
MCA12

KRISHNA KANTA HANDIQUI STATE OPEN UNIVERSITY
Housefed Complex, Dispur, Guwahati - 781 006

Master of Computer Applications

DESIGN AND ANALYSIS OF ALGORITHMS

CONTENTS

UNIT - 1 Introduction to Algorithms

UNIT - 2 Divide and Conquer

UNIT - 3 Greedy Method

UNIT - 4 Dynamic Programming

UNIT - 5 Backtracking

UNIT - 6 Branch and Bound

UNIT - 7 P, NP- Hard and NP- Complete Problems

Subject Expert
Prof. Anjana Kakati Mahanta, Deptt. of Computer Science, Gauhati University
Prof. Jatindra Kr. Deka, Deptt. of Computer Science and Engineering,

Indian Institute of Technology, Guwahati
Prof. Diganta Goswami, Deptt. of Computer Science and Engineering,

 Indian Institute of Technology, Guwahati

Course Coordinator
Tapashi Kashyap Das, Assistant Professor, Computer Science, KKHSOU
Arabinda Saikia, Assistant Professor, Computer Science, KKHSOU

SLM Preparation Team

 Units Contributors
 1, 4, 6 Nabajyoti Sarma

 Guest Faculty, Deptt. of Computer Science, Gauhati University

 2, 3, 5, 7 Irani Hazarika
 Guest Faculty, Deptt. of Computer Science, Gauhati University

July 2012
© Krishna Kanta Handiqui State Open University

No part of this publication which is material protected by this copyright notice may be produced or
transmitted or utilized or stored in any form or by any means now known or hereinafter invented,
electronic, digital or mechanical, including photocopying, scanning, recording or by any information
storage or retrieval system, without prior written permission from the KKHSOU.

Printed and published by Registrar on behalf of the Krishna Kanta Handiqui State Open University.

The university acknowledges with thanks the financial support provided
by the Distance Education Council, New Delhi, for the preparation of
this study material.

Housefed Complex, Dispur, Guwahati- 781006; Web: www.kkhsou.in

COURSE INTRODUCTION

This course is on Design and Analysis of Algorithms. An algorihm is a systematic method containing
a sequence of instructions to solve a computational problem. It takes some inputs, performs a well
defined sequence of steps and produces some output. Algorithm design and analysis form a central
theme in computer science. With this course we illustrate various concepts associated with algorithm
design and analysis. The course consists of the following seven units:

Unit - 1 is an introductory unit on algorithms.With this unit learners will be acquainted with analysis of
algorithm, complexity, various notations etc.
Unit - 2 concentrates on divide and conquer.
Unit - 3 is on Greedy method.
Unit - 4 concentrates on dynamic programming. .
Unit - 5 deals with backtracking.
Unit - 6 is on branch and bound.
Unit - 7 is on NP-Hard and NP-complete problems.

Each unit of this course includes some along-side boxes to help you know some of the difficult,
unseen terms. Some “EXERCISES” have been included to help you apply your own thoughts. You
may find some boxes marked with: “LET US KNOW”. These boxes will provide you with some additional
interesting and relevant information. Again, you will get “CHECK YOUR PROGRESS” questions.
These have been designed to make you self-check your progress of study. It will be helpful for you if
you solve the problems put in these boxes immediately after you go through the sections of the units
and then match your answers with “ ANSWERS TO CHECK YOUR PROGRESS” given at the end of
each unit.

MASTER OF COMPUTER APPLICATIONS

Design and Analysis of Algorithm

DETAILED SYLLABUS

Unit 1 : Introduction to Algorithms (Marks:)
Algorithm, analysis, time complexity and space complexity, O-notation, Omega notation and Theta
notation, Heaps and Heap sort, Sets and disjoint set, union and find algorithms. Sorting in linear time.

Unit 2 : Divide and Conquer (Marks:)
Divide and Conquer: General Strategy, Exponentiation. Binary Search, Quick Sort and Merge Sort

Unit 3 : Greedy Method (Marks:)
General Strategy, Knapsack problem, Job sequencing with Deadlines, Optimal merge patterns, Minimal
Spanning Trees and Dijkstra’s algorithm.

Unit 4 : Dynamic Programming (Marks:)
General Strategy, Multistage graphs, OBST, 0/1 Knapsack, Traveling Salesperson Problem, Flow
Shop Scheduling

Unit 5 : Backtracking (Marks:)
Backtracking: General Strategy, 8 Queen’s problem, Graph Coloring, Hamiltonian Cycles, 0/1 Knapsack

Unit 6 : Branch and Bound (Marks:)
General Strategy, 0/1 Knapsack, Traveling Salesperson Problem

UNit 7 : P, NP-HARD AND NP-COMPLETE PROBLEMS (Marks:)
Basic concepts, non-deterministics algorithms, NP-HARD and NP-COMPLETE classes, COOKS
theorem

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 5

UNIT – 1 INTRODUCTION TO ALGORITHM

UNIT STRUCTURE

1.1 Learning Objectives
1.2 Introduction
1.3 Definition of Algorithm
1.4 Algorithm Analysis
1.5 Complexity

1.5.1 Space Complexity
1.5.2 Time Complexity

1.6 Asymptotic Notation
1.7 Heaps and Heap Sort
1.8 Set and Disjoint Set
1.9 Union Find Algorithm
1.10 Sorting in Linear Time
1.11 Let Us Sum Up
1.12 Further Readings
1.13 Answer to Check Your Progress
1.14 Model Questions

1.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 understand the concept of algorithm

 know the process of algorithm analysis

 know the notations for defining the complexity of algorithm

 learnthe method to calculate time complexity of algorithm

 know the different operations on disjoint set

 learn methods for sorting data in linear time

1.2 INTRODUCTION

The concept of an algorithm is the basic need for any programming
development in computer science. Algorithm exists for many
common problems, but designing an efficient algorithm is a

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 6

challenge and it plays a crucial role in large scale computer
system. In this unit we will discuss about the algorithm analysis.
Also we will discuss few algorithms for sorting data in linear time.
We will also discuss algorithm for disjoint set operations.

1.3DEFINITION OF ALGORITHM

Definition:An algorithm is a well-defined computational method,
which takes some value(s) as input and produces some value(s)
as output.In other words, an algorithm is a sequence of
computational steps that transforms input(s) into output(s).

Each algorithm must have

 Specification: Description of the computational procedure.
 Pre-conditions: The condition(s) on input.
 Body of the Algorithm: A sequence of clear and

unambiguous instructions.
 Post-conditions: The condition(s) on output.

Consider a simple algorithm for finding the factorial of n.

In the above algorithm we have:
Specification: Computes n!.
Pre-condition: n>= 0
Post-condition: FACT = n!

1.4 ALGORITHM ANALYSIS

Programming is a very complex task, and there are a number of
aspects of programming that make it so complex. The first is that
most programming projects are very large, requiring the
coordinated efforts of many people. (This is the case of software
engineering.) The next is that manyprogramming projects involve
storing and accessing large quantities of data efficiently. (This is
the case of data structures and databases.) The last is that many
programming projects involve solving complexcomputational
problems, for which simplistic or naive solutions may not be
efficient enough. The complexproblems may involve numerical
data which need to computed accurately up to high precision (in

Algorithm Factorial (n)

Step 1: FACT = 1
Step 2: for i = 1 to n do
Step 3: FACT = FACT * i
Step 4: print FACT

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 7

caseof numerical analysis). This is where the topic of algorithm
design and analysis is important.

Although the algorithms discussed in this course will often
represent only a tiny fraction of the code that isgenerated in a large
software system, this small fraction may be very important for the
success of the overallproject.

If unfortunately someonedesign an inefficient algorithm
anddata structure to solve the problem, and then take the poor
design and attempt to fine-tune its performance, then often no
amount of fine-tuning is going to make a substantialdifference. So
at the design phase of the algorithm itself care should be taken to
design an efficient algorithm.

The focus of this course is on how to design good
algorithms, and how to analyze their efficiency. This is one of the
most basic aspects of good programming.

1.5 COMPLEXITY

Once we develop an algorithm, it is always better to check whether
the algorithm is efficient or not. The efficiency of an algorithm
depends on the following factors:

 Accuracy of the output

 Robustness of the algorithm

 User friendliness of the algorithm

 Time required to run the algorithm

 Space required to run the algorithm

 Reliability of the algorithm

 Extensibility of the algorithm
To be a good program, all the above mentioned factors are very
important. When we design some algorithm it should be user
friendly and produce correct output(s) for all the possible set of
input(s). A well designed algorithm should not take very long
amount of time and also it should not uselarge amount of main
memory. A well design algorithm is always reliable and it can be
extended as per requirement.
In case of complexity analysis, we mainly concentrate on the time
and space required by a program to execute.So complexity
analysis is broadly categorized into two classes

 Space complexity

 Time complexity

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 8

1.5.1 SPACE COMPLEXITY

Now a day’s,memory is becoming more and more cheaper, even
though it is very much important to analyze the amount of memory
used by a program. Because, if the algorithm takes memory
beyond the capacity of the machine, thenthe algorithm will not
beable to execute. So, it is very much important to analyze the
space complexity before execute it on the computer.

Definition [SpaceComplexity]: The Space complexity of an
algorithm is the amount of main memory needed to run the
program till completion.

To measure the space complexity in absolute memory unit has the
following problems

The space required for an algorithm depends on space required by
the machine during execution, they are

i) Programspace
ii) Data space.

i) The program space is fixed and it is used to store the
temporary data, object code,etc.

ii) The data space is used to store the different variables, data
structures defined in the program.

In case of analysis we consider only the data space, since program
space is fixed and dependon the machine where it is executed.

Consider the following algorithms for exchange two numbers:

The first algorithm uses three variables a, b and tmpand the
second one take only two variables, so if we look from the space
complexity perspective the second algorithm is better than the first
one.

Algo1_exchange (a, b)

Step 1: tmp = a;
Step 2: a = b;
Step 3: b = tmp;

Algo2_exchange (a, b)

Step 1: a = a + b;
Step 2: b = a - b;
Step 3: a = a - b;

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 9

1.5.2TIME COMPLEXITY

Definition [Time Complexity]:The Time complexity of an
algorithm is the amount of computer time it needs to run the
program till completion.

To measure the time complexity in absolute time unit has the
following problems

1. The time required for an algorithm depends on number of
instructions executed by the algorithm.

2. The execution time of an instruction depends on
computer's power. Since, different computers take different
amount of time for the same instruction.

3. Different types of instructions take different amount of time
on same computer.

For time complexity analysis we design a machine by removing all
the machine dependent factors called Random Access Machine
(RAM). The random access machine model of computation was
devised by John von Neumann to study algorithms. The design of
RAM is as follows

1. Each “simple” operation (+, -, =, if, call) takes exactly 1 unit
cost.

2. Loops and subroutine calls are not simple operations, they
depend upon the size of the data and the contents of a
subroutine.

3. Each memory access takes exactly 1 unit cost.

Consider the following algorithm for add two number

Here this algorithm has only two simple statements so the
complexity of this algorithm is 2

Consider another algorithm for add n even number

Algo_addeven (n)

Step 1. i = 2;
Step 2.sum = 0;
Step 3.while i <= 2*n
Step 4.sum = sum + i
Step 5. i = i + 2;
Step 6.end while;
Step 7.return sum;

Algo_add (a,b)

Step 1. C = a + b;
Step 2.return C;

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 10

1. State True or False

a) Time complexity is the time taken to design an
algorithm.

b) Space complexity is the amount of space required by
a program during execution

c) An algorithm may not produce any output.
d) Algorithm are computer programs which can be

directly run into the computer.
e) If an algorithm is designed for a problem then it will

work for all the valid inputs for the problem.

 CHECK YOUR PROGRESS

Here,
Step 1, Step 2 and Step 7 are simple statements and they will
execute only once.
Step 3 is a loop statement and it will execute as many times as the
loop condition is true and one more time for check the condition is
false.
Step 5 and Step 6 are inside the loop so it will run as much as the
loop condition is true
Step 6 just indicate the end of while and no cost associated with it.

Total cost 3n+4

Statement Cost Frequency Total cost

Step 1. i = 2; 1 1 1
Step 2.sum = 0; 1 1 1
Step 3.while i <= 2*n 1 n+1 n+1
Step 4.sum = sum + i 1 n n
Step 5. i = i + 2; 1 n n
Step 6.end while; 0 1 0
Step 7.return sum; 1 1 1

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 11

1.6ASYMPTOTIC NOTATION

When we calculate the complexity of an algorithm we often get a
complex polynomial. To simplify this complex polynomial we use
some notation to represent the complexity of an algorithm called:
Asymptotic Notation.

Θ (Theta) Notation

For a given function g(n), Θ(g(n)) is defined as

 f(n) : there exist constants c1> 0, c2> 0 and n0ϵ N
Θ(g(n)) =
 such that 0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n) for all n ≥ n0

In other words a function f(n) is said to belongs to Θ(g(n)), if there
exists positive constants c1 and c2 such that 0 ≤ c1 g(n) ≤ f(n) ≤
c2g(n) for sufficiently large value of n. Fig 1.1 gives a intuitive
picture of functions f(n) and g(n), where f(n) = Θ (g(n)). For all the
values of n at and to right of n0, the values of f(n) lies at or above
c1g(n)and at or below c2g(n).In other words, for all n ≥n0, the
function f(n) is equal to g(n) to within a constant factor. So,g(n) is
said an asymptotically tight bound for f(n).

Fig 1.1 : Graphic Example of Θ notation.

For example

f(n) = ½ n2 -3 n

let, g(n) = n2

to proof f(n) = Θ (g(n)) we must determine the positive constants

c1, c2 and n0 such that

c1 n2 ≤ ½ n2 -3 n ≤ c2 n2 for all n ≥ n0

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 12

dividing the whole equation by n2, we get

c1 ≤ ½ -3/n ≤ c2

We can make the right hand inequality hold for any value of n ≥ 1
by choosing c2 ≥ ½. Similarly we can make the left hand inequality
hold for any value of n ≥ 7 by choosing c1≤1/14. Thus, by choosing
c1=1/14, c2= ½. And n0 = 7 we can have f(n) = Θ (g(n)). That is ½n2
-3 n = Θ (n2) .

O (Big O) Notation

For a given function g(n), O(g(n)) is defined as

 f(n) : there exist constants c > 0, and n0 ϵ N
O(g(n)) =
 such that 0 ≤ f(n) ≤ c g(n) for all n ≥ n0

In other words a function f(n) is said to belongs to O(g(n)), if there
exists positive constant c such that 0 ≤ f(n) ≤ c g(n) for sufficiently
large value of n.Fig 1.2 gives a intuitive picture of functions f(n) and
g(n), where f(n) = O (g(n)). For all the values of n at and to the right
of n0, the values of f(n) lies at or below cg(n). Sog(n) is said an
asymptotically upper bound for f(n).

Fig 1.2 : Graphic Example of O notation.

Ω (Big Omega) Notation

For a given function g(n), Ω (g(n)) is defined as

 f(n) : there exist constants c > 0, and n0 ϵ N
Ω(g(n)) =
 such that 0 ≤ c g(n) ≤ f(n) for all n ≥ n0

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 13

In other words, a function f(n) is said to belongs to Ω (g(n)), if there
exists positive constant c such that 0 ≤ c g(n) ≤ f(n) for sufficiently
large value of n. Fig 1.3 gives a intuitive picture of functions f(n)
and g(n), where f(n) = Ω (g(n)). For all the values of n at and to the
right of n0, the values of f(n) lies at or above cg(n). Sog(n) is said
an asymptotically lower bound for f(n).

Fig 1.3 : Graphic Example of notation

The growth patterns of order notations have been listed below:

O(1) < O(log(n)) < O(n) < O(n log(n)) < O(n2) < O(n3)… <O(2n).

The common name of few order notations is listed below:

Notation Name
O(1) Constant
O(log(n)) Logarithmic
O(n) Linear
O(n log(n)) Linearithmic
O(n2) Quadratic
O(cn) Exponential
O(n!) Factorial

 A Comparison of typical running time of different order notations
for different input size listed below:

n2log n nn 2log 2n 3n n2
0 1 0 1 1 2
1 2 2 4 8 4
2 4 8 16 64 16
3 8 24 64 512 256
4 16 64 256 4096 65536
5 32 160 1024 32768 4294967296

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 14

Now let us take few examples of above asymptotic notations

1. Prove that 3n3 + 2n2 + 4n + 3 = O (n3)

Here,
f(n) = 3n3 + 2n2 + 4n + 3
g(n) = O (n3)

to proof f(n) = O (g(n)) we must determine the positive constants c
and n0 such that

3n3 + 2n2 + 4n + 3 ≤ c n3 for all n ≥ n0

dividing the whole equation by n3, we get

3 + 2/n + 4/n2 + 3/n3 ≤ c

We can make the inequality hold for any value of n ≥ 1 by choosing
c ≥ 12. Thus, by choosing c ≥ 12and n0 = 1 we can have
f(n) = O(g(n)).

Thus,3n3 + 2n2 + 4n + 3 = O (n3).

2. Prove that 3n3 + 2n2 + 4n + 3 = Ω (n3)

Here,

f(n) = 3n3 + 2n2 + 4n + 3
g(n) = O (n3)

to proof f(n) = Ω (g(n)) we must determine the positive constants c
and n0 such that

c n3 ≤ 3n3 + 2n2 + 4n + 3 for all n ≥ n0

dividing the whole equation by n3, we get

c ≤ 3 + 2/n + 4/n2 + 3/n3

We can make the inequality hold for any value of n ≥ 1 by choosing
c ≤ 3. Thus, by choosing c = 3 and n0 = 1 we can have
f(n) = Ω (g(n)).

Thus, 3n3 + 2n2 + 4n + 3 = Ω (n3).

3. Prove that 7n3 + 7 = Θ (n3)

Here,
f(n) = 7n3 + 7
g(n) = O (n3)

to proof f(n) = Θ (g(n)) we must determine the positive constants
c1, c2 and n0 such that

c1 n3 ≤ 7n3 + 7 ≤ c2 n3 for all n ≥ n0

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 15

dividing the whole equation by n3, we get

c1 ≤ 7 + 7/n3 ≤ c2

We can make the right hand inequality hold for any value of n ≥ 1
by choosing c2 ≥ 14. Similarly we can make the left hand inequality
hold for any value of n ≥ 1 by choosing c1 ≤ 7. Thus, by choosing
c1 = 7, c2 = 14. And n0 = 1 we have f(n) = Θ (g(n)).

Thus,7n3 + 7 = Θ (n3).

Now let us take few examples of Algorithms and represent their
complexity in asymptotic notations

Example 1. Consider the following algorithm to find out the sum of
all the elements in an array

 Total Cost 3n + 4

So,
Here f(n) = 3n + 4
 Let, g(n) = n
If we want to represent it in O notation then we have to show that
for some positive constant c and n0

 0 ≤ f(n) ≤ c g(n)

=> 0 ≤ 3n + 4 ≤ c n

Now if we take n = 1 and c = 7

=> 0 ≤ 3 x 1 + 4 ≤ 7 x 1

Which is true, so we can say that for n0 = 1 and c = 7

f(n) = O (g(n)) that is
3n+4 = O(n)

Statement Cost Frequency Total cost

Sum_Array(arr[], n)
Step 1. i = 0; 1 1 1
Step 2. s = 0; 1 1 1
Step 3.while i < n 1 n+1 n+1
Step 4. s = s + arr [i] 1 n n
Step 5. i = i + 1; 1 n n
Step 6.end while; 0 1 0
Step 7.return s; 1 1 1

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 16

Example 2. Consider the following algorithm to addtwo square
matrix.

 Total Cost 3n2 + 3n + 4

Here f(n) = 3n2 + 3n + 4
 Let, g(n) = n2
If we want to represent it in Ω notation then we have to show that
for some positive constant c and n0

 0 ≤ c g(n) ≤ f(n)

=>0 ≤ c n2 ≤ 3n2 + 3n + 4

Now if we take n = 1 and c = 3

=> 0 ≤ 3 x 1 ≤ 3 x 12 + 3 x 1+ 4

Which is true, so we can say that for n0 = 1 and c = 3,

f(n) = Ω (g(n))
i.e.3n2 + 3n + 4 = O(n2)

In analysis of algorithms three different cases may be considered
depending on the input to the algorithms.These are,

Worst Case: This is the upper bound for execution time with
anyinput(s). It guarantees that irrespective of the type of input(s),
the algorithm will not take any longer than the worst case time.

Best Case: This is the lower bound for execution time with any
input(s). It guarantees that under any circumstances,the algorithm
will beexecuted at leastfor best case time. That is the minimum
time required by the algorithm to execute for any input.

Average case:This is the execution time taken by thealgorithm
forany random input(s)to the algorithm. In this case, for the inputs,
the algorithm takes a time which is in between the upper and lower
bound.

Statement Cost Frequency Total cost

Mat_add(a[],n,b[])
Step 1. i = 0 1 1 1
Step 2. j = 0; 1 1 1
Step 3.while i < n 1 n+1 n+1
Step 4.while j < n 1 n(n+1) n(n+1)
Step 5.c[i][j] = a[i][j] + b[i][j] 1 n*n n*n
Step 6. j = j + 1 1 n*n n*n
Step 7.end inner while; 0 n 0
Step 8. i = I + 1 1 n n
Step 9.end outer while 0 1 0
Step 10.return c; 1 1 1

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 17

Example 2. Consider the following Insertion sort algorithm

Worst case Analysis of Insertion Sort

In worst case, inputs to the algorithm will be reversely sorted.Sothe
loop statementswill run for maximum time. In worst case, every
time we will find a[j-1]>num in statement 5 as true, so statement 5
will run for 2 + 3 + 4 + … + n times total n(n+1) - 1 times.
Statement 6 will run for 1 + 2 + 3 + … + n-1 times total n(n-1)
times. Same time as statement 6 will be taken by statement 7.

Total Cost 3n2 + 4n - 4

Here f(n) = 3n2 + 4n - 4
 Let, g(n) = n2

If we want to represent it in O notation then we have to show that
for some positive constant c and n0, the following must be true,

 0 ≤ f(n) ≤ c g(n)

Algorithm Insertion_Sort (a[n])

Step 1: i = 2
Step 2: while i < n
Step 3: num = a[i]
Step 4: j = i
Step 5: while ((j>1) && (a[j-1] >num))
Step 6: a[j] = a[j-1]
Step 7: j = j-1
Step 8: end while (inner)
Step 9: a[j] = num
Step 10: i = i + 1
Step 11: end while (outer)

Statement Cost Frequency Total cost

Step 1 1 1 1
Step 2 1 n n
Step 3 1 n-1 n-1
Step 4 1 n-1 n-1
Step 5 1 n(n+1)-1 n(n+1)-1
Step 6 1 n(n-1) n(n-1)
Step 7 1 n(n-1) n(n-1)
Step 8 0 n-1 0
Step 9 1 n-1 n-1
Step 10 1 n-1 n-1
Step 11 0 1 0

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 18

=> 0 ≤ 3n2 + 4n - 4 ≤ c n2

Now if we take n = 1 and c = 7

=> 0 ≤ 3x12 + 4x1- 4 ≤ 7 x 12

Which is true.So we can say that for n0 = 1 and c = 7

f(n) = O (g(n))
i.e3n2 +4n - 4 = O(n2)
The worst case time complexity of insertion sort is O(n2).

Average case Analysis of Insertion Sort

In Average case, inputs to the algorithm will be random. Here, half
of the time we will find a[j-1]>num is true and false in other half. So
statement 5 will run for (2 + 3 + 4 + … + n)/2 times total (n(n+1)–
1)/2 times. Statement 6 will run for (1 + 2 + 3 + … + n-1)/2 times
total (n(n-1))/2 times. Same for statement 7 as statement 6.

Total Cost 3/2n2 + 7/2n - 4

Now, 3/2n2 + 7/2n – 4 = O(n2)

The average case time complexity of insertion sort is O(n2).

Best case Analysis of Insertion Sort

In best case, inputs will be already sorted. So a[j-1]>num will be
false always. Statement 5 will run for n times (only to check the
condition is false). Statement 6 will run for 0 times since while loop
will be false always. Statement 7 will also run for same times as
statement 6.

