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PREFACE

The present book entitled ‘‘Mathematical Programming’’ has been designed

so as to cover the unit-wise syllabus of M.A./MSc. Mathematics-10 course for M.A./

M.Sc. (Final) students of Vardhaman Mahaveer Open University, Kota. It can also be

used for competitive examinations. The basic principles and theory have been explained

in a simple, concise and lucid manner. Adequate number of illustrative examples and

exercises have also been included to enable the students to grasp the subject easily.

The units have been written by various experts in the field. The unit writers have

consulted various standard books on the subject and they are thankful to the authors

of these reference books.
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1.10 Objective

After studying this unit you will be able to understand a hyperplane in Euclidean space E n and its
use in the solution of linear programming problems. You will also be introduced about a convex function
defined on a convex set.

1.1 Introduction
A linear relation in two unknowns (variables) represents a straight line in two dimensional space. A

linear relation in three variables represents a plane in three dimensional space. On generalization what is
represented by linear equation in n  unknowns, is called hyperplane in n  dimensional space E n . It plays
an important role in the theory of linear programming. In the last of the unit, concept of convex function is
introduced which has importance in the study of non linear programming problems.

1.2 Some Important Definitions

(i) Set of points :- A linear equation in x x1 2,  i.e. the equation of the form a x a x b1 1 2 2 

represents a line in E 2 . Similarly a linear equation in x x x1 2 3, ,  i.e. a x a x a x b1 1 2 2 3 3    or X b ,

where   a a a1 2 3, ,b g  and X x x x 1 2 3, ,  represents a plane in E 3 . Both of these can be considered as
the sets of points as follows :

S x x a x a x b1 1 2 1 1 2 2  , :b gm r  and

S x x x a x a x a x b2 1 2 3 1 1 2 2 3 3   , , :b gm r
Similarly, the set

S x x x x a x a x a x bn n n    1 2 3 1 1 2 2, , .... : ...b gm r
is defined in n-dimensional space E n .

(ii) Line and line segment : The line joining two points X1  and X E n
2   is the set of points

given by

S X X E and X X X RL
n     : ,  1 21b gm r

and the line segment joining two points X1  and X 2  is the set

S X X E and X X Xn      : ,  1 21 0 1b gm r
(iii) Hyperplane : The equation c x c x c x c x zn1 1 2 2 3 3 2    ....  or cX z  defines a hy-

perplane in n-dimensional space E n . Here not all c si '  are zero simultenuously..

In this by putting different values of c si '  and z, we can get different hyperplanes. Further a hyper-

plane is a set of points X E n satisfying CX Z . Thus the set

H X CX Z :m r  is called a hyperplane.

The vector C  is called a vector normal to the hyperplane and C
C
C

   is called unit normal.

Note : (i) If z 0 , then CX 0 , then the hyperplane is said to pass through the origin.
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(ii) Two hyperplanes C X Z1 1 1  and C X Z2 2 2  are said to be parallel, if they have the same unit

normals i.e. if  c c1 2  for some  ,  being non-zero scalar..

(iv) Neighbourhood of a point : A subset N of E n  is said to be an -neighbourhood (-nbd)

of the point X E n
0   s.t.

N X X E X Xn   : , 0m r
being a small positive number.

(v) Interior and boundary points : A point X 0  is said to be the interior point of the set S if
there exists at least one nbd of the point X 0  which is wholly contained in the set S. On the otherhand,

a point X 0  is said to be the boundary point of the set S E n  if every -nbd of X 0  contains at least one
point not belonging to S and atleast one point belonging to S.

(vi) Closed and open sets : A subset S E n  is said to be closed if every boundary point of

S belongs to it. On the otherhand, a subset S E n  is said to be an open set if it contains only interior
points.

A hyperplane divides the whole space E n  into two half spaces, known as closed half spaces given by

H X X E CX Zn
1   : ,m r , and  H X X E CX Zn

2   : ,m r
Also, a hyperplane divides the whole space E n  into three mutually disjoint sets given by

S X X E CX Zn
1   : ,m r ,  S X X E CX Zn

2   : ,m r
and S X X E CX Zn

3   : ,m r . Here S1  and S3  are called open half spaces.

Note : The objective function and coustraint equations of the l.p.p. represents hyperplanes and each
constraint sign ,b g  is a closed half space produced by the hyperplane given by the contraint by taking
‘=’ sign in place of   or  .

(vii) Convex set : A set of points S E n  is said to be convex if the line segment joining any
two points of S lies wholly in the set S. In otherwords, a set S is said convex if for any two points
X X S1 2,  ,  X X S1 21  b g , where 0 1  .

Fig 1.1 (a) Convex Sets

Fig 1.1 (b) Non-Convex Sets

A

B
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Q
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R1
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(vii) Extreme point : A point X 0  of a convex set S is said to be an extreme point if it does not
lie on the line segment of any two points, different from X, in the set.

The vertices of a polygon and every point on the circumference of the circle is the extreme point of
the convex set of the points on and within the polygon or circle.

1.3 Some Theorems
Theorem 1.1 : A hyperplane is a closed set.

Proof : Let the point set H X X E CX Zn  : , 0m r  be a hyperplane. To show that it is a closed

set, we take a boundary point X 0  of H and prove that X H0  .

Contrary, we suppose that X 0 X H0  , then either CX Z0 0  or CX Z0 0 .

Let CX Z Z0 1 0  . Now CX C X X X CX C X X0 0 0 0 0     b g b g

   C X X C X X  0 0b g b g

CX Z C X X  1 0b g
   CX Z C X X1 0 ...(1)

Now consider  nbcd of X 0  i.e. X X 0 , where


Z Z
C

0 1

2 , than (1) implies that

CX Z Z Z Z Z Z 





1
0 1 1 0

02 2 .

If shows that  nbd of X 0  contains no point of the hyperplane H, which is the contradiction as
X 0  is a boundary point.

 C X Z0 0

Similary we can show that C X Z0 0 .

 Only CX Z0 0  is possible.

 X 0  is the point in hyperplane

 X H0 

 H  is a closed set.

In a similar way, one may prove that closed half spaces are also closed sets and open half spaces are open
sets.
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Theorem 1.2 : A hyperplane is a convex set.

Proof : Let H X X E CX Zn  : ,m r  be a hyperplane in E n  and X X1 2,  be two points of H, then

CX Z1   and CX Z2  . Now, if X X X3 1 21 0 1      b g , , then

CX C X X CX CX Z Z Z3 1 2 1 21 1 1              b gm r b g b g
i.e. X3  satisfies CX Z

Hence X X X H3 1 21    b g   and therefore by difinition H is a convex set.

Theorem 1.3 : The closed half spaces H X CX Z1  :l q  and H X CX Z2  :l q  are convex sets.

Proof :  Let X X1 2,  be two points of H1 , then CX Z CX Z1 2 , . Now if 0 1  , then

C X X CX CX Z Z     1 2 1 21 1 1       b g b g b g
 Z

  X X H1 2 11  b g
 H1  is a convex set.

Similarly, it can be shown that H2  is also a convex set.

Theorem 1.4 A point y  in space either belongs to a given closed convex set X  or there exists a
hyperplane through y  so that whole of the X  lies in one open half space produced by that hyperplane.

Proof : The proof is clear for two and three dimensions. In E 2 , the situation is show in figure 1.2.

Suppose y X  and w X be the point closest to y  i.e. the distance of w  from y  is minimum.

Thus w y u y
u X

  


min

 w y u y   ,   u X ...(1)

Figure 1.2

Such a point w  always exists and unique as the set X  is closed. To prove uniqueness, let w1  and
w2  be two points of X  with the some minimum distance. Than

1
2

1
2

1
21 2 1 2 1 2w w y w y w y w y w y         b g b g b g c h

y

X2

O X1

w

X
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 w y w y1 2   , we get

1
2 1 2 1 2w w y w y w y     b g

Thus we have obtained a point 
1
2 1 2w w X b g  (as X is convex) which is nearer to y  then, w1

and w2 . This contradicts that w1  and w2  are closest to y . Hence w  is unique.

To prove that whole of X  lies in one half of closed space :  Let u  is an arbitrary point of X
and X  is convex set, we have

 u w X  1b g , 0 1 

From (1)  u w y w y    1
2 2b g , 0 1 

 w y u w w y    b g b g
2 2

 w y w y u w u w w y       2 1 2 2 22 b g b g

 2 01 2 2 w y u w u w    b g b g
Taking  0,  we get

2 01 2w y u w u w    b g b g 

Taking 0, , we get

w y u w  b g b g1 0

 w y u y w y    b g b g b g1 0.

 w y u y w y   b g b g1 2.

But w y 2 0  as w X and y X

 w y u y  b g b g1 0.

 w y u w y y  b g b g1 1. . ..(2)

If we take C w y b g'  and z w y y b g' . , then CX z  is a hyperplane through y  as

c y w y y z  b g' .

and satisfies cu c y z  ,  u X
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Thus we have found a hyperplane through y  and X  lies in one open half space produced by this
hyperplane. Such a plane is called separating hyperplane.

1.4 Supporting Hyperplane
A hyperplane cx z  is said to be a supporting hyperplane at a boundary point w  of a convex set

X  if

(i) cw z  i.e. the hyperplane passes through w .

(ii) cu z  or cu z   u X  i.e. the whole of X  lies in one half closed space produced by
cx z .

Theorem 1.5 The optimal hyperplane in a L.P.P. is a supporting hyperplane to the convex set of feasible
solutions.

Proof : Suppose, we have a L.P.P. as

Max Z cx

s.t. AX b X , 0

we know that the set of all feasible solutions to L.P.P. is a convex set and the objective function is a
hyperplane. We move this hyperplane parallel to itself over the convex set of feasible solutions (feasible
region) until z is made as large as possible so that the hyperplane contains at least one point of the feasible
region. Note that the hyperplane corresponding to higher values of z will contain a point of feasible region.
This is a hyperplane corresponding to the optimum (maximum) value of z. This is known as optimal hyper-
plane.

To prove that no point of this hyperplane is an interior point of convex set. For this, suppose that
CX Z 0  is the optimal hyperplane and X 0 is an interior point of X  on this hyperplane. Since X 0  is an
interior point of the set X, there exists 0  s.t. -neighbourhood of X 0  wholly lies in the set X. Thus the

point X X c
c1 0 2

 
F
HG

I
KJ  is in X  and z cx cx c c

c
z

c
c

z c1 1 0 0

2

02 2 2
  


 


 


  
.

 z CX z1 1 0   as 

2

c  is posivtive.

Thus we have obtained a point X X1   which gives higher values of objective function than z0

(the maximum value) which is a contradiction as z0  is the optimal value. Therefore, X 0  is not an interior
point, but boundary point of X . Thus CX Z 0  is a hyperplane containing a boundary point of x . Also if
u X  is any point then cu z z  0  (as z0  is maximum). Hence X lies in one closed half space produced
by the hyperplane CX Z 0 . Therefore CX Z 0  is the supporting hyperplane at x0 .

Theorem 1.6 Every supporting hyperlane of a closed convex set which is bounded from below contains
at least one extreme point of the set.

Proof : Let CX Z 0  be a supporting hyperplane at x0  to the closed convex set X, bounded from below..

Let T be the intersection of X and the hyperplane S x cx z ; 0l q .



8

It is clear that atleast x T0   showing that T is not empty. Now we shall prove this theorem by
showing that T has an extreme point and the extreme point of T are also the extreme point of X. Then
hyperplane will clearly contain at least one extreme point of X.

Let t T  be an extreme point of T; then by definition there do not exist x1and x T2  . s.t.

t x x   1 21b g , 0 1  , x x1 2

Now suppose T is not an extreme point of x t T t x  b g . Then  x x X1 2,  such that

t x x   1 21b g , 0 1  . Since cx z 0  is a supporting hyperplane, cx z1 0  and cx z2 0 . Also Also t T
lies on the hyperplane, we must have c t z 0 .

But c t c x x cx cx        1 2 1 21 1b gc h b g
This is equal to z0  if and only if cx z1 0  and  cx z2 0  as  0 , 1 0 b g . Hence x x1 2,  also

lies on the hyperplane and hence belonging to T. Thus we have obtained two points x1  and x2  of T s.t.

t x x   1 21b g ,  0 1 

This is a contradiction as t  is an extreame point of the set T. Hence t  is also extreme point of X.

Now it is to show that there exists an extreme point of T. For this, we shall actually find an extreme
point. Select that point (vector) of T for which the first component is minimum. Such a point will exist
because T is bounded from below as X is bounded from below.

If this point is not unique, i.e. the first component has no unique minimum, then out of these points
(for which first component is minimum select the point with the second component minimum. Still the point
is not unique, then select the point out of these for which third component is minimum and continue this
process until the unique point is obtained. This unique point is an extreme of the set T. For, if this point say
t* is not an extreme point of the set T, then   t t T1 2,   s.t.  t t t*    1 21b g , 0 1  , t t1 2 .

Suppose t *  is determined on taking the k th  component minimum. If t tk k1 2
, are the components

of t1  and t2  respectively, then k th  component of t *  is given by t t tk k k
*    

1 2
1b g , 0 1 

Now also t t ti i i
*    

1 2
1b g , 0 1  i k 1b g

If t ti i1 2
 , say t ti i1 2

 , the we get

t t t ti i i i
*     

2 2 2
1b g

which is a contadiction as ti
*  is minimum. Hence t ti i1 2

  similarly t ti i1 2
 . Hence t ti i1 2

  and
hence

t t t t ti i i i i
*      

1 1 1 2
1b g

Now, for t t tk k k
*    

1 2
1b g  to be true we should have t t tk k k

*  
1 2

, otherwise a above tk
*  will

be greater than either tk1
 and tk2

.
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Hence the points t1  and t2  also have the same minimum k th  component. But with this minimum
value of k th component, there is only one point. Thus we get a contradiction.

Therefore t *  cannot be written as convex combination of two different points. Hence it is an
extreme point.

Example 1.1 A hyperplane is given by the equation

3 2 4 7 81 2 3 4x x x x    .

Find in which half spaces do the points 6 1 7 2, , ,b g  and 1 2 4 1, , ,b g  lie.

Solution : Putting x x x x1 2 3 46 1 7 2    , , ,  in the L.H.S. of the given equation, we get

L.H.S. = 3 6 21 4 7 7 2 26 8. . . . . .      b g R H S

 Point 6 1 7 2, , ,b g  lies in the open half space

3 2 4 7 81 2 3 4x x x x    .

Similarly substituting 1 2 4 1, , ,b g , we get

L.H.S. = 31 2 2 4 4 71 2 8. . . . . . .       b g R H S

  Point 1 2 4 1, , ,b g  lies in the open half space 3 2 4 7 81 2 3 4x x x x    .

1.5 Self Learning Exercise I
1. Define hyperplane.

2. What are the closed and open sets?

3. Define convex set.

4. Define extreme point.

5. Define supporting hyperplane.

1.6 Convex Function

A function f xb g  defined on a convex set S E n  is said to be convex function if for any two

points X1  and X 2  in S and for all  , 0 1 

f X X f X f x   1 2 1 21 1    b g b g b g b g
and the function f xb g  is said to be strictly convex if for any two different points X1  and X 2  in S and

0 1 

f X X f X f X   1 2 1 21 1    b g b g b g b g
A function f Xb g  is said to be concave (or strictly concave) if  f Xb g  is convex (strictly convex).
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Geometrical Meaning :

The single variable function f xb g  is strictly convex if the line segment joining two point x f x1 1, b gc h
and x f x2 2, b gc hon the curve of f xb g  lies above the curve (figure 1.3). Similarly single variable function

g xb g  is strictly concave if the line segment joining two points x g x1 1, b gc h  and x g x2 2, b gc h  on the curve of

g xb g  lies below the curve (figure 1.4)

Figure 1.3 Figure 1.4

From figure 1.3 it is observed that for all 0 1 

f x x f x f x   1 2 1 21 1    b g b g b g b g ,

 and from figure 1.4 for all 0 1  , we get

g x x g x g x   1 2 1 21 1    b g b g b g b g .

Note : A linear function is convex as well as concave but not strictly convex or strictly concave as shown
in following theorems.

1.7 Some Theorems on Convex Function

Theorem 1.7 : A linear function Z CX f x Say  b gb g , X Rn

Suppose X1  and X 2  be two points of Rn

Now f X X 1 21 b g = C X X 1 21 b g
0 1  =  C X C X1 21 b g

=  f X f X1 21b g b g b g 

  f X X f x f x   1 2 1 21 1    b g b g b g b g
0 1 

f xb g

f x2b g

 f x f x1 21b g b g b g 

f x x 1 21 b g
f x1b g A

x1

C

f xb g

B

 x x1 21 b g

g xb g

g x2b g
g x x 1 21 b g

 g x f x1 21b g b g b g 

g x1b g
A

B

xx1

C
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and f X X f X f x   1 2 1 21 1    b g b g b g b g
  f X CXb g  is a convex function as well as concave. Here strict inequaltiy is not implied.

So f xb g  is neither strictly convex nor strictly concave.

Theorem 1.8 The sum of convex functions is convex and if atleast one of the functions is strictly convex,
then the sum is strictly convex.

Proof : Let f f f fm1 2 3, , ,...  be m convex functions defined on the convex set S E n . Let
f f f f fm    1 2 3 ...  be the sum function defined on the same set S.

Let X X1 2,  be two points of S and o  1 . Then

f X X 1 21 b g = f x Xi
i

m

 1 2
1

1 

 b g

  

  f X f Xi i
i

m

1 2
1

1b g b g b g

[since f i  is convex  i m1 2, ,...., ]

  
 
  f X f Xi
i

m

i
i

m

1
1

2
1

1b g b g b g

   f X f X1 21b g b g b g
  The function f f f fm   1 2 ....  is convex function on S.

If atleast one function say f k , 1 k n  is strictly convex then for 0 1  ,

f X X f X f xk k k   1 2 1 21 1    b g b g b g b g  using it we get

f X X f X f X   1 2 1 21 1    b g b g b g b g
 X X S1 2,  and 0 1 

Hence, f  is strictly convex if atleast one of the function is strictly convex.

Theorem 1.9 The sum of concave functions is concave and if atleast one of the functions is strictly
concave, than the sum is strictly concave.
Proof : The proof of above theorm can be done in the same manner as of theorem 1.8.

1.8 Illustrative Examples

Example 1.2 Show that f x xb g  2  is a convex function.

Proof : Here f x xb g  2 , let 0 1 

f x x f x f x   1 2 1 21 1    b g b g b g b g

=    x x x x1 2
2

1
2

2
21 1    b g b g
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=             2
1
2 2

2
2

1 21 1 2 1c h b g b g b gx x x x

=             2
1 2

2 2
1 2

20 0 1 0c hb g b gx x as x x, ,

 f x x f x f x   1 2 1 21 1    b g b g b g b g  f x xb g 2  is a convex function.

Example 1.3 Prove that f x
x

b g  1
 is strictly convex for x  0  and strictly concave for x  0 .

Sol. Here f x
x

b g 1

f x x f x f x   1 2 1 21 1    b g b g b g b g


 

 
1

1
1

1 2 1 2 
 

x x x xb g


 

 

 

 

2
1 2

2

1 2 1 21
c hb g

b g
x x

x x x x

for 0 1 2    ,  and for x x x x1 2 1 2
2 0  ,b g

for x x1 2 0,b g  and for x x x x1 2 1 20 0, ,b g 

Also for x x x x1 2 1 20 1 0, ,b g b g      and for x x x x1 2 1 20 1 0, ,b g b g    

Hance 
 

 

2
1 2

2

1 2 1 21
0

 

 


c hb g
b g
x x

x x x x  for all x x1 2 0, 

and 
 

 

2
1 2

2

1 2 1 21
0

 

 


c hb g
b g
x x

x x x x  for all x x1 2 0, 

 f x x f x f x x x   1 2 1 2 1 21 1 0      b g b g b g b g, ,

and f x x f x f x x x   1 2 1 2 1 21 1 0      b g b g b g b g, ,

Thus f x
x

b g 1
 is strictly convex for x0  and strictly concave for x0 .

Example 1.4 Show that f x
a x bb g b g


RST

0
   for  

for x b
x b

  (Here a > 0) is a convex function.

Sol. : Here f xb g  is a constant function for x b  and is a linear function for x b . The curve of
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the function is shown below by dark line.

Figure : 1.5

It is clear from above figure 1.5 that for any two points x x1 2,  of the domain, the line segment

joining two points x f x1 1, b gc h  and x f x2 2, b gc h  is above the curve of f xb g  for x x x1 2   i.e.

f x x f x f x   1 2 1 21 1    b g b g b g b g ,    0 1 

Hence the function f xb g  is a convex function.

Example 1.5 If f xb g  is continuous, f x xb g  0,  then the function  x y x f y dy
x

b g b g b g 
z

is a convex function provided the integral converges.

Sol. : Let x1  and x2  be two points of the domain of  x x xb g; 1 2  and

x x x3 1 21 0 1      b g , , then we have to show that     x x x3 1 21b g b g b g b g  

We have   x y x x f y dy
x3 1 21

3
b g b gm r b g   

z
    

 z z y x f y dy y x f y dy
x x1 1 21

3 3
b g b g b g b g b g

   
L
N
MMz z y x f y dy y x f y dy

x

x

x

b g b g b g b g
3

1

1

1

    L
NM

O
QP

zz1 2 2
23

2b g b g b g b g b gy x f y dy y x f y dy
xx

x

   L
NM

O
QP

z z y x f y dy y x f y dy
x x

x

1 1
1 1

3b g b g b g b g

f xb g

f x2b g

f x1b g
O x1 x b x2 x b 2

ab

x
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    L
NM

O
QP

zz1 2 2
23

2b g b g b g b g b gy x f y dy y x f y dy
xx

x

 y x f y dy
x

x
 z 2

3

2 0b g b g  as y x f y  2 0 0b g b g,

and    z y x f y dy
x

x

1 0
1

3b g b g  as y x f y  1 0 0b g b g

       x x x3 1 21b g b g b g b g  for 0 1 

Hence  xb g  is a convex function. Figure : 1.6

1.9 Quadratic form

A quadratic form in variables x x x xn1 2 3, , ,....,  is a function of these variables which is defined as

Q X a x x
i

n

ij i j
j

n

b g
 
 

1 1
, where aij  are constants.

If  A aij  a square matrix of order n n  and X x x xn
T 1 2, ,... , then we have.

Q X X A XTb g  or X A X'

Here the square matrix A can always be written as symmetric matrix because the coifficient of
x xi j  is a aij ji  and if A is not symmetric matrix, we can construct a new matrix B with the property

b b
a a

ij ji
ij ji 


2

X B X X AXT T  (since a a b bij ji ji ij   )

Clearly, B is a symmetric matrix, so A can always be assumed a symmetric matrix i.e. in future we
shall always assume matrix associated with a quadratie form is symmetric

1.10 Positive and Negativeness of Quadratic form

A quadric form Q Xb g  is said to be :

(i) Positive definite, if Q Xb g 0  for all X, except X = 0

(ii) Positive semi definite, if Q Xb g 0  for all X and   some X 0  for which Q Xb g  0 .

(iii) Negative definite ; if Q Xb g  is positive definite.

(iv) Negative semi definite ; if Q Xb g  is positive semi definite.

(v) Indefinite ; if Q Xb g  0 for some X and Q Xb g  0 for some other X.

x1 x3 x2
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Examples :

(i) Q X x x
x
x

x xb g b g
L
NM

O
QP
L
NM

O
QP 1 2

1

2
1
2

2
21 0

0 1
,  is positive definite

(ii) Q X x x x xb g b g b g



L
NM

O
QP 1 2 1 2

21 1
1 1

,  is positive sami definite

(iii) Q X x x
x
x

b g b g


L
NM

O
QP
L
NM

O
QP1 2

1

2

1 0
0 1

,  is indefinite.

There are several tests to determine the character of the given quadric form. One of these tests is
eigen value test. In this test we find the values of the roots of the characteristic equation A I  0 . This
equation is a polynomial equation of degree  n  in  . Since A is symmetric, so all the roots of this equation
i.e. the n values of   (called eigen values) are real. If

(i) All the n values of   are positive, then X A X'  is positive definite.

(ii) Some values of   are positive and remaining are zero then the quadratic form X A X'  is
positive semi definite.

(iii) All the n values of   are negative, X A X'  is negative definite.

(iv) Some values of   are negative and remaining are zero then X A X'  is negative semi
definite.

(v) Some values of   are positive, other’s are negative then X A X'  is indefinite.

Another test : If all the successive principal minors of A are > 0, then X A X'  is positive definite and if all

the successive principal minors of Ab g  are  0 , then X A X'  is negative definite.

1.11 Illustrative Examples

Example 1.6 Test the nature of quadratic form Q X X A Xb g '

where A X
x
x
x

 
L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP

3 0 0
0 2 0
0 0 1

1

2

3

,

Sol. : Characteristic equation A I  0



3 0 0
0 2 0
0 0 1

0


 








 3 2 1 0      b gb gb g
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   3 2 1, ,

Since two eigen values are positive, one in negative so Q Xb g  is indefinite.

Example 1.7 Show that f x x xb g  2 1
2

2
2  is a convex function over R2 .

Sol. : f Xb g  is a quadratic form, so in matrix form it can be written as

f X x x
x
x

b g b g
L
NM

O
QP
L
NM

O
QP1 2

1

2

2 0
0 1

Here A
L
NM

O
QP

2 0
0 1 A I  0


2 0
0 1

0








 2 1 0   b gb g
   2 1,

 All the two eigen values are positive, therefore f xb g  is positive definite. A positive definitive

quadratic form is strictly convex function so f xb g is a convex function over R2 . It is clear from the
following theorem.

1.12 Theorems on Quadratic form and Convex Function

Theorem 1.10 A positive semi definite quadratic form f X X AXTb g  is a convex function over Rn .

Proof : Suppose x x1 2,  be two points of Rn , then for 0 1 

f x X 1 21 b gc h = f X X X2 1 2 b g

= X X X A X X X
T

2 1 2 2 1 2    b g b g

= X AX X A X X X X A XT T T
2 2 2 1 2 1 2 2    b g b g

  2
1 2 1 2X X A X XTb g b g

 X A X X X A X XT T T
2 1 2 2 1 2  b g b g

= X X A XT T
1 2 2b g

= X AX X A X X X X A X XT T T
2 2 2 1 2

2
1 2 1 22     b g b g b g
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     X AX X A X X X X A X XT T T
2 2 2 1 2 1 2 1 22 b g b g b g

( 0 1   so  2  , f Xb g  is positive semi definite)

    X AX X AX X AX X AX X AXT T T T T
2 2 2 1 2 2 1 1 1 22 2   

 X AX X AXT T
2 1 2 2

   X AX X AXT T
1 1 2 21b g  X AX X AXT T T

1 2 1 2

   f X f x1 21b g b g b g
Thus f X X AXTb g is a convex function.

Theorem 1.11 A positive definite quadratic form f X X AXTb g  is a strictly convex function over Rn .

Proof :  f X X AXTb g  is positive definite quadratic form so 0 1 2       and

 2
1 2 1 2 1 2 1 2X X A X X X X A X XT T    b g b g b g b g

using this in the proof of above theorem, we get

f X X f X f X   1 2 1 21 1    b g b g b g b g
 f Xb g  is strictly convex function over Rn .

Theorem 1.12 A negative definite (negative semi definite) quadratic form f X X AXTb g  is a strictly
concave (concave) function over Rn .

Proof :   0 1 2       and f xb g  is negative definite

      2
1 2 1 2 1 2 1 2X X A X X X X A X XT Tb g b g b g b g  and 0 1 2    , , f xb g

is negative semi definite

  2
1 2 1 2 1 2 1 2X X A X X X X A X XT T    b g b g b g b g

using it in the proof of theorem 1.10 we get that f xb g  is strictly concave (concave) function over Rn .

1.13 Self Learning Exercise-II
1. Define convex function.

2. Define quadratic form.

3. What is convexity of quadratic form?

4. What is the relation between convexity and cocavity of a function?

5. What is Eigen values test for the positive and negativeness of quadratic form?
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6. Write principal minor test for positive and negativeness of quadratic form.

7. Write geometric meaning of convex and concave functions.

8. Write the quadratic form whose associated matrix is 

1 3 5
3 6 3
5 3 14




L

N
MMM

O

Q
PPP

1.14 Summary

In this unit, the concepts of set of points on the line in E 2  and on the plane in E 3  are generalised
to n-dimensional space E n . We call it as hyperplane. A hyperplane is a separating hyperplane if whole of
sets lies in one half of space produced by hyperplane. A separating hyperplane is called supporting
hyperplane if it passes through a point of S. The optimal hyperplane of a L.P.P is a supporting hyperplane
of a convex set of feasible solution. In the second part of the unit a convex or concave function is defined
on convex set and discussed its properties. In the quadratic form and its relation with convex function have
been studied.

1.15 Answers to Self-Learning Exercise-I

1. 12. iiib gz
2. 12. vib gz
3. 12. viib gz
4. 12. viiib gz
5. 14.z

1.16 Answers to Self-Learning Exercise-II

1. 16.z 2. 19.z
3. Theorem 1.10 4. Theorem 1.12

5. 110.z 6. 110.z  Another test

7. 16.z 8. 19.z
1.17 Exercises

1. Show that a hyperplane is a closed set

2. Prove that the optimal hyperplane in a l.p.p. is a supporting hyperplane to the convex set
of feasible solutions.

3. If f xb g  is a convex function over the non-negative orthart of E n , then show that
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S X f x b X  : ,b gm r0  is a convex set.

4. Show that f x
b x b x

x
b g b g


  


RST

 
0

0,
 is a convex set for all x .

5. Show that f x
a x a x
b x b x

b g b g
b g
  
  

RST
 
 

, ,
, ,

0
0  is a convex function

6. Prove that f x CX X DXTb g   is strictly convex iff X DXT  is positive definite.

7. Show that f x x x x1 2 1 2, .b g  is not a convex set over E 2 .

8. Show that a linear function is convex as well as concave.

9. Show that following function are convex.

(i) f x xb g (ii) f x e xb g

���
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Unit - 2
Revised Simplex Method

Structure of the Unit
2.0 Objective

2.1 Introduction

2.2 Revised Simplex Method (Standard form-I)

2.3 Revised Simplex Algorithm (Standard form-I)

2.4 Illustrative Examples

2.5 Revised Simplex method (Standard from-II)

2.6 Illustrative Examples

2.7 Self-Learning Exercise - I

2.8 Exercise

2.9 Bounded variable problems

2.10 Illustrative Examples

2.11 Self-Learning Exercise - II

2.12 Exercise

2.0 Objective
A linear programming problem with m constraints and n  variable is defined as :

Max. Z c x c x c xn n   1 1 2 2 .....

s.t. a x a x a x bn n11 1 12 2 1 1   ....

a x a x a x bn n21 1 22 2 2 2   ....

.......  ........   .........   .........

.......  ........   .........   .........

a x a x a x bm m mn n m1 1 2 2   ....

x x x xn1 2 3 0, , ....... 

In the under graduate classes we have studied simplex method to solve these types of problems.
For computer programming purposes, our objective is to find a method which use less entries and
operations then simplex method. The revised simplex method fulfills this objective.

2.1 Introduction

In the simplex method if  B m   1 2, ,....b g  be the basis of l.p.p., X x x xB m
   1 2

, ,....d i  the

corresponding B.F.S. and C C C CB B B Bm


1 2
, ,...d i , corresponding price vectors, then we have
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(a)   1 21 2
x x x bB B m Bm

  ....

i.e. BX bB   or X B bB 
1

(b)  1 2 2y y jij   + ......+  m mj jy 

i.e. By j j  or y Bj j 1 , in particular y B B ej j j 1

(c) z C x C x C xB B B B B Bm m
   

1 1 2 2
.....

i e z C X C B b as X B bB B B B. .    1 1

(d) z c C y C y C y Cj j B j B j B m jm j
     

1 21 2 ....

   C y C C B CB j j B j j
1 ...(1)

In the simplex procedure we get the following important fact :

Not all the elements of simplex tableau used in calculation at any iteration. Suppose that, at the
beginning of an iteration, the inverse B1  of the current basis is known. This leads to a direction calculation

of z cj j , corresponding solution of the problem and the value of the objective function with the help of
(1). The different steps in calculating the next iteration may then be realised as follows :

(i) Calculate y Bk k 1 . If yk  0 , there is no finite optimum solution exists. If atleast one element

of yk  is > 0 the application of exit criterion (calculation of Min   Min x
y

yBi

ik
ik 0) of the simplex

method will determine the vector Bl  to be removed from the present basis.

(ii) Calculate the inverse of new basis i.e. B 'b g1 (Obtained by replacing  l  by  k  in B) with the help

of old inverse of the basis i.e. B1 .

(iii) Calculate the new values of z cj j  with the help of (1) and the basis inverse B 'b g1.

(iv) Calculate the new solution and the new value of the objective function with the help of (1) and

B 'b g1

From above remarks, it follows that to apply the simplex method it is sufficient to transform the
inverse of the basis (So as to get the inverse of the new basis) and to calculate from inverse only, the
necessary guantities, z c yj j k , , value of the objective function and the solution of the problem. The
revised simplex method uses this principle.

2.2 Revised Simplex Method (Standard Form - I)

Consider an l.p.p. as Max Z CX , subject to AX b X , 0 . In the revised simplex method, the
objective function is treated as an additional coustraints, which inereases the number of coustraint by one.
Instead of cousidering the problem in the above form, we consider the problem here as to maximise z
subject to
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AX b

and z CX X  0 0, ...(2)

which can be written in the expanded form as

a x a x a x bn n11 1 12 2 1 1   ......

a x a x a x bn n21 1 22 2 2 2   ......

       z C x C x  1 1 2 2        C xn n 0 ...(3)

x j 0,  j n1 2 3, , ,....,

The system (2) or (3) can also be written as

0
1 0

A
C

Z
X

b


L
NM

O
QP
L
NM

O
QP

L
NM
O
QP ...(4)

Equations (2), (3) and (4) are referred to as standard form I of the problem for the revised simplex
method. In this form an identify matrix in available is the original l.p.p. without using artificial variables.

In the standard form I, corresponding to each activity vector  j  of A we can define a new m1b g
component column vector given by  j j jC j n1 1 2b g  , , , , .... ,

Also for vectors of basis, we have  i i BC
i

1b g  ,  and corresponding to b , we can define m1b g
component vector

b b1 0b g  , .

Note that in (3) the column corresponding to Z is the m1b g  component unit vector, i.e. em1 .

Basis and Inverse of the Basis :

A basis matrix for the set of equations (3) will be of order (m+1). Actually we are in need of a basic
feasible solution of the equations (3) with one of the basic variable as Z which is unrestricted in sign and the
other m basic variables xBi

0  such that Z is as large as possible. We always keep the column em1 .

corresponding to z in the m th1b g  column of the basis matrix.

Let B1  be the basis matrix of order m1b g  and containing em1 , so that

B em m1 1
1

2
1 1

1   b g b g b ge j, ,... ,

       
F
HG

I
KJ

  1 2 0
1

1 2

............
.......

m

B B BC C C
m

...(5)

Since B1  is basis matrix, the vectors   1
1

2
1 1

1
b g b g b g, ,.... ,m me 

 are linearly independent. So a subset

  1
1

2
1 1b g b g b g, , .... m  are also linearly independent and hence the vectors   1 2, ,.... m  will also be linearly
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independent and therefore these can be considered as to form basis matrix for AX b ,  i.e. for the original
problem. Hence representation (5) can be written as

B
B

CB
1

0
1



L
NM

O
QP,

where B m   1 2, , ....b g  is the basis for the system AX b . Thus every basis matrix of the
revised problem can be written in the form of the basis matrix B  of AX b . To proceed in revised
simplex method, we need inverse of the basis. We find the inverse of B1  by partitioned method.

Let B1
1 

L
NM

O
QP

 
 

, then 
B

C
I

IB

0
1

0
0

L
NM

O
QP
L
NM

O
QP

L
NM

O
QP

 
 

i.e.
B B

C C
I

IB B

 
      

L
NM

O
QP

L
NM

O
QP

0
0

which gives        B C BB
1 10 1, , ,

 B
B
C BB

1
1

1

1

0
1






L
NMM

O
QPP

.

Now  consider the product of B1
1  and any  j

1b g , we get

B
B
C B c

B

C B C

y
z cj

B

j

j

j

B j j

i

j j
1

1 1
1

1

1

1

0
1










L
NMM

O
QPP 

L
NM

O
QP




L
N
MM

O
Q
PP 

L
NM

O
QP


 


b g

. ...(6)

The first m  components of the product are the m  components of y j  and the last i.e. m th1b g
component in the product is z cj j  which is required for the procedure of optimization.

Now we consider the product of B1
1  with b 1b g , we get

X B b
B
C B

b B b
C B b

X
ZB

B B

B1
1

1 1
1

1

1

1

0
1 0

b g b g 
L
NMM

O
QPP
L
NM
O
QP 

L
NMM

O
QPP

L
NM

O
QP








 ...(7)

The first m components of X B
1b g  are the elements of the basic feasible solution of the original l.p.p.

and the last i.e. m th1b g  component is the value of the objective function of the problem. It gives the
reason for treating objective function as one extra constraint.

Computational Proceedure for Standard Form-I :-

In the standard form-I, the identity matrix is present in A without using artificial variables. For
revised simplex method initially we have the basis matrix
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B
B

C
I

CB

m

B
1

0
1

0
1



L
NM

O
QP



L
NM

O
QP B Imb g

 B
B
C B

I
CB

m

B
1

1
1

1

0
1

0
1






L
NMM

O
QPP

L
NM

O
QP ...(8)

Further, if the columns from A constituting Im , i.e. the initial basis of AX b ,  correspond to slack

or surplus variables, then CB  0 .

The initial basic solution in revised simplex method is given by

X
I
C

b b
C bB

m

B B

1 0
1 0

b g 
L
NM

O
QP
L
NM
O
QP 

L
NM

O
QP ,

and it is feasible because the first m  components are the elements of b0  and the m th1b g
component, i.e. z  can be of any sign. We now have a B.F.S. of (3) and also the inverse of the
corresponding basis matrix.

To improve a B.F.S. we compute z cj j  corresponding to every  j
1b g  not in the basis B1  by

taking inner multiplication of m th1b g row of B1
1  with each  j

1b g .

If min
i j j j j k kz c z c z c    d io t0 , then vector  k

1b g  is taken a vector to enter into basis. Now

we wish to determine a vector from old basis to be deleted, for this we find  
RST

UVW
Min x

yy
Bi

ikik 0
 and yk  is

determined as y B y z ck k k k k
1

1
1 1b g b g b g    , . Let  

RST
UVW

Min x
y

x
yy

Bi

ik lkik 0 , we remove  l th column of B1  i.e.

 l . At this stage it must be remembered that we wish to have z always in the basis, therefore the m th1b g
column of B1  is never be a candidate for removal.

After obtaining the vector to enter and to leave the basis we are now ready to perform the
transformation to obtain the new basis inverse and the new solution. In this method B1

1  gives all

necessary information at each iteration. Hence we transform only B1
1 . Let the now inverse is denoted by

B1
1 . The elements of new inverse and new improved solution will be obtained by transforming the

elements of B1
1  and X B . The solution thus obtained will be improved. Repeating this process interatively

unless we get all z cj j 0 (as in the simplex method) we can get the optimal basic feasible solution, if it
exists.

Tableau form of the revised simplex method standard form-I
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Variables Solution B1
1          y Bk k

1
1

1 1b g b g  
X
y

Bi

ik
, yik  0

in  X B
1b g       1

1b g     2
1b g ......      m

1b g      m1
1b g

B.F.S

x1   xB1
   ......     ......    ....... ... .... y k1    ........

x2   xB2
   ......     ......    ....... ... .... y k2    ........

...... ...... ......     ......

...... ...... ......     ......

...... ...... ......     ......

xm   xBm
   ......     ......    ....... ... .... ymk    ........

z   z    ......     ......    ....... ... .... z ck k    Min X
y

Bi

ik

Here   1
1

2
1

1
1b g b g b g...... m

 are the respective columns of the inverse of basis B1
1 . In the column X B

1b g

we write values of the variables. In the first table B I B I X bm m B1 1
1 1 1  , , b g b g  and  m me 1

1
1

b g .

2.3 Revised Simplex Algorithm (Standard Form - I)
Step 1 : If the problem is in minimization, write it into maximization form.

Step2 : Write the given l.p.p. in standard form I for revised simplex method i.e. write the objective function
as one coustraint.

Step 3 : Write the initial basis B1  and its inverse B1
1  by using (8).

Step 4 : Calculate the initial B.F.S. X B bB
1

1
1 1b g b g 

Step 5 : Calculate z cj j  for all vectors which are not in the basis. For this, multiply the last row of B1
1

with corresponding column  j
1b g . If atleast one of the z cj j  0  then select the entering vector with

min z cj jd i . Let it be z ck k , then take  k
1b g as the entering vector for the basis.

Step 6 : Calculate y Bk k
1

1
1 1b g b g    and prepare the revised simplex tableau as shown above. Calculate the

last column of the tableau i.e. the column of 
x
y

yBi

ik
ik, 0 .

Select the minimum 
x
y

Bi

ik

F
HG

I
KJ , if this minimum occurs in the r th  row, then delet the r th  vector of the

basis.
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Step 7 : Form the new basis by introducting  k
1b g  and deleting  r

1b g ( r th  vector of the basis). Form the next
revised simplex tableau using transformations

y y
y
y

yij ij
rj

rk
ik  , y

y
yrj

lj

rk



Step 8 : Repeat the steps 5,6, 7 iteratively until we get an optimal solution or there is an indication for
unbounded solution.

2.4 Illustrative Examples
Example 2.1 :   Solve the following linear programming problem by revised simplex method :

Max z = 2 1 2x x

St. 3 4 61 2x x 

6 31 2x x 

    x x1 2 0, 

Solution :   Introducing slack variables x3  and x4  the problem can be written as :

Max z = 2 0 01 2 3 4x x x x  . .

s.t. 3 4 1 0 61 2 3 4x x x x   .

6 0 1 31 2 3 4x x x x   .

x x x x1 2 3 4 0, , , 

Since there are two equations and two slack variables x x3 4,  yield two unit vectors for the basis of

AX b ,  so the basis with identity matrix is available without using artificial variables. The problem is in
standard form I is as :

Find z such that

3 4 0 61 2 3 4x x x x   .

6 0 31 2 3 4x x x x   

z x x x x    2 0 0 01 2 3 4

or

e3 1
1

2
1

3
1

4
1

0 3 4 1 0
0 6 1 0 1
1 2 1 0 0

   b g b g b g b g

 

L

N
MMM

O

Q
PPP

   

X
Z
x
x
x
x

1

1

2

3

4

b g

L

N

MMMMMM

O

Q

PPPPPP
 = 

b 1

6
3
0

b g

L

N
MMM

O

Q
PPP

, x x x x1 2 3 4 0, , , 
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Here B1  first basis = 
I

CB

2 0
1

L
NM

O
QP , therefore B

I
CB

1
1 2 0

1
 

L
NM

O
QP  = 

1 0 0
0 1 0
0 0 1

L

N
MMM

O

Q
PPP

as CB  0 0,b g , price vector corresponding the slack variables x x3 4,  and I2  is a basis matrix of original
problem.

Now calculate B b1
1 1 b g  and put in X B

1b g column of revised simplex table. Then multiply m th1b g
row i.e. 3rd row of B1

1  with every  j
1b g  not in basis B1  i.e. with  1

1b g  and  2
1b g  to get z cj j . Thus

z c1 1 0 0 1
3
6

2
2 



L

N
MMM

O

Q
PPP
 , ,b g b g , z c2 2 0 0 1

4
1

1
1 



L

N
MMM

O

Q
PPP
 , ,b g b g

 z c jj j  0 ,  therefore the BFS under test is not optimal. Now Z Ck k  Min

Z C Min Z Cj j      d i l q b g2 1 2 1 1, , hance to improve the BFS we introduce the vector  1
1b g  into

the basis. To determine the departing vector form old basis multiplying  1
1b g  with B1

1  to get y1
1b g  and write

in the before last column of the table and then calculate   
RST

UVWMin X
y

y
i

Bi

ik
ik, 0  for first m elements of

y1
1b g  which gives  

1
2 , corresponding to x4 . So vector  4

1b g  will be deleted and  1
1b g  will be introduced.

Revised Simplex Table - 1

Variables Solution    B1
1         y1

1b g    
x
y

Bi

ik
, yik  0

in  X B
1b g       1

1b g     2
1b g  3

1b g

B.F.S

x3   6       1     0    0          3    
6
3

2

x4   3       0     1    0          6   
3
6

1
2

    

z   0       0        0         1        

B
2

   Min X
y

Bi

ik


1
2

The new basis is  3
1

1
1

3
b g b ge j, ,e

Now transform this table by the transformation used in simplex method to get the next table.


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Revised Simplex Table - 2

Variables Solution  B1
1  2

1b g      
x
y

Bi

ik
, yik  0

in  X B
1b g       1

1b g     2
1b g    3

1b g

B.F.S

x3  
9
2       1   

1
2     0          

7
2    

9
7    

x1   
1
2       0     

1
6     0          

1
6    3

z   1       0        
1
3          1        



B
2
3     

9
7

Now proceeding in the same manner, we get

z c z c2 2 4 40 1
3

1
4
1
1

2
3

0 1
3

1
0
1
0

1
3

  FHG
I
KJ


L

N
MMM

O

Q
PPP
    FHG

I
KJ
L

N
MMM

O

Q
PPP
, , , , ,

 z cj j  0 , j , therefore above B.F.S. is not optimal.

min z cj j d i 2
3  (for  2

1b g ), so the vector  2
1b g  will be introduced in the basis.

Now y B2
1

1
1

2
1 7

2
1
6

2
3

b g b g  F
HG

I
KJ

  , , ,     
9
7 3

1b ge j

Therefore  3
1b g will be replaced by  2

1b g .

Revised Simplex Table - 3

Variables Solution B1
1

in  X B
1b g  1

1b g  2
1b g  3

1b g

B.F.S

x2  
9
7

2
7


1
7 0

x1  
2
7         

1
21

4
21 0

z
13
7           

4
21

5
21 1



29

For non basis variables

z c3 3
4
21

5
21

1
1
0
0

4
21

  FHG
I
KJ
L

N
MMM

O

Q
PPP
, ,

z c4 4
4
21

5
21

1
0
1
0

5
21

  FHG
I
KJ
L

N
MMM

O

Q
PPP
, ,

 z cj j 0 ,  j , therefore above BFS in optional. The optimal solution is

x1
2
7

 , x2
9
7

    Max z 13
7 ,

Example 2 :   Solve the following l.p.p. using revised simplex method :

Max z 3 6 21 2 3x x x 

S.t 3 4 21 2 3x x x  

x x x1 2 33 2 1  

x x x1 2 3 0, , 

Solution :   Introducing slack variable x x4 5,  and making objective function as an additional third
constraint the problem can be written into standard form-I for revised simplex method as :

3 4 0 21 2 3 4 5x x x x x    

x x x x x1 2 3 4 53 2 0 1    

z x x x x x     3 6 2 0 0 01 2 3 4 5

x x x x x1 2 3 4 5 0, , , , 

or

e3 1
1

2
1

3
1

4
1

5
1

0 3 4 1 1 0
0 1 3 2 0 1
1 3 6 2 0 0

    b g b g b g b g b g

  

L

N
MMM

O

Q
PPP

X
Z
x
x
x
x
x

B
1

1

2

3

4

5

b g

L

N

MMMMMMM

O

Q

PPPPPPP
= 

b 1

2
1
0

b g

L

N
MMM

O

Q
PPP

x x x x x1 2 3 4 5 0, , , , 

Here initial Basis B
I

cB
1

2 0
1



L
NM

O
QP
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 B
I
cB

1
1 2 0

1

1 0 0
0 1 1
0 0 1

 
L
NM

O
QP 

L

N
MMM

O

Q
PPP

Initial BFS X B b bB
1

1
1 1 1

2
1
0

b g b g b g  
L

N
MMM

O

Q
PPP



For non basic variables x x x1 2 3, ,  we have

z c1 1 0 0 1
3
1

3
3 



L

N
MMM

O

Q
PPP
, ,b g

z c2 2 0 0 1
4
3

6
6 



L

N
MMM

O

Q
PPP
 , ,b g

z c3 3 0 0 1
1
2

2
2 



L

N
MMM

O

Q
PPP
 , ,b g

Since z c jj j  0, , therefore above BFS is not optimal. Min z cj j  d i 6  (for  2
1b g ), hence

to improve above B.F.S. we take  2
1b g  as introducing vector..

