
MCA03

KRISHNA KANTA HANDIQUI STATE OPEN UNIVERSITY
Housefed Complex, Dispur, Guwahati - 781 006

Master of Computer Applications

 COMPUTER PROGRAMMING USING C

CONTENTS

UNIT- 1 : Introduction to Programming
UNIT- 2 : Operators and Expressions
UNIT- 3 : Decision and Control Structures
UNIT- 4 : Storage Class
UNIT- 5: Functions
UNIT- 6: Arrays and Pointers
UNIT- 7: Structure and Union
UNIT- 8: File Handling

Subject Expert
Prof. Anjana Kakati Mahanta, Deptt. of Computer Science, Gauhati University
Prof. Jatindra Kr. Deka, Deptt. of Computer Science and Engineering,

 Indian Institute of Technology, Guwahati
Prof. Diganta Goswami, Deptt. of Computer Science and Engineering,

 Indian Institute of Technology, Guwahati

Course Coordinator
Tapashi Kashyap Das, Assistant Professor, Computer Science, KKHSOU
Arabinda Saikia, Assistant Professor, Computer Science, KKHSOU

SLM Preparation Team

Units Contributor
1 , 3 Arabinda Saikia, KKHSOU

2, 5, 6, 7 Tapashi Kashyap Das, KKHSOU

4 , 8 Binod Deka, System Analyst, KKHSOU

July 2011
© Krishna Kanta Handiqui State Open University
No part of this publication which is material protected by this copyright notice may be produced or
transmitted or utilized or stored in any form or by any means now known or hereinafter invented,
electronic, digital or mechanical, including photocopying, scanning, recording or by any information
storage or retrieval system, without prior written permission from the KKHSOU.

Printed and published by Registrar on behalf of the Krishna Kanta Handiqui State Open University.

The university acknowledges with thanks the financial support pro-
vided by the Distance Education Council, New Delhi, for the
preparation of this study material.

Housefed Complex, Dispur, Guwahati- 781006; Web: www.kkhsou.net

COURSE INTRODUCTION

This is a course on Computer Programming using C. C language is a very popular and powerful
programming language for creating computer programs. It is because, for most of the system soft-
ware developments, efficiency of time and space become crucial and can be very effectively achieved
by C language. C language is suitable for many applications as it has an excellent support of high-
level and low-level functionality. Although several new high level languages have already been devel-
oped, C language has not lost its importance and popularity.
 With this course the learners will be able to write codes in C languages. They will be able to
develop programs using various features of the language.

The course consists of eight units.
The first unit introduces some basics of programming. It gives us the concept of pseudo

code, algorithm, flow chart and the fundamental elements of programming.
The second unit concentrates on operators and expressions. Different types of operators

like arithmetic, logical, relational, bitwise etc. are discussed in this unit. Concepts like precedence and
associativity of operators are also covered in this unit.

The third unit deals with the decision and control structures. It includes Input/output functions
like scanf(), printf(), gets(), puts(), different kinds of conditional statements and loop structures etc.

The fourth unit concentrates on storage classes. Two important concepts - macros and
preprocessor directive are also introduced in this unit.

The fiifth unit is on functions. With this unit, learners will be acquainted with function decla-
ration, definition, function call, formal and actual parameter and the concept of recursion.

The sixth unit gives us the concept of arrays and pointers. It includes array declaration,
accessing array elements, concept of strings, pointer variables, passing pointer to a function, and the
most important dynamic memory allocation.

The seventh unit concentrates on structure and union. It includes structure declaration,
definition, array of structures, pointer to structure, defining and declaring union and enumerated data
types.

The eighth unit focuses on file handling. With this unit learners will be acquainted with different
operations associted with files.

Each unit of this course includes some along-side boxes to help you know some of the difficult,
unseen terms. Some “EXERCISES” have been included to help you apply your own thoughts. You
may find some boxes marked with: “LET US KNOW”. These boxes will provide you with some additional
interesting and relevant information. Again, you will get “CHECK YOUR PROGRESS” questions.
These have been designed to make you self-check your progress of study. It will be helpful for you if
you solve the problems put in these boxes immediately after you go through the sections of the units
and then match your answers with “ANSWERS TO CHECK YOUR PROGRESS” given at the end of
each unit.

MASTER OF COMPUTER APPLICATIONS

Computer Programming using C

DETAILED SYLLABUS

Unit 1: Introduction to Programming (Marks:12)
Basic Definition of Pseudo Code, Algorithm, Flowchart, Program, Elementary Data Types: Integer, Character,
Floating Point and String Variables; Constants and Identifiers; Variable Declarations, Syntax and Semantics,
Reserved Word, Initialization of Variable during Declarations, Symbolic Constants.

Unit 2: Operators and Expressions (Marks:12)
Expression in C; Different Types of Operators: Arithmetic, Relational and Logical, Assignment, Conditional,
Increment and Decrement, Bitwise, Comma and Sizeof; Precedence and Associatively of Operators; Type Casting.

Unit 3: Decision and Control Structures (Marks:12)
Various Input /Output Functions: scanf, getch, getchar, printf, putchar; Conditional Statement- if, if- else, nested
if-else switch; Other Statement: Break, Continue, Goto; Concept of Loops: While, Do-While, For, Nested Loop.

Unit 4: Storage Class (Marks:12)
Automatic, External, Static, Register, Scope and Lifetime of Variables, Macro, Preprocessor Directive.

Unit 5: Functions (Marks: 14)
Function: Function Declaration, Function Definition, Function Call, Function Parameters, Formal and Actual
Parameter, Parameter Passing Methods, Recursive Function.

Unit 6: Arrays and Pointers (Marks: 14)
Arrays, 1-Dimensional Array, 2-Dimensional Array and its Declaration; String; Pointers: Declaration, Passing
Pointer to a Function, Pointer and 1-Dimensional Arrays, Dynamic Memory Allocation.

Unit 7: Structures and Union (Marks: 12)
Structure Declarations, Definitions, Array of Structures, Pointers to Structures; Union: Definition, Declaration,
Use; Enumerated Data Types; Defining Your Own Types (typedef)

Unit 8: File Handling (Marks: 12)
Opening, closing, reading and writing of files. Seeking forward and backward. Examples of file handling programs.

Introduction to Programming Unit 1

Computer Programming using C 1

UNIT-1 INTRODUCTION TO PROGRAMMING

UNIT STRUCTURE

1.1 Learning Objectives
1.2 Introduction
1.3 Defining a Program

1.3.1 Program Development Cycles
1.4 Types of Programming Language

1.4.1 Language Translators
1.5 Basic Tools of Programming

1.5.1 Pseudo Code
1.5.2 Algorithm
1.5.3 Flow Chart

1.6 Programming Techniques
1.7 The C Language
1.8 Getting Started With C
1.9 Fundamentals of C Language

1.9.1 Identifiers
1.9.2 Reserved Word
1.9.3 Constants
1.9.4 C Character Set

1.10 Basic Data Types in C
1.11 C - Variables and Their Declarations
1.12 Symbolic Constants in C
1.13 Let Us Sum Up
1.14 Further Readings
1.15 Answers to Check Your Progress
1.16 Model Questions

1.1 LEARNING OBJECTIVES

After going through this unit, you will able to :

 define a computer program
 know types of programming language and programming

techniques

2 Computer Programming using C

Introduction to Programming Unit 1

 describe the basic concepts of programming
 identify the structure of a C program
 describe the primary elements like identifiers, tokens,

constants etc.
 know the basic data types used in C language
 declare and initialize C variables

1.2 INTRODUCTION

Computer programming is defined as telling a computer what to do
through a special set of instructions which are then interpreted by the
computer to perform some task(s). These instructions can be
specified in one or more programming languages including (but not
limited to) Java, PHP, C, and C++. A computer goes through a series
of steps whose purpose is to achieve something - a series of steps
that are instructed to it in great detail by computer programs. Essentialy,
computer programming is the process by which these programs are
designed and implemented. There are many advantages to learning
the subject of computer programming such as gaining new skills,
being able to tell the computer what to do, and becoming better
acquainted with computers. So whether you are a computer hobbyist,
a student, an IT professional, or are just curious about the subject,
learning how to program a computer will be highly beneficial.

This unit is an introductory unit of C programming. This unit
includes the types of programming language along with the
programming techniques. Basic programming concepts including
pseudo code, algorithm and flowcharts are briefly described here. In
addition, you will come across of terms that are used in C like identifiers,
keywords and constants etc. The elementary data types used in C
and the concept of variables are also included as an important part of
the unit.

1.3 DEFINING A PROGRAM

A computer program or simply a program is a set of instructions or
codes which directs the computer to do some kind of specific func-
tions. The codes or instructions are written using a programming
language like FORTRAN, C, C++ etc. For a given problem a particu-

Introduction to Programming Unit 1

Computer Programming using C 3

lar program or set of instructions can be design to solve it. The method
of writing the instructions is called the programming. The person who
writes such instruction is called a programmer. An another way of
defining a program is : a computer program is nothing but a combi-
nation of algorithm and data structure combined into a single unit
which is designed to solve a given problem.

To get the computer solution of a problem first the problem should be
transformed into a computer program. Every program takes input
data and manipulates it according to the instructions written in the
program and finally produces the output which represents the com-
puter solution to that particular problem.
Some characteristics of a good program are : accurate, efficiency,
reliability, portability, robustness etc.

Accurate means - the problem that has to be solved by computer
must be predefined clearly with specification of requirements. Based
on the requirements the programmer designs the program so that it
must be accurate to perform the specified task.

Efficiency means - a program should be such that it utilizes the re-
sources of a computer system (e.g.. memory, CPU time etc.) in an
efficient manner.

Reliability means - a program should be work its intended function
accurately even if there are temporary or permanent changes in the
computer system. Program having such ability are known as reli-
able.

Portability means - a program prepared on a certain type of com-
puter system should run on different types of computer system. If a
program can be transferred from one system to another system or
one platform to another platform with ease and still it works properly
then it is called portable.

Robustness means - a program is expected to continue with its
functionalities even at the unexpected errors. It means a program is

4 Computer Programming using C

Introduction to Programming Unit 1

called robust if it provides meaningful results for all inputs (correct or
incorrect). For correct data it will provide desired results and for in-
correct data it will give appropriate message with no run time errors.

1.3.1 Program Development Cycles

The process of developing a program comprises of many steps.
Before going to coding a program in a particular language, the pro-
grammer has to determine the problem that need to be solved. The
program development cycle which is consists of six different steps is
described in the following where each of the steps has its own sig-
nificance.

Problem definition : This is the very important phase where the
problem is analysed precisely and completely. The problem is de-
fined with respect to the needs of the user it means that all the pos-
sible views of the users are collected and defined clearly. The ulti-
mate final quality of the program mainly depends on this stage of
program development. If this step is erroneous then it will result in
poor quality of final product. The major components of program like
input, processing logic, output etc. are clearly defined in this stage.

Analysis : This phase involves the identifying the appropriate algo-
rithm and data structure based on the problem definition done on the
above stage. The need of data structure depends on the nature of
input, processing and desired output. Proper names for the identifi-
ers can be given at this step of program development.
You will know the meaning of the terms algorithm, identifier etc. in
the next section of this unit.

Design Phase : After selecting the appropriate solution, algorithm is
developed to depict the basic logic of the selected solution. An algo-
rithm depicts the solution in logical steps which is nothing but a se-
quence of instructions. An algorithm can be represented by flowcharts
and pseudocodes. These tools make the program logic clear and
helped in coding the problem.

Testing the Algorithm for accuracy : Before converting the algo-

Introduction to Programming Unit 1

Computer Programming using C 5

rithms into actual code it should be checked for accuracy. The main
purpose of checking the algorithm is to identify the major logical er-
rors that may occur at any steps in the algorithm. Logical errors are
often difficult to detect and correct at later stage so it will be helpful if
the logical errors can be eliminated in this step.

Coding : The actual coding of the problem is done at this step by
using a suitable programming language.

Testing and Debugging : At this step of program development, it is
expected to test the complete program. The initial program codes
may have errors. Generally, a program known as compiler check the
code for syntax errors as well as finally produce the executable for-
mat of the whole code. Thus, the results obtained are compared with
the expected results. Depending upon the complexity of the program,
several round of testing may be required.

Implementation and Documentation : In this step of program de-
velopment the program that is tested locally is taken to the user’s
place and installed there. This step will be absent if the program is
small and simple. Moreover, the manuals or instruction booklet of
the program is also prepared. The manual helps the user in under-
standing the program. The documentation of the program contains
system flowchart to explain the complete functionality of the program
at a glance.

Maintenance : During the operation of the program the users may
come across many points where they need some changes in the
program. Such types of change of a working program is belongs to
the maintenance part of program development. Moreover, proper
backup and restore methods also falls into the maintenance part.

The following figure shows the program development cycle :

6 Computer Programming using C

Introduction to Programming Unit 1

Fig. 1.1 Program development cycles

CHECK YOUR PROGRESS

1. State True or False
a) Computer program is a combination of data structure and

algorithm.
b) An accurate program means it is platform independent.
c) In program development cycle appropriate algorithm and data

structure is identified in coding phase.
d) Logical errors of a program is identified during algorithm test-

ing phase.
e) The semantic and syntax errors in a program is checked in

testing & debugging phase.

1.4 TYPES OF PROGRAMMING LANGUAGE

The programming language is the medium through which the prob-
lems to be solved by computer can be represented in the form of
programs or set of instructions. The computer executes the set of
instructions written in a particular language to produce the desired
result. A programming language consists of a set of characters, sym-
bols, and usage rules that allow the user to communicate with com-
puters. In a simple form it can be defined as - any notation for the
description of algorithm and data structure may be termed as a pro-

Introduction to Programming Unit 1

Computer Programming using C 7

gramming language.

The computer understand only the binary language i.e. the languages
of 0 and 1, which is also called machine language. In the initial years
of computer programming the computer programs were written us-
ing machine language which were too difficult to remember all the
instructions in the form of 0 and 1s. But with due course of time the
other languages were evolved along with the generation of comput-
ers. There are different levels of programming language as follows :

• Machine language
• Assembly language
• High level language
• 4GL language

The different levels of programming language is shown in the figure
below :

Fig. Levels of Programming Language

i) Machine language : The machine language programs were writ-
ten using the digit 0 and 1. The instruction in machine language con-
sists of two parts. The first part is an operation which tells the com-
puter what operation is to be performed. The second part of the
instruction is operand, which tells the computer where to find or store
the data after applying the operation.

Advantage :

8 Computer Programming using C

Introduction to Programming Unit 1

Translation free : Machine language is directly understand by the com-
puter so it does not need any translation. Otherwise, if a program is
developed in high level language then it has to be translated into the
machine language so that the computer can understand the instruc-
tions.

High speed : The application developed in the machine language are
extremely fast because it does not require any conversion.

Disadvantage :

Machine dependent : Program developed in one computer system
may not run on an another computer system.

Complex language : This language was very difficult to understand
and programming techniques were tedious.

Error prone : Writing machine language programs, a programmer
has to remember all the opcodes and memory locations, so ma-
chine language is bound to be error prone.

ii) Assembly language : Assembly language is not a single lan-
guage, but a group of language. An assembly language provides a
mnemonic instruction, usually three letters long, corresponding to
each machine instruction. The letters are usually abbreviated indi-
cating what the instruction does, like ADD for addition, MUL for multi-
plication etc. The assembly language allows the programmer to in-
teract directly with the hardware. Each line of assembly language
program consists of four columns called fields. The general format
of an assembly language instruction is :

[Label] <Opcode> <Operands> [; Comment]

e.g. BEGIN ADD A, B ; Add B to A

Assembler is a software tool that is used to convert the assembly
language program into a machine language program.
Advantage :

Introduction to Programming Unit 1

Computer Programming using C 9

Easy to understand and use : Assembly language uses mnemonics
instead of using numerical opcodes and memory locations used in
machine language, so it is easy to understand and use.
Less error prone : Assembly language is less error prone and it pro-
vides better facility to locate errors and correct them.
Faster : It is much faster and use less memory resources than the
high level language.

Disadvantage :

 • Assembly language programs are machine dependent.
 • Assembly language is complex to learn.
 • A program written in assembly language is less efficient than

machine language because every assembly instruction has
to be converted into machine language.

iii) High level language : COBOL, FORTRAN, PASCAL and C are
the examples of high level languages. High level languages are simi-
lar to English language. Programs written using these languages may
be machine independent. A single instruction of a high level language
can substitute many instructions of machine language and assem-
bly language. Using the high level language complex software can be
design.

Advantages :
• Readability : Since high level languages are similar to English
language so they are easy to learn and understand.
• Programs written in high level languages are easy to modify
and maintain.
• High level language programs are machine independent.
• Programs written in high level language are easy to error
checking. Due to the concept of abstraction used in such type of
language the programmers don’t have to mind on the hardware level
representation of programs.

Disadvantages :
Programs written in high level language has to be compile first for

10 Computer Programming using C

Introduction to Programming Unit 1

execution of the program. This step of compilation increases the ex-
ecution time of an application. Moreover, the programs occupies more
memory space during the execution time.

Another main draw back of HLL programs is - its poor control on the
hardwares.

Fourth generation language : 4G languages has the special char-
acteristics that they are closer to human languages so they are easy
to learn. 4GL languages are specially designed for some specific ap-
plications with limited set of functions, so they are easy to learn. Oracle,
VB, SQL, VC++ etc are the example of 4GL languages. Most of the
database accessed languages are 4GL language.

1.4.1 Language Translators

The language translators or also called language processors are the
programs which converts the high level language programs into the
machine language programs for execution. We know that the com-
puter understand only the machine language, so for execution of a
program written in HLL must be converted into the machine language
codes. The examples of language translators are - compiler, inter-
preter, assembler etc. Let us see them very briefly.

Compiler : A compiler is a program that can translates an higher
level language program to its machine form. This language proces-
sor translates the complete source program as a whole into ma-
chine code before execution. Here the source program means - the
program that is written by the programmer and the translated pro-
gram is called a object program or object code. Examples: C and
C++ compilers. If there are errors in the source code, the compiler
identifies the errors at the end of compilation. Such errors must be
removed to enable the compiler to compile the source code suc-
cessfully. The object program generated after compilation can be
executed a number of times without translating it again.

Introduction to Programming Unit 1

Computer Programming using C 11

Fig. 1.3 A compiler translate a program
Interpreter : It is a language processor whose working principle is
different from compilers. It translates each statement of source pro-
gram into machine code and executes it immediately before trans-
lating the next statement. If there is an error in the statement the
interpreter terminates its translating process at that statement and
displays the error message. The GWBASIC is an example of inter-
preter.

Fig.1.4 An Interpreter translate a program

12 Computer Programming using C

Introduction to Programming Unit 1

Assembler : We have already known that - assembly language is
the symbolic representation of a computer’s binary encoding - ma-
chine language . Assembly language is more readable than ma-
chine language because it uses symbols instead of bits.

A program called an assembler that translates assembly language
into binary instructions or machine language.An assembler reads a
single assembly language source file and produces an object file
containing machine instructions.

Linker : A linker is a program that attached or linked several mod-
ules of a program. Generally, a program written for a particular appli-
cation may be consists of thousands or more lines of codes. In such
a case, the large program can be broken into a number of smaller
program which is called a module. Each module will perform its spe-
cific task and compiled them separately. Finally each module have
to be linked together to construct the complete application. A linker is
a program that links a number of modules (object codes, which are
generated after the compilation step) and library functions to form a
single executable program.

Fig. 1.5 Working of a Linker

Loaders : A loader is a program and that is also a part of the operat-
ing system and whose main function is to bring an executable pro-
gram residing on the disk into main memory and start running it.
Generally, a loader performs the function of a linker program also.

Introduction to Programming Unit 1

Computer Programming using C 13

The loader performs the following tasks :

Allocation : It allocates memory space for programs
Linking : It combines two or more modules and supplies the

information needed to allow reference between them.
Relocation : It prepares a program to execute properly from its

storage area.
Loading : It loads the program into memory.

There are two types of loaders depending on the way the loading is
performed : absolute loader and relocating loaders.
The absolute loader load the executable code into memory locations
specified in the object module. On the other hand, relocating loader
loads the object code into memory locations which are decided at
load time. The relocating loader can load the object code at any loca-
tion in memory.

 CHECK YOUR PROGRESS

2. State True or False
a) Assembly language instructions are consisting with 0 & 1.
b) High level languages are machine independent.
c) Query languages are fourth generation language.
d) Interpreters generate a complete executable code.
e) Linkers are responsible for moving a program from disk into

main memory.
3. What is a compiler? What do you meant by the compilation

process?
4. What is a source program and an object program ?

1.5 BASIC TOOLS OF PROGRAMMING

So far, we have came to know that programming is a technique of
solving problems using program codes. The program codes are
designed by following specific rules and using some programming
tools. The general tools used for designing programs are : pseudo

14 Computer Programming using C

Introduction to Programming Unit 1

code, algorithms, flowcharts etc. In this section, we will discuss briefly
about those programming tools.

1.5.1 Pseudo Code

Pseudo code derived from ‘pseudo’ which means imitation and ‘code’
means instruction (pronounced as soo-doh-kohd) is a generic way
of describing an algorithm without using any specific programming
language related notations. Pseudocode is an artificial and informal
language that helps programmers to develop algorithms. It is a “text-
based” detail (algorithmic) design tool. Pseudo code generally con-
sists of short English phrases to express a specific task. But, inter-
estingly, there are no specific rules to write pseudo code. Then why
do we need pseudo code? Implementing a problem with proper sym-
bol and syntax is a complicated job. To solve the complicated job,
first we need the complete explanation of the job, and then we extract
information from the explanation, and roughly design the solution,
which will be relevant to a programming construct. This rough work
will help in designing the proper solution with proper symbol and syn-
tax.
The general guidelines for developing pseudocodes are :

• Statements should be written in English and should be pro-
gramming language independent.

• Steps of the pseudocodes must be understandable.
• It should be concise.
• Each instruction should be written in a separate list and each

statement in pseudocode should express just one action for
the computer.

• The keywords like READ, PRINT etc should be write in capi-
tal letter.

• Each set of instruction should written from top to bottom, with
only one entry and one exit.

Advantage :
Its language independent nature helps the programmer to express
the design in plain natural language.
Based on the logic of a problem it can be designed without concern-
ing the syntax or any rule.

Introduction to Programming Unit 1

Computer Programming using C 15

It can be easily translated into any programming language.
It is compact in nature and can be easily modify.

Limitations :
It is unable to provide the visual presentation of the program logic.
It has not any standard format or syntax of writing.
It cannot be compiled or executed.

The following is an example of pseudocode :

1. If student’s grade is greater than or equal to 60
Print “passed”

else
Print “failed”

1.5.2 Algorithm

Algorithm is a sequential, finite, non-complex, step-by-step solution
to a problem written in English like statement. It can also be defined
as - an algorithm consists of a set of explicit and unambiguous finite
steps which, when carried out for a given set of initial conditions, pro-
duce the corresponding output and terminate in a finite time.

The writing of an algorithm follows the algorithmic notations. The al-
gorithmic notations are the symbolic representation of the steps of
the algorithms.

Problem: Design an algorithm to add two integers and display the
result.

Solution: First of all you need two integers. There are two ways to get
the two integers. First, you can supply the two integers from your
side; secondly, you can ask the user to supply the integers. After
getting the integers you store it into two containers. You need another
container to store the sum of the two integers. You must initialize the
third container as zero before you store the summation. Now, per-
form the addition task and store the result into the third container.

16 Computer Programming using C

Introduction to Programming Unit 1

Now, display the content of the third container. This is the solution to
your problem.

Step 1: Ask the user to supply the first integer.
Step 2: Store the first integer into container A.
Step 3: Ask the user to supply the second integer.
Step 4: Store the second integer into container B
Step 5: Initialize container C as zero.
Step 6: Add the content of container A and B and store the

 result into container C.
Step 7: Display the content of the container C.
Step 8: End.

The above example can be expressed in a different way :

Step 1 : Read a, b, c
[a, b, c are integers]

Step 2 : c 0
Step 3 : c a+b
Step 4 : Print c
Step 5 : Stop

Here, in the above expression, we have input the numbers in a single
line instead of three different line. We have used here a comment line
within the [] brackets. Again we have assign the value 0 to c. We
have add the values a & b and store it in c. Finally we display the
value of c.

Always remember :

i) Usually word Read, Accept or Input can be used to represent input
operation to give values of variables to the computer.
ii) Similarly for the output operation the words Print, Write or Display
can be used.
iii) The symbol is used in case of assignment (i.e. =) operation. It
means the value obtained by evaluating the right side expression is
stored to the left side variable.
iv) The comments are non-executable statements written within pair

Introduction to Programming Unit 1

Computer Programming using C 17

If condition Then :
Step 1
Step 2
....
Step n
[End of If]

If condition Then
Step i

Else
Step j

 [End of If]

of square brackets and they are generally used to explain a particular
step.
v) The steps are written sequentially and if two statements are
written in a single line then they have to separate by semicolon ‘;’.

For example :
sum 0; a 25
sum sum+a
Print sum

vi) In case of branching or conditional steps - If-Then or If-Then:Else
is used. The conditional steps are consisting with the relational op-
erators like - <, >, <=, >= etc.

For example :

vii) The iterative or repetitive steps can be write between Repeat For
and [End of For] as shown below :

 or

For example,

The following algorithm find the biggest of given three numbers :

Repeat For I=1,2,3,....N
Step 1
....
....

[End of For I]

I N
Repeat While I>0

Step 1
....
I I-1

[End of While]

Fact 1
Repeat For I=1,2,3,...N

Fact Fact*I
[End of For I]
Print Fact

18 Computer Programming using C

Introduction to Programming Unit 1

Step 1 : Read a, b, c
Step 2 : big a
Step 3 : If b>big Then

 big b
Step 4 : If c>big Then

 big c
Step 5 : Print big
Step 6 : Stop

1.5.3 Flow Chart

A flowchart is a pictorial representation of an algorithm that uses
boxes of different shapes to denote different types of instructions. A
flowchart acts as a road map for a programmer and guides the
programmer as to how to go from the starting point to the final point
while writing a computer program. A flow chart will also helps the
programmer at the time of analyzing, debugging and testing the pro-
grams. The main disadvantage of flowchart is that it is very time con-
suming and laborious to draw with proper symbol, especially for large
complex program. The following symbols are generally used to draw
a flowcharts :

The general rules for drawing a flowchart is given below :

a) The flowchart should contain one Start and one Stop termina-
tor.

 Input/Output Connector

 Process Flow of Data

 Symbol InstructionType Symbol Instruction Type

 Start/Stop Decision

Introduction to Programming Unit 1

Computer Programming using C 19

b) The symbols of the flowcharts are always labeled with simple
codes.

c) The codes used in flow chart should not give more than one
meaning.

d) The control flows are always represented by arrows.
e) The control flow lines i.e. arrows should not cross each other.
f) The arrows moves from either vertically (top to bottom vice

versa) or horizontally (left to right vice versa).
g) Only one flow line comes out from all the boxes or symbols

except the decision box.
h) Two lines can flow from the decision b ox if single condition is

checked. It means a single condition results in one of the two
values TRUE or FALSE.

If we try to draw the flowchart of the algorithm we have written for
finding the addition of two integers and display the result, then it will
look as shown below :

Start

Ask user to supply
two integers

Store Supplied integers into A and
B. Initialize C as Zero.

Display C

C = A + B

Stop

The following flowchart is for the program for finding the greatest num-
ber from given three numbers.

20 Computer Programming using C

Introduction to Programming Unit 1

 CHECK YOUR PROGRESS

5. In an examination 50 students obtain marks in their 10
subjects. Draw a flowchart for calculating the average percent-
age marks of 50 students. The flowchart should show the count-
ing of the number of students that appeared in the examination
and the calculation should stop when the number of counts
reaches number 50.
6. Write an algorithm to generate a Fibonacci sequence.

Introduction to Programming Unit 1

Computer Programming using C 21

1.6 PROGRAMMING TECHNIQUES

The programming techniques refers to the design and writing of pro-
grams to solve a problem or task. During the problem definition the
programming techniques can be clearly understand. The following
are the techniques used in programming :

• Top-down approach
• Bottom-up approach
• Unstructured technique
• Structured technique
• Modular programming

Top down approach : In this approach, the given problem is divided
into two or more sub problems, each of which resembles the original
problem. The solution of each sub problem is taken out independently.
Finally, the solution of all sub problems is combined to obtain the
solution of the main problem. The following figure shows the mean-
ing of top down approach.

Fig. 1.6 Top-down approach

Bottom-up approach : This technique is just reverse of the top down
programming. In this programming technique, the solutions of the
independent sub-problems are designed first. Then these solutions
are combined or composed in a main module in order to design the
final solution of the problem. The following figure shows the bottom-
up approach :

22 Computer Programming using C

Introduction to Programming Unit 1

Fig. 1.7 Bottom-up approach

Unstructured Technique : This designing technique is refers to writ-
ing small programs using series of statements and having only the
main program. All actions such as providing input, processing and
output are done within one program only.The program design as well
as the logic of the program is simple. To branch from one point to
another point within the program is achieved by goto statement.
There are a lots of difficulties seen in this type of technique. Testing
and redesigning of the programs take more time.

Structured Technique : In structured technique, a program is bro-
ken down into small independent task that are small enough to be
understood easily, without having to understand the whole program
at once. Each task has its own functionality and perform specific part
of the actual processing. Each task is again decomposed into subtask
if necessary. The programs designed using the structured technique
are well organized. In such type of technique, program design is simple
and testing and debugging is easy because of the well defined con-
trol structures. The followings are some of the reasons for preferring
structured programming :

a. It is easier to write a structured program - Complex
programming problems or program are broken into a number
of smaller, simpler tasks. Every task can be assigned to a
different programmer and/or function.

b. It’s easier to debug a structured program - If the program has
a bug , a structured design makes it easier to isolate the
problem to a specific section of code.

Introduction to Programming Unit 1

Computer Programming using C 23

c. Reusability - Repeated tasks or routines can be accomplished
using functions. This can overcome the redundancy of code
writing, for same tasks or routines, it can be reused, no need

to rewrite the code, or at least only need a little modification.

The three basic building blocks for writing structured programming

are given below :

a) Sequence structure

b) Loop or Iterations

c) Binary decision structure

Modular Programming :

The technique of breaking down a large problem into a number of
smaller program units known as module, is called a modular pro-
gramming approach. Each module is designed to perform a specific
function. There is one entry and one exit point for each module. Each
individual modules can be easily tested and debugged. In case of
modular programming, program maintenance is easy as the module
showing errors can be easily detected and corrected. A large prob-
lem can be easily monitored and controlled using this technique.

Fig. 1.8 Modular technique

1.7 THE C LANGUAGE

The programming language C is a general purpose computer

24 Computer Programming using C

Introduction to Programming Unit 1

language. It is a structured, high-level and machine independent lan-
guage. It was originally created for the specific purpose of writing
Operating System software.

The development in C has seen many evolutionary processes.
Like any other programming language, the original version of the C
language has undergone a number of revisions. A lot of new features
have been added to make it more useful and powerful. C was evolved
from ALGOL, BCPL and B by Dennis Ritchie at the Bell Laborato-
ries in 1972. C uses many concepts from these languages and added
the concepts of data types and other powerful features. Since it was
developed along with the UNIX operating system, it is strongly asso-
ciated with UNIX. For many years , C was used mainly in academic
environments, but eventually with the release of many C compilers
for commercial use and the increasing popularity of UNIX, it began to
gain widespread support among the computer professionals. Today
C is running under a variety of operating systems and hardware plat-
forms. During 1970s, C had evolved into what is now known as “tra-
ditional C”. The language became more popular after the publication
of the book ‘The C Programming Language’ by Brain Kerningham
and Dennis Ritchie in 1978. The book was so popular that the lan-
guage came to be known as “K&R C” among the programming com-
munity.

