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PREFACE

The present book entitled ‘“Numerical Analysis” has been designed so as
to cover the unit-wise syllabus of MA/MSc MT-08 course for M.A./M.Sc. Mathematics
(Final) students of Vardhaman Mahaveer Open University, Kota. It can also be used
for competitive examinations. The basic principles and theory have been explained in
a simple, concise and lucid manner. Adequate number of illustrative examples and
exercises have also been included to enable the students to grasp the subject easily.
The units have been written by various experts in the field. The unit writers have
consulted various standard books on the subject and they are thankful to the authors

of these reference books.



Unit -1 : Iterative Methods
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1.0 Objectives

In this unit, we shall study the methods for finding the roots of the equation of the type f(x)=0.

We shall also study the methods for finding solution of system ofnon-linear equations having two varibales,
which can be generalized for more than two variables.

1.1 Introduction

An equation, f (x) =0, is said to be algebric ifit is purely a polynomial in x and is said to be
transcendental if f (x) contains trigonometric, logarithmic or exponential function. For example,

x> +2x% +5x—7=0 is an algebric equation while x’ +sinx=0 and e*logx +tanx +x”> =0 are
transcendental equations.

The value x = ¢ is said to be a root or solution of the equation f(x)=0 ifit satisfies the

equation, i.e.,if /() =0.

The root x=q is a simple root if f(x) contains a factor (x—«a) only once, i.e.,

if f(x) =(x—a)g(x), where g(a)#0,and f'(a)=0.



Theroot x = « is a multiple root with multiplicity m if

f(x)=(x—a)" g(x), where g(a)#0.Inthiscase, f'(a)=f"(a)=.....= f("H)(a) =0 and
S"(a)#0.

We shall study iterative methods to find the root ofthe equation f(x)= 0. To get the solution
using iterative method, first we take an initial approximation x, for the root of the equation and using the
required iterative method, we get an improved approximate value for the root x, (say), called first

approximation. Using x, in the method or formula, we get next improved approximate value x, , called

second approximation. Continuing the process, we obtaina sequence {x, } ofapproximations. If

limx, =«

n—0
then we say that this sequence converges to the root ¢ .
After some finite steps of the above process, we get an approximate root with some error

tolerance ¢. If

x,,, —x,|<é&,forsome 5, and if ¢ is the required error tolerance then we stop the

process.

Let x,—a=¢, and x,,,—a =¢,,, be the error in nth and (n+1)rh approximations

n+l

respectively, then method or process of approximations is said to be convergent, if

Pop>1 (1)

This is called error equation for the method. Here p is said to be the order of iterative method. If

g,.l=cle,

n+l

p =1,then ¢ < 1 and we say that method is of linear convergence. In comparison of two methods, that
method is faster which has greater value of p .

For any iterative method, initial approxmiation is required. To get an initial approxmiation, mostly
the following theorem s used :

“If f(x) is continuous on the interval [a,b| and f(a) and f(b) have opposite signs

then one root of the equation f(x)=0 lies in the interval (a,b).”

Now we shall study some of the iterative methods for finding the root of the given equation f (x) =0.

1.2 Bisection Method

Let the given equation be f(x)=0 and a and b are two points such that f(a)/f(b) <0, ie.,
f(a) and f(b) are ofopposite signs. Also, let f(x) be continuous on the interval [a,b]. Then the root
liesin (a,b).

Let

If f(x,)=0, thenitis the root of the equation, otherwise f'(x,) will have either positive or

negative sign. If, f(x,)f(a) <0, then theroot lies in the interval (a,x,) and we shall take next

2



approximation as

a+x,
X, =
2

otherwise, f(x,) and f (b) will have opposite signs and the next approximation x, will be given by

_%th
b2
Let this interval be [a,,b, ] (say), i.e., x, is the midpoint of [a,,, | . The length of this interval will
be half ofthe original interval [a,b] . Now, the next approximation x, will be the mid point of the interval,
either [a,,x, ] or [x,,b, |, according to the condition f(a,)f(x,) <0 or f(x,)/(b) <0, respectively.

Continuing the process, we obtain the sequence x,, x,, x,..... and we stop the process when we
obtain required error tolerance ¢, i.e.,

X x| <&

n+l — n

In above process, length of the new interval will be exactly half ofthe length of the previous one. At
each step length is reduced by a factor of one-half. At the end of nth step, the new interval will be [an ,bn]]

such that its length is (h—a)/2" . Then, we have

%)
log,
>\ & J

= nz
log, 2

This method has linear convergence and it always works. This method is alos known as Interval
halving method.

Example 1.1 Find areal root ofthe equation x° —9x + 1= 0 by bisection method.

Solution : Given that f(x)=x’—9x+1, then f(2)=-9 and f(3)=1, so that f(2)/(3)<0 and
hence root lies in the interval (2,3), then

2+3
SERENPY £(25)=-588

xO 2 s

so that, /(2.5)f(3) <0, therefore

_25+3

X

=275, f(2.75)=-29531

Thus, f(2.75)/(3)<0,and

275+3
Y, === 2875, /(2875)=-11113

Proceeding similarly, we obtain a sequence of approximations as follows :
3



x, =29375, f(x,)<0

x, =2.96875, f(x,)>0
x,=295313, f(x)>0
X, =294532, f(x)>0
X, =2.94141, £(x,)<0
Xy =2.94337, f(x)>0
X, = 294239, £(x,)<0
X,y = 294288,

Thus, we can take approximate value ofthe root as 2.942 correct upto four significant digit.

1.3

Regula Falsi Method

This method is also known as method of false position. In this method, we take two points x,

and x, such that f(x,)f(x,)<0 and f(x) is continuous on the interval [x,,x, |. Part of the curve

y = f(x) between the points (x,, f(x,)) and (x,, f(x,)) is replaced by a chord joining these two points

and the point of intersection ofthe chord and x -axis is considered as first approximation of the root.

The equation of chord joining (x,, £(x,)) and (x,, f(x,)) is given by

y—f(xo)=w&—xo) (2)
‘yl\
0

Figure 1.1 : Regula Falsi Method

Intersection of equation (2) and x -axis can be obtained by substituting y = 0 inequation (2).

Thus, we have



_ xof(xl) _xlf(xo)
x = .0
f(x)=f(x)
This value of x is considered as a next approximation x, (say). Now, if f(x,)f(x,) <0 then we
consider the chord joining (x,, f(x,)) and (x,, f(x,)) toreplace the part of the curve between this two

points otherwise points (x,, f(x,)) and (x,, f(x,)) will be considered. We repeat this process till

required accuracy is obtained. In general, the sequence of approximations can be obtained by using the
formula :

:xnflf(xn)_‘xnf(xnfl) fl(x,_,)f(x,)<0 ...(4)
T ey

In this method, one point remains fixed. Let fixed point be (xo (% )) .Let o be the exact root

ofthe equation f(x)=0 andlet x, —a = ¢, bethe errorin nth approximation, then using

X :xof(xl)_xnf(xo)
()= (%)

and Taylor’s series expansion of the functions f(a +¢,) and f(a + ¢, ) , we get (after neglecting

higher powers of ¢ ),

= &,u5¢,
This shows that Regula-Falsi method has linear convergence.
1.4 Secant Method
This method is also known as chord method. The technique is similar to Regula-Falsi method.

Only difference is that the condition f(x,_,)f(x,) <0 is dropped and we use last two consecutive points

to get the next approximation.
Thus, the formula is same as that of the Regula-Falsi method (equation (4) of 1.3) without the
condition f'(x, )/ (x,)<0.

a=¢,,,x,_—a=¢,, and f(a)=0 informula (4) of (1.3) and
expanding the functions by taylor’s series, we get

Using x, —a=¢,, x

n+l

/(@)

1
€, = 5 7'(@) €651 (neglecting higher powersof &, and ¢, ),




~

"(e)

1
or €,=ceg, ¢, ,where c=— — ..(5)
2 f'(a)
Let error-equation be
e . =ag’ ...(6)

Solving (5) and (6), we get p =1.618 , i.e.

1.618
n

£, =0E

n+

Thus, convergence of this method is 1.618. Hence secant method is faster than Regula-Falsi
method but it may fail when f/(x,)= f(x,_,).

Example 1.2 Find the real root of the equation x* —2x —5=0 using
(A)  Regula-Falsi method
(B)  Secant method.

Solution : Here f(x)=x’-2x-5, then

f (z) =—1and f (3) =16, so theroot lies in the interval (2, 3). Also, function is continu-
ous in this inteval. Let x, =2 and x, =3.
(A) By Regula Falsi Method : The next iteration is given by

Y = xOf(xl)_xlf(xo)
)= f(x)

(2)(16)-(3)(=1) _ 35

16— (~1) 17

=2.0588
Since, f(2.0588)=-0.3911, so the root lies in the interval (2.0588,3) . Thus, the next iteration is
given by

_ xlf(xz)_xzf(xl)
f(xz)_f(xl)

(3)(-0.3911) - (2.0588)(16)  —34.1141
~03911-16 ~16.3911

=2.0813

Since, f(2.0813)=—0.1468, so the root lies in the interval (2.0813,3). Thus the next iteration is
given by



xlf(x3)_x3f(x1)
f(x3)_f(x1)

Xy =

_ (3)(-01468)—(2.0813)(16)  -33.7412
- ~0.1468 16 ~16.1468

=2.0897
Now, /(2.0897) =-0.0540, so the root lies in the interval (2.0897,3) . Thus, the next iteration is

Y. = xlf(x4)_x4f(x1)
’ f(x4)—f(x1)

(3)(—0.0540)—(2.0897)(16) 335972
—0.0540-16 ~16.0540

—2.0928, f(2.0928)=-0.0195
Similarly, we get
x, =2.0939

Thus, approximate value of the root can be taken as 2.09 correct to two decimal places.

(B) By Secant Method : First and second step of the part (A) will be same here. The next iteration
x, will be obtained using consecutive points x, and x, (where x, =2.0588, x, = 2.0813) instead of

using x, and x,. Thus

x = xzf(x3)_x3f(x2)
Y ()= f(x)

(2.0588)(~0.1468) - (2.0813)(-0.3911)
(-0.1468) - (—0.3911)

051176459
0.2443

=2.0948

Similarly, the next iteration x, can be obtained using the points x, and x, , which s give by

. = x3f(x4)_x4f(x3)
VI CARYIEN

(2.0813)(0.0028) — (2.0948) (~0.1468)
0.0028 — (~0.1468)

031319788
0.1496

=2.0936

Thus, the root is 2.09 correct to two decimal places.
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1.5 Newton-Raphson Method

Let x, be anapproximate root ofthe equation f (x) =0 andlet x,,, bethe correct root such that
X, ,=x +h (7

Then, f(x,,,)=0

= f(x,+h)=0
R f(xn)+hf’(xn)+%f”(xn)+....=0

Neglecting higher powers of / (if 4 is small), we get
f(x,)+hf"(x,)=0

which gives
()
f'(x,)
Then by (7), we have
x Zx—f&» 0,1,2 8
n+l n ' N =U,1,4,....
fx) " ®

Geometrically, we draw a tangent to the curve y = f (x) at initial point (xo (% )) and the point of
intersection of this tangent with x-axis is taken as next approximation, say x,. Then, we again draw a tangent

at (x,, f(x,)) and get the next iteration. Thus, we replace the part of the curve between the point (x, /'(x, )

and the x-axis by the tangent to the curve at that point. This method is also known as tangent method.
y=/(x)

S

(0] //x2 .xl >x

Figure 1.2 : Newton-Raphson Method

For convergence of the method, initial approximation x, must be chosen sufficiently close to the

exact root, i.e, # must be small.



Substituting x, — & = ¢, in(8) and using Taylor’s series expansion with the fact /() =0, we get

error equation as

_ 2 —
g, =ce&.,where c=

which shows that this method has quadratic convergence.
Example 1.3 Find the root ofthe equation sin x — x° = 1 using Newton-Raphson method.
Solution : Giventhat, f(x)=sinx—x’—1

Then f'(x)=cosx —3x’

Now f(-1)=-08415, f(-2)=6.0907

Therefore, the root lies in the interval (—2,—1) and since f (x) is continuous in this interval, we

can take mid point 1 5 asinitial approximation. Using Newton-Raphson method, with x, = —1.5, we get

X, =X, — /(%)
b f’(xo)

: 3
sinx, —x; —1

2
cosx, —3x;

_sin(-15)-(-15)’ -1
cos(—15)—3(~15)’

—(-15
=-12938

The second approximation is given by

sin(~12938)—(~1.2938)" -1
cos(~1.2938) — 3(~1.2938)’

x, =(-12938) -

=-12509

Proceeding similarly, we can get approximate value ofthe root upto required accuracy.

1.5.1 Newton-Raphson method for nearly equal roots

When f ’(x) is very small or nearly equal to zero at x = ¢ then there will be two nearly equal

roots in the neighbourhood of x = a if f(a)#0 and f(a)/f"(a)<O.

Expanding f(x) about x = ¢ , we get




neglecting the terms containing third and higher order of (x - a) and using the fact that f (x) =0
and f'(a)=0,we get

2
which gives
_ 4 |2f)
x=at f”(a) ..(9)

Thus, one root is in left of @ and the other is in right. These two values, further can be improved
separately by Newton-Raphson scheme taking these values as initial approximations.

Example 1.4 Find two nearly equalroots of the equation x° —4.8x> + 6.5x —2.7 = 0 inthe neighbourhood
Of X = 1 .

Solution : Here f(x)=x’-438x"+656x-2.7,
f'(x)=3x*-9.6x+656
f”(x) =6x-9.6

Now, f ’(1) =—0.04, which is very small, also f (1) #0 and f (1) f ”(1) < 0, therefore, there
exist two roots in the neighbourhood of x = 1, which are nearly equal. Taking a = 1, we get f/(1) = 0.06
and f"(1)=-3.6 and by scheme (9), we have

-2x0.06
x=1f |———
-3.6
=1£+/0.03333
=1+018257
which gives,
x, =1+018257
= 118257

and  x, =1-0.18257

=0.81743

These are approximate values of two roots in the neighbourhood of x =1, which can be
improved by Newton-Raphson method.

1.5.2 Newton-Raphson method fro pth root of a number
We can find pth root of a given number N using Newton-Raphson method as follows :

Let
10



(N)7 =x
Which can be written as

xP-=N=0

Thus, root of this equation will be the required solution.
Taking f(x)=x"-N,
We get f'(x)=px"",

Then, by scheme (8), we have

(x =)
‘xn+1 = xn - pxp—l
p-1)x’+N
or X1 Z% .(11)

Example 1.6 Find square root of 10 using Newton-Raphson method.

Solution : Since \/9 < /10 < /16,
thatis, 3 < /10 < 4,

therefore square root of 10 lies in the interval (3,4). Let us take x, =32 as a initial
approximation.

Now, from scheme (11), we have

Xorl = -1 , N = 0,1,2, ......

Here p=2, Ny =10, so that

x+10
Yo =T n=0,12,

Thus,

bo2x, 2(32)
2024 _ 31625
6.4

11



(3.1625)° +10 2000140625

Again, 2 =75 31623 6325

=3.162278
Similarly, the next iteration is given by

_ (3162278)" +10

X, = =3.162278
2(3.162278)

thus, we can take y = 3162278 asthe square root of 10 correct upto six decimal places.

1.6 Iteration Method

The equation f (x) =0 canbe rewritten as

x:q)(x) ..(12)
then the recurrence relation
xn+1 :¢(‘xn)’ n:03132a"' (13)

can be taken as iterative scheme to get the required root, provided that

¢'(x)‘ <1

where x is in the neighbourhood ofexact root ¢ . This condition is necessary for the convergence
ofthe scheme (13).We can verify this condition as follows :

Let o be the exact root of the equation f (x) =0, then by (12), we have

a=¢(a) ..(14)

andif x, —a=¢,,x,,, —a=¢,, areerrorsin x, and x, , approximations respectively, then
by (13), we have

Xy —O= ¢(Xn)—05

=¢(x,)-¢(a) (by (14))
ACARTICINS
- (xn —Ot) (xn Ot)
=  &,,=¢,¢9(a,),where a <a, <x,
or €, =cg,,where c=¢'(a,) ..(15)

This shows that scheme (13) has linear convergence if |C| <l1,j.e.,

¢'(a,) <1, where o, isin

the neighbourhood of ¢ . Hence the condition is verified.

12



Example 1.7 Find a root of the equation

3x—+/l+sinx =0

using iteration method.

Solution : Here f/(x)=3x—+/1+sinx , then
£(0)=-1and f(1)=(3-1+sin1)=1932

therefore root lies in the interval (0,1) . Let us take initial approximation x, = 0.5 . The given

equation can be written as

Vi+sinx

3 ¢(x) (say)

X =

COSX

then ¢ (x) = 614 sinx

Now, since |cos x| <1, therefore

¢'(x)| <1, inthe neighbourhood of x, = 05.
Thus, the iteration scheme is given by

J1+sinx,
X, =—,n=0,12,......

n+l
3

so that

[Trsing,  y1+5in(03
%, = 1+§me - +S;n( ) _ 040544

the next iteration is given by

_ J1+sin(040544)
- 3

=0.39362

X5

Similarly, we can get other approximations given by

x, = 039208
x, =039188
x, = 039185
x, = 039185

Thus, the root is 0.39185 correct upto five decimal places.

13



1.6.1 Aitken’s A’ -method to accelerate the convergence

We know that the convergence of iteration method is linear which can be accelerated by the

method known as Aitken’s A’ -method. By the error equation (15), we have
x,,—a=C(x,—a)

and x,—a=C(x, —a)

which gives
a = anrl (‘xn+l _xn )2
(‘xn+l - 2xn + xn—l)
(A X, )2
or =X, - Ny ...(16)

where A is forward difference operator. Forward differences Ax, and A’x, , can be obtained
by constructing forward difference table for three consecutive values of approximations of the root.

Example 1.8 ApplyAitken’s A*-method to find aroot ofthe equation

- 2 2
sin“x=x" -1

Solution : Given equation can be written as
sin® x —x? +1= 0, so that
f()c)zsinzx—x2 +1
then  f(1)=0.78 and f(2)=-2.173.

Thus, root ofthe equation lies in the interval (1,2) . Let us take initial approximation x, = 1.5. Now

the equation can be written as
x=+1+sin’ x = ¢(x) (say)

sin x cosx

e ) s

¢'(x)‘ <1 in the neighbourhood of x, = 1.5, we can take iterative scheme as

s 2
X, =+l+sin"x, , n=0,12,..........

Since

then

x, =1 +sin’ x, = /1 +sin’(15) = 1.41244,

14



x, =y 1+sin® x, =1+ sin’(141244) = 1405394
similarly, x, = 1404596

After getting three consecutive approximations we can apply Aitken’s A’ -method. Let us
construct forward difference table.

x, = 1412443
Ax, =—0.007049

x, = 1405394 Ax, =0.006251
Ax, =—0.000798

x, = 1404596

Now, the next iteration is given by

. Ax ?
o 0)
1

(~0.000798)’

= 1404596
(0.006251)

= 1404494

Again using iteration scheme, we get

x; = /1+sin’ x; = /1+5in*(1.404494) = 1404492

Thus, the root is 1.40449 correct upto six significant digits.

1.7 System of Non-Linear Equations

Now we shall study the methods for finding the solution of a system of non-linear equations,
particularly, system of two equations in two varibales x and y, which can be written as

f(x,y)=0

g(x, y) =0
The methods can be generalized to a system of » equations in n varibles.

1.7.1 Newton-Raphson method

Let (c, 3) be the solution of the system

f(x,)=0, g(x,y)=0

therefore, f(at,8)=0, g(a,B)=0 ..(17)

15



Let (x,,y,) bean initial approximation to the solution of the system and let

a=x,+h, =y, +k
then by (17), we have

S(xy+h,y,+k)=0 and g(x,+h,y,+k)=0 ..(18)
Let us assume that f* and g are differentiable. Expanding (18), using Taylor’s series, we have

fo+hfxo+kfy0+ ........ =0

and gythg, +tkg, +...... =0 ..(19)

R A
where f, = f(x0,¥,), 7% " | Ay SEN N etc.
(x0.20) (x0.70)
Neglecting the second and higher order terms in (19), we get
hfxo +kfy0 :_fO
and hg, +kg, =-g ...(20)

Solving these two equations for 4 and k , we get

A B
h= Wi and k = 7
A__fO fyo B_fro _fO
Where —g, g | g. —&
f"o f)’o
and “lo. g #0 (21)
Xo Yo

The next approximation (x,, y, ) to the solution is given by
X, =X,+h, y=y,+k ..(22)

Proceeding as above, finding the values 4, B and J at (x,,y,), we can get increment / and k

in x, and Y, so that the new approximation will be given by

x,=x,+hand y, =y +k

This process is to be continued till the required accuracy is obtained.

Example 1.9 : Solve the following system of equations by Newton-Raphson method :

y—sin(x+y)=0

x—cos(y—x)=0
16



taking initial approximation x, = 1,y, = 1.

Solution : Given that
f(x,y) =y- sin(x + y)

and g(x,y) =x- cos(y - x)

then,
P S
8= 08 =1-sin(y 1), g, = 7 =sin(y-)

Here (x,,y,)=(L1), then
fo = f(x4,7,)=1-sin(1+1)=0.090703
gy =g(x,¥,)=1-cos(1-1)=0
S, = (X0, 95)=—cos(1+1)=0416147
Sy, =1 (%05 95)=1=cos(1+1)=1416147
g, =&.(%0,¥,)=1-sin(1-1)=1

gy, =8&,(%yo)=sin(1-1)=0

Now,
S Sy 1 ‘0.416147 1.0416147‘
& &, [ 0
=—1416147(+0)
PO ‘—0.090703 1.416147‘
-8 &, 0 0
=0
atfn Tl _ ‘0.416147 - 0.090703‘
gxo - gO l O
=0.090703
Then,
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A 0

- -0
J -—1416147

B 0090703
k=—= —"——"—=-0.064049
and J 1416147

Thus, the first approximation (x,, y, ) is given by
X, =x,+h=1+0=1

Y, =Y, +k=1-0.064049=0935951

Now, we have

fi=f(x,»)=0001882

g, =g(x,,»,)=0.002050

S = f(x,,3,)=0357094
£, =1, (x,»,)=1357094
g, =&(x,)=1064005

g, =g,(x,y,)=—0064005

Now,
o fo S| [0357094 1357094
Tle. g, | 1064005  —0.064005
=—-1.466811
Lo L] 0001882 1357094
g g, | |F0002050  —0.064005
=0.002902
5 fo  —A| |0357094  —0.001882
g, —&| [L0064005  —0.002050
=0.001270
Then,
p= A 0002902 _ 4561978
J —1466811

18



, kB 0001270
an J  —1466811

=-0.000866

Thus, the second approximation (x,, y, ) is given by

X,=x,+h =

1-0.001978=0.998022

v, =y, +k = 0935951=0.000866 = 0.935085

The approximate solution can be taken as
x=0.998022, y=0.935085
1.7.2 Iteration Method

This method is similar to the iteration method (1.6) used for single equation in one variable. The
given system of equation f'(x,y)=0 and g(x,y)= 0 canbe rewritten as

x=F(x,y) and y=G(x,»)

..(23)
If; in the neighbourhood of'the solution of th system,
OF | |OF
—|+—<1,
ox| |0y
é’_G + é’_G <1
and ox| oy ..(24)
then the scheme (23) will be convergent and hence
x,.,=F(x,,y,),n=0,12,...
Y,u=G(x,,»,),n=012,.. ..(25)

can be taken as iterative scheme to find the solution ofthe given system.

Example 1.10 Find areal solution of the equations
x*—5x+4=0

3x)y° =10y +7=0
taking initial approximation as (0.5, 0.5).

Solution : The given system can be written as
L
x=g(x +4)=F(x,y)

1
% ZE(3xy2 + 7) =G(x,y)
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|oF| |oF| |24]

so that, é’x‘+‘é’y‘_| 5 |+|0|
=0.2at x,=05,y,=05
26|, |G| _3y?], 6]
and (55| 10| 0]
=0.075+0.15

=0225 at x,=05, y,=05

Thus, the condition of convergence is satisfied, so the iterative scheme is

X Z%(x,f +4), n=0,12,...

|
Vot = E(3xny,f +7), n=0,12,....

Now, the first approximation is given by

X, = %(xg +4)= %[(0.5)2 +4]=08s

1 1
3 =5 (35005 +7) = [3(05)(05) +7)=07375

Second approximation is given by

X, = %(xf +4)= %[(0.85)2 +4] = 09445

I 1
yr =15 (3xy +7) = E[3(0.85)(0.7375)2 +7|

=0.8387
Similarly, we can obtain other approximations as
x, =09784, v, =08993
x, =09915, v, =09374
x5 =0.9966, s =09614

The solution will convergeto x =1, y=1.

Self-Learning Exercise

1. If ¢ is a simple root of the equation f(x)=0, then
(@) f(x)=(x-a)g(x), gla)=0 (b) f(x-a)g(x), gla)=0

() f(x)z(X—a)zg(x), g(a)#0 " (d) f(X)Z(X—a)zg(x), g(a)=0



2. If o is amultiple root of the equation f (x) = 0 with multiplicity » , then
@  fl@)=f"(a)=.= " (a)=0and " (a)=0
®  fla)=f'(@)=..= " a)=0
(¢©)  f(a)=0 butno derivate of f(x) at x = & is zero
(d  f(a)#0 butallderivatives of f(x)ar x = o are zero
3. For an iterative method error equation is given by
@ g5e p>] ®) g =el P
© ezl p<l @ o=ef Pl
4. Secont method is also known as ...........
5. Newton-Raphson method is known as ...........
6. Write the condition for Newton-Raphson method to be convergent.
7. In Secant method the condition f(x, )/ (x,_,) <0 isnecessary. (True/False)
8. What is the condition for iterative scheme x = ¢(x) so that it becomes convergent?
1.8 Summary

In this unit, we have studied different methods for finding the solution of a non-linear equation and

solution of a system of non-linear equations. All the methods were iterative in nature. We have also
discussed about the choice of initial approximations and different conditions of convergence for these

iterative methods.
1.9 Answers of Self-Learning Exercise
1. (b 2. (3 3 (a)
4. Chord method
5. Tangent method
6. Initial approximation should be very close to the exact root.
7. False.
8. ‘gb’(x)‘ <1, in the neighbourhood of the root.
1.10 Exercises
1. Find the root of the equation log x — cosx = 0 by Bisection method.
(Ans. 1.42 correct upto two decimal places)
2. Find areal root of the equation x° — x — 1= 0 using Bisection method.

(Ans. 1.328125 after fifth iteration)
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Find the root of the equation 4sinx + x* = 0 by secant method.

(Ans.  -193375)
Solve the equation x log,, x = 1.2 by Regula-Falsi Method.
(Ans. 2.7406)

Find a real root of the equation x° + x* — 1 = 0 by iterative method.
q y

(Ans. 0.755)

Find the root of the equation x* —Sx +2 = 0 correct to four decimal places by Newton-Raphson
method.

(Ans. 0.4384)

Find the square root of 8.

(Ans. 2.8284)
Find cube root of 10.
(Ans. 2.1544)

Find double root of the equation

X —x’—x+1=0
Taking initial approximation x,, = 0.9
(Ans. 1)

Find the solution of the system
x4+ Y +xy-7=0
¥ +y'=9=0
by taking (x,,»,) = (15,0.5) using

(a) Newton-Raphson method

(b) Iteration method.

(Ans. x=20013, ¥=0.9987)

miNININ
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Unit -2 : Chebyshev Method, Muller’s Method, Methods for Multiple
and Complex Roots

Structure of the Unit

2.0 Objectives

2.1 Introduction

2.2 Chebyshev Method

2.3 Muller’s Method

2.4  Newton-Raphson method for multiple root
2.5  Newton-Raphson method for complex roots
2.6 Summary

2.7  Answers of Self Learning Exercise

2.8 Exercises

2.0 Objectives

In this unit we shall study Chebyshev method and Muller’s method for finding a root of the

equation f(x)= 0. We shall also study Newton-Raphson method for finding multiple root and complex
roots ofthe equation.

2.1 Introduction

Chebyshev method is also known as third order method. Its convergence is three, there fore it is
faster than Newton-Raphson method which has convergnence two. In previous unit, we studied the

methods in which function f (x) , inthe neighbourhood of'the root, was approximated by a straight line.

Muller’s method is based on approximating the function in the neighbourhood of'the root by a quadratic
polynomial. Then the root is approximated by this quadratic polynomial. With the help of Newton-Rahson
method, studied in unit-1, we can also find multiple roots and complex roots.

2.2 Chebyshev Method

Let x, and x,,, be two consecutive approximations to the root x = ¢ ofthe equation /(x)=0.
Let

X, ,=x,+h (D)

x .. will be exact root if

n+l

f(an) = 0
or f(x,+h)=0 ..(2)
Expanding, using Taylor’s series, we have

F(or,)+h f'(xn)+}£—! £7(, Y= 0 -0
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Neglecting third and higher power of h, we get

hZ

f(xn)+hf'(xn)+?f”(xn)=0

which gives
__S) _mfM(x)

h= f'(xn) " f’(‘xn) ..(4)

If we neglect the term containing 4 also, then from (4), we have
(%)
h= f’(‘xn) ..(5)

using this value of j, inR.H.S. of (4), we have

]

then by (1), we have

S [T )
() 2{f'(x,,)} (%) ..(6)

This is known as Chebyshev method of third order or Newton-Raphson extended formula.
Error equation of this method is given by

8n+1 < Mgi
where, M:[f"(a)} _%fm(a),
') 3 f'(a)

which shows that this method has third order convergence.

Example 2.1 Find the root ofthe equation 4 _ . _1( = ( using chebyshev method.
Solution : Here, f(x)=x"-x-10,

then  f'(x)=4x"-1,

and  f"(x)=12x"

Also, since f(l) =—-10 and f(2) =4, root lies in the interval (1,2). Let us take initial

approximation as x, = 1.5, then

f(x,)=x —x,~10=(15)" - (15) - 10 = ~64375,
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f(x,)=4x; —1=4(15) ~1=125,
and  f"(x,)=12x2 =12(15)" =27,

then by Chebyshev scheme, we have

o _EL{ ’((fcoo))}z jff‘((;coo ))

X=Xy —

_ 15 (F64375) 1[—6.4375}2[ 27 )

125 2| 125 125

=15+0515-0.2864
=1.7286

For second iteration, we have
f(x,)=(17286)" —(1.7286) — 10 = ~2.8001 ,
£(x) = 4(1.7286)" —1=19.6606 ,
£"(x)=12(1.7286)" = 358567

thus,

x, = 17286 -

(-2.8001) 11280017 [35.8567)
19.6606 2] 19.6606 ] \ 19.6606
= 17286 +0.1424 - 0.0185

= 18525

The third approximation can be obtained as follows
f(x,)=-0.0755,
f'(x,)=244293
f"(x,)=411810,

Hence, x, =1.8525+0.0031-0

=1.8556

Similarly, the fourth approximation is x, = 1.8556 , Thus, the approximate value of the root is
1.8556 correct upto four decimal places.

Example 2.2 Find teh square root of 13 using
(a) Newton-Raphson method

(b) Chebyshev method
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Solution : Let 13 = x , then x* = 13, that is
x=13=0
Thus, f(x)=x"-13,
Sf'(x)=2x
S(x)=2
Also, 9 <\13<4/16

= 3<\/B<4

Thus, we can take initial approximationas x, = 3.5

(a) By Newton-Raphson Method :

2x) —x. +13
2x

n

Thus,

x+13
‘xn+1 = 2x

so that,

Cx2+13 (35)+13

1 =3.607143
2x, 2(35)

Cx2+13 (3607143) +13

X, =3605551
2x, 2(3.607143)

Similarly, third approximation is x, = 3.605551, so square root of 13 is takes as 3.605551
correct upto six decimal places.

(b) By Chebyshew Method :




then, for the first iteration, we have

f(x))=x; -13=-0.75
f'(x)=2x,=7

f”(xo) =2

and x, =x,— ——

7 2

35 (079 _1[(—0.75)}2 ( % )

=35+0.107143-0.0016400
=3.605503

Again, for the second iteration, we have
S(x)=x] —13=-0.000348

f'(x))=2x} =7211006

fr(n)=2
L S) 1) ] )
Then, X> =% f,(xl) 2|:f'(x1):| f'(xo)

2
—0. 48 —-0.000348
=3.605503—( 0.000348) _ 1 [( )} ( 2 )

7211006 2| 7211006 | 7211006

=3.605503 +0.000048 — 0

=3.605551
Similarly, the third iteration is given by

x, = 3.605551, hence square root of 13 is 3 605551 correct upto six decimal places.
Example 2.3 Find the root ofthe equation
X=x'=x-1=0
using chebyshev method and Newton-Raphson method. Compare the results.

Solution : By Chebyshev method :
Here, f(x)=x"-x"-x-1,

f'(x)=3x*-2x-1,
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f(x)=6x-2
Also, f(l) =-2 and f(2) =1, hence root lies in the interval (1,2) . Let us take initial

approximation x, = 1.5.

