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PREFACE

The present book entitled “Integral Transforms and Integral Equation”
has been designed so as to cover the unit-wise syllabus of Mathematics-09 course for
M.A./M.Sc. (Final) students of Vardhaman Mahaveer Open University, Kota. It can
also be used for competitive examinations. The basic principles and theory have been
explained in a simple, concise and lucid manner. Adequate number of illustrative
examples and exercises have also been included to enable the students to grasp the
subject easily. The units have been written by various experts in the field. The unit
writers have consulted various standard books on the subject and they are thankful to

the authors of these reference books.
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1.0 Objective

The object of this unit is to define Laplace transform with its existence conditions and simple
properties. We shall prove some important theorems regarding its derivatives, integrals, multiplication and

division by power of ‘t’. We shall also discuss the evaluation of integrals by using this transformation.

1.1 Introduction

The English Engineer Heaviside (1850-1925) used the operational methods in solving physical
problems which gave birth to operational calculus, knwon as Laplace transformation. The name is due to
French Mathematician, Pierre de Laplace (1749-1827) who used such transformation in his research
work. The Laplace transform methods are useful as well as effective in solving differential equations in
initial value problems and hence gained importance amongst Engineers and Scientists. By using Laplace
transformation, certain partial differential equations can be reduced to ordinary differential equations and

ordinary differential equations can be reduced to algebraic equations.

1.2 Integral Transforms

The Integral transform of a function f(¢) definedin a <r <b is denoted by I[ £ (¢); p| = I(p)
and is defined by

b

11£(e):p]=1(p) = [ k(p.t)£ () at (1)

a

where k(p,t), given function of two variables p and ¢ , is called the kernel of the transform. The operator /
is usually called an integral transform operator or simply integral transformation. The transform function 7 (p)is

often referred to as the image ofthe given object function f (t) and p is called the transform variable.
A formula which gives f (t) back is called the inversion formula

B

ie.  f()=]6(p.0)f(p)dp (2)

a

By taking k( D, t) as specific function, several integral transforms such as Fourier Transforms,

Mellin transform, Hankel Transform and Laplace Transform have been introduced. Out of this, Laplace
transform is most extensively studied and used.



1.2.1 Some Important Integral Transforms

S.No. k(pt) 1{ f(1); p} Name of the Notation
transform
0 , fort<0 T
(i) {ept’ for t>0 _([e ”f(t)dt Laplace L [f(t);p}l
0 , fort<0 T
(if) 7 for 20 _([tp f(t)dt Mellin M [f(t);p]

0 , for t <0

2% .
iii 2. S —J-smpt f()dt | Fourier Sine F, | f(t);p
sin pt, for t 20 T
T

0 , for t<0
2 00
iv 2 > —J-cospt f(#)dt | Fourier Cosine F.|f(t);p
cos pt, for t >0 xS
T

L LT
(v) ﬁep , T <L <0 T_[Oep f(e)dt Complex Fourier | F[£(t); p]

0 , for t <0 ®©
(vi) t J(pt), for t>0 It J(pt)f (¢)dt Hankel H, [f(t):p]

J, ( pt ) is the Bessel Function

of the first kind of order p .

1.3 Laplace Transform

1.3.1 Definition: Let f:r — f(¢) beareal valued function defined over the interval ]—o0,00[ such

that f(£)=0V¢<0 ie. f(¢) beafunctionof ¢ defined for all positive values of ¢ . Then the Laplace
transform of £(¢), denoted by L [ £(¢); p|, is defined by

L[f(0)p]= [ f(0)

provided that the integral exists and finite. It means that the integral converges for some values of p . The

parameter p, is areal or complex number but independent of 7 . In general Re(p)>0, Re(p) means
real part of p.

L [ (1) p] be clearly be a function of p which is writtenas f(p).



To get the Laplace transformof f (t) , wemultiply it by ¢#* and integrate the result with respect
to ¢ for 0to oo. This operation is called Laplace transformation. Here e ** is known as the kernel of the

Laplace transform and operator L which transforms f(t) into f(p) is called the Laplace
transformation operator.

1.3.2 Piecewise Continuity or Sectionally Continous

Definition: A function f(¢) is said to be piecewise continuous over the closed interval
a <t < b, ifthat interval can be divided into a finite number of subintervals ¢, | <7 <¢ (i =1,.....,n with

ty =a and ¢, = b) such that in each sub interval,
) /(¢) is continuous in the open interval ¢, , <t < ¢, (i =1,....,n)

(i) at the end points of these intervals, the right-hand and left-hand limits exists and finite i.e.
, _él{l”}of (¢) and léf’f’o () both exist and are finite.

J

GE c t—>\:a Ub

Figure 1.1

(A sectionally continuous function)

Here it is observed that piecewise continuity of f on closed interval simply indicates that a

function £ hasa finite number of discontinuities of the first kind in [a,5] .

Example 1: Consider

2.
L+11<1<7)
f(n)= sint ;T4 <t<nm

lt] ;m<t<4

Here f (t) is sectionally continuous function in [ 1, 4] as the function is continuous in each of the

subintervals (1, % ), (% , T ) and (7,4) and has finite right-hand and left-hand limits at ¢ =1, 7 5 T



and 4 ofthese subintervals.

1.3.3 Functions of Exponential Order

Definition: A function f(¢) to said to be of exponential order a(a >0) as t — oo if

Lime™ f(t) = finite quantity

—0

This means that for a given positive integer ¢, , there exists a real number A7 > ( such that

e f(6)|< M Vi,
which implies that
(1) < Me” V121,

We may also write it as /() = O(e“’) ast—oo.

Ifa function f(¢) is of exponential order a and b > a, then f(¢) is of exponential order b . (as

e >e:t>0)

Example 2 : Bounded functions such as sinat,cosat are of exponential order since |sin at| <1and

|cosat| <1

Example3: Showthat f(¢)=1> is of exponential order 3.

o . . .
Solution : Since Limet* = Lim—-=0 [using L Hospital rule]

—0 —0 e
. t* isofexponential order
Again since ‘tz‘ =t><e”,V t>0, hence ¢* is order 3.

Example4: Show that f (t) = ¢" isnot of exponential order.

[3

. ) o ow P e
Solution : Since Lim e “e' = Lim

00 1o g%

= Lim et(t ) =oVa

—>

Hence we can not find anumber A suchthat e’ < M e“

3, .
Therefore ¢" is not of exponential order.

1.3.4 Existance Conditions of Laplace Transform

Theorem1: A function f (t) is sectionally continuous in every finite interval 0<7 <7, and is



of exponential order 'a',as 1 — oo then L[ f();p| exists V p>a.

Proof: Let #, >0. Then L[ f(¢); p|= Te’p’f(t)dt = t'fep’f(t)dt;'fep’f(t)dt .(3)
14 0

A

ty
Since f(¢) is sectionally continuous in every finite interval 0 < ¢ < ¢, the integral J‘efptf (¢)dt
0

exists.
Now |Je " f(t)dr< He’p’ f (t)‘dt
ly ly
< [e™|f(t)dt
)
[since f(¢) is of exponential order ¢ i.e. ‘f(t)‘ < Me"]
< MJ e . e"dt = MJ e Py
M
(p _ a) if p>a
sy al < M
i e " f(¢) dt| < -
Finally we get ) (p- a) if p>a
Me*(l’*“)’o
The term (p——a) can be made as small as we please by choosing ¢, sufficiently large for
p>a.

Hence [ f(t)dt exists and accordingly e f(t)dt also exists for p>a.

ty 0

Thus L[ f(t); p] existsfor p>a.

Remarks : The conditions given in Theorem 1 are sufficient but not necessary for the existence of the
Laplace transform. If these conditions are satisfied, the Laplace transform must exist. If the above
conditions are not satisfied then the Laplace transform may or may not exist. There are functions whose
Laplace transform exists even when the conditions of theorem 1 (one) are not satisfied.



1
For example / (l‘ =—~ is not sectionally continuous in every finite interval in the range ¢ > (.
p Ji y ry ge¢r>0

Since the right-hand limitat 1 =0, Lim f (O + h) = Lim
h—0

1
o N0+ h

= 00

= t% has no finite right hand limit at 1 = 0

f (t) =7 2 s not sectionally continuous in the range ¢ > ().

=$ when ¢ > ()

For exponential order, |/ (t)‘ <Me", t> ty

For >0 with Ay =1 and ¢ =0,1,2,3..... at t > o

1 1
— < Me" = —<e

i i

= ? is of exponential order as ¢t — oo
_1 @ 1
But L[t A;p}=]e”’—dt
0

[ [P du .
—_([e Z? (puting pt =u)

=ﬁr(%)=%=\/% for p>0

1
Thus we have shown that Laplace Transform of ﬁ exists for p>0 even if ﬁ is not
sectionally continuous in the range ¢ > () and is of exponential orderas ¢ — oo .
1.3.5 Functions of Class A

Definition : A function which is sectionally continuous in every finite interval and is of
exponential order '4' as ¢t — oo is known as a function of class A.

7



1.4 Some Important Properties of Laplace Transforms

We assume, unless otherwise stated, that all functions satisfy the conditions oftheorem 1, so that
their Laplace transform exist.

1.4.1 Linearity Property

Theorem?2: If L[ f(t); p| and L[ f,(¢); p| be the Laplace transform of the functions f,(¢), /,(¢)

respectively and if C,,C, are any two constants, then

L[lel(t)+ szz(t);p] = ClL[fl(t);p]+ CzL[fz(t);p]l
Proof : By definition, we have

LICAW)+ G0 p]= [e [0+ Cup(e)] d

=C Te’” fi(t)dt+C, Te’” f>(t)dt

=G LA ]+ GLLAW)
1.4.2 Change of Scale Property

Theorem3: If L[f(t);p]]= f(p) then L[f(at);p]:%

00

Proof : L] f(at);p]= J-ef’”f(at) dt

0

r),

ei(gjt f(ld)dl" (putting at = t')

e

1.4.3 First Translation or Shifting Theorem

1
a

o =8

Theorem4: If L[f(t);p]] = f(p), then L[e‘”f(t);p]]= f(p—a) where q is real or complex

number.
or

If f(p) is the Laplace Transform of f(¢),then f(p—a) is the Laplace Transform of

eatf(t)
Proof: We have

L [e”’ (t);p]l = Te’”e”’f(t)dt



= J-ef(p*”)tf(t)dt
0
= L[f(t):p~ad]
= 7(p-a) [f (p)=[es (f)‘”}
0
1.4.4 Second Translation or Shifting Theorem
Theorem5: If L [f(t); p]] = f(p) and a fucntion g(¢) is defined as
gt)=f(t—a); t>a
=0 t<a
then  L[g(t);p|=e™"7(p)
Proof : We have
Lﬂ:g(t);p]l =|e"g(t)dr
0
= e g(t)de+ [ e g(t)dt
0 a
= e 0.dt+[e f(t—a)dt
0 a
='(|)-ep(t’+a) f(tr)dtr (putt]ng a :t’)

=e e f(¢")dr
0

=e "L f(t'): p]

=" f(p)
1.4.5 Alternate Statement of Second Shifting Theorem

If f(p) is the Laplace transform of f(¢) and 4> ¢, then ¢ ” f(p) is the Laplace
transform of f(#—a)u(t—a) where u(z —a) is the Heaviside unit step function defined as
u(t—a)=1 ; if t>a

=0 if t<a
Proof : We have

Lﬂjf(t—a).u(t—a);p] =Te’”f(t—a)u(t—a)dt
9



=j-e”’f(t—a)u(t—a)dt+Te”’f(t—a)u(t—a)dt

Now using the definition of unit step function, we have

L[f(t~a)u(t~a); p]

j' (- aOdt+j 7 f(t—a)l.dt
0

=Ie*”(”“')f(t')dt' (putting f —q =¢' = dt = dt")
0

Hence the result.

1.5 Table of Laplace Transforms

S.No. 120) L f(t):p]=/(p)
1
1. 1 . >0
1
2. eat p-a 5 p>a
n!
3. t" pn+1 , p>0,l’lEN
r a+l)
4. e P ifRe(a)>—l,p>0
a
5. sinat P ta’’ p>0
V4
6. cosat PR p>0
a
7. sinhat P —a*’ p>ld
V4
8. coshat P —a’ p>ld




The following results can be obtained by using first shifting property

s ] F(a+1)
(a) L[ t ’p}l (p—a)ml

(b) L [e”’ Sinbt] =

(p—a)2 +b°
at _ p—a
(c) L [e cosbt]] = —(p—a)z e
at b
(d) L [e smhbt}l = m

at p—a
h - =
(e) L[e CcosS bt]l ( a)z bz

ExampleS: Find the Laplace transform of:
(7) e —sin5t+4cos7t+9t -5 () cosh®4t

coshat
(i) (1+te) () 7 (v) e sindr

Solution : We have

(i) L[e’z’ —sin5t +4cos7t +9¢> —S;p]l
= L[e’z’;p]] — L[sin5¢; p]+4L[cosTt; p|+ 9L[t3;p]] —5L[1; p]

4 ! 1
! > +—P +93—4—5—

=p+2_p2+25 p2+49 p p

1 5, 4p 545

=p+2_p2+25 p2+49 ? p

(ii) L [cosh2 4t;p]| =L [—1 +coshdr, }

2 b
= lL[l;p]] +1L[cosh8t;p]]
2 2

1 p

2p 2(p*-64)

(i) L[(l +ie )B;P] = L[l +3te” +3t%e + t36’3’;p]|
11



= L[L;p]+3L[te”; p|+3L[ e p|+ L[£e™; p]
=l+3L[l‘;p+1:ﬂ+3Lﬂit2;p+Z]+Lﬂit3;p+3]l
p

1 3 32! 3!

:%L[tl/z;p—a]+%L[t1/2;p+a]

_ { ()t ]

N | =

- (p_a)l/z (p+a)1/2

(v) L[tze’ sin 4t;p]|

2
Since L[tz;l?]=?
LleYt 12 p] = 2
[e L ’p]_(p—4i)3 (by first shifting theorem)
2 (p+4z)3

3

(p—4i)  (p+4i)

2|(p*-48p)+i(12p” — 64)]
(v +4)

12



2(p*-48p) 2(12p —64)
+1
(ra?)  (p 4

L ﬂi(cos 4t +isin4t)t’; p}] =

Now equating the imaginary parts on both the sides, we get

, 2(12p* —64) 8(3p°—16)
L[t251n4t;p]l= (p2+42)3 = (p2+42)3

Again applying the first shifting theorem

8[3(p—1)" ~16]

(p-1)° +42T

L[e’z‘2 sin4t;p]l =

8(3p* —6p—13)

T (p—2pi17)

0,0<t<1

(1 o1y, (1 2)
Example 6: Showthat L[ f(¢); p|is | = +—|e " ~| —5+=| e where f(t) =11, 1<t <2
p P p P 0 (59

Solution : We have L[ () p]] = J:O e f(t)dt

=[Lerp@)d+[ e p(e)de+[" e () de

2
2 te ” 1 2
=J' e Ptdt =[ ¢ ] +—J' e dt
1 . 1

-P

I 1 2 1
p p p p

Example 7:  Find the Laplace Transform of ¢#*.u(z - 3) using second shifting theorem, where u(t-3)

is a unit step function.

Solution : Since % = (1 —3+3)" = (1~ 3)" +6(r -3)+9

> u(t=3)=(t =3 u(t=3)+6(t—3)u(t—3)+9u(r-3)

13



Lﬂ;tzu(t—?));p]] = L[(z‘—3)2u(t—3);p]+6Lﬂ:(t—3)u(t—3);p]+9Lﬂ:u(t—3);pJ]
= e’3pL[t2;p}|+6e’3pL[t;p]+9e’3"L[l;p}]

5, 2 5, 1 e’
=e 3p.—3+6€ 3p.—2+9

p p p

3

=e3p[2+6p+9pzj
p

Self Learning Exercise - |

If £(p)=L{f(¢); p}, then fill-in the blanks in the following :

5 The exponential order of £ is .........
i
[

1.6 Exercise 1 (a)

I. Prove that the following function :

at+b; 0<t<l
fl)=9 ' 1<t<2
? ; 2<t<3

is sectionally continuous in [0,3] .
2. Show that the function f(¢)=¢" (n > 0) is of exponential order '4' if g > 0 ,n €N .

3. Show that the function f'(z)=¢> is of exponential order 4.

4. Provethat L[e” f (bt); p|= %f(pb;a) ,where L[ f(¢); p|= f(p) and a and b are constants.

14



Find the Laplace Transform of :

4
()) e sin4s Ans. 4,120
(i) e Ans. 2/(p-3)
6
(i) sin®¢ Ans. (p*+1) (p* +9)
. o 1=
(iv) e (3sinh2¢—S5cosh2t) Ans. P 12p-3
N , _3p=24
(v) e (3cos6t—5sin6t) Ans. D +4p+40
cost;0<t<rm p+(p-1)e™
Evaluate L[f(l‘);p]l where (1) = {sint L tsa Ans. (pz N 1)

State and prove the translation properties of the Laplace transform. Also obtain the Laplace
transform of'the following functions :

. A sin(t—%),t>% 7(,”13) 1 0
(i) 1) 0 ) 77 Ans. e .—p2+1,p>
<
’ 3
t/T; 0<t<T -1 -
(if) f(f):{l . ysT Ans. pzT(l_e );p>0
_2 . 2
_ cos(t %), t> % o P .
(iii) f(1) Ans. e — P>

Find the Laplace Transform of :

1 8 1
(7) sin 5¢ cos 3¢ Ans. E_pz Tt i +4}
1_ p—a p+a
(ii) cosh at cosbt Ans. E_(p—a)z T h +(p+a)2 42
4p> —4p+2
(i) (r+2)e Ams. TN

15



10.

11.

(ZV) 672[ 0052 t Ans. (p+2) (pz +4p+8)
1 p—b p+b
(v)  sinhbzcosar Ans. 5 (p—b)2 ta’ (p +b)2 +a’

Find the Laplace Transform of :

p>—18
() cosh?3t Ans. m
1 3
(@) cos’t Ans. Z[pzi o pzi J
If L[f(t); p]] = f(p) , show that
(i) L[(sinhat)f(t);p]zé{f(p—a)— _(p+a)]]

(i) Ll(coshan)f(e):p] = [F(p-a)+ F(p+a)

Using second shifting theorem, find the Laplace transform of :

|
(i) e u(t—a) Ans. p—le :
(ir) (¢ 1)’ 1 Ans iefp
- ) u(l‘— ) . p3

1.7 Laplace Transform of Derivatives

Theorem 6 : Let

(i) f(¢) is continuousfor g < s < N

() LLf(e)sp]=f(p)

1l
=
=
=

|
=
=

=

H
N

\V4

I~

Then L| f'(¢); p|

Proof: We have L[f’(t);p]] = J‘:e*”’f’(t)dt

16

w.(4)



Using integration by parts, we have
_ [[em SO +pf e f(t)dt}

Since f(¢) is of exponential order '', therefore

Lime™”f(t)=0 for p>a

—©

Ths  L[f/(0):p] =(0-£(0)+ p7(p)

=pf(p)-f(0) for p>a

Theorem 7: Let

Proof:

(i) f(t), £'(¢).... f""(¢) are continuous for ¢ < s < v and are of exponential

order 'q' for t > N .

(i) ™ (¢) is sectionally continuous for g <7< N .

Then L[S (2)ip|=p"F(p)=p"" £(0)= p"2 £(0)=.cmp £V (0)= £7(0) .. (5)

( for p> a)
where f(p)=L[f();p]
We shall prove the theorem by using mathematical induction.
By the theorem 6 we have
LLr(@sp]=pLLf(@):p]-1(0)  (p>a) (6)

Hence the theorem s true for n =1.

Let the theorem be true for n = m (a fixed positive integer)

Then L[/ ") = p"7(p)=p" 1 (0)= "2 (0)=cmp S " (0) = £ (0)

Now L[f(’"”)(t);p]l = L[—f(’")(t);p}

= p|p" 7 (p)- 2" £ (0)= p" (0= p £ "2 (0) = £ " (0) - £ (0)

— pm+1]?(p) . pmf(o) . pmflfy(o)_' 3 '_p2f(n172) (0) _ pf(mfl) (0) _ f(m) (0)
Therefore the theoremis true for n = m +1

17



Hence by the principle of mathematical induction, the theorem 7 is true forall n e N .

1.8 Laplace Transform of Integrals

Theorem 8: If Lﬂ;f(t);p] = f(p), then

oIty )= 12

p
Proof: Let G If
then  G'()=/(r) and G(0)=0

Since  L[G'(t); p| = pL[G(¢); p]- G(0)

or L[J.; S () du;p} = %

Remark : The generalization of above result is

where f(p)= L[f(l‘);]?]l

1.9 Multiplication and Division by Powers of ‘t’

Theorem9: If L[f(t);p]] = f(p), then

nd”

L[ f(eyp]=(-1)"- /(P

Proof: We have

F(p)= L[ (typ]=[ e f(e)de ()

Differentiating the above equation (7) on both sides with respect to p , and applying Leibnitz’s rule

for differentiation under the sign of integration, we have

18



Thus L[t f(1); p|= —j—pf(p) .(8)

which proves that the theorem is true for n = 1. To establish the theorem 9, we use principle of

mathematical induction. Let the theorem be true for n = m (a fixed positive integar), then

d m
m

L[ty p] = ()" o ()

or Jyem{mr(}di=(-1) dmf() -(9)

Differentiating both sides of (9) with respect to ' p' and applying Leibnitz’s rule, we get

B » " . dm+1 _
e e ()b e = (-1) pryl (P)

- dm+1 _
1 m+1 f(p) (10)

I

Therefore the result (10) istrue for n=m+1.
Hence by principle of mathematical induction, the theorem 9 is true for all positive integers.
Remark : Leibnitz’s rule for differentiation under the sign of integration

If f(x,a) and Z:—f(x,a) are continuous functions of x and ¢, then
a

i[ Jj f(x,a )dx} = Jj %(x,a)dx , where g,b are constants independent of ¢ .

_ t w® _
Theorem 10 : If L[f(t);p]] = f(p),then L [@;p} = J f(u)du, provided that the integral
P

exists.

Proof: Let G(t)=@,so that /(1) =1G(t)

Taking Laplace Transform of both the sides and using Theorem 9. We have
d
LL7 @) p]= L]1Gleyp] =~ L[G(0): 4]
o F(p)==- ]G]
dp

Now integrating both the sides with respect to P from p to oo, we have

—[L{G(t);p}]lj = ij(p)dp = ij(u)du

or  —LimL[G(1);p]+ L[G( wa
19



p—>© p—>©

or 0+ L[G(t); p| = J: F(u)du [ Lim L[ G(t); p] = Limf e " G(t)dr = 0}

or L{f(t);p}:j:f(u)du

t

1.10 Evaluation of Integrals by using Laplace Transforms

Laplace Transform can be used for evaluation of integrals as shown below:

If L{f(t);p}=1(p) ie. '[:ef’”f(t)dt=f(p)
Taking the limit as p — 0 and assuming that the resulting intergral is convergent. We have

J, £()de = 7(0)

Example 8 :  Using the derivative formula, show that

. V4
(i) L[cosat; p]= P
2 2
(i)  L[tcosat; p] zp;az
(p+a’)

Solution : (i) Let /()= cosat
sothat f'(t)=-asinat, f"(t)=—a’ cosat,
f(0)=1and f'(0)=0
Since L[ f"(t);p|= p’L[ £ (¢); p]- p £ (0)- £'(0) (1)
therefore L[-a’ cosat; p|= p’L[cosat; p]— p1-0

Simplifying, we get

p
P ra

L[cosat; p| =

(ii) Herelet f(1)=1tcosat
f'(¢) = cosat —at sinat
and  f"(t)=-2asinat—a’tcosat

Ao £(0)=0, £7(0)=1

Substituting these values in (11), we get

L [—2a sinat —a’t cosat;p]l = p’L[tcosat; p]-1

20



or (p* +a*)L[tcosat; p|=1-2a.

or L[tcosat; p]=

a

p2+a2

pz e
(p*+a?)

Example9: Evaluate Laplace Transform of the following functions :

(i) sinat — at cosat + %nt (ii) e

1—cost

. . ) sint¢
Solution: (i) L [sm at —at cosat + T;p}

= L[sinat; p|—a L[t cosat; p]+ L{%ﬂt;p}

__a a(—l)di L[cosat; p|+ J:O L[sint;uldu

2 2

p ta P
22 .
= za 2+a(a p)2+ lzdu
p +a (p2+a2) P 14+u
2.2
= za 2+a(f fz)+(tan1u)w
prra’ (pP+ad’) g
24’ V4 ]
:(p2+a2 >+_-—tan p
2a’° 1
=, > +tan [—)
(p +a p

()  Let f(z)=1-cost

L[ (1) p] = L[t p]- L[cost p] =~ ——L— = 7(p)

p p +1

1—cost o] u
L sp|1= | —— du
L)

u i j—
_log—rz +1L = log—(1+y2)
u

logu —llog(u2 + 1)}
2 p

1

P

21



241

()5

1
L ;P =510g(p2 +1)-logp .(12)

we have

L 1_CzOSt;p = J:O [%log(u2 +l)—10gu}du

=% {u log(u2 + 1)}:: _J-DO 22u2 du} - [(u log u): - J:Ziu}

P u +1

u log(u” +1)—2(u—tan™' u)]lw —[ulogu- u]]j
] p

1 log(u” +1)+2tan™" u—2ulog u]lw
] p

_ | .
=—|ulog| 1+— |+2tan' u
2 g( uzj l

1 1 1 1 T
=— Limulog| 1+— |-— plog| 1+ — |+| = —tan™'
2 b g( u) 27 g[ pz) (2 p)

=cot '(p)+ plog
p +1

Example 10 : Find Laplace Transform of the function sin \Jt and hence obtain the Laplace Transform

cos\/?
of
Jt
»ooHh K
. ] t t t
Solution : sin+/t = tA - —_— ...

3150 7

L[sm \/;;p]zr@/z)_ 1 r(5/2)+1 r72) 1 r(9/2)+

p3/2 31 ps/z 51 p7/2 _7! p9/2

22



Jz 1) 1(1Y 1(1
=—3/2 1-|—|[+—| — | ——| —
2p 4p ) 21\ 4p 31 4p

_ \/; -(/4p)

2p3/2

Nextlet f(¢)=sin+/¢ , so that f(t)= cgi/\_/_ f(0)=0

Now using the formula L[f’(t);p]] =p L[f(t);p]] —f(O)

. we have L[M;p}:pL[sin\/;;p]—

2Vt
:p[ \/g/z 6(1/417)}

2p

or L [%;p} - [%)% o (140)
Example 11 : If L[f(t); p]] = f(p),then‘[:@dt = J?f(u)d
assuming that the integrals converge and hence prove that
[ -

Solution : We have, by Theorem 10

/(1) (1)
Ll—*;p|= P
L0 fer e e
Taking p — 0 and assuming both the integrals converge, we get
o f (t) NEr
| =i = | F(w)du
Next, let f (t) =sint, so that

L[sint; p|=

il Zf(p)

. Byusing (13), we get

23
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wsmt
J J tan u —77

sin’ t pi+4
Example 12 : Provethat L| —— log 7 and deduce that

. 2
(i) IO e SH; L =%log5

» sin® ¢ T
(ll) IO t ! 2

. —cos2t
Solution : Since sin’ 7 = — therefore proceeding as in Example 9 (ii) we find that
sin’ ¢ 1 pi+4
L[ t }:41 g[ . J (14)
© sin® ¢t 1 p+4
e ML = "lo
or J-o p 4 g P
Taking limit p — 1, we have
s 2
= ,sin"t 1
jo e dt =~ log$ (15)

Again applying the theorem 10 in equation (14) we have

sin® ¢ 1 u* +4
L[t—z,p} 4I log[ o Jdu

- % _J: log(u* +4)du - J:O logu’® du}

=% {u log(u2 +4)}j —J-: 3 du — (u log uz)j +2J:Ziu}

u +4

= % {u log(u2 + 4) —ulog uz} - 2{u —%tan‘ (%) - qu

1 Limulog(l+iz)—plog l+i2 +4£—4tan1(£)
4| uow u p 2 2

24



= 1[0— plog[l + izj +2r— 4tanl(£ﬂ
4 P 2
.2
J‘ o7 sz_tdt:l —plog l+i2 +27r—4‘[an1(£
0 ¢ 4 p 2

Taking limit p — 0, we get

2
© s ¢ T
[ ar==
o ¢ 2

4 !
Since Lzmulog( —2) Lzmu{ 1 6—+ ...... }zO
u 2u

4
and Limplog[ —2) Lim plog(p’® +4)— Lim plog p’
p—0 p—0 p—0

. logp
=0-2Lim
p—0 (l/p)

- (Vp)
=-2Lim
=0 (=1/p’)

=0
Self-Learning Exercise - I1

Assuming the conditions of validity, fill in the blanks in the following :
L Ly} =

2. L{t" f(t); p} =...

3. o{f f(w) duspl=

4, L{t” ’”,p}z...

5. L{(t%)f(t);p} =...

6. If m>n,then
L{tmf(")(t);p} =

25



- .
7. IfL{%;p}zcotlp,then L{Smat;p} =....
t
1.11 Exercise 1 (b)
1 Given L 2\/7 plo ] show that —- ! =L L
° ﬂ_ap _p3/2 4 p/ lﬂ't,p
. . Ly o _u 1 2 —t
2. Verify directly that L {IO (u —u+e )du;p} =—1L {t —t+e ;p}
p
3. Evaluate Laplace Transform of'the following functions :
. 2a
() tsinat Ans. 2—}722
(p*+a’)
y 6p* —36p” +6
(”) ¢’ cost Ans. P 5 p4
(p*+1)
4 3 2
(iii)  (¢*=3t+2)sin3¢ Ans,  OP Z18p +126p ;162“432
(p*+9)
. 843(p-1)" 16}
(V) ' sind Ans. ; 3
{(p-1)"+16}
12p+2
(v) te ' cosht Ans. pz—pz
p ( p+ 2)
4. COSAL xist? Also prove that
t t
© sint
J —dt = Ans. cot‘(ﬁj, does not exists
a
1—coshat 1 p-a’
5. Show that L{—; p+=—log >
t 2
efat _ e*bt o 673[ _676[
6. Evaluate L f; p ¢ and hence deduce that IO fdt =log2.

Ans. log[p-i_b)
p+a

26



7. Using Laplace Transform technique, evaluate the following integrals :

(i) J:O e’ sintdt Ans. 0

©e ' sint T
J- dt Ans.  —
t 4

(if)

8. If L[f(t); p]] = f(p) , find the Laplace transforms off'(l‘) and f"(t) , stating conditions of

validity of results.
tG(r), t>1
)=
> 1070 { 0, 0<t<l
d o
Prove that L[f(t);p]] dp[ L{G (£+1); P}Jl
2 2
10, Prove that L{cosat cosht }=llog[p2+b2J
2 p +a
t1— 1 1
‘ p p
2t,0<1<1
12.  Giventhat /(t)= L s
Find (i)  L{f(t):p} @) L{f'(t);p}

Does the result L{f"(¢); p} = L{f(¢); p} - £(0) hold for this case? Explain.
Ans. (i) ~———t 5% (ii) PR

The result does not hold as f(¢) is discoutinuous at 7 = |

1.12 Initial Value Theorem

Theorem 11 : Let f (t) be continuous for all # > ( and be of exponential ordrer as t — « . Also

suppose that f'(¢) is of class A, then

Lim f(t) = Lim p L £ (¢): p]
Proof: By Theorem 6, we have
LLf ek p]=p LS (2):p]=1(0)
27



or  [Tefi(e)de=pL]f(t):p]-£(0) .(16)
Since f(¢) is sectionally continuous and of exponential order, we have

Lim Jj e f'(t)dt=0

po©

Now taking limit as p — o in (16), we find that
0= Limp L (t): p]- 1(0)

or  f(0)=LimpL[f(t):p] .(17)

p—©

Since f(¢) is continuous at ¢ = 0, we have

£(0)= Lim £(0)

t—0

. Fromequation (17), we get

Lim f(t)= Limp L[ f(¢); p| .(18)

t—0 p—>o

1.13 Final Value Theorem

Theorem 12 : Let f(¢) be continuous for all ; > ¢ and be of exponential order as 1 — oo and if

f'(¢) is of class A, then

Lim f(t)= Lim p L f(1);p]

t—>00

Proof: By Theorem 6, we have

LLf(t):p]=p L/ (2):p]- 1(0) (19)

Taking limit as p — 0 in(19), we have

Lim Ow e f'(t)dt = Lirgzp L[f(t);p]l—f(O)

p—0

or [, f(e)dt=Limp L[ (t):p]-1(0)

or [f(t)]l: = LimpL[f(t);p]—f(O)

p—0

or  Limf(t)=f(0)=LimpL[f(t):p]- £ (0)

—w

or  Limf(t)=LimpL[f(t);p]

t—o© p—0

28



Hence the final value theorem is verified.

1.14 Periodic Functions

Definition : A function f (t) is said to be periodic if there exists a real number 7" such that

f(t+T)=1(2) Vi

If T is the smallest positive number for which such a relation is satisfied, then T is called the
period of'the function. For example, the simplest periodic fucntions are sin and cos¢ having period 27 .
Their reciprocals cosec fand sect are also periodic with period 27 and tan¢ and cot¢ are periodic
with period 7

Theorem 13 : If f(¢) is a periodic function with period 7> ¢ i.e. f(u+T)= f(u),
f(u+2T)= f(u), ete.

then L[f(t);p]lz _:_pT JTe‘ptf(t)dt

Proof : We have

= J~0Te,,,, dt+'[ dt+f f(t)dr+...

:IOTe*pf t+_[ pluT) f(u+T7) u+_[ ’””)f(u+2T)du+...

(Putting t =u+T,t =u+2T, etc. nthe 2nd and 3rd........ integrals respectively)
= '[Te”’“f(u) du+ ef”TJ.Tef”“f(u) du+ efz”TJ.Tef”“f(u) du+
A . A

= (1+e”’T +e’2”T+....) J-OTe”’“f(u)du

=— [ e (u)du (v p> 0.7 <1)

1
(Using the relation; 1+ 7 +7r°+.....= >

1.15 Some Special Functions

A. The Gamma Function : The gamma function is defined by

29



F(n) = J:O e u" " du, Re(n) >0

The sme and cosnie Integrals : The sme and cosine integrals denoted by S,(7) and C,(¢)
respectively are defined by the equations

S.(t) :J-t sinudu

0 wu

tcosu

and C,(f) = J.O

The Error Function and Complementary Error Function :

du

u

(/)  Theerror fucntion, denoted by erf (¢), is defined by

erf \/_J- e du

(i)  The complementary error function, denoted by erfc(¢), is defined by

erfc()—l erf —1——J- “ du
2 e
=—| e"du
=)
The Unit Step Function (or Heaviside’s Unit Function) : The unit step function, denoted by

U (t—a) isdefined by

0;t<a

U(t—a)z{

1;t>a

The Unit Impulse Function or Dirac Delta Function : Consider the function 6 E(z‘) given by

5€(t)={l/€’ 0<t<e

0, t>¢e
where €> 0. The graph ofthis function is shown in the diagram below

The Dirac’s delta function or unit impulse function is denoted by () and is defined as

5(¢t)=Lims_(t) 46

e—0 €




Example 13 : Provethat LU (t—a); p|=

Bessel Function : Bessel’s function of order 5 is defined by

n t2 t4
A1) = 2'T(n+1) [1_ 22n+2) 24(@n+2)2n+4)

n+2r
= t
; n+r+l) (E)

Laguerre Polynomial : Laguerre polynomial is defined by

L,,(t)=Z—t!.;iZ (e7."),n=0,12....

The Exponential Integral : The exponential integral function E,(¢) is defined as
0 eiu
= J-[ 7 du (t > 0)
Hypergeometric Function : The function , F; (a, Bv; t) known as Gauss’s hypergeometric
function or simply hypergeometric function is defined as

F(a,B;y;t) Z y

l

:

Beta Function : We define the Beta function B(m,n) by the integral
B(m.n)=[ " (1-1)""de

where Re(m)>0, Re(n)> 0

—ap

, where U (¢ —a) is the Heaviside’s unit step function
p

Solution : By the definition of Heaviside’s unit step function,

0,t<a

We have U(t_a):{l N
,t>a

L [u (- a);p]l = J:O e U (t—a)dt
=[leru(t-a)ar+[ e U(t-a)di

:I e ’dt
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_[e‘" T e
—-P |_, p

Example 14: Find L[5 _(¢);p] where &_(¢) is defined in £1.15 and hence show that

Lim L[5 (1):p]=1.

l/e, 0<t<e

Solution : We have §_(1)= { 0 t
) >e

Then L [56(1‘); p]] = J:O e (t)dt
= [fers ()ar+ [T s (r)de

= [Fem(y)di+ [ e 0ar

1 (e 1[-e”] 1-e7
0

1 . pe’s |
= (by L” Hospital’s Rule)
p e—>0 1
Example 15 : Evaluate L[Si (t);p]] =1, where Sl.(t) _ J'Ot sinu du
u

Solution : We know that

tsinu
S(1)=], —d
; 2 4 6
=j[1_u_+u__u_ Jd”
ol 31 5 7!
¢ £ t’

- + +....
36) 5 7(7)
Taking Laplace transform of each side, we get

1 1 3 I 5
L[S(t); p] =?— 3(3!).?+5(5!) PR
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Example 16 : Prove that L(Q(t);p) _ L[I cosu du;p:| _ og(P + )
t u 2p
Solution : Let f(t)=C,(¢)= r COSU = —jt COSU
t u 0 u
so that by Leibnitz’s rule
1) ==L
t
or t f'(¢) = —cost
L[t 0] - Ll-costipl=——L
pP+1
d -p
__L ! . —
or dp [f (t)’p]l p2+1
d; - » ]
or %[Pf(p)—f(o)]=p2+l where f(p)=L[f(t); p]
or i[l? f (P)]l S [+ £(0) is constant]
dp p+1

Integrating both sides with respect to ' p', we get

pf(p)z%log(p2 +1)+A

But from the final value theorem

Lirgzpf(p)zLimf(t)zO

>

.. From (20) as p — 0, we have
0=0+4=>4=0

oo pf(p)

1
Elog(p2 + 1)

33
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oo f(p)=L[f(t):p]=L[C(t);p]

(£, )= 282 )

Example 17 : Prove that L
p

Solution : We have

putting y = ¢y

= 1 C ot —w . . .
:Jl ;{J; e.edt }d" (changing the order of integration)

0
1

1
—~[logv—log(p+
p[ ogv og(p v)]]

LE, (1)) =§[—1og(£+ lﬂ -

\%

1
I+p

Example 18 : Prove that L[J,(¢); p| =

7

and hence deduce that

(i) L[J0 (at);p]] ==

(it) L[t Jy(at); p]= o

34
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Solution : We know that J

Deductions :

@)

1
(p2 +2ap+a’ +b2)

(i) Lle™ Julbe):ip]= ]

(v) [ Trersy(ar)de=3/125

05 @

IT(n+r+1)
0 (_1)" (f)zr

J(t)= =
0( ) g(; (r!)2 2

ot t°

T g g
1 1 2

L[Jy(1); p] L[l;p]—z—zL[z‘z,p%zzAz L[t4;p]l+22.42.62 L[ 6;p]]+

1120 1 4 1 e

p 22 p3 22'42 pS 22 42.62 p7 """

L[ J,(at); p| = . \/{HESJZ} ~ Jpzlw
L[tJ, (at);p]=—j—pL[J( )yp]
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SN R S E—
dp \/(p2+a2) (pz+az)3/2
(iii)  Since L[e f(1);p|= f(p+a), where f(p)=L[f(t):p]
1

1

LleJ,(bt); p|= e

REACITHE

(p+a)2 +b’

1
\/(pz +2ap+a’ +b2)

(iv) wehave L [JO (t);p]] = J.: )

putting p =0, we have J Jo(t)dt =1

0
(v)  Fromdeduction (ii), we have
® _pt _ )4
J;) e " tJy(at)dt = —(pz N a2)3/2
putting =3 and a = 4, we get

33
(9+16)"" 125

[Ce ey (a)de =

Self-Learning Exercise - I11

Fill in the blanks in the following

1

L I LU (esp)= N

,then

sint, O<t<nm

2. Iff(l‘)Z{ then L{f(t);p}: ......

0, n<t<2rm
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3. Iff(P) = L{f(l‘);]?} ,then L{J-w t”f(u) du;p} =...

0 F(u+l)

4.t Lfef (Ve p) =

,then

1
pyp+l1

where &(¢) is the Dirac delta function.

1.16 Summary

In this unit you studied an important integral transform known as Laplace transform, with existence
conditions. You also studied some basic properties and results giving the Laplace transform of derivatives,
integrals, multiplication and division by powers of 't'. Anumber of problems on Laplace transform are
also solved to felicitate the understanding of this transform.

1.17 Answers to Self-Learning Exercises

Exercise - I
12(p-a a 1 p—logr)
L L) L e
_ Vid
4, e f(p) 5. 4 6. J;,p>0
2. 4.4
7 P pop
Exercise - 11
nr n—1 n—2 (n-1) 1 n d” _
1. " f(p)-p" ' (0)=p"£'(0)-...— £ " (0) 2. ( )‘@nfUO
f(p) n! d _
E— e . -—(pf(p
3. » 4. (p—a) 1 5 dp( ( ))
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d m o )
6. [—%J .(p f(P)) 7. tan”'(a/p)
Exercise - 111
p 1 ! p
1. 1- b —|1=
@ - O ) ( e
l+e?” £ (1
2. 2e 3. /(logp)
p+l1 p
A 1 3p+8 1
' (@) 1/p+l(1/p+l+l) Q) pz(p2+4)3/2 (c) (p=3)p-2
5. e ¥
1.18 Exercise 1 (¢)
. Iff()=1* 0<s<2and f(t+2)=f(¢),find L] f(7)].
2 -2
A [2-(4p* +4p+2) ™|
p3(1—e’2”)
2. If (t) be a periodic function with period 4, where
(t) B 3t, O0<r<2
J\)= 6, 2<t<4
3(1—6’2" -2p 674”)
then provethat | f(¢); p|=
p [f( ) p] p2(1_674p)
3. Verify the initial value theorem for
(i) 3—2cost (i) (2t+ 3)2
4. Verify the final value theorem for
(i) e (i)  1+e”(sint+cost)
5. Show that

(i) I: J0(2\/E) cosu du = sint (if)

[Hint. First evaluate L [J 0 2\ e p]l , and then compare real and imaginary parts of the result

38

I: J, (2\/5) sinu du = cost




10.

11.

thus obtained]

2

Show that L[ d

dr*

e—ZtJO (2t),p:| =

2

P

\/p2—4p+8 2

Find the Laplace Transform of the following functions :

(i) teJ(t2) (id)

) (E()

(v)

{Anss (7) 22 (if)

(p2 +4p+6)3/

log(p®+1)  3p241

(iii) »’ p(p*+ 1)2
log( p+ 4)
(v —
p+3
Find Laplace transform of:
P 1 _ 67214
o [ . )du ()

1
Ans.: (i) —log
ansi()

3w

p

£5,(¢)

eE,(1)

(i)  £C(r)

(vi) te™E(3t)

pip+1

If L[ f"(t); p| = tan‘[l), /(0)=2 and f'(0)=-1, find L[f(t);p].

Ans.: iz {2 p—1l+tan” [l}
p p

Find (i) L[r u(t—1)+t25(t—1);p]| and (if)

P

N €
|:AHS.: (l) ?

(p2+p+1)

(i) —e™"logrm }

L[costlogzﬁ(l‘ - ﬂ);P]I

Find the Laplace Transform of the periodic function having period 2% and defined by

f)=1

O<t<k
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=-1 k<t<2k

[Ans.: l tanh(p—kﬂ
p 2

12. Prove that L[Jl(t);p]] = I—Ll/z
(p* +1)

a

and deduce that (i) L[t J,(¢); p]= W
pi+

(it) L[Jl(at);p}—%{lﬁ}

13.  Prove that for Re(p)>a>0

L[t"J,(at); p]= (2a) T(v+12) p>-L

\/; (p2 +a2)u+l/2 > )

14. Prove thatif a >0, R e(p) >0,

L[z‘”ﬂJU(%/E);p]l =q"?p e r

Hence deduce that

(7) L {t”/ze‘” J:O ue " J, (2M)f(u)du;p} = (p—a)ﬂk1 L[f(u);a +(p —a)fl]l

(@) Lo [ g, (2ur) £ (u)dus p} = p~ L[ £ (0)p7"]

o J (t)— t
15. Prove that IO M

dt =log?2
16. Using Laplace transform, evaluate

[te s, (ar)ar

[Ans.: 1 e/ 4}
2

t dn
17. IfL[t.p]= % -

(e™".#"), then prove that L[L,(t);p]=*—F. p>1
18.  Obtain L[erf #; p|. Hence deduce the value of L|[erf (bt); p|.
[Ans.: p e Fefe(p2), pt e erfC(P/zb)]l
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Evaluate L{¢""'J (at); p} for Re(p)>a>0and v>-3/2

Ans.: "a’pT(v+3/2)
Jr (p +az)3/2

Prove that L{J: x”rl(j;()u) du;p} = J;(logp) where f(P) = L[f(t);p]

Find the Laplace Transform of the function

t73/2 e—k2/4t (k > O)
[Ans 2\/_ kf}]

Show that for Re(p)>1,

using the result

2Fl(a,a +%;2a;x) =22 (1-x) ™" [14 (1= x)r”

Show that
L {Ju(t);p} = (p2 + 1)71/2 {p + 1/p2 + 1}7U
and deduce that

e )

au\/p2+a2

i) L{J,(at);p}=

(if) j: J,(t)dt =1

I tJU(t); 3 p:201/p2 +1 i
{ p} (p2+1)/(p+w/p2+l)
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2.0 Objective

The object of this unit is to define inverse Laplace transform with its simple properties. We shall
prove some imporatant theorems regarding its derivatives, integrals, multiplication and division by powers

of p. We shall also discuss the convolution theorem and complex inversion formula for Laplace transform.

2.1 Introduction

In the last unit we studied the Laplace transform and its properties. In this unit we define the
inverse Laplace transform and establish various properties and results associated with inverse Laplace

Transform.

2.2 The Inverse Laplace Transform

2.2.1 Definition: If f(p) isthe Laplace transform ofa function f(¢),
ie.  L[f(tsp]=1(p)
then f (t) is called the inverse Laplace transform of the function f (p) andis written as
f0)=17[7(p)]

L' is called the inverse Laplace transformation operator.

n!

Example 1 : L[t”;p]l -

n+l

2.2.2 Null Function
If N(r) be afunction of ¢ such that J.; N(t)dt=0, V¢>0
Then N (t) 1s called a Null function.

I, t=1
Example2: The function f(1)=<-1, t=2

0, otherwise

1s a Null function.

2.2.3 Uniqueness

We know that L[ N (t); p| =0
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Further, if L [f(t); p]] = f(p) , then
LLf(e)+ N (0):p]= 1 (p)
Consequently if L’lﬂ:f(p)]] = f(2)

then L’lﬂ;f(p);ﬂ = f(1)+N(z)
which implies that, we can have two different functions, with the same Laplace transform.

Example3: The two different functions

0, for t=1
fi(t)=e*" and £ile)= e ™', otherwise
have the same Laplace Transform i.e. , (R e (a) > 0) .
(p+a)

Hence the inverse Laplace transform of a function is unique if we do not allow Null functions. This

is indicated in Lerch’s theorem given below :

Lerch’s Theorem : Let L[ f(f)|= f(p) and f(t) be piecewise continous in every finite

interval ( <7< N and of exponential ordre for ¢ > )V, then the inverse Laplace transform of
f(p) is unique.

Remark : Throught this unit, we shall assume such uniqueness unless otherwise stated.

2.3 Inverse Laplace Transform of Certain Elementary Functions

From the definition 2.2.1 of inverse Laplace transform and Laplace transform of some elementary

functions mentioned in the last unit, we obtain

() L[t”;p]l:L: L‘[L-t}:t_ wheren e N .
p p n!

« 4 1 t*
(ii) L[“P]=T=>Ll[pw;t}=r( )ifRe(a)>—1

(where o may be a real or complex number)

L Ll e ifp>a.
p—a p-a

a 2 | sinat
2 s =L 2 7ol =
p +a p +a a

44

(i) L [e”’ ; p]l =

(v)  L[sinat;p|=



2 2 2 27

V) L[cosat; p]= P :Ll[ P 't}:cosat
p’+a p’+a

) i 1 inha ¢t
(v1) L[smhat;p]: 2a 5 :Ll[ 5 2:|:S1n a
p —a p —a a

(vi)  L[coshat;p] P :Ll[ P 2;t}:coshat

:pz—az p —a

1 1
iy L|J,(at),p|=———==1L" ;t|=J,(at
s |

2.4 Some Important Properties

2.4.1 Linearity Property :

Theorem2: Letforall i=123,....,n if f, ( P) are Laplace transforms of the functions f; (t)

and ¢, are constants, then

L' [clf_l(p)iczf_z(p)i.......icnf_”(p)]l =c, L'l[fl(p)]]ich'l[f_z(p)]Ii....icn L'l[f_n(p)]l

Proof: By Linearity property of Laplace transform, we have

or o f\(O) e fo(t) ke, £, () = L [e.fi(p) £ o fo(p) 2o 2, £, (D)
or clL’l[f(p)]l ich’l[f(p)]li.......icn[l[ _n(p)]l

_ L—l[clf(p)iczfz(p) i.......icnfn(p)]]

(by definition of inverse Laplace transform)

2.4.2 Change of Scale of Property :
_ - 1 (¢
Theorem3: If L“[f(p);t]] = f(¢), then L“[f(ap);t]] = ;f(;) sa>0

Proof : Since f(p)= I: e f(t)dt
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» |1
:JO e P {;f(%)}du (putting g7 = u)

Hence f(ap)= LBf [i);p}

Inverting, we have

2.4.3 First Shifting or Translation Property :

Theorem4: If L' [f_(p);t]]= f(t), then

L! ﬂ;f_(p—a);t]] =e" f(t)=e" L'lﬂ;f_(p);t;ﬂ
Proof: By definition, we have

—_ 00

f(p)=] e f(t)de

00

— f(p—a):j ef(pfa)tf(t)dt:L[e”’ (l‘);P]]

0
Hence, L' [f(p - a);t]] =e" f(¢)
Remark : The result of this theorem is also expressible as
L7 (p)t] = e L[ 7(p+a)i]
2.4.4 Second Shifting Property :
Theorem5: If L™ [f_(p), t]] = f(¢) and

0 , t<a
g(t)z{f(t—a), t>a

then L [e"”’f_(p);t] =g(t)
or L'l[e'“”f(p);t]]= f(t—a)U(t—a)

where U (7 —a) is the well known unit step function.

Proof : By definition, we have

00

L[g(t);p]l = J.O e " g(t)dt
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= [lemg(t)dt+ [ e g(t)ar
= IO e ”.0dt+ Lw e f(t—a)dt
=e ¥ f: ef”“f(u) du (putting t —g =y)

Hence L[g(t);p]=e"f(p)

or L [e’“"f(p);t}l =g(1)

2.5 Use of Partial Fractions

- g\p -
If f(p) is of the form Wp), where g and / are polynomials in 7, then break f(p) into

partial fractions and manipulate term by term.

Example4: Evaluate L' ! ~+ 52 4P +23
(p—4) (p-2) +5° (p+3) +6°

Solution : By the linearity property, we have

ol elpat b
(p—4)5 (p—2)2+52 (p+3)2+62

_ M ! LS gy 25 . Lo ! 2p .
p p +5 p +6

[Using L' {f(p—a);t} =e" f(t)]

t ) _
=e" Z+€2t sin5t+e ' cos6¢ .

ap
Example5: Find L' Lﬁe_wz } sa>0

Solution : Let 2p -=f(p)=> L‘[f(p)]:L‘[ 2p 2}:coshwt:f(t) (say)
p—w pi-w

Then using second shifting theorem

Ll[ pe®” }_{coshw(z‘—a) if t>a

p—w - 0 if t<a
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=coshw(t—a)U(t—a)

L] Pl L] 9p’ -1
Example6: If ['<—————:/r=tcost, thenfind L {——;
(p* +1) (9> +1)
2_
Solution:  Since L' {—2——:1{ =rcost
(p*+1)

Replacing p by ap , we have by Theorem 3,

2.2
-1 1
o P =1 =—Lcos(£)

21
L71 9p—-t — Lcos(i)

Example7: Provethat L'|$—;¢|=

Hence deduce the value of

e
L |——=;t|,where a>0.

Vp

p
Solution : Since :Ll L, 1 LJF
3

—-——+ - +.....
\/; \/; p 2!p2 3p

R S TR T U T Y
_p% p% 2!p% 3!p% """

b
< itl=L" Ly;t - L}/;t +iL’1 LS/;t 1 L 17/;1‘ Foreeenn
Jp % Rz 217 | 317 |

B T
= — + — B PP
drt Nro 3n 4sn
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e | e e e
Jp | e 2! 41 6
_ b
Now let ./ ( ) = eT . Then by theorem 3, we have
I e%”_t 1 cos2\/t/_k_ 1 cos2,/t/k
Jkp |k x(k) Nk Jme
So that L' e%”_t _ cos2yt/k
o tha i _—\/E

Putting k = A , we find that

I e%’_t :cos2\/z
Vo] e

Example 8 : Evaluate the inverse Laplace transform of
) P ) ( p+ 1) e’
® (p+ 3)% @ pr+p+1
Solution : @ L' p —tb=1L" p+3_73,t e P:3,
(p+3)" (p+3)" P
1 1
:e*3l Ll{ - ,t}3Ll{ . ,t}]
L P/ PA
_ o { t% B 31‘% }
- 5 7
(%) (%)

673[ |:it%_§t%

417277
Jr 13 5 }_ 15

) ) _ p+1 O
S L'i——— =L
(i) mce {pz +p+1}

(p+ 1)+ 15 oo
(p+1a) +34
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1

)

P 1 .,
P D S Y G ¢

()

_ f (e 2 [ﬁ)t

2¢ B2
= e\g {ﬁcosgt + sin?t}
I {(P;L 1)e ™" ;t} _ e(:/;)/z {\/5008?(1—7[)+Sin?(1—7f)} t>n
poapl 0, t<rw
_ e(gﬂ {ﬁ cos?(z‘ )+ sin?(z‘ _ ﬂ)}U(z‘ )

Example9: Find L' {;3/2;1‘}
2 2
p’+a

1
(p2 +2p+5)3/2

Hence obtain the inverse Laplace transform of

Solution : We know that [, [JO (at); p] = ;1/2

(p* +a’)

Now differentiating with respect to '4', we get

d a
L= Jy(at)p|= L[t 53(at) p] =-
or [ = Jolar) p} [t Ji(at); p] s
or L' ;'t ——LJ’(at)—iJ (at) (o Jy=—J))
(p2+a2)3/2’ g g IR
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Deduction: L ! —t|=L" 1 st
(p* +2p+5) {(p+1)2+4}
1
=e ' L it
(p*+4)"
_ e’éJI(Zt) _ L)

2
Example 10 : Use partial fractions to find the inverse Laplace Transform of 4p—44 .
p +4a

2 2 2

Solution : p = p = p

pt+dat (pz +2a2)2 —(2ap)2 (p2 —2ap+2a2)(p2 +2ap+2a2)

_ 1 p _ p
4a| p*-2ap+2a° p +2ap+2a’

L_ (p—a)+a B (p+a)—a ]
4a (p—a)2+a2 (p+a)2+a2

2
_ p | N +a Cat o —a
Ll[ﬁ;t}:— €IL1{12? 2;t}—€ ILI{I; 2;t}:|
p +4a 4a| p +a p +a

1 ) )
= 4— [cosatsmha t+sinatcosha t]]
a
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Self-Learning Exericse - 1
Fillin the blanks :

—
&
—
h ‘
S|
hat
.
—_—
|

5. L' {(1—2pcos€+p2)%;t}= .....

2.6 Exercise 2 (a)

1. Find Inverse Laplace transform of :
0 3p—8 4p-24 i) 5p+4_2p—18+24—30ﬁ
p’+4 p—16 p+9 p*+9 p
2
7 5 1 : 5 -1 7
e e S BN L
p p 2p )4 )4 3p+2
[ Ans. 1 3cos2t —4sin2t —4cosh4t+6sinh4¢
16172
()  5t+2t*—2cos3t+6sin3t +41° —
Jr
(i) %sin3t+567’+ t/ 7 (iv) 6t+l—ﬂ—%e% }
T

2. Show that

3 5 7
@) L' {lsinl;t} S S S S
p P ( !