Now y B2
1

1
1

2
1

2
1

4
3

6

b g b g b g  


L

N
MMM

O

Q
PPP

  

Revised Simplex Table - 1

Variables Solution  B1
1  2

1b g      
X
y

Bi

ik
, yik  0

in  X B
1b g       1

1b g     2
1b g   3

1b g

B.F.S

x4  2       1     0     0  4    
2
4

x5  1       0     1     0  3    
1
3

z  0       0        0         1 6    Min x
y

Bi

ik

1
3
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The departing vector is  5
1b g . key element = 3

Revised Simplex Table - 2

Variables Solution      B1
1 y2

1b g      
X
y

Bi

ik
, yik  0

in  X B
1b g       1

1b g     2
1b g   3

1b g

B.F.S

x4  
2
3       1     

4
3     0

5
3    

2 3
5 3

2
5

/
/

   

x2  
1
3       0     

1
3     0

1
3    

1 3
1 3

1/
/



z  2       0        2         1 1  Min x
y

Bi

ik


2
5

For non basis variables

z c1 1 0 2 1
3
1

3
1 



L

N
MMM

O

Q
PPP
 , ,b g

z c3 3 0 2 1
1
2

2
2 



L

N
MMM

O

Q
PPP
, ,b g

z c5 5 0 2 1
0
1
0

2 
L

N
MMM

O

Q
PPP
, ,b g

z cj j 0 ,  j , therefore above BFS is not optimal. Min z cj j  d i 1 (for  1
1b g ) so to im-

prove BFS we introduce  1
1b g  into the basis. Now

y B1
1

1
1

1
1

1 4
3

0

0 1
3

0

0 2 1

b g b g 

L

N

MMMMMMM

O

Q

PPPPPPP

 
 

3
1

3

L

N
MMM

O

Q
PPP  




L

N

MMMMMMM

O

Q

PPPPPPP

5
3
1
3

1

and we take  4
1b g  as departing vector..
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Revised Simplex Table - 3

Variables Solution     B1
1

in  X B
1b g       1

1b g        2
1b g        3

1b g

B.F.S

x1  
2
5      

3
5     

4
5         0

x2  
1
5    

1
5       

3
5         0

z
12
5      

3
5         

6
5        1

For non basis variables z c3 3
3
5

6
5

1  F
HG

I
KJ, ,

1
2

2

L

N
MMM

O

Q
PPP  = 

2
5

z c4 4
3
5

6
5

1
1
0
0

3
5

  F
HG

I
KJ
L

N
MMM

O

Q
PPP


z c5 5
3
5

6
5

1
0
1
0

6
5

  F
HG

I
KJ
L

N
MMM

O

Q
PPP


z c jj j  0, , therefore above BFS is optimal.

Optimal solution is x x Max z1 2
2
5

1
5

12
5

  , ,

Example 3 :   Solve the following l.p.p. using revised simplex method.

Max z x x x x   3 2 71 2 3 4

st. 2 3 4 401 2 3 4x x x x   

    2 2 5 351 2 3 4x x x x

x x x x1 2 3 42 3 100   

x x x x1 2 3 42 1 3 4   , , ,

Solution :   Substituting x u x u x u x u1 1 2 2 3 3 4 42 1 3 4       , , ,  the given problem reduces to
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Max z z u u u u*     41 3 2 71 2 3 4

s.t. 2 3 4 201 2 3 4u u u u   

    2 2 5 261 2 3 4u u u u

    u u u u1 2 3 42 3 91   

     u u u u1 2 3 4 0, , 

Introducing slack variables u u u5 6 7, ,  the problem in standard form-I can be written as

Find z * such that

2 3 41 2 3 4 5u u u u u    = 20

   2 2 51 2 3 4u u u u      u6 = 26

      u u u u1 2 3 42 3    u7 = 91

   3 2 71 2 3 4u u u u             z * = 0

 or

      1
1

2
1

3
1

4
1

5
1

6
1

7
1

4

2 3 1 4 1 0 0 0
2 2 5 1 0 1 0 0

1 1 2 3 0 0 1 0
3 1 2 7 0 0 0 1

b g b g b g b g b g b g b g e


 


   

L

N

MMMM

O

Q

PPPP
  

X
u
u
u
u
u
u
u
z

B
1

1

2

3

4

5

6

7

b g

*

L

N

MMMMMMMMMMM

O

Q

PPPPPPPPPPP

 = 

b 1

20
26
91
0

b g

L

N

MMMM

O

Q

PPPP

u u u u u u u1 2 3 4 5 6 7 0, , , , , , 

Initial Basis B
I

C
where C as

I corresponds to slack iablesB

B
1

3

3

0
1

0 0 0



L
NM

O
QP

 , ,
var

b g

 B
I
CB

1
1 3 0

1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
L
NM

O
QP

L

N

MMMM

O

Q

PPPP

Initial BFS is given by
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X B b
b

B
1

1
1 1

0
20 26 91 0b g b g 

L
NM
O
QP 

 , , ,

For non basic variables

z cj j  (last row of B1
1 ).  j

1b g j 1 2 3 4 5, , , ,

z c1 1 0 0 0 1

2
2

1
3

3 




L

N

MMMM

O

Q

PPPP
 , , ,b g

, similarly z c2 2 1  

z c3 3 1   , z c4 4 7  

Since z c jj j  0, , therefore above BFS  is not optimal. Min z cj j  d i 7  (for  4
1b g ). Hence

to find improved BFS. we use  4
1b g  as entering vector. Now we calculate

y B I4
1

1
1

4
1

4 4
1

4
1

4
1

3
7

b g b g b g b g   




L

N

MMMM

O

Q

PPPP
   .

Revised Simplex Table-1

Variables Solution        B1
1  4

1b g   
X
y

Bi

ik
, yik  0

in  X B
1b g       1

1b g     2
1b g   3

1b g      4
1b g

B.F.S

u5  20       1     0     0 0 4    
20
4

5   

u6  26       0     1     0 0 1    ....

u7  91       0     0     1 0 3    
91
3

z *  0       0        0         0 1

B
7

   Min x
y

Bi

ik

5

We take  5
1b g  as departing vector. The improved BFS can be found an follows :
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Revised Simplex Table - 2

Variables Solution        B1
1  3

1b g     
X
y

Bi

ik
, yik  0

in  X B
1b g       1

1b g     2
1b g   3

1b g      4
1b g

B.F.S

u4  5       
1
4     0     0 0

1
4    ....

u6  31       
1
4     1     0 0

19
4    

124
9   

u7  76    
3
4     0     1 0

5
4    ....

z *  35       
7
4         0         0 1



B
15
4    Min x

y
Bi

ik

124
9

For non basis vectors, calculate z cj j , j 1 2 3 5, , ,

z c1 1  (last row of B1
1 )  1

1
1
17

4
0 0 1 1

2
b g b g FHG

I
KJ , , ,

z c2 2 2
17

4
0 0 1 17

4
  FHG

I
KJ , , ,  b g

z c3 3 3
17

4
0 0 1 15

4
  FHG

I
KJ  , , ,  b g

z c3 5 6
17

4
0 0 1 7

4
  F

HG
I
KJ  b g

Min. z cj j  d i e jb g15
4 3

1 , therefore  3
1b g  is entering vector..

Now y B3
1

1
1

3
1b g b g    and write in the tableau 2

Thus the improved basic feasible solution is :

Revised Simplex Table -3

Variables Solution        B1
1 y1

1b g      
X
y

Bi

ik
, yik  0

in  X B
1b g       1

1b g     2
1b g   3

1b g       4
1b g

B.F.S

u4  
126
19       

5
19     

1
19     0 0

8
19    

126
8    

u3  
124
19       

1
19     

4
19     0 0

6
19    ....

u7  
1599

19     
13
19      

5
19     1 0       

17
19    ....

z *  
1130
19       

37
19      

15
19      0 1        B 13

19    Min x
y

Bi

ik

126
8
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For non basis variables, compute z cj j , j 1 2 5 6, , ,

z c1 1
13
19

   , z c2 2
122
19

  , z c5 5
37
19

  , z c6 6
15
19

 

From here we again get the entering vector  1
1b g  and z c1 1 0   and is minimum. Calculate

y B1
1

1
1

1
1 8

19
6
9

17
19

13
19

b g b g    L
NM

O
QP

  , , ,

We take  4
1b g  as departing vector. The new BFS becomes as :

Revised Simplex Table - 4

Variables Solution      B1
1

in  X B
1b g       1

1b g        2
1b g        3

1b g         4
1b g

B.F.S

u1  
63
4      

5
8       

1
8         0          0

u3  
23
2    

1
4       

1
4         0          0

u7  
393
4    

1
8       

3
8         1          0

z *
281
4      

19
8        

7
8        0          1

For non basis variables, calculate z c jj j , , , ,2 4 5 6

z c2 2   (last row of B1
1 ) 2

1 19
8

7
8

0 1b g  FHG
I
KJ, , ,   2

1 63
8

b g 

Similarly z c4 4
13
8

  , z c5 5
19
8

  , z c6 6
7
8

 

since z c jj j  0, , the present solution is optimal. Hence optimal solution is

u u u u u1 2 3 4 5
63
4

0 23
2

0 0    , , , ,

z*  281
4

 The optimal solution of the given problem is x u1 1 2 71
4

   , x y2 2 1 1   ,
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u3 3 29
2

  , x y4 4   

Max z z  * 41 445
4

2.5 Revised Simplex Method (Standard Form - II)
This form is used when the l.p.p. does not have any basis matrix as identity matrix. For

simplification we suppose that the initial basis matrix does not contain any positive unit vector, i.e. the
original problem does not give the first basis without use of artifical variables. Therefore we are assuming
here that the basis of the original problem contains all the artificial vectors   1 2a a ma, ,...., corresponding
to the artificial variables x x xa a ma1 2, ,...  introduced in the first, second,......, and mth  constraint, respcetively..
Now, we solve the problem by two phase method for the removal of artificial variable and so we consider
one more objective function Za , known as artificial objective function which is as

Max. Z x a x a xa ma    1 2 ......
As there are two objective functions, we have to consider the problem in the revised form with

m 2b g  contraints. So the problem in standard form-II of the revised method is written below:

a x a x a x x b
a x a x a x x b

a x a x a x x b
z c x c x c x
z x x x

n n a

n n a

m m mn n ma m

n n

a a a ma

11 1 12 2 1 1 1

21 1 22 2 2 2 2

1 1 2 2

1 1 2 2

1 2

0
0

    
    

    
    

    

U

V

|||

W

|||

......
......

....... ........ ...... ....... ....
......
.....

...

x xj ia 0 0, , j 1, 2, .....,m. ...(9)
Basis and Its Inverse in Standard Form - II :

In the above problem the number of constraints is m 2b g . So to handle the problem we get a

basis matrix of order m 2b g . Two vectors out of m 2b g  are corresponding to two objective functions

z  and Za  and are denoted by e em m 1 2,  and remaining m  are corresponding to the m  artificial variables
introduced one in each of the constraint.

Now the problem in matrix form can be written as :

e e
a a a
a a a

a a a
c c c

m m n a a ma
a

n

n

m m mn

n

 

  

L

N

MMMMMMMMM

O

Q

PPPP

2 1 1
2

2
2 2

1
2

2
2

11 12 1

21 22 2

1 2

1 2

0 0 1 0 0
0 0 0 1 0

0 0 0 0 1
0 1 0 0 0
1 0 0 0 0 1 1 1

     b g b g b g b g b g

...... .......

...... .......

...... .......
...... .......
....... ........

PPPPP

X
Z
Z
x

x
x

x

B

a

n

a

ma

2

1

1

b g

L

N

MMMMMMMMMMM

O

Q

PPPPPPPPPPP

 =

b
b
b

bm

2

1

2

0
0

b g

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

      ...(10)
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The basis matrix given in (10) can be represented as

  1
2

2
2 2

1 2

2

1 0 0 0 0
0 1 0 0 0

0 0 1 0 0
0 0 0 1 0
1 1 1 0 1

b g b g b g
m m me e

B

 



L

N

MMMMMMMMM

O

Q

PPPPPPPPP

..........
..........

.........
........
........

 = 

Im

m

0 0
0 1 0
1 0 1

L

N
MMM

O

Q
PPP  = 

B
C
C

B

Ba

0 0
1 0
0 1




L

N
MMM

O

Q
PPP         ...(11)

If we write C C CB Ba B,  2b g  then frm (11) we have

B
B

C IB
2 2

2

0




L
NM

O
QPb g

By partitioned method, the inverse of above basis matrix is given by

B
B

C B I

B
C B
C BB

B

Ba

2
1

1

2 1
2

1

1

1

0
0 0
1 0
0 1













L
N
MM

O
Q
PP

L

N

MMM

O

Q

PPPb g         ...(12)

Here are some properties of B2
1

(i) B
B
C B
C B

j B

Ba

2
1 2

1

1

1

0 0

1 0
0 1











L

N

MMM

O

Q

PPP
 b g  

 j

jC
L

N
MMM

O

Q
PPP0

 = 

B

C B C

C B

j

B j j

Ba j











L

N

MMMM

O

Q

PPPP

1

1

1 0







  



L

N

MMM

O

Q

PPP

y
z C
z

j

j j

ja 0
        ...(13)

(ii) B b
B
C B
C B

B

Ba

2
1 2

1

1

1

0 0

1 0
0 1











L

N

MMM

O

Q

PPP
b g  

b
0
0

L

N
MMM

O

Q
PPP

 = 

B b
C B b
C B b

B

Ba







L

N

MMM

O

Q

PPP

1

1

1

 = 
X
Z
Z

B

a

L

N
MMM

O

Q
PPP

       ...(14)

From above it is clear that if m th 2b g  row of B2
1  is multiplied with b 2b g , we get the artificial

objective function. If m th1b g  row is multiplied, we get the value of the objective function of the original

problem and if first m  rows of B2
1  is multiplied with b 2b g , we get the solution of the original problem.

Computational Procedure of the Standard Form - II :

We know that the column vector corresponding to any variable x j  in (10) is
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 j j jc j n2 0 1 2b g   , , , , ,....,  for legitimate vectors and  ja ja i m2 0 1 1 2b g  , , , , ,....,  for
artificial vectors.

The vector corresponding to z  is em1 , a unit vector, and for za  it is em2 , another unit vector
represented in the second and first column of (10). Now the inverse of the basis of (10), as calculated
previously, is

B
B
C B
C B

B

Ba

2
1

1

1

1

0 0
1 0
0 1











L

N

MMM

O

Q

PPP  = 

I
C
C

m

B

Ba

0 0
1 0
0 1

L

N
MMM

O

Q
PPP           [  initially B Im ]

So it is very easy to get the inverse of B2 , as we know that CB  is the price vector of those

legitimate variables which are present in the basis and CBa  the artificial price vector..

To start with the computation we start with phase I for removal of artificial variables from the basis.

As soon as artificial variables are removed, we proceed for phase-II.

During the phase I neither the variable z  nor za  may be considered as a candidate for removal

from the basis. Moreover, neither of these variables is constrained to be non-negative. If the maximum of

za  is strictly negative, the original problem has no solution. Further if the maximum in phase I is zero and no

artificial vector is present in the basis we proceed to phase-II.

Phase I of the Revised Problem :

To start with the phase-I, we need first of all the first basis feasible solution. We get it as

X B bB
2

2
1 2b g b g  . After getting initial BFS of the problem, we want to improve it i.e. to make max za 0  and

for this we want z Cja ja
2 2b g b g  which is obtained by multiplying m th 2b g row of B2

1  with  ja
2b g  If

max za  0 , the phase-I ends and if, max za  0 . take z c z cka ka ka ja   min 0n s  then  k
2b g  is taken

as entering vcetor. Now select   
RST

UVWmin ,x
y

yBi

ik
ik 0  and corresponding vector is eliminated from the

old basis, where xBi  are the elements of X B  and yik  are the elements of yk . To get yk , as discussed

earlier we multiply  k
2b g  with B2

1 , the first m elements will result yk .

Let   Min X
y

X
yi

Bi

ik

Bl

lk
, then l th  vector of the basis will be eleminated. Now we transform the

table for the first improved solution containing  k
2b g  in place of l th  vector of the basis by method used in

standard form-I or in the simplex method and proceed in this way unless za  i.e. the atificial objective

function is maximised. If maximum of za  is zero and none of the artificial variable present in the basis, then

proceed phase-II after eleminating m th 2b g  row of the tableau. If maximum of za  is zero but atleast one
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of the artificial variable is present at the zero level even then, we proceed to Phase-II with the care that in

the further process the artificial variable should never become positive. The best way in these case is that

in the first step of phase-II eliminate the artificial variable at zero level, in case of tie consider one by one.

If maximum of za  in strictly negative, the original problem has no BFS and no need of further procedure.

Phase - II :

As soon as phase I ends with max za  0  remove m th 2b g  row of B2
1  and the column

corresponding to Za . The reason being that inphase - II we deal with the original objective function and

so the prices of all artificial variables become zero.

Now proceed exactly in the same way as stadard form-I.

2.6 Illustrative Examples

Example 2.4 :   Solve the following l.p.p. by standard form-II of revised simplex method :

2 5 61 2x x 

x x x x1 2 1 22 0  , ,

Min. z x x 1 22

Solution :   Introducing surplus variables x x3 4, , the problem can be written as :

2 5 0 61 2 3 4x x x x   

x x x x1 2 3 40 2    , x x x x1 2 3 4 0, , 

Max z x x x x    1 2 3 42 0 0

Since, there is no basic feasible solution having identity matrix as basis matrix, so we introduce

artificial variables x x5 6,  the problem in standard form-II of revised simplex method becomes as

2 5 0 0 61 2 3 4 5 6x x x x x x     

x x x x x x1 2 3 4 5 60 0 2     

z x x x x   1 2 3 42 0 0 = 0

za           x x5 6 =0

      x x x x x x1 2 3 4 5 6 0, , , , , 
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where the artificial objective function is

Maximize z x xa  5 6

or  

e e4 3 1
2

2
2

3
2

4
2

5
2

6
2

0 0 2 5 1 0 1 0
0 0 1 1 0 1 0 1
0 1 1 2 0 0 0 0
1 0 0 0 0 0 1 1

     b g b g b g b g b g b g




L

N

MMMM

O

Q

PPPP

X
z
z
x
x
x
x
x
x

B

a

2

1

2

3

4

5

6

b g

L

N

MMMMMMMMMMM

O

Q

PPPPPPPPPPP

 

b 2

6
2
0
0

b g



L

N

MMMM

O

Q

PPPP

x jj  0 1 2 6, , ....

The initial basis is
B

I
C
C

B

Ba

2

2 0 0
1 0
0 1

1 0 0 0
0 1 0 0
0 0 1 0
1 1 0 1

 


L

N
MMM

O

Q
PPP


L

N

MMMM

O

Q

PPPP

New B
I
C
C

B

Ba

2
1

2 0 0

1 0
0 1

  


L

N
MMM

O

Q
PPP

 = 

1 0 0 0
0 1 0 0
0 0 1 0
1 1 0 1

L

N

MMMM

O

Q

PPPP
 as CB  0 0,b g  correspondig to z

and CBa   1 1,b g  corresponding to za

Initial BFS X B bB
2

2
1 2b g b g 



 

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP




L

N

MMMM

O

Q

PPPP

1 0 0 0
0 1 0 0
0 0 1 0
1 1 0 1

6
2
0
0

6
2
0

8

For non basis vectors

z c last row of B1 1 2
1

1
2 1 1 0 1

2
1
1
0

3    

L

N

MMMM

O

Q

PPPP
  b g b g, , ,
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z c2 2 1 1 0 1

5
1
2
0

6   

L

N

MMMM

O

Q

PPPP
 , , , ,b g   z c3 3 1 1 0 1   , , ,b g

L

N

MMMM

O

Q

PPPP


1
0
0
0

1

z c4 4 1 1 0 1

0
1

0
0

1   

L

N

MMMM

O

Q

PPPP
, , ,b g

Since z cj j 0,  therefore above BFS is not optimal i.e. max za  0 . Min z cj j  d i 6  (for

 2
2b g ), so  2

2b g  is taken as intering vector. Now y B2
2

2
1

2
2b g b g  



 

L

N

MMMM

O

Q

PPPP

1 0 0 0
0 1 0 0
0 0 1 0

1 1 0 1
 

5
1
2
0

L

N

MMMM

O

Q

PPPP   = 

5
1
2

6

L

N

MMMM

O

Q

PPPP

Revised Simplex Table - 1 : Phase - I

Variables Solution        B2
1 y2

1b g      
x
y

Bi

ik
, yik  0

in  X B
2b g       1

2b g     2
2b g   3

2b g      4
2b g

B.F.S

x5    6       1     0     0 0 5    
6
5                         

x6   2       0     1     0 0 1  
2
1

z   0       0     0     1 0 2    

za            8     1     1        0 1        6    Min x
y

Bi

ik

6
5

The vector departing from the basis is x5 .

Now transform the table using transformations as standard form-I.

B
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Revised Simplex Table - 2 : Phases - I

Variables Solution         B1
1 y1

2b g    
x
y

Bi

ik
, yik  0

in  X B
2b g       1

2b g     2
2b g   3

2b g      4
2b g

B.F.S

x2  
6
5       

1
5      0     0 0

2
5    

6 5
2 5

3/
/



x6  
4
5     

1
5      1     0 0

3
5    

4 5
3 5

4
3

/
/



z 
12
5     

2
5      0     1 0

1
5    ....

za


4
5      

1
5       1        0 1       

3
5    Min x

y
Bi

ik

4
3

For non basis variables

z c1 1
1
5

1 0 1

2
1
1
0

3
5

  F
HG

I
KJ
L

N

MMMM

O

Q

PPPP
 , , ,

z c3 3
1
5

1 0 1

1
0
0
0

1
5

  F
HG

I
KJ
L

N

MMMM

O

Q

PPPP
 , , ,

, 
z c4 4

1
5

1 0 1

0
1

0
0

1  F
HG

I
KJ

L

N

MMMM

O

Q

PPPP
, , ,

 z c jj j  ,0  so the BFS is not optimal, min z cj j  d i 3
5  f x  1

1b ge j
so we take  1

2b g  as entering vector,,

Now y B1
2

2
1

1
2

1
5

0 0 0

1
5

1 0 0

2
5

0 1 0

1
5

1 0 1

2
1
1
0

2
5
3
5
1
5
3
5

b g b g 






L

N

MMMMMMMMM

O

Q

PPPPPPPPP

L

N

MMMM

O

Q

PPPP




L

N

MMMMMMMMM

O

Q

PPPPPPPPP

 

B


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We take  
2b g  as departing vector..

Revised Simplex Table - 3 : Phase - I

Variables Solution       B1
1

in  X B
2b g  1

2b g  2
2b g  3

2b g       4
2b g

B.F.S

x2  
2
3

1
3


2
3 0        0

x1  
4
3          

1
3   

5
3 0         0

z           
8
3          

1
3


1
3 1         0

za   0  0    0 0         1

Since Max za  0 as no artificial variable present in the basis, hence Phase-I ends. Now we go in
phase-II.

Revised Simplex Table - I : Phase - II

Variables Solution B1
1

in  X B
1b g  1

1b g  2
1b g  3

1b g

B.F.S

x2  
2
3  

1
3          

2
3 0

x1  
4
3           

1
3

5
3 0

z           
8
3           

1
3          

1
3 1

For non basic variable

z c3 3
1
3

1
3

1
1

0
0

1
3

   F
HG

I
KJ
L

N
MMM

O

Q
PPP
, ,

z c4 4
1
3

1
3

1
0

1
0

1
3

   F
HG

I
KJ 
L

N
MMM

O

Q
PPP
, ,
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 z c jj j  0,  so above BFS is optimal. Optimal solution is x x1 2
4
3

2
3

 ,

Max z   8
3

or Min z 8
3

Example 5 : Solve the following l.p.p. with the help of revised simplex method but without use of
artificial variables :

Max. z x x 2 61 2

s.t. x x1 23 6 

2 4 81 2x x 

  x x1 23 6 , x x1 2 0, 

Solution :    Since we have to solve the problem with the help of revised simplex method but with use of
artificial variables i.e. we have to apply standard form-I of the revised simplex method which is as follow:

Find z  as large as possible s.t.

x x x1 2 33  =6

2 41 2x x x4 =8

 x x1 23         x5 =6        ...(15)

       z x x 2 61 2 =0

Here three unit vectors corresponding to x x3 5,  and z are available. But the basis of problem (15)
is of order 4. If there is no restriction we would have to introduce artificial variable in the second row but
as we have not to introduce any artificial variable so we can consider any of the remaining vectors for the
fourth vector of the basis. For simplicity we consider the negative unit vector corresponding to x4 . Hence
the basis will become

  3
1

4
1

5
1

4

1
2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

b g b g b g e

B
S O
O I




L

N

MMMM

O

Q

PPPP

L
NM

O
QP ,   where  S 


L
NM

O
QP

1 0
0 1

Hence B
S

I1
1

1

2

0
0





L
NM

O
QP .  But S 






L
NM

O
QP 


L
NM

O
QP

1
11 0

0 1
1 0
0 1

 B1
1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 


L

N

MMMM

O

Q

PPPP
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Initial BFS X B bB
1

1
1 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

6
8
6
0

6
8

6
0

b g b g 


L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP



L

N

MMMM

O

Q

PPPP


for non basic variables

z c1 1 0 0 0 1

1
2

1
2

2 



L

N

MMMM

O

Q

PPPP
, , ,b g

z c2 2 0 0 0 1

3
4
3
6

6 

L

N

MMMM

O

Q

PPPP
, , ,b g

Revised Simplex Table - 1

Variables Solution        B1
1 y1

1b g    
x
y

Bi

ik
, yik  0

in  X B
1b g       1

1b g     2
1b g   3

1b g       4
1b g

B.F.S

x3  6       1      0     0   0   1    
6
1

6

x4 8      0      1     0   0 2    




8
2

4

x5 6       0        0     1   0 1    ....

z 0       0           0       0   1 2  Min x
y

Bi

ik

 4

 z c jj j  0 , therefore above BFS is not optimal. Min z cj j  d i 2  (for  1
1b g ) so

we take  1
1b g  as entering vector. Now

y B1
1

1
1

1
1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1
2

1
2

1
2
1
2

b g b g 


L

N

MMMM

O

Q

PPPP 


L

N

MMMM

O

Q

PPPP






L

N

MMMM

O

Q

PPPP
 
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As in this case, we get a non feasible solution, we select   as

 





R
S|
T|

U
V|
W|
min ,

Min
y

x
y

Min
x
y

x
yik

Bi

ik
Bi

ik

Bi

ik0
0
0

4   (for  4
1b g )

We take  4
1b g  as departing vector

Revised Simplex Table - 2

Variables Solution     B1
1

in  X B
1b g       1

1b g  2
1b g     3

1b g       4
1b g

B.F.S

x1  6       1 0     0        0

x4  4       2          1     0        0

x5 12      1 0     1        0

z 12      2 0              0        1

For non basis vectors

z c2 2 2 0 0 1

3
4
3
6

0 

L

N

MMMM

O

Q

PPPP
, , ,b g

z c3 3 2 0 0 1

1
0
0
0

2 

L

N

MMMM

O

Q

PPPP
, , ,b g

 z cj j 0 ,  j , therefore above BFS is optimal. Thus optimal solution is

x x1 26 0 ,

max z12

2.7 Self-Learning Exercise - 1
1. In which l.p.p. the standard form-I of revised simplex method used?

2. In which l.p.p. the standard form-II of revised simplex method used?

3. What are artificial variables and when they are used?

4. What is artificial objective function?
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2.8 Exercise
1. Solve the following l.p.p. using revised simplex method

x x1 2 3 

x x1 22 5 

3 61 2x x  , x x1 2 0, 

Ans. x x1 20 5
2

 ,   Max z5

2. Sole the following l.p.p. using revised simplex method

Max. z x x x  3 2 51 2 3

s.t. x x x1 2 32 430  

  3 2 4601 3x x

   x x1 24 420 

     x x x1 2 3 0, 

Ans. x x x1 2 30 100 230  , , , Max  z 1350

Solve the following linear programming problem using standard form-I or II of revised simplex
method :

3. Maximize z x x x  1 2 33

s.t. 3 2 31 2 3x x x  

2 2 21 2 3x x x  

        x x x1 2 3 0, , 

Ans. x x x Max z1 2 30 0 1 3   , , ,

4. Min. z x x 1 2

s.t. x x1 22 7 

4 61 2x x 

     x x1 2 0, 

Ans. x x Min z1 2
5
7

22
7

27
7

  , ,

5. Max z x x x  6 2 31 2 3

s.t. 2 2 21 2 3x x x  
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x x1 34 4 

      x x x1 2 3 0, , 

Ans. x x x1 2 34 6 0  , ,   Max  z 12

6. Max z x x x  30 23 291 2 3

s.t. 6 5 3 261 2 3x x x  

4 2 5 71 2 3x x x  

          x x x1 2 3 0, , 

Ans. x1 0 , x2
7
2

 , x3 0 , max z  161
2

7. Max. z x x 1 2

s.t. 3 2 61 2x x 

x x1 24 4 

x x1 2 0, 

Ans. x1
8
5

 , x2
3
5

 , max z 
11
5

8. Max z x x 5 31 2

s.t. 3 5 151 2x x 

5 2 101 2x x 

      x x1 2 0, 

Ans. x x Max z1 2
20
19

45
19

235
19

  , ,

9. Max z x x 5 31 2

s.t. 4 5 101 2x x 

5 2 101 2x x 

3 8 121 2x x 

      x x1 2 0, 

Ans. x x1 2
28
17

15
17

 , , Max z  185
17

10. Max z x x x x   1 2 3 42 3
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s.t. x x x1 2 32 3 15  

2 5 201 2 3x x x  

x x x x1 2 3 42 10   

x x x x1 2 3 4 0, , , 

Ans. x x x x1 2 3 4
5
2

5
2

5
2

0   , , , , Max  z 15 .

2.9 Bounded Variable Problems
A bounded variable linear programming problem (BVLPP) is difined as :

Max  or Min  z CX

s.t. A X b  , ,

l x uj j j  ,  j n1 2 3, , ,...      ...(16)

and X  0

Here each variable x j  is bounded from both sides i.e. from upper bound u j  and lower bound l j .
These problems can be solved by simplex method with some modifications.

Bounded Variable Simplex Alogrithm

(i) Convert the objective function into maximization if it is in minimization and introducing
slack and surplus variables write the problem in standrad form.

(ii) Find initial basic feasible solution.

(iii) If lower bound of any bounded variable is positive then make it zero by substituting
additional variable. For example if 2 51 x , then put x x1 1 2' 

2 2 2 5 21    x

or 0 31 x '

(iv) Construct the simplex table and test the sign of z cj j . In case of z cj j 0, the optimal

solution is obtained, if z cj j 0, then entering and departing vectors can be found as
follows :

(v) Let min z c z cj j r r  n s  then take  r  as entering vector..

(vi) To find departing vector following quatntities are calculated :

 1 0 
RST

UVWmin ,
i

Bi

ir
ir

x
y

y

 2 0




RST

UVWmin ,
i

i Bi

ir
ir

u x
y

y
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  min , ,1 2 url q
where ur  is the upper bound of variable xr . Clearly when yir  0 2,  .

(a) if     min , ,1 2 1url q  and it is corresponding to xBk then yk  will be departing
vector.

(b) If     min , ,1 2 2url q  and it is corresponding to xBk  will be departing vector. If xBk

is non basic on the upper bound, then following substitution is made i.e. all basic variables
are updated.

x x y uBk r Bk r kr rb g b g ' ,  where 0 x uBk r rb g'

and non basic variable xr  on upperbound is made at zero level by substituting x u xr r r  1,
0 x ur r' .

(c) If    min , ,1 2 u ur rl q , then xr  is substituted on the upper bound till then xr

becomes non basic variable and it is being made at zero level using x u xr r r  ' .

(vii) Choosing entering and departing vector from steps vb g  & vib g  we make simplex table

and test the sign of z cj j . In case z cj j  0 , the optimal solution is obtained and if

z cj j  0  repeat steps ivb g  to viib g  until we get optimal solution.

2.10 Illustrative Examples

Exampe 6 :   Using bounded variable technique, solve the following l.p.p.

Max z x x 1 23

S.t. x x x1 2 3 10  

x x1 32 0 

2 102 3x x 

and 0 8 0 4 01 2 3    x x x, ,

Solution :   Introducing slack variables x x x4 5 6, ,  the standard form of l.p.p. is as a

Max z x x x x x x     1 2 3 4 5 63 0 0 0 0

S.t. x x x x x x1 2 3 4 5 60 0 10     

x x x x x x1 2 3 4 5 60 2 0 0 0     

0 2 0 0 101 2 3 4 5 6x x x x x x     

and 0 8 0 4 01 2 3 4 5 6    x x x x x x, , , , ,
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Initial B.F.S. is x x x4 5 610 0 10  , ,  and Basis B I 3 . In the given problem there is no upper
bound for basic variables x x x4 5 6, ,  and non basic variable x3 . Thus all the upper bounds are taken at
inifinity i.e. u u u u4 5 6 3   .

Simplex Table - 1

c j 0 1 3 0 0 0 u xi Bi

cB B X B b y1 y2 y3 y4 y5 y6

0  4 x4 10 1 1 1 1 0 0   10

0  5 x5 0 1 0 2 0 1 0  0

0  6 x6 10 0 2 1 0 0 1   10

z cj j 0 1 3 0 0 0

u j 8 4    

Since z c jj j  0, , therefore above BFS is not optimal. Here Min z c z cj j    d i 3 3 3 ,

hence to improve BFS we introduce x3  into the basis. For departing vector

 1
3

3 0 10 0 0 
RST

UVW min , min ,x
y

yBi

i
i l q (corresponding to  5 )

 2
3

3 0




RST

UVWmin ,u x
y

yi Bi

i
i (corresponding to  5 )

and u3 

 min , , min , ,  1 2 3 10 0ul q l q    

Hence we take  5  as departing vector..
Simplex Table-2

c j 0 1 3 0 0 0 u xi Bi

CB B X B b y1 y2 y3 y4 y5 y6

0  4 x4 10
3
2 1 0 1 1 0   10

3  3 x3 0       
1
2 0 1 0 1 0  0

0  6 x6 10     
1
2 2 0 0 1 1   10

   z cj j           
3
2 1 0 0 3 0

u j 8 4    



A
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  z c jj j  0, , therefore above BFS is not optimal. Min z c z cj j    d i 3
2 1 1 , so we take

 1  as entering vector. For departing vector, we have

 1
1

1 0 10
3
2

20
3

 
RST

UVW


R
S|

T|

U
V|

W|
Min x

y
y

i
Bi

i
i, min  (for  4 )

 2 ,  and u1 8

      RST
UVW min , , min , ,1 2 1 1

20
3

8 20
3

ul q

Hence  4  is taken as departing vector,,

Simplex Table - 3

c j 0 1 3 0 0 0

CB B X B b y1 y2 y3 y4 y5 y6

0  1 x1

20
3 1

2
3 0

2
3

2
3 0

3  3 x3

10
3       0

1
3 1

1
3

2
3 0

0  6 x6

40
3       0

7
3 0

1
3

2
3 1

z cj j 0 0 0 1 2 0

   z c jj j  0,  so above BFS is optimal. Hence optimal solution is

x x x1 2 3
20
3

0 10
3

  , , ,  Max z 10

Example 7 :   Using the bounded variable technique, solve the following l.p.p.

Max z x x x  3 5 21 2 3

S.t.  x x x1 2 32 2 14  

2 4 3 231 2 3x x x  

and 0 4 2 5 0 31 2 3     x x x, , .

Solution :   Since the lower bound of x2  is positive, therefore let   x x2 2 2  or x x2 2
1 2  , then

0 32
1 x . Introducing slack variables x x4 5 0,  , the standard form of B.V.L.P.P. is as :

Max z x x x x x     10 3 5 2 0 01 2
1

3 4 5b g
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s.t. x x x x x1 2
1

3 4 52 2 0 10    

2 4 3 0 151 2
1

3 4 5x x x x x    

0 4 0 3 0 31 2
1

3     x x x, ,

x x4 5 0, 

Initial BFS x x4 510 15 , , initial basis B I 2

Simplex Table -1

c j 3 5 2 0 0 u xi Bi

CB B X B b y1 y2 y3 y4 y5

0  4 x4 10 1 2 2 1 0   10

0  5 x5 15       2 4 3 0 1  15

      z cj j          3        5      2 0 0

u j 4 3 3  

z cj j  0 , therefore above b f s. . .  is not optimal. Min z c z cj j  d i b g5 2 2 , so to improve

b.f.s.  we introduce  2  into the basis. For departing vector-

 1
10
2

15
4

15
4

 RST
UVWmin ,  (corresponding to  5 )

 2  , u2 3 ,

  RST
UVW  min , ,15

4
3 3 2u , therefore we substitute x2

1  on the upper bound till then x2
1

becomes non-basic.

x u x x2
1

2 2 23   " " , where 0 32 x "

and update basic variables as

x x y uB B1 1 12 2 10 2 3 4     '

x x y uB B2 2 22 2 15 4 3 3     '

Simplex Table - 2

c j 3 5 2 0 0 u xi Bi

CB B X B b y1 y2
 y3 y4 y5

0  4 x4 4 1 2 2 1 0   4

0  5 x5 3 2 4 3 0 1  3

   z cj j           3          5         2 0 0

u j 4 3   3 0 0
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 z c jj j  0,  therefore above b.f.s. is not optimal. Min z c z cj j   d i b g3 1 1  so we take

 1 as entering vector. For departing vector

 1
4
1

3
2

3
2

 RST
UVWMin , (corresponding to  5 )

 2  , and u1 4

     RST
UVW Min u Min1 2 1 1

3
2

4 3
2

, , , ,l q
Hence  5  is departing vector..

Simplex Table - 3
c j 3 5 2 0 0 u xi Bi

CB B X B b y1 y2
 y3 y4 y5

0  4 x4

5
2 0 0

1
2 1 

1
2

   
5
4

3  1 x1         
3
2         1        2        

3
2 0

1
2

4 3 5
2

 

   z cj j            0         0        1
5
2 0          

3
2

u j 4 4 3 3  

 z cj j 0 ,  j  so the above b.f.s is not optimal Min z cj j  d i 1 z c2 2b g ,

therefore "2  will be introducing vector. Since y"2 0 , so for departing vector

 1 2 2

5
2

2
5
4

3  
 

R
S|

T|

U
V|

W|
 , , ,Min ub g  (Corresponds to  1 )

   RST
UVW Min. , ,5

4
3 5

4 2

 1  is departing vector. Since upper bound of x1  is 4 .
Simplex Table - 4

c j 3 5 2 0 0

CB B X B b y1 y2
 y3 y4 y5

0  4 x4

5
2 0 0

1
2 1 

1
2

5  2" x"2     
3
4       

1
2         1      

3
4 0 

1
4

   z cj j           
1
2          0         

7
4  0  

5
4

u j  4   3   3   

A
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so we update the basic variables

x x y uB B1 1 11 1
5
2

0 4 5
2

     '

x x y uB B2 2 21 1
3

4
1
2

4 5
4

  


 FHG
I
KJ  '

For zero level of non basic variable x1, substituting x x1 1
14 

Simplex Table-5

c j 3 5 2 0 0

CB B X B b y1
 y1

 y3 y4 y5

0  4 x4

5
2 0 0

1
2 1 

1
2

5  2" x"2      
5
4          

1
2         1      

3
4 0 

1
4

   z cj j             
1
2          0        

7
4 0  

5
4

u j  4  3 3   

Since z cj j j  0,  therefore above b.f.s. in optimal.

The optimal solution from the table

x x x' , " ,1 2 30 5
4

0  

But x x'1 14   and x x' "2 23 

     x x1 14 4 0 4' , x2 3 5
4

7
4

  

     x x2 2 2 7
4

2 15
4

'

   x x x1 2 34 15
4

0, ,  and Max z     3 4 5 15
4

2 0 
123

4

Example 8 :   Using the bounded variable technique, solve the following linear programing problem :

Max z x x 2 1 2
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s.t. x x1 22 10 

 x x1 2 6 

 x x1 2 2 

 x x1 22 1 

and 0 31 x , 0 22 x

Solution : Introducing slack variables x x x x3 4 5 6 0, , ,   the standard form of given problem is as :

Max z CX

s.t. AX b , 0 3 0 21 2   x x,

x x x x3 4 5 6 0, , , 

where A



L

N

MMMM

O

Q

PPPP

1 2 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 2 0 0 0 1

, b

L

N

MMMM

O

Q

PPPP

10
6
2
1

 and C  2 1 0 0 0 0, , , , ,b g

Initial BFS x x x x3 4 5 610 6 2 1   , , ,  and initial basis B I 4

Simplex Table - 1

c j 2 1 0 0 0 0 u xi Bi

CB B X B b y1 y2 y3 y4 y5 y6

0  3 x3 10 1 2 1 0 0 0   10

0  4 x4 6 1 1 0 1 0 0  6

0  5 x5 2 1 1 0 0 1 0   z

0  6 x6 1 1  2 0 0 0 1   1

   z cj j           2 1 0 0 0 0

u j 3 2    

 z c jj j  0,  therefore BFS is not optimal.

Min z cj j  d i 2  (for  1 ), so  1  is taken as entering vector. For departing vector

 1
10
1

6
1

2
1

1
1

1 RST
UVWmin , , ,  (corresponding to  6 )

 2   and u1 3

     min , ,1 2 1 11ul q


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Hence  6  is taken as departing vector..

Simplex Table-2

c j 2 1 0 0 0 0 u xi Bi

CB B X B b y1 y2 y3 y4 y5 y6

0  3 x3 9 0 4 1 0 0 1 

0  4 x4 5 0 3 0 1 0 1 

0  5 x5 1 0 1 0 0 1 1 

2  1 x1 1           1        2 0 0 0    2 3 1 2 

   z cj j              0        5 0 0 0  2

u j 3 2    

 z c jj j  0,    above BFS is not optimal. Min z cj j  d i 5  (for  1 ) so  1  is
entering vector. For departing vector

 1
9
4

5
3

1
1

1 RST
UVWmin , ,

 2
2

2 0 2
2

1




RST

UVW  
min ,u x

y
yi Bi

i
i b g

u2 2

     min , ,1 2 2 11ul q  or  2

Let   1 , then  5  is taken as departing vector..

Simplex Table - 3

c j 2 1 0 0 0 0 u xi Bi

CB B X B b y1 y2 y3 y4 y5 y6

0  3 x3 5 0 0 1 0 4 3 

0  4 x4 2 0 0 0 1 3 2 

1  2 x2 1 0 1 0 0  1 1 2 1 1 

2  1 x1 3           1         0 0 0  2 1 3 3 0 

   z cj j           0          0 0 0  5  3

u j 3 2        A  

 z cj j 0 ,  j      Above BFS is not optimal



3
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Min z cj j  n s 3  (for  6 ), so  6  is entering vector..
For departing vector

 1 2
5
3

2
2

1 1
1

0
1

0 RST
UVW 

   

RST
UVW
Min , , min ,b g b g

(corresponds to  4 ) (corresponds to  1 )
and u6  = 

     min , ,1 2 6 20ul q
  1  is departing vector..

Simplex Table - 4

c j 2 1 0 0 0 0

CB B X B b y1 y2 y3 y4 y5 y6

0  3 x3 14 3 0 1 0 2 0

0  4 x4 8 2 0 0 1 1 0

1  2 x2 2 1 1 0 0        1 0

0  6 x6 3       1       0 0 0        2 1

   z cj j 3 3 0 0        1 0

u j 3 2          

 upper bound of x1  is 3 we update basic variables as :

x x y uB B1 1 11 1 14 3 3 5     ' b g
x x y uB B2 2 21 1 8 2 3 2     ' b g
x x y uB B3 3 31 1 2 1 3 1       ' b g
x x y uB B4 4 41 1 3 1 3 0       ' b g

The non basic variable x1 can be found by substituting x1 on upper bound at zero level as x x1 13  '
Applying above formula

Simplex Table - 5
c j 2 1 0 0 0 0 u xi Bi

CB B X B b y1 y2 y3 y4 y5 y6

0  3 x3 5 3 0 1 0 2 0 

0  4 x4 2 2 0 0 1  1 0 

1  2 x2 1   1 1 0 0         1 0 2 1 1 

0  6 x6 0            1        0 0 0         2 1 

   z cj j   3        0 0 0 1  0

u j   3 2    
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 z cj j 0,  j  so above BFS is not optimal

min z cj j  d i 1  (for  5 )

So  5  is taken as entering vector..

For departing vector  1
5
1

2
1

2 RST
UVWmin ,

(corresponds to  4 )

 2 5
1

1
1

 
 b g ,u

     min , ,1 2 5 21ul q
Hence  2  will be departing vector..

Simplex Table - 6

c j 2 1 0 0 0 0

cB B X B b y1 y2 y3 y4 y5 y6

0  3 x3 7 1 2 1 0  0 0

0  4 x4 3 1 1 0 1  0 0

0  5 x5 1 1    1 0 0           1 0

0  6 x6 2        1    2 0 0           0 1

   z cj j   2        1 0 0  0  0

u j   3 2    

 x2  has upper bound 2, therefore updating the basic variable as :

x xB B1 1 2 2 3   '

x xB B2 2 1 2 1   '

x xB B3 3 1 2 1    ' b g
x xB B4 4 2 2 2    ' b g

The non basic variable x2  can be found by substituting x2  on upper bound at zero level as
x x2 22  ' . Applying the above formula.
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Simplex Table - 7

c j 2 1 0 0 0 0

CB B X B b y1 y2 y3 y4 y5 y6

0  3 x3 3 1 2 1 0  0 0

0  4 x4 1 1 1 0 1  0 0

0  5 x5 1 1 1 0 0           1 0

0  6 x6 2          1      2 0 0           0 1

   z cj j 2            1 0 0  0  0

u j 3 2    

 z c jj j  0,  therefore above BFS is optimal.

Optimal solution is x x' , '1 20 0 

 x x1 13 3 0 3    '

x x2 12 2 0 2    '

Max z z   2 3 2 8*

2.11 Self-Learning Exercise - 2
1. What do you mean by bounded variables?

2. How can you find the departing vector in the bounded variable algorithm?

3. If a bounded variable has lower bound positive, then how can it made zero?

2.12 Exercise
1. Using bounded variable technique, solve the following l.p.p.

Max  z x x x  4 4 31 2 3

s.t.    x x x1 2 32 3 15

             x x2 3 4

    2 61 2 3x x x  

     x x x1 2 32 10  

0 8 0 4 0 41 2 3     x x x, ,

Ans : x x x1 2 3
17
5

16
5

4  , , , Max z  192
5

2. Solve the following bounded variable problem :

Max z x x x  4 2 61 2 3

s.t. 4 1 2x x      9
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   x x x1 2 32 8

   3 4 121 2 3x x x

and 1 3 0 51 2   x x, , 0 23 x

Ans. x x x1 2 33 5 2  , , , Max z34

3. Solve :

Max  z x x x  3 5 21 2 3

s.t. x x x1 2 32 14  

2 4 3 341 2 3x x x  

and 0 4 7 10 0 34 2 3     x x x, ,

Ans. x x x1 2 34 35
4

0  , , ,  Max z  223
4

���
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Unit - 3
Integer Programming : Gomory’s Algorithm

Structure of the Unit
3.0 Objective

3.1 Introduction

3.2 Importance of Integer Programming Problems

3.3 Necessity of Integer Programming

3.4 Definitions

3.5 Gomory’s all IPP method

3.6 Construction of Gomory’s Constraint.

3.7 All I.P.P. algorithm or cutting plane algorithm

3.8 Illustrative Examples

3.9 Geometrical Interpretation of Gomory’s Cutting Plane Method

3.10 Self-Learning Exercise - I

3.11 Gomory’s mixed I.P.P. Method

3.12 Self-Learning Exercise - II

3.13 Summary

3.14 Answer to Self-Learning Exercise - I

3.15 Answer to Self-Learning Exercise - II

3.16 Exercise

3.0 Objective
The objective of this unit is to introduce the concept of integer programming. After studying this

unit one may be able to understand the importance and need of it. A method to solve these problems and
suffcient exercise to understand the method is also prosented in this unit.

3.1 Introduction
Integer programming problems are those linear programming problems in which all or some of the

variables in the optimal solutions are restricted to take non-negative integer values. Such problems are
called ‘all integer’ or ‘mixed integer programming problems depending, on whether all or some of the
variables are restricted to integer values respectively.

In 1956, R.E. Gomory presented a systematic procedure to find optimum integer solution to an
“all integer programming problem”. Later he extended the method to deal with the more complicated
case of “mixed integer programming problems” when some of the variables are required to be integer.
These algorithms converge to the optimal integer solution in a finite number of iterations making use of
familiar dual simplex method. This is called “cutting plane algorithm” because it introduces an idea of
constructing “secondary” constraints which, when added to the optimal (non-integer) solution, will
effectively cut the solution space towards the required result.
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Another important approach, called the “branch and bound” technique for solving both the all
integer and the mixed integer programming problems, has originated the straight forward idea of finding all
feasible integer solutions.

“Branch-and-bound” technique was developed by A.H. Land and A.G. Doig (1960). This
technique for solving both the all integer and the mixed integer problems, has orginiated the straight
forward idea of finding all feasible integer solutions. Egon Balas (1965) introduced an interasting
enumerative algorithm for linear programming problem with the variables having the value zero or one,
called the zero one programming problem.

Several algorithms have been developed to solve linear integer programming problems. In this unit
we discuss Gomory’s cutting plane method, and in the next unit we will discuss branch and bound method.

3.2 Importance of Integer Programming Problems
We know that most industrial applications of large scale programming models are oriented to-

wards planning decisions. There are frequently occuring circumstances in business and industry that lead to
planning models involving integer valued variables. For example, in production, manufacturing is frequently
scheduled in term of batches, lots or runs. In allocation of goods, a shipment must involve a diserete
number of trucks, freight, cars or aircrafts. In such cases, the fractional value of the variables may be
meaningless in context of the actual dicision problem. For example it is not possible to use 3.5 boilers in a
thermal power station, 9.4 men in a project or 4.6 lathes in a workshop.

3.3 Necessity of Integer Programming
We can think that it is sufficient to obtain an integer solution to a given linear programming problem

by first obtaining the non-integer optimal solution using simplex method (or graphical method for two
variables problems) and then rounding off the fractional values of decision variables occuring in the optimal
solution. But, in some cases, the deviation from the “exact” optimal integer values (obtained as a result of
rounding) may become large enough to give an infeasible solution. Hence it was necessary to develop a
systametic procedure to determine optimal integer solution to such problems. The following example will
give more clarity of the concept.

Example :   Consider an I.P.P.

Max Z x x 10 41 2 , subject to the constraints.

3 4 81 2x x  , x x1 2 0,   and x1 , x2  are integers.

Ignoring the integer restriction we obtain the optimal solution :

x  2 2
3 , x2 0 , Max Z  26 2

3  by using graphical method. By rounding off the

fractional value of x  2 2
3 , the optimum solution becomes x1 3 , x2 0  with Max Z  30 . But this

solutions does not satisfy the constraints 3 4 81 2x x   and thus this solution is not feasible.

