
MCA06

KRISHNA KANTA HANDIQUI STATE OPEN UNIVERSITY
Housefed Complex, Dispur, Guwahati - 781 006

Master of Computer Applications

DATA STRUCTURE THROUGH C LANGUAGE

CONTENTS
UNIT 1 : INTRODUCTION TO DATA STRUCTURE
UNIT 2 : ALGORITHMS
UNIT 3 : LINKED LIST
UNIT 4 : STACK
UNIT 5 : QUEUE
UNIT 6 : SEARCHING
UNIT 7 : SORTING
UNIT 8 : THREE
UNIT 9 : GRAPH



Subject Experts

1. Prof. Anjana Kakati Mahanta, Deptt. of Computer Science, Gauhati University
2. Prof. Jatindra Kr. Deka, Deptt. of Computer Science and Engineering, Indian

Institute of Technology, Guwahati
3. Prof. Diganta Goswami, Deptt. of Computer Science and Engineering, Indian

Institute of Technology, Guwahati

Course Coordinators

Tapashi Kashyap Das, Assistant Professor, Computer Science, KKHSOU
Arabinda Saikia, Assistant Professor, Computer Science, KKHSOU

SLM Preparation Team

UNITS CONTRIBUTORS
1, 7 Arabinda Saikia, KKHSOU
2, 8, 9 Nabajyoti Sarma, Research Scholar,

Deptt. of Computer Science, Gauhati University
3, 5 Swapnanil Gogoi, Assistant Professor,

IDOL, Gauhati University
4, 6 Tapashi Kashyap Das, KKHSOU

December, 2011

© Krishna Kanta Handiqui State Open University.

No part of this publication which is material protected by this copyright notice may be produced
or transmitted or utilized or stored in any form or by any means now known or hereinafter
invented, electronic, digital or mechanical, including photocopying, scanning, recording or by
any information storage or retrieval system, without prior written permission from the KKHSOU.

The university acknowledges with thanks the financial support provided by the
Distance Education Council, New Delhi, for the preparation of this study material.

Printed and published by Registrar on behalf of the Krishna Kanta Handiqui State Open University.

Housefed Complex, Dispur, Guwahati- 781006; Web: www.kkhsou.org



COURSE INTRODUCTION

This is a course on “Data Structure through C Language”. A data structure is a particular way
of storing and organizing data in a computer’s memory or even disk storage so that it can be used
efficiently. Different kinds of data structures are suited to different kinds of applications, and some are
highly specialized to specific tasks. The commonly used data structures in various programming
languages, like C, are arrays, linked list, stack, queues, tree, graph etc. This course is designed to
acquaint the learner such type of data structures.

This course comprises of nine units which are as follows:
Unit - 1 introduces you some elementary concepts like data, types of data, structure, pointer, array etc.

as well as memory representation, address translation functions.
Unit - 2 concentrates on algorithms, complexity of algorithm in terms of time and space and their

notations.
Unit - 3 deals with one of the most important linear data structure linked list. Representation of linked

list, their types, operations associated with linked list like searching, insertion and deletion of
element in a linked are described in this unit.

Unit - 4 focuses on stack data structure. In this unit various operations associted with stacks as well as
their implementation using array and linked list are discussed.

Unit - 5 concentrates on queue data structure. This unit discusses array as well as linked implementation
of queue, applications of queue etc. Concept of circular queue, priority queue are also covered
in this unit.

Unit - 6 deals with the searching techniques. Linear and binary search techniques with their relative
advantages and disadvantages are discussed in this unit.

Unit -7 discusses different sorting techniques, their implementations, complexity, advantages and
disadvantages.

Unit - 8 concentrates on a new data structure called trees. This unit discusses binary tree,  tree traversal
methods, different notations like postfix, prefix etc. are discussed in this unit. Binary search
tree, operations like searching, insertion and deletion on binary search tree are also discussed
in this unit.

Unit - 9 is the last unit of this course. This unit focuses on an important data structure called graph.
Graph representations as well as graph traversal techniques are illustrated in this unit.

Each unit of this course includes some along-side boxes to help you know some of the difficult,
unseen terms. Some “EXERCISES” have been included to help you apply your own thoughts. You may
find some boxes marked with: “LET US KNOW”. These boxes will provide you with some additional
interesting and relevant information. Again, you will get “CHECK YOUR PROGRESS” questions. These
have been designed to self-check your progress of study. It will be helpful for you if you solve the
problems put in these boxes immediately  after you go through the sections of the units and then match
your answers with “ANSWERS TO CHECK YOUR PROGRESS” given at the end of each unit.



MASTER OF COMPUTER APPLICATIONS

Data Structure Through C Language

DETAILED SYLLABUS
Marks Page No.

UNIT 1 : Introduction to Data Structure 8 5-28
Basic concept of data, data type, Elementary structure, Arrays: Types, memory

representation, address translation functions for one & two dimensional arrays

and different examples.

UNIT 2 : Algorithms 8 29-47
Complexity, time-Space, Asymptotic Notation

UNIT 3 : Linked List 15 48-115
Introduction to Linked List , representation of single linked list, linked list

operations :Insertion into a linked list, deletion a linked list, searching and

traversal of elements and their comparative studies with implementations using

array structure.

UNIT 4 : Stack 12 116-133
Definitions, representation using array and linked list structure, applications of

stack.

UNIT 5 : Queue 12 134-174
Definitions, representation using array, linked representation of queues,

application of queue.

UNIT 6 : Searching 10 175-188
Linear and Binary search techniques, Their advantages and disadvantages,

Analysis of Linear and Binary search

UNIT 7 : Sorting 15 189-209
Sorting algorithms (Complexity, advantages and disadvantage,

implementation), bubble sort, insertion sort, selection sort, quick sort.

UNIT 8 : Trees 10 210-238
Definition and implementation : Binary Tree, Tree traversal algorithms (inorder,

preorder, postorder), postfix, prefix notations; Binary Search Tree:Searching

in BST, insertion and deletion in BST.

UNIT 9 : Graph 10 239-256
Introduction to Graph, Graph representation : adjacency matrix, adjacency

list, Traversal of graph : depth first search and breadth first search.



Data Structure Through C Language 5

UNIT 1 : INTRODUCTION TO DATA STRUCTURE

UNIT STRUCTURE

1.1 Learning Objectives

1.2 Introduction

1.3 Data and Information

1.4 Data Structure and Its Types

1.5 Data Structure Operations

1.6 Concept of Data Types

1.7 Dynamic Memory Allocation

1.8 Abstract Data Types

1.9 Let Us Sum Up

1.10 Answers to Check Your Progress

1.11 Further Readings

1.12 Model Questions

1.1 LEARNING OBJECTIVES

After going through this unit, you will able to  :

� distinguish data and information

� learn about data structure

� define various types of data structures

� know different data structure operations

� describe about data types in C

� define abstract data types

1.2 INTRODUCTION

A data structure in Computer Science, is a way of storing and

organizing data in a computer’s memory or even disk storage so that it can

be used efficiently. It is an organization of mathematical and logical concepts

of data. A well-designed data structure allows a variety of critical operations

to be performed, using as few resources, both execution time and memory



Data Structure Through C Language6

Introduction to Data StructureUnit 1

space, as possible. Data structures are implemented by a programming

language by the data types and the references and operations provide by

that particular language.

Different kinds of data structures are suited to different kinds of

applications, and some are highly specialized to certain tasks. For example,

B-trees are particularly well-suited for implementation of databases. In the

design of many types of computer program, the choice of data structures is

a primary design consideration. Experience in building large systems has

shown that the difficulty of implementation and the quality and performance

of the final result depends heavily on choosing the best data structure.

In this unit, we will introduce you to the fundamental concepts of

data structure. In this unit, we shall discuss about the data and information

and overview of data structure. We will also discuss the types of data

structure, data structure operations and basic concept of data types.

1.3 DATA AND INFORMATION

The term data comes from its singular form datum, which means

a fact. The data is a fact about people, places or some entities. In computers,

data is simply the value assigned to a variable. The term variable refers to

the name of a memory location that can contain only one data at any point

of time. For example, consider the following statements :

Vijay is 16 years old.

Vijay is in the 12th standard.

Vijay got 80% marks in Mathematics.

Let ‘name’, ‘age’, ‘class’, ‘marks’ and ‘subject’ be some defined

variables. Now, let us assign a value to each of these variables from the

above statements.

Name = Vijay

Class = 12

Age = 16

Marks = 80

Subject = Mathematics



Data Structure Through C Language 7

Introduction to Data Structure Unit 1

In the above example the values assigned to the five different

variables are called data.

We will now see what is information with respect to computers.

Information is defined as a set of processed data that convey the relationship

between data considered. Processing means to do some operations or

computations on the data of different variables to relate them so that these

data, when related, convey some meaning. Thus, information is as group of

related data conveying some meaning. In the examples above, when the

data of the variables ‘name’ and ‘age’ are related, we get the following

information:

Vijay is 16 years old.

In the same example, when the data of the variables ‘name’ and

‘class’ are related we get another information as

Vijay is in the 12th standard.

Further, when we relate the data of the variables, ‘name’, ‘marks’,

and ‘subject’, we get more information that Vijay got 80% marks in

Mathematics. The following figure shows how information can be drawn

from data.

Fig 1.1 : Relation between data and information

1.4 DATA STRUCTURE AND ITS TYPES

The way in which the various data elements are organized in memory

with respect to each other is called a data structure. Data structures are

the most convenient way to handle data of different types including abstract

data type for a known problem. Again problem solving is an essential part of

every scientific discipline. To solve a given problem by using a computer,

you need to write a program for it. A program consists of two components :

algorithm and data structure.

Many different algorithms can be used to solve the same problem.

Similarly, various types of data structures can be used to represent a problem

in a computer.

Data Information

Methods to 

Process Data 



Data Structure Through C Language8

To solve the problem in an efficient manner, you need to select a

combination of algorithms and data structures that provide

maximum efficiency. Here, efficiency means that the algorithm should work

in minimal time and use minimal memory. In addition to improving the

efficiency of an algorithm, the use of appropriate data structures also allows

you to overcome some other programming challenges, such as :

– simplifying complex problems

– creating standard, reusable code components

– creating programs that are easy to understand and maintain

Data can be organized in many different ways; therefore, you can

create as many data structures as you want. However, data structures have

been classified in several ways. Basically, data structures are of two types

: linear data structure and non linear data structure.

Linear data structure : a data structure is said to be linear if the

elements form a sequence i.e., while traversing sequentially, we can reach

only one element directly from another. For example : Array, Linked list,

Queue etc.

Non linear data structure : elements in a nonlinear data structure

do not form a sequence i.e each item or element may be connected with

two or more other items or elements in a non-linear arrangement. Moreover

removing one of the links could divide the data structure into two disjoint

pieces. For example : Trees and Graphs etc. The following figures shows

the linear and nonlinear data structures.

  . 

  . 

  . 

Top

Stack

Introduction to Data StructureUnit 1



Data Structure Through C Language 9

Fig 1.2 : Linear data structure

Fig 1.3 : Non linear data structure

All these data structures are designed to hold a collection of data

items.

1.5 DATA STRUCTURE OPERATIONS

We come to know that data structure is used for the storage of data

in computer so that data can be used efficiently. The data manipulation

within the data structures are performed by means of certain operations. In

fact, the particular data structure that one chooses for a given situation

depends largely on the frequency with which specific operations are

performed. The following four operations play a major role on data structures.

a) Traversing : accessing each record exactly once so that certain

items in the record may be processed. (This accessing and

processing is sometimes called “visiting” the record.)

Front Rear

Queue

Tree

Introduction to Data Structure Unit 1



Data Structure Through C Language10

b) Searching : finding the location of the record with a given key

value, or finding the locations of all records, which satisfy one or

more conditions.

c) Inserting : adding a new record to the structure.

d) Deleting : removing a record from the structure.

Sometimes two or more of these operations may be used in a given

situation. For example, if we want to delete a record with a given key value,

at first we willl have need to search for the location of the record and then

delete that record.

The following two operations are also used in some special situations :

i) Sorting : operation of arranging data in some given order, such

as increasing or decreasing, with numerical data, or

alphabatically, with character data.

ii) Merging : combining the records in two different sorted files

into a single sorted file.

1.6 CONCEPT OF DATA TYPES

We have already familiar with the term ‘data type’. A data type is

nothing but a term that refers to the type of data values that may be used for

processing and computing. The fundamental data types in C are char, int,

float and double. These data types are called built-in data types. There are

three categories of data types in C, they are:

a) Built-in types, includes char, int, float and double

b) Derived data types, includes array and pointers

c) User defined types, includes structure, union and enumeration.

In this section, we will briefly review about the data types array,

pointers and structures.

i) Array : An array is a collection of two or more adjacent memory

locations containing same types of data. These data are the array

elements. The individual data items can be characters, integers,

floating-point numbers, etc. However, they must all be of the

same type and the same storage class.

Introduction to Data StructureUnit 1



Data Structure Through C Language 11

Each array element (i.e., each individual data item) is referred to by

specifying the array name followed by one or more subscripts, with each

subscript enclosed in square brackets. The syntax for declaration of an

array is

Storage Class datatype arrayname [expression]

Here, storage class may be auto, static or extern, which you just

remember, storage class refers to the permanence of a variable, and its

scope within the program, i.e., the portion of the program over which the

variable is recognized. If the storage class is not given then the compiler

assumes it is an auto storage class.

The array can be declared as :

int x[15]; x is an 15 element integer array

char name[25]; name is a 25 element character array

In the array x, the array elements are x[0], x[1], ........., x[14] as

illustrated in the fig.

Fig 1.4 : An array data structure

Array can be initialize at the time of the declaration of the array. For

example,

int marks [5] ={ 85, 79, 60, 87, 70 };

Then, the marks array can be represented as follows :

Fig 1.5 : the marks array after initialization

In the case of a character array name we get it as

char name [20] = { “krishna” }

Fig 1.6 : name array after initialization

   85      79         60 87   70 

  marks [0]    marks [1]   marks [2]   marks [3]   marks [4]

   K       r           i       s   h              n               a            \0 

  name [0]    name [1]    name [2]    name [3]     name [4]      name[5]     name[6]   name[7]

Introduction to Data Structure Unit 1



Data Structure Through C Language12

We know that every character string terminated by a null character

(\0). Some more declarations of arrays with initial values are given below :

char vowels [ ] = { ‘A’, ‘E’, ‘I’, ‘O’, ‘U’ };

int age [ ] = { 16, 21, 19, 5, 25 }

In the above case, compiler assumes that the array size is equal to

the number of elements enclosed in the curly braces. Thus, in the above

statements, size of array would automatically assumed to be 5. If the number

of elements in the initializer list is less than the size of the array, the rest of

the elements of the array are initialized to zero.

The number of the subscripts determines the dimensionality of the

array. For example,

marks [i],

refers to an element in the one dimensional array. Similarly,

matrix [ i ] [ j ] refers to an element in the two dimensional array.

Two dimensional arrays are declared the same way that one

dimensional arrays. For example,

int matrix [ 3 ] [ 5 ]

is a two dimensional array consisting of 3 rows and 5 column for a

total of 20 elements. Two dimensional array can be initialized in a manner

analogous to the one dimensional array :

int matrix [ 3 ] [ 5 ] = {

{ 10, 5,  -3, 9, 2 },

{  1 , 0, 14, 5, 6 },

{ -1, 7,  4,  9,  2 }

};

The matrix array can be represented as follows:

Introduction to Data StructureUnit 1



Data Structure Through C Language 13

Fig. 1.7 : Matrix array after initialization

The above statement can be written as follows :

int matrix [ 3 ] [ 5 ] = { 10,5,-3,9,2,1,0,14,5,6,-1,7,4,9,2 }

A statement such as

int matrix [ 3 ] [ 5 ] = {

{ 10, 5,  -3 },

{  1 , 0, 14 },

{ -1, 7,   4  }

};

only initializes the first three elements of each row of the two

dimensional array matrix. The remaining values are set to 0.

A Simple Program Using One - dimensional Array

A one dimensional array is used when it is necessary to keep a

large number of items in memory and reference all the items in a uniform

manner. Let us try to write a program to find average marks obtained by a

class of 30 students in a test.

#include<stddio.h>

#include<conio.h>

void main( )

{

   10      5         -3              9             2 

   1      0         14 5             6 

[0][0]      [0][1]          [0][2]        [0][3]          [0][4]

[1][0]           [1][1]           [1][2]         [1][3]           [1][4] 

   -1      7         4             9             2 

[2][0]      [2][1]          [2][2]        [2][3]         [2][4]

Column1  column2     column3     column4    column5     

row 0 

row 1

row 2 

Introduction to Data Structure Unit 1



Data Structure Through C Language14

int avg, sum = 0 ;

int i ; int marks[30] ; /* array declaration */

clrscr( );

for ( i = 0 ; i <= 29 ; i++ )

{

printf ( “\nEnter marks “ ) ;

scanf ( “%d”, &marks[i] ) ; /* store data in array */

}

for ( i = 0 ; i <= 29 ; i++ )

sum = sum + marks[i] ; /* read data from an array*/

avg = sum / 30 ;

printf ( “\nAverage marks = %d”, avg ) ;

getch( );

}

A Simple Program Demonstrating the use of Two Dimensional

Array : A transpose of a matrix is obtained by interchanging its rows and

columns. If A is a matrix of order m x n then its transpose AT will be of order

n x m. Let us implement this program using two dimensional array as follows:

#include<stdio.h>

#include<conio.h>

void main()

{

int matrix1 [20][20], matrix2 [20][20], i, j, m, n;

clrscr();

printf(“Enter the Rows and Column of matrix \n”);

scanf(“%d %d”, &m, &n);

printf(“Enter the elements of the Matrix \n”);

for( i=1; i<m+1; i++)

for(j=1; j<n+1; j++)

scanf(“%d”, &matrix1 [i][j]);

for(i=1; i<n+1; i++)

for(j=1; j<m+1; j++) /* stores the elements in matrix2 */

matrix2 [i][j] = matrix1 [j][i];

Introduction to Data StructureUnit 1



Data Structure Through C Language 15

printf(“\n \t Transpose of Matrix \n”);

for(i=1; i<n+1; i++)

{

for(j=1; j<m+1; j++)

printf( “%3d”, matrix2 [i][j]);

printf(“\n”);

}

getch();

}

ii) Pointers : You have already introduced to the concept of pointer.

At this moment we will recall some of its properties and

applications.

A pointer is a variable that represents the location (rather than the

value) of a data item, such as a variable or an array element.

Suppose we define a variable called sum as follows :

int sum = 25;

Let us define an another variable, called pt_sum like the following

way

int  *pt_sum;

It means that pt_sum is a pointer variable pointing to an integer,

where * is a unary operator, called the indirection operator, that operates

only on a pointer variable.

We have already used the ‘&’ unary operator as a part of a scanf

statement in our C programs. This operator is known as the address

operator, that evaluates the address of its operand.

Now, let us assign the address of sum to the variable pt_sum such

as

pt_sum = &sum;

Now the variable pt_sum is called a pointer to sum, since it “points”

to the location or address where sum is stored in memory. Remember, that

pt_sum represents sum’s address, not its value. Thus, pt_sum referred

to as a pointer variable.

The relationship between pt_sum and sum is illustrated in Fig.

Introduction to Data Structure Unit 1



Data Structure Through C Language16

Fig. 1.8 : Relationship between pt_sum and sum

The data item represented by sum (i.e., the data item stored in sum’s

memory cells) can be accessed by the expression *pt_sum.

Therefore, *pt_sum and sum both represent the same data item i.e. 25.

Several typical pointer declarations in C program are shown below

int *alpha ;

char *ch ;

float *s ;

Here, alpha, ch and s are declared as pointer variables, i.e. variables

capable of holding addresses. Remember that, addresses (location nos.)

are always going to be whole numbers, therefore pointers always contain

whole numbers.

The declaration float *s does not mean that s is going to contain a

floating-point value. What it means is, s is going to contain the address of a

floating-point value. Similarly, char *ch means that ch is going to contain

the address of a char value.

Let us try to write a program that demonstrate the use of a pointer:

#include <stdio.h>

#include<conio.h>

void main( )

{

int a = 5;

int *b;

b = &a;

clrscr();

printf (“value of a = %d\n”, a);

printf (“value of a = %d\n”, *(&a));

printf (“value of a = %d\n”, *b);

printf (“address of a = %u\n”, &a);

Introduction to Data StructureUnit 1



Data Structure Through C Language 17

printf (“address of a = %d\n”, b);

printf (“address of b = %u\n”, &b);

printf (“value of b = address of a = %u”, b);

getch();

}

[Suppose address of the variable a = 1024, b = 2048 ]

OUTPUT :

value of a = 5

value of a = 5

value of a = 5

address of a = 1024

address of a = 1024

value of b = address of a = 1024

Pointer to Pointer : A pointer to a pointer is a techniques used

frequently in more complex programs. To declare a pointer to a pointer,

place the variable name after two successive asterisks (*). In this case one

pointer variable holds the address of the another pointer variable. In the

following shows a declaration of pointer to pointer :

int  **x;

Following program shows the use of pointer  to pointer techniques :

#include <stdio.h>

#include<conio.h>

void main( )

{

int a = 5;

int *b;

int **c;

b = &a;

c = &b;

Introduction to Data Structure Unit 1



Data Structure Through C Language18

printf (“value of a = %d\n”, a);

printf (“value of a = %d\n”, *(&a));

printf (“value of a = %d\n”, *b);

printf (“value of a = %d\n”, **c);

printf (“value of b = address of a = %u\n”, b);

printf (“value of c = address of b = %u\n”, c);

printf (“address of a = %u\n”, &a);

printf (“address of a = %u\n”, b);

printf (“address of a = %u\n”, *c);

printf (“address of b = %u\n”, &b);

printf (“address of b = %u\n”, c);

printf (“address of c = %u\n”, &c);

getch();

}

[Suppose address of the variable a = 1024, b = 2048 ]

OUTPUT :

value of a = 5

value of a = 5

value of a = 5

value of a = 5

value of b = address of a = 1024

value of c = address of b = 2048

address of a = 1024

address of a = 1024

address of a = 1024

address of b = 2048

address of b = 2048

address of c = 4096

Introduction to Data StructureUnit 1



Data Structure Through C Language 19

CHECK YOUR PROGRSS

Q.1. Describe the array that is defined in each of the following

statements. Indicate what values are assigned to the

individual array elements.

a) char flag[5]= { ‘ T ‘ , ‘ R ‘ , ‘ U ‘ , ‘E’ };

c) int p[2][4] = {

{1, 3, 5, 7 },

{2, 4, 6, 8 }

};

Q.2. Define a one-dimensional, six-element floating-point array

called consts. Assign the following values to the array

elements: 0.005, -0.032, 1e-6, 0.167, -0.3e8, 0.015

Q.3. Explain the meaning of each of the following declarations

a) float a, b;

float *pa, *pb;

b) float a = -0.167;

float *pa = &a;

c) char *d[4] = {“north‘, ‘south”, “east”, “west”};

iii) Structure : Structure is the most important user defined data

type in C. A structure is a collection of variables under a single

name. These variables can be of different types, and each has a

name which is used to select it from the structure. But in an

array, all the data items are of same type. The individual variables

ina structure are called member variables. A structure is a

convenient way of grouping several pieces of related information

together.

Here is an example of a structure definition.

Introduction to Data Structure Unit 1



Data Structure Through C Language20

struct student

{

char name[25];

char course[20];

int age;

int year;

};

Declaration of a structure always begins with the key word struct

followed by a user given name, here the student. Recall that after the opening

brace there will be the member of the structure containing different names

of the variables and their data types followed by the closing brace and the

semicolon.

Graphical representation of the structure student is shown below :

Fig. 1.9 : A structure named Student

Now let us see how to declare a structure variable. In the following

we have declare a variable st_rec of type student :

student st_rec[100];

In this declaration st_rec is a 100 element array of structures.

Hence  each element of st_rec is a separate structure of type student

(i.e. each element of st_rec represents an individual student record.)

Having declared the structure type and the structure variables, let

us see how the elements of the structure can be accessed. In arrays we

can access individual elements of an array using a subscript. Structures

name

course 

age 

year 

Student 

Introduction to Data StructureUnit 1



Data Structure Through C Language 21

use a different scheme. They use a dot (.) operator. As an example if we

want to access the name of the 10th student (i.e. st_rec[9] since the

subscript begins with 0)  from the above structure then we will have to write

st_rec[9].name

Similarly, course and age of the 10th student can be accessed by

writing

st_rec[9].course and st_rec[9].age

The members of a structure variable can be assigned initial values

in much the same manner as the elements of an array. Example of assigning

the values for the 10th student record is shown in the following :

struct student st_rec[9] = { “Arup Deka”, “BCA”, 21, 2008 };

A simple example of using of the structure data type is shown

below :

#include<stdio.h>

#include<conio.h>

void main( )

{

struct book

{

char name ;

float price ;

int pages ;

} ;

struct book b1, b2, b3 ;

clrscr();

printf ("\nEnter names, prices & no. of pages of 3 books\n"

scanf ("%c %f %d", &b1.name, &b1.price, &b1.pages);

scanf ("%c %f %d", &b2.name, &b2.price, &b2.pages);

scanf ("%c %f %d", &b3.name, &b3.price, &b3.pages);

printf ("\nAnd this is what you entered");

printf ("\n%c %f %d", b1.name, b1.price, b1.pages);

printf ("\n%c %f %d", b2.name, b2.price, b2.pages);

Introduction to Data Structure Unit 1



Data Structure Through C Language22

printf ("\n%c %f %d", b3.name, b3.price, b3.pages);

getch();

}

Self-referencial structure : When a member of a structure is

declared as a pointer that points to the same structure (parent structure),

then it is called a self-referential structure. It is expressed as shown below:

struct node

{

int data;

struct node *next;

};

where ‘node’ is a structure that consists of two members one is the

data item and other is a pointer variable holding the memory address of the

other node.The pointer variable next contains an address of either the

location in memory of the successor node or the special value NULL.

Self-referential structures are very useful in applications that involves

linked data structures such as linked list and trees.

The basic idea of a linked data structure is that each component

wiithin the structure includes a pointer indicating where the next component

can be found. Therefore, the relative order of the components can easily be

changed simply by altering the pointers. In addition, individual components

can easily be added or deleted again by altering the pointers.

The diagramatic representation of a node is shown below :

Fig. 1.10 : A node structure

1.7 DYNAMIC MEMORY ALLOCATION

The memory allocation process may be classified as static allocation

and dynamic allocation. In static allocation, a fixed size of memory are

reserved before loading and execution of a program. If that reserved memory

is not sufficient or too large in amount then it may cause failure of the program

Introduction to Data StructureUnit 1



Data Structure Through C Language 23

or wastage of memory space. Therefore, C language provides a technique,

in  which a program can specify an array size at run time. The process of

allocating memory at run time is known as dynamic memory allocation.

There are three dynamic momory allocation functions and one memory

deallocation (releasing the memory) function. These are malloc( ), calloc( ),

realloc( ) and free( ).

malloc( ) : The function malloc( ) allocates a block of memory. The

malloc( ) function reserves a block of memory of specified size and returns

a pointer of type void. The reserved block is not initialize to zero. The syntax

for usinig malloc( ) function is :

ptr = (cast-type *) malloc( byte-size);

where ptr is a pointer of type cast-type. The malloc( ) returns a pointer

(of cast-type) to an area of memory with size byte-size.

Suppose x is a one dimensional integer array having 15 elements.

It is possible to define x as a pointer variable rather than an array. Thus, we

write,

int *x;

instead of int x[15] or #define size 15

int x[size];

When x is declared as an array, a memory block having the capacity

to store 15 elements will be reserved in advance. But in this case, when x is

declared as a pointer variable, it will not assigned a memory block

automatically.

To assign sufficient memory for x, we can make use of the library

function malloc, as follows :

x = (int *) malloc(15 * sizeof (int));

This function reserves a block of memory whose size (in bytes) is

equivalent to 15 times the size of an integer. The address of the first byte of

the reserved memory block is assigned to the pointer x of type int.

Diagammatic representation is shown below :

Introduction to Data Structure Unit 1



Data Structure Through C Language24

Fig. 1.11 : Representation of dynamic memory allocation

calloc( ) : calloc is another memory allocation function that is normally

used for requesting memory space at run time for storing derived data types

such as arrays and structures. The main difference between the calloc and

malloc function is that - malloc function allocates a single block of storage

space while the calloc function allocates a multiple blocks of storage space

having the same size and intialize the allocated bytes to zero. The syntax

for usinig calloc( ) function is :

ptr = (cast-type *) calloc (n, element-size)

where n is the number of contiguous blocks to be allocate each of

having the size element-size.

realloc( ) : realloc( ) function is used to change the size of the

previouslly allocated memory blocks. If the previously allocated memory is

not sufficient or much larger and we need more space for more elements

or we need reduced space for less elements then by the using the realloc

function block size can be maximize or minimize. The syntax for usinig

realloc( ) function is :

ptr = realloc (ptr, newsize)

where newsize is the size of the memory space to be allocate.

free( ) : It is necessary to free the memory allocated so that the

memory  can be reused. The free( ) function frees up (deallocates) memory

that was previously allocated with malloc( ), calloc( ) or realloc( ). The syntax

for usinig free( ) function is :

free(ptr)

where ptr is apointer to a memory block, which has already been

created by malloc or calloc.

x

Address of first byte

  …….  

30 bytes space

Introduction to Data StructureUnit 1



Data Structure Through C Language 25

1.8 ABSTRACT DATA TYPES

You are well acquainted with data types by now, like integers, arrays,

and so on. To access the data, you have used operations defined in the

programming language for the data type. For example, array elements are

accessed by using the square bracket notation, or scalar values are

accessed simply by using the name of the corresponding variables.

This approach doesn’t always work on large and complex programs

in the real world. A modification to a program commonly requires a change

in one or more of its data structures. It is the programmers responsibility to

create special kind of data types. The programmer needs to define everything

related to the new data type such as :

� how the data values are stored,

� the possible operations that can be carried out with the custom

data type and

� new data type should be free from any confusion and must behave

like a built-in type

Such custom data types are called abstract data types.

Thus, an abstract data type is a formal specification of the logical

properties of a data type such as its values, operations that are to be defined

for the data type etc. It hides the detailed implementation of the data type

and provides an interface to manipulate them.

Examples of abstract data types are – stacks, queues etc. We will

discuss on these abstract data types in the next units.

CHECK YOUR PROGRESS

Q.4. Define a structure named complex having two floating point

members real and imaginary. Also declare a variable x of

type complex and assign the initial vaules 3.25 & -2.25.

Q.5. Declare a one dimensional, 75 element array called sum

whose elements are stucture of type complex (declared in

the above question).

Introduction to Data Structure Unit 1



Data Structure Through C Language26

Q.6. Define a self referential structure named team with the

following three members :

a) a character array of 30 elements called name

b) an integer called age

c) a pointer to another strucutre of this same type, called

next.

Q.7. a) The free( ) function is used to

i) release the memory ii) destroy the memory

iii) create a link iv) none of the above

b) The data type defined by the user is known as

i) abstract data type ii) classic data type

iii) built-in data type iv) all of the above

1.9 LET US SUM UP

� The data is a fact about people, places or some entities. In computers,

data is simply the value assigned to a variable.

� Information is a group of related data conveying some meaning.

� Data structures are of two types : linera data structure and non linear

data structure. For example  Array, Linked list, Queue etc. are linear

datastructure and Trees and Graphs etc are non-linear data structure.

� The possible data structure operations are - traversing, searching,

inserting, deleting, sorting and merging.

� An array is a collection of two or more adjacent memory locations

containing same types of data.

� A pointer is a memory variable that stores a memory address of

another variable. It can have any name that is valid for other variable

and it is declared in the same way as any other variable. It is always

denoted by ‘*’.

� A structure is a collection of variables under a single name. These

variables can be of different types, and each has a name which is

used to select it from the structure.

Introduction to Data StructureUnit 1



Data Structure Through C Language 27

� A strcture which contains a member field that point to the same

structure type are called a self-referential structure.

� There is a technique in C language, in  which a program can specify

an array size at run time. The process of allocating memory at run

time is known as dynamic memory allocation. There are three

dynamic momory allocation functions :  malloc( ), calloc( ), realloc( )

and one memory deallocation function which is free( ).

� an abstract data type is a formal specification of the logical properties

of a data type such as its values, operations that are to be defined

for the data type etc.

1.10 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1. : a) flag[0] =’T’, flag[1] =’R’, flag[2] =’U’, flag[3] =’E’ and

flag[4] is assigned to zero.

b) p[0][0] =1, p[0][1] =3, p[0][2] =5, p[0][3] =7, p[1][0]

=2, p[1][1] =4, p[1][2] =6, p[1][3] =8

Ans. to Q. No. 2. : float consts[6] = { 0.005, -0.032, 1e-6, 0.167, -0.3e8,

0.015 }

Ans. to Q. No. 3. : a) a and b are floating point variables, pa and pb are

pointers to floating point quantities (though not

necessarily to a & b)

b) a is a floatinig point variable whose initial value is -

0.167; pa is a pointer to a floating point quantity, the

address of a is assigned to pa as an intial value.

c) d is a one dimensional array of pointers to the string

‘north’, ‘south’, ‘east’ and ‘west’.

Ans. to Q. No. 4. : struct complex

{

float  real;

float imaginary;

};

struct complex x = { 3.25, -2.25 }

Introduction to Data Structure Unit 1



Data Structure Through C Language28

Ans. to Q. No. 5. : struct complex sum[75];

Ans. to Q. No. 6. : struct team

{

char name[30];

int age;

struct team * next;

};

Ans. to Q. No. 7. : a) i.;  b) i.

1.11 FURTHER READINGS

� Data structures using C and C++, Yedidyah Langsam, Moshe J.

Augenstein, Aaron M.Tenenbaum, Prentice-Hall India.

� Data Structures, Seymour Lipschutz, Schaum’s Outline Series in

Computers,Tata Mc Graw Hill

� Introduction to Data Structures in C, Ashok N. Kamthane, Perason

Education.

1.12 MODEL QUESTIONS

Q.1. What is information? Explain with few examples.

Q.2. What is data? Explain with few examples.

Q.3. Name and describe the four basic data types in C.

Q.4. What is a data structure? Why is an array called a data structure ?