Statement Cost Frequency Total cost

Step 1 1 1 1
Step 2 1 n n
Step 3 1 n-1 n-1
Step 4 1 n-1 n-1
Step 5 1 (n(n+1)-1)/2 (n(n+1)-1)/2
Step 6 1 (n(n-1))/2 (n(n-1))/2
Step 7 1 (n(n-1))/2 (n(n-1))/2
Step 8 0 n-1 0
Step 9 1 n-1 n-1
Step 10 1 n-1 n-1
Step 11 0 1 0

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 19

 CHECK YOUR PROGRESS

Total Cost 5n- 3

Now 5n-3 = O(n)

The best case time complexity of insertion sort is O(n)

 2. State True or False.
a) 7 n3 + 4n + 27 = O (n3)
b) 2n2 + 34 = Ω (n3)
c) 2n2 + 34 = O (n3)
d) 2n2 + 34 = Θ (n3)
e) 2n2 + 34 = Ω (n)
f) 2n2 + 34 = Θ (n2)
g) 2n7 + 4n3 + 2n = Ω (n3)
h) 2n4 + 3n3 + 17n2 = O (n3)

1.7 HEAPS AND HEAP SORT

Statement Cost Frequency Total cost

Step 1 1 1 1
Step 2 1 n n
Step 3 1 n-1 n-1
Step 4 1 n-1 n-1
Step 5 1 n n
Step 6 1 0 0
Step 7 1 0 0
 Step 8 0 n-1 0
Step 9 1 n-1 n-1
Step 10 1 n-1 n-1
Step 11 0 1 0

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 20

A heap is a complete binary tree, which follows either the
max-heap or min-heap properties. If the children(s) of every node
have value less than the value of its parent node, then the heap is
called max-heap.On the other hand if the value of children(s) of
every node are greater than the value of its parent node, then the
heap is called min-heap.

Forthese two cases, the root will always have either the
highest or lowest value of the heap. For further discussion we will
consider only the max-heap.

Heap Representation:

 A Heap can be efficiently represented in an array.
 The root is stored at the first place, i.e. a[1].
 The children of the node i are located at 2*i and 2*i +1.
 Theparent of a node stored in ith location is at floor (i/2).

The array representation of a heap is given in the figure below.

Fig 1.4 A Max Heap

Insertion:

To insert an element x into the heap, we first place the data into
the next available location of the heap, so that it is still a complete
binary tree but not necessarily a heap. If x can be placed in that
position without violating heap property, then we are done with the
insertion. Otherwise we have to exchange the element with its
parent.We need to continue this process until x can be placed in
the right position. Figure 1.5 to 1.7 shows different steps involving
in insertion of 16 in the heap shown in fig 1.4.

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 21

Fig 1.5 Adding 16 to the previous heap.

After adding the node 16 in to the next available location of the
heap shown in fig 1.4, the new tree will be as shown in Fig
1.5.Since it follows all the properties of complete binary tree, but it
does notsatisfy the properties of max heap since the parent of 16
is 4. To make it a heap we need to exchange the newly inserted
element 16 with its parent. Fig 1.6 shows the new tree after
exchange of 16 and 4

Fig 1.6 Steps of Insertion

Now after exchange of 16 and 4, it is still not a heap since the
parent of 16 is 8, which violate the max heap property. To make it
a heap we need to exchange 16 with its parent 8. Fig 1.7 shows
the new tree after exchange of 16 and 8.

Fig 1.7 Heap after inserting 16

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 22

Now after exchange of 16 and 8 it follows the property of max
heap. So Fig 1.7 is the heap after inserting 16 into the heap at fig
1.4.

Deletion:

In the delete process of a heap, we only delete the root element
from the heap. In this process, we first delete the root element and
replace it by the last element of the heap, so that it is still a
complete binary tree but not necessarily a heap. After replacing the
root by the last element, if it maintains the heap properties, then
we are done with the deletion. Otherwise we exchange the
element with its children.Incase of Max-heap we exchange the
element with the child having maximum value and in case of Min-
heap we exchange the element with the child having minimum
value, we have to continue this process until the element can be
placed in the right position of the heap. Figure 1.8 to 1.10 shows
different steps involving in deletionin the heap in fig 1.7.

 Fig 1.8After replacing root by the last element

Algorithm Heap_Insertion (arr[], item,N)

Step 1: set N=N+1 and ptr=N;
Step 2: while ptr ≥ 1
Step 3: par = floor (prt/2)
Step 4: if item ≤ arr[par]
Step 5: arr[ptr]=item and return;
Step 6: end if
Step 7: arr[ptr]=arr[par]
Step 8: ptr=par
Step 9: end while
Step 10: arr[1]=item
Step 11: return

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 23

After replacing root by the last element in the heap at fig 1.7,we
have a complete binary treeas shown in fig 1.8.But it is not a heap,
since the children of 4 violates the max heap property. To make it
a heap we need to exchange the 4 with the child having maximum
value, which is 16. Fig 1.9 shows the tree after exchange of 4 and
16

Fig 1.9Intermediate steps of deletion

Now after exchange of 16 and 4 it is still not a heap since children
of 4 violate the max heap property. To make it a heap we need to
exchange 4 with its child having maximum value, which is 8. Fig
1.10 shows tree after exchange 4 and 8.

Fig 1.10 Heap after deletion

Now after exchange of 4 and 8 it follows the property of max heap.
Fig 1.10 is the heap after deletion.

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 24

Heap Sort

Suppose an array A with N element is given. The heap sort
algorithm consist of two phases to sort A

Phase 1: Build heap from the elements of A

Phase 2: Repeatedly delete the root from the heap

Example

Suppose we want to sort the following elements by using heap sort
 44, 30, 50, 22, 60, 55, 77
This can be accomplished by, first inserting the elements in to a
heap one after another and then delete the root repeatedly until the
heap is not empty.

Algorithm Heap_Deletion (arr[], item, N)

Step 1: item= arr[1]
Step 2: last = arr[N]
Step 3: ptr=1, left = 2 and right =3
Step 4: while right ≤ N
Step 5: if last ≥ arr[left]and last ≥ arr[right]
Step 6: arr[ptr] = last and return
Step 7: end if
Step 8: if arr[right] ≤ arr[left]
Step 9: arr[ptr]= arr[left] and ptr = left
Step 10: else
Step 11: arr[ptr] = arr[right] and ptr = right
Step 12: end if
Step 13: left=2*ptr and right= left+1
Step 14: end while
Step 15: if left==N and if last <arr[left]
Step 16: ptr=left
Step 17: end if
Step 18: arr[ptr]= last
Step 19: return

Algorithm Heap_Sort (arr[], N)

Step 1: for i=1 to N-1
Step 2: call Heap_insert(arr, arr[i+1], i)
Step 3: end for
Step 4: while N>1
Step 5: call Heap_delete(arr, item , N)
Step 6: arr[N+1]=item
Step 7: end while
Step 8: EXIT

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 25

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 26

Fig 1.11 Heap Sort

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 27

1.8 SET AND DISJOINT SET

In this section we will study the representation ofsets as forests.
Here we assume that the elements of sets are the numbers 1,2,3,
.... n, and we also assume that sets represented here are pair wise
disjoint. For example if n=7, then the elements can be partitioned
into two disjoint sets S1 = {1,4,7} and S2 = {2,3,5,6}. Fig 1.12 shows
one possible representation of these sets. Here the usual method
for representing child- parent relationship is not used, instead the
links are maintain from child to parent.

Fig 1.12 Possible tree representation of sets

1.9 UNION FIND ALGORITHM

Disjoint set Union: If Siand Sj are two disjoint sets then their
union SiU Sj= all elements x such that x is in Si or Sj.Thus S1U S2 =
{1,2,3,4,5,6,7}. After union of any two sets Siand Sj, the sets Siand
Sj do not exist independently anymore.They are replaced by SiU Sj
as a collection of sets.

Find(i): Given the element i, find the set containing i,eg. 4 isin S1.

To obtain the union of two sets , all we need to do is, set the
pointer of one of the roots to point the other root.For example,in fig
1.13 two possible representation of S1U S2 are shown.

Fig: 1.13 Possible Representation of S1U S2

In computer representation of sets each set has a name with the
elements of the set. In link representation of sets a pointer is
maintained to point the root of the tree representing the set, and in
addition each root also maintain a pointer to the set name.To

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 28

determine which set an element is currently in, we follow the
parent links to the root of its tree and use the pointer to find the set
name. In fig 1.14 linkrepresentation of S1and S2 is shown.

Fig 1.14 Data representation for S1 and S2

Since the set elements are numbered 1 through n, we can
represent, the tree nodes using an array p [1 : n], where n is the
maximum number of elements. The ith element of this array
represents the tree node that contains element i. The array
elements give the parent pointer of the corresponding tree node.
Fig 1.15 shows representation of sets S1 and S2, where the root
node have parent -1.

I [1] [2] [3] [4] [5] [6] [7]
P 4 3 -1 -1 3 3 4

Fig: 1.15 Array representation of S1 and S2

Now we can implement Find(i), by following the indices, starting at
i until we reach a node with parent value -1. For example Find(6)
starts at 6 and then moves to 6’s parent 3. Since p[3] is –ve , we
have reached the root. The operation Union(i, j) is also equally
simple, we pass the two trees root i and j, by adopting the
convention first tree become the sub-tree of the second, the
statement p[i]=j; accomplished the union.

1.10 SORTING IN LINEAR TIME

We have already discussed several sorting algorithms which can
sort data in O(n log n) time,merge sort and heapsort achieve this
upper bound in the worst case; quicksort achieves it on average.
Moreover, for each of these algorithms, we can produce a
sequence of n inputs that causes the algorithm to run in Ω(n log n)
time.

These algorithms share an interesting property, that is, the
sorted order defined is based on comparisons between the input
elements. We call such sorting algorithms comparison sorts. All the
sorting algorithms introduced this far are comparison sorts.

Now we will discuss two sorting algorithms-counting sort
and radix sort, that run in linear time. Needless to say, these
algorithms use operations other than comparisons to determine the
sorted order

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 29

Counting Sort

Counting sort assumes that each of the n input elements is an
integer in the range 1 to k, for some integer k. When k = O(n), the
sort runs in O(n) time.

The basic idea of counting sort is to determine the number
of elements less than each of the input element. This information
can be used to place element x directly into its position in the
output array. For example, if there are 17 elements less than x,
then x belongs to output position 18. This scheme need to modified
slightly to handle the situation when several elements have the
same value, since we don't want to put them all in the same
position.

In the algorithm of counting sort, we assume that the input
is an array A[1 . . n], and length[A] = n. We require two other
arrays: the array B[1 . . n] holds the sorted output, and the array
C[1 . . k] provides temporary working space.

An example of counting sort is shown below:

Algorithm Counting-Sort (A, B, k)

1. for i = 1 to k
2. do C[i] = 0
3. for j = 1 to length[A]
4. do C[A[j]] = C[A[j]] +1
5. // C[i] now contains no of element equal to i
6. for j = 2 to k
7. do C[i] = C[i] +C[i-1]
8.
9. for j = length[A] down to 1
10. do B[C[A[j]]] = A[j]
11. [A[j]] = C[A[j]] -1

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 30

Fig: 1.16 counting sort

In Fig 1.16,the operation of COUNTING-SORT of an input
array A[1 . . 8] is shown, where each element of A is a positive
integer no larger than k = 6. In fig 1.16 (a) the array A and the
auxiliary array C after execution of step 4 is shown. In fig 1.16 (b)
the array C after execution of step 7 is shown. In fig 1.16(c)-(e) the
output array B and the auxiliary array C after one, two, and three
iterations of the loop in steps 9-11, respectively. In fig 1.16 (f) the
final sorted output array B is shown.

How much time does counting sort require? The for loop of
steps 1-2 takes time O(k), the for loop of steps 3-4 takes time O(n),
the for loop of steps 6-7 takes time O(k), and the for loop of steps
9-11 takes time O(n). Thus, the overall time is O(k + n). In practice,
we usually use counting sort when we have k = O(n), in which
case the running time is O(n). So counting sort beats the lower
bound of Ω(n 1g n).

Radix Sort

Radix sort is a small method that many people intuitively use when
alphabetizing a large list of names. (In case of names Radix is 26,
since there are 26 letters in the alphabet). Specifically, the list of
names is first sorted according to the first letter of each names,
that is, the names are arranged in 26 classes. Intuitively, one might
want to sort numbers on their most significant digit. But Radix sort
do counter-intuitively by sorting on the least significant digits first.
On the first pass entire numbers are sorted on the basis of least
significant digit and iscombined in an array. Then on the second
pass, the entire numbers are sorted again based on the second
least-significant digits and is combined in an array and so on.

RADIX-SORT(A, d)
1. for i 1 to d
2. do use a stable sort to sort array A on digit i

The code for radix sort is straightforward. The following
procedure assumes that each element in the n-element array A
has d digits, where digit 1 is the lowest-order digit and digit d is the
highest-order digit.

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 31

 CHECK YOUR PROGRESS

The analysis of the running time depends on the stable sort
used as the intermediate sorting algorithm. When each digit is in
the range 1 to k, and k is not too large, counting sort is the obvious
choice. Each pass over n d-digit numbers takes time θ(n + k).
There are d passes, so the total time for radix sort is θ(dn + kd).
When d is constant and k = O(n), radix sort runs in linear time.

Following example shows how Radix sort operates on seven 3-
digits number :

Fig 1.17 Radix sort example.

Figure 1.17shows the operation of radix sort on a list of seven 3-
digit numbers.

3. State True or False.
a) The find operation can be performed even if the sets

are not disjoint.
b) Counting sort is efficient when the range of numbers to

be sort is small.
c) In Max-Heap root always contain the minimum value of

the heap.

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 32

1.11 LET US SUM UP

 An algorithm is a sequence of computational steps that
start with a set of input(s) and finish with valid output(s)

 An algorithm is correct if for every input(s), it halts with
correct output(s).

 Computational complexity of algorithms are generally
referred to by space complexity and time complexity of the
program

 The Space complexity of an algorithm is the amount of
main memory is needed to run the program till completion.

 The Time complexity of an algorithm is the amount of
computer time it needs to run the program till completion.

 O(1) < O(log(n)) < O(n) < O(n log(n)) < O(n2) < O(n3)…
<O(2n).

 Heap is a complete binary tree with the properties of either
Max heap or Min heap

 Union operation on set combine two set by making one of
the root as the child of the other root.

 Find operation on set returns the set-name of the set where
the node belongs.

 Radix sort and counting sort are linear time sorting
algorithm

1.12 FURTHER READINGS

1. T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein,
"Introduction to Algorithms", Second Edition, Prentice Hall of
India Pvt. Ltd, 2006.

2. Ellis Horowitz, SartajSahni and SanguthevarRajasekaran,
Fundamental of data structure in C, Second Edition,
Universities Press, 2009.

3. Alfred V. Aho,John E. Hopcroft and Jeffrey D. Ullman, "The
Design and Analysis of Computer Algorithms", Pearson
Education, 1999.

4. Ellis Horowitz, SartajSahni and SanguthevarRajasekaran,
Computer Algorithms/ C++, Second Edition, Universities
Press, 2007.

.

Introduction to Algorithms Unit 1

Design and Analysis of Algorithm 33

1.

a) False b)True c)False d)False e)True

2.

a) True b)False c)True d)False e)
Truef) True g) Trueh) False

3.

a) False b)True c)False

1. Given an array of n integers, write an algorithm to find the

smallest element. Find number of instruction executed by
your algorithm. What are the time and space complexities?

2. Write a algorithm to find the median of n numbers. Find
number of instruction executed by your algorithm. What are
the time and space complexities?

3. Write an algorithm to sort elements by bubble sort
algorithm. What are the time and space complexities?

4. Explain the need of Analysis of Algorithm.
5. Prove the following

ii) 3n5 - 7n + 4 = Θ (n5)
iii) 1/3n4 - 7n2 + 3n = Θ (n4)
iv) 2n2 + n + 4 = Θ (n2)
v) 3n5 - 7n + 4 = O (n5)
vi) 3n5 - 7n + 4 = Ω (n5)

6. Sort the following element by using Heap sort algorithm

17, 19,13, 16,12, 9, 14, 18, 6 15, 22, 27, 8

7. Sort the following elements by using counting sort algorithm

7, 9, 9, 6, 4, 2, 8, 6, 4, 3, 7, 2, 1

8. Sort the following element by using Radix sort algorithm

177, 129,153, 196,122, 339, 514, 188, 666 245, 292, 207

1.13 ANSWERS TO CHECK YOUR
 PROGRESS

1.14 MODEL QUESTIONS

 Divide and Conquer

 Design and Analysis of Algorithm 34

UNIT- 2 : DIVIDE AND CONQUER

UNIT STRUCTURE

2.1 Learning Objective

2.2 Introduction
2.3 Divide and Conquer General Strategy

2.4 Divide and Conquer Algorithm Applied in Binary Search

2.5 Divide and Conquer Algorithm Applied in Merge Sort

2.5.1 Pseudo Code of Merge Sort Algorithm

2.6 Divide and Conquer Algorithm Applied in Quick Sort

2.6.1 Algorithm for Quick Sort

2.6.2 Pseudo Code for Quick Sort

2.7 Exponentiation

2.8 Let Us Sum Up
2.9 Answers to Check Your Progress

2.10 Further Readings

2.11 Model Questions

 2.1 LEARNING OBJECTIVE

 After going through this unit, you will be able to:

 know the concept divide and conquer

 describe the application of divide and conquer method in

binary search, quick sort and merge sort techniques

 elaborate the application of divide and conquer technique

in exponentiation

 2.2 INTRODUCTION
In the previous unit, you are acquainted with the basic idea about

the algorithms, time complexity of algorithms and some other
related issues. In this unit, we will introduce you the ‘divide and

 Divide and Conquer

 Design and Analysis of Algorithm 35

conquer’ approach that is used in the design of algorithms. This

technique is the basis of designing efficient algorithms for all kinds

of problems, such as sorting techniques like quick sort, merge

sort and in searching techniques like binary search etc.

 2.3 DIVIDE AND CONQUER GENERALSTRATEGY

Divide and conquer algorithm is an important algorithm designed
paradigm based on multi-branched recursion. A divide and

conquer algorithm works by recursively breaking down a problem

into two or more independent sub-problems of the same type, until

they become simple enough to solved directly. Generally, the sub-

problems solved by a divide and conquer is non-overlapping i.e

solution to a problem is depend upon only on sub-problems, but is

not depend upon sub-sub-problems.

The general methodology applied in the divide and conquer

technique is as follows :

 Step 1: Divide the problem into two or more independent sub-

 Problems (not necessarily same type).

Step 2: Solve (conquer) the each sub-problem recursively to the

 Smallest possible size.

Step 3: Combine these solution of the sub-problems into a

solution to the whole problem.

2.4 DIVIDE AND CONQUER ALGORITHM APPLIED
IN BINARY SEARCH

Binary search is a well known instance of divide and conquer
method. For binary search divide and conquer strategy is applied

recursively for a given sorted array is as follows:

Divide: Divide the selected array at the middle. It creates two

 Divide and Conquer

 Design and Analysis of Algorithm 36

 sub-array, one left sub-array and other right sub-array.

 Conquer: Find out the appropriate sub-array.

 Combine: Check for the solution to key element.

For a given sorted array of N element and for a given key element

(value to be searched in the sorted array), the basic idea of binary

search is as fallows –

1. First find the middle element of the array

2. Compare the middle element with the key element.

3. There are three cases

 If it is the key element then search is successful.

 If it is less than key element then search only the

lower half of the array.

 If it is greater than key element then search only

the upper half of the array.
 4. Repeat 1, 2 and 3 until the key element found or sub-array

sizes become one.

Algorithm for binary search

1. Set Lower = 0, Upper = N -1

2. Mid = (Lower + Upper) / 2

3. while (Lower ≤Upper) and A [Mid] != Item repeat

 Steps 4 and 5

4. if (Item < A [Mid]) then

5. Upper = Mid -1

6. else Lower = Mid +1
7. Mid = (Lower + Upper) / 2

8. if (A [Mid] = = Item) then

9. Print “Search successful”

10. else Print “Item is not found”

11. end

 Divide and Conquer

 Design and Analysis of Algorithm 37

Here, Lower, Upper and Mid denotes the beginning, ending and

middle index of an array A [] respectively. Item means the key

element to be searched in the given array A []. If size of A [] is N

then beginning and the ending indices are 0 and N -1 respectively.

 In step 1 the algorithm initially sets the value of Lower = 0 and

 Upper = N -1.

 In step 2 it calculate Mid, the index of the middle element, for the

 array A [].

 In step 3 while the beginning index (Lower) is less then end

 index (Upper) and middle element (A [Mid]) is not

 equal key element (Item) then repeat step 4 and 5.

 In step 4 if A [Mid] is less than the Item, then the algorithm
 searches in the left sub-array. So, the beginning index

 remain same and the end index of the left sub-array

 becomes Mid -1. Hence, ‘Upper’ is set as Mid -1. Else

 if A [Mid] is greater than Item, then the algorithm

 searches in the right sub-array. So, the beginning index

 of the right sub-array becomes Mid+1 and end index

 remain same. Hence the ‘Lower’ is set as Mid+1.

 In step 5 again middle element (Mid) is calculated for the

 selected sub-array in step 4.

 In step 6 algorithm is terminated either if middle element
 (A[Mid]) is equal to Item or beginning index (Lower)

 is greater than end index (Upper)(i.e when subarray

 sizes become one) . In first case , terminate when

 search element is found and in later case terminate

 when search is not successful.

Example 2.5.1: Suppose A is an array of 6 elements. Search an

element 10 in the array using binary search.
0 1 2 3 4 5

3 4 7 10 12 13

 Divide and Conquer

 Design and Analysis of Algorithm 38

 Solution:
 Step 1: Here Lower = 0, Upper = 5, Item = 10

 Step 2: First we have to calculate middle element for the array A

 Mid = (Lower + Upper) / 2
 = (0 + 5) / 2

 =2

 Mid divides the array into two subarray as follows

 Lower= 0 1 Mid = 2 3 4 Upper=5

3 4 7 10 12 13

 Step 3: Here Lower < Upper and A [Mid] ! =10. So continue Step4

 and Step 5

 Step 4: Select (Conquer) an appropriate subarray.

 Here A [Mid] =7
 7<10 , select the right subarray to search for the element.

 Lower = Mid+1

 =2 +1

 =3

 Now the subarray is-

 Lower = 3 4 Upper = 5

10 12 13

 Step 5: Mid = (Lower + Upper) / 2

 = (3 + 5) / 2

 = 4

 Lower = 3 Mid = 4 Upper = 5

10 12 13

 divide the array again in Mid = 4.

 Divide and Conquer

 Design and Analysis of Algorithm 39

 Here, Lower < Upper and A [Mid] != 10 So, repeat

 step 4 and Step 5 again

 A [4] =12
 12 >10, So search in the left subarray.

 Upper = Mid -1

 = 4 -1

 =3

 New subarray is-

 Lower=3 Upper=3

 10

Step 6: Mid = (Lower + Upper) / 2

 = (3 + 3) / 2

 = 3

 Here, Lower = Upper and A [Mid] = =10
 So, PRINT “Search successful”

Step 7: End

CHECK YOUR PROGRESS

 1. Fill in the blanks

 a) Binary search is applied in already------------array.

b) In binary search each time the algorithm finds out

the --------
 element.

c) The algorithm divide the array into two halves in ---------.

d) Divide and conquer algorithm is applied in a problem when

sub-problems are------.

 e) Divide and conquer algorithm divide the problem into --------

 sub-problems.

 Divide and Conquer

 Design and Analysis of Algorithm 40

2.5 DIVIDE AND CONQUER ALGORITHM APPLIED
IN MERGE SORT

Merge sort is also one of the ‘divide and conquer’ class of

algorithms. This is a sorting algorithm to sort an unordered list of

element. Merge sort is a recursive algorithm that splits the array

into two sub-arrays, sorts each sub-array, and then merges the

two sorted arrays into a single sorted array. The base case of the

recursion is when a subarray of size 1 (or 0). Merge sort algorithm

also closely follow divide and conquer strategy. It is an external

sorting algorithm.

Divide : Divide N element array to be sorted into two subarray of

 N / 2 element each.

Conquer : Sort the subarrays recursively using merge sort.

 Combine : Merge the two sorted sub-array to produce final sorted

 array.

Suppose we have to sort a array of N element, A [p…..r]. Initially

p = 1 and r=N

To sort A [p .. r]

1. Divide Step: If a given array A has zero or one element,

 simply return; it is already sorted. Otherwise, split
 A [p .. r] into two subarrays A [p .. q] and A [q + 1 .. r],

 each containing about half of the elements of A [p .. r].

 That is, q is the halfway point of A [p .. r].
2. Conquer Step: Conquer by recursively sorting the two

 subarrays A [p .. q] and A [q + 1 .. r].
3. Combine Step: Combine the elements back in A [p .. r]

 by merging the two sorted subarrays A [p .. q] and
 A [q + 1 .. r] into a unique sorted sequence.

 Divide and Conquer

 Design and Analysis of Algorithm 41

Example 2.6.1: Sort the following data using merge sort

Solution:

 The merge sort strategy is applied as fallows-

This is the final sorted array.