Now again, if we round off the solution to x1 2 , x2 0  obviously this is the feasible solution
and also integer valued. But this solution gives Z  20  which is far away from the optimum value of

Z  26 2
3 . So, this is another disadvantage of getting an integer valued solution by rounding off the exact

optimum solution. Still there is no guarantee that the “rounding down” solution will be optimal one. Thus a
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systematic procedure to find an exact optimum integer solution to the integer programming problems is
needed.

3.4 Definitions
Integer Programming Problem (I.P.P.) :  A linear programming problem :

Max Z cx , subject to AX b , X  0  and some x Xj   are integers, where C, X Rn ,

b Rm  and A  is an m n  real matrix, is called integer programming problem (I.P.P.)..).

All Integer Programming Problem (All I.P.P.) :  An integer programming problem is said to be an “All
Integer Programming Problem” if all x Xj   are integers.

Mixed Integer Programming Problem (Mixed I.P.P.) :  An integer programming problem is said to be
“Mixed Integer Programming Problem” if not all x Xj   are integers.

3.5 Gomory’s All I.P.P. Method
Consider a pure linear integer programming problem. First we find optimal solution using regular

simplex method ignoring integer valued restriction. Then we observe the following :

(i) If all the variables is the optimum solution thus obtained have integer values, then the
current solution will be the desired integer solution.

(ii) If not, the considered l.p.p. requires a modification by introducing secondary constraints
(also called Gomory’s constraint) that reduces some of the non-integer values of variables
to integer one, but does not eliminate any feasible integer.

(iii) Now the optimum solution to this modified l.p.p. is obtained by using any standard
algorithm. If all the variables in this solution are integers, then the opotimal integer solution
is obtained. Otherwise another secondary constraint is added to the l.p.p. and the whole
procedure is repeated.

Thus the optimum integer solution will be obtained definitely after introducing the sufficient number
of new constraints. The main work in this method is to construct Gomory’s secondary constraints. Now
we will discuss the method to construct this secondary construct.

3.6 Construction of Gomory’s Constraint

The procedure to construct a secondary constraint is based on the fact that a solution which
satsifies the constraint in the I.P.P. (3.4), also satisfies any other derived constraint obtained by employing
only row transformation (adding or subtracting two or more constraints or multiply a constraint by non-
zero number).

Thus if a x bj j
j

n


 

1
...(1)

is any such constraint (obtained by employing row transformations only) then any feasible solution
of the problem will also satisfy (1)

Before going further we discuss some rotations as : [p] denotes the integral part and f  is frac-
tional part of a number p , where 0 1 f ,

thus p p f 
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For example 5 2
3

5 2
3

5 2
3

5   L
NM

O
QP   and f 

2
3

and        52 6 08 52 6. . .  and f  0 8.

using these rotations, let

a a fj j j  , b b f 

0 1 f j 0 1 f

where f j  and f  represent the positive fractional parts of a j  and b  respectively. Substituting
these values in (1), we get

a f x b fj j j   e j

 f x f b a xj j j j    ...(2)

Let h f x fj j    and suppose h  0 , then since R.H.S. in integer valued so left side

must, which shows that h  1    f h f xj j 1

which constradicts that 0 1 f

 h h  0 0

    f x fj j 0

    f x fj j ...(3)

This inequality can be converted into an equation by introducing slack variable xs , then (3)
becomes

    f x x fj j s ...(4)

This is the Gomory’s secondary constraint and it is introduced in the given problem to form a new
l.p.p.

To understand the process more precisely, suppose that in the optional solution of the I.P.P. by

simplex method one basic variable, say X Br
 (in the r th  row) is not an integer. Let x x sayBr

 1 3 3
4

b g .

Now suppose that in the optimal tableau of the simplex method, the equation corresponding to r th

row, in which x1 3 3
4

  occurs, is

x x x x x1 2 3 4 51 2
3

5
3

2 1
3

3 3
4

    
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This can be written as

1 0 1 2
3

1 2
3

1 0 3 2
3

3 3
41 2 3 4 5  F

HG
I
KJ  F

HG
I
KJ      F

HG
I
KJ  b g b gx x x x x


2
3

2
3

2
3

3
4

3 32 3 5 1 2 3 4 5x x x x x x x x        

  as x x x x x     1 2 3 4 53 3


2
3

2
3

2
3

3
42 3 5x x x  

     
2
3

2
3

2
3

3
42 3 3x x x

      
2
3

2
3

2
3

3
42 3x x x xs

where xs  is a slack variables.

This is the required Gomory’s secondary constraint which can be amended to the given I.P.P.

3.7 All I.P.P. Algorithm or Cutting Plane Algorithm
The step by step procedure for the solution of all integer programming problem is as follows :

Step 1 :  If the I.P.P. is in minimization form, convert it into maximization form.

Step 2 :  Convert all inequality constraints into equalities by introducing slack or surplus variables, if
necessary. Now obtain the optimum solution of l.p.p. ignoring  integers restrictions by usual simplex method.

Step 3 : Test integrality of the optimum solution thus obtained in step 2.

(i) If an optimum solution contains all the variables have integer values, then an optimum
integer basic feasible solution has been achieved.

(ii) If not, go to next step.

Step 4 :  If only one variable has the fractional value, then corresponding to the row in which the fractional
variables lies in the optimal table of step 2, form a secondary constrant of the form (4).

However if more than one variables are fractional, then select that variable which has largest
fractional part.

Step 5 :  Modify the l.p.p. by introducing the secondary constraint formed in step 4. Then find the new
optimal solution of the modified l.p.p. by the dual simplex algorithm.

Step 6 :  If the optimal solution thus obtained is integer valued, then this is the required optimal solution of
the original l.p.p. otherwise go to step 4 and modify the l.p.p. by a new contraint. Repeating the process
iteratively can definitely obtain the required optimum solution of the l.p.p.

This method is known as cutting plane method as the secondary constraints cut the unuseful area
of the feasible region in the graphical solution of the problem i.e. cut that area which has no integer valued
feasible solution. Thus these secondary constraints eliminate all the non integer solution without loosing any
integer valued solution.
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3.8 Illustrative Examples

Example 1. Find the optimum integer solution to the l.p.p.

Max z x x 1 22

S.t. 2 72x 

x x1 2 7 

2 111x 

x x1 2,  are integers and   0

Solution :   First we solve the given l.p.p. using simplex method by ignoring integer restrictions. For this we
write it in standard form. Introducing slack variables x x x3 4 5, ,  in the constraints, the problem becomes

Max z x x x x x    1 2 3 4 52 0 0 0. . .

s.t. 2 2 3x x 7

  x x1 2       x4 7

2 1x    x5   11

x x x x x1 2 3 4 5 0, , , , 

Taking initial BFS as x x1 2 0 

x x x3 4 57 7 11  , ,

Simplex Table - 1

c j 1 2 0 0 0  
x
y

Bi

ik
, yi k0

CB B X B b y1 y2 y3 y4 y5

0  3 x3 7 0 2 1 0 0
7
2


0  4 x4 7 1 1 0 1 0
7
1

0  5 x5 11 2 0 0 0 1 --

          z cj j 1 A2 0 0 0 min 
7
2 3b g
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Simplex Table - 2

c j 1 2 0 0 0  
x
y

Bi

ik
, yi k0

CB B X B b y1 y2 y3 y4 y5

2  2 x2

7
2 0 1

1
2 0 0 ---

0  4 x4

7
2 1 0 

1
2 1 0

7
2

1/ 

0  5 x5 11 2 0 0 0 1
11
2

         z cj j 1 0 1 0 0 min  7
2

Simplex Table - 3

c j 1 2 0 0 0  
x
y

Bi

ik
, yik 0

CB B X B b y1 y2 y3 y4 y5

2  2 x2

7
2 0 1

1
2 0 0

1  1 x1

7
2 1 0 

1
2 1 0

0  3 xs 4 2 0 1 2 1

z cj j 0 0
1
2 1 0 min 

Since all z cj j 0, so this BFS is optimal one, which is x x1 23 1
2

3 1
2

 ,

This solution does not satisfy the integer restrictions. To obtain this, we use Gomory’s cutting plane
algorithm. In the above solution, two variables x1  and x2  are involving the fractional parts, but both have

equal fractional part 
1
2 . Let us choose the first row, as source row to form the Gomory’s secondary

constraint.

The corresponding equation

0 1 1
2

0 0 7
21 2 3 4 5. . .x x x x x    

A

A
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or x x2 30 1
2

 F
HG

I
KJ            3 1

2

or
1
2

1
2

33 2x x  b g


1
2

1
23x 

   
1
2

1
23x

    
1
2

1
23 1x xs

which is Gomory’s secondary constraint. Now introducing this constraint in the above optimum
table (third table), we get the new table as :

Simplex Table - 4

C j 1 2 0 0 0 0

CB B X B b y1 y2 y3 y4 y5 ys1

2  2 x2

7
2 0 1

1
2 0 0 0

1  1 x1

7
2 1 0        

1
2 1 0 0

0  3 x3 4 0 0 1 2 1 0

0 ys1 xs1      
1
2 0 0         

1
2 0 0 1

z cj j 0 0
1
2 1 0 0

Max y
z c

yi j
j j

ij


F

HG
I
KJ0        

1
2

1
2

 0 0 0

Here one variable is negative i.e. the present basic solution is not feasible, so to make it feasible we
use dual simplex algorithm.

(i) Since min xBi
 

1
2  (for xs1 ) so we delete xs1  from the basis.

(ii) Now max max
y

j j

i ji j

z c
y

z c
y

RS|T|
UV|W|




R
S|

T|

U
V|

W|



0

3 3

43

1
2
1
2


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 we must enter  3  vector into the basis.

New simplex Table-5 is as follows :

c j 1 2 0 0 0 0

CB B X B b y1 y2 y3 y4 y5 ys1

2  2 x2 3 0 1 0 0 0 1

1  1 x1 4 1 0 1 0 0 1

0  5 x5 1 0 0 0 0 1 2

0  3 x3 3 0 0 2 1 0 2

z cj j 0 0 1 0 0 1

 xBi  0 ,  i

Thus the above Basic solution is feasible and optimum. i.e,

x1 4 , x2 3

It also satisfies integerality condition, so it is a desired optimal integer solution,

Example 2 :  Find the optimum integer solution to the l.p.p.

Max Z x x 3 41 2

s.t. 3 2 81 2x x 

x x1 24 10 

x x1 2 0,  , and are integers.

Solution :   Introducing slack variables x x3 4,  the standard form of l.p.p. is

Max Z x x x x   3 4 0 01 2 3 4

s.t. 3 2 81 2 3x x x  

x x x1 2 44 10  

x x x x1 2 3 4 0, , , 

initial B.F.S. is x x1 20  , x3 8 , x4 10
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Simplex Table - 1

C j 3 4 0 0  
x
y

Bi

i k
, yi k  0

CB B X B b y1 y2 y3 y4

0  3 x3 8 3 2 1 0
8
2

0  4 x4 10 1 4 0 1
10
4                

Z Cj j 3    4 0 0 min 
10
4

Simplex Table - 2

C j 3 4 0 0  
x
y

Bi

i k
, yi k  0

CB B X B b y1 y2 y3 y4

0  3 x3 3
5
2 0 1 

1
2    

6
5 

4  2 x2

5
2

1
4 1 0

1
4    10

Z Cj j 2 0 0 1 min 
6
5

Simplex Table - 3

C j 3 4 0 0

CB B X B b y1 y2 y3 y4

3  1 x1

6
5 1 0

2
5


1
5

4  2 x2

11
5 0 1        1

10
3

10

Z Cj j 0 0 4
5

3
5

 Z Cj j  0 ,  j , therefore optimal non integer solution is x1
6
5

11
5

  , x2
11
5

2 1
5

 

Now, we introduce Gomory’s secondary constraint.

A

A
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The fractional parts of the two variables are same 
1
5

F
HG

I
KJ , we choose the second row as source row..

0 0 1 0 1 9
10

0 3
10

2 1
51 2 3 4    F

HG
I
KJ  F

HG
I
KJ  b g b gx x x x

The Gomory’s constraint

9
10

3
10

1
53 4x x 

     
9

10
3

10
1
53 4 1

x x xS

The simplex table for modified l.p.p. is as follows :
Simplex Table - 4

C j 3 4 0 0 0

CB B X B b y1 y2 y3 y4 ys1

3  1 x1
6

5 1 0 2
5  1

5 0

4  2 x2
11

5 0 1  1
10

3
10 0

0 ys1 xs1


1
5 0 0 9

10  3
10 1    

Z Cj j 0 0 4
5

3
5

Max
z c

yy

j j

jj3 0
3




 

4
5

9 10

3
5

3 10

Here we use dual simplex alogrithm and take xs1  as deleting variable and x3  as entering variable.
The next iterative table is as follows :

Simplex Table - 5

C j 3 4 0 0 0

CB B X B b y1 y2 y3 y4 ys1

3  1 x1
10

9 1 0 0        
1
3

4
9

4  2 x2
20

9 0 1 0
1
3


1
9

0  3 x3
2

9 0 0 1
1
3


10
9

Z Cj j 0 0 0
1
3

8
9

A
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Still the optimal solution is not integer, so a new secondary constraint must be added. Choose

second row as source row we get the new constraint     
1
3

8
9

2
94 1 2x x xs s

Introducing this constraint the modified table is

Simplex Table - 6

C j 3 4 0 0 0

CB B X B b y1 y2 y3 y4 ys1 ys2

3  1 x1

10
9 1 0 0       

1
3

4
9 0

4  2 x2

20
9 0 1 0

1
3          

1
9 0

0  3 x3

2
9 0 0 1

1
3         

10
9 0

0 ys2 xs2


2
9 0 0 0       

1
3          8

9 1   

Z Cj j 0 0 0
1
3            8

9 0

    Max
Z C

yy

j j

jj4 0
4




      

1
3

1
3

FHG
I
KJ

       
8 9
8 9 

Now deleting xs2  and introducing  4 , by dual simplex algorithm, we get the next iterative table as
follows :

Simplex Table - 7

b 3 4 0 0 0 0

CB B X B C j y1 y2 y3 y4 ys1 ys2

3  1 x1
4

3 1 0 0 0 4
3 1

4  2 x2 2 0 1 0 0 1 1

0  3 x3 0 0 0 1 0 2 1

0  4 x4
2

3 0 0 0 1 8
3 3

Z Cj j 0 0 0 0 0 1

A
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Still this optimal solution does not satisfy integer restriction as x1
4
3

  is fractional. Taking the

fourth row as source row the Gomory’s constraint is

   
2
3

2
31 2x xs s

Introducing this in the above table 7, we get the modified table as

Simplex Table - 8

C j 3 4 0 0 0 0 0

CB B X B b y1 y2 y3 y4 ys1 ys2 ys3

3  1 x1 4 3 1 0 0 0 4 3 1 0

4  2 x2 2 0 1 0 0 1 1 0

0  3 x3 0 0 0 1 0 2 1 0

0  4 x4
2

3 0 0 0 1 8
3 3 0

0 ys1 xs3       2
3 0 0 0 0 

2
3 0 1   

Z Cj j 0 0 0 0 0 1 0

   Max
Z C

yy

j j

s js j 


0    

0
2 3  

Now deleting xs3  and introducing xs1 , we get the next iteration tableau as follows :

Simplex Table - 9

C j 3 4 0 0 0 0 0

CB B X B b y1 y2 y3 y4 ys1 ys2 ys3

3  1 x1 0 1 0 0 0 1 1 2

4  2 x2 3 0 1 0 0 0 1  3
2

0  3 x3 2 0 0 1 0 0 1 3

0  4 x4 2 0 0 0 1 0 3 4

0 ys1 xs1 1 0 0 0 0 1 0  3
2

Z Cj j 0 0 0 0 0 1 0

A
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Obviously this optimal solution is the required integral solution, which is as follows :

x1 0 , x2 3 , Max Z  12

Example 3 :   Solve the following integer programming problem :

Max Z x x x  2 10 101 2 3

s.t. 2 20 4 151 2 3x x x  

6 20 4 201 2 3x x x  

x x x1 2 3 0, ,   and integers.

Solve the problem as a (continuous) linear program, then show that it is impossible to obtain
feasible integer solution by using simple rounding. Solve the problem using any integer program algorithm.

Solution :  Ignoring the integer restrictions, on solving the problem by simplex table, we get the following
optimum table :

Simplex Table - 1

C j 2 20 10 0

CB B X B b y1 y2 y3 y4

20  1 x2

5
8 0 1

1
5

3
40

2  2 x1

5
4 1 0 0 

1
4

Z Cj j 0 0 14 1

Where x4  is a slack variable and  4  is the associated vector. The optimum solution is x1
5
4

 ,

x2
5
8

 , x3 0 . The simple rounding reduces to x1 1 , x2 0 , x3 0  and it does not satisfy the

second constraint. Instead, if we take x1 1 , x2 1 , x3 0  or x1 2 , x2 0 , x3 0 , x1 2 , x2 1 ,
x3 0  even then these solutions do not satisfy the constraints. Hence by simple rounding, we cannot
obtain an integral solution of the given problem.

Now we use Gomory’s cutting plane algorithm to obtain the desired integer solution.

Note that two variables are non-integer and maximum fractional part is 
5
8  (of x2 ). So we choose

the first row (in which x2  is available) as a source row for the secondary constraint

0 0 1 0 0 1
5

0 3
40

0 5
81 2 3 4    F

HG
I
KJ  F

HG
I
KJ  b g b gx x x x
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
1
5

3
40

5
83 4 2x x x  


1
5

3
40

5
83 4x x 

or    
1
5

3
40

5
83 4x x

     
1
5

3
40

5
83 4 1x x xs

Introducing this constraint in the above table we obtain modified table as follows :
Simplex Table - 2

C j 2 20 10       0 0

CB B X B b y1 y2 y3      y4 ys1

20  2 x2

5
8 0 1

1
5      

3
40 0

2  1 x1

5
8 1 0 0      

1
4 0

0 ys1 xs1


5
8 0 0 

1
5     

3
40 0      

Z Cj j 0 0 14         1 0

Max
Z C

yy

j j

z jz j 

RS|T|
UV|W|0  

14
1
5      

1
3

40 

The next iterative table is as : (deleting ys1  and entering  4 )

Simplex Table - 3

C j 2 20 10 0 0

CB B X B b y1 y2 y3 y4 ys1

20  2 x2 0 0 1 0 0 1

2  1 x1

10
3 1 0 2

3 0      
10
3

0  4 x4

25
3 0 0 8

3 1      
40
3

Z Cj j 0 0
34
3 0       

40
3

A



78

Still this optimal solution does not satisfying integer constraint as x1
10
3

 , x4
25
3

 , so again one

secondary constraint is to be introduced.

Since both the variables have same fractional parts so we can take randomly third row as source
row.

 0 0 0 0 2 2
3

1 0 1 0 14 2
3

8 1
31 2 3 3 4 1    F

HG
I
KJ       F

HG
I
KJ  F

HG
I
KJb g b g b g b gx x x x x xs


2
3

2
3

1
3

8 2 143 1 3 4 1x x x x xs s     b g


2
3

2
3

1
33 1x xs 

or    
2
3

2
3

1
33 1x xs

     
2
3

2
3

1
33 1 2x x xs s

Which is the secondary constraint. Adding this constraint in the last table, we get the modified table
as follows :

Simplex Table - 4

C j 2 20 10 0 0 0

CB B X B b y1 y2 y3 y4 ys1 ys2

20  2 x2 0 0 1 0 0 1 0

2  1 x1       10
3 1 0 2

3 0       10
3 0

0  4 x4       25
3 0 0 8

3 1       40
3 0

0 ys1 xs2      1
3 0 0  2

3 0        2
3 1    

Z Cj j 0 0 34
3 0        40

3 0

Max
Z C

yy

j j

jj4 0
4



F
HG

I
KJ  

34
3

2
3        

40
3

2
3 

Next iterative table is as follows :
A
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Simplex Table - 5

C j 2 20      10 0 0 0

CB B X B b y1 y2 y3 y4 ys1 ys2

20  2 x2 0 0 1 0 0 1 0

2  1 x1 3 1 0 0 0        4 1

0  4 x4 7 0 0 0 1       16 4

10  3 x3

1
2 0 0 1 0 1        3

2

Z Cj j 0 0 0 0 2 17

Still the solution does not satisfy the integral restriction and so one more Gomory’s constraint will
be introduced. We take fourth row as source row which gives

x x xs s3 1 2
3
2

1
2

  

 0 0 0 0 2 1
2

0 1
21 1 2     F

HG
I
KJ  F

HG
I
KJb g b gx x xs s


1
2

1
22xs 

or   
1
2

1
22xs

    
1
2

1
22 3x xs s

Now introducing this secondary constraint in the last table as follows :
Simplex Table - 6

C j 2 20 10 0 0 0 0

CB B X B b y1 y2 y3 y4 ys1 ys2 ys3

20  2 x2 0 0 1 0 0 1 0 0
2  1 x1 3 1 0 0 0 4 1 0
0  4 x4 7 0 0 0 1 16 4 0

10  3 x3

1
2 0 0 1 0 1 

3
2 0

0 ys2 xs2


1
2 0 0 0 0 0 

1
2 1     

Z Cj j 0 0 0 0 2 17 0

Max
Z C

yy

j j

s jsj

F
HG

I
KJ0            

17
1 2 / 

A
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Simplex Table - 7

C j 2 20 10 0 0 0 0

CB B X B b y1 y2 y3 y4 ys1 ys2 ys3

20  2 x2 0 0 1 0 0 1 0 0

2  1 x1 2 1 0 0 0        4 0 2

0  4 x4 3 0 0 0 1       16 0 8

         10  3 x3 2 0 0 1 0 1 0 3

0 ys2 xs2 1 0 0 0 0 0 1 2

      z cj j 0 0 0 0 2 0 34

Above optimum solution is integer one, so required solution is

x1 2 , x2 0 , x3 2 , Max Z  16
Example 4 :  A manufacturer of baby-doll makes two types of dolls, doll x  and doll y . Processing of
these two dolls is done on two machines, A  and B , Doll x   requires two hours on machine A  and 6
hours on machine B . Doll y  requires 5 hours on machine A  and also five hours on machine B . There are
sixteen hours of time per day available on machine A  and thirty hours on machine B . The profit gained on
both the dolls is same, i.e., one rupee per doll. What should be the daily production of the two dalls for
maximum profit?

(a) Set up and solve the l.p.p.
(b) If the optimum solution is not integer valued, use the Gomory’s technique to derive the

optimal solution.

Solution :  Let x1, x2  denote the number of dolls manufactured per day of type x  and y  respectively,,
then the corresponding l.p.p. is formulated as follows :

Max Z x x 1 2

s.t. 2 5 161 2x x 

6 5 301 2x x  , x x1 2 0,  , are integers.

Introducing slack variables x x3 4,  and solving the problem by simplex method, the optimal table
giving the optimal solution is as follows :

Simplex Table - 1

C j 1 1 0 0

CB B X B b y1 y2 y3 y4

1  2 x2

9
5 0 1 3

10  1
10

1  1 x1

7
2 1 0 

1
4

1
4

Z Cj j 0 0
1

20
3

20
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Here both the variables are fractional. But their fractional parts are 45  and 
1
2 . Out these 

4
5  is

largest  which is of x2  lying in the first row of the table. Taking first row as the source row, the correspond-
ing equation is

0 0 1 0 0 3
10

1 9
10

1 4
51 2 3 4    F

HG
I
KJ   F

HG
I
KJ  b g b gx x x x


3

10
9

10
4
53 4x x 

or    
3

10
9

10
4
53 4x x

Hence the Gomory’s constraint is

   
3

10
9

10
4
53 4 1x x xs

where xs1  is a slack variable. The modified table is

Simplex Table - 2

C j 1 1 0 0 0

CB B X B b y1 y2 y3 y4 ys1

1  2 x2

9
5 0 1

3
10


1

10 0

1  1 x1

7
2 1 0 

1
4

1
4 0

0 ys1 xs1


4
5 0 0 

3
10


9

10 1   

Z Cj j 0 0
1

20
3

20 0

Max
Z C

yy

j j

jj3 0
3



RS|T|
UV|W|        

1
20
3

10





3
20

9
10

Using dual simplex algorithm entering  3  and removing  xs1  from the basis, we get new table as
follows :

A
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Simplex Table -  3

C j 1 1 0 0 0

CB B X B b y1 y2 y3 y4 ys1

1  2 x2 1 0 1 0 1 0

1  1 x1
25

6 1 0 0 1  5
6

0  3 x3
8

3 0 0 1 3 10
3

Z Cj j 0 0 0 0 1
6

This optimum solution is still not integer. Again, we construct a Gomory’s constraint. This time

taking second row involving fractional variable x1
25
6

 , as a source row, we get the corresponding

equation

1 0 1 0 1 1
6

4 1
61 4 1     F

HG
I
KJ  b g b gx x xs


1
6

1
61xs 

or   
1
6

1
61xs

    x xs s1 2 1

Introducing this constraint in the last table, we have the modified table as :

Simplex Table - 4

C j 1 1 0 0 0 0

CB B X B b y1 y2 y3 y4 ys1 ys2

1  2 x2 1 0 1 0 1 1 0

1  1 x1
25

6 1 0 0 1         5
6 0

0  3 x3
8

3 0 0 1 3       10
3 0

0 ys1 xs1 1 0 0 0 0         1 1     

Z Cj j 0 0 0 0 1
6 0

Max
Z C

yy

j j

jj4 0
4



RS|T|
UV|W|    

1
6
1



A
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The next iterative table is
Simplex Table - 5

C j 1 1 0 0 0 0

CB B X B b y1 y2 y3 y4 ys1 ys2

1  2 x2 0 0 1 0 1 0 0

1  1 x1 5 1 0 0 1 0  5
6

0  3 x3 6 0 0 1 3 0 10
3

0 ys1 xs1 1 0 0 0 0 1 1

Z Cj j 0 0 0 0 0 1
6

This iterative optimal solution having integer value has been reached, which is as :
x1 5 , x2 0  and Max Z  5

3.9 Geometrical Interpretation of Gomory’s Cutting Plane Method
We take last example 4 for the geometrical interpretation

Figure 3.1

The feasible region, is as shown in the above fig. 3.1 Optimum solution x1
7
2

 , x2
9
5

 . Since the

solution is not integer. We introduce first Gomory’s constraint

3
10

9
10

4
53 4x x 

To express this in terms of x1 and x2 , we know that

2 5 161 2 3x x x  

6 5 301 2 4x x x  

X2

x x1 2 5 1
6

 

7
2

9
5

,F
HG

I
KJ

X11 2 3 4 5 6 7 8

6

5

4

3

2

1

secondary
constraint
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as x3  and x4  are slack variables introduced in the begining to convert the inequalities into
equations.

These give x x x3 1 216 2 5  

and x x x4 1 230 6 5  

substituting in the Gomory’s constraint, we get

3
10

16 2 5 9
10

30 6 5 4
51 2 1 2     x x x xb g b g

 x x1 2 5 1
6

 

This constraint cuts-off some part of the feasible region (in this case very minute) and hence now
the feasible region is some what less then the previous one (see fig.3.1). Similarly the second Gomory’s
constraint  is xs1 1

But     
3

10
9

10
4
53 4 1x x xs or x x xs1 3 4

3
10

9
10

4
5

 F
HG

I
KJ 

 x x x x xs1 1 2 1 2
3

10
16 2 5 9

10
33 6 5 4

5      b g b g

 x x xs1 1 2318 6 6  .

 xs1 1  318 6 6 11 2.   x x

 6 6 30 81 2x x  .

 x x1 2 5103  .

This constraint also cut off some part of feasible region so why this is not plotted here. Due to these
cuttings, the method is called cutting plane method.

Example 5 :   Solve the integer programming problem :

Max Z x x 7 91 2

S.t.   x x1 23 6

7 351 2x x 

x1 0 , x2 0  and x x1 2,  are integers.

Solution :   Introducing slack variables x3  and x4  and solving by simplex method, we get the optimal
solution as follows :
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Simplex Table - 1

C j 7 9 0 0

CB B X B b y1 y2 y3         y4

9  2 x2
3 1

2 0 1       7 22        1 22

7  1 x1
4 1

2 1 0       1 22       3 22

Z Cj j 0 0 28
11       15

11
The non-integer solution thus obtained is :

x1 4 1
2

 , x2 3 1
2

 , Max Z  63

Since both the variables have same fractional parts so the first constraint is choosen as the source
row to make Gomory’s constraint, which is as :

0 0 1 0 0 7
22

0 1
22

3 1
21 2 3 4    F

HG
I
KJ  F

HG
I
KJ  b g b gx x x x


7
22

1
22

1
23 4x x 

or    
7
22

1
22

1
23 4x x

     
7
22

1
22

1
23 4 1x x xs

with Gomory’s secondary constraint introducing in the above table we get
Simplex Table - 2

C j 7 9 0 0 0

CB B X B b y1 y2 y3            y4 ys1

9  2 x2
3 1

2 0 1
7
22           

1
22 0

7  1 x1
4 1

2 1 0 
1

22            
3

22 0

0 ys1 xs1


1
2 0 0 

7
22          

1
22 1     

Z Cj j 0 0 28
11           3

22 0

Max
Z C

yy

j j

jj3 0
3



RS|T|
UV|W|  

28 11
7 22         

15 11
1 22

A
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Using dual simplex algorithm the next iterative table is as follows :

Simplex Table - 3

C j 7 9 0 0 0

CB B X B b y1 y2 y3 y4 ys1

9  2 x2 3 0 1 0 0 1

7  1 x1
4 4

7 1 0 0 1
7 

1
7

0  3 x3
14

7 0 0 1 1
7 22

7

Z Cj j 0 0 0 1 8

The above optimal solution still does not satisfy integer restriction. Choose second row as source
row to construct Gomory’s secondary constraint.

0 1 0 0 0 0 0 1
7

1 6
7

4 4
71 2 3 4 1      F

HG
I
KJ   F

HG
I
KJ  b g b g b gx x x x xs


1
7

6
7

4
74 1x xs 

or    
1
7

6
7

4
74 1x xs

     
1
7

6
7

4
74 1 2x x xs s

Introducing this constraint is the above table and applying dual simplex algorithm, we get the
transformed table as below :

Simplex Table - 4

C j 7 9 0 0 0   0

CB B X B b y1 y2 y3 y4 ys1  ys2

9  2 x2 3 0 1 0 0 1   0

7  1 1 4 4
7 1 0 0 1

7  1
7   0

0  3 x3
1 4

7 0 0 1 1
7 22

7   0

0 ys2 xs2


4
7 0 0 0         1

7  6
7   1    

Z Cj j 0 0 0 1 8   0

Max
Z C

yy

j j

jj4 0
4



RS|T|
UV|W|   

1
1

7
8
6

7 

A
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The next iterative table is

Simplex Table - 5

C j 7 9 0 0 0 0

CB B X B b y1 y2 y3 y4 ys1 ys2

9  2 x2 3 0 1 0 0 1 0

7  1 x1 4 1 0 0 0        1 1

0  3 x3 1 0 0 1 0        4 1

0 x4 x4 4 0 0 0 1 6 7

Z Cj j 0 0 0 0 2 7

In this optimal table all the variables have integer valued, so this is required optimal integer solution,
which is as

x1 4 , x2 3 , Max Z  55

Example 6 :   Find the optimum integer solution to the following I.P.P.

Max Z x x 1 24

S.t. 2 4 71 2x x 

5 3 151 2x x 

x x1 2 0,   and are integers.

Solution :  Introducing slack variables x x3 4,  and solving above problem by usual simplex method the
optimum non-integer solution is given as follows :

Simplex Table - 1

C j 1 4 0 0

CB B X B b y1 y2 y3 y4

4  2 x2
7

4
1
2 1

1
4 0

0  4 x4
39

4
7
2 0 

3
4 1

Z Cj j 1 0 1 0

In the above solution both the variables have same fractional parts, so consider the first row as
source row, which is

0 1
2

1 0 0 1
4

0 0 1 3
41 2 3 4F

HG
I
KJ    F

HG
I
KJ    x x x xb g b g
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
1
2

1
4

3
41 3x x 

or    
1
2

1
4

3
41 3x x

     
1
2

1
4

3
41 3 1x x xs

Introducing this secondary constraint in the above table, the modified table is as follows :

Simplex Table - 2

C j 1 4 0 0 0

CB B X B b y1 y2 y3 y4 ys1

4  2 x2

7
9

1
2 1

1
4 0 0

0  4 x4

39
4

7
2 0 

3
4 1 0

0 ys1 xs1


3
4


1
2 0 

1
4 0 1    

Z Cj j 1 0 1 0 0

Max
Z C

yy

j j

jj3 0
3



RS|T|
UV|W|

1
1
2

 
1
1

4  

The next iterative table is as :

Simplex Table - 3

C j 1 4 0 0 0

CB B X B b y1 y2 y3 y4 ys1

4  2 x2 1 0 1 0 0 1

0  4 x4

9
2 0 0  5

2 1 7

1  1 x1

3
2 1 0

1
2 0 2

Z Cj j 0 0
1
2 0 2

A
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Since the optimum solution is still not integer valued, we introduce second Gomorian constraint
taking second row as source row

0 0 0 0 3 1
2

1 0 1 0 4 1
21 2 3 4 1     F

HG
I
KJ      b g b g b g b gx x x x ys


1
2

1
23x  or   

1
2

1
23x

    
1
2

1
23 2x xs

Introducing this secondary constraint, the modified table is as :
Simplex Table - 4

C j 1 4 0 0 0 0

CB B X B b y1 y2 y3 y4 ys1 ys2

4  2 x2 1 0 1 0 0 1 0

0  4 x4
9

2 0 0      5
2 1 7 0

1  1 x1
3

2 1 0       1
2 0 2 0

0 ys2 xs2


1
2 0 0      1

2 0 0 1

Z Cj j 0 0
1
2 0 2 0

Max
Z C

yy

j j

jj4 0
4



RS|T|
UV|W|       

1
2
1
2

   

The next iterative table is as follows :
Simplex Table - 5

C j 1 4 0 0 0 0

CB B X B b y1 y2 y3 y4 ys1 ys2

4  2 x2 1 0 1 0 0 1 0

0  4 x4 7 0 0 0 1 7 5
1  1 x1 1 1 0 0 0 2 1

0  3 x3 1 0 0 1 0 0 2
Z Cj j 0 0 0 0 2 1

This table shows that an optimum basis feasible integer solution has been reached. Hence the
optimum solution is

x1 1 , x2 1 ,     Max   Z  5

A


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3.10 Self-Learning Exercise - I
1. How can you construct Gomory’s constraint?

2. Gomory’s method to solve I.P.P. is called a cutting plane method, Why?

3. Give geometrical interpretation of Gomory’s cutting plane algorithm?

3.11 Gomory’s Mixed I.P.P. Method (Fractional Cut Method)
In the mixed integer programming problems some of the variables are restructed to take integer

values, while other variables may take integer or continuous values. The iterative procedure to solve such
programming problems is as follows :

Step 1 :  Determine an optimum solution to the given l.p.p. using simplex method ignoring integer
restrictions.

Step 2 :  Test the integrality of the optimum solution thus obtained in step 1.
(i) If all the variables has integer values, then it the optimum integer solution.
(ii) If integer restricted variables are not integers go to next step.

Step 3 :  Choose largest fractional value among the basic variables which are restricted to integers.
Consider the row corresponding to above variable and form Gomory’s secondary constraint.
Step 4 :  Introducing this secondary constraint and modify the table, then apply dual simplex algorithm and
follows the procedure as in all IPP method 3.7 until the restricted integer variables becomes integers.
Example 7 :   Solve the following mixed integer programming problem :

Maximize Z x x x  4 6 21 2 3

Subject to 4 4 51 2x x 

  x x1 26 5

   x x x1 2 3 5

x x x1 2 3 0, ,   and x x1 3,  are integers.

Solution :   Introducing slack variables x x4 5,  in first two constraints and solve the l.p.p. by usual simplex
method ignoring integer restrictions, we have

Simplex Table - 1

C j 4 6 2 0 0

CB B X B b y1 y2 y3 y4 y5

4  1 x1
5

2 1 0 0 3
10

1
5

6  2 x2
5

4 0 1 0 1
20

1
5

2  3 x3
25

4 0 0 1 1
4 0

Z Cj j 0 0 0 2 2
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 x x1 3,  both are not integers and x1  has maximum fractional part, so we take it (first) as
source row which is

1 0 0 0 0 0 0 3
10

0 1
5

2 1
21 2 3 4 5      F

HG
I
KJ  F

HG
I
KJ  b g b g b gx x x x x


3

10
1
5

1
24 5x x 

or    
3

10
1
5

1
24 5x x

     
3

10
1
5

1
24 5 1x x xs

where xs1  is a slack variable.

Introducing this second constraint, the modified table is :

Simplex Table - 2

C j 4 6 2 0 0   0

CB B X B b y1 y2 y3 y4 y5  ys1

4  1 x1
5

2 1 0 0 3
10

1
5   0

6  2 x2
5

4 0 1 0 1
20

1
5   0

2  3 x3
25

4 0 0 1 1
4  0   0

0 ys1 x4  1
2 0 0 0        3

10  1
5   1

Z Cj j 0 0 0 2   2

Max
Z C

yy

j j

jj4 0
4



RS|T|
UV|W|          

2
3
10

2
1
5

Applying dual simplex algorithm, we get the transformed table as :



A
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Simplex Table - 3

C j 4 6 2 0 0 0

CB B X B b y1 y2 y3 y4 y5 ys1

4  1 x1 2 1 0 0 0 0 1

6  2 x2
7

6 0 1 0 0
1
6

1
6

2  3 x3
5

6 0 0 1 0 
1
6

5
6

0  4 x4
5

3 0 0 0 1 2
3 10

3

Z Cj j 0 0 0 0 2
3

20
3

Since x3  is still not an integer, we write from the third row of the this iteration

0 0 0 0 1 0 0 0 1 5
6

0 5
6

5 5
61 2 3 4 5 1         F

HG
I
KJ  F

HG
I
KJ  b g b g b g b gx x x x x xs


5
6

5
6

5
65 1x xs 

or    
5
6

5
6

5
65 1x xs

     
5
6

5
6

5
65 1 2x x xs s

Introducing the secondary constraint in the above table the now defined table as :
Simplex Table - 4

C j 4 6 2 0 0 0   0

CB B X B b y1 y2 y3 y4 y5 ys1  ys2

4  1 x1 2 1 0 0 0 0 1   0

6  2 x2
7

6 0 1 0 0        1
6

1
6   0

2  3 x3
35

6 0 0 1 0        1
6

5
6   0

0  4 x4
5

3 0 0 0 1        2
3 10

3   0

0 ys2 xs2       5
6 0 0 0 0        5

6  5
6   1

Z Cj j 0 0 0 0        2
3

20
3   0

Max
Z C

yy

j j

jj5 0
5



F
HG

I
KJ           

2
3
5

6

20
3

5
6



A
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The next iterative table is as follows :

Simplex Table - 5

C j 4 6 2 0 0 0 0

CB B X B b y1 y2 y3 y4 y5 ys1 ys2

4  1 x1 2 1 0 0 0 0 1 0

6  2 x2 1 0 1 0 0 0 1
6

1
5

2  3 x3 6 0 0 1 0 0 5
6  1

5

0  4 x4 1 0 0 0 1 0      10
3

4
5

0  5 x5 1 0 0 0 0 1 1  6
5

Z Cj j 0 0 0 0 0      20
3

4
5

Since x x1 3,  are integers so it is required optimal integer solution, which is x1 2 , x2 1 , x3 6
Max Z  26

3.12 Self-Learning Exercise - II
1. What do you mean by mixed integer programming problem?

2. What is fractional cut?

3.13 Summary
In this unit we have studied the linear programming problems in which some or all variables are

restricted to accept integer values, called mixed or pure integer programming problems, respectively. We
have presented Gomory’s cutting plane method to solve these problems. A procedure to find Gomory’s
secondary constraint is given. We modify the optimum simplex table by introducing above constraint, then
use dual simplex algorithm to find optimum integer solution.

3.14 Answer to Self-Learning Exercise - I
1-3 See corresponding articles

3.15 Answer to Self-Learning Exercise - II
1-2 See corresponding articles

3.16 Exercise
1. Solve the following I.P.P.

Maximize Z x x 2 31 2

s.t   3 7 141 2x x

7 3 141 2x x 
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x x1 2 0,   and integers.

2. Describe any method to solve I.P.P. u x x z1 23 3 15  , ,maxb g  use it to solve the problem :

Maximize Z x x 2 21 2

s.t. 5 3 81 2x x 

x x1 22 4  x x z1 2 1 4  , maxb g
x x1 2,  are non-negative integers.

3. Solve the following I.P.P.

Minimize Z x x 9 101 2

s.t. x1 9

x2 8

4 3 401 2x x  x x z1 29 2 101  , ,minb g
x x1 2 0,   and are integers.

4. Find optimum integer solution to the following all I.P.P. :

Maximize Z x x 1 22

s.t. x x1 2 7 

2 111x 

2 72x  x x z1 24 3 10  , , maxb g
x x1 2 0,   and are integers.

5. Solve the following mixed I.P.P. problem :

Maximize Z x x x   3 31 2 3

s.t.    x x x1 2 32 4

4 3 22 3x x 

x x x1 2 33 2 3   x x x z1 2 30 8
7

1 29
7

   F
HG

I
KJ, , , max

x1  and x3  are integers and x1 , x x2 3 0, 

���
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Unit - 4
Integer Programming : Branch and Bound Algorithm

Structure of the Unit
4.0 Objective

4.1 Introduction

4.2 The Branch and Bound Method

4.3 The Branch and Bound Algorithm

4.4 Illustrative Examples

4.5 Geometrical Interpretation of Branch and Bound Method

4.6 Self-Learning Exercise

4.7 Summary

4.8 Answers to Self Learning Exercise

4.9 Exercises

4.0 Objective
Integer programming introduced in unit-3 was dealt with an algorithm called Gomory’s cutting

plane method. The objective of this unit is to discuss another algorithm called Branch and Bound
Technique to solve integer programming problems.

4.1 Introduction
Branch and Bound algorithm was developed by Land and Doig to solve all-integer and mixed

integer programming problems. It is the most general technique to solve integer programming problems in
which all or a few variable are constrained by their upper and lower bound or by both.

The concept behind this method is to divide the entire feasible solution space of linear program-
ming problem into smaller parts called sub-problems and then search each of them for an optimalsolution.
This approach is useful in those cases where there is a large number of feasible solutions and enumeration
of those becomes economically impractical or impossible.

4.2 The Branch and Bound Method
This technique is applicable to both the L.P.P., pure as well as mixed. In this method first we solve

the continuous I.P.P. ignoring the integer-valued restrections. If in the optimal solution one of the variables
say xi  is not an integer, then we divide or partition the given L.P.P. into two sub problems.

We have x x xr r r
* * *  1

where xr
*  is the value of xr  in the optimal solution.

Hence any feasible value of xr  must satisfy one of the two conditions

x xr r or x xr r 1

Note that these two constraints are mutually execlusive (i.e. both can not be true simulteneously)
and hence both can not be amended in the L.P.P. simulteneously.
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By adding these constraints separately to the continuous L.P.P. we form two sub L.P.P. Thus we
have branched the original subproblem into two sub problems. According the geometrical interpretation,
we observe that the branching process discards that portion of the feasible region which involves no
feasible integer solution.

To understand it, we take an example. Suppose we have optimal solution of an L.P.P. as

x1
7
2

*     and x2
9
5

* 

clearly x1
7
2

  gives that 3 41 x*

 for an integer valued solution, either

x1 3 or x1 4

Thus there will be no integer valued feasible solution in the strip x1 3  and x1 4  (Actually draw

two lines x1 3  and x1 4  and verify the fact). We should search for optimum value of Z  in either the

first region x1 3b g  or second region x1 4b g .

After branching in this way two subproblems are formed by adding x xr r *  and x xr r * 1

one by one to the origional set of constraints. Now these two subproblems are solved. If for any of the
subproblems optinum integer solution is obtained then that problem is not further branched. But if ever any
subproblem involves non-integer variable then it is again branched and this process of branching contin-
ues. Wherever applicable until each subproblem either admits an integer valued optimum solution or there
is evidence that it cannto yeild a better one. Then that optimum integer valued solution among all the
subproblem is selected which gives the over all optimum value of the objective functions.

4.3 The Branch and Bound Algorithm
The iterative procedure of this method is given as below :

Step 1 : Obtain the optimum solution of the given L.P.P. ignoring the integer restriction.

Step 2 : Test the integrability of the optimum solution obtained in step 1. There are two cases :

(i) If the solution is in integers, the current solution is optimum to the given integer program
ming problem.

(ii) If the solution is not in integers, go to next step.

Step 3 : Considering the value of objective function as upper bound, obtain the lower bound by rounding
off to integral values of the decision varibales.

Step 4 : Let the optinum value x j
*  of the variable x j  be not an integer. Then subdivide (branch) the given

L.P.P. in two subproblems.

SUB-PROBLEM-1 : Given L.P.P. with an additional constraint x xj j 

SUB-PROBLEM-2 : Given L.P.P. with an additional constraint x xj j 

where x j
  is the largest integer contained in x j

 .
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Step 5 : Solve the two problems obtained in step 4. There may arise three cases :

(i) If the optinum solutions of the two subproblems are integral, then the required solution is
one that gives larger value of Z.

(ii) If the optimum solution of one subproblem is integer and the other subproblem has no
feasible optimal solution, the required solution is same as that of the suproblem having
integr valued solution.

(iii) If the optimum solution of one subproblem is integer while that of the other is not integer
valued then record the integer valued solutions and repeat step 3 and 4 for the non-integer
valued subproblem.

Step 6 : Repeat steps 3 to 5 until all integer valued solutions are recorded.

Step 7 : Choose the solution amongst the recorded integer valued solutions that yields optinum value of
Z .

4.4 Illustrative Examples
Example 1 :    Solve the following I.P.P. by branch and bound technique.

Max. Z x x 1 2

Subject to 3 2 121 2x x 

    x2 2

x x1 2 0,   and integers.

Solution :

Step 1 :  By Graphical method, the optimum solution

of the problem ignoring the integer valued restriction, is

x1
8
3

 , x2 2  (See Fig. 4.1)

Now x1 is non integer and x1
8
3

*   gives Z x 1 3*

Figure 4.1

Step 2 :  Then we form two subproblems given below :

     Problem 2    Problem 3

Max Z x x 1 2 Max Z x x 1 2

S.t. 3 2 121 2x x  S.t. 3 2 121 2x x 

     x2 2      x2 2

a

0 1 2 3 4 5

1

2

3

4

5

6

8
3

2,F
HG

I
KJx2=2

X1

X2
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     x1 2      x1 3

     x x1 2 0,       x x1 2 0, 

For the solution of these problems see fig. 4.2 and 4.3 as given below :

    Figure 4.2 Figure 4.3

Optinal solution of problem 2 is x1 2 , x2 2 , Max. z  4

Since in this solution all the variables are integer therefore there is no need to branch this problem
further.

The optimal problem of problem 3 is

x1 3 , x2
3
2

 , Max Z 
9
2

Step 3 :  Since x2  is non-integer, it needs further subdivision. Here x x2 2
3
2

1 2*    

Hence, we form two subproblems by introducing the constraints x2 1  and x2 2  one by one in
problem 3. Now problems are :

    Problem 4     Problem 5

Max Z x x 1 2 Max Z x x 1 2

S.t.  3 2 121 2x x  S.t. 3 2 121 2x x 

      x2 2      x2 2

      x1 3       x1 3

 x x1 2 0,    x x1 2 0, 

The problem 5 has no feasible solution and in problem 4 the constraint x2 2  is redundant. The

0 1 2 3 4 5
X1

1

2

3

4

5

6

X2

3x
1 +2x

2 =12

x2=2

x 1=
2

Opt. solv. (2, 2)

0

1

2

3

4

5

6

1 2 3 4 5 X1

X2

x2=2

Opt. solv. (3, 3/2)

x 1=
3

3x
1 +2x

2 =12
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optimum solution to this problem is x1
10
3

 , x2 1  and Max Z 
13
3 . From Figure 4.4 it is clear that any

Figure 4.4

further branching of the problem will not improve the value of objective function as next subdivision will
improve the value of objective function as next subdivision will impose that restrietions x1 3 , x1 4 .
Then optimal solution are x1 3  and x2 1  and x1 4  and x2 0  respectively. There solutions also
gives Z  4 .

Step 4 :  Hence overall maximum value of the objective function Z  4  and integer valued solu-
tions is any of these

x1 2 , x2 2 , x1 3 , x2 1  ; x1 4 , x2 0

Example 2 :   Use branch and bound method to solve following L.P.P. :

Maximize Z x x 7 91 2

Subject to   x x1 23 6

    7 351 2x x 

 x2 7

Solution :

Step 1 : Ignoring the integer restriction, the optimal solution to the given L.P.P. can easily be

obtained by graphical or simplex method as x1
9
2

 , x2
7
2

  and Max. Z  63.

Step 2 :  Since the solution is not in integers, let us choose x1 , i.e. x1
9
2

*   being the largest

fractional value.

Step 3 : Considering the value of Z as initial upper bound i.e. Z  63. The lower bound is
obtained by rounding off the value of x x1 2,  to the nearest integers, i.e., x1 4 , x2 3  then the lower

0 1 2 3 4 5

1

2

3

4

5

6

X2

3x
1 +2x

2 =12

x2=2

x1=2

x1=3

10
3

1,F
HG

I
KJ

X1
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bound is Z1 55 .

Step 4 :  Since x1
9
2

4  L
NM

O
QP  ; we have

Sub-problem 1 Max Z x x 7 91 2

s.t.    x x1 23 6

        7 351 2x x 

     x2 7

     x1 4

x x1 2 0,   and are integers.

