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PREFACE

The present book entitled “Mathematical Programming” has been designed
so as to cover the unit-wise syllabus of M.A./MSc. Mathematics-10 course for M.A./
M.Sc. (Final) students of Vardhaman Mahaveer Open University, Kota. It can also be
used for competitive examinations. The basic principles and theory have been explained
in a simple, concise and lucid manner. Adequate number of illustrative examples and
exercises have also been included to enable the students to grasp the subject easily.
The units have been written by various experts in the field. The unit writers have
consulted various standard books on the subject and they are thankful to the authors

of these reference books.
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1.10 Objective

After studying this unit you will be able to understand a hyperplane in Euclidean space g~ and its
use in the solution of linear programming problems. You will also be introduced about a convex function
defined on a convex set.

1.1 Introduction

A linear relation in two unknowns (variables) represents a straight line in two dimensional space. A
linear relation in three variables represents a plane in three dimensional space. On generalization what is

represented by linear equation in , unknowns, is called hyperplane in , dimensional space g . It plays

an important role in the theory of linear programming. In the last of the unit, concept of convex function is
introduced which has importance in the study of non linear programming problems.

1.2 Some Important Definitions

(i) Set of points :- A linear equation in x,,x, i.e. the equation of the form a, x, +a,x, =b
represents a line in g2 . Similarly a linear equation in x,,x,,x; i.e. a,x, +a,x, +a,x;=b or aX =b,
where o =(a,,a,,a,) and X =[x,,x,,x, | represents aplane in 3. Bothofthese can be considered as
the sets of points as follows :

S, ={(x,,x,):a,x, + a,x, =b} and

S, = {()c1 , X, ,x3):a1x1 +a,x, +a,x; = b}

Similarly, the set

Sz{()cl,x2 ,x3....xn):a1x1 +a,x,+..4+a,x, = b}

is defined in n-dimensional space g .

(i) Line and line segment : The line joining two points X, and X, eE" is the set of points
given by

S, ={X:XeE"and X=2X,+(1-2)X,,2 eR}
and the line segment joining two points X, and X, is the set
S={X:XeE"and X=2X, +(1-2)X,,0<1<1}

(iii)  Hyperplane : The equation ¢, X, +¢,X, +¢;X;+....+¢,X, =z or ¢ X =z defines a hy-
perplane in n-dimensional space g~ .Herenot all ¢,'s are zero simultenuously.

In this by putting different values of ¢,'s and z, we can get different hyperplanes. Further a hyper-
plane is a set of points X e E” satisfying CX = Z . Thus the set

H= {X: CX= Z} is called a hyperplane.

The vector ¢ is called a vector normal to the hyperplane and C= iﬁ is called unit normal.

Note : (i) I[f z=0, then CX =0, then the hyperplane is said to pass through the origin.
2



(i) Two hyperplanes C X, =Z, and C X, = Z, are said to be parallel, if they have the same unit

normalsi.e.if ¢, =4 ¢, forsome A, 4 being non-zero scalar.

(iv) Neighbourhood of a point : A subset N of g issaid to be an e-neighbourhood ( e-nbd)
ofthe point X, eE" s.t.

N={X:XeE",

X-X|<é€f
being a small positive number.

) Interior and boundary points : Apoint X, issaid to be the interior point of the set S if
there exists at least one ¢ —yp4 ofthe point X, whichis wholly contained in the set S. On the otherhand,

apoint X, is said to be the boundary point ofthe set S<E” ifevery e-nbd of X, contains at least one
point not belonging to S and atleast one point belonging to S.

(vi)  Closed and open sets : Asubset Sc E” is said to be closed if every boundary point of

S belongs to it. On the otherhand, a subset S E” is said to be an open set if it contains only interior
points.

A hyperplane divides the whole space g~ into two half spaces, knownas closed half spaces given by
H={X:XeE" CX>Z}, and H,={X:Xe€E" CX<Z}
Also, a hyperplane divides the whole space g~ into three mutually disjoint sets given by

S={X:XeE".CX>Z}, S,={X:XeE" CX=Z}

and S, :{X ‘X eE", CX <Z} .Here S, and S, are called open halfspaces.

Note : The objective function and coustraint equations of the L.p.p. represents hyperplanes and each
constraint (sign <,>) is a closed half space produced by the hyperplane given by the contraint by taking

‘=" sign in place ofz or <.

(vii) Convexset: Asetofpoints S E” is said to be convex if the line segment joining any
two points of S lies wholly in the set S. In otherwords, a set S is said convex if for any two points
X,,X, €S, AX,+(1-2)X, €S, where 0< A<1.

ZYiNS

Fig 1.1 (a) Convex Sets

L0

Fig 1.1 (b) Non-Convex Sets
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(vii) Extreme point : Apoint X, ofaconvex set S is said to be an extreme point ifit does not
lie on the line segment of any two points, different from X, in the set.

The vertices ofa polygon and every point on the circumference of'the circle is the extreme point of
the convex set of the points on and within the polygon or circle.

1.3 Some Theorems

Theorem 1.1 : A hyperplane is a closed set.

Proof : Let the point set H = {X :XeE",CX = ZO} be a hyperplane. To show that it is a closed

set, we take a boundary point X, of H and prove that X, eH .

Contrary, we suppose that X, X, ¢ H , theneither CX,>Z, or CX,<Z,.
Let CX,=Z,<Z,. Now CX, = C(X0 +X—X0):CX0 +C(X—X0)
C(X - X,)<|C(X - X,)
CX<Z +|C(X - X,)|
= CX<Z+|C|X-X,| (1)
Now consider e—nbed of X ie. | X — X |< e, where

Z=24 o
2 | C| , than (1) implies that

2,-2,_2,+2,

CX<Z +
2

Z.
If shows that € — nbd of X, contains no point ofthe hyperplane H, which is the contradiction as
X, 1s a boundary point.
= CX,£Z,
Similary we can show that C X% Z,.
= Only CX, = Z, is possible.
= X, 1s the point in hyperplane
= X, eH

= H isaclosed set.

In a similar way, one may prove that closed half'spaces are also closed sets and open half spaces are open
sets.



Theorem 1.2 : A hyperplane is a convex set.
Proof : Let H:{X.'X eE",CX = Z} be a hyperplane in g~ and X, X, be two points of H, then
CX,=Z and CX, =Z . Now, if X; =1 X, +(1-1)X,,0<A<1, then

CX, =C{AX, +(1-2) X, }=ACX, +(1-A)CX, =AZ+(1-A)Z =Z
ie. X, satisfies CX=Z

Hence X, = AX, +(1—2)X, €eH and therefore by difinition H is a convex set.
Theorem 1.3 : The closed half spaces H,={X:CX>Z} and H,={X:CX <Z} are convex sets.
Proof: Let X, X, betwo points of H,then CX, 2Z,CX, >2Z . Now if 0<A<1, then

ClAX, +(1- )X, [=2CX, +(1-A)CX, 2 A Z+(1- ) Z

=27
=  AX,+(1-2)X, eH,
= H, isa convex set.

Similarly, it can be shown that A, is also a convex set.

Theorem 1.4 A point y in space either belongs to a given closed convex set x or there exists a
hyperplane through y so that whole ofthe x lies in one open half space produced by that hyperplane.

Proof': The proof's clear for two and three dimensions. In g2, the situation is show in figure 1.2.

Suppose y ¢ X and w € X be the point closest to y i.e. the distance of y from ¥ is minimum.

Thus |w— y|=minu— y| X,

= |w—y|£|u—y, VueX (1)

Figure 1.2
Such a point 1y always exists and unique as the set Y is closed. To prove uniqueness, let w, and
w, betwo points of  with the some minimum distance. Than
1 1 1
E(Wl + wz)—y ZE‘(WI —y) + (w2 —y)‘£5(|wl —y| +|w2 —y|)
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[wy = y|=|w, =y, we get

1
‘E(Wl +W2)_y S|W1 _y|:|W2 _y|

1
Thus we have obtained a point ) (Wl +w, ) € X (as X is convex) which is nearer to y then, w,

and w, . This contradicts that w, and w, are closestto y.Hence y is unique.

To prove that whole of x lies in one half of closed space : Let 4 is an arbitrary point of x
and Y isconvex set, we have

[iu+(l—i)w]]e)(, 0<A<1

From (1) ‘/’Lu—(l—/’t)w—y‘22|w—y2, 0<A<1
= ‘(w—y)+/’t(u—w)‘2 2|w—y|2
= |w—y|2+22¢(w—y)l(u—w)+2¢2|u—w|2 2|w—y|2

= 24(w-y) (u-w)+ 2u-w>0
Taking A >0, we get
2(w=y)' (= w)+ Au—wl 20
Taking 1 —0,, we get
(w=) (u=w)=0
= (w=y) (=)= (w-y)]20
= (w=y) (u=p)zw-f
But |w—y[’>0 as weX and yg X
= (w-y).(u=y)=0
= (w=y).u>(w-y).y .(2)
Ifwe take C =(w—y) and z=(w—y).y,then Cx = 7 isahyperplane through y as
cy=(w-y).y=z

and satisfies cu>cy=z,VueX



Thus we have found a hyperplane through y and x lies in one open half space produced by this
hyperplane. Such a plane is called separating hyperplane.

1.4 Supporting Hyperplane

A hyperplane cx =z issaid to be a supporting hyperplane at a boundary point , ofa convex set
x if
() cw=Zz i.e. the hyperplane passes through .

(i) cu>z or cu<z YuelX ie. thewholeof x liesinone half closed space produced by
CX=2Z,

Theorem 1.5 The optimal hyperplane in a L.P.P. is a supporting hyperplane to the convex set of feasible
solutions.

Proof: Suppose, we have a L.P.P. as

MaxZ=cx

s.t. AX<b, X=0

we know that the set of all feasible solutions to L.P.P. is a convex set and the objective function is a
hyperplane. We move this hyperplane parallel to itself over the convex set of feasible solutions (feasible
region) until z is made as large as possible so that the hyperplane contains at least one point of the feasible
region. Note that the hyperplane corresponding to higher values of z will contain a point of feasible region.
This is a hyperplane corresponding to the optimum (maximum) value ofz. This is known as optimal hyper-
plane.

To prove that no point of this hyperplane is an interior point of convex set. For this, suppose that
CX =Z, is the optimal hyperplane and X is an interior point of Y on this hyperplane. Since X is an
interior point of the set X, there exists €>0 s.t. e-neighbourhood of X, wholly lies in the set X. Thus the

- = -2
: ¢
point Xl:XO""EE[ﬁ] isin y and Z1 =¢X; =X, +§%=Zo +§%=ZO+§|C|

e .
z,=CX,>z, as E|C| 1S posivtive.

Thus we have obtained a point X, € X which gives higher values of objective function than z;
(the maximum value) which is a contradiction as z,, is the optimal value. Therefore, X, is not an interior
point, but boundary point of x . Thus CX = Z, is a hyperplane containing a boundary point of x . Also if
u € X isanypoint then cu=z<z, (as z, ismaximum). Hence X lies in one closed halfspace produced
by the hyperplane CX = Z,. Therefore CX = Z, is the supporting hyperplane at x,.

Theorem 1.6 Every supporting hyperlane ofa closed convex set which is bounded from below contains
at least one extreme point of the set.

Proof: Let CX =Z, be a supporting hyperplane at x, to the closed convex set X, bounded from below.
Let T be the intersection of X and the hyperplane S ={x,;cx=z,}.



It is clear that atleast x, €7 showing that T is not empty. Now we shall prove this theorem by

showing that T has an extreme point and the extreme point of T are also the extreme point of X. Then
hyperplane will clearly contain at least one extreme point of X.

Let ¢ €T be an extreme point of T; then by definition there do not exist x,and x, €7 . s.t.
t=2x,+(1-2)x,, 0<A<l, x, #x,

Now suppose T is not an extreme point of x(r €7 =¢ex). Then Ix,,x, €X such that
t=2x,+(1-2)x,, 0<A<I1.Since cx=z, isa supporting hyperplane, cx, >z, and cx, >z,.Also 7 €T

lies on the hyperplane, we must have ¢ 7 =z, .
But ct= c(ix1 +(1-2)x, ) =2cx; + (1= A)ex,

This is equal to z, ifand only if cx, =z, and cx, =z, as 1>0, (1-1)>0. Hence x,,x, also

lies on the hyperplane and hence belonging to T. Thus we have obtained two points x, and x, of T s.t.
t=2x,+(1-2)x,, 0<A<l

This is a contradiction as ¢ is an extreame point of the set T. Hence ¢ is also extreme point of X.

Now it is to show that there exists an extreme point of T. For this, we shall actually find an extreme
point. Select that point (vector) of T for which the first component is minimum. Such a point will exist
because T is bounded from below as X is bounded from below.

If'this point is not unique, i.e. the first component has no unique minimum, then out of these points
(for which first component is minimum select the point with the second component minimum. Still the point
is not unique, then select the point out of these for which third component is minimum and continue this
process until the unique point is obtained. This unique point is an extreme of the set T. For, if this point say

t* is not an extreme point ofthe set T, then 3 ¢,,z, €T s.t. t*=Ar + (1 - ﬂ,)z‘2 , 0<A<l, t, #t,.
Suppose ¢ * is determined on taking the # component minimum. If 7, .7, are the components
of ¢, and ¢, respectively, then 4 component of ;* is givenby #; =A¢, +(1-A)z, , 0<A<1
Now also ti*:itil+(l—i)ti2,0<l<l (i<k-1)
Ift, #t, ,say t; >, ,the we get
>t +(1-A), =t,

which is a contadiction as ti* is minimum. Hence ¢, #¢; similarly ¢, ¢, . Hence #, =¢, and

hence

t=At, +(1=A)1, =1, =t,

I I )

Now, for #, =At, +(1-4)t, tobetrueweshould have 7, =#, =1, ,otherwiscaabove 7; will

be greater than either #, and 7, .



Hence the points #, and ¢, also have the same minimum j# component. But with this minimum

value of j** component, there is only one point. Thus we get a contradiction.

Therefore ;* cannot be written as convex combination of two different points. Hence it is an
extreme point.

Example 1.1 A hyperplane is given by the equation
3x, +2x, +4x;+7x,=8.
Find in which halfspaces do the points (-6,1,7,2) and (1,2,4,1) lie.
Solution : Putting x, = —-6,x, =1,x, =7,x, =2 inthe L.H.S. of the given equation, we get
LH.S.=3.(-6)+21+47+72=26>8=R.H.S
= Point (—6,1,7,2) lies in the open half space
3x,+2x, +4x;+7x, >8.
Similarly substituting (1,2,—4,1) , we get
LH.S.=31+22+4.(-4)+71=-2<8=R.H.S.

= Point (1,2,—4,1) lies in the open halfspace 3x, +2x, +4x, +7x, <8.

1.5 Self Learning Exercise I

1. Define hyperplane.

What are the closed and open sets?

2

3. Define convex set.

4 Define extreme point.
5

Define supporting hyperplane.

1.6 Convex Function

A function f(x) defined ona convex set S E" is said to be convex function if for any two

points X, and X, inSandforall 1, 0<A<1
X +(1-2)X,|<2 £(X)+(1-2) £ (x,)

and the function f (x) is said to be strictly convex if for any two different points X, and X, in S and

0<A<l
X +(1-2)X, |<47(X)+(1-2) £(X,)

A function f (X ) is said to be concave (or strictly concave) if — f (X ) is convex (strictly convex).



Geometrical Meaning :

The single variable function f(x) is strictly convex ifthe line segment joining two point (x,, £(x,))
and (x,, f(x,))on the curve of f(x) lies above the curve (figure 1.3). Similarly single variable function

g(x) is strictly concave if the line segment joining two points (x,,g(x,)) and (x,,g(x,)) onthe curve of

g(>x) lies below the curve (figure 1.4)

. g(x)
0 :
f(xz) B g(xz ) B

o

=

x

T

N
Ry
N 0

M) +(1-2)1(x) Jefie) +(1-2)/ ()
7(x)
f[Ax, +(1-2)x,] 4
f(x) ] g(xl) y
X o+ (1= 2)x, > X, >x
Figure 1.3 Figure 1.4

From figure 1.3 it is observed that for all 0< A <1
fAx+(1=A)x, <A f(x)+(1-2) £(x,),
and from figure 1.4 forall 0< A <1, we get

g[ixl +(l—i)x2]]>ig(x1)+(l —-2)g(x,).

Note : A linear function is convex as well as concave but not strictly convex or strictly concave as shown
in following theorems.

1.7 Some Theorems on Convex Function

Theorem 1.7 : Alinear function Z=CX = f(x)(Say) , X eR"
Suppose X, and X, be two points of g
Now f[AX,+(1-2)X,] = C[AX +(1-2)X,]

0<A<1 = ACX, +(1-2)C X,

= Af(X,)+(1-2) F (X))
= X +(1-2)X, <2 f(x)+(1-1)f(x,)
0<A<1
10



and f|AX, +(1-2)X, |22 £ (X,)+(1-2) f(x,)
. f(X)=CX isaconvex function as well as concave. Here strict inequaltiy is not implied.

So f (x) is neither strictly convex nor strictly concave.

Theorem 1.8 The sum ofconvex functions is convex and if atleast one of the functions is strictly convex,
then the sumi s strictly convex.

Proof:Let f,,f,,f;,...f,, be m convex functions defined on the convex set S E". Let
f=f,+f,+ f,+.+f, bethesum function defined on the same set S.

Let X,,X, betwo pointsof S and 0<A<1. Then

A (-2)x] = XAl (1-2)x]

< g[/lﬁ()(lﬁ(l—/l)ﬁ()(z)]

[since f, isconvex Vi=1,2,....,m]
<Y H(X)+H(1-D)Y £(x.)

SAf(X)+(1-2) f(X,)
= The function f = f, + f,+....+f,, is convex function on S.
If atleast one function say f,, 1<k<n is strictly convex then for 0<A<I,

Fil X, +(1=-2) X, |< 4, (X)) + (1= 2) £, (x,) usingit we get

X +(1-2) X, <40 (X)) +(1-2) £(X,)
VX,,X,eS and 0<A<1

Hence, f is strictly convex if atleast one of the function is strictly convex.

Theorem 1.9 The sum of concave functions is concave and if atleast one of the functions is strictly
concave, than the sum is strictly concave.

Proof : The proofofabove theorm can be done in the same manner as oftheorem 1.8.

1.8 Illustrative Examples

Example 1.2 Show that f(x)=x isaconvex function.

Proof: Here f(x)=x?,let 0<A<1
F2x +(1=A)x, | = 2 £ (x) - (1-2) £ (x;)

= [2x, +(1- 205, ] = At = (1= )3

11



= (2= 2)at +[(1-2)=(1-2) | =22(1- 2, |
= —ﬂ;(ﬂ.—ﬂ.z)(xl —xz)z]SOHQaSOSﬂ.Sl, A <2,(x —xz)2 ZOJI

= flAxn +(1-A)x, [<Af(x)+(1-2) f(x,) = f(x)=x" isa convex function.

1
Example 1.3 Prove that f (x ) = < is strictly convex for y > () and strictly concave for y < ().

1
Sol. Here f (X)Z;
12+ (=20, [= 41 (1) = (1= 2) (x2)
-1 A 1-2
o +(1-2)x, x  x,
(2,2 - A) ()c1 - X, )2
XX, [Axl +(1- A)xz]]
for 0<A<1,2* <A andfor x =x,,(x, —xz)2 >0
for (x,,x,)>0 and for (x,,x,)<0,x,x, >0
Also for (x,,x,)>0,Ax, +(1-2)x, >0 and for (x,,x,)<0,Ax, +(1-21)x, <0
(2,2 - A)(xl - X, )2 0
Hance xlxszl +(1_A)x2]l <Y forall x,,x, >0
(2,2 - A)(xl - X, )2 0
and xlxz[ﬁxl +(1_A)x2]l >V forall x,,x,>0
= fAxn (1A, [<Af (x)+ (1= 2) £ (x,), ¥ xp,x, >0
and f[ixl +(1—i)x2]l>if(x1)+(l—i)f(xz), vV x;,x,<0
1
Thus /f(x ):; is strictly convex for x>0 and strictly concave for x <0.
0 for x<b
Example 1.4 Show that S (x)= a( Y b) for c>h (Here a> 0) is a convex function.
Sol. : Here f(x) isaconstant function for x <5 andis a linear function for x> b . The curve of

12



the function is shown below by dark line.

SN

f(xz) ............................................. -

ab

N
x=2b 7 x

Figure : 1.5

It is clear from above figure 1.5 that for any two points x,,x, ofthe domain, the line segment

joining two points (x,, £(x,)) and (x,, f(x,)) is above the curve of f(x) for x, <x<x, ie.
flae +(1=2)x, | <27 (x)+(1-A) f(x,),  0<A<I

Hence the function f(x) is a convex function.

Example 1.5 If f(x) is continuous, f(x) >(,—o0<x <o then the function ¢(x) = Jm (y - x) f(y)dy

is a convex function provided the integral converges.

Sol. : Let x, and x, be two points of the domain of ¢(x);x,<x, and

x; = Ax; +(1-A)x,,0<A<1, then we have to show that ¢(x,) <A ¢(x,)+(1- 1) ¢(x, )

We have ¢(x3): J: [y - {Z‘xl + (1 - A)xz }]]f(y)dy
=2 (=2 )W)y + (1= 2) [ (y=2)7 (v)dy

o0
X3

= A[]l(y—x)f(y)dy"‘]E(y—xl)f(y)dy

X3 X

#(1=2)| [ =) O+ [ (=) () |

< A[ [ G=x)r W[ (v=x)s (y)dy}

13



+(1- /T)UZ(y —x)f )y + | (v=x)f (y)dY}
=) ()0 as (y-x,)<0, £ (y)20

and = [ (r=x)f (1) <0 as (y-x)20 £ ()20

. §(x,)< Ag(x,)+(1- 2)$(x,) for 0<A<1

=@
N

Hence ¢(x) isa convex function. Figure : 1.6

1.9 Quadratic form

A quadratic formin variables x,,x,, x;,....,x, is a function of these variables which is defined as

n n
o(X)=2 D a; x x, , where a; are constants.

i=1  j=1

If Az[aij]lz a square matrix of order n xn and XZ[xl,xz,...xn]]T,thenwehave.

O(X)=X"4X or X'AX

Here the square matrix A can always be written as symmetric matrix because the coifficient of

X,x; is a; +a; and if A is not symmetric matrix, we can construct a new matrix B with the property

X"B X=XTAX (since a;+a,;=b,+b,)

Clearly, B is a symmetric matrix, so A can always be assumed a symmetric matrix i.e. in future we
shall always assume matrix associated with a quadratie form is symmetric

1.10 Positive and Negativeness of Quadratic form

A quadric form Q(X) is said to be :

@) Positive definite, if O(.X)>0 forall X, except X=0

()  Positive semi definite, if O(X)>0 forall X and 3 some X #0 forwhich O(X)=0.
(i)  Negative definite ; if —O(X) is positive definite.

(ivy  Negative semi definite ; if —O(.X) is positive semi definite.

v) Indefinite ; if Q(X ) > 0 for some X and Q(X ) < 0 for some other X.

14



Examples :

I Oflx
@) Q(X)_(XUXZ) 0 J[ l}lez"‘xzz is positive definite
L X
1 —1] ,
(i) O(X) =(x,x,) 11 = (%, —x;) is positive sami definite
1 0][«x
Giy — O(X)=(x,x,) 0 _1 [ ‘} is indefinite.
LV UL

There are several tests to determine the character of the given quadric form. One ofthese tests is
eigen value test. In this test we find the values of the roots of the characteristic equation |A -M | =0. This

equation is a polynomial equation of degree 5 in } . Since A is symmetric, so all the roots of this equation
i.e. the n values of ) (called eigen values) are real. If

Q)] Allthe nvalues of } are positive, then X' 4 X is positive definite.

(i) Some values of } are positive and remaining are zero then the quadratic form X' 4 X is
positive semi definite.

(ii1) Allthe nvalues of j arenegative, X' A X isnegative definite.

(iv)  Some values of } are negative and remaining are zero then X' A4 X is negative semi
definite.

v) Some values of } are positive, other’s are negative then X' 4 X is indefinite.

Another test : Ifall the successive principal minors of Aare >0, then X' A4 X is positive definite and if all

the successive principal minors of (—4) are > (, then X' 4 X is negative definite.

1.11 Illustrative Examples

Example 1.6 Test the nature of quadratic form Q( X ) =X'AX

300 X,
where 4=10 =2 0|, X=| x,
0 01 X,
Sol. : Characteristic equation |A - | =0
3-4 0 0
0 -2-40 |=0
j—
0 0 1-2

=  (3-2)(-2-1)(1-2)=0

15



—  A=3,-21

Since two eigen values are positive, one in negative so Q(X) is indefinite.

Example 1.7 Show that f(x)=2x +x; isaconvex function over p2.

Sol. : f (X ) is a quadratic form, so in matrix form it can be written as
2 0| x
X — 1
oo
e 2 0
Here 4= 0 1 |A—M|=O
2-4 0
0

= (2—1)(1—1)20
= A=2,1

= All the two eigen values are positive, therefore f (x) is positive definite. A positive definitive

quadratic form is strictly convex function so f (x) is a convex function over p2. It is clear from the

following theorem.

1.12 Theorems on Quadratic form and Convex Function

Theorem 1.10 A positive semi definite quadratic form f(X)=X"A4X isaconvex function over g.

Proof : Suppose x,,x, be two points of g7, thenfor 0<A<1

fOx+(1-2)X,) = f[X, +A(X, - X,)]

(X, +2(x, - X,)] 4] X, + (X, - X,)]
= XITAX, + A XTA(X, - X,)+ A(X, - X,) 4 X,
+ (X, - X,) A(X, - X,)
['.'[XZT A(X, - x,)] = x74(x, - X,)
= (X, - x,) A"
= XTAX, +22XT A(X, - X,)+ 22(X, - X,) A(X, - X,)

16



< XTAX, 422 XTA(X, - X,)+ A(X, - X,) A(X, - X,)
(-r 0<A<1s0 A*<A, f(X) ispositive semi definite)
< XTAX, +2A XTAX, 20 XTAX, + X[ AX, - )X AX,
—AXTAX, + XTAX,
T
<A X[ Ax, +(1-2)X] 4, [ (X[ 4x,] = XlTAXz]
<SAf(X)+(1-2) f(x,)
Thus f(X)=X"AX isaconvex function.
Theorem 1.11 A positive definite quadratic form f(X)=X"A4X isastrictly convex functionover gn.
Proof: o f(X)=X"AX ispositive definite quadratic formso 0<A<1= A< A and
T T
(X, - X,) A(X, - X,)<A(X, - X,) A(X, - X,)
using this in the proof of above theorem, we get
X +(1-2) X, <4 (X)) +(1- 1) £(X,)
= f (X ) is strictly convex function over pr.

Theorem 1.12 A negative definite (negative semi definite) quadratic form f(X)=X"AX isastrictly

concave (concave) function over g”.

Proof: w 0<A<l=>A*< A and f(x) is negative definite

= (X, -X,) A(X, - X,)> (X, - X,) A(X, - X,) and 0<A<1, 22 <2, f(x)
is negative semi definite

= (X -X) A4(X - X,)2 (X, - X,) 4(X, - X,)

using it in the proof of theorem 1.10 we get that f(x) is strictly concave (concave) functionover gr.

1.13 Self Learning Exercise-11

L. Define convex function.

2 Define quadratic form.

3. What is convexity of quadratic form?

4 What is the relation between convexity and cocavity ofa function?

5 What is Eigen values test for the positive and negativeness of quadratic form?
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6. Write principal minor test for positive and negativeness of quadratic form.

7. Write geometric meaning of convex and concave functions.
1 3 5
8. Write the quadratic form whose associated matrix is 3 6 -3
5 -3 14

1.14 Summary

In this unit, the concepts of set of points on the line in g2 and onthe plane in g3 are generalised

to n-dimensional space g . We call it as hyperplane. A hyperplane is a separating hyperplane if whole of
sets lies in one half of space produced by hyperplane. A separating hyperplane is called supporting
hyperplane if it passes through a point of S. The optimal hyperplane ofa L.P.P is a supporting hyperplane
of'a convex set of feasible solution. In the second part of the unit a convex or concave function is defined
on convex set and discussed its properties. In the quadratic formand its relation with convex function have
been studied.

1.15 Answers to Self-Learning Exercise-I
Lo 1)
2. f12(w)
3. §12(vii)

4. §ra(vii)

5. 14

1.16 Answers to Self-Learning Exercise-II

L §16 2. 19

3. Theorem 1.10 4. Theorem 1.12

5. Lo 6. §110 Another test
7. 16 8. §19

1.17 Exercises

1. Show that a hyperplane is a closed set

2. Prove that the optimal hyperplane ina Lp.p. is a supporting hyperplane to the convex set
of feasible solutions.

3. If f(x) isaconvex function over the non-negative orthart of g, then show that

18



S={X:f(x)<b,X>0} isa convex set.

x—a) b<0, x<a

1s a convex set forall x .
0 x>q Isaconvexsetfo X

Show that /(¥)= {b(

a(x—a), a>0,x>a

1s a convex function
b(x—a), b<0,x< q isaconvex functio

Show that ./ (X)={

Provethat f(x)=CX + X "DX isstrictlyconvexiff x7py is positive definite.

Show that f(x,,x,)=x,.x, isnotaconvex setover g2.

Show that a linear function is convex as well as concave.

Show that following function are convex.

0 f(x)=/y @ f(x)=e"

19
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Unit - 2
Revised Simplex Method

Structure of the Unit

2.0 Objective

2.1 Introduction

2.2 Revised Simplex Method (Standard form-I)
2.3 Revised Simplex Algorithm (Standard form-I)
2.4  lllustrative Examples

2.5  Revised Simplex method (Standard from-II)
2.6 lllustrative Examples

2.7  Self-Learning Exercise - |

2.8 Exercise

2.9  Bounded variable problems

2.10  Tllustrative Examples

2.11  Self-Learning Exercise - 11

2.12  Exercise

2.0 Objective

A linear programming problem with m constraints and 5 variable is defined as :

Max. Z=cx +c,x,+....4+cXx
s.t. a, x, +a,x,+...+a, x, =b,
ay X, +a,X,+...4a, x, =b,

In the under graduate classes we have studied simplex method to solve these types of problems.
For computer programming purposes, our objective is to find a method which use less entries and
operations then simplex method. The revised simplex method fulfills this objective.

2.1 Introduction

In the simplex method if B =(p,,8,,....3,,) bethebasis of Lp.p., X, = (xﬁl,xﬁ2 ..... xﬁm) the

m

corresponding B.F.S. and C, = (C 5CpreCp ) , corresponding price vectors, then we have
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(a) Bixg +Brxy +.... B, x5 =b

ie.  BX,=b or X,=B'b
) By tBaya et By, =

ie. By,=a; or y, :Bfla_/ , inparticular y; = B’IB_/ =e,
(©) z=Cyxy +Cpxp +....+Cp X

i.e. z=C,X,=C,B'b asX,=B"'b

(d) z.—c.:CBlylj+CBzy2j+....+CBmym/—Cj

J J
=Gy, = C;=CB ;= C, (1)

In the simplex procedure we get the following important fact :

Not all the elements of simplex tableau used in calculation at any iteration. Suppose that, at the
beginning of an iteration, the inverse p-! ofthe current basis is known. This leads to a direction calculation

of z; —¢;, corresponding solution of the problem and the value ofthe objective function with the help of
(1). The different steps in calculating the next iteration may then be realised as follows :

1) Calculate y, = B™' «, . If y, <0, there s no finite optimum solution exists. If atleast one element
of y, is> 0 the application of exit criterion (calculationof Min 8 = Min Lo v, >0) ofthe simplex
Vi

method will determine the vector B, to be removed from the present basis.

(i) Calculate the inverse of new basis i.e. ( B')f1 (Obtained by replacing S, by ¢, in B) with the help

ofold inverse of the basisi.e. B™".

(i)  Calculate the new values of z; —¢; with the help of (1) and the basis inverse ( B')f1 .

(iv)  Calculate the new solution and the new value of the objective function with the help of (1) and
(B)"
From above remarks, it follows that to apply the simplex method it is sufficient to transform the

inverse of the basis (So as to get the inverse of the new basis) and to calculate from inverse only, the

necessary guantities, z, —¢;, ¥, , value of the objective function and the solution of the problem. The
revised simplex method uses this principle.

2.2 Revised Simplex Method (Standard Form - I)

Consider an L.p.p. asMax Z=CX, subjectto AX = b, X >0. Inthe revised simplex method, the

objective function is treated as an additional coustraints, which inereases the number of coustraint by one.
Instead of cousidering the problem in the above form, we consider the problem here as to maximise z
subject to
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AX =b
and z—CX=0,X20 ..(2)
which can be written in the expanded form as
a, X, +a,x,+....4+a, x,=b,
Ay X, +apX, +.....ta,, x, =b,
z—Cx,—Cyx, — -Cx, =0 ..(3)
x;20, j=1,2,3,....,n

The system (2) or (3) can also be written as

b ekl e

Equations (2), (3) and (4) are referred to as standard form I of the problem for the revised simplex
method. In this form an identify matrix in available is the original l.p.p. without using artificial variables.

In the standard form I, corresponding to each activity vector @ ; of Awe can define a new (m+1)

component column vector given by ag.l) z[aj,Cj],jzl,L....,n

Also for vectors of basis, we have B! = [ B:,Cy ]l and corresponding to , we candefine (m +1)

component vector
b(l) — [ b, 0]] )

Note that in (3) the column corresponding to Z is the (m + 1) component unit vector, i.e. e

m+1°

Basis and Inverse of the Basis :
Abasis matrix for the set of equations (3) will be of order (m+1). Actually we are in need of a basic
feasible solution ofthe equations (3) with one of the basic variable as Z which is unrestricted in sign and the

other m basic variables x; 20 such that Z is as large as possible. We always keep the column e

m+l *

corresponding to zin the (m + l)m column of the basis matrix.

Let B, be the basis matrix of order (m +1) and containing e, , so that

m+1?

B=(B". 8.8 e,..)

..(5)

Since B, is basis matrix, the vectors gl g\ . g o

PEXERR m o

are linearly independent. So a subset

m+1

A, BV, ... 8" are also linearly independent and hence the vectors S, 3, ,.... B, will also be linearly

m
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independent and therefore these can be considered as to form basis matrix for 4X = p, i.e. for the original
problem. Hence representation (5) can be written as

s |B 0
Y-, 1]

where B=(,,$,,....3,,) is the basis for the system AX =b. Thus every basis matrix of the
revised problem can be written in the form of the basis matrix g of 4x = 5. To proceed in revised
simplex method, we need inverse of the basis. We find the inverse of B, by partitioned method.

B 0 I 0
o e ol

_ Ba Bp [10
L& —Coa+5 —C,B+5| |0 1

which gives ¢ =B™', f=0, y=C,B", 5=1

L | BT 0
B'= | .
C,B" 1

Now consider the product of B' and any o'

J

B ol|[la, ] |Ba, y,
-1 (1) _ Jo|_ J |
Bl = L =l_ _ . .(6)
CBB 1 ¢; CBB a;— C/ Zp¢

The first , components of the product are the , components of y; and the lasti.e. (m + l)m

, we get

component in the product is z; —¢; whichis required for the procedure of optimization.

Now we consider the product of B with ;1) , we get

B ollb B7'b X
XI(;) :B;Ib(l) — . [ :| = 1 - i ...(7)
C,B" 10 C,B'b| | Z

The first m components of )?g) are the elements of the basic feasible solution ofthe original Lp.p.
and the last i.e. (m+ 1)’h component is the value of the objective function of the problem. It gives the
reason for treating objective function as one extra constraint.

Computational Proceedure for Standard Form-I :-

In the standard form-I, the identity matrix is present in A without using artificial variables. For
revised simplex method initially we have the basis matrix
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s |B O|_[L 0
1 —63 1 - _CB 1 (lem)

o B o] [1, 0
Cles 1Tl (8)

Further, if the columns from A constituting /, , i.e. the initial basis of 4X =5, correspond to slack

or surplus variables, then C, =0.

The initial basic solution in revised simplex method is given by

o [L. o][] [p
x| = _
C, 10| |Cpl

and it is feasible because the first » components are the elements of >0 and the (m + l)th

component, i.e. z can be of any sign. We now have a B.FE.S. of (3) and also the inverse of the
corresponding basis matrix.

To improve a B.F.S. we compute z; —c¢, corresponding to every a_(/.l) not in the basis B, by

taking inner multiplication of (1 + 1)”1 row of B;' with each a_(/.l) :

If rnjn{(z_ ,—C )‘z ;¢ < 0‘} =z, — ¢, then vector ¢ 5{1) is taken a vector to enter into basis. Now

we wish to determine a vector from old basis to be deleted, for this we find 6= Mig’z{ﬁ} and y, is
Y0 Vi

o xe | X,
determined as y\") = B 'a\) =(y,,z, —¢, ). Let 0= Min {;} ~, s Weremove /7 column of B, i.e.
3, . At this stage it must be remembered that we wish to have zalways in the basis, therefore the (m + 1)”1
column of B, isnever be a candidate for removal.

After obtaining the vector to enter and to leave the basis we are now ready to perform the
transformation to obtain the new basis inverse and the new solution. In this method B, gives all
necessary information at each iteration. Hence we transformonly B . Let the now inverse is denoted by
B, . The elements of new inverse and new improved solution will be obtained by transforming the
elements of B! and X, . The solution thus obtained will be improved. Repeating this process interatively

unless we get all z, — ¢, 20 (as in the simplex method) we can get the optimal basic feasible solution, if it
exists.

Tableau form of the revised simplex method standard form-I
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X,
Variables Solution B/ )’/EI) = B/ 1055‘1) yB , vy >0
ik
in x| 4 g
B.E.S
X, R OOV IRVRVRR I Vi | e
X, Xg, e e | e Vor | e
X, Xp o e e | e Vi | e
. Xy
z /AR PR [ [N Zk Ck 0: Mll’l .
ik

Here y 51) y (21) ,,,,,, y 1(21 are the respective columns of the inverse of basis B, . Inthe column x g)

we write values of the variables. In the first table B, =7 B! =1 Xg) —p" and ;/(1)

mo mal = €pi1”

2.3 Revised Simplex Algorithm (Standard Form - I)

Step 1 : Ifthe problem is in minimization, write it into maximization form.

Step2 : Write the given L.p.p. in standard form I for revised simplex method i.e. write the objective function
as one coustraint.

Step 3 : Write the initial basis B, and its inverse B, ' byusing (8).
Step 4 : Calculate the initial B.F.S. Xg) :B;lb(l)

Step 5 : Calculate z, —c; for all vectors which are not in the basis. For this, multiply the last row of B,

with corresponding column a_(/.l) . Ifatleast one of the z, —¢; <0 then select the entering vector with

min(z . —c j) .Letitbe z, —c,, thentake o 5{1) as the entering vector for the basis.

Step 6 : Calculate y/EI) =B, 'a 5{1) and prepare the revised simplex tableau as shown above. Calculate the

X i
last column of the tableau ie. the column of ——>Ya >0
ik

xBi

Select the minimum [ J , if this minimum occurs in the ,.# row, then delet the ,.# vector of the

ik

basis.
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Step 7 : Form the new basis by introducting ") and deleting " (- vector of the basis). Form the next
revised simplex tableau using transformations

- _ Yy - _ Yy
Y=Yy~ Vi, Yy =

rk y rk

Step 8 : Repeat the steps 5,6, 7 iteratively until we get an optimal solution or there is an indication for
unbounded solution.

2.4 Illustrative Examples

Example 2.1 : Solve the following linear programming problem by revised simplex method :
Max z=2x, +x,
St. 3x,+4x,<6
6x, +x,<3
X;,X%, 20
Solution : Introducing slack variables x; and x, the problem can be writtenas :
Max z=2x, +x,+0.x; +0.x,
s.t. 3x, +4x,+1.x,+0x,=6
6x, +x, +0.x; +1x,=3
Xy X5, X5,X, 20

Since there are two equations and two slack variables x,, x, yield two unit vectors for the basis of

AX =b, so the basis with identity matrix is available without using artificial variables. The problem is in
standard form I is as :

Find z such that
3x,+4x, +x,+0.x, =6
6x, +x, +0x, +x, =3

z—2x,—x,—0x,-0x, =0

X(l)
e, agl) agl) a(;) agl) [ Z ] p
03 4 1 0 N 6
or 0 6 1 0 1 =13, x,%,,X,,x,20
1 -2-1 0 0 3 0
[ Y4
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; 0 1 00

2 I, 0

Here B, = ﬁrstbasis=[_6 1},therefore B 1=[_2 }= 0 1.0
5 C 1] Jo o1

as C,=(0,0), price vector corresponding the slack variables x,,x, and I, is a basis matrix of original

problem.

Now calculate B;'p") and putin x column ofrevised simplex table. Then multiply (2 +1)"

(1)

rowi.e. 3rdrow of B! withevery o

not inbasis B, i.c. with ¢! and ) to get z, —¢;. Thus

z,—¢; 20V j, therefore the BFS under test is not optimal. Now Z, —C, =Min
(Zj - Cj): Min{-2,-1}=-2(Z, - C,), hance to improve the BFS we introduce the vector ¢! into

the basis. To determine the departing vector form old basis multiplying ") with B to get y!") and write

Bi

i the before last column of the table and then (@culate 0= Mll”{ s Vie > 0} for first m elements of

Yik

") which gives 0= 5 corresponding to x, . So vector ¢ will be deleted and ¢\ will be introduced.

Revised Simplex Table - 1

X i
Variables Solution B/ y i, Vv, >0
in xy 0] A Y
B.ES
6
%, 6 1o |o 3 2=2
3
3 0 1 0 6 3.1
Xy 6 2 -
-2 - X 1
0 0 0 1 0= Min—5- _—
z ! Yie 2

The new basis is (agl) , agl) , 63)

Now transform this table by the transformation used in simplex method to get the next table.
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Revised Simplex Table - 2

X i
Variables Solution B/ y ) y_B, Yy >0
ik
in xy A
B.ES
o o1, T 7 e
s 2 2 2 7 7
! 0 ! 0 ! 3
i 2 6 6
2 ;
— 1 3 ==
z 1 0 3 . 7

Now proceeding in the same manner, we get

z,—c; 20, Vj, therefore above B.E.S. is not optimal.

Now »'=B"al =(

mm(zj—cj)

Therefore ") will be replaced by .

Revised Simplex Table - 3

2
—— (for ¢"), so the vector ¢! will be introduced in the basis.
3 2 2

71 2 9
re 3 s 03l

Variables Solution B/ :
in X0 y yy 7y
B.F.S

9 2 = 0
X, 7 7 7

2 _ 1 4 0
X, 7 21 21

13 4 El 1
z 21 21
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For non basis variables

Zy—Cy = iil 0—i
o 21721 0_21
o
z—c—iil 1 _2
o 217217 0_21

z,—¢;20, V j, therefore above BFS in optional. The optimal solution is

2 1
X, ==, X, =% Maxz=73,

7
Example 2 : Solve the following Lp.p. using revised simplex method :

Maxz 3x, +6x, +2x,

S.t 3x, +4x, +x,<2
X, +3x, +2x, <1
X)X, 20

Solution : Introducing slack variable x,,x; and making objective function as an additional third
constraint the problem can be written into standard form-I for revised simplex method as :

3x, +4x, +x; +x, +0x, =2
X, +3x, +2x, +0x, +x, =1
z—3x,—6x,—-2x,—0x, —0x;=0

X, Xy, %5,X,,%5 20

X\
o
e, agl) a(zl) a(;) aﬂl) agl) X, p"
0 3 4 1 1 0 |x 2
or 0 1 3 2 0 1| |x|=]1
1 -3 -6-2 0 0] |x, 0
[ ¥s |

Xy X5 X3,X,,X520

. ) I, 0
Here initial Basis B, =
—c, 1
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o = O
—_ = O

2
Initial BFS X =B 'p" =p! = | 1
0

For non basic variables x,,x,,x, we have

3

z,-¢=(0,0,1)|1 |=-3
-3

z,-¢,=(0,0,1)|3 |=-6
__6_

z,—¢;=(0,0,1)| 2 |=-2
-2

Since z; —¢; 20,V j, therefore above BFS is not optimal. Min (Z - j) =—6 (for ¢'"), hence

to improve above B.E.S. we take (21) as introducing vector.