17 11 12 3 8 6 22 19 20

17 11 12 3 8 6 22 19 20

12 11 3 8 6 17 22 19 20

12 11 3 8 6 17 22 19 20

20 19

Divide

17 11 12 3 8 6 22 19 20

17 22

19 20

19 20 11 3 8 6 12

20 17 11 6 8 3 12

8 3 12 6 17 11

19 22

19 20 22

6 3 12 17 19 8 11 20 22

Conquer

 and

Combine

 Divide and Conquer

 Design and Analysis of Algorithm 42

2.7 PSEUDO CODE FOR MERGE SORT ALGORITHM

 MERGE_SORT (A , p , r)

 1. if (p < r)

 2. then q = (p + r) / 2

 3. MERGE_SORT (A , p , q)

 4. MERGE_SORT (A , q + 1 , r)

 5. MERGE (A , p , q , r)

 MERGE (A , p , q , r)

 1. n1 = q – p + 1

 2. n2 = r - q

 3. create arrays L [1…..n1 + 1] and R [1……n2 + 1]

 4. for i=1 to n1

 5. do L [i] = A [p + i – 1]

 6. for j=1 to n2

 7. do R [j] = A [q + j]
 8. L [n1 +1] = ∞

 9.R [n2 + 1] = ∞

 10. i =1

 11. j =1
 12. for k = p to r

 13. do if L [i] ≤ R [i]

 14. then A [k] = L [i]

 15. i = i +1

 16. else A [k] = R [j]

 17. j = j + 1

Here the procedure MERGE_SORT (A , p , r) sorts the element

in the subarray A [p….r] . i.e p is the first element index and r is

the last element index of the subarray. If p ≥ r , the subarray is

atmost one element and is already sorted. Otherwise, the divide

 Divide and Conquer

 Design and Analysis of Algorithm 43

step (step 2 in MERGE_SORT (A, p, r) procedure) simply

computes an index q that partition A [p….r] into two subarray

A [p …..q] and A [q + 1…..r] containing n/2 elements in each

subarray
To sort a sequence A of N element , the initial call is

MERGE_SORT(A,1, N).

Next, we have to merge the sorted subarrays obtain from the

MERGE_SORT (A , p , r) procedure using MERGE(A , p , q , r),

where A is an sorted array, p , q and r indices of the element such

that p ≤ q < r. This procedure merge two sorted sub-array A[p..q]

and A [q + 1….r] and form a single sorted subarray and replaces

the current subarray A [p..r].

 In details the MERGE procedure is work as follows-

 Line 1 compute the length n1 of the subarray A [p…q] .

 Line 2 compute the length n2 of the subarray A [q + 1…r].

 Line 3 create array ‘L’ (left) and ‘R’ (right) of length n1+1 and n2+1

 respectively.

 Line 4-5 the for loop copies the subarray A [p…q] into L [1..n1].

 Line 6-7 it copies the subarray A [q + 1…r] into R [1..n2].

 Line 8-9 put ‘∞’ at the end of the array L (i.e in n1+1)and R (i.e in

 n2 + 1).
 Line12-17 find the smallest element between L[i] and R [j],
 where i =1….n1 and j =1….n2.

 If L [i] ≤ R [j] then it copies L [i] to A and

increase i to i +1,

 Otherwise, copies R [j] to A and increase j to

j +1.

Example:

 Divide and Conquer

 Design and Analysis of Algorithm 44

Let us see, how merging is done between two sorted subarrays

using the MERGE procedure. After merging is done the subarrays

are combined to one sorted array.

 In the following sequence the procedure calls MERGE(A,13,15,17)

 works as below .

Here p = 13

 q = 15

 r = 17

 L= left subarray

 R= right subarray

 i = index of element’s of left subarray L
 j = index of element’s of right subarray R

 A k=13 14 15 16 17

.... 10 11 14 9 13 …

 L i=1 2 3 4

10 11 14 ∞

 R j=1 2 3

9 13 ∞

 Here, k = 13, i =1 and j = 1

 R [1] < L [1] i.e 9 < 10.

 So, A [1] = R [1]

 = 9

 j = j + 1 =1 + 1 = 2

 Divide and Conquer

 Design and Analysis of Algorithm 45

 A k=13 14 15 16 17

… 9 11 14 9 13 …

 Next, k = 14, i = 1, j = 2

 L [1] < R [2] i.e 10 < 13

 So, A [14] = L [1]

 =10
 i = i + 1 = 1 + 1 = 2

 A 13 k=14 15 16 17

… 9 10 14 9 13 …

Next, k = 15, i = 2, j = 2

 L [2] < R [2], i.e 11 < 13

So, A [15] = L [2]

 =11

 i = i + 1 = 2 + 1 = 3

A 13 14 k=15 16 17

… 9 10 11 9 13 …

Next, k = 16 , i = 3, j = 2

 R [2] < L [3] , i.e 13 < 14

So, A [16] = R [2]

 =13

 j = j + 1 = 2 + 1 = 3

 Divide and Conquer

 Design and Analysis of Algorithm 46

A 13 14 15 k = 16 17

… 9 10 11 13 13 …

Next, k = 17, i = 3, j = 3

 L [3] < R [3], i.e 14 < ∞

So, A [17] = L [3]

 =14

 i = i + 1 = 3 + 1 = 4

 A 13 14 15 16 k = 17

… 9 10 11 13 14 …

Next, k=18 which is greater then r(i.e 17). So the MERGE

procedure is terminated here.

CHECK YOUR PROGRESS

2. Fill in the blanks

 a. In divide step merge sort algorithm divides the array elements

 to be sorted up to array size becomes ---- or -----.

 b. Merge sort algorithm merges two ----- subarrays.

 c. For merging two subarrays merge sort algorithm uses another

 ----- subarray.

 d. Merge sort algorithm is an-------sorting algorithm.

2.7 DIVIDE AND CONQUER ALGORITHM APPLIED IN
QUICK SORT

It is one of the widely used internal sorting algorithm. In its basic

form it was developed by C.A.R Hoare in 1960. The basis of quick

 Divide and Conquer

 Design and Analysis of Algorithm 47

sort is divide and conquer strategy, i.e divide the problem (list to

be sorted) into sub-problems (sub-lists) , until solved sub-problems

(sorted sub-list) are found. The divide and conquer approach can

be used in quick sort differently from merge sort. In merge sort ,
the list to be sorted is divided at its midpoint into subarrays which

are independently sorted and later merged. In quick sort, the

division to the sorted subarrays is made, so that the sorted

subarrays do not need to merge later.

Divide and conquer strategy for quick sort to sort an array A [p…r]

is as follows:

Divide: partition the array A [p…r] into two sub-arrays A[p…q -1]

and A [q + 1…..r] such that each element of A [p…q -1]

is less than or equal to A [q], which in turn, less than or

equal to each element of A [q + 1…r]. Compute the index

q as part of this partitioning procedure.

Conquer: Sort the two subarrays A[p…q-1] and A[q+1…r] by

recursive calls to quick sort .

Combine: Since the subarrays are sorted in place, no work is

needed to combine them. The entire array A [p…r] is now
sorted.

2.7.1 ALGORITHM FOR QUICK SORT

Quick_Sort :
Step 1 : If First < Last then begin /* here First and Last are the

 index of the first and last

 Divide and Conquer

 Design and Analysis of Algorithm 48

 elements in the array*/
Step 2 : Partition the elements in the subarray First….Last

Step 3 : Apply Quick_Sort to the first subarray.

Step 4 : Apply Quick_Sort to the second subarray.

 end

For this algorithm two stopping cases are-

 If First = Last . i.e. only one element in the subarray to be

sorted.

 if First > Last. i.e. no element in the subarray to be sorted.

Partition algorithm:
To partition an array A[] partition algorithm is

Step 1: Define the Pivot value as the contents of the Array,

 A [First].

Step 2: Initialize Up to the First and Down to the Last

Step 3: Repeat step 4,5,6 until Up ≥ Down

Step 4: Increment Up until Up selects the first element greater
 than the Pivot value.

Step 5: Decrement Down until it selects the first element less

 than or equal to the Pivot value.

Step 6: If Up < Down exchange their values.

Step 7: Exchange A [First] and A [Down].

Step 8: Define PivotIndex as Down

Example :

Sort the following data of array A using quick sort.

 A = 44 75 23 43 55 12 64 77 33

 Divide and Conquer

 Design and Analysis of Algorithm 49

Solution:
1. Assign First to first element and Last to last element.

2. First < Last,

So, assign Pivot to First .
Pivot = First

3. Assign Up to first element and Down to last element.

a) if (A [Pivot] ≥ A [Up]) then Up++

b) if (A [Pivot] < A [Down]) Down --

44 75 23

first

64 12 55 43 33 77

last

44 75 23

First

64 12 55 43 33 77

Last Pivot

44 75 23

First

64 12 55 43 33 77

Last Pivot Up Down

44 75 23

First

64 12 55 43 33 77

Last Pivot Up Down

44 75 23

First

64 12 55 43 33 77

Last Pivot Up Down

 Divide and Conquer

 Design and Analysis of Algorithm 50

c) if (Up < Down) exchange A [Up] and A [Down]

d) Repeat a), b) and c) if Up < Down

e) Here, Up > Down

 Exchange A [Pivot] and A [Down] and assign Down as

PivotIndex

44 33 23

First

64 12 55 43 75 77

Last Pivot Up Down

44 33 23

First

64 55 12 43 75 77

Last Pivot Up Down

44 33 23

First

64 12 55 43 75 77

Last Pivot Up Down

44 33 23

First

64 55 12 43 75 77

Last Pivot Up Down

12 33 23

First

64 55 44 43 75 77

Last PivotIndex

 Divide and Conquer

 Design and Analysis of Algorithm 51

4. This gives two subarrays , Left subarray and Right subarray.

Again we have to apply Quick Sort procedure in these sub

arrays to sort it.

12 33 23

First1

64 55 44 43 75 77

Last2 Last1 First2

Left subarray Right subarray

12 33 23

First1

64 55 44 43 75 77

Last2 Last1 First2 Pivot
Up2

Down2
Pivot1 Up1 Down1

12 33 23

First1

64 55 44 43 75 77

Last2 Last1 First2 Pivot Up2
Down2 Pivot1 Up1 Down1

12 23 33

First1

64 55 44 43 75 77

Last3 Last1 First3 Pivot3 Pivot1 Up1 Down1
Up3

Down3

12 23 33

First1

64 55 44 43 75 77

Last2 Last1 First2
PivotIndex2

Pivot1 Up1 Down1

 Divide and Conquer

 Design and Analysis of Algorithm 52

12 23 33

First1

64 55 44 43 75 77

Last3 Last1 First3 Pivot3 PivotIndex1 Up3
Down3

12 23 33

First5

64 55 44 43 75 77

Last3 Last5 First3 PivotIndex3 Pivot5
Up5

Down5

12 23 33

First5

64 55 44 43 75 77

Last6
Last5 First6 Pivot6 Pivot5 Up6 Down6

Down5

12 23 33 64 55 44 43 75 77

First6 Pivot6 Up6 Up5

12 23 33

First5

64 55 44 43 75 77

Last6
Last5

First6 Pivot6 PivotIndex5 Up6 Down6

12 23 33 64 55 44 43 75 77

First6 Pivot6 Up6

12 23 33

First7

64 55 44 43 77 75

Last6 Last7 First6 Pivot7

33 64 55 44 43 7 7

First6 PivotIndex6
Up7

Down7

12 23 33

First7

64 55 44 43 77 75

Last8 Last7 First8 Pivot7

33 64 55 44 43

Up7

Down7

 Divide and Conquer

 Design and Analysis of Algorithm 53

 2.7.2 PSEUDO CODE FOR QUICK SORT
 The pseudo code for the quick sort algorithm is given below :

QUICKSORT (A , p , r)
1. if p < r

2. then q = PARTITION (A , p , r)

3. QUICKSORT (A , p , q – 1)

4. QUICKSORT (A ,q + 1 , r)

To sort an entire array A, the initial call is

QUICKSORT (A ,1, length [A])

Next, the PARTITIONING procedure which rearranges the

subarray A [p….r] in place.

PARTITION (A , p , r)

12 23 33

First7

64 55 44 43 77 75

Last7 PivotIndex7

33 64 55 44 43

12 23

First9

64 55 44 43 77 75

Last9

33 64 55

12 23 64 55 44 43 77 75 33 64 55

Final Sorted Array

 Divide and Conquer

 Design and Analysis of Algorithm 54

1. x = A [r]

2. i = p -1

3. for j = p to r -1

4. do if A [j] ≤ x

5. then i = i +1

6. exchange A [i] = A [j]

7. exchange A [i + 1] = A [r]

8. return i + 1

CHECK YOUR PROGRESS

3. What is the type of quick sort algorithm? External or internal?

4. Why does not quick sort algorithm need to combine the sorted

subarrays later?

2.8 EXPONENTIATION

Let a and n are two integers. Suppose that we need to compute

an for some reasonably large n. For simplicity we can assume that

n > 0.
The simplest algorithm perform n-1 multiplication by computing

a x a x….x a.

Using divide and conquer strategy the problem can be solved by

another way. We can consider as

 n = n / 2 + n / 2

 If n is even then an = (an/2)2

 If n is odd then an =a x (an/2)2

 The function is as follows-

 Divide and Conquer

 Design and Analysis of Algorithm 55

 function Power (a , n)

 {

 if (n==0)

 return 1;

 X = Power (a , n/2);

 if n is even then

 return (X2);

 else

 return (a x X2);

 }

 The above algorithm illustrate divide and conquer principle by

divide the problem as evenly as possible.

 In divide step, the problem is divided into two sub-problems

 exponent (X , n/2) and exponent (X, (n+1)/2).

 In conquer step, the sub-problems are solved recursively.

 In combine step, solution of the sub-problems are combine by
 multiplying them.

Example:
 To compute a29 the above algorithm will work as follows-

 Here n is odd. So first calculate a x (an/2)2

 a29=a x a28 here, n=28

 =a x (a14)2

 = a x ((a7)2)2

 =a x ((a x (a3)2)2)2

 =a x ((a x (a x (a2))2)2)2

Example:
 Compute 28 using divide and conquer method.

 Here a=2, n=8

 N is even . So it calculate (an/2)2

 Divide and Conquer

 Design and Analysis of Algorithm 56

 28= (24)2

 = ((22)2)2

 = (42)2

 =162

 =256
Example:
 Compute 37 using divide and conquer method.

 Here a=3, n=5

 N is odd. So, calculate a x (an/2)2

 35= 3 x (33)2

 =3 x (3 x (32))2

 =3 x (3 x 9)2

 =3 x (27)2

 =3 x 729

 =2187

2.9 LET US SUM UP

 Divide and conquer algorithm has three steps.

 Divide the problem into smaller independent sub-problems.

 Conquer by solving these sub-problems.

 Combine these sub-problems to together.

 The sub-problems solved by a divide and conquer is non

overlapping.

 For binary search divide and conquer strategy is applied

recursively for a given sorted array.

 Merge sort is a recursive algorithm that splits the array into two

subarrays , sorts each subarray , and then merges the two

sorted arrays into a single sorted array. The array is divided
until its size becomes 0 or 1.

 Merge sort is an external sorting algorithm.

 Divide and Conquer

 Design and Analysis of Algorithm 57

 In merge sort in divide step sub-problems are divided into two

halves.

 In conquer step sub-problems are sorted individually.

 In combine Step sub-problems are combine to find the

resultant sorted array.

 Quick sort is an internal sorting algorithm. In its basic form it

was developed by C.A.R Hoare in 1960.

 In merge sort , the list to be sorted is divided at its midpoint

into subarrays which are independently sorted and later
merged. In quick sort, the division to the sorted subarrays is

made, so that the sorted subarrays do not need to merged

later.

 The quick sort algorithm stop when there is only one element

in the subarray to be sorted or if there is no element in the

subarray to be sorted.

2.10 ANSWERS TO CHECK YOUR
PROGRESS

1.

a) sorted, b) middle, c) middle, d) non-overlapping,

e) independent

CHECK YOUR PROGRESS – 2
2.

a) 1,0, b) sorted, c) temporary d) external

3. Internal

4. In quick sort sorting is done in place. So, there is no need to

 combine the sub array later.

 Divide and Conquer

 Design and Analysis of Algorithm 58

2.11 FURTHER READINGS

 T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein,
"Introduction to Algorithms", Second Edition, Prentice Hall of India
Pvt. Ltd, 2006.

 Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran,
Computer Algorithms/ C++, Second Edition, Universities Press,
2007.

2.12 MODEL QUESTIONS

1. What is divide and conquer strategy?

2. What is external and internal sorting? Give examples.

3. How does the binary search algorithm follow the divide and

conquer method? Explain with an example

4. Write a recursive and non recursive function for binary search

algorithm.

5. How does merge sort follow the divide and conquer strategy? Give

one example.

6. What are the difference between quick sort and merge sort

algorithm?
7. Write a recursive function to sort elements using merge sort.

8. Write quick sort algorithm and explain with an example.

9. Sort the following element using quick sort.

 34 12 45 67 55 23 11 17 19 38 28 44 40

10. Compute 210 using divide and conquer method.

11. What are the sub-problems for compute 39 using divide and

conquer method? Also find out how the sub-problems are

combined.
12. In the following element search the key element 12 using binary

search, which uses divide and conquer method.

 3 4 6 7 9 10 12 13 14 18

13. Sort the following elements using merge sort

 23 45 19 14 16 12 30 34 15 18 10 9

Greedy Method Unit 3

 Design and Analysis of Algorithm 59

UNIT – 3 : GREEDY METHOD

UNIT STRUCTURE

 3.1 Learning Objective

 3.2 Introduction

 3.3 General Strategy of Greedy Algorithm

 3.4 Knapsack Problem

 3.5 Greedy Strategy Applied in 0-1 Knapsack Problem

 3.6 Greedy Strategy Applied in Fractional Knapsack Problem
 3.7 Job Sequencing with Deadline

 3.8 Optimal Merge Pattern

 3.9 Minimum Spanning Tree

 3.10 Prim’s Algorithm

 3.11 Kruskal Algorithm

 3.12 Dijkstra’s Algorithm

 3.13 Let Us Sum Up

 3.14 Answers to Check Your Progress

 3.15 Further Readings

 3.16 Model Questions

3.1 LEARNING OBJECTIVE

After going through this unit, you will be able to:

 know about the greedy algorithm

 describe the greedy method applied in knapsack problem

 elaborate the job sequencing with deadline

 define minimum spanning tree problem

 describe application of minimum spanning tree problem in Prim’s

 and Kruskal algorithm

 elaborate the shortest path problem using Dijkstra algorithm

Greedy Method Unit 3

 Design and Analysis of Algorithm 60

3.2 INTRODUCTION

Greedy algorithm is typically used in optimization problem.

Algorithm for optimization problems go through a sequence of

steps. All of these problems have n inputs and require us to obtain

a subset that satisfies some constraints. Any subset that satisfies

some constraints is called feasible solution. The solution finds a

given objective function which value is either maximizes or
minimizes. A feasible solution that does this is called an optimal

solution. In this unit, we will discuss about the concept of greedy

methods and its application in various problems like Knapsack

problems and minimum spanning tree etc.

3.3 GENERAL STRATEGY OF GREEDY
ALGORITHM

A greedy algorithm always makes the choice that looks best at the

moment. That is it makes a locally optimal choice that may be lead

to a globally optimal solution. This algorithm is simple and more

efficient compared to other optimization algorithm. This heuristic

strategy does not always produce an optimal solution, but

sometimes it does.

There are two key ingredients in greedy algorithm that will solve a

particular optimization problem.

1. Greedy choice property
2. Optimal substructure

1. Greedy choice property:

A globally optimal solution can be arrived at by making a

locally optimal (greedy) choice. In other words, when a choice

is to be made, then it looks for best choice in the current

problem, without considering results from the sub-problems. In

Greedy Method Unit 3

 Design and Analysis of Algorithm 61

this algorithm choice is made that seems best at the moment

and solve the sub-problems after the choice is made. The

choices made by a greedy algorithm may depend on choices

so far, but it can not depend on any future choice or solution to
the sub-problems. The algorithm progress in a top down

manner, making one greedy choice one after another,

reducing each given problem instances into smaller one.

2. Optimal substructure:

A problem is said to have optimal substructure if an optimal

solution can be constructed efficiently from optimal solution to

its sub-problem. The optimal substructure varies across
problem domain in two ways-

 i) How many sub-problems are used in an optimal

 solution to the original problem.
 ii) How many choices we have in determining which

 sub-problem to use in an optimal solution.

In Greedy algorithm a sub-problem is created by having made

the greedy choice in the original problem. Here, an optimal

solution to the sub-problem, combined with the greedy choice

already made, yield an optimal solution to the original problem.

3.4 KNAPSACK PROBLEM

There are n items, ith item is worth vi dollars and weight wi pounds,
where vi and wi are integers. Select item to put in knapsack with

total weight is less than W, So that the total value is maximized.

This problem is called knapsack problem.

This problem finds, which items should choice from n item to

obtain maximum profit and total weight is less than W.

The problem can be explained as follows-

Greedy Method Unit 3

 Design and Analysis of Algorithm 62

A thief robbing a store finds n items, the ith item is worth vi dollar

and weight w pounds, where vi and wi are integers. He wants to

take as valuable load as possible, but he can carry atmost W

pounds in his knapsack, where W is an integer. Which item should

he take?

There are two types of knapsack problem.
1. 0-1 knapsack problem:

 In 0-1 knapsack problem each item either be taken or left

 behind.

2. Fractional knapsack problem:

In fractional knapsack problem fractions of items are allowed
to choose.

3.5 GREEDY STRATEGY APPLIED IN 0-1
 KNAPSACK PROBLEM

The greedy algorithm in 0-1 knapsack problem can be applied as

follows-

1. Greedy choice:
 Take an item with maximum value per pound.

2. Optimal substructure:

 Consider the most valuable load that weights atmost W

pounds. These W pounds can be choose from n item. If jth

item is choose first then remaining weight W-wi can be

choose from n-1 remaining item excluding j.

3.6 GREEDY STRATEGY APPLIED IN
 FRACTIONAL KNAPSACK PROBLEM

Greedy Method Unit 3

 Design and Analysis of Algorithm 63

1. Greedy choice:
 Take an item or fraction of item with maximum value per

 pound.

2. Optimal substructure:
 If we choose a fraction of weight w of the item j, then the

remaining weight atmost W-w can be choose from the n-1

item plus wi-w pounds of item j.

Although, both the problems are similar, the fractional knapsack

problem is solvable by greedy strategy, but 0-1 knapsack problem

are not solvable by greedy algorithm.

Consider the following problem-

There are 3 items. The knapsack can hold 50 pounds. Item1

weight 10 pounds and its worth is 60 dollar, item2 weight 20

pounds and its worth 100 dollars, item3 weight 30 pounds and its

weight 120 dollars. Find out the items with maximum profit which

the knapsack can carry.

Solution:
Here,

 W = 50 pounds

Item Weight

(w pound)
Worth
(v dollar)

Item1 10 60

Item2 20 100

Item3 30 120

Let, an item I has weight wi pounds and worth vi dollar.
Value per pound of I = vi / wi .

Thus, value per pound for-

 Item1 = w1 / v1

 = 60 dollars / 10 pounds

Greedy Method Unit 3

 Design and Analysis of Algorithm 64

 = 6 dollars/pounds

 Item2 = w2 / v2

 = 100 dollars / 20 pounds

 = 5 dollars/pounds

 Item3 = w3 / v3

 = 120 dollars / 30 pounds

 = 4 dollars/pounds

We can select maximum of 50 pounds.

So, using greedy strategy in 0-1 knapsack problem

 1st choice is Item1.

 2nd choice is Item2.

Total weight = 10 + 20 pounds

 = 30 pounds

Total worth = 60 +100 dollars

 =160 dollars

But this is not the optimal choice.

The optimal choice will choose item 2 and 3. Then,

Total weight = 20 + 30 pounds
 = 50 pounds

Total worth = 100 + 120 dollars

 = 220 dollars.

 Hence , 0-1 knapsack problem is not solved by greedy strategy.

 Now, using greedy strategy in fractional knapsack problem –

 1st choice is item1.

 2nd choice is item2

Total weight = 30 pounds
But the size of the knapsack is 50 pounds.

Greedy Method Unit 3

 Design and Analysis of Algorithm 65

So, it will take remaining 20 pounds from item3 (fraction of item3)

and its worth is 4 x 20=80 dollars.

Hence,

Total weights = 50 pounds.
Total worth = 60+100+ 80 dollars

 =240 dollars.

Hence , an optimal solution can be obtain from fractional knapsack

problem using greedy strategy.

CHECK YOUR PROGRESS
1. Write True or False

a) Greedy choice always looks for the best choice in the
current problem.

b) 0-1 knapsack problem is solvable by greedy algorithm.

2. What is optimal substructure?

3. What is greedy strategy for knapsack problem?

3.7 JOB SEQUENCING WITH DEADLINE

Now, we will discuss about the job sequencing problem. The
problem is stated as below-

1. There are n jobs to be processed on a machine

2. Each job i has a deadline di ≥ 0 and profit pi ≥ 0

3. pi is earned iff the job is completed by its deadline

4. To complete the job, it is processed in one machine for a

unit of time.

5. Only one machine is available for processing job

6. Only one job is processed at a time on the machine.

7. A feasible solution is a subset of job J such that each job
is completed by its deadline.

8. An optimal solution is a feasible solution with a maximum

profit.

