
MCA10

KRISHNA KANTA HANDIQUI STATE OPEN UNIVERSITY
Housefed Complex, Dispur, Guwahati - 781 006

Master of Computer Applications

OBJECT-ORIENTED PROGRAMMING THROUGH C++

CONTENTS
Unit–1 : Introduction to Object-Oriented Programming
Unit–2 : Elements of C++ Language
Unit–3 : Operators and Manipulators
Unit–4 : Decision and Control Structures
Unit–5 : Array, Pointer and Structure
Unit–6 : Functions
Unit–7 : Introduction to Classes and Objects
Unit–8 : Constructors and Destructors
Unit–9 : Operator Overloading
Unit–10 : Inheritance
Unit–11 : Virtual Functions and Polymorphism
Unit–12 : File Handling

Subject Expert
Prof. Anjana Kakati Mahanta, Deptt. of Computer Science, Gauhati University
Prof. Jatindra Kr. Deka, Deptt. of Computer Science and Engineering,

Indian Institute of Technology, Guwahati
Prof. Diganta Goswami, Deptt. of Computer Science and Engineering,

 Indian Institute of Technology, Guwahati

Course Coordinator

Tapashi Kashyap Das, Assistant Professor, Computer Science, KKHSOU
Arabinda Saikia, Assistant Professor, Computer Science, KKHSOU

SLM Preparation Team
Units Contributors Content Editors

1 Binod Deka
System Analyst, KKHSOU

2, 7,9 Arabinda Saikia
 8 Gitartha Goswami,

IDOL, Gauhati University
3, 6,12 Pritam Medhi

ICT Centre, Gauhati University
10, 11 Tapashi Kashyap Das,
 4, 5 Pallavi Saikia

IDOL, Gauhati University

July 2012

© Krishna Kanta Handiqui State Open University.

No part of this publication which is material protected by this copyright notice may be produced or
transmitted or utilized or stored in any form or by any means now known or hereinafter invented,
electronic, digital or mechanical, including photocopying, scanning, recording or by any information
storage or retrieval system, without prior written permission from the KKHSOU.

Printed and published by Registrar on behalf of the Krishna Kanta Handique State Open University.

The university acknowledges with thanks the financial support provided
by the Distance Education Council, New Delhi, for the preparation of
this study material.

Housefed Complex, Dispur, Guwahati-781006 Web: www.kkhsou.in

Guru Prasad Khataniar
Lecturer, Assam Engineering Institute

Manoj Kumar Sarma
Assistant Professor,
Deptt. of Computer Science
Gauhati University, Assam

COURSE INTRODUCTION

This is a course on Object-Oriented Programming Through C++. Object-Oriented program-
ming (OOP) is a programming paradigm that uses “objects” – data structures consisting of data
members and member functions – and their interactions to design applications and computer
programs. Programming techniques may include features such as data hiding, data abstrac-
tion, encapsulation, modularity, polymorphism, and inheritance. It was not commonly used in
mainstream software application development until the early 1990s. Now-a days many modern
programming languages like C++, JAVA support OOP features.

This course consists of the following twelve units :

Unit - 1 introduces basic concept of OOP. Comparision of OOP with procedural program-
ming and benefit of OOP are discussed in this unit.

Unit - 2 concentrates on some basic elements like token, identifiers, variables, datatypes
etc. In addition, the concept of streams in C++ are also discussed in this unit.

Unit - 3 deals with the opeators and manipulators used in C++.

Unit - 4 concentrates on the discussion of decision and control statements like if, if-else,
switch statements, loops: while, do-while, for; jump statement : break, continue, go
to etc.

Unit - 5 deals with the discussion of derived data types such as array, pointer, structure and
union.

Unit - 6 is the last unit of this block. This unit explains the concept of functions including the
declaration of a function upto parameter passing techniques. In addition, some
new concept like inline function, function overloadiing are also introduced in this
unit.

Unit-7 illustrates how data and functions can be combined into a single unit. This unit deals
with the concept of classes and objects in C++. Declaration of class, object creation,
accessing class members etc. are covered in this unit.

Unit-8 mainly focuses on two special functions in C++ language called constructors and de-
structors. The rules associated with using constructors and destructors are also de-
fined in this unit.

Unit-9 deals with operator overloading. It discusses how the various operators like +,-,> etc.
exhibit additional meaning when applied to user defined data types.

Unit-10 discusses inheritance in C++. It covers various forms of inheritance along with exam-
ples.

Unit-11 deals with the concept of polymorphism and virtual function. This unit illustrates the
dynamic binding of functions to realize run-time polymorphism.

Unit-12 is the last unit of this block. This unit explains how to perform reading and writing data
from files using C++ features.

Each unit of these blocks includes some along-side boxes to help you know some of the difficult,
unseen terms. Some “EXERCISE” have been included to help you apply your own thoughts. You
may find some boxes marked with: “LET US KNOW”. These boxes will provide you with some
additional interesting and relevant information. Again, you will get “CHECK YOUR PROGRESS”
questions. These have been designed to self-check your progress of study. It will be helpful for
you if you solve the problems put in these boxes immediately after you go through the sections
of the units and then match your answers with “ANSWERS TO CHECK YOUR PROGRESS”
given at the end of each unit.

MASTER OF COMPUTER APPLICATIONS

Object-Oriented Programming through C++

DETAILED SYLLABUS

UNIT–1 : Introduction to Object-Oriented Programming

Basic concept of OOP, Comparison of Procedural Programming and OOP, Benefits of
OOP, C++ compilation, Abstraction, Encapsulation, Inheritance, Polymorphism, Difference
between C and C++.

UNIT–2 : Elements of C++ Language

Tokens and identifiers: Character set and symbols, Keywords, C++ identifiers. Variables
and constants: Integers & characters, Constants and symbolic constants, Dynamic
initialization of variables, Reference variables, Basic data types in C++, Streams in C++

UNIT–3 : Operators and Manipulators

Operators, Types of Operators in C++, Precedence and Associativity, Manipulators.

UNIT–4 : Decision and Control Structures

if statement, if-else statement, switch statements, Loop: while, do-while, for; Jump
statements : break, continue, go to.

UNIT–5 : Array, Pointers and Structure

Arrays, pointer, structure, unions;

UNIT–6 : Functions

main() function, components of function : prototype, function call, definition, parameter;
passing arguments; types of function, inline function, function overloading.

UNIT–7 : Introduction to Classes and Objects

Classes in C++, class declaration, declaring objects, Defining Member functions, Inline
member function, Array of objects, Objects as function argument, Static data member
and mmber function, Friend function and friend class.

UNIT–8 : Constructors and Destructors

Constructors, Instantiation of objects, Default constructor, Parameterized constructor,
Copy constructor and its use, Destructors, Constraints on constructors and destructors,
Dynamic initialization of objects.

UNIT–9 : Operator Overloading

Overloading unary operators: Operator keyword, arguments and return value; Overloading
Unary and binary operators: arithmetic operators, manipulation of strings using operators,
Type conversions.

UNIT–10 : Inheritance

Derived class and base class: Defining a derived class, Accessing the base class member,
Inheritance: multilevel, multiple, hierarchical, hybrid; Virtual base class, Abstract class.

UNIT–11 : Virtual Functions and Polymorphism

Virtual functions, Pure virtual functions; Polymorphism, Categorization of polymorphism
techniques: Compile time polymorphism, Run time polymorphism.

UNIT–12 : File Handling

File classes, Opening and Closing a file, File modes, Manipulation of file pointers, Functions
for I/O operations.

1Object-Oriented Programming Through C++ (Block-1)

UNIT-1 : INTRODUCTION TO OBJECT ORIENTED
PROGRAMMING

UNIT STRUCTURE

1.1 Learning Objectives
1.2 Introduction
1.3 Basic Concepts of Object-Oriented Programming (OOP)
1.4 Comparision of Procedural Programming and OOP’s
1.5 Benifits of Object-Oriented Programming (OOP)
1.6 C++ Compilation-A Quick Look
1.7 Some Features in OOP

1.7.1 Abstraction
1.7.2 Encapsulation
1.7.3 Inheritance
1.7.4 Polymorphism

1.8 Difference between C and C++
1.9 Let Us Sum Up
1.11 Answer to Check Your Progress
1.12 Further Readings
1.13 Model Questions

1.1 LEARNING OBJECTIVES

After going through this unit, you will be able to–

 acquire the concepts of OOP

 differentiate OOP with procedural language

 describe the advantages of OOP

 describe compilation process of OOP

 illustrate some basic features of OOP and PPL

1.2 INTRODUCTON

We are already familiar with the C programming language. C language is
known as procedural oriented language as because C consists of sequence

2 Object-Oriented Programming Through C++ (Block-1)

of instructions i.e. the actions for the computer to follow and organazing
these instructions into groups known as function. However, this approach
always are not suitable specially for the real life applications terms of bug-
free,maintainace and reusable code. To overcome this difficulty, the con-
cept of Object-Oriented Programming (OOP) comes out.

In this unit, we will discuss the basic idea of OOP and how it is different
with procedural language like C. Also we will discuss the benifits of OOP
over procedural language.

1.3 BASIC CONCEPTS OF OBJECT-ORIENTED
PROGRAMMING (OOP)

As we know OOP is basically used to solve the real life applications.We
can call OOP as the programming methodology that focuses on data rather
than processes. It is a moduler approach to computer program design.
Each module or objects combines the data and procedures (sequence of
instructions) that act on the data. A group of objects that have the proper-
ties, operations and behaviour in common is called a class.

Here in OOP’s programmers define not only the data type of a data struc-
ture, but also the types of operations that can be applied to the data struc-
ture. In this way, the data structure becomes an object that includes both
data and functions. In addition, programmers can create relationships be-
tween one object and another. For example,objects can inherit character-
istics from the other objects.

May be some of you get confused with the term Object.Actually object are
the basic run-time entities in an object-oriented system and every object is
associated with data and functions which define meaningful operations on
that object.

For object-oriented programming, we need an object-oriented program-
ming language like Java, C++ etc.We are here going to discuss about the
C++ language.

Introduction to Object-Oriented ProgrammingUnit-1

3Object-Oriented Programming Through C++ (Block-1)

Some main features of OOP are:

a. Encapsulation
b. Data abstraction
c. Inheritance
d. Polymorphism
e. Message passing
f. Extensibility
g. Persistency
h. Data hiding

We will briefly introduce these features in this unit. An elaborate descrip-
tion of the above topics will be given in our next units.

Let us take an example, if HUMAN can be a class and Jadu, Ram etc are
names of human which can be considered as object. So every human has
eye, so eyecolor can be considered as the property of human being which
can be encapsulted (will be discussed later) as a data in class HUMAN.

class HUMAN
{

EyeColor e_color;
NAME human_name;

}

Consider object of the class HUMAN is human_obj; we want to set
human_obj's name as "Jadu" and e_color as "black". For that purposes
we need a method or function.

So the required methods for the above class to do a particular task on the
data are:

class HUMAN
{

EyeColor e_color;
NAME human_name;
SetName(NAME anyName); // set the human name
SetEColor(EyeColor color); // set the eye color

}

Introduction to Object-Oriented Programming Unit-1

4 Object-Oriented Programming Through C++ (Block-1)

So, a class is a combination of data members (i.e properties of object) and
methods to manipulate that data. But the basic thing to undersand is that
class has propeties not any particular object informations. In other words
the HUMAN class has no specific EyeColor or NAME. Only when the object
of that class (e.g. human_obj) has name like "Jadu" and eye color "black".

As we have seen in fig. 1, so in real life many human may present and Jadu
is one of them with the black eyes.

Fig. 1.1 : Human Class and Human Object (e.g Jadu)

1.4. Comparision of PPL and OOP

C language was created by Kernighan and Ritchie in 1970.C was created
with simplicity and flexibility in mind. Its primary use was for writing operat-
ing systems (e.g. WinXP, LINUX etc).However it became popular because
of its simplicty. The one thing that C lacked was support for objects; it was
a procedural-oriented program.

In a procedural-based programming language, a programmer writes out
instructions that are followed by a computer from start to finish. This kind
of programming had its own advantages, but an OOP makes program-
ming more clearer and easier to understand as we already disscussed.
Object-oriented programming is all about using objects.
An object actually contains code (member functions) and data (data mem-

Introduction to Object-Oriented ProgrammingUnit-1

5Object-Oriented Programming Through C++ (Block-1)

bers) where the code and data have been kept apart. For example, in the C
language, units of code are called functions, while units of data are called
structures. Functions and structures are not formally connected in C. A C
function can operate on more than one type of structure, and more than
one function can operate on the same structure.

The main difference of OOP with procedural language are:

a) Object Orientation Languages objective is to develop an application
based on real time while Procedural Programming Languages(PPL)
are more concerned with the processing of procedures or functions.

b) In OOP, more emphasis is given on data rather than procedures,
while the programs are divided into objects and the data is encapsu-
lated (i.e. hidden) from the external environment, providing more se-
curity to data which is not generaly applicable or rather possible in
PPL like C.

c) In OOP, Objects communicate with each other via functions (will be
discussed in next the units) while there is no explicit communication
in PPL rather its simply a passing values to the arguments to the
functions.

d) OOP follows bottom up approach of program execution while in PPL
its top down approach.

e) OOP’s concepts includes Inheritance, Encapsulation and Data Ab-
straction, Polymorphism, Multithreading, and Message Passing while
PPL is simply a programming in a traditional way of calling functions
and returning values.PPL does not suport it.

The list of OOP languages are :- C++, JAVA, VB.NET, C#.NET

The list of PPL languages :- C, VB, Perl, Basic, FORTRAN.

Introduction to Object-Oriented Programming Unit-1

6 Object-Oriented Programming Through C++ (Block-1)

GLOBAL DATA GLOBAL DATA

FUNCTION-1

LOCAL DATA

FUNCTION-2

LOCAL DATA

FUNCTION-3

LOCAL DATA

 Data

Functions

 Data

Functions

 Data

Funct ions

OBJECT- 1 OBJECT- 2

OBJECT- 3

Communication

Introduction to Object-Oriented ProgrammingUnit-1

Fig. 1.2 : Relationship of data and functions in PPL

Fig. 1.3 : Relationship of data and functions in OOP

7Object-Oriented Programming Through C++ (Block-1)

1.5 BENEFITS OF OOP

We have now clear idea about the OOP’s and PPL and also able to identify
the difference between them. As we know OOP is basically used in real
time applications;it makes the applications more reliable and efficient as
compared to PPL. The following are the benefits of Object-Oriented Pro-
gramming over procedural programming language.

a) Using inheritance concepts, we can reuse the existing classes i.e.
programe code or data structure.In other words we can eliminate the
redundant code.

b) Data hiding mechanisim helps us to build the secure programs that
can not be invaded by code in the other parts of the program.

c) The data centered design approach helps to aquire more details of
model in implementable form.

d) OOP’s can easily upgrade a small system to a large system with
just a few modifications in the previous existing code or data struc-
ture.

e) Message passing concepts for communication among objects makes
the interface descriptions with external system much simpler.

f) Using OOP concepts the time and space complexity can be reduced.

1.6 C++ COMPILATIONS – A QUICK LOOK

We are already familier with C language like saving the program, compila-
tion and execution.C++ environment is almost same with C language. Just
compiler used by C++ is different than C.One important thing is that C
program can be compiled and executed by the C++ compiler but the re-
verse is not true i.e. C++ program can not be executed / compiled by a C
compiler. In other words C++ includes all the features of C languages plus
some additional functionality.

Introduction to Object-Oriented Programming Unit-1

8 Object-Oriented Programming Through C++ (Block-1)

Also one important thing is that the compilations of C or C++ varies de-
pending upon the Operating System (O.S.) used. Here we are going to
discuss only about the windows operating system like Win XP, Win 98.
Since we already discussed how to save, compile and run a program in C
language. We are here not going for detail. Just take a quick look of it. Even
If after reading the following section,if you still have confusion please go
through the first section of the C language module.

We can use Turbo C++ or Borland C++ to write the C++ program. They
are nothing but the application software for writing the C++ program. We
can create and save the C++ source files under Edit menu. We can com-
pile and execute the program under the Compile and Run menu respec-
tively.

Some snapshot of Turbo C++ is given below:-

Fig. 1.4 to Fig. 1.7 shows the simple C++ window, Save,Compile and Run
menu in Turbo C++ respectively. As we see in the above pictures, the
compilation of C++ program can be done by going to the compile menu.
But the compilation of C++ program in UNIX or LINUX operating system
are different.
Assume that hello_world.cpp is a C++ program written in LINUX. Then

Compiler :
A compiler is a
computer program or
set of programs that
transforms source
code written in a
computer language
(i.e. source language)
into another computer
language (i.e. target
language, often
having a binary form
known as object
code). The most
common reason for
wanting to transform
source code is to
create an executable
program.

Fig. 1.4 : Simple Window of Turbo C++

Introduction to Object-Oriented ProgrammingUnit-1

9Object-Oriented Programming Through C++ (Block-1)

Fig. 1.5 : Save menu in Turbo C++

Fig. 1.6 : Compile menu in Turbo C++

Fig. 1.7 : Run menu in Turbo C++

Introduction to Object-Oriented Programming Unit-1

1 0 Object-Oriented Programming Through C++ (Block-1)

we need to compile it from the command prompt. It looks like:

C++ hello_world.cpp

After the successful compilation, it will create a file a.out.This is nothing
but an executable file in UNIX. To execute it we need to write in the follow-
ing way:

. /a.out

The main logic for any program is always same. It does not depend upon
any operating system or even any compiler. So if you get confused regard-
ing the compilation in different operating system, no need to worry, just give
attention only to the logic of a program.

CHECK YOUR PROGRESS - 1

1. Determine the following whether true or false.

a. OOP concepts can be used to design real life applications.

b. C is a an Object Oriented langauge.

c. Encapsulations is special features in OOP.

d. Class concpets is used in C++.

2. Fill in the blanks:

a. _____________ mechanisim helps us to build the secure
programs in OOP.

b. In OOP, more emphasis is given on _____________ rather
than _____________ .

c. OOP follows _____________ approach where PPL follows
_____________ .

3. Give some examples of objects that you see in daily life.
...
...
...

exe : It is an execut-
able file generated
after compilation of
the source file.

Introduction to Object-Oriented ProgrammingUnit-1

1 1Object-Oriented Programming Through C++ (Block-1)

4. Write two difference between OOP and PPL.
...
...
...

5. Do you think that OOP is better than PPL? Give reason.
...
...
...

1.7 SOME FEATURES IN OOP

1.7.1 Abstraction

Abstraction means to show only the necessary details to the client of
the object. Do you know the inner details of the monitor you are using?
What happen when we switch ON monitor? Does this matter to us
what is happening inside the Monitor? Obviously not ! Take another
example, when we switch on our mobile phone, we are actually not
concern about the internal working details (e.g circuits) of the mobile
phone.Just we know how to CALL, send SMS etc.The internal
functions of the mobile is hidden from the users and give us only our
requirements (such as CALL, to send SMS).This concepts is called
abstraction.

What is Abstraction ?

The concept of abstraction relates to the idea of hiding data.The main
idea behind data abstraction is to give a clear separation between
properties of data type and the associated implementation details.
Thus abstraction forms the basic platform for the creation of user-
defined data types called objects. Data abstraction is the process of
refining data to its essential form. An Abstract Data Type is defined
as a data type that is defined in terms of the operations that it sup-
ports and not in terms of its structure or implementation.

Introduction to Object-Oriented Programming Unit-1

1 2 Object-Oriented Programming Through C++ (Block-1)

In object-oriented programming language C++, it is possible to cre-
ate and provide an interface that accesses only certain elements of
data types.The programmer can decide which user to give access
to and hide the other details.This concept is called data hiding which
is similar in concept to data abstraction.

Different Types of Abstraction:

There are two types of abstraction; functional abstraction and data
abstraction. The main difference between them is that functional
abstraction refers to a function that can be used without taking into
account how the function is implemented. Data abstraction refers to
the data that can be used without taking into account how the data
are stored.

Why Abstraction is needed ?

There are lots of advantages for using abstraction. They can be
explained as follows:

a) Flexibility : By hiding data or abstracting details that are not needed
for presentation, we can achieves greater flexibility.

b) Security : Abstraction gives access to only required details that
are required by us and it hide the implementation details, thus
giving good security to the programs.This concept helps to design
real time applications with good security.

c) Easier Replacement: Using abstraction concepts, it is possible
to replace code without recompilation. This makes our work easier
and saves lot of time.

d) Modular Approach: In OOP, the abstraction concept helps to divide
the program into modules (small part) and test each of them
individually. Then all modules are combined and ultimately tested
together. This makes the application development in C++ easier.

Hope you have now clear idea of abstraction. Here we are not going

Introduction to Object-Oriented ProgrammingUnit-1

1 3Object-Oriented Programming Through C++ (Block-1)

for the implementation in detail. The next units will show the C++
program as examples.

1.7.2 Encapsulation

We are already familiar with the term abstraction. This abstraction
concepts also brings another important idea in C++, the encapsulation.
Encapsulation is a method of binding the data and the codes that
operates on the data into a single entity. This keeps the data safe
from outside interface and misuse.

As we know encapsulation hides the implementation details of the
object and the only thing that remains externally visible is the interface
of the object (i.e. the set of all messages the object can respond to).
Once an object is encapsulated, its implementation details are not
immediately accessible any more. Instead they are packaged and
are only indirectly accessible via the interface of the object. The only
way to access such an encapsulated object is via message passing-
one sends a message to the object, and the object itself selects the
method by which it will react to the message,determined by functions.

Encapsulation means as much as shielding. Take a simple example.

Say Customer, waiter and kitchen are three objects. As we know
customer and kitchen do not know
each other in general situation. The
waiter is the intermediary between
them. Objects can't see each other
in an Object Oriented world. The
'hatch' enables them to communi-
cate and exchange coffee and
money.
Encapsulation keeps computer
systems flexible. The business

Introduction to Object-Oriented Programming Unit-1

hatch:
A small opening in a
wall allowing access
from one area to
another.

1 4 Object-Oriented Programming Through C++ (Block-1)

process can change easily. The customer does not care about the
coffee making process. Even the waiter does not care. This allows
the kitchen to be reconstructed, is only the 'hatch' remains the same.
It is even possible to change the entire business process. Suppose
the waiter will brew coffee himself. The customer won't notice any
difference even.

1.7.3 Inheritance

Inheritance is the most important feature of object-oriented program-
ming. Inheritance is the process of creating new classes, called the
derived classes, from existing or base classes. It gives a relation be-
tween classes that allows for the definition and implementation of
one class to be based on that of other existing classes. The derived
class inherits all the characteristics of the base class but can add
some other properties of its own.

Inheritance allows us to reuse code in programming. Reusing exist-
ing code saves time and cost and hence reliability of program in-
creases.

1.7.4 Polymorphism

Again to make clear
understanding about
the polymorphism,
take the previous cof-
fee example. Practi-
cally in polymorphism,
objects can respond
differently to the same
message. Both waiter
and kitchen respond to 'a black coffee' differently.

The actions are different though:

Introduction to Object-Oriented ProgrammingUnit-1

1 5Object-Oriented Programming Through C++ (Block-1)

i) The waiter passes the message to the kitchen, waits for response,
delivers coffee and settles the account.

ii) The kitchen make the fresh coffee and passes it to the waiter.

The same message with different implementations, that is the poly-
morphism. Polymorphism makes Object Oriented system extremely
suitable for various exceptions used in our daily life.

So we can defined polymorphism as “the ability to use an operator
or function in different ways”. It gives different meanings or functions
to the operators or functions.The term Poly in polymorphism, refer-
ring to many, signifies the many uses of the operators and functions.
A single function usage or an operator functioning in many ways can
be called polymorphism. Polymorphism refers to codes, operations
or objects that behave differently in different contexts.

A simple example of polymorphism is shown below :

16+7 “Well”+”Come” 2.3+4.1

As we have seen the operator + is used with different meanings with
integer, strings and floating point number respectively. This concept
is known as polymorphism.The above idea leads to the operator
overloading (will be discussed in later units).

It is used to give different meanings to the same concept.

Advantages of Polymorphism:

 Helps in reusability of code.
 Provides easier maintenance of program.
 Helps in achieving robustness in the program.

Types of Polymorphism:

Mainly two types of polymorphism exists.They are:

A. Run-time polymorphism.
B. Compile-time polymorphism.

These will be discussed in detail in the later units.

2.8 DIFFERENCE BETWEEN C AND C++

Introduction to Object-Oriented Programming Unit-1

1 6 Object-Oriented Programming Through C++ (Block-1)

In this section, we are going to discuss those points that makes C++ differ-
ent from C. From the above explaination you may able to identify the main
points where the both language differ. Almost all valid C programs are
valid C++ programs, but all of the C++ features are not compatible with C.
In other words we can say C++ is a superset of C. The main difference
between C and C++ are given below:

a) C is a procedural language whereas C++ is non-procedural language.

b) C allows the data to flow around the functions freely whereas C++
wraps up the data and functions together, due to that data are not
allowed to flow around freely in C++.(This is said to be encapsula-
tion in C++).

c) C has no data security while C++ has the security of data,anyone
can access the data of C program while in C++ only member of the
class can access the data ,outsidee it can't access the data.

d) In C++, it is strictly enforced that all functions must be declared be-
fore they are used. However in C we may avoid the declaration.

Take an example:

#include <stdio.h>
int main()

{
msg();
return 0;

}

void msg()
{

printf("Hello world");
}

This works in C language but not in C++.

e) Type checking is much more rigid in C++ than it is in C, so a pro-
gram that compile sucessfully under a C compiler may result in many
warnings and errors under a C++ compiler.

f) C++ allows to declare variables and statements in any order i.e. in

Introduction to Object-Oriented ProgrammingUnit-1

1 7Object-Oriented Programming Through C++ (Block-1)

any place in the program not just at the beginning but before the uses
of the variable.For example, the following fragment is legal in C++
but not in C.

for (int j = 0; j < 10; j++)
s=s+j;

The example shows how C++ allows to declare and initialize the
variable ‘j’ in the for loop statement instead of at the start of the
function.

g) Although it is possible to implement anything which C++ could imple-
ment in C, C++ aids to standarize a way in which objects are created
and managed, whereas the C programmer who implements the same
system has alot of liberty on how to actually implement the internals.
and programming style among programmers will vary alot on
the design choices they made.

The above points are the main points that differs C and C++.

CHECK YOUR PROGRESS - 2

1. Determine the following whether true or false.

a. Abstraction gives a clear separation between properties of
data type and the associated functions.

b. C does not support encapsulations but support abentity
called object.

c. Encapsulation binds the data and the functions into a single
entity called object.

2. Write two advantages of abstraction.
...
...
...

3. Mention two features of C++ language that are not inlcuded in

Introduction to Object-Oriented Programming Unit-1

1 8 Object-Oriented Programming Through C++ (Block-1)

C language.
...
...
...

1.9 LET US SUM UP

 Object oriented programming was invented to overcome the draw-
backs of the procedure programming language (PPL). OOP’s uses
the bottom up approach while PPL uses top down.

 In OOP, a problem is considered as a collection of a number of en-
tities called Object where the object are the basic instances of classes.

 OOP’s offers several advantages over PPL.The most common one
is “re-useability” of the code and data structures.

 Application of OOP technology has gained importance in almost all
areas of computing including real-time system.

 Examples of OOP’s are C++, JAVA,Visual Basic etc.C a is proce-
dure oriented languages.

1.10 ANSWER TO CHECK YOUR PROGRESS

CHECK YOUR PROGRESS - 1

1. a) True b) False c) True d) True

2. a) Data Hiding b) Data, procedures c) Bottom Up, Top down

3. CAR, ANIMAL etc

4. i) OOP supports polymorphism,but PPL not.

II) OOP uses data hiding concept but PPL does not have any such
concepts.

5. OOP is better than PPL since we can solve real life problem using it
unlike PPL. Also OOP gives a security in accessing the data.

CHECK YOUR PROGRESS - 2

Introduction to Object-Oriented ProgrammingUnit-1

1 9Object-Oriented Programming Through C++ (Block-1)

1. a) True b) False c) True

2. Flexibility and security (for detail refer to section 1.7.1)

3. C++ support polymorphism and data hiding while C does not
support it.

1.11 FURTHER READINGS

1. Object Oriented Programming with C++, E. Balagurusamy, Tata
McGraw Hill Publication.

2. The Complete Reference C++, Herbert Schildt, Tata McGraw Hill
Publication.

3. Mastering C++, K.R. Venugopal, Rajkumar, T. Ravi Shankar, Tata
McGraw Hill Publication.

1.12 MODEL QUESTIONS

1. What do you mean by Object Oriented Programming language?
How it is differ with the procedure programming languages? Explain.

2. Write the basic difference between OOP and PPL.

3. Briefly explain about OOP’s with an examlpe.Give 3 example of OOP
languages.

4. Mention the special features in OOP’s .

5. State whether the following are true or false

a) In PPL all data are shared by all functions in a program.

b) Object oriented approach can scale up better from small to large.

c) Objects are the basic instances of classes.

d) Java is a pure Object Oriented Programming language.

Introduction to Object-Oriented Programming Unit-1

2 0 Object-Oriented Programming Through C++ (Block-1)

UNIT-2 : ELEMENTS OF C++ LANGUAGE

UNIT STRUCTURE

2.1 Learning Objectives
2.2 Introduction
2.3 Token, Identifier and Keywords
2.4 Character Set and Symbols
2.5 Basic Data types in C++
2.6 Variables
2.7 Constants
2.8 Dynamic Initialization of Variable
2.9 Reference Variable
2.10 Streams in C++
2.11 Let Us Sum Up
2.12 Answers to Check Your Progress
2.13 Further Readings
2.14 Model Questions

2.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

 learn about the basic elements of C++ viz. character set, token,
identifier and keywords

 declare variables and constants

 describe dynamic initialization of variable and reference variables
 use the available C++ streams

2.2 INTRODUCTION

In the previous unit, we were introduced to the primary concepts that are

applicable in the Object Oriented Programming paradigm. We have already

come across some basic concepts of C++’s Object Oriented Programming

methodology namely Abstraction, Encapsulation, Inheritance,

Polymorphism etc. C++ inherits from C language an economy of

2 1Object-Oriented Programming Through C++ (Block-1)

Unit-2

expression that novices often find cryptic. And as an Object Oriented

language, its widespread use of classes and templates presents a

formidable challenge to those who have not thought in those terms before.

This unit provides the fundamental concepts necessary for the first-time

C++ programmers. In this unit we will get to know about terms like tokens,

variables, constants, data types. Streams that provide for transfer of

information in the form of a sequence of bytes will also be discussed in

this unit.

2.3 TOKEN IDENTIFIER AND KEYWORDS

A computer program is a sequence of elements called tokens. These tokens

include keywords such as int, identifiers such as main, punctuation symbols

such as { and operators such as <<. On compiling the program, the

computer scans the source code, parsing it into tokens. If it finds something

unexpected or doesn’t find something that was expected, then it aborts the

compilation and issues error messages.

 A token is the smallest element of a C++ program that is meaningful

to the compiler. It is a group of characters that logically belong together

and the programmer can write a program by using these tokens.

Tokens are classified in the following types–

(a) Keywords (b) Variable (c) Constants

(d) Special character (e) Operators

Here,

Keywords – are set of reserved words with fixed meanings
e.g. int, switch, char, class etc.

Variables – are used to hold data temporarily, eg. marks,
age, name etc.

Constants – the fixed values like 3.2, 9.3 etc.
Special character – Symbols like #, ~ are known as special

character

Elements of C++ Language

2 2 Object-Oriented Programming Through C++ (Block-1)

Operators – are used to perform different operations such
as arithmetic or logic etc. e.g. +, -, :, ?, >, <
etc.

IDENTIFIER :

Identifiers are names that are given to various program elements, such as
variables, functions and arrays. Identifiers consists of letters and digits, in
any order, except that the first character must be a letter. To construct an
identifier you must obey the following points:

o only alphabet, digit and under scores are permitted.

o an identifiers cannot start with a digit.

o identifiers are case sensitive, i.e. upper case and lower case letters
are distinct.

In C++, there is no limit to the length of an identifier, and at least the first
1024 characters are significant. Here are some correct and incorrect
identifiers name given :

Correct Incorrect

count 1 count

names #$sum

tax_rate order-no

_temp high balance

An identifier cannot be the same as a C or C++ keyword, and should not
have the same name as functions that are in the C or C++ library.

KEYWORDS :

Reserved word are the essential part of language definition. The meaning
of these words has already been explained to the complier. So, you can’t
use these reserved word as a variable name. All C keywords are valid in
C++. There are 63 keywords in C++.

The common keywords between C and C++ are listed in Table 2.1. Table

Elements of C++ LanguageUnit-2

2 3Object-Oriented Programming Through C++ (Block-1)

Unit-2

2.2 describes the additional keywords of C++.
Table 2.1 : C & C++ common keywords.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Table 2.2 : Additional C++ keywords

asm private bool wchar_t

catch protected mutable explicit

class public typename static_cast

delete template const_cast export

friend this namespace true

inline throw using false

new try dynamic_cast typeid

oprator virtual reinterpret_cast

2.4 CHARACTER SET AND SYMBOLS

Using the valid character set and symbols a source program is created.
The following are the valid list of character set and symbols in C++.

 Alphabets A to Z,
a to z and _(under score)

 Digits 0 to 9
 Special symbols # , & | ! ? ~ ^ { } [] () < > . : ; $ ‘ “ + - / *

= % blank \

Elements of C++ Language

2 4 Object-Oriented Programming Through C++ (Block-1)

2.5 BASIC DATA TYPES IN C++

C++ supports a wide variety of data types. We can choose the appropriate
type for writing error free programs. The data types in C++ can be classi-
fied in the following categories.

Basic Data Type Derived Data Type User Defined Data Types

Char Array Structure

Int Function Union

Float Pointer Class

Double Reference
We will concentrate on the discussion of basic data types in this unit. De-
rived data types such as arrays and pointers and user defined data types
such as structure, union and classes are discussed in next units.Table 2.3
lists all combinations of the basic data types and modifiers along with their
size and ranges–

Table 2.3 : Basic data types and size
Type Size (Bytes) Range

char 1 -128 to 127

unsigned char 1 0 to 255

signed char 1 -128 to 127

int 2 -32768 to 32767

unsigned int 2 0 to 65535

signed int 2 -32768 to 32767

short int 2 -32768 to 32767

unsigned short int 2 0 to 65535

signed sort int 4 -32768 to 32767

long int 4 -2147483648 to 2147483647

unsigned long int 4 0 to 4294967295

signed long int 4 -2147483648 to 2147483647

float 4 3.4E-38 to 3.4E+38

double 8 1.7E-308 to 1.7E-308

long float 10 3.4E-4932 to 1.1E+4932

Elements of C++ LanguageUnit-2

2 5Object-Oriented Programming Through C++ (Block-1)

Unit-2

CHECK YOUR PROGRESS

1. Fill in the blanks.

a) A computer program is a sequence of elements called _______.

b) The ______ separates tokens from the input stream by creating
the longest token possible using the input characters in a
___________ scan.

c) In C++, the name of variables, functions, labels, and various other
user-defined objects are called __________.

d) _________ set is a set of valid characters that a language can
recognize

e) A _______ is a word that is already defined and is reserved for a
unique purpose in programs written in that language.

2.6 VARIABLES

A variable is an entity that is used to represent some specified type of
information within a program and whose value can be changed during the
execution of the program. A variable is denoted by giving a name to it. A
variable declaration associates a memory location to the variable name. It
means whenever we declare a variable, a definite amount of memory
location are reserved for it. The main factors associated with a variable are
as follows–

o Date type – type of the data it store i.e. char, int, float, date (user
defined) etc.

o Variable Name– the name that is given to the variable by pro-
grammer.

o Address – address of the memory location.

o Value – data stored in memory locations.

We have already learned in C programming, how to give names to a variable,
how to declare a variable and how to initialize values to a variable. Let us

Elements of C++ Language

2 6 Object-Oriented Programming Through C++ (Block-1)

discuss briefly about it.

Variable Name :

Variable names are indentifiers used to name variables. They are the
symbolic names assigned to memory locations. A variable name consists
of a sequence of letters and digits. The first one must be a letter. Examples
of some valid variable names are–

x sum count

name student_name MAX

age _num dept_num

Some invalid variable names are–

2 slum – first character should be a letter

date birth – blank not allowed

Emp, record – , not allowed

student--age – illegal character (-)

Variable Declaration :

We know that a variable must be declared before using it in a program.
Actually this declaration process reserves memory depending on the type
of the variable. Syntax for declaring a variable is shown below -

Data type VarName1, VarName n;
The following are some valid variable declaration statements:

int x; // x is an integer variable

int m, n, q; // m, n, q are integer variables

float root1, root2 // root1, root2 are floating point variables

Variables can also be declared at the point of their usage as follows :

for (int i = 0; i < 10; i++)

count << i;

int d = 10;
Here, variable i and d are defined at the point of their usage.

Elements of C++ LanguageUnit-2

2 7Object-Oriented Programming Through C++ (Block-1)

Unit-2

Variable Initialization:

A variable can be assigned with a value during its declaration. The
assignment operator (=) is used in this case. The following syntax shows
how a variable is initialize.

Data-type VariableName = constant value;

The following are the valid initialization statements :

int a = 20

float x = 2.25, y = 6.0925;

The following program demonstrates the initialization of variables.