G L {le‘/P;t} = J,(2+1)

p
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Evaluate the inverse Laplace transform of :

. _6pm4 . P Lo
O P 4pi20 @ () @ [p?—4p+20
. eV 3(1+e77) . e?
®) 2y O T O i

) ! ] P
(vii) 2p+3 (v p’ +25€

£ t*
[ Ans.: (1 6¢* cosdt +2e* sindt. (i) e’ ;—eﬁ 2
1 oy
i) e*J,(47) (iv) 5(r—4)2e My (1-4)
0 ,t>nxm

) sin3t, t<rw

. J,(3t-6), t>2_J (e—6)U(1-2)
) 0 , 1<2 -0

. 1 —31/2 *y . ( 47[) :|

——e t 72 cosStU |t ——
(vii) \/ﬁ (i) 5
2 4 6
Show that Ll{lcosl;t}zl— ! ~+ ! = — ! — e
p P 29" 4y (e
-1 l . -1 l
If L 3t :erfx/;,FmdL ——ta>0.
pp+1 pApt+a
[ N erf Jat }
ns.:
Va
2 3
Show that L' lJO[i ste=1- t3+ ! T ! Tt
p "\Jp @) @)
Find functions whose Laplace transforms are :
pefap e pefzp

0 pz_wzaa>0 (i1) (p_2)4 (i) P +3p+2



ho(t—a), t
[ Ans.: @) {COS (6)0( ) tzaa or coshw(t—a)U(t—a)

1 3 2(-3)
(i) E(t_s) er 123 or %(I—5)3 e’ U(t-5)

0 , t<5

2-2) _ ,-(-2)
(i {26 2(1-2) _ (-2 L 1>2 or {26,2(,72) _e—(t—z)}U(t_z) i|

0 , 1<2
8. Use Partial fractions to find inverse Laplace transform of the following functions :
‘ 3p+16 ' 5p*—15p—11 3p+1
O s W -2 @ (-1 (pP )
2
p -4 2 p2 +5p—-4

™ )+ O P22,

' P +2p+3
(i) (p2+2p+2) (p2+2p+5)

|: Ans.: (1) 563: _26—2t (11) _ %et _%IZeZt +4¢ ez: +%62t
! i i —ésint—ltcos2t+ﬁsin2t
(i) 2¢'=2cost+sint (V) 9 2 44
. I .,/ . .
(%) 2ie e (vi) ge (s1nt+sm2t) }
2.7 Inverse Laplace Trasform of Derivatives
Theorem 6: If L'l[f(p);t]]=f(t),then
al 7w T gl 4" w0 L "o
£ (70|~ 2| e | (10, =125
Proof: Since, we have
N o dt- n 7(n)
Ll f ey p]=(=1)" /() =1 ()
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ok |-

I [J}(n)(p); t]l _ ! |:

2.8 Inverse Laplace Transform of Integrals

Theorem7: 1If L[ f(p);t|= f(t), then

L' U: f(u)du;t} = @

Proof: From Theorem 10 ofunit 1, we have
t

L[f (1) ; p} = J:O f(u)du (provided that é_l)’gi {@} exists)

L' {I:f(u)du} = @

2.9 Multiplication and Division by Powers of p

Theorem8: If L™ [f(p);t]l: f(¢) and £(0)=0, then

L' pf(p)t]=f(t)
Proof: From Theorem 6 ofunit 1, we have
LLf(t):p] = pf (p)=1(0)= pf (p) (= f(0)=0)
Hence L[ pf (p)it]= /(1)
Remark 1. If £(0)#0, then L[ pf (p)- f(0);¢]= £'(¢)
or  L'[pf(pkt]= (1) +£(0)5(1)
where &(¢) is the dirac delta function or unit impulse function,

Remark 2.  Generalization to L’l[ P f( p);t]l is possible,

dl’l
dt"

ie.  L'pf(pst]=r"()=—51(0)

provided that £(0)=7"(0)=£"(0) =....= £ (0)=0

Theorem9: Let L'l[ £ p);t]l = f(¢).1f f(¢) is sectionally continuous and of exponential or-

der ‘a’ and such that Lim

t—>0

exists, then for p > a, we have
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L—l{@;t} = [ f(u)du

Proof: Let G(¢) =J‘;f(u)du
Then G'(1) = £(¢) and G(0) = 0
L[G'(t); p] = pL[G(1): ]~ G(0) = p L[ G(¢): p]

or f(p)=pL[G(t); p]

tate )L

Hence Ll[f ;p );t}=G(t)=fot f(w)du

Theorem 10. Let L'lﬂif_(p);tjﬂ= f(¢), then

L‘l[i (r) ;t} [1; 7 (u)dudy

p
Proof: Let G(t)=J‘; Iovf(u)du dv
Then G’(t):J‘; f(u)du and G”(t) = f(t)
Since  G(0)=G'(0)=0
Now L[G"(t); p|=p L[ G(t); p]- pG(0)-G'(0)=p* L

or  L{f(t):p}=p*L[G(1); p]

or - =1[G(0) p]

or L' [f(—f);t} =G(1)=[ [ f(u)duav

p

The above result may also be written as

[0 e

p

In general, we have

o [f(_f);t} 0



2.10 Convolution Theorem

2.10.1 Convolution of Two Functions :

Definition: Let f(¢) and g(r) be two functions of class 4, then the convolution of the two functions
/() and g(¢) denoted by f* g is defined by the relation :

frg=[ f(u)g(t-u)du (1)
The equation (1) can be written as
frg=[ fle—u)g(u)du Q)

The convolution f* g is also known as Faltung or resultant of /" and g.

2.10.2 The Convolution Theorem :
Theorem 11: Let f(¢) and £(¢) be two functions of class A4 and let L“[f_(p);t]] = f(¢) and
L_I[E(P);t] = g(7). Then

L'l[f If (t—u)du= f*g.

Proof: Here we shall prove that
L] [ £w)g(e-w)disp| = 7(p) - 2(p) -0
Let  H(0)= f(u)g(e-

L[H(t);p]l = J;D:Oe”” {Jzzof(u)g(t - u)du} dt (4

The region ofintegration A is bounded by the curves ¢ =0, t =00, y =0 and u =¢. ThusA is
the half of the first quadrant.

N
u

t—> oo

Figure 2.1

We can cover it by horizontal strip which starts from ¢ = u to ¢ = oo . For this strip 4 varies from
0to oo.
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= J.oooe”’“ f(u)du '[ e g(v)dv (putting  —yy =v)

or L' [f(t)* g(p);t]zH(t)
or  L'[f(p)-g(p)t]=l1/(w)g(t-u)du=fxg
Remark : The convolution theorem can be rewritten as :
L| [ @gli=w)dcp | = L[ (0% p] L]g(0):p]

Example 11 : Find the inverse Laplace transform of

_pr _p+l
@ (pz+az)2 (i) (pz+2p+2)2
1 pP+1
(i) 10g[1+—2) or log[ 2 J (iv)  cot”(p+1)
p p
Solution : (i) smcei[ = 2): 2
dp\p~+a”) (p*+a?)
and L' 21 =5t —lsinat
| p +a a
L' P__.i|=1" L 21 T |
(p*+a*) 2dp\p +a
—_l L71 i l °t .
~ 75 o\ p+d ) (Using Theorem 6)
1 t
=——¢t(-1)L" =—sinat
( ) p2+a2} 2a .
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W |2t o e
(p*+2p+2) {(p+1) +1}

= L | (by first shifting theorem)
(" +1)
I . .

=3 te'sint (proceeding as above)
.. r l
) Let f(p)= log[l+?) = Lﬂ;f(f);P:ﬂ

2
=—log : =—2logp+log(p2+l)

1| 2 4] = - _l p .
or Ll[f(p),f]——ZLI_;—pz_ﬂ,t}

=2 l;t}+2Ll[ L ;t}
LP P+l

L [f’(p);t]] = -2.1+2cost = —2(1-cost)

Bu L[/ (pht]=(-1)e /(1)

which implies that — (1) = —2(1—cos?)

o 10 o L] 2

t

(iv)  Let f(p)=cot(1+p)

or Ll[f'(p);t]z—l,ll 12 ;t]z—e’Ll[ 21 ;t}



or

or

Example 12 :

fl=L" [cot*1(1+p); t]l

—t f(t)=—e " sint

_ e 'sint
t

Find the inverse Laplace Transform of

a’ 1
(1 p(p+a)2 (1) »’ (pz +l)
1 p+2 1
. | .
(i) p o8 p+1 () pp+4
oo a’ d 1
Solution : (i) Since L' >t =—a* L' —[ );t
p+a) dp\ p+a

(—az)(—l) te =a*te™

2

= )2 ;t]:az J‘Olueiaudu:ﬂ;_ueﬂm _efau]l

L [_
p(

t

p+a u=0

=— [a te” + (e’”’ - 1)]

=1-e"(at +1)

ot |=sint
1

t
;t] =Iosinudu =1-cost

(ii)

+1)

= J-Ot(l—cosu)du = —sint

J-; (u—sinu)du = %tz +cost—1

+2)
+1)

(i) =log(p+2)-log(p+1)
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or

or

or

()

Example 13 :

()

(iii)

—t -2t
T e' —e
L' f(p)t]= t
B t 2t
I 1ng+2,}:e e
p+1 t
—u —2u
L' l10gp+2;z‘ :L;e du
p p+1 u
We have
1 1
L tl=et L it
{vp+4 } {JE }
» (V2 AR
r(/2) =

1 24t 2
=ﬁ J-O e dt

SOt
L L p+4,t}—2erf(2x/;)

Calculate

n
oo [w_WH

Lfl

2p ’
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(ii)

()

(using Theorem 9)




1
v L 7t
|:(p2+a2)é ]

1 (Wp+)-t

1 1
Solution : (i) We have D+l \/_(\/;+1) \/; \/—(\/— )

L{;'t}—L [ ]
o] o7

:i/;—e erfc(\/;)

L erc\/;;p = !

{ [ 4 ]l (\/p+l)[(\/p+l)+l]}

[

R T O R

t .o . — 1
= \/;+e erf(x/;){.L[erf\/;,p]—pm}

i) f(p)= 1og[p+2— Vi’?”] = log(p++/p* +1)-log2p
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or

(iv) Since

p(1_,-Pr _ _
Hence L M;l‘ =L ezp st|= L7 ejp it
I p(p +1) p(p +1) p(p +1)

{1-cos(t-=1)}U(t-1)—{1-cos(t —2)}U (t-2)

0 , t<1
= l-cos(t—=1) , 1<r<2
cos(t —2)—cos(t —1), t>2

1

) Since L[Jy(at); p] :W

Differentiating both sides with respect to 'a', we get

j—a L[Jo(at);p]] :j_a {\/ﬁ}

L[—JO at;p}z 4 2
a ( ) (p2+a2)é
or L[l‘ J(;(at);p]]= — y
(p2+a2) 2
= 1 . :_LJ(; (ar) = tJ,(at)
(pz +a2) 2 a a
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Example 14 : Apply convolution theoremto prove that

L‘[ ! ;t} zéerf(%/;)

pp+4

Solution : Since L' {#;t} = L {L;t}
Jp+4 Jr

and L' {l;t} =1
p

.. By convolution theorem, we get

L‘[ ! ;t} = %erf(%/;)

pp+4

Example 15: Evaluate J‘; sinucos(t —u)du.

Solution : Let f (t) = J.; sinu cos(t — u)du

L [f(l‘); p]l =L U(: sinucos(t — u) du; p}

= L[sint; p]. L[cost; p|

1 p p

:p2+l ' p2+l:(pz+l)2
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f(t):%tsint

Example 16 : Apply convolution theoremto prove that

! m— n—l1 F(m) F(n)
B(m,n)ZJOu (1-u) duzr(m—Jrn),(m>O,n>O).
Hence duduce that
J%Sin2n1—l 0 C0S2n—l 0 — lB(m,n) — F(m) F(I’Z)
0 2 2T (m+n)

where B(m,n) is called Beta function.

Solution : Let f(t) = J.; u"! (t - u)"ildu

By convolution theorem, we have
LF(p)=L | [ o) dusp |
= L[t”“;p]l . L[I’H;p]l

L(m) T(n) _T(mT(n)

m pn = pm+n
1= [P0 v g [ ]
T (m+n)

Now taking ¢ = 1, we have
- n— I'(m)I' (n
Jou 1(l—u) 1a’uzL_i_()zB(m,n)

Deduction: Putting i =sin’ 0, du =2sinOcosOdO
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B(m,n)= JO% (sin6)™"*(cosH)™" " 2sinGcosOdO

7 I'(mID
lB(m,n) = J’Asinz’"*1 fcos™ ' 0d0 = L(m)C()
2 0 2 p(m+ n)
Thus, we get the required result.
Self-Learning Exercise - I1
Fill in the blanks :-
1 L' {f”(p);t}z ...... 2 L {j f(u)du,t}z ......
3 L‘{ 1 2;t}= ...... 4 2] 1 ifr=
(p—a) (p+1)
5. State the convolution theorem for Laplace Transform.
2.11 Exercise 2 (b)
1. Find the inverse Laplace Transform of
2 2
. . 1
(N i 1 (i)
p +b r(p+1) p(p+1)
W © o) log[1+2
v B e \4 YRS vi og|l+—
pAlp+a’ Pz(l?+3) 8 p2
2(cosht —cosat B t?
|: Ans.(i) ( t ) (11) te—z+2e—t+t_2 (m)l—e [l‘f‘t‘i‘EJ
, , 2 1 1 4 , 2
) [, Jo(au)du V) §t+§—§e (vi) 7(l—c0sa)t) }
2. By making use of convolution theorem, find
0) Ll[ 1 't] M) L | @y
20 P AT e— ;
pz(p+l) pz(pz—az) (p2+4)(p+2)
: , 1 .
[ Ans. @) te +2e +1—2 (i) ;(—at +sinhat)

(iii) %(sinZt—cos2t+e2’) }
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3. Use convolution theorem to find

0 |l —2 W L
(p2+a2) p(p2+4)
_ 2 } _
@ | I A B e a
(p* +a*) (p*+a*)
tsinat 1
i i — |1 —cos2¢—tsin2¢
[ Ans. ) % (i) 16 [ ]
(i) %{t cosat +lsinat} (iv) 8% [sinat —at cosat] }
a a

4. Prove that J.; Jo(u)sin(t —u)du =1 J(¢)
5. Evaluate :

' ® o0sf - ST = sinf

i [ costar @ [ eta Gi) | i

. 1z . Jr z

[ Ans. (1) 2\ 2 (i) ) (i) 2}
2.12 Dirichlet’s Conditions

If f(¢) satisfies the following conditions

)] f(t) is defined in the interval ¢ <t < c+ 2«

(i) f(z) and f'(¢) both are piecewise continuous in ¢ <t < ¢ + 2¢

()  f(r+2a)= f(¢) ie. f(¢) is periodic with period 2« .

The above conditions are sufficient (but not necessary) conditions for the convergence of a
Fourier Series.

2.13 Fourier Integral Theorem

Theorem 12: Let f (t) satisfy the Dirichlet’s conditions in every finite interval — g << o
and if _[w ‘ f (t)dt‘ converges (or f(¢) is absolutely integrable in (—00,00)) then at each point of

continuity tof f(7),

ft)= % :iv J-:;_w f(u)cos{v(t—u)}du -(6)
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1
If '#' is a point of discontinuity, then the L.H.S. of (6) is replaced by ) ﬂif (t+0)+ /(- 0)] ie.
the mean value of f (t) at the point of discontinuity.

The above conditions are sufficient but not necessary.

Since we know that sin {v (- u)} is always an odd function of v, therefore, we have

Lo .
0=5-Jdv |, 1 (wsin{v(—u)}du 0

From (6) and (7), we get

f(t)= L dv Liwf(u) ¢ dy

27r Jv=—

o f(t)= ij.vie:’dv [~ flw)e™ du (8)

This result is known as the complex form of Fourier integral.

2.14 The Complex Inversion Formula

Theorem 13 : If f (t ) has a continuous derivative and is of exponential order y for large
positive values of ¢, where y>0 and if L[f(t)]] = f(p) then L“[f(p)]] = f(¢) is given by

1 y+ioo

SO =577 o F(P)p, 150 (9)

and  f(¢)=0; £<0

Proof: If g (t) has a continuous derivative and if fo g (t) dt is absolutely convergent, then g (t) may

be represented by the Fourier’s integral such that

1 (o . .
g(t)===] e"av | g(u)edu .(10)

o0
2 —0

f(1), t>0

e’’’
Now let us tak t)=
oweusaeg(){ 0 . <0

then J‘i g(t)dt is absolutely convergent for y >0

Hence from (10), we have for ¢ > 0

e f () ! et U: e fu) e du} dv, r>t

T2pd
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:E wem (7/+zv) dv [ L[f(t)}l:f(p)]l
e’ f(t)zz_m- Hwe(p " f(p) dp (putting ¥ +iv = p, so that dv:d—_p)
i
1 Y +ioo ot 7
= S)=5 ) ¢ fp)dp, t>0

Remark 1:  Inthe above proof, we also assume that ¢~/ ¥ (y;) is absolutely integrable in (0,00), L.

©  _yu
Joe
0

Remark 2 : The integration in (9) is to be performed along aline Re ( p) =y in the complex plane

f (u)‘ du converges, so that Fourier’s is integral theorem can be applied.

where P =u+1V Therealnumber 7 ischosen so that theline p=y lies to the right ofall the singularities
(poles, branch points or essential singularities).

2.15 The Bromwich Contour

The integral (9) in Theorem 13 can also be evaluated by considering the contour integral

1 ¢ - y
gie” f(p)dp /h)

)
jes]
1
> —d—d¢— 3 —> W

Figure 2.2

where ( is the contour, as shown in the Fig. 2.2. The contour C is known as Bromwich contour and is

denoted by (i) aline 4B (ii) arc BDEGA ofa circle of radius R with centre at the origin 0. Also let the
arc BDEGA be denoted by 1, then we have



1+, - 1

or =] e"f(p)dp==—{§e" f(p) p——f e"f(p

2midrit 2riv,

Letting 7'— oo Or R —> o0 a8 R*> = > + T and using the integral of the equation (9), we have

f(t)= Lim| — jS “fp dp—%] p)dp (11)

R—>w 27[1 "

2.16 Use of Residue Theorem in obtaining Inverse Laplace Transform

Theorem 14 : Suppose that only singularities of f ( P) are poles which all lie to the left of the
- m
line Re(p)=y forsome real constanty. Also suppose that ‘f(p)‘ <R where k >0 and M

are constants, such that Lim [e” ( p)dp = 0, then the inverse Laplace transform of f ( P) is

R—>© T
given by
f(¢) = sum of residues of ¢” f(p) at all the poles of f(p) ..(12)
fer 7 () Yap=—1 ["em F(p)d LJ "7 (p
Proof: ! 2 7i - € 27i ..(13)

where C is the Bromwich contour and T is the circular arc BDEGA

Now by Cauchy’s residue theorem, we have

1

Ep e” f(p)dp = sumofresidues of e” f(p) at all poles of f(p) inside C...(14)
mi

C

Using (14) in the equation (13), we have

ZLm' :j;e’” f (p)dp = T Residues inside C—%ﬂi le’”f(p)dp

Taking the limit as 7 — oo (0r R — o0 as R*> = y*> + T°), we find that

f(t)=X Residuesinside ¢

"+ Lim |e” f(p)dp =0 and

R—

l ¥ +ioo

f(t)==—

ptr
Y71 | i© f(p)dp,t>0

/(t) = sum of residues of e” f (p) atall the poles of F(p).

Example 17 : Use complex inversion formula to obtain the inverse Laplace transform of
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. r
(p+1) (p—1)

Solution : Let p = Re', we have

s _ [Re"|
‘p+1 ‘ p+1|p-1 ‘Rei‘9+l“Rei‘9—l‘2

< R
(lRep-1) (IR e"“)\—l)2

R

L %)]

_z,fOI'R>2

1 1 1 SO A
' [(p+l)(p_1)2]_27ri J;*iw (p+1) (p—l)z dp

_ 1 § e” pdp
27i L (p+1)(p-1)
— sum of residues of e”* P 3
(p+1) (p-1)

pole).

Now the residue at simple pole at p = —1 is given by

e” 1
fn 1 [ =

and the residue at the double pole p =1 is given by

pt pt
Limli (p—l)2 S A S— 5 :Limi{pe }
-1 1ldp (p+1)(p_1) =1 dp | p+1

Lim (p+1)(e” +pte™)-pe” _ e'(1+21)
Pl (p+1) 4
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(C being Bromwich contour)

at poles p =—1 (simple pole) and p =1 (adouble



P _e(1+21) 1,
4 4

L' [ - = ——e
(p+1)(p-1)

Example 18 : Find L™ { ],using complex inversion formula.

(p+1)

1 1 1

Solution : Here f(P)= (pz +1)2 = [(p+i)(p—i)}|2 = (p+i)2(p—i)2

- 16
Since ‘f(P)‘ < g (R>2) for p = Re", therefore

1 1 y+ioo e’
L' = d,
me)z] i b oo oy

1 e
= d
27 i<p+f>2<p—i>2 ?

!t
ep

(p+i) (p—i)

Sum ofresidues of - at poles p =i and p = —i which are double poles.

Now, residue at pole of order2 at p =i

d | 2 e’”
=Lim—|(p-i) .
p—i dp _( ) (p+l)2 (p_l)z ]

o d | e’
= Lim — 2
p—i dp _(p—i—l) ]

(p+i)2te‘" —2(p+i)e‘"

=Li
P (p+i)4
. pt_ pt
= Lim (p+z)te 32€ =—ltei’—liei’
poi (p+l) 4 4

And the residue at pole of order 2 at p =—i is

1 -
=——te''+—ie"
4
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1 1 .
=——7fCOSt+— sint
2 2

1, .
=—(sinz —cost)
2
Example 19 : Use complex inversion formula to obtain inverse Laplace Transform of

-
(p+l) (p2+l)

Solution : For p = Re" we have ‘ 7 p)‘ < % (R >2), therefore

4 1 b e e
t [(p+l)(p2+1)]_27ri J-riw(p+l)(p+i)(p—i) b

pt

1 e
T 27i §(p+l)(p+i)(p—i

C

)

e’

p+1)(p+i)(p—i)

= sum ofresidues of (

at simple poles p=-1, p=—i and p=i.

Now, Residue at simple pole at p = —1

= Lim (p+1) {(p+l)(;ii)(p_i)}:%t

Residue at simple pole at p = —i

= Lim (p+1) {(p+1)(p+i)(P—")}: ~2i(1-i)

(1+i)e™
4i

¢ (1—-1i)
4i
73

Similarly residue at simple pole at p =i is



1 e’ 1 I,
Lfl _= - it 1+ it 1—;
[(p+1)(p2+1)] > 4i€ ( +l)+4l_€ ( l)

_e_ﬂ‘+l eit _efit _l eit +e*it
2 2 2i 2 2

= %(e’ +sint — cost)

2.17 Inverse Laplace Transform of Functions with Branch Points

If f (») has branch points then Bromwich contour C is suitably modified e.g. if f () has only
one branch point p = 0, then the contour given in the fig. 2.3 can be used. Here BDE and LNA are the
arcs of the circle of radius ' R' with centre O while FHK is the arc of a small circle centred at () of radius

€. This procedure can be understood by the following example.

N

D

'\ B(r-iT)

E :
H S0,
O 7z
L
_—/A(r-iT)
N
Figure 2.3

—aJp

Exmaple 20 : Evaluate L™ {e } by the use of complex inversion formula.

p

Solution : Using complex inversion formula, we have (by Theorem 13 and equation (9))

+ioo -ayp +ioo pt=ap
L I

= = d
2midr-ie p 2ri P ~(13)

y—io p

ept—a\/;
But the point p =0 isabranchpomntof| , |. Therefore we consider the contour C as

shown in the above Fig. 2.3 i.e. Bromwich contour which is indented at the point p =0 by means of a

circle of small radius e with centreat 7 =0,
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. dp = dp + d,
27[l'i p 27[1/;[9 p P 27 Bz[E p P
1 pt—a[p 1 pt—a\p
+ J dp +—— J dp
2ri g, p 27l g P
1 P r 1 P r
v | dp+-— | dp .(16)
iy p 27i 5, D

Since the singularity p = 0 ofthe integrand is not inside C, the integral on the left of (16) vanishes

by Cauchy’s theorem. Also the integrand satisfies the condition of Theorem 14 (i -e. Lim e” f(p)dp = 0)
so that on taking the limit as R —» oo, the integrals along BDE and LNA tends to zero. It implies that

1 tiwpP 751\/; ptfa\/;
f(t) =— e dp = Lzm— ¢ dp
2rwi Y- p Row @iy, P
. 1 e —a\p e a\p e a\/7
=dim o [T | e [ 1)
e—>0 7l EF FHK

Along EF, p=ue™ so that \/;=\/;€m/2 =ivu and as p goes from —R to — e, u goes
from R to e.Hence we have

e

EF p

pt—a\/7 pt a\/; —tu—ai\Nu
€ e
dp = J

Similarly along KL, p=ue™, \/;=\/;ef’”/2 =—i+u andas p goesfrom —eto —R, u
goes from ¢ to g . Therefore

e

KL p

pt—a\/7 pt a\/; —tu+aiNu
dp = J

i0

Also along FHK , p=cé'

e

FHK p

and, we have

pt—a\/; - eeemt—a cel?? 0
dp = J ———5—iee" do
T

€e

_ l J‘*ﬂ eeemtfa Eei()/z d@
b4

Now substituting these values in the equation (17), we get
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1 —tu—aiNu —tu+a1f

f(t):—Lim - Jee du+_[

R u

du+i _[ e

a

. 1 R e—zu (eai\/; _efai\/i) T e a(\/;)e,'e/z
=—Lim - _[ du+z_[ e do
R—w D i € u
e—0
- R e “sina —TT el —_a(e) 0
=—Lim — 21_[ \/_du+z_|. e (v¢) do
Ro® D ] € u m
e—>0 L
T ce®t—a(C) &2 -z
But  Lim [ e ap=[T.d0= -2z
e—0 Jr T

t): 1_1 Jwﬂdu
T Y0 u

or f(t)=1-erf [261—\/;} =erfc [261—\/;}

2
) 1 (e ™sinau 2 ve “'sinaw
Since I:—J —du——J — dw
T Y0 u T 0 0]
dl 2 > _ >
— d—z—JOe”’cosawdw
a 7

2 ’\/7[ _ 2/4 *© —at? N-TT — 2/451
== NZ a/u | e cosptdt=——e "
N [ ) RN/

dw

\/_ J‘ae /s da J‘a/zﬁ -

o)

Example 21 : Find L’l[e”‘ﬂl.

e 2 a2Vt o
Solution : Since f(l‘)=Ll{e }=1——J~ e da

Also Since f(0)=1-—= _[: e do=1-

-7 ee'()tfa(\/g) &0

.



al2dt .
Therefore L™ [efa\/;]l =/'(t) :% {1—% JO/Z e’ da)}
T

__2 el i[L)
Jr dt\ 24t

= e7a2/4l

__a
24t

2.18 Inverse Laplace Transform of Functions with Infinitely Many
Singularities

In this case, we have to choose the radius R, of Bromwich contour of the curved portion such

that there exist only a finite number of the singularities inside it and the curved portion does not pass
through any singularity. Therefore the required inverse Laplace transform can be obtained by taking an
appropriate limit as m — oo and this will be clear by the following example.

cosh
Example 22 : Find L' {—u\/;} ,where 0 < u <1

pcosh\/;

Solution : First ofall, we have to find out the singularities of

- h
F(p)=220NP ”\/;, O<u<l .(18)
pcosh\/;

) 1+ (ufp) 20+ () 41+
pl1+(Jp) 204 (p) fa... ]

1+’ p/2l+utp A+
p(l+p/21+ p* /41+......) ..(19)

But by inspection, it appears that p =0 is branch point due to the presence of (\/; ) in the

equation (18). But it is not so, therefore it is evident from (19) that there is a simple pole at # =0 So the
function f (») has infinitely many poles which can be obtained by the root of the equation

or e2 ”:—lze”i+2k”i,k:0,il,i2 .....
1) . 1y,
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Figure 2.4

which are the simple poles. Hence f (») has simple poles at p=0and p=p, where

1 2
p,,=—(n—5) T n=123,...

Therefore, the required inverse Laplace transform can be obtained by using the Bromwich
contour. The line 4B is such that all the poles lie to the left ofit. Again we have to choose the Bromwich
contour so that the curved portion BDEFA is an arc of circle T", with centre at the origin 'O' and radius

R, =m’n’ where m isa positive integer. This implies that the contour does not pass through any ofthe

o coshu,/p

poles. Now to find the residues of e” ‘f ( ) at the poles. We have
pcosh \/_

e’ coshu\/_ }

Residueat p =0 is %i’%? (p B O) { pcosh\/_

Lim (p-p,) ercoshuyp| | (p=p)|_ | e coshuyp
pp P PCOSh\/_ ""P cosh\/_ PPy p

= Lim Lim

7| (sinb ) (/24) a{fhﬁ}

If C, is the contour of fig. 2.4, then
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pt 1\ 2,
1 .f’;e COShu\/—d =1+ i =) o) ”tcosh(n—l)ﬂu
27i c cosh\/_ Vs 2

Now, taking the limit as m — oo and the integral around I',, tends to zero, we find that

{coshu\/_} ii (1) cosh(n—l)ﬂu.
pcosh\/_ ] 2

2.19 Summary

In this unit you studied important results for inverse Laplace transform. Various methods for the
evaluation of inverse Laplace transform were explained and illustrated with the help of solved and unsolvd
problems. We also discussed complex inversion formula and inverse Laplace transform of certain
functions were obtained by using this formula.

2.20 Answers to Self-Learning Exercises

Exercise - I
n 3
L= 2 L 3cosar+sin2e
n! 6 2
3. L(2V) 4 J(a) 5. €], (tsin6)
Exercise - 11
t
1 (=)' f"(r) 2 @ 3 te 4 te”
2.21 Exercise 2 (¢)
1. Find the inverse Laplace Transform of each of the following using complex inversion formula :
1
: p .
O P - (p+1) (p-2)
1 1
W -39 W )
p’ ' pr+3
W (p+a) M) (pr1)(p*-2p+5)
1
(vii) (P + a) ( p— b)2 where ¢ and p are any positive constants.
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1,1, 1,
|: Ans.(i) cosat (11) 56 +§t€2 ——e
.. I 5 1 4 1, . I,
—e ' +—e" ——e —t" +cost—1
() 33 14 10 ™ 3
lsin22‘ +ltc0s2t i le*’ +le’(cos2t +sin2¢)
® g 2 M) e T

—at

) e e’ e
W) Gap) (a+b) (a+b) }

Use the complex inversion formula to evaluate :

. i . h
@ L' jmh& ,(0<u<a) (i) o P u\/_ (O<u<a)
| p” cosh pa )% cosha\/_

i 71_ V4
oot _<p+1>3<p—1>2]

-t 2 1 t
(i) ee (l—2t)+Ee(2t—l) }

Find L [ 3P 2_ ! ] by the complex inversion formula.
p(p=1)(p+1)

[ Ans. te'+e' +1 }

cosh pu

Evaluate L' [ }, O<u<a

p’cosh pa

> - COS cos
Y/ — (2n - l) 2a 2a

2_a2)_16a2 = (-1) (2n-0)zt  (2n—1)7u }

1.,
—\t" +u
[Ans. 2(
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1 e VP k
Find L~ .Hence deduce that L' | —— |=erfc| —=
p k™ p 24t

[ Ans. erfc[#) }

Find L™ [

2

(p=1)(

; by the complex inversion formula.
p + l)

[ Ans. e (1—1)+cost }

B sinht\/;
Evaluate L™ | ——= |, , p>0
|:psinh\/;:| O<t<l,p

[ Sl (o5
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Unit-3
Solution of Ordinary Differential
Equations with Constant and Variable Coefficients
and the Solution of Boundary Value Problems by Laplace Transform

Structure of the Unit

3.0  Objective

3.1 Introduction

3.2 Solution of Ordinary Linear Differential Equations with Constant Coefficients
3.3 Solution of Ordinary Differential Equations with Variable Coefficients
3.4  Exercise 3 (a)

3.5  Partial differential Equations and Boundary value Problems

3.6  Solution of Boundary Value Problem

3.7  Heat Conduction Equation

3.8 Wave Equation

3.9 Summary

3.9  Answers of Self-Learning Exercise

3.10 Exercise 3 (b)

3.0 Objective

The main object of this unit is to give application ofthe Laplace transform for finding solution of
ordinary differential equations with constant and variable coefficients and boundary value problems such

as heat conduction equation and wave equation.

3.1 Introduction

The Laplace transform is a Mathematical tool for finding the solution of ordinary and partial
differential equations. By the application of Theorems 7 and 9 of Unit-1, the Laplace transform reduces a
differential equation into an algebraic equation (which is known as subsidiary equation in the transformed
function). The required solution is thus obtained by finding the inverse Laplace transform of the

transformed function.

This method is very useful specially when the initial conditions i.e. the value of the function and its

derivatives at t =0 (say) are given in the problem.

The advantage of this method is that it yields the particular solution directly without the necessity of

first finding complementary function and particular integral and then evaluating the arbitrary constants.
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3.2 Solution of Ordinary Linear Differential Equations with Constant
Coefficients

Let us consider a linear differential equation with constant coefficients

d’x dﬂ71x+a d”72x+ +a d—x+a x—f(t) (1)
2 r b o,

n—1

where >0 and f (l‘ ) is a given function of the independent variable ¢ . Suppose we want a

solution x = x(¢) ofthis equation satisfying the initial conditions,
x(0)=x,, x'(0) = x,, x"(0) = x, ,...... ,x(”fl)(O) =X,
and x(")(O) =x, whent=0 +(2)
We also suppose that there exists a transform of the solution of (1) and of'its derivatives

dx d’x d"x - _
A o Also let L[f(t),p]]—f(p) and L(x)zx

Now multiplying all terms of (1) by e #* and then integrating w.r. to '¢' between limits 0 to oo and
using the formulae for Laplace transform of derivatives, we have

o . d"'x o _od"'x o _odx
I e’ ndt+a1_|- e’ ——dt+..... +aHJ- e —dt
0 dt 0 dt 0 dt

g’ dnfl d
. L[dtf}al/:[rn’f} ..... +a,,1L[d—ﬂ+anL[X]=L[f(t)]

= (p”)?— P 'x, —p”’le—....—xn71)+al(p “x-p" xo—....—xnfz)

Now collecting the coefficients of x , we have
= n n—1 n-2
X(p"+ap" +a,p T+ 4a, p+a,)
= f(p)+x, (p”’1 +a,p"t+va,p"+.ta, ) +x, (p”’2 +a,p" T+ +aH)
+x,(p" 7 +ap o a, A, L (pra)+x, ..(3)
The equation (3) is called the subsidiary equation. Dividing by ( pl+ap .. +a, ) , we get

x isafunctionof p.Now resolving this into partial fractions and taking inverse Laplace transform we get
x is a function of ¢ . This will be the requried solution of (1) under the given conditons (2).
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Remark : How to obtain susidiary equation?
Ifthe given diferential equation is written as
(D" +a, D" +a,D"*+....+a,)x = f(1),
the L.H.S. ofthe subsidiary equation is obtained by replacing p by p and x by x . The first term
ofthe R.H.S. is the Laplace transform of f (t) whereas remaining terms are terms in x,, x,,.....,x, , multi-
plied by some polynomialin ' p'. These polynomials are obtained by dividing ( p'+ap T +a,p" +...+a, )

successively by p, p*, p°,..., p" and dropping off any negative power of p.

3.3 Solution of Ordinary Differential Equations with Variable Coefficients

The Laplace transform technique is also useful in solving the differential equations in which the
coefficients are variable. For this purpose, we always use the result of theorem 9 of unit -1, because an

n

expression of the form #” is involved in the given differential equation.

n

4
Example1: Solve d_i} —y=1, subject to conditons;
dx

Solution : We have (D*—1)y =1
Let L(y)=y . Taking Laplace transform of both sides, we have

(p* =1y = L)+ y,(P*) + »(P*) + 2, (p) + ¥,(1)

or (P4 - I)J_’ =

S 1
y_p@“4).df—0@k”)
L

p
2 (pz _ 1) 2 ( P+ 1) (resolving into partical fractions)

Taking inverse Laplace transform on both the sides, we have

pwe-{ Dl et
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1
y= —I+Ecosht+cost

n
Example2: Solve (D* +9)y =cos2t, if y(0)=1, y(;) =-1,

Solution : Let L( y) = ¥ . Then taking Laplace transform of the given differential equation, we have
(p2 + 9))7 = L(cos2t)+ py, +»,
But y’(0) = y, is not given, so let us assume

y(0)=y =c (w3 =1)

(p +9))7=p2p 4+p.l+c

+
_ p (p+c)
O T 9) (2 49)
v 1 p P __c
5(p2+4) 5(p2+9) (p2+9) (p2+9)
__i p c p
O VTS e9) (P +9) 5(p+4)

. 1
Hence ¥(1)=L"'(¥)= %cos 3t + % sin 3¢ + gcos2t
But we are given that y(%) =-1 se= 1%
Putting the value of ‘c’ in the above equation, we get the required solution i.e.

y = icos3z‘+isin3z‘ +lc0s2t .
5 5 5

d
Example3: Solve (D2 +1)y =tcos2t, y=0, d_)t}: 0 when ¢ =0.
Solution : Taking Laplace transform of both the sides of the given differential equation, we get

(p2+1))7:L[tcos2t1+y0(p)+yl(l), where L[y]=7¥

d( p |\ p -4
dp\p*+4) (p*44) (v2=0=y)
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Ay— 5 1 5 1 8 1
bt [<p2+1>]*5L [<p2+4>]*?” LJ

= —ésint+isin2t+§Jtlsin2u.lsin2(t—u)du
9 18 3702 2

(by convolution Theorem and Ll[ 21 } _1 sin2¢ ]
p +4] 2

= ?sint+%sin2t +%£[cos2(z‘ —2u) - cos2t]]du

t

= D gint+—sin2e +l[_—lsin2(z‘ —2u)— ucos2t}
9 18 3] 4 )

- "sint +isin2t +isin2t —Lcos2t +isin2t
9 12 3 12

y =—sint +isin2t—£cos2t
9 9 3

Example4: (2D*+3D-2)y=0, y(0)=1, y(1) >0 as t — oo
Solution : Taking Laplace transform on both the sides, we get
(20" +3p=2)7 = L(0)+ 3,(2p+3) + »,(2)
But y'(0) = y, is not given, so letus assume y, = 4
(2p*+3p-2)y=(2p+3)+24

_ 2p+2443 _ 2p+3 24
or y_(zp—l)(p+2)_(2p—1)(p+2) 2p-1)(p+2)

prd
-2 4

(p—;yp+ﬂ (p—;yp+ﬂ

1
p+2——

(p—;yp+ﬂ (p—;yp+ﬂ
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_(p_;)+(l?—;)(p+2):(p—;)+ ( ;) p+2 ;
_ 1 4-) 1 24-1
p—; 5 (p+2) 5(1,_;)

(24+4) (24-1) 1

sp-ty) 5 (p2)
2A+4)e,/2 (24-1) ,,

e

5
But  y(t)>0ast—>wo= % must be zero

2A+4:0:A:—2

Hence y(7)=e™' isthe required solution.

2

Example 5: Solve 2cz;tf+8x=CU(t—a) if x(0)=10, x'(0)=0 and U(¢f—a) is a unit step

function.

Solution : The given equation may be written as
(2D* +8)x=CU(1-a)
Taking Laplace transform on both the sides, we get
(2p +8)x = CL[U(t —a)]+x,(2p) + x,(2)

—ap

or (2P +8)¥=CE—+20p+0 (~+ %, =10 and x'(0) = x, = 0)
p
i} @ 10p
—c_°
r 20(p +4) (p+4)
__Ce™J1 p 10p
o Ty {p p2+4}+(p2+4)

Taking inverse Laplace transform on both the sides, we get
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= L'(¥)= %{l—cosZ(z‘—a)}+lOcosZt, if t>a
10cos2t, if t<a

Example6: Solve (D2 +4)y = f(2), »(0)=0, y'(0)=1

1 O<t<l1

where f () = {O o1

Solution : L[f(t);p] = J:O e f(t)dt= J‘Ol e ™ 1.dt+ J‘:O e ”.0.dt

L[f(0)]= [ evar= [ j 1 e

Pl P P
Taking Laplace Transform of the given differential equation, we get

(P> +4) 7 = L[ £(6)]+ »o(p)+2.(1)

-p -p
:l—e—+0+1=l+l—e—
p P p P
_ 1 N 1 e’
4 pl+4 p(p2+4) p(p2+4)
since [ 1 :s1n2t
_p2+4 2
I 1 B J-t sin2u du = 1 —cos2¢
p(p2+4) o 2 4
i 7T |1—cos2(t—1
» L71 L _ COS4( )’ >1
2
| p(p"+4) ] 0 i<l
%sin2t+l_cjszt, t<l1
y:Lfl()_;)z

1. 1 1
—sin2¢ ——cos2t +—cos2(t - 1), 1 > 1
2 4 4

Example7: y"+y'+4ty =0 if »(0)=3, 1/(0)=0.

Solution : On taking Laplace Transform of the given differential equation, we have
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or

or

or

or

L{ty"]+L[y']+4L[ty]=L(0)

dp

dp
(p2 +4)§+pz=0
P

dz _pdp

z (p2+4)20

On integration, we get

or

But

logz+%log(p2 +4)=logc

Hence y=3J,(2¢)

1 1(y)= p3(0) -3 ()] +[p L)~ (0]

P

427

—i[pzz—p.3—0]+(pz—3)—4§=0 where L(y)zz

Example8: Solve ty"+(t—1)y' -~y =0, y(0)=5, y(0) =0.

Solution : Taking Laplace transform ofthe given equation, we get

or

or

or

L[ty”]]+L[ty’]]—L[y’]—L[y]] =0

d d
2 Llyr==
dp [y] dp
di,_
L — p(0)=v'(0)] ==
dp[p 7-py(0)-y'(0)]
d d
dp dp

L[y'|-L[y']-L[y]=0

(since y'(0) isnot given, let »'(0) =¢)

&9

(v)=0



or (p2+p)c;—j+(3p+2))7=10

dy, 3p+2 10

V= ..(4)
dp p(p+l)y p(p+l)

or

which is a linear differential equation.

1)

3p+2 ) 2
Now LF. = eJ[P(P“)Jdp — ej[;*m”’p

:pz(p+1)

Therefore the solution of the above equation (4) is

2 10 2
ypilp+l)= .p(p+1)dp+c
o= 2 e

=5p° +¢,» where c, is the constant of integration
or I T
Y p+l p’ ( p+ l)

y=5¢"+c, (t+e”—1)
Buy y(<>0)=0:>c2 =0

Hence y=35¢" istherequired solution.

3.4 Exercise 3 (a)
Solve the following differential equations by means of the Laplace transform :
d’y
L. a7 +y=0; y(0)=1, y"(0)=1 [Ans. y = smt+cost]
d 9 19 .
2. (D2+4)y=9t,y=0,—y=7,whent:0. [Ans. y=—t+-—smnf]
dt 4 8
3 (D*-3D+2) y=1-¢", y=1 d—y:O when 7 =0 { Ans y=l+lez’—te2’
' ’ C dt - ) 2 2
4, (D’-D*-D+1)y =8te” giventhat y(0)=0, y'(0)=1 and »"(0)=0.

[Ans. y=(1+2r+1)e" —(1-1)e']
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10.

11.

12.

13.

14.

GV 287 915, 0 satisfyi i _0. v(0) = _
00 0 Y , satisfying the conditions, y(0) =0, y'(0) =1, y(1)=0.
{ Ans. ylee” —(l+£)e’ +(l+£)e2’ where C:i }
6 2 3 (e—1)(2¢+1)
d’y . dy
+2—+y=t, gi =— - _
i " y=t,giventhat y(O) 3, y(l) 1

[Ans. y=t-2-¢"+te”]

2

d’y
dr’

+a’y = f(t), where y(0)=1, y'(0)= -2
A = cosat—zsinat+ljtf(u)sina(t—u)du
[Ans. Y P b ]

(D*=2D%+5D)y =0, (0) =0, y'(0) =1, »(74) = 1
[Ans. y=1-¢'(cos2t—sin2t)]

(D*+n*) y=asin(nt+a), y= Dy=0 when 1 = 0.

a r.
[ Ans. y=—3 [sinnt cosa —nt cos(nt +at)| }
n

[D*-3D+3D-1] y =17

5 t

[Ans. V= At’e + Ate' + Ae' + t;)

where A4, A, and A, are arbitrary constants. ]

(D* +1)y =1 with y'(0)=1, y(%)=0. [Ans. y=t+mcost]

(D3+1)y:1, t>0ify=Dy=D’y=0 when¢t=0.

e J3ef 2

dy

2
dt*

d
+3;yt—2y=0, W0)=1, y({)>0as 1 —>w.  Ans. y=e

¢ —t \/gt . \/gl‘
(D2+D+1)y:3e’;y(O):O:y’(O) { Ans. y=¢€ —e /2[COST+\/§SIHT
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15. Find the bounded solution of the equation ¢*y" +¢y' + (t2 - 1) y=0, y(l) =2.

[ Ans. y(f)=2J‘(t) }

J,(1)

16.  Solve y"—ty'+y=1, y(0)=1 and y'(0)=2 [Ans. y(¢)=1+2¢]
17.  Solve y"+ty'=2y=4, y(0)=-1and »'(0)=0. [Ans. y=¢>—1]
18.  Solve ty"+y +2y=0; y(0)=1 [ Ans. y(t)=J,(2v21) }
19. y"+ty' —y=0 giventhat y(O)zO, y’(O)z 1. [Ans. y=t¢]
20. ty"+(1-21)y" =2y=0, y(0)=1, y'(0)=2. [Ans. y=¢*]

1,
21. y'+axy' -2ay=1, y(O)zy’(O)zO, a>0. [Ans. y=5t ]
22.  [tD*+(r-1)D-1]y=0if ¥(0)=5, y(=)=0 [Ans. y=5¢"]
23. y'+ty' -2y=2, y(0)=0=y’(0) [Ans. y=1¢]
24, ty"+y'+1y=0, y(0)=1and y'(0)£0. [Ans. y=J,()]

3.5 Partial Differential Equations and Boundary Value Problems

Many problems in Physics and Engineering are governed by partial differential equations together
with certain prescribed conditions (known as boundary conditions) of the function which arise from the

physical situation. Such problems are known as boundary value problems.

In solving such problems, Laplace transform provides an effective method of attack. In ¢ 3.2, the
Laplace transformation was used to reduce ordinary differential equations to algebraic equations. In the
same way, a partial differential equation in two variables x and ¢ may be reduced to an ordinary
differential equation in x by means of Laplace transformation with respect to ¢ . For this, the equation

must be linear and the coefficients of the unknonwn function and its derivatives must be independent of '#'

) Jdu Ju
i.e. the terms ofthe form #* F, t&— etc. are absent.
t t

Theorem1: Ifu (x,t) be a function of two independent variables for a < x <b, ¢ > 0, then under

suitable restrictions on u= u(x, ), we have

ou

(i) L[E} = piu(x, p)—u(x,0)
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N
@) ox|"ax

o
) L S |= Pl p) - puln0)-u (o)

I K B d’u 0 Jdu
(iv) _é’xz | e where u(x, p) = L[u(x,t)}] and U (x,0)= o1 .
Proof: (i) L|2%|- [T g
| Ot 0 ot
= e x t + pj (by integration by parts)
T —_ —
= %_z)zg{e )}0 + pi(x, p) [ Lu(x,t)=u(x, p)

=0- u(x,O) + pﬁ(x,p)
Assuming that u(x,) is of exponential order 'q'as T — oo

sothat Lim e *" u(x, T) =0
T—o0

m pi(x.p)-u(x0).

ot

(i i ) By the Leibnitz’s rule for differentiation under the integral sign, we have

[é’u} J-: e””@dt a we””u(x,t)dt

Oox ox dx 70
du
= Llu(x,0)]==-u(x,p) ="
L fuen)] = L (n,p) = L1
) ﬁu} du
Oox dx

[ 2
Gi) o] 24 =] L[ = | 2, where = 2%
ot ot\ ot ot o1

=plL [V (x, t) - V(x,O)]l

= p|{pi(x,p)—u(x.0)} ~u,(x.0)]
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u 5 ou
L —_— = — — =| —
[é’tz } pu (x,p) pu (x,O) u, (x,O) where u, (x,O) [ Py 1=0

(iv) Again, by the Leibnitz’s rule for differentiation under the integral sign, we have

2 2 2
L[a M}ZL Ly e "u(x,t)dt

ox’ ox’ =$ 0
d’ d’ _ d’u
=$Lﬂ:u(x,t)]| =$u(x,p)=§

2 2—
I é’L; =dLZt
Ox dx

3.6 Solution of Boundary Value Problems

Laplace Transform (with respect to ¢ or x ) in one dimensional boundary value problem converts
the partial differential equation (or equations) into an ordinary differential equation. The required solution
can then be obtained by solving this equation by the methods discussed earlier. In two dimensional
problems, we usually apply Laplace transformation twice (for example, with respect to ¢ and with respect
to x ) and then arrive at ordinary differential equation. In such a case, the required solution is obtained by
a double inversion. This process is usually referred to as iterated Laplace transformation. A similar

technique can be applied to three (or higher) dimensional problems.

3.7 Heat Conduction Equation

The heat flow in a body ofhomogeneous material is governed by the heat equation

ou L Pu Fu  Fu , k
5, ¢ Tt 2t c = ..(5)
ot ox" Jy 0z ) op
or @:czvzu,
ot

where u(x, V,z, t) is the temperature in the body, £ is the thermal conductivity, o the specific

heat, p the density of the material of the body and the constant ¢, is called the diffusivity ofthe body.

Also V*u is known as Laplacian operator.

Ifthere is no flow of heat in the z — direction, i.e. the temperature in the body is independent of z ,
then the heat equation (5) becomes

@_02 Ju N Ju
Of)t é,xz é,yz ...(6)

which is called the heat equation for two dimensional flow parallel to xy — plane.
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Ifwe consider the heat flow in a long thin bar or wire of constant cross-section and homogeneous
material which is along x -axis and is perfectly insulated laterally, so that the heat flows inthe x -direction
only, u depends only x and ¢ and therefore the heat equation becomes

@—cz Ju

which is known as one-dimensional heat equation.

3.8 Wave Equation

The transverse displacement u of an elastic string is governed by the one-dimensional wave
equation

Fu_.dw LT
atz axz 5 p (8)

where the variable u(x, ) is the displacement of any point x of the string at time # . The constant

¢> =T/p,where T isthe (constant) tension in the string and p is the (constant) mass per unit length of
the string.

This equation is applicable to the small transverse vibration ofa taut, flexible string, beam initially
located on the x-axis and set into motion. (see Fig.)

y

1

72X

Figure 3.1

If u (x, Vv, t) is the transverse diplacement of any point (x, y) ofamembrane in the x, y plane at

any time ¢, then the vibrations of this membrane, assumed small, are governed by the equation

Ju _ 2 Ju N Ju
é,tz é,xz é,yz ...(9)

which is called the two dimensional wave equation.

2 2 2 2
Similarly é’u_cz[é’u Ju é’ujzczvzu

— = + +
or’ ox*  oy* oz

Where V?y is called the Laplacian of u (x, v,z, t) is the equation for the transverse vibrations in
three dimensions.
ou u

E le9: Find the solution of ——=
xample 9 ind the solution o ErrR

where () < x <1, ¢ > ( together with the conditions
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u(x,0)=3sin27zx, u(O,t)zO, u(l,t)zO.

Solution : Taking Laplace transform of both the sides of the given partial differential equation and
using the initial conditions, we obtain

d*u

pi(x,p)—u(x,0)= 72> Where L[u(x,t)]] =i(x,p)
2
or ;i; —pi(x,p)=-3sin27r x
or (D - p)i =—3sin27x ..(10)

which is a second order linear differential equation whose
C.F.=C e +Ce™?

and Pl —3sin27wx _ 3sin2xx

(Dz—p) (p+47r2)

Therefore the general solution ofthe above equation (10) is

p 3sin27wx

E(x,p) = Clex*/; +C,e prdn

(1)

To evaluate C, and C,, we take the Laplace transform of those boundary conditions which

involve ¢, we have
L[u (0,1‘)]] = ﬁ(o,p) =0 and L[u(l,t)]l = L_t(l,p) =0
Using these conditions in equation (11), we get
C,+C,=0 and Cle\/; + Cze“/; =0
Solving the above two equations, we find that
C,=0,C,=0and

Therefore, the equation (11) beomes

3
ulx,p)= Sin27x
(x,p) rar (12)

Now taking inverse Laplace transform of both sides of (12), we get
u(x,t)=3 e sin2z x
which is the required solution.
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Example 10 : Find the solution of

2
@=3&—L§, given that u, (0,¢)=0, u(ﬁ,t =0 and u(x,0)=30cos5x.
ot Ox 2

Solution : Let L [u (x,t)]] =1 (x, p). Then taking Laplace transform on both sides of the given

differential equation, we find that

_ d*u
pu (x,p)—u(x,O) =3 2
2—
or d L; ~ L = —10cos5x
dx

The general solution of above linear differential equation is

E(x,p)=CleV(p/3)x+Cze”(p/3)x+i0055x (13)
75+ p

To evaluate C,,C, , we take the Laplace transform of boundary condition unvolving ¢ , we obtain

u(5)=e(74)=0 shen -

and L@}=0,whenx=03d—u=0,whenx:0
| Ox x

. From equation (13) we get

0= Cle(”/z)\ (p/3) + Cze*(”/z) (p/3)

and  0=C,\/(p/3)-C,y/(p/3)

Solving these equations, we find C, = 0 = C, and equation (13) becomes

_ 30
i(x,p)= 7515 0 ..(14)

Hence by taking inverse Laplace transform of the above equation (14), we obtain
u(x,1)=30e"" cos5x
which is the required solution.

Example 11 : Find the solution of the equation

ou Ou
o
ot Ox

which tends to zero as x — oo and which satisfies the conditions
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u= f(¢) when x=0,7>0 and =0 when x>0,7=0

Solution : Taking Laplace transform of both the sides of the given equation, we have

pﬁ(x,p)—u(x,O) =k d’u
dx’
or dza—£ﬁ=0 ﬂ;u(x 0):0:ﬂ (14)
o r . ,

.. The solution of the equation (14) is given by

ﬁ()c,p):Cle“(p//‘)x+C2 e Vb ..(15)
where C, and C, are arbitrary constants.

Since u— 0 as x > = u(x,p) >0 as x > o
which implies that C; must be zero.
Therefore equation (15) gives

u(x,p)=C, ¢ VWl ..(16)

But we are also given that u = f'(¢) when x =0,

= u=f(p) when =0

-. From (16), we have C, = f(p)

Hence from (16), we have u = f(p) e’mx
Applying complex inversion formula, we get
1 ¥ +ioo

u(x,t)=—— e” f(p) efmxdp '

27

y—io

Example 12 : A semi-infinite rod x > 0 is initially at temperature zero. At time 7> (0, a constant
temperature ¥, > 0 is applied and maintained at the face x = 0. Find the temperature at any point of the
solid at any time ¢ > 0.

Solution : The temperature u(x,¢) at any point of the rod at any time ¢ > 0 is governed by the one

dimensional heat equation

2
%:H%,(po,wo) -(17)
with the boundary conditions

u(O,t) =V, u(x,O) =0
Taking Laplace transform of both the sides of the equation (17), we have
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dx?
d’u p
-~u=0
Tk
whose solution is
u(x,p)=C, e Vb +C, e (p/) ..(18)

Since y is finite when x — o
77 1s also finite when x — o

C, =0, otherwise u — c© as x — o

Taking the Laplace transform of the boundary condition u(0,7) = ¥, , we have

w(0.p)=[ e vy di="0

p
. From (18), we have
v
u 0,p =C =-2
(0.p)=C, ,
— Vo —x (/i) .
Hence u(x,p)=—"e (since C, =0)
p

_ 71 E —xy(p/k) | _ 7 X o ! eil\/; = e, [L)
u(x,t)=L [pe }_Voefc[2ktj {L{ P } e 2\/;}

Example 13 : Aninfinite long string having one end x = 0 is initially at rest onthe x -axis. Theend x =0
undergoes a periodic transverse displacement givenby A, sinwt, ¢ > 0. Find the displacement of any
point on the string at any time.