Q.5. How does a structure differ from an array? How is a structure

member accessed?

Introduction to Data StructureUnit 1



Data Structure Through C Language 29

UNIT 2 : ALGORITHM

UNIT STRUCTURE

2.1 Learning Objectives

2.2 Introduction

2.3 Definition of Algorithm

2.4 Complexity

2.4.1 Time Complexity

2.4.2 Space Complexity

2.5 Asymptotic Notation

2.6 Let Us Sum Up

2.7 Further Readings

2.8 Answers to Check Your Progress

2.9 Model Questions

2.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

� understand the concept of algorithm

� know the notations for defining the complexity of algorithm

� learn the method to calculate time complexity of algorithm

2.2 INTRODUCTION

The concept of an algorithm is the basic need of any programming

development in computer science. Algorithm exists for many common

problems, but designing an efficient algorithm is a challenge and it plays a

crucial role in large scale computer system. In this unit we will discuss

about the algorithm and its complexity. Also we will discuss the asymptotic

notation of algorithms.



Data Structure Through C Language30

2.3 DEFINITION OF ALGORITHM

Definition: An algorithm is a well-defined computational method,

which takes some value(s) as input and produces some value(s) as output.

In other words, an algorithm is a sequence of computational steps that

transforms input(s) into output(s).

Each algorithm must have

� Specification: Description of the computational procedure.

� Pre-conditions: The condition(s) on input.

� Body of the Algorithm: A sequence of clear and unambiguous

instructions.

� Post-conditions: The condition(s) on output.

Consider a simple algorithm for finding the factorial of n.

Algorithm Factorial (n)

Step 1: FACT = 1

Step 2: for i = 1 to n do

Step 3: FACT = FACT * i

Step 4: print FACT

In the above algorithm we have:

Specification: Computes n!.

Pre-condition: n >= 0

Post-condition: FACT = n!

Now take one more example

Problem Definition: Sort given n numbers by non-descending order

by using insertion sort.

Input: A sequence of n numbers <a
1
, a

2
, a

3
, ……, a

n
>.

Output: A permutation (reordering) <a’
1
, a’

2
, a’

3
, ……, a’

n
> of input

sequences such that  a’
1
 d” a’

2
 d” a’

3
 d” ……d” a’

n.

Insertion sort is an efficient algorithm for sorting a small number of

elements. Insertion sort works the way many people sort a hand of playing

cards. We start with an empty left hand and the cards are face down on the

table. Then we draw one card at a time from the table and place into correct

position in the left hand.

AlgorithmUnit 2



Data Structure Through C Language 31

Consider the following example of five integers:

79  43  39  58  13

Here we assume that the array has only one element that is  79  and

it is sorted. So the array is

79  43  39  58  13

Next we will take 43, since 43 is less than 79 so it will be placed

before 79. After placing 43 into its place the array will be

43  79  39  58  13

Next we will take 39, since 39 is less than 43 and 79 so it will be

placed before 43. After placing 39 into its place the array will be

39  43  79  58  13

Next we will take 58, since 58 is less than 79 but grater then 39 and

49 so it will be placed before 79 but after 43. After placing 58 into its place

the array will be

39  43  58  79  13

Finally 13 will be considered, since 13 is smaller than all other

elements so it will be place before 39. After placing 13 the sorted array will

be

13 39  43  58  79

Here in Insertion Sort, we consider that first (i-1) numbers are sorted

then we try to insert the ith number into its correct position. This can be done

by shifting numbers right one number at a time until the position for ith number

is found.

The algorithmic description of insertion sort is given below.

Algorithm Insertion_Sort (a[n])

Step 1: for i = 2 to n do

Step 2: current_num = a[i]

Step 3: j = i

Step 4: while (( j >1) and (a[j-1] > current_num)) do

Step 5: a[j] = a[j-1]

Step 6: j = j-1

Step 7: a[j] = current_num

Algorithm Unit 2



Data Structure Through C Language32

2.4 COMPLEXITY

Once we develop an algorithm, it is always better to check whether

the algorithm is efficient or not. The efficiency of an algorithm depends on

the following factors:

� Accuracy of the output

� Robustness of the algorithm

� User friendliness of the algorithm

� Time required to run the algorithm

� Space required to run the algorithm

� Reliability of the algorithm

� Extensibility of the algorithm

In case of complexity analysis, we mainly concentrate on the time

and space required by a program to execute. So complexity analysis broadly

categorized in two classes

� Space complexity

� Time complexity

2.4.1 SPACE COMPLEXITY

Now a day’s, memory is becoming more and more cheaper,

even though it is very much important to analyze the amount of

memory used by a program. Because, if the algorithm takes memory

beyond the capacity of the machine, then the algorithm will not  able

to execute. So, it is very much important to analyze the space

complexity before execute it on the computer.

Definition [Space Complexity]: The Space complexity of

an algorithm is the amount of main memory needed to run the

program till completion.

To measure the space complexity in absolute memory unit

has the following problems

1. The space required for an algorithm depends on space

required by the machine during execution, they are

AlgorithmUnit 2



Data Structure Through C Language 33

i) Programme space

ii) Data space.

2. The programme space is fixed and it is used to store the

temporary data, object code, etc.

3. The data space is used to store the different variables, data

structures defined in the program.

In case of analysis we consider only the data space, since

programme space is fixed and depend on the machine where it is

executed.

Consider the following algorithms for exchange two numbers:

Algo1_exchange (a, b)

Step 1: tmp = a;

Step 2: a = b;

Step 3: b = tmp;

Algo2_exchange (a, b)

Step 1: a = a + b;

Step 2: b = a - b;

Step 3: a = a - b;

The first algorithm uses three variables a, b and tmp and the

second one take only two variables, so if we look from the space

complexity perspective the second algorithm is better than the first

one.

2.4.2 TIME COMPLEXITY

Definition [Time Complexity]: The Time complexity of an

algorithm is the amount of computer time it needs to run the program

till completion.

To measure the time complexity in absolute time unit has

the following problems

1. The time required for an algorithm depends on number of

instructions executed by the algorithm.

Algorithm Unit 2



Data Structure Through C Language34

2. The execution time of an instruction depends on computer’s

power. Since, different computers take different amount of

time for the same instruction.

3. Different types of instructions take different amount of time

on same computer.

For time complexity analysis we design a machine by

removing all the machine dependent factors called Random Access

Machine (RAM). The random access machine model of computation

was devised by John von Neumann to study algorithms. The design

of RAM is as follows

1. Each “simple” operation (+, -, =, if, call) takes exactly 1 step.

2. Loops and subroutine calls are not simple operations, they

depend upon the size of the data and the contents of a

subroutine.

3. Each memory access takes exactly 1 step.

Consider the following algorithm for add two number

Algo_add (a,b)

Step 1. C = a + b;

Step 2. return C;

Here this algorithm has only two simple statements so the

complexity of this algorithm is 2

Consider another algorithm for add n even number

Algo_addeven (n)

Step 1. i = 2;

Step 2. sum = 0;

Step 3. while i <= 2*n

Step 4. sum = sum + i

Step 5. i = i + 2;

Step 6. end while;

Step 7. return sum;

Here,

Step 1, Step 2 and Step 7 are simple statement and they will

execute only once.

AlgorithmUnit 2



Data Structure Through C Language 35

Step 3 is a loop statement and it will execute as many times

the loop condition is true and once more time for check the condition

is false.

Step 5 and Step 6 are inside the loop so it will run as much

as the loop condition is true

Step 6 just indicate the end of while and no cost associated

with it.

Statement Cost Frequency Total cost

Step 1. i = 2; 1 1 1

Step 2. sum = 0; 1 1 1

Step 3. while i <= 2*n 1 n+1 n+1

Step 4. sum = sum + i 1 n n

Step 5. i = i + 2; 1 n n

Step 6. end while; 0 1 0

Step 7. return sum; 1 1 1

Total cost 3n+4

CHECK YOUR PROGRESS

Q.1. State True or False

a) Time complexity is the time taken to design an algorithm.

b) Space complexity is the amount of space required by a

program during execution

c) An algorithm may not produce any output.

d) Algorithm are computer programs which can be directly

run into the computer

e) If an algorithm is designed for a problem then it will work

all the valid inputs for the problem

Algorithm Unit 2



Data Structure Through C Language36

2.5 ASYMPTOTIC NOTATION

When we calculate the complexity of an algorithm we often get a

complex polynomial. For simplify this complex polynomial we use some

notation to represent the complexity of an algorithm call Asymptotic Notation.

Θ (Theta) Notation

For a given function g(n), Θ(g(n)) is defined as

f(n) : there exist constants c
1
 > 0, c

2
 > 0 and n

0
 õ N

Θ(g(n)) =
such that 0 d” c

1
 g(n) d” f(n) d” c

2
 g(n) for all n e” n

0

In other words a function f(n) is said to belongs to Θ(g(n)), if there

exists positive constants c
1 
and c

2
 such that 0 d” c

1
 g(n) d” f(n) d” c

2
g(n) for

sufficiently large value of n. Fig 2.1 gives a intuitive picture of functions f(n)

and g(n), where f(n) = Θ (g(n)). For all the values of n at and to right of n
0
,

the values of f(n) lies at or above c
1
g(n)  and at or below c

2
g(n). In other

words, for all n e” n
0
, the function f(n) is equal to g(n) to within a constant

factor. So, g(n) is said an asymptotically tight bound for f(n).

For example

f(n) = ½ n2 -3 n

let g(n) = n2

AlgorithmUnit 2



Data Structure Through C Language 37

to proof f(n) = Θ (g(n)) we must determine the positive constants c
1
,

c
2
 and n

0
 such that

c
1
 n2 d” ½ n2 -3 n d” c

2
 n2

for all n e” n
0

dividing the whole equation by n2, we get

c
1
 d” ½ -3/n  d” c

2

We can make the right hand inequality hold for any value of n e” 1 by

choosing c
2
 e” ½. Similarly we can make the left hand inequality hold for any

value of n e” 7 by choosing c
1
 d” 1/

14
. Thus, by choosing c

1
 = 1/

14
, c

2
 = ½.

And n
0
 = 7 we can have f(n) = Θ (g(n)). That is  ½n2 -3 n = Θ (n2) .

O (Big O) Notation

For a given function g(n), O(g(n)) is defined as

f(n) : there exist constants c > 0, and n
0
 õ N

O(g(n)) =
such that 0 d” f(n) d” c g(n) for all n e” n

0

In other words a function f(n) is said to belongs to O(g(n)), if there

exists positive constant c such that 0 d” f(n) d” c g(n) for  sufficiently large

value of n. Fig 2.2 gives a intuitive picture of functions f(n) and g(n), where

f(n) = O (g(n)). For all the values of n at and to right of n
0
, the values of f(n)

lies at or below cg(n). So g(n) is said  an asymptotically upper bound for

f(n).

Fig 2.2 : Graphic Example of O notation.

Algorithm Unit 2



Data Structure Through C Language38

&! (Big Omega) Notation

For a given function g(n), &! (g(n)) is defined as

f(n) : there exist constants c > 0, and n
0
 õ N

&!(g(n)) =
such that 0 d” c g(n) d” f(n)  for all n e” n

0

In other words, a function f(n) is said to belongs to &! (g(n)), if there

exists positive constant c such that 0 d” c g(n) d” f(n)  for  sufficiently large

value of n. Fig 2.3 gives a intuitive picture of functions f(n) and g(n), where

f(n) = &! (g(n)). For all the values of n at and to right of n
0
, the values of f(n)

lies at or above c g(n). So g(n) is said an asymptotically lower bound for

f(n).

Fig 2.3 : Graphic Example of  notation

The growth patterns of order notations have been listed below:

O(1) < O(log(n)) < O(n) < O(n log(n))  < O(n2)  <  O(n3) … <O(2n).

The common name of few order notations is listed below:

Notation Name

O(1) Constant

O(log(n)) Logarithmic

O(n) Linear

O(n log(n)) Linearithmic

O(n2) Quadratic

O(cn) Exponential

O(n!) Factorial

AlgorithmUnit 2



Data Structure Through C Language 39

A Comparison of typical running time of different order notations for

different input size listed below:

n
2

log n nn
2

log 2
n

3
n

n

2

0 1 0 1 1 2

1 2 2 4 8 4

2 4 8 16 64 16

3 8 24 64 512 256

4 16 64 256 4096 65536

5 32 160 1014 32768 4294967296

Now let us take few examples of above asymptotic notations

1. Prove that   3n3 + 2n2 + 4n + 3 = O (n3)

Here,

f(n) = 3n3 + 2n2 + 4n + 3

g(n) = O (n3)

to proof f(n) = O (g(n)) we must determine the positive constants

c and n
0
 such that

3n3 + 2n2 + 4n + 3 d” c n3 for all n e” n
0

dividing the whole equation by n3, we get

3 + 2/n + 4/n2 + 3/n3  d” c

We can make the inequality hold for any value of n e” 1 by

choosing c e” 12. Thus, by choosing c e” 12 and n
0
 = 1 we can

have

f(n) = O(g(n)).

Thus,  3n3 + 2n2 + 4n + 3 = O (n3).

2. Prove that   3n3 + 2n2 + 4n + 3 = &! (n3)

Here,

f(n) = 3n3 + 2n2 + 4n + 3

g(n) = O (n3)

to proof f(n) =  &! (g(n)) we must determine the positive constants

c and n
0
 such that

c n3 d” 3n3 + 2n2 + 4n + 3 for all n e” n
0

dividing the whole equation by n3, we get

c d” 3 + 2/n + 4/n2 + 3/n3

Algorithm Unit 2



Data Structure Through C Language40

We can make the inequality hold for any value of n e” 1 by

choosing c d” 3. Thus, by choosing c = 3 and n
0
 = 1 we can have

f(n) = &! (g(n)).

Thus,  3n3 + 2n2 + 4n + 3 = &! (n3).

3. Prove that   7n3 + 7 = Θ (n3)

Here,

f(n) = 7n3 + 7

g(n) = O (n3)

to proof f(n) = Θ (g(n)) we must determine the positive constants

c
1
, c

2
 and n

0
 such that

c
1
 n3 d” 7n3 + 7 d” c

2
 n3 for all n e” n

0

dividing the whole equation by n3, we get

c
1
 d” 7 + 7/n3 d” c

2

We can make the right hand inequality hold for any value of n e”

1 by choosing c
2
 e” 14. Similarly we can make the left hand

inequality hold for any value of n e” 1 by choosing c
1
 d” 7. Thus,

by choosing c
1
 = 7, c

2
 = 14.  And n

0
 = 1 we have f(n) = Θ (g(n)).

Thus, 7n3 + 7 = Θ (n3).

Now let us take few examples of Algorithms and represent their

complexity in asymptotic notations

Example 1. Consider the following algorithm to find out the sum of

all the elements in an array

Statement Cost Frequency Total cost

Sum_Array( arr[], n)

Step 1. i = 0; 1 1 1

Step 2. s = 0; 1 1 1

Step 3. while i < n 1 n+1 n+1

Step 4. s = s + arr [i] 1 n n

Step 5. i = i + 1; 1 n n

Step 6. end while; 0 1 0

Step 7. return s; 1 1 1

Total Cost 3n + 4

AlgorithmUnit 2



Data Structure Through C Language 41

So,

Here f(n) = 3n + 4

Let, g(n) = n

If we want to represent it in O notation then we have to show that for

some positive constant c and n
0

0 d” f(n) d” c g(n)

=> 0 d” 3n + 4 d” c n

Now if we take n = 1 and c = 7

=> 0 d” 3 x 1 + 4 d” 7 x 1

Which is true, so we can say that for n
0
 = 1 and c = 7

f(n) = O (g(n)) that is

3n+4 = O(n)

Example 2. Consider the following algorithm to add two square

matrix.

Statement Cost Frequency Total cost

Mat_add( a[],n,b[])

Step 1. i = 0 1 1 1

Step 2. j = 0; 1 1 1

Step 3. while i < n 1 n+1 n+1

Step 4. while j < n 1 n(n+1) n(n+1)

Step 5. c[i][j] = a[i][j] + b[i][j] 1 n*n n*n

Step 6. j = j + 1 1 n*n n*n

Step 7. end inner while; 0 n 0

Step 8. i = I + 1 1 n n

Step 9. end outer while 0 1 0

Step 10. return c; 1 1 1

Total Cost 3n2 + 3n + 4

Here f(n) = 3n2 + 3n + 4

Let, g(n) = n2

If we want to represent it in &! notation then we have to show that for

some positive constant c and n
0

0 d” c g(n) d” f(n)

=> 0  d” c n2 d” 3n2 + 3n + 4

Algorithm Unit 2



Data Structure Through C Language42

Now if we take n = 1 and c = 3

=> 0 d” 3 x 1 d” 3 x 12 + 3 x 1+ 4

Which is true, so we can say that for n
0
 = 1 and c = 3

f(n) = &! (g(n)) that is

3n2 + 3n + 4 = O(n2)

In analysis of algorithm we may have three different cases depending

on the input to the algorithm, they are

Worst Case: Worst case execution time is an upper bound for

execution time with any input. It guarantees that, irrespective of the type of

input, the algorithm will not take any longer than the worst case time.

Best Case: Best case execution time is the lower bound for execution

time with any input. It guarantees that under any circumstances the execution

time of the algorithms will be at least best case execution time.

Average case: This gives the average execution time of algorithm.

Average case execution time is the execution time taken by an algorithm in

average for any random input to the algorithm

Example 2. Consider the following Insertion sort algorithm

Algorithm Insertion_Sort (a[n])

Step 1: i = 2

Step 2: while i < n

Step 3: num = a[i]

Step 4: j = i

Step 5: while (( j >1) && (a[j-1] > num))

Step 6: a[j] = a[j-1]

Step 7: j = j - 1

Step 8: end while (inner)

Step 9: a[j] = num

Step 10: i = i + 1

Step 11: end while (outer)

Worst case Analysis of Insertion Sort

In worst case inputs to the algorithm will be reversely sorted. So the

loop statement will run for maximum time. In worst case in every time we

will find a[j-1]>num in line 5 as true. So this statement will run for 2 + 3 + 4

AlgorithmUnit 2



Data Structure Through C Language 43

+ … + n times total n(n+1) - 1 times. Statement 6 will run for 1 + 2 + 3 + …

+ n-1 times total n(n-1) times. Similarly for statement 7.

Statement Cost Frequency Total cost

Step 1 1 1 1

Step 2 1 n n

Step 3 1 n-1 n-1

Step 4 1 n-1 n-1

Step 5 1 n(n+1)-1 n(n+1)-1

Step 6 1 n(n-1) n(n-1)

Step 7 1 n(n-1) n(n-1)

Step 8 0 n-1 0

Step 9 1 n-1 n-1

Step 10 1 n-1 n-1

Step 11 0 1 0

Total Cost 3n2 + 4n - 4

Here f(n) = 3n2 + 4n - 4

Let, g(n) = n2

If we want to represent it in O notation then we have to show that for

some positive constant c and n
0

0 d” f(n) d” c g(n)

=> 0 d” 3n2 + 4n - 4 d” c n2

Now if we take n = 1 and c = 7

=> 0 d” 3x12 + 4x1- 4 d” 7 x 12

Which is true, so we can say that for n
0
 = 1 and c = 7

f(n) = O (g(n)) that is

3n2 + 4n - 4  = O(n2)

So worst case time complexity of insertion sort is O(n2)

Average case Analysis of Insertion Sort

In Average case, inputs to the algorithm will be random. In average

case, half of the time we will find a[j-1]>num is true and false in other half.

So statement 5 will run for (2 + 3 + 4 + … + n)/2 times total  (n(n+1)–1)/2

times. Statement 6 will run for (1 + 2 + 3 + … + n-1)/2 times total (n(n-1))/2

times. Similarly for statement 7.

Algorithm Unit 2



Data Structure Through C Language44

Statement Cost Frequency Total cost

Step 1 1 1 1

Step 2 1 n n

Step 3 1 n-1 n-1

Step 4 1 n-1 n-1

Step 5 1 (n(n+1)-1)/2 (n(n+1)-1)/2

Step 6 1 (n(n-1))/2 (n(n-1))/2

Step 7 1 (n(n-1))/2 (n(n-1))/2

Step 8 0 n-1 0

Step 9 1 n-1 n-1

Step 10 1 n-1 n-1

Step 11 0 1 0

Total Cost 3/
2 
n2 + 7/

2 
n - 4

Similarly we can show that average case time complexity of insertion

sort is O(n2).

Best case Analysis of Insertion Sort

In best case inputs will be already sorted. So a[j-1]>num will be false

always. So statement 5 will run for n times (only to check the condition is

false). Statement 6 will run for 0 times since while loop will be false always.

Similarly for statement 7.

Statement Cost Frequency Total cost

Step 1 1 1 1

Step 2 1 n n

Step 3 1 n-1 n-1

Step 4 1 n-1 n-1

Step 5 1 n n

Step 6 1 0 0

Step 7 1 0 0

Step 8 0 n-1 0

Step 9 1 n-1 n-1

Step 10 1 n-1 n-1

Step 11 0 1 0

Total Cost 5n - 3

AlgorithmUnit 2



Data Structure Through C Language 45

Similarly we can show that best case time complexity of insertion

sort is O(n)

CHECK YOUR PROGRESS

Q.2. Sate True or False.

a) 7 n3 + 4n + 27 = O (n3)

b) 2n2 + 34 = &! (n3)

c) 2n2 + 34 = O (n3)

d) 2n2 + 34 = Θ (n3)

e) 2n2 + 34 = &! (n)

f) 2n2 + 34 = Θ (n2)

g) 2n7 + 4n3 + 2n = &! (n3)

h) 2n4 + 3n3 + 17n2 = O (n3)

2.6 LET US SUM UP

� An algorithm is a sequence of computational steps that start with a

set of input(s) and finish with valid output(s)

� An algorithm is correct if for every input(s), it halts with correct

output(s).

� Computational complexity of algorithms are generally referred to by

space complexity and time complexity of the program

� The Space complexity of an algorithm is the amount of main memory

is needed to run the program till completion.

� The Time complexity of an algorithm is the amount of computer time

it needs to run the program till completion.

� O(1) < O(log(n)) < O(n) < O(n log(n))  < O(n2)  <  O(n3) … <O(2n).

Algorithm Unit 2



Data Structure Through C Language46

2.7 FURTHER READINGS

� T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, Second Edition, Prentice Hall of India Pvt. Ltd, 2006.

� Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran,

Fundamental of data structure in C, Second Edition, Universities

Press, 2009.

� Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design

and Analysis of Computer Algorithms,  Pearson Education, 1999.

� Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran,

Computer Algorithms/ C++, Second Edition, Universities Press,

2007.

2.8 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1. : a) False, b) True, c) False, d) False, e) True.

Ans. to Q. No. 2. : a) True, b) False, c) True, d) False, e) True, f) True,

g) True, h) False

2.9 MODEL QUESTIONS

Q.1. Given an array of n integers, write an algorithm to find the smallest

element. Find number of instruction executed by your algorithm. What

are the time and space complexities?

Q.2. Write a algorithm to find the median of n numbers. Find number of

instruction executed by your algorithm. What are the time and space

complexities?

Q.3. Write an algorithm to sort elements by bubble sort algorithm. What

are the time and space complexities?

AlgorithmUnit 2



Data Structure Through C Language 47

Q.4. Explain the need of Analysis of Algorithm.

Q.5. Prove the following

i) 3n5 - 7n + 4 = Θ (n5)

ii) 1/
3
n4  - 7n2 + 3n = Θ (n4)

iii) 2n2  + n + 4 = Θ (n2)

iv) 3n5 - 7n + 4 = O (n5)

v) 3n5 - 7n + 4 = &! (n5)

Algorithm Unit 2



Data Structure Through C Language48

UNIT 3 : LINKED LIST

UNIT STRUCTURE

3.1 Learning Objectives

3.2 Introduction

3.3 Introduction to Linked List

3.4 Single Linked List

3.4.1 Insertion of a new node into a singly linked list

3.4.2 Deletion of a node from a singly linked list

3.4.3 Traversal of nodes in singly linked list

3.4.4 C program to implement singly linked list

3.5 Doubly linked list

3.5.1 Insertion of a new node into a doubly linked list

3.5.2 Deletion of a node from a doubly linked list

3.5.3 Traversal of elements in doubly linked list

3.5.4 C program to implement doubly linked list

3.6 Circular linked list

3.6.1 Insertion of a new node into a circular linked list

3.6.2 Deletion of a node from a circular linked list

3.6.3 Traversal of elements in circular linked list

3.6.4 C program to implement circular linked list

3.7 Comparative Studies with Implementations using Array Structure

3.8 Let Us Sum Up

3.9 Further Readings

3.10 Answers To Check Your Progress

3.11 Model Questions

3.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

� learn about the linked list

� describe different types of linked lists



Data Structure Through C Language 49

� implement different operations on singly, doubly and circular linked

list

� learn about advantages and disadvantages of linked list over array

3.2 INTRODUCTION

We have already learned about array and its limitations. In this unit,

we will learn about the linear and dynamic data structure called linked list

.There are three types of linked list available which are singly linked list,

doubly linked list and circular linked list. The operations on these linked lists

will be discussed in the following sections. The differences between linked

list and array will also be discussed in the following sections.

3.3 INTRODUCTION TO LINKED LIST

Linked list is a linear dynamic data structure. It is a collection of

some nodes containing homogeneous elements. Each node consists of a

data part and one or more address part depending upon the types of the

linked list. There three different types of linked list available which are singly

linked list, doubly linked list and circular linked list.

3.4 SINGLY LINKED LIST

Singly linked list is a linked list which is a linear list of some nodes

containing homogeneous elements .Each node in a singly linked list consists

of two parts, one is data part and another is address part. The data part

contains the data or information and except the last node, the address part

contains the address of the next node in the list. The address part of the last

node in the list contains NULL. Here one pointer is used to point the first

node in the list. Now in the following sections, we are going to discussed

three basic operations on singly linked list which are insertion of a new

node, deletion of a node and traversing the linked list.

Linked List Unit 3



Data Structure Through C Language50

Fig. 3.1(a) : Node of singly linked list

Fig. 3.1(b) : Example of a singly linked list

The structure of a node of singly linked list is shown diagrammatically

in fig. 3.1(a).  Here “3001” is the memory address of the node and “snode”

is the name of the memory location. A diagrammatic representation of a

singly linked list is given in fig. 3.1(b). Here “shead” is the pointer which

points the first node of the linked list. So here “shead” contains “801” that is

address of the first node. The address part of the last node whose memory

address is 601 contains NULL.

3.4.1 Insertion of a New Node into a Singly Linked List

Here we will discuss insertion of a new node into a singly

linked list at the first position, at the last position and at the position

which is inputed by the user. In the following algorithms two

parameters are used. “shead” is used to point the first node and

element is used to store the data of the new node to be inserted in to

the singly linked list.

ADDRESS(snode) means address part of the node pointed

by the pointer “snode” which points the next node in the singly linked

list .

Data Address

3001

Snode

1 101 2 401 3 601

4 NULL

801

801 101 401

601

shead

Linked ListUnit 3



Data Structure Through C Language 51

1 101 2 401 3 601

4 NULL

501

801 101 401

601

shead

5 801

501

newnode

DATA(snode) means data part of the node pointed by the

pointer “snode”.

“newnode” is the pointer which points the node to be inserted

into the linked list.

Fig. 3.2 :Example for insertion of a new node into the first position in

a singly linked list

Algorithm for inserting new node at the first position into a

singly linked list:

insert_first(shead,element)

Step 1. ALLOCATE MEMORY FOR newnode

Step 2. ADDRESS(newnode) = NULL

Step 3. DATA(newnode) = element

Step 4. IF shead == NULL

Step 5. shead = newnode

Step 6. END OF IF

Step 7. ELSE

Step 8. ADDRESS(newnode) = shead

Step 9. shead = newnode

Step 10. END OF ELSE

In fig. 3.2 , a node with memory address “501” is inserted in

the first position of a singly linked list.

Linked List Unit 3



Data Structure Through C Language52

Fig. 3.3 :Example for insertion of a new node into the last position in

a singly linked list

Algorithm for inserting new node at the last position into a

singly linked list:

insert_last(shead,element)

Step 1. ALLOCATE MEMORY FOR  newnode

Step 2. ADDRESS(newnode) = NULL

Step 3. DATA(newnode) = element

Step 4. IF shead == NULL

Step 5. shead = newnode

Step 6. END OF IF

Step 7. ELSE

Step 8. temp = shead

Step 9. WHILE   ADDRESS(temp) ! = NULL

Step 10. temp = ADDRESS(temp)

Step 11. END OF WHILE

Step 12. ADDRESS(temp) = newnode

Step 13. END OF ELSE

In fig. 3.3, a node with memory address “501” is inserted in

the last position of a singly linked list.

1 101 2 401 3 601

4 501

801

801 101 401

601

5 NULL

501

newnode

Linked ListUnit 3



Data Structure Through C Language 53

1 101 2 501 3 601

4 NULL

801

801 101 401

601

shead

5 401

newnode

501

Fig. 3.4 :Example for insertion of a new node into the 3rd position in

a singly linked list

Algorithm for inserting new node at a position which is inputed

by the user into a singly linked list:

Here “pos” is used to store the position inputted by the user

in which the new node is to be inserted in to the singly linked list.

insert_at_p(shead,element,pos)

Step 1. count = 1

Step 2. ALLOCATE MEMORY FOR  newnode

Step 3. DATA(newnode) = element

Step 4. ADDRESS(newnode) = NULL

Step 5. IF  pos <=0 OR (pos > 1 AND shead=NULL)

Step 6. PRINT  “Wrong input for position”

Step 7. END OF IF

Step 8. ELSE

Step 9. IF  pos == 1

Step 10. ADDRESS(newnode) = shead

Step 11. shead = newnode

Step 12. END OF IF

Step 13. temp1 = shead

Step 14. WHILE  count < pos AND  ADDRESS(temp1) != NULL

Step 15. temp2 = temp1

Step 16. temp1 = ADDRESS(temp1)

Step 17. count = count+1

Linked List Unit 3



Data Structure Through C Language54

Step 18. END OF WHILE

Step 19. IF count == pos

Step 20. ADDRESS(newnode) = temp1

Step 21. ADDRESS(temp2) = newnode

Step 22. END OF IF

Step 23. ELSE IF count == pos-1

Step 24. ADDRESS(temp1) = newnode

Step 25. END OF ELSE IF

Step 26. ELSE

Step 27. PRINT  “Wrong input for position”

Step 28. END OF ELSE

Step 29. END OF ELSE

In fig. 3.4, a node with memory address “501” is inserted in

the 3rd position of a singly linked list.

3.4.2 Deletion of a Node from a Singly Linked List

Here we will discuss deletion of the first node, the last node

and the node whose position is inputed by the user from a singly

linked list. In the following algorithms, one parameters are used.

“shead” is used to point the first node of a singly linked list.

ADDRESS(snode) means address part of the node pointed

by the pointer “snode” which points the next node in the singly linked

list .

“temp” is a pointer to point any node of a singly linked list.

Fig. 35 : Example for deletion of  the first node from a singly linked list

shead

1 101 2 401 3 601

4 NULL

101

801 101 401

601

Linked ListUnit 3



Data Structure Through C Language 55

1 101 2 401 3 NULL

4 NULL

801

801 101 401

601

shead

Algorithm for deletion of the fist node:

delet_first(shead)

Step 1. IF  shead == NULL

Step 2. PRINT “The linked list is empty”

Step 3. END OF IF

Step 4. ELSE

Step 5. temp = shead

Step 6. shead = ADDRESS(shead)

Step 7. DEALLOCATE MEMORY FOR  temp

Step 8. END OF ELSE

In fig. 3.5, the first node with memory address “801” is deleted

from the singly linked list.

Fig. 3.6 : Example for deletion of  the last node from a singly linked list

Algorithm for deletion of the last node:

delet_last(shead)

Step 1. IF shead==NULL

Step 2. PRINT  “The linked list is empty”

Step 3. END OF IF

Step 4. ELSE

Step 5. temp1 = shead;

Step 6. WHILE  ADDRESS(temp1) != NULL

Step 7. temp2 = temp1

Step 8. temp1 = ADDRESS(temp1)

Step 9. END OF WHILE

Step 10. IF temp1 == shead

Linked List Unit 3



Data Structure Through C Language56

Step 11. shead = NULL

Step 12. END OF IF

Step 13. ADDRESS(temp2) = NULL

Step 14. DEALLOCATE MEMORY FOR  temp1

Step 15. END OF ELSE

In fig. 3.6, the last node with memory address “601” is deleted

from the singly linked list.

Fig. 3.7 : Example for deletion of the 2nd node from a singly linked list

Algorithm for deletion of the node whose position is inputed

by the user:

delet_p(shead,pos)

Step 1. IF shead == NULL

Step 2. PRINT “The linked list is empty “

Step 3. END OF IF

Step 4. ELSE

Step 5. temp1 = shead;

Step 6. IF  pos == 1

Step 7. shead = ADDRESS(shead)

Step 8. DEALLOCATE MEMORY FOR  temp1

Step 9. END OF IF

Step 10. ELSE

Step 11. WHILE count < pos AND ADDRESS(temp1)!

= NULL

Step 12. temp2 = temp1

Step 13. temp1 = ADDRESS(temp1)

1 401 2 401 3 601

4 NULL

801

801 101 401

601

shead

Linked ListUnit 3



Data Structure Through C Language 57

Step 14. count = count + 1

Step 15. END OF WHILE

Step 16. IF  pos == count

Step 17. ADDRESS(temp2) = ADDRESS(temp1)

Step 18. DEALLOCATE MEMORY FOR  temp1

Step 19. END OF IF

Step 20. ELSE

Step 21. PRINT  “Wrong input for the position”

Step 22. END OF ELSE

Step 23. END OF ELSE

Step 24. END OF ELSE

In fig. 3.7, the 2nd node with memory address “101” is deleted

from the singly linked list.

3.4.2 Traversal of Nodes in Singly Linked List

In a singly linked list the traversal of nodes is done sequentially

from the first node to the last node.