Greedy Method Unit 3

 Design and Analysis of Algorithm 66

This problem can be solved by greedy algorithm. For the optimal

solution, after choosing a job , it will add the next job to the subset

such that ∑i € J pi , increases and resulting subset become feasible.

pi is the total profit of ith subset of jobs. In other words we have to
check all possible feasible subset J with their total profit value, for

a given set of jobs.

Feasible solution for a set of job J is such that, if the jobs of set J

can be processed in the order without violating any deadline then

J is a feasible solution.

Example :
Let ,
 no. of job, n = 4 and

 jobs are 1, 2, 3, 4

 profit (p1,p2,p3,p4) = (100,10,15,27)

 deadline (d1,d2,d3,d4) = (2,1,2,1).

Find the optimal solution set.
 Solution:

SL
No.

Feasible
Solution

Processing
Sequence

Profit

1 (2,1) (1,2) 110

2 (1,3) (1,3) or(3,1) 115

3 (1,4) (4,1) 127

4 (2,3) (2,3) 25

5 (3,4) (4,3) 42

6 (1) (1) 100

7 (2) (2) 10

8 (3) (3) 15

9 (4) (4) 27

Here solution 3 is optimal. The optimal solution is got by

processing the job 1 and 4 in the order job 4 followed by job 1. The

Greedy Method Unit 3

 Design and Analysis of Algorithm 67

maximum profit is 127. Thus, the job 4 begins at time zero and job

1 end at time 2.

Consider solution 3 i.e maximum profit job subset J = (1,4)
 Here , at first J= Ø and ∑i € J pi=0.

Job 1 is added to J as it has the largest profit and is a feasible

solution.

Next add job 4 .Then also J = (1,4) is feasible because if the job

processes in the sequence (4,1) then job 4 will start in zero time

and job 1 will finish in 2 time within its deadline.

Next if job 3 is added then j=(1,3,4) is not feasible because all the

job 1,3,4 can not be completed within its deadline. So job 3 is not

added to the set. Similarly after adding job 2 J=(1,2,4) is not

feasible.

Hence J = (1,4) is a feasible solution set with maximum profit

127. This is an optimal solution.

CHECK YOUR PROGRESS

4. True/False

 i. In job sequencing, a feasible solution is a subset of job

 such that each job is completed by its deadline.

 ii. In job sequencing an optimal solution is a feasible solution

 with a minimum profit.

Greedy Method Unit 3

 Design and Analysis of Algorithm 68

3.8 OPTIMAL MERGE PATTERNS

Now let us discuss about the optimal merge patterns. It can be
stated as follows :

 Two sorted file containing n and m records respectively

could be merged together to obtain one sorted file in time

O(n + m). When more than two sorted files are merged

together then merge can be done by repeatedly merging

the sorted files in pairs.

 For example-

Problem 1: There are 5 sorted files F1,F2,F3,F4,F5 and each file
has 20,30,10,5,30 records respectively.

 If merge these files pair wise then-

 M1 = F1&F2

 = 20 + 30

 = 50 (i.e merging F1 and F2 requires 50 moves)

 M2 = M1&F3

 = 50 +10

 =60

 M3 = M2&F4

 = 60 + 5

 = 65

 M4 = M3&F5

 = 65 + 30

 = 95

 Hence Total time required to moves records is –

 50+60+65+95 = 270

 Different pairing requires different amount of computing

time. The problem can be stated as-

Greedy Method Unit 3

 Design and Analysis of Algorithm 69

 What is the optimal way to pair wise merge n sorted files?

 Or What is the minimum time needed to pair wise merge n

 sorted files?

 We can solved this problem using greedy algorithm. The greedy

 algorithm attempt to find an optimal merge pattern.

 Greedy method for optimal merge pattern:
 Sorts the list of file and at each step merge the two smallest size

 files together.

 Example: The above given problem 1 can be solved as

follows-

 Sort the files according to their number of records.

 (5,10,20,30,30) = (F4,F3,F1,F2,F5)

Merge the first two files-

 (5,10,20,30,30) => (15,20,30,30)

Merge the next two files-

 (15,20,30,30) => (30,30,35)

 Merge the next two files-

 (30,30,35) => (35,60)
 Merge the last two files-

 (35,60) => (95)

 Hence, total time require is 15+35+60+95= 205

 This is the optimal merge pattern for the given problem instance.

 This merging is also called two way merge pattern because each

 merge step involve merging of two files.

The two way merge pattern can be represented by binary merge
 trees. For the above problem1 the binary merge tree representing

the optimal merge pattern is as follows-

Greedy Method Unit 3

 Design and Analysis of Algorithm 70

.

Here the leaf nodes are given as square and represent the five

given files. These nodes are called external nodes. The remaining

nodes are drawn as circle and is called internal nodes. Each
internal node has exactly two children and it represent file

obtained by merging the files represented by its two children. The

 number in the each node is the length (i.e the number of records)

of the file represented by that record.

 Fig 3.1 Binary merge tree representing a merge pattern.

Here a node at level i is at a distance of i -1 from the root (In the

above tree x4 is at a distance 3 from root z4).

If di is the distance from the root to external node for a file xi and qi

is the length of the file xi , then the total number of records move

for the binary merge tree is-

 ∑ i=1..n di gi

This sum is called the weighted external path length of the tree. An

optimal two way merge pattern is minimum weighted external path

length of a binary merge tree.

95

35

15 30 20

60

30

10 5

Z4

Z3
Z2

X3 X4

Z1

X5 X1 X2

Greedy Method Unit 3

 Design and Analysis of Algorithm 71

CHECK YOUR PROGRESS
5. How does the greedy choice property applied in

optimal merge pattern problem?

6. True/False

 i. Optimal merge pattern is also called two way merge pattern.

 ii. In optimal merge pattern, in each step two largest files are

merged.

3.9 MINIMUM SPANNING TREE

Before going to the definition of the minimum spanning tree let us

define what a spanning tree is :
Spanning tree:
A spanning tree is a connected graph, say G = (V, E) with V as

set of vertices and E as set of edges, is its connected acyclic sub-

graph that contain all the vertices of the graph.

Now the minimum spanning tree can be defined as:
Minimum spanning tree:
A minimum spanning tree T of a positive weighted graph G is a

minimum weighted spanning tree in which total weight of all edges
are minimum
w(T) = ∑ w (u, v) is minimized.
 (u,v) € T

 Where w(u, v) is the cost of the edge (u, v).

For example;

Let us consider connected graph G given in fig

Greedy Method Unit 3

 Design and Analysis of Algorithm 72

Fig. 3.2 A Connected graph G

Now, the minimum spanning trees are for the graph G is-

 Fig. 3.3 A spanning tree for the graph G

Application of Minimum spanning tree:

i. In design of electric circuit network .

ii. It is used in traveling salesman problem.

The minimum spanning tree problem is the problem of finding a

minimum spanning tree for a given weighted connected graph

 There are two algorithms to solve minimum spanning tree problem
1. Kruskal algorithm

2. Prim algorithm

a

b

f

e

d

c

4

2

6

3

5

1

2
6

3

a

b

f

e

d

c
2

3

1

2
6

Greedy Method Unit 3

 Design and Analysis of Algorithm 73

The general approaches of these algorithms are-

 The tree is built edge by edge.
 Let T be the set of edges selected so far.
 Each time a decision is made. Include an edge e to T s.t.

 Cost (T) + w (e) is minimized, and T U {e} does not create

 a cycle.

Both these algorithms are greedy algorithm. Because at each step

of an algorithm, one of the best possible choices must be made.

The greedy strategy advocates making the choice that is best at

the moment. Such a strategy is not generally guaranteed to
globally optimal solution to a problem.

3.10 PRIM’S ALGORITHM

The prim’s algorithm uses greedy method to build the sub-tree

edge by edge to obtain a minimum cost spanning tree. The edge

to include is chosen according to some optimization criterion.
Initially the tree is just a single vertex which is selected arbitrarily

from the set V of vertices of a given graph G. Next edge is added

to the tree by selecting the minimum weighted edge from the

remaining edges and which does not form a cycle with the earlier

selected edges. The tree is represented by a pair (V’, E’) where V’

and E’ represent set of vertices and set of edges of the sub-tree of

minimum spanning tree.

The algorithm is as follows-
The algorithm continuously increases the size of a tree, one edge

at a time, starting with a tree consisting of a single vertex, until it

finds all vertices.

 Input: A non-empty connected weighted graph with

vertices V and edges E (the weights are positive).

Greedy Method Unit 3

 Design and Analysis of Algorithm 74

 Initialize: V’ = {x}, where x is an arbitrary node (starting

point) from V,

 E’ = { }

 Repeat until V’ = V;
 Choose an edge (u, v) with minimal weight such that u is in

V’ and v is not in V’ (if there are multiple edges with the

same weight, any of them may be picked)
 Add v to V’ and (u, v) to E’ if edge (u, v) will not make a

cycle with the edges already in E’.

 Output: V’ and E’ describe a minimal spanning tree

Example:
Let us consider the following graph G.

 Fig. 3.4 Prim’s algorithm applied on the Graph G

Initially vertex a is selected. So, V’ will contain a.

d

c
b

a

f

h g

4

e

4

1

5 6

6

10

5

2

9

6

3

Greedy Method Unit 3

 Design and Analysis of Algorithm 75

Fig. 3.5 Vertex a is selected

V’ = {a}

E’ = Ø

After first iteration, the minimum weight edge connected a and

other vertices of V is selected. In this case from vertex a there are

two edges ab and ad to vertex b and d.

Fig. 3.6 Finds the minimum weighted edge

Between ab and ad weight of ab is minimum. Hence, after first
iteration vertex b is include to V’ and edge ab is included to E’.

d

c
b

a

f

h g

4

e

4

1

5 6

6

10

5

2

9

6

3

d

c
b

a

f

h g

4

e

4

1

5 6

6

10

5

2

9

6

3

d

c
b a

f

h g

4

e

4

1

5 6

6
10

5

2

9
6

3

Greedy Method Unit 3

 Design and Analysis of Algorithm 76

Fig. 3.7 Minimum weighted edge selected

 V’ = {a, b}

 E’ ={ ab }

In the next iteration we select the minimum weight edge, which

does not make a cycle with previously selected edges in E’, from
the edges not included in E’ and edges connected one vertex

from V’ and another vertex not in V’. Here edges from a and b to

any other vertex. Here, edges are ad, bd, be, bc from which we

can select the minimum weight edge.

Fig. 3.8 Finds the minimum weighted edge

d

c
b

a

f

h g

4

e

4

1

5 6

6

10

5

2

9

6

3

d

c
b

a

f

h g

4

e

4

1

5 6

6

10

5

2

9

6

3

Greedy Method Unit 3

 Design and Analysis of Algorithm 77

Here, weight of bc is minimum and it does not make a cycle with

ab. Thus bc is selected in this iteration.

Fig. 3.9 Minimum weighted edge selected

 V’ = { a, b, c }

 E’ = { ab, bc }

In the next iteration we can consider the edges that have a,b or c

as one of the vertex . Here the edges are ad, bd, be, ce, cf. we

can not consider ab and bd because they are already selected.

Fig. 3.10 Finds minimum weighted edge

d

c
b

a

f

h g

4

e

4

1

5 6

6
10

5

2

9
6

3

d

c
b a

f

h g

4

e

4

1

5 6

6
10

5

2

9
6

3

Greedy Method Unit 3

 Design and Analysis of Algorithm 78

 From these edges weight of bd is minimum and it does not make

a cycle with the edge in E’. Thus bd is selected.

Fig. 3.11 Minimum weighted edge selected

 V’ = { a, b, c, d }

 E’ = { ab, bc, bd }

 In the next iteration we consider the edges (excluding already
selected edges) that have a, b, c, d as one vertex. Here edges are

ad, be, ce, cf, de, dh, dg.

Fig. 3.12 Finds Minimum weighted edge

The weight of dg is minimum and it does not make a cycle with the

edges in E’. Thus dg is selected.

d

c
b a

f

h g

4

e

4

1

5 6

6
10

5

2

9
6

3

d

c
b a

f

h g

4

e

4

1

5 6

6
10

5

2

9
6

3

Greedy Method Unit 3

 Design and Analysis of Algorithm 79

Fig. 3.13 Minimum weighted edge selected

 V’ = { a, b, c, d, g }

 E’ = { ab, bc, bd, dg }

In the next iteration considered edges are ad, be, de, gh, dh, ce, cf

.

Fig. 3.14 Finds Minimum weighted edge

Among these edges weight of gh is minimum and it does not

make any cycle with already selected edges in E’. Thus, gh is
selected.

d

c
b a

f

h g

4

e

4

1

5 6

6
10

5

2

9
6

3

d

c
b a

f

h g

4

e

4

1

5 6

6
10

5

2

9
6

3

Greedy Method Unit 3

 Design and Analysis of Algorithm 80

Fig. 3.15 Minimum weighted edge selected

 V’ = { a, b, c, d, g, h }

 E’ = { ab, bc, bd, dg, gh }

In the next iteration consider the edges that has one vertex from V’

and connect another vertex excluding already selected edges.

Here edges are ad, be, ce, cf, de, dh, hf.

Fig. 3.16 Finds Minimum weighted edge

Among these weight ad and ce are minimum. If select ad then it
make a cycle with the already selected edge ab and bd of E’. So,

d

c a

f

h g

4

e

4

1

5 6

6
10

5

2

9
6

3

b

d

c a

f

h g

4

e

4

1

5 6

6
10

5

2

9
6

3

b

Greedy Method Unit 3

 Design and Analysis of Algorithm 81

ad can not be selected. If we select ce it will not make a cycle with

the edges of E’.

Thus ce is selected.

Fig. 3.17 Minimum weighted edge selected

 V’ = { a, b, c, d, e, g, h }

 E’ = { ab, bc, bd, dg, gh, ce }

In the next iteration considered edges are ad, be, de, dh, cf, hf.

Fig. 3.18 Finds Minimum weighted edge

d

c a

f

h g

4

e

4

1

5 6

6
10

5

2

9
6

3

b

d

c a

f

h g

4

e

4

1

5 6

6
10

5

2

9
6

3

b

Greedy Method Unit 3

 Design and Analysis of Algorithm 82

Among these weight of ad is minimum. But it makes a cycle with

already selected edges ad and ab. So, ad is rejected. Next

minimum weight is of edge de, be and hf. But this two edges will

also make cycle. So de and be are also rejected. hf will not make
a cycle. Thus hf is considered.

Fig. 3.19 Minimum weighted edge selected

 V’ = { a, b, c, d, e, f, g, h }
 E’ = { ab, bc, bd, dg, gh, ce, hf }

Next, the edges be, de, cf ,ad, dh can not included to form the

tree because they make a cycle with already selected edges.

Hence the final spanning tree is-

Fig. 3.20 Final spanning tree of graph G

d

c
b

a

f

h g

4

e

4

1
6

5

2

3

d

c
b a

f

h g

4

e

4

1

5 6

6
10

5

2

9
6

3

Greedy Method Unit 3

 Design and Analysis of Algorithm 83

3.11 KRUSKAL ALGORITHM

Another method of finding minimum spanning tree is Kruskal

algorithm. In this algorithm the edges of the graph are considered

in non decreasing order. The result is a forest of trees that grows

until all the trees in a forest (all the components) merge in a single

tree.

The algorithm is as follows-

 create a forest F (a set of trees), where each vertex in the

graph is a separate tree
 create a set S containing all the edges in the graph

 while S is nonempty and F is not yet spanning
 remove an edge with minimum weight from S

 if that edge connects two different trees, then add it to the

forest, combining two trees into a single tree

 otherwise discard that edge.

Example:
 Let us consider the following graph-

 Fig. 3.21 Krushkal algorithm applied on graph G

Greedy Method Unit 3

 Design and Analysis of Algorithm 84

Initially there are 8 vertices. So initially there are 8 trees in the

forest F and S contains all the edges in the graph.

 F = a b c d e f g h

 S = ab, bc, ad, ae, be, ce, dh, cg, ef, fg, he

In the first iteration we consider the smallest weight edge from the

set S. If the both vertex of the edge connect two different trees in

the forest F then that edge is selected and combined the two trees

into a single tree. Here, in first iteration weight of fg edge is 1,

which is minimum. It connects two vertices f and g. In the forest F,

f and g belongs to two separate tree. Thus, fg edge is selected

and fg is removed from the set S and f and g trees are combined

into a single tree fg in F.

Fig. 3.22

 F = a b c d gf e h

 S = ab, bc, ad, ae, be, ce, dh, cg, ef, he

In the second iteration, after removing fg edge form S we consider

the minimum weight edge from the new set S i.e from remaining

edges we consider the minimum weight edge. Next the minimum
weight edges are ab and dh. Each of which has weight 2. We can

consider any one of the edge. Because for each edges their

Greedy Method Unit 3

 Design and Analysis of Algorithm 85

connected vertices belongs to two different tree. Let us select the

edge ab. Thus,

Fig. 3.23

 F = ab c d gf e h

 S = bc, ad, ae, be, ce, dh, cg, ef, he

In third iteration minimum weight edge in S is dh of weight 2. Now

vertex d and h of edge dh belongs to two different tree. Hence, we

can select edge dh. Thus, F and S becomes

Fig. 3.24

Greedy Method Unit 3

 Design and Analysis of Algorithm 86

 F = ab c dh gf e

 S = bc, ad, ae, be, ce, cg, ef, he

In fourth iteration from the remaining edges set S minimum edge is

ad of weight 3.Now the vertices a and d belongs to two different

tree ab and dh respectively in F. So. Edge ad is selected. Now

,

Fig. 3.25

F = abdh c gf e

 S = bc, ae, be, ce, cg, ef, he

Now, in next iteration the minimum weight edge in S is ae. Here a

and e belongs to two different tree abdh and e respectively in F.

Hence, ae is selected and removed from S and two tree combined

to a single tree abdhe. Thus,

Greedy Method Unit 3

 Design and Analysis of Algorithm 87

Fig. 3.26

F = abdhe c gf

 S = bc, be, ce, cg, ef, he

In next iteration minimum weight edge in S is he of weight 5. Now,

h and e belongs to same tree abdhe. So, edge he is not selected.

Simply remove he from S. So, S becomes

 S = bc, be, ce, cg, ef

Now, from S the minimum weight edges are be and ce of weight 7

in each. For edge be , b and e is from same tree abdhe in F. So,

be can’t selected. So, this be remove from S.

 S = bc, ce, cg, ef
 We can select ce because c and e belongs to two different tree in

F. Hence

Greedy Method Unit 3

 Design and Analysis of Algorithm 88

 Fig. 3.27

F = abcdeh gf

 S = bc, cg, ef

In next iteration minimum weight edge is bc of weight 8.We can’t

consider bc because b and c is in same tree in F. Thus

 S = cg, ef

Next minimum weight edge in S is ef. Edge ef can selected

because vertices e and f belongs to two different trees in F. Thus

Fig. 3.28

 F = abcdefgh

 S = cg

Greedy Method Unit 3

 Design and Analysis of Algorithm 89

In next iteration edge is cg. Edge cg is not selected because

vertices c and g is in one tree in F. Hence the final tree is-

Fig. 3.29 Final tree of graph G

 F = abcdefgh

 S = nil

CHECK YOUR PROGRESS

7. What is minimum spanning tree?

8. What are the algorithms to solve minimum spanning tree

problem ?

3.12 DIJKSTRA’S ALGORITHM

Shortest path problem:
For a given weighted and directed graph G= (V, E), the shortest
path problem is the problem of finding a shortest path between

any two vertex v ϵ V in graph G. The property of the shortest path

is such that a shortest path between two vertices contains other

Greedy Method Unit 3

 Design and Analysis of Algorithm 90

shortest path within it i.e any other sub-path of a shortest path is

also a shortest path.

Single source shortest path problem:
 In a single source shortest path problem , there is only one source

vertex S in the vertex set V of graph G=(V, E). Now this single

source shortest path problem finds out the shortest path from the

source vertex S to any other vertex in v € V.

Optimal substructure of a shortest path:
Optimal substructure of a shortest path can be stated that any

other sub-path of a shortest path is also a shortest path. Here is

the lemma-

Lemma:
 Given a weighted directed graph G=(V, E) with weight function

w: E -> R, let p = (v1,v2 ----, vk) be a shortest path from vertex v1

to vertex vk, and for any i and j such that 1 ≤ i ≤ j ≤ k,

let Pij = (v1,vi+1, ------,vj) be the sub-path of P from vertex vi to

vertex vj. Then Pij is a shortest path from vi to vj.

Dijsktra algorithm solves the single source shortest path problem.

But the algorithm works only on a directed and positive weighted
graph. Positive weighted graph means where weights of all edges

are non negative i.e G=(V, E) is a positive weighted graph then

w(u, v) ≥ 0. Dijsktra algorithm is a greedy algorithm.

Dijkstra algorithm is as follows-

For a given graph G=(V, E) and a source vertex s, it maintains a

set F of vertices .Initially no vertex is in F. For a vertex u ϵ V - F,

(i.e for a vertex which is in V, but is not in F) if it has minimum
shortest distance from source s to u then u is added to F. This

process is continue till V - F is not equal to null.

Greedy Method Unit 3

 Design and Analysis of Algorithm 91

DIJKSTRA(G, w, s)

1. INITIALIZE_SINGLE_SOURCE(G,s)

 1.1 for each vertex v € V[G]
 1.2 do d [v] = ∞

 1.3 Π [v] = NIL

 1.4 d [s] = 0

2. F = Ø

3. Q = V [G]

4. while Q != Ø

5. do u = EXTRACT_MIN(Q)

6. F = F U {u}

7. for each vertex v € Adj [u]
8. do RELAX (u, v, w)

 8.1 if d [v] > (d [u] + w(u, v))

 8.2 then d [v] = d [u] + w(u, v)

 8.3 Π [v] = u;

In line 1 (from line 1.1 to 1.4) initialize the value of d and π . Here

d [v] means distance from source to vertex v and π [v]

means parent of vertex v. Initially source to source

distance is 0. So, d [s] = 0 . Also for all vertices v € V ,

d[v] is set as ∞ and π [v] as NIL.
 In line 2 it initializes set F to empty set as initially no vertex is

 added to it.

In line 3 Q is a min-priority queue and initially it contains all

 vertices set V[G] of graph G.

In line 4 the while loop of line 4-8 will continue until the min-priority

 queue Q become empty.

In line 5 it extracts the minimum distance vertex u from source s

 i.e u € V - F for which d [u] is minimum.

In line 6 u is added to F.
In line 7-8 (from line 8.1 to 8.3) for all vertex v which is adjacent

to u , calculate the distance to v through vertex u. If this

Greedy Method Unit 3

 Design and Analysis of Algorithm 92

value is less than d[v] then update d [v] to this new value.

Make parent of v, π [v] = u.

3.12.1 Example:
 Apply dijkstra algorithm for the following graph G.

 Fig. 3.30 Dijkstra algorithm applied on G

 Initially

d[s]=0;

[s]=NIL;

And distance of all other vertices set as ∞.

 d[a]= ∞, π [a]=NIL;

 d[b]= ∞, π [b]=NIL;
 d[c]= ∞, π [c]=NIL;

 d[d]= ∞, π [d]=NIL;

s is added to F.

 F={s}

Greedy Method Unit 3

 Design and Analysis of Algorithm 93

Fig. 3.31

In 2nd iteration

Adj[s]={a, b} and they are not in F.

 Now d[a]=d[s]+w(s,a)

 =0+10

 =10

 This new d[a] value is less than previous d[a] value i.e

10<∞

 Hence d[a] is updated to 10

 d[a]=10;
 π [a]=s;

 Similarly d[b]=d[s]+w(s,b)

 =0+5

 =5<previous d1[b]

 =5<∞

 d[b]=5;

 π [b]=s;

 and d[c]=∞, π [c]=NIL;

 d[d]=∞, π [d]=NIL;

Greedy Method Unit 3

 Design and Analysis of Algorithm 94

 Fig. 3.32

Now, among these d[a],d[b],d[c],d[d] minimum value is d[b]i.e

distance of vertex b is minimum from source.

 Hence b is added to F

F={s,b}

Fig. 3.33

In 3rd iteration,

 Adj[b]={a,c,d} and they are not in F

For vertex a,

 d[a]=d[b]+w(b,a)

 =5+3

 =8< previous d[a]

Greedy Method Unit 3

 Design and Analysis of Algorithm 95

 =8<10

 Hence,

 d[a]=8;

 π [a]=b;

For vertex c

 d[c]=d[b]+w(b,c)

 =5+9

 =14< previous d[c]

 =14<∞

 d[c]=14;

 π [c]=b;

For vertex d
 d[d]=d[b]+w(b,d)

 =5+2

 =7< previous d[d]

 =7<∞

 d[d]=7;

 π [d]=b;

 Fig. 3.34

Now among d[a],d[c],d[d] the minimum d value is d[d]

So, vertex d is added to F.

Greedy Method Unit 3

 Design and Analysis of Algorithm 96

 F={s,b,d}

 Fig. 3.35

In 4th iteration

Adj[d]={c} and c is not in F

Now d[c]=d[d]+w(d,c)

 = 7+6
 =13< previous d[c]

 =13<14

 d[c]=13;

 π [c]=d;

And d[a]=8;

 π [a]=s;

Fig. 3.36

Greedy Method Unit 3

 Design and Analysis of Algorithm 97

Now the minimum of d[a] and d[c] is d[a].