Solution : Let us suppose that u(x,) is the transverse displacement of the string at any point x at any
time ¢, then the boundary value problem is governed by the equation

o &
a—;‘zcza—;,po,wo .(19)
A

A, sinwt \ /\
> x
u(x, t)\/ \

Figure 3.2

with the initial and boundary conditions
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u(x,0)=0 x>0
ut (x,O) =0 x>0
u(0,t)= 4,sin(wt), ¢>0

and the displacement is finite i.e. u (x, t) <M

Taking the Laplace Transform of equation (19), we have

2 2
L ﬁ—z’ =L m;
ot Ox

_ d*u
or pu (x,p)—u(x,O)—u[ (x,O) =c’ >
dx
o ptu P )20
_ - -—|u=
or PR 0 or 2
2
AE.is m’ _p_z =0 which gives m = + 2
c c

px

E(x,p) =Adec +Be ™
Since u(x,¢) is finite, so % (x, p) isalso finite Vx
A =0, otherwise # (x, p) becomes infinite when x — oo

i (x,p)=Be "

- (0, p) = 4y = ——
From (22), we have u(0,¢) = 4,sinw¢ ~ulU,p)= T o
A
ie. U= ZAOCU when x=0= B = zowz
p +o p to

Hence (23) gives

_ AOCU —px/e

u(x,p)=———e

(xop) =

Taking inverse Laplace transform, we get

» efpx/c
u(x,t)= AL >

P+’
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4, sinw(t—ij, i>% L ﬂie’””.f(p)iﬂ=f(t—a),t>a

c c
= =0,t<a
X ) o
0 , 1 <— using second shifting theorem
c

Example 14 : A flexible string has its end points on the x -axisat x =0 and x =c . Attime 7 = 0, the

X

string is given a shape defined by b sin(
¢

) , 0 < x < ¢ and released. Find the displacement of any point

x ofthe string at any time ¢ > 0.

or

A string is stretched between two fixed points (0,0) and (c,0). Ifit is displaced in to curve

. (7mx
u=>b SIH(T) and released from rest in that position at time ¢ = (. Find the displacement of any time ¢

ofanypoint 0< x <c.

Solution : The displacement u (x, t) ofany point of the string is governed by the equation

atz axz (24)

with the boundary conditions

() u(0,)=0 (i) ule)=0

c

(i) u,(x.0)=0 () ”(X’O):bsm(ﬂ)

Taking Laplace transform of the above equation (24), we get

2—
p’ LT(x,p)—pu(x,O) —u, (x,O) =a’ d L;
dx
Applying the boundary conditions,
? - zx
[Dz _P_zj 2 = 2E sm(_)
a a c
whose general solution is
b 1 X
ulx,p)=C e PO, e — P sin(—)
(x.p) =G : <\ (2 (7 c (25)
) @
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. 1
u(x,p)=C e+ C, e™ 4 pb s1n(—ﬂx).—2
c 2 ( Ta )
P+
c
But from the boundary conditions (i) and (ii), we have

u(0,p)=0 as u(c,p)=0

Applying the above two boundary conditions, we get

C+C =0 ...(26)
and  C e +C e’ =0 (27)
Solving (26) and (27),

C=C,=0

Then the equation (25) gives

a(x,m:bsm(g).%
C

Taking inverse Laplace Transform ofboth the sides, we get

u(x,t)=>b sin(ﬂ) cos(ﬂ—at)
c c

Example 15 : Solve the boundary value problem

ot* ox*’

(x>0,7>0)

with the boundary conditions

u(x,O)zO u, (x,O)zO; x>0

u(0,¢)= £(¢) Limu(x,t)=0_ ;59

X—0

Solution : Taking Laplace Transform ofthe given equation

, d’u
d x*

P’ L_l(x,p) —pu (x,O) —u, (x,O) =a
Applying the boundary conditions, we have

, d’u
d x*

Pi(xp)=a
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dzﬁ_p_zﬁzo
or dx* da*

whose general solution is
i (x,p)=C e +C, e ..(28)

But we are given that u(0,7) = f(¢)

= (0,p)=]" e f(r)dt=f(p) (29)
and Liz}a u(x,t)=0= L_I)Zl i(x,p)=0 ...(30)

In view of (33), we get C, =0

Hence #(x,p)=C, e

Applying the condition (29), we get
J; (p ) =C

i(x.p)=f(p)e "

Taking inverse Laplace transform, we get

u(x,t)zf(t—%)u(t—%)

x). . : .
where U (t - —) is Heaviside unit step function.
a

Self-Learning Exercise

Fill in the Blanks :

2

1. On taking Laplace transform of 2% +8x=CU (t - a) with x (0) =10 and x’ (0) =0 w.rt.

variable ¢, it converts to

Y= and solution is x(¢) =............
2. L{xy"+(x=1)y" =y, p}=...... (with p(0)=35, y(o0)=0)
Ju
Li—:pr=.....
3 {é’xz p}
[ |
4, YRl G where u(x,0)=0, u, (x,0)=5
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5. Write two-dimensional heat conduction equation?

6. What is a boundary value problem?

3.9 Summary

In this unit you studied the solution of ordinary differential equations with constant and variable
coefficients and boundary value problems by the method of Laplace transform. This method is illustrated

with the help of solved examples.

3.10 Answers to Self-Learning Exercise

c
_ 1op ce 10cos2t =—|1-cos2(t—a)|, if t>a
L. e 2+4+2 (p* +4) and X(t)= 8[ (t=a)]
p pP\pP 10cos2¢ , if t<a
d’u _
2. 3J0(2x) 3. where u (x,p) = L{u (x,t);p}

dx’’
4. plu(x,p)-5

Ofu  Fu ou
st 2= k —
ox* Oy ot

3.11 Exercise 3 (b)

Ou Ou

1. Solve o7 =9 o2 subject to the conditions :

t
u(0,¢)=0, u(2,t)=0, u(x,0)=20sin27 x—10sin57 x and u, (x,0)=0
[Ans. u(x,f)=20sin27 xcos67¢—10sin57 xcosl5ms]

S u S u ‘ N
2. Solve o7 =16 Oxlo subject to the conditions

u(x,0)=0, u(3,£)=0, u, (0,¢)=0 and u,(x,0) = 12cos 7 x + 16cos 37 x —8cos5 7 x

[Ans. u(x,t) = écos7r)csin47rt+icos37rxsinl27rt—icos57rxsin207rt ]
T RY/4 S

ou 5 u

3. Solve o 2 xlo given that

u(O,t) =0, u(S,t) =0, u(x,O) =10sin47z x

[Ans. u(x,r)=10 e sindr x|
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Find the bounded solution u(x,#), 0 < x <1, ¢ > 0 ofthe boundary value problem

Ou_OU _y_,  provided that u(x,0) = x.

ox Ot
[Ans. wu(x,f)=x+1—e"]

) . ou Fu
Find the bounded solution of == =

ot ox*’

[ Ans. u(x,t)=erfc [ﬁ) }

Find the solution of the diffusion equation

x>0 >0 suchthat u(0,¢) =1, u(x,0)=0.

ou o u
E:kﬁ’ x>0,1>0
subject to the initial and boundary conditions u(x,0) =0, x> 0;-K [%) =f(t).at x=0,
x

t>0and u(x,) >0 as x o and >0 (where k and K are respectively the thermal
diffusitivity and conductivity of the material ofthe given solid).

o 2
[ Ans. u(x,t)= KL\/; J f[t_él)CWj v2iedy }
x/24kt

A semi-infinite solid x > 0 has its initial temperature equal to zero. A constant heat flux 'A' is
applied at the face x = 0 so that —Ku (0,¢) = A . Find the temperature at any point x > 0 of the
solid.

2A kt 7)(2/41{[ Ax X :|
A . ’t - — -
|: ns U(X ) A e 61’]{.6‘[ \/_t)

Abar oflength '/' is at constant temperature u,. At t = 0, the end x =/ is suddenly given the

constant temperature », and the end x = () is insulated. Assuming that the surface of the bar is
isulated, find the temperature at any point x ofthe bar at any time 7 > 0.

Solve the one-dimensional diffusion equation in a finite medium

ou O u
EZkﬁ, O<x<a,t>0
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10.

11.

under the conditions

u(x,O)zO for 0<x<a;u(a,t):u0 for t >0 and %zOfor x=0,t>0.
X

{ Ans. u(x,0)=u, [i {erﬁ[%}rerfc[%)}] }

The temperature u(x,#) atany point x atany time 7, of the semi-infinite rod x > 0 is given by

2
the differential equation ou =k o u , subject to the conditions,
ot ox’
: g Ju
(i) u=0 when =0 (ii) 0,’—=—A when x=0,7>0
X

and  (iii)  u isfinite when x — oo
Using Laplace transform show that the temperature at the face x = 0 after a time ¢ is 4./(kt/7) .

Abeam oflength / which hasits end x = 0 fixed, is initially at rest. A constant force £ per unit
area is applied longitudinally at the free end. Find the longitudinal displacement at any point x of
the beam at any time ¢ > 0.

[Ans. u(x,?) i[ 8_22211 ) i @n-D)mx Cos(zn—l)ﬂat] }

1 21 21
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Unit -4
Fourier Transform

Structure of the Unit
4.0  Objective
4.1 Introduction
4.2 Definition
4.3 Inversion Theorems
4.3.1 Complex Fourier Transform
4.3.2  Fourier Sine Transform
4.3.3 Fourier Cosine Transform
4.4  Relationship between Fourier Transform and Laplace Transform
4.5  Some Useful Results for Direct Applications
4.6  Elementary Properties of Fourier Transform
4.6.1 Linearity Property
4.6.2 Change of Scale Property
4.6.3  Shifting Property
4.6.4 Modulation Theorem
4.7 Exercise 4 (a)
4.8  The Convolution or Faltung of Two Functions
4.8.1 Convolution Theorem for Fourier Transform
4.9  Parseval’s Identity for Fourier Transform
4.10  Fourier Transform of Derivatives
4.11  Summary
4.12  Answers to Self-Learning Exercises

4.13 Exercise 4 (b)

4.0 Objective

The object of this unit is to define complex Fourier, Fourier sine and cosine transforms and
establish inversion theorems, convolution theorem and derivative formulas for these transforms.

4.1 Introduction

Many linear boundary value and initial value problems in applied mathematics, mathematical
physics and engineering science can be effectively solved by the use of the Fourier transform, the Fourier
cosine and sine transforms.
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We begin with the definition of complex Fourier and (infinite) Fourier sine and cosine transforms.
This is followed by inversion theorems and elementary properties for these transforms. Several examples
are included to illustrate different methods for finding out the images of functions under these transforms.
Next convolution theorem and Parseval’s identity are proved for Fourier transforms. At the end of the unit
derivative formulas are given for Fourier transforms.

4.2 Definitions

(a) Fourier Transform or Complex Fourier Transform or Exponential Fourier Transform :

Let f(¢) bea function of #defined on (—o0,o0) and be piecewise continuously differentiable and
absolutely integrable in (—o0,00), then the Fourier transform of f(¢), denoted by F { () p} or
F ( p) ( D E R) is defined by the integral

F LI} =F (o)== [ e (0

where b ¢'?" isknown as the kernel of the Fourier transformationand F stands for Fourier

2z

transformation operator. This is oftenly called the complex Fourier transform. A sufficient condition for

£ (¢) to have a Fourier Transformis that f(¢) is absolutely integrable or (—oo,00). The convergence of

the integral follows at once from the fact that f (t) is absolutely integrable. Infact, the integral converges
uniformly with respect to p .

(b) Fourier Sine Transform :

If f (l‘ ) be a function defined for ¢ > 0 and be piecewise continuously differentiable and is

absolutely integrable in (0,00) then the (infinite) Fourier sine transformof f(¢), denotedby F _{ f(¢); p}

or F,(p) isdefined as
LU= )= 2 [ sin(ar)ae (>0

Here (;) sin (Pt ) is knwon as the kernel of the Fourier sine transform and F | stands up

Fourier sine transformation operator.

(©) Fourier Cosine Transform :

If f(¢) be a function defined for ¢ >0 and be piecewise continuously differentiable and

absolutely integrable in (0,0), then the (infinite) Fourier cosine transform of f(¢), denoted by

F. {f(l‘);p} or F,(p) isdefined as

F{f(@):p}=F.(p)= \/%f:f(f)cos(l”)df . (p>0)
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I 2
Here (;) COS(Pt ) is known as the kernel of the Fourier cosine transformand F  stands for

Fourier cosine transformation operator.

Remarks : The literature on complex Fourier transform contains minor variations in the choice of kernel
and in notation. The kernels e '”* and e'”* are sometimes used. Some authors use the kernels sin p¢ and

cos pt respectively for the Fourier sine transform and Fourier cosine transforms.

4.3 Inversion Theorems

4.3.1 Complex Fourier Transform :

Theorem 1 : Let F(p) be the Fourier transform of f(t), that s, if

\/ﬁj e’ f (1)

and if f(¢) is piecewise continuously differentiable and absolutely integrable in (—o0,),

then at each point of continuity 't' of f(¢),

1

f(t)= ﬁﬁ e”""F(p) dp 2)

The function f(¢) is called the inverse Fourier transform of F(p).

Proof: From Fourier integral theorem (in unit - 2), we have
t - ® lvt d 7lvu du
R A

A 1 o A
*lp[ —_— u e+1pu du . - _ - _
p \/ﬁ J.u?wf ( ) (putting v =—p sothat dv=—dp)

1
N A2 J.P=*°°
or  f()=—e [ e F(p)dp (from (1))
21T
Remarks : Ifthe kernel ofthe Fourier transform be taken as e'”* , then the equation (1) and (2) become

F(p)='|.:efi”lf( )dt and f(t)= welptF(P)dP

27r
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4.3.2 Fourier Sine Transform :

Theorem 2: Let F;(p) be the Fourier sine transform of f(¢), that s,

_ \/% [ £(t)sin (pt)ar -G)

andif f(¢) is piecewise continuously differentiable and absolutely by integrable in (0,)

then at each point of continuity ¢ of f(?)

f [ E(p)sin(pr)d )

The function f() is called the inverse Fourier sine transform of F;(p).

Proof: From Fourier integral theorem (in unit - 2), we have

f(1) :% J;Odp J.uiiwf(u) cos{p(r—u)} du
:% szodp J‘uiwf(u) {cos(pr) cos pu +sin(pt)sin( pu)} du
:% J:io cos(pt) dp J.uiwf(u) cos(pu)du +% J.::O sin(pt) dp J.uiwf(u)sin (pu)du

or f(1) :% J.Zocos(pt) dp J.tiwf(t)cos(pt)dt +% J.::O sin(pt) dp J.tiwf(t)sin(pt)dt

(5

Now, define f(¢) in (—0,0) such that f(—7)=—/(¢), then f(¢) will be an odd function in
(—o0,00). Thus f(¢)cos(pt) is an odd function while f(¢)sin(pt) is an even function. Therefore (5)

reduces to

2 o . © .
f(t)==1| sin(pt)dp .Lof (t)sin(pt)dt  (because the first integral vanishes)

T Jp=0

2 > . 2 o )
= \/; J. =Osm(pz‘) dp \/; J.Izof(t)sm(pt)dt
\/7 _[ SlIl pl‘ (From 3)
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Remark : Ifthe kernel of the Fourier sine transform be taken a sin p¢ then (3) and (4) become

= [ r)sin(pr)de ; £6)=2 [ E(p)sinprp

4.3.3 Fourier Cosine Transform :

Theorem 3 : Let F,(p) be the Fourier cosine transform of f(¢), that is, if

\/7 J. f cos pt ..(6)

and if f(¢) is piecewise continuously differentiable and absolutely integrable in (0,)

then at each point of continuity ¢ of f(?)

\/7 J. )cos(pt)d «(7)

The function f(7) is called the inverse Fourier cosine transform of F,(p).

Proof : Proceeding as in Theroem 2, we have

FlO)y== ] cos(pt)dp [ f(e)cos(pr)dr

T Jp=0

- [” sin(pt)dp |~ f(¢)sin(pt)dt (8

T v P=

Now define f(7) is (—,0) such that f(z)= f(—¢), then f(¢) is an even function of 7 in

(—o0,00) and we have

[* £(e) sin(pt)de =0 and [ f(¢) cos(pr)dr =2 [ 1 (¢) cos(pt)dt

Therefore from (8), we have

f(1) :% J:io cos(pt)dp J.:()f(t) cos(pt)dt

or f(t):—J.O F.(p) cos(pt)dp
Remarks : (i) If the kernel of the Fourier cosine transform be taken as cos(pt) , then (6) and (7) become

'[f )cos(pt) dt and f(t)= J )cos(pt)d

(i1) Note that Fourier cosine and sine transforms are special cases of complex Fourier transform.
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4.4 Relationship between Fourier Transform and Laplace Transform

Let us define a function f/(¢) as under:

(), t>0
f(t):{e (;ﬁ() t<>0

Then F [f (l‘ );P] = J.jo o f(t)dt (taking non-symmetrical form)
0 . .
- LO e f(t)dt + IO e f(t)dt
= J.io eip[ Odt +J'000 eipf e*lt ¢(t)dt
=[ e g0y
= J.ODO e 5! ¢(l‘)dl‘ , where A —ip=s

F [f(e)p]=L[g(t);s]

which is the required relationship between Fourier transform and Laplace transform.

4.5 Some Useful Results for Direct Applications

at

) J-e”’ sinbt dt = e (asinbt —bcosbr)

j: e sinbt dt =

a’+b’
(ii) Ie“’cosbtdt= e (acosbt +bsinbt)
a’+
J.w e “ coshtdt = %
0 a +b
Ty if p>0
© sin pt )
Gy [ di=1=T. 0 p<O
%, if p=1

G [erd=Nm. [erta=YT
B} 0 &
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4.6 FElementary Properties for Fourier Transforms

4.6.1 Linearity Property

Theorem4: Letforall i=1,2,...,n, F,.( p) be the Fourier transforms of f,.(t) and ¢, are any
constants, then

F {efi(D)xe, fo(0)x..... ke, f,(t); p}
=¢,F {£i(t)sp}+ e, F {£3(0)s plteneite, F L£,(2); p}

=¢, F(p)+¢,F(p)t....xc, F,(p)

Proof : We have

F {lel(t)iczfz(t)i ........ icnfn(l‘);]?}

o f; e e fi(t) e, fy(0)E. ke, /(1) p}dt

\/021_ J:eipzfl(t)dti \/022_7[ J-Zeiptfz(t)dti"""i\/zn_ J:ei’”ﬁ(f)df

=chl(p)J_rcze(p)i ......... J_rann(p)

Remark : The above property also holds good for sine and cosine transforms

4.6.2 Change of Scale Property

Theorem5: If F(p) is the Fourier transform of f(¢), then ﬁ F [ﬁ) is the Fourier transform
a \a

of f(at).

Proof : Wehave F {f(t); p} :Lr e’ f(t)dt = F(p)

N2 I

(1) If @ >0, then

1

F {f(at);p} = %Jﬂ; eiptf(at)dl‘ =é ﬁjw e(ip/a)uf(u)du

—00
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1 (p .
., r (Z) (putting ot = u)

(i) Ifa<0,leta=-b(b>0).

Now F [f(ar):p]=F [f(~br) p]:% [ e f(-b)ar

21 I
1 © i(=p/b)u
:bﬂjwe( () du (putting —pz =4 )
2 F o2 ]=-Lr |0
b " b a "a
_ ! P
oF el
Hence in genral
1
F [f(at);p]] HF(§)

Theorem 6 : If F,(p) is the Fourier sine transform of f(¢) then Fourier sine transform of

flat) is %— Fs(g), (a>0).,

a

Proof: Wehave F(p)=F [f(t);p]l = \/Z J.wf(t)sinpt dt
PR

F, [f(al‘);P]] = \/% J.wa(at)sinpt dt

:% \/% [ f(u)sin{(f)u} du

F[f(ar)yp]=2 F, (g)

a a

Similarly, we can also prove that

Theorem : If F,(p) is the Fourier cosine transform of f(¢), then Fourier cosine transform of

f(at) is %F[f) (a>0)

)

F| f(at);p]= 1Fc(

a
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4.6.3 Shifting Property

Theorem 8 : If F(p) is the complex Fourier transform of f(¢), then complex Fourier transform

of f(t—a)is e F(p)ieif F [f(¢);p|=F(p),then F [ f(t—a);p|=e""F(p)
Proof : We have

F(p)=F {11} p} =ﬁfieip’f(f)df

4.6.4 Modulation Theorem

Theorem 9 : If f(¢) has the Fourier transform F(p), then f(f)cosat has the Fourier

1
transform 3 [F(p—a)+F(p+a)]],

Proof : We have

F(p)=F {1(:):p} =ﬁfieip’f(f)df

1 o
Now F {f(t)cosat;p}=TJ. e’ f(t)cosat dt
2w T

—iat

| e

NEr B

dt+

L L gty 2
=3 | R J_Jw "

:%[F(p+a)+F(p—a)]

Theorem 10 : If F,(p) and F,(p) are Fourier sine and cosine transforms of f () respectively, then

@) F,{f(t cosatp}——[ (p+a)+F,(p- a)]]
@ F {r( smatp}——[ (p+a)- F(p—a)]]

i) F,{s( smatp}_—[ p—a)-F,(p+a))
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Proof: (i) We have

F{f(t)cosat; p} = \/% J.wa(t)cosat sin pt dt
=% \/% J?f(t)[sin(p+a)t+sin(p—a)t]]dt

:%[\E J:f(t)sin(p+a)tdt+\/%J:f(t)sin(p—a)tdt
1

=5 [Fs(p+a)+Fs(p—a)]
On similar lines (ii) and (iii) can be easily proved.
Theorem 11 : If ¢(p) is the Fourier transform of f(¢) for p>0, then for p<0,

Fr(espt=—4(-p).
Proof: By definition,

e} =2 [ A pras= (o) -

for p<0,let p =—u with y > 0, then the right hand integral (9) becomes

F {r():p}= \/% [ 7 (¢)sin(-ue) de

:—\/% J:f(t)sinutdt=—¢(u)=—¢(_P), p<0

therefore F S{f(l‘);]?} = —¢(—P)a p>0

Hence in genral, we have

F&f(r)»};{_jﬁf’)’ p>0

-p), p<0
1, <1
Example 1: Find the Fourier transform of ./ (f)z 0 t|>l
1 o
Solution : We know that F | £(¢); p|=—— [~ &' f(¢)dt
olution : We know that F [ f(¢); p| \/ﬁj.we f(t)




Il
%‘ _
3
7 N\
m&,
=
< |
|
£
N—

L .zsinp=\/zsmp (if p=0)
N T op

2r p
Flr (t);p]ﬂ/% Si?,p

Example 2 : Find the Fourier sine and cosine transform of f(¢), if

t, O<t<l
f()=42-1, 1<t<2
0, t>2

Solution : By definition, we have
Ff(t)p)= gjmf(t)sin tdt
K ’p T 0 p

2
T

jol f(¢)sin pt dt + f f(e)sinptde+ [ f(¢)sin pt dt}

2 et . 5 ‘ .
== _J.Otsmptdt+_|.1 (2-1)sinptdi+ | 0 Slnptdt}

B 1 2 2
2 |- i -2 -~ i
_ = { tcospt+sm§9t} +{ cospt} { tcospt+sm§9t}
T p p =0 p 1 p p 1

1= 1=

2 (- i 2 2 2cos2p— in2p—si
:\/:[[ COSp+szpj——cos2p+—cosp+ cos2p cosp_[sm pzsmpﬂ
n p p p p

p p

_\/z 2sin p—2sin pcos p _\/z 2sinp(1—cos p)
n P n P

F C{f(t);p} = \/% [J.Olt cos ptdt + f (2—t)cos pt dt}

_ |2 [z‘sinpz‘%rcospt]l%{(2—1‘)Sinpl‘_cospz‘]2
s p P ), p P
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_\/z 2cosp—cos2p—1

n P’

_\/z 2cos p—2cos’ p _\/z 2cos p(1—cosp)
n P’ n P’

Example 3 : Find the complex Fourier Transform of f(¢)= e, where ¢ >0 and ¢ belongs

to(—o0,0).

I = 1 B
Solution : We know that F {f(t);p} = T J. e””f(t)dt - J. e Ploll gy
2m o N2

UO e’ e dt+_|.w€7i”’ e” dt} { [t = tift>0}
~ 0 =—tift<0

[ are [ e ]

1 1 1 2a \/Z a
N27 a+zp a- w/ m (a*+p*) V@ a*+p’
Example 4 : Find the Fourier cosine transform of e

Solution : We know that

2 2 3
=\/;J.O e’ cosptdt=1 (say) ..(10)

Differentiating (10) with respect to p , we have

/i 2 2,
d_:_wf_J‘ te”" sinptdt
dp p ARl

=% \/% j:(—zt e’ )sin ptdt

= % % [(e’2 sinpt): - J.:p e cos pt dt}
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p dl  p
—0-Ly -2y
e

2
Integrating, log/ = — % +log A where 4 is the constant of integration

or I=Ae (11)

When p =0, then we have

2 2 2 2 2 T 1
== (e (cosO)dr = |= [(edr= = X o
- [ e (cos0)d - [ e ar T2 (12)

Also for p =0, equation(11) gives J = 4

1 1
—==1=A=> 4=
V2 V2
Hence /=F {e p} = Le”’z/4
‘ V2
1, [{|<a
Example 5: Find the Fourier transform of f(¢) defined by f (1)= |
, |[t|>a
and hence evaluate
. = Sin pa cos pt . © sin p
I W =,

Solution : Here f(r) =1 when —a <t <a and 0 otherwise (given)

Therefore F { 72 J:a 1L dt

1 @ ipt
e U
_L[e””}a 1 [ei"”—ei"”}_\/z sinap
_\/ﬁ ip ﬂ_\/ﬁ ip A\ p

Thus  F {/(:)sp}=F(p)= \/% Sir;“p (13)

But from the Fourier inversion theorem, we have

\/ﬁ [ e F(p)dp=r(1)
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2 sinpa
or \/ﬁ Jl \/7 » dp=£(1) (using 13)

l ¢» _,,, sinpa 1, lf]<a

— e lpt—d = t)=
or Vs J.*w p P f( ) {0, t|>a

© €OS pt Sin pa —1i sin pt sin pa T, |tj<a
or J. dp =

- p >a

Equating real parts on both sides, we get

<a

J-w cos pt sin pa d _{ﬂ,

, (14)

>a

Putting s — ¢ and 4 =1 in(14), we obtain

J-wsmpdp 7r0r2J- pd—ﬂ

- p
wsinp 7w
or J-O p dp e}
1-1, <1
Example 6 : Find the Fourier transform of f'(¢), where f(¢) = 0, l|>1
J~w tcost —sint cosidt
and hence evaluate | |- JE 3
Solution : Giventhat f(¢)=1-¢ for —1 </ <1 and 0 otherwise
1 o 1 1 .
Therefore F { £ (¢); pt = F(p)=—=—| 7' f(t)dt =—=—| (1-1*)e'"'dt
{f()p} (p) m‘[we f() \/EJ‘I( )e

[ e 2 e
_m[(l %) ” :|1+\/ﬁ-|.lt ” dt

ipt 1
L) gL e B
ip\'m ip ), ip ip\'mw ip (z'p)2

1 [2 [2cosp ei”—ei”} \/7 —
=Tal R + P =
ip\m| ip p
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\/E[pcosp—sinp}
=-2. = | H——+
T P

.. By using inversion formula, we get

or mj { \/7[—“08?3 Smpj} e'dp=[(t)

= [ pcosp—sin .. b4
or —J [W) (cospt—isinpt) dp == f(¢)
B - 2
Equating real parts, we have
- Jw [—pcosp;smp) cos pt dp :Zf(t)
—0 p 2
T 2
0 —qi - l_t Iy < 1
o 2] [w) cospt dp=12177)
0
p 0 ., [f>1
. 1 .
Taking 7 = 5> we obtain
o —si 1 3
o[ peosp=sing o p dpzz(l_):_ﬂ
0 e 2P T4)
»( tcost—sint t -3
————— | cos— dt =——
or Jo ( £ ) 2 16
Example7: Find f(¢), ifits Fourier sine transformis —2 .
1+ pz)
Solution : Let F(p)= P
1+ p?

By Fourier sine inversion formula,

2 ) 2 ¢» p .
=.]— | FE (p)sinptdi=,— sin pt dt
\/;fo «(p)sinp \/;L 7o
+1
_ \/? p sin pt \/7 _[ p smpt dp
1+p 1+p

using given values

..(15)



\/7J-ws1npt \/7‘[ smpt
l+p
_ |2 _sinpt __ (esinpt T
\/;' \/7'[ (1+p7) [ JO p dp_?)
sin pt
sothat £ () \ﬁ—\fj 1+pp .(16)

Differentiating this twice with respect to ¢, we get

cospt
\fjo - (17)
d
and f \/7‘[ plir;pt f(t) (using (15)

d’f
—f=0
or dtz f

Therefore the solution of above linear differential equation is

f(t)=ce +c e ..(18)
o df t ~
This gives E: ce —qe ...(19)

Putting ¢ = 0 in(16) and (18), we get

f(0)=\/§ and f(0)=c, +c,

4
Therefore ¢, +¢, = \/; ...(20)

Putting s — ¢ in(17) and (19)

( )to \/7J01+p_ \f(tan p), = \/%%:—\/%

d
and (d_j;)t:O B Cl - Cz

¢ —c, = _\g (21
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T
Solving (20) and (21), we get ¢, =0 and ¢, = \/;

Hence f(f)= \/get

Example8: Find f (t) ifits given transform is

e’ 1
. Hence deduce F *'| — |.
P S\

Solution : By inversion theorem for Fourier sine transform, we have

f(6)= \/% [ F(p)sinptdp

o f(1)= \/% [ e: sin pt dp 22)

Differentiating this with respect to ¢ by Leibnitz’s rule,

df 2 2 a
== | ePcosptdp=.,|— . 5—
dt ﬂ-[o PEP=NT 2y a>0

2 ot
On integrating it, we have /' ()= \/; tan 1(—) +4 ..(23)

a
where A is constant of integration.

Now, when ¢ =0, /(0) =0 by (22) and 4 = £(0) by (23),

Hence 4=0

2
Thus f(l‘) = \/: tanl[ij
T a
Deduction : Putting ;, — () inthe above result, we get
F, 1 Z\/ztanloo:\/zxzz\/E
S \p V4 T 2 2

Example 9 : Find Fourier sine transform of

f(x):t(az—tz)%%U(a—t), V>%,a>0

where U (a —t) is the Heaviside unit step function

Solution : We have
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F S{t(az —tz)vf%U(a - t);p} = \/% [t —tz)vf% U (a—1t)sin ptdt
\/7_[ 2 smptdt

s oy
gk

(Expanding sin pt and changing order of integration and summation)

i %)

<
BTN

(putting x = ¢ sin@)

3 1 0 v+2r
:2v A rlyv-= lfvav (p/)
( 2)}7 ; v+r+l

/
+ 2 . + —
2v+2r J i 2r+2 0 2v-2 0 ’0

2
Example 10 : Obtain Fourier transform of ¢™"" . Hence obtain Fourier cosine transform of COS[EJ

t2
and sin[—J )
2
p

2 2
Solution : Using t* —i pt = (t —%ip) +T , We get

e—p2/4 - 7y2d lp
= e - =
ar LY aking =T =)
1 _ 2/4 _n?
R [ [ean=x)
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Using change of'scale property for Fourier transform, we find that

F {e’”z’z;p} _ 1 e /4 (a>0)

1 .
Putting @ = 5 (1-1) in(24) and using the result

! :i and @ Z—L,weﬁndthat

(2)a 2 2

t2 ) t2 1 2 ) 2
= F _Jcos—+isin—;p =—(1+i) cosp——ismp—
2 2 V2 2 2

1 2 2 2 2
=—|| cosZ+sin— |+i | cosZ—sin 2
V2 2 2 2 2

Comparing real and imaginary parts, we get

t2 _ 1 p2 ) p2
F C{COSE} and = ﬁ{COS[TJ + SIH[TJ}
1 1 P’ (P’
and F C[sm;) = ﬁ{cos[TJ - s1n[7J}

Self-Learning Exercise - 1

1. Write the inversion formula for Fourier sine transform.

2. State the shifting property for Fourier transform.
Fillin the blanks in the following question :

3. F {f cosax; p}= ...........
4. F {f sin ax; p}: ...........

5. If F(p)=F {f(x);p},then F {f(ax);p}=.....

6. IfF {eﬁZ ;p} = %e”zﬂ ,then F C{efxz ;p} S



4.7 Exercise 4 (a)

I. Find the Fourier transform of the following functions;
t, li|<a e, a<t<b
: N ) =
O s {O, t|>a @ /) { 0, t>a,t>b
*, |i|<a
=
@ /) {0, >

l. 2 . 1 'b(m+p) _ e' (m+p)
|: Ans. (i) ?\/; (smpa —ap cospa) (1) \/ﬁ i(a) N p)

(iii) \/%.%[(a2p2—2)sinap+2apcosap] }

2. Find the Fourier sine and cosine transform ofthe function ™.
ns. (l) T pm 2 (ll) T pm 2
3. Find the Fourier sine and cosine transform ofthe function f(¢)=t"e™, 4> 0, n> -1
, 2 T(n+1)sin(n+1)6 . 2 T(n+1)cos(n+1)6
Ans. (i) _ S ()2 (i) _ S )2
T (a®+p?) T (a+p?)

where 6 =tan™'(x/a)

at —at
4. Find the Fourier cosine transform of % .
T

(e +e 7 )cos(%
[ Ans. \/g cosa+{(e” + e,,()/ i)} }

t
and hence find Fourier sine transform of ( ) .

5. Find Fourier cosine transform of s 1+
T T
A X e e*p \/: e*p :|
o [Ter
6. Find the Fourier cosine transform of

f(t)=(a2—t2)v%U(a—t), V>%, a>0
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10.

11.

Where U (a —t) isa Heaviside’s unit step function.

[ Ans. ZU%F(U+%)p1“a“JU(pa) }

Find the inverse Fourier transform of F(p) = e ", where y (~,),

[Ans. f(e)= %[xziyz) }

Find the Fourier sine and cosine transform of e™

@) F. [e:[ ;p} = \/% tan{g) , (a>0)

@ Flnel-3

t

, a > 0. Hence deduce that

2 (a*-p

o Pl o

(IV) F‘Yl:tem;p]:\/zza—p, (a>0)
T

2 a 2 p
[Ans. E;(P)=\/;m,a>0;ﬂ(l7)=\/;~m,a>0 }

Show that the Fourier transform of e’lz/ Zise” 2 .

Prove that e/ isa self-reciprocal function under the Fourier cosine transform. Hence obtain the

. . — 2
Fourier sine transform 7~ /> |

[ Ans. pe }

[Hint : A function is called a selfreciprocal function if it coincides with its transform. |

and deduce that

-t

1
Find the Fourier sine transform of ————-
e —e

1 p
F hnt,p|=——tanh| —
X [cosec Tt p] tan ( ) '
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[ Ans. - Elr)=g lzﬂ)ta“h@ }

1
12. Find the Fourier cosine transform of — s and hence find the Fourier sine transform of
a

and

{ Ans. FC(P)=%\/§ e, FV(P)=ai2\/§ (1-e™) and \/g e }
;p)} = \/g Jy(ap).

t

_1
13.  Showthatif ;> (,then F {(a2 —1*) AU(a—

14, Find f(¢), ifits cosine transform is :

[Ans. sin® at/ zt?]

2t

15.  Showthat F S’l[ef’”’]] :ﬁ
w\m™ +t

, where

R(p) = '[Owsinptf(t)dt .

I, 0<t<a

rove that
0, t>a P

16.  Taking f(t):{
J.wsinpacospt dp = 77, 0<t<a
0 p 0, t>a

© Sin p
Hence evaluate _[0 » dp .

4.8 The Convolution or Faltung of Two Functions

(a)  Definition: The convolution oftwo integrable functions f(¢) and g(z), where —o0 < ¢ < o0
is denoted and defined as

f*g=%_|.zf(u)g(t—u)du
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4.7.1 Convolution Theorem for Fourier Transforms
Theorem 12 :

Statement : Let

@) f(¢) and g(¢) and their first order derivatives are continuous in (—c0,%),
()  f(¢) and g(¢) are absolutely integrable in (—,0),
(i) F(p) and G(p) are Fourier transform of f(¢) and g(¢) respectively,

Then the Fourier transform of the convolution of f(¢) and g(¢) exists and is the product

of the Fourier transform of f(¢) and g(¢) i.e.

Flf+g|=F[f(t)].F [g(t)]=F(p).G(p) .(24)

Proof : By definition, we have

F L0k p)= e [ ar=r () -25)
nd  F [g0hp] == [ e =6(p) -(26)

By definition of convolution, we have
1 00
F [f * g] =F {—\/ﬁ J.wf(u)g(t—u)du}

1 1

= ﬁ J.ieipt {ﬁ J.if(u)g(t — u)du}dt

(by definition of Fourier transform)

1 * *® ipt
= E %f(u) {J:we”’ g(t - u)dt}du
(by changing the order of integration)
1 ® © ip(uty
=51/ {pr( })g(Y)dY}d“ (putting 7 —1u =)
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\/ﬁ [y (u) du=G(p)F(p)

I =gl=r[r(0)f[g(6)]=G(p) F(p) -27)

Taking inverse Fourier transform of both the sides of (27), we obtain

f*g=F "[G(p) F(p)]

or ﬁ J:wf(u) (t—u)du= \/_ J:w G (p)dp

or Jif(u)g(t—u)du :J-Ze’i”’G(p)F(p)dp ...(28)

Ifwe put ¢ = 0 inthe above equation (28), we get an interesting result

I S (u du—j G(p)F(p)dp

4.9 Parseval’s Identity for Fourier Transform

Statement: If F(p) and G(p) are the Fourier transform of f(¢) and g(¢) respectively, then
& [ F(p)G (p)dp=]_ f(t)g'(t)at

@ [P =[] |r(e) ar
where . signifies the complex conjugate.

Proof: (i) Using the inversion formula for Fourier transform, we get

ﬂpt

\/ﬁ J. ...(29)

Now, taking complex conjugate of both the sides of (29), we get

lpl

\/ﬁ J G ...(30)
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Taking |/ (2)g" (D)de =] f(z { T [a (p)eip’dp}dt

[putting the value of g" (¢) from (30)]

! jz f(t)e””dt}dp

(by changing the order of integration)

=].G (n)F
f dt =] F(p)G*(p)dp
L. L.

()  Taking f(r)= g(¢) inpart (i), we get

L[ ¢ ()= F(p)=G(p) or F* ()= G (p)

Jﬁ Lems TR
[ F)F (p)dp =] ()" (t)ar

[IF @) dp=] |r(o) a
This relation can also be written as

or  [IFl|=[I1]

4.10 Fourier Transforms of Derivatives

Theorem 13 : Let

@) f (t) is continous and absolutely integrable in (— 0, 00)
(i) f ( ) is piecewise continously differentiable and absolutely integrable in (— 00 00)
Then F [f'(¢);p|=(=ip)F [f(t); p]

Proof : We have



Since f(¢) is absolutely integrable on (—o0,0)

= lim f(¢) = 0, so that the first integral vanishes.

>0

flr@spl=-ip ff():p].

Remark: If f (t) has a finite discontinuity at the point ¢ = 4 , then

'(+): _L o ipt o'P!
Flr (t),p]—\/ﬁj.wf (1)e dt+\/ﬁ_|.a+f dt
Integrating by parts, we get
1 ipt 1 ipt
F [f'(t)’p]_Tﬂ[f(t) e ]oﬁ\/ﬁ £()e™]

——"[f], e,

where [/ =f(a+)—f(a’)

If f(¢) has » points of finite discontinuties denoted by a,,a, ,....a, , then (31) may be written as

ﬂrl

F[f’(t)p]]——zpF[ ]I \/2_21170
Theorem 14 : Let
® f(&), £'(t), £"(t) . £*7'(¢) are continuousin (—,00),

(i) YAz (¢) is piecewise continuously differentiable on (—c0,),

(i)  each of the derivatives f")(¢) (r=0,2,3,...n) is absolutely integrable on

(—o0,0),

/S s (—i p)" times the Fourier transform
dt"

Then the Fourier transform of the function

of the function f(t) i.e.

Bt{’l’} FLr"():p]=(=ip)F [£(); ]
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Proof: By definition ofthe Fourier transform, we have

tl’l

F [d”f;l’}: Fls (”’(f);l’]:ﬁfieip’f ()t

1

- ﬁ Hif(”fl)(t) ei”’]: —ﬁ J:f("fl)(t) ipe’dt

1 *© n— ipt —
=— ip J: f( 1)(1‘) e’ dt |: Limf(n 1)(1‘) = 0:|
1/272' @ |t|>o0
Now, repeating this process of integration by parts (n - 1) times more and ‘L‘z’m f ) (t) =0 for
r=12,...(n—1), we get
YA IR SN i it
Fr)p]= T (-ip)' [ £ () d
F /@) p|=(=p) F [£():p]
Theorem 15: If
@) f(¢) is continuous and absolutely integrable in (—o0,),
()  f(¢) is absolutely integrable in (—o0,),
(iiiy  F(p) is the Fourier transform of f(¢), then
' d .
F'(p)= E[F (p)|=iF|[t f(t); p] (32)
- N d
or  Fef(0)]=(0F(p)=(-) [F(p)]
Proof: Here F(p) :LJ@ e f(t)dt ..(33)
N2

Differentiating the above equation (33) with respect to initial, we get

d

F'(p)=%[F(p)]=ﬁj—p[ [ e rioyar]

_ ﬁ [ {a—ie"’”}f(t)dt
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1

T [ e (it) f(e)de

i

s e O)a=iF [ (0]

F'(p)=i F [of ():p]
If we continue this process - times, then we easily arrive at the following theorem :
Theorem 16 : (i) Let f(¢) is continuous in (—,00) (ii) each of ¢’ f(¢)(r=0,1,2,...,n) is
absolutely integrable on (— 00, 00) .
Then F'(p)=(i)F [¢ f(t)ip], (r=012,...,n).
Example 11 : Use parseval’s identify to prove that

. Jm dt _ V4
@ (@ +2)(p> +12)  2ab(a+b)s (¢>0,6>0)

© sinat 7 |1-e
o Lees

Solution: (i) Let f(t)=e, g(t)=e"", (a>0,b>0)

[2
Then F,= _'za 5, G, = 2 b
Ta+p ‘ n b +p’

Putting these values in Parseval’s identify for Fourier cosine transform, we have

[ E(p)G.(p)dp =] 1(0)g(t)ar

2 ¢ abdp [P _—(a+d)
. _JO (a2+p2)(b2+p2)_'[° o

) Jw dp o el w_ T
° o (a*+p*) (0> +p*) 2ab|—(a+b)| ~2ab(a+b)

dt /s

o h (a*+2)(b* +1°)  2ab(a+b) (a>0,5>0)
1, O<t<a
i  Let f(t)=c¢ and &(t)= 0 roa
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2 a
then £.(p) :\/; a’+b’
and G.(p \/7 J. t)cos pt dt
7 ca
= \/; J.Ocospt dt
_\/Z sinap
T p

Using Parseval’s identify, we have

[ Ep) G(p) do= [ 1(0)g(t) s

Putting all these values, we get

2 > a sinap ,  * 4
zhdrp T p ]l

2_a o sinap dp J ,mldt_[e*a[]lz

or T 0p(a+p)

1 —&
= (l—e )
= sinat T -
J; t(a2+t2) dt=2a2 (l—e )
<a
Example 12 :  Find fourier transform of f(r) defined by / (1) = 0lil>a
and hence prove that _[ sin’ at dt =%
¢ 1) dt =—— [ e 1
Flryp]=F \/ﬁ [, Gy [ !
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1 2smpa}p¢0

F(p)_x/ﬂ{ P

Using parseval’s identify for Fourier transform, we have

[Llr@fa=[ ()

1 = 4sin’ pa
e

or falz dt=—1 .

.2
© sin” pa 4
or _[ 5 dp:5.2a:7ra

- p
» sin’ at Ta

or _[ —dt =——
0o ¢ 2

i : » l-p, 0<p<l1
Example 13 :  Solve the integral equation for f(7), JO S (t)cos ptdt = 0 o
) p
» sin® ¢ s
Hence deduce that _[ —dt=—
0 t 2

Solution : Let \/% J.:f(l‘)COSPf dt=F, [f(f)]] =F.(p)

[2
— (1- <p<l
then F.(p)= 7[( p) 0<p

0 , p>1

Applying Fourier cosine inversion theorem, we get

f(t)=\/% F.(p)cos ptdp

2 [2 2(1-cost)
:\/;L\/; (l—p)cosptdp:T

2(1-cost)

f(1)= T which is the required solution.

Deduction : Putting the value of f (t) inthe given integral equation, we have

I-p, 0<p<1

J~oo 2(1-cost)
0, p>1

5 cosptdt:[

0 Tt
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Letting p — 0, this equation becomes

di or J~w2s1nt2(t/2) g o

zjwl—cost %

Now, putting ¢ =2u so that g = 24, , we get

)
J- 2sm2 u.2du=£
0 4y 2
» sin’ u /4
or IO 7 du=5

tdt o«
Example 14 : Show that ,[0 (tz +a2) - (2a)5 , (a > 0)

1 (A
ey e =y

But we know by Example 3,

e
T a+p’
1 1 (2
Fl{ 2 —2;1‘}:_ \/:.e‘”
a’+p a \rx

[Ce. dp=1 \E il
o \/ﬁ = a+p " a\x

Now replacing p by — p, we find

Solution : Let f(r)=

—al|

Fle"p

—ipt

mfwa e

I |2
— L|—.e
a

T

—al]

1

mmem%m%Z@wf

Example 15: Prove that

' _ e Zq: m! n! E {tmfrf(nfr)(t);p}

= r' (m r)'
Solution : Since F"(p)=i""F {¢"f(¢); p}

m m+n d” m
Therefore p"F"(p)=i""F { o () p} .(34)



Using Leibnitz’s theorem for n” derivative ofa product, we find that

d" I m!n!

IO} =2 )

where ¢ = min{m,n}
Using (35) in (34) we get the required result.

Self-Learning Exercise-2

1. State the convolution theorem for Fourier transform.
2. State the Parseval’s for Fourier cosine transform.
Fill in the blanks-

3. F {f(")(t);p}z....

4. If f(t)=cost and g(¢)=exp (—alt

), a>0 then (f*g)(t)=...

I, 0<p<l

5. Ifjowf(t)sinptdt: 2, 1<p<2,
0, p>2

then f(t) =...

.(35)

4.11 Summary

In this unit you studied the complex Fourier transform and Fourier sine and cosine transform and

some important thoerems and properties concerned with these transforms.

4.12 Answers to Self-Learning Exercise

Exercise - 1

[F(p+a)+F(p-a)

N | =

s S[EraE(p-a)

1 P
— Fl £
5. |a| [aj

Exercise - I1

3. (—ip”) F {f(t);p}

A \/Z acost
) 7 1+d?

5. 2 (14 cos? —2 cos2t)
Tt
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4.13 Exercise 4 (b)

1.

Use Parseval’s identify to prove that;

@ Jw t*dt ST .o

°(a2+t2)(b2+t2) 2(a+b) »a>0:5>0

» dt T » £'dt 1
(b) JO (l+t2)2 :Z (c) _[0 (1+t2)2 :Z
Show thatif p >0, %wadtzl](l_l?)

Making use ofthe Fourier cosine transform and the Parseval relation, prove that

J-DO hdr_ zsecl(ﬂa)
Making use of the inversion theorem, show that
© COSpt T psm pt T
i dp=—-2e i dp=—
® IO a’+p’ P 2a (i) 0 a’+p’ 2
Solve the integral equation
* ) [ f(l‘) = #
J;) f(t)cosAtdt=e Ans. 7(1+7)
Evaluate Jm di _ Ans . }
valu s ’ *
(P va?) (P ror) @70 b0 _ ab(a+?)

[Hint : Taking /() = ¢! and g(t) = ¢ " and apply convolution theorem for Fourier transform]

T
o ]— ) —, O<t<nm
Show that J: OSp7 sinptdp =12
0, t>nx

© il‘ t
Prove that I sin )tzsm(/,t ) dt = %min(i,y) ,

where min (4, 1) means the lesser ofthe two positive members 2 and .

Find the Fourier cosine transform of

flt)=t7,(0<ax<1), g(t)=(1—t2)”’%U(1—t), (v>-1/2)

and hence prove that

2a—u—1 F (a)
* a-v-1 _ 2
jo 1N (1) dt =

_ \&J 1
a , (O<a<l,u——)
No-—+1 2
2
2 . (am) o 1,
Ans. = p'T'(1-a)sin| — |, 2 2T|v+=|p"J,(p)
V4 2 2



Unit-5
Mellin Transform

Structure of the Unit

5.0  Objective

5.1 Introduction

5.2 Definition

5.3 Elementary Properties of the Mellin Transform
5.4  Mellin Transform of Derivatives

5.5  Mellin Transform of Integrals

5.6  Exercise 5 (a)

5.7  Inverse Mellin Transform

5.8  Convolution of Faltung Theorem for the Mellin Transform
5.9 Summary

5.10  Answers to Self-Learning Exercises

5.11  Exercise 5 (b)

5.0 Objective

The main object of this unit is to define Mellin transform and to give elementary properties of the
Mellin transform, Mellin transform of derivatives and integrals. Important theorems such as Mellin
inversion theorem and Convolution (for Faltung) theorem etc are also proved.

5.1 Introduction

The Mellin transform arises in a natural way in the solution of boundary value problems
concerning an infinite wedge. In this unit we shall consider the properties of this transform and its inverse.

5.2 Definition

The Mellin transform of the function f (x) , where () < x < oo 1s denoted by M { f (x); p} or
F(p) andis defined as

00

M{f(x):p}=F(p)=[x"" f(x)dx
0
Here ,r' is known as Kernel of the Mellin transform and M stands for Mellin

Transformation Operation.

5.3 Elementry Properties of the Mellin Transform

L If M{f(x);p}=F(p),then

M{f(ax);p} =a""F(p)
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Proof: By definition, we have

M{f(ax); p} = J‘:x”*l (ax) dx

) e

I If M{f(x);p}=F(p),then

M{x"f(x);p}=F(p+a)

Proof: By definition, we have
M{x? f(x);p}= '[Ooox(p”)*lf(x) dx
=F ( p+ a)

ML If M{f(x);p}=F(p),then

a a

M{f(x“);p}=lF[£), a>0

Proof: By definition, we have
M{f(x”);p} = J-:x”’l (x”)dx

1 ya
SUbStltutll’lg xa =1t O0r x = t’/” , dx = Zt(l/ ) ldt

inR.H.S., we get
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Proof: By definition, we have

Bt

1 1 1
Substituting L t or x= . dx = t_zdt

inR.H.S., we get
l l oL [P (-p) _ _
M{xf(x),p}—Jo AP £ (1) di = F(1- p)
V. I M{f(x);p}=F(p),then

M{logx f(x);P} = :—pF(p)

d _
Proof : We know that %xp : =(10gx)xp 1

Multiplying both sides by f'(x) and integrating with respect to x between the limits () to oo, we
get

J? {%x"l}f(x) dx = J?x"’l log x f(x) dx

d =

or %UO X" f(x) dx} = M{logx f(x); p} (by definition)
d

or %F(P) = M{logx f(x);P}

VI If M{f(x); p}=F(p),then

M{xmf(axn);p}zia—(mm)m F(p;m), (a>0)

Proof: By definition, we have
M{x’" (ax” );p} = J-wx’”m’lf(ax”)dx
1/n
Substituting gx" =¢ or x = (—) , dx = —(—) —dt

inR.H.S., we get
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M{xmf(axn); p} — laf(erm)/n Jowx{(P+ﬂ1)/n}—1f(t)dt

n
— la(erm)/nF(p + m)
n n
Example 1 : Prove that
a I'(a)T'(a—p
M{(1+2x) ;p}z()%a)), 0<Re(p)<Re(a)

Solution : By definition of Beta fucntion, we have

o X" I'(m) I (n
J-o (1+x)m+" dx = B(m, n)z%, Re(m)>0, Re(n)>0

Replacing m+n=q or m=a—n,weget

J-oo X" i I'(a—n)T(n)

(1+x)a = F(a) , O<Re(n)<Re(a)

Againreplacing 5 by p, we get

J:O xP! (l + x)fa dx =

I'(p)T(a-p)
T@) -

or M{(l"‘x)ia;p}: 0<Re(n)<Re(a)

Particular case : When ¢ =1, then
M{(l+x)71;p}:1“(p)1“(l—p) ['.'F(l)=l]l

T

Using the formula T'(p) T (1 p) = , 0<R Re(l
sing the formula T'(p) T'(1- p) — <Re(p)<Re(l)
mR.H.S., we have
m{(+x) " pt=—=
{( +x) ,p} sin pr
or M{(l+x)71;p}=7rcosecp7r, 0<Re(p)<Re(l)

Example 2 : Prove that

a)r (b i,

M{(l+x ,p} ,  O0<Re(p)<Re(ab)
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Solution : Freom Ex. 1, we have just seen that

M{(“X)b;p}:%g;_p), 0<Re(p)<Re(b) (1)

From the property (III) of 5.3, we have

m{rye} =2 F(2). aso

Using this propertyin (1), we get

p _p
m{(1+x)":p) =% F(é)rr(b()b 4) )

provided that 0 < Re(p) < Re(ab)

Particular Cases : (i) Taking 5 — 1 in(2), we get

(%) T0-2)

M{(l+x”)7l;p}=;

r(1)
or M{(1+x”)7l;p}=§cosecp§, 0<Re(p)<Re(a) ..(3)
(i) Taking 4 = 2 in(3), we get
SR pr
M{(l+x2) ’p}_ECOSGCT’ 0<Re(p)<2
Example 3 : Prove that
B bv2p71 —(v+p)/2
Mie“J (bx); p} =————— (a’ +b’
(e k= )
2
y F(v+p) F(v+p+l) 2E[V+pa V_p+1;v+l; 2b 2}
2 2 2 2 a +b
(Re(a)>0, v>—l)
2
Hence deduce that
b 2r! r(”p )
() M{J, (bx); p} = 2 —v<p<v+2

F(v—p+2)
2
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)

@ M (x)pl=—— K 0<Re(p)<l,v>—%

1 9
I'v-—p+1
( 2” )

M{e’”XJV(bx);p} = J.:x”’le’“va (bx) dx

Solution : By definition, we have

0 v+2r
D S 1)
pary 2

T (v+r+l)

_ C (_l)r b Y —ax _ p+v2r—
_Z—r!F 5 Joe xR

5 (b) Kl

,=0r!F(v+r+l) 2 a’tv

(by definition of Gamma function)

p+v+l") F(p+v+l+l") 2p+v+2r—l
2

r v+rr
gty
2 T (v+r+1)\2 Jroart

(by duplication formula for gamma function)

bv 2p1 Z.o: l)r ir(p-i_v)
~ Iz ar Srl(v+1) T(v+1) (o’ 2 )
F(\H—p) (p+v+l) F(p+v+l)
2 2 ) 2

v oA +v +v+1
b 21’11“(17 )F(p 2 ) p+v p+v+l b?
a ; v+ L—— ..(5)
a

2
B Jr "™ T(v+1) 2 ’
Now, using the result
—-a X
Fi(aaﬁayax):(l_x) 2F‘1(a57/_ﬁ57/9;) (6)
in(5), we get

bv 2p—l F(V+p F(V+p+l
2 2

M{e™J, (bx); p} = T (vr)
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(pv)/ p+v v—-p+1 s
(a +b2) ZFi[ 2 ) 2 9V+19b2+a2 (7)

Deduction :

@) Taking , = ( in(7), we get

pp o1 F(V+p)r(v+p+l)
M{J,(bx); p} = 2 2 x,F

\/;F(v+l) 2

Using the Gauss summation theorem

(p;rv,v_é”l;vﬂ;l) ()

T(y)T(y-a-p)

AeBID =G e rrp
in (8), we get
b7 27 T (V”’)
M{JV bx p}—

(v p+2) —v<p<v+2 ..(9)

(i) From property (II) of 5.3, we have

M{x“f(x);p}:F(p+a)

Using this property in (9) with p — 1, we get

il
o 2
M {x J

(x); p} = 1 ,

0<Re(p)<l,v>—% (10

Example 4 : Prove that

T(c)T(p+p)T(p—a—b+c+p)
F(p—a+c+p) F(p—b+c+p)

M{x(1-x)" R (abic; 1-x) H(1-x): p} =
Solution : By definition, we have
M{x"(l—x)ﬁ1 F(a,b;c;1-x) U(l—x);p}
= J.wa”*lxp(l—x)ci1 F(a,b;c;1—x) U(1—x) dx
= J.le”“’*l (l—x)ﬁ1 2F;(a,b;c;l—x) 1. dx
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= J:x“"’l (l—x)cfli (), (), (1-x) dx

= r!(c

N

_ i(a)'r (b)r J’lep+p4 (l_x)ﬁr*l dx

=0 r:i\c

_ i(a)r (), T(p+p)T(c+r)

~ C)r T(p+ptet l) (by definition of Beta function)

i@h@h L(p+p)T(c)

= r! L(p+p+c) T(p+p+c)

_T(p+p)T i (5),

F(p+p+c = p+p+c)

_T(p+p)T(c)

F(a,b; ;1
F(p+p+C) 2 l(a p+p+C )

_ L(p+p)T(c)T(p+p+c)T(p+p+c—a->b)
C(p+p+c)T(p+p+c—a)T(p+p+c—b)

(by Gauss summation theorem)

_ T(c)T(p+p)T(p+p+c—a-b)
[(p+p+c—a)T(p+p+c—b)

5.4 Mellin Transform of Derivatives

By the definition of Mellin Transform, we have

M{f'(x);]?} = f:x”*l '(x)dx where f’(x) = %
= [xpfl (x)]l: _(P—l) '[wapfzf(x)dx [integration by parts] ...(11)

Here if there exist o, «, such that

Lim x"~ 1f( ) , Limx”flf(x):

x—0 X—>00

when o, < Re(p) < a, andif F(p—1) exists in the band, then (11) reduces to
M{f J-x
0
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or  M{f'(x):pt=—(p-1) M{f(x):p-1}

=—(p-1)F(p-1) .(12)

Applying this formula twice, we have
M{f"(x);p}==(p-1) M{f'(x);p-1}
==(p-D{-(r-2)1(r-2)}

or M{f(xsp)= (-1 (p-1)(p-2) M{f(x):p-2} (13)

Therefore by the Principle of mathematical induction (PMI), we find that

M{f(")(x);p}z(—l)"(p—2) ..... (p—n)F(p-n)

or e ph= CLED) ey )

o m{r(e)p) Fp-1) 14

provided that Lim X" (x) =0, r=0,L,....,n—1 and F(p—n) exits.
Now, by property (II) of 5.3, we have

M{x”f(x);p}:F(p+n)=M{f(x);p+n}

M{x”f(")(x); P}: M{f(")(x);p+n}

oo M{e k) = T arf oy p)

or M{x" £ (), p} _(E)'T(p+n) F(p) [Replacing pby p+n in(14)] ...(15)

Example5: Prove that ifz is a positive integer,
dy )
MKXE) f(x);p} :(_1) p”F(p) ...(16)

where M{f(x);p} =F(p)
Solution : We shall prove the result by using Mathematical induction.
By the property (II) of 5.3 withn=1, we have
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M{xf"(x); py=—p M{f (x): p}==p F(p)

=—(p+1-) M{f(x);p+1-1}

or  M{xf'(x):p}=-p M{f(x):p}=-pF(p) [using (12)]
o e -
or e sP=—pr\p ..(17)
Let the result (17) is true for n = m (a fixed positive integer), them
M d " * m
x| S@Epp 1y prE(p) (18)
4T r(x)=st)
Let us assume that | X e Sx)=glx
Now, M{ xj—x g(x); p} = —p M{g(x); p} [using (17) by setting f(x)=g(x)]
m+1 d m
or M{ x;—x f(X);p}?pM{(xa) f(X);p}

=-p(-1)" p"F(p)

_ (_1)m+1 perlF(p)

Hence the result is true forn=m+1

Hence by Principle of mathematical Induction, the result (16) istrue all n e N .