Algorithm for traversing nodes in a singly linked list:

traverse_slist(shead)

Step 1. temp = shead

Step 2. IF shead == NULL

Step 3. PRINT “The linked list is empty”

Step 4. END OF IF

Step 5. ELSE

Step 6. WHILE  temp != NULL

Step 7. temp = ADDRESS(temp)

Step 8. END OF WHILE

Step 9. END OF ELSE

3.4.3 C Program to Implement Singly Linked List

#include<conio.h>

#define max 40

Linked List Unit 3



Data Structure Through C Language58

// Structure to create a node for singly linked list

struct snode

{

int data;

struct snode *next;

};

typedef struct snode snode;

//Function prototypes

void insert(snode **,int );

int insert_first(snode **,int);

int insert_last(snode **,int);

int insert_at_p(snode **,int,int);

void delet(snode **);

int delet_first(snode **);

int delet_last(snode **);

int delet_p(snode **,int);

int isempty(snode *);

void init(snode **);

void creat(snode **);

void display(snode *);

void main()

{

snode *shead;

int option,elem,flag;

char cont;

clrscr();

init(&shead);

creat(&shead);

do

{

printf(“\n*****************”);

printf(“\n1.Insertion       *”);

printf(“\n2.Deletion        *”);

Linked ListUnit 3



Data Structure Through C Language 59

printf(“\n3.Display         *”);

printf(“\n*****************”);

printf(“\nEnter your option::”);

scanf(“%d”,&option);

switch(option)

{

case 1:printf(“\nEnter the element to be inserted

into the linked list::”);

scanf(“%d”,&elem);

insert(&shead,elem);

break;

case 2:delet(&shead);

break;

case 3:display(shead);

break;

default:printf(“\nWrong input...try again”);

}

printf(“\nDo you want to continue..

Press ‘y’ or ‘Y’ to continue:”);

cont = getch();

}while(cont == ‘y’ || cont == ‘Y’);

}

//Function to initialize the pointer which points the starting

node of the singly linked list

void init(snode **shead)

{

*shead = NULL;

}

//Function to check underflow condition

int isempty(snode *shead)

{

if(shead == NULL)

return(1);

Linked List Unit 3



Data Structure Through C Language60

else

return(0);

}

//Function for insertion of a new node into a singly linked list

void insert(snode **shead,int element)

{

int opt,pos;

printf(“\n*******INSERT MENU*********”);

printf(“\n1.Insert at first position*”);

printf(“\n2.Insert at last position *”);

printf(“\n3.Insert at pth position  *”);

printf(“\n***************************”);

printf(“\nEnter your option::”);

scanf(“%d”,&opt);

switch(opt)

{

case 1: if(insert_first(shead,element))

{

printf(“\n%d is succesfully inserted at the first

position”,element);

printf(“\nAfter insertion the linked list is::\n”);

display(*shead);

}

else

{

printf(“\nInsertion isnot successfull”);

}

break;

case 2: if(insert_last(shead,element))

{

printf(“\n%d is succesfully inserted at the last

position”,element);

printf(“\nAfter insertion the linked list is::\n”);

Linked ListUnit 3



Data Structure Through C Language 61

display(*shead);

}

else

{

printf(“\nInsertion isnot successfull”);

}

break;

case 3: printf(“\nEnter the position::”);

scanf(“%d”,&pos);

if(insert_at_p(shead,element,pos))

{

printf(“\n%d is succesfully inserted at %d

position”,element,pos);

printf(“\nAfter insertion the linked list is::\n”);

display(*shead);

}

else

{

printf(“\nInsertion isnot successfull”);

}

break;

default:printf(“\nWrong input..Try agail”);

}

}

//Function for deletion of a node from a singly linked list

void delet(snode **shead)

{

int opt,pos,elem;

printf(“\n*******DELETE MENU*********”);

printf(“\n1.Delete the first node   *”);

printf(“\n2.Delete the last node    *”);

printf(“\n3.Delete the pth node     *”);

printf(“\n***************************”);

Linked List Unit 3



Data Structure Through C Language62

printf(“\nEnter your option::”);

scanf(“%d”,&opt);

switch(opt)

{

case 1: elem = delet_first(shead);

if(elem == -99)

{

printf(“\nDeletion isnot possible as the linked

list is empty”);

}

else

{

printf(“\n%d is succesfully deleted”,elem);

printf(“\nAfter deletion the linked list is::\n”);

display(*shead);

}

break;

case 2: elem = delet_last(shead);

if(elem == -99)

{

printf(“\nDeletion isnot possible as the linked

list is empty”);

}

else

{

printf(“\n%d is succesfully deleted”,elem);

printf(“\nAfter deletion the linked list is::\n”);

display(*shead);

}

break;

case 3: printf(“\nEnter the position::”);

scanf(“%d”,&pos);

elem = delet_p(shead,pos);

Linked ListUnit 3



Data Structure Through C Language 63

if(elem == -99)

{

printf(“\nDeletion isnot possible as the linked

list is empty”);

}

else if(elem == -98)

printf(“\nWrong input for position”);

else

{

printf(“\n%d is succesfully deleted”,elem);

printf(“\nAfter deletion the linked list is::\n”);

display(*shead);

}

break;

default:printf(“\nWrong input..Try agail”);

}

}

// Function to display the elements in s singly linked list

void display(snode *shead)

{

snode *temp;

temp = shead;

if(isempty(shead))

printf(“\nThe linked list is empty”);

else

{

printf(“\nthe elements in the singly linked list are:\n”);

76mn while(temp != NULL)

{

printf(“%5d”,temp->data);

temp = temp->next;

}

}

Linked List Unit 3



Data Structure Through C Language64

}

//Function to create a singly linked list

void creat(snode **shead)

{

snode *newnode,*last;

char cont;

do

{

newnode = (snode *)malloc(sizeof(snode));

newnode->next = NULL;

printf(“\nEnter data::”);

scanf(“%d”,&newnode->data);

if(*shead == NULL)

{

*shead = newnode;

last = newnode;

}

else

{

last->next = newnode;

last = newnode;

}

printf(“\nDo you want to add more node..press ‘y’ or

‘Y’ to continue::”);

cont = getch();

}while(cont == ‘y’ || cont == ‘Y’);

}

// Function to insert a new node into the first position

int insert_first(snode **shead,int element)

{

snode *newnode;

newnode = (snode *)malloc(sizeof(snode));

newnode->next = NULL;

Linked ListUnit 3



Data Structure Through C Language 65

newnode->data = element;

if(*shead == NULL)

{

*shead = newnode;

return(1);

}

else

{

newnode->next = *shead;

*shead = newnode;

return(1);

}

}

//Function to insert a new node at the last position

int insert_last(snode **shead,int element)

{

snode *temp,*newnode;

newnode = (snode *)malloc(sizeof(snode));

newnode->next = NULL;

newnode->data = element;

if(*shead == NULL)

{

*shead = newnode;

return(1);

}

else

{

temp = *shead;

while(temp->next != NULL)

temp = temp->next;

temp->next = newnode;

return(1);

}

Linked List Unit 3



Data Structure Through C Language66

}

//Function to insert a node at pth position

int insert_at_p(snode **shead,int element,int pos)

{

snode *temp1,*temp2,*newnode;

int count = 1;

newnode = (snode *)malloc(sizeof(snode));

newnode->data = element;

newnode->next = NULL;

if(pos <= 0 || (pos > 1 && *shead == NULL))

{

printf(“\nWrong input for position”);

return(0);

}

else

{

if(pos == 1)

{

newnode->next = *shead;

*shead = newnode;

return(1);

}

temp1 = *shead;

while(count < pos && temp1->next != NULL)

{

temp2 = temp1;

temp1 = temp1->next;

count++;

}

if(count == pos)

{

newnode->next = temp1;

temp2->next = newnode;

Linked ListUnit 3



Data Structure Through C Language 67

return(1);

}

else if(count == pos-1)

{

temp1->next = newnode;

return(1);

}

else

{

printf(“\nWrong input for position”);

return(0);

}

}

}

//Function to delete the first node

int delet_first(snode **shead)

{

snode *temp;

int delem;

if(*shead == NULL)

return(-99);

else

{

temp = *shead;

delem = temp->data;

*shead = (*shead)->next;

free(temp);

return(delem);

}

}

//Function to delete the last node

int delet_last(snode **shead)

{

Linked List Unit 3



Data Structure Through C Language68

snode *temp1,*temp2;

int delem;

if(*shead == NULL)

return(-99);

else

{

temp1 = *shead;

while(temp1->next != NULL)

{

temp2 = temp1;

temp1 = temp1->next;

}

delem = temp1->data;

if(temp1 == *shead)

*shead = NULL;

else

temp2->next = NULL;

free(temp1);

return(delem);

}

}

//Function to delete the pth node

int delet_p(snode **shead,int pos)

{

snode *temp1,*temp2;

int delem,count = 1;

if(*shead == NULL)

return(-99);

else

{

temp1 = *shead;

if(pos == 1)

{

Linked ListUnit 3



Data Structure Through C Language 69

delem = (*shead)->data;

*shead = (*shead)->next;

free(temp1);

return(delem);

}

while(count < pos && temp1->next != NULL)

{

temp2 = temp1;

temp1 = temp1->next;

count++;

}

if(pos == count)

{

delem = temp1->data;

temp2->next = temp1->next;

free(temp1);

return(delem);

}

else

{

return(-98);

}

}

}

3.5 DOUBLY LINKED LIST

Doubly linked list is a linked list which is a linear list of some nodes

containing homogeneous elements .Each node in a doubly linked list

consists of three parts, one is data part and other two are address parts.

The data part contains the data or information. Except the first and the last

node, one address part contains the address of the next node in the list and

other address part contains the address of the previous node in the list. In

Linked List Unit 3



Data Structure Through C Language70

case of the first node, one address part contains the address of the next

node and other address part contains NULL. On the other hand in case of

the last node, one address part contains the address of the previous node

and the other address part contains NULL. Here one pointer is used to point

the first node in the list.

Doubly linked lists require more memory space than the singly linked

list because of the one extra address part. But in doubly linked list the traversal

can be done in both direction .So here movement of any node to any node is

possible.

Now in the following sections, we are going to discussed three basic

operations on doubly linked list which are insertion of a new node, deletion

of a node and traversing the linked list.

Fig. 3.8(a) : Node of Doubly linked list

Fig. 3.8(b) : Example of a doubly linked list

The structure of a node of doubly linked list is shown diagrammatically

in fig 8(a).  Here “101” is the memory address of the node and “dnode” is the

name of the memory location. A diagrammatic representation of a doubly

linked list is given in fig 8(b). Here “dhead” is the pointer which points the

first node of the linked list. So here “dhead” contains “501” that is address of

the first node. The address part of the last node whose memory address is

901 and the address part of the first node whose memory address is “501”

contain NULL.

Address of 

previous node

Data Address of next 

node

101

dnode

NULL 1 401 501 2 801 401 3 901 801 4 NULL

501 401 801 901

501dhead

Linked ListUnit 3



Data Structure Through C Language 71

3.5.1 Insertion of a New Node into a Doubly Linked List

Here we will discuss insertion of a new node into a doubly

linked list at the first position, at the last position and at the position

which is inputed by the user. In the following algorithms two

parameters are used. “dhead” is used to point the first node and

element is used to store the data of the new node to be inserted in to

the doubly linked list.

ADDRESSNEXT(dnode)  means the address part of a node

pointed by the pointer “dnode”  which points the next node in the

doubly linked list.

ADDRESSPREVIOUS(dnode) means the address part of a

node pointed by the pointer “dnode” which points the previous node

in the doubly linked list.

DATA(dnode) means the data part of a node pointed by the

pointer “dnode” of a doubly linked list.

Fig. 3.9 : Example for insertion of a new node into the first position in

a doubly linked list

Algorithm for inserting new node at the first position into a

doubly linked list:

insert_first(dhead, element)

Step 1. ALLOCATE MEMORY FOR newnode

Step 2. ADDRESSNEXT(newnode) = NULL

Step 3. ADDRESSPREVIOUS(newnode) = NULL

Step 4. DATA(newnode) = element

Step 5. IF dhead == NULL

Step 6. dhead = newnode

901 1 401 501 2 801 401 3 NULL

501 401 801

901dhead

NULL 4 501

901

newnode

Linked List Unit 3



Data Structure Through C Language72

Step 7. END OF IF

Step 8. ELSE

Step 9. ADDRESSNEXT(newnode) = dhead

Step 10. ADDRESSPREVIOUS(dhead) = newnode

Step 11. dhead = newnode

Step 12. END OF ELSE

In fig. 3.9, a node with memory address “901” is inserted into

the first position of a doubly linked list.

Fig. 3.10 : Example for insertion of a new node into the last position

in a doubly linked list

Algorithm for inserting new node at the last position into a

doubly linked list:

insert_last(dhead, element)

Step 1. ALLOCATE MEMORY FOR  newnode

Step 2. ADDRESSPREVIOUS(newnode) = NULL

Step 3. ADDRESSNEXT(newnode) = NULL

Step 4. DATA(newnode) = element

Step 5. IF dhead == NULL

Step 6. dhead = newnode

Step 7. END OF IF

Step 8. ELSE

Step 9. temp = dhead

Step 10. WHILE  ADDRESSNEXT(temp) != NULL

Step 11. temp = ADDRESSNEXT(temp)

Step 12. ADDRESSPERVIOUS(newnode) = temp

Step 13. ADDRESSNEXT(temp) = newnode

Step 14. END OF WHILE

Step 15. END OF ELSE

NULL 1 401 501 2 801 401 3 901 801 4 NULL

501 401 801 901

501dhead

newnode

Linked ListUnit 3



Data Structure Through C Language 73

In fig. 3.10, a node with memory address “901” is inserted

into the last position of a doubly linked list.

Fig. 3.11 : Example for insertion of a new node into the 3rd position

in a doubly linked list

Algorithm for inserting new node at a position which is inputed

by the user into a doubly linked list:

insert_at_p(dhead,element,pos)

Step 1. count = 1

Step 2. ALLOCATE MEMORY FOR  newnode

Step 3. DATA(newnode) = element

Step 4. ADDRESSNEXT(newnode) = NULL

Step 5: ADDRESSPREVIOUS(newnode) = NULL

Step 6. IF pos<=0 OR (pos >1 AND  dhead=NULL)

Step 7. PRINT “Wrong input for position”

Step 8. END OF IF

Step 9. ELSE

Step 10. IF pos == 1

Step 11. ADDRESSNEXT(newnode) = dhead

Step 12. ADDRESSPREVIOUS(dhead) = newnode

Step 13. dhead = newnode

Step 14. END OF IF

Step 15. temp1 = dhead

Step 16. WHILE count<pos AND ADDRESSNEXT(temp1)

= NULL

Step 17. temp2 = temp1

Step 18. temp1 = ADDRESSNEXT(temp1)

Step 19. count = count + 1

Step 20. END OF WHILE

NULL 1 401 501 2 901 901 3 NULL

401 4 801

501 401 801

901

501dhead

Linked List Unit 3



Data Structure Through C Language74

Step 21. IF  count == pos

Step 22. ADDRESSNEXT(newnode) = temp1

Step 23. ADDRESSPREVIOUS(newnode) = temp2

Step 24. ADDRESSPREVIOUS(temp1) = newnode

Step 25. ADDRESSNEXT(temp2) = newnode

Step 26. END OF IF

Step 27. ELSE IF count == pos-1

Step 28. ADDRESSNEXT(temp1) = newnode

Step 29. ADDRESSPREVIOUS(newnode) = temp1

Step 30. END OF ELSE IF

Step 31. ELSE

Step 32. PRINT “Wrong input for position”

Step 33. END OF ELSE

Step 34. END OF ELSE

In fig. 3.11, a node with memory address “901” is inserted

into the 3rd position of a doubly linked list.

3.5.2 Deletion of a Node from a Doubly Linked List

Here we will discuss deletion of the first node, the last node

and the node whose position is inputed by the user from a doubly

linked list.

ADDRESSNEXT(dnode) means the address part of a node

pointed by the pointer “dnode” which points the next node in the

doubly linked list.

ADDRESSPREVIOUS(dnode) means the address part of a

node pointed by the pointer “dnode” which points the previous node

in the doubly linked list.

“temp” is a pointer to point any node of a singly linked list.

Fig. 3.12 : Example for deletion of the first node from a doubly linked list

NULL 1 401 NULL 2 801 401 3 901 801 4 NULL

501 401 801 901

401dhead

Linked ListUnit 3



Data Structure Through C Language 75

Algorithm for deletion of the fist node:

delet_first(dhead)

Step 1. IF dhead == NULL

Step 2. PRINT “ The linked list is empty”

Step 3. END OF IF

Step 4. ELSE

Step 5. temp = dhead

Step 6. dhead = ADDRESSNEXT(dhead)

Step 7. IF  dhead != NULL

Step 8. ADDRESSPREVIOUS(dhead) = NULL

Step 9. END OF IF

Step 10. DEALLOCATE MEMORY FOR temp

Step 11. END OF ELSE

In fig. 3.12, the first node with memory address “501” is

deleted from the doubly linked list.

Fig. 3.13 : Example for deletion of the last node from a doubly linked list

Algorithm for deletion of the last node:

delet_last(dhead)

Step 1. IF  dhead == NULL

Step 2. PRINT “ The linked is empty”

Step 3. END OF IF

Step 4. ELSE

Step 5. temp = dhead

Step 6. WHILE  ADDRESSNEXT(temp) != NULL

Step 7. temp = ADDRESSNEXT(temp)

Step 8. END OF WHILE

Step 9. IF temp == dhead

Step 10. dhead = NULL

Step 11.          END OF IF

NULL 1 401 501 2 801 401 3 NULL 801 4 NULL

501 401 801 901

501dhead

Linked List Unit 3



Data Structure Through C Language76

Step 12. ELSE

Step 13.

= NULL

Step 14. END OF ELSE

Step 15. DEALLOCATE MEMORY FOR temp

Step 16. END OF ELSE

In fig. 3.13, the last node with memory address “901” is

deleted from the linked list.

Fig. 3.14 : Example for deletion of the 3rd node from a doubly linked list

Algorithm for deletion of the node whose position is inputed

by the user:

delet_p(dhead,pos)

Step 1. count = 1

Step 2. IF dhead == NULL

Step 3. PRINT “ The linked list is empty”

Step 4. END OF IF

Step 5. ELSE

Step 6. temp = dhead

Step 7. IF pos == 1

Step 8. dhead = ADDRESSNEXT(dhead)

Step 9. IF  dhead != NULL

Step 10. ADDRESSPREVIOUS(dhead) = NULL

Step 11. END OF IF

Step 12. DEALLOCATE MEMORY FOR  temp

Step 13. END OF IF

Step 14. WHILE  count < pos AND ADDRESSNEXT(temp)!

= NULL

Step 15. temp = ADDRESSNEXT(temp)

Step 16. count = count+1

NULL 1 401 501 2 901 401 3 901 401 4 NULL

501 401 801 901

501dhead

Linked ListUnit 3



Data Structure Through C Language 77

Step 17. END OF WHILE

Step 18. IF  pos == count

Step 19.

= ADDRESSNEXT(temp)

Step 20.

= ADDRESSPREVIOUS(temp)

Step 21. DEALLOCATE MEMORY FOR  temp

Step 22. END OF IF

Step 23. ELSE

Step 24. PRINT “ Wrong input for position”

Step 25. END OF ELSE

Step 26. END OF ELSE

In fig. 3.14, the 3rd node is deleted from the doubly linked list.

3.5.3 Traversal of Nodes in Doubly Linked List

In a doubly linked list the traversal of nodes can be done

sequentially in both directions, from the first node to the last node

and from the last node to first node.

Algorithm for traversing nodes in a doubly linked list:

traverse(dhead)

Step 1. temp = dhead

Step 2. IF  dhead == NULL

Step 3. PRINT  “The linked list is empty”

Step 4. ELSE

Step 5. /* Traversal in the forward direction */

Step 6. WHILE  temp != NULL

Step 7. temp = ADDRESSNEXT(temp)

Step 8. END OF WHILE

Step 9. /* Traversal in the backward direction */

Step 10. WHILE  temp !=NULL

Step 11. temp = ADDRESSPREVIOUS(temp)

Step 12. END OF WHILE

Step 13. END OF ELSE

Linked List Unit 3



Data Structure Through C Language78

3.5.4 C Program to Implement Doubly Linked List

#include<stdio.h>

#include<conio.h>

#define max 40

//STRUCTURE TO CREATE NODE OF DOUBLY LINKED LIST

struct dnode

{

int data;

struct dnode *next;

struct dnode *prev;

};

typedef struct dnode dnode;

//FUNCTION PROTOTYPES

void insert(dnode **,int );

int insert_first(dnode **,int);

int insert_last(dnode **,int);

int insert_at_p(dnode **,int,int);

void delet(dnode **);

int delet_first(dnode **);

int delet_last(dnode **);

int delet_p(dnode **,int);

int isempty(dnode *);

void init(dnode **);

void creat(dnode **);

void display(dnode *);

void main()

{

dnode *dhead;

int option,elem,flag;

char cont;

clrscr();

init(&dhead);

creat(&dhead);

Linked ListUnit 3



Data Structure Through C Language 79

do

{

printf(“\n*****************”);

printf(“\n1.Insertion     *”);

printf(“\n2.Deletion      *”);

printf(“\n3.Display       *”);

printf(“\n*****************”);

printf(“\nEnter your option::”);

scanf(“%d”,&option);

switch(option)

{

case 1: printf(“\nEnter the element to be inserted into

the linked list::”);

scanf(“%d”,&elem);

insert(&dhead,elem);

break;

case 2: delet(&dhead);

break;

case 3: display(dhead);

break;

default:printf(“\nWrong input...try again”);

}

printf(“\nDo you want to continue..Press ‘y’ or ‘Y’

to continue:”);

cont = getch();

}while(cont == ‘y’ || cont == ‘Y’);

}

// FUNCTION TO INITIALIZE THE POINTER WHICH POINTS

   THE FIRST NODE OF THE DOUBLY LINKED LIST

void init(dnode **dhead)

{

*dhead = NULL;

}

Linked List Unit 3



Data Structure Through C Language80

//FUNCTION TO CHECK THE UNDERFLOW CONDITION

int isempty(dnode *dhead)

{

if(dhead == NULL)

return(1);

else

return(0);

}

//FUNCTION TO INSERT NEW NODE INTO A DOUBLY LINKED

   LIST

void insert(dnode **dhead,int element)

{

int opt,pos;

printf(“\n*******INSERT MENU*********”);

printf(“\n1.Insert at first position*”);

printf(“\n2.Insert at last position *”);

printf(“\n3.Insert at pth position  *”);

printf(“\n***************************”);

printf(“\nEnter your option::”);

scanf(“%d”,&opt);

switch(opt)

{

case 1: if(insert_first(dhead,element))

{

printf(“\n%d is succesfully inserted at the

first position”,element);

printf(“\nAfter insertion the linked list is::\n”);

display(*dhead);

}

else

{

printf(“\nInsertion isnot successfull”);

}

Linked ListUnit 3



Data Structure Through C Language 81

break;

case 2: if(insert_last(dhead,element))

{

printf(“\n%d is succesfully inserted at the

last position”,element);

printf(“\nAfter insertion the linked list is::\n”);

display(*dhead);

}

else

{

printf(“\nInsertion isnot successfull”);

}

break;

case 3: printf(“\nEnter the position::”);

scanf(“%d”,&pos);

if(insert_at_p(dhead,element,pos))

{

printf(“\n%d is succesfully inserted at %d

position”,element,pos);

printf(“\nAfter insertion the linked list is::\n”);

display(*dhead);

}

else

{

printf(“\nInsertion isnot successfull”);

}

break;

default:printf(“\nWrong input..Try agail”);

}

}

//FUNCTION TO DELETE A NODE FROM THE DOUBLY

   LINKED LIST

void delet(dnode **dhead)

Linked List Unit 3



Data Structure Through C Language82

{

int opt,pos,elem;

printf(“\n*******DELETE MENU*********”);

printf(“\n1.Delete the first node   *”);

printf(“\n2.Delete the last node    *”);

printf(“\n3.Delete the pth node     *”);

printf(“\n***************************”);

printf(“\nEnter your option::”);

scanf(“%d”,&opt);

switch(opt)

{

case 1: elem = delet_first(dhead);

if(elem == -99)

{

printf(“\nDeletion isnot possible as the linked

list is empty”);

}

else

{

printf(“\n%d is succesfully deleted”,elem);

printf(“\nAfter deletion the linked list is::\n”);

display(*dhead);

}

break;

case 2: elem = delet_last(dhead);

if(elem == -99)

{

printf(“\nDeletion isnot possible as the linked

list is empty”);

}

else

{

printf(“\n%d is succesfully deleted”,elem);

Linked ListUnit 3



Data Structure Through C Language 83

printf(“\nAfter deletion the linked list is::\n”);

display(*dhead);

}

break;

case 3: printf(“\nEnter the position::”);

scanf(“%d”,&pos);

elem = delet_p(dhead,pos);

if(elem == -99)

{

printf(“\nDeletion isnot possible as the linked

list is empty”);

}

else if(elem == -98)

printf(“\nWrong input for position”);

else

{

printf(“\n%d is succesfully deleted”,elem);

printf(“\nAfter deletion the linked list is::\n”);

display(*dhead);

}

break;

default:printf(“\nWrong input..Try agail”);

}

}

//FUNCTION TO DISPLAY THE ELEMENTS IN A DOUBLY

   LINKED LIST

void display(dnode *dhead)

{

dnode *temp;

temp = dhead;

if(isempty(dhead))

printf(“\nThe linked list is empty”);

else

Linked List Unit 3



Data Structure Through C Language84

{

printf(“\nthe elements in the doubly linked list are:\n”);

while(temp != NULL)

{

printf(“%5d”,temp->data);

temp = temp->next;

}

}

}

//FUNCTION TO CREATE A DOUBLY LINKED LIST

void creat(dnode **dhead)

{

dnode *newnode,*last;

char cont;

do

{

newnode = (dnode *)malloc(sizeof(dnode));

newnode->next = NULL;

newnode->prev = NULL;

printf(“\nEnter data::”);

scanf(“%d”,&newnode->data);

if(*dhead == NULL)

{

*dhead = newnode;

last = newnode;

}

else

{

newnode->prev = last;

last->next = newnode;

last = newnode;

}

printf(“\nDo you want to add more node..press ‘y’ or ‘Y’

Linked ListUnit 3



Data Structure Through C Language 85

to continue::”);

cont = getch();

}while(cont == ‘y’ || cont == ‘Y’);

}

//FUNCTION TO INSERT A NEW NODE AT THE FIRST

  POSITION

int insert_first(dnode **dhead,int element)

{

dnode *newnode;

newnode = (dnode *)malloc(sizeof(dnode));

newnode->next = NULL;

newnode->prev = NULL;

newnode->data = element;

if(*dhead == NULL)

{

*dhead = newnode;

return(1);

}

else

{

newnode->next = *dhead;

(*dhead)->prev = newnode;

*dhead = newnode;

return(1);

}

}

//FUNCTION TO INSERT A NEW NODE AT THE LAST

  POSITION

int insert_last(dnode **dhead,int element)

{

dnode *temp,*newnode;

newnode = (dnode *)malloc(sizeof(dnode));

newnode->prev = NULL;

Linked List Unit 3



Data Structure Through C Language86

newnode->next = NULL;

newnode->data = element;

if(*dhead == NULL)

{

*dhead = newnode;

return(1);

}

else

{

temp = *dhead;

while(temp->next != NULL)

temp = temp->next;

newnode->prev = temp;

temp->next = newnode;

return(1);

}

}

//FUNCTION TO INSERT A NEW NODE AT PTH POSITION

int insert_at_p(dnode **dhead,int element,int pos)

{

dnode *temp1,*temp2,*newnode;

int count = 1;

newnode = (dnode *)malloc(sizeof(dnode));

newnode->data = element;

newnode->next = NULL;

if(pos <=0 || (pos > 1 && *dhead == NULL))

{

printf(“\nWrong input for position”);

return(0);

}

else

{

if(pos == 1)

Linked ListUnit 3



Data Structure Through C Language 87

{

newnode->next = *dhead;

(*dhead)->prev = newnode;

*dhead = newnode;

return(1);

}

temp1 = *dhead;

while(count < pos && temp1->next != NULL)

{

temp2 = temp1;

temp1 = temp1->next;

count++;

}

if(count == pos)

{

newnode->next = temp1;

newnode->prev = temp2;

temp1->prev = newnode;

temp2->next = newnode;

return(1);

}

else if(count == pos-1)

{

temp1->next = newnode;

newnode->prev = temp1;

return(1);

}

else

{

printf(“\nWrong input for position”);

return(0);

}

}

Linked List Unit 3



Data Structure Through C Language88

//FUNCTION TO DELETE THE FIRST NODE

int delet_first(dnode **dhead)

{

dnode *temp;

int delem;

if(*dhead == NULL)

return(-99);

else

{

temp = *dhead;

delem = temp->data;

*dhead = (*dhead)->next;

if(*dhead != NULL)

(*dhead)->prev = NULL;

free(temp);

return(delem);

}

}

//FUNCTION TO DELETE THE LAST NODE

int delet_last(dnode **dhead)

{

dnode *temp;

int delem;

if(*dhead == NULL)

return(-99);

else

{

temp = *dhead;

while(temp->next != NULL)

temp = temp->next;

delem = temp->data;

 if(temp == *dhead)

*dhead = NULL;

Linked ListUnit 3



Data Structure Through C Language 89

else

(temp->prev)->next = NULL;

free(temp);

return(delem);

}

}

//FUNCTION TO DELETE THE PTH NODE

int delet_p(dnode **dhead,int pos)

{

dnode *temp;

int delem,count = 1;

if(*dhead == NULL)

return(-99);

else

{

temp = *dhead;

if(pos == 1)

{

delem = (*dhead)->data;

*dhead = (*dhead)->next;

if(*dhead != NULL)

(*dhead)->prev = NULL;

free(temp);

return(delem);

}

while(count < pos && temp->next != NULL)

{

temp = temp->next;

count++;

}

if(pos == count)

{

delem = temp->data;

Linked List Unit 3



Data Structure Through C Language90

(temp->prev)->next = temp->next;

(temp->next)->prev = temp->prev;

free(temp);

return(delem);

}

else

{

return(-98);

}

}

}

3.6 CIRCULAR LINKED LIST

Circular linked list is a linked list similar with the singly linked list.

The only difference between the circular linked list and the singly linked list

is the address part of the last node in circular linked list contains the address

of the first node in the list. So here no address part of any node contains

NULL. Here also one pointer is used to point the first node in the list.

Now in the following sections, we are going to discussed three basic

operations on singly linked list which are insertion of a new node, deletion of

a node and traversing the linked list.

Fig. 3.15 : Example of circular linked list

The structure of a node of circular linked list is same with singly

linked list (fig 1(a)). A diagrammatic representation of a circular linked list is

given in fig 15. Here “chead” is the pointer which points the first node of the

linked list. So here “chead” contains “801” that is address of the first node.

The address part of the last node whose memory address is “401” contains

the address of the first node that is “801”.

1 101 2 401 3 801

801

801 101 401

chead

Linked ListUnit 3



Data Structure Through C Language 91

3.6.1 Insertion of a New Node into a Circular Linked List

Here we will discuss insertion of a new node into a circular

linked list at the first position, at the last position and at the position

which is inputed by the user.

ADDRESS(cnode) means address part of the node pointed

by the pointer “cnode” which points the next node in the circular

linked list .

DATA(cnode) means data part of the node pointed by the

pointer “cnode”.

“newnode” is the pointer which points the node to be inserted

into the linked list.

“clast” is a pointer which points the last node of the circular

linked list.

Fig. 3.16 : Example for insertion of a new node into the first position

in a cricular linked list

Algorithm for inserting new node at the first position into a

circular linked list:

insert_first(chead,clast,element)

Step 1. ALLOCATE MEMORY FOR   newnode

Step 2. DATA(newnode) = element

Step 3. IF  chead == NULL

Step 4. chead = newnode

Step 5. clast= newnode

Step 6. ADDRESS(newnode) = chead

Step 7. END OF IF

1 101 2 401 3 501

501

801 101 401

chead

5 801

501

newnode

Linked List Unit 3



Data Structure Through C Language92

Step 8. ELSE

Step 9.  ADDRESS(newnode) = chead

Step 10. chead = newnode

Step 11. ADDRESS(clast) = chead

Step 12. END OF ELSE

In fig. 3.16, a node with memory address “501” is inserted in

to the first position of a circular linked list.

Fig. 3.17 : Example for insertion of a new node into the last position

in a circular linked list

Algorithm for inserting new node at the last position into a

circular linked list:

insert_last(chead,clast,element)

Step 1. ALLOCATE MEMORY FOR  newnode

Step 2. DATA(newnode) = element

Step 3. IF   chead  ==  NULL

Step 4. chead = newnode

Step 5. clast = newnode

Step 6. ADDRESS(clast) = chead

Step 7. END OF IF

Step 8. ELSE

Step 9. ADDRESS(clast) = newnode

Step 10. clast = ADDRESS(clast)

Step 11. ADDRESS(clast) = chead

Step 12. END OF ELSE

In fig. 3.17, a node with memory address “601” is inserted in

to the last position of a circular linked list.

4 801

601

newnode

1 101 2 401 3 601

801

801 101 401

chead

Linked ListUnit 3



Data Structure Through C Language 93

Fig. 3.18 : Example for insertion of a new node into the 3rd position

in a circular linked list

Algorithm for inserting new node at a position which is inputed

by the user into a circular linked list:

insert_at_p(chead,clast,element,pos)

Step 1. count = 1

Step 2. ALLOCATE MEMORY FOR newnode

Step 3. DATA(newnode) = element

Step 4. IF  pos<=0  OR  ( pos > 1 AND chead = NULL)

Step 5. PRINT  “Wrong input for position “

Step 6. END OF IF

Step 7. ELSE

Step 8. IF  pos == 1

Step 9. ADDRESS(newnode) = chead

Step 10. IF  chead == NULL

Step 11. clast = newnode

Step 12. END OF IF

Step 13. chead = newnode

Step 14. ADDRESS(clast) = chead

Step 15. END OF IF

Step 16. temp1 = chead

Step 17. WHILE count<pos AND ADDRESS(temp1)!= chead

Step 18. temp2 = temp1

Step 19. temp1 = ADDRESS(temp1)

Step 20. count = count + 1

Step 21. END OF WHILE

Step 22. IF count == pos

1 101 2 501 3 801

801

801 101 401

chead

5 401

newnode

501

Linked List Unit 3



Data Structure Through C Language94

Step 23. ADDRESS(newnode) = temp1

Step 24. ADDRESS(temp2) = newnode

Step 25. END OF IF

Step 26. ELSE IF  count == pos-1

Step 27. ADDRESS(temp1) = newnode

Step 28. clast = newnode

Step 29. ADDRESS(clast) = chead

Step 30. END OF ELSE IF

Step 31. ELSE

Step 32. PRINT “Wrong input for position “

Step 33. END OF ELSE

Step 34. END OF ELSE

In fig. 3.18, a node with memory address “501” is inserted in

to the 3rd position of a circular linked list.