// Program 2.1

#include<iostream.h>

#include<conio.h>

void main()
{

int x, y; // x and y are integer type variables
int z = 75; // 75 is initialize to integer variables z
float average;
clrscr ();
x = z;
y=z+50; // value of z is add with 50 and assigns to y
average = 5.125;
cout <<“x=” <<x << “\n”;
cout << “y =” <<y <<“\n”;
cout<<“z=”<<z<<“\n”;
cout <<“average=” <<average <<“\n”;
getch ();

}

RUN : x = 75
y = 125
z = 75

average = 5.125

Elements of C++ Language

2 8 Object-Oriented Programming Through C++ (Block-1)

Here, the statement cout << “x=” <<x <<“\n”;

displays a message ‘x=’ followed by the contents of the variable x and then
a new line. We will discuss about the input and output operations of C++,
in the next section of this unit.

2.7 CONSTANTS

The constants in C++ are applicable to the values which do not change
during execution of a program. C++ has two types of constants

– literal constants

– symbolic constants

i) Literal constant :

A literal constant is just a value. For example, 10 is a literal constant.
It does not have a name, just a literal value.

For example, int x = 100

where x is a variable of type int and 10 is a literal constant. We cannot
use 10 to store another integer value and its value cannot be altered.
The literal constant does not hold memory location. Depending on
the type of data, literal constants are of the following types shown
with examples–

Example Constant Type

547 Integer constant

65.125 Floating point constant

0x98 Hexadecimal integer constant

0175 Octal integer constants

‘a’ Character constant

“Student Name” String constant

“1024” String constant

Remember that a character constant is always enclosed with single
quotation mark, whereas a string constant is always enclosed with a
double quotation mark. Another point to remember is that an octal

Elements of C++ LanguageUnit-2

2 9Object-Oriented Programming Through C++ (Block-1)

Unit-2

integer constant is always starts with 0 and a hexadecimal integer
constant with 0x.
C++ allows non graphic characters which cannot be typed directly
from keyboard, e.g., backspace, tab, carriage return etc. These
characters can be represented by using an escape sequence. An
escape sequence represents a single character. The following table
gives a listing of common escape sequences.

Escape Sequence Nongraphic Character

\a Bell (beep)

\b Backspace

\f Formfeed

\n Newline or line feed

\r Carriage return

\t Horizontal tab

\v Vertical tab

ii) Symbolic constant :

A symbolic constant is defined in the same way as variable. However,
after initialization of constants the assigned value cannot be altered.

The constant can be defined in the following three ways :

a) # define

b) The const keyword

c) The enum keyword

a) The # define preprocessor directive can be used for defining constants
as

define Maximum 100
define PI 3.142
define AGE 30

In the above example Maximum, PI, AGE symbolic constants contains
the value 100, 3.142 and 30 and here it is not mentioned whether the
type is int, float or char. Every time when the preprocessor finds the

Elements of C++ Language

3 0 Object-Oriented Programming Through C++ (Block-1)

word Maximum, PI, AGE, it will just substitute it with the values 100,
3.142 and 30 respectively.

The following program demonstrates the use of #define–
// Program 2.2
#include<iostream.h>
#include<conio.h>
#define PI 3.142
void main ()

{
float radius, area;
clrscr ();
cout <<“Enter the radius :”;
cin >> radius;
area = PI * radius * radius;
cout << “Area of the circle =” <<area <<“\n”;
getch ();

}

RUN :

Enter the radius : 2.5

Area of the circle = 19.6375

In the above program the statement

area = PI * radius * radius;

is translated by the preprocessor as

area = 3.142 * radius * radius;

and calculated result is stored in the variable ‘area’ which is displayed
in the next statement.

b) The syntax of defining variables with the const keyword is shown
below :

const [data type] variable name = constant value;

Elements of C++ LanguageUnit-2

3 1Object-Oriented Programming Through C++ (Block-1)

Unit-2

The following examples illustrates the declaration of constant variable :

const float p1 = 3.142;

const int TRUE = 1;

const int FALSE = 0;

The following program demonstrates the use of constant variable
and its declaration :

// Program 2.3
#include< iostream.h >
#include< conio.h >
const int MAX = 5;
void main ()

{
int i ;
clrscr () ;
for (i = 1; i < = MAX ; i+ +)
cout << “ The loop runs for =” << i << “times” << “/n” ;
getch() ;

}

RUN :
The loop runs for 1 times
The loop runs for 2 times
The loop runs for 3 times
The loop runs for 4 times
The loop runs for 5 times

In the above program, the for loop will run for 5 times because the
MAX variable contains the constant value 5.

c) Constants can be defined using enumeration as given below :

Example :

enum { a,b,c };

Here a,b and c are declared as integer constants with value 0,1
and 2.

We can also assign new values to a, b and c

Elements of C++ Language

3 2 Object-Oriented Programming Through C++ (Block-1)

enum { a = 5,b =10, c = 15 } ;

Here, a, b and c are declared as integer constants with value 5,10
and 15.

CHECK YOUR PROGRESS

2. State whether True or False.

a) Variables can be used to hold different values at different times
during the execution of a program.

b) Constants are data items that change their value during the
execution of the program.

c) Decimal point or commas do not appear in any integer constant.

d) C++ allows non graphic characters which cannot be typed directly
from keyboard.

e) Constants can be changed while the program is running.

2.8 DYNAMIC INITIALIZATION OF VARIABLE

The declaration and initialization of variable in a single statement at any
place in the program is called as dynamic initialization. The dynamic
initialization is always accomplished at run time i.e. when program execution
is going on . Dynamic means process carried out at run time, for example,
dynamic initialization, dynamic memory allocation etc.

The C++ compiler allows declaration and initialization of variables at any
place in the program. In C initialization of variables can be done at the
beginning of the program.

The following program illustrates the dynamic initialization of variables in
C++.

Elements of C++ LanguageUnit-2

3 3Object-Oriented Programming Through C++ (Block-1)

Unit-2

// Program 2.4
#include<iostream.h>
#include<conio.h>
void main()

{
clrscr () ;
cout << “Enter radius : / n”;
int r ;
cin >> r ;
float area = 3.14 * r * r ;
cout << “/n Area = “<< area ;
getch () ;

}

RUN :
Enter radius = 3
Area = 28.26

In the above program variable ‘r’ and area are declared inside the program.
In the statement float area = 3.14 * r * r ;

variable area is declared and initialize with the value 3.14 * r * r. This
assignment is carried out at run time. Such type of declaration and
initialization of a variable is called as dynamic initialization.

2.9 REFERENCE VARIABLE

C++ supports an another type of variable called reference variable. A
reference variable acts as an alternative (alias) name for a previously
defined variable. Recall that a variable holds only a value and we have
already learn from C programming that pointer variables are used to hold
the address of some other variables. A reference variable behaves similar
as an ordinary variable and also as a pointer variable. Inside a program
code it is used as an ordinary variable but acts as a pointer variable. The
syntax for declaring a reference variable is shown below–

Data type & Reference variable name = variable name;

Elements of C++ Language

3 4 Object-Oriented Programming Through C++ (Block-1)

Example :

int sum = 100;
int & totalsum = sum;

Here, the variable sum is already declared and initialized. The second
statement define an alternative variable name i.e. totalsum to variable sum.
Both the variable will display the same value, any change made one of the
variable causes change in both the variables.

The following are some examples of reference variable–

char ch; float m;
char & ch 1 = ch float & n = m;

The following program illustrates the use of reference variables.

Program 2.5

#include<iostream.h>
#include<conio.h>
void main()

{
int x = 10, y = 11, z = 12;
clrscr ();
int & m = x; // variable m becomes alias of x
cout <<“x =” <<x <<“y =” <<y <<“z=” <<z <<“m=” <<m<<“\n”;
m = y; //changes value of x to value of y
cout<<“x=”<<x<<“y=”<<y<<“z=”<<z<<“m=”<<m<<“\n”;
m = z; // changes value of x to value of z
cout<<“x=”<<x<<“y=”<<y<<“z=”<<z<<“m=”<<m<<“\n”;
getch ();

}
RUN:

x = 10 y = 11 z = 12 m = 10
x = 11 y = 11 z = 12 m = 11
x = 12 y = 11 z = 12 m = 12

From the above program we have seen that any change made to the

Elements of C++ LanguageUnit-2

3 5Object-Oriented Programming Through C++ (Block-1)

Unit-2

reference variable m also reflects in the variable x.

2.9 STREAMS IN C++

Generally every program involves in the process reading data from input
device - computation is done on the data - sending the result to output
devices. Hence to control such operations every language provides a set
of built in functions. C++ also supports a rich set of functions for performing
input and output operations. These C++ I/O functions make it possible for
the user to work with different types of devices such as keyword, monitor,
disk, tape drives etc. It is designed to provide a consistent and device
independent interface. These I/O functions are part of standard library. A
library is nothing but a set of .obj (object) files.

Now we come to know that, the data flows from an input device to programs
and from programs to output device. In C++, a stream is used to refer to
the flow of data in bytes in sequence. If data is received from input devices
in sequence then it is called as source stream and when the data is passed
to output devices then it is called as destination stream. The data is
received from keyword or disk and can be passed on to monitor or to the
disk. The following figure describes the concept of stream with input and
output devices.

Keyword Monitor

Stream

Disk Disk

Fig. 2.1 : Streams with I/O devices

Data in source stream can be used as input data by program. So the source
stream is also called as input stream. The destination stream that collects
output data from the program is known as output stream. The mechanism
of input and output stream is illustrated in the following figure.

Elements of C++ Language

3 6 Object-Oriented Programming Through C++ (Block-1)

Input stream

Input Device Extraction from
input stream

Output Device Insertion from

Output stream
output stream

Fig. 2.2 : Input and output streams

Thus, the stream acts as an intermediator or interface between I/O devices
and the user. The input stream pulls the data from keyword or storage
devices such as hard disk, floppy disk etc. The data present in output
stream is passed on to the output devices such as monitor, printer etc.

C++ has a number of predefined streams that are also called as standard
I/O objects. These streams are automatically activated when the program
execution starts. The four standard streams cin, cout, cerr and clog are
automatically opened before the function main() is executed; they are closed
after main() has completed. These predefined stream objects are declared
in the header file iostream.h. In this unit, we will concentrate on the
discussion about cin and cout.

Output stream :

The output stream allow to perform write operation on output devices such
as monitor, disk etc. Output on the standard stream is performed using the
cout object. The syntax for standard output operation is as follows :

cout << variable;

The cout object is followed by the symbol << which is called the insertion
operator and then the items (it may be variable/constants/expressions)
that are to be displayed.

The following are examples of stream output operation:

cout << “KKHSOU” ;

Elements of C++ LanguageUnit-2

3 7Object-Oriented Programming Through C++ (Block-1)

Unit-2

cout << “BCA 3rd semester” ;
float area ;
cout << area ;
char code ;
cout << code ;

More than one item can be displayed using a single cout output stream
object. Such output operations are called cascaded output operations. As
an example in the above programs 2.1, 2.2, 2.4 we have already used
cascaded output operation. The followings are some statements which we
have used in our previous programs

cout << “Area =” << area ; and

cout << “x = “<< x << “ y = “ << y << “ z = “<< z << “ m = “<< m << “ \n “;

The cout object will display all the items from left to right, we have shown in
RUN portion of the program. In the first statement it will first display “ Area
= “ and then will display the value of the ̀ area` variable which will be finally

Area = 28.26

The second statement will be displayed as–
x = 10 y = 11 z = 12 m = 10

Where 10,11,12,10 are the value of the variable x, y, z and m.
The complete syntax of standard output stream operation is as follows :

cout << variable1 << variable2 <<.......................<< variableN ;

Input stream :

The input stream allows to perform read operation through input devices
such as keyboard, disk etc. Input from the standard stream is performed
using the cin object. The syntax for standard input operation is as follows :

cin >> variable ;

The cin object is followed by the symbol >> which is called the extraction
operator and then the variable, into which the input data is to be stored.

The following are some example of standard input operations :

Elements of C++ Language

3 8 Object-Oriented Programming Through C++ (Block-1)

int r ;
cin >> r ;
float radius ;
cin>>radius;
char name [25] ;
cin >> name ;

Using the cin input stream object inputting of more then one item can also
be performed. The complete syntax of the standard input stream operation
is as follows:

cin >> variable 1 >> variable 2 >>............>>variable N;

Following are some valid input statements;

cin >> i >> j >> k ;
cin >> name >> age >> address ;

The following program illustrates the use of cin and cout object :

// Program 2.6

#include<iostream.h>
#include<conio.h>

void main ()
{

int marks1, marks2, marks3 ;
char name [25] ;
char semester [15] ;
clrscr () ;
cout << “====================================”;
cout << “ \n “ ;
cout << “ Enter Marks : “ ;
cin >> marks1 >> marks2 >> marks3 ;
cout << “ Enter Name : “ ;
cin >> name ;
cout << “Enter Semester : ;
cin >> semester ; << “/n”;
cout << Marks 1 = “<<marks1<<“\n”<< “Marks 2 = “marks2 <<“\n”

<<“Marks 3 = “ <<marks 3 << “\n” ;

Elements of C++ LanguageUnit-2

3 9Object-Oriented Programming Through C++ (Block-1)

Unit-2

cout << “/n =======The End ===================” ;
getch () ;
}

RUN :
===
Enter Marks : 61 71 59
Enter name : Bikash Bora
Enter Semester : 3rd Semester
Marks 1 = 61
Marks 2 = 71
Marks 3 = 59
===============The End ===================

The following figure shows flow of input and output stream :

>> variable MEMORY variable <<

Cin cout

Input Output
device device

Fig. 2.3 : Working of cin and cout statement

CHECK YOUR PROCESS

3. State whether the following statements are TRUE or FALSE

(a) A variable name can consists of letters, digits and
underscore (-) but no other special characters.

(b) In dynamic initialization, we initialize a variable at compile
time.

(c) In C++, an identifier must be initialized using constant
expressions.

Elements of C++ Language

4 0 Object-Oriented Programming Through C++ (Block-1)

(d) $age is a valid variable name.

(e) Cin is also called extraction operator.

4. Choose the correct answer from the following:

(i) Which of the following is a reserved word in C++:

(a) template (b) throw

(c) this (d) all of the above

(ii) A variable defined within a block is visible :

(a) within a block (b) within a function

(c) both (a) and (b) (d) none of the above

(iii) The cin and cout functions require the header file to include:

(a) isotream.h (b) stdio.h

(c) iomanip.h (d) none of the above

(iv) The streams is a :

(a) flow of data (b) flow of integers

(c) flow of statements (d) none of the above

(v) Which of the following is C++ standard stream :

(a) cin (b) cout

(c) cerr (d) All of the above

2.10 LET US SUM UP

1. In C++, tokens are the various elements present in a program. Tokens
can be classified as - keyword, variable, constants, special character
and operators.

2. Identifiers are names of variables, function and arrays. They are user-
defined names, consisting of sequence of letters and digits, with a
letter as a first character,

3. The C++ keywords are reserved words by the compiler. All C language
keywords are valid in C++ and few additional keywords are added.

4. Variables are used to store value i.e. information. A variable is a
sequence of memory locations, which are used to store assigned

Elements of C++ LanguageUnit-2

4 1Object-Oriented Programming Through C++ (Block-1)

values.

5. C++ permits declaration of variables anywhere in the program.

6. The constants in C++ are applicable to those values, which do not
change during execution of a program. The two types of constants
are literal and symbolic.

7. The initialization of variable at run-time is called as dynamic
initialization.

8. In C++, a reference variable acts as an alternative (alias) name for a
perviously defined variable.

9. C++ supports all data type in C.

10. A stream is a series of bytes that acts as a source and destination for
data. The source stream is called input stream and the destination
stream is called output stream.

11. The cin, cout, cerr and clog are predefined streams.

12. The header file iostream.h must be include when we use cin and
cout functions.

2.11 ANSWER TO CHECK YOUR PROGRESS

Check Your Progress
1. a) Tokens. b) parser, left-to-right, c) identifiers, d) character e)
keyword.

2. a)True, b)False, c)True, d)True, e)False

3.(a) T, (b) F, (c) F, (d) F, (e) T.
4.(i) d, (ii) a, (iii) a, (iv) a, (v) d.

2.12 FURTHER READING

1. Object Oriented Programming with C++, E. Bala gurusamy, Tata-
McGraw Hill Publication.

2. The Complete Reference C++, Herbert Schildt, Tata-McGraw Hill
Publication.

3. Mastering C++, K.R. Venugopal, Rajkumar, T. Ravi Shankar, Tata
Mc-Graw Hill Publication.

4 2 Object-Oriented Programming Through C++ (Block-1)

2.13 MODEL QUESTIONS

1. What are identifiers, variables and constants?

2. What is the difference between a keyword and an identifier?

3. List the rules of naming an identifier in C++?

4. Which are the two types of constants? Describe them with suitable
examples ?

5. What is dynamic initialization? Is it possible in C?

6. What are the difference between reference variables and normal
variables?

7. Write short note on the following:

(a) Dynamic initialization of variable

(b) Reference variable

(c) Input stream

(d) Output stream

(e) Constants

(f) Variables

1. What are C++ Tokens and Identifiers? Give examples.

2. Give a list of some C++ Symbols and their usage.

3. What are C++ keywords? Why are they used for?

4. What are variables and constants in C++? Give examples.

5. Describe character constants and symbolic constants with
examples.

6. How will you dynamically initialize a variable in C++?

7. Show with an example the use of reference variables.

8. What are C++ streams? Give examples.

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 43

UNIT - 3: OPERATORS AND MANIPULATORS

UNIT STRUCTURE

3.1 Learning Objectives
3.2 Introduction
3.3 Operators
3.4 Types of operators in C++
3.5 Precedence and Associativity of Operators
3.6 Manipulator
3.7 Let Us Sum Up
3.8 Answers To Check Your Progress
3.9 Further Readings
3.10 Model Questions

3.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 know what are C++ operator

 use the different C++ operators

 know what is precedence and associatively of operators

 learn what are manipulators

 use manipulators in C++ programs

3.2 INTRODUCTION

In the previous units we had a beginning introduction to the C++

programming language. In particular, the basic concepts of object

oriented programming’s that are fundamental and the all important

aspect of the C++ language were dealt with in brief. Also the

elements of the C++ programming language like identifiers,

keywords, variables etc were introduced.

Operators play a vital role in all programming languages. Using

these operators we can easily use and manipulate a C++ entity to

get the desired output. In this unit we will get to know what

operators are in the C++ programming language. Precedence and

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 44

Associativity of operators that enable a C++ programmer to use all

its language features will also be discussed in this unit.

3.3 OPERATORS

C++ is very rich in built-in operators. In fact it places more

significance on operators than do most other computer languages.

C++ Operators are special symbols used for specific purposes.

Once we know about the existence of variables and constants, we

can begin to operate with them using the various types of

operators that are present in the C++ language. For that purpose,

C++ integrates operators. Unlike other languages whose operators

are mainly keywords, operators in C++ are mostly made of signs

that are not part of the alphabet but are available in all keyboards.

This makes the code used in the C++ language shorter, since it

relies less on English words, but requires a little of learning effort in

the beginning.

3.4TYPES OF OPERATORS IN C++

C++ provides several types of operators:

 Arithmetic operators
 Relational operators
 Logical operators
 Unary operators
 Assignment operators
 Bitwise operators
 Conditional operators
 Comma operator
 Explicit type casting operator
 The sizeof operator
 Scope resolution operator
 Insertion and extraction operator
 Address and Indirection operator
 Memory Management operator

1. Arithmetic operators:

These operators perform arithmetic

(numeric) operations: +, -, *, / , or %. For these operations

always two or more than two operands are required. Therefore

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 45

these operators are called binary operators. The following table

shows the arithmetic operators.

Operator name Syntax
Assignment a = b

Addition a + b
Subtraction a - b
Unary plus +a

Unary minus -a
Multiplication a* b

Division a / b
Modulo a % b

Increment Prefix ++a
Suffix a++

Decrement Prefix --a
Suffix a--

2. Relational/Comparison operators:

These operators are

used to test the relation between two values. All relational

operators are binary operators and therefore require two operands.

A relational expression returns zero when the relation is false and

a non-zero when it is true. The following table shows the relational

operators.

Operator name Syntax
Equal to a == b

Not equal to a != b
Greater than a > b

Less than a < b
Greater than or equal to a >= b

Less than or equal to a <= b

3. Logical operators:
The logical operators are used to

combine one or more relational expression. The following table

shows the logical operators.

Operator name Syntax
Logical negation (NOT) !a

Logical AND a && b
Logical OR a || b

4. Unary operators:

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 46

C++ provides two unary operators for

which only one variable is required. The following table shows the

logical operators.

Operator name Syntax

Unary plus +
Unary minus -

Example:

a = - 50; a = - b;
a = + 50; a = + b;

Here plus sign (+) and minus sign (-) are unary because they are

not used between two variables.

5. Assignment operators:

The assignment operator ‘=’ stores

the value of the expression on the right hand side of the equal sign

to the operand on the left hand side. In addition to standard

assignment operator shown above, C++ also support compound

assignment operators.

Operator name Syntax

Addition assignment a += b
Subtraction assignment a -= b

Multiplication assignment a *= b
Division assignment a /= b
Modulo assignment a %= b

Bitwise AND assignment a&= b
Bitwise OR assignment a |= b

Bitwise XOR assignment a ^= b
Bitwise left shift assignment a<<= b

Bitwise right shift assignment a>>= b

6. Bitwise operators:
Bitwise operators modify variables

considering the bit patterns that represent the values they store.

The following table shows the logical operators.

Operator name Syntax
Bitwise NOT ~a
Bitwise AND a& b
Bitwise OR a | b

Bitwise XOR a ^ b

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 47

Bitwise left shift a<< b
Bitwise right shift a>> b

7. Conditional operators:
The conditional operator ?: is called

ternary operator as it requires three operands. The format of the

conditional operator is:

Conditional_expression ?expression1 : expression2;

If the value of conditional_expression is true then the expression1

is evaluated,otherwise expression2 is evaluated.

int a = 5;
int b = 6;

big = (a > b) ? a : b;

The condition evaluates to false, therefore big gets the value from

b and it becomes6.

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 48

Example:

#include<iostream.h>
#include<conio.h>
int main()
 {
int age;
clrscr();
cout<<"Enter your age in years: ";
cin>>age;
 (age>=18)?(cout<<"\nCan vote\n"):(cout<<"Cannot
vote");
getch();
return 0;
 }

If we enter age as 26, the output is:

 Enter your age in years: 26
 Can vote

Again if we run the program by entering age as 15, the output is:

 Enter your age in years:15
 Cannot vote

8. Comma operator:

The comma operator gives left to right

evaluation of expressions. It enables to put more than one

expression separated by comma on a single line.

Example

int i = 20, j = 25;
intsq = i * i, cube = j * j * j;

In the above statements, comma is used as a separator between
two statements/expressions.

9. Explicit type casting operator:

Type casting operators

allow us to convert a datum of a given type to another. There are

several ways to do this in C++. The simplest one, which has been

inherited from the C language, is to precede the expression to be

converted by the new type enclosed between parentheses ():

int i;
float f = 3.14;

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 49

i = (int)f;

The previous code converts the float number 3.14 to an integer

value (3), the remainder is lost. Here, the type casting operator

was (int). Another way to do the same thing in C++ is using the

functional notation: preceding the expression to be converted by

the type and enclosing the expression between parentheses:

i = int(f);

Both ways of type casting are valid in C++.

10. The sizeof operator:
This operator accepts one parameter,

which can be either a type or a variable itself and returns the size

in bytes of that type or object:

a = sizeof(char);

This will assign the value 1 to a because char is a one-byte long

type. The value returned by sizeof is a constant, so it is always

determined before program execution.

Example:

double a;
char c;
cout<<sizeof(c); //returns 1
cout<<sizeof(int); //returns 2
cout<<sizeof(a); //returns 8

will output 1, 2, and 8 as the size of character, integer and double

are 1, 2 and 8 bytes respectively.

11. Scope resolution operator:

We can use nested blocks in

C++. For example, we can write nested blocks as follows:

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 50

Declaration of variable in an inner block hides a declaration of the

same variable in an outer block. A variable declared inside a block

is said to be local to that block. In C, a global version of a variable

cannot be accessed from within the inner block. But in C++, we

can resolve this problem using a new operator:: called the scope

resolution operator. It can be written as:

::variable_name;

Example:

#include<iostream.h>
#include<conio.h>
int a=20; // global a
int main()
 {
int a=5; // a is local to main()
clrscr();
 {
int a=15; // a is local to inner block
cout<<"Inner block a is = "<<a; // a is 15
 }
cout<<"In outer block a is = "<<a; // a is 5
cout<<"Outside main() a is = "<<::a;// a is 20
getch();
return 0;
}

Output:

 Inner block a is = 15
 In outer block a is = 5
 Outside main() a is = 20

We have used ::a to display the value of the global variable, in

case we use a the output shall be 5 instead of 20. One major

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 51

application of the scope resolution operator is to identify the class

to which a member function belongs.

12. Insertion and Extraction operator:

Output: The Insertion operator

To get information out of a file or a program, we need to explicitly

instruct the computer to output the desired information.

One way of accomplishing this in C++ is with the use of an output

stream. In order to use the standard I/O streams, we must have in

our program the pre-compiler directive:

#include<iostream.h>

In order to do output to the screen, we merely use a statement like:

cout<< " X = " << X;

where X is the name of some variable or constant that we want to

write to the screen.

Input: The Extraction operator

To get information into a file or a program, we need to explicitly

instruct the computer to acquire the desired information.

One way of accomplishing this in C++ is with the use of an input

stream. As with the standard input stream, cout, the program must

use the pre-compiler directive:

#include<iostream.h>

In order to do output, we merely use a statement like:

cin>>x;

where X is the name of some variable that we want to store the

value that will be read from the keyboard. As with the insertion

operator, extractions from an input stream can also be "chained".

The left-most side must be the name of an input stream variable.

13. Address and Indirection operator:
Program variables are

allocated space in computer memory and therefore they have

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 52

individual addresses for their specific memory locations. Such an

address of a variable in a program can be easily accessed by

using the address operator (&). This operator when used as a

prefix to a variable name returns the address of that variable.

The indirection operator (*) returns the value of the variable located

at the address that follows it.

Example:

#include<iostream.h>
#include<conio.h>
int main()
{
int a, *p;
a=50;
p=&a;
clrscr();
cout<<"Value of a: "<<a<<endl;
cout<<"Value of a: "<<*p<<endl;
cout<<"Value of a: "<<*(&a)<<endl;
cout<<"Address of a: "<<&a<<endl;
cout<<"Address of a: "<<p;
getch();
return 0;
}

Output:

14. Memory management operator:
We have already come

across some memory allocation and de-allocation functions in the

C language. Apart from those functions, C++ also defines two

operators for allocation and de-allocation of memory in an easier

way. These two operators are new and delete.

new operator:

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 53

The new operator allocates memory of specified type

and returns back the starting address to the pointer variable. The

general form of new operator is:

Here, the pointer_variable is a pointer to the data_type. The size is

optional. We can specify the size when we want to allocate

memory space for user defined data types such as arrays,

structure and classes. If the new operator fails to allocate memory,

it returns NULL. For example, let us consider the following

declaration:

 int *p ;
 p = new int ;
 char *q = new char ;

where p is the pointer of type int and q is a pointer of type char.

For allocation of memory for user defined data type such as array,

we can use the following form:

The statement int *p = new int[10]; creates memory space for an

array of 10 integers (i.e.,20 bytes). p[0] will refer to the first

element, p[1] to the second element and so on.

We can also initialize the memory using the new operator like this:

For example, int *ptr = new int(5); where 5 is assigned to pointer
variable ptr.

delete operator:

The delete operator releases the memory allocated by the new

operator. Following are the syntax of delete operator:

 deletepointer_variable;

pointer_variable = new data_type[size];

pointer_variable = new data_type[size] ;

pointer_variable = new data_type(value);

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 54

 delete [size] pointer_variable;

For example, delete p;
delete [10] p;

 1. Fill in the blanks.

a) Arithmetic operators are called ________ operators.

b) A relational expression returns zero when the relation is
_____ and a non-zero when it is ______.

c) The _______ operators are used to combine one or more
relational expression.

d) C++ provides two _______ operators for which only one
variable is required.

e) The _________ operator ‘=’ stores the value of the
expression on the _____ hand side of the equal sign to the
operand on the _____ hand side.

f) ________ operators modify variables considering the bit
patterns that represent the values they store.

g) The conditional operator ?: is called _______ operator
as it requires three operands.

h) The _______ operator accepts one parameter.

i) The _______ operator when used as a prefix to a variable
name returns the ______ of that variable.

j) The ______ operator returns the value of the variable
located at the address that follows it.

3.5 PRECEDENCE AND ASSOCIATIVITY OF
 OPERATORS

The precedence rules of a language specify which operator is

evaluated first when two operators with different precedence are

adjacent in an expression. Adjacent operators are separated by a

single operand. The C++ language includes all C operators and

CHECK YOUR PROGRESS

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 55

adds several new operators. Operators specify an evaluation to be

performed on one of the following:

 One operand (unary operator)
 Two operands (binary operator)
 Three operands (ternary operator)

Operators follow a strict precedence, which defines the evaluation

order of expressions containing these operators. Operators

associate with either the expression on their left or the expression

on their right; this is called "associativity." When writing complex

expressions with several operands, we may have some doubts

about which operand is evaluated first and which later. For

example, in this expression:

a = 5 + 7 % 2

we may doubt if it really means:

a = 5 + (7 % 2) // with a result of 6, or

a = (5 + 7) % 2 // with a result of 0

The correct answer is the first of the two expressions, with a result

of 6. There is an established order with the priority of each

operator, and not only the arithmetic ones (those whose

preference come from mathematics) but for all the operators which

can appear in C++.

The following is a table that lists the precedence and associativity

of all the operators in C++. Operators are listed top to bottom, in

descending precedence. Descending precedence refers to the

priority of evaluation. Considering an expression, an operator

which is listed on some row will be evaluated prior to any operator

that is listed on a row further below it. Operators that are in the

same cell (there may be several rows of operators listed in a cell)

are evaluated with the same precedence, in the given direction. An

operator's precedence is unaffected by overloading. The syntax of

expressions in C++ is specified by a context-free grammar.

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 56

A precedence table, while mostly adequate, cannot resolve a few

details. In particular, note that the ternary operator allows any

arbitrary expression as its middle operand, despite being listed as

having higher precedence than the assignment and comma

operators. Thus a ?b , c : d is interpreted as a ? (b, c) : d, and not

as the meaningless (a ? b), (c : d). Also, note that the immediate,

unparenthesized result of a C cast expression cannot be the

operand of sizeof. Therefore, sizeof (int) * x is interpreted as

(sizeof(int)) * x and not sizeof ((int) *x).

Precedence Operator Description Associativit
y

1 :: Scope resolution (C++
only)

Left-to-right
2

++ Suffix increment
-- Suffix decrement
() Function call

[] Array subscripting

. Element selection by
reference

-> Element selection through
pointer

3

++ Prefix increment

Right-to-left

-- Prefix decrement

+ Unary plus
- Unary minus
! Logical NOT
~ Logical bitwise NOT
* Indirection (dereference)
& Address-of

sizeof Size-of
new,
new[]

Dynamic memory
allocation (C++ only)

delete,
delete[]

Dynamic memory
deallocation (C++ only)

4
.* Pointer to member (C++

only) Left-to-right
->* Pointer to member

(C++ only)

5
* multiplication

Left-to-right
/ Division

% Modulus (remainder)

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 57

6 + Addition
- Subtraction

7 << Bitwise left shift
>> Bitwise right shift

8

< Less than
<= Less than or equal to
> Greater than

>= Greater than or equal to

9 == Equal to
!= Not equal to

10 & Bitwise AND
11 ^ Bitwise XOR (exclusive or)
12 | Bitwise OR (inclusive or)
13 && Logical AND
14 || Logical OR
15 ?: Ternary conditional

Right-to-left 16

= Direct assignment
+= Assignment by sum
-= Assignment by difference
*= Assignment by product
/= Assignment by quotient

%= Assignment by remainder

<<= Assignment by bitwise left
shift

>>= Assignment by bitwise
right shift

&= Assignment by bitwise
AND

^= Assignment by bitwise
XOR

|= Assignment by bitwise OR
17 , Comma Left-to-right

3.6 MANIPULATORS

Manipulators are operators used in C++ for formatting output. The

data is manipulated by the programmer's choice of display. These

are the operators that can be used with insertion (<<) and

extraction (>>) operators to manipulate or format the data in a

desired way. There are certain manipulators that are used with <<

operator to display the output in a particular format whereas certain

manipulator are used with >> operator to input the data in a

desired form. The manipulators are used to set field widths, set

precision, inserting new lines, skipping white spaces etc. In a

single I/O statement, we can have more than one manipulator

which can be as shown below:

cout<<manip1<<var1<<manip2<<var2;

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 58

cout<<manip1<<manip2<<var1;

List of Manipulators

Manipulator Purpose Input/
Output

Header file

setfill (int ch) set the field character
to ch Output iomanip.h

setiosflags(fmtflags
f)

turn on the flags
specified in f

Input/Outp
ut iomanip.h

setprecision (int p) set the number of
digits of precision Output iomanip.h

setw (int w) set the field width to w Output iomanip.h

showbase turns on showbase
flag Output iostream.h

showpoint turns on showpoint
flag Output iostream.h

showpos turns on showpos
flag Output iostream.h

skipws turns on skipws flag Input iostream.h

unitbuf turns on unitbuf flag Output fstream.h

uppercase turns on uppercase
flag Output Iostream.h

ws skip leading
whitespace Input iostream.h

setw: This manipulator sets the minimum field width on output.
The syntax is:

setw(x)

Example:

#include <iostream.h>
using namespace std;
#include <iomanip.h>
void main()
{
int x1=12345,x2= 23456, x3=7892;
cout<<setw(8) << "Exforsys" <<setw(20) <<
"Values" <<endl

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 59

<<setw(8) << "E1234567" <<setw(20)<< x1 <<endl
<<setw(8) << "S1234567" <<setw(20)<< x2 <<endl
<<setw(8) << "A1234567" <<setw(20)<< x3 <<endl;
}

Here setw causes the number or string that follows it to be printed

within a field of x characters wide and x is the argument set in setw

manipulator.

setfill: This is used after the setw manipulator. If a value does not

entirely fill a field, then the character specified in the setfill

argument of the manipulator is used for filling the fields.

Example:

#include <iostream.h>
using namespace std;
#include <iomanip.h>
void main()
{
cout<<setw(10) <<setfill('$') << 50 << 33 <<endl;
}

Output:

This is because the setw sets 10 for the width of the field and the

number 50 has only 2 positions in it. So the remaining 8 positions

are filled with $ symbol which is specified in the setfill argument.

setprecision: The setprecision manipulator is used with floating

point numbers. It is used to set the number of digits printed to the

right of the decimal point. This may be used in two forms:

 fixed

 scientific

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 60

These two forms are used when the keywords fixed or scientific

are appropriately used before the setprecision manipulator. The

keyword fixed before the setprecision manipulator prints the

floating point number in fixed notation. The keyword scientific,

before the setprecision manipulator, prints the floating point

number in scientific notation.

Example:

#include <iostream.h>
using namespace std;
#include <iomanip.h>
void main()
{
float x = 0.1;
cout<< fixed <<setprecision(3) << x <<endl;
cout<< scientific << x <<endl;
}

Output:

The first cout statement contains fixed notation and the

setprecision contains argument 3. This means that three digits

after the decimal point and in fixed notation will output the first cout

statement as 0.100. The second cout produces the output in

scientific notation. The default value is used since no setprecision

value is provided.

showbase: When the showbase format flag is set, numerical

values are prefixed with their C++ base format prefix when inserted

into the stream. These prefixes are, 0x for hexadecimal values, 0

for octal values and no prefix for decimal-base values.

This option can be unset with the noshowbase manipulator,

inserting all numerical values without base format prefixes.

The showbase flag is not set in standard streams on initialization.

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 61

Example:

#include <iostream.h>
using namespace std;
int main()
{
int n;
n=20;
cout<< hex <<showbase<< n <<endl;
cout<< hex <<noshowbase<< n <<endl;
return 0;
}

Output:The execution of this example displays something similar
to,

showpoint:When the showpoint format flag is set, the decimal

point is always written for floating point values insterted into the

stream, even for whole numbers. Following the decimal point, as

many digits as necessary are written to match the precision

internal setting for the stream (if any). This flag can be unset with

the noshowpoint manipulator. When the showpoint format flag is

not set, the decimal point is only written for non-whole numbers.

The precision setting can be modified using the precision()

member function of the stream.

The showpoint flag is not set in standard streams on initialization.

Example:

#include<iostream.h>
usingnamespacestd;
int main()
{
double a, b, pi;
a=30.0;
b=10000.0;
pi=3.1416;
cout.precision (5);
cout<<showpoint<< a << '\t' << b << '\t' << pi
<<endl;
cout<<noshowpoint<< a << '\t' << b << '\t' << pi
<<endl;
return 0;
}

Output:

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 62

showpos: When the showpos format flag is set, a plus sign (+)

precedes every non-negative numerical value insterted into

thestream, including zeros.

This flag can be unset with the noshowpos manipulator.

The showpos flag is not set in standard streams on initialization.

Example:

#include<iostream.h>
usingnamespacestd;
int main()
{
signedint p, z, n;
p=1;
z=0;
n=-1;
cout<<showpos<< p <<'\t'<< z <<'\t'<< n <<endl;
cout<<noshowpos<< p <<'\t'<< z <<'\t'<< n <<endl;
return 0;
}

Output:

skipws: When the skipws format flag is set, as many whitespace

characters as necessary are read and discarded from the stream

until a non-whitespace character is found before every extraction

operation. Tab spaces, carriage returns and blank spaces are all

considered whitespaces.

This flag can be unset with the noskipws manipulator, forcing

extraction operations to consider leading whitepaces as part of the

content to be extracted.