Example 6 : Prove that if s is a positive integer ¢ # 0

(%)

M{(xla %)mf(x);p}=(1)mamw F(p-ma) .(19)

where M{f(x);l?} = F(p)

Solution : We shall prove the result by using mathematical induction.

By the definition of Mellin Transform, we have

M[[xl‘” %) 7(x): p} _ j:xﬁl(xla j—x) 1) de

149



= [xp*af(x)]: —(p—a) J‘wxpfaq f(x) dx

[Integration by parts]
p—oa d . .
or M| f(xfp|=~(p-a) M[f(x) p-a .(20)
provided that x”~* f(x) - 0as x — 0 and x — 0.
Let the result (19) is true for j; = ; (a fixed positive integer) then
0 (%)
u k
| (<) o |t pt .
x P
(e-+)
o

M[(xla j—x) g(x);p} =—(p—a)M[g(x);p—a]

[By using (19( after putting f (x) = g(x) ]

N %) F(p-a-ka)
72 -4)

[04
[Using 21]

(V)
/(7,1

:(_1)k+1 ! F[p—(k+l)a]l

Hence the resultis true for m=k +1.

Hence by principle of mathematical induction (19) is true forall m e N .
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3.5

Mellin Transform of Integrals

Casel

Proof:

. If M{f(x);p} = F(p), then show that

o W)= tripn

@ MLl aspl= o F+2)

aiy M{1, f(x)sp}=(-1) F(p+n)

Where the n" repeated integral of f(x) is denoted by I, f(x) in the sense that

L, f(x)=] I,_.f(u)du

Let '[:f(u)du = g(x)

sothat g’ (x) = f(x)

Now, M[g’ (x);p]] = —(p - 1) M[g(x);p - l]] [using (12)]

(22)

(23)

o M[f(x);p]=-(p-1) M{jo £ (u)du; p—l} [using (22) and (23)]

Now replacing p by p+1 in the above result, we get

M[f(x);erl]]:—pM{J:f(u)du;p}

M{J-:f(u)du;p}=—%M{f(x);p+1}=—% F(p+1)

which prove the required result (i).

.(24)

(25)

To prove the result (ii), we shall repeat the process explained in above part (i). Thus, we have

s{fjar] 1} =— (], ey

1 1

:——[——F(p+2))

p p+1

— p(p+1)F(p+2)'

This is the required result (ii).

To prove the result (iii), we can be use mathematical induction over 5 .

151

[by part ()]

[by part (i) again]



Casell: If M{f(x);p} = F(p), then show that

Proof:

@) M{Jox £(u)du p} = %F( p+1)

(i) M{jjdyjj f(u)du; p} = F(p+2)

1
p(p+1)

Gi)  m{[” f(x)sp}= rfp(f)n)F(m n)

where the n” repeated integral of I f(x) is denoted in the sense that
I7 f(x)= L I f(u)du

Let ij(u)du = g(x)
sothat g’ (x) = —f(x)

Now M{g' (x);p} = —(p - 1) M{g(x);p - 1} , [using (12)]

o M{-f(x);pl=—(p-1) M[f f(u)dus; p- 1} [using (26) and (27)]

or M{f(x),p}:(p—l)M[ff(u)du;p—l}

Now replacing p by p+1, we get

M{fp1}=pM| [ () p|

M{J-jf(u)du;p}=%M[f(x);p+l]=%F(p+l)

which is the required result (i).

By repeated use of result (i), part (ii) can be proved as explained in part (ii) of case I.

To prove the part (c), we can use the mathematical induction as usual.

Example 7 : Prove that

Mfoe [l ) g () p} = M{S (0 p+a} b (ki + f=a—p)

Solution : By the definition of Mellin transform, we have
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0

M{Jowuﬂf(xu)g(u)du;p} = J;) x”l[J: uﬂf(xu)g(u)du} dx

:JO u’g(u )U Pl (xu)dx}du

[changing the order of integration]
- AN
feet (1) s
[by putting x3; = ¢ sothat udx =dt |
= [ g(u)|: [ f(t)dt}du

_I priopl g duf t7 f (t)dt
= m{g(x)1+ - p} M{f(x):p}

or M {f ulf(xu)g (”)d“?p} = M{f(x); p} M{g(x);1+ B- p} .(28)
Now by the Property (II) of5.3, we have

M{x“n(x); p}= M{h(x); p+a}
Using this property in (28), we get

M{xafuﬂf(xu)g(u)du;p } = M{f(x);p+a} M{g(x);1+p-a-p}

:F(p+a)G(1+,B—a—p) ...(29)
where F(p) and G(p) are mellin transforms of f (x) andand g (x) .

Special case : Putting o = 0= in(29), we obtain
M{[" f(xu) g(u)dui; p} F(p) G(1- p)

Example8: If F(p) and G(p) are the Mellin transform of /'(x) and g(x) respectively. Find the
mellin transform of

o (st

where ) and u are constants.

Solution : By the definition of Mellin transform, we have
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M{x’lf u f[%) g(u)du; p}=j:xp‘[x“j: u f( )g(u)du}dx
ol

[changing the order of integration]

- J;:O u”g(u)[f (ut)’HHf(t) u dt}du

[putting x = ut so that dx = udt|

S =

= ["ur g (u)du " (1)t

=M{g(x);l+i+/,t+p}M{f(x);p+i}

Hence

M{ﬂf u”f(%) g(u)du;p}=F(p +2)G(1+ 2+ v+ p) .(30)
Special cases : (i) Putting 2 = 0in (30), we get

M {f u' f (g)g(u)du;p}ﬂ (p)G(1+u+p) 31
()  Putting 2 =0= g in(30), we got

{J f[ ) w)dlu; p} F(p)G(1+p) .32

(ii1) Putting 1 =0, u=-111n(31), we get

e d
M {JO f ng(u)f;p}ﬂ (p)G(p) ..(33)
The relation (33) is often used in its inverse form
(PG} =] (2%

Self-Learning Exercise -1 :

Fill in the blanks :

1. M{xzf(Sx);p}z....
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2. M{e*“x;p}:....

3. M{sinx; p}=....
4. M{cosx; p}=....
5. M{f'”(x);p}:....

6. M{x*f(x); ph=....

Excercise 5 (a)

If M[f(x); p] = F(p), then prove that

ot

Find Mellin transform of x* (1 + x* )7}) . Mention the conditions of validity.

{ Ans. M(TZKSPZO‘); 0<Re(p+a)<Re(ab) }

If M{f(x); p} = F(p), then prove that

dzf df
2 .
e G =pr

Ifmis a positive integer and « # 0, then prove that
M (i XJmf (x)pp=(=p)"F(p)
dx

where M{f(x);p}=F(P)

Prove that

M{xm (axfn );P}=%a(p+m)/”F(— p+m)

n

where F(p)= M{f(x); p}

Prove that
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10.

11.

.M{g(x);p—ma +,B}
Find mellin transforms of x” = H (x —a) and E,(x)

p+m

[ Ans. — ,Re(p)<—Re(m) and p'T(p) }

p+tm

Prove that

MW, [ (w); pl}= F(p+u)

L= )
Starting from the definition
(22)'(V2), pflon nl 1
ﬂ(X)ZWZE 2 2722 T,

of the Legendre polynomial P, (x) , show heat

M[P,,[%)H(l _ x);p:|:2”1 s F[(P +n +;)(/17211;£(p— n)/ 2]]

where H (x) 1s the Heaviside unit funcitoin.

Find M{A,f(p,0); p} where

of 10f 13f
=5 ot T
ap” pdp p Ip

Azf(/)a 0)

represents the two dimensional. Laplace operator in the plane of polar co-ordinates p and 4.

2

{ Ans. |:(p_2)2+0,,0’)02:| f(p-2.0) } where f(p,6) =m{f(p.0);p— p}

If 5 isa positive integer, then show that

M{ W) H-0ip}=(p ) oA nmlonpi
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5.7 Inverse Mellin Transform

()  Definition: Let M{f(x);p}=F(p)

then f (x) is called the inverse Mellin Transform of F' ( p) and we write

M {F(p)ix}=f(x)

(i) The Mellin Inversion Theorem :

Statement : If the integral J:o x*”| f(x)|dx is bounded for some & > 0 and if

M{f(x)sp} =[] 5" f(x)dv=F(p)

then the Mellin inverse transform f(x) of F(p) is given by

f(x)=M"{F(p);x}= ﬁ [""x"F(p)dp  where ¢> k

c—i©

Proof: By the definition, the complex fourier transform G (&) of g(¢), —oo < ¢ < o0, is given by

G(&)=]" e“g(r) ar (34)

and the inverse complex fourier transform g(¢) of G (&) is given by

g(t)=——[ G (&) de 39)

- 27
Ifweput p=c+i¢ and ¢ =logx in(34) and (35), we get

. © . dx
G(ic—ip)= J.O x"“g(logx) ~

or G (ic — ip) = J-:x”’lx’cg(log x) dx ...(36)
l c+ioo . . o
and  gllogx)=o [ Glic—ip)x~"dp -(37)

Now writng ~ x “g(logx)= f(x) and  G(ic—ip)=F(p)
Then (36) and (37) become

F(p)=[ " x""f(x)ax -(38)
and  f (X)=ﬁ T E(p)dp -(39)
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5.8 Convolution or Faltung Theorem for the Mellin Transform

Statement : If F(p) and G(p) are the Mellin Transforms of the functions f(x) and g(x).
Then

1 c+ioo

M{f(x)g(x);p}= 777 e F () G(p—2)dz

Proof: By the definition of the Mellin Transform, we have

M{f(x)glx)ip} = [ 2" f () g (x)d

c—i®

© 1 petio
=J-0 x? g(x) [—J- X F(z)dz} dx [using (39)]

— F(z) wa”“ g(x) dx} dz

[changing the order of integrations]

l c+ioo

or  M{f(x) glx)p}=— ] Fl)G(p-2)d: [Using (38)]

Special Case : Taking p =1 inthe main Theorem, we get

l c+ioo

M{f(x) g(x)l}= pol Y F(z)G(1-z) dz
or | F(x)e) dx:%m. ::OF(Z)G(l—Z) dz ..(40)

(40) is also knwon as Parseval’s Theorem.

Example 9 : Obtain the Mellin Transform of

1= D -

with 2 >0, >0, 0 < < 1. Hence or otherwise establish that

A,
1Jc+,w 2 2 dr = 2a
27 cwa[ﬁ+;)F(y_Z) T(a+B)T(y-a)

2
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X 2E(oc,l+oc—7/;05+/3;¢12)

with0<a<L,0<a<y, >0

Solution : By the definition of Mellin transform, we have

F(z)=M{f(x):z} = J:O x*f(x) dx

= r(%) o
= F(zﬂ,)J. ’l(l—xz).l dx

- r(zi) J.(:% (Sint)H(cosz t)/H cost dt [putting y = gin¢ so that dx = cost dt ]

2 % 22—
“rk

sint)zfl(cost) Lt

2 T(%)T()

or F(z)= (A>0) .(41)

Similarly G(z) = M{g(x);z} = J:O xzflg(x)dx

L 2(1—a2x)
=I x“ﬂH(l—x)dx
0 T(n)
2 oL u-1
=m'|.° X 1(l—azxz) d.dx

_ 2 J-%(siné’)“(cosze)ul cosf 40
F(u) 0 a a
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cosf

[putting gx = sin @, so that dx = do]

B 2
- T(u)a

_ 2 r(%) T (u)
T T
12

or G(Z)z— u>0,0<ax<l ..(41)

Cus+7)

Using there pairs in convolution theorem, we have

1 [ r(2) - F( 2_) dz

27i %= T (3+2) F(‘LH—p_Z)
2

J.O% (siné’)zfl(cosé’)z’k1 do

_ 4 i (l—,Ll)r azr J;)% (Sin¢)p+2r—l (COS¢)2A—2 COS¢d¢

[putting x = sin ¢ so that dx = cos¢ d¢ ]
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‘ z F(p_z
A 5
27 CIWF(A+Z) F(qup—Z)
2
r(pz
=2 zFl(l—u, p,pm,az)
F(pw) .(42)

with 0<a<1,0<a<y, >0.

Example 10 : Find the Mellin Transform of sin x and show that

M ‘{F (p)sin(%) (1= p);X} = \/g FAf(e)x}

where f(p)= M{f(t);p}

Solution : We know that

_ 2 .
El = 2o o Z2), oepan
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— % J‘:x”fl sinpx dx = \/% p’ F(p)sin(%pj

J:xl”l sinx dx=T (p) Sin(%) , O<R e(p) <1 ...(43)

From (43) and property (I) for Mellin transform, we have

J?x”il sintx dx=1t" F(p)sm( ﬂzp) ..(44)
Now M[Ff [\/7'[ f smtx dt; p}
T N
=\/; J;) x {J.O f(t)sint x dt} dx

Changing the order of integration, we get

[F{f x}p \/7J.f ”lsmtxdx}d

_ \/% ["r7r(p) sin(%)f(t)dt

On taking inverse Mellin transform, we get

Dlll(pﬂ \\ 1‘*/11 } JL] - I; 13 A
luf/ C 2 TR REAVES

Self-Learning Exercise - I1

1. State the Mellin inversion theorem.

2. State the convolution theorem for Mellin transform.

5.9 Summary

In this unit you have studied the Mellin transform and its inversion theorem. You have also studied
the elementry properties and important results concerning this transform. These reulst were illustrated with

the help of examples.
5.10 Answers to Self-Learning Exercises

Exercise - 1
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37(‘”2)M{f(x);p+2} 2. a”” I(p) (p>0)

3 L(p)sin(pr/2) (0< Re(p)<1) 4 LC(p)cos(pz/?) (0< Re(p)<1)
I(p) T(p+2)
- M{f(x);p-3 — - Myf(x)p
5. (p 3) { } 6. T (p) { (%) }

5.11 Exercise 5 (b)

1.

Show that
M‘{COS(Z—p)F(p)/’ (1-p): }: %F{f(t) x}
Show that
I
N L Y D LY
© M F(pzfl)f(p),x —j;f J(tf_xi)
Y < Sl d
o u r(lzgjf(p)x “Fs

where f =M { f }

Prove that
M (p) F(1-p)ix} = L{(f(e):x)}

where F(p) = M{f(x);p}
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Unit-6
The Infinite Hakel Transform

Structure of the Unit

6.0  Objective

6.1 Introduction

6.2 Some Important Results for Bessel Functions
6.3  Elementary Properties of Hankel Transform
6.4  Relation between Hankel and Laplace Transform
6.5 Inversion Formula for the Hankel Transform
6.6  Hankel Transform of Derivatives of Functions
6.7  Parseval’s Theorem for Hankel Transforms
6.8 Summary

6.9  Answers to Self-Learning Exercise

6.10 Exercise

6.0 Objective

This unit deals with the definition and basic elementary properties of Hankel Transform. Inversion
formula for Hankel transform and Hankel transform of derivatives of functions are also proved. In the end

Parseval’s theorem for Hankel transform is given.

6.1 Introduction

The Hankel Transform :

Definition :

The Hankel transform of the function f'(x), 0 < x < oo, denoted by H,{f(x)} or F,(p) or
F(p) andis defined as

H{f(x):p}=F(p)= [ xJ,(px) f (x)x
Where J, (px) is the Bessel function of the first kind of oreder .

Here xJ,(px) is known as Kernel of the Hankel transform and #, stands for Hankel
transformation operation oforder y .
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6.2 Some Important Results for Bessel Functions

Since the kernel involves Bessel function, therefore the definition of Bessel function; its some
important properties, recurrence relations and integrals involving Bessel functions are given for ready
reference.

1. Bessel Function of first kind is defined as

B _1 "(x v+2r
Jv(x)zzfv F)(\(z?r)+l)

I.  Recurrence Relations for J (x):
0] xJ!(x)=vJ, (x)=xJ,,(x)
@ xJx)=—vJ,(x)+x 7, ()
@) 2J7(x)=J(x) = /.. (%)

v

) 2vJ,(x)=x[J,(x)+ ()]

) ;i[ T == ()
o) )] =)

III.  Some Important Infinite Integrals Involving Bessel Functions :

-1/2

@) J-:e’“xJO(px)dx = (a2 +p2) , a>0

2 2\ V2
+ —
o [eonpk o)

(iii) J?x e Jy(px)dx=a (a2 +p’ )73/2

(iv) I:xe’”le (px) dx = p(a2 +pz)73/2

© 1 a
T dXx=——
(V) J() ¢ l(px) X p p(az +p2)l/2

(vi) stinaxJ dx—{l/\/a—iz, 0<p<a
' , p>a

(vit) J CosaxJ px dx—{l/F’ p>a
, O<p<a
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6.3 Elementary Properties of Hankel Transform

L. Linearity Property :

Let F,(p) are Hankel transform of f;(x) for all i=1,2,.....,n and C, are any
constants, then
H{C, f,(x)+ Co fy(x)+eennen +C, f,(x); p}
=C,H{f (x); p}+CH,{ f,(x); p}+........ +C,H {f,(x); p}
=C,F(p)+CF(p)t........ +C,F,(p)

or H{ZC f,(x);p} - gCrHv{fr(x);P}

Proof : We have

HV{le1 (x) +C, f, (x)+ ....... +C.f, (x);p}
=[x () {CA () + Co s () 4C f, ()
=C '[Ooox J,(px) f;(x)dx +C, '[:x J,(px) f,(x)dx+.....+C, '[Ooox J(px) f,(x)dx

=CF(p)+ GFE(p)t.... +C,F,(p)

IL. Change of Scale Property :

If H{f(x);p}=F,(p),then

Hv{f(ax);p}=a—lzﬂ(%j, a0

Proof : We have
H{f(ax); p} = '[wa J,(px) f(ax)dx (by definition)
_ J:é‘]v (%t)f(t)% [on putting ax = £ so that dx = %}
(2 ra= (%)
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Example 1 : Find the Hankel transform of

1, O<x<a, v>0
fx)=

0, x>a, v=0

Solution : By definition, we have
H{f () p}= [, xJy(px) £ (x)dx
=[x Jy(px) f(x) e+ [ xdy(px) £(x)ax
= ["xJy(px)1dx+ [ x Jy(px)0.dx

=IoaxJ0(px)dx ..(1)

Now putting y, = 1 and replacing x by px in the recurrence relation II (vi) for Bessel function of
§ 6.2, we get

% j—x {px Jl(px)} = prO(px)
or W)=~ L fes(pr)) § o)

p dx

Using (2) in (1), we get

Flp) = e dpollae=— Lo (o)

a
or F(P)=;J1(Pa),since xJ,(px)—>0as x -0
Example 2 : Find the Hankel transform ofthe function

{az—xz, ,0<x<a

o , , x>a

taking x J,(px) as the kernel.

Solution : By definition, we have

Ho{f(x);p} = IowaO(px) f(x)dx

= [\ () £ (e} e+ [ () £ (x)
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= I:xJO(px) (a2 —xz)dx+jawa0(px).O.dx

- azj:xJO(px) dx—ij-’ Jo(px)dx+0

=a’l, -1, (say) ..(3)
Now using (2), we get

a

I, :Ioaxjo(px)dx:%IO”%[XJI(px)]dxZ[%Jl(px):|

0

or I, =£J1(pa), (since x J,(px) >0 as x - 0) ..(4)
p
and [ —J-ax3J( x) a’x—J-ax2 li[)CJ( x)]]dx [using (2)]
2=, o\ P = e 1\ ) g

X ’ a X
:[xz.;Jl(pX)} —J.O 2x.;J1(px)dx [Integration by parts]
0

3
a

2 pa
I, =—1J - 2Jl d.
L (pa)-2 [ 55 pr)as ®

In recurrence relation (vi) of Bessel function, replacing p and x by p and px respectively, we get

1d

o [p x*J (px)]l pzszl(px)

2

[, (x)ax = ["?

Jz(px)} = %Jz(pa)

. From(5), we have

3 2
a

2a
L="—J =J
5 ((pa) - S »(pa) (6)

Hence from (3), (4) and (6), we finally obtain

3 2 2

pa —;J(pa) ; J (pa)

Hy{f(x P}—

2a’
= J,(pa
1, (pa)
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Example 3 : Find the Hankel transform of

cosax ) sina x
(i1) ,

X X

(¥
taking x J,(px) as the kernel.

Solution : (i) By definition, we have

cos “ COS
HO{ xax;p}: JO xaxxJO(px)dx

= J‘: cosa x J,(px)dx
= Real part of J:O e ™ Jy(px)dx
2 9 2\V2
= Real part of (1 a +p ) [by result (1) of6.2 (I1I)]

= Real part of (p2 - az)il/z

=) pa
0 , ,0<p<a

Ho{smax;P}:_": Smax.xJO(px)dx
x X

f: sinx.J,(px)dx

= _Imaginary part of J:O e ™ J,(px) dx}

[ . . -2
= —|Imaginary part of (12a2 + pz) 1 ] [by result (1) of6.2 (II1)]

= —|Imaginary part of (p2 ~a’ )1/2]

0, , p>a
- (az—pz)il/z, , 0<p<a
Example 4 : Find the Hankel transform of the function

x", 0<x<a
(n>—1)

0, x>a
taking x J, (px) as the Kernel.
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Solution : By definition, we have
Hn{f(x);p} = I:xJn(px)f(x)dx

= I:xJn(px).x” dx+fowan(px) 0.dx

_ 4 n+l
—IO x"J (px)dx ~(7)
Now, by recurrence relation of Bessel function of 6.2 II (vi) for J, (x), we have

d

L "J(x)}=x"J,(x)

Replacing 5 by (n+1) and writing px for x, we get

p dx {xn+1Jn+1 px)} =xn+1Jn (px)

Using this result in (7), we get
«1d g
Hn{f(x)’p}=J-O ;d 1JI’!+1 px)} dx

n+l

_ 1 n+l a _ a
- p[ Jn+1(px)]l0 _7Jn+l(pa)

6.4 Relation Between Hankel and Laplace Transform

By the definition of Hankel transform, we have

Hv{e’”xf(x);p} = ij J, (px) e’”xf(x) dx

= f: em{x Jv(px)f(X)}dx = L{x Jv(px)f(x);a}

Example 5 : Find the Hankel transform of x"e ™, taking x J, ( px) as the kernel.

Solution : By definition, we have

H{x"e™; p}=L{x""J (px);a}

_J' axv+1Jpx

£ r v+2r
= Z ) (%) J:D e—axx2v+2r+1dx

v+r+l)
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2v+2r+2

5V (o))

o F(v+r+l) F(v+r+3)

o Sl
a?? =l F(v+r+l) 2a N
[using duplication formula for gamma function]
3
v A+
e |

B pv2v+1 3

pv2v+1 3
=——I|v+—=
\/; a2v+2 ( 2)

Example 6 : If Hv{f(x);p} = J.:f(x) J,(px) (xp)l/2 dx, p>0, thenshow that

1 2”F(v+;) pw%
H {x 2 e”";p}z -
Jr (a2 +p’ )v+E

where Re(a)>0 and Re (v)> %

Solution : By the given definition of Hankel transform, we have

1 1
Hv{xv2 e“;p} :I x 2 e’””‘Jv(px) (xp)l/zdx

0

r v+2r
— 12 S (_1) (ﬁ) ® 2ve2r —axd
a2 IT(v+r+1) 2 Jy# et

- -1) pY T(2v+2r+1
:pl/zz ( ) )(5) (a2v+2r+l )

,=0r!F(v+r+l
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. F(v +7r+ ;) F(v +7r+ l) Qv

_ pv+% Z‘O: (_l)r (ﬁ)
2V ,=0r!F(v+r+l) 2a N

1
Example 7 : Provethatif v>— 5o then

1
v Vr +7
P (V 2)

1
vH—

\/;(a2+p2) 2

H{x""'e;p} = L{x"J,(px);a} =
Solution : By definition of Hankel transform, we have
H{x""e s ph=["xJ,(px)x"e d
=[x e, (px)dx
ey ) (p_)d

=r'r v+r+l) 2

[by definition of Bessel function]

S (_l)r (p)"*z“ © _ax _2ve2r
=) ——— | — d
Z“r!F(v+r+l) 2 Joe * *

2v+2r+1

5 G (o))
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)2r F(v +7r+ ;) F(v +7r+ l) Qv

= (%) a21v+1 gr! FE;?;H) (i Jr

[using duplication formula for gamma function]

) )y

2v+1
a’\r = !

Example 8 : Prove that

Hv{67PXZ/4f(x); S} _ 2L{f(2\/;) J, (28\/;);p} )

Deduce that

v+l v
—y 2 S s
Hv{xve P/ ;S}=—€ “p

v+l

p

and hence that

az v+1
. v *Xz/ﬂz . —_| = 7azs2/4
@ Hv{x e ,s}—[ > ] e

(ii) H, {xv e/ 2;5} =5 e
Solution : By definition of Hankel transform, we have
Hv{e””‘z/“f(X);S} = J-:va(sx)e””‘z/“f(x) dx

2

=2 j:f (2vu)J, (25vu) e du | putting XT = u,xdx = 2du

=2 e { £(24x)J,(25vx) dx
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=21{ f(2vx)J,(25V); p} (8

Deduction : Taking f(x)=x" in(8), we get
Hv{xve”’xz/“;s} = 2L{2vxv/2Jv (25\/;);]9}

= 2J:O e P2 x"? JV(2S\/;) dx

o 1)’ "
2v+1 _2r —px v+rd
S,Z(;F'F v+r+l) - Joe v
2 ' F(v+r+l)
2v+1 v ) 2r
* ,Z(;F'F v+r+l)S p!
2v+l ) 0 1 S2 r
~ § ;r—![—?]
_ 2v+lsv 7S2/p
v+l
p

6.5 Inversion Formula for the Hankel Transform

Statement : If F,(p) is the Hankel transform of the function f(x) i.e.
= I:va(px)f(x)dx,then

=" pJ,(px)F,(p)dp
is known as the inversion formula for the Hankel transform of F, ( p) and written as
f(x)=H{F,(p)x}
Proof: If F ( p) is the Fourier complex transform ofthe function f (x) ; that is, if
= Jif(x) e dx

then f (x) is given by the inversion formula

f(x)= i iF(p)e’ip"dp

These results for the complex Fourier transform can be extended to cover functions of two
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variables. Thus if

F(s,t)= J:f(x,y) ¢ Vxdy ..(9)

1 *© —i(sx+ty
Then f(v0)=7 = [ Fs0) e dsar .(10)

Putting x =rcos@, y =rsinf, s = pcosa, t = psina , the equations (9) and (10) become

F(p.a)=[rdr[" f(r.0)e" =" do (1)

l @ 2 —iprcos(0-a
and  f(r.0)= pp= Jopdp J; F(p,a)e™” (0-2) Jor .(12)
Let we choose  f (r,0)= f(r)e ™ ..(13)

Then equation (11) becomes

Fp.a)=[ f(r)rar [0l ag (14)
Now, putting ¢ = a —60-7/, , we get

J‘27r ej{—v9+prcos(97a)}d9 _ J‘OZIT ej{v(¢*a+%)+prcos(*¢*%)} d¢

0

_ J‘OZIT eiv(%—zx) ei{v¢+P’°°S(¢+%)} d¢

iv(T-a) (27 i{vg—prsin
_7 )JO g orrsndt g

l 2

= eiv(%ﬂ)Zﬂ JV(PI”) [ g, (pr) = 27 o gl dﬂ

Putting this value in (14), we get

00

F(pa)=] [ 7)) 2n Jv(pr)}dr

=2 eiv(%fa)"-:f(r)rt]v(pr)dr ..(15)
Ifwe denote the Hankel transform f (r) by F, ( p) , then by definition, we have
Fv(p):J‘:f(r)rJv(pr)dr ...(16)

Hence from (15), we see that
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F(p,a)=27reiv(%fa)F (p) -(17)

v

Using (13)and (17) in (12), we get

f(r)efiVQ _ 412 J’:p dp J’:ﬂ' 27[eiV(%*a)F"/(p)efiprcos(Q—a) da
T

or S0 =L [TpE(p)ap [T g -(18)

' n
Now, putting ¥ =0 -« +,weget

J‘Zﬂ' ei{v(%—a)—prcos(@—a)}da _ J‘OZJT eiv(y/—e)—iprcos(wf%)dl//

0

e[ Mgy = 2 (pr)

Therefore (18) reduces to

f(r)e™ = i‘[:p F(p)e™2r J (pr)dp
or f(r)e’”‘g =e ™ I:pﬂ(p) J, (pr)dp

o f(r)=] pE(p)J.(pr)dp

which is the required inversion formula for the Hankel transform.

Example9: Prove that

1 (@ =) Va2 ) =2 T )0 1, (pa) a0, v 0

Hence deduce

v+l

0  H{xUla-x);p}= “7 Joa(pa)s a>0and

v 2 2

(i) H{—va(“‘x);p} Z 4% J (pa)
a —X

Proof: By definition, we have

Hv{xv(a2 - xz)uiH Ula- x);p} = J:x J, (p)c))cv(a2 —x’ )WH H(a - x)dx
=[x (a2 —-x’ )ﬂkH J,(px).dx

0
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_ ii P v+2rj% (a sir1t)2v+2m(a2 cos’ t)lHila costdt
=rir( )2 0

[putting x = asint, sothat dx = a cosdt ]

_ i% (g)wz"azﬂwr J;)% (Sint)2v+2r+1(Cost)zﬂ,zv,l dt
. vV+r

_ ii) (%)Hzraz‘”z’ C(v+r+1)T(u—v)

,=0r!F(v+r+l 2F(/J+r+l)

C (_l)r pa e p—v-1 H—v _u
-y ) PN it )

= F(v+r+l) 2

=2 (u-v)p*™a"J,(pa) ..(19)
Deduction : (i) Taking p=v+1 in(19), we get

v+l

H{x"H(a—x);p} = a? J,a(pa)

1
(i) Taking MZV+5 in(19), we get

Example 10 : Prove that
v pu—v-1
p'(a*-p?)

Hv{xvfﬂJu (ax);p} = 2T ()"

U(a-p) (a>0, u>v=0)

deduce that

v

O A @) p)= 5 Ula-p), a0
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(i) Hv{x%J 1(ax);p}=\/Z pl Ula-p) : a>0, v>0
v+§ T v+§ 2_ 2 1/2
a *a’=p’)

and hance that

Giy — Hx*{1-Jy(ax): p}|= H(a~ p)log [5)

Solution : By the definition of Hankel inversion theorem in Ex. 19, we find that if ¢ > v >0, then

xv(a2 —x’ )WHU(a —x) = J:OpJv(px)2’H’1 F(/,t —v) pta" Ju(pa)dp
=2 (u —v)a“J-:pJv(px)pv’” J (pa)dp

x’ (a2 - xz)leU(a - x)
24T (u-v)a*

or f: pJ,(px)p ™" J,(pa)dp =

Interchanging p and x, we get

u—v—1

p'(@-p’) Ula-p)
24T (u-v)a”

J?x J,(px)x"* J (ax)dx =

u—v—1

p'(a’-p’) Ula-p)
24T (u-v)a”

or  H[x™J,(ax):p|=

Deduction :

()

(ii)

(iii)

Taking ¢ =v+1in(20), we get

v

Hv[)f1 Jm(ax);p]l = alzﬂ H(a=p), a>0

1
Taking =V + 5 in (20), we get

_ 2 "Ula-
Hv[xl/zJ l(ax);l?}=\/; P Ea P) a>0,v>0

v a”% (a _pz)l/z ’

2

Taking 1, = () in(21), we obtain

_ Ula-
Ho[x IJI(ax);p]=¥, a>0

If we write the left hand side of equation (23), in terms of integral, we find that
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(_ 1)” a2r+2 x2r+l

r+2) 22”2(r+1) F(r+l)

(_l)rfl a2r x2r71

(r+1)2”F(r+l) X

« H(a-p)

da = J;)p Oéda +J-:1%da

=loga—logp

« H(a-p)

...(24)
J-a a2r+1 dl’
0
1 .
T(ra1) 2 T(rtl) x (replacing 7 by r—1)
1
..(25)

wH(a-p)=0, p>a
I, p<a

(p<a)

da=H(a-p) log(%) ..(26)

Now integrating (24) with respect to 'a ' both sides and using the integrals (25) and (26) there in,

we find that

©1—J, (ax)

Jo(px) dx=U(a-p) log(%)

Hy[x?{1=Jy(ax); p}] = U (a - p) log (%9)
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6.6 Hankel Transform of Derivatives of Functions

Theorem1: Let F,(p) and F/(p) be the Hankel transforms of order y of f(x) and

d
f(x)= % respectively. Then

H,{f'(x);p}=F)(p)= —2% {v+1)F_(p)-(v=1)F,.,(p)}

Proof: By the definition of Hankel transform, we have

H{f'(x):p}=F(p)= J:va(pX)zldx

X

d
Integration by parts of the integral on the R.H.S. (taking d_{c as the second function), we get
E d
F/(p)= {x Jv(pX)f(x)}O - J;) f(x)a{x Jv(px)} dx

or Fv'(p) = —'[:f(x){Jv(px)erp Jv'(px)}dx ..27)

assuming that x f(x) —> 0 as x — 0 and x — .

By the recurrence relation II (i) of 6.2, we have
xJi(x)=xJ,,(x)-vJ,(x)
Replacing x by px, we get
pxJ!(x)=pxJ,_ (px)-vJ,(px)
or J,(px)+pxJ(px)=J,(px)+ pxJ,_(px)-vJ,(px)
or J,(px)+pxJ(px)=—(v=1) J,(px)+ pxJ,(px)
Putting this value in (27), we get

F(p)=(v- l)jowf(x) J,(px)dx—p J-:f(x)xJW1 (px)dx ..(28)

In recurrence relation 2v J, (x) =X {JH (x) +J,, (x)} replacing x by px, we have

J,(px)= %{Jvfl(pX) +J,.(px)}

Hence (28) reduces to

F/(p)= p(;v— ! J-:f(x)x[Jv,l(px) +J,.,(px)]dx —J-:f(x)vafl(px)dx
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2v 2v
20D g )2 g ()
Thus Fv’(p)Z—%{(H1)E,1(p)—(v—1)Fv+1(p)} (29)

This is the Hankel transform of order y ofthe derivative a )

The formula for the Hankel transform of higher derivatives of the function f (x) may be obtained
ofrespected applications of equation (29).

Theorem 2 : Prove that

v p = Fi )= 22 g 23 v
H,{f"(x);p}=Fl(p)=7 [v_l 2 (P) == E(p)+ = Fulp)
Proof : Replacing f(x) by f'(x) in(29), we get
wioN_ v+1 _v—l ,
F'(p)= p[ 5o BLlp)—— Fm(p)} ..(30)
Replacing y by (v—1) and (v +1) successively in (29), we get
, _ v B v—2
FL(p)= p{z(v_l) F(p) 201 Fv(p)} (1)
, _ v+2 v
and  Fla(p)= p{z(vH) F(p) 201 Fm(p)} .(32)

Using (31) and (32) in (30), we get

F'(p)=p’ [V;Vl { > (Vv_ B (») —ﬁ Fv(p)}

v+l
R s
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Theorem 3 : Show that

df ldf i A
H{dx x dx xzf’p}_ va(p)

where F,(p) is the Hankel transform of order » of the function f(x).

Proof: By definition of Hankel transform, we have

H {d z li—ﬁf;p}f(:oxtfv(m) {dz—f+l£—v—zf}dx

dx* xdx x°

:[Jv(px)x %}0 jw{;i J(px)}ledx-vz (L0 (o) £ ()

X

[integrating by parts the first integral]

- _J: {x j_x Jv(px)} Z’i dx =" J:O : J (px)f( )dx

X

(provided that x /"(x) —> Oas x — 0 and x —> o)

2
_I [x— J px +di J (px)—— J (px)} f( )dx
[integrating by parts the first integral]

= wl{ dz J,(px)+x 4 J,(px)-v? Jv(px):| f(x) dx ...(33)
dx dx

0 x

Since J, (x) satisfies the Bessel’s differential equation

2
xd 4 vL)cQwL(x2 —vz)y=0,

dx’ dx
therefore
2
ijJ ( )vt)cj—xJv(x)+(x2 —vz)Jv(x) =0

Replacing x by px, we get
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2
pz)c2 fd 5 v(px)+px£Jv(px)+(p2xz—vz)Jv(px)zo
dz d 2 2.2
or x5 (px)+x— o (px) =viJ,(px) = —p*x* J,(px) .(34)

Using (34) in (33), we obtain

dx*  xdx x*

H{df li—— } J- {prpx}fxdx

:—szv(p) ...(35)

—ax

Example11: If f (x) = , then find (i) the Hankel transform of order zero of the function

d’
]: + Ldf and (ii) the Hankel transform of order one of ——
dx”  xdx dx

Solution : (i) Taking , = ( in(35), we get

foldr, df 1df
H[dx X dx p} J-[dx xdeij(px) dx

=-p’F(p)
= —p2'|.:f(x)x Jo(px) dx
_ _pzj': e T

=-p’ (a2 +p’ )71/2 [by result (i) of 6.2 (II1)]

(i) Again taking 1, = 1 in(29), we get
d © d
Hl{d—i;p} = J:) xd—iJl(px)dx
=—pFy(p)=—p | xf(x)Jy(px)ax

= —pJ.O e ™ J,(px)dx
s -2 :
- p(a +p ) [by result (i) 0f 6.2 (11T)]

183



6.7 Parseval’s Theorem for Hankel Transform

Theoremd4: If F,(p) and G,(p) are the Hankel transforms of the functions f(x) and g(x)

respectively, then

["xf(x)g(x)ax = pF,(p)G,(p)dp

Proof: By definition of Hankel transform, we have

Fv(p) = Iowav(px)f(x)dx
and Gv(p) = I:va(px)g(x)dx

Now [ PF(p) G, (p)dp=] pF(p) U: xJ,(px) g(X)dX} dp

= ijg(x) U:I’v(p) pJ, (px)dp} dx

...(36)

..(37)

[by 37)]

[interchanging the order of integration]

= J:O xg (x) f (x) dx [on using inversion formula]

= J?xf(x)g(x) dx

Example 12 : Find the Hankel transform of x"H(a—x) and x"H(b—x), v> —%. Hence or

otherwise establish that

|
|

SIS

), O<p<a

|

Hv{x’sz (ax);p} =

D~ 2=

R

Solution : Here f(x)=x"H (a—x)

) 1
and g(x):xH(b—x),V>—E,a>0,b>O

By the definition of Hankel transform, we have
F(p)= HAS(xEp = ][ <. (p) f (1)
= '[Ooox J,(px)x"H(a - x)dx

1R4



= J: x"'J (px).ldx
_ Ja varl i (_l)r (ﬂ)w&r dx
0 'r (v +r+ l) 2
— i (_l)r (ﬁ)wzr Ja x2v+2r+1 dx
'T (v +r+ l) 2 0
~ i (_1)’ (E)HZV Sy 2v+2re2 a
ST (v+r+1) (2 (2v+2r+2) |
_ i (_l)r (ﬁ)wﬂr a2v+2r+2
,=0r!F(v+r+l) 2 2(v+r+2)

PEEE | @

p ! F(v+r+2

o0 E()=" ()

Similarly we can get

b
H{g(x)p}=G,(p)= o Jo(PD)
Now by using Parseval’s theorem,

[, PE(p) G.(p) dp=| xf(x) g(x) dx

we have
v+ _ mm a b -
IJ- pl v+l pa v+1(pb dp J- 2 ldx
Suppose 0 < a < b, thenwe have
2v+42
v+1 ,1 a
b) dp
J p v+1 v+l(p ) (2V+2)

o 1 v+l
or | P Ja(pa) J,.(pb) dp= (ﬁ)

2(v+1) b

Replacing (v+1) by v, p byx and pby p, wehave
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1
{Jv(ax) } 2v
or H, D=
1
2v

Self-Learning Exercise

Fill in the balnks :

1. Ho{e*“‘;p} =,

2. Ho{e—;p} Sriieeeenes
X

3 Hl{e ”‘,p} =,

9. Hy{x"sinax;p}=...........

6.8 Summary

In this unit you studied the infinite Hankel transform and various results connected with this
transform. The properties and properties of Hankel transform have been illustrated by solving a number of
problems.

1R6



6.9

Answers to Self-Learning Exercise

Lo (+p) (¢ +p°) "
-32 1 a
3. p(a2+p2) — ST
p p(a +p )
s 1+p° -1 6 (a2+x2)—a
' p ' X
_ Hl(a—
7. x(az+xz)3/2 8 (aa p),a>0
H(a-p)
——=(a>0
9. m ( )
6.10 Exercise 6
1. Find the Hankel transform of Smxa a , taking x J, (px) as the kernel.
_a o
|: Ans. pqlp2 +4q° ’ :|
0 , O<p<a
2. Find the Hankel transform of e, taking xJO( px) as the kernel.
[ Ans. a (p2 +az)73/2 }
—ax?, _ pv - 2/451
3. If v>—1,provethat H, e ;pt=——7e”
V> -1, prov [}
4. Prove that
H{e"” }_a+vw/a2+p2 p ’
N Ja*+ p? a++a* +p’
5. Prove that

4 ar, 1 P V
HV{X ¢ ’p}_\/a2+p2 {a+\/a2+p2}



6. Find the Hankel Transform of order zero of x> H(a — x).

[Ans. ;—2{2Jo(pa)+[ap—%JJ1(pa)} }

7. Evaluate Hankel transform of order y of x*'.

2T [(s+v+1)/2]

- 1 }
p! F[(—s+v+l)/2} yessiTy

[ Ans.

8. If Hv{f(x);p} = Fv(p) , then prove that

H{x"f(x)p}= % [F,.(p)+Fu(p)]

le®
9. Evaluate 7, 1{ }
p

{ Ans. (@ +x°) " }

10. If Hfl{Fv (p)} = f(x) , then prove that
. 1
HE@ =2 aso

1
11. Find the Hankel transform of order zero of < and then apply the inversion formula to get the

original function.

o

12.  Find the Hankel transformof f(x)=e™™, 4 > 0, taking x J,(px) as the kernel and hence show

that
1 e ?
HO 5 N2 = ) a>0
(a +x ) a

a
[Ans. m }
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13.

14.

15.

16.

Prove that H { {p” 1f } 5}

and lim p"° f(p) =

pP—>0

If limp"*' f(p) = 0 and limpl/zf(p) =0, then prove that
p—»

p—0

gl

2

Find the Hankel transform of 0”1‘{

of yand .

[ Ans.

Prove that

H{x"sinax;p}= aUlp-a)

p Ip2_a2

oforder y withrespect to variable x, where f isa function

1R0
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Unit-7
Application of Fourier and Infinite Hankel Transform
to the Solution of Simple Boundary Problems

Structure of the Unit

7.0  Objective

7.1 Introduction

7.2 Applications of Fourier Transform to Boundary Value Problems
7.3 Application of Hankel Transform to Boundary Value Problems
7.4 Summary

7.5  Answers to Self-Learning Exercise

7.6 Exercise-7

7.0 Objective

The main object of this unit is to give the application of (sine, cosine and complex) Fourier and

Infinite Hankel transforms to the solution of simple boundary problems.

7.1 Introduction

The partial differential equations subject to appropriate boundary conditions are known as
boundary value problems. The important tools for solving boundary value problems are Laplace, Fourier
and Hankel transforms. The application of Laplace transform to solve boundary value problems has
already been studied in unit 3. Now we discuss Fourier transform method and Hankel transform method

to solve boundary value problems

7.2 Applications of Fourier Transform

When any one of the variables in the differential equation ranges in the inteval

L (—o0, o) : Then take the complex Fourier transform of both sides of the partial differential

equation, thus reducing to the ordinary differential equation, solve it and finally take the corresponding
inverse Fourier complex transform of the solution thus obtained.

I (0, ) : Then take the infinite Fourier sine or cosine transform of both sides of the partial
differential equation, thus reducing to the ordinary differential equation, solve it and finally take the
corresponding inverse infinite Fourier sine or cosine transform of the solution so obtained.

The choice of sine or cosine transform is decided by the form of the boundary conditions at the
lower limit of the variable selected for exclusion. In this connection we require the following results

2 2
@) F {g Ii} = J-O Z: Ii sin p x dx [taking non-symmetrical definition of Fourier sine transform]
X X
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= &—Usin X °°_ J.wﬁ—Ucos X dx i i
Ox P 0 P, Ox p [integrating by parts]

» AU . ou
:pjo E(cospx) dx,prowded E—) 0as x>

= —p{[U cospx]]:; + pﬁ] sinpxdx}
=—p[U(x.1)] _, - P’u(p.1)
[assuming that U (x,7) — 0 as x —> o0
U
Thus Fs{ﬁ} = pU(0,1)- p’u,(p.1) (1)

where u,(p,t) is the Fourier sine transformof U (x,7) withrespect to x .

U\ U : . o
F, { P } = IO P cos p x dx [bynon-symmetric definition of Fourier cosine transform]
X X

= &—Ucos xw+ J.wﬁ—Usin xdx
Ox P o P, Ox P

=— é,—U + J-Doé)—Usin xdx
Ox Pl Ox P

x=

ou
[assuming that "5~ = 0as x >0]

(] ol o]
—_ 0;,—[){ =0—p2 J-:U(x,t)cospxdx

X

[assuming that U (x,7) — 0 as x —> o0

;U ou
Hence Fc{ P } = —[ P J - p'u(p.t) .(2)
x=0

where u,(p,t) is the Fourier cosine transform of U (x,) withrespectto x, where U (x,7) isa

function of the variables x and ¢ .
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U
From (1) and (2), it follows that if we want to remove the term o2 from a partial differential

equation, then we require

ou
@) U,(0,¢) i.e. 5 when x = inFourier cosine transform
(1) U(O,t) i.e. U(x,t) when y = () in Fourier sine transform

4

Similarly we can attempt to remove the term Oyt orany other derivative of even order but these

transforms will fail for removing any derivative of odd order. If we can use these transforms for solution of
a partial differential equation, there is definetely a considerable advantage over the Laplace transform.

When one of the variables in a partial differential equation ranges from —oo to oo, then that
variable can be excluded with the help of complex Fourier transforms.

2
Example 1 : Solve O;—U = 0;’—[2], x>0, ¢ >0 subject to conditions :
t X

0] U(0,6)=0

) I, ,0 1
(1) U= xS when ¢ =0
0, ., x>1

()  U(x,t) is bounded

Solution : Since (U)__, is given, therefore taking Fourier sine transforms of both sides of the given
[2 (=0U [2 =&U
— | ——sinpxdx=— sin p x dx
T JO ot P T JO ox’® P
d |2 (= :
or 7\ J.O U (x,t)sin pxdx

= 2 é)—Usin xw— J-DOO’)—UCOS xdx
T Ox P . Py Ox P

equation,

du 2 =0U ou
or s—_p |2 ] 2= ,— > 0as x—>
7 P 1/” JO x cos p xdx e X —>®

2 .
[Assuming that u,(p,?) = \/; J.O U (x,t)sin px dx]

10D



\/7 U(x,1) cospx +p_[ (x,t)sin px dx}

or

or { Ot +pu} [assumingthatU(x,t)—)Oasx—>oo]
dl/lv 2 .. .

or 7 = —p_u,, by boundary condition (i)

or 7 ..(3)

The solution of 3) is u (p,1) = c,e a ..(4)

Now, taking Fourier sine transform of boundary condition (ii), we have

u(p,0)= \/% J.: U (x,0) sin p x dx

=\/% {J.OIU(x,O) sinpxdx+_|.1wU(x,0) sinpxdx}
=\/% {_[01 l.sinpxdx+_|.:6.sinpxdx}

1
2 cospx 2 l-cosp
o u(p0)= —[— }:\ﬁ (5
T P T )%

Taking ¢ = () in(4) and using (5), we get

2 1-
ux(p,O):cl:\/; C:SP

Substituting the value of ¢, in (4), we have

u,(p,t) = \/% —I_C:Sp e "

Now, taking inverse Fourier sine transform, we get

1- cosp
P

U(xt=—J- P sin px dp

which is the required solution.

Example 2 : The temperature U (x, ) in the semi-infinite rod 0 < x < oo is determined by the differential

10



equation :

ou  FU
N
ot Ox
Subject to the conditions :
() U=0Wwhen¢=0, x>0

(i) ?—Z = —u (aconstant), when y =, >0

Making use of cosine transform, show that

U(x,t) = 27/J J-:CO;#(I_ekp”) dp

ou
Solution : Since [EJ is given, therefore taking Fourier cosine transform of both sides of the given
x=0

differential equation, we have

2 =oU 2 (=U
\/;JO Ecospxdx:k ;JO e cos p xdx

or 1/% % J.:U(x,t)cospxdx
2 ou " . oU
=.— kJ|lcospx—| + sinpx—-d
\'z {[ pxaxl P, sinpxz x}

or du, =— 2 k v +\/§kpj-wa—Usinpxdx,
dt T ox ) _, =« 0 Ox

: 2 e
1fé’—U—>O as x — oo Here uc=‘/—_|. U(x,t)cos px dx]
T Y0

Ox

we have

d 2 2 . o
dL;c :\/;k/l+\/; kp {[U(x,t)smpx]]o —_[0 U (x,t) pcospx dx}

d [2
or e _ “ku-kpu,, ifU(x,t)—)Oan—>OO-
dt 4
d 2
or %%rkpzuc = 1/;ku ..(6)
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which is a linear differential equation of first order. It’s

kp*dt kot
_ e _

IL.E is

Thus the general solution of (6) is

2[ 2 2[
e, (p,t):\/;kuj.ek” dt +c,

u, (p,t)z\/%§+cl ek (7

Now taking the Fourier cosine transform of boundary condition (i) we have

2 00
\/; J.o U(x,O)cospxdx =0 or uc(p,O) =0 ...(8)

Putting ; = ( in(7) and using (8), we get

2 2
0:\/:%4_01 or cl:_\/:iz
T p T p

Thus From (7), we get
2 H —k p*t
u(p,t)=.,——|[l—-e"”
)=y 2 (1)
Now, taking the inverse Fourier cosine transform, we get

U (x,1) =% :% (l—e*k”z’) cos px dp

or U(x,t)=27ﬂj-:m$(l—ek”2’)dp

p
2
Example 3 : Solve ﬁlf + é’—li =0, —0 < x <o, ¥ =0 satisfying the conditions :
ox"  Ox
)] U and its partial derivatives tend to zero as x — + o0 and
(ii) U= f(x), 5—U=0 for y=0
oy
4
Solution : Given ﬁlf + é’—li =0 ...(9)
ox" Oy

with the boundary conditions :
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()

(ii)

2 3
ou U alf-}Oasx—)ioo

U—)Oa__)07 —2—>05

Ox Ox Ox

U(x.0)=f(x)

ou
o (5],

Taking the complex Fourier transform of (9), we get

or

or

or

or

or

or

or

wé’U

1px

—00

1 0”3Ueipuw . = 3U
N2z || ox° B = Ix

w U e
= Ix y?

iu(p.y)= J_I

lp é’zU inx ’ . wé’ZU ipx
N2 {[é’xz e”} _lpL” ox* erdr+

where solution is

u(p,y)=c,cosp’y+c,sinp’y

10A4

wé’U

e’ dx=0
e’ du}+

[using boundary condition (i), and assuming

1

d*u
dy’

M=0

J.ZU e’ dx=0

W N2 -

[using boundary condition (i)]

..(10)



Taking complex Fourier transform of boundary conditions (iii), we get

wa—Ue[""dxzoaty=00rd—u=0aty=0 ..(11)

1
Viijwﬁy dy
Taking y =0 in(10) and using (11), we get
o=c¢,p°=c,=0
Therefore from (10), we have i (p, y) = ¢, cos p*y ..(12)

Again, taking complex Fourier transform of boundary condition (ii), we get

1 ® ipx 7. _ 1 ® ipx
ﬁIwU(x,O)e dx _ﬁjo f(x)e dx
or  u(p0)=/1(p) ~(13)
where f‘(p)=ﬁj-if(x)eipx dx ..(14)

Putting y =0 in(12) and using (13), we obtain

J;(p) =G
Thus from (12), we have

u(p,y)=f(p)cosp’y

Further taking inverse Fourier transform, we get

—ipx

U(x,y)=ﬁj-if(p)cospzy e dp

where f(p) is given by (14).