3.6.2 Deletion of a Node from a Circular Linked List

Here we will discuss deletion of the first node, the last node

and the node whose position is inputed by the user from a circular

linked list.

ADDRESS(cnode) means address part of the node pointed

by the pointer “cnode” which points the next node in the circular

linked list .

“clast” is a pointer which points the last node of the circular

linked list.

“temp” is a pointer to point any node of a circular linked list.

Fig. 3.19 : Example for deletion the first node froma circular linked list

chead

1 101 2 401 3 101

101

801 101 401

Linked ListUnit 3



Data Structure Through C Language 95

Algorithm for deletion of the fist node:

delet_first(chead,clast)

Step 1. IF  chead == NULL

Step 2. PRINT “Linked list is empty”

Step 3. END OF IF

Step 4. ELSE

Step 5. temp = chead

Step 6. IF  ADDRESS(chead) == chead

Step 7. chead = NULL

Step 8. clast = NULL

Step 9. END OF IF

Step 10. ELSE

Step 11.             chead = ADDRESS(chead)

Step 12.             ADDRESS(clast) = chead

Step 13. END OF ELSE

Step 14. DEALLOCATE MEMORY FOR temp

Step 15. END OF ELSE

In fig. 3.19, the first node with memory address “801” is

deleted from a circular linked list.

Fig. 3.20 : Example for deletion of the last node from a circular linked

list

Algorithm for deletion of the last node:

delet_last(chead,clast)

Step 1. IF  chead == NULL

Step 2. PRINT “ Linked list is empty”

Step 3. END OF IF

Step 4. ELSE

Step 5. temp1 = chead

1 101 2 801 3 801

801

801 101 401

chead

Linked List Unit 3



Data Structure Through C Language96

Step 6. WHILE  ADDRESS(temp1) != chead

Step 7. temp2 = temp1

Step 8. temp1 = ADDRESS(temp1)

Step 9. END OF WHILE

Step 10. IF  ADDRESS(chead) == chead

Step 11. chead = NULL

Step 12. clast = NULL

Step 13. END OF IF

Step 14. ELSE

Step 15. ADDRESS(temp2) = chead

Step 16. clast = temp2

Step 17. END OF ELSE

Step 18. DEALLOCATE MEMORY FOR  temp1

Step 19. END OF ELSE

In fig. 3.20, the last node with memory address “401” is

deleted from a circular linked list.

Fig. 3.21 : Example for deletion of the 2nd node from a circular linked

list

Algorithm for deletion of the node whose position is inputed

by the user:

delet_p(chead,clast,pos)

Step 1. count = 1

Step 2. IF  chead == NULL

Step 3. PRINT “ Linked list is empty “

Step 4. END OF IF

Step 5. ELSE

Step 6. temp1 = chead

Step 7. IF  pos == 1

Step 8. IF ADDRESS(chead) == chead

1 401 2 401 3 801

801

801 101 401

chead

Linked ListUnit 3



Data Structure Through C Language 97

Step 9. chead = NULL

Step 10. clast = NULL

Step 11. END OF IF

Step 12. ELSE

Step 13. chead = ADDRESS(chead)

Step 14. ADDRESS(clast) = chead

Step 15. END OF ELSE

Step 16. DEALLOCATE MEMORY FOR  temp1

Step 17. END OF IF

Step 18. WHILE count < pos AND ADDRESS(temp1)!= chead

Step 19. temp2 = temp1

Step 20. temp1 = ADDRESS(temp1)

Step 21. count = count + 1

Step 22. END OF WHILE

Step 23. IF pos == count

Step 24. ADDRESS(temp2) = ADDRESS(temp1)

Step 25. IF  temp1 == clast

Step 26. clast = temp2

Step 27. END OF IF

Step 28. DEALLOCATE MEMORY FOR  temp1

Step 29. END OF IF

Step 30. ELSE

Step 31. PRINT “ Wrong input for position “

Step 32. END OF ELSE

Step 33. END OF ELSE

In fig. 3.21, the 2nd node with memory address “101” is

deleted from a circular linked list.

3.6.3 Traversal of Nodes in Circular Linked List

Traversal of nodes in circular linked list is same with the singly

linked list. Here any node to any node movement is possible.

Algorithm for traversing nodes in a circular linked list:

Linked List Unit 3



Data Structure Through C Language98

traversal (chead)

Step 1. IF chead == NULL

Step 2. PRINT “The linked list is empty “

Step 3. END OF IF

Step 4. ELSE

Step 5. temp = chead

Step 6. temp = ADDRESS(temp)

Step 7. WHILE  temp != chead

Step 8. temp = ADDRESS(temp)

Step 9. END OF WHILE

Step 10. END OF ELSE

3.6.4 C Program to Implement Circular Linked Llist

#include<stdio.h>

#include<conio.h>

#define max 40

//STRUCTURE TO CREATE NODE OF CIRCULAR LINKED

   LIST

struct cnode

{

int data;

struct cnode *next;

};

typedef struct cnode cnode;

//FUNCTION PROTOTYPES

void insert(cnode **,cnode **,int );

int insert_first(cnode **,cnode **,int);

int insert_last(cnode **,cnode **,int);

int insert_at_p(cnode **,cnode **,int,int);

void delet(cnode **,cnode **);

int delet_first(cnode **,cnode **);

int delet_last(cnode **,cnode **);

Linked ListUnit 3



Data Structure Through C Language 99

int delet_p(cnode **,cnode **,int);

int isempty(cnode *);

void init(cnode **,cnode **);

void creat(cnode **,cnode **);

void display(cnode *);

void main()

{

cnode *chead,*clast;

int option,elem,flag;

char cont;

clrscr();

init(&chead,&clast);

creat(&chead,&clast);

do

{

printf(“\n*****************”);

printf(“\n1.Insertion     *”);

printf(“\n2.Deletion      *”);

printf(“\n3.Display       *”);

printf(“\n*****************”);

printf(“\nEnter your option::”);

scanf(“%d”,&option);

switch(option)

{

case 1: printf(“\nEnter the element to be inserted

into the linked list::”);

scanf(“%d”,&elem);

insert(&chead,&clast,elem);

break;

case 2: delet(&chead,&clast);

break;

case 3: display(chead);

break;

Linked List Unit 3



Data Structure Through C Language100

default:printf(“\nWrong input...try again”);

}

printf(“\nDo you want to continue..Press ‘y’ or ‘Y’ to

continue:”);

cont = getch();

}while(cont == ‘y’ || cont == ‘Y’);

}

//FUNCTION TO INITIALIZE THE POINTER WHICH POINTS THE

  FIRST NODE OF THE CIRCULAR LINKED LIST

void init(cnode **chead,cnode **clast)

{

*chead = NULL;

*clast = NULL;

}

//FUNCTION TO CHECK THE UNDERFLOW CONDITION

int isempty(cnode *chead)

{

if(chead == NULL)

return(1);

else

return(0);

}

//FUNCTION TO INSERT NEW NODE INTO A CIRCULAR

  LINKED LIST

void insert(cnode **chead,cnode **clast,int element)

{

int opt,pos;

printf(“\n*******INSERT MENU*********”);

printf(“\n1.Insert at first position*”);

printf(“\n2.Insert at last position *”);

printf(“\n3.Insert at pth position  *”);

printf(“\n***************************”);

printf(“\nEnter your option::”);

Linked ListUnit 3



Data Structure Through C Language 101

scanf(“%d”,&opt);

switch(opt)

{

case 1: if(insert_first(chead,clast,element))

{

printf(“\n%d is succesfully inserted at the

first position”,element);

printf(“\nAfter insertion the linked list is::\n”);

display(*chead);

}

else

{

printf(“\nInsertion isnot successfull”);

}

break;

case 2: if(insert_last(chead,clast,element))

{

printf(“\n%d is succesfully inserted at the

last position”,element);

printf(“\nAfter insertion the linked list is::\n”);

display(*chead);

}

else

{

printf(“\nInsertion isnot successfull”);

}

break;

case 3: printf(“\nEnter the position::”);

scanf(“%d”,&pos);

if(insert_at_p(chead,clast,element,pos))

{

printf(“\n%d is succesfully inserted at %d

position”,element,pos);

Linked List Unit 3



Data Structure Through C Language102

printf(“\nAfter insertion the linked list is::\n”);

display(*chead);

}

else

{

printf(“\nInsertion isnot successfull”);

}

break;

default:printf(“\nWrong input..Try agail”);

}

}

//FUNCTION TO DELETE A NODE FROM THE CIRCULAR

  LINKED LIST

void delet(cnode **chead,cnode **clast)

{

int opt,pos,elem;

printf(“\n*******DELETE MENU*********”);

printf(“\n1.Delete the first node   *”);

printf(“\n2.Delete the last node    *”);

printf(“\n3.Delete the pth node     *”);

printf(“\n***************************”);

printf(“\nEnter your option::”);

scanf(“%d”,&opt);

switch(opt)

{

case 1: elem = delet_first(chead,clast);

if(elem == -99)

{

printf(“\nDeletion isnot possible as the linked

list is empty”);

}

else

{

Linked ListUnit 3



Data Structure Through C Language 103

printf(“\n%d is succesfully deleted”,elem);

printf(“\nAfter deletion the linked list is::\n”);

display(*chead);

}

break;

case 2: elem = delet_last(chead,clast);

if(elem == -99)

{

printf(“\nDeletion isnot possible as the linked

list is empty”);

}

else

{

printf(“\n%d is succesfully deleted”,elem);

printf(“\nAfter deletion the linked list is::\n”);

display(*chead);

}

break;

case 3: printf(“\nEnter the position::”);

scanf(“%d”,&pos);

elem = delet_p(chead,clast,pos);

if(elem == -99)

{

printf(“\nDeletion isnot possible as the linked

list is empty”);

}

else if(elem == -98)

printf(“\nWrong input for position”);

else

{

printf(“\n%d is succesfully deleted”,elem);

printf(“\nAfter deletion the linked list is::\n”);

display(*chead);

Linked List Unit 3



Data Structure Through C Language104

}

break;

default:printf(“\nWrong input..Try agail”);

}

}

//FUNCTION TO DISPLAY THE ELEMENTS IN A CIRCULAR

  LINKED LIST

void display(cnode *chead)

{

cnode *temp;

temp = chead;

if(isempty(chead))

printf(“\nThe linked list is empty”);

else

{

printf(“\nthe elements in the circular linked list are:\n”);

printf(“%5d”,temp->data);

temp = temp->next;

while(temp != chead)

{

printf(“%5d”,temp->data);

temp = temp->next;

}

}

//FUNCTION TO CREATE A CIRCULAR LINKED LIST

void creat(cnode **chead,cnode **clast)

{

cnode *newnode;

char cont;

printf(“\nCreation of Circular linked list”);

do

{

newnode = (cnode *)malloc(sizeof(cnode));

Linked ListUnit 3



Data Structure Through C Language 105

printf(“\nEnter data::”);

scanf(“%d”,&newnode->data);

if(*chead == NULL)

{

*chead = newnode;

*clast = newnode;

(*clast)->next = *chead;

}

else

{

(*clast)->next = newnode;

*clast = newnode;

(*clast)->next = *chead;

}

printf(“\nDo you want to add more node..press ‘y’ or ‘Y’ to

continue::”);

cont = getch();

}while(cont == ‘y’ || cont == ‘Y’);

printf(“\nCircular linked list is created”);

}

//FUNCTION TO INSERT A NEW NODE AT THE FIRST

  POSITION

int insert_first(cnode **chead,cnode **clast,int element)

{

cnode *newnode;

newnode = (cnode *)malloc(sizeof(cnode));

newnode->data = element;

if(*chead == NULL)

{

*chead = newnode;

*clast = newnode;

newnode->next = *chead;

return(1);

Linked List Unit 3



Data Structure Through C Language106

}

else

{

newnode->next = *chead;

*chead = newnode;

(*clast)->next = *chead;

return(1);

}

}

//FUNCTION TO INSERT A NEW NODE AT THE LAST

  POSITION

int insert_last(cnode **chead,cnode **clast,int element)

{

cnode *newnode;

newnode = (cnode *)malloc(sizeof(cnode));

newnode->data = element;

if(*chead == NULL)

{

*chead = newnode;

*clast = newnode;

(*clast)->next = *chead;

return(1);

}

else

{

(*clast)->next = newnode;

*clast = (*clast)->next;

(*clast)->next = *chead;

return(1);

}

}

//FUNCTION TO INSERT A NEW NODE AT PTH POSITION

int insert_at_p(cnode **chead,cnode **clast,int element,int pos)

Linked ListUnit 3



Data Structure Through C Language 107

{

cnode *temp1,*temp2,*newnode;

int count = 1;

newnode = (cnode *)malloc(sizeof(cnode));

newnode->data = element;

if(pos <=0 || (pos > 1 && *chead == NULL))

{

printf(“\nWrong input for position”);

return(0);

}

else

{

if(pos == 1)

{

newnode->next = *chead;

if(*chead == NULL)

*clast = newnode;

*chead = newnode;

(*clast)->next = *chead;

return(1);

}

temp1 = *chead;

while(count < pos && temp1->next != *chead)

{

temp2 = temp1;

temp1 = temp1->next;

count++;

}

if(count == pos)

{

newnode->next = temp1;

temp2->next = newnode;

return(1);

Linked List Unit 3



Data Structure Through C Language108

}

else if(count == pos-1)

{

temp1->next = newnode;

*clast = newnode;

(*clast)->next = *chead;

return(1);

}

else

{

printf(“\nWrong input for position”);

return(0);

}

}

//FUNCTION TO DELETE THE FIRST NODE

int delet_first(cnode **chead,cnode **clast)

{

cnode *temp;

int delem;

if(*chead == NULL)

return(-99);

else

{

temp = *chead;

delem = temp->data;

if((*chead)->next == *chead)

{

*chead = NULL;

*clast = NULL;

}

else

{

*chead = (*chead)->next;

Linked ListUnit 3



Data Structure Through C Language 109

(*clast)->next = *chead;

}

free(temp);

return(delem);

}

}

//FUNCTION TO DELETE THE LAST NODE

int delet_last(cnode **chead,cnode **clast)

{

cnode *temp1,*temp2;

int delem;

if(*chead == NULL)

return(-99);

else

{

temp1 = *chead;

while(temp1->next != *chead)

{

temp2 = temp1;

temp1 = temp1->next;

}

delem = temp1->data;

if((*chead)->next == *chead)

{

*chead = NULL;

*clast = NULL;

}

else

{

temp2->next = *chead;

*clast = temp2;

}

free(temp1);

Linked List Unit 3



Data Structure Through C Language110

return(delem);

}

}

//FUNCTION TO DELETE THE PTH NODE

int delet_p(cnode **chead,cnode **clast,int pos)

{

cnode *temp1,*temp2;

int delem,count = 1;

if(*chead == NULL)

return(-99);

else

{

temp1 = *chead;

if(pos == 1)

{

delem = (*chead)->data;

if((*chead)->next == *chead)

{

*chead = NULL;

*clast = NULL;

}

else

{

*chead = (*chead)->next;

(*clast)->next = *chead;

free(temp1);

return(delem);

}

}

while(count < pos && temp1->next != *chead)

{

temp2 = temp1;

temp1 = temp1->next;

Linked ListUnit 3



Data Structure Through C Language 111

count++;

}

if(pos == count)

{

delem = temp1->data;

temp2->next = temp1->next;

if(temp1 == *clast)

*clast = temp2;

free(temp1);

return(delem);

}

else

{

return(-98);

}

 }

}

3.7 COMPARATIVE STUDIES WITH

IMPLEMENTATIONS USING ARRAY

STRUCTURE

� Array is a static data structure. So in case of an array the amount of

data can be stored is fixed at compile time. On the other hand in

case of linked list the data can be stored and removed dynamically

at runtime, so if memory is available, data can de inserted into a

linked list.

� In case of array, direct access of data can be possible using the

subscript value of the array as the element in an array are stored in

contiguous memory locations. But on the other hand, in case of

linked list the elements may not be stored in contiguous memory

locations, so direct access is not possible. In a linked list, the

elements are accessed by traversing from the first node to the

required node using a pointer.

Linked List Unit 3



Data Structure Through C Language112

� In case of array, in some cases, to insert or to delete data, we require

shifting of data. But in case of linked list shifting of data is not required.

Here, only the links of the nodes are to be managed carefully.

CHECK YOUR PROGRESS

Q.1. Multiple choice question:

A. In linked list, a node contains at least

i) node address field, data field, node number

ii) node number, data field

iii) next address field, information field

iv) none of these

B. The nth node, in singly linked list is accessed via

i) the head node ii) the tail node

iii) (n-1) nodes iv) None of these

C. In linked list, the successive elements

i) must occupy contiguous space in memory

ii) need not occupy contiguous space in memory

iii) must not occupy contiguous space in memory

iv) None of these

D. Under flow condition in linked list may occur when

attempting to

i) insert a new node when there is no free space for it

ii) delete a non existent node in the list

iii) delete a node in empty list

iv) none of these

E. Overflow condition in linked list may occur when

attempting to

i) insert a node into a linked list when free space pool

is empty

ii) traverse the nodes when free space pool is empty

Linked ListUnit 3



Data Structure Through C Language 113

iii) insert a node into a linked list when linked list is empty

iv) None of these

F. Which is not a type of linked list

i) Singly linked list ii) Doubly linked list

iii) Sequential linked list iv) Circular linked list

G. Circular linked list can be used to implement

i) Circular queue ii) Priority queue

iii) Deque iv) Both (ii) and (iii)

H. Less memory required in case of

i) Singly linked list ii) Doubly linked list

iii) Circular linked list iv) Both (i) and (iii)

I. Inserting a node in a doubly linked list after a given node

requires

i) One pointer change ii) Four pointer change

iii) Two pointer change iv) None of the above

J. Traversing can be done in both directions in case of

i) singly linked list ii) circular linked list

iii) doubly linked list iv) Both B and C

Q.2. Fill in the blanks:

A. __________ linked list does not have any NULL links.

B. In a circular linked list if the address field of a node point

itself then the total number of nodes in the circular linked

list is __________.

C. __________ access of element in linked list is not

possible.

D. The address field of the first node in a singly linked list

contains __________ if the number of nodes is one.

E. In case of singly linked list, if a node contains NULL then

it means __________.

Q.3. State whether the following statements are true or false:

A. Circular linked list dose not have any NULL links

B. Traversal from any node to any node is possible in case

of doubly linked list and circular linked list.

Linked List Unit 3



Data Structure Through C Language114

C. In singly linked list the Pth node can be deleted from the

(P+1)th node

D. In a circular linked list with four nodes, the address field

of the third node contains the address of the first node.

E. In doubly linked list, the Pth node can be deleted from

(P+1)th and (P-1)th node.

3.8 LET US SUM UP

� Linked list is a linear dynamic data structure. It is a collection of

some nodes containing homogeneous elements. Each node consists

of a data part and one or more address part depending upon the

types of the linked list.

� In case of linked list, the amount of data will be stored is not fixed at

compile time like array. Here data can be stored and removed

dynamically at run time.

� In case of linked list, data need not to be stored in contiguous memory

locations like array. So direct access of any node is not possible.

� There three different types of linked list available which are singly

linked list, doubly linked list and circular linked list.

� A node of singly linked list has two fields, one field contains information

and other field contain address of the next node. The address field

of the last node contain NULL.

� The structure of a node of circular linked list is same with singly

linked list. The address field of the last node of a circular linked list

contains the address of the first node.

� A node of doubly linked list has three fields, one field contain

information, one field contain the address of the next node and the

third field contains the address of the previous node.

Linked ListUnit 3



Data Structure Through C Language 115

3.9 FURTHER READINGS

� Ellis Horowitz, Sartaj Sahni : Fundamentals of data structures,

Computer Science Press.

� Yedidyah Langsam,Moshe J. Augenstein, Aaron M.Tenenbaum : Data

structures using C and C++, Prentice-Hall India.

3.10 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1. : A. (iii), B. (iii), C. (ii), D.(iii), E.(i), F. (iii), G. (iv), H. (iv),

I.(ii), J. (iii)

Ans. to Q. No. 2. : A. circular, B. one, C. direct, D. NULL,

E. end of the list or last node of the list

Ans. to Q. No. 3. : A. true, B. true, C. false, D. false, E. true

3.11 MODEL QUESTIONS

Q.1. Implement stack and queue using circular linked list.

Q.2. Write a function to delete the previous node of the last node from a

doubly linked list.

Q.3. Write a function to insert a new node before a given node into a

singly linked list.

Q.4. Write down a comparison about the three types of linked list.

Linked List Unit 3



Data Structure Through C Language116

UNIT 4 : STACKS

UNIT STRUCTURE

4.1 Learning Objectives

4.2 Introduction

4.3 Definition of Stack

4.4 Operations on Stack

4.5 Implementation of Stack

4.5.1 Implementation of Stack using Arrays

4.5.2 Implementation of Stack using Linked Lists

4.6 Applications of Stack

4.7 Let Us Sum Up

4.8 Further Readings

4.9 Answers to Check Your Progress

4.10 Model Questions

4.1 LEARNING OBJECTIVES

After going through this unit, you will able to :

� learn the concept of stack

� learn about LIFO structure

� describe the operation associated with a stack

� implement stack using arrays

� implement stack using linked lists

� learn about some applications of stack

4.2 INTRODUCTION

So far we have been looking at the primitive data structures that are

available in C. While studying linked list we have seen insertion and deletion

of element is possible at any place in the list. There are certain situations in

which items may be inserted or removed only at one end. Stacks and queues

are data structures. In this unit, we’ll be able to learn about the stack data

structure.



Data Structure Through C Language 117

4.3 DEFINITION OF STACK

Stack is a special type of data structure where elements are inserted

from one end and elements are deleted from the same end. The position

from where elements a are inserted and from where elements are deleted

is termed as top of the stack. Thus stack is a homogeneous collection of

elements of any one type, arranged linearly with access at one end only.

In order to clarify the idea of a stack let us consider some real life

examples of stack. Fig.(4.1) depicts three everyday examples of such a

data structure. A stack of book is a good analogy: we can’t read any book in

the stack without first removing the books that are stacked on top of it. In the

same way, plates in a hotel  are kept one on top of each other. When a plate

is taken it is usually taken from the top of the stack. Using this approach, the

last element inserted is the first element to be deleted out, and hence, stack

is also called Last In First Out (LIFO) data structure. Although the stack

may seem to be a very restricted type of data structure, it has many important

Fig. 4.1 : Real life examples of Stack

4.4 OPERATIONS ON STACK

The two basic operations associated with stacks are Push and Pop.

Push : Data is added to the stack using the Push operation.

Pop : Data is removed using the Pop operation

Push operation : The procedure of inserting a new element to the

top of the stack is known as push operation. For example, let us consider

Stacks Unit 4



Data Structure Through C Language118

the stack shown in Fig.(4.2) with STACK_SIZE = 4 where we can insert

atmost four elements. If we consider TOP as a pointer to the top element in

a stack then after every push operation, the value of TOP is incremented by

one. After inserting 11, 9, 7 and 5 there is no space to insert any element.

Then we say that stack is full. If the stack is full and does not contain enough

space to accept the given element or data, the stack is then considered to

be in an overflow state.

Fig. 4.2 : Sequence of Push operation

Pop operation : The procedure of removing element from the top

of the stack is called pop operation. Only one element can be deleted from

at a time and element has to be deleted only from the top of the stack.

When elements are being deleted, there is a possibility of stack being empty.

When stack is empty, it is not possible to delete any element. Trying to

delete an element from an empty stack results in stack underflow.  Fig.(4.3)

illustrates the pop operation. After every pop operation, the value of TOP is

decremented by one.

Fig. 4.3 : Sequence of Pop operation

            STACK_SIZE= 4        STACK_SIZE= 4         STACK_SIZE= 4          STACK_SIZE= 4         STACK_SIZE= 4

3       3           3                           3              TOP        3     5

2                   2                          2              TOP       2     7                     2     7

1       1              TOP      1     9                    1     9                     1     9

0     TOP       0     11           0    11                   0    11                    0    11

TOP -1      -1                        -1                          -1                     -1

Empty Stack                     Insert 11                       Insert 9                          Insert 7                           Insert 5

                STACK_SIZE= 4                   STACK_SIZE= 4         STACK_SIZE= 4         STACK_SIZE= 4       STACK_SIZE= 4

TOP 3         5 3       3                           3                          3

2         7       TOP 2      7                    2                           2                          2

1         9 1      9      TOP       1     9                    1                          1

0        11 0     11       0    11     TOP        0    11                   0

-1            -1                           -1                         -1             TOP      -1

Stack full                                 After                               After                              After                   After deleting 11

                                                                   deleting 5                     deleting 7                     deleting 9              (Empty Stack)

StacksUnit 4



Data Structure Through C Language 119

In the above figure, after deleting 5, 7, 9 and 11, there are no elements

in the stack and the stack becomes empty.

4.5 STACK IMPLEMENTATION

A stack can be implemented using either an array or a singly linked

list. Thus there are two methods of stack implementation. They are:

Static implementation  and  Dynamic implementation.

Static implementation can be achieved using arrays.  Though array

implementation is a simple technique, it provides less flexibility and is not

very efficient with respect to memory organization.   This is because once a

size of an array is declared, its size cannot be modified during program

execution. If the number of elements to be stored in a stack is less than the

allocated memory, then memory is wasted and if we want to store more

elements than declared, array cannot be expanded. It is suitable only when

we exactly know the number of elements to be stored.

A stack can be implemented using pointers, as a form of a linked

list. Dynamic implementation can be achieved using linked list as it is a

dynamic data structure. The limitations of static implementation can be

removed using dynamic implementation.  The memory is efficiently utilized

with pointers. Memory is allocated only after element is inserted to the stack.

The stack can grow or shrink as the program demands it to. However, if a

small and/or fixed amount of data is being dealt with, it is often simpler to

implement the stack as an array.

4.5.1 Implemenation of Stack using Arrays

One of the two ways to implement a stack is by using a one

dimensional array. When implemented this way, the data is simply

stored in the array. A variable named “Top”  is used to point to the top

element of the stack. Each time data is added or removed, Top is

incremented or decremented accordingly, to keep track of the current

Top of the stack. Initially, the value of Top is set to -1 to indicate an

empty stack.

Stacks Unit 4



Data Structure Through C Language120

To push ( or insert ) an element onto the stack, Top is

incremented by one, and the element is pushed at that position.

When Top reaches SIZE-1 and an attempt is made to push a new

element, then the stack overflows. Here, SIZE is the maximum size

of the stack. Similarly, to pop (or remove) an element from the stack,

the element on the Top of the stack is displayed, and then Top is

decremented by one. When the value of Top is equal to -1 and an

attempt is made to pop an element, the stack underflows.

/*Program 4.1: Stack implementation using arrays (static

implementation of stacks) */

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

#define SIZE 10

void push();

void pop();

void display();

int top= -1;       // value of top is initialised to -1

int stack[SIZE];

void main()

{ int choice;

while(1)

{

printf("\n1.Push\n");

printf("\n2.Pop\n");

printf("\n3.Display\n");

printf("\n4.Quit\n");

printf("\nEnter your choice:");

scanf("%d",&choice);

switch(choice)

{

case 1: push();

break;

StacksUnit 4



Data Structure Through C Language 121

case 2: pop();

break;

case 3: display();

break;

case 4: exit(1);

default:printf("Invalid Choice\n");

}

}

}

void push()

{ int item;

if(top==(SIZE-1))

printf("\nStack Overflow");

else

{

printf("\nEnter the item to be pushed in stack:");

scanf("%d",&item);

top=top+1;

stack[top]=item;

}

}

void pop()

{

if(top==-1)

printf("Stack Underflow\n");

else

{

printf("\nPopped element is : %d\n",stack[top]);

top=top-1;

}

}

void display()

{

Stacks Unit 4



Data Structure Through C Language122

int i;

if(top== -1)

printf("\nStack is empty\n");

else

{

printf("\nStack elements:\n");

for(i=top;i>=0;i--)

printf("%d\n",stack[i]);

}

}

Stacks implemented as arrays are useful if a fixed amount

of data is to be used. However, if the amount of data is not a fixed

size or the amount of the data fluctuates widely during the stack’s

life time, then an array is a poor choice for implementing a stack. A

much more elegant solution to this problem will be covered in the

next section.

CHECK YOUR PROGRESS

Q.1. Fill in the blanks:

i) The insertion of an element in a stack is known as the

__________ operation.

ii) The removing an element from the stack is known as

__________ operation.

Q.2. What would the state of a stack be after the following

operations:

create stack

push A onto stack

push F onto stack

push X onto stack

pop item from stack

push B onto stack

StacksUnit 4



Data Structure Through C Language 123

pop item from stack

pop item from stack

Q.3. State whether the following statements are true(T) or false(F):

i) Stack follows a first-in-first-out technique.

ii) Insertion of data into the stack is called the push

operation.

iii) Removal of element is termed as pop operation

4.5.2 Implementation of Stack using Linked List

When a stack is implemented as a linked list, each node in

the linked list contains the data and a pointer that gives location of

the next node in the list. In this implementation. there is no need to

declare the size of the stack in advance since we create nodes

dynamically as well as delete them dynamically.

A pointer variable Top is used to point to the top element of

the stack. Initially, Top is set to NULL to indicate an empty stack.

Whenever a new element is to be inserted in the stack, a new node

is created and the element is inserted into the node. Then, Top is

modified to point to this new node.

/*Program 4.2: Program of stack using linked list (i.e., Linked list

Implementation */

#include<stdio.h>

#include<conio.h>

#include<malloc.h>

#include<stdlib.h>

void push();    //push() function declaration

void pop();     //pop() function declaration

void display(); //display() function declaration

struct node

{

int data;

struct node *next;

};

Stacks Unit 4



Data Structure Through C Language124

struct node *top=NULL;

void main()

{

int choice;

clrscr();

while(1)

{

printf("\n1.Push");

printf("\n2.Pop");

printf("\n3.Display");

printf("\n4.Quit");

printf("\nEnter your choice:");

scanf("%d",&choice);

switch(choice)

{

case 1: push();

break;

case 2: pop();

break;

case 3: display();

break;

case 4: exit(1);

default:printf("Invalid Choice\n");

}//end of switch

} //end of while loop

}//end of main fuction

void push()

{

struct node *ptr;

int item;

ptr=(struct node *)malloc(sizeof(struct node));

printf("Enter a value to be pushed onto the stack: ");

scanf("%d",&item);

StacksUnit 4



Data Structure Through C Language 125

ptr->data=item;

ptr->next=top;

top=ptr;

}//end of push fuction

void pop()

{

struct node *ptr,*next;

if(top==NULL)

printf("\nStack is Empty");

else

{

ptr=top;

printf("\nPopped element is : %d\n",ptr->data);

top=top->next;

free(ptr);

}

}//end of pop function definition

void display()

{

struct node *p;

p=top;

if(top==NULL)

printf("\nStack is empty\n");

else

{

printf("\nStack elements:\n");

while(p!=NULL)

{

printf("%d\n",p->data);

p=p->next;

}

}

} //end of display function

Stacks Unit 4



Data Structure Through C Language126

4.6 APPLICATIONS OF STACKS

Stacks have many applications. For example, as processor executes

a program, when a function call is made, the called function must know

where to return back to the program, so the current address of program

execution is pushed onto a stack. Once the function is finished, the address

that was saved is removed from the stack, and execution of the program

resumes.

If a series of function calls occur, the successive return values are

pushed onto the stack in Last-In-First-Out order so that each function can

return back to calling program. Stacks support recursive function calls in

the same manner as conventional nonrecursive calls.

Stacks are also used by compilers in the process of evaluating

expressions and generating machine language code. Two simple applications

of stack are described below:

Reversal of string : We can reverse a string by pushing each

character of the string on the stack. When the whole string is pushed on the

stack we will pop the characters from the stack and we will get the reversed

string.

Input Output

KRISHNA ANHSIRK

Fig. 4.5 : Stack

// Program 4.3: Program of reversing a string using  stack.

#include<stdio.h>

#include<conio.h>

#include<string.h>

#define SIZE 25

int top=-1;

char stack[SIZE];

char pop();

void push(char);

A

N

H

S

 I

R

K

StacksUnit 4



Data Structure Through C Language 127

void main()

{

char str[20];

int i;

clrscr();

gets(str);

printf("\nEnter a string :");

//Push characters of the string str on the stack

for(i = 0; i < strlen(str); i++)

push(str[i]);

//Pop characters from the stack and store in string str

for(i=0;i<strlen(str);i++)

str[i] = pop();

printf("\nString in reversed order is: ");

puts(str);

getch();

} //end of main

void push(char item)

{

if(top==(SIZE-1))

printf("\nStack Overflow");

else

stack[++top]=item;

} //end of push function

char pop()

{

if(top == -1)

printf("\nStack Underflow");

else

return stack[top--];

} //end of pop function

If we  enter a string State University then the output of the above

program will be ytisrevinU etatS.

Stacks Unit 4



Data Structure Through C Language128

LET US KNOW

Infix, Prefix and Postfix Notations : An arithmetic expression

consists of operators and operands. In solving an expression, the

precedence and associativity of operator plays an important role.

Arithmetic expressions are defined in three kinds of notation: infix,

prefix and postfix.

Usually, arithmetic expressions are written in infix notation with

binary operator between the operands. If A and B are two valid

expressions then (A+B), (A - B), (A / B) are all legal infix expressions.

Following are the examples of  infix notation:

A+B*C

A+B

(A+B)*C

(X+Y)*(L+M)

In the prefix notation, the operator precedes the operands. The

prefix notation is also termed as polish notation. Following are some

examples of  prefix notation:

+AB

+A*BC

*+ABC

*+AB+PQ

An expression can as well be written in postfix notation (also

called reverse polish notation). Here, the operator  trails the operands.