The first iteration x, can be obtained as follows
f(x)=x3—x2—x,~1=(15)"—(15)" =15-1= 1375
f(x) = 3x2 = 2x, —1=3(15)" —2(15) ~1=2.75
F(x,)=6x,-2=6(15)-2=7

Substituting the values, we get

x,=15+05-0.318182

= 1681818

For second iteration, we have

f(x,)=(1681818)" —(1.681818)" —(1.681818) 1
=-0.753288
£(x,)=3(1681818)° —2(1.681818) -1
=4121899
f"(x,)=6(1.681818) -2
=8.090908
then,

x, = 1681818+ 0182753 — - (~0.182753) (1962908)
2

=1831792

Proceeding similarly, we get following approximations
x, = 1839287,
x, = 1839287
Therefore, the root is 1.839287 correct upto six decimal places.

By Newton-Raphson Method : Proceeding as above and taking initial approximation as x, = 1.5, the
first iteration is given by

(-1375)
- L
f(x,) 275
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=15+05=2

For second iteration, we have

f(x)=02)-2) -2-1=1

2

F(x)=3(2) -2(2)-1=7
o f) 1
then, X2 =X f’(xl)_z 7—1.857143

For third iteration, we have

f(x,)=(1857143)" —(1857143)" —(1857143) - 1
=0.099126

£(x,)=3(1857143)" —2(1857143) -1

— 5632654
then,
o=, LU _gs7143 0099126
7'(x) 5632654
~ 1839545

Proceeding similarly, we get following approximations :

x, = 1839287

x; = 1839287

Thus, the root can be takes as 1839287 correct upto six decimal palces.

We observe that, by chebyshev method we obtain the root in three iterations while by the Newton-
Raphson method root of same accuracy is obtained in four iterations.

2.3 Muller’s Method

In this method, function f (x) is approximated by a quadratic polynomial in the neighbourhood of

the root of the equation f (x) = 0. Then the root is approximated by the zero of this interpolating
quadratic curve.

To find the quadratic curve we need three points, say (x,,y,), (x,_,,»,,) and (x,_,,y, ,) where

y, = f(x,) etc. Let the interpolating quadratic curve be

f(x)= A()c—)cl.)2 +B(x—x,)+y, (7

passing through above three points. Then we have
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Vi =A(x, - )cl.)2 +B(x_, —x,)+y, ..(8)
and Vi = A(‘x[—2 _xi)z +B(‘x[—2 _xi)+yi +(9)
Solving equation (8) and equation (9), we get

A B
A:EI and BZEI

where, 4, = (‘xi _xi—Z)(yi _yifl)_ (xi - xifl)(yi _yi72)

4, = (‘xi _xifl)z (y[ _yifl)_ (‘x[ - XH)2 (y[ _y[72)
and D= (xi X )(xi X ) (XH - xi72)

The equation (7) has roots

( ) ~B+,/B>—44y,
X=X )=

24

when f(x)=0 ..(10)

so the next approximation is given by

—B+.B’-44y,

X =Xt

: 24
2y,
Xigp =X —
or 1 B+.B —44y,
2y,
X, =X ——
or M =N T ..(11)

where (C= ,132_4,4);1,

We select that root which is nearer to x, . For this, the sign before the radical in (11) is chosen

which gives larger magnitude for the denominator. That is, if B is positive we should take positive sign
otherwise negative sign should be taken.

The rate of convergence of the method is 1.84.

Example 2.4 Find the root of the equation x* —2x —5 =0 by Muller’s method. Take 1, 2 and 3 as initial
approximations.

Solution : Let y=x’-2x-5and x,=1, x, =2, x, =3

Then y,=-6, y,=-1, y, =16.
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First Iteration :
X —x;=1,x,-x,=2, x,—x,=1
and  y, -y =17, y, -y, =22

so that,

p—
\S}
0N

o
AN
(o)}

and  C=[B —4dy, =/(23) —(4)(6)(16) = 12.041595

Since B>(,so0

Xy =x,— B2_yzc = 2.086800
+

Second Iteration : Now, x, =2, x, =3 and x, =2.086800, then y,=-1, y, =16 and
v, =—0.086141.

Also, x,—x, =-0913200, x, —x, =0.086800,
x,—-x,=1, y,—y, =-16086141,

v, —, = 0913859

so that
D =-0.079266 4,=-0561741,
A4, =-0883295, A=7.086784
B =11143428, C=11252459

Since B>, so
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X = x, - BZ_yzc — 2094493
+

Third Iteration : x, =3, x, =2.086800, x, =2.094493
then, y, =16, y, =-0.086141, y, =-0.000653
and  x, —x, =0.007693, x, — x, = -0.905507,
x, —x,=-0913200, y, —y, =0.085488,
Y, =¥, =—16.000653
sothat D =0.006361, 4, =0.045683

4,=0071042, 4=7.181732, B=11.168370
C=11169210
hence x, =2.094551

Thus the approximate root of the equation is 2.0945

Example 2.5 Performtwo iterations of Muller’s method to find the root ofthe equation
x’—x-1=0
Take x, =—1, x, =05, x, =1 as initial approximations.
Solution : Let y =x’ —x—1and x, =-1, x, =05, x, =1

then y, =-1, y, =-1375, y, =-1

First Iteration :
X, —x, =05, x,-x,=2, X, —x, =15
v, =9, =0375, y, -y, =0
Now,
D =(x,—x,)(x, —x,)(x, —x,) =(2)(05)(15)
=15,
A= (2= x0) (v, = 3) = (% = x) (02 = )
= (2)(0375)~ (05)(0)
=0.750
Ay = (3, =2,) (1 =31) = (% =) (7, - )
= (4)(0375)~ (025)(0)

=15
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so that,

Ao 070 o
D 15
4 _15_,
D 15
C= B =44y, = (1) =(4)(05)(-1)
=1.732051

Since B > (), therefore x, is obtained by the formula

_ 1_—(2)(_1) =1.732051
1+1.732051

Second Iteration :

Now, x,=05, x, =1, x,=1732051

and  y,=-1375, y, =-1, y, =2.464103
x, —x, =0.732051, x, —x, =1232051
x,—x,=05, y,—y =3464103, y, —y, =3839103
D =0.450962, 4, =1457532, 4, =3.200964

A=3232051, B=7.098079 and C =4.304219

hence,
x, = 1299839
Thus approximate root is 1299839 after two iterations.

2.4 Newton-Raphson Method for Multiple Root

The multiple root of the equation f (x) = 0 with multiplicity s canbe obtained using the formula

..(12)
This is called generalised Newton-Raphson Method. Multiple root can also be obtained using

Newton-Raphson method for simple root, but it will have linear convergence. If the multiple root is

obtained by scheme (12), then the convergence will be quadratic as in usual case

33



Example 2.6 Show that x =1 isa multiple root of equation

X =3x*+3x-1=0

with multiplicity three.
Solution : Here f(x)=x—-3x"+3x-1,
then  f'(x)=3x"-6x+3,

S"(x)=6x-6,and f"(x)=6

but /(1) %0

Thus, x =1 isamultiple root with multiplicity three.
Example 2.7 : Find aroot of the equation
X +xt—x-1=0
with multiplicity 2, taking initial approximationas x, = —0.9.
Solution : Here f(x)=x"+x—x-1
Then  f'(x)=3x>+2x-1
Generalized Newton’s scheme is

2/(x,)
A(CH

for multiplicity ;; = 2 . Onsimplification, we get

=X

x) +x, +2
‘xn+1 = 2 N
3x, +2x, -1

Taking x, = -0.9, we get

(-09)’ +(-09)+2 0371
X, = =
' 3(=09)" +2(-09)-1 —0370

=-100270

The second approximation is given by

(~1.0027)" +(~1.0027) +2
X, =
*3(=10027)" +2(~1.0027) -1
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_—0010821889 _ 100002
0.010821870

The third approximation is given by

(~1.00002)” +(~1.00002) +2
3(~1.00002) +2(~1.00002) -1

=-1
Thus, therootis x = —1.

Example 2.8 Find double root of the equation
x*=0.75x+025=0
taking initial approximation x, = 0.3
Solution : Here f(x)=x"-0.75x+0.25
then  f'(x)=3x"-075

For multiplicity 2, Newton’s scheme is

Substituting the values of f(x) and f”(x), on simplification, we get

.- x, +0.75x, —05
S 3x2 -0.75

taking x, = 0.3, we get

~(03)"+(0.75)(03)- 05
b 3(03)7-(079)

=0516667

The second approximation is

(0516667 +(0.75)(0516667) - 05
X, =
’ 3(0516667)° —0.75

=0.500091

Similarly, the third approximation can be obtained which is x, = 0.5. This value is the correct
double root ofthe given equation.
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2.5 Newton-Raphson Method for Complex Roots

A non-linear equation may have complex roots even if all coefficients of the equation are real.
Complex roots always occur in pair. The iterative methods like Newton-Raphson method or secant method
discussed in unit-1 are applicable to find complex roots provided that complex initial approximation and
complex arithmetic are used.

Let f (z) = 0 is anon-linear equation where z is a complex variable, then

f(z):f(x+iy)=u(x,y)+iv(x,y)=0

where © and v are real functions. Thus, the problem of finding a complex root of f (z) =01is

equivalent to finding real values x and y by solving system of two non-linear equations
u (x, y) =0

v (x, y) =0
Methods for solving this sytem have been discussed in unit-1 (section 1.7).
Example 2.9 Find complex root of the equation

Z24+1=0

1 : . o
By Newton-Raphson method. Use 2, = 5 (1+ l) as an initial approximation.

Solution : Here z = x +iy, then z* +1= 0 gives

(x + iy)2 +1=0
or (x2 -y’ +1)+(2xy)i =0
thatis, x> —y*+1=0 and 2xy=0
Let  f(x,y)=x"—»"+1and g(x,y)=2xy
and initial approximation is

: 1 :
Zy =X, ti Y, :E(l+z)

which gives
x,=05,y,=05
that is,

(x,,»,)=(05,05)

af
Now Jfe=—-=2x f,=—"==2y
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Now,

and

then,

fo = [ (x0,0) =2(05) =1
fon =1 (x0,20) = =2(05) =~1
g, = & (%,%,)=2(05) =1

g, =&, (%0,7,)=2(05)=1

_fxo fyo _‘l _l‘_z
g, &, |I 1
-t -1 -1
A= " —-15
_go gyo _05 l
fo —hHl 1 =1
B=[" = ~05
gxo _go 1 _0.5
p=2-7_ g7,
J
k=295 _05
J

So the first approximation (x,, y, ) is given by

X, =x,+h=05-075=-025

V=Y, +k=05+025=0.75

Now, for the second approximation, we have

fi=f(x,y)=f(-025075)=05
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g =g(x.,»)=2(-025,0.75)=-0375
S = 11 (x,,)=2(-025) =05

£, =1, (x1.0) ==2(-075)=-15

g, =&, (x,»)=2(075)=15

gyl = gy (x1’y1) = 2(_025) =-05

Lo S| |F05 -15
Now, J= = =25
8. &, L5 -05
-fi f,| |-05 -15
A= = = 08125
~g, g,| [0375 -05
S —A] |-05 -05
=" M= = 05625
8. —& L5 0375
Then,
p=A 08125 _ 505
J 25
=B 0562505
J 25

The second approximation (x,, y, ) is given by
X, = x, +h=—-025+0325=0075

vy =y, +k =075+0225= 0975

Proceeding similarly we can obtain the solution (0, 1), that is, exact root (+; or ; and its
conjugate —i will also be aroot.

Self-Learning Exercise

1. Convergence of the chebyshev method is

(@) 2 (b) 3 (©) 1 (d) 1.62
2. In muller method, root of the equation is approximated by

(a) Tangent (b) Chord

(c) Quadratic polynomial (d) Cubic polynomial
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3. Ifmultiple root is obtained by Newton-Raphson method for simple root, then the convergence of
the method will be
(a) reduced (b) increased (c) remainsame  (d) oscillates

4. If 1+ isaroot of some equation then the another root of that equation will be
@@ 1 (b ©  1-i @  2(1+0)

2.6 Summary

In this unit we studied some methods to find simple root, multiple root and complex root ofa

non-linear equation in one variable. For finding a complex root we can use the methods discussed in
previous unit to find the solution of system of non-linear equations. Complex roots always occur in pair.

2.7 Answers of Self-Learning Exercise
1. b 2. C
3. a 4. C
2.8 Exercises
1. Find aroot of equation 3x —cosx = 1 by chebyshev method.
(Ans. 060710165 )
2. Find a root of equation cosx —xe* = 0 by chebyshev method.
(Ans.  0517757)
3. Find the root of the equation x’ —x* —x—1= 0 using Muller’s method, taking initial
approximationas x, =0, x, =1, x, =2,
(Ans. 1..839287)
4, Find a double root of the equation x* —x* —x +1=0 in the neighbourhood of0.8.
(Ans. 1)
5. Find complex roots of the equation z* —2z° + z — 2 = 0 taking initial approximation

2z, =05+05i.

(Ans. ti)

miNININ
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Unit -3 : Solution of Polynomial Equations

Structure of the Unit

3.0  Objectives

3.1 Introduction

3.2 Synthetic Division

3.3 Birge-Vieta Method

3.4  Bairstow Method

3.5  Graeffe’s Root Squaring Method
3.6 Summary

3.7  Answers of Self-Learning Exercise

3.8 Exercises

3.0 Objectives

In this unit we shall study iterative methods to find the root of'a polynomial equation. Birge-Vieta,
Bairstow and Graeffe’s root squaring methods are applicable only on polynomial equations. We shall also
study synthetic division, which is also applicable only on polynomial-equations.

3.1 Introduction

Inunit-1, we defined the polynomial equation and the transcendental equation. An equation f (x) =0

is said to be algebric or polynomial equation if f(x) is purely a polynomial in varibale x . Inprevious units,

methods studied, were applicable on both algebric and transcendental equations. In this unit we consider
the polynomial of degree 5, invaribale x,

f(x)=P(x)=ax"+ax"" +a,x"*+....+a, x+a,=0

n

where a,#0 and a,,a,,4a,,......... ,a, are real numbers. Fundamental theorem states that
algebraic or polynomial equation of degree n has exactly » roots.

3.2 Synthetic Division

With the help of synthetic division algorithm we can obtain quotient and remainder on division of a
polynomial of degree n by a linear factor. This algorithm can also be used to evaluate polynomials and
thier derivatives at given value of x . The process of division is as follows :

Let P,(x) bea polynomial of degree n such that

P(x)=apx"+ax"" +a,x"+........ a, x+a (1)

with @, # 0 and a,,a,,.....a, arerealnumbers. Let, we have to divide this polynomial by a linear

factor (x — a) . In this case remainder R (say) will be constant and quotient will be a polynomial of degree
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n,say, O, (x). Then

P(x)=0, (x).(x—a)+R -(2)

n

at x = o, we have

P(a)=R -(3)

n

This verifies remainder theorem, which states that, when P, (x) is divided by (x - a) , then

remainder willbe P, ()

Let O, (a)=bx""+bx" +..4b, ,x+b, ..(4)
then, from(2), we have
ax"+ax"" +a,x"+...+a,_x+a,
= (b,x" " +bx" 4. 4b, o x+b, ) (x—a)+R
Equating coefficients of like terms in x , we have
a, =b,
a, =b -b,,
a,=b,—ba, (=R)
a, ,=b _,—-b ,«a
and a,=R-b, o
on simplification, we get coefficients of O, ,(x) as follows :
b, =a,,
b=a+a,a,
b,=a,+b a,
b ,=a, +b ,«a
and R=a,+b ,« ..(5)

The above values of b, and R can be written in tabular formas follows :

o a, a, a, a, , a,
ab, ab, ab, , ab,
a, a, +oab, a,+ab, a, +ab , a,+ab
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Now, we shall derive the process to obtain derivatives of P,(x) ofdifferent order at x = 3. Using

definition of P,(x), we have
R(x)=a,,
Pl(x) =apx+a = xPO(x)+al >

P(x)=ayx’+ax+a, =(ayx+a)x+a,

and  P(x)=xP_(x)+a, ...(6)

values of P(x), P(x),......... ,P(x) at x = B canbe obtained by synthetic division algorithm,
0 1 n g

using above tabular scheme.

Now, differentiating (6) with respect to x , we get
F(x)=0,
R(x)=x B()+ B (x) = B

PB/(x)=x R(x)+ A (x),

PLi(x)=x Bl (x)+ £, (%)
and  P/(x)=xP/(x)+P_ (x) ~(7)
This scheme is same as that of synthetic division. Thus P/(x), B/(x), ........ ,P/(x) at x= S can

be calculated using the results obtained in (6) and synthetic division algorithm in tabular form. Proceeding
in similar manner, we obtain

and P(")(x) =n P('H)(x)
(n) _ (n—1)
o S h(x)= o (x) (8)
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Thus, we obtain following table consisting above results :

ﬁ aO al a2 an—Z an—l an
B, BP, . BP_ BP,_, BPE,_,
B | a=~h i P, . P, P, P(B)
BF BER .. BPF, BPE,
B | B=r 14 P . P P/(B)
Lp Lp . L,
21 21 21
! 1 n i n i n i n
B B=38 55 TR 21 " ()
1 n
B PR (B)
1 (n-1) | )
P =—P
(n—1)r" " () nt" (5)

Above procedure can be understood easily after going through the following examples.

Example 3.1 Find quotient and remainder on division of polynomial x* —5x* + 6x> +4x—18 bya
linear factor (x — 2) . Also verify the result.

Solution : Given polynomial is x* —5x’ +6x* +4x—18 so that a, =1, a,=-5, a, =6, a; =6,
a, =4, a, =—18 and linear factor is (x—2), so ¢ = 2. The synthetic division procedure will be as
follows

2 1 -5 6 4 -18
2 -6 0 8

b, =1 b =-3 b,=0 b, =4 —-10=R

Thus, quotient polynomial Q,(x) = x> —3x’ +4 and remainder g = —10.
Verification : O,(x)(x-2)+R
=(x*-3x7 +4) (x-2)-10

=x*=3x +4x-2x*+6x* -8-10

= x* —5x* + 6x? +4x — 18 —given polynomial
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Example 3.2 Find all the derivatives of x* —4x’ + 8x> —8x +4 at x = 3, using synthetic division.

Solution : Giventhat a, =1, a,=—4, a, =8, a,=-8, a, =4 and f = 3. Then the procedure is as
follows :

3 1 ~4 8 -8 4
3 -3 15 21
3 1 -1 5 7 25=P,(3)
3 6 33
3 1 2 11 40= P;(3)
3 15
3 1 5 26 = % P/(3)
3
3 I 8 =% P"(3)
1= V)
Thus,
P(3)=25,
P/(3)=40
P/'(3)=52,
P(3)=48

and p™ (3)=24
This reulst can be easily verified by actually differentiating the given polynomial.
3.3 Birge-Vieta Method

Let f (x) = 0 be the given polynomial equation. Let «, be the initial approximation ofthe root of

the equation f'(x) = 0. To improve the value «,, we use Newton-Raphosn method as

Blay) /(@)
Fi(e)

n

o =, - -.(9)

where f(x)= P,(x) and a, is improved value of &, . To obtain the value of P, () and P!(a,).,
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we use synthetic division algorithm as discussed earlier. To improve the value ¢, , we repeat the process.
This process is continued till the required accuracy is achieved or remainder R = P,(or) becomes zero
where R can be obtained on division of P,(x) by (x—a).

Example 3.3 Find the root ofthe equation x* — x —10 = 0 using Birge- Vieta method. Perform three
iterations.

Solution : Here, P,(x)=x"-x-10= f(x),then f(1)=-10 and f(2)=4,so theroot lies between

l1and 2. Let x, =2 be the initial approximation, then f'(2) and f”(2) can be obtained using synthetic
division algorithm as follows :

2 1 0 0 -1 -10
2 4 8 14

2 |1t 2 4 7 | f(2)=4
2 8 24

1 4 12| 31=7(2

S0 f(2) =4 and [’ (2) =31 then the first approximation is given by Newton-Raphson

method as
X, =X, — f’(xo)
S (xo)
2
., f’( )
(2)
=2 —i =1.871
31
Now, to get /(1.871) and f(1.871), we use synthetic division as follows :
1.871 1 0 0 -1 - 10
1.871 3.501 6.550 10.384
1.871 1 1.871 3.501 5.550 0.384
= 1 (1871)
1.871 7.001 19.649
1 3.742 10.502 25.199 =f'(1.871)

The next approximation is given by
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1871 0.384

25.199
=1.856

Again, by synthetic division, we have
1.856 1 0 0 -1 - 10

1.856 3.445 6.394 10.011
1.856 1 1.856 3.445 5.394 0.011

= /(1.856)
1.856 6.889 19.180
1 3.712 10.334 24.574 = £ (1856)

Then, the next approximation is given by

X, =X, — /()
P f’(xz)

0011
24574

=1.856

= 1.856

Thus, the root is 1.856 correct upto three decimal places.

Example 3.4 Find areal root of the equation x* + 7x° +24x° —15 =0, using Birge-Vieta method.
Perform two iterations.

Solution : Hence P,(x)= f(x)=x"*+7x’ +24x> =15, then f(0)=-15and f(1)=17,soroot lies
between () and 1. Let x, = 0.5, then

0.5 1 7 24 0 —-15
0.5 3.75 13.875 6.936
0.5 1 7.5 27.75 13.875 - 8.064
0.5 4 15.875
1 8 31.75 29.75

So, the next approximation is given by

(~8.064)
X, =V )————
! 29.75
=0771
Again,
46



0.771 1 7 24 0 —-15
0.771 5.991 23.123 17.883
0.771 1 7.771 29.991 23.123 2.833
0.771 6.586 28.201
1 8.542 36.577 51.324

Then, the next approximation is given by

2833
51324

x, =0.771-

=0.716

Thus, approximate value of the root, after two iterations, is 0.716.
Example 3.5 Using synthetic division and chebyshev method find a root of the equation
2+ x% +3x +4 = 0. Performtwo iterations.
Solution : Here P,(x)=x’+x"+3x+4= f(x), then f(-1)=1, f(-2)=—6 so root lies in the
interval (—2,~1). Let us take initial approximation x, = —1.5. We have to obtain f(~15), f'(-15) and

/" (=15) for using Chebyshev method. Synthetic division process, to get these values, is as follows :

-15 1 1 3 4

- 1.5 0.75 — 5.625
- 15 1 -0.5 3.75 —1.625 = f(-15)

- 15 3.00
- 15 1 -2.0 6.75 = f'(-15)

-15

1 35 =g (-15)
2!

Thus, f(-15)=-1625, f'(-15)=6.75 and f"(-15)=-7
The next approximation to the root is given by chebyshev method as follows

S l{ﬂxo) } [f«xo)‘

TR ) 21 )] ) |

s (F1625) 1 [—1,625}2 [ .

675 2| 675 | |675]

=-15+0.24074074 + % x0.05795610 x 1.03703704
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=-1.22920795 = —1.229

Proceeding similarly, we get
-1.229 1 1 3 4
-1.229 0.281 ~4.032
-1.229 1 -0.229 3.281 ~0.032 = f(-1229)
-1.229 1.792
- 1.229 1 — 1.458 5.073 = f'(-1229)
-1.229
1 —2.687 = % f(-1229)

Thus, f(-1229)=-0.032, f'(-1229)=5.073

and  f"(-1229)=-5375,

Then, the next approximation is given by

/() l{ﬂxl)}z {f%xl)}

f'(x)

2
_ 19 (F0032) 1 [0.032} [—5.375}
5073 2[5073] [ 5073

=-1229+0.00630790+ 0.5 x 0.00003979 x 1.05953085
=-122267102 = —1.223

Thus, the root is —122 correct upto two decimal places.

3.4 Bairstow Method

Bairstow method extracts a quadratic factor from polynomial P, (x) , which gives two real roots
or a pair of complex roots. Thus, to get complex roots, complex arithmetic can be avoided. In this method

we need to extract quadratic factor (x2 + px + q) from the polynomial P, (x) , where the given equation is
f(x)=0and f(x)=P,(x). When P,(x) isdivided by two degree polynomial, then quotient will be a
polynomial of degree (n—2), say, O, ,(x) and remainder will be a linear polynomial, say, R x +s . Then

Pn(x)z(x2+px+q) 0, ,(x)+(Rx+5) ..(10)
where O, ,(x)=byx"" +bx" +..4b, ;x+b, ,

Remainder (R x +s) will vanish if (x* + px +¢) is a factor of P,(x). So we choose p and ¢

such that R and § becomes zero or very small. Thus value of R and S depend on parameters p
48



and g .
Let

R(p+Ap,q+Aq):O:S(p+Ap,q+Aq)

Using Taylor’s series expansion, we get

2
0 0 0 0
S(pq)+| Ap—+Aqg— | S+| Ap—+Ag——| S+..=0
and (pq)[pﬁp q&q] [p&p q&q]

neglecting second and higher order terms, we get

OR OR
R + A p+ A =0
(p.9) P A
o8 o8
S + 22 A p+ 2 A g=0
and (p.q) PR A o

solving these two equations for A p and A g , we get
(2)+(5)
TG
op)\9q
o(2)4()
and Aq_[ﬁSJ[ﬁRJ[ J[é’SJ ..(12)
29 )\p) \9q

op
Now, by equation (10), we have

)

n n—1 n-2
(apx" +ax"™" +a,x"*+. +a, x+a,)

= (x> + px+q) (byx"? +bx"+..4b,_x+b,_,)+(Rx+5)
comparing the coefficients oflike power of x , we get
a, =b, or by =a,
a, =b,+pb, or b =a,—-pb,
a,=b,+pb +qb, or b,=a,—pb +qb,
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ai:bi+pbi—l+qbi—2 or bi:ai_pbi71+qbi72

an—l = R + pbn—2 + qbn—3 or R = an—l - pbn—2 + qbn—3

and a,=S+¢gb,, or S=a,—-qb, ,
Let us introduce the recursion formula as follows :
b =a —-pb _,—qb. ,,by=a,and b =0
r=12,...,n.
From equation (13), we get

R=b, ,and S=b +pb, ,

Now, differentiating (14) and (15) with respect to p and ¢, we get

ob, ob,_, ob, ,
- = br—l +p +q
op op op >
b _ob,
Jp Op ’
_0b, b 4p ob, rq ob, ,
0 oq oq >
b, _ b, _
and 6q 04
OR _ob,,
op dp
R _0b,,
dq Oq °
oS 0b ob, |
DY - +bn—l 5
Jp OJp op
oS 0Ob, N ob, |

and é’_q = £ p oq
From above results, we observe that

ﬁbr _ ﬁerrl
dp dq
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Lt -5 _. | (19)
ap

then by (18), we have

_db,

(2
5q r=2 ( 0)

where r=12,....n.

The value of ¢, canbe obtained using following recurrence relations
Cr :br —pC;_l _qcr—Z’

ob 0
Cilzo, COZ_?;:_%(al_pbo):bo (21)
using (20), equation (17) gives

OR_0b,, __ OR_ob,, _
op Op "2 9q  Oq

=c, ,—PC, , ...(22)

Using relations (12) and (22) values of A p and A g are given by

bnfl Cn72 _b ¢

n_—n-3

A =
g ijz —Cu3 (Cnfl _bnfl) ’

A q — bn Cn—2 _bn—l (Cn—l _bn—l)
65—2 - cn—3 (cn—l - bn—l)

...(23)

Then, the next approximate values of p and g are
p=p+Ap,q=9+Aq -(24)
These values can be further improved by repeating the process.

The polynomial Q, ,(x) is called deflated polynomial if p and ¢ obtained, are of desired

accuracy.

The process of division of a polynomial by a quadratic factor and getting values of 5, and ¢, is

similar to synthetic division studied earlier and scheme is as follows :
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a, a, a, a,, a, a,
- | - —pb, -pb, ...  -pb,; -pb,., -pb,.,
-q | - - -qb, ... —qb,, —qb,; —qb,.,
b, b, b, .. b, b, b,
-r | - -p¢ —pC . TPC —PC,,
-q | - -~ —q¢, . —qc,, —4¢, 5
Cy N c, C,» C,

Example 3.6 Peform two iterations of Bristow-method to find two roots of the equation
x*=3x" +20x° +44x+54=0

use (2, 2) as initial approximation.

Solution : Let p, =2 and ¢, =2 . To find the quadratic factor (x2 +px+ q), we shall find 4/ s and

¢! s asfollows :

1 -3 20 44 54
-2 — -2 10 - 56 4
-2 — — -2 10 - 56
l(zbo) =5 (:bl) 28 (: bz) -2 (: b3) 2 (: b4)
-2 — -2 14 - 80
-2 — — -2 14
1 (: co) =7 (: cl) 40 (: Cz) —68 (: C3)

First approximations p, and g, are given by

p=p,tAp and ¢, =¢,+Aq,

where, Ap= _ b =bey and Ag= bi&y =by (¢, —by)
622—61(63—b3) CZZ_CI(C3_b3)

substituting the values of b, and ¢, , we get

(-2)(40)-(2)(-7)

(40)" —(=7)(-68+2)

Ap=

_ —80+14
1600 - 462

=-0.058
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_ 2x40-(-2)(-68+2)
A O (7) (68 +2)

_80-132
1600 — 462

— —0.046
Thus, p, =p,+Ap=2-0058=1942
q,=q,+Aq=2—-0046=1954

Using new values of p and ¢, performing above scheme, we get

1 -3 20 44 54
—1.942 - —1.942 9.597 —53.683 0.050
—-1.954 - - —-1.954 9.657 —-54.014
1 —4.492 27.643 —-0.026 0.036
—1.942 - —1.942 13.369 —75.851
—-1.954 - - —-1.954 13.451
1 - 6.884 39.058 —62.426
Now,
(—0.026)(39.058) — (0.036)(—6.884)
(39.05 8)2 —(-6.884)(-62.426+ 0.026)
_—1015508+0.247824
1525527364 -429.5616
=-0.000700
ond g- (0.036)(39.058) — (0.026) (—62.426 + 0.026)

(39.058)" —(—6.884)(~62.426+0.026)

1406088 — 16224
1525527364 - 4295616

=-0.000197

Thus, the next approximate values of p and g are
p, =p, +A p=1942-0.000700

=1.941300
and ¢, =gq,+Aq=1954—0000197

=1.953803
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Hence, after two iterations, quadratic factoris x° +1.9413x +1.953803 . Solving this equation,
we get

19413+ /(19413)" —4 x 1953803
X =
2

~ —19413£+-4.04656631
2

=-0.97065+1.005804 i

Thus, (—0.97065+1.005804/) and (—0.97065—1.005804i) are two roots of the given
equation.

Example 3.7 Extract quadratic factor from the equation x* —2x + x — 2 = 0 using Bairstow method and

hence find the roots of the equation. Perform only two iterations and use (—0.5, 1) as initial

approximation.

Solution : Let required quadratic factor be (x2 + px + q) andlet p, =-05, ¢, =1.

1 -2 1 -2
0.5 ~ 0.5 ~0.75 ~0.375
—1 - - —1 1.5
1 ~1.5 ~0.75 ~0.875
0.5 ~ 0.5 - 0.5
—1 - - —1
1 —1 ~2.25
Now,
b,c, — by,
A — 2-1 3~0
g Cl2 6 (Cz _bz)
_(-075)(-1)-(-0875) x 1
(-1)" =1(-225+0.75)
_075+0875
I+15
=0.65
Ag = by, = b, (c, _bz)

Clz —C (Cz _bz)
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_ (-0.875)(-1)+(0.75)(-2.25+0.75)
© (-1 =1(-225+075)

_ 0875-1.125
1+15

0.1

The next approximation is given by
P, =p,+Ap=-05+065=0.15
and ¢,=¢,+Ag=1-01=09

For next approximation, we have

1 -2 1 -2
-0.15 - -0.15 0.323 ~0.063
-0.9 - - -0.9 1.935
1 -2.15 0.423 -0.128
-0.15 - -0.15 0.345
-0.9 - - -0.9
1 -2.30 -0.132
then
o, (0423)(-2.30) - (-0.128)(1)
g (-230)° —1(~0.132 - 0.423)
_ 0972940128 1 ice)
52940555
A, (F0128)(-2.30) - (0423)(-0132 - 0423)
q =

(-230)" =1(~0.132-0423)

~0.2944 +0.234765
529+0555

=0.090532

Thus, the next arppoximation is given by
p,=p, +Ap=015-0144551

=0.005449
9, =9, +Aq=09+0.090532

=0.990532

Thus, the required quadratic factor is (x2 +0.005449x + 0.990532)
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3.5 Graeffe’s Root Squaring Method

This method is also applicable for the numerical solution of polynomial equations. In this method
given polynomial is transformed into another polynomial of same degree but whose roots are the squares
of the roots of the original polynomial. This process of squaring the roots, is repeated m times so that the

roots of the new polynomial are the 2™ power of the roots of the original polynomial equation. Also, roots
of new polynomial are widely separated for large » provided the roots ofthe original polynomial are real
and distinct.

Advantage of this method is that all the roots of the given polynomial equation can be obtained at
a time and no initial approximation is required.

