except one is reviewed, there is only one possible way 
for the tour to complete.  The remaining vertex and the first are 
added to the path and the length of the tour is the current length 
plus the length of the edge to the remaining vertex and the length 
of the edge from there back to the starting vertex.  If this tour 
length is better than the current minimum, it becomes the minimum 
tour length.  Once a first complete tour is discovered, nodes whose 
bound is greater than or equal to this minTour are deemed "non-
promising" and are pruned. 

The nodes in state space must carry the following information: 

 their level in the state space tree 
 the length of the partial tour 
 the path of the partial tour 
 the bound 
 (for efficiency) the last vertex in the partial tour  

In a branch and bound algorithm, a node is judged to be 
promising before it is placed in the queue and tested again after it 
is removed from the queue.  If a lower minTour is discovered 
during the time a node is in the queue, it may no longer be 
promising after it is removed, and it is discarded.  Using a Priority 
Queue, the search traverses the state space tree in neither a 
breadth-first nor depth-first fashion, but alternates between the two 
approaches in a greedy, opportunistic fashion.  In the example 
problem below, a diagram of the best-first traversal of the state 
space indicates by number when each of the nodes is removed 
from the priority queue.  

  

Example 

Let G be a fully connected directed graph containing five vertices 
that is represented by the following adjacency list: 
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We assume in the implementation of this algorithm that vertices 
are labeled by an integer number and edges contain the source 
and sink vertices and a cost or length label.  The tour will start at 
vertex 1, and the initial bound for the minimum tour is the sum of 
the minimum outgoing edges from each vertex. 

             Vertex 1           min (14, 4, 10, 20)       =  4 

            Vertex 2           min (14, 7, 8, 7)           =  7 

            Vertex 3           min (4, 5, 7, 16)           =  4 

            Vertex 4           min (11, 7, 9, 2)           =  2 

            Vertex 5           min (18, 7, 17, 4)         =  4 

             bound [1]                                             = 21 

 Since the bound for this node (21) is less than the initial minTour 
(�), nodes for all of the adjacent vertices are added to the state 
space tree at level 1.  The bound for the node for the partial tour 
from 1 to 2 is determined to be: 

bound = length from 1 to 2 + sum of min outgoing edges  
forvertices 2 to 5 
 = 14 + (7 + 4 + 2 + 4)  
= 31 

 After each new node is added to the PriorityQueue, the node with 
the best bound is removed and similarly processed.  The algorithm 
terminates when the queue is empty. 
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Note that the node for the state with a partial tour from [1,2] is the 
second node placed in the priority queue, but the 8th node to be 
removed.  By the time it is removed and examined, a tour of length 
30 which turns out to be the optimal tour, has already been 
discovered, and, since its bound exceeds this length, it is 
discarded without having to check any of the possible tours that 
extend it. 

Here is a Branch and Bound algorithm for an adjacency list 
representation of a graph.   If the first vertex is numbered 1 instead 
of 0, the array bounds for mark and minEdge would have to be 
length N + 1 and the loops traversing these arrays would have to 
be from 0  to N. 
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 CHECK YOUR PROGRESS   

 
 
 
 

  
 

1. State True or False. 
a) Branch and bound technique is based on advanceddepth 

first traversal. 
b) Branch and bound techniques uses priority queue data 

structure. 
c) In pruning step of branch and bound technique, it removes 

the not so promising nodes from the search space. 
d) All types of problems can be solved by using branch and 

bound technique.  
 
 
 
 
 
 
 
6.6 LET US SUM UP 
 

 Branch and Bound is a state space search method in which 
all the children of a node are generated before expanding 
any of its children. 

 It is similar to backtracking technique but uses BFS-like 
search. 

 Branch and bound techniques uses the priority queue data 
structure for storing the information 

 Branch and bound technique mainly based on the value 
g(x) + h(x), where g(x) is the distance from the root to the 
current vertex and h(x) is a heuristic function. 
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6.7 FURTHER READINGS 

 

1. T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein, 
"Introduction to Algorithms", Second Edition, Prentice Hall of 
India Pvt. Ltd, 2006. 

2. Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, 
Fundamental of data structure in C, Second Edition, 
Universities Press, 2009.  

3. Alfred V. Aho,John E. Hopcroft and Jeffrey D. Ullman, "The 
Design and Analysis of Computer Algorithms",Pearson 
Education, 1999. 

4. Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, 
Computer Algorithms/ C++, Second Edition, Universities 
Press, 2007. 

. 
 

 
 
 
1. a) False  b) True  c) True  d) False 
 
 

 
 

1. Discuss the branch and bound technique. In which 
situations we use this technique? 

2. Explain the branch and bound technique to solve Travelling 
salesman problem.  

3. With an help of example show how 0/1 knapsack problem 
can be solved by using branch and bound technique. 

 
***** 

6.8 ANSWERS TO CHECK YOUR    
       PROGRESS 
 

6.9MODEL QUESTIONS 
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Unit 7: P, NP-HARD and NP-COMPLETE  
   PROBLEM 

 
UNIT STRUCTURE 
 
1.1 Learning Objective 

1.2 Introduction 

1.3 Basic Concepts of P and NP Problems 

1.4 Non-Deterministic algorithm 

7.5 NP-Hard and NP-Complete Classes 

7.6 Cook’s Theorem 

7.7 Let Us Sum Up 

7.8  Answer To Check Your Progress 

7.9 Further Reading 

7.10 Model Question 

 

7.1 LEARNING OBJECTIVE 
 

   After going through this unit, you will be able to: 

 learn about the P and NP hard problems 

 know the NP complete problems 

 describe the  non-deterministic algorithms 

 elaborate the Cook’s theorem 
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7.2 INTRODUCTION 
In this unit you will learn about non-deterministic polynomial time 
algorithm. There are two types of problem. One can be solve in 

polynomial time and other for which no polynomial time algorithm 

known. There are some problem that cannot solved in polynomial 

time till now such as Turing’s “Halting problem”. Here, we will 

discuss about these algorithm. 

 

 

7.3 BASIC CONCEPTS OF P AND NP PROBLEMS 
 

 Polynomial time algorithms have running time (nk), for some 

constraint k, on input of size n. Not all the problems can solve in 

polynomial time. For example -a sorting problem can solve in 

O(nlogn) polynomial time. But the problems like knapsack problem 
can solved in O(2n/2) non- polynomial time .   

There are two types of problem. 

i) Decision problem: Decision problems are problems that 

has ‘yes’ or ‘no’ answers i.e answers are decidable.  For example:  

Given an edge-weighted graph G and a positive integer k, does G 

contains a spanning tree with total weight < k? An algorithm for a 

decision problem is termed as decision algorithm. 

 

ii) Optimization problem: These types of problem finds the 
best solution to a problem from all feasible solution set.   This type 

of problem finds the optimal (maximum or minimum) solution for a 

problem. For example: Given an edge-weighted graph G, find a 

spanning tree with minimum total weight. An algorithm for an 

optimization problem is called optimization algorithm.                                                                                           
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NP Class:  
When ‘yes’ instances of a decision problem can decided in 

polynomial time then it is called a NP class problem. NP stands for 

nondeterministic-polynomial time. For example in a Hamiltonian 
cycle  problem decision problem is- given a directed graph G(V,E) 

of n vertices, where v=<v1,v2,……,vn>. Is there any Hamiltonian 

cycle for the graph G? Hamiltonian cycle is a cycle passing every 

vertex exactly once. It can check in polynomial time whether there 

is an edge between (vi,vi+1) for 1≤  i ≤n and (vn,v1). 

 

P-Class: 
Problems that are solvable in polynomial time is called class P 

problem. 
 
 We refer here two classes of NP problem: 

 

i) NP-Complete 

ii) NP-Hard 

 

A problem that is NP-Complete has the property that it can be 

solved in polynomial time if and only if all other NP-Complete 

problem can solved in polynomial time.  

 
A NP-Hard problem has the property that if it can solved in 

polynomial time then all NP-Complete problem can solved in 

polynomial time. 

 

Hence all NP-Complete problems are NP-Hard, but all NP-Hard 

problems may not NP-Complete.  

 

A decision problem is NP-complete if its corresponding language 

is NP-complete.  
An optimization problem is NP-hard if its decision version is NP-

hard. 
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                  Fig:7.1  P,NP,NP-Complete, NP-Hard 

 

 

CHECK YOUR PROGRESS 
 
1. True/False 

i. Answers of a decision problem is decidable. 

ii. Optimization problem does not find optimal solution. 
      iii. A decision problem is NP-complete if its corresponding 

language is NP-complete.  