Following are the examples of postfix expressions:

A+B becomes AB+

A*C becomes AC*

A+(B*C) becomes ABC*+

(A+B)*C becomes AB+C*

Let us explain how the infix expression A+(B*C) can be converted

to postfix form ABC*+.

StacksUnit 4



Data Structure Through C Language 129

We know that multiplication has higher precedence than addition.

By applying the rules of priority, we can write

A+(B*C) as A+(BC)*

where multiplication is converted to postfix. Then we can write

 A+(BC)* as  A(BC)*+

where addition is converted to postfix. The postfix expression

A(BC)* is same as  ABC*+ (i.e., parentheses may or may not be

applied).

Table : Arithmetic operators along with priority values

Arithmetic Operators Priority Associativity

Exponentiation (^) 6 Right to Left

Multiplication (*) 4 Left to Right

Division (/) 4 Left to Right

Mod (%) 4 Left to Right

Addition (+) 2 Left to Right

Subtraction (–) 2 Left to Right

Evaluation of arithmetic expressions : Stacks can also be useful

in evaluation of arithmetic expression. Given an expression in postfix notation.

Using a stack they can be evaluated as follows :

� Scan the symbol from left to right

� If the scanned symbol is an operand, push it on to the stack.

� If the scanned symbol is an operator, pop two elements from the

stack. The first popped element is op2 and the second popped

element is op1. This can be achieved using the statements:

op2=s[top- -]; //First popped element is operand2

op1=s[top- -]; //second popped element is operand 1

� Perform the indicated operation

result =op1 op op2 //op is the operator such as +, -, /, *

� Push the result on to the stack.

� Repeat the above procedure till the end of input is encountered.

Stacks Unit 4



Data Structure Through C Language130

CHECK YOUR PROGRESS

Q.4. Select the appropriate option for each of the following

questions:

i) The push() operation is used

a) to move an element b) to remove an element

c) to insert an element d) none of these

ii) The stack is based on the rule

a) first-in-first-out b) last-in-first-out

c) both (a) and (b) c) none of these

iii) A stack holding elements equal to its capacity and if push

is performed then the situation is called

a) Stack overflow b) Stack underflow

c) Pop d) illegal operation

iv) The top pointer is increased

a) when push() operation is done

b) when pop() operation is done

c) both (a) and (b) d) none of the above

v) The pop operation removes

a) the element lastly inserted

b) first element of the stack

c) any element randomly

d) none of the above

vi) The postfix notation is also called as

a) prefix notation b) polish notation

c) reverse polish notation d) infix notation

Q.5. Distinguish between static and dynamic implementation of

stack.

StacksUnit 4



Data Structure Through C Language 131

4.7 LET US SUM UP

� In Computer Science, stack is one of the most essential linear data

structures and  an abstract data type.

� The insertion of element onto a stack is called Push and deletion

operation is called pop.

� The most and least reachable elements in a stack are respectively

known as the top and bottom.

� The insertion and deletion operations are carried out at one end.

Hence, the recent element inserted is deleted first. If we want to

delete a particular element of a stack, it is necessary to delete all the

elements appearing before the element. This means that the last

item to be added to a stack is the first item to be removed. Accordingly,

stack is a set of elements in a Last-In-First-Out (LIFO) technique.

� When stack has no element, it is called empty stack.

� Overflow occurs when the stack is full and there is no space for a

new element, and an attempt is made to push a new element.

� Underflow occurs when the stack is empty, and an attempt is made

to pop an element.

� Static implementation can be implemented using arrays. However,

it is a very simple method but it has few limitations.

� Pointer can also be used for implementation of stack. Linked list

implementation is an example of this type of dynamic implementation.

The limitations noticed in static implementation can be removed by

using dynamic implementation.

4.8 FURTHER READINGS

� Data Structures by Seymour Lipschutz,  Tata McGraw-Hill

publication.

� Introduction to Data Structure in C by Kamthane, Pearson Education

publication

Stacks Unit 4



Data Structure Through C Language132

� Data Structures through C in Depth by S.K. Srivastava, Deepali

Srivastava, BPB Publications.

4.9 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1. : i) Push,  ii) Pop

Ans. to Q. No. 2. : Stack will contain only one item and the item is A

Ans. to Q. No. 3. : i) False,  ii) True,  iii) True

Ans. to Q. No. 4. : i) (c) insert an element,  ii) (b) last-in-first-out,

iii) (a) Stack overflow,  iv) (a) when push() operation is

done,  v) (a) the element lastly inserted,

vi) (c) reverse polish notation

Ans. to Q. No. 5. : (See text content)

4.10 MODEL QUESTIONS

Q.1. What is a stack? What different operations can be performed on

stacks?

Q.2. Why are stacks called “LIFO” structures?

Q.3. Explain the push and pop operations.

Q.4. What do you mean by stack overflow and stack underflow ?

Q.5. What do you mean by linked implementation of stack?

Q.6. Write a C program to implement stack with array. Perform push and

pop operation.

Q.7. Write a program to perform following operations:

a) push   b) pop   c) display all elements.

Q.8. Distinguish between static and dynamic implementation of stack.

Q.9. Describe two applications of stack.

Q.10. What are the advantages and disadvantages of linked implementation

of a stack relative to the contiguous implementation?

StacksUnit 4



Data Structure Through C Language 133

Q.11. Write a program of stack where elements will be pushed from last

position of array.

Q.12. Write a program to implement a stack which contains the address

of the pointers for allocation of memory. Do the pop operation on

stack and free the popped pointers.

Q.13. Write a recursive function in C to compute the sum of n natural

numbers.

Q.14. What are the two ways of implementing stacks. Which one is

preferred over the other and why?

Q.15. What are the various applications of stacks? Write a C program  to

implement any one of them.

Stacks Unit 4



Data Structure Through C Language134

UNIT 5 : QUEUE

UNIT STRUCTURE

5.1 Learning Objectives

5.2 Introduction

5.3 Definition of Queue

5.4 Array Implementation of Queue

5.5 Circular Queue

5.6 Linked List Implementation of Queue

5.6.1 Using Singly Linked List

5.6.2 Using Doubly Linked List

5.6.3 Using Circular Linked List

5.7 Application of Queue

5.8 Priority Queues

5.9 Let Us Sum Up

5.10 Further Readings

5.11 Answers To Check Your Progress

5.12 Model Questions

5.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

� learn about queue data structure

� describe array implementation of queue

� learn about the usefulness of circular queue and implement it

� describe list implementations of queue

� illustrate different applications of queue

5.2 INTRODUCTION

In unit 4 we have learnt about stack. Now there is another linear

data structure available known as queue.



Data Structure Through C Language 135

5.3 DEFINITION OF QUEUE

Queue is a linear data structure in which removal of elements are

done in the same order they were inserted i.e., the element will be removed

first which is inserted first. A queue has two ends which are front end and

rear end. Insertion is take place at rear end and deletion is take place at

front end. Queue is also known as first in first out (FIFO) data structure.

5.4 ARRAY IMPLEMENTATION OF QUEUE

In array implementation, an array and two variables, ‘front’ and ‘rear’

is used. ‘front’ and ‘rear’ are initialized with value ‘–1’. Here to insert an

element, at first the value of ‘rear’ is incremented if it is possible and then

the element is inputted into the array at the subscript value equal to the

value of ‘rear’. The overflow condition for array implementation using ‘C’ is

“‘front’ is equal to 0 AND ‘rear’ is equal to (size of the array) –1’’. Now if in

any case if “‘rear’ is equal to (size of the array) –1 but ‘front’ is not equal to

0 then to insert an new element, the elements in the queue must be shifted

towards the left most direction of the array. So that at the rear end one or

more free spaces become available to insert new elements. Here the

underflow condition is “‘front’ is equal to ‘–1’’’. In case of deletion operation

‘front’ variable is incremented by one if it is not equal to ‘–1’.

0 0 10 0 10 0 10 0 10 0

1 1 1 11 1 11 1 11 1 11

2 2 2 2 12 2 12 2 12

3 3 3 3 3 13 3 13

4 4 4 4 4 4

5 5 5 5 5 5

front = –1 front = 0 front = 0 front = 0 front = 0 front = 1

rear = –1 rear = 0 rear = 1 rear = 2 rear = 3 rear =3

Fig. 5.1(a) Fig. 5.1(b) Fig. 5.1(c) Fig. 5.1(d) Fig. 5.1(e) Fig. 5.1(f)

Queue Unit 5



Data Structure Through C Language136

0 0 0 0 12 0 12 0 12

1 11 1 11 1 1 13 1 13 1 13

2 12 2 12 2 12 2 14 2 14 2 14

3 13 3 13 3 13 3 15 3 15 3 15

4 14 4 14 4 14 4 4 16 4 16

5 5 15 5 15 5 5 5 17

front = 1 front = 1 front = 2 front = 0 front = 0 front = 0

rear = 4 rear = 5 rear = 5 rear = 3 rear = 4 rear = 5

Fig. 5.1(g) Fig. 5.1(h) Fig. 5.1(i) Fig. 5.1(j) Fig. 5.1(k) Fig. 5.1(l)

Fig. 5.1 : Example of insertion and deletion operation on a queue

Algorithm for inserting a new information into a queue:

Here queue[ ] is the array to store the array elements

‘front’ is a variable used to represent the front end of the queue

‘rear’ is a variable to represent the rear end of the queue

‘element’ is a variable to store the new element to be inputted into

the queue.

Insert(queue[],front,rear,element)

Step 1: IF front == 0 AND rear == (size of queue)-1 THEN

Step 2: PRINT “ Queue is overflow”

Step 3: END OF IF

Step 4: ELSE

Step 5: IF  rear == (size of queue) -1 THEN

Step 6: FOR  I = 0    TO i == rear - front

Step 7: queue[i] = queue[front+i]

Step 8: END OF FOR

Step 9: rear = rear - front

Step 10: front = 0

Step 11: END OF IF

Step 12: IF front == - 1

Step 13: front = 0

Step 14: END OF IF

Step 15: rear = rear + 1

QueueUnit 5



Data Structure Through C Language 137

Step 16: queue[rear] = element

Step 17: END OF ELSE

In fig. 5.1(a), an empty queue is represented with front = –1 and

rear = –1.

In fig. 5.1(b), 10 is inserted into the queue and it is the first element

in the queue with front = 0 and rear = 0.

In fig. 5.1(c), 11 is inserted into the queue with front = 0 and rear = 1.

So, like this, 12, 13,14,15,16 and 17 are inserted into the queue in

fig. 5.1(d), 5.1(e), 5.1(g), 5.1(h), 5.1(k) and 5.1(l) respectively.

In fig. 5.1(j), the existing elements in the queue are shifted towards

the beginningof the queue to make free space for the insertion of 16 and 17.

Algorithm for deleting information from a queue:

Here queue[ ] is the array to store the array elements

‘front’ is a variable used to represent the front end of the queue

‘rear’ is a variable to represent the rear end of the queue

delete(queue[ ],front,rear)

Step 1: IF front == -1

Step 2: PRINT “ Queue is underflow”

Step 3: END OF IF

Step 4: ELSE

Step 5: front = front + 1

Step 6: IF front > rear

Step 7: front = -1

Step 8: rear = -1

Step 9: END IF

Step 10: END OF ELSE

In fig. 5.1(f) , 10 is deleted with front = 1 and rear = 3.

In fig. 5.1(i), 11 is deleted with front = 2 and rear = 5.

C program to implement queue using array:

#include<stdio.h>

#include<conio.h>

#define max 40

//Structure for creating a queue

Queue Unit 5



Data Structure Through C Language138

struct queue

{

int front,rear;

int data[max];

};

//Function prototypes

int insert(struct queue *,int );

int delet(struct queue *);

int isfull(struct queue *);

int isempty(struct queue *);

void init(struct queue *);

void display(struct queue *);

void main()

{

struct queue *q;

int option,elem,flag;

char cont;

clrscr();

q = (struct queue *)malloc(sizeof(struct queue));

init(q);

do

{

printf(“\n*****************”);

printf(“\n1.Insertion     *”);

printf(“\n2.Deletion      *”);

printf(“\n3.Display       *”);

printf(“\n*****************”);

printf(“\nEnter your option::”);

scanf(“%d”,&option);

switch(option)

{

case 1: printf(“\nEnter the element to be inserted

into the queue::”);

QueueUnit 5



Data Structure Through C Language 139

scanf(“%d”,&elem);

flag = insert(q,elem);

if(flag == 1)

{

printf(“\n%d is succesfully inserted

into the queue”,elem);

printf(“\nAfter insertion “);

display(q);

}

else

{

printf(“\nInsertion is not possible as

the queue is full”);

}

break;

case 2: elem = delet(q);

if(elem == -99)

printf(“\nDeletion is not possible as

the queue is empty”);

else

{

printf(“\n%d is deleted from the

queue”);

printf(“\nAfter deletion “);

display(q);

}

break;

case 3: display(q);

break;

default: printf(“\nWrong input...try again”);

}

printf(“\nDo you want to continue..Press ‘y’ or ‘Y’ to

continue”);

Queue Unit 5



Data Structure Through C Language140

cont = getch();

} while(cont == ‘y’ || cont == ‘Y’);

}

//Function to initialize a queue

void init(struct queue *q)

{

q->front = -1;

q->rear = -1;

}

//Function to check a queue is overflow or not

int isfull(struct queue *q)

{

if(q->front == 0 && q->rear == max-1)

return(1);

else

return(0);

}

//Function to check a queue is underflow or not

int isempty(struct queue *q)

{

if(q->front == -1)

return(1);

else

return(0);

}

//Function to insert a new element into a queue

int insert(struct queue *q,int element)

{

int  i;

if(isfull(q))

return(0);

else

{

QueueUnit 5



Data Structure Through C Language 141

if(q->rear == max-1)

{

for(i = 0;i <= (q->rear)-(q->front) ;i++)

q->data[i] = q->data[q->front+i];

q->rear = q->rear - q->front;

q->front = 0;

}

if(q->front == -1)

q->front = 0;

q->data[++q->rear] = element;

return(1);

}

}

//Function to delete a element from a queue

int delet(struct queue *q)

{

int delement;

if(isempty(q))

return(-99);

else

{

delement = q->data[q->front];

q->front++;

if(q->front > q->rear)

{

q->front = -1;

q->rear = -1;

}

return(delement);

}

}

//Function to display the elements available in the queue

void display(struct queue *q)

Queue Unit 5



Data Structure Through C Language142

{

int i;

if(isempty(q))

printf(“\nThe queue is empty”);

else

{

printf(“\nthe elements in the queue are:\n”);

for(i = q->front ; i <= q->rear ; i++)

printf(“%5d”,q->data[i]);

}

}

5.5 CIRCULAR QUEUE

In the earlier implementation of queue ,we have learnt that shifting

of queue elements must be done to the left most direction of the array to

make free space available at the rear end in case of insertion of new

elements when ‘rear’ is equal to ‘size of the array’ -1 and ‘front’ is not equal

to 0. So in case of a queue with a large number of elements, the shifting of

queue elements has make wastage of time which is a drawback of the

queue. So to remove this drawback, circular queue implementation is used.

In case of circular queue implementation, if ‘rear’ is equal to (size of the

queue)-1 and ‘front’ is not equal to 0 then a new element is inserted into the

array at the subscript value 0th position. So here the array is imagined as a

circular list.

Here if the value of ‘rear’ or ‘front’ is (size of queue)-1 then next

value of ‘rear’ or ‘front’ is 0 otherwise the next value of ‘rear’ or ‘front’ will be

one more than the earlier value. In this implementation, the ‘front’ and the

‘rear’ are initialized with the value ‘-1’. The overflow condition is “ ‘front’ is

equal to the next value of the rear’s recent value” and underflow condition is

“ ‘front’ is equal to ‘-1’  “. In this implementation, if ‘front’ is not equal to -1 and

‘front’ is equal to ‘rear’ then it means that there is only one element is available

in the circular queue. But in some other implementation, if ‘front’ is equal to

‘rear’ then it means that the circular queue is empty.

QueueUnit 5



Data Structure Through C Language 143

0 0 10 0 10 0 10 0 10 0

1 1 1 11 1 11 1 11 1 11

2 2 2 2 12 2 12 2 12

3 3 3 3 3 13 3 13

4 4 4 4 4 4

5 5 5 5 5 5

front = –1 front = 0 front = 0 front = 0 front = 0 front = 1

rear = –1 rear = 0 rear = 1 rear = 2 rear = 3 rear = 3

Fig. 5.2(a) Fig. 5.2(b) Fig. 5.2(c) Fig. 5.2(d) Fig. 5.2(e) Fig. 5.2(f)

0 0 0 0 16 0 16 0 16

1 11 1 1 1 1 17 1 17

2 12 2 12 2 12 2 12 2 12 2

3 13 3 13 3 13 3 13 3 13 3 13

4 14 4 14 4 14 4 14 4 14 4 14

5 5 5 15 5 15 5 15 5 15

front = 1 front = 2 front = 2 front = 2 front = 2 front = 3

rear = 4 rear = 4 rear = 5 rear = 0 rear = 1 rear = 1

Fig. 5.2(g) Fig. 5.2(h) Fig. 5.2(i) Fig. 5.2(j) Fig. 5.2(k) Fig. 5.2(l)

Fig. 5.2. Example of insertion and deletion operation on a circular queue

Algorithm for inserting new information into a circular queue:

Here cqueue[ ] is the array to store the queue elements.

‘front’ is a variable used to represent the front end of the circular

queue.

‘rear’ is a variable to represent the rear end of the circular queue.

‘element’ is a variable to store the new element to be inputted into

the circular queue.

Here the next value for ‘front’ and ‘rear’ can be calculated using

modulus(%) operator. Modulus(%) operator gives the reminder of any

division operation.

When the value of ‘rear’ or ‘front’ is equal to (size of the queue)–1

then the next value of ‘rear’ or ‘front’ is equal to ((rear or front) + 1)%(size of

Queue Unit 5



Data Structure Through C Language144

the queue) i.e 0 other wise it will be one more than the recent value of ‘rear’

or ‘front’.

insertcq(cqueue[ ],front,rear,element)

Step 1: IF  front == (rear+1)% (size of cqueue)

Step 2: PRINT “ Queue overflow”

Step 3: END OF IF

Step 4: ELSE

Step 5: rear = (rear+1)%(size of cqueue)

Step 6: IF front == –1

Step 7: front = 0

Step 8: END OF IF

Step 9: cqueue[ rear ] = element

Step 10: END OF ELSE

In fig. 5.2(a), an empty circular queue is represented with front = –1

and rear = –1.

In fig. 5.2(b), 10 is inserted into the queue and it is the first element

in the queue with front = 0 and rear = 0. Here ‘front’ is equal to ‘rear’ which

means only one element is available in the circular queue.

In fig. 5.2(c), 11 is inserted into the queue with front = 0 and rear = 1.

So like this, 12,13,14,15,16 and 17 are inserted into the circular queue in

figures 2(d),2(e),2(g),2(i),2(j) and 2(k) respectively.

Algorithm for deleting information from a circular queue:

Here cqueue[ ] is the array to store the array elements

‘front’ is a variable used to represent the front end of the queue

‘rear’ is a variable to represent the rear end of the queue

deletecq(cqueue[ ],front,rear)

Step 1: IF front == –1

Step 2: PRINT” queue is underflow”

Step 3: END OF IF

Step 4: ELSE

Step 5: IF  front == rear)

Step 6: front = –1

Step 7: rear = –1

QueueUnit 5



Data Structure Through C Language 145

Step 8: END OF IF

Step 9: ELSE

Step 10: front = (front+1)%(size of cqueue)

Step 11: END OF ELSE

Step 12: END OF ELSE

In fig. 5.2(f),10 is deleted from the circular queue with front = 1 and

rear = 3.

In fig. 5.2(h),11 is deleted from the circular queue with front = 2 and

rear = 4.

In fig. 5.2(l), 12 is deleted from the circular queue with front = 3 and

rear = 1.

C program to implement circular queue:

#include<stdio.h>

#include<conio.h>

#define max 5

//Structure to create a circular queue

struct cirqueue

{

int front,rear;

int data[max];

};

typedef struct cirqueue cirqueue;

// Function prototypes

int insert(cirqueue **,int );

int delet(cirqueue **);

int isfull(cirqueue **);

int isempty(cirqueue **);

void init(cirqueue **);

void display(cirqueue *);

void main()

{

cirqueue *q;

int option,elem,flag;

Queue Unit 5



Data Structure Through C Language146

char cont;

clrscr();

q = (cirqueue *)malloc(sizeof(cirqueue));

init(&q);

do

{

printf(“\n*****************”);

printf(“\n1.Insertion     *”);

printf(“\n2.Deletion      *”);

printf(“\n3.Display       *”);

printf(“\n*****************”);

printf(“\nEnter your option::”);

scanf(“%d”,&option);

switch(option)

{

case 1: printf(“\nEnter the element to be inserted

into the queue::”);

scanf(“%d”,&elem);

flag = insert(&q,elem);

if(flag == 1)

{

printf(“\n%d is succesfully inserted

into the queue”,elem);

printf(“\nAfter insertion “);

display(q);

}

else

{

printf(“\nInsertion isnot possible as

the queue is full”);

}

break;

case 2: elem = delet(&q);

QueueUnit 5



Data Structure Through C Language 147

if(elem == -99)

printf(“\nDeletion is not possible as

the queue is empty”);

else

{

printf(“\n%d is deleted from the

circular queue”,elem);

printf(“\nAfter deletion “);

display(q);

}

break;

case 3: display(q);

break;

default:printf(“\nWrong input...try again”);

}

printf(“\nDo you want to continue..Press ‘y’ or ‘Y’ to

continue”);

cont = getch();

}while(cont == ‘y’ || cont == ‘Y’);

}

//Function to initialize a circular queue

void init(cirqueue **q)

{

(*q)->front = -1;

(*q)->rear = -1;

}

//Function to check a circular queue is overflow or not

int isfull(cirqueue **q)

{

if((*q)->front == ((*q)->rear+1)%max)

return(1);

else

return(0);

Queue Unit 5



Data Structure Through C Language148

}

//Function to check a circular queue is underflow or not

int isempty(cirqueue **q)

{

if((*q)->front == -1)

return(1);

else

return(0);

}

//Function to insert a new element into the circular queue

int insert(cirqueue **q,int element)

{

int i;

if(isfull(q))

return(0);

else

{

(*q)->rear = ((*q)->rear+1)%max;

if((*q)->front == -1)

(*q)->front = 0;

(*q)->data[(*q)->rear] = element;

return(1);

}

}

//Function to delete an element from the circular queue

int delet(cirqueue **q)

{

int delement;

if(isempty(q))

return(-99);

else

{

delement = (*q)->data[(*q)->front];

QueueUnit 5



Data Structure Through C Language 149

if((*q)->front == (*q)->rear)

{

(*q)->front = -1;

(*q)->rear = -1;

}

else

(*q)->front = ((*q)->front+1)%max;

return(delement);

}

}

//Function to display elements available in the circular queue

void display(cirqueue *q)

{

int i;

if(isempty(&q))

printf(“\nThe queue is empty”);

else

{

printf(“\nthe elements in the queue are:\n”);

I = q->front;

while(i != q->rear)

{

printf(“%5d”,q->data[i]);

i = (i+1)%max;

}

printf(“%5d”,q->data[i]);

}

}

5.6 LINKED LIST IMPLEMENTATION OF QUEUE

In the following sections queue is implemented with the three types

of linked list.

Queue Unit 5



Data Structure Through C Language150

1 101 2 401 3 601

4 NULL

801

801 101 401

601

rear 601

front

5.6.1 Using Singly Linked List

In this implementation queue is a singly linked list with two

pointers ‘rear’ and ‘front’. ’front’ points the first element in the list and

‘rear’ points the last elements in the list. ‘front’ and ‘rear’ are initialized

to NULL. Here the underflow condition is ‘front’ is equal to NULL. In

deletion operation, the node pointed by ‘front’ is deleted and then

‘front’ will point to the next node of the deleted node if available. In

insertion operation the new node is inserted after the node pointed

by rear i.e at the last position and ‘rear’ will point the new last node

in the list.

Fig. 5.3(a) : Example of a queue implemented using singly linked list

Fig. 5.3(b) : Deletion of queue element

1 101 2 401 3 601

4 NULL

101

801 101 401

601

rear 601

front

QueueUnit 5



Data Structure Through C Language 151

1 101 2 401 3 601

4 901

801

801 101 401

601

rear 901

front

5 NULL

901

Fig. 5.3(c) : Insertion of new queue element

Algorithm for inserting a new information from a queue :

ADDRESS(ptr) means address part of the node pointed by the

pointer “ptr” which points the next node in the queue implemented

using singly linked list .

DATA(ptr) means data part of the node pointed by the pointer

“ptr”.

“newnode” is the pointer which points the node to be inserted

into the queue implemented using singly linked list.

‘element’ is a variable to store the new element to be inputted

into the queue implemented using singly linked list.

insert(front,rear,element)

Step 1: ALLOCATE MEMORY FOR newnode

Step 2: DATA(newnode) = element

Step 3: ADDRESS(newnode)=NULL

Step 4: IF front == NULL

Step 5: front = newnode

Step 6: rear = newnode

Step 7: END OF IF

Step 8: ELSE

Step 9: ADDRESS(rear) = newnode

Step 10. rear = ADDRESS(rear)

Step 11: END OF ELSE

Queue Unit 5



Data Structure Through C Language152

In fig. 5.3(c), a new node with data “5” is inserted into the

queue which is implemented using doubly linked list.

Algorithm for deleting information from a queue: ADDRESS(ptr)

means address part of the node pointed by the pointer “ptr” which

points the next node in the queue implemented using singly linked

list.

“temp” is a pointer to point any node of a queue implemented

using singly linked list.

delete(front,rear)

Step 1: IF front == NULL

Step 2: PRINT “ Queue is underflow”

Step 3: END OF IF

Step 4: ELSE

Step 6: temp = front

Step 7: front = ADDRESS(front)

Step 8: IF front == NULL THEN

Step 9: rear = NULL

Step 10: END OF IF

Step 11: DEALLOCATE MEMORY FOR temp

Step 12: END OF ELSE

In fig. 5.3(b), the node pointed by the pointer ‘front’ with data

“1” is deleted from the queue which is implemented using singly

linked list.

C program to implement queue using singly linked list:

#include<stdio.h>

#include<conio.h>

//Structure to create a node of a queue

struct lqueue

{

int data;

struct lqueue *next;

};

typedef struct lqueue lqueue;

QueueUnit 5



Data Structure Through C Language 153

//Function prototypes

int insert(lqueue **,lqueue **,lqueue **,int );

int delet(lqueue **,lqueue **,lqueue **);

int isempty(lqueue *);

void init(lqueue **,lqueue **,lqueue **);

void display(lqueue *);

void main()

{

lqueue *qhead,*front,*rear;

int option,elem,flag;

char cont;

clrscr();

init(&qhead,&front,&rear);

do

{

printf(“\n*****************”);

printf(“\n1.Insertion     *”);

printf(“\n2.Deletion      *”);

printf(“\n3.Display       *”);

printf(“\n*****************”);

printf(“\nEnter your option::”);

scanf(“%d”,&option);

switch(option)

{

case 1: printf(“\nEnter the element to be inserted

into the queue::”);

scanf(“%d”,&elem);

flag = insert(&qhead,&front,&rear,elem);

if(flag == 1)

{

printf(“\n%d is succesfully inserted into

the queue”,elem);

printf(“\nAfter insertion “);

display(qhead);

Queue Unit 5



Data Structure Through C Language154

}

else

{

printf(“\nInsertion isnot successfull”);

}

break;

case 2: elem = delet(&qhead,&front,&rear);

if(elem == -99)

printf(“\nDeletion is not possible as the

queue is empty”);

else

{

printf(“\n%d is deleted from the

queue”,elem);

printf(“\nAfter deletion “);

display(qhead);

}

break;

case 3: display(qhead);

break;

default:printf(“\nWrong input...try again”);

}

printf(“\nDo you want to continue..Press ‘y’ or ‘Y’ to

continue”);

cont = getch();

}while(cont == ‘y’ || cont == ‘Y’);

}

//Function to initialize a singly linked list

void init(lqueue **qhead,lqueue **f,lqueue **r)

{

*qhead = NULL;

*f = NULL;

*r = NULL;

}

QueueUnit 5



Data Structure Through C Language 155

//Function to check a queue is underflow or not

int isempty(lqueue *qhead)

{

if(qhead == NULL)

return(1);

else

return(0);

}

//Function to insert a new node into a queue

int insert(lqueue **qhead,lqueue **f,lqueue **r,int element)

{

lqueue *newnode;

newnode = (lqueue *)malloc(sizeof(lqueue));

if(newnode == NULL)

return(0);

newnode->next = NULL;

newnode->data = element;

if(*qhead == NULL)

{

*f = newnode;

*r = newnode;

*qhead = newnode;

}

else

{

(*r)->next = newnode;

(*r) = (*r)->next;

}

return(1);

}

//Function to delete a node from a queue

int delet(lqueue **qhead,lqueue **f,lqueue **r)

{

Queue Unit 5



Data Structure Through C Language156

int delement;

lqueue *temp;

if(isempty(*qhead))

return(-99);

else

{

temp = *f;

delement = temp->data;

(*f) = (*f)->next;

if(*f == NULL)

*r = NULL;

*qhead = *f;

free(temp);

return(delement);

}

}

//Function to display all the elements available in the queue

void display(lqueue *qhead)

{

lqueue *temp;

int i;

temp = qhead;

if(isempty(qhead))

printf(“\nThe queue is empty”);

else

{

printf(“\nthe elements in the queue are:\n”);

while(temp != NULL)

{

printf(“%5d”,temp->data);

temp = temp->next;

}

}

}

QueueUnit 5



Data Structure Through C Language 157

NULL 1 401 501 2 801 401 3 901 801 4 NULL

501 401 801 901

501 front rear
901

NULL 1 401 NULL 2 801 401 3 901 801 4 NULL

501 401 801 901

401 front rear 901

5.6.2 Using Doubly Linked List

In this implementation queue is a doubly linked list with two

pointers ‘rear’ and ‘front’. ’front’ points the first element in the list and

‘rear’ points the last elements in the list. ‘front’ and ‘rear’ are initialized

to NULL. Here the underflow condition is ‘front’ is equal to NULL. In

deletion operation, the node pointed by ‘front’ is deleted and then

‘front’ will point to the next node of the deleted node if available. In

insertion operation the new node is inserted after the node pointed

by rear i.e at the last position and ‘rear’ will point the new last node

in the list.

Fig. 5.4(a) : Example of a queue implemented using doubly linked list

Fig. 5.4(b) : Deletion of queue element

Fig. 5.4(c) : Insertion of new queue element

NULL 1 401 501 2 801 401 3 901 801 4 701

501 401 801 901

501 front

901 2 NULL

rear 701

701

Queue Unit 5



Data Structure Through C Language158

Algorithm for inserting a new information from a queue:

ADDRESSNEXT(ptr)  means the address part of a node pointed by

the pointer “ptr”  which points the next node in the queue implemented

using doubly linked list.

ADDRESSPREVIOUS(ptr) means the address part of a node

pointed by the pointer “ptr” which points the previous node in the

queue implemented using doubly linked list.

DATA(ptr) means the data part of a node pointed by the

pointer “ptr” of a queue implemented using doubly linked list.

‘element’ is a variable to store the new element to be inputted

into the queue implemented using doubly linked list.

insert(front,rear,element)

Step 1: ALLOCATE MEMORY FOR newnode

Step 2: DATA(newnode) = element

Step 3: ADDRESSNEXT(newnode) = NULL

Step 4: ADDRESSPREVIOUS(newnode) = NULL

Step 5: IF front == NULL THEN

Step 6: front = newnode

Step 7: rear = newnode

Step 8: END OF IF

Step 9: ELSE

Step 10: ADDRESSPREVIOUS(newnode) = rear

Step 11: ADDRESSNEXT(rear) = newnode

Step 12: rear = ADDRESSNEXT(rear)

Step 13: END OF ELSE

In fig. 5.4(c), a new node with data “2” is inserted into the

queue which is implemented using doubly linked list.

Algorithm for deleting information from a queue:

ADDRESSNEXT(ptr)  means the address part of a node pointed by

the pointer “ptr”  which points the next node in the queue implemented

using doubly linked list.

ADDRESSPREVIOUS(ptr) means the address part of a node

pointed by the pointer “ptr” which points the previous node in the

queue implemented using doubly linked list.

QueueUnit 5



Data Structure Through C Language 159

“temp” is a pointer to point any node of a queue implemented

using doubly linked list.

delete(front,rear)

Step 1: IF front == NULL THEN

Step 2: PRINT” Queue is underflow”

Step 3: END OF IF

Step 4: ELSE

Step 5: temp = front

Step 6: front = ADDRESSNEXT(front)

Step 7: IF  front == NULL

Step 8: drear = NULL

Step 9: END OF IF

Step 10: ELSE

Step 11: ADDRESSPREVIOUS(front) = NULL

Step 12: END OF ELSE

Step 13: DEALLOCATE MEMORY FOR temp

Step 14:  END OF ELSE

In fig. 5.4(b), the node pointed by the pointer ‘front’ with data

“1” is deleted from the queue which is implemented using doubly

linked list.