Sub-problem 2 Max Z x x 7 91 2

s.t.    x x1 23 6

        7 351 2x x 

     x2 7

     x1 5

x x1 2 0,   and are integers.

Step 5 :  On solving the above two subproblems by graphical or simplex method the optimum
solutions are

Sub-problem 1 x1 4 , x2
10
3

       Max. z  58

Sub-problem 2 x1 5 , x2 0 and Max. z  35

Since the solution to subproblem 1 is not in integers, we subdivide it into following two
subproblems.

Sub-problem 3 Max Z x x 7 91 2 s.t.

  x x1 23 6 , 7 351 2x x 

x1 4 , x2 3      x x1 2 0, 

Sub-problem 4 Max Z x x 7 91 2 s.t.

  x x1 23 6 , 7 351 2x x 

x1 4 ,      x2 4

x x1 2 0, 

Step 6 :  The optimum solutions to the subproblems 3 and 4 are :

Sub-problem 3 x1 4 , x2 3  and Max. z  55
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Sub-problem 4 No feasible solution.

Step 7 :  Among the recorded integer valued solutions, since the largest value of Z is 55, the
required optimum solution is

x1 4 , x2 3  and Max. Z  55

The whole branch and bound procedure for the given problem is shown below :

Figure 4.5

Example 3 :   Use Branch and Bound Method to solve the following I.P.P. :

Minimize Z x x 4 31 2

Subject to 5 3 301 2x x 

           x1 4

           x2 6

x x1 2 0,   and are integers.

Solution :   Ignoring the integer restrictions, the optinum solution to the L.P.P. can easily be obtained as
(Use Graphical or Simplex method)

x1 4 , x2
10
3

  and Min. Z  26

Since the value of x2  is not an integer, we branch on this variable. Since x2
10
3

3 L
NM

O
QP  , the two

branches are x2 3  and x2 4 . Thus we have.

Sub-problem 2

x x1 25 0 ,

Max Z = 35

Non intiger

optimum solution

x x1 2
9
2

7
2

 ,

Max Z = 63

Sub-problem 1

x x1 24 10
3

 ,

Max Z = 58

Sub-problem 4

No feasible

solution

Sub-problem 3

x x1 24 3 ,

Max Z = 55
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Sub-problem 1 Minimize Z x x 4 31 2

subject to 5 3 301 2x x 

           x1 4

           x2 6

           x2 3

      x x1 2 0, 

Sub-problem 2 Minimize Z x x 4 31 2

subject to 5 3 301 2x x 

           x1 4

           x2 6

           x2 4

       x x1 2 0, 

The optimum solutions of above sub-problems are obtained by graphical or simplex method as :

Sub-problem 1 No feasible solution

Sub-problem 2 x1
18
5

 , x2 4 ,  Min. Z 
132

5

Since the value of x1  in sub-problem 2 is not an integer, we branch on this variable. The two

branches are x1 3  and x1 4 , since 
18
5

3L
NM

O
QP 

Thus we have

Sub-problem 3 Minimize Z x x 4 31 2

subject to 5 3 301 2x x 

           x1 4

           x2 6

           x2 4

           x1 3

                   x x1 2 0, 

Sub-problem 4 Minimize Z x x 4 31 2

subject to 5 3 301 2x x 

           x1 4
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           x2 6

           x2 4

           x1 4

                  x x1 2 0, 

The optimum solutions to these sub-problems are obtained as :

Sub-problem 3 x1 3 , x2 5  and minimum Z  27

Sub-problem 4 x1 4 , x2 4  and minimum Z  28

Among the feasible solutions to the integer programming problem, since the minimum value of Z
is 27; the required optimum solution is

x1 3 , x2 5  and minimum Z  27

The complete Branch and Bound procedure for the I.P.P. is shown below :

Figure 4.6

Example 4 :   Use Branch and Bound technique to solve the following problem :

Max. Z x x x  3 3 131 2 3

s.t.    3 6 7 81 2 3x x x

6 3 7 81 2 3x x x  

0 5 x j

and x j  are integers for j  1 2 3, , .

Non-Integer
Optimum solution

x x1 24 10
3

 ,

Min  Z = 26

Sub-problem 1

No feasible
solution

Sub-problem 3

x x1 23 5 ,
Min Z = 27

Sub-problem 2

x x1 2
18
5

4 ,

Min Z = 132
5

Sub-problem 4

x x1 24 4 ,
Min Z = 28
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Solution :
Step 1 :  Introducing slack variable x x4 5,  is the first two constraints, the standard form for

simplex method (since it is a three variables problem so it cannot be solved by graphical method)

Max. Z x x x x x    3 3 13 0 01 2 3 4 5

s.t.     3 6 7 81 2 3 4x x x x

6 3 7 81 2 3 5x x x x   

0 51 x , 0 52 x , 0 53 x , x x4 5 0, 

Initital BFS x4 8 , x5 8 , x x x1 2 3 0  

C j 3 3 13 0 0   
x
y

yBv

ik
ik, 0

CB B X B b y1 y2 y3 y4 y5

0  4 x4 8 3 6 7 1 0
8
7

0  5 x5 8 6 3 7 0 1
8
7


Z Cj j 3 3 13 0 0 Min  
8
7

0  4 x4 0 9 9
A
0 1 1 

13  3 x3

8
7

6
7


3
7 1 0

1
7

Z Cj j
57
7

60
7 0 0

13
7 Min   0

3  2 x2 0 1 1
A 0

1
9


1
9

13  3 x3

8
7

3
7 0 1

1
21

2
21 

Z Cj j 
3
7 0 0

20
21

19
21

Min  
8
3

3  2 x2

8
3 0

A 1
7
3

2
9

1
9

3  1 x1

8
3 1 0

7
3

1
9

2
9

Z Cj j 0 0 1 1 1
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The optimum non-integer solution to the given L.P.P.

x1
8
3

 , x2
8
3

 , x3 0 , Max Z  16

Step 2 :   Since x x1 2,  are non-integer valued, we choose x1  for branching

 x*  L
NM

O
QP 

8
3

2

The two sub-problmes are as

Sub-problem 1 Max. Z x x x  3 3 131 2 3

S.t.    3 6 7 81 2 3x x x

6 3 7 81 2 3x x x  

0 5 x j , j = 1, 2, 3

Step 3 :  Now we solve sub-problem (1) & (2) using simplex method as before we find that sub-
problem (2) has no feasible solution.

The sub-problem (1) has an optimal solution

x x1 2 2  , x3
2
7

 ,   Max. Z  15 5
7

Clearly this is not integer valued, so we branch this sub-problem (1) into two on the variable x3 .

Since x3
2
7

0*  L
NM

O
QP 

Sub-problem 3 Max. Z x x x  3 3 131 2 3

s.t.    3 6 7 81 2 3x x x

6 3 7 81 2 3x x x  

0 21 x

0 52 x

1 53 x

Sub-problem 4 Max. Z x x x  3 3 131 2 3

s.t.    3 6 7 81 2 3x x x

6 3 7 81 2 3x x x  

0 21 x

0 52 x

0 03 x



106

Here we observe that sub-problem (3) & (4) differ from sub-problem (1) only in the bounds of
x3 .

Step 4 :  Now, we solve sub-problem (3), the optimal solution is obtained as x x1 2
1
3

  , x3 1 ,

Z *  15  select x2 , x2
1
3

0*  L
NM

O
QP  , so we branch this sub-problem into two sub-problem as follows :

Sub-problem 5 Max. Z x x x  3 3 131 2 3

s.t.    3 6 7 81 2 3x x x

6 3 7 81 2 3x x x  

0 21 x , 0 52 x , 1 53 x , x2 1

Sub-problem 6 Max. Z x x x  3 3 131 2 3

s.t.    3 6 7 81 2 3x x x

6 3 7 81 2 3x x x  

0 21 x , 0 02 x , 1 53 x

Step 5 :   We can easily see that sub-problem 5 has no feasible solution. The optimal solution to
sub-problem (6) is as follows:

x1 0 , x2 0 , x3 1 1
7

 ,   Max Z  14 6
7

 x3  is fractional, so we again branch this sub-problem on x3 , x3 1 1
7

1*  L
NM

O
QP 

Sub-problem 7 First two constraints of sub-problem 6 and

0 21 x , 0 02 x , 2 53 x

Sub-problem 8 First two constraints of sub-problem 6 and

0 21 x , 0 02 x , 1 13 x

Step 6 :  We see that sub-problem (7) has no feasible solution. The optimal solution of sub-
problem (8) is  x x1 2 0  , x3 1 ,  Max Z  13

Returning to step 3, we observe that only sub-problem 4 is now left to solve, the optimal solution
of this problem is

x1 2 x2 2 1
3

 , x3 0 ,  Max Z  13

Since the optimum value of the objective function of sub-problem 8 and sub-problem 5 are same
and is equal to Z  13. Hence we stop computations. The optimal solution to given I.P.P. is as follows :

x1 0 , x2 0 , x3 1     Max Z  13
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Tree-Diagram of Example 7

Start

Non-Integer optimum solution

x x1 2 2 1
3

  , x3 0 , Z *  16

x1 3 x1 2

Sub-problem 1 Sub-problem 2

Solution is infeasible x x1 2 2  , x3
2
7



Z *  15 5
7

           x3 1 x3 0

Sub-problem 3 Sub-problem 4

x x1 2
1
3

  , x3 1 , x1 2 , x2 2 1
3

 , x3 0

       Z *  15 Z *  13

Stop

Z *  13

       x2 1    x2 0

Sub-problem 5 Sub-problem 6

Solution is infeasible        x x1 20  , x3 1 6
7

 ,

   Z *  14 6
7

     x3 2      x3 1

Sub-problem 7 Sub-problem 8

Solution is infeasible x x1 2 0 

x3 1 , Z *  13
Figure 4.7
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4.5 Geometrical Interpretation of Branch and Bound Method
The geometrical interpretation of Branch and Bound Method can easily be understood by a two

variable I.P.P. which we solve by graphical method. Example 1 is given for this purpose. To be more clear
consider one more example as follows :

Example 5 :  Solve the following I.P.P. using branch and bound algorithm.

Max Z x x 2 61 2

s.t. 3 51 2x x 

4 4 91 2x x 

x x1 2 0,   and are integers.

Solution :  The graphical solution of given problem

       gives the optimal solution :

x1 0 , x2
9
4

 ,    Max. Z * 
27
2

Figure 4.8

Since the variable x2  has non integer value and x2  has largest fractional part, so we branch the
problem on x2

x2
9
4

2*  L
NM

O
QP 

Sub-problem 1 Max. Z x x 2 61 2

s.t. 3 51 2x x 

4 4 91 2x x 

           x2 2

       x x1 2 0, 

Sub-problem 2 Max. Z x x 2 61 2

s.t. 3 51 2x x 

4 4 91 2x x 

           x2 3

      x x1 2 0, 

The sub-problem 2 has no feasible solution.

6

5

4

3

2

1

1 2 3 4 5 6

7
8

11
8

,F
HG

I
KJ

4 4 91 2x x 
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See Figure 4.10

     Figure 4.9 Figure 4.10

The sub-problem 1 has optinum solution as follows :

x1
1
4

 , x2 2 , Max Z 
25
2

Since x1  is not integer, so we branch the above sub-problem 1 on x1 , x1
1
4

0*  L
NM

O
QP 

Sub-problem 3 Max. Z x x 2 61 2

s.t. 3 51 2x x 

4 4 91 2x x 

x2 2 , x1 0

       x x1 2 0, 

Sub-problem 4 Max. Z x x 2 61 2

s.t. 3 51 2x x 

4 4 91 2x x 

           x2 2

            x1 1

       x x1 2 0, 

Sub-problem 3 has the optimum solution

6

5

4

3

2

1

1 2 3 4 5 6

1
4

2,F
HG

I
KJ

6

5

4

3

2

1

1 2 3 4 5 6

x2 3

X 2 X 2

X1

X1

x2 2
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x1 0 , x2 0 , Max. Z  12

See the Figure 4.11 (Feasible region is only the line segment form (0, 0) to (0, 2))

Figure 4.11 Figure 4.12

Sub-problem 4 has optimal solution (see fig. 4.12)

x1 1 , x2
5
4

 , Max. Z  9 1
2

The value of objective function in sub-problem (3) has greater value then sub-problem 4.

Hence, the optimum solution of the problem is

x1 0 , x2 2 , Max. Z  12

4.6 Self-Learning Exercise
Sort the correct answers :

1. Branch and Bound Method divides the feasible region into smaller parts by

(a) enumerating (b) branching

(c) bounding (d) all of the above

2. While solving an I.P.P., any non-integer variable in the solution is picked up to

(a) enter the solution (b) leave the solution

(c) obtain the cut constant (d) all of the above

3. In a mixed integer programming problems :

(a) different objective function are mixed together

(b) all the decision variables require integer solution

(c) only few of the decision variables required integer solutions

(d) none of the above

4. Sketch the Branch and Bound Method is integer programming.

6

5

4

3

2

1

1 2 3 4 5 6

x2 2

(0,0)

6

5

4

3

2

1

1 2 3 4 5 6

x2 2

(0)

1 5
4

,F
HG

I
KJ

X 2 X 2

X1 X1

x1 1

0 2,b g
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5. Distinguish between pure and mixed integer programming.

6. Use Branch and Bound method to solve the following I.P.P.

Max Z x x 1 22 s.t. x x1 2 7 

2 111x  , 2 72x  x x1 2 0,   and are integers.

7. What is the difference between continuous and integer programming?

4.7 Summary
In this unit, Branch and Bound Algorithm has been discussed to solve integer programming

problems. In this method, a L.P.P. is branched on a variable by bounding it into two sub-problems. These
sub-problems are solved by graphical or Simplex method. The main disadvantages of this method is that it
requires the optimum solution of each sub-linear programming problem. In large number of problems, this
could be very tediuous job. But in spite of its drawback, this is the most effective method for solving I.P.P.
thus when choice is to be made between Cutting Plane and Branch and Bound method; the latter is
prefered.

4.8 Answers to Self-Learning Exercise
1. (b) 2. (c) 3. (c)

4.9 Exercises
Use Branch and Bound method to solve the following integer linear programming problems :

1. Maximize Z x x 2 31 2

Subject to 5 7 351 2x x 

4 9 361 2x x 

x x1 2 0,   and are integers.

2. Maximize Z x x 2 31 2

Subject to x x1 2 7  ,

0 51 x , 0 42 x  ; x x1 2,  are integers

3. Maximize Z x x 1 22

Subject to x x1 22 12 

4 3 141 2x x 

x1 0 , x2 0  and are integers.

4. Maximize Z x x 2 31 2

Subject to 6 5 251 2x x 

x x1 23 10 

x1 0 , x2 0  and are integers.
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5. Maximize Z x x 2 1 2

Subject to x1
3
2

 , x2
3
2



x x1 2 0,   and are integers.

6. Maximize Z x x 3 21 2

Subject to x1 2 , x2 2

x x1 2
7
2

 

x x1 2 0,   and are integers.

7. Minimize Z x x 10 91 2

Subject to x1 8 , x2 10

5 3 451 2x x 

x x1 2 0,   and x1 is integer..

8. Maximize Z x x 1 25

Subject to x x1 210 20 

          x2 2

x x1 2 0,   and are integers.

���
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Unit - 5
Quadratic form and Lagrangian Function

Structure of the Unit
5.0 Objective

5.1 Introduction

5.2 Quadratic form

5.3 Positive and Negative Definiteness of Quadratic forms

5.4 Self-Learning Exercise-I

5.5 General non linear programming problem

5.6 Constrained optimization with equality constraints (Lagrange’s multiplier method)

5.7 Necessary condition for general NLPP

5.8 (a) Sufficient conditions for GNLPP

(b) Sufficient conditions for General NLPP with (m < n) equality coustraints

5.9 Illustrative Examples

5.10 Self-Learning Exercise-II

5.11 Summary

5.12 Answers to Self-Learning Exercise-I

5.13 Answers to Self-Learning Exercise-II

5.14 Exercise

5.0 Objective

The objective of this unit is to present some more about quadratic forms in respect of unit-1. The
Lagrangian method to optimize the non-linear functions has also been given in this unit. Using this method
we can optimize a non linear function with equality constraint.

5.1 Introduction

The concept of quadratic form has been introduced in the unit-1. The positive and negative
definiteness of a quadratic form have also been defined. Several texts for this has also been discussed. In
this unit we learn has also been discussed. In this unit we learn more about quadratic form.

The optimization i.e. to find maximum or minimum value of an objective function, is studied in
lower classes. In this unit we start our study to optimize a function without any constraint. The main stress
will be given on constrained problems of maxima and minima. If there are some constraints under which
we optimize a function, we use Lagrange’s method.

Now in this unit-I we study quadratic forms.
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5.2 Quadratic form
Recall that a quadratic form is a function of n-variables which can be expressed as

Q X a x x
i

n

ij i j
j

n

b g
 
 

1 1
, where aij  are constants. It can also be written as Q X X AXTb g  where

X x x xn 1 2, , ....  and A aij  is a n n  symmetric matrix.

Example-1 (a) x x
x
x

x x x x1 2
1

2
1
2

1 2 2
2

1 1
2

1
2

1
,b g

L

N

MMMM

O

Q

PPPP

L
NM

O
QP  

(b) x x x
x
x
x

x x x x x x1 2 3

1

2

3

1
2

1 2 1 3 3
2

1 1
2

2

1
2

0 0

2 0 2

4 2, ,b g

L

N

MMMMMMM

O

Q

PPPPPPP

L

N
MMM

O

Q
PPP
   

(c) x x x
x
x
x

x x x1 2 3

1

2

3

1
2

2
2

3
2

1 0 0
0 2 0
0 0 3

2 3, ,b g
L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP
  

Note that matrix representation of A in a quardatic form is not unique. However, A can always be
taken to be symmetric without loss of generality.

Example-2 Write the quadratic form Q X x x x x x x x x xb g      1
2

2
2

3
2

1 2 1 3 2 32 7 4 6 5  in matrix form.

Solution  : Q X x x x x x x x x xb g b g b g          F
HG

I
KJ1

2
2
2

3
2

1 2 1 3 2 32 7 2 2 3 3 5
2

5
2





 

 

L

N

MMMMMM

O

Q

PPPPPP

L

N
MMM

O

Q
PPP

x x x
x
x
x

1 2 3

1

2

3

1 2 3

2 2 5
2

3 5
2

7

, ,b g

Example-3 Determine which of the following equations are quadratic form :

(i) z x x 1
2

22

(ii) z x x 1
2

2
2
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(iii) z x x 1 2

(iv) z x x x x  3 31
2

1 2 2
2

Solution : For z  to be a quadratic form, we must be able to express it in the form

z X AXT

(i) It is not a quadratic form, because it is linear in x2

(ii) It is a quadratic form, because

A


L
NM

O
QP

1 0
0 1

(iii) It is a quadratic form, because

A

L

N

MMMM

O

Q

PPPP

0 1
2

1
2

0

(iv) It is a quadratic form, because

A

L

N

MMMM

O

Q

PPPP

3 3
2

3
2

1

Example-4 In each of the following cases write the objective function in the form

z X AX q XT T 

(i) z x x x x x x x x x x x x        1
2

1 2 1 3 2
2

2 3 3
2

1 2 32 46 3 2 5 4 2 3

(ii) z x x x x x x x x x x x x        5 12 16 10 26 17 2 4 61
2

1 2 1 3 2
2

2 3 3
2

1 2 3

(iii) z x x x x x x x x x     1
2

1 2 1 3 2
2

2 3 3
24 6 5 10 8

Solution : (i) z x x x
x
x
x

x
x
x


L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP
 

L

N
MMM

O

Q
PPP

1 2 3

1

2

3

1

2

3

1 1 2
1 3 1
2 1 5

4 2 3, , , ,b g b g

Here A q
L

N
MMM

O

Q
PPP

 
L

N
MMM

O

Q
PPP

1 1 2
1 3 1
2 1 5

4
2

3
,
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(ii) z x x x
x
x
x

x
x
x





 

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP
   

L

N
MMM

O

Q
PPP

1 2 3

1

2

3

1

2

3

5 6 8
6 10 13

8 13 17
2 4 6, , , ,b g b g

Here A q



 

L

N
MMM

O

Q
PPP






L

N
MMM

O

Q
PPP

5 6 8
6 10 13

8 13 17

2
4
6

,

(iii) z x x x
x
x
x

x
x
x




 


L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP

1 2 3

1

2

3

1

2

3

1 2 3
2 5 5

3 5 8
0 0 0, , , ,b g b g

Here A q


 


L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP

1 2 3
2 5 5

3 5 8

0
0
0

,

5.3 Positive and Negative Definiteness of Quadratic Forms
You have studied in 1.10, the positive and negative definite, semi-definiteness and indefinite of

quadratic forms. There are several tests we may perform on the matrix of the quadratic form to find the
character of quadratic form under consideration. Some of these have been discussed in 1.10.

Sylvester’s law :

A quadratic form X AXT  is positive definite if and only if all the successive principal minors of the
matrix A are positive.

The successive principal minors are determinants of the square submatrices obtained by succes-
sively deteting lower rows and right hand columns. For n n  matrix, there are n-principal minors.

For example, if A
a a a
a a a
a a a


L

N
MMM

O

Q
PPP

11 12 13

21 22 23

31 32 33

,

then three principal minors of this determinant are

a
a a
a a

a a a
a a a
a a a

11
11 12

21 22

11 12 13

21 22 23

31 32 33

, ,

A quadratic form X AXT  is negative definite if X AXT  is positive definite, since

 X AXTc h = X A XT b g , sylvester’s theorem can be applied to A  to test the negative definiteness of
A.

We cannot test whether or not a matrix is positive definite by simply saying that all the successive
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principal minors to be non-negative 0b g  instead of positive (> 0). Rather all the principal minors must be

non-negative. The matrix must be permuted in all possible combinations to determine all the n
rCc h2

principal minors of order r, r = 1, 2, .......n. It is seldom feasible. For a real symmetric matrix, if successive
principal minors are positive, then all the prinicipal minors are positive.

A matrix which is not positive definite, negative definite, positive semi definite, or negative
semi-definite is indefinite.

Example-5 Determine the sign of definiteness for each of the following matrices.

(a)

3 1 2
1 5 0
2 0 2

L

N
MMM

O

Q
PPP (b)

2 1 2
1 3 3
2 0 5




L

N
MMM

O

Q
PPP

Solution : (a) A 
L

N
MMM

O

Q
PPP

3 1 2
1 5 0
2 0 2

a11 3 ,   
3 1
1 5

15 1 14  

3 1 2
1 5 0
2 0 2

52




A is not possible definite, so form A  :

 
  



L

N
MMM

O

Q
PPP

A
3 1 2
1 5 0
2 0 2

Now

a11 3
3 1
1 5

16
3 1 2
1 5 0
2 0 2

52 
 



  



, ,

So A is negative definite.

Example-6 Test the definitiness of the quadratic form :

X AX x x x
x
x
x

T  
L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP

1 2 3

1

2

3

3 0 0
0 2 0
0 0 1

, ,b g
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Solution : The characterstic equation for the matrix A is given by

A I  0

or

3 0 0
0 2 0
0 0 1

0


 








 3 2 1 0      b gb gb g,

   1 3 2, ,

Since two eigenvalues are positive and one is negative, therefore the given quadratics form is
indefinite.

Example-7 Determine whether or not the quadratic forms A AXT  are positive definite, where

(i) A
L
NM

O
QP

1 3
0 4

, (ii) A
L

N
MMM

O

Q
PPP

1 1 0
1 1 0
0 0 3

,     (iii)  A
L
NM

O
QP

1 1
3 5

Solution : We first check the principal minors to use the Sylvester’s theorem.

(i) 1 0 , 
1 3
0 4

4 0   and therefore A is positive definite.

(ii) 1 0 , 
1 1
1 1

1 , A 0, and therefore A is not positive definite.

(iii) 1 0 , 
1 1
3 5

0 z  and therefore A is positive definite.

Example-8 Determine the properties of sign definiteness for the following quadratic form :

z x x x x x x x x x     1
2

1 2 1 3 2
2

2 3 3
24 6 5 10 8

Solution : Here A


 


L

N
MMM

O

Q
PPP

1 2 3
2 5 5

3 5 8

There successive principal minors of A are

1 1
1 2

2 5
5 4 1 2




    , , A

Thus using sylvestor’s law,   is not positive definite. Similarly, for A,      1 1 2, A , so AA
is not negative definite. Hence A is either positive semidefinite, negative semi-definite, or indefinite. We
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observe that A is certainly indefinite by showing two points which make Z positive and negative, respectively.

5.4 Self Evaluation Exercise-I

1. Identify the incorrect statement : A quadratic form Q Xb g  is :

(a) Positive definite if and only if Q Xb g0,

(b) Negative definite if and only if Q Xb g0,

(c) Indefinite if Q Xb g0 for some X and Q Xb g0 for some other X.

(d) Positive definite as well negative definite irrespective of sign of Q Xb g .

2. The quadratic form with the associated matrices 

1 2 4
2 6 2
4 1 14




L

N
MMM

O

Q
PPP  is :

(a) x x x x x x x x x1
2

2
2

3
2

1 2 1 3 2 36 14 4 8 4    

(b) x x x x x x x x x1
2

2
2

3
2

1 3 2 3 1 26 14 4 8 4    

(c) x x x x x x x x x1
2

2
2

3
2

2 3 1 3 1 26 14 4 8 4    

(d) x x x x x x x x x1
2

2
2

3
2

1 2 1 3 1 26 14 8 4 4    

3. Write the quadratic form in matrix vector notation

f X x x x xb g  1
2

1 2 2
22 4

4. Write down the quadratic form whose associated matrices are :

(i)

2 3 1
3 4 2

1 2 6






L

N
MMM

O

Q
PPP (ii)

1 2 4
2 6 2
4 2 14




L

N
MMM

O

Q
PPP

5. Which of the following are quadratic form?

(i) z x x 1
2

2
22 (ii) z x

x
 1

2

(iii) z x x  1
2

2
2 4 (iv) z x x x x x   1

2
1 2 2

2
12 4

6. Determine the sign definiteness of each of the quadratic forms X AXT  :

(i) A


L

N
MMM

O

Q
PPP

2 1 4
6 0 1
1 1 2

(ii) A
L

N
MMM

O

Q
PPP

1 1 0
3 2 1
1 2 4

(iii) A


 


L

N
MMM

O

Q
PPP

1 2 1
4 2 1

1 1 0
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7. Write objective function in the form z X AX q XT T  .

(i) z x x x x x x x x x     2 9 3 21
2

1 2 1 2 2
2

2 3 2

(ii) z x x x x x   1
2

1 2 3
2

36 9

8. Write the quadratic form in the form X AXT

(i) x x x x x1
2

1 2 3
2

3
28 16 3  

(ii) 2 6 2 2 6 51
2

1 2 1 3 3
2

2 3 3
2x x x x x x x x x    

9. Determine whether of the following quadratic form :

x x x x x x x1
2

2
2

3
2

1 2 2 32 2 2 2   

is positive definite.

10. Determine whether each of the following quadratic forms is positive definite or negative definite :

(a) 2 6 61
2

2
2

1 2x x x x    and  (b)     x x x x x x x1
2

2
2

3
2

1 2 2 34 2

5.5 General Non-Linear Programming Problem
A general non-linear programming problem (GNLPP) is defined as :

Find x x x xn1 2 3, , , ...b g  which

Optimize (Max. or Mini) Z f x x xn 1 2, ,.....b g
Subject to g x x xn

1
1 2, , .... ,b g   or b1

g x x xn
2

1 2, ,.... ,b g   or b2

.................................................

.................................................

g x x xm
n1 2, ..... ,b g  or  bm

and x j nj  0 1 2, , .... .

where Z g si, '  real valued functions of n variables x x xn1 2, ,...., . Here either f x x xn1 2, .....b g  or some

gi x x xn1 2, , .....b g ; i mj1 2, ....  or both are non-linear..

In matrix notation a GNLPP may be written as

Determine X RT n  so as to maximize or minimize Z f X b g  subject to the constraints :

g Xi b g , or bi , X 0

i m1 2, ..... .

Where f Xb g  or some g Xi b g  or both are non-linear in X .
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5.6 Constrained Optimization with Equality constraints

(Lagrange’s Multipler Method)
If the non-linear programming problem is composed of some differential objective function and

equality constraints, the optimization can be done by the use of Lagrange multiplier. To understand the
method we consider a simple GNLPP with one equality constraint with two variables :

Maximize or Minimize Z f x x 1 2,b g
Subject to the constraint g x x c1 2,b g
and x x1 2 0, 

Where c  is a constant.

Here we assume that f x x g x x1 2 1 2, , ,b g b g  are differentiable with respect to x1  and x2 . Now we

introduce another differentiable function h x x1 2,b g  defined as

h x x g x x c1 2 1 2, ,b g b g 

Then the above problem is restated as

Max. or Min. Z f x x 1 2,b g  subject to the coustraint h x x1 2 0,b g   and x x1 2 0, 

To find necessary conditions for the maximum or minimum (stationary) value of z f x x 1 2,b g  new
function is formed by using some multiplier  , as

L x x f x x Ah x x1 2 1 2 1 2, , ,b g b g b g 

Here   is an unknown constant, called Lagrange’s Multiplier and the function L x x1 2, ,b g  is

called Lagrange’s Function. The necessary conditions for stationary value of f x x1 2,b gare given by

 


 


 
 

L x x
x

L x x
x

L x x1 2

1

1 2

2

1 20 0 0
, ,

,
,

,
, ,b g b g b g

  

Now these partial derivatives are given by











L
x

f
x

h
x1 1 1

  ,











L
x

f
x

h
x2 2 2

  ,


 

L h  ,

where L f,  and h  stand for the functions L x x1 2, ,b g , f x x1 2,b gand h x x1 2,b g  respectively or simply by

L f h L f h L h1 1 1 2 2 2      , ,
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The necessary conditions for maximum or minimum value of f x x1 2,b g  are thus given by

f h f h1 1 2 2  ,  and  h x x1 2 0,b g
Example-9 Obtain the necessary conditions for the optimum solution of the following non-linear pro-
gramming problem :

Min. Z f x x e ex x   
1 2

2 1 53 21 2,b g
subject to the constraints : x x1 2 7   and x x1 2 0, 

Solution : Let us define the Lagrange’s function as L x x x x1 2 1 2 7, , b g b g  

     3 2 72 1 5
1 2

1 2e e x xx x b g
Where   is Lagrange’s multiplier..

The necessary conditions for the minimum value of f x x1 2,b g  are given by





L
x

e x

1

2 16 01  
 or   62 11x ...(1)





L
x

e x

2

50 2 02   
 or   2 2 5ex ...(2)


 

L x x    1 2 7 0b g  or x x1 2 7  ...(3)

(1) & (2)  6 22 1 51 2e ex x 

  2 7 51e x

 3 2 1 21e ex x 

 log 3 2 1 121 1   x x

 x1
1
3

11 3  log

From (3) x2 7 1
3

11 3   logb g

5.7 Necessary Conditions for General NLPP
Consider general non-liner programming problem (GNLPP) as :

Maximize (or Minimize) Z f x x x xn 1 2 3, , .....b g
Subject to g x x xi

n1 2, ,...b g c i mi ; , ,...1 2
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x j n m nj   0 1 2 3; , , ,.... .b g
If we take h x x x g x x x ci

n
i

n i1 2 1 2, ,... , , ...b g b g   for all i m1 2, ,.... . Then the constraints reduce to

h x x x x i mi
n1 2 3 0 1 2 3, , .... ; , , , ....b g  . The problem in matrix form can be written as

Max (or Mini) Z f x b g
Subject to h Xi b g 0   i m1 2, ,.... .

X 0 ,   X Rn

To find maximum and minimum value of f Xb g  we define Lagrange’s function by introducing m

Lagrange’s multipliers     1 2, , ... mb g  as :

L X f X h Xi
i

i

m

, b g b g b g 



1

Let us assume that L, f  and hi  are all differentiable partially with respect x x x xn1 2 3, , ....  and

  1 2, ,.... m . The necessary conditions for a maximum (minimum) of f xb g  are :











L
x

f
x

h X
xj j

i

i

ji

m

  

 b g 0

1
;  j n1 2, ,....


 

L h X
i

i  b g 0 ;   i m1 2, ,.....

There m n  necessary conditions can be represented in the following form.

L f hj j i j
i

i

m

  

 0

1
 or f hj i j

i

i

m





1
;

and  L hi
i  0  or hi  0 ;

where f
f X

x
h h Xj

j

i i 


b g b g,  and h

h X
xj

i
i

j




b g

5.8 Sufficient Condition for GNLPP
If in a general non-linear programming problem, the constraints are in equations. The necessary

conditions will be sufficient for a maximum value of objective function if the objective function is concave
and for minimum value of objective function if the objective function is convex.

When concavity and convexity of objective cannot be determined then we state sufficient
conditions as follows :

(a) Sufficient conditions for NLPP with one equality constraint :

The Lagrange’s function for a general NLPP involving n  variables and one constraint is :
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L X f X h X, b g b g b g 

The necessary conditions for stationary point, are











L
x

f
x

h
x

j n
i j j

   0 1 2 3, , , ,....,

and

 

L h x  b g 0

The value of   is defined by










f
x
h
x

j

j

(for j n1 2, ,... )

The sufficient conditions for miximum or minimum value of f Xb g  require the evaluation at each
stationary point of n1 principal minors of the determinant given below:

n

n

n n

n n

n n n

h
x

h
x

h
x

h
x

f
x x

h
x

f
x x

h
x x

y
x x

y
x x

h
x

y
x x

h
x x

f
x

h
x

y
x x

h
x x

h
x

f
x x

h
x x

 

  

  



1

1 2

1

2

2 1

2

1
2

2

1 2

2

1 2 1

2

1

2 2 1

2

2 1

2

2
2

2

2
2

2

2

2

2

1

2

0 












 






 


 


 




 





 




 








 




 





 




 

.....

.....

......

1 2

2

2

2

2 2


 




 







y
x x

h
x x

h
x

h
xn n n n

 .....

(i) If   3 4 50 0 0  , , , ...... the sign pattern being alternate, the stationary point is local
maximum.

(ii) If   3 4 10 0 0  , , ...... n , the sign being always negative, the stationary point is lo-
cal minimum.

Example-10 Obtain the necessary and sufficient conditions for the following NLPP.

Minimize Z x x x x x x      2 24 2 8 2 12 2001
2

1 2
2

2 3
2

3
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Subject to x x x1 2 3 11  

x x x1 2 3 0, , 

Solution : The Lagrangian function for the given problem is

L x x x1 2 3, , ,b g 2 24 2 8 2 12 200 111
2

1 2
2

2 3
2

3 1 2 3x x x x x x x x x         b g
The necessary conditions for the stationary point are





L
x

x
1

10 4 24 0    





L
x

x
2

20 4 8 0    





L
x

x
3

30 4 12 0    


 

L x x x     0 11 01 2 3b g

Solving above four simulteneous equations, we get the stationary point
X x x x0 1 2 3 6 2 3 0  , , , , ;b g b g 

For sufficient condition,  Here n3

 

  

  

 

4

1 2 3

1

2

1
2

2

1
2

2

1 2

2

1 2 1 3

2

1 3

2

2

2 1

2

2 1

2

2
2

2

2
2

2

2 3

2

2 3

3

2

3 1

2

3 1

2

3 2

2

0 



















 




 


 



 





 




 








 




 





 




 


 





h
x

h
x

h
x

h
x

f
x

f
x

f
x x

h
x x

y
x x

h
x x

h
x

f
x x

h
x x

f
x

h
x

f
x x

h
x x

h
x

f
x x

h
x x

f
x x

h
x x

f
x

h
x3 2

2

3
2

2

3
2










  

0 1 1 1
1 4 0 0
1 0 4 0
1 0 0 4

48
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3

0 1 1
1 4 0
1 0 4

8  

  3 4,  both are negative, therefore the above necessary conditions are sufficient i.e. X 0 6 2 3 , ,b g
gives minimum value of the objective function.

(b) Sufficient conditions for General NLPP with m nb g  equality constraints :

First we write Lagrange’s function fo a GNLPP with more than one constraint by introducing m
lagrange multipliers      1 2 3, , ,.... mb g

L X f X h Xi
i

i

m

, b g b g b g 



1
m nb g

The necessary conditions for stationary points of f xb g  can be obtained from the equations :




L
x j

0,    j n1 2 3, , ,....


 

L

i

 0,  i m1 2 3, , ,....

Thus the optimization of f xb g  subject to h Xi b g 0  is equivalent to the optimization of L X ,b g .

To write sufficient conditions for stationary point of f Xb g , we assume that the function L X f X, ,b g b g
and h Xb g  all possess partial derivalines of order one and two with respect to the decision variables.

Let V
L X
x xi j n n


L
NMM

O
QPP 

 
 

2 ,b g

be the matrix of second order partial derivaties of L X ,b g  w.r. to decision variables

 


h Xj
i

m n
b g

Where h X
h X

x
i m j nj

i
i

j
b g b g

  



, , ,.... ; , ,....1 2 1 2

Define the square matrix H
O U
U V

B
T

m n m n


L
NM

O
QP   b g b g

Where O is the null matrix of order m m . The matrix H B  is called bordered Hessian Matrix.

Now the suficient conditions for maximum and minimum stationary points are given below :
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Let X 0 0,b g  be the stationary point for the function L X ,b g and H B
0  be the corresponding

bordered Hassian matrix computed at X 0 0,b g , then X 0  is a

(i) Maximum point, if starting with principal minors of order 2 1mb g , the last n mb g
principal minors of H B

0  form an alterating sign pattern starting with  1b gm n ; and

(ii) Minimum point, if starting with prinicpal minor of order 2 1mb g , the last n mb g
principal minors of H B

0  have the sign of 1b gm .

Note : It can be observed that above conditions are only sufficient for identifying an extrime point, but not
necessary. That is, a stationary point may be an extreme point without satisfying the above condition.

5.9 Illustrative Examples
Example-11 Obtain the necessary and sufficient conditions for the optimum solution of the following
NLPP.

Minimize  Z x x x x x   4 2 41
2

2
2

3
2

1 2

subject to x x x1 2 3 15  

2 2 201 2 3x x x   ,  x x x1 2 32 0, , 

Solution : Here, we have

f X x x x x xb g   4 2 41
2

2
2

3
2

1 2

h X x x x1
1 2 3 5b g     ; h X x x x2

1 2 32 2 30b g   

The Lagrangian function is defined as

L X f X h X h X,  b g b g b g b g  1
1

2
2

4 2 4 151
2

2
2

3
2

1 2 1 1 2 3x x x x x x x x       b g
    2 1 2 32 2 30x x xb g

The necessary conditions for the stationary values of f xb g  are as :




 
L
x

x x
1

1 2 1 20 8 4 2 0     




 
L
x

x x
2

2 1 1 20 4 4 0     




 
L
x

x
3

3 1 20 3 2 0    
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
 

L x x x
1

1 2 30 15 0      b g


 

L x x x
2

1 2 30 2 2 20 0      

Solving above simultenceous equations we get stationary point X 0 0,b g  as :

X x x x0 1 2 3
33
9

10
3

8  FHG
I
KJ, , , ,b g  and

  0 1 2
40
9

52
9

  FHG
I
KJ, ,b g

The Bordered Hessian matrix at X 0 0,b g  is given by

H B
0

0 0 1 1 1
0 0 2 1 2
1 2 8 4 0
1 1 4 4 0
1 2 0 0 2





 

L

N

MMMMMM

O

Q

PPPPPP

Since m n 2 3, , therefore n m 1 2 1 5m  . It means one needs the check the determinant

of H B
0  only and it must have the sign of 1 2b g .

Now, det H B
0 90 0  , therefore x0  is a minimum point.

Example-12 Obtain a set of necessary condition for the non-linear programming problem :

Maximize Z x x x  1
2

2
2

3
23 5

subject to 5 2 51 2 3x x x  

x x x1 2 3 0, 

Solution : Here, we have X x x x 1 2 3, ,b g  f X x x xb g  1
2

2
2

3
23 5 , g X x x x1

1 2 33b g   ,

g X x x x2
1 2 35 2b g    and c c1 22 5 ,

Definging h X g X c1 1
1b g b g  , h X g X c2 2

2b g b g 

Thus we have the constraint

h X ii b g  0 1 2, ,

The Lagrange’s  function is defined as :



129

L X f X h X h X,  b g b g b g b g  1
1

2
2

   1 2,b g
This finds the following necessary conditions




L
x1

0   2 5 01 1 2x    




 
L
x

x
2

2 1 20 6 2 0    




 
L
x

x
3

3 1 20 10 3 0    




L
x

x x x
1

1 2 30 3 2 0     b g




L
x

x x x
2

1 2 30 5 2 5 0     b g

Examples-13 Find the dimension of a rectangular parallelopiped with largest volume whose sides are

parallel to the coordinate planets, to be inscribed in the ellpsoide 
x
a

y
b

z
c

2

2

2

2

2

2 1   .

Solution : Let the dimensions of a rectangular parallelopiped be x y,  and z. Its volume is given by

f x y z xyz, ,b g
Thus the problem is

Max f x y z xyz. , ,b g

s.t. 
x
a

y
b

z
c

2

2

2

2

2

2 1  

and x y z, ,  0

The necessary conditions for maximum value of f x y z, ,b g  are as :




L
x

yz x
a

   0 2 02 ...(1)




L
y

zx y
b

   0 2 02 ...(2)




L
z

xy z
c

   0 2 02 ...(3)
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
 

L x
a

y
b

z
c

    
F
HG

I
KJ 0 1 0

2

2

2

2

2

2 ...(4)

from (1) yz x
b


2

2



dividing we get 
y
x

x
y

b
a


2

2

 
x
a

y
b

Similarly  
y
b

z
c



   
x
a

y
b

z
c

1
3 using (4)

   x a y b z c
3 3 3

, ,

which are the required dimennsions

Example-14 A positive quantity b is to be divided into n  parts in such a way that the product of the n
parts is to be maximum. Use Lagrange multipler technique to obtain the optimal subdivision.

Solution : Let b be divided into n parts x x xn1 2, ...., , so that we have to maximize the function

z x x x xn 1 2 3. . .... ...(1)

subject to

x x x x bn1 2 3    .... ...(2)

x x xn1 20 0 0  , ,....,

The Lagrange’s Function is defined as :

L x x x x x x x x x x x bn n n1 2 3 1 2 3 1 2, , ,... , , , ,.... .... b g b g     

The necessary condition are





L
x

x x xn
1

2 30 0   .... ...(3)





L
x

x x xn
2

1 30 0   .... ...(4)


 

L x x x x bn       0 01 2 3 ....b g
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Dividing (3) by (4) 
x
x

x x2

1
1 21  

Similarly x x x xn2 3 4   ....

Thus (6)     x x x x b
nn1 2 3 .....

  Max. value of  z
b
n

b
n

b
n

b
n

n

  FHG
I
KJ. .....  ( n  times)

Example-15 A manufacturing concern produces a product consisting of two raw materials, say A1  and
A2 . The production function is estimated as

z f x x x x x x    1 2 1 1
2

2 2
23 6 0 4 16 0 2, . . . .b g

Where z  represents the quantity (in tons) of the product produced and x1 and x2  disignate the
input amounts of raw materials A1  and A2 . The company has Rs 50,000 to spend on there two raw
materials. The unit price of A1  is Rs 10000 and of A2  is Rs 5000. Determine how much input amounts of
A1  and A2  be decided so as to maximize the production output.

Solution : Since the company must operate within the available funds, the budgetary constraint is
10000 5000 500001 2x x   or 2 101 2x x   we reduce this inequality constraint to an equality by impos-
ing an additional assumption that the company has to spend every available single paisa on these raw
materials. Then, the constraint is 2 101 2x x  . Also, obiviously x x1 20 0 , . The problem of the com-
pany can thus be written as :

Maximize z f x x x x x x    1 2 1 1
2

2 2
23 6 0 4 16 0 2, . . . .b g

s.t. 2 101 2x x 

and x x1 2 0, 

The Lagrange’s Function is

L x x x x x x x x1 2 1 1
2

2 2
2

1 23 6 0 4 16 0 2 2 10, , . . . . b g b g      

The necessary conditions are





L
x

x
1

10 36 0 8 2 0    . .





L
x

x
2

10 16 0 4 0    . .


 

L x x     0 2 0 01 2b g
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Solving above simulteneous equations we get x x1 2 3 5 3, , , ,b g b g

 z  is a concave function so the necessry conditions are sufficient therefore z  is maximum at

x x1 235 3 . ,

 Max  z f 3 5 3, ,b g

   3 6 35 0 4 35 16 3 0 2 32 2. . . . . .b g b g b g b g
10 7. tons .

Thus in order to have a maximum production of 10.7 tons, the company must input 3.5 units or
raw material A and 3 units of raw material B.

5.10 Self-Learning Exercise-II
1. Define Lagrange’s functions.

2. What are Lagrange’s multipliers?

3. State whether true or false :

(i) The necessary conditions will be sufficient to maximize a concave function.

(ii) The necessary any conditions wil be sufficient to minimize a convesfunction.

(iii) The necessary condition will be sufficient minimize a concave function.

5.11 Summary
Quadratic forms have been introduced in the unit-1. A further study have been done in this unit.

Tests for the positiveness and negativeness are defined. There are two tests for this, Eigenvalue test and
principal minor test. You are able to test prositive/negativeness of quadratic form by doing ample examples
given in this unit. In the second part of this unit you have learnt the method to solve non-linear programming
problem with equality constraints. The necessary and sufficient conditions are given with the help of Lagrange’s
multipliers and Lagrange’s function. The necessary conditions are sufficient for maximization of an
objective function if it is concave and for minimization of an objective function it is convex.

If convcavity and convexity is not known of the objective function, then principal miners of hassian
matrix are evaluated.

5.12 Answers to Self-Learning Exercise-I

1. bb g 2.  ab g 3. x x
x
x1 2

1

2

1 1
1 4

,b g 

L
NM

O
QP
L
NM

O
QP

4.  (i) 2 4 6 6 4 21
2

2
2

3
2

1 2 2 3 3 1x x x x x x x x x    

     (ii) x x x x x x x x x1
2

2
2

3
2

1 2 2 3 3 16 14 4 4 8    

5. (i),     (iii),    (iv)

6. (i) Indefinite,  (ii) Indefinite,     (iii) Indifinite
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7. (i)  
H q

L

N

MMMMMMM

O

Q

PPPPPPP


L

N
MMM

O

Q
PPP

2 1
2

9
2

1
2

3 1
2

9
2

1
2

0

0
2
0

,

   (ii)  H q




L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP

1 0 3
0 0 0

3 0 1

0
0
9

,

5.13 Answer to Self-Learning exercise-II
3. (i) True (ii) True (iii) False

5.14 Exercise
Solve the following non-linear programming problems, using lagrange’s multiplier method :

1. Minimize z x x 6 51
2

2
2

Subject to x x x x  5 3 02 1 2, ,

2. Minimize z x x x x x x    3 2 6 21
2

2
2

1 2 1 2

Subject to 2 4 01 2 1 2x x x x  , ,

3. Minimize z x x x x x x      2 3 10 8 6 1001
2

2
2

3
2

1 2 3

Subject to x x x x x x1 2 3 1 2 320 0   , , ,

4. Maximize  z x x x x x x    4 6 2 2 21 2 1
2

1 2 2
2

Subject to x x z x x1 2 1 22 0  , ,

5. Maximize z x x x x   5 1 2 1 2
2b g

Subject to x x x x1 2 1 24 0  , ,

6. Minimize z x x x  1
2

2
2

3
2

Subject to 4 2 14 01 2
2

3 1 2 3x x x x x x   , , ,

7. Minimize z x x x  1
2

2
2

3
2

Subject to x x x1 2 33 5  

5 2 51 2 3x x x  

x x1 2 0, 
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8. Minimize z x x x x   6 81 2 1
2

2
2

Subject to 4 3 161 2x x  ,

3 5 151 2x x 

x x1 2 0, 

9. Solve the following NLPP :

Optimize  z x x x x   4 91 2 1
2

2
2

Subject to 4 3 151 2x x 

    3 5 141 2x x 

         x x1 2 0, 

10. Determine optimum solution for the following NLPP and check whether it maximizes or minimizes
the objective function :

z x x x x x x1 1
2

1 2
2

2 3
2

310 6 4     

Subject to x x x1 2 3 7  

x x x1 2 30 0 0  , , .

���
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Unit - 6
Non Linear Programming Problems

Structure of the Unit
6.0 Objective

6.1 Introduction

6.2 Mathematical Programming Problem

6.3 General Nonlinear Programming Problem

6.4 Lagrangian Function and Saddle Point

6.4.1 Relation between Saddle point of F X ,b g  and minimal point of f Xb g
6.5 Necessary and Sufficient conditions for the function F X ,b g  to have a saddle point at X 0 0,b g
6.6 Graphical method for solving a Nonlinear Programming Problem

6.7 Self-Learning Exercise

6.8 Summary

6.9 Answers to Self-Learning Exercise

6.10 Exercise

6.0 Objective
The objective of writing this unit is to get students acquainted with the programming problems that

are not linear by nature. Such problems are of great importance and are solved by different methods. One
such method is the method of Lagrange multipliers which provides a necessary condition for the optimum
of the objective function, when the constraints are in the form of equations.

6.1 Introduction
The unit begins with the formal definition of mathematical programming problem followed by the

introduction of general nonlinear programming problem. The construction of Lagrangain function and its
relation with the minimal point of the objective function is briefly discussed. The necessary and sufficient
conditions for the function F X ,b g  to have a saddle point are also derived. In the last, graphical method
for solving nonlinear programming problem in two variables is also explained through few examples.

