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PREFACE

The present book entitled ‘‘Viscous Fluid Dynamics’’ has been designed so

as to cover the unit-wise syllabus of Mathematics-07 course for M.A./M.Sc. (Final)

students of Vardhaman Mahaveer Open University, Kota. It can also be used for

competitive examinations. The basic principles and theory have been explained in a

simple, concise and lucid manner. Adequate number of illustrative examples and

exercises have also been included to enable the students to grasp the subject easily.

The units have been written by various experts in the field. The unit writers have

consulted various standard books on the subject and they are thankful to the authors

of these reference books.
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UNIT - 1

Basic Concepts

Structure of the Unit
1.0 Objectives
1.1 Introduction
1.2 Fluids

1.2.1 Ideal Fluid
1.2.2 Real Fluid

1.3 Density
1.4 Viscosity
1.5 Most General Motion of a Fluid Element
1.6 Strain Analysis

1.6.1 Normal Strain
1.6.2 Shearing Strain

1.7 Stress Analysis
1.7.1 Body and surface forces
1.7.2 Stress and stress vector
1.7.3 Components of stress tensor

1.8 Symmetry of  stress tensor
1.9 State of stress at a point
1.10 Plane stress, Principal stresses and principal directions
1.11 Stress in a fluid at rest
1.12 Stress in a fluid in motion
1.13 Relation between stress and rate of strain components
1.14 Stoke's law of friction
1.15 Thermal conductivity
1.16 Generalized law of heat conduction
1.17 Specific heat
1.18 Summary
1.19 Answer to self learning exercise
1.20 Exercise

1.0 Objectives
In this unit, our object is to be aware about the basic concepts required in the development of the
theory of viscous flow. We will also study about the fundamental equations for the viscous compressible
fluid. The governing equations for the compressible and incompressible fluids in various coordinate
systems are given for ready reference.

1.1 Introduction
The subject of viscous fluid flow is of great significance to the mankind, the passage of blood
through veins, the falling of rain through the atmosphere and the current in the oceans  are few examples
of the flow. Therefore  it is interesting to study the viscous fluid flow in order to utilize and control its
effects for the benefit of the society. This unit deals with the basic concepts of viscous flow and
fundamental equations for the flow. This unit also deals the general theory of stress and rate fo strain.
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1.2 Fluid
By fluid we mean that a substance which is capable of flowing and it yields to a pressure however
small it may be. The fluids are classified in two forms ideal (perfect) and real (actual) fluid.

1.2.1 Ideal Fluid
A fluid is said to be ideal or perfect if it does not exert any shearing stress however small. In ideal
fluids, there are no tangential forces between the adjoining layers of the fluid but only normal
stresses are present. The pressure at every point of an ideal fluid is equal in all directions, whether
the fluid be at rest or in motion.

1.2.2 Real Fluid
The fluid which actually exist in nature are considered real or actual fluid. These fluids possess all
the five physical properties i.e. density, volume, temperature, pressure and viscosity. Real fluids are
divided into two categories viz liquids and gases. We generally regard liquids as incompressible
fluid and gases as compressible fluids.
If the density of the fluid be constant then it is called incompressible fluid and if density be a function
of hydrostatic pressure then it is called compressible fluid. Generally water and air are considered
an incompressible and compressible fluid respectively.

1.3 Density

The The mass density or simply density at any point is defined as ;mlim
0 





 where  is the
volume element around a point in the fluid and m  is the mass of the fluid contained within  . The
unit of density in MKS system is kilogram / meter3 i.e. 3ML .

1.4 Viscosity
Viscosity of a fluid is that characteristics of real fluids due to which they exhibit a certain resistance
to alternation of form or exerting internal resistance to a change in shape. Viscosity  is also known
as an internal friction.
Consider the motion of a fluid between two parallel
plates AB and CD at a distance d apart. The lower
plate CD is at rest while the plate AB is moving
with uniform velocity U parallel to itself as shown
in fig. 1.1. Here we suppose that there is no slip on
the surface when the fluid is in contact with a solid.
The velocity will decrease as we go downwards
from AB to zero in contact with CD. In order to
maintain the motion of the plate AB, a horizontal
force proportional to U/d  per unit area of AB is required. Thus we have the force in the form of

tangential or shear stress  given by  
d
Uτ   where  is a constant of proportionality  and

independent of U and d. It depends only on the nature of the fluid. this constant  is a measure of
the viscosity of the fluid and is called the "coefficient of viscosity" or "coefficient of shear viscosity."
For ordinary fluids, since there is no slip on the walls and the fluid is displaced in such a manner that
the various layers of fluid slides uniformaly over one another then the velocity  u of a layer of the

fluid at a distance y from the lower plate is d
yUu  . It may be seen that if d

U
 is replaced by the

velocity gradient dy
du

, we obtain Newton's law of viscosity as dy
duμτ  .

u = 0

u = U

Fig. 1.1

A

C

B

D

ud

Y
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The dimensions of the coefficient of viscosity can be found as -

11TML
engthvelocity/l

force/area
gradientvelocity 

stress shearingμ 

Hence the unit of   is kilogram per meter second and 1kg per meter second is equal to 10 poise.

Poise is the practical unit of coefficient of viscosity. If we write 



  i.e. the ratio of  to the

density  ,  is called the 'kinematic viscosity.'.'
The coefficient of viscosity is very small for water, gases, alcohol but not negligible and it is very
large in case of oil, glycerine. Some typical values of and  are given below in C.G.S. units at
15oC and under atmospheric pressure.

Gases / Liquids  

Air 0.00018 0.15

Oxygen 0.0002 0.15

Hydrogen 0.00009 1.5

Water 0.0114 0.0114

Mercury 0.016 0.0012

Glycerine  13 10

Pitch  1010 1010

For liquids the viscosity coeffiecient is nearly independent of pressure but decreases rapidly with
increasing temperature also for gases it is independent of pressure but increases with temprature.

1.5 Most General Motion of a Fluid Element
In this article we shall prove that the general motion of
a fluid particle consists of three parts a translation, a
rotation and a deformation. We shall show this by
considering the relative motion between two
neighbouring points of a fluid element.
Consider the small movement of a fluid pareticle from
P to Q.

Let 

q  be the velocity at  P(x, y, z) and 


 qdqq1

be the velocity of a neighbouring point Q. Also let


 rdrr and be the position vectors of P and Q
respectively.  Then we have


 qdqq1






























dz

z
qdy

y
qdx

x
qqq1





























































dz
z
wdy

y
wdx

x
wk̂dz

z
dy

y
dx

x
ĵdz

z
udy

y
udx

x
uîq

where       z,y,xw,z,y,x,z,y,xuq̂   Rewriting right hand side of above, we get

q


q


1q


qd


rd


P Q

O

r


r + rd

Fig. 1.2
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where 
   is the angular velocity given by
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     dydxdzk̂dzdxdyĵdzdydxîD zyzxzzzyyxyyxzxyxx 


     rdk̂rdĵrdîD zyx


  ...................................(3)

where xzxyxxx k̂ĵî 

yzyyyxy k̂ĵî 

zzzyzxz k̂ĵî 

are the strain -rate tractions of the fluid elements in the x,y and z directions respecitvely.
Equation (1) respesents the most general motion of a fluid motion. The first term 


q  respresents the translation

velocity vector and it represents the linear motion of all parts of the fluid element without changing the
shape of the element. Hence the first term represents the pure translatoty part of the motion.The second

term 


drw  represants the pure rotation of the fluid element. The third term 


D represents the rate of strain
term and so the third  term D gives the deformation of the fluid element. Due to this term, this velocity of a
fluid element differs from a solid.
Thus we see that the most general motion of a fluid element can be expressed as the combination of
translation, rotation and deformation of the fluid element.
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1.6 Strain Analysis
A body is said to be strained when the various parts of the body undergo a relative displacement
under the action of some impressed force. It is a non-dimensional deformation measuring the
change in the relative positions of various parts due to any cause. However if the whole body
undergoes a displacement i.e. translation or rotation etc. without any change in the relative positions
of different parts of the body it is not a strain. There are two types of strain.

1.6.1 Normal Strain
It is the rate of the change in length of a part of body to the initial length, where the element is taken
to be a straight line. If in the unstrained state the length of a line element 1 and in the strained state

2 , then normal strain = 
1

12



 

1.6.2 Shearing Strain
When two elements lying on a straight line undergo a relative displacement, the change in the angle
between them before and after the displacement is known as shearing starin. If in the unstrained
state the elements are A and B, in the strained state they take the positions A1 and B1, then the angle
between the straight lines AB and A1B1 is the shearing strain.

1.7 Stress Analysis

1.7.1 Body and Surface Forces
In the study of fluid dynamics, we distinguish between two types of forces acting on a fluid element,
namely body forces and surface forces. The body forces are distributed throughout the volume of
the body and expressed as force per unit mass of the element. Examples of such forces are
(i)   force due to gravity   (ii)  electromagnetic force when the fluid is electrically conducting and
moving in the presence of the magnetic field and (iii) if the coordinate system is accelerating or
decelerating, centrifugal and Coriolis forces, may have to be included among the body forces.
In the space occupied by a fluid in motion or at rest, imagine a surface enclosing some part of the
fluid. The portions of the fluid close to the surface on its two sides, internal and external, exert
forces on each other which are in the nature of actions and reactions which are called internal
forces. Since they act across a surface that is imagined to separate the fluid , they are called surface
forces. These forces are expressed as “force per unit surface area of a fluid element”

1.7.2 Stress and Stress Vector
Let us consider a point P in the fluid and take an
infinitesimal area s surrounding the point P. Let (x,y,z)
be the coordinate of point P referred to a set of fixed
axes OX, OY, OZ. Also let n  be the unit vector in the
direction of the normal to the plane area s and
consider the forces exerted across s by the  portion
of the fluid which lies on the side of n  . The  fluid may
be either in motion or at rest. These surface forces are
not, in general, distributed uniformaly  across  s . These,
by the principle of statics, can be combined into a single
force 



F  through P and a single couple of moment


C about some axis. If we gradually shrink the area of the plane surface to the point P both 

F

O

X

Y

Z

s

P

n̂

F



Fig. 1.3
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and 

C tend   to zero. However , for a vanishingly small area 0s , the equivalent surface force 


F
ay  be assumed to be proportional to the surface area.
We know that in the case of inviscid fluid, 



F  is  along the direction of n , so that there is only normal
stress. On the other hand, in the case of viscous fluid, frictional forces are called  into play between the
surface  and the fluid so that 

F  will now possess normal and tangential components  
nn



F and 
ns



F . The
normal and shear stresses are defind as follows.

The normal stress = s
nn

s 




FLim
o

and the shear stress = s
ns

s 




FLim
o

Now s


F tends to a definite number as 0s . This number will depend not only on the

position of the point P but also on the orientation of the area s . Hence it is presented by the vector

symbol 


nF  the subscript  n̂  indicates the direction of the normal to s  at  P as discussed earlier..



nF so defind, is called the stress vector or suface traction at P corresponding to the orientation  n
of the area. Thus we have

Stress vector .FLimF
0n ss 







1.7.3 Components of Stress Tensor

Let nznynx    ,  , be the Cartesian components of 
n



F and 

k,j,i be the unit vectors parallel to
the axes. Then we have



 kjiF nznynxn

In particular, if the direction n is parallel to  x - axis, we have


 kjiF zxyxxxx

Similary 


 kjiF zyyyxyy

and 


 kjiF zzyzxzz

In this way nine quantities are defined at a point, which may be arranged as follows.























zzzyzx

yzyyyx

xzxyxx

ij

The above mentioned nine quantities ij  constitute the components of the stress tensor of order
two. It is expressed by ij  also.
We have used the double subscript notation for stress components. The first subscript denotes the
direction of the normal to the plane on which the stress acts and the second subscript denotes the
direction of the force producing the stress. It follows that normal stresses have repeated subscripts.
The diagonal elements zzyyxx  ,,  are  said to be normal stresses and the remaining six elements

zyzxyzyxxzxy  ,,,,,  are said to be shearing stresses. The matrix is said to be stress matrix.
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1.8 Symmetry of Stress Tensor

In general, the motion of a fluid element can be separated into an instantaneous translation and an
instantaneous rotation. Construct a parallelopiped whose edges of length zyx  ,,  parallel to
coordinate axes and P(x, y, z) be its centre as shown in fig. 1.4. We consider the motion of the
above parallelopiped of viscous fluid.
Here we suppose that the fluid mass of the element  P zy x   remains constant and the coordinates

of P1 and P2 be 





 






  z y,x,xz y,x,x

2
1and

2
1

 respectively

At P, the force components on the face ABCD parallel to coordinate axes  OX, OY, OZ are

 z,yz,yz,y xzxyxx 

At P2 the force components on the face A2 B2 C2 D2 parallel to ABCD of area zy   parallel to

axes are 










































 zy
x

.xzy
x

.xz,y
x

.x xz
xz

xy
xy

xx
xx 2

,
22  where   is the

unit normal vector measured outward.

At P1, since 
 is the unit normal vector measured outwards from the fluid the corresponding force

components on the rectangular surfce A1B1C1D1 parallel to ABCD of area zy  are












































 zy
x

.xzy
x

.xz,y
x

x xz
xz

xy
xy

xx
xx 222

Hence, the force on the parallel planes A2B2C2D2 and A1B1C1D1 passing thourgh P2 and P1 are
equivalent to a single force at P with the components of force as
















 δz,δy δx 

x
σδz,δy δx 

x
σ

δz,δy δx 
x

σ xzxyxx

together with couples whose moments are
zy  x   zy  x xyxz  and  along OY and OZ respectively..

Similarly, the components of force on the parallel planes perpendicular to the y-axis are
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
















δzδy δx 
y

σ
δz,δy δx 

y
σ

δz,δy δx 
y

σ yzyyyx

together with couple whose moments are

zy  x   zy  x yzyx  and  about OZ and OX respectively..
Similarly, the components of force on the parallel planes perpendicular to the z-axis are





















 zy  x

z
z,y  x

z
z,y  x

z
zzzyzx

together with couple whose moments are

zy  x   zy  x zxzy  and  about OX and OY respectively..
Thus, the surface forces on all the six faces of the rectangular parallelopiped are equivalent to a single force

at P as






































































 zy  x

zyx
 z,y  x

yyx
z,y  x

zyx
zzyzxzzyyyxyzxyxxx

together with a vector couple having components as

      zy  xz,y  x z,y  x yxxyxzzxzyyz 

Now let X,Y and Z are the components of external body force perunit mass at P then components
of the total body force on the parallelopiped  are.

 ,Z,Y,X zy  xzy  xzy  x 
Taking moments about the OX through P, we get

total moment of forces =  (moment of inertia about OX). (angular acceleration)

  54 OO  zy  xzyyz

where O4 and O5 represent quantities of 4th and 5th order of smallness in zy  x  . Hence, to the
third order of smallness in zy  x  , it reduces to

  0 zy  xzyyz

or 0 zyyz

or  zyyz 

similarly

xzzx 

and yxxy 

Thus, this shows that the stress tensor is symmetirc.

1.9 State of Stress at A Point
The state of stress at a point in the fluid is said to be completely known if the direction and magnitude
of the stress vector at the point is known or can be determined from the known data for every
possible orientation of area.

Theorem : The state of stress at a point is completely known if the nine components of stress tensor at that
point are known.
Consider the motion of a small tetrahedron OABC.
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Taking the faces of the tetrahedron OABC  along the coordinate planes and face ABC has the area
. Let n,m, be the direction cosines  of  normal n̂  to ABC drawn outwords. All the possible
stresses on the fluid element of viscous fluid are shown in fig. 1.5.
Since the tetrahedron is small, the stress across every face may be taken to be uniform. Let the

stress vectors on faces OBC, OCA, OAB and ABC are zFyFxF


, ,  and nF
  respectively. Let



B  the body force per unit mass acting on the fluid element and a  the acceleration of the element.
By using Newton's second law of motion, the equation of motion of the tetrahedron gives

Where  is the perpendicular on ABC from O and p
3
1

  the mass of tetrahedron,

nm   are the areas of the faces BOC, COA and AOB respectively. Since the outward
normal on the faces are in the negative directions of the axes, which follows that the direction

cosine of the outward normal 


n  with respect to the other three outward normals are n,m,   .
Dividing (1) by  and assuming that the plane ABC approaches O moving parallel to itself so that

 then we have

zyxn nFmFFF


  ...................................(2)

and we know that

nznynx σkσjσιFn





xzxyxx σkσjσιFx





yzyyyx σkσjσιFy





zzzyzx σkσjσιFz



 .........................................(3)
from (2) and (3), we obtain

zxyxxxnx σnσmσσ  

zyyyxyny σnσmσσ  

zzyzxznz σnσmσσ   .........................................(4)
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Which shows that, the state of stress at a point is completely known if the nine stress tensor components
are known. We also express the equations (4) in the following matrix form


























































n
m

zzyzxz

zyyyxy

zxyxxx

nz

ny

nx 

................................(5)

We know from art 1.8 that the stress tensor is symmetric i.e.

zxxzzyyzyxxy and,  .
Hence it follows that six components are sufficient to determine the state of stress at a point rather
than nine components.

1.10 Plane Stress, Principal Stresses and Principal Directions
If we consider the state of stress in which

0zzxzxy 

then relation (4) of art. 1.9 will be reduced to

yxxznx m 

yyxyny m 

and  0nz   ...........................................................................(1)

which is known as the plane stress. Let n  be the normal to

XY plane as shown in fig. 1.6. Here normal 


n  inclined at
angle  with x-axis then

 cos  ;  m = sin
then (1) reduces to

 sincos yxxxnx

 sincos yyxyny

0nz  ....................................................................(2)
when resolving the stress components along and perpendicular

to the normal 


n , we obtain normal component of stress
 sincos nynxnn

       cossin2sincos xy
2

yy
2

xx

            2sin2cos
2
1

2
1

xyyyxxyyxx ..............................................(3)

and tangential component of stress
 sincos nxnyns

       θsinθcosθcosθsin 2
yx

2
xyxxyy 

     θ2cosθ2sin
2
1

xyyyxx  ..................................................................(4)

If  )(
2

θ2tan0
yyxx

xy
ns 


 ..........................................................................(5)



11

If yyxxxy and0  then  be indeterminate.

then from (3) and (4) we have

yyxxnn 

and 0ns 

This state is knwon as uniform plane stress.

If xy =0 and yyxx  then 





 


 θ
2

2tanθ2tan .

Hence for any state of stress at a point, there are two mutually perpendicular directions,
corresponding to which the tangential components of stress vanishes. These two  directions given
in relation (5) are knwon as the principal directions of stress at the point and the normal stress
corresponding to them are called the pricipal stresses. The principal stresses are denoted by

321 ,,   and

yy2xx1 , 

then      θ2cos
2
1

2
1

2121nn 

  θ2sin
2
1

12ns  .........................................................(6)

1.11 Stress in a Fluid at Rest
When the fluid is at rest then the tangential stresses do not exist which states that the stress vector
at any point of the fluid is normal to any plane surface passing through the point.
In this case the stress tensor are given by























zz

yy

xx

00
00
00

ij

For such a state of stress, considering equilibrium of an infinitesimal tetrahedron, we may see that
the magnitude of zzyyxx  ,, at the point is the same for all elemental planes passing through the

point. If   denotes the stress at a point for time being and  is positive then ij  represents a
tensile stress, which is contrary to the experience, since in the interior of the fluid not any tensile
stresses ocuur. This means that the nature of ij  is of compression and it will be appropriate to
replace   by –  . Then the stress in a fluid at rest is given by

or ijij p   











ji1
ji0

ij

for all orientations of the coordinate axes. The scalar  is called the hydro-static pressure at the point.
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1.12 Stress in a Fluid in Motion
When the fluid is in motion then both the tangential and normal stresses occur and the state of stress
in a moving fluid can be expressed as

where  resprsents pressure, which is similar to but not identical with the hydrostatic pressure and

ij  represents viscous or frictional stresses.
We know that the viscous stresses are assumed to be proportional to the rates of strain occuring at
the point considered and proportionality constant, known as the viscosity coefficient and it depends
on the nature of the fluid. Thus the viscous stresses occur only when the fluid is in non-uniform
motion and the viscous stresses disappear and leaving the stress tensor as that of a uniform pressure
in all directions in uniform motion. If the fluid is at rest then the viscous stresses become zero and
the uniform pressure is known as the hydro static pressure. It is due to behaviour of ij  which is
known as the viscous stress tensor.