4
Now yWV=B"'aV=alV=|3
-6
Revised Simplex Table - 1
XBI'
Variables Solution B y ) T o Yu>0
in xP A Y
B.F.S
2
X, 2 1 o | o 4 "
1
x4 1 0o |1 0 3
H xBi l
0 0o lo |1 _ 0= Min—=—
z 6 Vi 3
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The departing vector is ¢\ key element =3

Revised Simplex Table - 2

Xi
Variables Solution B/ i yB , Vi >0
ik
in xy o Y
B.ES
2, 50| 232
4 3 3 5/3 5 7
1 o | L |o 1 173 _
2 3 3 3 1/3
Xy 2
; 2 o |2 |1 1 Mmy—B—
ik
For non basis variables
3
z-¢ =(0,2,1)|1 |=-1
-3
1
c;=(0,2,1)[2 |=2
)
0
25—052(0,2,1)1 =2
0

"z, —c; 20, V j, therefore above BFS is not optimal. Min(zj - cj) =—1 (for agl)) so to im-

prove BFS we introduce agl) into the basis. Now

2 >

3 3

1 3 1

y1)=Bl 10!51)= 0 E 0 1 = 5
0o 2 11]-3 -1

and we take ¢!) as departing vector.
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Revised Simplex Table - 3

Variables Solution B 1
in x| Y
B.E.S
3 4
. G N e
e
2 5 5 5
2|3 |e |
z 5 5 5
.
. . _ o) 2
For non basis variables 23 —¢; =| =, —>1 =5
-2
3 6 : 3
—e, =2 2 1]|o]=2
G (5 5 ) 5
0

ZS—CSZ(% 6 l)

|

Optimal solutionis X, = %,Xz =—,Maxz=—
Example 3 : Solve the following 1.p.p. using revised simplex method.
Max  z=3x, +x, +2x,+7x,
st. 2x,+3x, —x; +4x,<40
—2x,+2x, +5x; —x,<35
X, +x, —2x; +3x,<100
x,22,x,21,x,23,x, 24

Solution : Substituting x, -2=u,,x, —1=u,,x, -3 =u,,x, —4=u, the given problem reduces to
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Max z*=z—-41=3u, +u, +2u, + 7u,
s.t. 2u, +3u, —u; +4u, <20
—2u, +2u, +Suy +u, <26
u, +u, —2u, +3u, <91
Uy, Uy, ustty, =0
Introducing slack variables u,,u,,u, the problem in standard form-I can be written as

Find z * such that

2u, + 3u, —u, +4u, + u; =20
—2u, +2u, +S5u; —u, +u, =26
u, +u, —2u, +3u, +u, =91
=3u, —u, —2u, —Tu, +z* =0
x
oh
M L0 L0 L0 0,0 0 “ (1)
o) ay oy ay ai’ag’ o) e, " b
2 3 -14 1 0 00 " 20
4
-2 2 5 -101 00 26
or us | —
1 1 -2 3 0 0 10 " 91
3-1-2-7000 1] || |o
U7
z ¥

Uy, Uy, Uy, Uy, Us, Ug, U, 20

I 0 here C, =(0,0,0
Initial Basis B, =| ° where C, =( Jas
—C, 1| I, correspondsto slack variables
0
et T o
blc, 1 0
1

Initial BFS is given by
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b
X = gp) - M = [20, 26, 91, 0]

For non basic variables

z,—c;= (lastrow of B™"). o'V J=12,3,4,5
J J 1 J

2

—-¢,=(0,0,0,1 =-3
ama ( )l ,similarly z, —c, =—1

-3

z,—cy=-1,z,—¢,=-7

Since z, —¢; 20,V j, therefore above Bf§ isnot optimal. Min(zj -c j): ~7 (for ). Hence

to find improved BFS. we use aE‘I) as entering vector. Now we calculate

Xi
Variables Solution B/ y () y_j , vy >0
in x| Y
B.E.S
20
u, 20 1 o] olo | 4 T o
” 26 o |1 | oflo |
91
u, 91 0 0 110 3 3
7 . Xp,
o 0 o o | o1 . 9=Mmy—3=5
ik

We take 05(51) as departing vector. The improved BFS can be found an follows :
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Revised Simplex Table - 2

X i
Variables Solution B/ y ) f, V>0
in xy A Y
B.F.S
1 -1
u, 5 1 0 00 e
31 1 1 010 D 124
Yo 4 4 9
3 -5
U, 76 " 0 1 {0 e
-15
7 — . Xy 124
35 — 1 o] o1 4 [0=Min—"=——
z* 4 ! Vi
For non basis vectors, calculate z, —¢;, j=1,2,3,5
7 1
z,—¢, = (lastrowof B') 0‘51)2(2,0,0,1)0‘51):—
1
Zy, =6 = %’07071 agl):l
7 15
=[-,0,0,1 o) =—=—
237G 47 3 4 ;
== 00 1]|al'==
23— GCs 4 6T
15
Min. (Zj—Cj)Z—Z(ag])),therefore a(;) is entering vector.
Now ygl) =B 'a (31) and write in the tableau 2
Thus the improved basic feasible solution s :
Revised Simplex Table -3
XBI'
Variables Solution B y T o Yu>0
in xy o A0 A
B.F.S
e s T, 8 [
B 19 19| 19 19 g
24 a4 | | =6
% 19 19| 19 19
199 [-3] 5[ ] ]_17
% 19 (19| 19 19
_ 12
* _1130 3_7 E 0 1 _13 H:Minh:—6
z 19 19| 19 19 Vi 8
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For non basis variables, compute z; —¢;, j=1,2,5,6

13 122 37 15

Z 76 :_E, Z, =6 _F, Z5 =G :E, Zg —Cs _E

From here we again get the entering vector ¢ 51) and z, — ¢, <0 and is minimum. Calculate

0 _pgign_|8 6 _17 _E}
FoEa o [19’ 9" 19 19

We take af‘l) as departing vector. The new BFS becomes as :

Revised Simplex Table - 4

Variables Solution B !
in x| YA Y
B.E.S
63 5 1
u, 1 b 3 0 0
N O I
“s 2 4 4
L I
“ 4 8 8
z 4 8 8

For non basis variables, calculate z, —¢;, j=2,4,5,6

19 7 63
z,—c, = (lastrowofBl1)0!(21)=(§,§,0,1) agl):§

19

Similarly z, =¢, =, 25 = C =, 2, —C, =
8 8

since z, —¢; 20,V j, the present solution is optimal. Hence optimal solution is

u, zﬁ,uz =0,u, =%,u4=0,u5 =0

The optimal solution of the given problem is X, =u, +2 RIS +1=1,
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29
U3+3:?’ x4:y4+¢:¢

Max z=z"‘+4l=ﬂ

2.5 Revised Simplex Method (Standard Form - II)

This form is used when the 1.p.p. does not have any basis matrix as identity matrix. For
simplification we suppose that the initial basis matrix does not contain any positive unit vector, i.e. the
original problem does not give the first basis without use of artifical variables. Therefore we are assuming

here that the basis of the original problem contains all the artificial vectors «,, 2, ,....,@,,, corresponding

to the artificial variables x, ,x,,,...x, , introduced in the first, second,......,and ,, constraint, respcetively.

Now, we solve the problem by two phase method for the removal of artificial variable and so we consider
one more objective function Z_, known as artificial objective function which is as

Max. Z,=—xa-x,a—.....—x
As there are two objective functions, we have to consider the problem in the revised form with

(m+2) contraints. So the problem in standard form-11 of the revised method is written below:

a, X, +a,Xx,+.....+a, x, +x,, = b,

Ay X, + Ay Xy +oeeooday X, + X, , =b,

a,x,+a, .x,+...+a, x +x =b,

Z—CX| —CyXy —.e...mC, X, =0

z, +x,, + X, +..+x,, =0

ijO,meO’ J=1, 2, ..... ,1M. ...(9)

Basis and Its Inverse in Standard Form - 11 :
In the above problem the number of constraints is (m + 2) . So to handle the problem we get a

basis matrix of order (m+2). Two vectors out of (m+2) are corresponding to two objective functions

z and Z, and are denoted by e and remaining s, are corresponding to the ; artificial variables

m+12 em+2
mtroduced one in each of the constraint.

Now the problem in matrix form can be written as :

2 02 2 0 ,2 (a) ng (2)
em+2 em+1 al aZ an ala aZa ama _Z T b
0 0 a, ay.oa, 1 0. 0] |, | [5]
0 0 a, ay,.... a, 0 1.... 0 b,
X
xl’l =
0 ay dpea, 0 Oecd| || 7|8, -(10)
la
¢ —Cyeennnn -c, 0 O.... 0 0
i 0 0O 0 ... 0 1 l....... 1 10 ]
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The basis matrix given in (10) can be represented as

al aZ am em+1 em+2
O . 0 0 0
0 Lo 0 0 0
I, 0 0 B 0 0
B, = o 1 0l_|-¢c,1 0 an
0. 1 0 101 C, 0 1
0....... 0
1 L. 1 0 ]
If we write [CB’CBJ:CS) then frm (11) we have
2 B 0
. _C1(92) [2
By partitioned method, the inverse of above basis matrix is given by
. B' 0 0
B = 5 0 =|C,B"1 0
o le® || P .(12)
C,, B0 1
Here are some properties of B,
B 0 0], ] [B'e v,
() Blal)=|C, B 1 01|-C, | =GB a,-C;| =|7-C, ~(13)
CB(,Bil 0 1] [0 CBaBila_/_O 2, =0
B' 0 0| [p] |BD X,
G  B'BP={C,B'1 0| |0|=|CBb |=]| Z ..(14)
C,,B'0 1|10 C,,B'b Z,

From above it is clear that if (m + 2)”’ row of B! is multiplied with 5(2), we get the artificial

objective function. If (m + 1)’h row is multiplied, we get the value of the objective function of'the original

problem and if first , rows of B is multiplied with 4(2), we get the solution of the original problem.

Computational Procedure of the Standard Form - 11 :

We know that the column vector corresponding to any variable x; in(10) is
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(1(2):[0{ —-C
J J? J?

O]l,jzl,2,....,n for legitimate vectors and 055.2):[05 O,l],i:1,2,....,m for

Ja?

artificial vectors.

The vector corresponding to 7 is e, , a unit vector, and for z, itis e, , another unit vector

m+1 2 n+2 2

represented in the second and first column of (10). Now the inverse of the basis of (10), as calculated
previously, is

B' 00 I 0
B'=|C,B" 1 0| _|C, 1
c, 0

= -+ initially B=1 ]
C,B' 01

0
OF
Bal

So it is very easy to get the inverse of B, , as we know that C, is the price vector of those

legitimate variables which are present in the basis and C,, the artificial price vector.

To start with the computation we start with phase I for removal of artificial variables from the basis.

As soon as artificial variables are removed, we proceed for phase-II.

During the phase I neither the variable > nor z, may be considered as a candidate for removal
from the basis. Moreover, neither ofthese variables is constrained to be non-negative. If the maximum of
z, is strictly negative, the original problem has no solution. Further if the maximum in phase I is zero and no

artificial vector is present in the basis we proceed to phase-II.

Phase I of the Revised Problem :

To start with the phase-I, we need first of all the first basis feasible solution. We get it as
X = g1 | After getting initial BFS of the problem, we want to improve it i.e. to make max z, =0 and
B 2 gettng p p p

for this we want z,'”) = C,®) which is obtained by multiplying (m+2)" row of B;' with a ,*) If

Ja

max z, = 0, the phase-I ends and if, maxz, <0.take z,, —¢,, = min{z,m —c;, < O} then af) is taken

as entering vcetor. Now select 8 = rmn{i Ve > 0} and corresponding vector is eliminated from the
Vit
old basis, where x,, are the elements of X, and y, are the elements of y, . To get y, , as discussed

earlier we multiply 5{2) with B;', the first m elements will result y, .

X

_ . Bi __ Bl . . .
Let 0= A/{’” = , then ;% vector of the basis will be eleminated. Now we transform the
ik Ik

table for the first improved solution containing af) inplace of j# vector of the basis by method used in

standard form-I or in the simplex method and proceed in this way unless z, i.e. the atificial objective
function is maximised. If maximum of z, is zero and none of the artificial variable present in the basis, then

proceed phase-II after eleminating (2 + 2)"’ row of the tableau. If maximumof z, is zero but atleast one
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of the artificial variable is present at the zero level even then, we proceed to Phase-1I with the care that in
the further process the artificial variable should never become positive. The best way in these case is that
in the first step of phase-II eliminate the artificial variable at zero level, in case of tie consider one by one.

If maximum of z, in strictly negative, the original problem has no BFS and no need of further procedure.

Phase -11 :

As soon as phase I ends with max z, =0 remove (m+2)’h row of B;' and the column
corresponding to Z, . The reason being that inphase - II we deal with the original objective function and

so the prices of all artificial variables become zero.

Now proceed exactly in the same way as stadard form-I.

2.6 Illustrative Examples

Example 2.4 : Solve the following l.p.p. by standard form-II ofrevised simplex method :
2x,+5x,26
X, +x,22, x,,x,20
Min.  z=x +2x,
Solution : Introducing surplus variables x,,x, , the problem can be written as :
2x,+5x, —x;+0x, =6
X, +x, +0x, —x, =2, x;x,,x;,x,20
Max  z=-x,—2x,+0x, +0x,

Since, there is no basic feasible solution having identity matrix as basis matrix, so we introduce

artificial variables x,,x, the problem in standard form-II of revised simplex method becomes as
2x, +5x, —x;+0x, +x, +0x, =6

X, +x, +0x;—x, +0x; +x, =2

z+x,+2x, —0x, —Ox, 0

z +x5+x, =0

Xy X5 X3,X,,X5,Xs 20
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where the artificial objective function is

Maximize z, =— x; — x,

X%
-
2 2 2 2 2 2 z 2
e, e, aV &P ol a? o ol . p®?
00 2 5 -1 0 1 0], 6
2
00 1 1 0 -1 0 1| || |2
or 01120000;_0
1 00 0 0 0 1 1 x4 0
5
R
x;20,j=12..6
100 0
I, 0 0
B =|-C, 1 0—O b oo
The initial basis is 2| 1o 01 0
—-C,, 0 1
1 10 1
1 0 0 0
L 00 01 0 0
New B)'=|-C, 1 0]|= 00 1 ol® C,=(0,0) correspondigto z
=Cp 01 11 0 1
and C,, =(—1,—1) correspondingto z,
Initial BFS x\) = g p*)
1 0 0 o][6] [6
1 0 0f[2] |2
- 0 1 ol|lo| |o
-1 -1 0 11]|0o] |-8
For non basis vectors
2
-1 (2) 1
zl—clz[last row of B, ]lal =(—l,—l,0,l) : =-3
0
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5
0

1 =1
-6 =(-1-10.1)|_|==6 z-c,=(-1-10,1)|0

. 0

0
24—c4=(—1,—1,0,1); =1

0

Since z, —¢; 20, therefore above BFS is not optimal i.e. max z_ #0. Ml'n(zj - cj)z —6 (for

a(zz) ), SO a(zz) is taken as intering vector. Now ygz) =B, a(zz)

I 0 0 0]|5 5
0 1 0 0of]l 1
100 1 o||2| =2
-1 -1 0 1]]0 —6
Revised Simplex Table - 1 : Phase - 1
xBl
Variables Solution B;' i 3,0 Yu>0
in xg PP R Y
B.F.S
6
X 6 1 0 0]0 5 5 N
2
X, 2 0 1 0]0 1 1
z 0 0 0 110 2 -
X, 6
0= Min—t-=—
Za -8 -1 |-1 0|1 —6 Vi

The vector departing from the basis is x;.

Now transform the table using transformations as standard form-1.
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Revised Simplex Table - 2 : Phases - I

X i
Variables Solution B! y2) y_B, Yy >0
ik
in DS PR B2l P2l WA
B.ES
2 5 5 5 2/5
CA 1 N IO I R V7 O
Yo 5 5 3/5 3
12 -—— 10 110 1
z 5 5 5
4 1 . Xp; 4
—— - | _ 1 i 0 = Min—"-=—
% 5 s [1]° 5 I
For non basis variables v
2
1 1
z—c=|=-L01] |=-2
5 1
0
-1 0
1 0 1 1 -1
-c,=[—,-1,0,1 =—— ¢, =|—,-10,1 =1
K (5 )0 5,747 % (5 0
0 0

: 3
z,—c; 2,0 Vj so the BFS is not optimal, mln(Zj —Cj):—g (fr 0‘51))

so we take ¢?) as entering vector,

Now yl(Z) =B, 0‘52)

Nl—= N[N N~ |~

(e}

(e}

[S—
(e

(e}

—

—

(e}
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We take ¢r?) as departing vector.

Revised Simplex Table - 3 : Phase - 1

Variables Solution B
in X0 y ) 7y yy 2%
B.E.S

2 1 _= 0 0
X2 3 3 3

4 1
X, 3 3 Py 0 0

8 ! 1 1 0

zZ 3 3 3
zZ, 0 0 0 0 1

Since Max z, = 0 as no artificial variable present in the basis, hence Phase-I ends. Now we go in
phase-II.

Revised Simplex Table - I : Phase - 11

Variables Solution B/ :
in X0 y yy 7y
B.F.S

2 1 _2 0
X, 3 3 3

4 1 3 0
X, 3 3 3

_8 1 1 1

z 3 3 3

For non basic variable

-1

1 1 1

Zy Q—(—g,-g,l)o Zg
_O_

1 1 _O_l

Zy C4—(—§,—§,l) -1 Zg
_O_
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4
" z,—¢;20,V j soabove BFS is optimal. Optimal solution is X, =303

or Minz= §
ExampleS: Solve the following Lp.p. with the help of revised simplex method but without use of
artificial variables :
Max. z=2x,—6x,
s.t. x,—3x, <6
2x, +4x, =28
-x,+3x,<6, x,x,20

Solution : Since we have to solve the problem with the help of revised simplex method but with use of
artificial variables i.e. we have to apply standard form-I of the revised simplex method which is as follow:

Find 7 aslarge as possible s.t.

X, —3x, +x, =6

2x, +4x, -X, =8

—x, +3x, +X4 =6 ..(15)
z—2x, +6x, =0

Here three unit vectors corresponding to x,,x, and z are available. But the basis of problem (15)
is of order 4. If there is no restriction we would have to introduce artificial variable in the second row but
as we have not to introduce any artificial variable so we can consider any of the remaining vectors for the
fourth vector ofthe basis. For simplicity we consider the negative unit vector corresponding to x, . Hence
the basis will become

all o) ol e,
1 0 0 0
L [0 -1 0 0 _[s 0} [1 o}
“lo 0o 1 ollo n Where2To
o 0 0 1
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1 0 0 0|6
.. (1) “12.(1) 0-10 08
Initial BFS X' =B b'' = =
0 0 1 O0f|6
0 0 0 1f|0
for non basic variables
1
2
zl—clz(0,0,0,l) 1:—2
-2
-3
4
z cz—(0,0,0,l) =6
Revised Simplex Table - 1
xBi
Variables Solution B! y 3,0 Yu>0
in xy o A ] Y
B.E.S
6
X, 6 1 0 0 0 1 T:6
-8
X, -8 0 ~1l o 0 ) _—2=4
X 6 0 0 1 0 -1
. X i
z 0 0 of o 1| o [Min—=4
Yik

z;—c¢; 20V j, therefore above BFS is not optimal. Min (zj - cj)z ~2 (for ¢\") so

we take ¢! as entering vector. Now

-_ o O O



As in this case, we get a non feasible solution, we select g as

M Min
in x, _
6 =min h,x&.<0ﬁ =4 tor o)
Vi >0y, Yik (for ay )
Ty <07

We take ¢ as departing vector

Revised Simplex Table - 2

Variables Solution B/
in xy |V WY Y
B.E.S
X, 6 1 0 0 0
, 4 2 1 0 0
x, 12 1 0 1 0
z 12 2 0 0 1
For non basis vectors

-3

4
5-6=(200.1)| , |=0

z,—¢;=(2,0,0,1)

" z;,—¢;20, V j, therefore above BFS is optimal. Thus optimal solution is
x,=6, x,=0

maxz=12

2.7 Self-Learning Exercise - 1

1. In which Lp.p. the standard form-I of revised simplex method used?
2 In which Lp.p. the standard form-II of revised simplex method used?
3. What are artificial variables and when they are used?

4 What is artificial objective function?
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2.8 Exercise

1. Solve the following L.p.p. using revised simplex method
X, +x,<3
X, +2x,<5

3x,+x,<6, x,,x,20

Ans.  x, =0,x, =§ Max z=5
2. Sole the following L.p.p. using revised simplex method
Max. z=3x,+2x,+5x,
s.t. X, +2x,+x;, <430
=3x,—2x,2-460
x, +4x, <420
X5 X,%,20
Ans.  x, =0,x,=100,x,=230, Max z=1350

Solve the following linear programming problem using standard form-I or II of revised simplex
method :

3. Maximize z=Xx,+x,+3x,
s.t. 3x, +2x, +x,<3
2x, +x, +2x,<2
X;5X,5,%,<0

Ans.  x,=0,x,=0,x; =1, Max z=3

4. Min.  z=x+x,
s.t. X, +2x, 27
4x, +x, 26
XX, 20
5 22 : 27

Ans. X, =—,x,=—, Min z=—
STy 7

5. Max  z=6x,—2x, - 3x,

S.t. 2x,—x, +2x,<2
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10.

Ans.

Max

s.t.

Ans.

Max.

s.t.

Ans.

Max

s.t.

Ans.

Max

s.t.

Ans.

Max

x,  +4x,<4

X)X, 20
x,=4,x,=6,x,=0 Max z=12
z=30x, +23x, +29x,
6x, +5x, +3x, <26
4x,+2x, +5x, <7

X5 X,5,%;20

16
xlz()’ X, =—, x3:0’ maxz:T

2
zZ=X, +X,
3x,+2x,<6
X, +4x,<4

X;,X%, 20

z=5x, +3x,
3x,+5x, <15

Sx, +2x,<10

XX, 20
2
X, :E’ X, zﬁ,Maxz:i
19 19 19
z=5x, +3x,

4x, +5x,2>10

Sx, +2x,<10

3x, +8x,<12
XX, 20

X, =§,X2 _b Max z:g
17 17° 17

z=x,+2x,+3x;—x,

49



s.t.

Ans.

X, +2x,+3x; =15

2x, +x, +5x, =20

X, +2x, +x;+x, =10
Xy X5, X5,X, 20

xlzéaxzzia x3:§7x420 MaX Z=15
2 2 2 ’

2.9 Bounded Variable Problems

A bounded variable linear programming problem (BVLPP) is difined as :

Max orMin z=CX

s.t. AXL,=,2b

Z/Sx./gu_/’ Vj:1,2,3,...l’l (16)

and X> 0

Here each variable x; is bounded from both sides i.e. from upper bound #; and lower bound /; .

These problems can be solved by simplex method with some modifications.

Bounded Variable Simplex Alogrithm

()

(i)
(iii)

()

v)
(Vi)

Convert the objective function into maximization if it is in minimization and introducing
slack and surplus variables write the problem in standrad form.

Find initial basic feasible solution.

Iflower bound of any bounded variable is positive then make it zero by substituting
additional variable. For example if 2<x, <5, thenput x,'=x, -2

Construct the simplex table and test the sign of z; —¢; . Incase of z;, —¢; 20, the optimal

solution is obtained, if z; — ¢, 20, then entering and departing vectors can be found as
follows :

Let min{zj —c; } =z, —c, thentake a, asentering vector.

To find departing vector following quatntities are calculated :

01=nﬁn{@,yir>0}

ir

ir
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0=min{0,,0,,u,}
where u_ is the upper bound of variable x, . Clearly when y, >0, 6, »> .

(@  if @=min{6,,0,,u, }=0, anditis corresponding to x,, then y, will be departing
vector.

(b)  If0=min{6,,0,,u, }=0, anditis corresponding to x,, will be departing vector. If x ,

is non basic on the upper bound, then following substitution is made i.e. all basic variables
are updated.

(xa), =(xp), = Yiott,, where 0<(x, ) <u,

and non basic variable x, on upperbound is made at zero level by substituting x =u —x/,

'
0<x'.<u,.

(¢) If0=min{6,,6,,u }=u,,then x, issubstituted on the upper bound till then x,

becomes non basic variable and it is being made at zero level using x, =u, —x'..

(vi)  Choosing entering and departing vector from steps (v) & (vi) we make simplex table
and test the sign of z; —¢; . Incase z; —¢; 2 0, the optimal solution is obtained and if

z;—c,; 20 repeat steps (iv) to (vii) until we get optimal solution.

2.10 Illustrative Examples

Exampe 6 : Using bounded variable technique, solve the following L.p.p.

Max  z=x,+3x,

St x +x,+x,<10
X, —2x,20
2x, —x;<10

and 0<x <8 0<x,<4,x,20
Solution : Introducing slack variables x,, x,x, the standard formof Lp.p.isasa
Max  z=x, +3x, +0x; +0x, +0x; + Ox,
S.t. X, +x, +x;+x, +0x, +0x, =10
X, +0x, —=2x,+0x, +x,+0x, =0
Ox, +2x, —x; +0x, +O0x; + x, =10

and 0<x<80<x,<4,x,,x,,x,,x,20
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Initial B.E.S. is x, =10,x, = 0,x, = 10 and Basis B=/,. Inthe given problem there is no upper
bound for basic variables x,,x,,x, and non basic variable x,. Thus all the upper bounds are taken at

mifinityi.e. u, =u;=u,=0=u,.

Simplex Table - 1

¢ o [ 1 |3 o [o o | u-x,

¢ | B Xy | b il ol vl o | oy | v
0 a, |x, | 10 |1 1 1 1 0 0 0 —10= o0
0 a;, |x | O 1] 0 0 1 0 w-0=0 P
0 a, |x, | 10 |0 2 1] 0 0 1 0—10 = o0
z,—c; 0 -1 -3 0 0 0
u, 8 4 0 0 0 0
s

Since z; —¢; 20, Vj , therefore above BFS is not optimal. Here Min (Zj - cj)ZZ3 —c;=-3,

hence to improve BFS we introduce x, into the basis. For departing vector

| X .
0, =rmn{—3,y,~3 >0}=rmn{10, 0}=0 (corresponding to ¢ )
i3
U —xy,
0, =rmn{ > £ ,yi3<0}=°° (corresponding to ¢ )
i3

and U, =00
min{6,,0,,u; }=min{0,00,00} =0=6,

Hence we take o5 as departing vector.
Simplex Table-2

¢ 0 1 3 0 0 0 U, —x,
C;, | B X, | b » ¥, Vs Vs Vs Ve
3
0 a, X, 10 5 1 0 1 -1 0 0—10=00
1
3 a, | x 0 |3 0 1 0 1 0 0—0=00
1
0 a, | x, 10 -3 2 0 0 1 1 0 —10= oo
3
Z;—¢; Y 11 0 0 3 0
u, 8 4 0 0 0 0
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-+ z,—¢,;20,Vj , therefore above BFS is not optimal. Min(Zj —C; ) =5 Z, — ¢, so we take

o, asentering vector. For departing vector, we have

= Minl X8 —mind 0L _20
01—]\/{111{ ) ,y,1>0}—rmn 373 (for a,)
2

0, =, and u, =8

Hence «, is taken as departing vector,

Simplex Table - 3

c; 0 1 3 0 0 0

C, | B X, | b » ¥, | s Vi | ¥ Ve
20 2 -2

0 a, X, ? 1 E 0 E ? 0
10 1 1

3 o, X, ? 0 g 1 g E 0
40 7 1

0 o, X, ? 0 - 0 g E 1

z,—¢, 0 0 0 1 2 0

- z;—¢;20,Vj so above BFS is optimal. Hence optimal solution is

20 10
X :?,xz = 07x3 :?, Max z=10

Example 7 : Using the bounded variable technique, solve the following L.p.p.
Max  z=3x, +5x, +2x,
S.t. X, +2x, +2x,<14
2x, +4x, +3x,<23
and  0<x, <4,2<x,<5,0<x,<3.
Solution : Since the lower bound of x, is positive, therefore let x, = x, =2 or x, =x +2, then

0<x, <3. Introducing slack variables x,,x, >0, the standard form of B.V.L.P.P.is as :

Max  (z-10)=3x, +5x, +2x, +0x, + Ox;
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st. x,+2x+2x,+x, +0x, =10
2x, +4x, +3x, +0x, +x, =15
0<x,<4,0<x,<3,0<x,<3
X,,%x;20
Initial BFS x, =10,x, =15, initial basis B=1,
Simplex Table -1
¢ 3 5 2 0 0 U, — Xy

0 o, X, 10 1 2 2 1 0 0—10=00

0 as | x | 15 |2 4 3 0 1 0—15=00
Z ¢ -3 | -5 |2 0 0
u; 4 3 3 00 o0

z,—c; 20, therefore above b. f.s. is not optimal. Min(zj - cj)—S(z2 —¢,), so to improve

b.f.s. we introduce «, into the basis. For departing vector-

10 15| 15

6, =min {7 , Z} =7 (corresponding to « ;)

0,=0,u,=3,

6= min {14_5 » %, 3} =3 =1, therefore we substitute x! onthe upper bound till then x!
becomes non-basic.
X, =u, —x,"=3-x,", where 0<x,"<3
and update basic variables as
X =X'p =y, =10-2x3=4
Xy =X'pgy=Vyott, =15-4x3=3

Simplex Table - 2

¢ 3 -5 | 2 0 0 U, — Xp,
¢, |B Xy b » v | Vo | ¥
0 a, X, 4 1 2 |2 1 0 ©0—4=0w
0 o X 3 2 -4 |3 0 1 0—3=00
z,—c; -3 5 210 0
u, 4 3 3 0 0
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z,—¢;20,V j therefore above b.f.s. is not optimal. Mil’l(Zj - cj)z— 3(z,—¢,) so we take
o, as entering vector. For departing vector
14 3] 3
0,= Mln{—,—}z— (corresponding to )
12) 2 5
0, =, and u, =4

0= Min{@l,é’z,ul}: Mln{g’oo’él}:% = 01
Hence « is departing vector.

Simplex Table - 3

¢ 3 -5 2 0 0 U, — Xy
Cy B Xy | b by b Vs Y4 Vs
0 2o fo |20 | L e-2-x
Gl | 2 2 2 4
3 3 1 5
& BEE — | 4-3=2
N N N AR R :
5 3
2576 0 0 -1 Py 0 Py
u, 4 4 3 3 0 0
: 1

I
z;—¢;20, V j so the above b.f.s is not optimal Min(zj -¢; ) =-1(z,-¢),

therefore o) will be introducing vector. Since y! <0, so for departing vector

>

> =3 (Correspondsto )

9=Mz‘n.{oo,§,3}=§=92
4 4

. a, is departing vector. Since upper bound of x, is 4.
Simplex Table - 4

¢; 3 -5 2 0 0

G | B X, | D » y, | » Vo | ¥
5 1 1
0 o, X, 5 0 0 5 1 )
. . 3 1 3 1
5 o, x", _Z —E 1 _Z 0 _Z

1 7 5

56 =3 A I L

u 4 3 3 0 00
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so we update the basic variables

. 5 5
Xp1 =X g1 = Vulh :E_OX4:E

\ -3 1 5
Xp2 =X g2 = Vilh I X4:Z

For zero level of non basic variable x,, substituting x, —4 = xll

Simplex Table-5

¢ 3 5| 2 0 0
Gy B X, b b2 » M3 Y4 Vs
5 1 1
0 o, X, 5 0 0 5 1 Y
5 " " é l 1 _3 0 _l
EEN BN 2 4 4
1 0 7 0 5
z,—c - — —
o 2 4 4
u; 4 3 3 0 0
Since z; —¢; 20, V, therefore above b.f.s. in optimal.
The optimal solution from the table
' " 5
x',=0,x", :Z’x3 =0
But  x'\=4-x, and x',=3-x",
5.7
= x,=4-x"'=4-0=4, x2:3_Z:Z
X, zx'2+2:Z+2:£
4 4
15 123

X, :4’)(2 :%,)@ZO and Max Z:3X4+SXZ+ZXO :T

Example 8 : Using the bounded variable technique, solve the following linear programing problem :

Max  z=2x, +x,
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S.t. x, +2x,<10

X, +x,<6
X, —x,<2
X, —2x,<I

and  0<x,<3, 0<x,<2
Solution : Introducing slack variables x,, x,,x,,x, >0 the standard form of given problem is as :
Max z=CX
st. AX=b, 0<x,<3,0<x,<2

X3,X4,X5, X, 20

1 21000 10
1 10100 6 _
where A= , b= and C=(2,1,0,0,0,0)
1-1 001 O 2
1-2 0001 1

Initial BFS x, =10,x, = 6,x, =2,x, =1 and initial basis B=1,
Simplex Table - 1

¢ 2 1 0 0 0 0 U, —Xp,

0 a, | x, |10 |1 |2 |1 o |o [o 0—10=

0 o X 2 1 ~1 0 0 1 0 0—z=00
0 o, X, 1 1 2 0 0 0 1 o—l=w 1
z,—c; ) -1 0 0 0 0
u; 3 2 o0 o0 o0 o0

z,—c,;20,V j therefore BFS is not optimal.
Min (Zj —c; ) =-2 (for a,), so «a, istaken as entering vector. For departing vector

10 6 2 1

0,= rnin{T,T ’T’I} =1 (corresponding to a, )

0,=o and u, =3

6=min{6,,0,,u,}=1=6,

57



Hence « is taken as departing vector.

Simplex Table-2

¢ 2 1 0 0 0 0 U, —Xp,

C, | B | Xz b Wl oy v | oy | s
0 a; | x, |9 |o | 4 1 0 | o 1 | o
0 a, | x, |5 o | 3 0 1 0 1 | o
0 o X, 1 0 1 0 0 1 -1 © +
2 a, X, 1 1 -2 0 0 0 2 3-1=2

z,—c, o [o ] oo 2

u; 3 2 0 0 o0 o0

z,—c; 20,V j - above BFS is not optimal. Min (zj —cj):—S (for o)) so «a, is

entering vector. For departing vector
. 1
6, =min g,é,—}zl
431

02 =rnin{ui ~ i s Vin < O}z_(i =1

Vi - 2)

0 =min{0,,0,,u,}=1=6, or 0,
Let 6= 0,,then «, is taken as departing vector.

Simplex Table - 3

¢ 2 1 0 0 0 0 U, — Xp,

G| B | Xz |D ol nl v v s e

0 o, X, 5 0 0 1 0 4 |3 0

0 o, X, 2 0 0 0 1 -3 |2 o0

1 o, X, 1 0 1 0 0 1 -1 2-1=1
2 o, X, 3 1 0 0 0 2 ~1 3-3=0

z,—¢, 0 0 0 0 5 -3
u, 3 2 00 o | T 00

z,—¢;20,V j - AboveBFS is not optimal
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Min {zj -¢ } =-3 (for o), so a, is entering vector.

For departing vector
2 ) 1
01:Min{§,—}:1, 0, =min ,L =0
372 ~(=1)"=(-))
(correspondsto «a,,) (corresponds to a,)

and  u, = w0
0=min{0,,0,,u,}=0=0,

o, 1s departing vector.
Simplex Table - 4

e (2 [t o] of ofo
G| B Xy | b VNN OO I N A S
0 a, | x, |14 |3 0 1 0o | 2 0
0 a, | x |8 2 0 0 1 1 0
1 o, X, -2 -1 1 0 0 -1 0
0 o X -3 -1 0 0 0 -2 1
z,—c; -3 31 0 0 -1 0
u, 3 2 o o0 o | o

upper bound of x, is 3 we update basic variables as :
Xp = X' g =y, =14—(3) x3=5
Xpy = X' gy = Vot =8—(2) x3=2
Xpy= X'y — Vi =—2—(=1)x3=1
Xpa= X' gy = Vatty =—3—(=1)x3=0
The non basic variable x, canbe found by substituting x, onupper bound at zero level as x, =3 — x',

Applying above formula
Simplex Table - 5

¢ -2 1 0 0 0 0 U, —Xp,
C, | B | Xz |D AURE IV A S PR B A
0 o, X, 5 -3 0 1 0 2 0 o0
0 a, X, 2 -2 0 0 1 1 0 00
1 o, X, 1 1 1 0 0 -1 0 2-1=1
0 o, X 0 1 0 0 0 -2 1 0
z,-¢, 3 0 0 0 -1 0
u 3 2 0 o0 0 00
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z,—¢; 20, V j so above BFS is not optimal
min(zj —cj):—l (for ay)
So «a is taken as entering vector.

, . |52
For departing vector €, =min 1 =2

(correspondsto «a,,)

0,=——=1lu;,=o

~(-1)
6=min{6,,0,,u,}=1=6,

Hence a, willbe departing vector.

Simplex Table - 6

¢ 2|1 0 0 0 0

cg | B | Xz | b S/ I VS I R S N I O I
0 a, | x |7 R ) 1 0 0] o
0 a, | x, |3 T 0 1 0] o
0 o X -1 -1 1-1 0 0 1 0
0 o, X, -2 -1 |-=2 0 0 0 1
z,—c; 2 -1 0 0 0 0

u; 3 2 0 o0 0 00

x, hasupper bound 2, therefore updating the basic variable as :
Xp=Xx'p—2x2=3

Xy, =Xx'p—1x2=1

Xpy =X p—(=1)x2=1

Xpy=X'g,—(—2)x2=2

The non basic variable x, can be found by substituting x, on upper bound at zero level as

x, =2—x', . Applying the above formula.
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Simplex Table - 7

¢ 2|l =110 0 0 0

G| B Xy | b Vool wm |l oy v | oy | v
0 o, X, 3 -1 21 1 0 0 0
0 a, X, 1 -1 —1 0 1 0 0
0 o X 1 -1 1 0 0 1 0
0 o X, 2 -1 2 0 0 0 1
z,—c; 2 1 0 0 0 0

u; 3 2 0 0 o 0

"z, —¢;20,Vj therefore above BFS is optimal.

Optimal solutionis x', =0,x', =0
x,=3-x"=3-0=3
x,=2-x'=2-0=2

Max z=z=2%3+2=8

2.11 Self-Learning Exercise - 2

1. What do you mean by bounded variables?
2. How can you find the departing vector in the bounded variable algorithm?
3. Ifa bounded variable has lower bound positive, then how can it made zero?

2.12 Exercise

1. Using bounded variable technique, solve the following L.p.p.
Max  z=4x, +4x, +3x,
s.t. =X, +2x, +3x, <15
-x, +x,<4
2x,+x,—x;,<6
X, —x, +2x,<10

0<x,<8, 0<x,<4,0<x,<4

X, zﬂ,x2 = E,)@ =4 Max z:g
5 5
2. Solve the following bounded variable problem :

Max z=4x, +2x, + 6x,
s.t. 4x,-x, <9
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—X,+x, +2x,<8
=3x,+x, +4x,<12
and 1<x,<3,0<x,<5, 0<x,<2
Ans.  x, =3,x,=5x,=2, Maxz=34
Solve:
Max z=3x, +5x, +2x,
s.t. X, +x,+2x,<14
2x, +4x, +3x,<34

and 0<x,<4,7<x,<10,0<x,<3

5 223
Ans. x1=4,x2 :T’XBZO’ Max Z:T
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Unit-3
Integer Programming : Gomory’s Algorithm

Structure of the Unit

3.0  Objective

3.1 Introduction

3.2 Importance of Integer Programming Problems
3.3 Necessity of Integer Programming

3.4  Definitions

3.5 Gomory’s all IPP method

3.6  Construction of Gomory’s Constraint.

3.7  AlILPP. algorithmor cutting plane algorithm
3.8 Illustrative Examples

3.9  Geometrical Interpretation of Gomory’s Cutting Plane Method
3.10  Self-Learning Exercise - |

3.11 Gomory’s mixed I.P.P. Method

3.12  Self-Learning Exercise - 1

3.13  Summary

3.14  Answer to Self-Learning Exercise -

3.15  Answer to Self-Learning Exercise - II

3.16 Exercise

3.0 Objective

The objective of this unit is to introduce the concept of integer programming. After studying this
unit one may be able to understand the importance and need ofit. A method to solve these problems and
suffcient exercise to understand the method is also prosented in this unit.

3.1 Introduction

Integer programming problems are those linear programming problems in which all or some of the
variables in the optimal solutions are restricted to take non-negative integer values. Such problems are
called ‘all integer’ or ‘mixed integer programming problems depending, on whether all or some of the
variables are restricted to integer values respectively.

In 1956, R.E. Gomory presented a systematic procedure to find optimum integer solution to an
“all integer programming problem”. Later he extended the method to deal with the more complicated
case of “mixed integer programming problems” when some of the variables are required to be integer.
These algorithms converge to the optimal integer solution in a finite number of iterations making use of
familiar dual simplex method. This is called “cutting plane algorithm” because it introduces an idea of
constructing “secondary” constraints which, when added to the optimal (non-integer) solution, will
effectively cut the solution space towards the required result.
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Another important approach, called the “branch and bound” technique for solving both the all
integer and the mixed integer programming problems, has originated the straight forward idea of finding all
feasible integer solutions.

“Branch-and-bound” technique was developed by A.H. Land and A.G. Doig (1960). This
technique for solving both the all integer and the mixed integer problems, has orginiated the straight
forward idea of finding all feasible integer solutions. Egon Balas (1965) introduced an interasting
enumerative algorithm for linear programming problem with the variables having the value zero or one,
called the zero one programming problem.

Several algorithms have been developed to solve linear integer programming problems. In this unit
we discuss Gomory’s cutting plane method, and in the next unit we will discuss branch and bound method.

3.2 Importance of Integer Programming Problems

We know that most industrial applications of large scale programming models are oriented to-
wards planning decisions. There are frequently occuring circumstances in business and industry that lead to
planning models involving integer valued variables. For example, in production, manufacturing is frequently
scheduled in term of batches, lots or runs. In allocation of goods, a shipment must involve a diserete
number of trucks, freight, cars or aircrafts. In such cases, the fractional value of the variables may be
meaningless in context of the actual dicision problem. For example it is not possible to use 3.5 boilersin a
thermal power station, 9.4 men in a project or 4.6 lathes in a workshop.

3.3 Necessity of Integer Programming

We can think that it is sufficient to obtain an integer solution to a given linear programming problem
by first obtaining the non-integer optimal solution using simplex method (or graphical method for two
variables problems) and then rounding off'the fractional values of decision variables occuring in the optimal
solution. But, in some cases, the deviation from the “exact” optimal integer values (obtained as a result of
rounding) may become large enough to give an infeasible solution. Hence it was necessary to develop a
systametic procedure to determine optimal integer solution to such problems. The following example will
give more clarity of the concept.

Example : Consider an [.P.P.
Max  Z =10x, +4x, , subject to the constraints.
3x,+4x,<8, x,x, >0 and x,, x, are integers.

Ignoring the integer restriction we obtain the optimal solution :

2 2 : . .
x= 25 , x,=0,Max Z = 265 by using graphical method. By rounding off the

2
fractional value of x = 25 , the optimum solution becomes x, =3, x, =0 withMax 7 = 3( . But this

solutions does not satisfy the constraints 3x, +4x, <8 and thus this solution is not feasible.

Now again, if we round off the solutionto x, =2, x, = 0 obviously this is the feasible solution
and also integer valued. But this solution gives 7 — 2() which is far away from the optimum value of

2
Z= 265 . So, this is another disadvantage of getting an integer valued solution by rounding off the exact

optimum solution. Still there is no guarantee that the “rounding down” solution will be optimal one. Thus a

64



systematic procedure to find an exact optimum integer solution to the integer programming problems is
needed.

3.4 Definitions

Integer Programming Problem (L.P.P.) : Alinear programming problem :

Max 7 = cx,subjectto 4¥ —p, x >0 andsome x; € X areintegers, whereC, X e R",
b eR™ and A4 isan m x n real matrix, is called integer programming problem (I.P.P.).

All Integer Programming Problem (All I.P.P.) : An integer programming problem is said to be an “All

Integer Programming Problem” ifall x; € X are integers.

Mixed Integer Programming Problem (Mixed L.P.P.) : Aninteger programming problem is said to be

“Mixed Integer Programming Problem” ifnot all x; € X are integers.

3.5 Gomory’s All I.P.P. Method

Consider a pure linear integer programming problem. First we find optimal solution using regular
simplex method ignoring integer valued restriction. Then we observe the following :

Q)] Ifall the variables is the optimum solution thus obtained have integer values, then the
current solution will be the desired integer solution.

(i) Ifnot, the considered L.p.p. requires a modification by introducing secondary constraints
(also called Gomory’s constraint) that reduces some of the non-integer values of variables
to integer one, but does not eliminate any feasible integer.

(i)  Now the optimum solution to this modified L.p.p. is obtained by using any standard
algorithm. Ifall the variables in this solution are integers, then the opotimal integer solution
is obtained. Otherwise another secondary constraint is added to the 1.p.p. and the whole
procedure is repeated.

Thus the optimum integer solution will be obtained definitely after introducing the sufficient number
of new constraints. The main work in this method is to construct Gomory’s secondary constraints. Now
we will discuss the method to construct this secondary construct.

3.6 Construction of Gomory’s Constraint

The procedure to construct a secondary constraint is based on the fact that a solution which
satsifies the constraint in the I.P.P. (3.4), also satisfies any other derived constraint obtained by employing
only row transformation (adding or subtracting two or more constraints or multiply a constraint by non-
zero number).