C program to implement queue using doubly linked list:

#include<stdio.h>

#include<conio.h>

//Structure to create a node of a doubly linked list

struct dlqueue

{

int data;

struct dlqueue *prev;

struct dlqueue *next;

};

typedef struct dlqueue dlqueue;

//Function prototypes

int insert(dlqueue **,dlqueue **,dlqueue **,int );

Queue Unit 5



Data Structure Through C Language160

int delet(dlqueue **,dlqueue **,dlqueue **);

int isempty(dlqueue *);

void init(dlqueue **,dlqueue **,dlqueue **);

void display(dlqueue *);

void main()

{

dlqueue *qhead,*front,*rear;

int option,elem,flag;

char cont;

clrscr();

init(&qhead,&front,&rear);

do

{

printf(“\n*****************”);

printf(“\n1.Insertion     *”);

printf(“\n2.Deletion      *”);

printf(“\n3.Display       *”);

printf(“\n*****************”);

printf(“\nEnter your option::”);

scanf(“%d”,&option);

switch(option)

{

case 1: printf(“\nEnter the element to be inserted

into the queue::”);

scanf(“%d”,&elem);

flag = insert(&qhead,&front,&rear,elem);

if(flag == 1)

{

printf(“\n%d is succesfully inserted into

the queue”,elem);

printf(“\nAfter insertion “);

display(qhead);

}

QueueUnit 5



Data Structure Through C Language 161

else

{

printf(“\nInsertion isnot successfull”);

}

break;

case 2: elem = delet(&qhead,&front,&rear);

if(elem == -99)

printf(“\nDeletion is not possible as the

queue is empty”);

else

{

printf(“\n%d is deleted from the

queue”,elem);

printf(“\nAfter deletion “);

display(qhead);

}

break;

case 3: display(qhead);

break;

default:printf(“\nWrong input...try again”);

}

printf(“\nDo you want to continue..Press ‘y’ or ‘Y’ to

continue”);

cont = getch();

}while(cont == ‘y’ || cont == ‘Y’);

}

//Function to initialize a doubly linked list

void init(dlqueue **qhead,dlqueue **f,dlqueue **r)

{

*qhead = NULL;

*f = NULL;

*r = NULL;

}

Queue Unit 5



Data Structure Through C Language162

//Function to check a queue is underflow or not

int isempty(dlqueue *qhead)

{

if(qhead == NULL)

return(1);

else

return(0);

}

//Function to insert a new node into a queue

int insert(dlqueue **qhead,dlqueue **f,dlqueue **r,int element)

{

dlqueue *newnode;

newnode = (dlqueue *)malloc(sizeof(dlqueue));

if(newnode == NULL)

return(0);

newnode->next = NULL;

newnode->prev = NULL;

newnode->data = element;

if(*qhead == NULL)

{

*f = newnode;

*r = newnode;

*qhead = newnode;

}

else

{

newnode->prev = *r;

(*r)->next = newnode;

(*r) = (*r)->next;

}

return(1);

}

//Function to delete a node from a queue

QueueUnit 5



Data Structure Through C Language 163

int delet(dlqueue **qhead,dlqueue **f,dlqueue **r)

{

int delement;

dlqueue *temp;

if(isempty(*qhead))

return(-99);

else

{

temp = *f;

delement = temp->data;

(*f) = (*f)->next;

if(*f == NULL)

*r = NULL;

else

(*f)->prev = NULL;

*qhead = *f;

free(temp);

return(delement);

}

}

//Function to display all the elements available in a queue

void display(dlqueue *qhead)

{

dlqueue *temp;

int i;

temp = qhead;

if(isempty(qhead))

printf(“\nThe queue is empty”);

else

{

printf(“\nthe elements in the queue are:\n”);

while(temp != NULL)

{

Queue Unit 5



Data Structure Through C Language164

printf(“%5d”,temp->data);

temp = temp->next;

}

}

}

5.6.3 Using Circular Linked List

In this implementation queue is a circular linked list with two

pointers ‘rear’ and ‘front’. ’front’ points the first element in the list and

‘rear’ points the last elements in the list. ‘front’ and ‘rear’ are initialized

to NULL. The underflow condition is same with the singly linked list

implementation. Here the address field of the node which is pointed

by ‘rear’ points the node which is pointed by ‘front’.

In deletion operation, the node pointed by ‘front’ is deleted

and then ‘front’ will point to the next node of the deleted node if

available otherwise ‘front’ and ‘rear’ will be NULL. The address field

of the node pointed by ‘rear’ will point the node which is pointed by

‘front’ after deletion operation.

In insertion operation the new node is inserted after the node

pointed by ‘rear’ i.e. at the last position and then ‘rear’ will point the

new last node in the list. The address part of the new node will point

the node pointed by front.

Fig. 5.5(a) : Example of a queue implemented using circular linked list

1 101 2 401 3 801

801

801 101 401

front
rear 401

QueueUnit 5



Data Structure Through C Language 165

front

1 101 2 401 3 101

101

801 101 401

rear 401

4 801

601

newnode

1 101 2 401 3 601

801

801 101 401

front
rear 601

Fig. 5.5(b) : Deletion of queue element

Fig. 5.5(c) : Insertion of new queue element

Algorithm for inserting new information from a queue:

ADDRESS(ptr) means address part of the node pointed by the

pointer “ptr” which points the next node in the queue implemented

using circular linked list .

DATA(ptr) means data part of the node pointed by the pointer

“ptr”.

“newnode” is the pointer which points the node to be inserted

into the queue implemented using circular linked list.

‘element’ is a variable to store the new element to be inputted

into the queue implemented using circular linked list.

insert(front,rear,element)

Step 1: ALLOCATE MEMORY FOR newnode

Step 2: DATA(newnode) = element

Step 3: ADDRESS(newnode) = NULL

Step 4: IF  front == NULL THEN

Step 5: front = newnode

Step 6: rear = newnode

Step 7: ADDRESS(rear) = front

Queue Unit 5



Data Structure Through C Language166

Step 8: END OF IF

Step 9: ELSE

Step 10: ADDRESS(newnode) = front

Step 11: ADDRESS(rear) = newnode

Step 12: rear = ADDRESS(rear)

Step 13: END OF ELSE

In fig. 5.5(c), a new node with data “4” is inserted into the

queue which is implemented using circular linked list.

Algorithm for deleting information from a queue: ADDRESS(ptr)

means address part of the node pointed by the pointer “ptr” which points

the next node in the queue implemented using circular linked list.

“temp” is a pointer to point any node of a queue implemented

using circular linked list.

delete(front,rear)

int delement;

Step 1: IF front == NULL THEN

Step 2: PRINT”Queue underflow”

Step 3: END OF IF

Step 4: ELSE

Step 5: temp =front

Step 6: IF ADDRESS(front) == front   THEN

Step 7: rear = NULL

Step 8: front = NULL

Step 9: END OF IF

Step 10: ELSE

Step 11: front = ADDRESS(front)

Step 12: ADDRESS(rear) = front

Step 13: END OF ELSE

Step 14: DEALLOCATE MEMORY FOR temp

Step 15: END OF ELSE

In fig. 5.5(b), the node pointed by the pointer ‘front’ with data

“1” is deleted from the queue which is implemented using circular

linked list.

QueueUnit 5



Data Structure Through C Language 167

C program to implement queue using circular linked list:

#include<stdio.h>

#include<conio.h>

//Structure to create a node of a queue

struct crqueue

{

int data;

struct crqueue *next;

};

typedef struct crqueue crqueue;

//Function prototypes

int insert(crqueue **,crqueue **,crqueue **,int );

int delet(crqueue **,crqueue **,crqueue **);

int isempty(crqueue *);

void init(crqueue **,crqueue **,crqueue **);

void display(crqueue *);

void main()

{

crqueue *qhead,*front,*rear;

int option,elem,flag;

char cont;

clrscr();

init(&qhead,&front,&rear);

do

{

printf(“\n*****************”);

printf(“\n1.Insertion     *”);

printf(“\n2.Deletion      *”);

printf(“\n3.Display       *”);

printf(“\n*****************”);

printf(“\nEnter your option::”);

scanf(“%d”,&option);

switch(option)

{

Queue Unit 5



Data Structure Through C Language168

case 1: printf(“\nEnter the element to be inserted

into the queue::”);

scanf(“%d”,&elem);

flag = insert(&qhead,&front,&rear,elem);

if(flag == 1)

{

printf(“\n%d is succesfully inserted into

the queue”,elem);

printf(“\nAfter insertion “);

display(qhead);

}

else

{

printf(“\nInsertion isnot successfull”);

}

break;

case 2: elem = delet(&qhead,&front,&rear);

if(elem == -99)

printf(“\nDeletion is not possible as the

queue is empty”);

else

{

printf(“\n%d is deleted from the

queue”,elem);

printf(“\nAfter deletion “);

display(qhead);

}

break;

case 3: display(qhead);

break;

default:printf(“\nWrong input...try again”);

}

printf(“\nDo you want to continue..Press ‘y’ or ‘Y’ to

continue”);

QueueUnit 5



Data Structure Through C Language 169

cont = getch();

}while(cont == ‘y’ || cont == ‘Y’);

}

//Function to initialize a circular linked list

void init(crqueue **qhead,crqueue **f,crqueue **r)

{

*qhead = NULL;

*f = NULL;

*r = NULL;

}

//Function to check a queue is underflow or not

int isempty(crqueue *qhead)

{

if(qhead == NULL)

return(1);

else

return(0);

}

//Function to insert a new node into the queue

int insert(crqueue **qhead,crqueue **f,crqueue **r,int element)

{

crqueue *newnode;

newnode = (crqueue *)malloc(sizeof(crqueue));

if(newnode == NULL)

return(0);

newnode->data = element;

if(*qhead == NULL)

{

*f = newnode;

*r = newnode;

(*r)->next = *f;

*qhead = newnode;

}

Queue Unit 5



Data Structure Through C Language170

else

{

newnode->next = *f;

(*r)->next = newnode;

(*r) = (*r)->next;

}

return(1);

}

//Function to delete a node from the queue

int delet(crqueue **qhead,crqueue **f,crqueue **r)

{

int delement;

crqueue *temp;

if(isempty(*qhead))

return(-99);

else

{

temp = *f;

delement = temp->data;

(*f) = (*f)->next;

if((*f)->next == *f)

{

*r = NULL;

*f = NULL;

}

else

(*r)->next = *f;

*qhead = *f;

free(temp);

return(delement);

}

}

//Function to display all the elements available in a queue

QueueUnit 5



Data Structure Through C Language 171

void display(crqueue *qhead)

{

crqueue *temp;

int i;

temp = qhead;

if(isempty(qhead))

printf(“\nThe queue is empty”);

else

{

printf(“\nthe elements in the queue are:\n”);

printf(“%5d”,temp->data);

temp = temp->next;

while(temp != qhead)

{

printf(“%5d”,temp->data);

temp = temp->next;

}

}

 }

5.7 APPLICATION OF QUEUE

There are several applications of queue available in computer

system. Some of these are given as follows.

� In printers, queue is used to print the different files.

� Queue is used to access files from a disk system.

� In a multiprogramming environment, queue is used for CPU

scheduling or job scheduling of operating system.

� In any type of ticket reservation system, queue can be used for

issuing tickets to the customers.

� Queue is used in the implementation of breadth first traversal of

graph.

� Queue is used in many other real world systems which are used

in some scientific research, military operations etc.

Queue Unit 5



Data Structure Through C Language172

5.8 PRIORITY QUEUES

Priority queue is a type of queue where each element has a priority

value and the deletion of the elements is depended upon the priority value.

In case of max-priority queue, the element will be deleted first which has

the largest priority value and in case of min-priority queue the element will

be deleted first which has the minimum priority value.

One application of max-priority queue is to schedule jobs on a shared

computer. A min-priority queue can be used in an even-driven simulator.

CHECK YOUR PROGRESS

Q.1. Multiple choice questions:

I) ”FRONT==REAR” pointer refers to

A. Empty stack B. Empty queue

C. Full stack D. Full queue

II) Last in last out

A. Array B. Stack

C. Queue D. None of the above

III) Queue cannot be used for

A. the line printer B. access to disk storage

C. function call D. Both A and B

IV) Insertion into an queue is done at the

A. Front end B. Rear end

C. Top end D. Both A and C

V) In case of a circular queue, if rear is 10 and front is 20

and the maximum number of element can be stored is

N then at the current situation the total number of element

stored in the queue is

A. N-9 B. N-19

C. N-20 D. None of the above

QueueUnit 5



Data Structure Through C Language 173

Q.2. Fill in the blanks:

I) __________ is used to implement Breadth first search

algorithm.

II) Deletion is done at __________ end in a queue.

III) At rear end __________ is done in case of a queue.

IV) If in a circular queue, front==(rear+1)%(size of the queue)

then it means that __________.

V) Printing files is an application of __________.

Q.3. State whether the following statements are true or false:

I) Reversing strings can be done using queue

II) Conversion of infix notation to postfix notation can be

done using queue.

III) Circular Queue can be implemented using circular linked

list

IV) Queue is also known as FIFO .

V) Queue is used in job scheduling of operating system.

5.9 LET US SUM UP

� Queue is a linear data structure in which the element will be removed

first which is inserted first. Queue is also known as first in first out

(FIFO) data structure.

� A queue has two ends which are front end and rear end. Insertion is

take place at rear end and deletion is take place at front end.

� Queue can be implemented using both array and linked list.

� Circular queue is a type of array implementation of queue where

the array is imagined as a circular data structure i.e. the next

subscript value of the last subscript value of the array is ‘0’ .

� Printing files, accessing files from a disk system, job scheduling by

operating system etc. are some of the applications of queue.

� Priority queue is a type of queue where the deletion of elements is

depended upon some priority value associated with each element

Queue Unit 5



Data Structure Through C Language174

in the queue. In case of max-priority queue, the element has highest

priority value will be deleted first and in case of min-priority queue

the element has lowest priority value will be deleted first.

5.10 FURTHER READINGS

� Yedidyah Langsam,Moshe J. Augenstein, Aaron M.Tenenbaum: Data

structures using C and C++, Prentice-Hall India.

� Ellis Horowitz, Sartaj Sahni: Fundamentals of Data Structures,

Galgotia Publications.

5.11 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1 : I) B,  II) C, III) C, IV) B, V) A

Ans. to Q. No. 2 : I) Queue, II) Front, III) Insertion,

IV) The queue is overflow,  V) queue

Ans. to Q. No. 3 : I) False, II) False, III) False, IV) True, V) True.

5.12 MODEL QUESTIONS

Q.1. What is queue? Why circular queue is needed? Implement circular

queue in C.

Q.2. Write a C program to implement queue using circular linked list.

Q.3. Write down algorithms for insert and delete operation on a queue.

QueueUnit 5



Data Structure Through C Language 175

UNIT 6 : SEARCHING

UNIT STRUCTURE

6.1 Learning Objectives

6.2 Introduction

6.3 Searching

6.4 Types of Searching

6.4.1 Linear Search

6.4.2 Binary Search

6.5 Advantages and Disadvantages

6.6 Let Us Sum Up

6.7 Further Readings

6.8 Answers to Check Your Progress

6.9 Model Questions

6.1 LEARNING OBJECTIVES

After going through this unit, you will able to :

� learn about searching techniques

� describe linear seach and binary search

� search an element in sorted and unsorted list of elements

� learn about the advantages and disadvantages of linear and

binary search techniques.

� analyse linear and binary search

6.2 INTRODUCTION

In our day-to-day life there are various applications, in which the

process of searching is to be carried. Searching a name of a person from

the given list, searching a specific card from the set of cards, etc., are few

examples of searching.

In Computer Science, there are many applications of searching

process. Many advanced algorithms and data structures have been devised



Data Structure Through C Language176

for the sole purpose of making searches more efficient. As the data sets

become larger and larger, good search algorithms will become more

important. While solving a problem, a programmer may need to search a

value in an array. This unit will focus on searching for data stored in a linear

data structure such as an array or linked list.

6.3 SEARCHING

Searching is a technique of finding an element from a given data list

or set of elements.

To illustrate the search process, let us consider an array of 20

elements. These data elements are stored in successive memory locations.

We need to search a particular element from the array. Let e be the element

to be searched. The element e is compared with all the elements in the

array starting from the first element till the last element. When the exact

match is found then the search process is terminated. In case, no such

element exists in the array, the process of searching should be abandoned.

Suppose, we are to search the  element 8 in the array. In that case the given

element is present in the array and thus the search process is said to be

successful as per Fig. 6.1(a).

Fig. 6.1(a) : Successful search

Again let us consider our element to be searched is 66. The search

is said to be unsuccessful as the given element does not exist in the array

as per Fig. 6.1(b).

End of search

Element to element comparison

Element to be searched

SearchingUnit 6



Data Structure Through C Language 177

Fig. 6.1(b) : Unuccessful search

6.4 TYPES OF SEARCHING

The two most important searching techniques are :

� Linear or Sequential search

� Binary search

6.4.1 Linear Search

Linear search, also known as sequential search, is a

technique in which the array traversed sequentially from the first

element until the value is found or the end of the array is reached.

While traversing, each element of the array is compared with the

value to be searched, and if the value is found, the seacrch is said to

be successful.

Linear search is one of the simplest searching techniques.

Though, it is simple and straightforward, it has some limitations. It

consumes more time and reduces the retrieval rate of the system.

The linear or sequential name implies that the items are stored in

systematic manner. It can be applied on sorted or unsorted linear

data structure.

Algorithm of Linear Search : Let us start with an array or list, L

which may have the item in question.

End of search

Element to element comparison

Element to be searched

Searching Unit 6



Data Structure Through C Language178

Step 1: If the list L is empty, then the list has nothing. The list

does not have the item in question. Stop here.

Step 2: Otherwise, look at all the elements in the list L.

Step 3: For each element: If the element equals the item in

question, the list conains the item in question. Stop here. Otherwise,

go onto next element.

Step 4: The list does not have the item in question.

/* Program 6.1: Program to search an element in an array applying

linear search) */

# include<stdio.h>

#include<conio.h>

void main()

{

int arr[50],n,i,item;

printf("How many elements you want to enter in the array : ");

scanf("%d",&n);

for(i=0; i < n; i++)

{

printf("\nEnter element %d : ",i+1);

scanf("%d", &arr[i]);

}

printf("\nEnter the element to be searched : ");

scanf("%d",&item);

for( i=0; i < n; i++)

{

// searched item is compared with array element

if(item == arr[i])

{

printf("\n%d found at position %d\n",item,i+1);

break;

}

}

if(i == n)

SearchingUnit 6



Data Structure Through C Language 179

printf("\nItem %d not found in array\n",item);

getch();

}

In the above program suppose user enters few numbers

using the first for loop (Number of elements should be less or equal

to 50 as the array size is 50). The element which is to be searched

is stored in the variable item. By using a second for loop the element

is compared with each element of the array. If the element in item

variable is matched with any of the element in the array then the

location is displayed. Otherwise item is not present in the array.

Analysis of Linear Search : We have carried out linear search on

lists implemented as arrays. Whether the linear search is carried

out on lists implemented as arrays or linked list or on files, the criteria

part in performance is the comparison loops (i.e., Step 3 of the

algorithm). Obviously the fewer the number of comparisons, the

sooner the algorithm will terminate.

The fewest possible comparisons is equal to 1 when the

required item is the first item in the list and which will be the best

case. Thus, in this case, the complexity of the algorithm is O(1).

The maximum comparisons will be equal to n (total numbers of

elements in the list) when the required item is the last in the list or

not present in the list. This will be the worst case. In both cases, the

average complexity of linear search is O(n).

If the required item is in position i in the list, then only i

comparisons are required. Hence, in average case, the number of

comparisons done by linear search will be:

2

1

2

)1(

............321

�
�

�

�
�

������

N

N

NN

N

Ni

Searching Unit 6



Data Structure Through C Language180

CHECK YOUR PROGRESS

Q.1. Select the appropriate option for each of the following

questions:

i) Linear search is efficient in case of

a) short list of data b) long list of data

c) both a) and b) d) none of these

ii) The process of finding a particular record is called

a) indexing b) searching

c) sorting d) none of these

6.4.2 Binary Search

The binary search approach is different from the linear search.

The binary search technique is used to search for a particular

element in a sorted array or list. In this technique, two partitions of

lists are made and then the given element is searched and hence, it

is  known as binary search.

Let us consider a list which is sorted in ascending order. It

would work to search from the beginning until the item is found or

the end is reached, but it makes more sense to remove as much of

the working data set as possible so that the item is found more

quickly. If we started at the middle of the list we could determine

which half the item is in (because the list is sorted). This effectively

divides the working range in half with a single test. By repeating the

procedure, the result is a highly efficient search algorithm called

binary search.

The binary search is based on the divide-and-conquer

approach. In this technique, the element to be searched (say, item)

is compared with the middle element of the array. If item is equal to

the middle element, then search is successful. If the item is smaller

SearchingUnit 6



Data Structure Through C Language 181

than the middle element, then item is searched in the segment of

the array before the the middle element. However, if the item is greater

than the middle element, item is searched in the array segment after

the middle element. This process will be in iteration until the element

is found or the array segment is reduced to a single element that is

not equal to item.

To illustrate the process of binary search, let us assume a

sorted array of 11 elements as shown in Fig 6.2(a). Suppose we

want to search the element 56  from the array of elements.

2 6 13 19 22 41 56 69 72 81 99

1 2 3 4 5 6 7 8 9 10 11

Fig. 6.2 (a)

For this we will take 3 variables Start, End and Middle, which

will keep track of the status of start, end and middle value of the

portion of the array, in which we will search the element. The value

of the middle will be as :

Initially, Start =1, End = 11 and the Middle = (1+11) / 2 = 6.

The value at index 6 is 41 and it is smaller than the target value i.e.,

(56). The steps are as follows:

Step 1: The element 2 and 99 are at Start and End positions

respectively.

Step 2: Calculate the  middle index which is as

Middle = (Start + End)/2

Middle = (1+11)/2

Middle= 6

Step 3: The key element 56 is to be compared with the Middle value.

If the key is less than the value at Middle then the key element is

present in the first half else in other half; in our case, the key is on

the right half. Now we have to search only on right half.

Start EndMiddle

indices

2

EndStart
Middle

�

�

Searching Unit 6



Data Structure Through C Language182

Hence, now Start = Middle + 1 = 6+1 =7.

End will be same as earlier.

Step 4: Calculate the middle index of the second half

Middle = (Start + End) / 2

Middle = (7+11) / 2

Middle = 9

Step 5:  Again, the Middle divides the second half into the two parts,

which is shown in Fig. 6.2(b).

56 69 72 81 99

7 8 9 10 11

Fig. 6.2 (b)

Step 6: The key element  56 is lesser than the value at Middle which

is 72, hence it is present in the left half i.e., towards the left of 72.

Hence now, End = Middle -1 = 8. Start will remain 7.

Step 7: At last, the Middle is calculated as

Middle =  (Start + End) / 2

Middle = (7+8) / 2

Middle = 7

56 69

7 8

Fig. 6.2(c)

Step 8: Now if we compare our key element 56 with the value at

Middle,  then we see that they are equal. The key element is searched

successfully and it is in 7th location.

Binary Search Algorithm :

Input: (List, Key)

WHILE (List is not empty) DO

(Select “middle” entry in list as test entry

IF (Key = test entry) THEN (Output(“Found it”) Stop)

Start EndMiddle

indices

indices

Start End
Middle

SearchingUnit 6



Data Structure Through C Language 183

IF (Key < test entry) THEN (apply BinarySearch to part of list

preceding test entry)

IF (Key > test entry) THEN (apply BinarySearch to part of list following

test entry))

Output(“Not Found”)

Analysis of Binary Search : The binary search algorithm reduces

the array to one-half in each iteration. Therefore, for an array

containing n elements, there will be  log
2
 n iterations. Thus, the

complexity of binary search algorithm is O(log
2
 n). This complexity

will be the same irrespective of the position of the element, even if

the element is not present in the list.

//Program 6.2: Program to search an element using binary search

#include <stdio.h>

#include<conio.h>

void main()

{

int arr[20],start,end,middle,n,i,item;

clrscr();

printf("How many elements you want to enter in the array : ");

scanf("%d",&n);

for(i=1;i<=n;i++)

{

printf("Enter element %d : ",i);

scanf("%d",&arr[i]);

}

printf("\nEnter the element to be searched : ");

scanf("%d",&item);

// element to be searched is stored in variable item

start =1;

end = n;

middle = (start +end) / 2;

while(item!=arr[middle] && start<=end)

{

Searching Unit 6



Data Structure Through C Language184

if(item>arr[middle])

start = middle+1;

else

end = middle -1;

middle = (start + end) / 2;

}

if(item == arr[middle])

printf("\n%d is found at position %d\n",item,middle);

if(start>end)

printf("\n%d is not found in array\n",item);

getch();

}

//* Program 6.3: Write a program to search a name from a list of 10

     names using binary search*/

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

int start=1,end=10,mid,i,flag=0,value;

char name[15][10],nm[15];

clrscr();

printf("\nEnter 10 names:\n");

for(i=1;i<11;i++)

scanf("%s",&name[i]);

printf("\nEnter the name to search: ");

scanf("%s", &nm);

mid=(start+end)/2;

while(strcmp(nm,name[mid])!=0 && start<=end) {

value=strcmp(nm,name[mid]);

if(value>0)

{

start=mid+1;

SearchingUnit 6



Data Structure Through C Language 185

mid=(start+end)/2;

}

else

{

end=mid-1;

mid=(start+end)/2;

}

}

if(strcmp(nm,name[mid])==0)  {

flag=1;

}

if(flag==1)

printf("\nThe name %s is found successfully",nm);

else

printf("\nThe name %s is not found",nm);

getch();

}

6.5 ADVANTAGES AND DISADVANTAGES

Linear search algorithm is easy to write and efficient for short lists.

It does not require sorted data. However, it is lengthy and time consuming

for long lists. There is no way of quickly establishing that the required item is

not in the list or of finding all occurances of a required item at one place. The

linear search situation will be in worst case if the element is at the end of the

list.

A binary search halves the number of items to check with each

iteration, so locating an item (or determining its absence) takes logarithmic

time. The advantage of a binary search over a linear search is astounding

for large numbers. In binary search, array/list of elements should be in shorted

order.

For an array of a million elements, binary search, O(log n), will find

the target element with a worst case of only 20 comparisons. Linear search,

O(n), on average will take 500,000 comparisons to find the element.

Searching Unit 6



Data Structure Through C Language186

CHECK YOUR PROGRESS

Q.2. What are the advantages of sequential search?

Q.3. State whether the following statements are true(T) or false(F)

i) Element should be in sorted order in case of binary

search.

ii) Binary search cannot be applied in character array.

iii) Sequential search is worst case and average case O(n).

iv) Binary search is worst case O(log n).

Q.4. In the following function code which type of search algorithm

is applied?

int find ( int a[ ], int n, int x )  {

int i;

for ( i = 0; i < n; i++ )  {

if ( a[i] == x )

return i;

}

return 0;

}

Q.5. Write a function in C to find an element x in an array of n

elements where the array, size of the array and the element

is passed as arguments.

6.6 LET US SUM UP

� The process of finding the occurance of a particular data item in a

list is known as searching.

� If the search element is present in the collected elements or array

then the search process is said to be successful. The search is

SearchingUnit 6



Data Structure Through C Language 187

said to be unsuccessful if the given element does not exist in the

array.

� Linear search is a search algorithm that tries to find a certain value

in a set of data. It operates by checking every element of a list (or

array) one at a time in sequence until a match is found.

� The linear search was seen to be easy to implement and relatively

efficient to use for small lists. But very time consuming for long

unsorted lists.

� Binary search only works on sorted lists (or arrays). It finds the middle

element, makes a comparison to determine whether the desired

value comes before or after it and then searches the remaining half

in the same manner.

� The binary search is an improvement, in that it eliminates half the

list from consideration at each iteration. The prerequisite for it is that

the list should be sorted order.

6.7 FURTHER READINGS

� Data Structures : Seymour Lipschutz,  Tata McGraw-Hill.

� Data Structure’s and Program Design : Robert. L. Kruse, PHI.

6.8 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1 : i) (a),  ii) (b)

Ans. to Q. No. 2 : Sequential search is easy to implement and relatively

efficient to use for small lists. It does not require a sorted

list of elements or data.

Ans. to Q. No. 3 : i) True,  ii) False,  iii) True,  iv) True

Ans. to Q. No. 4 : Sequential (Linear) search is applied.

Ans. to Q. No. 5 : int find ( int a[ ], int n, int x )

{

int i = 0;

Searching Unit 6



Data Structure Through C Language188

while ( i < n )

{

int mid = ( n + i ) / 2;

if ( a[mid] < x )

n = mid;

else if ( a[mid] > x )

i = mid + 1;

else

return mid;

}

return 0;

}

6.9 MODEL QUESTIONS

Q.1. Write a program to find the given number in an array of 20 elements.

Also display how many times a given number exists in the list.

Q.2. What is searching? What are the advantages and disadvantages of

sequential search technique?

Q.3. What are the advantages of binary search technique?

Q.4. Differentiate between linear and binary search.

Q.5. Write a program to demonstrate binary search. Use integer array

and store 10 elements. Find the given element.

Q.6. Write down the best, worst and average case time complexity of

Sequential search.

Q.7. Write a program to demonstrate successful and unsuccessful

search. Display appropriate messages.

SearchingUnit 6



Data Structure Through C Language 189

UNIT 7 : SORTING

UNIT STRUCTURE

7.1 Learning Objectives

7.2 Introduction

7.3 Sorting

7.4 Insertion Sort

7.5 Selection Sort

7.6 Bubble Sort

7.7 Quick Sort

7.8 Let Us Sum Up

7.9 Answers to Check Your Progress

7.10 Further Readings

7.11 Model Questions

7.1 LEARNING OBJECTIVES

After going through this unit, you will able to

� define sorting

� describe insertion sort algorithm

� trace selection sort algorithm

� explain bubble sort algorithm

� describe quick sort algorithm

� compute the complexity of the above sorting algorithms

7.2 INTRODUCTION

In computer science and mathematics, a sorting algorithm is an

algorithm that puts elements of a list in a certain order. The most used

orders are numerical order and lexicographical order. Since the dawn of

computing, the sorting problem has attracted a great deal of research,

perhaps due to the complexity of solving it efficiently despite its simple,

familiar statement. Efficient sorting is important to optimizing the use of



Data Structure Through C Language190

other algorithms that require sorted lists to work correctly; it is also often

useful for canonicalizing data and for producing human-readable output.

In this unit, we will introduce you to the fundamental concepts of

sorting. In this unit, we shall discuss about the various sorting algorithms

i.e. insertion sort, selection sort, bubble sort and quick sort including their

complexity.

7.3 SORTING

Sorting refers to the operation of arranging data in some given order,

such as increasing or decreasing, with numerical data, or alphabatically,

with character data. In real life we come accross several examples of sorted

information. For example, in telephone directory the names of the subscribers

and their phone numbers are written in alphabetical order. The records of

the list of these telephone holders are to be sorted by their names. By using

the directory, we can access the telephone number and address of the

subscriber very easily. Like the same way in dictionary the words are placed

in lexicographical order which nothing but a sorting.

Let  L be a list of n elements L
1
, L

2
, ........L

n
 in memory. Sorting  A

refers to the operation of rearranging the contents of L so that they are

increasing in order (numerically or lexicographically), that is

L
1 �  L

2 �  L
3 �     ......... �  L

n

Since L has n elements, there are n! ways that the contents can

appear in L. These ways correnspond precisely to the n! permutations of

1,2,......n.

Let us assume that an array ELEMENT contains 10 elements as

follows :

ELEMENT :  56, 37, 43, 21, 34, 16, 59, 25, 90, 64

After sorting, ELEMENT must appear in memory as follows :

ELEMENT :  16, 21, 25, 34, 37, 43, 56, 59, 64, 90

Since ELEMENT consists of 10 elements, there are 10! = 3628800

ways that the numbers 16, 21, ....... 90 can appear in ELEMENT.

SortingUnit 7



Data Structure Through C Language 191

7.4 INSERTION SORT

Insertion sort is a simple sorting algorithm that is relatively efficient

for small lists and mostly-sorted lists, and often is used as part of more

sophisticated algorithms. It works by taking elements from the list one by

one and inserting them in their correct position into a new sorted list. In

arrays, the new list and the remaining elements can share the array’s space,

but insertion is expensive, requiring shifting all following elements over by

one.

Let A is an array with n elements A[0], A[1], ...... A[N -1] is in memory.

The insetrtion sort algorithm scans the the array from A[0] to A[N - 1], and

the process of inserting each element in proper place is as -

Pass 1 A[0] by itself is sorted because of one element.

Pass 2 A[1] is inserted either before or after A[0] so that A[0], A[1]

are sorted.

Pass 3 A[2] is inserted into its proper place in A[0], A[1], i.e. before

A[0], between A[0] and A[1], or after A[1], so that : A[0], A[1],

A[2] are sorted.

Pass 4 A[3] is inserted into its proper place in A[0], A[1], A[2] so

that : A[0], A[1], A[2], A[3] are sorted.

...........................................................................................................

...........................................................................................................

Pass N A[N -1] is inserted into its proper place in A[0], A[1], ........

A[N - 2] so that : A[0], A[1], ......... A[N -1] is sorted.

Insertion sort algorithm is frequently used when n is small.

The element inserted in the proper place is compared with the

previous elements and placed in between the ith element and (i+1)th element

if :

element � ith element

element � (i+1)th element

Let us take an example of the following elements :

Sorting Unit 7



Data Structure Through C Language192

82 42 49 8 92 25 59 52

Pass 1 82 42 49 8 92 25 59 52

Pass 2 82 42 49 8 92 25 59 52

Pass 3 42 82 49 8 92 25 59 52

Pass 4 42 49 82 8 92 25 59 52

Pass 5 8 42 49 82 92 25 59 52

Pass 6 8 42 49 82 92 25 59 52

Pass 7 8 25 42 49 82 92 59 52

Pass 8 8 25 42 49 59 82 92 52

Sorted elements 8 25 42 49 59 82 92 52

Finally, we get the sorted  array.The following program uses the

insertion sort technique to sort a list of numbers.

/* Program of sorting using insertion sort */

#include<stdio.h>

#include<conio.h>

void main()

{

int a[25], i, j, k, n;

clrscr();

printf(“Enter the number of elements : “);

scanf(“%d”,&n);

for (i = 0; i < n; i++)

{

printf(“Enter element %d : “,i+1);

scanf(“%d”, &a[i]);

}

printf(“Unsorted list is :\n”);

for (i = 0; i < n; i++)

printf(“%d “, a[i]);

printf(“\n”);

/*Insertion sort*/

for(j=1;j<n;j++)

SortingUnit 7



Data Structure Through C Language 193

{

k=a[j]; /*k is to be inserted at proper place*/

for(i=j-1;i>=0 && k<a[i];i--)

a[i+1]=a[i];

a[i+1]=k;

printf(“Pass %d, Element %d inserted in proper

place \n”,j,k);

for (i = 0; i < n; i++)

printf(“%d “, a[i]);

printf(“\n”);

}

printf(“Sorted list is :\n”);

for (i = 0; i < n; i++)

printf(“%d “, a[i]);

printf(“\n”);

getch();

} /*End of main()*/

Analysis : In insertion sort we insert  the elements i before or after

and we start comparison from the first element. Since the first element has

no other elements before it, so it does not require any comparision. Second

element requires 1 comparision, third element requires 2 comparisions,

fourth element requires 3 comparisions and so on. The last element requires

n – 1 comparisions. So the total number of comparisions will be -

1 + 2 + 3 + ................................. + (n–2) + (n -1)

It’s a form of arithmetic progression series, so we can apply the

formula sum = 
2

n

{ 2a + (n –1)d }

where d = common difference i.e. first term – second term,

a = first term in the series, n = total term

Thus sum = 
2

)1( �n

{ 2 X 1 + (n–1) -1) X 1 }

= 2

)1( �n

 { 2 + n–2)  = n2

2

)1( �n

Sorting Unit 7



Data Structure Through C Language194

which is of O(n2).

