
MCA02

KRISHNA KANTA HANDIQUI STATE OPEN UNIVERSITY
Housefed Complex, Dispur, Guwahati - 781 006

Master of Computer Applications

DIGITAL LOGIC

CONTENTS
UNIT 1 : NUMBER SYSTEMS
UNIT 2 : BOOLEAN ALGEBRA
UNIT 3 : LOGIC GATES
UNIT 4 : COBINATIONAL CIRCUITS
UNIT 5 : SEQUENTIAL CIRCUITS
UNIT 6 : MEMORY ORGANIZATION

Subject Experts

1. Prof. Anjana Kakati Mahanta, Deptt. of Computer Science, Gauhati University
2. Prof. Jatindra Kr. Deka, Deptt. of Computer Science and Engineering, Indian

Institute of Technology, Guwahati
3. Prof. Diganta Goswami, Deptt. of Computer Science and Engineering, Indian

Institute of Technology, Guwahati

Course Coordinators

Tapashi Kashyap Das, Assistant Professor, Computer Science, KKHSOU

Arabinda Saikia, Assistant Professor, Computer Science, KKHSOU

SLM Preparation Team

UNITS CONTRIBUTORS
2, 3 Prof. Jyotiprokash Goswami

Deptt. of Computer Applications, Assam Engineering College,
Guwahati, Assam

4, 5 Chakradhar Das, Lecturer (Selection Grade),
Deptt. of Eletrical Engineering, Bongaigaon Polytechnique, Assam

1, 6 Sangeeta Kakoty, Lecturer, Deptt. of Computer Science,

Jagiroad College, Assam

July, 2011

© Krishna Kanta Handiqui State Open University.

No part of this publication which is material protected by this copyright notice may be produced
or transmitted or utilized or stored in any form or by any means now known or hereinafter
invented, electronic, digital or mechanical, including photocopying, scanning, recording or by
any information storage or retrieval system, without prior written permission from the KKHSOU.

The university acknowledges with thanks the financial support provided by the
Distance Education Council, New Delhi, for the preparation of this study material.

Printed and published by Registrar on behalf of the Krishna Kanta Handiqui State Open University.

Housefed Complex, Dispur, Guwahati- 781006; Web: www.kkhsou.org

COURSE INTRODUCTION

This is a course on Digital Logic. Digital logic has facinated many people over the years. Every-

thing in the digital world is based on the binary number system. Numerically, this involves only two

symbols: 0 and 1. Digital Logic is a method by which electrical circuits are provided with a limited ability

to make decisions. The most common use of digital logic today is in the control and arithmetic functions

of digital computers, without which modern life would grind to a halt.

The course consists of six units :

The first unit discusses various number systems like decimal, binary, octal, hexadecimal and

their conversion from one form to another. The unit also includes the methods of addition and subtrac-

tion of binary numbers, complements and fixed/floating point representations. Concept of BCD, ASCII,

EBCDIC, Gray code etc are discussed at the end.

The second unit is on Boolean Algebra. The unit discusses various concept assotiated with

Boolean Algebra like Boolean operators, Boolean expression, representation of Boolean expression in

Canonical form, Karnaugh Map, Don’t care condition etc.

The third unit discusses various logic gates, their conversion, truth tables, and the most impor-

tant De-Morgan’s theorem.

The fourth unit focuses on combinational circuits. This unit gives us the concept various adders

and subtractors, multiplexers, demultiplexers, encoders, decoders etc. with their applications.

The fifth unit deals with sequential circuits which includes the concept of flip-flops, counters,

registers.

The sixth unit is the last unit of this course which is on memory organization. This unit gives us

the concept of RAM and its types, 2D and 3D organization of RAM, ROM, types of ROM, organization of

simple ROM cell etc.

Each unit of this course includes some along-side boxes to help you know some of the difficult,

unseen terms. Some “EXERCISES” have been included to help you apply your own thoughts. You may

find some boxes marked with: “LET US KNOW”. These boxes will provide you with some additional

interesting and relevant information. Again, you will get “CHECK YOUR PROGRESS” questions. These

have been designed to self-check your progress of study. It will be helpful for you if you solve the

problems put in these boxes immediately after you go through the sections of the units and then match

your answers with “ANSWERS TO CHECK YOUR PROGRESS” given at the end of each unit.

MASTER OF COMPUTER APPLICATIONS
Digital Logic

DETAILED SYLLABUS
Marks Page No.

UNIT 1 : Number Systems 15 5-44
Decimal, Binary, Hexadecimal and Octal. It’s Conversion: Decimal to Binary/

Hexadecimal/Octal and vice versa. Addition/ Subtraction on Binary Numbers,

Complement: r’s and (r-1)’s complement. Fixed Point representation and

Floating point representation, BCD, ASCII, EBCDIC, Gray code.

UNIT 2 : Boolean Algebra 15 45-60
Boolean operators, Rules (postulates and basic theorems) of Boolean algebra,

Dual and complement of Boolean expression, representation of Boolean

expression in Canonical form, Boolean expression and their simplification by

algebraic method and Karnaugh Map, Don’t care condition.

UNIT 3 : Logic Gates 15 61-79
Logic Gates(OR, AND, NOT, NAND, NOR, XOR, XNOR), Truth Tables, De-

Morgan’s theorem, Conversion of the logic gates.

UNIT 4 : Combinational Circuits 20 80-113
Introduction to Combinational Circuits; Half-adder, Full-adder, Binary Parallel

Adder, 4-bit Binary Parallel Adder, Serial Adder; Half-subtractor, Full-subtractor;

Multiplexer: Basic 2-Input Multiplexer, 4-Input-Multiplexer, 8-to-1 Multiplexer,

16-to-1 Multiplexer, Multiplexer Applications; Demultiplexer: Parallel-to-Serial

Converter, Data Distributors, 1-to-4 Demultiplexer; Encoder: Octal-to-Binary

Encoder, Decimal-to-BCD Encoder; Decoder: Basic Binary Decoder, 3-line-

to-8-Line Decoder, Magnitude Comparator

UNIT 5 : Sequential Circuits 20 114-141
Sequential Circuits; Flip-Flops: RS, D, JK, MS; Counters: Asynchronous ,

Synchronous; Registers and its types, Shift Registers: Serial in-Serial out

Registers, Shift-Left Register, Shift-Right Register, Serial-in-Parallel-out Shift

Registers, Parallel-in-Serial-out Shift Registers, Parallel-in-Parallel-out

Register, Applications of Shift Registers.

UNIT 6 : Memory Organization 15 142-158
Random Access Memory : Types of RAM; Static RAM : Static RAM cell and its

structure; DRAM : basic structure of DRAM; Organization of RAM : 2D

organization, 3D organization; ROM : Types of ROM, organization of simple

ROM cell.

Digital Logic 5

UNIT 1 : NUMBER SYSTEMS

UNIT STRUCTURE

1.1 Learning Objectives

1.2 Introduction

1.3 Number System

1.3.1 Decimal Number System

1.3.2 Binary Number System

1.3.3 Octal Number System

1.3.4 Hexadecimal Number System

1.4 Number System Conversion

1.4.1 Binary to Decimal Conversion

1.4.2 Decimal to Binary Conversion

1.4.3 Octal to Decimal conversion

1.4.4 Decimal to Octal Conversion

1.4.5 Hexadecimal to decimal Conversion

1.4.6 Decimal to Hexadecimal Conversion

1.5 Complement of Numbers

1.5.1 (r-1)’s Complement

1.5.2 r’s complement

1.6 Data Representation

1.6.1 Fixed Point Representaion

1.6.2 Floating Point Representation

1.7 Binary Arithmatic

1.7.1 Addition

1.7.2 Subtraction

1.7.3 Multiplication

1.7.4 Division

1.8 Computer Codes

1.8.1 BCD

1.8.2 ASCII

1.8.3 EBCDIC

1.8.4 Gray Code

Digital Logic6

Number SystemsUnit 1

1.9 Let Us Sum Up

1.10 Answers to Check Your Progress

1.11 Further Readings

1.12 Model Questions

1.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

 define and describe number system

 identify how data is represented in computers

 convert a number from one number system to anotehr

 describe how computers perform binary arithmatic

 describe the different types computer codes

1.2 INTRODUCTION

Number system is a fundamental concept used in micro computer

system. They are of different types and can represent by some digit symbols.

The knowledge of binary, octal and hexadecimal number system is essential

to understand the operation of a computer. This unit deals with all this system.

In this unit we will discuss about all the representation of this number system

and their conversion from one number system to its equivalent other number

system. The arithmetic operations of all the system is very much important

to know how a system can operate our data inside. This is also discussed

in this unit. In addition you we will get the internal data representation method

which is called computer codes. Different computer codes like BCD code,

ASCII, EBCDIC etc are introduced here in this unit.

1.3 NUMBER SYSTEM

We are familier with the decimal number system which is used in

our day-to-day work. Ten digits are used to four decimal number. To represent

these decimal digits, ten separate symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 are

used. But a digital computer stores, understands and manipulates

Digital Logic 7

Number Systems Unit 1

information composed of only zeros and ones. So, each decimal digits,

letters, symbols etc. written by the programmer (an user) are converted to

binary codes in the form of 0’s and 1’s within the computer. The number

system is divided into different categories according to the base (or radix)

of the system as binary, octal and hexadecimal. If a number system of base

r is a system, then the system have r distinct symbols for r digits. The

knowledge of the number system is essential to understand the operation

of a computer.

1.3.1 Decimal Number System

Decimal no. system have ten digits represented by 0, 1, 2, 3, 4,

5, 6, 7, 8 and 9. So, the base or radix of such system is 10.

In this system the successive position to the left of the decimal

point represent units, tens, hundreds, thousands etc. For example,

if we consider a dicimal number 1257, then the digit representations

are :

1 2 5 7

thousands hundreds tens units

positions position position position

The weight of each digit of a number depends on its relative

position within the number.

Example 1.1 :

The weight of each digit of the decimal no. 6472

6472 = 6000 + 400 + 70 + 2 = 6 × 103 + 4 × 102 + 7 × 101 + 2 × 100

The weight of digits from right hand side are :
Weight of 1st digit = 2 × 100

Weight of 2nd digit = 7 × 101

Weight of 3rd digit = 4 × 102

Weight of 4th digit = 6 × 103

The above expressions can be written in general forms as the

weight of nth digit of the number from the right hand side :

Decimal Number
System uses 10 digits
from 0 to 9 to represents
its system.

Digital Logic8

= nth digit × 10n-1

= nth digit × (base)n-1

The no. system in which the weight of each digit depends on its

relative position within the number is called positional number

system. The above form of general expression is true only for

positional number system.

1.3.2 Binary Number System

Only two digits 0 and 1 are used to represent the binary number

system. So the base or radix is two (2). The digits 0 and 1 are called

bits (Binary Digits). In this number system the value of the digit will

be two times greater than its predecessor. Thus the value of the

places are :

  32  16  8  4  2  1

The weight of each binary bit depends on its relative position

within the number. It is explained by the following example--

Example 1.2 :

The weight of bits of the binary number 10110 is :

= 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20

= 16 + 0 + 4 + 2 + 0 = 22 (decimal number)

The weight of each bit of a binary no. depends on its relative

pointer within the no. and explained from right hand side as :

Weight of 1st bit = 1st bit X 20

Weight of 2nd bit = 2nd bit X 21

..

...

and so on.

The weight of the nth bit of the number from right hand side

= nth bit × 2n-1

= nth bit × (Base)n-1

It is seen that this rule for a binary number is same as that for a

decimal number system. The above rule holds good for any other

Number SystemsUnit 1

A Binary Number
System uses only digit 0
and 1

Digital Logic 9

positioned number system. The weight of a digit in any positioned

number system depends on its relative positon within the number

and the base of the number system.

Table 1.1 shows the binary equivalent numbers for decimal digits.

Table 1.1 : Binary equivalent of decimal numbers

Decimal Number Equivalent Binary Number

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

Binary Fractions : A binary fractions can be represented by a

series of 1s and 0s to the right of a binary point. The weight of digit

positions to the right of the binary point are given by 2-1, 2-2, 2-3 and

so on.

Example 1.3 : Show the representation of binary fraction 0.1101.

Solution : The binary representation of 0.1101 is :

0.1101 = 1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4

= 1 × 0.5 + 1 × 0.25 + 0 × 0.125 + 1 × 0.0625

= 0.8125

So, (0.1101)2 = (0.8125)10

1.3.3 Octal Number System

A commonly used positional number system is the Octal Number

System. This system has eight (8) digit representation as

0,1,2,3,4,5,6 and 7. The base or radix of this system is 8. The

values increase from left to right as 1,8,64,512, 4096 etc. The decimal

Number Systems Unit 1

Octal Number System
uses 8 digits from 0 to 7.

Digital Logic10

value 8 is represented in octal as 10,9 as 11,10 as 12 and so on. As

8=23, an octal number is represented by a group of three binary

bits. For example 3 is represented as 011, 4 as 100 etc.

Table 1.2 The octal number and their binary representations.

Decimal Number Octal Number Binary Coded Octal No.

0 0 000

1 1 001

. . .

. . .

7 7 111

8 10 100 000

15 17 001 111

1.3.4 Hexadecimal Number System

The hexadecimal number system is now extensively used in

computer industry. Its base (or radix) is 16, ie. 0, 1, 2, 3, 4, 5, 6, 7, 8,

9, A, B, C, D, E, F. The hexadecimal numbers are used to represent

binary numbers because of case of conversion and compactness.

As 16 = 24, hexadecimal number is represented by a group of

four binary bits. For example, 5 is represented by 0101. Table 2.3

shows the binary equivalent of a decimal number and its hexadecimal

representation.

Table 1.3 : Hexadecimal number and their Binary representation

Decimal No. Hexadecimal No. Binary coded Hex. No

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

Number SystemsUnit 1

Hexadecimal System
groups numbers by 16
and power of 16.

Digital Logic 11

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

1.4 NUMBER SYSTEM CONVERSION

As the computer uses different number systems, there is a process

of converting generally used decimal number systems to other number

systems and vice-versa.

1.4.1 Binary to Decimal Conversion

To convert a binary number to its decimal equivalent we use the

following expression.The weight of the nth bit of the number from

right hand side

= nth bit × 2n-1

First we mark the bit position and then we give the weight of

each bit of the number depending on its position. The sum of the

weight of all bits gives the equivalent number.

Example 1.4 : Convert binary (100101)2 to its decimal equivalent.

Solution : (100101)2 = 1 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 20

= 32 + 0 + 0 + 4 + 0 + 1

= 37

So, (100101)2 = (37)10

Mixed number contain both integer and fractional parts and can

convert to its decimal equivalent is as follows :

Number Systems Unit 1

Digital Logic12

Example 1.5 : Converting (11011.101)2 to its equivalent decimal no.

Solutaion :

(11011.101)2 = (1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20) +

 (1 × 2–1 + 0 × 2–2 + 1 × 2–3)

= (16 + 8 + 0 + 1) + (0.5 + 0 + 0.125) = 27.625

So, (11011.101)2 = (27.625)10

1.4.2 Decimal to Binary Conversion

There are different methods used to convert decimal number to

binary numbers. The most common method is, repeatedly divide

the decimal number to binary number by 2, then the remainders 0’s

and 1’s obtained after division is read in reverse order to obtain the

binary equivalent of the decimal number. This method is called

double-double method.

Example 1.6 : Convert (75)10 to its binary equivalent.

Solution : 2 |75 Remainder

2 |37 LSB 1

2 |18 1

2 |9 0 Read in

2 |4 1 reverse order

2 |2 0

1 MSB 0

So, (75)10 = (001011)2

Example 1.7 : Convert decimal fraction (25.625)10 to its equivalent

binary no.

Solution : 2|25 Remainder MSB 0.625

2 |12 1 × 2

2 |6 0 1.250

2 |3 0 × 2

1 1 0.500

(25)10 = (11001)2 × 2

1.000

(0.625)10 = (0.101)2

So, (25.625)10 = (11001.101)2

Number SystemsUnit 1

Digital Logic 13

1.4.3 Octal to Decimal Conversion

The method of converting octal numbers to decimal numbers is

simple. The decimal equivalent of an octal number is the sum of the

numbers multiplied by their corresponding weights.

Example 1.8 : Find decimal equivalent of octal number (153)8

Solution : 1 × 82 + 1 × 81 + 1 × 80 = 64 + 40 + 3 = 107

So, (153)8 = (107)10

The fractional part can be converted by multiplying it by the

negative powers of 8 as shown in the following example.

Example 1.9 : Find decimal equivalent of octal number (123.21)8

Solution : (1X82 + 2X81 + 3X80) + (2 × 8-1 + 1 × 8-2)

= (64 +16 + 3) + (0.25 + 0.0156) = 83.2656

So, (123.21)8 = (83.2656)10

1.4.4 Decimal to Octal Conversion

The procedure for conversion of decimal numbers to octal

numbers is exactly similar to the conversion of decimal number to

binary numbers except replacing 2 by 8.

Example 1.10 : Find the octal equivalent of decimal (3229)10

Solution : Remainders

8 |4121

8 |515 1 read from MSB

8 |64 3 to LSB

8 |8 0

1 0

So, (4121)10=(10031)8

The fractional part is multiplied by 8 to get a carry and a fraction

as shown in the following example.

Example 1.11 : Find the octal equivalent of (.123)10

Solution : Octal equivalent of fractional part of a decimal number

as follows :

Number Systems Unit 1

Digital Logic14

8 × 0.123 = 0.984 0

8 × 0.984 = 7.872 7 read from LSB

8 × 0.872 = 6.976 6 to MSB

8 × 0.976 = 7.808 7

Read the integer to the left of the decimal point.

The calculation can be terminated after a few steps if the

fractional part does not become zero.

The octal equivalent of (0.123)10= (0.0767)8

NOTE : The octal to binary and binary to octal conversion is very

easy. Since, 8 is the third power of 2, we can convert each octal

digit into its three-bit binary form and vice versa.

Example 1.12 : Convert (567)8 to its binary form.

Solution : 5 6 7

101 110 111

So, (567)8 = (101 110 111)2

Conversion from binary to octal is just opposit of the above

example.

1.4.5 Hexadecimal to Decimal Conversion

The method of converting Hexadecimal numbers to decimal

number is simple. The decimal equivalent of an Hexadecimal number

is the sum of the numbers multiplied by their corresponding weights.

Example 1.13 : Find the decimal equivalent of (4A8C)16

Solution :

(4A8C)16 = (4 × 163) + (10 × 162) + (8 × 191) + (12 × 160)

= 16384 + 2560 + 128 + 12

=(19084)10

(4A83)16 = (19084)10

Example 1.14 : Find the decimal equivalent of (53A.0B4)16

Solution :

(53A.0B4)16= (5 × 162) + (3 × 161) + (10 × 160) + (0 × 16-1)

 + (11 × 16-2) + (4 × 16-3)

Number SystemsUnit 1

Digital Logic 15

= 1280 + 48 + 10 + 0 + 0.04927 + 0.0009765

= (1338.0439)10

 (53A.0B4)16 =(1338.0439)10

1.4.6 Decimal to Hexadecimal Conversion

The procedure for conversion from decimal no. and decimal

fraction no. to hexadecimal equivalent is exactly similar to the

conversion of decimal to binary no. except replacing 2 by 16.

Example 1.15 : Convert decimal (1234.675)10 to hexadecimal.

Solution : 1st consider (1234)10

Remainder

Decimal Hexadecimal

16 |1234 2 2

16 |77 13 D

16 |4 4 4

(1234)10 = (4D2)16

Conversion of (0.675)10 :

Decimal Hexadecimal

0.675 × 16 = 10.8 10 A

0.800 × 16 = 12.8 12 C

0.800 × 16 = 12.8 12 C

0.800 × 16 = 12.8 12 C

(0.675)10= (0.ACC)16

Hence (1234.675)10= (4D2.ACC)16

If the decimal number is very large, it is tedious to convert the

number to binary directly. So it is always advisable to convert the

number into hex first, and then convert the hex to binary.

Number Systems Unit 1

Digital Logic16

CHECK YOUR PROGRESS

Q.1. What is the largest numbar that can be represented using 8

bits?

..

Q.2. What is the weight of 1 in (10000)2.

..

Q.3. Convert the following:

a) (565.25)10 to its equivalent binary number.

b) (256.24)8 to decimal equivalent.

c) (A3B.BB)16 to decimal equivalent.

d) (10010.110)2 to decimal equivalent.

e) (3964.63)10 to octal equivalent.

1.5 COMPLEMENT OF NUMBERS

Complements are used in digital computers for simplifying the

substraction operation and for logical manipulation.The complementof a

binary number is obtained by inverting itsall the bits.

For example, the complement of 10011 is 01100 and 00101 is 11010

etc. The complement again depends on the base of the number.

There are two types of complements for a number of base r. These

are :

 r’s complement and

 (r-1)’s complement,

For example, for decimal numbers the base is 10. Therefore,

complements will be 10’s complement and (10–1)=9’s complement. For

binary numbers, the complement are 2’s complement and 1’s complement

since base is 2.

Number SystemsUnit 1

Digital Logic 17

1.5.1 (r–1)’s Complement

Giiven a number N in base r having n digits, the (r–1)’s

complement of N is defined as (rn–1) – N.

9’sComplement : For decimal numbers r=10 and r-1=9, so the 9’s

complement of N is (10n–1) – N.

For example, with n = 4 we have 104 = 10000 and 104–1 = 9999.

It follows that the 9’s complement of a decimal number is obtained

by subtracting each digit from 9.

For example, 9’s complement of 49 is (99–49) = 50

9’s complement of 127 is (999–127) = 872

1’s Complement : For binary numbers, r = 2 and (r–1) = 1, so the

1’s complement of N is (2n–1) – N. Again, 2n is represented by a

binary number that consists of a 1 followed by n 0’s. 2n-1 is a binary

number represented by n 1’s. For example,with n = 4, we have 24 =

(10000)2 and 24–1 = (1111)2. Thus the 1’s complement of a binary

number is obtained by subtracting each digit from 1.

However, the subtraction of a binary digit from 1causes the bit

to change from 0 to 1 or from 1 to 0. Therefore, the 1’s complement

of a binary number is formed by changing 1’s into 0 and 0’s into 1’s.

For example, 1’s complement of 1010111 is 0101000.

1.5.2 r’s Complement

The r’s complement of a n-digit number N in base r is defined as

rn – N for N =0 and 0 for N = 0. Comparing with the (r–1)’s

complement, we note that the r’s complement is obtained by adding

1 to the (r–1)’s complement.

10’s Complement : The 10’s complement of a decimal number is

equal to the 9’s complement of the number plus 1

i.e. 10’s complement of decimal number = Its 9’s complement +1

So,10’s complement of 49 is (99–49) + 1 = 50 + 1 = 51

10’s complement of 127 is (999–127) + 1 = 872 + 1 = 873

Number Systems Unit 1

The 7’s and 15’s
complement of a number
is found by subtracting
each digit of the number
from 7 and 15
respectively.

Like 8’s complement and
16’s complement of a
number is found by
adding 1 to the LSB of
the 7’s and 15’s
complement of an octal
and hexadecimal number
respectively.

Digital Logic18

2’s Complement : It is obtained by adding 1 in the 1’s complement

form of the binary numbers.

i.e. 2’s complement of binary number = 1’s complement of that

number + 1

For example, 2’s complement of 1010111 is 0101000 + 1 = 0101001

CHECK YOUR PROGRESS

Q.4. Find 9’s complement 10’s complement of decimal numbers

44 and 182.

..

..

Q.5. Find 1’s complement and 2’s complement of binary numbers

1101001 and 0000.

..

..

1.6 DATA REPRESENTATION

Data are usually represented by using the alphabets A to Z, numbers

0 to 9 and various other symbols. This form of representation is used to

formulate problem and fed to the Computer. The processed output is required

in the same form. This form of representation is called external data

representation. However, the computer can understand data only in the

form of 0’s and 1’s. The method of data representaion in a form suitable for

storing in the memory and for processing by the CPU is called the internal

data representation on digital computer.

Data, in general, are of two types : Numeric and non-numeric

(Character data). The numeric data deals only with numbers and arithmatic

operations and non numeric data deals with characters, names addresses

etc. and non-arithmatic operations.

Number SystemsUnit 1

Digital Logic 19

1.6.1 Fixed Point Representaion

A fixed point numbers in binary system uses a sign bit. A positive

number has a sign bit 0 while the negative number has a sign bit 1.

A negative number can be represented in one of the following ways.

– Signed magnitude representaion

– Signed 1’s complement representaion

– Signed 2’s complement representaion

Assume that the size of the register is 7 bit and the 8th position

bit in used for error checking and correction or other purposes.

a) Signed magnitude representation

+6 –6

0 000110 1 000110

 No change in the

Sign bit Sign bit magnitude, only the

sign bit changes

b) Signed 1’s complement representation

+6 –6

0 000110 1 111001

Here 0 and 1 are sign bits. 1’s complement is getting for the –ve

integer is by taking complement of all the bits of +ve no. including

sign bit.

c) Signed 2’s complement representation

+6 –6

0 000101 1 111011

 2’s complement of the

Sign bit Sign bit positive number

including sing bit

The signed magnitude system is easier to interpret but computer

arithmatic with this is not efficient. The circuits for handling numbers

are simplified if 1’s or 2’s complement systems are used and as a

result one of these is almost always adopted.

Number Systems Unit 1

Digital Logic20

Note 1 : In 1’s and 2’s complements, all positive integers are

represented as sign magnitued system.