Thusif 2,4%; =b (1)
J=1

is any such constraint (obtained by employing row transformations only) then any feasible solution
of'the problem will also satisfy (1)

Before going further we discuss some rotations as : [p] denotes the integral part and f is frac-

tional part ofa number p,where 0< f <1,

thus  p=[p]+f
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2 2 2 2
5—=5+—=|5-|=5 ==
For example 275 3 [ 3} and f 3

and —52=-6+08=[-52]=-6 and =038
using these rotations, let

aj:[aj% i b=[b]+f

0<f, <l 0< 1<l

where f; and f represent the positive fractional parts of @; and p, respectively. Substituting
these values in (1), we get

Z([aj%f_,)xj =[b]+f
= 2S5 =b]-Ya]x (2)
Let h= —z Jf;x;+f andsuppose ; >, then since R.H.S. in integer valued so left side

must, whichshows that > 1= f=h +Zf_/xj >1

which constradicts that 0 < 1" <1

= h*0=h<0

= 2 Sfx+f<0

= —Z fx,<=f ..(3)

This inequality can be converted into an equation by introducing slack variable x_, then (3)
becomes

DS rx=—f ()

This is the Gomory’s secondary constraint and it is introduced in the given problem to form a new
Lp.p.

To understand the process more precisely, suppose that in the optional solution of the I.P.P. by
3
simplex method one basic variable, say X (inthe ,.# row)is not an integer. Let X; = X, (say) = 3Z .
Now suppose that in the optimal tableau of the simplex method, the equation corresponding to ;.

row, in which X, = 3Z occurs, is

2 5 1 3
X, +1§x2 +§x3 - X, —2§x5 :3Z
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This can be written as
3

(1+0)x, +(l+%)x2 +(l+%)x3 +(~1+40)x, +(—3+§)x5 = 3+Z

2 2 2 3
- §x2+§x3+§x5=Z+[3—xl—x2—x3+x4+3x5]

[as +x, +x, +x; —x, — 3x4 33]]

2 2 2 3
= >
3 3 3 4

2, .2,..2, 3
= 3 2 3 3 3 3= 4

—gx —%x ——X,+tX=——
= 3 2 3 3 3 s 4

where x_ is aslack variables.
This is the required Gomory’s secondary constraint which can be amended to the given I.P.P.

3.7 All L.P.P. Algorithm or Cutting Plane Algorithm

The step by step procedure for the solution of all integer programming problem is as follows :
Step 1 : Ifthe [.P.P. is in minimization form, convert it into maximization form.

Step 2 : Convert all inequality constraints into equalities by introducing slack or surplus variables, if
necessary. Now obtain the optimum solution of Lp.p. ignoring integers restrictions by usual simplex method.

Step 3 : Test integrality of the optimum solution thus obtained in step 2.

)] If an optimum solution contains all the variables have integer values, then an optimum
integer basic feasible solution has been achieved.

(1) Ifnot, go to next step.

Step 4 : Ifonly one variable has the fractional value, then corresponding to the row in which the fractional
variables lies in the optimal table of step 2, form a secondary constrant of the form (4).

However if more than one variables are fractional, then select that variable which has largest
fractional part.

Step 5 : Modify the Lp.p. by introducing the secondary constraint formed in step 4. Then find the new
optimal solution ofthe modified 1.p.p. by the dual simplex algorithm.

Step 6 : Ifthe optimal solution thus obtained is integer valued, then this is the required optimal solution of
the original l.p.p. otherwise go to step 4 and modify the 1.p.p. by a new contraint. Repeating the process
iteratively can definitely obtain the required optimum solution of the Lp.p.

This method is known as cutting plane method as the secondary constraints cut the unuseful area
of the feasible region in the graphical solution of the problem i.e. cut that area which has no integer valued
feasible solution. Thus these secondary constraints eliminate all the non integer solution without loosing any
integer valued solution.
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3.8 Illustrative Examples

Example 1.  Find the optimum integer solution to the Lp.p.
Maxz=x+2x,
S.t. 2x, <7
x, +x, <7
2x, <11

x,,x, areintegersand > 0

Solution : First we solve the given 1.p.p. using simplex method by ignoring integer restrictions. For this we
write it in standard form. Introducing slack variables x;,x,,x, inthe constraints, the problem becomes

Max z=x,+2x, +0.x;4+0.x, + 0.x

s.t. 2x, +x, =17
X, + X, +x, =7
2x, +x, =11

X5 Xy, X3,X,,X5 20
Taking initial BFSas ~ x,=x,=0
x;="7,x,=7,x;=11

Simplex Table - 1

¢, |1 2 0 0 0 O=—" "y

7
0 a, | x, |7 |1 1 o |1 ]o n
0 o X 11 2 0 0 0 1 --
5 . 7
Z;=¢; -1 f 0 0 0 mln@:a(%)
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Simplex Table - 2

X i
¢ 1 2 0 0 0 6=—" > Yikso
ik
Cy B Xy b B2 Y2 Y3 Y4 Vs
7 1
2 o, X, 5 0 1 5 0 0 ---
7 1 7/1
0 o, X, B 1 0 Y 1 0 5 -
11
0 o X 11 2 0 0 0 1 5
zZ,—¢ -1 0 1 0 0 minf=—
+
Simplex Table - 3
X i
¢ 1 2 0 0 0 6=—" > Yikso
ik
Cy B Xy b B2 Vs Y3 Y4 Vs
7 1
2 o, X, B 0 1 5 0 0
7 1
1 o, X, B 1 0 Y 1 0
0 o, X, 4 2 0 1 -2 1
1 .
z,—¢, 0 0 E 1 0 min6 =
T

1 1
Since all z; —¢; 20, so this BFS is optimal one, which is X, = 35 s Xy = 35

This solution does not satisfy the integer restrictions. To obtain this, we use Gomory’s cutting plane
algorithm. In the above solution, two variables x, and x, are involving the fractional parts, but both have

1
equal fractional part 5 Let us choose the first row, as source row to form the Gomory’s secondary

constraint.

The corresponding equation

1 7
0.x, +1.x, +E)c3 +0x, +0.x, = B
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1 1
+0+—=|x =3+—
or X2 ( 2)3 +2

1 1
or EX3=E+(3—XZ)
= 277
11
= 2737 )
= _Ex3+x‘”:_5

which is Gomory’s secondary constraint. Now introducing this constraint in the above optimum
table (third table), we get the new table as :

Simplex Table - 4

Gl 1 |2 o Jo [ofo
G | B X, | b » Y, Vs V4 Vs Ya
7 1
2 o, X, 5 0 1 5 0 0 0
7 1
1 o, X, 5 1 0 Y 1 0 0
0 a; | x |4 | 0o |o 1 2| 1 0
1 1
0 val x50 o |[zflo |o L
1
zZ;—¢ 0 0 5 1 0 0
579 1/ 1
¥, <0| 12 N /-
Max Vij [ v, ) ) 0 0 0

Here one variable is negative i.e. the present basic solution is not feasible, so to make it feasible we
use dual simplex algorithm.

1
) Since min X = D) (for x,,)sowedelete x, fromthe basis.
1
zZ.—cC, .
(i) Now max{—-—7 = max Ll _5H76G
WL Vi i Va3
2



=  wemustenter a, vector into the basis.

New simplex Table-5 is as follows :

c; 1 2 0 0 0 0

J

X520, Vi
Thus the above Basic solution is feasible and optimum. i.e,
x,=4,x,=3
It also satisfies integerality condition, so it is a desired optimal integer solution,

Example 2 : Find the optimum integer solution to the L.p.p.
Max Z =3x, +4x,
s.t. 3x,+2x, <8
x, +4x, <10
x,,X, 2 0, and are integers.
Solution : Introducing slack variables x,,x, the standard form of L.p.p. is
Max  Z =3x,+4x,+0x; +0x,
s.t. 3x, +2x, +x,=8
x, +4x,+x, =10
X5 X,y,X5,X, 20

nitial B.FS.is x, =0=x,, x; =8, x, =10
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Simplex Table - 1

9=
C | 3 4 0 0 y, > V>0
Cy B Xy b M b Vs Y4
8
0 | oy | [8 3 [2]1 [0o]3
10
0 | a | x, | 10] 1 o |1 | 5 5
) 10
Z,-C, 3|4 0 0 rmnHzT
T
Simplex Table - 2
9=
C | 3 4 0 0 y, > V>0
Cy B Xy b M b Vs Y4
5 1 6
0 o, X, 3 5 0 1 5 P
5 1 1
4 o, X, 5 1 1 0 1 10
) 6
Z,-C, ) 0 0 1 minf =—
' 5
T
Simplex Table - 3
¢, I3 [4] o Jo
Cy B Xy b M 3% Vs Y4
6 2 1
3 a, X, 5 1 0 5 75
1 /|3
Z _C./' 0 0 % %
. : : . 6
'+ Z,—C, 20,V j, therefore optimal non integer solution is X, = ria 15, X,=—=2—

Now, we introduce Gomory’s secondary constraint.
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The fractional parts of the two variables are same (g) , we choose the second row as source row.

(0+0)x, +(1+0)x, +(l+%)x3 +(O+%)x4 :2+%

The Gomory’s constraint

9 i3, s1

107 107* 5

—2x —ix +x __1
= 107 10 7% 5

The simplex table for modified 1.p.p. is as follows :
Simplex Table - 4

c, |3 |4 |o 0 0

Cy B Xy b B2 Y2 Y3 Y4 Y

3 a | | % |1 |o % -l 0

4 oy | x [ Wlo [ 1] =Y, 3, 0

0 vl x| 5|0 [0 |[ Ao -3 R
Z,-C, 0 0 A ¥

Max =% Y5 /8

<0y R ~9/10 ~3/10
/I\

Here we use dual simplex alogrithm and take x; as deleting variable and x, as entering variable.
The next iterative table is as follows :

Simplex Table - 5
G 3 4 0 0 0

Cy B Xy b B2 Y2 Y3 Y4 Y

1 1
4 o, X, 2% 0 1 0 g —5
1 10
0 o, X, % 0 0 1 g —?
7 -C l 8
~C, o o o 3 8¢
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Still the optimal solution is not integer, so a new secondary constraint must be added. Choose

second row as source row we get the new constraint — % X, — g X, +x,= _%
Introducing this constraint the modified table is
Simplex Table - 6
G 3 4 0 0 0
Co | B | Xz | b 2N I ORI Y [ Ya | Yo
3 10 1 0 0 L — 0
AR I I 3 9
20 1 1
4 o, X, ) 0 1 0 3 ) 0
2 1 10
0 o, X, 9 0 0 1 3 ) 0
2 1
0 vo| x| g0 | 00|53 811 b
7 -C 1 8
-C, o [ o o 3 8 | o
1
Z. —C.
v Z=C v/ | 80
1i<0 - - - (—) -8/9 -
' 3
F

Now deleting x_, andintroducing «, , by dual simplex algorithm, we get the next iterative table as
follows :

Simplex Table - 7
3 4 0 0 0 0

C, | B X, | G | oy vl »ml wl yal| ye

4 o, | |2 ol 1] o0 |o ot

0 |la | x |0 [of of 1 [o ol

0 a, | n | %o o] o 1 821 =3
Z,-C, o of o [o o [1
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4
Still this optimal solution does not satisfy integer restriction as X, = 3 is fractional. Taking the

fourth row as source row the Gomory’s constraint is

_E‘xsl + ‘xs2 = _5
Introducing this in the above table 7, we get the modified table as
Simplex Table - 8

c |3 4 0 0 0 0 0
G | B Xy | b » ¥ | ¥ Vo | Yao Ve | Vs
3 a, | x |43 |1 0 0 0 43 |1 | 0
4 a, | x, |2 0 1 0 0 1 0
0 a, | x, |0 0 0 1 0 o1 0
0 a, | % | % |0 0 0 1 8 |3 |o
0 | vo|x [0 [0 [0 ] o0 1 UREEE
Z,-C, 0 0 0 0 0 1 0
7 -C.
]‘461)C J J O
<0y - - - - -2/3|~ -
' 2

Now deleting x_, and introducing x_, , we get the next iteration tableau as follows :

s1?

Simplex Table - 9

¢34 ol oo o |o
G| B Xg | b Wl |l s | Ya| Ve | Y
3 a, |x o |1 [ o o] o] 0|2
4 a, |x, |3 |0 1 o o | o 1 -3
0 a, |x, |2 oo | 1] oo |1 3
0 a, |x, |2 oo o] 1 ]o 3| 4
o », |x, |1t oo o] o1 |o -3
Z.-C, oo o] oo |1 |o
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Obviously this optimal solution is the required integral solution, which is as follows :
x,=0,x,=3, Max 7 =12
Example 3 : Solve the following integer programming problem :
Max Z =2x,+10x, —10x,
s.t. 2x,+20x, +4x, <15
6x, +20x, +4x, =20
X,,X,,%, > 0 and integers.

Solve the problem as a (continuous) linear program, then show that it is impossible to obtain
feasible integer solution by using simple rounding. Solve the problem using any integer program algorithm.

Solution : Ignoring the integer restrictions, on solving the problem by simplex table, we get the following
optimum table :

Simplex Table - 1

G 2 20 1010
Cy B Xy b B2 Y2 Y3 Y4
1 3
20 a, X, = 0 1 g 4—0
5 1
2 o, X, Z 1 0 0 _Z
Z/ —C/ 0 0 14 1

5
Where x, is aslack variable and o, is the associated vector. The optimum solution is X; = Z ,

Y=g % =0. The simple rounding reduces to x, =1, x, =0, x, =0 and it does not satisfy the

second constraint. Instead, if we take x, =1, x, =1, x;,=0orx, =2, x, =0, x, =0, x, =2, x, =1,
x, = 0 even then these solutions do not satisfy the constraints. Hence by simple rounding, we cannot
obtain an integral solution of the given problem.

Now we use Gomory’s cutting plane algorithm to obtain the desired integer solution.

5
Note that two variables are non-integer and maximum fractional part is g (of x, ). So we choose

the first row (in which x, is available) as a source row for the secondary constraint

(0+0)x, +(1+0)x, +(O+%)x3 +(O+4—30)x4 =O+§
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—X X —— X
= 5 3 40 4 8 2
= 5737407478
1 3 5
o TEh My
—lx —ix +x _2
= 5 3 404 s1 8

Introducing this constraint in the above table we obtain modified table as follows :
Simplex Table - 2

G 2 20 -10 0 0
Cy B Xy b Vi Vs V3 V4 Y
1 3
20 o, X, S 0 1 5 20 0
1
2 o, X, - 1 0 0 _Z 0
0 —é 0 0 —l —i 0
yvl xvl 8 5 40 >
Z/ —C/ 0 0 14 1 0
M{;—q} 14 1
ax - -
< - - _1 _ -
}Z/,O yzj /5 /I\AO

The next iterative table is as : (deleting y , and entering «,, )

Simplex Table - 3

G | 2 20 -10] 0 0
Cy B Xz | b M Y Vs Va Vs
20 a, X, 0 0 1 0 0 1
10 10
2 o | x | 3|1 ] o0 2 1o -
25 40
0 o, X, 3 0 0 % 1 ey
34 40
Z,-C, 0 0 3 0 3
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10 25
Still this optimal solution does not satisfying integer constraint as X, = 3 Xy = EREY again one
secondary constraint is to be introduced.

Since both the variables have same fractional parts so we can take randomly third row as source
TOW.

(0+0)x, +(0+0)x, —(2 +%)x3 +(140)x; +(1+0)x, +(—14+%)X“ = (8+%)

— §x3+%xsl =%+(8—2x3—x4+14xsl)

= 3 3 3 sl_3
or 3 3 3 sl — 3
2
= _Exz _Exsl TXp = 3

Which is the secondary constraint. Adding this constraint in the last table, we get the modified table
as follows :

Simplex Table - 4

¢ | 2 20 -10 | O 0 0

C;, | B Xg | b » Y, Vs Vs Ya | Ve

20| a, |x, O o |1 o Jo [1 o

0 va | xa |[-H] 0 | o 2o |-% |t b
Z,-C, o | o | 3o |44 o
Maox Z./_C./} ~ ~ % ~ % ~
V4;<0 y4j _23 _23
A

Next iterative table is as follows :
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Simplex Table - 5

c | 2 20 [0 o 0 0

C, | B Xg | b » Y, Vs Vs Ya | Ve

20| a,| x, JO o] 1 Jo o |1 |o

1
0| @ | x| 5 | 0] 0 1 0 -3

Z,-C, 0 0 0 0 2 17

Still the solution does not satisfy the integral restriction and so one more Gomory’s constraint will
be introduced. We take fourth row as source row which gives

1
x3 + xsl _E‘XSZ =5

2

— (O+O)x1+(0+0)xsl+(—2+%) X, =(O+%)

= 2 52 _2
1 1
or 3 $2 3
1
= _E‘xs2+xs3:_5

Now introducing this secondary constraint in the last table as follows :
Simplex Table - 6

G 2 20 -10] O 0 0 0

C; | B Xz | b n Y, Vs Vs Ya | Yo | Ve
20 a, | x 0 0 1 0
: X, 3 4 1
a, | x, |7 0 -16| 4
1 3

10| a, | x 5 0 0 1 0 1 -5 |0
1 1

0 Yo | Xa | T3 |0 0 0 0 0 |t p

Z,-C, 0 0 0 0 2 17 |0
Max [Z./_Cj} 17

V<o Vs - - - - - T—l/z -
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Simplex Table - 7

G 2 20 -10] O 0 0 0
Cs | B Xy | b il vy v | v ve| Ye
20 | a, | x, | O 0 1 0 0 1 0 0
2 a, | x |2 1 0 0 0 | -4 | O 2
0 a, | x, |3 0 0 0 1 |-16| 0 8
-10 o, X, 2 0 0 1 0 1 0 -3
0 y, | x, |1 0 0 0 0 0 1 )
z,—¢ 0 0 0 0 2 0 34

Above optimum solution is integer one, so required solution is
x=2,x=0,x,=2, Max 7-=-16

Example 4 : Amanufacturer of baby-doll makes two types of dolls, doll x and doll y. Processing of
these two dolls is done on two machines, 4 and B, Doll x requires two hours on machine 4 and 6
hours onmachine B . Doll y requires 5 hours on machine 4 and also five hours on machine B . There are
sixteen hours of time per day available on machine 4 and thirty hours on machine B . The profit gained on
both the dolls is same, i.e., one rupee per doll. What should be the daily production of the two dalls for
maximum profit?

(a) Set up and solve the L.p.p.

(b) Ifthe optimum solution is not integer valued, use the Gomory’s technique to derive the
optimal solution.
Solution : Let x,, x, denote the number of dolls manufactured per day of type x and y respectively,
then the corresponding Lp.p. is formulated as follows :

Max Z=x +x,
s.t. 2x,+5x, <16
6x, +5x, <30, x,,x, > 0, are integers.

Introducing slack variables x,,x, and solving the problem by simplex method, the optimal table
giving the optimal solution is as follows :
Simplex Table - 1

Cj 1 1 0 0
Cy B Xy b B2 Y2 Y3 Y4
9
Z 3 1
1 a| x [ 5 |0 1 3ol =Y
7 1 1
1 a, X, E 1 0 _Z Z
1 3
Z. —C. — —
/ / 0 0 20 20
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1 4
Here both the variables are fractional. But their fractional parts are % and 5 Out these 5 is

largest whichis of x, lying in the first row ofthe table. Taking first row as the source row, the correspond-

ing equation is
9 4
(O+O)x‘+(l+0)x2+(O+1_)x3+(_l+ﬁjx4:l+§
= 107 1075
3.9, 8
o 107 1007 s

Hence the Gomory’s constraint is

3
T ANy T Xy X =T

10 10

where x, isaslack variable. The modified table is

Simplex Table - 2

G 1 1 0 0 0
Gy B Xy b M b Vs Y4 Vs
3 1
1 o, X, 5 0 1 To T 0
7 1 1
1 o, X, 5 1 0 i 0
3 9
0 Y X, 3 0 0 “Toll "10 1 b
Z,-C L3
VA 0 0 20 AO 0
L3
Maox {Zj — C/} 20 20
y3;<0 . - - _ _
Vs Tﬁo 10

Using dual simplex algorithm entering «, andremoving x , fromthe basis, we get new table as
follows :
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Simplex Table - 3

Gt 1 o] o |o

Z./ - C./ 0 0 0 0 %

This optimum solution is still not integer. Again, we construct a Gomory’s constraint. This time

taking second row involving fractional variable X, = g » 45 asource row, we get the corresponding
equation
1 1
(1+0)x, +(1+0)x, + —1+g X, :4+g
1 1
= —Xg > g
or e <Y
= _xsl + xsZ =-1

Introducing this constraint in the last table, we have the modified table as :

Simplex Table - 4

G l1 |1 o] o [o ]o

C, | B Xg | b » Y, Vs Vs Ya | Ve
1 a, | x, 1 0 1 0 1|1 0

S
S
(95}
Re
o
S
S
—
w
| gl
o1~ K!&&
()

Z -C,
Max J J B B B B
Ya;<0 Va;
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The next iterative table is
Simplex Table - 5

C, 1 1 0 0 0 0

G| B Xy | b il |y | ova| ve

1 o, [, ool 1 Jo] 1 [o]o

1 a, | x |5 1| o o ]| 1 ]o0 -%

0 a, | x, e | of o [ 1] 3 |o -10/

o | vy, |x, |1 o] o [of o1 1
Z,-C, o o oo o] K

This iterative optimal solution having integer value has been reached, which s as :

x,=5,x,=0andMax 7 -5

3.9 Geometrical Interpretation of Gomory’s Cutting Plane Method

We take last example 4 for the geometrical interpretation

secondary
constraint

|12345\Y78\ ;Xl

Figure 3.1

7
The feasible region, is as shown in the above fig. 3.1 Optimum solution X; = 5> X, = 5 Since the

solution is not integer. We introduce first Gomory’s constraint

3 >
— Xyt X, 2 —

10 10 5

To express this in terms of x, and x, , we know that
2x, +5x, +x;, =16
6x, +5x, +x, =30
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as x, and x, are slack variables introduced in the begining to convert the inequalities into
equations.

These give x, =16—2x, —5x,
and x, =30—-6x, —5x,
substituting in the Gomory’s constraint, we get

3 9 4
E(l6—2x1 —5x2)+ﬁ(30—6x1 _sz)zg

1
= x1+x2SSE

This constraint cuts-off some part of the feasible region (in this case very minute) and hence now
the feasible region is some what less then the previous one (see fig.3.1). Similarly the second Gomory’s

constraint is x , > 1

S . x—(ix+ix s
But 10x3 10X4 X = 5 or sl 10 3 10 4 5

3 9
— xsl25(16—2%—5x2)+E(33—6x1—5x2)—%

= x,, =31.8-6x, —6x,
x, 21 = 318—6x, —6x, 21
= 6x, +6x, <308

= x,+x, <5103

This constraint also cut off some part of feasible region so why this is not plotted here. Due to these
cuttings, the method is called cutting plane method.

Example 5 : Solve the integer programming problem :
Max Z=7x,+9x,
S.t. -x,+3x,<6
Tx,+x, <35
x,20, x, >0 and x,,x, are integers.

Solution : Introducing slack variables x, and x, and solving by simplex method, we get the optimal
solution as follows :

84



Simplex Table - 1

C, | 7 9 0 0

Gy B Xy b M Y2 M3 Vs
1

9 a, | x 35 0 1 ]7/22 1/22
1

7 a, | x 45 1 0 |-1/22 3/22

_ 28 15

Z=C o Lo | B

The non-integer solution thus obtained is :

1 1
x1=45, xz=35, Max 7 = 63

Since both the variables have same fractional parts so the first constraint is choosen as the source
row to make Gomory’s constraint, which is as :

(04+0)x, +(1+0)x, +(O+%)x3 +(O+%)x4 _341

2
DY MDY M )
or T oy x <t

——X <
2277 22707 2
- ix ——X,+Xx,=—=
= 7 3 7 4 sl 9
with Gomory’s secondary constraint introducing in the above table we get
Simplex Table - 2

c |7 9 0 0 0
CB B X, b W Y, L) V4 Y
9 CE | 7 N
RE e 2 22 22
7 4L 0 L 30
R 2 22 22
0 S 0 L I
yvl xv] 2 22 22 >
_ 28
Z,-C, 0 0 41 42 0
Z -C
. 28/11 15/11
w0 |y, - - ~7/22 ~1/22
; 2

85



Using dual simplex algorithm the next iterative table is as follows :

Simplex Table - 3

G (719 o] o o

Gy B X b Vi Vs V3 V4 Ysi
9 | a, | x, [3 o] 1 | o] o |1
4 1
_ 1 __
7 a | % [47 |1 | 0 | o0 Y =
4
- 1 _22
0 a, | x |15 [0 | 0 1 Y 2
Z,-C, ol o o] 1 |3

The above optimal solution still does not satisfy integer restriction. Choose second row as source
row to construct Gomory’s secondary constraint.

1 4
(O+l)x1+(0+0)x2+(O+O)x3+(O+7)x4+(—l+g)xsl=4+7
l)c +—x,2—
= 7 4 7 s1_7
1 6 4
——X, =X, <=
or 7 4 7 s 7
1 6 4
= TN T TXp =T

Introducing this constraint is the above table and applying dual simplex algorithm, we get the
transformed table as below :
Simplex Table - 4

¢, |7 |19l o o |o 0
C | B Xg | b AZREN NN B O I /A I SR
9 a, | [ 3 o [ 1] 0o [0 |1 0
4
4 /| _1
7 a, | 1 4| o | o 2 4o
4
4 1 22
0 ap | x [ 150 [0 |1 Y 21 0
_4 /] -
0 vo | x, o [o] o Vil-% 11 +
Z,-C, o o | o |1 8 0
M{;—q} 1| 8
s - - - VA -
Va;<0 y4j . /7 /7
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The next iterative table is

Simplex Table - 5

C, 7 9 0 0 0 0

C;, | B Xg | b » Y, Vs Vs Ya | Ve

0 x, |x, |4 ol o o] 1 ]e6 7

Z-C, of o o] o] 2|7

In this optimal table all the variables have integer valued, so this is required optimal integer solution,
which is as

x,=4,x,=3, Max 7z =55
Example 6 : Find the optimum integer solution to the following I.P.P.
Max Z=ux, +4x,
S.t. 2x, +4x, <7
Sx, +3x, <15
X;,X, 2 0 and are integers.

Solution : Introducing slack variables x,,x, and solving above problem by usual simplex method the
optimum non-integer solution is given as follows :

Simplex Table - 1

C, 1 4 0 0

Cy B Xy b Vi Vs V3 V4
1 1
4 o, X, % 5 1 1 0
7 3
0 a, X, 394 5 0 1 1
Z, —Cj 1 0 1 0

In the above solution both the variables have same fractional parts, so consider the first row as
source row, which is

1 1 3
(O+E)xl +(1+0)x, +(O+Z)x3 +(0+0)x, = 1+Z
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—X, =X, 2 —
A R e

1 1 3
or __XI_ZX3S_Z

1 1 3
= _Exl_zx3+xvl 2

Introducing this secondary constraint in the above table, the modified table is as follows :

Simplex Table - 2

G 1 4 0 0 0
Cy B Xy b M Y Vs Va Vs
7 1 1
4 o, X, 9 5 1 1 0 0
39 7 3
0 a, X, 7 | 2 0 2 1 0
0 SN g 0 - 0 1
Y1 X1 4 2 4 T
Z,-C, 1 0 1 0 0
e 1276, Ll 1
P ol B _
e I, /R
2

The next iterative table is as :

Simplex Table - 3

|l 1| 4| o [o] o

Cy B Xy b B2 Y2 Y3 Y4 Y

9
0 a | x| [0 o -%l 1|7
3 1
1 o, X, 5 1 0 5 0 -2
1
Z,-C, ol o 5 o] 2
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Since the optimum solution is still not integer valued, we introduce second Gomorian constraint
taking second row as source row

(0+0)x, +(0+0)x, +(—3+%)x3 +(140)x, +(1+0) y,, =4+%

= 277 o 2737 2
= _Exz"'xsz:_a

Introducing this secondary constraint, the modified table is as :
Simplex Table - 4

C, 1 4 0 0 0 0

C,| B Xg | b » Y, Vs Vs Ya |l Ve
4 a, | x, 1 0 1 0 0 1 0

0 | ay| x| %o |o|-% ] 1 |7 |0
Pl oa | o | %1 oYX ] o] 2fo

1
0 Vo | %o | 75| 0 0o |- | o 0 1+
1
e 0 0 S| o 2 0
1
Z -C,
Max J J B 3 Ll B B B
Y4;<0 y4j I
/r2

The next iterative table is as follows :
Simplex Table - 5

C |1 4 0 0 0 0
G| B Xy | b Y, ol oyl | va| e
4 a, | x |1 0 1 0 0 1 0
0 a, | x, | 7 0 0 0 1 7 _5
1 a, | x |1 1 0 0 0 o |1
0 a, | x| 1 0 0 1 0 0 )
Z,-C, 0 0 0 0 2 1

This table shows that an optimum basis feasible integer solution has been reached. Hence the
optimum solution is

x,=1,x,=1, Max z-=35
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3.10 Self-Learning Exercise - I

I. How can you construct Gomory’s constraint?
2. Gomory’s method to solve I.P.P. is called a cutting plane method, Why?
3. Give geometrical interpretation of Gomory’s cutting plane algorithm?

3.11 Gomory’s Mixed I.P.P. Method (Fractional Cut Method)

In the mixed integer programming problems some of the variables are restructed to take integer
values, while other variables may take integer or continuous values. The iterative procedure to solve such
programming problems is as follows :

Step 1 : Determine an optimum solution to the given l.p.p. using simplex method ignoring integer
restrictions.
Step 2 : Test the integrality of the optimum solution thus obtained in step 1.

)] Ifall the variables has integer values, then it the optimum integer solution.

(i) Ifinteger restricted variables are not integers go to next step.

Step 3 : Choose largest fractional value among the basic variables which are restricted to integers.
Consider the row corresponding to above variable and form Gomory’s secondary constraint.

Step 4 : Introducing this secondary constraint and modify the table, then apply dual simplex algorithm and
follows the procedure as in all [IPP method 3.7 until the restricted integer variables becomes integers.

Example 7: Solve the following mixed integer programming problem :
Maximize Z =4x,+6x,+2x,
Subject to 4x, —4x,<5
—x, +6x, <5
—Xx, +x,+x; <5
X,,X,,%; 20 and x ,x, are integers.

Solution : Introducing slack variables x,, x, in first two constraints and solve the L.p.p. by usual simplex
method ignoring integer restrictions, we have

Simplex Table - 1

G |4 |6 |2 ]o |o

Cy B Xy b B2 Y2 Y3 Y4 Vs
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x,,x, both are not integers and x, has maximum fractional part, so we take it (first) as
source row which is

1 1
(l+0)x1+(O+O)x2+(O+O)x3+(0+%)x4+(0+g)x5=2+E
=~ 10t 5772
301 1
or 10747577
301
= _Ex4_gx5+xvl =75

where x, is a slack variable.

Introducing this second constraint, the modified table is :

Simplex Table - 2

¢, |4 | 6| 2o |o 0

G| B Xg | b » Y, Vs Vs Vs Vo

M{;—q} 2 2
w127 C S
)y < - - - f— _1
S QY \ %O /5

Applying dual simplex algorithm, we get the transformed table as :
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Simplex Table - 3

G4 |6 [2]0 0o |o

Cy Xp | b Wl v vl Y| Ys | Ya
4 a, | x | 2 1 o o] o] o 1
1
7 - 1
6 a, | o | o |1 |o ]| o - 7
1
5 —— 1 5
2 a, | o | Yoo | 1] o - %
0 a, | x| B0 o |0 |1 2| 1Y%
Z,-C, 0 0 0 0 % 2%
Since x, is still not an integer, we write from the third row of the this iteration
5 5 5
(0+0)x, +(0+0)x, +(1+0)x; +(0+0)x, + _1+E X+ O+g x‘91=5+g
5 5 5
—Xgt+—X, 22—
= 6 5 6 sl 6
5 5 5
T TN e e
5
= T T T X = 3

Introducing the secondary constraint in the above table the now defined table as :

Simplex Table - 4

¢, |4 |6 |20 [0 Jo 0
Cy Xp | b il |y | Y | Ve | Ve
4 o | x |2 [1 o o | oo [1 0
6 a, | w | o [ v oo | W |o
2 a, | o | 3o o [ o |- |o
0 a, | x| %o | o |o L[| =1%o
0 Vo | x| =% 0 0 0 o %Il -%11 p

y5/<0

Max[z_/_cj} 2/3 %
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The next iterative table is as follows :

Simplex Table - 5

a6 | 2] o] o] o |o
Cs| B Xy | b UNN S S A S S =
4 | o | x {2 1o ol o o] 1 |o
6 a, | x, |1 o 1 o] of o 7 A
2 a, | x, |6 o o | 1] of o % | -
0 a, | o [0 {0 o [of 1| o [-190|%
0 a, | x |1 ol o [o] o 1 1 -9
Z,-C, 0| 0o |o| o] 0|2 |%

Since x,,x, are integers so it is required optimal integer solution, whichis x, =2, x, =1, x, =6

Max 7 =26

3.12 Self-Learning Exercise - 11

I. What do you mean by mixed integer programming problem?

2. What is fractional cut?

3.13 Summary

In this unit we have studied the linear programming problems in which some or all variables are
restricted to accept integer values, called mixed or pure integer programming problems, respectively. We
have presented Gomory’s cutting plane method to solve these problems. A procedure to find Gomory’s
secondary constraint is given. We modify the optimum simplex table by introducing above constraint, then

use dual simplex algorithm to find optimum integer solution.

3.14 Answer to Self-Learning Exercise - I
1-3 See corresponding articles
3.15 Answer to Self-Learning Exercise - 11

1-2 See corresponding articles

3.16 Exercise

1. Solve the following I.P.P.
Maximize Z =2x,+3x,
s.t =3x,+7x,<14
7x,—3x, <14
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X,,X, 2 0 and integers.

2. Describe any method to solve LP.P. u(x, —3,x, = 3,max z = 15) useit to solve the problem :
Maximize Z=2x+2x,
s.t. Sx, +3x, <8

X, +2x, <4 (x,=x, =1, max z=4)

X,,X, arenon-negative integers.

3. Solve the following I.P.P.

Minimize Z =9x, +10x,
s.t. x <9
x, <8
4x,+3x, =40 (x, =9,x, =2,minz = 101)

X, X, 2 0 and are integers.

4. Find optimum integer solution to the following all .P.P. :
Maximize Z=x+2x,
s.t. X, +x, <7
2x, <11
2x, <7 (x, =4,x, =3, maxz =10)

X,,X, 2 0 and are integers.
5. Solve the following mixed I.P.P. problem:
Maximize Z =-3x,+x, +3x,
s.t. =X, +2x, +x; <4

4x, —3x, <2

8 29
x,—3x,+2x,<3 )Cl=0,)Cz=7,x3=l,rnaxz:7

x, and x, are integers and x,, x,,x, >0

miNIN
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Unit-4
Integer Programming : Branch and Bound Algorithm

Structure of the Unit

4.0  Objective

4.1 Introduction

4.2 The Branchand Bound Method

4.3 The Branch and Bound Algorithm

4.4  Illustrative Examples

4.5 Geometrical Interpretation of Branch and Bound Method
4.6  Self-Learning Exercise

4.7 Summary

4.8  Answers to Self Learning Exercise

4.9 Exercises

4.0 Objective

Integer programming introduced in unit-3 was dealt with an algorithm called Gomory’s cutting
plane method. The objective of this unit is to discuss another algorithm called Branch and Bound
Technique to solve integer programming problems.

4.1 Introduction

Branch and Bound algorithm was developed by Land and Doig to solve all-integer and mixed
integer programming problems. It is the most general technique to solve integer programming problems in
which all or a few variable are constrained by their upper and lower bound or by both.

The concept behind this method is to divide the entire feasible solution space of linear program-
ming problem into smaller parts called sub-problems and then search each of them for an optimalsolution.
This approach is useful in those cases where there is a large number of feasible solutions and enumeration
ofthose becomes economically impractical or impossible.

4.2 The Branch and Bound Method

This technique is applicable to both the L.P.P., pure as well as mixed. In this method first we solve
the continuous I.P.P. ignoring the integer-valued restrections. Ifin the optimal solution one of'the variables

say x, isnot an integer, then we divide or partition the given L.P.P. into two sub problems.
We have [x:]] <x < [x:]l +1
where x is the value of x, in the optimal solution.
Hence any feasible value of x, must satisfy one of the two conditions

x, <[x,] or x, 2[x,]+1

Note that these two constraints are mutually execlusive (i.e. both can not be true simulteneously)
and hence both can not be amended in the L.P.P. simulteneously.
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By adding these constraints separately to the continuous L.P.P. we form two sub L.P.P. Thus we
have branched the original subproblem into two sub problems. According the geometrical interpretation,
we observe that the branching process discards that portion of the feasible region which involves no
feasible integer solution.

To understand it, we take an example. Suppose we have optimal solution of an L.P.P. as

. « 9
x1=5 and x2=g

7
clearly X, = 5 givesthat 3< x; >4

= for an integer valued solution, either
x, <3 or x, 24

Thus there will be no integer valued feasible solutionin the strip x, =3 and x, = 4 (Actually draw

two lines x, =3 and x, = 4 and verify the fact). We should search for optimum value of 7 ineither the

first region (x, < 3) orsecond region (x, >4).

After branching in this way two subproblems are formed by adding x, < [x: ]l and x, > [x: ]I +1

one by one to the origional set of constraints. Now these two subproblems are solved. If for any ofthe
subproblems optinum integer solution is obtained then that problem is not further branched. But if ever any
subproblem involves non-integer variable then it is again branched and this process of branching contin-
ues. Wherever applicable until each subproblem either admits an integer valued optimum solution or there
is evidence that it cannto yeild a better one. Then that optimum integer valued solution among all the
subproblem is selected which gives the over all optimum value ofthe objective functions.

4.3 The Branch and Bound Algorithm

The iterative procedure of this method is given as below :

Step 1 : Obtain the optimum solution of the given L.P.P. ignoring the integer restriction.

Step 2 : Test the integrability of the optimum solution obtained in step 1. There are two cases :

() Ifthe solution is in integers, the current solution is optimum to the given integer program
ming problem.
(i) Ifthe solution is not in integers, go to next step.

Step 3 : Considering the value of objective function as upper bound, obtain the lower bound by rounding
offto integral values of the decision varibales.

Step 4 : Let the optinum value x/ ofthe variable X, be not an integer. Then subdivide (branch) the given

L.P.P. intwo subproblems.

SUB-PROBLEM-1 : Given L.P.P. with an additional constraint x ;< [x;” ]I
SUB-PROBLEM-2 : Given L.P.P. with an additional constraint x ;2 [x;” ]I

©
J

where [x ]l is the largest integer contained in x7 .
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Step 5 : Solve the two problems obtained in step 4. There may arise three cases :

()

(ii)

(i)

Ifthe optinum solutions of the two subproblems are integral, then the required solution is
one that gives larger value of Z.

Ifthe optimum solution of one subproblem is integer and the other subproblem has no
feasible optimal solution, the required solution is same as that of the suproblem having
integr valued solution.

Ifthe optimum solution of one subproblem is integer while that of the other is not integer
valued then record the integer valued solutions and repeat step 3 and 4 for the non-integer
valued subproblem.

Step 6 : Repeat steps 3 to 5 until all integer valued solutions are recorded.

Step 7 : Choose the solution amongst the recorded integer valued solutions that yields optinum value of

7.

4.4 Illustrative Examples

Example 1: Solve the following I.P.P. by branch and bound technique.

Solution :

Step 1 : By Graphical method, the optimum solution

of the problem ignoring the integer valued restriction, is

8
X, =—,x,=2 (SeeFig. 4.1)

3

. . * .
Now , is non integer and ¥, == gives Z < x, <3

Max. Z =x, +x,
Subject to 3x, +2x, <12
x, <2

X,,X, 2 0 and integers.
a

Figure 4.1
Step 2 : Then we form two subproblems given below :
Problem 2 Problem 3
Max Z = x, +x, Max Z = x, +x,
S.t. 3x, +2x, <12 S.t. 3x, +2x, <12
x, <2 x, <2
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x, <2 x 23
X;,X%, 20 X;,X, 20

For the solution of these problems see fig. 4.2 and 4.3 as given below :

Opt. solv. (2, 2)

x,=2 x,=2

Opt. solv. (3, 3/2)

2
1

—_
1

X,

Kol /

>X, o r ! ' r
1 2 3 4 \5 1 1 2 3 4 \ 5
Figure 4.2 Figure 4.3

Optinal solution of problem2is x, =2, x, =2 ,Max. ; =4

Since in this solution all the variables are integer therefore there is no need to branch this problem
further.

The optimal problem of problem 3 is

3 9
x, =3, X2=E, MaxZZE

« 3
Step 3 : Since x, is non-integer, it needs further subdivision. Here X, = 5 =>1<x,<2

Hence, we form two subproblems by introducing the constraints x, <1 and x, > 2 oneby one in
problem 3. Now problems are :

Problem 4 Problem 5
Max Z = x, +x, Max Z = x, +x,
S.t. 3x, +2x, <12 S.t. 3x,+2x, <12

x, <2 x, <2
x 23 x 23
X;,X%, 20 X;,X, 20

The problem 5 has no feasible solution and in problem 4 the constraint x, <2 isredundant. The
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10 13
optimum solution to this problemis X; = EREc 1 and Max Z = — . FromFigure 4.4 it is clear that any

3

x,=3

(51
) x,=2 \/ 37

Figure 4.4

further branching of the problem will not improve the value of objective function as next subdivision will
improve the value of objective function as next subdivision will impose that restrietions x, <3, x, > 4.

Then optimal solution are x, =3 and x, =1 and x, =4 and x, = 0 respectively. There solutions also
gives 7 = 4.

Step 4 : Hence overall maximum value ofthe objective function 7 — 4 and integer valued solu-
tions is any of these

x=2,x=2,x=3,x=1;x=4,x,=0
Example 2 : Use branch and bound method to solve following L.P.P. :
Maximize Z = 7x, +9x,
Subject to —x, +3x, <6
Tx,+x, <35
x, 27
Solution :

Step 1 : Ignoring the integer restriction, the optimal solution to the given L.P.P. can easily be

9 7
obtained by graphical or simplex method as X, = 5 X, = 5 and Max. 7 = 3.

£ 9
Step 2 : Since the solution is not in integers, let us choose x,, 1.e. X; = 5 being the largest

fractional value.

Step 3 : Considering the value of Z as initial upper bound i.e. 7 = 3. The lower bound is
obtained by rounding off'the value of x,,x, to the nearest integers, i.e., x, =4, x, = 3 thenthe lower
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boundis Z, =55.

. 9
Step 4 : Since ﬂ;xl ]l = [E} =4 we have

Sub-problem 1 Max Z = 7x, +9x,
s.t. —x,+3x,<6

Tx,+x, <35
x, <7
x, <4

X,,X, 2 0 and are integers.

Sub-problem 2 Max Z =7x,+9x,

s.t. —x,+3x,<6

Tx,+x, <35

X,,X, 2 0 and are integers.

Step 5 : On solving the above two subproblems by graphical or simplex method the optimum
solutions are

10
Sub-problem 1 x, =4, %= 3 Max. 7 =58

Sub-problem 2 x=5,x=0 and Max. 7 = 35

Since the solution to subproblem 1 is not in integers, we subdivide it into following two
subproblems.

Sub-problem 3 Max Z =7x,+9x, st
—x,+3x,<6,7x,+x, <35
x,<4,x,<3 x,x,20
Sub-problem 4 Max Z =7x,+9x, st
-x,+3x,<6, 7x,+x, <35
x, <4, x, >4
X;,X%, 20
Step 6 : The optimum solutions to the subproblems 3 and 4 are :

Sub-problem 3 x, =4, x,=3 and Max. ; =55
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Sub-problem 4 No feasible solution.

Step 7 : Among the recorded integer valued solutions, since the largest value of Z is 55, the
required optimum solution is

x, =4, x, =3 and Max. 7 =55

The whole branch and bound procedure for the given problem is shown below :

Sub-problem 2 Sub-problem 3
x,=5,x,=0 x,=4,x,=3
Max Z =35 Max Z =55
Non intiger
optimum solution
9 7
X, = E s Xy = E
Max Z =63
Sub-problem 1
10 Sub-problem 4
X, =4,x,=—
3 No feasible
Max Z =58 solution
Figure 4.5

Example 3 : Use Branch and Bound Method to solve the following I.P.P. :
Minimize Z =4x, +3x,

Subject to 5x,+3x, 230

X,,X, 2 0 and are integers.