 

 
7.4 NON-DETERMINISTIC ALGORITHM 
         
There are two types of algorithm: 

i) Deterministic algorithm: 
Algorithm where every operation  uniquely defines is called 

deterministic algorithm. In such algorithm steps of the algorithm 

and way of program execution in computer is compatible. 

 
ii) Non-deterministic algorithm: 
Algorithm whose outcomes are not uniquely defined but are limited 

to a specified possibility is called non-deterministic algorithm. 

When such operations are executing it is allowed to choose any 
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one of these outcomes depending upon a termination condition 

defined later. 

   If there exists no choices that will lead to success, then the 

non deterministic algorithm terminates unsuccessfully. A machine 
which can execute a non deterministic algorithm is called non 

deterministic machine. But in fact non-deterministic machine does 

not exist. 

 

 Following are three functions for non-deterministic algorithm- 

i) Choice(S): Choose any one element from set S 

ii) Failure( ): Results an unsuccessful completion 

iii) Success( ): Results a successful completion 

 
The statement a=Choice(1,n), assigns an integer in the range[1:n] 

to a. There is no rule to the integer that is assigned to a.  The 

Failure() and Success() signal define the computation of the 

algorithm. 

 

Example: 
Consider the problem of searching an element m in a array A[n] of 

n element. We have to find the array index i for the element m. 

 

Solution: A non deterministic algorithm is as below using the 
above three function- 

 

int i= Choice(1,n); 

if (A[i]=m) 

       { 

         cout<<i; 

          Success(); 

        } 

cout<<’0’; 
Failure(); 
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In the above program first the Choice (1: n) pick up a integer 

between 1 to n and assign it to i. Then it checks if m is in A[i]. If 

success output will i, index of the m in A[]. If m is not in a[i] then it 

output number 0. Hence the non-deterministic complexity of this 
program is O(1).  But for this same problem the deterministic 

algorithm complexity is Ω(n). 

 

 Example: Sort n positive element of an array a[i], 1≤i≤n using 

non-deterministic algorithm. 

  

Solution: A non deterministic algorithm for this problem is – 

 

    void Sort(int A[ ],int n) 
    { 

        Temp[n], i, m; 

         for (i=1; i≤n; i++)        /* for loop 1*/ 

             Temp[i]=0; 

 

          for (i=1; i≤n; i++)        /* for loop 2*/ 

             { 

               m = Choice(1,n); 

               if ( Temp[j])  Failure (); 

                 Temp[j]=A[i]; 
               } 

 

         for( i=1; i<=n; i++)        /* for loop 3*/ 

             If( Temp[i] > Temp[i+1]) Failure(); 

 

         for(i=1; i<=n; i++)        /* for loop 4*/ 

             cout<< Temp[i]<<” ”; 

         Success(); 

        } 
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This non deterministic algorithm can sort elements of an array .  

Another array Temp[ ] is used for keep sorted element. Initially 

Temp[ ] initializes to 0. Within the for loop 2 ach A[i] is assigned to  

a location in Temp[ ]. first choose an index m of array A[ ] non-
deterministically using Choice(1,n) function. Next it confirmed that 

Temp[m] is already not in used. Otherwise Failure(). In loop3 it will 

verifies that Temp is sorted . In loop 4 it will output the sorted data. 

Algorithm is successfully completed if the output numbers are 

sorted. 

 
In theory non-deterministic algorithm works as below - 

 

 The algorithm makes several copy depending upon possible 
number of choices. One copy is made for each choice. If the first 

copy successfully complete then all other copy of choices are 

terminated. Otherwise, if a copy gets failure then terminates only 

that copy of the algorithm. A non deterministic machine does not 

follow all these times. Instead it can select a correct choice, every 

time it is made. If a correct element chooses then each time it 

reduces the size of the possible choices set, which can make a 

successful termination of the algorithm. If termination is 

unsuccessful then output as “unsuccessful”.  

 
Here we discussed only the non-deterministic algorithm that has 

unique output. These are non-deterministic decision algorithms . 

When the outputs 1 a successful completion occur and if the 

output is 0 then there is no choices to successful completion. 

Thus, output of a decision algorithm is uniquely defined by input 

parameters and algorithm specification. 

 

The property to makes decision problem version for an 

optimization problem is that if the optimization problem can solved 
in polynomial time then the corresponding decision problem can 

solved in polynomial time. In other words if the decision problem 
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can not solve in polynomial time then the corresponding 

optimization problem can not solve in polynomial time. 