1.13 Relation between Stress and Rate of Strain Components
Stokes made the following assumptions in order to find the relation between stress and rate of
strain components.

(i) The stress components are linear functions of the rate of strain components.
(ii) The relation between stress components and rate of strain components are invariant to

orientation of the coordinate axes.
(iii) When the velocity gradients are zero, the stress components must reduce to hydrostatic

pressure.
We know that there are six independent stress components and six rate of strain components. To
derive the relation between stress and rate of strain it is convinient to start with the principal axes of
the two quadrics at a point, because of isotropy the principal axes of the stress quadric coincide
with those of rate of strain quadric at every point in the continuum.

It is clear that referred to the principal axes 0ij   and ij = 0 when ji  . In view of the first and third

assumptions the non zero components of the stress tensor 332211 ,,   are related to the non-

zero components of the rate of strain tensor 332211 ,,   in the following manner

33132212111111 aaa 

33232222112122 aaa 

33332232113133 aaa  ........................(1)
Where the aij are the constants to be determined.
In view of second assumption, any permutation of the s'  must effect the same permutation of s' .

Now, permute the 113322332211 ,,to,,   (rotation of axes) and re-arrange to obtain.

33122211111322 aaa  

33222221112333 aaa  

33322231113311 aaa   ...............................................(2)
Also, by interchanging the axes 1 and 2, in the first relation of set of relation (1), we have

33131112221122 aaa   ...............................................(3)
on comparing  relations (1), (2) adn (3), we obtain
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a12 =  a21  =  a13  =  a23  =   a32   =  a31  =    (say)
and a11 =  a22  =  a33  =    (say)........................................................(4)
where and  are the moment numbers whose physical meaning have to be obtained

On using (4), the set of equatin (1)  become
 3322111111 λ2μσ 

 3322112222 λ2μσ 

 3322113333 λ2μσ  .............................................(5)

Now these equation (5) plus the six equations implict in the fact that 0σ ijij  when ji  , may
all be combined into a single tensor equations as

ijkkijijij δλ2μδσ    ............................................................(6)
which is the required relationship between the stress components and rate of strain components for arbitrary

choice of the coordinate axes.
We know that the state of stress in a moving fluid given by

ijijij τδσ   ............................................................................(7)
From (6) and (7) ;  we have the relationship between the components of the viscous stress tensor and rate

of strain tensor given by

ijkkijij δλ2μτ  ......................................................................(8)

If considered a state of shearing motion ;  the velocity field be  00,),(xvV 21


 then we have

2

1
2112 d

d
2
1

x
v

  ..............................................................................(9)

Thus ;  from (8) and (9) we obtain

2

1
2112 d

dττ
x
v

 ..............................................................................(10)

and  all the other viscous stresses are zero. be the  coefficient of viscosity and is important only in the
case of compressible fluids because in an incompressible fluid it does not paly any part.

1.14 Stoke's Law of Friction
We know that the relationship between the components of the viscous stress tensor and rate of
strain tensor is given by

ijkkijij δλ2μτ  .........................................................................(1)
It can be written as

ijkkijijkkij μ
3
2λ2μδμ

3
2τ 






  .................................................(2)

Clearly    iie23τii  ................................................................................(3)

or   sayKμ
3
2λ3τ

ii

ii 





 



Where K is the bulk viscosity. The bulk viscosity defined as the ratio of the mean normal viscous stress to
the rate of volumetric strain in a state of pure dilation. Stokes assumed that bulk viscosity K=0 then

μ
3
2λ  .....................................................................................(4)
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Using (4) in equation (1), we have

ijkkijij δμ
3
22μτ  ...............................................................(5)

which is the required relationship between viscous  stress tensor and rate of strain tensor and is
known as "Stoke's law of friction".

1.15 Thermal Conductivity
The study of heat transfer has great importance in different branches of science and technology, In
all types of substances viz solid, liquid and gases, the temperature difference reduces with the lapse
of time flowing heat from the region of higher temperature to the region of  lower temperature.
Basically, there are three modes of heat transfer viz conduction, convection and radiation. In solids,
the process of heat transfer takes place by the mode of conduction, while in liquid and gases the
process of heat transfer takes place by the mode of conduction, convection and radiation
simultaneously.
The process of heat transfer takes place in solid due to transfer of internal energy from one molecule
to another, known as conduction. Fourier's law of heat conduction state that the conductive heat
flow per unit area is proportional to the temperature gradient.

dy
dTkq 

Where k is the constant of proportionality and is known as the coefficient of thermal conductivity
and the negative sign show that heat flow is in the direction of decreasing temperature.

1.16 Generalized Law of Heat Conduction
In an isotropic medium in which the temperature varies in all three direction then Fourier's law of
heat conduction for each of the coordinate directions :

3
3

2
2

1
1

Tkq,Tkq,Tkq
xxx 












We may write these three relations in Cartesian tensor notation as

ix
Tkq

1 




which is the three dimensional form of Fourier's law. It states that the heat flux vector 


q  is proportional

to the temperature gradient T and is oppositely directed. The ratio of thermal conductivity k to
the product of density  and specific heat  is known as the thermal diffusivity, which is usually
denoted by a and given by

C
ka




The unit of thermal diffusivity a is the same as that of  kinematic viscosity i.e.

  12
2

TL
.

meter 
sec

a

1.17 Specific Heat

The specific heat C of a fluid is defined as the amount of heat required to raise the temperature of

a unit mass of the fluid by one degree. Thus T
QC



 , where Q is the quantity of heat added per
unit mass of the fluid.
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The specific heat in fact depends on the process in which the heat is added. Usually the process
considered is either at constant volume or at constant perssure, thus we have

Specific heat at constant volume vT
Q










vC

and specific heat at constant pressure pT
Q










pC

The ratio of the two specific heats is usually denoted by the symbol 
v

p

C
C

  and is known as the
"adiabatie exponent" of the gas.

Self Learning Exercise
1. Fill in the blanks in following

(a) Fluid which obeys Newton's law of viscosity is known as...................................
(b) The ratio of the mean normal viscous stress to the rate of volumetric strain is

known as ...........................................................................................................
(c) The ratio of thermal conductivity to the product of density and specific heat is

known as  ............................................................................................................
(d) The dimensions of the coefficient of viscosity is ..................................................
(e) the coefficient of viscosity depends only on ..........................................................

2. Define normal and shearing strain.
3. What do you mean by stress vector ?
4. What is viscous stress tensor ?
5. Write down the Stoke's law of friction.

Example . 1
The stress tensor at a point P is















 


402
050
207

σij

Deternime the stress vector on the plane at P whose unit normal is  .k
3
1j

3
2i

3
2n





Solution :

We know that 


 knjmin 

then here 3
1nand

3
2m,

3
2

    then we have


















































n
m

zzzyzx

yzyyyx

xzxyxx

nz

ny

nx 

σσσ
σσσ
σσσ

σ
σ
σ
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






















































31
3
2
32

402
050
207

σ
σ
σ

nz

ny

nx

or  
































0
3

10
4

σ
σ
σ

nz

ny

nx

Hence the stress vector 
nF

  is given by

nznynxn σkσjσiF






 j
3

10-i4Fn

Which is the required stress vector.

Example : 2
What type of the motion do the following velocity components constitute ?

ezbxdv;czbyau 

and eycxfw   where a, b, c, d, e, f are arbitrary constants.
Solution :

Let k̂wĵvîuq 
  be the velocity at a point P and q1 = q + dq  be the velocity at a neighbouring

point Q. Then we known from article. 1.5 that

DrdWqq1



here given that u = a + by – cz     ;     v = d – bx + ez
and  w  =  f + cx  –  ey























































y
u

x
vk̂

xz
uĵ

z
v

y
î

2
1W



   k̂bĵcîek̂b2ĵc2îe2
2
1W 


 ...............................(1)

dzdydx
bce

k̂ĵî
rdW 


     dyedxck̂dxbdzeĵdzcdybî   .............................(2)

Now 0
dz

;0
y
v;0

x
u

zzyyxx 












and   0bb
2
1

x
v

y
u

2
1

xy 















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  0ee
2
1

yz
v

2
1

yz 
















  0cc
2
1

z
u

x2
1

zx 
















Hence  D = 0

Hence the motion of fluid of motion be translatory motion with velocity k̂wĵvîuq 
  and

rotational motion with velocity rdW 
 . The rate of strain D

  = 0 which means that motion is free
from deformation.
Hence the rigid  body motion

Example : 3
Velocity field at point is given by 1+2y-3z,  4-2x+5z,  6+ 3x -5y. Show that it represent a rigid
body motion.

Solution :
Here given that  v = 4 - 2x + 5z,  w = 6 + 3x - 5y  and  u = 1 + 2y -3z

Here  




















































 k̂
y
u

x
vĵ

x
w

z
uî

z
v

y
w

2
1W



 k̂2ĵ3î5W 


dzdydx
235

k̂ĵî
rdW 


or      k̂dy5dx3ĵdx2dz5îdz3dy2rdW 


.........................(2)

and 0
z
w;0

y
v;0

x
u

xxyyxx 













  022
2
1

x
v

y
u

2
1

xy 
















  055
2
1

y
w

z
v

2
1

yz 
















  033
2
1

z
u

x
w

2
1

zx 
















Hence 0D 


Hence the motion of a fluid element is made up of only two parts viz pure translation and pure
rotation without any deformation. So the given velocity distribution represents a rigid body motion.

1.18 Summary

This unit is devoted to the study of strain and stress. We have studied about stress tensor, stokes
law of friction, thermal conductivity and specific heat also.
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1.19 Answer to self learning exercise

1. (a)   Newtonian fluid
(b)  Bulk Viscosity
(c)  Thermal diffusivity
(d)  ML–1T–1

(e)  Nature of the Fluid.
2. See article 1.6

3.
s
FlimF

0sn 








4. See article 1.12
5. See article 1.14

1.20 Exercise

1. Write short notes on
(a)  Viscosity
(b)  Thermal conductivity

2. Define the stress at a point in a fluid and show that it is a symmetric second order tensor
3. Define Stoke's law of friction
4. Distinguish between body and surface force. Define stress at a point
5. What do you mean by thermal conductivity
6. Show that the erate of strain tensor is a symmetric tensor
7. Show that the following velocity components represent a rigid body motion

u = a + by – cz     ;   v = d – bx  + ez     ;   w  =  f + cx – ey
where a, b, c, d e and f are arbitrary constants.
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UNIT - 2

Fundamental Equations of the Flow of
Viscous Fluids

Structure of the Unit
2.0 Objectives
2.1 Introduction
2.2 Equation of State
2.3 Equation of Continuity

2.3.1 Equation of continuity in Cartesian tensor notation
2.3.2 Equation of continuity in vector form.

2.4 Navier - Stokes Equations of  Motion
2.5 Equation of Energy
2.6 Boundary Conditions
2.7 Vorticity
2.8 Circulation
2.9 Tables on the fundamental equation
2.10 Summary
2.11 Answers to self  learning exercise
2.12 Exercise

2.0 Objectives
This unit provides a general overview about fundamental equations of the flow of viscous fluids.
After reading this unit you will be able to understand about the equation of state, equation of continuity,
equation of motion and equation of energy. Here in this unit you will also consider the vorticity and
circulation in a viscous incompressible fluid motion.

2.1 Introduction
The fundamental equations of the flow of viscous compressible fluids are
(a) Equation of state ;  (one)
(b) Equation of continuity ;  (one)
(c) Equation of motion ; (three)
(d) Equation of Energy  ; (one)
These equations are mathematical expressions of basic physical concepts. These are six in number and
therefore determine the six unknowns of the fluid motion i.e. velocity components (3), the temperature,
the pressure and the density, which all are the functions of both space coordinates and time.

2.2 Equation of State
The equation of state of a substance is a relation between the pressure, temperature and the density.
It is an experimental fact that a relationship between these three thermodynamic variables exist so
there exist an equation of state corresponding to a given homogenous substance, solid, liquid or gas.
The relationship may be expressed as
f (p, ,  T) = 0 ..................................................................(1)
which is known as the "Equation of state". The exact nature of the function f is, in general, very
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complicated and varies with fluid. For gases, at high temperature or low pressure the relation (1) can
be written as

     2ρTCTρB1
ρRT

p
..................................................(2)

where B(T),  C(T), ................... are the function of temperature only and R is the gas constant.
For the perfect gas or an ideal gas, the equation of state is given as
p = RT ..............................................................................(3)
and it is called Boyle's Law. The equation of state of a viscous compressible fluid will be taken as the
equation of state of a perfect gas. If the fluid be incompressible then the equation of state is simply
= constant

2.3 Equation of continuity

The equation of continuity aims at expressing the law of conservation of mass in mathematical form.
the law of conservation of mass states that fluid  mass can neither be created nor destroyed.
Thus, in a continuous motion, the equation of continuity expresses the fact the increase in the mass of
the fluid within any closed surface drawn in the fluid in any time must be equal to the excess of the
mass that flows in over the mass that flows out.

2.3.1 Equation of continuity in Cartesian tensor notation :
Let us consider a closed surface S, enclosing a fixed volume
V in the region occupied by the moving fluid. If  j be the
normal unit vector in the outward direction to the elementary
surface ds  of the closed surface S and vj be the velocity of
the fluid at the poiint,  then the inward normal velocity is
– vjj.
Thus the mass of the fluid entering  per unit time through the
element dS is dSv jj .

Hence the total mass of the fluid entering per unit time through the surface S is

 
S

jj dSv ....................................(1)

and the mass of the fluid within the closed surface S is


v

dv ...........................................(2)

Therefore the rate of mass increases within surface S is simply

 






VV

dv
t

ordv
t .................(3)

Here the differentiation and integration being interchangeable because a fixed volume is considered.
Now, by the law of conservation of the fluid mass, the rate of increase the mass of fluid through S
must be equal to the total rate of mass flowing into V.

Hence  



S
jj

V

dsvdv
t ............(4)

On applying Gauss's theorem, we have

 
 







V j

j

V

dv.
x
v

dv
t     or

 
 




















V j

j 0dv
x
v

t

V

S

ds

nj

vj

Fig. 2.1
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Since V is an arbitrary chosen volume, we deduce that

 
0

x
v

t j

j 








which is the required equation of continuty in Cartesian tensor notation.
2.3.2 Equation of Continuity in Vector form

Let S be an arbitrary small closed surface drawn in the compressible
fluid enclosing a volume V and let S be taken fixed in space. Let
s denote the element of the surface S enclosing P and n̂  be the

unit normal outward drawn at s  and q  be the fluid velocity at P..

The rate of mass flow across    sq.n̂s 


Then the total rate of mass flow across the surface  S  is

 
S

dSq.n̂ 

On using Gauss-divergence theorem, the total rate of mass flow across surface

  
V

dVq.S 

The total rate of mass flow into volume   
V

dV.q.V


 ............................................(1)

Again the mass of the fluid within S at time 
V

dVt

Hence the total rate of mass increase within surface  







VV

dV
t

dV
t

S .........................(2)

By using concept of continuity, (using (1) and (2) we have

  



VV

dVq.dV
t



or   0dVq.
tV





 






or   0q.
t



 

.................................................(3)

0qdiv
Dt
D 



where   



 .q
tDt

D 
 is known as the material derivative or differential following the motion.

In the case of steady compressible flow when 0
t





 the equation of continuity reduces to

  0qdiv 


If is homogeneous and has the same constant value throughout the fluid, the equation of continuity
reduces to

0qdiv 
 ..........................................................(5)
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2.4 Navier - Stokes Equations of Motion

The  equations of motion are derived from Newton's second law of motion which states that
the rate of change of linear momentum  =  total applied force
Let us consider a closed surface S, enclosing a volume V in  the ragion occupied by the moving fluid.
The rate of change in momentum along the element ds is  dsvv jji   Therefore, the rate of
change in momentum enters  the controlled surface S is

  
S

jji dsvv ..........................................................(1)

The rate at which the momentum increases in the enclosed volume V is




V
i dvv

t ................................................................(2)

From relation (1) and (2) the rate of change in linear momentum is given by

  



S
jji

V
i dsvvdvv

t ..........................(3)

In the fluid motion, there are two forces (i) force acting throughout the mass of the body of fluid, such
as gravitational forces, known as body forces and (ii) forces acting on the boundary, the fluid stresses
and are known as surface stresses. If  fi  be the body forces per unit mass and iP  be the force on the
boundary per unit area then the total applied force is given by

 
S

i
V

i dsPdvf .....................................................(4)

Where the stress vector Pi is given by

ijijijjiji pandnP 

Using (3) to (5) the equation of motion can be written as

   



S
i

V
i

S
jji

V
i dsPdvfdsvvdvv

t

On using Gauss-divergence  theorem, it reduces to

   
j

ij

i
ijii xx

pfvv
t

v
t 















or
 

j

ij

i
i

j

i
j

j

j
ii

i

xx
pf

x
vv

x
v

v
t

v
t
v


























using 
 

t
p

x
v

j

j







 from equation of continuity we have

j

ij

i
i

j

i
j

i

xx
pf

x
vv

t
v



























  ..............................................(6)

which is valid for all continuous fluid medium.
Now, to use these equation to determine the velocity distribution, we insert the expression for the
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viscous stresses in terms of velocity gradients and fluid properties. For isotropic Newtonian fluid
these expressions are given by the constitutive equation

ijkkijij 3
22  ..........................................(7)

where 


















i

j

j

i
ij x

v
x
v

2
1

...............................................(8)

Using (7), (8) in equation (6), we finally get
































































k

k
ij

i

j

j

i

ji
i

j

i
j

i

x
v

3
2

x
v

x
v

xx
pf

x
vv

t
v

.........(9)

Equations (9) are knwon as Navier-  Stoke's equations for the motion of a viscous compressible
fluid and  are three in number. Taking  as constant and

0
x
v

xx
v

x j

j

ii

j

j
































it reduces for incompressible fluids to

jj

i
2

i
i

j

i
j

j

xx
v

x
pf

x
vv

t
v


























  ..............................................(10)

Equation (10) in vector notation can be written as

qpF
Dt

qD 2

  ........................................................................(11)

where  



 .q
tDt

qD 


 is the "material derivative" as defined earlier..

2.5 Equation of Energy

Consider the motion of a viscous compressible Newtonian fluid. Here we consider the conservation
of energy on the basis of the first law of thermodynamics. The conservation of energy requires that,
the difference in the rate of supply of energy to a controlled surface S enclosing a volume V in the
region occupied by a moving fluid and rate at which the energy goes out through S must be equal to
the net rate of increase of energy in the enclosed volume V.
This can be easily written in an equation form as the rate of heat which is produced by external
sources + the rate at which heat is produced by the work of the surface stresses — the rate of
energy loss by heat   – the rate of energy loss by heat convection =  the rate of increase of energy in
the enclosed volume.
or

   



V S
jjt

S
jij dsvEdsdv

t
Q

 



S V

tjj dvE
t

dsq ........................................(1)

where Et be the total energy of the system per unit mass. If K and I are potential energy and  internal
energy then
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IKvv
2
1E iit  ................................................(2)

The heat flux vector qj is given by the generalized heat conduction law
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Using (3) in equation (1), and changing the surface integral into volume integral by Gauss's divergence
theorem and taking V to be an arbitrary volume, then we get the qeuation of energy as :
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To simplify the energy equation (4) we are assuming following relations

(i) Using the material derivative 
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We know that the equation of continuity in the cartesian tensor notation is
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Using equation (6) in (5) we obtain
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Again using relation (2) in R.H.S. of relation (7) we have
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(ii) The equation of continuity is
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and ijijij p  .........................................................(10)

Using (10) in (9), it reduces to
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Now the second term in equation (4)  iji
j

v
x

.e.i 



 can be written as

   
j

i
ijij

j
iiji

j x
v

x
vv

x 










   =    
j

i
ijij

i

i
i x

v_p
x
k

Dt
Dvv

















   =  
j

i
ij

j

i

i

i
i x

v
x
vp

x
k

Dt
Dvv





















   =   















j

i

i

i
i x

vp
x
k

Dt
Dvv ....................................(12)

where  
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We know that the constitutive equation for an isotropic Newtonian fluid is
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Now using (14) in (13) we have
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is the heat generated due to frictional forces and known as dissipations function.
Hence the equation of energy (4), with the help of equations (7), (8) and (12) can be simplified to
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Again using the equation of continuity, we have
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which is the energy equations in terms of internal energy I and  fluid temperature T.
For the perfect gas, we know that

p =RT and Cp–Cv = R
then the internal energy I is given as
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On substituting the value I from (18) in (17) it reduces to
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For incompressible fluid
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The energy equation (16) with constant viscosity and heat conductivity, becomes
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2.6 Boundary Conditions

The solution of the fundamental equations of the flow of viscous fluids becomes fully determined
physically when the boundary and initial conditions are specified. The initial condition will be studied
in the flow problems and the boundary conditions are studied in geometrical considerations together
with the no slip conditions.