6.2 Mathematical Programming Problem
A general mathematical programming problem (MPP) can be stated as given below :

Minimize f Xb g,
Subject to g Xi b g0, ...(1)

h Xj b g 0 , ...(2)

    X S , ...(3)

Where X x x xn
T 1 2, ,...,b g  is a vector of decision variables (that are known) and
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f g i mi, , ,... ,1 2b g  and h j pj 1 2, ,....,b g  are the real valued functions of variables x x xn1 2, ,...., .

The function f  in the above formulation is called the objective function. The inequalities
(1), equations (2) and the set restrictions (3) are called the constraints. The above mathematical program-
ming problem is a minimization problem, which is considered without any loss of generality, since a maxi-

mization problem can always be converted into a minimization problem by using the fact max f Xb g
min  f Xb gc h. That intends to say that the maximization of  f Xb g is equivalent to the minization of  f Xb g.

Usually, the functions f , gi  and hj  are assumed to be continuous or continuously differentiable

functions. Also the set S is considered as a connected subset of Rn . If S Rn  and all the functions
appearing in the mathematical programming problem (MPP) are linear in the decision variables X , the
mathematical programming problem is called a Linear Programming Problem (LPP). A mathematical
programming problem, that is not a linear programming problem is called a Nonlinear Programming
Problem (NLPP).

The set T of all those points X S , which satisfy constraints (1) to (3) is known as the feasible
region, feasible set or feasible constraint set of the MPP and every point of this set T is called a feasible
solution of the MPP. If the constraint set T is empty, then we say that there is no feasible solution to the
MPP and the problem is said to be inconsistent.

A feasible solution X T0   of the MPP is said to be an optimal solution or a global optimal

solution, if f X f Xb g b g 0  for all X T . This global optimal solution X T0   of the MPP is actually a

global minimum point of the MPP. X T0   is referred to as a global maximum point of the function f  over
the set T if X 0  is a global minimum point of  f  over T.T.

A point X T*  is said to be a local minimum or relative minimum point of the function f Xb g
over T if there exists a positive number   such that f X f Xb g b g *  for all X T N X   *b g , where

N X *b g  is the neighbourhood of X *  with radius  . The point X T*  is a local miximum or a relative

maximum point of the function f over T if X *  is a local minimum point of  f  over T. A point X T*
referred to as a local extremum point if it is either a local minimum point or a local maximum point. It is
noticeable from the above definitions that a global minimum (maximum) point is also a local minimum
(maximum) point, but not conversely.

In fact a mathematical programming problem can be classified into two different categories-
unconstrained optimization problem and constrained optimization problem. If the constraint set T is
the whole of the space Rn , the problem is said to be an unconstrained optimization problem, for in this
case, we are to find a point in Rn  that gives an optimum value to the objective function. If T is a proper
subset of Rn , then the problem becomes a constrained optimization problem.

Example 1 : Maximize z x x   F
HG

I
KJ1

2
2

2

1 1
2

b g

subject to x x1 2 2 

     x x1 2 0, 
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The shaded region OAB  in the figure 6.1 shows the feasible region. The objective contour

x x z1
2

2

2

1 1
2

  F
HG

I
KJ b g  is a circle whose centre is 1 1

2
,F

HG
I
KJ  and radius z . Since we are looking for the

maximum value of z , we must find the circle with the largest radius that intersects the feasible region. Wee

see that the point B(0, 2) is the optimal solution with the objective value 
13
4 . It can be noticed from the

objective contours (dotted circles) that the point A(2, 0) is a point of local maximum but not of global

maximum with the objective value 
5
4 .

Figure : 6.1

The above example confirms that a local optimum neet not be a global optimum. This is the reason
that the derivations of algorithms for non-linear programming problems are difficult to some extent.

Example-2 Minimize z x x   F
HG

I
KJ1

2
2

2

1 1
2

b g

subject to x x2
2

1 1 0  

x x1 2 2 

x x1 2 0, 

The feasible region of the given NLPP is shown as the shaded region OABC in the figure 6.2. The

objective contour x x z1
2

2

2

1 1
2

  F
HG

I
KJ b g  is a circle with centre 1 1

2
,F

HG
I
KJ  and radius z . Since we are to

minimize z, therefore we must look for the circle having the smallest radius that intersects the feasible
region. Clearly such a circle with smallest radius is the point circle (i.e. circle that has radius zero), since the

point 1 1
2

,F
HG

I
KJ  lies inside the feasible region. Therefore, the optimal solution to the problem is x1 1  and

z  13
4

B 0 2,b g

1 1
2

,F
HG

I
KJ

z  5
4

A 2 0,b gO

X 2

X1
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x2
1
2

 , with the objective value 0.

Figure : 6.2

From the above example one can notice that the optimal solution to the NLPP could be any point
of the feasible region. This adds to difficulties in solving the NLPP.

6.3 General Nonlinear Programming Problem (GNLPP)
A general nonlinear programming problem (GNLPP) can be formulated as :

Suppose that we are looking for a solution of nonnegative variables x j 0 ; j n1 2, ,..., , which
maximize or minimize the real valued function (called the objective function)

z f x x xn 1 2, , ...b g ,

and satisfies the set of m  constraints

g x x xn1 1 2, ,...b g   , or bl q 1

g x x xn2 1 2, , ...,b g   , or bl q 2

--------------------------------------------

---------------------------------------------

g x x xm n1 2, ,... ,b g   , or bml q
where either f x x xn1 2, ,...,b g  or some g x x xi n1 2, , ...,b g ; i m1 2, ,...,  or both are nonlinear real

valued functions of n  variables x x xn1 2, ,...., .

In matrix form, the GNLPP can be written as :

Determine X RT n  that maximize or minimize the objective function

z f X b g

B 0 2,b g
x x2

2
1 1 0  

B

C 0 1,b g

1 0,b g O A 2 0,b g

x x1 2 2 

1 1
2

,F
HG

I
KJ

X1

X 2
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subject to the constraints

g X or bi ic hl q  , ; i m1 2, ,...,

X 0

where either f Xb g  or some g Xi b g  or both are nonlinear in X .

It is some-times convenient to write the constraints g X or bi ib gl q  ,  as h X ori b gl q  , 0 ,

for h X g X bi i ib g b g  .

6.4 Lagrangian Function and Saddle Point
Let us consider the NLPP a follows :

Minimize z f X b g; X Rn ...(1)

subject to g Xi b g0;  i m1 2, ,..., ...(2)

X 0 ...(3)

Where f Xb g  and g Xi b g  are convex functions of X Rn . ...(4)

In fact, if f Xb g   is a convex function, then it has a unique relative minimum which is also a global

minimum. It can also be learnt that if f Xb g  is convex, then  f Xb g  is concave and that

min f X f Xb g b gc hmax  . At present, we relax the condition (3) and (4) (i.e. there is no restriction on X

and functions f Xb g  and g Xi b g  are not necessarily convex functions) and consider the problem of mini-

mizing f Xb g  subject to the constraint set (2) only..

Let us define the function F X ,b g  as

F X f X g Xi i
i

m

, b g b g b g 



1

 f X G XTb g b g ...(5)

where     1 2, ,..., m
Tb g  and

G X g X g X g Xi m
Tb g b g b g b gc h , ,...,2 ...(6)

Equation (5) shows that F X ,b g  is nothing but the Lagrangian function, with the m componnts of

  as the lagrange multipliers.

A point X 0 0,b g  is said to be a saddle point of the Lagrangian function F X ,b g  if

F X F X F X0 0 0 0, , ,  b g b g b g 

  0
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in some neighbourhood of X 0 0,b g . The Saddle point of the lagrangian function F X ,b g ,  if at all exists,

and the minimal point of the objective function f Xb g  have a theoretical relationship with each other. This
theoretical relationship with each other. This theoretical relationship has led not only to various important
theoretical developements but also to algorithms for solving NLPP. This relationship is established through
a number of theorems which are various constituents of what we know as Kuhn-Tucker theory.

6.4.1 Relation between Saddle Point of F X ,b g  and minimal point of F Xb g
Let F Xb g  be a real-valued function in Rn  and G Xb g  a vector function consisting of real-valued

functions g Xi b g ; i m1 2, ,...., .

Consider

Minimize z f X b g ...(1)

subject to G Xb g0 ...(2)

and F X f X G X, b g b g b g  ...(3)

where     1 2, ,..., m
Tb g , and   0 . ...(4)

Theorem-1 : If F X ,b g  has a saddle point X 0 0,b g , for each   0 , then

G X 0 0b g  and  0 0 0T G Xb g  .

Proof : Let X 0 0,b g  be the saddle point of the function F X ,b gwhere   0 . Then from the
definition

F X F X F X0 0 0 0  b g b g b g , ,

or f X G X f X G X f X G XT T T
0 0 0 0 0 0b g b g b g b g b g b g       ...(5)

The left hand side of the inequality (5) shows that

 T TG X G X0 0 0b g b g ...(6)

If possible, let g Xi 0 0b g  for some i . Then whatever may be  0 ,  the i th  component  i  of 

can be chosen sufficiently large, so that TG X 0b g  is large enough to disobey the inequality (6). Hence we
must have

g Xi 0 0b g  for all i m1 2, ,..., .

Or, G X 0 0b g ...(7)

Now since  0 0 and G Xb g0 , therefore,

 0 0 0T G Xb g . ...(8)
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Also inequality (6) holds for all  0 , therefore, it holds for   0  also and so

 0 0 0T G Xb g  ...(9)

From equations (9) and (10), we have

 0 0 0T G Xb g  ...(10)

Theorem-2 If X 0 0,b g  is a saddle point of the function F X ,b g  for every   0 , then X 0  is a

minimal point of f Xb g  subject to the constraints G Xb g0 .

Proof : Using the right hand side inequality of (5) and the reult (1) of theorem-1, we have

f X f X G XT
0 0b g b g b g  

and since  0 0  and G Xb g0 , therefore,

f X f X0b g b g  for all those points X  which satisfy G Xb g 0 ,

The converse of the above theorem need not be true always.

Theorem-3 Let X 0  be a solution of the NLPP

Minimize    z f X b g ; X Rn

subject to  G Xb g0 , where

G X g X g X g Xm
Tb g b g b g b gc h 1 2, ,...,  and

f X g X i mib g b g, ; , ,...,1 2  are all convex functions

Let the set of points X  such that G Xb g0  be nonempty. The there exists a vector  0 0  in Rm

such that

f X G X f XTb g b g b g  0 0 .

Proof : Let b b b bm
T 0 1, ,...,b g  be a vector in Rm1  and let

C b b f X f X g X b i mi i1 0 0 1 2    : ; , , ,...,b g b g b gm r
where for each such b, there is atleast one X  for which the above conditions for  b  hold. It is clear

that C1  is a convex set. Note that g Xi b g  are convex functions for i m1 2, ,..., .

Let us consider another set C Rm
2

1   defined by

C b b2 0 :l q .

Then it can be seen that C2  is also a convex set. Further C C1 2  , since b f X f X0 0 0  b g b g
for b C 1  and b0  for b C 2 . Now C1  and C2 are disjoint convex sets, therefore there can be
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constructed a hyperplane separating C1  and C2 . The point b0  is the boundary point of C1  and C2  and
so the separating hyperplane must pass through this point b  0 . Let this separating hyperplane be

Cb 0 , C0

Where Cb 0 , for b C 1 ...(1)

and Cb0 , for b C 2 ...(2)

The vector C  is bound to be nonnegative since if C 0 , then it means that there is some

component ci  of C  such that ci  0 . Now if b 2b g  is any point in C2 , then b 2 0b g  . Let bi
2b g  be the i th

component of b 2b g . Then let b Mi
2b g    for M 0 . The i th  term c bi i

2b g  in C b is clearly positive and by

taking M sufficiently large, this term c bi i
2b g  can be made dominating over all other terms in C b , which is

against the inequality (2). Thus we conclude that C0 .

Now let b f X f X g X g X g Xm
T

 b g b g b g b g b gc h0 1 2, , ,...,  be any point in C1 , Then from (1)

c f X c f X c g X c g X c g Xm m0 0 0 1 1 2 2 0b g b g b g b g b g     .... ...(3)

where, C c c c cm' , , ,... , 0 1 2b g
Or, c f X c g X c g X c g X c f Xm m0 1 1 2 2 0 0b g b g b g b g b g    ...

It can be proved that c0 0 , since if c0 0 , then (3) becomes

c g X c g X c g Xm m1 1 2 2 0b g b g b g   ... ...(4)

Now let X  be a point such that G Xb g0  and (condition given in th theorem). Also since C0and

C0 , therefore (4) is a contradiction for such a point X . But it holds  for all X , therefore, c0 0 .

Now dividing (3) by c0  and taking 
c
c

i
i

0
0

 ; i m1 2, ,..., , we get

f X G X f Xb g b g b g  0 0 ...(5)

 0 0 ...(6)

6.5 Necessary and Sufficient Conditions for the function f X ,b g  to have a

saddle point at X0 0,b g
Necessary Condition :

Suppose that the function F X ,b g  has a saddle point at X 0 0,b g . Then it means that there exists

a possitive number  such that for all points X  in the -neighbourhood X X 0  and for all   in the

 neighbourhood   0  we have
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F X F X F X0 0 0 0, , ,  b g b g b g  ...(1)

where X x x xn 1 2, ,... ,b g  and     1 2, , ..., mb g are n-component and m-component vectors,
respectively.

Let us partition the components of X  and   satisfying the above condition into three categories,

X X X X 1 2 3b g b g b g, ,  and     1 2 3b g b g b g, ,  where,

X x x x p
1

1 2 0b g d i ,...,  has p  components.

X x x xp p q
2

1 2 0b g d i  , , ...,  has q p components

X x x xq q n
3

1 2
b g d i  , ,...,  unrestricted in sign has n q components.

   1
1 2 0b g b g , ,..., r  has r components.

   2
1 2 0b g b g  r r s, ,...,  has s r  components.

   3
1 2

b g b g  s s m, ,...,  unrestricted in sign has m s  components

Let us denote by W1  the set of points X  such that the components of X  satisfy the above
conditions, by W2 , the set of points   such that the components of  satisfy the above conditions and by

W the set of points X ,  where X W 1  and W2 , Then the function F X ,b g  is said to have a saddle

point at X 0 0,b g  for X W,b g  if X W0 0,b g  and there exists an 0  such that (1) holds for all

X W 1  in the -neighbourhood of X 0  and for all W2  in the W2 -neighbourhood of  0 .

Suppose that F X C,b g 1  (i.e. all the first derivatives of F are continuous in E n ). If F X ,b g
has a saddle point at X 0 0,b g  for X W,b g , then we must have F X 0 0,b g  minimum at X 0  and

F X 0 0,b g  maximum at  0 ,

and







 

 
 

x
F X for all j for which x

F X for all i for which

j X X

j

i
i

, ,

, ,

0
0

0
0

0

0

0 0

0 0

b g

b g

L
NMM

O
QPP

 

L
NM

O
QP  

U

V
||

W
||





...(2)

i.e.  




x

F X
j

0 0 0,c h
for all j q 1,q 2,...n,since x isunrestricted in sign for these j' s.

for all j 1,2,...,p, for which x 0

for all j p 1,p 2,...,q for which x 0

j
0

j
0

j
0

  

 

   

L

N

MMMM
and
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
 


i

F X0 0 0,b g
for all i s s m ce isunrestricted insign for these i s
for all i r for which
for all i r r s for which

i

i

i

  

 

   

L

N

MMM

1 2
1 2 0

1 2 0

0

0

0

, ,... ,sin ' .
, ,..., ,

, ,...,






  ...(3)

Now let us see the nature of 




x

F X
j

0 0,b g  when x j qj
0 0 1 2 , , ,...,  and 





i

F X 0 0,b g

when  i
0 0  and i s1 2, ,..., , in order that (1) may hold true.

First, let us assume that x j
0 0  for j p1 2, ,..., . For this case we shall show that





x

F X
j

0 0 0b g ...(4)

If possible, let 




x

F X
j

0 0 0b g .  Since we have assumed that F X C,b g 1   i.e. 




x

F X
j

,b g

is continuous, therefore, for a given  0 0 , there exists an 0 -neighbourhood of X 0 0,b g  such that in this

- neighbourhood of  X
x

F X
j

0 0 0, , ,



b g b g  . ...(5)

We now select a positive number  such that 0 0  and consider points in the -neighbourhood

of X 0 0,b g of the form X h e j0 0 ,d i , 0 0 h . Then by Taylor’s theorem

F X he F X h
x

F X h ej
j

j0 0 0 0 0 0 0 1     , , , ; 



  d i b g d i

But X h e j0 0, , d i  is in the -neighbourhood of X 0 0,b g , therefore, from above

F X h e F Xj0 0 0 0  , , d i b g [from (5)] ...(6)

for all h h, 0 0 

Therefore, every -neighbourhood of X 0 0,b g  contains points X W, 0b g , such that (6) holds,
i.e.,

F X F X, 0 0 0b g b g

This contradicts the fact that X 0 0,b g  is a saddle point of F X ,b g  for X W,b g . Thus our
assumption is not correct. Hence (4) holds true,

i.e.,




x

F X
j

0 0 0,b g , for x j
0 0 ; j p1 2, ,..., . ...(7)

In a similar way we can prove that 




x

F X
j

0 0 0,b g  for x j p qj
0 1 2; , ,...,   ...(8)



145

and also if  i
0 0 , then


 


i

F X 0 0 0,b g  for i r1 2, ,..., ...(9)


 


i

F X 0 0 0,b g   for i r r s  1 2, ,..., ...(10)

Thus we have shown that either





x

F X
j

0 0 0,b g   or, x j
0 0

and either 
 


i

F X 0 0 0,b g      or,   i
0 0

Hence if F X ,b g  has a saddle point at X 0 0,b g  for X W,b g , and if F X C,b g 1 , then

X 0 0,b g  must satisfy
















x
F X j p

x
F X j p p q

x
F X j q q n

j

j

j

0 0

0 0

0 0

0 1 2

0 1 2

0 1 2

, , , ,...,

, , , ,...,

, , , ,...,

b g

b g

b g

 

   

   

U

V

||||

W

||||

...(10)

x j p

x j p q

x unrestricted in sign j q n

j

j

j

0

0

0

0 1 2

0 1

1

 

  

 

U
V||

W||

, , ,...,

, ,...,

, ,...,
...(11)

x
x

F X j nj
j

0
0 0 0 1 2


, , , ,...,c h  ...(12)

and


 




 




 



i

i

i

F X i r

F X i r r s

F X i s s m

0 0

0 0

0 0

0 1 2

0 1 2

0 1 2

, , , ,...,

, , , ,...,

, , , ,...,

b g

b g

b g

 

   

   

U

V

|||

W

|||
...(13)
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





i

i

i

i r
i r r s

unrestricted in sign i s s m

0

0

0

0 1 2

0 1 2
1 2

 

   

  

U
V|

W|

, , ,...,

, , ,...,
, , ,...,

...(14)





i
i

F X i m0
0 0 0 1 2, , , ,...,c h   ...(15)

Equations (10) to (15) are the necessary canditions, which the point X 0 0,b g  must satisfy if the

function F X ,b g  has a saddle point at X 0 0,b g  for X W,b g , provided that F X C,b g 1

Sufficient condition  The conditions (10) to (15) become sufficient if there exists a positive number 0

such that F X 0 ,b g  is a concave function of   in the -neighbourhood of  0  and F X , 0b g  is a convex

function of X  in the -neighbourhood of X 0 .

Now if F X 0 ,b g  is a concave function of  , then

F X F X F X0 0 0 0 0 0, , ,    b g b g b gb g   ...(16)

where  
F
HG

I
KJ 


 




 
F X F X F X

m
0 0

1
0 0 0 0, , ,..., ,b g b g b g  is the gradient of F X ,b g  with

respect to  at the point X 0 0,b g .

Similarly if F X , 0b g  is a convex function of X , then

F X F X F X X XX, , ,  0 0 0 0 0 0b g b g b gb g   ...(17)

Where  
F
HG

I
KJX

n

F X
x

F X
x

F X0 0
1

0 0 0 0, , ,..., ,







b g b g b g  is the gradient of F X ,b g  with

respect to X  at X 0 0,b g .

Inequalities (16) and (17) hold good for all   in the -neighbourhood of  0  and for all X  in the

 neighbourhood of X 0 .

Now            F X F X F X0 0 0 0 0 0 0 0b gb g b g b g. , .

  F X 0 0,b g (using (15)) ...(18)

and since



 

i
i

F X i r  0 0 1 20 0, , , , ,...,b g

 

 

i
i

F X i r s   0 0 10 0, , , ,...,b g



147

 i  unrestricted, 

 


i

F X i s m0 0 0 1, , ,...,b g  

therefore,    

  


 

 F X F X
i

i
i

m

0 0 0 0
1

0, . , .b g b g ...(19)

Thus (18) represents that

     F X 0 0 0 0,b gb g
Then from (16), we have

F X F X0 0 0, , b g b g ...(20)

Similarly from (17), we have

F X F X, , 0 0 0b g b g ...(21)

Now from (20) and (21) we conclude that

F X F X F X0 0 0 0, , ,  b g b g b g  ...(22)

which holds for all X  in the -neighbourhood of X 0  and for all   in the  neighbourhood of
 0 .

i.e., F X ,b g  has a saddle point at X 0 0,b g .

Note : Consider the following nonlinear programming problem:

Optimize f Xb g, X x x xn
T 1 2, ,...,b g

subject to h X i mi b g  0 1 2, , ,...,   m nb g
Introducing Lagrangian multipliers     1 2, , ..., mb g , the Lagrangian function is

L X f X h Xi i
i

m

, b g b g b g 



1
,  m n

The necessary conditions for stationary points of f Xb g  at which f Xb g  may have a maximum or
minimum are 

 









L X
x

f X
x

h X
xj j

i
i

ji

m,b g b g b g
  


 0

1
;   j n1 2, ,...,

and
 

 

 

L X h X

i

i

i

,c h c h
  0 ,   i m1 2, ,..., (m < n)
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Let
U

h
x

h
x

h
x

h
x

h
x

h
x

h
x

h
x

h
x

n

n

m m m

n


           

L

N

MMMMMMMMM

O

Q

PPPPPPPPP




























1

1

1

2

1

2

1

2

2

2

1 2

.....

.....

......

which is an mxn matrix

and V

L
x

L
x x

L
x x

L
x x

L
x

L
x x

L
x x

L
x x

L
x

n

n

n n n


                  

L

N

MMMMMMMMM

O

Q

PPPPPPPPP





 


 


 





 


 


 




2

1
2

2

1 2

2

1
2

2 1

2

2
2

2

2

2

1

2

2

2

2

.......

...........

...........

which is an n n  matrix.

Also let O Oij d i  be an n n  null matrix.

Then the square matrix H B  of order m n m n  b g b g  is called the bordered Hessian matrix and
is defined as :

H
O U

U V
B

T
L
NM

O
QP

Now if X 0 0,b g  is a stationary point for the Lagrangian function L X 0 ,b g  and H B
0  the value of

the corresponding bordered Hessian matrix H B  at this stationary point, then

(i) The point X 0  gives the maximum value of the objective function f Xb g , if, starting with the

principal minor of order 2 1mb g , the last n mb g  principal minors of H B
0  are of alternate signs, starting

with  1b gm n  sign.

(ii) The point X 0  gives the minimum value of the objective function, starting with the principal minor of

order 2 1mb g , the last n mb g  principal minors of H B
0  are of the sign of 1b gm .

For example :

(i) If n m 2 1, , then the order of H B  is 3 3  (since m n   1 2 3 ) and since
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2 1 3 1 1 13m n m      ,b g b g  and n m m      1 1 1 11,b g b g . Therefore the extreme point X 0 ,

gives the maximum value of the objective function if H B 0  and minimum value of the objective function

if 3 0 H B .

(ii) When n m 3 1, ,  then the order of H B  is 4 4  (since n m   3 1 4 ) and since

2 1 3 1 1 1 3 1 2 1 1 14 1m n mn m m              , , ,b g b g b g b g . Therefore, the extreme point X 0

gives the maximum value of the objective function f Xb g  if 4 0 H B  and 3 0  and minimum value

of the objective function if 4 0  and 3 0

(iii) When n m 3 2, ,  then the order of H B  is 5 5  (since n m   3 2 5 ) and since

2 1 5 1 1 1 3 2 15m n mn m          , , ,b g b g    1 1 12b g b gm , therefore the extreme point X 0

gives the  maximum value of the objective function f Xb g  if 5 0 H B  and the minimum value of the

objective function if 5 0 H B .

Note : If f Xb g  is a real valued continuous differentiable function of X x x xn 1 2, , ... ,b g , then the Hessian

matrix of f Xb g  is

H X

f
x

f
x x

f
x x

f
x x

f
x

f
x x

f
x x

f
x x

f
x

B

n

n

n n n

b g
                    

L

N

MMMMMMMMM

O

Q

PPPPPPPPP





 


 


 





 


 


 




2

1
2

2

1 2

2

1
2

2 1

2

2
2

2

2

2

1

2

2

2

2

.........

............

..........

The function f Xb g  is convex if the Hessian matrix H XB b g  of f Xb g  is positive definite i.e., if all

the leading principal minors of H XB b g  are positive in sign.

The function F Xb g  is concave if the Hessian matrix H XB b g  of f Xb g  is negative definite, i.e., if

the signs of leading principal minors of H XB b g  are alternately negative and positive.

Example-3 : Obtain the necessary conditions for the following nonlinear programming problem :

Minimize f X x x x x x xb g    3 2 6 21
2

2
2

1 2 1 2

subject to 2 41 2x x 

    x x1 2 0, 
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Solution : The Lagrangian function for the given problem is

L X f X x x, b g b g b g   2 41 2

or L X x x x x x x x x, b g b g       3 2 6 2 2 41
2

2
2

1 2 1 2 1 2

The necessary conditions for the minimum of f Xb g  are




L
x1

0 or,    6 2 6 2 01 2x x    ...(1)




L
x2

0 or,     2 2 2 02 1x x    ...(2)


 

L
 0 or,     2 4 01 2x x   ...(3)

Example-4 : Solve the following non linear programming problem using the method of Lagrangian
multipliers :

Minimize f X x x xb g  1
2

2
2

3
2

subject  to 4 2 141 2
2

3x x x    g xb gc h14

x x x1 2 3 0, , 

Solution : The Lagrangian function is

L X f X x x x, b g b g c h    4 2 141 2
2

3

or, L X x x x x x x, b g c h      1
2

2
2

3
2

1 2
2

34 2 14

The necessary condition for f Xb g  to have a maximum or minimum are




L
x1

0  , or 2 4 01x   ...(1)




L
x2

0 ,  or 2 2 02 2x x  ...(2)




L
x3

0 ,  or 2 2 03x   ...(3)


 

L
 0,   or 4 2 14 01 2

2
3x x x    ...(4)

From (2),   x2 1 0 b g
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or x2 0   or  1.

Also from (1) x1 2    and from (3) x3   . If we put x2 0  in (4), then we get

  14.  and so x1 2 8 . , x3 14 .

If we put  1 then we get x x1 32 1 ,  and then from (4), we get x2 2 .

Therefore, we get the following stationary points :

2 8 0 14 14. , , . , .b g   

and 2 2 1, ,b g ,  1

We now consider the bordered Hessian matrix

H

g
x

g
x

g
x

g
x

L
x

L
x x

L
x x

g
x

L
x x

L
x

L
x x

g
x

L
x x

L
x x

L
x

B 

L

N

MMMMMMMMMMM

O

Q

PPPPPPPPPPP

0
1 2 3

1

2

1
2

2

1 2

2

1 3

2

2

2 1

2

2
2

2

2 3

3

2

3 1

2

3 2

2

3
2

















 


 





 





 





 


 






L

N

MMMM

O

Q

PPPP

0 4 2 2
4 2 0 0
2 0 2 0
2 0 0 2

2

2

x

x

At the stationary point (2.8, 0, 1.4)

H B 

L

N

MMMM

O

Q

PPPP

0 4 0 2
4 2 0 0
0 0 2 0
2 0 0 2

Here n m 3 1, , therefore n m   3 1 2  and 2 1 2 1 1 3m    

We check the signs of the principal minors D3  and D4

Now D3

0 4 0
4 2 0
0 0 2

32  

and D4

0 4 0 2
4 2 0 0
0 0 2 0
2 0 0 2

80 
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Since both D3  and D4  have the same sign negative, which is the sign of   1 1 1b g b gm  i.e.

negative, therefore f Xb g  has a minimum at the point 2 8 0 14. , , .b g  and at this point the minimum of f Xb g
is 9.8.

And, at the stationary point 2 2 1, ,b g

H B 

L

N

MMMM

O

Q

PPPP

0 4 4 2
4 2 0 0
4 0 2 0
2 0 0 2

Here D3

0 4 4
4 2 0
4 0 2

64 0  

and D4

0 4 4 2
4 2 0 0
4 0 2 0
2 0 0 2

144 0   

Thus f Xb g  has a minimum value at 2 2 1, ,b g  which is 9

Since the least among 9 and 9.8 is 9, therefore, f Xb g  has minimum at the stationary point 2 2 1, ,b g
and the minimum of f Xb g  at this stationary point is 9.

Example-5 Use Lagrangian function to find the optimal solution f the following nonlinear programming
problem :

Maximize  f X x x xb g   3 4 51
2

2
2

3
2

subject  to x x x1 2 3 10  

x x x1 2 3 0, , 

Solution : Here the Lagrangian function for the given problem is

L X f X x x x, b g b g b g    10 1 2 3

or L X x x x x x x, b g b g      3 4 5 101
2

2
2

3
2

1 2 3

The necessary condtions for stationary values of L X ,b g  are




L
x1

0  , or   6 01x  ,  or x1
1
6

  



153




L
x2

0 , or   8 02x  , or x2
1
8

 




L
x3

0 , or   10 03x   or x3
1

10
  


 

L
 0 ,  or 10 01 2 3   x x x ,  or  x x x1 2 3 10  

Putting the values of x x x1 2 3, ,  in the above equation

1
6

1
8

1
10

10     

or   
1200

47

Thus x1 200 47 / ; x2 150 47 / ; x3 120 47 / . Since,   3 4 51
2

2
2

2
2x x x  is strictly concave

function and x x x1 2 3 10    is a linear function, therefore, L X ,b g  is strictly concave. Thus the
Lagrangian necessary conditions are sufficient also for the global maximum.

Hence, the optional solution to the given problem is x x x1 2 3
200
47

150
47

120
47

  , ,

Example-6 Use Lagrangian multiplier method to solve the following nonlinear programming problem:

Minimize f X x x x x x xb g       2 2 2 24 8 12 101
2

2
2

3
2

1 2 3

subject  to x x x1 2 3 11  

x x x1 2 3 0, , 

Solution : The Lagrangian function for the given problem is

L X x x x x x x x x x, b g b g          2 2 2 24 8 12 10 111
2

2
2

3
2

1 2 3 1 2 3

The necessary condition for minimum of f Xb g  are




L
xi

0 , i 1 2 3, ,  and 

 

L
 0

i.e.



L
x1

0 , or 4 24 01x    ...(1)




L
x2

0 , or 4 8 02x    ...(2)
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


L
x3

0 , or 4 12 03x    ...(3)


 

L
 0 , or x x x1 2 3 11 0    ...(4)

From (1), (2) and (3)

x x x1 2 3
24

4
8

4
12

4








  , ;

Putting these values of x x x1 2 3, ,  in (4)

24 8 12
4

11    


  
, or  0

Thus x x x1 2 36 2 3  , ,

Here the minimization function f Xb g  is the sum of a positive definite quadratic form and a linear

function, so is a convex function. Thus L X ,b g  is also a convex function as the constraint is a linear

equation. Hence x x x1 2 36 2 3  , ,  is the optimal solution of the given nonlinear programming
problem.

Example -7 Use method of Lagrangian multipliers to solve the following nonlinear programming
problem :

Optimize f X x x x x x xb g      2 3 10 8 6 1001
2

2
2

3
2

1 2 3

subject to x x x1 2 3 20  

x x x1 2 3 0, , 

Does the solution maximize or minimize the objective function?

Solution : The Lagrangian function is

L X x x x x x x x x x, b g b g          2 3 10 8 6 100 201
2

2
2

3
2

1 2 3 1 2 2

The necessary condition for the maxima or minima are




L
x1

0 , or 4 10 01x    ....(1)




L
x2

0 , or 2 8 02x    ...(2)




L
x3

0 or 6 6 03x    ...(3)


 

L
 0 , or x x x1 2 3 20 0    ...(4)
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From (1), (2) and (3) we have

x x x1 2 3
10

4
8

2
6

6
 


 


 

  , ,

Therefore, from (4)

  






 

10
4

8
2

6
6

20

or,    30

Thus x x x1 2 35 11 4  , ,

Hence the stationary point is (5, 11, 4)
To determine, whether this stationary point results in maximization or minimization of the objective

function, (n-1) principal minors of the following determinant are solved :

4

0 1 1 1
1 4 0 0
1 0 2 0
1 0 0 6

44 

and 3

0 1 1
1 4 0
1 0 2

6  

Since 4  and 3  both are negative, therefore the sationary point is a point of minima.

Thus the optimal solution is

x x x1 2 35 11 4  , ,  and the minimum value of f Xb g  is

f Xb g        2 25 121 3 16 50 88 24 100

= 281.

Note : Another way to check whether the objective function f x x x1 2 3, ,b g  has a minimum value or maxi-

mum value at the stationary point 5 11 4, ,b g  we find the Hessian of the objective function f x x x1 2 3,b g  at the

point 5 11 4, ,b g , which is

H X

f
x

f
x x

f
x x

f
x x

f
x

f
x x

f
x x

f
x x

f
x

b g

L

N

MMMMMMMM

O

Q

PPPPPPPP


L

N
MMM

O

Q
PPP





 


 


 





 


 


 




2

1
2

2

1 2

2

1 3
2

2 1

2

2
2

2

2 3
2

3 2

2

3 2

2

3
2

4 0 2
0 2 0
0 0 6
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The principal minors of H xb g  are :

4 4
4 0
0 2

8 ,  and 

4 0 2
0 2 0
0 0 6

48

which are all positive. Therefore, H Xb g  is positive definite, i.e., f x x x1 2 3, ,b g  is convex. Hence

f x x x1 2 3, ,b g  is minimum at the statonary point 5 11 4, ,b g .

6.6 Graphical Method for Solving a Nonlinear Programming Problem
We know that in linear programming problem the optimal solution is attained at one of the extreme

points of the convex region generated by the constraints. But in case of nonlinear programming problem, it
is not necessary that the optimal solution of the problem lies at a corner or edge of the feasible region.

The method of solving a nonlinear programming problem involving only two variables is explained
through the following examples :
Examples-8 : Solve the following nonlinear programming problem graphically :

Maximize f x x x x x x1 2 1 2 1
2

2
28 8,b g    

subject  to x x1 2 12 

x x1 2 4 

x x1 2 0, 

Solution : Considering the given constraints as equalities and drawing the lines an the x x1 2  plane,
we get the admissible region to be ABDA.

The objective function f x x1 2,b g  is 8 81 1
2

2 2
2x x x x    i.e. 32 4 41

2
2

2   x xb g b g
which is a circle with centre at 4 4,b g  as, shown in figure 6.3

Figure 6.3

A

x x1 2 12 

x x1 2 4 

P 6 6,b g0 6,b g

0 2,b g
Q 6 2,b g

B 12 0,b gO A 4 0,b g
X1

X 2
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The point that gives the maximum value of f x x1 2,b g  is the point at which the feasible region is

tangent to the circle given by the objective function 8 81 1
2

2 2
2x x x x  

Differentiating f x x1 2,b g  w.r.t. x1

8 2 8 2 01
2

1
2

2

1

   x dx
dx

x dx
dx

or 
dx
dx

x
x

x
x

m say2

1

1

2

1

2
1

2 8
8 2

4
4










 b g

for the line x x dx
dx

m say1 2
2

1
212 1    , b g

The circle will touch the line x x1 2 12  , where, m m1 2 , i.e., 
x

x
1

2

4
4

1


  , i.e., x x2 1 . Therefore,

putting x x1 2  in x x1 2 12  , we get x x1 2 6  .

Thus the circle touches the line at the point P 6 6,b g . But this point P 6 6,b g  is not a point of the
feasible region ABDA

Again for the line x x1 2 4  , we have

dx
dx

m say2

1
31  b g

The circle touches this line at the point where m m1 3 , i.e., 
x

x
1

2

4
4

1


 , i.e., x x2 18 

Putting these values in x x1 2 4  , we get x1 6  and x2 2

i.e., the circle touches the line x x1 2 4   at the point Q 6 2,b g , which lies in the feasible region.

Also for x x1 26 2 , , we have f x x1 2 24,b g
Thus the optimal solution of the given problem is x x1 26 2 ,  and maximum value of

f x x1 2 24,b g .

Example-9 Solve the following nonlinear programming problem graphically :

Maximize f x x x x1 2 1 22,b g 

Subject to x x1
2

2
2 1 

2 21 2x x 

x x1 2 0, 
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Solution : Considering the given constraints as equations and drawing them in x x1 2  plane the fea-
sible region is OABCO as shown in figure 6.4.

Figure : 6.4

The objective function f x x1 2,b g  is the line x x z say1 22  b g . Drawing the objective function

through 0 0,b g  and then drawing the lines parallel to this objective functional line, we reach the extremity B

of the feasible region OABCO. The point B is the point of intersection of the circles x x1
2

2
2 1   and the

line 2 21 2x x   and is the most distant point of the feasible region. Thus B is the point of optimal solution

of the problem. Solving x x1
2

2
2 1   and 2 21 2x x  , we get B 3

5
4
5

,F
HG

I
KJ  and f x x1 2

11
5

,b g .

Hence the optimal solution of the given nonlinear programming  problem is

x x1 2
3
5

4
5

 ,  and max. f x x1 2
11
5

,b g 

Example-10 Solve the following programming problem graphically :

Minimize f x x x x1 2 1
2

2
2,b g 

  Subject  to x x1 2 4 

2 51 2x x 

x x1 2 0, 

Solution : Considering the constraints as equalities and drawing them on the x x1 2  plane, feasible
region is x ABC x1 2  which actually is an infinite region. Thus the desired point minimizing the objective

function f x x1 2,b g  must be somewhere in this unbounded region. Since our search is for such a point

x x1 2,b g  which gives a minimum value of x x1
2

2
2  and lies in the convex region, the desired point will be

that point of the infinite region at which a side of the convex region is tangent to the circle x x r say1
2

2
2 2  b g

as shown in figure 6.5.

x2

B 3
5

4
5

,F
HG

I
KJC

O A 10,b g

2 21 2x x 

x x1
2

2
2 1 

x1
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Figure 6.5

Differentiating x x r1
2

2
2 2  , w.r.t. x1, we have

dx
dx

x
x

m say2

1

1

2
1   b g

Differentiating the equation x x1 2 4   w.r.t. x1, we have

dx
dx

m say2

1
21   b g

The circle touches the line x x1 2 4   at the point where m m1 2

i.e., 


 
x

x
1

2

1 , i.e., x x1 2

Thus from x x1 2 4  , we get the point P 2 2,b g .

Therefore, the circle touches the line x x1 2 4   at the point P 2 2,b g , which lies in the convex
region bounded by the constraints.

Again differetiating the equation 2 51 2x x   w.r.t. x1,  we get

dx
dx

m say2

1
32   b g .

The circle x x r1
2

2
2 2   will touch the line 2 51 2x x   at the point where

m m1 3 , i.e., 



x

x
1

2

2 , i.e., x x1 22

x1

x2

C 2 51 2x x 

B

B 2b g

2 0,b gO

0 2,b g

x x1 2 4 A
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Therefore, from 2 51 2x x  , we get the point Q 2 1,b g . Thus the circle touches the line at the

point Q 2 1,b g , which does not lie in the convex region bounded by the constraits and so is to be discarded.

Hence the optimal solution to the problem is x x1 22 2 ,  and minimum value of

f x x1 2
2 22 2 8,b g   .

6.7 Self-Learning Exercise

1. A point X T*  is a local (relative) minimum of the function f Xb g  over T if there is a positive

number   such that for all X T N X   *b g , we have .......

2. The Lagrangian function for the nonlinear programming problems Min f Xb g , subject to

G Xb g0,  X 0  is......

3. If the Lagrangian function F X ,b g  for the nonlinear programming problems Min f Xb g , subject

to G X Xb g 0 0,  has a saddle point X 0 0,b g  for each  , then........

4. If X 0 0,b g  is a saddle point of the Lagrangian function F X ,b g  for the problems Min f Xb g ,

subject  to G X Xb g 0 0, , then.......

6.8 Summary
In the present unit we discussed about the mathematical programming problem and the general

nonlinear programming problem. We studied the Lagraingian function and the saddle point of the Lagrangian
function. We derived the necessary and sufficient canditions for the Lagrangian function to have a saddle
point. We also saw in brief, how a nonlinear programming problem can be solved graplically.

6.9 Answers to Self-Learning Exerices

1. f X f Xb g b g * 2. f X G XTb g b g 

3. G X G XT
0 0 00 0b g b g ,  4. F X F X F X0 0 0 0, , ,  b g b g b g 

6.10 Exercise
1. Define saddle point and indicate its significance.

2. What is the Lagrange multiplier method?

3. What is a general nonlinear programming proble? Establish the relation between saddle point and
the minimal point of the nonlinear programming problem.

4. Solve the following nonlinear programming problems, using the method of Lagrange multipliers :

(a) Min. f x x x x x x x x x1 2 3 1
2

1 2
2

2 3
2

32 24 2 8 2 12 200, ,b g      

subject  to x x x1 2 3 11  

x x x1 2 3 0, , 
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(Ans. x x x1 2 36 2 3  , ;  and minimum f  = 102)

(b) Min f x x x x x x x x1 2 3 1
2

2
2

3
2

1 24 2 4, ,b g   

Subject to x x x1 2 3 15  

2 2 201 2 3x x x  

x x x1 2 3 0, , 

(Ans. x x x1 2 3
11
3

10
3

8  , , ;  minimum f  = 
820

9 )

(c) Min. f x x x x x x1 2 3 1
2

2
2

3
2, ,b g  

subject  to x x x1 2 33 2  

5 2 51 2 3x x x  

x x x1 2 3 0, , 

(Ans. x x x1 2 30 81 0 35 0 928  . , . , . ; minimum f  = 0.857)

(d) Max. f x y z xyz, ,b g

subject  to
x
a

y
b

z
c

2

2

2

2

2

2 1  

x y z, ,  0

(Ans. x a y b z c  3 3 3, , ; maximum f = 3 3abc )

���
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Structure of the Unit
7.0 Objective

7.1 Introduction

7.2 Convex Programming Problems

7.2.1 Lagrangian function and saddle point

7.3 Kuhn-Tucker conditions and Kuhn-Tucker Theorem

7.4 Self-Learning Exercise

7.5 Summary

7.6 Answers to Self-Learning Exercise

7.7 Exercise

7.0 Objective
The present unit is confined to discuss the theory which has been developed for locating the points

of maxima and minima of constrained nonlinear optimization  problems. The theory populary known as
Kuhn-Tucker theory, provides a set of necessary and sufficient conditions for check, whether a given point
is a point of optimality. The objective of writing this unit is to study the Kuhn-Tucker theory for nonlinear
programs.

7.1 Introduction
The unit bigins with the definition of convex programming problem. The theoretical concept of

Langrangian function of the general non-linear programming problem and its relation with the saddle point
is the next section of the unit that is of fundamental importance. The major part of the unit deals with the
Kuhn-Tucker Theory, The Kuhn-Tucker necessary conditions for the optimum of the nonlinear
programming problem and their derivation, which is called the Kuhn-Tucker theorem.

7.2 Covex Programming Problems
The general mathematical programming problem consists in finding the minimum value of the

function f Xb g  for all real X , satisfying the conditions  g Xi b g  , 0 , Xb g  0 , where f Xb g  and

g Xi b g  , i m 12, ,.......,  are all real valued functions of X x x xn 1 2, ,....,b g  in En . The problem stated

above is called a nonlinear programming problem (NLPP) if some or all of the functions f Xb g , g Xi b g
are nonlinear for i  12, ,.......,m .

If f Xb g  and g Xi b g  are all convex functions, the problem is said to be a convex programming
problem. A convex programming problem can thus be stated as follows:

Minimize f Xb g  , X x x xn 1 2, ,...... ,b g En

subject to : g Xi b g  0  ; i 1,2,.......,m

X  0

Unit 7
Constrained Optimization in Nonlinear Programming

      Problems; Kuhn-Tucker Conditions
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where f Xb g  and g Xi b g  are all convex functions.

The convex programming problem has a little advantage over the general nonlinear programming
problem as in convex programming problem all the constraint functions g xi b g  are convex functions. There-

fore the set S of points, satisfying the constraints. g Xi b g  0 , i  =.............,m, X  0  is a convex set.

However this may not be so if g Xi b g  are not all convex. Also, if f Xb g  is a convex function, then the

relative minimum of  f Xb g is also a global minimum, which infact is unique. This may not be possible if the

NLPP is a non convex programming problem. It may be noticed that if  f Xb g is convex, then  f Xb g  is

a concave function and so minimum of f  is equal to maximum of  f . Thus the statement that a function
is convex is equivalent of saying if it is a concave function.

We now begin with some theoretical concepts that are of fundamental importance.

7.2.1 Lagrangin function and saddle point

Let us consider the problem

Minimize f Xb g , X x x xn 1 2, ,..... ,b g En

subject to   ........m,.........,i;Xgi 210 

Where f Xb g  and g Xi b gare not necessarily convex functions and also there is no restriction on X .

Let     1 2, ,....., m
Tb g Em  be any vector in Em. We define the function F X ,b g  as

         XGλXf XgλXfλ,XF T
i

m

i
i  

1

where         Tm X,g..........X,gXgXG 21 .

The function F X ,b g  is then called the lagrangian function, with the components of λ  as the

Lagrange multiplirs. We recall that X 0 0,b g is said to be a saddle point of the Lagrangian function  F X ,b g  if.

     ooo λ,XF λ,XF λ,XF 0  in some neighbourhood of X 0 0,b g .
Infact the saddle point of the Lagrangian function F X ,b g , if it exists, and the minimal point of the

minimizing function f Xb gbear a strang theoretical bond between each other. This has led not only to
important theoretical results but also to practical algorithms for solving mathematical programming
problems. This relationship is a part of what is commonly known as Kuhn-Tucker theory.

7.3 Kuhn-Tucker Conditions and Kuhn-Tucker Theorem
In this section we shall develop primarily the necessary form of Kuhn-Tucker conditions for getting

the stationary points of the constrained nonlinear programming problems. These conditions are also
sufficient under certain restrictions.

Consider the NLPP
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Minimize f Xb g , X x x xnb g b g 1 2, ,..... , ...(1)

Subject to g Xi b g  0 ; i 1,2,.......,m ...(2)

We also assume that  f Xb g  and all g Xi b g , i 1,2,.......,m are differentiable functions in En.

Let us form the Lagrangian function

         XGλXfXgλXfλ,XF T
i

m

i
i  

1

Where          T
m X,g..........Xg, XgXG 21

and     1 2, ,...., m
T mEc h

We start with the statement

     0000 λ,XFλ,XFλ,XF  ...(4)

which intends that X 0 0,b g  is a saddle point of the lagrangian function  λ,XF  Let X  be any

point in the neighbourhood of  X 0 . Since X  is unrestricted, therefore X  is an interior point in the

neighbourhood of X 0 . Thus, the right side inequality of (4) implies that X , 0b g  is a local minimum of

F X , 0b g  and so we must have

  n...,..........2,,1j0
0

















;
x
λX,F

XXj

o
...(5)

Let   be a point in the neighbourhood of  0 . since every   0 , therefore if we denote by lio the
components of  0 , then let

(i)  i0 0 for i =  1,2,.............,k

(ii)  i0 0 for i =  k+1, k+2............., m

Clearly  is k = m and  0 0  if k = 0. Let us suppose that the neighbouring point  differ
from  0  only in the ith  component, the other components in   and  0  being equal. Then by Taylor’s’s
series

        .......
λ
λ,XFλ–λλ,XFλ,XF

λ λi
ii 













 0

0
0000

or         .......
λ
λ,XFλ–λλ,XFλ,XF

λ λi

o
ii 













 0

0000 ...(6)

Choosing  ioi λ–λ  sufficiently small so that other higher order terms in the above expansion that
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are very-very small to be neglected, the sign of the left hand function i.e. of the function
   000 λ,XF–λ,XF  depends upon  the sign on the right hand term. Now if io (i.e. of category (i)),

then ioi λ–λ  can be made positive or negative by some suitable choice of  i  which can be greater than

or less than  i0 , remembering that the only restriction on  i  is that  i  0  , which can be maintained in

either case. Thus    000 λ,XF–λ,XF  can be made positive or negative by a suitable choice of   0 .
But by the fact of left side inequality of (4) this is never positive. Therefore if io for i = 1, 2, ...............,k,
necessarily we must have

  0
0

0 











 λ λiλ
λ,XF

; i 1,2,......., k ...(7(a))

We now consider the other possibility. Let io = 0, i.e., io belong to the category (ii). In this case
 i i0  is always positive since  i0  0  and  i i0 . Also since    000 λ,XF–λ,XF  is never
positive, therefore in (6) we must have

  0
0

0 











 λ λiλ
λ,XF

; i =  k+1, k+2............., m            ...(7(b))

(7(a)) and (7(b)) together imply that

  0
λ
λ,XF

0λλi

0 












; i 1,2,.....,m ...(7)

Now, for category (i), k...,..........2,,1i;0λ io 

Therefore, from (7(a))

  0











i

0
i0 λ

λ,XFλ ...(8)

Similary, for category (ii), i0  0  ; i =  k+1, k+2............., m. Therefore from (7(b))

00
0 












i
i λ

λ),(XFλ ...(9)

Thus we have, from (8) and (9)

00
0 












i
i λ

λ),(XFλ ,   for all i =  1,2,..........,m ....(10)

Using (3), we can replace  ,XF  by    XGλXf T  in (5), (7) and (10) and get these
conditions in the following from







f
x

l g
xj i

m

i
i

j

 



1

0 ; j = 1,2,......., n ...(11)
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  0Xgi ; i = 1,2,......., m ...(12)

  0Xgλ ii ; i = 1,2,......., m ...(13)

0λi  ; i = 1,2,......., m ...(14)

where all the expressions have been evaluated at  00 λ,X .

