Vardhaman Mahaveer Open University, Kota

Vardhaman Mahaveer Open University, Kota

Mathematical Programming

Unit No.	Unit Name	Page No.
Unit-1	Hyperplane and Convex Function	1-19
Unit-2	Revised Simplex Method	20-62
Unit-3	Integer Programming: Gomory's Algorithm	63-94
Unit - 4	Integer Programming : Branch and Bound Algorithm	95-112
Unit-5	Quadratic form and Lagrangian Function	113-134
Unit-6	Non Linear Programming Problems	135-161
Unit-7	Constrained Optimization in Nonlinear Programming Problems; Kuhn-Tucker Conditions	162-183
Unit-8	Quadratic Programming	184-223
Unit-9	Quadratic Programming Problem and Duality Theorem in Quadratic Programming	224-234
Unit - 10	Convex Separable Programming and Algorithm	235-248
Unit - 11	Dynamic Programming; Bellman's Optimality Principle	249-257
Unit - 12	Solution of Linear Programming Problem Using Dynamic Programming	258-264

Course Development Committee

Chairman

Prof. (Dr.) Naresh Dadhich

Vice-Chancellor
Vardhaman Mahaveer Open University, Kota

Co-ordinator/Convener and Members

Subject Convener
 Prof. D.S. Chauhan
 Department of Mathematics
 University of Rajasthan, Jaipur
 Members :

1. Prof. V.P. Saxena Ex Vice-Chancellor Jiwaji University, Gwalior (MP)

2. Prof. S.C. Rajvanshi Department of Mathematics Institute of Eng. \& Tech. Bhaddal, Ropar (Punjab)
3. Prof. P.K. Banerjee Emeritus Fellow (UGC) Department of Mathematics J.N.V. University, Jodhpur

4. Prof. S.P. Goyal

 Emeritus Scientist (CSIR)Department of Mathematics University of Rajasthan, Jaipur
5. Dr. A.K. Mathur

Associate Professor (Retired)
Department of Mathematics University of Rajasthan, Jaipur
6. Dr. K.N. Singh
Associate Professor (Retired)
Department of Mathematics
University of Rajasthan, Jaipur

10. Dr. K.S. Shekhawat
 Lecturer, Department of Mathematics
 Govt. Shri Kalyan College, Sikar (Raj.)

Co-ordinator
Dr. Anuradha Sharma
Assistant Professor
Department of Botany, V.M.O.U., Kota

7. Dr. Paresh Vyas

Assistant Professor
Department of Mathematics University of Rajasthan, Jaipur
8. Dr. Vimlesh Soni

Lecturer
Department of Mathematics
Department of Mathematics
Govt. PG College, Kota (Raj.)
9. Dr. K.K. Mishra

Lecturer
Department of Mathematics
Govt. College, Thana Gazi Alwar (Raj.)

Editing and Course Writing

Editor

Prof. P.R. Sharma

Department of Mathematics
University of Rajasthan, Jaipur

Writers

1. Dr. K.C. Sharma

Department of Mathematics
M.S.J. College, Bharatpur
3. Dr. S.C. Sharma

Department of Mathematics
University of Rajasthan, Jaipur

2. Sh. Rakesh Pandey
 Department of Mathematics Gocverment College, Bhawani Mandi

Academic and Administrative Management

Prof. (Dr.) Naresh Dadhich	Prof. B.K. Sharma	Mr. Yogendra Goyal
Vice-Chancellor	Dincharge	
Vardhaman Mahaveer Open University,	Vardhaman Mahaveer Open University,	Material Production and Kota

Course Material Production

Mr. Yogendra Goyal

Assistant Production Officer
Vardhaman Mahaveer Open University, Kota

PREFACE

The present book entitled "Mathematical Programming" has been designed so as to cover the unit-wise syllabus of M.A./MSc. Mathematics-10 course for M.A./ M.Sc. (Final) students of Vardhaman Mahaveer Open University, Kota. It can also be used for competitive examinations. The basic principles and theory have been explained in a simple, concise and lucid manner. Adequate number of illustrative examples and exercises have also been included to enable the students to grasp the subject easily. The units have been written by various experts in the field. The unit writers have consulted various standard books on the subject and they are thankful to the authors of these reference books.

Unit - 1
 Hyperplane and Convex Function

Structure of the Unit

1.0 Objective
1.1 Introduction
1.2 Some Important Definitions
1.3 Some Theorems

Theorem 1.1
Theorem 1.2
Theorem 1.3
Theorem 1.4
1.4 Supporting Hyperplane

Theorem 1.5
Theorem 1.6
1.5 Self-Learning Exercise-I
1.6 Convex Function
1.7 Some Theorems on Convex Function

Theorem 1.7
Theorem 1.8
Theorem 1.9
1.8 Illustrative Examples
1.9 Quadratic Forms
1.10 Positive and Negativeness of Quadratic Forms
1.11 Illustrative Examples
1.12 Theorems on Quadratic Form and Convex Function

Theorem 1.10
Theorem 1.11
Theorem 1.12
1.13 Self-Learning Exercise-II
1.14 Summary
1.15 Answers to Self-Learning Exercise-I
1.16 Answers to Self-Learning Exercise-II
1.17 Exercises

1.10 Objective

After studying this unit you will be able to understand a hyperplane in Euclidean space E^{n} and its use in the solution of linear programming problems. You will also be introduced about a convex function defined on a convex set.

1.1 Introduction

A linear relation in two unknowns (variables) represents a straight line in two dimensional space. A linear relation in three variables represents a plane in three dimensional space. On generalization what is represented by linear equation in n unknowns, is called hyperplane in n dimensional space E^{n}. It plays an important role in the theory of linear programming. In the last of the unit, concept of convex function is introduced which has importance in the study of non linear programming problems.

1.2 Some Important Definitions

(i) Set of points:- A linear equation in x_{1}, x_{2} i.e. the equation of the form $a_{1} x_{1}+a_{2} x_{2}=b$ represents a line in E^{2}. Similarly a linear equation in x_{1}, x_{2}, x_{3} i.e. $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=b$ or $\alpha \bar{X}=b$, where $\alpha=\left(a_{1}, a_{2}, a_{3}\right)$ and $\bar{X}=\left[x_{1}, x_{2}, x_{3}\right]$ represents a plane in E^{3}. Both of these can be considered as the sets of points as follows:

$$
\begin{aligned}
& S_{1}=\left\{\left(x_{1}, x_{2}\right): a_{1} x_{1}+a_{2} x_{2}=b\right\} \text { and } \\
& S_{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right): a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=b\right\}
\end{aligned}
$$

Similarly, the set

$$
S=\left\{\left(x_{1}, x_{2}, x_{3} \ldots x_{n}\right): a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b\right\}
$$

is defined in n-dimensional space E^{n}.
(ii) Line and line segment : The line joining two points X_{1} and $X_{2} \in E^{n}$ is the set of points given by

$$
S_{L}=\left\{X: X \in E^{n} \text { and } X=\lambda X_{1}+(1-\lambda) X_{2}, \lambda \in R\right\}
$$

and the line segment joining two points X_{1} and X_{2} is the set
$S=\left\{X: X \in E^{n}\right.$ and $\left.X=\lambda X_{1}+(1-\lambda) X_{2}, 0 \leq \lambda \leq 1\right\}$
(iii) Hyperplane : The equation $c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+\ldots+c_{n} x_{2}=z$ or $\bar{c} \bar{X}=z$ defines a hyperplane in n-dimensional space E^{n}. Here not all $c_{i}{ }^{\prime} s$ are zero simultenuously.

In this by putting different values of $c_{i}{ }^{\prime} s$ and z , we can get different hyperplanes. Further a hyperplane is a set of points $X \in E^{n}$ satisfying $\bar{C} \bar{X}=Z$. Thus the set
$H=\{X: \bar{C} \bar{X}=Z\}$ is called a hyperplane.
The vector \bar{C} is called a vector normal to the hyperplane and $\hat{C}= \pm \frac{C}{|C|}$ is called unit normal.
Note : (i) If $z=0$, then $C X=0$, then the hyperplane is said to pass through the origin.
(ii) Two hyperplanes $C_{1} X_{1}=Z_{1}$ and $C_{2} X_{2}=Z_{2}$ are said to be parallel, if they have the same unit normals i.e. if $\hat{c}_{1}=\lambda \hat{c}_{2}$ for some λ, λ being non-zero scalar.
(iv) Neighbourhood of a point : A subset N of E^{n} is said to be an \in-neighbourhood (ϵ-nbd) of the point $X_{0} \in E^{n}$ s.t.

$$
N=\left\{X: X \in E^{n},\left|X-X_{0}\right|<\epsilon\right\}
$$

being a small positive number.
(v) Interior and boundary points : A point X_{0} is said to be the interior point of the set S if there exists at least one $\in-n b d$ of the point X_{0} which is wholly contained in the set S . On the otherhand, a point X_{0} is said to be the boundary point of the set $S \leq E^{n}$ if every ϵ-nbd of X_{0} contains at least one point not belonging to S and atleast one point belonging to S.
(vi) Closed and open sets : A subset $S \subseteq E^{n}$ is said to be closed if every boundary point of S belongs to it. On the otherhand, a subset $S \subseteq E^{n}$ is said to be an open set if it contains only interior points.

A hyperplane divides the whole space E^{n} into two half spaces, known as closed half spaces given by

$$
H_{1}=\left\{X: X \in E^{n}, C X \geq Z\right\}, \text { and } H_{2}=\left\{X: X \in E^{n}, C X \leq Z\right\}
$$

Also, a hyperplane divides the whole space E^{n} into three mutually disjoint sets given by

$$
S_{1}=\left\{X: X \in E^{n}, C X>Z\right\}, \quad S_{2}=\left\{X: X \in E^{n}, C X=Z\right\}
$$

and $S_{3}=\left\{X: X \in E^{n}, C X<Z\right\}$. Here S_{1} and S_{3} are called open half spaces.
Note: The objective function and coustraint equations of the l.p.p. represents hyperplanes and each constraint $(\operatorname{sign} \leq, \geq)$ is a closed half space produced by the hyperplane given by the contraint by taking ' $=$ ' sign in place of \geq or \leq.
(vii) Convex set : A set of points $S \subset E^{n}$ is said to be convex if the line segment joining any two points of S lies wholly in the set S . In otherwords, a set S is said convex if for any two points $X_{1}, X_{2} \in S, \lambda X_{1}+(1-\lambda) X_{2} \in S$, where $0 \leq \lambda \leq 1$.

Fig 1.1 (a) Convex Sets

Fig 1.1 (b) Non-Convex Sets

(vii) Extreme point : Apoint X_{0} of a convex set S is said to be an extreme point if it does not lie on the line segment of any two points, different from X, in the set.

The vertices of a polygon and every point on the circumference of the circle is the extreme point of the convex set of the points on and within the polygon or circle.

1.3 Some Theorems

Theorem 1.1 : A hyperplane is a closed set.
Proof: Let the point set $H=\left\{X: X \in E^{n}, C X=Z_{0}\right\}$ be a hyperplane. To show that it is a closed set, we take a boundary point X_{0} of H and prove that $X_{0} \in H$.

Contrary, we suppose that $X_{0} X_{0} \notin H$, then either $C X_{0}>Z_{0}$ or $C X_{0}<Z_{0}$.
Let $C X_{0}=Z_{1}<Z_{0}$. Now $C X_{0}=C\left(X_{0}+X-X_{0}\right)=C X_{0}+C\left(X-X_{0}\right)$
$\because C\left(X-X_{0}\right) \leq\left|C\left(X-X_{0}\right)\right|$
$C X \leq Z_{1}+\left|C\left(X-X_{0}\right)\right|$
$\Rightarrow \quad C X \leq Z_{1}+|C|\left|X-X_{0}\right|$
Now consider $\epsilon-$ nbcd of X_{0} i.e. $\left|X-X_{0}\right|<\in$, where

$$
\begin{aligned}
& \in=\frac{Z_{0}-Z_{1}}{2|C|} \text {, than (1) implies that } \\
& C X<Z_{1}+\frac{Z_{0}-Z_{1}}{2}=\frac{Z_{1}+Z_{0}}{2}<Z_{0} .
\end{aligned}
$$

If shows that $\in-$ nbd of X_{0} contains no point of the hyperplane H , which is the contradiction as X_{0} is a boundary point.
$\Rightarrow \quad C X_{0} \nless Z_{0}$
Similary we can show that $C X_{0} \ngtr Z_{0}$.
$\Rightarrow \quad$ Only $C X_{0}=Z_{0}$ is possible.
$\Rightarrow \quad X_{0}$ is the point in hyperplane
$\Rightarrow \quad X_{0} \in H$
$\Rightarrow \quad H$ is a closed set.
In a similar way, one may prove that closed half spaces are also closed sets and open half spaces are open sets.

Theorem 1.2 : A hyperplane is a convex set.
Proof: Let $H=\left\{X: X \in E^{n}, C X=Z\right\}$ be a hyperplane in E^{n} and X_{1}, X_{2} be two points of H , then $C X_{1}=Z$ and $C X_{2}=Z$. Now, if $X_{3}=\lambda X_{1}+(1-\lambda) X_{2}, 0 \leq \lambda \leq 1$, then

$$
C X_{3}=C\left\{\lambda X_{1}+(1-\lambda) X_{2}\right\}=\lambda C X_{1}+(1-\lambda) C X_{2}=\lambda Z+(1-\lambda) Z=Z
$$

i.e. X_{3} satisfies $C X=Z$

Hence $X_{3}=\lambda X_{1}+(1-\lambda) X_{2} \in H$ and therefore by difinition H is a convex set.
Theorem 1.3: The closed half spaces $H_{1}=\{X: C X \geq Z\}$ and $H_{2}=\{X: C X \leq Z\}$ are convex sets.
Proof: Let X_{1}, X_{2} be two points of H_{1}, then $C X_{1} \geq Z, C X_{2} \geq Z$. Now if $0 \leq \lambda \leq 1$, then

$$
\begin{aligned}
& C\left[\lambda X_{1}+(1-\lambda) X_{2}\right]=\lambda C X_{1}+(1-\lambda) C X_{2} \geq \lambda Z+(1-\lambda) Z \\
& \geq Z \\
& \Rightarrow \quad \lambda X_{1}+(1-\lambda) X_{2} \in H_{1} \\
& \Rightarrow \quad H_{1} \text { is a convex set. }
\end{aligned}
$$

Similarly, it can be shown that H_{2} is also a convex set.
Theorem 1.4 A point y in space either belongs to a given closed convex set X or there exists a hyperplane through y so that whole of the X lies in one open half space produced by that hyperplane.

Proof: The proof is clear for two and three dimensions. In E^{2}, the situation is show in figure 1.2.
Suppose $y \notin X$ and $w \in X$ be the point closest to y i.e. the distance of w from y is minimum.

$$
\begin{align*}
& \text { Thus }|w-y|=\min _{u \in X}|u-y| \\
\Rightarrow \quad & |w-y| \leq|u-y|, \forall u \in X \tag{1}
\end{align*}
$$

Figure 1.2

Such a point w always exists and unique as the set X is closed. To prove uniqueness, let w_{1} and w_{2} be two points of X with the some minimum distance. Than

$$
\left|\frac{1}{2}\left(w_{1}+w_{2}\right)-y\right|=\frac{1}{2}\left|\left(w_{1}-y\right)+\left(w_{2}-y\right)\right| \leq \frac{1}{2}\left(\left|w_{1}-y\right|+\left|w_{2}-y\right|\right)
$$

$$
\begin{aligned}
\because \quad & \left|w_{1}-y\right|=\left|w_{2}-y\right|, \text { we get } \\
& \left|\frac{1}{2}\left(w_{1}+w_{2}\right)-y\right| \leq\left|w_{1}-y\right|=\left|w_{2}-y\right|
\end{aligned}
$$

Thus we have obtained a point $\frac{1}{2}\left(w_{1}+w_{2}\right) \in X$ (as X is convex) which is nearer to y then, w_{1} and w_{2}. This contradicts that w_{1} and w_{2} are closest to y. Hence w is unique.

To prove that whole of X lies in one half of closed space : Let u is an arbitrary point of X and X is convex set, we have

$$
[\lambda u+(1-\lambda) w] \in X, 0 \leq \lambda \leq 1
$$

From (1) $|\lambda u-(1-\lambda) w-y|^{2} \geq|w-y|^{2}, 0 \leq \lambda \leq 1$

$$
\begin{aligned}
& \Rightarrow \quad|(w-y)+\lambda(u-w)|^{2} \geq|w-y|^{2} \\
& \Rightarrow \quad|w-y|^{2}+2 \lambda(w-y)^{1}(u-w)+\lambda^{2}|u-w|^{2} \geq|w-y|^{2} \\
& \Rightarrow \quad 2 \lambda(w-y)^{1}(u-w)+\lambda^{2}|u-w|^{2} \geq 0
\end{aligned}
$$

Taking $\lambda>0$, we get

$$
2(w-y)^{1}(u-w)+\lambda|u-w|^{2} \geq 0
$$

Taking $\lambda \rightarrow 0$, we get

$$
\begin{aligned}
& (w-y)^{1}(u-w) \geq 0 \\
\Rightarrow \quad & (w-y)^{1} \cdot[(u-y)-(w-y)] \geq 0 \\
\Rightarrow \quad & (w-y)^{1} \cdot(u-y) \geq|w-y|^{2}
\end{aligned}
$$

But $|w-y|^{2}>0$ as $w \in X$ and $y \notin X$
$\Rightarrow \quad(w-y)^{1} \cdot(u-y)=0$
$\Rightarrow \quad(w-y)^{1} \cdot u>(w-y)^{1} \cdot y$
If we take $C=(w-y)^{\prime}$ and $z=(w-y)^{\prime} \cdot y$, then $C X=z$ is a hyperplane through y as

$$
c y=(w-y)^{\prime} \cdot y=z
$$

and satisfies $c u>c y=z, \forall u \in X$

Thus we have found a hyperplane through y and X lies in one open half space produced by this hyperplane. Such a plane is called separating hyperplane.

1.4 Supporting Hyperplane

A hyperplane $c x=z$ is said to be a supporting hyperplane at a boundary point w of a convex set X if
(i) $\quad c w=z$ i.e. the hyperplane passes through w.
(ii) $c u \geq z$ or $c u \leq z \quad \forall u \in X$ i.e. the whole of X lies in one half closed space produced by $c x=z$.

Theorem 1.5 The optimal hyperplane in a L.P.P. is a supporting hyperplane to the convex set of feasible solutions.

Proof: Suppose, we have a L.P.P. as

$$
\begin{aligned}
& \text { Max } Z=c x \\
& \text { s.t. } A X \leq b, X \geq 0
\end{aligned}
$$

we know that the set of all feasible solutions to L.P.P. is a convex set and the objective function is a hyperplane. We move this hyperplane parallel to itself over the convex set of feasible solutions (feasible region) until z is made as large as possible so that the hyperplane contains at least one point of the feasible region. Note that the hyperplane corresponding to higher values of z will contain a point of feasible region. This is a hyperplane corresponding to the optimum (maximum) value of z. This is known as optimal hyperplane.

To prove that no point of this hyperplane is an interior point of convex set. For this, suppose that $C X=Z_{0}$ is the optimal hyperplane and X_{0} is an interior point of X on this hyperplane. Since X_{0} is an interior point of the set X , there exists $\in>0$ s.t. \in-neighbourhood of X_{0} wholly lies in the set X . Thus the point $X_{1}=X_{0}+\frac{\epsilon}{2}\left(\frac{c}{|c|}\right)$ is in X and $z_{1}=c x_{1}=c x_{0}+\frac{\in \vec{c} \cdot \vec{c}}{2} \frac{|c|}{|c|}=z_{0}+\frac{\left.\in \vec{c}\right|^{2}}{2} \frac{\epsilon}{|c|}=z_{0}+\frac{\epsilon}{2}|c|$

$$
\therefore \quad z_{1}=C X_{1}>z_{0} \text { as } \frac{\epsilon}{2}|c| \text { is posivtive. }
$$

Thus we have obtained a point $X_{1} \in X$ which gives higher values of objective function than z_{0} (the maximum value) which is a contradiction as z_{0} is the optimal value. Therefore, X_{0} is not an interior point, but boundary point of X. Thus $C X=Z_{0}$ is a hyperplane containing a boundary point of x. Also if $u \in X$ is any point then $c u=z \leq z_{0}$ (as z_{0} is maximum). Hence X lies in one closed half space produced by the hyperplane $C X=Z_{0}$. Therefore $C X=Z_{0}$ is the supporting hyperplane at x_{0}.

Theorem 1.6 Every supporting hyperlane of a closed convex set which is bounded from below contains at least one extreme point of the set.

Proof: Let $C X=Z_{0}$ be a supporting hyperplane at x_{0} to the closed convex set X , bounded from below. Let T be the intersection of X and the hyperplane $S=\left\{x ; c x=z_{0}\right\}$.

It is clear that atleast $x_{0} \in T$ showing that T is not empty. Now we shall prove this theorem by showing that T has an extreme point and the extreme point of T are also the extreme point of X . Then hyperplane will clearly contain at least one extreme point of X.

Let $t \in T$ be an extreme point of T; then by definition there do not exist x_{1} and $x_{2} \in T$. s.t.

$$
t=\lambda x_{1}+(1-\lambda) x_{2}, 0<\lambda<1, x_{1} \neq x_{2}
$$

Now suppose T is not an extreme point of $x(t \in T \Rightarrow t \in x)$. Then $\exists x_{1}, x_{2} \in X$ such that $t=\lambda x_{1}+(1-\lambda) x_{2}, 0<\lambda<1$. Since $c x=z_{0}$ is a supporting hyperplane, $c x_{1} \geq z_{0}$ and $c x_{2} \geq z_{0}$. Also $\bar{t} \in T$ lies on the hyperplane, we must have $\bar{c} \bar{t}=z_{0}$.

But $c t=c\left(\lambda x_{1}+(1-\lambda) x_{2}\right)=\lambda c x_{1}+(1-\lambda) c x_{2}$
This is equal to z_{0} if and only if $c x_{1}=z_{0}$ and $c x_{2}=z_{0}$ as $\lambda>0,(1-\lambda)>0$. Hence x_{1}, x_{2} also lies on the hyperplane and hence belonging to T . Thus we have obtained two points x_{1} and x_{2} ofT s.t.

$$
t=\lambda x_{1}+(1-\lambda) x_{2}, \quad 0<\lambda<1
$$

This is a contradiction as t is an extreame point of the set T. Hence t is also extreme point of X.
Now it is to show that there exists an extreme point ofT. For this, we shall actually find an extreme point. Select that point (vector) of T for which the first component is minimum. Such a point will exist because T is bounded from below as X is bounded from below.

If this point is not unique, i.e. the first component has no unique minimum, then out of these points (for which first component is minimum select the point with the second component minimum. Still the point is not unique, then select the point out of these for which third component is minimum and continue this process until the unique point is obtained. This unique point is an extreme of the set T. For, if this point say t^{*} is not an extreme point of the set T , then $\exists t_{1}, t_{2} \in T$ s.t. $t^{*}=\lambda t_{1}+(1-\lambda) t_{2}, 0<\lambda<1, t_{1} \neq t_{2}$.

Suppose t^{*} is determined on taking the $k^{t h}$ component minimum. If $t_{k_{1}}, t_{k_{2}}$ are the components of t_{1} and t_{2} respectively, then $k^{\text {th }}$ component of t^{*} is given by $t_{k}^{*}=\lambda t_{k_{1}}+(1-\lambda) t_{k_{2}}, 0<\lambda<1$

Now also $t_{i}^{*}=\lambda t_{i_{1}}+(1-\lambda) t_{i_{2}}, 0<\lambda<1$

$$
(i \leq k-1)
$$

If $t_{i_{1}} \neq t_{i_{2}}$, say $t_{i_{1}}>t_{i_{2}}$, the we get

$$
t_{i}^{*}>\lambda t_{i_{2}}+(1-\lambda) t_{i_{2}}=t_{i_{2}}
$$

which is a contadiction as t_{i}^{*} is minimum. Hence $t_{i_{1}} \ngtr t_{i_{2}}$ similarly $t_{i_{1}} \nless t_{i_{2}}$. Hence $t_{i_{1}}=t_{i_{2}}$ and hence

$$
t_{i}^{*}=\lambda t_{i_{1}}+(1-\lambda) t_{i_{1}}=t_{i_{1}}=t_{i_{2}}
$$

Now, for $t_{k}^{*}=\lambda t_{k_{1}}+(1-\lambda) t_{k_{2}}$ to be true we should have $t_{k}^{*}=t_{k_{1}}=t_{k_{2}}$, otherwise a above t_{k}^{*} will be greater than either $t_{k_{1}}$ and $t_{k_{2}}$.

Hence the points t_{1} and t_{2} also have the same minimum $k^{\text {th }}$ component. But with this minimum value of $k^{\text {th }}$ component, there is only one point. Thus we get a contradiction.

Therefore t^{*} cannot be written as convex combination of two different points. Hence it is an extreme point.

Example 1.1 A hyperplane is given by the equation

$$
3 x_{1}+2 x_{2}+4 x_{3}+7 x_{4}=8 .
$$

Find in which half spaces do the points $(-6,1,7,2)$ and $(1,2,4,1)$ lie.
Solution : Putting $x_{1}=-6, x_{2}=1, x_{3}=7, x_{4}=2$ in the L.H.S. of the given equation, we get
L.H.S. $=3 \cdot(-6)+2 \cdot 1+4 \cdot 7+7 \cdot 2=26>8=$ R.H.S
$\Rightarrow \quad$ Point $(-6,1,7,2)$ lies in the open half space

$$
3 x_{1}+2 x_{2}+4 x_{3}+7 x_{4}>8
$$

Similarly substituting $(1,2,-4,1)$, we get
L.H.S. $=3 \cdot 1+2 \cdot 2+4 .(-4)+7.1=-2<8=$ R.H.S.
\Rightarrow Point $(1,2,-4,1)$ lies in the open half space $3 x_{1}+2 x_{2}+4 x_{3}+7 x_{4}<8$.

1.5 Self Learning Exercise I

1. Define hyperplane.
2. What are the closed and open sets?
3. Define convex set.
4. Define extreme point.
5. Define supporting hyperplane.

1.6 Convex Function

A function $f(x)$ defined on a convex set $S \subset E^{n}$ is said to be convex function if for any two points X_{1} and X_{2} in S and for all $\lambda, 0 \leq \lambda \leq 1$

$$
f\left[\lambda X_{1}+(1-\lambda) X_{2}\right] \leq \lambda f\left(X_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

and the function $f(x)$ is said to be strictly convex if for any two different points X_{1} and X_{2} in S and $0<\lambda<1$
$f\left[\lambda X_{1}+(1-\lambda) X_{2}\right] \leq \lambda f\left(X_{1}\right)+(1-\lambda) f\left(X_{2}\right)$
A function $f(X)$ is said to be concave (or strictly concave) if $-f(X)$ is convex (strictly convex).

Geometrical Meaning :

The single variable function $f(x)$ is strictly convex if the line segment joining two point $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$ on the curve of $f(x)$ lies above the curve (figure 1.3). Similarly single variable function $g(x)$ is strictly concave if the line segment joining two points $\left(x_{1}, g\left(x_{1}\right)\right)$ and $\left(x_{2}, g\left(x_{2}\right)\right)$ on the curve of $g(x)$ lies below the curve (figure 1.4)

Figure 1.3

Figure 1.4

From figure 1.3 it is observed that for all $0<\lambda<1$

$$
f\left[\lambda x_{1}+(1-\lambda) x_{2}\right]<\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right),
$$

and from figure 1.4 for all $0<\lambda<1$, we get

$$
g\left[\lambda x_{1}+(1-\lambda) x_{2}\right]>\lambda g\left(x_{1}\right)+(1-\lambda) g\left(x_{2}\right) .
$$

Note : A linear function is convex as well as concave but not strictly convex or strictly concave as shown in following theorems.

1.7 Some Theorems on Convex Function

Theorem 1.7: A linear function $Z=C X=f(x)(S a y), X \in R^{n}$
Suppose X_{1} and X_{2} be two points of R^{n}
Now $f\left[\lambda X_{1}+(1-\lambda) X_{2}\right]=C\left[\lambda X_{1}+(1-\lambda) X_{2}\right]$

$$
\begin{aligned}
0 \leq \lambda \leq 1 & =\lambda C X_{1}+(1-\lambda) C X_{2} \\
& =\lambda f\left(X_{1}\right)+(1-\lambda) f\left(X_{2}\right)
\end{aligned}
$$

$$
\Rightarrow f\left[\lambda X_{1}+(1-\lambda) X_{2}\right] \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

$$
0 \leq \lambda \leq 1
$$

and $f\left[\lambda X_{1}+(1-\lambda) X_{2}\right] \geq \lambda f\left(X_{1}\right)+(1-\lambda) f\left(x_{2}\right)$
$\therefore f(X)=C X$ is a convex function as well as concave. Here strict inequaltiy is not implied.
So $f(x)$ is neither strictly convex nor strictly concave.
Theorem 1.8 The sum of convex functions is convex and if atleast one of the functions is strictly convex, then the sum is strictly convex.

Proof: Let $f_{1}, f_{2}, f_{3}, \ldots f_{m}$ be m convex functions defined on the convex set $S \subset E^{n}$. Let $f=f_{1}+f_{2}+f_{3}+\ldots+f_{m}$ be the sum function defined on the same set S .

Let X_{1}, X_{2} be two points of S and $o \leq \lambda \leq 1$. Then

$$
\begin{aligned}
f\left[\lambda X_{1}+(1-\lambda) X_{2}\right] & =\sum_{i=1}^{m} f_{i}\left[\lambda x_{1}+(1-\lambda) X_{2}\right] \\
& \leq \sum_{i=1}^{m}\left[\lambda f_{i}\left(X_{1}\right)+(1-\lambda) f_{i}\left(X_{2}\right)\right]
\end{aligned}
$$

$$
\text { [since } f_{i} \text { is convex } \forall i=1,2, \ldots, m \text {] }
$$

$$
\leq \lambda \sum_{i=1}^{m} f_{i}\left(X_{1}\right)+(1-\lambda) \sum_{i=1}^{m} f_{i}\left(X_{2}\right)
$$

$$
\leq \lambda f\left(X_{1}\right)+(1-\lambda) f\left(X_{2}\right)
$$

\Rightarrow The function $f=f_{1}+f_{2}+\ldots .+f_{m}$ is convex function on S .
If atleast one function say $f_{k}, 1 \leq k \leq n$ is strictly convex then for $0<\lambda<1$, $f_{k}\left[\lambda X_{1}+(1-\lambda) X_{2}\right]<\lambda f_{k}\left(X_{1}\right)+(1-\lambda) f_{k}\left(x_{2}\right)$ using it we get

$$
\begin{aligned}
f\left[\lambda X_{1}+(1-\lambda) X_{2}\right]<\lambda f\left(X_{1}\right)+ & (1-\lambda) f\left(X_{2}\right) \\
& \forall X_{1}, X_{2} \in S \text { and } 0<\lambda<1
\end{aligned}
$$

Hence, f is strictly convex if atleast one of the function is strictly convex.
Theorem 1.9 The sum of concave functions is concave and if atleast one of the functions is strictly concave, than the sum is strictly concave.
Proof: The proof of above theorm can be done in the same manner as of theorem 1.8.

1.8 Illustrative Examples

Example 1.2 Show that $f(x)=x^{2}$ is a convex function.
Proof: \quad Here $f(x)=x^{2}$, let $0 \leq \lambda \leq 1$

$$
\begin{aligned}
& f\left[\lambda x_{1}+(1-\lambda) x_{2}\right]-\lambda f\left(x_{1}\right)-(1-\lambda) f\left(x_{2}\right) \\
& =\left[\lambda x_{1}+(1-\lambda) x_{2}\right]^{2}-\lambda x_{1}^{2}-(1-\lambda) x_{2}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =-\left[\left(\lambda-\lambda^{2}\right) x_{1}^{2}+\left[(1-\lambda)-(1-\lambda)^{2}\right] x_{2}^{2}-2 \lambda(1-\lambda) x_{1} x_{2}\right] \\
& =-\left[\left(\lambda-\lambda^{2}\right)\left(x_{1}-x_{2}\right)^{2}\right] \leq 0\left[\operatorname{as} 0 \leq \lambda \leq 1, \lambda^{2} \leq \lambda,\left(x_{1}-x_{2}\right)^{2} \geq 0\right] \\
& \Rightarrow \quad f\left[\lambda x_{1}+(1-\lambda) x_{2}\right] \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \Rightarrow f(x)=x^{2} \text { is a convex function. }
\end{aligned}
$$

Example 1.3 Prove that $f(x)=\frac{1}{x}$ is strictly convex for $x>0$ and strictly concave for $x<0$.

Sol.
Here $f(x)=\frac{1}{x}$

$$
\begin{aligned}
& f\left[\lambda x_{1}+(1-\lambda) x_{2}\right]-\lambda f\left(x_{1}\right)-(1-\lambda) f\left(x_{2}\right) \\
& =\frac{1}{\lambda x_{1}+(1-\lambda) x_{2}}-\frac{\lambda}{x_{1}}-\frac{1-\lambda}{x_{2}} \\
& =\frac{\left(\lambda^{2}-\lambda\right)\left(x_{1}-x_{2}\right)^{2}}{x_{1} x_{2}\left[\lambda x_{1}+(1-\lambda) x_{2}\right]}
\end{aligned}
$$

for $0<\lambda<1, \lambda^{2}<\lambda$ and for $x_{1} \neq x_{2},\left(x_{1}-x_{2}\right)^{2}>0$
for $\left(x_{1}, x_{2}\right)>0$ and for $\left(x_{1}, x_{2}\right)<0, x_{1} x_{2}>0$
Also for $\left(x_{1}, x_{2}\right)>0, \lambda x_{1}+(1-\lambda) x_{2}>0$ and for $\left(x_{1}, x_{2}\right)<0, \lambda x_{1}+(1-\lambda) x_{2}<0$
Hance $\frac{\left(\lambda^{2}-\lambda\right)\left(x_{1}-x_{2}\right)^{2}}{x_{1} x_{2}\left[\lambda x_{1}+(1-\lambda) x_{2}\right]}<0$ for all $x_{1}, x_{2}>0$
and $\frac{\left(\lambda^{2}-\lambda\right)\left(x_{1}-x_{2}\right)^{2}}{x_{1} x_{2}\left[\lambda x_{1}+(1-\lambda) x_{2}\right]}>0$ for all $x_{1}, x_{2}>0$
$\Rightarrow \quad f\left[\lambda x_{1}+(1-\lambda) x_{2}\right]<\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right), \forall x_{1}, x_{2}>0$
and

$$
f\left[\lambda x_{1}+(1-\lambda) x_{2}\right]>\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right), \forall x_{1}, x_{2}<0
$$

Thus $f(x)=\frac{1}{x}$ is strictly convex for $x>0$ and strictly concave for $x<0$.

Example 1.4 Show that $f(x)=\left\{\begin{array}{ll}0 & \text { for } \\ a(x-b)\end{array}\right.$ for $\begin{array}{ll}x>b\end{array}$ (Here a $\left.>0\right)$ is a convex function.
Sol. : \quad Here $f(x)$ is a constant function for $x \leq b$ and is a linear function for $x>b$. The curve of
the function is shown below by dark line.

Figure : 1.5
It is clear from above figure 1.5 that for any two points x_{1}, x_{2} of the domain, the line segment joining two points $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$ is above the curve of $f(x)$ for $x_{1}<x<x_{2}$ i.e.

$$
f\left[\lambda x_{1}+(1-\lambda) x_{2}\right] \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right), \quad 0 \leq \lambda \leq 1
$$

Hence the function $f(x)$ is a convex function.
Example 1.5 If $f(x)$ is continuous, $f(x) \geq 0,-\infty<x<\infty$ then the function $\phi(x)=\int_{x}^{\infty}(y-x) f(y) d y$ is a convex function provided the integral converges.

Sol.: Let x_{1} and x_{2} be two points of the domain of $\phi(x) ; x_{1}<x_{2}$ and $x_{3}=\lambda x_{1}+(1-\lambda) x_{2}, 0 \leq \lambda \leq 1$, then we have to show that $\phi\left(x_{3}\right) \leq \lambda \phi\left(x_{1}\right)+(1-\lambda) \phi\left(x_{2}\right)$

We have $\phi\left(x_{3}\right)=\int_{x_{3}}^{\infty}\left[y-\left\{\lambda x_{1}+(1-\lambda) x_{2}\right\}\right] f(y) d y$

$$
\begin{aligned}
& \begin{array}{l}
=\lambda \int_{x_{3}}^{\infty}\left(y-x_{1}\right) f_{1}(y) d y+(1-\lambda) \int_{x_{3}}^{\infty}\left(y-x_{2}\right) f(y) d y \\
\quad=\lambda\left[\int_{x_{3}}^{x_{1}}(y-x) f(y) d y+\int_{x_{1}}^{\infty}\left(y-x_{1}\right) f(y) d y\right. \\
\quad+(1-\lambda)\left[\int_{x_{3}}^{x_{2}}\left(y-x_{2}\right) f(y) d y+\int_{x_{2}}^{\infty}\left(y-x_{2}\right) f(y) d y\right] \\
\leq \lambda\left[\int_{x_{1}}^{\infty}\left(y-x_{1}\right) f(y) d y-\int_{x_{1}}^{x_{3}}\left(y-x_{1}\right) f(y) d y\right]
\end{array}, l
\end{aligned}
$$

$$
+(1-\lambda)\left[\int_{x_{3}}^{x_{2}}\left(y-x_{2}\right) f(y) d y+\int_{x_{2}}^{\infty}\left(y-x_{2}\right) f(y) d y\right]
$$

$$
\because \int_{x_{3}}^{x_{2}}\left(y-x_{2}\right) f(y) d y \leq 0 \text { as }\left(y-x_{2}\right) \leq 0, f(y) \geq 0
$$

and $-\int_{x_{1}}^{x_{3}}\left(y-x_{1}\right) f(y) d y \leq 0$ as $\left(y-x_{1}\right) \geq 0 f(y) \geq 0$
$\therefore \phi\left(x_{3}\right) \leq \lambda \phi\left(x_{1}\right)+(1-\lambda) \phi\left(x_{2}\right)$ for $0 \leq \lambda \leq 1$
Hence $\phi(x)$ is a convex function.

Figure : 1.6

1.9 Quadratic form

A quadratic form in variables $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ is a function of these variables which is defined as

$$
Q(X)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}, \text { where } a_{i j} \text { are constants. }
$$

If $A=\left[a_{i j}\right]=$ a square matrix of order $n \times n$ and $X=\left[x_{1}, x_{2}, \ldots x_{n}\right]^{T}$, then we have.
$Q(X)=X^{T} A X$ or $X^{\prime} A X$
Here the square matrix A can always be written as symmetric matrix because the coifficient of $x_{i} x_{j}$ is $a_{i j}+a_{j i}$ and if A is not symmetric matrix, we can construct a new matrix B with the property $b_{i j}=b_{j i}=\frac{a_{i j}+a_{j i}}{2}$
$X^{T} B X=X^{T} A X\left(\right.$ since $\left.a_{i j}+a_{j i}=b_{j i}+b_{i j}\right)$
Clearly, B is a symmetric matrix, so A can always be assumed a symmetric matrix i.e. in future we shall always assume matrix associated with a quadratie form is symmetric

1.10 Positive and Negativeness of Quadratic form

A quadric form $Q(X)$ is said to be :
(i) Positive definite, if $Q(X)>0$ for all X , except $\mathrm{X}=0$
(ii) Positive semi definite, if $Q(X) \geq 0$ for all X and \exists some $X \neq 0$ for which $Q(X)=0$.
(iii) Negative definite; if $-Q(X)$ is positive definite.
(iv) Negative semi definite ; if $-Q(X)$ is positive semi definite.
(v) Indefinite ; if $Q(X)>0$ for some X and $Q(X)<0$ for some other X .

Examples :

(i) $\quad Q(X)=\left(x_{1}, x_{2}\right)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{1}^{2}+x_{2}^{2}$ is positive definite
(ii) $Q(X)=\left(x_{1}, x_{2}\right)\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]=\left(x_{1}-x_{2}\right)^{2}$ is positive sami definite
(iii) $Q(X)=\left(x_{1}, x_{2}\right)\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ is indefinite.

There are several tests to determine the character of the given quadric form. One of these tests is eigen value test. In this test we find the values of the roots of the characteristic equation $|A-\lambda I|=0$. This equation is a polynomial equation of degree n in λ. Since A is symmetric, so all the roots of this equation i.e. the n values of λ (called eigen values) are real. If
(i) All the n values of λ are positive, then $X^{\prime} A X$ is positive definite.
(ii) Some values of λ are positive and remaining are zero then the quadratic form $X^{\prime} A X$ is positive semi definite.
(iii) All the n values of λ are negative, $X^{\prime} A X$ is negative definite.
(iv) Some values of λ are negative and remaining are zero then $X^{\prime} A X$ is negative semi definite.
(v) Some values of λ are positive, other's are negative then $X^{\prime} A X$ is indefinite.

Another test : If all the successive principal minors of A are >0, then $X^{\prime} A X$ is positive definite and if all the successive principal minors of $(-A)$ are >0, then $X^{\prime} A X$ is negative definite.

1.11 Illustrative Examples

Example 1.6 Test the nature of quadratic form $Q(X)=X^{\prime} A X$
where $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1\end{array}\right], X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$
Sol.: \quad Characteristic equation $|A-\lambda I|=0$

$$
\begin{aligned}
& \Rightarrow \quad\left|\begin{array}{ccc}
3-\lambda & 0 & 0 \\
0 & -2-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right|=0 \\
& \Rightarrow \quad(3-\lambda)(-2-\lambda)(1-\lambda)=0
\end{aligned}
$$

$$
\Rightarrow \quad \lambda=3,-2,1
$$

Since two eigen values are positive, one in negative so $Q(X)$ is indefinite.
Example 1.7 Show that $f(x)=2 x_{1}^{2}+x_{2}^{2}$ is a convex function over R^{2}.
Sol. : $\quad f(X)$ is a quadratic form, so in matrix form it can be written as

$$
\left.\begin{array}{l}
\qquad f(X)=\left(x_{1} x_{2}\right)\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
\text { Here } A=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \\
\\
\end{array} \begin{array}{ll}
\Rightarrow & |A-\lambda I|=0 \\
0 & 1-\lambda
\end{array}\right]=0, \begin{array}{cc}
2-\lambda & 0 \\
0 & (2-\lambda)(1-\lambda)=0 \\
& \Rightarrow \quad \lambda=2,1
\end{array}
$$

$\Rightarrow \quad$ All the two eigen values are positive, therefore $f(x)$ is positive definite. A positive definitive quadratic form is strictly convex function so $f(x)$ is a convex function over R^{2}. It is clear from the following theorem.

1.12 Theorems on Quadratic form and Convex Function

Theorem 1.10 A positive semi definite quadratic form $f(X)=X^{T} A X$ is a convex function over R^{n}.
Proof: \quad Suppose x_{1}, x_{2} be two points of R^{n}, then for $0 \leq \lambda \leq 1$

$$
\begin{aligned}
f\left(\lambda x_{1}+(1-\lambda) X_{2}\right)= & f\left[X_{2}+\lambda\left(X_{1}-X_{2}\right)\right] \\
= & {\left[X_{2}+\lambda\left(X_{1}-X_{2}\right)\right]^{T} A\left[X_{2}+\lambda\left(X_{1}-X_{2}\right)\right] } \\
= & X_{2}^{T} A X_{2}+\lambda X_{2}^{T} A\left(X_{1}-X_{2}\right)+\lambda\left(X_{1}-X_{2}\right)^{T} A X_{2} \\
& +\lambda^{2}\left(X_{1}-X_{2}\right)^{T} A\left(X_{1}-X_{2}\right) \\
& {\left[\because\left[X_{2}^{T} A\left(X_{1}-X_{2}\right)\right]^{T}=X_{2}^{T} A\left(X_{1}-X_{2}\right)\right.} \\
= & \left.\left(X_{1}-X_{2}\right)^{T} A^{T} X_{2}\right] \\
= & X_{2}^{T} A X_{2}+2 \lambda X_{2}^{T} A\left(X_{1}-X_{2}\right)+\lambda^{2}\left(X_{1}-X_{2}\right)^{T} A\left(X_{1}-X_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq X_{2}^{T} A X_{2}+2 \lambda X_{2}^{T} A\left(X_{1}-X_{2}\right)+\lambda\left(X_{1}-X_{2}\right)^{T} A\left(X_{1}-X_{2}\right) \\
& \quad\left(\because 0 \leq \lambda \leq 1 \text { so } \lambda^{2} \leq \lambda, f(X) \text { is positive semi definite }\right) \\
& \leq X_{2}^{T} A X_{2}+2 \lambda X_{2}^{T} A X_{1}-2 \lambda X_{2}^{T} A X_{2}+\lambda X_{1}^{T} A X_{1}-\lambda X_{1}^{T} A X_{2} \\
& \quad-\lambda X_{2}^{T} A X_{1}+X_{2}^{T} A X_{2} \\
& \leq \lambda X_{1}^{T} A X_{1}+(1-\lambda) X_{2}^{T} A X_{2} \quad\left[\because\left[X_{1}^{T} A X_{2}\right]^{T}=X_{1}^{T} A X_{2}\right] \\
& \leq \lambda f\left(X_{1}\right)+(1-\lambda) f\left(x_{2}\right)
\end{aligned}
$$

Thus $f(X)=X^{T} A X$ is a convex function.
Theorem 1.11 A positive definite quadratic form $f(X)=X^{T} A X$ is a strictly convex function over R^{n}.
Proof: $\quad \because f(X)=X^{T} A X$ is positive definite quadratic form so $0<\lambda<1 \Rightarrow \lambda^{2}<\lambda$ and

$$
\lambda^{2}\left(X_{1}-X_{2}\right)^{T} A\left(X_{1}-X_{2}\right)<\lambda\left(X_{1}-X_{2}\right)^{T} A\left(X_{1}-X_{2}\right)
$$

using this in the proof of above theorem, we get

$$
\begin{aligned}
& f\left[\lambda X_{1}+(1-\lambda) X_{2}\right]<\lambda f\left(X_{1}\right)+(1-\lambda) f\left(X_{2}\right) \\
\Rightarrow & f(X) \text { is strictly convex function over } R^{n} .
\end{aligned}
$$

Theorem 1.12 A negative definite (negative semi definite) quadratic form $f(X)=X^{T} A X$ is a strictly concave (concave) function over R^{n}.

Proof: $\quad \because 0<\lambda<1 \Rightarrow \lambda^{2}<\lambda$ and $f(x)$ is negative definite

$$
\Rightarrow \lambda^{2}\left(X_{1}-X_{2}\right)^{T} A\left(X_{1}-X_{2}\right)>\lambda\left(X_{1}-X_{2}\right)^{T} A\left(X_{1}-X_{2}\right) \text { and } 0 \leq \lambda \leq 1, \lambda^{2} \leq \lambda, f(x)
$$

is negative semi definite

$$
\Rightarrow \quad \lambda^{2}\left(X_{1}-X_{2}\right)^{T} A\left(X_{1}-X_{2}\right) \geq \lambda\left(X_{1}-X_{2}\right)^{T} A\left(X_{1}-X_{2}\right)
$$

using it in the proof of theorem 1.10 we get that $f(x)$ is strictly concave (concave) function over R^{n}.

1.13 Self Learning Exercise-II

1. Define convex function.
2. Define quadratic form.
3. What is convexity of quadratic form?
4. What is the relation between convexity and cocavity of a function?
5. What is Eigen values test for the positive and negativeness of quadratic form?
6. Write principal minor test for positive and negativeness of quadratic form.
7. Write geometric meaning of convex and concave functions.
8. Write the quadratic form whose associated matrix is $\left[\begin{array}{rrc}1 & 3 & 5 \\ 3 & 6 & -3 \\ 5 & -3 & 14\end{array}\right]$

1.14 Summary

In this unit, the concepts of set of points on the line in E^{2} and on the plane in E^{3} are generalised to n-dimensional space E^{n}. We call it as hyperplane. A hyperplane is a separating hyperplane if whole of sets lies in one half of space produced by hyperplane. A separating hyperplane is called supporting hyperplane if it passes through a point of S. The optimal hyperplane of a L.P.P is a supporting hyperplane of a convex set of feasible solution. In the second part of the unit a convex or concave function is defined on convex set and discussed its properties. In the quadratic form and its relation with convex function have been studied.

1.15 Answers to Self-Learning Exercise-I

1. $\oint 1.2(i i i)$
2. $\oint 1.2(v i)$
3. $\quad \oint 1.2(v i i)$
4. $\oint 1.2(v i i i)$
5. $\oint 1.4$

1.16 Answers to Self-Learning Exercise-II

1. $\oint 1.6$
2. Theorem 1.10
3. $\oint 1.10$
4. $\oint 1.6$
5. $\oint 1.9$

1.17 Exercises

1. Show that a hyperplane is a closed set
2. Prove that the optimal hyperplane in a l.p.p. is a supporting hyperplane to the convex set of feasible solutions.
3. If $f(x)$ is a convex function over the non-negative orthart of E^{n}, then show that

$$
S=\{X: f(x) \leq b, X \geq 0\} \text { is a convex set. }
$$

4. Show that $f(x)=\left\{\begin{array}{cc}b(x-\alpha) & b<0, \\ 0 & x<\alpha \\ 0 & x \geq \alpha\end{array}\right.$ is a convex set for all x.
5. Show that $f(x)=\left\{\begin{array}{ll}a(x-\alpha), & a>0, \\ b(x-\alpha), & b<0, x \leq \alpha\end{array}\right.$ is a convex function
6. Prove that $f(x)=C X+X^{T} D X$ is strictly convex iff $X^{T} D X$ is positive definite.
7. Show that $f\left(x_{1}, x_{2}\right)=x_{1} \cdot x_{2}$ is not a convex set over E^{2}.
8. Show that a linear function is convex as well as concave.
9. Show that following function are convex.
(i) $\quad f(x)=|x|$
(ii) $f(x)=e^{x}$

Unit - 2
 Revised Simplex Method

Structure of the Unit

2.0 Objective
2.1 Introduction
2.2 Revised Simplex Method (Standard form-I)
2.3 Revised Simplex Algorithm (Standard form-I)
2.4 Illustrative Examples
2.5 Revised Simplex method (Standard from-II)
2.6 Illustrative Examples
2.7 Self-Learning Exercise - I
2.8 Exercise
2.9 Bounded variable problems
2.10 Illustrative Examples
2.11 Self-Learning Exercise - II

2.12 Exercise

2.0 Objective

A linear programming problem with m constraints and n variable is defined as :
Max. $Z=c_{1} x_{1}+c_{2} x_{2}+\ldots .+c_{n} x_{n}$
s.t. $\quad a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\ldots .+a_{2 n} x_{n}=b_{2}$
.......
.......
$a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}$
$x_{1}, x_{2}, x_{3} \ldots \ldots . x_{n} \geq 0$
In the under graduate classes we have studied simplex method to solve these types of problems. For computer programming purposes, our objective is to find a method which use less entries and operations then simplex method. The revised simplex method fulfills this objective.

2.1 Introduction

In the simplex method if $B=\left(\beta_{1}, \beta_{2}, \ldots \beta_{m}\right)$ be the basis of l.p.p., $X_{B}=\left(x_{\beta_{1}}, x_{\beta_{2}}, \ldots . x_{\beta_{m}}\right)$ the corresponding B.F.S. and $C_{B}=\left(C_{B_{1}}, C_{B_{2}}, \ldots C_{B_{m}}\right)$, corresponding price vectors, then we have

$$
\begin{equation*}
\beta_{1} x_{B_{1}}+\beta_{2} x_{B_{2}}+\ldots \beta_{m} x_{B_{m}}=b \tag{a}
\end{equation*}
$$

$$
\text { i.e. } \quad B \bar{X}_{B}=b \text { or } \bar{X}_{B}=B^{-1} b
$$

$$
\begin{equation*}
\beta_{1} y_{i j}+\beta_{2} y_{2} j+\ldots \ldots+\beta_{m} y_{m j}=\alpha_{j} \tag{b}
\end{equation*}
$$

$$
\text { i.e. } B y_{j}=\alpha_{j} \text { or } y_{j}=B^{-1} \alpha_{j} \text {, in particular } y_{j}=B^{-1} B_{j}=e_{j}
$$

(c) $z=C_{B_{1}} x_{B_{1}}+C_{B_{2}} x_{B_{2}}+\ldots .+C_{B_{m}} x_{B_{m}}$

$$
\text { i.e. } z=C_{B} X_{B}=C_{B} B^{-1} b \text { as } X_{B}=B^{-1} b
$$

(d)

$$
\begin{gather*}
z_{j}-c_{j}=C_{B_{1}} y_{1 j}+C_{B_{2}} y_{2 j}+\ldots+C_{B_{m}} y_{m_{j}}-C_{j} \\
=C_{B} y_{j}-C_{j}=C_{B} B^{-1} \alpha_{j}-C_{j} \tag{1}
\end{gather*}
$$

In the simplex procedure we get the following important fact :
Not all the elements of simplex tableau used in calculation at any iteration. Suppose that, at the beginning of an iteration, the inverse B^{-1} of the current basis is known. This leads to a direction calculation of $z_{j}-c_{j}$, corresponding solution of the problem and the value of the objective function with the help of (1). The different steps in calculating the next iteration may then be realised as follows :
(i) Calculate $y_{k}=B^{-1} \alpha_{k}$. If $y_{k} \leq 0$, there is no finite optimum solution exists. If atleast one element of y_{k} is >0 the application of exit criterion (calculation of $\operatorname{Min} \theta=\operatorname{Min} \frac{x_{B i}}{y_{i k}} y_{i k}>0$) of the simplex method will determine the vector B_{l} to be removed from the present basis.
(ii) Calculate the inverse of new basis i.e. $\left(B^{\prime}\right)^{-1}$ (Obtained by replacing β_{l} by α_{k} inB) with the help of old inverse of the basis i.e. B^{-1}.
(iii) Calculate the new values of $z_{j}-c_{j}$ with the help of(1) and the basis inverse $\left(B^{\prime}\right)^{-1}$.
(iv) Calculate the new solution and the new value of the objective function with the help of (1) and $\left(B^{\prime}\right)^{-1}$

From above remarks, it follows that to apply the simplex method it is sufficient to transform the inverse of the basis (So as to get the inverse of the new basis) and to calculate from inverse only, the necessary guantities, $z_{j}-c_{j}, y_{k}$, value of the objective function and the solution of the problem. The revised simplex method uses this principle.

2.2 Revised Simplex Method (Standard Form - I)

Consider an l.p.p. as Max $Z=C X$, subject to $A X=b, X \geq 0$. In the revised simplex method, the objective function is treated as an additional coustraints, which inereases the number of coustraint by one. Instead of cousidering the problem in the above form, we consider the problem here as to maximise z subject to

$$
A X=b
$$

and

$$
z-C X=0, X \geq 0
$$

which can be written in the expanded form as

$$
\begin{align*}
a_{11} x_{1}+a_{12} x_{2}+\ldots \ldots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots \ldots+a_{2 n} x_{n} & =b_{2} \\
z-C_{1} x_{1}-C_{2} x_{2}-\quad-C_{n} x_{n} & =0 \tag{3}\\
x_{j} & \geq 0, \quad j=1,2,3, \ldots, n
\end{align*}
$$

The system (2) or (3) can also be written as

$$
\left[\begin{array}{cc}
0 & A \tag{4}\\
1 & -C
\end{array}\right]\left[\begin{array}{l}
Z \\
X
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

Equations (2), (3) and (4) are referred to as standard form I of the problem for the revised simplex method. In this form an identify matrix in available is the original l.p.p. without using artificial variables.

In the standard form I, corresponding to each activity vector α_{j} of A we can define a new $(m+1)$ component column vector given by $\alpha_{j}^{(1)}=\left[\alpha_{j}, C_{j}\right], j=1,2, \ldots, n$

Also for vectors of basis, we have $\beta_{i}^{(1)}=\left[\beta_{i}, C_{B_{i}}\right]$ and corresponding to b, we can define $(m+1)$ component vector

$$
b^{(1)}=[b, 0] .
$$

Note that in (3) the column corresponding to Z is the $(m+1)$ component unit vector, i.e. e_{m+1}.

Basis and Inverse of the Basis :

A basis matrix for the set of equations (3) will be of order ($\mathrm{m}+1$). Actually we are in need of a basic feasible solution of the equations (3) with one of the basic variable as Z which is unrestricted in sign and the other m basic variables $x_{B_{i}} \geq 0$ such that Z is as large as possible. We always keep the column e_{m+1}. corresponding to z in the $(m+1)^{\text {th }}$ column of the basis matrix.

Let B_{1} be the basis matrix of order $(m+1)$ and containing e_{m+1}, so that

$$
\left.\begin{array}{rl}
B_{1} & =\left(\beta_{1}^{(1)}, \beta_{2}^{(1)}, \ldots \beta_{m}^{(1)}, e_{m+1}\right) \\
& =\binom{\beta_{1} \beta_{2} \ldots \ldots \ldots \ldots \beta_{m}}{-C_{B_{1}}-C_{B_{2}} \ldots \ldots .} . C_{B_{m}} 1 \tag{5}
\end{array}\right) .
$$

Since B_{1} is basis matrix, the vectors $\beta_{1}^{(1)}, \beta_{2}^{(1)}, \ldots \beta_{m}^{(1)}, e_{m+1}$ are linearly independent. So a subset $\beta_{1}^{(1)}, \beta_{2}^{(1)}, \ldots . \beta_{m}^{(1)}$ are also linearly independent and hence the vectors $\beta_{1}, \beta_{2}, \ldots . \beta_{m}$ will also be linearly
independent and therefore these can be considered as to form basis matrix for $A \bar{X}=b$, i.e. for the original problem. Hence representation (5) can be written as

$$
B_{1}=\left[\begin{array}{ll}
B & 0 \\
-C_{B} & 1
\end{array}\right],
$$

where $B=\left(\beta_{1}, \beta_{2}, \ldots . \beta_{m}\right)$ is the basis for the system $A X=b$. Thus every basis matrix of the revised problem can be written in the form of the basis matrix B of $A X=b$. To proceed in revised simplex method, we need inverse of the basis. We find the inverse of B_{1} by partitioned method.

Let $\quad B_{1}^{-1}=\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right]$, then $\left[\begin{array}{ll}B & 0 \\ -C_{B} & 1\end{array}\right]\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right]=\left[\begin{array}{ll}I & 0 \\ 0 & I\end{array}\right]$
i.e. $\left[\begin{array}{ll}B \alpha & B \beta \\ -C_{B} \alpha+\delta & -C_{B} \beta+\delta\end{array}\right]=\left[\begin{array}{ll}I & 0 \\ 0 & I\end{array}\right]$
which gives $\alpha=B^{-1}, \beta=0, \gamma=C_{B} B^{-1}, \delta=1$

$$
\therefore \quad B_{1}^{-1}=\left[\begin{array}{ll}
B^{-1} & 0 \\
C_{B} B^{-1} & 1
\end{array}\right] .
$$

Now consider the product of B_{1}^{-1} and any $\alpha_{j}^{(1)}$, we get

$$
B_{1}^{-1} \alpha_{j}^{(1)}=\left[\begin{array}{ll}
B^{-1} & 0 \tag{6}\\
C_{B} B^{-1} & 1
\end{array}\right]\left[\begin{array}{l}
\alpha_{j} \\
-c_{j}
\end{array}\right]=\left[\begin{array}{l}
B^{-1} \alpha_{j} \\
C_{B} B^{-1} \alpha_{j}-C_{j}
\end{array}\right]=\left[\begin{array}{l}
y_{i} \\
z_{j}-c_{j}
\end{array}\right] .
$$

The first m components of the product are the m components of y_{j} and the last i.e. $(m+1)^{\text {th }}$ component in the product is $z_{j}-c_{j}$ which is required for the procedure of optimization.

Now we consider the product of B_{1}^{-1} with $b^{(1)}$, we get

$$
X_{B}^{(1)}=B_{1}^{-1} b^{(1)}=\left[\begin{array}{ll}
B^{-1} & 0 \tag{7}\\
C_{B} B^{-1} & 1
\end{array}\right]\left[\begin{array}{l}
b \\
0
\end{array}\right]=\left[\begin{array}{l}
B^{-1} b \\
C_{B} B^{-1} b
\end{array}\right]=\left[\begin{array}{l}
X_{B} \\
Z
\end{array}\right]
$$

The first m components of $\bar{X}_{B}^{(1)}$ are the elements of the basic feasible solution of the originall.p.p. and the last i.e. $(m+1)^{\text {th }}$ component is the value of the objective function of the problem. It gives the reason for treating objective function as one extra constraint.

Computational Proceedure for Standard Form-I :-

In the standard form-I, the identity matrix is present in A without using artificial variables. For revised simplex method initially we have the basis matrix

$$
\begin{align*}
& B_{1}=\left[\begin{array}{ll}
B & 0 \\
-\bar{C}_{B} & 1
\end{array}\right]=\left[\begin{array}{ll}
I_{m} & 0 \\
-C_{B} & 1
\end{array}\right] \\
\therefore & B_{1}^{-1}=\left[\begin{array}{ll}
B^{-1} & 0 \\
\bar{C}_{B} B^{-1} & 1
\end{array}\right]=\left[\begin{array}{ll}
I_{m} & 0 \\
\bar{C}_{B} & 1
\end{array}\right] \tag{8}
\end{align*}
$$

Further, if the columns from A constituting I_{m}, i.e. the initial basis of $A \bar{X}=b$, correspond to slack or surplus variables, then $C_{B}=0$.

The initial basic solution in revised simplex method is given by

$$
X_{B}^{(1)}=\left[\begin{array}{ll}
I_{m} & 0 \\
\bar{C}_{B} & 1
\end{array}\right]\left[\begin{array}{l}
b \\
0
\end{array}\right]=\left[\begin{array}{l}
b \\
\bar{C}_{B} b
\end{array}\right],
$$

and it is feasible because the first m components are the elements of $b \geq 0$ and the $(m+1)^{t h}$ component, i.e. z can be of any sign. We now have a B.F.S. of (3) and also the inverse of the corresponding basis matrix.

To improve a B.F.S. we compute $z_{j}-c_{j}$ corresponding to every $\alpha_{j}^{(1)}$ not in the basis B_{1} by taking inner multiplication of $(m+1)^{\text {th }}$ row of B_{1}^{-1} with each $\alpha_{j}^{(1)}$.

If $\min _{i}\left\{\left(z_{j}-c_{j}\right) z_{j}-c_{j}<0 \mid\right\}=z_{k}-c_{k}$, then vector $\alpha_{k}^{(1)}$ is taken a vector to enter into basis. Now we wish to determine a vector from old basis to be deleted, for this we find $\theta=\operatorname{Min}_{y_{k k}>0}\left\{\frac{x_{B i}}{y_{i k}}\right\}$ and y_{k} is determined as $y_{k}^{(1)}=B_{1}^{-1} \alpha_{k}^{(1)}=\left(y_{k}, z_{k}-c_{k}\right)$. Let $\theta=\underset{y_{k}>0}{\operatorname{Min}}\left\{\frac{x_{B i}}{y_{i k}}\right\}=\frac{x_{\infty}}{y_{l k}}$, we remove $l^{\text {th }}$ column of B_{1} i.e. β_{l}. At this stage it must be remembered that we wish to have z always in the basis, therefore the $(m+1)^{\text {th }}$ column of B_{1} is never be a candidate for removal.

After obtaining the vector to enter and to leave the basis we are now ready to perform the transformation to obtain the new basis inverse and the new solution. In this method B_{1}^{-1} gives all necessary information at each iteration. Hence we transform only B_{1}^{-1}. Let the now inverse is denoted by B_{1}^{-1}. The elements of new inverse and new improved solution will be obtained by transforming the elements of B_{1}^{-1} and X_{B}. The solution thus obtained will be improved. Repeating this process interatively unless we get all $z_{j}-c_{j} \geq 0$ (as in the simplex method) we can get the optimal basic feasible solution, if it exists.

Tableau form of the revised simplex method standard form-I

Variables	Solution	B_{1}^{-1}					$y_{k}^{(1)}=B_{1}^{-1} \alpha_{k}^{(1)}$	$\frac{X_{B i}}{y_{i k}}, y_{i k}>0$
in	$X_{B}^{(1)}$	$\gamma_{1}^{(1)}$	$\gamma_{2}^{(1)}$	$\gamma_{m}^{(1)}$	$\gamma_{m+1}^{(1)}$		
B.F.S								
x_{1}	$x_{B_{1}}$	\ldots	\ldots	\ldots	$y_{1 k}$
x_{2}	$x_{B_{2}}$	\cdots	\cdots	$y_{2 k}$
......
......
......
x_{m}	$x_{B_{m}}$	\ldots	\ldots	\ldots	$y_{m k}$
z	z	\ldots	\ldots	$z_{k}-c_{k}$	$\theta=\operatorname{Min} \frac{X_{B i}}{y_{i k}}$

Here $\gamma_{1}^{(1)} \gamma_{2}^{(1)} \ldots \ldots \gamma_{m+1}^{(1)}$ are the respective columns of the inverse of basis B_{1}^{-1}. In the column $X_{B}^{(1)}$ we write values of the variables. In the first table $B_{1}=I_{m}, B_{1}^{-1}=I_{m}, X_{B}^{(1)}=b^{(1)}$ and $\gamma_{m+1}^{(1)}=e_{m+1}$.

2.3 Revised Simplex Algorithm (Standard Form - I)

Step 1 : If the problem is in minimization, write it into maximization form.
Step2 : Write the given 1.p.p. in standard form I for revised simplex method i.e. write the objective function as one coustraint.

Step 3 : Write the initial basis B_{1} and its inverse B_{1}^{-1} by using (8).
Step 4 : Calculate the initial B.F.S. $X_{B}^{(1)}=B_{1}^{-1} b^{(1)}$
Step 5: Calculate $z_{j}-c_{j}$ for all vectors which are not in the basis. For this, multiply the last row of B_{1}^{-1} with corresponding column $\alpha_{j}^{(1)}$. If atleast one of the $z_{j}-c_{j}<0$ then select the entering vector with $\min \left(z_{j}-c_{j}\right)$. Let it be $z_{k}-c_{k}$, then take $\alpha_{k}^{(1)}$ as the entering vector for the basis.

Step 6: Calculate $y_{k}^{(1)}=B_{1}^{-1} \alpha_{k}^{(1)}$ and prepare the revised simplex tableau as shown above. Calculate the last column of the tableau i.e. the column of $\frac{x_{B i}}{y_{i k}}, y_{i k}>0$.

Select the minimum $\left(\frac{x_{B i}}{y_{i k}}\right)$, if this minimum occurs in the $r^{\text {th }}$ row, then delet the $r^{\text {th }}$ vector of the basis.

Step 7 : Form the new basis by introducting $\alpha_{k}^{(1)}$ and deleting $\beta_{r}^{(1)}\left(r^{t h}\right.$ vector of the basis). Form the next revised simplex tableau using transformations

$$
\bar{y}_{i j}=y_{i j}-\frac{y_{r j}}{y_{r k}} y_{i k}, \bar{y}_{r j}=\frac{y_{l j}}{y_{r k}}
$$

Step 8 : Repeat the steps 5,6, 7 iteratively until we get an optimal solution or there is an indication for unbounded solution.

2.4 Illustrative Examples

Example 2.1: Solve the following linear programming problem by revised simplex method :
$\operatorname{Max} \mathrm{z}=2 x_{1}+x_{2}$
St. $3 x_{1}+4 x_{2} \leq 6$

$$
\begin{array}{r}
6 x_{1}+x_{2} \leq 3 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Solution : Introducing slack variables x_{3} and x_{4} the problem can be written as :
$\operatorname{Max} \mathrm{z}=2 x_{1}+x_{2}+0 \cdot x_{3}+0 \cdot x_{4}$
s.t. $\quad 3 x_{1}+4 x_{2}+1 . x_{3}+0 x_{4}=6$

$$
\begin{array}{r}
6 x_{1}+x_{2}+0 . x_{3}+1 x_{4}=3 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

Since there are two equations and two slack variables x_{3}, x_{4} yield two unit vectors for the basis of $A \bar{X}=b$, so the basis with identity matrix is available without using artificial variables. The problem is in standard form I is as :

Find z such that

$$
\begin{aligned}
& 3 x_{1}+4 x_{2}+x_{3}+0 \cdot x_{4}=6 \\
& 6 x_{1}+x_{2}+0 x_{3}+x_{4}=3 \\
& z-2 x_{1}-x_{2}-0 x_{3}-0 x_{4}=0
\end{aligned}
$$

$$
\begin{gathered}
X^{(1)} \\
\text { or } \quad \begin{array}{ccccc}
e_{3} & \alpha_{1}^{(1)} & \alpha_{2}^{(1)} & \alpha_{3}^{(1)} & \alpha_{4}^{(1)} \\
{\left[\begin{array}{ccccc}
0 & 3 & 4 & 1 & 0 \\
0 & 6 & 1 & 0 & 1 \\
1 & -2 & -1 & 0 & 0
\end{array}\right]}
\end{array}\left[\begin{array}{c}
Z \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
6 \\
3 \\
0
\end{array}\right], x_{1}^{(1)}, x_{2}, x_{3}, x_{4} \geq 0
\end{gathered}
$$

Here $\quad B_{1}=$ first basis $=\left[\begin{array}{ll}I_{2} & 0 \\ -\bar{C}_{B} & 1\end{array}\right]$, therefore $B_{1}^{-1}=\left[\begin{array}{ll}I_{2} & 0 \\ \bar{C}_{B} & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
as $\bar{C}_{B}=(0,0)$, price vector corresponding the slack variables x_{3}, x_{4} and I_{2} is a basis matrix of original problem.

Now calculate $B_{1}^{-1} b^{(1)}$ and put in $X_{B}^{(1)}$ column of revised simplex table. Then multiply $(m+1)^{\text {th }}$ row i.e. 3rd row of B_{1}^{-1} with every $\alpha_{j}^{(1)}$ not in basis B_{1} i.e. with $\alpha_{1}^{(1)}$ and $\alpha_{2}^{(1)}$ to get $z_{j}-c_{j}$. Thus

$$
z_{1}-c_{1}=(0,0,1)\left[\begin{array}{l}
3 \\
6 \\
-2
\end{array}\right]=(-2), z_{2}-c_{2}=(0,0,1)\left[\begin{array}{l}
4 \\
1 \\
-1
\end{array}\right]=(-1)
$$

$\because z_{j}-c_{j} \not \geq 0 \forall j$, therefore the BFS under test is not optimal. Now $Z_{k}-C_{k}=\operatorname{Min}$ $\left(Z_{j}-C_{j}\right)=\operatorname{Min}\{-2,-1\}=-2\left(Z_{1}-C_{1}\right)$, hance to improve the BFS we introduce the vector $\alpha_{1}^{(1)}$ into the basis. To determine the departing vector form old basis multiplying $\alpha_{1}^{(1)}$ with B_{1}^{-1} to get $y_{1}^{(1)}$ and write in the before last column of the table and then $\underset{\rightarrow}{\text { calculate }} \theta=\operatorname{Min}_{i}\left\{\frac{X_{B i}}{y_{i k}}, y_{i k}>0\right\}$ for first m elements of $y_{1}^{(1)}$ which gives $\theta=\frac{1}{2}$, corresponding to x_{4}. So vector $\alpha_{4}^{(1)}$ will be deleted and $\alpha_{1}^{(1)}$ will be introduced.

Revised Simplex Table - 1

Variables in B.F.S	Solution	B_{1}^{-1}			$y_{1}^{(1)}$	$\frac{x_{B i}}{y_{i k}}, y_{i k}>0$
		$\gamma_{1}^{(1)}$	$\gamma_{2}^{(1)}$	$\gamma_{3}^{(1)}$		
x_{3}	6	1	0	0	3	$\frac{6}{3}=2$
x_{4}	3	0	1	0	6	$\frac{3}{6}=\frac{1}{2} \rightarrow$
z	0	0	0	1	-2 \downarrow	$\theta=\operatorname{Min} \frac{X_{B i}}{y_{i k}}=\frac{1}{2}$

The new basis is $\left(\alpha_{3}^{(1)}, \alpha_{1}^{(1)}, e_{3}\right)$
Now transform this table by the transformation used in simplex method to get the next table.

Revised Simplex Table - 2

Variables in B.F.S	Solution	B_{1}^{-1}			$\gamma_{2}^{(1)}$	$\frac{x_{B i}}{y_{i k}}, y_{i k}>0$
		$\gamma_{1}^{(1)}$	$\gamma_{2}^{(1)}$	$\gamma_{3}^{(1)}$		
x_{3}	$\frac{9}{2}$	1	$-\frac{1}{2}$	0	$\frac{7}{2}$	$\frac{9}{7} \rightarrow$
x_{1}	$\frac{1}{2}$	0	$\frac{1}{6}$	0	$\frac{1}{6}$	3
z	1	0	$\frac{1}{3}$	1	$-\frac{2}{3}$ \downarrow	$\therefore \theta=\frac{9}{7}$

Now proceeding in the same manner, we get

$$
z_{2}-c_{2}=\left(0, \frac{1}{3}, 1\right)\left[\begin{array}{c}
4 \\
1 \\
-1
\end{array}\right]=-\frac{2}{3}, z_{4}-c_{4}=\left(0, \frac{1}{3}, 1\right)\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\frac{1}{3}
$$

$\because \quad z_{j}-c_{j} \nsupseteq 0, \forall j$, therefore above B.F.S. is not optimal.
$\min \left(z_{j}-c_{j}\right)=-\frac{2}{3}\left(\right.$ for $\left.\alpha_{2}^{(1)}\right)$, so the vector $\alpha_{2}^{(1)}$ will be introduced in the basis.
Now $\quad y_{2}^{(1)}=B_{1}^{-1} \alpha_{2}^{(1)}=\left(\frac{7}{2}, \frac{1}{6},-\frac{2}{3}\right), \therefore \quad \theta=\frac{9}{7}\left(\alpha_{3}^{(1)}\right)$
Therefore $\alpha_{3}^{(1)}$ will be replaced by $\alpha_{2}^{(1)}$.

Vevised Simplex Table - 3						
	B_{1}^{-1}					
B.F.S		$\gamma_{1}^{(1)}$	$\gamma_{2}^{(1)}$	$\gamma_{3}^{(1)}$		
x_{2}		$\frac{2}{7}$	$-\frac{1}{7}$	0		
x_{1}	$\frac{2}{7}$	$-\frac{1}{21}$	$\frac{4}{21}$	0		
z	$\frac{13}{7}$	$\frac{4}{21}$	$\frac{5}{21}$	1		

For non basis variables

$$
\begin{aligned}
& z_{3}-c_{3}=\left(\frac{4}{21}, \frac{5}{21}, 1\right)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\frac{4}{21} \\
& z_{4}-c_{4}=\left(\frac{4}{21}, \frac{5}{21}, 1\right)\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\frac{5}{21} \\
& \because \quad z_{j}-c_{j} \geq 0, \forall j, \text { therefore above BFS in optional. The optimal solution is } \\
& x_{1}=\frac{2}{7}, x_{2}=\frac{9}{7} \quad \operatorname{Max} z=\frac{13}{7},
\end{aligned}
$$

Example 2: Solve the following 1.p.p. using revised simplex method :

$$
\begin{array}{ll}
\text { Max z } & 3 x_{1}+6 x_{2}+2 x_{3} \\
\text { S.t } & 3 x_{1}+4 x_{2}+x_{3} \leq 2 \\
& x_{1}+3 x_{2}+2 x_{3} \leq 1 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Solution : Introducing slack variable x_{4}, x_{5} and making objective function as an additional third constraint the problem can be written into standard form-I for revised simplex method as :

$$
\begin{aligned}
& \begin{array}{l}
3 x_{1}+4 x_{2}+x_{3}+x_{4}+0 x_{5}=2 \\
x_{1}+3 x_{2}+2 x_{3}+0 x_{4}+x_{5}=1 \\
z-3 x_{1}-6 x_{2}-2 x_{3}-0 x_{4}-0 x_{5}=0 \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{array} \\
& X_{B}^{(1)} \\
& \text { or } \left.\begin{array}{l}
e_{3} \alpha_{1}^{(1)} \\
{\left[\begin{array}{ccccc}
0 & 3 & 4 & 1 & 1 \\
0 & 1 & 3 & 2 & 0 \\
1 & -3 & -6 & -2 & 0
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
Z \\
x_{1}^{(1)} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
b^{(1)} \\
2 \\
1 \\
0
\end{array}\right] \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0 \\
& \text { Here initial Basis } B_{1}=\left[\begin{array}{ll}
I_{2} & 0 \\
-c_{B} & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad B_{1}^{-1}=\left[\begin{array}{ll}
I_{2} & 0 \\
c_{B} & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \\
& \text { Initial BFS } \bar{X}_{B}^{(1)}=B_{1}^{-1} b^{(1)}=b^{(1)}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

For non basic variables x_{1}, x_{2}, x_{3} we have

$$
\begin{aligned}
& z_{1}-c_{1}=(0,0,1)\left[\begin{array}{l}
3 \\
1 \\
-3
\end{array}\right]=-3 \\
& z_{2}-c_{2}=(0,0,1)\left[\begin{array}{l}
4 \\
3 \\
-6
\end{array}\right]=-6 \\
& z_{3}-c_{3}=(0,0,1)\left[\begin{array}{l}
1 \\
2 \\
-2
\end{array}\right]=-2
\end{aligned}
$$

Since $z_{j}-c_{j} \geq 0, \forall j$, therefore above BFS is not optimal. $\operatorname{Min}\left(z_{j}-c_{j}\right)=-6$ (for $\alpha_{2}^{(1)}$), hence to improve above B.F.S. we take $\alpha_{2}^{(1)}$ as introducing vector.