Note 2 : When all the bits of the computer word are used to represent

the number and no bit is used for signed representation, it is called

unsigned representation of the number.

1.6.2 Floating Point Representation

A number which has both an integer part as well as a fractional

part is called real number or floating point number. A floating point

number is either positive or negative. Examples of real decimal

numbers are 156.65, 0.893, –235.75, –0.253 etc. Examples of binary

real numbers are 101.101, 0.11101, –1011.101, –0.1010 etc.

The first part of the number is a fixed point number which is

called mantissa. It can be an integer or a fraction.

The second part specifies the decimal or binary point position

and is termed exponent. It is not a physical point. Therefore,

whenever we are representing a point and is termed as an exponent.

It is only the assumed position. For example, for decimal o. +15.37,

the typical floating point notaion is :

51.47 = 0.5147 × 102 or 5147 × 10-2

Now, The floating point representation of 0.5147 × 103 is :

Sign Sign

|0 .5147| |0 02|

Mantissa (fraction) Exponent

The floating point representation of 5147 X 10-2 is

Sign Sign

|0 5147| |0 02|

Mantissa (Integer) Exponent

Similarly for example a floating point binary number 1011.1010

can be represnted as : 1011.1010 = 0.10111010 × 24

Number SystemsUnit 1

Digital Logic 21

This can be represented in a 16 bit register as follows

Sign Sign

|0 .10111010| |0 000100|

Mantissa (fraction) Exponent

The mantissa occupies 9 bits (1 bit for sign and 8 bits for value)

and the exponent 7 bits (1 bit for sign and 6 bits for value). The

binary point (.) is not physically indicated in the register, but it is only

assumed (position) to be there.

In general form, the floating point numbers is expressed as :

N = M X Re

Where, M – Mantissa

R – Radix (or base)

e – Exponent

The mantissa M and exponent e are physically present in register.

But the radix R and the point (decimal or binary point) are not

indicated in the register. There are only assumed for computation

and manipulation.

Normalized Floating point Number : Floating point numbers are

often represented in normalized forms. A floating point number where

mantissa does not contain zero as the most significant digit of the

number is considered to be in normaliged form. For example,

0.00038695 × 105 and 0.0589 × 10-4 are not normaliged numbers.

But 0.38695 × 102 and 0.589 × 10-5 are normaliged numbers.

Similarly, for binary number also, 0.0011001 × 28 and 0.0001011 ×

2-5 are not non-normaliged binary numbers. But 0.11001 × 26 and

0.1011 × 2-8 are normaliged binary numbers.

A zero cannot be normaliged as all the digits in the mantissa is

zero.

Arithmatic operations involved with floating point numbers are

more complex. It takes larger time for execution and requires

complex hardware. But floating point representaion is frequently used

in scientific calculations.

Number Systems Unit 1

Digital Logic22

Overflow and Underflow : When the result is too small to be

presented by the computer, an overflow or underflow condition exists.

When two floating-point numbers of the same sign are added, a

carry may be generated out of high-order bit position. This is known

as mantissa overflow. In case of addition or subtraction floating point

numbers are aligned. The mantissa is shifted right for the alignment

of a floating point number. Sometimes, the low order bits are lost in

the process of alignment. This is referred as mantissa underflow. To

perform the multiplication of two floating point numbers, the

exponents are added. In certain cases the sum of the exponents

maybe too large and it may exceed the storing capacity of the

exponent field. This is called exponent overflow. In case of division

the exponent of the divisior is subtracted from the exponent of the

dividend. The result of subtraction may be too small to be

represented. This is called exponent underflow.

Overflow or underflow resulting from a mantissa operation can

be corrected by shifting the mantissa of the result and adjusting the

exponent. But the exponent overflow or underflow can not be

corrected and hence, an error indication has to be displayed on the

computer screen.

CHECK YOUR PROGRESS

Q.6. Represent 10 by the following fixed point representation

method.

a) Signed magnitude representation.

b) Signed 1’s complement representation.

c) Signed 2’s complement representation.

Q.7. Represent (1010.1010)2 with floating point representation

method.

..

Number SystemsUnit 1

Digital Logic 23

1.7 BINARY ARITHMATIC

1.7.1 Addition

Binary addition is performed in the same manner as decimal

addition. Since, in binary system only two digit 0s and 1s are used,

the addition will be like–

0 + 0 = 0

0 + 1 = 1 = 1+0

1 + 1 = 0, Carry 1 to the next left column

1 + 1 +1 = 1, Carry 1 to the next column.

Carry overs are performed in the same manner as in decimal

arithmetic.

Example 1.16 : Add the binary numbers

(i) 1011 and 1001

(ii) 10.011 and 1.001

Solution :

(i) Binary no. Equivalent decimal no.

11 carry

1011 11

+1001 9

10100 20

(ii) 10.011 2.375

1.001 1.125

11.100 3.500

Since the circuit in all digital systems actually can handle two

numbers to performs addition, it is not necessary to consider the

addition of more than two binary numbers. When more than two

numbers to be added, the first two are added first and then their

sum is added to the third and so on.

The complexity may rise when to add combination of positive

and negative binary number. In this case the arithmatic addition is

dependent on the representation of

Number Systems Unit 1

Digital Logic24

a) Signed magnitude

b) Signed 1’s complement

c) Signed 2’s complement

This will be more clear if we discuss through the following

example:

Example 1.17 : Add 25 and -30 in binary using 7 bit register in

signed magnitude representation

a) Signed 1’s complement representaion

b) Signed 2’s complement representaion

Solution : Here, 25 is + 25 = 0011001 in binary system

–30 = 1011110 in binary system

To do the arithmatic addition with one negative number we have

to check the magnitude of the numbers. The number having smaller

magnitude is there subtracted from the bigger number and the sign

of bigger number is selected. To implement such a scheme in digits,

hardware will require a long sequence of control decisions as well

as circuits that will add, compare and subtract numbers. The better

attentative of arithmatic with one negative number is signed 2’s

complement.

In signed 2’s complement representation :

We get that +30 is 0 011110

–30 is 1 011110

Now, 2’s complement of –30 (including sign bit) 1 100010

+25 is 0 011001

Addition

+25 0 011 001

–30 1 100 010

–05 1 111 011 (Just add the numbers)

The result for negative number will store n signed 2’s complement

form. So the above result in signed 2’s complement form. So the

above result in signed 2’s complemnt form including sign bit is

1 000 100 +1 = 1 000 101

Which is -05 in decimal system.

Number SystemsUnit 1

Digital Logic 25

From the above example it is noticed that, signed 2’s complement

representation is simpler than signed magnitude representaion. This

procedure requires only one central decision and only one circuit

for adding the two numbers. But it puts additional condition that the

negative numbers should be stored in signed 2’s complment form

in the register. This can be achieved by complementing the positive

number bit by bit then incrementing the resultant by 1 to get signed

2’s complement.

In signed 1’s complement representation : This method is also

simple. The rule is taht, add the two numbers including the sign bit. If

carry of the most significant bit or sign bit is one, then increment the

result by 1 and discard the carry over.

Addition :

+25 = 0 011 001

–30 = 1 100 001 (1’s complement of -30)

–5 = 1 111 010

The result will store in 1’s complement format. So, 1111 010 in

1’s complement format including the sign bit is 1 000 101 which is

the required result.

Example 1.18 : Add -25 and +30 using 7-bit register.

Solution :

–25 1 100 110 (1’s complement of 25)

+30 0 011 110

+5 1 0 000 100

Carry bit, so add 1 to the sum and discard the carry.

This sum is now = 0 000 101 which is +5

Example 1.19 : Add –25 and –30 using 7-bit register.

Solution : –25 1 100 110 (1’s complement of 25)

–30 1 100 001 (1’s complement of 30)

–55 1 1 000 111

Carry bit, so add 1 to sum and discard the carry.

Number Systems Unit 1

Digital Logic26

Now the sum is = 1 001 000, which is –55

Since, +55 is 0 110 111

So, –55 is in 1’s complement 1 001 000

The interesting feature about these representation is the

representation of 0 in signed magnitude and 1’s complement. There

are two representation for zero are :

Signed magnitude +0 –0

0 000000 1 000000

Signed 1’s complement 0 000000 1 111111

But in signed 2’s complement, there is just one zero and there

are no positive or negative zero.

+0 000000

–0 in 2’s complement is +0 = 1 111111

1

1 0 000000

discard this carry

Thus, both +0 and –0 are same in 2’s complement notaton. This

is an added advantage in favour of 2’s complement notation. The

maximum number which can be accomodated in registers also

depends on the type of representation. In general, in a 8 bit register

1 bit is used as sign. Therefore, the rest of 7 bit are used for

representing the value. The value of maximum and minumum

number which can be represented are :

For signed magnitude representation 27 –1 to –(27–1)

= 128 –1 to – (128–1)

= 127 to – 127,

which is for signed 1’s complement representation. For signed

2’s complement representation is from + 127 to –128. The –128 is

represented in signed 2’s complement notation as 10000000.

Number SystemsUnit 1

Digital Logic 27

1.7.2 Subtraction

Though there are other method of performing subtraction, we

will consider the method of subtraction known as complementary

subtracton. This is a more efficient method of subtraction while using

electronics circuits.The following three steps have to follow to subtract

binary numbers.

In 1’s complement method :

1. Find the 1’s complement of the number which is subtracting.

2. Add the number which is subtracting from with the

complement value obtained from step 1.

3. If there is a carry of 1, add the carry with the result of add-

ition. Else, take complement again of the result and attach a

negative sign with the result.

Example 1.20 : Subtract 5 – 6 by 1’s complement method.

Solution : 5 Binary equivalent is 101

6 Binary equivalent is 110

Step 1 : 1’s complement of 6 is 001

Step 2 : Adding 001 with 101 give the result as

001

+ 101

110

Step 3 : Since there is no carry in step 2, we take the complement

again which will be 001 and after attaching negative sign the required

result will be –001 which is -1.

In 2’s complement method : It is same as 1’s complement method

except the step 3. The steps are :

Step 1 : Find the 2’s complement of the number which is

subtracting.

Step 2 : Add the number which is subtracting from with the comple

ment value obtained from step 1.

Step 3 : If there is a carry of 1, Ignore it. Else, take 2’s complement

of the result again and attach a negative sign with the result.

Number Systems Unit 1

Digital Logic28

Example 1.21 : Subtract 5 – 7 by 2’s complement method.

Solution : 5 Binary equivalent is 101

7 Binary equivalent is 111

Step 1 : The 2’s complement of 7 is 000 + 1 = 001

Step 2 : Adding 001 with 101 will give result as :

001

101

110 (No carry)

Step 3 : Since no carry, the 2’s complement of 110 is 001 + 1 =

010 and attaching a negative sign the required result is –10.

Overflow : An overflow is said to have occured when the sum of

two n digits number occupies (n+1) digits. This definition is valid for

both binary as well as decimal digits. But what is the significance of

overflow for binary numbers since it is not a problem for the cases

when we add two numbers? Well, the answer lies in the limits or

representation of numbers. Every computer employs a limit for

representation number eg. in our examples we are using 8 bit

registers of calculating the sum. But what will happen if the sum of

the two numbers can be accommodated in 9 bits? Where are we

going to store the 9th bit? The problem will be more clear by the

following example. In case of a +ve no. added to a –ve no., the sum

of result will always be smaller than the two numbers. An overflow

always occurs when the added nos. are both +ve or both -ve.

Example 1.22 : Add the numbers 65 and 75 in 8 bit register in

signed 2’s complement notation.

Solution : 65 0 1000001

75 0 1001011

140 1 0001100

This is a -ve number and the 2’s complement of teh result is

equal to -115 which obvious is a wrong result. This has occured

because of overflow.

Detection of Overflow : Overflow can be detected as :

Number SystemsUnit 1

Digital Logic 29

If the carry out of the MSBs of number (or, carry into the sign bit)

is equal to the carry out of the sign bit then overflow must have

occured. For example

–65 1 0111111 –65 1 0111111

–15 1 1110001 –75 1 0110101

–80 1 1 0110000 –140 1 0 1110100

Carry = 1 Carry = 10

Carry from MSB = 1 Carry from MSB = 0

Carry from sign bit = 1 Carry from sign bit = 1

Sign bit is = 1 Sign bit is = 0

No overflow Therefore, overflow

Thus, overflow has occured, i.e. the arithmatic results so

calculated have exceeded the capacity of the representation. This

overflow also implies that the calculated results might be erronous.

1.7.3 Multiplication

Multiplication in binary follow the same rules that are followed in

the decimal system. The table to be remembered is :

0 × 0 = 0 1 × 0 = 0

0 × 1 = 0 1 × 1 = 1

For example, multiplying 10101 × 11001

10101

× 11001

10101

10101

10101

1000001101

1.7.4 Division

The process of binary division is same as the decimal long

division. In binary division we have:

0/1 = 0 1/1 = 1

Number Systems Unit 1

Digital Logic30

The steps for binary division are :

1. Start from the left of the divided.

2. Perform subtraction in which the divisor is subtracted from

the divedend.

a) If subtraction is possible put a 1 in the quotient and

subtract the divisor from the corresponding digits of the

dividend put a 0 in the quotent

b) Bring down the next digit to the right of the remainder.

3. Execute step 2 till there are no more digits left to bring down

from the dividend.

Example 1.23 : Divide 1011001 by 110

Solution :

0111 (Quotient)

(Divisor) 110 |1011001 (Dividend)

110

1010

110

1000

110

0101

Here 111 is teh answer and 101 is the Remainder.

CHECK YOUR PROGRESS

Q.8. Add 35 and -40 in binary using 7 bit register in 2’s complement

representation.

..

Q.9. Add binary no. 110011.010 and 1000.10

..

Q.10. Subtract (1010101)2 -(1001001)2 by 2’s complement method.

..

Number SystemsUnit 1

Digital Logic 31

Q.11. Multiply (11001)2 by (101)2.

..

Q.12. Divide (101101.101)2 by (110)2.

..

1.8 COMPUTER CODES

A code is a symbol or group of symbols that represents discrete

elements. Coding of characters has been standardised to enable transfer

of data between computers. Numeric data is not the only form of data handled

by a computer. We often require to process alphanumeric data also. An

alphanumeric data is a string of symbols, where a symbol may be one of

the letters A, B, C,, Z, or one of the digits 0, 1, 2,, 9, or a special

character, such as + – */, . () = (space for blank)etc. However, the bits 0 and

1 must represent any data internally. Hence, computers use binary coding

schemes to represent data internally. In binary coding, a group of bits

represent every symbol that appears in the data. The group of bits used to

represent a symbol is called a byte. To indicate the numbers of bits in a

group, sometimes a byte is referred to as “n-bit byte”, where the group

contains n bits. However, the term “byte” commonly means an 8-bit byte

because most modern computers use 8 bits to represent a symbol.

1.8.1 BCD

In computing and electronic systems, Binary-Coded Decimal

(BCD) is a way to express each of the decimal digits with a binary

code. Its main virtue is that it allows easy conversion to decimal

digits for printing or display and faster decimal calculations. Decimal

numbers with their BCD equivalent are given in the table 2.4 :

Table 2.4 : BCD Code

Decimal BCD

0 0000

1 0001

2 0010

Number Systems Unit 1

Digital Logic32

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Unlike binary encoded numbers, BCD encoded numbers can

easily be displayed by mapping each of the nibbles(4-bits) to a

different character. Conversion of decimal to BCD and BCD to

decimal are shown below:

Example 1.24 : Convert the decimal numbers 47 and 180 to BCD.

Solution : 4 = 0100 and 7 = 111

47 = 0100111

Similarly, 180=0001 1000 0000

Example 1.25 : Convert each of the BCD code 1000111 to decimal.

Solution : First we have to divide the whole BCD code by a set of 4-

bits from right to left. Then from left to right we can put the

corresponding decimal numbers.

0100 0111

4 7

Thus, 1000111(in BCD) = 47 (in Decimal)

BCD addition : BCD is a numeric code and can be used in arithmetic

operations. Addition is the most important operation because the

other three operations (subtraction, multiplication, and division) can

be accomplished by the use of addition. Here is how to add two

BCD numbers:

Step1 : Add the two BCD numbers, using the rules for binary

addition.

Step 2 : If a 4-bit sum is equal to or less than 9, it is a valid BCD

number.

Step 3 : If a 4-bit sum is greater than 9, or if a carry out of the 4-bit

group is generated, it is an invalid result. Add 6(0110) to

Number SystemsUnit 1

Digital Logic 33

the 4-bit sum in order to skip the six invalid states and

return the code to 8421. If a carry results when 6 is added,

simply add the carry to the next 4-bit group.

Example 1.26 : Add the following BCD numbers :

a) 0001 + 0100

b) 10000111 + 01010011

Solution : The decimal number addition are shown for comparison.

(a) 0001 1

+0100 +4

0101 5

 0001 + 0100 = 0101 Which is valid BCD no. (Value < 9)

(b) 1000 0111 87

+0101 0011 + 53

1101 1010 Both groups are invalid (>9) +140

+0110 +0110 Add 6 (i.e.,0110) to both groups

0001 0100 0000 Valid BCD number which is 140

in decimal.

1.8.2 ASCII

ASCII stands for American Standard Code for Information

Interchange. It is a very well-known fact that computers can manage

internally only 0s (zeros) and 1s (ones). By means of sequences of

0s and 1s the computer can express any numerical value as its

binary translation, which is a very simple mathematical operation.

However, there is no such evident way to represent letters and

other non-numeric characters with 0s and 1s. Therefore, in order to

do that, computers use ASCII tables, which are tables or lists that

contain all the letters in the roman alphabet plus some additional

characters. In these tables each character is always represented by

the same order number. For example, the ASCII code for the capital

letter “A” is always represented by the order number 65, which is

easily representable using 0s and 1s in binary: 65 expressed as a

Number Systems Unit 1

Digital Logic34

binary number is 1000001. ASCII has 128 character codes(from 0

to 127) and symbols represented by a 7-bit binary code.

ASCII is the common code for microcomputer equipment. The

first 32 characters in the ASCII-table are unprintable control codes

and are used to control peripherals such as printers. Examples of

the control characters are “NULL”, “line feed”, “start of text” and

“escape”. The other characters are graphic symbols that can be

printed or displayed and that include the letters of the alphabet

(lowercase and upper case), the ten decimal digits, punctuation

signs, and other commonly used symbols.

1.8.3 EBCDIC

EBCDIC is the abbreviation for Extended Binary-Coded

Decimal Interchange Code . EBCDIC is an IBM code for

representing characters as numbers. It uses 8 bits per character.

Thus 256 charaters can be represented with 8 bits. The 9th position

bit can be used for parity. The EBCDIC code is used in IBM

mainframe models and other similar machines.

In EBCDIC, the first 4 bits are known as zone bits and remaining

4 bits represent digit values. Electronic circuits are available to

transform characters from ASCII to EBCDIC and vice-varsa.

1.8.4 Gray Code

The gray code is an unweighted code not suited for arithmatic

operations, but useful for input output devices, analog to digital

converters etc. The Gray code, named after Frank Gray, is a binary

numeral system where two successive values differ in only one digit.

It is sometimes referred to as reflected binary, because the first

eight values compare with those of the last 8 values, but in reverse

order.

The Gray code was originally designed to prevent spurious output

from electromechanical switches. Today, Gray codes are widely used

Number SystemsUnit 1

Digital Logic 35

to facilitate error correction in digital communications such as digital

terrestrial television and some cable TV systems.

Table 2.5 : Gray Code

Decimal Gray Code Binary

0 0000 0000

1 0001 0001

2 0011 0010

3 0010 0011

4 0110 0100

5 0111 0101

6 0101 0110

7 0100 0111

8 1100 1000

9 1101 1001

10 1111 1010

11 1110 1011

12 1010 1100

13 1011 1101

14 1001 1110

15 1000 1111

Conversion from Binary to Gray code : The following rules explain

how to convert from a binary number to a Gray code :

a) The most significant bit (left most) in the gray code is the same

as the corresponding most significant bit in the binary code.

b) Going from left to right, add each pair of adjacent pair of binary

code to get the next Gray code bit. Discard carries.

For example, the conversion of the binary number 1100 to gray

code is as follows:

Binary code 1 1 0 0

MSB (Most significant bit) LSB (Least significant bit)

MSB of Gray code will be same as MSB of Binary code. Here, it

will be 1.

Number Systems Unit 1

Digital Logic36

Now , addition of each pair of adjacent bits of Binary code:

1 + 1 = 10 = 0 , discarding the carry 1

1 + 0 = 1, no carry

0 + 0 = 0, no carry

1100 in gray code is 1010

Conversion from Gray to Binary code : The following rules apply:

a) The most significant bit (left most) in the binary code is the same

as the corresponding most significant bit in the gray code.

b) Add each binary code bit generated by Gray code bit in the next

adjacent position. Discard carries.

For example, binary 10101111 in gray code will be like this :

1 0 1 0 1 1 1 1 Gray code

1 1 0 0 1 0 1 0 In Binary

CHECK YOUR PROGRESS

Q.13. Convert the following binary no to gray code no.

(i) 11011 (ii) 10110

Q.14. Convert the following Gray codes to Binary codes.

(i) 11011 (ii) 100111

Q.15. (i) The American Standard Code for Information Interchange

is a standard __________ bits code.

(ii) EBCDIC uses __________ bits per character.

(iii) Code is a representation of __________.

(iv) In both binary and gray code, the __________ is same.

Q.16. Add the following BCD numbers :

(i) 00100011 + 00010001 (ii) 1001 + 0100

..

..

..

 + + + + + + +

Number SystemsUnit 1

Digital Logic 37

1.9 LET US SUM UP

 We have learnt 4 different number systems used in digital systems,

their use, conversion of one number system to an other and the

arithmatic operation of binary system. We also have learnt about

the representation of data.

 In our day-to-day life, we use the decimal number system. In this

system, base is equal to 10.

 The 1’s complement of a binary number is formed by changing 1’s

into 0 and 0’s into 1’s

 The 2’s complement of a binary number is obtained by adding 1 in

the 1’s complement form of the binary number.

 BCD, ASCII, EBCDIC,and Gray Code are the commonly used

commputer codes.

1.10 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1 : (1111 1111)2

Ans. to Q. No. 2 : Weight is 24 = 16

Ans. to Q. No. 3 : a) (1000110101.01)2 b) (174.44)10 c) (2620.8)10

d) (18.75)10 e) (7574.50)8

Ans. to Q. No. 4 : 9’s complement of 44 is 55 and 182 is 817

10’s complement of 44 is 56 and 182 is 818

Ans. to Q. No. 5 : 1’s complement of 1101001 is 0010110 and 0000 is 1111

2’s complement of 1101001 is 0010111 and 0000 is 10000

Ans. to Q. No. 6 : a) 1 001010 b) 1 110101 c) 1 110110

Ans. to Q. No. 7 : Mantissa 10101010, fraction 000100 (in 16 bit

representation)

Ans. to Q. No. 8 : (000101)2

Ans. to Q. No. 9 : (111011.110)2

Ans. to Q. No. 10 : (1100)2

Ans. to Q. No. 11 : (1111101)2

Ans. to Q. No. 12 : (111.10011)2

Number Systems Unit 1

Digital Logic38

Ans. to Q. No. 13 : (i) 10110 (ii) 11101

Ans. to Q. No. 14 : (i) 10010 (ii) 111010

Ans. to Q. No. 15 : (i) 7 (ii) 8 (iii) Discrete elements

(iv) MSB-bit

Ans. to Q. No. 16 : (i) Solution :

0010 0011 35

+0001 0001 +17

0011 0100 +52 Valid BCD no. (since both <9)

(ii) Solution :

1001 9

+0100 +4

1101 Invalid BCD number (>9) +13

+0110 Add 6 (i.e., 0110)

0001 0011 A valid BCD number which

is 13 in decimal

1.11 FURTHER READINGS

 Computer Fundamentals Architecture and Organization, B. Ram,

New Age International (P) Ltd.

 Introduction to Computer Science, ITL Education Solution Limited,

Pearson Education

 Digital Logic and Computer Design, M. M. Mano, PHI

 Computer Fundamentals, P K Sinha, BPB Publication.

 Digital Techniques, Dr. Pranhari Talukdar, N.L. Publications.

 Computer Fundamentals and C programming, Rath, Jagdev and

Swain, SCITECH.

1.12 MODEL QUESTIONS

Q1. What is binary number system? How do you perform binary

subtraction using 1’s and 2’s complement method?

Number SystemsUnit 1

Digital Logic 39

Q.2. What is meant by ‘Base’ or ‘radix’ of a number system?

Q.3. What is a floating point number? What are the advantages of it?

Q.4. What do you understand by normalized floating point number?

Q.5. Convert the decimal numbers 15, 275 to BCD.

Q.6. Add the two BCD numbers 10000111 and 01010011.