To assure that the C language remains standard, in 1983,
American National Standards Institute (ANSI) appointed a technical
committee to define a standard for C. The committee approved a
version of C in December 1989 which is now known as ANSI C. It
was then approved by the International Standards Organization (ISO)
in 1990.

1.8 GETTING STARTED WITH C

The best way to get started with is to actually look at the program. So,
let us first create a file “first.c”. To create first.c file, we have to follow
the following steps:–:

Introduction to Programming Unit 1

Computer Programming using C 25

Step 1: Open Turbo C++ Editor from the icon on your desktop. If it is
not in the desktop then go to Start and click on Run command from
the Pop up Menu. The following command window will appear.

In the open field type cmd and press enter key. The command prompt
will appear as an active window.

Now type cd\ . Now file pointer is in root Directory that is in C:\

26 Computer Programming using C

Introduction to Programming Unit 1

Now type the path for Turbo C++ Editor that is cd c:\tc\bin and press
enter. The following window will appear.

Now Type TC and press Enter. The Turbo C++ Editor will open. Go
to File Menu and

Introduction to Programming Unit 1

Computer Programming using C 27

Step 2: After clicking the New submenu the following window will
appear.

Step 3: Now click on save submenu of file Menu.

Step 4: Type the file name that is c:\tc\bin\first.c and press enter.
The following window will appear.

At the end of this step, you successfully create a C source file name

28 Computer Programming using C

Introduction to Programming Unit 1

first.c and save the blank file. Now type the following code in your
first.c program.

#include<stdio.h>
int main()
 {
 printf(“This is output from my first program!\n”);
 return 0;

 }

Let us dissect our first program

  This C program starts with #include <stdio.h>. This line in
cludes the “standard I/O library” into your program. The stand
ard I/O library lets you read input from the keyboard (called
“standard in”), write output to the screen (called “standard
out”), process text files stored on the disk, and so on. It is an
extremely useful library. C has a large number of standard
libraries like stdio, including string, time and math libraries. A
library is simply a package of code that someone else has
written to make your life easier (we’ll discuss libraries a bit later).

  The line int main() declares the main function. Every C pro-
gram must have a function named main somewhere in the
code. We will learn more about functions shortly. At run time,
program execution starts at the first line of the main function.

  In C, the { and } symbols mark the beginning and end of a
block of code. In this case, the block of code making up the
main function contains two lines.

  The printf statement in C allows you to send output to stan-
dard out (for us, the screen). The portion in quotes is called
the format string and describes how the data is to be for-
matted when printed. The format string can contain string lit-
erals such as “This is output from my first program!,” sym-
bols for carriage returns (\n), and operators as placeholders
for variables (see below).

Introduction to Programming Unit 1

Computer Programming using C 29

  The return 0; line causes the function to return an error code
of 0 (no error) to the shell that started execution. More on this
capability a bit later.

Now to compile this source code press Alt+F9 key or click compiler
submenu of compiler menu. If there is error in the source program
then the compiler will point out the error with line number. On suc-
cessful compilation, the compiler will give a message that the source
program is error free. Press Ctrl+F9 (or click submenu run of run
menu) to execute the compiled source code. This will give the re-
quired output. Now to see the output generated, press Alt+F5 key.

7. What is structured programming ?

8. What is a header file? What is a library function ?

1.9 FUNDAMENTALS OF C LANGUAGE

In this section, we will concentrate on the basic elements of C lan-
guage. The basic elements of C language can be classified as fol-
lows :

• Identifiers
• Keywords
• Constants
• C Character set

1.9.1 Identifiers

Identifiers are names that are given to various program elements,
such as variables, functions and arrays. Identifiers consist of letters
and digits in any order except that the first character must be a letter.To
construct an identifier you must obey the following points :

 CHECK YOUR PROGRESS

30 Computer Programming using C

Introduction to Programming Unit 1

 Only alphabet, digit and underscores are permitted
 An identifier can’t start with a digit.
 Identifiers are case sensitive, i.e. uppercase and lower case

letters are distinct.
 Maximum length of an identifier is 32 characters.

The following names are valid identifiers :
 x y12 sum_1 temperature
 names area tax_rate table

The following names are not valid identifiers for the reasons stated:
x” illegal characters (“).
order-no illegal character (-)
total sum illegal character (blank space)

1.9.2 Reserved Word

Reserved words are the essential part of a language definition. The
meaning of these words has already been explained to the C com-
piler. So you can’t use these reserved words as a variable names.
Since these reserved words have some special meaning in C, there-
fore these words are often known as “keyword”. In the following
shows all the reserved word available in C.

auto double if static

break else int struct

case enum long switch

char extern near typedef

const far register union

continue float return unsigned

Introduction to Programming Unit 1

Computer Programming using C 31

default for short void

 do goto signed ++ while

1.9.3 Constants

A constant is a container to store value. But you can’t change the
value of that container (constant) during the execution of the pro-
gram. Thus, the value of a constant remains constant through the
complete program.

There are two broad categories of constant in C, literal con-
stant and symbolic constant. A literal constant is just a value. For
example, 10 is a literal constant. It does not have a name, just a literal
value. Depending of the type of data, literal constant is of different
type. They include integer, character and floating point constant. Inte-
ger constant can again be subdivided into decimal (base-10), octal
(base-8), and hexadecimal (base-16) integer constant. One impor-
tant variation of character constant is string constant. Table 1.4 ex-
plains the different types of literal constant. Remember that a char-
acter constant is always enclosed with single quotation mark, whereas
a string constant is always enclosed with a double quotation mark.
Another point to remember is that an octal integer constant always
starts with 0 and a hexadecimal constant with 0x.

 EXAMPLE TYPES
153 Decimal integer constant
015 Octal integer constant
0xA1 Hexadecimal integer constant
153.371 Floating point constant
‘a’ Character constant
‘1’ Character constant
“a” String constant
“153” String Constant

32 Computer Programming using C

Introduction to Programming Unit 1

1.9.4 C Character Set

C does not use, nor does it require the use of, every character found
on a modern computer keyboard. The only characters required by
the C Programming Language are as follows :

A - Z
a - z

0 - 9

 # & | ! ? _ ~ ^ { } [] () < >
 space . , : ; ‘ $ “ + - / * = %

1.10 BASIC DATA TYPES IN C

Now, we have to start looking into the details of the C language. To
process with data first of all you must know the type of the data. Data
type of C has 3 distinct categories. Figure 1.1 explains the different
categories of C data type.

 C Data Type

Derived Type

Array

Function

Reference

Pointer

Built-in Type

Integer

Character

Double

Float

User Defined Type

Structure

Union

Enumeration

Fig 1.1: Classification of C data type

Alphabets

Digits

Special Symbol

Introduction to Programming Unit 1

Computer Programming using C 33

The first category of data type is the built-in data type, which are
also known as elementary or basic type. Sometime these are called
the “primitive” type. These basic data type have several type modifi-
ers, which alter the meaning of the base data type to yield a new type.
Table 1.1 lists all combinations of the basic data types and modifiers
along with their size and ranges:

 Type Size (Bytes) Range

char 1 -128 to 127

unsigned char 1 0 to 255

signed char 1 -128 to 127

int 2 -32768 to 32767

unsigned int 2 0 to 65535

signed int 2 -32768 to 32767

short int 2 -32768 to 32767

unsigned short int 2 0 to 65535

signed sort int 4 -32768 to 32767

long int 4 -2147483648 to 2147483647

unsigned long int 4 0 to 4294967295

signed long int 4 -2147483648 to 2147483647

float 4 3.4E-38 to 3.4E+38

double 8 1.7E-308 to 1.7E-308

long float 10 3.4E-4932 to 1.1E+4932

Table 1.1: Size and range of basic data type and its modifier

Moreover, besides these basic data types another special data type
is void. The void type specifies the return type of a function, when it
is not returning any value. Sometime void is used to indicate an empty
parameter to a function. After all, this data type holds the literal mean-
ing of void. At this point don’t worry about the other two categories. All
these will be discussed in the subsequent unit.

The “%” symbol along with a (special) character in known as format
specifier or conversion specifier. It indicates the data type to be

34 Computer Programming using C

Introduction to Programming Unit 1

printed or scanned and how that data type is converted to the char-
acter that appears on the screen. Format specifiers for usual vari-
able types are shown in Table.1.2.

 Format Specifier Usual VariableType Display as

 %c char single character

 %d int signed integer

 %f %lf float or double signed decimal

 %e %le float or double exponential format

 %o int unsigned octal value

 %u int unsigned integer

 %x int unsigned hex value

 %ld int long decimal integer

 %s array of char sequence of characters

Table 1.2: Format specifier for usual variable type

1.11 C - VARIABLES AND THEIR
DECLARATIONS

A variable is an identifier to store value. You can resemble a variable
with a container which takes different values at different time during
the execution of the program. Thus, the value of the variable may
change within the program. A variable name can be chosen by the
programmer in a meaningful way that reflects what it represents in
the program. The naming convention of variable follows the rule of
constructing identifiers. Suppose you want to store value 153 to a
variable. What you will do is – first create the name of the variable,
suppose A. Since 153 is integer so declare the variable A as integer,
and then assign 153 to that variable.

A int A int A

153

Now, in C programming language this can be done using the follow-

Introduction to Programming Unit 1

Computer Programming using C 35

ing statement :
int A ;
A = 153 ;

The first statement says that A is a container, where we can store
only integer type variable. This means that we can’t store value into A
other than integer. Therefore this type of statement is known as dec-
laration statement (A declares that A can store only integer type of
variable). Thus the general form of declaration of a variable is

 data_type variable1, variable2, , variableN;

By declaring a variable you tell 3 things to the compiler :
• What the variable name is.
• What type of data the variable will hold.
• and the scope of the variable.

Up to this point container A is empty. The second statement says that
the value 153 is stored in A. This means variable A is initialized with
153. Therefore this type of statement is known as variable initializa-
tion. A variable must store a value after it has been declared (but
before it is used in an expression). You can store values to a variable
in two ways

: • By using assignment statement.
• and by using a read statement.

The first method is used in the above example. In second approach
you can make a call of C standard input function (that is scanf, getch,
getc, gets etc.) to store value to a variable. For example, the above
initialization statement can be written as

scanf(“%d”,&A);

This statement will take an integer type input from standard input
device (that is keyword) and store it to A.

The above two statement (program segment) can be written in a
single statement.

36 Computer Programming using C

Introduction to Programming Unit 1

int A = 153;

This type of statement is known as initialization of variable during
declaration. As a shorthand, you can declare variables that have the
same type in a single line of declaration by separating the variable
names with commas. For example, you can declare the variable j
and k in a single line as :

int j, k;
which is the same as the declaration of j and k as :

int j;
int k;

It is always a good practice to group together declarations of the same
data type for an easy reference. For example :

int j, k;
float x,y,z;

A few examples of variable declarations are shown below :

Variable Remarks
declaration

 int i = 0, j = 1; i and j are declared as integer variables. The
variables i and j are initialized with value as 0
and 1 respectively.

float basic_pay; basic_pay is a floating point variable with a
real value or values containing decimal point.

Char a; a is a character variable that stores a single
character.

double theta; theta is a double precision variable that stores
a double precision floating point number.

1.12 SYMBOLIC CONSTANTS IN C

A symbolic constant is a name that substitutes for a sequence of
characters. The characters may represent a numeric constant, a

Introduction to Programming Unit 1

Computer Programming using C 37

character constant is a string constant. Thus, a symbolic constant
allows a name to appear in place of a numeric constant, character
constant or a string. When a program is compiled, each occurrence
of a symbolic constant is replaced by its corresponding character
sequence.

Symbolic constants are usually defined at the beginning of a
program. The symbolic constants may then appear later in the pro-
gram in place of the numeric constants, character constants, etc.
that the symbolic constants represent.

Symbolic constants are defined using #define as given be-
low:

#define<symbolic constant name> <value>

Suppose that you are writing a program which performs a variety of
geometrical calculations. For example, using the value  (3.14) for
the calculations. To calculate the circumference and area of a circle
with a known radius, you could write

circum = 3.14 * (2*radius);
area = 3.14 * (radius) * (radius);

If, however, you define a symbolic constant with the name PI and
assign it the value 3.14, you would write the name PI and the value
3.14 as shown below

#define PI 3.14
circum = PI * (2*radius);
area = PI * (radius) * (radius);

 Some valid examples of symbolic constant definitions are :

#define TAXRATE 0.55
#define TRUE 1
#define FALSE 0

38 Computer Programming using C

Introduction to Programming Unit 1

 CHECK YOUR PROGRESS

9. What is an identifiers ?
10. What is a keyword in C ?
11. What are the types of constants ?
12. What is the built in data types in C ?
13. What is a variable ?

1.13 LET US SUM UP

A computer program is a set of instructions that directs the computer
to perform some specific task.
Characteristics of a good program are - accurate, efficiency, reliabil-
ity, portability, robustness etc.
The program development cycle consists of the phases : problem
definition, analysis, design phase, testing the algorithm for accuracy,
coding, testing and debugging, implementation and documentation
and the last one is program maintenance.

The programming languages can be classified as: machine language,
assembly language, high level language and 4GL language.

The compiler, interpreter and assembler are the language translator
programs.

A linker is a program that attached or links many modules of a pro-
gram.

The loader brings a program residing on disk into the main memory
of computer and run it.

Pseudocode is a program-planning tool that allows programmers to
plan program logic by writing program instructions in an ordinary natu-
ral language, such as English.

Introduction to Programming Unit 1

Computer Programming using C 39

The term algorithm refers to the logic of a program. It is a step-by-
step description of how to arrive at a solution to a given problem.

Pictorial representation to depict clearly the flow of control to arrive at
the solution of a problem is called flowchart.

The programming techniques used for designing a program are: top-
down technique, bottom-up technique, unstructured technique, struc-
tured technique and modular programming technique.

C is a general purpose, high-level programming language developed
by Kerningham and Ritchie at AT & T Bell Labs.

C program logic is a combination of statements. Statements are al-
ways found between { } braces called the body of a function. Each
statement performs a set of operations. Simple statements are ter-
minated by semicolon ‘ ;’.
Every C program is required to have a special function called main.
This function is the entry point of the program.

Identifiers are the name given to the various program elements - vari-
ables, functions, arrays etc.

C character set includes uppercase and lowercase alphabets, digits
and several special characters. Altogether there are 93 valid charac-
ters allowed in C.

There are 32 keywords (reserved words) in C. Theycannot be used
as variable names.

A C variable is an entity whose value may vary during program ex-
ecution. C makes it compulsory to declare the type of any variable
name that a programmer wishes to use in a program before using it.
The basic data type that can be used for such declaration are int,
float, double and char.

Symbolic constants are generally defined at the beginning of a pro-
gram.

40 Computer Programming using C

Introduction to Programming Unit 1

1.14 FURTHER READINGS

1. Balagurusamy, E: Programming in ANSI C, Tata McGraw-Hill
 publication.
2. Gottfried Byron S: Programming with C, Tata McGraw-Hill
 publication.

1.15 ANSWERS TO CHECK YOUR
PROGRESS

1. a) T, b) F, c) F, d) T, e) T
2. a) F, b) T, c) T, d) F, e) F
3. A compiler is a computer program (or set of programs) that trans-
lates text written in a computer language (the source language) into
another computer language (the target language).
 A program that is written in a high level language must be trans-
lated into machine language before it can be executed. This is known
as compilation process.

4. The language in which a programmer writes programs is called
source language. It may be a high level language or an assembly
language. A program written in a source language is called a source
program.
 The language in which the computer works is called object lan-
guage or machine language. When a source program is converted
into machine language by an assembler or compiler it is known as an
object program. In other words, a machine language program ready
for execution is called an object program.

5.

Introduction to Programming Unit 1

Computer Programming using C 41

Start

Read Input Data

Add marks of all subjects giving
TOTAL

Write output data

PERCENTAGE=
 (TOTAL /10)*100

Stop

Is
COUNT <=

COUNT = COUNT + 1

COUNT = 0

Yes

No

6. In a Fibonacci sequence, the previous two numbers are added to
generate the next Fibonacci number.
 f1 = 1 Ist number
 f2 = 2nd number
 f3 = f1 + f2 = 1+2 = 3
 f4 = f2 + f3 = 2+3 = 5
 f5 = f3 + f4 = 3+5 = 8, and so on.

 f1 f2 f3 f4 f5 f6 f7
 1 2 3 5 8 13 21
To get next fibonacci number, we have to do sum of previous two
numbers in the series.
Algorithm :
1. Assign sum =0, A=0, B=1, i=1
2. Get the number of terms upto which you want to generate the

42 Computer Programming using C

Introduction to Programming Unit 1

Fibonacci number, i.e. n.
3. Add A and B to get the next Fibonacci number
4. Assign the value of B to A i.e. A=B.
5. Assign the value of sum to B i.e. B = sum
6. Write the value of sum to get next Fibonacci number in the
 series.
7. Increment i with 1 i.e. i = i+1 and repeat step 3,4,5,6 with the last
 value of i = n (n is the number of terms up to which we want to
 generate Fibonacci number series.)
8. Stop

7. In structured programming a program is broken down into small
independent task and each task has its own functionality and per-
form specific part of the actual processing. These task are devel-
oped independently without the help of the other. When these task
are completed, they are combined together to solve a whole pro-
gram.

8. In computer programming, particularly in the C and C++ program-

ming languages, a header file or include file is a file, usually in the

form of source code, that is automatically included in another source

file by the compiler. Typically, header files are included via compiler

directives at the beginning (or head) of the other source file.
The C standard library (also known as libc) is a now-stan-

dardized collection of header files and library routines used to imple-
ment common operations, such as input/output and string handling,
in the C programming language. Unlike other languages such as
COBOL, Fortran, and PL/I, C does not include built-in keywords for
these tasks, so nearly all C programs rely on the standard library to
function.

9. Identifiers are names that are given to various program elements,
such as variables, functions and arrays. Identifiers consist of letters
and digits in any order except that the first character must be a letter.

10. Keywords are also called the reserved words in C. They have
specific meaning to compiler. These words should not be used for
naming any other variables.

Introduction to Programming Unit 1

Computer Programming using C 43

11. There are two broad categories of constant in C, literal constant
and symbolic constant.

12. The built in data types are integer, character, float, double.

13. A variable is an identifier that is used to represent a single data
item i.e. a numerical quantity or a character constant. A given vari-
able can be assigned different data items at various place within thin
a program.

1.16 MODEL QUESTIONS

1. What is a program ? Explain the characteristics of a good
program.

2. Describe the various stages of program development.
3. Write down the characteristics of high level language ?
4. Write the difference:

a) Machine language and Assembly language
b) High level language and Machine language
c) Compiler and Interpreter
d) Linker and Loader
e) Compiler and Assembler
f) Pseudocode and Algorithm

5. What do you understand by compilation and execution of a
program.

6. What is an algorithm ? Why is it necessary to write an
algorithm before program coding ?

7. How flowchart is more effective than algorithm ? Explain with
algrithm.

8. What do you mean by programming technique ? Compare
modular and structured programming techniques giving
example.

9. Give the merits and demerits of modular and structured
programming technique.

10. What are the major differences between compilation and

44 Computer Programming using C

Introduction to Programming Unit 1

interpretation ? Which process does take more time on
repeated processing and why ?

11. Write down a few characteristics of ‘C’ language.
12. Write an algorithm to find the area of a triangle.
13. Write an algorithm to find the sum of a set of number.
14. Write an algorithm to test whether the given number is a prime

number.
15. Write an algorithm to find the factorial of a given number.
16. What is the difference between a keyword and an identifier ?
17. List the rules of naming an identifier in C ?
18. Name and describe the four basic data types in C ?
19. What is a variable ? How can variables be characterized ?
20. Draw a flowchart to print the sum of numbers between 1 and

the entered number. For example if you enter 5, then it will
find the sum of 1+2+3+4+5 = 15

21. Draw a flowchart to input three numbers and print the largest
number.

22. Write an algorithm that reads a year and determine whether it
is a leap year or not.

23. Write an algorithm to sort an array in the descending order.

Operators and Expressions Unit 2

Computer Programming using C 1

UNIT- 2 OPERATORS AND EXPRESSIONS

UNIT STRUCTURE

2.1 Learning Objectives
2.2 Introduction
2.3 Operators

 2.3.1 Arithmetic Operators
 2.3.2 Relational Operators
 2.3.3 Logical Operators
 2.3.4 Assignment Operators
 2.3.5 Increments and Decrement Operators
 2.3.6 Conditional Operator
 2.3.7 Bitwise Operators
 2.3.8 Other Operators

2.4 Precedence and Associativity
2.5 Expressions
2.6 Type Conversion
2.7 Let Us Sum Up
2.8 Further Readings
2.9 Answers To Check Your Progress
2.10 Model Questions

2.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :
 define operators and operands
 define and use different types of operators like arithmetic,

logical, relational, assignment, conditional, bitwise and special
operators

 learn about the order of precedence among operators and
the direction in which each associates.

 use expession in programming
perform type conversion to get the correct result in expression

2.2 INTRODUCTION

In our previous unit we have learnt to use variables, constants, data
types in programming. With the help of operators, these variables,
constants and other elements can be combined to form expressions.

In this unit we will discuss various operators supported by C

Operators and Expressions Unit 2

Computer Programming using C 2

language such as Arithmetic operators, Relational operators, Logi-
cal operators, Assignment operators, Increments, Decrement opera-
tors, Conditional operators, Bitwise operators, Special operators etc.
Besides, we will learn to carry out type conversion.

2.3 OPERATORS

Operators are special symbols which instruct the compiler to per-
form certain mathematical or logical manipulations. Operators are
used in programs to manipulate data and variables. The data items
that operators act upon are called operands. Operators are used
with operands to build expressions. Some operators require two op-
erands, while other act upon only one operand.

C includes a large number of operators which fall into differ-
ent categories. These are:

• Arithmetic Operators
• Relational Operators
• Logical Operators
• Assignment Operators
• Increments and Decrement Operators
• Conditional Operators
• Bitwise Operators
• Special Operators

2.3.1 Arithmetic Operators
There are five main arithmetic operators in C language. They are ‘+’
for additions, ‘-’ for subtraction, ‘*’ for multiplication, ‘/’ for division and
‘%’ for remainder after integer division. This ‘%’ operator is also known
as modulus operator. The operators +, -, * and / all work the same
way as they do in other languages. These operators can operate on
any built-in data types allowed in C. Some uses of arithmetic opera-
tors are :

x + y
x - y

 - x + y
a * b + c

 - a * b

Here, a, b, c, x and y are operands. The modulus (%) operator pro-
duces the remainder of an integer division. For example :
 5 / 2 = 2 (Division)
 where as 5 % 2 = 1 (Modulo Division or modulus)

Operators and Expressions Unit 2

Computer Programming using C 3

The operands acted upon by arithmetic operators must rep-
resent numeric values. Thus, the operands can be integer quantities,
floating-point quantities or characters (character constants represent
integer values, as determined by the computer’s character set). Modu-
lus cannot be used with floating-point numbers. It requires that both
operands be integers and the second operand be nonzero.

Division of one integer quantity by another is referred to as
interger division. The result of this operation will be a truncated quo-
tient (i.e., the decimal portion of the quotient will be dropped). On the
other hand, if a division operation is carried out with two floating-point
numbers, or with one floating-point number and one integer, the re-
sult will be a flaoting-point quotient.

Let us consider the following expression.
x = 100+ 2/4;

What will be the actual value of x ?
Is it 100 + 0.5 =100.5
or 102 / 4 = 25.5

Since / has precedence over +, the expression will be evaluated as
100 + 0.5 = 100.5

To avoid ambiguity, there are defined presedence rules for operators
in C language. The concept of precedence will be discussed later in
this unit.

Integer Arithmetic
When an arithmetic operation is performed on two whole numbers or
integers then such an operation is called integer arithmetic. It al-
ways gives an integer as the result. Let, x = 5 and y = 2 be two integer
numbers. Then the integer arithmetic leads to the following results:

x + y = 5 + 2 = 7 (Addition)
x – y = 5 - 2 = 3 (Subtraction)
x * y = 5 * 2 = 10 (Multiplication)
x / y = 5 / 2 = 2 (Division)
x % y = 5 % 2 = 1 (Modulus)

In integer division the fractional part is truncated. Division gives the
quotient, whereas modulus gives the remainder of division. Follow-
ing program is an example to illustrate the above operations.

Operators and Expressions Unit 2

Computer Programming using C 4

Program1: Summation, subtraction, multiplication, division and
modulo division of two integer numbers.
#include<stdio.h>
#include<conio.h>
void main()
{
 int n1, n2, sum, sub, mul, div, mod;
 clrscr();
 scanf (“%d %d”, &n1, &n2); //inputs the operands
 sum = n1+n2;
 printf(“\n The sum is = %d”, sum); //display the output
 sub = n1-n2;
 printf(“\n The difference is = %d”, sub);
 mul = n1*n2;
 printf(“\n The product is = %d”, mul);
 div = n1/n2;
 printf(“\n The division is = %d”, div);
 mod = n1%n2;
 printf(“\n The modulus is = %d”, mod);
 getch();
}

If we enter 5 for n1 and 2 for n2, then the output of the above program
will be :
 The sum is = 7
 The difference is = 3
 The product is = 10
 The division is = 2
 The modulus is = 1

Floating point arithmetic

When an arithmetic operation is performed on two real numbers or
fractional numbers, such an operation is called floating point arith-
metic. The floating point results can be truncated according to the
properties requirement. The modulus operator is not applicable for
fractional numbers. Let us consider two operands x and y with float-
ing point values 15.0 and 2.0 respectively. Then,

 x + y = 15.0 +2.0 = 17.0
 x – y = 15.0 - 2.0 = 13.0
 x * y = 15.0 * 2.0 = 30.0
 x / y = 15.0 / 2.0 = 7.5

Operators and Expressions Unit 2

Computer Programming using C 5

Mixed mode arithmetic

When one of the operands is real and the other is an integer and if the
arithmetic operation is carried out on these two operands, then it is
called as mixed mode arithmetic. If any one operand is of real type
then the result will always be real, thus 15 / 10.0 = 1.5

2.3.2 Relational Operators
Often it is required to compare the relationship between operands
and bring out a decision and program accordingly. Two variables of
same type may have a relationship between them. They can be equal
or one can be greater than the other or less than the other. We can
check this by using relational operators. While checking, the out-
come may be true or false. “True” is represented as 1 and “False” is
represented as 0. It is also by convention that any non-zero value is
considered as 1(true) and zero value is considered as 0 (false). For
example, we may compare the age of two persons, marks of stu-
dents, salary of persons, or the price of two items, and so on.

There are four relational operators in C. They are:

Operator Meaning

< less than
 <= less than or equal to
 > greater than
 >= greater than or equal to

All these operators fall within the same precedence group, which is
lower than the arithmetic and unary operators. The associativity of
these operators is left to right. There are two equality operators as-
sociated with the relational operators. They are:
 == equal to
 != not equal to

For checking equality the double equal sign is used, which is different
from other programming languages. The statement a == b checks
whether a is equal to b or not. If they are equal, the output will be true;
otherwise , it will be false. The statement a = b assigns the value of b
to a. For example, if b = 10, then a is also assigns the value of 10.
>, >=, <, <= have precedence over == and !=. Again, the arithmetic
operators +, -, *, / have precedence over relational and logical
operators. Therefore, in the following statement :

Operators and Expressions Unit 2

Computer Programming using C 6

 a - 4 > 6
a - 4 will be evaluated first and only then the relation will be checked.
So, there is no need to enclose a - 4 within parenthesis.
A simple relational expression contains only one relational operator
and takes the following form:

exp1 relational operator exp2

where exp1 and exp2 are expressions, which may be simple con-
stants, variables or combination of them. Some examples of rela-
tional expressions and their evaluated values are listed below:

4.5 <= 12 TRUE
-5 > 0 FALSE
10 < 8 + 5 TRUE
5 == 2 FALSE

 6! = 2 TRUE

When arithmetic expressions are used on either side of a relational
operator, the arithmetic expressions will be evaluated first and then
the results compared. Relational expressions are used in decision
making statements of C language such as if, while and for state-
ments to decide the course of action of a running program. We shall
learn about if, while and for statement very soon in our next unit.

2.3.3 Logical Operators
Logical operators compare or evaluate logical and relational expres-
sions. C language has the following logical operators:

&& denoting Logical AND
|| denoting Logical OR
! denoting Logical NOT

The logical AND and Logical OR operators are used when we want
to test more than one condition and make decisions.

Logical AND (&&)

The logical AND operator is used for evaluating two conditions or
expressions with relational operators simultaneously. If both the ex-
pressions to the left and to the right of the logical operator are true,
then the whole compound expression is true. For example:

Operators and Expressions Unit 2

Computer Programming using C 7

 a > b && x = = 8
The expression to the left is a > b and that on the right is x == 8.
The whole expression is true only if both expressions are true i.e., if
a is greater than b and x is equal to 8.

Logical OR (||)

The logical OR is used to combine two expressions and the condi-
tion evaluates to true if any one of the two expressions is true.
For example:
 a < m || a < n
The expression evaluates to true if any one of the expressions a<m
and a<n is true or if both of them are true. It evaluates to true if a is
less than either m or n and when a is less than both m and n.

Logical NOT (!)

The logical NOT operator takes single expression and evaluates to
true if the expression is false and evaluates to false if the expression
is true. In other words, it just reverses the value of the expression.

For example, ! (x >= y)

This NOT expression evaluates to true only if the value of x is neither
greater than nor equal to y .

2.3.4 Assignment Operators

In C language, there are several different assignment operators. The
most commonly used assignment operator is =. The assignment
operator(=) evaluates the expression on the right of the operator and
substitutes it to the value or variable on the left of the operand. For
example:

 x = a + b ;
In the above statement, the value of a + b is evaluated and substi-
tuted to the variable x. Let us consider the statement x = x + 1; This
will have the effect of incrementing the value of x by 1. This can also
be written as x + = 1;
The commonly used shorthand assignment operators are as follows:

a = a + 1 is same as a += 1
 a = a – 1 is same as a -= 1
 a = a * (n+1) is same as a *= (n+1)
 a = a / (n+1) is same as a /= (n+1)

Operators and Expressions Unit 2

Computer Programming using C 8

 a = a % b is same as a %= b

The assignment operators =, + =, - =, * =, / =, % = , have the same
precedence than the arithmetic operators. Therefore, the arithmetic
operations will be carried out first before they are used to assign the
values. C language allows multiple assignments in the following form:

 identifier1 = identifier2 = identifier3 == expression

For example, a = b = c = 50;
The assignment operator = and the equality operator == are distinctly
different. The assignment operator is to assign a value to an identi-
fier, whereas the equality operator is used to determine if two expres-
sions have the same value.

If the two operands in an assignment expression are of different data
types, then the value of the expression on the right will automatically
be converted to the type of the identifier on the left. The entire assign-
ment expression will then be of this same data type. Under some
circumstances, this automatic type conversion can result in an alter-
ation of the data being assigned. For example:

• A floating-point value may be truncated if assigned to an inte
 ger identifier. For example,
 int n;
 n = 5.5;
The above expression will cause the integer 5 to be assigned to i.
• A double-precision value may be rounded if assigned to an
 integer identifier.
• An integer quantity may be altered if assigned to a shorter
 integer identifier or to a character identifier.