Now $y_{2}^{(1)}=B_{1}^{-1} \alpha_{2}^{(1)}=\alpha_{2}^{(1)}=\left[\begin{array}{l}4 \\ 3 \\ -6\end{array}\right]$
Revised Simplex Table - 1

Variables in B.F.S	Solution	B_{1}^{-1}			$\gamma_{2}^{(1)}$	$\frac{X_{B i}}{y_{i k}}, y_{i k}>0$
		$X_{B}^{(1)}$	$\gamma_{1}^{(1)}$	$\gamma_{2}^{(1)}$		
x_{4}	2	1	0	0	4	$\frac{2}{4}$
x_{5}	1	0	1	0	$\boxed{3}$	$\frac{1}{3}$
z	0	0	0	1	-6	$\theta=\operatorname{Min} \frac{x_{B i}}{y_{i k}}=\frac{1}{3}$

The departing vector is $\alpha_{5}^{(1)}$. key element $=3$

Revised Simplex Table - 2

Variables in B.F.S	Solution	B_{1}^{-1}			$y_{2}^{(1)}$	$\frac{X_{B i}}{y_{i k}}, y_{i k}>0$
		$X_{B}^{(1)}$	$\gamma_{1}^{(1)}$	$\gamma_{2}^{(1)}$		
x_{4}	$\frac{2}{3}$	1	$\frac{-4}{3}$	0	$\frac{5}{3}$	$\frac{2 / 3}{5 / 3}=\frac{2}{5} \rightarrow$
x_{2}	$\frac{1}{3}$	0	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{1 / 3}{1 / 3}=1$
z	2	0	2	1	-1	$\operatorname{Min} \frac{x_{B i}}{y_{i k}}=\frac{2}{5}$

For non basis variables

$$
\begin{aligned}
& z_{1}-c_{1}=(0,2,1)\left[\begin{array}{l}
3 \\
1 \\
-3
\end{array}\right]=-1 \\
& z_{3}-c_{3}=(0,2,1)\left[\begin{array}{l}
1 \\
2 \\
-2
\end{array}\right]=2 \\
& z_{5}-c_{5}=(0,2,1)\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=2
\end{aligned}
$$

$\because z_{j}-c_{j} \nsupseteq 0, \forall j$, therefore above BFS is not optimal. $\operatorname{Min}\left(z_{j}-c_{j}\right)=-1$ (for $\alpha_{1}^{(1)}$) so to improve BFS we introduce $\alpha_{1}^{(1)}$ into the basis. Now

$$
y_{1}^{(1)}=B_{1}^{-1} \alpha_{1}^{(1)}=\left[\begin{array}{lll}
1 & \frac{-4}{3} & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
1 \\
-3
\end{array}\right]=\left[\begin{array}{l}
\frac{5}{3} \\
\frac{1}{3} \\
-1
\end{array}\right]
$$

and we take $\alpha_{4}^{(1)}$ as departing vector.

Revised Simplex Table - 3

Variables	Solution	B_{1}^{-1}				
in B.F.S	$\bar{X}_{B}^{(1)}$	$\gamma_{1}^{(1)}$	$\gamma_{2}^{(1)}$	$\gamma_{3}^{(1)}$		
x_{1}	$\frac{2}{5}$	$\frac{3}{5}$	$-\frac{4}{5}$	0		
x_{2}	$\frac{1}{5}$	$-\frac{1}{5}$	$\frac{3}{5}$	0		
z	$\frac{12}{5}$	$\frac{3}{5}$	$\frac{6}{5}$	1		

For non basis variables $z_{3}-c_{3}=\left(\frac{3}{5}, \frac{6}{5}, 1\right)\left[\begin{array}{l}1 \\ 2 \\ -2\end{array}\right]=\frac{2}{5}$

$$
\begin{aligned}
& z_{4}-c_{4}=\left(\begin{array}{lll}
\frac{3}{5} & \frac{6}{5} & 1
\end{array}\right)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\frac{3}{5} \\
& z_{5}-c_{5}=\left(\begin{array}{lll}
\frac{3}{5} & \frac{6}{5} & 1
\end{array}\right)\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\frac{6}{5}
\end{aligned}
$$

$z_{j}-c_{j} \geq 0, \forall j$, therefore above BFS is optimal.
Optimal solution is $x_{1}=\frac{2}{5}, x_{2}=\frac{1}{5}, \operatorname{Max} z=\frac{12}{5}$
Example 3 : Solve the following 1.p.p. using revised simplex method.

$$
\begin{array}{ll}
\text { Max } & z=3 x_{1}+x_{2}+2 x_{3}+7 x_{4} \\
\text { st. } & 2 x_{1}+3 x_{2}-x_{3}+4 x_{4} \leq 40 \\
& -2 x_{1}+2 x_{2}+5 x_{3}-x_{4} \leq 35 \\
& x_{1}+x_{2}-2 x_{3}+3 x_{4} \leq 100 \\
& x_{1} \geq 2, x_{2} \geq 1, x_{3} \geq 3, x_{4} \geq 4
\end{array}
$$

Solution : Substituting $x_{1}-2=u_{1}, x_{2}-1=u_{2}, x_{3}-3=u_{3}, x_{4}-4=u_{4}$ the given problem reduces to

$$
\begin{gathered}
\operatorname{Max} z^{*}=z-41=3 u_{1}+u_{2}+2 u_{3}+7 u_{4} \\
\text { s.t. } \quad 2 u_{1}+3 u_{2}-u_{3}+4 u_{4} \leq 20 \\
-2 u_{1}+2 u_{2}+5 u_{3}+u_{4} \leq 26 \\
u_{1}+u_{2}-2 u_{3}+3 u_{4} \leq 91 \\
u_{1}, u_{2}, u_{3} u_{4} \geq 0
\end{gathered}
$$

Introducing slack variables u_{5}, u_{6}, u_{7} the problem in standard form-I can be written as Find $z *$ such that

$$
\begin{aligned}
& 2 u_{1}+3 u_{2}-u_{3}+4 u_{4}+u_{5} \quad=20 \\
& -2 u_{1}+2 u_{2}+5 u_{3}-u_{4} \quad+u_{6} \quad=26 \\
& u_{1}+u_{2}-2 u_{3}+3 u_{4} \quad+u_{7} \quad=91 \\
& -3 u_{1}-u_{2}-2 u_{3}-7 u_{4}+z^{*}=0 \\
& \text { or } \quad \begin{array}{c}
\alpha_{1}^{(1)} \\
\alpha_{2}^{(1)} \\
\alpha_{3}^{(1)}
\end{array} \alpha_{4}^{(1)} \alpha_{5}^{(1)} \alpha_{6}^{(1)} \alpha_{7}^{(1)} e_{4}\left[\begin{array}{l}
X_{B}^{(1)} \\
{\left[\begin{array}{llllllll}
2 & 3 & -1 & 4 & 1 & 0 & 0 & 0 \\
-2 & 2 & 5 & -1 & 0 & 1 & 0 & 0 \\
1 & 1 & -2 & 3 & 0 & 0 & 1 & 0 \\
-3 & -1 & -2 & -7 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{3} \\
u_{4} \\
u_{5} \\
u_{6} \\
u_{7} \\
z^{*}
\end{array}\right]=\left[\begin{array}{l}
20 \\
26 \\
91 \\
0
\end{array}\right]}
\end{array}\right. \\
& u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7} \geq 0
\end{aligned}
$$

Initial Basis $B_{1}=\left[\begin{array}{ll}I_{3} & 0 \\ -C_{B} & 1\end{array}\right] \quad \begin{gathered}\text { where } C_{B}=(0,0,0) \text { as } \\ I_{3} \text { correspondsto slack var iables }\end{gathered}$
$\therefore \quad B_{1}^{-1}=\left[\begin{array}{ll}I_{3} & 0 \\ C_{B} & 1\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
Initial BFS is given by

$$
X_{B}^{(1)}=B_{1}^{-1} b^{(1)}=\left[\begin{array}{l}
b \\
0
\end{array}\right]=[20,26,91,0]
$$

For non basic variables

$$
\begin{aligned}
& z_{j}-c_{j}=\left(\text { last row of } B_{1}^{-1}\right) \cdot \alpha_{j}^{(1)}\left[\begin{array}{l}
2 \\
-2 \\
1 \\
-3
\end{array}\right]=-3, \text { similarly } z_{2}-c_{2}=-1 \\
& z_{1}-c_{1}=(0,0,0,1,3,4,5 \\
& z_{3}-c_{3}=-1, z_{4}-c_{4}=-7
\end{aligned}
$$

Since $z_{j}-c_{j} \geq 0, \forall j$, therefore above $B F S$ is not optimal. $\operatorname{Min}\left(z_{j}-c_{j}\right)=-7$ (for $\alpha_{4}^{(1)}$). Hence to find improved BFS. we use $\alpha_{4}^{(1)}$ as entering vector. Now we calculate

$$
y_{4}^{(1)}=B_{1}^{-1} \alpha_{4}^{(1)}=I_{4} \cdot \alpha_{4}^{(1)}=\alpha_{4}^{(1)}=\left[\begin{array}{l}
4 \\
-1 \\
3 \\
-7
\end{array}\right]
$$

Revised Simplex Table-1

	Solution	B_{1}^{-1}				$\gamma_{4}^{(1)}$	$\frac{X_{B i}}{y_{i k}}, y_{i k}>0$
in B.F.S	$X_{B}^{(1)}$	$\gamma_{1}^{(1)}$	$\gamma_{2}^{(1)}$	$\gamma_{3}^{(1)}$	$\gamma_{4}^{(1)}$		
u_{5}	20	1	0	0	0	4	$\frac{20}{4}=5 \rightarrow$
u_{6}	26	0	1	0	0	-1	\ldots
u_{7}	91	0	0	1	0	3	$\frac{91}{3}$
z^{*}	0	0	0	0	1	-7 \downarrow	$\theta=\operatorname{Min} \frac{x_{B i}}{y_{i k}}=5$

We take $\alpha_{5}^{(1)}$ as departing vector. The improved BFS can be found an follows :

Revised Simplex Table - 2

Variables	Solution	B_{1}^{-1}				$\gamma_{3}^{(1)}$	$\frac{X_{B i}}{y_{i k}}, y_{i k}>0$
		$\gamma_{1}^{(1)}$	$\gamma_{2}^{(1)}$	$\gamma_{3}^{(1)}$	$\gamma_{4}^{(1)}$		
B.F.S							
u_{4}	5	$\frac{1}{4}$	0	0	0	$\frac{-1}{4}$	\ldots.
u_{6}	31	$\frac{1}{4}$	1	0	0	$\frac{19}{4}$	$\frac{124}{9} \rightarrow$
u_{7}	76	$-\frac{3}{4}$	0	1	0	$\frac{-5}{4}$	\cdots.
z^{*}	35	$\frac{7}{4}$	0	0	1	$\frac{-15}{4}$	$\theta=\operatorname{Min} \frac{x_{B i}}{y_{i k}}=\frac{124}{9}$

For non basis vectors, calculate $z_{j}-c_{j}, j=1,2,3,5$

$$
\begin{aligned}
& z_{1}-c_{1}=\left(\text { last row of } B_{1}^{-1}\right) \alpha_{1}^{(1)}=\left(\frac{7}{4}, 0,0,1\right) \alpha_{1}^{(1)}=\frac{1}{2} \\
& z_{2}-c_{2}=\left(\frac{7}{4}, 0,0,1\right) \alpha_{2}^{(1)}=\frac{17}{4} \\
& z_{3}-c_{3}=\left(\begin{array}{l}
\left.\frac{7}{4}, 0,0,1\right) \alpha_{3}^{(1)}=-\frac{15}{4} \\
z_{3}-c_{5}=\left(\begin{array}{llll}
\frac{7}{4} & 0 & 0 & 1
\end{array}\right) \alpha_{6}^{(1)}=\frac{7}{4}
\end{array}\right.
\end{aligned}
$$

$\operatorname{Min} .\left(z_{j}-c_{j}\right)=-\frac{15}{4}\left(\alpha_{3}^{(1)}\right)$, therefore $\alpha_{3}^{(1)}$ is entering vector.
Now $y_{3}^{(1)}=B_{1}^{-1} \alpha_{3}^{(1)}$ and write in the tableau 2
Thus the improved basic feasible solution is :
Revised Simplex Table -3

Variables in B.F.S	Solution	B_{1}^{-1}				$y_{1}^{(1)}$	$\frac{X_{B i}}{y_{i k}}, y_{i k}>0$
		$\gamma_{1}^{(1)}$	$\gamma_{2}^{(1)}$	$\gamma_{3}^{(1)}$	$\gamma_{4}^{(1)}$		
u_{4}	$\frac{126}{19}$	$\frac{5}{19}$	$\frac{1}{19}$	0	0	$\frac{8}{19}$	$\frac{126}{8} \rightarrow$
u_{3}	$\frac{124}{19}$	$\frac{1}{19}$	$\frac{4}{19}$	0	0	$\frac{-6}{19}$	\ldots
u_{7}	$\frac{1599}{19}$	$\frac{-13}{19}$	$\frac{5}{19}$	1	0	$-\frac{17}{19}$	\ldots
z^{*}	$\frac{1130}{19}$	$\frac{37}{19}$	$\frac{15}{19}$	0	1	$\downarrow \frac{-13}{19}$	$\theta=\operatorname{Min} \frac{x_{B i}}{y_{i k}}=\frac{126}{8}$

For non basis variables, compute $z_{j}-c_{j}, j=1,2,5,6$

$$
z_{1}-c_{1}=-\frac{13}{19}, z_{2}-c_{2}=\frac{122}{19}, z_{5}-c_{5}=\frac{37}{19}, \quad z_{6}-c_{6}=\frac{15}{19}
$$

From here we again get the entering vector $\alpha_{1}^{(1)}$ and $z_{1}-c_{1}<0$ and is minimum. Calculate

$$
y_{1}^{(1)}=B_{1}^{-1} \alpha_{1}^{(1)}=\left[\frac{8}{19},-\frac{6}{9},-\frac{17}{19},-\frac{13}{19}\right]
$$

We take $\alpha_{4}^{(1)}$ as departing vector. The new BFS becomes as :

Revised Simplex Table - 4

Variables	Solution	B_{1}^{-1}					
in B.F.S	$X_{B}^{(1)}$	$\gamma_{1}^{(1)}$	$\gamma_{2}^{(1)}$	$\gamma_{3}^{(1)}$	$\gamma_{4}^{(1)}$		
u_{1}	$\frac{63}{4}$	$\frac{5}{8}$	$\frac{1}{8}$	0	0		
u_{3}	$\frac{23}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	0	0		
u_{7}	$\frac{393}{4}$	$-\frac{1}{8}$	$\frac{3}{8}$	1	0		
z^{*}	$\frac{281}{4}$	$\frac{19}{8}$	$\frac{7}{8}$	0	1		

For non basis variables, calculate $z_{j}-c_{j}, j=2,4,5,6$

$$
z_{2}-c_{2}=\left(\text { last row of } B_{1}^{-1}\right) \alpha_{2}^{(1)}=\left(\frac{19}{8}, \frac{7}{8}, 0,1\right) \alpha_{2}^{(1)}=\frac{63}{8}
$$

Similarly $z_{4}-c_{4}=\frac{13}{8}, z_{5}-c_{5}=\frac{19}{8}, z_{6}-c_{6}=\frac{7}{8}$
since $z_{j}-c_{j} \geq 0, \forall j$, the present solution is optimal. Hence optimal solution is

$$
\begin{aligned}
& u_{1}=\frac{63}{4}, u_{2}=0, u_{3}=\frac{23}{2}, u_{4}=0, u_{5}=0 \\
& z^{*}=\frac{281}{4}
\end{aligned}
$$

$\therefore \quad$ The optimal solution of the given problem is $x_{1}=u_{1}+2=\frac{71}{4}, x_{2}=y_{2}+1=1$,

$$
\begin{array}{r}
u_{3}+3=\frac{29}{2}, x_{4}=y_{4}+\phi=\phi \\
\operatorname{Max} z=z^{*}+41=\frac{445}{4}
\end{array}
$$

2.5 Revised Simplex Method (Standard Form - II)

This form is used when the l.p.p. does not have any basis matrix as identity matrix. For simplification we suppose that the initial basis matrix does not contain any positive unit vector, i.e. the original problem does not give the first basis without use of artifical variables. Therefore we are assuming here that the basis of the original problem contains all the artificial vectors $\alpha_{1 a}, \alpha_{2 a}, \ldots, \alpha_{m a}$ corresponding to the artificial variables $x_{1 a}, x_{2 a}, \ldots x_{m a}$ introduced in the first, second,......, and $m^{\text {th }}$ constraint, respcetively. Now, we solve the problem by two phase method for the removal of artificial variable and so we consider one more objective function Z_{a}, known as artificial objective function which is as

Max. $Z_{a}=-x_{1} a-x_{2} a-\ldots \ldots-x_{m a}$
As there are two objective functions, we have to consider the problem in the revised form with $(m+2)$ contraints. So the problem in standard form-II of the revised method is written below:

$$
\left.\begin{array}{rl}
\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+\ldots .+a_{1 n} x_{n}+x_{1 a}
\end{array} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots .+a_{2 n} x_{n}+x_{2 a} & =b_{2} \tag{9}\\
\ldots \ldots \ldots \ldots \ldots . \quad \ldots \ldots . \ldots \ldots . & \ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots \ldots+a_{m n} x_{n}+x_{m a} & =b_{m} \\
z-c_{1} x_{1}-c_{2} x_{2}-\ldots . .-c_{n} x_{n} & =0 \\
z_{a} & +x_{1 a}+x_{2 a}+\ldots+x_{m a}=0
\end{array}\right\}
$$

Basis and Its Inverse in Standard Form - II :

In the above problem the number of constraints is $(m+2)$. So to handle the problem we get a basis matrix of order $(m+2)$. Two vectors out of $(m+2)$ are corresponding to two objective functions z and Z_{a} and are denoted by e_{m+1}, e_{m+2} and remaining m are corresponding to the m artificial variables introduced one in each of the constraint.

Now the problem in matrix form can be written as :

$$
\begin{align*}
& e_{m+2} \tag{10}\\
& e_{m+1}
\end{align*} \alpha_{1}^{(2)} \alpha_{2}^{(2)} \quad \alpha_{n}^{(2)} \alpha_{1 a}^{(2)} \alpha_{2 a}^{2} \quad \alpha_{m a}^{(a)} X_{B}^{(2)} \quad\left[\begin{array}{ccccccc}
0 & 0 & a_{11} & a_{12} \ldots \ldots . a_{1 n} & 1 & 0 \ldots \ldots .0 \\
0 & 0 & a_{21} & a_{22} \ldots \ldots & a_{2 n} & 0 & 1 \ldots \ldots .0 \\
0 & 0 & a_{m 1} & a_{m 2} \ldots \ldots . a_{m n} & 0 & 0 \ldots \ldots .1 \\
0 & 1 & -c_{1} & -c_{2} \ldots \ldots . c_{n} & 0 & 0 \ldots \ldots .0 \\
1 & 0 & 0 & 0 & \ldots \ldots .0 & 1 & 1 \ldots \ldots . .1
\end{array}\right]\left[\begin{array}{l}
Z_{a} \\
Z \\
x_{1} \\
\\
x_{n} \\
x_{1 a} \\
\\
x_{m a}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
\\
\\
b_{m} \\
0 \\
0
\end{array}\right] .
$$

The basis matrix given in (10) can be represented as

$$
\begin{align*}
& \alpha_{1}^{(2)} \alpha_{2}^{(2)} \\
& B_{2}=\left[\begin{array}{llll}
\alpha_{m+1}^{(2)} & e_{m+1} & e_{m+2} \\
{\left[\begin{array}{lllll}
1 & 0 \ldots \ldots .0 & 0 & 0 \\
0 & 1 \ldots \ldots \ldots 0 & 0 & 0 \\
0 & 0 \ldots \ldots .1 & 0 & 0 \\
0 & 0 \ldots \ldots .0 & 1 & 0 \\
1 & 1 \ldots \ldots .1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
I_{m} & 0 & 0 \\
0 & 1 & 0 \\
1_{m} & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
B & 0 & 0 \\
-C_{B} & 1 & 0 \\
-C_{B a} & 0 & 1
\end{array}\right]}
\end{array}\right. \tag{11}
\end{align*}
$$

If we write $\left[C_{B}, C_{B a}\right]=C_{B}^{(2)}$ then frm(11) we have

$$
B_{2}=\left[\begin{array}{ll}
B & 0 \\
-C_{B}^{(2)} & I_{2}
\end{array}\right]
$$

By partitioned method, the inverse of above basis matrix is given by

$$
B_{2}^{-1}=\left[\begin{array}{ll}
B^{-1} & 0 \tag{12}\\
C_{B}^{(2)} & B^{-1} I_{2}
\end{array}\right]=\left[\begin{array}{lll}
B^{-1} & 0 & 0 \\
C_{B} B^{-1} & 1 & 0 \\
C_{B a} B^{-1} & 0 & 1
\end{array}\right]
$$

Here are some properties of B_{2}^{-1}
(i) $\quad B_{2}^{-1} \alpha_{j}^{(2)}=\left[\begin{array}{lll}B^{-1} & 0 & 0 \\ C_{B} B^{-1} & 1 & 0 \\ C_{B_{a}} B^{-1} & 0 & 1\end{array}\right]\left[\begin{array}{l}\alpha_{j} \\ -C_{j} \\ 0\end{array}\right]=\left[\begin{array}{l}B^{-1} \alpha_{j} \\ C_{B} B^{-1} \alpha_{j}-C_{j} \\ C_{B a} B^{-1} \alpha_{j}-0\end{array}\right]=\left[\begin{array}{l}y_{j} \\ z_{j}-C_{j} \\ z_{j a}-0\end{array}\right]$
(ii) $\quad B_{2}^{-1} b^{(2)}=\left[\begin{array}{lll}B^{-1} & 0 & 0 \\ C_{B} B^{-1} & 1 & 0 \\ C_{B a} B^{-1} & 0 & 1\end{array}\right]\left[\begin{array}{l}b \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}B^{-1} b \\ C_{B} B^{-1} b \\ C_{B a} B^{-1} b\end{array}\right]=\left[\begin{array}{c}X_{B} \\ Z \\ Z_{a}\end{array}\right]$

From above it is clear that if $(m+2)^{\text {th }}$ row of B_{2}^{-1} is multiplied with $b^{(2)}$, we get the artificial objective function. If $(m+1)^{\text {th }}$ row is multiplied, we get the value of the objective function of the original problem and if first m rows of B_{2}^{-1} is multiplied with $b^{(2)}$, we get the solution of the original problem.

Computational Procedure of the Standard Form- II :

We know that the column vector corresponding to any variable x_{j} in (10) is
$\alpha_{j}^{(2)}=\left[\alpha_{j},-c_{j}, 0\right], j=1,2, \ldots ., n$ for legitimate vectors and $\alpha_{j a}^{(2)}=\left[\alpha_{j a}, 0,1\right], i=1,2, \ldots, m$ for artificial vectors.

The vector corresponding to z is e_{m+1}, a unit vector, and for z_{a} it is e_{m+2}, another unit vector represented in the second and first column of (10). Now the inverse of the basis of (10), as calculated previously, is

$$
B_{2}^{-1}=\left[\begin{array}{lll}
B^{-1} & 0 & 0 \\
C_{B} B^{-1} & 1 & 0 \\
C_{B a} B^{-1} & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
I_{m} & 0 & 0 \\
C_{B} & 1 & 0 \\
C_{B a} & 0 & 1
\end{array}\right] \quad\left[\because \text { initially } B=I_{m}\right]
$$

So it is very easy to get the inverse of B_{2}, as we know that C_{B} is the price vector of those legitimate variables which are present in the basis and $C_{B a}$ the artificial price vector.

To start with the computation we start with phase I for removal of artificial variables from the basis. As soon as artificial variables are removed, we proceed for phase-II.

During the phase I neither the variable z nor z_{a} may be considered as a candidate for removal from the basis. Moreover, neither of these variables is constrained to be non-negative. If the maximum of z_{a} is strictly negative, the original problem has no solution. Further if the maximum in phase I is zero and no artificial vector is present in the basis we proceed to phase-II.

Phase I of the Revised Problem :

To start with the phase-I, we need first of all the first basis feasible solution. We get it as $\bar{X}_{B}^{(2)}=B_{2}^{-1} b^{(2)}$. After getting initial BFS of the problem, we want to improve it i.e. to make max $z_{a}=0$ and for this we want $z_{j a}{ }^{(2)}-C_{j a}{ }^{(2)}$ which is obtained by multiplying $(m+2)^{\text {th }}$ row of B_{2}^{-1} with $\alpha_{j a}{ }^{(2)}$ If $\max z_{a}=0$, the phase-I ends and if, $\max z_{a}<0$. take $z_{k a}-c_{k a}=\min \left\{z_{k a}-c_{j a}<0\right\}$ then $\alpha_{k}^{(2)}$ is taken as entering vcetor. Now select $\theta=\min \left\{\frac{x_{B i}}{y_{i k}}, y_{i k}>0\right\}$ and corresponding vector is eliminated from the old basis, where $x_{B i}$ are the elements of X_{B} and $y_{i k}$ are the elements of y_{k}. To get y_{k}, as discussed earlier we multiply $\alpha_{k}^{(2)}$ with B_{2}^{-1}, the first m elements will result y_{k}.

Let $\theta=\operatorname{Min}_{i} \frac{X_{B i}}{y_{i k}}=\frac{X_{B l}}{y_{l k}}$, then $l^{\text {th }}$ vector of the basis will be eleminated. Now we transform the table for the first improved solution containing $\alpha_{k}^{(2)}$ in place of $l^{\text {th }}$ vector of the basis by method used in standard form-I or in the simplex method and proceed in this way unless z_{a} i.e. the atificial objective function is maximised. If maximum of z_{a} is zero and none of the artificial variable present in the basis, then proceed phase-II after eleminating $(m+2)^{\text {th }}$ row of the tableau. If maximum of z_{a} is zero but atleast one
of the artificial variable is present at the zero level even then, we proceed to Phase-II with the care that in the further process the artificial variable should never become positive. The best way in these case is that in the first step of phase-II eliminate the artificial variable at zero level, in case of tie consider one by one. If maximum of z_{a} in strictly negative, the original problem has no BFS and no need of further procedure.

Phase - II :

As soon as phase I ends with max $z_{a}=0$ remove $(m+2)^{t h}$ row of B_{2}^{-1} and the column corresponding to Z_{a}. The reason being that inphase - II we deal with the original objective function and so the prices of all artificial variables become zero.

Now proceed exactly in the same way as stadard form-I.

2.6 Illustrative Examples

Example 2.4: Solve the following 1.p.p. by standard form-II of revised simplex method :

$$
\begin{array}{ll}
& 2 x_{1}+5 x_{2} \geq 6 \\
& x_{1}+x_{2} \geq 2, x_{1}, x_{2} \geq 0 \\
\text { Min. } & z=x_{1}+2 x_{2}
\end{array}
$$

Solution : Introducing surplus variables x_{3}, x_{4}, the problem can be written as :

$$
\begin{array}{ll}
& 2 x_{1}+5 x_{2}-x_{3}+0 x_{4}=6 \\
& x_{1}+x_{2}+0 x_{3}-x_{4}=2, x_{1} x_{2}, x_{3}, x_{4} \geq 0 \\
\operatorname{Max} & z=-x_{1}-2 x_{2}+0 x_{3}+0 x_{4}
\end{array}
$$

Since, there is no basic feasible solution having identity matrix as basis matrix, so we introduce artificial variables x_{5}, x_{6} the problem in standard form-II of revised simplex method becomes as

$$
\begin{array}{r}
2 x_{1}+5 x_{2}-x_{3}+0 x_{4}+x_{5}+0 x_{6}=6 \\
x_{1}+x_{2}+0 x_{3}-x_{4}+0 x_{5}+x_{6}=2 \\
z+x_{1}+2 x_{2}-0 x_{3}-0 x_{4}=0 \\
z_{a} \begin{aligned}
& +x_{5}+x_{6}=0
\end{aligned} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{array}
$$

where the artificial objective function is
Maximize $z_{a}=-x_{5}-x_{6}$
or $\left.\quad \begin{array}{cccccccc}e_{4} & e_{3} & \alpha_{1}^{(2)} & \alpha_{2}^{(2)} & \alpha_{3}^{(2)} & \alpha_{4}^{(2)} & \alpha_{5}^{(2)} & \alpha_{6}^{(2)} \\ 0 & 0 & 2 & 5 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & -1 & 0 & 1 \\ 0 & 1 & 1 & 2 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]\left[\begin{array}{l}z_{a}^{(2)} \\ z \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6}\end{array}\right]=\left[\begin{array}{l}6 \\ 2 \\ 0 \\ 0\end{array}\right]$

$$
x_{j} \geq 0, j=1,2 \ldots 6
$$

The initial basis is $\quad B_{2}=\left[\begin{array}{lll}I_{2} & 0 & 0 \\ -C_{B} & 1 & 0 \\ -C_{B a} & 0 & 1\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}\right]$

New $\quad B_{2}^{-1}=\left[\begin{array}{rrr}I_{2} & 0 & 0 \\ -C_{B} & 1 & 0 \\ -C_{B a} & 0 & 1\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}\right]$ as $C_{B}=(0,0)$ correspondig to z and $C_{B a}=(-1,-1)$ corresponding to z_{a}

InitialBFS $X_{B}^{(2)}=B_{2}^{-1} b^{(2)}$

$$
=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & -1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
6 \\
2 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
6 \\
2 \\
0 \\
-8
\end{array}\right]
$$

For non basis vectors

$$
z_{1}-c_{1}=\left[\text { last row of } B_{2}^{-1}\right] \alpha_{1}^{(2)}=(-1,-1,0,1)\left[\begin{array}{l}
2 \\
1 \\
1 \\
0
\end{array}\right]=-3
$$

$$
\begin{aligned}
& z_{2}-c_{2}=(-1,-1,0,1)\left[\begin{array}{l}
5 \\
1 \\
2 \\
0
\end{array}\right]=-6, \quad z_{3}-c_{3}=(-1,-1,0,1)\left[\begin{array}{l}
-1 \\
0 \\
0 \\
0
\end{array}\right]=1 \\
& z_{4}-c_{4}=(-1,-1,0,1)\left[\begin{array}{l}
0 \\
-1 \\
0 \\
0
\end{array}\right]=1
\end{aligned}
$$

Since $z_{j}-c_{j} \nsupseteq 0$, therefore above BFS is not optimal i.e. $\max z_{a} \neq 0 . \operatorname{Min}\left(z_{j}-c_{j}\right)=-6$ (for $\left.\alpha_{2}^{(2)}\right)$, so $\alpha_{2}^{(2)}$ is taken as intering vector. Now $y_{2}^{(2)}=B_{2}^{-1} \alpha_{2}^{(2)}$

$$
=\left[\begin{array}{lccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & -1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
5 \\
1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
5 \\
1 \\
2 \\
-6
\end{array}\right]
$$

Revised Simplex Table - 1 : Phase - I

Variables in B.F.S	Solution	B_{2}^{-1}			$y_{2}^{(1)}$	$\frac{x_{B i}}{y_{i k}}, y_{i k}>0$	
		$\gamma_{1}^{(2)}$	$\gamma_{2}^{(2)}$	$\gamma_{3}^{(2)}$	$\gamma_{4}^{(2)}$		
x_{5}		1	0	0	0	5	$\frac{6}{5}$
x_{6}	2	0	1	0	0	1	$\frac{2}{1}$
z	0	0	0	1	0	2	-
z_{a}	-8	-1	-1	0	1	-6	$\theta=\operatorname{Min} \frac{x_{B i}}{y_{i k}}=\frac{6}{5}$

The vector departing from the basis is x_{5}.
Now transform the table using transformations as standard form-I.

Revised Simplex Table - 2 : Phases - I

Variables in B.F.S	Solution	B_{1}^{-1}				$y_{1}^{(2)}$	$\frac{x_{B i}}{y_{i k}}, y_{i k}>0$
		$X_{B}^{(2)}$	$\gamma_{1}^{(2)}$	$\gamma_{2}^{(2)}$	$\gamma_{3}^{(2)}$		
x_{2}	$\frac{6}{5}$	$\frac{1}{5}$	0	0	0	$\frac{2}{5}$	$\frac{6 / 5}{2 / 5}=3$
x_{6}	$\frac{4}{5}$	$-\frac{1}{5}$	1	0	0	$\frac{3}{5}$	$\frac{4 / 5}{3 / 5}=\frac{4}{3}$
z	$-\frac{12}{5}$	$-\frac{2}{5}$	0	1	0	$\frac{1}{5}$	\ldots
z_{a}	$-\frac{4}{5}$	$\frac{1}{5}$	-1	0	1	$-\frac{3}{5}$	$\theta=\operatorname{Min} \frac{x_{B i}}{y_{i k}}=\frac{4}{3}$

For non basis variables

$$
\begin{aligned}
& z_{1}-c_{1}=\left(\frac{1}{5},-1,0,1\right)\left[\begin{array}{l}
2 \\
1 \\
1 \\
0
\end{array}\right]=-\frac{3}{5} \\
& z_{3}-c_{3}=\left(\frac{1}{5},-1,0,1\right)\left[\begin{array}{l}
-1 \\
0 \\
0 \\
0
\end{array}\right]=-\frac{1}{5}, z_{4}-c_{4}=\left(\frac{1}{5},-1,0,1\right)\left[\begin{array}{l}
0 \\
-1 \\
0 \\
0
\end{array}\right]=1 \\
& \because \quad z_{j}-c_{j} \pm, 0 \quad \forall j \text { so the BFS is not optimal, } \min \left(z_{j}-c_{j}\right)=-\frac{3}{5}\left(f_{x} \alpha_{1}^{(1)}\right) \\
& \text { so we take } \alpha_{1}^{(2)} \text { as entering vector, }
\end{aligned}
$$

Now $y_{1}^{(2)}=B_{2}^{-1} \alpha_{1}^{(2)}=\left[\begin{array}{rrrr}\frac{1}{5} & 0 & 0 & 0 \\ -\frac{1}{5} & 1 & 0 & 0 \\ -\frac{2}{5} & 0 & 1 & 0 \\ \frac{1}{5} & -1 & 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}\frac{2}{5} \\ \frac{3}{5} \\ \frac{1}{5} \\ -\frac{3}{5}\end{array}\right]$

We take $\alpha_{\epsilon}^{(2)}$ as departing vector.
Revised Simplex Table - 3 : Phase - I

Variables	Solution	B_{1}^{-1}			
	$X_{B}^{(2)}$	$\gamma_{1}^{(2)}$	$\gamma_{2}^{(2)}$	$\gamma_{3}^{(2)}$	$\gamma_{4}^{(2)}$
B.F.S					
x_{2}	$\frac{2}{3}$	$\frac{1}{3}$	$-\frac{2}{3}$	0	0
x_{1}	$\frac{4}{3}$	$-\frac{1}{3}$	$\frac{5}{3}$	0	0
z	$-\frac{8}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$	1	0
z_{a}	0	0	0	0	1

Since $\operatorname{Max} z_{a}=0$ as no artificial variable present in the basis, hence Phase-I ends. Now we go in phase-II.

Revised Simplex Table - I : Phase - II

| Variables
 in
 B.F.S | B_{1}^{-1} | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| | | $\gamma_{1}^{(1)}$ | $\gamma_{2}^{(1)}$ | $\gamma_{3}^{(1)}$ | | |
| x_{2} | | $\frac{1}{3}$ | $-\frac{2}{3}$ | 0 | | |
| x_{1} | $\frac{4}{3}$ | $-\frac{1}{3}$ | $\frac{5}{3}$ | 0 | | |
| z | $-\frac{8}{3}$ | $-\frac{1}{3}$ | $-\frac{1}{3}$ | 1 | | |

For non basic variable

$$
\begin{aligned}
& z_{3}-c_{3}=\left(-\frac{1}{3},-\frac{1}{3}, 1\right)\left[\begin{array}{l}
-1 \\
0 \\
0
\end{array}\right]=\frac{1}{3} \\
& z_{4}-c_{4}=\left(-\frac{1}{3},-\frac{1}{3}, 1\right)\left[\begin{array}{l}
0 \\
-1 \\
0
\end{array}\right]=\frac{1}{3}
\end{aligned}
$$

$\because z_{j}-c_{j} \geq 0, \forall j$ so above BFS is optimal. Optimal solution is $x_{1}=\frac{4}{3}, x_{2}=\frac{2}{3}$
$\operatorname{Max} \quad z=-\frac{8}{3}$
or $\quad \operatorname{Min} z=\frac{8}{3}$
Example 5: Solve the following l.p.p. with the help of revised simplex method but without use of artificial variables :

$$
\begin{array}{ll}
\text { Max. } & z=2 x_{1}-6 x_{2} \\
\text { s.t. } & x_{1}-3 x_{2} \leq 6 \\
& 2 x_{1}+4 x_{2} \geq 8 \\
& -x_{1}+3 x_{2} \leq 6, x_{1}, x_{2} \geq 0
\end{array}
$$

Solution : Since we have to solve the problem with the help of revised simplex method but with use of artificial variables i.e. we have to apply standard form-I of the revised simplex method which is as follow:

Find z as large as possible s.t.

$$
\begin{array}{rlr}
x_{1}-3 x_{2}+x_{3} & & =6 \\
2 x_{1}+4 x_{2} & -x_{4} & =8 \\
-x_{1}+3 x_{2} & & +x_{5} \tag{15}\\
z-2 x_{1}+6 x_{2} & & =6 \\
& & =0
\end{array}
$$

Here three unit vectors corresponding to x_{3}, x_{5} and z are available. But the basis of problem (15) is of order 4. If there is no restriction we would have to introduce artificial variable in the second row but as we have not to introduce any artificial variable so we can consider any of the remaining vectors for the fourth vector of the basis. For simplicity we consider the negative unit vector corresponding to x_{4}. Hence the basis will become

$$
\begin{aligned}
\alpha_{3}^{(1)} & \alpha_{4}^{(1)}
\end{aligned} \alpha_{5}^{(1)} \quad e_{4} .\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ll}
S & O \\
O & I_{2}
\end{array}\right], \text { where } S=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Hence $\quad B_{1}^{-1}=\left[\begin{array}{cc}S^{-1} & 0 \\ 0 & I_{2}\end{array}\right]$. But $S^{-1}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]^{-1}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$

$$
\therefore \quad B_{1}^{-1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Initial BFS $X_{B}^{(1)}=B_{1}^{-1} b^{(1)}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}6 \\ 8 \\ 6 \\ 0\end{array}\right]=\left[\begin{array}{l}6 \\ -8 \\ 6 \\ 0\end{array}\right]$
for non basic variables

$$
\begin{aligned}
& z_{1}-c_{1}=(0,0,0,1)\left[\begin{array}{l}
1 \\
2 \\
-1 \\
-2
\end{array}\right]=-2 \\
& z_{2}-c_{2}=(0,0,0,1)\left[\begin{array}{c}
-3 \\
4 \\
3 \\
6
\end{array}\right]=6
\end{aligned}
$$

Revised Simplex Table - 1

Variables in B.F.S	Solution	B_{1}^{-1}				$y_{1}^{(1)}$	$\frac{x_{B i}}{y_{i k}}, y_{i k}>0$
		$\gamma_{1}^{(1)}$	$\gamma_{2}^{(1)}$	$\gamma_{3}^{(1)}$	$\gamma_{4}^{(1)}$		
x_{3}		1	0	0	0	1	$\frac{6}{1}=6$
x_{4}	-8	0	-1	0	0	-2	$\frac{-8}{-2}=4$
x_{5}	6	0	0	1	0	-1	\cdots
z	0	0	0	0	1	-2	Min $\frac{x_{B i}}{y_{i k}}=4$

$\because \quad z_{j}-c_{j} \geq 0 \forall j$, therefore above BFS is not optimal. $\operatorname{Min}\left(z_{j}-c_{j}\right)=-2$ (for $\alpha_{1}^{(1)}$) so we take $\alpha_{1}^{(1)}$ as entering vector. Now

$$
y_{1}^{(1)}=B_{1}^{-1} \alpha_{1}^{(1)}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
-1 \\
-2
\end{array}\right]=\left[\begin{array}{l}
1 \\
-2 \\
-1 \\
-2
\end{array}\right]
$$

As in this case, we get a non feasible solution, we select θ as

$$
\theta=\min \left\{\begin{array}{cc}
\operatorname{Min} & \operatorname{Min} \\
y_{i k}>0 & \frac{x_{B i}}{y_{i k}}, \\
x_{B i}<0 \frac{x_{B i}}{y_{i k}}<0
\end{array}\right\}=4 \quad\left(\text { for } \alpha_{4}^{(1)}\right)
$$

We take $\alpha_{4}^{(1)}$ as departing vector

$$
\text { Revised Simplex Table - } 2
$$

For non basis vectors

$$
\begin{aligned}
& z_{2}-c_{2}=(2,0,0,1)\left[\begin{array}{l}
-3 \\
4 \\
3 \\
6
\end{array}\right]=0 \\
& z_{3}-c_{3}=(2,0,0,1)\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]=2
\end{aligned}
$$

$\because z_{j}-c_{j} \geq 0, \forall j$, therefore above BFS is optimal. Thus optimal solution is $x_{1}=6, x_{2}=0$
$\max z=12$

2.7 Self-Learning Exercise - 1

1. In which 1.p.p. the standard form-I of revised simplex method used?
2. In which 1.p.p. the standard form-II of revised simplex method used?
3. What are artificial variables and when they are used?
4. What is artificial objective function?

2.8 Exercise

1. Solve the following l.p.p. using revised simplex method

$$
\begin{aligned}
& x_{1}+x_{2} \leq 3 \\
& x_{1}+2 x_{2} \leq 5 \\
& 3 x_{1}+x_{2} \leq 6, x_{1}, x_{2} \geq 0
\end{aligned}
$$

Ans. $\quad x_{1}=0, x_{2}=\frac{5}{2} \quad \operatorname{Max} z=5$
2. Sole the following 1.p.p. using revised simplex method

$$
\begin{array}{ll}
\text { Max. } & z=3 x_{1}+2 x_{2}+5 x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}+x_{3} \leq 430 \\
& -3 x_{1}-2 x_{3} \geq-460 \\
& x_{1}+4 x_{2} \leq 420 \\
& x_{1}, x_{2} x_{3} \geq 0
\end{array}
$$

Ans. $\quad x_{1}=0, x_{2}=100, x_{3}=230$, Max $z=1350$
Solve the following linear programming problem using standard form-I or II of revised simplex method:
3. Maximize $z=x_{1}+x_{2}+3 x_{3}$
s.t. $\quad 3 x_{1}+2 x_{2}+x_{3} \leq 3$

$$
\begin{array}{r}
2 x_{1}+x_{2}+2 x_{3} \leq 2 \\
x_{1}, x_{2}, x_{3} \leq 0
\end{array}
$$

Ans. $\quad x_{1}=0, x_{2}=0, x_{3}=1, \operatorname{Max} z=3$
4. Min. $z=x_{1}+x_{2}$
s.t. $\quad x_{1}+2 x_{2} \geq 7$

$$
\begin{aligned}
4 x_{1}+x_{2} & \geq 6 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Ans. $\quad x_{1}=\frac{5}{7}, x_{2}=\frac{22}{7}, \operatorname{Min} z=\frac{27}{7}$
5. Max $z=6 x_{1}-2 x_{2}-3 x_{3}$
s.t. $\quad 2 x_{1}-x_{2}+2 x_{3} \leq 2$

$$
\begin{aligned}
x_{1} \quad+4 x_{3} & \leq 4 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Ans. $\quad x_{1}=4, x_{2}=6, x_{3}=0$ Max $z=12$
6. Max $z=30 x_{1}+23 x_{2}+29 x_{3}$
s.t. $\quad 6 x_{1}+5 x_{2}+3 x_{3} \leq 26$

$$
\begin{aligned}
4 x_{1}+2 x_{2}+5 x_{3} & \leq 7 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Ans. $\quad x_{1}=0, x_{2}=\frac{7}{2}, x_{3}=0, \max z=\frac{161}{2}$
7. Max. $z=x_{1}+x_{2}$
s.t. $\quad 3 x_{1}+2 x_{2} \leq 6$
$x_{1}+4 x_{2} \leq 4$
$x_{1}, x_{2} \geq 0$
Ans. $\quad x_{1}=\frac{8}{5}, x_{2}=\frac{3}{5}, \max z=\frac{11}{5}$
8. Max $z=5 x_{1}+3 x_{2}$
s.t. $\quad 3 x_{1}+5 x_{2} \leq 15$
$5 x_{1}+2 x_{2} \leq 10$

$$
x_{1}, x_{2} \geq 0
$$

Ans. $\quad x_{1}=\frac{20}{19}, x_{2}=\frac{45}{19}, \operatorname{Max} z=\frac{235}{19}$
9. Max $z=5 x_{1}+3 x_{2}$
s.t. $\quad 4 x_{1}+5 x_{2} \geq 10$
$5 x_{1}+2 x_{2} \leq 10$

$$
3 x_{1}+8 x_{2} \leq 12
$$

$$
x_{1}, x_{2} \geq 0
$$

Ans. $\quad x_{1}=\frac{28}{17}, x_{2}=\frac{15}{17}, \operatorname{Max} z=\frac{185}{17}$
10. Max $z=x_{1}+2 x_{2}+3 x_{3}-x_{4}$
s.t. $x_{1}+2 x_{2}+3 x_{3}=15$

$$
2 x_{1}+x_{2}+5 x_{3}=20
$$

$$
x_{1}+2 x_{2}+x_{3}+x_{4}=10
$$

$$
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
$$

Ans. $\quad x_{1}=\frac{5}{2}, x_{2}=\frac{5}{2}, x_{3}=\frac{5}{2}, x_{4}=0, \operatorname{Max} z=15$.

2.9 Bounded Variable Problems

A bounded variable linear programming problem (BVLPP) is difined as :
Max or Min $z=C X$
s.t. $A X \leq,=, \geq b$
$l_{j} \leq x_{j} \leq u_{j}, \forall j=1,2,3, \ldots n$
and $X \geq 0$
Here each variable x_{j} is bounded from both sides i.e. from upper bound u_{j} and lower bound l_{j}. These problems can be solved by simplex method with some modifications.

Bounded Variable Simplex Alogrithm

(i) Convert the objective function into maximization if it is in minimization and introducing slack and surplus variables write the problem in standrad form.
(ii) Find initial basic feasible solution.
(iii) If lower bound of any bounded variable is positive then make it zero by substituting additional variable. For example if $2 \leq x_{1} \leq 5$, then put $x_{1}{ }^{\prime}=x_{1}-2$

$$
\begin{aligned}
& 2-2 \leq x_{1}-2 \leq 5-2 \\
& \text { or } \quad 0 \leq x_{1}^{\prime} \leq 3
\end{aligned}
$$

(iv) Construct the simplex table and test the sign of $z_{j}-c_{j}$. In case of $z_{j}-c_{j} \geq 0$, the optimal solution is obtained, if $z_{j}-c_{j} \geq 0$, then entering and departing vectors can be found as follows:
(v) Let $\min \left\{z_{j}-c_{j}\right\}=z_{r}-c_{r}$ then take α_{r} as entering vector.
(vi) To find departing vector following quatntities are calculated:

$$
\begin{aligned}
& \theta_{1}=\min _{i}\left\{\frac{x_{B i}}{y_{i r}}, y_{i r}>0\right\} \\
& \theta_{2}=\min _{i}\left\{\frac{u_{i}-x_{B i}}{-y_{i r}}, y_{i r}<0\right\}
\end{aligned}
$$

$$
\theta=\min \left\{\theta_{1}, \theta_{2}, u_{r}\right\}
$$

where u_{r} is the upper bound of variable x_{r}. Clearly when $y_{i r}>0, \theta_{2} \rightarrow \infty$.
(a) if $\theta=\min \left\{\theta_{1}, \theta_{2}, u_{r}\right\}=\theta_{1}$ and it is corresponding to $x_{B k}$ then y_{k} will be departing vector.
(b) If $\theta=\min \left\{\theta_{1}, \theta_{2}, u_{r}\right\}=\theta_{2}$ and it is corresponding to $x_{B k}$ will be departing vector. If $x_{B k}$ is non basic on the upper bound, then following substitution is made i.e. all basic variables are updated.

$$
\left(x_{B k}\right)_{r}=\left(x_{B k}\right)_{r}^{\prime}-y_{k r} u_{r} \text {, where } 0 \leq\left(x_{B k}\right)_{r}^{\prime} \leq u_{r}
$$

and non basic variable x_{r} on upperbound is made at zero level by substituting $x_{r}=u_{r}-x_{r}^{1}$, $0 \leq x_{r}{ }_{r} \leq u_{r}$.
(c) If $\theta=\min \left\{\theta_{1}, \theta_{2}, u_{r}\right\}=u_{r}$, then x_{r} is substituted on the upper bound till then x_{r} becomes non basic variable and it is being made at zero level using $x_{r}=u_{r}-x_{r}{ }_{r}$.
(vii) Choosing entering and departing vector from steps $(v) \&(v i)$ we make simplex table and test the sign of $z_{j}-c_{j}$. In case $z_{j}-c_{j} \geq 0$, the optimal solution is obtained and if $z_{j}-c_{j} \geq 0$ repeat steps (iv) to (vii) until we get optimal solution.

2.10 Illustrative Examples

Exampe 6: Using bounded variable technique, solve the following l.p.p.

$$
\begin{array}{ll}
\text { Max } & z=x_{1}+3 x_{2} \\
\text { S.t. } & x_{1}+x_{2}+x_{3} \leq 10 \\
x_{1} & -2 x_{3} \geq 0 \\
2 x_{2}-x_{3} \leq 10
\end{array}
$$

and

$$
0 \leq x_{1} \leq 8,0 \leq x_{2} \leq 4, x_{3} \geq 0
$$

Solution : Introducing slack variables x_{4}, x_{5}, x_{6} the standard form of 1.p.p. is as a

$$
\begin{array}{ll}
\text { Max } & z=x_{1}+3 x_{2}+0 x_{3}+0 x_{4}+0 x_{5}+0 x_{6} \\
\text { S.t. } & x_{1}+x_{2}+x_{3}+x_{4}+0 x_{5}+0 x_{6}=10 \\
& x_{1}+0 x_{2}-2 x_{3}+0 x_{4}+x_{5}+0 x_{6}=0 \\
& 0 x_{1}+2 x_{2}-x_{3}+0 x_{4}+0 x_{5}+x_{6}=10
\end{array}
$$

and

$$
0 \leq x_{1} \leq 8,0 \leq x_{2} \leq 4, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
$$

Initial B.F.S. is $x_{4}=10, x_{5}=0, x_{6}=10$ and Basis $B=I_{3}$. In the given problem there is no upper bound for basic variables x_{4}, x_{5}, x_{6} and non basic variable x_{3}. Thus all the upper bounds are taken at inifinity i.e. $u_{4}=u_{5}=u_{6}=\infty=u_{3}$.

Simplex Table - 1

			c_{j}	0	1	3	0	0	0	$u_{i}-x_{B i}$
c_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	
0	α_{4}	x_{4}	10	1	1	1	1	0	0	$\infty-10=\infty$
0	α_{5}	x_{5}	0	-1	0	2	0	1	0	$\infty-0=\infty$
0	α_{6}	x_{6}	10	0	2	-1	0	0	1	$\infty-10=\infty$
$z_{j}-c_{j}$				0	-1	-3	0	0	0	
u_{j}				8	4	$\stackrel{\infty}{\sim}$	∞	∞	∞	

Since $z_{j}-c_{j} \not \geq 0, \forall j$, therefore above BFS is not optimal. Here $\operatorname{Min}\left(z_{j}-c_{j}\right)=z_{3}-c_{3}=-3$, hence to improve BFS we introduce x_{3} into the basis. For departing vector

$$
\begin{array}{ll}
\theta_{1}=\min \left\{\frac{x_{B i}}{y_{i 3}}, y_{i 3}>0\right\}=\min \{10,0\}=0 & \text { (corresponding to } \alpha_{5} \text {) } \\
\theta_{2}=\min \left\{\frac{u_{i}-x_{B i}}{-y_{i 3}}, y_{i 3}<0\right\}=\infty & \text { (corresponding to } \alpha_{5} \text {) }
\end{array}
$$

and $\quad u_{3}=\infty$

$$
\therefore \quad \min \left\{\theta_{1}, \theta_{2}, u_{3}\right\}=\min \{0, \infty, \infty\}=0=\theta_{1}
$$

Hence we take α_{5} as departing vector.
Simplex Table-2

			c_{j}	0	1	3	0	0	0	$u_{i}-x_{B i}$
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	
0	α_{4}	x_{4}	10	$\frac{3}{2}$	1	0	1	-1	0	$\infty-10=\infty$
3	α_{3}	x_{3}	0	$-\frac{1}{2}$	0	1	0	1	0	$\infty-0=\infty$
0	α_{6}	x_{6}	10	$-\frac{1}{2}$	2	0	0	1	1	$\infty-10=\infty$
$z_{j}-c_{j}$				$-\frac{3}{2}$	-1	0	0	3	0	
u_{j}				8	4	∞	∞	∞	∞	

$\because z_{j}-c_{j} \nsupseteq 0, \forall j$, therefore above BFS is not optimal. $\operatorname{Min}\left(z_{j}-c_{j}\right)=-\frac{3}{2}=z_{1}-c_{1}$, so we take α_{1} as entering vector. For departing vector, we have

$$
\begin{aligned}
& \theta_{1}=\operatorname{Min}_{i}\left\{\frac{x_{B i}}{y_{i 1}}, y_{i 1}>0\right\}=\min \left\{\frac{10}{\frac{3}{2}}\right\}=\frac{20}{3}\left(\text { for } \alpha_{4}\right) \\
& \theta_{2}=\infty, \text { and } u_{1}=8 \\
\therefore & \\
\therefore & =\min \left\{\theta_{1}, \theta_{2}, u_{1}\right\}=\min \left\{\frac{20}{3}, \infty, 8\right\}=\frac{20}{3}=\theta_{1}
\end{aligned}
$$

Hence α_{4} is taken as departing vector,

$\because z_{j}-c_{j} \geq 0, \forall j$ so above BFS is optimal. Hence optimal solution is

$$
x_{1}=\frac{20}{3}, x_{2}=0, x_{3}=\frac{10}{3}, \operatorname{Max} z=10
$$

Example 7: Using the bounded variable technique, solve the following 1.p.p.

$$
\begin{array}{lc}
\text { Max } & z=3 x_{1}+5 x_{2}+2 x_{3} \\
\text { S.t. } & x_{1}+2 x_{2}+2 x_{3} \leq 14 \\
& 2 x_{1}+4 x_{2}+3 x_{3} \leq 23
\end{array}
$$

and

$$
0 \leq x_{1} \leq 4,2 \leq x_{2} \leq 5,0 \leq x_{3} \leq 3 .
$$

Solution : Since the lower bound of x_{2} is positive, therefore let $x_{2}^{\prime}=x_{2}-2$ or $x_{2}=x_{2}^{1}+2$, then $0 \leq x_{2}^{1} \leq 3$. Introducing slack variables $x_{4}, x_{5} \geq 0$, the standard form of B.V.L.P.P. is as :

Max $(z-10)=3 x_{1}+5 x_{2}^{1}+2 x_{3}+0 x_{4}+0 x_{5}$
s.t. $\quad x_{1}+2 x_{2}^{1}+2 x_{3}+x_{4}+0 x_{5}=10$

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}^{1}+3 x_{3}+0 x_{4}+x_{5}=15 \\
& 0 \leq x_{1} \leq 4,0 \leq x_{2}^{1} \leq 3,0 \leq x_{3} \leq 3 \\
& x_{4}, x_{5} \geq 0
\end{aligned}
$$

Initial BFS $x_{4}=10, x_{5}=15$, initial basis $B=I_{2}$

Simplex Table - 1

$z_{j}-c_{j} \geq 0$, therefore above b.f.s. is not optimal. $\operatorname{Min}\left(z_{j}-c_{j}\right)-5\left(z_{2}-c_{2}\right)$, so to improve b.f.s. we introduce α_{2} into the basis. For departing vector-

$$
\begin{aligned}
& \theta_{1}=\min \left\{\frac{10}{2}, \frac{15}{4}\right\}=\frac{15}{4}\left(\text { corresponding to } \alpha_{5}\right) \\
& \theta_{2}=\infty, u_{2}=3 \\
& \theta=\min \left\{\frac{15}{4}, \infty, 3\right\}=3=u_{2}, \text { therefore we substitute } x_{2}^{1} \text { on the upper bound till then } x_{2}^{1}
\end{aligned}
$$

becomes non-basic.

$$
x_{2}^{1}=u_{2}-x_{2}{ }^{\prime \prime}=3-x_{2} ", \text { where } 0 \leq x_{2}{ }^{\prime \prime} \leq 3
$$

and update basic variables as

$$
\begin{aligned}
& x_{B 1}=x_{B 1}^{\prime}-y_{12} u_{2}=10-2 \times 3=4 \\
& x_{B 2}=x_{B 2}^{\prime}-y_{22} u_{2}=15-4 \times 3=3
\end{aligned}
$$

Simplex Table - 2

			c_{j}	3	-5	2	0	0	$u_{i}-x_{B i}$
C_{B}	B	X_{B}	b	y_{1}	$y_{2}^{\prime \prime}$	y_{3}	y_{4}	y_{5}	
0	α_{4}	x_{4}	4	1	-2	2	1	0	$\infty-4=\infty$
0	α_{5}	x_{5}	3	2	-4	3	0	1	$\infty-3=\infty$
$z_{j}-c_{j}$				-3	5	-2	0	0	
u_{j}				4	3	3	0	0	

$\because \quad z_{j}-c_{j} \nsupseteq 0, \forall j$ therefore above b.f.s. is not optimal. $\operatorname{Min}\left(z_{j}-c_{j}\right)=-3\left(z_{1}-c_{1}\right)$ so we take α_{1} as entering vector. For departing vector

$$
\begin{aligned}
& \theta_{1}=\operatorname{Min}\left\{\frac{4}{1}, \frac{3}{2}\right\}=\frac{3}{2} \quad \text { (corresponding to } \alpha_{5} \text {) } \\
& \theta_{2}=\infty, \text { and } u_{1}=4 \\
& \theta=\operatorname{Min}\left\{\theta_{1}, \theta_{2}, u_{1}\right\}=\operatorname{Min}\left\{\frac{3}{2}, \infty, 4\right\}=\frac{3}{2}=\theta_{1}
\end{aligned}
$$

Hence α_{5} is departing vector.
Simplex Table - 3

			c_{j}	3	-5	2	0	0	$u_{i}-x_{B i}$
C_{B}	B	X_{B}	b	y_{1}	$y_{2}{ }^{\prime \prime}$	y_{3}	y_{4}	y_{5}	
0	α_{4}	x_{4}	$\frac{5}{2}$	0	0	$\frac{1}{2}$	1	$-\frac{1}{2}$	$\infty-\frac{5}{4}=\infty$
3	α_{1}	x_{1}	$\frac{3}{2}$	1	-2	$\frac{3}{2}$	0	$\frac{1}{2}$	$4-3=\frac{5}{2}$
$z_{j}-c_{j}$			0	0	-1	$\frac{5}{2}$	0	$\frac{3}{2}$	
u_{j}			4	4	3	3	∞	∞	

$\because \quad z_{j}-c_{j} \geq 0, \forall j$ so the above b.f.s is not optimal $\operatorname{Min}\left(z_{j}-c_{j}\right)=-1\left(z_{2}-c_{2}\right)$,
therefore $\alpha_{2}^{\prime \prime}$ will be introducing vector. Since $y_{2}^{\prime \prime} \leq 0$, so for departing vector

$$
\begin{aligned}
& \theta_{1}=\infty, \theta_{2}=\operatorname{Min}\left\{\infty, \frac{\frac{5}{2}}{-(-2)}\right\}=\frac{5}{4}, u_{2}=3 \quad\left(\text { Corresponds to } \alpha_{1}\right) \\
\therefore \quad & \theta=\operatorname{Min} .\left\{\infty, \frac{5}{4}, 3\right\}=\frac{5}{4}=\theta_{2}
\end{aligned}
$$

$\therefore \alpha_{1}$ is departing vector. Since upper bound of x_{1} is 4 .
Simplex Table - 4

so we update the basic variables

$$
\begin{aligned}
& x_{B 1}=x_{B 1}^{\prime}-y_{11} u_{1}=\frac{5}{2}-0 \times 4=\frac{5}{2} \\
& x_{B 2}=x_{B 2}^{\prime}-y_{21} u_{1}=\frac{-3}{4}-\left(-\frac{1}{2}\right) \times 4=\frac{5}{4}
\end{aligned}
$$

For zero level of non basic variable x_{1}, substituting $x_{1}-4=x_{1}^{1}$

Simplex Table-5

Since $z_{j}-c_{j} \geq 0, \forall_{j}$ therefore above b.f.s. in optimal.
The optimal solution from the table

$$
x_{1}^{\prime}=0, x_{2}^{\prime \prime}=\frac{5}{4}, x_{3}=0
$$

But $\quad x_{1}^{\prime}=4-x_{1}$ and $x_{2}^{\prime}=3-x_{2}{ }_{2}$
$\Rightarrow x_{1}=4-x_{1}^{\prime}=4-0=4, x_{2}=3-\frac{5}{4}=\frac{7}{4}$
$\therefore \quad x_{2}=x_{2}^{\prime}+2=\frac{7}{4}+2=\frac{15}{4}$
$\therefore \quad x_{1}=4, x_{2}=\frac{15}{4}, x_{3}=0$ and $\operatorname{Max} z=3 \times 4+5 \times \frac{15}{4}+2 \times 0=\frac{123}{4}$
Example 8 : Using the bounded variable technique, solve the following linear programing problem:
Max $z=2 x_{1}+x_{2}$
s.t. $\quad x_{1}+2 x_{2} \leq 10$

$$
\begin{aligned}
& x_{1}+x_{2} \leq 6 \\
& x_{1}-x_{2} \leq 2 \\
& x_{1}-2 x_{2} \leq 1
\end{aligned}
$$

and
$0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 2$
Solution : Introducing slack variables $x_{3}, x_{4}, x_{5}, x_{6} \geq 0$ the standard form of given problem is as :
Max $z=C X$
s.t. $A X=b, 0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 2$

$$
x_{3}, x_{4}, x_{5}, x_{6} \geq 0
$$

where $A=\left[\begin{array}{rrrrrr}1 & 2 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 & 0 \\ 1 & -2 & 0 & 0 & 0 & 1\end{array}\right], b=\left[\begin{array}{l}10 \\ 6 \\ 2 \\ 1\end{array}\right]$ and $\bar{C}=(2,1,0,0,0,0)$
Initial BFS $x_{3}=10, x_{4}=6, x_{5}=2, x_{6}=1$ and initial basis $B=I_{4}$
Simplex Table - 1

			c_{j}	2	1	0	0	0	0	$u_{i}-x_{B i}$
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	
0	α_{3}	x_{3}	10	1	2	1	0	0	0	$\infty-10=\infty$
0	α_{4}	x_{4}	6	1	1	0	1	0	0	$\infty-6=\infty$
0	α_{5}	x_{5}	2	1	-1	0	0	1	0	$\infty-z=\infty$
0	α_{6}	x_{6}	1	1	2	0	0	0	1	$\infty-1=\infty$
$z_{j}-c_{j}$				-2	-1	0	0	0	0	
u_{j}				3	2	∞	∞	∞	∞	

$\because \quad z_{j}-c_{j} \geq 0, \forall j$ therefore BFS is not optimal.
$\operatorname{Min}\left(z_{j}-c_{j}\right)=-2\left(\right.$ for $\left.\alpha_{1}\right)$, so α_{1} is taken as entering vector. For departing vector

$$
\begin{aligned}
& \theta_{1}=\min \left\{\frac{10}{1}, \frac{6}{1}, \frac{2}{1}, \frac{1}{1}\right\}=1\left(\text { corresponding to } \alpha_{6}\right) \\
& \theta_{2}=\infty \text { and } u_{1}=3 \\
& \theta=\min \left\{\theta_{1}, \theta_{2}, u_{1}\right\}=1=\theta_{1}
\end{aligned}
$$

Hence α_{6} is taken as departing vector.
Simplex Table-2

			c_{j}	2	1	0	0	0	0	$u_{i}-x_{B i}$
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	
0	α_{3}	x_{3}	9	0	4	1	0	0	-1	∞
0	α_{4}	x_{4}	5	0	3	0	1	0	-1	∞
0	α_{5}	x_{5}	1	0	1	0	0	1	-1	∞
2	α_{1}	x_{1}	1	1	-2	0	0	0	2	$3-1=2$
$z_{j}-c_{j}$				0	-5	0	0	0	2	
u_{j}				3	2	∞	∞	∞	∞	

$\because \quad z_{j}-c_{j} \not \geq 0, \forall j \therefore$ above BFS is not optimal. Min $\left(z_{j}-c_{j}\right)=-5$ (for $\left.\alpha_{1}\right)$ so α_{1} is entering vector. For departing vector

$$
\begin{aligned}
& \theta_{1}=\min \left\{\frac{9}{4}, \frac{5}{3}, \frac{1}{1}\right\}=1 \\
& \theta_{2}=\min \left\{\frac{u_{i}-x_{B i}}{-y_{i 2}}, y_{i 2}<0\right\}=\frac{-3}{-(-2)}=1 \\
& u_{2}=2 \\
& \theta=\min \left\{\theta_{1}, \theta_{2}, u_{2}\right\}=1=\theta_{1} \text { or } \theta_{2}
\end{aligned}
$$

Let $\quad \theta=\theta_{1}$, then α_{5} is taken as departing vector.
Simplex Table - 3

		c_{j}	2	1	0	0	0	0	$u_{i}-x_{B i}$												
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}												
0	α_{3}	x_{3}	5	0	0	1	0	-4	3	∞											
0	α_{4}	x_{4}	2	0	0	0	1	-3	2	∞											
1	α_{2}	x_{2}	1	0	1	0	0	1	-1	$2-1=1$											
2	α_{1}	x_{1}	3	1	0	0	0	2	-1	$3-3=0$											
	$z_{j}-c_{j}$	0	0	0	0	5	-3														
u_{j}														3	2	∞	∞	$\uparrow \infty$	∞		

$\because \quad z_{j}-c_{j} \geq 0, \forall j \quad \therefore$ Above BFS is not optimal
$\operatorname{Min}\left\{z_{j}-c_{j}\right\}=-3\left(\right.$ for $\left.\alpha_{6}\right)$, so α_{6} is entering vector.
For departing vector

$$
\theta_{1}=\operatorname{Min}\left\{\frac{5}{3}, \frac{2}{2}\right\}=1, \theta_{2}=\min \left\{\frac{1}{-(-1)}, \frac{0}{-(-1)}\right\}=0
$$

(corresponds to α_{4}) (corresponds to α_{1})
and $\quad u_{6}=\infty$

$$
\theta=\min \left\{\theta_{1}, \theta_{2}, u_{6}\right\}=0=\theta_{2}
$$

$\therefore \quad \alpha_{1}$ is departing vector.
Simplex Table - 4

			c_{j}	2	1	0	0	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}
0	α_{3}	x_{3}	14	3	0	1	0	2	0
0	α_{4}	x_{4}	8	2	0	0	1	1	0
1	α_{2}	x_{2}	-2	-1	1	0	0	-1	0
0	α_{6}	x_{6}	-3	-1	0	0	0	-2	1
$z_{j}-c_{j}$				-3	-3	0	0	-1	0
u_{j}				3	2	∞	∞	∞	∞

$\because \quad$ upper bound of x_{1} is 3 we update basic variables as :

$$
\begin{aligned}
& x_{B 1}=x_{B 1}^{\prime}-y_{11} u_{1}=14-(3) \times 3=5 \\
& x_{B 2}=x_{B 2}^{\prime}-y_{21} u_{1}=8-(2) \times 3=2 \\
& x_{B 3}=x_{B 3}^{\prime}-y_{31} u_{1}=-2-(-1) \times 3=1 \\
& x_{B 4}=x_{B 4}^{\prime}-y_{41} u_{1}=-3-(-1) \times 3=0
\end{aligned}
$$

The non basic variable x_{1} can be found by substituting x_{1} on upper bound at zero level as $x_{1}=3-x_{1}^{\prime}$ Applying above formula

Simplex Table - 5

			c_{j}	-2	1	0	0	0	0	$u_{i}-x_{B i}$
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	
0	α_{3}	x_{3}	5	-3	0	1	0	2	0	∞
0	α_{4}	x_{4}	2	-2	0	0	1	1	0	∞
1	α_{2}	x_{2}	1	1	1	0	0	-1	0	$2-1=1$
0	α_{6}	x_{6}	0	1	0	0	0	-2	1	∞
$z_{j}-c_{j}$				3	0	0	0	-1	0	
u_{j}				3	2	∞	∞	∞	∞	

$\because \quad z_{j}-c_{j} \geq 0, \forall j$ so above BFS is not optimal

$$
\min \left(z_{j}-c_{j}\right)=-1\left(\text { for } \alpha_{5}\right)
$$

So α_{5} is taken as entering vector.
For departing vector $\quad \theta_{1}=\min \left\{\frac{5}{1}, \frac{2}{1}\right\}=2$
(corresponds to α_{4})

$$
\theta_{2}=\frac{1}{-(-1)}=1, u_{5}=\infty
$$

$$
\theta=\min \left\{\theta_{1}, \theta_{2}, u_{5}\right\}=1=\theta_{2}
$$

Hence α_{2} will be departing vector.
Simplex Table - 6

			c_{j}	-2	1	0	0	0	0
c_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}
0	α_{3}	x_{3}	7	-1	2	1	0	0	0
0	α_{4}	x_{4}	3	-1	1	0	1	0	0
0	α_{5}	x_{5}	-1	-1	-1	0	0	1	0
0	α_{6}	x_{6}	-2	-1	-2	0	0	0	1
$z_{j}-c_{j}$				2	-1	0	0	0	0
u_{j}				3	2	∞	∞	∞	∞

$\because \quad x_{2}$ has upper bound 2 , therefore updating the basic variable as :

$$
\begin{aligned}
& x_{B 1}=x_{B 1}^{\prime}-2 \times 2=3 \\
& x_{B 2}=x_{B 2}^{\prime}-1 \times 2=1 \\
& x_{B 3}=x_{B 3}^{\prime}-(-1) \times 2=1 \\
& x_{B 4}=x_{B 4}^{\prime}-(-2) \times 2=2
\end{aligned}
$$

The non basic variable x_{2} can be found by substituting x_{2} on upper bound at zero level as $x_{2}=2-x_{2}^{\prime}$. Applying the above formula.

Simplex Table - 7

$\because z_{j}-c_{j} \geq 0, \forall j$ therefore above BFS is optimal.
Optimal solution is $x_{1}^{\prime}=0, x_{2}^{\prime}=0$

$$
\begin{array}{ll}
\therefore & x_{1}=3-x_{1}^{\prime}=3-0=3 \\
& x_{2}=2-x_{1}^{\prime}=2-0=2 \\
\operatorname{Max} & z=z=2 * 3+2=8
\end{array}
$$

2.11 Self-Learning Exercise - 2

1. What do you mean by bounded variables?
2. How can you find the departing vector in the bounded variable algorithm?
3. If a bounded variable has lower bound positive, then how can it made zero?

2.12 Exercise

1. Using bounded variable technique, solve the following 1.p.p.

Max $\quad z=4 x_{1}+4 x_{2}+3 x_{3}$
s.t. $\quad-x_{1}+2 x_{2}+3 x_{3} \leq 15$

$$
\begin{aligned}
-x_{2}+x_{3} & \leq 4 \\
2 x_{1}+x_{2}-x_{3} & \leq 6 \\
x_{1}-x_{2}+2 x_{3} & \leq 10 \\
0 \leq x_{1} \leq 8,0 \leq x_{2} & \leq 4,0 \leq x_{3} \leq 4
\end{aligned}
$$

Ans: $\quad x_{1}=\frac{17}{5}, x_{2}=\frac{16}{5}, x_{3}=4, \operatorname{Max} z=\frac{192}{5}$
2. Solve the following bounded variable problem:
$\operatorname{Maxz}=4 x_{1}+2 x_{2}+6 x_{3}$
s.t. $4 x_{1}-x_{2} \leq 9$

$$
\begin{aligned}
& -x_{1}+x_{2}+2 x_{3} \leq 8 \\
& -3 x_{1}+x_{2}+4 x_{3} \leq 12
\end{aligned}
$$

and $1 \leq x_{1} \leq 3,0 \leq x_{2} \leq 5,0 \leq x_{3} \leq 2$
Ans. $x_{1}=3, x_{2}=5, x_{3}=2, \operatorname{Max} z=34$
3. Solve:

Max $z=3 x_{1}+5 x_{2}+2 x_{3}$
s.t. $\quad x_{1}+x_{2}+2 x_{3} \leq 14$

$$
2 x_{1}+4 x_{2}+3 x_{3} \leq 34
$$

and $0 \leq x_{4} \leq 4,7 \leq x_{2} \leq 10,0 \leq x_{3} \leq 3$
Ans. $\quad x_{1}=4, x_{2}=\frac{35}{4}, x_{3}=0, \operatorname{Max} z=\frac{223}{4}$

Unit - 3
 Integer Programming : Gomory's Algorithm

Structure of the Unit

3.0 Objective

3.1 Introduction

3.2 Importance of Integer Programming Problems
3.3 Necessity of Integer Programming
3.4 Definitions
3.5 Gomory's all IPP method
3.6 Construction of Gomory's Constraint.
3.7 All I.P.P. algorithm or cutting plane algorithm
3.8 Illustrative Examples
3.9 Geometrical Interpretation of Gomory's Cutting Plane Method
3.10 Self-Learning Exercise - I
3.11 Gomory's mixed I.P.P. Method
3.12 Self-Learning Exercise - II
3.13 Summary
3.14 Answer to Self-Learning Exercise - I
3.15 Answer to Self-Learning Exercise - II
3.16 Exercise

3.0 Objective

The objective of this unit is to introduce the concept of integer programming. After studying this unit one may be able to understand the importance and need of it. A method to solve these problems and suffcient exercise to understand the method is also prosented in this unit.

3.1 Introduction

Integer programming problems are those linear programming problems in which all or some of the variables in the optimal solutions are restricted to take non-negative integer values. Such problems are called 'all integer' or 'mixed integer programming problems depending, on whether all or some of the variables are restricted to integer values respectively.

In 1956, R.E. Gomory presented a systematic procedure to find optimum integer solution to an "all integer programming problem". Later he extended the method to deal with the more complicated case of "mixed integer programming problems" when some of the variables are required to be integer. These algorithms converge to the optimal integer solution in a finite number of iterations making use of familiar dual simplex method. This is called "cutting plane algorithm" because it introduces an idea of constructing "secondary" constraints which, when added to the optimal (non-integer) solution, will effectively cut the solution space towards the required result.

Another important approach, called the "branch and bound" technique for solving both the all integer and the mixed integer programming problems, has originated the straight forward idea of finding all feasible integer solutions.
"Branch-and-bound" technique was developed by A.H. Land and A.G. Doig (1960). This technique for solving both the all integer and the mixed integer problems, has orginiated the straight forward idea of finding all feasible integer solutions. Egon Balas (1965) introduced an interasting enumerative algorithm for linear programming problem with the variables having the value zero or one, called the zero one programming problem.

Several algorithms have been developed to solve linear integer programming problems. In this unit we discuss Gomory's cutting plane method, and in the next unit we will discuss branch and bound method.

3.2 Importance of Integer Programming Problems

We know that most industrial applications of large scale programming models are oriented towards planning decisions. There are frequently occuring circumstances in business and industry that lead to planning models involving integer valued variables. For example, in production, manufacturing is frequently scheduled in term of batches, lots or runs. In allocation of goods, a shipment must involve a diserete number of trucks, freight, cars or aircrafts. In such cases, the fractional value of the variables may be meaningless in context of the actual dicision problem. For example it is not possible to use 3.5 boilers in a thermal power station, 9.4 men in a project or 4.6 lathes in a workshop.

3.3 Necessity of Integer Programming

We can think that it is sufficient to obtain an integer solution to a given linear programming problem by first obtaining the non-integer optimal solution using simplex method (or graphical method for two variables problems) and then rounding off the fractional values of decision variables occuring in the optimal solution. But, in some cases, the deviation from the "exact" optimal integer values (obtained as a result of rounding) may become large enough to give an infeasible solution. Hence it was necessary to develop a systametic procedure to determine optimal integer solution to such problems. The following example will give more clarity of the concept.

Example: Consider an I.P.P.

$$
\begin{array}{ll}
\text { Max } & Z=10 x_{1}+4 x_{2}, \text { subject to the constraints. } \\
& 3 x_{1}+4 x_{2} \leq 8, x_{1}, x_{2} \geq 0 \text { and } x_{1}, x_{2} \text { are integers. }
\end{array}
$$

Ignoring the integer restriction we obtain the optimal solution :

$$
x=2 \frac{2}{3}, x_{2}=0, \text { Max } Z=26 \frac{2}{3} \text { by using graphical method. By rounding off the }
$$

fractional value of $x=2 \frac{2}{3}$, the optimum solution becomes $x_{1}=3, x_{2}=0$ with Max $Z=30$. But this solutions does not satisfy the constraints $3 x_{1}+4 x_{2} \leq 8$ and thus this solution is not feasible.

Now again, if we round off the solution to $x_{1}=2, x_{2}=0$ obviously this is the feasible solution and also integer valued. But this solution gives $Z=20$ which is far away from the optimum value of $Z=26 \frac{2}{3}$. So, this is another disadvantage of getting an integer valued solution by rounding off the exact optimum solution. Still there is no guarantee that the "rounding down" solution will be optimal one. Thus a
systematic procedure to find an exact optimum integer solution to the integer programming problems is needed.

3.4 Definitions

Integer Programming Problem (I.P.P.) : A linear programming problem :
Max $Z=c x$, subject to $A \bar{X}=b, \bar{X} \geq 0$ and some $x_{j} \in X$ are integers, where $\mathrm{C}, X \in R^{n}$, $b \in R^{m}$ and A is an $m \times n$ real matrix, is called integer programming problem (I.P.P.).

All Integer Programming Problem (All I.P.P.) : An integer programming problem is said to be an "All Integer Programming Problem" if all $x_{j} \in X$ are integers.

Mixed Integer Programming Problem (Mixed I.P.P.) : An integer programming problem is said to be "Mixed Integer Programming Problem" if not all $x_{j} \in X$ are integers.

3.5 Gomory's All I.P.P. Method

Consider a pure linear integer programming problem. First we find optimal solution using regular simplex method ignoring integer valued restriction. Then we observe the following :
(i) If all the variables is the optimum solution thus obtained have integer values, then the current solution will be the desired integer solution.
(ii) If not, the considered l.p.p. requires a modification by introducing secondary constraints (also called Gomory's constraint) that reduces some of the non-integer values of variables to integer one, but does not eliminate any feasible integer.
(iii) Now the optimum solution to this modified l.p.p. is obtained by using any standard algorithm. If all the variables in this solution are integers, then the opotimal integer solution is obtained. Otherwise another secondary constraint is added to the 1.p.p. and the whole procedure is repeated.

Thus the optimum integer solution will be obtained definitely after introducing the sufficient number of new constraints. The main work in this method is to construct Gomory's secondary constraints. Now we will discuss the method to construct this secondary construct.

3.6 Construction of Gomory's Constraint

The procedure to construct a secondary constraint is based on the fact that a solution which satsifies the constraint in the I.P.P. (3.4), also satisfies any other derived constraint obtained by employing only row transformation (adding or subtracting two or more constraints or multiply a constraint by nonzero number).

Thus if $\sum_{j=1}^{n} a_{j} x_{j}=b$
is any such constraint (obtained by employing row transformations only) then any feasible solution of the problem will also satisfy (1)

Before going further we discuss some rotations as: [p] denotes the integral part and f is fractional part of a number p, where $0 \leq f<1$,
thus $\quad p=[p]+f$

For example $\quad 5 \frac{2}{3}=5+\frac{2}{3} \Rightarrow\left[5 \frac{2}{3}\right]=5$ and $f=\frac{2}{3}$
and $\quad-5.2=-6+0.8 \Rightarrow[-5.2]=-6$ and $f=0.8$
using these rotations, let

$$
\begin{array}{ll}
a_{j}=\left[a_{j}\right]+f_{j}, & b=[b]+f \\
0 \leq f_{j}<1 & 0 \leq f<1
\end{array}
$$

where f_{j} and f represent the positive fractional parts of a_{j} and b respectively. Substituting these values in (1), we get

$$
\begin{align*}
& \sum\left(\left[a_{j}\right]+f_{j}\right) x_{j}=[b]+f \\
\Rightarrow \quad & \sum f_{j} x_{j}-f=[b]-\sum\left[a_{j}\right] x_{j} \tag{2}
\end{align*}
$$

Let $\quad h=-\sum f_{j} x_{j}+f$ and suppose $h \geq 0$, then since R.H.S. in integer valued so left side must, which shows that $h \geq 1 \Rightarrow f=h+\sum f_{j} x_{j} \geq 1$
which constradicts that $0 \leq f<1$

$$
\begin{array}{ll}
\Rightarrow & h \ngtr 0 \Rightarrow h \leq 0 \\
\Rightarrow & -\sum f_{j} x_{j}+f \leq 0 \\
\Rightarrow & -\sum f_{j} x_{j} \leq-f \tag{3}
\end{array}
$$

This inequality can be converted into an equation by introducing slack variable x_{s}, then (3) becomes

$$
\begin{equation*}
-\sum f_{j} x_{j}+x_{s}=-f \tag{4}
\end{equation*}
$$

This is the Gomory's secondary constraint and it is introduced in the given problem to form a new 1.p.p.

To understand the process more precisely, suppose that in the optional solution of the I.P.P. by simplex method one basic variable, say $X_{B_{r}}$ (in the $r^{\text {th }}$ row) is not an integer. Let $x_{B_{r}}=x_{1}($ say $)=3 \frac{3}{4}$.

Now suppose that in the optimal tableau of the simplex method, the equation corresponding to $r^{\text {th }}$ row, in which $x_{1}=3 \frac{3}{4}$ occurs, is

$$
x_{1}+1 \frac{2}{3} x_{2}+\frac{5}{3} x_{3}-x_{4}-2 \frac{1}{3} x_{5}=3 \frac{3}{4}
$$

This can be written as

$$
\begin{aligned}
& \begin{array}{l}
(1+0) x_{1}+\left(1+\frac{2}{3}\right) x_{2}+\left(1+\frac{2}{3}\right) x_{3}+(-1+0) x_{4}+\left(-3+\frac{2}{3}\right) x_{5}=3+\frac{3}{4} \\
\Rightarrow \quad
\end{array} \\
& \quad \frac{2}{3} x_{2}+\frac{2}{3} x_{3}+\frac{2}{3} x_{5}=\frac{3}{4}+\left[3-x_{1}-x_{2}-x_{3}+x_{4}+3 x_{5}\right] \\
& {\left[a s+x_{1}+x_{2}+x_{3}-x_{4}-3 x_{5} \leq 3\right] } \\
& \Rightarrow \quad \frac{2}{3} x_{2}+\frac{2}{3} x_{3}+\frac{2}{3} x_{5} \geq \frac{3}{4} \\
& \Rightarrow \quad-\frac{2}{3} x_{2}-\frac{2}{3} x_{3}-\frac{2}{3} x_{3} \leq-\frac{3}{4} \\
& \Rightarrow \quad-\frac{2}{3} x_{2}-\frac{2}{3} x_{3}-\frac{2}{3} x_{s}+x=-\frac{3}{4}
\end{aligned}
$$

where x_{s} is a slack variables.
This is the required Gomory's secondary constraint which can be amended to the given I.P.P.

3.7 All I.P.P. Algorithm or Cutting Plane Algorithm

The step by step procedure for the solution of all integer programming problem is as follows :
Step 1 : If the I.P.P. is in minimization form, convert it into maximization form.
Step 2 : Convert all inequality constraints into equalities by introducing slack or surplus variables, if necessary. Now obtain the optimum solution ofl.p.p. ignoring integers restrictions by usual simplex method.

Step 3 : Test integrality of the optimum solution thus obtained in step 2.
(i) If an optimum solution contains all the variables have integer values, then an optimum integer basic feasible solution has been achieved.
(ii) If not, go to next step.

Step 4 : If only one variable has the fractional value, then corresponding to the row in which the fractional variables lies in the optimal table of step 2, form a secondary constrant of the form (4).

However if more than one variables are fractional, then select that variable which has largest fractional part.

Step 5: Modify the l.p.p. by introducing the secondary constraint formed in step 4. Then find the new optimal solution of the modified l.p.p. by the dual simplex algorithm.
Step 6: If the optimal solution thus obtained is integer valued, then this is the required optimal solution of the originall.p.p. otherwise go to step 4 and modify the l.p.p. by a new contraint. Repeating the process iteratively can definitely obtain the required optimum solution of the l.p.p.

This method is known as cutting plane method as the secondary constraints cut the unuseful area of the feasible region in the graphical solution of the problem i.e. cut that area which has no integer valued feasible solution. Thus these secondary constraints eliminate all the non integer solution without loosing any integer valued solution.

$3.8 \quad$ Illustrative Examples

Example 1. Find the optimum integer solution to the 1.p.p.

$$
\operatorname{Max} z=x_{1}+2 x_{2}
$$

S.t. $\quad 2 x_{2} \leq 7$

$$
\begin{aligned}
& x_{1}+x_{2} \leq 7 \\
& 2 x_{1} \leq 11
\end{aligned}
$$

x_{1}, x_{2} are integers and ≥ 0
Solution : First we solve the given l.p.p. using simplex method by ignoring integer restrictions. For this we write it in standard form. Introducing slack variables x_{3}, x_{4}, x_{5} in the constraints, the problem becomes

$$
\operatorname{Max} z=x_{1}+2 x_{2}+0 \cdot x_{3}+0 \cdot x_{4}+0 \cdot x_{5}
$$

s.t.

$$
2 x_{2}+x_{3}
$$

$$
=7
$$

$$
\left.\begin{array}{lll}
x_{1}+x_{2} & +x_{4} & =7 \\
2 x_{1} & & +x_{5}
\end{array}\right)=11
$$

$$
x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
$$

Taking initial BFS as $\quad x_{1}=x_{2}=0$

$$
x_{3}=7, x_{4}=7, x_{5}=11
$$

Simplex Table-1

		c_{j}	1	2	0	0	0	$\theta=\frac{x_{B i}}{y_{i k}}, y_{i k>0}$	
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	
0	α_{3}	x_{3}	7	0	2	1	0	0	$\frac{7}{2} \rightarrow$
0	α_{4}	x_{4}	7	1	1	0	1	0	$\frac{7}{1}$
0	α_{5}	x_{5}	11	2	0	0	0	1	--

Simplex Table - 2

		c_{j}	1	2	0	0	0	$\theta=\frac{x_{B i}}{y_{i k}}, y_{i k>0}$	
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	
2	α_{2}	x_{2}	$\frac{7}{2}$	0	1	$\frac{1}{2}$	0	0	---
0	α_{4}	x_{4}	$\frac{7}{2}$	1	0	$-\frac{1}{2}$	1	0	$\frac{7}{2} / 1 \rightarrow$
0	α_{5}	x_{5}	11	2	0	0	0	1	$\frac{11}{2}$

		c_{j}	1	2	0	0	0	$\theta=\frac{x_{B i}}{y_{i k}}, y_{i k>0}$								
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}								
2	α_{2}	x_{2}	$\frac{7}{2}$	0	1	$\frac{1}{2}$	0	0								
1	α_{1}	x_{1}	$\frac{7}{2}$	1	0	$-\frac{1}{2}$	1	0								
0	α_{3}	x_{s}	4	2	0	1	-2	1								
$z_{j}-c_{j}$											0	0	$\frac{1}{2}$	1	0	$\min \theta=$

Since all $z_{j}-c_{j} \geq 0$, so this BFS is optimal one, which is $x_{1}=3 \frac{1}{2}, x_{2}=3 \frac{1}{2}$
This solution does not satisfy the integer restrictions. To obtain this, we use Gomory's cutting plane algorithm. In the above solution, two variables x_{1} and x_{2} are involving the fractional parts, but both have equal fractional part $\frac{1}{2}$. Let us choose the first row, as source row to form the Gomory's secondary constraint.

The corresponding equation

$$
0 \cdot x_{1}+1 \cdot x_{2}+\frac{1}{2} x_{3}+0 x_{4}+0 \cdot x_{5}=\frac{7}{2}
$$

$$
\begin{aligned}
& \text { or } \quad x_{2}+\left(0+\frac{1}{2}\right) x_{3}=3+\frac{1}{2} \\
& \text { or } \quad \frac{1}{2} x_{3}=\frac{1}{2}+\left(3-x_{2}\right) \\
& \Rightarrow \quad \frac{1}{2} x_{3} \geq \frac{1}{2} \\
& \Rightarrow \quad-\frac{1}{2} x_{3} \leq-\frac{1}{2} \\
& \Rightarrow \quad-\frac{1}{2} x_{3}+x_{s 1}=-\frac{1}{2}
\end{aligned}
$$

which is Gomory's secondary constraint. Now introducing this constraint in the above optimum table (third table), we get the new table as :

Simplex Table - 4

	C_{j}	1	2	0	0	0	0			
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}		$y_{s 1}$	
2	α_{2}	x_{2}	$\frac{7}{2}$	0	1	$\frac{1}{2}$	0	0	0	
1	α_{1}	x_{1}	$\frac{7}{2}$	1	0	$-\frac{1}{2}$	1	0	0	
0	α_{3}	x_{3}	4	0	0	1	-2	1	0	
0	$y_{s 1}$	$x_{s 1}$	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$	0	0	1	\rightarrow
Max $y_{i j}<0\left(\frac{z_{j}-c_{j}}{y_{i j}}\right.$		-	-	$\frac{1}{2} /-\frac{1}{2}$	0	0	0			

Here one variable is negative i.e. the present basic solution is not feasible, so to make it feasible we use dual simplex algorithm.
(i) Since $\min x_{B_{i}}=-\frac{1}{2}$ (for $x_{s 1}$) so we delete $x_{s 1}$ from the basis.
(ii) Now $\max _{y_{i j}<0}\left\{\frac{z_{j}-c_{j}}{y_{i j}}\right\}=\max \left\{\frac{\frac{1}{2}}{-\frac{1}{2}}\right\}=\frac{z_{3}-c_{3}}{y_{43}}$
$\Rightarrow \quad$ we must enter α_{3} vector into the basis.
New simplex Table-5 is as follows :

		c_{j}	1	2	0	0	0	0	
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	$y_{s_{1}}$
2	α_{2}	x_{2}	3	0	1	0	0	0	1
1	α_{1}	x_{1}	4	1	0	1	0	0	-1
0	α_{5}	x_{5}	1	0	0	0	0	1	-2
0	α_{3}	x_{3}	3	0	0	2	1	0	2

$$
\because \quad x_{B i} \geq 0, \forall i
$$

Thus the above Basic solution is feasible and optimum. i.e,

$$
x_{1}=4, x_{2}=3
$$

It also satisfies integerality condition, so it is a desired optimal integer solution,
Example 2: Find the optimum integer solution to the 1.p.p.
Max $Z=3 x_{1}+4 x_{2}$
s.t. $\quad 3 x_{1}+2 x_{2} \leq 8$

$$
x_{1}+4 x_{2} \leq 10
$$

$x_{1}, x_{2} \geq 0$, and are integers.
Solution : Introducing slack variables x_{3}, x_{4} the standard form of 1.p.p. is
$\operatorname{Max} \quad Z=3 x_{1}+4 x_{2}+0 x_{3}+0 x_{4}$
s.t. $\quad 3 x_{1}+2 x_{2}+x_{3}=8$
$x_{1}+4 x_{2}+x_{4}=10$
$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$
initial B.F.S. is $x_{1}=0=x_{2}, x_{3}=8, x_{4}=10$

Simplex Table - 1

	C_{j}	3	4	0	0	$\theta=\frac{x_{B i}}{y_{i k}}, y_{i k}>0$		
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	
0	α_{3}	x_{3}	8	3	2	1	0	$\frac{8}{2}$
0	α_{4}	x_{4}	10	1	4	0	1	$\frac{10}{4}$
$Z_{j}-C_{j}$								
-3	-4	0	0	$\min \theta=\frac{10}{4}$				

Simplex Table-2

			C_{j}	3	4	0	0	$\theta=\frac{x_{B i}}{y_{i k}}, y_{i k}>0$
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	
0	α_{3}	x_{3}	3	$\frac{5}{2}$	0	1	$-\frac{1}{2}$	$\frac{6}{5} \rightarrow$
4	α_{2}	x_{2}	$\frac{5}{2}$	$\frac{1}{4}$	1	0	$\frac{1}{4}$	10
$Z_{j}-C_{j}$				- ${ }^{-}$	0	0	1	$\min \theta=\frac{6}{5}$

Simplex Table - 3

			C_{j}	3	4	0	0	
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	
3	α_{1}	x_{1}	$\frac{6}{5}$	1	0	$\frac{2}{5}$	$-\frac{1}{5}$	
4	α_{2}	x_{2}	$\frac{11}{5}$	0	1	$-1 / 10$	$3 / 10$	
$Z_{j}-C_{j}$				0	0	$4 / 5$	$3 / 5$	

$\because Z_{j}-C_{j} \geq 0, \forall j, \quad$ therefore optimal non integer solution is $x_{1}=\frac{6}{5}=1 \frac{1}{5}, x_{2}=\frac{11}{5}=2 \frac{1}{5}$
Now, we introduce Gomory's secondary constraint.

The fractional parts of the two variables are same $\left(\frac{1}{5}\right)$, we choose the second row as source row.

$$
(0+0) x_{1}+(1+0) x_{2}+\left(1+\frac{9}{10}\right) x_{3}+\left(0+\frac{3}{10}\right) x_{4}=2+\frac{1}{5}
$$

The Gomory's constraint

$$
\begin{aligned}
& \frac{9}{10} x_{3}+\frac{3}{10} x_{4} \geq \frac{1}{5} \\
\Rightarrow \quad & -\frac{9}{10} x_{3}-\frac{3}{10} x_{4}+x_{S_{1}}=-\frac{1}{5}
\end{aligned}
$$

The simplex table for modified l.p.p. is as follows :
Simplex Table - 4

			C_{j}	3	4	0	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$
3	α_{1}	x_{1}	6/5	1	0	2/5	$-1 / 5$	0
4	α_{2}	x_{2}	11/5	0	1	$-1 / 10$	$3 / 10$	0
0	$y_{s 1}$	$x_{s 1}$	$-\frac{1}{5}$	0	0	-9/10	$-3 / 10$	1
$Z_{j}-C_{j}$				0	0	4/5	$3 / 5$	
$\operatorname{Max}_{y_{3}<0} \frac{z_{j}-c_{j}}{y_{3 j}}$				-	-	$\frac{4 / 5}{-9 / 10}$	$\frac{3 / 5}{-3 / 10}$	

Here we use dual simplex alogrithm and take $x_{s 1}$ as deleting variable and x_{3} as entering variable. The next iterative table is as follows :

Simplex Table - 5

			C_{j}	3	4	0	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$
3	α_{1}	x_{1}	10/9	1	0	0	$-\frac{1}{3}$	4/9
4	α_{2}	x_{2}	20/9	0	1	0	$\frac{1}{3}$	$-\frac{1}{9}$
0	α_{3}	x_{3}	2/9	0	0	1	$\frac{1}{3}$	$-\frac{10}{9}$
$Z_{j}-C_{j}$				0	0	0	$\frac{1}{3}$	8/9

Still the optimal solution is not integer, so a new secondary constraint must be added. Choose second row as source row we get the new constraint $-\frac{1}{3} x_{4}-\frac{8}{9} x_{s 1}+x_{s 2}=-\frac{2}{9}$

Introducing this constraint the modified table is
Simplex Table - 6

			C_{j}	3	4	0	0	0	
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$	$y_{s 2}$
3	α_{1}	x_{1}	$\frac{10}{9}$	1	0	0	$-\frac{1}{3}$	$\frac{4}{9}$	0
4	α_{2}	x_{2}	$\frac{20}{9}$	0	1	0	$\frac{1}{3}$	$-\frac{1}{9}$	0
0	α_{3}	x_{3}	$\frac{2}{9}$	0	0	1	$\frac{1}{3}$	$-\frac{10}{9}$	0
0	$y_{s 2}$	$x_{s 2}$	$-\frac{2}{9}$	0	0	0	$-\frac{1}{3}$	-8/9	1
$Z_{j}-C_{j}$				0	0	0	$\frac{1}{3}$	8/9	0
$\operatorname{Max}_{y_{4 j}<0} \frac{Z_{j}-C_{j}}{y_{4 j}}$				-	-	-	$\frac{1}{3} /\left(-\frac{1}{3}\right)$	$\frac{8 / 9}{-8 / 9}$	-

Now deleting $x_{s 2}$ and introducing α_{4}, bydual simplex algorithm, we get the next iterative table as follows :

Simplex Table - 7

			b	3	4	0	0	0	0
C_{B}	B	X_{B}	C_{j}	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$	$y_{s 2}$
3	α_{1}	x_{1}	$4 / 3$	1	0	0	0	4/3	-1
4	α_{2}	x_{2}	2	0	1	0	0	-1	1
0	α_{3}	x_{3}	0	0	0	1	0	-2	1
0	α_{4}	x_{4}	2/3	0	0	0	1	8/3	-3
$Z_{j}-C_{j}$				0	0	0	0	0	1

Still this optimal solution does not satisfy integer restriction as $x_{1}=\frac{4}{3}$ is fractional. Taking the fourth row as source row the Gomory's constraint is

$$
-\frac{2}{3} x_{s 1}+x_{s 2}=-\frac{2}{3}
$$

Introducing this in the above table 7, we get the modified table as
Simplex Table - 8

			C_{j}	3	4	0	0	0	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$	$y_{s 2}$	$y_{s 3}$
3	α_{1}	x_{1}	4/3	1	0	0	0	4/3	-1	0
4	α_{2}	x_{2}	2	0	1	0	0	-1	1	0
0	α_{3}	x_{3}	0	0	0	1	0	-2	1	0
0	α_{4}	x_{4}	2/3	0	0	0	1	8/3	-3	0
0	$y_{s 1}$	$x_{s 3}$	$-2 / 3$	0	0	0	0	- $\frac{2}{3}$	0	1
$Z_{j}-C_{j}$				0	0	0	0	0	1	0
$\operatorname{Max}_{y_{s j}<0} \frac{Z_{j}-C_{j}}{y_{s j}}$				-	-	-	-	$\frac{0}{-2 / 3}$	-	-

Now deleting $x_{s 3}$ and introducing $x_{s 1}$, we get the next iteration tableau as follows :
Simplex Table - 9

	C_{j}	3	4	0	0	0	0	0		
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$	$y_{s 2}$	$y_{s 3}$
3	α_{1}	x_{1}	0	1	0	0	0	1	-1	2
4	α_{2}	x_{2}	3	0	1	0	0	0	1	$-3 / 2$
0	α_{3}	x_{3}	2	0	0	1	0	0	1	-3
0	α_{4}	x_{4}	2	0	0	0	1	0	-3	4
0	$y_{s 1}$	$x_{s 1}$	1	0	0	0	0	1	0	$-3 / 2$

Obviously this optimal solution is the required integral solution, which is as follows :

$$
x_{1}=0, x_{2}=3, \quad \operatorname{Max} Z=12
$$

Example 3 : Solve the following integer programming problem :

$$
\begin{array}{ll}
\text { Max } & Z=2 x_{1}+10 x_{2}-10 x_{3} \\
\text { s.t. } & 2 x_{1}+20 x_{2}+4 x_{3} \leq 15 \\
& 6 x_{1}+20 x_{2}+4 x_{3}=20 \\
& x_{1}, x_{2}, x_{3} \geq 0 \text { and integers. }
\end{array}
$$

Solve the problem as a (continuous) linear program, then show that it is impossible to obtain feasible integer solution by using simple rounding. Solve the problem using any integer program algorithm.

Solution : Ignoring the integer restrictions, on solving the problem by simplex table, we get the following optimum table:

Simplex Table - 1

		C_{j}	2	20	-10	0	
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}
20	α_{1}	x_{2}	$\frac{5}{8}$	0	1	$\frac{1}{5}$	$\frac{3}{40}$
2	α_{2}	x_{1}	$\frac{5}{4}$	1	0	0	$-\frac{1}{4}$
		$Z_{j}-C_{j}$		0	0	14	1

Where x_{4} is a slack variable and α_{4} is the associated vector. The optimum solution is $x_{1}=\frac{5}{4}$, $x_{2}=\frac{5}{8}, x_{3}=0$. The simple rounding reduces to $x_{1}=1, x_{2}=0, x_{3}=0$ and it does not satisfy the second constraint. Instead, if we take $x_{1}=1, x_{2}=1, x_{3}=0$ or $x_{1}=2, x_{2}=0, x_{3}=0, x_{1}=2, x_{2}=1$, $x_{3}=0$ even then these solutions do not satisfy the constraints. Hence by simple rounding, we cannot obtain an integral solution of the given problem.

Now we use Gomory's cutting plane algorithm to obtain the desired integer solution.
Note that two variables are non-integer and maximum fractional part is $\frac{5}{8}$ (of x_{2}). So we choose the first row (in which x_{2} is available) as a source row for the secondary constraint

$$
(0+0) x_{1}+(1+0) x_{2}+\left(0+\frac{1}{5}\right) x_{3}+\left(0+\frac{3}{40}\right) x_{4}=0+\frac{5}{8}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{5} x_{3}+\frac{3}{40} x_{4}=\frac{5}{8}-x_{2} \\
& \Rightarrow \quad \frac{1}{5} x_{3}+\frac{3}{40} x_{4} \geq \frac{5}{8} \\
& \text { or } \quad-\frac{1}{5} x_{3}-\frac{3}{40} x_{4} \leq-\frac{5}{8} \\
& \Rightarrow \quad-\frac{1}{5} x_{3}-\frac{3}{40} x_{4}+x_{s 1}=-\frac{5}{8}
\end{aligned}
$$

Introducing this constraint in the above table we obtain modified table as follows :
Simplex Table-2

			C_{j}	2	20	-10	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$
20	α_{2}	x_{2}	$\frac{5}{8}$	0	1	$\frac{1}{5}$	$\frac{3}{40}$	0
2	α_{1}	x_{1}	$\frac{5}{8}$	1	0	0	$-\frac{1}{4}$	0
0	$y_{s 1}$	$x_{s 1}$	$-\frac{5}{8}$	0	0	$-\frac{1}{5}$	- $\frac{3}{40}$	0
$Z_{j}-C_{j}$				0	0	14	1	0
$\underset{y_{z j} \leq 0}{\operatorname{Max}}\left\{\frac{Z_{j}-C_{j}}{y_{z j}}\right\}$				-	-	$\frac{14}{-1 / 5}$	$\frac{1}{-3 / 40}$	-

The next iterative table is as: (deleting $y_{s 1}$ and entering α_{4})
Simplex Table - 3

		C_{j}	2	20	-10	0	0							
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$						
20	α_{2}	x_{2}	0	0	1	0	0	1						
2	α_{1}	x_{1}	$\frac{10}{3}$	1	0	$2 / 3$	0	$-\frac{10}{3}$						
0	α_{4}	x_{4}	$\frac{25}{3}$	0	0	$8 / 3$	1	$-\frac{40}{3}$						
$Z_{j}-C_{j}$										0	0	$\frac{34}{3}$	0	$\frac{40}{3}$

Still this optimal solution does not satisfying integer constraint as $x_{1}=\frac{10}{3}, x_{4}=\frac{25}{3}$, so again one secondary constraint is to be introduced.

Since both the variables have same fractional parts so we can take randomly third row as source row.

$$
\begin{aligned}
& (0+0) x_{1}+(0+0) x_{2}-\left(2+\frac{2}{3}\right) x_{3}+(1+0) x_{3}+(1+0) x_{4}+\left(-14+\frac{2}{3}\right) x_{s 1}=\left(8+\frac{1}{3}\right) \\
& \Rightarrow \quad \frac{2}{3} x_{3}+\frac{2}{3} x_{s 1}=\frac{1}{3}+\left(8-2 x_{3}-x_{4}+14 x_{s 1}\right) \\
& \Rightarrow \quad \frac{2}{3} x_{3}+\frac{2}{3} x_{s 1} \geq \frac{1}{3} \\
& \text { or } \quad-\frac{2}{3} x_{3}-\frac{2}{3} x_{s 1} \leq-\frac{1}{3} \\
& \Rightarrow \quad-\frac{2}{3} x_{3}-\frac{2}{3} x_{s 1}+x_{s 2}=-\frac{1}{3}
\end{aligned}
$$

Which is the secondary constraint. Adding this constraint in the last table, we get the modified table as follows :

Simplex Table - 4

			C_{j}	2	20	-10	0	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$	$y_{s 2}$
20	α_{2}	x_{2}	0	0	1	0	0	1	0
2	α_{1}	x_{1}	$10 / 3$	1	0	$2 / 3$	0	$-10 / 3$	0
0	α_{4}	x_{4}	$25 / 3$	0	0	$8 / 3$	1	$-40 / 3$	0
0	$y_{s 1}$	$x_{s 2}$	$-1 / 3$	0	0	$-2 / 3$	0	$-2 / 3$	1
	$Z_{j}-C_{j}$	0	0	$34 / 3$	0	$40 / 3$	0		

Next iterative table is as follows :

Simplex Table - 5

			C_{j}	2	20	-10	0	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$	$y_{s 2}$
20	α_{2}	x_{2}	0	0	1	0	0	1	0
2	α_{1}	x_{1}	3	1	0	0	0	-4	1
0	α_{4}	x_{4}	7	0	0	0	1	-16	4
-10	α_{3}	x_{3}	$\frac{1}{2}$	0	0	1	0	1	$-3 / 2$
$Z_{j}-C_{j}$				0	0	0	0	2	17

Still the solution does not satisfy the integral restriction and so one more Gomory's constraint will be introduced. We take fourth row as source row which gives

$$
\begin{aligned}
& x_{3}+x_{s 1}-\frac{3}{2} x_{s 2}=\frac{1}{2} \\
\Rightarrow \quad & (0+0) x_{1}+(0+0) x_{s 1}+\left(-2+\frac{1}{2}\right) x_{s 2}=\left(0+\frac{1}{2}\right) \\
\Rightarrow \quad & \frac{1}{2} x_{s 2} \geq \frac{1}{2} \\
\text { or } & -\frac{1}{2} x_{s 2} \leq-\frac{1}{2} \\
\Rightarrow \quad & -\frac{1}{2} x_{s 2}+x_{s 3}=-\frac{1}{2}
\end{aligned}
$$

Now introducing this secondary constraint in the last table as follows :
Simplex Table - 6

			C_{j}	2	20	-10	0	0	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$	$y_{s 2}$	$y_{s 3}$
20	α_{2}	x_{2}	0	0	1	0	0	1	0	0
2	α_{1}	x_{1}	3	1	0	0	0	4	1	0
0	α_{4}	x_{4}	7	0	0	0	1	-16	4	0
-10	α_{3}	x_{3}	$\frac{1}{2}$	0	0	1	0	1	$-\frac{3}{2}$	0
0	$y_{s 2}$	$x_{s 2}$	$-\frac{1}{2}$	0	0	0	0	0	- $\frac{1}{2}$	1
	$Z_{j}-C_{j}$			0	0	0	0	2	17	0
	$\underset{y_{s j<0}}{\operatorname{Max}}\left(\frac{Z_{j}-C_{j}}{y_{s j}}\right)$			-	-	-	-	-	$\frac{17}{\uparrow^{-1 / 2}}$	-

Simplex Table - 7

			C_{j}	2	20	-10	0	0	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$	$y_{s 2}$	$y_{s 3}$
20	α_{2}	x_{2}	0	0	1	0	0	1	0	0
2	α_{1}	x_{1}	2	1	0	0	0	-4	0	2
0	α_{4}	x_{4}	3	0	0	0	1	-16	0	8
-10	α_{3}	x_{3}	2	0	0	1	0	1	0	-3
0	$y_{s 2}$	$x_{s 2}$	1	0	0	0	0	0	1	-2
$z_{j}-c_{j}$				0	0	0	0	2	0	34

Above optimum solution is integer one, so required solution is

$$
x_{1}=2, x_{2}=0, x_{3}=2, \quad \text { Max } \quad Z=-16
$$

Example 4 : A manufacturer of baby-doll makes two types of dolls, doll x and doll y. Processing of these two dolls is done on two machines, A and B, Doll x requires two hours on machine A and 6 hours on machine B. Doll y requires 5 hours on machine A and also five hours on machine B. There are sixteen hours of time per day available on machine A and thirty hours on machine B. The profit gained on both the dolls is same, i.e., one rupee per doll. What should be the daily production of the two dalls for maximum profit?
(a) Set up and solve the l.p.p.
(b) If the optimum solution is not integer valued, use the Gomory's technique to derive the optimal solution.
Solution : Let x_{1}, x_{2} denote the number of dolls manufactured per day of type x and y respectively, then the corresponding l.p.p. is formulated as follows :

$$
\begin{array}{ll}
\text { Max } & Z=x_{1}+x_{2} \\
\text { s.t. } & 2 x_{1}+5 x_{2} \leq 16 \\
& 6 x_{1}+5 x_{2} \leq 30, x_{1}, x_{2} \geq 0, \text { are integers. }
\end{array}
$$

Introducing slack variables x_{3}, x_{4} and solving the problem by simplex method, the optimal table giving the optimal solution is as follows :

Simplex Table - 1

		C_{j}	1	1	0	0	
1	α_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}
1	$\frac{9}{5}$	0	1	$3 / 10$	$-1 / 10$		
1	α_{1}	x_{1}	$\frac{7}{2}$	1	0	$-\frac{1}{4}$	$\frac{1}{4}$
$Z_{j}-C_{j}$							

Here both the variables are fractional. But their fractional parts are $4 / 5$ and $\frac{1}{2}$. Out these $\frac{4}{5}$ is largest which is of x_{2} lying in the first row of the table. Taking first row as the source row, the corresponding equation is

$$
\begin{aligned}
& \quad(0+0) x_{1}+(1+0) x_{2}+\left(0+\frac{3}{10}\right) x_{3}+\left(-1+\frac{9}{10}\right) x_{4}=1+\frac{4}{5} \\
& \Rightarrow \quad \\
& \frac{3}{10} x_{3}+\frac{9}{10} x_{4} \geq \frac{4}{5} \\
& \text { or } \quad \\
& \quad-\frac{3}{10} x_{3}-\frac{9}{10} x_{4} \leq-\frac{4}{5}
\end{aligned}
$$

Hence the Gomory's constraint is

$$
-\frac{3}{10} x_{3}-\frac{9}{10} x_{4}+x_{s 1}=-\frac{4}{5}
$$

where $x_{s 1}$ is a slack variable. The modified table is

$$
\text { Simplex Table - } 2
$$

			C_{j}	1	1	0	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$
1	α_{2}	x_{2}	$\frac{9}{5}$	0	1	$\frac{3}{10}$	$-\frac{1}{10}$	0
1	α_{1}	x_{1}	$\frac{7}{2}$	1	0	$-\frac{1}{4}$	$\frac{1}{4}$	0
0	$y_{s 1}$	$x_{s 1}$	$-\frac{4}{5}$	0	0	$\frac{-\frac{3}{10}}{}$	$-\frac{9}{10}$	1

Using dual simplex algorithm entering α_{3} and removing $x_{s 1}$ from the basis, we get new table as follows :

Simplex Table - 3

		C_{j}	1	1	0	0	0							
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$						
1	α_{2}	x_{2}	1	0	1	0	-1	0						
1	α_{1}	x_{1}	$25 / 6$	1	0	0	1	$-5 / 6$						
0	α_{3}	x_{3}	$8 / 3$	0	0	1	3	$-10 / 3$						
$Z_{j}-C_{j}$										0	0	0	0	$1 / 6$

This optimum solution is still not integer. Again, we construct a Gomory's constraint. This time taking second row involving fractional variable $x_{1}=\frac{25}{6}$, as a source row, we get the corresponding equation

$$
\begin{aligned}
& \quad(1+0) x_{1}+(1+0) x_{4}+\left(-1+\frac{1}{6}\right) x_{s 1}=4+\frac{1}{6} \\
& \Rightarrow \quad \frac{1}{6} x_{s 1} \geq \frac{1}{6} \\
& \text { or } \quad-\frac{1}{6} x_{s 1} \leq-\frac{1}{6} \\
& \Rightarrow \quad-x_{s 1}+x_{s 2}=-1
\end{aligned}
$$

Introducing this constraint in the last table, we have the modified table as :
Simplex Table-4

		C_{j}	1	1	0	0	0	0											
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$	$y_{s 2}$										
1	α_{2}	x_{2}	1	0	1	0	-1	1	0										
1	α_{1}	x_{1}	$25 / 6$	1	0	0	1	$-5 / 6$	0										
0	α_{3}	x_{3}	$8 / 3$	0	0	1	3	$-10 / 3$	0										
0	$y_{s 1}$	$x_{s 1}$	-1	0	0	0	0	$\boxed{-1}$	1										
$Z_{j}-C_{j}$														0	0	0	0	$1 / 6$	0

The next iterative table is
Simplex Table - 5

			C_{j}	1	1	0	0	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$	$y_{s 2}$
1	α_{2}	x_{2}	0	0	1	0	1	0	0
1	α_{1}	x_{1}	5	1	0	0	1	0	$-5 / 6$
0	α_{3}	x_{3}	6	0	0	1	3	0	$-10 / 3$
0	$y_{s 1}$	$x_{s 1}$	1	0	0	0	0	1	-1
$Z_{j}-C_{j}$				0	0	0	0	0	1/6

This iterative optimal solution having integer value has been reached, which is as :

$$
x_{1}=5, x_{2}=0 \text { and } \operatorname{Max} Z=5
$$

3.9 Geometrical Interpretation of Gomory's Cutting Plane Method

We take last example 4 for the geometrical interpretation

Figure 3.1
The feasible region, is as shown in the above fig. 3.1 Optimum solution $x_{1}=\frac{7}{2}, x_{2}=\frac{9}{5}$. Since the solution is not integer. We introduce first Gomory's constraint

$$
\frac{3}{10} x_{3}+\frac{9}{10} x_{4} \geq \frac{4}{5}
$$

To express this in terms of x_{1} and x_{2}, we know that

$$
\begin{aligned}
& 2 x_{1}+5 x_{2}+x_{3}=16 \\
& 6 x_{1}+5 x_{2}+x_{4}=30
\end{aligned}
$$

as x_{3} and x_{4} are slack variables introduced in the begining to convert the inequalities into equations.

These give $\quad x_{3}=16-2 x_{1}-5 x_{2}$
and $\quad x_{4}=30-6 x_{1}-5 x_{2}$
substituting in the Gomory's constraint, we get

$$
\begin{aligned}
& \frac{3}{10}\left(16-2 x_{1}-5 x_{2}\right)+\frac{9}{10}\left(30-6 x_{1}-5 x_{2}\right) \geq \frac{4}{5} \\
\Rightarrow & x_{1}+x_{2} \leq 5 \frac{1}{6}
\end{aligned}
$$

This constraint cuts-off some part of the feasible region (in this case very minute) and hence now the feasible region is some what less then the previous one (see fig.3.1). Similarly the second Gomory's constraint is $x_{s 1} \geq 1$

$$
\begin{aligned}
& \text { But } \quad-\frac{3}{10} x_{3}-\frac{9}{10} x_{4}+x_{s 1}=-\frac{4}{5} \quad \text { or } \quad x_{s 1}=\left(\frac{3}{10} x_{3}+\frac{9}{10} x_{4}\right)-\frac{4}{5} \\
& \Rightarrow \quad x_{s 1}=\frac{3}{10}\left(16-2 x_{1}-5 x_{2}\right)+\frac{9}{10}\left(33-6 x_{1}-5 x_{2}\right)-4 / 5 \\
& \Rightarrow \quad x_{s 1}=31.8-6 x_{1}-6 x_{2} \\
& \therefore \quad x_{s 1} \geq 1 \Rightarrow \quad 31.8-6 x_{1}-6 x_{2} \geq 1 \\
& \Rightarrow \quad 6 x_{1}+6 x_{2} \leq 30.8 \\
& \Rightarrow \quad x_{1}+x_{2} \leq 5.103
\end{aligned}
$$

This constraint also cut off some part of feasible region so why this is not plotted here. Due to these cuttings, the method is called cutting plane method.

Example 5: Solve the integer programming problem :

$$
\begin{array}{ll}
\text { Max } & Z=7 x_{1}+9 x_{2} \\
\text { S.t. } & -x_{1}+3 x_{2} \leq 6 \\
& 7 x_{1}+x_{2} \leq 35 \\
& x_{1} \geq 0, x_{2} \geq 0 \text { and } x_{1}, x_{2} \text { are integers. }
\end{array}
$$

Solution : Introducing slack variables x_{3} and x_{4} and solving by simplex method, we get the optimal solution as follows :

Simplex Table - 1

		C_{j}	7	9	0	0	
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}
9	α_{2}	x_{2}	$3 \frac{1}{2}$	0	1	$7 / 22$	$1 / 22$
7	α_{1}	x_{1}	$4 \frac{1}{2}$	1	0	$-1 / 22$	$3 / 22$
$Z_{j}-C_{j}$							0

The non-integer solution thus obtained is:

$$
x_{1}=4 \frac{1}{2}, \quad x_{2}=3 \frac{1}{2}, \quad \text { Max } Z=63
$$

Since both the variables have same fractional parts so the first constraint is choosen as the source row to make Gomory's constraint, which is as :

$$
\begin{aligned}
& (0+0) x_{1}+(1+0) x_{2}+\left(0+\frac{7}{22}\right) x_{3}+\left(0+\frac{1}{22}\right) x_{4}=3+\frac{1}{2} \\
& \Rightarrow \quad \frac{7}{22} x_{3}+\frac{1}{22} x_{4} \geq \frac{1}{2} \\
& \text { or } \quad-\frac{7}{22} x_{3}-\frac{1}{22} x_{4} \leq-\frac{1}{2} \\
& \Rightarrow \quad-\frac{7}{22} x_{3}-\frac{1}{22} x_{4}+x_{s 1}=-\frac{1}{2}
\end{aligned}
$$

with Gomory's secondary constraint introducing in the above table we get
Simplex Table - 2

			C_{j}	7	9	0	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$
9	α_{2}	x_{2}	$3 \frac{1}{2}$	0	1	$\frac{7}{22}$	$\frac{1}{22}$	0
7	α_{1}	x_{1}	$4 \frac{1}{2}$	1	0	$-\frac{1}{22}$	$\frac{3}{22}$	0
0	$y_{s 1}$	$x_{s 1}$	$-\frac{1}{2}$	0	0	- $\frac{7}{22}$	$-\frac{1}{22}$	1
$Z_{j}-C_{j}$				0	0	28/11	$3 / 22$	0
$\underset{y_{3 j}<0}{\operatorname{Max}}\left\{\frac{Z_{j}-C_{j}}{y_{3 j}}\right\}$				-	-	$\frac{28 / 11}{-7 / 22}$	$\frac{15 / 11}{-1 / 22}$	

Using dual simplex algorithm the next iterative table is as follows :
Simplex Table - 3

		C_{j}	7	9	0	0	0	
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$
9	α_{2}	x_{2}	3	0	1	0	0	1
7	α_{1}	x_{1}	$4 \frac{4}{7}$	1	0	0	$1 / 7$	$-\frac{1}{7}$
0	α_{3}	x_{3}	$1 \frac{4}{7}$	0	0	1	$1 / 7$	$-22 / 7$
$Z_{j}-C_{j}$								0

The above optimal solution still does not satisfy integer restriction. Choose second row as source row to construct Gomory's secondary constraint.

$$
\begin{aligned}
& (0+1) x_{1}+(0+0) x_{2}+(0+0) x_{3}+\left(0+\frac{1}{7}\right) x_{4}+\left(-1+\frac{6}{7}\right) x_{s 1}=4+\frac{4}{7} \\
& \Rightarrow \quad \frac{1}{7} x_{4}+\frac{6}{7} x_{s 1} \geq \frac{4}{7} \\
& \text { or } \quad-\frac{1}{7} x_{4}-\frac{6}{7} x_{s 1} \leq-\frac{4}{7} \\
& \Rightarrow \quad-\frac{1}{7} x_{4}-\frac{6}{7} x_{s 1}+x_{s 2}=-\frac{4}{7}
\end{aligned}
$$

Introducing this constraint is the above table and applying dual simplex algorithm, we get the transformed table as below :

Simplex Table - 4

		C_{j}	7	9	0	0	0	0	
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$	$y_{s 2}$
9	α_{2}	x_{2}	3	0	1	0	0	1	0
7	α_{1}	1	$4 \frac{4}{7}$	1	0	0	$1 / 7$	$-1 / 7$	0
0	α_{3}	x_{3}	$1 \frac{4}{7}$	0	0	1	$1 / 7$	$-22 / 7$	0
0	$y_{s 2}$	$x_{s 2}$	$-\frac{4}{7}$	0	0	0	$-1 / 7$	$-6 / 7$	1

The next iterative table is
Simplex Table - 5

			C_{j}	7	9	0	0	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$	$y_{s 2}$
9	α_{2}	x_{2}	3	0	1	0	0	1	0
7	α_{1}	x_{1}	4	1	0	0	0	-1	1
0	α_{3}	x_{3}	1	0	0	1	0	-4	1
0	x_{4}	x_{4}	4	0	0	0	1	6	-7
$Z_{j}-C_{j}$				0	0	0	0	2	7

In this optimal table all the variables have integer valued, so this is required optimal integer solution, which is as

$$
x_{1}=4, x_{2}=3, \quad \text { Max } \quad Z=55
$$

Example 6 : Find the optimum integer solution to the following I.P.P.
$\operatorname{Max} \quad Z=x_{1}+4 x_{2}$
S.t. $\quad 2 x_{1}+4 x_{2} \leq 7$
$5 x_{1}+3 x_{2} \leq 15$
$x_{1}, x_{2} \geq 0$ and are integers.
Solution : Introducing slack variables x_{3}, x_{4} and solving above problem by usual simplex method the optimum non-integer solution is given as follows :

Simplex Table - 1

		C_{j}	1	4	0	0	
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}
4	α_{2}	x_{2}	$7 / 4$	$\frac{1}{2}$	1	$\frac{1}{4}$	0
0	α_{4}	x_{4}	$39 / 4$	$\frac{7}{2}$	0	$-\frac{3}{4}$	1
$Z_{j}-C_{j}$							1

In the above solution both the variables have same fractional parts, so consider the first row as source row, which is

$$
\left(0+\frac{1}{2}\right) x_{1}+(1+0) x_{2}+\left(0+\frac{1}{4}\right) x_{3}+(0+0) x_{4}=1+\frac{3}{4}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{2} x_{1}+\frac{1}{4} x_{3} \geq \frac{3}{4} \\
& \text { or } \quad-\frac{1}{2} x_{1}-\frac{1}{4} x_{3} \leq-\frac{3}{4} \\
& \Rightarrow \quad-\frac{1}{2} x_{1}-\frac{1}{4} x_{3}+x_{s 1}=-\frac{3}{4}
\end{aligned}
$$

Introducing this secondary constraint in the above table, the modified table is as follows :
Simplex Table - 2

			C_{j}	1	4	0	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$
4	α_{2}	x_{2}	$\frac{7}{9}$	$\frac{1}{2}$	1	$\frac{1}{4}$	0	0
0	α_{4}	x_{4}	$\frac{39}{4}$	$\frac{7}{2}$	0	$-\frac{3}{4}$	1	0
0	$y_{s 1}$	$x_{s 1}$	$-\frac{3}{4}$	- $\frac{1}{2}$	0	$-\frac{1}{4}$	0	1
$Z_{j}-C_{j}$				1	0	1	0	0
$\underset{y_{3 j} \times 0}{\operatorname{Max}}\left\{\frac{Z_{j}-C_{j}}{y_{3 j}}\right\}$				$\frac{1}{-\frac{1}{2}}$	-	$\frac{1}{-1 / 4}$	-	-

The next iterative table is as :
Simplex Table - 3

		C_{j}	1	4	0	0	0							
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$						
4	α_{2}	x_{2}	1	0	1	0	0	1						
0	α_{4}	x_{4}	$\frac{9}{2}$	0	0	$-5 / 2$	1	7						
1	α_{1}	x_{1}	$\frac{3}{2}$	1	0	$\frac{1}{2}$	0	-2						
$Z_{j}-C_{j}$										0	0	$\frac{1}{2}$	0	2

Since the optimum solution is still not integer valued, we introduce second Gomorian constraint taking second row as source row

$$
\begin{aligned}
& (0+0) x_{1}+(0+0) x_{2}+\left(-3+\frac{1}{2}\right) x_{3}+(1+0) x_{4}+(1+0) y_{s 1}=4+\frac{1}{2} \\
\Rightarrow & \frac{1}{2} x_{3} \geq \frac{1}{2} \quad \text { or } \quad-\frac{1}{2} x_{3} \leq-\frac{1}{2} \\
\Rightarrow & -\frac{1}{2} x_{3}+x_{s 2}=-\frac{1}{2}
\end{aligned}
$$

Introducing this secondary constraint, the modified table is as :
Simplex Table - 4

			C_{j}	1	4	0	0	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$	$y_{s 2}$
4	α_{2}	x_{2}	1	0	1	0	0	1	0
0	α_{4}	x_{4}	$9 / 2$	0	0	$-5 / 2$	1	7	0
1	α_{1}	x_{1}	$3 / 2$	1	0	1/2	0	-2	0
0	$y_{s 2}$	$x_{s 2}$	$-\frac{1}{2}$	0	0	$-1 / 2$	0	0	1
$Z_{j}-C_{j}$				0	0	$\frac{1}{2}$	0	2	0
$\operatorname{Max}_{y_{4}<0}\left\{\frac{Z_{j}-C_{j}}{y_{4 j}}\right\}$				-	-	$\frac{\frac{1}{2}}{-\frac{1}{2}}$	-	-	-

The next iterative table is as follows :
Simplex Table - 5

			C_{j}	1	4	0	0	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	$y_{s 1}$	$y_{s 2}$
4	α_{2}	x_{2}	1	0	1	0	0	1	0
0	α_{4}	x_{4}	7	0	0	0	1	7	-5
1	α_{1}	x_{1}	1	1	0	0	0	-2	1
0	α_{3}	x_{3}	1	0	0	1	0	0	-2
$Z_{j}-C_{j}$				0	0	0	0	2	1

This table shows that an optimum basis feasible integer solution has been reached. Hence the optimum solution is

$$
x_{1}=1, x_{2}=1, \quad \text { Max } \quad Z=5
$$

3.10 Self-Learning Exercise - I

1. How can you construct Gomory's constraint?
2. Gomory's method to solve I.P.P. is called a cutting plane method, Why?
3. Give geometrical interpretation of Gomory's cutting plane algorithm?

3.11 Gomory's Mixed I.P.P. Method (Fractional Cut Method)

In the mixed integer programming problems some of the variables are restructed to take integer values, while other variables may take integer or continuous values. The iterative procedure to solve such programming problems is as follows :

Step 1: Determine an optimum solution to the given l.p.p. using simplex method ignoring integer restrictions.

Step 2: Test the integrality of the optimum solution thus obtained in step 1.
(i) If all the variables has integer values, then it the optimum integer solution.
(ii) If integer restricted variables are not integers go to next step.

Step 3 : Choose largest fractional value among the basic variables which are restricted to integers. Consider the row corresponding to above variable and form Gomory's secondary constraint.
Step 4 : Introducing this secondary constraint and modify the table, then apply dual simplex algorithm and follows the procedure as in all IPP method 3.7 until the restricted integer variables becomes integers.
Example 7: Solve the following mixed integer programming problem :

$$
\begin{array}{ll}
\text { Maximize } & Z=4 x_{1}+6 x_{2}+2 x_{3} \\
\text { Subject to } & 4 x_{1}-4 x_{2} \leq 5 \\
& -x_{1}+6 x_{2} \leq 5 \\
& -x_{1}+x_{2}+x_{3} \leq 5 \\
& x_{1}, x_{2}, x_{3} \geq 0 \text { and } x_{1}, x_{3} \text { are integers. }
\end{array}
$$

Solution : Introducing slack variables x_{4}, x_{5} in first two constraints and solve the l.p.p. by usual simplex method ignoring integer restrictions, we have

Simplex Table - 1

			C_{j}	4	6	2	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
4	α_{1}	x_{1}	$5 / 2$	1	0	0	3/10	1/5
6	α_{2}	x_{2}	5/4	0	1	0	1/20	1/5
2	α_{3}	x_{3}	25/4	0	0	1	1/4	0
$Z_{j}-C_{j}$				0	0	0	2	2

$\because \quad x_{1}, x_{3}$ both are not integers and x_{1} has maximum fractional part, so we take it (first) as source row which is

$$
\begin{aligned}
& (1+0) x_{1}+(0+0) x_{2}+(0+0) x_{3}+\left(0+\frac{3}{10}\right) x_{4}+\left(0+\frac{1}{5}\right) x_{5}=2+\frac{1}{2} \\
\Rightarrow \quad & \frac{3}{10} x_{4}+\frac{1}{5} x_{5} \geq \frac{1}{2} \\
\text { or } \quad & -\frac{3}{10} x_{4}-\frac{1}{5} x_{5} \leq-\frac{1}{2} \\
\Rightarrow \quad & -\frac{3}{10} x_{4}-\frac{1}{5} x_{5}+x_{s 1}=-\frac{1}{2}
\end{aligned}
$$

where $x_{s 1}$ is a slack variable.
Introducing this second constraint, the modified table is :

Simplex Table-2

			C_{j}	4	6	2	0	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	$y_{s 1}$
4	α_{1}	x_{1}	$5 / 2$	1	0	0	$3 / 10$	1/5	0
6	α_{2}	x_{2}	$5 / 4$	0	1	0	$1 / 20$	$1 / 5$	0
2	α_{3}	x_{3}	25/4	0	0	1	1/4	0	0
0	$y_{s 1}$	x_{4}	$-1 / 2$	0	0	0	$-3 / 10$	-1/5	1
$Z_{j}-C_{j}$				0	0	0	2	2	
$\operatorname{Max}_{y_{4}<0}\left\{\frac{Z_{j}-C_{j}}{y_{4 j}}\right\}$				-	-	-	$\frac{2}{-3 / 10}$	$\frac{2}{-1 / 5}$	

Applying dual simplex algorithm, we get the transformed table as :

Simplex Table - 3

		C_{j}	4	6	2	0	0	0											
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	$y_{s 1}$										
4	α_{1}	x_{1}	2	1	0	0	0	0	1										
6	α_{2}	x_{2}	$7 / 6$	0	1	0	0	$\frac{1}{6}$	$1 / 6$										
2	α_{3}	x_{3}	$5 / 6$	0	0	1	0	$-\frac{1}{6}$	$5 / 6$										
0	α_{4}	x_{4}	$5 / 3$	0	0	0	1	$2 / 3$	$-10 / 3$										
$Z_{j}-C_{j}$														0	0	0	0	$2 / 3$	$20 / 3$

Since x_{3} is still not an integer, we write from the third row of the this iteration

$$
\begin{aligned}
& \quad(0+0) x_{1}+(0+0) x_{2}+(1+0) x_{3}+(0+0) x_{4}+\left(-1+\frac{5}{6}\right) x_{5}+\left(0+\frac{5}{6}\right) x_{s 1}=5+\frac{5}{6} \\
& \Rightarrow \quad \frac{5}{6} x_{5}+\frac{5}{6} x_{s 1} \geq \frac{5}{6} \\
& \text { or } \quad-\frac{5}{6} x_{5}-\frac{5}{6} x_{s 1} \leq-\frac{5}{6} \\
& \Rightarrow \quad-\frac{5}{6} x_{5}-\frac{5}{6} x_{s 1}+x_{s 2}=-\frac{5}{6}
\end{aligned}
$$

Introducing the secondary constraint in the above table the now defined table as :
Simplex Table - 4

			C_{j}	4	6	2	0	0	0	0
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	$y_{s 1}$	$y_{s 2}$
4	α_{1}	x_{1}	2	1	0	0	0	0	1	0
6	α_{2}	x_{2}	$7 / 6$	0	1	0	0	1/6	1/6	0
2	α_{3}	x_{3}	$35 / 6$	0	0	1	0	$-1 / 6$	5/6	0
0	α_{4}	x_{4}	5/3	0	0	0	1	2/3	$-10 / 3$	0
0	$y_{s 2}$	$x_{s 2}$	$-5 / 6$	0	0	0	0	-5/6	$-5 / 6$	1
$Z_{j}-C_{j}$				0	0	0	0	2/3	20/3	0
$\operatorname{Max}_{y_{j}<0}\left(\frac{Z_{j}-C_{j}}{y_{5 j}}\right)$				-	-	-	-	$\frac{2 / 3}{-5 / 6}$	$\frac{20 / 3}{-5 / 6}$	

The next iterative table is as follows :
Simplex Table - 5

C_{j}			4	6	2	0	0	0	0	
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	$y_{s 1}$	$y_{s 2}$
4	α_{1}	x_{1}	2	1	0	0	0	0	1	0
6	α_{2}	x_{2}	1	0	1	0	0	0	$1 / 6$	$1 / 5$
2	α_{3}	x_{3}	6	0	0	1	0	0	$5 / 6$	$-1 / 5$
0	α_{4}	x_{4}	1	0	0	0	1	0	$-10 / 3$	$4 / 5$
0	α_{5}	x_{5}	1	0	0	0	0	1	1	$-6 / 5$

Since x_{1}, x_{3} are integers so it is required optimal integer solution, which is $x_{1}=2, x_{2}=1, x_{3}=6$ Max $Z=26$

3.12 Self-Learning Exercise - II

1. What do you mean by mixed integer programming problem?
2. What is fractional cut?

3.13 Summary

In this unit we have studied the linear programming problems in which some or all variables are restricted to accept integer values, called mixed or pure integer programming problems, respectively. We have presented Gomory's cutting plane method to solve these problems. A procedure to find Gomory's secondary constraint is given. We modify the optimum simplex table by introducing above constraint, then use dual simplex algorithm to find optimum integer solution.

3.14 Answer to Self-Learning Exercise - I

1-3 See corresponding articles

3.15 Answer to Self-Learning Exercise - II

1-2 See corresponding articles

3.16 Exercise

1. Solve the following I.P.P.

$$
\begin{array}{ll}
\text { Maximize } & Z=2 x_{1}+3 x_{2} \\
\text { s.t } & -3 x_{1}+7 x_{2} \leq 14 \\
& 7 x_{1}-3 x_{2} \leq 14
\end{array}
$$

$$
x_{1}, x_{2} \geq 0 \text { and integers. }
$$

2. Describe any method to solve I.P.P. $u\left(x_{1}-3, x_{2}=3, \max z=15\right)$ use it to solve the problem:

Maximize $\quad Z=2 x_{1}+2 x_{2}$
s.t.

$$
\begin{aligned}
& 5 x_{1}+3 x_{2} \leq 8 \\
& x_{1}+2 x_{2} \leq 4 \quad\left(x_{1}=x_{2}=1, \max z=4\right)
\end{aligned}
$$

$$
x_{1}, x_{2} \text { are non-negative integers. }
$$

3. Solve the following I.P.P.

Minimize $\quad Z=9 x_{1}+10 x_{2}$
s.t.

$$
\begin{aligned}
& x_{1} \leq 9 \\
& x_{2} \leq 8 \\
& 4 x_{1}+3 x_{2} \geq 40 \quad\left(x_{1}=9, x_{2}=2, \min z=101\right) \\
& x_{1}, x_{2} \geq 0 \text { and are integers. }
\end{aligned}
$$

4. Find optimum integer solution to the following all I.P.P. :

Maximize $\quad Z=x_{1}+2 x_{2}$
s.t.

$$
\begin{aligned}
& x_{1}+x_{2} \leq 7 \\
& 2 x_{1} \leq 11 \\
& 2 x_{2} \leq 7 \\
& x_{1}, x_{2} \geq 0 \text { and are integers. }
\end{aligned}
$$

5. Solve the following mixed I.P.P. problem:

Maximize $\quad Z=-3 x_{1}+x_{2}+3 x_{3}$
s.t.

$$
\begin{aligned}
& -x_{1}+2 x_{2}+x_{3} \leq 4 \\
& 4 x_{2}-3 x_{3} \leq 2
\end{aligned}
$$

$$
x_{1}-3 x_{2}+2 x_{3} \leq 3 \quad\left(x_{1}=0, x_{2}=\frac{8}{7}, x_{3}=1, \max z=\frac{29}{7}\right)
$$

x_{1} and x_{3} are integers and $x_{1}, x_{2}, x_{3} \geq 0$

Unit - 4
 Integer Programming : Branch and Bound Algorithm

Structure of the Unit

4.0 Objective

4.1 Introduction
4.2 The Branch and Bound Method
4.3 The Branch and Bound Algorithm
4.4 Illustrative Examples
4.5 Geometrical Interpretation of Branch and Bound Method
4.6 Self-Learning Exercise
4.7 Summary
4.8 Answers to SelfLearning Exercise

4.9 Exercises

4.0 Objective

Integer programming introduced in unit-3 was dealt with an algorithm called Gomory's cutting plane method. The objective of this unit is to discuss another algorithm called Branch and Bound Technique to solve integer programming problems.

4.1 Introduction

Branch and Bound algorithm was developed by Land and Doig to solve all-integer and mixed integer programming problems. It is the most general technique to solve integer programming problems in which all or a few variable are constrained by their upper and lower bound or by both.

The concept behind this method is to divide the entire feasible solution space of linear programming problem into smaller parts called sub-problems and then search each of them for an optimalsolution. This approach is useful in those cases where there is a large number of feasible solutions and enumeration of those becomes economically impractical or impossible.

4.2 The Branch and Bound Method

This technique is applicable to both the L.P.P., pure as well as mixed. In this method first we solve the continuous I.P.P. ignoring the integer-valued restrections. If in the optimal solution one of the variables say x_{i} is not an integer, then we divide or partition the given L.P.P. into two sub problems.

We have $\quad\left[x_{r}^{*}\right]<x_{r}^{*}<\left[x_{r}^{*}\right]+1$
where x_{r}^{*} is the value of x_{r} in the optimal solution.
Hence any feasible value of x_{r} must satisfy one of the two conditions

$$
x_{r} \leq\left[x_{r}\right] \quad \text { or } \quad x_{r} \geq\left[x_{r}\right]+1
$$

Note that these two constraints are mutually execlusive (i.e. both can not be true simulteneously) and hence both can not be amended in the L.P.P. simulteneously.

By adding these constraints separately to the continuous L.P.P. we form two sub L.P.P. Thus we have branched the original subproblem into two sub problems. According the geometrical interpretation, we observe that the branching process discards that portion of the feasible region which involves no feasible integer solution.

To understand it, we take an example. Suppose we have optimal solution of an L.P.P. as

$$
x_{1}^{*}=\frac{7}{2} \quad \text { and } \quad x_{2}^{*}=\frac{9}{5}
$$

clearly $x_{1}=\frac{7}{2}$ gives that $3<x_{1}^{*}>4$
$\Rightarrow \quad$ for an integer valued solution, either

$$
x_{1} \leq 3 \quad \text { or } \quad x_{1} \geq 4
$$

Thus there will be no integer valued feasible solution in the strip $x_{1}=3$ and $x_{1}=4$ (Actually draw two lines $x_{1}=3$ and $x_{1}=4$ and verify the fact). We should search for optimum value of Z in either the first region $\left(x_{1} \leq 3\right)$ or second region $\left(x_{1} \geq 4\right)$.

After branching in this way two subproblems are formed by adding $x_{r} \leq\left[x_{r}^{*}\right]$ and $x_{r} \geq\left[x_{r}^{*}\right]+1$ one by one to the origional set of constraints. Now these two subproblems are solved. If for any of the subproblems optinuminteger solution is obtained then that problem is not further branched. But if ever any subproblem involves non-integer variable then it is again branched and this process of branching continues. Wherever applicable until each subproblem either admits an integer valued optimum solution or there is evidence that it cannto yeild a better one. Then that optimum integer valued solution among all the subproblem is selected which gives the over all optimum value of the objective functions.

4.3 The Branch and Bound Algorithm

The iterative procedure of this method is given as below :
Step 1 : Obtain the optimum solution of the given L.P.P. ignoring the integer restriction.
Step 2 : Test the integrability of the optimum solution obtained in step 1. There are two cases :
(i) If the solution is in integers, the current solution is optimum to the given integer program ming problem.
(ii) If the solution is not in integers, go to next step.

Step 3 : Considering the value of objective function as upper bound, obtain the lower bound by rounding off to integral values of the decision varibales.

Step 4 : Let the optinum value x_{j}^{*} of the variable x_{j} be not an integer. Then subdivide (branch) the given L.P.P. in two subproblems.

SUB-PROBLEM-1 : Given L.P.P. with an additional constraint $x_{j} \leq\left[x_{j}^{\infty}\right]$
SUB-PROBLEM-2 : Given L.P.P. with an additional constraint $x_{j} \geq\left[x_{j}^{\infty}\right]$
where $\left[x_{j}^{\infty}\right]$ is the largest integer contained in x_{j}^{∞}.

Step 5 : Solve the two problems obtained in step 4. There may arise three cases :
(i) If the optinum solutions of the two subproblems are integral, then the required solution is one that gives larger value of Z .
(ii) If the optimum solution of one subproblem is integer and the other subproblem has no feasible optimal solution, the required solution is same as that of the suproblem having integr valued solution.
(iii) If the optimum solution of one subproblem is integer while that of the other is not integer valued then record the integer valued solutions and repeat step 3 and 4 for the non-integer valued subproblem.

Step 6 : Repeat steps 3 to 5 until all integer valued solutions are recorded.
Step 7 : Choose the solution amongst the recorded integer valued solutions that yields optinum value of Z.

4.4 Illustrative Examples

Example 1: Solve the following I.P.P. by branch and bound technique.
Max. $Z=x_{1}+x_{2}$
Subject to $3 x_{1}+2 x_{2} \leq 12$

$$
\begin{gathered}
x_{2} \leq 2 \\
x_{1}, x_{2} \geq 0 \text { and integers. }
\end{gathered}
$$

Solution :

Step 1: By Graphical method, the optimum solution of the problem ignoring the integer valued restriction, is $x_{1}=\frac{8}{3}, x_{2}=2$ (See Fig. 4.1)

Now x_{1} is non integer and $x_{1}^{*}=\frac{8}{3}$ gives $Z \leq x_{1}^{*} \leq 3$

Figure 4.1
Step 2 : Then we form two subproblems given below :

Problem 2

$\operatorname{Max} Z=x_{1}+x_{2}$
S.t. $3 x_{1}+2 x_{2} \leq 12$

$$
x_{2} \leq 2
$$

Problem 3

$\operatorname{Max} Z=x_{1}+x_{2}$
S.t. $3 x_{1}+2 x_{2} \leq 12$
$x_{2} \leq 2$

$$
\begin{array}{ll}
x_{1} \leq 2 & x_{1} \geq 3 \\
x_{1}, x_{2} \geq 0 & x_{1}, x_{2} \geq 0
\end{array}
$$

For the solution of these problems see fig. 4.2 and 4.3 as given below :

Figure 4.2

Figure 4.3

Optinal solution of problem 2 is $x_{1}=2, x_{2}=2$, Max. $z=4$
Since in this solution all the variables are integer therefore there is no need to branch this problem further.

The optimal problem of problem $\mathbf{3}$ is

$$
x_{1}=3, \quad x_{2}=\frac{3}{2}, \quad \operatorname{Max} Z=\frac{9}{2}
$$

Step 3: Since x_{2} is non-integer, it needs further subdivision. Here $x_{2}^{*}=\frac{3}{2} \Rightarrow 1 \leq x_{2} \leq 2$
Hence, we form two subproblems by introducing the constraints $x_{2} \leq 1$ and $x_{2} \geq 2$ one by one in problem 3. Now problems are :

Problem 4

$\operatorname{Max} Z=x_{1}+x_{2}$
S.t. $3 x_{1}+2 x_{2} \leq 12$

$$
\begin{aligned}
x_{2} & \leq 2 \\
x_{1} & \geq 3 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Problem 5

$\operatorname{Max} Z=x_{1}+x_{2}$
S.t. $3 x_{1}+2 x_{2} \leq 12$

$$
\begin{aligned}
x_{2} & \leq 2 \\
x_{1} & \geq 3 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

The problem 5 has no feasible solution and in problem 4 the constraint $x_{2} \leq 2$ is redundant. The
optimum solution to this problem is $x_{1}=\frac{10}{3}, x_{2}=1$ and $\operatorname{Max} Z=\frac{13}{3}$. FromFigure 4.4 it is clear that any

Figure 4.4
further branching of the problem will not improve the value of objective function as next subdivision will improve the value of objective function as next subdivision will impose that restrietions $x_{1} \leq 3, x_{1} \geq 4$. Then optimal solution are $x_{1}=3$ and $x_{2}=1$ and $x_{1}=4$ and $x_{2}=0$ respectively. There solutions also gives $Z=4$.

Step 4 : Hence overall maximum value of the objective function $Z=4$ and integer valued solutions is any of these

$$
x_{1}=2, x_{2}=2, x_{1}=3, x_{2}=1 ; x_{1}=4, x_{2}=0
$$

Example 2: Use branch and bound method to solve following L.P.P. :

$$
\begin{array}{r}
\text { Maximize } Z=7 x_{1}+9 x_{2} \\
\text { Subject to }-x_{1}+3 x_{2} \leq 6 \\
7 x_{1}+x_{2} \leq 35 \\
x_{2} \geq 7
\end{array}
$$

Solution :

Step 1 : Ignoring the integer restriction, the optimal solution to the given L.P.P. can easily be obtained by graphical or simplex method as $x_{1}=\frac{9}{2}, x_{2}=\frac{7}{2}$ and Max. $Z=63$.

Step 2: Since the solution is not in integers, let us choose x_{1}, i.e. $x_{1}^{*}=\frac{9}{2}$ being the largest fractional value.

Step 3 : Considering the value of Z as initial upper bound i.e. $Z=63$. The lower bound is obtained by rounding off the value of x_{1}, x_{2} to the nearest integers, i.e., $x_{1}=4, x_{2}=3$ then the lower
bound is $Z_{1}=55$.
Step 4: Since $\left[x_{1}^{*}\right]=\left[\frac{9}{2}\right]=4$; we have
Sub-problem 1 Max $Z=7 x_{1}+9 x_{2}$

$$
\text { s.t. }-x_{1}+3 x_{2} \leq 6
$$

$$
7 x_{1}+x_{2} \leq 35
$$

$$
x_{2} \leq 7
$$

$$
x_{1} \leq 4
$$

$x_{1}, x_{2} \geq 0$ and are integers.
Sub-problem 2 Max $Z=7 x_{1}+9 x_{2}$

$$
\text { s.t. }-x_{1}+3 x_{2} \leq 6
$$

$$
7 x_{1}+x_{2} \leq 35
$$

$$
x_{2} \leq 7
$$

$$
x_{1} \geq 5
$$

$x_{1}, x_{2} \geq 0$ and are integers.
Step 5 : On solving the above two subproblems by graphical or simplex method the optimum solutions are

Sub-problem 1

$$
x_{1}=4, x_{2}=\frac{10}{3} \quad \text { Max. } z=58
$$

Sub-problem $2 \quad x_{1}=5, x_{2}=0 \quad$ and Max. $z=35$
Since the solution to subproblem 1 is not in integers, we subdivide it into following two subproblems.

Sub-problem $3 \quad \operatorname{Max} Z=7 x_{1}+9 x_{2} \quad$ s.t.

$$
\begin{aligned}
& -x_{1}+3 x_{2} \leq 6,7 x_{1}+x_{2} \leq 35 \\
& x_{1} \leq 4, x_{2} \leq 3 \quad x_{1}, x_{2} \geq 0
\end{aligned}
$$

Sub-problem $4 \quad \operatorname{Max} Z=7 x_{1}+9 x_{2} \quad$ s.t.

$$
\begin{array}{ll}
-x_{1}+3 x_{2} \leq 6, & 7 x_{1}+x_{2} \leq 35 \\
x_{1} \leq 4, & x_{2} \geq 4 \\
x_{1}, x_{2} \geq 0 &
\end{array}
$$

Step 6: The optimum solutions to the subproblems 3 and 4 are :
Sub-problem $3 \quad x_{1}=4, x_{2}=3$ and Max. $z=55$

Sub-problem 4 No feasible solution.
Step 7 : Among the recorded integer valued solutions, since the largest value of Z is 55 , the required optimum solution is

$$
x_{1}=4, x_{2}=3 \text { and Max. } Z=55
$$

The whole branch and bound procedure for the given problem is shown below :

Figure 4.5

Example 3 : Use Branch and Bound Method to solve the following I.P.P. :

$$
\begin{array}{lr}
\text { Minimize } & Z=4 x_{1}+3 x_{2} \\
\text { Subject to } & 5 x_{1}+3 x_{2} \geq 30 \\
& x_{1} \leq 4 \\
& x_{2} \leq 6
\end{array}
$$

$x_{1}, x_{2} \geq 0$ and are integers.
Solution : Ignoring the integer restrictions, the optinum solution to the L.P.P. can easily be obtained as (Use Graphical or Simplex method)

$$
x_{1}=4, x_{2}=\frac{10}{3} \text { and Min. } Z=26
$$

Since the value of x_{2} is not an integer, we branch on this variable. Since $\left[x_{2}\right]=\left[\frac{10}{3}\right]=3$, the two branches are $x_{2} \leq 3$ and $x_{2} \geq 4$. Thus we have.

Sub-problem $1 \quad$ Minimize $\quad Z=4 x_{1}+3 x_{2}$
subject to $\quad 5 x_{1}+3 x_{2} \geq 30$

$$
\begin{aligned}
x_{1} & \leq 4 \\
x_{2} & \leq 6 \\
x_{2} & \leq 3 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Sub-problem $2 \quad$ Minimize $\quad Z=4 x_{1}+3 x_{2}$
subject to $\quad 5 x_{1}+3 x_{2} \geq 30$

$$
\begin{aligned}
x_{1} & \leq 4 \\
x_{2} & \leq 6 \\
x_{2} & \geq 4 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

The optimum solutions of above sub-problems are obtained by graphical or simplex method as :
Sub-problem 1 No feasible solution
Sub-problem $2 \quad x_{1}=\frac{18}{5}, x_{2}=4$, Min. $Z=\frac{132}{5}$
Since the value of x_{1} in sub-problem 2 is not an integer, we branch on this variable. The two branches are $x_{1} \leq 3$ and $x_{1} \geq 4$, since $\left[\frac{18}{5}\right]=3$

Thus we have
Sub-problem $3 \quad$ Minimize $\quad Z=4 x_{1}+3 x_{2}$
subject to $\quad 5 x_{1}+3 x_{2} \geq 30$

$$
x_{1} \leq 4
$$

$$
x_{2} \leq 6
$$

$$
x_{2} \geq 4
$$

$$
x_{1} \leq 3
$$

$$
x_{1}, x_{2} \geq 0
$$

Sub-problem $4 \quad$ Minimize $\quad Z=4 x_{1}+3 x_{2}$
subject to $\quad 5 x_{1}+3 x_{2} \geq 30$

$$
x_{1} \leq 4
$$

$$
\begin{aligned}
x_{2} & \leq 6 \\
x_{2} & \geq 4 \\
x_{1} & \geq 4 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

The optimum solutions to these sub-problems are obtained as :
Sub-problem $3 \quad x_{1}=3, x_{2}=5$ and minimum $Z=27$
Sub-problem $4 \quad x_{1}=4, x_{2}=4$ and minimum $Z=28$
Among the feasible solutions to the integer programming problem, since the minimum value of Z is 27 ; the required optimum solution is

$$
x_{1}=3, x_{2}=5 \text { and minimum } Z=27
$$

The complete Branch and Bound procedure for the I.P.P. is shown below :

Figure 4.6
Example 4: Use Branch and Bound technique to solve the following problem :
Max. $Z=3 x_{1}+3 x_{2}+13 x_{3}$
s.t. $\quad-3 x_{1}+6 x_{2}+7 x_{3} \leq 8$

$$
\begin{aligned}
& 6 x_{1}-3 x_{2}+7 x_{3} \leq 8 \\
& 0 \leq x_{j} \leq 5
\end{aligned}
$$

and x_{j} are integers for $j=1,2,3$.

Solution :
Step 1 : Introducing slack variable x_{4}, x_{5} is the first two constraints, the standard form for simplex method (since it is a three variables problem so it cannot be solved by graphical method)

Max. $Z=3 x_{1}+3 x_{2}+13 x_{3}+0 x_{4}+0 x_{5}$
s.t. $\quad-3 x_{1}+6 x_{2}+7 x_{3}+x_{4}=8$
$6 x_{1}-3 x_{2}+7 x_{3}+x_{5}=8$
$0 \leq x_{1} \leq 5,0 \leq x_{2} \leq 5,0 \leq x_{3} \leq 5, x_{4}, x_{5} \geq 0$
Initital BFS
$x_{4}=8, x_{5}=8, x_{1}=x_{2}=x_{3}=0$

			C_{j}	3	3	13	0	0	$\theta=\frac{x_{B v}}{y_{i k}}, y_{i k}>0$
C_{B}	B	X_{B}	b	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	
0	α_{4}	x_{4}	8			7	1	0	$\frac{8}{7}$
0			8					1	$\frac{8}{7} \rightarrow$
$Z_{j}-C_{j}$				-3	-3	-13	0	0	Min $\theta=\frac{8}{7}$
0	α_{4}	x_{4}	0		9	\uparrow 0		-1	\rightarrow
13			$\frac{8}{7}$	$\frac{6}{7}$	$-\frac{3}{7}$	1		$\frac{1}{7}$	
$Z_{j}-C_{j}$				$\frac{57}{7}$	$\frac{-60}{7}$	0	0	$\frac{13}{7}$	$\operatorname{Min} \theta=0$
3					\uparrow		$\frac{1}{9}$		
13	α_{3}	x_{3}	$\frac{8}{7}$	$\frac{3}{7}$		1	$\frac{1}{21}$	$\frac{2}{21}$	\rightarrow
$Z_{j}-C_{j}$				$-\frac{3}{7}$	0	0	$\frac{20}{21}$	$\frac{19}{21}$	Min $\theta=\frac{8}{3}$
3		x_{2}	$\frac{8}{3}$	\uparrow		$\frac{7}{3}$	$\frac{2}{9}$	$\frac{1}{9}$	
3	α_{1}	x_{1}	$\frac{8}{3}$			$\frac{7}{3}$	$\frac{1}{9}$	$\frac{2}{9}$	
$Z_{j}-C_{j}$				0	0	1	1	1	

The optimum non-integer solution to the given L.P.P.

$$
x_{1}=\frac{8}{3}, x_{2}=\frac{8}{3}, x_{3}=0, \operatorname{Max} Z=16
$$

Step 2: Since x_{1}, x_{2} are non-integer valued, we choose x_{1} for branching

$$
\because \quad\left[x^{*}\right]=\left[\frac{8}{3}\right]=2
$$

The two sub-problmes are as
Sub-problem 1 Max. $Z=3 x_{1}+3 x_{2}+13 x_{3}$

$$
\begin{array}{ll}
\text { S.t. } & -3 x_{1}+6 x_{2}+7 x_{3} \leq 8 \\
& 6 x_{1}-3 x_{2}+7 x_{3} \leq 8 \\
& 0 \leq x_{j} \leq 5, \quad \mathrm{j}=1,2,3
\end{array}
$$

Step 3: Now we solve sub-problem (1) \& (2) using simplex method as before we find that subproblem (2) has no feasible solution.

The sub-problem (1) has an optimal solution

$$
x_{1}=x_{2}=2, x_{3}=\frac{2}{7}, \quad \text { Max. } Z=15 \frac{5}{7}
$$

Clearly this is not integer valued, so we branch this sub-problem(1) into two on the variable x_{3}.
Since $\left[x_{3}^{*}\right]=\left[\frac{2}{7}\right]=0$
Sub-problem 3 Max. $Z=3 x_{1}+3 x_{2}+13 x_{3}$
s.t. $\quad-3 x_{1}+6 x_{2}+7 x_{3} \leq 8$
$6 x_{1}-3 x_{2}+7 x_{3} \leq 8$
$0 \leq x_{1} \leq 2$
$0 \leq x_{2} \leq 5$
$1 \leq x_{3} \leq 5$
Sub-problem 4 Max. $Z=3 x_{1}+3 x_{2}+13 x_{3}$
s.t. $\quad-3 x_{1}+6 x_{2}+7 x_{3} \leq 8$
$6 x_{1}-3 x_{2}+7 x_{3} \leq 8$
$0 \leq x_{1} \leq 2$
$0 \leq x_{2} \leq 5$
$0 \leq x_{3} \leq 0$

Here we observe that sub-problem (3) \& (4) differ from sub-problem (1) only in the bounds of x_{3}.

Step 4 : Now, we solve sub-problem (3), the optimal solution is obtained as $x_{1}=x_{2}=\frac{1}{3}, x_{3}=1$, $Z^{*}=15$ select $x_{2},\left[x_{2}^{*}\right]=\left[\frac{1}{3}\right]=0$, so we branch this sub-problem into two sub-problem as follows :

Sub-problem 5 Max. $Z=3 x_{1}+3 x_{2}+13 x_{3}$

$$
\begin{array}{ll}
\text { s.t. } & -3 x_{1}+6 x_{2}+7 x_{3} \leq 8 \\
& 6 x_{1}-3 x_{2}+7 x_{3} \leq 8 \\
& 0 \leq x_{1} \leq 2,0 \leq x_{2} \leq 5,1 \leq x_{3} \leq 5, x_{2} \geq 1
\end{array}
$$

Sub-problem 6
Max. $\quad Z=3 x_{1}+3 x_{2}+13 x_{3}$
s.t. $\quad-3 x_{1}+6 x_{2}+7 x_{3} \leq 8$
$6 x_{1}-3 x_{2}+7 x_{3} \leq 8$
$0 \leq x_{1} \leq 2,0 \leq x_{2} \leq 0,1 \leq x_{3} \leq 5$
Step 5: We can easily see that sub-problem 5 has no feasible solution. The optimal solution to sub-problem (6) is as follows:

$$
\begin{aligned}
& \quad x_{1}=0, x_{2}=0, x_{3}=1 \frac{1}{7}, \quad \operatorname{Max} Z=14 \frac{6}{7} \\
& \because \quad \\
& \quad x_{3} \text { is fractional, so we again branch this sub-problem on } x_{3},\left[x_{3}^{*}\right]=\left[1 \frac{1}{7}\right]=1
\end{aligned}
$$

Sub-problem $7 \quad$ First two constraints of sub-problem 6 and

$$
0 \leq x_{1} \leq 2,0 \leq x_{2} \leq 0,2 \leq x_{3} \leq 5
$$

Sub-problem 8 First two constraints of sub-problem 6 and

$$
0 \leq x_{1} \leq 2,0 \leq x_{2} \leq 0,1 \leq x_{3} \leq 1
$$

Step 6 : We see that sub-problem (7) has no feasible solution. The optimal solution of subproblem (8) is $x_{1}=x_{2}=0, x_{3}=1$, $\operatorname{Max} Z=13$

Returning to step 3, we observe that only sub-problem 4 is now left to solve, the optimal solution of this problem is

$$
x_{1}=2 x_{2}=2 \frac{1}{3}, x_{3}=0, \operatorname{Max} Z=13
$$

Since the optimum value of the objective function of sub-problem 8 and sub-problem 5 are same and is equal to $Z=13$. Hence we stop computations. The optimal solution to given I.P.P. is as follows :

$$
x_{1}=0, x_{2}=0, x_{3}=1 \quad \operatorname{Max} Z=13
$$

Tree-Diagram of Example 7

Sub-problem 2

$$
x_{1}=x_{2}=2, x_{3}=\frac{2}{7}
$$

$$
x_{3} \leq 0
$$

$x_{1}=x_{2}=\frac{1}{3}, x_{3}=1$,
$Z^{*}=15$
Sub-problem 4

$$
x_{1}=2, x_{2}=2 \frac{1}{3}, x_{3}=0
$$

$$
Z^{*}=13
$$

Solution is infeasible

$$
Z^{*}=15 \frac{5}{7}
$$

Sub-problem 7
Solution is infeasible

Sub-problem 6
$x_{1}=0=x_{2}, x_{3}=1 \frac{6}{7}$,
$Z^{*}=14 \frac{6}{7}$

Sub-problem 8
$x_{1}=x_{2}=0$
$x_{3}=1, Z^{*}=13$

Figure 4.7

4.5 Geometrical Interpretation of Branch and Bound Method

The geometrical interpretation of Branch and Bound Method can easily be understood by a two variable I.P.P. which we solve by graphical method. Example 1 is given for this purpose. To be more clear consider one more example as follows :

Example 5 : Solve the following I.P.P. using branch and bound algorithm.

$$
\begin{array}{ll}
\text { Max } & Z=2 x_{1}+6 x_{2} \\
\text { s.t. } & 3 x_{1}+x_{2} \leq 5 \\
& 4 x_{1}+4 x_{2} \leq 9 \\
& x_{1}, x_{2} \geq 0 \text { and are integers. }
\end{array}
$$

Solution : The graphical solution of given problem gives the optimal solution :

$$
x_{1}=0, x_{2}=\frac{9}{4}, \quad \text { Max. } Z^{*}=\frac{27}{2}
$$

Since the variable x_{2} has non integer value and x_{2} has largest fractional part, so we branch the problem on x_{2}

$$
\left[x_{2}^{*}\right]=\left[\frac{9}{4}\right]=2
$$

Sub-problem 1 Max. $Z=2 x_{1}+6 x_{2}$

$$
\begin{aligned}
& \text { s.t. } \quad 3 x_{1}+x_{2} \leq 5 \\
& 4 x_{1}+4 x_{2} \leq 9 \\
& x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Sub-problem 2 Max. $Z=2 x_{1}+6 x_{2}$
s.t. $\quad 3 x_{1}+x_{2} \leq 5$
$4 x_{1}+4 x_{2} \leq 9$
$x_{2} \geq 3$
$x_{1}, x_{2} \geq 0$
The sub-problem 2 has no feasible solution.

See Figure 4.10

Figure 4.9

Figure 4.10

The sub-problem 1 has optinum solution as follows :

$$
x_{1}=\frac{1}{4}, x_{2}=2, \quad \operatorname{Max} Z=\frac{25}{2}
$$

Since x_{1} is not integer, so we branch the above sub-problem 1 on $x_{1},\left[x_{1}^{*}\right]=\left[\frac{1}{4}\right]=0$
Sub-problem 3 Max. $Z=2 x_{1}+6 x_{2}$

$$
\text { s.t. } \quad 3 x_{1}+x_{2} \leq 5
$$

$$
4 x_{1}+4 x_{2} \leq 9
$$

$$
x_{2} \leq 2, x_{1} \leq 0
$$

$$
x_{1}, x_{2} \geq 0
$$

Sub-problem 4 Max. $Z=2 x_{1}+6 x_{2}$

Sub-problem 3 has the optimum solution

$$
\begin{aligned}
& \text { s.t. } \quad 3 x_{1}+x_{2} \leq 5 \\
& 4 x_{1}+4 x_{2} \leq 9 \\
& x_{2} \leq 2 \\
& x_{1} \geq 1 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

$$
x_{1}=0, x_{2}=0, \quad \text { Max. } Z=12
$$

See the Figure 4.11 (Feasible region is only the line segment form $(0,0)$ to $(0,2)$)

Figure 4.11

Figure 4.12

Sub-problem 4 has optimal solution (see fig. 4.12)

$$
x_{1}=1, x_{2}=\frac{5}{4}, \quad \text { Max. } Z=9 \frac{1}{2}
$$

The value of objective function in sub-problem (3) has greater value then sub-problem 4.
Hence, the optimum solution of the problem is

$$
x_{1}=0, x_{2}=2, \quad \text { Max. } Z=12
$$

4.6 Self-Learning Exercise

Sort the correct answers :

1. Branch and Bound Method divides the feasible region into smaller parts by
(a) enumerating
(b) branching
(c) bounding
(d) all of the above
2. While solving an I.P.P., any non-integer variable in the solution is picked up to
(a) enter the solution
(b) leave the solution
(c) obtain the cut constant
(d) all of the above
3. In a mixed integer programming problems :
(a) different objective function are mixed together
(b) all the decision variables require integer solution
(c) only few of the decision variables required integer solutions
(d) none of the above
4. Sketch the Branch and Bound Method is integer programming.
5. Distinguish between pure and mixed integer programming.
6. Use Branch and Bound method to solve the following I.P.P.

$$
\begin{array}{llll}
\text { Max } & Z=x_{1}+2 x_{2} & \text { s.t. } & x_{1}+x_{2} \leq 7 \\
& 2 x_{1} \leq 11,2 x_{2} \leq 7 & & x_{1}, x_{2} \geq 0 \text { and are integers. }
\end{array}
$$

7. What is the difference between continuous and integer programming?

4.7 Summary

In this unit, Branch and Bound Algorithm has been discussed to solve integer programming problems. In this method, a L.P.P. is branched on a variable by bounding it into two sub-problems. These sub-problems are solved by graphical or Simplex method. The main disadvantages of this method is that it requires the optimum solution of each sub-linear programming problem. In large number of problems, this could be very tediuous job. But in spite of its drawback, this is the most effective method for solving I.P.P. thus when choice is to be made between Cutting Plane and Branch and Bound method; the latter is prefered.

4.8 Answers to Self-Learning Exercise

1.

(b)
2. (c)
3.
(c)

4.9 Exercises

Use Branch and Bound method to solve the following integer linear programming problems :

1. Maximize $Z=2 x_{1}+3 x_{2}$

Subject to $\quad 5 x_{1}+7 x_{2} \leq 35$
$4 x_{1}+9 x_{2} \leq 36$
$x_{1}, x_{2} \geq 0$ and are integers.
2. Maximize $Z=2 x_{1}+3 x_{2}$

Subject to $\quad x_{1}+x_{2} \leq 7$,
$0 \leq x_{1} \leq 5,0 \leq x_{2} \leq 4 ; x_{1}, x_{2}$ are integers
3. Maximize $Z=x_{1}+2 x_{2}$

Subject to $\quad x_{1}+2 x_{2} \leq 12$
$4 x_{1}+3 x_{2} \leq 14$
$x_{1} \geq 0, x_{2} \geq 0$ and are integers.
4. Maximize $Z=2 x_{1}+3 x_{2}$

Subject to $\quad 6 x_{1}+5 x_{2} \leq 25$
$x_{1}+3 x_{2} \leq 10$
$x_{1} \geq 0, x_{2} \geq 0$ and are integers.
5. Maximize $Z=2 x_{1}+x_{2}$

Subject to $\quad x_{1} \leq \frac{3}{2}, x_{2} \leq \frac{3}{2}$
$x_{1}, x_{2} \geq 0$ and are integers.
6. Maximize $Z=3 x_{1}+2 x_{2}$

Subject to $\quad x_{1} \leq 2, x_{2} \leq 2$
$x_{1}+x_{2} \leq \frac{7}{2}$
$x_{1}, x_{2} \geq 0$ and are integers.
7. Minimize $Z=10 x_{1}+9 x_{2}$

Subject to $\quad x_{1} \leq 8, x_{2} \leq 10$
$5 x_{1}+3 x_{2} \geq 45$
$x_{1}, x_{2} \geq 0$ and x_{1} is integer.
8. Maximize $Z=x_{1}+5 x_{2}$

Subject to $\quad x_{1}+10 x_{2} \leq 20$

$$
x_{2} \leq 2
$$

$x_{1}, x_{2} \geq 0$ and are integers.

Unit - 5
 Quadratic form and Lagrangian Function

Structure of the Unit

5.0 Objective
5.1 Introduction
5.2 Quadratic form
5.3 Positive and Negative Definiteness of Quadratic forms
5.4 Self-Learning Exercise-I
5.5 General non linear programming problem
5.6 Constrained optimization with equality constraints (Lagrange's multiplier method)
5.7 Necessary condition for general NLPP
5.8 (a) Sufficient conditions for GNLPP
(b) Sufficient conditions for General NLPP with $(\mathrm{m}<\mathrm{n})$ equality coustraints

5.9 Illustrative Examples

5.10 Self-Learning Exercise-II
5.11 Summary
5.12 Answers to Self-Learning Exercise-I
5.13 Answers to Self-Learning Exercise-II

5.14 Exercise

5.0 Objective

The objective of this unit is to present some more about quadratic forms in respect of unit-1. The Lagrangian method to optimize the non-linear functions has also been given in this unit. Using this method we can optimize a non linear function with equality constraint.

5.1 Introduction

The concept of quadratic form has been introduced in the unit-1. The positive and negative definiteness of a quadratic form have also been defined. Several texts for this has also been discussed. In this unit we learn has also been discussed. In this unit we learn more about quadratic form.

The optimization i.e. to find maximum or minimum value of an objective function, is studied in lower classes. In this unit we start our study to optimize a function without any constraint. The main stress will be given on constrained problems of maxima and minima. If there are some constraints under which we optimize a function, we use Lagrange's method.

Now in this unit-I we study quadratic forms.

5.2 Quadratic form

Recall that a quadratic form is a function of n-variables which can be expressed as
$Q(X)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}$, where $a_{i j}$ are constants. It can also be written as $Q(X)=X^{T} A X$ where $X=\left[x_{1}, x_{2}, \ldots x_{n}\right]$ and $A=\left[a_{i j}\right]$ is a $n \times n$ symmetric matrix.

Example-1
(a) $\quad\left(x_{1}, x_{2}\right)\left[\begin{array}{ll}1 & \frac{1}{2} \\ \frac{1}{2} & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}$
(b)

$$
\left(x_{1}, x_{2}, x_{3}\right)\left[\begin{array}{ccc}
1 & \frac{1}{2} & 2 \\
\frac{1}{2} & 0 & 0 \\
2 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{1}^{2}+x_{1} x_{2}+4 x_{1} x_{3}+2 x_{3}^{2}
$$

(c)

$$
\left(x_{1}, x_{2}, x_{3}\right)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}
$$

Note that matrix representation ofA in a quardatic form is not unique. However, A can always be taken to be symmetric without loss of generality.

Example-2 Write the quadratic form $Q(X)=x_{1}^{2}+2 x_{2}^{2}-7 x_{3}^{2}-4 x_{1} x_{2}+6 x_{1} x_{3}-5 x_{2} x_{3}$ in matrix form.
Solution : $\quad Q(X)=x_{1}^{2}+2 x_{2}^{2}-7 x_{3}^{2}+(-2-2) x_{1} x_{2}+(3+3) x_{1} x_{3}+\left(-\frac{5}{2}-\frac{5}{2}\right) x_{2} x_{3}$

$$
=\left(x_{1}, x_{2}, x_{3}\right)\left[\begin{array}{rrr}
1 & -2 & 3 \\
-2 & 2 & -\frac{5}{2} \\
3 & -\frac{5}{2} & -7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Example-3 Determine which of the following equations are quadratic form:
(i) $z=x_{1}^{2}+2 x_{2}$
(ii) $z=x_{1}^{2}-x_{2}^{2}$
(iii) $z=x_{1} x_{2}$
(iv) $z=3 x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2}$

Solution : \quad For z to be a quadratic form, we must be able to express it in the form

$$
z=X^{T} A X
$$

(i) It is not a quadratic form, because it is linear in x_{2}
(ii) It is a quadratic form, because

$$
A=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

(iii) It is a quadratic form, because

$$
A=\left[\begin{array}{ll}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right]
$$

(iv) It is a quadratic form, because

$$
A=\left[\begin{array}{ll}
3 & \frac{3}{2} \\
\frac{3}{2} & 1
\end{array}\right]
$$

Example-4 In each of the following cases write the objective function in the form

$$
z=X^{T} A X+q^{T} X
$$

(i) $z=x_{1}^{2}+2 x_{1} x_{2}+46 x_{1} x_{3}+3 x_{2}^{2}+2 x_{2} x_{3}+5 x_{3}^{2}+4 x_{1}-2 x_{2}+3 x_{3}$
(ii) $z=5 x_{1}^{2}+12 x_{1} x_{2}-16 x_{1} x_{3}+10 x_{2}^{2}-26 x_{2} x_{3}+17 x_{3}^{2}-2 x_{1}-4 x_{2}-6 x_{3}$
(iii) $z=x_{1}^{2}-4 x_{1} x_{2}+6 x_{1} x_{3}+5 x_{2}^{2}-10 x_{2} x_{3}+8 x_{3}^{2}$

Solution
(i) $\quad z=\left(x_{1}, x_{2}, x_{3}\right)\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 3 & 1 \\ 2 & 1 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]+(4,-2,3)\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$

$$
\text { Here } A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 3 & 1 \\
2 & 1 & 5
\end{array}\right], q=\left[\begin{array}{l}
4 \\
-2 \\
3
\end{array}\right]
$$

(ii) $z=\left(x_{1}, x_{2}, x_{3}\right)\left[\begin{array}{llc}5 & 6 & -8 \\ 6 & 10 & -13 \\ -8 & -13 & 17\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]+(-2,-4,-6)\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$

$$
\text { Here } A=\left[\begin{array}{ccc}
5 & 6 & -8 \\
6 & 10 & -13 \\
-8 & -13 & 17
\end{array}\right], q=\left[\begin{array}{l}
-2 \\
-4 \\
-6
\end{array}\right]
$$

(iii) $z=\left(x_{1}, x_{2}, x_{3}\right)\left[\begin{array}{lcc}1 & -2 & 3 \\ -2 & 5 & -5 \\ 3 & -5 & 8\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]+(0,0,0)\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$

$$
\text { Here } A=\left[\begin{array}{lcc}
1 & -2 & 3 \\
-2 & 5 & -5 \\
3 & -5 & 8
\end{array}\right], q=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

5.3 Positive and Negative Definiteness of Quadratic Forms

You have studied in 1.10 , the positive and negative definite, semi-definiteness and indefinite of quadratic forms. There are several tests we may perform on the matrix of the quadratic form to find the character of quadratic form under consideration. Some of these have been discussed in 1.10.

Sylvester's law :

A quadratic form $X^{T} A X$ is positive definite if and only if all the successive principal minors of the matrix A are positive.

The successive principal minors are determinants of the square submatrices obtained by successively deteting lower rows and right hand columns. For $n \times n$ matrix, there are n-principal minors.

For example, if $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$,
then three principal minors of this determinant are

$$
a_{11},\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|,\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

A quadratic form $X^{T} A X$ is negative definite if $-X^{T} A X$ is positive definite, since $-\left(X^{T} A X\right)=X^{T}(-A) X$, sylvester's theorem can be applied to $-A$ to test the negative definiteness of A.

We cannot test whether or not a matrix is positive definite by simply saying that all the successive
principal minors to be non-negative (≥ 0) instead of positive (>0). Rather all the principal minors must be non-negative. The matrix must be permuted in all possible combinations to determine all the $\left({ }^{n} C_{r}\right)^{2}$ principal minors of order $\mathrm{r}, \mathrm{r}=1,2, \ldots \mathrm{n}$. It is seldom feasible. For a real symmetric matrix, if successive principal minors are positive, then all the prinicipal minors are positive.

A matrix which is not positive definite, negative definite, positive semi definite, or negative semi-definite is indefinite.

Example-5 Determine the sign of definiteness for each of the following matrices.
(a) $\left[\begin{array}{lll}3 & 1 & 2 \\ 1 & 5 & 0 \\ 2 & 0 & 2\end{array}\right]$
(b) $\left[\begin{array}{ccc}2 & 1 & 2 \\ 1 & -3 & 3 \\ 2 & 0 & -5\end{array}\right]$

Solution : (a)

$$
A=\left[\begin{array}{lll}
3 & 1 & 2 \\
1 & 5 & 0 \\
2 & 0 & 2
\end{array}\right]
$$

$$
a_{11}=3,\left|\begin{array}{ll}
3 & 1 \\
1 & 5
\end{array}\right|=15-1=14
$$

$$
\left|\begin{array}{ccc}
3 & 1 & 2 \\
1 & -5 & 0 \\
2 & 0 & -2
\end{array}\right|=52
$$

A is not possible definite, so form $-A$:

$$
-A=\left[\begin{array}{ccc}
-3 & -1 & -2 \\
-1 & 5 & 0 \\
-2 & 0 & 2
\end{array}\right]
$$

Now

$$
a_{11}=-3,\left|\begin{array}{cc}
-3 & -1 \\
-1 & 5
\end{array}\right|=-16,\left|\begin{array}{ccc}
-3 & -1 & -2 \\
-1 & 5 & 0 \\
-2 & 0 & 2
\end{array}\right|=-52
$$

So Ais negative definite.
Example-6 Test the definitiness of the quadratic form :

$$
X^{T} A X=\left(x_{1}, x_{2}, x_{3}\right)\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Solution : The characterstic equation for the matrix A is given by

$$
\begin{aligned}
& \quad|A-\lambda I|=0 \\
& \text { or } \quad\left|\begin{array}{lll}
3-\lambda & 0 & 0 \\
0 & -2-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right|=0 \\
& \Rightarrow \quad \\
& \Rightarrow \quad(3-\lambda)(-2,-\lambda)(1-\lambda)=0 \\
& \Rightarrow \quad \lambda=1,3,-2
\end{aligned}
$$

Since two eigenvalues are positive and one is negative, therefore the given quadratics form is indefinite.

Example-7 Determine whether or not the quadratic forms $A^{T} A X$ are positive definite, where
(i) $\quad A=\left[\begin{array}{ll}1 & 3 \\ 0 & 4\end{array}\right], \quad$ (ii) $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3\end{array}\right]$, (iii) $A=\left[\begin{array}{ll}1 & 1 \\ 3 & 5\end{array}\right]$

Solution : We first check the principal minors to use the Sylvester's theorem.
(i) $\quad|1|>0,\left|\begin{array}{ll}1 & 3 \\ 0 & 4\end{array}\right|=4>0$ and therefore A is positive definite.
(ii) $\quad|1|>0,\left|\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right|=1,|A|=0$, and therefore A is not positive definite.
(iii) $\quad|1|>0,\left|\begin{array}{ll}1 & 1 \\ 3 & 5\end{array}\right|=z>0$ and therefore A is positive definite.

Example-8 Determine the properties of sign definiteness for the following quadratic form :

$$
z=x_{1}^{2}-4 x_{1} x_{2}+6 x_{1} x_{3}+5 x_{2}^{2}-10 x_{2} x_{3}+8 x_{3}^{2}
$$

Solution : Here $A=\left[\begin{array}{lcc}1 & -2 & 3 \\ -2 & 5 & -5 \\ 3 & -5 & 8\end{array}\right]$
There successive principal minors of A are

$$
|1|=1,\left|\begin{array}{cr}
1 & -2 \\
-2 & 5
\end{array}\right|=5-4=1,|A|=-2
$$

Thus using sylvestor's law, α is not positive definite. Similarly, for $-A,|-1|=-1,|-A|=2$, so A is not negative definite. Hence A is either positive semidefinite, negative semi-definite, or indefinite. We
observe that A is certainly indefinite by showing two points which make Z positive and negative, respectively.

5.4 Self Evaluation Exercise-I

1. Identify the incorrect statement : A quadratic form $Q(X)$ is :
(a) Positive definite if and only if $Q(X)>0$,
(b) Negative definite if and only if $Q(X)<0$,
(c) Indefinite if $Q(X)>0$ for some X and $Q(X)<0$ for some other X .
(d) Positive definite as well negative definite irrespective of sign of $Q(X)$.
2. The quadratic form with the associated matrices $\left[\begin{array}{ccc}1 & 2 & 4 \\ 2 & 6 & -2 \\ 4 & -1 & 14\end{array}\right]$ is :
(a) $x_{1}^{2}+6 x_{2}^{2}+14 x_{3}^{2}+4 x_{1} x_{2}+8 x_{1} x_{3}-4 x_{2} x_{3}$
(b) $x_{1}^{2}+6 x_{2}^{2}+14 x_{3}^{2}+4 x_{1} x_{3}+8 x_{2} x_{3}-4 x_{1} x_{2}$
(c) $\quad x_{1}^{2}+6 x_{2}^{2}+14 x_{3}^{2}+4 x_{2} x_{3}+8 x_{1} x_{3}-4 x_{1} x_{2}$
(d) $x_{1}^{2}+6 x_{2}^{2}+14 x_{3}^{2}+8 x_{1} x_{2}+4 x_{1} x_{3}-4 x_{1} x_{2}$
3. Write the quadratic form in matrix vector notation
$f(X)=x_{1}^{2}-2 x_{1} x_{2}+4 x_{2}^{2}$
4. Write down the quadratic form whose associated matrices are :
(i) $\left[\begin{array}{lcr}2 & -3 & 1 \\ -3 & 4 & 2 \\ 1 & 2 & -6\end{array}\right]$
(ii) $\left[\begin{array}{ccc}1 & 2 & 4 \\ 2 & 6 & -2 \\ 4 & -2 & 14\end{array}\right]$
5. Which of the following are quadratic form?
(i) $z=x_{1}^{2}+2 x_{2}^{2}$
(ii) $z=\frac{x_{1}}{x_{2}}$
(iii) $z=x_{1}^{2}-x_{2}^{2}+4$
(iv) $z=x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}+4 x_{1}$
6. Determine the sign definiteness of each of the quadratic forms $X^{T} A X$:
(i) $\quad A=\left[\begin{array}{ccc}2 & 1 & 4 \\ 6 & 0 & 1 \\ 1 & -1 & 2\end{array}\right]$
(ii) $\quad A=\left[\begin{array}{lll}1 & 1 & 0 \\ 3 & 2 & 1 \\ 1 & 2 & 4\end{array}\right]$
(iii) $A=\left[\begin{array}{crc}1 & -2 & 1 \\ -4 & 2 & -1 \\ 1 & -1 & 0\end{array}\right]$
7. Write objective function in the form $z=X^{T} A X+q^{T} X$.
(i) $z=2 x_{1}^{2}+x_{1} x_{2}+9 x_{1} x_{2}+3 x_{2}^{2}+x_{2} x_{3}+2 x_{2}$
(ii) $z=x_{1}^{2}-6 x_{1} x_{2}+x_{3}^{2}+9 x_{3}$
8. Write the quadratic form in the form $X^{T} A X$
(i) $x_{1}^{2}+8 x_{1} x_{2}+16 x_{3}^{2}-3 x_{3}^{2}$
(ii) $2 x_{1}^{2}-6 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{3}^{2}+6 x_{2} x_{3}-5 x_{3}^{2}$
9. Determine whether of the following quadratic form:
$x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}$
is positive definite.
10. Determine whether each of the following quadratic forms is positive definite or negative definite :
(a) $2 x_{1}^{2}+6 x_{2}^{2}-6 x_{1} x_{2}$ and (b) $-x_{1}^{2}-x_{2}^{2}-4 x_{3}^{2}+x_{1} x_{2}-2 x_{2} x_{3}$

5.5 General Non-Linear Programming Problem

A general non-linear programming problem (GNLPP) is defined as :
Find $\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right)$ which
Optimize (Max. or Mini) $Z=f\left(x_{1}, x_{2}, \ldots \ldots x_{n}\right)$
Subject to $\quad g^{1}\left(x_{1}, x_{2}, \ldots . x_{n}\right) \leq,=$ or $\geq b_{1}$
$g^{2}\left(x_{1}, x_{2}, \ldots x_{n}\right) \leq,=$ or $\geq b_{2}$
..
$g^{m}\left(x_{1}, x_{2} \ldots . . x_{n}\right) \leq,=$ or $\geq b_{m}$
and $x_{j} \geq 0, j=1,2 \ldots . n$.
where $Z, g^{i} s$ real valued functions of n variables $x_{1}, x_{2}, \ldots, x_{n}$. Here either $f\left(x_{1}, x_{2} \ldots \ldots x_{n}\right)$ or some $g i\left(x_{1}, x_{2}, \ldots . x_{n}\right) ; i=1,2 \ldots m_{j}$ or both are non-linear.

In matrix notation a GNLPP may be written as
Determine $X^{T} \in R^{n}$ so as to maximize or minimize $Z=f(X)$ subject to the constraints :
$g^{i}(X) \leq,=$ or $\geq b_{i}, \quad X \geq 0$

$$
i=1,2 \ldots . . m
$$

Where $f(X)$ or some $g^{i}(X)$ or both are non-linear in X.

5.6 Constrained Optimization with Equality constraints
 (Lagrange's Multipler Method)

If the non-linear programming problem is composed of some differential objective function and equality constraints, the optimization can be done by the use of Lagrange multiplier. To understand the method we consider a simple GNLPP with one equality constraint with two variables :

Maximize or Minimize $Z=f\left(x_{1}, x_{2}\right)$
Subject to the constraint $g\left(x_{1}, x_{2}\right)=c$
and $x_{1}, x_{2} \geq 0$
Where c is a constant.
Here we assume that $f\left(x_{1}, x_{2}\right), g\left(x_{1}, x_{2}\right)$ are differentiable with respect to x_{1} and x_{2}. Now we introduce another differentiable function $h\left(x_{1}, x_{2}\right)$ defined as
$h\left(x_{1}, x_{2}\right)=g\left(x_{1}, x_{2}\right)-c$
Then the above problem is restated as
Max. or Min. $Z=f\left(x_{1}, x_{2}\right)$ subject to the coustraint $h\left(x_{1}, x_{2}\right)=0$ and $x_{1}, x_{2} \geq 0$
To find necessary conditions for the maximum or minimum(stationary) value of $z=f\left(x_{1}, x_{2}\right)$ new function is formed by using some multiplier λ, as

$$
L\left(x_{1}, x_{2}, \lambda\right)=f\left(x_{1} x_{2}\right)-A h\left(x_{1}, x_{2}\right)
$$

Here λ is an unknown constant, called Lagrange's Multiplier and the function $L\left(x_{1}, x_{2}, \lambda\right)$ is called Lagrange's Function. The necessary conditions for stationary value of $f\left(x_{1}, x_{2}\right)$ are given by

$$
\frac{\partial L\left(x_{1}, x_{2}, \lambda\right)}{\partial x_{1}}=0, \frac{\partial L\left(x_{1}, x_{2} \lambda\right)}{\partial x_{2}}=0, \frac{\partial L\left(x_{1}, x_{2}, \lambda\right)}{\partial \lambda}=0
$$

Now these partial derivatives are given by

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{1}}=\frac{\partial f}{\partial x_{1}}-\lambda \frac{\partial h}{\partial x_{1}}, \\
& \frac{\partial L}{\partial x_{2}}=\frac{\partial f}{\partial x_{2}}-\lambda \frac{\partial h}{\partial x_{2}}, \\
& \frac{\partial L}{\partial \lambda}=-h
\end{aligned}
$$

where L, f and h stand for the functions $L\left(x_{1}, x_{2}, \lambda\right), f\left(x_{1}, x_{2}\right)$ and $h\left(x_{1}, x_{2}\right)$ respectively or simply by $L_{1}=f_{1}-\lambda h_{1}, L_{2}=f_{2}-\lambda h_{2}, L_{\lambda}=-h$

The necessary conditions for maximum or minimum value of $f\left(x_{1}, x_{2}\right)$ are thus given by
$f_{1}=\lambda h_{1}, f_{2}=\lambda h_{2}$ and $-h\left(x_{1}, x_{2}\right)=0$
Example-9 Obtain the necessary conditions for the optimum solution of the following non-linear programming problem:

Min. $Z=f\left(x_{1}, x_{2}\right)=3 e^{2 x_{1}+1}+2 e^{x_{2}+5}$
subject to the constraints : $x_{1}+x_{2}=7$ and $x_{1}, x_{2} \geq 0$
Solution : Let us define the Lagrange's function as $L\left(x_{1}, x_{2}, \lambda\right)=\lambda\left(x_{1}+x_{2}-7\right)$

$$
=3 e^{2 x_{1}+1}+2 e^{x_{2}+5}-\lambda\left(x_{1}+x_{2}-7\right)
$$

Where λ is Lagrange's multiplier.
The necessary conditions for the minimum value of $f\left(x_{1}, x_{2}\right)$ are given by

$$
\begin{align*}
& \frac{\partial L}{\partial x_{1}}=\Rightarrow 6 e^{2 x_{1}+1}-\lambda=0 \text { or } \lambda=6^{2 x_{1}+1} \tag{1}\\
& \frac{\partial L}{\partial x_{2}}=0 \Rightarrow 2 e^{x_{2}+5}-\lambda=0 \text { or } \lambda=2 e^{x_{2}+5} \tag{2}\\
& \frac{\partial L}{\partial \lambda}=-\left(x_{1}+x_{2}-7\right)=0 \text { or } x_{1}+x_{2}=7 \tag{3}\\
& \text { (1) \& (2) } \Rightarrow 6 e^{2 x_{1}+1}=2 e^{x_{2}+5} \\
& \quad=2 e^{7-x_{1}+5} \\
& \Rightarrow \quad 3 e^{2 x_{1}+1}=e^{|2-x|} \\
& \therefore \quad \log 3+2 x_{1}+1=12-x_{1} \\
& \Rightarrow \quad x_{1}=\frac{1}{3}[11-\log 3]
\end{align*}
$$

From (3) $x_{2}=7-\frac{1}{3}(11-\log 3)$

5.7 Necessary Conditions for General NLPP

Consider general non-liner programming problem (GNLPP) as :
Maximize (or Minimize) $Z=f\left(x_{1}, x_{2} x_{3}, \ldots \ldots x_{n}\right)$
Subject to $g^{i}\left(x_{1}, x_{2}, \ldots x_{n}\right)=c_{i} ; i=1,2, \ldots m$

$$
x_{j} \geq 0 ; j=1,2,3, \ldots . n .(m<n)
$$

If we take $h^{i}\left(x_{1}, x_{2}, \ldots x_{n}\right)=g^{i}\left(x_{1}, x_{2}, \ldots x_{n}\right)-c_{i}$ for all $i=1,2, \ldots . m$. Then the constraints reduce to $h^{i}\left(x_{1}, x_{2}, x_{3} \ldots x_{n}\right)=0 ; i=1,2,3, \ldots m$. The problem in matrix form can be written as

Max (or Mini) $Z=f(x)$
Subject to $h^{i}(X)=0 \quad i=1,2, \ldots . m$.

$$
X \geq 0, \quad X \in R^{n}
$$

To find maximum and minimum value of $f(X)$ we define Lagrange's function by introducing m Lagrange's multipliers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{m}\right)$ as :

$$
L(X, \lambda)=f(X)-\sum_{i=1}^{m} \lambda_{i} h^{i}(X)
$$

Let us assume that L, f and h^{i} are all differentiable partially with respect $x_{1}, x_{2}, x_{3} \ldots x_{n}$ and $\lambda_{1}, \lambda_{2}, \ldots . \lambda_{m}$. The necessary conditions for a maximum (minimum) of $f(x)$ are :

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{j}}=\frac{\partial f}{\partial x_{j}}-\sum_{i=1}^{m} \lambda_{i} \frac{\partial h^{i}(X)}{\partial x_{j}}=0 ; j=1,2, \ldots . n \\
& \frac{\partial L}{\partial \lambda_{i}}=-h^{i}(X)=0 ; \quad i=1,2, \ldots . . m
\end{aligned}
$$

There $m+n$ necessary conditions can be represented in the following form.

$$
L_{j}=f_{j}-\sum_{i=1}^{m} \lambda_{i} h_{j}^{i}=0 \text { or } f_{j}=\sum_{i=1}^{m} \lambda_{i} h_{j}^{i} ;
$$

and $L_{i}=-h^{i}=0$ or $h^{i}=0$;
where $f_{j}=\frac{\partial f(X)}{\partial x_{j}}, h^{i}=h^{i}(X)$ and $h_{j}^{i}=\frac{\partial h^{i}(X)}{\partial x_{j}}$

5.8 Sufficient Condition for GNLPP

If in a general non-linear programming problem, the constraints are in equations. The necessary conditions will be sufficient for a maximum value of objective function if the objective function is concave and for minimum value of objective function if the objective function is convex.

When concavity and convexity of objective cannot be determined then we state sufficient conditions as follows :
(a) Sufficient conditions for NLPP with one equality constraint :

The Lagrange's function for a general NLPP involving n variables and one constraint is :

$$
L(X, \lambda)=f(X)-\lambda h(X)
$$

The necessary conditions for stationary point, are

$$
\frac{\partial L}{\partial x_{i}}=\frac{\partial f}{\partial x_{j}}-\lambda \frac{\partial h}{\partial x_{j}}=0, j=1,2,3, \ldots, n
$$

and $\quad \frac{\partial L}{\partial \lambda}=-h(x)=0$
The value of λ is defined by

$$
\left.\lambda=\frac{\frac{\partial f}{\partial x_{j}}}{\frac{\partial h}{\partial x_{j}}} \quad \quad \text { (for } j=1,2, \ldots n\right)
$$

The sufficient conditions for miximum or minimum value of $f(X)$ require the evaluation at each stationary point of $n-1$ principal minors of the determinant given below:
$\Delta_{n+1}=\left|\begin{array}{ccccc}0 & \frac{\partial h}{\partial x_{1}} & \frac{\partial h}{\partial x_{2}} & \cdots . . & \frac{\partial h}{\partial x_{n}} \\ \frac{\partial h}{\partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}-\lambda \frac{\partial^{2} h}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}-\frac{\partial^{2} h}{\partial x_{1} \partial x_{2}} & \cdots \cdots & \frac{\partial y}{\partial x_{1} \partial x_{n}}-\lambda \frac{\partial^{2} y}{\partial x_{1} \partial x_{n}} \\ \frac{\partial h}{\partial x_{2}} & \frac{\partial y}{\partial x_{2} \partial x_{1}}-\lambda \frac{\partial^{2} h}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}-\lambda \frac{\partial^{2} h}{\partial x_{2}^{2}} & \cdots \cdots & \frac{\partial y}{\partial x_{2} \partial x_{n}}-\lambda \frac{\partial^{2} h}{\partial x_{2} \partial x_{n}} \\ \frac{\partial h}{\partial x_{n}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}-\lambda \frac{\partial^{2} h}{\partial x_{n} \partial x_{1}} & \frac{\partial y}{\partial x_{n} \partial x_{2}}-\lambda \frac{\partial^{2} h}{\partial x_{n} \partial x_{2}} & \cdots \cdots & \frac{\partial^{2} h}{\partial x_{n}^{2}}-\lambda \frac{\partial h}{\partial x_{n}^{2}}\end{array}\right|$
(i) If $\Delta_{3}>0, \Delta_{4}<0, \Delta_{5}>0, \ldots \ldots$ the sign pattern being alternate, the stationary point is local maximum.
(ii) If $\Delta_{3}<0, \Delta_{4}<0, \ldots . . \Delta_{n+1}<0$, the sign being always negative, the stationary point is localminimum.

Example-10 Obtain the necessary and sufficient conditions for the following NLPP.
Minimize $Z=2 x_{1}^{2}-24 x_{1}+2 x_{2}^{2}-8 x_{2}+2 x_{3}^{2}-12 x_{3}+200$

Subject to $\quad x_{1}+x_{2}+x_{3}=11$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

Solution : The Lagrangian function for the given problem is

$$
L\left(x_{1}, x_{2}, x_{3}, \lambda\right)=2 x_{1}^{2}-24 x_{1}+2 x_{2}^{2}-8 x_{2}+2 x_{3}^{2}-12 x_{3}+200-\lambda\left(x_{1}+x_{2}+x_{3}-11\right)
$$

The necessary conditions for the stationary point are

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{1}}=0 \Rightarrow 4 x_{1}-24-\lambda=0 \\
& \frac{\partial L}{\partial x_{2}}=0 \Rightarrow 4 x_{2}-8-\lambda=0 \\
& \frac{\partial L}{\partial x_{3}}=0 \Rightarrow 4 x_{3}-12-\lambda=0 \\
& \frac{\partial L}{\partial \lambda}=0-\left(x_{1}+x_{2}+x_{3}-11\right)=0
\end{aligned}
$$

Solving above four simulteneous equations, we get the stationary point $X_{0}=\left(x_{1}, x_{2}, x_{3}\right)=(6,2,3) ; \lambda=0$

For sufficient condition, Here $n=3$

$$
\begin{aligned}
\therefore \Delta_{4} & =\left|\begin{array}{cccc}
0 & \frac{\partial h}{\partial x_{1}} & \frac{\partial h}{\partial x_{2}} & \frac{\partial h}{\partial x_{3}} \\
\frac{\partial h}{\partial x_{1}} & \frac{\partial^{2} f}{\partial x_{1}^{2}}-\lambda \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}-\lambda \frac{\partial^{2} h}{\partial x_{1} \partial x_{2}} & \frac{\partial y}{\partial x_{1} \partial x_{3}}-\lambda \frac{\partial^{2} h}{\partial x_{1} \partial x_{3}} \\
\frac{\partial h}{\partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}-\lambda \frac{\partial^{2} h}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}-\lambda \frac{\partial^{2} h}{\partial x_{2}^{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{3}}-\lambda \frac{\partial^{2} h}{\partial x_{2} \partial x_{3}} \\
\frac{\partial h}{\partial x_{3}} & \frac{\partial^{2} f}{\partial x_{3} \partial x_{1}}-\lambda \frac{\partial^{2} h}{\partial x_{3} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{3} \partial x_{2}}-\lambda \frac{\partial^{2} h}{\partial x_{3} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{3}^{2}}-\lambda \frac{\partial^{2} h}{\partial x_{3}^{2}}
\end{array}\right| \\
& =\left|\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 4 & 0 & 0 \\
1 & 0 & 4 & 0 \\
1 & 0 & 0 & 4
\end{array}\right|=-48
\end{aligned}
$$

$$
\Delta_{3}=\left|\begin{array}{lll}
0 & 1 & 1 \\
1 & 4 & 0 \\
1 & 0 & 4
\end{array}\right|=-8
$$

$\because \quad \Delta_{3}, \Delta_{4}$ both are negative, therefore the above necessary conditions are sufficient i.e. $X_{0}=(6,2,3)$ gives minimum value of the objective function.
(b) Sufficient conditions for General NLPP with $(m<n)$ equality constraints :

First we write Lagrange's function fo a GNLPP with more than one constraint by introducing m lagrange multipliers $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots . \lambda_{m}\right)$

$$
L(X, \lambda)=f(X)-\sum_{i=1}^{m} \lambda_{i} h^{i}(X) \quad(m<n)
$$

The necessary conditions for stationary points of $f(x)$ can be obtained from the equations :

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{j}}=0, \quad j=1,2,3, \ldots . n \\
& \frac{\partial L}{\partial \lambda_{i}}=0, \quad i=1,2,3, \ldots . m
\end{aligned}
$$

Thus the optimization of $f(x)$ subject to $h^{i}(X)=0$ is equivalent to the optimization of $L(X, \lambda)$. To write sufficient conditions for stationary point of $f(X)$, we assume that the function $L(X, \lambda), f(X)$ and $h(X)$ all possess partial derivalines of order one and two with respect to the decision variables.

Let $V=\left[\frac{\partial^{2} L(X, \lambda)}{\partial x_{i} \partial x_{j}}\right]_{n \times n}$
be the matrix of second order partial derivaties of $L(X, \lambda)$ w.r. to decision variables

$$
U=\left[h_{j}^{i}(X)\right]_{m \times n}
$$

Where $h_{j}^{i}(X)=\frac{\partial h^{i}(X)}{\partial x_{j}}, i=1,2, \ldots . m ; j=1,2, \ldots . n$
Define the square matrix $H^{B}=\left[\begin{array}{ll}\frac{O}{U^{T}} & V\end{array}\right]_{(m+n) \times(m+n)}$
Where O is the null matrix of order $m \times m$. The matrix H^{B} is called bordered Hessian Matrix.
Now the suficient conditions for maximum and minimum stationary points are given below :

Let $\left(X_{0}, \lambda_{0}\right)$ be the stationary point for the function $L(X, \lambda)$ and H_{0}^{B} be the corresponding bordered Hassian matrix computed at $\left(X_{0}, \lambda_{0}\right)$, then X_{0} is a
(i) Maximum point, if starting with principal minors of order $(2 m+1)$, the last $(n-m)$ principal minors of H_{0}^{B} form an alterating sign pattern starting with $(-1)^{m+n}$; and
(ii) Minimum point, if starting with prinicpal minor of order $(2 m+1)$, the last $(n-m)$ principal minors of H_{0}^{B} have the sign of $(-1)^{m}$.

Note : It can be observed that above conditions are only sufficient for identifying an extrime point, but not necessary. That is, a stationary point may be an extreme point without satisfying the above condition.

5.9 Illustrative Examples

Example-11 Obtain the necessary and sufficient conditions for the optimum solution of the following NLPP.

Minimize $Z=4 x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}-4 x_{1} x_{2}$
subject to $x_{1}+x_{2}+x_{3}=15$

$$
2 x_{1}-x_{2}+2 x_{3}=20, x_{1}, x_{2}, 2 x_{3} \geq 0
$$

Solution: Here, we have

$$
\begin{aligned}
& f(X)=4 x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}-4 x_{1} x_{2} \\
& h^{1}(X)=x_{1}+x_{2}+x_{3}-5 ; \quad h^{2}(X)=2 x_{1}+x_{2}+2 x_{3}-30
\end{aligned}
$$

The Lagrangian function is defined as

$$
\begin{aligned}
& L(X, \lambda)=f(X)-\lambda_{1} h^{1}(X)-\lambda_{2} h^{2}(X) \\
& \begin{array}{c}
4 x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}-4 x_{1} x_{2}-\lambda_{1}\left(x_{1}+x_{2}+x_{3}-15\right) \\
\\
-\lambda_{2}\left(2 x_{1}+x_{2}+2 x_{3}-30\right)
\end{array}
\end{aligned}
$$

The necessary conditions for the stationary values of $f(x)$ are as :

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{1}}=0 \Rightarrow 8 x_{1}-4 x_{2}-\lambda_{1}-2 \lambda_{2}=0 \\
& \frac{\partial L}{\partial x_{2}}=0 \Rightarrow 4 x_{2}-4 x_{1}-\lambda_{1}-\lambda_{2}=0 \\
& \frac{\partial L}{\partial x_{3}}=0 \Rightarrow 3 x_{3}-\lambda_{1}-2 \lambda_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial L}{\partial \lambda_{1}}=0 \Rightarrow-\left(x_{1}+x_{2}+x_{3}-15\right)=0 \\
& \frac{\partial L}{\partial \lambda_{2}}=0 \Rightarrow-\left[2 x_{1}-x_{2}+2 x_{3}-20\right]=0
\end{aligned}
$$

Solving above simultenceous equations we get stationary point $\left(X_{0}, \lambda_{0}\right)$ as :

$$
\begin{aligned}
& X_{0}=\left(x_{1}, x_{2}, x_{3}\right)=\left(\frac{33}{9}, \frac{10}{3}, 8\right) \text { and } \\
& \lambda_{0}=\left(\lambda_{1}, \lambda_{2}\right)=\left(\frac{40}{9}, \frac{52}{9}\right)
\end{aligned}
$$

The Bordered Hessian matrix at $\left(X_{0}, \lambda_{0}\right)$ is given by

$$
H_{0}^{B}=\left[\begin{array}{cccrc}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 2 & -1 & 2 \\
1 & 2 & 8 & -4 & 0 \\
1 & -1 & -4 & 4 & 0 \\
1 & 2 & 0 & 0 & 2
\end{array}\right]
$$

Since $m=2, n=3$, therefore $n-m=12 m+1=5$. It means one needs the check the determinant of H_{0}^{B} only and it must have the sign of $(-1)^{2}$.

Now, det $H_{0}^{B}=90>0$, therefore x_{0} is a minimum point.
Example-12 Obtain a set of necessary condition for the non-linear programming problem :
Maximize $Z=x_{1}^{2}+3 x_{2}^{2}+5 x_{3}^{2}$
subject to $5 x_{1}+2 x_{2}+x_{3}=5$

$$
x_{1}, x_{2} x_{3} \geq 0
$$

Solution: Here, we have $X=\left(x_{1}, x_{2}, x_{3}\right) f(X)=x_{1}^{2}+3 x_{2}^{2}+5 x_{3}^{2}, g^{1}(X)=x_{1}+x_{2}+3 x_{3}$,

$$
g^{2}(X)=5 x_{1}+2 x_{2}+x_{3} \text { and } c_{1}=2, c_{2}=5
$$

Definging $h^{1}(X)=g^{1}(X)-c_{1}, h^{2}(X)=g^{2}(X)-c_{2}$
Thus we have the constraint

$$
h^{i}(X)=0, i=1,2
$$

The Lagrange's function is defined as :
$L(X, \lambda)=f(X)-\lambda_{1} h^{1}(X)-\lambda_{2} h^{2}(X)$
$\lambda=\left(\lambda_{1}, \lambda_{2}\right)$
This finds the following necessary conditions

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{1}}=0 \Rightarrow 2 x_{1}-\lambda_{1}-5 \lambda_{2}=0 \\
& \frac{\partial L}{\partial x_{2}}=0 \Rightarrow 6 x_{2}-\lambda_{1}-2 \lambda_{2}=0 \\
& \frac{\partial L}{\partial x_{3}}=0 \Rightarrow 10 x_{3}-3 \lambda_{1}-\lambda_{2}=0 \\
& \frac{\partial L}{\partial x_{1}}=0 \Rightarrow-\left(x_{1}+x_{2}+3 x_{3}-2\right)=0 \\
& \frac{\partial L}{\partial x_{2}}=0 \Rightarrow-\left(5 x_{1}+2 x_{2}+x_{3}-5\right)=0
\end{aligned}
$$

Examples-13 Find the dimension of a rectangular parallelopiped with largest volume whose sides are parallel to the coordinate planets, to be inscribed in the ellpsoide $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.

Solution : Let the dimensions of a rectangular parallelopiped be x, y and z . Its volume is given by $f(x, y, z)=x y z$

Thus the problem is
Max. $f(x, y, z)=x y z$
s.t. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
and $x, y, z \geq 0$
The necessary conditions for maximum value of $f(x, y, z)$ are as :

$$
\begin{align*}
& \frac{\partial L}{\partial x}=0 \Rightarrow y z-\frac{2 \lambda x}{a^{2}}=0 \tag{1}\\
& \frac{\partial L}{\partial y}=0 \Rightarrow z x-\frac{2 \lambda y}{b^{2}}=0 \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial L}{\partial z}=0 \Rightarrow x y-\frac{2 \lambda z}{c^{2}}=0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial L}{\partial \lambda}=0 \Rightarrow-\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1\right)=0 \tag{4}
\end{equation*}
$$

from (1) $\quad y z=\frac{2 \lambda x}{b^{2}}$
dividing we get $\frac{y}{x}=\frac{x}{y} \frac{b^{2}}{a^{2}}$

$$
\Rightarrow \frac{x}{a}=\frac{y}{b}
$$

Similarly $\frac{y}{b}=\frac{z}{c}$

$$
\begin{align*}
& \therefore \quad \frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{1}{\sqrt{3}} \tag{4}\\
& \therefore \quad x=\frac{a}{\sqrt{3}}, y=\frac{b}{\sqrt{3}}, z=\frac{c}{\sqrt{3}}
\end{align*}
$$

which are the required dimennsions
Example-14 A positive quantity b is to be divided into n parts in such a way that the product of the n parts is to be maximum. Use Lagrange multipler technique to obtain the optimal subdivision.

Solution : Let b be divided into n parts $x_{1}, x_{2}, \ldots, x_{n}$, so that we have to maximize the function

$$
\begin{equation*}
z=x_{1} \cdot x_{2} \cdot x_{3} \ldots x_{n} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{align*}
& x_{1}+x_{2}+x_{3}+\ldots+x_{n}=b \tag{2}\\
& x_{1} \geq 0, x_{2} \geq 0, \ldots ., x_{n} \geq 0
\end{align*}
$$

The Lagrange's Function is defined as :

$$
L\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, \lambda\right)=x_{1} x_{2}, x_{3}, \ldots x_{n}+\lambda\left(x_{1}+x_{2}+\ldots+x_{n}-b\right)
$$

The necessary condition are

$$
\begin{align*}
& \frac{\partial L}{\partial x_{1}}=0 \Rightarrow x_{2} x_{3} \ldots x_{n}-\lambda=0 \tag{3}\\
& \frac{\partial L}{\partial x_{2}}=0 \Rightarrow x_{1} x_{3} \ldots x_{n}-\lambda=0 \tag{4}\\
& \frac{\partial L}{\partial \lambda}=0 \Rightarrow\left(x_{1}+x_{2}+x_{3}+\ldots+x_{n}-b\right)=0
\end{align*}
$$

Dividing (3) by (4) $\frac{x_{2}}{x_{1}}=1 \Rightarrow x_{1}=x_{2}$
Similarly $x_{2}=x_{3}=x_{4}=\ldots=x_{n}$
Thus (6) $\Rightarrow x_{1}=x_{2}=x_{3}=\ldots . x_{n}=\frac{b}{n}$
\therefore Max. value of $z=\frac{b}{n} \cdot \frac{b}{n} \ldots \cdot \frac{b}{n}=\left(\frac{b}{n}\right)^{n}(n$ times $)$
Example-15 A manufacturing concern produces a product consisting of two raw materials, say A_{1} and A_{2}. The production function is estimated as

$$
z=f\left(x_{1}, x_{2}\right)=3.6 x_{1}-0.4 x_{1}^{2}+1.6 x_{2}-0.2 x_{2}^{2}
$$

Where z_{z} represents the quantity (in tons) of the product produced and x_{1} and x_{2} disignate the input amounts of raw materials A_{1} and A_{2}. The company has Rs 50,000 to spend on there two raw materials. The unit price of A_{1} is Rs 10000 and of A_{2} is Rs 5000 . Determine how much input amounts of A_{1} and A_{2} be decided so as to maximize the production output.

Solution : Since the company must operate within the available funds, the budgetary constraint is $10000 x_{1}+5000 x_{2} \leq 50000$ or $2 x_{1}+x_{2} \leq 10$ we reduce this inequality constraint to an equality by imposing an additional assumption that the company has to spend every available single paisa on these raw materials. Then, the constraint is $2 x_{1}+x_{2}=10$. Also, obiviously $x_{1} \geq 0, x_{2} \geq 0$. The problem of the company can thus be written as :

Maximize $z=f\left(x_{1}, x_{2}\right)=3.6 x_{1}-0.4 x_{1}^{2}+1.6 x_{2}-0.2 x_{2}^{2}$
s.t. $2 x_{1}+x_{2}=10$
and $\quad x_{1}, x_{2} \geq 0$
The Lagrange's Function is

$$
L\left(x_{1}, x_{2}, \lambda\right)=3.6 x_{1}-0.4 x_{1}^{2}+1.6 x_{2}-0.2 x_{2}^{2}-\lambda\left(2 x_{1}+x_{2}-10\right)
$$

The necessary conditions are

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{1}}=0 \Rightarrow 3.6-0.8 x_{1}-2 \lambda=0 \\
& \frac{\partial L}{\partial x_{2}}=0 \Rightarrow 1.6-0.4 x_{1}-\lambda=0 \\
& \frac{\partial L}{\partial \lambda}=0 \Rightarrow-\left(2 x_{1}+x_{2}-0\right)=0
\end{aligned}
$$

Solving above simulteneous equations we get $\left(x_{1}, x_{2}, \lambda\right)=(3,5,3)$
$\because z$ is a concave function so the necessry conditions are sufficient therefore z is maximum at

$$
\begin{aligned}
x_{1}=3.5, & x_{2}=3 \\
\therefore \quad \operatorname{Max} z & =f(3,5,3) \\
& =3.6(3.5)-0.4(3.5)^{2}+1.6(3)-0.2(3)^{2}
\end{aligned}
$$

10.7 tons .

Thus in order to have a maximum production of 10.7 tons, the company must input 3.5 units or raw material A and 3 units of raw material B.

5.10 Self-Learning Exercise-II

1. Define Lagrange's functions.
2. What are Lagrange's multipliers?
3. State whether true or false :
(i) The necessary conditions will be sufficient to maximize a concave function.
(ii) The necessary any conditions wil be sufficient to minimize a convesfunction.
(iii) The necessary condition will be sufficient minimize a concave function.

5.11 Summary

Quadratic forms have been introduced in the unit-1. A further study have been done in this unit. Tests for the positiveness and negativeness are defined. There are two tests for this, Eigenvalue test and principal minor test. You are able to test prositive/negativeness of quadratic formby doing ample examples given in this unit. In the second part of this unit you have learnt the method to solve non-linear programming problem with equality constraints. The necessary and sufficient conditions are given with the help of Lagrange's multipliers and Lagrange's function. The necessary conditions are sufficient for maximization of an objective function if it is concave and for minimization of an objective function it is convex.

If convcavity and convexity is not known of the objective function, then principal miners of hassian matrix are evaluated.

5.12 Answers to Self-Learning Exercise-I

1. (b)
2. (a)
3. $\left(x_{1}, x_{2}\right)\left[\begin{array}{lr}1 & -1 \\ -1 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
4. (i) $2 x_{1}^{2}+4 x_{2}^{2}-6 x_{3}^{2}-6 x_{1} x_{2}+4 x_{2} x_{3}+2 x_{3} x_{1}$
(ii) $x_{1}^{2}+6 x_{2}^{2}+14 x_{3}^{2}+4 x_{1} x_{2}-4 x_{2} x_{3}+8 x_{3} x_{1}$
5. (i), (iii), (iv)
6. (i) Indefinite, (ii) Indefinite, (iii) Indifinite
7. (i) $H=\left[\begin{array}{ccc}2 & \frac{1}{2} & \frac{9}{2} \\ \frac{1}{2} & 3 & \frac{1}{2} \\ \frac{9}{2} & \frac{1}{2} & 0\end{array}\right], q=\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]$
(ii) $H=\left[\begin{array}{llc}1 & 0 & -3 \\ 0 & 0 & 0 \\ -3 & 0 & 1\end{array}\right], q=\left[\begin{array}{l}0 \\ 0 \\ 9\end{array}\right]$

5.13 Answer to Self-Learning exercise-II

3. (i) True
(ii) True
(iii) False

5.14 Exercise

Solve the following non-linear programming problems, using lagrange's multiplier method :

1. Minimize $z=6 x_{1}^{2}+5 x_{2}^{2}$

Subject to $x+5 x_{2}=3, x_{1}, x_{2} \geq 0$
2. Minimize $z=3 x_{1}^{2}=x_{2}^{2}-2 x_{1} x_{2}+6 x_{1}-2 x_{2}$

Subject to $2 x_{1}+x_{2}=4, x_{1}, x_{2} \geq 0$
3. Minimize $z=2 x_{1}^{2}+x_{2}^{2}=3 x_{3}^{2}+10 x_{1}+8 x_{2}+6 x_{3}-100$

Subject to $x_{1}+x_{2}+x_{3}=20, x_{1}, x_{2}, x_{3} \geq 0$
4. Maximize $z=4 x_{1}+6 x_{2}-2 x_{1}^{2}-2 x_{1} x_{2}-2 x_{2}^{2}$

Subject to $x_{1}+2 x_{2}=z, x_{1}, x_{2} \geq 0$
5. Maximize $z=5 x_{1}+x_{2}-\left(x_{1}-x_{2}\right)^{2}$

Subject to $x_{1}+x_{2}=4, x_{1}, x_{2} \geq 0$
6. \quad Minimize $z=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$

Subject to $4 x_{1}+x_{2}^{2}+2 x_{3}=14, \quad x_{1}, x_{2}, x_{3} \geq 0$
7. \quad Minimize $z=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$

Subject to $x_{1}+x_{2}+3 x_{3}=5$

$$
5 x_{1}+2 x_{2}+x_{3}=5
$$

$$
x_{1}, x_{2} \geq 0
$$

8. Minimize $z=6 x_{1}+8 x_{2}-x_{1}^{2}-x_{2}^{2}$

Subject to $4 x_{1}+3 x_{2}=16$,

$$
\begin{array}{r}
3 x_{1}+5 x_{2}=15 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

9. Solve the following NLPP :

$$
\text { Optimize } z=4 x_{1}+9 x_{2}-x_{1}^{2}-x_{2}^{2}
$$

Subject to $4 x_{1}+3 x_{2}=15$

$$
\begin{gathered}
3 x_{1}+5 x_{2}=14 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

10. Determine optimum solution for the following NLPP and check whether it maximizes or minimizes the objective function :
$z_{1}=x_{1}^{2}-10 x_{1}+x_{2}^{2}-6 x_{2}+x_{3}^{2}-4 x_{3}$
Subject to $x_{1}+x_{2}+x_{3}=7$

$$
x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0 .
$$

Unit-6
 Non Linear Programming Problems

Structure of the Unit

6.0 Objective

6.1 Introduction
6.2 Mathematical Programming Problem
6.3 General Nonlinear Programming Problem
6.4 Lagrangian Function and Saddle Point
6.4.1 Relation between Saddle point of $F(X, \lambda)$ and minimal point of $f(X)$
6.5 Necessary and Sufficient conditions for the function $F(X, \lambda)$ to have a saddle point at $\left(X_{0}, \lambda_{0}\right)$
6.6 Graphical method for solving a Nonlinear Programming Problem
6.7 Self-Learning Exercise
6.8 Summary
6.9 Answers to Self-Learning Exercise

6.10 Exercise

6.0 Objective

The objective of writing this unit is to get students acquainted with the programming problems that are not linear by nature. Such problems are of great importance and are solved by different methods. One such method is the method of Lagrange multipliers which provides a necessary condition for the optimum of the objective function, when the constraints are in the form of equations.

6.1 Introduction

The unit begins with the formal definition of mathematical programming problem followed by the introduction of general nonlinear programming problem. The construction of Lagrangain function and its relation with the minimal point of the objective function is briefly discussed. The necessary and sufficient conditions for the function $F(X, \lambda)$ to have a saddle point are also derived. In the last, graphical method for solving nonlinear programming problem in two variables is also explained through few examples.

6.2 Mathematical Programming Problem

A general mathematical programming problem (MPP) can be stated as given below :
Minimize $f(X)$,
Subject to $\quad g_{i}(X) \geq 0$,
$h_{j}(X)=0$,

$$
\begin{equation*}
X \in S \tag{2}
\end{equation*}
$$

Where $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is a vector of decision variables (that are known) and
$f, g_{i}(i=1,2, \ldots, m)$ and $h_{j}(j=1,2, \ldots, p)$ are the real valued functions of variables $x_{1}, x_{2}, \ldots, x_{n}$.
The function f in the above formulation is called the objective function. The inequalities (1), equations (2) and the set restrictions (3) are called the constraints. The above mathematical programming problem is a minimization problem, which is considered without any loss of generality, since a maximization problem can always be converted into a minimization problem by using the fact max $f(X)=$ $\min (-f(X))$. That intends to say that the maximization of $f(X)$ is equivalent to the minization of $-f(X)$.

Usually, the functions f, g_{i} and h_{j} are assumed to be continuous or continuously differentiable functions. Also the set S is considered as a connected subset of R^{n}. If $S=R^{n}$ and all the functions appearing in the mathematical programming problem (MPP) are linear in the decision variables X, the mathematical programming problem is called a Linear Programming Problem (LPP). A mathematical programming problem, that is not a linear programming problem is called a Nonlinear Programming Problem (NLPP).

The set T of all those points $X \in S$, which satisfy constraints (1) to (3) is known as the feasible region, feasible set or feasible constraint set of the MPP and every point of this set T is called a feasible solution of the MPP. If the constraint set T is empty, then we say that there is no feasible solution to the MPP and the problem is said to be inconsistent.

A feasible solution $X_{0} \in T$ of the MPP is said to be an optimal solution or a global optimal solution, if $f(X) \geq f\left(X_{0}\right)$ for all $X \in T$. This global optimal solution $X_{0} \in T$ of the MPP is actually a global minimum point of the MPP. $X_{0} \in T$ is referred to as a global maximum point of the function f over the set T if X_{0} is a global minimum point of $-f$ over T .

A point $X^{*} \in T$ is said to be a local minimum or relative minimum point of the function $f(X)$ over T if there exists a positive number δ such that $f(X) \geq f\left(X^{*}\right)$ for all $X \in T \bigcap N_{\delta}\left(X^{*}\right)$, where $N_{\delta}\left(X^{*}\right)$ is the neighbourhood of X^{*} with radius δ. The point $X^{*} \in T$ is a local miximum or a relative maximum point of the function f over T if X^{*} is a local minimum point of $-f$ over T. A point $X^{*} \in T$ referred to as a local extremum point if it is either a local minimum point or a local maximum point. It is noticeable from the above definitions that a global minimum (maximum) point is also a local minimum (maximum) point, but not conversely.

In fact a mathematical programming problem can be classified into two different categoriesunconstrained optimization problem and constrained optimization problem. If the constraint set T is the whole of the space R^{n}, the problem is said to be an unconstrained optimization problem, for in this case, we are to find a point in R^{n} that gives an optimum value to the objective function. If T is a proper subset of R^{n}, then the problem becomes a constrained optimization problem.

Example 1: Maximize $z=\left(x_{1}-1\right)^{2}+\left(x_{2}-\frac{1}{2}\right)^{2}$
subject to $\quad x_{1}+x_{2} \leq 2$

$$
x_{1}, x_{2} \geq 0
$$

The shaded region $O A B$ in the figure 6.1 shows the feasible region. The objective contour $\left(x_{1}-1\right)^{2}+\left(x_{2}-\frac{1}{2}\right)^{2}=z$ is a circle whose centre is $\left(1, \frac{1}{2}\right)$ and radius \sqrt{z}. Since we are looking for the maximum value of z, we must find the circle with the largest radius that intersects the feasible region. We see that the point $\mathrm{B}(0,2)$ is the optimal solution with the objective value $\frac{13}{4}$. It can be noticed from the objective contours (dotted circles) that the point $\mathrm{A}(2,0)$ is a point of local maximum but not of global maximum with the objective value $\frac{5}{4}$.

Figure : 6.1
The above example confirms that a local optimum neet not be a global optimum. This is the reason that the derivations of algorithms for non-linear programming problems are difficult to some extent.

Example-2 Minimize $z=\left(x_{1}-1\right)^{2}+\left(x_{2}-\frac{1}{2}\right)^{2}$
subject to $\quad x_{2}^{2}-x_{1}-1 \leq 0$

$$
x_{1}+x_{2} \leq 2
$$

$$
x_{1}, x_{2} \geq 0
$$

The feasible region of the given NLPP is shown as the shaded region OABC in the figure 6.2. The objective contour $\left(x_{1}-1\right)^{2}+\left(x_{2}-\frac{1}{2}\right)^{2}=z$ is a circle with centre $\left(1, \frac{1}{2}\right)$ and radius \sqrt{z}. Since we are to minimize z , therefore we must look for the circle having the smallest radius that intersects the feasible region. Clearly such a circle with smallest radius is the point circle (i.e. circle that has radius zero), since the point $\left(1, \frac{1}{2}\right)$ lies inside the feasible region. Therefore, the optimal solution to the problem is $x_{1}=1$ and
$x_{2}=\frac{1}{2}$, with the objective value 0 .

Figure : 6.2
From the above example one can notice that the optimal solution to the NLPP could be any point of the feasible region. This adds to difficulties in solving the NLPP.

6.3 General Nonlinear Programming Problem (GNLPP)

A general nonlinear programming problem (GNLPP) can be formulated as :
Suppose that we are looking for a solution of nonnegative variables $x_{j} \geq 0 ; j=1,2, \ldots, n$, which maximize or minimize the real valued function (called the objective function)

$$
z=f\left(x_{1}, x_{2}, \ldots x_{n}\right)
$$

and satisfies the set of m constraints

$$
\begin{aligned}
& g_{1}\left(x_{1}, x_{2}, \ldots x_{n}\right) \quad\{\leq, \geq \text { or }=\} b_{1} \\
& g_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad\{\leq, \geq \text { or }=\} b_{2} \\
& \text {-- } \\
& \text {-- } \\
& g_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad\{\leq, \geq \text { or }=\} b_{m}
\end{aligned}
$$

where either $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ or some $g_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right) ; i=1,2, \ldots, m$ or both are nonlinear real valued functions of n variables $x_{1}, x_{2}, \ldots, x_{n}$.

In matrix form, the GNLPP can be written as :
Determine $X^{T} \in R^{n}$ that maximize or minimize the objective function

$$
z=f(X)
$$

subject to the constraints

$$
\begin{aligned}
& g_{i}(\bar{X})\{\leq, \geq o r=\} b_{i} ; \quad i=1,2, \ldots, m \\
& \bar{X} \geq 0
\end{aligned}
$$

where either $f(X)$ or some $g_{i}(X)$ or both are nonlinear in X.
It is some-times convenient to write the constraints $g_{i}(X)\{\leq, \geq$ or $=\} b_{i}$ as $h_{i}(X)\{\leq, \geq$ or $=\} 0$, for $h_{i}(X)=g_{i}(X)-b_{i}$.

6.4 Lagrangian Function and Saddle Point

Let us consider the NLPP a follows :
Minimize $z=f(X) ; \quad X \in R^{n}$
subject to $\quad g_{i}(X) \leq 0 ; i=1,2, \ldots, m$

$$
\begin{equation*}
X \geq 0 \tag{2}
\end{equation*}
$$

Where $f(X)$ and $g_{i}(X)$ are convex functions of $X \in R^{n}$.
In fact, if $f(X)$ is a convex function, then it has a unique relative minimum which is also a global minimum. It can also be learnt that if $\lambda f(\lambda) \gamma$ ศs convex, then $-f(X)$ is concave and that $\min f(X) \max (-f(X))$. At present, we relax the condition (3) and (4) (i.e. there is no restriction on X and functions $f(X)$ and $g_{i}(X)$ are not necessarily convex functions) and consider the problem of minimizing $f(X)$ subject to the constraint set (2) only.

Let us define the function $F(X, \lambda)$ as

$$
\begin{align*}
F(X, \lambda) & =f(X)+\sum_{i=1}^{m} \lambda_{i} g_{i}(X) \\
& =f(X)+\lambda^{T} G(X) \tag{5}
\end{align*}
$$

where $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)^{T}$ and

$$
\begin{equation*}
G(X)=\left(g_{i}(X), g_{2}(X), \ldots, g_{m}(X)\right)^{T} \tag{6}
\end{equation*}
$$

Equation (5) shows that $F(X, \lambda)$ is nothing but the Lagrangian function, with the m componnts of λ as the lagrange multipliers.

A point $\left(X_{0}, \lambda_{0}\right)$ is said to be a saddle point of the Lagrangian function $F(X, \lambda)$ if

$$
F\left(X_{0}, \lambda\right) \leq F\left(X_{0}, \lambda_{0}\right) \leq F\left(X, \lambda_{0}\right)
$$

in some neighbourhood of $\left(X_{0}, \lambda_{0}\right)$. The Saddle point of the lagrangian function $F(X, \lambda)$, if at all exists, and the minimal point of the objective function $f(X)$ have a theoretical relationship with each other. This theoretical relationship with each other. This theoretical relationship has led not only to various important theoretical developements but also to algorithms for solving NLPP. This relationship is established through a number of theorems which are various constituents of what we know as Kuhn-Tucker theory.

6.4.1 Relation between Saddle Point of $F(X, \lambda)$ and minimal point of $F(X)$

Let $F(X)$ be a real-valued function in R^{n} and $G(X)$ a vector function consisting of real-valued functions $g_{i}(X) ; i=1,2, \ldots, m$.

Consider
Minimize $\quad z=f(X)$
subject to $\quad G(X) \leq 0$
and

$$
\begin{equation*}
F(X, \lambda)=f(X)+\lambda G(X) \tag{2}
\end{equation*}
$$

where $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)^{T}$, and $\lambda \geq 0$.
Theorem-1 : If $F(X, \lambda)$ has a saddle point $\left(X_{0}, \lambda_{0}\right)$, for each $\lambda \geq 0$, then

$$
G\left(X_{0}\right) \leq 0 \text { and } \lambda_{0}^{T} G\left(X_{0}\right)=0 .
$$

Proof: Let $\left(X_{0}, \lambda_{0}\right)$ be the saddle point of the function $F(X, \lambda)$ where $\lambda \geq 0$. Then from the definition

$$
\begin{gather*}
F\left(X_{0} \lambda\right) \leq F\left(X_{0}, \lambda_{0}\right) \leq F\left(X, \lambda_{0}\right) \\
\text { or } f\left(X_{0}\right)+\lambda^{T} G\left(X_{0}\right) \leq f\left(X_{0}\right)+\lambda_{0}^{T} G\left(X_{0}\right) \leq f(X)+\lambda_{0}^{T} G(X) \tag{5}
\end{gather*}
$$

The left hand side of the inequality (5) shows that

$$
\begin{equation*}
\lambda^{T} G\left(X_{0}\right) \leq \lambda_{0}^{T} G\left(X_{0}\right) \tag{6}
\end{equation*}
$$

If possible, let $g_{i}\left(X_{0}\right)>0$ for some i. Then whatever may be λ_{0}, the $i^{\text {th }}$ component λ_{i} of λ can be chosen sufficiently large, so that $\lambda^{T} G\left(X_{0}\right)$ is large enough to disobey the inequality (6). Hence we must have

$$
\begin{equation*}
g_{i}\left(X_{0}\right) \leq 0 \text { for all } i=1,2, \ldots, m . \tag{7}
\end{equation*}
$$

Or, $\quad G\left(X_{0}\right) \leq 0$
Now since $\lambda_{0} \geq 0$ and $G(X) \leq 0$, therefore,

$$
\begin{equation*}
\lambda_{0}^{T} G\left(X_{0}\right) \leq 0 . \tag{8}
\end{equation*}
$$

Also inequality (6) holds for all $\lambda \geq 0$, therefore, it holds for $\lambda=0$ also and so

$$
\begin{equation*}
\lambda_{0}^{T} G\left(X_{0}\right) \geq 0 \tag{9}
\end{equation*}
$$

From equations (9) and (10), we have

$$
\begin{equation*}
\lambda_{0}^{T} G\left(X_{0}\right)=0 \tag{10}
\end{equation*}
$$

Theorem-2 If $\left(X_{0}, \lambda_{0}\right)$ is a saddle point of the function $F(X, \lambda)$ for every $\lambda \geq 0$, then X_{0} is a minimal point of $f(X)$ subject to the constraints $G(X) \leq 0$.

Proof: Using the right hand side inequality of (5) and the reult (1) of theorem-1, we have $f\left(X_{0}\right) \leq f(X)+\lambda_{0}^{T} G(X)$ and since $\lambda_{0} \geq 0$ and $G(X) \leq 0$, therefore, $f\left(X_{0}\right) \leq f(X)$ for all those points X which satisfy $G(X) \leq 0$,

The converse of the above theorem need not be true always.
Theorem-3 Let X_{0} be a solution of the NLPP
Minimize $\quad z=f(X) ; X \in R^{n}$
subject to $G(X) \leq 0$, where

$$
\begin{aligned}
& G(X)=\left(g_{1}(X), g_{2}(X), \ldots, g_{m}(X)\right)^{T} \text { and } \\
& f(X), g_{i}(X) ; i=1,2, \ldots, m \text { are all convex functions }
\end{aligned}
$$

Let the set of points X such that $G(X)<0$ be nonempty. The there exists a vector $\lambda_{0} \geq 0$ in R^{m} such that

$$
f(X)+\lambda_{0}^{T} G(X) \geq f\left(X_{0}\right)
$$

Proof: Let $b=\left(b_{0}, b_{1}, \ldots, b_{m}\right)^{T}$ be a vector in R^{m+1} and let

$$
C_{1}=\left\{b: b_{0} \geq f(X)-f\left(X_{0}\right) ; g_{i}(X) \leq b_{i}, i=1,2, \ldots, m\right\}
$$

where for each such b , there is atleast one X for which the above conditions for b hold. It is clear that C_{1} is a convex set. Note that $g_{i}(X)$ are convex functions for $i=1,2, \ldots, m$.

Let us consider another set $C_{2} \subset R^{m+1}$ defined by

$$
C_{2}=\{b: b<0\} .
$$

Then it can be seen that C_{2} is also a convex set. Further $C_{1} \cap C_{2}=\phi$, since $b_{0} \geq f(X)-f\left(X_{0}\right) \geq 0$ for $b \in C_{1}$ and $b<0$ for $b \in C_{2}$. Now C_{1} and C_{2} are disjoint convex sets, therefore there can be
constructed a hyperplane separating C_{1} and C_{2}. The point $b=0$ is the boundary point of C_{1} and C_{2} and so the separating hyperplane must pass through this point $b=0$. Let this separating hyperplane be

$$
\begin{equation*}
C b=0, C \neq 0 \tag{1}
\end{equation*}
$$

Where $C b \geq 0$, for $b \in C_{1}$
and $\quad C b<0$, for $b \in C_{2}$
The vector C is bound to be nonnegative since if $C \nsupseteq 0$, then it means that there is some component c_{i} of C such that $c_{i}<0$. Now if $b^{(2)}$ is any point in C_{2}, then $b^{(2)}<0$. Let $b_{i}^{(2)}$ be the $i^{\text {th }}$ component of $b^{(2)}$. Then let $b_{i}^{(2)}=-M$ for $M>0$. The $i^{\text {th }}$ term $c_{i} b_{i}^{(2)}$ in C is clearly positive and by taking M sufficiently large, this term $c_{i} b_{i}^{(2)}$ can be made dominating over all other terms in Cb , which is against the inequality (2). Thus we conclude that $C \geq 0$.

Now let $b=\left(f(X)-f\left(X_{0}\right), g_{1}(X), g_{2}(X), \ldots, g_{m}(X)\right)^{T}$ be any point in C_{1}, Then from (1)

$$
\begin{equation*}
c_{0} f(X)-c_{0} f\left(X_{0}\right)+c_{1} g_{1}(X)+c_{2} g_{2}(X)+\ldots .+c_{m} g_{m}(X) \geq 0 \tag{3}
\end{equation*}
$$

where, $C^{\prime}=\left(c_{0}, c_{1}, c_{2}, \ldots, c_{m}\right)$
Or, $\quad c_{0} f(X)+c_{1} g_{1}(X)+c_{2} g_{2}(X)+\ldots+c_{m} g_{m}(X) \geq c_{0} f\left(X_{0}\right)$
It can be proved that $c_{0} \neq 0$, since if $c_{0}=0$, then (3) becomes
$c_{1} g_{1}(X)+c_{2} g_{2}(X)+\ldots+c_{m} g_{m}(X) \geq 0$
Now let X be a point such that $G(X)<0$ and (condition given in th theorem). Also since $C \geq 0$ and $C \neq 0$, therefore (4) is a contradiction for such a point X. But it holds for all X, therefore, $c_{0} \neq 0$.

Now dividing (3) by c_{0} and taking $\frac{c_{i}}{c_{0}}=\lambda_{i_{0}} ; i=1,2, \ldots, m$, we get

$$
\begin{equation*}
f(X)+\lambda_{0} G(X) \geq f\left(X_{0}\right) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{0} \geq 0 \tag{6}
\end{equation*}
$$

6.5 Necessary and Sufficient Conditions for the function $f(X, \lambda)$ to have a saddle point at $\left(X_{0}, \lambda_{0}\right)$

Necessary Condition :

Suppose that the function $F(X, \lambda)$ has a saddle point at $\left(X_{0}, \lambda_{0}\right)$. Then it means that there exists a possitive number \in such that for all points X in the \in-neighbourhood $\left|X-X_{0}\right|<\epsilon$ and for all λ in the $\epsilon-$ neighbourhood $\left|\lambda-\lambda_{0}\right|<\epsilon$ we have

$$
\begin{equation*}
F\left(X_{0}, \lambda\right) \leq F\left(X_{0}, \lambda_{0}\right) \leq F\left(X, \lambda_{0}\right) \tag{1}
\end{equation*}
$$

where $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ are n -component and m -component vectors, respectively.

Let us partition the components of X and λ satisfying the above condition into three categories, $X=\left[X^{(1)}, X^{(2)}, X^{(3)}\right]$ and $\lambda=\left[\lambda^{(1)}, \lambda^{(2)}, \lambda^{(3)}\right]$ where,
$X^{(1)}=\left(x_{1} x_{2}, \ldots, x_{p}\right) \leq 0$ has p components.
$X^{(2)}=\left(x_{p+1}, x_{p+2}, \ldots, x_{q}\right) \geq 0$ has $q-p$ components
$X^{(3)}=\left(x_{q+1}, x_{q+2}, \ldots, x_{n}\right)$ unrestricted in sign has $n-q$ components.
$\lambda^{(1)}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right) \geq 0$ has r components.
$\lambda^{(2)}=\left(\lambda_{r+1}, \lambda_{r+2}, \ldots, \lambda_{s}\right) \leq 0$ has $s-r$ components.
$\lambda^{(3)}=\left(\lambda_{s+1}, \lambda_{s+2}, \ldots, \lambda_{m}\right)$ unrestricted in sign has $m-s$ components
Let us denote by W_{1} the set of points X such that the components of X satisfy the above conditions, by W_{2}, the set of points λ such that the components of λ satisfy the above conditions and by W the set of points $[X, \lambda]$ where $X \in W_{1}$ and $\lambda \in W_{2}$, Then the function $F(X, \lambda)$ is said to have a saddle point at $\left(X_{0}, \lambda_{0}\right)$ for $(X, \lambda) \in W$ if $\left(X_{0}, \lambda_{0}\right) \in W$ and there exists an $\in>0$ such that (1) holds for all $X \in W_{1}$ in the \in-neighbourhood of X_{0} and for all $\lambda \in W_{2}$ in the $\lambda \in W_{2}$-neighbourhood of λ_{0}.

Suppose that $F(X, \lambda) \in C^{1}$ (i.e. all the first derivatives of F are continuous in E^{n}. If $F(X, \lambda)$ has a saddle point at $\left(X_{0}, \lambda_{0}\right)$ for $(X, \lambda) \in W$, then we must have $F\left(X_{0}, \lambda_{0}\right)$ minimum at X_{0} and $F\left(X_{0}, \lambda_{0}\right)$ maximumat λ_{0},

$$
\left.\begin{array}{l}
{\left[\frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}} \mathrm{~F}\left(\mathrm{X}, \lambda_{0}\right)\right]_{\mathrm{X}=\mathrm{x}_{0}}=0 \text {, for all } \mathrm{j} \text { for which } \mathrm{x}_{\mathrm{j}}^{0} \neq 0} \\
{\left[\frac{\partial}{\partial \lambda_{\mathrm{i}}} \mathrm{~F}\left(\mathrm{X}_{0}, \lambda\right)\right]_{\lambda=\lambda_{0}}=0 \text {, for all for which } \lambda_{\mathrm{i}}^{0} \neq 0} \tag{2}
\end{array}\right\}
$$

and
i.e. $\frac{\partial}{\partial x_{j}} F\left(\bar{X}_{0}, \lambda_{0}\right)=0\left[\begin{array}{l}\text { for all } \mathrm{j}=\mathrm{q}+1, \mathrm{q}+2, \ldots \mathrm{n}, \text { since } \mathrm{x}_{\mathrm{j}}{ }^{0} \text { is unrestricted in sign for these } \mathrm{j} \text { 's. } \\ \text { for all } \mathrm{j}=1,2, \ldots, \mathrm{p}, \text { for which } \mathrm{x}_{\mathrm{j}}^{0} \neq 0 \\ \text { for all } \mathrm{j}=\mathrm{p}+1, \mathrm{p}+2, \ldots, \mathrm{q} \text { for which } \mathrm{x}_{\mathrm{j}}^{0}=0\end{array}\right.$
and

$$
\frac{\partial}{\partial \lambda_{\mathrm{i}}} \mathrm{~F}\left(\mathrm{X}_{0}, \lambda_{0}\right)=0\left[\begin{array}{l}
\text { for all } \mathrm{i}=\mathrm{s}+1, \mathrm{~s}+2, \ldots \mathrm{~m}, \text { sin ce } \lambda_{\mathrm{i}}^{0} \text { is unrestricted in sign for these } \mathrm{i} \text { 's. } \\
\text { for all } \mathrm{i}=1,2, \ldots, \mathrm{r}, \text { for which } \lambda_{\mathrm{i}}^{0} \neq 0 \tag{3}\\
\text { for all } \mathrm{i}=\mathrm{r}+1, \mathrm{r}+2, \ldots, \mathrm{~s} \text { for which } \lambda_{\mathrm{i}}^{0}=0
\end{array}\right.
$$

Now let us see the nature of $\frac{\partial}{\partial x_{j}} F\left(X_{0}, \lambda_{0}\right)$ when $x_{j}^{0}=0, j=1,2, \ldots, q$ and $\frac{\partial}{\partial \lambda_{i}} F\left(X_{0}, \lambda_{0}\right)$ when $\lambda_{i}^{0}=0$ and $i=1,2, \ldots, s$, in order that (1) may hold true.

First, let us assume that $x_{j}^{0}=0$ for $j=1,2, \ldots, p$. For this case we shall show that

$$
\begin{equation*}
\frac{\partial}{\partial x_{j}} F\left(X_{0} \lambda_{0}\right) \geq 0 \tag{4}
\end{equation*}
$$

If possible, let $\frac{\partial}{\partial x_{j}} F\left(X_{0} \lambda_{0}\right)<0$. Since we have assumed that $F(X, \lambda) \in C^{1}$ i.e. $\frac{\partial}{\partial x_{j}} F(X, \lambda)$ is continuous, therefore, for a given $\epsilon_{0}>0$, there exists an ϵ_{0}-neighbourhood of $\left(X_{0}, \lambda_{0}\right)$ such that in this $\in-$ neighbourhood of $\left(X_{0}, \lambda_{0}\right), \frac{\partial}{\partial x_{j}} F(X, \lambda)<0$.

We now select a positive number \in such that $0<\epsilon<\epsilon_{0}$ and consider points in the ϵ-neighbourhood of $\left(X_{0}, \lambda_{0}\right)$ of the form $\left(X_{0}+h e_{j}, \lambda_{0}\right), 0<h<\epsilon_{0}$. Then by Taylor's theorem

$$
F\left(X_{0}+h e_{j}, \lambda_{0}\right)=F\left(X_{0}, \lambda_{0}\right)+h \frac{\partial}{\partial x_{j}} F\left(X_{0}+\theta h e_{j}, \lambda_{0}\right) ; 0<\theta<1
$$

But $\left(X_{0}, \theta h e_{j}, \lambda_{0}\right)$ is in the \in-neighbourhood of $\left(X_{0}, \lambda_{0}\right)$, therefore, from above

$$
\begin{equation*}
F\left(X_{0}+h \hat{e}_{j}, \lambda_{0}\right)<F\left(X_{0}, \lambda_{0}\right) \quad[\text { from }(5)] \tag{6}
\end{equation*}
$$

$$
\text { for all } h, 0<h<\epsilon_{0}
$$

Therefore, every \in-neighbourhood of $\left(X_{0}, \lambda_{0}\right)$ contains points $\left(X, \lambda_{0}\right) \in W$, suchthat (6) holds, i.e.,

$$
F\left(X, \lambda_{0}\right)<F\left(X_{0} \lambda_{0}\right)
$$

This contradicts the fact that $\left(X_{0}, \lambda_{0}\right)$ is a saddle point of $F(X, \lambda)$ for $(X, \lambda) \in W$. Thus our assumption is not correct. Hence (4) holds true,

$$
\begin{equation*}
\text { i.e., } \quad \frac{\partial}{\partial x_{j}} F\left(X_{0}, \lambda_{0}\right) \geq 0 \text {, for } x_{j}^{0}=0 ; j=1,2, \ldots, p . \tag{7}
\end{equation*}
$$

In a similar waywe can prove that $\frac{\partial}{\partial x_{j}} F\left(X_{0}, \lambda_{0}\right) \leq 0$ for $x_{j}^{0} ; j=p+1,+2, \ldots, q$
and also if $\lambda_{i}^{0}=0$, then

$$
\begin{align*}
& \frac{\partial}{\partial \lambda_{i}} F\left(X_{0}, \lambda_{0}\right) \leq 0 \text { for } i=1,2, \ldots, r \tag{9}\\
& \frac{\partial}{\partial \lambda_{i}} F\left(X_{0}, \lambda_{0}\right) \geq 0 \text { for } i=r+1, r+2, \ldots, s \tag{10}
\end{align*}
$$

Thus we have shown that either

$$
\frac{\partial}{\partial x_{j}} F\left(X_{0}, \lambda_{0}\right)=0 \text { or, } x_{j}^{0}=0
$$

and either $\frac{\partial}{\partial \lambda_{i}} F\left(X_{0}, \lambda_{0}\right)=0 \quad$ or, $\lambda_{i}^{0}=0$
Hence if $F(X, \lambda)$ has a saddle point at $\left(X_{0}, \lambda_{0}\right)$ for $(X, \lambda) \in W$, and if $F(X, \lambda) \in C^{1}$, then $\left(X_{0}, \lambda_{0}\right)$ must satisfy

$$
\left.\begin{array}{l}
\frac{\partial}{\partial x_{j}} F\left(X_{0}, \lambda_{0}\right) \geq 0, j=1,2, \ldots, p \\
\frac{\partial}{\partial x_{j}} F\left(X_{0}, \lambda_{0}\right) \leq 0, j=p+1, p+2, \ldots, q \\
\frac{\partial}{\partial x_{j}} F\left(X_{0}, \lambda_{0}\right)=0, j=q+1, q+2, \ldots, n \\
x_{j}^{0} \leq 0, j=1,2, \ldots, p \\
x_{j}^{0} \geq 0, j=p+1, \ldots, q \\
x_{j}^{0} \text { unrestricted in sign }, j=q+1, \ldots, n
\end{array}\right\},
$$

and

$$
\left.\begin{array}{l}
\frac{\partial}{\partial \lambda_{i}} F\left(X_{0}, \lambda_{0}\right) \leq 0, i=1,2, \ldots, r \\
\frac{\partial}{\partial \lambda_{i}} F\left(X_{0}, \lambda_{0}\right) \geq 0, i=r+1, r+2, \ldots, s \tag{13}\\
\frac{\partial}{\partial \lambda_{i}} F\left(X_{0}, \lambda_{0}\right)=0, i=s+1, s+2, \ldots, m
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
\lambda_{i}^{0} \geq 0, i=1,2, \ldots, r \\
\lambda_{i}^{0} \leq 0, i=r+1, r+2, \ldots, s \tag{15}\\
\lambda_{i}^{0} \text { unrestricted in sign, } i=s+1, s+2, \ldots, m
\end{array}\right\}
$$

Equations (10) to (15) are the necessary canditions, which the point $\left(X_{0}, \lambda_{0}\right)$ must satisfy if the function $F(X, \lambda)$ has a saddle point at $\left(X_{0}, \lambda_{0}\right)$ for $(X, \lambda) \in W$, provided that $F(X, \lambda) \in C^{1}$

Sufficient condition The conditions (10) to (15) become sufficient if there exists a positive number $\in>0$ such that $F\left(X_{0}, \lambda\right)$ is a concave function of λ in the \in-neighbourhood of λ_{0} and $F\left(X, \lambda_{0}\right)$ is a convex function of X in the \in-neighbourhood of X_{0}.

Now if $F\left(X_{0}, \lambda\right)$ is a concave function of λ, then

$$
\begin{equation*}
F\left(X_{0}, \lambda\right) \leq F\left(X_{0}, \lambda_{0}\right)+\nabla_{\lambda} F\left(X_{0}, \lambda_{0}\right)\left(\lambda-\lambda_{0}\right) \tag{16}
\end{equation*}
$$

where $\nabla_{\lambda} F\left(X_{0}, \lambda_{0}\right)=\left(\frac{\partial}{\partial \lambda_{1}} F\left(X_{0}, \lambda_{0}\right), \ldots, \frac{\partial}{\partial \lambda_{m}} F\left(X_{0}, \lambda_{0}\right)\right)$ is the gradient of $F(X, \lambda)$ with respect to λ at the point $\left(X_{0}, \lambda_{0}\right)$.

Similarly if $F\left(X, \lambda_{0}\right)$ is a convex function of X, then

$$
\begin{equation*}
F\left(X, \lambda_{0}\right) \geq F\left(X_{0}, \lambda_{0}\right)+\nabla_{X} F\left(X_{0}, \lambda_{0}\right)\left(X-X_{0}\right) \tag{17}
\end{equation*}
$$

Where $\nabla_{X} F\left(X_{0}, \lambda_{0}\right)=\left(\frac{\partial}{\partial x_{1}} F\left(X_{0}, \lambda_{0}\right), \ldots, \frac{\partial}{\partial x_{n}} F\left(X_{0}, \lambda_{0}\right)\right)$ is the gradient of $F(X, \lambda)$ with respect to X at $\left(X_{0}, \lambda_{0}\right)$.

Inequalities (16) and (17) hold good for all λ in the ϵ-neighbourhood of λ_{0} and for all X in the $\in-$ neighbourhood of X_{0}.

$$
\begin{gather*}
\text { Now } \nabla_{\lambda} F\left(X_{0} \lambda_{0}\right)\left(\lambda-\lambda_{0}\right)=\nabla_{\lambda} F\left(X_{0} \lambda_{0}\right) \cdot \lambda-\nabla_{\lambda} F\left(X_{0}, \lambda_{0}\right) \cdot \lambda_{0} \\
=\nabla_{\lambda} F\left(X_{0}, \lambda_{0}\right) \lambda \quad \text { (using(15)) } \tag{18}
\end{gather*}
$$

and since

$$
\begin{aligned}
& \lambda_{i} \geq 0, \frac{\partial}{\partial \lambda_{i}} F\left(X_{0}, \lambda_{0}\right) \leq 0, \quad i=1,2, \ldots, r \\
& \lambda_{i} \leq 0, \frac{\partial}{\partial \lambda_{i}} F\left(X_{0}, \lambda_{0}\right) \geq 0, \quad i=r+1, \ldots, s
\end{aligned}
$$

λ_{i} unrestricted, $\frac{\partial}{\partial \lambda_{i}} F\left(X_{0}, \lambda_{0}\right)=0, \quad i=s+1, \ldots, m$
therefore, $\nabla_{\lambda} F\left(X_{0}, \lambda_{0}\right) \cdot \lambda=\sum_{i=1}^{m} \frac{\partial}{\partial \lambda_{i}} F\left(X_{0}, \lambda_{0}\right) \cdot \lambda_{i} \leq 0$
Thus (18) represents that

$$
\nabla_{\lambda} F\left(X_{0}, \lambda_{0}\right)\left(\lambda-\lambda_{0}\right) \leq 0
$$

Then from (16), we have

$$
\begin{equation*}
F\left(X_{0}, \lambda\right) \leq F\left(X_{0}, \lambda_{0}\right) \tag{20}
\end{equation*}
$$

Similarly from (17), we have

$$
\begin{equation*}
F\left(X, \lambda_{0}\right) \geq F\left(X_{0}, \lambda_{0}\right) \tag{21}
\end{equation*}
$$

Now from (20) and (21) we conclude that
$F\left(X_{0}, \lambda\right) \leq F\left(X_{0}, \lambda_{0}\right) \leq F\left(X, \lambda_{0}\right)$
which holds for all X in the \in-neighbourhood of X_{0} and for all λ in the $\in-$ neighbourhood of λ_{0}.
i.e., $F(X, \lambda)$ has a saddle point at $\left(X_{0}, \lambda_{0}\right)$.

Note : Consider the following nonlinear programming problem:
Optimize $f(X), \quad X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$
subject to $\quad h_{i}(X)=0, i=1,2, \ldots, m \quad(m<n)$
Introducing Lagrangian multipliers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$, the Lagrangian function is

$$
L(X, \lambda)=f(X)+\sum_{i=1}^{m} \lambda_{i} h_{i}(X), m<n
$$

The necessary conditions for stationary points of $f(X)$ at which $f(X)$ may have a maximum or minimumare

$$
\begin{aligned}
\frac{\partial L(X, \lambda)}{\partial x_{j}} & =\frac{\partial f(X)}{\partial x_{j}}+\sum_{i=1}^{m} \lambda_{i} \frac{\partial h_{i}(X)}{\partial x_{j}}=0 ; \quad j=1,2, \ldots, n \\
\text { and } \quad \frac{\partial L(\bar{X}, \lambda)}{\partial \lambda_{i}} & =\frac{\partial h_{i}(\bar{X})}{\partial \lambda_{i}}=0, \quad i=1,2, \ldots, m \quad(m<n)
\end{aligned}
$$

Let $\quad U=\left[\begin{array}{ll}\frac{\partial h_{1}}{\partial x_{1}} & \frac{\partial h_{1}}{\partial x_{2}} \cdots \cdot \frac{\partial h_{1}}{\partial x_{n}} \\ \frac{\partial h_{2}}{\partial x_{1}} & \frac{\partial h_{2}}{\partial x_{2}} \cdots \cdot \frac{\partial h_{2}}{\partial x_{n}} \\ --------- \\ \frac{\partial h_{m}}{\partial x_{1}} & \frac{\partial h_{m}}{\partial x_{2}} \cdots \cdots \frac{\partial h_{m}}{\partial x_{n}}\end{array}\right]$
which is an mxn matrix
and $V=\left[\begin{array}{ll}\frac{\partial^{2} L}{\partial x_{1}^{2}} & \frac{\partial^{2} L}{\partial x_{1} \partial x_{2}} \ldots \ldots \cdot \frac{\partial^{2} L}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} L}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} L}{\partial x_{2}^{2}} \ldots \ldots \ldots \frac{\partial^{2} L}{\partial x_{2} \partial x_{n}} \\ ------------------ \\ \frac{\partial^{2} L}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} L}{\partial x_{n} \partial x_{2}} \ldots \ldots \ldots \frac{\partial^{2} L}{\partial x_{n}^{2}}\end{array}\right]$
which is an $n \times n$ matrix.
Also let $O=\left(O_{i j}\right)$ be an $n \times n$ null matrix.
Then the square matrix H^{B} oforder $(m+n) \times(m+n)$ is called the bordered Hessian matrix and is defined as:

$$
H^{B}=\left[\begin{array}{cc}
O & \vdots \\
\hdashline U^{T} & U \\
U^{2} & V
\end{array}\right]
$$

Now if $\left(X_{0}, \lambda_{0}\right)$ is a stationary point for the Lagrangian function $L\left(X_{0}, \lambda\right)$ and H_{0}^{B} the value of the corresponding bordered Hessian matrix H^{B} at this stationary point, then
(i) The point X_{0} gives the maximum value of the objective function $f(X)$, if, starting with the principal minor of order $(2 m+1)$, the last $(n-m)$ principal minors of H_{0}^{B} are of alternate signs, starting with $(-1)^{m+n}$ sign.
(ii) The point X_{0} gives the minimum value of the objective function, starting with the principal minor of order $(2 m+1)$, the last $(n-m)$ principal minors of H_{0}^{B} are of the sign of $(-1)^{m}$.

For example :

(i) If $n=2, m=1$, then the order of H^{B} is 3×3 (since $m+n=1+2=3$) and since
$2 m+1=3,(-1)^{n+m}=(-1)^{3}=-1$ and $n-m=1,(-1)^{m}=(-1)^{1}=-1$. Therefore the extreme point X_{0}, gives the maximum value of the objective function if $\left|H^{B}\right|<0$ and minimum value of the objective function if $\Delta_{3}=\left|H^{B}\right|>0$.
(ii) When $n=3, m=1$, then the order of H^{B} is 4×4 (since $n+m=3+1=4$) and since $2 m+1=3,(-1)^{n+m}=(-1)^{4}=1, n-m=3-1=2,(-1)^{m}=(-1)^{1}=-1$. Therefore, the extreme point X_{0} gives the maximum value of the objective function $f(X)$ if $\Delta_{4}=\left|H^{B}\right|<0$ and $\Delta_{3}>0$ and minimum value of the objective function if $\Delta_{4}>0$ and $\Delta_{3}<0$
(iii) When $n=3, m=2$, then the order of H^{B} is 5×5 (since $n+m=3+2=5$) and since $2 m+1=5,(-1)^{n+m}=(-1)^{5}=-1, n-m=3-2=1,(-1)^{m}=(-1)^{2}=1$, therefore the extreme point X_{0} gives the maximum value of the objective function $f(X)$ if $\Delta_{5}=\left|H^{B}\right|<0$ and the minimum value of the objective function if $\Delta_{5}=\left|H^{B}\right|<0$.

Note: If $f(X)$ is a real valued continuous differentiable function of $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, then the Hessian matrix of $f(X)$ is

$$
H^{B}(X)=\left[\begin{array}{ll}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \ldots \ldots \ldots \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} \ldots \ldots \ldots \cdot \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
----------------\cdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} \ldots \ldots \cdot \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

The function $f(X)$ is convex if the Hessian matrix $H^{B}(X)$ of $f(X)$ is positive definite i.e., if all the leading principal minors of $H^{B}(X)$ are positive in sign.

The function $F(X)$ is concave if the Hessian matrix $H^{B}(X)$ of $f(X)$ is negative definite, i.e., if the signs of leading principal minors of $H^{B}(X)$ are alternately negative and positive.

Example-3: Obtain the necessary conditions for the following nonlinear programming problem:
Minimize $f(X)=3 x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2}+6 x_{1}+2 x_{2}$
subject to $\quad 2 x_{1}-x_{2}=4$

$$
x_{1}, x_{2} \geq 0
$$

Solution : The Lagrangian function for the given problem is

$$
\begin{aligned}
& L(X, \lambda)=f(X)+\lambda\left(2 x_{1}-x_{2}-4\right) \\
& L(X, \lambda)=3 x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2}+6 x_{1}+2 x_{2}+\lambda\left(2 x_{1}-x_{2}-4\right)
\end{aligned}
$$

or
The necessary conditions for the minimum of $f(X)$ are

$$
\begin{array}{lll}
\frac{\partial L}{\partial x_{1}}=0 & \text { or, } & 6 x_{1}+2 x_{2}+6+2 \lambda=0 \\
\frac{\partial L}{\partial x_{2}}=0 & \text { or, } & 2 x_{2}+2 x_{1}+2-\lambda=0 \\
\frac{\partial L}{\partial \lambda}=0 & \text { or, } & 2 x_{1}-x_{2}-4=0 \tag{3}
\end{array}
$$

Example-4 : Solve the following non linear programming problem using the method of Lagrangian multipliers:

Minimize $\quad f(X)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$
subject to $\quad 4 x_{1}+x_{2}^{2}+2 x_{3}=14$

$$
(\equiv g(x)-14)
$$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

Solution : The Lagrangian function is

$$
\begin{array}{r}
L(X, \lambda)=f(X)+\lambda\left(4 x_{1}+x_{2}^{2}+2 x_{3}-14\right) \\
\text { or, } \quad L(X, \lambda)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\lambda\left(4 x_{1}+x_{2}^{2}+2 x_{3}-14\right)
\end{array}
$$

The necessary condition for $f(X)$ to have a maximum or minimum are

$$
\begin{array}{ll}
\frac{\partial L}{\partial x_{1}}=0, \text { or } & 2 x_{1}+4 \lambda=0 \\
\frac{\partial L}{\partial x_{2}}=0, \text { or } & 2 x_{2}+2 \lambda x_{2}=0 \\
\frac{\partial L}{\partial x_{3}}=0, \text { or } & 2 x_{3}+2 \lambda=0 \\
\frac{\partial L}{\partial \lambda}=0, \text { or } & 4 x_{1}+x_{2}^{2}+2 x_{3}-14=0 \tag{4}
\end{array}
$$

$\operatorname{From}(2), \quad x_{2}(1+\lambda)=0$

$$
\text { or } x_{2}=0 \text { or } \lambda=-1 .
$$

Also from (1) $x_{1}=-2 \lambda$ and from (3) $x_{3}=-\lambda$. If we put $x_{2}=0$ in (4), then we get

$$
\lambda=-1.4 \text { and so } x_{1}=2.8, x_{3}=1.4
$$

If we put $\lambda=-1$ then we get $x_{1}=2, x_{3}=1$ and then from (4), we get $x_{2}=2$.
Therefore, we get the following stationary points:

$$
(2.8,0,1.4), \lambda=-1.4
$$

and $(2,2,1), \lambda=-1$
We now consider the bordered Hessian matrix

$$
H^{B}=\left[\begin{array}{l:lcc}
0 & \frac{\partial g}{\partial x_{1}} & \frac{\partial g}{\partial x_{2}} & \frac{\partial g}{\partial x_{3}} \\
\hdashline \frac{\partial g}{\partial x_{1}} & \frac{1}{\partial^{2}} \frac{1}{\partial x_{1}^{2}} & \frac{\partial^{2} L}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} L}{\partial x_{1} \partial x_{3}} \\
\frac{\partial g}{\partial x_{2}} & \frac{\partial^{2} L}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} L}{\partial x_{2}^{2}} & \frac{\partial^{2} L}{\partial x_{2} \partial x_{3}} \\
\frac{\partial g}{\partial x_{3}} & \frac{\partial^{2} L}{\partial x_{3} \partial x_{1}} & \frac{\partial^{2} L}{\partial x_{3} \partial x_{2}} & \frac{\partial^{2} L}{\partial x_{3}^{2}}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{0}{4} & \frac{4}{2} & -\frac{2 x_{2}}{} & \frac{2}{0} \\
2 x_{2} & 0 & 2 & 0 \\
2 & 0 & 0 & 2
\end{array}\right]
$$

At the stationary point $(2.8,0,1.4)$

$$
H^{B}=\left[\begin{array}{llll}
0 & 4 & 0 & 2 \\
4 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
2 & 0 & 0 & 2
\end{array}\right]
$$

Here $n=3, m=1$, therefore $n-m=3-1=2$ and $2 m+1=2 \times 1+1=3$
We check the signs of the principal minors D_{3} and D_{4}
Now $D_{3}=\left|\begin{array}{lll}0 & 4 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & 2\end{array}\right|=-32$
and $D_{4}=\left|\begin{array}{llll}0 & 4 & 0 & 2 \\ 4 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 2 & 0 & 0 & 2\end{array}\right|=-80$

Since both D_{3} and D_{4} have the same sign negative, which is the sign of $(-1)^{m}=(-1)^{1}$ i.e. negative, therefore $f(X)$ has a minimum at the point $(2.8,0,1.4)$ and at this point the minimum of $f(X)$ is 9.8.

And, at the stationary point $(2,2,1)$

$$
H^{B}=\left[\begin{array}{llll}
0 & 4 & 4 & 2 \\
4 & 2 & 0 & 0 \\
4 & 0 & 2 & 0 \\
2 & 0 & 0 & 2
\end{array}\right]
$$

Here $D_{3}=\left|\begin{array}{lll}0 & 4 & 4 \\ 4 & 2 & 0 \\ 4 & 0 & 2\end{array}\right|=-64<0$
and $D_{4}=\left|\begin{array}{llll}0 & 4 & 4 & 2 \\ 4 & 2 & 0 & 0 \\ 4 & 0 & 2 & 0 \\ 2 & 0 & 0 & 2\end{array}\right|=-144<0$

Thus $f(X)$ has a minimum value at $(2,2,1)$ which is 9
Since the least among 9 and 9.8 is 9 , therefore, $f(X)$ has minimum at the stationary point $(2,2,1)$ and the minimum of $f(X)$ at this stationary point is 9 .

Example-5 Use Lagrangian function to find the optimal solution fthe following nonlinear programming problem:

Maximize $\quad f(X)=-3 x_{1}^{2}-4 x_{2}^{2}-5 x_{3}^{2}$
subject to $\quad x_{1}+x_{2}+x_{3}=10$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

Solution : Here the Lagrangian function for the given problem is

$$
L(X, \lambda)=f(X)+\lambda\left(10-x_{1}-x_{2}-x_{3}\right)
$$

or

$$
L(X, \lambda)=-3 x_{1}^{2}-4 x_{2}^{2}-5 x_{3}^{2}+\lambda\left(10-x_{1}-x_{2}-x_{3}\right)
$$

The necessary condtions for stationary values of $L(X, \lambda)$ are

$$
\frac{\partial L}{\partial x_{1}}=0, \text { or }-6 x_{1}-\lambda=0, \text { or } x_{1}=-\frac{1}{6} \lambda
$$

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{2}}=0, \text { or }-8 x_{2}-\lambda=0, \text { or } x_{2}=-\frac{1}{8} \lambda \\
& \frac{\partial L}{\partial x_{3}}=0, \text { or }-10 x_{3}-\lambda=0 \text { or } x_{3}=-\frac{1}{10} \lambda \\
& \frac{\partial L}{\partial \lambda}=0, \text { or } 10-x_{1}-x_{2}-x_{3}=0, \text { or } x_{1}+x_{2}+x_{3}=10
\end{aligned}
$$

Putting the values of x_{1}, x_{2}, x_{3} in the above equation

$$
\begin{aligned}
& \frac{1}{6} \lambda+\frac{1}{8} \lambda+\frac{1}{10} \lambda=-10 \\
& \text { or } \lambda=-\frac{1200}{47}
\end{aligned}
$$

Thus $x_{1}=200 / 47 ; x_{2}=150 / 47 ; x_{3}=120 / 47$. Since, $-3 x_{1}^{2}-4 x_{2}^{2}-5 x_{2}^{2}$ is strictly concave function and $x_{1}+x_{2}+x_{3}=10$ is a linear function, therefore, $L(X, \lambda)$ is strictly concave. Thus the Lagrangian necessary conditions are sufficient also for the global maximum.

Hence, the optional solution to the given problem is $x_{1}=\frac{200}{47}, x_{2}=\frac{150}{47}, x_{3}=\frac{120}{47}$
Example-6 Use Lagrangian multiplier method to solve the following nonlinear programming problem:
Minimize $\quad f(X)=2 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}-24 x_{1}-8 x_{2}-12 x_{3}+10$
subject to $\quad x_{1}+x_{2}+x_{3}=11$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

Solution : The Lagrangian function for the given problem is

$$
L(X, \lambda)=2 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}-24 x_{1}-8 x_{2}-12 x_{3}+10+\lambda\left(x_{1}+x_{2}+x_{3}-11\right)
$$

The necessary condition for minimum of $f(X)$ are

$$
\frac{\partial L}{\partial x_{i}}=0, i=1,2,3 \text { and } \frac{\partial L}{\partial \lambda}=0
$$

i.e. $\frac{\partial L}{\partial x_{1}}=0, \quad$ or $\quad 4 x_{1}-24+\lambda=0$

$$
\begin{equation*}
\frac{\partial L}{\partial x_{2}}=0, \quad \text { or } \quad 4 x_{2}-8+\lambda=0 \tag{2}
\end{equation*}
$$

$$
\begin{array}{lll}
\frac{\partial L}{\partial x_{3}}=0, & \text { or } & 4 x_{3}-12+\lambda=0 \\
\frac{\partial L}{\partial \lambda}=0, & \text { or } & x_{1}+x_{2}+x_{3}-11=0 \tag{4}
\end{array}
$$

From (1), (2) and (3)

$$
x_{1}=\frac{24-\lambda}{4}, x_{2}=\frac{8-\lambda}{4} ; x_{3}=\frac{12-\lambda}{4}
$$

Putting these values of x_{1}, x_{2}, x_{3} in (4)

$$
\frac{24-\lambda+8-\lambda+12-\lambda}{4}=11, \text { or } \lambda=0
$$

Thus $x_{1}=6, x_{2}=2, x_{3}=3$
Here the minimization function $f(X)$ is the sum of a positive definite quadratic form and a linear function, so is a convex function. Thus $L(X, \lambda)$ is also a convex function as the constraint is a linear equation. Hence $x_{1}=6, x_{2}=2, x_{3}=3$ is the optimal solution of the given nonlinear programming problem.

Example -7 Use method of Lagrangian multipliers to solve the following nonlinear programming problem :

Optimize $f(X)=2 x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2}+10 x_{1}+8 x_{2}+6 x_{3}-100$
subject to $\quad x_{1}+x_{2}+x_{3}=20$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

Does the solution maximize or minimize the objective function?
Solution : The Lagrangian function is

$$
L(X, \lambda)=2 x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2}+10 x_{1}+8 x_{2}+6 x_{3}-100+\lambda\left(x_{1}+x_{2}+x_{2}-20\right)
$$

The necessary condition for the maxima or minima are
$\frac{\partial L}{\partial x_{1}}=0, \quad$ or $\quad 4 x_{1}+10+\lambda=0$
$\frac{\partial L}{\partial x_{2}}=0, \quad$ or $\quad 2 x_{2}+8+\lambda=0$
$\frac{\partial L}{\partial x_{3}}=0 \quad$ or $\quad 6 x_{3}+6+\lambda=0$
$\frac{\partial L}{\partial \lambda}=0, \quad$ or $\quad x_{1}+x_{2}+x_{3}-20=0$

From (1), (2) and (3) we have

$$
x_{1}=-\frac{\lambda+10}{4}, x_{2}=-\frac{\lambda+8}{2}, x_{3}=-\frac{\lambda+6}{6}
$$

Therefore, from (4)

$$
\frac{\lambda+10}{4}+\frac{\lambda+8}{2}+\frac{\lambda+6}{6}=-20
$$

or, $\lambda=-30$
Thus $x_{1}=5, x_{2}=11, x_{3}=4$
Hence the stationary point is $(5,11,4)$
To determine, whether this stationary point results in maximization or minimization of the objective function, $(\mathrm{n}-1)$ principal minors of the following determinant are solved :

$$
\Delta_{4}=\left|\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 4 & 0 & 0 \\
1 & 0 & 2 & 0 \\
1 & 0 & 0 & 6
\end{array}\right|=-44
$$

and $\quad \Delta_{3}=\left|\begin{array}{lll}0 & 1 & 1 \\ 1 & 4 & 0 \\ 1 & 0 & 2\end{array}\right|=-6$
Since Δ_{4} and Δ_{3} both are negative, therefore the sationary point is a point of minima.
Thus the optimal solution is
$x_{1}=5, x_{2}=11, x_{3}=4$ and the minimum value of $f(X)$ is
$f(X)=2 \times 25+121+3 \times 16+50+88+24-100$

$$
=281 .
$$

Note : Another way to check whether the objective function $f\left(x_{1}, x_{2}, x_{3}\right)$ has a minimum value or maximum value at the stationary point $(5,11,4)$ we find the Hessian of the objective function $f\left(x_{1}, x_{2} x_{3}\right)$ at the point $(5,11,4)$, which is

$$
H(X)=\left[\begin{array}{lll}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{3}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{3}} \\
\frac{\partial^{2} f}{\partial x_{3} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{3} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{3}^{2}}
\end{array}\right]=\left[\begin{array}{ccc}
4 & 0 & 2 \\
0 & 2 & 0 \\
0 & 0 & 6
\end{array}\right]
$$

The principal minors of $H(x)$ are :
$|4|=4,\left|\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right|=8$ and $\left|\begin{array}{lll}4 & 0 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 6\end{array}\right|=48$
which are all positive. Therefore, $H(X)$ is positive definite, i.e., $f\left(x_{1}, x_{2}, x_{3}\right)$ is convex. Hence $f\left(x_{1}, x_{2}, x_{3}\right)$ is minimum at the statonary point $(5,11,4)$.

6.6 Graphical Method for Solving a Nonlinear Programming Problem

We know that in linear programming problem the optimal solution is attained at one of the extreme points of the convex region generated by the constraints. But in case of nonlinear programming problem, it is not necessary that the optimal solution of the problem lies at a corner or edge of the feasible region.

The method of solving a nonlinear programming problem involving only two variables is explained through the following examples :
Examples-8 : Solve the following nonlinear programming problem graphically:
Maximize $\quad f\left(x_{1}, x_{2}\right)=8 x_{1}+8 x_{2}-x_{1}^{2}-x_{2}^{2}$
subject to $\quad x_{1}+x_{2} \leq 12$
$x_{1}-x_{2} \geq 4$
$x_{1}, x_{2} \geq 0$
Solution : Considering the given constraifits as equalities and drawing the lines an the $x_{1} x_{2}$ - plane, we get the admissible region to be ABDA.

The objective function $f\left(x_{1}, x_{2}\right)$ is $8 x_{1}-x_{1}^{2}+8 x_{2}-x_{2}^{2}$ i.e. $32-\left(x_{1}-4\right)^{2}-\left(x_{2}-4\right)^{2}$
which is a circle with centre at $(4,4)$ as, shown in figure 6.3

Figure 6.3

The point that gives the maximum value of $f\left(x_{1}, x_{2}\right)$ is the point at which the feasible region is tangent to the circle given by the objective function $8 x_{1}-x_{1}^{2}+8 x_{2}-x_{2}^{2}$

Differentiating $f\left(x_{1}, x_{2}\right)$ w.r.t. x_{1}
$8-2 x_{1}+8 \frac{d x_{2}}{d x_{1}}-2 x_{2} \frac{d x_{2}}{d x_{1}}=0$
or $\frac{d x_{2}}{d x_{1}}=\frac{2 x_{1}-8}{8-2 x_{2}}=\frac{x_{1}-4}{4-x_{2}}=m_{1}($ say $)$
for the line $x_{1}+x_{2}=12, \frac{d x_{2}}{d x_{1}}=-1=m_{2}($ say $)$
The circle will touch the line $x_{1}+x_{2}=12$, where, $m_{1}=m_{2}$, i.e., $\frac{x_{1}-4}{4-x_{2}}=-1$, i.e., $x_{2}=x_{1}$. Therefore, putting $x_{1}=x_{2}$ in $x_{1}+x_{2}=12$, we get $x_{1}=x_{2}=6$.

Thus the circle touches the line at the point $P(6,6)$. But this point $P(6,6)$ is not a point of the feasible region ABDA

Again for the line $x_{1}-x_{2}=4$, we have

$$
\frac{d x_{2}}{d x_{1}}=1=m_{3}(s a y)
$$

The circle touches this line at the point where $m_{1}=m_{3}$, i.e., $\frac{x_{1}-4}{4-x_{2}}=1$, i.e., $x_{2}=8-x_{1}$
Putting these values in $x_{1}-x_{2}=4$, we get $x_{1}=6$ and $x_{2}=2$
i.e., the circle touches the line $x_{1}-x_{2}=4$ at the point $Q(6,2)$, which lies in the feasible region. Also for $x_{1}=6, x_{2}=2$, we have $f\left(x_{1}, x_{2}\right)=24$

Thus the optimal solution of the given problem is $x_{1}=6, x_{2}=2$ and maximum value of $f\left(x_{1}, x_{2}\right)=24$.

Example-9 Solve the following nonlinear programming problem graphically :
Maximize $\quad f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2}$
Subject to $\quad x_{1}^{2}+x_{2}^{2} \leq 1$

$$
2 x_{1}+x_{2} \leq 2
$$

$$
x_{1}, x_{2} \geq 0
$$

Solution : Considering the given constraints as equations and drawing them in $x_{1} x_{2}$-plane the feasible region is OABCO as shown in figure 6.4.

Figure : 6.4
The objective function $f\left(x_{1}, x_{2}\right)$ is the line $x_{1}+2 x_{2}=z($ say $)$. Drawing the objective function through $(0,0)$ and then drawing the lines parallel to this objective functional line, we reach the extremity B of the feasible region OABCO . The point B is the point of intersection of the circles $x_{1}^{2}+x_{2}^{2}=1$ and the line $2 x_{1}+x_{2}=2$ and is the most distant point of the feasible region. Thus B is the point of optimal solution of the problem. Solving $x_{1}^{2}+x_{2}^{2}=1$ and $2 x_{1}+x_{2}=2$, we get $B\left(\frac{3}{5}, \frac{4}{5}\right)$ and $f\left(x_{1}, x_{2}\right)=\frac{11}{5}$.

Hence the optimal solution of the given nonlinear programming problem is

$$
x_{1}=\frac{3}{5}, x_{2}=\frac{4}{5} \text { and max. } f\left(x_{1}, x_{2}\right)=\frac{11}{5}
$$

Example-10 Solve the following programming problem graphically :

$$
\begin{array}{ll}
\text { Minimize } & f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2} \\
\text { Subject to } & x_{1}+x_{2} \geq 4 \\
& 2 x_{1}+x_{2} \geq 5 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Solution : Considering the constraints as equalities and drawing them on the $x_{1} x_{2}$ - plane, feasible region is $x_{1} A B C x_{2}$ which actually is an infinite region. Thus the desired point minimizing the objective function $f\left(x_{1}, x_{2}\right)$ must be somewhere in this unbounded region. Since our search is for such a point $\left(x_{1}, x_{2}\right)$ which gives a minimum value of $x_{1}^{2}+x_{2}^{2}$ and lies in the convex region, the desired point will be that point of the infinite region at which a side of the convex region is tangent to the circle $x_{1}^{2}+x_{2}^{2}=r^{2}($ say $)$ as shown in figure 6.5.

Figure 6.5
Differentiating $x_{1}^{2}+x_{2}^{2}=r^{2}$, w.r.t. x_{1}, we have

$$
\frac{d x_{2}}{d x_{1}}=-\frac{x_{1}}{x_{2}}=m_{1}(\text { say })
$$

Differentiating the equation $x_{1}+x_{2}=4$ w.r.t. x_{1}, we have

$$
\frac{d x_{2}}{d x_{1}}=-1=m_{2}(\text { say })
$$

The circle touches the line $x_{1}+x_{2}=4$ at the point where $m_{1}=m_{2}$
i.e., $\frac{-x_{1}}{x_{2}}=-1$, i.e., $x_{1}=x_{2}$

Thus from $x_{1}+x_{2}=4$, we get the point $P(2,2)$.
Therefore, the circle touches the line $x_{1}+x_{2}=4$ at the point $P(2,2)$, which lies in the convex region bounded by the constraints.

Again differetiating the equation $2 x_{1}+x_{2}=5$ w.r.t. x_{1}, we get

$$
\frac{d x_{2}}{d x_{1}}=-2=m_{3}(\text { say }) .
$$

The circle $x_{1}^{2}+x_{2}^{2}=r^{2}$ will touch the line $2 x_{1}+x_{2}=5$ at the point where

$$
m_{1}=m_{3} \text {, i.e., } \frac{-x_{1}}{x_{2}}=-2 \text {, i.e., } x_{1}=2 x_{2}
$$

Therefore, from $2 x_{1}+x_{2}=5$, we get the point $Q(2,1)$. Thus the circle touches the line at the point $Q(2,1)$, which does not lie in the convex region bounded by the constraits and so is to be discarded.

Hence the optimal solution to the problem is $x_{1}=2, x_{2}=2$ and minimum value of $f\left(x_{1}, x_{2}\right)=2^{2}+2^{2}=8$.

6.7 Self-Learning Exercise

1. A point $X^{*} \in T$ is a local (relative) minimum of the function $f(X)$ over T if there is a positive number δ such that for all $X \in T \cap N_{\delta}\left(X^{*}\right)$, we have
2. The Lagrangian function for the nonlinear programming problems $\operatorname{Min} f(X)$, subject to $G(X) \leq 0, X \geq 0$ is......
3. If the Lagrangian function $F(X, \lambda)$ for the nonlinear programming problems $\operatorname{Min} f(X)$, subject to $G(X) \leq 0, X \geq 0$ has a saddle point $\left(X_{0}, \lambda_{0}\right)$ for each λ, then........
4. If $\left(X_{0}, \lambda_{0}\right)$ is a saddle point of the Lagrangian function $F(X, \lambda)$ for the problems $\operatorname{Min} f(X)$, subject to $G(X) \leq 0, X \geq 0$, then.......

6.8 Summary

In the present unit we discussed about the mathematical programming problem and the general nonlinear programming problem. We studied the Lagraingian function and the saddle point of the Lagrangian function. We derived the necessary and sufficient canditions for the Lagrangian function to have a saddle point. We also saw in brief, how a nonlinear programming problem can be solved graplically.

6.9 Answers to Self-Learning Exerices

1. $f(X) \geq f\left(X^{*}\right)$
2. $f(X)+\lambda^{T} G(X)$
3. $G\left(X_{0}\right) \leq 0, \lambda_{0}^{T} G\left(X_{0}\right)=0$
4. $\quad F\left(X_{0}, \lambda\right) \leq F\left(X_{0}, \lambda_{0}\right) \leq F\left(X, \lambda_{0}\right)$

6.10 Exercise

1. Define saddle point and indicate its significance.
2. What is the Lagrange multiplier method?
3. What is a general nonlinear programming proble? Establish the relation between saddle point and the minimal point of the nonlinear programming problem.
4. Solve the following nonlinear programming problems, using the method of Lagrange multipliers :
(a) Min. $f\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2}-24 x_{1}+2 x_{2}^{2}-8 x_{2}+2 x_{3}^{2}-12 x_{3}+200$
subject to $\quad x_{1}+x_{2}+x_{3}=11$
$x_{1}, x_{2}, x_{3} \geq 0$
(Ans. $x_{1}=6, x_{2}=2 ; x_{3}=3$ and minimum $f=102$)
(b) $\quad \operatorname{Min} f\left(x_{1}, x_{2}, x_{3}\right)=4 x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}-4 x_{1} x_{2}$

Subject to $\quad x_{1}+x_{2}+x_{3}=15$

$$
\begin{aligned}
& 2 x_{1}-x_{2}+2 x_{3}=20 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

(Ans. $x_{1}=\frac{11}{3}, x_{2}=\frac{10}{3}, x_{3}=8 ;$ minimum $f=\frac{820}{9}$)
(c) $\operatorname{Min} . f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$
subject to $\quad x_{1}+x_{2}+3 x_{3}=2$

$$
\begin{aligned}
& 5 x_{1}+2 x_{2}+x_{3}=5 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

(Ans. $x_{1}=0.81, x_{2}=0.35, x_{3}=0.928 ;$ minimum $f=0.857$)
(d) Max. $f(x, y, z)=x y z$
subject to $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

$$
x, y, z \geq 0
$$

(Ans. $x=a \sqrt{3}, y=b \sqrt{3}, z=c \sqrt{3}$; maximum $f=3 \sqrt{3} a b c$)

Unit 7

Constrained Optimization in Nonlinear Programming Problems; Kuhn-Tucker Conditions

Structure of the Unit

7.0 Objective

7.1 Introduction
7.2 Convex Programming Problems

7.2.1 Lagrangian function and saddle point

7.3 Kuhn-Tucker conditions and Kuhn-Tucker Theorem
7.4 Self-Learning Exercise
7.5 Summary
7.6 Answers to Self-Learning Exercise
7.7 Exercise

7.0 Objective

The present unit is confined to discuss the theory which has been developed for locating the points of maxima and minima of constrained nonlinear optimization problems. The theory populary known as Kuhn-Tucker theory, provides a set of necessary and sufficient conditions for check, whether a given point is a point of optimality. The objective of writing this unit is to study the Kuhn-Tucker theory for nonlinear programs.

7.1 Introduction

The unit bigins with the definition of convex programming problem. The theoretical concept of Langrangian function of the general non-linear programming problem and its relation with the saddle point is the next section of the unit that is of fundamental importance. The major part of the unit deals with the Kuhn-Tucker Theory, The Kuhn-Tucker necessary conditions for the optimum of the nonlinear programming problem and their derivation, which is called the Kuhn-Tucker theorem.

7.2 Covex Programming Problems

The general mathematical programming problem consists in finding the minimum value of the function $f(X)$ for all real X, satisfying the conditions $g_{i}(X) \leq,=\geq 0,(X) \geq 0$, where $f(X)$ and $g_{i}(X), i=1,2, \ldots \ldots, m$ are all real valued functions of $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in E^{n}. The problem stated above is called a nonlinear programming problem(NLPP) if some or all of the functions $f(X), g_{i}(X)$ are nonlinear for $i=1,2, \ldots \ldots, \mathrm{~m}$.

If $f(X)$ and $g_{i}(X)$ are all convex functions, the problem is said to be a convex programming problem. A convex programming problem can thus be stated as follows:

Minimize $f(X), \quad X=\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \in \mathrm{E}^{\mathrm{n}}$
subject to : $\quad g_{i}(X) \leq 0 ; \mathrm{i}=1,2, \ldots \ldots, \mathrm{~m}$

$$
X \geq 0
$$

where $f(X)$ and $g_{i}(X)$ are all convex functions.
The convex programming problem has a little advantage over the general nonlinear programming problem as in convex programming problem all the constraint functions $g_{i}(x)$ are convex functions. Therefore the set S of points, satisfying the constraints. $g_{i}(X) \leq 0, i=\ldots \ldots \ldots, \mathrm{m}, X \geq 0$ is a convex set. However this may not be so if $g_{i}(X)$ are not all convex. Also, if $f(X)$ is a convex function, then the relative minimum of $f(X)$ is also a global minimum, which infact is unique. This may not be possible if the NLPP is a non convex programming problem. It may be noticed that if $f(X)$ is convex, then $-f(X)$ is a concave function and so minimum of f is equal to maximum of $-f$. Thus the statement that a function is convex is equivalent of saying if it is a concave function.

We now begin with some theoretical concepts that are of fundamental importance.

7.2.1 Lagrangin function and saddle point

Let us consider the problem
Minimize $f(X) \quad, X=\left(x_{1}, x_{2}, \ldots ., x_{n}\right) \in \mathrm{E}^{\mathrm{n}}$
subject to $\quad g_{i}(X) \leq 0 ; i=1,2, \ldots \ldots \ldots \ldots \ldots$.
Where $f(X)$ and $g_{i}(X)$ are not necessarily convex functions and also there is no restriction on X.
Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots . ., \lambda_{m}\right)^{T} \in \mathrm{E}^{\mathrm{m}}$ be any vector in E^{m}. We define the function $F(X, \lambda)$ as

$$
F(X, \lambda)=f(X)+\sum_{i=1}^{m} \lambda_{i} g_{i}(X)=f(X)+\lambda^{T} G(X)
$$

where $G(X)=\left(g_{1}(X), g_{2}(X) \ldots \ldots \ldots, g_{m}(X)\right)^{T}$.
The function $F(X, \lambda)$ is then called the lagrangian function, with the components of λ as the Lagrange multiplirs. We recall that $\left(X_{0}, \lambda_{0}\right)$ is said to be a saddle point of the Lagrangian function $F(X, \lambda)$ if.

$$
F\left(X_{0}, \lambda\right) \leq F\left(X_{o}, \lambda_{o}\right) \leq F\left(X, \lambda_{o}\right) \text { in some neighbourhood of }\left(X_{0}, \lambda_{0}\right) .
$$

Infact the saddle point of the Lagrangian function $F(X, \lambda)$, if it exists, and the minimal point of the minimizing function $f(X)$ bear a strang theoretical bond between each other. This has led not only to important theoretical results but also to practical algorithms for solving mathematical programming problems. This relationship is a part of what is commonly known as Kuhn-Tucker theory.

7.3 Kuhn-Tucker Conditions and Kuhn-Tucker Theorem

In this section we shall develop primarily the necessary form of Kuhn-Tucker conditions for getting the stationary points of the constrained nonlinear programming problems. These conditions are also sufficient under certain restrictions.

Consider the NLPP

Minimize $f(X), \quad(X)=\left(x_{1}, x_{2}, \ldots ., x_{n}\right)$
Subject to

$$
\begin{equation*}
g_{i}(X) \leq 0 ; \mathrm{i}=1,2, \ldots \ldots, \mathrm{~m} \tag{1}
\end{equation*}
$$

We also assume that $f(X)$ and all $g_{i}(X), \mathrm{i}=1,2, \ldots \ldots, \mathrm{~m}$ are differentiable functions in E^{n}. Let us form the Lagrangian function

$$
F(X, \lambda)=f(X)+\sum_{i=1}^{m} \lambda_{i} g_{i}(X)=f(X)+\lambda^{T} G(X)
$$

Where $\left\lfloor G(X)=\left(g_{1}(X), g_{2}(X) \ldots \ldots \ldots ., g_{m}(X)\right)^{T}\right\rfloor$
and

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}^{T}\right) \in E^{m}
$$

We start with the statement

$$
\begin{equation*}
F\left(X_{0}, \lambda\right) \leq F\left(X_{0}, \lambda_{0}\right) \leq F\left(X, \lambda_{0}\right) \tag{4}
\end{equation*}
$$

which intends that $\left(X_{0}, \lambda_{0}\right)$ is a saddle point of the lagrangian function $F(X, \lambda)$ Let X be any point in the neighbourhood of X_{0}. Since X is unrestricted, therefore X is an interior point in the neighbourhood of X_{0}. Thus, the right side inequality of (4) implies that $\left(X, \lambda_{0}\right)$ is a local minimum of $F\left(X, \lambda_{0}\right)$ and so we must have

$$
\begin{equation*}
\left(\frac{\partial F\left(X, \lambda_{o}\right)}{\partial x_{j}}\right)_{X=X_{0}}=0 \quad ; \quad \mathrm{j}=1,2, \ldots \ldots \ldots \ldots ., \mathrm{n} \tag{5}
\end{equation*}
$$

Let λ be a point in the neighbourhood of λ_{0}. since every $\lambda \geq 0$, therefore if we denote by ${ }_{10}$ the components of λ_{0}, then let
(i) $\quad \lambda_{i 0}>0 \quad$ for $\quad \mathrm{i}=1,2, \ldots \ldots \ldots \ldots, \mathrm{k}$
(ii) $\quad \lambda_{i 0} \geq 0 \quad$ for $\quad \mathrm{i}=\mathrm{k}+1, \mathrm{k}+2 \ldots \ldots \ldots \ldots ., \mathrm{m}$

Clearly $\lambda_{\mathrm{o}}>0$ is $\mathrm{k}=\mathrm{m}$ and $\lambda_{0}=0$ if $\mathrm{k}=0$. Let us suppose that the neighbouring point λ differ from λ_{0} only in the $\mathrm{i}^{\text {th }}$ component, the other components in λ and λ_{0} being equal. Then by Taylor's series

$$
\begin{align*}
& F\left(X_{0}, \lambda\right)=F\left(X_{0}, \lambda_{0}\right)+\left(\lambda_{i}-\lambda_{i 0}\right)\left(\frac{\partial F\left(X_{0}, \lambda\right)}{\partial \lambda_{i}}\right)_{\lambda=\lambda_{0}}+\ldots \ldots \\
\text { or } & F\left(X_{0}, \lambda\right)-F\left(X_{0}, \lambda_{0}\right)=\left(\lambda_{i}-\lambda_{i 0}\right)\left(\frac{\partial F\left(X_{0}, \lambda\right)}{\partial \lambda_{i}}\right)_{\lambda=\lambda_{0}}+\ldots \ldots . \tag{6}
\end{align*}
$$

Choosing $\left(\lambda_{i}-\lambda_{i o}\right)$ sufficiently small so that other higher order terms in the above expansion that
are very-very small to be neglected, the sign of the left hand function i.e. of the function $F\left(X_{0}, \lambda\right)-F\left(X_{0}, \lambda_{0}\right)$ depends upon the sign on the right hand term. Now if $\lambda_{\text {io }}>0$ (i.e. of category (i)), then $\lambda_{i}-\lambda_{i o}$ can be made positive or negative by some suitable choice of λ_{i} which can be greater than or less than $\lambda_{i 0}$, remembering that the only restriction on λ_{i} is that $\lambda_{i} \geq 0$, which can be maintained in either case. Thus $F\left(X_{0}, \lambda\right)-F\left(X_{0}, \lambda_{0}\right)$ can be made positive or negative by a suitable choice of $\lambda \geq 0$. But by the fact of left side inequality of (4) this is never positive. Therefore if $\lambda_{\text {io }}>0$ for $i=1,2, \ldots \ldots$, , , necessarily we must have

$$
\begin{equation*}
\left(\frac{\partial F\left(X_{0}, \lambda\right)}{\partial \lambda_{i}}\right)_{\lambda=\lambda_{0}}=0 ; \quad \mathrm{i}=1,2, \ldots \ldots, \mathrm{k} \tag{a}
\end{equation*}
$$

We now consider the other possibility. Let $\lambda_{\text {io }}=0$, i.e., λ_{io} belong to the category (ii). In this case $\lambda_{\mathrm{i}}-\lambda_{\mathrm{i} 0}$ is always positive since $\lambda_{\mathrm{i} 0} \geq 0$ and $\lambda_{\mathrm{i}} \neq \lambda_{\mathrm{i} 0}$. Also since $\mathrm{F}\left(\mathrm{X}_{0}, \lambda\right)-\mathrm{F}\left(\mathrm{X}_{0}, \lambda_{0}\right)$ is never positive, therefore in (6) we must have

$$
\begin{equation*}
\left(\frac{\partial F\left(X_{0}, \lambda\right)}{\partial \lambda_{i}}\right)_{\lambda=\lambda_{0}}=0 ; \quad \mathrm{i}=\mathrm{k}+1, \mathrm{k}+2 \ldots \ldots \ldots \ldots, \mathrm{~m} \tag{b}
\end{equation*}
$$

(7(a)) and (7(b)) together imply that

$$
\begin{equation*}
\left(\frac{\partial F\left(X_{0}, \lambda\right)}{\partial \lambda_{i}}\right)_{\lambda=\lambda_{0}} \leq 0 ; \quad \mathrm{i}=1,2, \ldots ., \mathrm{m} \tag{7}
\end{equation*}
$$

Now, for category (i), $\lambda_{i o}>0 ; i=1,2, \ldots \ldots \ldots, k$
Therefore, from (7(a))

$$
\begin{equation*}
\lambda_{i 0}\left(\frac{\partial F\left(X_{0}, \lambda\right)}{\partial \lambda_{i}}\right)=0 \tag{8}
\end{equation*}
$$

Similary, for category (ii), $\lambda_{i 0}=0 ; i=k+1, k+2$. \qquad m. Therefore from (7(b))

$$
\begin{equation*}
\lambda_{i 0}\left[\frac{\partial F\left(X_{0}, \lambda\right)}{\partial \lambda_{i}}\right]=0 \tag{9}
\end{equation*}
$$

Thus we have, from (8) and (9)

$$
\begin{equation*}
\lambda_{i 0}\left[\frac{\partial F\left(X_{0}, \lambda\right)}{\partial \lambda_{i}}\right]=0, \text { for all } \mathrm{i}=1,2, \ldots \ldots \ldots, \mathrm{~m} \tag{10}
\end{equation*}
$$

Using (3), we can replace $F(X, \lambda)$ by $f(X)+\lambda^{T} G(X)$ in (5), (7) and (10) and get these conditions in the following from

$$
\begin{equation*}
\frac{\partial f}{\partial x_{j}}+\sum_{i=1}^{m} l_{i} \frac{\partial g_{i}}{\partial x_{j}}=0 ; \quad \mathrm{j}=1,2, \ldots \ldots, \mathrm{n} \tag{11}
\end{equation*}
$$

$$
\begin{array}{lll}
g_{i}(X) \leq 0 & ; & \mathrm{i}=1,2, \ldots \ldots, \mathrm{~m} \\
\lambda_{i} g_{i}(X)=0 & ; & \mathrm{i}=1,2, \ldots \ldots, \mathrm{~m} \\
\lambda_{\mathrm{i}} \geq 0 & ; & \mathrm{i}=1,2, \ldots \ldots, \mathrm{~m} \tag{14}
\end{array}
$$

where all the expressions have been evaluated at $\left(X_{0}, \lambda_{0}\right)$.
So far, we have not imposed any restriction on X. Most of the nonlinear programming problems do have the nonnegativity condition on X (i.e. $X \geq 0$). In such a case, when $X \geq 0$, the above discussion remains unchanged except that we define a nonnegative saddle point $\left(X_{0}, \lambda_{0}\right)$ of the Lagrangian function $F(X, \lambda)$ as $F(X, \lambda) \leq F\left(X_{0}, \lambda_{0}\right) \leq F\left(X, \lambda_{0}\right), X \geq 0, \bar{\lambda} \geq 0$.

Also then the condition (5) is modified to take into account the possibility of X_{0} being a boundary point, i.e., some or all of the components being zero. As we argued in deriving (7) and (8), (5) is then replaced by the condition

$$
\begin{array}{ll}
{\left[\frac{\partial F\left(X_{0}, \lambda_{0}\right)}{\partial x_{j}}\right]_{X=X_{0}} \geq 0} & ; \\
X_{j 0}\left[\frac{\partial F\left(X, \lambda_{0}\right)}{\partial x_{j 0}}\right]_{X=X_{0}}=0,2, \ldots \ldots, \mathrm{n} \tag{17}\\
& ; \quad \mathrm{X}_{0} \geq 0
\end{array}
$$

Again using (3), we may rewrite the conditions (7), (8), (16) and (17) corresponding to the nonnegative saddle point $\left(\mathrm{X}_{0}, \lambda_{0}\right)$ [defined by (15)] as :

$$
\begin{align*}
& \frac{\partial f}{\partial x_{j}}+\sum_{i=1}^{m} \lambda_{i} \frac{\partial g_{i}}{\partial x_{j}} \geq 0 ; \quad \mathrm{j}=1,2, \ldots \ldots, \mathrm{n} \tag{18}\\
& x_{j}\left(\frac{\partial f}{\partial x_{j}}+\sum_{i=1}^{m} \lambda_{i} \frac{\partial g_{i}}{\partial x_{j}}\right)=0 ; \mathrm{j}=1,2, \ldots \ldots, \mathrm{n} \tag{19}\\
& g_{i}(X) \leq 0 \quad ; \mathrm{i}=1,2, \ldots \ldots, \mathrm{~m} \tag{20}\\
& \lambda_{i} g_{i}(X)=0 ; \quad \mathrm{i}=1,2, \ldots \ldots ., \mathrm{m} \tag{21}\\
& x_{j} \geq 0 \quad ; \mathrm{j}=1,2, \ldots \ldots, \mathrm{n} \tag{22}\\
& \lambda_{j} \geq 0 \quad ; i=1,2, \ldots \ldots ., \mathrm{m} \tag{23}
\end{align*}
$$

The sets of conditions (11) to (14) or (18) to (23) are called the Necessary form of Kuhn-Tucker (K-T) conditions. The conditions (11) to (14) are the necessary conditions which $\left(X_{0}, \lambda_{0}\right)$ must satisfy if it is a saddle point of the Lagrangian function $F(X, \lambda)$, with the variable X unrestricted in sign, whereas the conditions (18) to (23) are the necessary conditions which $\left(X_{0}, \lambda_{0}\right)$, satisfies, if it is a nonnegative saddle point of the function $F\left(X_{0}, \lambda_{0}\right)$, with $X_{0} \geq 0$.

The above conditions are not however sufficient conditions for $\left(X_{0}, \lambda_{0}\right)$ to be a saddle point of $F(X, \lambda)$. The reason is quite simple. The condition (11) implies that the gradient of the Lagrangian function $F(X, \lambda)$ with respect to X is zero, which is necessary but not a sufficient condition for the existence of the minimum of $F(X, \lambda)$ with respect to X.

If $f(X)$ and all $g_{i}(X)$ are convex functions, then the saddle point $\left(X_{0}, \lambda_{0}\right), \lambda_{0} \geq 0$ of $F(X, \lambda)$ does exist such that X_{0} is a point of minima of the function $f(X)$ subject to the constraints $g_{i}(X) \leq 0$, $\mathrm{i}=1,2, \ldots \ldots, \mathrm{~m}$ and $X \geq 0$. With the additional restriction $X \geq 0$, the saddle point. $\left(X_{0}, \lambda_{0}\right)$ is nonnegative. Since $f\left(X_{0}\right)$ is convex, it has only one optimum which is the minimum.

Hence, if $f\left(X_{0}\right)$ and all $g_{i}(X)$ are convex functions, then the solution of the corresponding K-T conditions gives rise the required saddle point and so the minimal point of $f(X)$. If $f(X)$ and $g_{i}(X)$ are not convex, the K-T conditions can still be obtained and we may look for its solution. The solution so obtained may still give the solution to the corresponding programming problem but not necessarily always.

We have so far assumed that the constranits are $g_{i}(X) \leq 0 ; \mathrm{i}=1,2, \ldots \ldots \ldots . . \mathrm{m}$. However if the constraints are in the form $\mathrm{g}_{\mathrm{i}}(\mathrm{X}) \leq 0$ then we face no difficulty as we can write them as $-g_{i}(X) \leq 0$, and while constructing the K-T conditions, we may take the Lagrange multiplier as $-\lambda_{i}$ instead of λ_{i}, with $\lambda_{i} \geq 0, i=1,2$, \qquad ,m.

The equality constraint $g_{i}(X)=0$ leads to a slightly different case. In this case we shall only observe that the Lagrange multiplier λ_{i} is unrestricted in sign. In a general way, the constraint $g_{i}(X)=0$ is replaced by two inequality constraints $g_{i}(X) \leq 0$ and $g_{i}(X) \geq 0$, with the result that the corresponding Lagrange multipliers $\lambda_{i}^{(1)}$ and $\lambda_{i}^{(2)}$ both non-negative, would contribute to the term $\left(\lambda_{i}^{(1)}-\lambda_{i}^{(2)}\right) \mathrm{g}_{\mathrm{i}}(\mathrm{X})$ in the Lagrangian function with the Lagrangian multiplier $\lambda_{i}=\lambda_{i}^{(1)}-\lambda_{i}^{(2)}$ becoming unrestricted in sign.

We now summarize the general form of Kuhn-Tucker conditions which are used to solve the constrained nonlinear programming problems.

If we have the optimization problem:
Minimize $\quad f(X) \quad ; X=\left(x_{1}, x_{2}, \ldots ., x_{n}\right)$
Subject to

$$
\begin{array}{lc}
g_{i}(X) \leq 0 & ; \mathrm{i}=1,2, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
h_{j}(X)=0 & ; \quad \mathrm{j}=1,2, \ldots \ldots, \mathrm{~m} \tag{24}
\end{array}
$$

then the Kuhn-Tucker conditions are :

$$
\nabla f(X)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}(X)-\sum_{j=1}^{p} u_{j} \nabla h_{j}(X)=0
$$

$$
\begin{array}{lll}
\lambda_{i} g_{i}(X)=0 & ; & \mathrm{i}=1,2, \ldots \ldots \ldots ., \mathrm{m} \\
g_{i}(X) \leq 0 & ; & \mathrm{i}=1,2, \ldots \ldots \ldots \ldots, \mathrm{~m} \\
h_{j}(X)=0 & ; & \mathrm{j}=1,2, \ldots \ldots \ldots \ldots, \mathrm{p} \\
\lambda_{i} \geq 0 & ; & \mathrm{i}=1,2, \ldots \ldots \ldots \ldots, \mathrm{~m} \tag{25}
\end{array}
$$

Where λ_{i} and u_{j} are the Lagrange multipliers associated with the constraints $g_{i}(X) \leq 0$ and $h_{j}(X)=0$ respectively. The above form of Kuhn-Tucker conditions represents only the necessary conditions of optimality. In the followin, we specify the precise conditions for the Kuhn-Tucker conditions to be satisfied, which are known as the sufficient conditons.

The Kuhn-Tucker necessary conditions derived above are sufficient for the function $f(X)$ to have a minimum at $X=X_{0}$ if $f(X)$ is convex, $g_{i}(X)$ is convex if $\lambda_{i 0} \geq 0$ and $g_{i}(X)$ is concave if $\lambda_{i 0} \geq 0$ for $\mathrm{i}=1,2, \ldots \ldots \ldots . . \mathrm{m}$.

From the saddle point theorem, $F(X, \lambda)$ has a saddle point at $\left(X_{0}, \lambda_{0}\right)$ if

$$
\begin{equation*}
F\left(X_{0}, \lambda\right) \leq F\left(X_{0}, \lambda_{0}\right) \leq F\left(x, \lambda_{0}\right) \tag{26}
\end{equation*}
$$

Now $\quad F\left(X, \lambda_{0}\right)=f(X)+\sum_{i=1}^{m} \lambda_{i o} g_{i}(X)$
and since $\lambda_{i o} \geq 0, g_{i}(X) \leq 0$ imply that

$$
\begin{gather*}
\sum_{i=1}^{m} \lambda_{i o} g_{i}(X) \leq 0 \text {, therfore, we have } \\
F\left(X, \lambda_{0}\right) \leq f(X) \tag{27}
\end{gather*}
$$

Also $\quad F\left(X_{0}, \lambda_{0}\right)=f\left(X_{0}\right)+\sum_{i=1}^{m} \lambda_{i 0} g_{i}\left(X_{0}\right)$

$$
\begin{equation*}
=f\left(X_{0}\right)+0 \tag{28}
\end{equation*}
$$

Therfore $F\left(X, \lambda_{0}\right)=f\left(X_{0}\right)$
(26), (27) and (28) together imply that

$$
f\left(X_{0}\right)=F\left(X_{0}, \lambda_{0}\right) \leq F\left(X, \lambda_{0}\right) \leq f(X)
$$

or, $\quad f\left(X_{0}\right) \leq f(X)$ for all $X \geq 0$
i.e. $\quad f(X)$ attains absolute minimum at X_{0}.

General sufficient form of Kuhn-Tucker conditions can be stated as follows:

Let X_{0} be feasible solution to the problem (24). If $\nabla g_{i}\left(X_{0}\right) i \in I$ where I is the set of constraints $g_{i}(X) \leq 0$ which are satisfied as exact equalities at $X=X_{0}$ and $\nabla h_{j}\left(X_{0}\right), \mathrm{j}=1,2, \ldots \ldots \ldots, \mathrm{p}$ are linearly independent, then there exist λ_{0} and u_{0} such that $\left(X_{0}, \lambda_{0}, u_{0}\right)$ satisfy (25).

The condition that $\nabla g_{i}\left(X_{0}\right) i \in I$, where I is the set of constraints $g_{i}(X) \leq 0$, which are satisfied as exact equalities at X_{0} and $\nabla h_{j}\left(X_{0}\right), \mathrm{j}=1,2, \ldots \ldots \ldots, \mathrm{p}$, be linearly independent, is called constraint qualification. If the constraint qualification fails to hold good at the optimum point, then (25) may or may not have a solution. It is not easy to verify the constraint qualification without knowing X_{0} in prior. However the constraint qualification is always satisfied if:
(i) all the inequality and equality constraints are linear.
(ii) all the inequality constraints are convex and all the equality constraints are linear. Also atleast one feasible solution X_{0} exists which lies inside the feasible region, so that

$$
g_{i}\left(X_{0}\right)<0 ; \mathrm{i}=1,2, \ldots \ldots \ldots \ldots, \mathrm{~m}
$$

and $\quad h_{j}\left(X_{0}\right)<0 ; \mathrm{j}=1,2, \ldots \ldots \ldots \ldots \ldots \ldots$.
(iii) The problem is a convex programming problem.

The conditions that ensure that a point satisfying the Kuhn-Tucker conditions is the desired point of optima, can be summarized in the following tables. First table ensures the conditions, which the functions appearing in the given problem must satisfy in order for the solution of Kuhn-Tucker conditions to yield the optimal solution, while the second table ensures the conditions that must be satisfied by the Lagrange multipliers of a point satisfying Kuhn-Tucker conditions to be the point of optimality.

Table - 1

Senes of Optimization	Required Conditions	
	Objective Functions	Solution Space
Maximization	Concave	Convex Set
Minimization	Convex	Convex Set

Table- 2

Sense of Optimization	Required Conditions		
	$f(X)$	$g_{i}(X)$	λ_{i}
Maximization	Concave	Convex	≥ 0
		Concave	≤ 0
Minimization	linear equation	unrestricted	
	Convex	Convex	≤ 0
		linear equation	≥ 0
			unrestricted

Example 1: Write the Kuhn-Tucker necessary and sufficient conditions for the following nonlinear programming problem to have on optional solution.

Min. $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-2 x_{1}-x_{2}$
s.t. $2 x_{1}+3 x_{1} \leq 6$
$2 x_{1}+x_{2} \leq 4$

$$
x_{1}+x_{2} \geq 0
$$

Solution : The Lagrangian function for the given minimization problem is :

$$
F(X, \lambda)=x_{1}^{2}-2 x_{1}-x_{2}+\lambda_{1}\left(2 x_{1}+3 x_{2}-6\right)+\lambda_{2}\left(2 x_{1}+x_{2}-4\right)
$$

the necessary conditions are :
(i) $\frac{\partial F(X, \lambda)}{\partial x_{j}} \geq 0 ; \mathrm{j}=1,2$
i.e. $\quad 2 x_{1}-2+2 \lambda_{1}+2 \lambda_{2} \geq 0$
$-1+3 \lambda_{1}+\lambda_{2} \geq 0$
i.e. $\quad 2 x_{1}+2 \lambda_{1}+2 \lambda_{2}+2 \lambda_{2}-u_{1}=2$
$3 \lambda_{1}+\lambda_{2} \quad-u_{2}=1$
(on adding surplus variables) u_{1} and u_{2})
(ii) $\frac{\partial F(X, \lambda)}{\partial \lambda_{i}} \leq 0 ; \mathrm{i}=1,2$
i.e. $\quad 2 x_{1}+x_{2}-6 \leq 0$
$2 x_{1}+x_{2}-4 \leq 0$
or

$$
2 x_{1}+3 x_{2}+y_{1}=6
$$

$$
2 x_{1}+x_{2}+y_{2}=4
$$

(on adding slack variables y_{1} and y_{2})
(iii) $\frac{\partial F(X, \lambda)}{\partial x_{j}} \cdot x_{j}=0 \quad ; \mathrm{j}=1,2$
i.e. $\quad\left(2 x_{1}-2+2 \lambda_{1}+2 \lambda_{2}\right) x_{1}=0$
$\left(-1+3 \lambda_{1}+\lambda_{2}\right) x_{2}=0$
(iv) $\frac{\partial F(X, \lambda)}{\partial \lambda_{i}} \cdot \lambda_{i}=0 ; i=1,2$
i.e. $\quad\left(2 x_{1}+3 x_{2}-6\right) \lambda_{1}=0$

$$
\left(2 x_{1}+x_{2}-4\right) \lambda_{2}=0
$$

(v) $x_{1}, x_{2}, \lambda_{1}, \lambda_{2}, u_{1}, u_{2}, y_{1,} y_{2} \geq 0$

Since the function min $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-2 x_{1}-x_{2}$ is convex, therefore the above conditions are suffcient also.

Example 2 : Use Kuhn - Tucker condition to solve the following non-linear programming problem :
Max

$$
f(x)=8 x-x^{2}
$$

subject to $\quad x \leq 3$

$$
x \geq 0
$$

Solution : We have the Lagrangian function

$$
F(x, \lambda)=8 x-x^{2}+\lambda=(3-x)
$$

The Kuhn-Tucker conditions are ;

$$
\begin{align*}
& \frac{\partial F(x, \lambda)}{\partial x} \leq 0, \text { or } 8-2 x-\lambda \leq 0 \\
& \frac{\partial F(x, \lambda)}{\partial \lambda} \geq 0, \text { or } 3-x \geq 0 \\
& \frac{\partial F(x, \lambda)}{\partial x} x=0, \text { or }(8-2 x-\lambda) x=0 \\
& \frac{\partial F(x, \lambda)}{\partial x} . \lambda=0, \text { or }(3-x) \lambda=0 \\
& \\
& \text { i.e. } \quad x, \lambda \geq 0 \tag{1}\\
& 8-2 x-\lambda \leq 0, x \geq 0, x(8-2 x-\lambda) 0 \tag{2}\\
& 3-x \geq 0, \lambda \leq 0, \lambda(3-x)=0
\end{align*}
$$

By combinatorial nature of the equations atleast one of the inequality in (1) must be satisfied in equality form, and similary for (2). Hence we have the following four possible combinations :
(i) $8-2 x-\lambda=0,3-x=0$, i.e. $x=3, \lambda=2$

This solution satisfies $x \geq 0$ and $\lambda \geq 0$.
(ii) $8-2 \mathrm{x}-\lambda=0,1=0$ i.e. $\mathrm{x}=4, \lambda=0$, which violates the condition $3-x \geq 0$
(iii) $\mathrm{x}=0,3-\mathrm{x}=0$, which is inconsistent
(iv) $\mathrm{x}=0, \mathrm{l}=0$, which violates the condition $8-2 x-\lambda \leq 0$

Thus only the first combination gives a solution to Kuhn-Tucker conditions. Since both functions $f(x)=8 x-x^{2}$ and $g(x)=3-x$ are concave (note it), the solution $x=3, \lambda=2$ represents a global maximum of $f(x)$ Hence the optimal solution is $x=3, \lambda=2$.
Example 3 : Solve the following programming problem graphically and verify the Kuhn-Tucker conditions for the same:

$$
\begin{array}{ll}
\text { Maximize } & f\left(x_{1}, x_{2}\right)=2 x_{1}+3 x_{2} \\
\text { Subject to } & x_{1}^{2}+x_{2}^{2} \leq 20 \\
& x_{1} x_{2}=8 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Solution : In the figure shown below, the constraint curves $x_{1}^{2}+x_{2}^{2}=0$ and $x_{1} x_{2}=8$ are plotted (see fig. 7.1) Since $x_{1}, x_{2} \geq 0$, the feasible region falls in the first quadrant only. The curve $x_{1}^{2}+x_{2}^{2}=20$ represents a circle with its centre at $(0,0)$ and radius $(20)^{1 / 2}$ and the curve $x_{1}, x_{2}=8$ represents a rectangular hyperbola having its asymptotes as the co-ordinate axes. The two curves intersect each other at points $\mathrm{A}(4,2)$ and $\mathrm{B}(2,4)$. The points $\left(x_{1}, x_{2}\right)$ lying in the first quadrant shaded by the horizontal lines staisfy the constraints $x_{1}^{2}+x_{2}^{2} \leq 20, x_{1} \geq 0, x_{2} \geq 0$; while the points $\left(x_{1}, x_{2}\right)$ lying in the first quadrant shaded by the vertical lines do satisfy the the constraints $x_{1} x_{2}=8 ; x_{1} \geq 0, x_{2} \geq 0$. Thus the required solution must be somewhere in the double shaded region.

Figure: 7.1
Now in the feasible region for the point $\left(x_{1}, x_{2}\right)$ that maximizes the function $f\left(x_{1}, x_{2}\right)=2 x_{1}+3 x_{2}$ adn lies in the feasible region, we draw the lines paralled to the line $2 x_{1}+3 x_{2}=c$ (c is chosen arbitrarily) moving away from origin till the line parallel to $2 x_{1}+3 x_{2}=c$ touches the extreme boundary of the feasible region. It is noticed that the point $\mathrm{B}(2,4)$ gives the maximum value of $f\left(x_{1}, x_{2}\right)=16$. Thus the graphical solutin of the give problem is :

$$
x_{1}=2, x_{2}=4 ; \operatorname{Max} ; f\left(x_{1}, x_{2}\right)=16
$$

In order to verify that this optimal solution satisfies the Kuhn-Tucker conditions also, we first find the Lagrangian function of the given problem, which is

$$
F(X, \lambda)=2 x_{1}+3 x_{2}+\lambda_{1}\left(20-x_{1}^{2}-x_{2}^{2}\right)+\lambda_{2}\left(8-x_{1} x_{2}\right)
$$

Then the Kuhn-Tucker conditions are :

$$
\begin{align*}
& \left.\frac{\partial F(X, \lambda)}{\partial x_{j}} \leq 0, \mathrm{j}=1,2 \quad \text { or, } \quad 2-2 \lambda_{1} x_{1}-\lambda_{2} x_{2} \leq 0, \begin{array}{r}
3-2 \lambda_{1} x_{2}-\lambda_{2} x_{1} \leq 0
\end{array}\right\} \tag{1}\\
& \left.\left.\frac{\partial F(X, \lambda)}{\partial \lambda_{i}} \geq 0, \mathrm{i}=1,2 \quad \text { or, } 20-x_{1}^{2}-x_{2}^{2} \geq 0\right\} \begin{array}{r}
8-x_{1} x_{2} \geq 0
\end{array}\right\} \tag{2}\\
& \frac{\partial F(X, \lambda)}{\partial x_{j}} \cdot x_{j}=0 ; \quad j=1,2 \\
& \text { or, } \left.\left(2-2 \lambda_{1} x_{1}-\lambda_{2} x_{2}\right) x_{1}=0\right\} \tag{3}\\
& \left.\left(3-2 \lambda_{1} x_{2}-\lambda_{2} x_{1}\right) x_{2}=0\right\} \\
& \frac{\partial F(X, \lambda)}{\partial \lambda_{i}} \cdot \lambda_{i}=0 ; \quad i=1,2 \\
& \text { or, } \quad\left(20-x_{1}^{2}-x_{2}^{2}\right) \lambda_{1}=0 \tag{4}\\
& \left(8-x_{1} x_{2}\right) \lambda_{2}=0 \\
& x_{1}, x_{2}, \lambda_{1}, \lambda_{2} \geq 0 \tag{5}
\end{align*}
$$

We see that if the point $(2,4)$ satisfies these conditions, then from (1), we have $\lambda_{1}=\frac{1}{3}$ and $\lambda_{2}=\frac{1}{6}$ which do satisfy (2), (3) and (4). Thus the optimal solution obtained by graphical method also satisfies the Kuhn-Tucker conditions for optima.

Example 4 : Determine the optimal solution of the following nonlinear programming problem, using the Kuhn-Tucker conditons:

$$
\begin{array}{ll}
\text { Minimize } & f\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{2}^{2}-x_{1} x_{2} \\
\text { subject to } & x_{1}+x_{2} \geq 8 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Solution : The Lagrangian function for the given programming problem is :

$$
f(X, \lambda)=x_{1}^{2}+2 x_{2}^{2}-x_{1} x_{2}+\lambda\left(8-x_{1}-x_{2}\right)
$$

Then the Kuhn-Tucker conditions are

$$
\begin{align*}
& \frac{\partial F(X, \lambda)}{\partial x_{j}} \geq 0 ; \mathrm{j}=1,2 \quad \text { or } 2 x_{1}-x_{2}-\lambda \geq 0 \tag{1}\\
& -x_{1}+4 x_{2}-\lambda \geq 0 \tag{2}\\
& \frac{\partial F(X, \lambda)}{\partial \lambda} \leq 0, \quad \text { or, } 8-x_{1}-x_{2} \leq 0 \\
& \text { i.e., } \quad x_{1}+x_{2} \geq 8 \tag{3}\\
& \frac{\partial F(X, \lambda)}{\partial x_{j}} \cdot x_{j}=0 ; \mathrm{j}=1,2 \quad \text { or } \quad\left(2 x_{1}-x_{2}-\lambda\right) x_{1}=0 \tag{4}\\
& \left(-x_{1}+4 x_{2}-\lambda\right) x_{2}=0 \tag{5}\\
& \frac{\partial F(X, \lambda)}{\partial \lambda} \cdot \lambda=0 \quad \text { or } \quad\left(8-x_{1}-x_{2}\right) \lambda=0 \tag{6}\\
& x_{1}, x_{2}, \lambda \geq 0 \tag{7}
\end{align*}
$$

It can easily be seen that if $\lambda=0$, then $x_{1}=0, x_{2}=0$ is the only point satisfying the conditions (1), (2), (4) and (5). But $x_{1}=0, x_{2}=0$ does not satisfy the condition (3).

Hence $\lambda=0$ and therefore

$$
x_{1}+x_{2}=8 \quad[\text { from eq. (6) }]
$$

Now, if $x_{1}=0$ then $x_{2}=8$. But then inequality (1) is not satisfied. Therefore, $x_{1} \neq 0$. similarly if $x_{2}=0$, then $x_{1}=8$ and then inequality (2) is not satisfied. Therefore $x_{2} \neq 0$.

Thus $x_{1} \neq 0$ and $x_{2} \neq 0$. In this case (4) and (5) imply that

$$
\begin{align*}
& 2 x_{1}-x_{2}-\lambda=0 \tag{9}\\
& -x_{1}+4 x_{2}-\lambda=0 \tag{10}
\end{align*}
$$

Solving equations (8), (9) and (10), we get $x_{1}=5, x_{2}=3$ and $\lambda=7$
which satisy all the Kuhn-Tucker conditions from (1) to (7)
Thus the optimal solution to the given problem is $x_{1}=5, x_{2}=3$ and the minimum value of $f\left(x_{1}, x_{2}\right)$ is

$$
f\left(x_{1}, x_{2}\right)=5^{2}+2(3)^{2}-5 \times 3=28
$$

Example 5: Use Kuhn-Tucker conditions to determine $\mathrm{x}_{1}, \mathrm{x}_{2}$, x_{3} so as to Minimize

$$
\text { subject to } \quad x_{1}+x_{2} \leq 2 \quad f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-4 x_{1}-6 x_{2}
$$

$$
\begin{aligned}
& 2 x_{1}+3 x_{2} \geq 12 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Solution : The Lagrangian function for the given problem is :

$$
F(X, \lambda)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-4 x_{1}-6 x_{2}+\lambda_{1}\left(x_{1}+x_{2}-2\right)+\lambda_{2}\left(2 x_{1}+3 x_{2}-12\right)
$$

The Kuhn-Tucker conditions are

$$
\begin{array}{rrr}
2 x_{1}-4+\lambda_{1}+2 \lambda_{2} \geq 0 & 2 x_{1}+\lambda_{1}+2 \lambda_{2} \geq 4 \\
2 x_{2}-6+\lambda_{1}+3 \lambda_{2} \geq 0 & \text { or } & 2 x_{2}+\lambda_{1}+3 \lambda_{2} \geq 6 \\
2 x_{3} \geq 0 & & 2 x_{3} \geq 0 \\
x_{1}+x_{2}-2 \leq 0 & \text { or } & x_{1}+x_{2} \leq 2 \\
2 x_{1}+3 x_{2}-12 \leq 0 & & 2 x_{1}+3 x_{2} \leq 12 \\
\left(2 x_{1}-4+\lambda_{1}+2 \lambda_{2}\right) x_{1}=0 & \\
\left(2 x_{1}-6+\lambda_{1}+3 \lambda_{2}\right) x_{2}=0 & \\
\left(x_{1}+x_{2}-2\right) \lambda_{1}=0 & \\
\left(2 x_{1}+3 x_{2}-12\right) \lambda_{2}=0 & \\
x_{1}, x_{2}, x_{3}, \lambda_{1}, \lambda_{2} \geq 0 &
\end{array}
$$

The following four different cases arise
(i) If $\lambda_{1}=\lambda_{2}=0$, then from (1), (2) and (3), we have $x_{1}=2, x_{2}=3, x_{3}=0$. But this solution violates the inequalities (4) and (5)
(ii) When $\lambda_{1}=0, \lambda_{2} \neq 0$. In this case from (1), (2) and (9)

$$
2 x_{1}+2 \lambda_{2}=4,2 x_{2}+3 \lambda_{2}=6 \text { and } 2 x_{1}+3 x_{2}-12=0
$$

which give $x_{1}=24 / 13, x_{2}=36 / 13$ and $\lambda_{2}=2 / 13$ Also from (3), $x_{3}=0$. However this solution violates inequality (4), so this solution is also ruled out.
(iii) When $\lambda_{1} \neq 0, \lambda_{2}=0$. In this case (8) gives
$x_{1}+x_{2}=2$, which along with (1) and (2) i.e., along with $2 x_{1}+\lambda_{1}=4$ and $2 x_{2}+\lambda_{1}=6$ give $x_{1}=\frac{1}{2}, x_{2}=\frac{3}{2}, \lambda_{1}=3$. Further from (3) , $\mathrm{x}_{3}=0$. This solution does not violate any ofthe conditon.
(iv) When $\lambda_{1} \neq 0, \lambda_{2} \neq 0$. In case (8) and (9) give $x_{1}+x_{2}=2$ and $2 x_{1}+3 x_{2}=12$, where from $x_{1}=-6, x_{2}=8$. Thus from (1), (2) and (3), we get $\lambda_{1}=68, \lambda_{2}=-26$ and $x_{3}=0$. This violates the condition $x_{1} \geq 0$ and $\lambda_{2} \geq 0$. Hence $x_{1}=-6, x_{2}=8, x_{3}=0$ is also discarded.

Thus the optimal solution to the given programming problem is given by case (iii) i.e. optimal solution is :

$$
x_{1}=\frac{1}{2}, x_{2}=\frac{3}{2}, x_{3}=0, \text { with } \lambda_{1}=3 \text { and } \lambda_{2}=0 .
$$

The minimum value of $f\left(x_{1}, x_{2}, x_{3}\right)$ is

$$
\left(\frac{1}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}+0-4\left(\frac{1}{2}\right)-6\left(\frac{3}{2}\right)=\frac{-17}{2}
$$

Example 6: Solve the following nonlinear programming problem

$$
\begin{array}{ll}
\text { Minimize } & f\left(x_{1}, x_{2}\right)=\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} \\
\text { subject to } & x_{1}^{2}-x_{2} \leq 0 \\
& x_{1}+x_{2} \leq 2 \\
& \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{array}
$$

Solution : The Hessian matrix for $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ is :

$$
H=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

The principal minors are $\mathrm{D}_{1}=2, \mathrm{D}_{2}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]=4$, which are both positive. So $f\left(x_{1}, x_{2}\right)$ is a convex function. Also, the given constraint functions are convex functions, therefore, the Kuhn-Tucker conditions for the minimization of $f\left(x_{1}, x_{2}\right)$ are both necessary and sufficient.

The Lagrangian function is :

$$
F(X, \lambda)=\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}+\lambda_{1}\left(x_{1}^{2}-x_{2}\right)+\lambda_{2}\left(x_{1}+x_{2}-2\right)
$$

The Kuhn-Tucker conditions, therefore, are

$$
\begin{array}{ll}
& 2\left(x_{1}-2\right)+2 \lambda_{1} x_{1}+\lambda_{2} \geq 0 \\
& 2\left(x_{2}-1\right)-\lambda_{1}+\lambda_{2} \geq 0 \\
\text { i.e. } & 2 x_{1}+2 \lambda_{1} x_{1}+\lambda_{2}-4 \geq 0 \\
& 2 x_{2}-\lambda_{1}+\lambda_{2}-2 \geq 0 \\
& x_{1}^{2}-x_{2} \leq 0 \tag{3}
\end{array}
$$

$$
\begin{align*}
& x_{1}+x_{2}-2 \leq 0 \tag{4}\\
& \left(2\left(x_{1}-2\right)+2 \lambda_{1} x_{1}+\lambda_{2}\right) x_{1}=0 \tag{5}\\
& \left(2\left(x_{2}-1\right)-\lambda_{1}+\lambda_{2}\right) x_{2}=0 \tag{6}\\
& \left(x_{1}^{2}-x_{2}\right) \lambda_{1}=0 \tag{7}\\
& \left(x_{1}+x_{2}-2\right) \lambda_{2}=0 \tag{8}\\
& x_{1}, x_{2}, \lambda_{1}, \lambda_{2} \geq 0 \tag{9}
\end{align*}
$$

The following four cases arise
(i) When $\lambda_{1}=0=\lambda_{2}$. In this case from(1) and (2) $2 x_{1}-4=0 ; 2 x_{2}-2=0$ i.e. $x_{1}=2$, $x_{2}=1$, which do not satisfy conditions (3) and (4) Thus this solution is not acceptable.
(ii) When $\lambda_{1}=0, \lambda_{2} \neq 0$. Then from (8)
$x_{1}+x_{2}=2$. Also from (1) and (2)

$$
2 x_{1}+\lambda_{2}-4=0,2 x_{2}+\lambda_{2}-2=0
$$

Which give $x_{1}+x_{2}=2$ and $x_{1}-x_{2}=1$
or $\quad x_{1}=\frac{3}{2}, x_{2}=\frac{1}{2}$
This solution violates the conditins (3), so is ruled out.
(iii) When $\lambda \neq 0 ; \lambda_{2}=0$. In this case from (1), (2) and (7)

$$
\begin{aligned}
& 2 x_{1}+2 \lambda_{1} x_{1}-4=0 \\
& 2 x_{1}-\lambda_{1}-2=0 \\
& x_{1}^{2}-x_{2}=0
\end{aligned}
$$

From the first of these two equations

$$
\begin{array}{ll}
& 2 x_{1}+2 x_{1}\left(2 x_{2}-2\right)-4=0 \\
\text { or } & -x_{1}+2 x_{1} x_{2}-2=0
\end{array}
$$

which using $x_{1}^{2}-x_{2}=0$ gives

$$
2 x_{1}^{3}-x_{1}-2=0 \quad \text { or } \quad x_{1}=1.52
$$

and then $x_{2}=2.31$
But these values of x_{1} and x_{2} do not satisfy conditions (4), so the solution $x_{1}=1.52, x_{2}=2.31$ is also discarded.
(iv) When $\lambda_{1} \neq 0, \lambda_{2} \neq 0$. In this case from (7) and (8), we have $x_{1}^{2}-x_{2}=0$ and $x_{1}+x_{2}-2=0$

From these two equations

$$
x_{1}^{2}+x_{1}-2=0
$$

or $\quad\left(x_{1}+2\right)\left(x_{1}-1\right)=0$
or $\quad x_{1}=1 \quad\left(\right.$ since $\left.x_{1} \geq 0\right)$
Thus $\quad x_{2}=1$
These values of x_{1} and x_{1} when put in conditions (1) and (2), give

$$
\begin{aligned}
& 2 \lambda_{1}+\lambda_{2}=2 \text { and }-\lambda_{1}+\lambda_{2}=0 \\
& \text { or } \quad \lambda_{1}=2 / 3, \lambda_{2}=2 / 3
\end{aligned}
$$

The solution $x_{1}=1, x_{2}=1, \lambda_{1}=2 / 3, \lambda_{2}=2 / 3$ does satisfy all the conditions from (1) to (9) and so is the optimal solution of the problem.

Hence the optimal solution of the given problem is $x_{1}=1, x_{2}=1$ and minimum value of

$$
f\left(x_{1}, x_{2}\right)=(1-2)^{2}+(1-1)^{2}=1
$$

Example 7: Use Kuhn-Tucker conditions to solve the following non linear programming problem:

$$
\begin{array}{ll}
\text { Maximize } & f\left(x_{1}, x_{2}\right)=7 x_{1}^{2}-6 x_{1}+5 x_{2}^{2} \\
\text { subject to } & x_{1}+2 x_{2} \leq 10 \\
& x_{1}-3 x_{2} \leq 9 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Solution : The Lagrangian function for the given programming problem is

$$
F(X, \lambda)=7 x_{1}^{2}-6 x_{1}+5 x_{2}^{2}+\lambda_{1}\left(10-x_{1}-2 x_{2}\right)+\lambda_{2}\left(9-x_{1}+3 x_{2}\right)
$$

The Kuhn-Tucker conditions are :

$$
\begin{array}{lll}
14 x_{1}-6-\lambda_{1}-\lambda_{2} \leq 0 & \text { or } & 14 x_{1}-\lambda_{1}-\lambda_{2} \leq 6 \\
10 x_{2}-2 \lambda_{1}+3 \lambda_{2} \leq 0 & & 10 x_{2}-2 \lambda_{1}+3 \lambda_{2} \leq \\
x_{1}+2 x_{2}-10 \leq 0 & & \\
x_{1}-3 x_{2}-9 \leq 0 & & \\
\left(14 x_{1}-6-\lambda_{1}-\lambda_{2}\right) x_{1}=0 & & \tag{5}
\end{array}
$$

$$
\begin{align*}
& \left(10 x_{2}-2 \lambda_{1}-3 \lambda_{2}\right) x_{2}=0 \tag{6}\\
& \left(x_{1}+2 x_{2}-10\right) \lambda_{1}=0 \tag{7}\\
& \left(x_{1}-3 x_{2}-9\right) \lambda_{2}=0 \tag{8}\\
& x_{1}, x_{2}, \lambda_{1}, \lambda_{2} \geq 0 \tag{9}
\end{align*}
$$

The following four possibilities arise
(i) When $\lambda_{1}=0=\lambda_{2}$. In that case from (1) and (2) $x_{1}=\frac{3}{7}$ and $x_{2}=0$

This solution satisfies (3), (4) and (9) and so is a feasible solution with $f\left(x_{1}, x_{2}\right)=-9 / 7$.
(ii) When $\lambda_{1} \neq 0, \lambda_{2}=0$. In this case equations (1), (2) and (7) are

$$
14 x_{1}-\lambda_{1}=6 ; 10 x_{2}-2 \lambda_{1}=0 ; \quad x_{1}-2 x_{2}=10
$$

which give $x_{1}=\frac{62}{33}, x_{2}=\frac{134}{33}, \lambda_{1}=\frac{670}{33}$.
This solution also satisfies all the other conditions and so is a feasible solution with

$$
f\left(x_{1}, x_{2}\right)=95.78
$$

(iii) When $\lambda_{1}=0, \lambda_{2} \neq 0$. In this case we have from (1), (2) and (8)

$$
14 x_{1}-\lambda_{2}=0,10 x_{2}+3 \lambda_{2}=0, x_{1}-3 x_{2}=9
$$

which gives $x_{1}=\frac{288}{17}, x_{2}=-\frac{45}{17}$
This is an infeasible solution and so is ruled out.
(iv) When $\lambda_{1} \neq 0 ; \lambda_{2} \neq 0$. In this case from equations (7) and (8) we have,
$\mathrm{x}_{1}=48 / 5, \mathrm{x}_{2}=1 / 5$. These values of x_{1} and x_{2} when put in (1) and (2) give $\lambda_{1}=\frac{1936}{25}, \lambda_{2}=\frac{1274}{25}$. This solution also satisfies all the other conditions and so is acceptable with $f\left(x_{1}, x_{2}\right)=587.72$

Hence the optimal solution is
$\mathrm{x}_{1}=\frac{48}{5}, \mathrm{x}_{2}=\frac{1}{5}$ and maximum value of $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=587.72$.
Example 8: Use Kuhn-Tucker conditions to solve the following nonlinear programming problem :
Optimize $\quad f\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}+3 x_{2}-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)$
subject to $\quad x_{1}+x_{2} \leq 1$

$$
2 x_{1}+3 x_{2} \leq 6
$$

$$
x_{1}, x_{2} \geq 0
$$

Solution : Before applying Kuhn-Tucker conditions we would determine, whether the given problem is of maximization or of minimization type. We construct the bordered Hessian matrix

$$
\begin{aligned}
& H^{B}=\left[\begin{array}{cc:c}
O & \vdots & P \\
\hdashline P^{T} & : & Q
\end{array}\right]_{m+n, m+n} \\
& =\left[\begin{array}{rr:l|lll}
0 & 0 & \vdots & 1 & 1 & 0 \\
0 & 0 & \vdots & 2 & 0 \\
\hdashline 1 & 2 & \vdots & -2 & 0 & 0 \\
1 & 3 & \vdots & 0 & -2 & 0 \\
0 & 0 & \vdots & 0 & 0 & -2
\end{array}\right]=-10
\end{aligned}
$$

where $m=2, n=3 ; n-m=1,2 m+1=5$. For maximization type, the sign of the Hessian matrix must be $(-1)^{m+1}$ i.e. negative, whereas for minimization it must be $(-1)^{m}$ i.e. positive. Since $H^{B}=-10<0$, therefore we have to maximize. $f\left(x_{1}, x_{2}, x_{3}\right)$ The Lagrangian function is :

$$
F(X, \lambda)=2 x_{1}+3 x_{2}-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+\lambda_{1}\left(1-x_{1}-x_{2}\right)+\lambda_{2}\left(6-2 x_{1}-3 x_{2}\right)
$$

The Kuhn-Tucker conditions, therefore, are

$$
\frac{\partial F(X, \lambda)}{\partial x_{j}} \leq 0 ; \mathrm{j}=1,2,3
$$

or

$$
\begin{align*}
& 2-2 x_{1}-\lambda_{1}-2 \lambda_{2} \leq 0 \tag{1}\\
& 3-2 x_{2}-\lambda_{1}-3 \lambda_{2} \leq 0 \tag{2}
\end{align*}
$$

$$
\frac{\partial F(X, \lambda)}{\partial \lambda_{i}} \geq 0 ; i=1,2
$$

or $\quad 1-x_{1}-x_{2} \geq 0$

$$
\begin{equation*}
6-2 x_{2}-3 x_{2} \geq 0 \tag{3}
\end{equation*}
$$

or $\quad\left(2-2 x_{1}-\lambda_{1}-2 \lambda_{2}\right) \cdot x_{1}=0$

$$
\begin{equation*}
\left(3-2 x_{2}-\lambda_{1}-3 \lambda_{2}\right) x_{2}=0 \tag{5}
\end{equation*}
$$

$$
-2 x_{3} \leq 0
$$

$$
\begin{equation*}
\frac{\partial F(X, \lambda)}{\partial x_{j}} \cdot x_{j}=0 \quad ; \mathrm{j}=1,2 \tag{4}
\end{equation*}
$$

$$
\frac{\partial F(X, \lambda)}{\partial \lambda_{i}} \cdot \lambda_{i}=0 \quad ; \mathrm{i}=1,2
$$

or

$$
\begin{align*}
& \left(1-x_{1}-x_{2}\right) \lambda_{1}=0 \tag{7}\\
& \left(6-2 x_{1}-3 x_{2}\right) \lambda_{2}=0 \tag{8}\\
& x_{1}, x_{2}, \lambda_{1}, \lambda_{2} \geq 0 \tag{9}
\end{align*}
$$

Now, there arise the following four different possibilities
(i) When $\lambda_{1}=0, \lambda_{2}=0$. In this case equations (1), (2) and (3) give $x_{1}=1, x_{2}=\frac{3}{2}, x_{3}=0$.

This solution does not satisfy the condition (3) and so is ruled out.
(ii) When $\lambda_{1}=0 ; \lambda_{2} \neq 0$. Then from (8), (1), (2) and(3), we have

$$
\begin{aligned}
& 6-2 x_{1}-3 x_{2}=0 \\
& 2-2 x_{1}-2 \lambda_{2}=0 \\
& 3-2 x_{2}-3 \lambda_{2}=0
\end{aligned}
$$

Solving these equations, we get $\mathrm{x}_{1}=\frac{12}{13}, \mathrm{x}_{2}=\frac{18}{13}, \mathrm{x}_{3}=0, \lambda_{2}=\frac{1}{13}$ This solution again does not satisfy equation (3) and so is discarded.
(iii) When $\lambda_{1} \neq 0, \lambda_{2}=0$. In this case from conditions (1), (2), (3) and (7), we get

$$
\begin{array}{r}
2-2 x_{1}-\lambda_{1}=0 \\
3-2 x_{2}-\lambda_{1}=0 \\
x_{3}=0 \\
1-x_{1}-x_{2}=0
\end{array}
$$

Which give solution

$$
x_{1}=\frac{1}{4}, x_{2}=\frac{3}{4}, x_{3}=0 \text { and } \lambda_{1}=\frac{3}{2}
$$

This solution satisfies all the Kuhn-Tucker conditions and has $f\left(x_{1}, x_{2}, x_{3}\right)=17 / 8$.
(iv) When $\lambda_{1} \neq 0, \lambda_{2} \neq 0$. In this case equations (1), (2), (3), (7) and (8) give $x_{1}=-3, x_{2}=4, x_{3}=0, \lambda_{1}=-34, \lambda_{2}=13$. This solution violates the conditions (9) and so is infeasible and thus discarded.

Since there is only one solution that satisfies all the conditions, therefore it is optimal.
Hence the optimal solution the given programming problem is
$x_{1}=\frac{1}{4}, x_{2}=\frac{3}{4}, x_{3}=0$ with maximum value of $f\left(x_{1}, x_{2}, x_{3}\right)=\frac{17}{8}$.

7.4 Self-Learning Exercise

1. If the objective function $f(X)$ and all the constraints $g_{i}(X)$ are convese functions, then the solution of the correspending Kuhn-Tucker conditions gives rise theof $f(X)$.
2. If a concave function $f(X)$ is to be maximized subject to constraints convex in nature then the lagrange multipliers must be \qquad and when constraints are concave then they must be \qquad
3. If a concave function is to be maximized subject to linear constraints then λ_{i} are \qquad
4. When a convex objective function is to be minimized, then the solution space is a \qquad
5. When a concave objective function is to be maximized, then the solution space is a. \qquad

7.5 Summary

In this unit we discussed the Kuhn-Tucker conditions for the nonlinear programming problems. We also derived these conditions in the form a theorem known as Kuhn-Tucker theorem.

7.6 Answers to Self-Learning Exercise

1. Minimal point.
2. $\geq 0, \leq 0$
3. Unrestricted in sign.
4. Convex set
5. Convex set

7.7 Exercise

1. Define a general non-linear programming problem.
2. What are the Kuhn-Tucker conditions and how are they of fundamental improtance in the theory of nonlinear programming.
3. Formulate the Kuhn-Tucker necessary conditions for the following problem:

Maximize $\quad f(X)$
subject to $\quad g_{i}(X) \geq 0 \quad ; \mathrm{i}=1,2 \ldots \ldots . ., \mathrm{m}$
$g_{i}(X) \leq 0 \quad ; \mathrm{i}=\mathrm{m}+1, \mathrm{~m}+2, \ldots \ldots ., \mathrm{p}$
$h_{i}(X)=0 \quad ; \mathrm{j}=1,2, \ldots \ldots ., \mathrm{q}$
$X \geq 0$
4. Use Kuhn-Tucker conditions to solve the following nonlinear programming problems:
(i) Maximize $\quad f(X)=8 x_{1}+10 x_{2}-x_{1}^{2}-x_{2}^{2}$
subject to $\quad 3 x_{1}+2 x_{2} \leq 0$

$$
x_{1}, x_{2} \geq 0
$$

(Ans: $\quad x_{1}=x=4 / 13, x_{2}=33 / 13$, , maximum value $=21.3$)
(ii) Max.

$$
f(X)=10 x_{1}+10 x_{2}-x_{1}^{2}-x_{2}^{2}
$$

subject to $\quad x_{1}+x_{2} \leq 14$

$$
\begin{aligned}
-x_{1}+x_{2} & \leq 6 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

(Ans: $x_{1}=5, x_{2}=5$, Max. $f(x)=50$)
(iii) Max. $\quad f(X)=12 x_{1}+21 x_{2}+2 x_{1} x_{2}-2 x_{1}^{2}-2 x_{2}^{2}$
subject to $\quad x_{1}+x_{2} \leq 10$

$$
x_{2} \leq 8
$$

$$
x_{1}, x_{2} \geq 0
$$

(Ans: $\quad x_{1}=17 / 4, x_{2}=23 / 4$ Max. $f(X)=1734 / 16$)
(iv) Minimize $\quad f(X)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$
subject to $2 x_{1}+x_{2}-x_{3} \leq 0$

$$
\begin{aligned}
& x_{1} \geq 1 \\
& x_{2} \geq 2 \\
& x_{3} \geq 0
\end{aligned}
$$

Unit - 8
 Quadratic Programming

Structure of the Unit

8.0 Objective

8.1 Introduction
8.2 Quadratic Programming Problems
8.3 Computational Procedure for Solving Quadratic Programming Problems (Wolfe's Algorithm)
8.4 Beale's Method for Solving Quadratic Programming Problems
8.5 Self-Learning Exercise
8.6 Summary
8.7 Answer to Self-Learning Exercise
8.8 Exercise

8.0 Objective

In the previous unit, it was discussed, how the optimal solution of a nonlinear programming problem could be obtained by solving its Kuhn-Tucker conditions. It can be experienced that solving Kuhn-Tucker conditions, which are a set of nonlinear equations and inequalities is not that easy in most of the problems. Alternative methods, therefore, are required to be developed for solving such nonlinear programming problems.

In this unit, special category of nonlinear programming problems, for which specific computational algorithm are developed, is considered. The problems under this special category are Quadratic Programming Problems.

8.1 Introduction

The problem of optimizing a quadratic function subject to a set of linear constraints is called a quadratic programming problem. The quadratic programming problems are computationally least difficult to handle, when we solve the other nonlinear programming problems. The quadratic programming problems are not only helpful in the application to real life situations but also serve as sub problems in number of algorithms developed for general nonlinear programming problems. In this unit we shall discuss some of the algorithms.

8.2 Quadratic Programming Problems

The quadratic programming problem is the simple most case amongst all nonlinear convex programming problems, which arises when the objective function is quadratic but the constraints in the given programming problem are all linear in nature. In such problems, the Kuhn-Tucker conditions of the problem can be expressed in a form which can be solved using a computational procedure based on the simplex method.

In general the nonlinear programming problem :

$$
\begin{array}{lc}
\text { Maximize } & f(X)=C^{T} X+\frac{1}{2} X^{T} G X \\
\text { subject to } & A X \leq 0 \tag{1}\\
& X \geq 0
\end{array}
$$

where X and $C \in E^{n}, b \in E^{m}, G$ is $n \times n$ symmetric matrix and A is an $m \times n$ matrix, is called a general quadratic programming problem.

We recall that $X^{T} G X$ which represents a quadratic form is said to be positive definite (negative-definite) if $\quad X^{T} G X>0(<0)$ for $X \neq 0$ and positive semidefinite (negative semidefinite) if $X^{T} G X \geq 0(\leq 0)$ for all X such that there is one $X \neq 0$ satisfying $X^{T} G X=0$

It can easily be varified that if
(i) $X^{T} G X$ is positive semi definite (negative semi definite), then it is convex (concave) in X over E^{n}.
(ii) $\quad X^{T} G X$ is positive definite (negative definite), then it is strictly convex (stricly concave in X over E^{n}.

The above two points will help us in determining whether the quadratic objective function $f(X)$ is concave (convex) and then we can simply the same on the sufficiency conditions of Kuhn-Tucker conditions for the maxima (minima) of $f(X)$.

A general constrained optimization problem, like the general linear programming problem, may have
(a) no feasible solution
(b) an unbounded solution or
(c) an optimal solution

The following theorem gives the conditions under which the objective function of the quadratic programming problem (1) may have finite maximum.

Theorem 1: In the quadratic programming (1) the function $f(X)$ cannot have an unbounded maximum if $X^{T} G X$ is negative definite or if $C=0$. If $C \neq 0$ and $X^{T} G X$ is negative semidefinite then $f(X)$ may have an unbounded maximum.

Proof : Consider the quadratic programming (1)
Let $X \neq 0$, then the objective function $f(X)$ can be written as

$$
\begin{equation*}
f(X)=X^{T} G X\left(\frac{1}{2}+\frac{C^{T} X}{X^{T} G X}\right) \tag{2}
\end{equation*}
$$

Let X be any point on the hypersphere $|X|=r$, where $|X|^{2}=X^{T} X$, Then $X=r \hat{X}$,
where $\quad|\hat{X}|=1$. Therefore,

$$
X^{T} G X=r^{2} \hat{X}^{T} G \hat{X}
$$

Let M be the maximum value of $\hat{X}^{T} G X$. Now since $X^{T} G X$ is negative definite, therefore,

$$
X^{T} G X \leq r^{2} M<0
$$

and so

$$
\begin{equation*}
X^{T} G X \rightarrow-\infty \quad \text { as } \quad|X|=r \rightarrow \infty \tag{3}
\end{equation*}
$$

Now let m be the minimum value of $\left|\frac{C^{T} X}{X^{T} G X}\right|$. Then
$\left|\frac{C^{T} X}{X^{T} G X}\right|=\frac{1}{r}\left|\frac{C^{T} \hat{X}}{\hat{X}^{T} G \hat{X}}\right| \geq \frac{m}{r}$
and therefore,
$\frac{C^{T} X}{X^{T} G X} \rightarrow 0 \quad$ as $\quad r \rightarrow \infty$
Thus from relations (2), (3) and (4) it follows that
$f(X) \rightarrow-\infty \quad$ as $\quad|X| \rightarrow \infty$
or, $\quad \lim _{|X| \rightarrow \infty} f(X)=-\infty$
Thus we see that $\lim _{|X| \rightarrow \infty} f(X) \neq \infty$ and so maximum of $f(X)$ is not unbounded.

However if $X^{T} G X$ is negative semidefinite, i.e., if $X^{T} G X \leq 0$, then there is an X for which $f(X)=C^{T} X$ and then for $C \neq 0$, it may be possible that $f(X) \rightarrow \infty$ as $|X| \rightarrow \infty$, in which case $f(X)$ can have an unbounded maximum. Again if $\mathrm{C}=0$, then clearly $f(X)$ cannot have an unbounded maximum.

8.3 Computational Procedure for Solving Quadratic Programming Problems (Wolfe's Algorithm)

Let us consider the quadratic programming problem (1), i.e.,
Maximize $\quad f(X)=C^{T} X+\frac{1}{2} X^{T} G X$
subject to

$$
A X \leq b
$$

$$
X \geq 0
$$

in the following form
Maximize $\quad f\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=\sum_{j=1}^{n} c_{j} x_{j}+\frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} x_{j} d_{j k} x_{k}$
subject to $\quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad, i=1,2, \ldots \ldots \ldots . ., m$

$$
x_{j} \geq 0 \quad j=1,2, \ldots \ldots \ldots \ldots, n
$$

where

$$
\begin{array}{cl}
d_{j k}=d_{j k} & \text { for all } j \text { and } k=1,2, \ldots \ldots \ldots \ldots, n \text { and } \\
b_{i} \geq 0 & \text { for all } i=1,2, \ldots \ldots \ldots \ldots \ldots, m .
\end{array}
$$

the Kuhn-Tucker conditions for the above problem are

$$
\begin{equation*}
f_{j}-\sum_{i=1}^{m} \lambda_{i} h_{i j}+\mu_{m+j}=0 \tag{i}
\end{equation*}
$$

$$
; j=1,2, \ldots \ldots \ldots . ., n
$$

$$
\text { or } \quad c_{j}+\frac{1}{2}\left(2 \sum_{k=1}^{n} d_{j k} x_{k}\right)-\sum_{i=1}^{m} \lambda_{i} a_{i j}+\mu_{m+j}=0 \quad ; j=1,2, \ldots \ldots \ldots ., n
$$

(ii) $\quad \lambda_{i}\left(\sum_{i=1}^{n} a_{i j} x_{j}-b\right)=0$

$$
; i=1,2, \ldots \ldots, m .
$$

(iii) $\quad \mu_{m+1}\left(-x_{j}\right)=0$

$$
\text { i.e., } \quad-\mu_{m+j} x_{j}=0 \quad ; i=1,2, \ldots \ldots \ldots, n .
$$

(iv) $\sum_{j=1}^{n} a_{i j} x_{j}-b_{i} \leq 0$
; $i=1,2, \ldots \ldots \ldots \ldots . ., m$.
(v) $\lambda_{i}, \mu_{m+j}, x_{j} \geq 0$

$$
\begin{gathered}
; i=1,2, \ldots \ldots \ldots \ldots ., m . \text { and } \\
j=1,2, \ldots \ldots \ldots . ., n
\end{gathered}
$$

Thus the Kuhn-Tucker conditions for the optimal solution to the quadratic programming problem (1) are
(a) $c_{j}+\sum_{k=1}^{n} d_{j k} x_{k}-\sum_{i=1}^{m} \lambda_{i} a_{i j}+\mu_{m+j}=0$
; $j=1,2, \ldots \ldots \ldots . ., n$
(b) $\quad \lambda_{i}\left(\sum_{i=1}^{n} a_{i j} x_{j}-b_{i}\right)=0$
; $i=1,2, \ldots \ldots \ldots \ldots . .$.
(c) $\quad-x_{j} \mu_{m+1}=0$
; $j=1,2, \ldots \ldots \ldots . ., n$
(d) $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$

$$
\begin{gathered}
; i=1,2, \ldots \ldots \ldots, m . \\
; i=1,2, \ldots \ldots \ldots \ldots . ., m \text {. and } \\
j=1,2, \ldots \ldots \ldots . . ., n
\end{gathered}
$$

If we consider $y_{i} \geq 0$ to be the slack variable introduced in the $i^{\text {th }}$ constraint of (d) so that (d) becomes
(e) $\sum_{j=1}^{n} G_{i j}+x_{j}+y_{i}=b_{i}$
; $i=1,2, \ldots \ldots \ldots \ldots \ldots, m$.
and also assume $u_{j}=\mu_{m+j}$ for
; $j=1,2, \ldots, n$, then
the conditions (b) and (c) become

$$
\begin{array}{lll}
\text { (f) } & \lambda_{i} y_{i}=0 & ; i=1,2, \ldots \ldots \ldots \ldots ., m . \\
\text { (g) } & x_{j} u_{j}=0 & ; j=1,2, \ldots \ldots \ldots \ldots, n
\end{array}
$$

With the newly defined variable u_{j}, the condition (a) can be rewritten as
(h) $\sum_{k=1}^{n} d_{j k} x_{k}-\sum_{i=1}^{m} \lambda_{i} a_{i j}+u_{j}=-c_{j} \quad ; j=1,2, \ldots \ldots \ldots . . ., n$

If the quadratic form $\sum_{j=1}^{n} \sum_{k=1}^{n} x_{j} d_{j k} x_{k}$
is assumed to be negative semidefinite, then the function $f(X)$ is concave in X and hence the conditions (a) to (e) become necessary and sufficient conditions for the optimal solution to the quadratic programming problem (1). Under this assumption we are to find nonnegative variables $\lambda_{i}, y_{i}, x_{j}, u_{j}$ so that conditions (e), (f$),(\mathrm{g})$ and (h) are satisfied and then such x_{j} determines an optimal solution to the given problem (1).

Iterative Procedure

The iterative procedure for the solution of the quadratic programming problem (1) using Wolfe's method can be summarised as follows :

Step I

Introduce slack variable y_{i} in the $i^{t h}$ constraint, $i=1,2, \ldots \ldots \ldots \ldots \mathrm{~m}$ and slack variable y_{m+j} in the $j^{\text {th }}$ nonnegative constraint, $j=1,2, \ldots \ldots \ldots . \mathrm{n}$.

Step II

Construct the Lagrangian function
$L(X, \lambda, U, Y)=f(X)-\sum_{i=1}^{m} \lambda_{i}\left(\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}+y_{i}\right)-\sum_{j=1}^{n} u_{j}\left(-x_{j}+y_{m+j}\right)$
where

$$
\begin{array}{lll}
X=\left(x_{1}, x_{2}, \ldots . ., x_{n}\right) & ; & \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots \ldots, \lambda_{m}\right) \\
U=\left(u_{1}, u_{2}, \ldots . ., u_{n}\right) & ; & Y=\left(y_{1}, y_{2}, \ldots \ldots . ., y_{m+n}\right)
\end{array}
$$

Differentiate the Lagrangian function partially w.r.t. the components of X, λ, U and Y and equate them to zero. Derive the Kuhn-Tucker conditions from the resulting equations.

Step III

Introduce non negative artificial variables $v_{1}, v_{2}, \ldots, v_{n}$ in the Kuhn-Tucker condition
$c_{j}+\sum_{k=1}^{n} d_{j k} x_{k}-\sum_{i=1}^{m} \lambda_{i} a_{i j}+u_{j}=0 \quad$ for $; j=1,2, \ldots \ldots \ldots . ., n$
i.e., construct
$c_{j}+\sum_{k=1}^{n} d_{j k} x_{k}-\sum_{i=1}^{m} \lambda_{i} a_{i j}+u_{j}+v_{j}=0$
and construct an objective function

$$
z=-v_{1}-v_{2} \ldots-v_{n}
$$

Step IV

Obtain an initial basic feasible solution to the linear programming problem
Maximize $\quad z=-v_{1}-v_{2} \ldots-v_{n}$
subject to $\quad \sum_{k=1}^{n} a_{j k} x_{k}-\sum_{i=1}^{m} \lambda_{i} a_{i j}+u_{j}+v_{j}=-c_{j} \quad ; \quad j=1,2, \ldots \ldots \ldots . ., n$

$$
\sum_{j=1}^{n} a_{i j} x_{j}+y_{i}=b_{i} \quad ; \quad i=1,2, \ldots \ldots \ldots \ldots ., m
$$

$$
v_{i}, \lambda_{i}, y_{i}, u_{j}, x_{j} \geq 0 \quad ; \quad i=1,2, \ldots \ldots \ldots \ldots ., m \text { and }
$$

$$
j=1,2, \ldots \ldots \ldots \ldots, n
$$

where

$$
\begin{array}{ll}
\lambda_{i} y_{i}=0 & \text { and } \\
x_{j} u_{j}=0 & \text { for }
\end{array} \quad \begin{aligned}
& i=1,2, \ldots \ldots \ldots \ldots, m \text { and } \\
&
\end{aligned}
$$

Step V

Use two - phase method (simplex method) to obtain an optimal solution of the
problem in Step IV. The optimal solution so obtained is the optimal solution of the given quadratic programming problem (1).

Note

(1) If the given quadratic programming problem is given in minimization form, then convert it into maximization form by suitable modifications in the objective function $f(X)$ Also convert all the constraints into \geq form.
(2) Alongwith the additional conditions of complementary slackness, (i.e., the conditions $\lambda_{i} y_{i}=0$ and $x_{j} u_{j}=0$ for $i=1,2, \ldots \ldots, m$ and $\left.j=1,2, \ldots \ldots, n\right)$ the problem in Step IV becomes a linear programming problem. Thus we need only to modify Simplex algorithm to include the complementary slackness conditions. For example while deciding to introduce y_{i} into the basis, we must ensure that (i) either λ_{i} does not exist in the basis or (ii) λ_{i} is going to be out of the basis when y_{i} enters. This additional check must be performed at every iteration of the Simplex algorithm.
(3) The solution to the given problem is obtained by using Phase - I of the two - phase method. Since our motto is to obtain a feasible solution, it does not require the use of Phase - II. The only important thing is to maintain the complementary slackness conditions $\lambda_{i} y_{i}=0$ and $x_{j} u_{j}=0$ every time. This imply that if λ_{i} remains in the basic solution at positive level, then y_{i} cannot be a basic solution with positive value. In a similar way both x_{j} and u_{j} can not be positive simultaneously.
(4) It must also be observed that the Phase - I of the problem in Step IV will terminate in usual manner with the sum of all artificial variables equal to zero only when the feasible solution to the problem does exist.

Example 1: Solve the following quadratic programming problem by Wolfe's Method :
Min. $f\left(x_{1}, x_{2}\right)=-10 x_{1}-25 x_{2}+10 x_{1}^{2}+x_{2}^{2}+4 x_{1} x_{2}$
subject to $\quad x_{1}+2 x_{2} \leq 10$

$$
\begin{aligned}
& x_{1}+x_{2} \leq 9 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Solution : Changing into maximizatgion form the problem is :

$$
\begin{aligned}
& \operatorname{Max}\left[-f\left(x_{1}, x_{2}\right)\right]=10 x_{1}+25 x_{2}-10 x_{1}^{2}-x_{2}^{2}-4 x_{1} x_{2} \\
& \text { subject to } \\
& x_{1}+2 x_{2} \leq 10 \\
& x_{1}+x_{2} \leq 9 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

The Lagrangian function for the above problem, therefore, is
$L(X, \lambda)=10 x_{1}+25 x_{2}-10 x_{1}^{2}-x_{2}^{2}-4 x_{1} x_{2}+\lambda_{1}\left(10-x_{1}-2 x_{2}\right)+\lambda_{2}\left(9-x_{1}-x_{2}\right)$.
The Kuhn-Tucker conditions for the quadratic programming problem are
$10-20 x_{1}-4 x_{2}-\lambda_{1}-\lambda_{2} \leq 0$
$25-4 x_{1}-2 x_{2}-2 \lambda_{1}-\lambda_{2} \leq 0$
$x_{1}+2 x_{2} \leq 0$
$x_{1}+x_{2} \leq 9$
or,
$10-20 x_{1}-4 x_{2}-\lambda_{1}-\lambda_{2}+u_{1} \quad=0$
$25-4 x_{1}-2 x_{2}-2 \lambda_{1}-\lambda_{2}+u_{2}=0$
$x_{1}+2 x_{2} \quad+y_{1}=10$
$x_{1}+x_{2} \quad+y_{2}=9$
$x_{1}, x_{2}, y_{1}, y_{2}, \lambda_{1}, \lambda_{2}, u_{1}, u_{2} \geq 0$
(on adding slack, variables)
where

$$
\lambda_{1} y_{1}=\lambda_{2} y_{2}=u_{1} x_{1}=u_{2} x_{2}=0
$$

(complementary slackness conditions)
The above can be again written as

$$
\begin{array}{rlrl}
20 x_{1}+4 x_{2}+\lambda_{1}+\lambda_{2}-u_{1} & & =10 \\
4 x_{1}+2 x_{2}+2 \lambda_{1}+\lambda_{2}-u_{2} & =25 \\
x_{1}+2 x_{2} & +y_{1} & =10 \\
x_{1}+x_{2} & +y_{2} & =9 \tag{4}
\end{array}
$$

where $\quad x_{1}, x_{2}, y_{1}, y_{2}, \lambda_{1}, \lambda_{2}, u_{1}, u_{2} \geq 0$
and

$$
\lambda_{1} y_{1}=\lambda_{2} y_{2}=u_{1} x_{1}=u_{2} x_{2}=0
$$

Introducing the artificial variables v_{1}, v_{2} in (1) and (2) respectively, we have to
Maximize $\quad w=-v_{1}-v_{2}$
subject to $\quad 20 x_{1}+4 x_{2}+\lambda_{1}+\lambda_{2}-u_{1} \quad+v_{1}=10$

$$
4 x_{1}+2 x_{2}+2 \lambda_{1}+\lambda_{2} \quad-u_{2} \quad+v_{2}=25
$$

$$
x_{1}+2 x_{2} \quad+y_{1}=10
$$

$$
x_{1}+x_{2} \quad+y_{2}=9
$$

$x_{1}, x_{2}, y_{1}, y_{2}, \lambda_{1}, \lambda_{2}, u_{1}, u_{2}, v_{1}, v_{2} \geq 0$
and

$$
\lambda_{1} y_{1}=\lambda_{2} y_{2}=u_{1} x_{1}=u_{2} x_{2}=0
$$

The Simplex iterations leading to the optimal solution are shown below. The $c_{j}^{\prime s}$ for all the variables except v_{1} and v_{2} are zero, whereas the $c_{j}^{\prime s}$ for v_{1} and v_{2} are -1 each.

Simplex Table -1

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
v_{1}	-1	10	20	4	1	1	-1	0	0	0	1	0
v_{2}	-1	25	4	2	2	1	0	-1	0	0	0	1
y_{1}	0	10	1	2	0	0	0	0	1	0	0	0
y_{2}	0	9	1	1	0	0	0	0	0	1	0	0
	-35	-24	-6	-3	-2	1	1	0	0	0	0	

Simplex Table -2

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
x_{1}	0	$\frac{1}{2}$	1	$\frac{1}{5}$	$\frac{1}{20}$	$\frac{1}{20}$	$-\frac{1}{20}$	0	0	0	$\frac{1}{20}$	0
v_{2}	-1	23	0	$\frac{6}{5}$	$\frac{9}{5}$	$\frac{4}{5}$	$\frac{1}{5}$	-1	0	0	$-\frac{1}{5}$	1
y_{1}	0	$\frac{19}{2}$	0	$\frac{9}{5}$	$-\frac{1}{20}$	$-\frac{1}{20}$	$\frac{1}{20}$	0	1	0	$-\frac{1}{20}$	0
y_{2}	0	$\frac{17}{2}$	0	$\frac{4}{5}$	$-\frac{1}{20}$	$-\frac{1}{20}$	$\frac{1}{20}$	0	0	1	$-\frac{1}{20}$	0

Simplex Table - 3

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
x_{2}	0	$\frac{5}{2}$	5	1	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	0	0	0	$\frac{1}{4}$	0
v_{2}	-1	20	-6	0	$\frac{3}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	-1	0	0	$-\frac{1}{2}$	1
y_{1}	0	5	-9	0	$-\frac{1}{2}$	$-\frac{1}{2}$	$\left[\frac{1}{2}\right.$	0	1	0	$-\frac{1}{2}$	0
y_{2}	0	$\frac{13}{2}$	-4	0	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	0	0	1	$-\frac{1}{4}$	0

Simplex Table - 4

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
x_{2}	0	5	$\frac{1}{2}$	1	0	0	0	0	$\frac{1}{2}$	0	0	0
v_{2}	-1	15	3	0	$\boxed{2}$	1	0	-1	-1	0	0	1
u_{1}	0	10	-18	0	-1	-1	1	0	2	0	-1	0
y_{2}	0	4	$\frac{1}{2}$	0	0	0	0	0	$-\frac{1}{2}$	1	0	0
		-15	-3	0	-2	-1	0	1	1	0	1	0

Simplex Table - 5

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
x_{2}	0	5	$\frac{1}{2}$	1	0	0	0	0	$\frac{1}{2}$	0	0	0
			\square									
λ_{1}	0	$\frac{15}{2}$	$\frac{3}{2}$	0	1	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{2}$	0	0	$\frac{1}{2}$
u_{1}	0	$\frac{35}{2}$	$\frac{33}{2}$	0	0	$-\frac{1}{2}$	1	$-\frac{1}{2}$	$\frac{3}{2}$	0	-1	$\frac{1}{2}$
y_{2}	0	4	$\frac{1}{2}$	0	0	0	0	0	$-\frac{1}{2}$	1	0	0

The optimal solution to the problem, therefore, is $x_{1}=0 ; x_{2}=5$
and \quad Min. $\quad f\left(x_{2}, x_{2}\right)=\operatorname{Max} .\left(-f\left(x_{1}, x_{2}\right)\right)=100$.

Note

In the Simplex table-2, λ_{1} were supposed to enter the basis but as y_{1} was already in the basis and was not in a position to leave the basis, so we did select x_{2} to enter the basis. Similarly in Simplex Table - 3 , λ_{1} and λ_{2} could not enter the basis, since y_{1} and y_{2} were present in the basis, so we selected the next variable u_{1} to enter.

Example-2 Minimize $\quad f\left(x_{1}, x_{2}\right)=-8 x_{1}-10 x_{2}+x_{1}^{2}+2 x_{2}^{2}$
subject to $\quad x_{1}+x_{2} \leq 5$

$$
x_{1}+2 x_{2} \leq 8
$$

$$
x_{1}, x_{2} \geq 0
$$

Solution : Converting into maximization form the problem can be written as
$\operatorname{Max} \quad\left[-f\left(x_{1}, x_{2}\right)\right]=8 x_{1}+10 x_{2}-x_{1}^{2}-2 x_{2}^{2}$
subject to $\quad x_{1}+x_{2} \leq 5$

$$
x_{1}+2 x_{2} \leq 8
$$

$$
x_{1}, x_{2} \geq 0
$$

The Lagragian function, therefore, is

$$
L(X, \lambda)=8 x_{1}+10 x_{2}-x_{1}^{2}-2 x_{2}^{2}+\lambda_{1}\left(5-x_{1}-x_{2}\right)+\lambda_{2}\left(8-x_{1}-2 x_{2}\right) .
$$

The Kuhn-Tucker conditions for the quadratic programming problem are :

$$
\begin{aligned}
8-2 x_{1}-\lambda_{1}-\lambda_{2} & \leq 0 \\
10-4 x_{2}-\lambda_{1}-2 \lambda_{2} & \leq 0 \\
x_{1}+x_{2} & \leq 5 \\
x_{1}+2 x_{2} & \leq 8
\end{aligned}
$$

or, $2 x_{1}+\lambda_{1}+\lambda_{2}-u_{1} \quad=8$

$$
\begin{equation*}
4 x_{2}+\lambda_{1}+2 \lambda_{2} \quad-u_{2} \quad=10 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
x_{1}+x_{2} \quad+y_{1}=5 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
x_{1}+2 x_{2} \quad+y_{2}=8 \tag{3}
\end{equation*}
$$

$x_{1}, x_{2}, y_{1}, y_{2}, \lambda_{1}, \lambda_{2}, u_{1}, u_{2} \geq 0$
where u_{1}, u_{2}, y_{1} and y_{2} are surplus and slack variables. Also
$\lambda_{1} y_{1}=\lambda_{2} y_{2}=u_{1} x_{1}=u_{2} x_{2}=0$ are the complementary slackness conditions.
Now introducing the artificial variables v_{1}, v_{2} in (1) and (2) respectively, we have to
Maximize $w=-v_{1}-v_{2}$
subject to

$$
\begin{array}{rlrl}
2 x_{1}+\lambda_{1}+\lambda_{2}-u_{1} & & +v_{1} & \\
4 x_{2}+\lambda_{1}+2 \lambda_{2} & -u_{2} & & \\
x_{1}+x_{2} & & +y_{1} & \\
x_{1}+2 x_{2} & & =8 \\
x_{1}, x_{2}, y_{1}, y_{2}, \lambda_{1}, \lambda_{2}, u_{1}, u_{2}, v_{1}, v_{2} \geq 0 & & +y_{2} & \\
\text { and } \lambda_{1} y_{1}=\lambda_{2} y_{2}=u_{1} x_{1}=u_{2} x_{2}=0 . & & =8 \\
& & & \\
& & &
\end{array}
$$

Simplex Table - 1

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
v_{1}	-1	8	2	0	1	1	-1	0	0	0	1	0
v_{2}	-1	10	0	4	1	2	0	-1	0	0	0	$1 \rightarrow$
y_{1}	0	5	1	1	0	0	0	0	1	0	0	0
y_{2}	0	8	1	2	0	0	0	0	0	1	0	0
	-18	-2	\uparrow	-2	-3	1	1	0	0	0	0	

Simplex Table -2

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
v_{1}	-1	8	2	0	1	1	-1	0	0	0	1	0
x_{2}	0	$\frac{5}{2}$	0	1	$\frac{1}{4}$	$\frac{1}{2}$	0	$-\frac{1}{4}$	0	0	0	$\frac{1}{4}$
y_{1}	0	$\frac{5}{2}$	$\boxed{1}$	0	$-\frac{1}{4}$	$-\frac{1}{2}$	0	$\frac{1}{4}$	1	0	0	$-\frac{1}{4} \rightarrow$
y_{2}	0	3	1	0	$-\frac{1}{2}$	-1	0	$\frac{1}{2}$	0	1	0	$-\frac{1}{2}$

Simplex Table -3

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
v_{1}	-1	3	0	0	$\frac{3}{2}$	2	-1	$-\frac{1}{2}$	-2	0	1	$\frac{1}{2}$
x_{2}	0	$\frac{5}{2}$	0	1	$\frac{1}{4}$	$\frac{1}{2}$	0	$-\frac{1}{4}$	0	0	0	$\frac{1}{4}$
x_{1}	0	$\frac{5}{2}$	1	0	$-\frac{1}{4}$	$-\frac{1}{2}$	0	$\frac{1}{4}$	1	0	0	$-\frac{1}{4}$
y_{2}	0	$\frac{1}{2}$	0	0	$-\frac{1}{4}$	$-\frac{1}{2}$	0	$\frac{1}{4}$	-1	1	0	$-\frac{1}{4}$

Simplex Table -4

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
λ_{1}	0	2	0	0	1	$\frac{4}{3}$	$-\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{4}{3}$	0	$\frac{2}{3}$	$\frac{1}{3}$
x_{2}	0	2	0	1	0	$\frac{1}{6}$	$\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	0	$-\frac{1}{6}$	$\frac{1}{6}$
x_{1}	0	3	1	0	0	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{6}$	$\frac{2}{3}$	0	$\frac{1}{6}$	$-\frac{1}{6}$
y_{2}	0	1	0	0	0	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{6}$	$-\frac{4}{3}$	1	$\frac{1}{6}$	$-\frac{1}{6}$
		0	0	0	0	0	0	0	0	0	1	1

The optimal solution is $x_{1}=3 ; x_{2}=2$ and
Min. $f\left(x_{1}, x_{2}\right)=\operatorname{Max} .\left[-f\left(x_{1}, x_{2}\right)\right]=-27$
Example-3 Solve the following quadratic programming problem using Wolfe's method.
Min. $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{1} x_{2}+2 x_{2}^{2}-x_{1}-x_{2}$
subject to $\quad 2 x_{1}+x_{2} \leq 1$

$$
x_{1}, x_{2} \geq 0
$$

Solution : Changing the given problem into the maximization form, we are to
Max. $\left[-f\left(x_{1}, x_{2}\right)\right]=-x_{1}^{2}+x_{1} x_{2}-2 x_{2}^{2}+x_{1}+x_{2}$
subject to

$$
\begin{aligned}
& 2 x_{1}+x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

The Lagrangian function for the problem is
$L(X, \lambda)=-x_{1}^{2}+x_{1} x_{2}-2 x_{2}^{2}+x_{1}+x_{2}+\lambda\left(1-2 x_{1}-x_{2}\right)$
The Kuhn-Tucker conditions are

$$
\begin{aligned}
1-2 x_{1}+x_{2}-2 \lambda & \leq 0 \\
1+x_{1}-4 x_{2}-\lambda & \leq 0 \\
2 x_{1}+x_{2} & \leq 0
\end{aligned}
$$

which, on introducing slack and surplus variables, can be written as

$$
\begin{equation*}
2 x_{1}-x_{2}+2 \lambda-u_{1} \quad=1 \tag{1}
\end{equation*}
$$

$$
\left.\begin{array}{lll}
-x_{1}+4 x_{2}+\lambda & -u_{2} & \\
2 x_{1}+x_{2} & & +y_{1}
\end{array}\right)=1
$$

and $\quad \lambda y=u_{1} x_{1}=u_{2} x_{2}=0$
Introducing the artificial variables v_{1} and v_{2} in (1) and (2) respectively, we are to

$$
\begin{array}{lllll}
\text { maximize } & w=-v_{1}-v_{2} & & & \\
\text { subject to } & 2 x_{1}-x_{2}+2 \lambda-u_{1} & & +v_{1} & \\
& -x_{1}+4 x_{2}+\lambda & -u_{2} & & +u_{2}
\end{array}=1
$$

Simplex Table - 1

basic variable	C_{B}	b	x_{1}	x_{2}	λ	u_{1}	u_{2}	y	v_{1}	v_{2}
v_{1}	-1	1	2	-1	2	-1	0	0	1	0
v_{2}	-1	1	-1	4	1	0	-1	0	0	1
y	0	1	2	1	0	0	0	1	0	0
		-2	-1	-3	-3	1	1	0	0	0
				\uparrow						

Simplex Table -2

basic variable	C_{B}	b	x_{1}	x_{2}	λ	u_{1}	u_{2}	y	v_{1}	v_{2}
v_{1}	-1	$\frac{5}{4}$	$\frac{7}{4}$	0	$\frac{9}{4}$	-1	$-\frac{1}{4}$	0	1	$\frac{1}{4}$
x_{2}	0	$\frac{1}{4}$	$-\frac{1}{4}$	1	$\frac{1}{4}$	0	$-\frac{1}{4}$	0	0	$\frac{1}{4}$
y	0	$\frac{3}{4}$	$\frac{9}{4}$	0	$-\frac{1}{4}$	0	$\frac{1}{4}$	1	0	$-\frac{1}{4}$
		$-\frac{5}{4}$	$-\frac{7}{4}$	0	$-\frac{9}{4}$	1	$\frac{1}{4}$	0	-1	$-\frac{1}{4}$

In the above table, although λ must enter the basis but y does not go out of the basis. Since both λ and y cannot remain simultaneously in the basis, therefore instead of λ we select next variable x_{1} to enter the basis (since u_{1} is not in the basis).

Simplex Table -3

basic variable	C_{B}	b	x_{1}	x_{2}	λ	u_{1}	u_{2}	y	v_{1}	v_{2}
v_{1}	-1	$\frac{2}{3}$	0	0	$\frac{-22}{9}$	-1	$-\frac{4}{9}$	$-\frac{7}{9}$	1	$\frac{4}{9}$
x_{2}	0	$\frac{1}{3}$	0	1	$\frac{2}{9}$	0	$-\frac{2}{9}$	$\frac{1}{9}$	0	$\frac{2}{9}$
x_{1}	0	$\frac{1}{3}$	1	0	$-\frac{1}{9}$	0	$\frac{1}{9}$	$\frac{4}{9}$	0	$-\frac{1}{9}$
		$-\frac{2}{3}$	0	0	$-\frac{22}{9}$	1	$\frac{4}{9}$	$\frac{7}{9}$	0	$-\frac{4}{9}$

Simplex Table -4

basic variable	C_{B}	b	x_{1}	x_{2}	λ	u_{1}	u_{2}	y	v_{1}	v_{2}
λ	0	$\frac{3}{11}$	0	0	1	$\frac{-9}{22}$	$\frac{-2}{11}$	$\frac{-7}{22}$	$\frac{9}{22}$	$\frac{2}{11}$
x_{2}	0	$\frac{3}{11}$	0	1	0	$\frac{1}{11}$	$\frac{-2}{11}$	$\frac{2}{11}$	$\frac{-1}{11}$	$\frac{2}{11}$
x_{1}	0	$\frac{4}{11}$	1	0	0	$\frac{-1}{22}$	$\frac{1}{11}$	$\frac{9}{22}$	$\frac{1}{22}$	$\frac{-1}{11}$
	0	0	0	0	0	0	0	1	1	

The optimal solution to the problem is $x_{1}=\frac{4}{11}, x_{2}=\frac{3}{11}$ and

Min. $f\left(x_{1}, x_{2}\right)=\operatorname{Max} .\left[-f\left(x_{1}, x_{2}\right)\right]=\frac{-5}{11}$.
Example 4 : Solve by Wolfe's Method
Max. $f\left(x_{1}, x_{2}\right)=2 x_{1}+x_{2}-x_{1}^{2}$
subject to $\quad 2 x_{1}+3 x_{2} \leq 6$

$$
\begin{aligned}
& 2 x_{1}+x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Solution : The given quadratic problem is given in the maximization form. The Lagragian function is :

$$
L(X, \lambda)=2 x_{1}+x_{2}-x_{1}^{2}+\lambda_{1}\left(6-2 x_{1}-3 x_{2}\right)+\lambda_{2}\left(4-2 x_{1}-x_{2}\right)
$$

and so the Kuhn-Tucker conditions are

$$
\begin{aligned}
2-2 x_{1}-2 \lambda_{1}-2 \lambda_{2} & \leq 0 \\
1-3 \lambda_{1}-\lambda_{2} & \leq 0 \\
2 x_{1}+3 x_{2} & \leq 6 \\
2 x_{1}+x_{2} & \leq 4
\end{aligned}
$$

Introducing slack and surplus variables the above conditions can be written as

$$
\begin{array}{lll}
2 x_{1}+2 \lambda_{1}+2 \lambda_{2}-u_{1} & & =2 \\
3 \lambda_{1}+\lambda_{2} & -u_{2} & =1 \\
2 x_{1}+3 x_{2} & +y_{1} & =6 \\
2 x_{1}+x_{2} & & +y_{2} \tag{4}
\end{array}=4
$$

where $x_{1}, x_{2}, \lambda_{1}, \lambda_{2}, u_{1}, u_{2}, y_{1}, y_{2} \geq 0$
and also $\quad \lambda_{1} y_{1}=\lambda_{2} y_{2}=u_{1} x_{1}=u_{2} x_{2}=0$
Now n add artificial variables v_{1} and v_{2} in condition (1) and (2) respectively, so that the problem is to

$$
\begin{array}{llll}
\operatorname{maximize} & \begin{array}{l}
w=-v_{1}-v_{2} \\
\\
\text { subject to }
\end{array} & \begin{array}{llll}
2 x_{1}+2 \lambda_{1}+2 \lambda_{2}-u_{1} & +v_{1} & & \\
3 \lambda_{1}+\lambda_{2} & -u_{2} & & +v_{2}
\end{array}=1 \\
2 x_{1}+3 x_{2} & & +y_{1} & =6 \\
2 x_{1}+x_{2} & & & +y_{2}
\end{array}=4
$$

satisfying the condition

$$
x_{1}, x_{2}, \lambda_{1}, \lambda_{2}, u_{1} u_{2}, y_{1}, y_{2}, v_{1}, v_{2} \geq 0
$$

and $\lambda_{1} y_{1}=\lambda_{2} y_{2}=u_{1} x_{1}=u_{2} x_{2}=0$ and where the $c_{j}{ }^{\prime} s$ for v_{1} and v_{2} are each equal to -1 whereas for all other variables $c_{j}{ }^{\prime} s$ are zero.

Simplex Table -1

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
v_{1}	-1	2	2	0	2	2	-1	0	0	0	1	0
v_{2}	-1	1	0	0	3	1	0	-1	0	0	0	1
y_{1}	0	6	2	3	0	0	0	0	1	0	0	0
y_{2}	0	4	2	1	0	0	0	0	0	1	0	0

Simplex Table -2

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
x_{1}	0	1	1	0	1	1	$\frac{-1}{2}$	0	0	0	$\frac{1}{2}$	0
v_{2}	-1	1	0	0	3	1	0	-1	0	0	0	1
y_{1}	0	4	0	$\boxed{3}$	-2	-2	1	0	1	0	0	0
y_{2}	0	2	0	1	-2	-2	1	0	0	1	-1	0
		-1	0	0	-3	-1	0	1	0	0	1	0

Simplex Table -3

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
x_{1}	0	1	1	0	1	1	$\frac{-1}{2}$	0	0	0	$\frac{1}{2}$	0
v_{2}	-1	1	0	0	3	1	0	-1	0	0	0	1
x_{2}	0	$\frac{4}{3}$	0	1	$\frac{-2}{3}$	$\frac{-2}{3}$	$\frac{1}{3}$	0	$\frac{1}{3}$	0	0	0
y_{2}	0	$\frac{2}{3}$	0	0	$\frac{-4}{3}$	$\frac{-4}{3}$	$\frac{2}{3}$	0	$\frac{-1}{3}$	1	-1	0

Simplex Table -4

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
x_{1}	0	$\frac{2}{3}$	1	0	0	$\frac{2}{3}$	$\frac{-1}{2}$	$\frac{1}{3}$	0	0	$\frac{1}{2}$	$\frac{-1}{3}$
λ_{1}	0	$\frac{1}{3}$	0	0	1	$\frac{1}{3}$	0	$\frac{-1}{3}$	0	0	0	$\frac{1}{3}$
x_{2}	0	$\frac{14}{9}$	0	1	0	$\frac{-4}{9}$	$\frac{1}{3}$	$\frac{-2}{9}$	$\frac{1}{3}$	0	0	$\frac{2}{9}$
y_{2}	0	$\frac{10}{9}$	0	0	0	$\frac{-8}{9}$	$\frac{2}{3}$	$\frac{-4}{9}$	$\frac{-1}{3}$	1	-1	$\frac{4}{9}$

The optimal solution is $x_{1}=\frac{2}{3} ; x_{2}=\frac{14}{9}$ and max. $f\left(x_{1}, x_{2}\right)=\frac{22}{9}$

Example 5

Solve the following quadratic programming problem by Wolfe's method :
Minimize $\quad f\left(x_{1}, x_{2}\right)=-4 x_{1}+x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}$
subject to $\quad 2 x_{1}+x_{2} \leq 6$

$$
\begin{aligned}
& x_{1}-4 x_{2} \leq 0 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Solution :

On changing the given programming problem in maximization form, we have to
Max. $\left[-f\left(x_{1}, x_{2}\right)\right]=4 x_{1}-x_{1}^{2}+2 x_{1} x_{2}-2 x_{2}^{2}$
subject to $\quad 2 x_{1}+x_{2} \leq 6$

$$
\begin{aligned}
x_{1}-4 x_{2} & \leq 0 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

The Lagrangian function is
$L(X, \lambda)=4 x_{1}-x_{1}^{2}+2 x_{1} x_{2}-2 x_{2}^{2}+\lambda_{1}\left(6-2 x_{1}-x_{2}\right)+\lambda_{2}\left(-x_{1}+4 x_{2}\right)$
Thus the Kuhn-Tucker Condition are
$4-2 x_{1}+2 x_{2}-2 \lambda_{1}-\lambda_{2} \leq 0$

$$
\begin{aligned}
2 x_{1}-4 x_{2}-\lambda_{1}+4 \lambda_{2} & \leq 0 \\
2 x_{1}+x_{2} & \leq 6 \\
x_{1}-4 x_{2} & \leq 0
\end{aligned}
$$

Introducing slack and surplus variables the above conditions can be written as :

$$
\left.\begin{array}{llll}
2 x_{1}-2 x_{2}+2 \lambda_{1}+\lambda_{1}-u_{1} & & & =4 \\
-2 x_{1}+4 x_{2}+\lambda_{1}-4 \lambda_{2} & -u_{2} & & \\
2 x_{1}+x_{2} & & +y_{1} & \\
x_{1}-4 x_{2} & & & =0 \tag{4}\\
& & & +y_{2}
\end{array}\right)=0
$$

where $\quad x_{1}, x_{2}, \lambda_{1}, \lambda_{2}, u_{1}, u_{2}, y_{2}, y_{2} \geq 0$
and also

$$
\lambda_{1} y_{1}=\lambda_{2} y_{2}=u_{1} x_{1}=u_{2} x_{2}=0
$$

Adding artificial variables in condition (1) and (2) we have to

$$
\begin{array}{llll}
\text { maximize } & w=-v_{1}-v_{2} & & \\
\text { subject to } & 2 x_{1}-2 x_{2}+2 \lambda_{1}+\lambda_{2}-u_{1} & +v_{1} & \\
-2 x_{1}+4 x_{2}+\lambda_{1}-4 \lambda_{2} & -u_{2} & & +v_{2} \\
& =0 \\
2 x_{1}+x_{2} & +y_{1} & =6 \\
x_{1}-4 x_{2} & & +y_{2} & =0 \\
x_{1}, x_{2}, y_{1}, y_{2}, \lambda_{1}, \lambda_{2}, u_{1}, u_{2}, v_{1}, v_{2} \geq 0 \text { and } & & & \\
\lambda_{1} y_{1}=\lambda_{2} y_{2}=u_{1} x_{1}=u_{2} x_{2}=0 & &
\end{array}
$$

where the $c_{j}^{\prime s}$ corresponding to the artificial variables v_{1} and v_{2} are -1 each and corresponding to all other variables are 0 .

Simplex Table -1

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
v_{1}	-1	4	2	-2	2	1	-1	0	0	0	1	0
v_{2}	-1	0	-2	4	1	-4	0	-1	0	0	0	1
y_{1}	0	6	2	1	0	0	0	0	1	0	0	0
y_{2}	0	0	1	-4	0	0	0	0	0	1	0	0
		-4	0	-2	-3	3	1	1	0	0	0	0

Simplex Table -2

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
v_{1}	-1	4	1	0	$\frac{5}{2}$	-1	-1	$\frac{-1}{2}$	0	0	1	$\frac{1}{2}$
x_{2}	0	0	$\frac{-1}{2}$	1	$\frac{1}{4}$	-1	0	$\frac{-1}{4}$	0	0	0	$\frac{1}{4}$
y_{1}	0	6	$\frac{5}{2}$	0	$\frac{-1}{4}$	1	0	$\frac{1}{4}$	1	0	0	$\frac{-1}{4} \rightarrow$
y_{2}	0	0	-1	0	1	-4	0	-1	0	1	0	1
		-4	-1	0	$\frac{-5}{2}$	1	1	$\frac{1}{2}$	0	0	0	$\frac{1}{2}$

Simplex Table -3

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
v_{1}	-1	$\frac{8}{5}$	0	0	$\frac{13}{5}$	$\frac{-7}{5}$	-1	$\frac{-3}{5}$	$\frac{-2}{5}$	0	1	$\frac{3}{5} \rightarrow$
x_{2}	0	$\frac{6}{5}$	0	1	$\frac{1}{5}$	$\frac{-4}{5}$	0	$\frac{-1}{5}$	$\frac{1}{5}$	0	0	$\frac{1}{5}$
x_{1}	0	$\frac{12}{5}$	1	0	$\frac{-1}{10}$	$\frac{2}{5}$	0	$\frac{1}{10}$	$\frac{2}{5}$	0	0	$\frac{-1}{10}$
y_{2}	0	$\frac{12}{5}$	0	0	$\frac{9}{10}$	$\frac{-18}{5}$	0	$\frac{-9}{10}$	$\frac{2}{5}$	1	0	$\frac{9}{10}$

Simplex Table -4

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
λ_{1}	0	$\frac{8}{13}$	0	0	1	$\frac{-7}{13}$	$\frac{-5}{13}$	$\frac{-3}{13}$	$\frac{-2}{13}$	0	$\frac{5}{13}$	$\frac{3}{13}$
x_{2}	0	$\frac{14}{13}$	0	1	0	$\frac{-9}{13}$	$\frac{1}{13}$	$\frac{-2}{13}$	$\frac{3}{13}$	0	$\frac{-1}{13}$	$\frac{2}{13}$
x_{1}	0	$\frac{32}{13}$	1	0	0	$\frac{9}{26}$	$\frac{-1}{26}$	$\frac{1}{13}$	$\frac{5}{13}$	0	$\frac{1}{26}$	$\frac{-1}{13}$
y_{2}	0	$\frac{24}{13}$	0	0	0	$\frac{-81}{26}$	$\frac{9}{26}$	$\frac{-9}{13}$	$\frac{7}{13}$	1	$\frac{-9}{26}$	$\frac{9}{13}$

The optimal solution is $x_{1}=\frac{32}{13}, x_{2}=\frac{14}{13}$ and
Min. $f\left(x_{1}, x_{2}\right)=\operatorname{Max.}\left[-f\left(x_{1}, x_{2}\right)\right]=-\frac{88}{13}$.

Example 6

Use Wolfe's method to solve the following quadratic programming problem :
Minimize $\quad f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-2 x_{1}-4 x_{2}$
subject to $\quad x_{1}+4 x_{2} \leq 5$

$$
\begin{aligned}
2 x_{1}+3 x_{2} & \leq 6 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Solution Converting the given problem to maximization form, we have to
$\max .\left[-f\left(x_{1}, x_{2}\right)\right]=-x_{1}^{2}-x_{2}^{2}+2 x_{1}+4 x_{2}$
subject to $\quad x_{1}+4 x_{2} \leq 5$

$$
\begin{aligned}
2 x_{1}+3 x_{2} & \leq 6 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

The Lagrangian for the given problem, therefore, is
$L(X, \lambda)=-x_{1}^{2}-x_{2}^{2}+2 x_{1}+4 x_{2}+\lambda_{1}\left(5-x_{1}-4 x_{2}\right)+\lambda_{2}\left(6-2 x_{1}-3 x_{2}\right)$
Thus The Kuhn-Tucker condition for the problem are :

$$
\begin{aligned}
2-2 x_{1}-\lambda_{1}-2 \lambda_{2} & \leq 0 \\
4-2 x_{2}-4 \lambda_{1}-3 \lambda_{2} & \leq 0 \\
x_{1}+4 x_{2} & \leq 5 \\
2 x_{1}+3 x_{2} & \leq 6
\end{aligned}
$$

On adding, slack and surplus variables the above conditions become

$$
\begin{array}{lrl}
2 x_{1}+\lambda_{1}+2 \lambda_{2}-u_{1} & =2 \\
2 x_{2}+4 \lambda_{1}+3 \lambda_{2} & -u_{2} & =4 \\
x_{1}+4 x_{2} & +y_{1} & =5 \\
2 x_{1}+3 x_{2} & +y_{2} & =6 \\
x_{1}, x_{2}, \lambda_{1}, \lambda_{2}, u_{1}, u_{2}, y_{1}, y_{2} \geq 0 & \text { and also } & \\
\lambda_{1} y_{1}=\lambda_{2} y_{2}=u_{1} x_{1}=u_{2} x_{2}=0 &
\end{array}
$$

Introducing artificial variables v_{1} and v_{2} to the conditions (1) and (2) respectively we have to maximize $w=-v_{1}-v_{2}$
subject to

$$
\begin{array}{llll}
2 x_{1}+\lambda_{1}+2 \lambda_{2}-u_{1} & & +v_{1} & \\
2 x_{2}+4 \lambda_{1}+3 \lambda_{2} & -u_{2} & & \\
x_{1}+4 x_{2} & & +v_{2} & =4 \\
2 x_{1}+3 x_{2} & +y_{1} & & \\
x_{1}, x_{2}, y_{1}, y_{2}, \lambda_{1}, \lambda_{2}, u_{1}, u_{2}, v_{1}, v_{2} \geq 0 & & =5 \\
& +y_{2} & & =6
\end{array}
$$

where $\lambda_{1} y_{1}=\lambda_{2} y_{2}=u_{1} x_{1}=u_{2} x_{2}=0$
and the $C^{s s}$ corresponding to the artificial variables are -1 where as corresponding to all the others variables are 0 .

Simplex Table - 1

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
v_{1}	-1	2	2	0	1	2	-1	0	0	0	1	0
v_{2}	-1	4	0	2	4	3	0	-1	0	0	0	$1 \rightarrow$
y_{1}	0	5	1	4	0	0	0	0	1	0	0	0
y_{2}	0	6	2	3	0	0	0	0	0	1	0	0

Simplex Table -2

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
x_{1}	0	1	1	0	$\frac{1}{2}$	1	$\frac{-1}{2}$	0	0	0	$\frac{1}{2}$	0
v_{2}	-1	4	0	2	4	3	0	-1	0	0	0	$1 \rightarrow$
y_{1}	0	4	0	4	$\frac{-1}{2}$	-1	$\frac{1}{2}$	0	1	0	$\frac{-1}{2}$	0
y_{2}	0	4	0	3	1	-2	1	0	0	1	-1	0

Simplex Table - 3

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
x_{1}	0	1	1	0	$\frac{1}{2}$	1	$\frac{-1}{2}$	0	0	0	$\frac{1}{2}$	0
x_{2}	0	2	0	1	2	$\frac{3}{2}$	0	$\frac{-1}{2}$	0	0	0	$\frac{1}{2}$
y_{1}	0	-4	0	0	$\frac{-17}{2}$	-7	$\frac{1}{2}$	2	1	0	$\frac{-1}{2}$	$-2 \rightarrow$
y_{2}	0	-2	0	0	-7	$\frac{-13}{2}$	1	$\frac{3}{2}$	0	1	-1	$\frac{-3}{2}$

Since y_{1} and y_{2} appear in the solution at negative level, they must be eliminated. Hence introduce λ_{1} and drop y_{1}.

Simplex Table -4

basic variable	C_{B}	b	x_{1}	x_{2}	λ_{1}	λ_{2}	u_{1}	u_{2}	y_{1}	y_{2}	v_{1}	v_{2}
x_{1}	0	$\frac{13}{17}$	1	0	0	$\frac{10}{17}$	$\frac{-8}{17}$	$\frac{2}{17}$	$\frac{1}{17}$	0	$\frac{8}{17}$	$\frac{-2}{17}$
x_{2}	0	$\frac{18}{17}$	0	1	0	$\frac{-5}{34}$	$\frac{-2}{17}$	$\frac{-1}{34}$	$\frac{4}{17}$	0	$\frac{-2}{17}$	$\frac{1}{34}$
λ_{1}	0	$\frac{8}{17}$	0	0	1	$\frac{14}{17}$	$\frac{-1}{17}$	$\frac{-4}{17}$	$\frac{-2}{17}$	0	$\frac{1}{17}$	$\frac{4}{17}$
y_{2}	0	$\frac{22}{17}$	0	0	0	$\frac{-25}{34}$	$\frac{10}{17}$	$\frac{-5}{34}$	$\frac{-14}{17}$	1	$\frac{-10}{17}$	$\frac{-6}{17}$

The optimal solution is $x_{1}=\frac{13}{17}, x_{2}=\frac{18}{17}$
and $\min f\left(x_{1}, x_{2}\right)=\left(\frac{13}{17}\right)^{2}+\left(\frac{18}{17}\right)^{2}-2\left(\frac{13}{17}\right)-4\left(\frac{18}{17}\right)$

$$
=-\frac{69}{17}
$$

8.4 Beales Method for solving Quadratic Programming Problems

Unlike worlfe's method for solving the quadratic programming problem. the Beale's method does not require the use of Kuhn-Tucker conditions. Instead Beale's method involves the partitioning of variables into basic and non basic variables only.

The Beale's algorithm for solving the quadratic programming problem can be summa sized in the following steps :

Suppose that we have the quadratic programming problem.
Maximize $f(X)=C^{T} X+\frac{1}{2} X^{T} G X$
subject to

$$
\begin{gathered}
A X \leq,=, \geq b \\
X \leq 0
\end{gathered}
$$

where X and $\mathrm{C} \in \mathrm{E}^{\mathrm{n}}, \mathrm{b} \in \mathrm{E}^{\mathrm{m}}, \mathrm{G}$ is an $\mathrm{n} \times \mathrm{n}$ symmetric matrix and A is an $\mathrm{m} \times \mathrm{n}$ matrix.

Step I

Convert the given objective function of the problem to maximization form (if it is given in the minimization form). Convert all the inequality constraints into equalities by introducing slack and surplus variables $u^{\prime s}$. The given quadratic programming problem has now been put into standard form.

Step-2

Select arbitrarily any m variables as basic variables, provided the matrix corresponding to these m variables is non singular. The remaining $\mathrm{n}-\mathrm{m}$ variables thus become non basic variables. Denote the basic variables by

$$
\begin{aligned}
& X_{B}=\left(x_{B_{1}}, x_{B_{2}}, \ldots, x_{B_{m}}\right) \text { and the nonbasic variables by } \\
& X_{N B}=\left(x_{N B_{1}}, x_{N B_{2}}, \ldots, x_{N B_{n-m}}\right) .
\end{aligned}
$$

Step-3

Express each basic variable $x_{B_{i}}$ entirely in terms of nonbasic variables $x_{N B_{k}}{ }^{\prime} s$ (and $u_{j}{ }^{\prime} s$ if any) using the given constraints. Now express the objective function $f(X)$ also in terms of the nonbasic variables $X_{N B_{k}}$'s (and $u_{i}{ }^{\prime} s$ if any).

step-4

Obtain the partial derivatives of $f(X)$ formulated above w.r.t. the nonbasic variables $x_{N B_{k}}{ }^{\prime} s$ and examine its nature at the point $X_{N B}=0$.
(i) If $\left(\frac{\partial f(X)}{\partial x_{N B_{k}}}\right)_{\substack{X_{N B=0} \\ u=0}}>0$ for at least one k , then choose the most positive one. The corresponding nonbasic variable will enter the basis.
(ii) If $\left(\frac{\partial f(X)}{\partial x_{N B_{k}}}\right)_{\substack{X_{N B=0} \\ u=0}}<0$ for each $k=1,2, \ldots, n-m$ but $\left(\frac{\partial f(X)}{\partial u_{i}}\right)_{\substack{X_{N B=0} \\ u=0}} \neq 0$ for some $i=r$, then introduce a new nonbasic variable u_{j}, defined by $u_{j}=\frac{1}{2} \frac{\partial f}{\partial u_{r}}$ and treat u_{r} as a basic variable (it will be ignored later). Go to step-3.
(iii) If $\left(\frac{\partial f(X)}{\partial X_{N_{B_{K}}}}\right)_{\substack{X_{N_{B}=0} \\ u=0}}=0$, for each j,
the current basic solution is optimal. Go to step -7.

Step-5

Let $x_{N B_{i}}=x_{k}$ be the entering variable identified in step (1). Now compute the minimu m of the ratios

$$
\min .\left\{\frac{a_{h o}}{\left|a_{h k}\right|}, \frac{v_{k o}}{v_{k k}}\right\}
$$

for all the basic variables x_{h}, where $a_{h o}$ is a constant term and $a_{h k}$ is the coefficient of x_{k} in the expression of the basic variable x_{h} when expressed in terms of nonbasic variables and $v_{k o}$ is the constant term and $v_{k k}$ is the coefficient of x_{k} in $\frac{\partial f}{\partial x_{k}}$

Now if
(i) the minimum of the ratio occurs for some $\frac{a_{h o}}{\left|a_{h k}\right|}$, the corresponding basic variable x_{h} leaves the basis.
(ii) the minimum of the ratio occurs for some $\frac{v_{k o}}{\left|v_{k k}\right|}$, then an additional nonbasic variable, called a free variable defined by

$$
u_{i}=\frac{1}{2} \frac{\partial f}{\partial x_{k}}\left(u_{i} \text { is unrestricted in sign }\right)
$$

is introduced. This becomes an additional constraint equation.
Step - $6 \quad$ Go to step-3 and repeat the procedure until an optimal basic solution is attained.
Step-7 Determine the optimal value of X_{B} and $f(X)$ by setting $X_{N B}=0$, in the expression obtained in step-3
Example-7 Use Beale's method to solve the quadratic programming problem

$$
\begin{array}{ll}
\text { Minimize } & f\left(x_{1}, x_{2}\right)=6-6 x_{1}+2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2} \\
\text { subject to } & x_{1}+x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Solution : On changing the given problem into maximization form and introducting g slack variable x_{3} we get the problem in the following form:

Max. $f(X)=\operatorname{Max}\left[-f\left(x_{1}, x_{2}\right)\right]=-6+6 x_{1}-2 x_{1}^{2}+2 x_{1} x_{2}-2 x_{2}^{2}$
subject to $x_{1}+x_{2}+x_{3}=2$

$$
x_{1}, x_{2}, x_{3} \geq 0 .
$$

Let us select x_{3} arbitrarily as the basic variable (as there is only one constraint, therefore there will be only one basic variable for the current step)

Then we have

$$
X_{B}=\left(X_{3}\right), X_{N B}=\left(X_{1}, X_{2}\right)
$$

Expressing the basic variable X_{B} and $f\left(x_{1}, x_{2}\right)$ in terms of $X_{N B}$, we have

$$
\begin{equation*}
x_{3}=2-x_{1}-x_{2} \tag{1}
\end{equation*}
$$

and $\quad f=-6+6 x_{1}-2 x_{1}^{2}+2 x_{1} x_{2}-2 x_{2}^{2}$
The partial derivatives w.r.t. $X_{N B}$ are

$$
\begin{align*}
& \left(\frac{\partial f}{\partial x_{1}}\right)_{X_{N_{B}}=0}=\left(6-4 x_{1}+2 x_{2}\right)_{\substack{x_{1}=0 \\
x_{2}=0}}=6 \tag{3}\\
& \left(\frac{\partial f}{\partial x_{1}}\right)_{X_{N_{B}}=0}=\left(2 x_{1}-4 x_{2}\right)_{\substack{x_{1}=0 \\
x_{2}=0}}=0 \tag{4}
\end{align*}
$$

Since $\left(\frac{\partial f}{\partial x_{1}}\right)_{x_{N_{B}}}=6>0$ (most positive), there fore variable x_{l} enters the basis.
Now min $\left\{\frac{a_{30}}{\left|\alpha_{31}\right|}, \frac{v_{10}}{\left|v_{11}\right|}\right\}=\min \left\{\frac{2}{|-1|}, \frac{6}{|-4|}\right\}=\frac{6}{4}$
[Note that α_{30} is the constant 2 in (1) and a_{31} is -1 , the coefficient of x_{1} in the same equation. Similarly v_{10} is the constant 6 in (3) and v_{11} is -4 , which is the coefficient of x_{1} in this equation]

Since this minimum, i.e., $\frac{6}{4}$ corresponds to $\frac{v_{10}}{\left|v_{11}\right|}$, therefore we cannot remove x_{3} from the basis. We, therefore, introduce a new non basic variable u_{1} defined by

$$
\begin{equation*}
u_{1}=\frac{1}{2} \frac{\partial f_{k}}{\partial x_{1}}=3-2 x_{1}+x_{2} \tag{5}
\end{equation*}
$$

Then the current basis is $X_{B}=\left(x_{3}, x_{1}\right)$ and $X_{N B}=\left(x_{2}, u_{1}\right)$.
We again express the current basis X_{B} and $f(X)$ in terms ox $X_{N B}$.

$$
\begin{align*}
& x_{1}=\frac{1}{2}+\frac{1}{2} u_{1}+\frac{1}{2} x_{2} \quad[\text { from }(5)] \tag{6}\\
& x_{3}=\frac{1}{2}+\frac{1}{2} u_{1}-\frac{3}{2} x_{2} \quad[\text { from }(1)] \tag{7}
\end{align*}
$$

and $f=-6+\left(\frac{3}{2}-\frac{1}{2} u_{1}+\frac{1}{2} x_{2}\right)\left[6-2\left(\frac{3}{2}-\frac{1}{2} u_{1}+\frac{1}{2} x_{2}\right)+2 x_{2}\right]-2 x_{2}^{2}$

$$
=-6+\left(\frac{3}{2}-\frac{1}{2} u_{1}+\frac{1}{2} x_{2}\right)\left(3+u_{1}+x_{2}\right)-2 x_{2}^{2}
$$

or , $\quad f=-\frac{3}{2}-\frac{1}{2} u_{1}^{2}+\frac{3}{2} x_{2}^{2}+3 x_{2}$
The partial derivatives of f w.r.t. $X_{N B}$ are

$$
\begin{align*}
& \left(\frac{\partial f}{\partial x_{2}}\right)_{\substack{x_{N B}=0 \\
u_{1}=0}}=\left(3-3 x_{2}\right)_{\substack{x_{2}=0 \\
u_{1}=0}}=3 \tag{9}\\
& \left(\frac{\partial f}{\partial u_{1}}\right)_{\substack{x_{N B}=0 \\
u_{1}=0}}=\left(-u_{1}\right)_{\substack{x_{2}=0 \\
u_{1}=0}}=0
\end{align*}
$$

Clearly x_{2} enters the basis
Again, we compute the ratio
$\min \left\{\frac{\alpha_{10}}{\left|\alpha_{12}\right|}, \frac{\alpha_{30}}{\left|\alpha_{32}\right|}, \frac{v_{20}}{\left|v_{22}\right|}\right\}$
$\left[\alpha_{10}, \alpha_{30}, v_{20}\right.$ are the constants in (6), (7) and (9) respectivety and $\alpha_{12}, \alpha_{32}, v_{22}$ are the coefficients of x_{2} in (6), (7) and (9) respectively.]

$$
\begin{aligned}
& =\min \left\{\frac{\frac{3}{2}}{\left|\frac{1}{2}\right|}, \frac{\frac{1}{2}}{2}, \frac{3}{2} \left\lvert\,, \frac{3}{|-3|}\right.\right\} \\
& =\quad \min \left\{3, \frac{1}{3}, 1\right\}=\frac{1}{3}=\frac{\alpha_{30}}{\left|\alpha_{32}\right|}
\end{aligned}
$$

Thus x_{3} will leave the basis. Now the new

$$
X_{B}=\left(x_{1}, x_{2}\right) \text { and } X_{N B}=\left(u_{1}, x_{3}\right)
$$

Expressing the new basic variables in terms of variables in $X_{N B}$ and also expressing f in terms of $X_{N B}$, we have
$x_{1}=\frac{3}{2}-\frac{1}{2} u_{1}+\frac{1}{2} \cdot \frac{2}{3}\left(\frac{1}{2}+\frac{1}{2} u_{1}-x_{3}\right) \quad[$ from (6) and (7)]
or $x_{1}=\frac{5}{3}-\frac{1}{3} u_{1}-\frac{1}{3} x_{3}$
$x_{2}=\frac{2}{3}\left(\frac{1}{2}+\frac{1}{2} u_{1}-x_{3}\right)$
or $x_{2}=\frac{1}{3}+\frac{1}{3} u_{1}-\frac{2}{3} x_{3}$
and $f=\frac{-3}{2}-\frac{1}{2} u_{1}^{2}+3\left(\frac{1}{3}+\frac{1}{3} u_{1}-\frac{2}{3} x_{3}\right)\left(1-\frac{1}{6}-\frac{1}{6} u_{1}+\frac{1}{3} x_{3}\right) \quad[$ from (8) and (11)]
or $f=\frac{-2}{3}-\frac{2}{3} u_{1}-\frac{4}{2} x_{3}+\frac{2}{3} x_{3} u_{1}-\frac{2}{3} u_{1}^{2}-\frac{2}{3} x_{3}^{2}$
The partial derivatives of f w.r.t.
$X_{N_{B}}$ are
$\left(\frac{\partial f}{\partial x_{3}}\right)_{\substack{X_{N_{B}}=0 \\ u_{1}=0}}=\left(-\frac{4}{3}+\frac{2}{3} u_{1}-\frac{4}{3} x_{3}\right)_{\substack{x_{3}=0 \\ u_{1}=0}}=-\frac{4}{3}$
$\left(\frac{\partial f}{\partial u_{1}}\right)_{\substack{X_{N_{B}}=0 \\ u_{1}=0}}=\left(\frac{2}{3}+\frac{2}{3} x_{3}-\frac{4}{3} u_{1}\right)=\frac{2}{3}$
Since $\frac{\partial f}{\partial x_{3}}<0$ and $\frac{\partial f}{\partial u_{1}} \neq 0$, therefore, the current solution can further be improved. Howeve the entry rule does not allow x_{3} to enter the basis. So we introduce another nonbasic variable u_{2}, defined by

$$
\begin{align*}
& u_{2}=\frac{1}{2} \frac{\partial f}{\partial u_{1}}=\frac{1}{2}\left(\frac{2}{3}+\frac{2}{3} x_{3}-\frac{4}{3} u_{1}\right) \\
& \text { or } u_{2}=\frac{1}{3}+\frac{1}{3} x_{3}-\frac{2}{3} u_{1} \tag{13}
\end{align*}
$$

Treating u_{1} as the basic variable and expressing the basic variable $X_{B}=\left(x_{1}, x_{2}, u_{1}\right)$ and the function f in terms of nonbasic variables $\left(x_{3}, u_{2}\right)$, we have

$$
\begin{align*}
& x_{1}=\frac{5}{3}+\frac{1}{2}\left(u_{2}-\frac{1}{3}-\frac{1}{3} x_{3}\right)-\frac{1}{3} x_{3} \tag{10}\\
& \text { or } x_{1}=\frac{3}{2}+\frac{1}{2} u_{2}-\frac{1}{2} x_{3} \tag{14}\\
& x_{2}=\frac{1}{3}-\frac{1}{2}\left(u_{2}-\frac{1}{3}-\frac{1}{3} x_{3}\right)-\frac{2}{3} x_{3}
\end{align*}
$$

or $\quad x_{2}=\frac{1}{2}-\frac{1}{2} u_{2}-\frac{1}{2} x_{3}$
$u_{1}=\frac{1}{2}-\frac{3}{2} u_{2}+\frac{1}{2} x_{3}$
[from (13)]
and $f=-\frac{2}{3}-\left(u_{2}-\frac{1}{3}-\frac{1}{3} x_{3}\right)\left(1+x_{3}+\frac{3}{2}\left(u_{2}-\frac{1}{3}-\frac{1}{3} x_{3}\right)\right)-\frac{4}{3} x_{3}-\frac{2}{3} x_{3}^{2}$

$$
=-\frac{2}{3}-\left(u_{2}-\frac{1}{3}-\frac{1}{3} x_{3}\right)\left(1+x_{3}+\frac{3}{2}\left(u_{2}-\frac{1}{3}-\frac{1}{3} x_{3}\right)\right)-\frac{4}{3} x_{3}-\frac{2}{3} x_{3}^{2}
$$

or $\quad f=-\frac{1}{2}-\frac{3}{2} u_{2}^{2}-\frac{1}{2} x_{3}^{2}-x_{3}$
Now since $\left(\frac{\partial f}{\partial x_{3}}\right)_{\substack{X_{N_{B}}=0 \\ u_{2}=0}}=\left(-x_{3}-1\right)_{\substack{x_{3}=0 \\ u_{2}=0 \\ u_{2}}}=-1$
and $\left(\frac{\partial f}{\partial u_{2}}\right)_{\substack{X_{N_{B}}=0 \\ u_{2}=0}}=\left(-3 u_{3}\right)_{\substack{x_{3}=0 \\ u_{2}=0}}=0$

Therefore, the current basis $X_{B}=\left(x_{1}, x_{2}, u_{1}\right)$ gives the optimal solution. Ignoring the variables $u_{i}^{\text {s }}$ (called the free variables) in the basis, the optimal solution is

$$
\begin{align*}
& x_{1}=\frac{3}{2}+0-0=\frac{3}{2} \text { i.e. } x_{1}=3 / 2 \tag{14}\\
& x_{2}=\frac{1}{2}-0-0=\frac{1}{2} \tag{15}\\
& \text { i.e. } x_{2}=1 / 2 \\
& \text { and } \min \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \quad \tag{17}\\
& \quad \begin{aligned}
& (-\max f) \\
& =(-1 / 2) \\
& =\frac{1}{2}
\end{aligned}
\end{align*}
$$

Example : Solve the following quadralic programming problem by Beale's method.
Min. $f\left(x_{1}, x_{2}\right)=10 x_{1}^{2}+x_{2}^{2}+4 x_{1} x_{2}-10 x_{1}-25 x_{2}$
subject to

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 10 \\
& x_{1}+x_{2} \leq 9 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Solution : on changing the problem into maximization form and adding slack variables to the constraints, we get

Min. $f(X)=\operatorname{Max}\left[-F\left(x_{1} x_{2}\right)\right]=-10 x_{1}^{2}-x_{2}^{2}-4 x_{1} x_{2}+10 x_{1}+25 x_{2}$
subject to

$$
\begin{aligned}
& x_{1}+2 x_{2}+x_{3}=10 \\
& x_{1}+x_{2}+x_{4}=9 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

Let us select x_{1} and x_{2} arbitrarily as the basic variables (since there are only two constraints. so we can select only two basic variables). Then

$$
X_{B}=\left(x_{1}, x_{2}\right) ; X_{N_{B}}=\left(x_{3}, x_{4}\right)
$$

Expressing the basic variables x_{1}, x_{2} in terms of nonbasic variables

$$
\begin{align*}
& x_{1}=8+x_{3}-2 x_{4} \tag{1}\\
& x_{2}=1-x_{3}+x_{4} \tag{2}
\end{align*}
$$

(by solving the constraints for x_{1} and x_{2})
Now we express the function $f(X)$ in terms of nonbasic variables x_{3}, x_{4}. This is

$$
\begin{aligned}
& f=10\left(8+x_{3}-2 x_{4}\right)+25\left(1-x_{3}+x_{4}\right)-10\left(8+x_{3}+2 x_{4}\right)^{2}-\left(1-x_{3}+x_{4}\right)^{2}-4\left(8+x_{3}-2 x_{4}\right)\left(1-x_{3}+x_{4}\right) \\
& \quad \text { or } \quad f=-568-145 x_{3}+299 x_{4}-7 x_{3}^{2}-33 x_{4}^{2}+30 x_{3} x_{4}
\end{aligned}
$$

Now the partial derivatives w.r.t. $\mathrm{X}_{\mathrm{N}_{\mathrm{B}}}$ are

$$
\begin{align*}
& \left(\frac{\partial f}{\partial x_{3}}\right)_{X_{N_{B}}=0}=\left(-145-14 x_{3}+30 x_{4}\right)_{\substack{x_{3}=0 \\
x_{4}=0}}=-145 \tag{3}\\
& \left(\frac{\partial f}{\partial x_{4}}\right)_{X_{N_{B}}=0}=\left(299-66 x_{4}+30 x_{3}\right)_{\substack{x_{3}=0 \\
x_{4}=0}}=299 \ldots
\end{align*}
$$

Since $\left(\frac{\partial f}{\partial x_{3}}\right)_{\substack{x_{3}=0 \\ x_{4}=0}}<0$, so we cannot consider

$$
x_{3} \text { to be the entering variable. On the other hand }
$$

$\left(\frac{\partial f}{\partial x_{3}}\right)_{\substack{x_{3}=0 \\ x_{4}=0}}>0$ so x_{4} enters the basis.
Now min $\left\{\frac{\alpha_{10}}{\left|\alpha_{13}\right|}, \frac{\alpha_{20}}{\left|\alpha_{23}\right|}, \frac{v_{30}}{\left|v_{33}\right|}\right\}$
$=\min \left\{\frac{8}{|-2|}, \frac{1}{|1|}, \frac{299}{|-66|}\right\}$
(Here α_{10}, α_{20} and v_{30} are the constants in (1), (2) and (3) respectively which are nothing but 8,1 and 299 , respectively whereas α_{13}, α_{23} and v_{33} are the coerfficients of x_{4} in these equations)
$=\min \left\{4,1 \frac{299}{66}\right\}=1$
Thus x_{2} leaves the basis. New $X_{B}=\left(x_{1}, x_{4}\right)$ and $X_{N_{B}}=\left(x_{2}, x_{3}\right)$.
Expressing the basic variables x_{1}, x_{4} interms of nonbasic variables x_{2} and x_{3}, and the maxi-
mization function $f(X)$ in terms of x_{2}, x_{3} we have

$$
\begin{array}{ll}
& x_{1}=10-2 x_{2}-x_{3} \\
& x_{4}=9-x_{1}-x_{2}=9-\left(10-2 x_{2}-x_{3}\right)-x_{2} \\
\text { or } & x_{4}=-1+x_{2}+x_{3} \tag{6}\\
\text { and } & f=10\left(10-2 x_{2}-x_{3}\right)+25\left(x_{2}-x_{2}^{2}-10\left(10-2 x_{2}-x_{3}\right)^{2}-4 x_{2}\left(10-2 x_{2}-x_{3}\right)\right. \\
\text { or } \quad f=-900+365 x_{2}+190 x_{3}-33 x_{2}^{2}-10 x_{3}^{2}-36 x_{2} x_{3} \\
\text { Now } & \left(\frac{\partial f}{\partial x_{2}}\right)_{x_{N_{B}}=0}=\left(365-66 x_{2}-36 x_{3}\right)_{\substack{x_{2}=0 \\
x_{3}=0}}=365 \\
& \left(\frac{\partial f}{\partial x_{3}}\right)_{X_{N_{B}}=0}=\left(190-20 x_{3}-36 x_{2}\right)_{\substack{x_{2}=0 \\
x_{3}=0}}
\end{array}
$$

Here $\left(\frac{\partial f}{\partial x_{2}}\right)_{X_{N_{B}}=0}$ is most positive so x_{2} enters the basis.
We now compute the ratio

$$
\begin{aligned}
& \min \left\{\frac{\alpha_{10}}{\mid \alpha_{12}}, \frac{\alpha_{40}}{\left|\alpha_{42}\right|}, \frac{V_{20}}{\left|V_{22}\right|}\right\} \\
& \min \left\{\frac{10}{|-2|}, \frac{-1}{|1|}, \frac{365}{|-66|}\right\} \\
& \min \left\{\frac{10}{2}, \frac{365}{66}\right\} \quad(\because \text { ratio will not be negative in any case }) \\
& =\frac{10}{2}
\end{aligned}
$$

Thus x_{1} leaves the basis
Now new $X_{B}=\left(x_{2}, x_{4}\right)$ and $X_{(N) B}=\left(x_{1}, x_{3}\right)$

Now new $X_{B}=\left(x_{2}, x_{4}\right)$ and $X_{(N) B}=\left(x_{1}, x_{3}\right)$
We shall obtain x_{2}, x_{4} and f in terms of x_{1} and x_{3}

$$
\begin{align*}
& x_{2}=\frac{1}{2}\left(10-x_{1}-x_{3}\right)=5-\frac{1}{2} x_{1}-\frac{1}{2} x_{3} \tag{5}\\
& x_{4}=9-x_{1}-x_{2}=9-x_{1}-\left(5-\frac{x_{1}}{2}=\frac{x_{3}}{2}\right) \\
& \text { or } x_{4}=4-\frac{1}{2} x_{1}+\frac{1}{2} x_{3} \tag{6}
\end{align*}
$$

and $f=10 x_{1}+25\left(5-\frac{1}{2} x_{1}-\frac{1}{2} x_{3}\right)-10 x_{1}^{2}-\left(5-\frac{1}{2} x_{1}-\frac{1}{2} x_{3}\right)\left(5-\frac{1}{2} x_{1}-\frac{1}{2} x_{3}+4 x_{1}\right)$
or $f=100-\frac{35}{2} x_{1}-\frac{15}{2} x_{3}-\frac{33}{4} x_{1}^{2}-\frac{1}{4} x_{3}^{2}+\frac{3}{2} x_{1} x_{3}$
The partial derivatives of f w.e.f. x_{1} and x_{3} are

$$
\begin{aligned}
& \left(\frac{\partial f}{\partial x_{1}}\right)_{X_{N_{B}=0}}=\left(\frac{-35}{2}-\frac{33}{2} x_{1}+\frac{3}{2} x_{3}\right)_{\substack{x_{1}=0 \\
x_{3}=0}}=\frac{-35}{2} \\
& \left(\frac{\partial f}{\partial x_{3}}\right)_{X_{N_{B}=0}}=\left(\frac{-15}{2}-\frac{1}{2} x_{3}+\frac{3}{2} x_{1}\right)_{\substack{x_{1}=0 \\
x_{3}=0}}=\frac{-15}{2}
\end{aligned}
$$

Since both the partial derivatives are negative, therefore optimal solution is attained. The optimal solution is
$x_{1}=0 ; x_{2}=5 ; x_{4}=4$ and
$\operatorname{Min} F\left(x_{1}, x_{2}\right)=25-125=-100$
Example-9 Solve the following quadratic programming problem by Beale's method.
$\operatorname{Max.} f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-x_{1}^{2}+x_{1} x_{2}-2 x_{2}^{2}$
subject to $\quad 2 x_{1}+x_{2} \leq 1$

$$
x_{1}, x_{2} \geq 0
$$

Solution : Introducing the slack variable x_{3} to the only constraint we get
$\operatorname{Max.f}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-x_{1}^{2}+x_{1} x_{2}-2 x_{2}^{2}$
subject to $2 x_{1}+x_{2} \leq 1$

$$
x_{1}, x_{2} \geq 0
$$

Let us select x_{1} arbitrarily the basic variable, i.e., let $X_{B}=\left(x_{1}\right)$. Then expressing the basic variable and the function f in terms of non basic variables x_{2}, x_{3}

$$
\begin{align*}
& x_{1}=\frac{1}{2}\left(1-x_{2}-x_{3}\right) \tag{1}\\
& f=\frac{1}{2}\left(1-x_{2}-x_{3}\right)+x_{2}-\frac{1}{4}\left(1+x_{2}^{2}+x_{3}^{2}-2 x_{2}-2 x_{3}+2 x_{2} x_{3}\right)+\frac{1}{2} x_{2}\left(1-x_{2}-x_{3}\right)-2 x_{2}^{2}
\end{align*}
$$

or $f=\frac{1}{4}+\frac{3}{2} x_{2}-\frac{11}{4} x_{2}^{2}-x_{2} x_{3}$

Then $\left(\frac{\partial f}{\partial x_{2}}\right)_{X_{N B=0}}=\left(\frac{3}{2}-\frac{11}{2} x_{2}-x_{3}\right)_{\substack{x_{2}=0 \\ x_{3}=0}}=\frac{3}{2}$

$$
\left(\frac{\partial f}{\partial x_{3}}\right)_{X_{N B=0}}=\left(-\frac{1}{2} x_{3}-x_{2}\right)_{\substack{x_{2}=0 \\ x_{3}=0}}=0
$$

Since $\left(\frac{\partial f}{\partial x_{2}}\right)_{X_{N S=0}}=\frac{3}{2}>0$, so x_{2} enters the basis

Now min. $\left\{\frac{\alpha_{10}}{\left|\alpha_{12}\right|}, \frac{v_{20}}{\left|v_{22}\right|}\right\}=\min \left\{\frac{\frac{1}{2}}{\left|\frac{-1}{2}\right|}, \frac{\frac{3}{2}}{\left|\frac{-11}{2}\right|}\right\}$

$$
=\min \left\{1, \frac{3}{11}\right\}=\frac{3}{11}
$$

Since the minimum occurs corresponding to $\frac{v_{20}}{\left|v_{22}\right|}$, therefore x_{1} cannot be removed. We, therefore, define a new nonbasic variable

$$
\begin{align*}
& u_{1}=\frac{1}{2} \frac{\partial f}{\partial x_{2}}=\frac{1}{2}\left(\frac{3}{2}-\frac{11}{2} x_{2}-x_{3}\right) \\
& \text { or } u_{1}=\frac{3}{4}-\frac{11}{4} x_{2}-\frac{1}{2} x_{3} \tag{3}
\end{align*}
$$

Then current basis is $X_{B}=\left(x_{1}, x_{2}\right)$ and $X_{N B}=\left(x_{3}, u_{1}\right)$.
Expressing the basic variable x_{1} and x_{2} in terms of non basic variables u_{1} and x_{3} also the function f in terms of nonbasic variables, we have

$$
\begin{align*}
x_{1} & =\frac{1}{2}-\frac{1}{2} x_{2}-\frac{1}{2} x_{3} \\
& =\frac{1}{2}+\frac{2}{11}\left(u_{1}-\frac{3}{4}+\frac{1}{2} x_{3}\right)-\frac{1}{2} x_{3} \tag{3}
\end{align*}
$$

or $\quad x_{1}=\frac{4}{11}+\frac{2}{11} u_{1}-\frac{9}{22} x_{3}$

$$
\begin{equation*}
x_{2}=1_{3}-2 x_{1}=1-x_{3}-2\left(\frac{4}{11}+\frac{2}{11} u_{1}-\frac{9}{22} x_{3}\right) \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{2}=\frac{3}{11}-\frac{4}{11} u_{1}-\frac{2}{11} x_{3} \tag{5}
\end{equation*}
$$

and $f=\frac{1}{4}+\frac{3}{2}\left(\frac{3}{11}-\frac{4}{11} u_{1}-\frac{2}{11} x_{3}\right)-\frac{11}{4}\left(\frac{3}{11}-\frac{4}{11} u_{1}-\frac{2}{11} x_{3}\right)^{2}-\frac{1}{4} x_{3}^{2}-x_{3}\left(\frac{3}{11}-\frac{4}{11} u_{1}-\frac{2}{11} x_{3}\right)$
or $f=\frac{5}{11}-\frac{3}{11} x_{3}-\frac{4}{11} u_{\mathrm{i}}-\frac{7}{44} x_{3}^{2}$
$\operatorname{Now}\left(\frac{\partial f}{\partial x_{3}}\right)_{\substack{X_{n B}=0 \\ u_{1}=0}}=\left(\frac{-3}{11}-\frac{7}{22} x_{3}\right)_{\substack{X_{X_{B}=}=0 \\ u_{1}=0}}=-\frac{3}{11}$
$\left(\frac{\partial f}{\partial u_{1}}\right)_{\substack{X_{w=}=0 \\ u_{1}=0}}=\left(\frac{-8}{11} u_{1}\right)_{\substack{X_{N_{N}}=0 \\ u_{1}=0}}=0$

Since $\left(\frac{\partial f}{\partial x_{3}}\right)_{\substack{x_{N_{u}=}=0 \\ u_{1}=0}}<0$ and $\left(\frac{\partial f}{\partial u_{1}}\right)_{\substack{x_{N_{B}=}=0 \\ u_{1}=0}}=0$
therefore, optimal solution is attained. The optimal solution is:

$$
\begin{aligned}
& x_{1}=\frac{4}{11}+0-0=\frac{4}{11} \\
& x_{2}=\frac{3}{11}-0-0=\frac{3}{11}
\end{aligned}
$$

[from (4)]
[from (5)]
and $\operatorname{Max} f\left(x_{1}, x_{2}\right)=\frac{5}{11}-0-0-0 \quad[$ from (6)]

$$
=\frac{5}{11}
$$

Example-10 Solve the following quadratic programming problem by Beale's method.
Maximize $f\left(x_{1}, x_{2}\right)=2 x_{1}+3 x_{2}-2 x_{1}{ }^{2}$
subject to $\quad x_{1}+4 x_{2} \leq 4$

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Solution : Introducing the stack variables to the constraints, we set

$$
\begin{gather*}
\text { Maximize } f\left(x_{1}, x_{2}\right)=2 x_{1}+3 x_{2}-2 x_{1}^{2} \\
\text { subject to } \tag{1}\\
x_{1}+4 x_{2}+x_{3}=4 \tag{2}\\
x_{1}+2 x_{2}+x_{4}=2 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{gather*}
$$

Now let $X_{B}=\left(x_{1}, x_{2}\right)$ and $X_{N_{B}}=\left(x_{3}, x_{4}\right)$. Then expressing x_{1}, x_{2} and f in terms of nonbasic variables x_{3} and x_{4}

$$
\begin{gather*}
x_{1}=x_{3}-2 x_{4} \tag{3}\\
x_{2}=\frac{1}{2}\left[2-x_{1}-x_{4}\right]=\frac{1}{2}\left(2-x_{3}+x_{4}\right) \tag{4}\\
f=2\left(x_{3}-2 x_{4}\right)+\frac{3}{2}\left(2-x_{3}+x_{4}\right)-2\left(x_{3}-2 x_{4}\right)^{2} \\
\text { or, } f=3+\frac{1}{2} x_{3}-\frac{5}{2} x_{4}-2 x_{3}^{2}-8 x_{4}^{2}-8 x_{3} x_{4} \tag{5}
\end{gather*}
$$

The partial derivatives of f w.r.t. x_{3} and x_{4} are

$$
\begin{aligned}
& \left(\frac{\partial f}{\partial x_{3}}\right)_{X_{N_{B}=0}}=\left(\frac{1}{2}-4 x_{3}-8 x_{4}\right)_{\substack{x_{3-0} \\
x_{4-0}}}=\frac{1}{2} \\
& \left(\frac{\partial f}{\partial x_{4}}\right)_{X_{N_{B}=0}}=\left(-\frac{5}{4}-16 x_{4}-8 x_{3}\right)_{\substack{x_{3=0} \\
x_{4=0}}}=-\frac{5}{4}
\end{aligned}
$$

Clearly x_{3} enters the basis

Now, $\min \left\{\frac{\alpha_{10}}{\left|\alpha_{13}\right|}, \frac{\alpha_{20}}{\left|\alpha_{23}\right|}, \frac{v_{10}}{\left|v_{33}\right|}\right\}=\min \left\{\frac{0}{|1|}, \frac{1}{\left|\frac{1-}{2}\right|}, \frac{\frac{1}{2}}{|-4|}\right\}$
$=\min \left\{0,2, \frac{1}{8}\right\}$
The ratio cannot be 0 or negative, therefore the minimum ratio is 2 that corresponds to x_{2}. Thus x_{2} leaves the basis. Now new $X_{B}=\left(x_{1}, x_{3}\right)$ and $X_{N_{B}}=\left(x_{2}, x_{4}\right)$

Expressing x_{1}, x_{3} and f in terms of non basic variables x_{2}, x_{4} we have
$x_{1}=2-2 x_{2}-x_{4}$
(from (2))
$x_{3}=4-x_{1}-4 x_{2}=4-\left(2-2 x_{2}-x_{4}\right)-4 x_{2}$
or $x_{3}=2-2 x_{2}+x_{4}$
and $f=2 x_{1}\left(1-x_{1}\right)+3 x_{2}$
$=2\left(2-2 x_{2}-x_{4}\right)\left(-1+2 x_{2}+x_{4}\right)+3 x_{2}$
or $f=-4+15 x_{2}+6 x_{4}-8 x_{4}^{2}-2 x_{4}^{2}-8 x_{2} x_{4}$
The partial derivatives of f w.r.t. x_{2} and x_{4} are
$\left(\frac{\partial f}{\partial x_{2}}\right)_{X_{N_{B=0}}}=\left(15-16 x_{2}-8 x_{4}\right)_{\substack{x_{2}=0 \\ x_{4}=0}}=15$
$\left(\frac{\partial f}{\partial x_{4}}\right)_{X_{N_{B=0}}}=\left(6-4 x_{2}-8 x_{2}\right)_{\substack{x_{2}=0 \\ x_{4}=0}}=6$

Since $\left(\frac{\partial f}{\partial x_{2}}\right)_{X_{N_{B}}}=15$ is most positive so we allow x_{2} to enter the basis. Now

$$
\begin{gathered}
\min \left\{\frac{\alpha_{10}}{\left|\alpha_{2}\right|}, \frac{\alpha_{30}}{\mid \alpha_{32}}, \frac{v_{20}}{\left|v_{22}\right|}\right\}=\min \left\{\frac{2}{|-2|}, \frac{4}{|-4|}, \frac{15}{|-16|}\right\} \\
=\min \left\{1,1, \frac{15}{6}\right\}=\frac{15}{16}
\end{gathered}
$$

which corresponds to, $\frac{v_{20}}{\left|v_{22}\right|}$. Thus we define a new non-basic variable
$u_{1}=\frac{1}{2} \frac{\partial f}{\partial x_{2}}=\frac{1}{2}\left(15-16 x_{2}-8 x_{4}\right)$
or, $u_{1}=\frac{15}{2}-8 x_{2}-4 x_{4}$
Now the current basis is $X_{B}=\left(x_{1}, x_{2}, x_{3}\right)$ and $X_{N_{B}}=\left(x_{4}, u_{1}\right)$
Expressing X_{B} and f in terms of x_{4} and u_{1} we have
$x_{1}=2+\frac{1}{4}\left(u_{1}-\frac{15}{2}+4 x_{4}\right)-x_{4}$
(from (6) and (8))
or $x_{1}=\frac{1}{8}+\frac{1}{4} u_{1}$
$x_{2}=\frac{15}{16}-\frac{1}{8} u_{1}-\frac{1}{2} x_{4}$
(from (8))
$x_{3}=2+\frac{1}{4}\left(u_{1}-\frac{15}{2}+4 x_{4}\right)+x_{4}$
(from (7) and (8))
or $\quad x_{3}=\frac{1}{8}+\frac{1}{4} u_{1}+2 x_{4}$
and $f=2\left(\frac{1}{8}+\frac{1}{4} u_{1}\right)+3\left(\frac{15}{16}-\frac{1}{8} u_{1}-\frac{1}{2} x_{4}\right)-2\left(\frac{1}{8}+\frac{1}{4} u_{1}\right)^{2}$
or, $\quad f=\frac{97}{32}-\frac{3}{2} x_{4}-\frac{1}{8} u_{1} 2$
Then $\left(\frac{\partial f}{\partial x_{4}}\right)_{\substack{x_{N_{B=0}} \\ u_{1}}}=\left(\frac{-3}{2}\right)_{\substack{x_{4}=0 \\ u_{1}=0}}=\frac{-3}{2}$
$\left(\frac{\partial f}{\partial u_{1}}\right)_{\substack{x_{N_{B=0}} \\ u_{1}=0}}=\left(-\frac{1}{4} u_{1}\right)_{\substack{x_{4}=0 \\ u_{1}=0}}=0$
Since $\left(\frac{\partial f}{\partial x_{4}}\right)_{\substack{x_{N_{B=0}} \\ u_{1}=0}}=<0$ and $\left(\frac{\partial f}{\partial u_{1}}\right)_{\substack{x_{N_{B=0}} \\ u_{1}=0}}=0$ therefore, optimal solution is attained. The optimal
solution is

$$
\begin{aligned}
& x_{1}=\frac{1}{8}+0=\frac{1}{8}, x_{2}=\frac{15}{16}-0-0=\frac{15}{16} \\
& x_{3}=\frac{1}{8}+0+0=\frac{1}{8} \\
& \text { i.e., } x_{1}=\frac{1}{8}, x_{2}=\frac{15}{16}, x_{3}=\frac{1}{8} \text { and maximum value of } f\left(x_{1}, x_{2}, x_{3}\right) \text { is } \frac{97}{32} . \text { (from (9), (10), }
\end{aligned}
$$

(11) and (12))

8.5 Self-Learning Exercise

1. The quadratic from $X^{T} G X$ is called positive definite if $X^{T} G X \ldots .$.
2. If quadratic from $X^{T} G X$ is negative semi-definite then $X^{T} G X$........... for all X such that, there is one $X \neq 0$ satisfying
3. If $X^{T} G X$ is positive semi definite, then it is \qquad in X over E^{n}
4. If $X^{T} G X$ is negative semi definite, then it is \qquad in X over E^{n}
5. In Beale's method, the objective function, at each iteration, is expressed in terms of. \qquad
6. Answer true or false :

Quadratic programming problem is a convex programming problem.

8.6 Summary

In this unit, we studied a specified form of the nonlinear programming problem called the quadratic programming problem. We also studied two algorithms namely the wolfe's algorithm and Beale's algorithm to solve the quadratic programming problems.

8.7 Answers to Self Learning Exercise

1. >0 for all $X \neq 0$
2. $\leq 0, X^{T} G X=0$
3. Convex
4. Concave
5. Non basic variables only
6. True

8.8 Exercise

Apply wolfe's method to solve the following programming problems:
(i) $\quad \operatorname{Max} f(X)=8 x_{1}+10 x_{2}-x_{1}^{2}-x_{2}^{2}$
subject to $\quad 3 x_{1}+2 x_{2} \leq 6$

$$
x_{1}, x_{2} \geq 0
$$

(Ans. $x_{1}=\frac{4}{13}, x_{2}=\frac{33}{13}, \operatorname{Max} f(X)=\frac{267}{13}$)
(ii) $\quad \operatorname{Minf}(X)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$
subject to $\quad x_{1}+x_{2}+x_{3}=2$

$$
5 x_{1}+2 x_{2}+x_{3}=5
$$

(Ans. $x_{1}=0.81, x_{2}=0.35, x_{3}=0.35 \operatorname{Max} f(X)=0.857$)
(iii) $\operatorname{Max} f(X)=6 x_{1}+3 x_{2}-4 x_{1} x_{2}-2 x_{1}^{2}-3 x_{2}^{2}$
subject to $\quad x_{1}+x_{2} \leq 1$

$$
\begin{aligned}
& 2 x_{1}+3 x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(Ans. $x_{1}=1, x_{2}=0, \operatorname{Max} f(X)=4$)
(iv) Minimize $f(X)=2 x_{1}^{2}+x_{2}^{2}-4 x_{1}-6 x_{2}$ subject to $\quad x_{1}+3 x_{2} \leq 3$

$$
x_{1}, x_{2} \geq 0
$$

(Ans. $x_{1}=\frac{12}{19}, x_{2}=\frac{15}{19}$, Minimum $f(X)=\frac{111}{19}$)
Apply Beale's method to solve the following programming problems:
(i) $\quad \operatorname{Minf} f(X)=6-6 x_{1}+2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}$
subject to $\quad x_{1}+x_{2} \leq 2$

$$
x_{1}, x_{2} \geq 0
$$

(Ans. $x_{1}=\frac{3}{2}, x_{2}=\frac{1}{2}$)
(ii) $\quad \operatorname{Min} f(X)=2 x_{1}^{2}+x_{2}^{2}-4 x_{1}-6 x_{2}$ subject to $\quad x_{1}+3 x_{2} \leq 3$

$$
x_{1}, x_{2} \geq 0
$$

(Ans. $x_{1}=\frac{12}{9}, x_{2}=\frac{15}{19}$)
(iii) Max. $f(X)=4 x_{1}+6 x_{2}-2 x_{1}^{2}-2 x_{1} x_{2}-2 x_{2}^{2}$
subject to

$$
\begin{aligned}
x_{1}+2 x_{2} & \leq 2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

(Ans. $x_{1}=\frac{1}{3}, x_{2}=\frac{5}{6}, \operatorname{Min} f(X)=\frac{25}{6}$)
(iv) Min. $f(X)=x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}-2 x_{1}-5 x_{2}$ subject to

$$
\begin{aligned}
& 2 x_{1}+3 x_{2} \leq 20 \\
& 3 x_{1}-5 x_{2} \leq 5 \\
& x_{1}-x_{2} \geq 0
\end{aligned}
$$

(Ans. $\quad x_{1}=\frac{9}{2}, x_{2}=\frac{7}{2} ;$ Min. $f(X)=-\frac{53}{4}$)

Unit-9
 Quadratic Programming Problem and Duality Theorem in Quadratic Programming

Structure of the Unit

9.0 Objective

9.1 Introduction
9.2 Quadratic Programming and Duality
9.3 Duality in Non-Linear Programming
9.4 Duality in Quadratic Programming
9.5 Duality Theorem for Quadratic Programming Problem
9.6 Self-Learning Exercise
9.7 Summary
9.8 Answers to Self-Learning Exercise
9.9 Exercise

9.0 Objective

Duality plays a crucial role in the theory and compulational algorithms of linear and non-linear programming. Duality is non-linear programming is related to the reciprocal principles of the calculus of variations, which have been known since as far back as 1927. The purpose of writing the present unit is to introduce the non-linear programming problem and its dual and then to dovelop the duality results of non-linear programming. These results are fruitfully applied to quadratic and linear programming problems.

9.1 Introduction

The plan of the unit is to introduce the quadratic programming problem and its dual and then will develop the duality theory for non-linear programming and quadratic programming. There is an extensive literature on the theory of non-linear programming and quadratic programming, but we shall end the unit with the duality theorem for qudratic programming problem.

9.2 Quadratic Programming and Duality

In recent years, there has been much interest in the duality theory of non-linear programming, especially of quadratic programming. As duality plays an important role in the theory of linear programming, it plays equally important role in the theory of quadratic programming also.

If there exists an optimal solution to the quadratic programming problem max $f(X)$ where X is ≥ 0 or unrestricted in sign) subject to the constraints $g_{i}(X)=b_{i}, \mathrm{i}=1,2, \ldots ., \mathrm{m}$, then there also exists an optimal solution to the dual of this quadratic programming problem and the two optimal values are equal. If the set of feasible solutions of the given quadratic programming problem is empty but that of its dual problem is non-empty, then the dual problem has an unbounded solution on the set of feasible solutions. If the set of feasible solutions of the given quadratic programming is non-empty and the set of feasible solutions of its dual is empty, then this implies that the quadratic programming problem has no optimal solution.

Unlike in linear programming problem, it can be shown that the dual of the dual of the quadratic programming problem may not be the quadratic programming itself.

9.3 Duality in Non-Linear Programming

Consider the following non-linear programming problem :
Maximize $\quad f(X)$
(P1) subject to $\quad g_{i}(X) \geq 0 \quad, i=1,2, \ldots, m$
where $X^{T}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and the functions f, g_{i} and h_{j} are assumed to be continuously differentiable functions over some open set $S C E^{n}$.

The Lagrangian function $L(X, \lambda, u)$ associated with the problem (1) is given by

$$
\begin{equation*}
L(X, \lambda, \mu)=f(X)-\sum_{i=1}^{m} \lambda_{i} g_{i}(X)+\sum_{j=1}^{p} \mu_{j} h_{j}(X) \tag{2}
\end{equation*}
$$

where $\quad X \in E^{n}, \mu \in E^{p}$ and $\lambda^{T}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \geq 0$
Let $\quad \Lambda=\left\{(\lambda, \mu): \lambda \geq 0, \lambda \in E^{m}, \mu \in E^{p}\right\}$
Then treating $L(X, \lambda, \mu)$ as a function of X and (λ, μ), we have the following known definitions. The point $\left(X_{0}, \lambda_{0}, \mu_{0}\right)$ is called a Lagrangian saddle point of L (or of problem(1), if $X_{0} \in E^{n}$, $\left(\lambda_{0}, \mu_{0}\right) \in \Lambda$ and

$$
\begin{equation*}
L\left(X, \lambda_{0}, \mu_{0}\right) \leq L\left(X_{0}, \lambda_{0}, \mu_{0}\right) \leq L\left(X_{0}, \lambda, \mu\right) \text { for all } X \in E^{n} \text { and }(\lambda, \mu) \in \Lambda \tag{4}
\end{equation*}
$$

The function

$$
\begin{equation*}
L_{*}(X)=\min _{(\lambda, \mu) \in \wedge} L(X, \lambda, \mu), X \in E^{n} \tag{5}
\end{equation*}
$$

is said to be the primal function and the function

$$
\begin{equation*}
L^{*}(\lambda, \mu)=\max _{X \in E^{n}} L(X, \lambda, \mu),(\lambda, \mu) \in \Lambda \tag{6}
\end{equation*}
$$

is called the dual function.
The functions $L_{*}(X)$ and $L^{*}(\lambda, \mu)$ are related to the saddle points of the Lagrangian function L. To relate the primal function $L_{*}(X)$ to the primal problem (1), we need to evaluate

$$
\begin{equation*}
L_{*}(X)=\min _{(\lambda, \mu) \in \Lambda}\left[f(X)-\sum_{i=1}^{m} \lambda_{i} g_{i}(X)+\sum_{j=1}^{p} \mu_{j} h_{j}(X)\right] \tag{7}
\end{equation*}
$$

Now if $g_{i}(X) \geq 0$ for all $\mathrm{i}=1,2, \ldots \ldots, \mathrm{~m}$ and $h_{j}(X)=0$ for all $\mathrm{j}=1,2, \ldots \ldots, \mathrm{p}$, then $\lambda_{i}=0$
($\mathrm{i}=1,2, \ldots, \mathrm{~m}$) will minimize the Lagrangian. But if some $g_{i}(X)<0$, then the Lagrangian can be minimized by taking $\lambda_{i} \rightarrow-\infty$. Likewise if some $h_{j}(X) \neq 0$, then by letting $\mu_{j} \rightarrow \infty$ or $-\infty$ according as $h_{j}(X)<0$ or >0, we can minimize the Lagrangian. Thus

$$
L_{*}(X)=\left[\begin{array}{ll}
f(X), & \text { if } \quad g_{i}(X) \geq 0(i=1,2, \ldots, m) \\
& \text { and } h_{j}(X)=0(j=1,2, \ldots, p) \\
-\infty, & \text { otherwise }
\end{array}\right.
$$

In view of the $-\infty$ in $L_{*}(X)$, we must use infimum instead of minimum in equation (5). Now suppose that we maximize $L_{*}(X)$ for $X \in E^{n}$. Then the unconstrained maximization problem.

Max. $\quad L_{*}(X) \quad ; \quad X \in E^{n}$
is equivalent to the primal problem (1), namely

$$
\begin{array}{llll}
\text { Max. } & f(X) & ; & X \in E^{n} \\
\text { s.t. } & g_{i}(X) \geq 0 & ; & i=1,2, \ldots, m \\
& h_{j}(X)=0 & ; & j=1,2, \ldots, p
\end{array}
$$

The equivalence of (9) and the primal problem (1), the primal program is to find an optimal X_{0}, which solves (9).

Now associated with the primal programme (9) is another program, called the dual program which is :

$$
\begin{equation*}
\text { Min. } \quad L^{*}(\lambda, \mu) \quad \text { for } \quad(\lambda, \mu) \in \Lambda \tag{10}
\end{equation*}
$$

The above dual programme is equivalent to :
(DP 1) Minimize $\quad L(X, \lambda, \mu)$

$$
\text { subject to } \quad \begin{align*}
L(X, \lambda, \mu) & =\max _{X \in E^{n}} L(X, \lambda, \mu) \\
& \equiv L^{*}(\lambda, \mu) \\
& \lambda \geq 0 \tag{12}
\end{align*}
$$

A point (X, λ, μ) is said to be feasible for the dual (10) if

$$
L\left(X_{1}, \lambda_{1}, \mu_{1}\right)=L^{*}\left(\lambda_{1}, \mu_{1}\right) ; \lambda_{1} \geq 0
$$

Now if X_{1} is feasible for the problem (1), then from equation (8)

$$
\begin{equation*}
L_{*}\left(X_{1}\right)=f\left(X_{1}\right) \tag{14}
\end{equation*}
$$

from (5), (6), and (12)

$$
\begin{aligned}
L_{*}\left(X_{1}\right)=\min _{(\lambda, \mu) \in \Lambda} L\left(X_{1}, \lambda, \mu\right) & \leq L\left(X_{1}, \lambda_{2}, \mu_{2}\right) \\
& \leq L\left(X_{2}, \lambda_{2}, \mu_{2}\right) \\
& =L^{*}\left(\lambda_{2}, \mu_{2}\right)
\end{aligned}
$$

where $\left(X_{2}, \lambda_{2}, \mu_{2}\right)$ is feasible for the dual (DP 1). Therefore, it easily follows that

$$
\max _{X \in E^{n}} L_{*} \leq \min _{\left(\lambda_{1}, \mu\right) \in \Lambda} L^{*}\left(\lambda_{1}, \mu\right)
$$

We finally conclude that:
If X_{*} and $\left(X_{0}, \lambda_{0}, \mu_{0}\right)$ are feasible solution to the primal(P1) i.e. problem (1) and dual (DP1), i.e., the problem (11), (12), respectively such that
$L_{*}\left(X_{*}\right)=L^{*}\left(X_{0}, \mu_{0}\right)$, then X_{*} and $\left(X_{0}, \lambda_{0}, \mu_{0}\right)$ are optimal solutions for the problem (P1) and (DP1) respectively, i.e., the point $\left(\lambda_{0}, \mu_{0}\right)$ is optimal for the dual program(10).

We now state the duality theorem for the convex programming (CP). Recall that the general convex programming problem is
(CP) Maximize $f(X)$

$$
\begin{array}{llll}
\text { subject to } & g_{i}(X) \geq 0 & ; & i=1,2, \ldots ., m \\
& h_{j}(X)=0 & ; & j=1,2, \ldots, p
\end{array}
$$

where the functions $f, g_{1}, g_{2}, \ldots, g_{n}$ are concave on E^{n} and $h_{1}, h_{2}, \ldots, h_{p}$ all linear. If we assume that the functions f and all $g_{i}(X), i=1,2, \ldots \ldots, m$ are differentiable, then clearly the Lagrangian function

$$
L(X, \lambda, \mu)=f(X)-\sum_{i=1}^{m} \lambda_{i} g_{i}(X)+\sum_{j=1}^{p} \mu_{j} h_{j}(X)
$$

is a function X for all $\lambda \geq 0$
Then $\quad \nabla_{X} L(X, \lambda, \mu)=0$ if and only if

$$
L(X, \lambda, \mu)=\max _{X \in E^{n}} L(X, \lambda, \mu)
$$

therefore the dual programme (DP1) corresponding to the convex programme (CP) becomes :
(DCP) Minimize $\quad L(X, \lambda, \mu)$
s.t.

$$
\begin{aligned}
& \nabla_{X} L(X, \lambda, \mu)=0 \\
& \lambda \geq 0
\end{aligned}
$$

In the following section we shall discuss the duality in quadratic programming.

9.4 Duality in Quadratic Programming

For each quadratic programming problem there always esixts another quadratic programming problem having the property that if of these two problems, one has finite optimal solution, then so has the other. Interestingly optimal values of the objective functions of both the problems at their respective optimal solutions are the same. This concept in quadratic programming is called the Daulity in Quadratic Programming.

Let we have the quadratic programming problem
$\operatorname{Max} f(X) \quad ; \quad X$ is unrestricted in sign
subjct to $g_{i}(X)=b_{i}, i=1,2, \ldots, m$.
Then the dual of the above programming problem is
Min. $L(X, \lambda)$
subject to $\frac{\partial L(X, \lambda)}{\partial x_{j}}=0 \quad ; \quad j=1,2, \ldots, n$
where $L(X, \lambda)=f(X)+\sum_{i=1}^{m} \lambda_{i}\left(b_{i}-g_{i}(X)\right)$
As a particular case if the quadratic programming problem is :
Max $f(X)=C^{T} X+\frac{1}{2} X^{T} G X$
subject to $A X=b$
X is unrestricted in sign
then its dual problem has the form
$\operatorname{Min} L(X, \lambda)=C^{T} X+\frac{1}{2} X^{T} G X+\lambda^{T}(b-A X)$
subject to $C^{T}+X^{T} G-\lambda^{T} A=0$
Multiplying (2) on right side by X , we see that
$C^{T} X+X^{T} G X-\lambda^{T} A X=0$
or, $\lambda^{T} A X=C^{T} X+X^{T} G X$
so that for any X, λ satisfying (2), $L(X, \lambda)$ becomes $L(X, \lambda)=-\frac{1}{2} X^{T} G X+\lambda^{T} b$
and so the dual of the quadratic progamming problem
Max $f(X)=C^{T} X+\frac{1}{2} X^{T} G X$
subject to $\quad A X=b$
X unrestricted
can be written as :
$\operatorname{Min} L(X, \lambda)=-\frac{1}{2} C^{T} G X+\lambda^{T} b$
subject to $\quad-G X+A^{T} \lambda=C$
In the above discussion, we didnot take account of the fact that, in general we need $X \geq 0$.
Suppose that we have $X^{*} \geq 0$ to be the optimal solution of he quadratic programming problem
$\operatorname{Max} f(X)=C^{T} X+\frac{1}{2} X^{T} G X$
subject to $\quad A X=b$

$$
X \geq 0
$$

Then by Kuhn-Tucker Theory, there exists a $\lambda *$ such that

$$
-G X^{*}+A^{T} \lambda * \geq C
$$

$\operatorname{Max} f(X)=L\left(X^{*}, \lambda *\right)=C^{T} X^{*}+\frac{1}{2}\left(X^{*}\right)^{T} G X^{*}+(\lambda *)^{T}\left[b-A X^{*}\right]$

$$
\begin{equation*}
=C^{T} X^{*}+\frac{1}{2}\left(X^{*}\right)^{T} G X^{*} \tag{4}
\end{equation*}
$$

since $(\lambda *)^{T}\left(b-A X^{*}\right)=0$
Also it can be seen that

$$
\begin{equation*}
\left(X^{*}\right)^{T} G X^{*}+(\lambda *)^{T} A X^{*}=C X^{*} \tag{5}
\end{equation*}
$$

Now for any $X \geq 0$ and λ satisfying the condition $-G X+A^{T} \lambda \geq C$,
we obtain $-\lambda^{T} A X \leq-C^{T} X-X^{T} G X$, on multiplying (6) on the left by X and then taking the transpose.

Thefore, $L(X, \lambda) \leq-\frac{1}{2} X^{T} G X+\lambda^{T} b$

$$
\left(\text { since } \lambda^{T}(b-A X)=0\right)
$$

However, by (5)

$$
L\left(X^{*}, \lambda *\right)=-\frac{1}{2}\left(X^{*}\right)^{T} G X^{*}+(\lambda *)^{T} b
$$

$$
=\operatorname{Max} f(X)
$$

Therefore, $\left(X^{*}, \lambda^{*}\right)$ is an optimal solution to the quadratic programming problem

$$
\begin{array}{r}
-G X+A^{T} \geq C \\
X \geq 0 \tag{8}
\end{array}
$$

$\operatorname{Min} L(X, \lambda)=-\frac{1}{2} X^{T} G X+\lambda^{T} b$
Furthermore, $\operatorname{Max} f(x)=\operatorname{Min} L(X, \lambda)$
We call the quadratic programming (8) to be the dual of (3). We have already shown that if (3) has an optimal solution then (8) also has an optimal solution.

9.5 Duality Theorem for Quadratic Programming Problem

Theorem : For each quadratic programming problem

$$
\begin{aligned}
& \operatorname{Max} f(X)=C^{T} X+\frac{1}{2} X^{T} G X \\
& \text { subject to } \quad A X=b, X \geq 0
\end{aligned}
$$

there exists another quadratic programming problem (called the dual)
$\operatorname{Min} L(X, \lambda)=-\frac{1}{2} X^{T} G X+\lambda^{T} b$
subject to $\quad-G X+A^{T} \lambda \geq C$

$$
X \geq 0
$$

and λ unrestricted in sign, such that if one has a finite optimal solution, then so has the other. Furthermore, the optimal values of both the problems are the same.

Proof: Suppose that $X *$ be a finite optimal solution to the quadratic programming problem
$\operatorname{Max} f(X)=C^{T} X+\frac{1}{2} X^{T} G X$
subject to $\quad A X=b$

$$
\begin{equation*}
X \geq b \tag{1}
\end{equation*}
$$

Then by Kuhn-Tucker theory there exists a $\lambda *$ such that
(i) $\nabla_{X} L\left(X^{*}, \lambda^{*}\right) \leq 0$
i.e., $\quad C^{T}+\left(X^{*}\right)^{T} G-(\lambda *)^{T} A \leq 0$
or $\quad-G X^{*}+A^{T} \lambda * \geq C$
(ii)

$$
\begin{equation*}
\left[\nabla_{X} L\left(X^{*}, \lambda^{*}\right)\right] X^{*}=0 \tag{3}
\end{equation*}
$$

i.e. $C^{T} X^{*}+\left(X^{*}\right)^{T} G X^{*}-\left(\lambda^{*}\right)^{T} A X^{*}=0$
(iii) $\left[\nabla_{\lambda} L\left(X^{*}, \lambda^{*}\right)\right] \lambda^{*}=0$
i.e., $(\lambda *)^{T}(b-A X *)=0$
and (iv) λ_{i}^{*} is unrestricted in sign for all
$i=1,2, \ldots, m$.
Now since X * is an optimal solution to the quadratic programming problem (1), therefore, $A X^{*}=b$ and

Maximum of $f(X)=C^{T} X^{*}+\frac{1}{2}\left(X^{*}\right)^{T} G X^{*}$

$$
\begin{align*}
& =C^{T} X^{*}+\frac{1}{2}\left(X^{*}\right)^{T} G X^{*}+(\lambda *)^{T}\left(b-A X^{*}\right) \quad[\operatorname{using}(4)] \\
& =L\left(X^{*}, \lambda *\right) \tag{6}
\end{align*}
$$

Also since $C^{T} X^{*}+\frac{1}{2}\left(X^{*}\right)^{T} G X^{*}=\left[(\lambda *)^{T} A X^{*}-\left(X^{*}\right)^{T} G X^{*}\right]+\frac{1}{2}\left(X^{*}\right)^{T} G X^{*}[$ from (3) $]$

$$
\begin{aligned}
& =-\frac{1}{2}\left(X^{*}\right)^{T} G X^{*}+(\lambda *)^{T} A X^{*} \\
& =-\frac{1}{2}\left(X^{*}\right)^{T} G X^{*}+(\lambda *)^{T} b
\end{aligned}
$$

(since $A X=b$)
Thus maximum of $f(X)=C^{T} X^{*}+\frac{1}{2}\left(X^{*}\right)^{T} G X *$

$$
=-\frac{1}{2}(X *)^{T} G X *+(\lambda *)^{T} b
$$

But from (6),
Maximum of $f(X)=L\left(X^{*}, \lambda^{*}\right)$
Therefore, maximum of $f(X)$, i.e., $f\left(X^{*}\right)$ is

$$
\begin{equation*}
L\left(X^{*}, \lambda^{*}\right)=-\frac{1}{2}\left(X^{*}\right)^{T} G X^{*}+(\lambda *) b \tag{7}
\end{equation*}
$$

Now for any $X \geq 0$ and λ satisfying $-G X+A^{T} \lambda \geq C$, on multiplying by X^{T} on the left and then taking transpose on both sides, we get

$$
\begin{aligned}
& \quad-X^{T} G X+\lambda^{T} A X \geq C^{T} X \\
& \text { or } \quad-\lambda^{T} A X \leq-C^{T} X-X^{T} G X \\
& \text { or, }\left[C^{T} X+\frac{1}{2} X^{T} G X+\lambda^{T} b\right]-\lambda^{T} A X \leq\left[C^{T} X+\frac{1}{2} X^{T} G X+\lambda^{T} b\right]-C^{T} X-X^{T} G X \\
& \text { (on adding } C^{T} X+\frac{1}{2} X^{T} G X+\lambda^{T} b \text { on both sides) } \\
& \text { or, } L(X, \lambda) \leq-\frac{1}{2} X^{T} G X+\lambda^{T} b=Z(X, \lambda) \text { (let) }
\end{aligned}
$$

But from (7)

$$
\begin{array}{r}
L\left(X^{*}, \lambda *\right)=Z\left(X^{*}, \lambda *\right)=-\frac{1}{2}\left(X^{*}\right)^{T} G X^{*}+(\lambda *)^{T} b \\
=\text { maximum of } f(X), \text { i.e., } f\left(X^{*}\right)
\end{array}
$$

Therefore $Z\left(X^{*}, \lambda^{*}\right)$ is a minimum of $Z(X, \lambda)$
Hence $\left(X^{*}, \lambda^{*}\right)$ is an opitmal solution to the quadratic programming problem
$\operatorname{Min} z(X, h)=-\frac{1}{2} X^{T} G X+\lambda^{T} b$
subject to $\quad-G X+A^{T} \lambda \geq C$

$$
X \geq 0
$$

and λ unrestricted in sign. Further more we observed that $\max f(x)=\min z(X, \lambda)$
We call the quadratic programming problem (8), the dual of the quadratic programming problem (1). We could prove that if(1) has a finite optimal solution at the point $X=X^{*}$, then its dual (8) also has a finite optimal solution at $\left(X^{*}, \lambda^{*}\right)$.

Conversely, we shall show that if the quadratic programming problem (8) has a finite optimal solution at $\left(X^{*}, \lambda^{*}\right)$, then the quadratic programming problem (1) also has a finite optimal solution for this we only require to show that (1) has a feasible solution if we assume that the objective function of (1) is strictly concave function or is negative definite.

Now $\left(X^{*}, \lambda^{*}\right)$ is a finite optimal solution of (8) implies that by Kuhn-Tucker theorem there exists a $\delta *$ such that

$$
-G X^{*}+G \delta^{*} \geq 0
$$

$$
\left(\because \nabla_{X} L\left(X^{*}, \lambda^{*}, \delta^{*}\right) \geq 0\right)
$$

or
and $A \delta^{*}=b$ (by $\nabla_{\lambda} L\left(X^{*}, \lambda^{*}, \delta^{*}\right)=0$ since λ is unrestricted)
i.e. $A \delta^{*}=b$ and $\delta^{*} \geq X^{*} \geq 0$
which shows that δ is a feasible solution of the quadratic programming problem (1) and hence has a finite optimal solution.

Example-1 Derive the dual of the quadratic programming problem:
$\operatorname{Min} f(X)=C^{T} X+\frac{1}{2} X^{T} G X$
subject to $A X \geq b$
Where A is an $m \times n$ real matrix and G is an $n \times n$ real positive semidefinite a symmetric matrix.
Solution : The Lagrangian of the given quadratic programming problem is :

$$
\begin{align*}
L(X, \lambda) & =C^{T} X+\frac{1}{2} X^{T} G X-\lambda^{T}(A X-b) \\
& =\left(C-A^{T} \lambda\right)^{T} X+\frac{1}{2} X^{T} G X+\lambda^{T} b \tag{3}
\end{align*}
$$

where $\lambda \geq 0$
The dual of the quadratic programming problem, then is
$\operatorname{Max} . L(X, \lambda)=\left[\left(C-A^{T} \lambda\right)^{T} X+\frac{1}{2} X^{T} G X+\lambda^{T} b\right.$
subject to $\quad \nabla_{X} L(X, \lambda)=0$
i.e. $\quad C-A^{T} \lambda+G X=0$

$$
\begin{equation*}
\lambda \geq 0 \tag{5}
\end{equation*}
$$

Using the constraint (5) in (4), we see that the dual quadratic programming problem of (1) is Max. $L(X, \lambda)=-(G X)^{T} X+\frac{1}{2} X^{T} G X+\lambda^{T} b$

$$
\begin{align*}
& =-X^{T} G X+\frac{1}{2} X^{T} G X+\lambda^{T} b \\
& =-\frac{1}{2} X^{T} G X+\lambda^{T} b \tag{7}
\end{align*}
$$

subject to

$$
\begin{align*}
A^{T} \lambda-G X & =C \tag{8}\\
\lambda & \geq 0 \tag{9}
\end{align*}
$$

9.6 Self-Learning Exercise

1. If the set of feasible solutions of the quadratic programming problem is nonempty but of its dual is empty then \qquad
2. If the set of feasible solution of the quadratic programming problem is empty but of its dual is nonempty, then......
3. The dual of the dual of the quadratic programming problem is the quadratic program itself-true or false?

9.7 Summary

In this unit, we studied the duality in non linear programming and quadratic programming. We also proved the duality theorem for quadratic programming problem.

9.8 Answers to Self-Learning Exercise

1. The quadratic programming problem has no optimal solution.
2. The dual problem of has an unabounded solution.
3. False.

9.9 Exercise

1. Set G be a positive semidefinite symmetric matrix. Then write the dual of the following quadratic programming problem

Minimize $f(X)=C^{T} X+\frac{1}{2} X^{T} G X$
subject to $\quad A X \geq b$

$$
X \geq 0
$$

2. If $f(X)$ is a concave function, then give the dual of the following quadratic programming problem:
$\operatorname{Max} f(X)=C^{T} X+\frac{1}{2} X^{T} G X$
subject to $\quad A X \leq b$

$$
X \geq 0
$$

Unit-10
 Convex Separable Programming and Algorithm

Structure of the Unit
10.0 Objective
10.1 Introduction
10.2 Definitions
10.2.1 Separable Function
10.2.2 Convex Programming Problem
10.2.3 Separable Programming Problem
10.2.4 Convex Separable Programming Problem
10.3 Theorems
10.4 Approximate Optimal Solution of a Convex Separable Programming Problem
10.5 Piecewise Linear Approximation of a Nonlinear Continuous Function
10.6 Separable Programming Algorithm
10.7 Illustrative Examples
10.8 Summary
10.9 Exercises
10.0 Objective

In convex separable programming, convex non linear programming problems are solved by approximating the non linear functions with piecewise linear functions and then solving the optimization problem through the use of a modified simplex algorithm of linear programming, or in special cases, the ordinary simplex algorithm.

10.1 Introduction

Separable programming was first introduced by C.E. Miller in 1963 : E.M.L. Beale in 1965 refered to separable programming as "Probably the most useful non linear programming technique." Mc Millan stated that any continuous, non linear and convex separable function can be approximated by a piecewise linear function and solved using a linear programming solution technique in his book on mathematical programming", Wiley, New York, 1970. In 1974, Hadley also represented a technique that how one can approxmate a nonlinear separable function.

Convex separable programming is an important and richly studied problem of convex non linear programming problems in which the objective function as well as the constratints are separable and the problem of maximizing a concave function or minimizing a convex function over a convex set.

Piecewise linear approximation can be done for convex as well as concave functions. Curves of non linear objective function and constraints can be approximated by a series of piecewise linear segments or polygonal linear approxmations.

Thus a NLPP can be reduced (approximated) to a L.P.P. and used simplex method can be applied to obtain an optimal solution.

10.2 Definitions

10.2.1 Separable Function

A function $f\left(x_{1}, x_{2}, \ldots . ., x_{n}\right)$ is said to be separable if it can be expressed as the sum of n single valued functions $f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), \ldots ., f_{n}\left(x_{n}\right)$; i.e.

$$
f\left(x_{1}, x_{2}, \ldots ., x_{n}\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\ldots+f_{n}\left(x_{n}\right)
$$

For example, the linear function given by :

$$
f\left(x_{1}, x_{2}, \ldots ., x_{n}\right)=c_{1} x_{1}+c_{2} x_{2}+\ldots .+c_{n} x_{n} \text { (Where c's are constants) is a separable function. }
$$

On the other hand, the function defined by :

$$
g\left(x_{1}, x_{2}, \ldots ., x_{n}\right)=x_{1}^{2} \sin \left(x_{1}+x_{2}\right)+x_{2}^{3}+x_{3} \cdot 3 x_{3}+\log \left(x_{1}+x_{3}\right)
$$

is not a separable function.

10.2.2 Convex Programming Problem

The problem of maximizing a concave function or minimizing a convex function over a convex set is called a convex programming problem.

A general convex programming problem(C.P.P.) can be defined as :
Maximize $f(x)$
Subject to $x \in s$

$$
X^{T} D X
$$

where $x \in R^{n}, f(x)$ is a concave function on a convex set $S \subset R^{n}$

For Example :

(i) The nonlinear programming problem (N.L.P.P.)

Maximize $f(x)$
Subject to $g_{i}(x) \leq b_{i}, i=1,2, \ldots, m$ and $x \geq 0$
is a convex programming problem if $f(x)$ is concave and
$g_{i}(x)$ are convex, $\forall i=1,2, \ldots, m$
(ii) The quadratic programming problem

Maximize $f(x)=C X+X^{T} D X$
Subject to $A X=b$
and $X \geq 0$
is a convex programming problem iff $X^{T} D X$ is negative (negative semi) definite.

10.2.3 Separable Programming Problem

A nonlinear programming problem of the form:
Maximize $\quad Z=\sum_{j=1}^{n} f_{j}\left(x_{j}\right)$

Subject to $\quad \sum_{j=1}^{n} g_{i j}\left(x_{j}\right)\{\leq,=, \geq\} b_{i}, i=1,2, \ldots, m$
and $x_{j} \geq 0, j=1,2, \ldots \ldots, n$
in which all the functions (objective function and constraints) are separable is called a separable programming problem.

Some times the functions are not directly separable but can be made separable by simple substitution.
e.g. For non separable term $x_{i} x_{j}$, we can write

$$
x_{i} x_{j}=y_{1}^{2}-y_{j}^{2} \text {, where } y_{i}=\frac{1}{2}\left(x_{i}+x_{j}\right) \text { and } y_{j}=\frac{1}{2}\left(x_{i}-x_{j}\right)
$$

convex separable programming problem : A convex programming problem in which all the functions are separable in called a convex separable programming problem.

10.2.4 Convex separable programming Problem

A convex programming problem in which all the functions are separable is called a convex separable programming problem.

10.3 Theorems

Theorem 1: Every local maximum of the general convex programming problem is its global maximum.
Proof : \quad Consider the general convex programming problem(10.2.1)
If the constraints set s is empty or singleton then the theorem is trivilly hold good.
If s is neither empty nor singleton then we shall prove this theorem by contradiction.
Let us assume that the C.P.P. has a local maximum at $X_{0} \in S$ and global maximum at $X^{*} \in S$ and $f\left(x_{0}\right) \neq f\left(x^{*}\right)$, then $f\left(x_{0}\right)<f\left(x^{*}\right)$

Since $f(x)$ is a concave function on the convex set S , so for $0<\lambda<1$

$$
\begin{aligned}
f\left[\lambda X^{*}+(1-\lambda) X_{0}\right] \quad & \geq \lambda f\left(X^{*}\right)+(1-\lambda) f\left(X_{0}\right) \\
& >\lambda f\left(X_{0}\right)+(1-\lambda) f\left(X_{0}\right), \because f\left(X_{0}\right)<f\left(X^{*}\right) \\
& >\lambda f\left(X_{0}\right)+f\left(X_{0}\right)-\lambda f\left(X_{0}\right)=f\left(X_{0}\right)
\end{aligned}
$$

Now for any $\in>0$, however small, if $0<\lambda<1$ is so chosen
that $0<\lambda<\frac{\epsilon}{\left|X^{*}-X_{0}\right|}$, then
$\left|\left\{\lambda X^{*}+(1-\lambda) X_{0}\right\}-X_{0}\right|=\left|\lambda\left(X^{*}-X_{0}\right)\right|=\lambda\left|X^{*}-X_{0}\right|<\epsilon$
i.e. $\lambda X^{*}+(1-\lambda) X_{0}$ is a point in any $\in-n b d$ of X_{0} for which
$f\left[\lambda X^{*}+(1-\lambda) X_{0}\right]>f\left(X_{0}\right)$
which is contraction of the fact that $f\left(X_{0}\right)$ is local minimum of the C.P.P.
So our assumption $f\left(X_{0}\right) \neq f\left(X^{*}\right)$ is wrong.
Hence $f\left(X_{0}\right)=f\left(X^{*}\right)$
Hence a local maximum of the C.P.P. is a global maximum of it.
Theorem 2 : The set of all optimum solutions (global maximum) of the general convex programming problem is a convex set.
Proof: \quad Consider the C.P.P. (10.2.1)
Let A be the set of all optimal solutions of the C.P.P. If A is either empty or singleton then the theorem is trivial. If A is neither empty nor singleton, then suppose $x_{1} \in S$ and $x_{2} \in S$ are any two different points ofA.

Then $f\left(x_{1}\right)=f\left(x_{2}\right)=$ Global maximum of $f(x)=k^{*}($ say $)$
Now, $f\left[\lambda x_{2}+(1-\lambda) x_{1}\right] \geq \lambda f\left(x_{2}\right)+(1-\lambda) f\left(x_{1}\right), 0 \leq \lambda \leq 1$

$$
\begin{aligned}
& \geq \lambda k^{*}+(1-\lambda) k^{*} \\
& \geq k^{*}
\end{aligned}
$$

Since $f\left[\lambda x_{2}+(1-\lambda) x_{1}\right]>k^{*}$ cannot be true because k^{*} is global maximum, therefore

$$
\begin{aligned}
& \quad f\left(\lambda x_{2}+(1-\lambda) x_{1}\right)=k^{*} \\
\Rightarrow \quad & \lambda x_{2}+(1-\lambda) x_{1} \in A, \forall 0 \leq \lambda \geq 1 \\
\Rightarrow \quad & \text { A is a convex set. }
\end{aligned}
$$

Theorem 3: If in theorem 1, $f(x)$ is strictly concave then the C.P.P. has unique optimal solution (if it exists).

10.4 Aproximate Optimal Solution of a Aonvex Separable Programming Problem.

In the separable programming problem (10.2.3) some or all functions $f_{j}\left(x_{j}\right)$ and $g_{i_{j}}\left(x_{j}\right), j=1,2, \ldots ., n$ are non linear. We solve this problem by replacing non linear function into linear function by piecewise linear approximations or polygonal approximations. In general, we shall determine a local maximum for the approximating problem but if the separable programming problem is convex programming also, then local maximum also a global maximum. Thus, if (10.2.3) is a convex separable
programming problem then we can find a global maximum for the appromating problem and consequently an approximate optimal solution to (10.2.3).

10.5 Piecewise Linear Approximation of a Non-Linear Continous Function

Consider an arbitrary continuous nonlinear function $f(x)$ of a single variable x, which is defined for all $x, 0 \leq x \leq a$ as shown in figure 10.01. We choose some points (refer to them as grid points) $0=x_{0}<x_{1}<x_{2}<x_{3}<\ldots \ldots<x_{r}<a$. Now for each x_{k} we compute $f_{k}=f\left(x_{k}\right)$ and connect the points $\left(x_{k}, f_{k}\right)$ and $\left(x_{k+1}, f_{k+1}\right)$. We have formed approximation function $\bar{f}(x)$, which is a pieswise linear function.

Figure : 10.1
$f(x)$ shown by dark curved.
$\bar{f}(x)$ shown by dashed straight line segment.
From figure, for $x_{k}<x<x_{k+1}$, we have
$\bar{f}(x)=f_{k}+\frac{f_{k+1}-f_{k}}{x_{k+1}-x_{k}}\left(x-x_{k}\right)$,
$x \in\left[x_{k}, x_{k+1}\right]$ can be written as $x=\lambda_{k} x_{k}+\lambda_{k+1} x_{k+1}$,
Where $\lambda_{K}+\lambda_{k+1}=1$ and $\lambda_{k} \geq 0, \lambda_{k+1} \geq 0$ (By the definition of line segment) and then $\bar{f}(x)=\lambda_{k} f_{k}+\lambda_{k+1} f_{k+1}$.

Indeed for any $0=x_{0}<x_{1}<x_{2}<\ldots \ldots<x_{r}=a$, we can write

$$
x=\sum_{k=0}^{r} \lambda_{k} x_{k}, \bar{f}(x)=\sum_{k=0}^{r} \lambda_{k} f_{k} \text {, where } \sum_{k=0}^{r} \lambda_{k}=1, \lambda_{k} \geq 0
$$

$k=0,1,2, \ldots \ldots, r$ and r is any suitable integer representing the number of segments into which the domain of x is divided. In addition, it is required that no more than two of the λ_{k} be positive, and if two are positive they must be adjacent. This restriction is called restricted basis entry rule.

By getting polygonal linear approximation (Piecewise linear approximation) of every non linear function in the separable programming problem (10.2.3) and replacing it by its polygonal approximation, we get the approximating problems :
$\operatorname{Maximize} \bar{Z}=\sum_{j=1}^{n} \bar{f}_{j}\left(x_{j}\right)$

Subject to $\sum_{j=1}^{n} \bar{g}_{i j}\left(x_{j}\right)\{\leq,=, \geq\} b_{i}, i=1,2, \ldots . ., m$
and $x_{j} \geq 0, j=1,2, \ldots ., n$
Now, we can solve this linear programming problem by simplex method with restricted basis entry rule.

10.6 Separable Programming Algorithm

The computational procedure to solve this problem is as follows.

Step I

If the objective function is in minimization form, then convert it in to the maximization form and all $b_{i}, \forall i=\overline{1, m}$ should be non negative. The separable programming problem should be convex programming problem. If it is not a convex programming problem then the approximate optimum solution (global maximum) may not be found. Since in general, we get a local maximum for the approximating problem.

Step II

Divide the interval $0 \leq x_{j} \leq a_{j}, j=1,2, \ldots \ldots, n \quad$ as \quad subdivided points $0=x_{j 0}<x_{j 1}<x_{j 2}<\ldots \ldots<x_{j r_{j}}=a_{j}$
compute linear approxmation for each non linear $f_{j}\left(x_{j}\right)$ and $g_{i}\left(x_{i}\right)$. Write the approximating problem of the given separable programming problem.

Step III

Solve the approxmated linear programming problem by using simplex method with the use of restricted basis entry rule.

Step IV

Finally, find the optimal solution (approximate) x_{j} of the original problem by using

$$
x_{j}=\lambda_{j 0} x_{j 0}+\lambda_{j 1} x_{j 1}+\ldots \ldots+\lambda_{j r} x_{j r}
$$

Note : We may drop the column corresponding $\lambda_{j 0}, j=\overline{1, n}$
which has departing vector in the simplex table because cost of $\lambda_{j 0}$ is 0 .

10.7 Illustrative Examples

Example 1 Find an optimal solution of the following convex separable programming problem:
Max. $z=3 x_{1}+2 x_{2}$
Subject to $4 x_{1}^{2}+x_{2}^{2} \leq 16$
and $x_{i}, x_{2} \geq 0$

Solution :

Step I
the objective function in maximization form and $b_{i}, i=1$ is non negative. The objective function is linear so it can be assumed as concave function, the constraint is convex function so the set of feasible solutions is a convex set. Therefore the given problem is a convex separable programming problem, so any local maximum of this problem will be global maximum.

Here, separable functions are
$f_{1}\left(x_{1}\right)=3 x, \quad f_{2}\left(x_{2}\right)=2 x_{2} \quad$ are linear and
$g_{11}\left(x_{1}\right)=4 x_{1}^{2}, \quad g_{12}\left(x_{2}\right)=x_{2}^{2} \quad$ are non linear
we have to approximate $g_{11}\left(x_{1}\right)$ and $g_{12}\left(x_{2}\right)$

Step II

From the constraint, we observe that $0 \leq x_{2} \leq 4$ and $0 \leq x_{1} \leq 2$ (taking the positive sign)
Subdivide $0 \leq x_{1} \leq 2$ by grid points $x_{10}=0, x_{11}=1, x_{12}=2$ and $0 \leq x_{2} \leq 4$ by grid points
$x_{20}=0, x_{21}=1, x_{22}=2, x_{23}=4, x_{24}=4$
Now, the grid points \& values of the functions are :

x_{1}	$g_{11}\left(x_{1}\right)=4 x_{1}^{2}$	x_{2}	$g_{12}\left(x_{2}\right)=x_{2}^{2}$
0	0	0	0
1	4	1	1
2	16	2	4
		3	9
		4	16

Linear approximations are :
$x_{1} \cong 0 \lambda_{10}+1 \lambda_{11}+2 \lambda_{11}+2 \lambda_{12}$
$x_{2} \cong 0 \lambda_{20}+1 \lambda_{21}+2 \lambda_{22}+3 \lambda_{23}+4 \lambda_{24}=\lambda_{21}+2 \lambda_{22}+3 \lambda_{23}+4 \lambda_{24}$
$g_{11}\left(x_{1}\right)=4 x_{1}^{2} \cong 0 \lambda_{10}+4 \lambda_{11}+16 \lambda_{12}=4 \lambda_{11}+16 \lambda_{12}$
$g_{12}\left(x_{2}\right)=4 x_{2}^{2} \cong 0 \lambda_{20}+1 \lambda_{21}+4 \lambda_{22}+9 \lambda_{23}+16 \lambda_{24}=\lambda_{21}+4 \lambda_{22}+9 \lambda_{23}+16 \lambda_{24}$
Where $\lambda_{10}+\lambda_{11}+\lambda_{12}=1$ and $\lambda_{20}+\lambda_{21}+\lambda_{22}+\lambda_{23}+\lambda_{24}=1$
Now, approximating linear programming problem is :
Max. $z=3 \lambda_{11}+6 \lambda_{12}+2 \lambda_{21}+4 \lambda_{22}+6 \lambda_{23}+8 \lambda_{24}$
Such that

$$
\begin{aligned}
& 0 \lambda_{10}+4 \lambda_{11}+16 \lambda_{12}+0 \lambda_{20}+\lambda_{21}+4 \lambda_{22}+9 \lambda_{23}+16 \lambda_{24}, \leq 16 \\
& \lambda_{10}+\lambda_{11}+\lambda_{12}=1 \\
& \lambda_{20}+\lambda_{21}+\lambda_{22}+\lambda_{23}+\lambda_{24}=1
\end{aligned}
$$

and $\lambda_{10}, \lambda_{11}, \lambda_{12}, \lambda_{20}, \lambda_{21}, \lambda_{22}, \lambda_{23}, \lambda_{24} \geq 0$
With the restriction that not more than two of $\lambda_{10}, \lambda_{11}, \lambda_{12}$
and two of $\lambda_{20}, \lambda_{21}, \lambda_{22}, \lambda_{23}, \lambda_{24}$ are positive if two of them are positive then they correspond to adjacent points.

Now, add the slack varibales in first constraint and solve it by simplex method as given below.

Simplex Table - 1

		c_{j}	0	3	6	0	2	4	6	8	0	Min.
c_{B}	x_{B}	b	λ_{10}	λ_{11}	λ_{12}	λ_{20}	λ_{21}	λ_{22}	λ_{23}	λ_{24}	s	Ratio
0	s	16	0	4	16	0	1	4	9	16	1	$\frac{16}{16}=1$
0	λ_{10}	1	1	1	1	0	0	0	0	0	0	-
0	λ_{20}	1	0	0	0	1	1	1	1	1	0	1
$z_{j}-c_{j}$		0	3	-6	0	-2	-4	-6	-8	0		

$\because \quad$ For most negative $z_{j}-c_{j}=-8$
$\therefore \quad \lambda_{24}$ enters the basis and by minimum ratio rule.
λ_{20} departs from the basis. We can drop this column of λ_{20}
(with zero cost) in the next simplex table.

Simplex Table -2

		c_{j}	0	3	6	2	4	6	8	0	
c_{B}	x_{B}	b	λ_{10}	λ_{11}	λ_{12}	λ_{21}	λ_{22}	λ_{23}	λ_{24}	s	Ratio
0	s	0	0	4	16	-15	-12	-7	0	1	$\frac{16}{16}=1$
0	λ_{10}	1	1	1	1	0	0	0	0	0	$\frac{1}{1}=1$
0	λ_{24}	0	0	0	0	1	1	1	1	0	-
$z_{j}-c_{j}$			0	-3	-6	6	4	2	0	0	

$z_{j}-c_{j}$ most negative for λ_{12} but it can not enter the basis because its entry departs s and then $\lambda_{12}, \lambda_{10}$ are not adjacent points so they can not remain in the basis by basis entry rule. Further, take most negative $z_{j}-c_{j}$ for λ_{11} which enters the basis as $\lambda_{11}, \lambda_{10}$ are adjacent points.

Simplex Table -3

		c_{j}	0	3	6	2	4	6	8	0	Min.
c_{B}	x_{B}	b	λ_{10}	λ_{11}	λ_{12}	λ_{21}	λ_{22}	λ_{23}	λ_{24}	s	Ratio
3	λ_{11}	0	0	1	4	$\frac{-15}{4}$	-3	$\frac{-7}{4}$	0	$\frac{1}{4}$	-
0	λ_{10}	1	1	0	-3	$\frac{15}{4}$	3	$\frac{7}{4}$	0	$-\frac{1}{4}$	$\frac{4}{7}$
8	λ_{24}	1	0	0	0	1	1	1	1	0	$\frac{1}{1}$
$z_{j}-c_{j}$		0	0	6	$\frac{21}{4}$	-5	$\frac{-13}{4}$	0	$\frac{3}{4}$		

Since $\lambda_{21}, \lambda_{22}$ cannot enter the basis due to restricted basis entry rule, therefore λ_{23} enteres the basis and λ_{10} depasts from the basis, now $\lambda_{23}, \lambda_{24}$ adjacent points, λ_{10} column can also be dropped in the next simplex table.

Simplex Table -4

		c_{j}	3	6	2	4	6	8	0	Min.
c_{B}	x_{B}	b	λ_{11}	λ_{12}	λ_{21}	λ_{22}	λ_{23}	λ_{24}	s	Ratio
3	λ_{11}	1	1	1	0	0	0	0	0	0
0	λ_{23}	$\frac{4}{7}$	0	$\frac{-12}{7}$	$\frac{15}{7}$	$\frac{12}{7}$	1	0	0	$\frac{1}{7}$
8	λ_{24}	$\frac{3}{7}$	0	$\frac{12}{7}$	$\frac{8}{7}$	$-\frac{5}{7}$	0	1	$\frac{1}{7}$	
$z_{j}-c_{j}$			0	$\frac{3}{7}$	$\frac{12}{7}$	$\frac{4}{7}$	0	0	$\frac{9}{14}$	

Since all $z_{j}-c_{j}$ are non negative, therefor it is optimal stage so the approximate optimal solution is given by :

$$
\lambda_{11}=1, \lambda_{23}=\frac{4}{7}, \lambda_{24}=\frac{3}{7}
$$

Thus, $\quad x_{1}=\lambda_{11}+2 \lambda_{12}=1+0=1$

$$
\begin{aligned}
& x_{2}=\lambda_{21}+2 \lambda_{22}+3 \lambda_{23}+4 \lambda_{24} \\
& =0+2 \times 0+3 \times \frac{4}{7}+4 \times \frac{3}{7}=\frac{24}{7}
\end{aligned}
$$

and optimal value is : Max. $z=3 \times 1+2 \times \frac{24}{7}=\frac{69}{7}$
Example 2 Solve the following convex separable programming problem:
Min. $\quad z=x_{1}^{2}-2 x_{1}-x_{2}$
Such that $\quad 2 x_{1}^{2}+3 x_{2}^{2} \leq 6$
and $\quad x_{1}, x_{2} \geq 0$
Solution : The objective function of the given problem is in minimization form, so convert it into maximization from :

Max. $(\hat{z})=\operatorname{Max} .(-z)=2 x_{1}-x_{1}^{2}+x_{2}$
It is concave function as $-x_{1}^{2}$ is negative definite and in the constraint $2 x_{1}^{2}+3 x_{2}^{2}$ is convex as it is positive definite. So given problem is convex separable programming problem. Thus every relative maximum will be global maximum and every relative minimum will be global minimum.

Here $\quad f_{1}(x)=2 x_{1}-x_{1}^{2} \quad, f_{2}\left(x_{2}\right)=x_{2}$

$$
g_{11}\left(x_{1}\right)=2 x_{1}^{2} \quad, g_{12}\left(x_{2}\right)=3 x_{2}^{2}
$$

are separable functions.

Now, $2 x_{1}^{2}+3 x_{2}^{2} \leq 6 \Rightarrow 0 \leq x_{1} \leq \sqrt{3} ; 0 \leq x_{2} \leq \sqrt{2}$

By taking $\quad 0 \leq x_{1} \leq 2$ and $0 \leq x_{2} \leq 2$, the grid points are :
$x_{10}=0, x_{11}=1, x_{12}=2($ say $)$ and $x_{20}=0, x_{21}=1, x_{22}=2($ say $)$.
Consider the following table :

x_{1}	$f_{1}\left(x_{1}\right)=2 x_{1}-x_{1}^{2}$	$g_{11}\left(x_{1}\right)=2 x_{1}^{2}$	x_{2}	$g_{12}\left(x_{2}\right)=3 x_{2}^{2}$
0	0	0	0	0
1	1	2	1	3
2	0	8	2	12

The linear approximation of non linear functions are :
$x_{1} \cong 0 \lambda_{10}+1 \lambda_{11}+2 \lambda_{12} ; x_{2} \cong 0 \lambda_{20}+1 \lambda_{21}+2 \lambda_{22}$
$f_{1}\left(x_{1}\right) \cong 0 \lambda_{10}+1 \lambda_{11}+0 \lambda_{12}$
$g_{11}\left(x_{1}\right) \cong 0 \lambda_{10}+2 \lambda_{11}+8 \lambda_{12} ; g_{12}\left(x_{2}\right) \cong 0 \lambda_{20}+3 \lambda_{21}+12 \lambda_{22}$
where $\lambda_{10}+\lambda_{11}+\lambda_{12}=1 ; \lambda_{20}+\lambda_{21}+\lambda_{22}=1$
Thus the approximating L.P.P. for the given problem is :
$\operatorname{Max}(\hat{z})=0 \lambda_{10}+1 \lambda_{11}+0 \lambda_{12}+0 \lambda_{20}+1 \lambda_{21}+2 \lambda_{12}$
subject to

$$
\begin{aligned}
& 0 \lambda_{10}+2 \lambda_{11}+8 \lambda_{12}+0 \lambda_{20}+3 \lambda_{21}+12 \lambda_{22} \leq 6 \\
& \lambda_{10}+\lambda_{11}+\lambda_{12}=1 \\
& \lambda_{20}+\lambda_{21}+\lambda_{22}=1
\end{aligned}
$$

and $\lambda_{10}, \lambda_{11}, \lambda_{12}, \lambda_{20}, \lambda_{21}, \lambda_{22} \geq 0$ (with restricted basis entry rule)
After adding slack variables in the first constraint the first simplex table is as follow:

		c_{j}	0	1	0	0	1	2	0	Min. Ratio
c_{B}	x_{B}	b	λ_{10}	λ_{11}	λ_{12}	λ_{20}	λ_{21}	λ_{22}	s	
0	S	6	0	2	8	0	3	12	1	$\frac{6}{2}=3$
0	λ_{10}	1	1	1	1	0	0	0	0	$\frac{1}{1}=1$
0	λ_{20}	1	0	0	0	1	1	1	0	-
$z_{j}-c_{j}$			0	-1	0	0	-1	-2	0	

Since $z_{j}-c_{j}$ is most negative for λ_{22} but it can not enter the basis by restricted basis entry rule. Now there is a tie for most negative $z_{j}-c_{j}$ so we consider nearest from the left i.e. $z_{2}-c_{2}$ so λ_{11} enters the basis and λ_{10} departs from the basis (drop it in next table).

Simplex Table - 2

		c_{j}	1	0	0	1	2	0	
c_{B}	x_{B}	b	λ_{11}	λ_{12}	λ_{20}	λ_{21}	λ_{22}	s	Ratio
0	S	4	0	6	0	3	12	1	$\frac{4}{3}$
0	λ_{11}	1	1	1	0	0	0	0	-
0	λ_{20}	1	0	0	1	1	1	0	1
$z_{j}-c_{j}$			0	1	0	0 \uparrow	-2	0	

Since $z_{j}-c_{j}$ is most negative for λ_{22} it cannot enter the basis because $\lambda_{22} \& \lambda_{20}$ are not adjacant points so we consider λ_{21} as entering vector as $\lambda_{11}, \lambda_{20}$ already in the basis ($\operatorname{consider} z_{j}-c_{j}=0$ fromleft).

Simplex Table -3

		c_{j}	1	0	1	2	0	Min. Ratio
c_{B}	x_{B}	b	λ_{11}	λ_{12}	λ_{21}	λ_{22}	s	
0	S	1	0	6	0	9	1	$\frac{1}{9}$
1	λ_{11}	1	1	1	0	0	0	-
1	λ_{21}	1	0	0	1	1	0	1
$z_{j}-c_{j}$			0	1	0	-1 \uparrow	0	

Simplex Table -4

		c_{j}	1	0	1	2	0	
c_{B}	x_{B}	b	λ_{11}	λ_{12}	λ_{21}	λ_{22}	s	Ratio
2	λ_{22}	$\frac{1}{9}$	0	$\frac{2}{3}$	0	1	$\frac{1}{9}$	
1	λ_{11}	1	1	1	0	0	0	
1	λ_{21}	$\frac{8}{9}$	0	$-\frac{2}{3}$	1	0	- $\frac{1}{9}$	
$z_{j}-c_{j}$			0	$\frac{5}{3}$	0	0	$\frac{1}{9}$	

$\because \quad$ All $z_{j}-c_{j} \geq 0$, therefore at the optimal level the optimal
solution is : $\quad \lambda_{11}=1, \lambda_{21}=\frac{8}{9}, \lambda_{22}=\frac{1}{9}$

$$
\begin{aligned}
\therefore \quad x_{1} & =\lambda_{11}+2 \lambda_{12}=1+2 \times 0=1 \\
x_{2} & =\lambda_{21}+2 \lambda_{22}=\frac{8}{9}+\frac{2}{9}=\frac{10}{9}
\end{aligned}
$$

Min. $z=1-2-\frac{10}{9}=-\frac{19}{9}$

10.8 Summary

In this unit we have studied about the following :
Objective, Introduction, Definitions of separable function, convex programming problem, separable programming problem and convex separable programming problem(CSPP), some important Theorems, Approximate optimal solution of CSPP, Piecewise linear approximation of non-linear continuous function, Separable programming algorithm.

10.9 Exercise

Solve the following convex separable programming problems :

1. Max.

$$
z=x_{1}+x_{2}^{4}
$$

Subject to $\quad 3 x_{1}+2 x_{2}^{2} \leq 9$
and

$$
x_{1}, x_{2} \geq 0
$$

$$
\left(x_{1}=0, x_{2}=2.1, \max z=19.45\right)
$$

2. Max. $z=2 x_{1}-x_{1}^{2}+x_{2}$

Such that $\quad 2 x_{1}+3 x_{2} \leq 6$

$$
2 x_{1}+x_{2} \leq 4
$$

and

$$
x_{1}, x_{2} \geq 0
$$

$$
\left(x_{1}=\frac{2}{3}, x_{2}=\frac{14}{9}, \max z=\frac{22}{9}\right)
$$

3. Min. $z=x_{1}^{2}-4 x_{1}+x_{2}^{2}-2 x_{3}$
S.t. $\quad x_{1}+x_{2}+x_{3} \leq 2$
$\left(x_{1}+1\right) x_{2} \geq 2$
and

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

$\left(x_{1}=1, x_{2}=1, x_{3}=0, \min z=-2\right)$
4. Min. $z=x_{1}^{2}-8 x_{1}+x_{2}^{2}-10 x_{2}$

Subject to $\quad 3 x_{1}+2 x_{2} \leq 6$
and
$x_{1}, x_{2} \geq 0$
$\left(x_{1}=\frac{4}{13}, x_{2}=\frac{33}{13}, \min z=-\frac{267}{13}\right)$
5. Max. $z=\left(x_{1}-2\right)^{2}+\left(x_{2}-2\right)^{2}$

Such that $\quad x_{1}+2 x_{2} \leq 4$
and
$x_{1}, x_{2} \geq 0$
$\left(x_{1}=1.6, x_{2}=1.2\right.$, max $\left.z=0.8\right)$

Unit - 11
 Dynamic Programming; Bellman's Optimality Principle

Structure of The Unit

11.0 Objective

11.1 Introduction
11.2 Basic Features of a Dynamic Programming Problem
11.3 Bellman's Principle of Optimality
11.4 Solution Procedure
11.5 Illustrative Examples
11.6 Summary

11.7 Exercises

11.0 Objective

In most operations research problems the objective is to find the optimal (max. or min.) values of the "decision variables", that is, those variables that can change or be controlled within the problem structure. We come across a number of situations where the decision variables vary with time, and these situations are considered to be dynamic in nature. The teachnique dealing with these types of problem is called "dynamic programming". It will be shown in this unit that time element is not an essential variable rather any multistage situation in which a series of decisions are to be made is considered a dynamic programming problem.

11.1 Introduction

Dynamuic programming is a mathematical technique dealing with the optimization of multistage decision problems. The founding father of dynamic programming, and the man primarily responsible for the development of dynamic programming, is Rechard Bellman. Bellman first developed the concept of dynamic programming in the late 1940s and early 1950s while working as a researcher at the Rand Corporation. By this teachnique decisions regarding a certain problem are typically optimized stages rather than simultaneously. The original problem is broken into subproblems (stages), which can then be solved more efficiently from the computational view point. The optimal solution is attained in an alternative manner starting from first stage to the next and is completed when the final stage is reached. Individually, each decision of the stage may not be optimal but sacrifice at one stage may result in greater gains at some other stage. The technique of dynamic programming aims at optimizing the decision for the situation as a whole, and the decision for the stage may be sub-optimal. So far there is no standard mathematical formulation of a dynamic programming problembut it is often possible to introduce the multi stage nature in the problem so that dynamic programming may be used.

11.2 Basic Features of a Dynamic Programming Problem

1. In dynamic programming problems, decisions regarding a certain problem are typically optimized at subsequent stages rather then simultaneously; i.e. if a programm is to be solved by using dynamic programming, it must be separated into N sub problem.
2. Dynamic programming deals with problems in which choices, or decisions, are to be made at each stage. the set of all possible choices is reflected and/or governed by the state of each stage.
3. There is a return function at every stage that evaluates the choice made at each decision in
terms of the contribution that the decision can make to overall objective (maximization or minimization)
4. Each stage N , the total decision process is related to its adjoining stages by a quantitative relationship called a transition function. This transition function can either reflect discrete quantities or continuous quantities depending on the nature of the problem.
5. Given the current state, an optimal policy for the remaining stages in terms of a possible input state is independent of the policy adopted in previous stages.
6. The solution procedure always proceed by finding the optimal policy for each possible input state at the present stage.
7. A recursive relationship is always used to relate the optimal policy at stage n to the ($n-1$) stages that follow.
8. By using this recursive relation, the solution procedure moves from stage to stage...each time finding an optimal policy for each state at the stage... until the optimal policy for the last stage is found.

11.3 Bellman's Principle of Optimality

The basic concept of the dynamic programming is contained in Bellman's Principle of Optimality which says that "An optimal policy (a sequence of decisions) has the property that whatever the initial state and decisions are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision." This principle implies that a wrong decision taken at one stage does not prevent from taking ofoptimum decisions for the remaining stages.

Mathematically this principle can be written as:

$$
\begin{aligned}
& f_{n}(x)=\operatorname{optimum}\left[r\left(d_{n}\right) \otimes f_{n-1}\left\{T\left(x \otimes d_{n}\right)\right\}\right] \\
& d_{n} \in\{x\}
\end{aligned}
$$

Where, symbol denotes any mathematical relationship between x and d_{n}, including addition, subtraction, multiplication, and root operations.
$f_{\mathrm{n}}(x)$: the optimal return from an n-stage process when initial state is x.
$\{x\}$: set of all admissible decisions.
$r\left(d_{\mathrm{n}}\right)$: immediate return due to decision d_{n}.
$T\left(x \otimes d_{\mathrm{n}}\right)$: the transfer function which gives the resulting state.
Thus in the light of Bellman's optimality principle we can write a recursive or recurrence relation which enables us to obtain the optimal decision at each state.

11.4 Solution Procedure

We can solve a multistage problem by using dynamic programming as given below:

Step-I

Write the recursive relation connecting the optimum decision function for the n-stage problem with the optimum decision function for $(n-1)$-stage sub problem or to write the Bellman's principle of optimality for the multistage problem.

Step-II

Write the relation giving optimal decision function for one stage and solve it, then further, solve the optimal decisin function for $2,3,4, \ldots,(n-1)$ stage sub problem successively and finally for n-stage problem.

Note:- (i) "Stage" means point or level at which a decision is made or a device to sequence the decisions.
(ii) "State" means a set of variables at a stage.
(iii) Dynamic programming solves those problems which satisfy Bellman's optimality principle.
(iv) Number of variables in a problem $=$ Number of stages.
(v) Number of constraints in a problem = Number of state parameters in each stage.

11.5 Illustrative Examples

Example-I : Use Bellman's optimality principle to divide a positive quantity ' b ' into n parts in such a way that their product is maximum.

Or

Find maximum value of the product of $x_{1}, x_{2}, \ldots, x_{\mathrm{n}}$
When $x_{1}+x_{2}+\ldots+x_{\mathrm{n}}=b, x_{1}, x_{2}, \ldots, x_{\mathrm{n}} \geq, 0$, using dynamic programming.
Solution : The problem has n variables and one constraint so we can consider it as n-stage problem with one state parameter at each stage.

Suppose $f_{r}(b)$ denotes maximum attainable product when the quantity ' b ' is divided into r parts; then we have

$$
\begin{aligned}
& f_{r}(b)= \text { Max. } \\
& x_{1}, x_{2}, x_{r}
\end{aligned} \quad\left(x_{1}, x_{2}, \ldots . x_{r}\right), r=1,2, \ldots, n
$$

Subject to $x_{1}+x_{2}+\ldots+x_{r}=b, x_{r} \geq, 0$
By Bellman's principle of optimality, we have

$$
\begin{aligned}
f_{r}(b)= & \text { max. } \quad\left[x_{r} \cdot \max . \quad\left(x_{1} \cdot x_{2} \cdot \ldots . x_{r-1}\right)\right. \\
& x_{r} \quad x_{1}, \ldots, n_{r-1} \\
= & \text { max. }\left[x_{r} \cdot f_{r-1}\left(b-x_{r}\right)\right] \\
& x_{r} \\
= & \text { max. } \quad\left[z \cdot f_{r-1}(b-z)\right] \text { if } x_{r}=\mathrm{z} \text { to be decision variable. } \\
& 0 \leq z \leq b
\end{aligned}
$$

Now, Stage-1 For $r=1$, we get
$f_{1}(b)=b$ only one part
and optimal policy is: $z=b$
Stage-2 \quad For $r=2$. we get

$$
f_{2}(b)=\max . \quad\left[z . f_{1}(b-z)\right]=\max . \quad[z(b-z)], \therefore f_{1}(b)=b
$$

$$
0 \leq z \leq b \quad 0 \leq z \leq b
$$

Now, by using differential calculus, we have

$$
\frac{d}{d z}\left(f_{2}(b)\right)=0 \Rightarrow z=\frac{b}{2} \text { and } \frac{d^{2}}{d z^{2}}\left(f_{2}(b)\right)=-2, a t z=\frac{b}{2}
$$

Therefore $f_{2}(b)$ in maximum for $z=\frac{b}{2}$.
So optimal policy for $r=2$ is $\left(\frac{b}{2}, \frac{b}{2}\right)$ and $f_{2}(b)=\frac{b}{2} \cdot \frac{b}{2}=\binom{b}{2}^{2}$
For Stage-3 For $r=3$, we have

$$
\begin{array}{cc}
f_{3}(b)=\operatorname{max.} & {\left[z \cdot f_{2}(b-z)\right]=\operatorname{max.} \quad\left[z\left(\frac{b-z}{2}\right)^{2}\right]} \\
0 \leq z \leq b & 0 \leq z \leq b
\end{array}
$$

Now, $\frac{d}{d z}\left(f_{3}(b)\right)=0 \Rightarrow z=\frac{b}{3}$ and $\frac{d^{2}}{d z^{2}}\left(f_{3}(b)\right)<0$ at $z=\frac{b}{3}$
i.e. $f_{3}(b)$ is maximum at $z=\frac{b}{3}$

So optimal policy is : $\left(\frac{b}{3}, \frac{b}{3}, \frac{b}{3}\right)$ and $f_{3}(b)=\left(\frac{b}{3}\right)^{3}$
By using mathematical induction suppose the result (policy) is true for stage m i.e. $r=m$,
$f_{m}(b)=\left(\frac{b}{m}\right)^{m}$ and optimal policy is $\left(\frac{b}{\mathrm{~m}}, \frac{b}{\mathrm{~m}}, \ldots \frac{b}{\mathrm{~m}}\right)$

Now, by recurrence relation, we have
$f_{m+1}(b)=\max .\left[z \cdot f_{m}(b-z)\right]=\max \cdot z\left(\frac{b-z}{m}\right)^{m}$

$$
0 \leq z \leq b \quad 0 \leq z \leq b
$$

Now, $\frac{d}{d z} f_{m+1}(b)=0 \Rightarrow z=\frac{b}{m+1}$ and $\left[\frac{d^{2} z}{d z^{2}} f_{m+1}(b)\right]$ at $z=\frac{b}{m+1}$ is negative
$\therefore f_{m+1}(b)$ is maximum for $z=\frac{b}{m+1}$ and optimal policy is $\left(\frac{b}{\mathrm{~m}+1}, \frac{b}{\mathrm{~m}+1}, \ldots \frac{b}{\mathrm{~m}+1}\right)$,
$f_{m+1}(b)=\left(\frac{b}{m+1}\right)^{m+1}$

Hence, the result is true for $r=n$ and optimal policy is $\left(\frac{b}{n}, \frac{b}{n}, \ldots, \frac{b}{n}\right)$ and $f_{n}(b)=\left(\frac{b}{n}\right)^{n}$
i.e. optimal policy for given problem is:
$x_{1}=x_{2}=\ldots=x_{n}=\frac{b}{n}$ and optimum value of the objective function $=\left(\frac{b}{n}\right)^{n}$.
Example-2 Make use of dynamic programming to show that
$\sum_{i=1}^{n} \mathrm{p}_{i} \log \mathrm{p}_{i}$ subject to $\sum_{i=1}^{n} \mathrm{p}_{i}=1, \mathrm{p}_{i}>, 0$ is minium, when $p_{1}=p_{2}=\ldots=p_{n}=\frac{1}{n}$ (i in suffix)
Solution :We can consider the problem as an n-stage problem in which 1 can be divided into r parts as $r^{\text {th }}$ stage, $r=1,2, \ldots, n$.

Let z be current decision variable.
Stage-1 For $r=1$, we get

$$
\begin{aligned}
& f_{1}(1)=\min .\left(\mathrm{p}_{1} \log \mathrm{p}_{1}\right), \text { where } \mathrm{p}_{1}=1 \\
& =1 \log 1
\end{aligned}
$$

i.e. optimal policy for $r=1$ is 1 and $f_{1}(1)=1 \log 1$

State-2 For $r=2$, we have

$$
f_{1}(1)=\min .\left[\mathrm{p}_{1} \log \mathrm{p}_{1}+\mathrm{p}_{2} \log \mathrm{p}_{2}\right], \text { where } \mathrm{p}_{1}+\mathrm{p}_{2}=1, \mathrm{p}_{1}, \mathrm{p}_{2} \geq, 0
$$

Here, 1 is divided into two parts. If first part is $\mathrm{p}_{1}=z$ (say) then second part is $(1-z)$. By Bellman's principle the recurrence relation is:

$$
f_{r}(1)=\min _{0 \leq z \leq 1}\left[z \log z+f_{r-1}(1-z)\right]
$$

For $r=2$, we get

$$
f_{2}(1)=\min _{0 \leq z \leq 1}\left[z \log z+f_{1}(1-z)\right]=\min _{0 \leq z \leq 1}[z \log z+(1-z) \log (1-z)] .
$$

let $\mathrm{S}=z \log z+(1-z) \log (1-\mathrm{z})$, then

$$
\frac{d s}{d z}=0 \Rightarrow 1+\log z-1-\log (1-z)=0
$$

$$
\Rightarrow \log \frac{z}{1-z}=0 \Rightarrow \frac{z}{1-z}=e^{0}=1 \Rightarrow z=\frac{1}{2}
$$

and $\frac{d^{2} s}{d z^{2}}=\frac{1}{z}+\frac{1}{1-z}$ and $\left[\frac{d^{2} s}{d z}\right]_{z=\frac{1}{2}}=4$ (positive)

Thus S is minimum at $z=\frac{1}{2}$
i.e. optimal policy for $r=2$ is $\left(\frac{1}{2}, \frac{1}{2}\right)$ and $f_{2}(1)=2\left[\frac{1}{2} \log \frac{1}{2}\right]$

For $r=3$, we have
$f_{3}(1)=\min _{0 \leq z \leq 1}\left[z \log z+f_{2}(1-z)\right]$
$=\quad \min .0 \leq z \leq 1\left[z \log z+2\left(\frac{1-z}{2}\right) \log \left(\frac{1-z}{2}\right)\right]=\min _{0 \leq z \leq 1} . \mathrm{S}$ (say).

Then $\frac{d s}{d z}=0 \Rightarrow z=\frac{1}{3}$ and $\frac{d^{2} s}{d_{z}{ }^{2}}=\frac{9}{2}$ (positive).

Thus S is miximum or $f_{3}(1)$ is miximum at $z=\frac{1}{3}$.
Optimal policy is $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ and $f_{3}(1)=\frac{1}{3} \log \frac{1}{3}$
Let us assume that policy for $r=m$ is
$\left(\frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m}\right)$ and $f_{\mathrm{m}}(1)=\left[\frac{1}{m} \log \frac{1}{m}\right] m$
$f_{\mathrm{m}+1}(1)=\min _{0 \leq z \leq 1}\left[\mathrm{z} \log \mathrm{z}+f_{\mathrm{m}}(1-z)\right]$, by recurrence relation.

$$
=\min _{0 \leq z \leq 1}\left[z \log z+m\left(\frac{1-z}{m} \log \frac{1-z}{m}\right)\right]=\min _{0 \leq z \leq 1} .(\mathrm{S}) \text {, say }
$$

Then $\frac{d s}{d z}=0 \Rightarrow 1+\log z+m\left[-\frac{1}{m}-\frac{1}{m} \log \left(\frac{1-z}{m}\right)\right]=0 \Rightarrow z=\frac{1}{m+1}$
and $\frac{d^{2} s}{d z^{2}}=\frac{1}{z}+\frac{1}{1-z}=\frac{(m+1)^{2}}{m}$ at $z=\frac{1}{m+1}$ (positive)
$\therefore \mathrm{S}$ is miximum at $z=\frac{1}{m+1}$
\therefore Optimal policy for $r=m+1$ is $\left(\frac{1}{m+1}, \frac{1}{m+1}, \ldots, \frac{1}{m+1}\right)$
and $f_{m+1}(1)=(m+1)\left[\left(\frac{1}{m+1}\right) \log \left(\frac{1}{m+1}\right)\right]$
so by mathematical induction the policy for $r=n$ is $\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$ and optimal value is $f_{1}(1)=n \cdot \frac{1}{n} \log \frac{1}{n}$

Hence, $\sum_{i=1}^{n} \mathrm{Pi} \log \mathrm{Pi}$ is miximum subject to $\sum_{i=1}^{n} \mathrm{Pi}=1, \mathrm{Pi} \geq, 0, r=1, n$.
When $\mathrm{P}_{1}=\mathrm{P}_{2}=\ldots=\mathrm{P}_{\mathrm{n}}=\frac{1}{n}$ and optimal value is $\log \frac{1}{n}=-\log n$.
Example-3 Use synamic programming to solve the following problem.
$\min .\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{\mathrm{n}}{ }^{2}\right)$
Subject to $x_{1} \cdot x_{2}, \ldots, x_{\mathrm{n}}=b$
and $x_{1}, x_{2}, \ldots, x_{\mathrm{n}} \geq 0$
Solution : There are n variables and one constraint in the problem so the problem can be considered as an n-stage problem with one state parameter in each stage. The number ' r ' parts in which b is factorised may be treated as $r^{\text {th }}$ stage.

Suppose

$$
\begin{aligned}
& f_{r}(b)=\min _{x_{1}, \ldots x_{r}} \sum_{i=1}^{r} x_{\mathrm{i}}^{2}, r=1,2, \ldots, n \\
& \text { subject to } x_{1}, x_{2}, \ldots x_{r}=b \\
& \text { and } x_{1}, x_{2}, \ldots, x_{\mathrm{r}} \geq 0
\end{aligned}
$$

By using Bellman's principle of optimality the recurrence relation is:

$$
\begin{equation*}
f_{r}(b)=\min _{x r} \cdot\left[x_{r}^{2}+\min _{x_{1} \cdots, \cdots, x_{r-1}} \sum_{i=1}^{r} x_{\mathrm{i}}^{2}\right]=\min _{0 \leq x_{r} \leq b}\left[x_{r}^{2}+f_{r-1}\left(\frac{b}{x_{r}}\right)\right] \tag{1}
\end{equation*}
$$

Let $x_{r}=z$ be current decision variable, then

$$
\begin{equation*}
f_{r}(b)=\min _{0 \leq z \leq b}\left[z^{2}+f_{r-1}\left(\frac{b}{z}\right)\right] \tag{2}
\end{equation*}
$$

For $r=1 ; f_{1}(b)=\min . \mathrm{z}^{2}$ where $z=b, z \geq 0$.
\therefore optimal policy is $z=b$ and optimal value is $f_{1}(b)=b^{2}$
For $r=2 ; f_{2}(b)=\min _{0 \leq z \leq b}\left[z^{2}+f_{1}\left(\frac{b}{z}\right)\right]=\min _{0 \leq z \leq b}\left[z^{2}+\left(\frac{b}{z}\right)^{2}\right], \therefore f_{1}(b)=b^{2}$

Let $\mathrm{S}=z_{z}{ }^{2}+\left(\frac{b}{z}\right)^{2}$, then
$\frac{d s}{d z}=0 \Rightarrow 2 z+2\left(\frac{b}{z}\right)\left(-\frac{b}{z^{2}}\right)=0 \Rightarrow z-\frac{b^{2}}{z^{3}}=0 \Rightarrow z^{4}=b^{2} \Rightarrow z=b^{1 / 2}$
and $\frac{d^{2} s}{d z^{2}}=1+\frac{3 b^{2}}{z^{4}}=4$ at $z=b^{1 / 2}$ (positive)
$\therefore \mathrm{S}$ is minimum, so $f_{2}(b)$ is minimum at $z=b^{1 / 2}$
Hence, optimal policy for $r=2$ is $\left(\mathrm{b}^{1 / 2}, \mathrm{~b}^{1 / 2}\right)$ and optimum value is $f_{2}(b)=2 b$
For $n=3, f_{3}(b)=\min _{0 \leq z \leq b}\left[z^{2}+f_{2}\left(\frac{b}{z}\right)\right]=\min _{0 \leq z \leq b}\left[z^{2}+2 \cdot \frac{b}{z}\right]$
Let $\mathrm{S}=z^{2}+\frac{2 b}{z}$, then $\frac{d s}{d z}=0 \Rightarrow 2 z-\frac{2 b}{z^{2}}=0 \Rightarrow z=b^{1 / 3}$
and $\frac{d^{2} s}{d z^{2}}=1+\frac{2 b}{z^{3}}=3$ (positive) at $z=b^{1 / 3}$
$\therefore \mathrm{S}$ is minimum i.e. $f_{3}(b)$ is minimum at $z=b^{1 / 3}$
Hence, optimal policy is $\left(b^{1 / 3}, b^{1 / 3}, b^{1 / 3}\right)$ and $f_{3}(b)=3 b^{2 / 3}$
We assume that the optimal policy for $r=m$ is
$\left(b^{1 / m}, b^{1 / m}, \ldots, b^{1 / m}\right)$ and $f_{\mathrm{m}}(b)=m b^{1 / \mathrm{m}}$
Now $f_{\mathrm{m}+1}(b)=\min _{0 \leq z \leq b}\left[z^{2}+f_{m}\left(\frac{b}{z}\right)\right]=\min _{0 \leq z \leq b}\left[z^{2}+m\left(\frac{b}{z}\right)^{2 / m}\right]$
Let $\mathrm{S}=z_{z}{ }^{2}+m\left(-\frac{b}{-2 / m}\right.$, than $\frac{d s}{d z}=0 \Rightarrow 2 z-\frac{2 b^{2 / m}}{z^{2 / m^{+1}}}=0$.
$\therefore z=b^{1 / m+1}$
and $\frac{d^{2} s}{d z^{2}}=1+\frac{b^{2 / m}\left(\frac{2}{m}+1\right)}{z^{2 / m^{+2}}}=1+\frac{b^{2 / m}\left(\frac{2+m}{m}\right)}{b^{2 / m}}=\frac{2(m+1)}{m}($ positive $)$ at $z=b^{1 / m+1}$
$\therefore \mathrm{S}$ is minimum i.e. $f_{\mathrm{m}+1}(b)$ is minimum at $z=b^{1 / m+1}$

Thus, optimal policy is $\left(b^{1 / m+1}, b^{1 / m+1}, \ldots, b^{1 / m+1}\right)$ and $f_{m+1}(b)=(m+1)(b)^{2 / m+1}$
Hence by law of mathematial induction optimal policy for $r=n$ is $\left(b^{1 / n}, b^{1 / n}, \ldots, b^{1 / n}\right)$ and optimal value $f_{n}(b)=n \cdot b^{2 / n}$

11.6 Summary

This unit partains to introduce the
Basic Features of a Dynamic Programming Problem, Belman's Principle of optimality, Solution Procedure.

11.7 Exercises

Solve the following problems by using dynamic programming:

1. Min. $\sum_{i=1}^{n} x_{\mathrm{i}}^{2}$ subject to $\sum_{i=1}^{n} x_{\mathrm{i}}=b, x_{\mathrm{i}} \geq 0, i=1,2, \ldots, n$

Hence or otherwise minimize $x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}$
subject to $x_{1}+x_{2}+x_{3} \geq 15$
and $x_{1}, x_{2}, x_{3} \geq 0$ (Optimal policy $\left(\frac{b}{n}, \frac{b}{n}, \ldots, \frac{b}{n}\right)$ and $f_{n}(b)=n\left(\frac{b}{n}\right)^{2}$ and $f_{3}(15)=75$ at x_{1}
$=x_{2}=x_{3}=5$
2. \quad Min. $\mathrm{z}=\sum_{i=1}^{n} x_{\mathrm{i}}$
subject to $\prod_{i=1}^{n} x_{\mathrm{i}}=b$
and $x_{\mathrm{i}} \geq \mathrm{o}, i=1,2, \ldots, n \quad$ (Optimal policy $\left(b^{1 / n}, b^{1 / n}, \ldots, b^{1 / n}\right)$ and $f_{n}(\mathrm{~b})=n b^{1 / \mathrm{n}}$
3. $-\sum_{i=1}^{n} \mathrm{p}_{\mathrm{i}} \log \mathrm{p}_{\mathrm{i}}$ subject to $\sum_{i=1}^{n} \mathrm{p}_{\mathrm{i}}=1$ is maximum when $\mathrm{p}_{1}=\mathrm{p}_{2}=\ldots=\mathrm{p}_{\mathrm{n}}=\frac{1}{n}$

$$
\left(f_{n}(1)=\log n \text { and optimal policy }\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)\right.
$$

4. Maximize $z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{\mathrm{n}} x_{\mathrm{n}}, c_{1}<c_{2}<\ldots<c_{\mathrm{n}}$
subject to $x_{1}+x_{2}+\ldots+x_{n}=b$
and $x_{1}, x_{2}, \ldots, x_{\mathrm{n}} \geq 0 \quad$ (Optimal plolicy $(0,0, \ldots b)$ and $f_{n}(b)=c_{n} b$
5. Maximize value of $y_{1} y_{2} y_{3}$, subject to $y_{1}+y_{2}+y_{3} \leq 15$ and $y_{1}, y_{2}, y_{3} \geq 0$.
(Optimal policy $(5,5,5)$ and $f_{3}(b)_{2} 125=\max .\left(y_{1}, y_{2}, y_{3}\right)$

Solution of Linear Programming Problem Using Dynamic Programming

Structure of the Unit

12.0 Objective

12.1 Introduction
12.2 Solution of Linear Programming Problem Using Dynamic Programming
12.3 Illustrative Examples
12.4 Summary

12.5 Exercises

12.0 Objective

There are several applications of Dynamic programming. Discrete and continuous, deterministic as well as probabilistic Problems can be solved by Dynamic Programming. Thus dynamic programming method is very useful to solving various problems, such as inventory, replacement allocation, linear programming, reliability improvement problem, capital Budgeting problem, cargo loading problem etc.

12.1 Introduction

The dynamic programming can be applied to many real life situations. Many real life problems can be formulated as linear programming problems. We shall study how a linear programming problem can be solved by dynamic programming. Thus we can formulted as a multi-stage decision problem and then can be solved using Bellman's principle of optimality.

12.2 Solution of Linear Programming Problem using Dynamic Programming

Let us consider the following L.P.P.
$\operatorname{Max} z=\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, i=1,2, \ldots . ., m$
and $\quad x_{j} \geq 0, j=1,2, \ldots, n$
This L.P.P has n varibles with m constraints so it can be expressed as an n -stage problem with m state parameters at each stage.

Suppose $\beta_{1}^{k}, \beta_{2}^{k}, \ldots, \beta_{m}^{k}$ be state parameters and $f_{k}\left(\beta_{1}^{k}, \beta_{2}^{k}, \ldots, \beta_{m}^{k}\right)$ be the state function at stage $K, K=1,2, \ldots, n$. Now the state function can be defined as :
$f_{k}\left(\beta_{1}^{k}, \beta_{2}^{k}, \ldots, \beta_{m}^{k}\right)=\operatorname{Max}_{x_{1}, \ldots x_{k}} \sum_{j=1}^{K} c_{j} x_{j}, k=1,2, \ldots n$

Subject to $\sum_{j=1}^{K} a_{i j} x_{j}=\beta_{i}^{K}, i=1,2, \ldots ., m$
and $x_{j} \geq 0, j=1,2, \ldots, n$

Then by Bellman's principle of optimality, the recurrence relation is given by
$f_{k}\left(\beta_{1}^{k}, \beta_{2}^{k}, \ldots ., \beta_{m}^{k}\right)=\operatorname{Max}_{x_{k}} .\left[c_{k} x_{k}+f_{k-1}\left(\beta_{1}^{k}-a_{1 k} x_{k}, \ldots, \beta_{m}^{k}-a_{m k} x_{k}\right)\right]$
We can determine ${ }_{x_{k}}^{*}$ (optimal value of x_{k}) at the stage $k, k=\overline{1, n}$. Which yields $f_{k}\left(\beta_{1}^{k}, \beta_{2}^{k}, \ldots \beta_{m}^{k}\right)$. Thus at the $n^{t h}$ stage optimal value of x_{n} i.e. ${\underset{x}{x}}_{*}$ is determined.

Hnece the L.P.P. can be formulated as n-stage decision problem and then it can be solved by dynamic programming.

12.3 Illustrative Examples

Example-1 Use dynamic programming to solve the following L.P.P. :
$\operatorname{Max} \quad z=2 x_{1}+5 x_{2}$
Such that $2 x_{1}+x_{2} \leq 43$

$$
2 x_{2} \leq 46
$$

and $x_{1}, x_{2} \geq 0$
Solution : The given L.P.P. has 2 variables with two constraints, so it can be considered as 2-stage problem with two state parameters at each stage.

Let β_{1}^{k} and β_{2}^{k} be two state paramaters and
$f_{k}\left(\beta_{1}^{k}, \beta_{2}^{k}\right)$ be state function at stage $k, k=1,2$. The given L.P.P. can be written as the 2 -stage problem as given by
$f_{k}\left(\beta_{1}^{k}, \beta_{2}^{k}\right)=\underset{x_{1}, x_{2}}{\operatorname{Max}} . \sum_{j=1}^{k} c_{j} x_{j}, k=1,2$
Such that $\sum_{j=1}^{k} c_{j} x_{j} \leq \beta_{i}^{k}, i=1,2$
and $x_{j} \geq 0, j=1,2$
The recurrence relation by Bellman's principle is :
$f_{k}\left(\beta_{1}^{k}, \beta_{2}^{k}\right)=\operatorname{Max}_{x_{k}} .\left[c_{k} x_{k}+f_{k-1}\left(\beta_{1}^{k}-a_{1 k} x_{k}, \beta_{2}^{k}-a_{2 k} x_{k}\right)\right]$
on replacing β_{1}^{k} and β_{2}^{k} by u_{k}, v_{k} (for simplicity), we get.
For stage $\mathrm{k}=1 ; f_{1}\left(u_{1}, v_{1}\right)=\operatorname{Max}_{x_{1}} .\left(2 x_{1}\right)$
Such that $2 x_{1} \leq u_{1}$

$$
0 \leq v_{1}
$$

i.e. $f_{1}\left(u_{1}, v_{1}\right)=\operatorname{Max}_{x_{1}} .\left(2 x_{1}\right)$

Such that $x_{1} \leq \frac{u_{1}}{2}, x_{1} \geq 0 \Rightarrow 0 \leq x_{1} \leq \frac{u_{1}}{2}$, where $v_{1} \geq 0$
$\therefore x_{1}^{*}=\frac{u_{1}}{2}$ and $f_{1}\left(u_{1}, v_{1}\right)=2 \cdot \frac{u_{1}}{2}=u_{1}$
For stage $k=2$, we have

$$
\begin{aligned}
& \quad f_{2}\left(u_{2}, v_{2}\right)=\underset{x_{1}, x_{2}}{\operatorname{Max}} .\left[2 x_{1}+5 x_{2}\right] ; \text { such that } 2 x_{2} \leq v_{2}, 2 x_{1}+x_{2} \leq u_{2}, x_{1}, x_{2} \geq 0 \\
& \therefore f_{2}\left(u_{2}, v_{2}\right)=\operatorname{Max}_{x_{2}} .\left[5 x_{2}+\operatorname{Max}_{x_{1}} .\left(2 x_{1}\right)\right]=\operatorname{Max}_{x_{2}} .\left[5 x_{2}+f_{1}\left(u_{1}, v_{1}\right)\right] \\
& =\operatorname{Max}_{x_{2}} .\left[5 x_{2}+f_{1}\left(u_{2}-x_{2}, v_{2}-2 x_{2}\right)\right] \\
& =\operatorname{Max}_{x_{2}} .\left[5 x_{2}+\left(u_{2}-x_{2}\right)\right]=\operatorname{Max}_{x_{2}} .\left[4 x_{2}+u_{2}\right]
\end{aligned}
$$

Where, $x_{1} \geq 0,\left(v_{2}-2 x_{2}\right) \geq 0,0 \leq \frac{u_{2}-x_{2}}{2}$
$\therefore \quad 0 \leq x_{2} \leq \min .\left(u_{2}, \frac{v_{2}}{2}\right)$
i.e. $\quad 0 \leq x_{2} \leq \min .\left(43, \frac{46}{2}\right)$ at $u_{2}=43, v_{2}=46 \backslash$
i.e. $\quad 0 \leq x_{2} \leq 23 \Rightarrow x_{2}^{*}=23$

Now, $\because 2 x_{1}+x_{2} \leq 43 \Rightarrow u_{1}+x_{2} \leq u_{2} \Rightarrow u_{1}=u_{2}-x_{2} \Rightarrow u_{1}=43-23=20$
$\therefore x_{1}^{*}=\frac{u_{1}}{2}=10$
Thus optimal solution is $x_{1}=10$ and $x_{2}=23$ with optimal value $\operatorname{Max} z=135$.
Example-2 Solve the following L.P.P by using dynamic programming :
Max $z=3 x_{1}+5 x_{2}$
subject to $x_{1} \leq 4$
$x_{2} \leq 6$

$$
3 x_{1}+2 x_{2} \leq 18
$$

and $x_{1}, x_{2} \geq 0$

Solution: The given L.P.P. has 2 variables and 3 constraints so it can be expressed as a 2 -stage problem with 3 -state prarameters at each stage. Suppose ($\left(u_{1}, v_{1}, w_{1}\right)$ and $\left(u_{2}, v_{2}, w_{2}\right)$ be sate parameters at each stage.

Then the subproblems are :

$$
f_{1}\left(u_{1}, v_{1}, w_{1}\right)=\operatorname{Max} .\left(3 x_{1}\right)
$$

Subject to $\quad x_{1} \leq u_{1}$

$$
0 x_{1} \leq v_{1}
$$

For stage 1

$$
3 x_{1} \leq w_{1}
$$

and $x_{1} \geq 0$
and $f_{2}\left(u_{2}, v_{2}, w_{2}\right)=\operatorname{Max}_{x_{1}, x_{2}} .\left[5 x_{2}+3 x_{1}\right]$
subject to $x_{1}+0 x_{2} \leq u_{2}$

$$
0 x_{1}+x_{2} \leq v_{2} \quad \text { For stage } 2
$$

$$
3 x_{1}+2 x_{2} \leq w_{2}
$$

and $x_{1}, x_{2} \geq 0$, where $u_{2}=4, v_{2}=6$ and $w_{2}=18$
Now for stage-1, we get

$$
\begin{aligned}
f_{1}\left(u_{1}, v_{1}, w_{1}\right)= & \operatorname{Max} .\left(3 x_{1}\right) \text {, where } v_{1} \geq 0,0 \leq x_{1} \leq \min .\left(u_{1}, \frac{w_{1}}{3}\right) \\
& 3 \text { Min. }\left\{u_{1}, \frac{w_{1}}{3}\right\} \text { at } x_{1}^{*}=\operatorname{Min} .\left(u_{1}, \frac{w_{1}}{3}\right) .
\end{aligned}
$$

For stage-2, we have

$$
\begin{aligned}
f_{2}\left(u_{2}, v_{2}, w_{2}\right)= & \underset{x_{1}, x_{2}}{\operatorname{Max}}\left[55 x_{2}+3 x_{1}\right]=\underset{x_{2}}{\operatorname{Max}} .\left[5 x_{1}+\underset{x_{1}}{\operatorname{Max}} .\left(3 x_{1}\right)\right] \\
& =\operatorname{Max}_{x_{2}} \cdot\left[5 x_{2}+f_{1}\left(u_{1}, v_{1}, w_{1}\right)\right] \\
& =\operatorname{Max}_{x_{2}} \cdot\left[5 x_{2}+f_{1}\left(u_{1}-0 x_{2}, v_{2}-x_{2}, w_{2}-2 x_{2}\right)\right] \\
& =\operatorname{Max}_{x_{2}} .\left[5 x_{2}+3 \min .\left\{u_{2}, \frac{w_{2}-2 x_{2}}{3}\right\}\right] \\
& =\operatorname{Max}_{x_{2}} .\left[5 x_{2}+3 \min .\left\{4, \frac{18-2 x_{2}}{3}\right\}\right]
\end{aligned}
$$

Thus, $\operatorname{Max.} . z=f_{2}(4,6,18)=\underset{x_{2}}{\operatorname{Max} .}\left[5 x_{2}+3 \operatorname{Min} .\left\{4, \frac{18-2 x_{2}}{3}\right\}\right]$
Where $x_{2} \geq 0, v_{2}-x_{2} \geq 0 \Rightarrow 0 \leq x_{2} \leq v_{2}=6$
Now, Min. $\left\{4, \frac{18-2 x_{2}}{3}\right\}=\left\{4\right.$, if $0 \leq x_{2} \leq 3$

$$
\begin{aligned}
& \frac{18-2 x_{2}}{3} \text {, if } 3<x_{2} \leq 6 \\
& =2 ; \text { at } x_{2}=6
\end{aligned}
$$

$\therefore x_{2}^{*}=6$ and Max. $z=5 x_{2}+6=5 \times 6+6=36$
Now, $x_{1}^{*}=\operatorname{Min} .\left\{u_{1}, \frac{w_{1}}{3}\right\}=\operatorname{Min} .\left[u_{2}, \frac{w_{2}-2 x_{2}}{3}\right]$

$$
=\operatorname{Min} \cdot\left[4, \frac{18-12}{3}\right]=2
$$

Hence, optimal solution is $x_{1}=2, x_{2}=6$ and optimum value $\operatorname{Max} . z=36$
Example-3 Solve by dynamic programming :

$$
\operatorname{Max} . z=8 x_{1}+7 x_{2}
$$

Subject to $2 x_{1}+x_{2} \leq 8$

$$
2 x_{1}+2 x_{2} \leq 15
$$

and $\quad x_{1}, x_{2} \geq 0$
Solution : Hint : $f_{1}\left(u_{1}, v_{1}\right)=\underset{x_{1}}{\operatorname{Max}} .\left(8 x_{1}\right),\left[\right.$ where $\left.x_{1} \geq 0, x_{1} \leq \frac{u_{1}}{2}, x_{1} \leq \frac{v_{1}}{2}\right]$

$$
\begin{aligned}
& \text { i.e. } 0 \leq x_{1} \leq \operatorname{Min} .\left(\frac{u_{1}}{2}, \frac{v_{1}}{2}\right) \\
& =8 \operatorname{Min} .\left[\frac{u_{1}}{2}, \frac{v_{1}}{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \therefore x_{1}^{*}=0 \\
& f_{2}\left(u_{2}, v_{2}\right)=\underset{x_{2}}{\operatorname{Max}}\left[7 x_{2}+\underset{x_{1}}{\operatorname{Max}}\left(8 x_{1}\right)\right]=\underset{x_{2}}{\operatorname{Max}}\left[7 x_{2}+8 \min \cdot\left(\frac{u_{1}}{2}, \frac{v_{1}}{2}\right)\right]
\end{aligned}
$$

Where $x_{2} \geq 0, x_{2} \leq u_{2}-u_{1}, x_{2} \leq \frac{v_{2}-v_{1}}{2}$
i.e. $0 \leq x_{2} \leq \operatorname{Min} .\left(u_{2}-u_{1}, \frac{v_{2}-v_{1}}{2}\right)$

$$
0 \leq x_{2} \leq \operatorname{Min} .\left(8-u_{1}, \frac{15-v_{1}}{2}\right)
$$

i.e. $\quad 0 \leq x_{2} \leq \operatorname{Min} .\left(8, \frac{15}{2}\right)=\frac{15}{2}$

$$
\therefore \quad x_{2}^{*}=\frac{15}{2}
$$

Hence optimal solution is $x_{1}=0, x_{2}=\frac{15}{2}$ and Max. $z=\frac{105}{2} \quad$ Answer
Example-4 Solve by dynamic programming

$$
\operatorname{Max} . z=x_{1}+9 x_{2}
$$

Subject to $2 x_{1}+x_{2} \leq 25$

$$
x_{2} \leq 11
$$

and $x_{1} \geq 0, x_{2} \leq 0$

Solution : Hint: $f_{1}\left(u_{1}, v_{1}\right)=\operatorname{Max} .\left(x_{1}\right)$, where $x_{1} \geq 0, v_{1} \geq 0, x_{1} \leq \frac{u_{1}}{2}$

$$
\begin{aligned}
& =\frac{u_{1}}{2}, \because 0 \leq x_{1} \leq \frac{u_{1}}{2} \\
f_{2}\left(u_{2}, v_{2}\right) & =\operatorname{Max}_{x_{2}} \cdot\left[9 x_{2}+f_{1}\left(u_{2}-x_{2}, v_{2}-x_{2}\right)\right. \\
& =\operatorname{Max}_{x_{2}} \cdot\left[\frac{17}{2} x_{2}+\frac{u_{2}}{2}\right], \text { where } 0 \leq x_{2} \leq \operatorname{Min}\left(u_{2}, v_{2}\right)=\operatorname{Min} .(25,11) \\
& ==106 \text { at } x_{2}^{*}=11
\end{aligned}
$$

Hence optimal solution is $x_{1}=7, x_{2}=1$ and Max. $z=106$ Answer

12.4 Summary

This unit deal with the following :
Objectives, Introduction, Solution of L.P.P. using dynamic programming, Illustrative examples, Self Learnign Exercises.

12.5 Exercises

Solve the following L.P.P. using dynamic programming :

1. Max. $z=3 x_{1}+7 x_{2}$
subject to $x_{1}+4 x_{2} \leq 8$

$$
x_{2} \leq 8
$$

$$
\text { and } x_{1}, x_{2} \geq 0
$$

$$
\left(x_{1}=8, x_{2}=0, \max z=24\right)
$$

2. Max. $z=2 x_{1}+3 x_{2}$
subject to $x_{1}-x_{2} \leq 1$

$$
x_{1}+x_{2} \leq 3
$$

and $x_{1}, x_{2} \geq 0$

$$
\left(x_{1}=0, x_{2}=3, \max z=9\right)
$$

3. $\operatorname{Max} . z=10 x_{1}+30 x_{2}$
subject to $3 x_{1}+6 x_{2} \leq 168$

$$
12 x_{2} \leq 240
$$

and $x_{1}, x_{2} \geq 0$

$$
\left(x_{1}=16, x_{2}=20, \max z=760\right)
$$

4. Max. $z=2 x_{1}+5 x_{2}$
subject to $3 x_{1}+x_{2} \leq 2$

$$
x_{2} \leq 3
$$

and $x_{1}, x_{2} \geq 0$

$$
\left(x_{1}=3, x_{2}=3, \text { max } z=21\right)
$$

5. $\operatorname{Max.z}=3 x_{1}+x_{2}$
subject to $2 x_{1}+x_{2} \leq 6$

$$
\begin{aligned}
& x_{1} \leq 2 \\
& x_{2} \leq 4
\end{aligned}
$$

and $x_{1}, x_{2} \geq 0$

$$
\left(x_{1}=2, x_{2}=2, \max z=8\right)
$$