So, vertex a is added to F

F={s,b,d,a}

Fig. 3.37

In 5th iteration last added vertex is a.

Adj[a]={b,c},

Here c is not in F. But b is in F i.e b is already selected.
So, we will consider vertex c only.

 d[c]=d[a]+w(a,c)

 =8+1

 =9< previous d[c]

 So, d[c]=9

 π [c]=a

Fig. 3.38

Greedy Method Unit 3

 Design and Analysis of Algorithm 98

Hence c is added to F

 F={s,b,d,a,c}

Fig. 3.39

 There is no vertex to added in F.So, the algorithm terminate here.

CHECK YOUR PROGRESS
9. What is single source shortest path problem?

10. True/False

i. In Dijkstra algorithm there are two source vertices.

ii. Dijkstra algorithm can solve shortest path problem.

3.13 LET US SUM UP

 Greedy algorithm is typically used in optimization problem.

 Optimal solution finds a given objective function which

value is either maximizes or minimizes.

 A greedy algorithm always makes the choice that looks

best at the moment. That is it makes a locally optimal

choice that may be lead to a globally optimal solution.

Greedy Method Unit 3

 Design and Analysis of Algorithm 99

 In Greedy algorithm choice is made that seems best at the

moment and solve the sub-problems after the choice is

made.

 Greedy algorithm progress in a top down manner,

 A problem is said to have optimal substructure if an optimal

solution can be constructed efficiently from optimal solution

to its sub-problem.

 Knapsack problem: There are n items, ith item is worth vi

dollars and weight wi pounds, where vi and wi are integers.

Select item to put in knapsack with total weight is less than
W, So that the total value is maximized

 There are two types of knapsack problem.
i. 0-1 knapsack problem

 ii. fractional knapsack problem:
 In 0-1 knapsack problem each item either be taken or left

 behind.
 In fractional knapsack problem fractions of items are

allowed to choose.

 the fractional knapsack problem is solvable by greedy

strategy, but 0-1 knapsack problem are not solvable by
greedy algorithm.

 In the job sequencing with deadline problem, a feasible

solution is a subset of job J such that each job is

completed by its deadline and optimal solution is a feasible

solution with a maximum profit.

 the optimal way to pair wise merge n sorted files

 A spanning tree is a connected graph , say G = (V, E)
with V as set of vertices and E as set of edges, is its

connected acyclic sub-graph that contain all the vertices of

the graph.

 A minimum spanning tree T of a positive weighted graph G

is a minimum weighted spanning tree in which total weight

of all edges are minimum

Greedy Method Unit 3

 Design and Analysis of Algorithm 100

 Two algorithm to solve minimum spanning tree problem

are- Kruskal algorithm and Prim algorithm

 For a given weighted and directed graph G= (V, E), the
shortest path problem is the problem of finding a shortest

path between any two vertex v € V in graph G.

 In a single source shortest path problem , there is only one

source vertex S in the vertex set V of graph G=(V, E).

3.14 ANSWERS TO CHECK YOUR
PROGRESS

CHECK YOUR PROGRESS – 1
 1. a) True, b) True

 2. A problem is said to have optimal substructure if an optimal

solution can be constructed efficiently from optimal solution to its

sub problem.

3. i)Greedy choice ii) Optimal substructure
4. i. True ii. False

5. According to greedy choice property at each step it looks for its

best solution in the current set. In optimal merge pattern sorts the

list of file and at each step merge the two smallest size files(best

choice at that moment) together from the current file sets.

6. i. True ii. False

7. A minimum spanning tree T of a positive weighted graph G is a

minimum weighted spanning tree in which total weight of all edges
are minimum

w(T) = ∑ w (u, v) is minimized.
 (u,v) € T

 Where w(u, v) is the cost of the edge (u, v).

8. Prim’s algorithm and Kruskal algorithm

Greedy Method Unit 3

 Design and Analysis of Algorithm 101

9. Single source shortest path problem of graph G=(V, E) is to

finds out the shortest path from the only source vertex S to any

other vertex in v € V. Here,only one source vertex S in the vertex

set V

10. i. False ii. True

3.15 FURTHER READINGS

 T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein,
"Introduction to Algorithms", Second Edition, Prentice Hall of India
Pvt. Ltd, 2006.

 Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran,
Computer Algorithms/ C++, Second Edition, Universities Press,
2007.

3.16 MODEL QUESTIONS

1. What is optimal substructure?

2. What is greedy strategy?

3. Write briefly about knapsack problem. Explain with an example

that greedy algorithm does not work for 0-1 knapsack

problem.

4. What is optimal substructure for 0-1 knapsack and fractional

knapsack problem?

5. Consider the following job sequencing problem. Find the

feasible solution set.

Job 1 2 3 4
Profit 10 20 15 5

 Deadline 2 3 3 2

6. What is minimum spanning tree? Find the minimum spanning

tree for the following graph using Prim’s and Kruskal algorithm.

Greedy Method Unit 3

 Design and Analysis of Algorithm 102

7. Find out the shortest path using Dijkstra algorithm for the

following graph

8. “A globally optimal solution can be arrived at by making a

 locally optimal choice “. Explain briefly.

a

e

d
c

b
7

1

3

2

5

4

1

source

a

e

d
c

b
7

1

3

3

5

2

1

Dynamic Programming Unit 4

Design and Analysis of Algorithm 103

UNIT - 4DYNAMIC PROGRAMMING

UNIT STRUCTURE

4.1 Learning Objectives
4.2 Introduction
4.3 General Strategy
4.4 Multistage Graphs
4.5 Optimal Binary Search Tree
4.6 0/1 Knapsack Problem using Dynamic Programming
4.7 Travelling Salesman Problem
4.8 Flow Shop Scheduling
4.9 Let Us Sum Up
4.10 Further Readings
4.11 Answers to Check Your Progress
4.12 Model Questions

4.1 LEARNINGOBJECTIVES

After goingthrough this unit, you will be able to:

 understand the concept of Dynamic Programming

 solve problems using dynamic programming approach

 get familiarize with optimality conditions

4.2 INTRODUCTION

Intheprecedingunits,wehaveseensomeelegantdesignprinciplessuch
asdivide-and-conquer, greedy algorithm-
thatyielddefinitivealgorithmsfor avariety ofimportant
computationaltasks.Thedrawbackofthesetechniquesisthattheycano
nlybeusedonveryspecific typesofproblems.In this unit, we will
introduce you the dynamic programming technique. We will
concentrate on elaborating 0/1 Knapsack problem and travelling
salesman problem in this unit.

Dynamic Programming Unit 4

Design and Analysis of Algorithm 104

4.3GENERAL STRATEGY

The first step in solving an optimization problem by dynamic
programming is to characterize the structure of an optimal solution.
A problem issaid to possess an optimal substructure if an optimal
solution to the problem contains within the optimal solutions of its
sub-problems. Whena problem exhibits optimal substructure, is a
good clue that dynamic programming might apply. In dynamic
programming, we build an optimal solution to the problem from
optimal solutions of its sub-problems. Consequently, we must take
care that, the range of sub-problems we consider includes those
sub-problemswhich are used in the optimal solution.Some
important concept of dynamic programming are :

Stage of a Problem

The dynamic programming problem can be divided in to a
sequence of smaller sub-problems called stages of the original
problem.

State of a Problem

The condition of decision process at a stage is called its state. The
decision variable which specify the condition of decision process at
a particular stage is called state variable.

Principle of Optimality

A problem is said to satisfy the Principle of Optimality if the sub-
solutions of an optimal solution of the problem are themselves
optimal solutions for their sub-problems. For examples: The
shortest path problem satisfies the Principle of Optimality. This is
because if a,x1,x2,...,xn,b is a shortest path from node a to node b
in a graph, then the portion of xi to xj on that path is a shortest path
from xi to xj.

Characteristics of Dynamic Programming

i) The Problem can be divided into stages, with a policy
decision at each stage

ii) Each stage consist of a number of states associated with it
iii) Decision at each stage convert the current stage in to a

state associated with next stage.
iv) The state of the system at a stage is described by state

variable.
v) When the current state is known, an optimal policy for the

remaining stages is independent of the policy of the
previous ones.

vi) The solution procedure begins by finding the optimal
solution of each state from the optimal solutions of its
previous stage.

Dynamic Programming Unit 4

Design and Analysis of Algorithm 105

Steps of Dynamic Programming

Dynamic programming design involves 4 major steps:

1. Develop a mathematical notation that can express any
solution and sub-solution for the problem at hand.

2. Prove that the Principle of Optimality holds.
3. Develop a recurrence relation that relates a solution to its

sub-solutions, using the mathematical notation of step 1.
Indicates the initial values for that recurrence relation, and
terms that signifies the final solution.

4. Write an algorithm to compute the recurrence relation.

4.4MULTISTAGE GRAPHS

A multistage graph G = (V, E)is a directed graph in which the
vertices are partitioned into k ≥ 2 disjoint sets Vi, 1 ≤ i ≤ k. In
addition, if <u,v> is an edge in E, then u∈ Vi and v∈ Vi+1 for some i,
1≤i ≤ k. The set V1 and Vk are such that |V1| = |Vk| = 1. Let s and t
respectively, be the vertices in V1 and Vk. The vertex s is the
source and t the sink. Let c(i , j) be the cost of edge <i,j>. The
cost of a path from s to t is the sum of the costs of the edges on
the path. The multistage graph problem is to find a minimum-
costpath from s to t. Each set Vi defines a stage in the graph.
Because of the constraints on E, every path from s to t starts in
stage 1, goes to stage 2, then to stage 3 and so on until it
terminates at stage k. Fig 4.1 shows a five-stage graph. A
minimum-cost path from s to t is indicated by the broken edges in
the figure.

Fig 4.1 Five stage graph

A dynamic programming formulation for a k-stage graph problem is
obtained by noticing the fact that, every path from s to tconsistof a
sequence of k-2 decisions. The ith decision involves determining
which vertex in Vi+1, 1 ≤ i ≤ k-2, is to be on the path. It is easy to
see that the principle of optimality holds for this problem. Let p(i, j)
be a minimum cost path from vertex j in Vi to vertex t. Let cost(i,
j)be the cost of this path. Then using the forward formulation
approach, we obtain:

Dynamic Programming Unit 4

Design and Analysis of Algorithm 106

 cost(i, j) =
Elj

Vil
MIN

,
1

 { c(j, l) + cost (i+1, l)} (Eq 4.1)

Since cost(k-1, j) = c(j, t), if <j,t>∈ E and cost(k-1, j) = α, if
<j,t>∉E, the above equation may be solved for cost (1,s) by first
computing cost(k-2, j) for all j∈Vk-2, then cost(k-3, j) for all j∈Vk-3,
etc. and finally cost (1,s)

For the above algorithm we need to index the vertices of V from 1
to n. Indices are assigned according to stages. First index 1 is
assigned to s, then the vertices in V2 are indexed, then vertices in
V3, and so on, vertex t has index n.

The multistage graph problem can also be solved using the
backwardapproach. Let bp(i,j) be a minimum-cost path from vertex
s to a vertex jin Vi. Let bcost(i,j) be the cost of bp(i,j). From the
backward approach weobtain

 bcost(i, j) =
Elj

Vil
MIN

,
1

 { c(j, l) + bcost (i-1, l)} (Eq 4.2)

Algorithm Graph_sortest_path (Graph G, k, n, p[])

Step 1: cost[n] = 0.0
Step 2: for j= n-1 to 1

 //let r be a vertex such that <j,r> is an edge of G
 //and c[j][r] + cost [r] is minimum;

Step 3: cost[j] = c[j][r] + cost [r]
Step 4: d[j]=r;
Step 5: end for
Step 6: p[1]=1, p[k] =n
Step 7: for j=2 to k-1
Step 8: p[j]= d[p[j-1]]
Step 9: end for

Algorithm BGraph_sortest_path (Graph G, k, n, p[])

Step 1: bcost[1] = 0.0
Step 2: for j= 2 to n

 //let r be a vertex such that <r, j> is an edge of G
 //and c[r][j] + bcost [r] is minimum;

Step 3: bcost[j] = c[r][j] + bcost [r]
Step 4: d[j]=r;
Step 5: end for
Step 6: p[1]=1, p[k] =n
Step 7: for j=k-1 to 2
Step 8: p[j]= d[p[j +1]]
Step 9: end for

Dynamic Programming Unit 4

Design and Analysis of Algorithm 107

Since bcost(2,j) = c(1, j) if (1,j)∈E and bcoat(2,j) = ∞ if (1,j)∉
E,bcost(i,j) can be computed using (4.2) by first computing bcost
for i = 3,then for i = 4, and so on.

All-pairs shortest paths

Ifwewantto find the shortest pathnotjust betweensandt
butbetweenall pairs of vertices then,oneapproachwouldbeto
execute our generalshortest-path algorithmfrom |V| times, oncefor
eachstartingnode. The totalrunningtime wouldthen beO(|V|2|E|).
We'llnowseeabetteralternative, theO(|V|3)dynamicprogramming-
basedFloyd-Warshall algorithm.

Finding a better algorithm by using dynamic programming
approach, the first question came to our mind is that, whether a
better sub-problem exists for
computingdistancesbetweenallpairsofverticesin agraph?
Simplysolvingtheproblemformoreandmorepairsorstartingpointsis
unhelpful,becauseit leadsrightbacktotheO(|V|2|E|)algorithm.

Oneidea comesto mind isthat, the shortest pathu w1 ….
wl vbetweenuandvusessomenumberof intermediate
nodespossiblynone.
Supposewedisallowintermediatenodesaltogether.
Thenwecansolveall-
pairsshortestpathsatonce,theshortestpathfromuto vis simplythe
directedge(u, v), if it exists. Now let
usgraduallyexpandthesetofpermissibleintermediate nodes.
Wecandothisonenodeatatime,updatingtheshortestpathlengths
ateachstage. Eventuallythissetgrowsto allofV, atwhichpointallthe
verticesareallowedtobeonallpaths, andwehavefound
thetrueshortestpathsbetweenverticesof thegraph.

Moreconcretely, numbertheverticesin Vas {1, 2,3 ….,n},
andlet dist(i;j;k)denotethelengthoftheshortestpathfrom
itojinwhichonlynodes {1,2,…,k} canbeusedasintermediates.
Initially,dist(i;j;0)isthelengthofthedirectedgebetween i andj, ifit exist,
andis α otherwise.

Ifweexpandtheintermediatesettoinclude
anextranodek,wemustreexamineallpairs
i,jandcheckwhetherusingkasanintermediatepointgivesusashorterpa
thfrom i toj. Butthisis easy:ashortestpathfrom i
tojthatuseskalongwithpossiblyother lower
numberedintermediatenodesgoesthroughkis justonce.
Andwehavealreadycalculatedthelength oftheshortestpathfromi
tokandfromktojusingonly lowernumbered vertices.

Fig 4.2 Computing Path

Dynamic Programming Unit 4

Design and Analysis of Algorithm 108

Thus, usingkgivesusashorterpathfromi tojifandonlyif

dist(i, k, k-1)+dist(k, j, k-1) <dist(i;j;k 1);
inwhichcasedist(i, j, k)shouldbeupdatedaccordingly.
HereistheFloyd-Warshallalgorithm – andit takesO(|V|3)time.

Single Source Shortest Path

Problem: Given a directed graph G(V,E) with weighted
edgesw(u,v), define the path weight of a path p as

For a given source vertex s, find the minimum weight paths to
every vertex reachable from s denoted

The final solution will satisfy certain caveats:

 The graph cannot contain any negative weight cycles
(otherwise there would be no minimum path since we could
simply continue to follow the negative weight cycle
producing a path weight of -∞).

 The solution cannot have any positive weight cycles
 The solution can be assumed to have no zero weight

cycles (since they would not affect the minimum value).

Algorithm All Path(cost, n)

Step 1: for i := 1 to n
Step 2: for j :=1 to n
Step 2: dist(I,j,0) := 1;
Step 3: end for
Step 5: end for
Step 4: for all (i, j) ∈ E
Step 5: dist (i, j, 0) = l (i, j)
Step 6: end for
Step 7: for k:=1 to n
Step 8: for i:=1 to n
Step 7: for j :=1 to n
Step 8: dist(i, j,k) = min {dist(i,k,k-1) + dist(k, j, k-1), dist(i,j,k-1)}
Step 9: end for
Step 11: end for
Step 12: end for

Dynamic Programming Unit 4

Design and Analysis of Algorithm 109

Therefore given these caveats, we know that the shortest paths
must be acyclic (with ≤ |V| distinct vertices) ⇒ ≤ |V| - 1 edges in
each path.

We can use this observation on the maximum number of edges on
a cycle-free shortest path to obtain an algorithm to determine a
shortest path from a source vertex to all remaining vertices in the
graph.

Let distl[u] be the length of a shortest path from the source vertex v
to vertex u under the constraint that the shortest path contains at
most l edges. Then, dist1[u] = cost[v,u], 1 ≤ u ≤ n. As noted earlier,
when there are no cycles of negative length, we can limit our
search for shortest paths to paths with at most n - 1 edges. Hence,
distn-1[u] is the length of an unrestricted shortest path from v to u.

Our goal then is to compute distn-1[u] for all u. This can be done
using the dynamic programming methodology. First, we make the
following observations:

1. If the shortest path from v to u with at most k, k > 1, edges has
not more than k - 1 edges, then distk[u] - distk-1[u].

2. If the shortest path from v to u with at most k, k > 1, edges has
exactly k edges, then it is made up of a shortest path from v to
some vertex j followed by the edge (j,u). The path from v to j has k
- 1 edges, and its length is distk-1[j]. All vertices j such that the edge
(j, u) is in the graph are candidates for j. Since we are interested in
a shortest path, the i that minimizes distk-1[i] + cost[i, u] is the
correct value for j.

These observations result in the following recurrence for dist:

distk[u] = min {distk-1[u], min {distk-1[i] + cost[i,u]}}
This recurrence can be used to compute distk from distk-1, for k= 2,
3,... ,n - 1.

Algorithm BellmanFord(v, cost, dist, n)

Step 1: for i := 1 to n do
Step 2: dist[i] := cost[v, i];
Step 3: end for
Step 4: for k := 2 to n - 1 do
Step 5: for each u such that u≠v and u has at least

one incoming edge
Step 6: for each <i, u> in the graph
Step 7: if dist[u] >dist[i] + cost[i,u]
Step 8: dist[u] := dist[i] + cost[i,u];
Step 9: end if
Step 10: end for
Step 11: end for
Step 12: end for

Dynamic Programming Unit 4

Design and Analysis of Algorithm 110

4.5OPTIMAL BINARY SEARCH TREE

A binary search tree is a tree where the key values are stored in
the internal nodes, the external nodes (leaves) are null nodes, and
the keys are ordered lexicographically, i.e. For each internal node
all the keys in the left sub-tree are less than the keys in the node,
and all the keys in the right sub-tree are greater.
When we know the frequency of searching each one of the keys, it
is quite easy to compute the expected cost of accessing each node
in the tree. An optimal binary search tree is a binary search tree
which has minimal expected cost of locating each node. In our
problem, we are not concerned with the frequency of searching for
a missing node. For example:

Node ID 0 1 2 3 4 5

Key A B C D E F

Frequency 4 1 1 2 8 16

Fig 4.3: Optimal Binary search tree ex1.

[2*1 + (1+8)*2 + (4+1+16)*3] = 83
The expected cost of successful search is 83, is computed by
multiplying each frequency by its level (starting w ith the root at 1).
A different tree will have a different expected cost:

Dynamic Programming Unit 4

Design and Analysis of Algorithm 111

Fig 4.4: Optimal Binary search tree ex2
[8*1 + (1+16)*2 + (4+2)*3 + 1 *4] = 64

It's clear that the tree in fig 4.3 is not optimal. - It is easy to see that
the nodes having higher frequencies are closer to the root, then
the tree will have a lower expected cost.

In obtaining a cost function for binary search trees, it is
useful to add a external node in place of every empty sub-tree in
the search tree. If a binary search tree represents n identifiers,
then there will be exactly n internal nodes and n+1 external nodes.

If a successful search terminates at an internal node at
level l, then the expected cost contribution from the internal node
aiis p(i) * level(ai).

Unsuccessful searches terminates the external nodes, let
the unsuccessful searches terminates at node Ei, if the failure node
is at level l, then only l-1 comparisons will be made, so the cost
contribution of this node is q(I) * (level(Ei) -1)

The preceding decision leads to the following formula for
the expected cost of a binary search tree.

 ni1

p(i) * level(ai) +
 ni1

q(i) * (level (Ei) - 1) (Eq 4.3)

We define a optimal binary search tree for the identifier set { a1, a2,
…., an} to be a binary search tree for which Eq 4.3 is minimum.

To solve this problem by dynamic programming we need to view
the construction of such a tree as the result of a sequence of
decisions and then observe that the principle of optimality holds
when applied to the problem state resulting from a decision. A
possible approach to this would be to make a decision as to which
of the ai’s should be assigned to the root of the tree. If we choose
ak, then it is clear that the internal nodes for a1, a2, …., ak-1 as well
as external nodes for the classes E1, E2, …., Ek-1 will be in the left

Dynamic Programming Unit 4

Design and Analysis of Algorithm 112

subtree, l, of the root. The remaining nodes will be in the right
subtree, r. Define

cost(l) =
 ki1

p(i) * level(ai) +
 ki1

q(i) * (level (Ei) - 1)

cost(r) =
 nik

p(i) * level(ai) +
 nik

q(i) * (level (Ei) - 1)

In both cases the level is measured by regarding the root of the
respective subtree to be at level 1.

 Using w(I,j) to represent the sum q(i) + ∑j
l=i+1 (q(l)+p(l)),

we obtain the following as the expected cost of the search tree
 p(k) + cost(l) + cost(r) + w(0, k-1) + w(k, n) Eq4.4

If the tree is optimal then Eq4.4 must be minimum. Hence,
cost(l) must be minimum over all the binary search trees containing
a1, a2, …., ak-1 and E1, E2, …., Ek-1. Similarly cost(r) must be
minimum. If we use c(I,j) to represent the cost of an optimal binary
search tree, tij, containing ai+1, ai+2, …., aj and Ei+1, Ei+2, …., Ej, then
for the tree to be optimal, we must have cost(l) = c(0, k-1) and
cost(r) = c(k,n). In addition k must be choose such that

p(k) + c(0, k-1) + c(k,n) + w(0, k-1) + w(k, n)
is minimum. Hence c(0,n) we obtain

c(0,n) =
nki

min {p(k) + c(0, k-1) + c(k,n) + w(0, k-1) + w(k, n)} Eq 4.5

wegan generalize Eq 4.5 to obtain any c(i,j)

c(i,j) =
jki

min {p(k) + c(i, k-1) + c(k,j) + w(i, k-1) + w(k, j)}

c(i,j) =
jki

min {c(i, k-1) + c(k,j)} + w(i,j) Eq 4.6

Equation 4.6 can be solved for c(0,n) by first computing all
c(i,j) such that j-i=1. Next we can compute all c(i,j) such that j-i =2,
then all c(i,j) with j-i=3, etc. if during this computation we record the
root r(i,j) of each tree tij, then an optimal binary search tree can be
constructed from these r(i,j).

Dynamic Programming Unit 4

Design and Analysis of Algorithm 113

1. State True or False

a) All the problems can be solved by using dynamic
programming technique.

b) To solve a problem by using dynamic programming, the
problem must have to possess principle of optimality.

c) A multistage graph can have a cycle.
d) A optimal binary search tree is a binary search tree which

has minimal expected cost of locating each node

 CHECK YOUR PROGRESS

4.6 0/1 KNAPSACK PROBLEM USING DYNAMIC
PROGRAMMING

In the previous unit, we have discussed about the Knapsack
problem, and found that fractional knapsack problem can be
solved by using greedy strategy. The 0-1 knapsack problem can
only be solved by using dynamic programming. Below we will
discuss methods for solving 0-1 knapsack problem.

The naive way to solve this problem is to cycle through all
2n subsets of the n items and pick the subset with a legal weight
that maximizes the value of the knapsack. But, we can find a
dynamic programming algorithm that will usually do better than this
brute force technique.

Our first attempt might be to characterize a sub-problem as
follows:

Let Sk be the optimal subset of elements from {I0, I1,...Ik}.

But what we find is that the optimal subset from the elements {I0,
I1,... Ik+1} may not correspond to the optimal subset of elements
from {I0, I1,...Ik} in any regular pattern. Basically, the solution to the
optimization problem for Sk+1 might NOT contain the optimal
solution from problem Sk.

To illustrate this, consider the following example:

Dynamic Programming Unit 4

Design and Analysis of Algorithm 114

Item Weight Value
I0 3 10
I1 8 4
I2 9 9
I3 8 11

The maximum weight the knapsack can hold is 20.