Example 4 : Ifthe flow of heat is linear so that the variation of @ (temperature) with z and y -axes may
be neglected and if it is assumed that no heat is generated in the medium, then solve the differential equation

2
00 _, &0

ot oxt
where —o0<x <o and 6 = f(x) when ¢ = 0, f(x) being a given function of .

Solution : The equation is

o0 50
= ko —0<x <0 ..(15)
with the initial conditions 6 (x,O) =f (x) ...(16)
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Taking the complex Fourier transform of both sides of (15), we have

I tpx tpx
J_ o é’t *‘”O”x
iLJ- 0(x,t) & dx =k (—ip) F{th}
or dt \/ﬁ -
d@ 1 @ ipx
or T =—k p*0, where 0 =F {9 X, t} ﬁ J:wé’(x,t) e’ dx

whose general solution is

9(}7, )_Cl kp't

Taking the complex Fourier transform of both sides of (16), we get
0(p,0)=— x) e’ dx =
(,0) ﬂfwf( ) f(p)

Putting 7 = 0 in(17) and using (18), we have f(p)=

Hence from (17), we have

2

0(p.t)=f(p) e

Now, taking the inverse Fourier transform, we get

where

Thus, the solution of (19) becomes

10R
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..(19)
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0(x,1)=—— fif(u)exp{—(x_u)}du (21

Akt 4kt
Example S : Find the solution of the linear diffusion equation

FU_10U
ox* k ot

in a semi-infinite rod x > (, satisfying the boundary conditons :
D U0,)=1(1), t>0
(ii) U(x,t) >0 as x >0

and the initial condition U (x,O) =0

Solution : Taking Fourier sine transform of the given equation and using boundary condition (i), we get

du 2

—5 +k 2u = _[— k t .ee 22

_Srkptu == kpf(1) (22)
Further initial condition is equivalent to

u(p0)=0 (23)

Since (22) is a linear ordinary differential equation whose solution is

u(p,t) et :\/%kpj.otf(r) e ldr+c

Taking ¢ = 0 and applying the condition (23), we get ¢ = 0 . Thus

u(p,t) = \E kp J.;f(r) e I g g ..(24)

Taking Fourier inverse sine transformand using the factthat F ~' = F , we get

u(x,t)= \/% k J.;f(r) F S{pefk(’ff)”z;p}dr ..(29)

2 2 o 2,
Now F v{peik(H)” ;x} == J. pe "I ginpx dp
: \ g

2 —Sinpx —k(1-1)p? N X ' _k(t-7)p*
\/; {[21{0—7) e 2k(t—T) J;) e cospx ap

0
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J.: e I cospx dp

X 7x2/4k(t7‘r)

= %{k (t-2)} " exp {— #—7)} .(26)

Substituting the aforementioned value in (25), we finally obtain

X ‘ x’ dr
)=—F7— -
u(x,1) T J.Of(’[) exp{ 4k(t—7)} (t—7)3/2
Ifinstead ofboundary condition (i), we have the condition

U.(0,6)=1(), (1=0)

then we must use Fourier cosine transforms and in this case the solution will be

e {E v ]

. ov. oV
Example 6 : Solve ik x>0,t>0
. . , 0<x<1
@ V(0.0)=0 () V(x,0)={x )
0, x>1

and (i) ¥ (x,7) is bounded.

Solution : Since [é’—VJ is given. Therefore taking Fourier cosine transform of both the sides of the
X
x=0

2 tfov 2 1V
= || = |cospxdx= |- cospxd
\/;l[ﬁtj pre \/;{6)62 pre
2 d % 2 |(ov Tootor .
or \/; Z !)-VCOSp)Cdx=\/; {[a cospxl +p _([Esmpxdx}

200
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dv /2 ov . o 5 f
—S=— =93 = -pV + Vcospxd
or dt . {[é’xlr:o p( smpx)o p —([ px x}

[?—V—>0Whenx—>00 andv—)OWhenx—NO}
X

dv, __ o dv,
of dt pYe or dt ¢

2 o0
where V,(p.t)= \/;J.O V (x,t)cos pxdx

The solution ofthis equation is

v o= Aefpzt ..(27)

c

x, 0<x<1

Again V(x,O) = {O o1

Taking Fourier cosine transform, we get

1
2 i 1
= |= [xsmpx) +—2(cospx):)]
n

J.lx cos px dx +J.1w0 Cospx dx}

0

p o P

2 [si -
2 |sinp  cosp 1
T

= ..(28
> 7 (28)
Therefore when ¢ = 0, then by (27), we have
A:\/z [smp +c0s€—l
TL P 2.
5 = z [smp_'_cos;z—l o7 .(29)
TL P P

Now, taking inverse Fourier cosine transform of(29), we get

Vix,t)= \E J.:E cospx dp

2 = [2 | si -1 2
:\/:J \/:[smp_'_coszz )e‘”cospx dp
TN p p

"1




2 (of si -1 2
:_J [smp_'_cosgz )e‘”cospx dp
0
4 p p

Example 7 : Solve the initial value problem for the wave equation

o°U _ , U

o7 ¢ ﬁ,(—oo<x<oo,t>0) ..(30)

subject to conditions
U(x,O) = f(x) .31
U, (x,0)=g(x), (—o0 < x <o) ..(32)

Solution : Applying complex Fourier transform with respect to variable x in(30), (31) and (32), we get

2—

‘;? +pi =0 (33)
_ = du _
7(p0)- 70 (%) ~2(») e

where E(p,t) = % J-DO U(x,t) e P dx
/R

f@):ﬁ [" r(x)eax

Similarly g(p) canbe defined.
The solution of (33) is
U(p,t)=c e +c,e P ..(35)
where ¢, and ¢, are constants
Putting ¢ = ( in(35) and its differential coefficient and using (34), we get

1

¢ +c,=f(p)and &~ :ip?

g(p)

Solving for ¢, and ¢, we get

1 r i pct —ipct g ipct —ipct
E(p,t)zzf(p)(e”"" +e ' )+%(6” —e ' )

Taking the inverse Fourier transform, we get

1 *® = ipct —ipct —ipx
U(x,t):zﬂ J:wf(p)(e”’c +e'? )e Pdp
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lpCt _e—[pct) e—[pxdp

ZC\/E J‘” ip

2@ J:OO( —i p(x+et) e—ip(x—cz)) f(p)dp

( —i p(x—ct) e—ip(x+ct)) dp

1 g(p
+2c\/ﬁ J‘” ip

= ; [f(x + ct) +f(x— ct C\/_J dp J:jcite’ipu du

:;[f(x+cl‘)+f(x Ct)]+icj:+cit \/_J *lpu— dp
Thus
V- %[f(x ret)+ e +2_lc J._. glw)du (36)

Particular Case: If g(x)= e, g(x)=0and ¢ =1, thensolution (36) becomes,

U(x,t)= %[e(“)z + ef(’”’)z]l

7.3 Application of Hankel Transform to Boundary Value Problems

Now, some special type of differential equations will be solved with the applicaton of Hankel
transform. While dealing with boundary value problem having symmetry about an axis, it is convenient to
use polar coordinates. If the range ofthe radial variable is 0 to «o, it can be removed conveniently by the
application of Hankel transform. The solutions of'the resulting equation will be a function of p and the
remaining variables. Thus solution here to be “inverted” to recover the lost variable. The method will be

more clear by the following illustrative examples.

Example 8 : Apply Hankel transform (of zero order) to solve the differential equation

U 10U &2 o
é’r2+r or é’z J 0<r<w,z>0

Satisfying the following conditions :

)] U—>0asz—>oand r— o
(ii) U=f(r)onz=0,r>0.ltisgiventhat U(r,z) is bounded.
Solution : Let u(p,z) denote the Hankel transform of U (r,z) with respect to -, for which y =0.
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Therefore
u(p,z)= '[OwU(r,z)rJO(pr) dr

Multiplying the given differential equation by the kernel r J|, ( pr) and integrating with respect to »-
from 0 to oo, we get

(U 10U = U
IO [ +——JrJ0(pr)dr+J-0 ﬁrJo(pr)dr=0

ort r or

“(d*f 1df
Using the result fo oy dr

Jx Jo(px)dx =—p*f , this yields

d’u d’u
—plu+—r= or ——-pu=0
P u+dy2 0 dy2 p

whose solutionis u(p,z) = ce” +c,e ”

Since {7 is finite and so 3 is finite as z — oo , consequently ¢, = 0 otherwise 3 becomes infinite

as z > oo.
Thuswehave u(p,z)=c, e”* ..(37)

Also on taking the Hankel transform of order zero of the given boundary condition (ii), we get
u(p,0)='[0 f(r)rJO(pr)dr=f(p) (say) ...(38)

Putting > = ¢ in(37) and using (38), we get ¢, = f(p).
Hence (37) reduces to

u(p.z)=f(p)e”
Applying the inversion formula for Hankel transform, we have

U(r,z)='[0pr0(pr) u(p,z) dp='[:pJ0(pr) f(p) e ” dp

Which is the required solution.

Example 9 : Find the potential V' (r, z) ofa field due to a flat circular disc of unit radius with its centre
at the origin and axis along the 7 — axis satisfying the differential equation

;v 1oV &V
+——+
or* r or 0z°

=0,0<r<o00,z20

and satisfying the boundary conditions :

V=V,whenz=0, 0<r<1,
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and ﬁ—V:O,Whenz=0r>l,
oz

Solution : Let v{p,z} denote the Hankel transform of ¥ {r,} withrespect to -, for which y, = (.
Therefore

v(p,z)= '[OOOV(r,z)rJO(pr) dr

Multiplying the given differential equation by the kernel r J|, ( pr) and integrating with respect to »-
from 0 to o0, we have

o) 2
I [0” V+ngrJo(pr) dr+J- é’—IZ/rJO(pr) dr=0
0 0 Jz

ort r Or

LY s

dx*  x dx

Using the result _[0 [ J xJy(px) dx=-p’f

This yields

2

—pzv(p,z)+d— I:V(r,z) rJy(pr)dr=0

dz*
Therefore
d*v
dz> pv=0

whose general solution is
v(p,z)=c e +c, e”*
For a bounded solution, we must have ¢, = 0, for otherwise v — oo(since p > 0) . Therefore

v(p,z):c2 e, ...(39)

where ¢, isindependent of 7 i.e. ¢, isa functionof p only. Therefore we may write ¢, (p) in

place of ¢, also. Applying the inversion formula, we have

Vr,z)= J:O o, (p) e pJy(pr)dp ...(40)
ﬁV * -pz 2
and =] e(p) e (=07) Julpr)dp (41

¢,(p) isdetermined from the ‘dual’ integral equations obtained by substituting (40) and (41) in the
given boundary conditions. Thus inserting (40) and (41) in the given boundary conditions and setting
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z=0,we have

.[:pcz(p) Jo(pr)dp=V,,foro<r<1 (42)
and [ p’c(p) Jo(pr)dp =0, for y>1 (43)
But we know that

ﬂi%uﬂ>“2pcw=*§, 0<r<l .(44)
and [ Jy(pr)sinp dp=0, r>1 (45

Comparing (42) and (43) with (44) and (45), we have

2 _ sin
a(p)= 1=

Substituting this in (40), we get

V(r,z) = —h

Jo(pr) sin p dp

which is the required result.

Example 10 : The free symmetric vibrations of a very large membrane are governed by the equation

JU 10U 13U
2

or’ +; or & or r>0:1>0
) oUu
with U:f(t),E:g(r)atZO

Show that for ¢ > ()
) l o .
Ul(r,t)= JO pF(p)cos(pet)J,(pr) dp+z JO G(p)sin(pct)J,(pr) dp

where F ( p) and G ( p) are the zero order Hankel transform of f (r) , g(r) respectively.

Solution : Let u ( p,t) denote the Hankel transform of U (r,t) with respect to » for which y=0.
Therefore

u(p,t):IOwU(r,t) rJy(pr) dr

Multiplying the given differential equation by the kernel r J|, ( pr) and integrating with respect to -

from 0 to oo, we have
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(U 10U = U
IO [é’rz +; EJFJ (pr) dr C_ZJ-O W’”Jo(p’”) dr

d
Using the rsult _[ [ J +; %) xJO(px) dx=-p’f , wehave

1 d* =
_pzu(p,t)=c—2 ?J-O U(l’,t)l’JO(pl”) dr

dZ
Therefore Iﬁt +cpu=0

whose general solution is
u(p,t) = Acos(cpt)+ Bsin(cpt)

and % =—Acp sin(cpt) +Bcp COS(Cpt)

..(46)

(47

..(48)

Taking the Hankel transform of few order of the given boundary conditions with respect to -, we

have

= Iowf(r)r Jo(pr) dr=F(p) (given)

and — J r)rJy(pr) dr=G(p) (given)when ¢ = (.

Putting ; — ( in (47) and (48) and using the conditions (49) and (50), we get

A=F(p); Bcp=G(p) ie B=G(p)
p); bcp p) 1€ cp
Substituting these in equation (47), we get

u(pot) = F(p)cos(cpr) + Z P sin(cpr)

cp

Applying the inversion formula, we get

Ul(r,t)= ijF(p)cos(cpt) Jo(pr) dp +% J:O G(p)sin(cpt) J,(pr) dp

which is the required solution.

..(49)

(50

Example 11 : Heat is supplied at a constant rate Q per in the plane 7 = () to an infinite solid of con-

ductivity g . Show that the steady temperature at a point distant , from the axis of the circular area and

distance > fromthe plate = () is given by

ZQ_IC; J:O e Jy(pr)J,(pa) p~'dp
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Solution: Let U (r, z) be the temperature at the point (r, z) then it is governed by differential equation

+— +
ot or* r or 0z°

2 2
&Uzk{ﬁLf 1 oU an

. : ou
Since the temperature is steady, therefore a7 = (. Hence we get

AU 10U U
+— + =
or* r or 0z

0 (51

with boundary conditions

ou
2[_K—J=Q, 0<r<a
oz

z

and 2[—K0”—UJ=O, r>a

when z=0

Since there is a symmetry about the plane > — (), hence we shall find out temperature only for the
case z> 0. Let u ( p,z) denote the Hankel transform of U (r,z) with respect to -, for which y = (.
Therefore

u(p,z):I:U(r,z)rJo(pr)dr ..(52)

Taking the Hankel transform of order zero of (51), we have

(U 10U = U
IO [ +——JrJ0(pr)dr+J-0 ﬁrJo(pr)dr=0

ort r or

Using the result (46) this yields.
d* =
—pzu(p,z)vt—2 I U(r,z)r Jo(pr)dr =0
dz" %0

d*u

Therefore —-pu=0
dz

whose general solution is
u(p,z):Aepz+Be’pz ...(53)

Also on taking the Hankel transform of order zero of the given boundary conditions with respect
to -, we have
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du _
dz

0

IT—%} rJO(pr) dr+J:OO.r Jo(pr) dr=0,when z =0

du Q (e
or 4 2K ,[0 rJo(pr) dr when z =0 ...(54)

Now, writing pr for  and y, = 1 inthe recurrence relation (vi) of 6.2 (II), we have

_d

d(pr)

1 d
This gives ; E {’”J1(P’”)}=’”J0(P’”)

{prJl(pr)} = pr Jo(pr)

Substituting this in (54) we get

d al d
d_zz_%-';;;{rjl(pr)}dr’ when z =0
1 a
=-%;[?J1(Pr)]o, when z = (
du= 0O a

or = 2K Ji(ap) , when - = ¢ ..(55)

For a bounded solution, we must have 4 =( for otherwise y — o as z — o« (since p>0).
Therefore

u(p,z)=Be”* ..(56)
d e
and Eg=—8pep (57

_Bp=——%J1(pa) or B=g_ijl(ap)

Applying the inversion formula in above equation, we get

U(r,z) = '[Owu(p,z)pJO(pr)dp

2700



or U(F’Z)ZZQ_IC; :e”’z JO(pr)Jl(pa)p’1 dp

Self-Learning Exercise

2

1. If we want to remove the term e fromap.d.e. thenat 5 = (), what type of condition is we
x
required in the case of (i) Fourier cosine transform and (ii) Fourier sine transform
Fill in the Blanks
2. Ifthe differential equation ranges from —oo to oo then......... Fourier transform can be used to
solve a boundary value problem.
3. If we apply Hankel transform of order zero w.r.t. variable » to p.d.e.
Fv 10v Jow
5 +—-—+ 5= 0
or” r or 0z ’
then we get
u(p,z)=.......
where u(p,z) = J.DO U(r,z)r Jy(pr)dr
7.4 Summary
In this unit you studied the applications of Fourier and Hankel transforms to solve boundary value
problems. The different methods were explained with the help of practical problems
7.5 Answers to Self-Learning Exercise
Lo WYa,_o @  U(n)atx=0
Ox
2. Complex 3. ¢, e” +c¢,e” (¢ and c, are constants)
7.6 Exercise-7
2
1. Solve v :6—5, if U(0,/)=0, U(x,0)=€", x>0, U(x,t) is bounded where x>0,
x
t>0-
[ Ans. U(x,t)= 2pop e sinpx dp }
T 1+ p’

2710



If 0 isthe temperature at time ¢ and & the diffusivity of the material, find @ from the partial
: : .0 o' 0 , .
differential eqaution e =k S >0, ¢ > 0, subject to the boundary condition 6 =6,
t X

when x =0, 7 > 0 and the initial condition =0 when r =0, x> 0.

© —kpzt
[ Ans. 0(x,1)=0, {1—%‘[0 ep sin p x dp} }

Use a cosine transform to show that the steady temperature in the semi-infinite solid y > 0 when

the temperature on the surface y = 0 is kept at unity over the strip |x| < a and at zero outside the

1 La+x La—x
— | tan ——+tan
7 Yy Yy

o i r
The result JO e ™x'sinrx dx = tan 1[;), r>0, p>0 maybe assumed.

strip, is

Ifthe function U (x, y) is determined by the differential equation

v _&u
ox 0y’

for x>0, —00< Y <00 and U:f(y) when x = 0 then show that

U(x,y) = ﬁ J-j:of(p) e*pzx—ipydp

where f(p) is the Fourier transform of f(x).

Show that the solution of Laplace equation for ¢/ inside the semi-inifinite strip x >0, 0< y<b,
such that

U:f(x)aWhenyZOa 0<x<o0

U:Q,wheny:b, O<x <o

U=0,when xy=0, 0<y<b

is givenby U :% J?f(u)du J?% sinx p sinu p dp

Use the method of Fourier transform to determine the displacement y (x, t) of an infinite string,

given that the string is initially at rest and that the initial displacement is /(x), —oo < x < o0. Show
that the solution can also be put in the form :
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[f(x+ct)+f(x—ct)]

N | —

y(x,t)=
Solve the Laplace equation in the half plane

;U U
+

ot -0, (—o<x <o, y20)

with the boundary conditions
U(x,O)zf(x), —0<x <0
and U(x,y)—)O as |x|—)oo,y—)oo
Y
Ans. U(x,y)=——F— :|
A v (2 +77)

The magnetic potential {7 fora circular disc ofradius 4 and strength w , magnetized parallel to its
axis, satisfying Laplace’s equation, is equal to 2 7 w onthe disc itself and vanishes at exterior

point in the plane of the disc. Show that at the point (r,z), z> 0

U=2ra WI: e ”” Jo(pr) Jl(ap) dp

719



Unit-8
Linear Integral Equation

Structure of the Unit
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8.16  Summary
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8.18  Exercise 8 (¢)

8.0 Objective

The aim of'this unit is to define Linear integral equation, conversion to an initial and boundary value

problem to an integral equation. Eigenvalues, eigenfunctions and solution of homogenous Fredholm
integral equation of second kind with separable kernels are also dicussed.

8.1

Introduction

In the recent years, the theory of integral equations has become an essential part of mathematical

analysis. Foremost among, there are differential equations and operator theory. Many physical problems
which are usually solved by ordinary and partial differential equation methods can be solved more
effectively by integral equation methods. Many existence and uniqueness results can then be derived from
the corresponding results from integral equations.

213



Integral equation arise in several problems of applied mathematics, mathematical physics and
theoretical mechanics. Its importance for physical problems lies in the fact that most differential equation
together with their boundary conditions may be reformulated to give a single integral equation. The theory
of integral equation also furnishes a uniform method for the study of the eigenvalue problems of
mathematical physics.

8.2 Linear Integral Equation : Definition and Classification

Definition I : Integral Equation : Anintegral equation is an equation in which an unknown function to
be determined appears under one are or more integral signs.

For Example
glx)=] K(x.1)g(r)dt, 1)
g()=£(x)+ [ K(x0)g()a, (@)
g(x)= K (x)[g(0)] ar, -(3)

where g<x<pand g<s<p.
Here the function g (x) is the unknown function while all other functions are known. These
functions may be complex valued functions of the real variables x and ¢ .

Definition II : Linear and Non Linear Integral Equations : An integral equation is called linear if only
linear operations are performed in it upon the unknown functions. Ifintegral equation is not linear then it is
known as non-linear integral equation.

For example, the integral equation (1) and (2) are linear while (3) is non linear.

The most general type of linear integral equation is of the form
a(x)g(x)=f(x)+ A[ K (x.t) g(r)at (4
Q

when the upper limit may be variable x or fixed. The functions f, @ and K are known
functions, while g is to be determined; , is a non-zero real or complex parameter. The function K (x, t)

is known as the kernel of the integral equation. The integration extends over the domain Q) ofthe auxillary
variable 7 .

Integral equations, which are linear involve the linear operator
L[ ]= J'K(x,t) [ ]ar
Q
having the kernel K (x, t) . It satisfies the linearity condition

Lieg (1) + e (1)} = al{g(0)}+ elis ()}
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where L{g(t)}= JK(x,t)g(t) dt and c,, c, are constants.

Q
Linear integral equations are classified into the basic types.
()] Volterra Integral Equation :

An integral equation is said to be a Volterra ntegral quation ifthe upper limit of integration is a
variable, e.g.

a(x)g(x)=f(x)+ 2] K(x.1)g(t)dt ..(5)

where 4 isaconstant, f(x), a(x) and K (x,¢) are known functions while g(x) is unknown

function, 2 is anon-zero real or complex parameter. Equation (5) is called Volterra integral equation
of third kind.

(@) When ¢ = 0, the unknown function g appears only under the integral sign and nowhere else in
the equation (5) then

f(x)+2 [ K(x,1)g(t) de =0 ..(6)

is called the Volterra integral equations of first kind.

(b) When ¢ = 1, the equation (5) involves the unknown function g, both sides as well as outside the
integral sign, then

g(x)=f(x)+A | K(x.t)g(t) dt A7)
is called the Volterra’s integral equation of second kind.

() When ¢ =1, f(x) =0, the equation (5) reduces to

g(x)=2 [ K(x.t)g(t) dt (8)

is called the homogenous Volterra’s integral equation of second kind.
(ii) Fredholm Integral Equation :

An integral equation is said to be Fredholm integral equation ifthe upper limit of integration is
fixed, saybe.g.

a(x)g(x)=f(x)+A [ K(x.)g(r) di .9)

where ¢ and p are both constants, f(x), a(x) and K (x,¢) are known functions while g(x)

is unknown function and j is a non-zero real or complex parameter. Equation (9) is called Fredholm
integral equation of third kind.

(@) When ¢ = (), equation (9) involves unknown function g only under the integral sign, then
b
F(x)+A [ K(x,t)g(t)dt =0 ..(10)
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is called the Fredholm integral equation of first kind.

(b) When ¢ = 1, equation (9) involves the unknown function g inside as well out side the integral
sign, then

b
g(x):f(x)+ﬂ. L K(x,t)g(t)dt ..(11)
is known as Fredholm integral equation of second kind.

(¢)  When ¢ =1, f(x) =0, equation (9) reduces to

g(x)=2 [ K(x.)g(t)di .(12)

is known as the homogenous Fredholm integral equation of second kind.
(iii)  Singular Integral Equation :

An integral equation is said to be singular when one or both limits of integration became infinite,
or if the kernel becomes infinite at one or more points of the integral under consideration.

For Example f (x) = '[OOO sin(x,t) g(t)dt ,

g(x)=/(x)+A [ K(x.0)g(t)ar,

f(x)=j: K(x’t)g(t)dta 0<r<l

f(X)=I:%dt, 0<a<l

are singular integral equations.

(iv)  Integral Equation of Convolution Type :

Ifthe kernel K (x,) of the integral equation is defined as a function ofthe difference (x —¢), i.e.

K (x,t)=K(x—t),where K isa certain function of one variable, then the integral equation

g(x)=f(x)+2 [ K(x—1)g(t)dt,

and the corresponding Fredholm inegral equation

g(x)=/(0)+2 [ K(x—1)g(0)dr,

are called integral equation of convolution type.
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8.3 Special Kinds of Kernels

()] Separable or Degenerate Kernel :

Akernel K (x, t) is said to be separable or degenerate if it can be expressed as the sum of a finite
number of terms, each of which is the product ofa function of x only and a function of # only i.e.

K(x.t)= lZ;:al.(x) (1) (13)

The function a, (x) can be assumed to be linearly independent, otherwise the number of terms in
the relation (13) can be reduced by linear independence of the functions ai(x) . It is meant that, if
ca,(x)+¢,a,(x),.....c,a,(x) =0, where ¢, are arbitrary constants, then ¢, =c, =......= ¢, = 0.

(i) Symmetric Kernel :
A complex valued function K (x,¢) is called symmetric (or Hermition) if K (x,¢) = K (¢,x),

where the bar denotes the complex conjugate. For a real kernel this concides with definition
K(x,t) = K(t,x).

8.4 Useful Results

(a) Leibnitz’s rule of differentiation under the integral sign :

oF
Let F(x,¢) and 5, be continuous functions of both x and ¢ and let the first derivatives of

g(x) and /(x) be continuous. Then

A ) _[('waor an _ dg
dx g(x)F(x,t)dt_L(x) Ox dt+F[x,h(x)]] dx F[x,g(x)]] dx ...(14)

Particular Case :

If g and , are absolutely constants, then (14) reduces to

d o F

— | Flx,t)dt=| —dt

GO (15)
(b) A formula for converting a multiple integral into a single ordinary integral :

[ () ar :f%g(f)df .(16)

a

Note that the integral on the L.H.S. of (16) is a mutliple integral of order , while the integral on the
R.H.S. of (16) is ordinary integral of order one.
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8.5 Solution of an Integral Equation

A solution of an integral equation is a function g (x) , which when substituted into the equation
reduces to an identity (wtih respect to x ).

. 2
Example 1: Show that the function & (x)=e (ZX - E) is a solution of the Fredholm equation

g(x)+2 J-;ex”g(t) dt=2xe"

Solution : Substituting the value of g(x) inL.H.S. of the given equation, we have
. 2 o 2
LHS. =e (Zx —5) +2 J;) e (22‘ —5) dt

1
=e" (ZX—%) +2e" [tz —%t} =2xe" = RH.S.

0

Hence g (x) is a solution of given integral equation.

Example 2 : Show that the function g (x) = (1 +x° )73/2 is a solution of the Volterra integral equation

() =—— - — e

t)dt
1+x* Jo1+x2 )

Solution : Substituting g(x) inthe R.H.S. of the given equation, we have

1 xt o\-3/2
= — 1+¢ dt
RHS. =1 | (sz)( +7)
| 1 1 i o
kTR [ J(1+2) " dz [Putting ¢* = z and 2t dr = d= ]

1
= m = L.H.S.

Hence g (x) is a solution of the given integral equation.
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Example 3 : Show that the function g(x)= xe" isa solution of the Volterra integral equation
g(x)=sinx+2 J: cos(x—¢) g(¢)dt
Solution : Substituting g(x) inthe R.H.S. of the given equation, we have
RH.S. =sinx+2 J:r e' cos(t —x) dt

—sinx+2 [r .%{COS(I — x)+sin(7 - x)}}

0

—2J-: 1. %t{cos(t —x)+sin(t —x)} dt

{Integrating by parts and using the following standard results :

ax

I e sin (bx +c¢) dx = [a sin(bx + ¢) — b cos(bx + c)]] 1

a’+b*

ax

ﬁ[a cos(bx +¢)+bsin(bx + c)]]

J-e‘”‘ cos (bx +¢) dx = "y
a

ThusR.H.S. =sinx+xe* — J: e’ cos(t — x) dt — J: e’ sin(t — x) dt

X

_ sinx 4+ xe* _[% fcos(t —x) + sin(t —x)}}

—[%t{sin(t—x)—cos(t—x)}]r

0

X

) . et 1 ) e )
=sinx+xe —[——— (cosx—smx)}—[———— (—sinx — cosx)
2 2 2 2

=xe' =g(x)= LHS.
Hence g (x) is a solution of the given integral equation.

. (mx
Example 4 : Show that the function & (x ) =S| —— | isa solution of the Fredholm integral equation
P 2

€)= [ K (x.) a0 e =

*
2
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, 0<x<¢
where K (x,7)= t (22_ 9
5 , <x<1

Solution : Writing the L.H.S. ofthe given equation as follows :

()= [ ) g0y

LHS. =g(v)-"- _J-OXK(x,t)g(t)dtwLJ-:K(x,t)g(t)dt}
:g(x)_%f@;ﬂ J‘:tg(t)dtntgJ.:(2—t)g(t)dt}

. TX '
Now substituting & (x ) = SIHT in the above expression, we get

2 2
LHS. = sin%—%(z_x) _[O tsin%tdt—% :(2—t)sin%tdt

R (e
et
etz dt}

7@{2__( (m/z>] ]

(7/2)

T'x {2(2x) cosﬂ—[sm (7zt/2)]1]
8 T 2 (7z/2)2 )

. ax 7(2-x)[ 2x ax 4 . 7x
=sin——————" | ———Ccos—— +— sin——
2 T 2 2
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L TX . . . .
Hence g(x ) =sm —, isa solution of the given integral equation.

Self-Learning Exercise - 1
Define the following terms :
1. Integral equation.

Linear and non-linear integral equations.

2

3. Singular integral equation.

4 Convolution integral equation.
5

Fredholim and Volterra integral equation of first and second kinds.
Fillin the blanks :

6. —x = J: e* "' g(t)dt is...... integral equation of ........ kind.

2
7. g(x)—%_[ol K(x,t)g(t)dt=§, where K(x,7)= S e integral

equation of...... kind.

8.6 Exercise 8 (a)

1. Verify whether the given functions, g (x) are solution of the corresponding Volterra’s integral

equations
@  g(x)=1-x ] e g(t)d=x
b g(x)=3;x" =] (x—1)g(r)dr
©  glx)=x—"=: g(x)=x—[ sinh(x—1)g()dt

(d) g(x):l—[lz_?—;/xz)] ; g(x)—joxcos(x+t)g(t)dt=l
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Examine whether the given functions g(x) solutions of the following Fredholm integral equations
@  gx)=xe” i g(x)—4 [ e g(r)dr=(x-1)e"

b)  g(x)=e s g(x)+A [ sinxtg(t)de=1

(©  g(x)=cosx ; g(x)= ['(x" +)cosg(t)dt = sinx

@ g(x)=+x; gx)- J;K(X,t)g(t)dt = \/§+%(4x3/2 -7)

1
Ex(Z—t), 0<x<t
where K(x,t)=
—t(2-x), t<x<1
2
[Ans. (b)and (c): given functions are not the solution of the corresponding integral equations]

Show that the function g (x) =1 is a solution ofthe Fredholm integral equation
g(x)+'|.01x(e)“ - l)g(t)dt =e' —x

1
Show that the function g(x) = 5 is a solution of the integral equation

X
Show that the function g (x) = (ﬁ is a solution of integral equation
I+x

o) = 3x+2x° _J'

x3x+2x3—t_ (
3(1+x7) ° (1+4)

g(t)dt

Show that g(x)= cos2x is a solution of the integral equation
g(x)=cosx+ 3J‘: K (x,t)g(t) dt , where

sinxcost, 0<x<t

K(x,t)z{

cosxsint, t<x<rm
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1
7. Show that the function & (x ) = Ix is a solution of the integral equation
X

dt =1

(5

8. Give the definition and complete classification of linear integral equation.

8.6 Method of Converting an Intial Values Problem to a Volteira Integral
Equation

When an ordinary differential equation is to be solved under conditions involving dependent
variable and its derivatives at the same value of the independent variable, then the problem under

consideration is said to be an initial value problem.

Consider the ordinary linear differential equation oforder n:

DY (T )L ()= £ () an

dx" 7 !
With the initial conditions

Wa)=Cy,y'(a)=C,, e, " Na)=C,, .(18)
where the functions a,(x),a,(x),.....,a,(x) and f(x) are defined and continuousin a <x<b.

Now in order to reduce above initial value problem to the Volterra integral equation, we introduce

an unknown function g(x) as

dl’l
Y =g(x) ..(19)
dx
Integrating (19) both sides withrespectto x’from a to x and using the initial conditions (18),
we get
dnfly .
—==| glt)at+C,, .(20)
dx a

Again integrating (20) and using (18), we get

n-2
%= (x—1)g(t)dt +(x~a)C,, +C,, (21
x a
and so on.
Finally, we get
n—-2 n—-2
d (x—t -
2o % g(t)dt+—()(cn _a;) C 4ot (x—a)C, +C, (22)
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n-2

and y= Jj ()(Cn__ti), g(t)t + % Gt %

Multiplying (20), (21) ...., (22) and (23) by 1, a,(x),......,a, ,(x) and a,(x) respectively and
adding, we get

C ,+.Hx-a)C+C, .. (23)

or  f(x)=g(x)+h(x)-[ K(x.0)g(t)dr

a

where we have used (17) and assumed the following :

Hx)=C,, {al(x)+....+ (x= “)"'1 an(x)}

+C,, {az (x)+...+man(x)} +...+ C {anfl(x)+(x—a)an (x)}+C0an (x) .(24)

(n - 1)!
__ gak () (’(“k__t)l)! 25
Again, let f(x)—h(x)=¢(x),then .(26)
2(x)=g(x)+ [ K(x.1) g(t)dt -(27)

which is the required Volterra integral equation of second kind.

ExampleS: Form an integral equation corresponding to the differential equation

d’y _dy
+x—+y=0
dx? xdx Y

with initial conditions y(O) =1, y’(O) =0

2

d
Solution : Let 2~ g(x) .(28)
X

Integrating both sides of (28) from 0 to x, we get
d_y - d : ' _
o = [ g(t)de [using (0) = 0] .(29)

Again integrating (29) from 0 to x and using y(O) =1, wehave
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or y(x):1+J: (x—t) g(t)dt [using (16)] ...(30)

2

d’y d
Now putting 7 f ’_y and y from(28), (29)and (30) in the given differential equation, we get
X

dx

g(x)+x[ g(t)dt+1+ [ (x—1)g(t)dt =0

or g(x) =—1- J: (2x - t) g(t)dt

which is the required Volterra integral equation.

Example 6 : Form an integral equation coresponding to the differential equation :

2
2y, 4
dx’ dx’

+(x2 —x)y=xe)r +1

with initial conditions : y(O) =1= y’(O) and y”(O) =0

2

2~ g(x) e

Solution: Consider —
dx

Integrating (31) w.r.t. “x’ fromo to x and using »"(0) = 0 we have

4y = [ g(r)ar -(32)

Integrating (32) w.r.t. ‘x’ fromo to x and using »"(0) =1, we get
dy _ x 2
ol | a(t)ar

or dy =1+ [ (x-1)g [using (16)] .(33)

Integrating again (33) w.r. to ‘x’fromo to x and using y(0)= 1, we get

2
(x-1)
y=l+x+] el ..(34)
d’ d’y d ’y dy ) ) . . .
Substituting the values of e de and y in the given differential equation, we have
x

g(x) + xJ: g(t)dt + ()c2 — x)[l +x+ J: %g(t)dt] =xe' +1
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or g(x)=xe" +1-x(x* - 1)- J: [x - % (x* —x)(x - 1)’ }g(t)dt

which is the required integral equation.

8.8 Alternative method of converting an Initial Value Problem into Voltera

Integral Equation

This method is very useful in problems we are required to derive the original differential equations
with the initial conditions from the integral equation obtained. The method is illustrated with the help of

following solved examples :
Example 7: Convert the following differential equation into an integral equation :

2

dxfmxy:f(x) 9(0)=1, »(0)=0

Solution : Integrating both sides of given differential equation w.r.t. 'x' from ( to x, we have

%—y’(O) = J:[f(x)— Axy|dx
o Lo ans] [+ y(0)=0)

Integrating again the both sides of the above equations w.r.t. 'x' from0 to x, we have
(x)=3(0)= [ [/ (x) - 2xy]ax’
or —l+j — At y(1) ]Id ['.'y(0)=l]|

or  y(x)=1+] (x=t) [£(6)= At y(t)]dt

which is the required integral equation.

Example 8 : Reduce the differential equation

dy 3dy

+2y=4sinx
dx’ dx

with the conditions y(O) =1, y’(O) =-2

into a non-homogenous Volterra’s integral equation of second kind. Conversely, derive the original

differential equation with the initial conditions from the integral equation obtained.
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Solution : The given differential equation may be written as

y"(x) =4sinx —2y(x)+3y'(x) +(33)
Integrating both sides w.r.t. 'x' fromOto x andusing y(0)=1, y'(0)= -2, we get
Y'(x)='(0) = —4(cosx=1)=2 [ y(x)dx+3y(x) - »(0)]
or  y'(x)=—1-4cosx+3p(x) =2 [ y(x)dx ..(36)
Integrating (36) w.r.t. 'x' from0to x, we have

or  y(x)=y(0)=—x—4sinx+3 [ y(e)dt =2 (x—1) y(¢)dt

or  y(x)=(1-x—dsinx)+ [ [3-2(x—1)]y()dt y(0)=1 .37

which represents the non-homogenous Volterra’s integral equation of second kind.

Converse Part :

Differentiating (37) w.r.t. x and using Lebnitz’r rule, we have

y'(x)= —l—4cosx+J;r§—i[3—2(x_t)}y(t)dt

or  y'(x)=—1—4cosx+3y(x)=2] y(¢)dt (38)
Differentiating (38) again w.r.t. x , we get
or  y"(x)=4sinx+3y/(x)—2y(x)
or ¥"(x)=3y'(x)+2y(x)=4sinx

which is the required given differential equation

Putting = (0 in(37) and (38), we get

»0)=1, y'(0)=-2

8.9

Method of Converting a Boundary Value Problem to a Fredholm
Integral Equation

When an ordinary differential equation is to be solved under conditions involving dependent
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variable and its derivatives at two different values of independent variables then the problem under

consideration is called boundary value problem.

We explain the method with the help of the following solved examples.
Example 9 : Convert the differential equation

dzy

2
X

+Ay=0

with the conditions y(0) =0, y(/) = 0, into Fredholm integral equation of second kind. Also,

recover the original differential equation from the integral equation you obtain.

Solution : Integrating both sides of given differential equation w.r.t. ' x' from0to x, wehave
y’(x) —y’(O) = —ﬂ.J‘O y(x) dx
Let y’(O) = ¢, aconstant, then

Y'(x)=c=A[ y(x)dx .(39)

Integrating (39) both sides w.r.t. ' x', we have
y (x) — y(()) =c '[:dx -1 J: y(x)dx2

or y(x)=cx-2 J: (x—1)y(t)dt [ y(0)= 0]] ...(40)

Putting x =/ in(40), we get

y()=0=cl-2[ (1-0)y()dr [ y(1)=0]

- c=%ﬂ0—gﬂ0w (41)
Using (41) in (40), we get

y(x)=] “(ll =0 (o) [ (v—1) (e) e (42)

o v(=] D yyars | M w{e)di =] (x=1) (1)

0 l X

o 0= as j”c(ll‘t) oL

/ x
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Converse Part :

Differentiating both sides of (42) w.r.t. ' ', and using Lebnitz’s rule therein, we have

, 1A(1-1) x

y (x) = J-Ofy(t)dt —IO ﬂ,y(t)dt

Differentiating it again w.r.t. ' x' and applying Lebnitz’s rule therein, we get
y”(x) + Ay(x) =0

which is the required differential equation

Putting x = and y =7, we get

y(0)=0 and y(/)=0

2

4 +xy=1; y(O) =0, y(l) =1 into an intergral equation :

Example 10 : Transform —;
x

Solution : The given differential equation may be written as
y(x)=1-xp(x)

Integrating both sides w.r.t. 'x' from0to x and using y'(0) = ¢, a constant, we get

y'(x) :c+x—I:xy(x)dx ...(44)

Integrating (44) both sides w.r.t. 'x' from0to x, we get

y(x) — y(O) =cx+ x?z — J-OX t y(t) dr’

or y(x) =cx +xz_2 — J: (x — t)y(t)dt [ y(O) = O]I ...(45)

Putting y =1 in(45), we get

W1)=1= c+%— [[(=0)t3(0)ar Foy(1)=1]

or c:%+J:(l—t)y(t)dt ...(46)

Using (46) in (45), we have

y(x) = %x(1+x)+jolxt(l—t)y(t)dt—j:t(x—t)y(t)dt
or  y(x)= %x(l+x)+j:xt(1—t)y(t)dt+£xt(1—t)y(t)dt—j:t(x—t)y(t)dt
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or y(x) %x(l +x)+ J;)r t* (1=x) y(t)dt + th t(1—-1) y(t)dt

or )=y x(lex)+ [ K (x) (e

" K( t) tz(l—x), when t<x
where x,t)=
xt(l—t), when t>x

Example 11 : If y(x) is continuous and satisfies the integral equation y(x) =4 J: K (x,t)y(t)dt
N
where K(x,t) = (

Then prove that y(x) isalso the solution of the boundary value problem

2

IV | 7y=0, 3(0)=0, »(1)=0.

2
X

Solution : Given integral equation may be written as
X 1
»(x) = /1[ [ K (et)p(o)de+ [ K (x.) y(t)dt}

or  y(@)=A(-x)[ ep(t)de+ ax] (1-1)p(r)dr .(47)
Putting y = 0 and x =1 by turnin (47), we get

¥(0)=0 and ¥(1)=0 ..(48)
Differentiating both sides of (47) w.r.t. 'x' and using Lebnitz’s rule, we get

d x 1
%: [ aey(e)de+ [ A(1=1) y(t)dt .(49)

Differentiating again both sides of (49) w.r.t. 'x', we get

d’y
or ~+Ay=0
dx

Thus y(x) is the solution of the boundary value problem

dZ
dx{#—ﬂ,y:O ;y(0)=0=y(1)
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Self-Learning Exercise - I1

Fillin the blanks :
1. The linear differential equation of second order y" +a, (x) V' +a, (x) y'=f (x) with y(O) =c,
and y'(0) = ¢, canbe converted into .......... integral equation ......... kind.
. dy
2. The equation et 0; »(0) = 1 can be transformed to ............
. d’y 1
3. The equation T 2xy=0; ¥(0)= 5 »'(0)=»"(0) =1 canbe transformed to ........
integral equationof .......... kind.
. . . d’y . .
4. The differential equation PR 1, »(0)=0, y(1) =1 canbe converted into ....... integral
X
equationof.......... kind.
"y
5. The problem RS ¥(0)=0, y'(1) =0 canbe converted into ............ integral equation
of ........ kind
8.10 Exercise 8 (b)
Reduce the following intital value problems to Volterra integral equation of second kind :
Lot y(0)=(0)=0
. dx’ 2% » YI\V)=y =
[Ans. g (x)=1-[ x(x—1)g(f)ar]
dzy 2
2. dx2+(1+x )y =cosx; y(0)=0, y'(0)=2
[Ans. g(x) = cosx—2x(1 +x2) —'[:(lerz)(x—t)g(t)dt]
3y l
3 3 2ay=0 ,y(O)ZE, y'(0)=y"(0)=1
[Ans. g (x)=x(x+1)+ [ x (x=¢) g(t)ar)
d’y dy . .
4. e —3£+2y=4smx ;2(0)=1, »'(0)=-2

[Ans. g(x)=4sinx+4x—8+Jj(3—2x—2t)g(t)dt]
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10.

2

d’y
dx?

+y=0 when »(0)=0, »'(0)=0

[Ans. g(x)=—[ (x—t)g(t)dr]
Prove that the linear differential equation of second order

dzy
dx?

a(x) 2 an(x)y = £ (4

with initial conditions y (0) = ¢, and »'(0) = ¢, can be transformed into non-homogeneous

Volterra’s integral equation of second kind.

Reduce the following initial value problem into an integral equation

d’y _dy ,
?wtxavt)/:o ; y(O)zl, y(O)zl

[Ans. y(x): 1+x—joxty(t)dt]

Convert the following differential equation into an integral equation :

2

d’y
dx?

+ Ay = f(x) when y(0)=1, »"(0)=0

[Ans. y(x) =1+ (x=0)[f ()= 2y (e)dr] ]

Reduce the initial value problem

d’ . d
—)2}—51nx—y+exy =X
dx dx

with the initial condition y(0)=1, y’(0) = -1 to a Volterra’s integral equation of second kind.
Conversly, derive the original differential equation with the initial conditions from the intergral equation
defined.

[Ans. g(x)= x—sinx—ex(l—x)+joxsinx—ex]

Reduce the boundary value problem

2

d’y
dx?

+Ay=x; y(0)=y(r)=0

into an integral equation

y(x):%x3(l—ﬂ2)+lJ0ﬂK(x,t)y(t)dt
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i(x—t), when t>x
where K (x,t)= E

S

—1), when t
x )(x ), when 1 <x

11.  Converte the problem y”+ 1y =0; y(0)=»'(0), y(r) = y'(r) into an integral equation
[Ans. y(x) =4[ K(x,1)y(¢)dt
(t+1)(7r—x—1), 0<i<x
Where K (x,t)= T
0= e (1)
, x<t<rm
n
12.

Transform the boundary value problem

2
3y (020, ()

to a Fredholm integral equation

[Ans. y(x)=%—§+ [ K(e0)p(e)de

where K (x,t)= {t’ i i *
X, t>x

8.11

Eigenvalues and Eigenfunctions

Consider the homogeneous Fredholm integral equation of second kind

b
g(x) = AJ; K(x,t)g(t)dt ...(50)
Obiviously (50) has always, the solution g (x) = 0, which is known as ‘zero’ or ‘trivial’ solution of

(50). The values of the parameter 2 for which (50) has ‘non-zero’ solution g (x) # ( are known as eigen

values (or characteristics number) of(50) of the kernel X (x, ). Further every ‘non-zero’ solution of (50)
is called eignfunction (or characteristic function) corresponding to the eigenvalue J .

Ifthe kernel K (x,) is continuous inrectangle @ <x<b, a <t <b and the numbers a and b

are finite, then to every value ,} there exist a finite number of linearly independent eigenfucntions; the
number of such functions is called the index of the eigenvalues. Different eigenvalues have indices.
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Remark :

1. The number ) = () is not an eigenvalue since for 3 = () (50) gives g (x) =0, which s a zero

solution.
2. If ¢(x) is aneigenfunction of (50) corresponding to eigenvalue 1, then c¢(x) is also eigenfunction
of (50) corresponding to the same eigenvalue where ¢ is an arbitrary constant.

3. A homogeneous Fredholm integral equation may, generally, have no eigenvalue and eigenfunction
or it may not have any real eigenvalues and eigenfunctions.

8.12 Solution of Homogeneous Fredholm Integral Equation of the Second
Kind with Separable (or Degenerate) Kernel

Consider a homogeneous Fredholm integral equation of second kind

b
p(x) =4[ K(x,0)¢(¢)dt .(51)
By the definition of the degenerate or separable kernel (given in § 8.3), we have
K(x,t)= g (x)h(t) .(52)
i=1
Using (52) in (51) and interchanging the order of integration and summaration, we get
! b
p(x) =2 &(x)] m(e)g()de ..(53)
i=1
To solve (53), let
[[h()p(e)dr = ¢ (i=123.....) .(54)
Using (54) in (53), we get

Mﬂ=liq&&) .(55)

where ¢,(i =1,2,3,....,n) are unknown constants, as the function ¢(x) is unknown. Thus (55) is
the required solution of the integral equation (51).

We now proceed to evaluate ¢, ’s as follows :

Multiplying both sides of (55) succesively by #,(x),/,(x),.....h,(x) and integrating over the inter-

val (a,b), we have

J:hl(x)q)(x)dx:Aécijjhl(x)g[(x)dx (A)
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[ (o (x)dr =23 e[ () g, (x)ax (4)

and [ B (x)§(x)dr =2 [ b (x) g (x)ax (4)

Let a;= thj (x) g, (x)dx (i,j=123,......) ..(56)
Using (54) and (56) in (4, ), we get
(1-2a,)e,—Aa,6—.mAa

Similarly, we may simplify (4, ),...(4, ). Thus we obtain the following system of homogeneous

linear equations to determine c,,c, ,.....c, :
(1-2a,)c,—Aa,0........ la,c, =0 (B)
—Aaye+(1-Aay)e, —....... la,c, =0 ..(B,)
—Aa,C,—Aa,,C = +(1-2a,,)c, =0 ..(B))

The determinant D (A) of'this system is

1-Aa,, -Aa, -La,,

Ao, 1-4a, —Aa,,

..(57)

-Aa,, —-Aa, —-Aa,,

which is a polynomical in } with degree atmost n. Now following case arise :

I If D(A)#0,the systemofequation (B,),(B,),......,( B, ) has only one trival solution i.e.

€ =C) =euuunn. = ¢, = 0 and hence from (55), we find that (51) has only zero or trivial solution i.e.
$(x)=0
IL If D(A)=0,thenat least one of the ¢, ’s canbe assigned arbitrary value and the remaining ¢;’s

can be determined accordingly. Hence when D(4) = 0, infinitely many solution of the integral
equation (51) exist.

The characterstic number of (51) are given by D(ﬂ,) =0i.e.,
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1-Aay, —-Aa,, —Aa,,

-la, 1-Aa,, —Aa,,

=0 ...(58)

-ia,, -ia, 1-Aa,,
So the degree ofequation (58) in 4 is p = n. It follows that if integral equation (51) has separable
kernal given by (52), then (51) has atmost 5 eigenvalues.

8.13 Reality of Characteristic Numbers

Theorem 1: The Characteristic numbers of a symmentric kernal are real.

Proof: Consider ahomogenours Fredholim integral equation of the first and kind

b
=A[ K(x,t)(t)dt (59)
If possible, suppose that (59) has an eigenvalue A, whichis not real. Thus, let
Ay=a+if

Let go(x) =u +iv be the complex eigenfunction corresponding to the eigenvalue 4. Then we
know that the complex conjugate number 2 , would necessary be an eigenvalue corresponding to the

eigenfunction g, (x) which is the complex conjugate of g, (x) . Thus, we have
Ao=a—if and g (x)=u—iv

Since g,(x) and g,(x) are eigenfunctions corresponding to eiganvalues 1, and 2, therefore
they must satisfy (59). Thus, we have

gj (x,2) g, ...(60)

and =1 j (x,2)g,( ..(61)

Interchanging x and ;¢ and simplifying we have

or | Klex)g (xhr=og, (1) (6)

As K(x,t) is symmetic, we have
K(x,t)= K(t,x) ..(63)

Multilying both sides of (60) by g,(x) and integrating both sides w.r.t. ‘x’ from 4 to b, we get
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[ @ (x) g(x)dv=2, g ([ K(x.0)g, (1)t}
= Aon g,(t ){Jj K(x,1 )go(x)dx}dt [on changing the order of integrations)

or [ &g de=4,] &0 {[ K(e.x)g(x)ax}ar (64)

Using (62) in (64), we get

[ o)) =2 ) - 20t

1
Ay

or [ 2(x)g(x) dr =2, g(x)g(x)dx
or (27 [ &(x)g(x) dx=0 .(65)
Substituting the values of Z, and 7, ,in (65), we find that

2 g(x)g,(x)dx =0 .(66)
Since g, (x) is characteristic function, hence g,(x)# 0.

Therefore Jj ‘ g (x)‘2 dx #0

and so (66) implies that 3= 0 i.e. the imaginery part of the eigenvalues 1, = (« +if) is zero.

Hence 1, = a , which is real. Since 4, is any eigenvalue of (59), it follows that all eigenvalues of
symmetric kernel are real.

8.14 Orthogonality of Eigenfunctions

Theorem2: If K (x,t) is a symmetric kernel of homogeneous integral equation of second
kind

g(x)=A[ K(x.0)g(r)r (67)

and g,(x) and g,(x) are eigenfunctions of K (x,) corresponding to eigenvalues A,

and A, respectively (1, # 1,),then g,(x) and g,(x) are orthogonal on the interval [a,b] i.e.,

[ 8(x)&(x)dx=0

or
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The eigenfunctions of a symmetric kernel, corresponding to different eigenvalues are
orthogonal.

Proof: By the definition of eigenfunction, g,(x) and g,(x) must satisfy (67), therefore

=2 f x,1)g,(t ..(68)
and =2 j x,0) gt ..(69)
Ao K(x,t)= I?(t,x) ...(70)

because K (x,7) is symmetric.

Multiplying both sides of (68) by g, (x) and integrating with respect to 'y' over the interval
(a,b), we get

Jj g,(x) g, (x)dx = AOJj 2/(x) {JjK(X,l‘)go(t)dt}dx

On changing the order of integration, we get

or J:gl(x)go (x)dx:ﬂ'ojjgo(t) {JﬂbK(x,t)gl(x)dx}dt .(71)

Now equation (69) can be written as

=1 I (,x) g (x
or =1 '[ (1,x)g,(x
b— _ 1 _ _
or L K(t,x)gl(x)dle—gl(t) ('.'il =il) ..(72)
1

So equations (71) and (72) yeild
b b 1
J-a gl(x)go(x)dx =4, J-a go(t){i_gl(t)}dt

or ﬂ.IJ‘: g/(x)g,(x)dx =2, Jj g,(x) g (x)dx
or (A -2)] &(x)g(x)dx=0

b
or L Z,(x)gy(x)dx =0 [ A, # 2]
or g, and g, are orthogonal
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This completes the proof of the theorem.

Example 12 : Solve the homogeneous Fredholm integral equation

P(x)=4[ e g(t)di

Solution : The given equation may be written as

p(x)=2e [ e g(t)di (73)
or ¢(x)=Ae'c .(74)
where ¢ = J.(: e ¢(t)dt ..(75)

From (74) and (75), we have

20!
CZLIe’ Ae'c= lc[%] = };" (e2 —1)

A
or CP_E@AJHZO .(76)
If ¢ =0, then (74) gives ¢(x)=0. We therefore, assume that for non-zero solution of (73),

¢ # 0, then (76) gives

1—%(62—1)20 or A=

which is an eigenvalue.

Putting this value of A in(74), the corresponding eigenfunction is given by

b= e

_ez—l

2
Hence corresponding to eigenvalue ( E 1) , there corresponds the eigenfunction e*.

Remark : While writing eigenfunction the constant ¢ is taken as unity.

Example 13 : Find the eigenvalues and eigenfunction of the homogeneous integral equation

g(x)=41 J‘:[cos2 x cos2t+cos3xcos’ t]l g(t)dt
Solution : The given integral equation may be written as

g(x)=2 [cl cos’ x + ¢, cos SX]I (77)
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where ¢, = J: cos2t g(¢)dt
and ¢, = J: cos’ 1 g(¢)dt
Using (77) in(78), we get

¢ [l—ﬂ, j”cos2tcos2 tdt}—ﬂ.cz _rrcos2tcos3tdt =0
0 0

(1+cos2t)

Now, IO cos2tcos’ tdt = IO cos2t dt

1 (= 1 (=
=_ Jcostht+— J cos’ 2 ¢ dt
2 Jo 29

:l{sm%} +ljﬂl+COS4tdt
2 | T 2h T

1 sindt|” &
=0+— |1+ =—
4 4 1, 4

and J}os2 tcos3tdt = %J: [cos5¢+cost]dt

l[ﬁnSt : }”
=— +sint| =0
21 5 0

Thus (80) reduces to

Similarly using (77), (79) becomes

e _[;Tcosstdt+c2[ﬂ.j;cos3tcos3tdt—l}= 0

Now J‘; cos’ tdt =0, [since cos’(7 )= —cos’t]

and J: cos’tcos3tdt = %J: cos3t (cos 3t+3 cost)dt

= lJ’”cos2 3t dt+éjzos3tcostdt
4 d

4o

- %Jj(l +cos61)dt +%J: (cos4t+cos2t)dt

240

(78)

(79

.(80)

(81

(82)

(83)



o 8

1[ sin6t}” 3[sin4t sinZtT
=3 t+ +

8 6 4 2

0

x i
J cos’ tcos3tdt ==
0 8

Using (83) and (84) in (82), we get

For non-zero solution of the system of equations (81) and (85), we must have

l-—— 0

8
4 =0:>1=iandiz=;

1
0 . g
8

. 4
Putting A =4, = = in (81) and (85), we have

1
0.c,=0 and 7., =0
2
If follows that ¢, = 0 and ¢, is arbitrary. Putting these valuesis (77), we get

g(x)=c¢Acos’ x=cos’ x,if A¢, =¢ (4/7)=1
. 8 .
Putting 1 =1, =— in(81) and (85), we get
n

—¢, =0 and 0.c, =0

Iffollows that ¢, = 0 and c, is arbitrary. Putting these values in (77), we get
g/(x)=c,Acos3x =cos3x, ifc,A=c,(8/7)=1

Thus the eigenfunctions are
g,(x)=cos’ x and g,(x)=cos3x

corresponding to the eigenvalues 1 = 4/7 and A, =8/7 respectively.