It is the worst case behaviour of insertion sort where all the elements

are in reverse order. If we compute the average case of the above algorithm

then it will be of O(n2). The insertion sort technique is very efficient if the

number of element to be sorted are very less.

7.5 SELECTION SORT

Let us have a list containing n elements in unsorted order and we

want to sort the list by applying the selection sort algorithm. In selection sort

technique, the first element is compared with all remaining (n–1) elements.

The smallest element is placed at the first location. Again, the second element

is compared with the remaining (n–2) elements and pick out the smallest

element from the list and placed in the second location and so on until the

largest element of the list.

Let A is an array with n elements A[0], A[1], ...... A[N–1]. First you will

search the position of smallest element from A[0]......A[N–1]. Then you will

interchange that smallest element with A[0]. Now you will search the position

of the second smallest element (because the A[0] is the first smallest

element) from A[1]........A[N–1], then interchange that smallest element with

A[1]. Similarly the process will be for  A[2]........A[N–1]. The whole process

will be as–

Pass 1 Search the smallest element from A[0], A[1], ... A[N–1]

Interchange A[0] with the smallest element

Result : A[0] is sorted.

Pass 2 Search the smallest element from A[1], A[2], ... A[N -1]

Interchange A[1] with the smallest element

Result : A[0], A[1] is sorted.

...........................................................................................................

...........................................................................................................

Pass N–1 Search the smallest element from A[N–2], A[N–1]

Interchange A[N–2] with the smallest element

Result : A[0], A[1],..............A[N–2], A[N–1] is sorted.

The process of

sequentially traversing

through all or part of a list

is frequently called a

pass, so each of the

above steps is called a

pass.

SortingUnit 7



Data Structure Through C Language 195

Thus A is sorted after N -1 passes.

Let us take an example of the following elements

Pass 1 75 35 42 13 87 24 64 57

Pass 2 13 35 42 75 87 24 64 57

Pass 3 13 24 42 75 87 35 64 57

Pass 4 13 24 35 75 87 42 64 57

Pass 5 13 24 35 42 87 75 64 57

Pass 6 13 24 35 42 57 75 64 87

Pass 7 13 24 35 42 57 64 75 87

Sorted elements 13 24 35 42 57 64 75 87

#include <stdio.h>

#include<conio.h>

void main()

{

int a[25], i, ,j, k, n, temp, smallest;

clrscr();

printf(“Enter the number of elements : “);

scanf(“%d”,&n);

for (i = 0; i < n; i++)

{

printf(“Enter element %d : “,i+1);

scanf(“%d”, &a[i]);

}

/* Display the unsorted list */

printf(“Unsorted list is : \n”);

for (i = 0; i < n; i++)

printf(“%d “, a[i]);

printf(“\n”);

/*Selection sort*/

for(i = 0; i< n - 1 ; i++)

{

/*Find the smallest element*/

Sorting Unit 7



Data Structure Through C Language196

smallest = i;

for(k = i + 1; k < n ; k++)

{

if(a[smallest] > a[k])

smallest = k ;

}

if( i != smallest )

{

temp = a [i];

a[i] = a[smallest];

arr[smallest] = temp ;

}

printf("After Pass %d elements are :  ", i+1);

for (j = 0; j < n; j++)

printf("%d ", a[j]);

printf("\n");

} /*End of for*/

printf("Sorted list is : \n");

for (i = 0; i < n; i++)

printf("%d ", a[i]);

printf("\n");

getch();

} /*End of main()*/

Analysis : As we have seen selection sort algorithm will search the

smallest element in the array and then that element will be at proper position.

So in Pass 1 it will compare n–1 elements, in Pass 2 comparison will be n–

2 because the first element is already at proper position. Thus we can write

the function for comparison as

F(n) = (n–1) + (n–2) + (n–3) + .................. + 3 +2+1

This is an arithmetic series, solving the series we will get

F(n) =  
2

)1( �n

  [ 2(n–1) + { (n–1) –1} { (n–2) – (n–1) } ]

= 
2

)1( �n

   [2n–2 + ( n–1–1)( n–2–n +1)]

SortingUnit 7



Data Structure Through C Language 197

= 
2

)1( �n

  [2n – 2 + ( n–2)(–1)]

= 
2

)1( �n

   [2n – 2–n +2]

= 
2

)1( �nn

= O(n2)

Thus, the number of comparisons is proportional to (n2).It is the worst

case behaviour of selection sort . If we compute the average case of the

above algorithm then it will be of O(n2). The best thing with the selection sort

is that in every pass one element will be at correct position, very less

temporary variables will be required for interchanging the elements and it is

simple to implement.

7.6 BUBBLE SORT

Bubble sort is a commonly used sorting algorithm. In this algorithm,

two successive elements are compared and interchanging is done if the

first element is grearter than the second one. The elements are sorted in

ascending order.

Let A is an array with n elements A[0], A[1], ...... A[N–1]. The bubble

sort algorithm works as follows :

Step 1 First compare A[0] and A[1] and arrange them so that

A[0] < A[1]. Then compare A[1] and A[2] and arrange them

so that A[1] < A[2]. Then compare A[2] and A[3] and arrange

them so that A[2] < A[3]. Continue until we compare A[N–2]

and A[N–1] and arrange them int the desired order so that

A[N–2] < A[N–1]

Observe that Step 1 involves n–1 comparisions. During the Step 1,

the largest element is “bubbled up” to the nth position or “sinks” to the nth

position. When Step 1 is completed, A[N–1] will contain the largest element.

Step 2 Repeat Step 1 and finally the second largest element will

occupy A[N–2]. In this step there will be n–2 comparisons.

Step 3 Repeat Step 1 and finally the third largest element will occupy

A[N–3]. In this step there will be n–3 comparisons.

Sorting Unit 7



Data Structure Through C Language198

...........................................................................................................

 ..........................................................................................................

Step N–1 Compare A[1] and A[2] and arrange them so that A[1] <

A[2]

After n–1 steps, the list will be sorted in ascending order.

Let us take an example of the following elements

13 32 20 62 68 52 38 46

we will apply the bubble sort algorithm to sort the elements.

Pass 1 We have the following comparisions

a) Compare A0 and A1, 13<32, no change

b) Compare A1 and A2, 32>20, interchange

13 20 32 62 68 52 38 46

c) Compare A2 and A3, A2<A3, no change

d) Compare A3 and A4, A3<A4, no change

e) Compare A4 and A5, A4>A5, interchange

13 20 32 62 52 68 38 46

f) Compare A5 and A6, A5>A6, interchange

13 20 32 62 52 38 68 46

g) Compare A6 and A7, A6>A7, interchange

13 20 32 62 52 38 46 68

Pass 2

13 20 32 62 52 38 46 68

a) Compare A0 and A1, 13<20, no change

b) Compare A1 and A2, 20<32, no change

c) Compare A2 and A3, 32<62, no change

d) Compare A3 and A4, 62>52, interchange

13 20 32 52 62 38 46 68

e) Compare A4 and A5, 62>38, interchange

13 20 32 52 38 62 46 68

f) Compare A5 and A6, 46>62, interchange

13 20 32 52 38 46 62 68

At the end of the Pass 2 the second largest element 62 has moved

to its proper place.

SortingUnit 7



Data Structure Through C Language 199

Pass 3

13 20 32 52 38 46 62 68

a) Compare A0 and A1, 13<20, no change

b) Compare A1 and A2, 20<32, no change

c) Compare A2 and A3, 32<52, no change

d) Compare A3 and A4, 52>38, interchange

13 20 32 38 52 46 62 68

e) Compare A4 and A5, 52>46, interchange

13 20 32 38 46 52 62 68

Pass 4

13 20 32 38 46 52 62 68

a) Compare A0 and A1, 13<20, no change

b) Compare A1 and A2, 20<32, no change

c) Compare A2 and A3, 32<38, no change

d) Compare A3 and A4, 38<46, no change

Pass 5

13 20 32 38 46 52 62 68

a) Compare A0 and A1, 13<20, no change

b) Compare A1 and A2, 20<32, no change

c) Compare A2 and A3, 32<38, no change

Pass 6

13 20 32 38 46 52 62 68

a) Compare A0 and A1, 13<20, no change

b) Compare A1 and A2, 20<32, no change

Pass 7

13 20 32 38 46 52 62 68

a) Compare A0 and A1, 13<20, no change

Since the list has 8 elements, it is sorted after the 7th Pass. The list

was actually sorted after the 4th Pass.

/* Program of sorting using bubble sort */

#include<stdio.h>

#include<conio.h>

void main()

Sorting Unit 7



Data Structure Through C Language200

{

int a[25], i, ,j, k, temp, n, xchanges;

clrscr();

printf("Enter the number of elements : ");

scanf("%d",&n);

for (i = 0; i < n; i++)

{

printf("Enter element %d : ", i+1);

scanf("%d",&a[i]);

}

printf("Unsorted list is :\n");

for (i = 0; i < n; i++)

printf("%d ", a[i]);

printf("\n");

/* Bubble sort*/

for (i = 0; i < n-1 ; i++)

{

xchanges=0;

for (j = 0; j <n-1-i; j++)

{

if (a[j] > a[j+1])

{

temp = a[j];

a[j] = a[j+1];

a[j+1] = temp;

xchanges++;

} /*End of if*/

} /*End of inner for loop*/

if(xchanges==0) /*If list is sorted*/

break;

printf("After Pass %d elements are :  ",i+1);

for (k = 0; k < n; k++)

printf("%d ", a[k]);

SortingUnit 7



Data Structure Through C Language 201

printf("\n");

} /*End of outer for loop*/

printf("Sorted list is :\n");

for (i = 0; i < n; i++)

printf("%d ", a[i]);

getch();

printf("\n");

} /*End of main()*/

Analysis : As we have seen bubble sort algorithm will search the

largest element in the array and placed it at proper position in each Pass.

So in Pass 1 it will compare n–1 elements, in Pass 2 comparison will be n–

2 because the first element is already at proper position. Thus, we can write

the function for comparison as

F(n) = (n–1) + (n–2) + (n–3) + .................. + 3 + 2 + 1

This is an arithmetic series, solving the series we will get

F(n) =  
2

n

 { 2a + (n -1)d }

= 
2

)1( �n

 { 2 X 1 + (n -1) -1) X 1 }

= 
2

)1( �n

{ 2 + n -2)

= 
2

)1( �nn
 = O(n2)

Thus, the time required to execute the bubble sort algorithm is

proportional to (n2), where n is the number of input items.

7.7 QUICK SORT

This is the most widely used sorting algorithm, invented by C.A.R.

Hoare in 1960. This algorithm is based on partition. Hence it falls under the

divide  and conquer technique. In this algorithm, the main list of elements is

divided into two sub-lists. For example, a list of n elements are to be sorted.

The quick sort marks an element in the list  called as pivot or key. Consider

the first element P as a pivot. Shift all the elements whose value is less than

P towards the left and elements whose value is greater than P to the right of

Sorting Unit 7



Data Structure Through C Language202

P. Now, the pivot element divides the main list into two parts. It is not

necessary that  the selected key element must be in the middle. Any element

from the list can act as key or pivot element.

Now, the process for sorting the elements through quick sort is as :

1. Take the first element of list as pivot.

2. Place pivot at the proper place in list. So one element of the

list i.e. pivot will be at it’s proper place.

3. Create two sublists left and right side of pivot.

4. Repeat the same process untill all elements of list are at proper

position in list.

For placing the pivot element at proper place we have a need to do

the following process–

1. Compare the pivot element one by one from right to left for getting

the element which has value less than pivot element.

2. Interchange the element with pivot element.

3. Now the comparision will start from the interchanged element

position from left to right for getting the element which has higher

value than pivot.

4. Repeat the same process untill pivot is at it’s proper position.

Let us take a list of element and assume that 48 is the pivot element.

48 29 8 59 72 88 42 65 95 19 82 68

we have to start comparision from right to left. Now the first element

less than 48 is 19. So interchange it with pivot i.e. 48.

19 29 8 59 72 88 42 65 95 48 82 68

Now the comparision will start from 19 and will be from left to right.

The first element greater than 48 is 59. So interchange it with pivot.

19 29 8 48 72 88 42 65 95 59 82 68

Now the comparision will start from 59 and will be from right to left.

The first element less than 48 is 42. So interchange it with pivot.

19 29 8 42 72 88 48 65 95 59 82 68

Now the comparision will start from 42 and will be from left to right.

The first element greater than 48 is 72. So interchange it with pivot.

19 29 8 42 48 88 72 65 95 59 82 68

SortingUnit 7



Data Structure Through C Language 203

Now the comparision will start from 72 and will be from right to left.

There is no element less than 48. So, now 48 is at it’s proper position in the

list. So we can divide the list into two sublist, left and right side of pivot.

19 29 8 42 48 88 72 65 95 59 82 68

Sublist 1 Sublist 2

Now the same procedure will be followed for the sublist1 and sublist2

and finally you will get the sorted list.

The following program will demonstrate the quick sort allgorithm :

#include<stdio.h>

#include<conio.h>

enum bool { FALSE,TRUE };

void main()

{

int elem[20],n,i;

clrscr();

printf("Enter the number of elements : ");

scanf("%d",&n);

for(i=0;i<n;i++)

{

printf("Enter element %d : ",i+1);

scanf("%d",&elem[i]);

}

printf("Unsorted list is :\n");

display(elem,0,n-1);

printf("\n");

quick(elem,0,n-1);

printf("Sorted list is :\n");

show(elem,0,n-1);

getch();

printf("\n");

}/*End of main() */

Sorting Unit 7



Data Structure Through C Language204

quick(int a[ ],int low, int up)

{

int piv, temp, left, right;

enum bool pivot_placed=FALSE;

left=low;

right=up;

piv=low; /*Take the first element of sublist as piv */

if(low>=up)

return;

printf("Sublist : ");

show(a,low,up);

/*Loop till pivot is placed at proper place in the sublist*/

while(pivot_placed==FALSE)

{

/*Compare from right to left  */

while( a[piv]<=a[right] && piv!=right )

right=right-1;

if( piv==right )

pivot_placed=TRUE;

if( a[piv] > a[right] )

{

temp=a[piv];

a[piv]=a[right];

a[right]=temp;

piv=right;

}

/*Compare from left to right */

while( a[piv]>=a[left] && left!=piv )

left=left+1;

if(piv==left)

pivot_placed=TRUE;

if( a[piv] < a[left] )

{

SortingUnit 7



Data Structure Through C Language 205

temp=a[piv];

a[piv]=a[left];

a[left]=temp;

piv=left;

}

}   /*End of while */

printf("-> Pivot Placed is %d -> ",a[piv]);

show(a,low,up);

printf("\n");

quick(a, low, piv-1);

quick(a, piv+1, up);

}/*End of quick()*/

show(int a[ ], int low, int up)

{

int i;

for(i=low;i<=up;i++)

printf("%d ",a[i]);

}

Analysis : The time required by the quick sorting method (i.e. the

efficiency of the algorithm) depends on the selection of the pivot element.

Suppose that, the pivot element is choosen in the middle position of the list

so that it divides the list into two sublist of equal size. Now, repeatedly

applying the quick sort algoritm on both the sublist we will finally have the

sorted list of the elements.

Now, after Ist step total elements in correct position is = 1 = 21 –1

after 2nd step total elements in correct position is = 3 = 22 –1

after 3rd step total elements in correct position is = 7 = 23 –1

..................................................................................................

..................................................................................................

after lth step total elements in correct position is = 2l –1

Therefore, 2l –1 = n – 1

or 2l = n

or l = log
2
n

Sorting Unit 7



Data Structure Through C Language206

Here, the value of l is the number of steps. If n is comparision per

step then for log
2
n steps we get = nlog

2
n comparisions. Thus, the overall

time complexity of quick sort is = nlog
2
n

The above calculated complexity is called the average case

complexity. So, the condition for getting the average case complexity is

choosing the pivot element at the middle of the list.

Now, suppose one condition that , the given list of the elements are

initially sorted. We consider the first element of the list is as the pivot element.

In this case, the number of steps needed for obtain the finally sorted list is

= (n - 1).

Again, the number of comparisions in each step will be almost n i .e.

it will be of O(n).

So, the total number of comparisions for (n–1)steps is = (n– 1)O(n)

= O(n2)

Thus, the time complexity in this case will be = O(n2). This is called

the worst case complexity of the quick sort algorithm. So, the condition

for worst case is if the list is initially sorted.

CHECK YOUR PROGRESS

Q.1. a) Selection sort and quick sort both fall into the same

category of sorting algorithms. What is this category?

A. O(n log n) sorts B. Divide-and-conquer sorts

C. Interchange sorts D. Average time is quadratic.

b) What is the worst-case time for quick sort to sort an array

of n elements?

A. O(log n) B. O(n)

C. O(n log n) D. O(n²)

c) When is insertion sort a good choice for sorting an array?

A. Each component of the array requires a large amount

of memory.

SortingUnit 7



Data Structure Through C Language 207

B. Each component of the array requires a small amount

of memory.

C. The array has only a few items out of place.

D. The processor speed is fast.

Q.2. How does a quick sort performs on :

a) An array that is already sorted

b) An array that is sorted in reversed order

Q.3. The Bubble sort, the Selection sort, and the Insertion sort

are all O(n2) algorithms. Which is the fastest and which is

the slowest among them?

7.8 LET US SUM UP

� Sorting is a method of arranging data in ascending or descending

order.

� The Insertion Sort is so named because on each iteration of its main

loop it inserts the next element in its correct position relative to the

subarray that has already been processed. The complexity of

Insertion Sort is O(n2).

� In Selection Sort, the first element is compared with remaining      (n–

1) elements and the smallest element is placed at the first location.

Again the second element is compared with the remaining (n -2)

elements and pick out the smallest element from the list and placed

in the second location and so on until the largest element of the list.

The complexity of Selection Sort is O(n2).

� The Bubble Sort is probably the simplest of the sorting algorithms.

Its name comes from the idea that the larger elements ‘bubble up’ to

the top (the high end) of the array like the bubbles in waters.The

complexity of Bubble Sort is O(n2).

� The Quick Sort works by partitioning the array into two pieces

separated by a single element that is greater than all the elements in

the left piece and smaller than all the elements in the right piece.

The guarantees that the  single element, called the pivot element, is

Sorting Unit 7



Data Structure Through C Language208

in its correct polsition. Then the algorithm proceeds, applying the

same method to the two pieces separately. This is naturally recursive,

and very quick. Time consumption of the quick sort depends on the

location of the pivot element inthe list. The complexity of Quick Sort

is O(nlogn).

7.9 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1 : a) C, b) D, c) C,

Ans. to Q. No. 2 : The quick sort is quite sensitive to input. The Quick

Sort degrade into an O(n2) algorithm in the special

cases where the array is initially sorted in ascending

or descending order. This is because if we consider

the pivot element will be the first element. So here it

produces only 1 sublist which is on right side of first

element start from second element. Similarly other

sublists will be created only at right side. The number

of comparision. The number of comparision for first

element is n, second element requires n - 1 comparision

and so on. Thus, we will get the complexity of order n2

instead logn.

Ans. to Q. No. 3 : The Bubble Sort is slower than the Selection Sort, and

the Insertion Sort (in most cases) is a little faster.

7.10 FURTHER READINGS

� Data structures using C and C++, Yedidyah Langsam, Moshe J.

Augenstein, Aaron M.Tenenbaum, Prentice-Hall India.

� Data Structures, Seymour Lipschutz, Schaum’s Outline Series in

Computers,Tata Mc Graw Hill.

� Introduction to Data Structures in C, Ashok N. Kamthane, Perason

Education.

SortingUnit 7



Data Structure Through C Language 209

7.11 MODEL QUESTIONS

Q.1. Explain different types of sorting memthods.

Q.2. What is sorting ? Write a function for Bubble Sort.

Q.3. Write a program for sorting a given list by using Insertion Sort :

2, 32, 45, 67, 89, 4, 3, 8, 10

Q.4. Write a program to sort the following members in ascending order

using Selection Sort :

12, 34, 5, 78, 4, 56, 10, 23, 1, 45, 65

Q.5. Write a program to sort the following list using Quick Sort method :

4, 3, 1, 6, 7, 2, 5, 8

Q.6. Show all the passes using the Quick Sorting technique with the

following list–

a) 26, 5, 37, 1, 61, 11, 15, 48, 19

b) 4, 3, 1, 6, 7, 2, 5, 8

Q.7. Show all the passes using the Bubble Sorting technique with the

following list -234, 54, 12, 76, 11, 87, 32, 12, 45, 67, 76

Q.8. Show all the passes using the Selection Sorting technique with the

following list -12, 34, 5, 78, 4, 56, 10, 23, 1, 45, 65

Q.9. Show all the passes using the Insertion Sorting technique with the

following list - 13, 33, 27, 77, 12, 43, 10, 432, 112, 90

Q.10. Compare the performance of quick sort and selection sort.

Sorting Unit 7



Data Structure Through C Language210

UNIT 8 : TREES

UNIT STRUCTURE

8.1 Learning Objectives

8.2 Introduction

8.3 Definition of Tree

8.4 Binary Tree

8.5 Representation of Binary Tree

8.6 Tree Traversal Algorithms

8.7 Prefix and Postfix Notations

8.8 Binary search tree

8.9 Let Us Sum Up

8.10 Further Reading

8.11 Answer to Check Your Progress

8.12 Model Questions

8.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

� define tree as abstract data type (ADT)

� learn the different properties of a Tree and Binary tree

� implement the Tree and Binary tree

� explain different traversal technique of a binary tree

� explain binary search tree and operations on binary search tree

8.2 INTRODUCTION

In the previous units, we have studied various data structures such

as arrays, stacks, queues and linked list. All these are linear data structures.

A tree is a nonlinear data structure that represents data in a hierarchical

manner. It associates every object to a node in the tree and maintains the

parent/child relationships between those nodes. Here, in this unit, we will

introduce you to the trees and binary trees and binary search tree. We will

also discuss about the different tree traversal techniques in this unit.



Data Structure Through C Language 211

8.3 DEFINITION OF TREE

A tree is a nonlinear data structure, where a specially designed node

called root and rest of the data/node are divided into n subsets. Where each

subsets follow the properties of tree and the value of n is grater then equal

to zero.

Definition [Tree]: A tree is a finite set of one or more nodes such

that:

� There is a specially designated node called the root.

� The remaining nodes are partitioned into n (n>=0) disjoint sets

T
1
, ..., T

n
, where each of these sets is a tree.

We call T
1
, ..., T

n
 the subtrees of the root.

In fig 8.1 a general tree is given and in fig 8.2 the structure of unix file

system is given.

Fig. 8.1 : Tree

Definition [Subtree]: Any part of the tree which follows the

properties of the tree is known as subtree of the tree.

Trees Unit 8



Data Structure Through C Language212

Definition [Root Node]: A node is said to be a root node only if it

does not have any parent. In fig 8.1 ‘A’ is the root node of the tree.

Definition [Leaf Node]: A node is said to be a leaf node if it does

not have any child. In fig 8.1 K, H, I, J and C are the leaf node.

Definition [Internal Node]: Anode is said to be a internal node if

the node have one or more children. In fig 8.1 A, B, D, E, F and G are the

internal node.

Definition [Sibling]: A node is said to be sibling of another node

only if both the node have same parent. In fig 8.1 B and C are sibling, D, E,

F are sibling and H and I are sibling.

Definition [Level/Depth]: Level/Depth of a node is the distance

from the root of the tree. In a tree root is at level 0, children of the root are at

level 1, children of those nodes which are at level 1 are in level 2 and so on.

In fig 8.1 D id at level 2, G is at level 3 etc.

Definition [Height of a tree]: Height of a tree is the maximum level

of any node in the tree. In fig 8.1 Height of the tree is 4.

Definition [Degree of a Node]: The degree of a node is the no of

children of that node. For example in Fig 8.1 Degree of node B is 3, Degree

of node C is 0 etc. A node with degree 0 is called a leaf node.

In the following figure Unix file system is shown which is nothing but

Fig. 8.2 : Unix File System

TreesUnit 8



Data Structure Through C Language 213

8.4 BINARY TREE

A Binary Tree is a tree which is either empty or has at most two

subtrees, each of the subtrees also being a binary tree. It means each node

in a binary tree can have 0, 1 or 2 subtrees.

Definition [Binary tree]: A Binary Tree is a structure defined on a

finite set of nodes that either –

– contains no nodes, (Null tree or empty tree), or

– is composed of three disjoint sets of nodes: a root node, a binary

tree called its left subtree, and a binary tree called its right subtree.

Arithmetic expressions involving only binary operations can be

represented using binary tree, for example

E = (a–b)/ ((c*d) + e) can be represented as

Fig. 8.3 : Representation of Arithmetic expression

Definition [Complete Binary tree]: A Binary tree T is said to be

complete if all its levels, except possibly the last, have the maximum number

of possible nodes, and if all the nodes at the last level appear as far left as

possible.

Fig. 8.4 : A complete binary tree

Trees Unit 8



Data Structure Through C Language214

Definition [Full Binary tree]: A binary tree is said to be a full binary

tree if all the levels contains maximum possible node.

Fig. 8.5 : Full binary tree

In a full binary tree

ith level will have 2i element / node

If h is the height of a full binary tree. Then

Number of leaf node of the tree will be: 2h

Number of internal node of the tree will be

1 + 2 + 22 + ……. + 2h-1 = 2h–1

Total number of node will be

Number of internal node + Number of leaf node = 2h + 2h–1

= 2.2h –1

= 2h+1–1

For a full binary tree

number of internal node = number of leaf node -1

For a full binary tree having n nodes

n = number of internal node + number of leaf node

Number of leaf node = n – number of internal node

= n – (number of leaf node –1)

Number of leaf node = (n+1)/2

Height of a full binary tree is

log
2
 (number of leaf) =  log

2
(n+1)/2

For a binary tree of height h can

At level i it can have maximum 2i nodes

Maximum number of node in the tree can be 1 + 22 + 23 + ……. + 2h

= 2h+1 – 1

TreesUnit 8



Data Structure Through C Language 215

Minimum Number of nodes in the tree can be = h+1

For a binary tree having n nodes

Maximum height of the tree can be = n–1

Minimum height of the tree can be = log
2

(n+1)/2

8.5 REPRESENTATION OF BINARY TREE

Binary tree can be represented into the memory in two ways-

� Sequential Representation (by using Array)

� Link representation ( by using node structure )

1. Sequential Representation of Binary Tree: In sequential

representation of binary tree, a single array is used to represent

a binary tree. For these, nodes are numbered/indexed according

to a scheme giving 0 to root. Then all the nodes are numbered

from left to right level by level from top to bottom, empty nodes

are also numbered. Then each node having an index i is put into

Fig. 8.6 : Array representation of binary tree

Figure 8.6 shows how a binary tree is represented as an array. The

root ‘+’ is the 0th element while its leftchild ‘–’ is the 1st element of the array.

Node ‘A’ does not have any child so its children that is 7th & 8th element of

the array are shown as a Null value.

Trees Unit 8



Data Structure Through C Language216

It is found that if n is the number or index of a node, then its left child

occurs at (2n + 1)th position & right child at (2n + 2)th position of the array. If

any node does not have any of its child, then null value is stored at the

corresponding index of the array.

In general, in array representation of binary tree:-

Root is stored at position 0

Left child of the root is at position 1

Right child of the root is at position 2

For a node which array index is N

Left child of the node is at position 2xN+1

Right child of the node is at position 2xN+2

Parent of the node is at position

(N-1)/2 if N is odd

(N-2)/2 if N is even.

Advantage of array representation of binary tree

� Data is stored without any pointer to its successor or parent

� Any node can be accessed from any node by calculating the

index. Efficient from execution point of view.

Disadvantage of array representation of binary tree

� Most of the array entries are empty

� No possible way to enhance tree structure (Limited array size).

Do not support dynamic memory allocation.

� Insertion, deletion etc. are inefficient (costly) as it requires

considerable data movement, thus more processing time.

2. Link Representation of Binary Tree: In link representation,

for representing each data one structure is used called “node”,

each node contains tree field’s data part and two pointers to

contain the address of the left child and the right child. If any

node has its left or right child empty then it will have in its

respective link field, a null value. A leaf node has null value in

both of its links.

Fig. 8.7 : A node structure

TreesUnit 8



Data Structure Through C Language 217

The structure defining a node of binary tree in C is as follows.

Struct node

{

struct node *lc ; /* points to the left child */

int data; /* data field */

struct node *rc; /* points to the right child */

}

The binary tree of Arithmetic expression on fig 8.3 can be represented

in link representation as follows

Fig. 8.7 : Link representation of binary tree

Advantage of link representation of binary tree

� No wastage of memory

� Enhancement of the tree is possible

� Insertions and deletions involve no data movement, only

rearrangement of pointers.

Disadvantage of link representation of binary tree

� Pointer fields are involved which occupy more space than just

data fields.

8.6 TREE TRAVERSAL ALGORITHMS

Traversal of a binary tree means to visit each node in the tree exactly

once. In a linear list, nodes are visited from first to last, but since trees are

Trees Unit 8



Data Structure Through C Language218

nonlinear we need to definite rules to visit the tree. There are a number of

ways to traverse a tree. All of them differ only in the order in which they visit

the nodes.

The three main methods of traversing a tree are:

� Preorder Traversal

� Inorder Traversal

� Postorder Traversal

1. Preorder Traversal : In this traversal process, it visit every node

as it moves left until it can move no further. Now it turns right to

begin again or if there is no node in the right, retracts until it can

move right to continue its traversal.

� Visit the Root

� Traverse the left subtree

� Traverse the right subtree

Algorithm preorder(node)

if (node==null) then return

else

visit(node)

preorder(node->leftchild)

preorder(node->rightchild)

The preorder traversal of the tree shown below is as follows.

Fig. 8.8 : A binary tree

In preorder traversal of the tree process B (root of the tree), traverse

the left subtree and traverse the right subtree. However the preorder traversal

of left subtree process the root E and then K and G. In the traversal of right

subtree process the root C and then D. Hence B E K G C D is the preorder

traversal of the tree.

TreesUnit 8



Data Structure Through C Language 219

Inorder Traversal : The traversal keeps moving left in the binary

tree until one can move no further, process node and moves to the right to

continue its traversal again. In the absence of any node to the right, it retracts

backward by a node and continues the traversal.

� Traverse the left subtree

� Visit the Root

� Traverse the right subtree

Algorithm inorder(node)

if (node==null) then return

else

inorder(node->leftchild)

visit(node)

inorder(node->rightchild)

The inorder traversal of the tree (fig 8.8) traverses the left subtree,

process B(root of the tree) and traverse right subtree. However, the inorder

traversal of left subtree processes K, E and then G and the inorder traversal

of right subtree processes C and then D. Hence K E G B C D is the inorder

traversal of the tree.

Postorder Traversal: The traversal proceeds by keeping to the left

until it is no further possible, turns right to begin again or if there is no node

to the right, processes the node and retraces its direction by one node to

continue its traversal

� Traverse the left subtree

� Traverse the right subtree

� Visit the Root

Algorithm postorder(node)

if (node==null) then return

else

inorder(node->leftchild)

inorder(node->rightchild)

visit(node)

The postorder traversal of the tree (fig 8.8) traverse the left subtree,

traverse right subtree and process B(root of the tree). However, the postorder

Trees Unit 8



Data Structure Through C Language220

traversal of left subtree processes K, G and then E and the postorder

traversal of right subtree processes D and then C. Hence K G E D C B is

the postorder traversal of the tree.

CHECK YOUR PROGRESS

Q.1. Answer the following:

a) What is the maximum height of a binary tree having n

nodes?

b) What is the maximum number of node in a binary tree at

level i?

c) What is the minimum number ofnode in a binary tree at

level i?

d) What is the minimum height of a binary tree having n

node?

d) What is the minimum number of node in a full binary tree

at level i?

8.7 PREFIX AND POSTFIX NOTATION

The general way of writing arithmetic expression is known as the

infix notation, where the binary operators are placed between the two

operands on which it operates and parenthesis are used to distinguish the

operations. For example following expressions are in infix notation:

A+B

(A+B)*(B–C)

A+((B/C)*D)–(F+G)

Here the order of evaluation depends on the parenthesis and the

precedence of operator.

Prefix Notation (Polish Notation): Polish notation, also known as

prefix notation, is a symbolic logic invented by Polish mathematician Jan

Lukasiewicz in the 1920’s. When using Polish notation, the instruction

(operation) precedes the data (operands).

TreesUnit 8



Data Structure Through C Language 221

For example, the prefix notation for the expression

3 * (4 +5) is * 3 + 4 5

(A+B)*(B-C) is *+AB-BC

The fundamental property of prefix notation is that the order in which

the operations are performed is completely determined by the positions of

the operators and operands in the expression.

Postfix Notation (Reverse Polish Notation): Postfix notation or

reverse polish notation also a symbolic logic where the operator symbol is

place after the operation. Later we will discuss the rules for converting infix

expression to postfix expression.

For example, the postfix notation for the expression

3 * (4 +5) is 3 4 5 + *

(A+B)*(B–C) is AB + BC - *

Like prefix notation here also the order of the operations to performed

completely determined by the positions of the operators and operands in

the expression.

Expression Trees : Arithmetic expressions can be represented by

using binary tree, for example

E = (a–b)/ ((c*d) + e) can be represented as

Fig. 8.9 : Expression tree

This kind of tree is called an expression tree.

Here the terminal nodes (leaves) are the variables or constants in

the expression (a, b, c, d, and e) and the non-terminal nodes are the operator

in the expression (+, –,* , and /).