The best set of items from {I0, I1, I2} is {I0, I1, I2} but the best
set of items from {I0, I1, I2, I3} is {I0, I2, I3}. In this example, note that
this optimal solution, {I0, I2, I3}, does NOT build upon the previous
optimal solution, {I0, I1, I2}. Instead it builds upon the solution, {I0,
I2}, which is really the optimal subset of {I0, I1, I2} with weight 12.

So, now, let us rework on our examplewith the following
idea:Let B[k, w] represents the maximum total value of a subset Sk
with weight w. Our goal is to find B[n, W], where n is the total
number of items and W is the maximal weight, the knapsack can
carry.

Using this definition, we have B[0, w] = w0, if w ≥ w0.
 = 0, otherwise

Now, we can derive the following relationship that B[k, w] obeys:

B[k, w] = B[k - 1,w], if wk> w
 = max { B[k - 1,w], B[k - 1,w - wk] + vk}

In general:

1) The maximum value of a knapsack with a subset of items
from {I0, I1, ...Ik} with weight w is the same as the maximum
value of a knapsack with a subset of items from {I0, I1, ... Ik-

1} with weight w, if weights of item k is greater than W.
Basically, we can NOT increase the value of our

knapsack with weight w if the new item we are considering
weighs more than W – because it WON'T fit!!!

2) The maximum value of a knapsack with a subset of items

from {I0, I1, ... Ik} with weight w could be the same as the
maximum value of a knapsack with a subset of items from
{I1, I2, ... Ik-1} with weight w, if item k should not be added
into the knapsack.

3) The maximum value of a knapsack with a subset of items

from {I0, I1, ... Ik} with weight w could be the same as the
maximum value of a knapsack with a subset of items from
{I0, I1, ... Ik-1} with weight w-wk, plus item k.

You need to compare the values of knapsacks in both case 2

and 3 and take the maximal one.

Dynamic Programming Unit 4

Design and Analysis of Algorithm 115

Recursively, we will still have an O(2n) algorithm. But, using
dynamic programming, we simply perform in just two loops - one
loop running n times and the other loop running W times.

Here is a dynamic programming algorithm to solve the 0/1
Knapsack problem:

Input: S, a set of n items as described earlier, W the total weight of
the knapsack. (Assume that the weights and values are stored in
separate arrays named w and v, respectively.)

Output: The maximal value of items in a valid knapsack.

int i, k;
for (i=0; i<= W; i++)
 B[i] = 0

for (k=0; k<n; k++)
{
for (i = W; i>= w[k]; i--)

{
if (B[i – w[k]] + v[k]> B[i])

 B[i] = B[i – w[k]] + v[k]
 }
}

Clearly the run time of this algorithm is O(nW), based on the
nested loop structure and the simple operation inside of both
loops. When comparing this with the previous O(2n), we find that
depending on W, either the dynamic programming algorithm is
more efficient or the brute force algorithm could be more efficient.

Let's run through an example:

I Item wi vi
0 I0 4 6
1 I1 2 4
2 I2 3 5
3 I3 1 3
4 I4 6 9
5 I5 4 7

W = 10

Item 0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 6 6 6 6 6 6 6
1 0 0 4 4 6 6 10 10 10 10 10
2 0 0 4 5 6 9 10 11 11 15 15
3 0 3 4 7 8 9 12 13 14 15 18
4 0 3 4 7 8 9 12 13 14 16 18
5 0 3 4 7 8 10 12 14 15 16 19

Dynamic Programming Unit 4

Design and Analysis of Algorithm 116

4.7 TRAVELLING SALESMAN PROBLEM

We have seen how to apply dynamic programming to a subset
selectionproblem (0/1 knapsack). Now we turn our attention to a
permutation problem.Note that permutation problems usually are
much harder to solve thansubset problems as there are n! different
permutations of n objects whereasthere are only 2ndifferent
subsets of n objects (n!> 2n). Let G = (V,E)be a directed graph with
edge costs cij. The variable cijis defined such thatcij> 0 for all i and j
and cij = α if (i,j) ∉ E. Let |V| = n and assumen > 1. A tour of G is a
directed simple cycle that includes every vertex inV. The cost of a
tour is the sum of the cost of the edges on the tour. Thetraveling
salesperson problem is to find a tour of minimum cost.

Different problems can be viewed as the traveling
salesman problem.For example, suppose we have to define the
route a postal van to pick up mail from mail boxes located at n
different sites. If we represent the situation by graphs then the
vertices of the graph will be different cities and the edges of the
graph are the paths between two cities and the weight of a edge
can be the distance between the cities. Our task is to find the route
taken by the postal van is a tour with minimum cost or length.

 In the following discussion, without losing the main concept,
we takethe tour as a simple path that starts and ends at thestarting
vertex. Every tour consists of an edge (1,k) for some k ∈ V - {1}
and a path from vertex k to vertex 1. The path from vertex k to
vertex 1 goes through each vertex in V - {1, k} exactly once. It is
easy to see that if the tour is optimal, then the path from k to 1
must be a shortest k to 1 path going through all vertices in V -
{1,k}. Hence, the principle of optimality holds. Let g(i,S) be the
length of a shortest path starting at vertex i, going through all
vertices in S, and terminating at vertex 1. The function g(1, V - {1})
is the length of an optimal salesman’s tour. From the principal of
optimality it follows that

 g(1, V-{1}) =

nk2
min {c1k + g(k, V - {1, k})}

In general

 g(i, S) =

Sj
min {cij + g(j, S - {j})}

The above equation can be solved for g(1, V - {1}) if we know g(k,
V - {1, k}) for all choices of k. The g values can be obtained by
using this equation. Clearly, g(i, Ø) = cj1, 1≤ i ≤ n. Hence, we can
use this equation to obtain g(i, S) for all S of size 1. Then we can
obtain g(i,S) for S with |S| = 2, and so on. When |S|< n - 1, the
values of i and S for which g(i, S) is needed are such that i ≠ 1, 1∉
S, and i ∉S.

Dynamic Programming Unit 4

Design and Analysis of Algorithm 117

Consider the directed graph of Fig 4.5(a). The edge lengths are
given by matrix c of Fig 4.5(b)

Fig 4.5: Directed graph and Edge matrix c

Thus,

g(2,Ø) = c21 = 5
g(3,Ø) = c31 = 6
g(4,Ø) = c41 = 8.

Using the above equation we obtain
g(2,{3}) = c23+ g(3,Ø) = 15 g(2,{4}) = 18
g(3,{2}) = 18 g(3,{4}) = 20
g(4,{2}) = 13 g(4,{3}) = 15

Next, we compute g(i, S) with |S| =2, i ≠ 1, 1∉ S and i ∉ S.
g(2,{3,4}) = min {c23+g(3,{4}),c24+g(4,{3})} = 25
g(3,{2,4}) = min {c32+g(2,{4}),c34+g(4,{2})} = 25
g(4,{2,3}) = min {c42 + g(2,{3}),c43+ g(3,{2})} = 23

Finally, we obtain
g(1, {2,3,4}) = min {c12+g(2, {3,4}), c13+g(3, {2,4}), c14+g(4, {2, 3})}

= min {35,40,43}
= 35

An optimal tour of the graph of Figure has length 35. A tour of this
length can be constructed if we retain with each g(i, S) the value of
j that minimizes the right-hand side of the graph. Let J(i,S) be this
value. Then, J(1,{2,3,4}) = 2. Thus the tour starts from 1 and goes
to 2. The remaining tour can be obtained from g(2, {3, 4}). SoJ(2,
{3, 4}) = 4. Thus the next edge is (2,4). The remaining tour is for
g(4, {3}). So J(4, {3}) = 3. The optimal tour is 1, 2, 4, 3, 1.

4.8 FLOW SHOP SCHEDULING

Often the processing of a job requires the performance of several
distincttasks. Computer programs run in a multiprogramming
environment areinput and then executed. Following the execution,
the job is queued for outputand the output is eventually printed. In
a general flow shop we may have n jobs each requiring m tasks
T1i,T2i,... ,Tmi, 1 ≤i≤ n, to be performed.Task Tji is to be performed
on processorPj 1< j < m . The time requiredto complete task Tji is
tji. A schedule for the n jobs is an assignment of tasksto time
intervals on the processors. Task Tji must be assigned to

Dynamic Programming Unit 4

Design and Analysis of Algorithm 118

processorPj. No processor may have more than one task assigned
to it in any timeinterval. Additionally, for any job i the processing of
task Tji, j > 1, cannotbe started until task Tj-1,i has been completed.
For exampleTwo jobs have to be scheduled on three processors,
the task times are given by the matrix J

Two possible schedules for the jobs are shown in Figure 4.6

Fig 4.6: Two possible schedules for above example

A non-preemptive schedule is a schedule in which the

processing of a task on any processor is not terminated until the
task is complete. A schedule for which this need not be true is
called preemptive. The schedule of Fig 4.6 (a) is a preemptive
schedule. Fig 4.6(b) shows a non-preemptive schedule. The finish
time fi(S) of job i is the time at which all tasks of job i have been
completed in schedule S. In Figure 4.6(a), f1(S) = 10 and f2(S) =
12. In Figure 4.6(b), f1(s) = 11 and f2(S) = 5, The finish timeF(S) of
a schedule S is given by

F(S)=

ni1
max {fi(S)}

The mean flow time MFT(S) is defined to be

MFT(S) =
nin

1

1
fi(S)

An optimal finish time (OFT) schedule for a given set of

jobs is a non-preemptive schedule S for which F(S) is minimum
over all non-preemptiveschedules S. A preemptive optimal finish
time (POFT) schedule, optimalmean finish time schedule (OMFT),

Dynamic Programming Unit 4

Design and Analysis of Algorithm 119

and preemptive optimal mean finish(POMFT) schedule are defined
in the obvious way.

Although the general problem of obtaining OFT and POFT
schedules form > 2 and of obtaining OMFT schedules is
computationally difficult, dynamic programming leads to an efficient
algorithm to obtainOFT schedules for the case m = 2. In this
section we consider this specialcase.

For convenience, we shall use ai to represent t1i, and bi to
representt2i. For the two-processor case, one can readily verify that
nothing is tobe gained by using different processing orders on the
two processors (this isnot true for m > 2), Hence, a schedule is
completely specified by providinga permutation of the jobs. Jobs
will be executed on each processor in thisorder. Each task will be
started at the earliest possible time. The schedule of Figure 4.7 is
completely specified by the permutation (5, 1, 3, 2, 4).We make the
simplifying assumption that ai≠ 0, 1 ≤ i ≤ n. Note that ifjobs with ai =
0 are allowed, then an optimal schedule can be constructedby first
finding an optimal permutation for all jobs with ai≠ 0 and
thenadding all jobs with ai =0 (in any order) in front of this
permutation (seethe exercises).

Fig 4.7: A Schedule

It is easy to see that an optimal permutation (schedule) has

the propertythat given the first job in the permutation, the
remaining permutation isoptimal with respect to the state of the two
processors. Let σ1, σ2,...,σk be a permutation prefix defining a
schedule for jobs T1, T2,..., Tk. For this schedule let f1 and f2 be the
timesat which the processing of jobs T1,T2,... ,Tk is completed on
processors P1and P2 respectively. Let t = f2 - f1. The state of the
processors following the sequence of decisions T1, T2,...,Tk is
completely characterized by t. Letg(S, t) be the length of an optimal
schedule for the subset of jobs S underthe assumption that
processor 2 is not available until time t. The length ofan optimal
schedule for the job set {1, 2,..., n} is g({1, 2,... ,n},0).
Since the principle of optimality holds, we obtain

g({1, 2, . . . , n}, 0) =

ni1
min {a, + g({l, 2, . . . , n} - {i}, bi)} (4.7)

Equation 4.7 generalizes to 4.8 for arbitrary S and t.
Thisgeneralization requires that g(Φ, t) = max{t, 0} and that ai≠ 0, 1
≤ i ≤ n.

g(S, t) =

Si
min {ai + g(S - {i}, bi + max{t - ai, 0})} (4.8)

The term max {t - ai,0} comes into (4.8) as task T2i cannot start
untilmax{ai,t} (P2 is not available until time t). Hence f2 - f1 = bi +
max{ai,t} - ai = bi +max{t -ai,0}. We can solve for g(S,t) using an
approach similarto that used to solve travelling salesman problem.

Dynamic Programming Unit 4

Design and Analysis of Algorithm 120

However, it turns out that (4.8) can be solvedalgebraically and a
very simple rule to generate an optimal schedule obtained.

Consider any schedule R for a subset of jobsS, Assume
that P2 is notavailable until time t. Let i and j be the first two jobs in
this schedule.Then, from (4.8) we obtain

g(S,t) = ai + g(S - {i}, bi +max {t-ai,0})
g(S,t) = ai + aj + g(S - {i,j},bj + max {bi + max {t - ai,0} - aj,0}) (4.9)

Equation 4.9 can be simplified using the following result:

tij = bj + max {bi + max {t - ai, 0} -aj, 0}
= bj + bi- aj + max {max {t - ai, 0}, aj - bi}
= bj + bi- aj + max {t -ai, aj-bi, 0}
tij = bj + bi -aj- ai + max {t, ai + aj - bi, ai}

If jobs i and j are interchanged in R, then the finish time g'(S,t) is

g'(S,t) = ai + aj+g(S - {i,j},tji)

where,tji = bj + bi-aj- ai + max {t, ai + aj-bj,aj}

Comparing g(S,t) and g'(S,t), we see that if (4.10) below holds,
then
g(S,t) ≤ g'(S,t).

max { t, ai + aj-bi, ai} ≤ max {t, ai + aj-bj, aj} (4.10)

In order for (4.10) to hold for all values of t, we need

max {ai + aj- bi, aj} ≤ max {ai + aj-bj,aj}

orai + aj + max {-bi, -aj} ≤ ai+ aj + max {-bj, -aj}

or min {bi,aj} ≥ min {bj,ai} (4.11)

From (4.11) we can conclude that there exists an optimal schedule
inwhich for every pair (i,j) of adjacent jobs, min{bi, aj} ≥
min{bj,ai}.Hence, it suffices to generate any schedule for which
(4.11) holds for everypair of adjacent jobs. We can obtain a
schedule with this property by makingthe following observations
from (4.11). If min{a1, a2,..., an, b1,b2,... ,bn} is ai, then job i should
be the first job in an optimal schedule. If min {a1, a2,..., an,b1,b2,...
,bn} is bj, then job j should be the last job in an optimalschedule.
This enables us to make a decision as to the positioning of oneof
the n jobs. Equation 4.11 can now be used on the remaining n - 1
jobs
to correctly position another job, and so on. The scheduling rule
resultingfrom (4.11) is therefore:

1. Sort all the ai and bj into nondecreasing order.
2. Consider this sequence in this order. If the next number

in the sequence is aj and job j hasn't yet been scheduled, schedule
job j at the leftmostavailable spot. If the next number is bj and job j

Dynamic Programming Unit 4

Design and Analysis of Algorithm 121

 CHECK YOUR PROGRESS

hasn't yet beenscheduled, schedule job j at the rightmost available
spot. If j hasalready been scheduled, go to the next number in the
sequence.

Note that the above rule also correctly positions jobs with ai = 0.
Hence,these jobs need not be considered separately.

 2. Sate True or False.

a) 0/1 knapsack problem can also be solved by using greedy
strategy.

b) Travelling Salesman problem is to find out the shortest
cycle in the graph covering all the vertices

c) 0/1 knapsack does not possess a optimal substructure.
d) Flow shop scheduling problem is to find out the optimal

sequence to run n jobs in m processors.

4.9 LET US SUM UP

 A problem can be solved by dynamic programming only
when it possesses optimal substructure.

 A problem is said to satisfy the principle of optimality, if the
sub solutions of an optimal solution of the problem are
themselves optimal solution for their sub problems.

 In dynamic programming wefirst solve the sub-problems
and then use these solutions to get the optimal solution in
recursive manner.

4.10 FURTHER READINGS

1. T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein,
"Introduction to Algorithms", Second Edition, Prentice Hall of
India Pvt. Ltd, 2006.

Dynamic Programming Unit 4

Design and Analysis of Algorithm 122

2. Ellis Horowitz, SartajSahni and SanguthevarRajasekaran,
Fundamental of data structure in C, Second Edition,
Universities Press, 2009.

3. Alfred V. Aho,John E. Hopcroft and Jeffrey D. Ullman, "The
Design and Analysis of Computer Algorithms", Pearson
Education, 1999.

4. Ellis Horowitz, SartajSahni and SanguthevarRajasekaran,
Computer Algorithms/ C++, Second Edition, Universities
Press, 2007.

.

1. a) Falseb)Truec) Falsed) True

1. a) Falseb) Truec) Falsed) True

1. Explain the characteristics of dynamic programming.
2. Describe the steps of dynamic programming algorithm.
3. Solve 0/1 knapsack problem using dynamic programming.
4. Flow shop scheduling algorithm possess the optimal sub-

structure, explain it.
5. With an example explain how 0/1 knapsack problem can be

solved by using dynamic programming.
6. Describe the method of solving travelling salesman

problem using dynamic programming.
7. Explain, what optimal binary search tree is.

4.11 ANSWERS TO CHECK YOUR
 PROGRESS

4.12 PROBABLE QUESTIONS

 Backtracking Unit 5

 Design and Analysis of Algorithm 123

UNIT 5 : BACKTRACKING

5.1 Learning Objective

5.2 Introduction

5.3 General Strategy for Backtracking

5.4 Tree Organization for Solution Space in Backtracking

5.5 Main Idea for Backtracking

5.6 8-Queen’s Problem

5.7 Graph Coloring Problem

5.8 Hamiltonian Cycle

 5.9 Backtracking Method for 0-1 Knapsack Problem

 5.10 Let Us Sum Up

 5.11 Answers to Check Your Progress

 5.12 Further Readings

5.13 Model Questions

5.1 LEARNING OBJECTIVE

 After going through this unit, you will be able to:

 describe about the concept of backtracking

 know the 8-Queen problem and its solution using

backtracking

 elaborate the graph coloring problem

 know the Hamiltonian cycle and its solution using

backtracking

 Backtracking Unit 5

 Design and Analysis of Algorithm 124

5.2 INTRODUCTION
Backtracking is a method for searching a set of solutions or find an

optimal solution for satisfies some given constraint to a problem.

The name backtrack was first introduce by D. H. Lehmer in 1950’s.

In this unit we will introduce you the backtracking method.

Moreover, we will discuss here about a set of new problems like 8-

Queens problem, Graph coloring problem and Hamiltonian Cycle.

5.3 GENERAL STRATEGY FOR BACKTRACKING

 In backtracking method the solution set can be represented by an
n tuple (x1,x2,…….,xn), where xi are chosen from some finite set

Si. This method can be used for optimization problem to find one

or more solution vector that maximize or minimize or satisfy a
given criterion function C(x1, x2,….,xn). For example sorting n

data of an array A [1:n] is a problem to find the solution set, that
has an n- tuple (x1, x2,…xi, xi+1,……..,xn) . For this problem xi is

the index of ith smallest element in the array A .The criterion
function is C(a [xi] ≤ a [xi+1]) and Si is the finite set of integers

in the range [1,n].

Let the set Si has size mi. There are m = m1 m2…mn , n- tuples for

the solution set that satisfy the criterion function C. If brute force

approach is applied to find the solution then it will form all n-tuple

and solve each on to determine optimal solutions. But if
backtracking methods applied here instead of brute force it will

take less than m trial to determine the solution. Back tracking
method at each step forms a partial solution set (x1, x2,……,xi)
and check it if this has any chances to find a solution depending

upon the criterion function C. If this partial solution set no way lead
to an optimal solution, then ignore the test vectors from mi+1 to mn

entirely.

 Backtracking Unit 5

 Design and Analysis of Algorithm 125

 All the solutions in backtracking require a set of constraints to

satisfy. It is divided into two categories:

1. Explicit constraint :
Explicit constraints are rules that restrict each xi to take
on values only from a given set. This constraint

depends on the particular instance I of problem being
solved – All tuples that satisfy the explicit constraints

define a possible solution space for I.
 Examples of explicit constraints

i) xi ≥ 0, or all nonnegative real numbers

ii) xi = {0, 1}

2. Implicit constraints:
 Implicit constraints are rules that determine which of

the tuples in the solution space of I satisfy the criterion

function. Implicit constraints describe the way in which

the xi must relate to each other.

There are two types of solution space tuple formulation:

1. Variable size tuple:
In this method for the solution vector (x1, x2,…..,xk),

xi will represent indices of ith choices for 1 ≤ i ≤ k. Here

size of the solution vector can varies for a problem.

2. Fixed sized tuple:
 In this method for solution vector(x1, x2, x3,…..xn),

xi € { 0,1 } and 1 ≤ i ≤ n, such that xi is 0 if ith element

not chosen and 1 otherwise. Here solution vector sizes

are same for a problem.

5.4 TREE ORGANIZATION FOR SOLUTION
SPACE IN BACKTRACKING

 Backtracking Unit 5

 Design and Analysis of Algorithm 126

 Backtracking method determine solution of a problem by

searching for the solution set in the solution space. This

searching can be organized in a tree called state space
tree.

 Each node in the tree can be defined as problem state.

 A path from root to any other node defines a partial
solution vector, can be called as state space.

 A solution state is a node s for which each node from
root node to node s together can represent a tuple in

solution set.

 Answer states are solution state which satisfies an implicit

constraint.

 The tree organization of solution space is referred to as

state space tree.

 In state space tree problem state are generated from root

node and then generated other nodes.

 A live node is a generated node, for which all of its

children node have not yet generated.

 A E-node (Expanded node) is a live node, whose children

are currently being generated.

 A dead node is that , which is not expanded further and all

of its children is generated.

 Bounding functions are used to bound the searching in
the tree. It kills a live node without generating children
if it does not lead to a feasible solution.

 Depth first node generated with bounding function is called

backtracking.

 In state space tree

i. root of the tree represent 0 choices.

ii. 1st level node represents 1st choices

iii. 2nd level node represent 2nd choices.
iv. nth level node represent nth choices.

 Backtracking Unit 5

 Design and Analysis of Algorithm 127

 A node n is called non-promising if it can not lead to a

feasible solution and for this node n bounding function

B(n) = 0. Otherwise, it is called promising node and
bounding function B(n)=1.

 If node is non-promising then it is bounded or kill using

bounding function. Then for this node its sub-trees are not

generated.

 A state space tree is called pruned state space tree if it

consist of only expanded node .

5.5 MAIN IDEA FOR BACKTRACKING

Backtracking method do depth first search of a state space tree. If

a node is promising i.e B(n)=1 then search is continue to its child

node , otherwise if a node is non promising i.e B(n)=0 ,backtrack
to its parent node.

Recursive algorithm for general backtracking is-

 Backtrack (node n)
 {

 if C(n) = 1
 Report feasible solution n

 else

 Stop

 if (B(n) = 0) return;

 for every child n’ of n Backtrack(n’)

 }

 The procedure is invoked by Backtrack(root)

 Backtracking Unit 5

 Design and Analysis of Algorithm 128

CHECK YOUR PROGRESS
1. State True/False:

 i. Backtracking method can reduced search space in the state

space tree.

 ii. Nodes whose children are being generated is called live

nodes.

 iii. In variable sized tuple method size of solution vector can

varies.
 iv. Pruned state space tree consist only expanded node.

5.6 8-QUEEN’S PROBLEM

Given a chess board of field 8 x 8. The 8-Queen problem is to

place 8-Queen on the chess board, so that no two Queen can

“attack” each other. A Queen can attack vertically, horizontally and

diagonally.

 N-Queen Problem:
It is a generalized problem of 8-Queen problem. N Queens are

placed on a chess board of size n x n, without having attack

each other.

In chess, queens can move all the way horizontally, vertically or

diagonally (if there is no other queen in the way).But, no two

Queen can attack each other. So, due to this restriction, each

queen must be on a different row and column.

Backtracking strategy for 8-Queen problem is as follows-

1. Let us, in the chess board rows and columns are numbered

from 1 to 8 and also queens are numbered from 1 to 8.

 Backtracking Unit 5

 Design and Analysis of Algorithm 129

2. Without loss of generality, assume that ith queen can be

placed in ith row, because no two queen can place in the

same row.

3. All solution can represented as 8-tuple (x1, x2,…. x8), where
xi is the column number of the ith row of ith queen placed.

4. Here explicit constraints are Si = {1, 2, 3, 4, 5, 6, 7, 8},

1 ≤ i ≤ 8 and the solution space will consist of 88 8-tuple.

5. According to the implicit constraints no two queen can on the

same row.

6. So, all solution are permutation of 8-tuple(1, 2, 3, 4, 5, 6, 7,

8)

7. Thus the searches is reduce to 88 8-tuple to 8! tuple.

We know from the above that, in 8 -Queen problem all the solution

can represented as 8-tuple (x1, x2,….,x8), where xi is the column

number of ith row where.ith queen placed. These all xi’s are distinct

because of the implicit constraint that no two queen can placed in

same column. We assume already in no. 2 that ith queen can be

placed in ith row only. So, no two queen can placed in same row.