Example 14 : Solve the homogeneous Fredholm integral equation ofthe second kind

g(x)=A[ "sin(x+1) g (r)dr

Solution : The given integral equation can be written as
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g(x)=2 [sinx rﬂ cost g(t)dt + cos3x_[02ﬂ sint g(t)dt}

0

or g(x)=A[¢ sinx +c, cosx]
where ¢, = J-OZE cost g(¢)dt

2
and ¢, = J;) sint g(¢)dt
Using (87) in (88) and evaluating the integrals, we get

_Ac o Ac,
or ¢ = 5 J; sin2¢dt + 5

2z
JO (1+ cos2t)dt

or €]

e[ cos2t T 2, sinZtTT
=1 + 2214
2 2 | T2 2

0

or ¢ —Ame,=0

Similarly using (87) in (89) and evaluating the integrals, we get

2w
c, =J.0 sint[A¢, sint + Ac, cost| dt

e Ac, 2z
or c, = 5 JO (1-2cost)dt+ 5 J0s1n2tdt
e[ sin2tT" Ac, cos2t}2”
c, = r— +
2 2 ), T2 2 |,
or TAc,—c,=0

For non-zero solution of the system of equations (90) and (91), we have

=0= -1+ Z:O:l:il

Am /s

1 -4 7[‘
Hence the eigenvalues are
1

1
Ai=—and 4, =——
T T

1
Now for A =4, = — equations (90) and (91) reduce to

c—¢=0=¢=c,
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Hence from (87), we have

g(x)= lc1 (sinx +cosx) = sinx + cosx [taking G l}
n

1
Similarly for A =4, = - — equations (90) and (91) reduce to

¢ +c,=0=¢, =—

Hence from (87), we get

g,(x)= —%[c1 sinx — ¢, cosx|

Cir. : . —C

= ——L[sinx—cosx]|=sinx—cosx [taklng —L= 1}
T

Thus the required eigenvalues and eigenfunctions are given by

Ay=—, g,(x) =sinx +cosx

Ay=——,  g(x)=sinx—cosx

8.15 Solution of Homogeneous Fredholm Integral Equations of Second Kind
with Kernel in the Special Form

In this section we deal with the homogeneous Fredholm equations of second kind with kernel
K (x,1) inthe special form. For getting the solution of such integral equations, we first reduce the given

integral equation into differential equation together with certain boundary conditions. Then, we solve the
resulting boundary value problem to determine eigenvalues and eigenfunctions. Following examples will
illustrate the procedure :

Example 15 : Find the eigenvalues and eigenfunctions of the homogeneous integral equation
1
g(x) = ﬂ.J‘O K(x,t)g(t)dt
where K (x,7)= {

Solution : The given integral equation may be rewritten as

g(x)= A[J:K(x,t)g(t)dt+£K(x,t)g(t)dt}

Using the definition of the kerel K (x, t) , we have
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g(x)=[ At(x=1)g(t)de+ [ Ax(t-1)g(t)ar (92)

Differentiating (92) w.r.t. “x’ by using Labnitz’s rule of differentiation under the integral sign, we get

g'(x)=[ Atg(t)dr+ | A(t-1)g(t)r (93)
Differentiating (93) w.r.t. ‘x; and using Lebnitz’s rule as before, we have
g"(x)-2g(x)=0 ...(94)

which is the derived differential equation to be satisfied by g (x) . The relevant boundary condition

arc

g(0)=g(1)=0 ..(95)

Thus we have to solve (94) subject to boundary conditions (95) to determine the eigenvalues and
eigenfunctions of the given integral equation.

Now there cases arise :

Casel: Let 1 =0
Then (94) reduces to g"(x) = 0, whose general solution is
g(x) =6X+6 ...(96)
Using (95) in (96), we obtain ¢, =¢, =0.
Hence (96) gives g(x)= 0, which is not an eigenfunctionand so 2 = () is not an eigenvalue.
CaselIl: Let A = p?, where u # 0. Then (94) reduces to
g"(x)-g(x)=0
whose general solution is
g(x)=ce" +ce™ ..(97)

Putting x = 0 and x =1 in(97) successively and using (95), we obtain
O=¢ +c,
0=ce" +ce™
Solving these equations, we obtain ¢, = ¢, = 0. Hence (97) reduces to g(x) = 0, whichis not an
eigenfunction and hence A = 1 (u # 0) does not give eigenvalues.

CaseIll: A =—y°, where u#0;

Then (94) reduces to g"(x)+ u* g(x)=0
whose genreal solution is
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g(x)=c cosux+c,sinpux ..(98)
Putting x = (0 and x =1 in(98) successively and using (95), we get

¢,=0and ¢ cosu+c,sinu=0
= c,sinpu=0

But ¢, # 0, otherwise ¢, = 0 and ¢, = 0 will give g(x)= 0 and we shall not get on eigenfunction.

Hence for existance of eigenfunction, we must have

sing=0sothat u=nm,n=123,......
Thus the required eigenvalues are given by

A, =A= —pr=-n*rt, n=1273,......
From (98), the corresponding eigenfunctions are given by

g, (x)=c,sinnrx [ e, =0,u=nrx]
or g,(x)=sinznx [taking c, = 1]
Hence the required eigenvalues and eigenfunctions are given by

A, =-n*n*, g,(x)=sinwtnx, n=123,....

Self-Learning Exercise - I11

1. Define eigenvalues of a kernel in the integral equation.

2. Define eigenfunction of a kernel in the integral equation.
3. Define degenerate kernel.

4. Define symmetric kernel of an integral equation.

Fillin the blanks :

5. The eigenvalues of a symmetric kernel are always...........
6. The eigenfunctions of a symmetric kernel are ..................

8.16 Summary

In this unit you studied the conversion of initial and boundary value problems to an linear integral

equation. Eigenvalues and eigenfunctions were also defined and a result connected with each a these terms
were proved. You also studied the method of solving homogeneous Fredholm integral equation of second
kind with separable kernels. This method and method for obtaining eigenvalues and eigenfunctions were
illustrated by considering a number of solved examples.

8.17 Answers to Self-Learning Exercises

Exercise 1

6.

Volterra, second 7. Fredholm, second
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Exercise 11

1. Volterra, second 2. g(x)=1+ J: g(r)dt

3. Volterra, second 4, Fredholm, second
5. Fredholm, second

Exercise III

5. Real 6. Orthogonal
8.17 Exercise 8 (¢)
I. Determine the eigenvalues and the eigenfunction of the following integral equations :

@) g(x) = lfjﬁsinxcostg(t)dt

[Ans. No eigenvalues]

i) g()=a] (1+3w)g(t)di

[Ans. Eigenvaleus: A= 1/ ; Eigenfunction: g(x)=1and g(x)=x]
)  g(x)=A[ sinxsintg(r)dr

[Ans. Eigenvalues: 2 = )/ Eigenfunction; g (x)=sinx]

v) g(x)= ﬂ.fl (xcosht—tcoshx)g(t)dt

[Ans. No real eigenvalues]
O g@)=Af (1+1+3x0)g(r)ar

[Ans. Eigenvalue: A = y , Eigenfunction: g(x)=1]

2. Determine the eigenvalues and eigenfunctions of the homogenuous integral equation :

g(x)=A[ K(x.0)g(t)dr

where K(x,t):{ L

[Ans. A =—1-42, g,(x)=sinu,x, n=1,2,.... where u, are positive roots of tan 1 = —1.]

3. Show that the integral equation g (x)= 2 J: (sinxsin2¢) g(r)dt hasno eigenvalues.
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Find the eigenvalues and eigenfunctions of the following homogenuous integral equation
(%
g(x) =1 JO K (x, t)g(t)dt

sinxcost, 0<x<¢
where K(x,7)= ,
cosxsint, t<x<r/2

[Ans. 2 =4n*-1; g,(x)=sin2hx, n=123,.....]

Define symmetric kernel and prove that every eigenvalue of a symmetric kernel is real and that
every eigenfunction corresponding to distrinct eigenvalues are orthogonal.

Determine the eigenvalues and eigenfunctions of the following homogeneous integral equations
with seprable kernels :

@) g(x) =1 J:II(S xt® +4x°t + 3xt) g(t)dt

(i) g(x) = l'[ol (2xt—4x2)g(t)dt

| L : ), 3x
[Ans. (i) eigenvalue: 4 = 1 ; eigenfunction : g(x)=x +7

(ii) eigenvalue : A, = A, = —3; eigenfunction: g(x)=x-2x"]

Show that the homogenous integral equations
1
@) g(x)=i'[0 (t x—x\/;) g(t)dt

@) g(x)=A[ (Gr-2)1g(t)dr

do not have real eigenvalues and eigenfunctions.
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Unit-9
Solution of General Integral Equations with
Special Type of Kernels and by Integral Transform Method

Structure of the Unit
9.0  Objective
9.1 Introduction
9.2 Solution of General Fredholm Integral Equation of Second Kind with Separabel Kernel
9.3  Exercise 9 (a)
9.4  Some Special Type of Integral Equations
9.4.1 Singular Integral Equation
9.4.2 The Abel Integral Equation
9.4.3 Integro-Differential Equation
9.4.4 Integral Equation of Convolution Type

9.5  Solution of Volterra Integral Equations of Second Kind with Convolution Type Integrals by Laplace
Transform

9.6  Solution of Singular Integral Equations by Fourier Transform
9.7 Summary
9.8  Answers to Self-Learning Exercises

9.9  Exercise 9 (b)

9.0 Objective

In this chapter, we shall discuss the method to obtain eigenvalues and eigen functions of general
Fredholm integral equation of second kind with separable kernel K (x,7). We shall also discuss the
integral transformmethod to find the solution of Volterra integral equation of second kind with convolution

type kernels and signular integral equations.

9.1 Introduction

There exists an important class of integral equations, which are simply solved by reductionto a
system of algebraic equations. We shall call a kernel K (x, t) degenerate (separable) if it consists of the
sum of a finite number of terms, each of which in its turn is the product of two factors, one of which
depends only on x, and the other on ¢ . In the last unit we considered the solution of homogeneous
Fredholm integral equation with separable kernel. In this unit, we shall study the procedure to find solution
of general Fredholm integral equation of second kind with separable kernels. We make use of the well

known result of linear algebra.

Many interesitng problems of mechanics and physics lead to an integral equation in which the

kernel K (x,¢)is a function of the difference (x —¢) only. The integral transform methods are very conve-
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nient in solving integral equations of some special forms. In this chapter, we shall also study the use of

Laplace Transform, Fourier transform for the solution of integral equations of some special forms.

9.2 Solution of General Fredholm Integral Equation of Second Kind with
Separable Kernels

Consider a Fredholm integral equation of seocnd kind :

B(x)= S (x)+ 2 | K(x.0)p(1) dr (1)

Since kernel K(x,?) is separable, we take

K(x,t)=Y g(x)h(), (2

i=1

where the functions g(x),......g,(x) are assumed to be lineraly independent, otherwise the

number of terms in relation (2) will be reduced. The function g,(x) and /,(7) (i =1,2,....n) are assumed

to be continuousinsquare R:a<x<bh,a<t<bh.

Using (2), (1) reduces to

b(x) = f(x)+ 1 j[z o (x)h (r)}p(t) dt

or  $x)=f(x)+2 égl-(x) [ () (1) d -0)

[interchanging the order of summation and integration]

To solve (3), we assume that

ﬂ@@ﬁ@ﬁﬁ:g@:Lz ...... ) (4

Using (4), (3) reduces to

B(x)= (1) +2 3.C g (x) 5

i=1
where C, are unknown constants, since the function ¢ (x) is unknown.

Thus (5) is the form of the required solution of the integral equation (1) with separable kernel ; ¢_,

the solution ofan integral equation (1) is reduced to finding the constants C,(i = 1,2,........ n).
We now proceed to evaluate C,'s as follows :

Multiplying both the sides of (5) successively by #,(x), /,(x),......h,(x) and integrating over the

interval (a,b), we have
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1-Aa,, -Aa, .. —-Aa,
D(2) = —ﬂjau ll—ﬂ.oz22 —ﬂl.ah’

-la, —-Aa, ..l1-da

nn

which is a polynomial in }, ofdegree at most .
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b b b
J.a h(x)¢(x) dx = J.a h(x) f (x) dx+2 ZCI J.a h(x)g(x) dx ~(A)
i=1
b
J.a hy(x)¢(x) dx = J.a hy(x) f (x) dx+2 ZCI _[ h,(x) g (x) dx -(A,)
i=1
b
J.a h,(x)¢(x) dx = J.a h,(x) f(x) dx+2 ZCI _[ h,(x)g,(x) dx ~(A)
i=1
Let ;= I:h_/(x) gi(x) dx, (i,j =12,........ n) ...(6)
b
B, = L hj(x)f(x) dx, (j =1,2,........ n) -.(7)
Using (4), (6) and (7), (A,) reduces to
n
CG=pB+4 zqali
i=1
or C =B +2[Ca, +Ca,+...... +Ca,,]
or (1-2a,,) C,=Aa, C—........... -da,,C, =P,
Similarly, we may simplify (A, ), (A;),....... (A, ). Thus, we obtain the following system of linear
equations to determine C,,C,,.....C,.
(1-2a,,) C,=Aa, C—........... la,C =P, ..(B))
—Aay, C+(1-2a,)C—ne -lda, C =P, ..(B,)
and -la,C-la,C—....... +(1-1a,,)C, =B, ..(B,)
The determinant D(A) ofthe system (B,), (B, ),....... (B,) oflinear equations is given by

(8)



Moreover D(A)# 0, since, when 4 =0, D(1)=1.
To discuss the solution of (1), the following situations arise.
Situation (i) : When at least one member of the system (B, ),...,(B, ) is non zero.

Under this situation, following two cases arise :

(a) If D (ﬂ,) # 0, then the algebraic system (B1 ), cees (Bn) has a unique non zero solution
(which is obtained by using the Cramer’s rule) given by (5).

(b)  If D(1)=0, thenthe equation(B,),...,(B,) have either no solution or they posses

infinite solutions. Hence (1) has either no solution or infinite number of solutions.
Situation (ii) : When f(x)=0, then (7) shows that ;=0 for i =1,2,...,n. Hence the system of
equations (B, )....,(B,) reduceto a system ofhomogeneous linear equations.
Under this situation, following two cases arise ;
(@)  If D(A) =0, the systemof equations (B,), (B,),...,(B,) has only trivial solution

C,=C, =...C, = 0 and so (1) has only unique zero or trivial solution g(x) =0, by (5).

(b) IfD (A) =0 at least one ofthe C.'s canbe assigned arbitarily and the remaining C,'s

can be determined accordingly. Hence when D () = 0, infinitely many solution of (1)
exists.

Those values of } for which D (A) = 0 are known as the eigenvalues (or characteristic values)
and any non zero solution of the homogeneous Fredholm integral equation.

b
g(x) =1 L K(x,t)g(t) dt
is known as a corresponding eigenfunction (or characteristic function) ofintegral equation.

Situation (iii) : When f(x)# 0, but

[ @.(x0)f(x) de=0, [ g,(x) f(x) dx =0 ..[ g,(x) /(x) dx =0

ie. f(x) is orthogonal to all the function gl(t), g, (t),...,gn(t), then (7) shows that

B, =B, =...= B, =0 and hence the equation (B, ),...,(B, ) reduce to a system ofhomogeneous linear

equations. In this situation following two cases arise ;

(@)  If D(A)# 0, thenaunique zero solution C, = C, =......= C, = 0 ofthe system

(B,),....,(B,) exists and so integral equation (1) has only unique solution ¢(x) = f(x).

(b)  If D(2) =0, thenthe system (B,),...,(B,) possess infinite non zero solutions and so

(1) has infinite non zero solutions. The solutions corresponding to the eigenvalues of ,, are now expressed

251



as the sumof f (x) and arbitrary multiples of eigenfunctions.

1
Example 1: Solve g(x)=¢"+ ﬂ.jo 2e*e'g (1) dt .(9)
Solution : The given equation can be written as

g(x)=e"+21e'C=e"(1+2CA) ..(10)

where C= ﬂe’g(z‘) dt .(11)

Using (10) in (11), we find that

e

20!
C=|ee(1+2C) dt:(l+2Cl)[ . }

0

2_1 l
o oo ) w A @-n]=50 )
oo <! here A #
> 2[1-a(e-)) VI T e

Putting this value of ¢ in(10), we get

. e’ —1
g(x)=e [1+2/12[1/1(€2 1)]]

1-2(e* —1)+A(e* -1)
l—ﬂ,(ez—l)

o glx)=¢

X

e
or g(x)_l—l(ez—l)’ where liez—l

Example 2 : Solve the Fredholm integral equation of second kind

g(x) :x+ﬂ.J‘01(xt2 +x2t)g(t) dt

Solution : We have
1 1
g(x):x+ﬂ.jo t? g(t) dt+2Ax° Iotg(t) dt
or g(x)=x+AxC +1x’C, ..(12)
where C, =j01t2g(t) dt (13)
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and G, = 1g(r) dr .(14)
Using (12) in(13), we get
C = joltz(twitq +A12C,) dt

1

4 4 5
N Clz[t__'_lClt +ACZI}

4 4 50
1 AC AC
o GEgLYS
or  (20-51)C,—4AC, =5 .(15)

Similarly, (12) and (14) give

C, =f01t(t+/1tc1 +A12C,) dt

3 3 47!
o C, - t_+lC1t +lCzt :l+lCl+lC2
3 3 4 |, 3 3 4
or —4)LC1+(12—3}L)C2 =4 ...(16)
Solving (15) and (16) for C, and C, , we get
60+ A 80
(. 2 G = 2
240-120A -1 240-120A -4

Substituting the values of C, and C, in(12), we obtain the solution of the integral equation as

follows :
Ax (60+2) 804 x
g(x)z + >t 2
240-1201-A" 240-120A- 4
240—-601)x+804 x2
or g(x):( )

240-120A- 2
Example 3 : Solve the integral equation
g(x)=x+2 J‘j (xcost +1* sinx +cosxsint) g(t) dt
Solution : The given integral equation gives
g(x)=x+AxC +2AsinxC, + AcosxC, ..(17)
where C| =j cost g (1) dt .(18)

253



C,=[ rg(r)d .(19)
and C, = j sint g(t) dt ..(20)
Using (17) in (18), we get

C =f cost(t+AtC, +Asint C, + Acost C,) dt
or C =(1+1C) J‘j tcostdt+ A C, J‘j sintcostdt + A C, J‘j cos’ tdt

or G =0+0+21C, [ cos’tdt

(-~ tcost and sintcost are odd functions whereas cos’ ¢ in an even function)

1+ cos2t
2

o C=22C |

dt=2.C, [l‘+sm2t}

0
or C-AnC, =0 ..(21)
Similarly using (17) in (19) and (20), we get

C,+4AC,r=0 ..(22)
and 2A7C -AnC,+C,=2x ..(23)

Thus, we have a system of algebraic equations (21) to (23) for determining C,, C, and C, . The
determinant ofthis system is

1 0 -Arn
D(A)=| © 1 4ar|=1+22 7% #0
2Air —-Axn 1

Thus this system has unique solution :
27 87 c._ 27
b2 at P12 Pole2A

Putting these values of C,, C, and C, in(17) the required solution of the given integral equation
will be

(x)=x+ 27 Ax _87[22.2sinx+27rﬂ.cosx
& 1422 7% 14227 12207

2 A

+———— (Arx—4Axmsinx +cosx)
1+24° 7«

or g(x)=x
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Example 4 : Solve the integral equation

g(x) = f(x) + A J:ll(xt + xztz)g(t) dt
Also, find its resolvent kernel.

Solution : Given equation is

g(x)=f(x)+AxC +Ax*C, ..(24)
where C, = fltg(t) dt ...(25)
and G, = Pg(t)di .(26)

Using (24), (25) reduces to

37! 4!
c=[r +/1€t+/1(:t]dt:jlltf(t)dtmcl[%} +/1c2[ﬂ
-1 1

24C,

or  C=[ tf(r)di+
or C(l—%jzfltf(t) dt

oo G=77 MJ tf(2) (27

Similarly using (24), (26) reduces to

C=o™ MJ 10 (28)

Using (27) and (28) in (24), the required solution is

g(x) x 332,2);"‘ f SAx _[ f

113-24 5-24

o )= slae [ +5x2t2}f(f) p

The required resolvent kernel R (x,#;1) is given by

3xt 5x*#°
+

Rt ) =3 *5 02

Example 5 : Solve the integral equation and discuss all its possible cases by the method of degenerate kernels
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1
g(x)=/(x)=2 [ (1-3x1)g(r) dt (29)
Solution : From the integral equation, we have

g(x)=f(x)+1C,-3x2C, ..(30)

Where C,= [ g(t)dr, G =] 1g(r)dr .31

0

Substituting (30) in (31), we have

C=[{r()+2C 302G} ar
C, = [ t{f(1)+AC,~31AC,} i
oo C [l—ijoldt}+3(?2 2frede=] 1(r) di
-G [rdr+c, [1+3/1 [¢ dt} =[[1()ar
o C1-2) +%iC2 =[ 1) ar -(32)

1 1
S GA+(1+2)G, = [ 1 f(t) dt

The determinant of the system (32) is given by

-2 24 |
D(2)= 2 |=—(4-2)
1 4
—Ei 1+

Hence a unique solution of the system (32) exists if and only if D(1)# 0 i.e. 1 #+2 andis

obtained by solving (32). By putting the values of C, and C, so obtained in (30), the repuired solution of
(29) follows easily.

In Particular; if f(x)=0 and A #+ 2, the only zero solution C, = C, = 0 is obtained from (32) and

hence we get trivial solution g(x) = 0 for (29). The numbers 2 = +2 are the eigenvalues of the problem.

If } = 2, then the equation (32) reduces to

-G +3C, = [ (1) di

-G +3G, =j01tf(t) dt .(33)
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If } = -2, then the equation (32) reduces to

Cl—széjolf(t)dt

C-C,= joltf(t) dt ~34)

Equations (33) and (34) are incompatible (i.e. possess no solution) unless the given function f (x)

satisfies the conditon
jolf(t)dt=f;tf(t)dt:ﬂ(l—t)f(t)dt=0 (35)
1 g 1 1
and [ r@eyde=[er(t)de= [ (1-31)f(1)dt=0 ..(36)

In these cases the corresponding equation pairs (35) and (36) are redundant (i.e. identical and
hence possess infinitely many solution)

We now discuss solution of (29). Two cases arise :

Casel: When f (x) = 0, then the given integral equation becomes the homogeneous integral equation

1
g(x)=2 | (1-3x1)g(r) dt (37
Thenif A # +2,(29) has only trivial solution g(x)= 0, asmentioned above.

For non trivial solution of (37), we have A = +2 . Hence the eigenvaluesare 4 = +2.

To find eigenfunction corresponding to 3 = 2, weuse (33) with /'(x) = 0. Thus pair of equations
(33) reduces to C, = 3C, and so (30) becomes

g(x)=2(3C, -3C,x)=6C,(1-x) = A(1-x)
where A4 = 6C, is anarbitrary constant.

Thus the function 1— x (or any convenient non zero multiple of that function) is the eigenfunction
corresponding to the eigenvalue 4 =2.

Next, to find eigen function corresponding to 4 = —2, weuse (34) with f(x) = 0. We easily get
C, = C, and so (30) becomes

g(x)=-2C(1-3x) = B(1-3x)
where B = -2C, isarbitrary constant.

Thus the function 1 - 3x (or any convenient non zero multiple of that function) is the eigenfunction
corresponding to the eigenvalue | = .

Casell: Let [ (x) # 0, then (29) is non homogeneous integral equation. Now three cases arise :
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(§) When } = +2,(29) possesses a unique solution as explained above.

(i)  When } = 2, equations (33) show that no solution exists unless f(x) is orthogonal to
1—x over the relevant interval (0,1) , that is, unless f(x) is orthogonal to the eigenfunction

correspondingto 4 =2.When f (x) satisfies this restriction, equations (33) are identical and these give

us
1
C,=3C, | f(t)dr
Putting this value of C, in(30), we get
g@y;a@+ng—£fam4—aq¢
1
or g(x)=f(x)—2jof(t)dt+6C2(1—x) as ) =2
1
or  g(x)=r(x)=2] f(e)dt+4(1-x) .(38)
where A4 = 6C, isan arbitrary constant.
Thus if 4 =2 and I()l(l —t) f(¢) dt =0, the given equation (29) possesses infinitely many
solutions given by (38).

(iiiy  When 4 = —2, equations (34) show that no solution exists unless f(x) is orthogonal to
1—3x over the relevant interval (0,1) , that is unless f(x) is orthogonal to the eigenfunction

corresponding to 4 = —2. When f(x) satisfies this restriction, equation (34) are identical and these give us

1 ¢t
C =C, +§J0f(t)dt

Putting this value of C, in(30), we get

ﬂﬂzf&h%{@+%ﬁﬂﬁw}8xgl
or g(x):f(x)—%ﬂf(t)dt—2€2(l—3x) as 1— -0

2 ¢l
or g(x):f(x)—gj.of(t)dt+B(l—3x) .(39)
where B = -2C, isanarbitrary constant.

1
Thus if 4 = -2 and J;) (1-3¢) f(¢)dt = 0, the given equation (29) possesses infinitely many
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solution given by (39).
Example 6 : Show that the integral equation

g(x)=f(x)+ —Jjﬂ sin(x+1) g(¢)dt

possesses no solution for f(x) = x, but that it possesses infinitely many solutions when f'(x) =1.

1 27,
Solution : Given g(X)zf(x)+;J: sin(x+1)g(¢)dt

or g(x) :f(x)+1J2ﬂ(sinxcost+cosxsint)g(t)dt

or g(x)=f(x)+ S Jzn cost g(t)dt +ﬂj‘2ﬂ sint g (¢)dt
T Y0 T 90
or g(x)=r(x)+C S, c, % ...(40)
n n
where C, = J-Oz” cost g(¢)dt ..(41)
C, = ["sintg(t)di (42)

We now discuss two cases as mentioned in the problem.

Casel: Let f (x) = X, then (40) reduces to

C/sinx C,cosx
+ +

X)=x (4
g(x) . . (43)
Using (43) in(41), we get

C = J% cost[z‘ Jasmr G COSt}dt

0 T T
_ 27 Cl 2z, C2 2
or C = J; tcostdt+; J; s1n2tdt+g JO (1+ cos2t)dt
) - _ 2 2 . 2 21
or Clz[tsmt+cost]]§ +£ Zcosit +& ¢ 4 S0Et
2r 2 0 27 2,

o G-G=0 ..(44)
Againusing (43), (42) becomes

C-C =2z ..(45)

The system of equations (44) and (45) is in consistent and so it possesses no solution.
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Hence C, and C, cannot be determined and so (43) shows that the given integral equation

possesses no solution when f(x)=x.

CaseIl: Let f(x)=1, then (40) reduces to

C, sin C, cos
g(x) =1+ —1200 4 2202 ..(46)
T T

Using (46), (41) becomes

C = J% cost[l+ Gsinx | G cosx}dt

0 Vs Vs
_ 2 Cl 2z, Cl 27
or C, —JO costa’t+;‘|’0 s1n2tdt+g JO (1+cos2t)dt
2r . 2r
or C - [sint]é” +£ —Ccos2t +& - sin2¢
2r 2 0 27 2
G

or C =0+ O+;(27r+0) or C =C, (47
Again using (46), (42) gives

¢ =G ..(48)

From (47) and (48), we see that C, = C, = A4 (say), where A4 is anarbitrary constant. Thus this

system has infinite number of solutions C, = 4 and C, = 4. Putting these values in (46), the required

A, .
solution of given integral equation is & (x) =1+ = (sinx+cosx) or g(x) =1+ C(sinx +cosx), where

A
C= . is another arbitrary constant. Since ¢ is an arbitrary constant, we have infinitely many solutions of
(40), when f(x)=1.

Example 7: Solve the equation

g(x) =1+ 2 P cos(x—1)g (1) d

and find its eigenvalues.

Solution : The given equation may be written as

g(x)=1+AcosxC, +AsinxC, ..(49)

h %
where C, = JO cost g(¢) dt ...(50)
and cr——j75 i 51
=), sint g(¢t) dt ..(51)
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Proceeding as in Example 6, we get

Ar A
(1—7) G > G =1 .(52)
A Ar
and  ~7 G +(1—T) G =1 ..(53)

A A
1+2-22 .
C=-C=-—2 4 -
2
(l_ﬂi) A 1= X (z+2)
4 4

Now putting the values of C, and C, in(49), we have

() =1+ i(co;x+smx)

The eigenvalues are given by

A A
Dﬂ‘ I_T _5 0 llﬂ'z AZ 0 ﬂ.« 4
— = or - [ or =
A (1-22) -2
2 4

For these values of } , The given non homogeneous integral equation has no solution.

Self Learning Exercise - |

1. State whether the following statements are true or false.
)] The eigenfunctions of'a symmetric kernel, corresponding to different eigenvalues are not
orthogonal.
(i) The eigen values of a symmetric kernel are real.

(ii1) We can find the solution of Fredholm integral equation ofthe second kind with the help of
separable kernel.

(ivy  Ifthekernel K(x,¢) is continuous in the rectangle R:a < x<b, a <t <b and the

numbers o and p are finite then to every eigenvalue ,} , there exists finite number of
linearly independent eigenfunctions.

V) The number of eigenfunctions is known as index of the eigenvalue.

(vi)  If ¢(x) is aneigenfunction, then C¢(x) is also an eigenfunction corresponding to same

eigenvalue.
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2. Define the following
() Separable kernel
(i) Eigenvalues
(i) Eigenfunctions
(iv) Orthogonal functions
9.3 Exercise 9 (a)
1. Solve the following integral equations :

) g(ﬂzsmx+lizsmxumtg0ﬁﬁ
@  g(x)=(1+x) +£1(xt +x7*) g (t)dt
(i)  g(x)=x+a] (1+sinxsint)g(r)dt
i) g(@)=1+] (1+e™)g(t)di

) g@)=amx+z£%mxgoyh

) g(x)=cosx+A] sin(x—r)g(¢)dt
o) g(x)=cosx+A j// tant g (¢)dt

) 2sinx
[Ans. (1) g(x): )

(il) g(x)zl+6x+§x2

A
Ar

O—iﬂ)b—2)+4f

(ii) g(x)=x+ [217[+%ﬂ2(1—%iﬂ)+ﬂsinx(l—2iﬂ)}

3 e’ —2e—1—2ex(e—l)
2(e-1)’

v g

v)  g(x)=cosx, 2 # %
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_4cosx+2mAsinx
4+ 2

Solve the integral equation

g(x) =/ (x)+ 4] sin(x+1) g (1)t
and discuss all possible solutions.
Solve g(x) =/ (x)+ 2 [ xt g(t)dr

3xA
3-1

(Ans. g(x)=f(0)+ 2 [/ (dr,  where 523]

Solve g(x) =x+ﬂ._|‘01(1+x+t)g(t)dt

A
+—
12-242-7*

[10+(6+2)x] }

[ o 16155

6
Solve g(x)= g(1—4x)+/ljol(xlogt—z‘logx)g(z‘)alt

2
[ Ans. g(l—4x)+L[2&2x+[l+%}ogx}

48+29 12

Solve the integral equation
1
g(x)= f(x)+ ﬂ.J‘O (x+1)g(t)dt

[ . g(x):f(x)mjol6(/1—2)/1(;:;2)/—11_212“—4/1f(t)dt }

Solve g(x)= A_[;(log%)pg(t)dt =1 (p>-1)

[Ans. g(x)= }

T1-AT(p+1)
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9.4 Some Special Types of Integral Equations

9.4.1 Singular Integral Equation

Definition :  Anintegral equation is called singular of either the range of integration is infinite or the
kernel is discontinuous.

For example, the singular integral eqaution of first kind are
f(x)= [ sin(xt) g (¢) e

fx)=[ e g(t)ar

In above equations, the range of integration is infinite.

In the above equation, the range of integration is finite but the kernel is discontinuous.

Remark : Singular integral equations occur frequently in mathematical physics and possess very unusual
properties.

9.4.2 TheAbel Integral Equation

One of'the simplest form of singular integral equation, which arises in mechanics, is the Abel’s
integral eqaution

f@=] (xg_(?)a di, 0<a <1

where g(¢) is an unknown to be determined and f'(x) is a known function.
9.4.3 Integro-Differential Equations

An integral equation in which various derivatives of the unknown function g(x) canalso be
present is said to be integro-differential equation. For example
g" (x) =g (x) +cosx + J: sin(x — u) g (u) du

9.4.4 Integral Equation of Convolution Type

The integral equation

g(x)=s(x)+ ]

0

K(x—1)g(t)dt

in which the kernel K (x — t) is a function ofthe difference only, is known as integral equation of
the convolution type. Using the definition of convolution, the above integral equation can be written as

g(x)=/(x)+K(x)*g(x)
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9.5 Solution of Volterra Integral Equation of Second kind with Convolution
Kernels by Laplace Transform Working Rule

() Consider the Volterra integral equation of'the first kind

f(x)=[ K(x—t)g(t)de (54)

or f(x) = K(x) *g(x) ..(5%)

where the kernel K (x —¢) depends only on difference (x — 7). Applying the Laplace transform
to both sides of equation (55), we get

L{f(x);p} = L{K(x) *g(x)} ...(56)

or F ( p) =K ( p) G ( p) (by the convolution theorem for Laplace transform)
or G(p):ip) ..(57)

Applying the inverse Laplace transform to both sides of (57), we get

L[F(p) }
g(x)=L"—"%:x
) {K ()
(i) Consider Volterra integral equation of the second kind
g(x)=1(x)+ [ K(x—1)g(t)dt

= f(x)+K(x)*g(x) ..(58)
Applying the Laplace transform to both sides of (58), we get

L{g(x); p} = L{f(x): p} + L{K (x)*2(x)}
o G(p)=F(p)+K(p) G(p)

{Using L{K (x)*g(x)} = F(p) G(p) and the convolution theorem}

oo G(p){1-K(p)}=F(p)

G(p) F(p)

= l—K(p) ...(59)

or

Applying the inverse Laplace transform to both sides of (59), we obtain

g(x)= L‘{l i(;&) ;x}
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(ii1) Suppose we want the resolvent kernel of (58) in which the kernel K (x — t) depends only

on the difference (x - t) . By integral transform method, we first show that, if the original kernel K (x, t) is
a difference kernel, then so is the resolvent kernel.

The resolvent kernel R (x, t) is given by (refer Art 10.3)

['e]

R (x,t) = Z Km(x,t) =K, (x,t) + K, (x, t)+ ..... ...(60)

[Note that here 2 = 1. So we have used symbol R(x,7) inplace of the usual symbol R (x,;1)]

The iterated kernels are given by (refer Art 10.2)

Kl(x,t)zK(x,t) ..(61)

and  K,(v.0)=[ K(x.2)K, (z.0)dz,  n=23,... (62)
Here by assumption, we have

K (x,t)= K(x —t) therefore by (61), we have

K, (x,1)=K(x,t)= K(x—1) .(63)

Putting ; = 2 in(62), we have

Kz(x’t):_[x

t

K(x,z) K, (z, t)dz = J.)C

l K(x—z)K(z—t)dZ
=J‘:7[K(x—t—u)K(u)du [putting z —¢ =44 |

showing that K, (x,) depends only on the difference (x —¢) . Proceeding likewise, we can show
that K,(x,?), K,(x,¢)... also depends on the difference (x — ). From(60), it follows that the resolvent

kernel will also depend only on the difference (x — t) . Therefore we can assume that

R(x,t)zR(x—t) ...(64)

The solution of (58) is given by (Refer Art 10.3)
g(x)= £ (x)+ [ R(x.,0)f (1)dt

or  g(x)=f(x)+] R(x—1)f(r)dt ..(65)
Applying the Laplace transform to both sides of (65), we have

L{g(x):p}= L{f(x): p}+ L{R(x)* f (x)}
or G(p)=F(p)+R(p)F(p) ..(66)
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where G(p)=L{g(x);p}. F(p)=L{f(x);p} and R(p)= L{R(x); p} ..(67)

Using (59) in (67), we get

F(p) _
l—K(p) —F(p)[l+R(p)]l
L Kb
or R(p)—l_K(p) 1—1_K(p) .(68)
Applying the inverse Laplace Transform to both sides of (68), we get
4] K
R(x—t)=L {1—1(;29)} .(69)

Substituting the value of R (x —¢) givenby (69) in (65) we shall get the desired solution of (58)

Example 8 : Solve the Abel integral equation

@) f(x)=,|-)r g(l‘) dt, 0<a<l

dt =1+x+x*

: * g
i S\
W =
Solution : (i) The given integral equation is of convolution type and therefore the integral equation may
be expressed as

f(x)=g(x)ex~ ..(70)

Taking the Laplace Transform of both sides of (70) and using the convolution theorem, we have

L{f(x):p}=L{g(x):p} L{x;p}

_ r(l-a)
or  F(p)=G(p) P
or G(p)=pliaF(p)= P — {T'(a) p*F(p)}

(ﬂ/smﬂa sinTa
sinz o o .
= pT L {x b f (x)} (by convolution theorem)
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_sinra pL {J:C (x—1t )(Hf (t)dt } (by definition of convolution)  ...(71)
Let  h(x)=[ (x—=t)"" f(t)at (72)
Now  L{i'(x):p}=p L{h(x): p}=h(0)=p L{h(x):p} ~ (-h(0)=0)

or pL{f: (x=0)"f (t)dt} = L{'(x); p} (73)

Using (73) in(71), we get

6(p)=""2% L{i(x):.p}

Inverting, we have

g(x) =L {G(p)} =% L [ (x=0)” rle)at |

T dx

(ii) Rewriting the given equation in convolution form, we have
g(x)*xf% =l+x+x° ..(74)

Taking the Laplace transform of both sides of (74) and using the convolution theorem, we have

L{g(x)} L{xf%} = L{1}+L{x}+L{x2}

ry2 1 1 2
or G(p =—+—+—
( ) pl/z ) pz p3
1 1 1 2
or G(p)= [ + + ) ..(75)
( ) /_7[ pl/z p3/2 ps/z

Applying the inverse Laplace Transform to both sides of (75), we get

)= % [Ll{p{”} Ll{piﬂ}ﬂy{pﬁ” H

1 { xf% x% 2x% ]

x| T(1) T() T(3)

xf% x% 2x%

+

-+
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_1 [x% % +(%)x%}

T

Example 9 : Solve the integral equation

sinx = [, (x—1) g(¢)dt
Solution : The given integral equation may be expressed as
sinx = g (x)*J,(x)

Taking the Laplace transform of both sides of the above equation and using the convolution
theorem, we have

L {sinx} =L {g(x)} L {Jo(x)}

or —=G(p) , where G(p)=L{g(x)}

or G(p)=

N
Taking the inverse Laplace transform, we have
g(x)=L{G(phx}= ()
Example 10 : Solve the integral equation
g(x) =1+ sin(x—)g(r) dt

and verify your answer.

Solution : The given integral equation can be rewriten as
g(x)=1+g(x)*sinx ..(76)

Taking the Laplace transform of both sides of (76) and using the convolution theorem, we get

L{g(x)} = L{1}+ L{g(x)}L{sinx}

or G(p)=l+G(p) 21 , where G(p):L{g(x)}
p p +1
1 1
1- G(p)=—
or [ szJ (p) »
Gp) -2t L L 77
or p3 ) p3 ( )
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Inverting, (77) reduces to

2 2
X X

g(x)=l+2—!=l+? (78)

Verification of Solution (78)
Now we show that the solution of (76) satisfies the given integral equation

g(x) =1+ [ sin(x—#)g(¢)dt (79)
From (78), we have R.H.S. of (79)

2

= 1+J-:sin(x—t)[l+% dt

- 1+[[1+§)cos(x—t)_x — [ tcos(x—r)dt

Jdo

2
X . X x o,
= 1+1+7—cosx—{—t sm(x—z‘)}0 +_[0 sin(x —t)dt

2

X X
=2 +?—cosx—{cos(x—t)}0

2 2
=2+x?—cosx—(1—cosx)= 1+x?=g(x)

= L.H.S. of (79)
Example 11 : Solve the integral equation

g(x)=e™ =2 cos(x—t)g(t)dr
Solution : Rewriting the given integral equation, we have

g(x)=e"—2g(x)*cosx

Applying the Laplace Transform to both sides and using the convolution theorem, we have

L{g(x)}=L{e™}-2L{g(x)} L{cosx}

1 p _
or Glp)=——-2G , where G(p)=Lig(x
()= =200 ()= L{e ()}
2p 1
1 =
or G(p){ +p2+l} ol
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_ Pl _{(prn)-1) 41
(p+1)  (p+1)

Inverting it, we get

g(x)= Lll{(p”)l}z +1]

(p+1)°

or G(p)

_ 7XL71 (p_1)2+1 o
=e T [by first shifting theorem]

*-2p+2 1 2 2
= eXLI{% = eiXLil ___2+_3
P p PP

2
:e*{1—2x+2.x—}
21

ze’x(1—2x+x2)

or  g(x)=e(1-x)
Example 12 : Solve
g'(x)=x+][ g(x—t)costdr, g(0)=4
Solution : The given integral equation can be written as
g'(x)=x+g(x)*cosx (80)
Also giventhat g(0) =4

Applying the Laplace transform to both sides of (80) and using the convolution theorem, we get

L{g'(x)} = L{x}+ L{g(x)} L{cosx}

o pG(p)-g(0)=—5+G(p)-L. where G(p)= L{g(x)}

or [1— 21 JPG(P)—“:%

3 1 241 1
or P G(p)=4+— or G(p)=" j [4+—2)
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or G(p)= 3 5

Inverting it we get

g(x):4Ll{%}+5L‘{#}+Ll{%}

Example 13 : Find the resoltvent kernel of the Volterra integral equation and hence its solution

X

g(x)= f(x)+jo (x—1)g(t)dt
Solution : The given integral equation can be written as
g(x)=f(x)+g(x)*x (81

Applying the Laplace transform to both sides of (81) and using the convolution theorem, we have

L{g(x¥)}=L{f ()} +Lig(x)} L{x}

or  G(p)=F(p)+ G(p)%a where G(p) = L{g(x)}: F(p)=L{/(x)}

oo G(p)=—%—F(p)

Let R (x - t) be the resolvent kernel of the given integral equation. Then we know that the
required solution is given by

g(x) =f(x)+JjR(x—t)f(t)dt

or g(x) = f(x) + R(x)*f(x) ...(82)

Applying the Laplace transform to both sides of (82) and using the convolution theorem, we have
L{g()} = L{r ()} + L{R()} L{f (%)}

or G(p):F(p)+R(p)F(p) where R(p):L{R(x)}
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or »— F(p)=F(p)+R(p)F(p)

or R(p)= T l=—

Inverting, R(x)=L"{R(p)}=sinhx
so that R(x—¢)=sinh(x—1t),
giving required resolvent kernel.

Substituting the above value of R (x —¢), the required solution is

g(x)=f(x)+ [ sinh(x—1) £ (r)dt

Example 14 : Determine the resolvent kernel and hence solve the integral equation

Solution : The given integral equation can be written as

g(x)=f(x)+g(x)xe’ .(83)

Applying the Laplace transform to both sides of (83) and using the convolution theorem, we have

L{g(x)} = L{f (x)}+ L{g(x)} L{e'}

1

P where G (p)=L{g(x)}; F(p)=L{f(x)}

o G(p)=F(p)+G(p)

o G)=T ()

Let R (x - t) be the resolvent kernel of the given integral equation. Then we know that the re-
quired solution is given by

g(x) =f(x)+JjR(x—t)f(t)dt

or g(x) = f(x) + R(x)*f(x) ...(84)

Applying the Laplace transform to both side of (84) and using the convolution theorem, we have

L{g(x)p= L{f ()} + L{R()} L{f (x)}
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or G(p):F(p)+R(p)F(p) where R(p):L{R(x)}

o LLE(p)=F(p)1+R(p)]

-1 -1
or 1+R(P):p— or R(P)=p —1=

Ll{ lz}zezr
p—

R (x — t) = ¢**7) | giving required resolvent kernel.

Inverting, R (x)

Substituting the above value of R (x —¢) , the required solution

g(x)=rf(x)+] "2 £(1) dt

0

9.7 Solution of Singular Integral Equations by Fourier Transform

The whole procedure will be clear from the following examples :

Example 15: Solve for f (x) the integral equation

I-p, 0<p<1

JO f(x)cospxdx:[ 0. o1

)
©sin” ¢ T
Hence deduce that IO 2 dt = By

Solution : Let \/% J.:f(x)cospxdx = Fc{f(x)} = FC(P)

2
Then F(p)= —(1-p), 0<p<i

0o , p>1

Hence by the Fourier cosine inversion formula, we have

f(x)= \/% J.:FC(p)cospxdp

=\/% J.;\/%(l—p)cospxdp
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Isin px
[t )

ez

1

2
X

(—cosp x);

- 2(1——czosx) , which is the required solution.
X

Deduction : Substituting the value of /'(x) in the given integral equation, we get

=2 (1-cosx) 1-p, 0<p<1
J—zcospxdx:
0 X 0 , p>1

Letting p — 0, this equation yields

2 reol—cosx
;J;) 2 dle

X
or J‘w% dx:ﬁ
0 X 2

Putting y = 2¢, dx = 24t , We at once get

)
© s~ ¢ T
[ a==
o ¢

Example 16 : Solve for f (x), the integral equation

1, 0<p<l
Jowf(x)sinpxdx: 2, 1<p<i1
0o p>2

Solution : Let \/% _[:f(x)sinpx dx = Fs{f(x)} = F,(p). Then

3 1, 0<p<l
Fs(p): = 2, 1<p<l
0o , p>2

Hence by the Fourier sine inversion formula, we get

f(x) =\/%J.: F,(p)sin pxdp
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2 ) 22, . 2 o
:—jll.smpxdp+—j 251npxdp+—j Osin pxdp
w0 el T2

_E[—cospx}l +i[—cospx}2
ol x|, L x |

= 2[— cosx +1+2{—cos2x +cosx}]
n

= z(l+ cosx —2¢0s2x)
T

Example 17 : Solve : I:f(x)cospxdx =e”,

Solution : Let \/%J.:f(x) cos pxdx = Fc{f(x)} =F, (P) .

2
Then F.(p)= ;efp.

Hence by the Fourier cosine inversion formula, we have

2 2 = |2
_=["F dp=|= ["|Z e cos pxd
f(x) ﬂJ.O .(p)cos pxdp ~ J.O — ¢’ cospxdp

2>,
—;JO e " cospxdp

0

2| e’ .
:—[ 2(—c0spx+xs1npx)}

T|l+x o

s Je”" coshrdre (a cosfx +2b sinbx)
a +b
2
7[(1 +x° )
2
T /0= )

Self-Learning Exercise - I1
1. Define following :

() Singular integral equation.
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(i) The Abel integral equation.
(ii1) Integro-differential equation.
(v)  Integral equation of convolution type.

2. State whether the following statements are true or false.

() An integral of the type J.jo K ( D, t)F (t) dt is defined as the integral transform of F (t)
provided it is divergent.

(i) The resolvent kernel of the non homogeneous integral equation cannot be determined by
the method of integral transform.

(i)  The convolution of two functions G(¢) and H(¢), where —oo<¢ <o, is denoted and
derived by G*H = | G(¢)H(x~1t)dt
(v I L'{f(p)}=F(r)and L"{g(p)}=G(t), where F(t) and G(¢) are two functions of

classA. Then L' {f(p) * g(p)} = J.Ol F(u)G(t—u)du=F*G.

9.7 Summary

In this chapter, we have seen that the kernel is separable, the problem of solving an integral
equation of second kind reduces to that of solving an algebraic system of equations. We have discussed
the integral transtorm method, a useful tool for the solution of integral equation of some special forms.

9.8 Answers to Self Learning Expercises

Exercise-I
1. (1) False (ii) True (iii) True (iv) True (v) True (vi) True.
2. See text.

Exerciese-11I
1. See Text
2. (1) False (ii) False (iii) True (iv) False
9.9 Exercise 9 (b)

1. Solve the Abel integral equation

i XLt) =x(1+x
0 Jo(x_t)%dt (1+x)
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3V3 s
Ex (2+3x) (i1) g ndxj ,— }

Solve the in homogeneous integral equation

g(x)=1-[ (x—1)g(t)ar

Also verify result.

[ Ans. (i) g(x)=

[Ans. g(x)=cosx]

Solve
() _[: g(t)cos(x—t)dt=g'(x)if g(0)=

i) [ g()g(x—1)de=24x"if g(0)=

Solve J: g(t)g(x—1t)dt =16sin4x

[ Ans. g(x)=18J,(4x) }
Solve the Volterra integral equation of second kind

=X +J‘ SlIl)C t

[ Ans. g(x)=x2+x—4 }

12

Solve : g(x)=asinx— 2J‘: cos(x —1t)g(¢)dt

[ Ans. g(x)=axe™ }

Solve the integral differential equation

g'(x)=sinx+ fo g()cos(x —)dt where g(0)=0
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Unit-10
Solution of Integral Equation of Second Kind by
Successive Approximation and Substitution

Structure of the Unit

10.0  Objective

10.1  Introduction

10.2  Iterated Kernels or Functions

10.3  Resolvent Kernel or Reciprocal Kernel

10.4  Solution of Fredholm Integral Equation of Second Kind by Successive Substitution

10.5  Solution of Volterra Integral Equation of Second kind by Successive Substitution

10.6  Solution of Fredholms Integral Equation of Second Kind by Successive Approximation : Iterative
Method (Iterative Scheme), Neumann’s Series

10.7  Solution of Volterra Integral Equation ofthe Second Kind by Successive Approximation,
Iterative Method, Neumann’s Series

10.8  Summary

10.9  Answers to Self-Learning Exercise

10.10 Exercise 10

10.0 Objective

In this unit, we shall discuss the solution of Fredholm and Volterra integral equation of the second

kind by the method of successive substitution and the method of successive approximation.

10.1

Introduction

We already know that ordinary first order differential equations are solved by the well known

Picard method of successive approximation. In this unit, we shall study an iterative scheme based on the
same principle for linear integral equations of the second kind. Throughout our discussion we shall assume

that the function f (x) and K (x, t) involued in an integral equation are L, functions.

10.2

Iterated Kernles or Functions

Definition :

()  Consider Fredholm integral equation of the second kind
g(x)=/(x)+ 2 [ K(x.1)g(r)dr
Then, the iterated kernels K, (x,7), n=12.3,.... are defined as follows :
K (x,t) = K(x,1)

and K, (x,t) = J.bK(x,z) K,H(Z,t) dz, n=23,....
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(ii)

o K(xi)=[ K (v2) K(z)d,  n=23...

Consider Volterra integral equation of the second kind

x)+ﬂ. J:K x,t

Then, the iterated kernels K, (x,7), n=12,3,..... are defines as follows :

Kl(x,t) = K(x,t)

X

K(x,z) K (z,t) dz, n=23,

n

and K, (x,t) = I

t

or Kn(x’t):J;xan (x,z) K(Zat) dz, n=23,...

10.3 Resolvent Kernel or Reciprocal Kernel

()

(ii)

Suppose solution of Fredholm integral equation of the second kind

x)+ﬂ.J‘be t)g(t)dt

takes the form

mj R(x,;A) f

or  g(x)=s(x)+A[ T(x.0:2) f (t)ds

Then R(x,t;A) or ' (x,#; 1) is known as the resolvent kernel of (1).

Suppose solution of volterra integral equation of the second kind

x)+ﬂ.J‘:K x,t

takes the form
g(x)=f(x)+ A R(x,t:2) f (¢)at
or S@)+A[ T (x82) £ (£)de
Then R(x,t;A) or ' (x,#; 1) is known as the resolvent kernel of (2).
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10.4 Solution of Fredholm Integral Equation of Second Kind by Successive
Substitution

Theorem 1: Let g(x)= f(x)+l_|jK(x,t)g(t)dt «.(3)

be given Fredholm integral equation of the second kind. Suppose that

(i) Kernel K (x,?)# 0 isreal and continuous in the ractangle R, for which a < x < b,

a < t < b.Suppose that ‘K(x,t) < P ,where p is the maximum value of ‘K(x,t)

in R.
(i)  f(x)# 0 isreal and continuousin aninterval J ; a< x<b.Let ‘f(x)‘ <0,

where Q is the maximum value of ‘ S/ (x)‘ in the interval .

1
P(a—b)

Then (3) has a unique continuous solution in ; and this solution is given by the
absolutely and uniformly convergent series :

g(x)= f(x)+A[ K(x.t) f(t)de+ 22| K (x.) [ K(,8,) f (1,)dt, de

(iii) A is a constant such that |1|<

+3,3J'a”K(x,t) J'a”K(t, t,) LbK(tl,tz) f(t,)at, dt, dt+......

Proof: Rewriting (3) as
b
x)+1'|. K(x,t) g(t)dt,

o g(0)=s()+A] K(t.t) g(t)dr, ()

Since there exists a continous solution g(x) of(3), so substituting the unkown function g(¢)

under an integral sign from the relation (4) in (3), we get

x)+A L”K(x,t) L)+ 2 [ K (1) g()dn b

or +/1f (¢)dt+ 2 f K(x,1) I:K(t,tl) g(t)dndt  ..(5)

Rewriting (4), we have

(0)+2 [ K(0.0,) g(0,)d,
or )+ f (1,,1,) g(t,)dt,
Substituting the above value of g(7) in(5), we get

+/1f a’t+/12f K(x,1) I:K(t,tl)
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{f(t1)+/1j;K(tl,t2) g(tz)dtz} dt, dt

or +/lj (¢)dt+ 2 j K(x,1) fl((t,tl)f(t)a’t1 dt

b

w2 [ K () [ K(e) [ K(t.0,) g(t,)dr, di, di

Proceeding likewise, we have
+/lj dt+izj K(et) [ K(t.t,) £(t,)dt, di

w2 [ K(x, t)f K(t,t )j K(t,,1,) g(t,)dr, dt, dt

a

where R, (x)= 2" IbK(x,t)IbK(t,tl)....IbK(tnfl,tn)g(tn)dtnfl...dtldt (7

a

Now, let us consider the following infinite series

+/lj dt+ﬂ.2_[ (x,t)I:K(t,tl)f(tl)dtldt+... (8)

In view of the assumpition (i) and (ii), each term ofthe series (8) is continous in L. It follows that the
series (8) is also continous in I, provided it converges uniformly in I.

Let S, (x) denote the general term of the series (8) i.e., let

S,(x)=2 [ K(et) [ K(et)o ] K(t,20,) f (8, ) db, , ..t di

a

Since ‘K(x,t) <

(<0,

S (x)‘ <

QP'(b-af

which will be convergent if |A| P (b — a) <1

1
P(b-a) ..(9)

A<

or

which hold in view of assumption (iii).

Thus the series (8) converges absolutely and uniforly when the relation (9) is satisfied.

If(3) has a continous solution, clearly it must be expressed by (8). If g(x) is continuous
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nl, g(x)

‘ must have a maximum value A/ . Thus,

g(x)< M .(10)

Now from (7), we have

R, (x) <[A"™" MP™(b-a)™ [using assumption (ii) and (10)]
Since (9) holds, so
lim R, (x)=0

n—>o0

It follows that the function g (x) satisfying (6) is the continuous function given by the series (8).