2.7 Vorticity

The Navier-Stokes equations for a viscous incompressible fluid motion may be interpreted as the
vorticity transport equations, if we assume that the external forces are conservative then they can be
derived from a force potential Vf such that
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Using Lagrange's vector identity
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Taking the curl to both sides of the equation and keeping in view that curl of a gradient is zero then
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On using (5) in (4) it reduces to
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which is known as vorticity transport equation. The term  q. 
  represents the rate at which 



varies for a given particle when the vortex lines move with the fluid, the strengths of the vortices
remaining constant. The term 


2 represents the rate of dissipation of vorticity through friction.

For the two dimensional motion, if ĵvîuq 
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This equations is of the same form as the equation of heat conduction in the liquid. Hence vorticity
diffuses through a liquid in almost the same way as heat does. By analogy it follows that vorticity
cannot be generated within the interior of a viscous fluid.

2.8 Circulation

The circulaton is defined as the line integral of the velocity along a closed curve.

Thus 
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The time rate of change of circulaton if the closed curve,drawn in a viscous incompressible fluid,
moves with the fluid we have
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If the external forces are conservative, then the equation of motion may be written as.
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and using equations (3) and (4) in equation (2) it reduces to
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Hence the rate of change of circulation in a closed curve, drawn in a viscous incompressible fluid,
moving with the fluid depends only on the kinematic viscosity and on the space rate of change of the
vorticity components at the contour.
If  = 0 i.e. if the fluid is taken as in viscid , we get the well known "Kelvin's  circulation theorem" viz,
the circulation round any closed curve moving with the fluid does not change with time, provided the
fluid is inviscid, the field of force is conservative and pressure is a single valued function of density
only .

Self Learning Exercise

1. Write down the equation of state for the incompressible viscous fluid.
2. Define conservation of mass.
3. State Boyle's law
4. Write vorticity transport equation
5. State Kelvin's circulation theorem.

2.9 Tables on The Fundamental Equations

In this article, we now present the tables of the basic fundamental equations for in compressible
fluids in Cartesian tensors  and in three orthogonal coordinate systems.
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Table 2.1
Fundamental equations ofa viscous incompressible fluid in Cartesian tensors.
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The coefficient of viscosity and thermal conductivity k depend on temperature and this dependency
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Table 2.3
Fundamental equations of a viscous incompressible fluid with constant fluid properties in cylindrical
polar coordinates (r,  ,  z)
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The components of the viscous stress tensor are :
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The components of the heat flux vector are :
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Tabel 2.4
Fundamental equations of a viscous incompressible fluid with constant fluid properties in spherical
polar coordinates (r,)
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2.10  Summary
In this unit, we have learnt about the fundamental equations of the flow of viscous fluid. The equation
of state, equation of motion and equation of energy have been derived. We also studied about
vorticity transport equation and Kelvin's circulation theorem. These equations in different co-ordinate
system have been given in tabular form for ready reference with  constant fluid properties.

2.11  Answer to Self Learning Exercise
1.  = constant
2. The fluid mass can  neither be created nor destroyed.
3. p = RT
4. See Article. 2.7
5. See Article. 2.8

2.12  Exercise
1. Obtain Navier-Stokes equations of motion of a fluid in Cartesian coordinates
2. Obtain Navier - Stokes equations of motion in Cartesian coordinates for two dimensional

incompressible viscous flow.
3. Obtain equation of continuity in Cartesian coordinate system
4. Deduce Kelvin's circulation theorem.
5. Define circulation. Show that the time rate of change of circulation in a closed circuit. drawn in

a viscous incompressible fluid under the action of conservative forces, moving with the fluid
depends only on the kinematic viscosity  and  on the space rates of change of the vorticity
components at the contour.

6. Prove that the vorticity   
 satisfies the differential equation

   
 


2q.
Dt
D
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 UNIT - 3

Dynamical Similarity and Inspection and
Dimensional Analysis

Structure of the Unit
3.0 Objectives
3.1 Introduction
3.2 Dynamical Similarity
3.3 Inspection Analysis
3.4 Dimensional Analysis
3.5 Buckingham   – theorem
3.6 Method of finding out The  – products.
3.7 Application of  – theorem to viscous compressible fluid motion
3.8 Physical Importance of Non-Dimensional parameters

3.8.1 Reynolds number
3.8.2 Froude number
3.8.3 Mach number
3.8.4 Prandtl number
3.8.5 Eckert number
3.8.6 Grashoff number
3.8.7 Pe'clet number
3.8.8 Brinkman number
3.8.9 The ratio of specific heats
3.8.10 Euler's number

3.9 Non-dimensional coefficient in the dynamics of  viscous fluids.
3.9.1 Lift and Drag coefficient
3.9.2 coefficient of skin friction
3.9.3 Nusselt number
3.9.4 Temperature recovery factor

3.10 Summary
3.11 Answers to Self Learning Exercise
3.12 Exercise

3.0 Objectives
This unit provides a general overview of dymanical similarity and dimensional analysis, non-dimensional
parameters. After reading this unit, you will be able to learn non-dimensional parameters viz Reynolds
number, Froude number, Mach number, Prandtl  number, Eckert number, Grashoff number,
Brinkmann number, and non-dimensional coefficients viz lift and drag coefficients, Skin friction,
Nusselt number, recovery factor and their importance in the study of problems in fluid dynamics.

3.1 Introduction
In previous units  we have studied the fundamental equations of the flow of viscous fluids. There is no
known general method to solve these equations because these equations have non-linear character.
There are few particular cases which have the exact solutions under restricted conditions. In this
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unity and in the following units, we shall discuss some flows using the approximation based on
smallness and largeness of certain non-dimenssional numbers. But first we shall discuss how to
obtain non-dimensional number and what are they. These non dimensional quantities are very useful
when in experiments  we use prototype (geometrically similar but reduced in size) of actual bodies,
there comes the need for dynamic similarity.

3.2 Dynamical similarity (Reynold's Law)
Two fluid motions are said to be 'dynamically similar' if with geometrically similar boundaries the
flow patterns are  geometrically similar.
Now we discuss the conditions under which the fluid motions are dynamically similar. In other words
we have to find out those parameters which characterise a flow problem. There are two methods for
finding these parameters viz (i) dimensional analysis and (ii) inspection analysis. In inspection analysis,
we reduce the fundamental equations into a non-dimensional form and obtain the non-dimensional
parameters from the resulting equations. In dimensional analysis, we form non dimensional parameters
from the physical quantities occurring in a problem, even when the knwoledge of the governing
equation is missing

3.3 Inspection Analysis
In this analysis, firstly the governing equations reduce in to dimensionaless  forms then obtain the
non-dimensional parameters from the equations. To understand it, we take an example as follows:
The governing equations of a viscous compressible fluid are
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where physical quantities have their usual meanings
Now, on introducing following non-dimensional quantities to reduce the above equations in a non-
dimensional form
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where the quantities with subscripte 'o' are certain reference values associated with the flow.
Thus the governing equations (1) to (3) reduced in the non-dimensional form as :
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It is seen that the solution of above equation depends on the following non-dimensional quantities :
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Hence, for the complete dynamical similarity of the flows of viscous compressible fluid past
geometrically similar bodies, when the body force is the gravitational force only, we must have the
same dimensionless quantities

3.4 Dimensional Analysis
Every physical problem innolves some physical quantities which can be measured in different units.
But the physical problem itself should not depend on the units used for measuring these quantities.
Now the question arises whether the units of each physical quantity is independent or can the units of
one physical quantity be expressed in terms of the units of other physical quantities. The answer is
that we can express the units of one physical quantity in terms of units of other physical quantities.
In dimensional analysis of any problem, we write down the dimensions of each physical quantity in
terms of fundamental units. Then by dividing and rearranging the different units, we get some non-
dimensional numbers.
In fluid dynamics there are four fundamental units, viz., length, mass, time and temperature in which
the dimensions of all the physical quantities occuring in such a flow problem can be expressed. We
shall denote the dimensions of these fundamental units by [L] [M ] [T] and [] repectively.

3.5 Buckingham   - Theorem
The important theorem about the non-dimensional numbers is the  - theorem.
Statement :
If there are n variables in a given physical problem and if there are m fundamental dimensions, then
there will be (n – m) independent dimensionless parameters.
In other words, if Q1, Q2, Q3........................Qn   be n  physical quantities involved in a physical
phenomenon  and if there are m independent fundamental units in this system .
(Q1, Q2,......................Qn) = 0
is equivalent to the relation
f (1, 2,.......................n–r) = 0
where 1,  2,.......................n–r are the dimensionless quantities formed by the Qn's and r is the
rank of the dimensional matrix of the physical quantities.
The proof of the above -theorem is based on the following theorem of matrix algebra on the
solution of linear algebraic equations.
"If we have m homogenous equations with n unknown, then the number of independent solutions is
n – r, where r is the rank of the matrix of coefficients and any other solution can be expressed asa
linear combination of these linearly independent solutions."
Let Q1,  Q2,...........Qn be the physical quantities and let their dimensions be expressed in terms of m
fundamental units u1,  u2,  ....................um, in the following manner :

   1m2111 a
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a
2

a
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   2m2212 a
m
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a
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...........................................................

...........................................................
   mnn2n1 a

m
a
2

a
1n u.......................uuQ 

So that aij is the exponent of ui in the dimension of Qj. The dimensional matrix of the given physical
quantities is written as the following mxn matrix
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
















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n22221
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:u
:u
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:Q....:Q:Q

Now, let us form a product of powers of  Q1,  Q2,..................Qn,  as
n21 x

n
x
2

x
1 Q...............................QQ

then

        nmnn2n1212m221211m2111
xa

m
a
2

a
1

xa
m

a
2

a
1

xa
m

a
2

a
1 u.................uu......u.................uuu.................uu

If the product  is dimensionless then

a11x1 + a12 x2 + ..........................+ a1nxn = 0
a21x1 + a22 x2 + ..........................+ a2nxn = 0
..................................................................
am1x1 + am2 x2 + ..........................+ amnxn = 0 or AX = 0
which is a set of m homogenous equations in n unknowns.
Hence the number of linearly independent solutions of this equation are n–r. Thus corresponding  to
each independent solution of X, we have a dimensionless product  and the number of dimension
less products in a complete set will be n–r.

3.6 Method of Finding Out the – Products
We may find the  - product of a complete set in following manner :
 (i) Write down the dimensional matrix of n physical quantities, involving the physical phenomenon,

having m independent units.
(ii) Determine the rank of the dimensional matrix. If the rank of the matrix is r then the number of

's will be  n – r.
(iii) Select  r quantities out of the n physical quantities as the base quantities, which have different

non zero dimensions.
(iv) Express 1,  2,....................n–r  as power products of these r quantities raised to arbitrary

integer exponents and one of the excluded, but different in different 's, (n – r) quantities.
(v) Equate to zero the total dimension of each fundamental unit in each - product to get the integer

exponents.

3.7 Application of  – Theorem to Viscous compressible fluid Motion
In the fluid dynamics, the physical quantities involved are
L, U,   g,  p,  Cp,  T
and the fundamental units in which the dimensions of all these quantities can be expressed are length,
mass, time and temperature.
(i) The dimensional matrix in the present problem is




























110010000
022231010
001011100
021111311

:
:t
:M
:L

Cpg UL p
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(ii) The rank of the above matrix is 4 then the number of independent dimension less product be
9 – 4 = 5.

(iii) Now, taking L,U, and  as the base quantities.
(iv) Now, let

;CUL
;pUL
;gUL
;UL

16151413

1211109

8765

4321

p
xxxx

xxxx

xxxx

xxxx

4

3

2

1












           11x13x3x1x
1 MtLLMtMLLtL 4321  

;TUL 20191817 xxxx
5 

 342434321 x1x3x1xx1xx3xx tML  
If 1 is dimension less, then we must have

;01x
;01x3x
;01xx
;01xx3xx

4
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4321






Therefore : 0xand,1x,1x,1x 4321 

hence  
 

UL
UL 111

1
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








 35

p
42322 LU

Tand
CLU

;
U
p;

U
Lg

From these dimension less products, we can construct the five dimension less numbers as

41r
2

r
1

p,1F,1Re 







3

2

54

3 1Maand1










Hence with viscous fluid dynamics there are only five independent dimensionless groups.

3.8 Physical Importance of non-dimensional Parameters
We know that the inertia force always exists in all flow problems. Besides the inertia force, there
always exist some additional forces which are responsible for fluid motion. The required conditions
for dynamic similarity can always be obtained by considering the ratio of the inertia force and any
one of the remaining forces. Since ratios of two forces will be considered, we obtain some
dimensionless number as discussed below.

3.8.1 Reynold's Number
The ratio of inertial forces and viscous forces is termed as Reynolds Number and is given by








UL

L/U
L/U

forcesViscous
forcesInertiaRe 2

2

Where U, L,  and  are some charecteristic values of the velocity, length, density and coefficient of
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viscosity respectively and   in kinematic viscosity..
The British Scientist Osborne Reynolds, demonstrated the importance of Reynolds number in the
dynamics of viscous fluid. For small Reynold number (Re<<1) the viscous forces will be predominant
and effect of viscosity will be felt in the whole flow field. On the contrary, for large Reynold number
(Re>>1), the inertia forces will be predominant and effect of viscosity can be considered to be
confined in a thin layer near a solid body known as boundary layer. For a large value of Re, the flow
ceases to be laminar and become turbulent. The value of Reynolds Number, when the nature of flow
changes from laminar to turbulent, is called the critical Reynolds number.

3.8.2 Froude Number :
The ratio of inertia force to the gravity force is termed as Froude number and given by

gL
U

g
L/U

forcegravity
forceInertiaFr

22







where L and U denote the characteristic length and characteristic velocity respectively. It is important
only when there is a free surface i.e. in an open channel flow problem. In such cases too the force
due to gravity may be neglected in comparison to the inertia force.

3.8.3 Mach Number :
The ratio of the flow velocity to the velocity of sound is known as Mach Number and given by

C
U

VelocitySound
VelocityMaterialMa 

where U is the velocity of flow and C be the velocity of sound, Mach number is also expressed in
terms of the ratio of inertia force and the elastic force. It is a measure of the compressibility of the
fluid. When the Mach number is small (Ma<<1), the fluid can be taken as incompressible and if
mach Number is nearly one or greater then one, the fluid will be compressible. However, for large
Mach numbers the effect of compressibility must be taken into account. According to the magnitude
of the Mach number the flows are. generally classified as follows.

Mach Number Type of Flow
Ma  <  1 Subsonic
Ma    1 Transsonic
Ma  =  1 Sonic

1< Ma   6 Supersonic
Ma  >  6 Hypersonic

3.8.4 Prandtl Number
The Prandtl number is a dimensioless parameter which is the ratio of the kinematic viscosity to the
thermal diffusivity and is given by












 p

p

C
C/

/
aydiffusivitthermal

itycosviskinematicPr

where 








  is the kinematic viscosity, k the thermal conductivity, Cp the specific heat at constant

pressure and a the thermal diffusivity. The ratio of these two quantities should express the relative
magnitude of diffusion of momentum  and heat in the fluid. It is a measure of the relative importance
of heat conduction and viscosity of the fluid.
The Prandtl number is a material property fo the fluid and varies with fluid. For liquid metals
the Prandtl number is very small i.e. for the Mercury Pr = 0.44 but for highly viscous fluids
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it may be very large e.g. for glycerine Pr = 7250. Prandtl number for air is 0.733 while for
water it is 7.0 at 60oF.

3.8.5 Eckert Number

The dimensionless parameter Eckert number is defind as TC
UE

p

2

C 

where U, Cp and T are the  velocity, specific heat at constant pressure and some reference value of
the temperature respectively. In compressible fluids it determines the relative rise in temperature of
the fluid due to adiabatic compression. It can also be retained in incompressible flow,  if the frictional
heat is to be considered. In high speed flow, for gases the Eckert number becomes equivalent to
Mach number and is given by

  2
C Ma1E 

Where Ma and vp C/C  are the Mach number and ratio of the specific heats respectively..

3.8.6 Grashoff Number
Grashoff number is a dimensionless parameter representing the raito of the buoyancy forces to the
viscous forces in the free convection flow system. It is given by

 
2

2LTTgGr



 

where g the gravitational acceleration, the volumetric coefficient of thermal expansion, T the
temperature of the wall, T  the free stream temperature, L the distance from the wall. It has a role
similar to that played by the Reynolds number in forced convection flow field and is the primary
paramoter used as a criterion for transition from laminar to turbulent boundary layer flow.

3.8.7 Pe'clet Number
In the theory of heat transfers, a non-dimensional parameter Pe'clet number is defined as the ratio
of UL to the thermal diffusivity and is given by

Pr.Re
a

.UL
a

ULPe 




Hence the Pe'clet number is the product of Reynolds number and Prandtl number. It plays an
important role when the viscous force is small while thermal force is large as compared to inertia
force.

3.8.8 Brinkman Number
The dimensionless parameter Brinkman number is defined as

 12

2

TT
UBr





where  , U, , T1 and T2 are some reference value of the viscosity, velocity, conductivity and two
different temperatures respectively . It is a measure of the extent to which viscous heating is important
relative to the heat flow resulting from the impressed temperature difference (T2–T1).

3.8.9 The Ratio of Specific Heats
The ratio of specific heat at constant pressure Cp to that at constant volume Cv is usually designated

as    therefore 
v

p

C
C

 . It is a measure of the relative complexity of the gas moleucles.

3.8.10 Euler Number
The ratio of pressure force to inertia force is known as Euler number and is given by


 2V

P
forceInertia
forceessurePrEu
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Where P, V are the characteristics pressure and velocity respectively. When the pressure force is
the predominating force, Euler's number must be the same for dynamical similarity of two flows.

3.9 Non-dimensional coefficients in the Dynamics of Viscous Fluids
In order to complete the studies of non-dimensional quantities, which occur in the dynamics of
viscous fluids, let us mention some important non-dimensional coefficients which are usually calculated
in the analysis and their values are compared with experimental results.

3.9.1 Lift and Drag Coefficients

If F
  is the force on an obstacle placed in an otherwise undisturbed stream, due to the system of

stresses over its surface, then the component of    F     in the direction of the undisturbed stream is
called the drag force and denoted by D, and the component at right angle to this called the lift and
denoted by L.
If S represents a typical area associated with the obstacle, then the drag coefficient CD and lift
coefficient CL are given as

2SU
LCand

2SU
DC 2L2D 






where notation have their nusal meaning.

3.9.2 Coefficient of skin friction :
The dimensionless shearing stress on the surface of a body due to a fluid motion is known as coefficient
of skin - friction and is given by

2U
C 2f 


 

where   the density,

U   the characteristic velocity and

  the shearing stress on the surface of the body

3.9.3 Nusselt Number
The rate of heat transfer at the surface of the body is defined in terms of a non-dimensional parameter,
which is known as Nusselt number and denoted by Nu. The heat exchanged between the body and
the fluid can be calculated with the help of a coefficient of heat transfer  (x), which is defined by
Newton's cooling law as given by

      TTxxq w ..................................................................(1)

where q (x) is the quantity of heat exchanged between the wall and the fluid perunit area per unit time
at a point x, Tw the wall temperature and T  the free stream temperature.
According the Fourier's law, the heat exchanged between the fluid and the body due to conduction
are given by

  0y
y
Txq 










 ..................................................................(2)

where is the thermal conductivity and y is the normal direciton to t he  surface of the body.
On using Fourier's law of heat conduction and Newton's cooling law, the rate of heat transfer in
terms of Nusselt number is given by

 
  0yy

T
TT

LL.xNu




















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where negative sign shows the decrease in temperature and L be characteristic length.
This number is very important in the problems where heat transfer is in consideration.