Now, we have only to decide whether two queens are on the same

diagonal or not.

If chess board square fields are numbered as two dimensional
array a [1:8] [1:8] then we find that for all diagonal element “row-

column” value is same. For example if 1st queen is placed in

a [1,3] square then the 2nd queen will placed diagonally if it placed

in a [2,4] square. Here “row-column” values are 2 and it is same

for both queen.

Let two queen are placed in position (m, n) and (x, y)

Then two queens can placed diagonally if
 m - n = x - y----------------------(1)
 m + n = x + y---------------------(2)

 Backtracking Unit 5

 Design and Analysis of Algorithm 130

(1) => n – y = m - x
 (2) => n – y = x – m

Therefore two queens can be on the same diagonal if and only if
 | n – y | = | m – x |

This is an another implicit constraint .

Example:
Here is an example of 4-queen problem-

The state space tree generated by 4-queen problem is as follows-

Here node at level i represent ith queen placed at ith row. i.e at level

1 it represents as 1st queen places in 1st row. Xi in ith level

represents column number of ith queen placed in ith row. i.e x2 = 3
at level 2 means 2nd queen is in 3rd column of the 2nd row.

Nodes are generated in depth first search manner.

A the path from root to leaf will represent a tuple in solution space.

All tuples are distinct and some tuples may not lead to a feasible

solution.

 Backtracking Unit 5

 Design and Analysis of Algorithm 131

 Fig. 5.1 State space tree

Now by using backtracking method we can bound the search of

the state space tree using some constraint so that searching

require less time.

For this problems to bound a node n constraints or bounding

conditions B(n) are-

1. No two queens can place in same row i.e xi always

represents ith queen is in ith row.

2. No two queen in same column i.e values of xi’s are always

distinct.

3. For two queen placed in (m, n) and (x, y) position in the

chess , value of | n – y | cannot same as | m – x |
When a node is bounded using bounding condition it will not

generate any nodes in its sub-tree because nodes in its sub-tree

will not give a feasible solution any more.

 Backtracking Unit 5

 Design and Analysis of Algorithm 132

The portion of pruned state space tree after applying bounding

condition is as follows:

 Fig. 5.2 Pruned state space tree

 Here node 3 is bounded because-

 At level 1, x1=1 means first time 1st queen is placed in 1st row, 1st

column i.e position is (1,1)

 At level 2 , x2=2 means second time 2nd queen is placed in 2nd

row, 2nd column i.e position(2,2)

Thus they will place in diagonally. It will violet the implicit

constraint or bounding condition. So this combination can not give

a feasible solution any more. So, the children of node 3 will not

generated further. Hence node 3 will bound.

Here is a path from root 1 to leaf 31 and this will generate one

feasible solution set (2, 4, 1, 3) where x1=2, x2=4, x3=1, x4=3.

 Backtracking Unit 5

 Design and Analysis of Algorithm 133

Position of the 4 queens are (1,2), (2,4), (3,1) and(4,3)

respectively.

 A recursive backtracking function for n-Queen problem:
 /* placed search for a new queen*/

 bool QPlace (int k, int i)

 {

 for (int m = 1; m < k; m++)

 {

 if ((x [m] == i) || (abs (x[m] – i) == abs (m – k)))

 return (false);
 return (true);

 }

 }

/* Solution to n queen*/

 void nQueen (int k, int i)

 {

 for (int i =1; i ≤ n; i++)

 if (QPlace(k, i))

 {

 x [k] = i;

 if (k == n)

 {
 for (int m = 1; m ≤ n; m++)

 {cout << x [m] <<’ ‘<<;

 cout<<endl;

 }

 }

 else

 nQueen (k + 1, n);

 }

 }

 Backtracking Unit 5

 Design and Analysis of Algorithm 134

Here QPlace (k, i) will return a boolean value true or false. The

function return true if kth queen can placed in ith column and
assigned it to x [k]. This value x [k] = i is distinct from x [1]……

x [k-1]. It also ensures that no two queen is placed in same

diagonal.

Next nQueen (k, n) will solve the n-Queen problem recursively

using backtracking method.

. CHECK YOUR PROGRESS

2. State True/False:
 i. In n- Queen Problem two Queens can attack each other.

ii. If two Queens placed diagonally it will violet the implicit

 constraint.

5.7 GRAPH COLORING PROBLEM

Let G be a graph and m be a given integer. Is there any way to

color the vertices of graph G using m color in such a way that no

two adjacent vertices have same color? This is called as m-color

ability decision problem. According to the graph coloring theory if
d is the degree of a given graph, then it can be colored with d +1

color. The minimum number of color required in graph coloring

problem to color vertices is called chromatic number. The m-color

ability optimization problem is to determine the chromatic number

of the graph G. This is called graph coloring problem.

For example graph in the following fig can be colored with

minimum 3 colors 1, 2, 3. So, chromatic number is 3.

 Backtracking Unit 5

 Design and Analysis of Algorithm 135

 Fig. 5.3 A graph G

Solution using backtracking:

Suppose we represent graph G of n vertices by adjacency matrix

G [1:n] [1:n], where G [i] [j] =1,if there is an edge between vertex i

and j in G and G [i] [j] =0, otherwise.

The colors of the graph can be numbered from 1 to m. The
solution set are represented by (x1, x2,…..,xn), where xi is the color

of vertex i. The state space tree for this problem has degree m and

height n + 1. Each node at level i has m children correspond to m

color and represents ith vertex of graph G. The left most node has

assigned color 1 and rightmost vertex has assigned color m. Node

at level n + 1 is leaf.

Example:

G is a graph which has 3 vertices (n = 3) and we have to solve the
graph coloring problem for this graph G using 3 color (m = 3)

a
e

b

c d

1

2

3

1 3

 Backtracking Unit 5

 Design and Analysis of Algorithm 136

Fig. 5.4 A graph with 3-vertices

The general state space tree for this problem is as follows-

 Fig. 5.5 A state space tree

 There are possible three color to color vertex A. Hence x1 has

three values, x1=1, x1=2, x1=3.

If we color the vertex A using color 1 then for 2nd vertex B there

are three possible colors1, 2,3. Hence, x2=1,x2=2,x2=3 and
similarly for vertex C .

Now if we apply backtracking method to solve the problem then it

will use a bound in function to kill a node in the state space tree.

The bounding function for this problem is that no two adjacent

vertexes have same color.

The pruned state space tree after applying bounding function is as

follows-

A C

B

 Backtracking Unit 5

 Design and Analysis of Algorithm 137

 Fig. 5.6 A pruned state space tree

For the graph in fig vertex 1 is the adjacency of vertex 2.So, if we

color vertex 1 using color 1 i.e x1=1 then we cannot color vertex 2

with color 2 i.e x2=1 because it will violet the bounding condition.

Hence node 3 can not lead to a feasible solution and it will

bounded. Other nodes are bounded similarly.

Some feasible solution sets are

 i) (1,2,3), where x1=1,x2=2,x3=3,

ii) (2,1,3), where x1=2,x2=1,x3=3

iii) (3,2,1), where x1=3,x2=2,x3=1

Here xi represents ith vertex color value.

Recursive algorithm for graph coloring problem:

 /* finding color value of all vertex*/ \

 Backtracking Unit 5

 Design and Analysis of Algorithm 138

void mcoloring (int k)

{ do

 {
 NextValue (k);

 if (! x [k]) break;

 if (k == n)

 { for (int i =1; i ≤ n; i++)

 cout << x[i] ;

 cout << endl;

 }

 else

 mcoloring (k + 1);
 }

 while (1);

 }

/* Generating next color */

 void NextValue (int k)

 { do

 {

 x [k] = x [k + 1] % (m + 1);

 if (! x [k]) return;

 for (int j = 1; j ≤ n; j++)

 {

 if (G [k] [j] && (x [k] == x [j]))
 break;

 }

 if (j == n + 1) return;

 }

 while(1);

 }

Here k is the next vertex to color

 Backtracking Unit 5

 Design and Analysis of Algorithm 139

 n is the number of vertices

 x [i] is the color of ith vertex.

The function mcoloring first create the adjacency matrix G [i] [j]
of the graph G and then initialize x [k] = 0, for all 1 ≤ k ≤ n . First

invoke the procedure by mcoloring (1). Function NextValue

produces possible color for vertex k and assign it to xk. Function

mcoloring repeatedly picks a color value and assign it to xk and

then calls mcoloring recursively.

CHECK YOUR PROGRESS

3. What is the decision problem of graph coloring?

4. What is the chromatic number of a graph?

5.8 HAMILTONIAN CYCLE

A Hamiltonian cycle of a connected undirected graph with n

vertices is a cyclic path along n edges, such that each vertex visits

once in graph G and return to the starting vertex. It is named after

William Hamilton.

Example :
 Following is graph G with 8 vertices.

 Backtracking Unit 5

 Design and Analysis of Algorithm 140

 Fig. 5.7 A graph with 8 vertices

The Hamiltonian cycle of this graph is- 1, 2, 8, 7, 6, 5, 4, 3, 1

 Fig. 5.8 Hamiltonian cycle

Backtracking method for Hamiltonian cycle:

Now, using backtracking method we can find out the Hamiltonian

cycles in a graph which has n vertices. The solution set can

represented as (x1, x2,……….,xn), where 1 ≤ i ≤ n and xi
represents the ith visited vertex of the current considered cycle.

We have to determine value of xi i.e possible vertex to select. For

i =1, x1 can be any vertex chooses from n vertex. To determine

value of xi we have already determine x1, x2,……..,xi-1. Hence, the

xi can be choose as

 Backtracking Unit 5

 Design and Analysis of Algorithm 141

i) any vertex v which is not assigned to x1, x2…..and xi-1

 from the n vertices.

 ii) v is connected by an edge to xi-1

 The last vertex xn must be connected to both xn-1 and x1.

Example:
 Consider the following graph and find out all the Hamiltonian

 cycle.

The state space tree for the graph is-

 Fig. 5.9 State space tree

For using backtracking the bounding functions are-

i) The solution vector (x1, x2,……xn) is defined such that

 value of xi’s are distinct, for all 1 ≤ i ≤ n, because one

 vertex visit only once.

1 3

2

 Backtracking Unit 5

 Design and Analysis of Algorithm 142

ii) There is an edge between (xi-1, xi)and (xi, xi+1)

iii) There is an edge between xn and x1, (for Hamiltonian

cycle).

Now, the pruned state space tree is as follows-

 Fig. 5.10 Pruned state space tree

Recursive function for Hamiltonian cycle:

/* for finding Hamiltonian cycle*/

void Hamiltonian (int k)

{

 do
 {

 NextValue (k);

 if (! x [k]) return;

 Backtracking Unit 5

 Design and Analysis of Algorithm 143

 if (k == n)

 {

 for (int i =1; i ≤ n; i++)

 cout << x [i] <<” ”<<”\n”;

 }

 else

 Hamiltonian (k + 1)

 }

 while(1);

}

/* generating next vertex*/

void NextValue (int k)
 {

 do

 {

 x [k] = (x [k] + 1) % (n + 1); //Next vertex

 if (! x [k]) return;

 if (G [x [k – 1] [x [k]])

 {

 for (int j = 1; j ≤ k - 1; j++)

 if (x [j] == x [k]) break ;
 if (j == k)

 if ((k < n) || ((k == n) && G [x [n]] [x [1]]))

 return;

 }

 }

 while(1);

 }

 Backtracking Unit 5

 Design and Analysis of Algorithm 144

This program first initializes the adjacency matrix G [1:n] [1:n]

and x [1] = 1 and x [2:n] = 0.

Hamiltonian function is invoked by Hamiltonian (2).

5.9 BACKTRACKING METHOD FOR
0-1 KNAPSACK PROBLEM

0-1knapsack problem :

Given n items, for which weight set is W = (w1, w2,….,wn), where

wi is positive weight of ith item. There are n profits (p1, p2,….,pn),

where pi represents profit of ith item and capacity of knapsack is m,

m > 0.

 The 0-1 knapsack problem chooses subset of weight set W such

that
 ∑ wi xi ≤ m and ∑ pi xi is maximized

 1 ≤ i ≤ n 1 ≤ i ≤ n

 Where xi € { 0, 1 }

 i.e ith item is selected then xi = 1,

 = 0, Otherwise

There are two tree organizations possible for this problem.

Variable tuple sized formulation and fixed tuple sized formulation.

In solution vector xi can be assigned with 0 or 1 in 2n distinct
ways.

Here bounding function is that total profit of the chooses item is

maximized and total weight of chooses item is atmost m .

This bounding function for a live node can be obtained by using an

upper bound on the value of the best feasible solution. If a upper

 Backtracking Unit 5

 Design and Analysis of Algorithm 145

bound for a live node is not higher than the value of the best

solution then the node can bounded or kill.

Here we consider fixed tuple sized formulation. For a node S at
level k+1, the value of xi, 1 ≤ i ≤ k has already determined. The

upper bound for a node S can be obtained by making xi = 0 or 1 for

k + 1 ≤ i ≤ n.

A recursive function for 0-1 knapsack using backtracking:

 /* bounding function for 0-1 knapsack*/

float Bound (float cp, float cw, int k)

{

 float b = cp, c = cw;

 for (int i = k + 1; i ≤ n; i++)

 c = c + w [i];

 if (c < m)

 b = b + p [i];

 else

 return (b + (1 - (c – m) / w [i] * p [i]);

 }

 return(b);

}

 /* Backtracking method for 0-1 knapsack*/

void Knap(int k, float cp, float cw)

{

 if (cw + w [k] ≤ m)

 y [k] = 1;

 if (k < n)

 Knap (k + 1, cp + p [k], cw + w [k]);

 Backtracking Unit 5

 Design and Analysis of Algorithm 146

 if ((cp + p [k] > fp) && (k == n))

 {

 fp = cp + p [k];
 fw = cw + w [k];

 for (int j = 1; j ≤ k ; j++)

 x [j] = y [j];

 }

 }

if (Bound (cp, cw, k) ≥ fp)

 {

 y [k] = 0;

 if (k < n)
 Knap (k + 1, cp, cw);

 if ((cp > fp) &&(k == n))

 {

 fp = cp;

 fw = cw ;

 for (int j = 1; j ≤ k; j++)

 x [j] = y [j];

 }
 }

 }

 Here

cp = current total profit of the chosen items,

 cw = current total weight of all chosen items.

 k = index of last considered item .

 m = capacity of knapsack
 w[i] = weight of ith item.

 p[i] = profit of ith item.

 P[i]/w[i] ≥ p[i+1]/w[i+1], for all 1≤i<n

 n= total item numbers

 Backtracking Unit 5

 Design and Analysis of Algorithm 147

 fw= final total weights in knapsack

 fp= final maximum profit

 x[k]==0, if w[k] is not in knapsack,

 == 1 ,Otherwise.

The above method to determine an upper bound for a node at

level k+1 of state space tree, function Bound(cp, cw, k) is used.

 Initially fp is set to -1. This method s invoked by Knap(1,0,0).

When fp != -1 , x[k],1≤k<n , is such that ∑ p[i] x[i] = fp.

i=1..n

The path y[j],1 ≤ j ≤ k is the path to the current node.
The current weight cw = ∑ w[i] y[i]

 i=1..k-1

The current profit cp = ∑ p[i] y[i]

 i=1..k-1

CHECK YOUR PROGRESS

5. What is Hamiltonian cycle?

5.10 LET US SUM UP

 Backtracking is a method for searching a set of solutions or find

an optimal solution for satisfy some given constraint to a

problem

 Backtracking Unit 5

 Design and Analysis of Algorithm 148

 In backtracking method the solution set can be represented by

an n tuple (x1,x2,…….,xn), where xi are chosen from some finite

set Si.

 Backtracking method can be used for optimization problem to

find one or more solution vector that maximize or minimize or

satisfy a given criterion function

 In backtracking constraint to be satisfied can be divided into two

categories- Implicit constraint and Explicit constraint

 Two types of tuple formulation- Variable size tuple and Fixed

sized tuple

 In backtracking method searching can be organized in a tree

called state space tree.

 A solution state is a node s for which each node from root node

to nodes together can represent a tuple in solution set.

 A live node is a generated node, for which all of its children node

have not yet generated.

 A E-node (Expanded node) is a live node, whose children are

currently being generated.

 A dead node is that , which is not expanded further and all of its

children is generated

 Bounding functions are used to bound the searching in the tree.

 A node n is called non-promising if it can not lead to a feasible

solution. Otherwise, it is called promising node

 A state space tree is called pruned state space tree if it consist

of only expanded node

 Backtracking method do depth first search of a state space tree.

 It is a generalized problem of 8-Queen problem. N Queens are

placed on a chess board of size n x n, without having attack

each other.

 According to the graph coloring theory if d is the degree of a
given graph, then it can be colored with d +1

 The minimum number of color required in graph coloring

problem to color vertices is called chromatic number

 Backtracking Unit 5

 Design and Analysis of Algorithm 149

 A Hamiltonian cycle of a connected undirected graph with n

vertices is a cyclic path along n edges, such that each vertex

visits once in graph G and return to the starting vertex

5.11 ANSWERS TO CHECK YOUR
PROGRESS

1. i. True, ii. False, iii. True, iv. True

2. i. False, ii. True

3. Let G be a graph and m be a given integer. Is there any way to
color the vertices of graph G using m color in such a way that

no two adjacent vertices have same color. This is called as m-

color ability decision problem.

4. The minimum number of color required in graph coloring

problem to color vertices is called chromatic number.

5. A Hamiltonian cycle of a connected undirected graph with n

vertices is a cyclic path along n edges, such that each vertex

visits once in graph G and return to the starting vertex. It is

named after William Hamilton.

5.12 FURTHER READINGS

Ellis Horowitz, Sartaj Sahni and Sanguthevar
Rajasekaran, Computer Algorithms/ C++, Second Edition,
Universities Press, 2007.

5.13 MODEL QUESTIONS

1. What is backtracking method?

2. Write about state space tree organization of backtracking

method.

 Backtracking Unit 5

 Design and Analysis of Algorithm 150

3. What is 8-queen problem? How can it solved using

backtracking?

4. What is the bounding condition for n-queen problem?

5. What s graph coloring problem? What is the bounding
condition for graph coloring problem?

6. How does backtracking method find Hamiltonian cycle in a

graph?

Branch and Bound Unit 6

Design and Analysis of Algorithm 151

UNIT - 6:BRANCH AND BOUND

UNIT STRUCTURE

6.1 Learning Objectives
6.2 Introduction
6.3 General Strategy
6.4 0/1 Knapsack Problem
6.5 Travelling Salesman Problem
6.6 Let Us Sum Up
6.7 Further Readings
6.8 Answers to Check Your Progress
6.9 Model Questions

6.1 LEARNINGOBJECTIVES

After goingthrough this unit, you will be able to:

 understand the concept of Branch and Bound

 solve 0/1 knapsack problem by this method

 solve travelling salesman problem by this method

6.2 INTRODUCTION

We have already covered the most important techniques
such as backtracking, greedy strategy, divide and conquer,
dynamic programming etc. In this chapter, we will discuss about
the branch and bound technique.

Branch and bound is an algorithm design technique that is
often implemented for finding the optimal solutions in case of
optimization problems; it is mainly used for combinational and
discrete global optimizations of problems. In a nutshell, we opt this
technique when the domain of possible candidates is way too large
and all of the other algorithms fail.

Branch and Bound Unit 6

Design and Analysis of Algorithm 152

6.3 GENERAL STRATEGY

Out of the techniques that we have learned both the
backtracking and divide and conquer traverse the decision tree in
the depth first order, though they take opposite routes. The greedy
strategy picks a single route and forgets about the rest. Dynamic
programming approach is most likely similar to breadth-first
search.

Now if the decision tree of the problem that we are planning
to solve has practically unlimited depth, then backtracking and
divide and conquer algorithms cannot be used. Also we shouldn't
rely on greedy because that is problem-dependent and never
promises to deliver a global optimum, unless we prove it
mathematically.

As our last resort we may even think about dynamic
programming. The truth is that maybe the problem can indeed be
solved with dynamic programming, but the implementation
wouldn't be an efficient one. Additionally, it would be very hard
to implement. If we have a complex problem where we need lots of
parameters to describe the solutions of sub-problems, dynamic
programming becomes inefficient.

In backtracking, we used depth-first search with pruning to
traverse the (virtual) state space. Breadth first search with pruning
can also be used for better performance in some problems. This
process of using breadth first search with pruning is known as
branch and bound. In breadth-first search, queue is used as an
auxiliary data structure.

The drawback of breadth first search is that the complexity
of it is exponential. We need an algorithm that ameliorates this
issue by reducing some candidates which arenot satisfactory and,
won't contribute to the optimal solution. Branch and bound is a
such type of technique. Branch and bound algorithm injects some
intelligence into the naive but complex breadth-first search. Instead
of searching throughout the entire decision/search tree structure, it
instills some sort of criteria, according to which the complexity of
the breadth-first search can be reduced. For example, if we
calculate the distance of each node in terms of "how far" it is
located from the initial root node and "how close" it is from the
solution, then the distance/cost is the sum of these two distances.
However, as we can surely see, the second distance relies on
heuristics. Thus, it's just a guess.Moreover, we can move through
this tree based on the instilled costs, a node is a more possible
candidate toward the solution if its cost is less than the other
nodes. What we did here is, we add an essence of depth-search to
the breath-first meaning.Here we are going to maintain a priority
queue, according to which we are going to runthe breath-first
search. The traditional breath first search runs from left to right, but
now it will run according to the priority queue.

The beauty of this approach is that we haven't lost the not-
so-possible candidates, they will be stored somewhere on the end
of the priority queue, so this algorithm doesn't neglect the rest of
the possible options. Summing these up, this is in fact a typical
branch and bound algorithm techniqueand it relies on the guess.

Branch and Bound Unit 6

Design and Analysis of Algorithm 153

Branch and bound is composed of two main
actions.Firststep,branching, where we define the tree structure
from the set of candidates in a recursive manner. The second step
isbounding,where we calculates the upper and lower bounds of
each node from the tree.Furthermore, there is a additional pruning
step,where depending on the values of upper bound and lower
bound some node can be discarded from the search.

All in all, branch and bound is very similar to backtracking.
The main differences are that the branch and bound is used only in
case of optimization problems, whereas backtracking cannot be,
and branch and bound doesn't limit us to a particular way of
traversing the tree. Backtracking always picks one single
successor from the candidates, while branch and bound always
has the entire list of successors in the queue.

A branch and bound algorithm is based on an advanced
breadth-first search, where breath- first search is performed with
the help of apriority queue instead of the traditional list. Inbranch
and bound it is crucial to understand the importance of two
functions: g(x) and h(x). The first function, g(x), calculates the
distance between the x node and the root node. Whereas, h(x), is
a heuristic function because it estimates how close the x node to
the solution.Moreover, we can say that f(x) = g(x) + h(x). The g(x)
part is the path-cost function, while the h(x) part is the admissible
heuristic estimate; the sum of these two is the f(x).

6.40/1 KNAPSACK PROBLEM

We are already familiar with the knapsack problem in unit 3. Let us
consider a knapsack of size K and we want to select a set of
objects fromn objects , where the ith object has size si and value
visuch that it maximizesthe value contained in the knapsack with
the contents of the knapsack less than or equal to K.

Suppose that K = 16 and n = 4, and we have the following set of
objects ordered by their value density.

 i vi si vi/si
 1 $45 3 $15
 2 $30 5 $ 6
 3 $45 9 $ 5
 4 $10 5 $ 2

We will construct the state space where each node contains the
total current value in the knapsack, the total current size of the
contents of the knapsack, and maximum potential value that the
knapsack can hold. In the algorithm, we will also keep a record of
the maximum value of any node found so far. When we perform
the depth-first traversal of the state-space tree, a node is
"promising" if its maximum potential value is greater than this
current best value.

We begin the state space tree with the root consisting of the empty
knapsack. The current weight and value are obviously 0. To find

Branch and Bound Unit 6

Design and Analysis of Algorithm 154

the maximum potential value we treat the problem as if it were the
fractional knapsack problem and we were using the greedy
algorithmic solution to that problem. We have already discuss that
the greedy approach to the fractional knapsack problem yields an
optimal solution. We place each of the remaining objects, into the
knapsack until the next selected object is too big to fit into the
knapsack. We then use the fractional amount of that object that
could be placed in the knapsack to determine the maximum
potential value.

 totalSize = currentSize + size of remaining objects that can

be fully placed

bound (maximum potential value)

= currentValue + value of remaining objects fully placed +
(K - totalSize) * (value density of item i.e partially placed)

In general, for a node at level i in the state space tree the first i
items have been considered for selection and for the kth object as
the one that will not completely fit into the remaining space in the
knapsack, these formulae can be written:

 totalSize = currentSize +

1

1

k

jj
 sj

 bound = currentValue +

1

1

k

jj
 vj + (K - totalSize) *

(vk/sk)
 For the root node currentSize = 0 and currentValue = 0

 totalSize = 0 + s1 + s2 = 0 + 3 + 5 = 8

 bound = 0 + v1 + v2 + (K - totalSize) * (v3/s3)

= 0 + $45 + $30 + (16 - 8) * ($5)
= $75 + $40
= $115

The computation of the bound and the selection criteria for
promising nodes is the same as before. We must replace the
depth-first traversal of the state space tree with a breadth first
traversal. In the depth-first traversal the auxiliary data structure
used to store the nodes was the stack. In breath-first traversal, the
auxiliary data structure is explicitly the queue.