The skipws flag is set in standard streams on initialization.

Example:

#include <iostream.h>
#include <sstream.h>
using namespace std;

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 63

int main ()
{
char a, b, c;
istringstreamiss(" 123");
iss>>skipws>> a >> b >> c;
cout<< a << b << c <<endl;
iss.seekg(0);
iss>>noskipws>> a >> b >> c;
cout<< a << b << c <<endl;
return 0;
}

Output:

unitbuf: When the unitbuf flag is set, the associated buffer is

flushed after each insertion operation.

This flag can be unset with the no unitbuf manipulator, not forcing

flushes after every insertion.

The unitbuf flag is not set in standard streams on initialization.

Example:

#include <fstream.h>
using namespace std;
int main()
{
ofstreamoutfile("test.txt");
outfile<<unitbuf<< "Test" << "file" <<endl;
outfile.close();
return 0;
}

uppercase:When the uppercase format flag is set, uppercase

(capital) letters are used instead of lowercase for representations

on insert operations involving stream-generated letters, like some

hexadecimal representations and numerical base prefixes.

This flag can be unset with the nouppercase manipulator, not

forcing the use of uppercase for generated letters.

The uppercase flag is not set in standard streams on initialization.

Example:

#include <iostream.h>

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 64

using namespace std;
int main()
{
cout<<showbase<< hex;
cout<< uppercase << 77 <<endl;
cout<<nouppercase<< 77 <<endl;
return 0;
}

Output:

ws:Extracts as many whitespace characters as possible from the

current position in the input sequence. The extraction stops as

soon as a non-whitespace character is found. These whitespace

characters extracted are not stored in any variable.

Example:

#include <iostream.h>
#include <sstream.h>
using namespace std;
int main()
{
char a[10], b[10];
istringstreamiss("one \n \t two");
iss>>noskipws;
iss>> a >>ws>> b;
cout<< a << "," << b <<endl;
return 0;
}

 2.Fill in the blanks.

a) The _________ rules of a language specify which
__________ is evaluated first when two operators with
different precedence are _________ in an expression.

b) __________ are operators used in C++ for formatting
output.

CHECK YOUR PROGRESS

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 65

c) The ____ manipulator sets the minimum field width on
output.

d) The ____ manipulator is used after the setw manipulator.

e) The _________ manipulator is used with floating point
numbers.

f) When the ________ format flag is set, the decimal point
is always written for _________ values inserted into the
stream, even for whole numbers.

g) When the _______ flag is set, the associated buffer is
flushed after each _________ operation.

h) The ___ extracts as many ________ characters as
possible from the current position in the input sequence.

3.7 LET US SUM UP

 Using the C++ operators we can easily use and

manipulate a C++ entity to get the desired output.

 C++ Operators are special symbols used for

specific purposes.

 These operators perform arithmetic (numeric)

operations.

 Type casting operators allow us to convert a datum

of a given type to another.

 The comma operator gives left to right evaluation of

expressions.

 Relational operators are used to test the relation

between two values.

 The manipulators are used to set field widths, set

precision, inserting new lines, skipping white spaces

etc.

 In addition to standard assignment operator shown

above, C++ also support compound assignment

operators.

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 66

 The precedence rules of a language specify which

operator is evaluated first when two operators with

different precedence are adjacent in an expression.

1.

(a) Binary
(b) false, true
(c) logical
(d) unary
(e) assignment, right, left
(f) Bitwise
(g) Ternary
(h) Sizeof
(i) address, address
(j) indirection

2.
a) precedence, operator, adjacent
b) Manipulators
c) setw
d) setfill
e) setprecision
f) showpoint, floating point
g) unitbuf, insertion
h) ws, whitespace

3.9 FURTHER READINGS

Programming with C++, Second Edition
- John R. Hubbard

Tata McGraw-Hill Edition
C++ The Complete Reference
- Herbert Schildt

Tata McGraw-Hill Edition

3.8 ANSWERS TO CHECK YOUR
 PROGRESS

Operators and Manipulators Unit 3

 Object-Oriented Programming through C++ (Block 1) 67

1. What are C++ operators? What is the use of operators in

C++?

2. What are arithmetic operators in C++? Name them and

write the function of each

3. How many relational/comparison operators are there in

C++ and what are they?

4. What are unary operators in C++?

5. What is the function of assignment operators?

6. Describe the function of the conditional operators in C++

with an example.

7. What do mean by precedence and Associativity rules of

operators?

8. What are C++ manipulators? Name any five along with

their purpose.
9. Mention the header files needed for the following code-

void main ()
{
cout<<setw (10) <<”name”<<setw (10) <<”marks”<<endl;
cout<<setw (10) <<”ram”<<setw (10) <<”95”<<endl;
cout<<setw (10) <<”hari”<<setw (10) <<”85”<<endl;
getch ();
}

3.10 MODEL QUESTIONS

Decision and Control Structure UNIT 4_________________

65

UNIT- 4 DECISION AND CONTROL STRUCTURE

UNIT STRUCTURE

 4.1 Learning Objectives

 4.2 Introduction

 4.3 Conditional statements

 4.3.1 if statement

 4.3.2 if-else statement

 4.3.3 switch-case statement
 4.4 Loop statements

 4.4.1 for loop

 4.4.2 while loop

 4.4.3 do-while loop

 4.5 Breaking control statements

 4.5.1 break statement

 4.5.2 continue statement

 4.5.3 goto statement

 4.6 Let Us Sum Up

4.7 Answers to check your progress
 4.8 Further Readings

4.9 Model Questions

4.1 LEARNING OBJECTIVES
After going through this unit, you will be able to:

 Understand the basic concept of branching

 Use if, if-else and switch statements in a program

 Understand the importance of loop & control constructs in a program

 Use for, while and do…while statements in a program

 Define break, continue and goto statements

Decision and Control Structure UNIT 4_________________

66

4.2 INTRODUCTION

In this chapter you will learn about the different decision structures like if, if-else, switch-

case and also about the control structures like for loop, while loop and do while loop.

Finally the control breaking statements like break, continue and goto are explained later
in this unit.

4.3 CONDITIONAL STATEMENTS
Till now we have used sequence control structure in our programs in which the various

steps are executed sequentially to get the desired output. But this may not happen

always. Sometimes we might need to take a decision for executing an instruction. In

simple terms the program might need to execute a set of instructions for one condition

and a set of another instruction for another condition. Let us consider some examples. If

it is raining I would remain indoors. If I don’t get a ticket in train, I would go by bus. If I

get the money, I would buy a laptop. All the decisions in the examples given above

depends on some condition
To implement this kind of decision control instructions we have to use if or if-else

statements in our program.

4.3.1 if STATEMENT

The if statement checks a certain condition. If the condition is true then the block of

statements following the if is executed; otherwise it executes the optional statements.

The braces { and } are used to group declaration and statements into a compound

statement or a block. The basic simple structure of the if statement is shown below:

if(expression)
{

 statement;

 statement;

 statement;

}

The expression is any valid expression which is examined to a numeric value.

For example: if(n==1)

 {

Decision and Control Structure UNIT 4_________________

67

 cout<<”Have a great day ahead”;

 }

If the given condition is true then the computer will print the message “Have a great day

ahead” otherwise it will skip this statement.
Note that that there is no semicolon after the if expression.

The expression

 if(x>y);

 {

 temp=x;

 }

is wrong because the compiler will interpret it as

 if(x>y)

 ;
 temp=x which is meaningless.

Program1: Program to illustrate the use of if statement

#include<iostream.h>

#include<conio.h>

void main()

{

 int num;

 clrscr();

 cout<<”Enter a number less than 10:”;
 cin>>num;

 if(num<10)

 {

 cout<<”Good Morning !”;

 }

 getch();

}

4.3.2 I f-else STATEMENT

The basic structure of if-else statement is shown below:

Decision and Control Structure UNIT 4_________________

68

if(expression)

 {

 statement1;
 }

else

 {

 statement2;

 }

In if-else statement either of the two statements are executed. If the given expression is

true then statement1 is executed else statement2 is executed.

Some of the sample if-else structures are shown below

1) if(expression)

{

}

else

{

 }
2) if(expression){

if(expression){

 }

 else{

 }
 }

 else{

Decision and Control Structure UNIT 4_________________

69

 }

3) if(expression){

if(expression){

 }

 else{

 }
 }

 else{

 if(expression){

 }

 else{

 }
}

Program2: Program to find whether a given number is even or not.

#include<iostream.h>

#include<conio.h>

void main()

{

int num;

clrscr();
cout<<”Enter a number: \n”;

if(num%2==0)

Decision and Control Structure UNIT 4_________________

70

 {

 cout<<”The number is even”;

 }

else
 {

 cout<<”The number is odd”;

 }

getch();

}

Output of the above program

Enter a number

56
The number is even

Program3: Program to find the largest value among any four numbers

#include<iostream.h>

#include<conio.h>

void main()

{

float a,b,c,d;

cout<<"Enter any four numbers\n";
cin>>a>>b>>c>>d;

if(a>b){

 if(a>c){

 if(a>d)

 cout<<"Largest = "<<a;

 else

 cout<<"Largest= "<<d;

 }

 else
 {

 if(c>d)

Decision and Control Structure UNIT 4_________________

71

 cout<<"Largest = "<<c;

 else

 cout<<"Largest= "<<d;

 }
 }

 else

 {

 if(b>c){

 if(b>d)

 cout<<"Largest= "<<b;

 else

 cout<<"Largest= "<<d;

 }
 else{

 if(c>d)

 cout<<"Largest ="<<c;

 else

 cout<<"Largest= "<<d;

 }

 }

getch();

}

Output of the above program

Enter any four numbers

56

32

78

12

Largest=78

4.3.3. switch STATEMENT
The switch statement allows us to make a decision from a multiple choice of decisions.
The syntax of the switch statement is :

Decision and Control Structure UNIT 4_________________

72

 switch(expression)

{

 case1:

 {
 statement1;

 }

 case2:

 {

 statement2;

 }

 case_n:

 {

 statement;

 }

 default:

 statement;

}

The expression, whose value is being compared, may be any valid expression including

the value of the variable, an arithmetic expression, a logical comparison, a bitwise
expression or the return value of a function call but not a floating point type. The

keyword case is followed by an integer or a character constants but it cannot be an

expression. It can neither be a floating point number or a character string. The default

case is optional and should be used according to the program’s specific requirement.

When we run a program containing switch first the expression following the switch

keyword is checked. The value given by the expression is matched one by one against

all the values followed by the case statements. When a match is found, the program

executes the case statement following it as well as also the subsequent cases and the

default case are also executed. If no match is found then only the statements following
the default statement is executed.

Decision and Control Structure UNIT 4_________________

73

Program4: Program to illustrate the use of switch statement

#include<iostream.h>

#include<conio.h>
void main()

{

int i;

clrscr();

cout<<”Enter number 1, 2 or 3 \n”;

cin>>i;

switch(i)

{

 case 1: cout<<”I am in case 1\n”;
 case 2: cout<<”I am in case 2\n”;

 case 3: cout<<”I am in case 3\n”;

 default:cout<<”I am in default\n”;

}

getch();

}

Output of the above program

Enter number 1, 2 or 3

2
I am in case 2

I am in case 3

I am in default

This is not what we expected. As the value matches with case 2 it should execute only

the statement “I am in case 2”.In order to overcome this problem the break statement is

used. The break statement causes an immediate exit from the switch construct. It is

used at the end of each case statement however it is not necessary to use a break

statement after a default statement. The break statement is discussed later in this unit.
Thus the general construct of a switch statement is:

switch(expression)

Decision and Control Structure UNIT 4_________________

74

{

 case1:

 {

 statement1;
 }

 break;

 case2:

 {

 statement2;

 }

 break;

 case_n:

 {

 statement;

 }

 break;

 default:

 statement;

}

Now Program4 would be like this:

#include<iostream.h>

#include<conio.h>

void main()

{

int i;

clrscr();

cout<<”Enter number 1, 2 or 3 \n”;
cin>>i;

switch(i)

Decision and Control Structure UNIT 4_________________

75

{

 case 1: cout<<”I am in case 1\n”;

 case 2: cout<<”I am in case 2\n”;

 case 3: cout<<”I am in case 3\n”;
 default: cout<<”I am in default\n”;

}

getch();

}

Output of the above program

Enter number 1, 2 or 3

2

I am in case 2

Program5: Program to generate a simple calculator

#include<iostream.h>

#include<conio.h>

void main()

{

float a,b;

char opr;

clrscr();
cout<<"Enter any two numbers:";

cin>>a>>b;

cout<<"Enter the operation to be performed(+,-,*,/) \n";

cin>>opr;

switch(opr)

{

 case '+': cout<<a<<'+'<<b<<'='<<(a+b);

 break;

 case '-': cout<<a<<'-'<<b<<'='<<(a-b);
 break;

 case '*': cout<<a<<'*'<<b<<'='<<(a*b);

Decision and Control Structure UNIT 4_________________

76

 break;

 case '/': if(b==0)

 cout<<"Operation not possible";

 else
 cout<<a<<'/'<<b<<'='<<(a/b);

 break;

 default:cout<<"Wrong choice";

}

getch();

}

Output of the above program

Enter any two numbers:
45

54

Enter the operation to be performed(+,-,*,/)

+

45+54=99

Program6: Program to check whether a character is vowel or not.

#include<iostream.h>
#include<conio.h>

void main()

{

char ch;

clrscr();

cout<<"Enter a character \n";

cin>>ch;

switch(ch)

{
 case 'a':

 case 'A':

Decision and Control Structure UNIT 4_________________

77

 case 'e':

 case 'E':

 case 'i':

 case 'I':
 case 'o':

 case 'O':

 case 'u':

 case 'U': cout<<"It is a vowel";

 break;

 default:cout<<"It is not a vowel";

 }

getch();

}

Output of the above program

Enter a character

E

It is a vowel

4.4 LOOP STATEMENTS
The loop statements are used to execute a certain set of instructions repeatedly either a

fixed number of times or until a given condition is being satisfied. There are three ways

in which a particular part of a program can be repeated. They are:

1) State whether the following expressions are true or false:

a) The switch statement allows us to make a decision from a multiple choice
of decisions.
b) if-else is a loop statement
c) Conditional expressions are mainly used for decision-making
d) if, if-else and while are the three conditional statements
e) The statement in the default case of switch statement is executed when all
other cases doesn’t match with a certain condition.

CHECK YOUR PROGRESS

Decision and Control Structure UNIT 4_________________

78

a) Using a for statement

b) Using a while statement

c) Using a do-while statement

4.4.1 for LOOP
The for loop consist of three expressions. The first expression is to initialize the loop
counter, the second expression is used to check the number of times it should be

repeated and the third expression is to increment the loop counter.

The syntax of the for loop is:

for(initial value; test; increment)

{

statement1;

statement2;

}

Program7: Program to print the numbers & their sum which are divisible by 5 within a

certain limit

#include<iostream.h>

#include<conio.h>

void main()

{
int l,i,sum=0;

clrscr();

cout<<"Enter the limit:";

cin>>l;

cout<<"\n The numbers divisible by 5 are:\n";

for(i=1;i<=l;i++)

{

 if(i%5==0)

 {

 cout<<i<<"\n";
 sum=sum+i;

Decision and Control Structure UNIT 4_________________

79

 }

}

cout<<"\n The sum is: "<<sum;

getch();
}

Output of the above program:

Enter the limit: 20

The numbers divisible by 5 are:

5

10

15

20

The sum is: 50

Program8: Program to print the following pattern: 1

1 2

1 2 3

1 2 3 4

#include<iostream.h>

#include<conio.h>

void main()

{

int line_no,i,j;
clrscr();

cout<<"\n Enter the desired number of lines<=10:";

cin>>line_no;

cout<<"Desired pattern is:\n\n";

for(i=1;i<=line_no;i++)

{

 for(j=1;j<=i;j++)

 cout<<j<<"\t";

 cout<<"\n";
}

getch();

Decision and Control Structure UNIT 4_________________

80

}

Output of the above program

Enter the desired number of lines<=10:
6

Desired pattern is:

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

1 2 3 4 5 6

4.4.2 while STATEMENT
In programming sometimes we might want to print a message for a fixed number of

times or we might want to calculate the gross salary of ten employees. In such cases

while loop is the idle solution. The general form of the while loop is:

 while(expression)

 {

 statement1;

 statement2;

 }

The expression is any valid C++ expression including the value of a variable, a unary or

binary expression or the value returned by a function. The expression actually tests a

certain condition.

Program9: Program to find the factorial of a number

#include<iostream.h>

#include<conio.h>
void main()

Decision and Control Structure UNIT 4_________________

81

{

unsigned long int n,

fact=1;

clrscr();
cout<<"Enter the number:\n";

cin>>n;

while(n>0)

{

 fact=fact*n;

 n--;

}

cout<<"Factorial of the number is:\n"<<fact;

getch();
}

Output of the above program

Enter the number:

10

Factorial of the number is:

3628800

Program10: Program to find the sum of digits of a number

#include<iostream.h>

#include<conio.h>

void main()

{

int n,sum=0,r;

clrscr();

cout<<"Enter the number:\n";

cin>>n;

while(n>0)
{

 r=n%10;

Decision and Control Structure UNIT 4_________________

82

 sum=sum+r;

 n=n/10;

}
cout<<"The sum of digit is: \n"<<sum;

getch();

}

Output of the above program

Enter the number:

536

The sum of digit is:

14

4.4.3 do-while STATEMENT
Another loop used in C++ is the do-while statement. When a programmer is sure about a

certain test condition the do-while loop is used as it enters the loop for atleast one time.

This is where there lies a difference between while and do-while loop because while loop

enters the loop only when it satisfies a certain condition. The general syntax of the do-

while loop is:
do{
 statement1;
 statement2;

 }while(expression);

The expression is any valid C++ expression.

Program11:Program to find the sum of even numbers

Sum = 2 + 4 + 6 +………….+ n

#include<iostream.h>

#include<conio.h>

Decision and Control Structure UNIT 4_________________

83

void main()

{

int num,sum=0,l;

clrscr();
cout<<"Enter the limit\n";

cin>>l;

num=2;

do

{

 sum=sum+num;

 num=num+2;

}

while(num<=l);
cout<<"The sum is :\n"<<sum;

getch();

}

Output of the above program

Enter the limit

20

The sum is:

110

Program12: Program to find the odd numbers which are less than 50

#include<iostream.h>

#include<conio.h>

void main()

{

int num=1,l;

clrscr();

cout<<"Enter the limit:\n";
cin>>l;

cout<<"The odd numbers are:\n";

Decision and Control Structure UNIT 4_________________

84

do

{

 if(num%2!=0)

 {
 cout<<"\n"<<num;

 }

 num++;

}while(num<=l);

getch();

}

Output of the above program

Enter the limit:
20

The odd numbers are:

1

3

5

7

9

11

13

15
17

19

Decision and Control Structure UNIT 4_________________

85

4.5 BREAKING CONTROL STATEMENTS
C++ allows the use of three types of control break statements:

1) break statement
2) continue statement

3) goto statement

4.5.1 break STATEMENT

2) What will be the output of the following program?

main()
{

 int j;
 while(j<=10)
 {
 cout<<j;
 j=j+1;
 }

}

3) What will be the output of the following program?

main()
{

for(int i=0;i<10;i++);
{
cout<<"Hello";
}

getch();
}

4) Choose the correct option:
i) A do-while loop is useful when we want that the statements within the loop must be
executed:

a) only once
b) atleast once
c) more than once
d) none of the above

ii) Which of the following loop statements consist of three expressions?
a) while loop
b) do-while loop
c) for loop
d) None of the above

CHECK YOUR PROGRESS

Decision and Control Structure UNIT 4_________________

86

Normally to terminate control from the loop structure of switch case statements, break

statements are used. break statement must be used after every case statement of a

switch structure otherwise the control will transfer to the subsequent case conditions.

The general format of break statement is:
 break;

a) break statement used with a switch-case structure

#include<iostream.h>

#include<conio.h>

void main()

{

char ch;
clrscr();

cout<<”Enter a character: \n”;

cin>>ch;

switch(ch)

{

 case ‘r’:

 case ‘R’: cout<<”The colour is red”;

 break;

 case ‘b’:

 case ‘B’: cout<<”The colour is blue”;
 break;

 case ‘g’:

 case ‘G’: cout<<”The colour is green”;

 break;

 default: cout<<”Wrong choice”;

}

getch();

}

Output of the above program
 Enter a character:

G

Decision and Control Structure UNIT 4_________________

87

The colour is green

2) break statement used in a while loop

A break statement can also be used in other loops.

#include<iostream.h>

#include<conio.h>

void main()

{

int num,i=1,l;

clrscr();

cout<<"Enter the limit";
cin>>l;

while(i<=l)

{

 cout<<"Enter a number:";

 cin>>num;

 if(num<=0)

 {

 cout<<"Zero or negative value found \n";

 break;

 }
 i++;

}

getch();

}

Output of the above program

Enter the limit

7

Enter a number: 1
Enter a number: 2

Enter a number: 3

Decision and Control Structure UNIT 4_________________

88

Enter a number: 4

Enter a number: -7

Zero or negative value found

This program processes only positive integers. As soon as a zero or a negative value is
entered the control exits from the loop displaying the message “Zero or negative value

found”.

4.5.2 continue STATEMENT
The continue statement is used to continue the same operations even if an error is

encountered. The general syntax of the continue statement is:

 continue;

The continue statement is just the inverse of the break statement.

Use of continue statement in a while loop

#include<iostream.h>

#include<conio.h>

void main()

{

int num,i=1,l;

clrscr();

cout<<"Enter the limit";

cin>>l;
while(i<=l)

{

 cout<<"Enter a number:";

 cin>>num;

 if(num<=0)

 {

 cout<<"Zero or negative value found \n";

 continue;

 }

 i++;
}

Decision and Control Structure UNIT 4_________________

89

getch();

}

Output of the above program
Enter the limit

7

Enter a number: 1

Enter a number: 2

Enter a number: 3

Enter a number: 4

Enter a number: -7

Zero or negative value found

Enter a number: 5
Enter a number: 6

The above program processes only positive integers. But here when the program

encounters a negative value, it displays the message “Zero or negative value found” and

continues the same loop as long as the given condition is satisfied.

4.5.3 goto STATEMENT
The goto statement is used to alter the execution of a program sequence by transferring

the control of a program to some different part of the program. The general syntax of

goto statement is:
goto label;

The label is a C++ identifier that is used to label the destination where the program

control is to be transferred.

The two ways of using goto statement is:
a) UNCONDITIONAL goto- In unconditional goto the control of a program is transferred

to any other part of the program without checking any condition

//unconditional goto statement

#include<iostream.h>

void main()
{

Decision and Control Structure UNIT 4_________________

90

start :

cout<<”I am doing a C++ program”;

goto start;

}

A good programmer may never use an unconditional goto statement as it might create

some problems. In the above program as there is no condition, the program will become

a never ending process.

b) CONDITIONAL goto- In conditional goto statement the control is transferred to some

other part of a program after satisfying certain conditions.

//conditional goto statement
#include<iostream.h>

#include<conio.h>

void main()

{

int n;

clrscr();

cout<<"Enter a number:\n";

cin>>n;

if(n%2==0)

 goto output1;
else

 goto output2;

output1:

 cout<<"The number is even";

 goto stop;

output2:

 cout<<"The number is odd";

 stop:

getch();
}

Decision and Control Structure UNIT 4_________________

91

//use of goto statement inside the while loop

#include<iostream.h>

#include<conio.h>
void main()

{

int num, i=1,l;

clrscr();

cout<<"Enter the limit";

cin>>l;

while(i<=l)

{

 cout<<"Enter a number:";
 cin>>num;

 if(num<=0)

 {

 cout<<"Zero or negative value found \n";

 goto error;

 }

 i++;

}

error:

 cout<<”Input data error \n”;
getch();

}

Output of the above program

Enter the limit

7

Enter a number: 0

Zero or negative value found

Input data error

Decision and Control Structure UNIT 4_________________

92

 4.6 LET US SUM UP

 Conditional Statements are used in programs which need to take a certain

decision based on some condition.
 There are three conditional statements- if, if-else and switch case statement
 if statement checks a certain condition and executes the following statement if it

is true.
 In if-else statement either of the two statements is executed.
 switch statement allows to make a decision from multiple choice of decisions.
 Loop statements are used to execute a certain set of instructions repeatedly

until a given condition is satisfied.
 There are three loop statements- for, while and do-while.

5) Choose the correct option
i) The break statement is used to exit from:

a) an if statement
b) a for loop
c) a program
d) the main() function

ii) The _______ statement is used to alter the program execution sequence by
transferring control to some other part of the program.

a) continue statement
b) break statement
c) goto statement
d) none of the above

iii) Which statement is used to repeat the same operations once again even if it
checks the error?

a) continue statement
b) goto statement
c) break statement
d) none of the above

CHECK YOUR PROGRESS

Decision and Control Structure UNIT 4_________________

93

 The for loop consists of three expressions- initializing the index value, checking

the condition whether to continue or discontinue the loop and lastly to increment

the index value for further iteration.
 while loop is used when there is no certainty whether the loop will execute or not.
 do-while loop enters the loop for at least once and then checks whether the

given condition is true or not.
 break statement is used to terminate and exit from a particular point of a

program.
 continue statement is used to continue the same operations even if an error is

encountered.
 The goto statement is used to alter the sequence of a program by transferring

the control to other part of the program.

1)a) True b)False c)True d)False e)True

2) No output

3) “Hello” will be executed only once
4) i)b) atleast once ii)c) for loop

5)i) c) a program ii)c) goto statement iii)a)continue

 4.8 FURTHER READINGS

 Programming with C++, Second Edition
- John R. Hubbard

Tata McGraw-Hill Edition
C++ The Complete Reference
- Herbert Schildt

Tata McGraw-Hill Edition

 4.7 ANSWERS TO CHECK YOUR
 PROGRESS

Decision and Control Structure UNIT 4_________________

94

1) What are conditional statements? What are the different types of conditional

statements?

2) What is the difference between if and if-else statement?

3) Explain the switch case statement with example.

4) What are looping statements? What are the different types of loop statements?

5) How the while loop differ from the do-while loop?

6) When do we use a switch case statement in a program?
7) How do for loop differ from while loop?

8) Explain the use of break, continue and goto statement in a program?

9) Write down the general syntax for declaring:

a) for loop b) while loop c)do-while loop

10) Write a program that prints the numbers and its cube from 1 to 10 using the following

control statements:

a) if-else b)for loop c) while loop d) do-while loop

11) Write a program to check whether a number is Armstrong number or not.

12) Write a program to find the multiplication table of any number within a certain limit.

13) Write a program to reverse a number.
14) Write a program to find the sum of the following series:

 Sum= 1+3+5+7+………+n

15) Write a program to generate the Fibonacci series.

16) Write a program to check whether a year is leap year or not.

17) Write a program to find the roots of a quadratic equation.

18) Write a program to generate the following pattern: 1=1

 1+2=3

 1+2+3=6

19) Write a program to check whether a number is prime or not.
20) Write a program to calculate the occurrences of positive numbers, negative numbers

and zeros in a stream of data terminated by some specific value.

4.9 MODEL QUESTIONS

Arrays, Pointers, Structure and Union UNIT5

95

UNIT- 5 Arrays, Pointers, Structure and Union

UNIT STRUCTURE

 5.1 Learning Objectives

 5.2 Introduction

 5.3 Arrays
 5.3.1 Array Declaration

 5.3.2 Array Initialization

 5.3.3 Processing with Array

 5.3.4 Arrays and Functions

 5.3.5 Multidimensional Arrays

 5.3.6 Character Array

 5.3.7 Initializing Character Array

 5.4 Pointers

 5.4.1 Pointer Operators
 5.4.2 Pointers & Arrays

 5.5 Structures

 5.5.1 Declaration of a Structure

 5.5.2 Initialization of a Structure

 5.5.3 Accessing Structure Variables

 5.5.4 Structure within a Structure (Nested Structure)

 5.5.5 Arrays of Structure

 5.6 Unions

 5.7 Let Us Sum Up
 5.8 Answers to check your progress

 5.9 Further Readings

 5.10 Model Questions

5.1 LEARNING OBJECTIVES
After going through this unit, you will be able to:

 Understand the basics of arrays

 Understand multidimensional arrays

Arrays, Pointers, Structure and Union UNIT5

96

 Understand character arrays

 Write programs on arrays

 Understand pointers

 Understand relationship between pointers and arrays

 Understand structures

 Understand nested structures

 Understand union data type

5.2 INTRODUCTION

In this unit you will learn arrays, declaration of arrays, initialization of arrays and also

multidimensional arrays. Later there is introduction to pointers and structure as well as their

relationship with arrays. Lastly the union data type is discussed.

5.3 ARRAYS

An array is a collection of homogenous data objects which are stored in contiguous memory

locations under a common variable name. The individual data objects are called elements of

an array. Array can also be defined as a collection of similar data types which have a single
name followed by an index. A subscript or an index is a positive integer value that

determines the position of an element in an array. Depending upon the number of subscript

used, arrays can be either one dimensional or multidimensional.

5.3.1 SINGLE DIMENSIONAL ARRAY

The array which requires only one subscript to access the elements of an array are the

single or one dimensional array. A single dimensional array can be declared as:

 data_type array_name[size]

Here data_type refers to the type of data (integer, float, character), array_name refers to the
name of the array and size refers to the number of elements in the array. The size of an

array is also called dimension of an array.

For example: int value[10];

Arrays, Pointers, Structure and Union UNIT5

97

Here value is an array of type integer and size 10.

Some more examples of declaring a one dimensional array:

 int a[10];
char stu_name[20];

float x[100]

 In the above examples, the first one is an integer array ‘a’ of size 10; the second one is a

character stu_name of size 20 and the third one is a floating point array of size 100.

5.3.2 INITIALIZATION OF SINGLE DIMENSIONAL ARRAY
The general format of single dimensional array initialization is:

 data_type array_name[size] = {element1, element2,………element_n};

Here data_type refers to the type of data, array_name refers to the name of the array and

size refers to the size of the array. Finally the elements of the array are placed one after the

other within the braces ended with a semicolon.

Example:

int x[10]= {1, 2,3,4,5,6,7,8,9,10};

char name[5]={‘V’,’i’,’d’,’y’,’a’};

float value[5]={2.6,0,-8.7,4.5,9.6};

The results of the above array elements are:

x[0]=1
x[1]=2

x[2]=3

x[3]=4

x[4]=5

x[5]=6

x[6]=7

x[7]=8

x[8]=9

x[9]=10

name[0]=’V’

Arrays, Pointers, Structure and Union UNIT5

98

name[1]=’i’

name[2]=’d’

name[3]=’y’

name[4]=’a’

values[0]=2.6

values[1]=0

values[2]=-8.7

values[3]=4.5

values[4]=9.6

In arrays, the first element is always placed in the 0th place i.e, the array index always starts

from 0.So if there are n elements in an array the array index will start from 0to n-1.

5.3.3 ACCESSING SINGLE DIMENSIONAL ARRAY ELEMENTS
The syntax for accessing the elements of a single dimensional array is:

 array_name[subscript];

For example the elements of the array can be referred to as: a[0], a[1], a[2] and so on.

The elements of a single dimensional array are stored in contiguous blocks of memory i.e

the elements are always stored next to each other.

The memory representation of a single dimensional array is:

 int a[10];

a[0] a[1] a[2] a[3] a[4] a [5] a[6] a[7] a[8] a[9]

10 20 30 40 50 60 70 80 90 100

Examples of programs using single dimensional arrays

Program1: Program to display the elements of a given array

#include<iostream.h>

#include<conio.h>
void main()

{

Arrays, Pointers, Structure and Union UNIT5

99

int p[10]={10,20,30,40,50,60,70,80,90,100};

int i;

clrscr();

cout<<"The array is:\n";
for(i=0;i<10;i++)

{

 cout<<p[i]<<'\t';

}

getch();

}

Output of the above program is:

The array is:
10 20 30 40 50 60 70 80 90 100

Program2: Program to read n numbers from the keyboard and display the elements of the

array.

#include<iostream.h>

#include<conio.h>

void main()

{

int p[10],i,n;
clrscr();

cout<<"Enter the number of elements in the array:\n";

cin>>n;

cout<<"Enter the elements of the array:\n";

for(i=0;i<n;i++)

{

 cin>>p[i];

}

cout<<"The elements of the array are:\n";
for(i=0;i<n;i++)

{

Arrays, Pointers, Structure and Union UNIT5

100

 cout<<p[i]<<'\t';

}

getch();

}
Output of the above program

Enter the number of elements in the array:

5

Enter the elements of the array:

2

4

6

8

10
The elements of the array are:

2 4 6 8 10

Program3: Program to read n numbers from the keyboard and find the minimum element of

the array

#include<iostream.h>

#include<conio.h>

void main()

{
int a[10],i,n,min;

clrscr();

cout<<"Enter the number of elements in the array:\n";

cin>>n;

cout<<"Enter the elements of the array:\n";

for(i=0;i<n;i++)

{

 cin>>a[i];

}
cout<<"The elements of the array are:\n";

for(i=0;i<n;i++)

Arrays, Pointers, Structure and Union UNIT5

101

{

 cout<<a[i]<<'\t';

}

min=a[0];
for(i=1;i<n;i++)

{

 if(a[i]<min)

 {

 min=a[i];

 }

}

cout<<"\nThe minimum element is:"<<min;

getch();
}

Output of the above program

Enter the number of elements in the array:

5

Enter the elements of the array:

54

46

32

99
76

The elements of the array are:

54 46 32 99 76

The minimum element is: 32

Program4: Program to read n numbers from the keyboard and display the elements of the

array in sorted order.

#include<iostream.h>
#include<conio.h>

void main()

Arrays, Pointers, Structure and Union UNIT5

102

{

int a[10],i,j,n,temp;

clrscr();

cout<<"Enter the number of elements in the array:\n";
cin>>n;

cout<<"Enter the elements of the array:\n";

for(i=0;i<n;i++)

{

 cin>>a[i];

}

cout<<"The elements of the array are:\n";

for(i=0;i<n;i++)

{
 cout<<a[i]<<'\t';

}

for(i=0;i<n;i++)

{

 for(j=i+1;j<n;j++)

 {

 if(a[i]>a[j])

 {

 temp=a[i];

 a[i]=a[j];
 a[j]=temp;

 }

 }

}

cout<<"\nThe elements of the array in sorted order:\n";

for(i=0;i<n;i++)

{

 cout<<a[i]<<'\t';

}
getch();

Arrays, Pointers, Structure and Union UNIT5

103

}

Output of the above program

Enter the number of elements in the array:
10

Enter the elements of the array:

45

12

76

22

90

11

55
68

44

88

The elements of the array are:

45 12 76 22 90 11 55 68 44 88

The elements of the array in sorted order:

11 12 22 44 45 55 68 76 88 90

5.3.4 MULTIDIMENSIONAL ARRAYS
An array of arrays is said to be as multidimensional array. In multidimensional array there may be n

subscripts/index. In general arrays with more than three dimensions are not used. Here we shall

discuss arrays with two dimensions. Sometimes some data fit better in a table with several rows

and columns. This can be constructed by using two-dimensional arrays.

A two dimensional array has two subscripts/indexes. The first subscript refers to the row,

and the second, to the column. Its declaration has the following form:

data_type array_name[row_size][column_size];

For example: int x[3][4];

Arrays, Pointers, Structure and Union UNIT5

104

 float matrix[20][25];

The first line declares x as an integer array with 3 rows and 4 columns and the second

line declares a matrix as a floating-point array with 20 rows and 25 columns.

Graphically, int x[3][4] can be depicted as follows:

 0 1 2 3

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]

You can see that for [3][4] 2D array size; the total array size (the total array elements) is

equal to 12.

Hence: For n rows and m columns, the total size equal to mn

5.3.5 Initialization of two dimensional arrays

Just like the one-dimensional array, a two dimensional array can also be initialized. For

example, the previous first array declaration can be rewritten along with initial

assignments in any of the following ways:

int x[3][4] = {1,2,3,4,5,6,7,8,9,10,11,12};

Or

int x[3][4]={{1,2,3,4},{5,6,7,8},{9,10,11,12}};

The results of the initial assignments in both cases are as follows:

x[0][0]=1 x[0][1]=2 x[0][2]=3 x[0][3]=4

x[1][0]=5 x[1][1]=6 x[1][2]=7 x[1][3]=8

x[2][0]=9 x[2][1]=10 x[2][2]=11 x[2][3]=12

Let us see some examples of programs using two dimensional arrays.

Program5: Program to initialize a set of numbers in a two dimensional array and to

display the content of the array.

0
1
2

1st subscript

2nd subscript

Arrays, Pointers, Structure and Union UNIT5

105

#include<iostream.h>

#include<conio.h>

void main()

{

int i,j;

int a[3][4]={{1,2,3,4},

 {5,6,7,8},

 {9,10,11,12}};

clrscr();

cout<<"Contents of the array are:\n";

for(i=0;i<3;i++) //row size is 3

{

 for(j=0;j<4;j++) //column size is 4

 {

 cout<<a[i][j]<<"\t";

 }

 cout<<"\n";

}

getch();

}

Output of the above program:

Contents of the array are:

1 2 3 4

5 6 7 8

Arrays, Pointers, Structure and Union UNIT5

106

9 10 11 12

Program6: Program to display the contents of a two dimensional array whose size is

3x3.