Let o,,a,,...,a, bethereal and distinct roots of the given polynomial equation
ax"+ax"" +a,x"+..+a, x+a,=0 ..(25)
where g, #0 and a,,q,,...,a, arereal.
equation (25) can be re-written as
n n—-2 n—4 2 n—1 n-3 n->5 2
(apx" +ax"? +a,x +.) = (ax" +ax" +ax" 7+
on simplification, we get

2n

a; x —(al2 —2a0a2)x2”’2 +(a22 —-2a,a,+2a,a, )x2”74—...+ (-1)"a =0

Let = —x?, then we have
Y

O,(y)=byy" +b,y" " +b, y"*+..4b, =0 ..(26)
where,

b, =a;

b, =a} —2a,a,

b, =a; —2a,a,+2a,a,

b =a’
Root of the equation (26) are —a®,—a3,...,~a. -

This procedure is repeated m times and the polynomial obtained after m steps be
A"+ A+ A, 2"+ 4 A, 2+ A4, =0 ..(27)

Roots of this equation willbe ¢,,q,,...,q, suchthat

o, =|g | i=12,...n
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By the theory of equations, we have

Thus, roots &, can be estimated by the value

%ﬂ‘l
Li=12,..n .(28)

Ai
Ai—l
The sign of the root of the original equation can be determined by substituting in the original
equation.

Working table to obtained coefficients of new polynomial is as follows :

a, a, a, a, a, a,
a, a a a a -
—2a,a, —2a,a, —2a,a, —2a,a;
2a,a, 2a,a; 2a,a,
2a,a 2a,a,
b, b, b, b, b, b,

Complext Roots : Roots o, and «,,, ofthe given polynomial equation will be a pair of complex root

ifthe coefficient of x"* in the successive squaring fluctuate in sign and magnitude.

Let this pair be « £i 3, then from (28), we have

%ﬂ‘l
a,=a+if=—-*
Ak—l
A %ﬂ‘l
and A, =a—iff= Ak:

A %ﬂ‘l

then, o’+p’ = f .(29)
k—1

and sum of all roots, when there is only one pair of complex root, is

a, +a,+ot(a+iB)+H(a—if)+a,,+.ta, =4
a,
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a
or a, +a,+.Ra+a, ,+.+a, =——1+ ...(30)

ay
thus ¢ and S canbe obtained from equations (29) and (30).

Double root : Theroot «, isadouble root of the given equation if the mangitude of the coefficient 4, is
nearly equal to halfthe square ofthe magnitude of the corresponding coefficient in the previous equation, thus,

Ak
Ak 1

qr =~

Ak+1

and Qi1 =~ A

then 9 -9in zq;

%erl

k+1

Hence, || = e

A

k-1
sign of'this root can be determined by substituting it in the given equation.

Example 3.8 Find all the roots ofthe equation x* — 6x2 +11x — 6 = 0 using Graefle’s root squaring method.

Solution : The coefficients of the successive squaring can be obtained as follows :

m | 4 4, 4, A,
0 1 -6 11 -6
1 36 121 36
~22 ~72
1 1 14 49 36
1 196 2401 1296
98 ~1008
2 1 98 1393 1296
1 9604 1940449 1679616
~2786 ~254016
1 6818 1686433 1679616
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After three squarings, we get
4,=1, A4 =6818, 4, =1686433, 4, =1679616

then, for m =3, we have

|0‘1|: —

=3.014443,

Al

|0‘2|: 1

1

%

1686433
6818

=1.991425

Al?

and |053| = p,
2

%

1679616
1686433

=0.999494

Sign of'the roots can be determined by substitution of these values in the given equation, which
gives

/(3.014443) ~ 0, £(1.991425)~ 0 and /(0.999494)~ 0

Thus approximate value of the roots are

3.014443, 1991425 and (0.999494

These values converges to the exacts roots 3, 2 and 1 after some more squarings.

Example 3.9 Find all the roots of the equation x* —3x+1=0
using Graeffe’s root squaring method. Use four squaring to estimate roots.

Solution : The coefficients of successive squarings can be obtained as follows :
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m | 4 4, 4, A,
1 0 0 -3
1 0 0 9
0 0 0
2
1 1 0 2 9
1 0 4 81
—4 0 —4
2
2 1 —4 6 77
1 16 36 5929
~12 616 ~12
2
3 1 4 654 5917
1 16 427716 35010889
~1308 — 47336 ~1308
2
4 1 ~1292 380382 35009581

The coefficients given in column 4, , change sign alternatively, therefore there exists a pair of

complex roots, a, and «, , such that

o, =a+iff, a,=a-ip

then @ +,32 =

38038216

1

or o’ + B> =2232358

other roots are given by

% m

3

|O‘3|: 4,
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e

35009581
380382

= 1326624

% m

4

and |054|= p,
3

e

1
_‘35009581

=0.337667

substituting these values in given equation, we get
£ (1326624)~0 and f(0.337667) ~0

thus o, =1326624, a, =0.337667

Now, sum ofroots is given by

a
a, +a,+o,+o, =——F

a,

= (a+ipB)+(a—ip)+1326624+0.337667 =0

= 200 +1.664291=0

= o =-0.8321455

Using relation (1), we get
(~0.8321455)" + > =2.232358

= B =1539892

—  B=1240924

Thus, pair of complex roots are

(~0.8321455+ 1240924 )

Self-Learning Exercise

1.
2.

Synthetic division can be applied on transcendental equations. (True/False)

Quadratic factor can be extracted from the given polynomial using the method :

(a) Birge-Vieta method (b)
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(c) Bairstow method (d) Chebyshev method

3. Allroots of the given polynomial equation can be obtained at a time by
(a) Birge-Vieta method (b) Newton-Raphson method
(c) Graefle’s root squaring method (d) Bairstow method
4. By Graeffe’s root squaring method, we can find complex root also. (True/False)
5. Which of'the following method, we do not need any information about initial approximation
(a) Newton-Raphson method (b) Graeffe’s root squaring method
(c) Bairstow method (d) Birge-Vieta method
3.6 Summary

In this unit, we have studied the methods which are applicable only on polynomial or algebraic

equations. All the methods require initial approximation to the root except Graeffe’s root squaring method.

In Graeffe’s root squaring method, we must carefully observe the successive coeflicients of each column,

so that we can determine the nature of roots, whether they are real or complex and simple or doule root.

3.7 Answers of Self-Learning Exercise
1. False 2. (c) 3. (c)
4. True 5. (b)
3.8 Exercises
1. Divide x° —2x* +2x* + 4x —1by (x - 3) using synthetic division and find quotient polynomial
and remainder.
[Ans. Q,(x)=x"+x"+3x*+12x+40 and R =119 ]
2. Use synthetic division and perform two iterations of the Birge-Vieta method to find the smallest
positive root of the equation
2x° =5x+1=0
Take initial approximation as 0.5.
[Ans. 02026301
3. Find arealroot of x* — x? — x —1 = ( near x = 2 using Birge-Vieta method.
[Ans. 1.839 correct upto three decimal places]
4. Find a quadratic factor ofthe polynomial

P(x)=x*+5x"+3x* =5x-9=0
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by Bairstow method. Take initial approximation (3,—5)

[Ans: x? +2.90255x +4.91759, after two iterations]

Solve 4 _ 5,3 4+ 20x2 — 40x + 60 = 0 using Bairstow method, taking initial approximations as
(-4.8)

[Ans: x2_383x4 73064 androotsare 19149 +19077i ]

Find all the roots of the polynomial equation

x*=3x*—6x+8=0

using Graeffe’s root squaring method.

[Ans:4,2,1]

Using Graeffe’s root squaring method, find all the roots ofthe equation
x*=3x7=3x" +11x-6=0

[Ans: 3,2,—1,—1, Hint : After fourth squaring 4, is half ofthe square of the corresponding

coefficient at third squaring, therefore there exists a pair of double root, i.e., o, = @, ]

Find all roots of the equation x* —2x” —5x + 6 = 0 by Graeffe’s root squaring method.

[Ans: 3,—2,1 after three squaring]

miNIN
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Unit -4 : System of Simultaneous Equations

Structure of the Unit

4.0  Objectives

4.1 Introduction

4.2 Direct Methods
4.2.1 Method of Determinants
4.2.2 Gauss Jorden Method
4.2.3 Methods of Decomposition (LU method)
4.2.4 Partition Method

4.3 Method of Successive Approximation
4.3.1 Conjugate Gradient Method
4.3.2 Relaxation Method

4.4 Summary

4.5  Answers of Self Learning Exercise

4.6 Exercises

4.0 Objectives

The objective of this unit is to find the solutions of linear system of equations which is the most
important use of matrices. These systems of equations are frequently used in frameworks, electrical
networks, traffic flow, production and consumption, assignment of jobs of workers, population growth,
statistics and many others. The practical problems can be modeled to the system of equations and hence
solved by the methods discussed in this unit.

4.1 Introduction

Some important methods are discussed in this chapter to solve the system of linear equations. This
unit is basically consisting of two parts viz. direct methods and iterative methods. In direct methods the
coefficient matrix is reduced either in diagonal forms or upper and lower triangular forms and hence the
system can easily be solved. In iterative methods initial approximations are proposed and hence get the
better approximations. Ideas of basic cocepts of scalar multiplication, determinants, Gauss elimination

method are the prerequisities for better understanding of this matter.

4.2 Direct Methods

The first classifications is the direct method in which we proceed through a finite number of steps
and produce an exact solution.

Let the given system of linear equations having the form

A, X, +a,X,Fe +a, x, =b,
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a, X, +a,xX,*.......... +a, x, = (D)

This system of  equations cosisting » number of unknownsi.e. x,,x,,...x, . The elements a;

and b, are prescribed real numbers. The above system of equations can be written in the matrix notation
as

Ay Qppeeeeeennnn. a, | |1x | b
Ay Oyyeeeeennnnn. a,, | | x| |b,
(2)
Ay e, a, | |x,| b, |

The first matrix is known as coefficient matrix and denoted by 4, the second, matrix of unknowns
is denoted by X and RHS column matrix is denoted by B.So that the system now simply written as

AX=B ...(3)
4.2.1 Method of Determinants

This method is introduced by Gabriel Cramer, so it is also known as Cramer’s rule. The method is
quite easy. Let us consider the set of equations

ax+by+cz=d,
a,x+b,y+c,z=d,
ax+by+cz=d, ..(4)
This system can also be written as
a b ¢ | |x d,
a, b, o||y|=|4d,
a, b, c | |z d,
Now, the determinant of the coefficient matrix
a, b ¢

A=la, b, ¢ (5

a; by ¢
Then

xa, b] ¢
xA=|xa, b, c, , (Operating C +yC, +:2C;)
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ax+by+cz b ¢ | |d b ¢
=la,x+b,y+c,z b, c|=d, b, c
ax+byy+cz b, c| |d; b c

This implies

,Provided A =0 ...(6)

y=la, d, c|+la, b, ¢ (7

and

z=\a, b2 dz ~|a, b2 C, (8)

a, by di| |ay by ¢

These three equations giving the values of’x, y, z constitute the Cramer’s rule, which reduces the
solution of'the linear equations (4) to a problem in evaluation of determinants.

When matrix of coefficients is singular i.e. A = 0, the above method is failed.

Example 4.1 Solve the given system ofthe equations using the method of determinants

3x+y+2z=3
2x-3y—z=-3
xX+2y+z=4

Solution : The given system can again be written as the matrix form

31 2]|«x 3
2 =3 —-1||y|=|-3
1 2 1)|z 4

Hence the determinant of the coefficient matrix is

31 2
A= -3 -1=8
1 2 1

Now, as we discussed above
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31 2
x=—1-3 -3 -1
4 2 1

x:% [3(-3+2)—(-3+4)+2(-6+12)]=1

Similarty
3 3 2 l3 1 3
y212 -3 —1=2 and z=—2 -3 -1=-1
8
1 4 1 1 2 4

Hence x=1;y=2;z=-1
Self-Learning Exercise - 1
I. Using the method of determinant solve the given system of equations
x+y+z=3

2x—y+z=2
x=2y+3z=2

2. Using the method of determinant solve the given system of equations

2x-3y+5z=11
3x+2y—-4z=-5
xX+y—-2z=-3

4.2.2 Gauss Jordan Method

This method is a modified form of Gauss elimination method. In this method, the coefficient matrix
isreduced to a diagonal matrix. Although this method involves more arithmetical operations, the back
substitution is not required, as each of the final equivalent system of equations will contain only one
unknown. Let us understand the method better by the following illustration.

Example 4.2 Solve the following linear equations
2x,+8x, +2x, =14
6x, +6x, —x, =13
2x,+x, +2x, =5
using Gauss-Jordan method.
Solution : The given system is
2x, +8x, +2x; =14

6x, +6x, —x, =13
2x,—x, +2x,=5
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In matrix notation the system can be written as

2 8 21[x] [14
6 6 -1 Xy | = 13 (1)
2 -1 2||xn]| |5

Eliminating x, from second and third rows of (1), we get

2 8 2][x] [ 14
0 -18 -7 Xy | = -29 (2)
0 -9  oflx| |9

Eliminating x, from first and third rows using the second row, we get

20 —10/97[x ] [10/9
0 -18 -7 Xy | = -29 (3)
0 0 72 || x| | 112

Eliminating x, from first and second rows, we get

2 0 0l[x] 207
0 -18 0 Xy | = -18 (4)
o o  72||x| 112

From equation (4), we get the solution as

10 11
XIZ—’ xzzl’X3:_'

7 7

Example 4.3 Using the Gauss-Jordan method solve the following linear equations

10x+y+z=12
2x+10y+z=13
xX+y+5z=7

Solution : In matrix form the given system can be written as

10 1 1[x] [12
2 10 1f|y|=]13
1 1 5||z| |7

and the augmented matrix will be

100 1 1:12
[4|B]=|2 10 1:13
I 1 5:7
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Operating R,, (—9)

1 -8 44
=12 10 1
1 I 5

-51
13
7

Operating R,,(—2) and R;,(-1)

1 -8 —-44
~|0 26 89
0 9 49
Operating R, — 3R,
1 -8 —44
~|0 -1 -58
0 9 49
Operating R, (—1)
1 -8 —-44
~|0 1 58
0 9 49

-51
115
58

-51
-59
58

-51
59
58

Operating R,,(—9) and R ,(8)

1 0 420
~|0 1 58
0 9 -473

Operating R,(—1/473)

1 0 420
~|0 1 58
0 0 1

421
59
—473

421
59
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Therefore the equivalent system of equation is

o o =

0
1
0

-_ O O

1
=1
1

N R

Obviously the solution will be
x=Ly=1Lz=1
Self-Learning Exercise - 2
1. Solve the system of simultaneous equations using Gauss-Jordan method
10x+2y+z=9

2x+20y-2z=-44
—2x+3y+10z=22

2. Use Gauss-Jordan method to solve the system
10x+y+z=12
x+10y+z=12
x+y+10z=12

4.2.3 Methods of Decomposition (LU Method)

This method is also known as the method of factorization or Triangularization method. In this
method the coefficient matrix A of the system ofthe equation AX = B is decomposed into the product of
a lower triangular matrix [, and upper triangular matrix {J so that

A=LU ...(9)
where
([, 0 0 A 0] oy oy Ay, ]
ly L, 0 A O 0wy uy A u,
L=/, L, L; A O u=(0 0 Uy, ANou,
M M MM M| M M M MM
e by Lo AL, 0 0 0 A, |

Multiplying the matrices L and U and comparing the elements of the resulting matrix with those of
A, we obtain a system of equation in unknowns /; and u,; , where [, =0, j>i and u; =0,i>j,in
other words
Lyw+1yuy +.. +lh,u,=a;, 1<j<n

where [, =0, j>iand u;=0,i>j

To produce a unique solution, it is convenient to choose either u, =lor /. =1;1<i<p.
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@ When we choose [, =1, the method is called the Doolittle’s method.

(i) When we choose u, = 1, the method is called the Crout’s method.

(ii1) When U = L' sothat [, =u,; 1 < <n,thenitis called Cholesky’s factorization.

The given system of equation is

AX=B
= LUX=B ..(10)
Let UX=Y ..(11)
Then equation (10) becomes
LY=B ..(12)
The unknowns y,,,,V;,........ ,», In (12) are determined by forward substitution and the
unknowns x,,x,,X;,........ ,X, In UX =Y , are obtained by back substitution.

We know that solving these two triangular sytem is simple. Finally, if we need, the inverse of the

matrix A can also be determined using the following relation

A'=U"L" ..(13)

Note : The method fails if any of the diagonal elements /. or u, is zero.

Let us illustrate the above [ [ decomposition method by taking some examples.

Example 4.4 Solve the system of equations by LU factorization method :

2x+3y+z=9
xX+2y+3z=6
3x+y+2z=8

Solution : The given system can be written as

AX =B, Le.

2 3 1||«x 9
I 2 3||y|=|6
3 1 z 8

Let us choose /. =1 (Doolittle method) and write the coefficients matrix as

2 1 1 0 Of|u, u, u;
1 3=, I 0|0 Uy, Uy,
3 1 L L, 1)1 0 0 Uy,
[ u, Uy U
=| by uy by gy +uy, by gy + 1y
Loty Ly +lyuy, Ly Ly s+,
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Equating, we get

u, =2, u, =3, u; =1
Ly =1 = b = %
Lyuy =3 = L, :%
Ly, +uy, =2 = Uy, = %
Ly, +u,, =3 = Uy; = %
Ly, + Ly, =1 = Ly, ==7
Lty + bgttyy +1zy =2 = Uy =18
Thus, we get
A=LU
2 31 1 0 0|2 3 1
1 2 3|=]1/2 1 0|0 1/2 52
31 2 3/2 -7 1{{0 0 18
The given system is
AX=B
= LUX=B

Let UX =Y, so that the system becomes

LY:Ba Where Y:[y17y27y3]T

Which gives (by forward substitution)

y1:9

1
Eyl"'yz =6

3
5y1—7y2+y3=8
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= n=9,y,=32,y,=5
Now, UX=Y

2 3 I ||x 9

0 1/2 52||y|=]3/2

0 0 18|z 5
Which gives (by backward subtitution)

18z=5

27T

2x+3y+z=9

35 29 5
SO T R TERT
Example 4.5 Using Cholesky (square root) method solve the system of equations
4x—-y=1
—x+4y—-z=0
—y+4z=0

Solution : The given system can be written as

AX=B
Where
4 -1 0 X 1
A=[-1 4 -1| X=|y| B=|0
0o -1 4 z 0

The coefficients matrix A can be written as

A=LL"

Where L is alower triangular matrix and [ T is the transpose of the same.

Then we have
4 -1 0 _IH 0 L, L, I
-1 4 -1|\=\,, L, 0|0 L, L,

I Iy, Ll
= 121111 1221 + 1222 121131 + 122132

_131111 Lyl + 1yl 1321 +l322 +l323
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Equating, we get

I’ =4 I,=2

I, =—-1 L, =—1/2
[l =0 I, =0
Ly+h,=4 = 1, =+15/2

byl + Dyl = =1 = l, =2 /15
Lo+L,+E, =4 =  [,=+56/15

Thus we have

0 0 0
L=[-12 15)2 0
0 -2/415 5615

Now the system can be written as

AX=LL'X=B
Let  1'X=Y
Then [ Y=B

0 0 0 1M1 N
~12 15)2 0 ||y |=|0
0

0 -2/J15 f56/15 |13

On solving this by forward substitution, we get

1 1 1
N TN T a0

Now using these values in [T — vy, we have

0 -12 0 Iy 1/2
0 15/2  —2/15||y|=|1/2415
0 0 J56/15 L2 ] |1/+/840

On solving this by back substitution, we get

1 Lo__1s
56 14>7 56
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Self-Learning Exercise - 3

1. Show that the decomposition method fails to solve the system of equations

xX+y—-z=2
2x+2y+5z=-3
3x+2y-3z=6

2. Solve the system of equations

x+2y+3z=14
2x+5y+2z=18
3x+y+5z=20

Using (i) Doolittle’s method, (ii) Crout’s method, (iii) Cholesky method.
4.2.4 Partition Method

The partition method is basically used to obtain the inverse of the given matrix ofhigher order. Let
A be the non singular coefficient matrix of order n and it is partitioned like

4,14,
A—{A4t%} (14)

Let » and s be positive integers such that ;; = ;- + g then distribution of the order in partitioned A

will take place like A4, is a matrix of order y x , 4, ismatrix of x5, 4, ismatrixof gx g and 4, is
matrix of g x 7.

Let the inverse of the same matrix is partitioned as

B :B
A71= 1 =2
[ETE} .(15)

Here the order of B, B,, B, and B, are the same as orders of 4,, 4,, 4, and A, respectively.
Hence we have

oA [ BB | _[1 O 6
A4, || BB, | |O I, =

Where /, and /, are identity matrices of order » and s respectively. Now equation (10) gives

AB +A,B, =1,
AB,+4,B,=0
AB +AB,=0

AB, +AB, =1, .(17)

On solving all these we obtain
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B, = (4 —A,47'4)"

B,=—A"4,B,

B, =B, A, A"

B =4 (I,- 4,B,) (18)

One should remember the expression (18).

Example 4.6 Solve the following system ofthe equation using partition method

3x+2y+z=116
2x+3y+2z=159
X+2y+2z=122

Solution : Let in the given system the coefficient matrixis 4 and it can be partitioned as

321
4o|2.312 :[AIEAZ}
1o2i2| LA

Therefore,

AFB ﬂ Azzm, 4,=[2], 4,=[1 2]

Now, we have

And

Let

76



Hence using the above expression we have

B, =(4,— 4, 47 4,) " =[5/3],

B,=—A"A,B, = —% [ 32 _32} m [5/3]

i {—14/1/33}
B, =B, 4, 47 =[5/3][1 2]+ [ 3 _2}

5(-2 3

=[1/3 —4/3]
And

B = A (I, - 4,B,)

S ER (e

o | i
N [_22//33 _52//33}

Thus the inverse of the coefficient martix is given by

_ 2/3 =2/3 13
Al:{ﬂ}: /3 53 —4)3
By /3 -4/3 5/3

Hence the solution of the system can be obtained as

2 =2 1/[(|1L6

X:A’IB:l -2 5 —4]]159

I -4 5 [122

Therefore
X 12
y|=(25
z 3.0
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Hence the solution be

x=12,Y=25,2=30
Self-Learning Exercise - 4

Using the partition method solve the system of equation

N VS B U S}

UJ[\)oy_a

N SR R

N e X
W

4

S

4.3 Method of Successive Approximation

The direct method discussed so far involve many subtractions. When the terms involved in
subtraction is nearly equal, their difference is nearly zero and hence causes inaccuracies. The inaccuracies
due to this inherent weakness of the direct methods can not be completely avoided, whereas the iterative
methods (method of successive approximation) are free from such inaccuracies. Moreover these methods
are self correcting; viz. errors made at any stage in the computation are corrected automatically in the
subsequent stage ofiteration. When the coefficient matrix has more zeros, the iterative methods are rapid
than the direct methods. In order for the iteration procedure to give the solution of system of equations,
each equation of the system must contain one coefficient much larger in magnitude than the others in that
equation and large coefficient must be that of a different unknown in each equation. In other word, after
rearranging the equations if necessary, the large coefficients must be along the leading diagonal of the
coefficient matrix.

Among the iterative methods we wil desicuss the Conjugate Gradient method and Relaxation
method.

4.3.1 Conjugate Gradient Method
The conjugate gradient method or more briefly, the CG method, is a successive technique for

solving large system of linear equations 4 x = B, when the coefficient matrix 4 is symmetric ( A" = A)

and positive definite (X TAX > O) . It terminates in at most n steps if no rounding-off errors are

encountered. Starting with an initial estimate x,, (arbitrary) ofthe solution h and hence one can obtain
successive newly estimates x,, x,, x,..... At each step the residual R, = k — Ax, is computed. Normally
this vector can be used as a measure of the “goodness” of the estimate of x, . Experience indicate that

frequently x,,, are considerably better than x, . One should not continue too far beyond x, but should

start a new with the last estimate obtained as the initial estimate, so as to diminish the effect ofround-off
error. Infact one can start with a new at any iteration. This flexibility is one of the principal advantages of
this method. In case matrix of coefficients is symmetric and positive definite, the following formulae are
used in the conjugate gradient method :

p, = R, = B— Ax, ..(19)
R'R,
a, Zm (20)
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X =X Ta,p,; ..(21)

R, =R —a;Ap, .(22)
R:r Ri+

B, = ﬁ (23)

Pin = Ri +ﬁipi ..(24)

Select an estimate x, and compute the residual R, and the direction p, using (19). After getting
R

p,., using the given forumulae. On the same lines find the better approximations to the solution of the given

these initial values get the routine values of x, residual R, direction p, and hence compute x,

i+1° i+l

system.

Example 4.7 Solve the given system of equation using CG method

4x+y=1
x+3y=2

Solution : Considering the given systemas 4x = B, the systemis
4 1||x 1
1 3||y] |2
To start the conjugate gradient method let us take initial guess as
Xy = [l } , in order to find an approximate solution of the system.
Now we have to calculate the first residual R, corresponding to guessed solution
1 4 112 -8
Ry=B—-Ax,=| |- =
2 1 3|1 =30

Since this the first iteration we can take the first residual as our initial direction p,.

Now calculating the scalar ¢, using the relation (20)

_R'R, - 3] [:ﬂ 73

a, = = =
* plap, o |4 18] B
[ ) 1 3]|-3

Now we calculate the first approximate solution X, using (21)

21 73 [-8] [02356
Xi=Xoraopo=| 1337 317 03384
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This solution is improved one than we guessed; similarly we can find the next improvement and so
on.

Compute the next residual R, using the formula (22)

o r o o _[S]_73[4 1][-8]_[-02s10
= —a = —_—— =
1T R T %P0 = 1733 3] 23T 07492

Let us compute now f,, which will be used to obtain next search direction p, .

—02810
RTR [-0.2810 0.7492] 07490
B, =10 = : =0.0088
r 8
RIR, s 3|
-3
Now
R4 fup = —02810 + 0,008 -8] [-03511
PRt PoPo=) 09400 [T 31T 07229
Now again using (20) we get
—02810
. [-02810 0.7492]
, - RIR_ 0.7492 0412
| - -
A 4 11[-03511
Prebe 1203511 0.7229]
1 3|| 07229

Now find the next approximation

0.2356 -0.3511 0.0909
X, =X, +a,p = +04122 =
0.3384 0.7229 0.6364

The result x, isbetter that x, and one can go further to get more improvement.

x=00909, y =06364
Self-Learning Exercise - 5

Solve the given system using conjugate Gradient method (two iterations only)

2x—-z=1
—2x-10y =-12
—x-y+4z=3

Using the initial vector (x,y,z)T = (O,O,O)T
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4.3.2 Relaxation Method

This method is a generalization of the Gauss Seidel method (which we already studied in previous
classes). This method is the most powerful acceleration technique to find the solution ofthe given system
and has arapid convergence. This particular shceme permits one to select the best equation to be used for
maximum rate of convergence. Initially we assume the values of unknowns, which further improved by

reducing the so called residuals to zero or as close as possible to zero.

We first make the given system diagonally dominated, and hence take all the terms to the one side.
The residual of i #h equation is denoted by R, and given by

R =b—-a,x —a,x,—..—a,x,,i=123,...n.

1

The largest residual in magnitude (say R, ) tells us that the & 74 equation is most in the error and
should be improved first. We then select the new residual of greatest magnitude and relax it to zero. We
continue until all residues are zero and when it is obtained the values of x,, i =1,2,3,...... ,n willgivs us the
solution of the system.

Example 4.8 Solve the system ofthe following equations using relaxation method
2x+y—-8z=-15

x=Ty+z=10
6x-3y+z=11

Solution : First we reorder the equations so that system will convert to diagonal dominated (the largest

coefficients in the equations appear on the diagonal) and transfer all the terms on one side.

Therefore

R =11-6x+3y—z
R, =-15-2x-y+8z

If we start with the initial values x =, ¥ =0, z=(, the residuals are R, =11, R, =10,

R, =—15. In which the largest residual in magnitude is R, . Since the third equation has more error we
have to improve this first.

Let us introduce the variationin > as

Az——:—ﬂ=1.87

Put this value in equation (1) in place of z and keep the rest values as same. Again we find the
residuesas R, =9.125, R, =8.125, R, = 0.Inwhich the largest is R, . Similarly we can find the further
residuals (which are largest in the magnitude) and applying the same strategy and use this improved value
for the variables. This process will be continued untill all the residues come down to zero or near to that.

Let us show the process and values in tabulated form
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1 Residuals Variations Variables
R, R, R, A X Yy z
0 11 10 -15 —-15 0 0 0
—(T):l.875
1 9.125 8.125 0 (9.125) 0 0 1.875
- =15288
(-6)
2 0.002 | 6.6042 | 30416 (6.6042) 1.5208 0 1.875
- =-0.9434
3 —-2.83 [ 0.0004 | —2.0982 (—2.83) 1.5208 | —0.9434 @ 1.875
—~—~=-04716
(-0)
4 -0.004 0472 | —-1.155 (—1.155) 1.0492 | —0.9434 | 1.875
—T:O.l443
5 —0.1447 | 0.3277 | —0.0006 (0.3277) 1.0492 | —0.9902 | 2.0193
—72—0.0468
6 | —0.2851 | 0.0001 | 0.0462 —0. 1.0492 | —0.9902 | 2.0193
_M:_Qoms
(-6)
7 —0.0001 | 0.0476 | 0.1412 (0.1412) 1.007 | —0.9902 | 2.0193
—T:—O.l76
8 0.0175 | 0.0652 | 0.0004 (0.0652) 1.007 | —0.9902 | 2.0017
- = —0.0093
9 —0.0104 | 0.0001 | 0.0097 - 1.007 | —0.9995 | 2.0017

The residuals maximum in magnitude, at each iteration, are showed boldly. At this final stage one
can see that all the residues are sufficiently small so the corresponding values of x, v, z at this position
can be taken as a solution. Hence

x=10017, y=-09995, - =2.0017
Or in round figures the solution is
x=10,y=-10,2=20

Self-Learning Exercise - 6

1. Solve the following system of equations using relaxation method
Sx-2y+z=13
3x+7y—-11z=2
x+20y-2z=8

2. Solve the following system of equations using relaxation method

82



8x+y—z=38
2x+y+9z=12
x=Ty+2z=-4

4.4 Summary

By the study of'this unit one can solve the system of simultaneous linear equations using both the
iterative and direct methods.

In particular the method of determinant is good enough in solving the system of equations up to
third order after that it may be laborious. Before adapting the method of determinant reader must check
the consistency of the given system. The Gauss Jordan method is better than the previous one. This
method is basically the modified form of Guass Elimination method. The Gauss elemination method gives

|:A B:| Gauss E lim ination N |:A B:|

Where | 4} B] is augmented matrix.

Whereas the Gauss Jordan method gives
|:A B:| Gauss Jordon |:1 d:|

Generally it is seen that the Gauss Jordan method is more laborious than Gauss Elimination method.

Next direct method is LU decomposition method. In which we bifurcate the coefficient matrix in
lower and upper triangular matrices and after two steps we can find the solution. Let given system of
equations be

AX =B, then we convert it into

LUX =B, where L is lower and U is upper triangular matrices. Again let UX =Y, then the
previous equation will take the form LY =B

The unknowns y,,y,,¥;,....,», of Y are determined by forward substitution and the unknowns

X{5X,,X5,....,x, NUX =Y, are obtained by back substitution. The next direct method is Partition method,

which is promptly used to obtain the inverse of the given matrix of higher order. Let 4 be the non singular
coeflicient matrix of order n and it is partitioned like

A= AIAZ
A, A,
Let » and s be positive integers such that ;; = ;- + g then distribution of the order in partitioned A

will take place like 4, is amatrix oforder - xr, 4, ismatrix of rx s, A, is matrix of g x g and A4, is
matrix of g x 7.

The inverse of the same matrix is partitioned as

P 2[31332}
B,:B,
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Further by applying the certain formulae given above, one can proceed to obtain the desired
solution of the system of the linear equations.

Now the iterative methods start from an approximation to the true solution and if convergent,
derive the sequence of closer approximations. The cycle of the commputation is repeated till the desired
accuracy is attained.

Applyin the two or more methods on one problem we can check which method gives the solution
faster. Ifit is desired one can find the convergence of the methods and also find a comparative study of the
methods.

4.5 Answer of Self-Learning Exercise

Self-Learning Exercise - 1
1. x=Ly=1Lz=1 2. x=1L,y=2,z=3
Self-Learning Exercise - 2
1. x=1Ly=-2,z=3 2. x=Ly=1Lz=1
Self-Learning Exercise - 3
1. Try yourself 2. x=1,y=2,z=3
Self-Learning Exercise - 4
x=Ly=-lLz=-1,w=1
Self-Learning Exercise - 5
x=0.195751, y = 1109993, z = 0948462
Self-Learning Exercise - 6

. x=26, y=03432, z=0741 2. x=ly=1lz=1

4.6 Exercises

1. Using Gauss Jordan method solve the following system of equations
@) 3x+2y+z=10 (1) 3x+y+z=6
2x+3y+2z=14 xX+2y+3z=8
x+2y+3z=14 2x+y+4z=8
2. Solve the following simultaneous linear equations using Crout’s method
@ x+y+z=1 (ii) 10x+y+z=12
4x+3y-z=06 2x+10y+z=13
3x+5y+3z=4 2x+2y+10z=14
3. Solve the given system of equations using Choleskey method

1 2 3 ||x| | 5
2 8 22||y|=| 6

3 22 82|z -10
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Find the Doolittle, Crout and Cholesky factorizations of the matrix

60 30 20
A=|30 20 15
20 15 12

Solve the following system of equations by the Relaxation method

x+9y—-z=10
2x—-y+z=20
10x-2y+z=12

Solve the following system of equations by the CG method

2 -1 o[x] [2
1 6 —2||y|=|-4
4 =3 8|lz| |5

Take the initial approximation x = y=z=0.
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Unit-5: Eigen Value Problems-I

Structure of the Unit

5.0  Objectives

5.1 Introduction

5.2 Eigen Values and Vectors

5.3 Basic Properties

54  Power Method

5.5  Jacobi Method

5.6 Summary

5.7  Answers of Self-Learning Exercise

5.8 Exercises

5.0 Objectives

The Eigen value problems are of greatest importance to the engineer and physicist. For example,
in solid mechanics, when we consider an element in a continuum, subject to a normal and shear stresses,
we usually find principal stresses which are the maximum and minimum stresses in an element. When we

solve this kind of problems we have to go through matrices, Eigen values and vectors etc.

5.1 Introduction

The Eigen values and vectors of a matrix are important in numerical analysis. The numerical
solution involves finding Eigen value of the coefficient matrix of the set of difference equations. More
precisely, if eigenvalue problems involving a differential equation or an integral equation, it is known as
algebraic eigenvalue problem. In some problems, we may be interested in only the eigenvalues with the
largest magnitude or with large matrices which usually arise from discretisation of differential equations; we
are normally interested in only a few eigenvalues and vectors. Here in this unit we are interested to

understand the two important methods, first is Power method and another is Jacobi method.

5.2 Eigen Values and Vectors

Let A= [a,.j]] be a given y x » matrix and consider the vector equation of the form

Ax=Ax (1)

Where 4 is a given square matrix x is unknown vector and } is an unknown scalar. Our aim is
to solve this equation, obviously if x = 0 is a solution then () = (), but this has no practical interest. A value
of ) for which (1) has a solution x # 0 is called an Eigenvalue or Characteristic value or Latent root
ofthe matrix 4. The corresponding solution x = 0 ofthe same equation is called the Eigenvectors or
Characteristic vectors of 4 corresponding to that eigenvalue j . The set of eigenvalues is called the
spectrum of 4. The largest eigenvalue (in magnitude) is called the spectral radius of 4.
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Again taking the above equation
Ax = A x , which implies
(A-A)X =0 -(2)

This equation is a homogeneous system of 5 linear equations and shall have a non trivial solution

if |A -M | = 0, when it is simplified gives the polynomial equation

()" +a X" +....4a, =0 .(3)
Equation (3) is called the characteristic equation and has »n roots,say 4,,4,,4,,....... , A, ,these
values of ) are called eigenvalues of 4. Also the values of the vector x,say X, X,, X,,....... X,
correspondingto A,,4,,44,....... , A, are called the eigenvectors of 4.

Let us see how to find the eigenvalues and vectors by taking an example of following matrix

PR
=, (1)

Using the equation (1), we have

2 3L e
2 2||x X,
or can be written as
=5x,+2x, =Ax
2x,—2x, = Ax,
or (-5-2)x,+2x,=0
2x,+(-2-2)x, =0
Which can be written in the matrix notation is given in (2)
(A-A)X=0 .(3)

This equation is a homogeneous system of equations and shall have a non trivial solution if
|[A-Al|=0

Hence

=0

-5-1 2
|A—Aﬂ:‘ ‘
2 -2-2

=(-5-2)(-2-2)~4=2 +71+6=0

On solving this characteristic equation of 4, we have
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A=-1,2,=-6

These are the eigenvalues ofthe matrix 4. Now to determine the Eigen vector corresponding to

eigenvalue A, = —1, using this valuse in (3) we have
-4 2 ||x
=0
2 ~1f|x,
or
—4x,+2x,=0
2x,—x,=0
Solving this we find

[ x k
X, = xl } = [Zk} , where k is arbitrary constant. If we put k=1, we have
L2

1
X, = }
2

Now we can check

TR i R

Similarly we can find the second corresponding vector to the eigenvalues 4, = -6,

2
which willbe X, = [_J.

Example 5.1 Find the eigenvalues and vectors of the following matrix A4

5 0 1
A=]0 -2 0
1 0 5

Solution : The characteristic equation for the given matrix will be

|[A-Al|=0
5-4 0 1
0 -2-2 0 |=0
=
1 0 5-2

o (5-A)(2-2)(5-2)+(2+2)=0
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=  (A+2)(A-102+24)=0

= A=-2,4,6
These are the eigenvalues of 4.

Now let us find the corresponding eigenvectors.

When } =2,

Let the corresponding vector be X =(x,,x,,x, )T

Then we have
(4+21)X,=0
7 0 1]|x 0
0 0 Of|x,|=]|0
j—
I 0 7]|x, 0
= Tx,+x,=0
x,+7x,=0
= x,=0=x,
Let x, = k,, then
0 0
X, =k |=k]|1
0 0

Choosing k, =1, weget X, =[0 1 O]T.
When } =4
Let the corresponding vector be X, =(x,,x, ,x3)T

Then, we have

(4-41)X,=0

I 0 1f|x 0
0 6 0f|x,|={0
I 0 1f|x 0

On solving this, we get
X, +x,=0; —6x,=0

&9



=

x==x 5 x,=0

Now randomly we can take x, = k, whichimplies x, = -k, .

Hence the corresponding vector is

Note : In particular, if we choose x, =1/+/2 and x, =1/4/2 so x? +x? +x3 =1.

Then the vector, choosen in this way is said to be normalized.

When } =6

Let the corresponding vector by X, = (x,,x,,x, )T , we have

(4-61)X,=0

-1 0 1/||x 0
0 -8 0 ||x,|=]|0
I 0 —1]|x 0

Solving this, we have

=

xX;—x,=0 ; 8x,=0; x,—x;=0

X, =x; ; x,=0

Now let us choose x, =k =1/+/2

The corresponding vector will be

K] 142
X, =|0]|=
k

0 |
1/2

5.3

Basic Properties

1.
2.
3.

For a given square matrix the eigenvalues are unique but the eigen vectors are not unique.
A square matrix and its transpose have the same eigenvalues.

The eigenvalues ofa triangular matrix are exactly the diagonal elements of the matrix.

If 4,,4,,A45,4,....... are the eigenvalues of square matrix 4 then

....... are the eigenvalues of 4~
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(b) kA, k2y, kA kA, .......... are the eigenvalues of k4 .

() A5, 25,45, 45...... arethe eigenvaluse of A"
5. The eigenvalues of a Harmitian matrix and a real symmetric matrix are real.

6. The set of all eigenvalues of matrix A is called spectrumof 4 and the largest eigenvalue
(inmagnitude) is called the spectral radius of 4.

7. The sum of all the eigenvalues of a square matrix is equal to the trace (sum of diagonal
elements) ofthe matrix.

8. The product of the eigenvalues is equal to the determinant of the matrix.

9. Statement of Cayley Hamilton theorem: Every square matrix satisfies its own
characteristic equation.

10.  Eigenvector Y issaid to be orthonormal or normalized if yy 7 — .

Self-Learning Exercise - 1

Find all eigenvalues and vectors ofthe following matrices

[ N

1
4
1

BOo—_— =
[\

1
SRS
Hsl
| I |

5.4 Power Method

In some practical problems only the largest eigenvalue and the corresponding vector are required.
The power method is a simple iterative method which is designed to compute the dominant eigenvalue or
largest latent root in magnitude and the corresponding vector of a matrix.

This procedure is applicable if the latent roots are real and distinct so the corresponding vectors
are linearly independent. Let A,,4,,45,4,,........ , A, bereal and distinct eigenvalues of the given matrix
A4 oforder 5, such that

2> |As] > |As] > > |2, (4)
Let X, X,,X,,...., X, bethe corresponding vectors, then any vector x canbe written as their
linear combination,
X=o X +o,X,+o,X;+....... +a, X, S

Now we have,
AX = A (a0, X +a, X, +a, X +.....4+a,X,)
=0, AX, +t o, AX, + o, AX +....... +a,AX,
=a, A X, +a,A, X, oA, X+ +a,A, X
Again,

A(AX)=a XX, +a, 50X, +a, X+ +a 12X
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A X =a XX, +a, X, + a5 X+ +a A X,
On the same steps if the above expression is multiplied by 4, we get

AX=a X, +a, X, + o, X+ ‘o, XX,

AX=a X +a,,X, +a, X +........ +a, XX,

1

n A r
=  AX=alX +2 Za"[f} X,
2

When r—)oo,[%} —0; (A, <4,);i=23,...n.

1
therefore, A" X =a XX,
The same process can be extended to
Ar+1X — alﬂflJrle

Now the dominant eigenvalue A, canbe obtained as

Ay=——=r—oo—-—Ii 1 k=123,...,n. (6)

where f denote the k th component in the corresponding vector.

2]

The convergence of the method is depending on the ratio | | .
1

The initial vector Y is selected suitably ifno other approximation is given.

The least eigenvalue of 4 canbe obtained using the fact the inverse matrix has a set of eigenvalues

which are the reciprocals of the eigenvalues of 4. Thus to obtain the least eigenvalues we have to apply
the power method to the inverse of 4. The main advantage ofthe power method is its simplicity, only
matrix multiplication is required for computation. To illustrate power method, let us take an arbitrary vector
and multiply it by given matrix and normalized. Repeat the process untill the normalized product

converges.

Let the matrix
3 -1 0
A=|-2 4 -3
0 -1 1

And let the mitial vector be
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1
X=1 , at each step we normalized the vectory by the making its largest
1

component equal to unity.
(3 -1 0][1] [2 1
-2 4 3||1|=|-1|=2]-05
0 -1 1]|1 0 0
3 -1 0][ 1 35 —0.875
-2 4 3||-05|=|-4|=-4| 1
0 -1 1] 0 0.5 —0.125

Continue the process until the required accuracy is achieved, finally we get

3 -1 0][-04037 -22111 -0.4037
-2 4 3 1 =| 54774 |=54774| 1
0 -1 1][-0.2233 —-12233 —-0.2233

which showsthe 4x = Ax form.
Therefore we obtain the dominant eigenvalue of 4 as 4, = 54774 and the corresponding vector
X, =(~0.4037,1,-02233)".

Example 5.2 Compute largest eigenvalue in magnitude and corresponding eigenvector of the matrix
1 2
A=
32

1
Solution : Let X 0= [J be the initial eigenvector. Then

an, P

Hence an approximate eigenvalue is 5 and corresponding eigenvectoris y ().

Now we have

e [T 2] _[1s] 10 1319 19 g,
LT

o) 13/19 . . 19
Now X 7= 1 corresponding to eigenvalue —.

5
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Repeating the above process finally we get the dominant eigenvalue as 4.000203 and

0.66664
corresponding eigenvector X = 1 .
Self-Learning Exercise - 2
1. Compute the dominant eigenvalue and eigenvector ofthe following matrix
3 -1 0
-1 2 -1
0 -1 3
2. Compute the dominant latent root and eigenvector ofthe following matrix
1 6 1
120 , also find its other two latent roots.
0 0 3

5.5 Jacobi Method

Jacobi method is highly recommended when we need to compute all the eigenvalues and vectors

of a real symmetric matrix. In fact if 4 is a real symmetric matrix then its eigenvalues are real and
corresponding vectors to distinct eigenvalues are orthogonal. In other words, for a real symmetric matrix

A, there exist a real orthogonal matrix P suchthat P~' AP is a diagonal matrix. The diagonalization is
carried out by applying a series of orthogonal transformation P, P,,...... ,P_ asfollows:

Let a; be the largest element in magnitude amongst the off diagonal elements of 4. Thena 2 x 2

sub matrix of A4 is formed as

1= (7
4y dj )
which can be transformed to a diagonal form. We construct an orthogonal matrix
P cosf —sin6
as ' lsin@ cosd - (®)

We find 9 suchthat 4, is diagonalized, we have
. cos@ sinf ||a, a;|[cos® —sind
R AR = . ' .
—sin@ cosf||a, a,||sin@ cosé

[a” cos’ 0+ a,sin20+a, sin® @ (a// - a,,)sin@cos@ +a, cos20]

. - 2 . 2
(a// - a,,)sm@cos@ +a, cos20 a,sin” 0 —a;sin20+a; cos” 0

For this expression to be diagonal we put
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%(ajj —a,)sin26+a; cos26 =0

2a,
tan 260 = ..(9)

4;—4ay;

We choose _ " < 0< 7 inorder to get last possible rotation.
2 g p

Now we construct £, as

1 0 0 .. 0 0
0 0o .. 0 0
0O O ... cos@ .. —smnf@ ... 0
P =
0O 0 .. sin@ .. cos@ .. O
0 0 0 0 1

Where cos@, —sin@, sin6, cos areinserted at (i,i), (i, j), (/,i), (j,j) positions respec-
tively and elsewhere it is identical with a unit matrix. With the value of g given by (9) the first step is now

completed by computing B~' 4P, . Next the largest off diagonal element in this matrix is found and the

procedure is repeated, until the matrix 4 is diagonalized, with the eigenvalue on the main diagonal. The
corresponding eigenvectors are the columns of p.

A disadvantage is there of the method that when elements replaced by another one through a plane
rotation, they not necessarily remain zero during the trasformation. So we have to check that the value of

sin” @ + cos” 0 — 1| is sufficiently small.

In particular if the element «a,, is largest in the magnitude among the off diagonal elements of the
matrix of order 3 x 3, we use the transformation matrix

cos@ —sinf 0
P=|sin@ cosf® O
0 0 1

Similarly for the other positions we have different transformation matrices.

n(n—l)
2

Further it is noted that is the minimum required number to transform the given 5 x ; real

symmetric matrix into a diagonal form.
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Example 5.3 Use Jacobi method to compute eigenvalues of given matrix (two iterations only)

2 -1 0
A=|-1 2 -1
0 -1 2

Solution : The given matrix 4 is real symmetric in which all the off diagonal elements are of the same
magnitude, therefore we can choose any one of them. Let us select the position a,, , then

2(-1
tan26 = 2a,, = ( ):—oo
a,—a, 2-2

= 0=-n/4

Hence cosf = 1/+/2 ; sin6 =—1/32

cosf —sinf 0 1/\/5 l/\/z 0
B =|sinf@ cos® O0|= —1/\/5 l/\/z 0

Then
0 0 1 0 0 1
Now the first rotation is
A1:P171AP1
(12 12 olf2 -1 o[ /N2 N2 0
=[-1/V2 172 of|-1 2 -1||-1/"2 142 0
0 0 1[0 -1 2 0 0 1
3 VI VD)
=1 0 1 -1/\2
N2 -1z 2

Now it is pretty obvious to consider a,, position of 4,, so that

2(1/42
tan20 = 2, _ (/ ):\/5
a,, —asy 3-2

sin@ = 045970 ; cosO@ = 088807

Now the second rotation will be

4, = PzilAle
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[ 08887 0 045970 3 0 1/¥2 |[ 08887 0 -045970
=l o0 10 0 1 -1/V2 0 1 0
—045970 0 08887 ||1/¥2 -1/42 2 |[-045970 0 08887

3.366 —-0.325057 -0.000002
=|-0.325057 1 —-0.627961
| —0.000002 —0.627961  1.633962

Thus approximation to eigenvalues after two iterations are
3.366, 1and 1.633962.

Example 5.4 Using Jacobi’s method to find all the eigenvalues and eigenvectors of the following matrix
A (performthree iterations)

1 1 0.5
A=|1 1 025
05 025 2

Solution : The numerically largest off diagonal valuesis a,, =1

0 — ltan71 EQ’a—IZJ
2 a;; —ay

Therefore

1 1
sinf =— . cosf=—
= V2o V2

Now
[cos@ —sinf® 0
P =|sin@ cosf O
i 0 0 1
[1/\2 -1/42 0
P={1/N2 /N2 0
0 0 1

Now for the first rotation
Al = PlilApl
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(e}

1/\2 12 11 2 [VN2 N2 0
=[-1/N2 12 ol|t 1 ya||iN2 12 0

0 0 1|[y214 2]0 0 1

[1/V2 N2 o][V2 0 12
=[-1/N2 N2 0|2 0 1/4
0 0 T||3V2/8 —2/8 2

2 0 328
=l 0 0 —/2/8

W2/8 —2/8 2

3
Again in this new matrix we have largest off diagonal element is 4,5 = V2

8
32
—2
Therefore Qzltan*‘ & :ltanl 4 |_7
2 a,—ay; ) 2 2-2| 4

N h: cos@—L sin@—L
ow, we have 0 NG

| o -1
e e
Hence P =| 0 1 0

Ji * Ja

Now for the second rotation

AzzpzilAlpz
/ /f 20 3R /ﬁ /f
0 0 —
/f 0 /ﬁ EE 7y /ﬁ /f
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3 1 i
24242 —— 0
8 8
- o -1
8 8
0 1 2—%/5

25303 -0.125 0
—-0.125 0 -0.125
0 -0.125 14697

Now let us move to third iteration using this matrix 4, in which the numerically largest off diagonal

elementis a,, =0.125,

Therefore 6 = ltan’1 245 = l‘[anl(_o'zso) =—0.0492 (radian)
2 a,—ay, ) 2 25303

Now we have cos@ =09988 ; sind =—0.0492

0.9988 0.0492
Hence P, =|-0.0492 0.9988
0 0

- O O

Now for the third rotation
A}:P3’1A2P3
[0.9988 —0.0492 01][25303 -0125 0 09988 0.0492 0

=10.0492 09988 0||-0.125 0 —-0.125]]-0.0492 09988 0
0 0 0 -0125 14697 0 0 1

[E—

25365  —0.0001 0.0062
=|-0.0001 -0.0062 -0.1249
| 0.0062 01249 14697

Hence the eigenvalues approximately
25365, —0.0062 and 1.4697 -
Self-Learning Exercise - 3

1. Use Jacobi method to estimate the eigenvalues ofthe following matrix

1 -2 4
-2 5 2
4 -2 1
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2. Perform two iterations of Jacobi method to estimate the eigenvalues ofthe given matrix

1 V2 2
V2003 2
2 21

5.6 Summary

By the study of'this particular unit one can understand how to find the eigenvalues and
corresponding vectors by using two great methods namely Power method and Jacobi method. Besides
this one can learn the properties of the eigenvalues and thier vactors, which can be used in further studies,

especially in engineering courses.

Here described, the power method is basically designed to obtain the largest eigenvalues and
corresponding vector for the given matrix. And also one can find the lowest eigenvalue through the same
method by using the properties ofthe eigenvalues. Whereas the Jacobi method is recommended for real
symmetric matrix.

If only one eigenvalue (the dominant or the least dominant) and the corresponding vectors are
required, the Power method and the inverse Power method are suited. The convergence rate of the Power
method is poor, when two largest eigenvalues are nearly equal in the magnitude. When all the eigenvalues
are required Jacobi’s method is to be used, but only in the case when the matrix is symmetric. Jacobi’s
method takes many rotations to reduce the matrix to the diagonal form but still it is reliable and converges

with accuracy.

5.7 Answers of Self-Learning Exercise

Self-Learning Exercise - 1

1. Eigenvalues are 6, 3, 3 and vectors are (3 2 4)T and (0 1 —l)T

2. Eigenvalues are 0, 3 and vectors are (— 1/ NE] \/2/_3 )T and (\/2/_3 1/ V3 )T

Self-Learning Exercise - 2

1. Eigenvalue is 4 and Eigenvectoris (1 -1 l)T.

2. Eigenvalue is 4 and Eigenvectoris (1 0.5 O)T , other roots are -land 3.
Self-Learning Exercise - 3

1. Eigenvalues are 5_2,/2 , 54+4/2, -3.

2. Eigenvalues are 5, 1, —1.
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Exercises

Find all the eigenvalues of the matrix

-5 2 1
A=|1 -9 -1
2 -1 7

Obtain the largest eigenvalue and corresponding vector of the matrix

1 3 -1
A=|3 2 4
-1 4 10

Using the Power method obtain the dominant eigenvalue and corresponding vector of the matrix

2 3
A=|4 3
3 2

O W N

Find the dominant eigenvalue and corresponding vector of the matrix

4 1 0

, using Power method (four iterations) with intial vector

(0,0,1)".

Find all the eigenvalue and eigenvectors of the matrix

1 V2 2
A=[V2 3 2
2 201

, using Jacobi method.

Find all the eigenvalues and eigenvectors of the matrix

1 3 4
A=|V3 4 B
4 31

, using Jacobi method.

miNIN
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Unit-6: Eigen Value Problems - 11

Structure of the Unit

6.0  Objectives

6.1 Introduction

6.2  Given’s Method

6.3  Rutishauser Method

6.4  Complex Eigen Values

6.5 Summary

6.6  Answers of Self-Learning Exercise

6.7 Exercises

6.0 Objectives

In this particular unit let us introduce two new methods say Given’s method and Rutishuaser
method to obtain eigenvalues and corresponding vectors. Definitely thses two methods are more efficient
than them, we learned in previous unit. By studying this unit one can learn to reduce a given matrix to a

tridiagonal form and also about the eigenvalues of the complex matrices.

6.1 Introduction

In the previous unit we have learnt two important methods to obtain the eigenvalues and their
corresponding vectors. In this section we are going to learn two more methods to obtain the same things.
First is the Given’s method, which converts the given matrix into a tridiagonal matrix and hence open an
algorithm to find the required eigenvalues. Tridiagonal matrix is the matrix having non-zero entries only in

the leading diagonal, sub diagonal and super diagonal. For example

a, ap 0
A=lay a, ay (1)

0 ay as;

be a symmetrical tridiagonal matrix.

Beside this one more method is there for finding out appropriate similarity transformation are
based on matrix decomposition. The Rutishauser method proposed a LU decomposition of matrix, where

L is a lower triangular matrix and U is upper triangular matrix.

Also in this unit we are going to deal with complex eigenvalues or eigenvalues of complex matrices.

6.2 Given’s Method

Let A be a real symmetric matrix. For such matrices, it is natural to apply transformation which
preserve symmetry. The Jacobi method gives a sequence of orthogonal transformations, which diagonalizes

a given real symmetric matrix iteratively. This transformation does not preserve the zeros already present in
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the matrix, however the matrix can be reduced to a symmetrical tridiagonal form and in this case it is
possible to arrange the sequence of transformation such that zero elements introduced in the previous

steps are preserved.

To avoid this Given’s proposed an algorithm using plane rotation which preserves zeros in the off
diagonal elements once they are created. This method reduces the given matrix into a tridiagonal matrix
using plane rotation and form a sturm sequence which determines the eigenvalues and hence eigenvectors

obtained. In this case we start with the subspace having the elements a,,,a,,,as,,a,,. Performa plane

rotation P~' AP, using the orthogonal matrix

. |cosf@ —sinf
R = .2

sin@ cosf

Ifwe choose  tan@ =212 ..(3)
a,
Taking this value of @ we obtain zeros inthe (1, 3) and (3, 1) positions, after performing the plane

rotation. Then we perform rotation in (2, 4) subspace, putting a,, = a,, = 0. This transformation will
not affect zeros already obtained earlier. Proceeding similarly, by performing rotation in the subspace

2,5),.....0, (2,0); (3, 4),........ , (3, n) etc, we obtain the tridiagonal matrix. Ifthe order of matrix is » , and
. (n=))(n=2) o .
then it requires # rotations to reduce it to tridiagonal form p.matrices 4 and p have same
eigenvalues.
Let  f,(A)=|Al-D| (%)

Sothat f,(1)= 0, is characteristic equation.

Expanding the equation (4), we find

fOZla ﬁ :A’_dla
fr=(A=d)f ¢ f s 2<r<n ..(5)
where
d, ¢ 0
D= ¢ d, ¢
dn—l cn—l (6)
O n—1 dn

The eigenvalues can be determined by finding zeros of the determinants of (A7 — D) . It turns out

that in this case, the sequence of f,(ﬂ.) forms a sturm sequence, which can be effectively used to

determine any eigenvalue.
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Example 6.1 Transform the following matrix to tridiagonal form by Given’s method
1 2 3
A=|2 1
3

Solution : Here —
a,

S sin@—i cos@—i
° V13’ J13

To create zero at (1, 3) position we write

1 0 0 1 0 0
B =|0 cosf® —sinf|=|0 Z/x/ﬁ —3/@
0 sin@ cos6 0 3/\/E 2/\/E

Now

10 o [t 2 371 o 0
PTAP =0 2/J13 3/V13||2 1 -1||o 2/413 -3/413
-3/\13 2/N13| 13 -1 1|0 3/V13 2/413

1 V130
=13 /13 513
0 513 2513

This is the required tridiagonal form.
Example 6.2 Using the Given’s method reduce the following matrix to tridiagonal form and use sturm

sequence to find eigenvalues

2 2
1

Solution : Performing the orthogonalrotation with respect to a,,,a,,,4a;,,4,,, we get

tan@zhzzzl
a, 2

1

1
sinf=— - cosf=—
So \/5 N \/5

Then we have orthogonal matrix p inthe plane (2, 3) as
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1 0 0 1 0 0
B ={0 cosf -sinf|=|0 1/\/5 —1/&
0 sin@ cosf 0 1/\/5 1/\/5

Now we have

10 0o [t 2 271 o 0
A4 =P'4R=[0 1/\N2 1N2||2 1 -1]|0 1/\V2 -1/\2
0 —1/42 142||2 -1 1|lo /N2 12

10 0 2420
=lo /N2 1V2||2 0o 2
0 —1/N2 1N2f|2 0o V2

—

1 242 0
=[242 0 0
0 0 2

This is the required tridiagonal form. The strum sequence is
fo=1, fi=2-1
£ ==, -(22) £,
=X -2-8
fi=(A-2)1,-0/,
=(2-2)(2#-2-8)
=1 -3 -6A+16

It can be observed that £ (2) =0, sothat 4 =2 is an eigenvalue.

Now we get

A Lo A L s V()
-3 + - + - 3
-2 + - - + 2
-1 + - + 2

0 + - - + 2

1 +  0(+) - + 2

2 + + - 0(-) 1

3 + + - - 1

4 + + + + 0
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v(A) shows the changes of sign. Now there is an eigenvalue in the interval (-3, —2) and (3.,4).

Now better estimates ofthe eigenvalue can be found by Newton Raphson method. Let 4 = —2 5 be initial

approximation in the interval (-3, —2). By the definition we have

Ay =A, — fi(l") ,n=0,123,....
fi(2,)

_a A, =32, —-62,+16
" 302 64, -6

First approximation :

Ay =32, —64,+16

A=Ay —

325 —64,-6
s (-25)" =3 (-25)" -6 (-25)+16
3(-2.5)" - 6(-2.5)-6
=-25+0.12162162
=-2.3783783
Second approximation :
1 =2 A =34 -6, +16
P 32 -64,-6
(-23783783)" —3(-2.3783783)" - 6(-2.3783783)+16
=-23783783 - ;
3(—2.3783783)" —6(-2.3783783)-6
=-2372301615-

Hence ) = —2.37 isthe least eigenvalue correct to two decimal places. Similarly we can find the

remaining eigenvalue anditis 4 =337.

1++/33
2

The exact eigenvalueare } =2,

Example 6.3 Find all the eigenvalues and eigenvectors ofthe following matrix using Given’s method

'

Il
NN
—_ N
AN = N

Solution : According to the Given’s method as per required we have
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1 0 0 1 0 0
B ={0 cosf -sinf|=|0 1/\/5 —1/\/5
0 sin@ cosd 0 1/\/5 1/\/5

Now we have

10 0o 1[4 2 211 o0 0
A4 =PR'4P=|0 12 1/¥2(|2 5 1|[o /N2 -1/V2
0 —1/42 12|21 6]l0 V2 142
10 0 ][4 2v2 0
=0 12 1/N2l|2 32 22
0 -1/V2 1N2]|2 722 5V2)2
4 242 0
=242 132 12
0 12 92

This is the tridiagonal matrix. The characteristic equation of 4, is

4-) 242

0
13 1

=22 =Z-2 = |=0
2 2

0 ——1

1
2 2

Now the sturm sequence is given by

fo(l)zl > fl(l):4_ﬂ'

rW=(5-2)5)

1032 )a0-11)

Let’s now consider the changes in the sign in strum sequence given as
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A f A A s ()
0 + + + + 0
1 + + + + 0
2 + + + + 0
3 + + - - 1
4 + 0 - - 1
5 + - - + 2
6 + - - + 2
7 + - - + 2
8 + - - + 2
9 + - + - 3

As the table of changes of sign indicates, the roots of the equation /(1) =0 liconeachin(2, 3),
(4,5)and (8, 9).

Now fz(/1)=(%—/1) {(12—3—/1)(4—/1)—8}—%(4—/1): 0

ie.  f(A)=A —152+651—-80
Now, choosing the first domainie. 2 <4, <3 ; A =2

We use the Newton Raphson method to find 1,

PO AC NP PP
TAC Y

1(12) - 2'1176_&176) =2.1258
£'(21176)

A7) =2.1258—f(1—258)=2.1259
7(1258)

A =2.1259—m=2.1259
1(1259)

A, =21259

Similarly we can find the other two values as

A, =44867 ; A, =83874.
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The eigenvector (y,,,, y3)T of A, correspondingto A, =2.1259 is given by

18741y, +2.8284y, =0
28284y, +43741y, +0.5y, =0
05y, +2.3741y, =0

Solving these equations we get

NV Vs
14142 -09371 0.1977

Now the eigenvector (xl,xz,x3)T of 4 correspondingto A, =2.1259 is given by

X, w1 1 o 0 T[14142
X, =4y |=[0 V2 -1/J2]][-09371
X, v, | 10 142 1/¥2 [[01977

14142 1
X, =[-08024 |=|-05674
—-0.5228 -0.3697

Similarly we can get other eigenvectors X, and X, of 4 as

02170 08077
X,=| 1 . X, =]07720
~0.9473 1

Self-Learning Exercise - 1

1. Transform the following matrix to tridiagonal form applying Given’s method
1 12 1/3
A=|1/2 1/3 1/4
1/3 1/4 1/5
2. Reduce the following matrix A to the tridiagonal formusing Given’s method. Use sturm sequence

to locate the eigenvalues

N W =
W N =
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6.3 Rutishauser Method

In the previous unit and section we already studied the methods depending on rotation and
reflection transformations. The Rutishauser method is different method which depends on the LU

decomposition. Where L stands for lower triangular matrix and U for upper triangular matrix.

Let the given matrix be 4, then we write
A= 4,

And split 4, into two triangular matrices

4 =LU, (7
Taking [, =1.
Now form

A4, =UL, ..(8)

We find that 4, and A4, have the same eigenvalues, since

4,=U L =UAU"
Again split

4, = LU, ..(9)
Taking /, =1 and form

A,=U,L, ..(10)

Where 4, and A4, have the same eigenvalues. Proceeding in the same manner we obtain a

sequence of matrices, which in general reduces to an upper triangular matrix and its leading diagonal
entries are the eigenvalues of 4.

Example 6.1 Using the Rutishauser method, find all the eigenvalues ofthe matrix

4 3
A=
1 2
Solution : By the procedure of the method let us start with the matrix 4 = 4,, we split it into two
triangular matrices

1 Of|lu, u,
A=A4,=LU, =
Ly 1110 u,

_|: Uy, U, :|
Ly Ly, +uy

Now by solving this matrix we have
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1 5
U11:4, U12:3, lZl:Za u22_z

Hence we have

ey sl el ]

At the second stage let us form

AzZUlLIZ[?) 5/34} [1/14 ﬂ:[l;{: 5/34}

Now again decomposing the matrix we have,

Az = Uz Lz

19/4 31 |1 Olfu, u,
516 5/4] |L, 1]] 0 uy,
Again in the same manner multiply the RHS matrices and hence compare with the values of the

matrix A,, it yields

5 19 20
Ly=—, u,=—, Uy =3, Uy ==

76° 4 19

On the same lines let us again form

T LA 10
=0 2_[ 0 20/4“5/76 1}

[49473 3
106925 1.0526

Similarly repeating the same process we find

(49893 3
4, =

01415 1.0106 |
L _[49978 3
100028 1.0021]

One can see easily that the value at the position a,, is tending to zero i.e. the above sequence at

last will converge to an upper triangular matrix and the diagonal elements will be the eigenvalues of the
given matrix 4 .the exact eigenvalues willbe 5 and 1.
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Example 6.2 Using the Rutishauser method to compute all the eigenvalues of the matrix

Solution : Starting with the matrix 4 = 4,, we split it into two triangular matrices as

I 0 Of|u, u, ug,
A=LU=|L 1 0|0 wuy uy,
L, L, 1|0 0 uy,

On solving this we obtain
L, =-05,1,=0, L, =-0.6667,
u, =2, u,=-1, u;=0, uy, =-1
u,, =15, u,; =0.3333.

Then we form

2 -1 0 1 0 0
A4 =UL=|0 15 -1 [|-05 1 0
0 0 03333]| 0 06667 1

25 -1 0
=|-0.75 21667 -1
0 -0222 0333

Decomposing againas 4, = L,U, , proceeding exactly same as the previous step we have

1 0 01125 -1 0
A4, =[-03 1 0[] 0 18667 -1
0 0119 1]| 0 0 0.2143

Then we form

25 -1 0 1 0 0
A,=U,L,=| 0 18667 -1 [|-03 1 0
0 0 02143|| 0 0119 1

2.8 -1 0
=|-056 19857 -1
0  -0.00255 0.2143
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Decomposingnow 4, = L,U,, we have

1 0 01128 -1 0
A4, =1-02 1 O( 0 17857 -1
0 -00143 1|| 0 0 0.2

Now let us form 4, =U,L,, hence

28 -1 0][ 1 0 0
A, =U,Ly=| 0 17857 -1[|-02 1 0
0 0 02|/ 0 -0143 1

3 -1 0
=|-03571 1.8 -1
0 —-0.0028 0.1981
Proceeding similarly we find

32469 -1 0
A =]-00001 15550 -1
0 0 01981

Hence the approximate eigenvalues of the given matrix are

32469 ; 15550 ; 0.1981

Self-Learning Exercise - 2

1. Using Rutishauser method, compute all the eigenvalues of the matrix
31
A=
11
2. Find approximately the eigenvalues of the following matrix, using Rutishauser method
1 1 1
A=(2 1 2
1 3 2

6.4 Complex Eigen Values

So far, we have considered matrices whose elements were real numbers. The elements of a matrix

can be complex numbers also; such matrix is known as complex matrix. Ifthe elements of matrix 4 =][a, |

are complex numbers . + 3., ,, and f, beingreal, thenthe matix 4 =[a, |=[a, —if,, | iscalled

the conjugate matrix of 4. the transpose of a conjugate of a matrix 4 isdenoted as 4*. Let us define
now important definitions.
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Hermitian matrix : A square matrix 4 suchthat 4/ — 1 (transporse of the matrix is equal to the

conjugate ofthe same) is said to be a Hermitian matrix. The elements of the leading diagonal of this matrix
are real, while every other element is the complex conjugate of the element in the transpose position.

3 2+4i
For example 4 = 2_4i -8 is a Hermitian matrix.

o 30 2-4i| T
Since £ =44 -8 |
Butincaseif 4’ = — A, then matrix 4 issaid to be a skew-Hermitian matrix. This implies that the

principal diagonal elements of skew-Hermitian matrix are either all zero or all are purely imaginary.

Unitary Matrix : A square matrix {7 suchthat {7/ — 7! is called unitary matrix. For a unitary matrix
U,uu =U.U=1I.

Now to determine the eigenvalues of the matrix A with complex elements we try to reduce the
problem of determining the eigenvalues of a real matrix.

For this let us consider a matrix
A=B+iC

And let 2 is an eigenvalues of the matrix 4 and x is the eigenvector, then
(B +iC ) xX=Ax
= (C—iB)xz—iAx

Or it can be written as

[ MEM

It can be seen easily that ) is also an eigenvalues of the real matrix

B -C .
E= c p | Witheigenvector [x —ix] .

One can observe easily that this method doubles the order of the matrix.

Further if 4 is Hermitian matrix then it can be diagonalized using similarity transformation involving
unitary matrices. Thus the Jacobi method can be applied by replacing the orthogonal matrix Q by unitary
matrix (/.

a b
A= L d} , be a Hermitian matrix.

Here ¢, g arerealand p =z or j, — . sothat 4_— 4.
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Let U:[p —q}
q p

Where p isrealand ;" = 1,1e. " =p!
We choose the unitary matrix {7 such that the matrix ;7! 4¢/ is diagonalized.
This unitary matrix is obtained by evaluating p and g as

-1/2
b

p:(1+|k|2)
q=kp,

k =i [(61r—¢z)i1/(ar—¢z)2 +4bc}

We chose the sign that makes j small.

Now, consider the given Hermitian matrix

1 1-i] [a b
A: =
1+ 1 c d
Here 4=1;b=1-i;c=1+i;d=1,then

0+J0+4(1-1)(1+7)]

1

=20

_* =i(1+i)

1—i N2

lk|=1.

Now, unitary matrix

o

- 1 1+i
Where 7 =(1+1) l/zzf Lg=-—"

| N2 (1-i)2
Therefore U_{(1+i)/2 l/\/E }

Hence,

e O L
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_l+\/§ 0
0 1-42

Thus the eigenvalues of the Hermitian matrix 4 are (1 +2 ) .

Self-Learning Exercise - 3

1. Find the eigenvalues of the following Hermitian matrix
2 —4i 0
A=|4 2 0
0 0 4

2. Find the eigenvalues of the following Hermitian matrix

2 1-2i
A=
1+2i -2

6.5 Summary

In this present unit we learnt two different methods to obtain the eigenvalues. The first method is

Given’s method in which it is proposed an algorithm using plane rotation which preserves zeros in the off

diagonal elements once they are created. This method reduces the given matrix into a tridiagonal matrix

using plane rotation and form a sturm sequence which determines the eigenvalues and hence eigenvectors

obtained.

(n—l)(n—2

Ifthe order of matrix is 5, thenit requires T, rotations to reduce it to tridiagonal form

D.matrices 4 and p have same eigenvalues.
Let  f,(A)=|A1-D|

Sothat f,(1)= 0, is characteristic equation.

Expanding the equation (4) we find
Jo=1, fi=4-d,,

/. :(ﬂ’_dr)frfl_crzfl ;25 2Sr<n

where

d, ¢ 0
D= o d, ¢
n-1 Cnol
0 o d,
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The eigenvalues can be determined by finding zeros of the determinants of (A7 — D) . It turns out

that in this case, the sequence of £, (4) forms a sturm sequence, which can be effectively used to determie

any eigenvalue.

Another method is the Rutishauser method, a different method which depends on the LU
decomposition. Where L stands for lower triangular matrix and U for upper trianguler matrix. Let the
given matrix be A4, then we write

A= 4,
And split 4, into two triangular matrices
4, =LU, ;Taking [, = 1.
Now form 4,=UL,

Where, 4, and 4, have the same eigenvalues. Proceeding in the same manner we obtain a
sequence of matrices, which in general reduces to an upper triangular matrix and its leading diagonal
entries are the eigenvalues of 4. Next we studied a brief introduction of the complex matrices and their
eigenvalues, espacialy in the case of that the given matrix is Hermitian. This matrix basically has a property
that transpose of the matrix is equal to the conjugate of the same. The elements of the leading diagonal of
this matrix are real, while every other element is the complex conjugate of the element in the transpose
position. In this case the matrix can be diagonalized using similarity transformation involving unitary

matrices. Thus the Jacobi method can be applied by replacing the orthogonal matrix by unitary matrix.

6.6 Answer of Self-Learning Exercise

Self-Learning Exercise - 1

. 1 13/6 0
1 A:l_ 13/6 34/5 9/20
0 9/20 2/15
2. A =1 and another two lie in intervals (2, 3) and (5, 6).

Self-Learning Exercise - 2

1. A, =3413792 ; A, =0586207

2. A, =47912 A, =-0.9998 ; A, =0.2085
Self-Learning Exercise - 3

1. A, =6 A,=-2; A,=4

117



6.7 Exercises
I. Transform the matrix
2 1 3
A=|1 2 B
V3 4303
to tridiagonal form using Given’s method. Using sturm sequence, obtain eigenvalues.
2. Using Given’s method transform the following matrix A4 to the tridiagonal form and compute the
largest eigenvalue
1 2 2
A=[2 1 2
2 21
3. Compute the eigenvalues using Rutishauser method of'the following matrix
6 4 4 1
4 6 1 4
A=
4 1 6 4
1 4 46
4. Compute the eigenvalues using Rutishauser method of'the following matrix
31
A=
5. Find the eigenvalues of the following Hermitian matrix

0
0
3

miNIN
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Unit-7: Curve Fitting and Function Approximations

Structure of the Unit
7.0  Objectives

7.1 Introduction

7.2 Least-Squares Principle

7.3 Fitting a Straight Line

7.4  Fitting a Polynomial of Degree »

7.5  Fittinga Curve of the Form y = gx”

7.6 Fittinga Curve of the Form y = ge™
7.7 Least-Squares Principle for Continuous Functions

7.8 Summary
7.9  Answer ofthe Self-Learning Exercise

7.10  Exercises

7.0 Objectives

In this unit, we shall study about a principle called ‘Least-Squares Principle’ which gives us a
way to fit a desired curve to a set of given discrete data. We shall also study least-square approximation
for a continuous function on an given interval.

7.1 Introduction

In this unit, we shall consider the process of approximating a function when the function is known
only in the form of a table values. We shall also study the process to obtain polynomial approximation to
the given continuous function on the given interval. Using least-square approximations. In this unit,
approximations are obtained by minimising sum or integral of the squares of the error.

7.2 Least-Squares Principle

Let {x,,y,} beanapproximate set of given data. Now we have to fit a curve to this given data. To
find the approximate equation of'this curve, which passes through as many data (point) as possible, is
called curve-fitting. Let this curve be ¥ = f(x) be fitted to the givendata {x,,3,},i=12,....... m.

Let f(x,) =Y, be the value obtained by substituting x = x, in the equation of the curve, then

v, — Y =e, (say), will be the error of approximationat x = x, for i =1,2,.....,m.

m

Let S=§€f =;(y[—¥)2 ()

The least-squares principle requires § to be minimum. If all the point lie on the approximated

curve Y = f(x),then § will be zero. Thus, the curve ¥ = f(x) will be the best approximation, for the
given data, if § is least. This is known as least-squares principle.
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7.3 Linear Regression or Fitting a Straight Line

Let {(xl. D )li=12,... ,m} be a set of observations. We have to fit a straight line

Y=a+bx -(2)

to the givendata. Let at x = x,, ¥, be the expected value, then
Y =a+bx,

and corresponding observed valueis y,.Let e, be the errorat x = x, , then
e=y -7, i=12,..... ,m

or el.:yl.—(a+bx,.), i=12,..... m.

The sum of squares § (say) of this error is given by

S-= Z[ —(a+bx,) ] -(3)

Least squares principle requires that § be minimum. From (3), it is clear that § depends an a

and p, thatis, S isa function of @ and 5. Thus, we have to find the value of @ and 5 so that § become
minimum. By the theory of maxima-minima, the necessary conditions for § to be minimum are

o5 08
oa ob’

From (3), we have

—22[ a+bx ]le

and ZZx [ —(a+bx, )]] 0

On simplification of these two equations, we have
iyl.zma+bixl_ [ iazma)
P par P
or > y=ma+b) x, (4
ad Sxy=adx+hd
P P P
or D xyi=a). x+b) x; ..(5)
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Equation (4) and (5) are said to be normal equations. Solving these two equations, we can
determine the value of 4 and p, . It can be easily verfied that for the obtained values of  and p, § willbe
.

Example 7.1 Using the method ofleast-squares find a straight line that fits the following data :
x 71 68 73 69 67 65 66 67
y 69 72 70 70 68 67 68 64

Also find the value of y at x = g85.
Solution : Let the required straight line be
yv=a+bx ...(1)

the normal equations are

Zyi =ma +b2xi ..(11)
and inyi :ain H)Z:xi2 ...(iii)
Now, to get the values of Z Vi, Z X, Z x;y; and Z x; , we construct following table :

i xi yi xiyi xl‘z

1 71 69 4899 5041

2 68 72 4896 4624

3 73 70 5110 5329

4 69 70 4830 4761

5 67 68 4556 4489

6 65 67 4355 4225

7 66 68 4488 4356

8 67 64 4288 4489

Sum 546 548 37422 37314

Hence, in =546, Zyi =548

D xy,=37422, > x} =37314

and total number of given data m = 8§,

substituting these values in (ii) and (iii), we get

548 =8a+546b
37422 =546a+373145b.

Solving these two equations for ¢ and b, we get
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a=39545484 and b = 0424242
Thus, the required straight line is

v =39.545484 + 0424242 x
Now, at x = 8.5, value of y is given by

v =39.545484 + 0424242 x 68.5

=68.606061
Example 7.2 Fit a straight line to the given data
x 1 2 3 4 5 6
y 26 27 29| 3.025 | 3.2 3.367
Also find value of y at x = 55.
Solution : Let the required straight line be
y=a+bx
then, the normal equation are
z v, =ma+b z X,
and inyi:ainwLbeiz
Now, from the given data, we have following table :
i X, b7 X, x;
1 1 2.6 2.6 1
2 2 2.7 54 4
3 3 2.9 8.7 9
4 4 3.025 12.1 16
5 5 3.2 16 25
6 6 3.367 20.202 36
SUM 21 17.792 65.002 91

Hence,

D ox, =21, y,=17792,

D Xy, =65002, > x} =91
and =6
then, the normal equations become

17792 =6a +21D
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and  65002+21a+91b,
Solving these equations, we get

a=2419333, b=0.156

Hence, required straight line is given by the equation
y=2419333+0.156x
Now, at x =55, value of y is given by

y=2419333+0.156x55

=3.277333
Example 7.3 Fit a straight line to the given data

x -1 0 1 2 4 6
y 10 9 7 5 3 -1

Also find the value of y at y =35

Solution : Let the required straight line be

y=a+bx,

then the normal equations are given by
z v, =ma+b z X,

and inyi:ainwLbeiz

Now, we construct following table, using the given data :
i X, b7 X, xX;
1 -1 10 -10 1
2 0 9 0 0
3 1 7 7 1
4 2 5 10 4
5 3 4 12 9
6 4 3 12 16
7 5 0 5 25
8 6 -1 -6 36
SUM 20 37 30 92

From the table we obtained following values,

D x,=20, > y =37,
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D xy =30, ) x =92

and ;=8
from the normal equations, we have
37 =8a+20b

and  30=20a+92b>

solving above two equations, we get the values of ; and p as

a =8345238, b=-1488095

Thus, the equation of the straight line is
y =8345238 -1.488095 x
Now, at y =35, we have

y =8345238-1488095x% 3.5

=06.857143

Example 7.4 Fit a curve ofthe form y = ax + bx” to the givendata :

X 1 1.5 |2 2.5

3

3.5

y | 11| 195)32] 5

8.1

11.9

16.4

Solution : Equation of the required curve is

y = ax +bx’

which can be written as

Z=a+b)c
X

let Loy , then the above equation becomes
X

Y=a+bx

Normal equation for this curve are given by

ZX =ma +b2xi
and Y xY=a) x,+b) x]
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Using given data, we construct following table :

I X y Y=£ Y 2

1 1 1.1 1.1 1.1 1

2 1.5 1.95 1.3 1.95 2.25
3 2 3.2 1.6 3.2 4

4 2.5 5 2.0 5 6.25
5 3 8.1 2.7 8.1 9

6 3.5 11.9 3.4 11.9 12.25
7 4 16.4 4.1 16.4 16
SUM 17.5 - 16.2 47.65 50.75
From the table we have

D x, =175, ¥ =162
D XY, =4765, > x} =5075
and ;=7
Substituting these values in normal equations, we get

162 =7a+17.5b
47.65=17.5a+50.75b -

Solving these equations, we get

a=-0239287, b =1.021429

Thus, from (ii), we have

Y =-0239287+1.021429 x

Substituting ¥ = % , we have

y =-0239287x +1.021429x"

which is the required equation.

7.4

Fitting a Polynomial of Degree 5

We can fit a polynomial of degree # , to the given data using least-squares principle.

Let

y=a,+a,x+a,x"+.+a,x"

be an polynomial of degree , which is to be fitted to the givendata (x,,,), i =12,......

Then,
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where

SO

_ 2 n
=a, +a1xi +a2xi +....+anxi

m
S= Z[yl. - (ao +a,x, +a,x +..4+a,x’ )]l
i=1

For § to be minimum, we must have

that is,

a5 _, oS _ 2

- 0 =0

&ao 5 é’al 5 eeeey ﬁan ’

oS < !

Za, = 2 -2 [J’i - (ao +a,x +a2xi2+....+anxi )]l =0 ,
085 I o

0”_511 = 2 —2xi [yi —(ao +ax, 4—612xi2 +....ta,x; )]l = 0’
0S5 < !

7a) = 2 —2x7 [J’i —(ao +ax’ +a,x +..+a,x )]l =0,

oS _ i_zxn [yl _(ao +a1xi2 +a2xi2+....+anx,~n)]l =0,

Simplifying above (n +1) equations, we get following normal equations,

These (n+1) equations can be solved for (n+1) unknowns a,,a,,a,,......a, .

Zyi :a0m+a12xi +azzxi2+....+an2xi”
inyi :aOin +a12xi2 +azle§+....+an2xi”” ,
inzyi :aOinz +alz“xi3 +azzxf+....+an2xi”+2 ,

z X'y, =a, z x'+a, z x" +a, z X' ta, z x"
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Particular Case : For ; = 3, polynomial will be a parabola. Let equation of this parabola be

values of @, b and ¢ canbe obtained using normal equations given by

Zyi =ma +b2xi +chi2 ,
inyi :ain H)Z:xi2 +CZ)C[~3
inzyi :ainz H)Z:xi3 +chi4

y=a+bx+cx’

Example 7.5 Fit a second degree polynomial to th data :

Solution : Let the required equation of the curve be

X

—4

-3

-2

-1

0

y

-5

-1

0

1

3

y=a+bx+cx’

Normal equations for this curve are

Zyi :ma+b2xi+02xi2
inyi :ain +b2xi2+02xi3
inzyi :ainz +b2xf+chi4

From the given data we construct following table :

2

i ooy | x| 52| Xy x|
1 4 | -5 |20 |16 | -8 | —64 | 256
2 -3 | -1 31 9| -9 | -27] 81
3 2| o | o] 4 0| -8 |16
4 -1 1 |-1 ] 1 1 -1 |1

5 o | 3 0| o0 o| o |o

6 1 41 4 | 1 4 1|1

7 2 | 4 g8 | 4 16 8 |16
8 3 3 9 | 9 27 | 27 |81
9 4| 2 8 |16 32 | 64 | 256
suM| o [ 11 | 51 |60 | -9 0 | 708

Thus,

2% =0, 2y, =11, 3 xy, =51
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inz =60, inzyi =-9, fo =0,
fo:708 and ;3 =9,

Substituting above values in normal equations, we get

11=9a +b.0+60c or 11=9a+60c >
51=a.0+b.60+c.0 or 51=600,
-9=0.60+b.0+c.708 or -9 =60a + 708¢c

Solving above equations for 4, p and ¢, we get
a=3.004329, b =085, c=-0267316
so, the required equation is given by
y =3.004329 +0.85x — 0.267316x°

Example 7.6 Population of a city in different years are given in the following table :
x 1970 | 1980 | 1990 | 2000 | 2010
¥ (in thousands) 1450 | 1600 | 1850 | 2150 | 2500

Fit a parabola to the given data, using least squares principle. Also estimate the population ofthe

city in 2005.

Solution : Since the magnitude of given data is large and values of x are given at equal intervals,
therefore we reduce it by shift of origin and scale. Let x, = 1990 be origin of x — valuesand y, = 1850

be origin of y —values.

Then, let

x—1990 y—1850
X = Y=———
T 50

Let required curve be y = a +bx + cx”, after change of origin and scale, it will be

Y=a+bX +cX*

Now, we construct following table :

X X y Y Xy X? x| x| x
1970 | =2 | 1450 | -8 16 4 32 | -8 16
1980 | -1 | 1600 | -5 5 1 -5 -1 1
1990 0 | 1850 0 0 0 0 0 0
2000 1 | 2150 6 6 1 6 6 1
2010 2 | 2500 | 13 26 4 52 8 |16
SUM | 0 - 6 53 10 21 0 34

Normal equations, in new variables, will be
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ZX:mavaZXi +CZXi2 ,
D XY =a) X +bY X} +c> X,
DX =a) X} +b) X +c) X/

From the table, we have

DX, =0,>Y=6,> XY =53
> XI=10, Y X Y =21,) X} =0,
ZXf =34,and s =35,

substituting these values in normal equations, we have
6=5a+b0+c.10

or 6=>5a+10c>
53=a.0+b10+c.0

or 53=10b

and  21=4a.10+h.0+c.34

or 21=10a+34c

Solving above equations for 4, p and ¢, we get

a=-0085714, =53, ¢ =0.642857

Now, from (i), we have

Y =-0.085714+53X +0.642857 X ...(1if)

From (i), we have

y—1850 x—1990

=-0.085714 +5.3(
50

2
)+0.642857(x_1990)

on simplification, we have

y =1222008.286—1252.78543x +0.3214285x"

which is the required equation of parabola. Now, in the year 2005, population of the city will be

given by

y = 1222008286 — 1252.78543(2005) + 0.3214285(2005)"

=2324.10456
~ 2324 thousands, approximately.
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7.5 Fitting a Curve of the Form y=ax’

Let, for the givendata (x,,y,), i =1,2,.....,m, we have to fit a curve of the form

y=ax" ..(8)
taking logarithm of both sides, we get
log, y =log,a+blog, x ..(9)

Let log, y=7Y, log,x= X, log, a = A, then equation (9) becomes

Y=A4+bX
which is a straight line so the normal equations are given by
DY =mAd+b) X,
and D XY =A+) X, +b) X] ..(10)

where m is totalnumber of given data.

Solving these equations, we can get values of 4 and 5 . Using the relation log, a = 4 , we can get

value of 4.

Example 7.7 Fita curve ofthe form y = ax” to the given data :

X 2 3 4 5 6
y 144 172.8 207.4 248.8 298.5

Solution : The curve to be fitted is
y=ax" ...(1)
Taking logarithm of both sides of equation (i), we get

log, y =log,a+blog, x

of  Y=A+bX -+«(1i)
where Y =1log, y, A=log,a and log, x =X

i X X =log, x y Y=log,y XY )&

1 2 0.6932 144 4.9698 3.4451 0.4808

2 3 1.0986 172.8 5.1521 5.6601 1.2069

3 4 1.3863 207.4 5.3346 7.3954 1.9218

4 5 1.6094 248.8 5.5166 8.8784 2.5902

5 6 1.7918 298.5 5.6988 10.2111 3.2105
SUM| - 6.5793 - 26.6719 35.5901 9.4099
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From the table, we obtained

D X, =65793, DY, =266719,

D XY, =355901, ) X} =94099,

and ;=5

Normal equations, for the curve (ii), are given by

DY =mA+b) X,
D XY, =AY X, +b) X]

Substituting values, obtained from the table, we get

26.6719=54+6.57930,

355901=6.57934+9.40995h
Solving these equations, we get
A=4471176, b=0.656

From the relation log, a = 4 , we get

a=87459515

Thus, the required curve is
y=87.459515(x)"""

Example 7.8 Fitacurve y = gx” to the following data :

X 1 2 3 4

y 5 7 9 10

Also estimate the value of y at y =25
Solution : For the required curve
y=ax"

normal equations are given by

DY =mA+b) X,
D XY, =AY X, +b) X]

where, Y =log, y, X =log,x and 4 =log, a

From the given data, we construct following table :
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i X X =log, x y Y=log,y XY X?

1 1 0 5 1.6094 0 0

2 2 0.6931 7 1.9459 1.3487 0.4804
3 3 1.0986 9 2.1972 2.4138 1.2069
4 4 1.3863 10 2.3026 3.1921 1.9218
SUM| - 3.1780 - 8.0551 6.9546 3.6091

From the table, we obtained

D> X, =3178, ) ¥ =8.0551,

D> XY, =69546, D X =3.6091

and =4

Substituting these values in normal equations, we get
8.0551=44+3.178b
6.9546=31784+3.6091b

Solving these equations, we get
A=1607194, b=0.511745

by the relation log, a = A, we get 4 = 4988793

hence, the required equation is

y =4.988793(x)"""""

Now, at x =25, y =4.988793(2.5

)0511745

=7.973322

7.6

Fitting a Curve of the Form y = ge®

Let the curve ofthe form
y=ae
to be fitted to the given data (x,,y,), i =12,....... m.
Taking logarithm both sides of the above equation, we get
log, y =log, a+bx

OF Y= A+bx
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where log,y=7Y and log,a =4

Normal equations, for the equation (12), are given by

ZX =mA +b2xi ,
inx = Ain H)Z:xi2

solving these equations, we can get required values of unknowns.

Example 7.9 Fit a exponential curve of the form y = ge™ to the given data :

X 1 2 3 4 5 6
y 1.6 | 4.5 13.8 | 40.2 | 125 | 300

Also find the value of y at x =435

Solution : The required curve is
y =ae™

Normal equations are given by

ZX =mA +b2xi
and D xY =AY x,+b) x

where, Y =1log, y and 4 =1log, a

From the given data, we construct the table as follows :

i x |y Y=log,y | Xy X’
1 1 | 1.6 | 0.4700 0.4700 1
2 2 | 45 | 1.5041 3.0082 4
3 3 | 13.8 | 2.6247 7.8741 9
4 4 | 40.2 | 3.6939 14.7756 16
5 5 | 125 | 4.8283 24.1415 25
6 6 | 300 [ 5.7038 34.2228 36
SUM | 21 | - 18.8248 84.4922 91

From the table, we obtain following values
D ox, =21, )Y, =188248,
D XY, =844922, > x} =91
and ;=6
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substituting these values in above normal equations, we get

188248 =64+21b

and 84.4922 =214+91b
solving these equations, we get
A=-0.583614, b=1.063166

From the relation log, a = 4 , we get

a = 0557879

Thus, the required curve is
y=(0557879) e!**1%

Now, at x =45, value of y is given by
y =(0557879) "0 (+2)

=066.728611

7.7 Least-Squares Principle for Continuous Functions

We have studied least-squres principle for discrete data. A continuous function /(x) canalso be

approximated by a polynomial of degree » on the given interval [a,b], using least-squres principle.
Let desired polynomial of degree 5 be

P(x)=a,+ax+a,x’+....+a,x

n

where a,,a,,a,,....... ,a, are arbitrary parameters to be determined.
Let
h 2
S:L w(x) [f(x)—f;(xl)]] dx (13)
where, w(x) is the weight function such that w(x) >0 and § isafunctionof a,,a,,a,,.....,a, .

Also, P(x,)=a,+ax,+a,x +....+a,x,

n

Now, according to least-squares principle criterion, § must be minimum. The necessary
conditions for § to be minimum, are given by

o5 _ _2wa(x){f(x)_§arxf}dx =0,

da,
oS b .
28 [ wle)| )~ S =,
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(n+1) unknown a,,a,,a,,........ ,a .

o5 _ —2wa(x)[f(x)— Za,x’}x”dx =0
a r=0
Simplifying above equations, we get

a, Jjw(x)dx+a1 ijw(x)dx +a, ijz w(x)dx+.....
+a, ij" w(x)dx ='[bw(x)f(x)dx

a

a, J-b)cw(x)a'xwta1 bez w(x)dx +a, be3 w(x)dx+.....

+a, I:xz” w(x)dx :I:x” w(x) f(x)dx

This is a system of (n+1) equations, called normal equations and this system can be solved for

Example 7.10 Obtain a second degree polynomial approximation to the function f(x)=x’, onthe

interval [ 0,1], using least-squares principle. Take weight function w (x) =1.

Solution : Let, the required polynomial be

y=a+bx+cx’

Then, we have
S(a,b,c) = J-Ol[)f - (a +bx + cx? )]lzdx

Normal-equations are given by

%:—ZLI[XB —(a+bx+cx2)]ldx=0’
%: —ZJ:[XB —(a +bx+cx2)]lxdx= 0’
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oS

e —2J:%3 —(a +bx+cx2)}lx2 dx=0

Simplifying above equations, we get

aI;dx+bI;xdx+cI;x2dx:le3dx,
a 1xa’x+b 1xza'x+0 1x3dx: 1)c“a'x,
J-O J-O 0 0

aJ‘Ol x dx+bJ‘01 x3dx+cI;x4dx :I;xsdx

Simplifying these equations, we get

c 1
a+—+—=—
2 3 4°
a b ¢ 1
—t—t—==
2 3 4 5
a b ¢ 1
—t ==
3 4 5 5°

solving these equations, we get

L, 6 15
20° 10° 10

Thus, the required polynomial is given by

_,_ L6 15,
SO =r=20"10" 10"

oo X :2—10(1—12x+30x2),

1
As acheck, at x = 5

yzi 1—12><l+30><l
20 2 4

1
= —[1-6+75

Sl =6+77]
— 0125
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The true value is given by

f(x)=x°
hich gives, /| = |=(~ 3
which gives, /| 7 |=| 3
_1
8
=0.125
1.
Thus, error at X = 5 1S Zero.
Self-Learning Exercise
1. In least-squares principle sum of errors ¢! is minimised. Here value of 5 is

@ 1 (b)) 2 © 3 @ 12

2. Using least-squares principle, we can approximate a polynomial of ; degree, fit to discrete data.
(Ture/False)
3. To fit a parabola, unknown parameters can be obtained by solving normal-equations

consistings of
(a) two equatons (b) three equations

(c) four equations (d) five equations

7.8 Summary

In this unit we studied least-squares principle. This principle provides us a technique to
approximate a curve or polynomial of best fit to the given descrete data or a given continuous function.

7.9 Answers of Self-Learning Exercise

. (b 2. Tre 3. (b

7.10 Exercises

1. The temperatures @ and length ; ofa heated rod are given below. Establish a relation between @
and ; ofthe form ] = 4 + @ using least-squares principle.

6(°c) | 20 30 40 50 60 70

I(mm) | 800.3 800.4 800.6 800.7 800.9 800.10

[Ans. 4 =800,5=00146]
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Fit a curve ofthe form y = ax + bx” to the given data :

X 1 2 3 4 5 6

y 26 | 54| 87 12.1 ] 16 20.2

[Ans. y=241973x+0.15589x"]

Fit a straight line to the following data :

X 1 2 3 4 5 8

y 24 | 3 36 | 4 5 6

Also find y at y =35.

[Ans. y=1976+0506x,y =3747 at y =35]

Compute the constants ¢ and 7 ” such that the curve ¥ = 7" fits the given data :

X 1 2 3 4 5 6

y 151 | 100 61 50 20 8

[Ans. ¢ =309, y” =05754]

Fit a curve of the form y = ax” to the data given below :

X 2 4 7 10 20 40 60 80

y 43 25 18 13 8 5 3 2

[Ans. 4 =436,5=-0.7975]

Fit the curve pV’" = k to the data given in the table :

4 0.5 1 15 | 2 25 | 3

14 1.62] 1 0.75]1 0.62 | 0.52| 0.46

[Ans. ,=14224, k =0.9970]

Fitacurve y = ge™ to the following data :

X 2 4 6 8 10

y 4.077 11.084 30.128 81.897 222.62

Also estimate y at x = 7.

[Ans. 4 =1499, =05, c=49.64011
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Fit a second degree polynomial to the following data, taking x asindependent variable :

X 1 15| 2 25 ] 3 351 4

y 1.1 1.3 1.6 | 20 | 27| 34 | 4.1

[Ans. 3 =10368-0.1932x +0.2429x" ]

Fit a second degree parabola to the given data

x 1929 | 1930 | 1931 1932 1933 | 1934 | 1935 1936 | 1937

y 352 | 356 | 357 | 358 | 360 | 361 |[361 | 360 | 359

[Ans. y=-1010135+1044.67x-027x"]

Obtain a least-squares quadratic approximation to the function y (x) =Jx on [0,1] , with respect

to the weight function w(x)=1.
1 2
[Ans. =% (6+48x—20x")]

Construct a least-squares quadratic approximation to the function y (x) = sinx on [0, /2], with

respect to weight function w (x) =1.

[Ans. ysinx=-0.03511+1.235x—0362x"]

miNIN
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Unit - 8 : Approximation of Functions by Taylor Series and
Chebyshev Polynomials

Structure of the Unit

8.0  Objectives

8.1 Introduction

8.2  Taylor Series Expansion of a Function

8.3  Orthogonal Polynomials and Least-Squares Approximations
8.4  Gram-Schmidt Orthogonalizing Process

8.5 Chebyshev Polynomials and its Properties

8.6  Chebyshev Approximation (Uniform-Minimax Polynomial Approximation)
8.7  Chebyshev Series Expansion

8.8  Economization ofthe Power Series

8.9 Summary

8.10  Answers of Self-Learning Exercise

&.11 Exercises

8.0 Objectives

In this unit we shall study about chebyshev polynomials and their application in approximation of
functions and economization of power series. We shall also study about approximation of a function using
Taylor series.

8.1 Introduction

We have already studied function approximation through interpolation. In previous unit, we
studied curve fitting based on least-squares principle. This technique is also used to approximate the

function. In least-squares principle, we minimize S = z e’ , where e, is difference between observed and

expected value of y at x = x, . If we minimize maximum component of errors e, , we get a technique to

approximate the function using chebyshev polynomials. Chebyshev polynomials are orthogonal
polynomials.

We are quite familier with Taylor series, which is also an important tool to approximate the
function.

8.2 Taylor Series Expansion of a Function

ATaylor series expansion for a function f(x) abouta point x, is given by

f(x) :f(x0)+(x—xo)f’(xo)+2i!(x—x0)2f”(x0)+....

'(x—xo)””f( )()CO)+.... (1)



If P (x) is the polynomial of degree n , approximating the given function, obtained by truncating

the terms containing (n + l)th and higher order of x in (i), then

P,(x) :f(x0)+(x—x0)f’(x0)+%(x—xo)zf”(xoﬁ....

b (=) ) e)
where
PO (xy)= 9 (x,), k=012,....n .(3)
and remainder term
R, = (nil),(x_xO)an(m)(@), X, <O0<x (4
is the truncation term.

Ifthe truncation error is €> 0, then we have

n+l

1 |x
(n+l)!

S (x)| < e .(5)

Using this relation we can find number of terms to be retained in (2), for the given error tolerance
c.

Example 8.1 Obtain Taylor series expansion of the function f'(x)=e", about x = 0. Find the number

of terms of the exponential series such that their sum gives the value of ,~ correct to six decimal places at

x=1-

Solution : Giventhat f(x)=e"
then  f'(x)=e"=f"(x)=...... =f(”)(x) and so on,

Now, at x=0, f(0)=1= f'(0)=..... /")(0) and so on.
Thus, from (2), we get
2 3 xn

P(x)=l+x+—+ 4 +
20 3! n!

n+l
0

Here, &, Tt 0<O<x

For, accuracy of six decimal places at y = 1, we have [from (5)]
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11
n+1)!<5X10 (atx=1, /"(x)=1)

—_

thatis (n+1)!>2x10°

which gives 5 = 9, so totalno. ofterms = 5 +1=10

that is, we need 10 terms for required accuracy.

Example 8.2 Obtain polynomial approximation P,(x) for the function f(x)= e " using Taylor series

expansion about x, = 0 and find the value of x when the errorin P,(x) obtained from the first five terms

only is to be less than | ()7 after rounding.
Solution : Giventhat f(x)=e™"
then, f*(x)= ¢,
frl)=e.
f"(x)=—e"",and so on

Now, at x =0,

f(0)=1, f'(0)=-1, f"(0)=1and so on.

So, Taylor series expansion is given by

2 3 4 5
X X X

F;,(x)=l—x+x———+———+ .....
2 6 24 120

Now, from (5), we have

‘(x _ 0)n+1

(n+1) LT
(n+1)! 7)<

If we retain first five terms, then

lx5 maxle *|<5x107"

51 o0s<x<1
or x*<120x5x107 ( max ex‘zl)
which gives

x*<6x107°

or x <0.0903
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Example 8.3 Obtain a second degree polynomial approximation to the function

Fl)=——. x e[l 12]

1+x

using Taylor series expansion about » = 1 . Find a bound on the truncation error.

1
1+x2

Solution : Given that, f(x)=

The Taylor series expansion is given by
1 1
()= @+ =0 )+ (=177 (1) 45, (=17 "(0), 1< 0 x

Substituting the values of derivatives of f(x) at x = |, we get

R()=5 = (v= 1)+ (x-1)

Truncation errors is given by

) o). <o

Error bound is given by

3
|R2| < (x _ 1) max
6 1<x<1.2

S (x)

—1)
e ; ) (0.3575076)

< 00595846 (x 1)’

Maximum absolute truncation error at x =12 is given by 0.0004767 -

8.3 Orthogonal Polynomials and Least-Squares Approximations

A set of functions {(]5 ; (x)} is said to be orthogonal onan interval [a, 5|, withrespect to the weight
function w(x), if

[[w(x) 6,(x)4.(x)=0, if j=k 6

For descrete data, a set of function {¢i (x)} is said to be orthogonal over a set of points {x, },

with respect to the weight function w (x) ,if

m

2 w(x)¢,(x)4.(x) =0, if j= (7
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In approximating the function, using least-squares principle, we obtain a system of linear equation,
which may possess problem of ill-conditioning. This problem can be avoided by the use of orthogonal
functions or polynomials. One more advantage is that we can determine parameters directly.

Let, the approximation to the given function y = f (x) ,1s of the form
Y(X):a0¢O(X)+a1¢1()C)+....+an¢n(X) ..(8)

where, the set of polynomials {(15 ; (x)} are orthogonal on an interval [a, b] and ¢, (x) isapoly-
nomial of degree j invariable x.

Now, by the weighted least-squares approximation criterion.

§(aystsensa,) = [ () [ f(x)—jioajq)j(x)}z dx )

should be minimum. The necessary conditions for § to be minimum, are given by

o ] wx) [f (x)-2 a9, (X)} ¢, (x)dx=0 .(10)

where k£ =0,1,2,....,n

These are (n+1) equations in (7 +1) unknowns and can be solved, using the property of
orthogonal functions.

Thus, equation (10) gives

a, [ w(x) ¢ (x)dx = [ w(x) £(x) ), (x)dx

b

w(x) /(x),(x)dx
J-; w(x) ¢f (x)dx

hence, a;=*

(1)

8.4 Gram-Schmidt Orthogonalizing Process

Every set of linearly independent polynomials is not orthogonal, but it can be orthogonalized using
Gram-Schmidt process.

Let, the orthogonal monic polynomial ¢, (x) beofdegree j then it has leading term x/. Thus,

q)o(x) =1 ..(12)
Let

¢1(x)=x+a10¢0(x) ..(13)
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such that ¢, (x) and ¢, (x) are orthogonal and ¢, (x) is of degree one therefore it has leading
term x.

By the condition (6) of orthogonality, we have
b
L w(x)Po(x) ¢, (x)dx =0

or '[:xw(x)(]ﬁo(x) dx+a10'|:) w(x)gs(x)dx =0

which gives
L J.:x w(x) ¢0(x)dx
v J.: w(x) ¢(2) (x)dx
~ J.: X w(x) dx
—‘W (- go(x)=1) .(14)

Using the value of a,, in (13) we can get the value of ¢, (x). Now, let

¢2(x):x2+a20 ¢0+a21¢1(x) ..(15)

where ¢, (x) is a polynomial orthogonal to both q)o(x) and q)l(x) having x? asleading term.

Now, to determine a,, and a,,, we use the condition of orthogonality as follows :
Jj w(x) ?, (x) ?, (x) dx=0 (GANN (x) and ¢, (x) are orthogonal)

and Jj w(x) ?, (x) o, (x) dx=0 (9, (x) and ¢, (x) are orthogonal)
using (15), we get
Jj w(x) @, (x)[x2 +dy 9o (X)+ay B, (x)]l dx=0

and Jj w(x)é,(x) [xz + a5 9o (X)+ay, B, (x)]l dx =0

Solving these equations, we get

Y J.: x? w(x)dx
” J.: w(x) dx
L J.: x> w(x) ¢, (x)dx
21 J.: w(x)gbf (x)dx ...(16)
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using values of a,, and a,, in equation (15), we get the value of ¢, (x).

Proceeding in similar manner, we get
§,(x)=x"+bjy (x)+b; ¢ (x)+...4b; 4, ,(x) ~(17)

where b, is given by

J.:x-/ w(x)¢,(x)dx
i = _[bw(x)gb?(x)dx , where i =0,1,2,...., j—1 ..(18)

Particular Cases : 1. Iftake weight function w(x)=1 and interval [—1,1], then we get
¢o(x) =1l= Po(x) J
¢1(x) =X= Pl(x)’

-
S
—
)
N—
Il
I
—_—
(98]
=
)
|
[—
N—
|
I

2
-2,

1 2
9,(x)= §[5x3 - 3x]| =3 P(x) and so on.

where P(x), B(x), B(x), B(x),..... are the Legendre Polynomials, orthogonal with respect
to weight function w(x) =1 onthe interval [—1,1].

1
2. If we take weight function w (x) = (1 —x2 )7 onthe interval [—1, 1], then we obtain

¢o(x) =1= YZ)(X) J

2 1 _1.
¢2(X): —525(2x —1)2

T,(x) and so on,

N | —

here 7;,7,,T,,..... are the chebyshev polynomials which are also orthgonal polynomials.

8.5 Chebyshev Polynomials and its Properties

The chebyshev polynomials of the first kind of degree », over the interval [-1, 1] is defined by

T,(x) = cos(ncos™ x) ..(19)
Let cos™' x = 9, then we have

T (x)=cosn®
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Hence, for , =0, T(x)=1,
for =1, T(x)=cosO=x
for n=2, L(x)=cos20
=2cos’0—1
_2x%_1. andsoon
From (19), it is obvious that
L(x)=T,(x)

Recurrence Relation :

By the definition of T (x), we have

T

n+l

(x)=cos(n+1)0 and T_,(x)=cos(n-1)0,
adding these, we get

T

n+l

(x)+T_(x)=cos(n+1)0+cos(n—1)6

=2cosnf.cosf

Thus, we have

T.(x)=2xT,(x)-T,,(x)

Using this relation we can find successively all 7| (x) . Some of'these are given below :

T(x)=1,
h(x)=x,
T,(x) =22° -1,

Ty(x) =4x" -3x,
T,(x)=8x"—8x7 +1,

T;(x) =16x" —20x° + 5x,
T,(x)=32x"—48x" +18x" -1,
T,(x)=64x" —112x" +56x° - 7x,
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T(x)=128x" —256x° +160x* —32x* +1, and so on. ..(22)

It is to be noted that coefficient of leading termin 7, (x) is always 1.

Expansion for Power of x terms of Chebyshev Polynomials :

x' =1=T(x),

x=T(x),

¥ = [+ 1),

¥ =37+ 1),

o =[BT +4 L)+ T ()],

= [107(x) +5T3(x) + )]

= 3% [107;(x) + 15T (x) + 6T, (x) + T (x)], and so on. (23)

Orthogonal Properties of Chebyshev Polynomials :

0, m#n

“

J —1 =n#0
1/1 2 " 4

T, m=n=0

Minimax Property : Animportant property of chebyshev polynomials, called minimax property, is that,

of all polynomials of degree n where the coefficient of leading term x” is unity, the polynomial 2'™" 7 (xx)

has the smallest least upper bound for its absolute value in the interval [— 1, 1]] , that is,

max
—-1<x<1

27T (x )‘S max

—-1<x<1

P,(x)| .(25)

Here P,(x) is any monic polynomial of degree 7, .

8.6 Chebyshev Approximation (Uniform-Minimax Polynomial
Approximation)

Chebyshev polynomials are very useful in minimax approximations as these polynomials have
minimax property. In chebyshev approximation, the maximum error is kept down to minimal. This is called

minimax principle and polynomial 7 (x) is referred to as minimax polynomial. This process is used for
lower-order approximation and called minimax approximation.
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Let a function f (x) is approximated by the polynomial

P(x)=a,+ax+a,x*+....+a,x

n

where f/(x) is continuous on the interval [a,b], then the minimax polynomial approximation, we

shall determine constants «,,a,,4a,,.....,a, , such that
max ¢ (x)| = min |e(x) (26)
where error &(x) is given by
&(x)=f(x)- (%)
If P (x) is the best uniform approximation, following (26), and if
E, = max |¢(x)
then there are atleast (1n+2) points a = x, < x, <x, <.....<x, <x,,, =b such that
Q)] error at these points must alternate in sings
(i) e(x)=%E,,i=0]12,..,n+1
(i)  e(x,)=-¢&(x,,) fori=0,12,.....n
)  &(x)=0,i=12,......,n -(27)
The best uniform approximation can be found using (27).
8.7 Chebyshev Series Expansion
A function f (x) can be expanded in a series of chebyshev polynomials as
1 00
S(x) =560+ 2¢T(x) .(28)
J=1
where f/(x) is continous on [-1,1].
The partial sum of (23) is given by
1 0
P (x)=5 ¢+ 2 ¢T () .(29)

This is the truncated chebyshev series expansion for the function f (x) , which is nearly the best
uniform approximationto f(x).
Coefficient ¢; in the above expansion can be obtained using the orthogonal property of chebyshev
polynomials and it is given by
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_2p/()T()
Cj—”L N dx  j=0,12,...n ..(30)

First we express f(x) inapower series in x then using relation (23), it is expressed in terms
of T (x).

8.8 Economization of the Power Series

In section 8.6, we studied the process of expan a function in a series of chebyshev polynomials.

Let, the truncated chebyshev polynomial expansion for a given function f (x) be given by

P(x)= Zaﬂ;(x) ..(31)
then,
max f(x)— Pn(x)‘ <la,,|+la,,|+....<€ ( |7:1(x)| < 1) ...(32)

where e is error tolerance. Number of terms retained in (31) depends on the given error tolerance
e.Replacing each 7 (x) by its polynomials formusing (23), we get economized polynomial approxima-
tion. This process is known as Lanczos Economization.
Example 8.4 Express 2 — x* +3x* as asum of chebyshev polynomials.

Solution : We know that,

1=T(x),
x’ = %[Q(x)+ Tz(x)] ’
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Example 8.5 Express 2T (x)+7;(x)+2 T, (x) as apolynomialin .
Solution : We know that,
Tx)=1,
7i(x)=x
and  T,(x)=2x"-1,
then,

275(x)+ Y](x)+2T2(x):2.l+x+2(2x2—l)

=2+x+4x" -4
=4x" +x-2
Example 8.6 Find the best lower order approximation to the polynomial 5,3 4 5,2.

Solution : We know that

1
x* =2 [30(x)+ (x)]
Therefore,
2x° +5x° = % [37;(x) + Ty (x)] +5x7
= 5x° +§Tl(x)+%7;(x)
=5x"+=x+—=T(x) [ ﬂ(x):x]]

Thus, the lower order approximation for the given polynomial is given by
3 1
2 2

S5x +Ex or E[IOX +3x]]
Example 8.7 Using the chebyshev polynomials, obtain the least-squares approximations of second
degree for the function f'(x)= x>+ x> +3, where x €[-1,1].
Solution : Let the second degree approximation is given by

Pz(x)=Co75(x)+clT1(x)+Csz(x) (1)

then

= [/ (%)~ B(x)] dx (i)



For § to be minimum, the necessary conditions are

os 0S8 08§
dc, Cd¢, dc,

Using (1), (2) and (3), we get normal equations as follows :

Tz(x);ﬂ dx=0

[ [ e3-ati)-anie) -

Tz(x)]] dx=0

111\/71% [XB +37 +3-¢, T (x) - T (x) ¢,
L% [ﬁ +x2 +3—c07})(x)—clTl(x)_csz(x)}l di =0

Using orthogonal property of chebyshev polynomial, we get

1 J: (x3 +x° +3) T (x)

c():; e dx

_1 jl X dx+j dx+j 3 ( T(x) =1)
7N 1- 'V1=x? 'V1-x? 0
1

=;[11+12+13]|
1 3

I, = dx=0 i i

where, £ _[ \/ﬁ X = (- integrand is odd function)

x2
,[ 1— T—dx= 2_[ 5 T dx (-.r integrand is even function)
"V1-x7 Vl-x

substituting x = cos@, dx = —sin0d6 , we get

L=2f 27 cos' 0 (~sin0d 6)

2 vV 1—cos’
= 2_[(?0052 0do

=2.

r_7
4 2

and J\/_dx 6j JIdex
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=6.—=371
2
1|z B )
Thus, ©=—|5 3w |=7 [from (iv)]
Similarly,
2 1(x3+x2+3) T(x 3
clz—J dx =—
2 V1-x? 4’
x +x° +3 ( ) 1

dx =—

:_J \/_ :

Thus, the least-squares approximation of second degree is given by

Rx) = T (0)+2 T(x) + (%)

= L [147,(x) +35,(x) +2 ()]

Example 8.8 Obtain the chebyshev polynomial approximation of second degree (best minimax

approximation) to f(x)=x" onthe interval [0, 1]

Solution : Let the required approximation be
P(x)=a,+ax+a,x’ ()

Let, inthe given interval
X=0,x=a,x,=0,x=1

Now, &(x)= f(x)— P(x), then
e(x)=x"-a,—a,x—a,x* ..(i)

then, by the property (27), we have
e(0)+e&(a) =0,
e(a)+e(B)=0
e(B)+e(l)=0

From (ii), we have

a’=2a,—aa-a,a’ =0
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(o +B°)—2a,—a,(a+B)—a,(a® +B*)=0

(1+8°)—2a,—a,(1+ B)—a,(B* +1) =0

Solving this system, we get
_a(l-p)(B-a)
‘ 2(1+a—-p)
. =,6’2—,6’(1+05)+05,6’(,6’—05)
: (1+a-p)
a, - l+a+a’ -

l+a-p -..(1ii)
Again, using (27) (8'(xl.) =0,i= 1,2) , we get
g(a)=0=3a’-2a,0—a, =0

and &'(B)=0=>3B"-2a,8-a, =0

Solving these equations, we get

a,=-3af, 4 =§(a+ﬁ) ..(iv)

from (iii) and (iv), we get

1 3
o =— = —
4’ﬁ 4

1 9 3

ay=—,a,=——, a4, =—
and @y =75, & =Te B =

Thus, required approximation is

1 9 3
Py(x) ’

X)=———Xx+—X

32 167 2
:i(1—18x+48x2)
32

Example 8.9 Determine the best minimax approximation to the function f(x)=x" on [0, 1] witha
straight line.

Solution : Let, required straight line be given by

B(x)=a,+a,(x)
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Let, x=0,x=0a,x,=1
then, &(x)= f(x)— P(x), which gives
e(x)=x"-a,—ax
By the property (27), we have
e(0)+&(a)=0
e(a)+e(l)=0
which gives
a’—aa —2a,=0
and o’ —(1+a)a,—2a,+1=0 .(0)

Also  &'(x,)=0,for j =, thatis

g(x)=0
which gives
e(a)=0=>2a-a,=0 ...(ii)

Solving (i) and (ii), we get

1 1
a—E’ao——g’alzl

Thus, requires straight line is given by

2%[8x—l]

Example 8.10 Find a uniform polynomial approximation of degree four or less to f(x)=sin™'(x) on

the interval [—1,1], using Lanczos economization with error tolerance of0.05.

Solution : Given that
f(x)=sin"'x

x 3 15 )
=X+—+—+—x +... (1)
6 40 336

<0.0446 | on the interval [—1, 1] which is less than the given error tolerance.

s
Since 336
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Hence, we can truncate series (i) from fourth term, thus

! X 3x°
SIn X=X+—+——
6 40
=T+ll[3T(x)+T(x)]+i.i[10T(x)+5T(x)+T(x)]
o4t } 40°16- ! } ’
:E +£ +iT .
64 3840 640 ° (D)
- ‘i‘—ooom
Again, o201 ™
3 7|< 00047
sothat, |70 (|72 <1, vn e[-11])

therefore, we may truncate this term, as total error is

0.0446 +0.0047 = 0.0493

which is less than the given error tolerance 0.05. So, we can truncate the term 3 %4 0 from (ii).
Thus, the required approximation is given by
25

T+,

sin'x=—
64 384

75 25 3
=— — (4x” -3
” (x)+ 254 ( X x)

25 , 125
=—Xx"+—x
96 128
Example 8.11 Find a uniform polynomial approximation of degree four or less to the function f(x) = e*
on the interval [— 1, 1] using Lanczos economization with error tolerance 0.02.

Solution : Given function is

f(x)=¢"

xz x3 x4 )CS .
=l+x+—+—+—+—+. ..(0)
2 6 24 120

5

Since 0 < 0.0083 , on the interval [— 1, 1]] , Which is less than the given error tolerance 0.02,

so we can truncate series (i) from sixth term. Hence,
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81 9 13 1

=—1+—1T+—0L+—TL+—T, ii
64 ° 8 ' 487 2477 192°° (D)
1
Again, EZO'Oosz,sothat
L 71<000s2
Top L+ £00052, (7| <1, v €-1,1])

Thus, the total error is

0.0083+0.0052 =0.0135

which is less than the given error tolerance 0.02, so we can truncate the term 7%92 from (iii)

Thus, the required approximation is given by

XZET 27’;+£7’;+i7’;

e ot
64 8 48 24

:ﬂ.l+2.x+£(2x2 —l)+i(4x3 —3x)
64" 87 48 24

Self-Learning Exercise

1. Chebyshev polynomials are ............ polynomials. (orthogonal/orhtonormal)
2. Chebyshev polynomial can be orthogonalized using the weight function w(x) equalto
(@ 1 b  x
1
(c) 1— (d 1-x2

3. Chebyshev polynomials have minimax property. (True/False)

4. Using Chebyshev polynomials, we can economize the initial poower series for the given function.
(True/False)
5. Recurrence relation for the chebyshev polynomials is
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(@) Ta(x)=2xT,(x) = T,.(x)
(0)  27.(x) = T, (x) = T,.(x)
() 27, (x)=xT,(x) 27, (%)
( (%)

d)  T.(x)=2xT,(x)+ T, (x)

8.9 Summary

In this unit, we studied two important techniques to approximate the given function, namely Taylor
series and chebyshev polynomials. We also studied uniform-minimax property of chebyshev polynomial,
approximation to the function using this property and economization of the power series of the given
function.

8.10 Answers of Self-Learning Exercise

1. Orthogonal 2. (c) 3. True
4. True 5. (a)

8.11 Exercises

1. Using the Gram Schmidt orthogonalization process compute the first three orthogonal polynomials

_1
onthe interval [~1,1] with weight function w(x) = (1-x) %3
1L
[Ans. 1, x, 5 (267 1)
2. Express T;(x)+27,(x)+ T,(x) asapolynomialin .
[Ans. 2y +2x7]
3. Express | — 2 4+ 2x* as asumof chebyshev polynomials.
1
[Ans. 5 [STy(x)+2L(x)+ T,(x)])
4. Obtain least-square approximation of second degree for x* on [-1,1], using chebysehv
polynomials.
1
[Ans. < [37,(x)+47(¥)]
5. Obtain the best lower degree approximationto x* +2x>.
Lo o
[Ans. Z(Sx +2x)]
6. Obtain the chebysehv linear polynomials (best minimax approximation) to the function ,.3 on

[0,1].
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jAns. 5 (9x-3))

Determine the best minimax approximation (chebyshev polynomial approximation) to ./ (x ) = %cz
on [1,2] witha straight line y = a, +a,x.
[Ans. y=166-0.75x]

Use chebyshev polynomials to find the best uniform approximation of degree four or less to x” on

[-1.1]

S (43
Ams, {ax'~3))

Compute sin x correct to three significant digits, by the economization ofthe power series

3 5 7
X X X

sinx =x——+——-

+
6 120 840

[Ans. giny =0.9974x—01562x"]

miNIN
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Unit -9 : Numerical Solutions to Ordinary Differential Equations

Structure of the Unit

9.0  Objectives
9.1 Introduction
9.2  Taylor’s Series Method
9.3  Picard’s Method
9.4  Runge-Kutta Method
9.5  Numerical Solution to Higher Order Equations
9.6 Summary
9.7  Answers of Self-Learning Exercise
9.8  Exercises
9.0 Objectives
After studying this unit you will be able to -
1. Understand the idea of numerical solutions to ordinary differential equations.
2. Derive various numerical methods for solving differential equations equipped with initial
conditions.
3. Solve initial value problems numerically.
4. Distinguish features of different numerical methods.
9.1 Introduction

disertization ofthe differented equations make them computer friendly.

Numerical techniques for solving differential equations are of immense significance. Their utility
seems to be paramount when one come across with non linear differential equations. Since, non linear
differential equations don’t alow analytic solutony, hence numerical techniques are resorted to. Here it
should be noted that numerical techniques are “recursive formulas’ which provide solutions in steps. This

Before embarking on the different numerical methods, we first go through the basic idea of such
techniques.

Initial Value Problem (IVP)

A first order differential equation

D). reln b
y(t) =

(1)

is called an initial value problem since the condition “ y(¢,) = y, i.e.at t=¢,, y(¢)=y,” is

prescribed at the initial point ¢, of the solution space [¢,,5]. The solution of the above IVP requires to
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determine y(r) at ;= p.
Numerical Solution V/s Analytical Solution

Analytical solution of a differential equation is a functional relationshop between dependent vari-
able and independent variable. For the IVP given in equation (1), the analytical solution may be ofthe form

y(t)=F(t)+C.

where C'is a constant of integration whose value is determined by the initial condition y(7,) = ,

and it is
C=y,—F(t,)

Thus  y(1)=F(1)- F(t,)+ ¥, .(2)

From (2) we can find
y(b)=F(b)=F(t)+,

Contrary to above analytical approach, in numerical methods, the solution space [7,,b] is de-

scribed in number of mesh (grid) points z,,7,,....... ,¢, such that
L=t,+jh,i=012,....,n

where ¢t =b and y is called the step size the numerical method employed provides solutions at

the point ¢,,¢,,...,¢, , where in the solution obtained at the previous step is used to compute the solution at
the next step. Here, it is worth to remind that every numerical method has some error and consequently
their accuracy may differ. However, one may attain desired accuracy by prescribing the error tolerance
and ultimately solution can be found to converge to the exact solution.

This existence and uniqueness of the solution of the IVP given in (1) is narrated in the following
theorem.

Theorem 1: Let f(z,y) be realand continous function in the interval [#,,b], where y €(—o0,0) and

f(tayl)_f(tayz)‘ < L|y1 —W
called the Lipschit constant. Then for any y, , the IVP (1) has unique solution.

there exists a solution 7, such that for any y, and y,, , where [ is

9.2 Taylor’s Series Method

This method is used to solve an inital value problem numerically. The method is useful when the
dependent variable give rise to convergent Taylor’s series. To illustrate the method, let us consider an IVP

D 1(e9). tefrb]
y(to):yo (1)

Then y () canbe expanded by Taylor’s series about point ¢ = ¢, as follows
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v(0) =y (1) +(t-1,) y’(to)+(t_t0)2 (e ) 1) YO)+R, )

21 P!
t _ t p+1 X
where R”_((p-:i)' v 1)(5), ty<&<t
1s the truncation error.

The derivation appearing in (2) are computed manually as
y'=f(ty) (given)

= y’(to):yézf(toayo)

L[4 _[or, or @] |
y°__drlo‘[at "oy dt}_[f’ Sl Fy=r]

m__dz_f _iﬂ _ i ~ i i
yo—_dtzLo—dt[dt}—{dt[ﬁﬂﬂf]} —[dt(ft)+dt(fyf)}

t=t, t=t,

=[f 42 fu+ LS+ 2+ F 1] ete

t=ty
Then the solution at the point ¢ =7, + 4 = ¢, isobtained as

2 3 P

! h " h " h
y(t1):y1:yo+hyo+7 yo+€ Yo +---+E y(()p)+Rp ...(3)

Now, two important issues require attention
Q)] How many terms are to included in the expansion (3) so as to ensure prescribed accuracy.

The number of terms to be included is decided by the permissible error. Let his error be
e, then we must have

(f — to)p+l y(p+1)(g)

(p+1)! <Ee, ty<&<t

hp+l .
or \ y(p 1)(5)

m <€,t,<¢& <t, where t—t =h

This inequality contains three unknowns €,/ and p. If any two are given, then third can be deter-

mined. Again note that £ is not known, therefore y(p +) (gg) isreplaced by its estimate max y(p +) (5)

1S E<t

(i) The method requires manual computation of derivatives which may be time consuming
and tedious. The manual computations sometimes may defeat the advantages of
computing competenc while working on computer.
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Example 9.1 Solve the initial value problem by Taylor’s series method,

dy

Loyt
=], 1€0,02]
»(0)=-1

Solution : Giventhat #, =0, y(to) =y, =-1.
Let = 01,sothat 7, =02 and y(7,)=y, =?

Expanding y () by Taylor’s series about point ¢ = ¢, , we have,

(t _1‘0)2 y”(to) n (t _l‘o)3

()= v () +(e=0) (1) + 7, 31

Thus,
y(tl) =), =y(0.2) =¥, +(z‘1 —to)y(; +——y"+....

since ¢, —t,=h=02

(01 . (0 .. (01)' .
Thus, y(tl):y0+(0.l)y(’)+%yg+(3') yf)”+(4') Vo Feee

Now, given that,
V'==y=2t, = y;=-y,—21, :_(_1)_0:1
y==y'-2, 2y/=-y;-2=-1-2=-3

" " "—_

yo==ry jyo__y(;’:?’
yiv — _ym , = y(’)" = _y(’)": -3 ete.

Thus, we have

yl=y(0.2)=—1+(0.1)(1)+(0;) (—3)+(°;!) (3)+(°:!) (3)+...

=-0.91451

Thus, we have
y=-091451 at y =1

The derivatives of y at y — (] are evaluated as,

75(0.0) = y; ==2(0.1)— (<0.91451) = 0.71451
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y(01) = y/'=—y/ -2 =-0.71451-2 = -2.71451
yy(01) = y"= —y/'=2.71451
y7(01) =y = —y/"=-2.71451 etc.

Substituting the values of y, and respective derivatives in the Taylor’s series expansion of y (¢)
about ¢ =¢,, we get
(t_t )3 " (t_t1)4

= »(02)= ! n N fv
¥, =y(02) =y, +(t—1,) ¥ + TR R T (O

Thus,

2
¥, =—091451+(0.1)(0.71451) + (0;) (—2.71451)

3 4
+@(2_71451) +@(—2_7145 l)+....
6 24

=-0.856190

Verification :

The analytical solution to the given IVP is
y(t)=-3e" -2t +2
Thus  y(02)=-3¢"*-2(02)+2
=-0.8561923
Thus, we see that numerically computed result is in good aggrement with the analytical solution.

Example 9.2 Compute y(0.2) by Taylor’s series, where y(¢) is the solution of the IVP,

dy
_:t =
it +y,  y(0)=1

Solution : Given that
t,=0, y,=1.
Let thestep size h=0.2.
Then the grid points are ¢, =0, ¢, =0.2

Solution at 7 = (0.2
We have
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Now
Y =t+y =Sy, =t,+y,=0+1=1
Yi=ley S yr=ley=1+1=2
=y ==
yiv - - yév =yl'=2 etc.

Using these derivatives in (1). we get

£ ottt P
HD=l4t+2+—+—+—+....
(1) 312 60

Now,

(02)° N (02)* N (05)°

) (using terms up to ¢°)

y=y(t)=y(02)=1+02+(02)" +

=1.24280533

Example 9.3 Find the value of y at s = (02 by using seven terms Taylor’s series, where y(¢) is the

solution ofthe second order initial value problem,

2

d

dtzy=4—t+y2, y(0)=1, y'(0)=-1
Solution : We have,

yr=d-r+y?, o y(0)=1 y(0)=-1

—  y(0)=4-0+1=5
Y ==142yy = y"(0)=-1+2(1)(-1)= -3
Y =2y 42" =y (0)=2(-1)" +2(1)(5) =12

Y =6y +2yy" = y*(0) = 6(~1)(5) +2(1)(-3) = -36

"2

Y=y + 8y + 2"

»(0) = 6(5)" +8(~1)(-3)+2(1)(12) =198
Thus, the required seven terms series is
2 3

p(0)=3(0)+1y/(0)+ S y(0)+=y"(0)

4 5 6
t

t . )
_ IVO R VO - VIO
+ogY ( )+120y ( )+720y (0)
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and  y(02)=1+(02)(-1)+ (02) (5)+ (02) (-3)

2 6
4 5 6
: 2 2
+(02) (12)+(0 ) (—36)+(0 ) (198) = 08967216
24 120 720

9.3 Picard’s Method

Picard’s method provides polynomial solution to an initial value problem by taking successive
approximations to the dependent variable. To elaborate the procedure let us consider the [VP

D 1(e0), oefi )
y(to):yo (1)

on integration, we have

[ ay=] s

or y=y0+£f(t,y)dt ()

The integrand (t, y) in (2) involves unknown function y , therefore to integrate (2), we may take

approximations for y.

As a first approximationto y, y in f (t, y) isreplaced by y, and then integration is done. Hence
first approximation to y is

W=y [ F () di

Similarly second approximationto y is

y(z) =Y +L:f(fay(l))df and so on

Consequently, we can have a recursive scheme,
t —
S N WA (S

where (¥ =,

0

Obviously, the Picard’s method would generate a polynomial in ¢ to provide solution y (¢) . Though,

the method is quite simple but has some short comings. Firstly, the method may not proceed at the initial
step or at the subsequent steps if the integrand is not integrable. Secondly, it requires manual computations
to integrate.
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Example 9.4 Use Picard’s method to compute y(0.5), where y(¢) is the solution to the given IVP

dy
Yy
a7
y(0)=1

Solution : Given that

d—y:l+y

dt
Let f(t,y)=1+y, Vo=1,1=0

First approximation to y, by Picard’s method, is given by

MU +Jt0f(t,y0)dt

=y0+J.;(1+y0)dt=1+'|.;(1+1)dt
=1+2t

To compute second approximation, we put y = ") in (¢, ) and have

YO =y [ (60" de

=1+ t(1+1+2t)dt

to

:1+(1+z‘)2 =242t+1°

The third approximation is
t
R e WAL

=1+ [ {1+(2+20+2)}ae

3
S Y
3

Similarly, the fourth approximation is

Y=g+ [ f(e6") e

P 3
:1+J.0[1+[1+3t+t2+%ﬂ dt
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3 4
ST YO P
2 3 12

Thus the value of y(¢) at s = 05 considering fourth approximation is obtained as

(05)" (0.5)*
3 12

¥(05)=1+2(05) +%(0.5)2 +

=2421875

Example 9.5 Use Picard’s method to compute y(¢) given that

—t

dy _e”
dt y
y(0)=2

Solution : Given,

dy e
- =—=f(t,
iy )

t,=0, y(t,)=y,=2.