Solution : Ignoring the integer restrictions, the optinum solution to the L.P.P. can easily be obtained as
(Use Graphical or Simplex method)

10
x =4, XZZ? and Min. 7 =26

Since the value of x, isnot an integer, we branch on this variable. Since [x,]= [?} =3, the two

branches are x, <3 and x, >4 . Thus we have.
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Sub-problem 1 Minimize Z =4x, +3x,
subject to 5x, +3x, 230

x, <4

X;,X%, 20
Sub-problem 2 Minimize Z =4x, +3x,
subject to 5x,+3x, 230

x, <4

x.x,20

The optimum solutions of above sub-problems are obtained by graphical or simplex method as :

Sub-problem 1 No feasible solution
18 . 132
Sub-problem 2 X, = FEE 4, Min. Z = =

Since the value of x, in sub-problem 2 is not an integer, we branch on this variable. The two

branches are x, <3 and x, > 4, since [%} =3
Thus we have
Sub-problem 3 Minimize Z =4x,+3x,
subject to 5x,+3x, 230
x, <4
x, <6
x, =24
x <3
X;,X%, 20
Sub-problem 4 Minimize Z =4x, +3x,
subject to 5x,+3x, 230
x, <4
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X;,X%, 20
The optimum solutions to these sub-problems are obtained as :
Sub-problem 3 x, =3, x, =5 and minimum Z = 27
Sub-problem 4 x, =4, x, =4 and minimum 7 = 28

Among the feasible solutions to the integer programming problem, since the minimum value of 7
is 27; the required optimum solution is

x, =3, x, =5 and minimum Z = 27

The complete Branch and Bound procedure for the I.P.P. is shown below :

Sub-problem 1 Sub-problem 3

No feasible x, =3,x,=5
solution Min Z =27
Non-Integer
Optimum solution
x,=4x,= 19
Min Z =26
Sub-problem 2 Sub-problem 4
18
Xl = ?,xz = 4
: 132 X =4x,=4
Min2==5 Min Z =28
Figure 4.6

Example 4 : Use Branch and Bound technique to solve the following problem: :

Max. Z=3x,+3x, +13x,
s.t. =3x, +6x, +7x, <8
6x, —3x, +7x, <8
0<x,<5
and x; are integers for j =12,3.
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Solution :

Step 1 : Introducing slack variable x,,x, is the first two constraints, the standard form for
simplex method (since it is a three variables problem so it cannot be solved by graphical method)

Max. Z =3x,+3x, +13x; +0x, + 0x;

s.t. =3x,+6x, +7x;+x, =8
6x, —3x, +7x,+x,=8
0<x,<5,0<x,<5,0<x;<5, x,,x, 20

Initital BFS x,=8,x,=8, x,=x,=x;,=0

_ va

¢l 3 3 13 0o o | 0=""nm>0
ik
Gy B Xy b Vi Y Vs 2 Ys
8
0 o, X, 8 -3 6 7 1 0 7
0 | o, x| 8|6 3 [7] o 1 ~—
) 8
Z_/.—Cj -3 -3 13 0 0 M1n9=7
T
0 o, X, 0 -9 9 0 1 -1 N
13 S 2 e 2
EEN I 7 7 7
57 -60 13
Z_/.—Cj 7 T 0 0 7 Min =0
) 1 1
3 o, X, 0 -1 1 0 9 B
13 § - 0 1 i i
RN I 7 200 21| 7
3 20 19 ) 8
Z,-C; -z — — Min 0 = —
/ / 7 0 0 21 21 3
8 , 72 1
3 o, X, 3 0 1 3 9 9
U N 3 9 9
Z.-C, o o 1 1 1




The optimum non-integer solution to the given L.P.P.

8
xlzga xzzga X3:0,MaXZ:16

Step 2 : Since x,,x, are non-integer valued, we choose x, for branching

The two sub-problmes are as

Sub-problem 1 Max. Z=3x,+3x, +13x,
S.t. =3x, +6x, +7x, <8
6x, —3x, +7x, <8
0<x,<5,  j=1,2,3

Step 3 : Now we solve sub-problem (1) & (2) using simplex method as before we find that sub-
problem (2) has no feasible solution.

The sub-problem (1) has an optimal solution

2 5
x, =x,=2, X3=7, Max. Z=157

Clearly this is not integer valued, so we branch this sub-problem (1) into two on the variable x;.

" 2
Since [xz]l = [7} =0
Sub-problem 3 Max. Z=3x,+3x, +13x,

s.t. =3x, +6x, +7x, <8

6x, —3x, +7x, <8

0<x <2

0<x,<5

I<x;<5
Sub-problem 4 Max. Z=3x,+3x, +13x,
s.t. =3x, +6x, +7x, <8

6x, —3x, +7x, <8



Here we observe that sub-problem (3) & (4) differ from sub-problem (1) only in the bounds of

Step 4 : Now, we solve sub-problem (3), the optimal solution is obtained as X; = X, = 5, x, =1,

7" =15 select x, , [x; }l [3} =0 50 we branch this sub-problem into two sub-problem as follows :

Sub-problem 5 Max. Z=3x,+3x, +13x,
s.t. =3x, +6x, +7x, <8
6x, —3x, +7x, <8
0<x,<2,0<x,<5,1<x,;<5, x,21
Sub-problem 6 Max. Z=3x,+3x, +13x,
s.t. =3x, +6x, +7x, <8
6x, —3x, +7x, <8
0<x,<2,0<x,<0,1<x,<5

Step 5: We can easily see that sub-problem 5 has no feasible solution. The optimal solution to
sub-problem (6) is as follows:

1 6
xlzo’xzzo’x3:17’ Maxz=147

. 1
x, 1s fractional, so we again branch this sub-problemon x,, [’%] = [1—} =1

Sub-problem 7 First two constraints of sub-problem 6 and
0<x<2,0<x,<0,2<x,<5
Sub-problem 8 First two constraints of sub-problem 6 and
0<x,<2,0<x,<0,I<x,<1

Step 6 : We see that sub-problem (7) has no feasible solution. The optimal solution of sub-
problem (8)is x, =x, =0, x, =1, Max 7 =13

Returning to step 3, we observe that only sub-problem 4 is now left to solve, the optimal solution
of this problem is

1
x, =2 X2=2§,x3:0, Max 7 =13

Since the optimum value of the objective function of sub-problem 8 and sub-problem 5 are same
and is equal to 7 = 13. Hence we stop computations. The optimal solution to given I.P.P. is as follows :

x=0,x,=0,x=1 Max z=13
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Tree-Diagram of Example 7

Non-Integer optimum solution

1
Y =% =27, 6,20, 7' <16

/
x 23 \L x, <2 i/
Sub-problem 1 Sub-problem 2
Solution is infeasible X, =x,=2, %= 7
z' =152
7
I
) X 21 x; <0
Sub-problem 3 Sub-problem 4
1 3 21
xl_x2_§,x3:1a x1:2,x2_ 5,)(3:0
Z =15 Z =13
Sto
% b
Z =13
) =l \l/ x, <0
Sub-problem 5 Sub-problem 6
Solution is infeasible X, =0=x,,%= 17,
7 =148
7
R Xy 22 x; <1
Sub-problem 7 Sub-problem 8
Solution is infeasible x,=x,=0
x=1,7"=13
Figure 4.7
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4.5 Geometrical Interpretation of Branch and Bound Method

The geometrical interpretation of Branch and Bound Method can easily be understood by a two
variable I.P.P. which we solve by graphical method. Example 1 is given for this purpose. To be more clear
consider one more example as follows :

Example 5 : Solve the following I.P.P. using branch and bound algorithm.

Max Z =2x, +6x, A

s.t. 3x,+x, <5
4x, +4x,<9
X, X, 2 0 and are integers.
Solution : The graphical solution of given problem

gives the optimal solution :

9 « 27
XIZO’XZZZ’ Max. £ =—

Figure4.8 4x +4x,=9

Since the variable x, hasnon integer value and x, has largest fractional part, so we branch the

€]-|2]-2

Sub-problem 1 Max. Z =2x,+6x,

problemon x,

s.t. 3x,+x,<5

4x, +4x,<9

x, <2

X;,X%, 20

Sub-problem 2 Max. Z =2x,+6x,
s.t. 3x,+x,<5

4x, +4x,<9

x, =3

X;,X%, 20

The sub-problem 2 has no feasible solution.
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See Figure 4.10

vV VIV VvV

Figure 4.9 Figure 4.10

The sub-problem 1 has optinum solution as follows :

1 25
Xlzz,x2:2, MaxZ=7

« 1
Since x, is not integer, so we branch the above sub-problem 1 on x|, [xl ]l = [—} =0

4
Sub-problem 3 Max. Z =2x,+6x,
s.t. 3x,+x,<5
4x, +4x,<9

x,<2,x,<0

X;,X%, 20

Sub-problem 4 Max. Z =2x,+6x,
s.t. 3x,+x,<5

4x, +4x,<9

X;,X%, 20

Sub-problem 3 has the optimum solution
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xl:O"XZZO’ MaXZ:12
See the Figure 4.11 (Feasible region is only the line segment form (0, 0) to (0, 2))

XZ
6
5
4
3F
x, =2 X, =2
v 5 v v
R
S
A A A
00 1 5 o> ©) 1
Figure 4.11 Figure 4.12

Sub-problem 4 has optimal solution (see fig. 4.12)

5 1
xlzl,x2=z, Max.Z=95
The value of objective function in sub-problem (3) has greater value then sub-problem 4.

Hence, the optimum solution of the problem is

x=0,x,=2, Max. 7 =12
4.6 Self-Learning Exercise
Sort the correct answers :
I. Branch and Bound Method divides the feasible region into smaller parts by
(@) enumerating (b) branching
(c) bounding (d) all ofthe above
2. While solving an I.P.P., any non-integer variable in the solution is picked up to
(a) enter the solution (b) leave the solution
(c) obtain the cut constant (d) all ofthe above
3. In a mixed integer programming problems :
(@) different objective function are mixed together
(b) all the decision variables require integer solution
(©) only few of the decision variables required integer solutions
(d) none ofthe above
4. Sketch the Branch and Bound Method is integer programming.
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5. Distinguish between pure and mixed integer programming.

6. Use Branch and Bound method to solve the following I.P.P.
Max Z=x +2x, s.t. X, +x, <7
2x, <11, 2x, <7 X,,X, 2 0 and are integers.

What is the difference between continuous and integer programming?

4.7 Summary

In this unit, Branch and Bound Algorithm has been discussed to solve integer programming
problems. In this method, a L.P.P. is branched on a variable by bounding it into two sub-problems. These
sub-problems are solved by graphical or Simplex method. The main disadvantages of this method is that it
requires the optimum solution of each sub-linear programming problem. In large number of problems, this
could be very tediuous job. But in spite of its drawback, this is the most effective method for solving I.P.P.
thus when choice is to be made between Cutting Plane and Branch and Bound method; the latter is
prefered.

4.8 Answers to Self-Learning Exercise

1. (b) 2. (©) 3. (©

4.9 Exercises

Use Branch and Bound method to solve the following integer linear programming problems :
1. Maximize Z =2x,+3x,
Subject to 5x,+7x,<35
4x,+9x, <36
X;,X, 2 0 and are integers.
2. Maximize Z =2x,+3x,
Subject to X +x,<7,
0<x,<5,0<x,<4; x,x, areintegers
3. Maximize Z=x, +2x,
Subject to x, +2x, <12
4x,+3x, <14
x, 20, x, >0 and are integers.
4. Maximize Z =2x,+3x,
Subject to 6x, +5x, <25
x,+3x, <10

x, 20, x, > 0 and are integers.
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Maximize

Subject to

Maximize

Subject to

Minimize

Subject to

Maximize

Subject to

Z=2x+x,
3

X <—, xzéé
2 2

X,,X, 2 0 and are integers.
Z =3x, +2x,

x<2,x,<2
7

X +x, <—
2

X,,X, 2 0 and are integers.
Z =10x, +9x,

x, <8, x,<10

5x,+3x, 245

x,,Xx, 20 and x, is integer.

Z =x, +5x,
x, +10x, <20
x, <2

X,,X, 2 0 and are integers.
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Unit-35
Quadratic form and Lagrangian Function

Structure of the Unit

5.0  Objective
5.1 Introduction
5.2 Quadratic form
5.3  Positive and Negative Definiteness of Quadratic forms
54  Self-Learning Exercise-I
5.5 General non linear programming problem
5.6  Constrained optimization with equality constraints (Lagrange’s multiplier method)
5.7  Necessary condition for general NLPP
5.8 (a) Sufficient conditions for GNLPP
(b) Sufficient conditions for General NLPP with (m <n) equality coustraints
5.9  lllustrative Examples
5.10  Self-Learning Exercise-II
5.11  Summary
5.12  Answers to Self-Learning Exercise-I
5.13  Answers to Self-Learning Exercise-11
5.14  Exercise
5.0 Objective

Lagrangian method to optimize the non-linear functions has also been given in this unit. Using this method

The objective of this unit is to present some more about quadratic forms in respect of unit-1. The

we can optimize a non linear function with equality constraint.

5.1

Introduction

definiteness of a quadratic form have also been defined. Several texts for this has also been discussed. In

The concept of quadratic form has been introduced in the unit-1. The positive and negative

this unit we learn has also been discussed. In this unit we learn more about quadratic form.

lower classes. In this unit we start our study to optimize a function without any constraint. The main stress
will be given on constrained problems of maxima and minima. Ifthere are some constraints under which

The optimization i.e. to find maximum or minimum value of an objective function, is studied in

we optimize a function, we use Lagrange’s method.

Now in this unit-1 we study quadratic forms.
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5.2 Quadratic form

Recall that a quadratic form is a function of n-variables which can be expressed as

O(X)= Z Z ;%X ,where a; are constants. It can also be writtenas Q(X )= X" AX where
j=1 '

izl j=

Xzﬂ;xl,xp....xn] and Azﬂia,.jjﬂ isa nxn symmetric matrix.

I % )
12 2
Example-1  (a) (6,%:) 1 . [xj_xl AR T
2
1 1 2
1 i i
x,%,%) = 0 0|x, |=x7+xx, +4xx, +2x2
(b) 1542543 > 2 1 12 13 3
2 0 2|L%

o b o

100
© (xl,xz,x3) 0 0| x, |=x +2x; +3x]
0 3

Note that matrix representation of A in a quardatic form is not unique. However, A can always be
taken to be symmetric without loss of generality.

Example-2  Write the quadratic form Q(X) =x] +2x; — 7x; —4x,x, + 6x,x, — 5x,x, inmatrix form.

Solution : Q(X) = xl2 + 2x22 — 7x32 + (—2 — 2) XX, + (3 + 3)x1x3 + (— ; - §)x2x3

2
1 -2 3
s
=(x1,x2,x3) -2 2 =2 X,
X3
3 -2 7
L 2 i

Example-3  Determine which of'the following equations are quadratic form:
() z=x] +2x,
(i) z=x, - X
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(ii) Z=X, X,

5 2 2
(V)  z=3x] +3x,x, +x,

Solution : For 7 to be a quadratic form, we must be able to express it in the form
z=X"AX
Q)] It is not a quadratic form, because it is linear in x,
(i) It is a quadratic form, because

o

(i) It is a quadratic form, because

(v)  Itisaquadratic form, because

Example-4  Ineach ofthe following cases write the objective function in the form

z=X"AX+q" X

@) =X, +2x,%, +46x,X, +3x; +2X,%; +5x; +4x, —2x, + 3x,
(ii) z=5x; +12x,x, —16x,x;, +10x; —26x,x, +17x; —2x, —4x, — bx,
(i) z=x; —4x,x, +6x,x, +5x; —10x,x, +8x;
I 1 2|x X,
Solution : @) z=(x,20,0) |1 3 1] x| +(4,-2,3)|x,
2 1 5|lx X,
112 4
Here A=|1 3 1]g=|-2
215 3
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5 6 -8 ||x X,
z=(x1,x2,x3) 6 10 —13]|x, +(—2,—4,—6) X,

(i)
-8 —13 17 || x, X,
5 6 -8 -2
Here 4=|0 10 —13},g=| -4
-8 —13 17 —6
I =2 3| x X,
(i) z=(x,x,x)—2 5 =5||x, [+(0,0,0)|x,
3 -5 8||x X,
1 -2 3 0
Here 4=|2 5 -5|.4=|0
3 -5 8 0

5.3 Positive and Negative Definiteness of Quadratic Forms

You have studied in 1.10, the positive and negative definite, semi-definiteness and indefinite of
quadratic forms. There are several tests we may perform on the matrix of the quadratic form to find the
character of quadratic form under consideration. Some of these have been discussed in 1.10.

Sylvester’s law :

A quadratic form y7 4y is positive definite if and only if all the successive principal minors of the
matrix A are positive.

The successive principal minors are determinants ofthe square submatrices obtained by succes-
sively deteting lower rows and right hand columns. For n x n matrix, there are n-principal minors.

a; 4y 4y
A=
For example, if G Gy s |5
as aiy Qg

then three principal minors of this determinant are

a;; dp 4
a; dp

ap, 5|y Ay Ay

a,; dy
a3 dyp Ay

A quadratic form x7 4y is negative definite if _ y7 4y 1is positive definite, since

—(X TAX ) = X"(—A4)X , sylvester’s theorem can be applied to — 4 to test the negative definiteness of
A.

We cannot test whether or not a matrix is positive definite by simply saying that all the successive
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principal minors to be non-negative (>0) instead of positive (> 0). Rather all the principal minors must be

. . . n 2
non-negative. The matrix must be permuted in all possible combinations to determine all the ( C )

I

principal minors oforderr,r=1,2, ....... n. It is seldom feasible. For a real symmetric matrix, if successive
principal minors are positive, then all the prinicipal minors are positive.

A matrix which is not positive definite, negative definite, positive semi definite, or negative
semi-definite is indefinite.

Example-5  Determine the sign of definiteness for each of the following matrices.

31 2 2 1 2
1 —
2 0 2 2 0 -5
31 2
Solution : (a) A=1.5 0
2 0 2
i =14
a, =3, | 4=15-1=1
31 2
1 -5 0[=52
2 0 -2
A is not possible definite, so form _ 4 :
-3 -1 =2
-A=|-1 5
-2 0 2
Now
-3 -1 -2
a, =-3, ‘——16,—1 5 0|=-52
-2 2
So Ais negative definite.

Example-6  Test the definitiness of the quadratic form :

3 0 0fx
X"AX =(x,x,,x,)|0 =2 0] x,
0 0 1fx
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Solution : The characterstic equation for the matrix A is given by

|4—21]=0
3-2 0 0

o [0 —2-4 0]=0
0 0 1-2

=  (3-2)(-2-2)(1-2)=0
=  A=13,-2

Since two eigenvalues are positive and one is negative, therefore the given quadratics form is
indefinite.

Example-7  Determine whether or not the quadratic forms 47 4x are positive definite, where

1 3 1 1
. _ LA=|1 1 0 _
W) A‘{ }’ (i) Y A—{ }
0 4 0 0 3 35
Solution : We first check the principal minors to use the Sylvester’s theorem.
13
@) >0, 0 4~ 4>0 and therefore A is positive definite.
11
(1) |l| >0, 117 L, A| =0, and therefore A is not positive definite.
1 1
i  [1>0, N e 0 and therefore A is positive definite.

Example-8  Determine the properties of sign definiteness for the following quadratic form:

z=x; —4x,x, +6x,x, +5x5 —10x,x, +8x;

1 -2 3
Solution : Here 4= 25 -5
3 -5 8

There successive principal minors of A are

1

mzL_z

A=-2

~2
‘=5—4=L
5

—l|=—-1]-4|=2,s0A
is not negative definite. Hence A is either positive semidefinite, negative semi-definite, or indefinite. We
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observe that A is certainly indefinite by showing two points which make Z positive and negative, respectively.

5.4 Self Evaluation Exercise-I

1. Identify the incorrect statement : A quadratic form Q(X ) is:
(@) Positive definite ifand only if Q( X ) >0,
(b) Negative definite ifand only if O( X)<0,
(c) Indefinite if Q(X ) >0 for some X and Q(X ) <0 for some other X.

(d)  Positive definite as well negative definite irrespective of sign of O(.X ).

1 2 4
2. The quadratic form with the associated matrices 2 6 -2,
4 -1 14
(@) X7 +6x +14x7 +4x,x, +8x,x, —4x,x,

(b) X7 +6x7 +14x7 +4x,x, +8x,x, —4x,x,
(©) X7 +6x7 +14x7 +4x,x, +8x,x; —4x,x,

(d) X7 +6x7 +14x7 +8x,x, +4x,x, —4x,X,
3. Write the quadratic form in matrix vector notation

f(X)=x] -2x,x, +4x;

4. Write down the quadratic form whose associated matrices are :
2 -3 1 1 2 4
: 3 4 2 . 2 _
0 |7 (i 6 =
1 2 -6 4 -2 14
5. Which of'the following are quadratic form?
) ) _X
)] z=x; +2x; (i) Z‘Z
(i) z=x-x+4 (V)  z=x]—2x.x, +x; +4x,
6. Determine the sign definiteness of each of the quadratic forms y7 4y :
2 1 4 I 1 0 I -2 1
A - 1 . A = 2 con =| — p—
@ 6 0 (i) 3 1 (i) A=|-4 2 -1
I -1 2 1 2 4 I -1 0
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7. Write objective function in the form z= X" 4AX +¢" X .

@ Z2=2x] + X%, +9x,X, +3X; +x,%, +2x,
(i) z=x; —6x,x, +x; +9x,
8. Write the quadratic forminthe form y7 4y
W) x; +8x,x, +16x; —3x;
(ii) 2x7 —6x,x, +2x,x, +2x7 +6X,X; —5x;
9. Determine whether of the following quadratic form :

X7 +2x7 +2x7 —2x,x, — 2x,X,

is positive definite.
10.  Determine whether each of the following quadratic forms is positive definite or negative definite :
(@ 2x] +6x; —6x,x, and (b) —x7 —x; —4x] +x,x, — 2x,x,

5.5 General Non-Linear Programming Problem

A general non-linear programming problem (GNLPP) is defined as :

Find (x,,x,,x,,...x,) which

..... x, ) Or some

In matrix notation a GNLPP may be written as

Determine X’ e R" so as to maximize or minimize Z = f (X ) subject to the constraints :

Where f(X) orsome g'(X) orbothare non-linearin y .
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5.6 Constrained Optimization with Equality constraints

(Lagrange’s Multipler Method)

Ifthe non-linear programming problem is composed of some differential objective function and
equality constraints, the optimization can be done by the use of Lagrange multiplier. To understand the
method we consider a simple GNLPP with one equality constraint with two variables :

Maximize or Minimize Z = f'(x,,x,)
Subject to the constraint g(x,,x,)=c
and x,,x,>0

Where ¢ is a constant.

Here we assume that f/(x,,x,),g(x,,x,) are differentiable with respect to x, and x, . Now we

introduce another differentiable function 4(x,,x, ) defined as
h(x,,x,)=g(x,x,)—c
Then the above problem is restated as
Max. or Min. Z = f'(x,,x,) subject to the coustraint /(x,,x,)=0 and x,,x, >0

To find necessary conditions for the maximum or minimum (stationary) value of z = f'(x,,x, ) new

function is formed by using some multiplier / , as
L(x;,x,,A)= f(x,x,)— 4h(x,,x,)
Here , is anunknown constant, called Lagrange’s Multiplier and the function L()c1 )Xy, l) is

called Lagrange’s Function. The necessary conditions for stationary value of f/(x,, x, ) are given by

é’L(xl,xz,A)_O O L(x,,x,4) _0 O L(x,,x,,7) _0
ox, Ox, or

Now these partial derivatives are given by

oL_of ,0oh

ox, ox,  Ox,’
oL _of ,0n
ox, o0x  Ox,’
oL_

7y ’

where L, / and ;, stand for the functions L(x,,x,,4), f(x,,x,)and A(x,,x,) respectively or simply by
Li=fi—Ah,Ly=/f,=2h,L,==h
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The necessary conditions for maximum or minimum value of f(x,, x, ) are thus given by

Sy =2h,, f,=2h, and —h(x,,x,)=0

Example-9  Obtain the necessary conditions for the optimum solution of the following non-linear pro-
gramming problem :

Min. Z= f(x,,x,)=3e""" +2e""
subject to the constraints : x, +x,=7 and x,,x, >0
Solution:  Let us define the Lagrange’s functionas L(x,,x,,A4) =A(x, +x, —7)
=3 +2e°7 — A(x, +x, - 7)
Where ) is Lagrange’s multiplier.

The necessary conditions for the minimum value of f(x,,x, ) are given by

oL -

o =6 1 =0 or A—g2u ..(1)
oL 0+

ox, 0P A0 0r jogens -
oL

ﬁ:_('xl+x2_7)zoor X +x,=7 ..(3)

(1) & (2) — 6€2x1+1 :2€x2+5

_267—x1+5

= 320t = e\zfx\

log3+2x, +1=12-x,

— x1:%[11—10g3]

1
From (3) X, =7 —5(11—10g3)

5.7 Necessary Conditions for General NLPP

Consider general non-liner programming problem (GNLPP) as :

Maximize (or Minimize) Z = f(x,,x,x;,.....X, )

Subjectto g'(x,,x,,...x,)= ¢;i=12,...m
122



x_/ZO;j:l,2,3,....n.(m <n)

If we take h'(x,,x,,...x,)=g"(x,,%,,...x,)—¢, forall i=1,2,....m. Then the constraints reduce to
W (x,,x,,x;....x,)=0;i=1,2,3,....m . The problem in matrix form can be written as

Max (or Mini) Z:f(x)
Subjectto 4'(X)=0 i=12,...m.

X>0, XeR"

To find maximum and minimum value of f(.X) we define Lagrange’s function by introducing m
Lagrange’s multipliers 1 = (4,,4,,...4,,) as:

m

L(X,1)= f(X)—Z’j:Al.h"(X)

Let us assume that L, f and 5 are all differentiable partially with respect x,, x,,x;....x, and

AysAys.... A, . The necessary conditions for a maximum (minimum) of f'(x) are:

AL _Of &, oK(X)

——==—= D 4 =0. :_

é)x./ é)x_/ ; ' é’xj ; J=L2,...n
oL

&_/L:_h(X):O; i=1.2,....m

There m +n necessary conditions can be represented in the following form.

i
.h].;

1

Lj:fj_zll}“ih; =0 or f./:Z:}L
i= i=1
and L. =—h'=0 or 4" =0;

o1 (X)

i_ i ; on' (X
where fj:T,h =h (X) and hj:#
j ,

J

5.8 Sufficient Condition for GNLPP

Ifin a general non-linear programming problem, the constraints are in equations. The necessary

conditions will be sufficient for a maximum value of objective function if the objective function is concave
and for minimum value of objective function if the objective function is convex.

When concavity and convexity of objective cannot be determined then we state sufficient
conditions as follows :

(@)

Sufficient conditions for NLPP with one equality constraint :

The Lagrange’s function for a general NLPP involving 5 variables and one constraint is :
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L(X,2)=f(X)-2h(X)

The necessary conditions for stationary point, are

0”L=0’)f -2 Oh =0,j=1,2,3,....,l’l
ox; é’xj é’xj
oL
CZ  _h(x)=0
and Y (x)

The value of ; is defined by

af
B ox,
— Oh (for j=1,2,..n)

o,

A

The sufficient conditions for miximum or minimum value of f (X ) require the evaluation at each

stationary point of #n— 1 principal minors ofthe determinant given below:

0 oh oh h
ox, ox, 7 ox,
oh >’f B ’h >’f B ’h Oy 2 >y
ox, Ox,0x, ox; oxx, Oxox, o0x,0x, ox,0x,
oh y 2 ’h o”zf_lﬂ Oy 4 ’h
ox, Ox,0X, 0x,0x, ox; a0 ox,0x, ox,0x,
A/1+1 =
oh >’f 2 ’h y 2 h Fh 2 oh
ox, ox,0x, 0x,0x, 0x,0x, ox0x, ox; ox;
@) IfA;>0,A,<0,A;>0, ...... the sign pattern being alternate, the stationary point is local
maximum.
(i) If A, <0,A, <O, ...... A, ., <0, the sign being always negative, the stationary point is lo-
cal minimum.

Example-10  Obtain the necessary and sufficient conditions for the following NLPP.

Minimize Z =2x; —24x, +2x; —8x, +2x; —12x, +200
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Subject to X, +x,+x,=11
X)X, 20
Solution : The Lagrangian function for the given problem is
L(x,,x,,x;,A)= 2x} —24x, +2x; —8x, +2x; —12x, +200— A(x, + x, + x, - 11)

The necessary conditions for the stationary point are

oL =0=>4x,-24-1=0

xl
oL =0=>4x,-8-1=0
ox,
oL =0=4x,-12-1=0

X3
oL
ﬁ=0—(xl+x2+x3—ll)=0

Solving above four simulteneous equations, we get the stationary point

X, =(x,x,,%,)=(6,2,3);4=0

For sufficient condition, Here n=3

0 oh oh Oh
ox, ox, ox,

Oh é’zf_ié’zf >f 2 h oy 2 7h

_ _ ox, Ox; ox; 0x,0x, ox0x,  Ox,0x, ox,0x,

“ 87 g ’f _, Fh P T If _, Th
ox, 0 x,0x, ox,0x, 0% ox; 0x,0x, ox,0x,
Oh >’f 2 7h >f 2 h é’z_f_i h
Ox, 0x,0x, 0x,0x, Ox,0x, 0x,0x, ox; ox;

48

=
S O B =
o O =
O o~
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A,,A, bothare negative, therefore the above necessary conditions are sufficienti.e. X, = (6, 2, 3)

gives minimum value of the objective function.
(b) Sufficient conditions for General NLPP with (m < n) equality constraints :
First we write Lagrange’s function fo a GNLPP with more than one constraint by introducing m

lagrange multipliers A=(4,,4,,45,....1,,)

m

L(X’A):f(X)_Zlih[(X) (m<n)

i=1

The necessary conditions for stationary points of f (x) can be obtained from the equations :

aL_,
é)xj ? ]:1,2,3,....}’1

oL
o7 "% i=123,.m
Thus the optimization of /(x) subjectto 4'(X)=0 isequivalent to the optimizationof L(.X,1).
To write sufficient conditions for stationary point of f(X), we assume that the function (X, 1), f(X)

and h(X) all possess partial derivalines of order one and two with respect to the decision variables.

{o”zL(X,i)}
Let V=| )

ox,0x;

be the matrix of second order partial derivaties of L( X, 1) w.r. to decision variables

U=[n(x)],,
Where h;(X) L(X),i=l,2,....m;j=1,2,....n
' X
5 |0 U
Define the square matrix ** | ;7 o

Where O is the null matrix of order mx m. The matrix g8 is called bordered Hessian Matrix.

Now the suficient conditions for maximum and minimum stationary points are given below :
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Let (X,,4,) be the stationary point for the function L(.X,1)and H? be the corresponding

bordered Hassian matrix computed at (X;,1,),then X isa

() Maximum point, if starting with principal minors of order (2m + 1) , the last (n - m)

principal minors of /;’ forman alterating sign pattern starting with (—1)"""; and
(i) Minimum point, if starting with prinicpal minor of order (2m + 1) , the last (n - m)
principal minors of H’ have the sign of (—1)" .

Note : It can be observed that above conditions are only sufficient for identifying an extrime point, but not
necessary. That is, a stationary point may be an extreme point without satisfying the above condition.

5.9 Illustrative Examples

Example-11  Obtain the necessary and sufficient conditions for the optimum solution of the following
NLPP.

Minimize Z=4x. +2x; +x; —4x,x,
subject to x, +x, +x, =15

2x, —x, +2x,;,=20, x,x,,2x;,=20

Solution : Here, we have
F(X)=4x] +2x] +x; —4x,x,
h(X)=x+x,+x,-5; h*(X)=2x,+x,+2x,-30
The Lagrangian function is defined as
L(X,A)=f(X)-2,h(X)-2,h*(X)
4x;) +2x; +x; —4xx, — A, (x, + x, + x, —15)
— 2, (2x, +x, +2x, - 30)

The necessary conditions for the stationary values of f (x) areas:

ﬂ=O = 8x,—4x,—-1,-24,=0
xl

ﬁ=O: 4x,—4x,—A, -4, =0
X,

ﬁ=O: 3x;-4,-24,=0

ox,
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oL
0”_&1:0: —(x1+x2+x3—15)=0

oL
oA,

=0 = —[2x,—x, +2x,-20] =0
Solving above simultenceous equations we get stationary point (X,,4,) as:

33 10
X =(x1,x2,x3)=(?,?,8) and

10:(11’12):(40 52)

979

The Bordered Hessian matrix at (X, 4,) is given by

0 0 1 11
00 2 -12
HE=[1 2 8 -4 0
1 -1 -4 4 0
1 2 0 0 2]

Since m=2,n=3, therefore n—m=1 2m+1=15. It means one needs the check the determinant

of H} only and it must have the sign of (—l)2 :
Now, det H =90>0, therefore x, is a minimum point.

Example-12  Obtain a set of necessary condition for the non-linear programming problem :
Maximize Z=x; +3x; +5x;
subject to 5x, +2x, + x, =5

X5 X,%,20

Solution:  Here, we have X =(x,x,,x;) f(X)=x] +3x; +5x7, g'(X)=x, +x, +3x;,
g} (X)=5x,+2x,+x; and ¢, =2, ¢, =5
Definging 4'(X)=g'(X)—-c,, 1’ (X)=g*(X)-c,
Thus we have the constraint

H(X)=0, =12

The Lagrange’s function is defined as :
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L(X.2)= £ (X) = 21 (X) = 0 (X)
l:(ll,lz)

This finds the following necessary conditions

oL
0,,—x1—0 = 2x,—-A,-54,=0
oL =0= 6x,-4,-24,=0
X,
oL =0= 10x,-34,-1,=0
X3
ﬂ=O =—(x, +x, +3x3—2)=0
ox,
oL =0 = —(5x, +2x, +x3—5)=0
X,

Examples-13 Find the dimension of a rectangular parallelopiped with largest volume whose sides are

2 2 2
z

. . . . . X
parallel to the coordinate planets, to be inscribed in the ellpsoide — +=5+—=1.
a

Solution :

b ¢
Let the dimensions of a rectangular parallelopiped be x, y and z. Its volume is given by

f(x,y,z)=xyz

Thus the problem is

Max. f(x,y,z)=xyz

and x,y,z>0

The necessary conditions for maximum value of f(x,y,z) areas:

oL 2Ax

5y 0=y 7=0 (1)

ﬂ=0:>Z)c—222;y=0 2)

ﬁy b cese
22z

jxy—c—z=0 (3
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..(4)

from(1) yz=

dividi y_xb
viding we get X e

y_z .
g = E \/5 using (4)
a

which are the required dimennsions

Example-14 A positive quantity b is to be divided into 5 parts in such a way that the product ofthe »
parts is to be maximum. Use Lagrange multipler technique to obtain the optimal subdivision.

Solution : Let b be divided into y parts x,,x,....,x, , so that we have to maximize the function
Z=X,.X,.X5....X, (D)
subject to
X, +x, +x;+...4x, =b -(2)

x,20,x,20,....,x, =20
The Lagrange’s Function is defined as :
L(%), %Xy X500y X, , A) = XXy, Xy X, + A (X, + X, 4.4 x, — D)

The necessary condition are

oL

é’_)cl:O = X,X;....X,—A=0 ..(3)
oL

5—)62=0 = X X;...x, —A=0 ..(4)
oL

—mzo = (X, + X, +x; 4. 4x, —b)zO
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X
Dividing 3)by(4) _ =1 = =%
1
Similarly x, = x, =x,=....= x,

Thus (6) = X, =X, =X;=.....X, =

bb b (bY )
. Max.valueof z=—.—.....—=| — | (p times)
nn n \n

Example-15 A manufacturing concern produces a product consisting of two raw materials, say 4, and

A, . The production function is estimated as
z=f(x,,x,)=3.6x, —04x; + L6x, —02x;

Where 7 represents the quantity (in tons) of the product produced and x, and x, disignate the
input amounts of raw materials 4, and A4,. The company has Rs 50,000 to spend on there two raw
materials. The unit price of 4, is Rs 10000 and of 4, is Rs 5000. Determine how much input amounts of

4, and A, be decided so as to maximize the production output.

Solution : Since the company must operate within the available funds, the budgetary constraint is
10000x, +5000x, <50000 or 2x, + x, <10 we reduce this inequality constraint to an equality by impos-
ing an additional assumption that the company has to spend every available single paisa on these raw

materials. Then, the constraint is 2x, + x, =10. Also, obiviously x; >0,x, >0. The problem ofthe com-

pany can thus be written as :
Maximize z= f(x,,x,)=3.6x, — 04x] +16x, — 0.2x;
s.t. 2x,+x,=10
and  x,x,20
The Lagrange’s Function is
L(x,,x,,A)=3.6x, —04x; +16x, —02x; — A(2x, + x, — 10)

The necessary conditions are

ﬁ=O = 36-08x,-21 =0
xl

ﬁ=O = 1.6-04x,-1=0
Xy

oL

ﬁzo = —(2x,+x,-0) =0
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Solving above simulteneous equations we get (x,,x,,4)=(3,5,3)
" z isa concave function so the necessry conditions are sufficient therefore 7 is maximum at
x,=35,x,=3

Max z=f(3,5,3)

=3.6(3.5)-04(35)" +1.6(3) - 02(3)’
10.7 tons .

Thus in order to have a maximum production of 10.7 tons, the company must input 3.5 units or
raw material A and 3 units of raw material B.

5.10 Self-Learning Exercise-I11

1. Define Lagrange’s functions.

2. What are Lagrange’s multipliers?

3. State whether true or false :
)] The necessary conditions will be sufficient to maximize a concave function.
(i) The necessary any conditions wil be sufficient to minimize a convesfunction.

(ii1) The necessary condition will be sufficient minimize a concave function.

5.11 Summary

Quadratic forms have been introduced in the unit-1. A further study have been done in this unit.
Tests for the positiveness and negativeness are defined. There are two tests for this, Eigenvalue test and
principal minor test. You are able to test prositive/negativeness of quadratic form by doing ample examples
given in this unit. In the second part of this unit you have learnt the method to solve non-linear programming
problem with equality constraints. The necessary and sufficient conditions are given with the help of Lagrange’s
multipliers and Lagrange’s function. The necessary conditions are sufficient for maximization of an
objective function if it is concave and for minimization of an objective function it is convex.

If convcavity and convexity is not known ofthe objective function, then principal miners of hassian
matrix are evaluated.

5.12 Answers to Self-Learning Exercise-I

1. (b) 2. (a) 3. (o) [l—l _ﬂm

4. (i) 2x; +4x5 —6x; —6x,X, +4x,x; +2X,X,

(i) x; +6x7 +14x; +4x,x, —4x,x, +8x,x,

5.(), (i), (iv)
6. (1) Indefinite, (ii) Indefinite, (iii) Indifinite
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, L 9
2 2 0
H= 1 3 1 , 4 =2
7. () ; 1 2 0
Z — 0
12 2 i
i 0 -3
30 1

5.13 Answer to Self-Learning exercise-II

3. (i) True (i) True (i) False

5.14 Exercise

Solve the following non-linear programming problems, using lagrange’s multiplier method :
1. Minimize z = 6x? + 5x2
Subjectto x+5x, =3,x,,x,>0
2. Minimize z =3x; = x; —2x,x, +6x, —2x,
Subject to 2x, +x, =4,x,,x, 20
3. Minimize z=2x; +x; =3x; +10x, +8x, + 6x, — 100
Subject to x, +x, +x, =20,x,,x,,x, 20
4. Maximize z=4x, +6x, —2x; —2x,x, —2x;
Subject to x, +2x, =z, x,,x, 20

5. Maximize z:5x1+x2—(x1—x2)2

Subject to x, +x, =4,x,,x, >0
6. Minimize z = x? + x2 + x_
Subject to 4x, +sz +2x, =14, x,,x,,x,20
7. Minimize z =x; +x; + x;
Subject to x, +x, +3x, =5
Sx,+2x, +x;=5

X%, 20
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8. Minimize z = 6x, +8x, — x; — X,
Subject to 4x, +3x, =16,
3x,+5x, =15
X%, 20
9. Solve the following NLPP :
Optimize z=4x, +9x, —x; —x;
Subject to 4x, +3x, =15
3x, +5x,=14
X%, 20

10.  Determine optimum solution for the following NLPP and check whether it maximizes or minimizes
the objective function :

2 2 2

z,=x; —10x, + x; —6x, + x; —4x,

Subjectto x, +x, +x, =7
x,20,x,20,x,20.

miNIN
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Unit-6
Non Linear Programming Problems

Structure of the Unit

6.0  Objective
6.1 Introduction
6.2  Mathematical Programming Problem
6.3 General Nonlinear Programming Problem
6.4  Lagrangian Function and Saddle Point
6.4.1 Relation between Saddle point of 7(X, 1) and minimal point of f'(.X)
6.5  Necessary and Sufficient conditions for the function F(.X, 1) to have a saddle point at (X, 1,)
6.6  Graphical method for solving a Nonlinear Programming Problem
6.7  Self-Learning Exercise
6.8 Summary
6.9  Answers to Self-Learning Exercise
6.10  Exercise
6.0 Objective

The objective of writing this unit is to get students acquainted with the programming problems that

are not linear by nature. Such problems are of great importance and are solved by different methods. One
such method is the method of Lagrange multipliers which provides a necessary condition for the optimum
of the objective function, when the constraints are in the form of equations.

6.1

Introduction

The unit begins with the formal definition of mathematical programming problem followed by the

introduction of general nonlinear programming problem. The construction of Lagrangain function and its
relation with the minimal point of the objective function is briefly discussed. The necessary and sufficient

conditions for the function F(X, 1) to have a saddle point are also derived. In the last, graphical method

for solving nonlinear programming problem in two variables is also explained through few examples.

6.2

Mathematical Programming Problem

A general mathematical programming problem (MPP) can be stated as given below :
Minimize f(X),
Subject to g,(X)=0, ..(1)
h,(X)=0, (2)
XeS, -.(3)

Where X=(x,,x,,..., xn)T is a vector of decision variables (that are known) and
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/g (i=12,...,m) and h_/(j=1,2,....,p) are the real valued functions of variables x,, x, ,....,x

The function f* in the above formulation is called the objective function. The inequalities

(1), equations (2) and the set restrictions (3) are called the constraints. The above mathematical program-
ming problem is a minimization problem, which is considered without any loss of generality, since a maxi-

mization problem can always be converted into a minimization problem by using the fact max f (X ) =

min (— f (X )) . That intends to say that the maximizationof f (X ) is equivalent to the minizationof — f (X ) :

Usually, the functions /', g and 5, are assumed to be continuous or continuously differentiable

functions. Also the set S is considered as a connected subset of R”. If §=R" and all the functions

appearing in the mathematical programming problem (MPP) are linear in the decision variables X , the
mathematical programming problem is called a Linear Programming Problem (LPP). A mathematical
programming problem, that is not a linear programming problem is called a Nonlinear Programming
Problem (NLPP).

The set T ofall those points X €S, which satisfy constraints (1) to (3) is known as the feasible

region, feasible set or feasible constraint set of the MPP and every point ofthis set T is called a feasible
solution of the MPP. Ifthe constraint set T is empty, then we say that there is no feasible solution to the
MPP and the problem is said to be inconsistent.

A feasible solution X, €T of the MPP is said to be an optimal solution or a global optimal
solution, if /(X)> f(X,) forall X eT. This global optimal solution X, €7 ofthe MPP is actually a

global minimum point ofthe MPP. X| €T isreferred to as a global maximum point ofthe function f* over

the set T if X, is a global minimum point of — f* over T.

Apoint X *eT is said to be a local minimum or relative minimum point ofthe function /(X)
over T if there exists a positive number § such that f (X )2 f (X *) forall X eTN 5(X *) , where

Nj(X *) is the neighbourhood of X * withradius §. The point X * €7 isalocal miximum or a relative

maximum point of the function fover T if y * is a local minimum point of — /' over T. Apoint xy* c 7

referred to as a local extremum point if it is either a local minimum point or a local maximum point. It is
noticeable from the above definitions that a global minimum (maximum) point is also a local minimum
(maximum) point, but not conversely.

In fact a mathematical programming problem can be classified into two different categories-
unconstrained optimization problem and constrained optimization problem. Ifthe constraint set T is

the whole of the space g, the problem is said to be an unconstrained optimization problem, for in this
case, we are to find a point in p~ that gives an optimum value to the objective function. If T is a proper

subset of p, then the problem becomes a constrained optimization problem.