#include<iostream.h>

#include<conio.h>

void main()

{

int i,j;

int a[3][3];

clrscr();

cout<<"Enter the elements of the array:";

for(i=0;i<3;i++)

{

 for(j=0;j<3;j++)

 {

 cin>>a[i][j];

 }

}

cout<<"Contents of the array are:\n";

for(i=0;i<3;i++)

{

 for(j=0;j<3;j++)

 {

 cout<<a[i][j]<<"\t";

 }

 cout<<"\n";

Arrays, Pointers, Structure and Union UNIT5

107

}

getch();

}

Output of the above program:

Enter the elements of the array:

10

20

30

40

50

60

70

80

90

Contents of the array are:

10 20 30

40 50 60

70 80 90

Program7: Program to find the sum of two 2x2 matrices.

#include<iostream.h>

#include<conio.h>

void main()

{

int i,j;

int a[2][2],b[2][2],c[2][2];

clrscr();

Arrays, Pointers, Structure and Union UNIT5

108

cout<<"Enter the elements of the first matrix:\n";

for(i=0;i<2;i++)

{

 for(j=0;j<2;j++)

 {

 cin>>a[i][j];

 }

}

cout<<"Enter the elements of the second matrix:\n";

for(i=0;i<2;i++)

{

 for(j=0;j<2;j++)

 {

 cin>>b[i][j];

 }

}

cout<<"Contents of first matrix:\n";

for(i=0;i<2;i++)

{

 for(j=0;j<2;j++)

 {

 cout<<a[i][j]<<"\t";

 }

 cout<<"\n";

}

cout<<"Contents of second matrix:\n";

Arrays, Pointers, Structure and Union UNIT5

109

for(i=0;i<2;i++)

{

 for(j=0;j<2;j++)

 {

 cout<<b[i][j]<<"\t";

 }

 cout<<"\n";

}

cout<<"The sum of two matrices is:\n";

for(i=0;i<2;i++)

{

 for(j=0;j<2;j++)

 {

 c[i][j]=a[i][j]+b[i][j];

 cout<<c[i][j]<<"\t";

 }

 cout<<"\n";

}

getch();

}

 Output of the above program:

Enter the elements of the first matrix:

1

2

3

4

Arrays, Pointers, Structure and Union UNIT5

110

Enter the elements of the second matrix:

5

6

7

8

Contents of first matrix:

1 2

3 4

Contents of second matrix:

5 6

7 8

The sum of two matrices is:

6 8

10 12

5.3.6 CHARACTER ARRAYS (STRINGS)

An array of characters is known as a character array. A character array can be declared
as:

 char name[20];

Here name is a character array whose size is 20.

An array of characters in which the last character is terminated by a null character

represents a string. The null character is denoted by ‘\0’.

 5.3.7 INITIALIZING CHARACTER ARRAYS

Like an integer or a floating point array, the character array can also be initialized. For

example,

char name[7]=”Sameer”;

Arrays, Pointers, Structure and Union UNIT5

111

The elements would be assigned to each of the character array position in the following

way:

 name[0]=’S’;

 name[1]=’a’;

 name[2]=’m’;

 name[3]=’e’;

 name[4]=’e’;

 name[5]=’r’;

 name[6]=’\0’;

The null character will be added automatically by the C++ compiler provided there is
enough space to accommodate the character.

The basic structure of character array is:

name[0] name[1] name[2] name[3] name[4] name[5] name[6]

S a m e e r \0

There are a number of predefined string functions for manipulating strings in different

manner. These functions are defined in the string.h file. Some of the string functions are:

strcpy- Copies one string to another string

strcat- Appends a copy of a string to another string

strcmp- Compares two strings

strlen- Counts the number of characters in a string

Program8: Program to read a string and display it.

#include<conio.h>

void main()

{

char str[20];

clrscr();

cout<<"Enter a string :\n";

Arrays, Pointers, Structure and Union UNIT5

112

cin>>str;

cout<<"The string is: ";

cout<<str;

getch();

}

Output of the above program

Enter a string:

Welcome

The string is: Welcome

Program9: Program to read a string & display the string and the length of the string

using strlen() function

#include<iostream.h>

#include<conio.h>

#include<string.h>

void main()

{

char str[20];

int l;

clrscr();

cout<<"Enter a string :\n";

cin>>str;

cout<<"The string is:";

cout<<str;

l=strlen(str);

cout<<"\nThe length of the string is: "<<l;

getch();

Arrays, Pointers, Structure and Union UNIT5

113

}

Output of the above program

Enter a string:

Program

The string is: Program

The length of the string is: 7

 Program10: Program to read two strings & display the concatenation of the two strings.

#include<iostream.h>

#include<conio.h>

#include<string.h>

void main()

{

char str1[20],str2[20];

clrscr();

cout<<"Enter the first string :\n";

cin>>str1;

cout<<"Enter the second string :\n";

cin>>str2;

cout<<"\nConcatenated string is: "<<strcat(str1,str2);

getch();

}

Output of the above program:

Enter the first string:

class

Enter the second string:

room

Concatenated string is: classroom

Arrays, Pointers, Structure and Union UNIT5

114

5.4 POINTERS

A pointer is a variable that is used to store a memory address. The address is the

location of the variable in the memory. Pointers help in allocating memory dynamically.

Pointers improve execution time and saves space.
The general syntax of declaring a pointer variable is:

 data_type *pointer_variable

where data_type is the type of the pointer variable such as integer, character and

floating point number variable etc., and pointer_variable is any valid C++ identifier.

For example: int *value;

 char *name;

When a pointer variable is declared, the variable name must be preceded by an asterisk

(*). This identifies the variable as a pointer.

5.4.1 POINTER OPERATORS

1) Arrays are sets of values of the same type which have a single name followed by
an ___________.
2) A subscript or an index is a positive integer value that determines the ________ of
an element in an array.
3) The array index always starts from ______ to n-1, where n is the maximum size of
the array declared by the programmer.
4) A two dimensional array will require _____ pairs of square brackets.
5) A character string is always terminated by ______ character.
6) An array of characters is called a ________.
7) Which of the following is not a valid array declaration?
i) int value[20];
ii) float y[30];
iii) char [s];
iv) char name[10];
8) Strings are always specified in
i) double quotes
ii) braces
iii) single quotes
iv) square brackets

CHECK YOUR PROGRESS

Arrays, Pointers, Structure and Union UNIT5

115

A pointer variable consists of two parts i) the pointer operator and ii) the address

operator. A pointer operator can be represented by a combination of * (asterisk) with a

variable. The * operator is also called indirection operator. It returns the contents of the

memory location pointed to.
An address operator can be represented by a combination of & (ampersand) with a

pointer variable. The & operator is a unary operator. The unary operator returns the

address of the memory where a variable is located.

To understand the concept of these two operators let us consider the following

statements-

 int *x;
 int c=100;

 int p;

x=&c;

 p=*x;

Here in the first statement x is a pointer variable of type integer. The second statement is

a simple assignment statement where 100 is assigned to c and then in the next

statement another variable p of type integer is declared.

Now,
 x=&c;

Here & operator returns the memory address of the variable c to x.

Lastly,

 p=*x;

Here * operator returns the content of the pointer x and variable p will contain value 100 as

the pointer x contain value 100 at its memory location. Let us consider a program which

illustrates the working of pointers.

Program11: Program to display the contents of a pointer.

#include<iostream.h>

#include<conio.h>

void main()

{

Arrays, Pointers, Structure and Union UNIT5

116

int x,y;

int*ptr;

x=10;

clrscr();
ptr=&x;

y=*ptr;

cout<<"Let us \n";

cout<<"Contents of x:"<<x;

cout<<"\nContents of pointer variable: "<<ptr;

cout<<"\nContents of y: "<<y;

getch();

}

Output of the above program

Contents of x: 10

Contents of the pointer variable: 0x8fd6fff4

Contents of y: 10

Program12: Program to display the address and the contents of a pointer variable.

#include<iostream.h>

#include<conio.h>

void main()
{

int x;

int *ptr;

x=20;

clrscr();

ptr=&x;

cout<<"Let us \n";

cout<<"Contents of x:"<<x;

cout<<"\nContents of pointer variable: "<<*ptr;
cout<<"\nAddress of pointer variable: "<<ptr;

getch();

Arrays, Pointers, Structure and Union UNIT5

117

}

Output of the above program

Contents of x: 20
Contents of the pointer variable: 20

Address of the pointer variable: 0x8fd6fff4

5.4.2 POINTERS AND ARRAYS

The concept of array is very much bound to the one of pointer. In fact, the identifier of an

array is equivalent to the address of its first element, as a pointer is equivalent to the

address of the first element that it points to, so in fact they are the same concept. For

example, supposing these two declarations,

 int x[20];
 int *p;

The following assignment operation would be valid:

 p=x;

After that, p and x would be equivalent and would have the same properties. The only

difference is that we could change the value of pointer p by another one, whereas x will

always point to the first of the 20 elements of type int with which it was defined. Therefore,

unlike p, which is an ordinary pointer, x is an array, and an array can be considered a
constant pointer. Therefore, the following allocation would not be valid:

 x=p;
Because x is an array, so it operates as a constant pointer, and we cannot assign values to

constants.

The following is a valid assignment:

p=&x[0];

The address of the zeroth element of x is assigned to the pointer variable p.

If the pointer is incremented to the next data element, then the address of the incremented

value of the pointer will be same as the value of the next element.

p++==value[1];

Array subscripting is defined in terms of pointer arithmetic. That is the expression

 x[i]
is defined to be the same as

Arrays, Pointers, Structure and Union UNIT5

118

*((x) + (i))

which is to say the same as

* (&(x) [0] + (i))

Program12: Program to display the contents of an array using pointer arithmetic.

#include<iostream.h>

#include<conio.h>

void main()

{

int value[5],n;

int *p;

clrscr();
p=value;

*p=10;

p++;

*p=20;

p=&value[2];

*p=30;

p=value+3;

*p=40;

p=value;

*(p+4)=50;
for(n=0;n<5;n++)

{

cout<<value[n]<<",";

}

getch();

}

Output of the above program

10,20,30,40,50

Arrays, Pointers, Structure and Union UNIT5

119

 5.5 STRUCTURES

Structure is a collection of heterogeneous data types. The individual components of a

structure which are called fields or members can be accessed and processed separately.

Array & structures have two main differences. Firstly in arrays, all the elements are of same
data type whereas in structure all the elements may be of different data types. Secondly

each component of an array is referred to by its position whereas each component in

structure has a unique name

The general syntax of declaring a structure is:

struct user_defined_name{

 data_type member 1;

 data_type member 2;

 data_type member n;

};

9) Fill in the blanks
i) Pointers help in allocating ________dynamically.
ii) An address operator can be represented by a combination of ____with a pointer
variable.
iii) The_____ operator returns the address of the memory where a variable is located.
iv) The identifier of an array is equivalent to the address of its first element, as a pointer is
equivalent to the _______ of the first element that it points to,

CHECK YOUR PROGRESS

Arrays, Pointers, Structure and Union UNIT5

120

A structure definition is specified by the keyword struct. The keyword struct is followed by a

user defined name of the structure surrounded by braces , which describes the members of

the structure. The braces are terminated by a semi colon.

For example to declare a structure containing details of an employee is:
 struct employee

 {

 int code;

 char name[20];

 int age;

 }

Similarly to declare a structure containing details of a book is:

 struct book

 {
 int book_code;

 char name[20];

 float price;

 }

5.5.1 DECLARING STRUCTURE VARIABLES
To use structure in a program, a structure variable needs to be declared. The general syntax

of declaring a structure variable is:

 struct structure_variable;

For example to declare a structure variable of a structure ‘date’ can be declared as :
 struct date d1;

Here d1 is a variable of type structure whose name is ‘date’.

5.5.2 INITIALIZATION OF STRUCTURE
A structure can be initialized in the same way as any other data type in C++. To illustrate let

us consider an example of a structure containing details of a student such as roll number,

name, age.

The structure will be initialized as:

 struct student s1={101,”Sneha”,20};

Here s1 is a structure variable.

Arrays, Pointers, Structure and Union UNIT5

121

5.5.3 ACCESSING STRUCTURE VARIABLES
The structure variables can be accesses by using the period or dot operator (‘.’).

For example date is a structure consisting of three members which can be referred in

program as:
 struct date

 {

 int day;

 int month;

 int year;

 }

 void main()

 {

 struct date d1;
 d1.day;

 d1.month;

 d1.year;

 }

 The members of the structure can be assigned values as:

 today.day=24;

 today.month=3;

 today.year=2012;

Reading a structure will be as follows:
cin>>today.day;

cin>>today.month;

cin>>today.year;

Writing a structure will be as follows:

cout<<today.day;

cout<<today.month;

cout<<today.year;

Let us consider some programs to illustrate the use of structure.

Program 13: Program to assign some values to the members of a structure and to display

the structure.

Arrays, Pointers, Structure and Union UNIT5

122

#include<iostream.h>

#include<conio.h>

struct student
{

int roll_no;

char name[20];

int age;

};

void main()

{

clrscr();

struct student s1={162,"Pranab",21};
cout<<endl<<"Roll Number: "<<s1.roll_no;

cout<<endl<<"Name: "<<s1.name;

cout<<endl<<"Age: "<<s1.age;

getch();

}

Output of the above program:

Roll Number: 162

Name: Pranab

Age: 21

Program14: Program to display the details of an employee using structures.

#include<iostream.h>

#include<conio.h>

struct employee

{

 int code;

 char name[20];

 int age;
 float salary;

};

Arrays, Pointers, Structure and Union UNIT5

123

void main()

{

struct employee emp;

clrscr();
cout<<"Enter the details of the employee- "<<endl;

cout<<"Code: ";

cin>>emp.code;

cout<<endl<<"Name: ";

cin>>emp.name;

cout<<endl<<"Age: ";

cin>>emp.age;

cout<<endl<<"Salary: ";

cin>>emp.salary;
cout<<"The details of the employee:"<<endl;

cout<<"Code: "<<emp.code<<endl;

cout<<"Name: "<<emp.name<<endl;

cout<<"Age: "<<emp.age<<endl;

cout<<"Salary: "<<emp.salary<<endl;

getch();

}

Output of the above program:

Enter the details of the employee-
Code: 1090

Name: Shekhar

Age: 27

Salary: 20000

The details of the employee:

Code: 1090

Name: Shekhar

Age: 27

Salary: 20000

Arrays, Pointers, Structure and Union UNIT5

124

5.5.4 STRUCTURE WITHIN A STRUCTURE (Nested Structure)

It is possible to use a structure as a member of another structure or in other words we can

say that there can be a structure within a structure. Such type of structure is called nested

structure. The nested structure can be declared as :
 struct first

 {

 int a;

 float b;

 char s;

 };

 struct second

 {

 int p;
 struct first one;

 }

Program15: Program to calculate the total course fee of a student who has enrolled in two

courses using nested structure.

#include<iostream.h>

#include<conio.h>

struct course
{

 int course_no;

 int course_fee;

};

struct student

{

 int stud_rollno;

 struct course c1;

 struct course c2;

};
void main()

Arrays, Pointers, Structure and Union UNIT5

125

{

 int x;

 student s1;

 clrscr();
 s1.stud_rollno=234;

 s1.c1.course_no=111;

 s1.c1.course_fee=5000;

 s1.c2.course_no=114;

 s1.c2.course_fee=6000;

 x=s1.c1.course_fee + s1.c2.course_fee;

 cout<<"\nStudent Roll Number: "<<s1.stud_rollno<<"\nTotal Course Fee: "<<x;

 getch();

}

Output of the above program:

Student Roll Number: 234

Total Course Fee: 11000

5.5.5 ARRAY OF STRUCTURES

Just as arrays of basic types such as integers and floats are allowed in C, so are arrays of

structures. An array of structures is simply an array in which each element is a structure of

the same type. The referencing and subscripting of these arrays (also called structure
arrays) follow the same rules as simple arrays.An array of structures is declared as:

struct course

{

 char course_name[20];

 int course_code;

 float course_fee;

};

course c[20];

Arrays, Pointers, Structure and Union UNIT5

126

The c[20] is a structure variable. It may accommodate the structure of a course up to 20.

Each record may be accessed & processed separately like individual elements of an array.

Let us see some examples.

Program16: Program to read n employees information & display them.

#include<iostream.h>

#include<conio.h>

struct employee

{

 char name[20];

 int code;

 int age;
 int dept_no;

 float salary;

};

void main()

{

struct employee emp[10];

int i,n;

clrscr();

cout<<"Enter the number of employees: ";

cin>>n;
for(i=0;i<n;i++)

{

 cout<<endl<<"Name :";

 cin>>emp[i].name;

 cout<<endl<<"Code : ";

 cin>>emp[i].code;

 cout<<endl<<"Age: ";

 cin>>emp[i].age;

 cout<<endl<<"Department Number: ";
 cin>>emp[i].dept_no;

 cout<<endl<<"Salary: ";

Arrays, Pointers, Structure and Union UNIT5

127

 cin>>emp[i].salary;

}

cout<<endl<<"Details of the employees:";

for(i=0;i<n;i++)
{

 cout<<endl<<"Name :"<<emp[i].name;

 cout<<endl<<"Code : "<<emp[i].code;

 cout<<endl<<"Age: "<<emp[i].age;

 cout<<endl<<"Department Number: "<<emp[i].dept_no;

 cout<<endl<<"Salary: "<<emp[i].salary;

}

getch();

}
Output of the above program:

Enter the number of employees: 4

Name : Kaushik

Code : 236

Age: 25

Department Number: 1106

Salary: 15000

Name : Mohit

Code : 654

Age: 27
Department Number: 1104

Salary: 13000

Name : Neha

Code : 765

Age: 27

Department Number: 1103

Salary: 18000

Name : Shruti

Code : 342
Age: 25

Department Number: 1102

Arrays, Pointers, Structure and Union UNIT5

128

Salary: 10000

Details of the employees:

Name : Kaushik

Code : 236
Age: 25

Department Number: 1106

Salary: 15000

Name : Mohit

Code : 654

Age: 27

Department Number: 1104

Salary: 13000

Name : Neha
Code : 765

Age: 27

Department Number: 1103

Salary: 18000

Name : Shruti

Code : 342

Age: 25

Department Number: 1102

Salary: 10000

5.6 UNIONS

Unions are similar to structure but they differ from each other by the way how data is stored

and retrieved. Unions are declared in the same fashion as structures, but have a

fundamental difference. Only one item within the union can be used at any time, because

the memory allocated for each item inside the union is in a shared memory location.

The syntax of a union declaration is:

 union user_defined_name

 {

 data_type member1;
 data_type member2;

Arrays, Pointers, Structure and Union UNIT5

129

 data_type member_n;

 }
The keyword union is essential. data_type is any valid C++ data type such as int, float and

char.

A structure can be a member of a union and also a union can be a member of structure

Example:

 union class

 {

 int one;

 float two;

 char value;
 };

 union u;

where u is a union variable.

Program 17: Program to initialize the members of a union and display the contents of the

union.

#include<iostream.h>

#include<conio.h>

void main()
{

 union sample

 {

 int x;

 float y;

 };

 union sample u;

 clrscr();

 u.x=45;
 u.y=18.54;

 cout<<"x= "<<u.x<<endl;

Arrays, Pointers, Structure and Union UNIT5

130

 cout<<"y= "<<u.y<<endl;

 getch();

}

Output of the above program:

x=20972

y=18.54

In the above program the members of union are int and float. The float values are stored

correctly as well as displayed correctly. But the integer values are not displayed correctly

because union holds only a value for one data type which requires a larger storage among

their members.

Arrays, Pointers, Structure and Union UNIT5

131

5.7 LET US SUM UP
 An array is a collection of homogenous data objects which are stored in contiguous

memory locations under a common variable name.
 The array which requires only one subscript to access the elements of an array are

the single or one dimensional array.
 An array of arrays is said to be as multidimensional array.
 In multidimensional array there may be n subscripts/index.
 A two dimensional array has two subscripts/indexes. The first subscript refers to

the row, and the second, to the column.
 An array of characters is known as a character array.
 An array of characters in which the last character is terminated by a null character

represents a string.
 A pointer is a variable that is used to store a memory address.
 A pointer variable consists of two parts - the pointer operator and the address

operator.
 Arrays and pointers are of the same concept.
 In fact, the identifier of an array is equivalent to the address of its first element, as a

pointer is equivalent to the address of the first element that it points to.

10) State true or false

a) Structures are a collection of homogenous elements.
b) Each member of a structure is specified by a variable name with a period and
the member name.
c) An array is used to store dissimilar elements and a structure to store similar
elements.

11) When a structure is declared as the member of another structure, it is called
_________ structure.

12) The _____ data type stores values of different types in a single location.

CHECK YOUR PROGRESS

Arrays, Pointers, Structure and Union UNIT5

132

 Structure is a collection of heterogeneous data types.
 There can be a structure within a structure, called nested structure.
 An array of structures is simply an array in which each element is a structure of the

same type.
 Unions are similar to structure but they differ from each other by the way how data is

stored and retrieved.
 A structure can be a member of a union and also a union can be a member of

structure.

1) index

2) position

3) 0

4) two

5) null

6) string

7) iii) char [s]

8) i) double quotes

9) i) memory ii) ampersand (&) iii)ampersand(&) iv)address
10) a) False b) True c) False

11) nested

12) union

5.8 ANSWERS TO CHECK YOUR
PROGRESS

Arrays, Pointers, Structure and Union UNIT5

133

1) What is an array? How an array is declared and initialized?

2) Explain multidimensional array with the help of an example.

3) What is a character array?

4) What is a pointer?
5) Explain the use of pointer in a program.

6) With the help of an example explain how will you relate a pointer and an array?

7) What is a structure? How a structure is declared and initialized?

8) Differentiate between array and structures.

9) Explain nested structure with the help of an example.

10) What is a union data type? How does union differ from structure?

11) Write a program to reverse the elements of an array.

12) Write a program to find the maximum element of an array.

13) Write a program to find the sum of elements of a 3x3 matrix.
14) Write a program to check whether a given string is palindrome or not.

15) Write a program to read the following information for n employees and display the record

of the employee whose salary is maximum:

 Employee name

 Employee code

 Designation

 Salary

 Years of experience

 Age
16) Write a program to read the following information for n patients and display the record of

the desired patient whose name is supplied by the user:

 Name of the patient

5.10 MODEL QUESTIONS

Arrays, Pointers, Structure and Union UNIT5

134

 Code of the Patient

 Sex

Age

 Ward number
 Bed number

 Nature of illness

 Date of admission

17) Write a program to find the transpose of a matrix.

18) Write a program to find the subtraction of two matrices.

19) Write a program to insert an element in an array at a specific position.

20) Write a program to delete an element in an array from a specific position.

Functions Unit 6

134

UNIT - 6: FUNCTIONS

UNIT STRUCTURE

6.1 Learning Objectives
6.2 Introduction
6.3 main() Function
6.4 Components of a Function

6.4.1 Function Prototype
6.4.2 Function Definition
6.4.3 Function Parameters
6.4.4 Function Call

6.5 Passing Arguments
6.6 Type of Functions
6.7 Inline Functions
6.8 Function Overloading
6.9 Let Us Sum Up
6.10 Answers To Check Your Progress
6.11 Further Readings
6.12 Model Questions

6.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 know what are C++ functions

 learn about the different components of a function

 make function calls

 learn how to pass arguments to a function

 know about the different types of functions

 know what function overloading is

6.2 INTRODUCTION

In the previous few units, we got to know quite a few important

aspects of the C++ programming language. Most useful programs

are much larger than the programs that we have considered so far.

Functions Unit 6

135

To make large programs manageable, programmers modularize

them into sub-programs. These sub-programs are called functions.

They can be compiled and tested separately and reused in

different programs. This modularization is characteristic of

successful Object-Oriented software.

We are already familiar with the concept of functions in the

C language which are almost same in all programming languages

excepting some minor differences in the syntax. A repeated group

of instructions in a program can be organized as a function.

Instead of writing the same lines of code, functions can be invoked

wherever they are required. A function is a sequence of

instructions written in a particular programming language like C,

C++ etc. that perform some specific tasks as specified by the user.

6.3 main() FUNCTION

We have already learnt that any C program starts with the main()

function. Let us first discuss the use of the main() function of the

C++ language. Every C++ program requires a function named

main(). In fact, we can think of the complete program itself as

being made up of the main() function together with all the other

functions that are called either directly or indirectly from it. The

program starts by calling main(). Since main() is a function with

return type int, it is normal to end its block with

return 0;

although most compilers do not require this. Some compilers allow

it to be omitted but will issue a warning when it is. The value of the

integer that is returned to the operating system should be the

number of errors counted; the value 0 is the default.

The basic structure of the main() function in C++ is as follows:

void main()
{

// the statements of the C++ program
}

Functions Unit 6

136

But since the main() function in C++ returns an integer to the

operating system, the syntax of the main() function in C++ is as

follows:

int main()
{
………….
………….
return 0; // may return 0 or 1
}

Functions Unit 6

137

6.4 COMPONENTS OF A FUNCTION

A C++ function is composed of different parts and each part plays

a unique role in carrying out the operations of a function

successfully. These separate parts of a C++ function operate

individually to carry out the overall task of the function.

The different parts of a C++ function are as follows-

1. Function prototype
2. Function definition
3. Function parameters
4. Function call

6.4.1 FUNCTION PROTOTYPE

One of the most important features of C++ is the function

prototypes. A function prototype tells the compiler the name of the

function, the type of data returned by the function, the number of

parameters the function expects to receive, the types of the

parameters, and the order in which these parameters are

expected. The compiler uses function prototypes to validate

function calls. In C++ all functions must be declared using a

function prototype before they are used. Prototypes enable C++ to

provide stronger type checking. When we use prototypes, the

compiler can find and report any illegal type conversions between

the type of arguments used to call a function and the type definition

of its parameters. The compiler will also catch differences between

the number of arguments used to call a function and the number of

parameters in the function.

The general form of a function prototype is

return_typefunc_name(type param_name);
int main()
{
……
}

Functions Unit 6

138

The use of parameter name is optional. However, they enable the

compiler to identify any type mismatches by name when an error

occurs, so it is a good idea to include them.

6.4.2 FUNCTION DEFINITION

A function definition provides the actual body of the function.

Defining a Function:

The general form of a C++ function definition is as follows:

return_typefunction_name(parameter list)

{

 // body of the function

}

A C++ function definition consists of a function header and a

function body. Here are all the parts of a function:

 Return type: A function may return a value. The

return_type is the data type of the value the function

returns. Some functions perform the desired operations

without returning a value. In this case, the return_type is

the keyword void.

 Function name: This is the actual name of the function.

The function name and the parameter list together

constitute the function signature.

 Parameters: A parameter is like a placeholder. When a

function is invoked, we pass a value to the parameter. This

value is referred to as actual parameter or argument. The

parameter list refers to the type, order, and number of the

parameters of a function. Parameters are optional; that is, a

function may contain no parameters.

 Function body: The function body contains a collection of

statements that define what the function does.

Example:

Functions Unit 6

139

The following example shows how a function max() takes two

parameters num1 and num2 and returns the maximum between

them:

// function returning the max between two numbers
int max(int num1, int num2)
{
 // local variable declaration
int result;
if (num1 > num2)
result = num1;
else
result = num2;
return result;
}

In the above code, the max function holds the value of num1 and

num2 as its arguments. Inside the function, an integer variable

result is declared, and a test is made to find the greater number

among num1 and num2. The number with a greater value gets

stored in the variable result and is returned to the calling

statement that was used to call the max function.

6.4.3 FUNCTION PARAMETERS
A parameter is a special kind of variable, used in a function to refer

to one of the pieces of data provided as input to the function.

These pieces of data are called parameters. An ordered list of

parameters is usually included in the definition of a function, so

that, each time the function is called, its arguments for that call can

be assigned to the corresponding parameters.

The parameters in a C++ function are used to exchange data

between the calling and the called functions. These parameters

that are used in any C++ program using functions can be divided

into two types.

Actual parameters– These parameters are specified in the function

call.

Formal parameters– These parameters are specified in the

function declaration.

Functions Unit 6

140

A parameter cannot be both a formal and an actual parameter, but

both formal parameters and actual parameters can be either value

parameters or variable parameters.

Example-

#include<stdio.h>
int main(void);
int add(int, int, int);
int main()
{
inttotal;
intnum1 = 25;
intnum2 = 32;
intnum3 = 27;
total = add(num1, num2, num3);
printf("Total sum=", bill);
exit (0);
}
intadd(int num1, int num2, int num3)
{
int total;
total = num1 + num2 + num3;
return total;
}

In the function main in the example above, num1, num2, and num3

are all actual parameters when used to call add. On the other

hand, the corresponding variables in add (namely num1, num2 and

num3, respectively) are all formal parameters because they appear

in a function definition.

Although formal parameters are always variables (which does not

mean that they are always variable parameters), actual parameters

do not have to be variables. We can use numbers, expressions, or

even function calls as actual parameters. Here are some examples

of valid actual parameters in the function call to add:

total = add(25, 32, 27);

total = add(50+60, 25*2, 100-75);

6.4.4 FUNCTION CALL

Functions Unit 6

141

We use C++ functions to carry out some specific tasks of that

function. But in order to do so the call to that function has to be

made in order for the function to execute properly providing us the

desired results. A C++ function gets executed only when it is

invoked or called.

The following example demonstrates how a C++ function call is

made.

int sum (int, int); // function prototype
 void main()
 {
 int s;
 ;
 s=sum(3,6); // function call

 }

In the above code, the statement s=sum(3,6); is a function call

statement. When the compiler encounters a function call, the

control is transferred to the function definition. Then the function is

executed line by line as defined in the function definition and when

the return statement is encountered, the resulting value is returned

to the calling function. sum(3,6) function is called and value

returned by this function is assigned to the variables.

 1. Fill in the blanks.

a) The compiler uses function ___________ to validate
function calls.

b) _________ enable C++ to provide stronger type checking.

c) A C++ function gets executed only when it is __________.

d) A function ________ provides the actual body of the

function.

e) The return type is the ____ type of the value the function

returns.

CHECK YOUR PROGRESS

Functions Unit 6

142

6.5 PASSING ARGUMENTS

If a function is to use arguments, it must declare variables that

accept the values of the arguments. These variables are called the

formal parameters of the function. They behave like other local

variables inside the function and are created upon entry into the

function and destroyed upon exit.

As with local variables, we may make assignments to a function’s

formal parameters or use them in an expression. Even though

these variables perform the special task of receiving the value of

the arguments passed to the function, we may use them as we do

any other local variable.

There are two methods by which we can pass values to the

function. These are:

 Call by value
 Call by reference

 Call by value –

This method copies the value of an

argument into the formal parameter of the sub-routine. In this case,

changes made to the parameter have no effect on the argument.

By default, C++ uses call by value to pass arguments. In general,

this means that code within a function cannot alter the arguments

used to call the function. Let us consider the following program.

#include<iostream.h>
#include<conio.h>

 void increase(int);
 void main()
 {
 intnum = 10;
 increase (num);
 cout<<num;
 getch();
 }
 void increase(int no)
 {

Functions Unit 6

143

 no = 15;
 }

The output will be: 10

In the above program we tried to change the value of ‘num’ after

executing the program. ’num’ is passed by value to the function

definition so only a copy of the value of ‘num’ is copied ‘no’. Any

change in the function definition does not affect or change the

original value of ‘num’.

Remember that it is a copy of the value of the argument that is

passed into the function. What occurs inside the function has no

effect on the variable used in the call.

 Call by reference–

This method is the second way of

passing arguments to a function. In this method, the address of an

argument is copied into the parameter. Inside the function, the

address is used to access the actual argument used in the call.

This means that changes made to the parameter affect the

arguments. We can create a call by reference by passing a pointer

to an argument, instead of the argument itself. Since the address

of the argument is passed to the function, code within the function

can change the value of the argument outside the function.

Pointers are passed to functions just like any other value. Of

course we need to declare the parameters as pointer types.

#include<iostream.h>
#include<conio.h>

 void increase(int&);
 void main()
 {
 intnum = 10;
 cout<<"Old value="<<num;
 increase(num);
 cout<<"New value="<<num;
 getch();
 }

void increase(int &no)
 {
 no = no + 5;
 }

The output will be:
 Old value= 10

Functions Unit 6

144

 New value= 15
When the function is called, ‘no’ will become a reference to the

argument. Since a reference to a variable is treated exactly the

same as the variable itself, any changes made to the reference are

passed through to the argument.

6.6 TYPE OF FUNCTIONS

Depending on the arguments and return types of the functions they

are classified into four categories. These are:

1. Function with no arguments and no return values.

2. Function with no arguments but with return values

3. Function with arguments and no return values.

4. Function with arguments and return values.

The type of function that we choose from among these four

categories depends entirely upon the purpose of the function and

the way it has to function and output the values.

1. Function with no arguments and no return values –

This type

of function has no arguments i.e., it does not receive any data from

the calling function. Also the function does not return any value.

i.e., the calling function does not receive any data from the called

function. In other words there is no data transfer between the

calling and the called function. For example, in the following

program we have used a function with no argument and no return

value.
 #include<iostream.h>
 #include<conio.h>
 voidshow();
 void main()
 {
 show();
 getch();
 }
 voidshow()

Functions Unit 6

145

 {
 cout<<“\n Hello World ”;
 }

Output : Hello World

 As the function show() does not return any value, so
the return type is void.

2. Function with no arguments but with return values –
 In this type, the function returns a value to the

calling function but it takes no argument. The following program

illustrates this category:

 #include<iostream.h>
 #include<conio.h>
 int adder(); //function declaration
 void main()
 {
 int s;
 clrscr();
 s=adder();
 printf(“\nThe summation is: %d”,s);
 getch();
 }
 int adder()
 {
 inta,b,s;
 a=10;
 b=10;
 s=a+b;
 return s;
 }

Output: The summation is: 20

As the function adder() is returning a value, so 20 is returned to the

calling function and it is stored in the variable s and this value is

displayed by the main() function.

3. Function with arguments and no return values –

 In this category, the function receives data from the

calling function through arguments, but does not return any value.

The following programillustrates this category.

Functions Unit 6

146

 #include<iostream.h>
 #include<conio.h>
 void check(int); //function declaration
 void main()
 {
 intnum;
 cout<<“\n Enter a number ”;
 cin>>num;
 check(num);
 getch();
 }
 void check(int no) //function definition
 {
 if(no>0)
 cout<<“\n Positive number”;
 else
 cout<<“\n Not a Positive number”;
 }

In the above program, the number input is passed as argument to

the function. The number is checked in the function definition part

and displayed by the function check().

4. Function with arguments and return values –
In this category,

the function accepts data from the calling function through

arguments and after performing the required operations returns the

resulting value back to the calling function.

In the example below, the function check_positive() accepts a

number from the user and returns 1 if the number is positive

otherwise it returns 0. The returned value is checked in the main()

function, and an appropriate message is displayed.

 #include<iostream.h>
 #include<conio.h>
 intcheck_positive(int); //function declaration
 void main()
 {
 intnum,status;
 cout<<“\n Enter a number ”;
 cin>>num;
 status = check_positive(num);
 if(status>0)
 cout<<“\nPositive number”;
 else
 cout<<“\nNot a Positive number”;
 getch();

Functions Unit 6

147

 }
 intcheck_positive(int no)
 {
 if(no>0)
 return 1;
 else
 return 0;
 }

The value returned by check_positive is stored in the variable
status.The value will be either 1 or 0 depending upon the
number that is input.

6.7 INLINE FUNCTIONS

A function call involves substantial overhead. Extra time and space

have to be used to invoke the function, pass parameters to it,

allocate storage for its local variables, store the current variables

and the location of execution in the main program, etc. In some

cases, it is better to avoid all this by specifying the function to be

inline. This tells the compiler to replace each call to the function

with explicit code for the function. To the programmer, an inline

function appears the same as an ordinary function, except for the

use of the inline specifier.

The following program demonstrates the use of inline function:

#include<iostream.h>
#include<conio.h>
inline float area(float x)
{
 return x*x;
}
void main()
{
 float a;
 clrscr();
 cout<<"Enter length of a side of square (in
cm):";
 cin>>a;
 cout<<"\n Area of the square
:"<<area(a)<<“cm2”;
 getch();
}

In the main() function, the statement

Functions Unit 6

148

cout<<"\n Area of the square :"<<area(a)<<“cm2”;

invokes the inline function inline float area(float x). The

body of the function is replaced at the point of its call. In this

mechanism the execution time of the function area(float x) is

less than the time required to establish a linkage between the

caller (calling function) and callee (called function).

Even if the calling function is very large,the compiler copies the

content of the inline function in the called function which reduces

the program execution speed. So, in such a case inline function

should not be used.

6.8 FUNCTION OVERLOADING

One way that C++ achieves polymorphism is through the use of

function overloading. In C++, two or more functions can share the

same name as long as their parameter declarations are different.

In this situation the functions that share the same name are said to

be overloaded, and the process is referred to as function

overloading. In general, to overload a function, we simply declare

different versions of it. The compiler takes care of the rest. We

need to observe one important restriction when overloading a

function, which is that the type and/or number of the parameters of

each overloaded function must differ. It is not sufficient for two

functions to differ only in their return types. They must differ in the

types or number of their parameters. (return types do not provide

sufficient information in all cases for the compiler to decide which

function to use.) Of course, overloaded functions may differ in their

returns types too.

The following program illustrates function overloading.