10.5 Solution of Volterra Integral Equation of the Second Kind by Successive
Substitutions

Theorem 2 : Let

g(x)=f(x)+4 [ K(x,1) g(r) dt (11)

be given Volterra integral equation of the second kind. Suppose that conditions (i) and (ii) given
with Theorem 1 are satisfied and } is a non zero numrical parameter.

Then (11) has a unique continuous solution in I and this solution is given by the absolutely
and uniformly convergent series.

g(x)= f(x)+ 2 [ K(x,0) f(e)dt+ 27 K (x,0) [ K(t,8,) £(8,) dt, dt+...

Proof: Rewriting (11), we have

g(x)=/(x)+ 4 [ K(x.0) g(t)dr,

a

o g(t)=r()+A [ K(rt) g(t)d, (12)

Since there exists a continous solution g (x) of (11), so substituting the unknown function under
an integral sign from the equation (12) in (11), we obtain

)44 [ K(x0) [f(t)m [ K(e.t,) g(tl)dtl} dr

or S@)+2 [ K (o) f(e)de+22[ K(xt) [ K1) g(t)dide—..13)

Rewriting (12), we have
(6)+2 [ K(e.e
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or )+ A j (1,,1,) g(t,)dt,
Substituting this value of g(#,) in(13), we find that

FE)+A [ K () f(e)de+2 [ K (t1)

[f(rw [l K(tot) (e,
or S)+2 [ K () £(e)de+ 22 [ K () [ K (n,t,) f (), de

+i3ij(x,t)fK(t,tl)f‘K(tl,tz) g(t,)dt, dt, dt

Proceeding like wise, we have

S)+2 [ K (xt) £(e)de+22[ K () [ K (n,t,) f (), de

b2 [ K () [ K(6t) 7 K (6, 000,) £(,)dt, ooty de+ R, (%) .(14)

a

where

R ()= 2 [ K (o) [ K(t.t,)..[ " K2, 10t,) £(8,) ..., dt .(15)
Now, let us consider the following infinite series
x)+ 2 [ K(xt) f(e)de+ 2 [ K(x0) [ K (6,t,) £ ()t de+...(16)

In view of the assumptions each term of the series (16) is continuous in L. It follows that the series
(16) is also continuous in I, provided it converges unifrormly in I.

Let S, (x) denote the general term of the series (16) i.e.

S, (x) =2 [ K(xt) [ K(6) " Kty 00,0) £ (6, )t ...dt,

a

S, (= [ K(et) [ K(t.).[ 7Kty a0t ) S0, oot
Since (x)| <0, wehave

. <iror ik
or Sn(x)‘< l"Q[P(bn_'a)] s a<x<h
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Clearly, the series, for which the positive constant

A

"o[P(b-a)]

n!

is the general expression for the 1" term,
is convergent for all values of 1, P,Q, (b — a) . It follows that the series (16) is absolutely and
uniformly convergent.

If (11) has a continuous solution, clearly it must be expressed by (14). If g (x) is continuous in 1,

‘ g (x)‘ must have a maximum value A/ . Thus ‘ g(x)‘ <M.

Now from (15), we have

R,.,(x)= A”*ILXK(x,t) f K(z,t, )f K(t, ,,t,)g(t,)dt,...dt, dt
(x _ a)n+l
R, (x) <[ P o ——
(n+1)!
. . (b_a)n+l
<[] mp 1) (a <x<b)

Hence LimR,, (x)=0

n—>0

It follows that the function g (x) satisfying (14) is the continuous function given by the series (16).

10.6 Solution of Fredholm Integral Equation of Second Kind by Successive
Approximation. Iterative Method (Iterative Scheme), Neumann’s Series

Consider the Fredholm integral equation of'second kind as

g(x) =/ (x)+ 4] K(x.0)g(r)ar .(17)

where (i) the kernel K (x,¢) # 0 is real and continuous in the rectangle R for which < x <b
and a <t <bh.
(i) f (x) # 0 isreal and continuous in an interval I, for which a < x <b

(i) , is anon zero numerical parameter.

As a zero order approximation (for the starting approximation) to the desired function g (x) ,let

us take the solution g, (x), i.e.

g(x)=f(x) .(18)
The solution g, (x) is substituted into the RHS of (17) to get the first order approximation g, (x)
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ie. +1j x,0) gt .(19)

This function, when substituted into (17), yields the second approximation. This process is then

repeated; the (n + 1)”’ approximation is obtained by substituting the #” approximation in the right side of

(17) which results in the recurrence relation

g (x +1j x,0)g,(t ..(20)

We know that the iterated kernels (or iterated functions) K, (x,7)(n =1,2,3,......) are defined by

K, (x,t) = K(x,1) ..(21)
and  K,(x.0)= [ K(x.2)K, (z.1)dz .(22)
Using (18) in (19), we obtain

x)+ A [ K (x.0) f(1)de .(23)

Putting ;; = | in(20), the second order approximation g, (x) is given by

+1j x,2)g,(z (24

Using (23) in (24), we obtain

X)4 A L”K(x,z)[ £+ A K(=0) f(t)dt}zz

or )4 A[ K(x,2) f()dz+ 2 | (x,z)U;K(z,t) f(t)dt}zz 25
or +/1j dt+/12jf U K(x, )K(z,t)dz}dt

[on changing the order ofintegration in third term]
or +/1j dt+/12j K, (x,8)f (t)dt  (using (21)and (22)]
o )=+ X2 [ K, (x0) f(0)dr (26)

m=1

Proceeding likewise, we easily obtain by mathematical induction the n” approximate solution
g, (x) of (17) as

e [ K, (xut) (o) d 07

m=1
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Taking the limit as #» — oo, we obtain the so called Neumann series

g(x)=Limg,(x Z/l’”j K, (x.1) f .(28)

n—o
m=1

In order to determine the resolvent kernel (or reciprocal kernel) R (x, t; A) or I (x, t; A) In terms

of the iterated kernel K (x, t) , changing the order of integration and summation in the so called Neumann
series (28), we find that

el S k) e 9

m=1

Comparing (29) with
X)+ 2 j R(x,2) f
We obtain
R(x52) = 22 K, (00) or 3 K1) (30)
Obviously
+1j R(x,t;2) f .(31)

will be solution of integral equation (17) in terms of the resolvent kernel.
Determination of the condition of convergence of (28)

Consider the partial sum (27) and apply the Schwarz inequality to the general term of this

sum, we obtain
<([ )1t

Let p bethenormof f . Then

| ar ..(32)

[ K, (v.0) £ (1)t

D= [ | () dr -(33)

Further, let C? denote the upper bound of the integral

[ K, (x.of

K, (x,0)

Schwarz Inequality : If ¢(x) and w(x) and L, functions then

(@w)=<lloll vl
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Hence the equation (32) becomes

(x.2)f(t)df| <C,D? .(34)

We now connect the estimate C> with the estimate C” . For this purpose by applying the Schwarz
inequality to the relation (22), we obtain

) <[ |K, (2 dz [ K (2.0 dz

which when integrated with respect ot ¢ , yields

[[K, (o) ar<Bc?, .(35)

...(36)

The inequality (35) gives rise to the recurrence relation

C2 < B2 ..(37)
From (34) and (37), we have the inequality

. 2
[ K,(x.0)f(t) & <C?D*B™ (38)

Thus,
and it follows that the infinite series (28) converges faster than the geometric series with common ratio
A|B<1,

or 1] < ..(39)

}V

is satisfied, then the series (28) will be uniformly convergent.

Uniqueness of solution for a give A

If possible, let g,(x) and g,(x) be two solutions of equation (17). Then we have
+1j (x.1) g, (¢ ...(40)

and +1j x,1) gt ..(41)

Substracting (41) from (40) and setting g, (x)— g, (x) = ¢(x), we have

}*J‘ gz( )]ld
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or  ¢(x)=2] K(x.)p(c)ar .(42)

which is a homogeneous integral equation.

Applying the Schwarz inequality to equation (42), we have

Ko ]

Intergrating (43) w.r.t., x , we obtain
b 5 (b pb
J,lo N

or j:\qs(x)\zdx <[4’ j:\qs(x)\zdx [by (36)]

o(¢) ar (43)

K(x,t)

lp(x) <2

(x)‘zdx < |ﬂ. K(x,t) *dx dt Jj ¢(x)‘2dx

or (1—|A|2Bz) J:‘(/)(x)‘zdxﬁ 0 (44

In view of'the inequality (39), A|B <1,wehave

¢(x)=0 or g (x)-g,(x)=0or g (x)=g,(x)
Thus (27) has a unique solution.

Example 1 : Find the resolvent kernels of the following kernels
0] K(x,t)=(1+x)(1-1), a=-1, b=0
()  K(x,f)=e™, a=0, b=1
Solution : (i) By definition of iterated kernels, we have
K, (x.0)= K (x,0) = (1+x)(1-1)
and  K,(x.0)= [ K(x.2)K, \(2.0)dz, n=23,.. .(45)

Putting ; =2 in(45), we have

K (1) = [ K(x.2)K(z.t)dz= [ (14 x)(1-2) (1+2)(1-1)dz

or Kz(x,t):%(l+x)(l—t)

Now putting 5 = 3 in(45), we have

Ky(xt)= [ K(x.2)Ky(z.t)dz= [ (l+x)(l—z)%(l+z)(l—t) dz

or K3(x,t)=%K2(x,t)=[§)2(l+x)(l—t)
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an so on, Thus in general, we have

K, (x,t)= @)ml(l +x)(1-1)

Now, the required resolvent kernel is given by

R(v.:2) =3 27K, () = 3 2 @(l ex)(1=1)

m=1 m=1

~090-0 322

m=1

= 2\ 24 (22Y (2/1)3
— =l4+—+|—| +| — | +...
But 2[3) 3 [3) 3

m=1

27
which is an infinite geometric series with common ratio (T)

i(%)l B 1—(211/3) B 3—321

m=1

24 3

A
provided that |~ <1 or |4 <E

Using (47) and (48), (46) reduces to

3(1+x)(1-1)

R(x,t;4) = Y

3
where | 4] < 5

(i) By definition of'iterated kernels, we have
K (x,t)=K(x,t)=¢e""

Putting 5 =2 in(45), we have

K, (x,t) = J.Ol K(x,z) K, (z,t)dz

1 |
— ex+t J- eZz dZ — ex+t [ e J
0 2

Putting 5 = 3 in(45), we have

Ky(x.0)= [ K(x.2)K, (z.0)dz

x+t[ez _l]
=e —_—
2

1 21 ?
e —_
2z X+t
J. e“dz=e [—] and so on.

0 2
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Thus, in general, we have

N ez_l m—1
K, (x,t)=e [TJ , m=123,....

Now, the required resolvent kernel is given by

© © 2 _ m—1
R(x,1; l) = Z 1K (x,t) = Z Al [6—1]

m=1 m=1 2

= | A(e* -1 i
=e™y [%] (48)

m=1

The involved series is an infinite geometric series with common ratio {A (e2 - 1)} / 2

© ﬂ.(ez—l) " )
Z[ 2 ] =1—[ﬂ.(ei—l)/2]=2—ﬂ.(e2—1) .(49)

2

e’ —1

provided that <1or A<

ﬂ,(e2 —1)
2

Using (49), (48) reduces to

X+t

R(x,t;4)=

2-A(e-1) where |4]< pEa—

Example 2 : Solve the following integral equation by the method of successive approximations :

g(x)z(e" —le+l)+lj0‘g(t)dt

2 2) 2
11 1gp
solution : Given g(x)z(e —5€+5)+5Lg(f)df ...(50)
Here /’()C)Zex—lﬁ‘l P K(x,1) =1, we have
2 2’ 2’ b 9

K, (x,t) = K(x,t) =1
Putting ; = 2 in(45), we have

K, (x,t) = J‘OIK(x,z) K, (z,t)dz = I;dz =1
Next, putting 5 = 3 in(45), we have
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K, (x, t) = J-Ol K(x,z) K, (z,t)dz = I;dz =1

and so on.

Thus in general, we have
K, (x,0)=1, m=123,.......

Now, the resolvent kernel R (x,#;1) is given by

’sid)= 32 -3 (1]

m=1 m=1

. R(x,1;4)=2

or g(x)=e"

Example 3 : Using iterative method, solve
1
g(x)=f(x)+2 J;) e g(t)dt
Solution : Given g(x) =f (x) + A J.(: e’ g(t)dt

Here K(x,t)=e""
Proceeding as in Example 1 (ii), we find that
K, (x’t) = K(x’t) =e'' = K, (x’t) = K3(x’t) =

Thus, in general, we have
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K, (x,t)=e"", m=123,....

Now the resolvent kernel R(x,7; 4) is given by

R(x.1:2) =Y 2K (r,0) = Y 2o

m=1 m=1

1
R(x,t;A)=e"" 1 » Provided that A<1

Thus, the required solution is given by

g(x)=/(x)+A[ R(x.1:2) £ (£)dt

p
e f()dr,  providedthat |2|<1

o eW=ret ]

Example 4 : Solve by the method of successive approximation

g(x)z%e"—%xe"—%+% Oltg(t)dt
3 1 1 1
Solution : Given g(X) = Ee“‘ —Exe“‘ _E+E Oltg(t)dt
3 1 1 1
Here f(x)zae"—axe"—a, AZE, K(x,t)zt

Iterated kernels K, (x,7) are given by

K (x,1)=K(x,t)=t

K, (x,1) :J:K(x,z) K (z,t) dz= letdz :%t’

0

and so on.

Thus in general, we have

1 m—1
Km(x,t)zbj t

Now, the resolvent kernel R (x,#;1) is given by
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i(l)ml :t{l+%+(4)2+ }
1 4¢
) 3

Thus, the required solution of the integral equation is given by

1
g(x)=f(x)+2 [ R(x,4) f(¢)dt
=(é e"—lxe"—l)+%Jl(éte’—ltze’—lt) dt
2 2 2) 3982 2 2

2
:(2 e’ 1 xe* —l)+% [z(te’ —e’)—%(t2 e’ —2te +2e’)—%}

1

2 2 2) 3|2 o
3 . 1 .1 e
or g(x)= 5 e ~3 xe —§€+1 (on simplification)

Example 5 : By iterative method, solve

g(x)=1+2 [ sin(x+7) g(r)dt

Solution : Given g(x)=1+1 J: sin(x+1¢) g(¢)dt
Here f(x)=1, K(x,)=sin(x+?)
Now K (x,t)=K(x,t)=sin(x+7),

s

K, (x,0)= [T K (x,2) K, (2,t)dz = [ "sin(x+2)sin(z +1)dz

J cos(x—1)— cos(2z+x+t)]]d

l\)|>—d

T

{zcos x— t)—%s1n(22+x+t)}

l\)|>—d

0

or K, (x,t)= %COS(X — 1) (on simplification)
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Similarly, we have
T T, T
K3(x,t) = J K(x,z) K, (z,t)dz = JO Sln(x + Z).ECOS(Z - t)dz

0

~ [ [sin(2s+ v—t)+sinfx+)]
il

J
)

4>|a

T

22+x—t)+zs1n(x+t)}

.hléx
l\)|>—d

0

or s1n X +l‘ , (on simplification),

Nla

T
=| — COS)C t
(2

o Ki(x0)= @ sin(x+1)

Thus, we find that all odd iterated kernels invlove sin(x + t) and all even iterated kernels involve

cos(x —1).

Now, the resolvent kernel R (x,#;1) is given by

R(x.t:2)= Y 2K, (x,1)

m=1
=K (x,0)+ A K, (x,t) + K, (x, 1) + LK, (x,1)+....
= K, (x,0)+ A K;(x,0) + A K(x,1)

) [Kz (x,0)+ 2K, (x,2)+ A4K5(x,t)+...]]

= sin(x + t){l + ();—”)2 + (};—”)4 +ee }
+%c0s(x— 1)1+ (%)2 - (%)2 .....

- |:sin(x+ 1) +%c0s(x— t)} 1+();—”)2 +(%)4+ .....
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~ 2sin(x+¢)+ A wcos(x —1) 1
- : _ .
1_(iﬂ)

2

provided that

ﬂ,ﬂ
2

<1 or |ﬂ¢|<£
T

or R(x,t;2) = [2 sin(x +1)+ lﬂcos(x—t)]]

4-

Hence the solution of the given integral equation is given by

mj X,6A) f
21 ™ .
= 1+4——W J; {2s1n(x+t)+l7rcos(x—t)}dt
= l+$ [—2 cos(x+t)—l7rsin(x—t)]];r
47

or g(x)=1+ [2cosx+Amsinx] where |1|<2/7.

4-Xn
Example 6 : Find the resolvent kernel of the following integral equation

g(x)=1+4 [ (1-3x1)g(t)ds

For what value of ) , the solution does not exist. Also find the solution of the above integral
equation.

Solution : Given g(x) =1+ J;)l (1—3xt) g(t)dt

Here f(x)=1, K(x,t)=1-3xt, A =1 (say)
Now, we have

Kl(x,t) =K(x,t)= 1-3xt,

Ky(x1) = [ K(x.2) K, (1) dz= [ (1-3x2) (1-321) dz
= J:[1—3z(x+t)+9xtzz]l dz
or K, (x,t)=1- %(x +1)+ 3xt , (on simplification),

Ky(x.0)= [ K(x.2) K, (z.1) dz
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1 3
=L@—ﬁ4%—5@+0+&%dz
:jl (l—ét —3z(l—t+x—§xt +9x22(1—t dz
0 2 2 2 2
3 3(1 3 1
=]l—-——¢t——|——t+x——xt |+3x| ——t¢
2 2\2 2 2

K,(x,1)= %(l—?axt) = %Kl(x,t) ,

1

K4(x,t) :I

0

K (x,z) K, (z, t)dz

lj 1- 3xz l 3ztd

1
=2 [ —=(x+1t +3xt} (as before)

1
or K4(X,l‘)zzK2(X,t)

:%E@—&@P—§@+Q+&ﬁ¢

11
—.— (1-3xt
17 (1-3x ) (as before)

K.(x.1) = G) (1-3v1) = G) K, (x.1)

By symmetry, we may write

K,(x,1) = G) K(n)), Ko G) K, (x.1)

and so on.

Hence the resolvent kernel is given by
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['e]

R(x,t;4)= Z 2K, (x,1)
m=1

= K (x,0)+ A K, (x,t)+ LKy (x,1) + XK, (x,1)+.....

= K, (x,0)+ XK, (x,0) + L K(x,0)+.....

2 4

=Kl(x,t)+%K1(x,t)+j—2Kl(x,t)+ .....

2 4

+ﬂ.[Kz(x,t)wL%Kz(x,t)+j—2K2(x,t)+ ..... }

=Kl(x,t)ll+%2+[§J2+...]+1K2(x,t)[1+%2+[%2J2+...]

=[ K, (x,1)+ /IKz(x,t)]ll +%2 +[%2J2+....]

:{(1_3Xt)+A{l_%(x+t)+3ﬂﬂm’f <4or|A|<2

or R(x,t;ﬂ.):4 412 [1+A—%xﬂ.—3t(x+%—xlﬂ, where [4] <2

Hence the solution of the integral equation is given as

g(x) =/ (x)+ 2] R(x.:)/ (t)ar

:l+ﬂzjll+l—ﬂx—3t(x+ll—xl)dt
4— A7 Y0 2 2

42 4+ A-6xA

4 )2 4 » (on simplification)

=1+

_4+22(2-3xA)
4=

A|<2

b

The solution exists only when |A| <2.
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10.7 Solution of Volterra Intgral Equation of the Second Kind by Successive
Approximations. It erative Method, Neumann Series

Consider Volterra integral equation of the second kind

x)+ A K(x.0)g(t)de (51
As a zero order approximation to the required solution g (x) letus take g, (x)= f(x)

Further, if g, (x) and g, (x) are the n" and (n—1)™ order approximation respectively, these are

connected by

+1j x,0)g, ,(¢)dt (52)

Iterated kernels K (x,?) are given by

Kl(x,t)zK(x,t) and Kn(x,t):r

t

K(x,2)K, \(z,t)dz (n=23....)

Puitting 5 = 1, in(52), the first order approximation g, (x) is given by

or g (x)=f(x) + lJm K(x, t)f(t)dt ..(53)

a

Next putting n= 2 in (52), the second order approximation g,(x) in given by

or g, (x) :f(x) + ﬂ.J‘X K(x,z)g1 (z)dz ...(54)

Substituting g,(z) from (53)in (54), we get

0)+af K(x,z)[ £E)+ A K(zr) f(t)dt} dz

or ) 2] Kx2)f @+ 2 [ Kwz) [ K f ()| s5)

Now consider the double integral on the R.H.S. of (53). The limits of integration are given by
t=a,t=z-z=a,t=z,z=a, z= x - Clearly the region of integration is the triangle ABC as shown
in the Figure. Obviously, strips have been taken parallel to t—axis in this double integral (strip PQ). When
we wish to change the order ofintegration in the above mentioned double integral, we shall take strips
parallel to z-axis (strip RS). Then for the same region (triangle ABC), the limits of integration are given by

Zz=t,z=Xst=a,1t=Xx
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z A

Figrue 10.1

Thus, we have

L;K(’C’Z)U,Za K(z0)/(1 dt}dz [ st U K(x, )K(Zaf)dZ}dt .(56)

Using (56) in (55), we obtain

+ AI dz + Azj U , K(x,z)K(z,t)dz} dt
or )+ A[ K(x,0)f ()de+ 2 [ £ (1)K, (x,0)f (£)dt
or )+A[ K, e+ 2 [ K, (x,0) £ (1)t

o &)=/ X2 K (w0 (0

m=1

Proceeding likewise, we easily obtain by mathematical induction the n” approximate solution
g (x) of (59) as

LXK () £ (o)

m=1

Taking the limit as n—> 00, we obtain the so called Neumann series

g(x) = Limg, (x) = /(x)+ 24" [ K, (x.0) /(1) di

n—»
m=1

Inorder to determine the resolvent kernel (or reciprocal kernel) R(x,#;4) or I (x,#; 1) interms

ofiterated kernels X, (x,¢), changing the order of integration and summation, we find that
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fE)+A[ [ > K, }f(t) dt

m=1

Comparing (57) with g (x )+ ﬂ.j x,t;4) f(t) dt , we obtiain,

R(x.t:2)= Y 2K, (x,1)

m=1

Example 7 : Find the resolvent kernel of the Volterra integral equation with the kernel

(2+cosx)
(2+cost)

K(x,t)=
Solution : Iterated kernels K, (x,7) are given by
K, (x,t) = K(x,t)

X

and K, (x,1)= _L K(x,2)K, (z,t)dz, n=23,.....
Giventhat K(x,r)=K, (x,¢)= 2+cosx
2 +cost

Also, we have

. x2+cosx 2+cosz
K = K ’ K ’t d = ’ d
2(x.1) .[ (x2) Ki(z.1)dz -[ 2+cosz 2+cost

24+Ccosx x 2+cosx
= J dZ:
2 +cost

(x=1)

2 +cost

Similarly

K3(x,t) :I

t

X

K(x,z) K, (z, t) dz

:Jx2+cosx 2+c0sz(

. Z—t)dz
t 24c0sz 2+cost

2 +cost 7t 2 +cost

2 X
=2+cosx _[X(z—t) d2=2+cosx[(z—2t) ]

_ 2+cosx (x—1)°
~ 2+4cost 2!

and so on.

Thus is general we have
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n—1

K, )_2+cosx (x—1)
" 24cost (n—1)

n=123,...
Now, the required resolvent kernel is given by

R(x.t:2)= Y 1K,

m=1

=K (x,0)+ A K, (x,t) + 2* K;(x,0)+......

2!

2
_ 2+cosx | 2+cosx l(x—t)+2+cosx A(x—1) .\
2+cost  2+cost 1! 2 +cost

2
:2+cosx+ +l(x—t)+ﬂ;l(x—t)]
2 +cost I! 2! 3!

2+4COSX  j(x)
=—¢
2 +cost

Example 8 : By means ofresolvent kernel, find the solution of

x2+COoSx (t) dr

= e g1 —+
g(x) ¢ ST, 2 +cost

Solution : Given that

x2+COoSx (t) dr

= * g1 —+
g(x) ¢ ST, 2 +cost

Comparing with

x)+ﬂ. J:K x,t

we have
2 +cosx
= * Q1 — K X,f -
F(s)=esing A=, Klra) =300
Proceed as in solved Ex. 7 and show that
R(x t%): 2+cosx o [.%_ l]
o 2 +cost T
Hence the required solution is given by
X)+ 2 j X, GA) f
=e sinx+ ¥2+cosx e "e'sint dt
0 2+c0st
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x —sint

= e"sinx—(2+cosx) e"J
02+ cost

=e'sinx— e"(2+ cosx)[log 2+ cost)];

. 2
=e'sinx— e*(2+ cosx)log( - COSX)

3
— X b X 2 1
g(x)=e"sinx+ e*(2+cosx) Og(2+cosx)

Example 9 : With the aid of the resolvent kernel, find the solution of'the integral equation

g(x)= e" 42 J: exz”zg(t) dt

Solution : Given that

Thus we have

2

f(x):x2+2x, A=2, K(x’t):extt

Iterated kernels K, (x,7) are given by

2

Kl(x,t) = K(x,t) et

X

and K, (x,t) = I

t

K (x,z)K,(z,t)dz = r e e

t
2 2 (X 2 2
=e* ’J;dz:ex ’(x—t)

X X

K (x,t)= '[ e (z—t)dz

t

K(x,z)KZ(z,t)dZ =J.

t

and so on.

Thus in general, we have

o (x . t)m—l
Ki(x,t)ze ,m=123,........
1)!

1



Now the resolvent kernel is given by

R(x,t;l) Zl’" ! (x t)

m=1

= K (x,0)+ A K, (x,t) + LK (x,1)+.....

R (x,t;l) =t ) (wA=2)

Hence the required solution is given by

X)+ 2 j x,6A)f
=f(x)+2 J-:exz”2 &2 o 2 gy
_ X +2x x2a2x [*
=e +2e J;) dt
g(x)=e" +2"(l+ 2x)

Example 10 : Solve g(x)=cosx—x—2+ J: (t—x)g(t)dt

Solution : Given that

g(x)=cosx—x—2+] (t—x)g()dr
Thus, we have

f(x)=cosx—x-2, 2=1, K(x,t)=t-x
Iterated kernels K, (x,7) are given by

K (x,1)=K(x,t)=t—x

X

and K, (x,t) = '[

t

K(x,z)Kmfl(z,t)dZ, m=2,3,....

Now K, (x,t)= Ix

t

K(x,2)K (z,t)dz = [ (z=x)(t—2)dz
304



=) |
3 (integrating by parts)

and K, (x,7)= J;XK(x,z) K,(z,t) dz = tx (z-x) {_ ﬂ} dz

(integrating by parts)
57]F 5
__ L (t-z)" dz= L (=2 | _(t=x)
43! 43! (-5 t 5!
and so on.
Thus in general, we have
. t_x)2m—l
K, (v)= oy
W (x:1)= (1) Gt > m=123.
Now, the required resolvent kernel is given by
R(x’t;l):ZAm*le(x,t):ZKm(x,t) (as 2«:1)

m=1 m=1

=K, (x,0)+ K, (x,1)+ K (x,0)+.....

(t—x) _(z‘—x)3 +(t—x)5

I! 3! S!

R(x,t;4) =sin(s —x)

Hence the required solution is given by

mj (x.5; 1) f
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=cosx—x—2+ '[:sin(t—x)(cost—t—2)dt
=cosx—x—2+ I:sin(t—x)costdt—I:tsin(t—x) dt—2 I:sin(t—x)dt
:cosx—x—2+% J:[sin(%—x)—sinx}]dt

— [ tsin(t—x) dt =2 [ sin(t - x)dt

1 [_ cos(2¢ - x) ’

=cosx—x =2+ 5 —tsinxl}—[—tcos(f—x)];

+J: [l . {— cos(t — x)} dl‘]l - 2[— cos(t — x)]];

l{ COSX ) cosx}
=CoSxX—Xx—2+—|— —xsinx+
2 2 2
- {—x+[sin(z‘ —x)]];}+ 2(1-cosx)
= cosx—x—Z—%xsinx+x—sinx+2—2cosx

. 1 .
g(x)= ~cosx—sinx —— xsinx

Example 11 : By means ofresolvent kernel, find the solution of

1+ %
g(x)=1+x"+ 0 Ti g g(t) dt
1+ %
Solution : Given g(x)=1+x"+ e g(¢) dt
Now, we have
f(x)=1+x*, A=1, K(x,t)=1+xz2
1+¢

Iterated kernels K, (x,7) are given by

1+ x°
1+

Kl(x,t) = K(x,t) =
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Kz(x,t)—1+t (x—t)

1+x* x—t)

Kolet) = ( 2')
and so on

Thus is general, we have

2 (x—t)"

. ) =1,2,3,....
v (mny "

1

Ki(x,t)z

Now, the resolvent kernel R (x,#;1) is given by

['e]

R(x.:0)= 3 27K, (x.0) = 3 K, (5.1 (a=1)

m=1 m=1

= K, (x,1) + K, (x,1)+....
_1+x2+1+x2 (x—t)+1+x2 (x—z‘)2+
1+ 144 1+¢2° 21 7
2 _ Y 2
:Hx2 1+()C l‘)+()C ) +o =1+x2 e’
1+¢ 1! 21 1+¢

Finally, the required solution of our given integral equation is given by
)+ A [ R(x8:2) f
=1+x° +ex(1+x2) J: e'dt=1+x’ +ex(1+x2)[—efl]lz
g(x)=e*(1+x?)
Example 12 : Using the method of successive approximation, solve the integral equation

x)= 1+I:(x—t)g(t) dt, taking g,(x)=0

Solution : Given that

x)=1+ [ (x—1)g(t) dt
and  g,(x)=0

Thus, wehave f(x)=1, A=1, K(x,t)=x—1
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The n" order approximation g, (x) is given by
f(x)+2 [ K(x.1)g, (t) dt
or () =1+ K(x.0)g, (t) dt
Now, g (x)=1+] (x—#)g,() dr=1
g(x)=1

g(x) =1+ (x—1) g (t) dt =1+ [ (x—1)ar

2 X
:1+[xt—t—]
2 0

wi =1 fen =1+ o1+

x 1 £ A S
=1+ [ | x+oxr—1——|dt = l+xt+ - oL
0 2 2 6

2

and so on.

Thus in general, we have

g(x)=coshx

Example 13: Solve

g(x)=x.2"- '[ 2" g(t) dt, g,(x)=x.2"
308
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by using the method of successive approximations

Solution : On comparing the given integral equation with the standard Volterra integral equation of
second kind, we have

f(x)=x2", K(x,t)=2"", A=-1

Now, g (x)=f(x)+2 [ K(x.1)g(t) dt

2
g (x)=x.2"—| 2% t—%J 2" dt

2 3
X X
=[x——+— 2

Self-Learning Exercise
1. Define following :
)] Iterated kernel
(i) Resolvent kernel
(ii1) Reciprocal function
(iv)  Neumann series
2. State whether the following statements are true or false :

(1) If the sum of infinite series occuring in the formula of resolvent kernel cannot be
determined, then in such cases, we may use the method of successive approximation.
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(i) The series g ZJ K x t dt is knwon as Neumann series.

m=1

(ii1) The ,,* approximate solution g, (x) of Fredholm integral equation of second kind

+I t) dt is obtained by
+Z":/1m [ K, (e0) £ (1) de
m=1 “

(iv) If K (x, t) isreal and continuous in R, then areciprocal function K (x, t) provided that

M(b—a)>1, where

(v)  Afunction k(x,¢) reciprocalto K (x,¢) will exist, provided the series

-k (x, t) =K, (x, t) +K, (x, t)+ ..... +K, (x, t)+. .
converges uniformely.

(vi) The iterated kernel of the function K (x,¢) =" cost, a =0, b = 7 doesnot exist.

10.8 Summary

In this unit, we have seen that the solution of integral equation of the second kind can be obtained
with the aid of resolvent kernel. Ifthe sum of infinite series occuring in the formula of resolvent kernel

cannot be determined, then in such cases, we use to method of successive approximation.

10.9 Answers to Self-Learning Exercise

(1) See Text.

) (1) True (i) False (i) True (iv) False (v) True (vi) False

10.10 Exercise 10

1. Find the iterated kernel K|, (x,) of the following kernels for specified values of ¢ and b
@) K(x,t)=x—t;a=0, p=1

(i  K(xf)=xe' ;4=0,b=1

. 1" 1Y (x4t 1
[Ans. () K,, (x,t)= [—E) (x—1), K, (x,1) = [—E) (T—g—xt) m=1273,...
(ii) K, (x,t)=xe',n=123,........ ]
2. Construct the resolvent kernels for the following kernels for specified values of ¢ and b :

@ K(x,t)=xt+x"t> ; g=—1,h=1
(ii) K(x,t)=sinxcost ; g =0, b=1r/2
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) R(xt'ﬂ,)— 3xt +5x2t2.
[Ans. (i) LA = T s <32

2sinxcost

G  R(x,5;4)= o) A< 2]

Define resolvent kernel and find the resolvent kernel of the kernel K (x, t) =1-3x¢ in(0, 1).

4 3 A

[Ans. R(x,t;4) = e [1+A—§xl—3t(x +E—xlﬂ ,1A<2]

Solve the following Fredholm integral equation of second kind
(x)= siny— 2+~ J”/z () dt
g\x 4 tg
) T

[ Ans. g(x) = smx—z }
Find the resolvent kernel of the following Volterra kernels
() K(x,t)=1 (i  K(x1)=

I+x

i) K (x,1)=3"" ) K(xr)=
(i) K(x.1) ®  K(no)=_-
[Ans. (i) R(x, t i) = ") (1) (x t; i) ~1)(1+4)

1+ x? e,l(x,[)]

(i) R(x,;4)=3""" (i) R(x,z‘;/l)=l 2
+

Solve the following integral equation, with the aid of resolvent kernels

) g(x)=1+j;‘(t—x)g(t)dt @)  g(x)=1+4] e g(r)dt

(i) (x)=¢" +'[ f)dt (v) g(x)=1-2x- J: e~ g(¢) dt
[Ans. (i) g(x)=cosx i  gx)= 3_i 7 (3 + el )
(1it) g(x) =t (v) g(x) et 2x]

Using the method of successive approximation, solve the integral equation

=x—[ (x=1)g(t) dt, g(x)=0

[Ans. g(x)=sinx]

Using the method of'the successive approximation, solve the integral equation
—1+'[ dt taking g,(x)=0

[Ans. g(x)=e"]
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Unit- 11
Integral Equations with Symmetric Kernels

Structure of the Unit

11.0  Objective

11.1  Introduction

11.2  General Definitions and Inequalities

11.3  Complex Hilbert Space

11.4  Orthonormal System of Functions

11.5  Gram-Schmidt Method for Construction of Set of Orthonormal Functions

11.6  Other Useful Definitions

11.7  Symmetric Kernels

11.8  Fundamental Properties of Eigenvalues and Eigenfunctions for Symmetric Kernels
11.9  Expansion of Eigenfunctions and Bilinear Form

11.10 Hilbert-Schmidt Theorem

I1.11  Schmidt’s Solution of Non-homogeneous Fredholm Integral Equation of Second Kind
11.12  Summary

11.13  Answers to Self-Learning Exercise

11.14 Exercise-11

11.0 Objective

We have already discussed eigenvalues and eigenfunctions for integral equations in Unit 9. We

have established that the eigenvalues of an integral equation are the zeros of certain determinant. In this

process we have seen that there are many kernels for which there are no eigenvalues. However, in this unit

we shall prove that for a symmetric kernel that is not identically zero, at least one eigenvalue will always

exist. This is an important characteristic of symmetric kernels.

11.1

Introduction

The part of Fredholm theory which involves integral operators generated by real symmetric

kernels is referred to as the Hilbert-Schmidt theory of integral equation. Owing to the richness of its result,

the theory has attracted extensive attention of those as well as those interested in practical applications of

integral equations as well as those interested in abstract theory, specially functional analysis. In this unit, we

are going to focus our attention to those aspects of the theory which constitute the interface between

differential equation and integral equations.
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11.2 General Definitions and Inequlities

(a) Regularity Conditions
Definition :

A function f (x) is said to be square integrable if

)

A square integrable function f(x) iscalled an L, -function i.e. a function f (x) issaidtobe L, -

f(x)‘zdx <

function if the following conditions are satisfied.
b b
o [

K (x,1)

drdt < oo YV x e[a,b] , Vte[a,b]

K (x,1)

2 dx < o0 ; Vxe[a,b]

U

Ydx <o Vie|a,b]

K (x,1)

b
i) ]
(b)  The Inner or Scalar Product of Two Functions :

The inner or scalar product of two complex L, -functions g and j ofarealvariable x, a < x <b

is denoted by (g,4). It is defined as

(g.h) = g(x) (x)dx

where % (x) is the complex conjugate of A(x).

(©) Orthogonal Functions :

Two functions are called orthogonal if thier inner product is zero, that is, g and ; are
orthogonal if

(g.h) =0 if [ g(x)h (x)dx =0
d Norm of a Complex Function :

The norm of a complex function g(x) is defined as

e ()] = [ [ g(x) g(x)dx}% _ [ [

A function g(x) is said to be normalized if Hg (x)” = 1. It follows that a nonnull function (whose

2

g (x)‘zdx}

norm is not zero) can always be normalized by dividing it by its norm.
(e) Inequalitis

(i) Schwarz Inequality : If g(x) and /(x) are L, -functions, then ‘(g,h)‘ < H g” Hh” .
(ii) Minkowski Inequality : If g(x) and /(x) are L, -functions, then H g+h” < H g” +Hh”

(iii) Bessel’s Inequality : If f(x) is realand continuous and g, (m=12,......n) arereal,
continuous and consisting of a normalized orthogonal set, then Bessel’s inquality states that
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S [ () (o) e < [ (o) e

m=1

11.3 Complex Hilbert Space

Definition : A linear space of infinite dimension with inner product (or scalar product) (x, y) , which is

a complex number is called a complex Hilbert space, if it satisfies the following three axions :

J

(1 (x,x) >0 for x 20

(ii) (ax, +pBx,,y)=a(x,,y)+B(x,,y) where ¢ and 8 are arbitary complex numbers

@ (xy) =),
where the bar denotes the complex conjugate.

Let H be the set of complex valued functions g(x) defined in the interval (a,b) such that

2
g(x)‘ dx <o, then  is linear and complex Hilbert space L, (a,b) or L,.

The norm of function generates the natural metric

d(f. g)=|f-g|=(f-gr-2)"

The concept of completeness is a fundamental concept in the theory of Hilbert space. A metric

space is called complete, if every Cauchy sequence of functions in a metric space is convergent. A Hilbert

space is an inner product linear space that is complete in its natural metric. The completeness of L, -

spaces plays an important role in the theory of linear operators such as the Fredholm operater K, defined

as

b
Kg=[ K(x,t)g(t) dt (1)
The operator adjoint to g is
— b —
Kh={[ K(t,x)h(t) dt -(2)
For the operators (1) and (2), we have the following important relation :

(Kg.h)=(g.Kh), ..(3)

which can be easily proved as follows :

LHS of(3) =(K g,h) = jb h (x)UbK(x,t) g(t)dt}dx

a a

(By detinition of inner product of two functions)
b b —
= L g (f )[L K (x )l ) h (x ) dx } dt (changing the order of integration)
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-[' g(x)[ LbK(t,x)}T(t)dt}dx

= [ 5o [ K0 e 4

=(2.Kn)
Ifthe kernel is symmetric, then (4) becomes
(Kg,h)=(g,Kh) ..(5)

i.e. a symmetric operator is selfaddiont.

Further, we know that permutation of factors in a scalar product is equivalent to taking the
complex conjugate i.e.

(g.Kg)=(Kz.g)

Combining this with (5), we find that, for a symmetric kernel, the inner product (K g, g) is always
real. The converse of this is also true.

11.4 Orthogonal System of Functions

System of orthogonal functions play an important role in the theory of integral equations and their
applications.

Definition : A finite or an infinite set {g, } is said to be an orthogonal set if
b
(gi,gj) =0 or L gi(x)gj(x)dx =0,i#j
Ifnon ofthe elements of'this set is zero vector, then it is called a proper orthogonal set.

Aset {g,} is orthonormal if

0, i+
(glagj): ngi(x)gj(x)dx: {1 llj]]

11.5 Gram-Schmidt Method for Construction of Set of Orthonormal
Functions

Let {h1 My N P } is a finite or an infinite independent set of functions. Then we can

construct an orthonormal set {g,,g,,...,g, ...} by the well-known Gram-Schmidt procedure as fol-

lows :

-
Let 1 th”
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To obtain g, , we define
Wz(x) = hZ(x)_(hZ’gl)gl'

The function w, is clearly orthogonal to g,. Hence g, is obtained by setting g, = w, / szﬂ

Continuing this process, we have

k-1

w () = by (x) = Z(hk’gi)gj where g, = wk/Hwk”

i=1

Now, if we are given a set of orthogonal functions, we can convert it into an orthogonal set simply
by dividing each function by its norm.

Starting from an arbitrary orthonormal system, it is possible to construct the theory of Fourier

series. Suppose we want to find the best approximation of an arbitrary function 4 (x) interms ofa linear
combination of an orthonormal set (g,, g, ,...... g, ) . The best approximation, means that to choose the
coefficient «,(i = 1,2,......n) in such a manner that

2
Hh_;aigi = Hh”2 +;‘(h_gi)_ai‘2 _;‘(hagi)‘z ...(6)

2

Obviously isminimumwhen o, = (h,g,)=c¢, (say)

i=1

‘h - iaigi

The number «, are called the Fourier coefficients ofthe function /(x) relative to the orthonormal

system, {g, }. Inthat case, the relation (6) reduces to

2

Since the left side in non-negative, we have

n
2fef <l
i=1

which for the infinite set {g, } leads to the Bessel inequality

2 el <[l
i=1
Suppose we are given an infinite orthonormal system { g (x)} in L, and a sequence of constants
N I PET . .
{a,} , then the convergence of the series Z ‘0‘ K ‘ is evidently a necessary condition for the existence of an
k=1

L, -function f(x) where Fourier coefficients with respect to the system g, and «,. Note that this

condition is also sufficient by Riesz-Fisher theorem.
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11.6 Other Useful Definitions

Definition 1 :

Given a sequence of functions < f,(x)> anda function f'(x) in L, - space defined on an interval

1 , thenthe sequence < f, > converges uniformly on j if

Sup fm(x)—fn(x)‘ — 0 as Mn—>®

xel

Definition 2 :

The sequence < f,,(x) > converges uniformly to f(x) if

Sup ‘f(x)—fn(x)‘—>0 as n— oo

xel

Definition 3 :

The sequence < f,(x)> converges in the mean on [a,b] if

)

Also, it converges inmeanto f(x) if

fm(x)—fn(x)‘zdx—>0 as m,n— 0

F(x) = fo(x) dx=0

. b
11mj
n—oova

Definition 4 :

A series of function S =" f,(x), V x eI converges uniformly (or in mean) to F(x), if the

i=1

sequence ofpartial sums
n+p
8(9-3 10
converges uniformly (or in the mean) to F'(x).

Definition 5 :

The series S, defined above is said to be absolutely convergent ifthe series

Z ‘f;’ (x )‘ is pointwise convergent.
i=1

Remark :

On a finite closed domain, uniform convergence implies convergence in the mean. The

converse is not true. For example, as the open interval (0, 1) the sequence < ¢™™ > convergence in the
mean but not uniformly.
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11.7 Symmetric Kernels

Definition :

Akernel K (x, t) is called symmetric (or complex symmetric or Hermitian) if it coincides with its

own conjugatei.e.if K (x,z)= K (¢,x), where the bar denotes the complex conjugate. In the case of real

kernel, the symmetry reduces to the equality
K(x,t) = K(t,x)
An integral equation with a symmetric kernel is called a symmetric equation.

Theorem 1 : If a kernel is symmeteric, then all its iterated kernels are also symmetric.
Proof: Letkernel K (x, t) be symmetric. Then by definition
K(x,t)=K(t,x) (7
where the bar denotes the complex conjugate.

The iterated kernels K, (x,¢), n=12.3,.... are defined as

Kl(x,t) = K(x,t) -.(8)
K, (x,t)= I:K(x,Z) K, (z0)dz, n=23,... .(9)
or  K,(x1)= _[b K, (x.2)K(z,t)dz,  n=23,.... ..(10)

We shall use mathematical induction to prove the required result.

Putting ; =2 in(9), we obtain

K, (x,t) = I:K(x,z) K, (z,t)dz = I:K(x,z)K(z,t)dz [by (8)]

= [ K(zx)K(1.2)dz [by (9)]

_ j: K (t.2)K, (z.x)dz [by(8)]

(1,%) [by (9)]

showing that K, (x, t) is symmetric by definition. Hence the required result is true for n =1 and
n=2.
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Let the result be true for n =m.

ie K, (x0)=K,(t,x)

We shall now prove that the result is also true for =+ 1.
ie. K, (x1)=K,,(tx)

Putting 5 = 5+ 1 in(9), we have

K

m+1

(x,1)= Jj K(x,z)K,(z,t)dz
= J‘:I?(z,x) K, (t,z)dz

_ f’ K, (1,2)K(z,x)dz =K, (t,%)

showing that K, (x,¢) is symmetric. Hence by mathematical induction X, (x,¢) is symmetric for

11.8 Fundamental Properties of Eigenvalues and Eigenfunctions for
Symmetric Kernels

Consider the symmetric integral equation

A K(x) g(t)di=f(x) or AKg=[: K(x.t)=K(1.x) (A)

Now we establish certain properties for (A) contained in following theorems.

Theorem 2 : The eigenvalues of a symmetric kernel are real.

Proof: Let 4 beaneigenvalue ofthe kernel K (x, t) and corresponding eigenfunction is g (x) . Then
by definition of the eigenfunction, we have

g(x)=4 [ K(x.)g(r) di (1)

Multiplying (11) by g (x) and integrating with respect to x in (a,b), we obtain

J ez x) v =2 [ g ()] [ K (vr) g () di ax

or Hg(x)‘ ‘2 = A(Kg,g)
e[
or A= (Kg.g) .(12)

Since both numerator and denominator of RHS of (12) are real, therefore ) is also real.
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Remark : For another proofofthis theorem, refer Theorem of Art 8.13.

Theorem 11.8.2 : The eigenfunctions of a symmetric kernel corresponding to distinct
eigenvalues are orthogonal.

or

If K (x,t) is symmetric and g,(x), g,(x) are fundamental function of K (x,¢) for A,

and A, respectively (1, # 4,), then g,(x) and g,(x) are orthogonal on the interval (a,b)

i.e. ngl (x)g,(x)dx=0

Remark : For proofofthe Theorem, refer Theorem 2 of Art. 8.14.

11.9 Expansion of Eigenfunctions and Bilinear Form

Let K (x, t) be a nonnull, symmetric kernel which has a finite or an infinite number of eigenvalues

(always real and non zero). Consider these eigenvalues, in a sequence

AisAgs Aoy, A ..(18)

insuch a way that each eigenvalues is repeated as many times as its multiplicity. We further denumerate
these eigenvalues in the order that corresponding to their absolute values i.e.

0<|2,[<|A,] <. <|A, 1< |2,

Let 2/(x), g(x),.....g,(x) ..(19)

be the sequence of eigenfunctions corresponding to the eigenvalues given by the sequence (18).
These eigenfunctions are no longer repeated and are linearly independent, corresponding to the same

eigenvalue. Thus to each eigenvalue A, in (18) there corresponds just one eigenfunction g, (x) in(19),
suppose that these eigenfunctions have been orthonormalized.

Suppose that a symmetric L, -kernel has at least one eigenvalue, say A,. Then gl(x) is the
corresponding eigenfunction. It follows that the second ‘truncated’ symmetric kernel

Km@ﬂzK@ﬂ—&E¥ﬂQ .(20)

1

isnonnull and it will also have at least one eigenvalue 4, (we choose the smallest if there are more
than one eigenvalues) with corresponding normalized eigenfunction g, (x). The function g,(x) # g,(x)

evenif A, = 4,, since




Similarly, the third “truncated” kernel

K(3)(x,t)=K(Z)(x,t)—gz(x) & (1) =K(x,t)—ig"(x (1)

)
i i .21

gives the third eigenvalue A, and the corresponding normalized eigenfunction g, (x).

Continuing in this way, we finally arrive at the two following possibilities :

@) The above process terminates after , steps, thatis K"*"(x,) = 0 and the kernel K (x,?)

is a degenerate kernel,
> 8 (X) & !
K(x,t)zz% -(22)
k=1 k
(ii) The above process can be continued identifinitely and there are infinite number of

eigenvalues and eigenfunctions.

Remark 1 : We have denoted the least eigenvalue and the corresponding eigenfunction of K () (x, t) as

A, and g ,whichare the n” eigenvalue and the " eigenfunction in the sequences (18) and (19). This
fact can be justified with help of Theorem 11.9.2, which is given below.

Theorem4: Let the sequence {gk (x)} be all the eigenfunctions of a symmetric L,-Kernel

with {1,} as the corresponding eigenvalues. Then the series

‘2

©
Zz
n=1

I‘l

converges and its sum is bounded by C;, which is an upper bound of the integral
J-b

Proof: The Fourier coefficients a, ofthe function K (x, t) with fixed x , with respect to the orthonor-

(x,t)‘ dt .

mal system {gn (x)} are given by

a, —J X, t gn g;(x)

n

Using Bessel’s inequality, we now obtain

8

Theorem 5: Let the sequence {g,(x)} beall the eigenfunctions of a symmetric kernel K (x,?),

with {ln} as the corresponding eigenvalues. Then the truncated kernel
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K(n+1) (x,t) = K(x,t) — :ﬂM

m

has the eigenvalues A ., A to which corresponds the eigenfunctions g,,,(x),

n+1?%

g,.,(x),.... The kernel K™*'(x,?) has no other eigenvalues or eigenfunctions.

Proof : (i) We begin with fact that the integral equation
g(x)-4 [ K" (x,1)g(r)dr =0

—~  gx)-2 LbK(x,t)g(t)dtJr/lZ”: g;(x)

m=1 m

(¢.g,)dt=0 (23)

Setting A =4, and g(x)=g,(x), j=n+1 onLHS of (23)

and using the orthogonality condition, we obtain
b
g_/(x)—i_,L K (x,t)g,(t)dt =0
which means that g, (x) and A, for j >n+1 arethe eigenfunctions and eigenvalues of the kernel
K" (x, t) )

(ii) Let 2 and g(x) be an eigenvalue and eigenfunction of the kernel K"*'(x,¢). Then
b —~ g, (x
202 [ K(e)s(0d 23 & (g ) <0 e
m=1 m
Taking the scalar product of (24) with g; (x), j <n and using the orthonormality of the g ; (x),

we have

A
(9:8)-2 (Ke.g) )+ (2:2,) =0 (25)

J

Bt (Kg.g,)=(g.Kg,)=2(2.g))

Hence (25) becomes

(2.g)) +%{(g, 2)-(2.,)}=(2.2,)=0 .(26)

J

In view of (26) we find that the least term in the left side of equation (24) vanistes and hence (24)
reduces to

g(x)- 2] K(x.0)g(0)dr=0
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This means that 4 and g (x) are eigenvalue and eigenfunction of the kernel K (x, t) and that
g#g,;, j<n.In fact, we see that g is orthogonalto all g;,/ <7, and g(x) and 2 are surely
contained in the sequences {gk (x)} and {1, }, k >+ 1 respectively.

Remark : Combining the results of the above two Theorem 11.9.1 and 11.9.2, we easily find that, if the
symmetric kernel K (x,) has only a finite number of eigenvalues, then it must be separable. The proof

follows by noting that K"*'(x,¢) has no eigenvalues and therefore it must be null. Hence, we must have

11.10 Hilbert-Schmidt Theorem

Statement : If ¢(x) can be written in the form

b(x)= [ K (x,0) (1) dr

a

where K (x,t) is a symmetric L,-kernel and h(¢) is an L,-function, then ¢(x) can be

expended in an absolutely and uniformely convergent Fourier series with respect to the

orthonormal system of eigenfunctions g, (x),g,(x),....g,(x) of the kernel K (x,?):

#(x)= z¢ 2.(x)

where ¢, =(9,g,)
The Fourier coefficients ¢ of the function ¢ (x) are related to the Fourier coefficients
h, of the function A(x) by the relations

hn
A

n

¢, =

and h,=(hg,)
where J are the eigenvalues of the kernel K (x,?).

Proof: Let K (x, t) be a non null, symmetric kernel which has a finite or an infinite number of eigenvalues

(always real and non zero). Consider these eigenvalues, in a sequence
ApsAgyerecii e ..(27)

in such a way that each eigenvalue is repeated as many times as its multiplicity. We further elenumerase
there eigenvalues such that
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0<[2,|<]A,] 2]

n

<A

n+l

Let 2(x), 2 (x)seeee g, (X)eene ..(28)
be the sequence of eigenfunctions corresponding to the eigenvalues given by the sequence (27). These
eigenfunctions are no longer repeated and are linearly independent corresponding to the same eigenvalue.

Thus, to each eigenvalue A, in(27), there corresponds just one eigenfunction g, (x) in (28). Further,
suppose that these eigenfunctions have been orthonormalized.

Now, the Fourier coefficients of the function ¢ (x) withregards to the orthonormal system { g, (x)}
are given by

¢,=(¢.g,)=(Kh,g,)=(h,Kg,) (- symmetric operator is self ajoint)

(h.g,)=-"

{ /lj (x,)g,(t) = g, =1,Kg,

(h,Kgn>:(h,§nJ=l—1<h’gn>}

i
Al’l

n

Hence the Fourier series for ¢(x) is given by

“
Zcb g(x)=2" .(29)

n=1 ﬂ“

We now estimate the remainder term of the series (29). We have

2
Z’” h gk Z” . Z’” gkijc)\
k=n+1 k=n+1 k=n+1 k

n+p

thkf;‘g()

k=n+1 k

‘2

..(30)
Now the Fourier coefficients a, ofthe function K (x,) with respect to orthonormal system
{ g, (x)} are given by
a, = j X, t gn =—"

Using Bessel’s inequality, we get

0

8,(x) _
= A

K()c,t)2

1 lif |K(x.0)<C]]
Hence inner series in (30) is bounded.
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n+p

: : : N2 : 2
Moreover since /(x) isa L, -function, the series Z B is convergent and the partial sum z h;
k=1 k=n+1

can be made arbitrary small. Hence, the series (29) converges absolutely and uniformly.

Now, we prove that series (29) converges to ¢(x). For this prupose, we denote its partial sum as

5,(0=Y 2,

m=1 m

and estimate the value of ‘ |¢ (x)-8,(x )| ‘

n

Now, #(3)=5,(x) = K=Y =g, (x)

m=1 m

& (hg,)
= Kh-

2 gn(*)
— K(n+l)h

where g (»+1) is the truncated kernel.
Bu  |lp(x)-8,)|[ =||K" || = (KO n k)

_ (h’K(nJrl)K(nJrl)h) _ (h’Kz(nJrl)h) ..(30)

where we have used the self-adjointness of the kernel g (**!) and also the relation

K(n+1)K(n+l) _ K2(n+1)
We know that the set of eigenvalues of the second iterated kernel coincide with the set of squares
of the eigenvalues of the given kernel. Thus, we see that the least eigenvaluse ofthe kernel Kz(”“) is equal

to A° , and, we obtain

Tl
AZ__maX (h,/’l) , ..(31)

n+l
where we have omitted the modules sign from the scalar product (h, K§"+l)h) , because it is a positive

quantity.
Using (31) in (30), we have

(h.1)
AZ

n+l

()5, (o[ = (. &Ln) <

(32)
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Since A ., — o, (32) gives

n+l

[16(x)=8,(x)|[ > 0as n e G3)

Again || (x) =S ()| <l () =5, (<) [ +]15, (x) = S (=) -(34)

where S(x) is the limit of the series S, (x).

Since the series (29) converges uniformly, we have, for an arbitrary small €> 0, |S, (x)— S (x)‘ <e

where 5 is sufficiently large,

S

n

(x) - S(x)‘ ‘ < e(b — a)%

and hence

S, (x)=S(x)[>0 .(35)
Using (35) and (33) in (34), we have

¢(x) = S(x) as required.