Example: Let us consider i , j are two integer variables and p, q are
floating-point variables whose values are

i = 8;
j = 5;
 p = 4.5;
 q = -2.75;

Several assignments that make use of these variables are shown
below:

Operators and Expressions Unit 2

Computer Programming using C 9

 Expression Shorthand expression Final value
 i = i + 2; i += 2; 10
 j = j * (i - 2); j * = (i - 2) ; 30
 p = p / 2 ; p /= 2; 2.25
 i = i % (j - 2); i %= (j - 2); 2
 p = p - q ; p - = q; 7.25
Program 2: Calculate the sum and average of five numbers.
#include<stdio.h>
#include<conio.h>
void main()
{
 float a,b,c,d,e,sum,avg;
 clrscr();
 printf(“Enter the five numbers:\n ”);
 scanf(“%f%f%f%f%f ”, &a,&b,&c,&d,&e);
 sum=a+b+c+d+e;
 avg=sum/5.0;
 printf(“\n\nSum is = %f ”,sum);
 printf(“\nAverage is = %f ”,avg);
 getch();
}
If we enter 4,10,12, 3 and 6, then the output of the above program will
be :
 Enter the five numbers:

4 10 12 3 6

Sum is = 35.00
Average is = 7.00

 EXERCISE

 Q. What is the output of the following program?
#include<stdio.h>
void main()
 {
 int i=15, j=4, m, n;

m = i > 9;
n = j > 2 && j != 2;
printf(“m=%d n=%d”, m,n);

 }

Operators and Expressions Unit 2

Computer Programming using C 10

LET US KNOW

Unary Operators
The operator that acts upon a single operand to produce a new
value is called unary operator. Unary operators usually pre-
cede their single operands, though some unary operators are
written after their operands. Unary minus operation is distinctly
different from the arithmetic operator which denotes subtraction
(-). The subtraction operator requires two separate operands. All
unary operators are of equal precedence and have right-to-left
associativity. Following are some examples of the use of unary
minus operation:
 -145 // unary minus is followed by an integer constant
 -0.5 //unary minus is followed by an floting-point constant
 - a //unary minus is followed by a variable ‘a’
 -5 *(a + b) //unary minus is followed by an arithmetic expresion

 CHECK YOUR PROGRESS

 1. Choose the correct option:
 (i) The shorthand expression for x = x + 10 is:
 a) x += 10; b) +x = 10; c) x =+ 10; d) x = 10+;
 (ii) What is the value of sum for the expression
 sum = 5 + 3 * 4 - 1 % 3;
 a) 31 b) 8 c) 7 d) 16
 (iii) The expression i=30*10+27 evaluates to
 a) 327 b) -327 c) 810 d) 0
 2. State whether the following expressions are true or false.
 (i) The modulus operators % can be used only with integers.
 (ii) The modulo division operator produces the remainder of
 an integer division
 (iii) 10 % 3 yields a result of 3.
 (iv) Unary operator requires more than one operands.
 (v) If both the expressions to the left and to the right of the &&
 operator is true, then the whole compound expression is
 true.

Operators and Expressions Unit 2

Computer Programming using C 11

2.3.5 Increment and Decrement Operators

C language contains two increment and decrement operators which
are present in postfix and prefix forms. Both forms are used to incre-
ment or decrement the appropriate variables. The increment and dec-
rement operators are one of the unary operators which are very use-
ful in C language.

 • Increment operator ++

The increment operator (++) adds 1 to the value of an operand or if
the operand is a pointer then increments the operand by the size of
the object to which it points. The operand receives the result of the
increment operation. We can put ++ before or after the operand. These
operators are used in a program as follows:
 + + i ; (prefix form)
 or i + +; (postfix form)
The statement + + i; is equivalent to i = i + 1; or i + = 1;

In the above statements, i is an integer type variable. ++ i and i ++
means the same thing when they form statements independently.
But they behave differently when they are used in expressions on
right-hand side of an assignment statement. If ++ appears before
the operand (prefix form), the operand is incremented first and then
used in the expression. If we put ++ after the operand (postfix form),
the value of the operand is used in the expression before the operand
is incremented. Let us consider the following statements:

i = 5;
j = ++i; // pre increment
printf(“%d%d”, i, j);

In this case, the value of j and i would be 6. A prefix operator first
adds 1 to the operand and then the result is assigned to the variable
on the left. Thus, 1 is added to i and the value of i becomes 6. Then
this incremented value of i is assigned to j and the value of j also
becomes 6. If we rewrite the above statements as

 i = 5;
 j = i++; // post increment

then the value of j would be 5 and i would be 6. This is because a
postfix operator first assigns the value to the variable on the left and
then increments the operands. Thus, 5 is first assigned to j and then

Pointer:
A pointer is a variable
which holds the address
of another variable

Operators and Expressions Unit 2

Computer Programming using C 12

i is incremented by 1.

 • Decrement operator - -

The decrement operator (- -) subtracts 1 from the value of a operand
or if the operand is a pointer, it decreases the operand by the size of
the object to whcih it points. The operand reveives the result of the
decrement operation.

Like increment operator, decrement operator - - can be put
before or after the operand. If it appears before the operand, the oper-
and is decremented and the decremented value is used in the ex-
pression. But if - - appears after the operand then the current value of
the operand is first used in the expression and then the operand is
decremented.
 - - i ; (prefix form)
 or i - - ; (postfix form)
The statement - - i; is equivalent to i = i -1; or i - = 1;

Rules for + + and - - Operators

Increment and decrement operators are unary operators and they
require single variable as their operand.
 • When postfix ++ (or - -) is used with a variable in an expres-
sion, the expression is evaluated first using the original value of the
variable and then the variable is incremented
 • When prefix ++ (or - -) is used in an expression, the variable
is incremented (or decremented) first and then the expression is evalu-
ated using the new value of the variable.
 • The precedence and associativity of ++ and - - operators are
the same as those of unary + and -.

2.3.6 Conditional Operator

The conditional operator is also termed as ternary operator and is
denoted by (? :) . The syntax for the conditional operator is as follows:

 expression1 ? expression2 : expression3

When evaluating a conditional expression, expression1 is evalu-
ated first. If expression1 is true (i.e., if its value is nonzero), then
expression2 is evaluated and this becomes the value of the expres-

Operators and Expressions Unit 2

Computer Programming using C 13

sion. However, if expression1 is false (i.e., if its value is zero) , ex-
pression3 is evaluated and this becomes the value of the condi-
tional expression. Only one of the expressions is evaluated.
For example :

a = 10;
b = 15;
x = (a > b) ? a : b ;

Here x will be assigned to the value of b. The condition follows that
the expression is false; therefore b is assigned to x.

Program4: Program to illustrate the use of conditional operator.
#include<stdio.h>
#include<conio.h>
void main()
{
 int age;
 clrscr();
 printf(“Enter your age in years: ”);
 scanf(“%d”,&age);
 (age>=18)? printf(“\nYou can vote\n”) : printf(“You can’t vote”);
 getch();
}
Output : Enter your age in years:

26
You should vote

If we run the program again and enter age=15, then the output will be:
Enter your age in years:
15
You cannot vote

Program5: Program for finding the larger value of two given values
using conditional operator
#include<stdio.h>
void main()
{ int i,j, large;
 printf (“Enter 2 integers : ”); //ask the user to input 2 numbers
 scanf(“%d %d”,&i, &j);
 large = i > j ? i : j; //evaluation using conditional operator
 printf(“The largest of two numbers is %d \n”, large);
}

Operators and Expressions Unit 2

Computer Programming using C 14

Output : Enter 2 integers : 14 25
 The largest of two numbers is 25

Program6: Conversion of centigrate to fahrenheit and vice-versa
#include<iostream.h>
void main()
{
 float c, f;
 printf(“Enter temperature in celcius:);
 scanf(“%f”, &c);
 f=1.8 * c+32;
 printf(“\nEquivalent Fehrenheit will be: %f”,f);
 printf(“\nEnter temperature in Fehrenheit:);
 scanf(“%f”, &f);
 c=(f-32)/1.8;
 printf(“\nEquivalent Celsius will be: %f”,c);
}

2.3.7 Bitwise Operators

The bitwise operatos are used for testing, complementing or shifting
bits to the right or left. A bitwise operator operates on each bit of data.
Bitwise operators may not be applied to a float or double. The bitwise
operators with their meaning are listed below:

 & Bitwise AND
 | Bitwise OR
 ^ Bitwise Exclusive
 << Shift left
 >> Shift right

Bitwise Logical Operators :

The logical bitwise operators are similar to the Boolean or Logical
operators, except that they operate on every bit in the operand(s).
For instance, the bitwise AND operator (&) compares each bit of the
left operand to the corresponding bit in the right hand operand. If both
bits are 1, a 1 is placed at that bit position in the result. Otherwise, a
0 is placed at that bit position.

Operators and Expressions Unit 2

Computer Programming using C 15

Bitwise AND (&) Operator :

The bitwise AND operator performs logical operations on a bit-by-bit
level using the following truth table:

 Bit x of Bit x of Bit x of
 operator1 of operator2 result
 0 0 0
 0 1 0
 1 0 0
 1 1 1

Truth Table for the bitwise AND (&) operator

Let us consider the following program segment for understanding
AND(&) operation.

void main()
{ unsigned int a = 60; // a= 60 = 0011 1100
 unsigned int b = 13; // b= 13 = 0000 1101
 unsigned int c = 0;
 c = a & b; //c= 12 = 0000 1100

 printf(“%d”,c);
}

The output will be 12

Bitwise OR (|) operator :

The bitwise OR operator performs logical operations on a bit-by-bit
level using the following truth table:

 Bit x of operator1 Bit x of operator2 Bit x of result
 0 0 0
 0 1 1
 1 0 1
 1 1 1

 Truth Table for the bitwise OR (|) operator

The bitwise OR operator (|) places a 1 in the corresponding
value’s bit position if either operand has a bit set (i.e.,1) at the posi-
tion. Bitwise OR(|) operation can be understood with the following
example:

Operators and Expressions Unit 2

Computer Programming using C 16

void main()
{ unsigned int a = 60; // 60 = 0011 1100
 unsigned int b = 13; // 13 = 0000 1101

 unsigned int c = 0;
 c = a | b; // 61 = 0011 1101
 }

Bitwise exclusive OR (^) :

The bitwise exclusive OR(XOR) operator performs logical operations
on a bit-by-bit level using the following truth table:

 Bit x of operator1 Bit x of operator2 Bit x of result
 0 0 0
 0 1 1
 1 0 1
 1 1 0

 Truth Table for the exclusive OR(^)

The bitwise exclusive OR(^) operator sets a bit in the resulting value’s
bit position if either operand (but not both) has a bit set (i.e.,1)at the
position. Bitwise exclusive OR(^) operation can be understood with
the following example:

void main()
{ unsigned int a = 60; // 60 = 0011 1100
 unsigned int b = 13; // 13 = 0000 1101
 unsigned int c = 0;
 c = a ^ b; // 49 = 0011 0001
 }

Bitwise Complement (~)

The bitwise complement operator (~) performs logical operations on
a bit-by-bit level using the following truth table:
 bit x of op2 result
 0 0
 0 1

 Truth table for the ~, Bitwise Complement

The bitwise complement operator (~) reverses each bit in the oper-
and.

Operators and Expressions Unit 2

Computer Programming using C 17

Bitwise Shift Operators :

C provides two bitwise shift operators, bitwise left shift (<<) and bitwise
right shift (>>), for shifting bits left or right by an integral number of
positions in integral data. Both of these operators are binary, and the
left operand is the integral data whose bits are to be shifted, and the
right operand, called the shift count, specifies the number of posi-
tions by which bits need shifting. The shift count must be nonnega-
tive and less than the number of bits required to represent data of the
type of the left operand.

Left-Shift (<<) operator

The left shift operator shift bits to the left. As bits are shifted toward
high-order positions, 0 bits enter the low-order positions. Bits shifted
out through the high-order position are lost. For example, let us con-
sider the following declaration:

 unsigned int Z = 5;
and Z in binary is 00000000 00000101 when 16 bits are used to
store integer values.

Now if we apply left-shift, then
 Z << 1 is 00000000 00001010 or 10 decimal
and Z << 15 is 10000000 00000000 or 32768 decimal.

Left-Shift is useful when we want to MULTIPLY an integer
(not floating point numbers) by a power of 2. The operator, takes 2
operands like this:
 a << b

This expression returns the value of a multiplied by 2 to the
power of b.

For example, let us consider 4 << 2. In binary, 4 is 100. Adding 2
zeros to the end gives 10000, which is 16, i.e., 4*22 = 4*4 = 16.

Similarly, 4 << 3 can be evaluated by adding 3 zeros to get 100000,
which is 4*23 = 4*8 = 32.

Shifting once to the left multiplies the number by 2.Multiple shifts of 1
to the left results in multiplying the number by 2 over and over again.
In other words, multiplying by a power of 2. Some examples are:

Operators and Expressions Unit 2

Computer Programming using C 18

5 << 3 = 5*23 = 5*8 = 40
8 << 4 = 8*24 = 8*16 = 128
1 << 2 = 1*22 = 1*4 = 4

Right-Shift (>>) operator

The right shift operator shifts bits to the right. As bits are shifted
towards low-order positions, 0 bits enter the high-order positions, if
the data is unsigned. If the data is signed and the sign bit is 0, then 0
bits also enter the high- order positions. However, if the sign bit is 1,
the bits entering high-order positions are implementation-dependent.
On some machines 1s, and on others 0s, are shifted in. The former
type of operation is known as the arithmetic right shift, and the latter
type the logical right shift. For example,

unsigned int Z = 40960;
and Z in binary 16-bit format is 10100000 00000000

Now, if we apply right-shift, then
 Z >> 1 is 01010000 00000000 or 20480 decimal
and Z >> 15 is 00000000 00000001 or 1 decimal

In the second example, the 1 originally in the fourteenth bit
position has dropped off. Another right shift will drop off the 1 in the
first bit position, and Z will become zero. Bitwise Right-Shift does the
opposite, and takes away bits on the right.

2.3.8 Other Operators
There are some other useful operators supported by C lan-

guage. These are: comma operator, sizeof operator, member selec-
tion operator (. and ->), pointer operators (* and &) etc. Here we will
discuss comma and sizeof operators. The other two will be covered
in later unit.

The Comma Operator

 The comma operator can be used to link related expres-
sions together. The comma allows for the use of multiple expres-
sions to be used where normally only one would be allowed.

The comma operator forces all operations that appear to the
left to be fully completed before proceeding to the right of comma.
This helps eliminate side effects of the expression evaluation.

Operators and Expressions Unit 2

Computer Programming using C 19

num1 = num2 + 1, num2 = 2;

The comma ensures that num2 will not be changed to a 2 before
num2 has been added to 1 and the result placed into num1. Some
examples of comma operator are:

In for loops:
for (n=1, m=15, n <=m; n++,m++)

In while loops:
while (c=getchar(), c != ‘15’)

Exchanging values :
temp = x, x = y, y = temp;

The concept of loop will be discussed very soon in the next unit.

Program7: Swap (interchange) two numbers using a temporary
 variable.
#include<stdio.h>
#include<conio.h>
void main()
{

int a,b,temp;
clrscr();
printf("\nEnter the two integer numbers:");
scanf("%d%d",&a,&b);
printf("\nEntered numbers are.:");
printf("%d%8d",a,b);
temp=a,a=b,b=temp; // comma operator is used
printf("\n\nSwapped numbers are:%d%8d",a,b);
getch();

 }

Output : (Suppose we have entered 2 and 4)
Enter the two integer numbers.: 2 4
Entered numbers are: 2 4
Swapped numbers are: 4 2

The Sizeof Operator

The sizeof operator returns the physical size, in bytes of the
data item for which it is applied. It can be used with any type of data
item except bit fields.

When sizeof is used on a character field the result returned

Operators and Expressions Unit 2

Computer Programming using C 20

is 1 (if a character is stored in one byte). When used on an integer
the result returned is the size in bytes of that integer.
For example:

` s = sizeof (sum);
t = sizeof (long int);

The sizeof operator is normally used to determine the lengths of
arrays and structures when their sizes are not known to the pro-
grammer. It is also used to allocate memory space dynamically to
variables during the execution of the program.

For example: s = sizeof (sum);
t = sizeof (long int);

The sizeof operator is normally used to determine the lengths of
arrays and structures when their sizes are not known to the pro-
grammer. It is also used to allocate memory space dynamically to
variables during the execution of the program.

Program8: Program that employs different kinds of operators like
arithmetic, increment, conditional and sizeof operators.
#include<stdio.h>
#include<conio.h>
void main()
{ int a, b, c, d,s;
 clrscr();
 a = 20;
 b = 10;
 c = ++a-b;
 printf (“a = %d, b = %d, c = %d\n”, a,b,c);
 d=b++ + a;
 printf (“a = %d, b = %d, d = %d\n, a,b,d);
 printf (“a / b = %d\n, a / b);
 printf (“a % b = %d\n, a % b);
 printf (“a *= b = %d\n, a *= b);
 printf (“%d\n, (c < d) ? 1 : 0);
 printf (“%d\n, (c > d) ? 1 : 0);
 s=sizeof(a);
 printf(“\nSize is: %d bytes”,s);
}
Output : a=21 b=10 c=11
 a=21 b=11 d=32
 a/b=1

Operators and Expressions Unit 2

Computer Programming using C 21

 a%b=10
 a*=b=231
 1
 0
 2 bytes
The increment operator ++ works when used in an expression. In the
statement c = ++a – b; new value a = 16 is used thus giving value 6
to C. That is a is incremented by 1 before using in expression
However in the statement d = b++ + a; the old value b = 10 is used in
the expression. Here b is incremented after it is used in the expres
sion.

 EXERCISE

Q. Write a program that reads a floating-point number and then
display the right-most digit of the integral part of the number.

 CHECK YOUR PROGRESS

 3. Find the output of the following program segment?
 (a) void main(){ int x = 50;
 printf(“%d\n”,5+ x++);
 printf(“%d\n”,5+ ++x); }
 (b) void main(){ int x, y;
 x = 50;
 y =100;
 printf(“%d\n”,x+ y++);
 printf(“%d\n”,++y -3); }
 (c) void main(){ int s1,s2;
 char c='A';

 float f;
 s1=sizeof(c);
 s2=sizeof(f);
 printf("ASCII value of 'A' is %d",c);

 printf("\nSize of s1 and s2 in bytes:%d%8d",s1,s2);}

Operators and Expressions Unit 2

Computer Programming using C 22

 4. Find the output of the following C program:
 void main()
 { int a,b,c;
 a=b=c=0;
 printf(“Initial value of a,b,c :%d%d%d\n”,a,b,c);
 a=++b + ++c;
 printf(“\na=++b + ++c=%d%d%d\n”,a,b,c);
 a= b++ + c++;
 printf(“\na=b++ + c++= %d%d%d\n”,a,b,c);

 a=++b + c++;
 printf(“\na=++b + c++= %d%d%d\n”,a,b,c);
 a = b- - + c - -;
 printf(“\na=b-- +c --= %d%d%d\n”,a,b,c);
 }

 5. Choose the correct option:
 (i) If i=6, and j=++i, the the value of j and i will be
 (a) i=6,j=6 (b) i=6, j=7 (c)i=7,j=6 (d)i=7,j=7

 (ii) If the following variables are set to the values as shown
 below, then what will be the expression following it?

 answer=2;
 marks=10;
 !((“answer<5”)&& (marks>2))

 (a) 1 (b) 0 (c) -1 (d) 2

 6. Write a C program to find the area of a triangle when base
 and height are given.

 7. What will be output of the following code?
 #include<stdio.h>
 void main()
 {
 int n;
 n = 20;
 printf(“\nValue of n : %d”, sizeof(n));
 printf(“\nSizeof n: %d”, sizeof(n));
 }

Operators and Expressions Unit 2

Computer Programming using C 23

2.4 PRECEDENCE AND ASSOCIATIVITY

There are two important characteristics of operators which
determine how operands group with operators. These are prece-
dence and associativity.

The operators have an order of precedence among them-
selves. This order of precedence dictates in what order the opera-
tors are evaluated when several operators are together in a state-
ment or expression. An operator’s precedence is meaningful only if
other operators with higher or lower precedence are present. Ex-
pressions with higher-precedence operators are evaluated first. The
grouping of operands can be forced by using parentheses. Also, with
each operator is an associativity factor that tells in what order the
operands associated with the operator are to be evaluated. Associa-
tivity is the left-to-right or right-to-left order for grouping operands to
operators that have the same precedence.

 For example, operator precedence is why the expression
6 + 4 * 3 is calculated as 6 + (4 * 3), giving 18, and not as (6 + 4) *3,
giving 30. We say that the multiplication operator (*) has higher pre-
cedence than the addition operator (+), so the multiplication must be
performed first. Operator associativity is why the expression 8 - 4 -
2 is calculated as (8 - 4) - 2, giving 2, and and not as 8 - (4 - 2), giving
6. We say that the subtraction operator (-) is left associative, so the
left subtraction must be performed first. When we cannot decide by
operator precedence alone in which order to calculate an expres-
sion, we must use associativity.

The following table lists C operators in order of precedence
(highest to lowest). Their associativity indicates in what order opera-
tors of equal precedence in an expression are applied. R indicates
Right and L indicates Left.

 Operator category Operators Associativity

 Unary Operator -- ++ ! sizeof(type) R to L
 Arithmetic multiply,
 Divide and remainder * / % L to R
 Arithmetic add,subtract + - L to R
 Relational Operators < <= > >= L to R
 Equality Operators == != L to R
 Logical AND && L to R
 Logical OR || L to R
 Conditional operator ? : R to L
 Assignment operator = += -+ *= /+ %= R to L

 Precedence and Associativity of operators

Operators and Expressions Unit 2

Computer Programming using C 24

In the following statements, the value 10 is assigned to both a and b
because of the right-to-left associativity of the = operator. The value
of c is assigned to b first, and then the value of b is assigned to a.

b = 9;
c = 10;
a = b = c;

In the expression
 a + b * c / d
the * and / operations are performed before + because of prece-
dence. b is multiplied by c before it is divided by d because of asso-
ciativity.

2.5 EXPRESSIONS

C Expressions are based on algebra expressions - they are
very similar to what we learn in Algebra, but they are not exactly the
same. An expression is a combination of variables, constants and
operators written according to the syntax of C language. In C every
expression evaluates to a value i.e., every expression results in some
value of a certain type that can be assigned to a variable. Here are
some examples of expressions:

15 // a constant
i // a variable
i+15 // a variable plus a constant
(m + n) * (x + y)

The following program illustrates the effect of presence of parenthe-
sis in expressions.
Program9:
#include<stdio.h>
#include<conio.h>
void main()
 float a, b, c x, y, z;
 a = 9;
 b = 12;
 c = 3;
 x = a – b / 3 + c * 2 – 1;
 y = a – b / (3 + c) * (2 – 1);
 z = a – (b / (3 + c) * 2) – 1;
 printf (“x = %fn”,x);
 printf (“y = %fn”,y);

Operators and Expressions Unit 2

Computer Programming using C 25

 printf (“z = %fn”,z);
}
Output

x = 10.00
y = 7.00
z = 4.00

Rules for evaluation of expression

• First parenthesized sub expression left to right are evaluated.

• If parenthesis are nested, the evaluation begins with the inner
most sub expression.

• The precedence rule is applied in determining the order of appli-
cation of operators in evaluating sub expressions.

• The associability rule is applied when two or more operators of the
same precedence level appear in the sub expression.
• Arithmetic expressions are evaluated from left to right using the
rules of precedence.
• When Parenthesis are used, the expressions within parenthesis
assume highest priority.

2.6 TYPE CONVERSION
The type conversion or typecasting refers to changing an entity of
one data type into another i.e., values of one type can be converted to
a value of another type. For example, the integer 355 can be converted
to the string “355”. Again, 355 + 5 will give 400, “355” + “5” will give
“3555”.

The language C allows programmer to perform typecasting
by placing the type name in parentheses and placing this in front of
the value. The form of the cast data type is :

 (type) expression
For example,

(float)25 // Gives the float 25.0
(int)5.8 // Gives the int 5
(string)5.8 // Gives the string "5.8"
(float)"4.3" // Gives the float 4.3

Let us consider the case where we want to divide two integers a/b,
where the result must be an integer. However, we may want to force
the output to be a float type in order to keep the fraction part of the

Operators and Expressions Unit 2

Computer Programming using C 26

division. The typecast operator is used in such a case. It will do the
conversion without any loss of fractional part of data.
Program10:
 #include<stdio.h>
 void main()
 {

int a,b;
a=3,b=2;
printf(“\n%f”,(float)a/b);

 }

The output of the above program will be 1.500000. This is because
data type cast (float) is used to force the type of the result to be of the
type float.

From the above it is clear that the usage of typecasting is to
make a variable of one type act like another type for one single opera-
tion. So by using this ability of typecasting it is possible to create
ASCII characters by typecasting integer to its character equivalent.
Typecasting is also used in arithmetic operation to get correct result.
This is very much needed in case of division when integer gets di-
vided and the remainder is omitted. In order to get correct precision
value, one can make use of typecast as shown in example above.
Another use of the typecasting is shown in the example below:

For instance:

 void main()
 {
 int a = 5000, b = 7000 ; long int c = a * b ;
 }
Here, two integers are multiplied and the result is truncated and stored
in variable c of type long int. But this would not fetch correct result for
all. To get a more desired output the code is written as

 long int c = (long int) a * b;
Though typecast has so many uses one must take care about its
usage since using typecast in wrong places may cause loss of data
like, for instance, truncating a float when typecasting to an int.

Some conversions are done automatically. For example, in
the expression "Hello" + 15 the integer 15 will be automatically con-
verted to the string "15", before the two strings are concatenated,
giving the result "Hello15".

Operators and Expressions Unit 2

Computer Programming using C 27

 CHECK YOUR PROGRESS

 8. State whether the following expressions are true or false.
 (i) Conditional operator (? :) has right to left associativity.
 (ii) Logical OR operator has right to left associativity
 (iii) C permits mixing of constants and variables of different types
 in an expression.
 (iv) Precedence dictates in what order the operators are evalu
 ated when several operators are together in a statement or
 expression.
 (v) A typecast is used to force a value to be of a particular
 variable type.

2.7 LET US SUM UP

Operators form expressions by joining individual constants,
variables,array elements etc. C language includes a large number of
operators which fall into different categories. In this unit we have seen
how arithmetic operators, assignment operators, unary operators,
relational and logical operators, the conditional operators are used to
form expressions.The data items on which operators act upon are
called operands. Some operators require two operands while oth-
ers require only one operand. A list of operators with their meaning
are given below:

Arithmetic Operator
 Operator Description
 * multiplication
 / division
 % modulo division
 + addition
 - subtraction

Relational Operator
Operator Description
< less than
> greater than
>= greater than or equal
== equal to
!= not equal

Logical Operator
Operator Description
 ! NOT
 && AND
 || OR

Bitwise Operators
Operator Description
 ~ One’s complement
<< Left shift
>> Right shift
& Bitwise AND
^ Bitwise XOR

Operators and Expressions Unit 2

Computer Programming using C 28

Assignment Operator
The Assignment Operator(=) evaluates an expression on the right of
the expression and substitutes it to the value or variable on the left of
the expression. For example: sum = n1+n2 ;
value of n1 and n2 are added and the result is assigned to the vari-
able sum.

Increment and Decrement

There are two formsof increment and decrement operators. These
are:

Operator Description Example

 ++ increment a++ (post increment)
 ++a (pre increment)
 -- decrement a-- (post decrement)
 --a (pree decrement)

The Conditional Operator

It works on three values. The conditional operator is used to replace
if-else logic in some situations. It is a two-symbol operator ?: with the
format:
 result = condition ? expression1 :expression2;

Comma Operator
We can use the comma operator(,) available in c language, to build a
compound expression by putting several expressions inside a set of
parentheses. The expressions are evaluated from left to right and the
final value is evaluated last.

sizeof Operator

The sizeof operator returns the physical size in bytes of the data
item for which it is applied. It can be used with any type of data item
except bit fields. The general form is: s = sizeof (item);

Expressions in C are syntactically valid combinations of operators
amd operands that compute to a value determined by the priority and
associativity of the operators.

Converting an expression of a given type into another type is known
as type-casting or type conversion. Type conversions depend on
the specified operator and the type of the operand or operators.

Operators and Expressions Unit 2

Computer Programming using C 29

 2.8 FURTHER READINGS

 1. Venugopal, K L and Prasad S R : Mastering C, Tata McGraw-Hill
 publication.
 2. Balagurusamy, E: Programming in ANSI C, Tata McGraw-Hill
 publication.
 3. Gottfried Byron S: Programming with C, Tata McGraw-Hill
 publication.

 2.9 ANSWERS TO CHECK YOUR
 PROGRESS

 1.(i) (a) x = x +10 (ii)(d) 16 (iii) (a) 327

 2. (i)True (ii) True (iii) False (iv) False (v) True

 3. (a) 55 (b)150
 99 57
 (c) ASCII value of 'A' is 65
 Size of s1 and s2 in bytes: 1 4

 4. Initial value of a,b,c : 0 0 0
 a= ++b + ++c = 2 1 1
 a= b++ + c++ = 2 2 2
 a= ++b + c++ = 5 3 3
 a= b-- + c -- = 6 2 2

 5. (i)(d)i=7,j=7 (ii) (b) 0

 6. //area of a triangle given the base and height
 #include<stdio.h>
 #include<conio.h>
 void main()
 {

float b, h;
 float area;
printf(“Enter the base: ”);
scanf(“%f”, &b);
printf(“\nEnter the height:”);
scanf(“%f”, &h);

Operators and Expressions Unit 2

Computer Programming using C 30

 area= b * h / 2;
printf(“\nArea of the triangle is %f”, area);

 }

 7. Value of n is: 20
 Size of n is: 2

 8. (i) True (ii)False (iii)True (iv)True (v) True

 2.10 MODEL QUESTIONS

1.What is an operator ? What are the types of operators that are
included in C.
2. What is an operand ? What is the relationship between operator
and operand?
3.Describe the three logical operators included in C?
4. Write a C program to compute the surface area and volume of a
cube if the side of the cube is taken as input.
5. What is unary operator ? How many operands are associated with
a unary operator?
6. What is meant by operator precedence?
7. What is meant by associativity? What is the asslociativity of the
arithmetic operators?
8. What will be the output of the following program:
 #include<stdio.h>
 #include<conio.h>
 void main()
 {
 printf(“The size of char is %d”,sizeof(char));
 printf(“\nThe size of int is %d”,sizeof(int));
 printf(“\nThe size of short is %d”,sizeof(short));
 printf(“\nThe size of float is %d”,sizeof(float));
 printf(“\nThe size of long is %d”,sizeof(long));
 printf(“\nThe size of char is %d”,sizeof(char));
 printf(“The size of double is %d”,sizeof(double));
 getch();
}
9. List the relational operator and their meaning.
10 . Write programs for computing the volume of a sphere, a cone

Operators and Expressions Unit 2

Computer Programming using C 31

and a cylinder. Assume, the dimensions are integers. Use type casting
whereever necessary.
11. If a,b,c,d and e are declared using the statement
 int a, b, c, d;
 What value is assigned to the variablea in the following statement
 a = b > c ? c > d ? 12 : d > e ? 13 : 14 : 15 in each of the following
cases:

(i) b = 5; c = 15; d = e = 8;
(ii) b = 15; c = 10; d = e = 8;
(iii) b = 15; c = 10; d = e = 20;
(iv) b = c = 9; d = 20; e = 19;

Decision and Control Structures Unit 3

 Computer Programming using C 45

UNIT-3 DECISION AND CONTROL STRUCTURES

UNIT STRUCTURE

3.1 Learning Objectives
3.2 Introduction
3.3 Input/Output Functions
3.4 Conditional Statement

3.4.1 if Statement
3.4.2 if else Statement
3.4.3 Nested if-else Statement
3.4.4 switch Statement
3.4.5 Conditional Operator Statement

3.5 Iterative Statement

3.5.1 for Statement
3.5.2 while Statement
3.5.3 do-while Statement

3.6 break Statement
3.7 continue Statement
3.8 goto Statement
3.9 Let Us Sum Up
3.10 Further Readings
3.11 Answers to Check Your Progress
3.12 Model Questions

3.1 LEARNING OBJECTIVES

After going through this unit, you will able to :

 learn about Input/Output functions
 describe Conditional Statements
 describe Iterative Statements
 define break, continue and goto statements

3.2 INTRODUCTION

We have seen that the C language is accompanied by a collection of
library functions, which includes a number of input/output functions.
Moreover the instructions were executed in the same order in which
they appeared within a program. Each instructions was executed once
and only once. But the C language provides the facilities to carry out
logical test at some particular point within the program and

46 Computer Programming using C

Decision and Control Structures Unit 3

repeated execution of a group of instructions. In this unit we will discuss
about various input/output library functions and various control
statements available in C language.