#include<iostream.h>
#include<conio.h>
#define pi 3.142
float area(float x); // function prototype
float area(float len, float bth);
float area(double radius);
void main()

Functions Unit 6

149

{
 floata,m,n,p;
 clrscr();
 cout<<"Enter length of a side of square :";
 cin>>a;
 cout<<"\n Area of the square :"<<area(a);
 cout<<"\n Enter length and breadth of
rectangle :";
 cin>>m>>n;
 cout<<"\n Area of rectangle :"<<area(m,n);
 cout<<"\n Enter radius of circle :";
 cin>>p;
 cout<<"\n Area of circle :"<<area(p);
 getch();
}
float area(float x)
 {
 return x*x;
 }
float area(float len, float bth)
 {
 return(len * bth);
 }
float area(double radius)
 {
 return(pi*radius*radius);
 }

RUN :
 Enter length of a side of square: 1.25
 Area of the square: 1.5625
 Enter length and breadth of rectangle: 5.3 2.6
 Area of rectangle: 13.78
 Enter radius of circle: 5.256
 Area of circle : 27.625536

In the above program, we have used three different functions:
 float area(float x);
 float area(float len, float bth);
 float area(double radius);
performing the same task, but with different data types. Here the

function area() is overloaded. It is used for finding the area of

square, rectangle and circle.

Functions Unit 6

150

2. Fill in the blanks:

a) The ________ in a C++ function are used to exchange
data between the calling and the called functions.

b) ________ parameters are specified in the function call.

c) ________ parameters are specified in the function

declaration.

d) By default, C++ uses __________ to pass arguments.

e) In ___________ changes made to the parameter affect

the arguments.

f) Depending on the ________ and return types of the

functions they are classified into ____ categories.

g) An _______ function appears the same as an ordinary

function, except for the use of the ______ specifier.

h) In C++, two or more ________ can share the same

name as long as their _________ declarations are
different.

6.9 LET US SUM UP

 Every C++ program requires a function named main().

 A C++ function is composed of different parts and each part

plays a unique role in carrying out the operations of a

function successfully.

 A function prototype tells the compiler the name of the

function, the data type returned by the function, the number

of parameters, the types of the parameters, and the order

in which these parameters are expected.

CHECK YOUR PROGRESS

Functions Unit 6

151

 A C++ function definition consists of a function header and
a function body.

 Parameters are optional; that is, a function may contain no
parameters.

 A parameter is a special kind of variable, used in a function
to refer to one of the pieces of data provided as input to the
function.

 Call by value copies the value of an argument into the
formal parameter of the sub-routine.

 In Call by reference, the address of an argument is copied
into the parameter.

 An inline function replaces each call to the function with
explicit code for the function.

 C++ achieves polymorphism is through the use of function

overloading.

1.

(a) Prototypes
(b) Prototypes
(c) Invoked
(d) Definition
(e) Data

2.
(a)parameters
(b) Actual
(c) Formal
(d) Call by value
(e) call by reference
(f) arguments, four
(g) inline, inline
(h) functions, parameter

6.10 ANSWERS TO CHECK YOUR
 PROGRESS

Functions Unit 6

152

 6.11 FURTHER READINGS

Programming with C++, Second Edition
- John R. Hubbard

Tata McGraw-Hill Edition
C++ The Complete Reference
- Herbert Schildt

Tata McGraw-Hill Edition

1. Describe the main() function of C++.

2. What is a C++ function?

3. How do we make function calls in C++?

4. Differentiate between actual and formal parameters in C++

with an example.

5. Explain giving an example the difference between call by

value and call by reference.

6. How many types of C++ function are there?

7. What are inline functions? What is their use?

8. Explain with an example the way a function can be

overloaded in C++.

9. Write a program to check the trigonometry cos2x=

2cos2x-1.

6.12 MODEL QUESTIONS

Functions Unit 6

153

10. Write and test the following power() function that returns

x raised to the power n, where n can be any integer:
double power (double x, int p);

11. Write and test the following min function that returns the

smallest of four given integers. int min(int, int,
int, int);

12. Write a C++ program to output the following Pascal’s

Triangle.
 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
 1 5 10 10 5 1
 1 6 15 20 15 6 1
 1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

152 Object-Oriented Programming Through C++ (Block-2)

Unit-7

UNIT-7 : INTRODUCTION TO CLASSES AND
OBJECT

UNIT STRUCTURE

7.1 Learning Objective
7.2 Introduction
7.3 Classes in C++
7.4 Class Declaration

7.4.1 Access Control in Class
7.5 Declaring Objects

7.5.1 Accessing Class Members
7.6 Defining Member Functions

7.6.1 Member Function inside a Class
7.6.2 Member Function outside a Class

7.7 Inline Member Function
7.8 Array of Objects
7.9 Objects as Function Argument

7.9.1 Pass by Value
7.9.2 Pass by Reference
7.9.3 Pass by Pointer

7.10 Friend Function and Friend Class
7.11 Static Data Member and Member Function
7.12 Let Us Sum Up
7.13 Answers to Check Your Progress
7.14 Further Readings
7.15 Model Questions

7.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 learn about Class in C++

 identify basic components of a class

 declare a class and create objects

 define member function of a class

153Object-Oriented Programming Through C++ (Block-2)

Introduction to Classes and Object

 describe array of Objects

 illustrate objects as function arguments

7.2 INTRODUCTION

So far, we have learnt that C ++ lets you to create variables which can be
of a range of basic data types : int, long, double and so on. However, the
variables of the basic type do not allow you to model real –world objects
(or even imaginary objects) adequately. We come to know that the basic
theme of the object oriented approach is to model the real –world problems.
So, object oriented programming language C++ introduces a new data
type called class by which you can define your own data types as class.
Defining the variables of a class data type is known as a class instantiation
and such variables are called objects. In this unit, we will introduce you
how to declare a class and how to create objects of a class.We will also
discuss how a member function declare inside a class or outside a class
and how it can be accessed. Moreover, the techniques of passing objects
as function arguments are also illustrated in this unit.

7.3 CLASSES IN C++

We are already familiar with the term encapsulation which is a fundamental
feature of OOP. The encapsulation is nothing but a mechanism that binds
together the data and functions into a single component, and keeps both
safe from outside interference and misuse.

The data cannot accessible by outside functions. With encapsulation data
hiding can be accomplished.

In C++, the encapsulation is supported by a construct called- “class”. First,
let us think a bit about-what is an object . From the general concept, we
can say that an object is something that has fixed shape or well defined
boundary. In other words, an object can be a person, a place, or a thing
with which the computer must deal. If you look at your surroundings some

154 Object-Oriented Programming Through C++ (Block-2)

Unit-7Introduction to Classes and Object

objects may correspond, to real-world entities such as– student, bank
account, book, cars, bags, computer, lock, watch etc. You will observe two
characteristics about objects–

firstly – each objects has certain attributes.

secondly – each objects has some behavioers or actions or operations
associated with it.

For example, the object ‘computer’ & ‘car’ has the following attributes and
operations–

Object : car

Attributes: company, model, colour, & capacity

Operation: speed (), average (), & break ()

Object: Computer

Attributes: brand, price, monitor resolution, hard disk and RAM size

Operation: Processing(), display() & printing ()

Each object will have its own identity though its attributes and operation
are some, the objects will never become equal. In cash of person object
for instance, two person have the same attributes like name, age and sex,
but they are not equal. Objects are the basic run time entities in an object
– orieated system. Thus, in C++, an object is a collection of related variables
and function bound together to form a high level entity.

The variable defines – the state of the object

and functions defines – the action or operation that can be performed on
the object.

Now, let us come back to the discussion of class.

A class is a grouping of objects having identical attributes and common
behaviour (operations). It means all objects possessing similar attributes
or properties are grouped into the same unit, which is called a class. A
class encloses both the data and function into a single unit as shown in the
following fig.7.1.

155Object-Oriented Programming Through C++ (Block-2)

Class
Data

data 1

data 2

data 3

Functions

Func 1 ()

Func 2 ()

Func 3 ()

Fig. 7.1 Grouping of data and function in a class

Thus, the entire group of data and code of an object can be built as a user-
defend data type using class. It is obvious that classes, are the basic
language construct in C++ for creating the user defined data types. Once
a class have been declared, the programmer can create a number of objects
associated with that class. Objects are nothing but the variable of the class
data type. Defining variables of a class data type is known as a class
instantiation. The syntax used to create an object of the class data type is
similar to the syntax used to create an integer variable in C. In the next
section, we will learn how to declare a class and an object.

7.4 CLASS DECLARATION

We come to know that – classes contain not only data but also functions.
Data and functions within a class are called members of a class. The data
inside a class is called a data member and the functions are called member
function. The member functions define the set of operations that can be
performed on the data member of a class. The syntax of a class declaration
is shown below—

Introduction to Classes and ObjectUnit-7

156 Object-Oriented Programming Through C++ (Block-2)

Unit-7

 Keyword Name of the class

class <Class Name>
{
private :

data member;
member function;

public:
data member;
member function;

};

The keyword ‘class’ indicates the name which follows class name, is an
abstract data type. The declaration of a class is enclosed with curly braces
and terminated by a semi-colon. The body of a class contains declaration
of data members and member functions.

The members of a class are usually grouped in two sections i.e. private
and public, which defines the visibility of members.

The following declaration illustrates a class specification:
class employee

{
Private :

char name[30];
float age;

Public :
void insert_data (void);
void show_data (void);

};

A class name should be meaningful, reflecting the information it holds.
Here in our example, the class ‘employee‘ contains two data members and
two member functions. The member function insert_data() is used to assign
value to the member variable or data member ‘name’ and ‘age’. The member
function show_data() is used to display the values of the data members.

Introduction to Classes and Object

157Object-Oriented Programming Through C++ (Block-2)

The data member of the class employee cannot be accessed by any other
functions that are defined outside the class. It means only the member
functions of a class are permitted to access its data members.

In general, the data members are declared as private and member functions
are declared as public. In our example, though we have not specify the
data members as private yet they are treated as private by default.

The following figures represent the class ‘employee’.

insert_data ()

char name [30]

float age

insert_data ()

show_data ()

show_data ()

Fig. 7.2 Representation of ‘employee’ class

7.4.1 ACCESS CONTROL IN A CLASS

The members of a class are generally grouped into three sections
by using the following keyword–

 private

 public

 protected

These keywords are called access control specifiers. These control
specifiers are written inside the class and terminated by this ‘:’ symbol.
All the members that follow a keyword (upto another keyword) belong
to that type. If no keyword is specified, then the members are assumed

private: name [30]
age

Introduction to Classes and ObjectUnit-7

158 Object-Oriented Programming Through C++ (Block-2)

Unit-7Introduction to Classes and Object

as private member. We will discuss later about the protected keyword.
Let us now briefly discuss about private and public keywords.

Private: Private members are accessible to their own class members
only. They cannot be accessed from outside the class by any member
functions. The members at the beginning of class without any access
specifier are private by default. Hence, writing the keyword ‘private’
at the beginning of a class is optional.

Public: Public members are visible (accessible) outside the class,
they should be declarleld in public section. All data members are not
only accessible to their own members of a class but also can be
accessible from anywhere in the program, either by functions that
belong to the class or by those external to the class.

7.5 DECLARING OBJECTS

A class declaration only builds the structure of objects. In our example, the
class employee does not define any objects of employee but only specifies
what it will contain. Once a class has been declared, we can create variable
of that type by using the class name (like any other built-in type variable).
The process of creating objects (variables) of the class is called class
instantiation. For example–

int x, y, z; // declaration of integer variables

float m, n; // declaration of float variables

employee a; // declaration of object or class variable

The syntax for creating objects are shown below :

Keyword Name of user defined class Name of user defined objects

class classname object name, ……

Remember, the use of the keyword ‘class’ is optional at the time creating
objects.

159Object-Oriented Programming Through C++ (Block-2)

For example, class employee e1,
or

employee e1;

In a single statement we can create more than one objects as follows :

employee e1, e2, e3, e4;

Like in the case of structures, we can create objects by placing their names
immediately just after the closing braces as follows –

class employee
{

// body of the class

} e1, e2, e3;

This practice is rarely followed because we would like to define the objects
as and when required, or at the point of their use.

Always remember that, at the time of declaration of object, necessary
memory space is allocated for an object. Suppose, we have declared two
objects as –

employee e1, e2;

Both e1 and e2 have the same data members and it is illustrated by the
following figure.

e1 e2

name age name age

30 bytes 4 bytes 30 bytes 4 bytes

Fig. 7.3 Allocation of memory for objects

Here, in the figure the objects e1 and e2 occupies the memory area. They
are not initialized to anything, however the data members of each object
will simply contains junk values. So, our main task is to access the data
members of the object and setting them to some specific values.

Introduction to Classes and ObjectUnit-7

160 Object-Oriented Programming Through C++ (Block-2)

Unit-7

An object is a conceptual entity having the following properties:

- it is individual

- it points to a thing, either physical or logical that is identifiable by the
user.

- it holds data as well as operation method that handles data.

- its scope is limited to the block in which it is defined.

7.5.1 ACCESSING CLASS MEMBERS

After creating an object of a class, it is the time to access its members.
This is the achieved by using the member access operator, dot (.).
The syntax for accessing members (data and functions) of a class is
shown below–

dot operator

Name of user defined object Data member of a class

Object Name . Data Member

(a) Accessing data member of a class

Name of user Name of member Arguments to the
defined object function function

Object Name . Function Name (Actual Arguments)

(b) Accessing member function of a class

The following program demonstrates how the objects are used for accessing
the class data members.

Introduction to Classes and Object

161Object-Oriented Programming Through C++ (Block-2)

//Program 7.1
include <iostream.h>

include <string.h>

include <conio.h>

class employee

{

private:

char name [30]; // name of an employee

float age; // age of an employee

public : // initializing data members

void insert_data (char * name1, float age)

{ strcpy (name, name1);

age = age1;

}

void show_data () //displaying the data members

{

cout << “Name :”<<name<<endl;

cout << “Age :”<<age<<endl;

}

};

void main ()

{

employee e1; //first object of class employee

employee e2; //second object of class employee

clrscr();

e1.insert_data (”Hemanga”, 30); // e1 calls member insert_data ()

e2.insert_data (”Prakash”, 32); // e2 calls member insert_data ()

 cout << “Employee Details:”<<endl;

e1.show_data (); // e2 calls member show_data ()

e2.show_data (); // e2 calls member show_data ()

getch ();

}

Introduction to Classes and ObjectUnit-7

162 Object-Oriented Programming Through C++ (Block-2)

Unit-7

RUN : Employee Details:
Name : Hemanga
Age : 30
Name : Prakash
Age : 32

In the above program, in main() we have declared two objects through the
statements

employee e1; and employee e2;

The statements

e1.insert_data (“Hemanga”, 30);

e2.insert_data (“Prakash”, 32);

initialize the data members of object e1 and e2. The object e1’s data member
‘name’ is assigned ‘Hemanga’ and age is assigned 30. Similarly, the object
e2’s data member ‘name’ is assigned ‘Prakash’ and age is assigned 32.

The statements

e1.show_data ();

e2.show_data ();

call their member show_data () to display the contents of data members
namely, ‘name’ and ‘age’ of employee objects e1 and e2. The two objects
e1 and e2 will hold different data values.

CHECK YOUR PROGRESS - 1

1. Answer the following by selecting the appropriate option:

a) The members of a class are by default.
(i) Private (ii) Public

(iii) Protected (iv) None of these

b) The private data of any class is accessed by -
(i) Only public member function
(ii) Only private member function
(iii) Boths (i) & (ii) (iv) None of these

Introduction to Classes and Object

163Object-Oriented Programming Through C++ (Block-2)

c) Encapsulation means
(i) Protecting data (ii) Allowing global access

(iii) Data hiding (iv) Both (i) & (iii)

d) The size of object is equal to
(i) Total size of member data variables
(ii) Total size of member functions
(iii) Both (i) & (ii) (iv) None of these

e) In a class, only member function can access data which is
not accessible to out side. This feature is called

(i) data security (ii) data hiding
(iii) data manipulation (iv) data definition

7.6 DEFINING MEMBER FUNCTIONS

We have already come to know that–a class holds both the data and
functions which are called data members and member functions. The data
member of a class must be declared within the body of the class. The
member functions of a class can be defined in two place–

o inside the class definition

o outside the class definition

It is obvious that– a function should perform the same task, no matter
where it is defined. But the syntax of a member function definition changes
depending on the place of its definition, i.e. inside a class or outside a
class. We will now discuss both the approaches.

7.6.1 MEMBER FUNCTION INSIDE A CLASS

In this method, the function is defined inside the class body. When a
function is defined inside a class, it is treated as an inline function.
We will discuss inline function in the next section.

Introduction to Classes and ObjectUnit-7

164 Object-Oriented Programming Through C++ (Block-2)

Unit-7

In the program 9.1 we have defined the member functions–

void insert_data (char * name1, float age);

and

void show_data ();

inside the class ‘employee’. We have seen that these function
definition are similar to the normal function definition except that they
are enclosed within the body of a class. They will treat as an inline
function. Remember that if a function contains loop instruction i.e.
for, while do, while ...etc. then that function will not treated as inline
function.

7.6.2 MEMBER FUNCTION OUTSIDE A CLASS

In this method of defining a member function outside a class - first
you will have to declare a function prototype within the body of the
class and then define the function outside the body of the class.

The function defined outside the body of a class have the same syntax
as normal functions i.e. they should have a function header and a
function body. But, there must have a mechanism of binding the
functions to the class to which they belong. This is done by using the
scope resolution operation (: :), in the header of the function. The
scope resolution operator acts as an ‘identity-label’ and tells the
compiler, the class to which the function belongs. The general form
of a member function definition is shown below–

ClassName

{
............

ReturnType MemberFunction (arguments); // Function Prototype

............

............

} ;

Introduction to Classes and Object

165Object-Oriented Programming Through C++ (Block-2)

Return Type ClassName : : MemberFunction (arguments)

{
// body of the function

}

Here, the label ClassName : : tells the compiler that the function
MemberFunction is the member of class ClassName. The scope
of the function is restricted to only the objects and other members of
the class. We can modify the Program 7.1 by defining the member
functions outside the class body, as shown below:

//Program 7.2

#include<iostream.h>
#include<string.h>
#include<conio.h>
class employee

{
private:

Char name [30];
float age;

public:
void insert_data (char *name1, float age1);
void show_data ();

} ;

void employee : : insert_data (char *name1, float age1)
// Function declaration

{
strcpy (name, name1);
age = age1;

}

void employee : : show_data () // Function definition

{
cout <<“Name :”<<name<<endl;
cout <<“Age:”<<age<<endl;

}

Introduction to Classes and ObjectUnit-7

166 Object-Oriented Programming Through C++ (Block-2)

Unit-7

void main ()
{

employee e1, e2;
clrscr();
e1 . insert_data (“Hemanga”, 30);
e2 . insert_data (“Prakash”, 32);
cout<<“EMPLOYEE DETAILS....”<<endl;
e1 . show_data ();
e2 . show_data ();
getch ();

}

RUN : EMPLOYEE DETAILS:

Name : Hemanga
Age : 30
Name : Prakash
Age : 32

In the above definitions, the label ‘employee : :’ informs the compiler
that the functions insert_data () and show_data () are the members
of the employee class.

The member functions have some special characteristics that are–

o A program can have several different classes and they can use
same name for different member functions. The ‘membership label’
(ClassName : :) resolves the ambiguity of the compiler in deciding
which function belong’ to which class.

o Member functions can access the private data of the class,
whereas non-member functions are not allowed to access. But
‘friend function’ can access the private data member of a class
we will discuss later about the friend functions.

o Member functions of the same class can access all other members
of their own class without the use of dot operator.

Introduction to Classes and Object

167Object-Oriented Programming Through C++ (Block-2)

7.7 INLINE MEMBER FUNCTION

Let us first see what is an inline function. C++ provides a mechanism called
inline function. When a function is declared as inline, function body is
inserted in place of function call during compilation. In this mechanism,
passing of control between caller and callee functions is avoided. The use
of the inline function is most effective when calling function is small. If the
calling function is very large, in such a case also, compiler copies the
content of the inline function in called function which reduces the program
execution speed. So, in such a case inline function should not be used.

Now, let us see how an inline function behave with class specification. We
have come to know that we can define a member function outside the
class definition. The same member function can be define as inline function
by just using the qualifier inline in the header line of the function defining.
In the followng, the syntax for defining inline function outside the class
declaration is shown -

Keyword indicates function defined outside a class body is inline

inline ReturnType ClassName : : FunctionName (arguments)

In fact, the inline mechanism reduces overhead relating to accessing the
member function. It provides better efficiency and allows quick execution
of functions. An inline member function is treated like a macro i.e. any call
to this function in a program is replaced by the function itself. This is known
as inline expansion. Inline functions are also called as open subroutines
because their code is replaced at the place of function call in the caller
function. The normal functions are known as closed subroutines because
when such functions are called, the control passes to the function. By
default, all member functions defined inside the class are inline function.

We can modify the program 7.1 by defining the member functions as inline
function as shown below:

Introduction to Classes and ObjectUnit-7

168 Object-Oriented Programming Through C++ (Block-2)

Unit-7

// Program 7.3
#include<iostream.h>

#include<string.h>

#include<conio.h>

class employee
{

private:
char name [30];
float age;

public :
void insert_data (char *name1, float age1);
void show_data ();

} ;

inline void employee : : insert_data (char *name1, float age)
{

strcpy (name, name1);
age = age1;
}

inline void employee : : show_data ()
{

cout <<“Name :”<<name <<endl;
cout <<“Age:” <<age <<endl;

}

void main ()
{

employee e1, e2;

clrscr();

e1 . insert_data (“Hemanga”, 30);

e2 . insert_data (“Prakash”, 32);

cout << “Employee Details ..” << endl;

e1 . show_data ();

e2 . show _data ();

getch ();
}

Introduction to Classes and Object

169Object-Oriented Programming Through C++ (Block-2)

RUN : Employee Details–

Name : Hemanga
Age : 30
Name : Prakash
Age : 32

7.8 ARRAY OF OBJECTS

We know that arrays holds data of similar type. Arrays can be of any data
type including user defined data type, created by using struct, class etc.
We can create an array of variables by using class data type. Such an
array of variables of class data type is also known as an array of objects
which handle a group of objects.

Let us consider the following class definition :

class employee

{

private :

char name [30]

float age ;

Public :

void insert_data (char* name1, float age1);

void show_data ();

};

Here, the identifier ‘employee’ is a user defined data type and can be used
to create objects that relate to different categories of employees. For
example, the following definition will creates an array of objects of ‘employee’
class–

employee consultant [30]; // array of cosultant

employee clerk [15]; // array of clerk

employee lecturer [20]; // array of lecturer

Introduction to Classes and ObjectUnit-7

170 Object-Oriented Programming Through C++ (Block-2)

Unit-7

The array consultant contain 30 objects (consultant), namely, consultant
[0], consultant [1], consultant [29], of type employee class. Similarly,
clerk array contains 15 objects and lecturer array contains 20 objects.

We know that, array elements occupies continuous memory locations like
the same way array of objects occupies contiguous memory locations as
shown in the following fig:

name

age
consultant [0]

name

age
consultant [1]

name

age
consultant [2]

name
age consultant [29]

Fig.7.4 Stoage of data items in ‘consultant’ array of objects.

By using index an individual element of an array of objects can be referred
i.e. consultant [15], consultant [9] etc. By using the dot operator [.]
we can access any member of an object. For example

consultant [30] . show_data ()

will display the data of 30th consultant.

We can rewrite the program 7.1 by using array of objects as shown below:

// Program 7.4

#include<iostream.h>
#include<string.h>
#include<conio.h>
class employee

Introduction to Classes and Object

171Object-Oriented Programming Through C++ (Block-2)

{
private:

char name [30];
float age;

public:
void insert_data (char *name1, float age)

{
strcpy (name, name1);
age = age1;

}
void show_data ()

{
cout<<“Name:”<<name<<endl;
cout<<“Age:”<<age<<endl;

}
} ;

void main ()
{

int i, age, count;

char name [30], tag;

employee consultant [30];

clrscr ();

count = 0;

for (i=0; i<30; i++)
{

cout<<“Enter Data For Employee (Y/N):”;

cin >> tag;

if (tag = = ‘y’ || tag = = ‘Y’)
{

cout <<“\n Enter Name of Employee:”;

cin >> name;

cout << “Age:”;

cin >> age;

consultant [i] . insert_data (name, age);

count ++;

Introduction to Classes and ObjectUnit-7

172 Object-Oriented Programming Through C++ (Block-2)

Unit-7

}
else

break;
}

cout <<“\n\n Employee Details\n” ;
for (i=0; i < count; i ++)
consultant [i] . show_data ();
getch ();

}

RUN : Enter Data for Employee (Y/N) : y
Enter Name of Employee : Prakash
Age : 30

Enter Data for Employee (Y/N) : y
Enter Name of Employee : Hemanga
Age : 28
Enter Data for Employee (Y/N) : n

Employee Details...
Name : Prakash
Age : 30
Name : Hemanga
Age : 28

7.9 OBJECTS AS FUNCTION ARGUMENTS

Objects can be passed as an argument to a function. There are three ways
of passing objects as function arguments:

o a copy of the entire object is passed to the function, which is also
called pass-by-value

o only the address of the object is sent implicitly to the function, which
is also called – pass by-reference.

o the address of the object is sent explicitly to the function, which is
also called – pass-by-pointer.

Introduction to Classes and Object

173Object-Oriented Programming Through C++ (Block-2)

7.9.1 PASS-BY-VALUE

In this technique, a copy of the object is passed to the called funciton
(callee) from the calling function (caller). Since a copy of the object
is passed so any changes made to the object inside the called function
do not affect in the object used to call the funciton.

The following program demonstrates the use of objects as function
arguments in pass-by-value mechanism.

//Program 7.5

#include<iostream.h>

#include<conio.h>

class age
{

private:
int birthyr ;
int presentyr ;
int year ;

public:
void getdata ();
void period (age);

};

void age : : getdata ()
{

cout<<“ \ n Year of Birth:”;
cin >> birthyr ;
cout << “Current year:” ;
cin >> presentyr ;

}

void age : : period (age x1)
{

year = x1 . presentyr - x1 . birthyr ;
cout << “Your Present Age :” <<year<<“Years” ;

}

Introduction to Classes and ObjectUnit-7

174 Object-Oriented Programming Through C++ (Block-2)

Unit-7

void main ()
{

clrscr ();
age a1 ;
a1 . getdata ();
a1 . period (a1) ;
getch ();

}

RUN: Year of Birth : 1990
Current Year : 2002
Your Present Age : 19 years

In the above program, the class age has three data member. The
function getdata () reads integers through keyboard. The function
period () calculates the difference between the two integers. In
function main (), a1 is an object to the class age. The object a1 calls
the function getdata (). The same object a1 is passed to the function
period (), which calculates the difference between the two integers.
Thus, an object can be passed to a function.

7.9.2 PASS-BY-REFERENCE

In this technique, only the address of the object is sent to the function.
When an address of the object is passed, the address acts as
reference pointer to the actual object in the calling funciton. Therefore,
any change made to the objects inside the called function will reflect
in the actual object in the calling funciton. We can modify the program
7.5 by using the pass by reference mechanism -

// Program 7.6

#include<iostream.h>

#include<conio.h>

class age

Introduction to Classes and Object

175Object-Oriented Programming Through C++ (Block-2)

{
private:

int birthyr ;
int presentyr ;
int year ;

public:
void getdata ();
void period (age);

};

void age : : getdata ()
{

cout<<“ Year of Birth:”;
cin >> birthyr ;
cout << “Current year:” ;
cin >> presentyr ;

}

void age : : period (age & x1)

{
x1. year = x1 . presentyr - x1 . birthyr ;
cout << “Your Present Age :” <<year<<“Years” ;

}

void main ()
{

clrscr ();
age a1 ;
a1 . getdata ();
a1 . period (a1) ;
getch ();

}

RUN : Year of Birth : 1990

Current Year : 2009

Your Present Age : 19 years

Introduction to Classes and ObjectUnit-7

176 Object-Oriented Programming Through C++ (Block-2)

Unit-7

7.9.3 PASS-BY-POINTER

In this mechanism also, the address of the object is passed explicitly
to the called function from the calling function. The program 7.6 is
modified by using the mechanism pass-by-pointer as follows:

//Program 7.7
#include<iostream.h>
#include<conio.h>
class age

{
private:

int birthyr ;
int presentyr ;
int year ;

public:
void getdata ();
void period (age *);

};

void age : : getdata ()
{

cout<<“ \n Year of Birth:”;
cin >> birthyr ;
cout << “current year:” ;
cin >> presentyr ;

}

void age : : period (age * x1)
{

year = x1 presentyr - x1 birthyr ;
cout << “Your Present Age :” <<year<<“Years” ;

}
void main ()

{
clrscr ();
age a1 ;

Introduction to Classes and Object

177Object-Oriented Programming Through C++ (Block-2)

a1 . getdata ();
a1 . period (&a1) ;
getch ();

}

RUN: Year of Birth : 1990
Current Year : 2009
Your Present Age : 19 years

In the programs 7.6 & 7.7 you just keep an eye on the symbols ‘.’, ‘ ’, ‘*’,
‘&’, and the statements(bold lines) where we have appropriately used them.

7.10 FRIEND FUNCITON AND FRIEND CLASS

We have already discusse about the fact that the private members of a
class cannot be accessible from the outside of the class, only the member
funcitons of that class have permission for accessing the private members.
This policy enforces the encapsilation and data hiding techniques.

Let us think about a situation where a user need a funciton to operate on
objects of two different classes. It means, that function will be allowed to
access the private data of both the classes. In C++, this situation is over
come by using the concept of friend function. It permits a friend function to
access the different class’s private members.

The declaration of a friend function must be prefixed by the keyword “friend”.
In the following class, shows a declaration of a friend function.

class test

{

private:

public :

Introduction to Classes and ObjectUnit-7

178 Object-Oriented Programming Through C++ (Block-2)

Unit-7

friend void sum() ;

};

The function can be defined any where in the program similar to any normal
C++ function. The function definition does not use either the keyword friend
or the scope operator ‘: :’. The functions that are declared with the keyword
‘friend’ are called friend functions. A friend function can be a friend to a
multiple classes. The friend function have the following properties :

o There is no scope restriction for the friend function; hence they can
be called directly without using objects.

o Unlike member functions of class, friend function cannot access the
members directly. On the other hand, it uses object and dot operator
to access the private and public member variables of the class.

o Use of friend function is rarely done, because it violates the rule of
encapsulation and data hiding.

o The function can be declared in public or private sections without
changing its meaning.

The following program demonstrates the use of friend function:

// Program 7.8

#include<iostream.h>

#include<conio.h>

class first ; /*forward declaration like function Prototype*/

class second
{

int x ;
public :
void get value ()

{
cout << “\n Enter a number :” ;
cin >> x ;

}

Introduction to Classes and Object

179Object-Oriented Programming Through C++ (Block-2)

friend void sum (second , first) ; // declaration of friend dunction

} ;
class first

{
int y ;
public :
void getvalue ()

{
cout << “\n Enter a number:” ;
cin >> y ;

}
friend void sum (second, first) ;

} ;
void sum (second m, first n)
{
cout << “\n Sum of two numbers :” << n.y + m.x
}

void main()
{

clrscr ();
first a ;
second b ;
a. get value () ;
b. get value () ;
sum (b, a), //funciton is called like a general function in C++

}

RUN : Enter a number : 9
Enter a number : 12
Sum of two numbers : 21

In the above program each of the two classes ‘first’ and ‘second’ has a
member function named getvalue () and one private data member. Notice
that, the function sum () is declared as friend function in both the class.
Hence, this function has the ability to access the members of both the
classes. Using sum () function, addition of integers is calculated and
displayed.

Introduction to Classes and ObjectUnit-7

180 Object-Oriented Programming Through C++ (Block-2)

Unit-7

It is possible to declare all the member functions of a class as the friend
functions of another class. When all the functions need to access another
class in such a situation we can declare an entire class as friend class.
Always remember friendship is not exchangeable, its meaning is that -
declaring class A to be a friend of class B does not mean that class B is
also a friend of class A. The declaration of a friend class as follows:

class second
{

friend class first;

}; /* all member functions of class first are friends to
 class second */

The following program demonstrates the use of friend class :

//Program 7.9
#include<iostream.h>

#include<conio.h>

class smallvalue;

class value
{

int a;
int b;
public:
value (int i, int j) // declaration of constructor with arguments

{
a = i;
b = j;

}

friend class smallvalue;
};

class smallvalue
{

public:

Introduction to Classes and Object

181Object-Oriented Programming Through C++ (Block-2)

int minimum(value x)
{

return x.a < x.b ? x.a : x.b;
}

};
void main ()

{
value x (15, 25);
clrscr () ;
smallvalue y;
cout << y. minimum(x);
getch ();

}

In the above program we have used the constructor with arguments. The
concept of constructors are illustrated in unit 8 ‘Constructors and
Destructors’.

CHECK YOUR PROGRESS - 2

1. Fill in the blanks of the following :

(i) Member functions defined within the class definition are
implicity ___.

(ii) When only the address of the object is sent explicity, it is
called ____

(iii) ____ function can access the private data members of a
class.

2. State whether the following statements are true or false:

(a) To reference an object using a pointer to object, uses the<>
operator.

(b) In the prototype void sum (int &) arguments are passed by
reference.

(c) If class A is a friend class of class B then a member function
of class B can access the data members of class A.

Introduction to Classes and ObjectUnit-7

182 Object-Oriented Programming Through C++ (Block-2)

Unit-7

7.11 STATIC DATA MEMBER AND MEMBER
FUNCTON

After studying public and private members, let us study about the static
members of a class. Recall what we have learn from C-Programming:

(i) A variable can be declared as static inside a function or outside
main().

(ii) Static variables value do not disappear when function is no longer
active, their last updated value always persist. That is when the control
come back to the same function again the static variables have the
same value as they leave at the last time.

in C++ also. However, C++ has objects. Hence, the meaning of static with
respect to member variables of an object is different.

We have already gained the idea is that each object has its separate set of
data member variable in memory. The member functions are created only
once and all object share the function. No separate copy of function of
each object is created in the memory like data member variables. The
following fig. shows the accessing of member function by objects.

Object A Object B

Variable 1 Variable 1

Variable 2 Variable 2

Variable n Variable n

fun A ()

fun B ()

fun C ()

Object C Object D

Variable 1 Variable 1

Variable 2 Variable 2

Variable n Variable n

Introduction to Classes and Object

183Object-Oriented Programming Through C++ (Block-2)

Fig. 7.5 Data members and member functions in memory
In C++, it is possible to create common member variables like function
using the static keyword. Once a data member variable is declared as
static, only one copy of the member is created for the whole class and that
all objects of the class will share that variable.
Always remember–

o A static variable preserve the value of a variable.

o When a variable is declared as static it is initialize to zero.

o A static data member or member function is only recognized inside
the scope of the present class.

o A static variable can be a public or private.

The syntax for declaring static data member or member function within a
class is shown below:

static <variable name> ;
static <function name> ;

When you declare a static data member within a class, you are not defining
it i.e. you are not allocating storage for it. Instead, you must provide a
global definition for it elsewhere, outside the class. This is done by
redeclaring the static variable using the scope resolution operator to identify
the class to which it belongs. This causes storage for the variable to be
allocated.

Object A Object B

Variable 1 Variable 1

Variable 2 Variable 2

Variable n Variable n

Static variable

Object C Object D

Variable 1 Variable 1

Variable 2 Variable 2

Variable n Variable n

Introduction to Classes and ObjectUnit-7

184 Object-Oriented Programming Through C++ (Block-2)

Unit-7

Fig. 7.6 Static member in memory
The declaration of static member is shown below :

class number
{

static int C;
public:

};
int number : : C = 0 // initializaiton of static member variable

The following program demonstrates the use of static data member in a
class–

// Program 7.10

#include<stdio.h>

#include<conio.h>

class number
{

static int C;
public:
void count ()

{
C ++;
cout << “\n C =” << C;

}
};

int number : : C = 0;

void main ()
{

number a, b, c;
clrscr () ;
a.count ();
b.count ();
c.count ();
getch ();

Introduction to Classes and Object

185Object-Oriented Programming Through C++ (Block-2)

}
RUN : c = 1

c = 2
c = 3

In the above program, the class number has one static data variable C.
The count() is a member funciton, increment value of static member variable
C by 1 when called. The statement int number : : C = 0 initiatize the static
member with 0. It is possible to initialize the static data members with other
values. In the function main(), a, b and c are three objects of class number.
Each object calls the funciton count(). At each call to the function count()
the variable C gets incremented and the count statement displays the value
of variable C. The objects a, b and c share the same copy of static data
member C.

STATIC MEMBER FUNCTION

In C++, like member variables, funcitons can also be declared as static.
When a function is defined as static, it can access only static member
variable and functions of the same class. The non-static members are not
available to these functions. The static member function declared in public
section can be invoked using its class name without using its objects. The
static keyword makes the funciton free from the individual object of the
class and its scope is global in the class without creating any side effect for
other part of the program.

The following points should be remembered while declaring static function:

a) Just one copy of the static member is created in the memory for entire
class. All objects of the class share the same copy of static member.

b) Static member functions can access only static data member, or
funcitons.

c) Static member functions can be invoked using class name.

d) It is also possible to invoke static member funcitons using objects.

e) When one of the objects changes the value of data member variables,

Introduction to Classes and ObjectUnit-7

186 Object-Oriented Programming Through C++ (Block-2)

Unit-7

the effect is visible to all the objects of the class.
The following program demonstrates the use of the static member function
in a class.