. . 2 1 2
Example1: Maximize Z= (‘xl - 1) T % )

subject to X +x,<2

X;,X%, 20

136



The shaded region (4B in the figure 6.1 shows the feasible region. The objective contour

1Y 1
(xl - 1)2 + (xz - 5) = Z is a circle whose centre is (LE) and radius ./, . Since we are looking for the

maximum value of 7 , we must find the circle with the largest radius that intersects the feasible region. We

13
see that the point B(0, 2) is the optimal solution with the objective value e It can be noticed from the

objective contours (dotted circles) that the point A(2, 0) is a point of local maximum but not of global

maximum with the objective value 4
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Figure : 6.1

The above example confirms that a local optimum neet not be a global optimum. This is the reason
that the derivations of algorithms for non-linear programming problems are difficult to some extent.

o : 1Y
Example-2  Minimize z=(x, - 1) + XS

subject to x; —x,—1<0
X, +x,<2

XX, 20
The feasible region of the given NLPP is shown as the shaded region OABC in the figure 6.2. The

. . 2 l
objective contour (X, —1)" +/| x, - 5

minimize z, therefore we must look for the circle having the smallest radius that intersects the feasible
region. Clearly such a circle with smallest radius is the point circle (i.e. circle that has radius zero), since the

2
1
) = Z isacircle with centre (LE) and radius ,/; . Since we are to

1
point (LE) lies inside the feasible region. Therefore, the optimal solution to the problemis x, =1 and
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1
X, = 5 with the objective value 0.

RE
B(0,2)
X —x—-1=0
BT ™
c(0.1) \\
I \\ \
| \ X, +x, = 2
\ A |
—————\ > X
(-1,0) 0 ~__" 420 :
Figure : 6.2

From the above example one can notice that the optimal solution to the NLPP could be any point
of the feasible region. This adds to difficulties in solving the NLPP.

6.3 General Nonlinear Programming Problem (GNLPP)

A general nonlinear programming problem (GNLPP) can be formulated as :

Suppose that we are looking for a solution of nonnegative variables x; 20; j=1,2,...,n, which

maximize or minimize the real valued function (called the objective function)

z=f(x,,%,,...%,),

and satisfies the set of ;;; constraints

g(x,x,,...x,) <,>or =} b,
2 (x,%,,...,X,) {<,20r=} b,
g, (x,%,,...,x,) {<,>0r=}b,

where either f(x,,x,,...,x,) orsome g (x,,x,,...,x,); i=1,2,...,m or both are nonlinear real

valued functions of 5 variables x,,x,,....,x, .

In matrix form, the GNLPP can be written as :

Determine X' eR” that maximize or minimize the objective function
z=f (X )
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subject to the constraints
g[()?){S,Zc)r:} b, i=1,2,...,m
X>0
where either f (X ) or some g, (X ) or both are nonlinearin x .

It is some-times convenient to write the constraints g (X){<,>or=}b, as h(X){<,20r=}0,

for hi(X):gi(X)_bi'

6.4 Lagrangian Function and Saddle Point

Let us consider the NLPP a follows :

Minimize z= f(X); X eR" (D)
subject to g,(X)<0; i=12,...,m .2

X0 .0
Where f(X) and g,(X) are convex functions of X eR". ..(4)

Infact, if f (X ) is a convex function, then it has a unique relative minimum which is also a global
minimum. It can also be learnt that iiﬂf@d F4s convex, then —f(X) is concave and that
min f (X ) max(— f (X )) . At present, we relax the condition (3) and (4) (i.e. there is no restrictionon x
and functions f (X ) and g (X ) are not necessarily convex functions) and consider the problem of mini-

mizing f (X ) subject to the constraint set (2) only.

Let us define the function F(X,1) as
F(X,2)=f(X)+D. L.g(X)
i=1
= f(X)+ 1 G(X) ..(5)
where A:(AI,AZ,,,,,Am)T and

G(X)=(g.(X), &(X),.... g, (X)) .(6)

Equation (5) shows that F (X , A) is nothing but the Lagrangian function, with the m componnts of

2 asthe lagrange multipliers.

A point (X, A,) is said to be a saddle point of the Lagrangian function F(.X, 1) if

F(Xy,2) <F(X,.20)<F(X,,)
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in some neighbourhood of (X, 1) . The Saddle point of the lagrangian function (X, 1), ifat all exists,

and the minimal point of the objective function f (X ) have a theoretical relationship with each other. This

theoretical relationship with each other. This theoretical relationship has led not only to various important
theoretical developements but also to algorithms for solving NLPP. This relationship is established through
a number of theorems which are various constituents of what we know as Kuhn-Tucker theory.

6.4.1 Relation between Saddle Point of F(X,1) and minimal point of F(X)

Let F(X) beareal-valued functionin g and G(X) a vector function consisting of real-valued

functions gi(X); i=12,.....m.

Consider
Minimize z=f(X) (1)
subject to G(X)<0 .2
and F(X,2)=f(X)+AG(X) .03
where 2=(1,,4,,...,4,) »and 120. (4

Theorem-1: If F(X,A) hasasaddle point (.X,,4,), foreach 1>0, then
G(X,)<0 and 1;G(X,)=0.

Proof : Let (X,,4,) bethe saddle point of the function F(.X,1)where A>0. Then from the
definition

F(X,A)SF(XyAy)<F(X,4,)

or f(X,)+ATG(X,)< £(X,)+ AnG(X,)< f(X)+ ALG(X) (5
The left hand side of'the inequality (5) shows that
2TG(X,)<0G(X,) .(6)

Ifpossible, let g,(X,)> 0 for some ;. Then whatever may be A, the ;# component A, of }

can be chosen sufficiently large, so that 2" G (X)) is large enough to disobey the inequality (6). Hence we

must have

g,(X,)<0 forall i=1,2,...,m.
O,  G(X,)<0 (7
Now since 4,>0and G(X)<0, therefore,

ATG(X,)<0. (8)
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Also inequality (6) holds for all A >0, therefore, it holds for 4 =0 also and so

2,G(X,) 20 ..(9)
From equations (9) and (10), we have

2,G(X,)=0 ...(10)

Theorem-2  If (X, 4,) is a saddle point of the function F(X, 1) for every 120, then X is a
minimal point of f (X ) subject to the constraints G(X ) <0.

Proof : Using the right hand side inequality of (5) and the reult (1) of theorem- 1, we have
J(X)<f(X)+2,G(X)
and since 1,>0 and G(X)<0, therefore,
f(X,)< f(X) forallthose points x whichsatisfy G(X)<0,
The converse ofthe above theorem need not be true always.

Theorem-3  Let X, be asolution of the NLPP
Minimize z=f(X); X eR"

subject to G(X)<0, where

G(X)=(2(X). &:(X).....g,(X))" and
f(X),g[(X);i:1,2,...,m are all convex functions

Let the set of points x such that G(X ) <0 be nonempty. The there exists a vector A, 20 in p
such that

F(X)+ 25 6(X)2 £(x,).
Proof : Let b:(bo,bl,...,bm)T be a vector in pm+ and let

C ={b:b,>f(X)- f(X,): g(X)<b,i=12,...m}

where for each such b, there is atleast one x for which the above conditions for & hold. Itis clear

that C, isa convex set. Note that g,(.X) are convex functions for i=1,2,...,m.
Let us consider another set C, = R"*' defined by
C, ={b:b<0}.

Then it canbe seenthat C, is also aconvex set. Further C, N C, =¢,since b, > f(X)— f(X,)=0

for beC, and b<0 for beC,. Now C, and C, are disjoint convex sets, therefore there can be
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constructed a hyperplane separating C, and C, . The point 5 =0 is the boundary point of C, and C, and
so the separating hyperplane must pass through this point » = 0. Let this separating hyperplane be

Cb=0, C#0
Where Cb2>0, for beC, (D)
and  Cb<0,forbeC, -.(2)

The vector ¢ is bound to be nonnegative since if C20, then it means that there is some
component ¢, of ¢ suchthat ¢, <0.Now if () is any point in C,, then () . (. Let p*) be the ;#
component of 5(2). Thenlet p>) =— 7 for M>0.The ;# term ¢ inCbis clearly positive and by

taking M sufficiently large, this term cibi(z) can be made dominating over all other terms in C b, which is

against the inequality (2). Thus we conclude that C>0.
Now let b:(f(X)—f(XO),gl(X),gz(X),...,gm(X))T be any point in C,, Then from (1)
cof (X)=co f(X,)+eg(X)+e,g(X)+...+¢,g,(X)=0 ..(3)
where, C'=(c,,c,,¢,.,...,c,)

Or, ¢ f(X)+cg(X)+eg (X)+. . +c,g,.(X)2c f(X,)

It can be proved that ¢, #0, since if ¢, =0, then (3) becomes

g (X)+cg(X)+. . +c,g,(X)=20 (4)
Now let x beapointsuch that G(.X')<0 and (condition given in th theorem). Also since C>0and

C#0, therefore (4) is a contradiction for sucha point X . Butit holds forall X, therefore, ¢, #0.

C[
Now dividing (3) by ¢, andtaking _ = *4i,; i=12,...,m, we get
0

F(X)+ 2,G(X)2 f(X,) .(5)

2,0 .(6)

6.5 Necessary and Sufficient Conditions for the function f(X,1) to have a
saddle point at (X,,4,)

Necessary Condition :

Suppose that the function F' (X , A) has a saddle point at (X, 4, ). Then it means that there exists
a possitive number ¢ such that for all points X inthe <-neighbourhood |X - X 0| <eandforall 3 inthe

e~ neighbourhood |1 — 1| < € we have
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F(X,,2)<F(Xy,A.) < F(X,4,) (D)

where X =(x,x,,...,x,) and 1 = (4

respectively.

A d, ) are n-component and m-component vectors,

Let us partition the components of x and } satisfying the above condition into three categories,

X = ﬂiX(l),X(z),X@)}l and A =ﬂiﬂ.(l),ﬂ.(2),l(3)] where,
x :(xlx2 ..... xp)s 0 has p components.
x® :(xp+1,xp+2,...,xq)2 0 has ¢ — p components
x® :(xq+1,xq+2,...,xn ) unrestricted in sign has 7 — g components.
A =(4,,4,,...,2,)>0 hasr components.

A =(A,11s 4,252 A, ) <0 has s— components.

r+l»

A8 = (Ayi1sAssrses A, ) unrestricted in sign has s — s components

s+12

Let us denote by W, the set of points x such that the components of x satisfy the above
conditions, by W, , the set of points ;| such that the components of } satisfy the above conditions and by

W the set of points[ X, 2| where X el and A el¥,, Thenthe function F(.X,A) is said to have a saddle

point at (X,,4,) for (X,1) eW if (X,,2,) €W and there exists an €>0 such that (1) holds for all
X €W, inthe e-neighbourhood of X, and forall 1 e, inthe A el¥, -neighbourhood of 4.

Suppose that F(X,1)eC" (i.e. all the first derivatives of F are continuous in g ). If F(X, 1)
has a saddle point at (X,,4,) for (X,1)eW, then we must have F(X,,A1,) minimum at X and

F(X,,A,) maximumat A,

iF(X, 10) =0, for all j for which Xj-) #0
L 9% dx=x,

and i ] .2
iF(Xo,ﬂ.) = 0, for alli for which A # 0 @
_é’ii dA=2

forall j=q+1,q+2,...n,since x? isunrestricted insign for these j's.
_F()?o,io)=0 forallj:l,2,...,p,forwhichx? #0
/ forallj:p+l,p+2,...,qforwhichx? =0
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foralli=s+1,s+2,...m,since A] isunrestricted in sign for thesei's.

iF(XOJ*O):O foralli=1,2,...,r,for which 2} # 0

o .(3)

foralli=r+1,r+2,...,sfor which A =0

0 o
Now let us see the nature of EF(XO’}“O) when x_? =0,j=12,...,q and %F(XO’AO)

J

when )fl? =0 and i=1,2,...,s, inorder that (1) may hold true.

First, let us assume that x_? =0 for j=1,2,..., p. Forthis case we shall show that

0
ﬁ—ij(Xo/ao)z 0 4
0 0
Ifpossible, let 5 F(X010)<0. Since we have assumed that F(X,1)eC' ie. Ox. F(X’i)
J J

is continuous, therefore, for a given €, >0, there exists an €, -neighbourhood of (X o AO) such that in this

0
(XO,/IO),EF(X,/‘L)<0. (5)

J

e- neighbourhood of

We now select a positive number e such that 0 < e< €, and consider points inthe e-neighbourhood
of (X,,4,) ofthe form (XO +h ej,lo) , 0 < h <g,. Thenby Taylor’s theorem
0
F(x, +he_,,zo)=F(Xo,zo)mgF(Xo +0he;,Ay); 0<0<1
J

But (X0 Ohe,, lo) isinthe e-neighbourhood of (X, 2, ), therefore, from above

F(X,+hé,,2,)<F(X,.4,) [from (5)] ..(6)
forall h,0<h<¢,

Therefore, every e-neighbourhood of (X, 4,) contains points (X, 1,) € W, suchthat (6) holds,
Le.,
F(X,2,)<F(X,A,)

This contradicts the fact that (X, ,) is a saddle point of F(X,1) for (X,1)eW . Thus our
assumption is not correct. Hence (4) holds true,

0
Le., Ox. (XO’}“O)ZO,for x_?=0;j=l,2,...,p. (7
J
imi O F(Xy02,)<0 Y j=p+1+2
InasumlarwaywecanprovethatE ( 0> 0)— for X;;/=p+tL+2,....9 ..(8)

J
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and also if 19 = 0, then

0 :
é’_ﬂﬁF(XO’AO)SO fori=12,...,r ..(9)
0 for i=r+1r+2 1
WF(XO,AO)ZO ori=r+1r+2,..,s ...(10)

Thus we have shown that either

iF(XO,}LO)= 0 or, x; =0

0"x_/

and either %F(Xo,lo)zo or, 17=0

1

Hence if F(X,) has a saddle point at (X,,4,) for (X,A)eW,andif F(X,1)eC', then
(X,,4,) must satisfy

0 .
EF(XO’AO)ZO , ]:1,2 ..... P
J
0 .
EF(XO’AO)SO , j=p+Lp+2,...q ..(10)
J
0
—F(XO,AO):O j=q+lqg+2,....n
X.
J
x0<0,j=12,....p
>0, j=
x.20,j=p+1,....q i
x;) unrestricted insign, j=q+1,...,n
0 0 (v 2)20. i=1.2
xfg;J«X@ 0)=0, j=12,....n (12)
and
0
EF(XO,AO)_O,Z—I,z, W r
0 .
—F(XO,AO)ZO,z:r+1,r+2,...,s
oA,
i ..(13)
%F(Xo,lo)zo,i=s+l,s+2,...,m
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220,i=1,2,..,r

ﬂf; L0,i=r+1,r+2,....s

...(14)
ﬂ.?unrestricted insign,i=s+1,s+2,....m
22 F(%,A0)=0, i=1.2,....m
>3 0so) =0, i=12,..., ...(15)

1

Equations (10) to (15) are the necessary canditions, which the point (X, 1) must satisfy if the
function F(X,1) hasasaddle point at (X, 1,) for (X, 1) W, provided that F(X,1)eC'

Sufficient condition The conditions (10) to (15) become sufficient if there exists a positive number >0
suchthat F(X,,A) isaconcave function of | inthe e-neighbourhoodof 1, and F(X,4,) isa convex
functionof x inthe e-neighbourhoodof X .

Now if F(X,,A) is a concave function of 2 , then

F(X0,2)< F(Xy 2g)+ Y, F( Xy, 20 ) (A= Ay .(16)

0
V. F(X,,2,)=
where VY 2 ( 0 o) [0,%

1 F(Xoaio)’---’%F(Xo’io)J is the gradient of (X, ) with
respect to J at the point (X, 4,).

Similarly if F (X ,lo) is a convex function of x, then

F(X,A0)2 F(Xy.A0)+V F(X00 20 )(X = X,) (17)

0
Where VXF(XOaio)z[é,

0
F(XOaio)’---’EF(XoJo)J is the gradient of F(X, 1) with

1 n

respectto x at (X,,4,).

Inequalities (16) and (17) hold good for all ) inthe e-neighbourhood of 1, and forall x inthe
e — neighbourhood of X ;.

Now V, F(X,A,)(A=2)=V, F(X,20) A=V, F(Xy,4,). 2
=V, F(X,, 4, )2 (using (15)) .(18)

and since

0 .
AI- > O,EF(XO,AO)SO, l=1,2,...,l"

1

2, <0, F(X,,40)20, i=rt1,s
o2,

1
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o :
A, unrestricted, WF(X07AO):()7 i=s+1,...,m

therefore, VAF(XO,AO)./1=Z£F(Xo,io).ii <0 ..(19)

i=1 O4,

Thus (18) represents that

YV F (X Ag) (A= 2)<0
Then from (16), we have

F(X0, A)<F(X0,A,) .(20)
Similarly from (17), we have

F(X,2,)> F(Xy,2,) .(21)
Now from (20) and (21) we conclude that
F(X0, A)<F(Xy 20)<F(X,A,) (22)

which holds for all x inthe e-neighbourhoodof X, andforall ) inthe e - neighbourhood of
Ao

ie., F(X,2) hasasaddle pointat (X,,1,).

Note : Consider the following nonlinear programming problem:
Optimize f(X), X =(x,%,00%,)
subject to h(X)=0,i=12,..m (m<n)

Introducing Lagrangian multipliers A =(1,,4,,...,4,, ), the Lagrangian function is

L(X,2)= f(X)+Z’j:Al.hl.(X), men

The necessary conditions for stationary points of f (X ) at which f (X ) may have a maximum or

minimum are

OL(X,A) _ 0f(X) 3, h(X)
= l i .
ox, ox, +Zl e L j=1,2,m

J

OL(X,2)  Oh(X)
and oL 02,

1 1

=0, j=1,2,...m (m < n)
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Let  |-——————————-
oh, Oh, oh,
| Ox,  Ox, ox, |
which is an mxn matrix
[ &L L L
ox; oxox, ox,0x,
AL AL AL
and = 0x,0x, é’xzz """""" 0x,0x,
L oL O'L
oxow  dxox T é’xnz
which is an 7 X n matrix.
Alsolet O= (OU) be an 7 x n null matrix.
Then the square matrix 775 oforder (m+n)x(m+ n) is called the bordered Hessian matrix and
1s defined as :

Now if (X, 2,) is a stationary point for the Lagrangian function L(X,,A) and /7 the value of

the corresponding bordered Hessian matrix g72 at this stationary point, then

()] The point X, gives the maximum value of the objective function f (X ) , if, starting with the
principal minor of order (2m + 1) , the last (n - m) principalminors of F are of alternate signs, starting
with (—1)""" sign.

(i) The point X, gives the minimum value of the objective function, starting with the principal minor of

order (2m+1), the last (n —m) principal minors of /7 are of the sign of (~1)".

For example :

(§) If n=2,m=1, then the order of g2 is 3x3 (since +n=1+2=3) and since
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2m+1=3,(-1)"" = (—l)3 =-1and n—m=1,(-1)" = (—l)1 = —1. Therefore the extreme point X,
gives the maximum value of the objective function if ‘H B‘ <0 and minimum value ofthe objective function
if A, =|H"|>0.

(i) When n=3,m=1, then the order of g2 is 4x4 (since p+m=3+1=4) and since
2m+1=3,(-1)"" = (—l)4 =1Ln—m=3-1=2,(-1)" =(~1)' = -1. Therefore, the extreme point X,
gives the maximum value of the objective function f(.X) if A, = ‘H B‘ <0 and A, >0 and minimum value
of the objective functionif A, >0 and A, <0

(iii) When n=3,m=2, then the order of g2 is 5x5 (since n+m=3+2=5) and since
2m+1=5,(-1)"=(-1) ==Ln-m=3-2=1, (-1)" = (—1)2 =1, therefore the extreme point X,
gives the maximum value of the objective function f(.X) if A = ‘H B‘ <0 and the minimum value of the
objective functionif A; = ‘H 5 ‘ <0.

Note : If f(X) is areal valued continuous differentiable function of X = (x1,%,,...,x, ), thenthe Hessian

matrix of f(X) is

5 f of of
ox; oxox, ox,0x,
>’f >f >f
HB(X)z ox,0x, é’xzz """""" 0x,0x,
>f >f >’f
| Ox,0x, Ox,0x, ox. ]

The function f (X ) is convex if the Hessian matrix H”(.X) of f (X ) is positive definite i.e., if all

the leading principal minors of H”(.X) are positive in sign.

The function ¥ (X ) is concave ifthe Hessian matrix H°(X) of f (X ) is negative definite, i.e., if

the signs of leading principal minors of H”(X) are alternately negative and positive.

Example-3: Obtain the necessary conditions for the following nonlinear programming problem :
Minimize f(X)=3x] +x; +2x,x, +6x, +2x,
subject to 2x,—x, =4

X;,X%, 20
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Solution : The Lagrangian function for the given problem is
L(X,2)=f(X)+A(2x, —x, —4)
or L(X,A)=3x] +x; +2x,x, +6x, +2x, + A(2x, — x, - 4)

The necessary conditions for the minimum of f'(X) are

oL
5_x1:0 or, 6x,+2x, +6+21 =0 (1)
oL
ox, =0 or, 2x, +2x,+2-A=0 )
oL
520 or, 2x,—x,-4=0 ..(3)

Example-4 : Solve the following non linear programming problem using the method of Lagrangian
multipliers :

Minimize f(X)=x]+x; +x]
subject to 4x, +x; +2x, =14 (E g(x)—14)
X5 Xy,Xx3 20
Solution : The Lagrangian function is

L(X,2)=f(X)+ A(4x, +x; +2x, - 14)
or, L(X,l):xlz+x22+x32+l(4x1+x22+2x3—14)

The necessary condition for f (X ) to have a maximum or minimum are

j—)i:(’ , or 2x, +44=0 (D)
j_é: 0, or 2x, +2Ax, =0 -(2)
jf} =0, or 2x,+24=0 .(3)
%ZO’ or 4, +x2+2x,-14=0 (%)

From (2), x, (1 + A) =0
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orx,=0 or A=-1.
Also from (1) x, =24 and from (3) x, = -1 .Ifweput x, =0 in(4), then we get
A=-14 andso x, =28, x, =14

Ifweput A=—1 thenwe get x, =2,x, =1 and then from (4), we get x, =2.

Therefore, we get the following stationary points :
(2.8,0,14), A=—14
and (2,2,1), A=—1

We now consider the bordered Hessian matrix

_0 : ‘g g og

ox, ox, ox,

g | &L &L FL |

s | 9x | ox; ox,0x, 0x,0x, _O _|_4_2_xz_ i
H_é’g: FL PL L :4:2 00
ox, | dx,0x ox; 0x,0x, 2x2| 0 2 0
og | L AL &L 20 02

| Ox; : 0x,0x, 0x,0x, ox;

At the stationary point (2.8, 0, 1.4)

H’ =

[\ BN an R N )
o o N B
N oo O N

o N O O

Here n=3,m=1, therefore  —jp=3-1=2 and 2;m+1=2x1+1=3

We check the signs of the principal minors D, and D,

0 40
Now Ds=[4 2 0|=-32
0 0 2
0402
4200
and D, = =-80
0020
20 02
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Since both D, and D, have the same sign negative, which is the sign of (-1)" = (_1)1 ie.

negative, therefore f(.X') has a minimum at the point (2.8,0,1.4) and at this point the minimum of /(X
is9.8.

And, at the stationary point (2,2,1)

0 4 4 2
s |42 00
=1 02 0
20 0 2
04 4
Here D, =4 2 0=-64<0
402
0 4 4 2
4 200
andD4=4 0 > O=—144<O
200 2

Thus /(.X) has a minimum value at (2,2,1) whichis 9

Since the least among 9 and 9.8 is 9, therefore, f (X ) has minimum at the stationary point (2 ,2, 1)

and the minimum of (X ) at this stationary point is 9.

Example-5  Use Lagrangian function to find the optimal solution f'the following nonlinear programming
problem :

Maximize f(X)=-3x] —4x; —5x;
subject to x, +x,+x; =10
X)X, 20
Solution : Here the Lagrangian function for the given problem is

L(X,2)=f(X)+A(10—x, —x, —x;)
or L(X,A)==3x; —4x; =5x; + (10— x, = x, — x;)
The necessary condtions for stationary values of L( X, 1) are

1
ﬁzo ,0r —6x, -1 =0, or Xlz—gl

ox,
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1
ﬁ:(),or —8x,—A=0,0r X, =—_4
ox, 8
1
ﬁzo,or —10x,—-A =0 or X; =——4
ox. 10
oL
520, or 10—x, —x,-x;=0, or x +x,+x;=10

Putting the values of x,, x,, x, inthe above equation

ll+ll+il =-10

6" 8 10
1200
A=—t2

of 47

Thus x, =200/47; x, =150/47 ; x, =120/47 . Since, —3x; —4x; —5x; is strictly concave
function and x, +x, +x, = 10 is a linear function, therefore, L(X,1) is strictly concave. Thus the

Lagrangian necessary conditions are sufficient also for the global maximum.

) ) ) ) 200 150 120
Hence, the optional solution to the given problemis X, = , X, = s Xy =

Example-6  Use Lagrangian multiplier method to solve the following nonlinear programming problem:

Minimize F(X)=2x] +2x; +2x; —24x, —8x, —12x, + 10
subject to X +x,+x;=11

X, Xy,X; 20
Solution : The Lagrangian function for the given problem is

L(X,A)=2x] +2x7 +2x] —=24x, —8x, = 12x, + 10+ A(x, + x, + x, - 11)
The necessary condition for minimumof f(X) are

oL oL

20 ._ 220
Ox ,1=1,2,3 and ey

i

oL

ie. a—xl=0, or 4x,—24+2=0 (1)
oL
5—)%:0, or  4x,-8+4=0 (2
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oL

I, 0, or  4x,-12+1=0 .(3)
oL
5:0’ or X, +x,+x,—-11=0 ..(4)

From (1), (2) and (3)

24— 8—4 12-4
= ’x2: ;x3:

4 4 4

X

Putting these values of x,,x,,x, in(4)

24— +8—-A1+12-4
4

Thus x,=6,x, =2,x, =3

Here the minimization function f (X ) is the sum of a positive definite quadratic form and a linear

function, so is a convex function. Thus L(X , l) is also a convex function as the constraint is a linear

equation. Hence x, = 6,x, =2,x, = 3 is the optimal solution of the given nonlinear programming

problem.

Example-7  Use method of Lagrangian multipliers to solve the following nonlinear programming
problem :

Optimize f(X)=2x; +x; +3x; +10x, +8x, + 6x, —100
subject to X, +x,+x,=20
X5Xy,X%,20

Does the solution maximize or minimize the objective function?

Solution : The Lagrangian function is
L(X,A)=2x] +x; +3x; +10x, +8x, + 6x; —100+ A (x, + x, + x, — 20)
The necessary condition for the maxima or minima are

oL

ox, % or 4x+1044=0 (1)
%ZO, or  2x,+8+A=0 -(2)
j—ffo or  6x,+6+A=0 .(3)
%:O, or X, +x,+x,—20=0 (%)
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From (1), (2) and (3) we have

A+10 A+8 A+6
X, =— Xy =————,X; = —

4 2 6
Therefore, from (4)
l+10+l+8+l+6:_20

4 2 6

or, A=-—30
Thus x, =5,x, =11,x, =4

Hence the stationary point is (5, 11, 4)

To determine, whether this stationary point results in maximization or minimization ofthe objective
function, (n-1) principal minors of the following determinant are solved :

011 1
1400
A, = =-44
1020
1006
011
and A3:1 4 O :_6

10 2

Since A, and A, both are negative, therefore the sationary point is a point of minima.
Thus the optimal solution is

x, =5,x, =11,x, =4 and the minimum value of f(X) is

f(X):2><25+121+3>< 16+50+88+24-100
=28l1.
Note : Another way to check whether the objective function f'(x,,x,,x;) has a minimum value or maxi-
mum value at the stationary point (5,11,4) we find the Hessian of the objective function f'(x,,x,x,) at the

point (5,11,4), whichis

Ca >f
ox;  Ox0x, Ox,0x,
H(X)= a1 s f
ox,0x, O0x; ax, 0x,
>’f >;f  of
| Ox,0x, Ox,0x, ox;

Il
o o A
o o 2@
o o N
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The principal minors of H| (x) are :

4 0 2
0
[4/=4, 0 2‘28 and [0 2 0|=48
0 0 6

which are all positive. Therefore, H(X) is positive definite, i.e., f(x,,x,,x,) is convex. Hence

S (x,,x,,x;) is minimum at the statonary point (5,11,4).

6.6 Graphical Method for Solving a Nonlinear Programming Problem

We know that in linear programming problem the optimal solution is attained at one of the extreme
points ofthe convex region generated by the constraints. But in case of nonlinear programming problem, it
is not necessary that the optimal solution of the problem lies at a corner or edge of the feasible region.

The method of solving a nonlinear programming problem involving only two variables is explained
through the following examples :

Examples-8 : Solve the following nonlinear programming problem graphically :

Maximize S(x,,x,) =8x,+8x, —x{ —x;
subject to x, +x,<12
X, —x,24
x;,x,20
Solution : Considering the given constraiﬁét’s as equalities and drawing the lines an the x,x, — plane,

we get the admissible region to be ABDA.
The objective function f(x,,x,) is 8x, —x; +8x, —xJ i.e. 32 —(x, - 4)2 —(x, - 4)2
which is a circle with centre at (4,4) as, shown in figure 6.3

AX,

Figure 6.3
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The point that gives the maximum value of f(x,,x, ) is the point at which the feasible region is

tangent to the circle given by the objective function 8x, — x7 + 8x, — x;

Differentiating f'(x,,x, ) w.rt. x,

8—2x, +8%2 9y My
dx, dx,
dx2 2X1 -8 X, —4
= = =m,(sa
Of gy, 8-2x, 4-x, ((sav)
dx
for the line X1 T X2 = 12,d—2 =—1=m,(say)
‘xl
x, —4
The circle will touch the line x, + x, =12, where, m, =m,, 1.e., .
2

putting x, =x, in x, +x, =12, weget x, =x, =6.

=-1 ,1e., x, = x, . Therefore,

Thus the circle touches the line at the point P(6,6) . But this point P(6,6) isnot a point of the

feasible region ABDA

Again for the line x, —x, =4, we have

x,—4
> 4-x,

dx,

—==l=m,(sa

dx, 2 (s27)

The circle touches this line at the point where m, = m,, i.e.

Putting these valuesin x, —x, =4 ,weget x, =6 and x, =2

=1 je, x,=8-1x

i.e., the circle touches the line x, —x, =4 atthe point 0(6,2), which lies in the feasible region.

Also for x, = 6,x, =2, wehave f(x,,x,)=24

Thus the optimal solution of the given problem is x, = 6,x, =2 and maximum value of

S(x,x,)=24.

Example-9  Solve the following nonlinear programming problem graphically :

Maximize S(x,x,)=x,+2x,
Subject to x;+x; <1
2x,+x,<2
XX, 20
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Solution : Considering the given constraints as equations and drawing themin x, x, — plane the fea-
sible region is OABCO as shown in figure 6.4.

AX,

Figure : 6.4

The objective function f(x,,x,) is the line x, +2x, = z(say) . Drawing the objective function
through (0,0) and then drawing the lines parallel to this objective functional line, we reach the extremity B

of the feasible region OABCO. The point B is the point of intersection of the circles x; + x; = 1 and the

line 2x, +x, = 2 and is the most distant point of the feasible region. Thus B is the point of optimal solution

_ 3 4 11
ofthe problem. Solving x; +x7 =1 and 2x, +x, =2, we get B 55 and f(xl,xz):?

Hence the optimal solution of the given nonlinear programming problem is

4
,X, = — and max. f(xl,xz)z?

X, ==
s 5

Example-10  Solve the following programming problem graphically :
Minimize f(x,x,)=x] +x;
Subject to  x, +x, 24
2x,+x, 25
x;,Xx, 20

Solution : Considering the constraints as equalities and drawing them on the x,x, — plane, feasible
region is x, ABC x, which actually is an infinite region. Thus the desired point minimizing the objective
function f(x,,x,) must be somewhere in this unbounded region. Since our search is for such a point

(x,,x,) which gives a minimum value of x7 + x7 and lies in the convex region, the desired point will be

that point of the infinite region at which a side of the convex region is tangent to the circle x; + x7 =r*(say)
as shown in figure 6.5.
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2x +x,=5

N E
A N

Figure 6.5

Differentiating x; + xJ =7, w.r.t. x,, we have

& = —ﬁzml(say)
dx, X,

Differentiating the equation x, + x, =4 w.r.t. x,, we have

d.
dixj:_ 1=m,(say)

The circle touches the line x, + x, =4 at the point where m, = m,

-X

) L1 .

e, 7 1,1.e., X, =X,
2

Thus from x, +x, =4, we get the point P(2,2).

Therefore, the circle touches the line x, + x, = 4 at the point P(2,2), which lies in the convex

region bounded by the constraints.

Again differetiating the equation 2x, + x, =5 w.r.t. x,, we get

oy =—2=m,(say)
dx, :

The circle x7 + x; =7 will touch the line 2x, + x, =5 at the point where

m, =my, 1., X, T4, 1e, x; =2x,
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Therefore, from 2x, +x, =5, we get the point O(2,1) . Thus the circle touches the line at the

point O(2,1), which does not lie in the convex region bounded by the constraits and so is to be discarded.

Hence the optimal solution to the problem is x, =2,x, =2 and minimum value of

f(x,x,)=2"+2%=38.

6.7 Self-Learning Exercise

I. Apoint X *eT is alocal (relative) minimum of the function f (X ) over T if there is a positive

number § such that forall X eT\ N,;(X *), wehave .......

2. The Lagrangian function for the nonlinear programming problems Min /(X ), subject to

3. Ifthe Lagrangian function (X, 1) for the nonlinear programming problems Min f (X ) , subject
to G(X)<0,X >0 has asaddle point (X,,4,) foreach 2, then........

4, If (X,,A,) isasaddle point of the Lagrangian function F(.X, 1) for the problems Min /(X),
subject to G(X)<0,X 20, then.......

6.8 Summary

In the present unit we discussed about the mathematical programming problem and the general
nonlinear programming problem. We studied the Lagraingian function and the saddle point of the Lagrangian
function. We derived the necessary and sufficient canditions for the Lagrangian function to have a saddle
point. We also saw in brief, how a nonlinear programming problem can be solved graplically.

6.9 Answers to Self-Learning Exerices

1. F(X)=f(x*) 2. F(X)+2A"G(X)

3. G(X,)<0,5G(X,)=0 4 F(X,A)<F(X,,A))<F(X,A,)

6.10 Exercise

1. Define saddle point and indicate its significance.
2. What is the Lagrange multiplier method?
3. What is a general nonlinear programming proble? Establish the relation between saddle point and

the minimal point of the nonlinear programming problem.

4. Solve the following nonlinear programming problems, using the method of Lagrange multipliers :
(@) Min. f(x,,x,,x;)=2x; —24x, +2x; —8x, +2x; —12x; +200
subject to X +x,+x; =11

X5 X5,%3 20
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(b)

©

(d)

(Ans. x, =6, x, =2;x, =3 and minimum f = 102)
Min f(x,,%,,X;)=4x] +2x; +x; —4xx,
Subject to X, +x,+x,=15

2x, —x, +2x;, =20

X5 X5,%3 20

11 10 . 820
(Ans. X, =3 TN =8, minimum f = 'y

: 2 2 2
Min. f(x,,%x,,%;)=x] +x; +x;
subject to X, +x, +3x, =2

S5x,+2x, +x,=5
X;5X5,%3 20

(Ans. x, =081, x, = 035,x, = 0928 ; minimum £ =0.857)

Max. f(x,y,z)=xyz

subject to —+5+—5=1
a c

x,y,z2>0

(Ans. x:aﬁ,y:bﬁ,z=cﬁ;mxﬁnumf= 3\/3abc)

miNIN
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Unit7
Constrained Optimization in Nonlinear Programming
Problems; Kuhn-Tucker Conditions

Structure of the Unit
7.0  Objective
7.1 Introduction
7.2 Convex Programming Problems
7.2.1 Lagrangian function and saddle point
7.3 Kuhn-Tucker conditions and Kuhn-Tucker Theorem
7.4  Self-Learning Exercise
7.5 Summary
7.6  Answers to Self-Learning Exercise

7.7 Exercise

7.0 Objective

The present unit is confined to discuss the theory which has been developed for locating the points
of maxima and minima of constrained nonlinear optimization problems. The theory populary known as
Kuhn-Tucker theory, provides a set of necessary and sufficient conditions for check, whether a given point
is a point of optimality. The objective of writing this unit is to study the Kuhn-Tucker theory for nonlinear
programs.

7.1 Introduction

The unit bigins with the definition of convex programming problem. The theoretical concept of
Langrangian function of the general non-linear programming problem and its relation with the saddle point
is the next section ofthe unit that is of fundamental importance. The major part of the unit deals with the
Kuhn-Tucker Theory, The Kuhn-Tucker necessary conditions for the optimum of the nonlinear
programming problem and their derivation, which is called the Kuhn-Tucker theorem.

7.2  Covex Programming Problems
The general mathematical programming problem consists in finding the minimum value of the

function f(X) for all real x, satisfying the conditions g[(X) <$,=>0, (X) >0, where f(X) and

g(X),i=12,.., m are all real valued functions of X = (x,,x,,....,x,) in gr. The problem stated
above is called a nonlinear programming problem (NLPP) if some or all of the functions f(X), g,(X)
are nonlinear for j =12,......., m.

If f (X ) and g, (X ) are all convex functions, the problem s said to be a convex programming
problem. A convex programming problem can thus be stated as follows:

Minimize f(X), X =(x, %50, x,) €E"
subject to : g(X)<05i=1.2,......,m
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where f (X ) and g (X ) are all convex functions.

The convex programming problem has a little advantage over the general nonlinear programming
problem as in convex programming problem all the constraint functions g, (x) are convex functions. There-
fore the set S of points, satisfying the constraints. g,(X)<0, j =............. ,m, X >() iSaconvex set.
However this may not be so if g, (X ) are not all convex. Also, if f (X ) is a convex function, then the
relative minimumof f(X)is also a global minimum, which infact is unique. This may not be possible if the

NLPP is anon convex programming problem. It may be noticed that if f (X ) is convex, then — f (X ) is

a concave function and so minimum of f* is equal to maximum of — /" . Thus the statement that a function
is convex is equivalent of saying if it is a concave function.

We now begin with some theoretical concepts that are of fundamental importance.
7.2.1 Lagrangin function and saddle point

Let us consider the problem
Minimize /'(X) s X =(x, x50, x,) €E"
subject to g (X)<0;i=12, ... m

Where f(X) and g,(.X)are not necessarily convex functions and also there is no restrictionon y .

Let A =(4,,4,,....., 2,) € E™ beany vector in E™. We define the function F(X, 1) as
PO = F(0)+ 32080 = 1) 7G()
i=1

where G(X) = (gl ()(),g2 (X) ........... g, (X))T

The function F (X , A) is then called the lagrangian function, with the components of ) as the
Lagrange multiplirs. We recall that (X, 4, ) is said to be a saddle point of the Lagrangian function F (X , A) if.

F(X,,2)< F(X,,4) < F(X,2) insomeneighbourhood of (X, 1,).

Infact the saddle point of the Lagrangian function F (X , A) , if it exists, and the minimal point of the

minimizing function f (X ) bear a strang theoretical bond between each other. This has led not only to

important theoretical results but also to practical algorithms for solving mathematical programming
problems. This relationship is a part of what is commonly known as Kuhn-Tucker theory.

7.3 Kuhn-Tucker Conditions and Kuhn-Tucker Theorem

In this section we shall develop primarily the necessary form of Kuhn-Tucker conditions for getting
the stationary points of the constrained nonlinear programming problems. These conditions are also
sufficient under certain restrictions.

Consider the NLPP
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Minimize f(X), (X)=(x. %5000, x,) (1)
Subject to g(X)<0;i=12,...,m -(2)

We also assume that f(X) andall g,(X),i=12,....... ,m are differentiable functions in E".

Let us formthe Lagrangian function

FIX.A)= £(X)+ 208 (x) = £(X)+77 G ()

and  A=(2,,4,.... A4, )eE"
We start with the statement
F(Xx,,2)<F(X,,4) <F(X,4) (%)

which intends that (X, 4, ) is asaddle point of the lagrangian function F(X,1) Let x beany
point in the neighbourhood of X . Since x is unrestricted, therefore x is an interior point in the

neighbourhood of X . Thus, the right side inequality of (4) implies that (X, 4,) is a local minimum of

F(X,4,) and so we must have

[MJ =0 ; j=1,2,.. ,n

ox; ..(5)

XO
Let 2 be apoint in the neighbourhood of A ,. since every > 0, therefore if we denote by 1. _the

components of 1, then let
@) A,>0 for 1= 1,2, k
(ii) Ai20 for 1= k+1,k+2............. ,m

ClearlyA_>0isk=mand 4, = 0 ifk = 0. Let us suppose that the neighbouring point } differ

from A, only in the j* component, the other components in ), and 4, being equal. Then by Taylor’s
series

04,

1

F(X00) = F(X,00) + (s i) (Mj o

F(Xg,2) = F(Xy,20) = (2= Zo) | =327+ ..(6)

or

Il
—~~~
R

|
R
(=]

A —

VR

o))

~
S

=

PN
A —
\J;/

l
+

Choosing (/1 = A m) sufficiently small so that other higher order terms in the above expansion that
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are very-very small to be neglected, the sign of the left hand function i.e. of the function

F (X 0 /1) - F (X 0 /10) depends upon the sign on the right hand term. Now ifA. > o (i.e. of category (i),

then A, — A, can be made positive or negative by some suitable choice of 1, which can be greater than

or less than A1,,, remembering that the only restrictionon A, isthat A, > 0 , which can be maintained in

i0 2

either case. Thus F(X,,1) — F(X,,4,) canbe made positive or negative by a suitable choice of 1> 0.

But by the fact of left side inequality of (4) this is never positive. Therefore if A, >0 fori=1,2, .............. k,
necessarily we must have
0F(X,,2) o
02, . T 1=1,2,....... Lk -(7(a))

We now consider the other possibility. Let A, =0, i.e., A, belong to the category (ii). In this case
A, — A, is always positive since 1;, 20 and 1, # A, . Also since F(X,,%) — F(X,,%,) is never
positive, therefore in (6) we must have

(M

o 1 ) =0, = k1, K2, ,m (7(b))

(7(a)) and (7(b)) together imply that

0F(X,,2)
( o2 1_; <0 ; i=1,2,......m -.(7)
Now, for category (i), A, >0 ; 1=1,2,............ k

Therefore, from (7(a))

OF(X,,1)
Ao [a—xj =0 .(8)
Similary, for category (i), A;, = 0 ;i= k+1,k+2............. , m. Therefore from (7(b))
OF(Xy )| _
o {T} =0 .(9)

Thus we have, from (8) and (9)

OF (X, 4)
fo on.

1

}0, foralli= 1,2,.......... .m ...(10)

Using (3), we can replace F(X,1) by f(X)+ A" G(X) in(5), (7) and (10) and get these
conditions in the following from

5g,
Z =0 i=1.2,....... .n (1)

i=1
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g(X)<o0 i=1,2,.ym (12)
2eg(X)=0 ; i=1.2,......,m -(13)

A>0 ; i=12,....... ,m .(14)

where all the expressions have been evaluated at (X o /10) .

So far, we have not imposed any restrictionon y . Most of the nonlinear programming problems
do have the nonnegativity conditionon y (i.e. x¥ > (). Insucha case, when x > (), the above discus-

sion remains unchanged except that we define a nonnegative saddle point (X o /10) ofthe Lagrangian
function F(X,A) as F(X ,A)< F(X, %)< F(X,2,)X >0, 2>0.
Also then the condition (5) is modified to take into account the possibility of X, being a boundary

point, i.e., some or all of the components being zero. As we argued in deriving (7) and (8), (5) is then
replaced by the condition

aF'()(O’ }'0) > O
oy | ° ; §=12,.m .(16)
J X=X,
OF (X, 2) 0
jo Ox. ; X, 20 ..(17)
jo X=X,

Again using (3), we may rewrite the conditions (7), (8), (16) and (17) corresponding to the
nonnegative saddle point (X, ) [defined by (15)]as:

‘ ot Z z ag, -20 i=12,.m ..(18)
xj[aa—){j +§%Z—i}0;j=1,2, ....... n (19
g(X)<0 ;i=12,...m .(20)

% g(X)=0; i=12,....,m (21)

x; 20 ; J=12,...... ,n ...(22)

220 ; i=12,0ym (23)

J 5

The sets of conditions (11) to (14) or (18) to (23) are called the Necessary form of
Kuhn-Tucker (K-T) conditions. The conditions (11) to (14) are the necessary conditions which

(X,,A,) must satisfy if it is a saddle point of the Lagrangian function F (X , A) , with the variable x
unrestricted in sign,whereas the conditions (18) to (23) are the necessary conditions which (X, 4,),

satisfies , if it is a nonnegative saddle point of the function F(X,4,), with X, >0.
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The above conditions are not however sufficient conditions for (X, 4, ) to be a saddle point of
F (X , A) . The reason is quite simple. The condition (11) implies that the gradient of the Lagrangian
function F (X , A) with respect to x is zero, which is necessary but not a sufficient condition for the

existence of the minimum of F(X, 1) withrespectto x .

If /(X) andall g,(X) are convex functions, then the saddle point (X, 4,), A, >0 of F (X, 1)
does exist such that X, isa point of minima of the function f (X ) subject to the constraints g (X ) <0,
1i=1,2,...... ,m and x > (. Withthe additional restriction Y > (), the saddle point. (X o /10) is nonne-

gative. Since f'(X,) is convex, it has only one optimum which is the minimum.

Hence, if f(X,) andall g, (X ) are convex functions, then the solution of the corresponding
K-T conditions gives rise the required saddle point and so the minimal point of /(X).If f(X) and

g (X ) are not convex,the K-T conditions can still be obtained and we may look for its solution. The

solution so obtained may still give the solution to the corresponding programming problem but not
necessarily always.

We have so far assumed that the constranits are g,(X)<0;i=1,2, .......... ,m. However if the

constraints are in the form g, (X) < 0 then we face no difficulty as we can write themas —g; (X ) <0,and

while constructing the K-T conditions, we may take the Lagrange multiplier as—A instead of A, with
A 20,1=1,2, ... ,m.

The equality constraint g, (X ) =0 leads to a slightly different case. In this case we shall only
observe that the Lagrange multiplier A, is unrestricted in sign. Ina general way , the constraint g,(.X) =0
is replaced by two inequality constraints g, (X ) <0and g (X ) > 0, with the result that the corresponding
Lagrange multipliers 2" and 2’ both non-negative, would contribute to the term (X(il) —l) ) g;(X) in
the Lagrangian function with the Lagrangian multiplier ), = k(il) - k(f) becoming unrestricted in sign.

We now summarize the general form of Kuhn-Tucker conditions which are used to solve the
constrained nonlinear programming problems.

If we have the optimization problem:

Minimize f(X) s X =(x, x50, x,)
Subject to g(X)<0 T S m
h(X)=0 ; j=1.2,....... ,m ..(24)

then the Kuhn-Tucker conditions are :

Zngl Zu_Vh_/(X)ZO



Lg(X)=0 ; i=1,2,ee. ,m

g(X)<0 ; i=1,2 . ,m
hj(X):O ; =02, ,p
A, 20 ; 1=1,2,ccn. ,m ..(25)

Where A, and ; are the Lagrange multipliers associated with the constraints g, (X ) <0 and
h, (X) = 0 respectively. The above form of Kuhn-Tucker conditions represents only the necessary

conditions of optimality. In the followin, we specify the precise conditions for the Kuhn-Tucker con-
ditions to be satisfied, which are known as the sufficient conditons.

The Kuhn-Tucker necessary conditions derived above are sufficient for the function f(X) to
have a minimum at X = X, , if f(X) is convex, gi(X) is convex if 4,, >0 and gi(X) is concave if

Aip20fori=1,2,.......... ,m.
From the saddle point theorem, F(.X,1) has a saddle pointat (X,,1,) if

F(X,, )< F(Xy4,) < F(x,2,) ..(26)
Now F(X,4,) sz g.(x

and since 1. >0, g ( X ) < (0 imply that

Z A g (X)<0 , therfore, we have

F(X,4,) < f(x) (27
Also (X A Z Aio gl

=f (Xo) +0
Therfore F(X,1,)= f(X,) .(28)

(26), (27) and (28) together imply that
S(¥y) = F(Xo ) < F(X4) < f(X)

o,  f(X,)< f(X)forall x>0

ie.  f(X) attains absolute minimumat X, .

General sufficient form of Kuhn-Tucker conditions can be stated as follows:
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Let X, be feasible solution to the problem (24). If V g, (XO) i € I where [ is the set of
constraints g, (X )< 0 which are satisfied as exact equalities at X = X ,and Vi, (X,), j=1,2. P

are linearly independent, then there exist A, and u, such that (X, A,,u, ) satisfy (25).

The condition that V g, (X 0) i € I, where I is the set of constraints g, (X ) < 0, which are

satisfied as exact equalities at X, and V &, (X 0), =12, . ,p, be linearly independent, is called
constraint qualification. Ifthe constraint qualification fails to hold good at the optimum point, then (25) may
or may not have a solution. It is not easy to verify the constraint qualification without knowing X, inprior.
However the constraint qualification is always satisfied if :

() all the inequality and equality constraints are linear.

(i) all the inequality constraints are convex and all the equality constraints are linear. Also
atleast one feasible solution y- exists which lies inside the feasible region, so that
0

g (X,)<0;i=1,2, .. ,m

and hj (X0)<0 1= 2 P

(ii1) The problem is a convex programming problem.

The conditions that ensure that a point satisfying the Kuhn-Tucker conditions is the desired point
of'optima, can be summarized in the following tables. First table ensures the conditions, which the functions
appearing in the given problem must satisfy in order for the solution of Kuhn-Tucker conditions to yield the
optimal solution, while the second table ensures the conditions that must be satisfied by the Lagrange
multipliers of a point satisfying Kuhn-Tucker conditions to be the point of optimality.

Table -1
Senes of Optimization Required Conditions
Objective Functions | Solution Space
Maximization Concave Convex Set
Minimization Convex Convex Set
Table- 2
Sense of Optimization Required Conditions
/(X) g(X) 2,
Maximization Concave Convex >0
Concave <0
linear equation unrestricted
convex <0
Minimization Convex Concave >0
linear equation unrestricted
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Example 1: Write the Kuhn-Tucker necessary and sufficient conditions for the following nonlinear
programming problem to have on optional solution.

Min.  f(x,x,)=x] —2x, —x,
s.t. 2x,+3x,<6
2x,+x,< 4
X +x,20
Solution : The Lagrangian function for the given minimization problem is :
F(X,A)=x0-2x—x, + 4 (2%, + 3x, - 6) +4, (2x,+x,-4)
the necessary conditions are :

OF (X, 1)
O Tox

>20;j=1,2

Le. 2%, =2 +24+ 24, 20
—1+34+4,20

Le. 2,42 4 +20+ 24, —u, =2
34 +4, —u, =1

(on adding surplus variables) u, and u, )

(i) Méo;izl,z
o2,
Le. 2x, + x,—-6 <0

2x,+x,-4<0
or 2x,+3x,+y, =6
2x,+x, + y,=4
(on adding slack variables y, and y,)

OF (X,A)

(i) ox, x;=0 5 j=12

e, (2x,-2 +24 +24,)x =0

(1434 + A4)x,=0

OF(X,1)

(iv) v A=0 5i=1,2
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Le. (2x,+ 3x,-6)1, =0
2x,+x,-4) 1, =0
%) Xy X, Aoy gy Uy, u, » ¥, 20

. . . 2 . ..
Since the function min f (xl, X, ) =X, —2x, — X, is convex, therefore the above conditions are

suffcient also.

Example2: Use Kuhn - Tucker condition to solve the following non-linear programming problem :

Max f(x)=8x—x
subject to x<3
x=>0

Solution : We have the Lagrangian function
F(x,2)=8x—x*+1=(3-x)

The Kuhn-Tucker conditions are ;

MSO ,or 8—2x—4<0
Ox
é’F(x,A
EY) 20 or 3—-x20
aF(’C’l)x—o,or(8—2x—z)x=0
ox
aF@J)z:o,or@—ﬂzzo
ox
x,A120
Le. 8—2x—1<0, x>0, x(8—2x—ﬂ,)0 .. (D)
320, 220, A(3-x)=0 )

By combinatorial nature of the equations atleast one of the inequality in (1) must be satisfied in
equality form, and similary for (2). Hence we have the following four possible combinations :

M)  8-2x-1=0,3-x=0, L& x=3,1=2
This solution satisfies y > () and 4 > 0.
(i) 8—2x—A =0 ,1=0 ie. x=4, A=0, which violates the condition 3 — x > (
(i) x =0, 3—x =0, which is inconsistent
(iv) x=0, 1=0, which violates the condition § —2x— 1 <0
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Thus only the first combination gives a solution to Kuhn-Tucker conditions. Since both functions

f(x)=8x—x"and g(x)=3-xare concave (note it), the solution y = 3, A =2 represents a global
maximumof f'(x) Hence the optimal solutionis x =3, 2 =2.

Example 3 : Solve the following programming problem graphically and verify the Kuhn-Tucker
conditions for the same:

Maximize S(x,x,) =2x, +3x,
Subject to X7 +x; <20

xx, =8

x,%x,20

Solution : In the figure shown below, the constraint curves x! +x; = 0 and x,x, =8 are plotted

(see fig. 7.1) Since x,,x, > 0, the feasible region falls in the first quadrant only. The curve x! +x; = 20

represents a circle with its centre at (0,0) and radius (20)% and the curve x,,x, = 8 represents a
rectangular hyperbola having its asymptotes as the co-ordinate axes. The two curves intersect each other

at points A (4,2) and B (2,4). The points (x,, x, ) lying in the first quadrant shaded by the horizontal lines

staisfy the constraints x” + xJ <20, x, >0, x, >0, whilethe points (x,,x,) lying in the first quadrant

shaded by the vertical lines do satisfy the the constraints x,x, =8; x, 20, x, > 0. Thus the required
solution must be somewhere in the double shaded region.

2

L 2x, 43y, =16
NN
N
N 2x,+3x, =12
N

x12+x22:20 2x,+3x,=6

Figure : 7.1

Now in the feasible region for the point (x,, x, ) that maximizes the function f'(x,,x, ) = 2x, +3x,
adn lies in the feasible region, we draw the lines paralled to the line 2x, + 3x, = ¢ (c is chosen arbitrarily)

moving away fromorigin till the line parallel to 2x, +3x, = ¢ touches the extreme boundary of'the feasible

region. It is noticed that the point B (2,4) gives the maximum value of f'(x,,x, ) = 16. Thus the graphical

solutin of the give problem is :
x, =2, x,=4;Max; f(x,x,)=16.
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In order to verify that this optimal solution satisfies the Kuhn-Tucker conditions also, we first find
the Lagrangian function of the given problem,which is

F(X,2) = 2x,+3x, + 4, (20-x7 —x2) + 4, (8- x,x,)

Then the Kuhn-Tucker conditions are :

Mgo, J=1,2 or, 2-24x-2,x, <0
ox; (1)
3—2/11)62_ Ale <0
Mzo, i=1,2 or, 20—x/—x; 20
0%, -(2)
8 —xx,20
aF(X”l). =0; j=1,2
0x, / |
Or’ (2—2/1'x1— /12)62) xl = O ..~(3)
(3—2/11952_ Ale) x,=0
OF(X.2) ) _o. =12
o), T ’
or, (20-x-x2)3, =0 )
(8 _xlxz)’lz =0
x1 ) x2 , j,l ,12 2 O ..-(5)

1 1
We see that if the point (2,4) satisfies these conditions, then from (1), wehave 4, = = and 4, = —

3 6
which do satisfy (2) , (3) and (4). Thus the optimal solution obtained by graphical method also satisfies the

Kuhn-Tucker conditions for optima.

Example 4 : Determine the optimal solution of the following nonlinear programming problem, using the
Kuhn-Tucker conditons :

Minimize f(xl, xz):xl2 +2X5 — X, X,
subject to X +x,28
x,%x,20

Solution : The Lagrangian function for the given programming problems :
f(X/l) = X[ +2x — XX, + /1(8—x1 —xz)

Then the Kuhn-Tucker conditions are
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OF (X,1)

ox >0 ;j=1,2 or 2x,—x,—42>0 ..(1)
—x, +4x,-420 ..(2)

MSO, or, 8—x,-x,<0

04

ie., X, +x, 28 --(3)
aFa(ii’ﬂ“) x,=0;j=1,2 or (2x, —x, A)x, = 0 ..(4)
(—x, +4x,-A)x,=0 ..(5)
aFé}jJ),i:O or  (8-x,-x,)i=0 (6)
X, X,, A2 0 ~(7)

It can easily be seen that if } = ( ,then x, =0, x, = 0 isthe only point satisfying the conditions
(1), (2),(4)and (5). But x, =0, x, =0 does not satisfy the condition (3).

Hence /2 = () and therefore
X +x,=8 [fromeq. (6)] ..(8)

Now, if x, = 0 then x, = 8. But then inequality (1) is not satisfied. Therefore, x, # 0 . similarly
if x, =0, then x, = 8§ and then inequality (2) is not satisfied. Therefore x, # 0.

Thus x, # 0 and x, # 0. Inthis case (4) and (5) imply that
2x,—x,—4=0 ..(9)
-x,+4x,-4=0 ...(10)
Solving equations (8), (9) and (10), weget x, =5, x, =3 and 1 =7
which satisy all the Kuhn-Tucker conditions from (1) to (7)

Thus the optimal solution to the given problemis x, =5 , x, =3 and the minimum value of
f (xl ’xz) is
f(x,x,)=5+2(3)" -5x3=28
Example5: Use Kuhn-Tucker conditions to determine X , X, , X, so as to Minimize

subject to X 4%, <2 f(x,x,,x;)=x] +x; +x; —4x, —6x,
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2x,+3x, 212
x,%x,20
Solution : The Lagrangian function for the given problemis :
F(X,A)=x{+x;+x; —4x,—6x,+ A, (x, +x, —=2) + A,(2x, + 3x, —12)

The Kuhn-Tucker conditions are

2x,—4+1,+24, 20 2x,+A,+ 24,24 (1)
2x,—6+A,+31,20 or 2x,+A,+ 34,26 ..(2)
2x,20 2x,20 ..(3)
X +x,-2<0 or X +x,<2 ..(4)
2x,+3x,-12<0 2x, + 3x, < 12 ..(5)
(2x,—4 +2,+24,)x,=0 ...(6)
(2x, -6 + A, +32,)x,=0 (7
(x,+x,-2)4,=0 ..(8)
(2x, +3x, —12) 1, =0 .(9)
XXy X5, 4,4, 20 ...(10)

The following four different cases arise

(1 If A, =4, =0, then from (1), (2) and (3), we have x, =2, x, =3, x, =0. But this
solution violates the inequalities (4) and (5)

(i) When 4, =0, A4, #0 . Inthis case from (1), (2) and (9)

2x,+ 24, =4, 2x,+ 31, =6 and 2x,+3x,-12 =0

which give x, =2%3 , X, =3%3 and 4, = % 3 Also from (3), x, = 0. However this solution

violates inequality (4), so this solution is also ruled out.
(i)  When 4, # 0, A, =0 Inthis case (8) gives

x, +x, =2 ,whichalong with (1) and (2) i.e., along with 2x,+ 1, =4 and 2x, + A, =6

3

1
ive X, =—,X, =— , 4, =3 Further from(3), x, =0. This solution does not violate any ofthe conditon.
g 5 5 X

(ivy  When A, #0,4,#0.Incase (8)and (9) give x, + x, =2 and 2x, + 3x, = 12, where

from x, = -6 x, =8 .Thus from(1),(2)and (3), we get 1, =68, 1,=-26 and x, = 0. This violates

the condition x, >0 and A, >0.Hence x, =-6, x, =8, x, =0 isalso discarded.
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Thus the optimal solution to the given programming problem is given by case (iii) i.e. optimal

solution s ;

X, =

1 3 :
5 X, =5 x;=0,with 2, =3 and 1,=0.

The minimum value of f'(x,,x,,x,) is

Example 6 :

4 o) 2

Solve the following nonlinear programming problem

Minimize S (xx,)=(x, =2) +(x, ~1)’
subject to X —x, <0

X +x,<2

X,,X, 20

Solution : The Hessian matrix for f(x ,x,)is:

>f >f
ox; ox, 0x, 2 0
o
ey ey 0 2

| Ox, 0x, ox;

The principal minorsare D, =2, D, = E) (2)} = 4, which are both positive. So f(x,,x,) isa

convex function. Also, the given constraint functions are convex functions, therefore, the Kuhn-Tucker

conditions for the minimization of /'(x,, x, ) are both necessary and sufficient.

The Lagrangian function is :

F(X,2)=(x,— 2)° +(ox, —1)2 +il(x12 —x2)+iz (x,+x,—2)

The Kuhn-Tucker conditions, therefore, are

L€.

2(x,-2) +2Ax,+1, 20
2(x,=1) =A,+4, 20
2x,+2Ax,+24,-420
2x,=A,+4,-220

2
x;,—x, <0
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X +x,-2<0 ..(4)

(2(x, —2)+22,%,+4,)x, =0 ..(5)
(2(x,=1)=2,+4,)x, =0 ..(6)
(x—x,) 2,= 0 (7
(x,+x,-2)2,=0 ..(8)
X%y, A, Ay 20 (9

The following four cases arise

1 When A, =0 = A, . Inthis case from (1) and (2) 2x, -4 = 0,2x, -2 = 0 ie. x, =2,
x, =1, which do not satisfy conditions (3) and (4) Thus this solution is not acceptable.

(i) When A, =0, A, #0. Then from (8)
x, +x, =2 .Also from (1) and (2)
2x,+4,-4=0, 2x,+4,-2=0

Which give x, +x, =2 and x, —x, =1

or N=T 5=
This solution violates the conditins (3), so is ruled out.
(i) When A#0; A, =0. Inthis case from (1), (2) and (7)
2x,+2A,x,-4=0
2x,-A,-2=0
x;—x,=0
From the first of these two equations
2x, +2x,(2x,-2)-4 =0
or —x, +2xx,-2=0
whichusing x? — x, =0 gives
2x; —x,—2=0 or x,=152
and thenx,=2.31

But these values of x, and x, do not satisfy conditions (4), so the solution x, =152, x, =2.31
is also discarded.
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(ivy  When A, #0, %, 0. In this case from (7) and (8), we have x’—x, =0 and
x+x,-2=0

From these two equations

X +x—-2=0

or (x,+2) (x,—1) =0

or x, =1 (since x, 20)

Thus x,=1

These values of x, and x, when put in conditions (1) and (2), give

24, +24, =2 and -\, + A, =0

or 7\'1:235 7\’2:2/3

The solution x, =1 ,x, =1, A, = 2 30 M= 2/3 does satisfy all the conditions from (1) to (9)

and so is the optimal solution of the problem.

Hence the optimal solution of the given problemis x, =1 , x, =1 and minimum value of

flx,x)=(1-2) +(1-1)" =1

Example 7 : Use Kuhn-Tucker conditions to solve the following non linear programming problem :

Maximize S(x,x,)=T7x} —6x, +5x;
subject to x, +2x, <10

x,—3x,<9

x,,x,20

Solution : The Lagrangian function for the given programming problem is
F(X,A) =7x] —6x,+5x; + A, (10—x, =2x,)+ 4, (9 — x, +3x,)

The Kuhn-Tucker conditions are :

14x,—6-A4,— 1, <0 or  14x,-A,-1,<6 (1)
10x,-24,+ 34, < 0 10x, =24, +34, < 0 -(2)
x,+2x,-10<0 ..(3)
x,—3x,-9<0 - (4)
(14x,— 61, A,)x,=0 (5
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(10x, 24, —=34,)x,=0 ..(6)

(x,+2x,-10)1,=0 (7)
(x,—3x,-9)4, =0 ..(8)
X, %, A,A,20 ..(9)

The following four possibilities arise
: 3
)] When A, =0 = A, . Inthat case from (1) and (2) X, = 7 and x, =0

This solution satisfies (3), (4) and (9) and so is a feasible solution with f'(x,,x,)=— A .

(i) When A, # 0, A, = 0. In this case equations (1), (2) and (7) are
14x,—4,=6 ; 10x, -24,=0; x,—-2x, =10

WHICHBIVE 1 =33 T2 7 igg M7 gg
This solution also satisfies all the other conditions and so is a feasible solution with

S(x,x,)=9578

(i) ~ When A, =0, A, = 0.In this case we have from (1), (2) and (8)
14x,— A, =0 ,10x, +32, =0, x, —3x,=9

hichgives 7 = 258 1 -85
which gives %, = — == X, T

This is an infeasible solution and so is ruled out.

(iv)  When A, #0; A, # 0. Inthis case from equations (7) and (8) we have,

x1=4y,x2:%, These values of x;, and x, when put in (1) and (2) give

1936 1274

5 A, =? . This solution also satisfies all the other conditions and so is acceptable with

S(x,x,)=587.72

7L1

Hence the optimal solution is

48 1
X B X, = 5 and maximum value of f(x,,x,) = 587.72 .

Example 8 : Use Kuhn-Tucker conditions to solve the following nonlinear programming problem :
Optimize S(x0,x,,x5) = 2x, +3x, = (x] +x7 +x7)
subject to x, +x,<1

2x, +3x,<6
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x,,%x, =20

Solution : Before applying Kuhn-Tucker conditions we would determine, whether the given problem is
of maximization or of minimization type. We construct the bordered Hessian matrix

L [o:p
. Q m+n, m+n

0 0 1 0]
0.0:.2..3..0

=1 2 :-2 0 0 |==10
1 3:0 -2 0
00:0 0 -2

where ;=2 , n=3:n—m=1, 2m+1=5. For maximization type, the sign of the Hessian

m+1

matrix must be (~1)"" i.e. negative, whereas for minimization it must be (~1)" i.e. positive. Since

H? = -10 < (» therefore we have to maximize. f'(x,,x,,x,) The Lagrangian function is :

F(X,2) =2x,+3x, = (x] +x; +x3) +4,(1-x, —x,) + 2,(6 —2x, - 3x,)

The Kuhn-Tucker conditions, therefore, are

OF(X,A ,
(—) <0;j=1,2,3
ox,
or 2-2x,—A,—-24,<0 (1)
3-2x,-1,-34,<0 .(2)
—2x, <0
OF(X,A .
# >0;1=1,2
OA,
or l-x,—-x,20 ..(3)
6-2x,-3x,20 ..(4)
OF(X,A) ,
—.x;=0 ;j=1,2
ox,
or (2-2x,-4,-24,).x,=0 ...(5)
(3-2x,-4,-32,)x,=0 ...(6)
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oh A, =0 ;1=1,2
or (1-x,—x,)4,=0 (7
(6—2x,—3x,)A,=0 ..(8)
X, %, A,A,20 ..(9)

Now, there arise the following four different possibilities

3
(1 When A4, =0, 4, =0.Inthis case equations (1), (2) and (3) give x, =1, X, =, x, =0.

2
This solution does not satisfy the condition (3) and so is ruled out.
(i) When A, =0 ; A, #0. Then from (8), (1), (2) and(3), we have
6-2x,-3x, =0
2-2x,-22,=0
3-2x,-32,=0
Solving these equations , we get X; = % » X, = % , X,=0, A, =% This solution again does

not satisfy equation (3) and so is discarded.

(i)

When A, #0, A, =0. Inthis case from conditions (1), (2), (3) and (7), we get

2-2x,-4,=0
3-2x,-4,=0
x;=0

I-x,-x,=0

Which give solution
1 3 3
X :Z,Xzzz, X3:O and ﬂ“l :E

This solution satisfies all the Kuhn-Tucker conditions and has f (x1 , X5, x3) = 1% .

(iv)  When A, #0,A, #0 . Inthis case equations (1), (2), (3), (7) and (8) give

x,=-3,x,=4,x,=0, 1, =-34, 1, =13. This solution violates the conditions (9)
and so is infeasible and thus discarded.

Since there is only one solution that satisfies all the conditions, therefore it is optimal.

Hence the optimal solution the given programming problem is
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13 L 17
NE R T NT 0 with maximum value of / (x,,x,,x;) = —.

7.4 Self-Learning Exercise

1.

3.

4.
3.

Ifthe objective function f (X ) and all the constraints g (X ) are convese functions, then

the solution of the correspending Kuhn-Tucker conditions gives rise the ........of f(X).

Ifa concave function f (X ) is to be maximized subject to constraints convex in nature

then the lagrange multipliers must be............... and when constraints are concave then they
must be..........

Ifa concave function is to be maximized subject to linear constraints then A are ...........

When a convex objective function is to be minimized, then the solution space isa...........

When a concave objective function is to be maximized, then the solution space is a........

7.5 Summary

In this unit we discussed the Kuhn-Tucker conditions for the nonlinear programming problems.
We also derived these conditions in the form a theorem known as Kuhn-Tucker theorem.

7.6  Answers to Self-Learning Exercise

1.

2
3.
4
5

Minimal point.
>0,<0
Unrestricted in sign.
Convex set

Convex set

7.7 Exercise

1. Define a general non-linear programming problem.
2. What are the Kuhn-Tucker conditions and how are they of fundamental improtance in the
theory of nonlinear programming.
3. Formulate the Kuhn-Tucker necessary conditions for the following problem: :
Maximize f (X )
subject to g(X)20 ;i=12.... ,m
g(X)<0 ;i=m+1, m+2,........ ,p
h(X)=0 ;j=12,..... .q
X>0
4. Use Kuhn-Tucker conditions to solve the following nonlinear programming problems:
@) Maximize F(X)=8x,+10x, —x; — x;
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subject to 3x,+2x,<0

x,%x,20

(Ans: x, =x= ‘%3, X, = 3%3,maximumvalue=2l.3)

(i)  Max. F(X)=10x, +10x, — x} — x;
subject to X, +x, <14
—Xx,+x, <6
x,,x, 20

(Ans: x, =5, x,=5,Max. f(x)=50)

(i)  Max. F(X)=12x,+21x, +2x,x, = 2x; —2x;
subject to x, +x,<10
x, <8
x,%x,20
(Ans: x, =1% , X, = 2% Max. f(X)=173416)
(ivy  Minimize F(X)=x] +x; +x;
subject to 2x,+x,—x,<0
x, =1
x, =2
x;20

miNIN
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Unit - 8
Quadratic Programming

Structure of the Unit

8.0  Objective

8.1 Introduction

8.2  Quadratic Programming Problems

8.3  Computational Procedure for Solving Quadratic Programming Problems
(Wolfe's Algorithm)

8.4  Beale's Method for Solving Quadratic Programming Problems
8.5  Self-Learning Exercise

8.6  Summary

8.7  Answer to Self-Learning Exercise

8.8 Exercise
8.0 Objective

In the previous unit, it was discussed, how the optimal solution of a nonlinear programming
problem could be obtained by solving its Kuhn-Tucker conditions. It can be experienced that
solving Kuhn-Tucker conditions, which are a set of nonlinear equations and inequalities is not that
easy in most of the problems. Alternative methods, therefore, are required to be developed for
solving such nonlinear programming problems.

In this unit, special category of nonlinear programming problems, for which specific
computational algorithm are developed, is considered. The problems under this special category
are Quadratic Programming Problems.

8.1 Introduction

The problem of optimizing a quadratic function subject to a set of linear constraints is
called a quadratic programming problem. The quadratic programming problems are
computationally least difficult to handle, when we solve the other nonlinear programming
problems. The quadratic programming problems are not only helpful in the application to real life
situations but also serve as sub problems in number of algorithms developed for general nonlinear
programming problems. In this unit we shall discuss some of the algorithms.

8.2  Quadratic Programming Problems

The quadratic programming problem is the simple most case amongst all nonlinear convex
programming problems, which arises when the objective function is quadratic but the constraints in
the given programming problem are all linear in nature. In such problems, the Kuhn-Tucker
conditions of the problem can be expressed in a form which can be solved using a computational
procedure based on the simplex method.

In general the nonlinear programming problem :

1
Maximize f(X) = CTX+EXTGX
subject to AX <0 (1)
X >0
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where ¥ and CeE", be E™, G is n x n symmetric matrix and A is an m X n matrix,
is called a general quadratic programming problem.

We recall that x 7Gx which represents a quadratic form is said to be positive definite
(negative-definite) if X'G X > O(< O) for X #( and positive semidefinite (negative

semidefinite) if X'G X > O(S O) for all x such that there is one X # () satisfying X' GX =0
It can easily be varified that if

6))] XTGX is positive semi definite (negative semi definite), then it is convex (concave) in X

over gn.
(i) XTGXx is positive definite (negative definite), then it is strictly convex (stricly concave in
Xover gn.
The above two points will help us in determining whether the quadratic objective function
f(X) is concave (convex) and then we can simply the same on the

sufficiency conditions of Kuhn-Tucker conditions for the maxima (minima) of f (X )

A general constrained optimization problem, like the general linear programming problem,
may have

(a) no feasible solution
(b) an unbounded solution or
(©) an optimal solution

The following theorem gives the conditions under which the objective function of the
quadratic programming problem (1) may have finite maximum.

Theorem 1 : In the quadratic programming (1) the function f (X ) cannot have an unbounded
maximum if Y7GX is negative definite or if C=0.If C#0 and x7qGy is

negative semidefinite then X ) may have an unbounded maximum.
g y

Proof : Consider the quadratic programming (1)

Let X # 0, then the objective function f (X ) can be written as

f(X):XTGX[1+ cx J

2 XTGX ...(2)

Let X be any point on the hypersphere ‘X‘ =r, where ‘X‘z =X"X,Then x=r X,
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fore,

A

X

where

=1. Therefore,

X'GX =r*X'GX

Let M be the maximum value of X" G.X . Now since YTGX is negative definite, there-

X'GX <r*M <0
and so X'GX > - as |X|=r—>oo ..(3)
c'x
Now let m be the minimum value of XT—GX . Then
x| 1 x| m
|XTGX| rI XTGX|  r
and therefore,
c'x
XTGX—>O as v — o0 (4)

Thus from relations (2), (3) and (4) it follows that

f(X)—)—OO as ‘X‘—)oo
lim /()=
Thus we see that &Eﬁo J(X)#% and so maximum of f(X) is not unbounded.

However if xTGx is negative semidefinite, i.e., if X7GX < (), then there is an X for

which f(X) = C" X and then for C # 0, it may be possible that f(X) —> 0 as ‘X‘ — 0, in

which case f (X ) can have an unbounded maximum. Again if C = 0, then clearly f (X ) cannot

have an unbounded maximum.

8.3

Computational Procedure for Solving Quadratic Programming Problems
(Wolfe's Algorithm)

Let us consider the quadratic programming problem (1), i.e.,

1
Maximize f(X) =C'X +EXTGX
subject to AX <b
X220
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in the following form

Maximize /(%15 Xpoeeeos X, ) = Zc + xjdjkxk
j= ] 1 k=1
subject to Zal]‘x] <b, ,i=1,2, , m
x;20 Jj=12, , N
where d,=d, foralljand k=1,2, ........... , nand
b =20 foralli=1,2, .cccoouvrvnnnnnn , m.

the Kuhn-Tucker conditions for the above problem are

(1) f le 1/+:um+/: 5 ]:1, 2, ........... , N

|
[e)
~
I
—
o
S

1 n
or cj +5[2zdjkxk) th 1/ +:um+j -
k=1

(i) [Za,, ; ) =12, . . m.

(i) p(-x,)=0

i.e., _,leJrjxj = 0 5 l= l, 2, ............. , .
(iv) Z%x/—bz <0 =12 m.
(v) AisHyij»X;20 3 I=1,2, s , m. and
Jj=12..... , N

Thus the Kuhn-Tucker conditions for the optimal solution to the quadratic programming
problem (1) are

(a) c; +dexk le a;,+H,.; =0 s J=10 2, , n

(b) [Zat/ / 1) N i=1,2, ............. , M.

(C) _xj:uerl = 0 N ] = 1, 2, ........... 5 n
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) Z%x/ <b, =12 m.

and 4,4, ;,x,20 3 Ii=1,2, . , m. and

If we consider y, 20 to be the slack variable introduced in the ;* constraint of (d)
so that (d) becomes

(e) ZGU'+xj+yi:bi

2I=1,2, . ,m
j=1
and also assume ¥, =4, ; for s J=1L 2, , 1, then
the conditions (b) and (c¢) become
€3] Ay, =0 3 0=1,2, e , m.
(2) X; u]:O s J=1L 2, , n

With the newly defined variable u, the condition (a) can be rewritten as

(h) dexk Z}Haﬁ” = s J=10 2, , 7

If the quadratic form sz 4 X

j=1 k=l

is assumed to be negative semidefinite, then the function f (X ) is concave in X and hence

the conditions (a) to (e) become necessary and sufficient conditions for the optimal solution to the
quadratic programming problem (1). Under this assumption we are to find nonnegative variables

Ay Viy X ;> U; so that conditions (), (f), (g) and (h) are satisfied and then such x; determines an
optimal solution to the given problem (1).

Iterative Procedure

The iterative procedure for the solution of the quadratic programming problem (1) using
Wolfe's method can be summarised as follows :

Step 1

Introduce slack variable y, in the ;# constraint, i=1, 2, ........... m and slack variable y,,, ;
in the ;" nonnegative constraint, j =1, 2, ......... n.
Step 11

Construct the Lagrangian function
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U:(ul, Uy,...... , Un) 5 Y:(yp Vo eeeeeeees > ym+n)

Differentiate the Lagrangian function partially w.r.t. the components of X, A, U and Y and
equate them to zero. Derive the Kuhn-Tucker conditions from the resulting equations.

Step I11

Introduce non negative artificial variables v,,v,,....,v, in the Kuhn-Tucker condition

n m
Cj+zdjkxk_zllal/+u =0 for; ]:1, 2, ........... , N
k=1 i=1

1.e., construct

i

n m
cj+2djkxk—22,a +u;+v, =0
k=1 i=1

and construct an objective function

Z==V, = V.=V,

Step IV

Obtain an initial basic feasible solution to the linear programming problem

Maximize Z==V, = V..V,
subject to kzajkxk _Z Aa;+u,+v, =—c, ; Jj=12..... , N
=1 i=1
Zay ]+yl 1 N i=1,2, ............. , m.
Vialiayiaujaszo N l_1,2, ............. ,mand
Jj=12..... , N
where Ay, =0 and
xjuJ.:O for i=1,2, . , m and
Jj=12..... , N
Step V

Use two - phase method (simplex method) to obtain an optimal solution of the
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problem in Step IV. The optimal solution so obtained is the optimal solution of the given quadratic
programming problem (1).

Note
(1)

2)

)

4)

If the given quadratic programming problem is given in minimization form, then convert it

into maximization form by suitable modifications in the objective function f (X ) Also

convert all the constraints into > form.

Alongwith the additional conditions of complementary slackness, (i.e., the
conditions 4, y,=0 and x; u, =0 for i=1,2,... ,m and j=12,.... , 1) the

problem in Step IV becomes a linear programming problem. Thus we need only to modify
Simplex algorithm to include the complementary slackness conditions. For example while

deciding to introduce y, into the basis, we must ensure that (i) either A, does not exist in the

basis or (ii) A, is going to be out of the basis when ), enters. This additional check must be
performed at every iteration of the Simplex algorithm.

The solution to the given problem is obtained by using Phase - I of the two - phase method.
Since our motto is to obtain a feasible solution, it does not require the use of Phase - II. The

only important thing is to maintain the complementary slackness conditions 4, y, =0 and
x; u; =0 every time. This imply that if A, remains in the basic solution at positive level,

then y, cannot be a basic solution with positive value. In a similar way both x; and u; can
not be positive simultaneously.
It must also be observed that the Phase - I of the problem in Step IV will terminate in usual

manner with the sum of all artificial variables equal to zero only when the feasible solution
to the problem does exist.

Example 1: Solve the following quadratic programming problem by Wolfe's Method :

Min. f(x,,x,)==10x, —25x, +10x} + x; +4x,x,

subject to x, +2x,<10
X +x,<9
X, x,20
Solution : Changing into maximizatgion form the problem is :

Max |~ f(x,x,) | =10x, +25x, ~10x] — x; —4x.x,
subject to x, +2x, <10
X +x,<9

X,%x, 20

The Lagrangian function for the above problem, therefore, is
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L(X, A)=10x, +25x, —10x] = x5 —4x,x, + 4, (10— x, = 2x, )+ 4, (9—x, — x, ).
The Kuhn-Tucker conditions for the quadratic programming problem are
10-20x, —4x, -4, -4, <0
25—4x, —2x,-22,-4,<0
x, +2x, <0

X, +x, <9

or,

10-20x, —4x, — A, — 4, +y, =0

25—4x, —2x, -2A, - 4, +u, =0
X, +2x, +y =10
X, +x, +y,=

X5 Xy, Vis Voo A sty 1ty 2 0

(on adding slack, variables)

where Ay, =AY, =ux, =u,x, =0
(complementary slackness conditions)

The above can be again written as

20x, +4x, + A4 + A4, —u, =10 .. (1)

4x, +2x, + 24, + 4, —U, =25 .. (2

X, +2x, +y, =10 ..(3)

X, +x, +y, =9 .. (4)
where X1 Xy Vis Voo Ays Aoty Uty 20
and Ay, =AY, =ux, =u,x, =0

Introducing the artificial variables v,, v, in (1) and (2) respectively, we have to

Maximize w=-v -V,

subject to 20x, +4x, + A, + 1, —u, +v, =10
A%, +2x, + 24, + 4,  —u, +v, =25
X, +2x, +, =10
X, +x, +y, =9

Xps X5 Vis Vas Ay Ay s Uy, Uy, vy, v, 20

and A =y, =u X =u,x, =0

The Simplex iterations leading to the optimal solution are shown below. The ¢/’ for all the
variables except v, and v, are zero, whereas the ¢}° for v, and v, are — 1 each.
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Simplex Table -1

basic Cal b | x | X% | A A |y | u ||y || W
variable
12 -1 | 10 4 1 1 —1 0 0 0 1 0
v, 1125 | 4 2 2 1 0| -1 0 0 0 1
b2 0 10 1 2 0 0 0 0 1 0 0 0
¥, 0 9 1 1 0 0 0 0 0 1 0 0
35|24 |6 | 3| 2 1 1 0 0 0 0
| Simplex Table -2
basic ol b | x| | Al AL |luw| uy| |l |l vl v
variable
1 1 1 1 1 1
X, 0 2 1 s 20d 20 1720 0 0 0 20 0 7
6 9 4 1 1
v, -1 ] 23 0 5 5 5 5 -1 0 0 | — 5 1
19 9 1 1 1 1
G N 3 I s o 7
17 4 1 1 1 1
A R T R o R e R T
231 0 |~ G A . ) 1 0 0 ¢ 0
2 5 5 5 5 5
Simplex Table -3
basic Co |l b |x | | A | A |y |lu ||y v ]| W
variable
5 1 1 1 1
X, 0 2 5 1 1 1|72 0 0 0 1 0
3 1 1 1
v, -1 |20 |6 [0 5132 132 —1 0 0 |- ) 1
1 1 1 1
Y 0 5 -9 0 |- 2173 113 0 1 0 |- 2 0 ]
13 1 1 1 1
Y, 0 5 —4 0 |- e 0 0 | 1 0
20 | 6 0 |- 222 1 0 0 2 0
2 2 2
2
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Simplex Table - 4

basic Cy| b x| | Al A w|w | n|l n|n V2
variable
0 5 ] 1 0 0 0 0 : 0 0 0
% 2 2
v, -1 | 15 3 0 2 1 0 -1 | -1 0 0 1 p
u, 0 10 (181 0 | -1 | -1 1 0 2 0 | -1 0
1 1
Y, 0 4 5 0 0 0 0 0[5 1 0 0
-15 | 3 0 4\—2 -1 0 1 1 0 1 0

!
Simplex Table - §

basic Cy| b x| x| Al Al w| ouw | v n| V2
" Qriﬂ]‘\lp
. |
X, 0 5 = 1 0 0 0 0 = 0 0 0
2 2
15 3 1 1 1 1
2 o | — 1 = 0 1 — ol ——1_-—1 ¢ 0 —
E 2 2 2 2 2
35 | 33 1 1 1
0| =| =| O o —=| 1| —=| = -1 =
“ 2| 2 2 22|’ 2
1
”, ol 4Lt ol ol olol ol lalo
0 0 0 0 0 0 0 0 0 1 1

The optimal solution to the problem, therefore, is x, =0; x, =5

and  Min. f(xz,x2)=Max. (—f(xl, xz))=100.
Note

In the Simplex table-2, A, were supposed to enter the basis but as y, was already in the
basis and was not in a position to leave the basis, so we did select x, to enter the basis. Similarly in
Simplex Table - 3, 4, and A, could not enter the basis, since y, and ), were present in the basis,

so we selected the next variable u, to enter.
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Example-2 Minimize  f(x,,x,)=-8x —10x, + x] +2x
subject to X +x,<5
x +2x,<8

X, x,20

Solution : Converting into maximization form the problem can be written as
Max [—f(xl, xz)]=8xl+10x2—xf—2x22
subject to X +x,<5
x +2x,<8

X, %x,20

The Lagragian function, therefore, is
L(X,2)=8x+10x, —x} = 2x; + 4 (5—x,—x, )+ 4, (8 —x, — 2x,).
The Kuhn-Tucker conditions for the quadratic programming problem are :
8—-2x, -4, —-4,<0
10-4x, -1, -24,<0

x+x, <5

x +2x, <8

or, 2x, +A4+A4, -y =8
4x, + A, +24, —U, =10
X +Xx, +y, =35
X, +2x, +y,=28

Xy X5 Vis Vs Aps Aoty sty 20

where u,, u,, y, and y, are surplus and slack variables. Also

Ay, =AY, =ux, =u,x, =0 are the complementary slackness conditions.

Now introducing the artificial variables v, v, in (1) and (2) respectively, we have to

Maximize w=—v, —v,

subject to
2x, A4 +A -y +v, =8
4x, + A, +24, —U, +v, =10
X +x, +y, =5
X, +2x, +¥, =8

X5 Xy V15 Vos Ays Ay sty Uy vy, v, 20

and Ly, =Ly, =ux =u,x,=0.

194

(1)
(2
. (3)
()



Simplex Table -1

basic Cy | b x| | Al A luy | uw | n| n|n V2
variable
vV, —1 8 2 0 1 1 —1 0 0 0 1 0
v, 110 |o 1l 2lo]l 1ol o]olis
Y 0 5 1 1 0 0 0 0 1 0 0 0
V, 0 8 1 2 0 0 0 0 0 1 0 0
4
—18 | 2 1 -2 | 3 1 1 0 0 0 0
Simplex Table -2
basic Cy | b x| | Al Ay | w ] »n|n V2
variable
12 -1 8 2 0 1 1 -1 0 0 0 1 0
0 é 0 1 l l 0 [ - l 0 0 0 l
2 2 4| 2 4
5 1 1 1 1
o | = |W|o|—=|-—=|o|5|1]|0o]o0o]|—
i 2 4| 2 4 4
1 1 1
Y, 0 3 1 0 | — 5 -1 0 5 0 1 0 | — 5
-8 | 2 0 -1 ] -1 1 0 0 0 0 1
Simplex Table -3
basic Cy| b x| x| Al A ow| o wu ||| V2
variable
3 1 1
2 -1 3 0 0 5 2 = 5 -2 0 1 5
0 é 0 1 l l 0 — l 0 0 0 l
% 2 41 2 4
ol 21 1] o] 4 2l o] = |1]o]o0]|—
X 2 4 2 4 4
ol =1 o] ol —=f 2| ol 2 |al1]o|—
V2 7 4 2 4 | 4
3 0 0| — é 2 1 l 2 0 0 l
- B 2 2
T
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Simplex Table -4

basic Ca |l b | x | % | A A [y | u ||y Iv] v
variable

4 1 2 1

A 0 2 0 0 1 3173173173 0 3 3

1 1 1 1 1 1

X, 0 2 0 1 0 g g —g g 0 —g g

1 1 1 2 1 1

X, 0 3 1 0 0 —g —g g g 0 g —g

1 1 1 1 1

R R R A A e R A

0 0 0 0 0 0 0 0 0 1 1

The optimal solution is x, =3; x, =2 and
Min. f(xl, x2)= Max. [—f(xl, X, )] =-27
Example-3  Solve the following quadratic programming problem using Wolfe's method.
Min. f(xl, xz) =X — XX, +2X) —x, — X,
subject to 2x, +x, <1
X, %x,20
Solution : Changing the given problem into the maximization form, we are to
Max. |[—f(x,%,)]=-x +xx,-2x; +x +x,
subject to 2x, +x, <1
X, x,20
The Lagrangian function for the problem is
L(X,A)==x] +x%, = 2x; + % +x, + A(1-2x, — x,)
The Kuhn-Tucker conditions are
1-2x,+x,-24 <0
14+x —4x, -1 <0
2x, +x, <0
which, on introducing slack and surplus variables, can be written as
2x, =%, + 24—y, =1 . (1)
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and

—x, + 4x2 +A —U, =1 ..(2)

2t 2 =1 (3

xl)xzy)lulyuz 2 0

Ay =ux =u,x,=0

Introducing the artificial variables v, and v, in (1) and (2) respectively, we are to

maximize w=-v, -V,
subject to 2x, — X, +21 —u, +v, _1
—X, + 4x2 +A —U, +u2 =1
2x1 + X, +y =1
xl’ x2’ y? )"9 ul)uza vl’v2 20
and )"y:ul‘xl :u2x2 :O
Simplex Table -1
basic Col | x| x| A ww| w| v| v| v
variable
Vl -1 1 2 -1 2 -1 0 0 1 0
¢ R 1l o 1] of o iR
4 ol 11211l o]l olofl 1] o] o0
2| -1 B3] 3 t ] 1] of o] 0
T
Simplex Table -2
basic Clo |l x| x| 2w lul|ly ]| v vy
variable
T N B I I O T P N
n |l 4| 4 4| 4 1
o |22 | ] o |50 o]t
% 4 4 4 4 1
0 é 2 0 —l 0 l 1 0 _l -
7 0 —2 1 l 0 1 _l
4 4 4 - 4
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In the above table, although 4 must enter the basis but ¥ does not go out of the basis. Since
both 4 and y cannot remain simultaneously in the basis, therefore instead of 4 we select next

variable X, to enter the basis (since u, is not in the basis).

Simplex Table -3

basic Co| b | x| x| A | w | u, | » vl v
variable

RN ENREERE
¢ 3 ol ~ 9 9T
ol Tl ol 1121 ol 22 LY ol 2

%2 3 9 9 9
ol L1 ol oLl ol X2 oL

N 3 9 9| 9 9
B T N I T = A S .

3 9 9| 9 9

T
Simplex Table -4
basic Col | x| 50| A | w |u, |y vi | v
variable

ol 21 ol ol (121217122

A 11 » 11|22 | 2| 1
ol 21 ol 1ol 221222

%2 11 TH T ETHETR T
ol 21 1ol ol 22121

N 11 2 1|2 2] 1
ol ol oflo] ool ol 1]1

4
The optimal solution to the problem is x; = Tk X, = 11 and

Min. f(xl, xz) = Max. I:_f(xU xz)] =
Example 4 : Solve by Wolfe's Method
Max. f(x, x,)=2x+x,—x;

subject to 2x, +3x,<6
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2x,+x,<4

X, x,20

Solution : The given quadratic problem is given in the maximization form. The Lagragian
function is :

L(X,A)=2x+x,—x} + 4, (6-2x,—3x,)+ 4, (4 - 2x, — x,)
and so the Kuhn-Tucker conditions are

2-2x,-24,-24, <0

1-34,-4, <0
2x, +3x, <6
2x, +x, <4

Introducing slack and surplus variables the above conditions can be written as

2x, + 24, + 24, —u, =2 (D)

34+ 4, —u, =1 .. (2)
2x, +3x, +¥, =6 ..(3)
2x, +x, +y, =4 . (4)

where x;,X,, 4,4, ,u,u,, ¥, ¥, 20
and also v =4y, =ux, =ux, =0

Now 7 add artificial variables v, and v, in condition (1) and (2) respectively, so that the
problem is to

maximize w=-v -V,
subject to 2x, 24, + 24, —u, +v, =2
34+ 4, —u, +v, =1
2x, +3x, +¥, =6
2x, +x, +y, =4

satisfying the condition
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XXy, A Ay Ui, ¥, 1y, v, v, 20

and 4y, =A,y, =ux, =u,x, =0 and where the ¢,"s for v, and v, are each equal to — 1

whereas for all other variables C_,-'S are zero.

Simplex Table -1

basic Cy| b x| N | Al Al w] wu [ ]| n| W V2
variable
v, a2 ([2]] o 2] 2] ] 0o fo]o| 1] op
v, -1 1 0 0 3 1 0 -1 0 0 0 1
Y 0 6 2 3 0 0 0 0 1 0 0 0
Y, 0 4 2 1 0 0 0 0 0 0 0
-3 2 0 -5 | 3 1 1 0 0 0 0

Simplex Table -2

basic Cy | b x| Al A | w | n| on|n V2
variable
0 1 1 0 1 1 __1 0 0 0 l 0
5 2 2
v, —1 1 0 0 3 1 0 —1 0 0 0 1
v, o |4 lo |l 2 2 1] o] 1] oo o
V) 0 2 0 1 21 2 1 0 0 1 -1 0
-1 0 0 31 -1 0 1 0 0 1 0
1l
Simplex Table -3
basic Cy| b x| N Al A |w | w | n|l n|m V2
variable
0 1 1 0 1 1 __1 0 0 0 l 0
5 2 2
v, 1l 1|0 o tlofl-t|o]o]o]| 1]
0 i 0 1 __2 __2 l 0 l 0 0 0
% 3 303 |3 3
0 % 0 0 __4 __4 % 0 __1 1 1 0
2 3 3133 3 -
-1 0 0 -3 | -1 0 1 0 0 1 0
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Simplex Table -4

basic Co | b |x |x | A4 | A [ |u [ ]|y | v ]| W
variable

2 2 -1 1 -1

X, 0 g 1 0 0 g 7 g 0 0 5 ?

1 1 -1 1

A 0 3 0 0 1 3 0 3 0 0 0 3
14 —4 1 -2 2

X, 0 3 0 1 0 ? g ? g 0 0 6
10 -8 2 -4 | -1 4

V) 0 3 0 0 0 ? g ? ? 1 -1 6
0 0 0 0 0 0 0 0 0 1 1

14 22

The optimal solution is X, = g; X, =

Example S

Solve the following quadratic programming problem by Wolfe's method :

Minimize
subject to 2x,+x,<6
x —4x,<0
X,%x, 20
Solution :

On changing the given programming problem in maximization form, we have to

9

and max. f(xlaxz) =

Max. | = f(x,x,) | =4x — 7 +2xx, - 2x;

subject to 2x,+x,<6
x, —4x,<0

X,%x, 20

The Lagrangian function is

S (x,x,)=—4x +x; —=2x,x, + 2x;

L(X,A)=4x —x] +2x,x, = 2x5 + 4 (6 = 2x, — x, )+ A, (—x, +4x,)

Thus the Kuhn-Tucker Condition are

4-2x+2x, -2, -4,<0
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2x, —4x, - A4 +44, <0
2x, +x, <6

x, —4x, <0

Introducing slack and surplus variables the above conditions can be written as :

2x, =2x, +2A, + A, —u, =4 .. (1)
—2x,+4x, + A, —44, —U, =0 e (2)
2x, +x, +), =6 ..(3)
x, —4x, +y, =0 .. (4)
where XXy Ay Ayl Uy, Vs s ¥, 20
and also AV, =AY, =ux, =u,x, =0

Adding artificial variables in condition (1) and (2) we have to

maximize w=-v -V,

subject to 2x, =2x, 420, + A, —u, +v, =4
—2x,+4x, + A, —44, —U, +v, =0
2x, +x, +, =6
x, —4x, +y, =0

X5 Xy s Vs Vos Ay Ay Uy, Uy, V1, v, 2 0 and
)‘lyl = ﬂ“zyz =ux, =u,x, =0

where the ¢ corresponding to the artificial variables v, and v, are —1 each and
j p g | b

corresponding to all other variables are 0.

Simplex Table -1

basic C, b X, X, A A, u, u, A v, v, v,
variable

v, -1 4 2 2 2 1 -1 0 0 0 1 0

v, -1 0 2 4 1 —4 0 -1 0 0 0 1

Y 0 6 2 1 0 0 0 0 1 0 0 0

Y, 0 0 —4 0 0 0 0 0 0 0

—4 0 2 -3 3 1 0 0 0 0
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Simplex Table -2

basic Cy | b x| A A |w [u [n|»n | V2
variable
5 1 1
v Afa o (S o e [
o lo 211 X110l olo o]l
2 2 4 | 4 4
o le 12110 |21 ol X100
N 2 4 4 4
v, o o =10 |1 |=alol|=1t]o |1 |o]1
alalo 210 i Yoo |0l
- 2 2 2
T
Simplex Table -3
basic Cy | b x| | Al A lwy | uw | v n|n V2
variable
L3 o lo B 21012126012
" |5 5 |~ 5 57
o L& ol iR 2 ol 220l
%2 5 51 s 5 |5 5
o 2 lo 220l L]2] 002
& 5 10| 5 10 | 5 10
o T2 o lol 2128 o212 11012
V2 5 10| 5 10 |5 10
Bl ol 21123121610l 2
5 5| s 5 |5 5
T
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Simplex Table -4

basic Gl p | m | | Al ALl w| u| | »nl vl »
variable
ol Sl olol 122212 02 2
" 13 3] 13] 13|13 3| 13
0 E 0 1 0 __9 L __2 i 0 __1 i
i 13 13013 13|13 TYRE
0 2 1 0 0 i __1 L i 0 L —_1
. 13 26 | 26| 13 | 13 %| 13
ol 2l o lol o2 2211 122
- 3 26 | 26| 13| 13 %| 13
0] 0]O0] o] o] o] 0] o] of 1] 1
. . 32 14
The optimal solution is X, =—, X, =— and
13 13
88
Min. f(xl,xz) = Max. [—f(xl, xz)] -3

Example 6

Use Wolfe's method to solve the following quadratic programming problem :

Minimize f(x,x,)=x" +x3 —2x —4x,
subject to X, +4x, <5
2x,+3x, <6
X, x,20
Solution Converting the given problem to maximization form, we have to

max. [—f(xl, X, )] =—x — x5 + 2x, +4x,
subject to X, +4x, <5
2x, +3x,<6

X, %x,20

The Lagrangian for the given problem, therefore, is
L(X,A)=—x] = x5 +2x,+4x, + 4 (5—x —4x,)+ 4, (6 — 2x, = 3x,)

Thus The Kuhn-Tucker condition for the problem are :
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2-2x,— A —22,<0
4-2x,—4A —31,<0

X, +4x, <5
2x, +3x,<6
On adding, slack and surplus variables the above conditions become
2x, + A4+ 24, —u, =2 (1)
2x, +4A,+ 34, —U, =4 . (2)
X, +4x, +, =5 ..(3)
2x, +3x, +y, =6 .. (4)

x19x29)‘19)“29u19u29y19y2 > 0 and also
Ay =AY, =ux; =uyx, =0
Introducing artificial variables v, and v, to the conditions (1) and (2) respectively we have to

maximize w=-v, —V,

subject to
2x, + A4+ 24, —u, +v, =2
2x, +4A,+ 34, —U, +v, =4
X, +4x, +, =5
2x, +3x, +¥, =6

X15X5, V15 Vs Ay sy Uy, V15V, 2 0
where Ay, =LAy, =ux, =u,x, =0
and the C"; corresponding to the artificial variables are —1 where as corresponding to all the

others variables are 0.

Simplex Table -1

basic Col b | x | x| A0 A | w| u, | | | vl v
variable
" o2 {20 1| 2|1 0ofofl o] 1] o0
v, -1 4 0 2 4 3 0 -1 0 0 0|1
Y 0 5 1 4 0 0 0 0 1 0 0 0
Y, 0 6 2 3 0 0 0 0 0 1 0 0
-6 | 2|2 5| -5 1 1 0 0 0 0
T
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Simplex Table -2

basic Cy| b x| | Al Al w | n| n|w V2
variable
1 -1 1
X, 0 1 1 0 5 1 > 0 0 0 5 0

¥, ol 40| 4| —=| 4

Simplex Table -3

basic Cy| b x| | Al Al w | n| nlm V2
variable
0 1 1 0 l 1 _—1 0 0 0 l 0
o 2 2 2
0 2 0 1 2 é 0 _—1 0 0 0 l
%2 2 2 2
0 4 0 0 __17 7 l 2 1 0 _—1 2
N 2 7| 2 2 | 7
0 2 0 0 7 __13 1 é 0 1 1 _—3
V2 - 2 2 | 2
0 0 0 0 0 0 0 0 0 1 1
A

Since y, and y, appear in the solution at negative level, they must be eliminated. Hence

introduce A, and drop y,.
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Simplex Table -4

basic Cy | b x| | Al A lwy | w || n|n V2
variable

o B i lolol @812 11,1212

& 17 17 (17|17 | 17 17 | 17

o I8 1ol ol 21212124, (2L

%2 17 34 |17 | 34 | 17 17 | 34

o 2o lol c 1212212, 11124

A 17 17 17|17 |17 17 | 17

o 1210 Lol ol 220024 | |29 £

V2 17 34 17| 34 | 17 17 | 17

olo ool olololo]| of1]1

The optimal solution i X ==
€ optimal solution 18 4, 17’ 2 17
13 (18Y (13} (18
and min /(x,,x,) (17) (17) (17) (17)
__%
17

8.4 Beales Method for solving Quadratic Programming Problems

Unlike worlfe’s method for solving the quadratic programming problem. the Beale’s method
does not require the use of Kuhn-Tucker conditions. Instead Beale’s method involves the
partitioning of variables into basic and non basic variables only.

The Beale’s algorithm for solving the quadratic programming problem can be summa sized
in the following steps :

Suppose that we have the quadratic programming problem.
Maximize f(X)=C"X +%XTGX

subject to AXL, =,>2b

X<0

where X and C € E", b€ E™, G is an nxn symmetric matrix and A is an mxn matrix.
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Step 1

Convert the given objective function of the problem to maximization form (if it is given in
the minimization form). Convert all the inequality constraints into equalities by introducing slack

and surplus variables 3. The given quadratic programming problem has now been put into
standard form.

Step-2

Select arbitrarily any m variables as basic variables, provided the matrix corresponding to
these m variables is non singular. The remaining n-m variables thus become non basic variables.
Denote the basic variables by

X, = (x 55X, 505 Xp ) and the nonbasic variables by

X

w5 =Xy X, oo X ).
Step-3

Express each basic variable X, entirely in terms of nonbasic variables X, 's(and u;'s if
any) using the given constraints. Now express the objective function f (X ) also in terms of the

nonbasic variables X ; 's (and u,'s if any).
step-4

Obtain the partial derivatives of /(X)) formulated above w.r.t. the nonbasic variables X, 's

and examine its nature at the point X,, =0.

o),
6))] If | OXyp Xus for at least one k, then choose the most positive one. The cor-

u=0

responding nonbasic variable will enter the basis.

of(X
() If L <0 for each k=1,2,....n—m but M #(0 for some
é’x}VBk X ng=o u, Xygo

1

u=0 u=0

10f
i=r, then introduce a new nonbasic variable u,, defined by ¥; =55 = and treat u, as a basic

variable (it will be ignored later). Go to step-3.

o/ (X)

=0
Gii) If [ oXy, ]XV,, , for each j,

NB=0
u=0

the current basic solution is optimal. Go to step -7.
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Step-5

Let xy; =X, be the entering variable identified in step (1). Now compute the minimu m of
the ratios

. a \%

min.{ —ho- ko
9

|ahk Vik

for all the basic variables x, , where a,, is a constant term and «,, is the coefficient of x_in the

expression of the basic variable x, when expressed in terms of nonbasic variables and v, is the

of

constant term and v, is the coefficient of x, in "5
k

Now if
. . . _aho

6))] the minimum of the ratio occurs for some | .. | » the corresponding basic variable x, leaves
hk

the basis.

v

(i1) the minimum of the ratio occurs for some |v , then an additional nonbasic variable, called

kk

a free variable defined by

N . A
i =5 ox, (u, 1s unrestricted in sign)
is introduced. This becomes an additional constraint equation.
Step - 6 Go to step-3 and repeat the procedure until an optimal basic solution is attained.

Step-7 Determine the optimal value of X and f(X) by setting X =0, in the expression
obtained in step-3

Example-7  Use Beale’s method to solve the quadratic programming problem

Minimize S (x,x,) =6—6x, +2x] —2x,x, +2x,
subject to X, +x,<2
x,%x,20
Solution : On changing the given problem into maximization form and introducting g slack

variable x, we get the problem in the following form:
Max. f(X)= Max[—f(xl,xz)]lz— 6+6x, —2x] +2x,x, —2X5
subject to x,tx,tx, =2
X, %y,%, 2 0.

Let us select x, arbitrarily as the basic variable (as there is only one constraint, therefore
there will be only one basic variable for the current step)
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Then we have
Xy =(X,), X =(X,, X))
Expressing the basic variable X, and f(x,,x,) in terms of X, we have
X;=2—Xx,—Xx, (1)
and  f=—6+6x,—2x] +2x,x, —2X, -(2)

The partial derivatives wrt. X, are

of

—_— =(6—4x, +2x,)x=0=6

ox ), (6= +23,)0 NE)
of

— =(2x,—4x,)x=0=0

ox ), (2 =4 )0 o)

af
Since [0’7_)61] =6> O(mos‘[ positive), there fore variable x, enters the basis.

Np

)4y Ve l_pe )2 6( 6
Nowmin J7c Pl 1~ P4 4

[Note that o, is the constant 2 in (1) and a,, is —1, the coefficient of x| in the same equation.

Similarly v is the constant 6 in (3) and v,, is — 4, which is the coefficient of x| in this equation]

6 Vio
Since this minimum, i.e., 1 corresponds to %
11

basis. We, therefore, introduce a new non basic variable u, defined by

, therefore we cannot remove x, from the

_Lan

U ) ox, =3-2x +x, ..(5)

Then the current basis is X, =(x,,x,) and X, =(x,,u,).

We again express the current basis X, and f(X) in terms ox X,,.

I 1 1
X :E+Eul +EX2 [from (5)] ...(6)
I 1 3
NESH Moo [from (1)) -(7)
1 1 31
and f——6+(5—5u1+2x2)[6—2(5——u1+ x2)+2x2}—2x22



1 1
=—6+(§—5u1 +Ex2)(3+u1 +x,) =2,

3 1 3
or, f:—5—5u12+5x22+3x2 .(8)

The partial derivatives of f* wrt. X,, are

of
= (3-3x, )0 = 3
[mz jo ( xz)ulzg .(9)
u; =0
of
=(— Xy = :O
[&Uljxl\w:() ( ul)ul=(())
u; =0

Clearly x, enters the basis

Again, we compute the ratio

)@ @3 Voo
min ’ ’
|a12| |0‘32| |"22|
[0 Oy s Vg
coefficients of x, in (6), (7) and (9) respectively.]

o are the constants in (6), (7) and (9) respectivety and a,,, a,,, v,, are the

12° 77320

31

mind 2.2 3

= 103173
2 2

— min{3,l, 1}:12&
3 3 oy,

Thus X, will leave the basis. Now the new
X,=(x,x,) and X, =(u,,x;)

Expressing the new basic variables in terms of variables in X, and also expressing f in

terms of X .., we have

NB >

31 1 1
s [from (6) and (7)]

5 1
or xlz——gul——)@ ...(10)
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2(1 1
X, ZE(E+Eu1 —ij [from (7)]

or X, =—+—-U ——=X; (11)

31, (11 2 1 1 1
andf=7—5u1+3 3t34 3% 1—g—gu1+§x3 [from (8) and (11)]

-2 2 4 2 2 2
or f=——Zu——x, +—X3U1——U12—§ ;

33 ) 3 ..(12)

The partial derivatives of f wrt.

Xy, are
of :(_L%ul 4x3j 4
OXx; )Xy,=0 3 3 3 " Juw=0 3
;=0 =0
o) (22,4
51/11 X“"B=0 3 3 3 3
u; =0

af
Since Ox <0 and o #0 , therefore, the current solution can further be improved. Howeve
3 1

the entry rule does not allow x, to enter the basis. So we introduce another nonbasic variable u,,
defined by

1of 1(2 2 4 )
Uy=——"—=7"|-+-X;—<UY
20u, 2\3 37 3
11 2
or U, =§+§X3 —gul (13)

Treating u, as the basic variable and expressing the basic variable X, =(x,,x,,u,) and the

function f'in terms of nonbasic variables (x,,u,), we have

X —§+l(u —l—lx )—lx
=3t 3TN 3 [from (10) and (13)]
1 1
or X; :E"‘Euz _Ex3 ~(14)
11 I 1 2
e el e [from (11) and (13)]
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(U
OF 7y
u l—iu + l.x
175 T TS
2 1 1
and f—_g_[ ) 3_§x3)[1+x3+2(u2

1
2 2

af
—(=x. = 1)sz0 =—1
Now since [é’xJXNB:o (= = Do

u, =0
1y =0

of » N
and [é’uz jXNfo_( 3“3)x3—0 —0

u, =0
1y =0

..(15)
[from (13)] ..(16)
11 D 4 2,
i, R I It i o
3 3 3 3
11 D 4 2,
i, R I It 2 i o
3 3 3 3
(17)

Therefore, the current basis X, =(x,,x,,u,) gives the optimal solution. Ignoring the vari-

ables u' (called the free variables) in the basis, the optimal solution is

3 3
X, 2+0 0 5 ie. x, A
1 1
Yl _0—0=— =1
x2—2 0-0 5 ie. x, A
and min f (x,x,) = (-max f)
= (- 12)
_1
2

Example :

[from (14)]

[from (15)]

[from (17)]

Solve the following quadralic programming problem by Beale’s method.

Min. f(x,,x,)=10x; +x; + 4x,x, —10x, —25x,

subject to x, +2x,<10

X +x,<9

x,%x,20
Solution :

constraints, we get

on changing the problem into maximization form and adding slack variables to the

Min. f(X)= Ma)c[—F(xlx2 )] =—10x; —x; —4x,x, +10x, +25x,
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subject to X, +2x, +x, =10
x+x, +x,=9
X5 Xy,X5,X, 20
Let us select x, and x, arbitrarily as the basic variables (since there are only two constraints.
so we can select only two basic variables). Then

X, =(x1,x2); Xy, :(x3,x4)

Expressing the basic variables x, x, in terms of nonbasic variables

x, =8+x,-2x, (1)
X, =1-x; +x, ..(2)
(by solving the constraints for x, and x,)

Now we express the function /(X) in terms of nonbasic variables x,, x,. This is
F=10(8+ 2, =25, )+ 25(1—x, +x,) = 10(8 + x, +2x,) = (1= x, +x,)" —4(8 +x, —2x,)(1-x, + x,)
or f=-568-145x,+299x, —7x; —33x; +30x,x,

Now the partial derivatives wr:z. Xy~ are

[i) =(~145—-14x, +30x,),., =145 3)
s Xivy =0 .
[i] =(299 — 66x, +30x,).., =299 @

&4 10 T

i

. — <0 .
Since | g, |, , S0 we cannot consider
.

x4=0

x, to be the entering variable. On the other hand

g
[éx} foo >0 so x, enters the basis.
x4=0
N ) {alo Ay Vi }
9 9
ow i |0‘13| |0‘23| |"33|

[ 1 299
— M2 1) |66

(Here o, ,, and v,, are the constants in (1), (2) and (3) respectively which are nothing

but 8,1 and 299, respectively whereas o, a,; and v,, are the coerfficients of x, in these

equations)
= min{4, 1 @} =1
66

Thus x, leaves the basis. New X, =(x,,x,) and X, =(x,,x;).

Expressing the basic variables x, x, interms of nonbasic variables x, and x,, and the maxi-
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mization function f(X) in terms of x,, x, we have

x, =10-2x, —x, ..(3)
X, =9-x,-x,=9-(10-2x,-x,)—x,
or x, =—1+x,+x ..(6)

and  f=10(10-2x,—x,) +25(x,—x;—10 (10-2x,—x,)" —4x,(10-2x,—x, )
or f =—900+365x,+190x, — 33x; — 10x; — 36x,x,

g
S = (365—66x, —36x, -0 =365
Now @CZ e o ( 2 3))c3=0
g = (190-20x; =362, )x,-0 =190
5 Xyy=0 x3=0

A

Here [ X ] is most positive so x, enters the basis.
2 Xyp=0

We now compute the ratio

min{am ) A 4 ) Vo }
|0‘12| |0‘42| |V22|
_{10 1 365}
min{ — ,— ,——
[=2["[1]"|-66]

. |10 365 o
, (- ratio will not be negative in any case)
2 66

Thus x, leaves the basis

Now new X, = (x,,x,) and Xy, =(x,,%;)
Now new X, =(x,,x,)and Xy, =(x;,x;)

We shall obtain x,,x,and f'in terms of x, and x,

1 1 1
X, :E(IO—xl—x3):5—Exl—Ex3 (5)

X, =9-x,—x,=9—x —(5—%=%)

1 1
or x4=4—5x1+5x3 ..(6)
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1 1 1 1 1 1
and f=10x1+25(5—5x1—5x3)—10x12 —(S—Exl—Ex3)(5—le—5x3+4x1)

35 15 33 1 3
or leOO—?x1 —?x3 —?xlz —fo +E)c1x3

The partial derivatives of f we.f. x, and x, are

(—35 33 3 j -35
=l X +t-X =
x=0

2 2 2 2
Np=0 x3=0
ox 2 2 2 Jy=0 2
3 XNB:O x3=0

Since both the partial derivatives are negative, therefore optimal solution is attained. The

optimal solution is
x,=0; x,=5 x,=4 and
Min F(x,,x,)=25-125=-100
Example-9  Solve the following quadratic programming problem by Beale’s method.

Max. f(x,,x,)=x, +x, = x] +x,x, = 2X,

subject to 2x, +x,<1
x,,%x,20
Solution : Introducing the slack variable x, to the only constraint we get

Max. f (x,,x,) =x, +x, =X, +X,X, —2x;
subject to 2x,+x,<1
x,,%x,20

Let us select x, arbitrarily the basic variable, i.e., let X, =(x,). Then expressing the basic

variable and the function f* in terms of non basic variables x,,x,
1
xlza(l—xz—)@) (1)
1 1 2 2 1 2
/’:E(l—x2 —X;)+ X, —Z(l+x2 +X5 —2x, = 2x; +2x,x;) +E)c2(l—x2 —x;)—2x;
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1 3 11
or f:Z+Ex2 —?xzz—xz)@ +(2)
[é’f) (3 1 ) 3
B e 30,7 A
Then ox, Yo 2 2 :;g 2
(2), oo
X3 )y :;0

13

%o Voo i) 2 2

Now min, {|a12|’|v22|} e —1" “11
2] | 2

Y
Since the minimum occurs corresponding to |v2 , therefore x, cannot be removed. We,
22
therefore, define a new nonbasic variable
1 1(3 11
U, :_ﬁ:_(___xz _xz)
20x, 2\2 2
or U =TT X T -(3)

Then current basis is X, =(x,,x,) and X, =(x,,4,).

Expressing the basic variable x, and x, in terms of non basic variables u, and x, also the

function f'in terms of nonbasic variables, we have

1 1 1
XI_E—E)Cz EX3
1 2 3 1 1
:—+—(“1——+—x3 3% (using (3))
2 11 4 2 2
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4 2 9

= — 4 — —_——
or X, T llul 22)c3 ..(4)
4 2 9
=1, = 2%, = 1=, =2 oy ——
T Th TN TS (11 T 22x3)
3 4 2
or Xy =—————U——X ..(5)

TR TR TR
pol,3(3 4 2 (3 42 Y _lxz_x(i_iu 2
A CTRE TR TR B TR TR T 47 3l o

I T 1t 44 +(6)

o) (21 2
Now | dx, =0 \ 11 2277 Jxw=0 11

;=0

;=0

of =(_—8u1) =0
0’)”1 X =0 11 X yp=0

;=0 u;=0

) of <0 of =0
Since { Ox; Jxy=0 and | Ju, )xy=0

u; =0 u; =0

therefore, optimal solution is attained. The optimal solution is:

4 4
= L0-0=—"
YT 11 [from (4)]
3 3
=2 _0-0=—
X, == -0-0== [from (5)]

Example-10 Solve the following quadratic programming problem by Beale’s method.
Maximize f(x,,x,)=2x, +3x, —2x’
subject to x, +4x,<4
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X, +2x, <2

X,%x,20
Solution : Introducing the stack variables to the constraints, we set
Maximize f(x,,x,)=2x, +3x, —2x’
subject to x, +4x,+x;, =4 (1)
X, +2x,+x, =2 -.(2)
X, %,y,x5,x, 20

Now let X,=(x,,x,) and X, =(x;,x,) . Then expressing x,,x, and f in terms of

nonbasic variables x, and x,

X, =X, —2x, ..(3)
x 21[2—x - X ]zl(Z—X +x,) (4)
2 2 1 4 2 3 4 .ee

f=2(x, —2x4)+§(2—x3 +x,) = 2(x; —2x4)2

1 5
or, f=3+5x3 —Ex4 —2x; —8x; —8x,x, ..(5)

The partial derivatives of fwrt. x, and x, are

of =(1—4x3—8x4) 1
0”)63 Xy 2 Yoo 2

X4=0

of :(—2—16)64—8)63) _2
0”)64 Xyoo 4 *3=0 4

X4=0

Clearly x, enters the basis

1
I’l’lii’l{alo , Xy , V1o }:min E,L,l
Now, |a13| |a23| |v33| |1| ‘1_‘ |_4|
2
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1
= min{0,2,—
{ 8}

The ratio cannot be 0 or negative, therefore the minimum ratio is 2 that corresponds to

x,. Thus x, leaves the basis. Now new X, =(x,,x,) and X, =(x,,x,)
Expressing x,,x, and f in terms of non basic variables x,,x, we have
x,=2-2x, - x, (from (2)) ..(6)
x,=4-x —4x,=4—(2-2x, —x,)—4x,
or x;=2-2x, +x, ~(7)
and f=2x,(1-x,)+3x,
=2(2-2x, —x,)(-1+2x, +x,)+3x,

or f=—4+15x, +6x, —8xj —2x§ -8x,x,

The partial derivatives of f w.rt. x, and x, are

[_) —(15-16x, —8x, )0 =15
0”)(:2 Xopo x,=0

x,=0

[ﬁ) —(6-4x, —8x, )0 =6
XWBO

of
Since [ P xzj =15 is most positive so we allow x, to enter the basis. Now
Xyg

mm{@, ay _}m{iii}
|0‘2| |0‘32| |V22| |_ | |_ | |_16|

=min {1, IE} =£
6

16

\%

which corresponds to, | | . Thus we define a new non-basic variable
22

u, =lﬁ=l(15— 16x, —8x4)
20x, 2
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15

or, U, =5 8x, —4x,

Now the current basis is X,

=(x,,x,,x;) and X,

=(xy,1)

Expressing X, and f in terms of x, and u, we have

1 15
:2+Z(1/l1 —?+4x4)—x4

11
orX1=§+ u,

L 15 1,1
2T g

11 15 1 1
2| —+ +3 -—
and /= [8 4”‘) [16 8172

(from (6) and (8))

(from (8))

(from (7) and (8))

2
x4)—2(%+%u1)

..(8)

..(9)

...(10)

.(11)

..(12)

. (from (9), (10),

97 3 1
A
Then |97 :(—_3) _3
0”)64 XNpoo 2 Ju=0 2
u ;=0
1
of =(——u1) =0
0”1/{1 XNpoo 4 %, =0
;=0 =0
0
Since [ of J =<0 and [—fj =0 therefore, optimal solution is attained. The optimal
X4 )Xngoo Uy Jxng,
N ul=0 ! M1=0
solution is
xl :l+O:l, xzzg— —O_E
8 8 16 16
X, :l+0+0:l
8
, Lo 15 ]
e, X =g B o% =y and maximum value of f(x,,x,,x;) is -5
(11) and (12))
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8.5 Self-Learning Exercise

L. The quadratic from y7Gy is called positive definite if y7Gy .....

2. If quadratic from y 7@y is negative semi-definite then y 7Gxy ........... for all X
such that, there is one X #0 satisfying ........

3. If xTGx is positive semi definite, then it is ............. in Y over g

4. If xTGx is negative semi definite, then it is .................. in Y over g

5. In Beale’s method, the objective function, at each iteration, is expressed in terms
of oo

6. Answer true or false :

Quadratic programming problem is a convex programming problem.

8.6 Summary

In this unit, we studied a specified form of the nonlinear programming problem called the

quadratic programming problem. We also studied two algorithms namely the wolfe’s algorithm and

Beale’s algorithm to solve the quadratic programming problems.

8.7 Answers to Self Learning Exercise

1.

5.

6.

>0 for all X#0

<0,X"GX =0

Convex

Concave

Non basic variables only

True

8.8 Exercise

Apply wolfe’s method to solve the following programming problems:

(1)

(ii)

Max f(X)=8x, +10x, —x; —x;

subject to 3x,+2x, <6
x,,%x,20
33 267
X :—,x =—), ax X =
(Ans. 3, =23, = Max f(X) ===

Min f(X)=x] +x; +x;
subject to X +x,+x,=2
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Sx,+2x, +x;=5
(Ans. x,=081,x, =035,x, = 035 Max f(X)=0857)
(iii)  Max f(X)=6x,+3x, —4x,x, —2x} = 3x,
subject to x, +x,<1
2x, +3x,<4
x,, x,20
(Ans. x, =1, x,=0,Max f(X)=4)
(iv)  Minimize f(X)=2x] +x; —4x, —6x,

subject to x, +3x,<3
x,,%x,20
12 15 111
x, =—,x, =—, Minimum f (X )=——
(Ans. X, =105 =15 f(X) n

Apply Beale’s method to solve the following programming problems:
(i) Min f(X)=6-6x, +2x] —2x,x, +2x,
subject to X, +x,<2

x,, x,20

3 1
(Ans. x; :E’ X, ZE)

(i)  Minf(X)=2x] +x; —4x, —6x,
subject to x, +3x, <3

x,,x, 20

(Ans. ¥ =757 %2 = g
(iii) Max. f(X)=4x, +6x, —2x; —2x,x, —2x,
subject to X, +2x,< 2

x,,%x,20

1 5 . 25
(Ans. X, =3 X, ZE,Mznf(X) :?)

(iv)  Min. f(X)=x] —2xx, +2x; —=2x,—5x,

subject to 2x,+3x,<20
3x,—5x, <5
X, —x,20
9 7 , 53
(Ans. % =2, % =2 ; Min f(X):—?)

HININ
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Unit-9
Quadratic Programming Problem and Duality
Theorem in Quadratic Programming

Structure of the Unit

9.0  Objective

9.1 Introduction

9.2 Quadratic Programming and Duality

9.3 Duality in Non-Linear Programming

9.4  Duality in Quadratic Programming

9.5  Duality Theorem for Quadratic Programming Problem
9.6  Self-Learning Exercise

9.7 Summary

9.8  Answers to Self-Learning Exercise

9.9 Exercise

9.0 Objective

Duality plays a crucial role in the theory and compulational algorithms of linear and non-linear
programming. Duality is non-linear programming is related to the reciprocal principles of the calculus of
variations, which have been known since as far back as 1927. The purpose of writing the present unit is to
introduce the non-linear programming problem and its dual and then to dovelop the duality results of
non-linear programming. These results are fruitfully applied to quadratic and linear programming
problems.

9.1 Introduction

The plan of the unit is to introduce the quadratic programming problem and its dual and then will
develop the duality theory for non-linear programming and quadratic programming. There is an extensive
literature on the theory of non-linear programming and quadratic programming, but we shall end the unit
with the duality theorem for qudratic programming problem.

9.2 Quadratic Programming and Duality

In recent years, there has been much interest in the duality theory of non-linear programming,
especially of quadratic programming. As duality plays an important role in the theory of linear programming,
it plays equally important role in the theory of quadratic programming also.

Ifthere exists an optimal solution to the quadratic programming problem max f (X ) where x is

> () or unrestricted in sign) subject to the constraints g,(X)=b,, i=1,2,.....,m, thenthere also exists an
optimal solution to the dual of this quadratic programming problem and the two optimal values are equal. If
the set of feasible solutions of the given quadratic programming problem is empty but that of its dual problem
is non-empty, then the dual problem has an unbounded solution on the set of feasible solutions. Ifthe set of
feasible solutions ofthe given quadratic programming is non-empty and the set of feasible solutions of'its dual

is empty, then this implies that the quadratic programming problem has no optimal solution.
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Unlike in linear programming problem, it can be shown that the dual of the dual of the quadratic
programming problem may not be the quadratic programming itself.

9.3 Duality in Non-Linear Programming

Consider the following non-linear programming problem :

Maximize f(x

~—"

(P1)  subject to g(X)20 ,i=12,...,m (1)
h(X)=0 =12 p

where X' =(x,,x,,...,x,) and the functions f*, g, and %, are assumed to be continuously

differentiable functions over some open set §Cg".

The Lagrangian function L (X A, u) associated with the problem (1) is given by

L(X, 2, p Zfl &/(X)+ 2, hy(X) o)

where y cpg", ueE”? and sz(ll,lz ..... A )20
Let A:{(l,y) CA20,A€eE" u eE"} ..(3)

Then treating L (X,A,u) as a function of x and (A,u) , we have the following known
definitions. The point (X, A,, 4, ) is called a Lagrangian saddle point of 7, (or ofproblem(1),if X, e E",
(Ao, 1,) €A and

L(X, Ag, o) S L( Xy, Ao, t1y) < L( Xy, A, ) forall y c prand (A, u) €A ...(4)

The function

is said to be the primal function and the function

L'(A,p)=max L(X, 2, 1), (A, u) € A (6)

is called the dual function.

The functions L. (X ) and L' (A, u) arerelated to the saddle points of the Lagrangian function 7, .

To relate the primal function L, (X ) to the primal problem (1), we need to evaluate

L(X)= min | f(X Z 2 &(X)+ 2 1y hy(X) (7)

Now if g,(X)=0 forall i=1,2, m and /,(X)=0 forall j=1,2,.....,p, then 1, =0
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(i =1,2,...., m) will minimize the Lagrangian. But if some g; (X ) < 0, then the Lagrangian can be mini-
mized by taking A, — —oo. Likewise if some /,(X) # 0, then by letting 4; —> % or —oo according as

h;(X) <0 or > (, we can minimize the Lagrangian. Thus

f(X), if g(X)20 (i=12,....m)
L(X)= and £,(X)=0 (j=12....p) 8
—oo,  otherwise

In view of the —oo in L*(X ) , we must use infimum instead of minimum in equation (5). Now

suppose that we maximize L.(X) for x ¢ g . Then the unconstrained maximization problem.

Max. L.(X) ; X cE" ..(9)

is equivalent to the primal problem (1), namely

Max. f(X) ; X eE"
st.  g(X)20 i=12,...m
h(X)=0 j=12,.p

The equivalence of (9) and the primal problem (1), the primal programis to find an optimal X,
which solves (9).

Now associated with the primal programme (9) is another program, called the dual program
which s :

Min.  L'(4,p) for (A, 1) eA ..(10)
The above dual programme is equivalent to :

(DP 1) Minimize L(X, A, u) ..(11)
subject to L(X;)b;/l)zigggL(X,l,y)
=L(4p) ..(12)

2>0 (13)

A point (X A, /,1) is said to be feasible for the dual (10) if
L(X,, A, p)=L(A, 1) 34,20
Now if X is feasible for the problem (1), then from equation (8)

L(X,)=f(X) .(14)
from (5), (6), and (12)
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L(X,)= min L(X, A, 1)< L(X,,A,,1,)

(l,u)eA
< L(X,, A, 10,)

=L (ﬂ“z »Hy )
where (X,,1,, u,) is feasible for the dual (DP 1). Therefore, it easily follows that

max L, < mi)nA L'(A, 1)

XeE" (A.u)e

We finally conclude that :

If X, and (X,,A,, u,) are feasible solution to the primal (P1) i.e. problem (1) and dual (DP1),
i.e., the problem (11), (12), respectively such that

L(X.)=L(X,,u,).then X, and (X, 2,, u,) are optimal solutions for the problem (P1) and
(DP1) respectively, i.e., the point (4, s, ) is optimal for the dual program (10).

We now state the duality theorem for the convex programming (CP). Recall that the general
convex programming problem is

(CP)  Maximize 7(X)

subject to g(Xx)z0 i=12,....m

where the functions f', g,,g,,...,g, areconcaveon g~ and /,h,,....,h, all linear. If we assume

that the functions f andall g,(X),i=12,......., m are differentiable, then clearly the Lagrangian
function

m p
L(X’Lﬂ):f(X)—Z%gl-(X)szﬂjhj(X)
i=1 j=1
isafunction x forall 3 >0
Then V, L(X,A,y) =0 ifand only if
L(X, A, u)=max L(X,A,p)

XeE"

therefore the dual programme (DP1) corresponding to the convex programme (CP) becomes :

(DCP) Minimize L(X, 2, 1)
s.t. Vi L(X,A,u)=0
A>0

In the following section we shall discuss the duality in quadratic programming.
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9.4 Duality in Quadratic Programming

For each quadratic programming problem there always esixts another quadratic programming
problem having the property that if ofthese two problems, one has finite optimal solution, then so has the
other. Interestingly optimal values of the objective functions of both the problems at their respective
optimal solutions are the same. This concept in quadratic programming is called the Daulity in Quadratic
Programming.

Let we have the quadratic programming problem

Max f (X ) ; X isunrestricted in sign
subjetto g,(X)=b,,i=12,...m.

Then the dual of the above programming problem is

Min. L(X,2)

IL(X,2)
subject to T ax. ; j=12,....n

where L(X,A):f(X)+gAi(bi - g(X))

As a particular case if the quadratic programming problem s :

Max f(X)ZCTX+%XTGX

subjectto 4 X =b (D)

X isunrestricted in sign

then its dual problem has the form
Min L(X,2)=C"X + % X'GX+ A" (b— AX)

subjectto C" + X"G-A"4=0 -(2)
Multiplying (2) onright side by X, we see that
C'X+X'GX-14X=0

o, 'AX=C"X+X"GX
1
so that for any X, A satisfying (2), L(X,A) becomes L(X,1)=~ EXTGX +A'b
and so the dual of the quadratic progamming problem
Max f(X)=C"X +%XTGX
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subject to AX =b
X unrestricted

can be written as :
Min L(X,l):—%CTGX+lTb

subject to ~-GX+A"A=C
In the above discussion, we didnot take account of the fact that, in general we need X >0.

Suppose that we have X *>0 to be the optimal solution of he quadratic programming problem
1
Max f(X)=CTX+EXTGX

subject to AX=b
X2>0 ..(3)

Then by Kuhn-Tucker Theory, there exists a ] * such that
~-GX*+ A" *>C

Max f(X)=L(X*2 *):CTX*+%(X ' GX * +(A#) [b— Ax *]

:CTX*+%(X*)TGX* (4

since  (1*)" (b— AX *)=0
Also it can be seen that

(X *) GX *+(A%) AX *=CX * .(5)
Now forany X>0 and 2 satisfying the condition - GX + 4" 1> C, ...(6)

we obtain —1" 4X <—C" X — X"GX , on multiplying (6) on the left by X and then taking the

transpose.
1
Thefore, L(X,A)S—EXTGX"'ATb (7
(since A" (b— AX)=0)
However, by (5)
1

L(X*2%)==—(X A GX *+(A%)b
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= Max (X )
Therefore, (X* A *) is anoptimal solution to the quadratic programming problem
~-GX+A">C
X=0 -(8)

Min L(X,l):—%XTGX+lTb

Furthermore, Max f(x)= Min L(X,A)

We call the quadratic programming (8) to be the dual of (3). We have already shown that if (3) has
an optimal solution then (8) also has an optimal solution.

9.5 Duality Theorem for Quadratic Programming Problem

Theorem:  For each quadratic programming problem
Max f(X)=C"X + % X'Gx,

subject to AX=b,X2>0,

there exists another quadratic programming problem (called the dual)
Min L(X,l):—%XTGX+ A'h

subject to ~-GX+A"A>=C
X=>0

and 2 unrestricted in sign, such that if one has a finite optimal solution, then so has the other.
Furthermore, the optimal values of both the problems are the same.

Proof : Suppose that y * be a finite optimal solution to the quadratic programming problem

Max f(X):CTX+%XTGX

subject to AX =b
X>b (1)
Then by Kuhn-Tucker theory there exists a 2 * such that
() V, L(X*A%)<0
ie, CT+(X*) G-(A%) 4<0
or ~GX*+ A" A*>C - (2)
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@ [V L(X%A%)]X*=0
ie. CTX*+(X*) GX*~(A%) AX*=0 -(3)
i) [V,L(X*%A%)[A*=0
ie., (%) (b-AX*)=0 (4)

and (iv) A’ is unrestricted in sign for all

i=12,...m. ..(5)
Now since x * is an optimal solution to the quadratic programming problem (1), therefore,

AX *=p and

Maximumof f (X)= CTX*+%(X*)TGX*

:CTX*+%(X*)TGX*+(A ) (b— AX¥) [using (4)]
_ (X% A% (6
1 1

Alsossince C7X *+— (X #)' GX*= (%) ax*—(x*) Gx %] + (X% GX* [fom (3)]

1

=—- (X ) GX *+(1*)" AX *
:—%(X*)TGX*+(A *)b
(since AX=b)
1
Thusmaximumoff(X)ZCTX*+E(X ' GX *
:_%(X*)TGX*+(A *)b
But fiom (6),
Maximumof f(X)=L(X* 1%)
Therefore, maximum of f(X) ,1e., f(X *) is
1
L(X*,l*) :_E(X *)TGX*+(1 *)b (7
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Now forany X >0 and 2 satisfying — GX + A" A >C, onmultiplyingby y7 onthe left and then
taking transpose on both sides, we get

- X'GX+A"AX>C"X

or “AAX <-C'X-X"GX

o, [CTX+%XTGX+ ATb}—ATAXS[CTX+%XTGX+ ATb} _CTX - XTGX
1
(onadding C' X +EX "GX + 2'b onboth sides)

or, L(X,A)S—%XTGX+ATb:Z(X,A) (let)

But from (7)

L(X*A%) =Z(X* A *):—%(X*)TGX*+(A '

=maximumof f (X),1e., f (X ¥
Therefore Z(X* A *) is aminimum of Z(.X, 1)

Hence (X* A *) is an opitmal solution to the quadratic programming problem
Min z(X,h)=— % X'GX +2"b

subject to —GX+A4A"A>C

X>0 (8)

and J unrestricted in sign. Further more we observed that max f(x)=minz(X,A)

We call the quadratic programming problem (8), the dual of the quadratic programming problem
(1). We could prove that if (1) has a finite optimal solution at the point X = X *, then its dual (8) also has
a finite optimal solution at (X* A *).

Conversely, we shall show that if the quadratic programming problem (8) has a finite optimal

solutionat (X * A *), then the quadratic programming problem (1) also has a finite optimal solution for this

we only require to show that (1) has a feasible solution if we assume that the objective function of (1) is
strictly concave function or is negative definite.

Now (X* A *) is a finite optimal solution of (8) implies that by Kuhn-Tucker theorem there exists
a §* such that

~GX *+G5*20 (- Ve L(X*2%5%)>0)
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or O*¥>X*
and A5*=bh (by V,L(X* A*65*)=0 since } is unrestricted)
re. Ao*=band §*> X *>0

which shows that § * is a feasible solution of the quadratic programming problem (1) and hence
has a finite optimal solution.

Example-1  Derive the dual of the quadratic programming problem :

Minf(X):CTX+%XTGX (1)

subject to AX>b -.(2)

Where Ais an mx n real matrix and G is an 7 x n real positive semidefinite a symmetric matrix.

Solution : The Lagrangian of the given quadratic programming problemis :
L(X.,2)=C"X +%XTGX— AT(AX -b)

:(C—ATA)TX+%XTGX+ATZ) ..(3)

where 1>0

The dual of the quadratic programming problem, then is

Max.L(X,/l)z[(C— ATA)TX+%XTGX+ A'h

subject to V, L(X,2)=0 .(4)
ie. C-4"2+GX=0 )
220 ..(6)

Using the constraint (5) in (4), we see that the dual quadratic programming problemof (1) is

Max. L(X,A)=—(GX)" X + % X'Gx+2'b

=—X'GXx +%XTGX +A'b

:—%XTGX +A'b (7)
subject to A"A-GX=C -(8)
220 .(9)
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9.6

Self-Learning Exercise

1. Ifthe set of feasible solutions of the quadratic programming problem is nonempty but ofits dual is
empty then ........

2. Ifthe set of feasible solution of the quadratic programming problem is empty but of its dual is
nonempty, then......

3. The dual of the dual ofthe quadratic programming problem is the quadratic program itself-true or
false?

9.7 Summary
In this unit, we studied the duality in non linear programming and quadratic programming. We also
proved the duality theorem for quadratic programming problem.

9.8 Answers to Self-Learning Exercise

1. The quadratic programming problem has no optimal solution.

2. The dual problem of has an unabounded solution.

3. False.

9.9 Exercise

1. Set G be a positive semidefinite symmetric matrix. Then write the dual of the following quadratic
programming problem
Minimize f'(X)= CTX+%XTGX
subject to AX >b

X=0
2. If f (X ) is a concave function, then give the dual of the following quadratic programming

problem:

Max f(X)= CTX+%XTGX

subject to AX <b

X=0

miNIN
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Unit-10
Convex Separable Programming and Algorithm

Structure of the Unit
10.0  Objective

10.1  Introduction
10.2  Definitions
10.2.1 Separable Function
10.2.2 Convex Programming Problem
10.2.3 Separable Programming Problem
10.2.4 Convex Separable Programming Problem
10.3  Theorems
10.4  Approximate Optimal Solution of'a Convex Separable Programming Problem
10.5  Piecewise Linear Approximation of a Nonlinear Continuous Function
10.6  Separable Programming Algorithm
10.7  Illustrative Examples
10.8  Summary

10.9  Exercises

10.0 Objective

In convex separable programming, convex non linear programming problems are solved by
approximating the non linear functions with piecewise linear functions and then solving the optimization
problem through the use of a modified simplex algorithm of linear programming, or in special cases, the
ordinary simplex algorithm.

10.1 Introduction

Separable programming was first introduced by C.E. Miller in 1963 : E.M.L. Beale in 1965
refered to separable programming as "Probably the most useful non linear programming technique." Mc
Millan stated that any continuous, non linear and convex separable function can be approximated by a
piecewise linear function and solved using a linear programming solution technique in his book on
mathematical programming", Wiley, New York, 1970. In 1974, Hadley also represented a technique that
how one can approxmate a nonlinear separable function.

Convex separable programming is an important and richly studied problem of convex non linear
programming problems in which the objective function as well as the constratints are separable and the
problem of maximizing a concave function or minimizing a convex function over a convex set.

Piecewise linear approximation can be done for convex as well as concave functions. Curves of
non linear objective function and constraints can be approximated by a series of piecewise linear segments
or polygonal linear approxmations.

Thus a NLPP can be reduced (approximated) to a L.P.P. and used simplex method can be applied
to obtain an optimal solution.
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10.2 Definitions

10.2.1 Separable Function

A function f (x1 3 Xy ceees X, ) is said to be separable if it can be expressed as the sum of 7 single

valued functions f (xl), fz(xz), ..... . /) (xn);i.e.

f(xl, Xyy eones xn):fl(xl)+f2(x2)+.... +fn(x,,).

For example, the linear function given by :

f (xl, Xyy eones xn) =X, +6,x, +.... +¢,x, (Where c's are constants) is a separable function.
On the other hand, the function defined by :

g(x,, %y, x, ) =x7 sin(x, +x,)+X; +x;.3x, + log(x, +x;)
is not a separable function.

10.2.2 Convex Programming Problem

The problem of maximizing a concave function or minimizing a convex function over a convex set
is called a convex programming problem.

A general convex programming problem (C.P.P.) can be defined as :

Maximize f(x)
: X" Dx
Subjectto x € s
where x € R", f(x) is a concave function on a convex set § — R” ...(10.2.1)

For Example :

)] The nonlinear programming problem (N.L.P.P.)
Maximize f (x)
Subject to g,(x)<b,,i=12,....,m and x>0
is a convex programming problem if 1’ (x) is concave and

g/(x) areconvex, V i=1,2,...,m ... (10.2.2)

(i) The quadratic programming problem
Maximize f'(x)=CX + X DX
Subjectto AX =b

and X>0

is a convex programming problem iff X7 DX is negative (negative semi) definite. .... (10.2.3)
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10.2.3 Separable Programming Problem

A nonlinear programming problem of the form :

Maximize 2 =iﬁ(x_/)

Subjectto 2.8 (*){S =2} b.i=12,...m

and x, 20, j=1,2, ... , N

in which all the functions (objective function and constraints) are separable is called a separable
programming problem.

Some times the functions are not directly separable but can be made separable by simple
substitution.

e.g.  Fornonseparable term x; x;, we can write

X, X; =y —yf, where =%(x,. +xj) and Y, :%(xl_ _xj)

convex separable programming problem : A convex programming problem in which all the
functions are separable in called a convex separable programming problem.

10.2.4 Convex separable programming Problem

A convex programming problem in which all the functions are separable is called a convex
separable programming problem.

10.3 Theorems

Theorem 1: Every local maximum ofthe general convex programming problem is its global maximum.
Proof : Consider the general convex programming problem (10.2.1)
Ifthe constraints set s is empty or singleton then the theorem is trivilly hold good.

If's is neither empty nor singleton then we shall prove this theorem by contradiction.

Let us assume that the C.P.P. has a local maximumat X € S and global maximumat X" € §

and f(x,)# f(x"), then £ (x,)< f(x")
Since f'(x) is a concave function on the convex set S, so for 0 < 1 <1
fAX +(1-2)X,] >Af(X7)+(1-2)f(X,)
> Af (X)) +(1-2) f(X,). = f(X) < f(X)

> Af(X)+ /(X)) -Af(X,) =1 (X,)
Now for any € > 0, however small,if 0 < A <1 isso chosen
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€
O<A<———
that | X*—X,|° then

{227+ (1-2) X, } - X, | =|A (X = x, )| = A|x - x| < e

ie. AX"+(1-1)X, isapointinany € — nbd of X, for which
FIAX +(1=2) X, |> f(X,)

which is contraction of the fact that f (X, ) is local minimum of the C.P.P,
So ourassumption f (X, )= f(X") is wrong.

Hence f(XO):f(X*)
Hence a local maximum of the C.P.P. is a global maximum of'it.

Theorem 2 : The set of all optimum solutions (global maximum) of the general convex programming
problem is a convex set.

Proof: Consider the C.P.P. (10.2.1)

Let Abe the set ofall optimal solutions of the C.P.P. If A is either empty or singleton then
the theorem s trivial. IfA is neither empty nor singleton, then suppose x, € S and x, € S are any two
different points of A.

Then f(x,)= £ (x,) = Globalmaximumof f (x)=k"(say)

Now, f[Ax, +(1-2A)x, |2 41 (x,) +(1-2) f(x,), 0<A<1
2 Ak"+(1-2)k
>k

Since f[Ax, +(1—4)x,|> k * cannot be true because * is global maximum, therefore
f(Axy +(1=2A)x,) =k *

= A +(l-A)x, €4, V0O<A>1

= A isaconvex set.

Theorem 3 : Ifintheoreml, f (x) is strictly concave then the C.P.P. has unique optimal solution (if it

exists).

10.4 Aproximate Optimal Solution of a Aonvex Separable Programming
Problem.

In the separable programming problem (10.2.3) some or all functions f; (xj ) and
g (xj ) , J=1,2, ..., n are non linear. We solve this problem by replacing non linear function into linear
function by piecewise linear approximations or polygonal approximations. In general, we shall determine a
local maximum for the approximating problem but if the separable programming problem is convex
programming also, then local maximum also a global maximum. Thus, if (10.2.3) is a convex separable
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programming problem then we can find a global maximum for the appromating problem and consequently
an approximate optimal solution to (10.2.3).

10.5 Piecewise Linear Approximation of a Non-Linear Continous Function

Consider an arbitrary continuous nonlinear function f° (x) ofasingle variable x, which is defined
for all x, 0 < x<a asshown in figure 10.01. We choose some points (refer to them as grid points)

0=x,<x, <X, <X; < .o <x, <a .Now for each x, we compute f; = f(x,) and connect the

points (xk , fk) and (xk+1 , fkﬂ) . We have formed approximation function f(x) , which is a pieswise
linear function.
O

(xk+l’fk+l)

>
-
Kol
. '
.
.

.
"’
4“ H
-
a

~.
S~
~~
~
~
~~
S

\ 4
=

0 X, X, X, X, X x,
Figure : 10.1
f (x) shown by dark curved.
]7 (x) shown by dashed straight line segment.

From figure, for x, < x <x,,, we have

F(x)=f+ Loy

Xeo — X,
xe€[x,, x| canbe writtenas x = 4,x, +1,,,x,,,,
Where 4, +1,,,=1and 4, 20, 4, 20 (By the definition of
line segment) and then f (x) =4, f; + A, fiu -

Indeed forany 0 = x, <x, <x, <......< X, =a, wecan write
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xzzﬂ“kxkﬁ 7()5):;2%][/( , where ;Ak =1, 4 20,

k=0,1,2, ... , r and r is any suitable integer representing the number of segments into which

the domain ofx is divided. In addition, it is required that no more than two ofthe A, be positive, and if two
are positive they must be adjacent. This restriction is called restricted basis entry rule.

By getting polygonal linear approximation (Piecewise linear approximation) of every non linear
function in the separable programming problem (10.2.3) and replacing it by its polygonal approximation,
we get the approximating problems :

Maximize Z = Zfz (x./)

J=1

Subject to Zg, (xj){ﬁ, =, Z}bi, i=12, ... , m
Jj=1

and x, 20, j=L2,...,n

Now, we can solve this linear programming problem by simplex method with restricted basis entry
rule.

10.6 Separable Programming Algorithm

The computational procedure to solve this problem is as follows.
Step I
Ifthe objective function is in minimization form, then convert it in to the maximization formand all

b., v i=1,m should be nonnegative. The separable programming problem should be convex program-

ming problem. Ifit is not a convex programming problem then the approximate optimum solution (global
maximum) may not be found. Since in general, we get a local maximum for the approximating problem.

Step 11
Divide the interval 0<x,<a, j=12,...,n as subdivided points

O0=x, <x; <x,<...<x,=a,

compute linear approxmation for each non linear f, (x ; ) and g (x,). Write the approximating

problem of the given separable programming problem.
Step 111

Solve the approxmated linear programming problem by using simplex method with the use of
restricted basis entry rule.

Step IV

Finally, find the optimal solution (approximate) x; ofthe original problem by using
X, =AjX0tAX F +A,X

Jrer
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Note : We may drop the column corresponding 4,,, j = Ln

which has departing vector in the simplex table because cost of 4, is 0.

10.7 Illustrative Examples

Example1  Find an optimal solution of the following convex separable programming problem :

Max. z =3x, +2x,
Subject to 4x” +x; <16

and x,, x, >0
Solution :

Step I

the objective function in maximization formand b,, i =1 is non negative. The objective function is

linear so it can be assumed as concave function, the constraint is convex function so the set of feasible
solutions is a convex set. Therefore the given problem is a convex separable programming problem, so any
local maximum of this problem will be global maximum.

Here, separable functions are

fi (xl) =3x, 1 (xz) =2x, are linear and
gll(xl):4x12a glz(x2)=x22 are non linear

we have to approximate g, (xl) and g,, (xz)
Step 11

From the constraint, we observe that 0 < x, <4 and 0 < x, <2 (taking the positive sign)
Subdivide 0 < x, <2 by grid points x,, =0, x;, =1, x,, =2 and 0 < x, <4 by grid points

X0 =0,x,=1Lx,=2,x,=4x,=4

Now, the grid points & values of the functions are :

X, g (xl) =4x; X, g (xz) =x;
0 0 0 0
1 4 1 1
2 16 2 4
3 9
4 16

Linear approximations are :

x, =04, +14,, +24,, +24,
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X, =04, +14,, +24,, +34,, +44,, = 4,, + 24, +34,, +44,,
g (xl) = 4x12 =04, +44, +164, =44, +164,
2o (x,)=4x; =04, + 14, +44,, + 94, +161,, =4, +44,, +91,, +164,,

Where 1,,+A,,+A,=1and A4, + 4, +4,+4,+4, =1

Now, approximating linear programming problem is :

Max. z =34, +64,, + 24, +44,, +64,; +84,,

Such that 04,y +4A4,, +164, +04,, + A, +4A,, +94,, +164,,,<16

o+ A, =1
Ap+ 4+, + 4, +4,, =1

and A, 4,5 Ays Ags Aoy Ay Anys Ay 20

With the restriction that not more thantwo of 4,,, 4,,, 4,,

and two of A, 4,,, 4,,, 4,;, 4,, arepositive if two of them are positive then they correspond to

adjacent points.

Now, add the slack varibales in first constraint and solve it by simplex method as given below.

Simplex Table -1

CB xB b A’l 0 /’LI 1 /’{12 }“20 /’{‘2 1 /122 Az 3 /12 4 S Ratlo
16
16

¥
For most negative z, —¢, = —8

A,, enters the basis and by minimum ratio rule.

A,, departs from the basis. We can drop this column of 4,

(with zero cost) in the next simplex table.
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Simplex Table -2

c, 0 3 6 2 4 6 8 0 | Min.
Cp Xp b g Ay A A A o Aoy s | Ratio

16
0 | s [0 [0 |4 1615127 |0 | 1| =
1
0 Ao 1 1 1 1 0 0 0 0 0 IZI
o |lr, |0 lO O ]oOo ]| 1] 1 |1 [1]o0o]| -
z,—c; 0 -3 -6 6 4 2 0 0
IP L
' T

z, —c¢; most negative for 4, but it can not enter the basis because its entry departs s and then
As,» 4 arenot adjacent points so they can not remain in the basis by basis entry rule. Further, take most

negative z, —c, for A, which enters the basisas A4 ,, are adjacent points.
g 6 1 1> Mo l p

Simplex Table -3

¢, 0 3 6 2 4 6 8 0 | Min.
Cp Xp b g Ay A A A o Aoy s | Ratio
-15 =7 1
3oa o o 4 3T 0 s
15 7 1 4
0 |4 [t |1 Jo |3 |5 33 1° [3]3
1
8 Ay 1 0 0 0 1 1 1 1 0 I
21 -13 3
Z]_C] 0 0 6 _7 -5 T 0 —
/I\

1 !
Since A,,, A,, cannot enter the basis due to restricted basis entry rule, therefore A,, enteres the

basis and A, depasts from the basis, now 4,;, 4,, adjacent points, 4,, column can also be dropped in the
next simplex table.
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Simplex Table -4

¢, 3 6 2 4 6 8 0 | Min
Cp | s b Ao | e | A | Aw [An | Ay | s | Ratio
3 A 1 1 1 0 0 0 0 0 0
0| 4 4 0 Az by lz 1 0 0 1
S 7 7 7 7

3 12 8 1

8 Ay 7 0 17 |7 0 1 7

NEEEERNE

5TY 7 17 |7 14

Since all z; —¢; are nonnegative, therefor it is optimal stage so the approximate optimal solution

is given by :
4 3
A‘ll =1, ﬂ’23 :7’ 124 :7

Thus, x =A4,+24,=1+0=1
X, =4, +24,+34,, +44,,

:O+2><0+3><i+4><§:ﬁ
7 7 7

24 69

and optimal value is : Max. Z =3><1+2><7—7

Example2  Solve the following convex separable programming problem :

Min. z:)c12—2xl—)c2

Such that 2x) +3x; <6

and X, x,20
Solution : The objective function of the given problem is in minimization form, so convert it into
maximization from :

Max. (£)= Max. (—z)=2x, —x +x,

It is concave functionas —yx; is negative definite and in the constraint 2x” +3x; is convex asit is

positive definite. So given problem is convex separable programming problem. Thus every relative maxi-
mum will be global maximum and every relative minimum will be global minimum.
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Here f(x)=2x —x/

8n (xl) = 2x12

are separable functions.

’ fz(xz):xz

) ng (x2) = 3x22

Now, 2x?+3x2<6=> 0<x, <~/3,0<x,<+/2

By taking

X,=0,x,=1x,=2 (say)and x,, =0, x,, =1, x,, =2 (say).

0<x, <2 and 0<x, <2,thegrid points are :

Consider the following table :

X, fi(x)=2x—x g (x)=2x X, 2o (%) =3
0 0 0 0 0
1 1 2 1 3
2 0 8 2 12

The linear approximation of non linear functions are :

x, =04, +14,+24, ; x, =04, +14,, +24,,

S (xl) =04, +14;, + 04,

8 (xl) =04, +24,+84,; g, (xz) =04, +34,, +124,,

where 4, + 4, +4,=L A, +4,,+4, =1

Thus the approximating L.P.P. for the given problem is :

Max (£)=04,+14, +04, + 04y +14, + 24,

subject to

04, +24,, +84,, +04,, +34,, +124,, <6

Ao+, + 4, =1

}'20 +}‘21 +}'22 =1

and A, 4,,, 4, Ay, A5 Ay, 20 (Withrestricted basis entry rule)

After adding slack variables in the first constraint the first simplex table is as follow:
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Simplex Table -1

c, 0 1 0 0 1 2 0 | Min.
CB xB b j"‘() /’{11 /’{12 120 /’{/21 /’{,22 S Ratlo

0 s 6 0 2 8 0 3 12 1

ol a2 | 1|1 1|1 ]o |[oflo|o

o] A, |1 Jololo |1 [t [ 1 [of -
z —c, ol-1]o0o]o [-1]=21]0

| T
Since z; — ¢, is most negative for A,, but it can not enter the basis by restricted basis entry rule.

Now there is a tie for most negative z, —¢; so we consider nearest fromtheleft i.e. z, —¢, so A, enters

the basis and 4,, departs from the basis (drop it in next table).

Simplex Table -2

c, 1 0 0 1 2 0 | Min.

Cp Xp b A, Ay | Ao | Ay | A s | Ratio

z,—c, 0 1 0 0 —2 0

|
v

Since z, —¢; is most negative for 4,, it cannot enter the basis because 1,, & 4,, are not

adjacant points so we consider A1,, as entering vector as 4,,, 4,, already in the basis (consider z, —¢, =0
from left).

Simplex Table -3

c. 1 0 1 2 0 | Min.
Cp Xp b A, Ao | A | A s | Ratio

O | —
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Simplex Table -4

¢ 1 0 1 2 0 | Min.
Cp Xp b A, Ay | A | A s | Ratio
1 2 1
2 Ay 9 0 3 0 1 )
1 A 1 1 1 0 0 0
8 2 1
1 Ay 5 0 - E 1 0 -
1
z,—c; 0 5 0 0 5

All z, — ¢, 20, therefore at the optimal level the optimal

. 8 1
solutioniis : A=1 Ay =5 Ay =5

X =4, +24,=1+2x0=1

8 2 10

X, =A, +2A, =—+—=—

2 21 ﬂ"22 9 9 9
10 19
i =1-2——=——
Mm. 2 9 9

10.8 Summary

In this unit we have studied about the following :

Objective, Introduction, Definitions of separable function, convex programming problem,
separable programming problem and convex separable programming problem (CSPP), some important
Theorems, Approximate optimal solution of CSPP, Piecewise linear approximation of non-linear

continuous function, Separable programming algorithm.

10.9 Exercise

Solve the following convex separable programming problems :

1. Max. z=x+X,

Subject to 3x,+2x; <9

and x,%, >0 (x, =0,x, = 2.1, maxz=19.45)
2. Max. z=2x,—X +X,
Such that 2x, +3x, <6
2x, +x, <4
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and

S.t.

and
Min.

Subject to

and

Max.
Such that

and

X, X%, 20

2 2
z=x; —4x, +x; —2x,

X +x,+x,<2
(x+1)x, =2

X5 Xy, X, 20

z=x] —8x,+x; —10x,

3x,+2x,<6

X, x, 20

z=(x, —2)2 +(x, -2)

X +2x, <4

X, x, 20
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(x,=Lx, =Lx;=0, minz=-2)

X, =—,X, =——, minz= ——)

(x, =16,x, =12, maxz=03)
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Unit- 11
Dynamic Programming; Bellman’s Optimality Principle

Structure of The Unit
11.0  Objective

11.1  Introduction

11.2  Basic Features of a Dynamic Programming Problem
11.3  Bellman’s Principle of Optimality

11.4  Solution Procedure

11.5  Tllustrative Examples

11.6  Summary

11.7  Exercises

11.0 Objective

In most operations research problems the objective is to find the optimal (max. or min.) values
of the “decision variables”, that is, those variables that can change or be controlled within the problem
structure. We come across a number of situations where the decision variables vary with time, and
these situations are considered to be dynamic in nature. The teachnique dealing with these types of
problem is called “dynamic programming”. It will be shown in this unit that time element is not an
essential variable rather any multistage situation in which a series of decisions are to be made is
considered a dynamic programming problem.

11.1 Introduction

Dynamuic programming is a mathematical technique dealing with the optimization of multistage
decision problems. The founding father of dynamic programming, and the man primarily responsible for
the development of dynamic programming, is Rechard Bellman. Bellman first developed the concept
of dynamic programming in the late 1940s and early 1950s while working as a researcher at the Rand
Corporation. By this teachnique decisions regarding a certain problem are typically optimized stages
rather than simultaneously. The original problem is broken into subproblems (stages), which can then
be solved more efficiently from the computational view point. The optimal solution is attained in an
alternative manner starting from first stage to the next and is completed when the final stage is reached.
Individually, each decision of the stage may not be optimal but sacrifice at one stage may result in
greater gains at some other stage. The technique of dynamic programming aims at optimizing the
decision for the situation as a whole, and the decision for the stage may be sub-optimal. So far there
is no standard mathematical formulation of'a dynamic programming problem but it is often possible to
introduce the multi stage nature in the problem so that dynamic programming may be used.

11.2 Basic Features of a Dynamic Programming Problem

1. In dynamic programming problems, decisions regarding a certain problem are typically
optimized at subsequent stages rather then simultaneously; i.e. ifa programmiis to be solved by using
dynamic programming, it must be separated into N sub problem.

2. Dynamic programming deals with problems in which choices, or decisions, are to be made at
each stage. the set of all possible choices is reflected and/or governed by the state of each stage.

3. There is a return function at every stage that evaluates the choice made at each decision in
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terms of the contribution that the decision can make to overall objective (maximization or minimiza-
tion)

4. Each stage N, the total decision process is related to its adjoining stages by a quantitative
relationship called a transition function. This transition function can either reflect discrete quantities
or continuous quantities depending on the nature of the problem.

5. Given the current state, an optimal policy for the remaining stages in terms ofa possible input
state is independent of the policy adopted in previous stages.

6. The solution procedure always proceed by finding the optimal policy for each possible input
state at the present stage.

7. A recursive relationship is always used to relate the optimal policy at stage n to the (n-1)
stages that follow.

8. By using this recursive relation, the solution procedure moves from stage to stage...each time
finding an optimal policy for each state at the stage...until the optimal policy for the last stage is found.

11.3 Bellman’s Principle of Optimality

The basic concept of the dynamic programming is contained in Bellman’s Principle of
Optimality which says that “An optimal policy (a sequence of decisions) has the property that
whatever the initial state and decisions are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision.” This principle implies that a wrong decision
taken at one stage does not prevent from taking of optimum decisions for the remaining stages.

Mathematically this principle can be written as:
S (x) = optimum[r(d,)® [, {T(x®d,)}]

d € {x}

Where, symbol denotes any mathematical relationship between x and d , including addition,
subtraction, multiplication, and root operations.

/. (x) : the optimal return from an n-stage process when initial state is x.
{x}: set ofall admissible decisions.

r(d ) : immediate return due to decisiond .

T(x ®d) : the transfer function which gives the resulting state.

Thus in the light of Bellman’s optimality principle we can write a recursive or recurrence
relation which enables us to obtain the optimal decision at each state.

11.4 Solution Procedure

We can solve a multistage problem by using dynamic programming as given below:
Step-1

Write the recursive relation connecting the optimum decision function for the #-stage problem
with the optimum decision function for (n-1)-stage sub problem or to write the Bellman’s principle of
optimality for the multistage problem.
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Step-11

Write the relation giving optimal decision function for one stage and solve it, then further, solve
the optimal decisin function for 2, 3, 4, ..., (n-1) stage sub problem successively and finally for #-stage
problem.

Note:- (1)  “Stage” means point or level at which a decision is made or a device to sequence
the decisions.

(i) “State” means a set of variables at a stage.

(i) Dynamic programming solves those problems which satisfy Bellman’s optimality
principle.

(iv) Number of variables in a problem = Number of stages.

(v)  Number of constraints in a problem = Number of state parameters in each stage.

11.5 Ilustrative Examples

Example-1: Use Bellman’s optimality principle to divide a positive quantity ‘b’ into # parts in such a
way that their product is maximum.

Or
Find maximum value of the product ofx , x , ..., x_
Whenx +x,+...+x =b,x,x,..,x >,0,using dynamic programming.

Solution : The problem has » variables and one constraint so we can consider it as n-stage problem
with one state parameter at each stage.

Suppose /. (b) denotes maximum attainable product when the quantity ‘4’ is divided into »
parts; then we have

/. (b) = Max. (X e x),r=1,2, ..., 1

1772
XX X,

Subjecttox +x,+..+x =b,x >,0

By Bellman’s principle of optimality, we have

/. (b) =max. [x . max. (X, Xy e X))
X, Xy oy 1
=max. [x.f (b-x)]
xr
= max. [z.f., (b-z)]ifx = zto be decision variable.
0<z<bh
Now, Stage-1 Forr=1, we get

f, (b) = b only one part
and optimal policy is: z=b
Stage-2 For r=2. we get
/f, (b) = max. [z. f, (b - 2)] = max. [z(b-2)], ..f,(b)=D
251



0<z<bh 0<z<bh

Now, by using differential calculus, we have

im0 s and by =2 at
dZ(fz(b))—0:> 2and 2(fz(b)) 2,at 5

dz

Therefore £, (b) inmaximum for Z = 5

So optimal policy for r =2 is (% %J and J/>(P) _% %= Z
For Stage-3  For » =3, we have
7, (b) = max. -2 =max [2(P5F)]
0<z<bh 0<z<bh

Now, %(f3(b))=0:>Z=§andd—2(f3(b))<0 atz:g

dz

. . b
Le. fi(b)1smaximumat Z = 3

wl@
wl@

b
So optimal policyis : (<> 5) and /3(0) = (

By using mathematical induction suppose the result (policy) is true for stage mi.e. r=m,

b b b
b ——
S ab)= ( ) and optimal policy is ( " m)

Now, by recurrence relation, we have

f . (b)y=max. [z.f (b-2)]= maxz( Z)

0<z<bh 0<z<bh

N - ( )_032_ b ; ti
oW, fml el | s negative

2
dz
and {dzz - (b)} at z=
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b b b
and optimal policy is . ,

~f.., (b) is maximum for z= il mrl

+1

m+1

b
fua O =(—)

m+1

b b b 4
Hence, the result is true for »=n and optimal policy is (;,;,...,;) and f, (0)= (%)

i.e. optimal policy for given problem is:

x,=x,=...=x = — and optimum value of the objective function = (%) :

1 2

2 n
n
Example-2  Make use of dynamic programming to show that

n n 1
gpl_ log p, subject to % p,=1,p.>, 0is minium, whenp, =p,=..=p = - (i 1in suffix)

Solution :We can consider the problem as an n-stage problem in which 1 can be divided into » parts
as r'"stage, r=1, 2, ..., n.

Suppose /. (1) = min. 2% p,log p, when ziipl%‘flj andp.>,0,r=1,n.
= (i=/-» s » )
Let z be current decision variable.

Stage-1 Forr=1, we get

S, (1)=min. (p, log p, ), wherep =1
=1logl
i.e. optimal policy for r=11is 1 and f, (1) =1log 1

State-2 For =2, we have

S, (1) =min. [p logp, +p,logp,], wherep, +p,=1,p,,p,2,0
Here, 1 is divided into two parts. If first part is p, =z (say) then second part is (1 - z).

By Bellman’s principle the recurrence relation is:

()= I(}%izlél- [zlogz+f (1-2)]

Forr=2, we get

S, = I(}%izlél- [zlogz+f,(1-2)]= I(gzlél- [zlogz+(1-2)log(]-2)].
letS=zlogz+(1-z)log(l-z),then

é—031+1 1-log(1l =0
7 ogz-1-log(l-2)=
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=log—=0= ==l z==
1-z 1-z
211 sz
and e = "‘1 and | 4, (positive)
L 1
ThusSErmnlmumatZZE

: : : .11 oo L
i.e. optimal policy for =2 is (E’E) andf, (1)=2 [5 OgE]

Forr= 3, we have

f, ()= I(ngsll- [zlogz+f,(1-2)]

1-z 1-z .
= min. 0 <z <1 zlogz+2 5 log > =I(}112r<11-S(say).

ds 1 dS 9

LA S | Z ..
Then 7 z 3 and — 2 dz 5 (positive).

1
Thus S is miximum or f; (1) is miximumat z =~

1, 1
)andf, (1)= —logg

UJ|»—A

: .
Optimal policy is (g 3

Let us assume that policy for »r=m is

( —) andf (1)= [—log 1]

L
m m’
[, (D)= min.[zlogz+ /.. (1-2)], byrecurrence relation.

0<z<1

11—z

— 1(‘)mn [Zlogz+m(710g7)] 1&1121 (S), say
- 1
Thend =0=>1+logz+m —l—ll g(l—zj —)=>z=——
dz m m m m+1

2 2

s 1 1 m+1

andd_zz_"'_:( )
dz z l1-z

at z =——— (positive
m+1 (p )

1
m+1

- Sismiximumat z =
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1 1 1
. Optimal policy for r=m + 1 is (m+l’m+l’m’m+lj

and £ (1)=(m+1>[(m1+1>1og(m1+1)}

1
so by mathematical induction the policy for » = n is (; a;ama;J and optimal value is

1 1

1)=n.—log—

7@ Jlog—
Hence, % Pilog Pi is miximum subject to % Pi=1,Pi>,0,r =1,n.

1
WhenP =P,=..=P = " and optimal value is log " =-log n.

Example-3  Use synamic programming to solve the following problem.
min. (x> + x>+ .. +x7)
Subjectto x. x,. ... x =b
and x, x,, ..., x, >0

Solution : There are n variables and one constraint in the problem so the problem can be con-
sidered as an n-stage problem with one state parameter in each stage. The number ‘7’ parts in which
b is factorised may be treated as 7" stage.

Suppose f.(b)= flm? % xLr=1,2,..,n.

subject to x, x,, .... x, = b
andx, x,, ..., x_ >0.
By using Bellman’s principle of optimality the recurrence relation is:

r . l)
n. » xiz] = min. [xrz _|_fr_1 ()C_r)] (1)

..... X, i=1 0<x,<b

Let x =z be current decision variable, then

. 2 b
/. (b)=min. [z tf, (;)} .(2)

0<z<h

For r=1;f, (b) = min. z* where z= b, z> 0.

. optimal policy is z = b and optimal value is f, (b) = b

For r=2;f, (b) = min. [zz+fl(§)} =min. [22"'(%)2} , () =D

0<z<h 0<z<h

255



b
LetS= Zz + (;)2 , then

2

ﬁ:o:zﬁz(é)(—%):o:z—b—3:o:>2“:bzz>zzb‘/z
dz z z z

2
ds 3b
and — 2 = 1+ =4, =p» (positive)
yA zZ

. S is minimum, so £, (b) is minimum at z= 5"

Hence, optimal policy for » =2 is (b”, b*) and optimum value is f, (b) = 2b

Forn=3,f, (b) = min . [Zz+f2(§)}=min. [22+2.2}

0<z<h 0<z<h z

ds 2b !
_ 2.2 B 022 2022
LetS=, +7,then dz 2 b
d’s  2b
and z:1+_3:3(positive)atzzb%
dz z

- Sisminimumi.e. f, (b) is minimum at 7 = b%

2,
3

Hence, optimal policy is (b%’b%’b%) andf, (b) = 3b/
We assume that the optimal policy for r=m is

(b%n’b%n""’b%i) andfm1 (b) = mb'm

. 2 b . b2
Now ., (8)= tin, [+ £, ) = it [z +m(y" )
2
b ds oy
LetS=zz+m()A,thanE:0:>22_ %1+1:0-
z
S.z= b%”“
Y. 2 Y 2+m
dzs b (m+l) b m ) 2(m+1) .. v
and “ =1+ 2 2 =1+ y = (posttive) at 7 = pm!
dZ z " b m m

. Sisminimumie. f_ (b)isminimumat z =b%n+1
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Thus, optimal policy is (b%n+1’b%1+l""’b%1+l) and f +1(b) =(m+ 1)(b)%+1

Hence by law of mathematial induction optimal policy for » =n is ( b%’ b%""’ b%) and

optimal value f (b)= ”'b%

11.6 Summary

This unit partains to introduce the

Basic Features of a Dynamic Programming Problem , Belman’s Principle of optimality,
Solution Procedure.

11.7 Exercises

Solve the following problems by using dynamic programming;:

1. Min. % x2 subject to % x=bx>0,i=1,2,..,n

2

Hence or otherwise minimize x>+ x,> + x,

subject to x, +x, +x,> 15

) ) bbb b by =n( b .
and x, x,, x, > 0 (Optimal policy L andfn( )—”(E) and f, (15)=75 atx,

2. Min. z= 2 X,
i=1
subject to 1} x=b
1 1 1
andx >o0,i=1,2,...,n (Optimal policy (bA,bA,m,bA) andf (b)=nb""

n n 1
3. -g p, log p, subject to % p,= 1 is maximum whenp, =p,=...=p_= -

11 1
(f, (1) =log n and optimal policy (n e n}

4. Maximize z=c x, tc,x,+..+¢c x,c, <c,<..<c,
subject tox, +x,+ ... +x =b
and x, x,, ..., x >0 (Optimal plolicy (0, 0, ... b) and f, (b) =c b
5. Maximize value ofy, y, y,, subject toy +y,+y, <15andy,y,»,>0.

(Optimal policy (5, 5, 5) and £, (b), 125 =max. (y, y,, V,)

RN
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Unit-12
Solution of Linear Programming Problem Using Dynamic Programming

Structure of the Unit

12.0  Objective

12.1  Introduction

12.2 Solution of Linear Programming Problem Using Dynamic Programming
12.3  Tllustrative Examples

12.4  Summary

12.5 Exercises

12.0 Objective

There are several applications of Dynamic programming. Discrete and continuous, deterministic
as well as probabilistic Problems can be solved by Dynamic Programming. Thus dynamic programming
method is very useful to solving various problems, such as inventory, replacement allocation, linear
programming, reliability improvement problem, capital Budgeting problem, cargo loading problem etc.

12.1 Introduction

The dynamic programming can be applied to many real life situations. Many real life problems can
be formulated as linear programming problems. We shall study how a linear programming problem can be
solved by dynamic programming. Thus we can formulted as a multi-stage decision problem and then can
be solved using Bellman’s principle of optimality.

12.2 Solution of Linear Programming Problem using Dynamic Programming

Let us consider the following L.P.P.

and  x,20, j=1,2,....,n

This L.P.P has n varibles with m constraints so it can be expressed as an n-stage problem with m
state parameters at each stage.

Suppose B, B5,...., % be state parameters and f} (ﬁf ,Bh ,...,ﬁﬁz) be the state function at
stage K,K=1,2,...,n.Now the state function can be defined as :

fk(ﬁfaﬁlz(a~-~,,3ﬁ1)=Magcic_/x_/,kzl,2,...n
k=t

X1 ey

K
_pK i_
Subject to Zai/xj =B,i=12,.....m
J=1

and x;20, j=12,...,n
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Then by Bellman’s principle of optimality, the recurrence relation is given by

fk(ﬁf’ﬁg"""ﬁﬁi)z A{kax'[ckxk +fk—1(1811{ _alkxk""":Bﬁi _amkxk)]l

We can determine x*k (optimal value of x,) at the stage k k=1,n. Which yields
fo(BY.Bs.... L) . Thus at the ,,# stage optimal value of x, i.e. ;ﬂ is determined.

Hnece the L.P.P. can be formulated as n-stage decision problem and then it can be solved by
dynamic programming.

12.3 Illustrative Examples

Example-1  Use dynamic programming to solve the following L.P.P.
Max z=2x,+5x,
Suchthat 2x, +x,<43
2x,<46

and x,,x,>0

Solution : The given L.P.P. has 2 variables with two constraints, so it can be considered as 2-stage
problem with two state parameters at each stage.

Let B¢ and B4 be two state paramaters and

1 ( BB ) be state function at stage k,k =1,2. The given L.P.P. can be written as the 2-stage

problem as given by

k
fo(BY.B3)= h ax.y c;x;,k=1,2
1

1>X2 .
J=

k
k.
Such that 2.¢,X; <Bli=1.2
Jj=1

and x, 20, j=1,2

The recurrence relation by Bellman’s principle is :

B B3)= Max ey, + £, (B = ays, B —are, )|
onreplacing B and B by u,,v, (forsimplicity), we get.
For stage k=1; [, v)= folx-(le)

Suchthat 2x, <u,

0<v,
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Le. fl(ul,vl)= fozx.(2xl)

u u
Such that X, <—,x, 20 = 0<x,<—, where v, >0
2 2 !

.ou u
X, :?1 and fl(ul,vl)=2.?1=ul

For stage k=2, we have

fo(u,v,)= Max.[2x, +5%, ], such that 2x,<v,,2x,+x,<u,,x,,X, 20

" fo(uy,vy)= Max.[sz + Max.(2xl)}= Max.[sz + f(u,,v, )]I
= Max.[sz +f1(u2 —X,5,V, —2X, )]l

= Max.[sz +(u, — x, )]l = Ma)c.ﬂ;4)c2 + uzjl

X2

Uy — X,

2

Where, x, 20,(v, —2x,)20, 0<
0<x, Smin.(uz,%)

. 46
ie. 0<x, Sm1n.(43,?) at u,=43, v, =46\

ie.  0<x,<23 = x,=23

Now, “ 2x,+x,<43 = u, +x, <u, =>u, =u, —x, =>u, =43-23=20

Thus optimal solutionis x, = 10 and x, =23 with optimal value Max z =135.
Example-2  Solve the following L.P.P by using dynamic programming :
Max z=3x, +5x,
subject to x, <4
x,<6
3x,+2x,<18
and x,,x,>0
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Solution : The given L.P.P. has 2 variables and 3 constraints so it can be expressed as a 2-stage

problem with 3-state prarameters at each stage. Suppose ( (u,,v,,w,) and (u,,v,,w,) be sate param-

eters at each stage.

Then the subproblems are :

f‘l(ul’vl’wl):Max'(?’xl)

Subject to x, <u,
Ox, <v,
3x,<w,

and x, >0

and fz(uz’vzawz): %ff'[sxz +3x1:ﬂ

subject to x, + 0x, <u,
Ox, +x,<v,
3x,+2x,<w,

and x,,x, >0, where u,=4,v,=6 and w, =18

Now for stage-1, we get

For stage 1

For stage 2

, w
fi(u,,v,, w,) = Max.(3x,), where V20, 0<x, Smm-(ulr?l)
3Min.{ul,%} at X, = Mzn(ul%)

Sy, vy, w, )= Max.[sz + 3x1]| = Max. [le + Max.(3x, )}

For stage-2, we have

X15%3

= Max.[sz + £, (u, vy, w, )]]

X2

= Max.[sz + fi(u, = 0x,,v, —x,, W, —2x, )]l

= Max.| 5x, +3 min‘{uz,

X2

3
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ThuS, Max.z :fz (4’6’18): Max,|:5x2 +3Mll’l{4’ 18—32)52 }:|

Where x, 20, v, —x, 20 =0<x,<v, =6

18-2x,
3

Now, Min.{4, }={4,if0Sx2S3

18-2x,

,if 3<x,<6

=2; atx, =6

"~ x,=6and Max.z=5x,+6=5x6+6=36

w, —2x2}

Now, X = Mzn{ul%} = Min.[uz, 3

=Min.{4,18;12}:2

Hence, optimal solutionis x, = 2,x, =6 and optimum value gy .z = 36
Example-3  Solve by dynamic programming :
Max.z =8x, +7x,
Subject to 2x, +x, <8
2x, +2x,<15
and  x,x,20
v

u
Solution : Hint : /i (,%)= A{ax'(gxl)a[Whe’”e x, 20,x, < zlﬁxl 5?1}

u v
‘e 0<x, < Min.| —L+,-L
1.€. 1 (2 2)

=8 Min. &,ﬁ
2°2
~x, =0
Sy, vy)= Max.[%c2 + Max(8xl)} = Ma){%cz +8 min‘(% ,%H

Vo=V

2

Where X, 20,x, <u, —u,,x, <
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, v, =V
je. 0<x,< Mzn.(u2 — ul,%)

15—
0<x, SMin.(S—ul, 52 vl)

15) 1
ie. 0<x, SMin.(S,;):_S

Hence optimal solution is X, = 0,x, = ?5 and Max .z 2122 Answer
Example-4  Solve by dynamic programming
Max.z=x,+9x,
Subject to 2x, +x, <25
x, <11

and x, 20,x,<0
u
Solution:  Hint: f,(u,,v,)= Max.(x,), where X, 20,v, 20,x, SEI

U U
=4 0<x <

2 2

fz(uz,vz)z A{fzx.[%cz +f1(u2 —X,5,V, —xz)

17 u,
= Max.| =%, + =7, where 0<x, < Min(u,,v,)= Min.(25,11)

= =106 at x, =11

Hence optimal solutionis x;, = 7,x, =1 and Max.z=106 Answer

12.4 Summary

This unit deal with the following :

Objectives, Introduction, Solution of L.P.P. using dynamic programming, Illustrative examples,
Self Learnign Exercises.
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12.5 Exercises

Solve the following L.P.P. using dynamic programming :

1. Max.z =3x,+7x,
subject to x, +4x,<8
x, <8
and x,,x,>0 (x, =8,x, = 0,maxz=24)
2. Max.z=2x, +3x,

subject to x, —x, <1

X, +x,<3
and x,,x,>0 (x, =0,x, =3,maxz=9)
3. Max .z=10x, +30x,

subject to 3x, +6x, <168

12, <240
and x,,x,>0 (x, =16,x, = 20,max z=760)
4. Max.z =2x, +5x,

subject to 3x, +x,<2
x, <3
and x,,x,>0 (x, =3,x, =3,maxz=21)
5. Max.z=3x, + x,

subject to 2x, + x, <6

and x,,x, >0 (x, =2,x, =2,maxz=8)

miNIN
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