3.3 INPUT/OUTPUT FUNCTIONS

C language simply has no provision for receiving data from any of the
input devices (say keyboard, floppy) or for sending data to the output
devices (say VDU, floppy etc.). It means that ‘C’ compiler does not
provide any I/O (Input/Output) statements. In programming practice,
many programs may require data which needs to be read into the
variable names.Moreover, sometimes data stored in variable names
need to be shown externally. That is why, in C, there are numerous
library functions available for I/O, through which data can be read
from or written to files or standard I/O devices. These library func-
tions can be classified into three broad categories:

a. Console I/O functions - functions to receive input from key-
board and write output to VDU.

b. Disk I/O functions - functions to perform I/O operations on a
floppy disk or hard disk.

c. Port I/O functions - functions to perform I/O operations on
various ports.

We will now deal with the Console I/O functions.Console I/O func-
tions can be further classified as shown in the Table 1.

Console Input/Output functions

 Formatted functions Unformatted functions

Type Input Output Type Input Output

char scanf() printf() char getch() putch()

 getchar() putchar()

 getche()

int scanf() printf() int - -

float scanf() printf() float - -

string scanf() printf() string gets() puts()

The basic difference between formatted and unformatted I/O
functions is that the formatted functions allow the input read from the
keyboard or the output displayed on the VDU to be formatted as per

Decision and Control Structures Unit 3

 Computer Programming using C 47

our requirements. For example, if values of average marks and per-
centage marks are to be displayed on the screen, then the details like
where this output would appear on the screen, how many spaces
would be present between the two values, the number of places after
the decimal points etc., can be controlled using formatted functions.

The library implements a simple model of text input and output. A text
consists of a sequence of lines, each ending with a newline charac-
ter. If the system doesn’t operate that way, the library does whatever
is necessary to make it appear as if it does. For instance, the library
might convert carriage return and linefeed to newline on input and
back again on output.

Unformatted Console I/O Functions : There are several standard
library function available under this category. These functions deals
with a single character or with a string of characters. Let us first look
at the functions that can handle one character at a time.

 a) Single Character Input - the getchar Function :

Single character can be entered in to the computer using the
C library function getchar. This function reads one character from the
keyboard after the new-line character is received (when press Enter
key). The function does not require any arguments, though a pair of
empty parentheses must follow the word getchar.

 In general terms, getchar function is written as

character variable = getchar();

Where character variable refers to some previously declared char-
acter variable.

 e.g.
char ch;
ch = getchar () ;

Program 1 : Demonstration of getchar() function

#include <stdio.h>
void main()

{
 char key;

 printf(“\n Type your favourite keyboard character:”);
 key=getchar();
 printf(“Your favourite character is %c!\n”,key);
}

48 Computer Programming using C

Decision and Control Structures Unit 3

RUN:
Type your favourite keyboard character: 1
Your favourite character is 1!

b) Single Character Output - the putchar Function :
Single character can be displayed using the C library function

putchar. putchar(), the opposite of getchar(), is used to put exactly
one character on the screen. Putchar requires as an argument the
character to put on the screen.
In general the putchar function is written as

putchar(character variable);

where character variable refers to some previously declared charac-
ter variable

e.g.
char ch;

ch = getchar () ; /* input a character from kbd*/

putchar (ch) ; /* display it on the screen */

Program 2 : Demonstration of putchar() function

#include <stdio.h>
void main()

{
 char x = ‘A’
 putchar(x);

 putchar(‘B’);
}

RUN:

AB

c) String Input and String Output Function :

 gets() - The gets() function receives a string from the keyboard.
The scanf() function has some limitations while receiving a string of
characters because the moment a blank character is typed, scanf()
assumes that the end of the data is being entered. So it is possible to
enter only one word string using scanf(). To enter multiple words in
to the string, the gets() function can be used. Spaces and tabs are
perfectly accepted as part of the string. It is terminated when the

Decision and Control Structures Unit 3

 Computer Programming using C 49

enter key is hit.

In general terms, gets function is written as

gets(variable name);

Where variable name will be a previously declared variable.

puts() - The puts() function works exactly opposite to gets() func-
tion. It outputs a string to the screen. Puts() can output a single string
at a time.

In general terms, gets function is written as

puts(variable name);

Where variable name will be a previously declared variable.

Program 3 : Demonstration of gets() and puts() function

#include<stdio.h>
void main()

{

char name[40];
puts(“Enter your name”);
gets(name);
puts(“Your name is”);
puts(name);

}

Formatted Console I/O Functions : In order to write a user interac-
tive program in C language, we would need input and output func-
tions that are also called routines. The two functions used for this
purpose are : printf() and scanf()

scanf() - scanf() allows us to enter data from the keyboard that will
be formatted in a certain way. The general form of scanf() statement
is as follows:

scanf(control string, arg1, arg2.........argn);

Where control string refers to a string containing certain required for-
matting information, and arg1, arg2,....argn are arguments that rep-
resent the individual data items.

50 Computer Programming using C

Decision and Control Structures Unit 3

Note that we are sending the addresses of variables (ad-
dresses are obtained by using & - ‘address of’ operator) to scanf()
function. This is necessary because the values received from key-
board must be dropped into variables corresponding to these ad-
dresses. The values that are supplied through the keyboard must be
separated by either blank(s), tab(s), or newline(s). Do not include
these escape sequences in the format string.

scanf(“%d %f %c”,&c,&a,&ch);

printf() - The output function printf() translates internal values to char-
acter.

printf(control string, arg1, arg2,argn)

The format string can contain:

· Characters that are simply printed as they are.
· Conversion specification that begins with a % sign.
· Escape sequences that begins with a \ sign.

Printf() converts, formats, and prints its arguments on the standard
output under the control of the format. It returns the number of char-
acters printed. The format string contains two types of objects - ordi-
nary characters, which are copied to the output stream, and conver-
sion specifications, each of which causes conversion and printing of
the next successive argument to printf(). Each conversion specifica-
tion begins with % and ends with a conversion character. Between
the % and the conversion character there may be, in order:

· A minus sign, which specifies left adjustment of the converted
argument.

· A number that specifies the minimum field width. The con-
verted arguments will be printed in a field at least as wide as
the specified minimum. If necessary, it will be padded on the
left (or right, if left adjustment is called for) to make up the field
width.

· A period (.) separates the field width from the precision.

· A number, i.e., the precision that specifies the maximum num-
ber of characters to be printed from a string, or the number of
digits after the decimal point of a floating-point value, or the
minimum number of digits for an integer.

Decision and Control Structures Unit 3

 Computer Programming using C 51

If the character after the % is not a conversion specification, the be-
havior is undefined.

Data type Conversion character

Integer short signed %d or %I

 short unsigned %u

 long signed %ld

 long unsigned %lu

 unsigned hexadecimal %x

 unsigned octal %o

Real float %f

 double %lf

Characters signed char %c

 unsigned char %c

string %s

Program 4 : Demonstration of scanf() and printf() function

#include <stdio.h>
void main()
 {

 int i,j;
 printf(“Please type in 2 numbers: “);
 scanf(“%d %d”,&i,&j);
 printf(“you typed %d and %d\n”,i,j);

 }

52 Computer Programming using C

Decision and Control Structures Unit 3

 CHECK YOUR PROGRESS

1. A C program contains the following statements
#include<stdio.h>
 char a, b, c;

 a) Write appropriate getchar statements that will allow val
ues for a, b, c to be entered into the computer.

 b) Write appropriate putchar statement that will allow the
current value of a, b, c to be written out of the computer.

 2. A C program contains the following statements
#include<stdio.h>
 int i, j, k;

 Write a printf function for each of the following groups of
variable or expressions. Assume all variable represent deci-
mal integers.

a) i, j and k
b) (i+j), (i-k)
c) sqrt (i+j), abs (i-k)

3. Write appropriate scanf function for the above problem to
enter automatic values for i, j and k assuming
a) the value for i, j and k will be decimal integers.
b) the value for i will be decimal integer, j an octal integer
and k a hexadecimal integer.

3.4 CONDITIONAL STATEMENT

When programming, you will ask the computer to check various kinds
of situations and to act accordingly. The computer performs various
comparisons of various kinds of statements. These statements come
either from you or from the computer itself, while it is processing
internal assignments.

In this section we will discuss about some of the conditional
statemet used in C language i.e. if Statement, if else Statement,
Nested if-else Statement, switch Statement, Conditional Operator
Statement etc.

3.4.1 if Statement

 This is the most popular decision making statement. First of all it

Decision and Control Structures Unit 3

 Computer Programming using C 53

checks the test condition and then, depending on the result of the test
condition it transfers the control to a particular statement or a block
of statements.

Fig 3.1: Control transfer in if statements

Depending on the complexity of conditions to be tested if statement
may be implemented in 4 different ways.The syntax of simple if state-
ment is –

If(test condition)
 {

 - - - - - - - - - - - - - -
 block of statement
 - - - - - - - - - - - - - -

 }

Example 1: Write a C program to check whether the entered number
is positive or negative?

Solution:

#include<stdio.h>

void main()
 {

int a ;
printf (“ Enter the number ”) ;
scanf (“ %d ” , &a) ;
if(a == 0)
printf (“The Number is Zero ”) ;
if (a > 0)
printf (“ The Number is Positive ”) ;
if (a < 0)
printf (“The number is negative ”);

}

...................................
Block of Statement 2
...................................

...................................
Block of Statement 1
...................................







Test Condition

If False
IF Ture

54 Computer Programming using C

Decision and Control Structures Unit 3

Output:
 Enter the number 3
The Number is Positive

3.4.2 if - else Statement

This is a bi-directional condition control statement. This type of state-
ment is used to test the condition and take one of two possible ac-
tions. If the test condition is evaluated and found to be true then block
of statement 1 will executed, otherwise block of statement 2 will ex-
ecuted. Syntax is –

If (test condition)
 {

 block of statement 1
 }

 else
 {

 block of statement 2
 }

Example 3.2 Write a C program to print the largest of two given
numbers?

#include<stdio.h>

void main()
 {

 int a , b ;
 printf (“ Enter the First number ”) ;
 scanf (“ %d ” , &a) ;
 printf (“ Enter the Second number ”) ;
 scanf (“ %d ” , &b) ;

 if(a>b)
 printf (“ Largest Number is = %d” , a) ;

/* This statement will executed if the conditional
statement is true i.e. if the value of a is greater than
the value of b */

 else
 printf (“ Largest Number is=%d” , b) ;

/* This statement will executed if the conditional
statement is false i.e if the value of a is less than the
value of b */

 }

Decision and Control Structures Unit 3

 Computer Programming using C 55

 Output :
Enter the First number 12
Enter the Second number 20
Largest Number is = 20

3.4.3 Nested if - else Statement

In certain cases we may use one if else structure within another if
else. This is known as nested if else structure. The Syntax is as
follows.

if(test condition 1)
 {
 if(test condition 2)
 {
 block of statement 1
 }
 else
 {
 block of statement 2
 }
 }
else
 {
 block of statement 3
 }

Example 3.3: Example 3.1 can be rewritten as following ways-

#include<stdio.h>
void main()
{

int a ;
printf (“ Enter the number: ”) ;
scanf (“ %d ” , &a) ;
 if(a == 0)
 printf (“The number is Zero ”) ;
 else
 if (a > 0)
 printf (“ The number is Positive ”) ;
 else
 printf (“The number is Negative ”);

}

Output : Enter the number : 5
 The number is Positive

56 Computer Programming using C

Decision and Control Structures Unit 3

3.4.4 switch Statement

The main disadvantage of if …else statement is that they are com-
plex to understand,read and debug. If you have a complex set of
choices to make, the switch statement is the more powerful alterna-
tive. “Pick the matching value and act” is the working strategy of switch
statement, rather checking the conditions of nested if…else ladder.
The syntax is –

switch (expression)
{

case label1 :
statement(s) ;
break ;

 case label2 :
statement(s) ;

 break ;
- - - - - - - - - - - - - -
- - - - - - - - - - - - - -
default:
 statement(s);

break ;
}

The switch statement check the value of expression against the list
of case labels and when a match is found, the block of statements
associated with that case is executed. The break statement at the
end of each block signals the end of a particular case and causes
immediate exit from the switch statement. If the expression does not
match any of the case labels then it will execute the default case. Let
us consider an example –
Example 3.4: Write a program to convert number to words. For
example if you enter 5 the output will be “Five”.

#include<stdio.h>
void main()

 {
 int x;

 printf(“Enter a number less than 10 : ”);

 scanf(“%d”,&x) ;

Decision and Control Structures Unit 3

 Computer Programming using C 57

switch(x)
{
case 1: printf(“ One ”) ;
break;
case 2: printf(“ Two ”) ;
break ;
case 3: printf(“ Three ”) ;
break ;
case 4: printf(“ Four ”) ;
break ;
case 5: printf(“ Five ”) ;
break ;
case 6: printf(“ Six ”) ;
break ;
case 7: printf(“ Seven ”) ;
break ;
case 8: printf(“ Eight ”) ;
break ;
case 9: printf(“ Nine ”) ;
break ;
case 10: printf(“ Ten ”) ;
break ;
default : printf(“ Out of range ”) ;

}
 }

Output: Enter a number less than 10 : 5
 Five

3.4.5 Conditional Operator Statement

C has a special type of operator which has the two way decision
making capability. This operator is known as ternary conditional op-
erator. The syntax is -

Conditional expression ? statement_1 : statement_2

The conditional expression is evaluated first. If the result is true, state-
ment_1 is evaluated and is returned as the value of the conditional
expression, otherwise statement_2 is evaluated and its value is re-
turned. Let us again consider example 3.2

void main()
{
 int a , b ;
 printf (“ Enter the First number ”) ;

58 Computer Programming using C

Decision and Control Structures Unit 3

 scanf (“ %d ” , &a) ;
 printf (“ Enter the Second number ”) ;
 scanf (“ %d ” , &b) ;
 if(a>b)
 printf (“ Largest Number is = %d ” , a) ;
 else
 printf (“ Largest Number is=%d” , b) ;
}

Can be written as

void main()
{
 int a , b ;
 printf (“ Enter the First number ”) ;
 scanf (“ %d ” , &a) ;
 printf (“ Enter the Second number ”) ;
 scanf (“ %d ” , &b) ;
 printf (“ Largest Number is = %d ” , (a > b) ? a : b) ;

 }

 CHECK YOUR PROGRESS

4. It is possible to have nested statement in C.
5. A switch statement is used to -

a) switch between function in a program
b) switch from one variable to another variable
c) to choose from multiple possibilities which may arise
due to different values of a single variable
d) to use switching variable

6. Study the following C program
#include<stdio.h>
void main()
 {
 int a=7, b=5;
 switch(a/ a%b)

{
 Case1 : a=a-b;
 Case2 : a=a+b;
 Case3 : a=a*b;
 Case4 : a=a/b;
 default : a=a;
}

 }
On the execution of the above program, what will be the value of
the variable a ?

Decision and Control Structures Unit 3

 Computer Programming using C 59

3.5 ITERATIVE STATEMENT

There are three iterative statements available in C, which is also known
as Loop control statement. They are-

for statement
 while statement
 do…while statement
These statements are known as iterative because the block of state-
ment will be executed until the stated condition become false.

3.5.1 for Statement

This is the most popular iterative statement. The syntax is –

for (
 initialization statement;

 conditional statement ;
 increment/ decrement statement

)

{
..
Block of statement
..
}

The for structure consist of three different statement separated by
semicolon, the first statement is the initialization statement, which is
executed once before the control entered into the block of statement.
The initialization is done using assignment statement. The second
statement is the conditional statement. The condition is a relational
expression. If the condition is true, the block of statement will ex-
ecuted, otherwise the loop is terminated. The third statement is in-
crement or decrement statement.

The initialization statement initializes the loop variable. Let us
take an example -
Example 3.6: Write a C program to print the natural number up to a

60 Computer Programming using C

Decision and Control Structures Unit 3

given limit?
#include<stdio.h>
void main()

{
 int a, c;
 printf (“ Enter the Limit : ”) ;
 scanf (“%d”, &a) ;
 for (c = 0 ; c < a ; c++)
 printf (“ %d”, c) ;
 }

OUTPUT :
Enter the Limit : 10
0123456789

In the above example the first loop variable c is initialized as zero,
then check the condition, is the value of c is less then the value of a,
that is 10. For the first execution the condition results true. The con-
trol will execute the printf statement which will print the value 0. Next
the value of loop variable c is incremented by 1. Thus the current
value of loop variable c is now 1. Again check the condition whether
1<10. Since the condition is true therefore the printf statement will
executed and print 1. Again increment the loop variable by 1 and re-
peat the same procedure until the resultant of the condition is false.

3.5.2 while Statement

The general form of while statement is-

while (test condition)
 {

Statement(s);
 }

The program will repeatedly execute the statement(s) inside the
while loop until the condition becomes false. If the condition is initially
false, the statement will not be executed. Let us consider an example

Example 3.7: Write a C program to print the natural numbers less

Decision and Control Structures Unit 3

 Computer Programming using C 61

than 10 using while loop.

#include<stdio.h>
void main()
 {

int c ; // declaration statement
c=0 ; // initialization statement
while (c<10) // loop statement
 {

printf (“%d” , c) ; /* block of statement within
c++; while loop */

 }
 }

Output :
0 1 2 3 4 5 6 7 8 9

In the above example the first one is a declaration statement, which
declares that c is an integer type variable. The second one is an
initialization statement which initializes the loop variable c to zero.
Next one is the while loop. The loop will be executed until the value of
the loop variable c is less than or equal to 9. As soon as the value of
c is 10 the outcome of the conditional statement of while loop will
false and the loop will be terminated. The execution of while loop for
each execution can be tabulated as below –

Fig - Execution of while loop for example 3.5

Execution
Number

Value of
conditional
statement

Result printf("%d",-
c)

value of c
(c++)

1 0<10 True 0

2 1<10 True 1

3 2<10 True 2

4 3<10 True 3

5 4<10 True 4

6 5<10 True 5

7 6<10 True 6

8 7<10 True 7

9 8<10 True 8

10 9<10 True 9

11 10<10 False will not
execute

will not
execute

62 Computer Programming using C

Decision and Control Structures Unit 3

3.5.3 do…while STATEMENT

Sometime a while loop might not serve your purpose. In such situa-
tion you might want to reverse the semantics from “run while this is
true” to the subtly different “do this, while this condition remains true”.
In other words take the action, and then, after the action is completed,
check the condition. Such a loop will always run at least once. To
ensure that the action is taken before the condition is tested, use
do…while loop. The syntax is-

do
 {

 Statement(s);

 } while (condition) ;

Mind the syntax with the above two. The do…while statement always
terminated with a semicolon, whether others two are not. It first ex-
ecutes the statement(s) and then checks whether the condition is
true or false. It will repeatedly execute the statement(s) until
thecondition become false. Let us take an example –

Example 3.8: Write a C program to print all the even number less
than or equal to10 using do…while loop.

#include<stdio.h>

void main()
 {
 int c=2;
 do
 {
 printf(“%d ” , c) ;
 c=c+2;
 } while(c < = 10);
 }

Output:
 2 4 6 8 10

Decision and Control Structures Unit 3

 Computer Programming using C 63

3.6 break STATEMENT

The break statement can only appear in a switch body or a loop body.
It causes the execution of the current enclosing switch or loop body
to terminate.
The general format of the break statement is :

break;

The break is a key word in programming language C and a semico-
lon must be inserted after the word break.
break statement with switch - case structure

switch (expression)
{

case label1 :
statement(s) ;
break ;

 case label2 :
statement(s) ;

 break ;
- - - - - - - - - - - - - -
- - - - - - - - - - - - - -
default:
 statement(s);

break ;
}

The following program shows the use of break statement inside for
loop :

#include <stdio.h>

void main()
 {
 int i;

 for (i = 1; i < 10; i++)
 {
 printf (“%d\n”, i);

 if (i == 4)
 break;
 }
} // Loop exits after printing 1 through 4

64 Computer Programming using C

Decision and Control Structures Unit 3

Output
1
2
3
4

3.7 continue STATEMENT

The continue statement forces the next iteration of the loop to take
place, skipping any statement(s) following the continue satement in
the body of the loop. The syntax of the continue statement is :

continue;

The use of continue statement in loops is illustrated in the following
figure. In while and do - while loops, continue causes the control to go
directly to the test condition and then to continue the iteration pro-
cess. In the case of for loop, the increment section of the loop is
executed before the test test-condition is evaluated.

While (test-condition)
 {
 ………

if(………..)
 continue;

 ……………
 ……………
 }

Fig -

do
 {
 …………
 if(………..)
 continue;
 …………..
 ………….
 } while(test-condition);

Fig -

Decision and Control Structures Unit 3

 Computer Programming using C 65

for(initialization; test condition; increment)
 {
 ……………
 if(………..)

continue;
……………
..................

 }

Fig -

The following program shows the use of continue statement with the
do-while loop :

#include<stdio.h>
void main()
 {

int i, value;
i = 0;

do
 {
 printf (“ Enter a number :\n”);
 scanf (“%d”, &value);
 if(value <= 0)
 {

printf(“Zero or negative value found \n”);
continue;

 }
 i++;
 }while (i <= 4);

 }

Output :

Enter a number :
1
Enter a number :
2
Enter a number :
3
Enter a number :
0
Zero or negative value found
Enter a number :
-1
Zero or negative value found
Enter a number :
4
Enter a number :
5

66 Computer Programming using C

Decision and Control Structures Unit 3

3.8 goto STATEMENT

The goto statement is used to transfer the control in a program from
one point to another point unconditionally. This is alsoo called uncon-
ditional branching. The syntax of the goto statement is :

goto label;

where label is a valid identifier used in a programming language C to
indicate the destination where a control can be transferred. The syn-
tax of a label is :

label :
The various ‘case’ statements in a switch construct also serve as
labels used to transfer execution control.
The following program shows the use of goto statement with the for
loop :

#include<stdio.h>
void main()
 {
 int i, value;
 for(i=0; i<=10; ++i)

{
 printf (“Enter a number \n”);
 scanf (“%d”, &value);
 if (value <= 0)
 {

 printf (“Error :”);
printf (“ Zero or negative value found \n”);
goto error;

 }
 }
error :
; // Null statement

 }

Output :
Enter a number
1
Enter a number
2
Enter a number
0
Error : Zero or negative value found

Decision and Control Structures Unit 3

 Computer Programming using C 67

CHECK YOUR PROGRESS

7. Consider the following code fragment
for(digit = 0; digit<9; digit++)
 {

digit = 2*digit;
digit --;

 }
 How many times the loop will be executed -
 a) Infinite b) 9 c) 4 d) 0

8. How many times will the following loop be executed-

ch = ‘b’;
while (ch>= ‘a’ && ch <= ‘z’)

 a) 0 b) 25 c) 26 d) 1
9. Write the output of the following program -

#include<stdio.h>
void main()
 {
 int i=0, sum =0;
 while(i<20)

{
 if(i%5 = = 0)
 {

sum += i;
printf(“%d”, sum);

 }
++i;

 }
printf (“\n Sum = %d”, sum);

 }

 10. Write a C program to check whether a given number is a
 palindrome or not.

 A palindrome is a sentence,
phrase, name or number
that reads the same
forwards as it does
backwards. A good exaple
would be the word ‘’racecar.’’
R-a-c-e-c-a-r. r-a-c-e-c-a-r
or radar. R-a-d-a-r. r-a-d-a-
r.
or the number : 16461,
1234321....etc

68 Computer Programming using C

Decision and Control Structures Unit 3

3.9 LET US SUM UP

 1. C library functions used for I/O operations can be classified
into three categories i.e. console I/O function, disk I/O func-
tion and port I/O function.

 2. Console I/O function is classified into two categories : for-
matted and unformatted function.

 3. scanf and printf are formatted console I/O function.
 4. getch(), getche(), getchar(), gets(), putch(), putchar() and

puts() are unformatted console I/O function.
 5. Control statements allows a programmer to change the se-

quence of instructions for execution.
 6. The if statement is a conditional control statement that test a

particular condition. The if statement also allows answer for
the kind of either-or condition by using an else clause.

 7. The switch statement is available in programming language
C for handling multiple choices.

 8. The loop or iterative statement, directs a program to perform
a set of operations again and again until a specifiedcondition
is achieved.

 9. The while and do-while loop constructs are more suitable in
situations where prior knowledge of the terminating condition
is not known.

 10. While loop evaluates a test expression before allawing entry
into the loop, whereas do-while loop is executed atleast once
before it evaluates the test expression which is available at
the end of the loop.

 11. The for loop construct is appropriate when in advance it is
known as to how many times the loop will be executed.

 12. The break statement causes an immediate exit from the in-
nermost loop structure.

 13. The continue statement causes the loop to be continued with
the next iteration after skipping any statement in between.

 14. The goto statement is used to transfer the control in a pro-
gram from one point to another point unconditionally.

3.1O FURTHER READINGS

1. Balagurusamy, E: Programming in ANSI C, Tata McGraw-Hill
 publication.
 2. Gottfried Byron S: Programming with C, Tata McGraw-Hill
 publication.

Decision and Control Structures Unit 3

 Computer Programming using C 69

1. a) a = getchar();
b = getchar();
c = getchar();

b) putchar(a);
putchar(b);
putchar(c);

2. a) printf (“%d %d %d”, i, j,k);
b) printf(“%d %d”, (i+j), (i-k));
c) printf (“%f %d”, sqrt(i+j), abs(i-k));

3. a) scanf (“%d %d %d”, &i, &j &k);
b) scanf (“%d %o %x”, &i, &j, &k);

4. if - else 5. c) 6. 35

7. a) Infinite 8. b) 25 9. 0 5 15 30
 sum = 30

10. #include<stdio.h>
 void main()

{
 long int n, digit, sum = 0, rev = 0;
 long int num;
 printf (“Input the number \n”);
 scanf (“%ld”, &num);
 n = num;
 do
 {

digit = num % 10;
sum += digit;
rev = rev * 10 + digit;
num /= 10;

 }
while (num != 0);
Printf (“Sum of the digits of the number = %ld\n”, sum);
printf (“Reverse of the number = %ld \n”, rev);

3.11 ANSWERS TO CHECK
YOUR PROGRESS

70 Computer Programming using C

Decision and Control Structures Unit 3

3.12 MODEL QUESTIONS

1. What is the purpose of the getchar function ? How it is used
within a program ?

2. What is the purpose of the putchar function ? How it is used
within a program ? Compare with the getchar function ?

3. Write down the main purpose of the scanf and printf function.
Summarize the meaning of the more commonly used
conversion charactes within the control string of a scanf
function.

4. Compare the use of gets and puts functions to transfer strings
between the computer and the standard input/output devices.

5. What is the purpose of the while statement ? When is the
logical expression evaluated ? What is the minimum number
of times that a while loop can be executed ?

6. What is the purpose of the do-while statement ? How does it
differ from the while statement ?What is the minimum number
of times that a while loop can be executed ?

7. How does a for loop differ from a while and do-while statement ?
8. Why mainfunction is special ? Give two reason ?
9. What is the difference between entryh controlled loop and exit

controlled loop ?
10. What is the similarity and difference between break and

continue statements ?
11. Write a C program to find the factorial of a number ?
12. Write a C program which accepts a number and prints the

sum of digits of this number ?
13. Write a program to find the odd and even numbers upto 100.
14. Write a program to convert a binary number to its equivalent

decimal number.
15. Write a program to read a string of characters and print out

hte following :
a) Number of uppercase alphabets (A,B,C,.....)
b) Number of lower case alphabets (a,b,c,...)
c)Number of special characters (+,-,/,*,....)

 16. Write a program to obtain the following output

 if (n == rev)
printf (“The number is a palindrome \n”);

 else
printf (“The number is not a palindrome \n”);

 }

Decision and Control Structures Unit 3

 Computer Programming using C 71

a) * b) * c) 1
* * * * * 2 2 2
* * * * * * * * 3 3 3 3 3

72 Computer Programming using C

 Storage Class Unit 4

UNIT- 4 STORAGE CLASS

UNIT STRUCTURE

4.1 Learning Objectives
4.2 Introduction
4.3 Storage Class
4.4 Automatic Variable
4.5 External Variable
4.6 Static Variable
4.7 Register Variable
4.8 Macros
4.9 Preprocessor
4.10 Let us Sum Up
4.11 Further Readings
4.12 Answers to Check Your Progress
4.13 Model Questions

4.1 LEARNING OBJECTIVES

After going through this unit, you will able to :

 learn about Storage Class
 describe Automatic, External, Static and Register Variable
 describe Scope of Variables
 define lifetime of variables
 define Macros
 describe Preprocessor Directives

4.2 INTRODUCTION

Already we have the basic idea about the variable. Variable is nothing
but the memory location where we can store the values of a particu-
lar data type. The value stored in the variable may be changed dur-
ing the program executions; it will depend on your program coding.

Every C variable has a storage class and a scope. This stor-
age class determines the part of memory where storage is allocated
for an object and how long the storage allocation continues to exist
during the execution of program. Also it determines the scope which
specifies the part of the program over which a variable name is
visible, i.e. the variable is accessible by name. We will be much
clear about it when go for example.In this unit we will discuss the
various storage classes and explain them with examples.

 Storage Class Unit 4

Introduction to Computer Programming using C (Block 1) 73

4.3 STORAGE CLASS

Storage class refers to the permanence of a variable and its scope
within the program.It determines the part of memory where storage
is allocated for an object (particularly variables and functions) and
how long the storage allocation continues to exist.

The storage class specifier used within the declaration determines
whether:

• the object is to be stored in memory or in a register.
• the object receives the default initial value or an indetermi-

nate default initial value.
• the object can be referenced throughout a program or only

within the function, block,or source file where the variable is
defined.