First approximation ) to y, by Picard’s method, is given b
pp y y g y

MU +Jt0f(t,y0) dt

_e
2

1 5
+__
2 2 2

The second approximation y(z) is given by

W =g+ [ (60" ar

¢ e'dt
:2+J0 (S—e”)

=2+ [log (5 —e )]l;

:2+10g(5—e*’)—10g5
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Similarly

W=y + [ 1) de

‘ e'dt
=2+
0 10g(5—e”)+2—10g5

The intitgrand on RHS is too complex to solve. This is the practical problem with Picard’s method
where is one may find complicated integrand at any stage.

9.4 Runge-Kutta Methods

Runge-Kutta methods are extensions of the idea Euler’s modified method which considers the
average of the slopes at the end points of the subinterval (solution space for the time being) to approximate
the exact solution curve. In Runge Kutta methods, the weighted average ofthe slopes at the end points as
well as at the interior points of the interval is considered. These methods are single step method and

Runge-Kutta methods of order £ is comparable to the Taylor series methods of order k. Thus solution at
t =t,,, isapproximated as
Y =Y; + (weighted average of the slopes)

The order of the method is determined by the number of slopes used.
Runge-Kutta method of order two

Let us consider the initial value problem

Y (), 1 e[iyh]

dt
J/(to) =W
Let the mesh points are

Let us consider the subinterval [,,7,].
The solution of y at ¢ = ¢, by Runge-Kutta method is approximated as
v =y(8) =y, + whk, +wyk, (1)
where w,,w, are weights and the slopes &, k, are given as
ky=hf(t,,5,) (2)
k,=hf(t,+ah, y,+bk)) -.(3)
where a,b are parameters.
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Here, we have to determined @,b, w, and w, . Recall that, every Runge-Kutta method of order &
is comparable to Taylor’s series method of order £, therefore unknowns will be determined by having

second order Taylor’s series for y(¢) at ¢ = ¢, and its comparision with (1).

Taylor’s series solution for y(¢) about point ¢ = #, is given by

' (t_to)z yrr

)’(t):y(to)"'(t_to)yo"' X 0

2

h
or y(t1)=yo+hyo’+7y5’ [ t,—1, = h] (@)
Now,
y’:f(t’y)::)y(; :f(toayo):fo (SaY)

n A _Of Ofdy

=f+
dt Ot é’ydt foxdid

j— y(;’ = fto +f0fyo ) where fto = (f’ )t:’o ete

On putting the values of the derivatives in (4), we get

2

h
J’1=J’0+hfo+?[fto+fofyo]l ...(5)
Now, again consider (1), in views of (2), (3)

Vi = Yo+ wh fy +wh f(t, +ah, y, +bhf,) ..(6)

=y, +Wh f, +w2h[f(t0,y0)+[ah %wtbhfo%J

=t,

oL 2h2§f abh’ f, — RV YL f
2 ot ot Oy oy*
= vy +wilfy + wih| f, +(ah £, +bif,f, )

+%(a2h2 [ +2abR* fy f,  +BH [ f] )+...}

thus, ¥, =y, +hfy(w +w,)+hw,(af, +bf, f,)+o(h’) A7)

Comparing (7) and (5), we find that
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w+w, =1, wy(af, +bfy0f0)=%(f,o +fofy,) (8
(8) implies that

1
wo4+w,=1,aw,=—_bw L ..(9
1 2 9 2 2, 2 2 ()

(9) constitutes three equations in four unknown namely w,, w, ,a and p , therefore we can choose
one unknown arbitrarily.

1
Letustake W, =—,then

3
w, =—, azi, b=i
3 4 4
Thus the method becomes

1 2
Vi :y0+§kl +§k2

where k&, =h f (¢,,,)

3 3
k2 :]’lf(to +Zh, Yo +Zk1)

1
Again, if we take W, = 5 then

1

WIZE’ a=b=1

and the second order Runge-Kutta method leads

k,+k
J’1=J’o+( 12 2)
where &, =1 f(t,,5,)

ky=hf(t,+h, y,+k)

Thus, it is very much clear that for different choices of the parameters, one can have different set of

second order Runge-Kutta schemes. Further, note that after computing y(z,) i.e. y,, we can compute

y(t,) i.e. y, bythe formula taking y, as initial condition and so forth.

Note : The expression f (¢, +ah, y,+bhf,) in (6) has been expanded by Taylor’s series for two

variables. For your ready reference note that it is given as,
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f(x+Ax,y+Ay)=f(x,y)+[AxﬂwLAyﬂJ
ox oy

2 2 2
oL (Ax)’ d ]:+2Ax.Ay ﬂwL(Ay)z d ]: +..
2 Ox Ox Oy oy

Example 9.6 Compute y(0.2), using second order Runge-Kutta method with two different schemes,
where y(t) is the solution of the IVP

dy
— =t =
dt i y(O) !

d
Solution : d_)t} =t+y= f(t,y) say,

t,=0, y(0)=y, =1 (given), Let = 02
then ¢ =1,+h=02,tofind y(z)

k, +k,

Scheme1: ¥, =y(f,)=y,+ 5

where &, =h f(t,,5,)=h(t,+,)
= (02)[0+1]=02
by =hf(ty+h, y,+k,)
= h[(t,+h)+(yy + k)]
=(02) [(0+02)+(1+02)]

=028

(k,+k,)

Thus, » =(02)=y,+ 5

L (02 +2 0.28)

=124

1 2
Scheme2: Yy, =Y, +§k1 +§k2

k, :hf(toayo)
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3 3
k2 :]’lf(to +Zh, Yo +Zk1)

3

Hence k=02, k= (02) HO+Z(0.2)}+{1+%(0.2)H

=026

Thus V= 1+% (02) +%(0.26)

=124
Higher order Runge-Kutta methods are also obtained by following the same procedure.

Third order Runge-Kutta Scheme
1
y(tﬁl) =V =Y, +g(k1 +4k, +k;)
where £k :hf(tj,yj)
h 1
kz = ]’lf(l‘j +E, Vi +Ek1)

ky=hf(t,+h y —k+2k,)

Fourth order Runge-Kutta method
1
2ta)=v0 =y, e (ky +2k, + 2k, + k,)

where £, :hf(tj,yj)

ky=hf(t,+h vy +k)

ok
t_,-+5,y_,-+?

ky=hf t +ﬁ, y; +£)

2 2

Exmaple 9.7 Compute y (1.4) , using fourth order Runge-Kutta method, given that

S

@y _t B
iy y(l)—2
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Solution : Let the step size j = (2 , then the partition of the solution space [1, 1.4] is given by the mesh
points

giventhat y(z,) =

Y, =2 andto find y,, v,
Computation of y(z,),i.e, y, :

Y, =¥, +% [k, +2k, + 2k, +k,]

(1)
where £ :hf(to,yo) :h[t—oj = (0.2) [1}
Yo 2

=01
h k
ky=hf|t,+=,y,+—
2 f(o 2 Yo 2)
to+— 1+%
=h +£ —(0.2) 2+%
Yo 2 B
k3_hf(to+ a%"‘?zj
=0.10712589

ky=hf(t,+h, y,+k;)

=0.11389922
Using the values of the slopes in (1), we get

v =2 +% [0.1+2(0.10731707 + 0.10712589) + 0.1 1389922

=2.10713086
Computation of y, :

1
y(t,)=y, =y(14)=y, - [kl +2(k, +k3)+k4]

where,

()
kl

hf(tlayl)
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RS =(02) [L}
7 2.10713086

=0.11389895

ky :hf(tl +§, Wi +£)

2
02
» ) :(0'2) l.2+7
y+ ?1 2.10713086+M
=0.12014341

Similarly,

h k
ky=hf|t,+—, y+—=
3 f(l 2)’1 2)

=0.11997033
ky=hf(t,+h, y +k;)

=0.12572397

Using these values of the slopes in (2), we get
y, =y(14)=222710593

Verification : The analytic solution to the given IVP is

y(t)=~3+1°

Hence exact valueof y at t, =1.2, 1.4 are

y(12)=4/3+(12)" =210713075

y(14) = \3+(14)" =222710575
which are in good match with the numerical solutions.

Example 9.8 Compute y(12) by using Runge-Kutta fourth order method, where y (¢) is the solution of
the IVP

Y _

it v, y()=2

Solution : Given that

ty=1, y(t,) =y, =2
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Let the step size ;, = 0.2 . Then we have to compute y, = y(z,) = y(1.2), where #, = ¢, + &

d
further let d—J; =ty= f(t,y)

Now fourth order Runge-Kutta scheme is
1
» :y0+g[k1+2k2+2k3+k4}] (1)

where k&, =4 £ (¢,,,) =(02) [¢,,]

- (02) [()(2)] =04

h k
ky=hf|t,+=,y,+—
2 f(o 2 Yo 2)

=215 [0
-a][1+22) 2+

=0.484

h k
ky=hf|t,+=, y,+—=
3 f(o 2)’0 2)

2]

= 049324
ky=hf(t,+h, y,+k;)
=(0.2)[(1+02)(2 +049324)]

=0.598377

Using these values of the slopes in (1), we get
y=y(12)=2 +% [0.4 +2(0.484+0.49324) + 0.598377]]

=2492142

Verification : We can verify the accuracy of the computed numerical results by comparing it with the
exact analytical solution.

The analytical solution of the given IVP is
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»(f) = (121306) ¢

(127
Thus 1, (12) = (121306) e L

=24921507

Thus, we see that the numerical and analytical solutions do match upto five significant places.

9.5 Numerical Solution to Higher Order Differential Equations

Higher order differential equations can be solved numerically by the previously disscussed
methods with a change that they are applied to system of simultaneous first order differential equations.
For this, the higher order differential equation is reduced to first order differential equations system.

For example, consider

dzy

oz /(o) ()
y(a)=4,y'(a)=B
@ _ d’y_dz
Let o =Z so that e
Then (1) can be written as
E )= Flrrs) )
dx
dy
G =G(x,y,z)  (say)
and y(a) =4, z(a) =B [ y' = z] ..(2)

observe that (2) is system of initial value problems which can easily be solved by any method
discussed previously.

We can extend earlier discussed methods to solve system of’initial value problems.

As an illustration, let us consider

dy

—=F Ly,

il G

dz

&~ o6r) (1)

J’(to)=J’0a Z(to)=zo

Then the fourth order Runge-Kutta method for the system (1) is given by
1
nE=rte [k, + 2k, + 2k, + k, ]
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z, =z, +% (L 420 +2L+1,]
where

klth(tO’yO’ZO) Zl:hG(tO’yO’ZO)

h k [ h k [
ky :hF(to +57 Yo +?1’ =) +51); L :hG(to +E’ Yo +?1, =) +51)

h k [ h k [
ky :hF(to +Ea Yo +72, 29 +32); l; :hG(to +57 Mo +727 Zy +52)

ky=hF(t,+h, y,+ky,z,+1); L,=hG(ty+h, y,+k;, z,+1,)

Similarly, one can extend the Taylor’s series method, Picard method to higher order initial value
problem by converting it into first order initial value system.

Example 9.9 Solve the following initial value problem

d’y dy
—+2—+y=0 1
0 " ¥ t €[0, 0.1]

y(O)zO, y’(O)zl

dy_d&

dt

Thus the given IVP becomes

%: —2z-y= F(t,y,z)
(1
Doi =G M

with the conditions y (0) =0,z (0) =1

The fourth order Runge-Kutta method for (1) is
1
z, :zo+g[k1+2k2+2k3+k4]
1
Y, :y0+g[11+212+213+14]
where k&, =hF(t,,y,.z,) L=hG(ty,v.2)
h [ k h [ k
k, :hF(t0+5, y0+31, zO+?1), A :hG(tO+E, y0+31, Z°+?1)’
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k3=hF(tO+§,yo+%,zo+%), l3=hG(t0+§,y0+%,zo+%)’
ky=hF(t,+h, y,+1,, z,+k;), L,=hG(ty+h, yy+1, zy+ k).
Giventhat 7, =0, y(0)=y,=0, y'(0)=2(0)=1
Let  p=01
Then Kk, =(01) [-2z,-y,]=(01) [-2(1)- 0] =-02

1, =(01)[z,]=(01)[1]=0.1

=-0.186
0.185

I, =(01) [zo + %} =(0.1) [1 - T} =0.09075

k, =(0.) [—2 [zo + %) ~(yy+14 )}

= (0.1)[-2(1-0.186) - (0+0.09075)]

=-017187
1, =(01) [z, +4]

= (0.1)[1 - 0.186] =0.0814
1
Thus, ¥, = y(O.l) =W +g [ll +20,+21, +Z4]
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=0+ %[0.1 +2(0.09+0.09075) + 0.0814]

=0.09048

Verification : The analytical solution of the given IVP is

—t

y(t)=te
Thus »(0.1) = (0.1)e™' = 0.0904837
Thus we see that the numerical solution and analytical solution agree upto five places of decimals.

Example 9.10 Compute x(0.1), y(0.1) by Taylor’s series method where x(¢),)(¢) satisfy the
following system of initial valur problems,

dx d_y

—=xy+2t =2ty+x
dt 4 dt v

Solution : We expand x(), y(¢) about point ;= ¢ by Taylor’s series. Let ¢, =0 and we denote
x(ty)=xy, ¥(t,)=,- Thus, x, =1, y, =2

Hence,

x(t):x0+(t—0)x(;+ Xo+.... (1)

(-0 ,
2

(t=0)°

... (2
2 Yo ()

y(t):yo +(t—0)y(; +
The derivatives appearing in (1), (2) are computed as given below :
Given that x' = xy + 21, x(O) =1, y(O) =2
V'=2p+x S xp=xy,t2t0=2, yo=2t,y,+x,=1
Thus on differentiating successively with respect to ¢ and using given values, we find,
X"=XY+xy 2= X=Xy, Fxvs +2=2(2)+1(1)+2=7
V'=2y+2"+x"' =y =2y, +2t,y; + X = 2(1)+0+2 =4
X" =x"y+x"Y' + XY +xy" = x)"=2x5y5 + 2%, 10+ Vo Xg =4 +4+14 =22

Y'=2y"+2y" +20" +x" = y=4yi+2t,y)+x) =4+0+7=11
etc.

Thus, putting the values of the derivatives in (1), (2), we get
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x(t):l+2t+zt2+2t3+...
2 6

427 11
t)=2+t+—+—1"+...
y(?) HA ot

Thus, x(0.1), »(0.1) using four terms Taylor’s series are

x(0)=1+2(01)+ % (0.1)" + %(0.1)3

= 1238666

11
+_

y(01)=2+(01)+2(01)’ - (0.1)’

=2.1218333

Self-Learning Exercise

1. Using Taylor’s series method, solve
% = ysint +cost
for some ¢, giventhat y (0) =0
2. Use Picard’s method to compute y(0.1), given that
%:3;4.);2’ y(0)=1
3. Use fourth order Runge-Kutta method to compute y(0.4), given that
dy :
2 —2t-y, y(0)=-1 [Take stepsize 4 — 01]
4. Solve the following system of equations
%:x+2y, %:3x+2y
x(0)=6, y(0)=4
by Runge-Kutta method over the interval [0.02, 0.04]] with setp size , = 0.02 -
9.6 Summary

In this unit you have studied numerical methods to solve initial value problems. Taylor’s series

method and Picard’s method involve series computations. Runge-Kutta methods use weighted average of
the slopes at the end points and at the internal points of the solution space to approximate the solution.
Recall that we may have Runga-Kutta method ofany order where it must be remembered that & t4 order
Runge-Kutta method is comparable to & th order Taylor’s series method.
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All the methods dicussed in this unit are single step methods since these require information at the
preceeding one point only to predict the value at the next point.

Further recall that these methods are recursive formulae which provide solutions in steps at different
mesh points of the solution space.

9.7 Answers of Self-Learning Exercises

1. y(t):l+t+%t2+%t3+%t4
2 ¥(01)=1.127
3 y(04)=-0811
4. x(002)=62935 x(0.04) = 6.6156
¥(0.02) = 45393 ¥(0.04)=51195
9.8 Exercises
1. Use Picard’s method to compute y (2.1) , Where y (t) is the solution of'the following IVP
% =1+t
»(2)=0

G 22 2, £ 7
[AHS. y([) ——1—5+t—§t +?—Z+E

3 4 5
Thus, y(2.1):—%+2,1_§(2_1)2+(2.;) _(2:) +(212-)

o dy :
2. Compute y(14), where y(r) satisfies = v, y()=2 {Take step size j, — (0.2 ]

by Runge-Kutta method

[Ans. y(14)=32321]

3. Compute y(1.5), where y(¢) is the solution of the following IVP

a_ 1
dt t+y
y(0)=1

[Ans. y(05)=13571, y(10)=15837 y(15)=17555]
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Compute y (2.2) by Taylor’s series method given that

[Ans. y(2.2) =2.0091]
Given that

compute y(0.2), x(0.2) by fourth order Runge-Kutta method [Take step size 4 = 0.2 ]
[Ans. x(02)=08522, y(0.2)=—08341]

Compute »(0.2) bysecond order Runge-Kutta method, given that

2
d {——3dy+2y=t+e3’
dt dt

y (0) =43 y’(O) =358
[Ans. y(02)=56841]

Use Taylor’s series method to compute x (0.1), 3(0.1), given that

2
@=x+y+t, dy

=x—t
dt dt* *

[Ans. x(01)=13105, y(0.1)=10853]

Compute x(0.05), 1(0.05), given that

d—x—x +1 d—y—ty+x
dt T dt

[use Taylor’s series method]

[Ans. x(0.05)=17264, y(0.05)=-2.91068]

miNIN
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Unit - 10 : Numerical Solutions to Initial Value Problems

Structure of the Unit

10.0  Objectives

10.1  Introduction

10.2  Milne’s Method

10.3  Adams-Moulton Method

10.4  Stability Analysis

10.5 Summary

10.6  Answers of Self-Learning Exercise

10.7  Exercises

10.0 Objectives

After studying this unit you will be able to

1. Distinguish single step method and multistep method.
2. Derive formulae for multistep methods, namely Milne’s method and Adams Moulton method.
3. Understand stability ofa numerical method.

10.1 Introduction

The methods discussed in previous sections are called single step methods simply because they

require information at only one preceeding point ¢, to predict the value at 7,,,. Contrary to this, ina

multistep method we require values of y(¢) at the preceeding points #;,¢, 1, ;... to evaluate y (t i ) :

These values are required to be used in suitable formulas. The predictor corrector methods (which involve

a predictor formula to predict the value y (t j+1) and a corrector formula to improvise y (t jﬂ) are

multistep methods. You may recall that Euler’s modified method is an example of predictor corrector

method where y (t ) obtained from Euler’s method is improved by Euler’s modified method. Here,

Jj+l
Euler’s method may be termed predictor formula and the Euler’s modified method may be termed

corrector formula.

However, it is important to note that we can derive higher order predictor-corrector strategies to
solve an initial value problem with better accuracy.

10.2 Milne’s Method

This method is a multistep method which requires information for the dependent variable at past
four equidistant points. The method involves predictor-corrector formulae which are derived by using
Newton’s forward interpolation formula. Note that since four points are used to interpolate the solution,
therefore it infers that a third degree polynomial is used to interpolate the solution. This means that
differences upto third order will be taken into account. We now proceed to derive the predictor-corrector
formula to solve the initial value problem (IVP)
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%zf(t,y), t €[t,,b] (1)

Predictor Formula :

We integrate (1) over the interval [z,,, + 4h]| where j being the step size. Thus, we have

J-:Mh%dt _ L;Oth(t,y)dt

or  y(ty+an)-y(,)=["" fle.y)di

0

to+4h
or  yi=y+]  f(Ly)dt  [Notethatt,=t,+ jh, j=0,12,..]

-(2)

We now use Newton’s forward interpolation to expand f (z,y) about point ¢ = ¢,. We use the
notation f, = f (tj, yj)

Thus

f(t,y)=fo+uAfo+u(u2_l) A f,

+w& fo+ u(u—l)(b;;2)(u—3) A fy ...

where t=t,+uh, dt =hdu

..(3)
using (3) in (2), we get

Y PRV A

e T

2 3 2 1( o
:y0+h[f0u+%Af0+[%_%) e A P

410
20 8 28
= Vo +h| A4S, +8A fy+ =N [+ A fy+ A f ..(4)
3 3 90
The various order forward differences appearing in (4) are evaluated as
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Afo=1—1o
N fo=f=2fi+ 1
A3fo =/-3L+36i— /o
on putting these expression in (4) and simplifying, we get

28h

vo=n =2 fa2f] NN, 5

28h
The term % A J, isthe truncation error ofthe above formula and the formula in working form s

Y4 :yo+%[2fl_f2+2f3]

4h
or =yt [2y-yi+2y] [y =] .(6)

The formula (6) is called Milne’s predictor formula. The value y, predicted in (6) is improved by
employing corrector formula.

Corrector Formula :

Integrating (1) over the interval [¢,, ¢, +2h| and proceeding above we obtain

Yy = [f0+4fl+f2]l A4f0
or Y4 [fz +4 £, +f4]l A4f0 [Note]
or Vi=y,+ g[y2 +4y; +y4]—%A4f0 ..(7)

h
The term (_ 90 A, ) in (7) is the truncation error ofthe corrector formula.

Thus, predictor-corrector formula in general form can be written as

h ! ! !
Predictor : YVin=Vis3+t— [2%—4 —Viat 2)@-]]

3

h ’ ’ ’
Corrector: Y, =V, +§ [J’j—l +4y;+ yj+1]|

Example 10.1 Solve the following IVP by Milne’s method, given that

dy
PARE t €0, 04]
t,=0, y,=1

186



Solution : We know that to compute the value of dependent variable y at certain point in the solution
space, we require information at past four points. Here, we are given information at the initial point only.

We suppose the step size j, = (]

Then the grid points are

t,=0,1,=01,1=02,1,=03,1,=04

Thus in order to compute y(z,) = y, , we require the estimates for y,,y, and y,. These can be
computed by any method discussed earlier.

We use Taylor’s series method to compute these values and obtain
vy, =11103, y, =12428, y, =13997

Milne’s predictor formula is

4h
W =3+ 22 a3y 42) A1)

the derivatives appearing in (1) are computed as
y'=t+y [given] =y =t +y,=01+11103=12103
Thus yy=t,+y,=02+12428 =14428

yl=t,+y, =03+13997 = 1.6997

Using these values in (1), we obtain,
wW=1 +@ 2(1.2103) - (14428) +2(1.6997)]

=1.58362

Thus y? =158362 is the predicted value of y at ¢ = ¢, = 0.4 . This can be improved by employ-
ing the Milne’s corrector formula.

] hy, -
yi):y2+§[yz+4y3+y4]

Now y. =t,+y,=04+158362

= 198362
() (0.1)
Thus  yy) =12428+°2 [1.4428+4(1.6997) + 198362

= 1.583640

Verification : Ths exact solution to the given IVP is

y(t)=2€" —(t-1)
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y(04)=2¢€"—(04+1)

= 1.5836493

Thus we see that y(04)__ and y(04) _  domatch excellenty upto five decimal places.

€X

Example 10.2 Solve by Milne’s method

dy _t

aiy y(1)=2, t€1,14]

Solution : Milne’s method requires information at past four points to predict the value of dependent
variable y, but inthe question given the values are not supplied. These may be computed by any intial
value method and then Milne’s method is applied.

We will use Taylor’s series method to compute these values. Let the step size ; = (0] then the
mesh points are

t=1,4=11,1,=12,1,=13, 1, = 14
giventhat y(z,) =y, =1.

We will find y, = y(1,), v, = »(t,), v, = »(1,)

! t . ’ ’ 1
Now, J'=7 (given) = ¥ (to)=yo=5=0'5
, Lt 17
= Y=oy =
y y y y

i l
= yoza

9
imilarl )=~ etc.
Similarly, Y, 0 etc
Now Taylor’s series solution at ¢ = ¢,

2 3
"

’ h n h
Vi =J’(t1) =Yy +hy; +? Yo +ZJ’0

=2+0.1(05)+ (01 (2) +@ ( ) )

2 |8 6 \ 32

=2.051828
Similarly,

h? h’
32 =y(t2)=y1 +hy1’+? y1”+z »"
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f 1.1

I 72051828

L AR S 5V}
T T 2051828 (20s1828)

Thus, y, = y(t,)=2.051828+0.536107 + 0.001736 — 0.000045

=2.107130
Similarly, y, =2.16564

Thus we have
t, t, t, t,
t:1 1.1 1.2 1.3
y:2 2.051828 2.107130 2.16564

Milne’s predictor formula is

4h
w7 =y0+7[2y{—y2’+2y3’]|

! t ! t
Since V' = ; =y = y—‘l =0.53607

v =1 0569495

V2

v =5 20600284
V3

Using these valuesin (1), we get
y{P) =2.227095

Thus the predicted value of y at ¢, =14 is 2227095
Now, we use corrector formula to improve this value.

Corrector formula is given by

] hy, —
yi):yz+§[yz+4y3+y4]

0.1

Now  y;=210713+== (0569495 +4(0.600284) +0.628622

=2.227105
189
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Verification : The exact solution to the given [VP is
y(t)=~3+1°

Thus  p(14) =3+ (14)’
=2.22710575
We see that y(14)__ and y(14)

ex numerical

do match upto six decimal places.

Example 10.3 Compute y (0.5) by Milne’s method, given that

d—y=2e’—y

dt

and the corresponding values of ; and y are given as
t:0 0.1 0.2 0.3
y:2 2.01 2.04 2.09
Solution : Obviously step size j, = (1
Thus the mesh points ¢, = ¢, +nh are
t,=0, t,=01, t,=02, t,=03, ¢t,=04, t,=05
First we compute y, = y(¢,) = y(04)
Then this value of y, is used to compute y.

Milne’s predictor formula is given by

4h ! ! !
W=y, +T[2y1 —yi+2y4]

Now y/=2e"—y, [y =2e" -]
=2¢"' —2.01=0.2004
Y =2e" -y, =2e"? —2.04 = 04028
yl=2e" -y, =2 —2.09 = 0.6098

4(0.1)

P =2+ [2(0.2004) - (04028) +2(0.6098) |

=21623

Therefore
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v, =2e" —y, =08213

Now, corrector formula is given by

] hy, —
yi):y2+§ﬂiy2+4y3+y4jﬂ

=2.04+ % [0.4028 +4(0.6098) +0.8213]

=2162

Thus, y(t,)=y, =y(04)=2162
Now, Milne’s Predictor formula for y(z;) is
4h
v =y =2 - v 2]

_201+ 40

[2(0.4028) - 0.6098 +2(0.8213)]

=2.2551
Further, y!=2e¢" -y, =2e"° —22551=1.0423

Thus, corrector formula

. hr, D
y§’=y3+§[y3+4y4+ys]

=2.09 + % [0.6098 +4(0.8213) + 1.0423]

=2.25458
Hence y, = y(05)=2.25458

10.3 Adams-Moulten Method

This is another multistep method which involves generation of predictor-corrector formulae using
the backward interpolation formula. The method is used to solve an initial value problem and requires

information at past four equidistant points ¢, 5, ¢, ,, ¢, |, ¢, (say) to compute the solutionat £ =17, .

Let us consider the initial value problem

d
). 5(0)=, -0

Predictor Formula :

We integrate (1) on the interval [t ot jﬂ]
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t/'+l dy t/'+l
—dt = t,y)dt

J”f dt J”f f( y)
This gives

W) =" 1 (e.y)de
or Yin—Y; :J;limf(t,y)dt

or Vi =Y, +L:M f(t.y)at ..(2)
The function £ (z,y) in(2) is replaced by backward difference formula and we get

u(u+l)

Vi =Y, +,[:H f(t_/)+qu(tj)+ > v’ f(t_/)
1 2 1 2)(u+3
+M V3 f(t./)+“(“+ )(L; )(u+3) V4f(t_/)+... di (3
where ¢=t,+hu = dit=hdu
Now notethat when ¢ =¢,,, =¢, +h [ Lig=1+ h]]

then ¢ +hu=t;+h
or u=1
and when =17, then ¢, +hu=t,

= u=0

Thus we have got the limits

Now on changing the variable of integration from ¢ to i, (3) becomes

u(u+l)

1
y_/+1=yj+h_[0 JiruVif+ VS

+u(u+l)(u+2) u(u+l)(u+2)(u+3)

V37 o+
f'/ 24

V4f_/+.... du
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where f; zf(tj,yj)

On simplification, we get

1 5 251
Yin=y;+h [f/ +E V7 +EV2fj _V f./ 74 f/} ..(4)

Recall that the backward differences are given by
V= S0)= A=)
=fi=fi
V= VIV L=V 1]
=V -Vf,
=fi=fra =S = S2)
=f,=2f+ e

Similarly, V°f, =f,=3f,,+3f,,—f5 etc.

Substituting the above differences in (4) and simplifying, we obtain

h 251
Yin=Y; +ﬁ[55f 59f 1 +37f_/72 _9/[_/73]1 (_ \% f ) ...(5)
h 251
or Y=Y+ og —[55y;-59y) , +37y,,-9y!. 3]]+% Vi ey =f] (6

The formula given by (5) or (6) is called Adams-Moulton formula.

Corrector Fromula :

In order to get the corrector formula the function f (t y) is replaced by Newton’s backward

interpolation formula about point # =7,,,, thatis, wetake  =¢,,, + hu = dt = hdu

Recall equation (2)
Vin =Y, +L:M f(t,y)at

We expand f(z,y) about =1, by Newton’s backward formula to get

()= 1) ouv 1) g e

Using this expressionin (2), we get
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ta u(u+1
y_/+1=y_/+_|;: f/+1+uV /+1 (2 )vzf/+1
ulu+1)(u+2 ulu+1)(u+2)(u+3
L (1) )V3f_,+1+ ( )(24 J@+3) g e dE (7

Note thatsince £ =¢,,, +hu
Hence,when =1,,, then ;=0

when?=17, then ,=_1

Thus on changing variable of integration from ¢ to i, (7) becomes

u(u+l)
2

0
y_/+1 = y_/ +h_|-71 f/+1 +MV Jj+1 + sz/H

+u(u+1)(u+2) ;

v 1+u(u+l)(u+2)(u+3) v i ®

24 /+1

Again, we have backward differences as
Via=ra—71;
Vi =L =2+ 15
Vifin=Fa=3+3f0-fn et

On putting the values of the backward differences in (8) and integrating, we get

h 19
Yin =Y, +ﬁ[9f_,-+1 +19f, =5/, + ./fz]l ( 720) hv'f, -(9)
h ’ ’ ’ ’ 19 ’
or Yin=Y; +ﬁ[9yj+l + 19yj _syjfl +y_/72]| ( 720) hV4 ...(10)

Formula givenin (9) or (10) is called the Adams-Moultan corrector formula.

Note that, fourth order difference term in both the predictor and corrector formula is truncation

error implying that (¢, y) has been interpolated by third degree interpolating polynomial. This means we

require information at past four points. Thus neglecting the truncation error, the Adams-Moultan predictor-
corrector formulae read

h ’ ’ ’ ’
Predictor: ¥\ =, *oa 55y, =59y, +37y), -9y,

c h ! ! ! !
Corrector: '\ =, 5 [9%—“ +19y; -5y, +yj—2]l
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Example 10.4 Evaluate y (1.5) by Adams-Bashfourth method of order four, given that

dy
— =11
” ( +y)

y(L1)=1233, y(12)=1548, y(13)=1979

y(14)=2575

Solution : The Adams-Bashfourth method of order four is given by

h
Vi =Yt og [55y) =591, +37y,, -9y, (D)
Let the mesh points are

=11, =12, t,=13,1,=14, 1, =15
and y; = y(tj)
Then to compute y, = y(¢,) = y(15).

Further, let us assume that

% =/(t.7) ()

Then from (1), we have on putting j = 3.
Vi = Vs +% (557, =59/, +37f,-91,]
We compute
£y =t,(1+,) = (14)" [1+2575] = 7.007
fo =t (1+,) = (13)"[1+1979] = 503451
fi=1,(1+3)=(12)" [1+1548] = 366912
fo =1, (1+,) = (11) [1+1233] =2.70193

Thus, ¥, =2575+ % [55(7.007) —59(5.03451) + 37(3.66912) - 9(2.70193)|

= 2575 +% [199.78898] = 3407454

Thus, y, = y(15)= 34074540 is the predicted value of y at s = 15, Now, this value will be
improved by corrector formula given by
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. h
yﬁ):y3+£[9f4+l9f3—5f2+fl]

Now f, =2 (1+y,)=(15)"[1+3407454]
=9916771

Thus, ¥\ = »(15)=2.575+ % [9(9.916771)+19(7.007) - 5(5.03451) +(3.66912)]

=3.412002

Verification :

The exact solution to the given IVP is
()= (1432869)¢”* —1 [using nitial condition y (L1) = 1233]
Now y(15)= 3413547

Thus we see that exact solution and numerical solution do match upto two decimal places.