So far, we have not imposed any restriction on  X . Most of the nonlinear programming problems
do have the nonnegativity condition on X  (i.e. X  0 ). In such a case, when X  0 , the above discus-
sion remains unchanged except that we define a nonnegative saddle point  00 λ,X  of the Lagrangian

function F X ,b g  as       00000  λ,X,λ,XFλ,XFλ,XF .

Also then the condition (5) is modified to take into account the possibility of X0  being a boundary
point, i.e., some or all of the components being zero. As we argued in deriving (7) and (8), (5) is then
replaced by the condition

0
0

00 















XXjx
)λ,(XF

; j = 1,2,......., n ...(16)

  0
0

0

0
0 
















XXj
j x

λX,FX ; X0  0 ...(17)

Again using (3), we may rewrite the conditions (7), (8), (16) and (17) corresponding to the
nonnegative saddle point X0 ,0b g  [defined by  (15)] as :










 m

i j

i
i

j x
gλ

x
f

1

0 ; j n 1 2, ,......., ...(18)

0
1

















 



m

i j

i
i

j
j x

gλ
x
fx  ; j n 1 2, ,......., ...(19)

  0Xgi      ; i m 1 2, ,......., ...(20)

  0Xgλ ii  ; i m 1 2, ,......., ...(21)

0jx          ; j n 1 2, ,......., ...(22)

0jλ          ; i m 1 2, ,......., ...(23)

The sets of conditions (11) to (14) or (18) to (23) are called the Necessary form of
Kuhn-Tucker (K-T) conditions. The conditions (11) to (14) are the necessary conditions which

X 0 0,b g  must satisfy if it is a saddle point of the Lagrangian function F X ,b g , with the variable X

unrestricted in sign,whereas the conditions (18) to (23) are the necessary conditions which X 0 0,b g ,
satisfies , if it is a nonnegative saddle point of the function F X 0 0,b g , with X 0 0 .
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The above conditions are not however sufficient conditions for X 0 0,b g  to be a saddle point of

F X ,b g . The reason is quite simple. The condition (11) implies that the gradient of the Lagrangian

function F X ,b g  with respect to X  is zero, which is necessary but not a sufficient condition for the

existence of the minimum of F X ,b g  with respect to X .

If f Xb g   and all g Xi b g  are convex functions, then the saddle point  X 0 0,b g,  0 0  of F X ,b g
does exist such that X 0  is a point of minima of the function f Xb g  subject to the constraints g Xi b g  0,

i m 1 2, ,.......,  and X  0 . With the additional restriction X  0 , the saddle point.  00 λ,X  is nonne-

gative. Since f X 0b g  is convex, it has only one optimum which is the minimum.

Hence, if f X 0b g  and all g Xi b g  are convex functions, then the solution of the corresponding

K-T conditions gives rise the required saddle point and so the minimal point of f Xb g . If f Xb g  and

g Xi b g  are not convex,the K-T conditions can still be obtained and we may look for its solution. The
solution so obtained may still give the solution to the corresponding programming problem but not
necessarily always.

We have so far assumed that the constranits are g Xi b g  0 ; i = 1, 2, ..........,m. However if the

constraints are in the form gi Xb g  0 then we face no difficulty as we can write them as  g Xi b g 0 , and

while constructing the K-T conditions, we may take the Lagrange multiplier as i  instead of  i , with
 i  0 ,  i = 1, 2, ...........,m.

The equality constraint g Xi b g  0  leads to a slightly different case. In this case we shall only

observe that the Lagrange multiplier  i  is unrestricted in sign. In a general way , the constraint g Xi b g  0

is replaced by two inequality constraints g Xi b g  0  and g Xi b g  0 , with the result that the corresponding

Lagrange multipliers  i
1b g  and  i

2b g  both non-negative, would contribute to the term  i i
1 2b g b ge j gi Xb g  in

the Lagrangian function with the Lagrangian multiplier   i i i 1 2b g b g   becoming unrestricted in sign.

We now summarize the general form of Kuhn-Tucker conditions which are used to solve the
constrained nonlinear programming problems.

If we have the optimization problem:

Minimize f Xb g ; X x x xn 1 2, ,.....,b g
Subject to g Xi b g  0 ;  i = 1, 2, .......................m

h Xj b g  0 ; j 1,2,.......,m ...(24)

then the Kuhn-Tucker conditions are :

      0
11

 


p

j
jji

m

i
i Xhu–XgλXf
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 Xgλ ii  = 0 ; i = 1, 2,............,m

g Xi b g  0 ; i = 1, 2,............,m

h Xj b g  0 ; j = 1, 2, ............,p

 i  0 ; i = 1, 2,.............,m ...(25)

Where  i  and u j  are the Lagrange multipliers associated with the constraints g Xi b g  0  and

h Xj b g  0  respectively. The above form of Kuhn-Tucker conditions represents only the necessary

conditions of optimality. In the followin, we specify the precise conditions for the Kuhn-Tucker con-
ditions to be satisfied, which are known as the sufficient conditons.

The Kuhn-Tucker necessary conditions derived above are sufficient for the function f Xb g   to

have a minimum at X X 0 , if f Xb g  is convex, g Xi b g  is convex if  i 0 0  and  g Xi b g  is concave if

 i 0 0  for i = 1, 2,..........,m.

From the saddle point theorem, F X ,b g  has a saddle point at X 0 0,b g  if
F X F X F x0 0 0 0, , ,  b g b g b g  ...(26)

Now      X gλXfXF i

m

i
oi




1

0,

and since   00  Xg,λ iio  imply that

  0
1




X gλ i

m

i
oi , therfore, we have

   XfXF 0, ...(27)

Also F X f X g Xi i
i

m

0 0 0 0 0
1

, b g b g b g 



 f X 0 0b g
Therfore    00, XfXF  ...(28)

(26), (27) and (28) together imply that

       XfX,λF,λXFXf  0000

or,    XfXf 0  for all X  0

i.e. f Xb g  attains absolute minimum at X 0 .

General sufficient form of Kuhn-Tucker conditions can be stated as follows:
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Let X 0  be feasible solution to the problem (24). If   IiXg i  0  where I is the set of

constraints    Xg i 0  which are satisfied as exact equalities at X X 0  and  0Xh j ,  j = 1, 2,.........,p

are linearly independent, then there exist  0  and u0  such that  000 ,, uX   satisfy (25).

The condition that   IiXg i  0 , where I is the set of constraints   0Xg i , which are

satisfied as exact equalities at X 0  and  0Xh j , j = 1, 2, .........,p, be linearly independent, is called
constraint qualification. If the constraint qualification fails to hold good at the optimum point, then (25) may
or may not have a solution. It is not easy to verify the constraint qualification without knowing X 0 in prior..
However the constraint qualification is always satisfied if :

(i) all the inequality and equality constraints are linear.

(ii) all the inequality constraints are convex and all the equality constraints are linear. Also
atleast one feasible solution X 0

 exists which lies inside the feasible region, so that

  m..,..........2,,1i;00 Xg i

and   p..,....................2,,1j;00 Xh j

(iii) The problem is a convex programming problem.

The conditions that ensure that a point satisfying the Kuhn-Tucker conditions is the desired point
of optima, can be summarized in the following tables. First table ensures the conditions, which the functions
appearing in the given problem must satisfy in order for the solution of Kuhn-Tucker conditions to yield the
optimal solution, while the second table ensures the conditions that must be satisfied by the Lagrange
multipliers of a point satisfying Kuhn-Tucker conditions to be the point of optimality.

Table -1

Senes of Optimization Required Conditions

Objective Functions Solution Space

Maximization Concave Convex Set

Minimization Convex Convex Set

Table- 2

Sense of Optimization Required Conditions

f Xb g g Xi b g  i

Maximization Concave Convex  0
Concave  0
linear equation unrestricted

convex  0
Minimization Convex Concave  0

linear equation unrestricted
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Example 1 :   Write the Kuhn-Tucker necessary and sufficient conditions  for the following nonlinear
programming problem to have on optional solution.

Min. f x x x x x1 2 1
2

1 22,b g   

s.t. 632 11  xx

42 21  xx

021  xx

Solution :    The Lagrangian function for the given minimization problem is :

     426322, 21221121
2
1 –xxλ–xxλx–x–xXF 

the necessary conditions are :

(i)
  2,1j;0,






jx
XF 

i.e. 02222 211  λλ–x

031 21  λλ–

i.e. 22222 12211  uλλλx

13 221  u–λλ

(on adding surplus variables) u1 and u2 )

(ii)   2,1i;0 




iλ
λ,XF

i.e. 062 21  xx

042 21  xx

or 2 3 61 2 1x x y  

42 221  yxx

(on adding slack variables y1  and y2 )

(iii)
  21,j;0,





j

j

x.
x
XF 

i.e.   02222 1211  xλλx

  031 221  xλλ

(iv)
  21,i;0,





i

i

λ.
λ
XF 
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i.e.   0632 121  λxx

  042 221  λxx

(v) 021212121 yyu,u,λ,λ,xx ,,,

Since the function min   21
2
121 2 xxxxx f ,   is convex, therefore the above conditions are

suffcient also.

Example 2 : Use Kuhn - Tucker condition to solve the following non-linear programming problem :

Max f x x xb g  8 2

subject to x  3

x  0
Solution :    We have the Lagrangian function

   xλxxλ,xF  38 2

The Kuhn-Tucker conditions are ;

  028or,0 


 λx
x
λ,xF

 
 

F x,b g
 0  ,  or   3 0 x

    028or,0 


 xλxx
x
λ,xF

    03or,0 


 λxλ.
x
x,λF

x,  0

i.e. 8 2 0  x  , x  0 , x x8 2 0  b g ... (1)

3 0 x ,   0 ,  3 0 xb g ...(2)

By combinatorial nature of the equations atleast one of the inequality in (1) must be satisfied in
equality form, and similary for (2). Hence we have the following four possible combinations :

(i) 8 2 0  x  , 3 0 x ,   i.e. x  3 ,   2

This solution satisfies x  0  and   0 .

(ii) 8 – 2x –   = 0  , l = 0  i.e.    x = 4,   = 0 , which violates the condition 3 0 x
(iii) x  = 0 ,  3 – x  = 0,  which is inconsistent

(iv) x = 0 ,  l = 0, which violates the condition  8 2 0  x 
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Thus only the first combination gives a solution to Kuhn-Tucker conditions. Since both functions
f x x xb g  8 2 and g x xb g  3 are concave (note it), the solution x  3 ,   2  represents a global

maximum of f xb g  Hence the optimal solution is x  3 ,   2 .

Example 3 : Solve the following programming problem graphically and verify the Kuhn-Tucker
conditions for the same:

Maximize f x x x x1 2 1 22 3,b g  

Subject to x x1
2

2
2 20 

x x1 2 8

x x1 2 0, 

Solution :    In the figure shown below, the constraint curves 02
2

2
1  xx  and x x1 2 8  are plotted

(see fig. 7.1) Since x x1 2 0,  , the feasible region falls in the first quadrant only. The curve 202
2

2
1  xx

represents a circle with its centre at 0 0,b g  and radius 20
1

2b g  and the curve x x1 2 8,   represents a
rectangular hyperbola having its asymptotes as the co-ordinate axes. The two curves intersect each other
at points A (4,2) and B (2,4). The points x x1 2,b g  lying in the first quadrant shaded by the horizontal lines

staisfy the constraints ;x,x,xx 0020 21
2
2

2
1   while the points x x1 2,b g   lying in the first quadrant

shaded by the vertical lines do satisfy the the constraints x x1 2 8 ; x1 0 , x2 0 . Thus the required
solution must be somewhere in the double shaded region.

Figure : 7.1

Now in the feasible region for the point x x1 2,b g  that maximizes the function f x x x x1 2 1 22 3,b g  

adn lies in the feasible region, we draw the lines paralled to the line 2 31 2x x c   (c is chosen arbitrarily)
moving away from origin till the line parallel to 2 31 2x x c   touches the extreme boundary of the feasible

region. It is noticed that the point B (2,4) gives the maximum value of f x x1 2 16,b g  . Thus the graphical
solutin of the give problem is :

x1 2 , x2 4  ; Max ; f x x1 2 16,b g  .

x2

B 2 4,b g

A 2 4,b g x x1 2 8

x1O 3 0,b g
2 3 161 2x x 

2 3 121 2x x 

2 3 61 2x x x x1
2

2
2 20 
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In order to verify that this optimal solution satisfies the Kuhn-Tucker conditions also, we first find
the Lagrangian function of the given problem,which is

     212
2
2

2
1121 82032 xxλx––xλxxλ,XF 

Then the Kuhn-Tucker conditions are :

 
















023

022or,2,1j,0

1221

2211

xλ–xλ–

xλ–xλ–
x
X,λF

j ...(1)

 















08

020or,2,1i,0

21

2
2

2
1

xx –

x–x–
λ
λ,XF

i ...(2)

    

 

 
  












023
022or,

2,1j0

21221

12211

xxλ–xλ–
xxλ–xλ–

;x.
x
λ,XF

j
j

...(3 )

 

 
  08

020or,

2,1i;0,

221

1
2
2

2
1









λxx –
λx–x–

λ.
λ
XF

i
i



...(4)

02121 λ,λ,x,x ...(5)

We see that if the point (2,4) satisfies these conditions, then from (1), we have 3
1

1 λ  and 6
1

2 λ

which do satisfy (2) ,  (3) and (4). Thus the optimal solution obtained by graphical method also satisfies the
Kuhn-Tucker conditions for optima.

Example 4 :   Determine the optimal solution of the following nonlinear programming problem, using the
Kuhn-Tucker conditons :

Minimize   21
2
2

2
121 2 xxxxx,xf 

subject to x x1 2 8 

 x x1 2 0, 

Solution :   The Lagrangian function for the given programming problem is :

   2121
2
2

2
1 82 xxλxxxxλX,f 

Then the Kuhn-Tucker conditions are
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  02or2,1j;0 21 


 λxx
x
X,λF

j
...(1)

04 21  λxx ...(2)

  08or,,0 21 


 xx
λ
X,λF

i.e.,   821  xx ...(3)

    02or2,1j;0,
121 


 x–λ–xxx.

x
XF

j
j


...(4)

  04 221  xλxx ...(5)

    08or0,
21 


 λxxλ.

λ
XF 

...(6)

021 λ,x,x ...(7)

It can easily be seen that if   0  , then x1 0 , x2 0  is the only point satisfying the conditions
(1), (2), (4) and (5). But x1 0 ,  x2 0   does not satisfy the condition (3).

Hence   0  and therefore

x x1 2 8  [from eq. (6)] ...(8)

Now , if x1 0  then  x2 8 . But then inequality (1) is not satisfied. Therefore, x1 0 . similarly
if x2 0 , then x1 8  and then inequality (2) is not satisfied. Therefore x2 0 .

Thus x1 0  and x2 0 . In this case (4) and (5) imply that

02 21  λxx ...(9)

04 21  λxx ...(10)

Solving equations (8), (9) and (10), we get x1 5  , x2 3  and   7

which satisy all the Kuhn-Tucker conditions from (1) to (7)

Thus the optimal solution to the given problem is x1 5  , x2 3   and the minimum value of

f x x1 2,b g  is

 f x x1 2
2 25 2 3 5 3 28,b g b g    

Example 5 :    Use Kuhn-Tucker conditions to determine x1 , x2  , x3   so as to Minimize

subject to x x1 2 2  f x x x x x x x x1 2 3 1
2

2
2

3
2

1 24 6, ,b g     
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2 3 121 2x x 

x x1 2 0, 

Solution :    The Lagrangian function for the given problem is :

F X x x x x x x x x x , = ( ) ( )  b g 1
2

2
2

3
2

1 2 1 1 2 2 1 24 6 2 2 3 12         

The Kuhn-Tucker conditions are

2 4 2 01 1 2x      2 2 41 1 2x     ...(1)

2 6 3 02 1 2x               or 2 3 62 1 2x     ...(2)

2 03x        2 03x  ...(3)
 x x1 2 2 0            or x x1 2 2  ...(4)

2 3 12 01 2x x   2 3 121 2x x  ...(5)

2 4 2 01 1 2 1x x    b g ...(6)

2 6 3 01 1 2 2x x    b g  ...(7)

x x1 2 12 0  b g ...(8)

2 3 12 01 2 2x x  d i ...(9)

x x x1 2 3 1 2 0, , , ,   ...(10)

The following four different cases arise

(i) If  1 2 0  , then from (1), (2) and (3), we have x1 2 ,  x2 3 , x3 0 . But this
solution violates the inequalities (4) and (5)

(ii) When 1 0 ,  2 0  . In this case from (1), (2) and (9)

2 2 4 2 3 61 2 2 2x x    ,  and 2 3 12 01 2x x  

which give x x1 2
24

13
36

13 ,  and  2
2

13  Also from (3), x3 0 . However this solution

violates inequality (4), so this solution is also ruled out.

(iii) When  1 20 0 , . In this case (8) gives

x x1 2 2  , which along with (1) and (2) i.e., along  with   2 41 1x    and 2 62 1x  

give x x1 2 1
1
2

3
2

3  , ,  . Further from (3) , x3 = 0. This solution does not violate any of the conditon.

(iv) When  1 20 , 0  . In case (8) and (9) give x x1 2 2   and 2 3 121 2x x  , where

from x1 6  , x2 8  . Thus from (1), (2) and (3), we  get  1 268 26 , –  and x3 0 . This violates
the condition   x1 0  and  2 0 . Hence x1 6  , x2 8 , x3 0  is also discarded.
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Thus the optimal solution to the given programming problem is given by case (iii) i.e. optimal
solution is :

x x x1 2 3
1
2

3
2

0  , , , with 1 3  and  2 0 .

The minimum value of f x x x1 2 3, ,b g  is

1
2

3
2

0 4 1
2

6 3
2

17
2

2 2F
HG

I
KJ  F

HG
I
KJ  F

HG
I
KJ

F
HG

I
KJ 

– –

Example 6 : Solve the following nonlinear programming problem

Minimize f x x x x1 2 1
2

2
22 1,b g b g b g   

subject to x x1
2

2 0 

x x1 2 2 

x ,x 01 2 

Solution :    The Hessian matrix for f(x1 ,x2) is :

H

f
x

f
x x

f
x x

f
x



L

N

MMMMMM

O

Q

PPPPPP


L
NM

O
QP





 


 




2

1
2

2

1 2

2

2 1

2

2
2

2 0
0 2

The principal minors are D1 = 2 , D
2 0
0 22 
L
NM

O
QP

= 4, which are both positive. So f x x1 2,b g  is a

convex function. Also, the given constraint functions are convex functions, therefore, the Kuhn-Tucker
conditions for the minimization of f x x1 2,b g  are both necessary and sufficient.

The Lagrangian function is :

F X x x x x x x( , ) = ( –  )  1
2

2
2

1 1
2

2 2 1 22 1 2      b g c h b g
The Kuhn-Tucker conditions, therefore, are

2 2 2 01 1 1 2( – )x x   

2 1 02 1 2( – )x    

i.e. 2 2 4 01 1 1 2x x     ...(1)

2 2 02 1 2x      ...(2)

x x1
2

2 0–  ...(3)
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x x1 2 2 0   ...(4)

2 2 2 01 1 1 2 1x x x   b gc h  ...(5)

2 1 02 1 2 2x x   b gc h  ...(6)

x x1
2

2 1 0 c h  ...(7)

x x1 2 22 0  b g ...(8)

x x1 2 1 2 0, , ,   ...(9)

The following four cases arise

(i) When  1 20  . In this case from (1) and (2) 2 4 0 2 2 01 2x x   ;  i.e. x1 2 ,

x2 1 , which do not satisfy conditions (3) and (4) Thus this solution is not acceptable.

(ii) When  1 20 0 , . Then from (8)

x x1 2 2  . Also from (1) and (2)

2 4 0 2 2 01 2 2 2x x      ,

Which give x x1 2 2   and x x1 2 1 

or x x1 2
3
2

1
2

 ,

This solution violates the conditins (3), so is ruled out.

(iii) When   0 02; . In this case from (1), (2) and (7)

2 2 4 01 1 1x x  

2 2 01 1x   

x x1
2

2 0 

From the first of these two equations

2 2 2 2 4 01 1 2x x x   b g
or    x x x1 1 22 2 0

which using x x1
2

2 0   gives

2 2 01
3

1x x      or    x1 = 1.52

and then x2 = 2.31

But these values of x1 and x2  do not satisfy conditions (4), so the solution x1 152 . , x2 2 31 .
is also discarded.
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(iv) When  1 20 0 , . In this case from (7) and (8), we have x x1
2

2 0   and

x x1 2 2 0  

From these two equations

x x1
2

1 2 0  

or x x1 12 1 0  b g b g
or x1 1   (since x1 0 )

Thus x2 1

These values of x1 and x1 when put in conditions (1) and (2), give

2 21 2    and – 1 2 0 

or  1 2
2

3
2

3 ,

The solution x1 1  , x2 1  ,  1 2
2

3
2

3 ,  does satisfy all the conditions from (1) to (9)

and so is the optimal solution of the problem.

Hence the optimal solution of the given problem is  x1 1   , x2 1  and  minimum value of

f x x1 2
2 21 2 1 1 1,b g b g b g    

Example 7 :   Use Kuhn-Tucker conditions to solve the following non linear programming problem :

Maximize f x x x x x1 2 1
2

1 2
27 6 5,b g   

subject to x x1 22 10 

x x1 23 9 

x x1 2 0, 

Solution :    The Lagrangian function for the given programming problem is

F X x x x x x x x,  b g b g b g        7 6 5 10 2 9 31
2

1 2
2

1 1 2 2 1 2

The Kuhn-Tucker conditions are :

14 6 01 1 2x      or 14 61 1 2x     ...(1)

10 2 3 02 1 2x     10 2 3 02 1 2x     ...(2)

x x1 22 10 0   ...(3)

x x1 23 9 0   ...(4)

14 6 01 1 2 1x x    b g ...(5)
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10 2 3 02 1 2 2x x   b g ...(6)

x x1 2 12 10 0  b g ...(7)

x x1 2 23 9 0  b g ...(8)

x x1 2 1 2 0, , ,   ...(9)

The following four possibilities arise

(i) When  1 20  . In that case from (1) and (2)  x1
3
7

  and x2 =0

This solution satisfies (3), (4) and (9) and so is a feasible solution with f x x1 2
9

7,b g   .

(ii) When  1 20 0 , . In this case equations (1), (2) and (7) are

14 6 10 2 0 2 101 1 2 1 1 2x x x x      ; ;

which give x x1 2 1
62
33

134
33

670
33

  , ,  .

This solution also satisfies all the other conditions and so is a feasible solution with
f x x1 2 95 78, .b g 

(iii) When  1 20 0 , . In this case we have from (1), (2) and (8)

14 0 10 3 0 3 91 2 2 2 1 2x x x x      , ,

which gives x x1 2
288
17

45
17

 , –

This is an infeasible solution and so is ruled out.

(iv) When  1 20 0 ; . In this case from equations (7) and (8) we have,

x x1 2
48

5
1

5 , . These values of x1  and x2  when put in (1) and (2) give

 1 2
1936

25
1274

25
 , . This solution also satisfies all the other conditions and so is acceptable with

f x x1 2 587 72, .b g 
Hence the optimal solution is

x x1 2
48
5

1
5

 ,  and maximum value of f x x( , ) .1 2 587 72 .

Example 8 : Use Kuhn-Tucker conditions to solve the following nonlinear programming problem :

Optimize f x x x x x x x x1 2 3 1 2 1
2

2
2

3
22 3, ,b g c h    

subject to x x1 2 1 

2 3 61 2x x 
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x x1 2 0, 

Solution :    Before applying Kuhn-Tucker conditions we would determine, whether the given problem is
of maximization or of minimization type. We construct the bordered Hessian matrix

H
O P
P Q

B
T

m n m n


L
NM

O
QP  ,

 




L

N

MMMMMM

O

Q

PPPPPP

 

0 0
0 0

1 1 0
2 3 0

1 2
1 3
0 0

2 0 0
0 2 0
0 0 2

10

where m  2  , n  3 ; n m  1, 2 1 5m  . For maximization type, the sign of the Hessian

matrix must be  1 1b gm  i.e. negative, whereas for minimization it must be 1b gm  i.e. positive. Since

H B   10 0 , therefore we have to maximize. f x x x1 2 3, ,b g  The Lagrangian function is :

F X x x x x x x x x x,  b g c h b g b g          2 3 1 6 2 31 2 1
2

2
2

3
2

1 1 2 2 1 2

The Kuhn-Tucker conditions, therefore, are

 


F X
x j

,b g
 0 ; j 1,2,3

or 2 2 2 01 1 2   x   ...(1)

3 2 3 02 1 2   x   ...(2)

         2 03x

 
 

F X

i

,b g
 0 ; i 1,2

or 1 01 2  x x ...(3)

6 2 3 02 2  x x ...(4)

 


F X
x

x
j

j
,

.b g
 0 ; j 1,2

or 2 2 2 01 1 2 1   x x b g. ....(5)

3 2 3 02 1 2 2   x x b g ...(6)
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 
 


F X

i
i

,
.b g

 0 ; i 1,2

or 1 01 2 1  x xb g ...(7)

6 2 3 01 2 2  x xb g ...(8)

x x1 2 1 2 0, , ,   ...(9)

Now, there arise the following four different possibilities

(i) When 1 0 ,  2 0 . In this case equations (1), (2) and (3) give x1 1 , x2
3
2

 , x3 0 .

This solution does not satisfy the condition (3) and so is ruled out.

(ii) When  1 20 0 ; . Then from (8), (1), (2) and(3), we have

6 2 3 01 2  x x

2 2 2 01 2  x 

3 2 3 02 2  x 

Solving these equations , we get x x x1 2 3 2
12
13

18
13

0 1
13

   , , ,   This solution again does

not satisfy equation (3) and so is discarded.

(iii) When  1 20 0 , . In this case from conditions (1), (2), (3) and (7), we get

2 2 01 1  x 

3 2 02 1  x 

    x3 0

   1 01 2  x x

Which give solution

x x x1 2 3
1
4

3
4

0  , ,  and 1
3
2



This solution satisfies all the Kuhn-Tucker conditions and has f x x x1 2 3
17

8, ,b g  .

(iv) When  1 20 0 , . In this case equations (1), (2), (3), (7) and (8) give

x1 3  , x2 4 , x3 0 , 1 34  ,  2 13 . This solution violates the conditions (9)
and so is infeasible and thus discarded.

Since there is only one solution that satisfies all the  conditions, therefore it is optimal.

Hence the optimal solution the given programming problem is
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x x x1 2 3
1
4

3
4

0  , ,  with maximum value of f x x x1 2 3
17
8

, ,b g  .

7.4 Self-Learning Exercise

1. If the objective function f Xb g  and all the constraints g Xi b g  are convese functions, then

the solution of the correspending Kuhn-Tucker conditions gives rise the ........of f Xb g .

2. If a concave function f Xb g  is to be maximized subject to constraints convex in nature
then the lagrange multipliers must be ..............and when constraints are concave then they
must be..........

3. If a concave function is to be maximized subject to linear constraints then i  are ...........

4. When a convex objective function is to be minimized, then the solution space is a ..........

5. When a concave objective function is to be maximized, then the solution space is a........

7.5 Summary
In this unit we discussed the Kuhn-Tucker conditions for the nonlinear programming problems.

We also derived these conditions in the form a theorem known as Kuhn-Tucker theorem.

7.6 Answers to Self-Learning Exercise
1. Minimal point.

2.  0 0,

3. Unrestricted in sign.

4. Convex set

5. Convex set

7.7 Exercise
1. Define a general non-linear programming problem.

2. What are the Kuhn-Tucker conditions and how are they of fundamental improtance in the
theory of nonlinear programming.

3. Formulate the Kuhn-Tucker necessary conditions for the following problem :

Maximize f Xb g
subject  to g Xi b g 0 ; i 1,2........., m

g Xi b g 0 ; i = m +1, m + 2,........, p

h Xi b g  0 ; j 1,2,.......,q

X  0
4. Use Kuhn-Tucker conditions to solve the following nonlinear programming problems:

(i) Maximize f X x x x xb g    8 101 2 1
2

2
2
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subject  to 3 2 01 2x x 

       x x1 2 0, 

(Ans : x x1
4

13  , x2
33

13 , maximum value = 21.3)

(ii) Max. f X x x x xb g    10 101 2 1
2

2
2

subject  to   x x1 2 14 

  x x1 2 6

          x x1 2 0, 

(Ans : x1 5 , x2 5 , Max. f xb g  50)

(iii) Max. f X x x x x x xb g     12 21 2 2 21 2 1 2 1
2

2
2

subject  to x x1 2 10 

       x2 8

   x x1 2 0, 

(Ans : x x1 2
17

4
23

4 ,  Max. f Xb g 1734
16 )

(iv) Minimize f X x x xb g   1
2

2
2

3
2

subject  to 2 01 2 3x x x –

                x1 1

                x2 2

                x3 0

���
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Structure of the Unit
8.0 Objective

8.1 Introduction

8.2 Quadratic Programming Problems

8.3 Computational Procedure for Solving Quadratic Programming Problems
(Wolfe's Algorithm)

8.4 Beale's Method for Solving Quadratic Programming Problems

8.5 Self-Learning Exercise

8.6 Summary

8.7 Answer to Self-Learning Exercise

8.8 Exercise

8.0 Objective
In the previous unit, it was discussed, how the optimal solution of a nonlinear programming

problem could be obtained by solving its Kuhn-Tucker conditions. It can be experienced that
solving Kuhn-Tucker conditions, which are a set of nonlinear equations and inequalities is not that
easy in most of the problems. Alternative methods, therefore, are required to be developed for
solving such nonlinear programming problems.

In this unit, special category of nonlinear programming problems, for which specific
computational algorithm are developed, is considered. The problems under this special category
are Quadratic Programming Problems.

8.1 Introduction
The problem of optimizing a quadratic function subject to a set of linear constraints is

called a quadratic programming problem. The quadratic programming problems are
computationally least difficult to handle, when we solve the other nonlinear programming
problems. The quadratic programming problems are not only helpful in the application to real life
situations but also serve as sub problems in number of algorithms developed for general nonlinear
programming problems. In this unit we shall discuss some of the algorithms.

8.2 Quadratic Programming Problems
The quadratic programming problem is the simple most case amongst all nonlinear convex

programming problems, which arises when the objective function is quadratic but the constraints in
the given programming problem are all linear in nature. In such problems, the Kuhn-Tucker
conditions of the problem can be expressed in a form which can be solved using a computational
procedure based on the simplex method.

In general the nonlinear programming problem :

Maximize f X C X X GXT Tb g  
1
2

subject to        AX  0 ...(1)

       X  0

Unit - 8
Quadratic Programming
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where X  and , ,n mC E b E G   is n × n symmetric matrix and A is an m × n matrix,

is called a general quadratic programming problem.

We recall that TX GX  which represents a quadratic form is said to be positive definite

(negative-definite) if     0 0TX G X    for 0X   and positive semidefinite (negative

semidefinite) if  0 0TX G X    for all X  such that there is one 0X   satisfying 0TX GX 

It can easily be varified that if

(i) TX GX  is positive semi definite (negative semi definite), then it is convex (concave) in X
over nE .

(ii) TX GX  is positive definite (negative definite), then it is strictly convex (stricly concave in
X over nE .

The above two points will help us in determining whether the quadratic objective function

 f X  is concave (convex) and then we can simply the same on the

sufficiency conditions of Kuhn-Tucker conditions for the maxima (minima) of  f X .

A general constrained optimization problem, like the general linear programming problem,
may have

(a) no feasible solution

(b) an unbounded solution or

(c) an optimal solution

The following theorem gives the conditions under which the objective function of the
quadratic programming problem (1) may have finite maximum.

Theorem 1 :  In the quadratic programming (1) the function  f X  cannot have an unbounded

maximum if TX GX is negative definite or if C0 . If C0  and X GXT  is

negative semidefinite then  f X  may have an unbounded maximum.

Proof : Consider the quadratic programming (1)

Let 0X  , then the objective function  f X  can be written as

f X X GX C X
X GX

T
T

Tb g  
F
HG

I
KJ

1
2 ...(2)

Let X be any point on the hypersphere X r , where 2 TX X X , Then X r X  ,
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where ˆ 1X  . Therefore,

2 ˆ ˆT TX GX r X GX

Let M be the maximum value of X G XT . Now since TX GX  is negative definite, there-
fore,

2 0TX GX r M 

and so –TX GX   as X r  ...(3)

Now let m be the minimum value of 
C X

X GX

T

T . Then

C X
X GX r

C X
X GX

m
r

T

T

T

T 
1 

 

and therefore,

C X
X GX

T

T 0 as r   ...(4)

Thus from relations (2), (3) and (4) it follows that

  –f X   as X 

or, lim
X

f X


 b g

Thus we see that  lim
X

f X


b g  and so maximum of  f X  is not unbounded.

However if TX GX  is negative semidefinite, i.e., if 0TX GX  , then there is an X for

which   Tf X C X and then for 0C  , it may be possible that  f X   as X  , in

which case  f X  can have an unbounded maximum. Again if C = 0, then clearly  f X  cannot
have an unbounded maximum.

8.3 Computational Procedure for Solving Quadratic Programming Problems
(Wolfe's Algorithm)
Let us consider the quadratic programming problem (1), i.e.,

Maximize   1
2

T Tf X C X X GX 

subject to      AX b

       0X 
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in the following form

Maximize  1 2
1 1 1

1, ,......,
2

n n n

n j j j jk k
j j k

f x x x c x x d x
  

  

subject to
1

n

ij j i
j

a x b


 , 1, 2, ...........,i m

         0jx  1, 2, ...........,j n

where         jk jkd d for all j and k = 1, 2, ..........., n and

           0ib  for all i = 1, 2, ................., m.

the Kuhn-Tucker conditions for the above problem are

(i) f hj i ij m j
i

m

  

  0

1
;  1, 2,...........,j n

or c d x aj jk k
k

n

i ij m j
i

m


F
HG

I
KJ   





 1

2
2 0

1 1

  ;  1, 2,...........,j n

(ii)  i ij j
i

n

a x bF
HG

I
KJ 


1

0 ;  i = 1, 2, ............., m.

(iii) m jx  1 0d i
i.e.,  m j jx 0 ;  i = 1, 2, ............., n.

(iv) a x bij j i
j

n

 

 0

1
;  i = 1, 2, ............., m.

(v)  i m j jx, , 0 ;  i = 1, 2, ............., m. and

  1, 2,...........,j n

Thus the Kuhn-Tucker conditions for the optimal solution to the quadratic programming
problem (1) are

(a) c d x aj jk k
k

n

i ij m j
i

m

   





 
1 1

0  ;  1, 2,...........,j n

(b)  i ij j i
i

n

a x bF
HG

I
KJ 


1

0 ;  i = 1, 2, ............., m.

(c)  x j m 1 0 ;  1, 2,...........,j n
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(d) a x bij j i
j

n





1
;  i = 1, 2, ............., m.

and  i m j jx, , 0 ;  i = 1, 2, ............., m. and

  1, 2,...........,j n

If we consider 0iy   to be the slack variable introduced in the thi  constraint of (d)
so that (d) becomes

(e)
1

n

ij j i i
j

G x y b


   ;  i = 1, 2, ............., m.

and also assume u j m j   for ;  1, 2,...........,j n , then

the conditions (b) and (c) become

(f) 0i iy  ;  i = 1, 2, ............., m.

(g) 0j jx u  ;  1, 2,...........,j n

With the newly defined variable ju , the condition (a) can be rewritten as

(h) d x a u cjk k
k

n

i ij j j
i

m

 
    

1 1

 ;  1, 2,...........,j n

If the quadratic form   
1 1

n n

j jk k
j k

x d x
 


is assumed to be negative semidefinite, then the function  f X  is concave in X and hence
the conditions (a) to (e) become necessary and sufficient conditions for the optimal solution to the
quadratic programming problem (1). Under this assumption we are to find nonnegative variables

, , ,i i j jy x u  so that conditions (e), (f), (g) and (h) are satisfied and then such jx  determines an
optimal solution to the given problem (1).

Iterative Procedure

The iterative procedure for the solution of the quadratic programming problem (1) using
Wolfe's method can be summarised as follows :

Step I

Introduce slack variable iy  in the thi  constraint, i = 1, 2, ........... m and slack variable m jy 

in the thj  nonnegative constraint, j = 1, 2, ......... n.

Step II

Construct the Lagrangian function
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L X U Y f X a x b y u x yi
i

m

ij j i i
j

n

j j m j
j

n

, , , b g b g d i   
F
HG

I
KJ   

 



  

1 1 1

where  1 2, , ......, nX x x x ;  1 2, , ...... , m   

 1 2, ,......, nU u u u ;  1 2, , ........., m nY y y y 

Differentiate the Lagrangian function partially w.r.t. the components of , ,X U  and Y and
equate them to zero. Derive the Kuhn-Tucker conditions from the resulting equations.

Step III

Introduce non negative artificial variables v v vn1 2, ,....,  in the Kuhn-Tucker condition

c d x a uj jk k i ij j
i

m

k

n

   

  0

11
 for ;  1, 2,...........,j n

i.e., construct

c d x a u vj jk k i ij j j
i

m

k

n

    

  0

11

and construct an objective function

z v v vn   1 2 ...

Step IV

Obtain an initial basic feasible solution to the linear programming problem

Maximize z v v vn   1 2 ...

subject to a x a u v cjk k
k

n

i ij j j j
i

m

    
 
 

1 1

 ; 1, 2,...........,j n

1

n

ij j i i
j

a x y b


  ;  i = 1, 2, ............., m.

, , , , 0i i i j jv y u x  ;   i = 1, 2, ............., m and

1, 2,...........,j n

where 0i iy  and

0j jx u  for   i = 1, 2, ............., m and

1, 2,...........,j n

Step V

Use two - phase method (simplex method) to obtain an optimal solution of the
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problem in Step IV. The optimal solution so obtained is the optimal solution of the given quadratic
programming problem (1).

Note

(1) If the given quadratic programming problem is given in minimization form, then convert it

into maximization form by suitable modifications in the objective function  f X  Also
convert all the constraints into   form.

(2) Alongwith the addit ional condit ions of complementary slackness,  (i.e., the
conditions 0i iy   and 0j jx u   for 1, 2, ......,i m  and 1, 2, ......,j n ) the
problem in Step IV becomes a linear programming problem. Thus we need only to modify
Simplex algorithm to include the complementary slackness conditions. For example while
deciding to introduce iy  into the basis, we must ensure that (i) either i  does not exist in the

basis or (ii) i  is going to be out of the basis when iy  enters. This additional check must be
performed at every iteration of the Simplex algorithm.

(3) The solution to the given problem is obtained by using Phase - I of the two - phase method.
Since our motto is to obtain a feasible solution, it does not require the use of Phase - II. The
only important thing is to maintain the complementary slackness conditions 0i iy   and

0j jx u   every time. This imply that if i  remains in the basic solution at positive level,

then iy  cannot be a basic solution with positive value. In a similar way both jx  and ju  can
not be positive simultaneously.

(4) It must also be observed that the Phase - I of the problem in Step IV will terminate in usual
manner with the sum of all artificial variables equal to zero only when the feasible solution
to the problem does exist.

Example 1: Solve the following quadratic programming problem by Wolfe's Method :

Min. f x x x x x x x x1 2 1 2 1
2

2
2

1 210 25 10 4,b g    

subject to x x1 22 10 

1 2 9x x 

1 2, 0x x 

Solution : Changing into maximizatgion form the problem is :

  2 2
1 2 1 2 1 2 1 2– , 10 25 –10 – – 4Max f x x x x x x x x    

subject to 1 22 10x x 

1 2 9x x 

1 2, 0x x 

The Lagrangian function for the above problem, therefore, is
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     2 2
1 2 1 2 1 2 1 1 2 2 1 2, 10 25 –10 – – 4 10 – – 2 9 – –L X x x x x x x x x x x      .

The Kuhn-Tucker conditions for the quadratic programming problem are

1 2 1 210 – 20 – 4 – – 0x x   

1 2 1 225 – 4 – 2 – 2 – 0x x   

         1 22 0x x 

           1 2 9x x 
or,

1 2 1 2 110 – 20 – 4 – –x x u   = 0

1 2 1 225 – 4 – 2 – 2 –x x           2u = 0

1 22x x 1y = 10

1 2x x     2y = 9

1 2 1 2 1 2 1 2, , , , , , , 0x x y y u u  
(on adding slack, variables)

where 1 1 2 2 1 1 2 2 0y y u x u x    
(complementary slackness conditions)

The above can be again written as

1 2 1 2 120 4 –x x u    = 10 ... (1)

1 2 1 24 2 2x x          2–u = 25 ... (2)

1 22x x 1y = 10 ... (3)

1 2x x    2y = 9 ... (4)

where 1 2 1 2 1 2 1 2, , , , , , , 0x x y y u u  

and 1 1 2 2 1 1 2 2 0y y u x u x    

Introducing the artificial variables 1 2,v v  in (1) and (2) respectively, we have to

Maximize 1 2– –w v v

subject to 20 41 2 1 2 1x x u     1 10v 

1 2 1 24 2 2x x           2–u  v2 25

1 22x x 1y        = 10

1 2x x            2y  = 9

1 2 1 2 1 2 1 2 1 2, , , , , , , , , 0x x y y u u v v  

and 1 1 2 2 1 1 2 2 0y y u x u x    

The Simplex iterations leading to the optimal solution are shown below. The c j
s  for all the

variables except 1v  and 2v  are zero, whereas the c j
s  for 1v  and 2v  are – 1 each.
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Simplex Table -1

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v
variable

1v –1 10 20 4 1 1 –1 0 0 0 1 0

2v 1 25 4 2 2 1 0 –1 0 0 0 1

1y 0 10 1 2 0 0 0 0 1 0 0 0

2y 0 9 1 1 0 0 0 0 0 1 0 0
–35 –24 –6 –3 –2 1 1 0 0 0 0

Simplex Table -2

basic CB b 1x 2x 1 2 1u 2u 1y 2y 1v 2v
variable

1x 0
1
2 1

1
5

1
20

1
20

1–
20 0 0 0

1
20 0

2v –1 23 0
6
5

9
5

4
5

1
5 –1 0 0

1–
5 1

1y 0
19
2 0

9
5

1–
20

1–
20

1
20 0 1 0

1–
20 0

2y 0
17
2 0

4
5

1–
20

1–
20

1
20 0 0 1

1–
20 0

–23 0
6–
5

9–
5

4–
5

1–
5 1 0 0

6
5 0

Simplex Table -3

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v
variable

2x 0
5
2 5 1

1
4

1
4

1–
4 0 0 0

1
4 0

2v –1 20 –6 0
3
2

1
2

1
2 –1 0 0

1–
2 1

1y 0 5 –9 0
1–
2

1–
2

1
2 0 1 0

1–
2        0  

2y 0
13
2 –4 0

1–
4

1–
4

1
4 0 0 1

1–
4 0

–20 6 0
3–
2

1–
2

1–
2 1 0 0

3
2 0



A

A




A
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Simplex Table - 4

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v

variable

2x 0 5
1
2 1 0 0 0 0

1
2 0 0 0

2v –1 15 3 0 2 1 0 –1 –1 0 0 1

u1 0 10 –18 0 –1 –1 1 0 2 0 –1 0

2y 0 4
1
2 0 0 0 0 0

1–
2 1 0 0

–15 –3 0 –2 –1 0 1 1 0 1 0

Simplex Table - 5

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v

variable

2x 0 5
1
2 1 0 0 0 0

1
2 0 0 0

1 0
15
2

3
2 0 1

1
2 0

1–
2

1–
2 0 0

1
2

1u 0
35
2

33
2 0 0

1–
2 1

1–
2

3
2 0 –1

1
2

2y 0 4
1
2 0 0 0 0 0

1–
2 1 0 0

0 0 0 0 0 0 0 0 0 1 1

The optimal solution to the problem, therefore, is 1 20; 5x x 

and Min.  2 2,f x x = Max.   1 2– , 100f x x  .

Note

In the Simplex table-2, 1  were supposed to enter the basis but as 1y  was already in the

basis and was not in a position to leave the basis, so we did select 2x  to enter the basis. Similarly in

Simplex Table - 3, 1  and 2  could not enter the basis, since 1y  and 2y  were present in the basis,

so we selected the next variable 1u  to enter..

A


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Example-2 Minimize   2 2
1 2 1 2 1 2, –8 –10 2f x x x x x x  

subject  to 1 2 5x x 

1 22 8x x 

1 2, 0x x 
Solution : Converting into maximization form the problem can be written as

Max   2 2
1 2 1 2 1 2– , 8 10 – – 2f x x x x x x    

subject to 1 2 5x x 

1 22 8x x 

1 2, 0x x 
The Lagragian function, therefore, is

     2 2
1 2 1 2 1 1 2 2 1 2, 8 10 – – 2 5 – – 8 – – 2L X x x x x x x x x      .

The Kuhn-Tucker conditions for the quadratic programming problem are :

1 1 28 – 2 – – 0x   

2 1 210 – 4 – – 2 0x   

1 2 5x x 

1 22 8x x 

or, 1 1 2 12 –x u   = 8 .... (1)

2 1 24 2x           2–u = 10 .... (2)

1 2x x 1y = 5 .... (3)

1 22x x     2y = 8 .... (4)

1 2 1 2 1 2 1 2, , , , , , , 0x x y y u u  

where 1 2 1, ,u u y  and 2y  are surplus and slack variables. Also

1 1 2 2 1 1 2 2 0y y u x u x      are the complementary slackness conditions.

Now introducing the artificial variables 1v , 2v  in (1) and (2) respectively, we have to

Maximize 1 2– –w v v
subject to

12x 1 2 1– u   1v = 8

2 1 24 2x    2–u v2 = 10

1 2x x 1y = 5

1 22x x 2y = 8

x x y y u u v v1 2 1 2 1 2 1 2 1 2 0, , , , , , , , ,  

and  1 1 2 2 1 1 2 2 0y y u x u x     .
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Simplex Table -1

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v
variable

1v –1 8 2 0 1 1 –1 0 0 0 1 0

2v –1 10 0 4 1 2 0 –1 0 0 0 1

1y 0 5 1 1 0 0 0 0 1 0 0 0

2y 0 8 1 2 0 0 0 0 0 1 0 0

–18 –2

A
4

–2 –3 1 1 0 0 0 0

Simplex Table -2

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v
variable

1v –1 8 2 0 1 1 –1 0 0 0 1 0

2x 0
5
2 0 1

1
4

1
2 0

1–
4 0 0 0

1
4

1y 0
5
2 1 0

1–
4

1–
2 0

1
4 1 0 0

1–
4

2y 0 3 1 0
1–
2 –1 0

1
2 0 1 0

1–
2

–8 –2 0 –1 –1 1 0 0 0 0 1

Simplex Table -3

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v
variable

v1 –1 3 0 0
3
2 2 –1

1–
2 –2 0 1    

1
2    

x2 0
5
2 0 1

1
4

1
2 0

1–
4 0 0 0

1
4

x1 0
5
2 1 0

1–
4

1–
2 0

1
4 1 0 0

1–
4

2y 0
1
2 0 0

1–
4

1–
2 0

1
4 –1 1 0

1–
4

–3 0 0
3–
2 –2 1

1
2 2 0 0

1
2

A



A
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Simplex Table -4

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v
variable

1 0 2 0 0 1
4
3

2–
3

1–
3

4–
3 0

2
3

1
3

2x 0 2 0 1 0
1
6

1
6

1–
6

1
3 0

1–
6

1
6

1x 0 3 1 0 0
1–
6

1–
6

1
6

2
3 0

1
6

1–
6

2y 0 1 0 0 0
1–
6

1–
6

1
6

4–
3 1

1
6

1–
6

0 0 0 0 0 0 0 0 0 1 1

The optimal solution is 1 23; 2x x   and

Min.  1 2,f x x = Max.  1 2– , –27f x x   

Example-3 Solve the following quadratic programming problem using Wolfe's method.

Min.   2 2
1 2 1 1 2 2 1 2, – 2 – –f x x x x x x x x 

subject  to 1 22 1x x 

1 2, 0x x 

Solution : Changing the given problem into the maximization form, we are to

Max.   2 2
1 2 1 1 2 2 1 2– , – – 2f x x x x x x x x      

subject  to 1 22 1x x 

1 2, 0x x 

The Lagrangian function for the problem is

   2 2
1 1 2 2 1 2 1 2, – – 2 1 – 2 –L X x x x x x x x x     

The Kuhn-Tucker conditions are

1 2 2 01 2   x x 

1 21 – 4 – 0x x  

2 01 2x x 

which, on introducing slack and surplus variables, can be written as

1 2 12 – 2 –x x u = 1 ... (1)
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1 2– 4x x   2–u = 1 ... (2)

1 22x x 1y = 1 .... (3)

x x y u u1 2 1 2 0, , , 

and  y u x u x  1 1 2 2 0

Introducing the artificial variables 1v  and 2v  in (1) and (2) respectively, we are to

maximize 1 2– –w v v

subject to 1 2 12 – 2 –x x u 1v = 1

1 2– 4x x   2–u 2u = 1

1 22x x y = 1

1 2 1 2 1 2, , , , , , , 0x x y u u v v 

and 1 1 2 2 0y u x u x    .