Here, the term ‘object’ refers to variable, function and paramneters
in which storage class is going to be used. Depending upon the
above, specified storage class can be classified into four categories:

i. Automatic
ii. Register
iii. Static
iv. External

Now, we will go to details for each storage class in the next sec-
tions with examples.Then it would be more clear to us.

4.4 AUTOMATIC VARIABLE

We are already aware of the variable used with the C program.
So we can now use storage class in the variable declarations.
Actually, we have already used the automatic storage class in
our program in the earlier sections. Can you identify that?. Take
an example as shown below:

Example1:

 void main()
 {
 int a,b,s; // or we can write here as auto int a,b,s;
 scanf(“%d %d”, &a,&b);
 s=a+b;
 printf(“Sum is %d”,s);

 }
Yes ! you are thinking right. By default all the variables declared are
automatic.We can also explicitly write it using auto keyword before
the data type. So what are the special properties of automatic stor-
age that makes it different from other storage class ?

74 Computer Programming using C

 Storage Class Unit 4

Already we have discussed that storage class is related to the loca-
tion i.e. where it is stored ? What is its default intial value? What is its
scope i.e., whether variable is active within the block or program
etc?
Automatic variable are declared at the start of a program’s block such
as in the curly braces ({ }).Memory is allocated automatically upon
entry to a block and freed automatically upon exit from the block.

The automatic variable has the following characteristics:

a)This variable stores the value in the memory of a computer.

b) By default this variable has grabage value. It means that If the
variable is not initialized then the variable contains useless value.

c) Automatic variable is local to the block in which the variable is
declared.Outside this block the variable can not be accesed. This is
known as the scope of the variable.

d) Life time of this variable is till the control of the program remains
within the block where it is declared.

Example 2:

 void main ()
 {

 auto int i,j;
 i=10;
 printf(“i= %d \n j= %d”,i,j);
 }

Output :

 i=10
 j=8214 (or any garbage value)

Since here we initialized i to 10 explicitly, therefore the value of i is
printed as 10; But in case of j we do not assign any value so the
garbage value is printed. This example describes about the default
intial value.Now, we go for the life time and scope of automatic vari-
ables. Take another example:

Example 3:
void main ()
 {
 auto int i=1;
 {

auto int i=2;
 {
 auto int i=3;

 Storage Class Unit 4

Introduction to Computer Programming using C (Block 1) 75

 printf(“%d”,i);
 }
 printf(“%d”,i);
}

 printf(“%d”,i);
 }

 Output:
 3

 2
 1
The program has three blocks and each block initializes the value of
i. Note that variable i allocates extra memory for each declarations
and each i is different from one another. So, the first inner block is
executed and in this block i =3; therefore 3 is printed. After that the
second inner block is executed resulting 2 be printed and last 1 is
printed for the first block.
So we have seen that the value of i is different in each block.Whatever
the value we have initialized with i, it remains valid only within the
block where we have declared.This is known as scope of the vari-
able.

4.5 EXTERNAL STORAGE CLASS

Already we have learnt about automatic variable which is local to the
block in which it is declared. But sometimes we need a variable
which should be available to all the functions and blocks within the
program. External storage class makes it possible.The properties of
the external variable are:

a) This variable also stores value in the memory.

b) Unlike the automatic variable, by default zero is initialized in this
type of variable.

c)The scope of this variable means its availabiltiy.It is available to all
the funcitons and blocks within the program.

d) Life time of this variable is until the program execution does not
stop.

The main difference between automatic and external variable is in
the scope and life time of the variables; they have similarities in stor-
age and default initial value. External variables are declared outside
all funcitons.Now we go for example of external variable regarding
the scope and life time of the variable :

76 Computer Programming using C

 Storage Class Unit 4

Example 4 :
 int var; // external variable
 void main()
 {
 printf(“%d”,var); // just print the value of ‘var’

var_add_two(); // add 2 to var and display it
 var_sub_one();

 }

 void var_add_two()
 {

 var=var+2;
 printf(“\n%d”,var);

 }
 void var_sub_one()

 {
 var=var-1;
 printf(“\n%d”,var);
 }

Output:
0
2

 1

Here first output is 0 since default initial value of external variable is
0.Next we increment ‘var’ by 2, so the next output is 2 and after that
we decrement the value of ‘var’ by one so the output is 2-1 i.e. 1.
Note that the value of ‘var’ is visible to the funcitons var_add_two()
and var_sub_one() each of which modifies value of ‘var’.

CHECK YOUR PROGRESS

 Q1. Write true or false:

 a) The default initial value of external variable is same
 with automatic variable.

 b) By default the variables declared are automatic.
 c) The storage for the automatic variable is in the

 registers.

 Q2. Write down one similarity between automatic and
 external variables.

 Storage Class Unit 4

Introduction to Computer Programming using C (Block 1) 77

4.6 STATIC VARIABLE

Static variable is mostly similar to the automatic variable; Like the
automatic variables static variables are local to the block in which
they, are declared.The difference between them is that static vari-
ables value does not disapear when the function is no longer
active.Their last updated value always persists.That is, when the con-
trol comes back to the same function again the static variables have
the same value as they leave at the last time. Properties of static
variables are:

a) Storage location for static variable is in Memory.

b) These variables are automatically initialized to zero upon memory
allocation just as external variables are.

c) The scope of static automatic variables is same with the auto-
matic variables, i.e. it is local to the block in which it is defined;

d) Static storage class provides a lifetime over the entire program.

Example 5:
voi d add_one();
void main()
{
 add_one();
 add_one();
}
void add_one()
{
 static int var=3;
 var=var+1;
 printf(“\n %d”,var);
}

Ouput: 4
5

 We have seen that the output of the above program is 4 and 5.
Since we have initialized ‘var’ with 3 and then increment ’var’ by 1
so first output is 4 during the first call of the add_one() function.
The variable ‘var’ retains its previous value 4 and thus in the sec-
ond call of the add_one() functon increments 4 by 1; thus the output
is 5.If we write the above function definations as:-

 void add_one()
{
 int var=3; // or auto int var=3;
 var=var+1
 printf(“\n %d”,var)
}

The ouput of the Example 5 program should be -

78 Computer Programming using C

 Storage Class Unit 4

 4
4

Do you get the point why ? The main reason behind this is that the
automatic storage class variable does not retain its previous
value.Whenever the add_one() function is called ‘var’ has always ini-
tialized value 3 and then increment by 1; so the output is always 4.

4.7 REGISTER STORAGE CLASS

We have already discussed about the automatic,static,external stor-
age classes;each class stores variables in the memory of the
computer.We all know that there are mainly two areas for storing
data in the computer:- Memory and CPU register. Accessing data
from the register is faster than from memory. This concept makes
the program to run faster.Register storage class makes it possible.We
use the register class with the variables which are going to be accesed
frequently. Can you identify such situations in C program where a
variable is frequently used ? Yes ! in the loop (such as for(),do-while()
etc) variables are accesed mostly.

The characteristics of such variables in terms of scope,life time etc
are:-
a) Unlike other storage class, the storage area for such varibale is in
CPU register.
b) By default,garbage value is initialized to such variable.
c) The scope of this variable is local to the block where it is declared.
d) Life time of such variable is till the control remains within the par-
ticular block where it is declared.
Example 6:

void main()
 {

 register int var;
 for(var=1; var<=10; var++)

printf(“%d”,var);
 }

One confusion may arise in your mind that if we declare most of the
variable as register then every program should run faster.But then
why do we not use this concept always? Because, the number of
registers is limited in a computer system and so we can not use
register class to all variables.If in a program the total number of reg-
ister variables exceeds the system register quantity; then all the vari-
ables that exceed are default automatically.We need not take care
for this.
For example, if we write a program with loops that uses 20 register
variables (assume) and run it with the computer that has only 16
CPU registers, then the rest 4 variables are automatically trans-
formed to automatic storage class variable.One important point is
that the register variable can not be used for float and double data
type since CPU registers capacity usualy 16 bit. Both float and double
data type require 4 byte (4 x 8 =32 bit) and 8 byte (8 x 8 = 64 bit).

 Storage Class Unit 4

Introduction to Computer Programming using C (Block 1) 79

 CHECK YOUR PROGRESS

 Q3. Identify from the following which are / is true:
 a) Default initial value of Register storage class variable
 is Zero.
 b) Scope of External and Register variables are not same.
 c) There is no limit of using register variable.

 Q4. Write one difference between register and auotmatic
 storage class variable.

 4.8 MACROS

The general form for a simple macro definition is
 #define macro-name value
and it associates with the macro-name whatever value appears from
the first blank after the macro-name to the end of the line. The value
constitutes the body of the macro. Previously defined macros can be
used in the definition of a macro. Notice that the value of the macro
does not end with a semicolon. The preprocessor replaces every
occurrence of a simple macro in the program text by a copy of the
body of the macro, except that the macro names are not recognized
within comments or string constants. Because the macros are used
within expressions in the body of the program, it is not appropriate to
end a macro with a semicolon. Macros that represent single numeric,
string or character values can also be referred to as defined con-
stants. Some examples of simple macro definitions are

 #define PI 3.1415926 /* the value of Pi */

 #define ELECTRON 9.107e-28 /*mass of an electron at rest in
grams */

 #define PROTON 1837 * ELECTRON /*mass of a proton at
 rest in grams */

The #define directive can also be used for defining parameterized
macros. The general form for defining a parameterized macro is

 #define macro-name(param1, param2, ...) body-of-macro
Parameterized macros are primarily used to define functions that
expand into in-line code. Some examples of parameterized macro
definitions are

80 Computer Programming using C

 Storage Class Unit 4

 #define ABS(N) ((N) >= 0 ? (N) : -(N))

 #define READ(I) scanf(“%d”, &I)

Consider the simple C program shown below :

#include <stdio.h>

#define SQR(x) x * x /* square a number */

int main()
 {
 int result;
 int a=5, b=6;

 result = SQR(4); /* everything is OK */
 result = SQR(a+b); /* not what was desired */

 }

In the above example, the passing of a+b to the macro results in the
expanded code:
 result = a+b * a+b;
which is evaluated as a + (b * a) + b which will not give the answer
that was expected. What was expected was 121 and what was re-
ceived as 41. The problem of course is the evaluation of the opera-
tors involved in with the expanded macro. The multiplication operator
is evaluated before the addition operator. By adding parenthesis the
following is produced:
 #define SQR(x) (x * x)
which when passed a+b, expands to (a + (b*a) + b) which does not
give what is desired. Therefore, more parenthesis are required:
 #define SQR(x) ((x) * (x))

This will finally give the desired results to the macro expansion.

4.9 PREPROCESSOR

A unique feature of c language is the preprocessor. A pro-
gram can use the tools provided by preprocessor to make his pro-
gram easy to read and modify as well as portable and more efficient.

The prepocessor for ‘C’ is a collection of special statements,
called directives, which are executed at the begining of the program
compilation. The commands for the preprocessor are inserted in C
source-code, that is, (.c) files and are called compiler directives.
Each compiler directive is prefixed by a hash sign (#).
The general rules for defining a preprocessor are as follows :

 Storage Class Unit 4

Introduction to Computer Programming using C (Block 1) 81

a) All the preprocessor directives begin with hash (#) sign.
b) They must start in the first column.
c) The preprocessor directive should not be terminated by semico-
 lon (;)
d) There should be only one preprocessor directive on one line.

Examples of preprocessor directives are :

Directive Function

#define Defines a macro substitution
#undef Undefines a macro
#include Specifies the files to be included
#ifdef Test for a macro definition
#endif specifies the end of #if
#ifndef Tests whether a macro is not defined
#if Test a compile time condition
#else Specifies alternatives when #if test fails

#define (Macro Directrive): ‘C’ allows defining an identifier having
constant value using #define directive. This is called a preprocessor
directive. This directive is placed at the begining of a C program. The
symbol # occurs at the first column and no semicolon is allowed at
the end. The following program shows the use of macro directive.

#include<stdio.h>
#define PI 3.14
main()
 {
 float r= 5.25;
 float area;
 area = PI * r * r;
 printf(“\n Area of a Circle = %f”, area);
}

In the program the variable PI will be replaced by its value 3.14, which
is defined using #define function.

#include (File Directive): #include is also a preprocessor directive.
This directive causes one file to be included in another. For example,
#include<stdio.h>, which appears at the start of a program.

#include statement causes the contents of the file stdio.h to
be inserted into the program at the start of the compilation process.
The information contained in the file is essential for the proper func-
tioning of the library functions, such as getchar() and putchar(), etc.

#undef (Macro Directive) : Sometimes it is essential to undefine a
macro that is already defined. This can be accomplished by #undef
directive. #undef removes a macro definition from the macro symbol
table. A macro is then no longer defined, unless it is redefined.

82 Computer Programming using C

 Storage Class Unit 4

#Conditional (Compilation Directive) : The preprocessor condi-
tional compilation comand allows lines of source text to be parsed
through or eliminated by the preprocessor on the basis of a com-
puted condition. Some examples of preprocessor conditional com-
mands are #if, #else, #endif, #elif etc.

The #if directive is used to test whether an expression evalu-
ates to a nonzero value or not.

For example,
#if MAXMARKS >= 40
 Statement1;
 Statement2;
#else
 Statement4;
 Statement5;
#endif

4.10 LET US SUM UP

 1. Storage class of a variable determines the locations, default
intial value,scope and life time.

 2. By default all the variables declared are automatic in nature;
it is not mandatory to specify it explicitly.

 3. Except the register storage class all other storage class
variable locations are in the memory.

 4. Static storage variable retains its previous value during the
program executions. Such class variable is usually used

when the program needs to share a variable.

 5. Since locations of register storage class variable are in the
CPU registers, so those programs run faster than where the
other class varaible is used.

 6. Because, the number of CPU registers is limited in a com-
puter system so we can not use register class for all vari-
ables. We generally use for the loop counter which is used
most frequently.

 Storage Class Unit 4

Introduction to Computer Programming using C (Block 1) 83

4.11 FURTHER READINGS

1. Balagurusamy, E: Programming in ANSI C, Tata McGraw-Hill
 publication.

 2. Gottfried Byron S: Programming with C, Tata McGraw-Hill
 publication.

 4.12 ANSWERS TO CHECK YOUR
 PROGRESS

Q1. a) False
b) True
c) False

Q2. Storage location for both class variables are in the memory.

Q3. a) False b) True c) False.

Q4. Register class variable stores value in CPU registers whereas
automatic class variable use memory for storing data.

4.13 MODEL QUESTIONS

1. What do you mean by the storage class of a variable ? How
many types of storage class exist ?

2. Compare the external and the automatic storage class vari-
able.

3. Explain the static and automatic storage class variable with
 examples.

4. Why are the register storage class variables generaly used
with loop counter variables ?

 5. What is common among automatic , static and external
variables ?
 6. What is a macro ? Summarize the similarities and differences
 between macros and function.

84 Computer Programming using C

 Storage Class Unit 4

 7. Summarize the various preprocessor directives, other than
 #include and #define. Indicate the purpose of the more com-
 monly used directives.

 8. What is the scope of a preprocessor directive within a program
 file ?

 9. Summarize the special preprocessor operators # and ##. What
 is the purpose of each ?

10. What do you mean by life time of a variable, explain with an
 example?

11. What do you mean by the scope of a variable?

Functions Unit 5

Computer Programming using C 1

UNIT- 5 FUNCTIONS

UNIT STRUCTURE
5.1 Learning Objectives
5.2 Introduction
5.3 Usefulness of Function
5.4 General Forms of Function

 5.4.1 Function Prototype
 5.4.2 Function Definition
 5.4.3 Function Call

5.5 Function Parameters
 5.5.1 Passing Arguments to a Function
5.6 Nesting of Functions
5.7 Categories of Function
5.8 Recursive Function
5.9 Let Us Sum Up
5.10 Further Readings
5.11 Answers To Check Your Progress
5.12 Model Questions

5.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :
 • learn about the concept of functions and their usefulness

• declare a function
• define a function
• learn to call a function
• learn about function parameters
• learn about argument passing mechanism
• learn about nesting of function
• describe function categories
• illustrate recursive function

5.2 INTRODUCTION

A number of segments grouped into a single logical unit is referred
to as function. A function is a set of program statements that carries
out some specific task and can be processed independently. In our
earlier units while writing programs, we have already used functions
like scanf(), printf(), clrscr(), sqrt() etc. We have seen that C sup-
ports the use of such library (or built-in) functions, which are used
to carry out a number of commonly used operations or calculations.

Functions Unit 5

Computer Programming using C 2

 However, C also allows the users to define their own functions
for carrying out various individual tasks of programming. This unit
concentrates on the creation and utilization of such user-defined
functions. With the proper use of such user-defined functions, a large
program can be broken down into a number of smaller, self-contained
components, each of which has some unique purpose.

5.3 USEFULNESS OF FUNCTION

Every C program consists of one or more functions. One of these
functions must be called main(). The function main() is also a used
defined fucntion except that the name of the function, the number of
arguments, and the types of the argument are defined by the language.
The statements are written by the programmer in the body of the
main() function. Program execution will always begin by carrying out
the instructions in main(). There are many advantages in using
functions in a program. They are:

• Many programs require that a specific function is repeated
many times. Instead of writing the function code as many times
as it is required, we can write it as a single function and access
the same function again and again as many times as it is re-
quired.
• The length of the source program can be reduced by using
functions at appropriate places.
• It is easy to locate and isolate a faulty function instead of
modifying the whole program.
• Programming teams does a large percentage of program-
ming. If the program is divided into subprograms, each subpro-
gram can be written by one or two team members of the team
rather than having the whole team to work on the complex pro-
gram.

A single function written in a program can be used in other programs
also.

5.4 GENERAL FORMS OF FUNCTION

The main components of a function are:
• Function Prototype
• Function Definition
• Function Call

Functions Unit 5

Computer Programming using C 3

5.4.1 Function Prototype

Function prototype or function declaration are usually written at
the beginning of the program, ahead of any user defined functions
including main. It hints to the compiler that the function is going to call
the function which is declared, later in the program. The general format
of a function prototype is as follows:

 return_type function_name(type1 arg1, type2 arg2,..,typen argn);

where, return_type represents the data type of the item that is
returned by the function, function_name represents the name of the
function, type1, type2, . . . ,typen represent the data types of the
arguments arg1, arg2 , , , , , argn. It is necessary to use a semicolon
at the end of function prototype. Arguments name arg1, arg2 etc. can
be omitted. However, the argument data types are essential.
 A function prototype or declaration provides some information to
the compiler. These are:
 • The name of the function
 • The type of the value returned (by default, interger)
 • The number and type of arguments that must be supplied in
 a call to the function.
For example, in the following function declaration statement
 int add(int, int);
int is the data type of the item returned by the function, add is the
name of the function and int within the brackets ‘(‘ and ‘)’ are the data
types of the arguments.
Program1: Program to find the summation of two numbers.
 #include<stdio.h>
 #include<conio.h>
 int add(int,int); //function prototype or declaration
 void main()
 {
 int a,b,s; // integer variable a,b,s are declared
 clrscr();
 printf(“Enter two integer number \n”); // display statement
 scanf(“%d%d”, &a,&b);
 s=add(a,b); //function call
 printf(“\nThe summation is %d”, s);
 getch();
 }

Functions Unit 5

Computer Programming using C 4

 int add(int a, int b)
 {

int sum=0; // local variable sum and it is intialised to zero
sum=a+b;
return sum; // value of sum is returned

 }

 CHECK YOUR PROGRESS

1.State whether the following statements are true(T) or false (F).
 (i) Every C program should have atleast one function.
 (ii) In a function declaration arguments are separated by semi
 colon.
 (iii) The function prototype ends with a semicolon.
2. Declare a function with function name “calculate” with two
fractional type data as argument and which returns nothing to
the calling function.
3. What is the meaning of the statement int multiply(int,int); ?

5.4.2 Function Definition

Functions can be defined anywhere in the file with a proper
declaration, followed by the declaration of local variables and
statements. A function definition should contain the following elements:
 • name of the function
 • list of parameters and their types
 • body of the function
 • return type
No function definition is allowed within a function definition.General
format of function definition is given below :

return_type function_name(parameter list)
{

local variable declaration;
executable statement1 ;
executable statement2 ;
.
.
return statement ;

}
The first line of function definition is known as function header which
contains return_type, function_name and parameter_list. Function

Functions Unit 5

Computer Programming using C 5

header is followed by an opening ‘{‘ and a closing brace ‘}’. The
statements within the opening and closing braces constitute the
function body.

Function name should be appropriate to the task performed by the
function. In C, two function name should not be same in a single file.
If the function does not return anything then the return type will be
void otherwise, it is the type of the value returned by the function. If
the return type is not mentioned explicitly, C compiler assumes that it
is an integer type.

Return statement contains the output produce by the function and
its type. The return statement serves two purposes:

 • On executing the return statement, it immediately transfers
 the control back to the calling program.
 • It returns the value to the calling program.

Example: Let us consider the following program segment
 int add(int a, int b)
 {

int sum = 0; // local variable sum and it is intialised to zero
sum = a + b;
return sum; // value of sum is returned to the calling function

 }

In the above program segment, the summation of the value stored in
the variable a and b are returned. As the summation of two interger is
also an integer, so the return type is int .

Example: Let us consider the following program segment
 void display()
 {
 printf(“State Open University ”);
 }

display() function does not return anything. So, the return type is
void. We can also write the display() function as void display(void)
by mentioning void explicitly within the bracket because no argument
is passed.

Functions Unit 5

Computer Programming using C 6

5.4.3 Function Call

Once a function has been declared and defined, it can be
called from anywhere within the program: from within the main()
function, from another function, and even from itself. A function comes
to life when a call is made to the function. We can call a function by
simply using the function name followed by a list of parameters if any,
enclosed in parentheses. For example,

 s = add (a,b) ; //Function call

In the above statement add(a,b) function is called and value returned
by it is stored in the variable s. When the compiler encounters a func-
tion call, the control is transferred to int add(int x, int y). This func-
tion is then executed line by line as described and a value is returned
when a return statement is encountered. In our example, this value is
assigned to s. This is illustrated below:

Program2: Program to find the summation of two numbers using
 function
#include<stdio.h>
#include<conio.h>
int add(int, int); // function declaration
void main()
{ int a,b,s;
 clrscr();
 printf(“Enter two integer number \n”);
 scanf(“%d%d”, &a,&b);
 s=add(a,b); // function call
 printf(“\nThe summation is %d”, s);
 getch();
 }
int add(int x, int y) //function header
{
 int sum=0; // local variable sum and it is intialised to zero
 sum=x+y;
 return sum; // value stored in sum is returned to the calling function
}

Program3: Program to find the maximum of two numbers
#include<stdio.h>
#include<conio.h>

Functions Unit 5

Computer Programming using C 7

void main()
{
 int max(int, int);
 int a,b, big;
 printf(“\nEnter two numbers:”);
 scanf(“%d%d”, &a,&b);
 big=max(a,b);
 printf(“\nThe maximum of two numbers is: %d”, big);
 getch();
}
int max(int x, int y)
{
 int large;
 if(x>y)
 large = x;
 else
 large = y;
 return large;
}

The above program will give the maximum of two integer numbers.
The statement int max(int, int); is the declaration or prototype of
the function. The function definition includes statements that test the
two input argument numbers and returns the larger number. The
variable a,b, big are local to the function main and the variable large
is a local variable to the function max.

The scope of the variable is local to the function, unless it is a
global variable. For example,

 int function1(int i)
 {
 int j = 50;
 double function2(int j);
 function2(j);
 }
 double function2(int p)
 {
 double m;
 return m;
 }

Functions Unit 5

Computer Programming using C 8

The variable j in function1 is not known to function2. We pass it to
function2 through the argument j. This will be assigned as equal to
int p. In the same way, m in function2 is not known to function1. It
can be made known to function1 through the return statement. This
makes the scope rules of variables in function quite clear. The scope
of variables is local to the function where defined. However, global
variables are accessible by all the functions in the program if they are
defined above all functions.

5.5 FUNCTION PARAMETERS

Functions in C exchange information by means of parameters. The
term parameter refers to any declaration within the parentheses fol-
lowing the function name in a function declaration, definition or func-
tion call. Function parameters can be classified into formal and ac-
tual parameters.

 • Formal Parameters
The parameters which appear in the first line of the function defini-
tion are referred to as formal parameter (commonly called param-
eters). Formal parameters are written in the function prototype and
function header of the definition. Formal parameters are local vari-
ables which are assigned values from the arguments when the func-
tion is called.

 • Actual Parameters
When a function is called, the values (expressions) that are passed
in the call are called the actual parameters (often known as argu-
ments). At the time of the call each actual parameter is assigned to
the corresponding formal parameter in the function definition. It may
be expressed in constants, single variables, or more complex ex-
pressions. However, each actual parameter must be of the same
data type as its corresponding formal parameter.

The following rules apply to parameters of C functions:

 • Except for functions with variable-length argument lists, the
number of arguments in a function call must be the same as the
number of parameters in the function definition. This number can be
zero.
 • Arguments are separated by commas.
 • The scope of function parameters is the function itself. There-

Functions Unit 5

Computer Programming using C 9

fore, parameters of the same name in different functions are unre-
lated.

Let us consider the following example to illustrate formal and actual
parameters:
Program4:
 #include<stdio.h>
 #include<conio.h>
 void display(int, int);
 void main()
 {
 int a,b;
 display(a,b);
 getch();
 }
 void display(int x, int y)
 {
 printf(“%d%d”,x,y);
 }

Here, x and y are formal parameters and take the value (a,b) from
the calling function display(a,b).

5.5.1 Passing Arguments to a Function

Parameter passing is a method for communication of data between
the calling function and called function. C provides two mechanisms
to pass arguments to a function.

• pass by value
• pass by reference

Pass by value
Passing arguments by value means that the contents of the argu-
ments in the calling function are not changed, even if they are changed
in the called function. This is because the content of the variable is
copied to the formal parameter of the function definition, thus pre-
serving the contents of the arguments in the calling function. Pass by
value method thus not allow information to be transferred back to the
calling portion of the program via arguments.

Program5: Program to illustrate pass by value.
#include<stdio.h>

Functions Unit 5

Computer Programming using C 10

void func(int, int);
void main(void) //calling function
{
 int x = 5, y = 10;
 clrscr();
 func(x, y);
 printf(“In main, x = %d y = %d\n”, x, y);
}
void func(int a, int b) //called function
{
 a = a + b;
 printf(“In func, a = %d b = %d\n”, a, b);
}
Output :

In func, a = 15 b = 10
In main, x = 5 y = 10

In the above example, the calling function main() passes two values
5 and 10 to the called function func(). The function func() receive
copies of these values and accesses them by the identifiers a and b.
The function func() changes the value of a. When control passes
back to main(), the actual values of x and y are not changed.

Pass by reference
Pass by reference refers to a method of passing the address of an
argument in the calling function to a corresponding parameter in the
called function. For better understanding the concept of pass by value
and pass by reference, let us consider the following two examples.
In the example, our aim is to swap (interchange) two values.

Program6: Example to illustrate calling a function by value.
 #include<stdio.h>
 #include<conio.h>
 void swap(int, int); //function prototype or declaration
 void main()
 {
 int a,b;
 a=5;
 b=10;
 printf(“In main(), a and b before interchange: %d %d”, a, b);
 swap(a,b); //function call
 printf(“\nIn main(), a and b after interchange: %d %d”, a, b);

Functions Unit 5

Computer Programming using C 11

 getch();
 }
 void swap(int i, int j) //function definition
 {
 int t;
 printf(\nWithin swap(), i and j before interchange: %d%d”, i,j);
 t = i;
 i = j;
 j = t;
 printf(\nWithin swap(), i and j after interchange: %d%d”, i,j);
 }

Here, the values of a and b are passed through swap(a, b); When
we execute this program, no interchange takes place within the main()
function before and after calling swap(), although the interchange takes
place within swap(). The output will be like this:

In main(), a and b before interchange: 5 10
 Within swap(), i and j before interchange: 5 10
 Within swap(), i and j after interchange: 10 5

In main(), a and b afetr interchange: 5 10

To make this function work correctly we can use pointers, as shown
below. Our next unit will help you in understanding pointers. So, in-
stead of passing two integers to the swap() function, we can pass
the addresses of the integers that we want to swap.

Program7: Example to illustrate passing arguments by reference
 #include <stdio.h>
 #include<conio.h>
 void swap(int *, int *); //function declaration
 void main()
 {
 int a,b;
 a=5;
 b=10;
 clrscr(); // clearing the screen
 printf(“a and b before interchange: %d %d\n”,a,b);
 swap(&a,&b); //function call, address of variable a and b are passed
 printf(“a and b after interchange: %d %d\n”,a,b);
 }
 void swap(int *i, int *j)
 {

Functions Unit 5

Computer Programming using C 12

Pointer :
A pointer is a variable
that holds the address
of another variable.

 int t;
 t = *i;
*i = *j;
*j = t;

 }
Here, the arguments are passed by reference. To accomplish this,
first, the function definition must be changed to accept the addresses
of the two integers. This is done by specifying

void swap(int *i, int *j)
instead of

swap(int i, int j)
Inside the function, instead of using i, which now means the memory
address of an integer, we have to access the value that is addressed
by i. This is done by using *i and *j instead of i and j respectively.
Secondly, the call in main() must be changed to pass the addresses
of a and b instead of their values. This is done by calling
 swap(&a, &b);
Addresses are passed by using the symbol & and the valuees are
accessed by using the symbol *. When the function swap is called,
addresses of a and b are passed. Thus, i points to a and j points to
b. Once the pointers are initialized by the function call, *i is another
name for a, and *j is another name for b. When the code uses *i and
*j, it really means a and b. When the function swap() is called, the
actual values of the variables a and b are exchanged because they
are passed by reference. The output will be :

a and b before interchange: 5 10
a and b after interchange: 10 5

Program8: Program to generate fibonacci numbers using iteration.
#include<stdio.h>
#include<conio.h>
void main()
{
 void Fibo(unsigned int n); //function prototype
 unsigned int n;
 printf(”Program to generate fibonacci numbers: ”);
 printf(“\nEnter the total number to be generated:”);
 scanf(“%d”,&n);
 Fibo(n); //function call, n is the argument to the function
}

Functions Unit 5

Computer Programming using C 13

void Fibo(unsigned int num)
{
 unsigned int p=1, q=0;
 unsigned int current;
 printf(“\nFibonacci numbers:\n”);
 printf(“0\n”);
 do
 {
 current=p+q;
 printf(“\n%u\n”, current);
 q=p;
 p=current;
 num - -;
 }while(num>1);
//return;
}

 CHECK YOUR PROGRESS

4 Fill in the blacks:
 (i) When a function returns nothing then the return type is_____.
 (ii) If a C program has only one function then that function is
 ________.
 (iii) The parameters used in a function call are______.
 (iv) When a variable is passed to a function by value,
 its value remains___________in the calling program.
 (v) A function can be called either by _______ or _______or
 both.

5. Write down the syntax of function definition.

6. Write the first line of the function definition, including the formal
argument declarations, for each of the situations described be-
low:
 (i) A function called average accepts two integer arguments
 and returns a floating-point result.
 (ii) A function called convert accepts a character and returns
 another character.

Functions Unit 5

Computer Programming using C 14

5.6 NESTING OF FUNCTIONS

C permits nesting of functions freely. There is no limit to how deeply
functions can be nested. A nested function is encapsulated within
another function.

For example, a function a can call function b and function b can call
function c and so on. We have taken the following example to illus-
trate nesting of function.