//Program 7.11
#include<iostream.h>
#include<conio.h>
class number

{
private:

static int X;
public:

static void count () {X++; }
static void display ()

{
cout << “\n value of X =” << X;

}
};

int number : : X = 0;
void main ()

{
clrscr () ;
number : : display (); //invokes display function
number : : count (); //invokes count function
number : : count (); //invokes display function
number : : display (); //invokes display function
getch ();

}

RUN: Value of X : 0
Value of X : 2

In the above program, the member variable X and functions count () &
display () of class number are static. The function count () when called,
increases the value of static variable X. The function display () prints the
current value of the variable X. The static functions can be called using
class name and scope resolution operator as shown in the program–

number : : count ();

Introduction to Classes and Object

187Object-Oriented Programming Through C++ (Block-2)

number : : display ();

9.12 LET US SUM UP

i) Classes are the basic language construct in C++ for creating the
user defined data types.

ii) A class contains member variable or data members and member
functions.

iii) The members of a class are grouped into two sections namely private
and public.

iv) Defining variables of a class data type is known as a class instantiation
and such variables are called objects.

v) Using the member access operator, dot(.), the class members can
be access by the objects.

vi) The member function can be defined as a) private or public b) inside
the class or outside the class.

vii) The scope resolution operator (::) is used, when a member function
is defined outside the class body.

viii) Inline member function is treated like a macro, when a function is
declared as inline, function body is inserted in place of function call
during compilation.

ix) We can create an array of variables by using the class data type,
then these variables are called array of objects, which occupies
contiguous memory locations inmemory.

x) There are three methods of passing objects to function, namely, pass-
by-value, pass-by-reference and pass-by-pointer.

xi) The function that are declared with the keyword friend are called
friend function. A function can be a friend to multiple classes.

xii) static is the keyword used to preserved value of a variable. When a
variable is declared as static, it is initialize to zero. A static function or
data element is only recognized inside the scope of the present class.

xiii) When a function is defined as static, it can access only static member
variables and functions of the same class. The static member

Introduction to Classes and ObjectUnit-7

188 Object-Oriented Programming Through C++ (Block-2)

Unit-7
functions are called using its class name without using its objects.
7.13 ANSWERS TO CHECK YOUR PROGRESS

CHECK YOUR PROGRESS - 1
1. a) i. b) iii. c) iv. d) i. e) ii

CHECK YOUR PROGRESS - 2
1. i) inline, ii) pass-by-pointer, iii) friend
2. a) False, b) True, c) False

7.14 FURTHER READINGS

1. Object Oriented Programming with C++, E. Balagurusamy, Tata
McGraw Hill Publication.

2. The Complete Reference C++, Herbert Schildt, Tata McGraw Hill
Publication.

3. Mastering C++, K.R. Venugopal, Rajkumar, T. Ravi Shankar, Tata
McGraw Hill Publication.

7.15 MODEL QUESTIONS

1. What is a class ? How does it accomplish data hiding ?

2. What is an object ? How are they created ?

3. How a member function of a class is defined or declared ?

4. Explain the use of private and public keywords. How are they different
from each other ?

5. What is the significance of scope resolution operator :: ?

6. When will you make a function inline and why ?

7. Explain the different methods of passing objects to functions.

8. What is a friend function and a friend class ? Explain with example.

Introduction to Classes and Object

189Object-Oriented Programming Through C++ (Block-2)

List out the merits and demerits of using a friend function.

9. What is a static member function ? When do we declare a member
of a class static ?

10. Define a class student with the following specifications :

private members of the class :
admno integer
sname 20 character
eng, mamth, science float
total float
ctotal() A function to calculate eng+math+science

with float return type

public member functions of class student :

Takedata() –function to accept values for admno, sname, eng,
math, science and invoke ctotal() to calculate total.

Showdata() –function to display all the data members on the screen

11. Define a class BOOK with the following specification :

private members of the class BOOK are :

BOOK_NO integer type

BOOK_TITLE 20 characters

PRICE float (price per copy)

TOTAL_COST() A function to calculate the total cost for N number
of copies, where N is passed to the function as
argument

public member function of the class BOOK are :

INPUT() function to read BOOK_NO, BOOK_TITLE, PRICE

PURCHASE() function to ask the user to input the number of
copi9es t be purchased. It invokes TOTAL_COST()
and prints the total cost to be paid by the user.

12. Define a class employee with the following specifications :

private members of the class :

EMPNO integer

ENAME 20 character

BASIC, HRA, DA foat

Introduction to Classes and ObjectUnit-7

190 Object-Oriented Programming Through C++ (Block-2)

NETPAY float

calculate() A function oto find BASIC+HRA+DA with float
return type

public member of the class :
havedata() functionn to accept values for EMPNO, ENAME,

BASIC, HRA, DA and invoke calculate() to calculate
NETPAY

dispdata() function to display all the data members on the screen

13. A class student has three data members : name, roll n umber, marks
of 5 subjects and member function to assign streams onthe basis of
table given below :

Average Marks Stream

96% or more Computer Science

91% - 95% Electronics

86% - 90% Mechanical

81% - 85% Electrical

76% - 80% Chemical

71% - 75% Civil

Declare the class student and define the member function.

Introduction to Classes and Object

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

191

Unit 8: CONSTRUCTOR AND DESTRUCTOR

UNIT STRUCTURE

8.1 Unit Introduction

8.2 Unit Objectives

8.3 Constructor

 8.3.1 Default Constructor

 8.3.2 Parameterized Constructor

 8.3.3 Copy Constructor

8.4 Destructor

8.5 Dynamic Initialization of Objects

8.6 Summary

8.7 Key Terms

8.8 Model Questions

8.9 Further Reading

8.1 UNIT INTRODUCTION

Now we come to a very important and interesting part of C++

programming. As in the last unit we got some good understanding

of Objects in C++ programming language, in this unit we will learn

some important techniques of initialization of a class variable as a
whole which are called Constructor. Similarly we will also learn

process of releasing a class variable, which is called Destructor.
In this unit, we will also learn Dynamic initialization of objects.

8.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Explain the need of a Constructor

 Define and call a Constructor

 Understand the different type of Constructors

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

192

 Explain the various features and uses of Destructor

8.3 CONSTRUCTOR

A Constructor is a special purpose member function of a Class in

C++ that allows a programmer to initialize the data member of an

Object. Constructors are called special because of the following

reasons

(a) their names are same as of the Class.

(b) A Constructor is automatically invoked whenever an

object of a Class is created.

(c) unlike other member function it does not have any

return type, on declaring and defining a Constructor we
does not even need to write the keyword void.

(d) a constructor must be declared inside the public section

(e) a constructor cannot be inherited.

Bellow you can find a simple example of a Constructor

EXAMPLE 8.1

class student{
private:
 int roll;
 intcls;
 char *name;
public:
 student(){
 roll=0;
 cls=0;
 name=new char(10);
 strcpy(name,"");
 }
 voidenterdata(){
 cout<<"\nEnter your Name=";
 cin>>name;
 cout<<"\nEnter Class=";
 cin>>cls;
 cout<<"\nEnter Roll=";
 cin>>roll;
 }

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

193

 voidgetdata(){
 cout<<"\n.............The Output...............\n\n";

 cout<<"\nName="<<name<<"\nClass="<<cls<<"\nRoll
="<<roll;
 }

};
void main()
{
student s1;
s1.enterdata();
 s1.getdata();
}

In the figure above a constructor of student class is defined and

declared; as we can see from the example the name of the

constructor is same as the class. When ever an object of student
Class is created it automatically invokes the student () constructor

in the public section of the class. As you can see from this

example there is no extra step required to invoke the constructor.

The constructor does not have any return type, even the void is

also missing.

Please try to understand the steps mentioned in the example, in

the remaining part of the unit we will try to build-up example based

on this.

8.3.1. DEFAULT CONSTRUCTOR

A Default Constructor is the one that has no parameter. It is

not mandatory to define a default Constructor, whenever an object

of a class is declared having no parameter, the default constructor

will automatically invoked as shown in the example 8.1. But if the

programmer forgot to define a default constructor in his

programme, the complier implicitly declare a default constructor,

which will initialize the data member of the class with some

garbage value.

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

194

If we look at the example 8.1, we can get a good understanding of

a default constructor. Here when the object s1 of the student class

is created, the compiler automatically invoke the default

constructor student (), where different initialization and memory

allocation task are carried out.

8.3.2 PARAMETERIZED CONSTRUCTOR

When we need to initialize the data members of different object of

a class with distinct value we need to pass the value or values to

the constructors. A parameterized constructor is a constructor that

accepts one or more parameter at the time of declaration of the

objects.

Let us take the following example

EXAMPLE 8.2: TO ILLUSTRATE THE PARAMETERIZED
CONSTRUCTOR

#include<iostream.h>
#include<string.h>
class student{
private:
 int roll;
 intcls;
 char *name;
public:
 student(){
 roll=0;
 cls=0;
 name=new char(10);
 strcpy(name,"");
 }
 student(int r, int c, char *n){
 roll=r;
 cls=c;
 name=new char(10);
 strcpy(name,n);

 }

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

195

 voidenterdata(){
 cout<<"\nEnter your Name=";
 cin>>name;
 cout<<"\nEnter Class=";
 cin>>cls;
 cout<<"\nEnter Roll=";
 cin>>roll;
 }
 voidgetdata(){

 cout<<"\nName="<<name<<"\nClass="<<cls<<"\nRoll="<<r
oll<<"\n\n\n\n";
 }

};
int main()
{
student s1, s2(0,0,"test name");
 //Enter data for s1 object
cout<<"\nEnter data for object s1";
s1.enterdata();
cout<<"\n.............The Output...............(for object s1)\n\n";
s1.getdata();
cout<<"\n.............The Output...............(for object s2)\n\n";
s2.getdata();
return 1;
}

The output of the above program

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

196

In the program above we have tried to explain a parameterized

constructor, if you look at the statement s2(0,0,”test name”) at

the main section of the program, you will get a good understanding

of parameterized constructor. The Example 8.2 is an extension of
the Example 8.1. Here when an object s2 is created, the

constructor definition student(int r, int c, char *n) is invoked.

In this program we have populated the data members of the object
s1 using the function enterdata(), where as for the object s2, we

have used the parameterized constructor.

If we use a enterdata() function for s2 object the initial data of the

data members of object s2 will be overwrite by the new data

entered by the user.

There are two ways to declare a parameterized constructor

 By calling the constructor implicitly (the method used

above)

 By calling the constructor explicitly

For the first method By calling the constructor implicitly the

following syntax is used

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

197

student s2(0,0,"test name");

Here we have declared an object of a Class s2 with appropriate

values for the data members for the Class student passed from it.

This is a more popular method and used by the majority of the

programmers.

In the second method i.e. By calling the constructor explicitly a

different syntax is used

student s2=student(0,0,"test name");

The results of both the methods are same.

8.3.3. COPY CONSTRUCTOR

The C++ compiler gives us lots of facilities for smooth completion

of our different time consuming tasks. The one of the facility is the

Copy Constructor, which allows us to copy the values of the data

member of one object to the other object of Class using simple

assignment operators. Below we will go to see a small example

program for Copy Constructor

EXAMPLE 8.3: COPY CONSTRUCTOR

#include<iostream.h>
#include<string.h>
class student{
private:
 int roll;
 intcls;
 char *name;
public:
 student(){
 roll=0;
 cls=0;
 name=new char(10);
 strcpy(name,"");
 }

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

198

 student(int r, int c, char *n){
 roll=r;
 cls=c;
 name=new char(10);
 strcpy(name,n);

 }

 voidgetdata(){

 cout<<"\nName="<<name<<"\nClass="<<cls<<"\nRoll
="<<roll<<"\n\n";
 }

};
int main()
{
student s1, s2(12,9,"Kunal");
 //Copy Constructor
 s1=s2;
cout<<"\n.............The Output...............(for object s1)\n";
s1.getdata();
cout<<"\n.............The Output...............(for object s2)\n";
s2.getdata();
return 1;
}

The output of the above program

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

199

In the Example 8.3 we have illustrated a small program for Copy

Constructor. If you put your eyes at the first two lines of the main

section of the program, you will see a different type of syntax. The

syntax of the first line is same as that we have used in our

previous examples, but the second line is bit different. Here we

have tried to assign an object to another object using simple
assignment operator. This is called Copy Constructor (or Default

Copy Constructor). Here we have not write any controlling

statement for s1=s2, the all the operations of copping the value of

the data members of object s2 to object s1 are carried out by the
Default Copy Constructor provided by the Compiler itself. From the

output of the Example 8.3 given above we can see the successful

completion of the step s1=s2. A Copy Constructor can be called

using the syntax too s1(s2).

A Customized Copy Constructor handler

A programmer can also write his own handler for a Copy

Constructor, where he can provide his own customized code.

When a customized Copy Constructor is written it will replace the

Default handler provided by the Compiler. Bellow we will going to

provide an example of the programmer defined handler for Copy

Constructor.

EXAMPLE 8.4: COPY CONSTRUCTOR

#include<iostream.h>
#include<string.h>
class student{
private:
 int roll;
 intcls;
 char *name;
public:
 student(){
 roll=0;
 cls=0;
 name=new char(10);

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

200

 strcpy(name,"");
 }
 student(int r, int c, char *n){
 roll=r;
 cls=c;
 name=new char(10);
 strcpy(name,n);

 }
 student operator=(student &s){

 cout<<"\nUserdifened code for Copy
Constructor handler";
 roll=s.roll;
 cls=s.cls;
 strcpy(name,s.name);
 }

 voidgetdata(){

 cout<<"\nName="<<name<<"\nClass="<<cls<<"\nRoll
="<<roll<<"\n\n";
 }

};
int main()
{
student s1, s2(19,5,"Kunal");
 //Copy Constructor
 s1=s2;
cout<<"\n.............The Output...............(for object s1)\n";
s1.getdata();
cout<<"\n.............The Output...............(for object s2)\n";
s2.getdata();
return 1;
}

The output of the above program

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

201

If you go through the above example, you will get everything
familiar, except the function student operator=(student &s); this

is the customized handler for the Copy Constructor. This is an

operator function and this type of syntax is often used to overload
a operator (you will get details of this in the next unit).

When the compiler found the statement s1=s2, it invokes the

function “student operator=(student &s)”. In this function a local

object is created by the compiler, here comes a small problem of

wastage of memory. Though in this program it will not going to

create any difficulties, but in case of a larger program having lots
of data member in the Class, will waste lots of memory.

In the function student operator=(student &s), the object s is the

reference to object s2 in the main section of the program. If you go

through the steps in the function you will find that each and every

data member of the s2 object id assigned to the temporary object’s

data member, and in the end the temporary object returns to the

main function implicitly and assigned to the object s1. This is the
simple mechanism of a Copy Constructor handler.

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

202

CHECK YOUR PROGRESS

 What do you mean by a constructor in C++?

 Write down different use of a constructor.

 Explain different type of constructors.

 What do you mean by a “Copy Constructor”?

8.4: DESTRUCTOR:

A destructor, as the name suggested it is used for destroying an

object. By destroying we mean deleting the data in the data

members and releasing the memory space occupied by the data

members. A destructor is also a member function of the class, like

a constructor a destructor has the same name as that of the Class

and it is also defined in the public section of the Class. For

example if we want to write a destructor of the Class student we
will define it as follows

~student(){ }

A destructor never takes any argument nor does it return any

value. It will be implicitly invoked by the compiler upon exit from
the function to clean up the storage that is no longer accessible.

EXAMPLE 8.5: SYNTAX OF DESTRUCTOR

class student{
private:
 int roll;
 intcls;
 char *name;
public:
 student(){
 roll=0;
 cls=0;
 name=new char(10);
 strcpy(name,"");
 }

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

203

 voidenterdata(){
 cout<<"\nEnter your Name=";
 cin>>name;
 cout<<"\nEnter Class=";
 cin>>cls;
 cout<<"\nEnter Roll=";
 cin>>roll;
 }
 voidgetdata(){

cout<<"\n.............The
Output...............\n\n";

 cout<<"\nName="<<name<<"\nClass="<<cls<<
"\nRoll="<<roll;
 }

~student(){

Cout<<”Object Destroyed…………………..\n”;
 }

};
void main()
{

student s1;
s1.enterdata();

 s1.getdata();
}

As we can see from the example above, as Constructor a
Destructor also invoked implicitly.

CHECK YOUR PROGRESS

 What do you mean by Destructor in C++?

 How do we can invoke a Destructor in C++?

 Is it mandatory to define a Destructor in C++ ? Justify your
answer.

 Write a program to demonstrate the syntax and use of a

Destructor

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

204

8.5 DYNAMIC INITIALIZATION OF OBJECTS

The concept of initializing an Object dynamically (at the run time

not in the compile time) is very simple but it gives a good amount

of flexibility to the programmer. It allows a programmer to initialize

the data member of an object at the run time, so the initial value of

an object can be changed depending the state of an program.

Bellow we are going to demonstrate an example of the Dynamic

Initialization of Object.

EXAMPLE 8.5 DYNAMIC INITIALIZATION OF OBJECT

#include<iostream.h>
#include<string.h>

class student{
private:
 int roll;
 intcls;
 char *name;
public:
 student(){
 roll=0;
 cls=0;
 name=new char(10);
 strcpy(name,"");
 }
 student(int r, int c, char *n){
 roll=r;
 cls=c;
 name=new char(10);
 strcpy(name,n);

 }
 voidenterdata(){

 cout<<"\nEnter Class=";
 cin>>cls;
 }
 voidgetdata(){

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

205

 cout<<"\nName="<<name<<"\nClass="<<cls<<"\nRoll
="<<roll<<"\n\n";
 }

 ~student(){

 cout<<"\nObject Destroyed";
 }

};
int main()
{
student s1;
int roll;
char name[20];
 //Enter the intial value of roll and name
cout<<"\nEnter Roll";
cin>>roll;
cout<<"\Enter Name:: ";
cin>>name;
 //Dynamic Initialization for Object s2
student s2(roll,0,name);
 //Enter data for s1 object
cout<<"\nEnter data for object s2";

s2.enterdata();
cout<<"\n.............The Output...............(for object s2)\n";
s2.getdata();
return 1;
}

The output of the above program

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

206

If you go through the above program, you will find that the data

members of the object s2 is populated using a parameterized

constructor. While declaring the object s2 we pass two dynamic

values as its parameter (i. e. roll and name), these two values are

called dynamic because they are taken as user input at the

execution time. This is a very small example, but we can do

wonders using this concept. This gives the programmer a very
wide range of flexibility.

CHECK YOUR PROGRESS

 Explain the use of Dynamic initialization of Objects.

 Write a case study for Normal initialization of Object Vs
Dynamic initialization of Object

8.6 SUMMARY

In this unit, you have learned that:

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

207

 A constructor is a special-member function that initializes
the object at the time of its declaration.

 A constructor has the same name as that of the class and

is automatically invoked when an object of the class is
declared.

 Unlike other member functions, a constructor does not
have any return type, not even void.

 A constructor can be called implicitly as well as explicitly.

 Constructors are of three types, namely default,
parameterized and copy constructor.

 Whenever a class is defined without the constructor

definition, the compiler provides a default constructor to

construct the object of a class. The default constructor
initializes all the data members with garbage values.

 Parameterized constructors can also be used to
dynamically initialize the object of a class.

 A copy constructor initialized a new object with values of

an existing object of the same class. With copy constructor
we can create a clone of an object.

 A destructor is used to free the memory used by an object
on exit from the program.

8.7 KEY TERMS

 Constructor: A special member function that construct a

storage area for the data members of an object by
allocating and initializing the memory for them.

 Destructor: A special member function that free the
memory space used by a object on exit from the program.

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

208

 Parameterized Constructor: A constructor that accepts one

or more parameters at the time of declaration of objects

and initializes the data members of the object with these
parameters.

 Copy Constructor: A constructor that initializes a new

object of a class with the values of an existing object of the
same class.

8.8 MODEL QUESTIONS

1. Write down the definition of the following

 a) Constructor b) Destructor in C++

2. Explain the use of Constructor and Destructor with suitable
examples

3. What do you mean by a Copy Constructor? Explain with
suitable examples.

4. What is a parameterize constructor? Explain with proper
examples.

8.9 FURTHER READING

 Object Oriented Programming with C++, Third Edition

-E Balagurusamy

 C++: The Complete Reference, Fourth Edition, Tata
McGraw Hill

 Website for references

MCA(S3)10 Object-Oriented Programming through C++ Unit 8

209

 http://en.wikipedia.org/wiki/C%2B%2B

 http://www.cplusplus.com/doc/tutorial/

210 Object-Oriented Programming Through C++ (Block-2)

UNIT-9 : OPERATOR OVERLOADING

UNIT STRUCTURE

9.1 Learning objectives
9.2 Introduction
9.3 Basic Concept of Overloading
9.4 operator Keyword
9.5 Overloading Unary Operators
9.6 Operator Return Type
9.7 Overloading Binary Operators
9.8 Strings and Operator Overloading
9.10 Type Conversion
9.11 Let Us Sum Up
9.12 Answers to Check Your Progress
9.13 Further Readings
9.14 Model Questions

9.1 LEARNING OBJECTIVES

After going through this unit, you will able to :

 learn fundamental concept of overloading

 describe the use of the keyword operator

 illustrate the overloading of unary and binary operators

 describe manipulation of strings using operators

9.2 INTRODUCTION

So far, we have discussed the concept of class and objects and how to
allocate required resource such as memory and initialize the objects of
classes using constructors and how to deallocate the memories using de-
structors. C++ offers an another important feature namely operator over-

211Object-Oriented Programming Through C++ (Block-2)

Unit-9

loading, through which operators like +,-,<=,>= etc. can be used with user
defined data types, with some additional meaning.

In this unit, we will concentrates on the dicussion of overloading of opera-
tors (unary and binary) as well as the string manipulations using opera-
tors.

9.3 BASIC CONCEPT OF OVERLOADING

We know that operators (+,-,<=,>= etc.) are used to perform operation
with the constants and variables. Without the use of the operators a pro-
grammer cannot write or built an expression. We have already used
these operators with the basic data types such as int or float etc. The
operator +(plus) can be used to perform addition of two variables but we
cannot apply the + operator for addition of two objects. If we want to add
two objects using the + operator then the compiler will show an error mes-
sage. To avoid this error message you must have to make aware the com-
piler about the addition process of two objects. To perform operation with
objects you need to redefine the definition of various operators. For ex-
ample, for addition of objects X and Y, we need to define operator +(plus).
Re-defining a operator does not change its original meaning. It can be used
for both variables of built-in data types as well as objects of user defined
data types.

Operator overloading in C++, permits to provide additional meaning to the
operators such as +, *, >=, –, = etc., when they are applied to user defined
data types. Hence, the operator overloading is one of the most valuable
concepts introduced by C++ language. It is a type of polymorphism. We
will discuss about polymorphism in a next unit. C++ allows the following list
of operators for overloading.

Table 9.1 C++ Overlodable Operators

Operator Overloading

212 Object-Oriented Programming Through C++ (Block-2)

9.4 operator KEYWORD

The keyword operator helps in overloading of the C++ operators. The gen-
eral format of operator overloading is shown below :

ReturnType opeator OperatorSymbol ([arg1], [arg2])
{

// body of the function
}

Here, the keyword operator indicates that the OperatorSymbol is the name
of the operator to be overloaded. The operator overloaded in a class is
known as overloaded operator function.

The following statements shows the use of the operator keywords.

class Index
{

// class data and member function
 Index operator ++()

{
index temp;
value = value+1;
temp.value = value;

Operator Category Operators

Arithmetic
Bit-Wise
Logical
Relational
Assignment
Arithmetic assignment

Shift
Unary
Subscripting
Function call
Dereferencing
Unary sign prefix
Allocate and free

+, -, *, /, %
&, |, ~, ^
&&, ||, !
<, >, ==, !=, <=, >=
=
+=, -=, *=, /=, %=, &=, |=, ^=

>>, <<, >>=, <<=
++, --
[]

()

->
+, -
new, delete

Operator OverloadingUnit-9

213Object-Oriented Programming Through C++ (Block-2)

Unit-9

return temp;
}

};

Here, return type of the operator function is the name of a class within
which it is declared. It can be defined as follows :

class Index
{

// class data and member function
 Index operator ++();

};

Index Index :: operator ++()
{

index temp;
value = value+1;
temp.value = value;
return temp;

}

The operator function should be either a member function or a friend func-
tion. When the operator function is declared as member function and takes
no argument, it is known as unary operator overloading and when it takes
one argument it is known as binary operator overloading.

9.5 OVERLOADING UNARY OPERATORS

When an operator function takes no argument, it is called as unary opera-
tor overloading. You are already familiar with the operators ++, --, and -,
which have only single operands are called unary operators. The unary
operators ++ and -- can be used as prefix or suffix with the functions. The
following program demonstrates the overloading of unary ‘--’ operators.

// Program 9.1
#include<iostream.h>

Operator Overloading

214 Object-Oriented Programming Through C++ (Block-2)

#include<conio.h>

class unary
{

int x, y, z;

public :
unary (int i, int j, int k) // parameterized constructor

{
x=i; y=j; z=k;

}
void display(); //displays contents of member variables

void operator --(); //overloads the unary operator --

};

void unary :: operator --()
{

--x; --y; --z; // values of variables will be decremented by 1

}
void unary :: display()

{
cout<<"X="<<x<<"\n";
cout<<"Y="<<y<<"\n";
cout<<"Z="<<z<<"\n";

}
void main()

{
clrscr();
unary A(31, 41, 51);
cout<<"\n Before Decrement of A :\n";
A.display();
--A; // calls the function operator --()

cout<<"\n After Decrement of A :\n";
A.display();
getch();

}
RUN : Before Decrement of A : X=31

Y=41

Operator OverloadingUnit-9

215Object-Oriented Programming Through C++ (Block-2)

Unit-9

Z=51
After Decrement of A : X=30

Y=40
Z=50

9.6 OPERATOR RETURN TYPE

In the above example, we have declared the operator function of type void
i.e. it will not return any value. But it is possible to return value and assign
it to other object of same type. The return value of the operator is always of
the class type, it means that class name will be in the place of the return
type specification because we are applying the operator overloading prop-
erties only for the objects. Always remember that an operator cannot be
overloaded for basic data types, so the return value of operator function
will be of class type. The following program demonstrates the operator
return types :

// Program 9.2
#include<iostream.h>
#include<conio.h>
class unary

{
int x;

public :
unary () { x=0; }
int getx() // returns the current value of variable x

{ return x; }
unary operator ++();

};

unary unary :: operator ++()
{

unary temp;
x=x+1;
temp.x=x;
return temp;

Operator Overloading

216 Object-Oriented Programming Through C++ (Block-2)

}

void main()
{

clrscr();
unary A1,A2;
cout<<"\n A1="<<A1.getx();
cout<<"\n A2="<<A2.getx();
A1=A2++; // first increment the value of A2 and assigns it to A1

cout<<"\n A1="<<A1.getx();
cout<<"\n A2="<<A2.getx();
A1++; // object A1 is incresed
cout<<"\n A1="<<A1.getx();
cout<<"\n A2="<<A2.getx();
getch();

}

RUN : A1 = 0
A2 = 0
A1 = 1
A2 = 1
A1 = 2
A2 = 1

9.7 OVERLOADING BINARY OPERATORS

Binary operators are overloaded by using member functions and friend
functions. The difference is in the number of arguments used by the func-
tion. In the case of binary operator overloading, when the function is a
member function then the number of arguments used by the operator mem-
ber function is one. When the function defined for the binary operator over-
loading is a friend function, then it uses two arguments. Here, we will dis-
cuss the overloading of binary operator when the operator function is a
member function.
Binary operator overloading, as in unary operator overloading, is performed
using a keyword operator. The following program demonstrates the

Operator OverloadingUnit-9

217Object-Oriented Programming Through C++ (Block-2)

Unit-9

overloading of binary operators.

// Program 9.3
#include <iostream.h>
#include<conio.h>

class Binary
{

private:
int x;
int y;

public:
Binary() //Constructor

{ x=0; y=0; }
void getvalue() //Member Function for Inputting Values

{
cout <<"\n Enter value for x:";
cin >> x;
cout << "\n Enter value for y:";
cin>> y;

}
void displayvalue() //Member Function for Outputting Values

{
cout<<"\n\nThe resultant value : \n";
cout <<" x =" << x <<"; y ="<<y;

}
Binary operator +(Binary);
};
Binary Binary :: operator +(Binary e2)
//Binary operator overloading for + operator defined

{
Binary temp;
temp.x = x+ e2.x;
temp.y = y+e2.y;
return (temp);

}
void main()

{

Operator Overloading

218 Object-Oriented Programming Through C++ (Block-2)

Binary e1,e2,e3; //Objects e1, e2, e3 created

clrscr();
cout<<"\nEnter value for Object e1:";
e1.getvalue();
cout<<"\nEnter value for Object e2:";
e2.getvalue();
e3= e1+ e2; //Binary Overloaded operator used

e3.displayvalue();
getch();

}

RUN : Enter value for Object e1 :
Enter value for x : 10
Enter value for y : 20

Enter value for Object e2 :
Enter value for x : 30
Enter value for y : 40

The Resultant Value : x = 40; y = 60

In the above example, the class Binary has created three objects e1, e2,
e3. The values are entered for objects e1 and e2. The binary operator
overloading for the operator ‘+’ is declared as a member function inside
the class Binary. The definition is performed outside the class Binary by
using the scope resolution operator and the keyword operator.

The important aspect is the statement:

e3= e1 + e2; // e3= e1.operator +(e2)

The binary overloaded operator ‘+’ is used. When the compiler encounters
such expressions, it examines the argument type of the operator. In this
statement, the argument on the left side of the operator ‘+’, e1, is the
object of the class Binary in which the binary overloaded operator ‘+’ is a
member function. The right side of the operator ‘+’ is e2. This is passed as
an argument to the operator ‘+’ i.e. the expression means e3 = e1.operator
+(e2). The operator returns a value (binary object temp in this case), which
can be assigned to another object (e3 in this case).

Operator OverloadingUnit-9

219Object-Oriented Programming Through C++ (Block-2)

Unit-9

Since the object e2 is passed as argument to the operator’+’ inside the
function defined for binary operator overloading, the values are accessed
as e2.x and e2.y. This is added with e1.x and e1.y, which are accessed
directly as x and y.

Always remember that, in the overloading of binary operators, the left-
hand operand is used to invoke the operator function and the right-hand
operand is passed as an argument to the operator function.

9.8 STRINGS AND OPERATOR OVERLOADING

We are already familiar with the strcat() function which is used for concat-
enation of strings. Consider the following two strings

char str1[50] = “Bachelor of Computer”;

char str2[20] = “Application”;

The string str1 and str2 are combined, and the result is stored in str1 by
invoking the function strcat() as follows :

strcat(str1, str2);

The same operation can be done by defining a string class and overload-
ing the + operator. The following program demonstrates the concatenation
of two string using the overloading concept.

// Program 9.4

#include<iostream.h>
#include<string.h>
#include<conio.h>

class String
{

private:
char str[100];

public:

Operator Overloading

220 Object-Oriented Programming Through C++ (Block-2)

String() //Constructor
{ strcpy(str," "); }

String(char *msg) //Constructor
{ strcpy(str, msg); }

void display() //Member Function for Display strings

{
cout <<str;

}
String operator +(String s);
};

String String :: operator +(String s)
//Binary operator overloading for + operator defined

{
String temp = str;
strcat(temp.str, s.str);
return temp;

}

void main()
{

clrscr();
String str1 = "Bachelor of Computer";
String str2 = "Application";
String str3;
str3= str1+str2;
cout<<"\n str1 =";
str1.display();
cout<<"\n str2 =";
str2.display();
cout<<"\n The String after str3=str1+str2 \n \n";
str3.display();
getch();

 }
In this program, the concatenation is performed by creating a temporary
string object temp and initializing it with the first string. The second string is

Operator OverloadingUnit-9

221Object-Oriented Programming Through C++ (Block-2)

Unit-9

added to first string in the object temp using the strcat() and finally the
resultant temporary string object temp is returned. Here, in the program,
the length of str1+str2 should not exceed the array size 100 (i.e. char
str[100]).

Thus, we have seen that, in C++ programming language, operator
overloading adds new functionality to its existing operators. The programmer
must add proper comments concerning the new functionality of the
overloaded operator. The program will be efficient and readable only if
operator overloading is used only when necessary. The operators that
cannot be overloaded are - ., ?:, sizeof, ::, .* , #, ##.

9.10 TYPE CONVERSION

We cannot convert between user-defined data types(classes) just like we
convert between basic types. This is beacuse the compiler does not know
anything about the user-defined type.

Now, let us look into how C++ handles conversions for its built-in types
(int, float, char, double etc.). When you make a statement assigning a
value of one standard type to a variable of another standard type, C++
automatically will convert the value to the same type as the receiving
variable, providing the two types are compatible.

For example, the following statements all generate numeric type
conversions:

long count = 8; // int value 8 converted to type long

double time = 11; // int value 11 converted to type double

int side = 3.33; // double value 3.33 converted to type int 3

These assignments work because C++ recognizes that the diverse numeric
types all represent the same basic thing, a number, and because C++
incorporates built-in rules for making the conversions. However, you can
lose some precision in these conversions. For example, assigning 3.33 to

Operator Overloading

222 Object-Oriented Programming Through C++ (Block-2)

the int variable that side results in that side getting the value 3, losing the
0.33 part.

The C++ language does not automatically convert types that are not
compatible.

For example, the statement

int * p = 10; // type clash

fails because the left-hand side is a pointer-type, whereas the right-hand
side is a number. And even though a computer may represent an address
internally with an integer, integers and pointers conceptually are quite
different. For example, you wouldn’t square a pointer. However, when
automatic conversions fail, you may use a type cast:

int * p = (int *) 10; // ok, p and (int *) 10 both pointers

This sets a pointer to the address 10 by type casting 10 to type pointer-to-
int (that is, type int *).

Now, let us look into how C++ handles conversions from basic type to
user-defined types vice-versa.

Basic type to user defined type :

This type of conversion can be easily carried out. It is automatically done
by the compiler with the help of in-built routines or by type casting. In this
type the lkeft hand operand of = sign is always class type or user defined
type and the right hand side operand is always basic type. The following
program explains this type of conversion.

//Program 9.5
#include <iostream.h>
#include<conio.h>

class Test
{

private:
int x;

Operator OverloadingUnit-9

223Object-Oriented Programming Through C++ (Block-2)

Unit-9

float y;

public:
Test() //Constructor

{ x=0; y=0; }
Test(float z) //Constructor with one argument

{ x=2; y=z; }
void display() // Function for displaying values

{
cout <<"\n x =" << x <<" y ="<<y;
cout <<"\n x =" << x <<" y ="<<y;

}
};

void main()
{

Test a;
clrscr();
a=9;
a.display();
a=9.5;
a.display();
getch();

}

RUN : x=2 y=9
x=2 y=9
x=2 y=9.5
x=2 y=9.5

In the above program, the class Test has two member variable of type
integer and float. It also has two constructors one with no arguments and
the second with one arguments. In main() function, a is an object of class
Test. When a is created the constructor with no argument is called and
data memberms are initialize to zero. When a is initialize to 9 the constructor
with float argument i.e. Test(float z) is invoked. The integer value is
converted to float type and assigned member variable y. Again when a is
assigned to 9.5, same process repeated. Thus, the conversion from basic

Operator Overloading

224 Object-Oriented Programming Through C++ (Block-2)

to class type is carried out.

User defined type to basic type :

As we know, the compiler does not have any prior information about user
defined data type using class, so in this type of conversion it needs to
inform the compiler how to perform conversion from class to basic type.
For this purpose, a conversion function should be defined in the class in
the form of the operator function. The operator function is defined as an
overloaded basic data type which takes no arguments. The syntax of such
a conversion function is shown below-

operator Basic type()
{

// steps for converting
}

In the above syntax, you have noticed that, the conversion function has no
return type. While declaring the operator function the following condition
should always remember :

i) the operator function should not have any argument.

ii) it has no any return type.

iii) it should be a class member.

The following program demonstrates this conversion mechanism :

// Program 9.6

#include <iostream.h>

#include<conio.h>

class Time
{

private:
int hour;
int minute;

public:
Time(int a)

Operator OverloadingUnit-9

225Object-Oriented Programming Through C++ (Block-2)

Unit-9

{ hour=a/60;
minute=a%60;

}
operator int()

{
int a;
a=hour*60+minute;
return a;

}
};
void main()

{
clrscr();
Time t1(500);
int i=t1; // operator int() is invoked
cout<<"\n"<<"The value of i:"<<i;
getch();

}

RUN : The value of i : 500

In the above program, the statement int i=t1, invokes the operator function
which finally converts a time object to corresponding magnitude (of type
int).

CHECK YOUR PROGRESS

1. Choose the correct answer from the following :

a) Operator overloading is

i) making C++ operators work with objects

ii) giving C++ operators more than they can handle

iii) giving new meaning to existing C++ operators

iv) making new C++ operators
b) To convert from a user-defined class to basic type, you

would use

Operator Overloading

226 Object-Oriented Programming Through C++ (Block-2)

i) a built-in conversion function
ii) a one argument constructor
iii) an overloaded = operator
iv) a conversion function that is a member of the class

c) To convert from a basic type to user-defined class, you would
use
i) a built-in conversion function
ii) a one argument constructor
iii) an overloaded = operator
iv) a conversion function that is a member of the class

d) _______operator must have one class object.
i) + ii) new

iii) all iv) none of these

e) Binary overload operators are passed _______ arguments.
i) one ii) two

iii) no iv) none of the above

2. Fill in the blanks :
i) The statement x=y will cause __________ if the objects

are of different classes.
ii) __________ is making operators to woork with user defined

data types.
iii) Single argument constructor is usually defined in the

__________ class.
iv) __________ function must not have a return type.
v) __________ are operators that act on only one operand.

9.11 LET US SUM UP

1. Operator overloading is one of the important concepts in C++ which
allows to provide additional meaning to operators +, -, >=, <= etc.
when they are applied to user defined data types.

2. Overloaded operators are redefined within a class using the keyword
operator followed by an operator symbol. When an operator is

Operator OverloadingUnit-9

227Object-Oriented Programming Through C++ (Block-2)

Unit-9

overloaded, the produced symbol is called the operator function name.