3.9.4 Temperature Recovery Factor
The temperature which a surface assumes under the influence of internal friction is called they
recovery temperature or adiabatic wall temperature.  The dimension less temperature recovery
factor is given by

p
2
r

C2U
TTr 



It is important in the high speed flow in which the frictional heat plays an important role.

Self Learning Exercise
1. State the Buckingham -theorem.

2. What do you mean by critical Reynolds number ?

3. Which dimensionless parameter is product of Reynolds and Prandtl numbers ?

4. Define Newton's law of cooling

5. Define Fourier's law of heat exchange.

Example - 1
An oil of specific gravity 0.85 is flowing through a pipe of 5 cm. diameter at the rate of  3 liter/sec.
Find the type of flow, if the viscosity for the oil is 3.8 Poise.

Solution :

Velocity of oil =  
.seccm8.152

25
3000

Area
egarDischV 2 


Diameter of pipe  = L  =  5 cm.

= 3.8   and    = 0.85

Hence 171
8.3

85.058.152ULRe 








Since Re = 171< 2000 : it follows that the flow must be laminar .

Example - 2
A  1:20 model of an air-duct is to be tested in water which is 45 times more viscous and 850 times
more dense than air. What should be the pressure drop in the prototype if the pressure drop is
3 kg/cm2 in the model when tested under hydrodynamically similar conditions ?

Solution :
Here we have for dynamic similerty

m

mmm

p

ppp LVLV
Re










where p  is subscript and is considered for the prototype and m for the model

m

p

p

m

p

m

m

p

L
L

V
V










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4520
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V
V

m

p 



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and 2
mm

m
2
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p
u V

P
V

P
E





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p
mp V

V
PP 















2

p 18
17
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13P 








23
p cmkg104.3P 

which gives the required presure drop.

3.10  Summry
After studying this unit, you are able to reduce any fundamental governing equations into a non-
dimensional form of it.  You are also capable to understand the dimension less parameters and their
physical importance in dynamics of viscous fluids  and its practical utility.

3.11  Answers to self learning exercise
1. See article 3.5
2. The value of Reynolds number, when the nature of flow changes from laminar to turbulent is

called critical Reynolds number.
3. Pe = Re.Pr
4. See  article 3.9.3
5. See  article 3.9.3

3.12  Exercise
1. Explain the principal of dynamic similarity
2. State and prove Buckingham -theoram
3. What are the dimensions of coefficient of viscosity and kinematic viscosity ?
4. Find out the complete set of -products when the physical quantities involved in a phenomenon

are L, U, , , g,  p, Cp and  T.  Symbols have their usual meanings.
5. Explain the physical significance of the Reynold number, Mach number, Prandtl number and

Froude number
6. Define following non-dimensional coefficients

(a) Lift and drag coefficient
(b) Skin friction coefficient
(c) Nusselt number
(d) Recovery factor.
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UNIT - 4

Exact Solutions of The Navier- Stoke's Equations

Structure of the Unit
4.0 Objectives
4.1 Introduction
4.2 Steady  incompressible flow with constant fluid properties
4.3 Flow between parallel plates

4.3.1 Plane Couette  flow
4.4 Plane Poisseuille flow
4.5 Generalized plane Couette  flow

4.5.1 Volume rate of flow
4.5.2 Coefficient of skin friction

4.6 Flow in a circular pipe
4.6.1 Coefficient of skin friction

4.7 Flow in tubes of uniform cross section
4.7.1 Circular cross section
4.7.2 Annular cross section
4.7.3 Elliptic cross section
4.7.4 Equilateral triangular cross section
4.7.5 Rectangular cross section

4.8 Flow between two concentric rotating cylinders
4.8.1 Torque

Self  learning exercise
4.9 Answers to self learning exercise
4.10 Summary
4.11 Exercise

4.0 Objectives
This units provides some exact solutions of the Navier - Stoke's equations for steady incompressible
flow with constant fluid properties by changing them to solvable differential equation under certain
boundary conditions for symmetrical channels.

4.1 Introduction
The Navier-Stoke's equations are second order non linear partial differential equations. There is no
any known general method to solve these equations. Only in few special cases exact solution can be
obtained with certain assumptions about the state of the fluid and  configuration of the flow pattern.
In this unit, we propose to study some useful real problems for which exact solution are possible, viz;
the steady incompressible flow with constant fluid properties. Now we present some solvable viscous
flow problems by analytical methods.

4.2 Steady Incompressible Flow with Constant Fluid Properties
If at various points of the flow field all quantities such as velocity, density, pressure associated with
the flow field remains unchanged with time then the motion is said to be steady . If the said quantities
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depend on time then motion is said to be  unsteady. In steady motion the various quantities of flow
field are the functions of the space coordinate and independent of time. In the incompressible fluid
motion, the density of the fluid remains unchanged or constant throughout the flow field. In this unit
we shall study only some exact solutions for steady incompressible fluid motions.

4.3 Flow between Parallel Plates

A very simple solution of the fundamental governing equations can be obtained for the flow between
two parallel plates which are kept at a finite distance apart.
Consider a steady laminar flow of viscous
incompressible fluid between two infinite parallel
plates which are kept at a finite distance h.
Let the x-axis be along the direction of the flow,
the y-axis is taken at right angle to it and the width
of the plates, parallel to z-axis, be large compared
to the distance between the plates. Here we use
the word "infinite" implies that the width of the
plates is large compared to the distance between
them.
Hence the motion is two dimensional and
therefore all the variables will be independent of
z-coordinate  The motion of the fluid between the two plate is caused due to difference in pressure
at different points in x-direction, i.e. the motion is due to a pressure gradient and the motion takes
place only in x-direction. Thus

    0w;0v;y,xuu;0
z





      and     p = p (x, y) .........................(1)

where u, v, w are velocity component  in the directions of  x,  y  and  z - axis.
In the absence of body force, the Navier - Stokes equations (Ref table 2.2) becomes

Equation of continuity  :  0
x
u





............................................(2)

Equations of motion  : 2y
u

x
p0











.........................(3)

        and y
p0



 .......................................(4)

Equations (2) and (4) respectively show that u is the function of y only and pressure p is a function
of x only. Therefore, the equation (3) becomes a total differential equation

dx
dp1

dy
ud
2 




..................................(5)

Differentiating both sides w.r. to x, we have

2

2

dx
pd10


    or       0

dx
dp

dx
d









so that dx
dp

  =  constant..................................(6)

h

y

O
y = 0

y = h

u (y)

Fig. 4.1
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On integrating equation (5), we find

Ay.
dx
dp.1

dx
du






Again inlegrating, we have

BAyy
dx
dp

2
1u 2 




where A and B are arbitrary constants to be determined by the boundary conditions for the different
type of flows.

4.3.1 Plane Couette Flow

The flow between two parallel infinite plates one of which is at rest and the other moving with a
uniform velocity U in its own plane and the pressure gradient be zero then it is known as Plane
Couette flow. In this flow the flow is due to motion of the bounding plate which transmits  the motion
in successive layer of the fluid
If stationary plate is taken in the direction of x-axis and the distance between the plates be h  and
upper plate has been given a velocity U parallel to x-axis then the boundary conditions are
y =  0 ;  u = 0
y  = h ;  u = U...............................................................(8)

Hence the velocity distribution in this flow in absence of a pressure gradient dy
dp

 is obtain from

equation (7) and is given by
u = Ay + B

On using boundary conditions to find constants

We have 0Band
h
UA 

Hence y
h
Uu 

or h
y

U
u
  .............................................................(9)

which is the velocity distribution in non-dimenssional form and which is linear as shown in fig 4.1.
The graph shown there is called the velocity profile.
The volume rate of flow Q per unit width per unit time, at any normal section is given by


h

0

dyuQ  ......................................................(10)

Substituting the value of u from equation (9) in (10), we  have

2
UhQ   ..........................................................(11)

The  coefficient of skin friction in the present case is given by

2U
C 2f 


 

.....................................................(12)
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where shearing stress is given by

0ydy
du


 










h
U

 ..........................................................(13)

On substituting the value of   from (13) in (12), we find

Re
2

Uh
2

2U
hUC 2f 










Re
2Cf   (Re is Reynolds number = 

Uh
)

Hence the value of skin friction is fixed.

4.4 Plane Poiseuille Flow

Consider the steady laminar flow of viscous
incompressible fluid between two infinite
stationary parallel plates at distance 2b apart.
Let x-axis be taken in the middle of the channel
parallel to the plate. Let x-axis be the direction
of flow and y-axis in the direction perpendicular
to the flow. The width of the plates is parallel to
z-axis.
The width of the plates be large compared to
the distance between the plates. The motion is
now two dimensional and therefore all the
variables will be independent of z-coordinate.
Hence

  )y,x(ppand;0;0),y,x(uu,0
z





.......................................(1)

Further, the equation of continuity and the equation of motion reduce to

0
x
u





...................................................................................(2)

2

2

y
u

x
p0








 ...........................................................................(3)

0 y
p



 ..........................................................................................(4)

From above governing equations,we conclude that u will be a functin of y only and p will be a
function of x only thus these equations can be written as

dx
dp1

dy
ud
2

2


 .........................................................................(5)

2b

y

O
u = 0

u = 0
u (y)

Fig. 4.2

xO
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Differentiating both sides, w.r. to x, we find

.const
dx
dp0

dx
dp

dx
d

dx
pd10 2

2










 ,........................... (6)

On integrating equation (5), we have

Ay
dx
dp1

dy
du






Again integrating , we have

BAyy
dx
dp

2
1u 2 


  ..............................................................(7)

The boundary conditions are

0u;by   ........................................................................(8)
On using boundary conditions in equation (7), we find

AbBb
dx
dp

2
10 2 




and AbBb
dx
dp

2
10 2 




So that A  = 0 and  
2b

dx
dp

2
1B




Hence the velocity distribution are given by

 22 yb
dx
dp

2
1u 


 .................................................................(9)

which is parabolic and these velocity profiles are as shown in fig 4.2 and the maximum velocity occurs in
the middle of the channel (at y = 0) which is

dx
dp

2
bb

dx
dp

2
1u

2
2

max 



 .....................................................(10)

Hence the Non-dimensional velocity distribution in a plane Poiseuille flow is given by









 2

2

max b
y1

u
u

.........................................................................(11)

The average velocity distribution for the present flow is given by





b

b
a dyu

b2
1u














b

b
2

2

max dy
b
y1u

b2
1

b

b
2

3
max

b3
yy.

b2
u











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maxa u
3
2u  ...............................................................................(12)

The shearing stress at the lower plate (y = –b) is

bydy
du


 










= 
by

max2 u
b

y2











b
u2 max

 ..................................................................................(13)

4.5 Generalized Plane Couette Flow

Consider the steady laminar flow of viscous incompressible fluid between two infinite parallel plates
one of which is at rest and the other is moving with uniform velocity U in its own plane and the
pressure gradient is non zero. If the x-axis is taken along the stationary plate and the distance
between the plates be denoted by h, then the boundary conditions are

y  =  0          ;     u = 0
y  =  h          ;     u = U ........................................................................(1)

The motion is two dimensional and therefore all the variables will be independent of z-coordinate.

Hence      y,xppand0w,0,y,xuu;0
z





...............(2)

Further the equation of continuity and equations of motion reduce to

0
dx

u



...................................................................(3)

2

2

dy
u

dx
p0 




 ....................................................(4)

and dy
p0 

 ................................................................(5)

From above equations, we conclude that u is the function of y only and p is function of x only,
therefore these equaton can be written as

dx
dp1

dy
ud
2

2


 ...........................................................(6)

where dx
dp

 is constant.

On integrating, we have

BAyy.
dx
dp

2
1u 2 


 ..........................................(7)

where A and B are arbitrary constants to be determined by the boundary condutions (1). Using (1) in (7),
we have.
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0B;
2
h.

dx
dp

h
UA 




Hence







 




h
y1

h
y.

dx
dp

2
hU

h
yu

2

.........................................................(8)

Let us introduce the dimension less pressure gradient as.












dx
dp

U2
hP

2

..............................................................................(9)

Then the velocity distribution in a generalized plane couette flow, in non-dimensional form, is given by







 

h
y1

h
yP

h
y

U
u

........................................................................(10)

From equation (10) it is clear that the velocity field will depend on the nature of the non-dimensional
pressure gradient P.  There are three possible different cases for the nature of P.

 Case I  P > 0
When the pressure is decreasing in the direction of flow then the velocity distribution is positive over
the entire width between the plates, as shown fig. 4.3

h

Fig. 4.3

P = 3P = 2P =
 1

P =
 0

P =
 – 

1

P = – 2

U

Black
Flow

u/U

y/h

O

1.0

-0.2 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

 Case II  P = 0
When the pressure gradient is zero or when the pressure is constant throughout flow then the velocity
distribution is linear which is clearly the case of plane couctte flow.

 Case III  P < 0
When the pressure is increasing in the direction of the flow or in other words, for an adverse pressure
gredient, we find that a back flow may occur near the stationary plate at P<–1. It is due to the
influence of the adverse pressure gradient which surpasses the dragging action of the faster layer on
the fluid particles in that ragion.

4.5.1 Volume rate of flow
The  volume rate of flow Q per unit width per unit time at any normal section of the channel is given
by


h

o

dyuQ .................................................................(11)
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Substituting the value of u from the equation (10) in equation (11), we have

 













 

h

o

dy
h
y1

h
yP

h
yUQ

h

0
2

322

h2
y

h2
yP

h2
yU 


















6
PUh

2
Uh

 ......................................................(12)

If P = –3, then the volume rate of flow becomes zero. This means that there is no net flow across any
section perpendicular to the direction of motion.

4.5.2 Coefficient of skin Friction
The shearing stress on the stationary plate is given by

0y0y h
y21

h
P

h
1u

dx
du


 























 








 1P
h
U






Hence the coefficient of skin friction in the present case at stationary plate is

     
Re

P12
Uh

1P2
2Uh
1PU

2U
C 22f
















 

where 



UhRe is Reynolds number. Clearly Cf is positive if P is positive and it will be negative if

P<–1 in the case of back flow and zero if  P = –1

4.6 Flow in a circular pipe (Hagen - Poiseuille Flow)

Consider the steady laminar flow, without body force of an incompressible fluid through an infinite
circular pipe of radius R with axial symmetry as shown in fig. 4.4. Such a motion is maintained by the
presence of a pressure gradient along the axis of the pipe.
Now let the axis of the pipe be
taken as z-axis along which the
flow takes place and   r denotes
the radial distance measured
outward from the   z-axis. Due to

axial symmetry of flow 0



or in other words, all the variables will be independent of . Also the only non-zero component of
velocity is Vz, Hence the governing equations from table No.2.3 of unit 2 in cylindrical coordinates
reduce to

0
z

Vz 



............................................................(1)
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0
r
p





..,..,.........................................................(2)

and z
p

r
V

r
1

r
V z

2
z

2



















 .,...................................(3)

Hence from equations (1) and (2), it is clear that Vz is a function of r only and p is the function of z only.
Therefore the equation (3) can be written as

dz
dp

dr
dV

r
1

dr
Vd z

2
z

2









 ....................................(3)

Since p is not a function of r and Vz is not a function of Z then equation (4) can be valid only when dz
dp

 is

a constant.
Equation (4) is now written as

dz
dpr

dr
dVr

dr
d z








On integrating, we have

A
dz
dp

2
r

dr
dVr

2
z 




                                   or                    r
A

dz
dp

2
r

dr
dVz 




Again integrating, we have

BrlogA
4
r.

dz
dpV

2

z 


 ...........................(5)

Where A and B are arbitrary constents to be determinied by the following boundary conditions.

0
dr

dV;0r z  (due to symmetry)

0V;Rr z  (No slip condition)..............(6)

Therefore, the equation (5) and equations (6) give

A = 0      


2R.
dz
dp

4
1B

Hence equation (5) becomes























22

z R
r1

dz
dp

4
RV ...............................(7)

which is the form of a paraboloid of revolution as shown fig.  4.4. The pressure gradient L
pp

dz
dp 12 

where L be the distance between two sections of the pipe where the pressures p1 and p2 are measured.
The maximum velocity occurs on the axis of the pipe and is given by
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 
dz
dp

4
RV

2

mz 


 





4
R

L
ppV

2
21

mz ....................................................................(8)

Hence the velocity distribution in a non-dimensional form in Hagen-Poiseuille flow is given by

 
2

maxz

z

R
r1

V
V







 .......................................................................(9)

The average velocity over a croos section can be obtained as

2

R

O
z

z R

drr2.V
V







 maxz

2

V
2
1

dz
dp

8
R




 .................................................................(10)

The volume rate of flow Q given by
    z

2VRQ 

=  












dz
dp

8
R.R

2
2

=   21

4

pp
L8

R





.............................................................................(11)

4.6.1 Coefficient of Skin Friction
The shearing stress on the wall of the pipe is given by (table 2.3 of unit 2)

 
dz
dp

2
R

dr
dV

Rr

z
rz 











zV
R
4

 ...................................................................................(12)

Hence the coefficient of skin-friction on the wallof the pipe is given by

 
  2V

C 2
z

rz
f




 

  z
2

z

z

f VR
8

2V

V
R
4

C








 ...........................................................(13)

If Reynolds number 


 zVR2Re   then equation (13) reduces to

Re
16Cf  ..............................................................(16)

Showing that skin friction can be obtained from the knowledge of Reynold number. The above
formula is used to determine energy losses in pipe flow.
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4.7 Flow in tube of Uniform Cross-Section

In usual practice the pipes of different shapes are employed in order to transport a given fluid.
Consider the steady flow of a viscous incompressible fluid through a tube of arbitrary, but uniform
cross section. Let z-axis be parallel to the generators of the tube. The only non-zero component of
velocity is the velocity along z-axis, therefore.

u = v = 0  .............................................................................(1)
and the equation of continuity reduces to

0
z





  ..............................................................................(2)

which shows that  is a function of x and y only.
The Navier-stokes equations of motion in Cartesian coordinates, in the absence of any external
force are

0
x
p





   ..............................................................................(3)

0
y
p





   ..............................................................................(4)

and z
p

yx 2

2

2

2



















 ...........................................................(5)

Since it is clear from equations (3) and (4) that is independent of z and p is independent of x and
y , then equation (5) takes the form

dz
dp

yx 2

2

2

2
















 ...........................................................(6)

Diffrentiating both sides of equation (6). w.r. to z we get.









dz
dp

dz
dO

giving dz
dp

= constant = –P (say)

Hence the problem reduces to the solution of the equation









 P

yx 2

2

2

2

..................................................................(7)

with the boundary condition  = 0 on the surface of the tube.
Thus the problem reduces to solving Poission's equation (7) with the boundary cordition  = 0 on
the surface of the tube. Direct solution of it is not easy. So to simplify the solution we convert
equation (7) into a Laplace equation by the transformation

 22 yx
4
P




 ..............................................................(8)

which satisfy the two dimensional Laplace equation
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0
dydx 2

2

2

2







.............................................................................(9)

with the boundary condition

 22 yx
4
P




 ...........................................................................(10)

on the surface of the tube.
We will now discuss some of the solutions of the equation (9) subject to condition (10), for tubes of
different cross section and shall calculate the volume rate of flow in each case.

4.7.1 Tube of Circular Cross-Section
Let the cross-section of the tube a circle

222 ayx  ...........................................................................(11)

Since on the surface of the tube   r = a,
the suitable solution of the Laplace equation (9) is




4
Pa.)const(A

2

............................................................(12)

with the boundary condition (10). Hence the velocity distribution is given by

 22 ra
4
P




 ...................................................................(13)

The volume rate of flow Q is given by

 
a

0

drr2.Q

        







a

0

22
a

0

22 dr.rra
2
Pdrr2.ra

4
P

     = 4
4

a
8
Pa.

2
P









The results for velocity and volume rate are  identical to those obtained for Hagen-Poiseuille flow.

4.7.2 Tube of Annular Cross Section
The suitable solution of the Laplace equation (9) for this type of flow is

BrlogA  .......................................................................(15)
The boundary conditions on  are

2a
4
P;ar




2b
4
P;br


 .........................................................................(16)

with the help of (16), we determine the constants A and B.
On subsitiluting boundary conditions (16) in equation (15) we have.
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2a
4
PBalogA

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2b
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which gives that
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Substituting these value in (15), we obtain
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Hence the velocity distribution in the annular region between two concentric cylinders of radii  a and

(b < a) will be obtain on substituting eq  (19) in the equation 
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The volume rate of flow Q is given by
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Then the average velocity in the annulus is given by

 2a ba
Q


 

Hence    
 





 








balog
baba

8
P 2

2
a ...................................................(22)

The shearing stress is obtained on using equation (20) as
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Hence the shearing stress at the inner and outer surface of the annulus are respectively given by
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and    
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which shows that the shearing stress at both walls are positive.

4.7.3 Tube of Elliptic Cross-Section
Let the cross-section of the tube be an ellipse

1
b
y

a
x

2

2

2

2

 ....................................................................................(26)

Let   ByxA 22  ......................................................................(27)

be a suitable solution of the Laplace equation for the present tube then

   2222 yx
4
PByxA 


 ................................................(28)

Since on the boundary of the pipe 0

then     ByxAyx
4
P 2222 


or 1yA
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
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Equation (29) must be identical to ellipse (26)
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on solving, we have
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
 .........................................(30)
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Hence the velocity distribution in an elliptic cylinder is given by

  
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The volume rate of flow Q is given by

Q = dydxw

  dydx
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
 ..............................................................................(32)

4.7.4 Tube of Equilateral Triangular Cross-Section

Let the each side of the triangle be of length  3a2 , the z-axis passes through the centre of gravity
of the section and the axes of x and y are perpendicular to the two sides as shown. The equation to
the boundary in present case will be

      0a2y3xa2y3xax  ....................(33)

The suitable solution of the Laplace equation is

  Bxy3xA 23  .....................................................(34)

then    2223 yx
4
PBxy3xAw 


 ...................(35)

On the boundary of the pipe w = 0 and if x = a is a part of the boundry, we have

    Bay3aAya
4
P 2322 
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




3
PaBand
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.......................................(36)

Using (36)  in (35), we otbain the velocity distribution in an equilateral triangular cylinder as
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Fig. 4.5
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   a2y3xa2y3xax
a12
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


 ..........................(37)

The volume rate of flow Q is given by

 dydxwQ
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The average flow over an equilateral traangular cross - section is given by

Average flow  =  Area
Flux










 3a2.a3.

2
1Pa

320
27 4

 = 

2Pa.
20
3

  .........................................................(39)

4.7.5 Tube of Rectangular Cross - Section
Consider the flow through a rectangular pipe whose cross-section is bounded by the planes

byandax  . Then the problem is to solve the equation









 P

yx 2

2

2

2

  .........................................................(40)

with the boundary conditions

 I0;ax 

 II0;bx  .....................................(41)

Let the particular integral of the equation (40) satisfying the first boundary condition be

 22
1 xa

2
P




  ........................................................(42)

which is not satisfies by the II boundary condition.
Now we take a suitable solution 2 for the Laplace equation, so that

211   .............................................................(43)

satisfies the equation (40) and all the boundary conditions (41)
for the symmetry of the cross-section, it is obvious that must be an even function of  x and y. Since 1 is
the even function of x and 2 should be an even function in x and y.
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Now take    yY.xX2 

as a solution to the  equation 0
yx 2

2

2
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

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X
1

 ..................................................(42)

L.H.S. of  (42) is a function of x alone whereas R.H.S. is a function of y only. So equation (42) is
valid only if each side is a constant say  2

nC so it gives

2

2
2
n2

2

dy
Yd

Y
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dx
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X
1



or 0YC
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Xd 2
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2
2
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 .......................(43)

On solving (43), We have

   xCsinBxCcosAX nn 

and    yChsinDyChcosCY nn 

Since w2 is an even function of x and y, we must have B = D = 0

so that the terms sin (Cnx) and sinh(Cn y) must be zero when byandax 

Hence    





0n

nnn2 yChcosxCcosA .............................................(44)

Now from equation (42) , we have

21 
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22 yChcosxCcosAxa

2
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.......................(45)

subject to the boundary conditions  (41)
The first boundary conditions of (41) gives that

  0aCcos n 

 
a2
1n2Cn


 ..................................................................(46)

and the second boundary condition, now requires

     
a2

b1n2hcos
a2

1n2cosAnxa
2
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0n

22 
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
 




.......(47)

for axa 

Multiplying both sides by  
a2
x1n2cos 

  and integrating between the limits  – a to a  and noting that
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   
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then we find
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Hence the velocity distributioin in a channel of  rectangular cross- section is given by
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And the volume rate of flow Q is given by
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  ...........................(49)

4.8 Flow between Two Concentric Rotating Cylinders (Couette Flow)

Fig. 4.6

 rv

Let us consider the flow between two concertric rotating cylinders. Let r1, 1 and  r2, 2 be the
radius and angular velocity of the inner and of the outer cylinder respectively.
Assuming that z-axis is along the common axis of the cylinders and r denotes the radial distance
measured outward from the z-axis. In this case the non-zero component of velocity is V and there
is no pressure grdient in the -direction. Hence the equation of continuity and the equations of
motion (table 2.3 of unit 2) in cylindrical polar coordinates reduces to

0v



   ................................................................ (1)

which shows that v is the function of  r.

dr
dp

r
V2

  .......................................................... (2)
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0
r

V
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d
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Vd
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




  ............................................ (3)

on integrating equation (3), we obtain

r
BArv  .........................................................(4)

where A and B are constents of integration to be determined by using the boundary condition.

111 rv;rr  

222 rv;rr   .........................................(5)

On using (5) in (4)  we have
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On solving these, we have
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Substituting these value in equation (4), we obtain the velocity distribution as.
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The radial pressure distribution may, be calculated from equation (2).
Equation (2) may be written as
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On integrating, we have
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where C is the constant of integration to be determined by taking p = p1 at r = r1 then
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Hence on substituting the value of C in equation (7) we obtain the pressure distribution as
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If  the inner cylinder is at rest then 1 = 0 and in that particular case, the velocity components v is given by
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The only viscous stress in the fluid is r which is given by
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when the inner cylinder is taken at rest.

4.8.1 TORQUE
The torque is the force which is required to turn the outer cyulinder. This may now be easily claculated
as the product of the force and the arm of the couple as

  2rrr2 r2.LrM
2

  22
1

2
2

2
2

2
1

rr
rrL4 


 ......................................................................(11)

where L is the length of the cylinder.

Self Learning Exercise
1. Define plane Couette flow
2. What is the difference between plane Couette flow and plane Poiseuille flow ?
3. How do you explain a back flow in case of generalized Couette flow ?
4. Define volume rate of  flow

4.9 Answers to Self Learning Exercise
1. See article. 4.3.1
2. See article. 4.3.  & 4.4
3. See article. 4.5
4. See article. 4.5.1

4.10   Summary
In this unit, you have studied about the exact solutions of the Navier-Stoke's equations for the
steady viscous incompressible fluid motion between two parallel plate, between two concentric
rotating cylinder and flow in tubes of uniform cross-section. You have also studied about volume rate
of flow, coefficient of skin friction  and torque in the fluid motions.
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Thus you are now aware that the Navier-Stoke's equations can have exact solutions for certain flow
through channels of simple geometry.

4.11   Exercise
1. Discuss the flow of an incompressible viscous fluid between two parallel plates taking the fluid

properties to be constant when one of the plated is given a constant velocity in its own plane.
2. Discuss the plane Poiseuille flow between two parallel plates.
3. Discuss the generalized plane Couette flow. Derive the results for various characteristic  for

plane Couette flow taking that as a particular case.
4. A viscous incompressible fluid moves in a steady flow under constant pressure gradient P parallel

to the axis in the annular space between two coaxial cylinders of radii a and b (b < a). Show that
the volume rate of flow is given by

   










 




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nlog
1n1n

8
PbQ

22
4

4

where ban

5. Show that the volume rate of flow is given by 


320
Pa27Q

4

 in the steady flow of a viscous

incompressible fluid through a tube with uniform equilateral triangular cross section.
6. Find the velocity distribution for the steady flow of a viscous incompressible fluid in the annular

region between two concentric cylinders.
7. Obtain the viscous stress in the flow between two concentric  rotating cylinder when the inner

cylinder being at rest. Also find the torque
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UNIT - 5

Stagnation point flow and flow due to a rotating disc

Structure of the Unit
5.0 Objectives
5.1 Introduction
5.2 Definitions
5.3 Stagnation point below (Hiemenz flow)
5.4 Flow due to a rotating disc
5.5 Self  learning exercise
5.6 Summary
5.7 Answers to self learning exercise
5.8 Exercise

5.0 Objectives
The purpose of this unit is to find some more, to be precise two exact solutions of  Navier-Stokes
equations. The two problems are (i) Stagnation point flow (Hiemenz flow) and (ii) Flow due to a
rotating circular disc (Kar man flow)

5.1 Introduction
In this unit we shall get exact solutions of  Navier-Stokes equations for two problems of different
geometry.
First problem popularly known as Hiemenz flow discuss the flow in the neighbourhood of a stagnation
point in two dimensions. In this problem the velocity distribution shows the presence of a boundary
layer, about which we will learn later, of small thickness for small kinematic viscosity.
The second problem is about a flow  due to a rotating disc, popularly known as Karmans problem.
In this flow also we will have an effect due to boundary layer whose thickness is again small for small
kinematic viscosity.
In both the problems, velocity distributions have been shown graphically.

5.2 Definitions
5.2.1 Stagnation Point

Stagnation Point is the point where the velocity is zero in the potential flows i.e. the flow of
an ideal fluid.

5.2.2 Boundary Layer :
It is a small layer near wall in which all the viscous effects are supposed to be confined and
out of this layer the flow is treated as potential flow.

5.3 Stagnation Point Flow (Hiemenz Flow)
An exact solution of the flow of a viscous incompressible fluid in the neighbourhood of a stagnation
point in a plane may be obtained by considering the flow at a large distance from the  stagnation
point to be the potential flow i.e. the flow of an ideal or non viscous fluid.
The velocity and pressure in a potential flow in the neighbourhoods of the stagnation point considered
as pole  x = 0 ,  y = 0 in a plane arc.
U = bx ,    V = – by............................................................(1A)
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
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Fig. 5.1
Bernoulli equation
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where p0 is the pressure at stagnation point.

Thus  222
0 yxb

2
1pp  ................................................... (1B)

When viscosity is included, we take the  following forms of the velocity and pressure distribution for the
flow

   yfv,yxfu 1  ......................................................(2)

and   yFxb
2

pp 22
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 ......................................................(3)

where prime denote differential with respect to y
We know that Navier-Stokes equations in two dimensional steady motion are
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vv
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vu ..............................(5)

using (2), (3), in  (4) and  (5) we get
'''2''2' fbfff  ..................................................................(6)

and  11121 fFb
2
1ff  ............................................................(7)

Boundary conditions are :
y  =  0,      u  =  v  =  0
i.e. f  =  f1  = 0                  [(by using (2) & (3)]....................(8)

and at origin p = p0 i.e. F = 0.......................................................(9)
and at a large distance, U = u as y
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So      1xfbx

i.e.   yasbf 1 .....................................................(10)
So in all, the boundary condition are

bf,0y
0Fff,0y

1

1




............................................................(11)

in order to solve the equation (6) for f, we make the following transformation

   


 byfandy.b

Therefore

      






 1'1 bbb

dy
d.

d
dfyf ........................................ (12)

and

   



b.byf 1111 ...................................................................... (13)

   


 111
2

111 byf .......................................................................... (14)

Using (12),  (13),  (14)   in   (6)  with B.C.S (11) equation (6) becomes
011211111 

i.e.  01
d
d

d
d

d
d

2

2

2

3

3




















................................................. (15)

with corresponding boundary condition for  as

1,
0,0,0

1

1




              ................................................. (16)

here a prime indicates differentiation with respect to 
Equation (15) was first solved numerically by Hiemenz and the solution was later improved by L. Howarth.
The dimension less velocity in the x-direction is given by

      1
11

b
yf

bx
yxf

U
u

     [from (12)] ....................................... (17)

The unknown function F(y) occuring in the expression for pressure in equation (3) will be obtained by
integrating equation (7)

212 ff2Fb 

= 21 bb.2     [from (12)]

or  12 2
b

F 


 ...................................(18)

substitute the value of  F in equation (3) we  get the required pressure distribution
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Fig. 5.2

1.0

3.22.82.4.8



by

U
u1 

from the fig.5.2 it is seen  that for 4.2  maximum velocity is reached and the corresponding value
of y obtained from the relation




by ,     we symbolise it as 

so that




b4.2

b
4.2 

 ...............................................(19)

If is small then will be small and it can be said that the viscous effects are confined in a very thin
layer near the wall and the thickness of  the layer is proportional to 

5.4 Flow due to a rotating disc (Kármán Flow)

Let us confider  the flow due to a disc which rotates
with an angular velocity w about an axis perpendicular
to its plane in a fluid other wise at rest. In order to
avoid the edge effect the disc is considered to be of
infinite radius. Due to the action of centrifugal forces
the fluid near the disc will be thrown outward so the
radial component vr exists. Due to rotation of disc
azimuthal component v also exists and so is the axial
component vz .
Thus in this case all the three components of velocity
in the cylindrical polar coordinates exist.
The boundary conditions for the motion are
at  0v,rv,0v,0z zr  

and
as 0v,0v,z r  

Since the motion is steady and symmetrical in -direction, so we have
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    0and0
t










therefore reduced flow equation are

equaiton of continuity  :    0
z
vrv

rr
1 z

r 







Navier-Stokes equations for the fluid motion

r - Component -










































 
2
r

2
r

2
r

2
r

22
r

z
r

r r
v

z
v

r
v

r
1

r
v

r
p

r
v

z
vv

dr
vv

- Component -




























 








 
22

2

2

2
r

zr r
v

z
v

r
v

r
1

r
v

r
vv

z
vv

r
vv

z - Component -







































 2
z

2
z

2
z

2
z

z
z

r z
v

r
v

r
1

r
v

z
p

z
vv

r
vv

Now we take the following form of velocity and pressure distribution.

 
 

   
 zPp

zhvv
zrgv
zrfv

2/1
z

r







        .................................................(1)

substituting (1)  in the equations of motion and equation of continuity, we have

  0hfr
rr

1 12 



i.e. 0hf20hf2 1
21

1 









 ........................(2)

111
21

22 fhfgf 



















 ................................................(3)

111
21

ghgfg2 



















 ......................................................(4)

11
21

11 hPhh 









 ..............................................................(5)

where a prime denotes differentiation w.r.t.z.

In order to remove the coefficient   21 and    , we make the following transformation

  z.21
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            Hzh,Gzg,fzf

and     pzP ..........................................................................(6)
Using (6) in equations (2) to (5) we get

0HF2 1 

11122 FHFGF       .....................................................................(7)

111 GHGFG2 

and HH1 = – p1 + H11

with the  boundary conditions

and   0G,0F,
0H,1G,0F,0




   ..........................................................(8)

where a prime now denotes differentiation w.r.t. to .
The solution of first three equation of (7) can be obtained with the help of the boundary condition in
(8) and then the last of equation(7) will give P in terms of H. Van Karman was the first to obtain a
solution of this system of equations by an approximate method which was later improved by  Cochran
and other workers.

It  is evident from figure 5.4 that the
value of F,G and H-tend
asymptotically  to their limiting values.
However all of these limiting values
are attained approximately  about
=5. We have considered   in terms
of z and if we consider this value of
  = 5 corresponding  to some  z =
 , we have

..............................(9)

If     is small then will also be
small and once again we will have a
boundary layer type of  flow. The
circumfrential shearing stress on the
plane on the plate will be

0z
z z

v




 












 0'G
v
wr

21







 .................(10)

and the frictional moment on one side of the disc is

  

a

0
z rdr2rm

   0'Gvwa
2
1 2134 ........................(11)

G

5.4
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5.5 Self Learning Exercise

1. ................... is a point where the velocity is zero in potential flow.

2. 01
2111111  equation correspond to ............................................flow..

3. Flow due to a rotating disc is also known as........................

5.6 Summary

In this unit we have discussed two important problems  which  give exact solution to Navier-Stokes
equations.
In the first one we considered a flow which is near a stagation point, defined as the point with zero
velocity in potential flow.
In the second problem. a flow is considered which is due to rotation of a disc and the flow is above
the infinite disc. An important aspect of this is that in this flow all the three velocity components exist
in cylindrical polar coordinates .

5.7 Answer to Self Learning Exercise

1. Stagnation Point
2. Hiemanz
3. Karman flow

5.8 Exercise

1. Discuss stagnation point flow of an incompressible, viscous fluid (Hiemanz flow)
2. A viscous incompressible fluid is bounded on one  side (Z > 0) by a circular disc of infinite radius

and lying  at z = 0 and rotating about its axis r = 0. Verify that the steady flow is given by

         H,rG,rF 21
zr

and        Pp
where is the angular velocity of the plate and

z
21











  with other symbols have their usual meanings
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UNIT - 6

Unsteady Motion of Fluids
Structure of the Unit
6.0 Objectives
6.1 Introduction
6.2 Definitions
6.3 Concept of unsteady motion
6.4 Stokes first problem
6.5 Stokes second problem
6.6 Self  learning exercise
6.7 Answer to self  learning exercise
6.8 Exercise

6.0 Objectives
In this unit you will learn about unsteady motion of a fluid . In unsteady flows the velocity mainly is
considered to be depending on time. This type of flow has many important applications in the fields
of Engineering

6.1 Introduction
Unsteady motion is the study of fluid motion whenever the flow is time dependent. We start with
"Flow due to a plane-wall suddenly set in motion "which is known as Stokes first problem and
follow it with the "Flow due to an oscillating plane wall" which is known as Stokes second problem.
Sometime it is also called as Rayleigh's problem.

6.2 Definitions
Unsteady Motion : If the velocity changes with time then we call the motion  to be an unsteady

motion.
Startup Flows : When at t = 0 i.e. initially entire fluid is at rest.

6.3 Concept of Unsteady Flow
Exact solutions of the unsteady Navier Stokes
equations exist when there already exist exact solutions
of the corresponding steady flow
Suppose the infinite long flat  plate is considered in the
X-direction.
Initially both the plate and the fluid are at rest, suddenly
the plate is jerked into motion in its own plane with a
constant velocity U.
Because the motion of the boundary is in X-direction
two components in y-and z-directions v and w
respectively are zero. So the only non zero component of velocity is u which is a function of y and t
only. The pressure is uniform at every point in the fluid over the  wall, hence it is assumed to be
constant. Hence, the Navier-Stokes equations in cartesian co-ordinate reduce to
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2

2

y
u

t
u








This is the governing equation for unsteady motion of the fluid over and due to moving plate.

6.4 Stoke's First Problem
We consider the flow close to a wall which is suddenly set into motion with a constant velocity U0 in
its own plane. this problem was first solved by G.G. Stokes (1856) in his famous treatment of the
pendulum.

Ut > 0

Here the motion is due to plate suddenly started with a constant velocity U0 in x-direction in its own-
plane. When plate moves with a velocity U0 the fluid adjescent to it also moves with velocity U0.
The initial and boundary conditions on u (y, t) are

   
 
  0t,Uy

Ut,0u0y0t
initially0,yu0t

0






..................................................(1)

The reduced  Navier Stokes equation in cartesion coordinates as given in (6.3) is

2

2

y
u

t
u








..........................................................................(2)

To solve equation (2) we make the following substitution

 
t2

yandfUu 0 
 .............................................(3)

so that   


















  231

0 t
2
1

2
y.fU

t
.u

t
u

  t
2
1

t2
y.fU 1

0 




 





t2
fU 1

0

and
 

 



















110
2

2

1
0

f
t4

U
y
u&

t2
1.fU

y
.u

y
u

...............................................(4)
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substituting (4)  in (2), we have.

   
 11010 f

t4
U.f.

t2
U

or      0f2f 111  ...................................(5)
where prime denotes differentiation w.r.t. to .
The corresponding boundary conditions are then

 
  0f,

10f,0

 .............................................(6)

Integrating equation (5), we have
  2

1
1 eCf 

Hence

  2
0

2
1 CdeCf  




at 2C11f,0 

Also ,0f,   so that

1deC0
0

1
2

 




or















2

de

1C

0

1
2

Hence     


 





0

1de2f
2

=    1erf 

=   erfc
Hence the velocity u is given by

    erfcUfUu 00

where erf and erfc are known standard functions error
function and compumentary error function. Numerical
values for different are known.
The velocity profile are shown in the figure 6.3
They continuously decrease as .e.i  they
asymptotically   reach their limiting value zero
For all practical purpose when the value reaches at 2
and therefore the corresponding value of y, which we call
as , be comes t4   .
This distance  is called the penetration depth with standard
condition. This penetration depth is proportional to the
square root of the product of viscosity & time.
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6.5 Stokes Second Problem
Another simple unsteady flow is that in which a plane wall oscillates with a prescribed velocity

ntcosU0  when initially plane was at rest where U0 is the amplitude and nis the frequency of the
oscillation of the wall. This flow was first studied by Stokes and later by Lord Rayleigh. In the
literature it is known either as Stokes second problem or simply Rayleigh problem.
Due to the presence of the fluid, amplitude of the fluid motion will be function of y and frequency will
remain unchanged. Hence for the flow here

  ntcosyfu  =  Real part   inteyf ............................................................(1)
Now the reduced Navier Stokes equation for unsteady motion is  (refer 6.3)

2

2

y
u

t
u








.....................................................(2)

Substituting (1)  in (2) we get the differential equation

   yfe.yfine 11intint 

or     0yfinyf 11 


 .........................................(3)

  0yfin
dy
d

2

2













with boundary conditions
    int

0
int eUe0ft,0u 

  0U0f 

    0eft,U int 

or   0f 

So  
  0f,y

U0f;0y 0


 ....................................................(4)

So solution of equation is

    y.
2
ni1

eAeA 2

y.
2
ni1

1





 ...................................................(5)

when y  then   0f   so we have AA1=0

Therefore  
  y.

2
ni1

2eAyf 




at    020 UAU0f;0y 
so from (5)

 
  y.

2
ni1

0eUyf 


 ...................................................(6)

from (1) and (6)

 












 

 y.
2
ni1int

0 eeUpartrealu = 












y
2
nntcoseU

y.
2
n

0
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If we put 


y
2
n

then    ntcose
U
u

0

This shows that u is periodic in both y and t.
The velocity profiles, for this flow are shown in fig.6.4 for different values of nt.

0U
u



fig. 6.4

6.6 Self Learning Exercise
1. Flow due to a plane - wall suddenly set in motion is known as....................
2. Flow due to an oscillating plane wall is known as.......................................
3. Reduce Navier Stokes equation are ............................................................

6.7 Answer Self Learning Exercise
1. Stokes first problem
2. Stokes second problem or Rayleigh problem

3. 2

2

y
u

t
u








6.8 Exercise
1. Discuss the flow due to a plane wall suddenly set in motion in its own plane in an infinite mass of

viscous incompressible fluid, which is otherwise at rest.
2. Viscous incompressible fluid occupies the region y > 0 on one side of an infinite plate y = 0 . The

plate oscillates with a velocity U0cos nt in the x-direction. Show that the velocity distribution of
the fluid motion is given by   ntcosn

0eUu

yn 21











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UNIT - 7

Starting Flow and Suction / Injection Through Porous Walls

Structure of the Unit
7.0 Objectives
7.1 Introduction
7.2 Definitions
7.3 Starting flow in plane-Couette motion
7.4 Suction / Injection through porous walls
7.5 Self  learning exercisxe
7.6 Summary
7.7 Answer to self learning  exercise
7.8 Exercise

7.0 Objectives
The purpose of this unit is to discuss starting flow in plane-Couette motion and suction/injection
through porous walls. These are two different types of fluid motions. While one is a study of an
unsteady motion and other has practical utility

7.1 Introduction
In this unit two types of motion are  considered, one is a typical unsteady problem where in time is
measured at the initial level when the plane wall is started to cause the flow in the channel. So even
if the flow at a later stage becomes a Couette flow the velocity profiles are changed with time.
In another problem the boundaries have been considered  porous and to cause the change in motion
of the fluid which is moving with a constant velocity the same fluid is injected and sucked at the two
plates with equal constant velocities.

7.2 Definitions
7.2.1  Suction : When the fluid is drawn out through porous boundaries the process is called

suction.
7.2.2  Injection : When the fluid is pushed in through the porous  boundary the process is

called injection.
7.2.3 Starting flow : An unsteady flow in which the time is measured from the moment the fluid is

given a motion.

7.3 Starting Flow in Plane-Couette Motion
Consider a plate placed along x-axis which is suddenly set in motion
in its own plane with a constant velocity u = U0 in the presence of
another plate which is at rest and is parallel to the lower plate at a
distance 'h'. Take the x-axis along the lower plate and the y-axis is
taken normal to the plates. The fluid between the plates is at rest
before starting motion of lower plate. The governing equations of
motion of viscous  incompressible fluid between parallel plates is given

by   2

2

y
u

t
u








...............................................(1)



77

where u is the velocity component along x-axis, t is the time and  v  is the kinematic viscosity.
This equation is the outcome of the consideration of  Navier-Stokes and equation of continuity with the
geometry of the problem in two dimensions. The initial and boundary conditions are :
Initial condition :

hy0for0u0t 
Boundary conditions are








hywhen0u
0ywhenUu:0t 0   .............................(2)

To solve let us introduce the transformation
  fUu 0 .............................................................(3)

where  t2
y


  is a dimensionless quantity

From above

 








t2
fU

t
u 1

0

and   




 110

2

2

f
t4

U
y
u

Hence from (1) we have
    0f2f 111   ............................................. (4)

where prime denotes differentiation w.r.t. to.
Now the boundary conditions are reduces to

 
  







0f
1f0

1
........................................ (5)

where  say
t2

h
1 


Solving equation (4) , we have
     erfcerf1f ..................................... (6)

as the particular solution, which satisfies the first boundary condition,, where









0

d2

e2erf

If f() is a solution of (4) then  1f  is also a solution of  it, where  is an arbitrary constant. Thus the
solution of equation (4), which satisfies both the boundary conditions in (5), can be taken as

     









0 0

11
0

12f2f
U
u

          ...........4erfc4erfc2erfc2erfcerfc 1111  .........(7)

The velocity profiles  for different values of  
h
t

 in fig.7.2  show as to how the stationary upper wall effect

the velocity variation.
As expected the velocity tends asymptotically to the linear distribution of the steady state as the time gets
larger to approach infinite value.
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fig. 7.2

7.4 Suction / Injection Through Porous Walls
In this section we will discuss the problems which also give exact solution to Navier-Stokes equations.
In this we are going to consider boundaries which are porous through which fluid can be sucked and
or can be injected in. By porous boundaries we mean that the boundary has very fine holes distributed
un infinity  all along the boundary.
We  will here discuss  two problems (i) flow between two parallel porous plates, and (ii) plane
Couette flow with porous walls.

7.4.1 Flow between two parallel Porous plates.
Here we take two parallel infinite plates at y = – h
and  y = h and the main flow is along x-axis and
the same fluid as the one which is flowing in the
channel is pressed in (injected) through lower
porous wall at velocity v0 and through the upper
porous wall the fluid is taken out (sucked) with
some velocity v0  thus suction and injection are
both in the direction of y-axis as shown in the
fig.7.3. All the physical quantities are independent
of z, hence this flow can be treated as two
dimensional flow.
Now, with above geometry, the equation of
continuity and Navier-Stokes equation  reduce to

0
y





 .........................................................(1)

so that is constant and hence 0

and 2

2

0 y
u

x
p1

y
u














 .................................(2)

y
p10




 .................................................(3)

so that  p is independent of y
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and hence p
x
p





.......................................(4)

From (2) therefore we here the equation







P
dy
du

vdy
ud 0
2

2

.......................(5)

Solving (5) 



yv

0

0

BeyPAu ................................(6)

under the boundary conditions

0u.hy  ............................................(7)

which gives
















hvechcosPhB

hvhcotPhA

0

0

0

0

...................(8)

From (6) and (8) we get the required velocity expression
7.4.2 Plane Couette flow with porous walls

In this flow there is no pressure gradient and hence 0P
x
p





  and the upper plate is moving with

a constant velocity U in its own plane. With these minor changes equation (5) becomes

dy
duv

dy
ud 0
2

2


  .............................................................(9)

under the boundary conditions








Uu,hy
0u,hy

...................................................... (10)

Solution of (9) under (10) is
































hvhv

hvyv

00

00

ee

ee

U
u

................................................... (11)

This is the expression for the velocity distribution for the flow in plane Coutte flow with porous
boundaries.

7.5 Self Learning Exercise
1. What is meant by porous boundaries ?
2. How the starting flow is an unsteady motion ?

3. .......................erf 



80

7.6 Summary
In this unit three problems have been discussed. One is a representative problem of an unsteady
flow and other two are problems when the boundaries have been treated to be porous
In the first problem a form of Couette flow is considered when the time is measured with the start of
motion of the upper plate. Velocity distribution is calculated in terms of error function.
In second and third problems the boundaries have been considered to be porous and there is
injection of the same fluid from one boundary while there is suction at other boundary. Two problems
correspond to plane Poiseuille flow and plane Couette flow.

7.7 Answers to Self Learning Exercise
1. The boundary has very fine holes distributed uniformly all along the boundary.
2. In such flow problems initial velocity consideration are made so that all the subsequent motion

becomes time dependent

3. 


 
 0

de2 2

7.8 Exercise
1. Discuss the starting flow in plane Couette Motion  (see 7.3)
2. Obtain an expression for the flow between two parallel Porous plates  (see 7.4.1)
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UNIT - 8

Temperature Distribution in Fluid Motion

Structure of the Unit
8.0 Objectives
8.1 Introduction
8.2 Flow between parallel plates (Temperature distribution)

8.2.1 Plane Couette Flow
8.2.2 Plane Poiseuille Flow
8.2.3 Generalised plane  Couette flow

8.3 Temperature distribution in a pipe
8.3.1 Wall at constant temperature.
8.3.2 Wall at uniform temperature gradient.

8.4 Temperature distribution between two concentric rotating cylinders
8.5 Temperature distribution of plane-Couetle flow with Transpiration cooling
8.6 Self  learning exercise
8.7 Answer to self learning exercise
8.8 Exercise.

8.0 Objectives
After studying this unit, you should be able to know application of temperature distribution in various
simple physical phenomena of fluid flow . You will get an idea of temperature distribution in parallel
plates, in a pipe, between two concentric rotating cylinders and plane Couette flow with Transpiration
cooling.

8.1 Introduction

In the study of fluid flows it is not only important to discuss velocity and related characteristics but it
is also useful and important to know as to how much heat is exchanged between the fluid and the
body in contact, which can be in the form of boundaries.
It will be useful to learn about the heat transfer in the cases of flow through the channels of various
geometries. Here we will discuss the heat transfer problems through channels of simple cross section
like flow between parallel plates. in circular cylinder or pipes, between concentric rotating cylinders.
An important dimensionless  coefficient Nusselt number is a measure of heat conduction which has
also been calculated in various problems.

8.2 Flow between Parallel Plates (Temperature distribution)

The equation of energy for the steady flow between two parallel plates without heat addition, becomes

2

2

2

v y
u

y
TK

x
TuPC 



















...............................................................(1)

We K and  are taken to be constants, if the plates are kept at constant temperature then x
T



=0
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So equation (1) becomes
2

2

2

y
u

y
TK 















...............................................................(2)

From equation (2) we will calculate the temperature distribution for different situations between
parallel plates.

8.2.1 Plane Couette Flow
You have in earlier unit, obtained
the velocity distribution for the plane Couette flow as

h
y

U
u


Therefore

h
U

dy
du



where h is the distance between the plates and U is the velocity of upper plane in its own plane.
So in case of plane Couette flow equation (2) becomes

2

2

2

2

h
U

dy
TdK  ...............................................................(3)

We consider that the plates are kept at different temperture so that the boundary condition for the
temperature are.

1

0

TT;hy
TT;0y




.............................................................(4)

where  T1 > T0

Integrating equation (3) twice, we find that

21
2

2

2

ayay
Kh2
UT 


 ..................................................(5)

where a1 and a2 are constants
Using (4) in (5) we get

02 Ta 

and  
h
1

k2
UTTa

2

011 






 


Hence

  0

2

01
2

2

2

Ty
h
1

k2
UTTy

kh2
UT 







 





  



 




h
y1

kh2
yU

h
yTTTT

2

010





 





h
y1

2
1

h
y.Pr.Ec

h
y

TT
TT

01

0
............................(6)

Fig. 8.1
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Where  01p

2

TTC
UEc


    (Eckert number)

k
C

Pr p
     (Prandtl number)

The dimensionless coefficient of heat transfer viz. Nusselt number at the uppere plate is given by

  hy01 y
T

TT
hNu














 ......................................................(7)

Subsituting value of y
T



 from (7) in (6) we find

1
2
Pr.EcNu   ....................................................................(8)

Thus the Nusselt number will be positive if EcPr>2 and in this case the heat will be transferred from
fluid to the upper plate. If Ec.Pr.<2 then the Nusselt number will be negative i.e. the reversal in the
heat transfer will take place and the heat will be transferred from upper plate to the fluid.
if  Ec. Pr = 2 there will be no  transfer of heat between the fluid and upper plate.

Fig. 8.2

If both the plates are kept at the same constant temperature To then the boundary conditions are

0

0

TT;hy
TT;0y




.............................................(9)

Now integrating (3) twice we get

21
2

2

2

ayay
h
U

k2
T 



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Using (9) we get   

kh2
Ua

Ta
2

1

02






 hy1
h
y

k2
UTT

2

0 


 ........................................(10)

For maximum value of T

2hy0
dy
dT



Thus the max. temperature exist in the middle of the
channel

k8
UTT

2

0m


 ......................................................(11)

so the  h41
h
y4

TT
TT

0m

0 



which is parabolic in nature (fig. 8.3)
Also the Nusselt number at the lower plate is defined as

  0ym0
u y

T
TT
hN
















   =  4

If we assume that at one of the plate, say the stationary plate, no heat transfer takes place (adiabatic
wall) then B.C's are

1TT,hy

0
y
T,0y








......................................................(12)

Using (12) in (3) we get












 2

22

1 h
y1

k2
UTT ............................................(13)

The temperature which an insulated surface assumes under the influence of internal friction is known
as recovery temperature (Tr). The difference between recovery temperature and the temperature of
the upper plate is given by (13) as

k2
UTT

2

1r




So that 












2

2

1r

1

h
y1

TT
TT

 which is paraboic in nature (fig. 8.4). The recovery factor in a plane

Couette flow is defined as

Pr
Cp2U
TTr 2

1r 


   ..................................................(15)   (Prandtl number)

3
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8.2.2 Plane Poiseuille Flow
From the earlier unit we know that the velocity distribution for the plane-Poiseuille  flow is given by

2

2

m b
y1

u
u



where distance between two plates is 2 b and um is the maximum velocity in the mid plane

So 2
m

b
yu2

dy
du



Now with this on using equation (3) for the heat conduction  we get

4

22
m

2

2

2

b
yu4

dy
dx

dy
Td 









 .............................................(16)

Let both the plates be kept at the same constant temperature T0, therefore, the boundary conditions are

0TT,by   .............................................(17)

Hence the solution of equation (16) is given by

BAyy
kb3
UT 4

4

2
m 


 ..............................(18)

Using (17) in (18) we get

A = 0   and 
k3

uTB
2
m

0




Thus (18) becomes












 4

42
m

0 b
y1

k3
uTT ..............................(19)

Further the maximum temperature occurs, when 0
dy
dT



which gives y  = 0
Therefore the maximum temperature exists in the middle of the channel y = 0 and is given by

0

y

x 

y = – b

y = + b

Fig. 8.5
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k3
uTT

2
m

0m


 .............................(20)

Also 4

4

0m

0

b
y1

TT
TT





 . This is shown in fig. 8.6

8.2.3 Generalized Plane Couette Flow
The velocity distribution in the generalized Couette flow is given by as we have obtained it in earlier
unit

  














 

h
PyyP1

h
U

h
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h
PUy

h
yUu

2

so that   



 

h
Py2P1

h
U

dy
du

and therefore the equation (3) becomes

    









h
yP1P4

h
yP4P1

h
U

dy
Tdk 2

22
2

2

2

2

2

............................(21)

Let both the plates be kept at the same constant temperature T0 . Here the boundary conditions are

0

0

TT;hy
TT;0y




.............................................................................(22)

The solution of equation (21) with the B.C's (22) is

   
h
y

h
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h
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y1P13
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2
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
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
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


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





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




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

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
















 


 ...................(23)

The temperature gradient at the lower plate is given by
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  2
2

0y

P12
K6
U

dy
dT














..................................................(24)

This shows that the heat will always be transferred from the fluid to the lower plate irrespective to the
sign of P.

8.3 Temperature distribution in a Pipe

Fig. 8.7
The steady laminar flow through a long straight circular pipe, without body forces the velocity
distribution is given by the relation





















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
 2

2222

z R
r1P

4
R

R
r1

dz
dp

4
Rv               where 

dz
dpP  .......................(1)

which has been obtained in an earlier unit as Hagen-Poiseuille flow and where vz is velocity component
in z-direction and r denotes the radial distance measured outward from the z-axis and R is the radius
of the pipe
The non zero component of velocity is vz and the energy equation for steady flow of a viscous
incompressible fluid through the pipe without addition of external heat becomes
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
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


 ..............(2)

here  and K are taken to be constants.
Here we consider two cases

(i) when the wall of the pipe is kept at a constant temperature
(ii) when the wall of the pipe is kept at a uniform temperature gradient.

8.3.1 Wall at Constant Temperature

If the wall of the pipe is kept at a constant temperature then 0
z
T





 and equation (2) then becomes
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 ..............................(3)
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   



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PRvv
2

mzmaxz [Max. velocity occur on the axis of the pipe]

The boundary condition are


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
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

0TT,Rr
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.....................................................................(4)

Solution of equation (3) can be obtained by putting

V
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   so that (3) be comes
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which is a linear differential equations  with integreting factor = r
Hence the solution is
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Integrating again we get
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Applying the B.C's (4) we get
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Hence equation (5) becomes
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The maximum temperature exists on the axis of the pipe i.e. at  r = 0

so  
k4

v
TT

2
mz

0m


 ................................................(7)

where eTemperaturMaximumTm 
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Hence the non-dimensional tempereature distribution is  given by
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The mean temperature over a cross section is given by
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and the rate of heat transfer in terms of the Nusselt number at the wall is given by
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8.3.2 Wall at uniform Temperature gradient

Let the wall of the pipe is kept at a constant temperature gradient i.e. A
z
T





 (Constant)

We may assume the solutjion of equation (2) in the form  rgAzT  ...................(11)
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use (11) & (12) in (2) and and neglecting  the dissipation term we get
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Then corresponding B.C.'s are





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
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finiteisg;0r
............................................(14)

Solution of (13) is given by the following method

Let G
dR
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



90


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which is linear different equation with integrating factor  =  r
Hence the solution
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Integrating  we get
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using (14) in (15) we get
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Max. temperature Tm exists on the axis of the pipe.
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Now we calculate the unweighted mean temperature (Tmean) and weightedmean temperature (Tmean)
with respect to the velocity i.e. the temperature which is measured in fluid which is mixed after
passing through the pipe, respectively.
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The Nusselt number, based on the un-weighted mean temperature Tmean is given by
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where Tw = Az
When Nusselt number is based on the weighted mean temperature TMean, we have
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8.4 Temperature Distribution between Two Concentric Rotating Cylinders

The equation of energy for steady flow of a viscous incompressible fluid between two concertric
rotating cylinders without addition of external heat in cylindrical polar coordinates reduces to
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The boundary condition are
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 ..................................................... (2)

For the flow between two concertric cylinder velocity distribution is given by, which we have already
derived  in earlier unit.
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where r1,w1 and r2,w2 are the radius and angular velocity  of the inner and of the outer cylinders
respectively.
Putting the value of  v from (3)  in equation (1), we get
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Integrating (4) w.r.t.r we have
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Again integrating we have
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Applying the boundary condition (2) we finaly get
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where Nis a non-dimensional parameter
Equation  (6)  gives the required temperature distribution in the fluid between two concentric rotating
cylinders.

8.5 Temperature Distribution of Plane-Couette flow with Transpiration Cooling

Consider steady flow of a viscous incompressible fluid between two parallel plates placed at a
distance 'h' apart with lower plate placed along x-axis.
The y-axis is taken normal to the plates. The lower plate is at rest and some fluid is injected at the
rate v 0 through it and the upper plate is moving with velocity U in its own plane i.e. parallel to x-axis
and same fluid is withdrawn (suction) at the same rate v0 through it.
Since the plates are infinite, then non zero component of velocity  u  will be function of y only.
Hence the equation continuity and the navier Stokes equation be come

0
dy
dv

    ...........................................( 1)         v is independent of y

and
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The boundary condition being
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Hence from (1)  v = v0
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Fig. 8.8
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Solving (2) subject to boundary conditioning (3) we get
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Where 



hvand

h
y 0  which is injection parameter

Let the temperature at lower plate be T0 and that at upper plate be T1, both T1, T2 being considered
constants. So the governing equation for steady flow of a viscous incompressible fluid in the absence of
external heat in present case is
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where  is the density , cp is the specific heat at constant pressure and K is the thermal conductivity
The boundary canditions are
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Introducing following non-dimensional parameters
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The equation (5) with the help of equation (4) can be written as
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and the corresponding B.C's are
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The solution of the equation (7), Subject to the boundary condition is
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If heat generated due to internal friction is neglected i.e. if the Ec is taken to be zero then (9) becomes.
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In order to see the heat transfer at the stationary plate, let us calculate the dimensionless coefficient
of heat transfer (Nusselt number.)
With present notations.
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putting the values of  T*  from  (10) in (11) and after simplification, we find
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PNu 1
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1
c


 ..........................................................(12)

when  = 0 i.e. 1
cP  = 0, the value of Nusselt number is unity  and it goes on decreasing as the value

of  1
cP increases, which shows the cooling of stationary plate with the injection process.

8.6 Self Learning Exercise

1. Write down the temperature distribution equation in plane Couette flow
2. Write down dimensionaless temperature distribution in Hagen Poiseville flow.
3. Write down the energy equation in plane Coutte flow with transpriration cooling.

8.7 Answer to Self Learngin Exercise
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8.8 Exercise

1. Discuss the temperature distribution in plane-Couette flow.
2. Discuss the temperature distribution  in plane Poiseuille flow.
3. Discuss the temperature distribution  in Generalised Couette flow.
4. Discuss the temperature distribution  in pipe.
5. Discuss the temperature distribution  between two concentric rotating cylinders.
6. Discuss the temperature distribution  of plane-Couette flow with transpiration cooling.
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UNIT - 9

Theory of very Slow Motion
Structure of the Unit
9.0 Objectives
9.1 Introduction
9.2 Stokes equations for slow motion
9.3 Stokes flow past a sphere

9.3.1 Stresses on the surface of the sphere
9.3.2 Drag on the surface of the sphere
9.3.3 Stokes stream function

9.4 Self learning exercise-1
9.5 Oseen flow

9.5.1 Oseen equation
9.5.2 Oseen flow past a sphere
9.5.3 Stream Functions

9.6 Self learning exercise-2
9.7 Summary
9.8 Answer to self learning exercise
9.9 Exercises

9.0 Objectives
In this unit you will study
1. Navier-Stokes equations deduction to the case of slow motion.
2. Stokes flow past a sphere.
3. Oseen flow past a sphere.

9.1 Introduction
In the past units you have gone through Navier-Stokes equation and a few exact solutions admissible
by these equations for some simple configurations.
The exact solutions obtained hither to are valid for all values of Reynold number, Re except some
critical Re values. The cases Re<<1 which corresponds  to very slow motion and Re which
leads to turbulent flow are of special type and have been instrumental in the development and
understanding of fluid mechanics. These two cases give rise to altogether different simplifications to
Navier -Stokes equations. This unit discusses the case of Re<<1 which is useful in understanding the
flow phenomenon of slow motion of fluid past a sphere and cylinder. The case Re  giverise to
boundary layer theory which has been dealt with in seperate units.
The present unit entails the slow motion of a fluid past a sphere wherein Stokes flow and Oseen
Flow would be discussed. The theory of slow motion finds application in lubrications theory as well.
Note that when Re is quite small (Re<<1) that is viscosity of the fluid is large or the characteristic
length and velocity of the body are small, then the viscous forces will be apprecibly larger then the
inertia forces. Hence for Re<<1  the inertia terms may be neglected from the Navier-Stokes equation
as a first approximation. These reduced equations are known as Stokes equations and contrary to
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non linear  Navier Stokes equations, these are ordinary differential equations which are easily amenable
to solution.
A fundamental point to note is that order of  Stokes equations and that of Navier-Stokes equations
is the same.
It was Stokes, who first used the simplified Stokes equation to examine the slow flow past a sphere.

9.2 Stoke's Equation for Slow Motion
If the fluid velocity is very low, then quantities containing squares  of the velocity are negligible in
comparison to other quantities, hence the above equations for slow motion reduce to

0V. 
 ....................................................................(3)

Vp1
t
V 2











...............................................(4)

We take divergence of (4) and make use of (3) to yield with 0p2   which is Laplacian equation

We now take up the discussion on Stoke's flow past a sphere.

9.3 Stoke's Flow Past a Sphere

Let us consider steady flow with uniform stream velocity

U past a solid sphere of radius a. The sphere is kept
fixed at its position. The fluid motion is considered to be
very slow (Re << 1).
A Cartesian coordinate system is considered as shown in
the figure (9.1)
Thus the Stokes equation for the setup are
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
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z
p1w2


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
    ........................................................(8)

when  w,v,uv  is the velocity
The boundary conditions are

0wvu:ar 

0wv,Uu:r  

and p = 0   ............................................................(9)
Now we have to prescribe pressure in view of the physical set up. Following points are worth noting.

1. The pressure is harmonic function
2. The pressure on negative side of the sphere (x < 0) i.e. the side of the sphere facing the

approaching flow is higher as compared  to other of the side of the sphere (x > 0) ultimately pressure
vanishes at infinity.

U



97

In view fo this, we prescribe, pressure of the form 3r
Axp  ................................(10)

which simply satisfies above condition.  A being constant to be evaluated.
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Thus, we have












 35

2
2

r
1

r
x3Au

5
2

r
xy3Av




5
2

r
xz3Aw


 ............................................(12)

The equations (12) are linear partial differential equations and their particular integrals can be determined
by a closer look on the symmetry and a slice of mathematical endeavour. Following points are to be noted.

1. The flow is symmetrical about  yz-plane  vis-a vis  x-axis
2. u is even function of  x, y, z
3. v is odd about x and y and even in z
4. w is even in y but odd in x, z

Above facts lead to conclude that u, v, w have particular integrals respectively as
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In order to obtain complete solution, we need to solve
0w.0v,0u 222 

For this, suitable solutions (harmonic functions) of these equations are added to particular integrals
to give rise to complete solutions so that the conditions on u,v,w are not violated even after adding
particular integral
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where B, C, D are constants to be determined. Having known   u, v, w as above, further note that equation
of continuity  must be satisfied. Hence
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....................(13)

Here it is noticeable that if C=D, then first two terms cancel out and if 


2
AB  then last two terms

cancel each other and consequently equation of continuity is satisfied. Now on putting 


2
AB  in

the expression for u and on making use of  boundary conditions, we get
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Consequently, we obtain


























 U

r
a3

r4
a11

r
a

r
ax

4
3u 2

2

2

2

3

2

...................................(15)
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axU
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 ..........................................................................(18)

9.3.1 Stresses on the surface of the sphere :
The pressure p as derived above is the difference of the actual pressure from the pressure of
undisturbed stream.
(i) Now, the pressure at the point x = – a, a

(leading and trailing stagnation points respectively)
are

   
a
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2
3p,

a
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
 .............................................(19)

(ii) The normal stresses on the surface of the sphere are given by
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(iii) Tangential stress is
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Where v,v r  are the radial, tangential components of the
velocity in a meridian plane as shown in the figure (9.2), when






sinsinrz
cossinry

cosrx

Hence, we compute
   sinsinwcosvcosuvr
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...................................(22)

   sinucossinwcosvv
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This gives
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arr ................................................ (24)

9.3.2 Drag on the surface of the sphere
Having determined the stresses, we now compute
the drag on the sphere as follows

drag      


 adsina2cosD
0

arrr

    





 


 


 adsina2
2

cos
0

arr

  Ua4Ua2

 Ua6 ...................................................(25)
Thus aU6D   is the Stokes expression for the drag

on the sphere. Note that out of the total drag rd
3
1

 of the

drag   Ua2  is due to normal stresses and rd
3
2 i.e. U4  is due to the shear stress.

Fig. 9.2

Fig. 9.3
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9.3.3 Stoke's Stream Function:
Stream function describes the flow pattern. The stream function   is given as

 
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2 dvsinr
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Note -1 Stream function   as obtained above can be viewed as composed of two parts 1  and 2

where







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








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1 r
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 
2

2 sinarU
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Physically 1  signifies irrotational flow past a doublet (a singularity) situated at the origin. Note
that 1  contributes nothing to the total force on the sphere.
Physically 2  represents rotationed flow and has a singularity at r = 0 known as "Stokeslet"
Stokeslet can be summarised physically as a force applied to the fluid at a point. The dgrag

aU6   experienced by the sphere  is purely due to the Stokeslet.
Note -2 A case of a sphere moving uniformly through a viscous fluid can be made out if we superimpose

on the flow field a velocity – U in the direction of  x. The stream function of the superimposed
flow is given by

 
22 sinrU

2
1

Note -3 The stream lines  =constant have neen depicted in the following figure. The stream lines indicate
the flow pattern.

9.4 Self Learning Exercise – 1
1. The condition for very slow motion is

(a)  Re >1    (b)  Re <1   (c)  Re >>1 (d)  Re <<1
2. In the theory of very slow motion, which of the following is true for the pressure p

(a)  0p     (b)  0p    (c)  0p2  (d)  0p2 
3. In Stoke's flow past a sphere, the sphere of radius a (where notations have their usual meanings)

(a) Experiences no drag
(b) Experiences drag of magnitude U6

(c) Experiences dgar of magnitude aU6 

(d) Experiences dgar of magnitude  aU6
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9.5 Oseen Flow
9.5.1  Oseen Equations

Oseen analyzed the validity of Stoke's equations for the slow motion and extended  pertinent
submissions. He pointed out Stoke's assumptions are into valid at large distance from the body. He
argued that

(i) In deducing Stoke's equation form the Navier equations, the inertia term  v.v 
 were neglected

and the viscous terms v2  were taken into account. He reasoned that the order of ratio of inertial
term to the viscous term at a distance r is

L
rR

L
rULUr

r
U

rU
e

2

2










[Note that order of inertia term at distance r is 
r

U2

 and that of viscous term is 2r
U

]

The above ratio unequivocally says that stoke's equations are valid when both Re and L
r

 are small.

That means that Stoke's equation would describe the flow "accuratly" in the neighborhood of the
body and when Re is small. He questioned  the situation what happens when Re is small but r is quite
large. Oseen improved the situation and suggested that for larger and small Re, we may retain only
those inertia terms which are of comparable magnitudes.
With the viscous terms and at large distance r, an appropriate approximation can be made to the
effect that one may regard the flow as a small perturbation (departrue) from the uniform flow.
That is velocity v can be taken as

*uUv 
 

where
U


 = unoform stream velocity at infinity

*u  = small perturbation in 
U



Substituting *uUv 
 

 in the Navier - Stoke's equations, we get

0u. * 
 ..........................................................(1)

    *2***
*

up1uuuU
t

u 








..............(2)

Acknowledging the lesser contribution of    ** u.u 


and involved mathematical difficulty due to non linearity of this term, Oseen neglected this term and
carried out his analysis with the following improved equations.

0u. * 
 .....................................................................(3)

  *2*
*

up1uU
t

u 








.............................(4)

These are called Oseen's equations.

Note -1

In the neighbourhood of the body, Oseen equations are exactly the same as those of Stokes equations
since the term    *u.U 


would be negligible in comparison to the viscous term.
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Note - 2
Oseen' equations are valid for any large  r  and for any large Re. Further it should be noted that if Re
is small and r is large, then the equations are valid in the whole flow region since they are valid at
large distance whereas in finite region they are slight departure from the Navier-Stokes equations by
negligible inertia terms.
Having gone through Oseen' reasoning we, now, move to our main problem, that is, Oseen' flow
past a sphere which is an improvement on Stokes solution.

9.5.2 Oseen' flow past a sphere
Let us consider a steady flow with uniform stream 

U


past a solid sphere of radius a held fixed. AA
Cartesian  coordinate system is chosen in such a way that the origin is at the centre of  the sphere and
the x-axis is in the direction of the flow.
Thus, the Oseen' equations for the steady flow reduce to
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u ***
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









.............................................(5)
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




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  ............................................(8)







  k̂wĵvîuvwhere ***

and  the boundary conditions are
0w,0v,Uu,ar ***   .............................(9)

0p2  ......................................................................(10)
[Recall it, we have obtained this expression in the case of  Stokes flow]
Let   be harmonic function i.e. 02  , ......................(11)1)
then particular solution to momentum equations (6 - 8) can be obtained if we express

x
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
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 ...................(13)

Hence, complete solution of the equation (6 - 8) can be obtained as,
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..........................................................(14)

where (u0,  v0,  w0) constitute the solution of the following equations,
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and follow the continuity equation
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.................................................(16)

Now, note that if   is  the function such that
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
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Ux              ................................................(17)

Then, we can determine the solutions of (15) as
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Now, note that the equation (17) can be redesigned as

  0e x22        .....................................................(19)

where


 

2
U

    ....................................................(20)

(19) has the solution of the form

 xre
r
A  .............................................................(21)

For small r, we have,  

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
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1A ....(22)

We, now, come back to equation (14) and (18).
Making use of with (20) with some simplifications we obtain
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equation (21) is completely determined if we have expression for unknown quantity . Note that ,  are
available with us. For this we prescribe   as follow on taking note of the fact that   must have only zonal
harmonics of negative degree

..............
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

 (24)

Using (22), (24) in *u component of (23) making use of boundary conditions (9) and equating zero the
coefficients of different power of x, we ultimately obtain.
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   is taken to be small.

Consequent upon the above analysis,  the velocity components are obtained as
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Note that equation (25) are the same as were obtained by Stoke's.Consequently the drag coefficient
in Oseen' analysis comes out to be the same as we obtained in Stoke's flow

9.5.3 Stream Function :
Stream function provides the flow pattern, hence, now we devise the formula for it.
The stream  function   is given as

 
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where *
rv  is the radial velocity which is given as
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on making use of ,  as obtained above, we obtain
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For small values of r, we have
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Note that expression (30) is the same as we
obtained in the Stoke's flow analysis.
The distinctions of Oseen' flow from Stoke's flow
is exhibited in the flow pattern when we plot the
steam lines. The stream lines  =constant are
depicted in the figure (9.5)
The figure shows that in Oseen's flow the stream
lines are different in front of and behind the sphere.
In fact behind the sphere we come a cross  a wake.

9.6 Self Learning Exercise - 2

 1. Oseen's equations for slow motion are valid
(a) in the neighbourhood of the body only
(b) not in the neighbourhood of the body
(c) in the neigbourhood of the body but not at large distance
(d) at any distance from the body.

2. In Oseen slow motion analysis for the flow past a sphere perturbation  is assumed in
(a) viscosity
(b) pressure
(c) density
(d) velocity

9.7 Summary
 In this unit one has discussed the theory of very slow motion which is the case of very small Reynolds
number values. For small Re values, the governing non-linear Navier-Stoke's equations can be
simplified to give rise to ordinary differential equations which are rather amenable to analytical solution.
You have seen how Stoke's deduced his equations for the slow motion and devised solution for the
flow past a sphere. He devised expressions for quantities of interest such as drag and the stream
function. Oseen' put in efforts to remove the short comings of Stokes analysis. Oseen' method is
valid for every distance from body whereas that of Stoke's is true in the neighbourhood of the body.

9.8 Answer to Self-Learning Exercise

 Self Learning Exercise -1
1. (d) 2.   (c)     3.   (d)

Self Learning Exercise -2
1. (d) 2.  (d)

9.9 Exercise

 1. Write a short note on the theory of very slow motion with reference to Stoke's flow past a sphere

2. Show that drag on a sphere of radius r for the Stoke's flow past the sphere is  Ur6 where
notations have their usual meanings

3. Explain Stoke's flow past a sphere
4. Explain Oseen's flow past a sphere
5. How Oseen's method is an improvement on the method by Stokes
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UNIT - 10

Concept of Boundary Layer Theory

Structure of the Unit
10.0 Objectives
10.1 Introduction
10.2 Boundary Layer

10.2.1 Applications
10.3 Prandtl Boundary Layer Theory
10.4 Characteristic boundary layer  parameters
10.5 Self learning exercise
10.6 Summary
10.7 Answer to self learning exercise
10.8 Exercise

10.0 Objectives
After studying this unit you will be able to understand
1.  The notion of boundary layer, its genesis and applications.
2.  Various characteristics of boundary layer

10.1 Introduction
Boundary layer theory propounded by Ludwig Prandtl, a German Physicist, in 1904 in his seminal
paper at Heidelberg entitled  "On the Motion of fluid with very Little Friction" proved to be
revolutionary in the development of fluid mechanics. Prandtl's eight page paper and 10 minutes
presentation gave the world a key to many unresolved problems in fluid mechanics at the beginning
of the 20th century.
This theory emphasized the importance of viscosity in large Reynolds number flows. The theory
bridged the gap of then prevalent classical hydrodynamics and the hydraulics. The former dealt
with the  theoretical analysis of the flow but did not have answer to many practical flow problems
e.g. drag experienced by a body flowing through fluid, fluid flowing past a body, pressure loss in
tubes due to fluid motion etc., the latter dealt with practical flow problems and their solutions based
on the experimental data which mostly covered the engineering aspect of fluid motion. Prandtl's
boundary layer theory showed the way to overcome similar challenges. His theory is the original
example of the use of the singular perturbation method which he applied to governing partial
differential equations. Note  that the boundary layer theory was all about the flow with very low
viscosity fluids (such as air, water) for which Re(Reynolds number)  . It may be noted that

Re   is considered to be corresponding to ideal fluid flow i.e. zero viscosity or non viscous
fluids. Here it is worth to keep in mind that real fluid flows have large or moderate but  finite Re
values. Prandtl's boundary layer theory is a theory to determine the asymptotic behaviors of flows
for high Reynolds number or in other words high Reynolds number flows which are small perturbation
from the limiting case  R . This is what Prandtl did.

10.2 Boundary Layer
In his theory, Prandtl theorized that when low viscosity (however small) fluid flows past a body, the
viscous effects such as stresses and forces due to viscosity, diffusion of vorticity etc. are significant
and comparable  in magnitude with convection and other inertia forces in a very thin fluid layer
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adjacent to the surface in contact with the fluid, .This thin layer is called the boundary layer. The flow field
outside this layer may be regarded as in viscid. Prandtl used no slip condition while devising the boundary
layer theory. No slip-condition means that the effect of friction is to cause the fluid immediately adjacent to
the surface to stick to surface. The boundary layer to hypothesis supports the intuitive expectations that for
the small viscosity fluid flows the effects of viscosity on the flow are unimportant over most of the flow field
but the no slip condition at the surface must be satisfied for even vanishingly small viscosity.
The physical significance of the no slip condition is that there is zero relative velocity between the surface
and the fluid adjacent to it. Since the viscosity is very small and if the fluid path along the surface is not too
long, then the velocity changes appreciably over very short distance normal to the surface of the immersed
body in a fluid flow.
Thus boundary layer region is the region of very large velocity gradients. If we recall Newton's shear stress
law which states  that shear stress is proportional to velocity gradient. Thus local shear stress can be very
significant within the boundary layer. This theory solved the dilemma of zero drag resulted from the potential
flow theory which was in practice prior to Prandtl's work.
One may recall that prior to Prandtl, potential flow (incompressible) irrotational flow theory was successfully
used in many very high Reynolds number flow problems where complete negation of viscons effects served
as a good approximation but resulted a zero drag. This phenomenon remained unexplained then. Further,
potential flow theory failed to satisfy the no-slip condition contrary to what was observed in real situations.
Prandtl's theory was outcome of theoretical and experimental investigations. It was shows that the flow
past a body can be partitioned into two regions

(i) A very thin layer (boundary layer) adjacent to the surface where viscosity effects dominate.
[note that the boundary-layer thickness is supposed everywhere to be small compared with
distances parallel to the boundary over which the flow velocity change appreciably]

(ii) Outside this layer, the fluid may be regarded as inviscid or may be treated as a potential flow.

U(x)

u

Potential flow

Boundary layer

Fig. 10.1
10.2.1 Applications

Initially the theory was formulate for laminar flow of an incompressible fluid which successesfully
agreed with the experimental investigations. This simulated the growth of the fluid mechanics and
the idea was exetended to compressible and turbulent flows. With the advent and challenges of
flight technology and urge to design optimal equipment, boundary layer theory proved to be good
simulation tool. The aerodymanic shapes of present day four wheelers are due to boundary layer
analysis. Now, we briefly outline the applications of boundary layer theory
1. It served a basis to many branches of fluid and mechanics aerodynamic  such as airfoil theory

and gas dynamics
2. It helped to compute frictional drag of bodies in a flow whether body is in motion in the fluid

or the fluid is in motion past the fixed body
3. It extended explanation to reverse flow situations in many flow regimes. It facilitated the

understanding of separation of flow from the body and the formation of eddies at the back of
the body.

4. Like the boundary layer equations for momentum. boundary layer approximations for thermal
and solutal  regime have been devised.



108

The boundary layer theory has got so much significance that all its different area have emerged as
full fledged branches in themselves.

10.3 Prandtl's Boundary Leyer Theory
Uptil now you have had a fair idea of boundary layer. and its historic background. In this section we
sharpen our understanding of the notion
First we consider flow over an airfoil shaped body as shown in the figere 10.2. The body experiences
a net aerodynamic force due to the fluid pressure and shear stress.

Pressure

Shear

Pressure
Fig. 10.2

Pressure

Shear Stress 

Intuitively you can reason that to get the net aerodynamic force both the pressure distribution and
shear stress distribution first be determined and then integrated over the whole surface of the airfoil.
The computation of pressure is rather easier  as compared to shear stress, simply because in computing
the pressure we may assume that the fluid is inviscid. But this cannot be done for shear computation.
For  it, one has to take internal friction  into account and the complexity begins! This is one example
where in Navier-Stokes equations are hard to solve.

10.4 Characteristicsc Boundary Layer parameters
We now present some characteristic parameters of boundary layer whose computation provide vital
insight  into the phenomena and are important in many practical problems.
(i) Boundary layer Thickness ''

Boundary layer thickness is the distance in which the velocity in boundary layer approaches to
the potential flow velocity asymptotically. Boundary layer thickness is the distance from the
wall where the fluid velocity  u  in boundary layer differs from the potential flow velocity U by
1% i.e.
boundary layer thickness
                                                U%99y u 

(ii) Displacement Thickness 1''
This is more sensible measure of boundary layer thickness and is defined as










 

0
1 dy

U
u1

Physically it can be thought of as the distance through which stream lines just outside the
boundary layer are displaced laterally by the fluid retardation in the boundary layer.
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(iii) Momentum thickness 2

The momentum thickness 2 is defined  as










 

0
2 dy

U
u1

U
u

(iv) Skin Friction
The shearing  stress on the surface y = 0 or the skin friction is given by

0y
w y

u















10.5 Self  Learning Exercies
1. Boundary layer theory was formulated by

(a)  Reynolds
(b)  Sakiadis
(c)  Blasius
(d)  Prandtl

2. Boundary layer theory formulation considers
(a)  Slip condition
(b)  No - slip condition
(c)  Variable pressure
(d)  Variable temperature

3. In the pressure in the boundary layer is same...................................................................
4. The bounary layer flow the viscous effect of the fluid is....................................................

10.6 Summary
In this unit an introductory note to the motion of boundary layer was presented. The motion is
applicable to describe the mechanics of vanishingly small viscosity fluid flow. The theory has been a
great success to serve as s key tool to devise state of art also dynamic designs of automobiles,
missile technology, high speed airplanes, sophisticated war airplanes to name a few.
It has also helped in  dealing with problem inclusive of drag like in case of ship sailing.
The applications of boundary layer theory are so varied that it has led to grow various branches in
fluid mechanics undoubtedly advent of commercial software, development of numerical software
techniques have helped to analyse many boundary layer equations for laminar and turbulent flow.

10.7  Answers to Self Learning Exercise
 1. (d)
 2. (b)
 3. As that of at the edge of boundary layer
 4. Confined in a thin layer adjacent to the wall.

10.8  Exercise
 1. Write a note on boundary layer theory
 2. Write a note on characteristic parameters of boundary layer theory



110

UNIT - 11

Velocity and Thermal Boundary Layer in Two Dimensional Flow

Structure of the Unit
11.0 Objectives
11.1 Introduction
11.2 Velocity boundary layer derivation

11.2.1 Order of magnitude approach
11.2.2 Asymptotic approach

11.3 Self  learning exercise
11.4 Thermal boundary layer
11.5 Summary
11.6 Answer to self learning exercise
11.7 Exercise

11.0 Objectives
After studying this unit you will be able to
1.  derive the velocity boundary layer equations for two dimensional flow
2.  derive the thermal boundary layer equations for two dimensional flow

11.1 Introduction
In previous unit we have learnt about the existence and importance of the boundary layer. We have
learnt that how Prandtl presented  a theory which could answers to some unresolved practical
problems.
In this chapter we will understand the existence and the altered Navier-Stokes equations in the
boundary layer above which there is potential flow.
The velocity boundary layer equations have been obtained through two  approaches viz. order of
magnitude approach and asymptotic approach alongwith necessary boundary  condition.
It is also seen in the previous unit that a thermal boundary layer also exists which is an elegans to
momentum boundary layer. In this unit is has been suggested that boundary layer approximations
can be defined through the order of magnitude approach.

11.2 Velocity Boundary layer Equations in Two Dimensional Form
We will derive boundary layer equatons for the flow past a solid plane wall by two different
approaches viz order of magnitude approach and the asymptotic approach.
Let us consider a two dimensional flow of a  viscous incompressible fluid over a plane solid wall.
A Cartesian co ordinate system is considered as shown in the figure.

U

u

Fig. 11.1

U

x

y

)x(

O
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Two dimensional Navier-Stokes equations and equation of continuity are
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and the boundary condtions are
0vu;0y 

   Ut,xUu;y  ........................................(4)

where (u, v) are the velocity components in (x, y) directions and U  is the free stream (potential)
velocity. Note that since the wall is solid, hence due to no slip condition 0yat0vu  .
Further it should be noted that velocity component u which is zero at the wall, grows rapidly in
the boundary layer to match the free stream velocity at the edge of the boundary layer
[i.e.  Uu;y ]
Let us assume that the boundary layer thickness is  .  Note that in this thin boundary layer region

L  where  L is the characteristic length. For convenience, in this discussion we take 1L  . In
the boundary layer region, viscous effects are significant.

11.2.1 Order of magnitude approach
We now use order of magnitude here for each terms in the governing equations and it is denoted by
0 ( ).
Let us consider quantities t, x and u of  0 (1) and y of 0() where  <<1
We observe that the quantities
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 are of    21 0and0  

respectively.
It is pertinent  to note that since y is of 0 () therefore the normal velocity component v is of 0 ().
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Like wise we conclude that
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This order of magnitude analysis enables us to determine the significant terms to be retained or we

can say the terms which can be omitted. Thus we see that the term 2

2

x
u


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 which is of 0 (I) is
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negligible in comparision to 2
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 which is large. With these consideration

equation (2) becomes
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Further it is presumed that the viscous term enjoys the same order as that of the inertia term, that is of 0 (1).
This leads to conclude that  20is  . This reasoning has been validated by some exact solutions.

In view of the above analysis, the eq. (3) suggests that
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Physically this means that the pressure in the boundary layer grows with O (2) and thus may be neglected.
This finding is of utmost importance to conclude that the pressure is constant in the normal direction and
may be taken equal to the pressure at the edge of the boundary layer where it is computed by the inviscid
free stream flow.
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where U is the potential flow velocity. In view of the above analysis, the boundary layer equations for the
unsteady two dimensional incompressible flow over a solid plane wall are
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together with the boundary conditions.

v0u;0y 

   Ut,xUu;y

11.2.2 Asymptotic Approach
The boundary layer equations derived  above may alternatively be obtained by asymptotic approach.
Infact, the boundary layer equations are asymptotic form of Navier-Stokes equations at large
Reynolds number.
Let us again consider the equations (1) - (3)
We introduce the following non dimensional quantities.
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V
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U
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Y
yy,

X
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T
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where T , X , Y,  U,  V,  P are the characteristic measure of the corresponding quantities.
On putting these quantitics in the equations (1) - (3) we find,
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considering X and U as the fundamental units, we have

2UP,
U
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and  



XURe  (Reynolds number)

the units of measurement of  Y and V are computed taking note of the fact that the equations
(5)-(7) ought to have a single flow parameter i.e. Reynolds number Re. Consequently, we take
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in view of the above reasoning, the equation (5) - (7) take the form
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We have seen that boundary layer equations hold good for large Re values. Thus when Re is large,

then small parameter Re
1

 is pertinent parameter in boundary layer analysis. In order to have the

solution of the above equatons we introduce the following expansions
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Making use of these perturbations is the equation (9)-(11) and then comparing the terms independent
of Re
we obtain
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On converting these equations in dimensional form and dropping  the index zero, we get the same

equations as we got through order of magnitude approach. The equation y
p



  is not taken into

account since it is assumed that the pressure is independent of y in the boundary layer and infact the
same as at the outer edge of the boundary layer.

11.3 Self Learning Exercise

1. Velocity components in the boundary layer adjescent to stationary plane wall
(a)  remain same throughout
(b)  dimension as one goes towards the potential flow.
(c)   grows rapidly as one goes towards the potential flow

2. Boundary layer equation are 
 1

.................................................... form of Navier - Stokes

equation at large
 2

....................................................

11.4 Thermal Boundary Layer

The concept of thermal boundry layer is analogous to the momentum boundry layer. When a fluid
flows over a heated / cooled body then transfer of heat is experinced . As we know there are three
modes of heat transfer conduction, convection and radiation. Radiative heat transfer is significant if
the thermal regime involves high temperature. In the present text we will not discuss the radiation
aspects. Coming back to the central issue of the thermal boundary layer, it is seen that at high
Reynolds number, the thermal regime also exhibits boundary layer character. That means temperature
field can be divided into two regions (i) The region close to the wall where thermal conductivity k
has a key role and (ii) the region in which k can be neglected.
This unit is restricted to the analysis when the density and viscosity are consent i.e. not dependent
on temperature and  pressure. This pre condition is ensured by the assumption that temperature
and pressure difference within the boundary layer are small. Here it is pertinent to remind that in
general momentum boundary layer thickness and thermal bounary layer thickness are not the same.
Further, it is to be remembered of that we derived the boudnary layer equaiton for momentum for
fluids having small viscosity. For small thermal conductivity fluids, the energy equation can be
simplified to yield thermal boundary layer equations.
We known that energy equation for two dimensional steady flow of a viscous incompressible
fluid is
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where (u, v) are velocity components in (x, y) directions, T is the temperature,is the density and
Cp is specific heat at constent pressure, k is the thermal conductivity and is the viscous dissipation
given by
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The boundary layer approximation for the eq. (1) can be derived by order of magnitude as we
have done earlier for the momentum equations.
Let T denote the thermal boundary layer thickness and is the thickness of velocity boundary
layer then v is of o().

11.5 Summary

In this unit,  you have learnt to derive the boundary layer equations for momentum and the energy
regimes. We have seen that same momentum boundary layer equation are derived by order of
magnitude approach and asymptotic approach (i.e. Re  ). The analysis was made for the flow
of viscous incompressible fluid past a thin plate. Similarly, formulation for the thermal boundary
layer was also made through order of magnitude approach.

11.6 Answer to Self Learning Exercise.
1. (c)
2. (1) asymptotic

(2) Reynolds number

11.7 Exercise

1. Derive two dimensional boundary layer equation for the viscous incompressibel fluid flow past
a thin plate

2. Derive two dimensional thermal boundary layer equation for the viscous in compressible fluid
flow past a thin plate.
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UNIT - 12

Blasius - Topfer Solution

Structure of the Unit
12.0 Objectives
12.1 Introduction
12.2 Boundary Layer flow on flat plate (Blasius topfer solution)

12.2.1   Blasius series solution
12.3 Thermal boundary layer :  simple solution for Pr=1
12.4 Self learning exercise
12.5 Summary
12.6 Answer to self learning exercise
12.7 Exercises

12.0 Objectives
In this unit you learn the derivation of
1. boundary layer solution of viscous incompressible fluid flow over a flat plate. This solution

has been initiated by Blasius
2. a simple solutions of thermal boundary layer flow over a flat plate in a particular case when

Prandtl number has been taken as unity.

12.1 Introduction
The boundary layer flow along a thin flat plate is the simplest example of boundary layer theory.
This case was infact the first example of the boundary layer theory proposed by Ludwig Prandtl
(1904). The analysis presented here is part of doctoral thesis of H. Blasius (1908).
In this unit we will also discuss the solution of a thermal boundary layer problem of a forced
convection laminar boundary layer flow past a flat plate for a particular value of Prandtl number
which has been taken as unity.

12.2 Boundary Layer Flow on Flat Plate

Boundary layer on a flat plate (Blasius Topfer solution)
Blasius produced a solution to the steady boundary layer flow on a flat plate with the help of the
similarity solution. The partial differential equations were reduced to ordinary differential equation.
The resultant system is amenable to the solution.
Here we consider a steady flow of a viscous incompressible fluid over a very thin solid flat plate. It
is assumed that the plate is semi infinite in length. A Cartesian coordinate system is considerd as
shown in the figure wherein
x-axis is taken along the flat
plate and the y-axis
perpendicular to it with origin
at the edge of the plate. The
plate starts at x = 0 and
extends along the x-axis. The
fluid flows parallel to the plate
with free stream velocity U

u

Fig. 12.1
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U U
U
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u(x,y)

edge of 
boundary  layer
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In this case, the potential flow velocity is uniform i.e. U  hence there is no pressure gradient along
the x-axix. Thus

0
dx

dUU
x
p1






 



Thus the equation of continuity and boundary layer equations for the two dimensional flow and for
the flow considered here become.
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together with the boundary conditions

0vu;0y  ............................................(3)

 Uu;y ............................................(4)

It is pertinent to note that we can hope for similar solution since the setup has no characteristic
length, therefore we can presume that the velocity profiles at different distances from the leading
edge (i.e. x = 0) are similar to one another. In the foregoing analysis we would explore the possibility
of simlar solution so that the equation (2) is converted to ordinary differential equation.

Seeking Similar Solutions :
By dimensional considerations and reasoning we find that
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Let   be stream function so that the velocities take the form
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 ...................................................................(6)

The equation suggests that the dimension of   is the same as that of xU

Hence we can set    fU ............................................(7)
being a dimensionless quantity
In view of (6) and  (7) the velocity components are obtained  as
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where f1 denots derivative of  f  with respect to  Similarly
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Susbstituting the values of u and v and the partial derivaties as obtained above,in the equation (2) we get
0fff2 11111  ................................................(9)

and the corresponding boundary conditions (3), (4) take the form

1f;
0f,0f;0

1

1




......................(10)

The equation (9) along with boundary condition (10) is known as Blasius equation. Note that (9)
does not have closed form solution since it is a non-linear differential equation. It can be solved
numerically. However, Blasius himself succeeded  in presenting a series solution to it subject to the
boundary conditions (10)

12.2.1 Blasius Series Solution
Blasius idea for obtaining a series solution was to obtain series expansions for f() about = 0 and
for large  and to join these two expansions at a suitable value of these two expansions at a suitable
value of .
Series Solution about = 0
Let us consider

  3322
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a
2
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So that
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where  primes denote differential with respect to  . Since  for
0f,0f,0 1 

we have clearly
10 a0a  ....................................................................................(12)

We now substitute the above expansions in the equation (9), and on simplification we obtain
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Note that (13) is an identity which holds for every value ofHence coefficients of different powers of 
must vanish identically. This leads to
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11a,
2
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28

2
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Thus we see that the coefficients in the expensions (11)  are either zero   or can be expressed in terms of  a2
In view of the above analysis, we find that

.............................(14)

Series Solution for large   ,e.i

2
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f
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2
f

11 Aef  where A is constant of integration

On integrating again and taking the boundary conditon 1f, 1   into account, we get
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where B is also a constant of integration
As a first approximation as  , Blasius set

Bf  ........................................................................................(16)
using (16) in integral (15), we get
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Note that f() as obtained above satisfies the condition   1f, ' 
However the constants A and B are still to be evaluated. Infact, the constants a2, A and B are chosen in
such a way that  f(),  f '() and f ''() are continuous when the expeansions are joined. Sufficient number
of terms in these expansions are taken into account to get the desired accuracy. The values obtained by
Blasius himself are

a2=0.332,    B = 1.73,   A = 0.231

12.3 Thermal Boundary Layer : Simple Solution for Pr=1
Here we will consider a particular problem of flow past a flat plate [forced convection laminar
boundary layer flow past a flat plate for Pr=1]
Let us consider a steady flow of a viscous incompressible fluid over a thin semi-infinite flat plate.
The  insulated flat plate is considered at temperature T. The free stream velocity is U  and
tempreture T  plate is assumed to be along the direction of fluid stream. A Cartesian coordinate
system is considered and the origin is taken at the leading edge of the plate and axis of x along the
plate. Thus the two dimensional flow is governed by the equations
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with the boundary conditions
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......................................(4)

The solution of the above equation (3) can easily be obtained for the case Pr=1 Note that when 
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then is means that 
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 . This is the special situation when the equation (2) and (3) seem is to be

identical in the sense that u, T may be interchanged to get the either equation with the boundary conditions (4)
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(5) is known as Croccos first integral for Pr=1
which gives the solution for temperature distribution in terms of wall temperature, uniform stream
temperature, velocity distribution in the boundary layer and uniform stream velocity.

12.4 Self Learning Exercise
1.    Boundary layer flow on a flat plate is also known as ..................................................
2.    Blasius equation have  closed form situation
      True or False
3.    Pr=1 implies v =
4.    What is Croccos first integral ?

12.5 Summary
In this unit we have discussed two problems. One is a fluid boundary layer flow problem over a flat
plate. This leads to Blasius Topfer solution in a non linear differential equation form. This solution of
this form was carried and by Blasius which has been given here. Another problem is of thermal
boundary layer in a fluid moving over an insulated plate at a constant temperature. which is different
from the uniform flow temperature. This solution leads to Croccos first integral for Pr=1 i.e. Prandtl
number equal to unity.

12.6 Answer to Self Learning Exercise
1. Basius-Topfer solution
2. False

3.
pC

K


4.


 



U
u1

TT
TT

12.7 Exercises
1. Discuss the boundary layer flow over a flat plate.
2. Obtain Crocco's first integral for Pr=1
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