Program9 : Program to illustrate the nesting of function
 #include<stdio.h>
 #include<conio.h>
 void main()
 {

int a,b,c;
float r;
clrscr();
float ratio(int,int,int); // function ratio() declared
printf("Enter a,b and c :");
scanf("%d%d%d",&a,&b,&c);
r=ratio(a,b,c); // ratio() function called
printf("%f\n",r);
getch();

 }
 float ratio(int x, int y, int z)
 {

int difference(int,int); // function difference() declared
if(difference(y,z))

return(x/(y-z));
else

return(0,0);
 }
 int difference(int p, int q)
 {

if(p!=q)
 return(1);
else
 return(0);

 }

Functions Unit 5

Computer Programming using C 15

The above program calculates the ratio cb
a


and prints the result. We have the following three functions:

main()
ratio()
difference()

main() reads the value of a,b,c and calls the function ratio() to cal-
culate the value a / (b-c). This ratio cannot be evaluated if (b-c) =0.
Therefore, ratio() calls another function difference() to test whether
the difference(b-c) is zero or not.

5.7 CATEGORIES OF FUNCTION

Depending on whether arguments are present or not and whether a
value is returned or not, functions are categorised as follows:
 • Functions with no arguments and no return values
 • Functions with arguments and no return values
 • Functions with arguments and one return value
 • Functions with no arguments but a return value
 • Functions that return multiple values
Now we are going to illustrate the above categories taking one ex-
ample “Multiplication of two integer numbers”.

• Functions with no arguments and no return values
Program10:
#include<stdio.h>
#include<conio.h>
void multi(void); //function declaration with no argument
void main()
 {
 clrscr();
 multi();
 getch();
 }
void multi(void)
 {
 int a,b,m;
 printf(“Enter two integers:”);
 scanf(“%d%d”, &a,&b);
 m=a*b;
 printf(“\nThe product is: %d”,m);
 }

Functions Unit 5

Computer Programming using C 16

• Functions with arguments and no return values
Program11:
#include<stdio.h>
#include<conio.h>
void multi(int,int); //function declaration with two argument
void main()
 { int a,b;

clrscr();
printf(“Enter two integers:”);
scanf(“%d%d”, &a,&b);
multi(a,b);

 getch();
 }
void multi(int a,int b)
 { int m;

m=a*b;
printf(“\nThe product is: %d”,m);

 }

• Functions with arguments and one return value
Program12:
 #include<stdio.h>
 #include<conio.h>
 int multi(int,int); //function declaration with two argument
 void main()
 {

int a,b,m;
clrscr();
printf(“Enter two integers:”);
scanf(“%d%d”, &a,&b);
m=multi(a,b);
printf(“\nThe product is: %d”,m);

 getch();
 }
 int multi(int a,int b)
 {

int z;
z=a*b;
return z; /*return statement. the value of z is returned to

 } the calling function*/

Functions Unit 5

Computer Programming using C 17

• Functions with no arguments but a return value

Program13:
 #include<stdio.h>
 #include<conio.h>
 int multi(void); //function declaration with no argument
 void main()
 {
 int m;
 clrscr();
 m=multi();
 printf(“\nThe product is: %d”,m);
 getch();
 }
 int multi(void)
 {
 int a,b,p;
 printf(“Enter two integers:”);
 scanf(“%d%d”, &a,&b);
 p=a*b;
 return p;
 }

Return statement can return only one value. In C, the mechanism of
sending back information through arguments is achieved by two op-
erators known as the address operator (&) and indirection operator
(*). Let us consider an example to illustrate this.

• Functions returning multiple values
Program14:
#include<iostream.h>
#include<conio.h>
void calculate(int, int, int *, int *);
void main()
{
 int a,b,s,d;
 clrscr();
 printf(“\nEnter two integer:”);
 scanf(“%d%d”,&a,&b);
 calculate(a,b,&s,&d);
 printf(“\nSummation is:%d \n Difference is:%d”, s,d);
 getch();
}

Functions Unit 5

Computer Programming using C 18

void calculate(int x,int y, int *sum, int *diff)
{
 *sum=x+y;
 *diff=x-y;
}

In the fuction call, while we pass the actual values of a and b to the
function calculate(), we pass the address of locations where the val-
ues of s and d are stored in the memory.

When the function is called, the value of a and b are assigned
to x and y respectively and address of s and d are assigned to sum
and diff respectively. The variables *sum and *diff are known as
pointers and sum and diff as pointer variables. Since they are de-
clared as int, they can point to locations of int type data.

5.8 RECURSIVE FUNCTION

When a function calls itself it is called a recursive function. Recur-
sion is a process by which a function calls itself repeatedly, until some
specified condition has been satisfied. A very simple example is pre-
sented below:

Program15:
#include<stdio.h>
#include<conio.h>
void main()
{

 printf(“Recursive function\n”);
 main();
getch();

}
The output of the above programme will be like this:

Recursive function
Recursive function
Recursive function
Recursive function
............................
...........................

We should terminate the execution abruptly; otherwise the program
will execute indfinitely.

Functions Unit 5

Computer Programming using C 19

The factorial of a number can also be determined using recursion.
The factorial of a number n is expressed as a series of repeatitive
multiplications as shown below:

Factorial of n = n(n-1)(n-2)(n-3).....1
For example, Factorial of 5= 5*4*3*2*1 =120

Program16: Factorial of an integer number
#include<stdio.h>
 #include<conio.h>
 long int factorial(int);
 void main()
 {

int n ;
 long int f ;

clrscr() ;
printf("\nEnter an integer number:") ;
scanf("%d", &n) ;
f=factorial(n) ;
printf("\nThe factorial of %d is : %ld",n,f) ;
getch() ;

 }
 long int factorial(int n)
 {

long int fact ;
if(n<=1)
 return(1);
 else
 fact=n*factorial(n-1);
 return(fact);

 }

Let us see how recursion works assuming n = 5. If we assume n=1
then the factorial() function will return 1 to the calling function. Since
n  the statement

 fact = n * factorial (n-1);
will be executed with n=5. That is,

fact = 5 * factorial (4);
will be evaluated. The expression on the right-hand side includes a
call to factorial with n = 4 .This call will return the following value :
 4 * factorial(3)
In this way factorial(3), factorial(2), factorial(1) will be returned. The
sequence of operat ions can be summarized as follows:

Functions Unit 5

Computer Programming using C 20

 fact = 5 * factorial (4)
 = 5 * 4 * factorial (3)

= 5 * 4 * 3 * factorial (2)
= 5 * 4 * 3 * 2 * factorial (1)
= 5 * 4 * 3 * 2 * 1
=120

When we write recursive functions, we must have an if statement
somewhere to force the function to return without the recursive call
being executed. Otherwise, the function will never return.

Program17: Find the sum of digits of a number using recursion.

#include<stdio.h>
#include<conio.h>
 void main()
 {
 int sum(int); //function prototype
 int n,s;
 clrscr();
 printf(“\nenter a positive integer:”);
 scanf(“%d”,&n);
 s=sum(n);
 printf(“\nSum of digits of %d is %d ”, n,s);
 getch();
 }
 int sum(int n)
 {
 if(n<=9)
 return(n);
 else
 return(n%10+sum(n/10)); // recursive call of sum()
 }

Output :
 Enter a positive integer: 125
 Sum of digits of 125 is 8

Recursion is used for repetitive computations in which each action
is stated in terms of a previous result.

Functions Unit 5

Computer Programming using C 21

EXERCISE

 Q. Write a C program to find the GCD (Greatest Common Divi
 sor) of two positive integers using recursion.

Q. Write a C program to read in three number and print their maxi-
mum and minimum with the help of function.

Q. Write a C program to find the sum of the squares of the even
numbers between 1 and 20.

Q. Write a function which returns the area of a triangle when the
base and height are given to it as parameters. The function should
have proper checking to ensure that both base and height are
positive numbers. If not, it is to print an error message and return
the area as zero. Write a complete C program to use this func-
tion.

 CHECK YOUR PROGRESS

7. State whether the following statements are true(T) or false(F)
(i) The parameters which appear in the first line of the function
 definition are formal parameter
(ii) Arguments are separated by semicolon.
(iii) The ‘C’ language does not support recursion.
(iv) The main() function can call itself recursively.
(v) You can call main() from any other function.
(vi) The same variable names can be used in different functions
 without any conflict.

8. Write a C program to generate first n Fibonacci terms using
recursion.

Functions Unit 5

Computer Programming using C 22

5.9 LET US SUM UP

 A function is a self-contained program segment that carries out
some specific, well-defined task.

 A function has three principal components: function prototype or
declaration, function call, function definition.

 Function prototype or declaration is always followed by a semico-
lon.

 Call-by-value copies the value of an argument to the correspond-
ing parameter in the called function

 Call-by-reference passes the address of an argument to the cor-
responding parameter in the called function.

 The argument that is passed is often called an actual argument
while the received copy is called a formal argument or formal param-
eter.

 We can pass parameters to a function by value and by reference.

 Functions can return any type that we declare, except for arrays
and functions. Functions returning no value should return void.

 A return statement is required if the return type is anything other
than void.

 A function definition may be placed either after or before the
main () function.

 Functions taking a variable number of arguments must take at
least one named argument; the variable arguments are indicated by
... as shown:

int func(int x, float y, ...);
 When a function calls itself, then it is called a recursive function.

 5.10 FURTHER READINGS

 1. Balagurusamy, E: Programming in ANSI C, Tata McGraw-Hill
 publication.
 2. Gottfried Byron S: Programming with C, Tata McGraw-Hill
 publication.

Functions Unit 5

Computer Programming using C 23

 5.11 ANSWERS TO CHECK YOUR
 PROGRESS

1. (i) True (ii) False (iii) True

2. void calculate(float, float);

3. The statement int multiply(int, int); is a function declaration where
the function name is multiply which has two integer type arguments
and its return type is integer.

4. (i) void
 (ii) main()
 (iii) actual parameters
 (iv) unchanged
 (v) call by value, call by reference

5. General format of function definition is given below :
 return_type function_name(parameter list)

{
local variable declaration;
executable statement1 ;
executable statement2 ;
.
.
return statement ;

}

6. (i) float average(int a, int b)
 (ii) char convert(char a)

7. (i) True, (ii)False, (iii) False, (iv) True (v) False (vi) True

8.Solution:
#include<stdio.h>
#include<conio.h>
void main()
{
 unsigned long fibo(int);
 int i,n;

Functions Unit 5

Computer Programming using C 24

 clrscr();
 printf(“\nHow many fibonacci terms do you want ?\n”);
 scanf(“%d”,&n);
 printf(“\n%d fibonacci terms are: \n\n”,n);
 for(i=1;i<=n;i++)
 printf(“%4lu”,fibo(i)); //function call
 getch();
}
unsigned long fibo(int n)
{
 if(n==1)
 return(0);
 else
 {
 if(n==2)
 return(1);
 else
 return(fibo(n-1)+fibo(n-2)); //recusive call
 }
}

 5.12 MODEL QUESTIONS

1. Explain the meaning of following function prototypes.
 (a) char func(void);
 (b) double f(double a, int b);
 (c) int calculate(int a, int b);
 (d) void change(int *, int *);
 (e) void display();

2. What is a function? Are functions require when writing a C
program? State three advantages to the use of functions.

3. What is meant by a function call? From what part of a program can
a function be called?

4. What are arguments? What is their purpose? What is the
relationship between formal and actual argument?

Functions Unit 5

Computer Programming using C 25

5. What is the purpose of return statement?

6. Can a function be called from more than one place within a
program?

7. What is recursion? Explain it with example.

8. Write a complete C program that will calculate the real roots of the
quadratic equation ax2+bx+c=0.

9. Write a C program using function to find the square of an
integer number without using the library function sqrt().

10. What is the purpose of the keyword void? Where is this keyword
used?

Arrays and Pointers Unit 6

Computer Programming using C 1

UNIT- 6 ARRAYS AND POINTERS

UNIT STRUCTURE

6.1 Learning Objectives
6.2 Introduction
6.3 Arrays
6.4 Declaration of Array
6.5 Defining an Array
6.6 Accessing Array Elements
6.7 Passing Array to Function
6.8 Multidimensional Array
6.9 Strings
 6.9.1 Initialization of Strings
 6.9.2 Arrays of Strings
 6.9.3 String Manipulations
6.10 Pointers
 6.10.1 Declaration of Pointer
 6.10.2 Passing Pointer to a Function
 6.10.3 Pointer and One-Dimensional Arrays
6.11 Dynamic Memory Allocation
6.12 Let Us Sum Up
6.13 Further Readings
6.14 Answers To Check Your Progress
6.15 Model Questions

6.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

• learn the concept of arrays in C programming
• learn to define and declare array
• pass array to a function as argument
• learn about character arrays
• learn about different string library functions and their usefulness
• learn about pointer variable and use them in programs
• pass pointer to a function
• learn about dynamic memory allocation and its implementation

Arrays and Pointers Unit 6

Computer Programming using C 2

6.2 INTRODUCTION

The previous unit gives us the concept of functions in C language.
Many applications require the processing of multiple data items that
have common characteristics. In such situations it is convenient to
place the data items into a linear data structure, where they will all
share a common name. The individual data items can be charac-
ters, integers, floating-point numbers etc. This unit discusses one of
the most important linear data structure called array. The unit also
introduces pointers and their manipulation. C language uses point-
ers to represent and manipulate complex data structures. At the end
of this unit the concept of dynamic memory allocation is introduced.

6.3 ARRAYS

An array is a series of elements of the same type placed in contigu-
ous memory locations that can be individually referenced by adding
an index to a unique identifier. This data structure is a finite and or-
dered set of homogeneous elements.

 Suppose we want to store marks of 100 students. In such a
case, we may use two options. One way is to construct 100 vari-
ables to store marks of 100 students i.e., each variable containing
one student’s mark. The other method is to construct just one vari-
able which is capable of holding all hundred students marks. Obvi-
ously, this option will be easier and for this we can use array.

Again, let us consider another example to understand array
more clearly. Suppose we are to store 10 integer values. For this, we
can store 10 values of integer type in an array without having to de-
clare 10 different variables, each one with a different identifier. In-
stead of that, using an array we can store 10 different values of the
same type, int for example, with a unique identifier. An array to con-
tain 10 integer values of type int called number could be represented
like this:

where each blank panel represents an element of the array, that in

 0 1 2 3 4 5 6 7 8 9
number

Arrays and Pointers Unit 6

Computer Programming using C 3

this case are integer values of type int. These elements are num-
bered from 0 to 9 where 0 indicates the first location. Like a regular
variable, an array must be declared before it is used.

6.4 DECLARATION OF ARRAY

An array declaration is very similar to a variable declaration.We can
declare an array by specifying its data type, name, and the number of
elements the array holds between square brackets immediately fol-
lowing the array name. Here is the syntax:

data_type array_name[size in integer] ;

For example, int number[5];

In this declaration, ‘number’ is an interger array of 5 elements which
can hold maximum 5 elements. Each array element is referred to by
specifying the array name followed by one or more subscripts, with
each subscript enclosed in square brackets. For the above declara-
tion, the array elements are number[0], number[1], number[2], num-
ber[3], number[4].

An array can be initialized at the time of declaration. The general syn-
tax for initializing a one dimensional array at the time of declaration is:

data_type array_name[n] = {element1, element2, ..., element(n-1)};

where,n is the size of the array and element1, element2,....,elementn
are the elements of the array. The total number of elements between
braces { } must not be larger than the number of elements that we
declare for the array between square brackets[]. For example,

 int num[5] = {16,17, 2,3,4}; /* array initialization at the time of
 declaration */
In the example, we have declared an array “num”, which has 5 ele-
ments and in the list of initial values within braces { } we have speci-
fied 5 values, one for each element.

Arrays and Pointers Unit 6

Computer Programming using C 4

When an initialization of values is provided for an array, C allows the
possibility of leaving the square brackets empty []. In this case, the
compiler will assume a size for the array that matches the number of
values included between braces { }. For example, we can write the
above statement as:

int num[] = {16,17, 2,3,4};

Initilization of two dimensional array during declaration is done by
specifying the elements in row major order. For example,

 int number[3][4] = {
 {1, 3, 5, 7 },
 {11,13, 17, 19},
 {23, 27, 29, 31}
 };
The number is a two dimensional array of integers with certain initial
values. The first subscript can be omitted as shown below:

int number[][4] = {
 {1, 3, 5, 7 },
 {11,13, 17, 19},
 {23, 27, 29, 31}
 };
The inner braces can also be omitted. This can be written as:

int number[][4] = {1, 3, 5, 7, 11, 13, 17, 19, 23, 27, 29, 31 };

We will discuss two dimensional array again while discussing multi
dimensional array.

6.5 DEFINING AN ARRAY

Arrays are defined in much the same manner as ordinary variables,
except that each array name must be accompanied by a size speci-
fication. The simplest form of the array is one dimensional array. For
a one dimensional array, the size is specified by a positive integer
enclosed in square brackets. For example,

Row major order:
The elements of the first
row in a sequence, followed
by those of the second, and
so on.

Arrays and Pointers Unit 6

Computer Programming using C 5

 int num[100];

Here, num is an one dimensional array of size 100 i.e., maximum
number of elements in this array will be 100.

In case of a two dimensional array, an element in the array
can be accessed using two indices, row number and column num-
ber. Elements can be accessed randomly. For example:

int matrix[20]20];

Here, matrix is a two dimensional array with 20 rows and 20 col-
umns. The number of rows or columns is called the range of the
dimension.

Representation of one dimensional array in memory is straight
forward. Elements from index 0 to some maximum are stored in some
contiguous memory locations. Elements are always stored in row
major fashion. But in case of two dimensional array there are two
methods of representation in memory, which are row major and
column major. In row major representation, the first row of the array
occupies the first set of memory locations reserved for the array, the
second row occupies the next set and so forth. On the other hand, in
column major representation the first column of the array occupies
the first set of memory locations reserved for the array, the second
column occupies the next set and so forth.

6.6 ACCESSING ARRAY ELEMENTS

We can access an array using its name and the index of a particular
element within square braces. The array index indicates the particu-
lar element of the array which we want to access. The numbering of
elements starts from zero. The smallest index in an array is called
the lower bound and the highest index is called upper bound. In case
of C, the lower bound is always 0. If the lower bound is ‘lower’ and the
upper bound is ‘upper’, then the number of elements is:
 upper- lower + 1

The following statement

Arrays and Pointers Unit 6

Computer Programming using C 6

int num[5]= {22, 24, 26, 28, 30};

represents an one dimensional array of 5 integer numbers. Each el-
ement of the array can be accessed with the index num[0], num[1],
num[2], num[3] and num[4]. It is assumed that each element of the
array occupies two bytes. The general expression for accessing one
dimensional array ‘num’ is
 num[i]

For example, let us consider the following lines of code:

int num[5];
printf(“\nEnter the numbers into the array:”);
for(i = 0; i < 5 ; i++)
{
 scanf(“%d”, &num[i]);
}

Here, the variable i varies from 0 to 4. The function scanf() is called to
input the integer values. The address of ith location is passed to
scanf() which makes scanf() store the integer input into successive
locations each time the loop is executed. &num[i] in the scanf() state-
ment refers to the memory location of the integher at the ith position.

The elements of two dimensional array can be accessed
by the following expression:
 marks[i][j];
where i and j refers to row and column numbers respectively.

 6.7 PASSING ARRAY TO FUNCTION

To pass an array to a function, the array name must appear by itself,
without brackets or subscripts, as an actual argument within a func-
tion call. The corresponding formal argument is written in the same
manner, though it must be declared as an array within the formal
argument declarations. When declaring a one dimensional array as
a formal argument, the array name is written with a pair of empty
square brackets. The size of the array is not specified within the for-
mal argument declaration.

Arrays and Pointers Unit 6

Computer Programming using C 7

Program 1: Program to find the sum of elements of an array where
the array is passed as argument to the function.
#include<stdio.h>
#include<conio.h>
int addition (int a, int x[]) ; //function prototype
void main()
{ int n,i,add;

int y[20] ; //array declaration of maximum size 20
clrscr();
printf("\nEnter the size of the array:");
scanf("%d",&n);
printf("\nEnter the array elements:");
for(i=0;i<n;i++)
 scanf("%d",&y[i]);
printf("\nEntered elements are:\n");
for(i=0;i<n;i++)
 printf("%d\t",y[i]);
add=addition(n,y) ; //array size and name is passed
printf("\nResult is: %d",add);
getch();

}
int addition (int a, int x[]) // function definition , formal argument
{

int i,sum=0;
for(i=0;i<a;i++)
 sum=sum+x[i];
return sum; //sum is returned to the main function

}

EXERCISE

 Q. Find the average of n numbers using array where n
 is the size of the array.
 Q. Write a program to find the summation of 10 even
 numbers where numbers are entered through the
 keyboard.

Arrays and Pointers Unit 6

Computer Programming using C 8

6.8 MULTIDIMENSIONAL ARRAYS

An array with more than one index value is called a multidimen-
sional array . Multidimensional arrays can be described as “arrays
of arrays”. The syntax for declaring a multidimensional array isas
follows:

data_type array_name[][][];

The number of square brackets specifies the dimension of the array.

Initialization of multidimensional arrays:

We have already seen the declation of two dimensional arrays in our
previous sections. Like the one dimensional arrays, two dimensional
arrays may be initialized by following their declaration with a list of
initial values enclosed in braces. For example:

 int table[2][3]={1,1,1, 2, 2, 2};

The above statement initializes the elements of first row to 1 and
second row to 2. The initialization is done row by row. The above
statement can be equivalently written as

 int table[2][3] ={ {1,1,1}, {2, 2, 2} };

Arrays of three or more dimensions are not used very often because
of the memory required to hold them. The computer takes time to
generate each index and this can cause the access of multidimen-
sional arrays very slow as compared to a single dimensional array
with the same number of elements. Some examples of multidimesional
array declation are:

int count[3][5][12];
float table[5][4][5][3];

Here, count is a three dimensional array declared to contain 180
integer elements. Similarly, table is a 4-dimensional array containing
300 elements of floating point type.

Often there is a need to store and manipulate two dimensional data
structure such as matrices and tables. In case two dimensional (2D)

Matrix :
A rectangular array of
elements (or entries)
set out by rows and
columns

Arrays and Pointers Unit 6

Computer Programming using C 9

array, there are two subscripts. One subscript denotes the row and
the other denotes the column. We have already used two dimen-
sional array in our previous sections. The declaration of two dimen-
sion arrays is as follows:

 datatype array_name[row_size][column_size];

For example, int marks[3][4] ;
Here marks is declared as a matrix having 3 rows(numbered from 0
to 2) and 4 columns(numbered 0 through 3). The first element of the
matrix is marks[0][0] and the last row last column is marks[2][3] .

Elements of two dimensional arrays:

A two dimensional array marks[3][5] is shown below. The first ele-
ment is given by marks[0][0] contains 50 and second element is
marks [0][1] and contains 75 and so on.

 marks[0][0] marks[0][1] marks[0][2] marks[0][3]
 50 75 70 61

 marks[1][0] marks[1][1] marks[1][2] marks[1][3]
 51 35 65 78

 marks[2][0] marks[2][1] marks[2][2] marks[2][3]
 45 67 28 55

To represent a matrix a two dimensional array is required. Suppose
there are two matrices A and B having the following elements

 A = 1 2 3 B = 2 3 5
 5 3 8 1 1 1
 6 3 4 1 5 4
Then the addition matrix will be :

 C = 3 5 8
 6 4 9
 7 8 8

One can write the following program for addition of two matrices.

Arrays and Pointers Unit 6

Computer Programming using C 10

Program 2: Program to add two matrices and store the results in
the third matrix.
#include<stdio.h>
#include<conio.h>
void main()
{

int a[10][10],b[10][10],c[10][10],i,j,m,n,p,q;
clrscr();
printf("Enter the order of the matrix a\n");
scanf("%d%d",&p,&q);
printf("Enter the order of the matrix b\n");
scanf("%d%d",&m,&n);
if(m==p && n==q)
{

printf("\nMatrix can be added\n");
}
printf("\nEnter the elements of the matrix a:");
for(i=0;i < m;i++)
 for(j=0;j < n;j++)

scanf("%d",&a[i][j]);
printf("\nEnter the elements of the matrix b:");
for(i=0;i < p;i++)
 for(j=0;j < q;j++)

scanf("%d",&b[i][j]);
printf("\nThe sum of the matrix a and b is:\n");
for(i=0;i<m;i++)
{

 for(j=0;j<n;j++)
{

c[i][j]=a[i][j]+b[i][j];
printf("%d\t",c[i][j]);

}
printf("\n");

}
getch();

}

Arrays and Pointers Unit 6

Computer Programming using C 11

Program 3: Program to find the sum of the diagonal elements of a
matrix
#include<stdio.h>
#include<conio.h>
void main()
{
 int a[10][10], i, j, n, trace;
 clrscr();
 printf("\nEnter the order of the matrix:");
 scanf("%d", &n);
 printf("\nEnter the elements of the matrix:\n");
 for(i=0;i<n;i++)
 for(j=0;j<n;j++)

 scanf("%d", &a[i][j]);
 trace=0;
 for(i=0;i<n;i++)
 trace= trace+a[i][i];
 printf("\nThe sum of the diagonal elements = %d",trace);
 getch();
}

If we execute the program with the order 3 and the lements of the
matrix as 1,2 3, 4, 5, 6, 7,8, 9 the the sum of the diagonal elements
will be 15.

 CHECK YOUR PROGRESS

 1. State whether the following statements are true(T) or false(F)
 (i) Arrays are sets of values of the same type which have a single
 name follwed by an index.
 (ii) If N[10] is an array, then N+2 points to the third element of
 the array.
 (iii) The following is a correct array definition char num(30);
 (iv) “B” is a string but ‘B’ is a character.
 (v) Elements of one dimensionl arrays are always stored in row
 major fashion.

Arrays and Pointers Unit 6

Computer Programming using C 12

 (vi) Return statement cannot be used to return an array.

 2. Fill in the blanks:
 (i) An array is a collection of ________ data items.
 (ii)The __________________ indicates to the compiler that we
 are dealing with an array.
 (iii) The values used to initialize an array are separated by _____
 and surrounded by braces.
 (iv) Array elements can be accessed _________.

 3. Which of the following declaration is wrong?
 (a) int p[10]={1,2,3,4,5}; (b) char ch[][3]={{‘a’,’b’,’c’},{‘d’,’e’,’f’}};
 (c) int j=0, i=j; (d) All are correct

 4. What will be the output of the following program code?
 #include<stdio.h>
 #include<conio.h>
 void main() { int n, result=0, number[]={2,5,4,6,1};

 clrscr();
 for (n=0 ; n<5 ; n++) {
 if(number[n]==2)

 continue;
 result= result+ number[n]; }

 printf("%d",result);
 getch(); }

 5. Find the number of elements of the following array declarations:
 (a) int x[2][3]; (b) float p[9];

6.4 STRINGS

A character (char) variable can hold a single character. While writing
program , sometimes we may have to store a sequence of charac-
ters like a person’s name, address etc. We need a way to store these
sequence of characters. Although there is no special data type for
strings, C handles this type of information with array of characters.

Arrays and Pointers Unit 6

Computer Programming using C 13

A string is just an array of characters with the one additional
convention that a “null” character is stored after the last real charac-
ter in the array to mark the end of the string. Null character is a char-
acter with a numeric value of zero and it is represented by ‘\0’ in C.
So when we define a string we should be sure to have sufficient space
for the null terminator. An array of characters representing a string is
defined with the following syntax :

 char array_name[size];

In general, each character of a string is stored in one byte, and suc-
cessive characters of the string are stored in successive bytes. If we
want to store the name KKHSOU, then we have to declare an array
of char of size 6. Although there are five characters in the name but
we need an array of six characters. This extra space is to store the
“null” character.

String constants :
String constants have double quote marks around them, and can be
assigned to char pointers as shown below. Alternatively, we can as-
sign a string constant to a char array - either with no size specified,
or we can specify a size, but we shouldn't forget to leave a space for
the null character.

char *text = "Hello";
char text[] = "Hello";
char text[6] = "Hello";

In the third statement the total numbers of characters in the word
“Hello” is 5, but as it is a character array so we have considered the
size of array text as 6. i.e., one extra space for null.

Reading and Writing Strings:
One possible way to read in a string is by using scanf(). However,
the problem with this, is that if we were to enter a string which con-
tains one or more spaces, scanf() would finish reading when it
reaches a space, or if return is pressed. As a result, the string would
get cut off. So we could use the gets() function. A gets takes just one
argument - a char pointer, or the name of a char array, but we have to
declare the array or pointer variable first.

Arrays and Pointers Unit 6

Computer Programming using C 14

A puts() function is similar to gets() function in the way that it
takes one argument - a char pointer. This also automatically adds a
newline character after printing out the string. Sometimes this can be
a disadvantage, so printf() could be used instead. The concept of
pointers will be covered later in this unit.

6.9.1 Initialization of Strings

C allows to initialize a string at the time of its declaration. Let us con-
sider the following declaration:

char month[]={‘A’, ‘p’, ‘r’, ‘i’, ‘l’, ‘\0’};

month is a string which is initialized to April. This is a valid statement.
But C provides another way to initialize strings which is:

char month[]= “April”;

The characters of the string are enclosed within double quotes. The
compiler takes care of storing the ASCII (American Standard Code
for Information Interchange) codes of the characters of the string in
memory and also the null terminator in the end.
For example,
 char name[] = {‘K’,’K’,’H’,’S’,’O’,’U’,’\0’};
We can also have a simpler choice by giving the following declara-
tion:
 char name[] = “KKHSOU”;

Here the string is surrounded by double quotes (“ “). In this method of
initialization we do not need to insert the null character ‘\0’ . this will be
inserted automatically.

K K H S O U \0

For example let us consider the following two character array defini-
tions. Each includes the assignment of string “KKHSOU” .

 char university [6] = “KKHSOU” ; // defined as 6 element array
 char university [] = “KKHSOU”; // here size is not specified.

Character string
is terminated by
null character

Arrays and Pointers Unit 6

Computer Programming using C 15

The results of these initial assignments are not the same because of
the null character “\0”, which is automatically added at the end of the
second string. Thus the elements of the first array are:

university [0] = ‘K’
university [1] = ‘K’
university [2] = ‘H’
university [3] = ‘S’

 university [4] = ‘O’
 university [5] = ‘U’
Whereas the elements of the second array are:

university [0] = ‘K’
university [1] = ‘K’
university [2] = ‘H’
university [3] = ‘S’
university [4] = ‘O’
university [5] = ‘U’
university [6] = ‘\0’

The first form is incorrect, since the null character ‘\0’ is not included
in the array. So we can define it as:

char university [7] = “KKHSOU” ;

Program 4: Reading a sting of characters from the keyboard and
 displaying it.
#include<stdio.h>
#include<conio.h>
void main()
{ char university [7] ; //declaration of a string of characters

university[0] = ’K’;
university[1] = ’K’;
university[2] = ’H’;
university[3] = ’S’;

 university[4] = ’O’;
 university[5] = ’U’;

university[6] = ‘\0’; // Null character - end of text
printf(“University name: %s\n”, university);
printf(“\nOne letter is: %c\n”, university [2]);
printf(“\nPart of the name is: %s\n”, &university [3]);

Arrays and Pointers Unit 6

Computer Programming using C 16

getch();
}
Output :

University name: KKHSOU
One letter is:H
Part of the name is: SOU

6.9.2 Arrays of Strings
Arrays of strings (arrays of character arrays) can be declared and
handled in a similar manner to that described for two dimensional
arrays. Let us consider the following example:

Program 5:
#include< stdio.h>
#include<conio.h>
void main()
{

char names[2][8] = {“KKHSOU”, “IDOL”};
printf(“Names = %s, %s\n”,names[0],names[1]);
printf(“\nNames = %s\n”,names);
printf(“Initials = %c. %c.\n”,names[0][0],names[1][0]);

 getch();
}

Output :
names = KKHSOU, IDOL
names = KKHSOU
Initials = K. I.

Here we declare a 2-D character array comprising two “roes” and 8
“columns”. We then initialise this array with two character strings,
KKHSOU and IDOL.

6.9.3 String Manipulations

C language does not provide any operator which manipulate entire
strings at once. Strings are manipulated either via pointers or via spe-

Arrays and Pointers Unit 6

Computer Programming using C 17

cial routines available from the standard string library string.h. The
file string.h available in the library of C has several built in functions
for string manipulation. Some of them are :

 strlen()
 strcpy()
 strcat()
 strcmp()
 strrev()

To use these funtions we have to include the header file string.h as
shown below:

 #include<string.h>

String Length

The strlen() function is used to find the number of characters in a
given string including the end-of-string character (null). The syntax is
as follows:
 len = strlen(ptr);
where len is an integer and ptr is the array name where the string is
stored. The following program determines the length of a string which
is entered through the keyboard.

Program 6: Finding the lengh of a string
#include<stdio.h>
#include<conio.h>
#include<string.h>
void main()
{
 int len;
 char name[25];
 clrscr();
 printf(“\nEnter the name:”);
 gets(name);
 len=strlen(name);
 printf(“\nLength of the string :%d”,len);
 getch();

Arrays and Pointers Unit 6

Computer Programming using C 18

}

If the entered name is KKHSOU, then the result will be 6. If we enter
KKHSOU Assam then strlen() will return 12 counting the blank space
as one character.

EXERCISE

Q. Find the lengh of a particular string without using string library
function strlen().

String Copy
The strcpy() function copies the contents of one string to another i.e.,
source string to destination string. The syntax is:

 strcpy(str1,str2);
where str1 is the destination string and str2 is the sourse string.

String Concatenation
The strcat() function joins or places together two strings resulting in
a single string. It takes two strings as argument and the resultant
string is stored in the destination string. The syntax is:

 strcat(s1,s2);
where s1 is the destination string and s2 is the source string.

String Compare
The strcpy() function compares two strings, character by character.
It accepts two strings as parameters and returns an integer. The syn-
tax is: strcmp(s1,s2);
The return value of strcmp() function depends on both the two strings
which we compare. If s2<s1, it returns -1

 If s2==s1, it returns 0
 If s2>s1, it returns 1

Two strings are equal if their contents are identical.

Arrays and Pointers Unit 6

Computer Programming using C 19

Program 7: Program for checking two string which comes first in the
 English dictionary.
#include<stdio.h>
#include<string.h>
#include<conio.h>
void main()
{
 int i;
 char s1[20],s2[20];
 clrscr();
 printf("\nEnter a string:");
 gets(s1);
 printf("\nEnter another string to compare:");
 gets(s2);
 i=strcmp(s1,s2);
 if(i==0)

 printf("\nStrings are identical");
 else if(i<0)

 printf("\nFirst string comes first");
 else if(i>0)

 printf("\nSecond string comes first");
 getch();
 }

Program 8: Combining two strings
#include<stdio.h>
#include<string.h>
#include<conio.h>
void main()
{ char s1[50],s2[20];

printf("\nEnter your first name:");
gets(s1);
printf("\nEnter your last name:");
gets(s2);
strcat(s1,s2);
printf("\nYour full name :%s",s1);
getch();

Arrays and Pointers Unit 6

Computer Programming using C 20

}

 CHECK YOUR PROGRESS

6. Fill in the blanks:
(i) All strings must end with a __________ character.
(ii) String function strrev() belongs to __________ header file.
(iii) __________ function appends a string to another string.
(iv) strcmp() is string library function which_______ two strings.
(v) A string is an array of ___________ .

7. Consider the following code segment:
 void main()
 {
 char s[100];
 scanf(“%s”, s);
 printf(“%3s”,s);
 }
If Programming Language is entered upon the execution of the
program for s, then what will be the output? Options are given
below:

(a) Pro
(b) Programming Language
(c) Programming
(d) none of these

8. State whether the following statements are true(T) or false(F).
(i) Two strings are equal if their contents are identical.
(ii) gets() function belongs to the header file stdio.h .
(iii) strlen() reverses a string.
(iv) If blank space exists in a string, gets() function reads the
 string including blank space.
(v) strcat() function takes only one string as argument.

Arrays and Pointers Unit 6

Computer Programming using C 21

6.10 POINTERS

A pointer is a variable that holds the memory address of another vari-
able. We can have a pointer to any variable type. The unary operator
& gives the “address of a variable”. The indirection or dereference
operator * gives the “contents of a variabel pointed to by a pointer”.

6.10.1 Declaration of Pointer

Pointer variables must be declared before they may be used in C
program. When a pointer variable is declared, the variable name must
be preceded by an asterisk “ * “. The data type that appears in the
declaration refers to the object of the pointer. The general syntax of
pointer declaration is:

 data_type *variable;

For example, the following is a pointer declaration statement.

 int * ptr;

where ptr is the name of the pointer variable. The following program
illustrates the use of pointer.

Program 9:
#include<stdio.h>
#include<conio.h>
void main()
{

int age,*ptr1,*ptr2;
age = 50; /* any numerical value */
ptr1 = &age; /* the address of age variable */
ptr2 = ptr1;
printf(“The value is %d %d %d\n”, age,*ptr1,*ptr2);

indicates variable is a pointer
(i.e., it will hold an address)

name of the pointer variable
indicates that the pointer will point
to an int type variable

Arrays and Pointers Unit 6

Computer Programming using C 22

ptr1 = 29; / this changes the value of age */
printf(“The value is %d %d %d\n”, age,*ptr1,*ptr2);

 getch();
}
Here “ptr1” and “ptr2” are two pointer variables. So they do not con-
tain a variable value but an address of a variable and can be used to
point to a variable. Line 7 of the above program assigns the address
of “age” variable to the pointer “ptr1”. Since we have a pointer to
“age”, we can manipulate the value of “age” by using either the vari-
able name itself, or the pointer. Line 10 modifies the value using the
pointer “ptr1”. Since the pointer “ptr1” points to the variable “age”,
putting a star in front of the pointer name refers to the memory loca-
tion to which it is pointing. Line 10 therefore assigns the value 29 to
“age”. Any place in the program where it is permissible to use the
variable name “age”, it is also permissible to use the name “*ptr1”
since they are identical in meaning until the pointer is reassigned to
some other variable.

Program 10: Program to demonstrate the relationships among * and
 & operators.

#include<stdio.h>
#include<conio.h>
void main()
{
 int a=5;
 int *p;
 p=&a;
 clrscr();
 printf(“\nAddress of a=%u”, &a);
 printf(“\nAddress of a=%u”, p);
 printf(“\nAddress of p=%u”, &p);
 printf(“\nValue of p=%u”, p);
 printf(“\nValue of a=%d”, a);
 printf(“\nValue of a=%d”, *(&a));
 printf(“\nValue of a=%d”, *p);
 getch();
}

Arrays and Pointers Unit 6

Computer Programming using C 23

Output : 65524
 65524
 65522
 65524
 5
 5
 5
Memory address may be different with different computer. In our case
if the memory address of variable a is 65524 then the diagrametic
representation will be like this:

Pointer expressions and pointer arithmetic

Like other variables pointer variables can be used in expressions.
For example if p1 and p2 are properly declared and initialized point-
ers, then the following statements are valid.

x = *p1**p2;
sum =sum+*p1;
y = 5* - *p2/p1;
*p2 = *p2 + 10;

C language allows us to add integers to or subtract integers from
pointers as well as to subtract one pointer from the other. We can
also use short hand operators with the pointers p1+=; sum+=*p2;
etc. We can also compare pointers by using relational operators the
expressions such as p1 >p2 , p1==p2 and p1!=p2 are allowed.

6.10.2 Passing Pointer to a Function

Pointers are often passed to a function as arguments. This allows
data type within the calling portion of the program to be accessed by
the function, altered within the function, and then returned to the call-
ing portion of the program in altered form. This is called passing ar-
guments by reference or by address.

Variable name p a

Address 65522 65524 65526 65528

Value 65524 5

Arrays and Pointers Unit 6

Computer Programming using C 24

Here is a simple C program that illustrates the difference between
ordinary arguments which are passed by value, and pointer argu-
ments which are passed by reference.

Program 11: Arguments are passed by value
#include<stdio.h>
#include<conio.h>
void function1(int, int);
void main()
{

int a =1;
int b =2;
printf(“Before calling function1 : a=%d b=%d” , a , b);
function1(a,b); //passed by value
printf(“After calling function1 : a=%d b=%d” , a , b);

}
void function1(int a , int b) //function definition
{
 a=5;
 b=5;
 printf(“Within the function1 : a=%d b=%d” , a , b);
 return;
}

Output :
Before calling function1 : a=1 b=2
Within function1 : a=5, b=5
After calling function1 : a=1, b=2

When an argument is passed by value, the data item is copied to the
function. Thus, any alteration made to the data item within the func-
tion is not carried over in to the calling routine.

When an argument is passed by reference, the address of the data
item is passed to the function. Here, the above example is consid-
ered again to see the differences in output. In this case we observe
that original value is changed after execution of function2.

Arrays and Pointers Unit 6

Computer Programming using C 25

Program 12: Arguments are passed by reference
#include<stdio.h>
#include<conio.h>
void function2(int *, int *);
void main()
{ int a =1;

int b =2;
printf(“Before calling function2 : a=%d b=%d” , a , b);
function2(&a,&b); passed by reference
printf(“After calling function2 : a=%d b=%d” , a , b);

}
void function2(int *pa , int *pb) //function
{

*pa=5;
*pb=5;

 printf(“Within the function2 : *pa=%d *pb=%d” , *pa , *pb);
return;

}
Output :

Before calling function2 : a=1 , b=2
Within function2: *pa=5, *pb=5
After calling function2 : a=5, b=5

6.10.3 Pointers and One-Dimensional Arrays

An array in C is declared as:
 int X[5]={2,1,6,9,5};

X is an array of integers and it has five elements. If X is a one dimen-
sional array, then the address of the first element can be expressed
as either &X[0] or X. Moreover, the address of the second array ele-
ment can be written as either &X[1] or as X+1 and so on. In general,
the address of array element (i+1)can be expressed as either &X[i]
or X+i . Since &X[i] and X+i both represent the address of the ith

element of X , it would seem reasonable that X[i] and *(X+i) both
represent the contents of that address. i.e , the value of ith element of
X.

Arrays and Pointers Unit 6

Computer Programming using C 26

An array is actually a pointer to the 0th element of the array.
Dereferencing the array name will give the 0th element. This gives us
a range of equivalent notations for array access. In the following ex-
amples, ARR is an array.

 Array access Pointer equivalent
 ARR[0] *ARR
 ARR[2] *(ARR+2)
 ARR[n] *(ARR+n)

There are some differences between arrays and pointers. The array
is treated as a constant in the function where it is declared. This
means that we can modify the values in the array, but not the array
itself, so statements like ARR ++ are illegal, but ARR[n] ++ is legal.
Let us consider an int variable called i. Its address could be repre-
sented by the symbol &i. If the pointer is to be stored as a variable, it
should be stored like this:

int *p = &i;

int * is the notation for a pointer to an int. The operator & returns the
address of its argument.

The other operator which gives the value at the end of the pointer is
*. For example: i = *p;

6.11 DYNAMIC MEMORY ALLOCATION

When an array is declared as above, memory is allocated for the
elements of the array when the program starts, and this memory
remains allocated during the lifetime of the program. This is known
as static array allocation.

Until this point, the memory allocation for our program has been
handled automatically when compiling. However, sometimes the com-
puter doesn’t know how much memory to set aside (for example,
when you have an unsized array). It may happen that you don’t know
how large an array you will need (or how many arrays). In this case it
is convenient to allocate an array while the program is running. This

Arrays and Pointers Unit 6

Computer Programming using C 27

is known as dynamic memory allocation. Dynamic data structures
provide flexibility in adding , deleting or rearranging data items at run
time . Dynamic memory management permit us to allocate addi-
tional memory space or to release unwanted space at run time.

malloc and free :

A block of memory may be allocated using the function malloc. The
malloc() function reserves a block of memory of specified size and
returns a pointer of type void. Syntax is as follows:

 ptr = (cast type *) malloc(byte size);

For example, x =(int *)malloc (100 * sizeof(int));

Here a memory space equivalent to 100 times the size of an integer
byte is reserved and the address of the first byte of the memory allo-
cated is assigned to the pointer x of type integer.

malloc requires one argument - the number of bytes which we want
to allocate dynamically. If the memory allocation was successful,
malloc will return a void pointer. We can assign this to a pointer vari-
able, which will store the address of the allocated memory. If memory
allocation failed (for example, if you’re out of memory), malloc will
return a NULL pointer. Passing the pointer into free will release the
allocated memory - it is good practice to free memory when you’ve
finished with it. The general format of free() function is:

 int free(pointer);

 char *pointer;

The following program will ask you how many integers you would like
to store in an array. It will then allocate the memory dynamically using
malloc and store a certain number of integers, print them out, then
releases the used memory using free.

Program 13:
#include <stdio.h>
#include <stdlib.h> /* required for the malloc and free functions */
#include<conio.h>
void main()

Arrays and Pointers Unit 6

Computer Programming using C 28

{
int number;
int *ptr,i;

 clrscr();
printf(“How many ints would you like to store? “);
scanf(“%d”, &number);
ptr =(int *)malloc(number*sizeof(int)); // allocate memory
if(ptr!=NULL)
{

for(i=0 ; i<number ; i++)
{

 *(ptr+i) = i;
}
for(i=number ; i>0 ; i--)
{

printf(“%d\n”, *(ptr+(i-1))); /* print out in
 reverse order */

}
free(ptr); // free allocated memory

 }
 else
 {
 printf(“\nMemory allocation failed - not enough memory”);
 } //end bracket of if-else
}// end of main

If we enter 4
Output : How many ints would you like store? 4

3
2
1
0

calloc :

calloc is similar to malloc, but the main difference between the two
is that in case of callocc the values stored in the allocated memory
space is zero by default. With malloc, the allocated memory could
have any value. Calloc requires two arguments. The first is the num-

Arrays and Pointers Unit 6

Computer Programming using C 29

ber of variables which we like to allocate memory for. The second is
the size of each variable. Like malloc, calloc will return a void pointer
if the memory allocation was successful, else it’ll return a NULL pointer.
Syntax of calloc is as follows:

 ptr = (cast type *) calloc (n, element size);

realloc :

The realloc() function is used to change the size of previously allo-
cated block. Suppose, we have allocated a certain number of bytes
for an array but later find that we want to add values to it. We could
copy everything into a larger array, which is inefficient, or we can
allocate more bytes using realloc, without losing our data. realloc()
takes two arguments. The first is the pointer referencing the memory.
The second is the total number of bytes you want to reallocate. Passing
zero as the second argument is the equivalent of calling free. Once
again, realloc returns a void pointer if successful, else a NULL pointer
is returned.

 CHECK YOUR PROGRESS

9. State whether the following statements are true(T) or false(F).
(i) The statement *p++ ; increments the content of the memory
 location pointed by p.
(ii) The address operator is obtained by *.
(iii) *p++ ; increments the integer pointed by p.
(iv) The address operator (&) is the inverse of the de-referncing
 operator (*).
(v) Arrays cannot be returned by functions, however pointer to
array can be returned.

10. Choose the correct option:
(i) Which is the correct way to declare an integer pointer ?
 (a) int_ptr x; (b) int *ptr; (c)*int ptr; (d)*ptr;

 (ii) In the expression float *p; which is represented as type
 float?

(a)The address of p (b)The variable p
(c) The variable pointed to by p (d) None of the above

Arrays and Pointers Unit 6

Computer Programming using C 30

(iii) A pointer is
(a) Address of variable
(b)A variable for storing address
(c) An indirection of the variable to be accessed next.
(d)None of the above.

(iv) Assuming that int num[] is an one-dimensional array of type
int, which of the following refers to the third element in the array?

(a) *(num+4); (b)*(num+2);
(c)num+2; (d)p=&a[3];

(v) Consider the following two definitions int a[50]; int *p;
 which of the following statement is incorrect?

(a) p=a+3; (b) a=p;
(c) p=&a[3]; (d)None of these

11. How does the use of pointers economize memory space?

6.12 LET US SUM UP
 Array by definition is a variable that hold multiple elements

which has the same data type.
 Array elements are stored in contiguous memory locations

and so they can be accessed using pointers.
 A string is nothing but an array of characters terminated by

null character “\0”.
 The header file of string library function is string.h
 strlen() returns the number of characters in the string, not

including the null character
  strcmp() takes two strings and compares them. If the strings
 are equal, it returns 0. If the first is greater than the 2nd, then it
 returns some value greater than 0. If the first is less than the
 second, then it returns some value less than 0.

strrev() reverses a string.
strcat() joins two strings.
 A pointer variable can be assigned the address of an ordi-

nary variable (Eg, PV=&V).
 A pointer variable can be assigned the value of another

pointer variable (Eg, PV=PX) provided both pointers point to

Arrays and Pointers Unit 6

Computer Programming using C 31

object of the same data type.
 A pointer variable cannot be multiplied by a constant; two

pointer variables cannot be added.
 On incrementing a pointer it points to the next location of its

type.

 6.13 FURTHER READINGS

 1. Balagurusamy, E: Programming in ANSI C, Tata McGraw-Hill
 publication.
 2. Gottfried Byron S: Programming with C, Tata McGraw-Hill
 publication.
 3. Venugopal, K.R, Prasad, S.R: Mastering C, Tata McGraw-Hill
 publication.

 6.14 ANSWERS TO CHECK YOUR
 PROGRESS

 1. (i) True (ii) False (iii) False (iv) True (v)True (vi) True
 2. (i) Homogeneous (ii) square bracket []
 (iii) commas (iv) randomly
 3. (d) All are correct
 4. 16
 5. (a) 6 (b) 9
 6. (i) null (ii) string.h (iii) strcat() (iv) compares (v) characters
 7. (c) Programming
 8. (i) True (ii) True (iii) False (iv) True (v) False
 9. (i) False (ii) False (iii) True (iv) False (v)True
 10. (i) (b) int *ptr;
 (ii) (c)The variable pointed to by p
 (iii) (b) A variable for storing address
 (iv) (b)*(num+2);
 (v) (b) a=p;

11. Pointers are variables which hold the addresses of other vari-
ables. A compiler allocates an address at runtime for each variable
and retains this till program execution is completed. Thus, entire

Arrays and Pointers Unit 6

Computer Programming using C 32

memory is not used at a time and only that part of memory is used
that is required for execution.

 6.15 MODEL QUESTIONS

 1. Write a C program to find the largest and the smallest of n
 numbers.
 2. Find the minimum element and the sum of array elements.
 3. What is the header file for string library function. Describe five
 string library functions with there syntax and examples.
 4. Write a program to compute the length of string.
 5. Write a program to reverse a string without using strrev().
 6. Write a program to check whether a given string is a palindrome
 or not. (Palindrome is a string which is same from both ends.)
 7. What do you mean dynamic memory allocation? How it is useful?
 8. If an integer array text is a stored from location 900 onwards,
 what is the location of the 8th element in the array.
 9. Write a function to check whether characters +, -, * , / present in
 a string.
 10. Write a function to swap two float variables using call by reference.
 11. Write a C program to find the kth smallest elemnt in an array
 using pointers.
12. How are one dimensional arrays and two dimensional arrays
 represented using pointers?
13. Which of the following declarations can be invalid? Give reasons.
 (a) float array[5.3];
 (b) int num[50]
 (c) int m[5][];
14. Describe the following with some suitable examples:
 (a) Pointers and two dimensional array
 (b) Advantages and operations of
 (i) malloc() (ii) calloc() (iii) Any six string library functions.
15. Write a C program to add two matrices. Use function for the
 addition purpose.
16. Write a C program to multiply two matrices of same order.

Structures and Unions Unit 7

Computer Programming using C 1

UNIT- 7 STRUCTURE AND UNION

UNIT STRUCTURE

 7.1 Learning Objectives
7.2 Introduction
7.3 Structure

 7.3.1 Defining a Structure
 7.3.2 Structure Declaration
 7.3.3 Giving Values to Members

 7.4 Array of Structures
 7.5 Structure within a Structure
 7.6 Passing Structures to Functions
 7.7 Pointer to Structures

7.8 Union
7.9 Enumerated Data Types

 7.10 Defining Your Own Types (Typedef)
7.11 Let Us Sum Up
7.12 Further Readings
7.13 Answers To Check Your Progress
7.14 Model Questions

7.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

  use structure in a program
 learn how structures are defined and how their individual
 members are accessed and processed within a program
  declare structure variables
  learn about array of structures
  declare and use pointer to structure
  learn about union
 describe enumerated data type and type definition

7.2 INTRODUCTION

In the previous unit (i.e.,Unit 6) we have studied the array which is an

Structures and Unions Unit 7

Computer Programming using C 2

example of data structure. It takes simple data types like int, char or
double and organises them into a linear array of elements. The array
serves most but not all of the needs of the typical C program. The
restriction is that an array is composed of elements all of which are
of the same type. If we need to use a collection of different data type
items it is not possible by using an array. When we require using a
collection of different data items of different data types we can use a
structure.

 This unit will help you to learn about structure and union, giving
values to members, initializing structure, functions and structures,
passing structure to elements to functions, arrays of structure, struc-
ture within a structure and union.

7.3 STRUCTURE

A structure is a heterogeneous user defined data type. It is a conve-
nient method of handling a group of related data items of different
data types. A structure contains a number of fields or variables. The
variables can be of any of the valid data types. In order to use struc-
tures, we have to first define a unique structure.

7.3.1 Defining a Structure

Let us consider for a moment a book in detail which records title,
author, page and price. The book name (i.e., title) and author name
would have to be stored as string, i.e., array of chars terminated with
an ASCII null character, and the page and price could be int and float
respectively. At the moment, the only way we can work with this col-
lection of data is as separate variables. This is not as convenient as
a single data structure using a single name and so the C language
provides struct. General format of defining a structure is as follows:

struct tag_name
{

data_type member1;
data_type member2;
................
...............

 data_type membern;
};

Structures and Unions Unit 7

Computer Programming using C 3

In this declaration, struct is the keyword for structure; tag_name is
the name that identifies sructure of particular type; and member1,
member2,....membern are individual member declarations. The in-
dividual members can be ordinary variables, pointers, arrays or other
structures.

For example:
 struct lib_books

{
char title[25];
char author[20];
int pages;
float price;

};

The keyword struct declares a structure to hold the details of four
fields namely title, author, pages and price. These are members of
the structures. Each member may belong to different or same data
type. The tag_name can be used to define objects that have the tag
names structure. It is not always necessary to define the structure
within the main() function.

7.3.2 Structure Declaration

Once the composition of the structure has been defined, individual
structure-type variable can be declared as followes:

 struct tag_name variable 1, variable 2,, variable n;

where struct is a required keyword, tag_name is the name that ap-
peared in the structure declaration, and variable 1, variable 2,............,
variable n are structure variable of type tag_name. We can declare
structure variables using the tag_name any where in the program.
For example, the statement,

struct lib_books book1, book2, book3;

declares book1, book2, book3 as variables of type struct lib_books .
Each declaration has four elements of the structure lib_books. The

Structures and Unions Unit 7

Computer Programming using C 4

complete structure declaration might look like this:

struct lib_books
{

char title[25], author[20];
int pages;
float price;

};
struct lib_books book1, book2, book3;

Structures do not occupy any memory until it is associated with the
structure variable such as book1. The tag_name such as lib_books
can be used to declare structure variables of its data type later in the
program. The tag_name such as lib_books can be used to declare
structure variables of its data type later in the program.

We can also combine both template declaration and variables decla-
ration in one statement, the declaration

struct lib_books
{

char title[20];
char author[15];
int pages;
float price;

} book1,book2,book3;

is valid. The use of tag_name is optional.

book1, book2, book3 declare book1, book2, book3 as structure vari-
ables representing three books but do not include a tag_name for
use in the declaration. A structure is usually define before main(). In
such cases the structure assumes global status and all the func-
tions can access the structure. For example:

Structures and Unions Unit 7

Computer Programming using C 5

 struct employee
 {
 char fname[15];
 char lname[15];
 int id_no;
 int bmonth;
 int bday;
 int byear;
 } emp1;

Here, we have declared one variable, emp1, to be structure with six
fields, some integers, some strings. Right after the declaration, a
portion of the main memory is reserved for the variable emp1. This
variable takes a size of 38 bytes for different members of struct
employee: 15 bytes for fname, 15 bytes for lname, 2 bytes for id_no,
2 bytes for bmonth, 2 bytes for bday, 2bytes for byear.

7.3.3 Giving Values to Members
The members of structure themselves are not variables. They should
be linked to structure variables in order to make them meaningful
members. The link between a member and a variable is established
using the member operator ‘.’ Which is known as dot operator or
period operator.
For example,

 book1.price;
 book1.pages;
 book2.price;

book1.price is the variable representing the price of book1 and can
be treated like any other ordinary variable. We can use scanf() func-
tion to assign values as follows:

scanf(“%f”,&book1.price);
scanf(“%d”,&book1.pages);

We can also assign values to the members of the structure lib_books.
If we want to assign some values to book1, then the statements will
be like this:

Structures and Unions Unit 7

Computer Programming using C 6

strcpy(book1.title,”C Language”);
strcpy(book1.author,”Kanetkar”);
book1.pages=255;
book1.price=325.00;

Program 1: Reading information of one student and displaying those
information.
#include<stdio.h>
#include<conio.h>
void main()
{
 struct studentinfo
 {

 int roll;
 char name[20];
 char address[30];
 int age;

 }s1;
 clrscr();
 printf("Enter the student information:");
 printf("\nEnter the student roll no.:");
 scanf("%d",&s1.roll);
 printf("\nEnter the name of the student:");
 scanf("%s",&s1.name);
 printf("\nEnter the address of the student:");
 scanf("%s",&s1.address);
 printf("\nEnter the age of the student:");
 scanf("%d",&s1.age);
 printf("\n\nStudent information:");
 printf("\nRoll no.:%d",s1.roll);
 printf("\nName:%s",s1.name);
 printf("\nAddress:%s",s1.address);
 printf("\nAge of student:%d",s1.age);
 getch();
}

Structures and Unions Unit 7

Computer Programming using C 7

The members of a structure variable can be assigned initial values in
the same way as the lements of an array. The initial values must
appear in the order in which they will be assigned to their corresponding
structure members, enclosed in braces and separated by commas.
The general syntax is as follows:

storage_class struct tag_name variable={value1, value2,...., value n};

where value1 refers to the value of the first structure mem-
ber, value2 refers to the value of the second member, and so on. A
structure variable, can be initialized only if its strorage class is either
static or external.

 struct date
 {

int month;
int day;
int year;

 };
 struct employee
 {

char empid[5];
char name[30];
char dept[20];
struct date dob;

 };
 static struct employee e = {A25, ‘Rajib Dutta’, ‘Sales’, 6, 21,85 };

Here, e is a static data structure variable of type employee, whose
members are assigned initial values. The first member (empid) is
assigned the character value A25, the second member (name) is
assigned the character value Rajib Dutta, the third member (dept) is
assigned the character value Sales. The fourth member is itself a
structure that contains three members (month, day and year). And
the last member of customer is assigned the integer value 6, 21 and
85.

Structures and Unions Unit 7

Computer Programming using C 8

 EXERCISE

Q. Modify the above program (Program 1) for storing and display-
ing information of two strudents.

7.4 ARRAY OF STRUCTURES

A useful program may need to handle many records. If we need to
store a list of items, we can use an array as our data structure. In this
case, the elements of the array are structures of a specified type. For
example:

struct inventory
 {

int part_no;
float cost;
float price;

};
struct inventory table[4];

which defines an array with four elements, each of which is of type
struct inventory, i.e., each is an inventory structure. Again, if we are
maintaining information of all students in a school and if there are 100
students studying in the school, we need to use an array rather than
single variables. It is possible to define an array of structures as shown
in the program below :

Program 2:
#include<stdio.h>
#include<conio.h>
void main()
{
 struct studentinfo
 {

int roll;
char name[20];
char address[30];
int age;

Structures and Unions Unit 7

Computer Programming using C 9

 };
 struct studentinfo s[100];
 /* s[100] is an array of structure where information of maximum 100
 students can be stored */
 clrscr();
 int n,i;
 printf("\nHow many students information do you want to enter?");
 scanf("%d",&n);
 printf("Enter Student Information:");
 for(i=1;i<=n;i++)
 {

printf("\nEnter Roll no.:");
scanf("%d",&s[i].roll);
printf("\nEnter the name of the student:");
scanf("%s",&s[i].name);
printf("\nEnter the address of the student:");
scanf("%s",&s[i].address);
printf("\nEnter the age of the student:");
scanf("%d",&s[i].age);

 }
 printf("\n\nInformation of all studenst:");
 for(i=1;i<=n;i++)
 {

printf("\nRoll no.:%d",s[i].roll);
printf("\nName:%s",s[i].name);
printf("\nAddress:%s",s[i].address);
printf("\nAge of student:%d\n\n",s[i].age);

 }
 getch();
}

Structures and Unions Unit 7

Computer Programming using C 10

 CHECK YOUR PROGRESS

1. Define a structure consisting of two floating point members,
called real and imaginary. Include the tag complex within the defi-
nition. Declare the variables c1,c2 and c3 to be structure of type
complex.

2. Declare a variable a to be a structure variable of the following
structure type struct account {
 int ac_no;
 char ac_type;
 char name[30];
 float balance;
 };
and initiaze a as follows:
ac_no : 12437
ac_type: Saving
name: Rahul Anand
balance: 35000.00

3. State whether the following statements are true(T) or false(F)

 (i) Collection of different datatypes can be used to form a struc
 ture.
 (ii) Structure variables can be declared using the tag name any
 where in the program.
 (iii) Tag-name is mandatory while defining a structure.
 (iv) A program may not contain more than one structure.
 (v) We cannot assign values to the members of a structure.
 (vi) It is always necessary to define the structure variable within
 the main() function.

Structures and Unions Unit 7

Computer Programming using C 11

7.5 STRUCTURE WITHIN A STRUCTURE

A structure may be defined as a member of another structure. In
such structures the declaration of the embedded structure must ap-
pear before the declarations of other structures. For example,

struct date
{

int day;
int month;
int year;

};
struct student
{

int roll;
char name[20];
char combination[3];
int age;
structure date dob;

}student1,student2;

the sturucture student constains another structure date as one of
its members.

7.6 PASSING STRUCTURES TO FUNCTIONS

Structure variables may be passed as arguments and returned from
functions just like other variables. A structure may be passed into a
function as individual member or a separate variable. A program ex-
ample to display the contents of a structure passing the individual
elements to a function is shown below :

Program 2:
#include<stdio.h>
#include<conio.h>
void display(int,float);
void main()
{

Structures and Unions Unit 7

Computer Programming using C 12

 struct employee
 {

 int emp_id;
 char name[25];
 char department[15];
 float salary;

 };
 static struct employee e1={15, "Rahul","IT",8000.00};
 clrscr();
 /* only emp_id and salary are passed to the display fucntion*/
 display(e1.emp_id,e1.salary);
 getch();
}

void display(int eid, float s)
{

 printf("\n%d\t%5.2f",eid,s);
}

Output : 15 8000.00

When we call the display function using display(e1.emp_id,e1.salary);
we are sending the emp_id and name to function display(); it can be
immediately realized that to pass individual elements would become
more tedious as the number of structure elements go on increasing.
A better way would be to pass the entire structure variable at a time.