 
Example: Clique  
  A clique G’(v,e) is a maximal complete sub-graph of a  

graph G(V,E) and size of the clique is |v| . The optimization 

problem is called max clique problem which finds the size of the 

larges clique. The decision problem is that- Is there exist any 

clique G’ in G that has size  k, for some given k?  

 Formal definition is- 

            Clique(G’) = {<G, k >: G is a graph with a clique of size k } 

 

 Let CliqueSolve(G,K) is decision algorithm to solve the problem. If 
G has n vertices then optimization problem can be solved by 

making many application of CliqueSolve for k=n,n-1,n-2,…..,1. 

Here CliqueSolve is used once for each k. If complexity of 

CliqueSolve f(n), then the optimization problem (i.e size of 

maximum clique) can be solve in atmost nf(n) time. Also the 

decision problem (i.e size of maximum clique) can be solved in 

g(n) time.  Thus clique’s optimization problem can be solve in 

polynomial time iff decision problem can be solve in polynomial 

time. 

 
non- deterministic polynomial time algorithm for clique 
problem 
void clique(int G[ ][ ], int n, int k) 

{ 

      S=Ø; 

       for( int i=1; i≤k; i++) 

          {  

             int t= Choice(1,n); 

              if(t is in s)  Failure(); 
              S=s U {t}; 

             } 
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    for (all (i,j), I € s, j € s and i≠j) 

        if ((i,j) ∉ G(E)) Failure(); 

     Success(); 

} 
Non-deterministic algorithm for 0-1 knapsack problem 
                     

           void knapsack( int pf[ ], int tw, int msize, int r, int x[ ]) 

                        {  

                             int tw=0, pf=0; 

                              for(int i=1; i≤n; i++) 

                                 { 

                                    x[i]=Choice(0,1); 

                                      tw= tw+ x[i] * tw[i]; 

                                      pf = pf+ x[i] * pf[i]; 
                                  } 

                              if (( tw > msize) || (pf < r)) Failure(); 

                               else  

                                  Success(); 

                          } 

 

Here pf= total profit 

         tw= total weight 

          msize= knapsack size 
          r= maximum total profit 

           x[i]= 1 if ith item is choosen,0 otherwise 

     The for loop assigns value 0 or 1 to x[i], 1<=i<=n and calculate 

total weight and profit for this choice of x[i]. if statement checks 

weather total weight is greater than knapsack capacity msize and 

total profit is less than maximum total profit. If the result 1 then a 

successful completion and failure otherwise. 

Time complexity is O(n).   
  
Satisfiability (SAT) Problem 
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  The decision problem of circuit satisfiability problem is – 

“Given a Boolean combinational circuit composed of AND, OR, 

NOT gates, is it satisfiable ?” The formal definition is 

SAT= {< S >: S is a satisfiable  boolean combinational circuit } 
Let x1, x2,…. are some Boolean variable whose value is either 0 

or 1.  A Boolean variable(x) or its negation (! x) is called a literal. A 

formula can be expressed using literal, AND ( V) and OR(Λ ) 

operation. Example- (x1 V x2) . A formula is in CNF( conjunctive 

normal form) if and only if it is represented as Λi=1..k ci, where ci is 

represented as Vnij, where nij are litrals. A truth assignment that 

causes Boolean formula to result in 1 is called satisfiablity 

assignment. It is determined by the satisfiablity problem  that a 

formula is true for some assignment of truth values to the variables 
or not. 

CNF- satisfiability is called the satisfiability problem to CNF.  

  

non deterministic algorithm for satisfiability(SAT)- 
 

/* Here F is the Boolean formula and x[1],x[2]……..,x[n] are 

Boolean variable.*/ 

 

void Sat( cnf F, int n) 

{ 
    int x[n] 

      for( int i=1; i<=n i++) 

        x[i]= Choice(0,1); 

      if (F(x,n) ) Success(); 

      else 

          Failure(); 

} 

 

This algorithm will take time O(n) to choose x[1],x[2],…….,x[n]. It 
also takes time T to determine value of F deterministically. Hence 

the time required by the algorithm is O(n) + T 
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CHECK YOUR PROGRESS 

 
2. What is the decision problem of circuit satisfiability? 

3. What is the size of a clique? 

 
 

7.5 NP-HARD AND NP-COMPLETE CLASSES 
 
Polynomial time solvable: 
An algorithm is called polynomial time solvable if there exist a 

polynomial x such that the algorithm can compute in O(x(n)) time. 