3. Overloading of operator cannnot change the basicmeaning of an
operator. When an operator is overloaded, its prooperties like systax,
precedence and associativity remain constant.

4. Operators ++, --, and -, which have only single operands are called
unary operators. The unary operators ++ and -- can be used as
prefix or suffix with the functions.

5. The binary operators require two operand. Binary operators are
overloaded by using member functions and friend functions.

6. The operators which cannot be overloaded are - ., ?:, sizeof, ::, .*
, #, ##.

7. The concept of operator overloading can also be applied to data
conversion. C++ offers automatic conversion of primitive data types.

8. Actually there are three possibilities of data conversion :
a) Basic type to user defined type(class type)
b) User defined type(class type) to basic type
c) Class type to another class type (we have not discussed here)

9.12 ANSWERS TO CHECK YOUR PROGRESS

1.a) iii, b) iv, c) iii,
d) ii, e) i.

2. i) Compiler error,
ii) operator overloading,
iii) destination,
iv) casting operator,
v) unary operator

9.13 FURTHER READINGS

1. Object Oriented Programming with C++, E. Balagurusamy, Tata
McGraw Hill Publication.

2. The Complete Reference C++, Herbert Schildt, Tata McGraw Hill
Publication.

Operator Overloading

228 Object-Oriented Programming Through C++ (Block-2)

3. Mastering C++, K.R. Venugopal, Rajkumar, T. Ravi Shankar, Tata
McGraw Hill Publication.

9.14 MODLE QUESTIONS

1. What is operator overloading ? Give the advantage of operator
overloading.

2. What is operator function ? Describe operator function with syntax
and examples.

3. What is the difference between overloading of binary operators and
unary operators ?

4. Explain the conversion from basic type to user defined type(class
type) with examples.

5. Explain the conversion from user defined type(class type) to basic
type with examples.

6. Write a program to overload the -- operator.

7. Write a program to overload the binary operator + in order to perform
addition of complex numbers.

8. Write a program to overload the relational operator (>, <, ==) in order
to perform the comparision of two strings.

Operator OverloadingUnit-9

229Object-Oriented Programming Through C++ (Block-2)

UNIT-10 : INHERITANCE

UNIT STRUCTURE

10.1 Learning Objectives
10.2 Introduction
10.3 Inheritance

10.3.1 Defining a Derived Class
10.3.2 Accessing Base Class Members

10.4 Types of Inheritance
10.4.1 Single Inheritance
10.4.2 Multiple Inheritance
10.4.3 Hierarchical Inheritance
10.4.4 Multilevel Inheritance
10.4.5 Hybrid Inheritance
10.4.6 Multipath Inheritance

10.5 Virtual Base Classes
10.6 Abstract Classes
10.7 Let Us Sum Up
10.8 Answers to Check Your Progress
10.9 Further Readings
10.10Possible Questions

10.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

 learn about the concept of inheritance in C++

 create new classes by reusing the members and properties of
existing classes

 learn the advantages and disadvantages of inheritance in pro
gramming

 learn how to use base class access specifier public, private and
protected

 learn the use of virtual base class and abstract class

230 Object-Oriented Programming Through C++ (Block-2)

10.2 INTRODUCTION

In this unit, we shall discuss one important and useful feature of Object -
Oriented Programming (OOP) which is called inheritance. C++ supports
the concept of inheritance. We have already discussed the concept of
classes and objects in our previous unit which are prerequisite for this unit.

With the help of inheritance we can reuse (or inherit) the property of a
previously written class in a new class. There are different types of
inheritance which will be discussed in this unit. The concept of abstract
and virtual base class will also be covered in this unit.

10.3 INHERITANCE

In Biology, inheritance is a term which represents the transformation of the
heridetary characters from parents or ancestors to their descendent. In the
context of Object-Oriented Programming, the meaning is almost same.
The process of creating a new class from existing classes is called inher-
itance. The newly created class is called derived class and the existing
class is called the base class. The derived class inherits some or all of the
characteristics of the base class. Derived class may also possess some
other characteristics which are not in the base class.

For example, let us consider two classes namely, “employee ” and
“manager”. Whatever information is present in “employee” class, the same
will be present in “manager’ also. Apart from that there will be some extra
information in “manager” class due to other responsibility assinged to
managers. Due to the facility of inheritance in C++, it is enough only to
indicate those pieces of information which are specific to manager in its
class. In addition, the “manager” class will inherit the information of
“employee” class.

Before discussing the different types of inheritance and their implementa-
tion in C++, we will first denote the advantages and disadvantages of
inheritance.

InheritanceUnit-10

231Object-Oriented Programming Through C++ (Block-2)

Advantages of Inheritance

 Reusability:

Reusability is an important feature of Object Oriented Programming.
We can reuse code in many situations with the help of inheritance.
The base class is defined and once it is compiled, it need not be
rewritten. Using the concept of inheritance the programmer can create
as many derived classes from the base class as needed. New
features can also be added to each derived class when required.

 Reliability and Cost:

Reusability would not only save time but also increase reliability and
decrease maintenance cost.

 Saves Time and Effort:

The reuse of class that has already been tested, debugged and used
many times can save us the effort of developing and testing the same
again.

Disadvantages of Inheritance

 Inappropriate use of inheritance makes a program more complicated.

 In the class hierarchy various data elements remain unused, the
memory allocated to them is not utilized.

10.3.1 DEFINING A DERIVED CLASS

A derived class is defined by specifying its relationship with the base
class in addition to its own details. The general form of deriving a
new class from an existing class is as follows:

class DerivedClassName : access specifier BaseClassName
{

..........

.......... //members of derived class

..........
};

Inheritance Unit-10

232 Object-Oriented Programming Through C++ (Block-2)

The derived class name and the base class name is separated by a
colon “:”. We can derive classes using any of the three base class
access specifiers: public, private or protected. If we do not specify
the access specifier, then by default it will be private. Generally, it is
convenient to specify the access specifier while deriving a class.
Access specifiers are sometime called visibility mode. It determines
the access control of the base class members inside the derived
class. In the previous unit, we have already learnt private and public
access specifier while declaring classes. Protected specifier has a
significant role in inheritance.

10.3.2 ACCESSING BASE CLASS MEMBERS

There may be three types of base class derivation:

 Public derivation

 Private derivation

 Protected derivation

 Public derivation

When the base class is inherited by using public access speci-
fier then all public members of the base class become public mem-
bers of the derived class, and all protected members of the base
class become protected members of the derived class. The pri-
vate members of the base class remain private and are not ac-
cessible by members of derived class. Let us examine this with
the following example:

// Program 10.1: Base class with public access specifier

#include<iostream.h>

#include<conio.h>

class base
{

private:
int num1,num2;

InheritanceUnit-10

233Object-Oriented Programming Through C++ (Block-2)

public:
void input(int n1, int n2)

{
num1=n1;
num2=n2;

}
void display()
{

cout<<"Number 1 is: "<<num1<<endl;
cout<<"Number 2 is: "<<num2;

}
}; //end of base class

class derived : public base
{

private:
int num3;

public:
void enter(int n3)
{

num3=n3;
}
void show()
{

cout<<"\nNumber 3 is: "<<num3;
}

}; //end of derived class
int main()
{

derived d; // d is an object of derived class

clrscr();
d.enter(15); //enter() function is called by object d

d.input(5,10); /* accessing base class member. input() is a public

member of base class */

d.display(); /* accessing base class member display() is a public

member of base class */

Inheritance Unit-10

234 Object-Oriented Programming Through C++ (Block-2)

d.show();
getch();
return 0;

}

The output will be like this:
Number 1 is : 5
Number 2 is : 10
Number 3 is : 15

Here, d is a derived class object. With the statement d.input(5,15);
we have made a call to the function input() of base class by the
derived class object. Similarly, we have called display() member
function of base class.

 Private derivation

When the base class is inherited by using private access speci-
fier, all the public and protected members of the base class be-
come private member of the derived class. Therefore, public mem-
bers of base class can only be accessed by the member func-
tions of the derived class and they are not accessible to the ob-
jects of the derived class.

For example, if we use the statement

class derived : private base

instead of class derived : public base

in the above program, it will give two error message while compiling:

Error: base::input(int,int) is not accessible

Error: base::display() is not accessible

As the base class is privately inherited, input() and display() become
private to the derived class althogh they were public in the base
class. So other functions like main() cannot access them. Statement
like d.input(5,10); and d.display(); will be invalid in that case.

InheritanceUnit-10

235Object-Oriented Programming Through C++ (Block-2)

Protected Members and Inheritance:

Protected members provide greater flexibility in case of inheritance.
By using protected instead of private declaration, we can create class
members that are private to their class but that can still be inherited
and accessed by derived class. A member declared as protected is
accessible by the member functions within its class and any class
immediately derived from it.

When a protected member is inherited in public mode, it becomes
protected in the derived class too and therefore is accessible by the
member functions of the derived class. It also becomes ready for
further inheritance. If a base class is inherited as private, then the
protected member of base class becomes private in the derived
class. Although it is available to the member function of the derived
class, it is not available for further inheritance since private mem-
bers cannot be inherited.

/*Program 10.2: Program showing protected members inherited in
public mode */

#include<iostream.h>

#include<conio.h>

class base
{

protected:
int num1,num2; /*private to base, protected to derived and

accessible by derived class member function*/

public:
void input(int n1, int n2)
{

num1=n1;
num2=n2;

}
void display()
{

cout<<"Number 1 is: "<<num1<<endl;

Inheritance Unit-10

236 Object-Oriented Programming Through C++ (Block-2)

cout<<"Number 2 is: "<<num2;
}

}; //end of base class

class derived : public base //base class is publicly inherited
{

private:
int s;

public:
void add()
{

s=num1+num2 ; /* derived class accessing base class

protected member num1, num2 */

}
void show()
{

cout<<"\nSummation is : "<<s;
}

}; //end of derived class
int main()
{

derived d; // d is an object of derived class

clrscr();

d.input(10,20); /* accessing base class member. input() is a function

of base class */

d.display(); /* accessing base class member. display() is a function of

base class */

d.add();
d.show();
getch();
return 0;

}

The above program will give the output as:
Number 1 is : 10
Number 2 is : 20
Summation is : 30

InheritanceUnit-10

237Object-Oriented Programming Through C++ (Block-2)

The derived class member function void add() can access num1
and num2 of the base class as because num1 and num2 are de-
clared as protected and base class access specifier is public.

 Protected derivation

When the base class is inherited by using protected access
specifier, then all protected and public members of base class
become protected members of the derived class. Let us consider
the following example:

//Program 10.3 : Base class derived as protected
#include<iostream.h>
#include<conio.h>
class base
{

protected:
int num1,num2;

public:
void input(int n1, int n2)
{

num1=n1;
num2=n2;

}
void display()
{

cout<<"Number 1 is: "<<num1<<endl;
cout<<"Number 2 is: "<<num2;

}
}; //end of base class

class derived : protected base
{

private:
int s;

public:
void add()
{

Inheritance Unit-10

238 Object-Oriented Programming Through C++ (Block-2)

input(30,60); /*member function add() of derived

class can access input() as it is inher-

ited as protected */

s=num1+num2; // num1,num2 are inherited as

// protected, so add() can access

}
void showall()
{

display(); //display() is inherited as protected

cout<<"\nSummation is : "<<s;
}

}; //end of derived class
int main()
{

derived d;
clrscr();
//d.input(10,20); /* invalid. input() is inherited as protected member of

derived. main() can't access it */

d.add(); /* accessing base class member display() is a function of base

class */

d.showall(); // public member of derived

// d.display(); /* invalid. display() can be accessible by derive class

member function only */

getch();
return 0;

}

The above program will give the following output:
Number 1 is : 30
Number 2 is : 60
Summation is : 90

In the program we can see that input(), display(), num1, num2 of base
class are inherited as protected to derive class. The member functions
add(), showall() of derived class can use them; as protected members are
accessible by derive class members. But main() is not a member function
and it cannot access input() and display(). Although num1, num2 are
protected to derived class, but they behave as private to base class.

InheritanceUnit-10

239Object-Oriented Programming Through C++ (Block-2)

CHECK YOUR PROGRESS -1

1. Answer the following by selecting the appropriate option:

(i) By using protected, one can create class members that
(a) cannot be inherited and accessed by a derived class
(b) can be accessed by a derived class
(c) can be public
(d) none of these

(ii) Class members are by default _________
(a) protected (b) public
(c) private (d) none of these

(iii) When base class access specifier is protected, then public
members of base class can be accessible by

(a) member function of derived class

(b) main() function

(c) objects of derived class

(d) none of these

(iv) Private data members of base class can be inherited by
declaring them as
(a) private (b) public
(c) protected (d) none of these

(v) If we donot specify the visibility mode in base class
derivation then by default it will be
(a) protected (b) private
(c) public (d) none of these

(vi) Private data members can be accessed

(a) from derive class

(b) only from the base class itself

(c) both from the base class and from its derived class

(d) None of these

Inheritance Unit-10

240 Object-Oriented Programming Through C++ (Block-2)

10.4 TYPES OF INHERITANCE

A program can use one or more base classes to derive a single class. It is
also possible that one derived class can be used as base class for another
class. Depending on the number of base classes and levels of derivation
inheritance is classified into the following forms:

 Single Inheritance

 Multiple Inheritance

 Hierarchical Inheritance

 Multilevel Inheritance

 Hybrid Inheritance

 Multipath Inheritance

10.4.1 SINGLE INHERITANCE

The programs discussed so far in this unit are examples of single
inheritance. In single inheritance the derived class has only one
base class and the derived class is not used as base class. The
pictorial representation of single inheritance is given below.

Base class

Derived class

Fig. 10.1: Single Inheritance

The arrow directed from base class towards the derived class indi-
cates that the features of base class are inherited to the derived
class. In the following program, we have derived “employee” class
from “person” class. Data member “name” and “age” are common
to both of the two classes. “name” and “age” are declared as pro-
tected so that derive class can inherit “name” and “age” from the
base class “person”. Base class is inherited in public mode. Employee

InheritanceUnit-10

241Object-Oriented Programming Through C++ (Block-2)

may have some other data like designation, salary. So the other data
members of “employee” class are “desig” and “salary”.

/* Program 10.4: Single inheritance with protected data member and
public inheritance of base class */

#include<iostream.h>

#include<conio.h>

#include<string.h>

class person //base class “person”

{

protected:
char name[30]; //protected to derived class ‘employee’

float age;
public:

void enter(char *nm, float a) /* base class member function */

{
strcpy(name,nm);
age=a;

}

void display() //base class member function

{
cout<<"Name: "<<name<<endl;
cout<<"Age: "<<age<<endl;

}
};

class employee : public person */base class ”person” is publicly

inherited */

{ */by derived class “employee” */

private:
float salary;
char desig[20];

public:
void enter_data(char *n,char *d,float ag,float s)
{

Inheritance Unit-10

242 Object-Oriented Programming Through C++ (Block-2)

strcpy(name,n); //”name” of base class can be accessi-

ble

//by derived class member function

strcpy(desig,d);
salary=s;
age=ag; //age can be accessible by

//enter_data() of derived class

}

void display_all() //derived class member function

{
display(); //can be used here as publicly inherited

cout<<"Designation: "<<desig<<endl;

cout<<"Salary: "<<salary<<endl;
}

};
int main()
{

employee e1,e2; //e1,e2 are objects of derived class "employee"

person p; // p is an object of base class "Person"

clrscr();

e1.enter_data("Raktim","Clerk",32,5000);

cout<<"Employee Details....."<<endl;

e1.display_all();

e2.enter("Vaskar",41); /*erived class object e1 accessing public

member of base enter() */

e2.display(); /*derived class object e2 accessing public member of

base display() */

cout<<endl<<"Person Details....."<<endl;

p.enter("Pragyan",24);

p.display();

getch();

return 0;
}

InheritanceUnit-10

243Object-Oriented Programming Through C++ (Block-2)

Here, the derived class “employee” uses name and age of base
class “person” with the help of derived class member function
enter_data().

Two different classes may have member functions with the same
name as well as same set of arguments. But in case of inheritance,
an ambiguous situation arises when base class and derived classes
contain member functions with same name. In main(), if we call
member function of that particular name of base class with derived
class object, then it will always make a call to the derived class
member function of that name.This is because, the function in the
derived class overrides the inherited function. However, we can invoke
the function defined in base class by using the scope resolution
operator (::) to specify the class. For example, let us consider the
following program.

/*Program 10.5: when base and derived class has member functions
with same name*/

#include<iostream.h>
#include<conio.h>
class B

{
protected:

int p;
public:

void enter()
{

cout<<"\nEnter an integer:";
cin>>p;

}
void show()
{

cout<<"\n\nThe number in Base Class is: "<<p;
}

};
class D : public B

Inheritance Unit-10

244 Object-Oriented Programming Through C++ (Block-2)

{
private:

int q,r;
public:

void enter() //overrides enter() of "B"

{
B::enter();
cout<<"\nEnter an integer:";
cin>>q;

}
void show()
{

r=p*q;
cout<<"\nEntered numbers in Base and

Derived class are:"<<p<<"\t"<<q;
cout<<"\n\nThe product is :"<<r;

}
};
int main()
{

D d; //d is an object of class derived class "D"

clrscr();
d.enter(); //invokes enter() of "D"

d.show(); //invokes show() of "D"

d.B::show(); //invokes show() of "B"

getch();
return 0;

}

In the program, the function name show() is same in both base “B”
and derived class “D”. To call show() of base class “B”, we have used
the statement d.B::show(); If we use simply d.show(); then it will
invoke show() of derived class “D”.

When a derive class implements a function that has the same name
as well as the same set of arguments as the function in the base

InheritanceUnit-10

245Object-Oriented Programming Through C++ (Block-2)

class, it is called function overriding. When such a function is called
through a object of derived class, then the derived class function
would be invoked. However, that function in base class would remain
hidden.

But there are certain situations where function overriding plays an
important role.

10.4.2 MULTIPLE INHERITANCE

When one class is derived from two or more base classes then it is
called multiple inheritance. This type of inheritance allows us to
combine the properties of more than one existing classes in a new
class. The following figure depicts the multiple inheritance

Fig.10.2: Multiple inheritance

We have to specify the base classes one by one separated my
commas with their access specifiers. The general form of deriving a
derived class from numbers of base class is as follows:

class D : public X, public Y, public Z
{

...... //body of the derived class
};

where X,Y, Z are base classes and D is the derived class. There may
be numbers of base classes in multiple inheritance which is indicated

X Y Z

D

Inheritance Unit-10

246 Object-Oriented Programming Through C++ (Block-2)

by the dotted line in the figure.
For demonstration of multiple inheritance let us consider the follow-
ing program. There are three base classes and one derived class.
The derived class CHARACTER has one private member “n” and
two public member functions “enter()” and “show()”. The function
“enter()” is used to read a number, a vowel, a consonent and a sym-
bol from the keyboard and the “show()” function is used to display the
contents on the screen. The class members of all the three base
classes are publicly derived.

// Program 10.6 : Example of Multiple inheritance
#include<iostream.h>
#include<conio.h>
class V //base class
{

protected:
char v;

};
class C //base class
{

protected:
char c;

};
class S //base class
{

protected:
char s;

};

class CHARACTER : public V, public C, public S
{

private:
int n;

public:
void enter() //derived class member function

{
cout<<"\nEnter a vowel:";
cin>>v; //accessing protected member v of class

InheritanceUnit-10

247Object-Oriented Programming Through C++ (Block-2)

"VOWEL"

cout<<"\nEnter a consonent:";
cin>>c; //accessing c of "CONSONENT" class

cout<<"\nEnter a symbol:";
cin>>s //accessing s of "SYMBOL" class

cout<<"\nEnter a number:";
cin>>n; //accessing n of "NUMBER" class

}
void show()
{ cout<<"\nThe entered characters are :\n\n";

cout<<"\nVowel: "<<v;
cout<<"\nConsonent: "<<c;
cout<<"\nSymbol: "<<s;
cout<<"\nNumber: "<<n;

}
};
int main()
{

CHARACTER o; //o is an object of derived class "character"

clrscr();
o.enter();
o.show();
getch();
return 0;

}

One switable example of the implementation of multiple inheritance
is shown in the program below:

/*Program 10.7: Program showing multiple inheritance with two base
class (practical, theory) and one derived class (result) /*

#include<iostream.h>
#include<conio.h>
class practical //base class “practical”

{
protected:

Inheritance Unit-10

248 Object-Oriented Programming Through C++ (Block-2)

float p1_marks, p2_marks,total;
public:

void practical_marks()
{

cout<<"Enter marks of practical paper 1 and paper
2: ";
cin>>p1_marks>> p2_marks;

}
float add() //returns the total of practical

{
total=p1_marks+p2_marks;
return total;

}
void display_practical()
{

cout<<endl<<"Total Practical marks:"<<total;
}

}; //end of “practical” class

class theory // base class “theory”

{
protected:

float phy, chem, math, total_marks;
public:

void theory_marks(){
cout<<"Enter marks of Physics, Chemistry and
Mathematics:";
cin>>phy>>chem>>math;

}
float sum()
{

total_marks=phy+chem+math;
return total_marks;

}
void display_theory() {

cout<<endl<<"Total Theory marks:"<<total_marks;
}

}; //end of base class “theory”

InheritanceUnit-10

249Object-Oriented Programming Through C++ (Block-2)

class result : public practical,public theory
{

protected:
int roll;
float grand_total,t,p;

public:
void enter() {

cout<<"ENTER STUDENT
INFORMATION......"<<endl;
cout<<"Enter Roll no.:";
cin>>roll;
theory_marks(); //inherited public ly from base class

"theory"

practical_marks(); //inherited from base class "practical"

}
void theory_practical()
{

t=sum();

p=add();

grand_total=t+p;

cout<<"\nThe total marks of the student is:"
<<grand_total;

}
}; //end of derived class “result”
int main()
{

result s1; //object of derived class

clrscr();

s1.enter();

s1.theory_practical(); // accessing derived class member

s1.display_theory(); //s1 accessing "display_theory()" of "theory"

s1.display_practical();

getch();

return 0;

Inheritance Unit-10

250 Object-Oriented Programming Through C++ (Block-2)

}
When we execute the program entering marks for practical and theory
papers for a particular student, then it will display the result as fol-
lows:

ENTER STUDENT INFORMATION......
Enter Roll no.: 1
Enter marks of Physics, Chemistry and Mathematics: 65 72 81
Enter marks of practical paper 1 and paper 2 : 25 26
The total marks of the student is : 269
Total Theory marks : 218
Total Practical marks : 51

The above program consists of three classes: two base classes
(“practical” and “theory”) and one derived class (“result”). The
member function “enter()” of derive class inherits member functions
“practical_mark()” and “theory_ marks()” of base class “practical”
and “theory” respectively. Similarly, member function
“theory_practical()” uses “sum()” and “add()” of base class to
calculate the “grand_total” marks of student. Thus, in the derived
class we need not have to write functions for entering practical and
theory marks. We just inherit them from the base classes.

EXERCISE-1

Q. Suppose a class D is derived from class B. B has two public
member functions getdata() and showdata() and D has two
public functions readdata() and displayall(). Define the classes
such that both function getdata() and showdata() should be
accessible in the main() function.

10.4.3 HIERARCHICAL INHERITANCE

Derivation of more than one classes from a single base class is termed

InheritanceUnit-10

251Object-Oriented Programming Through C++ (Block-2)

as hierachical inheritance. This is a very common form of inherit-
ance in practice. The rules for defining such classes are the same
as in single inheritance. The pictorial representation of hierarchical
inheritance is as follows:

Fig.10 3: Hierarchical Inheritance

For demonstration of hierarchical inheritence let us consider a
program with one base class (“student”) and three derived classes
(“arts”, “science” and “commerce”).

//Program 10.8: Demonstration of hierarchical inheritance
#include<iostream.h>
#include<conio.h>
class student // base class “student”

{
protected:

char fname[20],lname[20];
int age,roll;

public:
void student_info()
{

cout<<"Enter the first name and last name: ";
cin>>fname>>lname;
cout<<"\nEnter the Roll no.and Age: ";
cin>>roll>>age ;

}
void display()
{

cout<<"\nRoll Number = "<<roll;
cout<<"\nFirst Name = "<<fname<<"\t"<<lname;
cout <<"\nAge = " << age;

B

Y ZX

Inheritance Unit-10

252 Object-Oriented Programming Through C++ (Block-2)

}
};
class arts : public student //derived class arts

{
private:

char asub1[20], asub2[20], asub3[20] ;
public:

void enter_arts()
{

student_info(); //base class member function

cout << "\n Enter the subject1 of the arts student:";
cin >> asub1 ;
cout << "\n Enter the subject2 of the arts student:";
cin >> asub2 ;
cout << "\n Enter the subject3 of the arts student:";
cin >> asub3 ;

}
void display_arts()
{

display();//base class member function

cout<< "\n\t Subject1 of the arts student="<< asub1;
cout<< "\n\t Subject2 of the arts student="<< asub2;
cout<< "\n\t Subject3 of the arts student="<< asub3;

}
};
class commerce : public student //derived class "commerce"

{
private:

 char csub1[20], csub2[20], csub3[20] ;
public:

void enter_com(void)
{

student_info(); //base class member function

cout << "\t Enter the subject1 of the commerce
student: ";
cin >> csub1;
cout << "\t Enter the subject2 of the commerce

InheritanceUnit-10

253Object-Oriented Programming Through C++ (Block-2)

student: ";
cin >> csub2 ;
cout << "\t Enter the subject3 of the commerce stu-
dent: ";
cin >> csub3 ;

}
void display_com()
{

display(); //base class member function

cout<<"\nSubject1 of the commerce student="
<<csub1;
cout <<"\nSubject2 of the commerce student = "
<<csub2;
cout<<"\nSubject3 of the commerce student = " <<
csub3 ;

}
};
class science : public student //derived class "science"

{
private:

char ssub1[20], ssub2[20], ssub3[20] ;
public:

void enter_sc(void)
{

student_info(); //base class member function

cout<<"\nEnter the subject1 of the science
student:";
cin>>ssub1;
cout<<"\nEnter the subject2 of the science
student:";
cin>>ssub2 ;
cout<<"\nEnter the subject3 of the science
student:";
cin>>ssub3 ;

}
void display_sc()

Inheritance Unit-10

254 Object-Oriented Programming Through C++ (Block-2)

{
display(); //base class member function

cout<<"\nSubject1 of the science student = " <<
ssub1 ;
cout<<"\nSubject2 of the science student = " <<
ssub2 ;
cout<<"\nSubject3 of the science student = " <<
ssub3 ;

}
};
int main()
{

arts a ; //a is an object of derived class "arts"

clrscr();
cout << "\n Entering details of the arts student\n" ;
a.enter_arts();
cout << "\n Displaying the details of the arts student\n" ;
a.display_arts();
science s; //s is an object of derived class "science"

cout << "\n\n Entering details of the science student\n" ;
s.enter_sc();
cout << "\n Displaying the details of the science student\n";
s.display_sc();
commerce c ; //c is an object of derived class "commerce"

cout << "\n\n Entering details of the commerce student\n" ;
c.enter_com();
cout << "\n Displaying the details of the commerce student\n";
c.display_com() ;
getch();
return 0;

}

10.4.4 MULTILEVEL INHERITANCE

C++ also provides the facility of multilevel inheritance, according

InheritanceUnit-10

255Object-Oriented Programming Through C++ (Block-2)

to which the derived class can also be derived by an another class,
which in turn can further be inherited by another and so on. For
instance, a class X serves as a base class for class Y which in turn
serves as base class for another class Z. The class Y which forms
the link between the classes X and Y is known as the intermediate
base class. Further, Z can also be used as a base class for another
new class. The following figure depicts multilevel inheritance.

Fig.10.4: Multilevel Inheritance

10.4.5 HYBRID INHERITANCE

It is possible to derive a class involving more than one type of
inheritance. Hybrid inheritance is that type of inheritance where
several forms of inheritance are used to derive a class. There could
be situations where we need to apply two or more types of inheritance
to design a particular program.

For example, let us assume that we are to design a program which
will select players for a particular compitition. For this purpose we
could consider four classes PLAYER, GAME, RESULT and
PHYSIQUE. PLAYER class contains the player details including
name, address, location etc. GAME class can be derived from
PLAYER class. Again if weightage for physical test should be added
before finalizing the result, then we can inherit that from PHYSIQUE.
RESULT class is derived from two base classes GAME and

X

Y

Z

Inheritance Unit-10

256 Object-Oriented Programming Through C++ (Block-2)

PHYSIQUE. The following diagram gives us the inhertance relation-
ship between various classes.

Fig.10.5: Hybrid Inheritance

In the diagram, RESULT has two base classes,GAME and PHY-
SIQUE. GAME is not only a base class but also a derived class.
Here we can see that two types of inheritance multiple and multilevel
are combined to create the RESULT class.

10.4.6 MULTIPATH INHERITANCE

The inheritance where a class is derived from two or more classes,
which are in turn derived from the same base class is known as
multipath inheritance. There may be many types of inheritance
such as multiple, multilevel, hierarchical etc. in multipath inheritance.
Certain difficulties may arise in this type of inheritance. Suppose we
have two derived classes D and E that have a common base class
B, and we have another class F that inherits from D and E.

Fig.10.6 : Multipath Inheritance

In the above diagram, we can observe three types of inheritances,

PLAYER

GAME

RESULT

PHYSIQUE

B

F

ED

InheritanceUnit-10

257Object-Oriented Programming Through C++ (Block-2)

i.e., multiple, multilevel and hierarchical. For better illustration let us
consider the following program.
// Program 10.9: Demosntration of multipath inheritance
#include<iostream.h>
#include<conio.h>
class B
{

protected:
int b;

};
class D : public B //B is publicly inherited by D

{
protected:

int d;
};
class E : public B //B is publicly inherited by E

{
protected:

int e;
};
class F : public D, public E //D,E are publicly inherited by F

{
protected:

int f;
public:

void enter_number()
{

cout<<"Enter some integer values for b,d,e,f: ";
cin>>b>>d>>e>>f;

}
void display()
{

cout<<"\nEntered numbers are:\n";
cout<<"\nb= "<<b<<"\nd= "<<d<<"\ne=
"<<e<<"\nf= "<<f;

}

Inheritance Unit-10

258 Object-Oriented Programming Through C++ (Block-2)

};
int main()
{

F obj; //instantiaton of class F

clrscr();
obj.enter_number(); //enter_number() of F is called

obj.display();
getch();
return 0;

}

Now if we instantiate class F and call the functions enter_number()
and display(), then the compiler shows the following types error mes-
sages:

Error M.cpp 28: Member is ambiguous:’B ::b’ and ‘B::b’

Error M.cpp 33: Member is ambiguous:’B ::b’ and ‘B::b’

This is due to the duplication of members of class B in F. The mem-
ber b of class B is inherited twice to class F: one through class D
and another through class E. This leads to ambiguity. To avoid such
type of situation, virtual base class is introduced.

10.5 VIRTUAL BASE CLASSES

C++ provides the concept of virtual base class to overcome the ambigu-
ity occured due to multipath inheritance. While discussing multipath inher-
itance, we have faced a situation which may lead to duplication of inherited
members in the derived class F (Fig.10.6). This can be avoided by making
the common base class (i.e.,B) as virtual base class while derivation. We
can declare the base class B as virtual to ensure that D and E share the
same data member B.

This is shown in the following program which is the modification of the
previous program (i.e.,Program 10.9).

InheritanceUnit-10

259Object-Oriented Programming Through C++ (Block-2)

/*Program 10.10: Virtual base class and removal of ambiguity
occuerd in multipath inheritance */
#include<iostream.h>

#include<conio.h>

class B

{

protected:

int b;

};

class D : public virtual B //B is publicly inherited by D and made virtual

{

protected:

int d;

};

class E : public virtual B //B is publicly inherited by E and made virtual

{

protected:

int e;

};

class F : public D, public E //D,E are publicly inherited by F

{

protected:

int f;

public:

void enter_number()

{

cout<<"Enter some integer values for b,d,e,f: ";

cin>>b>>d>>e>>f;

}

void display()

{

cout<<"\nEntered numbers are:\n";

cout<<"\nb= "<<b<<"\nd= "<<d<<"\ne=

"<<e<<"\nf= "<<f;

Inheritance Unit-10

260 Object-Oriented Programming Through C++ (Block-2)

}

};
int main()
{

F obj; //instantiaton of class F

clrscr();
obj.enter_number();
obj.display();
getch();
return 0;

}

Here we used the keyword virtual in front of the base class specifiers to
indicate that only one subobject of type B, shared by class D and class E,
exists.. When a class is made a virtual base class, C++ takes the
necessary action that only one copy of that class is inherited, regardless of
how many paths exist between the virtual base class and a derived class.

10.6 ABSTRACT CLASSES

The objects created often are the instances of a derived class but not of
the base class. The base class just becomes a structure or foundaion with
the help of which other classes are built and hence such classes are called
abstract class or abstract base class. In other words, when a class is
not used for creating objects then it is called abstract class. In the Program
10.10 , B is an abstract class since it was not used for creating any object.

LET US KNOW

Inheritance and Constructors, Destructors

Although constructors are suitable for initializing objects , we
have not used them in any program in this unit for the sake of
simplicity. But if we use contructors in program, then we must
follow certain definite rules while inheriting derive classes. If
the base class contains no argument constructor then the de-

InheritanceUnit-10

261Object-Oriented Programming Through C++ (Block-2)

rived class does not require a constructor. If any base class
contains parameterized constructor, then it is mandatory for
the derived class to have a constructor and pass the argu-
ments to the base class constructors. In case of inheritance,
normally derived classes are used to declare objects. Hence it
is necessary to define constructor in the derived class. When
both the derived and base classes contain constructors, the
base constructor is executed first and then the constructor in
derived class is executed. Destructors are executed in the
reverse order of constructor execution.

CHECK YOUR PROGRESS -2

1. Select whether the following statements are True (T) or False
(F):

(i) A class can serve as base class for many derived classes.

(ii) When one class is derived from another derived class then
that is called multiple inheritance.

(iii) When one class is derived from more than one base class
then that is called multiple inheritence.

(iv) When more than one form of inheritance is used in
designing a class then that type is called hybrid inheritance.

2. Answer the following by selecting the appropriate option:

(i) In multilevel inheritance, the middle class acts as

(a) only derived class (b) only base class

(c) base class as well as derived class

(d) none of the above

(ii) A class is declared “virtual” when

(a) more than one class is derived

(b) two or more classes have common base class

(c) there are more than one base classes

(d) none of the above

Inheritance Unit-10

262 Object-Oriented Programming Through C++ (Block-2)

(iii) When a class is not used for creating objects, it is called

(a) abstract class (b) virtual base class

(c) derived class (d) none of these

(iv) Intermediate base class is present in case of

(a) single inheritance (b) multiple inheritance

(c) multilevel inheritance (d) hierarchical inheritance

10.7 LET US SUM UP

The key points to be kept in mind in this unit are:

 Inheritance is one of the most useful and essential characteristics
of object-oriented programming language. If we have developed a
class and we want a new class that is almost similar, but slightly
different, the principles of inheritance comes handy. The existing class
is known as base class and the newly formed class is known as
derived class.The derived class can have some other characteristics
which are not in base class.

 Private members of a class cannot be inherited either in public mode
or in private mode.

 When a public member inherited in public, protected and private
mode, then in derived class it remains with the same access specifiers
as in base class i.e., public, protected and private respectively.

 A protectedmember inherited in public mode becomes protected,
whereas inherited in private mode becomes private in derived class.

 The protected and public data

 In single inheritance, one new class is derived from a single base
class.

 When a class is derived using the properties of several base classes,
then it is called multiple inheritance.

 The process of deriving a class from another derived class is called
multilevel inheritance.

InheritanceUnit-10

263Object-Oriented Programming Through C++ (Block-2)

 More than one class can be derived from only one base class i.e.,
characteristics of one class can be inherited by more than one class.
This is called hierarchical inheritance.

 When different types of inheritance are applied in a single program
then it is termed as hybrid inheritance.

 When a class is derived from two or more classes, which are derived
from the same base class, such type of inheritance is known as
multipath inheritance.

 We can make a class virtual if it is a base class that has been used
by more than one derived class as their base class. When classes
are declared as virtual, the compiler takes necessary caution to avoid
the duplication of the member variables.

 When a class is not used for creating objects, it is called an abstract
class.

10.8 ANSWERS TO CHECK YOUR PROGRESS

CHECK YOUR PROGRESS-1

1. (i) (b) can be accessed by a derived class
(ii) (c) private
(iii) (a) member function of derived class
(iv) (c) protected
(v) (b) private
(vi) (b) only from the base class itself

CHECK YOUR PROGRESS-2

1. (i) True (ii) False
(iii) True (iv) True

2. (i) (c) base class as well as derived class
(ii) (b) two or more classes have common base class
(iii) (a) abstract class
(iv) (c) multilevel inheritance

Inheritance Unit-10

264 Object-Oriented Programming Through C++ (Block-2)

10.9 FURTHER READINGS

1. “Mastering C++”, by K.R.Venugopal, Rajkumar, Ravishankar, Tata
McGraw Hill publication

2. “The Complete Reference C++”, by Herbert Schildt, Tata McGraw
Hill publication

3. “Object Oriented Programming with C++”, by E. Balagurusamy, Tata
McGraw Hill publication

4. “Object-Oriented Programming with ANSI & Turbo C++”, by Ashok
N.Kamthane, Pearson Education

10.10 MODEL QUESTIONS

1. What does inheritance mean in C++?

2. What are the types of inheritance? Explain any three of them with
examples.

3. What are the different types of visibility modes of base class?

4. Write a program to derive a class from multiple base classes.

5. When do we make a class virtual?

6. What are abstract base classes?

7. Explain multipath inheritance.

8. Write a C++ program involving appropriate type of inheritance which
will inherit two classes triangle and rectangle from polygon class.
Use member functions for entering appropriate parameters like
width,height etc. and to calculate the area of triangle and rectangle.