Example 10.5 Use Adams-Moultan Predictor corrector formula to compute y (0.4) , given that

_

dtty

y(0)=1, y(01)=101, »(02)=1022, y(0.3)=1023
Solution : Given that
V=t
Here ¢,=0,¢=01,¢=02,¢=03,1¢, =04
and the step size j, = 0.1

Predictor-corrector pair of Adams-Moulton method is

h ! ! ! !
y]('f:% =), +E [Ssyj _59yj—1 +37yj—2 _9yj—3]l

V=g (99 #1905 =50 ]

Now, using the predictor formula for the values

%o =2(0)=1, y, = »(01) =101, y, = (02) =1.022, y, = y(03) = 1.023

we obtain
h
Wy + 7 (554 =595 +375 =93]
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- 1.023+% [55(03)(1.023) -59(02)(1.022) +37(0.1)(1.01) - 9 (0) (1)]

1023+ 21 [85569]
24

= 1058653

This prediced value is corrected by the corrector forumula
¢ h ' ’ ' '
= [00 1901 =5y 4 ]

Now y; =t,y, =(04)(1.058653)

= 04234612

y) = 1.023+% [9(0.4234612) +19(0.3069) - 5(0.2044) +(0.101)]

=1.05933

Verification :

The exact solution to given IVP subject to condition y (0) =1 is

(0.4)
Thus 3 (04)=e 4 108328
Thus numerical solution do match to the exact solution upto one decimal place only.

Self-Learning Exercise

1. Compute y(0.4) by Milne’s method, given that

d—y:2e’—y

dt

y(0)=2, y(01)=201, y(02)=2.04, y(0.3)=2.09

2. Use Runge-Kutta method of order four to compute y(1.5), where given that
dy 1
di 1+’ »(0)=1

3. Solve the following initial value problem by Taylor ’s series method,
dy

= =—y-2t
5 , 1€[0,02]

(take step size ;= (1)
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10.4 Stability Analysis

Recall that numerical solution of differential equation is obtained in steps at different points ofthe

solution space. For this, the solution space [to ,b] is partitioned into number of mesh points given as

In general, spacing between these points is considered to be uniform and is given by

h:thrl_tj’ j=1,2,....l’l

d
In numerical solution of the differential equation d_)t} =f (l‘ ) y) , constituting on inital value problem,

we determine y(t j) or y; which provides numerical solution of y(¢) at ¢ =¢; . The exactness of ¥, may

differ from method to method as per the prescribed accuracy and the accuracy of the method itself. Infact,
every numerical method may involve some errors and obviously one is curious to contain it so as to obtain
desired accurate results.

Local truncation error and convergence :

If y(t j) at £ =t; denote exact value of y(t) at £ =t; and »; is numerically computed value of

y (t) at t =¢, by employed numerical method, then the local truncation 7; is given by
Y}Zy(tj)—yj, j=L12,..n

Note that, a numerical method is a recursive scheme, wherein previously computed value y; is

used to computed »;,,. Recall that every solution »;, j=1,2,...n contains errors and the error of
previous step propagates to next step too.

Convergence :

The error in solutions, ¥;, j =1,2,....n may be cuntailed by taking small step size i.e. by taking

more mesh points. A method is said to be convergent if step size is decreased, the numerical solution
converges to the exact solution in the absence of any round off errors.

Stabiltiy :

Stability of a method is a vital concept. Amethod is said to be stable if the total effect of all errors
(including round offerros) is bounded and is independent of the number of mesh points. Amethod may be
absolutely stable and relatively stable.

To understand this, we consider a test equation

dy
Y telt, b
y(to):yo (1)

The differential equation given by (1) has the exact solution
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y(t) =y, -

We now establish a relationship between solutionsat ¢t =¢,, t =1¢,,

Now y(tj) =% i) ..(3)

(L=t
V(tn) =y ()
From (3) and (4), we get
y(tj+1)=y(tj) e [Note h=t¢,,,—;] ..(5)
Equation (5) provides exact solution.

Now, we can devise numerical method by having approximationto ,*# as

e’ =1+ 1h First order

212
et =1+,1h+’1h

Second order

Let E (A h)denote approximationto ,*#, then the numerical method is written as

Vin =y, E(Ah) .(6)

Let €, is errors given by
<=y -r(t)
Then €,,= ¥, »(t,..)
=y, E(Ah)-y(t,)e”
=E(Ah) < +y(1,)]-¥(1,) "

eH:[E (l h)— e”] y(tj)+ € E (l h) (7

J

Note that in (7), the €;,, accounts for the error at the ( j+ 1)”’ step. From the very equation, we

can see that the first term on the right hand side is the truncation errors and the second termis the propa-
gation error. The propagation error is the most cause of worry since it is beyond one control and infact
depends on the equation given.

Similarly,

€= [Ez (lh)—e“h]ly(tj)+E2 (Ah) €

€. =|E (Ah)—e""]y(t,)+ E' (Ah)€, -(8)
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Thus we conclude that accurate results are obtained if the propagation error decays or bounded
for this

|E(2h)<1 (9)

so that the second term in (8) has insignificant contribution in the numerical procedure.
Absolute Stable Method :
Ifthe criterion given in (9) is met, then the method is called absolutely stable.

Relatively Stable Method :

If E(Ah)<e™",thenthe method is called relatively stable.

Stability Analysis of Single Step Methods :
(i) Euler Method :

Consider the test equation

dy
2 Ay, y(t) =,

The Euler method to the above test equation reads
Vi =y, +hf(15))
=y, +h(Ay,)=y, [1+1h]
=y, E(Ah),  where E(Ah)=1+Ah
When,
|E(Ah)| =1+ k<1
This gives
-1<1+Ah<1

or Ahe(-2,0)
(ii) Runge-Kutta Method of Order Two

The Runge-Kutta method of order two is given as

a

1 1
Yin=Y; +|:1_Z:| k, +2_k2

where & zhf(tj,yj)

ky=hf(t,+ah,y,+ak,)
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d
on applying the above method to the test equation d_); =4y, wefind

ki=hiy,, kzzlh(yj+akl)
:ih[lvtahi]yj

Using these value of &, k£, inthe Runge-Kutta formula, we obtain

" vaha]
2a

1
Vi =DV, W{I_Z}hi%‘ +

1 hA
=y |1+hA| 11— [+—(1+aht
y_, [ 2a) 2a( “a )}

I W2
=y;|1+hA+ 5 }

i

E(ﬂ,h), where E(ih)=l+hﬂ.+

The above relation indicates that the propagation factor E (/%) does not depend on the

parameter a.

Thus the condition
[E(Ah)| <1 gives

2712

1+hA + <1

ie.  hae(-2,0)

Runge-Kutta method of order four

The fourth order Runge-Kutta method is given as

Yia=y;+ wik, +wyk, + wik, +w,k,
where £, —hf(tj,y])

t,+ah,y, +d,k)

J

=nf(
=hf(t,+bh,y, +dyk +dyk,)
d

t,+ch,y, +d,k +d,k, +dk)

J
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d
on applying Runge-Kutta method to the test equation d_J; = Ay, the above scheme becomes,

Yia=y;twmihy, +wzlh(l+alh)+w3lh(1+blh+d32alzh2)y.

J
+w, Ah{l+cAh+(dya+d p) 0 +d dyah* 2 y,

On simplification and using the parameter values obtained earlier, we get

2 Xn ARt
+ +

Vi = 1+Ah+ p A Y;

or Via=E(Ah)y,
This shows that the propagation factor £ (1 4) is free from the abitrary parameters.
The condition for absolute stability

E(2h)<1

B2 RE R
+ + <1

: 1+hA +
Le. 6 24 |

gives Ah (-2.78, 0)

10.5 Summary

In this unit Predictor-corrector strategies for solving differential equation numerically were
discussed. These strategies are mutlistep methods which require information at more than one preceeding
points to predict the value of dependent variable at the next mesh point. This unit discussed Milne’s
method and Adams-Moulton method which have distinct predictor-corrector formulae based on the
forward and backward intrpolation formulae. Further, the stability of the different numerical methods were

also discussed.

10.6 Answers of Self-Learning Exercise

Ly (04)=21623, y* (04)=2162
2. y(15)=17555

3. y(01)=-094145125, »(02) = -0.8561904

10.7 Exercises

I. Compute y (1) by Adams-Moulton method, given that
dy 2
— =yt =1
a Y (0)
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2.

7(02)=12859, y(0.4)=146813, y(0.8)=173779

() (¢)
[Ans. ;(0.8)=2.01451, y(0.8) =2.01434

(e)

(»)
;(1) =228178 y(1)=2.28393]

Compute y(0.5) by Adams-Moulton method, given that

y(0)=1, y(0.1)=10954
7(02)=11832, y(0.3)=12649
[Ans. y"”)(04)=13415, y\)(04)=13416

#7(05)=14150 y(05)=14142]

Use Taylor’s series method to compute x and y at ¢ = ()05, where x and y are the solutions of
the following system of differential equations

d—x—x +1
a Y

szt+x

dt
given that x(O) =2, y(O) =-3

[Ans. Using four term Taylor’s series, we obtain x (0.05) = 1.7264, »(0.05) = -2.91068 ]

miNIN
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Unit - 11 : Boundary Value Problem - I

Structure of the Unit

11.0  Objectives

11.1  Introduction

11.2  Boundary Value Problems
11.3  Shooting Methods

11.4  Summary

11.5 Exercises

11.0 Objectives
After studying this unit you will be able to

1. Understand the notion of a boundary value problem and its relevance

2. Learn the idea of shooting method to solve boundary valur problems.

11.1 Introduction

Boundary value problems are the problems where the conditions are prescribed at the end points
of the solution space. You may recall that in an initial value problem, the conditions are prescribed at the
initial point ofthe solution space. A higher order differential equation may give rise to a boundary value

problem. For example, an n¢h order differential equation’s solution involves » arbitrary constants which

require n conditions. If these conditions are prescribed at the end points #,, » ofthe solution space

[2,,b] then the differential equation, together with the boundary conditions, constitute a boundary value

problem. Many phenomenon cutting across different disciplines are described mathematically by boundary
value problems whose analytical solutions may not be possible, hence numerical solutions are resorted to.
The finite difference method and the shooting method are amongest the methods which are frequently used
to solve boundary value problems. This unit is aimed to focus on shooting method.

11.2 Boundary Value Problems

A boundary value problem as well as its boundary conditions are classified as homogeneous or
inhomogeneous.

A homogeneous boundary value problem is that which involves a homogeneous differential
equation (i.e. the equation that contains dependent variable and its derivative) and the homogeneous

boundary conditions (i.e. @ = =0 ). Ahomogeneous BVP has trivial solution y(x) = 0. Thus, such
BVP is not of fundamental importance for our present study.

A BVP which is not homogeneous i.e. inhomogeneous is our focus of study. Hence we define,
Eigenvalue Problem :

A BVP which involves a parameter u (say) in the differential equations or in the boundary
conditions is called an eigenvalue problem and the values 1 take are called eigenvalues.
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Solutions of Boundary Value Problem :

BVP givenin (1) possesses a unique solution if it satisfies certain conditions. However we are not
inclined to narrate them here. For the sake of our study, we presume that the solution exists uniquely.

A two point boundary value problem is the simplest case to understand the numerical solution
methods.

Let us consider a two point boundary value problem,
d’y
dx’

=f(x.».y"),  x€la,b] (1)

Obviously the general solution of (1) will involve two arbitrary constants which require two end
conditions for their determination. These boundary conditions may take the following forms :

(A)  Boundary Condition of First Kind :

y(@=a, yb)=p ()
i.e. the values of the dependent variable y are prescribed at the end points ¢ and p .

(B)  Boundary Condition of Second Kind :

yia)=a, y'(b)=p .3)
i.e. the values of the derivatives are prescribed at the end points.

(C) Boundary Condition of the Mixed Kind :

This condition involves the dependent variable y and its derivatives y’ such as
ay(a)-a,y'(a)=a .(4)
a3y(b)+a4y’(b)=,3 ..(5)

Where the constants a,,a, ,a,,a, aresuch that
a,a,>0, |a1|+|a2|¢0

a,a, =20, |a3|+|a4|¢0, |a1|+|a3|¢0

11.3 Shooting Method

Shooting method is used to solve a boundary value problem where in the given BVP is converted
into a system of initial value problems. This method requires a systematic guessing of unknown quantities at
one end of the solution space such that the condition at the other end is satisfied. The guessing ofthese

unknown quantities is done purely on hit and trial basis. To illustrate the method let us consider the BVP

dzy
dx?

= (%), x€la,b] (1)
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Let _2 then 4X_4
e —-—= en =—
dx dx*  dx

Thus the given BVP can be written as

dz

o f(x,y)=F(x,p,2)

d_y =z= G(x,y,z)

dx Q)
v(a)=a,z(a)=y'(a)="

Equation (2) constitutes a system of initial value problems and can be solved if we choose proper

choice for y'(a) such that the condition y(b) = 3 is satisfied.
The proper values of y'(a) is obtained by testing different values.

In order to solve (2), we require y'(a). Let us assume that the exact value of y'(a) is m . Let m,
and m, be two initial guesses for s . For these m, and m, , we determine the value of y at y — p fromthe

system (2). Let the values of y at x —  corresponding to m, and m, are deonted as y(m,;b) and

v (m,;b) respectively. Then using linear interpolation, the better choice m, for s is given by

m; —m, _ m, —m
y(b)_y(m1§b) y(m2§b)_y(m1§b)
on solving
m, = m, + y(b)—y(m;:b)

(1, m)
y(mb)=y(mzb) "7
Thus the system of [VP’s given by (2) is solved by considering y’(a) =m, for this m,, we
compute y atx = b . Ifthisis in good agreement with end condition y = § at x = b, then the procedure

is finished otherwise we seek better choice for ; by using m,, m, as discussed above and so forth until

the end condition y (b) = 3 is satisfied.

Though the method seems to be easy to apply, but the speed of convergence very much depends
on the “good guessings” of the unknown quantity. Further more, it should be noted that the method is not
that much handy while applying for higher order boundary value problem or BVP’s involving higher
non-linear differential equation simply because these may be quite sensitive to the choices of initial guesess.
Besides this, it is pertinent to record that manual working of shooting method is very tedious in view of
guessing involved. However, the illustrations given below would help keep into the real intricacies of the

procedure.
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Example 11.1 Solve the boundary value problem

y(0)=0, y(1)=12
by employing shooting method, take »'(0) = 0.85, 0.95 as initial guesses.

Solution : Taylor series method for the given

9

X+x—3+ x + x = +....|y'(0)
6 120 5040 362800 " |” (1)

when »'(0)=085=m, (say)

111 1 }(0'85)

,l =|1+—+ + +
Then ¥ (m;il) [ 6 120 5040 362800

= (11752) (085) = 099892
Similarly
v (my:1) = (11752)(0.95)
= 111644

Thus better approximation m, for y'(0) is obtained as

y(1)=y(m;1) }

y(my31) = y(m;:1)

my =m +(m2 —m1)|:

1.2-0.99892 }

=085+0.1
111644 —0.98892

0.20108}

=085+0.1
011752

=085+0.15=1.0211
Thus, y'(0)=m, =10211

Then, y(my;1)=(11752)(1.0211)

=1.1999967
=12
Thus we see how 3" (0) have been improvised so that the end condition is satisfied. Once the unknown
quantity is properly guessed then the solution in the solution space with proper step size may be obtained.
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Example 11.2 Solve the BVP

dzy_
dr’

y, y(0)=0, y(1)=11752

by shooting method together with Runge-Kutta method.
Solution : Let y' =z then y" =z’

Thus the given BVP reduces to

di (1)

We have to find »"(0) such that (1) gives y(1) =1.1752
Let y'(0)=m and m,,m, be two initial guesses for 7, .
Let m =09=z,=z(0)

Then the fourth order Runge-Kutta scheme for the system of'initial value problems given by (1) is

z, :zj+%[k1+2k2+2k3+k4]

Jj+l

1
Via =Y, +g (L +20, 420 +1,]

where
ki, =hF(ty,yy,2,) L =hG(ty,y,.2)
h [ k [ k
kzth(to"'Ea)’o"'zlaZo"'?l) lzth(to"‘Za)’o"‘Ela 0+?1)
h l k h l k
k3:hF(t0+57 y0+52720+72) 13:hG(t0+57 y0+52720+72)
ky=hF(t,+h, y,+1, z,+k;) L, =hG(ty+h, y,+1, 2, +k;)
given that

t,=0, y,=»(0)=0 and z, =z(0)=09
Let h=1

Then the slopes f's and j'g are obtained as
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k,=hF(ty,y,,2,)=1(0)=0

L= hG(ty,y,2,) = 1(09) = 09

h [ k
k, =hF(z‘0 +§, Yo +51’ z, +?1)=0.45

h [ k
A =hG(t0+5, y0+51,20+?1)=0.9

similarly,
k, =045
I, =1125
k, = 1125

I, =135

1
Thus, y(ml;l) = y(l) =W +g [Zl +21,+21 +l4]

=0 +% [09+2(09+1125)+135]

=105

Let m, =1 be another guess for z(0) = y'(0)

Then, on repeating the above procedure for m, =1, ¢, =0, y, =0, h =1, we get
k,=0,1,=1k,=051=1,k =051=125k, =125,1, =15

Thus, we get

y(my;l)=y(1)= 0+% [1+2(1+125)+15]

=1.1666
with these two slopes m,, m, we have computed the values of y at x — 1 which are not far from

the given end condition y (l) =11752

Let m, be better slope, then

y(l)—y(ml;l) }

my = my +(m, —m,) |:y(m2;l)_y(ml;l)

_09+(01) [1.1752 - 1.05}
711666 - 105
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=1.0073756
Thus if we take m, = y'(0) = 1.0073756 and solve (1), then we will find

y(1)=1175271
which is correct upto four decimal to the given end condition. The above working explains the
procedure how missing guesses are made. However, the above question was solved with 3 — 1. But in
practice we require solution in the solution space ([0, 1] in the present question) for which we partition the
interval by specifying small step size. That is to say, the above question requires value of y at internal point

of [O, l] . Hence, ifwe take j, = 0.2, the shooting method would be requiring lot of computations and if it

is done manually, then certainly it is quite time consuming and tedious.

11.4 Summary

In this unit, you came across with the idea of boundary value problems, their genesis and types.
This unit explained shooting method which provides solution to BVP by converting it into a system of
IVP’s where in the estimates for unknown quantities at one end is assumed in such a manner that the

condition at the other end is satisfied.

11.5 Exercises

1. Solve the boundary value problem
d 2
T=y
dx

y(O) =0, y(0.6) =0.7

by shooting method [Use Taylor’s series method]

2. Solve the boundary value problem
d 2
T=y
dx

y(0)=0, y(04)=04

by shooting method [Use Runge-Kutta method]

3. Solve the boundary value problem
d’y
=64y -10
X

y(0)=0, y(1)=0, by shooting method.

miNIN
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Unit-12 : Boundary Value Problem - I1

Structure of the Unit

12.0  Objectives

12.1  Introduction

12.2  Finite Difference Methods

12.2.1 Solution to Boundary Value Problems of Type y" = f/(x, y)
12.2.2 Solution to Boundary Value Problems of Type y" = f(x,y, ')

12.2.3 Solution to the Boundary Value Problems ofthe Type y" = f(x, )
12.3  Summary
12.4  Answers of Self-Learning Exercise
12.5 Exercises
12.0 Objectives

After reading this unit you will be able to

1. Understand the notion of finite difference methods to solve boundary value problem.

2. Work out various types of boundary value problem.

12.1 Introduction

In the last unit you studied shooting method to solve boundary value problems (BVPs) . This unit
discusses another method “finite difference methods” to solve pyps . These methods are based on the
idea of converting differential equation giving rise to BVP into system of difference equations. For this,
various order derivatives are replaced by their difference approximations. Similarly, other variables
appearing in the differential equation are also discretized in the solution space. This all leads to linear or
non-linear system of difference equation together with end conditions which can be solved by previously
discussed methods. The advantage of finit difference method over shooting method is that no “guessing” is
required as we do in shooting method. Finite difference methods are useful in solving complex differential
equations and infact serve as a basis to many other advanced numerical methods. For example, these
methods are founding stone of computational fluid dynamics which itselfis a fundamental tool of industrial
engineering.

Finite Difference Methods :

In finite difference methods, the differential equation is approximated by corresponding difference
approximations. The solution is obtained by the resultant difference equations at each mesh point. This
system of difference equations may give rise to system of linear or non-linear equations which can be
solved by the previously discussed methods.

We now illustrate the various difference approximations to the derivatives.

By Taylor’s series expansion, we have
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2 3
y(x_/ +h)=y(x_/)+hy’(xj)+%y”(x_/)+%y’"(xj)+....

2 3
"

! h " h
or Vin =y, +hy; +? Vi +Z Vit (1)

[Note that x;,, = x; +/ and y(xj + 1) =Y, €tc]

Similarly

y(x_/ —h)=y(x_/)—hy’(x_/)+£y”(xj)—£y’"(xj) +....

2 6
! hz ” h3 "
or Vi =y, —hy; YT Vit ()
From (1), we have
Yin—JY; ,
J lh J =J’_,~ +0(h) (3)

Here 0(/) indicates the terms which contain j, or its higher degree.

From (2), we have

Vi Y- ,

=y o) ()
Again from (1) and (2),

Ve =™V, 2

o) (5)

Thus we see that finite difference approximations to y’ at x = x; in(3), (4) are of O(h) and the
aproximation given is (5) is better as it is of 0 (h2 ) accuracy.

Again, from (1) and (2), we have

Vi =2, ¥y,
- - == yr+0(h) ..(6)

Thus, we see that

y;= % (forward difference approximations with truncation error of 0 (h) )
y;= % (Backward difference approximation with truncation error of 0 (h) )
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, Vi = V-
Y= %hll (Central difference approximations with truncation error of 0 (h 2 ) )

y Vi T2y Y
j hZ

(forward difference approximation with truncation errror of 0 (h ? ) )

Note that when the differential equation is replaced by difference equation then each differnece
approximation chosen is to be of same order (i.e. same order of truncation error) with y, =a, y, =

[Note that the above approximation contains the term »;,, and the end condition y, = . Thus
the range for j cannot exceed 5 — 1, otherwise the system would exceed the solution space. That is the

range for j must be decided in view of the difference approximaition and the boundary conditions. |

The above equation together with conditions y, =, y, = 8 would give rise to (n—1)

equations in (n — 1) unknowns y,,»,,...,», ;. This system can be solved by any previously discussed
method.

The local truncation error of'this approximation is of 0 (h2 ) i.e., the finite difference scheme has

second-order accuracy and the method can be termed as second-order method.

We now illustrate the finite difference methods for various types of BVPs.

12.2.1 Type y" = f(x,p) :

Let us consider BVP
y" =f(x,y) , X e[a,b]
y(a)zA, y(b)zB (1)

We can have second order and fourth order methods for the BVP given by (1). Let the solution
space [a,b] is discretized by the grid points

x;,=a+jh, j=12,.,N+1
where x,=a, x,,, =b

_b-a
N+1

and

Let y, denote the approximate value of y at x; .
Second Order Method :

The derivative y” at x; is approximated as

o)l )
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p_ Vi =2V Y

or ; e ..(2)
Thus the given BVP can be written as the following system of difference equations:
yj+1_2yj+yj—1:hzf(xjayj)a j:1727"')N
Yo =2a, Yy =b --(3)

Note that j runsupto ) andnotupto N 4+ 1. When j runsupto p then ¥;,, appearingin (3)

amountsto y,., (whichis the end condition). If we taken j running upto A ,thenwe wouldhave, y,, .,
which is out of the solution space. This understanding must be taken care of.

System (3) constitutes a difference equation for every 1< j < N and with y, and y,,, known
the system of )y equationwith » variables y,,y,,...,y, canbesolved. Thus valueof y;, j =1.2,..., N

computed provide y at mesh point x; .

Fourth Order Method :

A fourth order method (Numerov method) can also be written down for the BVP given by (1). We
have Numerov method as under

hZ
Yin _2)/_/ T Vi ZE[f_/H +10f./ +f./*1]|

where [, =f(xj,yj) etc. j=12,....N
with end conditions. y, =4, y,,, =B (4
Derivative Boundary Conditions for y" = f(x,y):

We now discuss the case where BVP of the type y" = f (x, y) involves derivative boundary

conditions.
consider,
y"=f(xy)
ay(a)-By'(a)=A4
a,y(b)-p,y'(b)=B (5

The difference approximationto y” = f(x,y) is taken of O(hz) as given in (3). Which have

N +2 unknowns y,,,,V,,...,Vy,, In N equations. In order to solve the system we require two more
equations in view of (5).

We now approximate )’ by central difference approximation (which is of 0 (h2 ) . Thus, from the

boundary condition given in (5), we have

214



=)
at X =X, ayo—ﬁ[;J=A

2h
2h 2ha
This gives, y71=F A—T Yo+ W ...(6)
Y =)V
andat x=x,.,, VyatBh|2—"|=B
N+1 2h
2hB 2ha,
This gives Yy ==~ tn (7
B B

Notethat y |, y,,, are the values of y(x) at x , and x, ,,. Since x ,, x,,, don’t belong to

the discretization of [a , b]] and infact lie outside of [a , b] , therefore these are fictitious nodes. The values of

Y > Yy., canbe determined by taking j =0, j = N +1 inthe equation (3)
12.2.2 BVP of the type y" = f(x,y,)') :

The BVP involving ' are also solved by applying difference approximationto ' . Here it should
be noted that order of approximationto y' is same as that of y” . Thatis, if y” is taken to be of 0 (h2 )
then y’ isalso of 0(/4*).

Let us consider

y'=f(x2.5),

y(@)= 4. y()= 5

The second order approximation to the given differential equation is given by

Yia _2J’_‘ +)ia Yinn—Via
: h2/ : =f[x_/,y_/, /2h/ J

12.2.3 BVPof y” = f(x,y) :

The second order finite difference approximation to the BVP ofthe type y" = f'(x,y) is given by

Via—4y,  +6y, -4y, .+, :h4f(xj7yj)

Example 12.1 Solve the boundary value problem

dZ
dx); +(l+x2)y+1=0’ x €[0.1].

1
by a second order finite difference method with step size /2 = 1
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Solution : We discretize the solution space [0, 1] by taking mesh points
X, =xo+x;h, x,=0,1,2,..., N, where Nh=1
Wheny, = 025, then N =4 and the mesh point are
x,=0, x,=025, x,=05, x; =075, x, =1
The second order method for the given BVP

=2y 4y,
[y]ﬂ h);] y”)+(l+x]2-).yj+1=0

or Vi, Jr[z—h2 (1+x_§)J] V=V =k, £=123
together with boundary conditions
Yo=¥(0)=0, y,=y(1)=0

System (1) for j =1,2,3 gives

_y0+[2_4_g[1+(§))2]y1—y2=G)z
At

1
e

and Y=0,y,=0
on simplification, we get

VN S D o
Yo 256 N )’2—16

T < N
N 64 Y )’3—16

VN L T DV 3
Y2 256 V3 )’4—16

with y, =0, y, =0
on solving the above system of linear equations, we obtain

y, =0.10744093, y, =0.14524711, y, =0.1092058
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Example 12.2 Solve the BVP by Numerov method

2

Yy
=x+
dx? Y

y(O)zO, y(l)zO
. . 1
with step size /1 = 7

Solution : The interval [0, 1] is discretized as x, =x,+,j/, j=0,1,2, N, where nj =1 when

1 1
h=z.Then N =4 . Hence the mesh point are x, =0, X, =z, X, :E’ X5 =z, x, = 1. The number

scheme for the given differential equation is

2

Vi =2y, Y =il_2 [(J’_m +x_/+1)+10(y_/ +x_/)+(y./—1 +x_/,l)], j=L123

1
Putting /1 = 1 and on simplification, the above scheme becomes,

394 3 10 )
yj71_191yj+yj+1_191 [xj+l+ xj+xj—1]|,J:1,2,3
) 1 1 3
Thus for j=1,2, 3 and X, 22, X, :E’ X3=Z,

we have following system of equations

394 3
Yo 191 it 191
394 _ 6
N 191 Vot V; 191
L R
Y2 191 Vit )V, 191

with the conditions y, =0 =y,
which yields

¥, =(025)=-0.035048
¥, =(05)=-0.056591

¥, = (0.75) = -0.050276
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Example 12.3 Solve the BVP

dzy
dx? -

y(0)+y'(0)=1, y(1)=1

. . 1
with step size /1 = 3
Solution : The solution space [0, 1] is discretized as x; =x,+ jh, j=0,1,2,...,N ,where Nh=1
1 .
when /1 = 3 then » = 3, hence the mesh points are

2
xozo,xlzg,xzzg, X3:1

The second order method for the given differential equation is
yj—l_zyj+yj+1:h2(xjyj)a Jj=0,12 ..(1)

Note that the given BVP involves derivative boundary conditions. Since the method used is sec-

ond order method therefore y’ (0) in boundary condition is replaced by its second order difference

approximationi.e.,
, YTV
Y= 2h

Y=V
"(0) =
We take V ( ) Y

In view of the boundary conditions become

2y,+3y,-3y.,=2, y,=1 ..(2)
Thus for j =0, 1, 2, the system (1) yields
Yi=2y,+y =0
1(1
)’0_2)’1"‘)’2:5 5 i
1(2
y1—2y2+y3=§ 3 )% ..(3)

Solving (3) in view of (2), we obtain

¥, = ¥(0)=— 0987951
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V= y(%) =— 0325301

Y, = y(%) =0.325301

Example 12.4 Solve the BVP

»(0)=4, y(1)=1

with step size /1 = 3 using second order method.

Solution : The interval [0, 1] is discretized as

1 1 2
Xo=7. % =7,%=7,x,=1.
3 3’ 5 3

3

The second order finite difference approximation to the given differential equation is given by

3
Via =2y 4y =l (5 y_?), j=12

for j =1, 2, wehave

2
Yy
Yo=2n+y, =?1

Vs
=2y, +y =?

with conditions y, =4, y, =1
System (1) yields following non linear equations in y, and y,

y12+12y1—6y2—24=0}

—6y,+y;+12y,-6=0 +2)

Above system of non-linear equations can be solved by method of iteration, Newton-Raphson
method. We have used Newton-Raphson method and obtained

y, =2.29504. y, =14679%4

after three iterations.
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Example 12.5 Solve the BVP

Solution : The interval [0, 1] is discretized

1 3
as XOZO,XIZZaXZZ_ =7

1
on taking the step size /1 = 7
The second order method for the given differential equation reads

Vi =AY 6y, =4y +y,=h(2), j=1,2,3

The end conditions are

Yo=0,y,=y,,=0, y;=y;5

Thus for j =1, 2, 3 and using and conditions we obtain the following system of equations

2
7}3—4y2+y3=zz

2
—4y1+6y2—4y3=zr

2
Jq—4y2+7y3=zr

on solving the above system of equations, we obtain

3y = 9(025) = 2(41) ¥ = »(05) :(43) v=y(079)=1 (41)

Self-Learning Exercise

1. Solve the following BVP by second order method
yr=-y-1
y(0)=y(1)=0, take step size j, = 025

2. Solve the following BVP by second order method
yi=xty

¥(0)=0, y(1)=0, step size j, = 0.25
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12.3 Summary

In this unit solution of boundary value problem comprising differential equations by finite difference
approximations have been explained. The finite difference methods explained. The finite difference methods
replace the differential equation by its difference approximations which amount to linear or non-linear

system of algebraic equations. which can be solved numercially.

12.4 Answers of Self-Learning Exercise

1. »(025)=010467, y(05)= 014031, y(0.75) = 0.10475

2. y(025)=-003488, y(05)=-005632, y(0.75) = —0.05003

12.5 Exercises

1. Solve the BVP

1
4
(Ans. y(025)=24, y(05)=32, y(0.75)=24)

by second order method, with step size # =

2. Compute y(0.5), given that
y'=y
y(0)=0, y(2)=3.63, withstep size j = 05

(Ans. y(0.5)=05262, y(1)=11843, y(1.5)=2.1382)
3. Solve the following BVP by finite difference method

"

==)y
y(0)+y'(0) =2

(Ans. ¥(0)=1509, y(%)z 1586 y(%)z 1417

3 T
22121031 y| = |=0485
y( 8) y(zj )

4. Solve the BVP by Number method
X’y =2y+x=0
¥(2) = y(3) = 0 with step size h=0.25
(Ans. (225)=003783,  »(2.5)=0.048686,

7(2.75)=0.035438) 000
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