Decision problem solves by deterministic algorithm in polynomial 

time is called P and decision problem solves by non deterministic 

algorithm in polynomial time is called NP. The famous unsolved 

problem in computer science is P=NP or P≠NP. Theoretical 

computer science believe that   P≠NP. From the property of NPC, 

if any NP-Complete problem solves in polynomial time then all 

problem in  NP can solved in polynomial time i.e P=NP.  But there 
is no such polynomial time algorithm discovered for NPC. 

 

 

 

 
 

          Fig. 7.2  P and NP, P≠NP         
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Reducibility: 
A problem L1 can be reduced to L2 if and only if any instance P1 of 

L1 can be easily solved as an instance P2 of L2 by using a 

deterministic polynomial time algorithm. L1 is polynomial time 

reducible to L2 i.e L1 ≤p L2 . If a problem L1 reduces to another 

problem L2 , then L1 is “no harder to solve than L2 ”. 

 
Now the properties of NP-Complete and NP-Hard for a language- 

 

A language  L1 � {0,1} is NP-Complete iff - 

1. L1 € NP 

2. L2 ≤p L1 for every L1 € NP   

 

A language L1€ {0,1} is NP-Hard iff- 
1. L2 ≤p L1 for every L2 € NP  , but it is not necessary to L1€ NP . 

 

Lemma: If L1, L2� {0,1}* are languages such that L1 ≤p L2, then L2 

€ P implies  L1 € P 

 
Proof: 
 Given that, L2 € P, i.e L2 is decided in polynomial time . 

 Let , for L2 the polynomial time algorithm is A2.  
        

 Given that, L1 ≤p L2 

 Let  polynomial time reduction algorithm is F  computes reduction 

function f. 

 Now, we have to construct an polynomial time algorithm that 

decide L1. 
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         If we give an input x € {0,1}*  to the algorithm A1 then using 
the function F it will transform x into f(x). Next this transform output  

f(x) gives as input to  algorithm A2. It will check whether f(x) € L2. 

The output of A2 will be same as A1. 

            

 

7.6 COOK’S THEOREM 
Cook’s theorem states that satisfiability (SAT) is NP-Complete. 

 

Proof: 
We know that from the property of NP-Complete , L is in NP-

Complete iff L€ NP and for any L’€ NP, L’≤p L. 

 

Here, we already know that (in example 5), Satisfiability has a 
non-deterministic polynomial time algorithm. Thus, satisfiability is 

in NP i.e SAT€ NP 

 

Now, we have to show that a reduction exist in SAT for any 

problem L which is in NP. i.e if L € NP then L ≤p SAT 

L€ NP, Hence L has a polynomial time verifier. Suppose it is T. 

    Then,   

1.  If  x € L,   �witness  y,  T (x, y) = 1 
 
2.  If  x ∉L,  ∀ witness  y,  T(x, y) = 0 
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Since verifier T is a polynomial time verifier  a circuit can be build 

with polynomial size for the verifier T ,The circuit contains AND, 

OR and NOT gates. The circuit has |x| + |y| sources, where |x| 

must be equal to the values of the bits in x and others |y| are 
variables. 
 
We know the input value of x. So, we need to find input |y| 

variables which causes the circuit to output as 1. This means L 

has been reduced to check whether the circuit output is 1 or not. 

i.e L can be reduced to an instance SAT.  It can be done as 

follows- 

 

A 3-CNF , which means each clause has exactly three terms, can 

be used to represent each gate in the circuit. 

 For example: 

 

1.    Functionality  of  an  OR  gate  with  input  p, q  and  output  ri   

is  represented  as follows: 

              ( p v q v !ri) Λ (ri v !a ) Λ (ri v !b) 

 

2.  The  functionality  of  a  NOT  gate  with  input  p  and  output  ri   

is  represented  as follows: 

         ( p v ri ) Λ ( !p v !ri ) 

 

 The clauses that have fewer than 3 terms, can be easily stuffing 
them with free literals( literals that don’t affect in the result) to form 

clauses in 3CNF.  

 

Let T has  R  gates  r1, r2 , r3,….., rR   where rR   represent the  final 

output of the verifier T  and ri  ( 1 ≤ i< R) represents the 

intermediate output of T . 

 

They either takes some of the sources from ( |x|+|y| ) or some 

output ri as input. So, the circuit can be represented as a formula 

in CNF: 
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A = a1  Λ a2  Λ. . . Λ aR  Λ rR 

 

Where, 
ai = ( s1 Λ s2 Λ s3 ) s1, s2 , s3€ ( p, q, r1, r2 , r3,….., rR , !r1, !r2 , !r3,….., 

!rR )     

 

If ai is not in 3CNF then it can made an equivalent formula in 

3CNF by adding free variables. Thus, the circuit can be reduced to 

ai, a formula in 3CNF which is satisfiable iff the original circuit 

gives output as 1. Hence, L ≤p SAT.  

 

Since L is in NP. Hence, SAT is N P -Complete. 
 

We can also say that 3-SAT is NP Complete because we 

considered the formulas are in 3-CNF. If we considered that 

formulas are in K-CNF then also K-SAT is NP-Complete, for K≥3. 

 

 

CHECK YOUR PROGRESS   
 
4. True/False 

i. If a problem L1 reduces to another problem L2 , then L2 is 

“no harder to solve than L1 ”. 

ii. SAT is N P -Complete. 

 

7.7 LET US SUM UP 
 
 Polynomial time algorithms have running time (nk), for some 

constraint k, on input of size n. 
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 Decision problems are problems that has ‘yes’ or ‘no’ answers 

i.e answers are decidable 
 Optimization problem finds the optimal(maximum or minimum) 

solution for a problem. 

 When ‘yes’ instances of a decision problem can decided in 

polynomial time then it is called a NP class problem. 
 A problem that is NP-Complete has the property that it can be 

solved in polynomial time if and only if all other NP-Complete 

problem can solved in polynomial time.  

 A NP-Hard problem has the property that if it can solved in 

polynomial time then all NP-Complete problem can solved in 

polynomial time. 
 NP-Complete problems are NP-Hard, but all NP-Hard problems 

may not NP-Complete. 

 Algorithm where every operation  uniquely defines is called 

deterministic algorithm. 

 Algorithm whose outcomes are not uniquely defined but are 

limited to a specified possibility is called non-deterministic 
algorithm. 

 A clique G’(v, e) is a maximal complete sub-graph of a  graph 

G(V,E) 

 The decision problem of circuit satisfiability problem is – “Given 

a Boolean combinational circuit composed of AND, OR, NOT 
gates, is it satisfiable?” 

 Decision problem solves by deterministic algorithm in 

polynomial time is called P and decision problem solves by non 

deterministic algorithm in polynomial time is called NP. 

 If a problem L1 reduces to another problem L2 , then L1 is “no 

harder to solve than L2 ”. 
 Cook’s theorem states that  satisfiability (SAT) is NP-Complete. 
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7.8 ANSWER TO CHECK YOUR 
PROGRESS 

 
1. i. True,  ii. False, iii. True 

2. The decision problem of circuit satisfiability problem is – 

“Given a Boolean combinational circuit composed of AND, OR, 

NOT gates, is it satisfiable ?” The formal definition is 
SAT= {< S >: S is a satisfiable  boolean combinational circuit } 

 

3. A clique G’(v,e) is a maximal complete sub-graph of a  graph 

G(V,E) and size of the clique is |v| . 

 
4. i. False, ii. True 

 
7.9  FURTHER  READINGS 

  

 T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein, 
"Introduction to Algorithms", Second Edition, Prentice Hall of India 
Pvt. Ltd, 2006. 

 Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, 
Computer Algorithms/ C++, Second Edition, Universities Press, 
2007. 
 

7.10  MODEL  QUESTIONS 
 

1. What is decision and optimization problem? 

2. What are the two classes of NP- problem? 

3. What is P, NP  class problem? 
4. What is circuit satisfiability problem? 

5. Write a non-deterministic algorithm for circuit satisfiabilty. 

6. Write a non-deterministic algorithm for 0-1 knapsack problem. 

7. What is reducibility? 

8. What is non-deterministic algorithm? How does it work ? 
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9. Write the decision version of clique problem. 

10. Write a non-deterministic polynomial time algorithm for clique 

problem? 

11. What are the properties of NP-Complete and NP-Hard 
problem? 

12. State and proof Cook’s theorem. 

13. Show that if L1, L2� {0,1}* are languages such that L1 ≤p L2, 

then L2 € P implies  L1 € P 

 

***** 
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