Trees Unit 8



Data Structure Through C Language222

If we traverse the tree in preorder fashion we get

/ - a b + * c d e

Which is the prefix notation of the expression

If we traverse the tree in postorder fashion we get

a b – c d * e + /

which is the postfix notation of the expression.

The computer usually evaluates an arithmetic expression written

infix notation in two steps. First it converts the expression in infix notation

into postfix notation and then evaluates the postfix expression.

Conversion of infix to postfix expression: The conversion of an

infix expression to a postfix expression takes account of precedence and

associatively rules of operator. This conversion uses stack. The steps for

converting an infix expression to a postfix expression is as follows

Algorithm : Infix_to_postfix (E, P)

// Here E is the infix expression to be converted and P is the

resulting postfix expression

1. PUSH ‘(‘ into the STACK and add ‘)’ to the end of E

2. Scan E from left to right and repeat step 3 to 6 for each

element of E until the STACK is not EMPTY

3. If an operand is encountered, add it to P

4. If a left parenthesis is encountered, PUSH it onto STACK

5. If an operator is encountered, recursively POP all the

element that has same or higher precedence and put it

to P. PUSH the operator onto the STACK

6. If a right parenthesis is encountered, POP all the

elements and put it to P until a left parenthesis

encountered and POP the left parenthesis from the

STACK.

7. STOP

Consider the following arithmetic expression

A / ( B + C * D ) + E * ( F / G )

Now according to the algorithm

TreesUnit 8



Data Structure Through C Language 223

E = A / ( B + C * D ) + E * ( F / G )

And P is empty

We will add ‘(‘ to the stack and ‘)’ to the expression so

E = A / ( B + C * D ) + E * ( F / G ) )

Symbol STACK Expression P

Scanned

1. A ( A

2. / ( / A

3. ( ( / ( A

4. B ( / ( A B

5. + ( / ( + A B

6. C ( / ( + A B C

7. * ( / ( + * A B C

8. D ( / ( + * A B C D

9. ) ( / A B C D * +

10. + ( + A B C D * + /

11. E ( + A B C D * + / E

12. * ( + * A B C D * + / E

13. ( ( + * ( A B C D * + / E F

14. F ( + * ( A B C D * + / E F

15. / ( + * ( / A B C D * + / E F

16. G ( + * ( / A B C D * + / E F G

17. ) ( + * A B C D * + / E F G /

18. ) EMPTY A B C D * + / E F G / * +

When we encounter ‘+’ in line 10 we send ‘/’ to P from STACK since

precedence of ‘/’ is grater then the ‘+’

Evaluation of postfix expression: The evaluation of postfix

expression is simple. We push all the operand onto the stack, whenever we

encounter an operator we pop top two elements from stack perform the

operation and push back the result on to the stack until we have any element

left in the postfix expression.

Trees Unit 8



Data Structure Through C Language224

Algorithm : postfix_evaluation (P)

// Here P is the postfix expression to be evaluated

1. Scan E from left to right and repeat step 3 to 6 for each

element of E until end of the postfix expression

2. If an operand is encountered, PUSH it to STACK

3. If an operator is encountered, POP two elements from

the STACK, Perform the operation. PUSH the result onto

the STACK

(hint: if A is the top element and B is the next top element

perform the operation as B operator A)

4. STOP

Consider the following postfix expression

7 6 4 2 * + / 5 8 2 / * +

Symbol STACK Operation performed

Scanned

1. 7 7

2. 6 7 6

3. 4 7 6 4

4. 2 7 6 4 2

5. * 7 6 8 4 * 2 = 8

6. + 7 14 6 + 8 = 14

7. / 0.5 7 / 14 = 0.5

8. 5 0.5 5

9. 8 0.5 5 8

10. 2 0.5 5 8 2

11. / 0.5 5 4 8 / 2 = 4

12. * 0.5 20 5 * 4 = 20

13. + 20.5 0.5 + 20 = 20.5

Result is 20.5

TreesUnit 8



Data Structure Through C Language 225

8.8 BINARY SEARCH TREE

A binary search tree is a binary tree that may be empty, and every

node must contain an identifier. An identifier of any node in the left subtree is

less than the identifier of the root. An identifier of any node in the right subtree

is greater than the identifier of the root. Both the left subtree and right subtree

are binary search trees.

Definition (recursive): A binary tree is said to be a binary search tree

if it is the empty tree or

1. if there is a left-child, then the data in the left-child is less than

the data in the root,

2. if there is a right-child, then the data in the right-child is no less

than the data  in the root, and every sub-tree is a binary search

tree.

Fig. 8.10 : Binary Search Tree

The binary search tree is basically a binary tree, and therefore it can

be traversed in inorder, preorder, and postorder. If we traverse a binary search

tree in inorder and print the identifiers contained in the nodes of the tree, we

get a sorted list of identifiers in ascending order.

A binary search tree is an important search structure. For example,

consider the problem of searching a list. If a list is ordered, searching

becomes faster if we use a contiguous list and perform a binary search.

But if we need to make changes in the list, such as inserting new entries

Trees Unit 8



Data Structure Through C Language226

and deleting old entries, using a contiguous list would be much slower,

because insertion and deletion in a contiguous list requires moving many of

the entries every time. So we may think of using a linked list because it

permits insertions and deletions to be carried out by adjusting only a few

pointers. But in an n-linked list, there is no way to move through the list other

than one node at a time, permitting only sequential access. Binary trees

provide an excellent solution to this problem. By making the entries of an

ordered list into the nodes of a binary search tree, we find that we can

search for a key in O(n logn) steps.

Program : Creating a Binary Search Tree

We assume that every node of a binary search tree is capable of

holding an integer data item and that the links can be made to point to the

root of the left subtree and the right subtree, respectively. Therefore, the

structure of the node can be defined using the following declaration:

struct tnode

{

struct tnode *lchild;

int data;

struct tnode *rchild;

};

A complete C program to create a binary search tree follows:

#include <stdio.h>

#include <stdlib.h>

struct tnode

{

struct tnode *lchild;

int data;

struct tnode *rchild;

};

struct tnode *insert(struct tnode *p, int val)

{

struct tnode *temp1,*temp2;

if(p == NULL)

TreesUnit 8



Data Structure Through C Language 227

{

p = (struct tnode *) malloc(sizeof(struct tnode));

/* insert the new node as root node*/

if(p == NULL)

{

printf(“Cannot allocate\n”);

exit(0);

}

p->data = val;

p->lchild=p->rchild=NULL;

}

else

{

temp1 = p;

/* traverse the tree to get a pointer to that node whose

   child will be the newly created node*/

while(temp1 != NULL)

{

temp2 = temp1;

if( temp1 ->data > val)

temp1 = temp1->lchild;

else

temp1 = temp1->rchild;

}

if( temp2->data > val)

{

temp2->lchild = (struct tnode*)malloc(sizeof(struct tnode));

/*inserts the newly created node as left child*/

temp2 = temp2->lchild;

if(temp2 == NULL)

{

printf(“Cannot allocate\n”);

exit(0);

Trees Unit 8



Data Structure Through C Language228

}

temp2->data = val;

temp2->lchild=temp2->rchild = NULL;

}

else

{

temp2->rchild = (struct tnode*)malloc(sizeof(struct

tnode));

/ *inserts the newly created node as left child*/

temp2 = temp2->rchild;

if(temp2 == NULL)

{

printf(“Cannot allocate\n”);

exit(0);

}

temp2->data = val;

temp2->lchild=temp2->rchild = NULL;

}

}

return(p);

}

/* a function to binary tree in inorder */

void inorder(struct tnode *p)

{

if(p != NULL)

{

inorder(p->lchild);

printf(“%d\t”,p->data);

inorder(p->rchild);

}

}

void main()

{

TreesUnit 8



Data Structure Through C Language 229

struct tnode *root = NULL;

int n, x;

printf(“Enter the number of nodes\n”);

scanf(“%d”, &n);

while( n - > 0)

{

printf(“Enter the data value\n”);

scanf(“%d”, &x);

root = insert(root, x);

}

inorder(root);

}

Explanation :

1. To create a binary search tree, we use a function called insert,

which creates a new node with the data value supplied as a

parameter to it, and inserts it into an already existing tree whose

root pointer is also passed as a parameter.

2. The function accomplishes this by checking whether the tree

whose root pointer is passed as a parameter is empty. If it is

empty, then the newly created node is inserted as a root node. If

it is not empty, then it copies the root pointer into a variable temp1.

It then stores the value of temp1 in another variable, temp2, and

compares the data value of the node pointed to by temp1 with

the data value supplied as a parameter. If the data value supplied

as a parameter is smaller than the data value of the node pointed

to by temp1, it copies the left link of the node pointed to by temp1

into temp1 (goes to the left); otherwise it copies the right link of

the node pointed to by temp1 into temp1 (goes to the right).

3. It repeats this process until temp1 reaches NULL. When temp1

becomes NULL, the new node is inserted as a left child of the

node pointed to by temp2, if the data value of the node pointed to

by temp2 is greater than the data value supplied as a parameter.

Trees Unit 8



Data Structure Through C Language230

Otherwise, the new node is inserted as a right child of the node

pointed to by temp2. Therefore the insert procedure is:

o Input:

1. The number of nodes that the tree to be created should

have

2. The data values of each node in the tree to be created

o Output:

The data value of the nodes of the tree in inorder

Example :

Input:

1. The number of nodes that the created tree should have = 5

2. The data values of the nodes in the tree to be created are: 10,

20, 5, 9, 8

Output : 5 8 9 10 20

A function for preorder traversal of a binary tree:

void preorder(struct tnode *p)

{

if(p != NULL)

{

printf(“%d\t”, p->data);

preorder(p->lchild);

preorder(p->rchild);

}

}

A function for postorder traversal of a binary tree:

void postorder(struct node *p)

{

if(p != NULL)

{

postorder(p->lchild);

postorder(p->rchild);

printf(“%d\t”, p->data);

}

}

TreesUnit 8



Data Structure Through C Language 231

Searching for a target key in a binary search tree : Data values

are given which we call a key in a binary search tree. To search for the key

in the given binary search tree, start with the root node and compare the key

with the data value of the root node. If they match, return the root pointer. If

the key is less than the data value of the root node, repeat the process by

using the left subtree. Otherwise, repeat the same process with the right

subtree until either a match is found or the subtree under consideration

becomes an empty tree.

If we search 2, 18 and 26 in the BST then

Fig. 8.11 : Searching in BST

A function to search for a given data value in a binary search tree

struct tnode *search( struct tnode *p, int key)

{

/* Here p initially is the root of the tree and key is the data to be

   search */

struct tnode *temp;

temp = p;

while( temp != NULL)

{

if(temp->data == key)

return(temp);

Trees Unit 8



Data Structure Through C Language232

else

if(temp->data > key)

temp = temp->lchild;

else

temp = temp->rchild;

}

return(NULL);

}

This function return the node on success, otherwise return NULL.

Deletion of a node from binary search tree : To delete a node

from a binary search tree, the method to be used depends on whether a

node to be deleted has one child, two children, or no children.

Deletion of a Node with No Child : If we want to delete a leaf

node, we only need to set the pointer of its parent pointing to the node to

NULL and delete the node.

Consider the binary search tree shown in Figure bellow

Fig. 8.12 : A binary tree

If we want to delete 13 from the above tree (fig 8.12) , where 13 is a

leaf node we only need to set the right pointer of 12 to NULL and then delete

13. After deleting the node 13 tree will be as shown bellow.

TreesUnit 8



Data Structure Through C Language 233

Fig. 8.13 : BST after deleting the node 13

Deletion of a Node with One Child : If we want to delete a node

with one child then set the pointer of its parent pointing to this node to point

the child of the node and delete the node.

If we want to delete 12 from the tree in Fig 8.13, where 12 is a node

having only one child that is 11 we only need to set the left pointer of 14

(parent of 12) to point 11 and then delete 12.

Fig. 8.14 : intermediate step for delete the node 12

Trees Unit 8



Data Structure Through C Language234

Fig. 8.15 : BST after deleting the node 12

Similarly the tree after deleting node 28 from the tree in fig 8.15 is

shown bellow

Fig. 8.16 : BST after deleting the node 28

Deletion of a node with two children : If the node to be deleted

has two children then, it is replaced by the inorder successor of the node

and the inorder successor is deleted according to the rule.

TreesUnit 8



Data Structure Through C Language 235

If we want to delete 14 from the tree in fig 8.16, where 15 is the

inorder successor of 14, first we need to delete 15 and then replace 14 by

Fig. 8.17 : BST after deleting the node 14

If we want to delete 35 from the tree in fig 8.17, where 36 is the

inorder successor of 35, first we need to delete 36 and then replace 35 by

Fig. 8.18 : BST after deleting the node 35

Trees Unit 8



Data Structure Through C Language236

CHECK YOUR PROGRESS

Q.2. Sate True or False :

a) Postfix notation can be evaluated with the help of stack

b) In prefix notation parenthesis are used to maintain the

ordering of operator

c) A binary search tree may not be a binary tree

d) We cannot delete the root node of binary search tree

e) The value of left child of any node in a binary search tree

is less than the value of the  node.

8.9 LET US SUM UP

� Trees are used to organize a collection of data items into a

hierarchical structure.

� A tree is a collection of elements called nodes, one of which is

distinguished as the root, along with a relation that places a

hierarchical structure on the node.

� The degree of a node of a tree is the number of descendants that

node has.

� A leaf node of a tree is a node with a degree equal to 0.

� The level of the root node is 0, and as we descend the tree, we

increment the level of each node by 1.

� Depth of a tree is the maximum value of the level for the nodes in the

tree.

� The maximum number of nodes at level i in a binary tree is 2i.

� Inorder, preorder, and postorder are the three commonly used

traversals that are used to traverse a binary tree.

� In inorder traversal, we start with the root node, visit the left subtree

first, then process the data of the root node, followed by that of the

right subtree.

TreesUnit 8



Data Structure Through C Language 237

� In preorder traversal, we start with the root node. First we process

the data of the root node, then visit the left subtree, then the right

subtree.

� In postorder traversal, we start with the root node, visit the left subtree

first, then visit the right subtree, and then process the data of the

root node.

8.10 FURTHER READINGS

� T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein, Introduction

to Algorithms, Second Edition, Prentice Hall of India Pvt. Ltd, 2006.

� Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran,

Fundamental of data structure in C, Second Edition, Universities

Press, 2009.

� Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design

and Analysis of Computer Algorithms,  Pearson Education, 1999.

� Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, Computer

Algorithms/ C++, Second Edition, Universities Press, 2007.

8.11 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1 : a) n–1, b) 2i, c) 1, d) log
2
n, e) 2i.

Ans. to Q. No. 2 : a) True, b) False, c) False, d) False, e) True

8.12 MODEL QUESTIONS

Q.1. Write a C program to convert an infix expression to a postfix

expression.

Q.2. Write a C program to evaluate a postfix expression.

Q.3. Write a C program to count the number of non-leaf nodes of a binary

tree.

Trees Unit 8



Data Structure Through C Language238

Q.4. Write a C program to delete all the leaf nodes of a binary tree.

Q.5. How many binary trees are possible with three nodes?

Q.6. Construct a binary search tree with following data point and find out

the inorder preorder and postorder traversal of the tree

i) 5, 1, 3, 11, 6, 8, 4, 2, 7

ii) 6, 1, 5, 11, 3, 4, 8, 7, 2

Q.7. For the following expression find out the postfix notation and evaluate

the postfix notation

i) (2+7*3)/(4*8–2)+7

ii) 4*5+(2–3*7)+2/8

TreesUnit 8



Data Structure Through C Language 239

UNIT 9 : GRAPH

UNIT STRUCTURE

9.1 Learning Objectives

9.2 Introduction

9.3 Basic Terminology of Graph

9.4 Representation of Graphs

9.5 Traversal of Graphs

9.6 Let Us Sum Up

9.7 Further Reading

9.8 Answer to Check Your Progress

9.9 Model Questions

9.1 LEARNING OBJECTIVES

After going through this unit, you will be able to:

� Define Graph and terms associated with it.

� Representation of graph

� Explain different traversal technique on graphs.

9.2 INTRODUCTION

Like tree, graphs are also nonlinear data structure. Tree has some

specific structure whereas graph does not have a specific structure. It varies

application to application in our daily life. Graphs are frequently used in every

walk of life. A map is a well-known example of a graph. In a map various

connections are made between the cities. The cities are connected via roads,

railway lines and aerial network. For example, a graph that contains the

cities of  India connected by means of roads. We can assume that the

graph is the interconnection of cities by roads. If we provide our office or

home address to someone by drawing the roads, shops etc. in a piece of

paper for easy representation, then that will also be a good example of graph.



Data Structure Through C Language240

In this unit we are going to discuss the representation of graph in

memory and present various traversal technique of graph like depth first

search and breadth first search.

9.3 BASIC TERMINOLOGY OF GRAPH

Graph consists of a non empty set of points called vertices and a

set of edges that link the vertices. Graph problem is originated from

Konigsberg Bridge problem, Euler (1707-1783) in 1736 formulated the

Konigsberg bridge problem as a graph problem.

Konigsberg Bridge Problem: Two river islands B and C are formed

by the Parallel river in Konigsberg (then the capital of East Prussia, Now

renamed Kaliningrad and in west Soviet Russia) were connected by seven

bridges as shown in the figure below. The township people wondered

whether they could start from any land areas walk over each bridge exactly

once and return to the starting point.

Fig. 9.1 : Konigsberg Bridge Problem

Definition: A graph G= (V, E) consists of

� a set V={v
1
 , v

2
 .....,v

n
 } of n >1 vertices and

� a set of E={e
1
 ,e

2
 ,.....,e

m
 } of m>0 edges

� such that each edge e
k
 is corresponds to an unordered pair of

vertices (v
i
 ,v

j
) where 0 < i,j <= n and 0 < k <= m.

A road network is a simple example of a graph, in which vertices

represents cities and road connecting them are correspond to edges.

GraphUnit 9



Data Structure Through C Language 241

Fig. 9.2 : A road network

Here,

V= { Delhi, Chenai, Kolkata, Mumbai, Nagpur }

E= { (Delhi, Kolkata), (Delhi, Mumbai}, (Delhi, Nagpur), (Chenai,

Kolkata), (Chenai, Mumbai), (Chenai, Nagpur), (Kolkata, Nagpur), (Mumbai,

Nagpur) }

Some terminology relating to a graph is given below :

Self Loop: An Edge having same vertices as its end vertices is

called self loop. In fig 9.3 e
3 
is a self loop.

Parallel Edge: If more than one edges have the same pair of end

vertices then the edges are called parallel edges. In fig 9.3 e
6 
and e

7
 are

parallel edges.

Adjacent vertices: Two vertices x and y are said to be adjacent, if

there is an edge from x to y or y to x. For example in fig 9.3 vertex A and B

are adjacent but A and D are not adjacent.

Fig. 9.3 : Example of Graph (self loop parallel edges)

Graph Unit 9



Data Structure Through C Language242

Incidence: if an vertex v
i
 is an end vertex of an edge e

k
 , we say

vertex v
i
 is incident on e

k
 and e

k
 is incident on v

i.

Simple Graph:  A graph with no self loop and parallel edges is called

a simple graph. For example Fig 9.2 is a simple graph.

Degree of a vertex:  The degree of a vertex x, denoted as degree(x),

is the number of edges containing x. In fig 9.3 vertex A has degree 4.

Path:  A path of length k from vertex x to a vertex y is defined as a

sequence of K+1 vertices V
1
, V

2
 … V

k+1
 such that V

1
 = x and V

k+1
=y and V

i
 is

adjacent to V
i+1

. For example A, B, C, D is a path of length 3 where A is the

starting vertex of the path and D is the end vertex of the path. If the starting

and end vertex of a path is same then it is said to be a closed path. If  all the

vertices of the path except the starting and ending vertex are distinct then it

is said to be a simple path.

Cycle: A cycle is a closed simple path. If a graph contains a cycle, it

is called cyclic graph. In the fig 9.3 B, A, C, B is a cycle.

Walk:  A walk is an alternative sequence of vertices and edge, starting

and ending with vertices in such a way that no vertices in the sequence are

repeated. In a walk starting and ending vertices are called terminal vertices

of the walk.

Connected Graph: A graph is said to be connected, if there exist a

path between every pair of vertices. For example in Fig 9.4 is not connected

but the graph in fig 9.3 is connected.

Fig. 9.4 : Example of disconnected graph

GraphUnit 9



Data Structure Through C Language 243

Weighted Graph:  A graph is said to be a weighted graph, if there

exist a nonnegative value (called weight) is associated with every edge in

the graph. Fig 9.5 is an example of weighted graph.

Fig. 9.5 : A weighted Graph

Directed Graph: A graph is said to be a directed graph, if the edges

of the graph has a direction. In case of directed graph edge (A, B) is not

same with edge (B, A). Fig 9.6 is an example of directed graph.

Fig. 9.6 : Directed Graph

Indegree of a Vertex: Indegree of a vertex x, denoted by indeg(x)

refers to the number of edges terminated at x. For example in fig 9.6 indegree

of vertex c is 2.

Outdegree of a Vertex: Outdegree of a vertex x, denoted by

outdeg(x) refers to the number of edges originated from x. For example, in

fig 9.6 outdegree of vertex c is 1.

Graph Unit 9



Data Structure Through C Language244

Strongly connected:  A directed graph is said to be connected or

strongly connected if for every pair of vertices <x,y>, there exist a directed

path from x to y and y to x. However, if there exist any pair <x,y> such that

there is a path either form x to y or from y to x  but not the both, then the

graph is said to be weakly connected.

9.4 REPRESENTATION OF GRAPHS

There are several different ways to represent a graph in computer

memory. Two main representations are:

� Adjacency Matrix

� Adjacency list.

1. Adjacency matrix Representation of Graph: Suppose G(V,

E) is simple graph (directed / undirected) with n vertices, and

suppose G have been ordered and are called v
1
, v

2
, …. v

n
. Then

the adjacency matrix A = (a
ij
) of the graph G is a n x n matrix

defined as follows :

1  if v
i
 is adjacent to v

j
, that is if there exist an edge (v

i
, v

j
)

a
ij
 =

0  otherwise

Such a matrix contain only 0 and 1 is called a Boolean Matrix.

For example following graph can be represented as follows :

Fig. 9.7 : Graph Example

GraphUnit 9



Data Structure Through C Language 245

A = A B C D E G

A 0 1 1 0 0 1

B 1 0 1 0 0 0

C 1 1 0 1 0 0

D 0 0 1 0 1 1

E 0 0 0 1 0 1

G 1 0 0 1 1 1

The directed graph in fig 9.6 can be represented as follows :

A = A B C D E

A 0 1 1 0 1

B 0 0 1 0 0

C 0 1 0 1 0

D 0 0 0 0 0

E 0 0 0 0 0

For weighted graph

Suppose G(V,E) is a weighted graph with n vertices v
1
, v

2
, …. v

n
.

Suppose each edge e in G is assigned a non negative number w(e) called

the weight or length of the edge e. Then G can be represented in memory

by its weight matrix W = (w
ij
) as follows:

w(e)  if there exist an edge e from v
i
 to v

j

w
ij
 =

0  otherwise

For example the weighted graph in fig 9.5 can be represented as

follows

A = A B C D G

A 0 7 9 0 3

B 7 0 5 0 0

C 9 5 0 6 0

D 0 0 6 0 8

G 3 0 0 8 0

Although an adjacency matrix is a simple way to represent a graph

it needs n2 bit to represent a graph with n vertices. In case of undirected

graph storing only upper or lower triangle of the matrix, this space can be

Graph Unit 9



Data Structure Through C Language246

reduced to half. However in case of a directed graph this is not possible.

Moreover in case of undirected graph parallel edges cannot be represented

by this method.

1. Adjacency List Representation of Graph: Suppose G(V, E)

is simple graph (directed / undirected) with n vertices and e

edges, the adjacency list have n head nodes corresponding to

the n vertices of graph G, each of which point to a singly link list

of nodes adjacent to the vertex representing to the head node.

In contrast to adjacency matrix representations, graph algorithm

which make use of an adjacency list representation would generally report

a complexity of O(n+e) or O(n+2e) based on whether graph is directed or

undirected respectively, thereby rendering them efficient.

For example the directed graph in fig 9.6 can be represented in

adjacency list representation as follows

For example the undirected graph in fig 9.7 can be represented in

adjacency list representation as follows

GraphUnit 9



Data Structure Through C Language 247

CHECK YOUR PROGRESS

Q.1. State True or False :

a) A simple graph can have parallel edges.

b) In a directed graph indegree of a vertex is the number of

edge incident on to the vertex.

c) If two vertices connected by a path then they are called

as adjacent vertices.

d) For an undirected graph parallel edges can be

represented in the adjacency matrix representation of

graph.

9.5 TRAVERSAL OF GRAPHS

Traversal of a graph is a systematic walk which visits all the vertices

in a specific order

There are mainly two different ways of traversing a graph

� Breadth first traversal

� Depth first traversal

1. Breadth First Traversal: The general idea behind breadth first

traversal is that, start at a random vertex, then visit all of its

neighbors, the fist vertex that we visit, say is at level ‘0’ and the

neighbors are at level ‘1’. After visiting all the vertices at level ‘1’

we then pick one of these vertex at level ‘1’ and visit all its unvisited

neighbors, we repeat this procedure for all other vertices at level

‘1’. Say neighbors of level 1 are in level 2, now we will visit the

neighbors of all the vertices at level 2, and this procedure will

continue.

Graph Unit 9



Data Structure Through C Language248

Algorithm BFS()

Step1. Initialize all the vertices to ready state (STATUS = 1)

Step2. Put the starting vertex into QUEUE and change its status

to waiting (STATUS = 2)

Step 3: Repeat Step 4 and 5 until QUEUE is EMPTY

Step 4: Remove the front vertex from QUEUE, Process the

vertex, Change its status to processed state

(STATUS = 3)

Step 5: ADD all the neighbors in the ready state (STATUS = 1)

to the RARE of the QUEUE and change their status to

waiting state (STATUS = 2)

Step 6: Exit .

A complete C program for breadth-first traversal of a graph appears

next. The program makes use of an array of n visited elements where n is

the number of vertices of the graph. If visited[i]=1, it means that the ith vertex

is visited. The program also makes use of a queue and the procedures

addqueue and deletequeue for adding a vertex to the queue and for deleting

the vertex from the queue, respectively. Initially, we set visited[i] = 0.

#include <stdio.h>

#include <stdlib.h>

#define MAX 10

struct node

{

int data;

struct node *link;

};

void buildadjm(int adj[][MAX], int n)

{

int i,j;

printf(“enter adjacency matrix \n”,i,j);

for(i=0;i<n;i++)

for(j=0;j<n;j++)

GraphUnit 9



Data Structure Through C Language 249

scanf(“%d”,&adj[i][j]);

}

/* A function to insert a new node in queue*/

struct node *addqueue(struct node *p,int val)

{

struct node *temp;

if(p == NULL)

{

p = (struct node *) malloc(sizeof(struct node));

/* insert the new node first node*/

if(p == NULL)

{

printf(“Cannot allocate\n”);

exit(0);

}

p->data = val;

p->link=NULL;

}

else

{

temp= p;

while(temp->link != NULL)

{

temp = temp->link;

}

temp->link= (struct node*)malloc(sizeof(struct node));

temp = temp->link;

if(temp == NULL)

{

printf(“Cannot allocate\n”);

exit(0);

}

temp->data = val;

Graph Unit 9



Data Structure Through C Language250

temp->link = NULL;

}

return(p);

}

struct node *deleteq(struct node *p,int *val)

{

struct node *temp;

if(p == NULL)

{

printf(“queue is empty\n”);

return(NULL);

}

*val = p->data;

temp = p;

p = p->link;

free(temp);

return(p);

}

void bfs(int adj[][MAX], int x,int visited[], int n, struct node **p)

{

int y,j,k;

*p = addqueue(*p,x);

do{

*p = deleteq(*p,&y);

if(visited[y] == 0)

{

printf(“\nnode visited = %d\t”,y);

visited[y] = 1;

for(j=0;j<n;j++)

if((adj[y][j] ==1) && (visited[j] == 0))

*p = addqueue(*p,j);

}

}while((*p) != NULL);

GraphUnit 9



Data Structure Through C Language 251

}

void main()

{

int adj[MAX][MAX];

int n;

struct node *start=NULL;

int i, visited[MAX];

printf(“enter the number of nodes in graph

maximum = %d\n”,MAX);

scanf(“%d”,&n);

buildadjm(adj,n);

for(i=0; i<n; i++)

visited[i] =0;

for(i=0; i<n; i++)

if(visited[i] ==0)

bfs(adj,i,visited,n,&start);

}

Example :

Input and Output :

Enter the number of nodes in graph maximum = 10 9

Enter adjacency matrix

0 1 0 0 1 0 0 0 0

1 0 1 1 0 0 0 0 0

0 1 0 0 0 0 1 0 0

0 1 0 0 1 1 0 0 0

1 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 1 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 1 0 0

node visited = 0

node visited = 1

node visited = 4

Graph Unit 9



Data Structure Through C Language252

node visited = 2

node visited = 3

node visited = 6

node visited = 5

node visited = 7

node visited = 8

2. Depth First Traversal: The general idea behind depth first

traversal is that, starting from any random vertex, single path is

traversed until a vertex is found whose all the neighbors are

already been visited. The search then backtracks on the path

until a vertex with unvisited adjacent vertices is found and then

begin traversing a new path starting from that vertex, and so on.

This process will continue until all the vertices of the graph are

visited.

Algorithm DFS()

Step1. Initialize all the vertices to ready state (STATUS = 1)

Step2. Put the starting vertex into STACK and change its

status to waiting (STATUS = 2)

Step 3: Repeat Step 4 and 5 until STACK is EMPTY

Step 4: POP the top vertex from STACK, Process the vertex,

Change its status to processed state (STATUS = 3)

Step 5: PUSH all the neighbors in the ready state (STATUS =

1) to the STACK and change their status to waiting state

(STATUS = 2)

Step 6: Exit .

A complete C program for depth-first traversal of a graph follows. It

makes use of an array visited of n elements where n is the number of vertices

of the graph, and the elements are Boolean. If visited[i]=1 then it means that

the ith vertex is visited. Initially we set visited[i] = 0.

Program

#include <stdio.h>

#define max 10

GraphUnit 9



Data Structure Through C Language 253

/* a function to build adjacency matrix of a graph */

void buildadjm(int adj[][max], int n)

{

int i,j;

for(i=0;i<n;i++)

for(j=0;j<n;j++)

{

printf(“enter 1 if there is an edge from %d to %d, otherwise

enter0 \n”,   i,j);

scanf(“%d”,&adj[i][j]);

}

}

/* a function to visit the nodes in a depth-first order */

void dfs(int x,int visited[],int adj[][max],int n)

{

int j;

visited[x] = 1;

printf(“The node visited id %d\n”,x);

for(j=0;j<n;j++)

if(adj[x][j] ==1 && visited[j] ==0)

dfs(j,visited,adj,n);

}

void main()

{

int adj[max][max],node,n;

int i, visited[max];

printf(“enter the number of nodes in graph

maximum = %d\n”,max);

scanf(“%d”,&n);

buildadjm(adj,n);

for(i=0; i<n; i++)

visited[i] =0;

for(i=0; i<n; i++)

Graph Unit 9



Data Structure Through C Language254

if(visited[i] ==0)

dfs(i,visited,adj,n);

}

Explanation :

1. Initially, all the elements of an array named visited are set to 0 to

indicate that all the vertices are unvisited.

2. The traversal starts with the first vertex (that is, vertex 0), and

marks it visited by setting visited[0] to 1. It then considers one of

the unvisited vertices adjacent to it and marks it visited, then

repeats the process by considering one of its unvisited adjacent

vertices.

3. Therefore, if the following adjacency matrix that represents the

graph of Figure 22.9 is given as input, the order in which the

nodes are visited is given here:

Input: 1. The number of nodes in a graph

2. Information about edges, in the form of values to be

stored in adjacency matrix 1 if there is an edge from

node i to node j, 0 otherwise

Output: Depth-first ordering of the nodes of the graph starting from

the initial vertex, which is vertex 0, in our case.

CHECK YOUR PROGRESS

Q.2. Fill in the banks :

a) The most commonly used methods for traversing a graph

are __________ and __________.

b) In depth first traversal we use __________.

(Stack/ Queue)

GraphUnit 9



Data Structure Through C Language 255

9.6 LET US SUM UP

� A graph is a structure that is often used to model the arbitrary

relationships among the data objects while solving many problems.

� A graph is a structure made of two components: a set of vertices V,

and the set of edges E. Therefore, a graph is G = (V,E), where G is

a graph.

� The graph may be directed or undirected. When the graph is directed,

every edge of the graph is an ordered pair of vertices connected by

the edge.

� When the graph is undirected, every edge of the graph is an

unordered pair of vertices connected by the edge.

� Adjacency matrices and adjacency lists are used to represent

graphs.

� A graph can be traversed by using either the depth first traversal or

the breadth first traversal.

� When a graph is traversed by visiting in the forward (deeper) direction

as long as possible, the traversal is called depth first traversal.

� When a graph is traversed by visiting all the adjacencies of a node/

vertex first, the traversal is called breadth first traversal.

9.7 FURTHER READINGS

� T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein, Introduction

to Algorithms, Second Edition, Prentice Hall of India Pvt. Ltd, 2006.

� Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran,

Fundamental of data structure in C, Second Edition, Universities

Press, 2009.

� Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design

and Analysis of Computer Algorithms,  Pearson Education, 1999.

� Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, Computer

Algorithms/ C++, Second Edition, Universities Press, 2007.

Graph Unit 9



Data Structure Through C Language256

9.8 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1 : a) False, b) True, c) False, d) False

Ans. to Q. No. 2 : a) Depth first traversal and breadth first traversal,

b) Stack

9.9 MODEL QUESTIONS

Q.1. Define : i) Graph ii) Degree of a vertex

iii) Weighted Graph iv) Path

v) Strongly connected Graph

Q.2. For the following graph give the adjacency list and adjacency matrix

representation. And find out the order in which graph will be traversed

in depth first traversal, by taking B as the starting vertex.

Q.3. For the following graph give the adjacency matrix representation.

And find out the order in which graph will be traversed in breadth first

traversal, by taking v3 as the starting vertex.

GraphUnit 9


	MCA6_0
	MCA6_1