6.5TRAVELLING SALESMAN PROBLEM

Instead of using a Queue to perform a breadth-first
traversal of the state space, we will use a PriorityQueue and
perform a "best-first" traversal. For the TSP we first compute the
minimum possible tour by finding the minimum edge exiting each
vertex. The sum of these edges may not form a possible tour, but

Branch and Bound Unit 6

Design and Analysis of Algorithm 155

since every vertex must be visited once and only once, every
vertex must be exited once. Therefore, no tour can be shorter than
the sum of these minimum edges.

At each subsequent node, the lower bound for a "tour in
progress" is the length of the tour to that point plus the sum of the
minimum edge exiting the end vertex of the partial tour and each of
the minimum edges leaving all of the remaining unvisited vertices.
If this bound is less than the current minimum tour, the node is
"promising" and the node is added to the queue. Initially the
minTour is set to infinity. When a node whose path includes all of
the vertices except one is reviewed, there is only one possible way
for the tour to complete. The remaining vertex and the first are
added to the path and the length of the tour is the current length
plus the length of the edge to the remaining vertex and the length
of the edge from there back to the starting vertex. If this tour
length is better than the current minimum, it becomes the minimum
tour length. Once a first complete tour is discovered, nodes whose
bound is greater than or equal to this minTour are deemed "non-
promising" and are pruned.

The nodes in state space must carry the following information:

 their level in the state space tree
 the length of the partial tour
 the path of the partial tour
 the bound
 (for efficiency) the last vertex in the partial tour

In a branch and bound algorithm, a node is judged to be
promising before it is placed in the queue and tested again after it
is removed from the queue. If a lower minTour is discovered
during the time a node is in the queue, it may no longer be
promising after it is removed, and it is discarded. Using a Priority
Queue, the search traverses the state space tree in neither a
breadth-first nor depth-first fashion, but alternates between the two
approaches in a greedy, opportunistic fashion. In the example
problem below, a diagram of the best-first traversal of the state
space indicates by number when each of the nodes is removed
from the priority queue.

Example

Let G be a fully connected directed graph containing five vertices
that is represented by the following adjacency list:

Branch and Bound Unit 6

Design and Analysis of Algorithm 156

We assume in the implementation of this algorithm that vertices
are labeled by an integer number and edges contain the source
and sink vertices and a cost or length label. The tour will start at
vertex 1, and the initial bound for the minimum tour is the sum of
the minimum outgoing edges from each vertex.

 Vertex 1 min (14, 4, 10, 20) = 4

 Vertex 2 min (14, 7, 8, 7) = 7

 Vertex 3 min (4, 5, 7, 16) = 4

 Vertex 4 min (11, 7, 9, 2) = 2

 Vertex 5 min (18, 7, 17, 4) = 4

 bound [1] = 21

 Since the bound for this node (21) is less than the initial minTour
(�), nodes for all of the adjacent vertices are added to the state
space tree at level 1. The bound for the node for the partial tour
from 1 to 2 is determined to be:

bound = length from 1 to 2 + sum of min outgoing edges
forvertices 2 to 5
 = 14 + (7 + 4 + 2 + 4)
= 31

 After each new node is added to the PriorityQueue, the node with
the best bound is removed and similarly processed. The algorithm
terminates when the queue is empty.

Branch and Bound Unit 6

Design and Analysis of Algorithm 157

Note that the node for the state with a partial tour from [1,2] is the
second node placed in the priority queue, but the 8th node to be
removed. By the time it is removed and examined, a tour of length
30 which turns out to be the optimal tour, has already been
discovered, and, since its bound exceeds this length, it is
discarded without having to check any of the possible tours that
extend it.

Here is a Branch and Bound algorithm for an adjacency list
representation of a graph. If the first vertex is numbered 1 instead
of 0, the array bounds for mark and minEdge would have to be
length N + 1 and the loops traversing these arrays would have to
be from 0 to N.

Branch and Bound Unit 6

Design and Analysis of Algorithm 158

 CHECK YOUR PROGRESS

1. State True or False.
a) Branch and bound technique is based on advanceddepth

first traversal.
b) Branch and bound techniques uses priority queue data

structure.
c) In pruning step of branch and bound technique, it removes

the not so promising nodes from the search space.
d) All types of problems can be solved by using branch and

bound technique.

6.6 LET US SUM UP

 Branch and Bound is a state space search method in which
all the children of a node are generated before expanding
any of its children.

 It is similar to backtracking technique but uses BFS-like
search.

 Branch and bound techniques uses the priority queue data
structure for storing the information

 Branch and bound technique mainly based on the value
g(x) + h(x), where g(x) is the distance from the root to the
current vertex and h(x) is a heuristic function.

Branch and Bound Unit 6

Design and Analysis of Algorithm 159

6.7 FURTHER READINGS

1. T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein,
"Introduction to Algorithms", Second Edition, Prentice Hall of
India Pvt. Ltd, 2006.

2. Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran,
Fundamental of data structure in C, Second Edition,
Universities Press, 2009.

3. Alfred V. Aho,John E. Hopcroft and Jeffrey D. Ullman, "The
Design and Analysis of Computer Algorithms",Pearson
Education, 1999.

4. Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran,
Computer Algorithms/ C++, Second Edition, Universities
Press, 2007.

.

1. a) False b) True c) True d) False

1. Discuss the branch and bound technique. In which
situations we use this technique?

2. Explain the branch and bound technique to solve Travelling
salesman problem.

3. With an help of example show how 0/1 knapsack problem
can be solved by using branch and bound technique.

6.8 ANSWERS TO CHECK YOUR
 PROGRESS

6.9MODEL QUESTIONS

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 160

Unit 7: P, NP-HARD and NP-COMPLETE
 PROBLEM

UNIT STRUCTURE

1.1 Learning Objective

1.2 Introduction

1.3 Basic Concepts of P and NP Problems

1.4 Non-Deterministic algorithm

7.5 NP-Hard and NP-Complete Classes

7.6 Cook’s Theorem

7.7 Let Us Sum Up

7.8 Answer To Check Your Progress

7.9 Further Reading

7.10 Model Question

7.1 LEARNING OBJECTIVE

 After going through this unit, you will be able to:

 learn about the P and NP hard problems

 know the NP complete problems

 describe the non-deterministic algorithms

 elaborate the Cook’s theorem

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 161

7.2 INTRODUCTION
In this unit you will learn about non-deterministic polynomial time
algorithm. There are two types of problem. One can be solve in

polynomial time and other for which no polynomial time algorithm

known. There are some problem that cannot solved in polynomial

time till now such as Turing’s “Halting problem”. Here, we will

discuss about these algorithm.

7.3 BASIC CONCEPTS OF P AND NP PROBLEMS

 Polynomial time algorithms have running time (nk), for some

constraint k, on input of size n. Not all the problems can solve in

polynomial time. For example -a sorting problem can solve in

O(nlogn) polynomial time. But the problems like knapsack problem
can solved in O(2n/2) non- polynomial time .

There are two types of problem.

i) Decision problem: Decision problems are problems that

has ‘yes’ or ‘no’ answers i.e answers are decidable. For example:

Given an edge-weighted graph G and a positive integer k, does G

contains a spanning tree with total weight < k? An algorithm for a

decision problem is termed as decision algorithm.

ii) Optimization problem: These types of problem finds the
best solution to a problem from all feasible solution set. This type

of problem finds the optimal (maximum or minimum) solution for a

problem. For example: Given an edge-weighted graph G, find a

spanning tree with minimum total weight. An algorithm for an

optimization problem is called optimization algorithm.

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 162

NP Class:
When ‘yes’ instances of a decision problem can decided in

polynomial time then it is called a NP class problem. NP stands for

nondeterministic-polynomial time. For example in a Hamiltonian
cycle problem decision problem is- given a directed graph G(V,E)

of n vertices, where v=<v1,v2,……,vn>. Is there any Hamiltonian

cycle for the graph G? Hamiltonian cycle is a cycle passing every

vertex exactly once. It can check in polynomial time whether there

is an edge between (vi,vi+1) for 1≤ i ≤n and (vn,v1).

P-Class:
Problems that are solvable in polynomial time is called class P

problem.

 We refer here two classes of NP problem:

i) NP-Complete

ii) NP-Hard

A problem that is NP-Complete has the property that it can be

solved in polynomial time if and only if all other NP-Complete

problem can solved in polynomial time.

A NP-Hard problem has the property that if it can solved in

polynomial time then all NP-Complete problem can solved in

polynomial time.

Hence all NP-Complete problems are NP-Hard, but all NP-Hard

problems may not NP-Complete.

A decision problem is NP-complete if its corresponding language

is NP-complete.
An optimization problem is NP-hard if its decision version is NP-

hard.

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 163

 Fig:7.1 P,NP,NP-Complete, NP-Hard

CHECK YOUR PROGRESS

1. True/False

i. Answers of a decision problem is decidable.

ii. Optimization problem does not find optimal solution.
 iii. A decision problem is NP-complete if its corresponding

language is NP-complete.

7.4 NON-DETERMINISTIC ALGORITHM

There are two types of algorithm:

i) Deterministic algorithm:
Algorithm where every operation uniquely defines is called

deterministic algorithm. In such algorithm steps of the algorithm

and way of program execution in computer is compatible.

ii) Non-deterministic algorithm:
Algorithm whose outcomes are not uniquely defined but are limited

to a specified possibility is called non-deterministic algorithm.

When such operations are executing it is allowed to choose any

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 164

one of these outcomes depending upon a termination condition

defined later.

 If there exists no choices that will lead to success, then the

non deterministic algorithm terminates unsuccessfully. A machine
which can execute a non deterministic algorithm is called non

deterministic machine. But in fact non-deterministic machine does

not exist.

 Following are three functions for non-deterministic algorithm-

i) Choice(S): Choose any one element from set S

ii) Failure(): Results an unsuccessful completion

iii) Success(): Results a successful completion

The statement a=Choice(1,n), assigns an integer in the range[1:n]

to a. There is no rule to the integer that is assigned to a. The

Failure() and Success() signal define the computation of the

algorithm.

Example:
Consider the problem of searching an element m in a array A[n] of

n element. We have to find the array index i for the element m.

Solution: A non deterministic algorithm is as below using the
above three function-

int i= Choice(1,n);

if (A[i]=m)

 {

 cout<<i;

 Success();

 }

cout<<’0’;
Failure();

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 165

In the above program first the Choice (1: n) pick up a integer

between 1 to n and assign it to i. Then it checks if m is in A[i]. If

success output will i, index of the m in A[]. If m is not in a[i] then it

output number 0. Hence the non-deterministic complexity of this
program is O(1). But for this same problem the deterministic

algorithm complexity is Ω(n).

 Example: Sort n positive element of an array a[i], 1≤i≤n using

non-deterministic algorithm.

Solution: A non deterministic algorithm for this problem is –

 void Sort(int A[],int n)
 {

 Temp[n], i, m;

 for (i=1; i≤n; i++) /* for loop 1*/

 Temp[i]=0;

 for (i=1; i≤n; i++) /* for loop 2*/

 {

 m = Choice(1,n);

 if (Temp[j]) Failure ();

 Temp[j]=A[i];
 }

 for(i=1; i<=n; i++) /* for loop 3*/

 If(Temp[i] > Temp[i+1]) Failure();

 for(i=1; i<=n; i++) /* for loop 4*/

 cout<< Temp[i]<<” ”;

 Success();

 }

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 166

This non deterministic algorithm can sort elements of an array .

Another array Temp[] is used for keep sorted element. Initially

Temp[] initializes to 0. Within the for loop 2 ach A[i] is assigned to

a location in Temp[]. first choose an index m of array A[] non-
deterministically using Choice(1,n) function. Next it confirmed that

Temp[m] is already not in used. Otherwise Failure(). In loop3 it will

verifies that Temp is sorted . In loop 4 it will output the sorted data.

Algorithm is successfully completed if the output numbers are

sorted.

In theory non-deterministic algorithm works as below -

 The algorithm makes several copy depending upon possible
number of choices. One copy is made for each choice. If the first

copy successfully complete then all other copy of choices are

terminated. Otherwise, if a copy gets failure then terminates only

that copy of the algorithm. A non deterministic machine does not

follow all these times. Instead it can select a correct choice, every

time it is made. If a correct element chooses then each time it

reduces the size of the possible choices set, which can make a

successful termination of the algorithm. If termination is

unsuccessful then output as “unsuccessful”.

Here we discussed only the non-deterministic algorithm that has

unique output. These are non-deterministic decision algorithms .

When the outputs 1 a successful completion occur and if the

output is 0 then there is no choices to successful completion.

Thus, output of a decision algorithm is uniquely defined by input

parameters and algorithm specification.

The property to makes decision problem version for an

optimization problem is that if the optimization problem can solved
in polynomial time then the corresponding decision problem can

solved in polynomial time. In other words if the decision problem

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 167

can not solve in polynomial time then the corresponding

optimization problem can not solve in polynomial time.

Example: Clique
 A clique G’(v,e) is a maximal complete sub-graph of a

graph G(V,E) and size of the clique is |v| . The optimization

problem is called max clique problem which finds the size of the

larges clique. The decision problem is that- Is there exist any

clique G’ in G that has size k, for some given k?

 Formal definition is-

 Clique(G’) = {<G, k >: G is a graph with a clique of size k }

 Let CliqueSolve(G,K) is decision algorithm to solve the problem. If
G has n vertices then optimization problem can be solved by

making many application of CliqueSolve for k=n,n-1,n-2,…..,1.

Here CliqueSolve is used once for each k. If complexity of

CliqueSolve f(n), then the optimization problem (i.e size of

maximum clique) can be solve in atmost nf(n) time. Also the

decision problem (i.e size of maximum clique) can be solved in

g(n) time. Thus clique’s optimization problem can be solve in

polynomial time iff decision problem can be solve in polynomial

time.

non- deterministic polynomial time algorithm for clique
problem
void clique(int G[][], int n, int k)

{

 S=Ø;

 for(int i=1; i≤k; i++)

 {

 int t= Choice(1,n);

 if(t is in s) Failure();
 S=s U {t};

 }

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 168

 for (all (i,j), I € s, j € s and i≠j)

 if ((i,j) ∉ G(E)) Failure();

 Success();

}
Non-deterministic algorithm for 0-1 knapsack problem

 void knapsack(int pf[], int tw, int msize, int r, int x[])

 {

 int tw=0, pf=0;

 for(int i=1; i≤n; i++)

 {

 x[i]=Choice(0,1);

 tw= tw+ x[i] * tw[i];

 pf = pf+ x[i] * pf[i];
 }

 if ((tw > msize) || (pf < r)) Failure();

 else

 Success();

 }

Here pf= total profit

 tw= total weight

 msize= knapsack size
 r= maximum total profit

 x[i]= 1 if ith item is choosen,0 otherwise

 The for loop assigns value 0 or 1 to x[i], 1<=i<=n and calculate

total weight and profit for this choice of x[i]. if statement checks

weather total weight is greater than knapsack capacity msize and

total profit is less than maximum total profit. If the result 1 then a

successful completion and failure otherwise.

Time complexity is O(n).

Satisfiability (SAT) Problem

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 169

 The decision problem of circuit satisfiability problem is –

“Given a Boolean combinational circuit composed of AND, OR,

NOT gates, is it satisfiable ?” The formal definition is

SAT= {< S >: S is a satisfiable boolean combinational circuit }
Let x1, x2,…. are some Boolean variable whose value is either 0

or 1. A Boolean variable(x) or its negation (! x) is called a literal. A

formula can be expressed using literal, AND (V) and OR(Λ)

operation. Example- (x1 V x2) . A formula is in CNF(conjunctive

normal form) if and only if it is represented as Λi=1..k ci, where ci is

represented as Vnij, where nij are litrals. A truth assignment that

causes Boolean formula to result in 1 is called satisfiablity

assignment. It is determined by the satisfiablity problem that a

formula is true for some assignment of truth values to the variables
or not.

CNF- satisfiability is called the satisfiability problem to CNF.

non deterministic algorithm for satisfiability(SAT)-

/* Here F is the Boolean formula and x[1],x[2]……..,x[n] are

Boolean variable.*/

void Sat(cnf F, int n)

{
 int x[n]

 for(int i=1; i<=n i++)

 x[i]= Choice(0,1);

 if (F(x,n)) Success();

 else

 Failure();

}

This algorithm will take time O(n) to choose x[1],x[2],…….,x[n]. It
also takes time T to determine value of F deterministically. Hence

the time required by the algorithm is O(n) + T

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 170

CHECK YOUR PROGRESS

2. What is the decision problem of circuit satisfiability?

3. What is the size of a clique?

7.5 NP-HARD AND NP-COMPLETE CLASSES

Polynomial time solvable:
An algorithm is called polynomial time solvable if there exist a

polynomial x such that the algorithm can compute in O(x(n)) time.

Decision problem solves by deterministic algorithm in polynomial

time is called P and decision problem solves by non deterministic

algorithm in polynomial time is called NP. The famous unsolved

problem in computer science is P=NP or P≠NP. Theoretical

computer science believe that P≠NP. From the property of NPC,

if any NP-Complete problem solves in polynomial time then all

problem in NP can solved in polynomial time i.e P=NP. But there
is no such polynomial time algorithm discovered for NPC.

 Fig. 7.2 P and NP, P≠NP

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 171

Reducibility:
A problem L1 can be reduced to L2 if and only if any instance P1 of

L1 can be easily solved as an instance P2 of L2 by using a

deterministic polynomial time algorithm. L1 is polynomial time

reducible to L2 i.e L1 ≤p L2 . If a problem L1 reduces to another

problem L2 , then L1 is “no harder to solve than L2 ”.

Now the properties of NP-Complete and NP-Hard for a language-

A language L1 � {0,1} is NP-Complete iff -

1. L1 € NP

2. L2 ≤p L1 for every L1 € NP

A language L1€ {0,1} is NP-Hard iff-
1. L2 ≤p L1 for every L2 € NP , but it is not necessary to L1€ NP .

Lemma: If L1, L2� {0,1}* are languages such that L1 ≤p L2, then L2

€ P implies L1 € P

Proof:
 Given that, L2 € P, i.e L2 is decided in polynomial time .

 Let , for L2 the polynomial time algorithm is A2.

 Given that, L1 ≤p L2

 Let polynomial time reduction algorithm is F computes reduction

function f.

 Now, we have to construct an polynomial time algorithm that

decide L1.

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 172

 If we give an input x € {0,1}* to the algorithm A1 then using
the function F it will transform x into f(x). Next this transform output

f(x) gives as input to algorithm A2. It will check whether f(x) € L2.

The output of A2 will be same as A1.

7.6 COOK’S THEOREM
Cook’s theorem states that satisfiability (SAT) is NP-Complete.

Proof:
We know that from the property of NP-Complete , L is in NP-

Complete iff L€ NP and for any L’€ NP, L’≤p L.

Here, we already know that (in example 5), Satisfiability has a
non-deterministic polynomial time algorithm. Thus, satisfiability is

in NP i.e SAT€ NP

Now, we have to show that a reduction exist in SAT for any

problem L which is in NP. i.e if L € NP then L ≤p SAT

L€ NP, Hence L has a polynomial time verifier. Suppose it is T.

 Then,

1. If x € L, �witness y, T (x, y) = 1

2. If x ∉L, ∀ witness y, T(x, y) = 0

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 173

Since verifier T is a polynomial time verifier a circuit can be build

with polynomial size for the verifier T ,The circuit contains AND,

OR and NOT gates. The circuit has |x| + |y| sources, where |x|

must be equal to the values of the bits in x and others |y| are
variables.

We know the input value of x. So, we need to find input |y|

variables which causes the circuit to output as 1. This means L

has been reduced to check whether the circuit output is 1 or not.

i.e L can be reduced to an instance SAT. It can be done as

follows-

A 3-CNF , which means each clause has exactly three terms, can

be used to represent each gate in the circuit.

 For example:

1. Functionality of an OR gate with input p, q and output ri

is represented as follows:

 (p v q v !ri) Λ (ri v !a) Λ (ri v !b)

2. The functionality of a NOT gate with input p and output ri

is represented as follows:

 (p v ri) Λ (!p v !ri)

 The clauses that have fewer than 3 terms, can be easily stuffing
them with free literals(literals that don’t affect in the result) to form

clauses in 3CNF.

Let T has R gates r1, r2 , r3,….., rR where rR represent the final

output of the verifier T and ri (1 ≤ i< R) represents the

intermediate output of T .

They either takes some of the sources from (|x|+|y|) or some

output ri as input. So, the circuit can be represented as a formula

in CNF:

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 174

A = a1 Λ a2 Λ. . . Λ aR Λ rR

Where,
ai = (s1 Λ s2 Λ s3) s1, s2 , s3€ (p, q, r1, r2 , r3,….., rR , !r1, !r2 , !r3,…..,

!rR)

If ai is not in 3CNF then it can made an equivalent formula in

3CNF by adding free variables. Thus, the circuit can be reduced to

ai, a formula in 3CNF which is satisfiable iff the original circuit

gives output as 1. Hence, L ≤p SAT.

Since L is in NP. Hence, SAT is N P -Complete.

We can also say that 3-SAT is NP Complete because we

considered the formulas are in 3-CNF. If we considered that

formulas are in K-CNF then also K-SAT is NP-Complete, for K≥3.

CHECK YOUR PROGRESS

4. True/False

i. If a problem L1 reduces to another problem L2 , then L2 is

“no harder to solve than L1 ”.

ii. SAT is N P -Complete.

7.7 LET US SUM UP

 Polynomial time algorithms have running time (nk), for some

constraint k, on input of size n.

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 175

 Decision problems are problems that has ‘yes’ or ‘no’ answers

i.e answers are decidable
 Optimization problem finds the optimal(maximum or minimum)

solution for a problem.

 When ‘yes’ instances of a decision problem can decided in

polynomial time then it is called a NP class problem.
 A problem that is NP-Complete has the property that it can be

solved in polynomial time if and only if all other NP-Complete

problem can solved in polynomial time.

 A NP-Hard problem has the property that if it can solved in

polynomial time then all NP-Complete problem can solved in

polynomial time.
 NP-Complete problems are NP-Hard, but all NP-Hard problems

may not NP-Complete.

 Algorithm where every operation uniquely defines is called

deterministic algorithm.

 Algorithm whose outcomes are not uniquely defined but are

limited to a specified possibility is called non-deterministic
algorithm.

 A clique G’(v, e) is a maximal complete sub-graph of a graph

G(V,E)

 The decision problem of circuit satisfiability problem is – “Given

a Boolean combinational circuit composed of AND, OR, NOT
gates, is it satisfiable?”

 Decision problem solves by deterministic algorithm in

polynomial time is called P and decision problem solves by non

deterministic algorithm in polynomial time is called NP.

 If a problem L1 reduces to another problem L2 , then L1 is “no

harder to solve than L2 ”.
 Cook’s theorem states that satisfiability (SAT) is NP-Complete.

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 176

7.8 ANSWER TO CHECK YOUR
PROGRESS

1. i. True, ii. False, iii. True

2. The decision problem of circuit satisfiability problem is –

“Given a Boolean combinational circuit composed of AND, OR,

NOT gates, is it satisfiable ?” The formal definition is
SAT= {< S >: S is a satisfiable boolean combinational circuit }

3. A clique G’(v,e) is a maximal complete sub-graph of a graph

G(V,E) and size of the clique is |v| .

4. i. False, ii. True

7.9 FURTHER READINGS

 T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein,
"Introduction to Algorithms", Second Edition, Prentice Hall of India
Pvt. Ltd, 2006.

 Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran,
Computer Algorithms/ C++, Second Edition, Universities Press,
2007.

7.10 MODEL QUESTIONS

1. What is decision and optimization problem?

2. What are the two classes of NP- problem?

3. What is P, NP class problem?
4. What is circuit satisfiability problem?

5. Write a non-deterministic algorithm for circuit satisfiabilty.

6. Write a non-deterministic algorithm for 0-1 knapsack problem.

7. What is reducibility?

8. What is non-deterministic algorithm? How does it work ?

 NP-Hard and NP-Complete Problem Unit 7

 Design and Analysis of Algorithm 177

9. Write the decision version of clique problem.

10. Write a non-deterministic polynomial time algorithm for clique

problem?

11. What are the properties of NP-Complete and NP-Hard
problem?

12. State and proof Cook’s theorem.

13. Show that if L1, L2� {0,1}* are languages such that L1 ≤p L2,

then L2 € P implies L1 € P

	cpage(Algorithm)MC
	Unit - 1
	Unit - 2
	Unit - 3
	Unit - 4
	Unit - 5
	Unit - 6
	Unit - 7