Simplex Table -1

basic BC b 1x 2x  1u 2u y 1v 2v
variable

1v –1 1 2 –1 2 –1 0 0 1 0

2v –1 1 –1 4 1 0 –1 0 0         1   
y 0 1 2 1 0 0 0 1 0 0

–2 –1 –3 –3 1 1 0 0 0

A
Simplex Table -2

basic BC b 1x 2x  1u 2u y 1v 2v
variable

1v –1
5
4

7
4 0

9
4 –1

1–
4 0 1

1
4

2x 0
1
4

1–
4 1

1
4 0

1–
4 0 0

1
4

y 0
3
4

9
4 0

1–
4 0

1
4 1 0

1–
4

5–
4

7–
4 0

9–
4 1

1
4 0 –1

1–
4


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In the above table, although   must enter the basis but y  does not go out of the basis. Since
both   and y  cannot remain simultaneously in the basis, therefore instead of   we select next

variable 1x  to enter the basis (since 1u  is not in the basis).

Simplex Table -3

basic BC b 1x 2x  1u 2u y 1v 2v
variable

1v –1
2
3 0 0

22
9 –1

4–
9

7–
9 1

4
9

2x 0
1
3 0 1

2
9 0

2–
9

1
9 0

2
9

x1 0
1
3 1 0

1–
9 0

1
9

4
9 0

1–
9

2–
3 0 0

22–
9 1

4
9

7
9 0

4–
9

Simplex Table -4

basic BC b 1x 2x  1u 2u y 1v 2v
variable

 0
3

11 0 0 1
–9
22

–2
11

7
22

9
22

2
11

2x 0
3

11 0 1 0
1
11

–2
11

2
11

–1
11

2
11

1x 0
4

11 1 0 0
–1
22

1
11

9
22

1
22

–1
11

0 0 0 0 0 0 0 1 1

The optimal solution to the problem is 1 2
4 3,

11 11
x x   and

Min.  1 2,f x x  = Max.  1 2
–5– ,
11

f x x    .

Example 4 : Solve by Wolfe's Method

Max.   2
1 2 1 2 1, 2 –f x x x x x 

subject  to 1 22 3 6x x 



A
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1 22 4x x 

1 2, 0x x 

Solution : The given quadratic problem is given in the maximization form. The Lagragian
function is :

     2
1 2 1 1 1 2 2 1 2, 2 – 6 – 2 – 3 4 – 2 –L X x x x x x x x     

and so the Kuhn-Tucker conditions are

2 2 2 2 01 1 2   x  

          1 21– 3 – 0  

        1 22 3 6x x 

        1 22 4x x 

Introducing slack and surplus variables the above conditions can be written as

1 1 2 12 2 2 –x u   = 2 ... (1)

         1 23  2–u = 1 ... (2)

1 22 3x x        1y = 6 ... (3)

1 22x x   2y = 4 .... (4)

where 1 2 1 2 1 2 1 2, , , , , , , 0x x u u y y  

and also 1 1 2 2 1 1 2 2 0y y u x u x    

Now n add artificial variables 1v  and 2v  in condition (1) and (2) respectively, so that the
problem is to

maximize 1 2– –w v v

subject to 1 1 2 12 2 2 –x u   1v = 2

         1 23  2–u 2v = 1

1 22 3x x 1y = 6

1 22x x 2y = 4

satisfying the condition
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x x u u y y v v1 2 1 2 1 2 1 2 1 2 0, , , , , , , ,  

and 1 1 2 2 1 1 2 2 0y y u x u x      and where the c sj'  for 1v  and 2v  are each equal to – 1

whereas for all other variables c sj'  are zero.

Simplex Table -1

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v
variable

1v –1 2 2 0 2 2 –1 0 0 0 1 0

2v –1 1 0 0 3 1 0 –1 0 0 0 1

1y 0 6 2 3 0 0 0 0 1 0 0 0

2y 0 4 2 1 0 0 0 0 0 1 0 0
–3 –2 0 –5 –3 1 1 0 0 0 0

Simplex Table -2

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v
variable

1x 0 1 1 0 1 1
–1
2 0 0 0

1
2 0

2v –1 1 0 0 3 1 0 –1 0 0 0 1

1y 0 4 0 3 –2 –2 1 0 1 0 0 0

2y 0 2 0 1 –2 –2 1 0 0 1 –1 0
–1 0 0 –3 –1 0 1 0 0 1 0

Simplex Table -3

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v
variable

1x 0 1 1 0 1 1
–1
2 0 0 0

1
2 0

2v –1 1 0 0 3 1 0 –1 0 0 0 1

2x 0
4
3 0 1

–2
3

–2
3

1
3 0

1
3 0 0 0

2y 0
2
3 0 0

–4
3

–4
3

2
3 0

–1
3 1 –1 0

–1 0 0 –3 –1 0 1 0 0 1 0





A


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Simplex Table -4

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v
variable

1x 0
2
3 1 0 0

2
3

–1
2

1
3 0 0

1
2

–1
3

1 0
1
3 0 0 1

1
3 0

–1
3 0 0 0

1
3

2x 0
14
9 0 1 0

–4
9

1
3

–2
9

1
3 0 0

2
9

2y 0
10
9 0 0 0

–8
9

2
3

–4
9

–1
3 1 –1

4
9

0 0 0 0 0 0 0 0 0 1 1

The optimal solution is  1 2
2 14;
3 9

x x   and max.  1 2
22,
9

f x x 

Example 5

Solve the following quadratic programming problem by Wolfe's method :

Minimize f x x x x x x x1 2 1 1
2

1 2 2
24 2 2,b g    

subject  to 1 22 6x x 

1 2– 4 0x x 

1 2, 0x x 

Solution :

On changing the given programming problem in maximization form, we have to

Max.   2 2
1 2 1 1 1 2 2– , 4 – 2 – 2f x x x x x x x    

subject  to 1 22 6x x 

1 2– 4 0x x 

     1 2, 0x x 

The Lagrangian function is

     2 2
1 1 1 2 2 1 1 2 2 1 2, 4 – 2 – 2 6 – 2 – – 4L X x x x x x x x x x      

Thus the Kuhn-Tucker Condition are

1 2 1 24 – 2 2 – 2 – 0x x   
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  1 2 1 22 – 4 – 4 0x x   

     1 22 6x x 

   1 2– 4 0x x 

Introducing slack and surplus variables the above conditions can be written as :

2 2 21 2 1 1 1x x u     = 4 ... (1)

1 2 1 2–2 4 – 4x x    2–u = 0 .... (2)

1 22x x 1y = 6 ... (3)

1 2– 4x x 2y = 0 ... (4)

where 1 2 1 2 1 2 2 2, , , , , , , 0x x u u y y  

and also 1 1 2 2 1 1 2 2 0y y u x u x    

Adding artificial variables in condition (1) and (2) we have to

maximize 1 2– –w v v

subject to 1 2 1 2 12 – 2 2 –x x u   1v = 4

1 2 1 2–2 4 – 4x x    2–u 2v = 0

1 22x x 1y = 6

1 2– 4x x 2y = 0

1 2 1 2 1 2 1 2 1 2, , , , , , , , , 0x x y y u u v v    and

1 1 2 2 1 1 2 2 0y y u x u x    

where the c j
s'  corresponding to the artificial variables 1v  and 2v  are –1 each and

corresponding to all other variables are 0.

Simplex Table -1

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v
variable

1v –1 4 2 –2 2 1 –1 0 0 0 1 0

2v –1 0 –2 4 1 –4 0 –1 0 0 0 1

1y 0 6 2 1 0 0 0 0 1 0 0 0

2y 0 0 1 –4 0 0 0 0 0 1 0 0
–4 0 –2 –3 3 1 1 0 0 0 0

A
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Simplex Table -2

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v
variable

1v –1 4 1 0
5
2 –1 –1

–1
2 0 0 1

1
2

2x 0 0
–1
2 1

1
4 –1 0

–1
4 0 0 0

1
4

1y 0 6
5
2 0

–1
4 1 0

1
4 1 0 0

–1
4 

2y 0 0 –1 0 1 –4 0 –1 0 1 0 1

–4 –1 0
–5
2 1 1

1
2 0 0 0

1
2

A

Simplex Table -3

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v

variable

1v –1
8
5 0 0

13
5

–7
5 –1

–3
5

–2
5 0 1

3
5 

2x 0
6
5 0 1

1
5

–4
5 0

–1
5

1
5 0 0

1
5

1x 0
12
5 1 0

–1
10

2
5 0

1
10

2
5 0 0

–1
10

2y 0
12
5 0 0

9
10

–18
5 0

–9
10

2
5 1 0

9
10

–8
5 0 0

–13
5

7
5 1

3
5

2
5 0 0

2
5

A
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Simplex Table -4

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v
variable

1 0
8

13 0 0 1
–7
13

–5
13

–3
13

–2
13 0

5
13

3
13

2x 0
14
13 0 1 0

–9
13

1
13

–2
13

3
13 0

–1
13

2
13

1x 0
32
13 1 0 0

9
26

–1
26

1
13

5
13 0

1
26

–1
13

2y 0
24
13 0 0 0

–81
26

9
26

–9
13

7
13 1

–9
26

9
13

0 0 0 0 0 0 0 0 0 1 1

The optimal solution is 1 2
32 14,
13 13

x x   and

Min.  1 2,f x x  = Max.  1 2
88– , –
13

f x x    .

Example 6

Use Wolfe's method to solve the following quadratic programming problem :

Minimize   2 2
1 2 1 2 1 2, – 2 – 4f x x x x x x 

subject to   1 24 5x x 

1 22 3 6x x 

      1 2, 0x x 

Solution Converting the given problem to maximization form, we have to

max.   2 2
1 2 1 2 1 2– , – – 2 4f x x x x x x     

subject to   1 24 5x x 

1 22 3 6x x 

      1 2, 0x x 

The Lagrangian for the given problem, therefore, is

     2 2
1 2 1 2 1 1 2 2 1 2, – – 2 4 5 – – 4 6 – 2 – 3L X x x x x x x x x      

Thus The Kuhn-Tucker condition for the problem are :
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1 1 22 – 2 – – 2 0x   

2 1 24 – 2 – 4 – 3 0x   

                  1 24 5x x 

    1 22 3 6x x 

On adding, slack and surplus variables the above conditions become

1 1 2 12 2 –x u   = 2 ... (1)

2 1 22 4 3x    2–u = 4 ... (2)

1 24x x 1y = 5 ... (3)

1 22 3x x 2y = 6 ... (4)

1 2 1 2 1 2 1 2, , , , , , , 0x x u u y y    and also

1 1 2 2 1 1 2 2 0y y u x u x    

Introducing artificial variables 1v  and 2v  to the conditions (1) and (2) respectively we have to

maximize 1 2– –w v v

subject  to

1 1 2 12 2 –x u   1v = 2

2 1 22 4 3x    2–u 2v = 4

1 24x x 1y = 5

1 22 3x x 2y = 6

1 2 1 2 1 2 1 2 1 2, , , , , , , , , 0x x y y u u v v  

where 1 1 2 2 1 1 2 2 0y y u x u x    

and the C j
s'  corresponding to the artificial variables are –1 where as corresponding to all the

others variables are 0.

Simplex Table -1

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v
variable

1v –1 2 2 0 1 2 –1 0 0 0 1 0

2v –1 4 0 2 4 3 0 –1 0 0 0 1

1y 0 5 1 4 0 0 0 0 1 0 0 0

2y 0 6 2 3 0 0 0 0 0 1 0 0

–6 –2 –2 –5 –5 1 1 0 0 0 0

A
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Simplex Table -2

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v

variable

1x 0 1 1 0
1
2 1

–1
2 0 0 0

1
2 0

2v –1 4 0 2 4 3 0 –1 0 0 0 1

1y 0 4 0 4
–1
2 –1

1
2 0 1 0

–1
2 0

2y 0 4 0 3 1 –2 1 0 0 1 –1 0

–4 0 –2 –4 –3 0 1 0 0 1 0

A
Simplex Table -3

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v

variable

1x 0 1 1 0
1
2 1

–1
2 0 0 0

1
2 0

2x 0 2 0 1 2
3
2 0

–1
2 0 0 0

1
2

1y 0 –4 0 0
–17
2 –7

1
2 2 1 0

–1
2 –2

2y 0 –2 0 0 –7
–13
2 1

3
2 0 1 –1

–3
2

0 0 0 0 0 0 0 0 0 1 1

A
Since 1y  and 2y  appear in the solution at negative level, they must be eliminated. Hence

introduce 1  and drop 1y .
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Simplex Table -4

basic BC b 1x 2x 1 2 1u 2u 1y 2y 1v 2v

variable

1x 0
13
17 1 0 0

10
17

–8
17

2
17

1
17 0

8
17

–2
17

2x 0
18
17 0 1 0

–5
34

–2
17

–1
34

4
17 0

–2
17

1
34

1 0
8

17 0 0 1
14
17

–1
17

–4
17

–2
17 0

1
17

4
17

2y 0
22
17 0 0 0

–25
34

10
17

–5
34

–14
17 1

–10
17

–6
17

0 0 0 0 0 0 0 0 0 1 1

The optimal solution is x x1 2
13
17

18
17

 ,

and min f x x1 2

2 213
17

18
17

2 13
17

4 18
17

,b g FHG
I
KJ  FHG

I
KJ  F

HG
I
KJ 

F
HG

I
KJ

      
69
17

8.4 Beales Method for solving Quadratic Programming Problems
Unlike worlfe’s method for solving the quadratic programming problem. the Beale’s method

does not require the use of Kuhn-Tucker conditions. Instead Beale’s method involves the
partitioning of variables into basic and non basic variables only.

The Beale’s algorithm for solving the quadratic programming problem can be summa sized
in the following steps :

Suppose that we have the quadratic programming problem.

Maximize f X C X X GXT Tb g 
1
2

subject  to  A X b  , ,

    X  0

where X and C  En, b Em, G is an n×n symmetric matrix and A is an m×n matrix.
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Step I

Convert the given objective function of the problem to maximization form (if it is given in
the minimization form). Convert all the inequality constraints into equalities by introducing slack
and surplus variables u s' . The given quadratic programming problem has now been put into
standard form.

Step-2

Select arbitrarily any m variables as basic variables, provided the matrix corresponding to
these m variables is non singular. The remaining n-m variables thus become non basic variables.
Denote the basic variables by

X x x xB B B Bm


1 2
, , ....,d i  and the nonbasic variables by

X x x xNB NB NB NBn m


1 2
, ,....,d i .

Step-3

Express each basic variable xBi
 entirely in terms of nonbasic variables x sNBk

' (and u sj '  if

any) using the given constraints. Now express the objective function f Xb g  also in terms of the

nonbasic variables X sNBk
'  (and u si '  if any).

step-4

Obtain the partial derivatives of f Xb g  formulated above w.r.t. the nonbasic variables x sNBk
'

and examine its nature at the point X NB  0 .

(i) If 




f X
xNB Xk

NB
u

b gF
HG

I
KJ 




0
0

0
 for at least one k, then choose the most positive one. The cor--

responding nonbasic variable will enter the basis.

(ii) If 



f X
xNB Xk

NB
u

b gF
HG

I
KJ 




0
0

0  for each k n m 1 2, ,...,  but 

f X

ui X NB
u

b gF
HG

I
KJ 




0
0

0  for some

i r , then introduce a new nonbasic variable uj, defined by u f
uj

r


1
2

  and treat ur  as a basic

variable (it will be ignored later). Go to step-3.

(iii) If 




f X
X N XBK

NB
u

b gF
HG

I
KJ






0
0

0
, for each j,

the current basic solution is optimal. Go to step -7.
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Step-5

Let x xNB ki
 be the entering variable identified in step (1). Now compute the minimu m of

the ratios

min. ,a
a

v
v

ho

hk

ko

kk

RST
UVW ,

for all the basic variables xh , where aho  is a constant term and ahk  is the coefficient of xk in the
expression of the basic variable xh  when expressed in terms of nonbasic variables and vko  is the

constant term and vkk  is the coefficient of xk  in 



f
xk

Now if

(i) the minimum of the ratio occurs for some 
a
a

ho

hk
, the corresponding basic variable xh  leaves

the basis.

(ii) the minimum of the ratio occurs for some 
v
v

ko

kk
, then an additional nonbasic variable, called

a free variable defined by

u f
xi

k


1
2

  ( ui  is unrestricted in sign)

is introduced. This becomes an additional constraint equation.

Step - 6 Go to step-3 and repeat the procedure until an optimal basic solution is attained.

Step-7 Determine the optimal value of XB and f(X) by setting XNB=0, in the expression
obtained in step-3

Example-7 Use Beale’s method to solve the quadratic programming problem

Minimize f x x x x x x x1 2 1 1
2

1 2 2
26 6 2 2 2,b g     

subject  to x x1 2 2 

x x1 2 0, 

Solution : On changing the given problem into maximization form and introducting g slack
variable x3 we get the problem in the following form:

Max. f X Max f x x x x x x xb g b g       1 2 1 1
2

1 2 2
26 6 2 2 2,

subject  to x1 + x2+ x3 = 2

x x x1 2 3 0, ,  .

Let us select x3 arbitrarily as the basic variable (as there is only one constraint, therefore
there will be only one basic variable for the current step)
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Then we have

 X X X X XB NB 3 1 2b g b g, ,

Expressing the basic variable X B  and f x x1 2,b g  in terms of X NB , we have

x x x3 1 22   ...(1)

and f x x x x x     6 6 2 2 21 1
2

1 2 2
2 ...(2)

The partial derivatives w.r.t. X NB  are




f
x

x x
X

x
x

NB
1 0

1 2 0
0

6 4 2 61

2

F
HG

I
KJ    






b g ...(3)




f
x

x x
X

x
x

NB
1 0

1 2 0
0

2 4 01

2

F
HG

I
KJ   






b g ...(4)

Since 



f
x

xNB
1

6 0
F
HG

I
KJ   (most positive), there fore variable x1 enters the basis.

Now min 
a v

v
30

31

10

11

2
1

6
4

6
4

, min ,
RST

UVW


 

RST
UVW


[Note that 30 is the constant 2 in (1) and a31 is 1, the coefficient of x1 in the same equation.
Similarly  10 is the constant 6 in (3) and v11  is  4, which is the coefficient of x1 in this equation]

Since this minimum, i.e., 
6
4  corresponds to 

11

10




, therefore we cannot remove x3 from the

basis. We, therefore, introduce a new non basic variable u1  defined by

u f
x

x xk
1

1
1 2

1
2

3 2   

 ...(5)

Then the current basis is X x xB  3 1,b g  and X x uNB  2 1,b g .

We again express the current basis X B  and f Xb g  in terms ox X NB .

x u x1 1 2
1
2

1
2

1
2

   [from (5)] ...(6)

x u x3 1 2
1
2

1
2

3
2

   [from (1)] ...(7)

and f u x u x x x    F
HG

I
KJ   F

HG
I
KJ 

L
NM

O
QP 6 3

2
1
2

1
2

6 2 3
2

1
2

1
2

2 21 2 1 2 2 2
2
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    F
HG

I
KJ   6 3

2
1
2

1
2

3 21 2 1 2 2
2u x u x xb g

or , f u x x    
3
2

1
2

3
2

31
2

2
2

2 ...(8)

The partial derivatives of f  w.r.t. X NB  are




f
x

x
x
u

x
uNB2 0

0

2 0
0

1

2

1

3 3 3
F
HG

I
KJ   







b g ...(9)




f
u

u
x
u

x
uNB1 0

0

1 0
0

1

2

1

0
F
HG

I
KJ   







b g

Clearly x2 enters the basis

Again, we compute the ratio

min 











22

20

32

30

12

10 ,,









[10 , 30 , v20  are the constants in (6), (7) and (9) respectivety and 12 , 32 , v22  are the
coefficients of x2 in (6), (7) and (9) respectively.]

=
min , ,

3
2
1
2

1
2
3
2

3
3 

R
S
||

T
||

U
V
||

W
||

= min , ,3 1
3

1 1
3

30

32

RST
UVW 




Thus x3 will leave the basis. Now the new

X x xB  1 2,b g  and X u xNB  1 3,b g
Expressing the new basic variables in terms of variables in X NB  and also expressing f in

terms of X NB , we have

x u u x1 1 1 3
3
2

1
2

1
2

2
3

1
2

1
2

    F
HG

I
KJ. [from (6) and (7)]

or x u x1 1 3
5
3

1
3

1
3

   ...(10)
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x u x2 1 3
2
3

1
2

1
2

  F
HG

I
KJ [from (7)]

or x u x2 1 3
1
3

1
3

2
3

   ...(11)

and f u u x u x


   F
HG

I
KJ   F
HG

I
KJ

3
2

1
2

3 1
3

1
3

2
3

1 1
6

1
6

1
31

2
1 3 1 3 [from (8) and (11)]

or f u x x u u x


    
2

3
2
3

4
2

2
3

2
3

2
31 3 3 1 1

2
3
2 ...(12)

The partial derivatives of f w.r.t.

X N B
 are




f
x

u x
X
u

x
u

NB3 0
0

1 3 0
0

1

3

1

4
3

2
3

4
3

4
3

F
HG

I
KJ    F

HG
I
KJ  










f
u

x u
X
u
NB1 0

0

3 1

1

2
3

2
3

4
3

2
3

F
HG

I
KJ   F

HG
I
KJ 



Since 



f
x3

0  and 



f
u1

0 , therefore,  the current solution can further be improved. Howeve

the entry rule does not allow  x3  to enter the basis. So we introduce another nonbasic variable u2,
defined by

u f
u

x u2
1

3 1
1
2

1
2

2
3

2
3

4
3

   F
HG

I
KJ




or u x u2 3 1
1
3

1
3

2
3

   ...(13)

Treating u1 as the basic variable and expressing the basic variable X x x uB  1 2 1, ,b g  and the

function f in terms of nonbasic variables x u3 2,b g , we have

x u x x1 2 3 3
5
3

1
2

1
3

1
3

1
3

   F
HG

I
KJ  [from (10) and (13)]

or x u x1 2 3
3
2

1
2

1
2

   ...(14)

x u x x2 2 3 3
1
3

1
2

1
3

1
3

2
3

   F
HG

I
KJ  [from (11) and (13)]
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or  x u x2 2 3
1
2

1
2

1
2

   ...(15)

u u x1 2 3
1
2

3
2

1
2

   [from (13)] ...(16)

and  f u x x u x x x    F
HG

I
KJ    F

HG
I
KJ

F
HG

I
KJ  

2
3

1
3

1
3

1 3
2

1
3

1
3

4
3

2
32 3 3 2 3 3 3

2

    F
HG

I
KJ    F

HG
I
KJ

F
HG

I
KJ  

2
3

1
3

1
3

1 3
2

1
3

1
3

4
3

2
32 3 3 2 3 3 3

2u x x u x x x

or f u x x    
1
2

3
2

1
22

2
3
2

3 ...(17)

Now since   



f
x

x
X
u

x
uNB3 0

0

3 0
0

2

3

2

1 1
F
HG

I
KJ     







b g

and 



f
u

u
X
u

x
uNB2 0

0

3 0
0

2

3

2

3 0
F
HG

I
KJ   







b g

Therefore, the current basis X x x uB  1 2 1, ,b g  gives the optimal solution. Ignoring the vari-

ables ui
s'  (called the free variables) in the basis, the optimal solution is

x i e x1 1
3
2

0 0 3
2

3
2    . . [from (14)]

x i e x2 2
1
2

0 0 1
2

1
2    . . [from (15)]

and min f (x1,x2) = (-max f)

= ( ) 1
2 [from (17)]

= 
1
2

Example : Solve the following quadralic programming problem by Beale’s method.
Min. f x x x x x x x x( , )1 2 1

2
2
2

1 2 1 210 4 10 25    

subject to x x1 22 10 

x x1 2 9 

x x1 2 0, 
Solution : on changing the problem into maximization form and adding slack variables to the
constraints, we get

Min. f X Max F x x x x x x x xb g b g       1 2 1
2

2
2

1 2 1 210 4 10 25
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subject to x x x1 2 32 10  

x x x1 2 4 9  

x x x x1 2 3 4 0, , , 
Let us select x1 and x2 arbitrarily as the basic variables (since there are only two constraints.

so we can select only two basic variables). Then

X x x X x xB N B
 1 2 3 4, ; ,b g b g

Expressing the basic variables x1, x2 in terms of nonbasic variables
x x x1 3 48 2   ...(1)
x x x2 3 41   ... (2)
(by solving the constraints for x1 and x2)
Now we express the function f Xb g  in terms of nonbasic variables x3, x4 . This is

f x x x x x x        10 8 2 25 1 10 8 23 4 3 4 3 4
2b g b g b g        1 4 8 2 13 4

2
3 4 3 4x x x x x xb g b gb g

or    f x x x x x x      568 145 299 7 33 303 4 3
2

4
2

3 4

Now the partial derivatives w.r.t. XNB
 are




f
x

x x
XNB

x
x

3 0
3 4145 14 30 145

4 0
3 0

F
HG

I
KJ      



( ) ...(3)




f
x

x x
XNB

x
x

4 0
4 3299 66 30 299

4 0
3 0

F
HG

I
KJ    



( )  ..........................(4)

Since 



f
x

x
X3
4 0
3 0

0
F
HG

I
KJ 




, so we cannot consider

x3 to be the entering variable. On the other hand




f
x X

x
3 0

0
3

4

0
F
HG

I
KJ 




 so x4 enters the basis.

Now min 









10

13

20

23

30

33

, ,
RS|T|

UV|W|

= min 
8
2

1
1

299
66 

RST
UVW

, ,

(Here 10 , 20  and  30  are the constants in (1), (2) and (3) respectively which are nothing

but 8,1 and 299, respectively whereas  13 23,  and   33  are the coerfficients of x4 in these
equations)

= min ,4 1 299
66

1RST
UVW 

Thus x2 leaves the basis. New X x xB  1 4,b g  and X x xN B
 2 3,b g .

Expressing the basic variables x1, x4 interms of nonbasic variables x2 and x3, and the maxi-
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mization function f Xb g  in terms of x2, x3 we have

x x x1 2 310 2   ...(5)
x 9 x x 9 (10 2x x ) x4 1 2 2 3 2       

 or x 1 x x4 2 3    ...(6)

and f 10 (10 2x x ) 25(x x 10 (10 2x x ) 4x (10 2x x )2 3 2 2
2

2 3
2

2 2 3          

or f 900 365x 190x 33x 10x 36x x2 3 2
2

3
2

2 3      

Now



f
x

x x
X

x
x

NB
2 0

2 3 0
0

365 66 36 3652

3

F
HG

I
KJ    






b g




f
x

x x
X

x
x

NB
3 0

3 2 0
0

190 20 36 1902

3

F
HG

I
KJ    






b g

Here 



f
x

XNB
2 0

F
HG

I
KJ


 is most positive so x2 enters the basis.

We now compute the ratio

min , ,





10

12

40

42

20

22

V
V

RST
UVW

min , ,10
2

1
1

365
66




RST
UVW

min ,10
2

365
66

RST
UVW    (  ratio will not be negative in any case)


10
2

Thus 1x leaves the basis

Now new X x xB  2 4,b g  and X x xN Bb g b g 1 3,

Now new X x xB  2 4,b g and X x xN Bb g b g 1 3,

We shall obtain 2 4,x x and f in terms of 1x and 3x

x x x x x2 1 3 1 3
1
2

10 5 1
2

1
2

     b g ...(5)

x x x x x x
4 1 2 1

1 39 9 5
2 2

       F
HG

I
KJ

or x x x4 1 34 1
2

1
2

   ...(6)
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and f x x x x   F
HG

I
KJ 10 25 5 1

2
1
2

101 1 3 1
2
   F

HG
I
KJ   F
HG

I
KJ5 1

2
1
2

5 1
2

1
2

41 3 1 3 1x x x x x

or f x x x x x x     100 35
2

15
2

33
4

1
4

3
21 3 1

2
3
2

1 3

The partial derivatives of  f  w.e.f. x1  and x3  are

1
0 3

1
0 3

1 3
01 0

3 1
03 0

35 33 3 35
2 2 2 2

15 1 3 15
2 2 2 2

NB

NB

x
X x

x
X x

f x x
x

f x x
x











             

             

Since both the partial derivatives are negative, therefore optimal solution is attained. The
optimal solution is

x x x1 2 40 5 4  ; ;   and

Min F x x1 2 25 125 100,b g   

Example-9 Solve the following quadratic programming problem by Beale’s method.

Max f x x x x x x x x. ,1 2 1 2 1
2

1 2 2
22b g    

subject  to 2 11 2x x 

x x1 2 0, 

Solution : Introducing the slack variable x3  to the only constraint we get

Max f x x x x x x x x. ,1 2 1 2 1
2

1 2 2
22b g     

subject  to 2 11 2x x 

x x1 2 0, 

Let us select x1  arbitrarily the basic variable, i.e., let X xB  1b g . Then expressing the basic

variable and the function  f  in terms of non basic variables x x2 3,

x x x1 2 3
1
2

1  b g ...(1)

f x x x x x x x x x         
1
2

1 1
4

1 2 2 22 3 2 2
2

3
2

2 3 2 3b g c h     
1
2

1 22 2 3 2
2x x x xb g
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or f x x x x   
1
4

3
2

11
42 2

2
2 3 ...(2)

Then 



f
x

x x
X

x
xNB

2
2 3 0

00
2

3

3
2

11
2

3
2

F
HG

I
KJ   F

HG
I
KJ 









f
x

x x
X

x
xNB

3
3 2 0

00
2

3

1
2

0
F
HG

I
KJ   F

HG
I
KJ 






Since 



f
x X NB

2
0

3
2

0
F
HG

I
KJ  



,  so x2  enters the basis

Now min. 



10

12

20

22

1
2
1

2

3
2
11
2

, min ,v
v

RST
UVW


 

R
S
||

T
||

U
V
||

W
||

 RST
UVWmin ,1 3

11
3

11

Since the minimum occurs corresponding to 
20

22


 , therefore x1  cannot be removed. We,e,

therefore, define a new nonbasic variable

u f
x

x x1
2

2 3
1
2

1
2

3
2

11
2

   F
HG

I
KJ




or  u x x1 2 3
3
4

11
4

1
2

   ...(3)

Then current basis is X x xB  1 2,b g  and X x uNB  3 1,b g .

Expressing the basic variable x1  and x2  in terms of non basic variables u1  and x3  also the
function f in terms of nonbasic variables, we have

x x x1 2 3
1
2

1
2

1
2

  

       F
HG

I
KJ 

1
2

2
11

3
4

1
2

1
21 3 3u x x (using (3))
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or x u x1 1 3
4
11

2
11

9
22

   ...(4)

x x x u x2 3 1 3 1 31 2 1 2 4
11

2
11

9
22

      F
HG

I
KJ

or x u x2 1 3
3

11
4
11

2
11

   ...(5)

and f u x u x   F
HG

I
KJ   F

HG
I
KJ

1
4

3
2

3
11

4
11

2
11

11
4

3
11

4
11

2
111 3 1 3

2

    F
HG

I
KJ

1
4

3
11

4
11

2
113

2
3 1 3x x u x

or f x u x   
5
11

3
11

4
11

7
443 3

2

1
2 ...(6)

Now 



f
x

x
X
u

X
u

NB NB3 0
0

3 0
0

1 1

3
11

7
22

3
11

F
HG

I
KJ 


F

HG
I
KJ  










f
u

u
X
u

X
u

NB NB1 0
0

1 0
0

1 1

8
11

0
F
HG

I
KJ 

F
HG

I
KJ 







Since  



f
x X

u
NB3 0

01

0
F
HG

I
KJ 




   and   



f
u X

u
NB1 0

01

0
F
HG

I
KJ 




therefore, optimal solution is attained. The optimal solution is:

x1
4
11

0 0 4
11

    [from (4)]

x2
3

11
0 0 3

11
    [from (5)]

and  Max f x x1 2
5
11

0 0 0,b g    [from (6)]


5
11

Example-10 Solve the following quadratic programming problem by Beale’s method.

Maximize 2
1 2 1 2 1( , ) 2 3 2f x x x x x  

subject to 1 24 4x x 
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1 2

1 2

2 2
, 0

x x
x x
 



Solution : Introducing the stack variables to the constraints, we set

Maximize 2
1 2 1 2 1( , ) 2 3 2f x x x x x  

subject  to x x x1 2 34 4   ...(1)

x x x1 2 42 2   ...(2)

x x x x1 2 3 4 0, , , 

Now let X x xB  1 2,b g  and X x xN B
 3 4,b g . Then expressing x x1 2,  and f  in terms of

nonbasic variables x3  and x4

x x x1 3 42  ...(3)

x x x x x2 1 4 3 4
1
2

2 1
2

2     b g ...(4)

f x x x x x x      2 2 3
2

2 2 23 4 3 4 3 4
2b g b g b g

or , f x x x x x x     3 1
2

5
2

2 8 83 4 3
2

4
2

3 4 ...(5)

The partial derivatives of f w.r.t. x3  and x4  are




f
x

x x
X

x
xNB

3
3 4

0
3 0

4 0

1
2

4 8 1
2

F
HG

I
KJ   F

HG
I
KJ 









f
x

x x
X

x
xNB

4
4 3

0
3 0

4 0

5
4

16 8 5
4

F
HG

I
KJ    F

HG
I
KJ  






Clearly 3x  enters the basis

Now,  
min , , min , ,





10

13

20

23

10

33

0
1

1
1
2

1
2
4

v
v

RST
UVW


 

R
S
||

T
||

U
V
||

W
||
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=  
1min{0, 2, }
8

The ratio cannot be 0 or negative, therefore the minimum ratio is 2 that corresponds to

x2 . Thus x2  leaves the basis. Now new X x xB  1 3,b g  and X x xN B
 2 4,b g

Expressing x x1 3,  and f  in terms of non basic variables x x2 4,  we have

x x x1 2 42 2   (from (2)) ...(6)

x x x x x x3 1 2 2 4 24 4 4 2 2 4       b g
or x x x3 2 42 2   ...(7)

and f x x x  2 1 31 1 2b g

      2 2 2 1 2 32 4 2 4 2x x x x xb gb g

or f x x x x x x      4 15 6 8 2 82 4 4
2

4
2

2 4

The partial derivatives of f   w.r.t. x2  and x4  are




f
x

x x
X

x
x

NB
2

2 4 0
0

0

2

4

15 16 8 15
F
HG

I
KJ    






b g




f
x

x x
X

x
x

NB
4

2 2 0
0

0

2

4

6 4 8 6
F
HG

I
KJ    






b g

Since  



f
x

X NB
2

15
F
HG

I
KJ   is most positive so we allow x2  to enter the basis. Now

min , , min , ,





10

2

30

32

20

22

2
2

4
4

15
16

v
v

RST
UVW


  

RST
UVW

 RST
UVWmin , ,1 1 15

6
15
16

which corresponds to, 
v
v

20

22
. Thus we define a new non-basic variable

u f
x

x x1
2

2 4
1
2

1
2

15 16 8   



b g
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or, u x x1 2 4
15
2

8 4   ...(8)

Now the current basis is X x x xB  1 2 3, ,b g  and X x uNB
 4 1,b g

Expressing X B  and  f in  terms of x4  and u1  we have

x u x x1 1 4 42 1
4

15
2

4   F
HG

I
KJ  (from (6) and (8))

or x u1 1
1
8

1
4

  ...(9)

x u x2 1 4
15
16

1
8

1
2

   (from (8)) ...(10)

x u x x3 1 4 42 1
4

15
2

4   F
HG

I
KJ  (from (7) and (8))

or  x u x3 1 4
1
8

1
4

2   ...(11)

and f u u x u F
HG

I
KJ   F

HG
I
KJ  F

HG
I
KJ2 1

8
1
4

3 15
16

1
8

1
2

2 1
8

1
41 1 4 1

2

or, f x u  
97
32

3
2

1
8

24 1 ...(12)

Then 


f
x x

u

x
u

NB4
0
0

0

1

4

1

3
2

3
2

F
HG

I
KJ 

F
HG

I
KJ 










f
u

u
x
u

x
u

NB1
0

1 0
0

0

1

4

1

1
4

0
F
HG

I
KJ  FHG

I
KJ 








Since 



f
x x

u
NB4

0
0

1

0
F
HG

I
KJ 





 and 



f
u x

u
NB1

0
0

1

0
F
HG

I
KJ 





 therefore, optimal solution is attained. The optimal

solution is

x x1 2
1
8

0 1
8

15
16

0 0 15
16

      ,

x3
1
8

0 0 1
8

   

i.e., x x x1 2 3
1
8

15
16

1
8

  , ,  and maximum value of f x x x1 2 3, ,b g  is 
97
32 . (from (9), (10),

(11) and (12))
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8.5 Self-Learning Exercise

1. The quadratic from X GXT  is called positive definite if X GXT  .....

2. If quadratic from X GXT  is negative semi-definite then X GXT  ........... for all X
such that, there is one X 0  satisfying ........

3. If X GXT  is positive semi definite, then it is ............. in X  over E n

4. If X GXT  is negative semi definite, then it is .................. in X  over E n

5. In Beale’s method, the objective function, at each iteration, is expressed in terms
of .............

6. Answer true or false :

Quadratic programming problem is a convex programming problem.

8.6 Summary

In this unit, we studied a specified form of the nonlinear programming problem called the
quadratic programming problem. We also studied two algorithms namely the wolfe’s algorithm and
Beale’s algorithm to solve the quadratic programming problems.

8.7 Answers to Self Learning Exercise

1. > 0 for all X 0

2.  0 0, X GXT

3. Convex

4. Concave

5. Non basic variables only

6. True

8.8 Exercise

Apply wolfe’s method to solve the following programming problems:

(i) Max f X x x x xb g    8 101 2 1
2

2
2

subject  to 3 2 61 2x x 

x x1 2 0, 

(Ans. x x Max f X1 2
4
13

33
13

267
13

  , , b g )

(ii) Min f X x x xb g  1
2

2
2

3
2

subject  to x x x1 2 3 2  
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5 2 51 2 3x x x  

(Ans. x x x Max f X1 2 3081 0 35 0 35 0857   . , . , . .b g )

(iii) Max f X x x x x x xb g    6 3 4 2 31 2 1 2 1
2

2
2

subject  to x x1 2 1 

2 3 41 2x x 

x x1 2 0, 

(Ans. x x Max f X1 21 0 4  , , b g )

(iv) Minimize f X x x x xb g    2 4 61
2

2
2

1 2

subject  to x x1 23 3 

x x1 2 0, 

(Ans. x x Minimum f X1 2
12
19

15
19

111
19

  , , b g )

Apply Beale’s method to solve the following programming problems:

(i) Min f X x x x x xb g    6 6 2 2 21 1
2

1 2 2
2

subject  to x x1 2 2 

x x1 2 0, 

(Ans. x x1 2
3
2

1
2

 , )

(ii) Min f X x x x xb g   2 4 61
2

2
2

1 2

subject  to x x1 23 3 

x x1 2 0, 

(Ans. x x1 2
12
9

15
19

 , )

(iii) Max. f X x x x x x xb g    4 6 2 2 21 2 1
2

1 2 2
2

subject  to x x1 22 2 

        x x1 2 0, 

(Ans. x x Min f X1 2
1
3

5
6

25
6

  , , b g )

(iv) Min. f X x x x x x xb g     1
2

1 2 2
2

1 22 2 2 5

subject to 2 3 201 2x x 

3 5 51 2x x 

x x1 2 0 

(Ans. x1
9
2

 , x2
7
2

  ; Min. f Xb g  
53
4 )

���
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Unit-9
Quadratic Programming Problem and Duality

Theorem in Quadratic Programming

Structure of the Unit
9.0 Objective

9.1 Introduction

9.2 Quadratic Programming and Duality

9.3 Duality in Non-Linear Programming

9.4 Duality in Quadratic Programming

9.5 Duality Theorem for Quadratic Programming Problem

9.6 Self-Learning Exercise

9.7 Summary

9.8 Answers to Self-Learning Exercise

9.9 Exercise

9.0 Objective
Duality plays a crucial role in the theory and compulational algorithms of linear and non-linear

programming. Duality is non-linear programming is related to the reciprocal principles of the calculus of
variations, which have been known since as far back as 1927. The purpose of writing the present unit is to
introduce the non-linear programming problem and its dual and then to dovelop the duality results of
non-linear programming. These results are fruitfully applied to quadratic and linear programming
problems.

9.1 Introduction
The plan of the unit is to introduce the quadratic programming problem and its dual and then will

develop the duality theory for non-linear programming and quadratic programming. There is an extensive
literature on the theory of non-linear programming and quadratic programming, but we shall end the unit
with the duality theorem for qudratic programming problem.

9.2 Quadratic Programming and Duality
In recent years, there has been much interest in the duality theory of non-linear programming,

especially of quadratic programming. As duality plays an important role in the theory of linear programming,
it plays equally important role in the theory of quadratic programming also.

If there exists an optimal solution to the quadratic programming problem max f Xb g  where X  is

 0  or unrestricted in sign) subject to the constraints g X bi ib g  , i 1,2,.....,m , then there also exists an
optimal solution to the dual of this quadratic programming problem and the two optimal values are equal. If
the set of feasible solutions of the given quadratic programming problem is empty but that of its dual problem
is non-empty, then the dual problem has an unbounded solution on the set of feasible solutions. If the set of
feasible solutions of the given quadratic programming is non-empty and the set of feasible solutions of its dual
is empty, then this implies that the quadratic programming problem has no optimal solution.
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Unlike in linear programming problem, it can be shown that the dual of the dual of the quadratic
programming problem may not be the quadratic programming itself.

9.3 Duality in Non-Linear Programming
Consider the following non-linear programming problem :

Maximize f Xb g
(P1) subject  to g Xi b g  0 , i m 12, ,....., ...(1)

h Xj b g  0 , j p 12, ,.....,

where X x x xT
n 1 2, ,... ,b g  and the functions f , gi  and hj  are assumed to be continuously

differentiable functions over some open set SCE n .

The Lagrangian function L X u, ,b g  associated with the problem (1) is given by

L X f X g X h Xi i
i

m

j j
j

p

, ,   b g b g b g b g  
 
 

1 1
...(2)

where X E n ,  E p  and    T
m 1 2 0, ,... ,b g

Let         , : , ,b gm r0 E Em p ...(3)

Then treating L X , , b g  as a function of X  and  ,b g , we have the following known

definitions. The point X 0 0 0, , b g  is called a Lagrangian saddle point of L  (or of problem (1), if X E n
0  ,

 0 0,b g  and

L X L X L X, , , , , ,     0 0 0 0 0 0b g b g b g   for all X E n  and  ,b g ...(4)

The function

L X L X* ,
min , ,b g b gb g


 

  , X E n ...(5)

is said to be the primal function and the function

L L X
X E n

* , , ,   b g b g


max ,  ,b g ...(6)

is called the dual function.

The functions L X* b g  and L* , b g  are related to the saddle points of the Lagrangian function L .

To relate the primal function L X* b g  to the primal problem (1), we need to evaluate

L X f X g X h Xi i
i

m

j j
j

p

* ,
minb g b g b g b gb g

  
L
NM

O
QP

 
  

 


1 1
...(7)

Now if g Xi b g  0  for all i 1,2,.....,m  and h Xj b g  0  for all j 1,2,....., p , then  i  0
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i 1,2,...., mb g  will minimize the Lagrangian. But if some g Xi b g  0 , then the Lagrangian can be mini-

mized by taking  i   . Likewise if some h Xj b g  0 , then by letting  j   or   according as

h Xj b g  0  or  0 , we can minimize the Lagrangian. Thus

L X
f X g X i m

h X j p
i

j*

, , ,....,
, ,....,

,
b g

b g b g b g
b g b g

 

 



L

N

MMM

if  

and
otherwise

0 1 2

0 1 2 ...(8)

In view of the   in L X* b g , we must use infimum instead of minimum in equation (5). Now

suppose that we maximize L X* b g  for X E n . Then the unconstrained maximization problem.

Max. L X* b g ; X E n ...(9)

is equivalent to the primal problem (1), namely

Max. f Xb g ; X E n

s.t. g Xi b g  0 ; i m 12, ,....,

h Xj b g  0 ; j p 12, ,....,

The equivalence of (9) and the primal problem (1), the primal program is to find  an optimal X 0 ,
which solves (9).

Now associated with the primal programme (9) is another program, called the dual program
which is :

Min. L* , b g for  ,b g ...(10)

The above dual programme is equivalent to :

(DP 1) Minimize L X , , b g ...(11)

subject  to L X L X
X E n

, , max , ,   b g b g


       L* , b g ...(12)

           0 ...(13)

A point X , , b g  is said to be feasible for the dual (10) if

L X L1 1 1 1 1, , ,*   b g b g  ;1 0

Now if X1  is feasible for the problem (1), then from equation (8)

L X f X* 1 1b g b g ...(14)

from (5), (6), and (12)



227

L X L X L X* ,
min , , , ,1 1 1 2 2b g b g b gb g

 
 

   


        L X 2 2 2, , b g
        L* , 2 2b g

where X 2 2 2, , b g  is feasible for the dual (DP 1). Therefore, it easily follows that

max min ,* ,

*

X E n
L L

 


 
 

1
1b g b g



We finally conclude that :

If X*  and X 0 0 0, , b g  are feasible solution to the primal (P1) i.e. problem (1) and dual (DP1),
i.e., the problem (11), (12), respectively such that

L X L X* *
* ,b g b g 0 0 , then X*  and X 0 0 0, , b g  are optimal solutions for the problem (P1) and

(DP1) respectively, i.e., the point  0 0,b g  is optimal for the dual program (10).

We now state the duality theorem for the convex programming (CP). Recall that the general
convex programming problem is

(CP) Maximize f Xb g
subject  to g Xi b g  0 ; i m 1 2, ,.....,

h Xj b g  0 ; j p 12, ,.....,

where the functions f , g g gn1 2, ,...,  are concave on E n  and h h hp1 2, ,....,  all linear. If we assume

that the functions f  and all g Xi b g , i m 12, ,.......,  are differentiable, then clearly the Lagrangian
function

L X f X g X h Xi i
i

m

j j
j

p

, ,   b g b g b g b g  
 
 

1 1

is a function X  for all   0

Then  X L X , , b g 0  if and only if

L X L X
X E n

, , max , ,   b g b g


therefore the dual programme (DP1) corresponding to the convex programme (CP) becomes :

(DCP) Minimize L X , , b g
s.t.  X L X , , b g 0

  0

In the following section we shall discuss the duality in quadratic programming.
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9.4 Duality in Quadratic Programming
For each quadratic programming problem there always esixts another quadratic programming

problem having the property that if of these two problems, one has finite optimal solution, then so has the
other. Interestingly optimal values of the objective functions of both the problems at their respective
optimal solutions are the same. This concept in quadratic programming is called the Daulity in Quadratic
Programming.

Let we have the quadratic programming problem

Max f Xb g ; X  is unrestricted in sign

subjct to g X bi ib g  , i m1 2, ,..., .

Then the dual of the above programming problem is

Min. L X ,b g

subject to  
 


L X

x j

,b g
 0 ; j n1 2, ,....,

where L X f X b g Xi i i
i

m

, b g b g b gc h  



1

As a particular case if the quadratic programming problem is :

Max f X C X X GXT Tb g 
1
2

subject to A X b ...(1)

X  is unrestricted in sign

then its dual problem has the form

Min L X C X X GX b AXT T T, b g b g   
1
2

subject to C X G AT T T   0 ...(2)

Multiplying (2) on right side by X, we see that

C X X GX AXT T T   0

or, T T TAX C X X GX 

so that for any X ,   satisfying (2), L X ,b g  becomes L X X GX bT T, b g 
1
2

and so the dual of the quadratic progamming problem

Max f X C X X GXT Tb g 
1
2
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subject to AX b

X  unrestricted

can be written as :

Min L X C GX bT T, b g 
1
2

subject to   GX A CT

In the above discussion, we didnot take account of the fact that, in general we need X 0 .

Suppose that we have X *0  to be the optimal solution of he quadratic programming problem

Max f X C X X GXT Tb g 
1
2

subject to A X b

X 0 ...(3)

Then by Kuhn-Tucker Theory, there exists a *  such that

  GX A CT* *

Max f X L X C X X GXT Tb g b g b g  *, * * * *
1
2  * *b gT b AX

      C X X GXT T* * *1
2
b g ...(4)

since * *b g b gT b AX  0

Also it can be seen that

X GX AX CXT T* * * * *b g b g  ...(5)

Now for any X 0  and   satisfying the condition   GX A CT , ...(6)

we obtain    T T TAX C X X GX , on multiplying (6) on the left by X and then taking the
transpose.

Thefore, L X X GX bT T, b g 
1
2 ...(7)

(since T b AX b g 0 )

However, by (5)

L X X GX bT T*, * * * * b g b g b g  
1
2
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 Max f Xb g
Therefore, X*, *b g  is an optimal solution to the quadratic programming problem

  GX A CT

X 0 ...(8)

Min L X X GX bT T, b g 
1
2

Furthermore, Max f x Min L Xb g b g ,

We call the quadratic programming (8) to be the dual of (3). We have already shown that if (3) has
an optimal solution then (8) also has an optimal solution.

9.5 Duality Theorem for Quadratic Programming Problem
Theorem : For each quadratic programming problem

Max f X C X X GXT Tb g 
1
2 ,

subject  to AX b X , 0 ,

there exists another quadratic programming problem (called the dual)

Min L X X GX bT T, b g  
1
2

subject  to   GX A CT

X 0

and   unrestricted in sign, such that if one has a finite optimal solution, then so has the other..
Furthermore, the optimal values of both the problems are the same.