Q.7. Find 8’s and 16’s complement of the following:

(i) 67 (ii) 5672

Q.8. Find the 7’s and 15’s complement of the following:

(i) 643 (ii) 15AB

Q.9. Write BCD for the following decimal number:

(i) 679 (ii) 45.96

Q.10. Perform the following with binary arithmetic:

(i) 110111 + 10011 (ii) 1110.001 + 1010.101

(iii) 11111 – 1101 (iv) 1010.001 - 110.1

(v) 1101 x 101 (vi) 1011.11 x 1.1

(vii) 10011 / 111 (viii) 101101.1101 / 11.1

Q.11. Convert the following to its binary equivalent:

(i) (67)8 (ii) (A8D)16 (iii) (81B6.F)16

(iv) (64.3)10 (v) (765.45)8 (vi) (1725.23)8

Q.12. Convert the following decimal number to octal number:

(i) 104 (ii) 457 (iii) 7562

Q.13. Convert the following binary numbers to Octal and tehn Hexadecimal

equivalent:

(i) 1101101101 (ii) 1010110.001 (iii) 1101.1011

Q.14. Convert the following decimal numbers to octal and then to its binary

equivalent:

(i) 100 (ii) 0.57 (iii) 1011.3

Q.15. Perform the following by 2’s complement method:

(i) 10101 – 11011 (ii) 100011 – 1111

Number Systems Unit 1

Digital Logic40

UNIT 2 : BOOLEAN ALGEBRA

UNIT STRUCTURE

2.1 Learning Objective

2.2 Introduction

2.3 Boolean Operators

2.4 Basic Theorems and Postulates of Boolean Algebra

2.5 Representation of Boolean Expression

2.6 Simplification of Boolean Functions

2.6.1 Algebric Manipulation Method

2.6.2 Map method

2.6.3 Don’t Care Conditions

2.7 Let Us Sum Up

2.8 Further Readings

2.9 Answers to Check Your Progress

2.10 Model Questions

2.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

 Define Boolean Algebra

 Explain basic concepts of Boolean Algebra

 Define the basic theorems and postulates of Boolean Algebra

 Define Boolean function

 Define canonical and standard forms

 Simplify a Boolean function by algebric manipulations and K-

maps.

2.2 INTRODUCTION

In this unit, you will be able to learn about the fundamentals of

Boolean Algebra and logic operations. Three basic logic operations are

AND, OR and NOT operations, where AND is logical multiplication, OR is

Digital Logic 41

logical addition and NOT is logical complementation. The logical AND

operation between two variables X and Y is written as “XY”. The result of

XY is logical 0 for all cases except when both X and Y are logical 1. The

logical OR operation is written as “X+Y”, and produces a logical 1, when X

or Y or both are logical 1. The logical NOT operation changes logical 1 to

logical 0 and vice versa.

You will also learn the basic theorems and postulates of Boolean

algebra, the principles of Duality, De Morgains theorem. Finally, you will

learn about sum of product and product of sums simplification of Boolean

functions using K-map.

2.3 BOOLEAN OPERATORS

Boolean algebra may be defined with the help of three sets of

components viz,

i) a set of elements,

ii) a set of operators and

iii) a number of unproved axioms or postulates. A set of elements

is any collection of objects having a common property.

A set of operators here is the binary operators, which are the rules

that assigns to each pair of elements of the set a unique element from the

set. The axioms or postulates form the basic assumptions from which it is

possible to deduce the rules, theorems and properties of Boolean algebra.

A variable in Boolean algebra can take only two vales, 1 (TRUE) or 0

(FALSE). i.e. TRUE is represented by 1 and FALSE is represented by 0.

Boolean algebra is used for designing and analysing digital circuits. There

are three basic operations in Boolean algebra and these operations are

done with the help of three operators, viz. AND, OR and NOT. (These are

also called basic logic operation).

AND operation : Boolean AND operator for two variables A and B

can be represented as:

A and B or A.B or AB

It results 1 or TRUE if both the operands A and B are 1 (TRUE),

otherwise the result of 0 (FALSE).

Boolean Algebra Unit 2

Digital Logic42

OR Operation : The OR operator for the same variables can be

represented as :

A OR B or A+B

The result of this operation in 0 (FALSE) if both the variables are 0

(FALSE); otherwise the result is 1 (TRUE)

NOT Operation : The NOT operation for a variable A can be

represented as:

NOT Ā or A or A/.

It returns the opposite value of the variable i.e. returns 0 (FALSE) if

A is 1 (TRUE) and vice versa.

The results of these Boolean operations can be represented is a

tabular form, which is referred to as the “truth table”.

Truth Table 2.1 for AND OR and NOT operation

A B (A AND B) A.B (A OR B) A+B NOTA

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

Note : Boolean addition is same as the OR operation and Boolean

multiplication is same as AND operation.

Truth Table : A truth table is a table which gives the output for all

combination of input values. A truth table can be drawn for a particular

function/operation. In the truth table 2.1, three tables are merged into a

single one.

In addition to these three basic Boolean operations, three more

operators have been defined for Boolean algebra. They are: XOR (Exclusive

OR), NOR (Not+OR) NAND (Not+AND).

2.4 BASIC THEOREMS AND POSTULATES OF
BOOLEAN ALGEBRA

The theorems and postulates are the most basic relationships in

Boolean algebra. Six theorems and four postulates of Boolean algebra are

Boolean AlgebraUnit 2

Digital Logic 43

listed in table 2.2. The postulates are basic axioms of the algebric structure

and need no proof, but the theorems must be proven with the help of the

postulates. Both the postulates and theorems are listed in pairs: one is the

dual of the other.

Table 2.2

Postulates and Theorems of Boolean Algebra

Postulate 2 (a) x + 0 = z (b) x.1 = x

Postulate 5 (a) x + x/ = 1 (b) x. x/ = 0

Theorem 1 (a) x + x = x (b) x. x = x

Theorem 2 (a) x + 1 = 1 (b) x. 0 = 0

Theorem 3, Involution (x/) / =x

Postulate 3, Commutative (a) x + y = y + x (b) xy = yx

Theorem 4, Associative (a) x + (y + z) = (x + y) + z

(b) x (yz) = (xy)z

Postulates 4, Distributive (a) x (y + z) = xy + xz

(b) x+yz = (x+y)(x+z)

Theorem 5, De Morgan (a) (x + y)/ = x/ y/ (b) (xy)/ = x/ + y/

Theorem 6, Absorption (a) x + xy = x (b) x(x + y) = x

Duality Principle : This is an important property of Boolean algebra.

It states that every algebric expression deducible from the postulates of

Boolean algebra remains valid if the operator and identity elements are

interchanged. In a two-valued Boolean algebra (which is defined on a set of

two elements, B = {0, 1}, with rules for the two binary operators + and), the

identity elements and the elements of the set B are same: 1 and 0. If we

need the dual of an algebric expression we simply interchange OR and

AND operators and replace 1’s by 0’s and 0’s by 1’s.

The proofs of the theorems with one variable are given below:

Theorem 1 (a) x + x = x

x + x = (x + x).1 by postulate : 2 (b)

= (x + x) (x + x/) : 5 (a)

= x + x x/ : 4 (b)

= x + 0 : 2 (a)

= x

Boolean Algebra Unit 2

Digital Logic44

Theorem 1 (b) : x. x = x

x. x = x. x + 0 by postulate : 2 (a)

= xx + x x/ : 5 (b)

= x (x + x/) : 4 (a)

= x.1 : 5 (a)

= x : 2 (a)

If we observe carefully we see that theorem 1 (b) is the dual of

theorem 1 (a) and each step of the proof in part (b) is the dual of part (a).

Thus any dual theorem can be similarly derived from the proof of its

corresponding pair.

Theorem 2 (a): x + z = 1

x + 1 = 1. (x + 1) by postulate : 2 (b)

= (x + x/) (x +1) : 5 (a)

= x + x/.1 : 4 (b)

= x + x/ : 2 (b)

= 1 : 5 (a)

Theorem 2 (b): x. 0 = 0 by duality.

Theorem 3: (x/)/ = x

We have x. x/ = 0 from postulate 5 (b), which defines complement of x.

The complement of x/ is x and is also (x/)/. Since the complement is

unique, therefore we have (x/)/ = x.

We can prove the theorems which involve two or three variables,

algebraically, from the postulates and theorems which have already been

proven. Let us consider the absorption theorem.

Theorem 6 (a) : x + xy = x

x + xy = x.1 + xy by postulate 2 (b)

= x (1 + y) by postulate 4 (a)

= x (y + 1) by postulate 3 (a)

= x.1 by theorem 2 (a)

= x by postulate 2 (b)

Theorem 6 (b): x (x + y) = x by duality.

The theorems of Boolean algebra can also be proved/verified easily

with the help of truth table. The following truth table verifies the theorem 6 (b).

Boolean AlgebraUnit 2

Digital Logic 45

Table 2.3

1 2 3 4

x y x + y x (x + y)

0 0 0 0

0 1 1 0

1 0 1 1

1 1 1 1

Here we see that, column 4 and column 1 are same, i.e. x (x + y) =

x. Since the algebric proof of the De Morgan’s theorem and the associative

law are very long, we can show their validity with truth tables easily. Let us

consider the De Morgan’s theorem: (x + y)/ = x/ y/

Now, the truth table for this is shown below.

Table 2.4

1 2 3 4 5 6 7

x y x + y (x + y)/ x/ y/ x/ y/

0 0 0 1 1 1 1

0 1 1 0 1 0 0

1 0 1 0 0 1 0

1 1 1 0 0 0 0

Column 4 is equal to column 7, so, (x + y)/ = x/ y/

Complement of a Boolean Function : The complement of a

function F is F/. It can be obtained from an interchange of 0/s for 1/s and 1/

s for 0/s in the value of F. Algebraically, the complement of a function may

be derived through De Morgan’s theorem. The De Morgan’s theorem can

be extended to any number of variables.

The theorem can be generalized as :

(A + B + C + + G) / = A/B/C/ ... G/

(ABC...G) / = A/ + B/ + C/ + + G/

This generalized form of De Morgan Theorem states that the

complement of a function is obtained by interchanging AND and OR

operators and complementing each literal. (A literal is a primed or unprimed

variable). Let F1= A/BC + A/B/C/. Now F1
/ i.e. complement of the function

can be obtained by applying the De Morgan’s theorem as follows:

Boolean Algebra Unit 2

Digital Logic46

F1
/ = (A/BC + A/B/C/)/

= (A/BC) / (A/B/C/)/

= (A+B/+C/) (A+B+C)

An easier procedure for deriving the complement of a function is to

take the dual of the function and complement each literal. Thus, the dual of

F1= (A/+B+C) (A/+B/+C/) and then complementing each literal, F1
/ = (A+B/

+C/) (A+B+C).

CHECK YOUR PROGRESS

Q.1. How are logical AND and OR operations of two variables

denoted?

..

..

..

Q.2. What is a truth table? Create a truth table for AND and OR

operation?

..

..

..

Q.3. Define the principle of Duality.

..

..

..

Q.4. State and prove the De Morgan’s theorem for two variables.

(Using truth table)

..

..

..

Boolean AlgebraUnit 2

Digital Logic 47

2.5 REPRESENTATION OF BOOLEAN EXPRESSION

A Boolean function can be expressed in three ways, viz, i) in canonical

form, ii) in standard form and in iii) non standard form. To understand these

forms we must have the idea on Minterms and Maxterms.

Minterms and Maxterms : Let us consider two binary variables x

and y, which may appear in their normal form or its complement form. Now

combining these two variables with an AND operation, we get four possible

combinations: x/y/, x/y, xy/, xy. Each of these AND terms represents one of

the distinct areas in the Venn diagram of the following fig 2.1, and is called

a minterm or a standard product.

Fig. 2.1 : Venn Diagram for two variables

In this way, n variables can be combined to form 2n minterms. Each

minterm is obtained from an AND term of the n variables, with each variable

being primed if the corresponding bit of the binary number is a 0 and

unprimed if a 1. Each minterm is designated as mj, where j denotes the

decimal equivalent of the binary number of the minterm designated.

Table 2.5 : Minterms and Maxterms for three binary variables

Minterms Maxterms

x y z Term Designation Term Designation

0 0 0 x/ y/ z/ m0 x + y + z M0

0 0 1 x/ y/ z m1 x + y + z/ M1

0 1 0 x/ y z/ m2 x + y/ + z M2

0 1 1 x/ y z m3 x + y/ + z/ M3

1 0 0 x y/ z/ m4 x/ + y + z M4

1 0 1 x y/ z m5 x/ + y + z/ M5

1 1 0 x y z/ m6 x/ + y/ + z M6

1 1 1 xyz m7 x/ + y/ + z/ M7

x y

xyxy/ x/y

Boolean Algebra Unit 2

Digital Logic48

Similarly, with these n variables an OR term can be formed with

each variables being primed or unprimed. Thus, we may have 2n possible

combinations and these are called Maxterms or standard sums. In the

table 2.5, the eight maxterms for three variables x, y and z, together with

their symbolic designation, are listed. Any 2n maxterms for n variables may

be determined similarly. Each maxterm is obtained from an OR term of the

n variables, with each variable being unprimed if the corresponding bit is a

0 and primed if a 1. Each maxterm is the complement of its corresponding

minterm and vice versa.

If the truth table for a Boolean function is given we can express the

Boolean function algebraically by forming a minterm for each combination

of the variables which produces a 1 in the function, and then taking the OR

of all those terms.

In the table 2.6 two functions f1 and f2 are listed.

Table 2.6 : Functions of three variables

a b c function f1 function f2

0 0 0 1 0

0 0 1 0 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 1

1 1 0 1 0

1 1 1 0 1

From the table, we see that, function f1 is 1 for four combinations of

a, b, c i.e. a/b/c/, a/b c, a b/ c and a b c/. Thus, for each one of these minterms

the function f1=1, and we can express the function f1 as:

f1 = a/b/c/ + a/ b c + a b/c + a b c/

= mo + m3 + m5 + m6

=  (0, 3, 5, 6)

(The symbol ‘’, is used to mean sum of minterms. Similarly, we

can easily verify that –

Boolean AlgebraUnit 2

Digital Logic 49

f2 = a/ b c/ + a b/ c/ + a b/ c + a b c

= m2 + m4 + m5 + m7

=  (2,4, 5, 7)

From here we observe an important property of Boolean algebra.

Any Boolean function can be expressed as a sum of minterms (sum means

Or ing to terms)

Now consider again the table 2.3 to read the complement of f1. We

can obtain the complement of f1 by forming a minterm for each combination

of a, b, c, that produce a 0 in the function and then ORing to those terms.

Thus f1/ = a/ b/ c + a/ b c/ + a b/ c/ + a b c

Now taking the complement of f1/, we obtain the function f1:

(f1
/) = f1 = (a/ b/ c + a/ b c/ + a b/ c/ + a b c) /

= (a + b + c/) (a + b/ + c) (a/ + b + c) (a/ + b/ + c/)

= M1 M2 M4 M7

=  (1, 2, 4, 7) (/ is used to mean product of maxterms)

This demonstrates a second important property of Boolean algebra:

Any Boolean function can be expressed as product of maxterms (product

means ANDing of terms).

Now, we are in a position to define the canonical form of a Boolean

function. Boolean functions expressed as a sum of minters or product of

maxterns (i.e. each term of the function must have all the literals) are said

to be in canonical form.

Sum of Minterms : It is sometimes convenient to express the

Boolean function in its sum-of-minterms form. It can be done by first

expanding the expression into a sum of AND terms. Then each term is

inspected to see if it contains all the variables/literals. If one or more variable

is missing in a term, it is ANDed with an expression (a + a/), where a is one

of the missing variables. Let us take an example to clarify this procedure.

Note : a + a/ = 1

Example : Express the Boolean function xy + x z/ + y/ in a sum of

minterms. Here we see that the function has 3 variables and there are 3

AND terms. Two terms missing one variable and one term missing two

variables.

Boolean Algebra Unit 2

Digital Logic50

Solution : In term xy, z is missing: therefore: xy (z + z/)

= x y z + x y z/

Similarly in x z/ , y is missing  x z/ (y + y/) = x y z/ + x y/ z/

In y/ two variables x & z are missing, therefore:

y/ (z + z/) = y/ z + y/ z/, still missing x

 y/ z (x + x/) + y/ z/ (x + x/)

= x y/ z + x/ y/ z + x y/ z/ + x/ y/ z/

Now, combining all the terms

F = xy + xz/ + y/

= x y z + x y z/ + x y z/ + x y/ z + x/ y/ z/ + x/ y/ z + x y/ z/ + x/ y/ z/

Eliminating duplicate terms: (x + x = x)

F = x y z + x y z/ + x y/ z/ + x y/ z + x/ y/ z + x/ y/ z/

Rearranging the minterms in ascending order

F = x/ y/ z/ + x/ y z/ + x y/ z/ + x y/ z + x y z/ + x y z

=  (0, 2, 4, 5, 6, 7)

Products of Maxterms : A Boolean function can also be expressed

as a product of maxterms. For this, the function first be brought into a form

of OR terms. It can be done by using the distributive law x + yz = (x + y) (x

+ z). Then for any missing variable x in each OR term, the term is ORed

with xx/. The process will be clear from the following example.

Example : Express the Boolean function f = x y/ + x z/ in a product

of maxterm form.

First we convert the function into OR terms using the distributive law.

f = xy/ + x z/ (Let x y/ = x, y = x & , z = z/)

= (x y/ + x) (x y/ + z/)

= (x + x) (x + y/) (x + z/) (y/ + z/)

= x (x + y/) (x + z/) (y/ + z/)

Now ORing each OR term with x x/ (where x is the missing variable)

x = x + y y/ = (x + y) (x + y/)

x + y = x + y + z z/ = (x + y + z) (x + y + z/)

x + y/ = x + y/ + z z/ = (x + y/ +z) (x + y/ +z/)

x + z/ = x + z/ + y y/ = (x + y + z/) (x + y/ + z/)

y/ + z/ = y/ + z/ + xx/ = (x + y/ +z/) (x/ + y/ +z/)

Boolean AlgebraUnit 2

Digital Logic 51

Combining all the terms and removing those that appear more than

once we finally obtain:

f = (x + y + z) (x + y + z/) (x + y/ + z) (x + y/ + z/) (x/ + y/ +z/)

= M0 M1 M2 M3 M7

=  (o, 1, 2, 3, 7) (The symbol  denotes the ANDing of maxterms)

Conversion between canonical forms : Boolean functions

represented in one canonical form can easily be convered to the other

canonical form. It will be clear from the following example.

Example : Convert the function F (x, y, z) =  (2, 4, 5, 7) into product

of maxterm form.

Solution : We have F (x, y, z) =  (2, 4, 5, 7) = m2+m4+m5+m7

Taking complement F/ (x, y, z) =  (0, 1, 3, 6) = m0+m1+m3+m6

Now, if we take the complement of F/ by De Morgan’s theorem,

We obtain F = (m0+m1 + m3+m6)/

= m0
/ m1

/ m3
/ m6

/

= M0 M1 M3 M6

=  (0, 1, 3, 6)

Note : From table 2.5, it is clear that relation mj/ = Mj is true i.e. a

maxterm is a complement of the corresponding minterm and vice versa.

The simplest way to convert from one canonical form to other is:

Interchange the symbols  and  and list those numbers missing from the

original form.

Standard form : In this form, the terms that form the Boolean function

may contain one, two or any number of literals. Two types of standard forms

are: the sum of product and product of sums.

The sums of products is a Boolean expression containing, AND

terms, called product terms, of one or more literals each.

eg: F1= a + b c/ + a b/ c

A product of sums is a Boolean expression containing OR terms,

called sum terms. Here also each term may have any number of literals.

eg: F2= y (x + y/) (x/ + z) (x + y/ + z/)

A Boolean function may also be expressed in a non standard form.

eg: F3 = (x/ y + x/ z) (x/ y + x/y/)

Boolean Algebra Unit 2

Digital Logic52

This function is neither in sum of product nor in product of sums.

Using distributive law it can be converted into a standard form.

2.6 SIMPLIFICATION OF BOOLEAN FUNCTIONS

We see in previous section that representation of a Boolean function

is not unique. The same function can be represented by different numbers

of literals and terms. These Boolean functions have to be finally implemented

by digital logic gates. The complexity of the digital logic gates is directly

related to the complexity of the algebric expression from which the function

is implemented. So, it is an important task to simplify the Boolean functions

so that they can be implemented easily in a cost effective manner. In this

section, we will discuss two methods of simplifying a Boolean function, viz,

algebric manipulation method and the map method.

2.6.1 Algebric Manipulation

On implementing a Boolean function with logic gates, each literal/

variable in the function designates an input to a gate, and each

term is implemented with a gate. The minimization of the number of

literals and the number of terms results in a circuit with less

equipment, but it is not always possible to minimize both

simultaneously. We will consider now literal minimization. Literal

minimization can be done by algebric manipulation. There are no

specific rules to follow which will ensure the final answer. The only

method available is a cut-and-try procedure using the postulates,

the basic theorems and any other manipulation method. To illustrate

this procedure let us consider the following examples: Simplicity the

following Boolean functions to a minimum number of literals.

1) x y + x y/ 2) x y z + x/ y + x y z/

= x (y + y/) = x y (z + z/) + x/ y

= x. 1 = x y + x/ y

= x = y (x + x/)

= y.

Boolean AlgebraUnit 2

Digital Logic 53

3) xy + x/ z + yz

= xy + x/ z + y z (x + x/)

= x y + x/ z + x y z + x/ y z

= x y (1 + z) + x/ z (1 + y)

= x y + x/ z

In these examples, literals are minimized in 1 and 2, and in 3 a

term is minimized.

The algebric manipulation procedure of minimizing a Boolean

function is awkward because it lacks specific rules to predict each

succeeding step in the process.

2.6.2 Map Method

The map method provides a simple straight forward method for

minimizing Boolean functions. It was first proposed by Veitch and

slightly modified by Karnaugh and known as the Veitch diagram or

the “Karnaugh Map”. This method may be regarded as the pictorial

form of a truth table.

The map is a diagram made up of squares. Each square

represents one minterm. As we have already seen that any Boolean

function can be represented as a sum of minterms so a Boolean

function is recognized graphically in the map from the area enclosed

by those squares whose minterms are included in the function.

The number of squares in a K-map depends upon the number

of variables of the Boolean expression. For n variables, we have 2n

minterms (possible combinations of n variables) and hence 2n

squares in the map. However, the map method is convenient only

for small number of variables, i.e. upto six variables. In this section

we will consider up to four variables map.

Two, Three and Four variables maps :

K-maps for two, three and four variables map are shown in Fig.

a, b & c.

Boolean Algebra Unit 2

Digital Logic54

a\b

0 1

0 a/ b/ a/ b mo m1

1 a b/ a b m2 m3

(a) Two variable K map

a\bc \B

00 01 11 10

0 a/ b/ c/ a/ b/ c a/ b c a/ b c/ mo m1 m3 m2

1 a b/ c/ a b/ c a b c a b c/ m4 m5 m7 m6

(b) Three variables K map

ab\cd

00 01 11 10

00 a/b/c/d/ a/b/c/d a/b/cd a/b/cd/ m0 m1 m3 m2

01 a/bc/d/ a/bc/d a/bcd a/bcd/ m4 m5 m7 m6

11 abc/d/ abc/d abcd abcd/ m11 m12 m14 m13

10 ab/c/d/ ab/c/d ab/cd ab/cd/ m7 m8 m10 m9

(c) Four variables K map

Fig. 2.2 : K-map

There are four minterms for two variables; hence the map

consists of four squares, one for each minterm. Similarly, for three

and four variables there are eight and sixteen minterms respectively

and hence the maps consist of eight and sixteen squares.

Representation of Truth Table on K-maps :

We have already known that truth table defines the relationship

between output and input. Truth table – involves two variables and

its K-map representation is shown in the figure.

Input Output x\y x\y

x y z 0 1 y/ y

0 0 1 0 1 0 OR x/ 1 0

0 1 0 1 1 0 x 1 0

1 0 1

1 1 0

Truth table K-map K-map

Boolean AlgebraUnit 2

Digital Logic 55

Here, we see that we put 1’s in the squares whose minterms are

0 and 2. This is because, from the truth table we see that the output

in 1, only for the input combinations x=0, y=0 and x=1 and y=0. For

others the output in 0, and we put 0’s in the map accordingly. Similarly,

we can represent a truth table having n variables with a K-map of 2n

squares.

Plotting a Boolean expression on the Karnaugh Map : As we

already have seen that each square of the K map represents one

minterm, so the expression to be plotted must be in sum of product

form. The following example clarifies the point.

Example : Plot the Boolean function f=yz + xy/z/ + xyz/ on a K-map.

The term y z missing one variable, so

y z = y z (x + x/) = x y z + x/ y z

Now, F = x/ y z + x y z + x y/ z/ + x y z/

= m3 + m7 + m4 + m6

= m3 + m4 + m6 + m7

Since the expression has three variables, we need a K-map of

23 = 8 squares.

x\yz

00 01 11 10

0 0 0 1 0

1 1 0 1 1

We plot a 1 in the squares of minterms 3, 4, 6 and 7, and a zero

in the other squares.

Simplification of Boolean Function by K-map : We have already

seen how a Boolean function can be plotted on the K-map. Now, we

will see the process of simplification of Boolean function using K-

map. If you observe carefully the K-maps of two, three and four

variables in figure you will see that the neighbouring squares are

adjacent to each other. Two squares are said to be adjacent if they

differ in only one variable. Consider the following three variables k-

map.

Boolean Algebra Unit 2

Digital Logic56

a\bc a\bc

00 01 11 10 00 01 11 10

0 a/b/c/ a/b/c a/bc a/bc/ OR 0 m0 m1 m3 m2

1 ab/c/ ab/c abc abc/ 1 m4 m5 m7 m6

In this map, m0 (a/b/c/) is adjacent to m1 (a/b/c) because only one

variable i.e. “c” appears in mo in its complement form and in m1,

appears in normal form, other variables are same. Similarly, mo is

adjacent with m4 and m2; m1 is adjacent with m3, m0 and m5; m4 is

adjacent with mo, m5, and m6; and so on. When we are going to

simplify a Boolean function using K-map, we will consider this

adjacency of squares and try to combine as much as possible

adjacent squares. We may combine the number of adjacent squares

as two, four, eight and sixteen in a four variables map.

By combining two adjacent squares of a four variable map we

get a term of three variables/literals.

– combining four adjacent squares we get a term of two literals.

– combining eight adjacent squares we get a term of one literal

and combining sixteen adjacent squares we get a 1 i.e. the

function in equal to 1. (i.e. the sum of all minterms is eual to 1).

Example : Simplify the Boolean function:

F = x/ y/ z/ + x/ y/ z + x y z/ + x y z

x\yz

00 01 11 10

0 1 1

1 1 1

Fig. 2.3 : K-map for the function F = x/ y/ z + x/ y/ z + x y z/ + x y z

Note : Here, adjacent squares are marked with rectangles

After plotting the function, adjacent squares are combined with

each other.

Combining the two squares on top we get the term x/ y/ (i.e. here

variable z is changing, so omit it).

Similarly, combining the two squares on bottom, we get xy.

So, the given function is simplified to F = x/ y/ + xy.

Boolean AlgebraUnit 2

Digital Logic 57

Example : f (a, b, c) =  (0, 2, 4, 5, 6)

a\bc

00 01 11 10

0 1 1

1 1 1 1

Observing the K-map we see that minterm m0 is adjacent with

m4 and collectively they are adjacent to m2 and m6. (This type of

adjacency of squares may be determined easily as follows.

Consider the table as an open book, fold it in middle, the squares

overlapped with each others are the adjacent squares).

Now, combining m0, m2, m4 and m6 we get c/ (i.e. other variables/

literals are changing, only c/ is common to all these squares).

Again, combining m4 and m5 we get a b/.

We may combine one square more than once, if necessary.

So, the simplified function is f (a, b, c) = c/ + a b/.

Example : Simplify the Boolean function:

F = A/ B/ C/ + B/ C D/ + A/ B C D/ + A B/ C/

Solution : Here, we need a four variable map. The first, second

and fourth terms are missing one variable each. So ANDing with (x

+ x/) (Where x is the missing variable) we get the function:

F = A/ B/ C/ D + A/ B/ C/ D/ + A/ B/ C D/ + A B/ C D/ + A/ B C D/

+ A B/ C/ D/ + A B/ C/ D

Now, plotting the function to the K-map, we get

AB\CD

00 01 11 10
m0 m1 m3 m2

00 1 1 1
m4 m5 m7 m6

01 1
m12 m13 m15 m11

11
m8 m9 m11 m10

10 1 1 1

Boolean Algebra Unit 2

Digital Logic58

Combining mean terms i.e. squares in the four corners, i.e. mo,

m2, m8 and m10, we get B/ D/

Combining m0, m1, with m8, m9 we get B/ C/ Now, only one square,

m6 remains without combining. We can combine it with m2 ( they

are adjacent) and it gives the term A/ B C/. Note that if we do not

combine m6, we have to write the term as A/BCD/, i.e. with four

literals.

So, the simplified form of the function is F = B/ D/ + B/ C/ + A/ C D/

Product of Sum Simplification : In all the previous examples, the

minimized Boolean functions derived from the K-maps were

expressed in the sum of products (SOP) form. The product of Sums

(POS) form can be obtained with a minor modification.

The procedure for obtaining a minimized function in product of

sums follows from the basic properties of Boolean functions. The

minterms included in the function are represented by placing 1’s in

the corresponding squares on the map. The minterms not included

in the function denote the complement of the function. If we mark

these empty squares by 0’s and combine them into valid adjacent

squares, we obtain a simplified expression of the complement of

the function, i.e. of F/. If we take the complement of F, we get back

the function F. The function so obtained is automatically in the product

of sums form, because of the De Morgan’s theorem. The following

example clarifies the procedure.

Example : Simplify the Boolean function

F (A,B,C,D) =  (1, 5, 8, 9, 10) in (a) sum of product and (b)

product of sums.

Solution : Sum of products simplification of left as an exercise, and

we will show only POS simplification.

Boolean AlgebraUnit 2

Digital Logic 59

(b) AB\CD

00 01 11 10

00 0 1 0 0

01 0 1 0 0

11 0 0 0 0

10 1 1 0 1

Fig. 2.4 : Map for example

The squares marked with 0’s represents the minterms not

included in F i.e., they denote the complement of F. Combining the

0’s as shown in the map, we obtain the simplified complemented

function: F/= AB + CD + A/ D/

Applying De Morgan’s theorem, we obtain:

F/ = AB + CD + A/ D/

(F/)/ = F = (AB + CD + A/ D/)/

= (AB)/ (CD) / (A/ D/)/

= (A/ + B/) (C/ + D/) (A+D)

which is the simplified function in product of sums.

Answer of Example (a) F = A/ B/ C + A B/ C/ + A B/ D/

2.6.3 Don't Care Condition

The function is said to be completely specified when for every

possible combination of input variables, we know an output value.

Accordingly, these output values (i.e. 1’s and 0’s) are plotted in the

map. The combinations are usually obtained from a truth table that

lists the conditions under which the function is a 1. The function is

assumed equal to 0 under all other conditions. But this assumption

is not always true. There are some applications where certain

combinations of input variables never occur. For example, we use 4

bit code to represent the decimal numbers, (0 to 9). Thus, we use

the codes from 0000 to 1001, but other 6 codes from 1010 to 1111

are never used. These combinations are called Don’t care conditions.

These Don’t care conditions can be used on a map to provide further

simplification of the function.

Boolean Algebra Unit 2

Digital Logic60

It is to be remembered that a Don’t care condition cannot be

marked with a 1 on the map because it would mean that the function

always produces a 1 for such input combinations. Similarly, for the

same reason, we cannot mark these by a 0. To distinguish from 1’s

and 0’s don’t care conditions are marked by an X. The X’s may be

assumed to be either 0 or 1, in choosing adjacent squares to simplify

the function in the map depending on which give the simplest

expression. An X, which does not contribute to cover a larger area

i.e. more minterms/squares, need not be used.

Example : Simplify the Boolean function

F (A,B,C,D) =  (1,3,7,11,15) with the don’t care conditions:

d (A,B,C,D) =  (0, 2, 5) in (a) SOP and (b) POS.

Solution :

Step 1 : Construct a four variables K-map

Step 2 : Squares that represent the minterms of the function are

marked with 1s.

Step 3 : The squares for don’t care conditions are marked with Xs.

Step 4 : The 1s and Xs are combined in any convenient manner so

as to enclose the maximum number of adjacent squares.

AB\CD AB\CD

00 01 11 10 00 01 11 10

00 X 1 1 X 00 X X

01 X 1 01 0 X 0

11 1 11 0 0 0

10 1 0 0 0 0

Fig. 2.5 (a) Fig. 2.5 (b)

Step 5 : Combining the squares with 1s and Xs on top in fig. (a),

we get the term: A/ B/

Combining the four 1s we get the term: CD

F (A, B, C, D) = A/ B/ + CD is the solution in SOP.

Step 6 : The square marked with 0’s represent the complement of

the function. Combining 0’s and Xs in fig (b) we get:

Boolean AlgebraUnit 2

Digital Logic 61

F/ = D/ + AC/

(F/)/ = F = (D/ + AC/)/

= D (A/ + C) - (applying De Morgan’s theorem)

This is the simplified POS form of the function.

CHECK YOUR PROGRESS

Q.5. What is a minterm?

..

..

..

Q.6. What is a maxterm?

..

..

..

Q.7. What is a Karnaugh map?

..

..

..

Q.8. What do you understand by sum of products and product of

sums?

..

..

..

Q.9. How are the Don’t care conditions useful?

..

..

..

Boolean Algebra Unit 2

Digital Logic62

2.7 LET US SUM UP

 The three basic logic functions and operations are AND (logical

multiplication), OR (logical addition), and the NOT (logical

complementation) operation.

 Boolean addition is same as logical OR and Boolean multiplication

is same as logical AND operation.

 The logical NOT operation changes logical 1 to 0 and vice versa.

 To get dual of any Boolean expression, you have to replace every 0

with 1 and every 1 with 0, and replacing every operator (+) with (.)

and every (.) with (+).

 Any Boolean expression obtained by interchanging 0s and 1s and

the operator (of an expression) is called the dual expression. This is

the duality principle of Boolean algebra.

 De Morgan’s theorem can be extended to any number of variables.

It is useful in obtaining the complement of a Boolean function.

 We can simplify a Boolean function using algebric manipulation

method and map method. There is no straight forward procedure in

the algebric manipulation method.

 The K-map method is simple systematic and straight forward.

 Any Boolean function can be expressed as a sum of minterms (SOP)

and as a product of maxterms (POS). Minterms are AND terms and

maxterms are OR terms.

 The variables in a product term (minterm) and in a sum term

(maxterm) may appear either in a complemented form or a normal

form.

 A function is said to be completely specified, when for every possible

combination of input variables the output is defined, otherwise the

function is incompletely specified.

 In an incompletely specified function those combination of input

variables for which output values are not known i.e. which minterms

or maxterms are not used as parts of the output function are called

Don’t care terms.

Boolean AlgebraUnit 2

Digital Logic 63

 Don’t care terms may be considered as 1s or as 0s, in simplifying a

Boolean function.

2.8 FURTHER READINGS
 1. Computer System Architecture, M.M. Mano, PHI

 2. Digital logic and Computer Design, M.M. Mano, PHI
 3. Computer Fundamentals Architecture and Organization,

 B. Ram, New Age International (P) Ltd.

2.9 ANSWER TO CHECK YOUR PROGRESS

Ans. to Q. No. 1 : Let the two variables are A and B.

The logical AND operations is denoted by the

multiplication symbol (.). Thus, A AND B = A.B.

The logical OR operation is denoted by the symbol

(+), and A OR B = A + B

Ans. to Q. No. 2 : A truth table is a table, which has two sides, viz, input

and output. In input side, we have all the possible

combinations of input variables, i.e. for 2 variables, we

have 22 = 4 input combinations, for 3, we have 8

combinations and so on. The output side gives us the

result of the function or operation either 1 (TRUE) or 0

(FALSE). Output 1 indicates that the corresponding

input combination (minterm) is present in the function.

Truth table for AND and OR operations

Input Output

A B A.B A+B

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

Ans. to Q. No. 3 : The principle of duality states that for any Boolean

expression, another valid expression can be obtained

Boolean Algebra Unit 2

Digital Logic64

by replacing each 0 with 1 and 1 with 0 and

interchanging the binary operators (.) and (+). For any

pair of expression so obtained, the original one is called

the primal and the new one is called the dual

expression. For example – the expression a b/ + cd =

1, its dual is (a + b/) (c + d) = 0.

Ans. to Q. No. 4 : The De Morgan’s theorem for two variables A and B

can be state as:

I. (A + B)/ = A/ B/

II. (AB) / = A/ + B/

i.e. complement of an expression can be obtained by

complementing each literal and interchanging the

binary operators (.) and (+).

Truth Table

Proof : A B A/ B/ A/B/ (A+B) (A+B)/ AB (AB) / A/+B/

0 0 1 1 1 0 1 0 1 1

0 1 1 0 0 1 0 0 1 1

1 0 0 1 0 1 0 0 1 1

1 1 0 0 0 1 0 1 0 0

=

=

Ans. to Q. No. 5 : A minterm is an AND term also called product term

Minterms are obtained by combining the variables,

which may appear in their normal form or complement

form, with an AND operation. For example, for the two

variables “a” and “b”, we have four minterms, viz, a/b/

(mo), a/ b (m1), a b/ (m2) and a b (m3).

Ans. to Q. No. 6 : A maxterm, on the other hand an OR term, also called

sum term. Maxterms are obtained by combining the

variables with an OR operation. As for example, for

two variables “a” and “b”, we have four maxterms and

they are: a+b (M0), a+b/ (M1), a/+b (M2), and a/+b/ (M3).

Boolean AlgebraUnit 2

Digital Logic 65

Note : In case of maxterm, observe that – when a=0,

b=0 the maxterm is: a + b i.e. a and b appears in normal

form.

Ans. to Q. No. 7 : The Karnaugh map is a pictorial or graphical method

used to simplify a Boolean function in an orderly and

systematic manner. It is convenient to use 2 to

maximum 6 variable map, but complexity in handling

the map increases as the number of variables increase.

Ans. to Q. No. 8 : We have already seen that minterms are product terms.

One of the important properties of Boolean algebra is

that: any Boolean function can be expressed as a sum

of minterms/product terms (SOP). Those minterms,

which are present in a function are combined with OR

operat ion and this is called sum of product

representation of the function. Example: F (x, y z) = x/

y z + x y/ z + x y z.

On the other hand, product of sum (POS) form of a

Boolean function is obtained by combining the

maxterms present in the function with AND operations,

Example: F (x, y, z) = (x + y/ + z) (x/ + y + z) (x/ + y/ + z).

Note : Since each maxterm is the complement of its

corresponding minterms and vice versa, the SOP form

of Boolean function is also the complement of its POS

form and vice versa.

Ans. to Q. No. 9 : Don’t care conditions are plotted in the K-map using

the symbol “X”. If we can get a larger area by

considering these Xs, (i.e. more squares can be

combined) then we get a more simplified form of the

function. Thus, don’t care condition helps in further

simplification of a function.

Boolean Algebra Unit 2

Digital Logic66

2.10 MODEL QUESTIONS

Short – Answer Questions :

Q.1. What are the basic operations of Boolean algebra?

Q.2. State the De Morgan’s Theorem.

Q.3. What are the different ways of representing a Boolean function?

Q.4. How are the terms “maxterm” and “minterms” related to each other?

Q.5. What is the canonical form of a Boolean function?

Q.6. What is the standard form of a Boolean function?

Q.7. How can you convert a function from one canonical form to other?

Q.8. The squares/minterms of a 4 variable map are marked as: m0, m1,

m3, m2 (in the first raw), not as mo, m1, m2, m3. Why?

Long-Answer Questions :

Q.1. Problem: Simplify the following Boolean functions in SOP form.

a) F (a, b, c) = (2, 3, 6, 7)

b) F (w, x, y, z) = (7, 13, 14, 15)

c) F (a, b, c, d) = (2, 3, 12, 13, 14, 15)

d) x y z/ + x y z + x/ z/

e) a b/ c + a b c/ + a/ b c + a b c

Q.2. Problems: Consider the following truth table.

a b c F1

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Boolean AlgebraUnit 2

Digital Logic 67

a) Express the function F1 in product of sum form.

b) Obtain the simplified function in sum of products.

c) Obtain the simplified function in product of sums.

Q.3. Obtain the simplified expression in POS.

a) F (a, b, c) =  (0, 1, 4, 5)

b) F (A, B, C, D) =  (0, 1, 2, 3, 4, 10, 11)

Q.4. Simplify the Boolean function F using the Don’t care condition d in

(1) SOP and (ii) POS.

(a) F = w/ x/ z/ + w/ y z + w/ x y

d = w/ x y/ z + w y z + w x/ z/

(b) F = A/ B/ C + A/ B/ C/ + A/ B C D + B/ C D/+ A B/ D/

d = A/ B C/ D + A/ B C D/ + A C D

Boolean Algebra Unit 2

Digital Logic68

UNIT 3 : LOGIC GATES

UNIT STRUCTURE

3.1 Learning Objectives

3.2 Introduction

3.3 Logic Gates

3.3.1 OR Gate

3.3.2 AND Gate, 3.3.3 NOT Gate

3.3.4 NAND Gate

3.3.5 NOR Gate

3.3.6 XOR Gate

3.3.7 XNOR Gate

3.4 De Morgan’s Theorem

3.5 Truth Table

3.6 Conversion of the Logic gates

3.7 Let Us Sum Up

3.8 FURTHER RBADING

3.9 Answer to Check Your Progress

3.10 Model Questions

3.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

 explain logic gates

 know about the three basic logic gates

 prepare truth table for AND, OR, NOT, NAND, NOR, XOR and

XNOR gates

 obtain the boolean function from a truth table

 describe the NAND implementation of a Boolean function

 describe the NOR implementation of a Boolean function

Digital Logic 69

3.2 INTRODUCTION

A logic gate is an electronic circuit, which is used or collectively can

be used to transform a boolean function /algebric expression into a logic

diagram. Logic gates have only one output and atleast two inputs except

for the NOT gate, which has only one input. The output signals appears

only for certain combinations of input signals. Binary information available

in the input lines are manipulated by the gates. Three basic logic circuits,

commonly called gates are used to make logic decision : they are OR, AND

and NOT circuit /gate. Logic gates are available in the form of various IC

families and are the basic building block of various circuits. Each gate has

a distinct graphic symbol and its operation can be described by means of

an algebric function. The input-output relationship of the binary variables

for each gate can be represented in tabular form in a truth table.

3.3 LOGIC GATES

Before going to discuss about the functions of the logic gates, we

have to know few basic things/terms that are associated with the functions

of gates. Logic 1 and 0, that are applied as input or may be obtained as

ouput of a gate, are represented by voltage levels. Positive logic (or active

high levels) means that the most positive logic voltage level (also referred

to as the high level) in defined to be the logic state1. On the other hand, the

most negative logic voltage level (also referred to as the low level) is defined

to be the logic state 0. Negative logic (or active law levels) is just the opposite,

the most positive (high) level is 0, and the most negative (low) level is a 1.

For instance, if the voltage levels are –0.1v and -5v, then in a positive logic

system, the -5v level represents a zero and the –0.1v represents a 1.

Conversely, if the voltage levels are 0.1v and 5v, then in a negative logic

system, the 5v levels represents a zero and the 0.1v represents a one.

The choice of positive or negative logic is made by the individual

logic designer. We cannot say one is advantageous over the other. It is

common to see that most logic designers and text books on logic design

use positive logic.

Logic Gates Unit 3

Digital Logic70

3.3.1 OR Gate

An OR gate has two or more inputs and a single output. It is an

electronic circuit and the output of an OR gate is HIGH (logic1) if

atleast one of the inputs is HIGH, otherwise (i.e. if all inputs are

LOW) the output is LOW (0). Figure 3.1 shows the graphic symbol

used for an OR gate.

Fig. 3.1 : Graphic symbols for (a) two inputs, (b) 3 inputs and

(c) 4 inputs or gate

The algebric function for OR gate (2 inputs) is : F = xy, and the

truth table is :

Table 3.1 Truth table of OR gate (2inputs)

x y f

0 0 0

1 0 1

1 1 1

Fig. 3.2 : Shows the switching circuit analogy of OR function

The circuit of an OR gate is arranged in such a way that the

output is in state 1, when anyone of the inputs is in state 1 ; i.e.

when input A or input B or input C is 1 (in case of 3 inputs OR gate).

The circuit can be illustrated by the analogy shown in Figure 3.2.

The circuit consists of a battery, a lamp and three parallel switches

connected in series. Battery switches are the inputs to the lamp and

the light from the lamp represents the circuit output.

A
B

(a) (b) (c)

Y = A+B Y = A+B+C Y = A+B+C+D
A
B
C

A
B

C
D

B

A

C

V

Y = A + B + C

Logic GatesUnit 3

Digital Logic 71

Let us define an open switch as a 0 state, i.e., 20 light represents

0 state, and a closed switch represents state 1, i.e., a glowing lamp

as a 1 state. We can list the various combinations (8 combinations)

of switch states as inputs to the circuit and the resulting output states

in a truth table. It is clear from the truth table that all switches must

be opened (0 state) for the light to be off (output in 0 state). This

type of circuit is called an OR gate.

Table 3.2 : Truth table of 3 inputs OR gate

Inputs Outputs

A B C Y = A + B + C

0 0 0 0

0 0 1 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

3.3.2 AND Gate

An AND gate also may have two or more inputs and a single

output. In order to have a HIGH (1) output, all the inputs of the AND

gate must be HIGH (1), otherwise the output is LOW. Fig. 3.3 shows

graphic symbols used for an AND gate.

Fig. 3.3 : Graphic symbol for (a) two inputs (b) three inputs and

(c) four inputs AND gate

The algebric function for a two inputs AND gate is :

F = X + Y.

A

B

(a) (b) (c)

Y = A.B Y = A.B.C Y = A.B.C.D
A

B

C

A

B

C
D

Logic Gates Unit 3

Digital Logic72

Table 3.3 shows the truth table for this function.

Table 3.3 : Truth table of AND gate

X Y F

0 0 0

0 1 0

1 0 0

1 1 1

The AND function can be explained by a series switching circuit

as shown in fig. 3.4. It has two switches X and Y in series with a bulb

and a power supply. The bulb will glow if and only if both the switches

X and Y are simultaneously on.

Fig. 3.4 : Switching circuit analogy of AND function

In the truth table 3.3,

x = y = 0 represents that the switches are OFF

x = y = 1 represents that the switches are ON

F = 0 represents that the bulb will not glow

F = 0 represents that the bulb will glow.

3.3.3 NOT Gate

NOT gate circuit has a single input and single output. The NOT

gate circuit in also called a complementary circuit or an inverter as it

complements its input i.e. it accomplishes a logic negation. Figure

3.5 shows the different graphic symbols used for the NOT gate.

Fig. 3.5 : Graphic symbols for NOT gate

X Y F = X.Y

(a)

(b)

(c)

(d)

x

x

x

x

x/

x/

x/

x/

Logic GatesUnit 3

Digital Logic 73

The algebric function for a NOT gate is : F = x/. Table 3.4 is the

truth table for a NOT gate.

Table 3.4 : Truth table of NOT gate

X F

0 1

1 0

The NOT gate is understood by the short circuit switch A is closed,

(ON) the bulb is bypassed and it does not glow, but when the switch

is opened (OFF), the current will flow through the bulb and it would

glow. i.e., when A is ON the bulb will be OFF and when A is OFF the

lamp will be ON.

Fig. 3.6 : Switching analogy of the NOT function

3.3.4 NAND Gate

A NAND gate is the cascade combination of all AND and a NOT

gate. It is an AND gate followed by an inverter. The NAND operation

is the complement of the AND operation. Fig. 3.7 shows the graphic

symbols for a NAND gate. The algebric function is defined as : F =

(xy)/. Table 3.5 shows the truth table for NAND operation.

Table 3.5

x y F

0 0 1

0 1 1

1 0 1

1 1 0

R

AV

Y = A–

Logic Gates Unit 3

Digital Logic74

–~

Fig. 3.7 : Graphic/Logic symbols of NAND gate

3.3.5 NOR Gate

The negation of the OR function is called NOT-OR or NOR. A

NOR gate is the cascade combination of NOT and OR gates. The

NOR operation is the complement of OR operation. The graphic

symbols used normally for a NOR gate are shown in figure 3.8. The

NOR function is defined as : F = (x+y)/.

–~

Fig. 3.8 : Graphic or logic symbols of NOR gate

Table 3.6 : Truth table of NOR gate

x y F

0 0 1

0 1 0

1 0 0

1 1 0

Note : Any boolean function can be implemented/realized using

NAND or NOR gates. So, NAND and NOR these two gates are

called universal gates.

3.3.6 Exclusive - OR (XOR) gate

The exclusive - OR (XOR) gate has a graphic symbol similar to

that of the OR gate, except for the additional curved line on the

input side. The output of a two input XOR gate is a logic 1, if the

input x or input y is a logic 1 exclusively, i.e., they are not 1

simultaneously. The graphic symbol is shown in fig. 3.9 and the

XOR function can be written as F = X  Y = X/Y + XY/.

 x
y F = (xy)/ x

y
F = (xy)/

 x
y F = (x+y)/ x

y
F = (x+y)/

Logic GatesUnit 3

Digital Logic 75

Fig. 3.9 : (a) Graphic symbol fo XOR gate (b) XOR gate using basic gates

The truth table of XOR operation is shown in table 3.7

Table 3.7 : Truth table for XOR operation

X Y F = X  Y

0 0 0

0 1 1

1 0 1

1 1 0

From the truth table, it is clear that the output is 1 (HIGH), when

any one of the inputs is at 1 (HIGH). The output is o (LOW), when

both the inputs are at 1 (HIGH) or at 0 (LOW), i.e. same. In case of

more than two inputs, the output of a XOR gate is high when an odd

number of inputs is HIGH, such as one or three or five etc. On the

otherhand, when there is an even number of HIGH inputs, the output

will be always LOW.

3.3.7 XNOR Gate

The XNOR i.e., exclusive NOR gate is the complement of the

XOR gate, just discussed. XNOR function is also called equivalence

function. The graphic symbol of XNOR gate is similar to that of the

XOR gate, except for the additional inverter gate (or a small bubble)

on the output side. The output of a two inputs XNOR gate is a logic

1 (HIGH), if both the inputs are either 1 (HIGH) or 0 (LOW). If the

inputs are different (not same), the output is 0 (LOW), In general,

we can say the outout is 0 (LOW), when the inputs to an XNOR

gate have an old numbers of 1s. The graphic symbol of XNOR gate

is shown in Fig. 3.10.

–~

x
y

x

y

F = (x y) F = x/y+xy/

Logic Gates Unit 3

Digital Logic76

Fig. 3.10 : Graphic symbols for XNOR or euivalence gate

The truth table is given in Table 3.8. Here, we see that the output

F is the complement of output of the XOR gate. The boolean function

for XNOR gate is :

F = (x  y)/ = (x/y + xy/)

= (x/y)/ (xy/)/ Applying DcMorgan's Theorem

= (x + y/) (x/ + y)

= xx/ + xy + x/y/ + yy/

= xy + x/y/

Table 3.8 : Truth table for XNOR gate

Inout Output

x y F = (x  y)/

0 0 1

0 1 0

1 0 0

1 1 1

3.4 DE MORGAN’S THEOREM

In unit –2, we have mentioned the De Morgan’s Theorem and its

proof for two variables also has been done using truth table. De Morgan, a

great mathematician contributed two most important theorems of Boolean

algebra. These two theorem are extremely useful in simplifying an expressing

in which the product of the sum of variables is complementated. The two

theorems can be extended to any number of variables and generalized as:

Theorem 1 : (A + B + C +)/ = A/ . B/ . C/

Theorem 2 : (A . B . C)/ = A/ + B/ + C/ +

In words, we can write Therem 1 as: The complement of an OR

sum equals the AND product of the complements, and the theorem 2 as :

–~

 F = (x y)/ F = (x y)/x
y

x
y

Logic GatesUnit 3

Digital Logic 77

The complement of an AND product is equal to the OR sums of the

complements.

The complement of any boolean function may be found by means

of these theorems. It consists of two simple steps to form a complement of

a function.

Step 1 : Interchang the symbols / operands “+” and “*”.

Step 2 : Each and every term in the expression is complemented.

Example : 3.1. Find the complements of the following functions

using De Morgan’s Theorem.

(i) F = (A + B)/ (A/ + C/) (B/ + C)

(ii) F = A/B + ABC + AB/C

Solution : (i) F = (A + B)/ (A/ + C/) (B/ + C)

F/ = [(A + B)/ (A/ + C/) (B/ + C)]

= (A + B) + (A/ + C/)/ + (B/ + C)/

 F/ = (A + B) + AC + BC/ = A + B + AC + BC/

(ii) F = A/B + ABC + AB/C

F/ = (A/B + ABC + AB/C)/

= (A/B)/ (ABC)/ (AB/C)/

F/ = (A + B/) (A/ + B/ + C/) (A/ + B + C/)

3.5 TRUTH TABLE

Basic idea of truth table is already given in UNIT –2. Here, we will

see the process of deriving an expression from a truth table.

The general procedure for obtaining the expression from a truth

table in sum of products (SOP) can be summarized as follows:

1 Write an AND term (minterm) for each combination of input

variables in the table for which output is 1.

2 Each AND term contains each input variable either in normal

form or in comple mented form. If the corresponding variable is

0 then it is complemented in the AND term.

3 All the AND terms are then ORed together to produce the final

output expression.

Logic Gates Unit 3

Digital Logic78

Example : 3.2. Obtain the logic function specified by the following

truth table. Simplify it using algebric manipulation and implement it with

logic diagram.

x y z F

0 0 0 1  x/y/z/

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1  xy/z/

1 0 1 0

1 1 0 1  xyz/

1 1 1 1  xyz

Solution : The resultant boolean bunction is :

F = x/y/z/ + xy/z/ + xyz/ + xyz

= y/z/ (x/ + x) + xy (z/ + z/)

= y/z/ + xy

This is the simplified function.

The logic diagram is :

Fig. 3.11 : Logic diagram for F = xy + y/z/

Note : Since the function has 2 AND terms, we need 2 AND gates

and 1 OR gate to implement it.

3.6 CONVERSION OF LOGIC GATES

We already have discussed the functions of three basic gates, viz,

OR, AND and NOT gates, which perform logical addition, logical

multiplication and inversion operations respectively. Besides these, we also

have come to know about NAND and NOR gates and their functions. In this

F

x

y

z

Logic GatesUnit 3

Digital Logic 79

section, we will discuss how the digital circuits can be implemented with

NAND or NOR gates.

NAND and NOR gates are easier to fabricate with electronic

components and are the basic gates used in all IC digital logic families. So,

digital circuits are more frequently constructed with NAND or NOR gates

than with AND and OR gates. Because of the prominence of NAND and

NOR gates in the design of digital circuits, rules and procedures have been

developed for the conversion from boolean functions given in terms of AND,

OR and NOT into equivalent NAND or NOR logic diagram. Here, we will

consider only the procedure for two level implementation.

First, we will define two other graphic symbols for NAND and NOR

gates, which will make the conversion procedure easily understandable.

Two equivalent symbols for the NAND gate are shown in Fig. 3.12 (a).

The AND invert symbol has been defined previously. It is possible to

represent a NAND gate by an OR graphic symbol preceded by small circles

in all the inputs. This symbol i.e. invert - OR symbol for the NAND gate

follows from the De Morgan’s theorem. and from the convention that small

circle denote complementation.

(a) Two graphic symbols for NAND gate

(b) Two graphic symbols for NOR gate

(c) Three graphic symbols for inverter

Fig. 3.12 : Graphic symbols for NAND and NOR gates

 x x/

x x/ x x/

 x x

y y

z
z

F = (xyz)/

F = (x/+y/+z/)
= (xyz)/

 x x
y y
z z

F = (x+y+z)/
F = x/y/z/

= (x+y+z)/

Logic Gates Unit 3

Digital Logic80

Two graphic symbol. The invert AND is an alternative that uses De

Morgan’s theorem and the convention that small circles in the inputs denote

complementation.

A one input NOR gate or NAND gate is equivalent to an inverter.

So, an inverter gate can be drawn in three ways as shown in fig. 3.12 (c).

NAND Implementation : To implement a boolean function with

NAND gates, it is required that the function is to be simplified in the sum of

products (SOP) form. We can see the relationship between a sum of products

expression and its equivalent NAND implementation, by considering the

logic diagrams of Fig. 3.13. All three diagrams are equivalent and implement

the function : Y = ABC + DE + F

Fig. 3.13 : Three ways to implement Y = ABC + DE + F

The function is implemented in SOP form with AND and OR gates

in Fig. 3.13 (a). The AND gates are replaced by NAND gates and the OR

gate is replaced by a NAND gate with an invert OR symbol. The simple

variable F is complemented and applied to the second level invert OR gate.

A small circle represents complementation. Therefore two circles on the

same line represent double complementation and both can be removed.

The complement of F goes through a small circle which complements the

variable again to produce the normal value of F. Thus, if we remove the

small circles in the gates of fig. 3.13 (b), we get fig. 3.13 (a). Therefore, the

two diagrams implement the same function and are equivalent.

A
B
C

D
E

F

A
B
C

D
E

F

A
B
C

D
E

F

1st level 1st level

1st level

2nd level 2nd level

2nd level

Y

(a) (b)

Y

Y

Logic GatesUnit 3

Digital Logic 81

In fig.3.13 (c),the output NAND gate i.e. the second level NAND

gate is replaced with the conventional symbol. The one input NAND gate

complements variable F. The diagram in (c) is equivalent to the one in (b),

which is turn is equivalent to the diagram in (a). Thus, we implement the

circuit, with NAND gates in fig. 3.13 (b) or 3.13 (c), which is first implemented

with AND and OR gates in fig 3.13 (a).

The NAND implementation can also be verified algebrically as:

Y = [(ABC)/ . (DE)/ . F/]/

= [(A/ + B/ + C/) (D/ + E/) . F/]/

= ABC + DE + F

From, the transformation shown in Fig. 3.13 we see that a boolean

function can be implemented with two levels of NAND gates. The rule for

obtaining the NAND logic diagram from a boolean function is as follows:

1. Simplify the function in sum of products (SOP).

2. For each product term of the function that has atleast two literals,

draw a NAND gate.

3. Draw a single NAND gate (using the AND invert or INVERT -OR

graphic symbol) in the second level, with inputs coming from

outputs of first -level gates.

4. A term with a single variable requires our inverter in the first

level or may be complemented and applied as an input to the

second-level NAND gate.

There is a second way to implement a boolean function with NAND

gates. We have already shown in Unit -2 that combining the 0’s in a map

we obtain the simplified expression of the complement of the function in

sum of products. The complement of the function so obtained can then be

implemented with two levels of NAND gates using the above stated rules.

To obtain the normal output of the circuit, it is required to insert a one input

NAND or inverter gate to generate the true value of the output variable.

When the designer wants to generate the complement of the function, the

second method in preferred.

Logic Gates Unit 3

Digital Logic82

Example 3.3 : Implement the following function with NAND gates F

(x, y, z) = (2,4) .

The first step is to simplify the function in sum of products form. We

draw a map and plot the terms (Fig. 3.14).

There are only two 1’s in the map, and they cannot be combined.

The simplified form of the function in SOP is F = x/yz/ + xy/z/

x\yz

00 01 11 10

0 0 0 0 1

1 1 0 0 0

(a) Map simplification in SOP F = x/yz/ + xy/z/

(b) F = x/yz/ + xy/z/ (c) F/ = x/y/ + xy + z

Fig. 3.14 : Implementation of Function in eg. 3.3 with NAND gates

The two level NAND implementation is shown in Fig. 3.14 (a) Now,

we try to simplify the complement of the function in SOP. This is done by

combining to o’s in the map: Thus

The two-level NAND gate for generating F is shown in Fig 3.14 (c).

If output F is required, we have to add a one input NAND gate to invert the

function. (We assume that the input variables are available in both the normal

and complement forms).

NOR Implementation : The NOR function is the dual of the NAND

function. So, all procedures and rules for NOR logic are the dual of the

corresponding procedures and rules developed for NAND logic.

The implementation of a boolean function with NOR gates requires

that the function be simplified in product of sums (POS) form. A product of

x/

y

z/

x

y/

z/
x/

x

y/

z

F

F

F/

Logic GatesUnit 3

Digital Logic 83

sums expression specifies a group of OR gates for the sum terms, followed

by an AND gate to produce the product. The transformation from the OR-

AND to the NOR-NOR diagram is shown in Fig. 3.15, which is similar to the

NAND transformation discussed already, except that here we use the product

of sums expression :

F = A (B + C) (D +E)

Fig. 3.15 : Implementation of the function F = A(B + C) (D + E)

The produre for obtaining the NOR logic diagram from a boolean

function can be derived from this transformatin. It is similar to the three step

NAND rule, except that the simplified expression must be in the product of

sums and the terms for the first level NOR gates are the sum terms. A term

with a single variable requires a one input NOR or inverter gate or may be

complemented and directly applied to the second-level NOR gate.

Another way to implement a function with NOR gate is to use the

expression for the complement of the function in product of sums. It gives a

two level implementation for F and a three level implementation gives the

normal output F.

Simplified product of sums can be obtained from a table by combining

the O’s and then complementing the function. To obtain the simplified product

of sums expression for the complement of the function, we have to combine

the 1’s in the map and then complement the function. The NOR gate

implementation procedure is demonstrated in the following example.

F

F

F

(a) (b)

(c)

A

B
C

D
E

A/

B
C

D
E

A

B
C

D
E

Logic Gates Unit 3

Digital Logic84

Example 3.4 : Implementthe function of e.g. 3.3 with NOR gates.

The map for this function is drawn in fig. 3.14 (a) Now, combining

the O’s we obtain F/ = x/y/ + xy + z

This is the complement of the function in SOP. To obtain it in POS

form, as required for NOR implementation, complement F/.

(F/)/ = F = (x + y) (x/ + y/)z/

The two level implementation with NOR gate is shown in Fig. 3.16.

An another implementation that is possible from the complement of

the function in POS is left as excersise.

Fig. 3.16 : Implementation of function with NOR gates

Example 3.5 : Draw the logic diagram for the function F = A  B  C

(a) using 2-input gates (b) using 3-input gate

CHECK YOUR PROGRESS

Q.1. When the output of an OR gate is High?

..

Q.2. When the output of an AND gate is HIGH?

..

Q.3. What is the function of a NOT gate?

..

F

x
y

x/

y/

z/

F = A  B  C

F = A  B  C

A

B

C
C
B
A

Logic GatesUnit 3

Digital Logic 85

Q.4. When the output of a XOR gate is HIGH?

..

Q.5. Why the digital circuits are more frequently constructed with

NAND or NOR gates?

..

3.7 LET US SUM UP

 A logic gate is an electronic circuit that is used to implement a

booleam function by a logic diagram.

 An OR gate produces a HIGH output when atleaast one input is

HIGH; whereas an AND gate produces a HIGH output when all inputs

are HIGH.

 A NAND gate is an AND gate followed by an inverter. It produces a

LOW output if all its inputs are HIGH.

 A NOR gate is an OR gate followed by an inverter. It produces a

HIGH output when all its inputs are LOW.

 The realization of basic qater viz., AND, OR, and NOT can be made

by using either NAND or NOR gates. For this reason, NAND and

NOR gates are called universal gates.

3.8 FURTHER READING

 Mano, Morris 2007, Digital Logic and Computer Design. Pearson

Education.

 Kumar, A. Anand. 2003, Fundamental of Digital Circuit, New Delhi,

PHI.

3.9 ANSWER TO CHECK YOUR PROGRESS

Ans. to Q. No. 1 : If atleast one of the inputs is HIGH.

Ans. to Q. No. 2 : If all the inputs to it are HIGH.

Logic Gates Unit 3

Digital Logic86

Ans. to Q. No. 3 : The function of the NOT gate is to invert / complement

its single line input variable or function.

Ans. to Q. No. 4 : If both the input variables to a XOR gate is not equal

then the output is HIGH.

Ans. to Q. No. 5 : Because, NAND and NOR gates are easier to fabricate.

3.10 MODEL QUESTIONS

Short - Answer Questions

Q.1. What is a logic gate?

Q.2. List the three basic logic operations.

Q.3. What are the positive and negative logic?

Q.4. What is the only set of input conditions that will produce a LOW

output for an OR gate?

Q.5. Write a truth table for a 3 input OR gate?

Q.6. Write a Boolean expression for a 4 input AND gate

Q.7. What is the only input combination that will produce a HIGH at the

output of a 4 input AND gate?

Q.8. What input/ logic level should be applied to the second input of a 2-

input AND gate to inhibit the logic signal at the first input from reaching

output?

Q.9. Develop a truth table for a 3- input AND gate.

Q.10. Is there any difference between 1 OR 1 and 1+1 (binary addition) ?

Q.11. Name the logic gate which has only one input, and show the logic /

graphic sym bol.

Q.12. What are the NAND and NOR gates?

Q.13. Write the logic symbols of NAND /NOR gates and develop its truth

table.

Q.14. What are the universal gates?

Q.15. Draw the logic diagram of OR gate using NOR /NAND gate.

Q.16. Draw the logic diagram of AND gate using NOR / NAND gate.

Logic GatesUnit 3

Digital Logic 87

Q.17. Draw the logic diagram of NOT gate using NOR / NAND gate

Q.18. What is an XOR gate ? Write its truth table for 2 variables.

Q.19. Show the logic diagram of an XOR gate using basic gates.

Q.20. Draw the logic diagram of an XOR gate using NAND gates.

Q.21. What is an XNOR gate ? Write its truth table.

Q.22. Draw the logic diagram of an XNOR gate using basic gates.

Q.23. Draw the symbol of an XNOR gate and its Boolean expression.

Long - Answer Question :

Q.1. Implement the following functions with (i) NAND gates (ii) NOR gates.

Q.2. Write the procedure for obtaing NAND logic implementation of a

Boolean function.

Q.3. Write the procedure for obtaing NOR logic implementation of a

Boolean function.

Q.4. Explain the operation of 3-input AND / OR gate and realize it using

NAND /NOR gates

Q.5. Explain the operation of 2-input XOR gate and realize it using NAND

/NOR gates

Q.6. Explain the operation of 2-input XNOR gate and realize it using

NAND /NOR gates.

Logic Gates Unit 3

Digital Logic88

UNIT 4 : COMBINATIONAL CIRCUIT

UNIT STRUCTURE

4.1 Learning Objectives

4.2 Introduction

4.3 Adder Circuit

4.3.1 Half-Adder

4.3.2 Full-Adder

4.3.3 Parallel Adder

4.3.4 Serial Adder

4.4 Subtractor Circuit

4.4.1 Half-Subtractor

4.4.2 Full-Subtractor

4.5 Multiplexer

4.5.1 2-to-1 Multiplexer

4.5.2 4-to-1 Multiplexer

4.5.3 8-to-1 Multiplexer

4.5.4 16-to-1 Multiplexer

4.5.5 Application of Multiplexer

4.6 Demultiplexer

4.6.1 1-to-16 Demultiplexer

4.7 Encoder

4.7.1 Octal-to-Binary Encoder

4.7.2 Decimal-to-BCD Encoder

4.8 Decoder

4.8.1 3-to-8 Decoder

4.9 Magnitude Comparator

4.10 Let Us Sum Up

4.11 Further Readings

4.12 Answer to Check Your Progress

4.13 Model Questions

Digital Logic 89

4.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

 define a combinational circuit

 describe working principle of half-adder

 elaborate working principle of full-adder

 know about a parallel adder

 explain about a serial adder

 know the working of a half-subtractor

 describe working principle of full-subtractor

 explain the principle of multiplexer

 know about a demultiplexer

 describe working principle of encoder

 elaborate about a decoder

4.2 INTRODUCTION

In UNIT-3 of this block, you have already been accustomed with

different logic gates and their associated Boolean expressions.

Understanding of these would help you to follow the subject matter of this

unit.

Various combinational circuits are discussed here so that you can

understand different digital components used in many digital applications.

One has to acquire knowledge on these components which will help you to

understand the working principle of many digital devices.

The combinational circuits are those whose outputs are functions

of its inputs. Its function can be described by one or more switching functions.

The advancement in technology has made it possible to fabricate

cheap SSI (Small Scale Integration) circuits, MSI (Medium Scale

Integration) functional devices and LSI (Large Scale Integration) systems.

Example of these are single chip pocket calculator, single chip computer

memories and single chip CPU etc. Many of these products now become

building blocks to design other higher level digital devices.

Combinational Circuit Unit 4

Digital Logic90

In a combinational circuit since the output is related to the inputs by

a Boolean expression, therefore a truth table is always associated with all

combinational circuits. Conversely a Boolean expression can be obtained

for a combinational circuit from its truth table. The linking of the logic circuit

to its real circuit realization is done by mapping its logical inputs level of 0

and 1 to two-level voltage of the actual electronic circuit. The outputs are

also available as either of the two level voltages which in turn represent

logic 0 or 1.

4.3 ADDER CIRCUIT

Adder circuits are used to add binary bits. If we require to find sum

of two 1-bit we use a circuit called half-adder. Some times it becomes

necessary to add three 1-bit binary numbers. The circuit for this is called

full-adder.

4.3.1 Half-Adder

In the following table the sum(S) and carry(C) bits are shown

as result which are obtained when two 1-bit number X and Y are

added. The table contains all the possible combination of values of

these two numbers. From the table two individual circuits can be

constructed to obtain sum and carry in response to every

combination of the two input numbers. Combining both a single

circuit is constructed to treat it as a single combinational circuit to

give us two outputs viz sum and carry. The circuit is generally termed

as half-adder.

Hence we can say that a half-adder is a circuit that can add two

binary bits. Its outputs are SUM and CARRY.

X Y CARRY (C) SUM (S)

0 0 0 0

0 1 0 1 (X–Y)

1 0 0 1 (XY–)

0 1 1 (XY) 0

Truth Table for a Half-Adder

Combinational CircuitUnit 4

Digital Logic 91

The minterms for Sum and CARRY are shown in the bracket.

The Sum-Of-Product equation for SUM is :

S = X–Y + XY– ……………… (1)

Similarly the SOP equation for the CARRY is :

C = XY ……………… (2)

Combining the logic circuits for equation (1) & (2) we get the

circuit for Half-Adder as :

Fig. 4.1 : Half-Adder Circuit and Symbol

4.3.2 Full-Adder

To add two 2-bit binary numbers, we first add the two least

significant bits of each number and take the carry (if any) that

generate into the addition of the two most significant bits. Hence

the second addition involves addition of three single bits. That

necessitates another type of addition circuit which we will discuss

here. This new type of adder circuit is known as full-adder.

Full-Adder is a logic circuit to add three binary bits. Its outputs

are SUM and CARRY. In the following truth table X, Y, Z are inputs

and C
/
 and S

/
 are CARRY & SUM.

X Y Z CARRY (C
/
) SUM (S

/
)

0 0 0 0 0

0 0 1 0 1 (X–Y–Z)

0 1 0 0 1 (X–YYZ–)

0 1 1 1 ((X–YYZ 0

1 0 0 0 1 (XY–Z–)

1 0 1 1 (XY–Z) 0

1 1 0 1 (XYZ–) 0

1 1 1 1 (XYZ) 1 (XYZ)

Truth Table for Full-Adder

Combinational Circuit Unit 4

Digital Logic92

The minterms are written in the brackets for each 1 output in

the truth table. From these the SOP equation for full summation

can be written as :

S = X–Y–Z + X–YZ– + XY–Z– + XYZ

= X–(Y–Z+YZ–) + X(Y–Z–+YZ)

= X–S + X–S (3)

Here S is SUM of Half-Adder.

Again SOP equation for Full – Adder CARRY is :

C = X–YZ + XY–Z + XYZ– + XYZ

= X–YZ + XYZ + XY–Z + XYZ–

= (X– + X) YZ + X (Y–Z + YZ–)

= YZ + XS

= C + XS (4)

Here also C means CARRY of half-adder and S means SUM

of half-adder.

Now using two half-adder circuits and one OR gate we can

implement equation (3) and (4) to obtain a full-adder circuit as

follows.

Fig. 4.2 : Full-Adder Circuit and its Symbol

4.3.3 Binary Parallel Adder

When two multi-bit binary numbers are to be added under the

situation that their bits are available in parallel form, then a parallel

adder is used. It can add each corresponding bit of the numbers

and simultaneously produce the sum bits as parallel output.

 4-BIT BINARY PARALLEL ADDER

Block diagram of a 4-bit binary parallel adder capable of adding

two 4-bit numbers is shown in Fig 4.3. The numbers to be added

are designated as A3A2A1A0 and B3B2B1B0 and the corresponding

Combinational CircuitUnit 4

Digital Logic 93

sum bits are S3S2S1S0 . To build the parallel adder, one full-adder

is required for each pair of corresponding bits in the numbers to

be added, except for the pair of least significant bits, for which a

half-adder is sufficient. But to facilitate cascading the pair of

least significant bits is also added by a full-adder. The carry out

from each stage is taken as the carry into the next more

significant stage. In figure 5.3 we use four full-adder to construct

the 4-bit binary parallel adder where the carry in to the full-adder

for the least significant bits is made logical 0.

Fig. 4.3 : A 4-bit binary parallel adder

4.3.4 Serial Adder

A serial adder is used to add serial binary numbers. To implement

a serial adder, one full-adder is required. In figure 4.4 a serial adder

is shown. The bits to be added come serially one after another from

both the numbers in synchronism, first A0 and B0, then after one

clock pulse A1 and B1 and so forth. The carry bit generated (Cout)

in the process is saved for one clock pulse by a flip-flop and it is

added to the next higher order pair of input bits as Cin. It can be

seen from the figure that the output sum bits are shifted into the

output register as the input bits are shifted out of the input register.

In practice, to minimize the circuit, the output bits are shifted in to

one of the input registers behind the data being shifted out. The

register which contains one of the binary numbers to be added before

the commencement of addition and contains the sum after the

addition process is completed, is called an accumulator.

Combinational Circuit Unit 4

Digital Logic94

It can be easily understood that the serial adder is slower than

a parallel adder, as they require one clock pulse to add one pair of

bits. A serial adder requires much lesser hardware than a parallel

adder and hence it finds application in such devices where space is

of much concern than speed. One such application is pocket

calculator.

Fig. 4.4 : A serial adder

4.4 SUBTRACTOR CIRCUIT

In arithmetic expression subtraction is also a frequently occurring

operation like addition. Hence it is necessary to design subtractor circuits

involving two and three binary bits. Just like adder circuits, we have two

subtractor circuits viz half-subtractor and full-subtractor.

4.4.1 Half-Subtractor

A half-subtractor subtracts one bit from another bit. It has two

outputs viz DIFFERENCE (D) and BORROW (B).

Truth Table for Half-Subtractor

Combinational CircuitUnit 4

Digital Logic 95

X Y BORROW (B) DIFFERENCE (D)

0 0 0 0

0 1 1 (X–Y) 1(X–Y)

1 0 0 1 (XY–)

1 1 0 0

The mean terms are written within parenthesis for output 1 in

each column. The SOP equations are :

D = X–Y + XY–

= S (5)

B = X–Y (6)

Fig. 4.5 : The half-subtractor circuit and the symbol

4.4.2 Full-Subtractor

A full-subtractor circuit can find difference and borrow arises on

the subtraction operation involving three binary bits.

Truth Table of Full-Subtractor

X Y Z BORROW (B/) DIFFERENCE(D/)

0 0 0 0 0

0 0 1 1 (X–Y–Z) 1 (Y–X–Z)

0 1 0 1 (X–YZ–) 1 (X–YZ–)

0 1 1 1 (X–YZ) 0

1 0 0 0 1 (XY–Z–)

1 0 1 0 0

1 1 0 0 0

1 1 1 1 (XYZ) 1 (XYZ)

The SOP equation for the DIFFERENCE is :

D/ = X–Y–Z + X–YZ– + XY–Z– + XYZ

= X–YZ– + XY–Z– + XYZ + X–Y–Z

Combinational Circuit Unit 4

Digital Logic96

= (X–Y + XY–) Z– + (XY + X–Y–) Z

= DZ– + DZ (7)

And SOP equation for BORROW is :

B/ = X–Y–Z + X–YZ– + X–YZ + XYZ

= X–Y–Z + XYZ + X–YZ– + X–YZ

= (X–Y– + XY) Z + X–Y (Z– + Z)

= D–Z + X–Y (8)

In equation (7) and (8), D stands for DIFFERENCE of half-

subtractor. Now from the equations (7) and (8) we can construct a

full-subtractor using two half-subtractor and an OR gate.

Fig. 4.6 : Full-Subtractor circuit

The symbol of full-subtractor is :

CHECK YOUR PROGRESS

Q.1. A half-adder can add :

(a) Two binary number of 4 bit each

(b) Two binary bit

(c) Add half of a binary number

(d) None of these

Q.2. A full-adder is a logic circuit that has two output namely:

(a) product & Sum

(b) sum & borrow

(c) sum & carry

(d) carry & borrow

Combinational CircuitUnit 4

Digital Logic 97

Q.3. A parallel adder can be implemented using

(a) Two or more half-adder

(b) Two or more full-adder

(c) One full-adder and remaining half-adder

(d) none of these.

Q.4. A serial adder use

(a) One full-adder

(b) One half-adder

(c) One full-adder with a flip-flop

(d) One full-adder, one flip-flop, three shift registers

Q.5. A half-subtractor can perform

(a) subtraction of two binary bits

(b) product of two binary bits

(c) complement of half binary bits

(d) none of these

Q.6. A full-subtractor has the ability to do

(a) subtraction of two binary numbers

(b) subtraction of three binary bits

(c) product of three binary bits

(d) division three binary bits

4.5 MULTIPLEXER

In the simplest term multiplexer is a combinational circuit which

perform sharing. A digital data multiplexer is a logic circuit that has many

inputs and only one output. It can select any one of its many inputs by

applying a control signal and steer the selected input to the output. A

multiplexer is also called a data selector. Generalized block diagram of a

multiplexer is shown in Figure 4.7

It has n
2 inputs, n – numbers of control lines and only one output.

A multiplexer is also called a many – to – one data selector.

Combinational Circuit Unit 4

Digital Logic98

Fig. 4.7 : Block Diagram of Multiplexer

4.5.1 2-to-1 Multiplexer

A 2-to-1 multiplexer has 2 inputs and a single control line as

shown in figure 4.8. Here data inputs are denoted by I0 and I1. The

control signal A specifies which input is routed to the output. When

A = 0, then I0 is routed to the output and when A = 1 then I1 is routed

to the output.

Fig. 4.8 : 2-to-1 Multiplexer

4.5.2 4-to-1 Multiplexer

To construct a 4-to-1 multiplexer we are use two control signals

which can control four inputs. The two bit binary number at the

control A and B specifies which of the four data inputs is to go to the

output. The four data inputs are termed as I0, I1, I2 and I3. If AB = 00,

then I0 is allowed to go to the output. If AB = 01, the I1 is allowed to

go to the output. In this manner AB = 10 will take I2 and AB = 11 will

take I3 to the output. The circuit for the 4-to-1 multiplexer is shown

in figure 4.9.

Combinational CircuitUnit 4

Digital Logic 99

Fig. 4.9 : 4-to-1 Multiplexer

4.5.3 8-to-1 Multiplexer

Fig 4.10 shows a 8-to-1 multiplexer, where there are 8 inputs, 3

control lines and 1 output. The eight inputs are labeled as

76543210 I,I,I,I,I,I,I,I and the control lines are as A, B, C. Which

input is steered to the output depends on the value of ABC. As for

example, if ABC = 000

then the upper AND gate is enabled and all other AND gates

are disabled. As a result, the input 0I alone is steered to the output.

Similarly if ABC = 110

Fig. 4.10 : 8-to-1 Multiplexer

Combinational Circuit Unit 4

Digital Logic100

Then the AND gate connected to the data line 6I is enabled

while all the other AND gates are disabled. Therefore, the input 6I
appears at the output. Hence when ABC = 110 , the output is Y = 6I

4.5.4 16-to-1 Multiplexer

Fig 4.11 shows a 16 – to – 1 multiplexer. In this circuit, there are

16 data input lines, 4 control lines and 1 output. The input lines are

denoted by 15...........................3210 I,I,I,I,I and the control lines are by

ABCD. The output is denoted by Y.

Out of 16 input lines, only one is transmitted to the output

depending upon the value of ABCD. If

ABCD = 0000

then 0I is steered to the output since the upper AND gate is

enabled alone and all others are disabled. Similarly if

ABCD = 0010

then 2I appears at the output. If

ABCD = 1111

then the last AND gate is only enabled and therefore 15I appears

at the output.

Fig. 4.11 : 16-to-1 Multiplexer

Combinational CircuitUnit 4

Digital Logic 101

4.5.5 Multiplexer Application

 FUNCTION GENERATOR

A multiplexer can perform any logic function which otherwise

needs logic gates to implement. It can be connected in a manner

so it duplicates the logic of any truth table. In such application,

the multiplexer is viewed as a function generator. One advantage

of this use of a multiplexer is that a single IC can perform a

function that might need many ICs. Other advantage is that the

implemented function can be easily changed if required due to

changing necessity.

In the design of a function generator using a multiplexer first

the truth table is to construct that is corresponding to the logic

expression to be implemented. The next step is to connect logic

1 to each input of the multiplexer corresponding to each

combination of input variables for which there is 1 in the output

of the truth table. Then to connect logic 0 to all remaining inputs

of the multiplexer. The variables of the truth table are used as

control signals. The application can be best understood by one

example. Here we implement the logic function

CBBCAABf 

The truth table for the function is :

Truth Table

A B C AB A–BC BC– CBBCAABf 
0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 1 1

0 1 1 0 1 0 1

1 0 0 0 0 0 0

1 0 1 0 0 0 0

1 1 0 1 0 1 1

1 1 1 1 0 0 1

Combinational Circuit Unit 4

Digital Logic102

Since the expression has three variables we use these three

variables as three control or selector signals. As such the multiplexer

must have 23 = 8 data inputs line. The Boolean expression has

output 1 for ABC = 010, 011, 110 and 111. We therefore connect

logical 1 to data inputs 2, 3, 6 and 7 of the multiplexer and logical 0

to all the remaining inputs. Figure 4.12 shows the circuit of the

function generator for the chosen Boolean expression.

Fig. 4.12 : Multiplexer as a function generator

 MULTIPLEXING SEVEN-SEGMENT DISPLAY

Seven-segment displays are often used as optical output display

in many applications. These displays consume considerable

power. To minimize power consumption in small portable device

like pocket calculator, where several such displays are to be

illuminated simultaneously, multiplexers are used. In this

technique all the displays are not illuminated simultaneously,

instead they are illuminated one after another in a round robin

fashion. If all the displays are illuminated about 30 times per

second, the human eye will not be able to detect any flicker,

rather the displays appear as illuminated steadily. The power

consumption is greatly reduce in this technique.

4.6 DE-MULTIPLEXER

A demultiplexer steers a single input to one of many outputs. It is

opposite to the multiplexer. De-multiplexer means One-to-Many. It can be

Combinational CircuitUnit 4

Digital Logic 103

visualized as a distributor, since it distributes the same data to different

output terminals. As such it has 1 input and many outputs. With the

application of appropriate control signal, the common input data can be

steered to one of the output lines. A good example of demultiplexer is the

distributor of an automobile ignition system where electric pulse is distributed

among different fuel ignition plugs. Fig 4.13 shows a generalized block

diagram of a de-multiplexer. To have n2 output lines, there must be n

control lines in a de-multiplexer.

Fig. 4.13 : Block diagram of a De-Multiplexer

4.6.1 1-to-16 De-Multiplexer

In Fig 4.14 we have shown a 1-to- 16 de-multiplexer.

Fig. 4.14 : 1-to-16 De-Multiplexer

Combinational Circuit Unit 4

Digital Logic104

Here the data input line is denoted by D. This input line is

connected to all the AND gates through which output appears.

Depending upon the control signal, only one AND gate becomes

enabled and the data input D appears through that AND gate. So,

when ABCD = 0000, the upper AND gate is enabled and data input

D appears at 0Y as output.

When ABCD = 1111, the bottom AND gate becomes enabled

and D appears at 15Y as output. For other combination, D appears

at other output terminal.

CHECK YOUR PROGRESS

Q.7. Multiplexer means :

(a) multiple to many (b) one to many

(c) many to one (d) one to one

Q.8. A 16-to-1 multiplexer has

(a) 1 control lines (b) 2 control lines

(c) 3 control lines (d) 4 control lines

Q.9. De-multiplexer means

(a) deduct multiple bits (b) one-to-many

(c) multiple-to-multiple (d) one-to-one

Q.10. To implement the logic function CBABCACF  we

need a

(a) 2-to-1 multiplexer (b) 4-to-1 multiplexer

(c) 8-to-1 multiplexer (d) 16-to-1 multiplexer

4.7 ENCODER

An encoder is a device whose inputs are decimal digits and / or

alphabetic characters and its outputs are the coded representations of the

inputs. A generalized view of an encoder is shown in Fig 4.15.

Combinational CircuitUnit 4

Digital Logic 105

Fig. 4.15 : Block Diagram of an Encoder

In the figure we can see that there are n2 input lines and n –

numbers of output lines. Out of inputs, only one input line is active at a

time. Encoder generates a coded output which is unique for each of the

active input.

4.7.1 Octal-To-Binary Encoder

An octal-to-binary encoder is a device which takes octal number

as input and generates the equivalent binary number. Figure 4.16

shows a circuit of an octal-to-

binary encoder. It is assumed

here that any one input keys

is pressed at a time. The keys

are connected to a +5 Volt.

When the input key is

pressed, 5 volt signal is

passed to the horizontal lines

to which three OR gates are

connected selectively.

Fig. 4.16 : Octal-to-Binary encoder

Combinational Circuit Unit 4

Digital Logic106

4.7.2 Decimal-To-BCD Encoder

Fig. 4.17 : Decimal-to-BCD Encoder

A decimal to BCD encoder is shown in Fig 4.17. This circuit

generates BCD output when any one of the push button switches is

pressed. As for example, if button 6 is pressed, the B and C OR

gates have high inputs and the corresponding output becomes

ABCD = 0110

If button 8 is pressed, the OR gate A receives a high input and

therefore the output becomes

ABCD = 1000

4.8 DECODER

 A decoder is a digital circuit which has n-input lines and n2 output

lines. A decoder and a de-multiplexer has similarity. In a de-multiplexer,

there is a single input line connected to every output ‘AND’ gate whereas in

a decoder the input line is absent. Various kinds of decoder are constructed

to decode signals given in different forms. The input to a decimal decoder

is a binary code and the output is the decimal digit the code represents.

Some decoders take 3 bits binary inputs and give octal outputs.

Combinational CircuitUnit 4

Digital Logic 107

In practical applications, decoders are used to select one of many

devices in a computer system. For example a computer system has many

peripheral devices like hard disk drive, DVD drive, printer etc for each of

which there exist an unique address. Generally all the devices are connected

to the computer system through a decoder. The computer generates the

address of a particular device when it wants to access it in the form of

binary code. The decoder receives that address as input and activates the

lines connecting the particular device to make it enable.

4.8.1 3-to-8 Decoder

Let us draw a 3 – to – 8 decoder as shown in Fig 4.18. It’s truth

table is shown below :

Truth table for a 3-to-8 decoder

Inputs Outputs

A B C Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

Combinational Circuit Unit 4

Digital Logic108

Fig. 4.18 : 3- to -8 decoder

4.9 MAGNITUDE COMPARATOR

A magnitude comparator circuit can compare two binary numbers

to determine which one is greater than the other or their equality. Such a

magnitude comparator has three output lines for A > B, A = B, A < B where

A & B are two n-bits binary numbers. Every bit of one number is compared

with the corresponding bit of the other number by ExOR gate.

A 4-bit magnitude comparator, SN 7485 is available in chip form

the block diagram of which is shown in Fig 4.19. It compares two 4-bit

binary numbers 0123 AAAA and 0123 BBBB . Three output terminals are

available for A < B, A = B and A > B

Fig 4..19 : Two 4-bit words magnitude comparator SN 7485

Combinational CircuitUnit 4

Digital Logic 109

FUNCTION TABLE SN 7485

To compare any number having more than 4-bits, two or more

such chip can be cascaded. The A > B, A < B and A = B outputs of a stage

that handles less significant bits are connected to the corresponding

cascading inputs of the next stage that handles the more significant bits.

CHECK YOUR PROGRESS

Q.11. An encoder :

(a) converts a digital input to another form of digital output.

(b) converts analog input to digital output

(c) selects one out of many inputs (d) none of these.

Q.12. Decoder has n inputs line and

(a) n output lines (b) n2 output lines.

(c) 2n output lines (d) no output lines.

Q.13. Magnitude comparator

(a) compares two multi bit binary number

(b) magnify any digital signal

(c) compress binary numbers.

(d) check error in a binary number.

Comparing Inputs Cascading Inputs Outputs
33BA 22BA

11BA

00BA

A > B

A < B

A = B

A > B

A < B

A = B

33 BA 

33 BA 

3A = 3B

3A = 3B

3A = 3B

3A = 3B

3A = 3B

3A = 3B

3A = 3B
3A = 3B

3A = 3B

X

X

22 BA 

22 BA 

2A = 2B

2A = 2B

2A = 2B

2A = 2B

2A = 2B
2A = 2B
2A = 2B

X

X

X

X

11 BA 

11 BA 

1A = 1B

1A = 1B

1A = 1B
1A = 1B
1A = 1B

X

X

X

X

X

X

00 BA 

00 BA 

0A = 0B
0A = 0B
0A = 0B

X

X

X

X

X

X

X

X

H
L
L

X

X

X

X

X

X

X

X

L
H
L

X

X

X

X

X

X

X

X

L
L
H

H

L

H

L

H

L

H

L

H
L
L

L

H

L

H

L

H

L

H

L
H
L

L

L

L

L

L

L

L

L

L
L
H

Combinational Circuit Unit 4

Digital Logic110

4.10 LET US SUM UP

 A combinational circuit is some combinations of logic gates as per

specific relationship between inputs and outputs.

 Adder and subtractor circuits can perform binary addition and

subtraction.

 A multiplexer is a combinational circuit which selects one of many

inputs.

 Demultiplexer is opposite to a multiplexer.

 An encoder generates a binary code for n2 input variables.

 A decoder decodes an information receives from n input lines and

transmits the decoded information to maximum outputs.

 A magnitude comparator circuit can compare two binary numbers

to determine which one is greater than the other or their equality.

4.11 ANSWER TO CHECK YOUR PROGRESS

Ans. to Q. No. 1 : (b)

Ans. to Q. No. 2 : (c)

Ans. to Q. No. 3 : (b)

Ans. to Q. No. 4 : (d)

Ans. to Q. No. 5 : (a)

Ans. to Q. No. 6 : (b)

Ans. to Q. No. 7 : (c)

Ans. to Q. No. 8 : (d)

Ans. to Q. No. 9 : (b)

Ans. to Q. No. 10 : (c)

Ans. to Q. No. 11 : (a)

Ans. to Q. No. 12 : (b)

Ans. to Q. No. 13 : (a)

Combinational CircuitUnit 4

Digital Logic 111

4.12 FURTHER READING

 Mano, M. M., Digital Logic and Computer Design, PHI

 Mano, M. M., Computer System Architecture, PHI

 Malvino, Albert Paul & Leach, Donald P., Digital Principles and

Applications, Mcgraw-Hill International

 Lee, Samual C, Digital Circuits and Logic Design, PHI

 Talukdar, Dr. Pranhari, Digital Techniques, N. L. Publications

 Bogart Theodore F. Jr, Introduction to Digital Circuits, Macmillan.

4.13 MODEL QUESTION

Q.1. Define combinational circuit with example.

Q.2. With truth table and logic diagram explain the working of a full-

adder circuit.

Q.3. With truth table and logic diagram explain the working of a full-

subtractor circuit.

Q.4. Draw and explain the operation of a 4-bit parallel adder.

Q.5. With block diagram explain how a serial adder works.

Q.6. What do you mean by multiplexer ? With diagram explain the

working of a 8-to-1 multiplexer.

Q.7. Use an 8-to-1 multiplexer to generate the logic function

Q.8. Explain the principle of an encoder. Draw a decimal-to-BCD encoder.

Q.9. What is a decoder ? Draw and explain the working of a 3-to-8

decoder.

Q.10. What do you mean by magnitude comparator? Draw block diagram

and the function table of the magnitude comparator SN 7485.

Combinational Circuit Unit 4

Digital Logic112

UNIT 5 : SEQUENTIAL CIRCUIT

UNIT STRUCTURE

5.1 Learning Objectives

5.2 Introduction

5.3 Flip-Flop

5.3.1 RS Flip-Flop

5.3.2 D Flip-Flop

5.3.3 JK Flip-Flop

5.3.4 MS Flip-Flop

5.4 Counters

5.4.1 Asynchronous Counters

5.4.2 Synchronous Counters

5.5 Registers and its Types

5.5.1 Serial-in-serial-out Register

5.5.2 Serial-in-parallel-out Register

5.5.3 Parallel-in-parallel-out Register

5.5.4 Parallel-in-serial-out Register

5.5.5 Applications of Shift Register

5.6 Let Us Sum Up

5.7 Further Readings

5.8 Answers to Check your progress

5.9 Model Questions

5.1 LEARNING OBJECTIVES

After going through this unit, you would be able to :

 draw different flip-flops

 describe the working principle of flip-flop

 distinguish between asynchronous and synchronous counter

 define MOD of a counter

 know the name of different registers

 draw the different registers

Digital Logic 113

5.2 INTRODUCTION
If the output of a circuit depends on its present inputs and immediate

past output, then the circuit is called sequential circuit. To build a sequential

circuit, we need memory circuits along with some other logic gates. Flip-

Flop is used as memory circuit the application of which we would see in

counter, register etc.

From the previous unit it became evident that a combinational circuit

has no memory element. A combinational circuit has some basic differences

with a sequential circuit. These differences are listed below:

Combinational Circuit Sequential Circuit

 It contains no memory element  It contains memory elements

 The present value of its outputs  The present value of its

is determined solely by the outputs is determined by the

present values of its inputs present values of its inputs

and its present state

 Its behavior is described by the  Its behavior is described by the

set of output functions set of next-state functions and

the set of output functions.

In this unit, several sequential circuits are discussed to make you

acquainted with their principle of operations and applications.

5.3 FLIP-FLOPS

 A digital circuit that can produce two states of output, either high or

low is called a multi-vibrator. Multivibrators are further divided into three

types, viz. monostable, bi-stable and astable.

A Flip-Flop is a bi-stable multivibrator and therefore it has two stable

states of output-either high or low. It is a device that can be triggered to

high state or triggered to low state. Depending on its inputs and previous

output, its new output is either high (or 1) or low (or 0). The applied inputs

must be kept in the input terminals of the flip-flop so that the inputs can

affect the output. Once the output is fixed, the inputs can be removed and

then also the already fixed output will be retained by the flip/flop. Hence a

Sequential Circuit Unit 5

Digital Logic114

flip-flop can be used as a basic circuit of memory for storing one bit of data.

To store multiple bits we can use multiple flip-flops. Such a set of flip-flops

is called register.

Flip-flop also serves as a fundamental component of another

important digital circuit called counter. This device can keep track of events

that occur in a digital circuit such as the number of pulses that a circuit can

generate in a given time period. It can also divide frequency of a clock

pulse which can lead to a digital clock circuit.

Flip-flops are constructed in a number of way, each type having

specific characteristics necessary for a particular application. Here we

discuss the following types of flip-flops :

 RS Flip-flop

 D Flip-Flop

 JK Flip-Flop

 MS Flip-Flop

5.3.1 RS Flip-Flop

RS Flip-Flop is also called Set-Reset Flip-Flop. An RS flip-flop

can be built using many different circuits. Here we have shown two

RS flip-flop circuits using NOR and NAND gate. To study its working

principle, we can use any one of them. In the following section, let

us consider the RS flip-flop using NOR gate. Note that the NOR

gates are cross-coupled, that is one of the inputs of each gate is

the output of the other gate.

Fig. 5.1 : Basic circuit of RS Flip-Flop using NOR and NAND gate

Sequential CircuitUnit 5

Digital Logic 115

RS flip-flop has two inputs—Set(S) and Reset(R). It has two

outputs, Q and Q . It should be noted Q is always the complement

of Q. Though both outputs are not used in all the applications, the

availability of both makes the flip-flop more versatile. Various

combinations of inputs and their corresponding outputs are listed in

the truth table below :

R S Q Action

0 0 last value No change

0 1 1 set

1 0 0 Reset

1 1 ? Forbidden

Truth Table of RS Flip-Flop

To understand the operation of the flip-flop let us assume that

the flip-flop is initially SET, that means Q = 1 and = 0. Now the first

input condition in the table i.e. R = 0, S = 0, will not change the state

of the flip-flop. We can verify that by observing the fact that the

input to the NOR gate 2 are 0 and 1, which keeps at 0. Since is 0,

the input to the NOR gate 1 are both 0, making Q = 1. So we can

say R = S = 0 has no effect on its output, the flip-flop retains its

previous state. Hence Q remains unchanged.

The second input condition R = 0, S = 1 makes no change. The

output of gate 2 remains low when both inputs are made high. Thus

a 1 at the S input and 0 at R input will SET the flip-flop and Q will be

equal to 1.

The third input condition R = 1, S = 0 will reset the flip-flop. The

high input to gate 1 causes its output Q to change from 1 to 0. That

0 is coupled to gate 2, which now has two low inputs. Therefore its

output changes from 0 to 1. that 1 is coupled to gate 1 and therefore

Q is held at 0. Hence, when R = 1, S = 0, then Q = 0, = 1. Thus the

flip-flop is RESET.

The last input condition in the table R = 1, S = 1 is forbidden

since it forces both the NOR gates to the low state, means both Q

= 0, and = 0 at the same time, which violets the basic definition of

Sequential Circuit Unit 5

Digital Logic116

flip-flop that requires Q to be the complement of. Hence this input

condition is forbidden and its output is unpredictable.

Fig. 5.2 : Symbol of RS Flip-Flop

CLOCK INPUT : For synchronization of operation of multiple flip-

flop, an additional signal is added to all types of flip-flop which is

called clock signal, generally abbreviated as CLK. Addition of CLK

signal ensures that, what ever may be the input to the flip-flop, it

effects the output only when CLK signal is given. Fig 5.3 shows a

clocked RS flip-flop.

Fig. 5.3 : Clocked RS Flip-Flop Symbol of Clocked RS Flip-Flop

SET-UP TIME : When the clock is low, the changes in R and S

inputs does not effect the state of a flip-flop. To effect the output,

the R and S input must remain constant for a minimum time before

a clock pulse is applied. This minimum time is called set-up time.

Its value is given in manufacturers’ specifications.

5.3.2 D FLIP-FLOP

D flip-flop is a modification of RS flip-flop. In RS flip-flop when

both the inputs are high i.e. R = 1, S = 1, the output becomes

unpredictable and this input combination is termed as forbidden. To

avoid this situation , the RS flip-flop is modified so that both the

Sequential CircuitUnit 5

Digital Logic 117

inputs can not be same at a time. The modified flip-flop is called D

flip-flop. Fig 5.4 shows a clocked D flip-flop.

Fig. 5.4 : (a) Clocked D Flip-Flop (b) Symbol of D Flip-Flop

In D flip-flop both inputs of RS flip-flip are combined together to

make it one by a NOT gate so that inputs can not be same at a

time. Hence in D flip-flop there is only one input. The truth table is:

CLK D Q

0 X Last state

1 0 0

1 1 1

Truth Table of D F lip-Flop

In a clocked D flip-flop the value of D cannot reach the output Q

when the clock pulse is low. During a low clock, both AND gates are

disabled, therefore, D can change value without affecting the value

of Q. On the other hand, when the clock is high , both AND gates

are enabled. In this situation, Q is forced to be equal to the value of

D. In another way we can say that in the D flip-flop above, Q follows

the value of D while the clock is high. This kind of D flip-flop is often

called a D latch.

5.3.3 JK FLIP-FLOP

In RS flip-flop, the input R = S = 1 is called forbidden as it causes

an unpredictable output. In JK flip-flop this condition is used by

changing the RS flip-flop in some way. In JK flip-flop both input can

be high simultaneously and the corresponding toggle output makes

the JK flip-flop a good choice to build counter- a circuit that counts

the number of +ve or –ve clock edges. Fig 5.5 shows one way to

build a JK flip-flop.

Sequential Circuit Unit 5

Digital Logic118

(a) (b)

Fig. 5.5 : (a) JK Flip-Flop, (b) Symbol of JK Flip-Flop

CLK J K Q

X 0 0 Last state

 0 1 0

 1 0 1

 1 1 Toggle

Truth table for JK Flip-Flop

The inputs J and K are called control inputs because their

combinations decide what will be the output of JK flip-flop when a

+ve clock pulse arrives. When J and K are both low, both the AND

gates are disabled. Therefore the CLK pulse has no effect. The

first input combination of the truth table shows this and under this

case the output Q retains its last state.

When J is low, K is high , the upper AND gate is disabled while

the lower AND gate is enabled. Hence the flip-flop cannot be set ;

instead it is reset, i.e. Q = 0. This is shown by the second entry in

the truth table.

When J is high, K is low the upper AND gate is enabled while

the lower one is disabled. So the flip-flop is set, there by making Q

= 1.

When J and K are both high, then the flip-flop is set or reset

depending on the previous value of Q. If Q is high previously, the

lower AND gate sends a RESET trigger to the flip-flop on the next

clock pulse. Then Q becomes equal to 0. On the other hand if Q is

low previously, the upper AND gate sends a SET trigger on the flip-

flop making Q = 1.

Sequential CircuitUnit 5

Digital Logic 119

So, when J = K = 1, Q changes its value from 0 to 1 or 1 to 0 on

the positive clock pulse. This changing of Q to Q is called toggle.

Toggle means to change to the opposite state.

Any flip-flop may be driven by +ve as well as –ve clock. As such

JK flip-flop can also be driven by positive clock as well as negative

clock. Fig 5.6 shows symbol of positive clocked and negative clocked

JK flip-flop.

Fig. 5.6 : Positive clocked JK Flip-Flop Negative clocked JK Flip-Flop

RC Differentiator Circuit : The clock pulse applied to a flip-flop is

a square wave signal. Clock pulse is used to achieve synchronization

of different flip-flops operation. The time span of the square wave

is a longer time in comparison to the response time of flip-flops.

Therefore the time span of the clock pulse is reduced by converting

its shape to a narrow spike, so that the flip-flops can change their

states at an instant rather than transiting their states one after

another in a lethargic manner. It makes the synchronization more

precise. The square wave pulse is modified to a narrow spike by

using a RC differentiator circuit as shown in fig 5.7

Fig. 5.7 : RC Differentiator Circuit

The upper tip of the differentiated pulse is called positive edge

and the lower tip is called is negative edge. When a flip-flop is

Sequential Circuit Unit 5

Digital Logic120

triggered by this type of narrow spike, it is called edge triggered flip-

flop. If the flip-flop is driven by +ve edge, it is called +ve edge triggered

flip-flop. If it is driven by negative edge, it is called negative edge

triggered flip-flop.

Racing : In a flip-flop if the output toggles more than ones during a

clock edge than it is called racing. All flip-flop has a propagation

delay, means the output changes its state after a certain time period

from applying the input and the clock pulse. So when a flip-flop is

edge triggered, then due to propagation delay the output cannot

affect the input again, because by that time the edge of clock pulse

has already passed away. If the propagation delay of a flip-flop is

20 ns and the width of the spike is less than 20 ns, then the returning

Q and Q arrive too late to cause false triggering.

5.3.4 MS Flip-Flop

MS flip-flop is another way to avoid racing. Fig 5.8 shows one

way to build MS flip-flop using two JK flip-flop, one of which is positive

edge triggered and the other is negative edge triggered. The first

JK flip-flop is master and the later is slave. The master responds to

its J and K inputs at the positive edge and the slave responds in the

negative clock edge. When J=1, K=0, the master sets on the positive

clock edge. The high Q output of the master drive the j input of the

slave. So, at the negative clock edge, the slave also sets ,copying

the action of the master.

When J=0, K=1, master resets at +ve clock edge and the slave

resets at the –ve clock edge.

When J=K=1 master toggles at +ve clock edge, and the slave

toggles at the –ve clock edge.

Hence whatever master does, the slave copies it.

MS flip-flop is a very popular flip-flop in industry due to its inherent

resistance to racing. Hence to build counter it is extensively used.

Sequential CircuitUnit 5

Digital Logic 121

(a) (b)

Fig. 5.8 (a) Edge triggered JK MS Flip-Flop,

(b) Symbol of JK MS Flip-Flop

CHECK YOUR PROGRESS

Q.1. A flip-flop is basically a

(a) mono-stable multi-vibrator (b) astable multi-vibrator

(c) bi-stable multi-vibrator (d) none of these

Q.2. JK flip-flop has the specialty in

(a) fast response time (b) toggle property

(c) spike shaped clock input (d) preset input

Q.3. In MS flip-flop the master changes state

(a) after the slave (b) with the slave at the same time

(c) before the slave (d) never

Q.4. In edge triggering the clock pulse used is

(a) Square wave (b) Triangular wave

(c) Narrow spike (d) None

5.4 COUNTER

A counter is one of the most useful sequential circuit in a digital

system. A counter driven by a clock can be used to count the number of

clock cycles. Since the clock pulse has a definite time period, the counter

can be used to measure time, the time period or frequency.

A counter can also be used as a frequency divider circuit. In this

application, a counter can reduce the frequency of a clock pulse.

Sequential Circuit Unit 5

Digital Logic122

There are basically two types of counter—Synchronous counter

and asynchronous counter.

Counter are constructed by using flip-flops and other logic gates. If

the flip-flops are connected serially then output of one flip-flop is applied as

input to the next flip-flop. Therefore this type of counter has a cumulative

settings time due to propagation delay. Counter of this type is called serial

or asynchronous counter. These counters have speed limitation.

Speed can be increased by using parallel or synchronous counter.

Here, flip-flops are triggered by a clock at a time and thus setting time is

equal to the propagation delay of a single flip-flop. But this type of

synchronous counters require more hardware and hence these are costly.

Combination of serial and parallel counter is also done to get an

optimize solution of speed and hardware cost. If each clock pulse advances

the count of the counter by one, it is called up counter. If the count of the

counter goes down at each clock pulse, it is called down counter.

Before operation, some time it is required to reset all the flip-flops

to zero. It is called “Clear”. Some time, it is required to set the flip-flops

before hand. It is called preset. To do these, two extra inputs are there in

every flip-flop called CLR and PR.

5.4.1 Asynchronous Counter

When the output of a flip-flop is used as the clock input for the

next flip-flop it is called asynchronous counter.

Asynchronous counters are also called ripple counter because

flip-flop transitions ripple through from one flip-flop to the next in

sequence until all flip-flop reach a new state.

A binary ripple counter can be constructed by using clocked JK

flip-flop. Fig 5.9(a) shows three MS JK flip-flops connected in series.

The clock drives flip-flop A. The output of A drives B and the output

of B drives C. J and K inputs of all the flip-flops are connected to

positive to make them equal to 1. Under this condition each flip-flop

will change state (toggle) with a negative transition at its clock point.

Sequential CircuitUnit 5

Digital Logic 123

In the counter shown in Fig 5.9 (a), the flip-flop A changes its

state at the negative edges of the clock pulses. Its output is applied

to the B flip-flop as its clock input.

Fig. 5.9 : Three Bit Binary Counter

The output of B flip-flop toggles at the negative edges of the

output of A flip-flop. Similarly output of B flip-flop is used as clock

input to the C flip-flop and therefore C toggles at the negative edges

of the output of B flip-flop. We can see that triggering pulses move

through the flip-flops like a ripple in water.

The wave form of the ripple counter is shown in fig 5.9 (b). It

shows the action of the counter as the clock runs. To understand

the wave form let us assume that the counter is cleared before the

operation. The A output is assumed the list significant bit(LSB) and

C is the most-significant-bit (MSB). Hence at very beginning the

contents of the counter is CBA=000.

Flip-flop A changes its state to 1 after the negative clock pulse

transition. Thus at point ‘a’ on the time line , A goes high. At point ‘b’

it goes low, at ‘c’ it goes back to high and so on.

Now output of A acts as clock input of B. So, each time the

output of A goes low, flip-flop B will toggles. Thus at point ‘b’ on the

Sequential Circuit Unit 5

Digital Logic124

time line, B goes high, at point ‘d’ it goes low, and toggles back high

again at point ‘f’ and so on.

Since B acts as the clock input for C, each time the output of B

goes low, the C flip-flop toggles. Thus C goes high at point ‘d’ on

the time line, it goes back to low again at point ‘h’.

We can see that the output wave form of A has half the frequency

then the clock input wave. B has half the frequency than that of A

and C has half the frequency than that of B.

We can further see that since the counter has 3 flip-flops

cascaded together , it progresses through 000—— 001——010—

011—100—101—110—111 as its CBA output. After CBA= 111,it

starts the cycle again from CBA=000. One cycle from 000—111

takes 8 clock pulses, as it is evident from the wave form as well as

from the truth table.

MOD of a counter : The number of input clock pulses that causes

a counter to reset to its initial state is called the modulus of a counter.

Therefore the modulus of a counter means the total number of

distinct states including zero that a counter can store.

As for example the three stage counter shown in figure 5.9 has

modulus 8 which can be seen from the wave diagram and the truth

table. The modulus is called MOD in short.

When the modulus of a counter is equal to 2n , where n is the

number of stages or flip-flops used, then the counter is called a

natural counter. Hence a three stage counter has MOD = 23 = 8,

four stage counter has MOD = 24 =16 etc and therefore these are

natural counters.

A counter can be forcefully reset to its initial state before it

completes its natural count by applying appropriate feedback. These

type of counters have modulus lesser than its natural count. As

such we can have MOD 6, MOD 7, MOD 10 counters etc.

Sequential CircuitUnit 5

Digital Logic 125

5.4.2 Synchronous Counter

An asynchronous counter or ripple counter has limitation in its

operating frequency. Each flip-flop has a delay time which is additive

in asynchronous counter.

In synchronous counter the delay of asynchronous counter is

overcome by the use of simultaneous applications of clock pulse to

all the flip-flops. Hence in synchronous counter, the common clock

pulse triggers all the flip-flops simultaneously and therefore the

individual delay of flip-flop does not add together. This feature

increase the speed of synchronous counter. The clock pulse applied

can be counted by the output of the counter.

To build a synchronous counter, flip-flops and some additional

logic gates are required. Fig 5.10 shows a three stage synchronous

or parallel binary counter along with its output wave forms and truth

table. Here the J and K inputs of each flip-flop is kept high and

therefore the flip-flops toggle at the negative clock transition at its

clock input. From figure we can see that the output of A is ANDed

with CLK to drive the 2nd flip-flop and the outputs of A, B are ANDed

with CLK to drive the third flip-flop. This logic configuration is often

referred to as “steering logic” since the clock pulses are steered to

each individual flip-flop.

In the figure , the clock pulse is directly applied to the first flip-

flop. Its J and K are both high, so the first flip-flop toggles state at

the negative transition of the input clock pulses. This can be seen

at points a,b,c,d,e,f,g,h,i on the time line.

The AND gate X is enabled when A is high, and it allows a clock

pulse to reach the 2nd flip-flop. So the 2nd flip-flop toggles with every

other negative clock transition at points b, d, f and h on the time

line.

Sequential Circuit Unit 5

Digital Logic126

Fig. 5.10 : Parallel Binary Counter

The AND gate Y is enabled only when both A and B are high

and it transmits the clock pulses to the clock input of the 3rd flip-flop.

The 3rd flip-flop toggles state with every fourth negative clock

transition at d and h on the time line.

The wave form and the truth table shows that the synchronous

counter progresses upward in a natural binary sequence from 000

to 111. The total count from 000 to 111 is 8 and hence this counter

can also be called MOD-8 counter, in count up mode.

CHECK YOUR PROGRESS

Q.5. State true or false

(a) Counters are non sequential digital circuits.

(b) Asynchronous counters are fast in operation than

synchronous counters.

(c) The total number natural progression of a counter is

called MODULUS.

(d) Counters can be used to build digital clock.

Sequential CircuitUnit 5

Digital Logic 127

5.5 REGISTER

A register is a set flip-flops used to store binary data. The number

to be stored is entered or shifted into the register and also taken out or

shifted out as per necessity. Hence registers are also known as shift register.

Registers are used to store data temporarily. Registers can be used

to perform some important arithmetic operations like complementation,

multiplication, division etc. It can be connected to form counters, to convert

serial data to parallel and parallel to serial data.

Types of registers: According to shifting of binary number different

types of registers are:

 Serial In—Serial Out(SISO)

 Serial In –Parallel Out (SIPO)

 Parallel In –Serial Out(PISO)

 Parallel In –Parallel Out(PIPO)

5.5.1 Serial In – Serial Out Register

Fig 5.11 shows a typical 4 bit Serial In – Serial Out register

using flip-flops. Here the content of the register is named as QRST.

Let us consider that all flip-flops are initially reset. Hence at the

beginning QRST = 0000. Let us consider a binary number 1011 we

want to store in the SISO register.

At time A : A 1 is applied at the J input and 0 at the K input of the

first flip-flop. At the negative edge of the CLK pulse, this 1 is shifted

into Q. The O of Q is shifted into R, O of R is shifted into S and O

of S is shifted into T. The output of the register just after time A is

QRST = 1000.

Sequential Circuit Unit 5

Digital Logic128

Fig. 5.11 : 5 Bit Serial In – Serial Out Shift Register

(During the input/output operation of the register, whatever we

give to the J input, we must give complement of it to the K input.)

At time B : Another 1 and 0 is applied in the J & K input of the

first flip-flop. So at the negative CLK edge , the 1 is shifted to Q.

The 1 of Q is shifted in R.,O of R is shifted in S, O of S is shifted into

T. So, at the end of time B the output of all the flip-flops are

QRST=1100.

At time C : A O(zero) is applied in the J input and 1 at the K

input of the 1st first flip-flop. At the negative CLK edge , the O shifts

to Q. The 1 of Q shifts into R.,1 of R shifts into S, O of S shifts into

T. Hence the output becomes QRST=0110.

At time D : 1 is applied to J input and 0 at the K input of the first

flip-flop. So after the negative clock pulse the 1 shifts into Q. The

previous O of Q shifts into R, the 1 of R shifts into S, the 1 of S

shifts into T. Hence at the end of time D, the registers contains

QRST=1011.

Sequential CircuitUnit 5

Digital Logic 129

In the above steps, using 4 CLK pulses, we have shifted a 4 bit

binary number 1011 in the register in a serial fashion.

To take out this binary number serially, we need another 4 CLK

pulses and four O inputs into J pin and four 1 into K pin of the first

flip-flop. The binary number leave the register serially through the T

pin of the last flip-flop.

5.5.2 Serial In—Parallel Out (SIPO)

Fig. 5.12 : 4 Bit Serial In – Parallel Out Shift Register

In this type of shifts register, data entered serially into the register

and once data entry is completed it can be taken out parallely. To

take the data parallely, it is simply required to have the output of

each flip-flop to an output pin. All other constructional features are

same as Serial In—Serial Out (SISO) register.

Sequential Circuit Unit 5

Digital Logic130

The shifting of data into SIPO is same as SISO registers. In the

SIPO of Fig 5.12 , a binary number say, 1011 would be shifted just

like the manner as described in the previous section. It would take

4 CLK pulses to complete the shifting. As soon as shifting is

completed, the stored binary number becomes available in the output

pins QRST. SIPO register is useful to convert serial data into parallel

data.

5.5.3 Parallel In-Serial Out Register

PISO registers takes data parallely and shifts data serially.

Commercially available TTL IC for PISO is 54/74166. To understand

the functional block diagram of 54/74166 we should first understand

the following :

Fig. 5.13 : Building Block of Parallel In- Serial Out Register

Sequential CircuitUnit 5

Digital Logic 131

Fig 5.13 (a) is a clocked RS flip-flop, which is converted to D

flip-flop by a NOT gate. The output of the flip-flop is 1 if Data IN (

X) is 0. Next add a NOR gate as in Fig 5.13(b). Here, if 2X is at

ground level, 1X will be inverted by the NOR gate. As for example,

if =1, then output of the NOR gate will be =0, thereby a 1 will be

clocked into the flip-flop. This NOR gate allows entering data from

two sources, either from or . To shift into the flip-flop, is kept at

ground level and to shift into the flip-flop, is kept at ground level.

Now in Fig 5.13 (c) two AND gates and two NOT gates are

added. These will allow the selection of data or data . If the control

Fig. 5.14 : Circuit of 54/74166
(b) Logic Diagram of Serial In-Parallel Out Register

(a) Pin Out Diagram of Serial

In-Parallel Out Register

Sequential Circuit Unit 5

Digital Logic132

line is high, the upper AND gate is enabled and the lower AND gate

is disabled. Thus the data will enter at the upper leg of the NOR

gate and at the same time the lower leg of the NOR gate is kept at

ground. Opposite to this, if the control is low, the upper AND gate is

disabled and the lower AND gate is enabled. So will appear at the

lower leg of the NOR gate and during this time the upper leg of the

NOR leg gate is kept at ground level.

If we study the Fig 5.14 of PISO we see that circuit of Fig 5.13

(c) is repeated 8 times to form the 54/74166 shift register. These

8 circuits are connected in such a style that it allows two operations:

(1) The parallel data entry and (2) shifting of data serially through

the flip-flop from AQ toward BQ
If Fig 5.14 the 2X input of Fig 5.13(c) is taken out from each

flip-flop to form 8 inputs named as ABCDEFGH to enter 8 bit data

parallely to the register. The control is named here as SHIFT/LOAD

which is kept low to load 8 bit data into the flip-flops with a single

clock pulse parallely. If the SHIFT/LOAD is kept high it will enable

the upper AND gate for each flip-flop. If any input is given to this

upper AND gate then a clock pulse will shift a data bit from one flip-

flop to the next flip-flop. That means data will be shifted serially.

5.5.4 Parallel In –Parallel Out Register (PIPO)

The register of Fig 5.14 can be converted to PIPO register simply

by adding an output line from each flip-flop.

The 54/74198 is an 8 bits such PIPO and 54/7495A is a 4 bit

PIPO register. Here the basic circuit is same as Fig 5.13(c). The

parallel data outputs are simply taken out from the Q sides of each

flip-flop. In Fig 5.15 the internal structure of 54/7495A is shown.

When the MODE CONTROL line is high, the data bits ABCD

will be loaded into the register parallely at the negative clock pulse.

At the same time the output is available at DCBA QQQQ . When the

MODE CONTROL is low, then the left AND gate of the NOR gate is

Sequential CircuitUnit 5

Digital Logic 133

enabled. Under this situation, data can be entered to the register

serially through SERIAL INPUT. In each negative transition, a data

bit shifted serially from AQ to BQ , from BQ to CQ and so on. ThisThis

operation is called right-shift operation.

With a little modification of the connection, the same circuit can

be used for shift-left operation. To operate in shift-left mode, the

input data is to be entered through D input pin. It is also necessary

to connect DQ to C, CQ to B, BQ to A. MODE CONTROL line is

high to enter data through the D input pin and each stored data bits

of flip-flops will be shifted to left flip-flop on each negative clock

transition. This is serial data and left shift operation.

Two clock inputs—clock1 and clock2 is used here to perform

shift right and shift left operation..

Hence 54/7495A can be used as Parallel In –Parallel Out shift

register as well as shift right and shift left register.

Fig. 5.15 : Parallel In- Parallel Out Shift Register

CHECK YOUR PROGRESS

Q.6. Shift registers are

(a) basically a sequential circuit (b) a combinational circuit

(c) permanent memory (d) none of these

Sequential Circuit Unit 5

Digital Logic134

Q.7. In SIPO

(a) data enters parallely and leaves serially

(b) data enters serially and leaves serially

(c) data enters serially and leaves parallely

(d) data enters parallely and leaves parallely

5.6 LET US SUM UP

 Digital circuits are of two categories - combinational and sequential

 A sequential circuit’s output depends on past output and present

inputs.

 A flip-flop is basically a single cell of memory which can store either

1 or 0.

 Sequential circuits use flip-flop as their building block.

 There are many types of flip-flop viz RS, D, JK, MS flip-flop.

 A counter is a sequential circuit that can count square waves given

as clock input. There are two types of counters- asynchronous and

synchronous counter.

 Shift registers are also sequential circuit which are used to store

binary bits. They are of four different types - Serial In- Serial Out,

Serial In- Parallel Out, Parallel In- Parallel Out and Parallel In-

Serial Out register.

5.7 FURTHER READING

 Mano, M. M., Digital Logic and Computer Design, PHI

 Mano, M. M., Computer System Architecture, PHI

 Malvino, Albert Paul & Leach, Donald P., Digital Principles and

Applications, Mcgraw-Hill International

 Lee, Samual C, Digital Circuits and Logic Design, PHI

 Theodore F. Bogart Jr., Introduction to Digital Circuits, Macmillan.

 Talukdar, Dr. Pranhari, Digital Techniques, N. L. Publications.

Sequential CircuitUnit 5

Digital Logic 135

5.8 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1 : (c)

Ans. to Q. No. 1 : (b)

Ans. to Q. No. 1 : (c)

Ans. to Q. No. 1 : (c)

Ans. to Q. No. 1 : (a) False, (b) False, (c) True, (d) True

Ans. to Q. No. 1 : (a)

Ans. to Q. No. 1 : (c)

5.9 MODEL QUESTIONS

Q.1. Distinguish between combinational circuit and sequential circuit.

Q.2. Define flip-flop. Draw an RS flip-flop using NOR gate and explain

its operating principle with truth table.

Q.3. What modification is done in RS flip-flop to construct D flip-flop?

What is achieved after the modification ?

Q.4. Explain the operation of MS flip-flop with its symbol and truth table.

Q.5. What is the advantage of JK flip-flop over an RS flip-flop ? Write

the working principle of a JK flip-flop.

Q.6. Why a square wave clock pulse is converted to a narrow spike ?

How it is done ?

Q.7. What are the differences between asynchronous and synchronous

counter? Draw a MODE-8 counter and explain its working principle.

q.8. What do you mean by modulus of a counter ? What is a forced

counter ?

Q.9. What is called racing ? To get rid of racing what techniques are

used ?

Q.10. Draw logic diagram with output wave form of a 4-bit Serial In-Parallel

Out shift register for an input of 1101. Explain its operation.

Sequential Circuit Unit 5

Digital Logic136

UNIT 6 : MEMORY ORGANISATION

UNIT STRUCTURE

6.1 Learning Objectives

6.2 Introduction

6.3 Random Access Memory

6.4 Types of RAM

6.4.1 Static RAM

6.4.2 DRAM

6.5 Organization of RAM

6.5.1 2D organization

6.5.2 3D organization

6.6 ROM

6.7 Types of ROM

6.8 Organization of simple ROM cell

6.9 Let Us Sum up

6.10 Answer to Check Your Progress

6.11 Further Reading

6.12 Model Questions

6.1 LEARNING OBJECTIVES

After going through this unit you will be able to

 define Random Access Memory

 define and describe the structure of RAM and ROM

 define their types and organization

 distinguish 2D and 3D organization of RAM

6.2 INTRODUCTION

In all the other units of this block we discussed various circuits and

different types of logic gates. In this unit, we are going to discuss the internal

organization of storage device of computer system where these circuits

Digital Logic 137

are associated to transfer data and information time to time. This is the

memory unit, which is a collection of storage cells and circuits. A computer

system uses varieties of storage devices for its different operations and

accordingly the main memory is divided into two main categories: primary

and secondary memory. Here we will discuss mainly about the primary

memory which is accessed directly by the processor. It is mainly based on

integrated circuits.

We will also discuss various types of primary memory, their

classification and use with their organizational structures.

6.3 RANDOM ACCESS MEMORY (RAM)

Each storage element of memory is directly or randomly accessible

and can be examined and modified without affecting other cells and hence

it is called random access memory. It can be both written into and read

from. RAM gives a temporary place in computer to process electronic data.

So RAM chip can store information only as long as computer has electronic

power. It means that the data will be lost from RAM as and when the

computer is shut off. So RAM is volatile in nature. Following figure represents

the block diagram of typical RAM.

Fig. 6.1 : Block diagram of a RAM chip

Row
decoder

(m x n)
Memory
matrix

Column
decoder

Row
Address

inputs

0
1

(m-1)

data out

data in
R/W
CS

(n–1)0 1
Column address inputs

Column
decoder

Memory Organisation Unit 6

Digital Logic138

The mode of access of a memory system is determined by the

type of components it used. In a RAM, the word locations may be thought of

as being separated in space, with each word occupying one particular

location. The access time of a memory is the time required to select a

word and either read or write it. In RAM, the access time is always the

same regardless of the particular location of the word.

A semiconductor RAM is arranged in the form of a matrix of “m”

words and each word is “n” bits wide. The intersections of rows and columns

of such matrix are called memory elements or cells. Each cell has unique

address representation. Figure shows the matrix representation of a RAM.

Fig. 6.2 : RAM memory matrix representation

The address and data stored in a specific location of RAM are binary

in form. Data are typically organized into words and each word has n bits.

For k bit address there will be 2k memory locations.

k-bit address  2k memory locations

The simplified RAM chip is represented as:

Fig. 6.3 : Simplified RAM chip

m row
address

lines

Memory cell

n column address lines

X0

X1

X2

X3

X4

Y0 Y1 Y2 Y3 Y4

Memory OrganisationUnit 6

Digital Logic 139

6.2 TYPES OF RAM

Here in this section we are going to discuss two important types of

RAM: Static RAM and Dynamic RAM. They are categorized according to

their operating mode.

6.4.1 Static RAM

It is also called SRAM. It is one type of semiconductor memory

that consist internal flip-flops which store binary information. The

name static indicates that it does not need to be periodically

refreshed. It is also volatile in nature as data is eventually lost when

the memory is not powered.

Static RAM cell and its structure : Basically each bit in an SRAM

is stored on four transistors that form two cross-coupled inverters.

This storage cell has two stable states: 0 and 1. Two additional

access transistors are used to control the read and write access

operations. So, all total six transistors are required for a single SRAM

memory cell. The Write and Read operations are performed by

executing a sequence of actions that are controlled by the outside

circuit.

Fig. 6.4 : 6-transistor SRAM Memory Cell

Memory Organisation Unit 6

Digital Logic140

Cell is accessed through the word line. It controls two access

transistors M5 and M6, to see whether the cell is connected to the bit

lines (BL and BL in figure). They are used to transfer data for both

read and write operations. But it is not strictly necessary to have

two bit lines.

A Read operation is initiated by pre-charging both bit lines to

logic 1. During read access inverters of SRAM are perform high

and low operation. This improves SRAM bandwidth as compared

to DRAMs. A Write operation is performed by first charging the Bit

lines with values that are desired to be stored in the memory cell.

Setting the Word Line high performs the actual write operation and

the new data is latched into the circuit.

The size of an SRAM with m address lines and n data lines is 2m

words, or 2m × n bits.

Fig. 6.5 : Logic diagram for 256 x 4 static RAM

 256 x 4
 Static RAM

A0

A7

Y1

Y2

Y3

Y4
D1

D2

D3

D4

address
input

Data
input

EN
R / W

Memory OrganisationUnit 6

Digital Logic 141

SRAM operation : An SRAM cell has three different states and

they perform differently as follows:

a) Standby states : If the word line is not asserted, the access

transistors M5 and M6 disconnect the cell from the bit lines. The

two cross coupled inverters formed by M1 – M4 can continue

support each other as long as they are connected to the supply.

b) Reading states : First of all let us assume that content of

memory is initially 1 and stored at Q. As we know that the read

cycle starts with the pre charging bit line values as 1, so it assert

the word line which enables both access transistors. In the next

step values of Q transferred to bit lines by leaving BL at its pre

charges values and it discharge BL through M1 to M5 with the

logic 0. On the BL side, the transistors M4 and M6 pull the bit line

towards VDD with logic 1. The same will happen as opposite if

the memory value is 0.

c) Writing states : The write cycle begins by applying the values

to the bit lines. If we wish to write 0, we would have to apply 0 to

the bit lines. A 1 is written by applying the values of the bit lines.

Word Line is then asserted and the value that is to be stored is

latched in.

Characteristics of SRAM :

a) More expensive, but faster and significantly less power is used

than DRAM.

b) Easier to control and generally more truly random access.

c) Cannot be used in high-capacity, low-cost applications, such as

the main memory in PCs.

d) SRAM are used in many industrial and scientific subsystems. It

is embedded in practically all modern appliances, toys etc.

Types of SRAM :

a) Non-volatile SRAM : This is a special type of SRAM which can

retain their data even the power supply is lost. They are used in

a wide range of situations where the preservation of data is

critical like networking, aerospace and medical.

Memory Organisation Unit 6

Digital Logic142

b) Asynchronous SRAM : This is fast access memory and is used

in main memory. They are available from 4 Kb to 32 Mb.

c) By transistor type : As according to the transistor type we can

divide SRAM again in two categories like:

 Bipolar junction transistor – This is used in TTL and ECL.

They are very fast but consume a lot of power.

 MOSFET – This is used in CMOS. They have low power

and very common today.

d) By Function: By function again SRAM can divide into two

categories as:

 Asynchronous – These are independent of clock frequency.

Here data in and data out are controlled by address transition.

 Synchronous – Here all timings are initiated by the clock

edges. Address, data in and other control signals are

associated with the clock signals.

e) By Feature : By feature we can divide SRAM into few separate

categories like Zero Bus Turnaround (ZBT), syncBurst SRAM,

DDR SRAM etc.

Usage of SRAM : Other parts of the computer, such as cache

memories and data buffers in hard disks, normally use static RAM

(SRAM).

6.4.2 Dynamic RAM

Dynamic RAM (DRAM) is the most common memory for

personal computers and workstations. The main memory in PCs is

DRAM. They stores each bit of data in a separate capacitor within

an integrated circuit. The capacitor can be either charged or

discharged. These two states are represented by two values of a

bit 0 and 1. Since capacitor leak charge, the information eventually

fades unless the capacitor charge is refreshed periodically. Because

of this refresh requirement, it is a dynamic memory.

The main advantage of DRAM is its structural simplicity. In DRAM

only one transistors and a capacitor are required per bit, compared

Memory OrganisationUnit 6

Digital Logic 143

to six transistors in SRAM. They are extremely small. So, hundreds

of billions can fit on a single memory chip. This allows DRAM to

reach very high densities. It is volatile in nature, since it loses its

data quickly when power is removed.

The first DRAM with multiplexed row and column address lines

was the Mostek MK4096 (4096x1) designed by Robert Proebsting

and introduced in 1973. DRAM is usually arranged in a square array

of one capacitor and transistor per data bit storage cell. In the

structure, there are two level decoding. They are:

 Row access – goes into decoder to select row

 Column access – controls the MUX.

Fig. 6.6 : Basic DRAM structure

DRAM memory cell : A typical DRAM cell consists of a single

MOSFET and a capacitor. An array of such cells is used practically

in a DRAM cell. Here the transistor acts as a switch. For READ and

WRITE operations also it uses MOSFETs.

11-to-
2048
Row
Decoder

2048X2048 array

Column Latches

 MUX

A10–A0

D0

Memory Organisation Unit 6

Digital Logic144

Fig. 6.7 : A dynamic MOS RAM cell

The steps of reading and writing in a memory cell are :

Writing to DRAM cell

Steps

– Assert word line (turn the pass transistor “on”)

– Write value to bit line

 If the value is 1, the capacitor will be charged

 If the value is 0, the capacitor will be discharged

Reading DRAM cell

Steps

– Bit line charged 1/2 between low and high voltage

– Assert word line

– Value in capacitor is “read out” onto the bit line

– Bit line swings slightly to low or high

– Sense amp detects swing and indicates a 0 or 1

– B/C charge used in detection, rewrite after read

Features of DRAM

– Very dense

– Slow compared to SRAM (5-10X slower)

Usage : For economic reasons, the large (main) memories found

in personal computers, workstations, and non-handheld game-

consoles (such as PlayStation and Xbox) normally consist of

dynamic RAM.

Comparisons between static and dynamic RAM

a) No refreshing in static RAM as it uses bistable latching circuitry

to store each bit, but in DRAM, refreshed periodically.

Bit line

Word line

Pass transistor

Capacitor

Memory OrganisationUnit 6

Digital Logic 145

b) 6 to 8 MOS transistors are required to form one memory cell in

SRAM, whereas in DRAM only 3 to 4 transistors are used to

form one memory cell.

c) Information stored in SRAM as voltage level in a flip flop, whereas

in DRAM, information is stored as a charge in the gate to

substrate capacitance.

d) SRAM is more reliable, but 4 times expensive than DRAM

e) An SRAM cell takes a lot more space on a chip than a DRAM.

f) SRAM is used to create the CPU’s speed sensitive cache, while

DRAM forms the larger system RAM space.

The difference we can get from their functional behavior which

is shown below:

Fig. 6.8: (a) Static RAM cell and (b) dynamic RAM cell

CHECK YOUR PROGRESS

Q.1. Give classification of RAMs.

...

...

Q.2. Differentiate SRAM and DRAM.

...

...

Memory Organisation Unit 6

Digital Logic146

Q.3. Fill in the blanks:

a) RAM is __________ memory device.

b) In personal computer __________ memory is used.

c) In DRAM, if the value is 1, the capacitor is __________.

d) A typical DRAM cell consists of a single __________

and a capacitor.

e) In SRAM __________ transistors are used.

f) __________ are more expensive

g) For n bit address there will be __________ memory

locations.

h) The most common and low powered RAM is __________

used in CMOS.

i) __________ is used to create the CPU’s speed sensitive

cache.

j) The first DRAM with multiplexed row and column address

lines was introduced in __________.

6.5 ORGANIZATION OF RAM

A RAM memory cell is organized in a number of different ways. A

(m x n) memory has m-number of words, each word having n number of

bits. In a RAM each memory location has a unique address. Depending on

access mechanism, RAM is organized into different dimensions most

commonly like 2D, 3D, 2.5D etc.

6.5.1 2D Organization

In this organization the memory on a chip is considered to be a

list of words in which any word can be accessed randomly e.g., the

memory of PCs used to have 16 bit words and normally in a chip it

have 64KB memory = 32K words. The cells are organized as a 2-

dimensional array with rows and columns. Each row refers to a

word line. For n-bits per word, n-number of cells is interconnected

Memory OrganisationUnit 6

Digital Logic 147

to a word line. Each column represents a bit line. The simplified

representation of this organization is:

Fig. 6.9 : Simplified 2D organization with 4X4 RAM chip

Fig. 6.10 : A 4-word memory with 4-bit per word 2D organization

In this array organization bit line is connected to the input and

sense (or output) terminal of each cell in its respective column.

Each decoded line of decoder drives a word line. A complete word

Memory Organisation Unit 6

Digital Logic148

can be input or output from the memory simultaneously. In write

operation, the address decoder selects the required word and the

bit lines are activated for a value 0 or 1 according to the data line

values. Thus completes the write operation. On read operation, the

value of each bit line is passed through a sense amplifier and passed

on the data lines. Thus enabling and completes the read operation.

The word line identifies the word that has been selected for reading

or writing. Usually ROMs and read mostly memories use 2D chip

organization.

Example 6.1 : Design a 4-word by 8-bit RAM chip by connecting

two 4 X 4 RAM chips.

Solution : The 4 x 8 RAM chip by using two 4 x 4 RAM chip is as

follows :

Fig. 6.11 : A 4 X 8 RAM chip

6.5.2 3D Organization

In this organization of memory, each cell needs three terminals:

 X drive lines for rows

 Y drive lines for columns

 A bit/sense pair

In comparison to 2D organization, 3D is more economical. The

content of memory address register (MAR) has two parts having

number of bits. Suppose they are x and y. For an n-bit word there

are n-bit planes. For each bit plane, a sense amplifier is attached.

Any cell in a bit plane is selected through X and Y drive lines. This

Memory OrganisationUnit 6

Digital Logic 149

organization makes the circuit more complicated and also gives a

low switching speed. Following is the 3 terminal 3D organization:

Fig. 6.12 : 3 terminal semiconductor memory cell

CHECK YOUR PROGRESS

Q.4. Write TRUE or FALSE

a) In a RAM each memory location has a unique address.

b) In 2D organization of RAM, word cannot be accessed

randomly.

c) In 2D organization, each column represents a bit line.

d) 2D organization is more economical than 3D organization

of RAM.

e) Each row refers to a word line in 2D organization.

6.6 ROM

Read-only memory (ROM) is a class of storage device used in

computer as well as in other electronic devices. Data stored in ROM cannot

(R/W) (R/W)

Y-drive line

X-drive line

RR

T3 T4

T1 T2

‘0’ ‘1’

T5

ROM: A semiconductor
memory where can store
information permanently.

Memory Organisation Unit 6

Digital Logic150

be modified, or can be modified only slowly or with difficulty. So, it is used

mainly to distributed system. Its internal organization is similar to SRAM. It

is used in computer systems for initialization because it does not lose storage

value when power is removed. In other sense we can say that ROM is

used to boot the operating system of the computer. It is programmed for

particular purpose during the manufacturing time and user cannot alter its

function.

ROM is a combinational logic circuit. Multiple single-bit functions

embedded in a single ROM. It uses decoders to minimize the number of

address lines. ROMs are effective at implementing truth tables. Any logic

function can be implemented using ROMs. So, ROM can use to implement

complex combinational circuits within one IC package or as permanent

storage package for binary information that given by the designer.

Fig. 6.13 : Block diagram of ROM

Here N is the address lines and M is the output lines. Each bit

combination of the address variable is called an address and each bit

combination that comes out from the output lines is a data word. An output

word can be selected by a unique address. Since there are N input bits,

ROM will form 2N words by M outputs. So, word available on the output

lines at any instant depends on the address value applied to the input

lines. For example, a ROM with 8 words by 5 bits is:

 D
e
c
o
d
e
r

M-bit word

Tristate logic

 0

1
N address lines

2

 2N-1

Read

M output lines

Memory OrganisationUnit 6

Digital Logic 151

Fig. 6.14 : 8 words X 5 bit ROM cell

Since, here there are 3 input lines, the words will form by this ROM

are 23 = 8 words.

ROM access time : Rom access time is the time from the application

of a valid address code on the address inputs until the appearance of valid

output data. It can also be measured from the activation of chip select to

the occurrence of valid output data when a valid address is already on the

inputs. Following figure shows the ROM access time.

Fig. 6.15 : ROM Access Time

Example 6.2 : Draw a 8 X 4 ROM

Solution : Since has to draw 8-word ROM, and 23=8, so there will

be 3 input lines.

Say, N = 3 input lines,

M = 4 output lines

ROM

8 words x 5 bits

Memory Organisation Unit 6

3 input A
 lines

B

C

F0 F1 F2 F3 F4

Address transition

Address Previous valid address
Inputs address on inputs

 ta
Data Valid data
outputs on outputs

Data output transition

CS
Chip Select

Digital Logic152

Fig. 6.16 : A 8 X 4 ROM

In the above ROM chip, the fixed “AND” array is a “decoder” with 3-

inputs and 8-outputs that implementing minterms. The programmable “OR”

array uses a single line to represent all inputs to an OR gate. An “X” in the

array corresponds to attaching the minterm to the OR. In read mode for

input (A2,A1,A0) = 011, the output is (F3,F2,F1,F0) = 0011.

6.5 TYPES OF ROM

ROMs are classified according to how information are written or

programmed into the memory storage locations. It is categorized as:

Fig. 6.17 : The ROM family

Bipolar ROM uses bipolar transistors within an integrated circuit.

They can be programmed. On the other hand MOS ROM is constructed

using MOSFETs. In a MOS cell, the silicon gate is completely insulated

from the n-type substrate. The MOS can also be programmed. ROMs are

programmed into two different ways: first is called mask programming and

 ROM

Bipolar MOS

PROM Mask
ROM

EEPROM PROM Mask
ROM

Memory OrganisationUnit 6

Digital Logic 153

is done by manufacturer during the last fabrication process of the unit; the

second type is programmable read only memory (PROM).

Mask ROM : It is programmed at the time of manufacturing

according to customer’s requirements. Once the memory is programmed,

it cannot be changed. Most IC ROMs utilize the presence or absence of a

transistor connection at ROW or COLUMN junction to represent 1 or 0.

The 1s and 0s are obtained by providing a mask in the last fabrication step.

A photographic negative called a mask is used to control the electrical

interconnections on the chip.

Fig. 6.18 : Bipolar ROM cell

In bipolar ROM cell, when Row line is taken high, all transistors

with base connection to the Row line turn ON and connect the HIGH to the

associated column lines. So, the presence of a connection from a Row line

to the base of a transistor represents a ‘1’ at that location. When there are

no base connections at row or column junctions, the column lines remain

LOW and represents as ‘0’.

In MOS ROM cell the presence or absence of a gate of MOSFET

connection at junction stores 1 or 0 permanently. Manufacturer makes the

corresponding musk for the path of bipolar or for MOS ROM cell to produce

the 1s or 0s according to specified customer’s truth table. This process is

called custom or mask programming. Mask programmed ROM are

economical only if large quantities of the same ROM configuration are to

be manufactured.

The following figure illustrates the function of MOS ROM cell.

Column Column

Row Row

 +Vcc +Vcc

 Storing 1 Storing 0

Memory Organisation Unit 6

Digital Logic154

Fig. 6.19 : MOS ROM cell

In MOS ROM cell the presence or absence of a gate of MOSFET

connection at junction stores 1 or 0 permanently. Manufacturer makes the

corresponding musk for the path of bipolar or for MOS ROM cell to produce

the 1s or 0s according to specified customer’s truth table. This process is

called custom or mask programming. Mask programmed ROM are

economical only if large quantities of the same ROM configuration are to

be manufactured.

A major disadvantage of this type is the fact that it cannot be

reprogrammed in the event of the design change or cannot do any

modification of the stored program. Vendors are trying to overcome this

problem by developing several program on this connection.

Programmable Read-only Memory (PROM) : In order to provide

flexibility in some ROM applications, programmable ROM has been

introduced. Blank PROM chips can be bought inexpensively and coded by

anyone with a special tool called a programmer. But it cannot be

reprogrammed. It is manufactured as a generalized integrated circuit with

all matrix intersections and every intersection has a fuse connecting them.

The higher voltage breaks the connection between the column and row by

burning out the fuse and can thereby program the PROM according to the

required truth table. This process is known as burning the PROM. Once a

PROM is programmed, it cannot be changed and therefore it has to be

done carefully and correctly in the first time itself. Hence, the fusing process

is irreversible. PROMs are widely used in the control of electrical equipment

such as washing machines and electric oven.

 Column Column

Row +VDD Row +VDD

Storing 1 Storing 0

Memory OrganisationUnit 6

Digital Logic 155

PROMs are available in both bipolar and MOS technologies. They

have 4-bit or 8-bit output word formats with capacities ranging in excess of

2,50,000 bits.

Erasable Programmable ROM (EPROM) : A PROM device which

can be erased and reprogrammed is called EPROM device. EPROM chips

can be rewritten many times. Erasing an EPROM requires a special tool

that emits a certain frequency of ultraviolet (UV) light. Once again we have

a grid of columns and rows. In an EPROM, the cell at each intersection has

two transistors. One of the transistors is known as the floating gate and

the other as the control gate. To erase it, you must supply a level of energy

strong enough to break through the negative electrons blocking the floating

gate. In a standard EPROM, this is best accomplished with UV light at a

frequency of 253.7. The EPROM must be very close to the eraser’s light

source, within an inch or two, to work properly.

Fig. 6.20 : EPROM cell

Here an additional floating gate is formed within the silicon dioxide (SiO2)

layer. The floating gate is left encountered while the normal control gate is

connected to the row decoder output of EPROM. The data bits are

represented by the presence or absence of a stored charge. The initial

values of un-programmed EPROM cells may be all 0s or all 1s.

Disadvantages :

control gate

 Floating gate

 Drain

 SiO2

 n+ n+ Gate

Source Drain

 p-substrate

 Floating gate Source

(a) Structure (b) Symbol

SiO2 SiO2

Memory Organisation Unit 6

Digital Logic156

a) Changes in the selected memory locations cannot be made in

the reprogramming. The entire memory should be erased before

reprogramming.

b) The process of reprogramming cannot take place with the IC in

the circuit. The EPROM IC must be removed from the circuit

and the stored program can be erased by exposing the memory

cells to ultraviolet light through a ‘window’ on the IC package.

This process takes about half an hour.

Electrically Erasable PROM (EEPROM) : It is also known as

Electrically Alterable PROM (EAPROM). It removes the biggest drawbacks

of EPROMs. The entire chip does not have to be completely erased to

change a specific portion of it. It can be erased and programmed by the

application of controlled electric pulses to the IC in the circuit, and thereby

changes can be made in the selected memory locations without disturbing

the correct data in other memory locations. Changing the contents does

not require additional dedicated equipment. They are non-volatile like

EPROM but do not require ultraviolet light to erase.

EEPROM is a rugged, low power semiconductor device and it

occupies less space. It has the advantage of program flexibility, small size

and semiconductor memory ruggedness. With EEPROM, the programs

can be altered remotely, possibly by telephone. EEPROMs are changed 1

byte at a time.

Flash memory : These memories are basically EEPROMs except

that erasure occurs at the block level in order to speed up the write process.

They work much faster than traditional EEPROMs because it writes data in

chunks, usually 512 bytes in size, instead of 1 byte at a time. One of the

most common uses of Flash memory is for the basic input/output system

of computer. Advantages are that they are non-volatile in nature and

densities are higher than both SRAM and DRAM. Disadvantages are that

they are slow and data cell must be erased before writing data to it.

6.5 ORGANIZATION OF SIMPLE ROM CELL

Memory OrganisationUnit 6

Digital Logic 157

A ROM is sometimes specified by the total number of bits it contains,

which is 2n x m. we already specified that a ROM can be organized by its

address and data bits. Figure shown a 16 x 8 bit simplified ROM array.

Fig. 6.21 : A 16 x 8-bit ROM array

Here ROM is organized into 16 addresses, each of which stores 8

data bits. The total capacity of this ROM is 128 bits. The dark squares

represents that ROM stored 1s by base connected transistor or gate-

connected MOSFET and light squares represent 0s. When a 4 bit binary

address is applied to the address inputs, the corresponding row line

becomes HIGH. This HIGH is connected to the column line through

transistors at each junction where 1 is stored. The column line stays LOW

at each cell where 0 is stored because of the terminating resistor. The

column lines form the data output. Thus, the eight data bits stored in the

selected ROW appear on the output lines.

 0

 1
0
1 2
2 .
3 .
 .
 .
 14

 15

Memory Organisation Unit 6

 Row 0

 Row 1

 Row 2

4 bit

addr

 Row 14

 Row 15

 0 1 26 7

Data output

Digital Logic158

CHECK YOUR PROGRESS

Q.5. Fill in the blanks

a) ROM is used to __________ the operating system of

the computer.

b) ROM is used mainly to __________.

c) The internal organization of ROM is similar to

__________.

d) ROM uses __________ to minimize the number of

address lines.

e) __________ is done by manufacturer during the last

fabrication process of the unit.

f) Mask is used to control the __________ on the ROM

chip.

g) In Mask ROM cell, if column lines are LOW, it represents

as __________.

h) __________ are available in both bipolar and MOS

technologies.

i) In an EPROM, the cell at each intersection has

__________transistors.

j) In EPROM, the program can remove for reprogramming

is done by __________.

Q.6. Write TRUE or FALSE

a) Two transistors used in EPROM are floating gate and

control gate.

b) ROM is a volatile memory.

c) ROM access time is measured from the chip select

activation to the occurrence of valid output data.

d) Flash memory is used to speed up the read process of

ROM chip.

e) EEPROM is a low power semiconductor device and it

occupies less memory space.

Memory OrganisationUnit 6

Digital Logic 159

6.5 LET US SUM UP

 Data used in a program as well as instructions for executing program

are stored in memory device. So, digital systems require memory

facilities for temporary as well as for permanent storage of data to

perform their functions.

 Based on the method of access, memory devices can be classified

into different categories.

 In RAM any location can be accessed in a random manner and

thus has equal access time for all memory locations.

 RAM chip can store information only as long as computer has

electronic power.

 A semiconductor RAM is arranged in the form of a matrix of “m”

words and each word is “n” bits wide and makes cells. Each cell

has unique address representation.

 The address and data stored in a specific location of RAM are binary

in form.

 An SRAM cell has three different states and they perform differently.

 DRAM use capacitance of a transistor as the storage device.

 Depending on access mechanism, RAM is organized into different

dimensions most commonly like 2D, 3D, 2.5D etc.

 In comparison to 2D organization, 3D is more economical.

 In order to provide flexibility in some ROM applications, different

programmable ROMs are introduced as PROM, EPROM and

EEPROM.

 PROMs are widely used in the control of electrical equipment such

as washing machine and electric oven.

 DRAM stores its binary information in the form of electric charges

on capacitors.

 The bipolar ROMs can be subdivided into Mask ROMs and PROMs.

 Flash memories are basically EEPROMs except that erasure occurs

at the block level in order to speed up the write process.

Memory Organisation Unit 6

Digital Logic160

6.10 ANSWER TO CHECK YOUR PROGRESS

Ans. to Q. No. 1 : a

Ans. to Q. No. 2 : a

Ans. to Q. No. 3 : a) Volatile, b) DRAM, c) charged, d) MOSFET,

e) 6 (six), f) SRAM, g) 2n, h) MOSFET , i) SRAM,

j) 1973

Ans. to Q. No. 4 : a) T, b) F, c) T, d) F, e) T

Ans. to Q. No. 5 : a) Boot, b) distributed system, c) SRAM, d) Decoders,

e) mask programming, f) electrical interconnections,

g) 0 (zero), h)PROMs, i) two, j) UV light.

Ans. to Q. No. 6 : a) T, b) F, c) T, d) F, e) T

6.11 FURTHER READING

 “Digital Techniques” by Dr. Pranhari Talukdar, N.L. Publication.

 “Digital Design” by M. Morris Mano, PHI Publication.

 “Microprocessor and Peripherals” by S. P. Chowdhury and Sunetra

Chowdhury, SCITECH.

 “Computer Fundamentals and C Programming” by Dr. Amiya Kumar

Rath, Alok Kumar Jagdev and Santosh Kumar Swain, SCITECH.

 “Operating System” by P. Balakrishna Prasad, SCITECH.

 “Computer Fundamentals, Architecture and Organisation” by B.

Ram, New Age International (P) Ltd., Publishers.

6.12 MODEL QUESTIONS

Q.1. What is RAM? Give an example.

Q.2. What is access time? How to find ROM access time in a computer?

Memory OrganisationUnit 6

Digital Logic 161

Q.3. Explain ROM family. How it is classified?

Q.4. Discuss the applications of ROM.

Q.5. Give two examples of non-volatile memory devices.

Q.6. Give the classification of semiconductor RAMs.

Q.7. What is the purpose of employing address multiplexing in a DRAM?

Q.8. Differentiate SRAM with DRAM.

Q.9. Describe the ROM internal structure.

Q.10. Draw an internal logic of 32 x 8 word ROM memory circuit by using

OR output gates.

Q.11. Discuss the 3D structure of RAM with their internal organizational

structure.

Q.12. List the pins required by a (64 x 4) bit RAM memory chip.

Q.13. Draw the block diagram of a typical (2048 x 16) bits ROM and

describes its working principles.

Q.14. What is flash memory? Where it is used?

Q.15. A memory chip is organized as (1024 x 4) bits RAM. Find the number

of such chips required to obtain:

a) (2048 x 8) RAM

b) 4k bytes of RAM

Memory Organisation Unit 6

	MCA2_0
	MCA2_1