Passing entire structure to functions :

There may be some structures having numerous structure mem-
bers (elements). Passing these individual elements would be a te-
dious task. In such cases we may pass the whole structure to a
function as shown below :

Program 3 :
#include<stdio.h>
#include<conio.h>
struct employee
{

int emp_id;

Structures and Unions Unit 7

Computer Programming using C 13

char name[25];
char department[10];
float salary;

};
static struct employee e1={12,"Dhruba","Sales",6000.00};
void display(struct employee e); //prototype decleration
void main()
{

clrscr();
display(e1); /*sending entire employee structure*/
getch();

}
void display(struct employee e)
{
printf("%d\t%s\t%s\t%5.2f", e.emp_id,e.name,e.department,e.salary);
}
Output :
12 Dhruba Sales 6000.00

Program 4: A program using structure working within a function
#include<stdio.h>
#include<conio.h>
struct item{

int code;
float price;

};
struct item a;
void display(struct item i); //prototype decleration
void main()
{
 clrscr();
 display(a); /*sending entire employee structure*/
 getch();
}
void display(struct item i)
{
 i.code=20;

Structures and Unions Unit 7

Computer Programming using C 14

 i.price=299.99;
 printf("Item Code and Price of the item:%d\t%5.2f", i.code,i.price);
}
Output : 20 299.99

7.7 POINTER TO STRUCTURES

Instead of passing a copy of the whole structure to the function, we
can pass only the address of the structure in the memory to the func-
tion. Then, the program will get access to every member in the func-
tion. This can be achieved by creating a pointer to the address of a
structure using the indirection operator “*”.

To write a program that can create and use pointer to structures,
first, let us define a structure:

 struct item
{

int code;
float price;

};
Now let us declare a pointer to struct type item.

struct item *ptr;

Because a pointer needs a memory address to point to, we must
declare an instance of type item.

struct item p;

The following figure shows the relationship between a structure and
a pointer.

 Fig.7.1: A pointer to a structure points to the first
 byte of the structure

ptr

p.code p.price

Structures and Unions Unit 7

Computer Programming using C 15

Program 5: Program to demonstrate pointers to structure.
#include<stdio.h>
#include<conio.h>
void main()
{

struct item
{

int code;
float price;

};
struct item i;
clrscr();
struct item *ptr; //declare pointer to ptr structure
ptr=&i; // assign address of struct to ptr
ptr->code=20;
ptr->price=345.00;
printf("\nItem Code: %d",ptr->code);
printf("\tPrice: %5.2f",ptr->price);
getch();

}
Output : Item Code: 20 Price: 345.00

CHECK YOUR PROGRESS

4.State whether the following statements are true(T) or false(F)
(i) It is possible to pass a structure to a function in the same way
a variable is passed.
(ii)When one of the fields of a structure is itself a structure, it is
called nested structure.
(iii) We cannot create structures within structure in C.
(iv) It is illegal for a structure to contain itself as a member.
(v) A sstructure can include one or more pointers as members.

5. Fill in the blanks:
(i) __________ can be used to access the members of struc-
ture variables.
(ii) The name of a structure is referred to as ___________ .

Structures and Unions Unit 7

Computer Programming using C 16

7.8 UNION

In some applications, we might want to maintain information of one of
two alternate forms. For example, suppose, we wish to store infor-
mation about a person, and the person may be identified either by
name or by an identification number, but never both at the same time.
We could define a structure which has both an integer field and a
string field; however, it seems wasteful to allocate memory for both
fields. (This is particularly important if we are maintaining a very large
list of persons, such as payroll information for a large company). In
addition, we wish to use the same member name to access identity
the information for a person.

C provides a data structure which fits our needs in this case called a
union data type. A union type variable can store objects of different
types at different times; however, at any given moment it stores an
object of only one of the specified types. Unions are also similar to
structure datatype except that members are overlaid one on top of
another, so members of union data type share the same memory.

The declaration of a union type must specify all the possible different
types that may be stored in the variable. The form of such a declara-
tion is similar to declaring a structure template. For example, we can
declare a union variable, person, with two members, a string and an
integer. Here is the union declaration:

union human
 {

 int id;
 char name[30];
 } person;

This declaration differs from a structure in that, when memory is allo-
cated for the variable person, only enough memory is allocated to
accommodate the largest of the specified types. The memory allo-
cated for person will be large enough to store the larger of an integer
or an 30 character array. Like structures, we can define a tag for the
union, so the union template may be later referenced by the tag name:

Unions obey the same syntactic rules as structures. We can access

Structures and Unions Unit 7

Computer Programming using C 17

elements with either the dot operator (.) or the right arrow operator
(->). There are two basic applications for union. They are:
 (i) Interpreting the same memory in different ways.
 (ii) Creating flexible structure that can hold different types of data.

Program 6: Program demonstrating initializing the member and dis-
playing the contents.

#include<stdio.h>
#include<conio.h>
void main()
{
 union data
 {
 int a;
 float b;
 };
 union data d;
 d.a=20;
 d.b= 195.25;
 printf(“\nFirst member is %d”,d.a);
 printf(“\nSecond member is %5.2f”,d.b);
 getch();
}
Output: First member is 16384
 Second member is 195.25

here only the float values are stored and displayed correctly and the
interger values are displayed wrongly as the union only holds a value
for one data type of the larger storage of their members.

7.9 ENUMERATED DATA TYPES

In addition to the predefined types such as int, char,float etc. , C al-
lows us to define our own special data types, called enumerated data
types.

An enumeration type is an integral type that is defined by the user .
The syntax is:

Structures and Unions Unit 7

Computer Programming using C 18

 enum typename {enumeration_list};
Here, enum is keyword, type stands for the identified that names the
type being defined and enumerator list stands for a list of identifiers
that define integer constants. For example:

 enum color {yellow, green, red, blue, pink};

defines the type color which can then be used to declare variables
like this:
 color flower=pink;
 color car[]={green, blue, red};

Here, flower is a variable whose value can be any one of the 5 values
of the type color and is initialialized to have the value pink.

Program 7:
#include<stdio.h>
#include<conio.h>
void main()
{
 enum month { jan, feb, mar, apr, may, jun, jul, aug, sep,
 oct, nov, dec };
 month m;
 clrscr();
 for(m=jan;m<=dec;m++)

 printf("%d\t", m+1);
 getch();
}

Output : 1 2 3 4 5 6 7 8 9 10 11 12

In the above declaration, month is declared as an enumerated data
type. It consists of a set of values, jan to dec. Numerically, jan is given
the value 1, feb the value 2, and so on. The variable m is declared to
be of the same type as month, m cannot be assigned any values
outside those specified in the initialization list for the declaration of
month.

Structures and Unions Unit 7

Computer Programming using C 19

 7.10 DEFINING YOUR OWN TYPES (TYPEDEF)

Using the keyword typedef we can rename basic or derived data
types giving them names that may suit our program. A typedef decla-
ration is a declaration with typedef as the storage class. The declara-
tor becomes a new type. We can use typedef declarations to con-
struct shorter or more meaningful names for types already defined
by C or for types that we have declared. Typedef names allow us to
encapsulate implementation details that may change.

A typedef declaration is interpreted in the same way as a variable or
function declaration, but the identifier, instead of assuming the type
specified by the declaration, becomes a synonym for the type. For
example:

typedef unsigned long int ulong;

The new type (ulong) becomes known to the compiler and is treated
the same as unsigned long int. If we want to declare some more
variables of type unsigned long int, wwe can use the newly defined
type as :

 ulong distance;

We can use the typedef keyword to define a structure as foln be
lows:

typedef struct
{
 type member1;
 type member2;

}type_name;

type_name can be used to declare structure variables as follows:

type_name variable1,variable2,...;

Structures and Unions Unit 7

Computer Programming using C 20

 CHECK YOUR PROGRESS

6. State whether the following statements are true(T) or false(F).

(i) Union contains members of different data types which share
the same storage area in memory.

(ii) The operator can be combined with the period operator
to access a member of a structure that is itself a member of
another structure.

(iii) The keyword typedef is used to define a new data type.

(iv) A structure is a collection of data items under one name in
which the item shares the same storage.

7. Choose the correct answer for the declaration:
 typedef float height [100];
 height men,women;

 (a) define men and women as 100 element floating point
 arrays.
 (b) define men and women as floting point variables
 (c) define height, men and women as floating point variables.
 (d) All are illegal.

7.11 LET US SUM UP

 Structure is a data type used for packing logically related data of
different types. Structure declaration includes the following elements:
The keyword struct, the structure tag name, List of variable names
separated by commas and the terminating semicolon.

 C permits the use of arrays as structure members.

Structures and Unions Unit 7

Computer Programming using C 21

 Unions are concept borrowed from structures and therefore they
follow the same syntax.

In structure, each member has its own storage location, where as
all members of a union use the same location.

 C allows us to define our own special data types, called enumer-
ated data types.

 The keyword typedef is used to define a new data type of our own
choice. We can use the typedef keyword to define a structure.

 7.12 FURTHER READINGS

 1. Balagurusamy, E: Programming in ANSI C, Tata McGraw-Hill
 publication.
 2. Gottfried Byron S: Programming with C, Tata McGraw-Hill
 publication.

 7.13 ANSWERS TO CHECK YOUR
 PROGRESS

1.
struct complexo
{

float real, imaginary;
};
struct complex c1,c2,c3;

2.
 static struct account a={12437, “Saving”, “Rahul Anand”, 35000.00};
(a is a static structure variable of type account, whose members are
assigned initial values.)

 3. (i) True (ii) True (iii) False (iv)False (v) False (vi) False

Structures and Unions Unit 7

Computer Programming using C 22

4. (i) True (ii) True (iii) False (iv) True (v) True

5. (i)Pointers (ii)tag name

6.(i) True (ii) True (iii)True (iv) False

7 (a)

 7.14 PROBABLE QUESTIONS

 1. What is a structure? How is a structure different from an array?

 2. How is structure declared? Define a structure to represent a date.

 3.What is meant by array of structure?

 4.How are the data elements of a structure accessed and processed?

 5. Write a program in C to prepare the marksheet of a college
 examination and the following items will be read from the keyboard.
 Name of the student,
 Subject name,
 Internal marks,
 External marks
 Prepare a list separately of those students who failed and passed in
 the examination.

6.What is meant by union?Differentiate between structure and union.

7. What is the purpose of typedef feature? How is this feature used
with structure?

8. Write short notes on:
 (a) Enumerated data type
 (b) Type definition.

Computer Programming using C 1

File Handling Unit 8

UNIT- 8 FILE HANDLING

UNIT STRUCTURE

8.1 Learning Objectives
8.2 Introduction
8.3 High and Low level disc I/O
8.4 Opening and Closing File
8.5 Input / Ouput Operation on Files
8.6 Seeking Forward and Backward
8.7 Let Us Sum Up
8.8 Answers To Check Your Progress
8.9 Further Readings
8.10 Model Questions

8.1 LEARNING OBJECTIVES

After going through this unit, you will able to:
• learn about various file operation
• read data from a file
• write data from a file
• describe various input/output function for file operations
• write programs that performs various operations on file

8.2 INTRODUCTION

In our previous unit, while discussing various programs, we have al-
ready used scanf(), printf() functions to read and write data. These
functions are console oriented input/output (I/O) functions. For such
functions there is always a need of a keyboard for reading inputs and
a monitor to display the output. This works fine as long as the input/
output data is small enough to read and write.

However in some situations, huge amount of data are to be
read and write and the console oriented I/O function could not handle
it efficiently. Because the entire data is lost when the program is ter-
minated or the computer is terminated or the computer is turned off.
It is, therefore, necessary to have a more flexible approach where
large amount of data can be stored permanently in disks and read
them whenever required.This method brings the concepts of file to
store and handle the data easily. In this unit we are going to discuss
handling of files in C.

A file is a place on the disk where a group of related data is
stored. C language supports a number of functions that have the
ability to perform the basic file operations:

Computer Programming using C 2

File Handling Unit 8

 Disk Input / Output
Functions

High Level

Low Level

 Text

Binary

Formatted

Unformatted

Formatted

Unformatted

Fig:1

 The High level input/output function includes the following which will
be discussed in the next sectons broadly:

i) fopen(): Used for opening an existing file. Also used to create a
new file.
ii) fclose(): Close a file which has been already opened.
iii) getc(): Reads single character from a fie.
iv) putc(): Writes single character to the file.
v) fputs(): Writes strings to the file.
vi) fgets(): Read string from file
vii) fprintf(): Write a set of values to a file.
viii) fscanf(): Read a set of values from a file.

• naming a file
• opening a file
• reading data from a file.
• writing data to a file.
• closing a file.

There are two ways to perform the file operation in C:
 a) Low level Input/Output
 b) High level Input/Output

The low level disk I/O functions are more closely related to the
computer’s operating system and it uses UNIX system calls.It is harder
to program for general users as compared to the high level I/O. How-
ever lower level I/O functions are more efficient both in terms of
operation and the amount of memory used by the program.

But high level I/O functions are more commonly used in C programs
and are easier to use than low level I/O functions. We are here going
to discuss high level I/O functions. Before we discuss let us take an
overview of Disk I/O functions:

Computer Programming using C 3

File Handling Unit 8

8.4 OPENING AND CLOSING FILE

OPENING A FILE:

With the use of file we can store data to the secondary memory
permenantly. But before going to store or retrieve data from file we
need to learn some other information which includes:

 a) naming the file (i.e., file name)
 b) data structure that links the file.

 and c) purpose of opening the file.

a) File name is a string or group of characters. It may contain two
parts: a primary name and an optional period with the extension. Some
example of some file names are:
 i. add.c (Here add is primary part and .c is the extension)
 ii. kkshou.c
 iii. output.txt

b) Data structure of a file is defined as FILE and we may call FILE as
one kind of data type. Note that all files should be declared as type
FILE before they are used.

c) Since we are opening a file using fopen() we should have clear
idea about the file and the basic purpose of opening the file. These
purposes include: reading or writing or both on the file. We may add
data to an existing file also.
General Syntax for opening a file:

FILE *fptr;
fptr=fopen(“filename”,”mode”);

The first statement declares the variable fptr as a pointer to the data
type FILE.The second statement opens the file named filename and
asigns the identifier to the FILE type pointer fptr;mode specifies the
purpose of opening the file. Depending upon the mode, a file can be
used for a specific purpose as listed below.

 Mode Meaning

 “r” Open an existing file for reading purposes
 “w” Open a new file for writing only. If a specified file
 name already exists, it will be destroyed and a new
 file is created in its place.
 “a” Open an existing file for adding new data at the

end of a file. New file is created if file does not exist.

 “r+” Open a file both for reading and writing
 “w+” Open a file both for reading and writing. If file name
 already exists, it will be destroyed and a file is created
 in its place.
 “a+” Open a file for both reading and appending. New file is
 created if the file does not exist.

 Byte:
Group of 8 bit means
1 byte i.e., 1byte = 8 bit.
where 1 bit means either
0 or 1.

Computer Programming using C 4

File Handling Unit 8

Return value:
On successful execution, fopen() returns a pointer to opened stream.
As shown in above, the return value is assigned to fptr. If the speci-
fied file could not be opened successfully, then it returns NULL;
fopen() sometimes may fail in opening the file with the specified
mode because of some unwanted reason. We can easily check it
by comparing value of fptr. This is illustrated with the following pro-
gram segments:

 FILE *fptr;
fptr=fopen(“data.txt”,”r”)
if(fptr==NULL)

printf(“Error in opening the file ”);
else

printf(“Sucessfully opening the file ”);

If data.txt does not exist already, then the value of fptr will be NULL
and the output will be:

Error in opening the file

CLOSING FILE

It is good a programming practice to close the file using fclose() as
soon as all operations on the file have been completed. It ensures
that all the information associated with the file is cleared out from
the buffer, thus preventing any accidental misuse of the file.Closing
the file releases the space taken by the FILE structure which is re-
turned by the fopen(). General syntax of fclose() is :

 fclose(file_pointer)

8.5 INPUT/OUPUT OPERATION ON FILES

a) getc() and putc():
The function fopen() can be used for opening a file for reading or
writting purposes.Suppose we need to read data from a file; then
obviously, we need a mechanisim to read the content of the file.
Function getc() is used to read the content of a file which is opened
by the fopen() function. A file pointer is associated with fopen() func-
tion after successful opening of the file which always points the first
character of a file.

Computer Programming using C 5

File Handling Unit 8

For example, let us consider the following statement:

ch= getc(fptr)

In the above statement, getc() reads a character from the current
position of the file, incremens the pointer position so that it points to
the next character. Then it returns the character that is read and is
collected in the variable ch.

One question may arise in our mind that while reading from the file
continously using loop, how can we determine that file has been
completly read or we have reached the end of the file. Generally, we
can say the file has reached its end, if there is no character to be
read. The function getc() returns EOF or -1 when the end of file is
detected. So we can check it by comparing the value of ch with EOF.

Similarly, putc() can be used for writting data to a file character by
character. The file must be opened in write mode before writing to the
file using fopen(). For example,

 putc(ch,fptr)

where ch is character to be write to the file refferenced by the file
pointer fptr.

Example1: A file named “kkhsou.org” some contents are already
written. Write a program to read the content of this file and display it.

Solution: We are already given a file kkhsou.org and our main pur-
pose of writing the program is to read its contents and display it to the
monitor screen. So, at first we have to open the file in reading mode
and then read it using getc() until the end of file(EOF) is encountered.
While reading from the file, we need to display it simultaneously to
the monitor. After that we need to close that file using fclose(). So
the program will look like:
Program1:
#include<stdio.h>
#inlcude<conio.h>
void main()
{
 FILE *fptr ; // File pointer declaration
 char ch;

Computer Programming using C 6

File Handling Unit 8

fptr=fopen(“kkshou.org”,”r”); // file open for reading
 if(fptr==NULL) // check the file is opened or not

 printf(“\n Error in opening file”);
else

 {
 do

 {
 ch=getc(fptr);
 printf(“%c”,ch); // display to the monitor screen

 }while(ch!=EOF);
 }

 fclose(fptr); // closes the file
 getch();

}

Example2: Write a program to read your name, roll number from
the keyboard and then write it to a file “address.txt ”.

Solution: Here we are asked to read our name, roll number directly
from the keyboard and then we need to write it to the file address.txt.
So, we should read name and roll number using scanf() or getchar()
or can use other input function.We can use any one of these. After
reading it, we need to open the file address.txt in write mode since
we are going to write to the file. So the program will look like:
Program2:
#include<stdio.h>
#iinclude<conio.h>
void main()
{

 FILE *fptr;
 char ch;
 fptr=fopen(“address.txt”,”w”); // open file writting
 if(fptr==NULL) // checking whether file is

 //succesfully opened or not
 printf(“\n Error in opening file”);

 else
 {
 printf(“\nEnter Your Name and Roll Number”);

Computer Programming using C 7

File Handling Unit 8

 do{
 ch=getchar(); // read from the keyboard

 //character by character
 putc(ch,fptr); // write it to address.txt refferenced by fptr

 }while(ch!=’\n’); // untill we press ENTER key (newline)
 }
 fclose(fptr);
 getch();
}

Output:

 Enter Your Name and Roll Number Nayan 4 [press enter]

Nayan and 4 is then written to the file address.txt and we can then
open it directly to view the output. Some of us may be confused about
the ‘\n’ that is used with while() condtions. Basically in C language ‘\n’
is used to denote a new line character. In the above program when
we get ’\n’ in gecthar() then we stop the loop,thinking that user has
entered his data copmpletely. However, there is another way of read-
ing more than one line.

Example3: Write a program to copy a file “first.txt ” to another file
“second.txt”. Assume that file first.txt already exists.

Solution: The file first.txt aready exists and we need to write a
program that will copy the content of first.txt to second.txt. So we
need to open the first.txt file in read mode, then second.txt file in
write mode. Program will look like:
#include <stdio.h>
#include <conio.h>
void main()
 {
 FILE *fp1,*fp2; // Since we need two file
 char ch;
 fp1=fopen(“first.txt”,”r”);
 fp2=fopen(“second.txt”,”w”);
 // checking whether two file succesfully opend or not
 if(fp1==NULL && fp2==NULL)

 printf(“\n Error in Opening the File”);

Computer Programming using C 8

File Handling Unit 8

 else
 {

 do
 {

 ch=getc(fp1); // read from the first file
 putc(ch,fp2); // write to the second file
 }while(ch!=EOF);

 }
 fclose(fp1);
 fclose(fp2);
 getch();
}
To view the output we need to open the file second.txt from the
menu.

b) fputs() and fgets():

In the previous section we have already discussed how to read from
the files and also how to write to the file. But we are reading or
writting to the files only character by character using loops.We can
also read or write to the files as strings using fputs() and fgets(). We
may compare it to the previous strings functions gets() and fputs()
with a very few difference.These functions are related to only key-
boards input/output, whereas fgets(),fputs() is related to files. The
fputs() writes a string to a file. For example, say if fptr is a file pointer
which open a file for writting, then :

 fputs(“Well Come to KKHSOU”, fptr) ;

The sentence “Well Come to KKHSOU” is written to a file pointed by
fptr. Also we can use fputs() in following manner:
 char str[10] ;
 gets(str) ; // read from the keyboard
 fputs(str,fptr); // write to the file
So, the general way of representing fputs() is:

 fputs(strings, file_pointer);

fgets() can be used for reading strings from a file. General way of
representing fgets() is:

 fgets(strings,no_bytes,file_pointer);

Computer Programming using C 9

File Handling Unit 8

The statement reads a strings having (no_bytes-1) from a file pointed
by file_pointer. no_bytes indicates how many bytes strings to be. We
give here -1 cause file always read from starting 0 for first character.

Example 4: Write a program to read a line from the keyboard and
then write it to a file output.txt.

Solution: Here we are asked to read a lines using keyboard, so we
need a character array to store the line.Then we have to open a file
output.txt in write mode and then write the lines (character array) to
it. The program should be:
Program4:
#include<stdio.h>
#include<conio.h>

 void main()
 {
 char line[80];
 FILE *fp;
 fp=fopen(“output.txt”,”w”);
 if(fp==NULL)

 puts(“Error in opening the file ”)
 else

 {
 puts(“Enter a line ”);

 gets(line); // read from keyboard
 fputs(line,fp); // write to the file

 }
fclose(fp);

 getch();
 }

}

Output:
 Enter a line Hello learners (press enter key)
The text Hello learners given by you from the keyboard is written to
the file output.txt. We can see it by opening the file output.txt directly.

Program5: Write a program to read from a file then display it to the
monitor screen.

Computer Programming using C 10

File Handling Unit 8

Solution:
#include<stdio.h>
#include<conio.h>
void main()

 {
 FILE *fp;

 char strngs[80];
 fp=fopen(“output.txt”,”r”);

 if(fp==NULL)
 puts(“Error in opening file”);

 else
 {

 while(fgets(strngs,79,fp)!=NULL)
 puts(strngs);

 }
 fclose(fp);

 }

In the above program we have read from the existing file and then
display it to the output screen i.e., monitor. So we open an existing
file output.txt assuming that the file exists with the content. Then
uses fgets() functon to read the file. We used 79 size in fgets() since
in a line of a file, it contains maximum 80 character. After reading
from the file we store it strngs array using fgets() and then display it
to the output screen with puts().

 CHECK YOUR PROGRESS

 1. State whether the following statements are true or false:

 a) fopen() is used to open and closing a file.
 b) File concept is used mainly because to store data
 permanently and use them later.
 c) fopen(“file.c”,”w”) open file.c for reading purposes only

 2. Fill in the blanks:
 a) putc() is used to __ to a file.
 b) fgets() is mainly used for ___ strings.
 C) fopen() returns __ on error.

Computer Programming using C 11

File Handling Unit 8

c) fprintf() and fscanf():

Already we are discussing how to read or write a single character
from the file using getc(), putc() and also about reading and writing
the strings using fgets() and fputs() to the files. All these functons are
related to particular type data i.e. characters. For wrtting and read-
ing data to the files simultanously having different data type variables
we can use fprintf() and fscanf() respectively. These functions are
mostly same as printf() and scanf() function earlier used except that
fprintf() and fscanf() are used for writing and reading from the files
only. The general form of fprintf() is:

 fprintf(fptr,”control string”,list);

where fptr is a file pointer associated with the file opened for writting.The
control string contains output specification for the items in the list.You
will get a clear idea of control string when you go for the examples.The
list may include variables,constants and strings. For example,

 fprintf(fptr,”%s,%d,%f”,name,roll,per);

where name is an array variable of type character and roll is integer
variable and per is float variable.These different data type variable is
written to the file pointed by fp. The general format of fscanf() is:

 fscanf(fptr,”control string”,list);

The above statement causes the reading of the items in the list from
the file specified by the fptr, according to the specifications contained
in the control string. For example,

 fscanf(fptr,”%s,%d,%f”,name,&roll,&per);
name, roll and per is read from the file specified by fptr.

Example:
a) Write a program to read name,roll number from the keyboard for
a student and then write to a file using fprintf().
b) Then use fscanf() to read the from the file written by the above
program.

Computer Programming using C 12

File Handling Unit 8

Solution: a) So first we need to read name and roll number from the
keyboard and then open a file in write mode. After that we write name,
roll number to the file using fprintf().

Program6:
#include<stdio.h>
 void main ()
{

char name[10];
 int roll_no;
FILE *fptr;

 /*Open the file */
 fptr=fopen("out.txt","w");
if(fptr==NULL)

printf("Error in opening file ");
else
{

 /*Read from the keyboard */
 printf("Enter name ");
 scanf("%s",name);
 printf("Enter roll no ");
scanf("%d",&roll_no);

 /* Write to the file */
 fprintf(fptr,"%s %d",name,roll_no);

}
fclose(fptr);

 }

Because of the above program the name and roll number given by
the user is written to the file out.txt . To see the result we need to
open the file by going to file -> open menu from the C program
software.

b) Here we assume that name and roll number are already written to
the file i.e. data exist previously. Next we need to open the file in read
mode and then read these data using fscanf(). After that we may
display it using printf() function in order to view the result.

Computer Programming using C 13

File Handling Unit 8

Program7:
#include<stdio.h>
void main()
 {

char name[10];
int roll_no;
FILE *fptr;
fptr=fopen("out.txt","r");
if(fptr==NULL)

printf("Error in opening file ");
else

 {
 /* Read from file */

 fscanf(fptr,"%s %d",&name,&roll_no);
 /* Write to the screen */
 printf("\nName: %s Roll No:: %d",name,roll_no);

 }
 fclose(fptr);

}

8.6 SEEKING FORWARD AND BACKWARD

Already we have discussed reading / writing files from the start ing
position. But sometimes we need a situations where we have to
read or write files randomly. Some basic functons that can be
used for reading or writing files randomly are explained below
briefly:

a) ftell(): This function gives the current fille pointer positions in a
particular file.
General Syntax: n = ftell (fptr)
The return value of n is in bytes which indicates that n bytes
have already been read or written.

b) rewind(): The rewind() function is used to resets positions of
file pointer to the start of the file. For example,

 rewind(fptr);
 n=ftell(fp)

because of the rewind() function file pointer position is set to the
starting of the file and therefore the value of n would be 0. Remem-
ber that first byte in the file is numbered as 0, second as 1 and so
on.

Computer Programming using C 14

File Handling Unit 8

c) fseek(): This function is used to move the file position to a
desired location within the file. General syntax:

fseek (file_ptr, offset , position);
 Here file_ptr denotes the file to be processed, offset is a variable
of type long which specifies the number of position to be moved
from the location specified by the position. The value of position
can be any one the follwing:

Value Meaning

 0 Begining of the file.
 1 Current position
 2 End of file

The value of offset may be positive which means that file pointer
to be moved forwards or negative meaning move back words. It would
be clear for us if we go for the examples.Now see the follwing and
try to understand.

Statement Meaning
 fseek (fptr, 0L,0) Go to the begining of the file.
 fseek (fptr, 0L,1) stay at the same i.e current position.
 fseek (fptr, 0L,2) Go to end of the file.
 fseek (fptr, m,0) Move m+1 bytes from begining.
 fseek (fptr, m,1) Go forward by m bytes from current

 positions .
 fseek (fptr, -m,1) Go backward by m bytes from current

 positions.
 fseek (fptr, -m,2) Go backward by m bytes from end.

 fseek() return Zero after successful operations otherwise it returns
-1 like fopen().

 CHECK YOUR PROGRESS

3. Write one difference between fprintf and fputs.Also write the
syntax of both function.
4. How can you get the current file pointer position of a file?
5. Write the putpose of rewind() function?
6. Using fseek() how can you move the fie pointer t o the end
of a file and to the beginning of a file.

Computer Programming using C 15

File Handling Unit 8

8.7 LET US SUM UP

• File concept is generally used to store data permanantly and use
it later.Operations include on files are: Opening, Reading, Writting
Closing etc.
• By specifying the modes in fopen() function we can treat the file
in various ways such as: file can read (e.g r) or write(e.g w) or both(e.g
r+) etc.

• If the specified file does not exist or there is error in the file while
opening then fopen() returns NULL.

• putc(), fputs() and fprintf() is used mainly for reading data from a
file pointed by a file pointer. Similarly getc(),fscanf(),fgets() is used
for reading information from the file.

1. Balagurusamy, E: Programming in ANSI C, Tata McGraw-Hill
 publication.
2. Gottfried Byron S: Programming with C, Tata McGraw-Hill
 publication.

CHECK YOUR PROGRESS

1a) False. Since fopen() used only for opening file only; not
 for closing. b) True. c) False. For writting purpose it is used
since it has w .
2. a) write a character b) reading c) -1

3. Ans: fputs is used to write strings to a particular a file. how-
ever fprintf() is used to write various types of data to a particular
file.

fprintf(fptr,”%s,%d,%f”,name,roll,per);
fputs(“Well Come to KKHSOU”, fptr) ;

 Here fptr is the file pointer.

4. using ftell (fptr).

 8.9 FURTHER READINGS

 8.8 ANSWERS TO CHECK YOUR PROGESS

Computer Programming using C 16

File Handling Unit 8

 Here fptr is the file pointer.
4. using ftell (fptr).
5. The rewind() function is used to resets positions of file pointer to
the start of the file.
6. To move the file pointer to the end of a file:fseek (fptr, 0L,0)
To move the file pointer to the start of a file: fseek (fptr, 0L,2)

 8.10 MODEL QUESTIONS

1. Explain the functions of fopen() and fclose() with one example
each.
2. Write the name of two input functions for the file.
3. What is the main difference between getc() and fgets() functions.
4. Mention the various modes used with the fopen() functions.
5. Explain briefly: ftell(), rewind(), fseek().
6. Write a program
 a) To read your name, roll and percentage from the keyboard
 and then write it to a file.
 b) To copy a file to another file using getc().
 c) To count number of vowel, blank space from an existing file.

	MCA03_0
	MCA03_1
	MCA03_2
	MCA03_3
	MCA03_4
	MCA03_5
	MCA03_6
	MCA03_7
	MCA03_8