9. Consider a case of University having the disciplines of Engineering,
Management, Science, Arts and Commerce. There are many colleges
in the University. Assuming a college can run a course partaining to
only one discipline, draw the class diagram.To which type of
inheritance this structure belong?

InheritanceUnit-10

265Object-Oriented Programming Through C++ (Block-2)

UNIT-11 : VIRTUAL FUNCTIONS AND
POLYMORPHISM

UNIT STRUCTURE

11.1 Learning Objectives
11.2 Introduction
11.3 Polymorphism

11.3.1 Types of Polymorphism in C++
11.4 Virtual Functions
11.5 Pure Virtual Functions
11.6 Let Us Sum Up
11.7 Answers to Check Your Progress
11.8 Further Readings
11.9 Model Questions

11.1 LEARNING OBJECTIVES

After going through this unit, you will be able to–

 learn about polymorphism and its types

 define the rules for virtual function

 use virtual function to achieve run-time polymorphism

 describe and implement pure virtual function

11.2 INTRODUCTION

In the previous unit we have studied the concept of inheritance and its
importance in object-oriented programming language like C++.

In this unit we will discuss one useful feature of object-oriented program-
ming, polymorphism. It is the ability of objects to take different forms. The
ability to display variable behavior depending on the situation is a great

266 Object-Oriented Programming Through C++ (Block-2)

facility in any programming language. In earlier units we have seen opera-
tor oveloading and overloading of functions. Those are also one kind of
polymorphism. C++ supports a mechanism known as virtual function to
achieve run-time polymorphism. The necessity and usefulness of virtual
functions in programming will also be covered in this unit.

11.3 POLYMORPHISM

The word polymorphism is a combination of two Greek words, poly and
morphism. Poly means many and morphism means form. The functional-
ity of this feature resembles with its name.

11.3.1 TYPES OF POLYMORPHISM IN C++

Polymorphism is supported by C++ both at compile-time and at run-
time. Hence, there are two types of polymorphism:

 Compile-time Polymorphism

 Run-time Polymorphism

Fig: 11.1: Polymorphism in C++

Operator overloading is achieved by allowing operators to operate
on the user defined data type with the same manner as that of built-
in data types. For example, plus “+” operator produces different actions
in case of integers, complex numbers or strings. With the help of

Polymorphism

Compile-time Run-time

Virtual
Function

Function
Overloading

Operator
Overloading

Virtual Functions and PolymorphismUnit-11

267Object-Oriented Programming Through C++ (Block-2)

function overloading, we can write different functions by using same
function name but with different argument lists. The functon would
perform different operation depending on the argument list in the
functon call. The overloaded member functions are selected for
invoking by matching the number of arguments and type of arguments.
This information is known to the compiler at the compile time itself
and therefore the selection of the appropriate function is made at the
compile time only.

In both cases, the compiler is arare of the complete information
regarding the type and number of operands. Hence, it is possible for
the compiler to select a suitable function at compile time. This is
known as compile-time polymorphism. It is also termed as static
binding or early binding.

Let us consider a program where the function name and argument
list are same in both the base and derived class.

//Program 11.1:
#include<iostream.h>
#include<conio.h>
class B //base class

{
protected:

int n;
public:

void enter()
{

cout<<"Enter a number in base class:\n";
cin>>n;

}
void display()
{

cout<<"\nThe number in base class is: "<<n;
}

}; //end of base class declaration

Virtual Functions and Polymorphism Unit-11

268 Object-Oriented Programming Through C++ (Block-2)

class D:public B //derived class D

{
private:

int num;
public:

void input()
{

cout<<"\nEnter a number in derived class:";
cin>>num;

}
void display()
{

cout<<"\nThe number in derived class: "<<n;
}

};
int main()
{

D d;
clrscr();
d.enter(); //will call the enter() of base class

d.display(); //display() of derived class will be invoked,

getch();
return 0;

}

Output of the above program will be like this:

Enter a number in base class : 6

The number in derived class : 6

But our intension is to display is :
The number in base class : 6

It has been observed that prototype of display() is same in both
base and derived class and we cannot term it as function overloading.
Thus static binding does not apply in this case. We have already
used statement like d.B::show(); in such situation (program 10.5 of
unit Inheritance); i.e., we used the scope resolution operator (::) to

Virtual Functions and PolymorphismUnit-11

269Object-Oriented Programming Through C++ (Block-2)

specify the class while invoking the functions with the derived class
objects. But it would be nice if the appropriate member function could
be selected while the program is running. With the help of inheritance
and virtual functions, C++ determines which version of that function
to call. This determination is made at run-time and is known as run-
time polymorphism. Here the function is linked with a particular
class much later after the compilation and thus it is also known as
late binding or dynamic binding. In the following section, we will
discuss how to implement virtual function to achieve run-time
polymorphism.

11.4 VIRTUAL FUNCTIONS

The concept of virtual functions is different from function overloading. A
virtual function is a member function that is declared within a base class
and redefined by a derived class. The whole function body can be replaced
with a new set of implementation in the derived class. To make a function
virtual, the virtual keyword must precede the function declaration in the
base class. The redefinition of the function in any derived class does not
require a second use of the virtual keyword. The difference between a
non virtual member function and a virtual member function is, the non
virtual member functions are resolved at compile time. Where as the virtual
member functions are resolved during run-time.

The concept of pointers to object is prior to know before implementing
virtual function. We have already studied the concept of pointers in earlier
units. At this point, we shall discuss how class members are accessible
with the help of pointers.

Pointers to Objects

A pointer can point to a class object. This is called object pointer. Object
pointers are useful in creating objects at run time and public members of
class can be accessible by object pointers. For example, we can create
pointers pointing to classes, as follows:

polygon *optr;

Virtual Functions and Polymorphism Unit-11

270 Object-Oriented Programming Through C++ (Block-2)

i.e., class name followed by an asterik (*) and then the variable name. Thus,
in the above declaration, *optr is a pointer to an object of class polygon.
To refer directly to a member of an object pointed by a pointer we can use
arrow operator (- >). Here is a program for the illustration of object pointers:

//Program 11.2: Demonstration of pointer to object
#include<iostream.h>
#include<conio.h>
class polygon
{

protected:
int width, height;

public:
void set_values (int w, int h)
{

width=w;
height=h;

}
void display()
{

cout<<“Width : ”<<width<<endl<<“Height :
”<<height;

}
};
int main ()
{

polygon p; // p is an object of type polygon

polygon *optr = &p; // creation and initiazation of object pointer

optr->set_values (8,6); //object pointer accessing member

optr->display(); //function “set_values()” and “display()”

getch(); // with arrow operator.

return 0;
}

With the statement polygon *optr = &p;

Virtual Functions and PolymorphismUnit-11

271Object-Oriented Programming Through C++ (Block-2)

we have created object pointer optr of type polygon and initialized it with
the address of p object. We can also create the objects using pointers and
new operator as follows:

polygon *optr = new polygon;

This statement allocates enough memory for the data members in the
object of the particular class and assigns the address of the memory space
to optr.

Pointer to base and derived class objects

Pointers can also be used to point base or derived class object. Pointers to
object of base class is type-compatible with a pointer to object of derived
class. If we create a base class pointer, then that pointer can point to
object of base as well as object of derived class.

For example, let us consider the following program :

//Program 11.3:
#include<iostream.h>
#include<conio.h>
class polygon
{

protected:
int width, height;

public:
void set_values(int w, int h)
{

width=w;
height=h;

}
};
class rectangle: public polygon //derived class rectangle

{
public:

int area()
{

return (width*height);

Virtual Functions and Polymorphism Unit-11

272 Object-Oriented Programming Through C++ (Block-2)

}
};
class triangle: public polygon //derived class triangle

{
public:

int area()
{

return (width*height / 2);
}

};
int main ()
{

rectangle r; // derived class object r

triangle t; // derived class object t

clrscr();

polygon *p1 = &r; //base class pointer pointing derived class object r

polygon *p2 = &t; // p2 pointing to object t of triangle class

p1->set_values(5,6);

p2->set_values(5,6);
cout<<"\nArea of the rectangle is :"<<r.area()<<endl;
cout<<"\nArea of the triangle is :"<<t.area()<<endl;
getch();
return 0;

}

The output of the programm will be like this:

Area of the rectangle is : 30
Area of the triangle is : 15

In function main, we create two pointers p1 and p2 that point to objects of
class polygon. Then we assign references to r and t to these pointers.
Both are valid assignment operations as because both are objects of classes
derived from polygon. The only limitation in using *p1 and *p2 instead of
r and t is that both *p1 and *p2 are object pointers of type polygon and
therefore we can only use these pointers to refer to the members that
rectangle and triangle inherit from polygon.

Virtual Functions and PolymorphismUnit-11

273Object-Oriented Programming Through C++ (Block-2)

The use of pointer to objects of base class with the objects of its derived
class does not allow access even to public members of a derived class. That
is, it allows access only to those members inherited from the base class but
not to the members which are defined to the derived class. For that reason
when we call the area() members at the end of the program we have had
to use directly the objects r and t instead of the pointers *p1 and *p2.

In order to use area() with the pointers to base class polygon, this member
should also have been declared in the class polygon, and not only in its
derived classes. But the problem is that, rectangle and triangle implement
different versions of area(). Therefore we cannot implement it in the base
class polygon. In such situations, virtual functions are necessary.

A pointer to a derived class object may be assigned to a base class pointer,
and a virtual function called through the pointer. If the function is virtual
and occurs both in the base class and in derived classes, then the right
function will be picked up based on what the base class pointer really points
at.

//Program 11.3: Program demonstrating the use of virtual function
#include<iostream.h>
#include<conio.h>
class polygon
{

protected:
int width, height;

public:
void set_values(int w, int h)
{

width=w;
height=h;

}
virtual int area() //virtual function

{
return (0);

}
};

Virtual Functions and Polymorphism Unit-11

274 Object-Oriented Programming Through C++ (Block-2)

class rectangle: public polygon
{

public:
int area() //virtual function redefined

{
return (width*height);

}
};
class triangle: public polygon
{

public:
int area() //virtual function redefined

{
return (width * height / 2);

}
};
int main()
{

rectangle r; //r is an object of derived class rectangle

triangle t; //t is an object of derived class triangle

polygon p; //p is an object of base class polygon

clrscr();
polygon *p1=&r; //pointer to a derived class object r

polygon *p2=&t;
polygon *p3=&p;
p1->set_values(5,6);
p2->set_values (5,6);
p3->set_values (5,6);
cout<<"Area of the rectangle is: "<<p1->area()<<endl;
cout<<"Area of the triangle is: "<<p2->area()<<endl;
cout<<"Area in the polygon class: "<<p3->area()<<endl;
getch();
return 0;

}

In the above program, the three classes polygon, rectangle and triangle
have one common member function: area(). The member function area()

Virtual Functions and PolymorphismUnit-11

275Object-Oriented Programming Through C++ (Block-2)

has been declared as virtual in the base class and it is later redefined in
each derived class. The output of the program willl be like this:

Area of the rectangle is : 30

Area of the triangle is : 15

Area in the polygon class : 0

If we remove the virtual keyword from the declaration of area() within
polygon and run the program, the result will be 0 for the three polygons
instead of 30, 15 and 0. That is because instead of calling the corresponding
area() function for each object (rectangle::area(), triangle::area() and
polygon::area(), respectively), polygon::area() will be called in all cases
since the calls are via a pointer of type polygon. A class that declares or
inherits a virtual function is called a polymorphic class.

When functions are declared as virtual, the compiler adds a data member
secretly to the class. This data member is referred to as a virtual pointer
(VPTR). A table called virtual table (VTBL) contains pointers to all the
functions that have been declared as virtual in a class, or any other classes
that are inherited. Whenever a call to a virtual function is made in the C++
program, the compiler generates code to treat VPTR as the starting address
of an array of pointers to functions. The function call code simply indexes
into this array and calls the function located at the indexed addresses. The
binding of function call always requires this dynamic indexing activities which
always happens at run-time. If a call to a virtual function is made, while
treating the object in question, as a member of its base class, the correct
derived class function will be called. Thus dynamic binding is achieved with
the help of virtual functions.

There are some definite rule for writing virtual function. Those rules are:

 The virtual functions must be members of some class.

 Object pointers should be used to access virtual function.

 A virtual function in a base class must be defined even though it may
not be used.

 The prototype of the function which we declare as virtual in the base
class must be same with all its derived class versions.

Virtual Functions and Polymorphism Unit-11

276 Object-Oriented Programming Through C++ (Block-2)

 A base pointer can point to any type of the derived object. But we
cannot use a pointer to a derived class to access an object of the
base class.

 Constructors cannot be virtual but destructors can be virtual.

CHECK YOUR PROGRESS -1

1. Choose the appropriate option for the correct answer:
(i) Run-time polymorphim can be accomplished with the help

of
(a) operator overloading (b) function overloading
(c) virtual function (d) friend function

(ii) Static binding is associated with
(a) compile-time polymorphism
(b) run-time polymorphism
(c) virtual function (d) none of these

(iii) Pionter to object of base class can point
(a) base class object (b) derived class object
(c) both (a) and (b) (d) none of these

(iv) Virtual functions can be accessible by
(a) scope resolution operator
(b) object pointer
(c) object (d) none of these

(v) The ability to take many forms is called
(a) encapsulation (b) polymorphism
(c) inheritance (d) none of these

2. State which of the following statements are True (T) or False
F) :
(i) The prototype of the function which we declare as virtual

in the base class must be different with all its derived class
versions.

(ii) Run-time polymorphism can be achieved only when a virtual
function is accessed through a pointer to the base class.

(iii) Functions and operator overloading are examples of
compile-time polymorphism.

Virtual Functions and PolymorphismUnit-11

277Object-Oriented Programming Through C++ (Block-2)

11.5 PURE VIRTUAL FUNCTIONS

Generally, we declare a virtual function inside a base class and redefine it
in the derived classes. In many situations there can be no meaningful
definition of a virtual function within a base class. Most of the times, the
idea behind declaring a function virtual (in the base class), is to stop its
execution.Then the question arises why should we define virtual functions?
This leads to the idea of pure virtual functions.

For example, in the previous program(program 11.3), we have defined a
virtual function area() within the base class polygon . We have also created
objects of polygon class and made a call to its own area() function with
object pointer. As the function has minimal functionality, we could leave
that area() member function without any definition in the base class. This
can be done by appending =0 (equal to zero) to the function declaration as
follows:

virtual int area() = 0;

Such functions are called pure virtual functions. The general form of
declaring a pure virtual function is:

virtual return_type function_name(parameter_list) = 0;

 A pure virtual function is a virtual function that has no definition within
the base class. It only serves as a placeholder. In such cases, the compiler
requires each derived class to either define the function or redeclare it as
pure virtual function. A class containing pure virtual functions cannot be
used to declare objects of its own. Such classes are known as abstract
base class. As stated earlier, when a class is not used for creating objects
then it is called abstract class or abstract base class, similarly, a class
containg pure virtual functions cannot be used for creating objects. A class
that cannot instantiate objects is not useless. We can create pointers to it
and take advantage of all its polymorphic abilities. Let us examine the
working of pure virtual functions with an example:

//Program 11.4: Demonstration of pure virtual function
#include<iostream.h>

Virtual Functions and Polymorphism Unit-11

278 Object-Oriented Programming Through C++ (Block-2)

#include<conio.h>
class polygon
{

protected:
int width, height;

public:
void set_values(int w, int h)
{

width=w;
height=h;

}
virtual int area() = 0; //pure virtual function

};
class rectangle: public polygon
{

public:
int area()
{

return (width*height);
}

};
class triangle: public polygon
{

public:
int area()
{

return (width * height / 2);
}

};
int main()
{

rectangle r; //r is an object of derived class rectangle

triangle t; //t is an object of derived class triangle

clrscr();
polygon *p1=&r; //p1 points to object r
polygon *p2=&t; //p2 points to object t

Virtual Functions and PolymorphismUnit-11

279Object-Oriented Programming Through C++ (Block-2)

p1->set_values(5,6);
p2->set_values (5,6);
cout<<"Area of the rectangle is: "<<p1->area()<<endl;
cout<<"Area of the triangle is: "<<p2->area()<<endl;
getch();
return 0;

}

The output will be like this:

Area of the rectangle is : 30

Area of the rectangle is : 15

We can observe that, here we refer to objects of different but related classes
using a unique type of pointer (polygon *p1,*p2). In the main() function, if
we try to create object of polygon class with statement like polygon p;
then the compiler will give error message of following type:

Error: Cannot create instance of abstract class ‘polygon’.

We should remember that when a virtual function is made pure, any derived
class must provide its own definition. If the derived class fails to override
the pure virtual function, a compile time error will occur.

Virtual function and dynamic allocation of objects

Virtual member function can also be implemented with dynamically
allocated objects. Let us demonstrate the same example with objects that
are dynamicalled allocated.

/*Program 11.5: Demonstration of pure virtual function and
dynamically allocated object */

#include<iostream.h>
#include<conio.h>
class polygon
{

protected:
int width, height;

public:

Virtual Functions and Polymorphism Unit-11

280 Object-Oriented Programming Through C++ (Block-2)

void set_values(int w, int h)
{

width=w;
height=h;

}
virtual int area()=0; //pure virtual function

};
class rectangle: public polygon
{

public:
int area()
{

return (width*height);
}

};
class triangle: public polygon
{

public:
int area()
{

return (width * height / 2);
}

};
int main()
{

polygon *p1=new rectangle;
polygon *p2=new triangle;
clrscr();
p1->set_values(5,6);
p2->set_values (5,6);
cout<<"Area of the rectangle is: "<<p1->area()<<endl;
cout<<"Area of the triangle is: "<<p2->area()<<endl;
delete p1;
delete p2;
getch();
return 0;

}

Virtual Functions and PolymorphismUnit-11

281Object-Oriented Programming Through C++ (Block-2)

In the main() function, we have used the following statements:

polygon * p1= new rectangle;

polygon * p2= new triangle;

Here the pointer p1 and p2 are declared being of type pointer to polygon
but the objects dynamically allocated have been declared having the derived
class type directly.

CHECK YOUR PROGRESS- 2

1. Choose the appropriate option for the corect answer:
(i) Dynamic binding is done using the keyword

(a) static (b) dynamic
(c) virtual (d) abstract

(ii) Virtual function helps us in achieving
(a) run-time polymorphism
(b) compile-time polymorphism
(c) both (a) and (b) (d) none of these

(iii) A base class which is not used for object creation is called
(a) abstract class (b) derived class
(c) virtual class (d) none of these

(iv) The function in the statement virtual show()=0; is a
(a) virtual function (b) pure member function
(c) friend function (d) pure virtual function

(v) A pointer can point to object
(a) derived class, base class
(b) void, NULL (c) base class, derived class
(d) none of these

2. State which of the following statements are True(T) or False(F):
(i) Class containg pure virtual function can instantiate objects

of its own.
(ii) Pointers to objects of a base class type are compatible

with the pointer to objects of a derived class.
(iii) A virtual function is a member function that expects to be

overridden in a derived class.

Virtual Functions and Polymorphism Unit-11

282 Object-Oriented Programming Through C++ (Block-2)

11.6 LET US SUM UP

The key points to be kept in mind in this unit are:

 Polymorphism is the ability to use an operator or function in different
ways. Poly, referring to many, signifies the many uses of these op-
erators and functions. C++ supports polymorphism both at run-time
and at compile-time.

 The use of overloaded functions is an example of compile-time poly-
morphism. Run-time polymorphism can be achieved through the use
of pointer to base class and virtual functions.

 Object pointers are useful in creating objects at run-time. It can be
used to access the public members of an object along with an arrow
operator.

 A base class pointer may address an objects of its own class or an
object of any class derived from the base class.

 A pure virtual function is a virtual function declared in a base class
that has no definition.

 A class containing pure virtual functions cannot be used to declare
any objects of its own. Such classes are called abstract class or
abstract base class.

11.7 ANSWERS TO CHECK YOUR PROGRESS

CHECK YOUR PROGRESS -1
1. (i) (c) virtual function (ii) (a) compile-time polymorphism

(iii) (c) both (a) and (b) (iv) (b) object pointer
(v) (b) polymorphism

2. (i) False (ii) True (iii) True

CHECK YOUR PROGRESS -2
1. (i) (c)virtual (ii) (a) run-time polymorphism

(iii) (a)abstract class (iv) (d)pure virtual function
(v) (c)base class, derived class

2. (i) False (ii) True (iii) True

Virtual Functions and PolymorphismUnit-11

283Object-Oriented Programming Through C++ (Block-2)

11.8 FURTHER READINGS

1. “Mastering C++”, by K.R.Venugopal, Rajkumar, Ravishankar, Tata
McGraw Hill publication

2. “The Complete Reference C++”, by Herbert Schildt, Tata McGraw
Hill Edition

3. “Object Oriented Programming with C++”, by E. Balagurusamy, Tata
McGraw Hill publication

11.9 MODEL QUESTIONS

1. What is polymorphism? What are the different types of polymprphism
in C++?

2. How is polimorphism achieved

(i) at compile time (ii) at run-time

3. What is a virtual function?

4. Describe rules for declaring virtual functions.

5. How can C++ achieve dynamic binding?

6. What are pointer to base and derived classes?

7. Write a C++ program to demostrate the use of abstract classes.

8. Find the error in the following declaration:
class Base{

public:
virtual void display()=0;

};
void main() {

Base b;
}

9. What is virtual and pure virtual functions? Use this concept to calculate
the area of a square and a rectangle.

Virtual Functions and Polymorphism Unit-11

284 Object-Oriented Programming Through C++ (Block-2)

UNIT-12 : FILE HANDLING

UNIT STRUCTURE

12.1 Learning Objectives
12.2 Introduction
12.3 File Classes
12.4 Opening and Closing a File
12.5 File Modes
12.6 Manipulation of File Pointers
12.7 Functions for Input/Output Operations
12.8 Let Us Sum Up
12.9 Answers to Check Your Progress
12.10 Further Readings
12.11 Model Questions

12.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 read data from a file

 write data to a file

 manipulate file pointers

 write programs that perform various operations on files

12.2 INTRODUCTION

In the previous units, while discussing programs we have already used
cout<<, cin>> functions to write and read data. These functions are console
oriented input/output (I/O) functions which always require a keyboard for
providing the input and monitor to display the output. This works well when
the input/output data is small, but in case the amount of input/output data
is substantially large this method has limitations. Also when a program
terminates or the computer is turned off, the entire data is lost. So in order

285Object-Oriented Programming Through C++ (Block-2)

Unit-12File Handling

to retain the data a more flexible method has to be used whereby a large
amount of data can be stored permanently on disks and read when required.
This brings into play the concept of files to store and manipulate data
easily. In this unit we will be discussing C++ file handling.

12.3 FILE CLASSES

File handling is an important part of all programs. Most of the applications
will have their own features to save some data to the local disk and read
data from the disk again. C++ file input/output classes simplify such file
read/write operations for the programmer by providing easier to use classes.
The input/output system of C++ contains a set of classes that define the
file handling methods. There are three file input/output classes in C++
which are used for file Read/Write operations.

They are

 ifstream – can be used for File read/input operations.

 ofstream – can be used for File write/output operations.

 fstream – can be used for both read/write C++ file I/O operations.

These classes are derived directly or indirectly from the classes istream,
and ostream. We have already used objects whose types were these
classes: cin is an object of class istream and cout is an object of class
ostream. Therefore, we have already been using classes that are related
to our file streams. And in fact, we can use our file streams the same way
we are already used to use cin and cout, with the only difference that we
have to associate these streams with physical files. We also have to
#include the <fstream> header file that defines these classes.

12.4 OPENING AND CLOSING A FILE

A file is a place on the disk where a sequence of related data is stored.
C++ supports a number of functions that can perform basic file operations
like:

 naming a file

286 Object-Oriented Programming Through C++ (Block-2)

File Handling

 opening a file

 reading data from a file

 writing data into a file

 closing a file

The file name can be a sequence of characters, called as a string. Using
the file name a file is recognized. The length of file name depends on the
operating system. For example, MS-DOS supports only eight characters
as a file name, whereas WINDOWS -98, 2000 or other latest versions
supports long file names. A file name contains an extension name also
like .doc, .txt, .cpp, .xls, .ppt etc. The following are the valid file names :

Test.cpp // extension is .cpp

Binary.obj // extension is .obj

Marks.dbf // extension is dbf

The first step in the file I/O operation is creation of a file stream object and
connecting it with the file name. The class ifstream, ofstream and fstream
can be used for creating file stream defined in the header file fstream.h.
The selection of the class is depend on the possible operation(read/write)
to be performed with the file.

There are two methods of opening a file

 using the member function open()

 using constructor of the class

We will concentrate here on the discussion of opening file using the member
function open().
OPENING AND CLOSING A FILE

The function open() is used to open a file. The open() function uses the
stream object. The open() function has two arguments. First argument is
file name and the second is mode. The mode specifies the purpose of
opening a file i.e. read, write, append etc. The default values for ifstream is
(ios :: in), read only and fstream is (ios :: out), write only. The file can be

Unit-12

287Object-Oriented Programming Through C++ (Block-2)

Unit-12File Handling

closed explicitly using the close() function.

The syntax for opening and closing file is shown below :

file stream class stream object;

stream object . open(“file name”);

For closing a file

stream object . close();

Examples are shown below :

A) Opening file for write operation

ofstream out; // create stream object out

out.open(“employee.dbf”); // opens file and links with the object out

out.close(); // close the file pointed by the object out

B) Opening file for read operation

ifstream in; // create stream object in

in.open (“employee.dbf”); // opens file and links with the object in

in.close(); // close the file pointed by the object in

The following program demonstrates the opening and closing of files as
well as writing contents into a file and reading the contents from the file.

//Program 12.1

#include<iostream.h>

#include<fstream.h>

#include<conio.h>

void main()
{

clrscr();
of stream out;

//Writing data

out.open(“Week”); // Open file
out<<“Monday \n”; // Writes string to the file

288 Object-Oriented Programming Through C++ (Block-2)

out<<“Tuesday \n”;
out<<“Wednessday \n”;
out.close(); // close the file

//Reading Data

const int N=50;
char text[N];
if stream in;
in.open(“Week”); // open file for reading
cout<<“No. of Days :\n”;
while(in)
{

in.getline(text,N);
cout<<text<<“\n”;

}
in.close();
getch();

}

12.5 FILE MODES

A file mode is used when opening a file in order to specify the type of
operation to be performed with the file. The mode parameter of the open()
function can have the following flags:

ios::in Open the file for input operations.

ios::out Open the file for output operations.

ios::binary Open the file in binary mode.

ios::ate Set the initial position at the end of the file.If this
flag is not set to any value, the initial position is
the beginning of the file.

ios::app All output operations are performed at the end
of the file, appending the content to the current
content of the file. This flag can only be used in

File HandlingUnit-12

289Object-Oriented Programming Through C++ (Block-2)

Unit-12
streams open for output-only operations.

ios::trunk If the file opened for output operations already
existed before, its previous content is deleted
and replaced by the new one.

ios::nocreate do not create the file, open only if it exists.

ios::noreplace open and create a new file if the specified file
does not exist.

All these flags can also be combined using the bitwise operator OR (|).
For example, if we want to open the file example.bin in binary mode to add
data we could do it by the following call to member function open() :

ofstream myfile;myfile.open (“example.bin”, ios::out |
ios::app | ios::binary);

Each one of the open() member functions of the classes ofstream, ifstream
and fstream has a default mode that is used if the file is opened without a
second argument:

class Default mode parameter

ofstream ios::out

ifstream ios::in

fstream ios::in | ios::out

For ifstream and ofstream classes, ios::in and ios::out are automatically
and respectively assumed, even if a mode that does not include them is
passed as second argument to the open() member function.
The default value is only applied if the function is called without specifying
any value for the mode parameter. If the function is called with any value in
that parameter the default mode is overridden, not combined.

12.6 MANIPULATION OF FILE POINTERS

File Handling

290 Object-Oriented Programming Through C++ (Block-2)

The C++ input and output system manages two integer values associates
with a file. These are:

 Input or get pointer – specifies the location in a file where the next
read operation will occur.

 Output or put pointer – specifies the location in a file where the next
write operation will occur.

In other words, these pointers indicate the current positions for read and
write operations, respectively. Each time an input or an output operation
takes place, the pointers automatically advance sequentially. We can use
these pointers to move through the files while reading or writing. The input
pointer is used for reading the contents of a given file location and the
output pointer is used for writing to a given file location.

The term pointers should not be confused with normal C++ pointers
used as address variables.

By default the reading pointer and the writing pointer are set at the beginning
and at the end (when you open file in ios::app mode)þ of a file respectively.
There are times when we must take control of the file pointers ourselves
so that we can read from and write to any arbitrary location in the file.
There are four functions that allow us to do so. They are:

Function Description

seekg() Moves get pointer (input) to a specified location

seekp() Moves put pointer(output) to a specified location

tellg() Gives the current position of the get pointer

tellp() Gives the current position of the put pointer
In other words, these four functions allow us to access a file in a non-
sequential or random mode.

Using seekg() with one argument

General syntax for using seekg():

fl1.seekg(k)

File HandlingUnit-12

291Object-Oriented Programming Through C++ (Block-2)

Unit-12

where k is absolute position from the beginning. The start of the file is byte
0.

Example: Ifstream pos;

pos.seekg(10);

// means, “position the get pointer 10 bytes from the beginning
of the file”

Using seekp() with one argument

General syntax for using seekp() with one argument is:

fl1.seekp(k)

where k is absolute position from the beginning. The start of the file is byte
0.

Example: Ifstream pos;

pos.seekp(10);

// means, “position the put pointer 10 bytes from the beginning
of the file”

The functions seekg() and seekp() can also be used with two arguments
by specifying the offset.

General syntax is:
seekg(offset, refposition);
seekp(offset, refposition);

The first argument “offset” is an integer that specifies the number of byte
positions(also called offset). The second argument “refposition” is the
reference point. The table below shows some of the sample pointer offset
calls and their actions.

Seek call Action

seekg(0,ios::beg); Go to the start

seekg(0,ios::cur); Stay at the current position

File Handling

292 Object-Oriented Programming Through C++ (Block-2)

seekg(0,ios::end); Go to the end of the file

seekg(m,ios::beg); Move to (m+1) th byte in the file

seekg(m,ios::cur); Go forward by m bytes from the current position

seekg(-m, ios::cur); Go backward by m bytes from the current position

seekg(-m, ios::end); Go backward by m bytes from the end

A negative value (-m) moves the file pointer backwards from the refposition.

Using tellg() and tellp()

The tellg() and tellp() functions can be used to find out the current position
of the get and put file pointers respectively in a file.

These two member functions have no parameters and return a value of
the member type pos_type, which is an integer data type representing the
current position of the get stream pointer (in the case of tellg) or the put
stream pointer (in the case of tellp).

The following program demonstrates the use of the seekp() and
the tellp() functions.

// Program 12.2
#include<iostream.h>
#include<fstream.h>

void main()
{

long pos;
ofstream outfile;
outfile.open (“test.txt”);
outfile.write (“This is an apple”,16);
pos=outfile.tellp();
outfile.seekp (pos-7);
outfile.write (“ sam”,4);
outfile.close();

}

File HandlingUnit-12

293Object-Oriented Programming Through C++ (Block-2)

Unit-12

In this example, tellp is used to get the position of the put pointer after the
writing operation. The pointer is then moved back 7 characters to modify
the file at that position, so the final content of the file shall be:
This is a sample

12.7 FUNCTIONS FOR INPUT/OUTPUT OPERATIONS

There are number of functions to perform read and write operations with
the files. Some function read/write single character and some function
read/write block of binary data. The put() and get() functions are used to
read or write a single character whereas write() and read() are used to
read or write block of binary data.

The put() and get() function :

The get() function is a member function of the class fstream. This function
reads a single character from the file pointed by the get pointer i.e. the
character at current get pointer position is caught by the get() function.

The put() function writes a character to the specified file by the stream
object. It is also a member of the fstream class. The put(() function places
a character in the file indicated by put pointer.

The following program demonstrates a read and write string to a file using
the get() and put() function.

// Program 12.3
#include<iostream.h>
#include<fstream.h>
#include<conio.h>
void main()
{

clrscr();
char str[50];
cout<<“Enter a String :”;

File Handling

294 Object-Oriented Programming Through C++ (Block-2)

cin.getline(str,50);
int i=0;
fstream in;
in.open(“test”, ios::in | ios::out);
while(str[i] !=’\0')
in.put(str[i++]); // Writes characters to the file
in.seekg(0); // Set the file pointer at beginning
char c;
cout<<“\n Entered String :”;
while(in)

{
in.get(c); // Reads a character
cout<<c;

}
getch();
}

write() and read() function :

The data entered by the user are represented in ASCII format. But the
computer understands only the binary format i.e. 0 or 1. When data are
stored in text format the numbers are stored as characters and occupies
more memory space. The functions put() and get() read/write a character.
The data is stored in the file in character format. If large number of numeric
data is stored in the file, it will occupy more space. Hence, using put() and
get() creates disadvantages.

Using the read() and write() function this problem can be eliminated
because these functions handles only binary format of data. In binary
format, the data representation in the file and in the system is same.
Remember that ASCII format of data always has to be converted into
binary format for processing by CPU.

The format of the write() and read() functions are given below :

in.read((char *) &p, sizeof(p));

File HandlingUnit-12

295Object-Oriented Programming Through C++ (Block-2)

Unit-12

out.write((char *) &p, sizeof(p));

There are two arguments in these functions. The first argument is the
address of the variable p. The second argument is the size of the variable
p (in bytes).

The following program shows the use of the read() and write() function by
creating binary files.

// Program 12.4
#include<iostream.h>
#include<fstream.h>
#include<conio.h>
void main()
{

clrscr();
float digit[]={5.25,6.25,7.25};
//Writing data into file
ofstream out;
out.open(“test.bin”); // file test.bin is opened
out.write((char *) &digit, sizeof(digit)); // writes into the file
out.close();
for(int i=0; i<3; i++)

digit[i]=0;
//Reading data from file
ifstream in;
in.open(“test.bin”);
in.read((char *) &digit, sizeof(digit));
for(i=0; i<3; i++)
cout<<digit[i]<<“\t”;
getch();

}

File Handling

296 Object-Oriented Programming Through C++ (Block-2)

CHECK YOUR PROGRESS

1. Fill in the blanks:

(a) We use _______ to store huge amount of data.

(b) The ______ file class can be used for file write/output
operations

(c) The _______ function is used to open a file.

(d) ios::in opens a file for ______ operations.

(e) The default mode parameter of the ifstream class is
_______.

(f) The ________ function moves the put pointer to a
specified location.

2. State true or false.

(a) The ifstream class is used for file I/O operations.

(b) The mode parameter ios::binary opens a file for input
operations.

(c) The tellp() pointer gives the current position of the get
pointer.

(d) The functions seekg() and seekp() can only be used with
one argument.

(e) The seekp() function moves the put pointer to a specified
location.

12.8 LET US SUM UP

 Files are used to store huge collection of data permanently. The
stored data can later be used by performing various file operations
like Opening, Reading, Writing etc.

 C++ File I/O classes provide a easier way to perform I/O operation
on files. These classes define the file handling methods. They are
ifstream, ofstream and fstream.

File HandlingUnit-12

297Object-Oriented Programming Through C++ (Block-2)

Unit-12

 To open a file we use the open() function with parameters specifying
the file to open and the mode in which it is to be opened. It can be
closed with the close() function.

 File modes specify the type of operations to be performed with the
opened file. The mode parameter of the open() function can have
eight different values to specify the kind of operation to be performed.

 The get and put pointers indicate the current positions for read and
write operations.

 There are four functions allow us to access a file in a non-sequential
or random mode. They are seekg(), seekp(), tellg() and tellp().

 The seekg() and tellg() functions allow us to set and examine the
get pointer, and the seekp() and tellp() functions perform these same
actions on the put pointer. The seekg() and seekp() functions can
be used with one argument as well as two arguments. The tellg()
and tellp() functions have no arguments.

12.9 ANSWERS TO CHECK YOUR PROGRESS

1. (a) files (b) ofstream (c) open()
(d) input (e) ios::in (f) seekp().

2. (a) True.
(b) False, since it opens a file in binary mode.
(c) False, since it gives the current position of the put pointer.
(d) False, since seekg() and seekp() can be used with two

arguments by specifying the offset.

12.10 FURTHER READINGS

1. John R. Hubbard: Programming with C++, Tata McGraw-Hill
publication.

2. E. Balagurusamy: Programming with C++, Tata McGraw-Hill
publication.

File Handling

298 Object-Oriented Programming Through C++ (Block-2)

12.11 MODEL QUESTIONS

1. What are file classes? State their functions.

2. How many file modes can be used with the open() function to open a
file? State the function of each mode.

3. What do the seekg() and seekp() functions do?

4. Explain tellg() and tellp().

5. How can we use seekg() and seekp() with two arguments.

6. Explain the use of input/output functions put(), get(), write() and
read() with an example each.

7. Write a program to find out the number of records in the file billfile.dat
by using the seekg() and tellg() functions.

8. Write a program that writes a structure to disk and then reads it
back in.

File HandlingUnit-12

	OOP credit.pdf
	Unit-1
	Unit-2
	Unit-3
	Unit-4
	Unit-5
	Unit-6
	Unit-7
	Unit-8
	Unit-9
	Unit-10
	Unit-11
	Unit-12