11.11 Schmidt’s Solution of Non Homogeneous Fredholms Integral Equation
of Second Kind

Consider Fredholm integral equation of second kind

g(x)=/(x)+ 2] K(x.0)g(r)dr .(36)

where K (x, t) is continuous, real and symmetric and } isnot an eigenvalue.

We shall require the Hilbert-Schmidt theorem, stated in the following modified form :

Let Y (x) be generated froma continuous function g(x) by the operator

2] K(x.t)g(0) ar

where K (x, t) is continous, real and symmetric, so that

Y(x)=A[ K(x.)g(r) di

Then Y (x) can be represented over interval (a,b) by a linear combination of the normalized

eigenfunctions ofhomogeneous integral equation
b
g(x) = ﬂ.J‘a K(x,t)g(t) dt

having K (x,?) asits kernel.
Procedure of solution of (36)

Now let g(x) be continuous solution of (36), then
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g(x)~f(x) =4[ K(x.0)g () dr (37)

If the equation (36) possesses a continuous soluton g(x), then the function [ g(x)-f (x)]] is
generated by (37). Hence it can be represented by a linear combination of the normalized characteristic
function ¢, (x) ofthe form

g(x) —f(x) = Zam ¢m(x), a<x<bh [By Hilbert-Schmidt theorem] ...(38)

m=1
Let 4, (m =1,23,......... ) be the eigenvalues corresponding to the eigenfunction ¢ (x) .Let

A=A Y m=123,......

Since ¢, (x), (m=123,....... ) are normalized, therefore we have
b 0, m#n
[ 6,(x)8,(x)dx = {1, o (39)

Multiplying both sides of (38) by ¢, (x) and then integrating with respect to ' x' from ¢ to p, we get
b b b
L g(x)¢,,(x)dx— L f(x),(x)dx=a, L ¢,(x)9,.(x) dx

bt a, [ 9,()9,(x) dvbot a,[ 6,(x)4,(x) dx ..(40)

Suppose that

C,= f:g(x)cbm(x)dx ..(41)
and f = ij (x) P, (x)dx ...(42)
Making use of (39), (41) and (42) in (40), we obtain

C,—f.=a, ..(43)

Now multiplying both sides of (36) ¢,,(x) and then integrating withrespect to' x' fiom a to b, wehave
b b b b
[ 2(x)g,(x)dx=[ 1 (x)@,(x)ax+A [ {[ K(x.0)g(t)dr}g,(x)dx
b b
or C,=/,+4 L g(1) {L K(x,1)9, (x )dx} dt  (by changing the order of integration)

or Co=1u +1ng(t) {J;K(t,x) . (x)dx} dt (since K(x,t) is symmetric) ~ ...(44)

Since ¢, (x) is eigenfunction corresponding to the eigenvalue A, , therefore we have

m?2
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b

b, (x)=4, ), K(x.0)8,(1)dt

a

b

or 9, (x)=2, | K(x,2)9, (z)dz

a

or ¢, (=4, [ K(t.2)¢, ()dz

a

o 4,(0)=2, [ K(t.x)$,(x)dx

o | K(t.x)g, (x)dr= .

Using (45), (44) reduces to

qfﬂﬁifﬂ%@@m

m

R
or Cm = fm +T J; g(x) ¢m (X)dx
AC,
o Gui=SutT, [using (41)]
From (43), we find that
Cﬂi = aﬂl + fﬂi

Eliminating C, from (46) and (47), we get

alﬂ +fﬂ‘l :fm +%(aﬂ‘l +fﬂ1)

m

A A
N R
or am[ ﬂ. J ﬂ.m fm

m

A

or amzl _Afm

m

where 1 # A, andso a, is well defined.

Now putting the value of @, from(48) in (38), we get

n

8=/ (9)= 2 0,
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or xX)+2 Z/Ifii .(49)

m=1

which is the required solution of the integral equation (36).
From (42), we have

L= [ 1 @0)g,(0)ar (50)

Using (50), (49) may be rewritten as

)+ z% ['1(0)9, (1)

or mj[ 5 _i(t) }f(t)dt

m

or mj R(x,t;2) f (¢)dt (51

where the resolvent kernel R(x,#;4) is given by

R(x,t;1) Z")m/l :/’”i() .(52)

Three Important cases arise :

Case I : Unique Solution : If 1 = 4, , (48) gives well defined value of @, for substituting in (38). Thus
solution (49) exists uniquely if J does not take on an eigenvalue.

Case I1 : Infinitely many solution exists : Let 1 = 4, , where A, isthe " eigenvalue and also let

f, =0 thatis ij(x)(]ﬁk dx=0

It follows that the function f (x) is orthogonal to all eigenfunction ¢, (x) belonging to the eigen-

value 4, .

Then (46) reduces to

A
C,=0+ ny C, or C, = C, which s atrivial identity and hence imposes no restriction on

C, . From (48), it then follows that the coefficient a, of ¢, (x) in (49), which formally assumes the form

0
0 intruely arbitrary. Hence, we rewrite solution (49) as follows :

g(x)=f(x)+A4g,(x Z fm ..(53)
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where dash implies that we should neglect m = & in the summationand /4 is an arbitrary constant. (53)
shows that equation (39) has an infinitely many solutions.

Case III : No Solution : Let A = 1, , where A, isthe j eigenvalue andalso let f, # 0 that is

[ ()8, (x)dx =0

L.e. eigenfunction ¢, (x) is not orthogonal to f(x) . Then, because ofthe presence of the term

S ¢k(x)
A -2 ...(54)

in (49), we find that no solution exists, since the term (54) is undefined.

Example 1 : Solve the symmetric integral equation.

g(x)=(x+1)"+ fl (xt +x%?)g(¢)dt
by using Hilbert - schmidt theorem.

Solution : Given integral equation is

g(x)=(x+1)" + fl (xt +x°¢*)g()dt
Comparing with standard Fredholm integral equation,

K(x,t)=xt+x’* and a=-1,b=1

f(x)=(x+1)",and 1 =1

We begin with determining eigenvalues and the correspanding normalized eigenfunctions of
homogenous integral equation.

g(x) = ﬂ.fl (xt +x’t )g(t)dt

or g(x) =Ax J: tg(t)dt +2x° J: t2g(t)dt

or g(x)=2Acx+Acyx?, ..(55)
1

where ¢, = Ltg(t)dt ...(56)
! 2

and ¢, = Lt g(t)dt ..(57)

Equations (55) and (56) gives

1 1
1 t3 t4
= L t(iclt + iczl‘z)dt =l [?}1 + 02){2}1

330



2
or = 2031’1 L0 or ¢ (I—T)w.cz =0 (58)

Similarly using (55) in (57), we set

O.cﬁ(l—%) c, =0 ..(59)

The non trivial solution of the equatin (58) and (59) can be obtained if

1-(24/3) 0
0 1-(24/5)

o (B

Thus the required eigenvalues are

D(A)=

3 5
A, =5 and 4, =5

. 3. .
Putting 4 = 4, =5 in (58) and (59), we obtain

2
¢,0+0.c,=0 and 0.¢, e =0

giving ¢, = 0 and ¢, is arbitrary. Putting these values in (55) the required eigenfunction g, (x) is

o (%)= @ e

Setting (3/2)c, = 1, we may take g (x)=x.

given by

Now, the corresponding normalized eigenfunction ¢, (x) is given by

e

Ull[gl(x)]zdx}l/z I de/ H’ﬂ r

-1

o $i(x)= = X5 = ...(60)
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5
Again, putting=4 =4, = 5 in (58) and (59), we obtain

2
-3¢ +0.¢, =0 and 0.c, +0.c, =0,

giving ¢, =0 and ¢, is arbitrary. Putting these values in (55) the required eigenfunction g, (x) is
given by
2,(x)=(5/2)c,x*
2

setting (5/2)c, =1, wemay take g,(x)=x".

Now , the correspanding normalized eigenfunction ¢, (x) is given by

9, (X) = gz(x) x =\/Ex2
|:Jll[g2 (x)]zdx} = |:J'11x4dx:| 2 (61)
Agin =] S(x)¢(x)de=] (x+ 1>2[§x]dx [by (60)]
:—J. (x +2x+l)dx-£[£ 2 x—z}
- 214 3 2],
or  f,=2J6/3
and o= ()b (x)dx=] (x+ 1)2[@)62}& [by (61)]

2|54 T3 T

:\/ﬁ[x5+2x x3}1 8\/—
1

Now A=1.Also 4,=3/2 and 1,=5/2

Therefore A A, and A # 4,

Hence the given integral equation has a unique solution as

f’n
+izi —i

m=1

f1¢ ( ) fz(bz(x)
A, -1 A, —1

or g(x) (x + 1)
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or g(x) = (x + 1)2 +

2 J6 8 10
< Wel X2 S NIV
(EMH(3H (2]
+
(3/2)-1 (5/2)-1
or  g(x)=(x+1) +4x+(16/9)x* = x* + 2x+ 1+ 4x+(16/9)x
or g(x)=(25/9)x* +6x+1
Example 2 : Using Hilbert schmidt theorem, find the solution of the symmetric integral equation.
g(x)=x’ +l+§Jll(xt +x7t%) g (t) dt

Solution : Given integral equation is

RE!
g(x)=x"+ 1+EJ:1(xt +x2t2)g(t) dt
Comparing this integral equation with standard Fredholm integral equation

g(x) = f(x) + ﬂ.fl (xt +x2t2)g(t) dt
we have

3
f(x)=x*+1, AZE, a=—-1,b=1and K(x,t)=xt+x’t’

We begin with determining eigenvalues and the corresponding normalized eigenfunctions of
homogeneous integral equation

= /lfl (xt +x%%) g (1) dt

Now, proceeding as in Ex.1, we obtain

AR AR

$,(x) =(x’~10)/2
J10
f,=0 andf2=8F

Here /1=32:/11 and 1 # A,

Since A = A, and f, =0, hence infinitely many solution of given integral equation exist and are
given by (refer case II, Art. 11.11)

g(x)=7r(x)+4¢(x +zz'ifii .(62)
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where dash in the above sum means that the term with 7 = 1 must be ngelected.

. (62) takes the form

/s
Ay — A

g(x)zf(x)+A¢l(x)+l ¢2(x)

: wWe) 3 (8V10/15) 2 qg
or g(x):x +1+A(TJ+EX(%)(%)X 5

or g(x):)c2+l+Cx+4x2
or g(x)=5x"+Cx+1

where C = (A\/g / 2) is an arbitrary constant.

Example 3 : Solve the following symmetric integral equation with the help of Hilbert-Schmidt theorem,

g(x)=1+2 [ cos(x+1)g(t) dt

Solution : Consider the corresponding homogeneous integral equation as
g(x) =1 J.Oﬂ cos(x + t) g(t) dt

or g(x)=Acosx J: cost g(t) dt— Asinx J: sint g(¢)dt

or g(x)=2C cosx — 1C, sinx ..(63)
where C, = J: cost g(t) dt ..(64)
and C, = j:sint g(f) dt ..(65)

Using (63), (64) becomes
C = J: cost (A C, cost— A C, sint) dt

AC 4 A,C T,
or C = 5 1 J; (1+cos2t) dt — 5 2 J0s1n2t dt

or C cos2t|;

AC [ sinZtT 2C,
= t+ + [
2 2

0

or C(2-A7)+0.C,=0 ..(66)
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Again, using (63), (65), we get

C, = J: sint (A C, cost— A C, sint) dt

AC - AGT[, sin2tT
C,=——"|cos2t| ——=|1-
o GETp e [ 2 }

or 0.C,+(2+2A7)C, =0 ..(67)

Equation (66) and (67) have a non trivial solution if

2-Anm 0

D(l)=‘ 0 2+M‘=0 or (2-Ax) (2+Ax)=0

Thus the required eigenvalues are
A =2/m and A, =-2/x

Putting A = A, =2/7 in(66) and (67), we obtain
0.C;+0.C, =0 and 0.C, +4C, =0

Giving C, =0 and C, isarbitrary. Putting these values in (63), the required eigenfunction g, (x)
given by

gl(x) - (2/7T)C1 cosx
Setting (2/7)C, =1, we may take g,(x)=cosx.

The corresponding normalized eigenfunction ¢, (x) is given by

8,(x) = g/(x) _ cosx _ cosx
[lawra] [[ooea] et
or q)l(x) = cosx = cosx) = \/% COSX ...(68)

[it=l)

Again, putting A = 1, =—2/7 in(66)and (67), we get
4C +0.C, =0 and 0.C,+0.C, =0

giving C, = 0 and C, is arbitrary. Putting these values in (63), the eigenfunction g, (x) is given by

g,(x)=—(-2/7) C,sinx =(2/x) C, sinx
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setting  (2/7) C, =1, we can take g,(x)=sinx

and the corresponding normalized eigenfunction ¢, (x) is given by

$,(x)= \E sinx ..(69)

x . 2
Also  fi= J;) f(x) ¢,(x) dx =_[0 l.cosx\/; dx

or fi= \/% [sinx]S =0 ..(70)

. - 2
and  f,= J;) f(x)¢,(x) dx = J;) l.smx\/; dx

2 z 2
or /o =\/; [—cosx]] =2\/; (71)

Three Cases Arise :-

Casel: Let 1= A, and 1 # A, , then the integral equation will possess unique solution given by

/,
)+ =
gl Z} 72 ?
A A
or g(x)=1+mﬁ ¢1(x)+mfz ¢, (x)
5 % o
or g(x)=1+ A4(x) .0+#.2(£) (3) sinx
(2/m)-2 (-2/m)-2 n m
(x) - 4Asin x -
or g 2t n ..(72)
CaselIl: Let A =4, =-2/x.Since f, # 0, so integral equation possesses no solution.
Caselll: Let A =1, =2/x.Since f, =0, there exists infinitely many solution given by
A i fﬂ‘l
g(x)=f(x)+4¢,(x)+ Z 7 —z (73)

m=1

where dash implies that we should neglect 7 = 1 inthe summationand A is an arbitrary constant.
Accordingly (73) reduces to

L L)
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2sinx

or g(x)=1+ccosx—
T

A2

where C[: Jr ) is an arbitrary constant.

Example 4 : Determine the eigenvalues and the corresponding eigenfunctions of the equation
2
g(x) = f(x) + ﬂ.J‘O sin(x + t) g(t)dt ..(74)

where f(x)=x. Obtainthe solution of this equation when } isnot an eigenvalue.

Solution : We begin with determining eigenvalues and the corresponding normalized eigenfunctions of
homogeneous integral equation.

g(x)=A [ "sin(x +1) g(¢)dr

Proceeding as in Example 3, we find that

or g(x)=Ac, sinx+ Ac, sinx ..(74)
2w
where ¢, =_[O cost g(t)dt ..(75)
2r
and ¢, =J.0 sint g(t)dt ...(76)
¢ —Ame,=0 (T7)
or Amce —c,=0 .(78)

Equations (77) and (78) have a nontrivial solution only if

1 -2 1 -1
”:0 or -1+ %72 =0 sothat A=— or —
Ar -1 T Vs

Hence the required eigenvalues are
1

-1
A= — and 4, = — and corresponding eigenfunctions are

g/(x)= ﬁ(sinx +cosx), g,(x)= ﬂ(sin X —COSX)
n n
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c . :
Setting ;1: 1, we may take g (x)=sinx+cosx, g,(x)=sinx—cosx

Hence the corresponding normalized eigenfunction ¢, (x) is given by

b (x)- S
[ ey ]

sinx +cosx
¢1( )_

¥)= e

or on (on simplification). ..(79)
sinx —cosx

Similarly $2(%) . ..(80)

Ao /i =J.02ﬂf(x)¢1(x)dx =J.02EMQIX — 2

and

NPy

p =J.Ozﬂf(x) 4, (<) =J-27r x(sin x—cosx) de -3 x

0 N2

Giventhat A# A, and A # A, . Hence (74) will possess unique solution given by

or

or

or

or

o) x+ Z0) | Ada(x)
}“1 -1 Az iy

(x)=x+ A(—ﬁﬂ)(sinx +C0sX) N A(—ﬁﬂ)(sinx —Cosx)
o {(Vm)=2} V2 [~(/7)-2} Vaz

g(x)=x—Amsinx L1 —ﬂmcosx( L, 1
1-Ar 1+Arx 1-Ar 1+ Arm

~ 2% 7% sinx _ 2Amcosx
1- A7 1= n?

g(x) =X

Example 5 : Using Hilbert-Schmidt method, solve the integral equation

g(x)=x+ 2] K(x.1)g(t)ds (81)
_ x(t—l), 0<x<¢
where K(x’t)_{t(x—l), <l ...(82)
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Solution : Consider the corresponding homogeneous integral equation as

g(x)=2] K(x.1)g(t)ar
o g(0)=A| [ Kwr)gle)dr+ [ K(xr)glo)at |

or  g(x)=A[ At(x—1)g(t)de+] Ax(t~1)g(r)dr (using (82))
Differentiating both sides w.r.t. ‘x” and using Leibnitz rule, we have
X 1
or g'(x) = J;) ltg(t)dt +'[ l(t — 1) g(t)dt
Differentiating both sides again w.r.t. °x’and using Leibnitz rule, we have
g”(x)zﬂ.g(x) or g”(x)—lg(x)z 0 ...(83)
Also, we have g(0)=0,g(1)=0 ..(84)

The required function g(x) is a solution ofthe differential equation (83) together with boundary
conditions (84).

Three Cases Arise :
Casel: Let ) = (. Then (83) takes the form g"(x)=0, whose general solution is
g(x)=Ax+B ...(85)
From (84) and (85), we have
B=0and 4+B=0=A4=0
Thus we have g (x) = (0, which is not an eigenfunction.

Hence } = () isnot an eigenvalue.

Case I : Let A = u°, where u# 0. Then equation (83) reduces to g"(x)—u’g(x)=0, whose

general solution is
g(x)=Ae" +Be™™* ...(86)
From (84) and (86) we have
A+B=0and de“+Be =0
or A=B=0

Thus we have g(x) = 0, which is not an eigenfunction.

339



Case Il : Let A =y, where p# 0. Then equation (83) reduces to g"(x)+ u’g(x)=0, whose

general solution is
g(x)=Acosux+Bsinpux ..(87)
From the boundary condition (84), we have
A=0and 0= Acosu+ Bsinpu
or Bsinu=0 ...(88)

Now, we must take B = (), otherwise 4 = and g = will give g(x) = 0 as before and hence

we shall not get eigenfunction. Since B = () (88) reduces to
sinu=0
W =nm where 5 is any integer.
or A=—p>=-n’n", n=123,.......
Hence the required eigenvalues A4, are given by

A, =-n’m’, n=123,... ..(89)
Putting 4 = and u =n7z in(87), we obtain

g(x)=Bsinnmu
Let B =1, therequired eigenfunctions are

gn(x) =sinnmu, n=1,2,3,........ ...(90)

The normalized eigenfunctions ¢, (x) are given by

g,(x) sinnmx

6,(x)- 1:
[J‘ol {g,, (x)}zdx}é UOI sin® n7 x dx

}%

sinnzwx sinnzwx

)}

1
0 2 2 2nw

sinnmx

or ¢,(x)= 1/—J§

=+2sinnzx ...(91)

340



Now f,=[ f(x)8,(x) dv= (x).(v2sinnzx) dv
(o oo

= ﬁ{—cosnn +L chosnnx dx}
nw ©0

=2 _(_1)” + 21 - [sinnﬂx]:)}

oo f =t = .(92)

Now two cases arise :

Case (i) : Let 2 benotaneigenvalue, thatis A # A, , n=1,2,3,...... Thenthe given integral equation
will possess unique solution given by

()= /() +2 30,

n=1

or g(x)=x+2 i(_l)mﬁﬁsmnﬂx

pry nﬂ(—n2ﬂ2 —ﬂ.)
24 & (1) sinnm x
or B 7 Z::‘ ( T +ﬂ.)

Case(ii): Let A =1, =-n’z", n=1,2,3,... Thenfrom (92), f, # 0 for n=1,2,3,... Hence the given

integral equation will possess no solution.
Self-Learning Exercise :
1. Define the following :

)] Orthogonal functions

(i) Schwarz inequality

(ii1) Orthonormal set

(v) L, -function

V) Hilbert-Schmidt Theorem

(vi)  Norm ofa function.
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2. State whether the following statements are true or false :
()  Afunction g(x) is said to be normalized if  |g (x)] | = 0

()  Akernel K(x,7) is said to be symmetric if K (x,¢) = K (¢,x).

(ii1) Ifakernel is symmetric then all its iterated kernels are also symmetric.
(iv) The eigenvalues of a symmetric kernel are real.

V) The eigenfunctions of a symmetric kernel, corresponding to different eigenvalues are
orthogonal.

(vi)  Anonzero function, with non zero norm can always be normalized by dividing it by its
norm.

(vi) A function f(x) issaid to be square integrable if

)

f(x)‘zdx < ©

11.12 Summary

In this unit you have studied eigenvalues and eigenfunctions of Fredholm equations for symmetric
kernels. Properties of symmetric kernels have been discussed. Schmidt’s solution of the non homogeneous

Fredholm integral equation of second kind have been studied.

11.13 Answers to Self-Learning Exercise

1. See Text
2. Q)] False (i) True (ii1) True (iv)  True
v) True (vi) True (vi)  True
11.14 Exercise
1. State and prove Hilbert-Schmidt Theorem.
2. Discuss the solution of the integral equation

g(x)=f(x)+ A [ K(x.0)g(e)ar

by schmidt’s method and mention the nature of the kernel also discuss the cases of unique solution,

no solution and infinitely many solution of'the integral equation.

3. Using Hilbert-Schmidt theorem, solve the following symmetric integral equations :
O g()=x+af sin(x+e)g(r) dr

(ii) g(x)= cos3x+ij.oﬂ cos(x+1) g(¢) dt
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[Ans. (i) g(x)zx—%(lﬂsinx+cosx)
-An

4 Asinx

(i) g(x)zl— 2+ An

(unique solution)

2 .
g(x)=1+ccosx— ~ sinx (infinitely many solution)]

Using Hilbert-Schmidt theorem, solve the integral equation
g(x)=cosmx=A[ K(x.0)g(t)dt,

(A+1)t, 0<x<t

where K (x.1) = {(t+l)x, r<x<l1

[Ans.

X

l4e e _ﬂ(sinﬂx+7zcos7zx)
7t +1 A-1 2(,1+7z2)

g(x)=cos7zx+i[ + A(sinnz x +nmwcosnz x)
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Unit-12
Classical Fredholm Theory

Structure of the Unit

12.0  Objective

12.1  Introduction

12.2  Fredholm’s First Theorem

12.3  Working rule for Calculating the Resolvent Kernel and Solution of Fredholm Integral Equation of
Second Kind by Using Fredholm First Theorem

12.4  Summary

12.5  Answers to Self-Learning Exercise

12.6  Exercise-12

12.0 Objective

In the theory of integral equations, the well known theorem of linear algebra which is related to
solution of the system of linear algebraic equations play a leading role. In this unit, we shall discuss the
solution of the non-homogenaeas Fredholm integral equation of second kind by replacing the integral,
appearing in the equation, with a sum which reduces the equation to a system of linear equations and

assuming the number of terms of the sum tends to infinity.

12.1 Introduction

In Unit 10, we have derived the solution ofthe Fredholm integral equation of second kind
b
g(x):f(x)+ij.a K(x,t)g(1) dt (1)

as a uniformly convergent power series in the parameter /| for suitable small value of | 4|. Fredholmin fact
obtained the solution of integral equation (1) in general form which is valid for all values of the parameter
2 . His solutions are contained in three theorems, which are known as Fredholm’s first, second and third

fundamental theorems.

In this Unit, we shall study equation (1) when the functions f (x) and the Kernel K (x, t) are any
integrable functions. Furthermore, the present method enables us to get explicit formulas for the solution in
terms of certain determinants. There are three Fredholm theorems out of which we give details of Fredholm’s
first theorem and illustrates it with the help of solved examples. The second and third theorems can be

found in any standard text books on Integrals equations.
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12.2 Fredholm’s First Theorem

Statement : The non-homogeneous Fredholm integrals equation of the second kind

g(x)= f(x)+A[ K(x,0)g(r) dr (2)

where the function f(x) and K (x,) are integrable, has a unique solution

g(x)= f(x)+A[ R(x,1:2)f(r) dt )

where the resolvent Kernel R (x, t;ﬂ,) is a meromorphic function of the parameter }
defined by

D(x,t;1)

R(x,t;/l)zw,

D(A)=0 - (4)
D(x,t;1) adn D(A) are entire functions of parameter } defined by Fredholm series of

the form

Iﬂ

D(x,t;4) = ()

| 8
/_\
~

- >
AN
» »
RIS
~_

&

2

&

and =1+ z J J [ """ ] d,.....dz, .(6)

m=1 Mte =\ &p9ececee

both of which converges for all values of ), . In particular, the solution of homogeneous integral
equation is identically zero.

Also note that
K(x,,t,) K(x,,8,) ... K(x,,t,)
K(x,,t,) K(x,,t,) ... K(x,,t,)

=K[xl,xz,...,xn
tis byyeus t, ()

K(x,.t,) K(x,,t,) ... K(x,,t,)

is known the Fredholm determinant.

Proof: We divide the internal (a,b) into , equal parts,

X, =t,=a,x,=t,=a+h,...x,=t, =a+(n-1)h ..(8)

where /1 =(b—a)/n . Thus, we get the approximate formula,

Jb K(x.1)g(1) df:hiK(x’x_/)g(x./) .(9)

J=1
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Hence (2) reduces to

g(X)=f(X)+/1hiK(x’x_/)g(x_/) .(10)

J=1

which holds for all values of x inthe internal (a,b) . In particular it must be satisfied at the n points

of division x,(i =1,2,.......n) . We thus, obtain following system of equations

g(xi)zf(xi)+lh iK(xi,xj)g(xi),(izl,L ..... n) (1)

J=1

Let us introduce the following symbls;

g(‘xi): &> f(xi):fi ) K(xi’xj):Kij ..(12)

Then (11) gives an approximation for (2) in terms of the system of » linear equations with »
unknowns g,,g,,....... g, as

g -AhY K, g, = f (i,1.2,......n) --(13)
J=1

Re-writing (13), we have

(l—ﬂ,hKH)gl—ﬂ,hKlzg2 - ... —AhK,, g =1,
-AhK, g1+(1—ihK22) g - ... —AhK, g =1,
...(14)
-AhK g -AhK, g, — +(l—ihKM)gn =fn_

The solutions g,,g,....... g, obtained by solving the algebraic system of equations (14) may be

expressed in the form of the ratios of certain determinants, with the resolvent determinant D, (A) ofthe
algebraic system (14), where

1=AhK,, —AhKpoooe... ~AhK,,
“AhK, 1=AhKyye.... ~AhK,,
D,(4)=
..(15)
“AhK, —AhK ... 1-AhK,,




provided that D, (1) # 0

The approximate eigenvalues can be obtained by setting this determinant to zero. Now expanding
D,(A) in powers of the quantity (—A h) , we find that the first term not containing this factor is equal to
unity. The term containing (—A 4) inthe first power is the sum ofall the determinants containing only one
column —A A K, ,r =1,.....n. Considering the contribution from all the colomns s =1, ....... n . we find

that the total contributionis —4 7 Z K, .

s=1

The term containing the factor (-2 4 )2 is the sum of all the determinants having two columns with

that factor. This gives rise to the determinants of the form

72 qu

(~2h)
K‘IP qu

where ( D, q) is an arbitrary pair of integers taken from the sequence 1,.....nwith p<gq.

Similarly, the term containing the factor (— A h)3 is the sum of'the determinants of the form

74 qu Kpr

K K _ K

ap qaq qr

3

(~2n)

where ( p,q,r) is an arbitrary triplet of integers selected from the sequence 1,2, ....... n with

p<g<r.

Proceeding likwise we may obtain the remaining terms in the explansion of D, (A) . Thus the

determinant (15) may be expressed in the form

n N 2 " K K

D”(ﬂ.)zl—ih ZKvs_i_( ih) z pp pq

s=1 2' p.q=1 qu qu
PPy Kﬁll’z e Kﬁll’n
3o K, K, K, ., ) Kon Ky Ko,

() Sk kK |+ L(=an) 5
3! qp qq qr '
' P n: P1oP2 s Py =1
Krp K”q Krr '
Kl’ Py KP,,Pz Kp P,
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" “AhY X,,X,
=1-Ah ZK(xp,xp)+( 2!) ZK[ ]+ (by (7) ..(16)

m=1 xp’x

—a
Since Lim h= Lim ( ) =0 and each term of the sum (16) tends to some single, double,

n—»0 n—»0 n

triple integral etc, therefore we have

—l AJ X,X dx+—JJ [il’?)dxldxz
1>72

Aopbebeb [(X,X5,X,
_EL L L [xl,xz,x3 dx, dx, dx;+. .(17)
where D(A) is called the Fredholm’s determinant and the series occuring on RHS of (17) is
called the Fredholm’s first series.

It may be noted that Hilbert gave a rigorous proof of the fact that the sequence D, (1) — D(4) in
the limit and Fredholm proved the convergence ofthe series (17) for all values of 4 by using the fact that

the kernel X (x,) is bounded and integrable function. Thus, D(A) is an entire function of the complex

parameter / .

If R (x,t; A) be the resolvent kernel, then we wish to find the solution of (2) in the form

given by (3) where we expect R(x,7; 1) to be the quotient

R(x,t;1)=D(x,t;A)/D(2),

where D(x,; 1) is the sum of certain functional series and is yet to be determined. We know that the

resolvent kernel R (x, t; A) satisfies the following relations;

R(x,1;2) = K (1) mj R (2,1;)dz (18)

From (4) and (18), it follows that

D(x,t; A b D(z,t; A
E)#;)):K(x,t)+l‘[l K(x,z E)T;))dz’ {D(i)iO}
D(x,;4)=K mj (z,8;4) dz .(19)

The form of'the series (17) for D(A) suggests that we seek the solution of equation (19) in the

form of'a power series in the parameter } i.e.
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D(x,t;l) =B, (x,t) + iﬂ Bm(x,t) ...(20)

m=1 m'

For this purpose, rewriting the series (17) as

© _l m
D(A):1+Z¥ i, ..21)
m=1 m.
where u,, = Jb...Jb K[xl,xz,...,xm) dx,...dx, -(22)
a Ja Xp5Xysenns X,

Now, substituting the series for D(x,#;4) and D(A) from(20) and (21) in(19) and comparing

the coefficients ofequal powers of 4, we obtain the following recursion relations :

Bo(x,t) = K(x,t) ..(23)

(z,1) dz .(24)

m—1

and B, (x,t)=p,K(x,t)—m Ib K(x,z) B

Now, we shall prove that foreach m(m=123,....),

B(x)=[ [ K["J ..., (29)

1,2,,2y5...,2,

First, observe that for m = 1, (24) takes the form
B,(x,t)=u, K(x,t)—- Ib K (x,z) By(z,t)dz

b b

= K(x,t) L K(z,z) dz — L K(x,z) Bo(z,t)dz
_ Lb K[:j dz .(26)

showing that (25) holds for m =1

To prove that (25) holds for general m , we expend the determinant under the integral sign by the
relation :

K(x,t) K(x.z) ... K(x,,z,)
K(z,t) K(zl,zl) ...K(zl,zm)
% X32152y 50052 |
e [0 5000 .
K(Zm’t) K(Zm’zl) K(xm’zm)




with respect to the elements of the given row, transposing in turn the first column one place to the right,
integrating both sides and using (22), proof of (25) follows by mathematical induction.

From (21), (23) and (25), we arrive at the so called Fredholm’s second series :

D(x,62) = K (vt +Z‘°: -A)" J-J- [x yZypeeens Zdezl, _____ dz. 28

m!

The series (28) converges for all values of ;} . Inthe end we show that the solution in the form
obtained by Fredholm is unique and is given by (3). Before doing this, we find that the integral equation

(18) satisfied by R (x, t; A) is valid for all values of } for which D (A) # 0. From Unit10, we already
know that (18) holds for [A| < B™', where

b b
a Ja

Since both sides of (18) are thus found to be mermorphic, the result follows.

K(x, t) dx dﬂ%

To establish the uniqueness of the solution of (2), we assume that g(x) is a solution of (2),

provided that D(1) # 0. Rewriting (2) as
= f(2)+ 2 | K(z1) g(t) dr (29)

Multiplying both sidess of (29) by R (x,z; A) and then integrating both sides with respect to ' ;'

fromato b, we get

J:)R(x,z;ﬂ,) g(z) dz = J:)R(x,z;l) f(z) dz+1JjUj R(x,z;ﬂ,) K(z,t) dz} g(t) dr ..(30)
Using (18), we have

R(x.:2)=K(x.0)+ 2 [ R(x.z:2) K(z.1) dz

or A I X,z ﬂ. ) dz = R(x,t;ﬂ.)—K(x,t) .31

From (30) and (31), we have

[[R(x.2:2) g(2) dz= [ R(x.z:2) f () de+ [ [R(x.:4)~ K (x.1)] g(r) de
or  [R(x.t:2) g(t) di=[ R(x.;2) f(¢)

a a

j xX,50)g dt—L (x.2) g(¢) dt
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or [ K(x.t)g(t)di=] R(x.0:2) f (1) at .(32)

From (2), we have

[ K(x.1) g(t) i =M ..(33)

From (32) and (33), we have

M{’R(x,r;z)f(t) di

or +ﬂ.J‘ xtﬂ.

but this form is unique.

12.3 Working Rule for Calculating the Resolvent Kernel and Solution of
Fredholm Integral Equation of Second Kind by Using Fredholm First
Theorem

For the given Fredholm integral equation

)+ [ K(xt)g(t)dr .(34)
the resolvent Kernelis given by

D(x,t; l)

R(x,t2)= () .(35)

provided that D(A)# 0

Here D(x,;4)=K(x,t)+ i(_L' B, (x,1) ...(36)
m=1 m.
and D(4)=1+ i@ u, ..(37)
m=1 m.

where coefficients are given by

B (x.)=] | dz,...dz, .(3%)




Bo(x,t) = K(x,t) ...(39)

and M. = Jij dz,...dz, ..(40)

K(zn,zl) K(zn,zz)...K(z z)

no

The function D(x,t;ﬂ,) is called the Fredholm minor and D(A) is called the Fredholm
determinant.

After getting R(x,#;4) the unique and continuous solution of (2) is given by

mj (x,2;4) f(¢) dt .(41)

Alternative Method for Calculating B, (x,7) and

Wehave u,=1, 1, = | B, ,(s.5) ds (42)

and  B,(x.0)=p,K(x.0)~n | K(x.2) B_\(zt) dz, m>1 .(43)

Since p, =1 and B,(x,#) = K(x,t), we can use formulas (42) and (43) to find in succession

U, B, (x, t); u,,B, (x, t) and so on. Continuiting in this way, all the coefficient can be calculated.

Example 1: For the integral equation

x)+ A '[b K
find D(1) and D(x,;1) for the kernel.
K(x,t)=sinx; g=0,b=r
Solution : Here K(x,¢)=sinx,a=0,b=7

Now, we know that

D(x,t;2) = K(x,1)+ i% B, (x,1) ..(44)
m=1 :
0 (_l m
and  D(2)=1+2"—"u, .(45)
m=1 .

352



Mo =1

B,(x,t) = K(x,1) =sinx
1
and /,tp:J-OBpfl(s,s)ds, p>1

and  B,(x.t)=p1,K(x.0)~p | K(x.2) B, ,(z.) dz, p=1
Putting p =1, in(46), we obtain

p,= [ By(ss)ds= [ sinsds=2
Putting p =1 in (47), we obtain

B,(x,t)= /,th(x,t)—J‘O” K (x,z) By(z,t) dz
=2sinx—rsinxsinz dz
0

=2sinx —sinx [—cosz|

=2sinx—2sinx=0

Since B,(x,t) =0, therefore we have
B,(x,t)=0 and u,=0 forall p>2
Substituting the above value in (44) and (45), we get
D(x,t;A)=K(x,t)=sinx, D(A)=1-Au, =1-22
Example 2 : Using the recurrence relations, find the resolvent kernels of the following kernels :
(i) K(x,t)=sinxcost; 0 x<27,0<1<2x
(i)  K(x,t)=4xt-x;0<x<1,0<r<1
Solution : (i) Here K (x,¢)=sinxcos?

The resolvent kernel R (x,#;1) is given by

D(x,t; )

R(x,5;4)= D7) -

where D(x,7;4) and D(A) are given by (44) and (45) respectively. Also we have
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B,(x,t) = K(x,7) = sinxcos?
2w
Ho=1and u, =J;) B, (s,s)ds, p=1
and B, (x,t)=u, K(x,t)-p Jjﬂ K(x,2)B, \(z,t) dz, p>1
Putting p =1 in(50), we have
U, = J‘OZE By(s,s) ds = J‘Ozsﬂinscoss ds

1 (2x, 1
=— J sin2sds =—
2 Yo 2

—cos2s |~
2 0

Putting p =1 in(51), we obtain

B,(x,t)= /,th(x,t)—J‘Ozﬂ K(x,z) By(z,t)dz
= —Jjﬂ(sinx cosz) (sinzcost)dz

21
=—sinx cosz"[0 sinzcoszdz =0

Since B,(x,t) =0, therefore
B,(x,t)=0and 1, =0 forall p>2
Substituting these values in (44) and (45), we have
D(x,t;A) = K(x,t) =sinxcost and D(A)=1.
Hence R(x,7;4)=sinxcost
(ii) Here K (x,t)=4xt—x’

We have B (x,1)= K(x,t)=4xt—x*
Ho=1and u, :J: B, \(s,s)ds, p=1

and Bp(x,t) = upK(x,t)—p J.Ol K(x,z) Bpfl(z,t) dz, p>1

Putting p =1 in (52), we have

U, = '[(:BO(S,S) ds = '[(:(4s2 —s2) ds= [sﬂl; =1
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Putting p =1 in(53), we obtain

B,(x,t)= /,th(x,z‘)—J‘O1 K(x,z) By(z,t)dz
=4 xt—x* —I;(4xz—x2) (4zt—zz)dz

=4xt—x*— Jnolﬂi—4xz3 +z° (x2 + 16xt) - 4x2tz}l dz

_ X |
=4 xt—x*—|-xz* +Z?()c2 + l6xt)—2x2tzz}
0

1
=4 xt—x*— —x+§(x2 + l6xt)—2x2t}

=2x"t —i)c2 +Xx —ixt
3 3
Again, putting p =2 in(52), we obtain

U, = J: Bl(s,s)ds=‘|‘01 (ZS3 —%sz +s—§s2)ds

Next, putting p =2 in(53), we obtain

By(x.t) =, K(x.) -2[ K(x.2) B,(z.0)dz

:é(4xt—x2)—2 J: (4xz—x2) _2222‘—%22 +Z—§Zt:| dz

:é(4xt—x2)—2J: (4xz—x7) 22(2t—%)+z(1—%ﬂ dz

:%(4xt—x2)

2 |:4x(2t —%)23 +22 {4;{1—%)—;&(% —%)}—x{l —%H dz

= %(4xt - xz)
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<[ ol S50 5K

:%(4xt—x2)

2
) x(zt—i)+l 4x (1—ﬂ)—x2(2t—i) —x—Ll—ﬂ) =0
3) 3 3 3 2 3
Since B,(x,t)=0, therefore B,(x,t)=0and u, =0 forall p=3.
Substituting these values in (44) and (45) we have

D(x,t;l) = K(x,t)—lBl(x,t) =4xt —x* —l(Zx%—%xz +x—%xt)

2 2

A
DA)= 1= A+, =1-a+2=
and (1) M+ M 3

4xt — x* —A(szt—ixz +x—§xt)
R(x,t5;2)=

1- A +(2*/18)
Example 3 : Find the resolvent kernel and solution of

g(x)= /() + A [ (x+1)g(r) dr .(54)

Solution : Comparing (54) with g(x) = f(x)+ A j
we have K (x,t)=x+t
Now, B(x,t)=K(x,t)=x+t¢
py=1and 1, = jol B, \(s.5)ds, p>1 (55)
and  B,(x.t)= pt,K(x.0) - p[ K(x.2) B, (z.1) dz .(56)
Putting p =1 in (55), we get
= [\ By(s.s)ds = [2sds =[] =1
Putting p =1 in (56), we obtain
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1

B,(x,t)= ulK(x,t)—IO K(x,z) By(z,t) dz

=(x+t)—IO(X+Z)(Z+I) dz

=(x+t)—'|‘01(z2 +z(x+t)+xt) dz

2 1
:(x+t)—[lz3 +Z—(x+t)+xt2}
372 .

=(x+t)—§—%(x+t)—xt

zé(xﬂ‘)—xt—%

Also putting p =2 in(55), we obtain

Next, putting p =2 in(56), we obtain

B,(x.1) = p,K(x.0) -2 K(x.2) B,(z.1) dz

= Leen)-2[(x+2) %(z+t)—zt—ﬂdz

= Hern)-af e+ :z(%—t)+%t—ﬂdz




= () (onsimplication)
Since B,(x,t) =0, it follows from (55) adn (56), that

B,(x,t)=0, u,=0 for p=3
Substituting these values in (44) and (45), we have

D(x,t;ﬂ,) =K(x,t)—ABl(x,t)

:(x+t)—zB(x+t)—xt—ﬂ

2

_ A 1,
and D(i)—l—iy1+2—!u2—l—i—ﬁi

x+t—A {;(xﬂ‘)—xt—ﬂ
1-2-(%1,)

Hence the required solution of the integral equation is given by

Thus  R(x,;1)=

mj R(x,;A)f

(x+t)—lB(x+t)—xt—l

3
5 f(2) dt
1-2-(A4)

Example4: Using Fredholm determinants, find the resolvent kernel, when K (x,7) = xe',a =0, b =1

or  g(x)=s(x)+A]

Solution : Here K (x,t) =

We have B(x,t)= K(x,t)=xe

dz,
21

= (since two columns of the determinant under the integral sign are identical)
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K(x,t) K(x zl) K(x,zz)
Similarly B, (x,t) = J-Ol J-Ol K(z,,t) K(z,z) K(z,,z,)| dzdz,
K(zz,t) K(zz,zl) K(zz,zz)

xe' xe” xe®
1 pl
=J-J- ze' ze' ze?|dzdz, =0
0J0

t z Z
z,e’ ze" ze

Since B, (x,t) =B, (x,t) =0, it follows that B, (x,t) =0,forn>1.

Thus, we have from equation (40) Art. 12.3,
1 1
U, = IO K(z,,z)dz, = IO zedz,
Z 1 1 Z
= [zle ‘]]O —J;) e’dz,
= e—[ez‘]ll = e—(e—l):l

Z

ze”" ze”

w LI

=0

dz, dz,

e’

Obviously u, =0 forall ;,>2

Now, D(xtl +Z

2

=K(x,t)—iBl(x,t)wL%Bz(x,t)

— ye' (by substituting values of B,(x,#) and B,(x,7) etc)

© _l m
and  D(2)= 1+Z(—,Mm
m=1 m.
2
=l-Au+
=1-2 (by substituting the values of x, and y, )

Thus the Fredholm resolvent kernel is given by
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D(x,t;2 xe'
Rx2)= E)(/l) - -2

Example 5 : Using Fredholm theory, solve

g(x)= cos2x+J‘02ﬂ sinxcost g(r) dt

Solution : Comparing given integral equation with
2w
g(x) = f(x) + ﬂ.J‘O K(x,t) g(t) dt

we have f(x)=cos2x, K(x,7)=sinxcost, 1 =1
We use Fredholm determinant method.

Here B, (x,1)=K(x,t)=sinxcost

2 K(x,t) K(x,zl)
dz,
K(zl,t) K(zl,zl)

Also Bl(x’t):_[

0

sinxcost  sinxcosz,
z
1

:f”

=0 (since the determinant under the integral sign vanish)

sinz, cost sinz, cosz,

B,(x,t)=0 forall p>2
2z 27
Next, u, =J;) K(z,,z))dz, =J;) sinz, cosz, dz, =0
Hence #,=0 forall p>2

Thus, we have

D(x,t;l) = K(x,t)+ iﬂ Bm(x,t)

m=1 m'
= K(x,t) = A B,(x,t)+....

=sinxcost

The Fredholm resolvent kernel is given by
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D(x,t;2)

R(x,t;4)= (%)

= sinx cost
Hence the required solution of the integral equation is
2
g(x)=f(x)+4 [ " R(x.t:2) f(¢) dt
2,
=cos2x+ A IO sinx cost cos2¢ dt

21
=cos2x +sinx J;) cost cos2t dt

=cos2x+sinx.0
g(x)=cos2x

Example 6 : Solve the following integral equation

g(x)=x+/1 '[(:(4xt—x2) g(t) dt

Solution : Comparing given integral equation with
b
g(x) = f(x)+ﬂ. L K(x,t) g(t) dt,

wehave a=0,b=1, f(x)=x and K(x,t)=4xt—x’

Proceeding as in solved example 2 (ii) and obtain

Axt—x* = A (2x2t—§x2 +x—§xt)

Rx2)= 1= 2+(2/18)

Hence the required solution of given integral equation is

g(x)=/(x)+ A R(x.1:2) £ (1) dt

Axt—x* = A (2x2t—§x2 +x—4xt)

=x+/1j0‘ tdi

1-2+(2*/18)

1
:x+28—’lj‘ 4xt2—x2t—ﬂ,(2x2t2—ix2t+xt—ixt2 dt
A —182+18 3 3
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1
1 4 ’t? 2 2 >4
:x+28—l —xt3—Xt -2 —xzz‘}——xzz‘z+i——xt3
A —182+18 |3 2 3 29 .

184 4 X (2 , 2 5, x 4 )
=X+t | x———A | X X +———x
A —182+18 |3 2

(A7 —182+18)x + A (24x - 9x* — Ax)
- 2 -184+18

B 3x(2i—3ix+6)
A -184+18

Example7: Find D(A) and D(x,#;1) and solve the integral equation
g(x)=x+A[ [xt+-ar | gle) ar
Solution : On comparing given equation with
g(x)=/(x)+A[ K(x.1) g(t) ar,
we have f(x)=x, K(x,f)=xt++/xt

The resolvent kernel R (x,#;1) is given by

R (x,t;l) = M
D(2)
© (_l m
where D(x,5;1) = K(x,t)+ Z—' B, (x,1)
m=1 m.
© (_l m
and  D(A)=1+) ~—"pu,
m=1 m'

Now, we have

Bo(x,t) = K(x,t) =Xt +x/;, Uy =1
and  pu,= J.Ol Bpfl(s,s) ds, p>1 ..(57)

and B, (x.t)=p1,K(x.0) - p[ K(x.2) B, ,(z.t) dz. p=1 .(58)

Putting p =1 in(57), we obtain
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Ao B,(x.t)= K (x.1)~ [ K(x.2) By(z.t)dz
zg{xt+\/;}—‘|:(xz+ xz) (zt+\/z_t)dz

:%{xt+x/g}—‘|:{xtzz a2 +ix 2 +z(xt)%}dz

502 !

- St} S 5 )

0

5 [xt 2 1 Y
—g{xt+\/xt}—_?+§(xx/;+t\/x)+5(xt) 2:|
1 1 2
:5xt+§\/xt—g(x t +x)
. 1
Again uzzjoBl(s,s) ds

= Jl _%Sz +%s—%(s\/§+sﬁ)} ds

o\ 2 3
1
|88 a1
6 6 5 52| 75
0

Next, putting p =2 in(57), we obtain

B,(x.1) = 1, K(x.1) -2 [ K(x,2)B,(z.t) dz

- e ar) -2 fres e L - 2o )

1
0

=i{xt+\/;}—2j l)cz‘z2 + X\/;Z% - 2)6\/;22
75 2 3 5
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—%z/ —t\/_z +— z(xt)/ i(xt)%z%—%t xz} dz

{xt +\/—} xtz 2x\/; z% B Zx\/;z3

6 15 15

1
B 4xtz% Jrz‘ X z% N (xl‘)%z2 4(xt)% z% 1 xz*
25 5 6 25 5

0

=%{xt+\/;}

-2

6 15 15 25 5 6 25

P2
t
xt 2x\/;_2x\/; 4xt+t\/;+(x ) _( 4 ) (xt)%—t .
= () (onsimplification)
Since B,(x,t) =0, therefore we easily see that
B,(x,t)=0, u,=0 for p=3

Thus we find that

D(x,t;2) = K(x,t)— A B,(x,1)
o)+ ) =2 e o) 2 o5

2

and D(i)=1—1#1+%/~12

_1-34 L
6 15
Therefore
xt+ (xt)% — A{;xt + ;(xt)% — i (x t+ t\/;)}
R(x,t;4) =

1-(5/6) A +(1/50) 2*

Hence the required solution is
1
g(x)=f(x)=2] R(x.t;2)(z) dt
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Xt + (xt)% — A{; xt +;(xt)% —i(x t+ t\/;)}

1
or = A tdt
glx)=x+ ], 1 (5/6)2 + (1/150)2
1
_. 2 £+2\/;t% ot 2xAr” axar? 2Jxal’
1-(5/6) 2+(1/150) 2* | 3 5 6 15 25 15
0

=x+

x 2\/__&_2/1\/_ 4xa 224x
(/)“(/50) 6 15 25 15

150x + 1(60\/; _ 75x) +21x 2
B 221251 +150

Example 8 : Solve the integral equations

g(x)=1+A [ sin(x+¢)g(t) dt

Solution : Comparing the given equation with the standard Fredholm integral equation of second kind,
we find that

0, b=x, f(x)=1, K(x,t)=sin(x +1)

Now, By(x,t)= K(x,t)=sin(x+1)

Uy =1, M, = J:Bpfl(s,s) ds, p>1 ...(59)

and B, (x,1)= /,tpK(x,t)—pI: sin(x+z) B

p-1

(z,t) dz, p>1 ...(60)

Taking p =1 in(59), we obtain

u,= [ By(s,s) ds = [sin2s ds= [_C‘;SZS} =0
0
Also on taking p =1 in (60), we obtain
B,(x,t)= u,K(x,t)= J.: sin(x+z) By(z,t) dz

= —J: sin(x +z) sin(z +¢) dz

_ _%‘Lﬂ {cos(x —t) —cos(x+1+ 22)} dz
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T

_ _%Lﬂ[chS(x—t) _%(x+t+22):|

0
T
= 5 COS(X —t ) (on simplication)

Again, putting p =2 in(59), we obtain

U, = J: By(s,s) ds= J‘;(—ﬂ/2)ds
or Hy == 7[2/2
Next, putting p =2 in(59), we obtain

B,(x,t) = u,K(x,1)=2[ ' K(x,2) B(z.¢) dz

2

=T sin(e )2 sin(x+2) {;icos(z_t)} -

T . Tt .
= 5 sm(x+t)+5 J-O {sm(2z+x—t)+sm(x+t)} dz

T

-7 s _—COS(2Z+X—Z‘)
2

+zsin(x + t)}
0

, _
= _Z sin(x +1) +§ —%cos(x —1) +%cos(x —t)+ msin(x + t)}

Since B,(x,#) =0, it follows (59) and (60) that

B (x,t)=0, u,=0 for p=3

Now, D(x,t;l) = K(x,t)+ i@ Bm(x,t)
m=1 m.

= K(x,t)— A B,(x,1)
. T
=sin(x+1)+ El cos(x —¢)

© _l m
and D(A)ZI‘FZQ U,
m=1 m.
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2

A
=1_i,u1+2_! My

=1-(z*/4) ¥

Therefore R(x,7;4)= D(gf,;)ﬁ)
_ sin(x +¢)+ (A 7/2)cos(x —1)
1- (7[2/4) 5

Thus the required solution is

+1j R(x,t;2) f(t) dt

dt

1y AJ-;T sin(x + ti+(ﬂ. m/2)cos(x —1)

(w47

T

47 A .
= l+m _— cos(x +1) —7s1n(x - t)}

0

47 1 ) 1 :
=l+——|cosx+—rmAsinx+cosx+—rmAsinx
4-1° A" | 2 2

L“@ cosx + 77 Asinx)

of g(x):l+4—7rl

Sel-Learning Exercise

1. State whether the following statements are true of False :
)] Fredholm’s first theorem hold when j is aroot of the equation D (ﬂ,) =0

(i) The unique and continuous solution ofthe Fredholm integral equation of second kind
b
x) + A I K(x,t
is given by
)+ j x,0;2) g(t) dt
where R(x,7;A) isresolvent kernel.
(ii1) The resolvent kernel R (x, t; A) satisfies the following relations :
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R(x.:2) = K(x,0)+ 2 [ K(x,2)R(z,:2) dz
(v)  Theseries D (A) is an absolutely and uniformely converging power series in J .

V) The series D (x, t; A) is not absolutely but uniformely converging power series in .

(vii)  The coefficients u, and the function B, (x,¢) satisfy the following recurrrence relations
b
(a) U, =0, U, = L B, \(s,s)ds

b B(v)=mK(xo)+n [ Kxz)B, (at)dz,  px

2. Define following
)] Fredholm determinant
(i) Fredholm first series
(ii1) Fredholm resolvent kernel.
(iv)  Fredholm minor.
12.4 Summary

In this Unit, we have seen that the Fredholm first theorem enables us to get explicit formula for the

solution of Fredholm integral equation of second kind in term of certain determinant. We have also seen

that the Fredholm resolvent kernel of the integral equation can be found from the recurrence relations.

12.5 Answer’s to Self Learning Exercise

I. )] False (i) False (ii1) True
(iv) True v) False (vi)  False

2. See text.

12.6 Exercise 12

1. Use Fredholm determinants to find the resolvent kernel

R(x,t;A)=D(x,t;1)/ D(A)

ofthekernel K(x,7) = xe' underthe limits ofintegral @ = 0, b = 1. Hence solve the integral equation
1
g(x)=e"+2 IO xe'g(t) dt

—X

xe' ) A xt
=— SOlutIOHg(x):e T, A=l1]

[Ans. R(x,7;1) R 1
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State Fredholm’s first fundamental theorem. Using Fredholm’m theory, solve
1
g(x) =e" +1 '[Oxtg(t) dt

[Ans. g(x)ze“‘+%(1+9e‘°)]

Show by using the Fredholm’s theory that the resolvent kernel for the integral equation with kernel
K(x,t) =1-3xt inthe interval (0,1) is

R(x,t;ﬂ.)=[4 412“1+z—@—3(1—1)xt e

State and prove first and second series for non homogeneous Fredholm integral equation of
second kind.

For the integral equation
g(x)= /() +A[ K(x.0) g(t) di
Compute D(2) and D(x,t;4) for the following kernels for the sepcified limits a and
i  K(xf)=e",a=0,b=1
()  K(x,f)=sin(x+1),a=0,b=7
(i)  K(x,f)=2e%,a=0,b=1
(v) K(x,t)=t,a=4,b=10

[Ans. (i) D(A)=1-24, D(x,t;A)=e""
(ii) D(A)= 1—(712/4))3’ D(x,t;A) = sin(x + t)+§lcos(x—t)

Gi) D(A)=1-A(e’—1), D(x,;;A)=2e"¢"

(ivy  D(a)=1-501, D(x,t;A)=1t]

Determine the resolvent kernel and hence solve the following integral equation

@) g(x) =sinx+ﬂ.J‘410 xg(t)dt
(ii) g(x)=e"+ ﬂ.J: 2e%e g(1) dt

(i) g(x) =sec’ x+ A J.(: g(t) dt
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) glx)=1+] (1-3x)g(r) dr

[Ans. (i) R(x,t;4)=x/(1-422)

(x) Cginx 4 2Axsin7sinz
& 1-422

) 2e‘e’

11 R(x,t;4)=

@ (x ) 1- Z,(ez - l)

(iif) R(x,t;4) =

) R(x,t;2) =%[4—3(x+t)]

Using the Fredholm determinants, find the resolvent kernel of the following kernels :
®  2x-¢t , 0<x<l 0<t<1

(i) sin x cost 0<x<L2rx 012
2x—t—l(§—x—t+2xt)
1= (%) + (%)

(ii) R(x,t; ) =sinxcost |

[Ans. (1) R(x,t;1)=

Using the recurrence relation, find the resolvent kernel of the following kernels

() K(x,t)=x+t+1, _1<x<1, —1<r<I
(i)  K(x,t)=sinx, 0<x<rz
x+t+1+24(xt+ 1
[Ans. () R(x,t;1)= (2 /3)
1—2/1—(4/14)
sinx
i R(x,t;1)=
@  ReuA)=1—7]
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