Proof : Suppose that X *  be a finite optimal solution to the quadratic programming problem

Max f X C X X GXT Tb g 
1
2

subject  to AX b

  X b ...(1)

Then by Kuhn-Tucker theory there exists a *  such that

(i)  X L X*, *b g 0

i.e., C X G AT T T  * *b g b g 0

or   GX A CT* * ...(2)
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(ii)  X L X X*, * *b g 0

i.e. C X X GX AXT T T* * * * *  b g b g 0 ...(3)

(iii)    L X*, * *b g 0

i.e., * *b g b gT b AX  0 ...(4)

and (iv)  i
*  is unrestricted in sign for all

i m1 2, ,..., . ...(5)

Now since X *  is an optimal solution to the quadratic programming problem (1), therefore,

AX b*  and

Maximum of f X C X X GXT Tb g b g * * *1
2

   C X X GX b AXT T T* * * * *1
2
b g b g b g [using (4)]

 L X*, *b g ...(6)

Also since C X X GX AX X GX X GXT T T T T* * * * * * * * *   
1
2

1
2

b g b g b g b g  [from (3)]

  
1
2

X GX AXT T* * * *b g b g

 
1
2

X GX bT T* * *b g b g

(since AX b )

Thus maximum of f X C X X GXT Tb g b g * * *1
2

 
1
2

X GX bT T* * *b g b g

But from (6),

Maximum of f X L Xb g b g *, *

Therefore, maximum of f Xb g , i.e., f X *b g  is

L X*, *b g   
1
2

X GX bT* * *b g b g ...(7)



232

Now for any X 0  and   satisfying   GX A CT , on multiplying by X T  on the left and then
taking transpose on both sides, we get

  X GX AX C XT T T

or   T T TAX C X X GX

or,   C X X GX b AX C X X GX bT T T T T T T L
NM

O
QP   L

NM
O
QP

1
2

1
2

    C X X GXT T

(on adding C X X GX bT T T 
1
2

  on both sides)

or, L X X GX b Z XT T, ,  b g b g  
1
2   (let)

But from  (7)

L X Z X X GX bT T*, * *, * * * *  b g b g b g b g  
1
2

= maximum of f Xb g , i.e., f X *b g
Therefore Z X*, *b g  is a minimum of Z X ,b g
Hence X*, *b g  is an opitmal solution to the quadratic programming problem

Min z X h X GX bT T,b g  
1
2



subject  to   GX A CT

X 0 ...(8)

and   unrestricted in sign. Further more we observed that max min ,f x z Xb g b g 

We call the quadratic programming problem (8), the dual of the quadratic programming problem
(1). We could prove that if (1) has a finite optimal solution at the point X X * , then its dual (8) also has

a finite optimal solution at X*, *b g .

Conversely, we shall show that if the quadratic programming problem (8) has a finite optimal
solution at X*, *b g , then the quadratic programming problem (1) also has a finite optimal solution for this
we only require to show that (1) has a feasible solution if we assume that the objective function of (1) is
strictly concave function or is negative definite.

Now X*, *b g  is a finite optimal solution of (8) implies that by Kuhn-Tucker theorem there exists
a  *  such that

  GX G* * 0  X L X*, *, * b gc h0
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or  * * X

and A b*  (by    L X*, *, *b g 0  since   is unrestricted)

i.e. A b *  and  * * X 0

which shows that  *  is a feasible solution of the quadratic programming problem (1) and hence
has a finite optimal solution.

Example-1 Derive the dual of the quadratic programming problem :

Min f X C X X GXT Tb g 
1
2 ...(1)

subject  to AX b ...(2)

Where A is an m n  real matrix and G is an n n  real positive semidefinite a symmetric matrix.

Solution : The Lagrangian of the given quadratic programming problem is  :

L X C X X GX AX bT T T, b g b g   
1
2

   C A X X GX bT T T T c h 1
2 ...(3)

where   0

The dual of the quadratic programming problem, then is

Max L X C A X X GX bT T T T. ,  b g c h   L
NM

1
2

subject  to  X L X ,b g 0 ...(4)

i.e. C A GXT   0 ...(5)

  0 ...(6)

Using the constraint (5) in (4), we see that the dual quadratic programming problem of (1) is

Max. L X GX X X GX bT T T, b g b g  
1
2

  X GX X GX bT T T1
2



  
1
2

X GX bT T ...(7)

subject  to A GX CT   ...(8)

  0 ...(9)
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9.6 Self-Learning Exercise
1. If the set of feasible solutions of the quadratic programming problem is nonempty but of its dual is

empty then ........

2. If the set of feasible solution of the quadratic programming problem is empty but of its dual is
nonempty, then......

3. The dual of the dual of the quadratic programming problem is the quadratic program itself-true or
false?

9.7 Summary
In this unit, we studied the duality in non linear programming and quadratic programming. We also
proved the duality theorem for quadratic programming problem.

9.8 Answers to Self-Learning Exercise
1. The quadratic programming problem has no optimal solution.

2. The dual problem of has an unabounded solution.

3. False.

9.9 Exercise
1. Set G  be a positive semidefinite symmetric matrix. Then write the dual of the following quadratic

programming problem

Minimize f X C X X GXT Tb g 
1
2

subject  to AX b

X 0

2. If f Xb g  is a concave function, then give the dual of the following quadratic programming
problem:

Max  f X C X X GXT Tb g 
1
2

subject   to AX b

X 0

���
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Unit - 10
Convex Separable Programming and Algorithm

Structure of the Unit
10.0 Objective

10.1 Introduction

10.2 Definitions

10.2.1 Separable Function

10.2.2 Convex Programming Problem

10.2.3 Separable Programming Problem

10.2.4 Convex Separable Programming Problem

10.3 Theorems

10.4 Approximate Optimal Solution of a Convex Separable Programming Problem

10.5 Piecewise Linear Approximation of a Nonlinear Continuous Function

10.6 Separable Programming Algorithm

10.7 Illustrative Examples

10.8 Summary

10.9 Exercises

10.0 Objective
In convex separable programming, convex non linear programming problems are solved by

approximating the non linear functions with piecewise linear functions and then solving the optimization
problem through the use of a modified simplex algorithm of linear programming, or in special cases, the
ordinary simplex algorithm.

10.1 Introduction
Separable programming was first introduced by C.E. Miller in 1963 : E.M.L. Beale in 1965

refered to separable programming as "Probably the most useful non linear programming technique." Mc
Millan stated that any continuous, non linear and convex separable function can be approximated by a
piecewise linear function and solved using a linear programming solution technique in his book on
mathematical programming", Wiley, New York, 1970. In 1974, Hadley also represented a technique that
how one can approxmate a nonlinear separable function.

Convex separable programming is an important and richly studied problem of convex non linear
programming problems in which the objective function as well as the constratints are separable and the
problem of maximizing a concave function or minimizing a convex function over a convex set.

Piecewise linear approximation can be done for convex as well as concave functions. Curves of
non linear objective function and constraints can be approximated by a series of piecewise linear segments
or polygonal linear approxmations.

Thus a NLPP can be reduced (approximated) to a L.P.P. and used simplex method can be applied
to obtain an optimal solution.
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10.2 Definitions
10.2.1 Separable Function

A function  1 2, , ....., nf x x x  is said to be separable if it can be expressed as the sum of n  single

valued functions      1 1 2 2, , ....., n nf x f x f x ; i.e.

       1 2 1 1 2 2, , ...., ....n n nf x x x f x f x f x    .

For example, the linear function given by :

 1 2 1 1 2 2, , ...., ....n n nf x x x c x c x c x     (Where c's are constants) is a separable function.
On the other hand, the function defined by :

g x x x x x x x x x x xn1 2 1
2

1 2 2
3

3 3 1 33, ,.... , sin . logb g b g b g     

is not a separable function.

10.2.2 Convex Programming Problem

The problem of maximizing a concave function or minimizing a convex function over a convex set
is called a convex programming problem.

A general convex programming problem (C.P.P.) can be defined as :

Maximize  f x

Subject to x s

where  ,nx R f x  is a concave function on a convex set nS R     ....(10.2.1)

For Example :

(i) The nonlinear programming problem (N.L.P.P.)

Maximize  f x

Subject to g x b i mi ib g , , ,....,1 2  and x0

is a convex programming problem if  f x  is concave and

g xi b g  are convex, 1, 2, .... ,i m     .... (10.2.2)

(ii) The quadratic programming problem

Maximize f x CX X DXTb g 

Subject to AX b

and X 0

is a convex programming problem iff X DXT  is negative (negative semi) definite.   .... (10.2.3)

X DXT
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10.2.3 Separable Programming Problem

A nonlinear programming problem of the form :

Maximize  
1

n

j j
j

Z f x




Subject to   
1

, , , 1, 2, ....,
n

ij j i
j

g x b i m


   

and 0, 1, 2, ......,jx j n 

in which all the functions (objective function and constraints) are separable is called a separable
programming problem.

Some times the functions are not directly separable but can be made separable by simple
substitution.

e.g. For non separable term i jx x , we can write

x x y yi j j 1
2 2 , where  1

2i i jy x x   and  1 –
2j i jy x x

convex separable programming problem : A convex programming problem in which all the
functions are separable in called a convex separable programming problem.

10.2.4 Convex separable programming Problem

A convex programming problem in which all the functions are separable is called a convex
separable programming problem.

10.3 Theorems
Theorem 1 : Every local maximum of the general convex programming problem is its global maximum.

Proof : Consider the general convex programming problem (10.2.1)

If the constraints set s  is empty or singleton then the theorem is trivilly hold good.

If s is neither empty nor singleton then we shall prove this theorem by contradiction.

Let us assume that the C.P.P. has a local maximum at 0X S  and global maximum at X S 

and    0f x f x , then    0f x f x

Since  f x  is a concave function on the convex set S, so for 0 1 

  01 –f X X         01–f X f X  

         0 0 01– ,f X f X f X f X    

       0 0 0 0–f X f X f X f X   

Now for any 0  , however small, if 0 1   is so chosen
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that 0
0

 




X X* , then

    0 0 0 01– – – –X X X X X X X         

i.e.    01–X X    is a point in any – nbd  of 0X  for which

   0 01 –f X X f X    

which is contraction of the fact that  0f X  is local minimum of the C.P.P..

So our assumption    0f X f X   is wrong.

Hence    0f X f X 

Hence a local maximum of the C.P.P. is a global maximum of it.
Theorem 2 : The set of all optimum solutions (global maximum) of the general convex programming
problem is a convex set.
Proof : Consider the C.P.P. (10.2.1)

Let A be the set of all optimal solutions of the C.P.P. If A is either empty or singleton then
the theorem is trivial. If A is neither empty nor singleton, then suppose 1x S  and 2x S  are any two
different points of A.

Then    1 2f x f x   Global maximum of    f x k say

Now, f x x f x f x   2 1 2 11 1    b g b g b g b g , 0 1 

  1–k k   

k 

Since f x x k 2 11  b g *  cannot be true because k  is global maximum, therefore

f x x k 2 11  b gc h *

  x x A2 11  b g ,   0 1

 A is a convex set.

Theorem 3 : If in theorem 1,  f x  is strictly concave then the C.P.P. has unique optimal solution (if it
exists).

10.4 Aproximate Optimal Solution of a Aonvex Separable Programming
Problem.

In the separable programming problem (10.2.3) some or all functions  j jf x  and

  , 1, 2, ....,
ji jg x j n  are non linear. We solve this problem by replacing non linear function into linear

function by piecewise linear approximations or polygonal approximations. In general, we shall determine a
local maximum for the approximating problem but if the separable programming problem is convex
programming also, then local maximum also a global maximum. Thus, if (10.2.3) is a convex separable
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programming problem then we can find a global maximum for the appromating problem and consequently
an approximate optimal solution to (10.2.3).

10.5 Piecewise Linear Approximation of a Non-Linear Continous Function

Consider an arbitrary continuous nonlinear function  f x  of a single variable x , which is defined

for all , 0x x a   as shown in figure 10.01. We choose some points (refer to them as grid points)

0 1 2 30 ...... rx x x x x a        . Now for each kx  we compute  k kf f x  and connect the

points  ,k kx f  and  1 1,k kx f  . We have formed approximation function  f x , which is a pieswise
linear function.

Figure : 10.1

 f x  shown by dark curved.

 f x  shown by dashed straight line segment.

From figure, for 1k kx x x   , we have

   1

1

– –
–

k k
k k

k k

f ff x f x x
x x





  ,

 1,k kx x x   can be written as 1 1k k k kx x x     ,

Where 1 1K k     and 10, 0k k     (By the definition of

line segment) and then   1 1k k k kf x f f     .

Indeed for any 0 1 20 ...... rx x x x a      , we can write

f xb g

f xb g
B

f xb g
B

x fk k,b g

x fk k 1 1,b g

0 x1 x2
x3 xk xk 1

x x
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 
0 0

,
r r

k k k k
k k

x x f x f 
 

   , where 
0

1, 0
r

k k
k

 


  ,

0, 1, 2, ......,k r  and r is any suitable integer representing the number of segments into which

the domain of x is divided. In addition, it is required that no more than two of the k  be positive, and if two
are positive they must be adjacent. This restriction is called restricted basis entry rule.

By getting polygonal linear approximation (Piecewise linear approximation) of every non linear
function in the separable programming problem (10.2.3) and replacing it by its polygonal approximation,
we get the approximating problems :

Maximize  
1

n

j j
j

Z f x




Subject to   
1

, , , 1, 2, .....,
n

ij j i
j

g x b i m


   

and 0, 1, 2, .....,jx j n 

Now, we can solve this linear programming problem by simplex method with restricted basis entry
rule.

10.6 Separable Programming Algorithm
The computational procedure to solve this problem is as follows.

Step I

If the objective function is in minimization form, then convert it in to the maximization form and all

ib ,   i m1,  should be non negative. The separable programming problem should be convex program-
ming problem. If it is not a convex programming problem then the approximate optimum solution (global
maximum) may not be found. Since in general, we get a local maximum for the approximating problem.

Step II

Divide the interval 0 , 1, 2, ......,j jx a j n    as subdivided points

0 1 20 ......
jj j j jr jx x x x a     

compute linear approxmation for each non linear  j jf x  and g xi ib g . Write the approximating
problem of the given separable programming problem.

Step III

Solve the approxmated linear programming problem by using simplex method with the use of
restricted basis entry rule.

Step IV

Finally, find the optimal solution (approximate) jx  of the original problem by using

0 0 1 1 .....j j j j j jr jrx x x x     
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Note : We may drop the column corresponding 0 , 1,j j n 

which has departing vector in the simplex table because cost of 0j  is 0.

10.7 Illustrative Examples
Example 1 Find an optimal solution of the following convex separable programming problem :

Max. 1 23 2z x x 

Subject to 2 2
1 24 16x x 

and 2, 0ix x 

Solution :

Step I

the objective function in maximization form and , 1ib i   is non negative. The objective function is
linear so it can be assumed as concave function, the constraint is convex function so the set of feasible
solutions is a convex set. Therefore the given problem is a convex separable programming problem, so any
local maximum of this problem will be global maximum.

Here, separable functions are

 1 1 3 ,f x x  2 2 22f x x are linear and

  2
11 1 14g x x ,   2

12 2 2g x x are non linear

we have to approximate  11 1g x  and  12 2g x

Step II

From the constraint, we observe that 20 4x   and 10 2x   (taking the positive sign)

Subdivide 10 2x   by grid points 10 11 120, 1, 2x x x    and 20 4x   by grid points

20 21 22 23 240, 1, 2, 4, 4x x x x x    

Now, the grid points & values of the functions are :

1x   2
11 1 14g x x 2x   2

12 2 2g x x

0 0 0 0

1 4 1 1

2 16 2 4

3 9

4 16

Linear approximations are :

x1 10 11 11 120 1 2 2      
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2 20 21 22 23 24 21 22 23 240 1 2 3 4 2 3 4x                 

  2
11 1 1 10 11 12 11 124 0 4 16 4 16g x x          

g x x12 2 2
2

20 21 22 23 24 21 22 23 244 0 1 4 9 16 4 9 16b g                  

Where   10 11 12 1    and 20 21 22 23 24 1        

Now, approximating linear programming problem is :

Max. 11 12 21 22 23 243 6 2 4 6 8z           

Such that 0 4 16 0 4 9 16 1610 11 12 20 21 22 23 24              ,

10 11 12 1    

20 21 22 23 24 1        

and 10 11 12 20 21 22 23 24, , , , , , , 0        

With the restriction that not more than two of 10 11 12, ,  

and two of 20 21 22 23 24, , , ,      are positive if two of them are positive then they correspond to
adjacent points.

Now, add the slack varibales in first constraint and solve it by simplex method as given below.

Simplex Table -1

jc 0 3 6 0 2 4 6 8 0 Min.

Bc Bx b 10 11 12 20 21 22 23 24 s Ratio

0 s 16 0 4 16 0 1 4 9 16 1
16 1
16



0 10 1 1 1 1 0 0 0 0 0 0 –

0 20 1 0 0 0 1 1 1 1 1 0 1

–j jz c 0 3 –6 0 –2 –4 –6 –8 0

 For most negative – –8j jz c 

 24  enters the basis and by minimum ratio rule.

20  departs from the basis. We can drop this column of 20

(with zero cost) in the next simplex table.

B A
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Simplex Table -2

jc 0 3 6 2 4 6 8 0 Min.

Bc Bx b 10 11 12 21 22 23 24 s Ratio

0 s 0 0 4 16 –15 –12 –7 0 1
16 1
16



0 10 1 1 1 1 0 0 0 0 0
1 1
1


0 24 0 0 0 0 1 1 1 1 0 –

–j jz c 0 –3 –6 6 4 2 0 0

–j jz c  most negative for 12  but it can not enter the basis because its entry departs s and then

12 10,   are not adjacent points so they can not remain in the basis by basis entry rule. Further, take most

negative –j jz c  for 11  which enters the basis as 11 10,   are adjacent points.

Simplex Table -3

jc 0 3 6 2 4 6 8 0 Min.

Bc Bx b 10 11 12 21 22 23 24 s Ratio

3 11 0 0 1 4
–15
4 –3

–7
4 0

1
4 –

0 10 1 1 0 –3
15
4 3

7
4 0

1–
4

4
7

8 24 1 0 0 0 1 1 1 1 0
1
1

–j jz c 0 0 6
21–
4 –5

–13
4 0

3
4

Since 21 22,   cannot enter the basis due to restricted basis entry rule, therefore 23  enteres the

basis and 10  depasts from the basis, now 23 24,  adjacent points, 10  column can also be dropped in the
next simplex table.

A B

B A
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Simplex Table -4

jc 3 6 2 4 6 8 0 Min.

Bc Bx b 11 12 21 22 23 24 s Ratio

3 11 1 1 1 0 0 0 0 0 0

0 23
4
7 0

–12
7

15
7

12
7 1 0 0

1
7

8 24
3
7 0

12
7

8
7

5–
7 0 1

1
7

–j jz c 0
3
7

12
7

4
7 0 0

9
14

Since all –j jz c  are non negative, therefor it is optimal stage so the approximate optimal solution
is given by :

11 23 24
4 31, ,
7 7

    

Thus, 1 11 122 1 0 1x      

2 21 22 23 242 3 4x       

4 3 240 2 0 3 4
7 7 7

       

and optimal value is : Max. 
24 693 1 2
7 7

z     

Example 2 Solve the following convex separable programming problem :

Min. 2
1 1 2– 2 –z x x x

Such that 2 2
1 22 3 6x x 

and 1 2, 0x x 

Solution : The objective function of the given problem is in minimization form, so convert it into
maximization from :

Max.  ẑ   Max.   2
1 1 2– 2 –z x x x 

It is concave function as 2
1–x  is negative definite and in the constraint 2 2

1 22 3x x  is convex as it is
positive definite. So given problem is convex separable programming problem. Thus every relative maxi-
mum will be global maximum and every relative minimum will be global minimum.
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Here   2
1 1 12 –f x x x , f x x2 2 2b g 

  2
11 1 12g x x ,   2

12 2 23g x x

are separable functions.

Now, 2 3 6 0 3 0 21
2

2
2

1 2x x x x      ;

By taking 10 2x   and 20 2x  , the grid points are :

10 11 120, 1, 2x x x    (say) and 20 21 220, 1, 2x x x    (say).

Consider the following table :

1x   2
1 1 1 12 –f x x x   2

11 1 12g x x 2x   2
12 2 23g x x

0 0 0 0 0

1 1 2 1 3

2 0 8 2 12

The linear approximation of non linear functions are :

1 10 11 12 2 20 21 220 1 2 ; 0 1 2x x          

 1 1 10 11 120 1 0f x     

   11 1 10 11 12 12 2 20 21 220 2 8 ; 0 3 12g x g x          

where 10 11 12 20 21 221; 1          

Thus the approximating L.P.P. for the given problem is :

Max    10 11 12 20 21 12ˆ 0 1 0 0 1 2z           

subject to 10 11 12 20 21 220 2 8 0 3 12 6          

10 11 12 1    

20 21 22 1    

and 10 11 12 20 21 22, , , , , 0        (with restricted basis entry rule)

After adding slack variables in the first constraint the first simplex table is as follow:
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Simplex Table -1

jc 0 1 0 0 1 2 0 Min.

Bc Bx b 10 11 12 20 21 22 s Ratio

0 s 6 0 2 8 0 3 12 1
6 3
2


0 10 1 1 1 1 0 0 0 0
1 1
1


0 20 1 0 0 0 1 1 1 0 –

–j jz c 0 –1 0 0 –1 –2 0

Since –j jz c  is most negative for 22  but it can not enter the basis by restricted basis entry rule.

Now there is a tie for most negative –j jz c  so we consider nearest from the left i.e. 2 2–z c  so 11  enters

the basis and 10  departs from the basis (drop it in next table).

Simplex Table -2

jc 1 0 0 1 2 0 Min.

Bc Bx b 11 12 20 21 22 s Ratio

0 s 4 0 6 0 3 12 1
4
3

0 11 1 1 1 0 0 0 0 –

0 20 1 0 0 1 1 1 0 1

–j jz c 0 1 0 0 –2 0

Since –j jz c  is most negative for 22  it cannot enter the basis because 22  & 20  are not

adjacant points so we consider 21  as entering vector as 11 20,   already in the basis (consider – 0j jz c 

from left).

Simplex Table -3

jc 1 0 1 2 0 Min.

Bc Bx b 11 12 21 22 s Ratio

0 s 1 0 6 0 9 1
1
9

1 11 1 1 1 0 0 0 –

1 21 1 0 0 1 1 0 1

–j jz c 0 1 0 –1 0

AB

B A

A B
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Simplex Table -4

jc 1 0 1 2 0 Min.

Bc Bx b 11 12 21 22 s Ratio

2 22
1
9 0

2
3 0 1

1
9

1 11 1 1 1 0 0 0

1 21
8
9 0

2–
3 1 0

1–
9

–j jz c 0
5
3 0 0

1
9

 All – 0j jz c  , therefore at the optimal level the optimal

solution is : 11 21 22
8 11, ,
9 9

    

 1 11 122 1 2 0 1x       

2 21 22
8 2 102
9 9 9

x      

Min.
10 191 – 2 – –
9 9

z  

10.8 Summary
In this unit we have studied about the following :

Objective, Introduction, Definitions of separable function, convex programming problem,
separable programming problem and convex separable programming problem (CSPP), some important
Theorems, Approximate optimal solution of CSPP, Piecewise linear approximation of non-linear
continuous function, Separable programming algorithm.

10.9 Exercise
Solve the following convex separable programming problems :

1. Max. 4
1 2z x x 

Subject to 2
1 23 2 9x x 

and 1 2, 0x x  x x z1 20 2 1 19 45  , . ,max .b g
2. Max. 2

1 1 22 –z x x x 

Such that 1 22 3 6x x 

1 22 4x x 
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and 1 2, 0x x  x x z1 2
2
3

14
9

22
9

  F
HG

I
KJ, ,max

3. Min. 2 2
1 1 2 3– 4 – 2z x x x x 

S.t. 1 2 3 2x x x  

 1 21 2x x 

and 1 2 3, , 0x x x  x x x z1 2 31 1 0 2    , , , minb g
4. Min. 2 2

1 1 2 2– 8 –10z x x x x 

Subject to 1 23 2 6x x 

and 1 2, 0x x  x x z1 2
4
13

33
13

267
13

   F
HG

I
KJ, , min

5. Max. z x x   1
2

2
22 2b g b g

Such that 1 22 4x x 

and 1 2, 0x x  x x z1 216 12 0 8  . , . , max .b g

���
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Structure of The Unit
11.0 Objective

11.1 Introduction

11.2 Basic Features of a Dynamic Programming Problem

11.3 Bellman’s Principle of Optimality

11.4 Solution Procedure

11.5 Illustrative Examples

11.6 Summary

11.7 Exercises

11.0 Objective
In most operations research problems the objective is to find the optimal (max. or min.) values

of the “decision variables”, that is, those variables that can change or be controlled within the problem
structure. We come across a number of situations where the decision variables vary with time, and
these situations are considered to be dynamic in nature. The teachnique dealing with these types of
problem is called “dynamic programming”. It will be shown in this unit that time element is not an
essential variable rather any multistage situation in which a series of decisions are to be made is
considered a dynamic programming problem.

11.1 Introduction
Dynamuic programming is a mathematical technique dealing with the optimization of multistage

decision problems. The founding father of dynamic programming, and the man primarily responsible for
the development of dynamic programming, is Rechard Bellman. Bellman first developed the concept
of dynamic programming in the late 1940s and early 1950s while working as a researcher at the Rand
Corporation. By this teachnique decisions regarding a certain problem are typically optimized stages
rather than simultaneously. The original problem is broken into subproblems (stages), which can then
be solved more efficiently from the computational view point. The optimal solution is attained in an
alternative manner starting from first stage to the next and is completed when the final stage is reached.
Individually, each decision of the stage may not be optimal but sacrifice at one stage may result in
greater gains at some other stage. The technique of dynamic programming aims at optimizing the
decision for the situation as a whole, and the decision for the stage may be sub-optimal. So far there
is no standard mathematical formulation of a dynamic programming problem but it is often possible to
introduce the multi stage nature in the problem so that dynamic programming may be used.

11.2 Basic Features of a Dynamic Programming Problem
1. In dynamic programming problems, decisions regarding a certain problem are typically
optimized at subsequent stages rather then simultaneously; i.e. if a programm is to be solved by using
dynamic programming, it must be separated into N sub problem.

2. Dynamic programming deals with problems in which choices, or decisions, are to be made at
each stage. the set of all possible choices is reflected and/or governed by the state of each stage.

3. There is a return function at every stage that evaluates the choice made at each decision in

Unit - 11
Dynamic Programming; Bellman’s Optimality Principle
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terms of the contribution that the decision can make to overall objective (maximization or minimiza-
tion)

4. Each stage N, the total decision process is related to its adjoining stages by a quantitative
relationship called a transition function. This transition function can either reflect discrete quantities
or continuous quantities depending on the nature of the problem.

5. Given the current state, an optimal policy for the remaining stages in terms of a possible input
state is independent of the policy adopted in previous stages.

6. The solution procedure always proceed by finding the optimal policy for each possible input
state at the present stage.

7. A recursive relationship is always used to relate the optimal policy at stage n to the (n-1)
stages that follow.

8. By using this recursive relation, the solution procedure moves from stage to stage...each time
finding an optimal policy for each state at the stage...until the optimal policy for the last stage is found.

11.3 Bellman’s Principle of Optimality
The basic concept of the dynamic programming is contained in Bellman’s Principle of

Optimality which says that “An optimal policy (a sequence of decisions) has the property that
whatever the initial state and decisions are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision.” This principle implies that a wrong decision
taken at one stage does not prevent from taking of optimum decisions for the remaining stages.

Mathematically this principle can be written as:

1( ) [ ( ) { ( )}]n n nn ff x optimum r T xd d  

{ }n xd 

Where, symbol denotes any mathematical relationship between x and dn, including addition,
subtraction, multiplication, and root operations.

fn (x) : the optimal return from an n-stage process when initial state is x.

{x}: set of all admissible decisions.

r(dn) : immediate return due to decision dn.

T(x dn) : the transfer function which gives the resulting state.

Thus in the light of Bellman’s optimality principle we can write a recursive or recurrence
relation which enables us to obtain the optimal decision at each state.

11.4 Solution Procedure
We can solve a multistage problem by using dynamic programming as given below:

Step-I

Write the recursive relation connecting the optimum decision function for the n-stage problem
with the optimum decision function for (n-1)-stage sub problem or to write the Bellman’s principle of
optimality for the multistage problem.
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Step-II

Write the relation giving optimal decision function for one stage and solve it, then further, solve
the optimal decisin function for 2, 3, 4, ..., (n-1) stage sub problem successively and finally for n-stage
problem.

Note:- (i) “Stage” means point or level at which a decision is made or a device to sequence
the decisions.

(ii) “State” means a set of variables at a stage.

(iii) Dynamic programming solves those problems which satisfy Bellman’s optimality
principle.

(iv) Number of variables in a problem = Number of stages.

(v) Number of constraints in a problem = Number of state parameters in each stage.

11.5 Illustrative Examples
Example-I : Use Bellman’s optimality principle to divide a positive quantity ‘b’ into n parts in such a
way that their product is maximum.

Or

Find maximum value of the product of x1, x2, ..., xn

When x1 + x2 + ... + xn = b, x1, x2, ..., xn >, 0, using dynamic programming.

Solution : The problem has n variables and one constraint so we can consider it as n-stage problem
with one state parameter at each stage.

Suppose fr (b) denotes maximum attainable product when the quantity ‘b’ is divided into r
parts; then we have

fr (b) = Max. (x1.x2. .... xr), r = 1, 2, ..., n

x1,x2, xr

Subject to x1 + x2 + ... + xr = b, xr >, 0

By Bellman’s principle of optimality, we have

fr (b) = max. [xr. max. (x1. x2. .... xr-1)

    xr        x1, ..., nr-1

= max. [xr. fr-1 (b - xr)]

    xr

= max. [z. fr-1 (b -z)] if xr = z to be decision variable.

   0 z b 

Now, Stage-1 For r = 1, we get

f1 (b) = b only one part

and optimal policy is: z = b

Stage-2 For r = 2. we get

f2 (b) = max.          [z. f1 (b - z)] = max. [z (b -z)],  f1 (b) = b
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0 z b           0 z b 

Now, by using differential calculus, we have

2

2 22
( ( )) 0 ( ( )) 2,

2 2
d b bdf fb z and b atz
dz dz

     

Therefore f2 (b) in maximum for 2
bz  .

So optimal policy for r = 2 is ,
2 2
b b 

 
 

 and 

2

2( ) .
2 2 2

bb bf b  
 
 
 

For Stage-3 For r = 3, we have

f3 (b) = max.          [z. f2 (b - z)] = max.
2

[ ]
2( )b zz 

0 z b           0 z b 

Now, 
2

3 32
( ( )) 0 ( ( )) 0 at 

3 3
d b bdf fb z and b z
dz dz

    

i.e. 3( )f b is maximum at 3
bz 

So optimal policy is : ( , , )
3 3 3
b b b

and 
3

3( ) ( )3
bf b 

By using mathematical induction suppose the result (policy) is true for stage m i.e. r=m,

( ) ( )
m

m
bf b
m

  and optimal policy is 
b b b
m

,
m

,....
m

F
HG

I
KJ

Now, by recurrence relation, we have

fm+1 (b) = max. [z. fm (b - z)] = max. z ( )
mb z

m


0 z b  0 z b 

Now, 1
( ) 0

1m

d bb zfdz m
  


 and 

2

2 1
( )

m

zd bfdz 

 
 
  

 at 1
bz

m



is negative
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 fm+1 (b) is maximum for 1
bz

m



and optimal policy is 

b b b
m +1

,
m +1

,....
m +1

F
HG

I
KJ ,

1

1
( ) ( )

1

m

m

b
bf

m








Hence, the result is true for r = n and optimal policy is ( , ,..., )b b b
n n n  and ( ) ( )

n

n
bbf n

i.e. optimal policy for given problem is:

x1 = x2 = ... = xn = 
b
n  and optimum value of the objective function = ( )

nb
n .

Example-2 Make use of dynamic programming to show that

1

n

i
 pi log pi subject to 

1

n

i
  pi = 1, pi >, 0 is minium, when p1 = p2 = ...= pn = 

1
n  (i in suffix)

Solution :We can consider the problem as an n-stage problem in which 1 can be divided into r parts
as rth stage, r = 1, 2, ..., n.

Suppose fr (1) = min. 
1

r

i
  pi log pi when 

1

r

i
  pi = 1 and pi. >, 0, r = 1, n.

Let z be current decision variable.

Stage-1 For r = 1, we get

f1 (1) = min. (p1 log p1), where p1 = 1

= 1 log 1

i.e. optimal policy for r = 1 is 1 and f1 (1) = 1 log 1

State-2 For r = 2, we have

f1 (1) = min. [p1 log p1 + p2 log p2], where p1 + p2 = 1, p1, p2 , 0

Here, 1 is divided into two parts. If first part is p1 = z (say) then second part is (1 - z).

By Bellman’s principle the recurrence relation is:

fr (1) = 
0 1
min .

z 
 [z log z + fr-1 (1 - z)]

For r = 2, we get

f2 (1) = 
0 1
min .

z 
 [z log z + f1 (1 - z)] = 

0 1
min .

z 
 [z log z + (1 - z) log (1 - z)].

let S = z log z + (1 - z) log (1 - z), then

0ds
dz

  1 + log z - 1 - log (1 - z) = 0

 

2

1 1 1

, , . . . ,

( )

, , . . . ,

n

n n n

b b b
n n n

b
b nf

n

b b b

 
 
 


 
 
 
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0 1log 0 1
1 1 2

z z zez z
      

 

and 
2

2
1 1

1
sd

z zdz
 

 and 1
2

2

4
z

sd
dz 

 
 

  
(positive)

Thus S is minimum at 
1
2

z 

i.e. optimal policy for r = 2 is 
1 1( , )
2 2  and f2 (1) = 2 

1 1[ log ]
2 2

For r = 3, we have

f3 (1) = 
0 1
min .

z 
 [z log z + f2 (1 - z)]

= min. 0 1 z
1 1log 2 log

2 2
z zz z              

 = 
0 1
min .

z 
S (say).

Then 
10
3

ds z
dz

   and 
2

2
9
2

sd
dz

  (positive).

Thus S is miximum or f3 (1) is miximum at 
1
3

z  .

Optimal policy is 
1 1 1( , , )
3 3 3 and f3 (1) = 

1 1log
3 3

Let us assume that policy for r = m is

1 1 1( , ,..., )
m m m  and fm (1) =

1 1[ log ]m
m m

fm+1 (1) = 
0 1
min .

z 
[z log z + fm (1 - z)], by recurrence relation.

= 
0 1
min .

z 

1 1[ log ( log )]z zz z m
m m
 

  = 
0 1
min .

z 
 (S), say

Then 
1 1 1 10 1 log log 0

1
ds zz m z
dz m m m m

               

and 

22

2

1 1 ( 1)
1

s md
z z mdz

  
  at 

1
1

z
m




 (positive)

S is miximum at 
1

1
z

m



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Optimal policy for r = m + 1 is 
1 1 1, ,...,

1 1 1m m m
 
    

and 1

1 1(1) ( 1) ( ) log( )
1 1m

mf m m

      

so by mathematical induction the policy for r = n is 
1 1 1, ,...,
n n n

 
 
 

 and optimal value is

1

1 1(1) . lognf n n


Hence, 
1

n

i
  Pi log Pi is miximum subject to 

1

n

i
  Pi = 1, Pi , 0, 1, .r n 

When P1 = P2 = ... = Pn = 
1
n  and optimal value is log 

1
n =-log n.

Example-3 Use synamic programming to solve the following problem.

min. (x1
2 + x2

2 + ... + xn
2)

Subject to x1. x2. .... xn = b

and x1, x2, ..., xn 0

Solution : There are n variables and one constraint in the problem so the problem can be con-
sidered as an n-stage problem with one state parameter in each stage. The number ‘r’ parts in which
b is factorised may be treated as rth stage.

Suppose fr (b) = min
x xr1 ,...  

1

r

i
  xi

2, r = 1, 2, ..., n.

subject to x1, x2, .... xr = b

and x1, x2, ..., xr 0.

By using Bellman’s principle of optimality the recurrence relation is:

fr (b) = min .
xr

[xr
2 +

1 1
,...,

min .
rx x  1

r

i
  xi

2] = 0
min .

r bx   [xr
2 + fr-1 

( )
r

b
x ] ....(1)

Let xr = z be current decision variable, then

fr (b) =
0
min .

z b 

2

1
( )

r

b
fz z

   
....(2)

For r = 1; f1 (b) = min. z2 where z = b, z0.

optimal policy is z = b and optimal value is f1 (b) = b2

For r = 2; f2 (b) = 
0
min .

z b

2

1
( )b

fz z
   

=
0
min .

z b

22 ( )b
z z
   

,  f1 (b) = b2
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Let S = 
22 ( )b

z z
 , then

2
2 ½4

2 30 2 2( )( ) 0 0ds b b bz z zb bzdz z z z
           

and 
2 2

2 4
31 4

sd b
dz z

   at z = b½ (positive)

S is minimum, so f2 (b) is minimum at z = b½

Hence, optimal policy for r = 2 is (b½, b½) and optimum value is f2 (b) = 2b

For n = 3, f3 (b) = 
0
min .

z b

2

2
( )b

fz z
   

=
0
min .

z b

2 2. b
z z
   

Let S = 
2 2b

z z
 , then 

1
3

2
20 2 0ds bz z bdz z

     

and 
2

2 3
21 3

s bd
dz z

   (positive) at 1
3z b

S is minimum i.e. f3 (b) is minimum at 1
3z b

Hence, optimal policy is 1 1 1
3 3 3( , , )b b b and f3 (b) = 2

33b
We assume that the optimal policy for r = m is

1 1 1
( , ,..., )m m mb b b  and fm (b) = mb1/m

Now fm+1 (b) = 
0
min .

z b

2[ ( )]
m

b
fz z

  = 
0
min .

z b

22[ ]( ) mbm
zz 

Let S = 
22

( ) mb
mz

z
 , than 

2

2 1
20 2 0

m

m

ds bz
dz z


    -

1
1mz b  

and 

2 2
2

2 2 22

2 2( 1) ( ) 2( 1)1 1
m m

m m

m
b bs md m m

mdz z b


 
      (positive) at 1

1mz b 

S is minimum i.e. fm+1 (b) is minimum at 1
1mz b 
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Thus, optimal policy is 1 1 1
1 1 1( , ,..., )m m mb b b    and 

2
1

1
( ) ( 1)( ) m

m
b mf b 


 

Hence by law of mathematial induction optimal policy for r = n is 1 1 1
( , ,..., )n n nb b b  and

optimal value 
2

( ) . n
n

b nf b

11.6 Summary
This unit partains to introduce the

Basic Features of a Dynamic Programming Problem , Belman’s Principle of optimality,
Solution Procedure.

11.7 Exercises
Solve the following problems by using dynamic programming:

1. Min. 
1

n

i
  xi

2 subject to 
1

n

i
  xi = b, xi > 0, i = 1, 2, ..., n

Hence or otherwise minimize x1
2 + x2

2 + x3
2

subject to x1 + x2 + x3 > 15

and x1, x2, x3 > 0 (Optimal policy , ,...,b b b
n n n

 
 
 

 and 
2

( ) ( )n
bb nf n

 and f3 (15) = 75 at x1

= x2 = x3 = 5

2. Min. z = 
1

n

i
  xi

subject to 
1

n

i
  xi = b

and xi > o, i = 1, 2, ..., n (Optimal policy  1 1 1
, ,...,n n nb b b  and fn (b) = nb1/n

3. -
1

n

i
  pi log pi subject to 

1

n

i
  pi = 1 is maximum when p1 = p2 = ... = pn = 

1
n

(fn (1) = log n and optimal policy 
1 1 1, ,...,
n n n

 
 
 

4. Maximize z = c1 x1 + c2 x2 + ... + cn xn, c1 < c2 < ... < cn

subject to x1 + x2 + ... + xn = b

and x1, x2, ..., xn > 0 (Optimal plolicy (0, 0, ... b) and fn (b) = cnb

5. Maximize value of y1 y2 y3, subject to y1 + y2 + y3 < 15 and y1, y2, y3 > 0.

(Optimal policy (5, 5, 5) and f3 (b)2 125 = max. (y1, y2, y3)

���
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Unit - 12
Solution of Linear Programming Problem Using Dynamic Programming

Structure of the Unit
12.0 Objective

12.1 Introduction

12.2 Solution of Linear Programming Problem Using Dynamic Programming

12.3 Illustrative Examples

12.4 Summary

12.5 Exercises

12.0 Objective
There are several applications of Dynamic programming. Discrete and continuous, deterministic

as well as probabilistic Problems can be solved by Dynamic Programming. Thus dynamic programming
method is very useful to solving various problems, such as inventory, replacement allocation, linear
programming, reliability improvement problem, capital Budgeting problem, cargo loading problem etc.

12.1 Introduction
The dynamic programming can be applied to many real life situations. Many real life problems can

be formulated as linear programming problems. We shall study how a linear programming problem can be
solved by dynamic programming. Thus we can formulted as a multi-stage decision problem and then can
be solved using Bellman’s principle of optimality.

12.2 Solution of Linear Programming Problem using Dynamic Programming
Let us consider the following L.P.P.

Max z a x bij j i
j

n

 



1
, i m1 2, ,.....,

and x j 0 , j n1 2, ,....,

This L.P.P has n varibles with m constraints so it can be expressed as an n-stage problem with m
state parameters at each stage.

Suppose   1 2
k k

m
k, ,....,  be state parameters and f k

k k
m
k  1 2, ,...,c h  be the state function at

stage K K n, , ,...,1 2 . Now the state function can be defined as :

f Max c x k nk
k k

m
k

x x j j
j

K

k

  1 2
11

1 2, ,..., , , ,...
,...,

c h 



Subject to a x i mij j
j

K

i
K


  

1

1 2 , , ,....,

and x j 0 , j n1 2, ,...,
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Then by Bellman’s principle of optimality, the recurrence relation is given by

f Max c x f a x a xk
k k

m
k

x k k k
k

k k m
k

mk k
k

    1 2 1 1 1, ,...., . ,....,c h c h   

We can determine xk

*
 (optimal value of xk ) at the stage k k n, ,1 . Which yields

f k
k k

m
k  1 2, , ...c h . Thus at the nth  stage optimal value of xn  i.e. xn

y
 is determined.

Hnece the L.P.P. can be formulated as n-stage decision problem and then it can be solved by
dynamic programming.

12.3 Illustrative Examples
Example-1 Use dynamic programming to solve the following L.P.P. :

Max   z x x 2 51 2

Such that  2 431 2x x 

2 462x 

and x x1 2 0, 

Solution : The given L.P.P. has 2 variables with two constraints, so it can be considered as 2-stage
problem with two state parameters at each stage.

Let 1
k  and  2

k  be two state paramaters and

f k
k k 1 2,c h  be state function at stage k k, ,1 2 . The given L.P.P. can be written as the 2-stage

problem as given by

f Max c x kk
k k

x x j j
j

k

 1 2
11 2

1 2, . , ,
,

c h 



Such that c x ij j i
k

j

k

 

  , ,1 2

1

and x jj  0 1 2, ,

The recurrence relation by Bellman’s principle is :

f Max c x f a x a xk
k k

x k k k
k

k k
k

k k
k

   1 2 1 1 1 2 2, . ,c h c h   

on replacing 1
k  and  2

k by u vk k,  (for simplicity), we get.

For stage k = 1; f u v Max x
x1 1 1 1

1

2, .b g b g

Such that 2 1 1x u

0 1 v
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i.e. f u v Max x
x1 1 1 1

1

2, .b g b g

Such that x u x1
1

12
0 ,    0

21
1x u ,  where v1 0

 x u
1

1

2
*  and f u v u u1 1 1

1
12

2
, .b g 

For stage k  2 , we have

f u v Max x x
x x2 2 2 1 2

1 2

2 5, . ;
,

b g   such that 2 2 02 2 1 2 2 1 2x v x x u x x   , , ,

  L
NM

O
QP f u v Max x Max x Max x f u v

x x x2 2 2 2 1 2 1 1 1
2 1 2

5 2 5, . . . ,b g b g b g

   Max x f u x v x
x2

5 22 1 2 2 2 2. ,b g

    Max x u x Max x u
x x2 2

5 42 2 2 2 2. .b g

Where, x v x1 2 20 2 0  , ,b g  0 2
2 2
u x

   F
HG

I
KJ0

22 2
2x u vmin. ,

i.e. 0 43 46
22  F

HG
I
KJx min. ,  at u2 43 , v2 46 \

i.e. 0 23 232 2   x x*

Now,  2 43 43 23 201 2 1 2 2 1 2 2 1x x u x u u u x u           

  x u
1

1

2
10*

Thus optimal solution is x1 10  and x2 23  with optimal value Max z 135 .

Example-2 Solve the following L.P.P by using dynamic programming :

Max  z x x 3 51 2

subject to x1 4

x2 6

3 2 181 2x x 

and x x1 2 0, 



261

Solution : The given L.P.P. has 2 variables and 3 constraints so it can be expressed as a 2-stage
problem with 3-state prarameters at each stage. Suppose ( u v w1 1 1, ,b g  and u v w2 2 2, ,b g  be sate param-
eters at each stage.

Then the subproblems are :

f u v w Max x1 1 1 1 13, , .b g b g

Subject to x u1 1

0 1 1x v For stage 1

3 1 1x w

and x1 0

and f u v w Max x x
x x2 2 2 2 2 1

1 2

5 3, , .
,

b g 

subject to x x u1 2 20 

    0 1 2 2x x v  For stage 2

3 21 2 2x x w 

and x x1 2 0,  , where u v2 24 6 ,  and w2 18

Now for stage-1, we get

f u v w Max x1 1 1 1 13, , . ,b g b g  where v x u w
1 1 1

10 0
3

   F
HG

I
KJ, min. ,

3
31

1Min u w. ,RST
UVW  at x Min u w

1 1
1

3
* . , F

HG
I
KJ .

For stage-2, we have

f u v w Max x x Max x Max x
x x x x2 2 2 2 2 1 1 1

1 2 2 1

5 3 5 3, , . . .
,

b g b g   L
NM

O
QP

 Max x f u v w
x2

5 2 1 1 1 1. , ,b g

    Max x f u x v x w x
x2

5 0 22 1 1 2 2 2 2 2. , ,b g

 
RST

UVW
L
NM

O
QPMax x u w x

x2

5 3 2
32 2

2 2. min. ,

 
RST

UVW
L
NM

O
QPMax x x

x2

5 3 4 18 2
32

2. min. ,
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Thus, Max z f Max x Min x
x

. , , . . ,  
RST

UVW
L
NM

O
QP2 2

24 6 18 5 3 4 18 2
32

b g

Where x v x x v2 2 2 2 20 0 0 6      ,

Now, Min x if x. , ,4 18 2
3

4 0 32
2

RST
UVW  l

18 2
3

3 62
2


 

x if x,

2; at x2 6

  x2 6*   and Max z x.      5 6 5 6 6 362

Now, x Min u w Min u w x
1 1

1
2

2 2

3
2

3
* . , . , RST

UVW
L

NM
O
QP


L

NM
O
QPMin. ,4 18 12

3
2

Hence, optimal solution is x x1 22 6 ,  and optimum value Max z.  36

Example-3 Solve by dynamic programming :

Max z x x.  8 71 2

Subject to 2 81 2x x 

2 2 151 2x x 

and x x1 2 0, 

Solution : Hint : f u v Max x where x x u x v
x1 1 1 1 1 1

1
1

1

1

8 0
2 2

, . , , ,b g b g   L
NM

O
QP

i.e. 0 2 21
1 1  F

HG
I
KJx Min u v. ,

 L
NM

O
QP8

2 2
1 1Min u v. ,

 x1 0*

f u v Max x Max x Max x u v
x x x2 2 2 2 1 2

1 1

2 1 2

7 8 7 8
2 2

, . min. ,b g b g L
NM

O
QP   F

HG
I
KJ

L
NM

O
QP

Where x x u u x v v
2 2 2 1 2

2 10
2

   
, ,
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i.e. 0 22 2 1
2 1  
F

HG
I
KJx Min u u v v. ,

0 8 15
22 1

1  
F

HG
I
KJx Min u v. ,

i.e. 0 8 15
2

15
22  F

HG
I
KJ x Min. ,

 x2
15
2

* 

Hence optimal solution is x x1 20 15
2

 ,  and Max z. 
105

2 Answer

Example-4 Solve by dynamic programming

Max z x x.  1 29

Subject to 2 251 2x x 

x2 11

and x x1 20 0 ,

Solution : Hint : f u v Max x1 1 1 1, .b g b g , where x v x u
1 1 1

10 0
2

  , ,

  
u x u1

1
1

2
0

2
,

f u v Max x f u x v x
x2 2 2 2 1 2 2 2 2

2

9, . ,b g b g   

 L
NM

O
QPMax x u

x2

17
2 22

2. , where 0 25 112 2 2  x Min u v Min, . ,b g b g

= 106  at x2 11* 

Hence optimal solution is x x1 27 1 ,  and Max z. 106   Answer

12.4 Summary

This unit deal with the following :

Objectives, Introduction, Solution of L.P.P. using dynamic programming, Illustrative examples,
Self Learnign Exercises.
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12.5 Exercises
Solve the following L.P.P. using dynamic programming :

1. Max z x x.  3 71 2

subject to x x1 24 8 

x2 8

and x x1 2 0,  x x z1 28 0 24  , ,maxb g
2. Max z x x.  2 31 2

subject to x x1 2 1 

x x1 2 3 

and x x1 2 0,  x x z1 20 3 9  , ,maxb g
3. Max z x x.  10 301 2

subject to 3 6 1681 2x x 

12 2402x 

and x x1 2 0,  x x z1 216 20 760  , ,maxb g
4. Max z x x.  2 51 2

subject to 3 21 2x x 

x2 3

and x x1 2 0,  x x z1 23 3 21  , ,maxb g
5. Max z x x.  3 1 2

subject to 2 61 2x x 

x1 2

x2 4

   and x x1 2 0,  x x z1 22 2 8  , ,maxb g

���


