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PREFACE

The present book entitled “Viscous Fluid Dynamics” has been designed so
as to cover the unit-wise syllabus of Mathematics-07 course for M.A./M.Sc. (Final)
students of Vardhaman Mahaveer Open University, Kota. It can also be used for
competitive examinations. The basic principles and theory have been explained in a
simple, concise and lucid manner. Adequate number of illustrative examples and
exercises have also been included to enable the students to grasp the subject easily.
The units have been written by various experts in the field. The unit writers have
consulted various standard books on the subject and they are thankful to the authors

of these reference books.



UNIT - 1

Basic Concepts

Structure of the Unit

1.0 Objectives
1.1  Introduction
1.2 Fluids
1.2.1 Ideal Fluid
1.2.2 Real Fluid
1.3 Density
1.4 Viscosity
1.5 Most General Motion of a Fluid Element
1.6  Strain Analysis
1.6.1 Normal Strain
1.6.2 Shearing Strain
1.7  Stress Analysis
1.7.1 Body and surface forces
1.7.2  Stress and stress vector
1.7.3 Components of stress tensor
1.8 Symmetry of stress tensor
1.9  State of stress at a point
1.10 Plane stress, Principal stresses and principal directions
1.11 Stress in a fluid at rest
1.12 Stress in a fluid in motion
1.13 Relation between stress and rate of strain components
1.14 Stoke's law of friction
1.15 Thermal conductivity
1.16 Generalized law of heat conduction
1.17 Specific heat
1.18 Summary
1.19 Answer to selflearning exercise
1.20 Exercise

Objectives

In this unit, our object is to be aware about the basic concepts required in the development of the
theory of viscous flow. We will also study about the fundamental equations for the viscous compressible
fluid. The governing equations for the compressible and incompressible fluids in various coordinate
systems are given for ready reference.

Introduction

The subject of viscous fluid flow is of great significance to the mankind, the passage of blood

through veins, the falling ofrain through the atmosphere and the current in the oceans are few examples
of'the flow. Therefore it is interesting to study the viscous fluid flow in order to utilize and control its
effects for the benefit of the society. This unit deals with the basic concepts of viscous flow and
fundamental equations for the flow. This unit also deals the general theory of stress and rate fo strain.

1



1.2

Fluid

1.2.1

1.2.2

By fluid we mean that a substance which is capable of flowing and it yields to a pressure however
small it may be. The fluids are classified in two forms ideal (perfect) and real (actual) fluid.

Ideal Fluid

A fluid is said to be ideal or perfect if it does not exert any shearing stress however small. In ideal
fluids, there are no tangential forces between the adjoining layers of the fluid but only normal
stresses are present. The pressure at every point of an ideal fluid is equal in all directions, whether
the fluid be at rest or in motion.

Real Fluid

The fluid which actually exist in nature are considered real or actual fluid. These fluids possess all
the five physical properties i.e. density, volume, temperature, pressure and viscosity. Real fluids are
divided into two categories viz liquids and gases. We generally regard liquids as incompressible
fluid and gases as compressible fluids.

Ifthe density of the fluid be constant then it is called incompressible fluid and if density be a function
of hydrostatic pressure then it is called compressible fluid. Generally water and air are considered
an incompressible and compressible fluid respectively.

1.3 Density
The The mass density or simply density p at any point is defined as p = lim Z_m; where gy is the
volume element around a point in the fluid and §m is the mass of the fluid contaliiled within §y . The
unit of density in MKS system is kilogram / meter®i.e. ML™.

1.4 Viscosity

Viscosity of a fluid is that characteristics of real fluids due to which they exhibit a certain resistance
to alternation of form or exerting internal resistance to a change in shape. Viscosity is also known
as an internal friction. _U
Consider the motion of a fluid between two par allel P FIPIIIIIFIIIIIIIIP777 ////1/1////// B
plates AB and CD at a distance d apart. The lower
plate CD is at rest while the plate AB is moving
with uniform velocity U parallel to itselfas shown d u
in fig. 1.1. Here we suppose that there is no slip on
the surface when the fluid is in contact with a solid.
The velocity will decrease as we 20 AoWNWards C oodommmrrbrmmrrrrrrrrrrrrrrrrrsr D
from AB to zero in contact with CD. In order to Fig. 1.1 u=0
maintain the motion of the plate AB, a horizontal

force proportional to U/d per unit area of AB is required. Thus we have the force in the form of

< —>

: : U : .
tangential or shear stress t given by T= ME where L is a constant of proportionality and

independent of U and d. It depends only on the nature ofthe fluid. this constant p is ameasure of
the viscosity of the fluid and is called the "coefficient of viscosity" or "coefficient of shear viscosity."

For ordinary fluids, since there is no slip on the walls and the fluid is displaced in such a manner that
the various layers of fluid slides uniformaly over one another then the velocity u of a layer of the

fluid at a distance y from the lower plate is U = U% . It may be seen that if p isreplaced by the

du du
velocity gradient _y , we obtain Newton's law of viscosity as T = ud_y .
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The dimensions of the coefficient of viscosity p can be found as -

o= shea'rlngstre'ss _ for(':e/area _ MLT
velocity gradient  velocity/length

Hence the unit of . is kilogram per meter second and 1kg per meter second is equal to 10 poise.

Poise is the practical unit of coefficient of viscosity. If we write v = B i e. theratio of u to the

p
density p, vis called the 'kinematic viscosity.'

The coefficient of viscosity is very small for water, gases, alcohol but not negligible and it is very
large in case of oil, glycerine. Some typical values of p and v are given below in C.G.S. units at
15°C and under atmospheric pressure.

Gases / Liquids 7} L

Air 0.00018 0.15
Oxygen 0.0002 0.15
Hydrogen 0.00009 1.5
Water 0.0114 0.0114
Mercury 0.016 0.0012
Glycerine 13 10

Pitch 10" 10

For liquids the viscosity coeffiecient p is nearly independent of pressure but decreases rapidly with
increasing temperature also for gases it is independent of pressure but increases with temprature.

1.5 Most General Motion of a Fluid Element

In this article we shall prove that the general motion of
a fluid particle consists of three parts a translation, a
rotation and a deformation. We shall show this by
considering the relative motion between two
neighbouring points ofa fluid element.

Consider the small movement of a fluid pareticle from
Pto Q.

Let ¢ be the velocity at P(x,y,z)and ¢’ =q+d g
be the velocity of a neighbouring point Q. Also let

- — —
r and 7r+d r be the position vectors of P and Q
respectively. Then we have

=a+i a—udera—uder@dz +j a—vdera—vdera—vdz +k @dera—Wder@dz
ox oy 0z oy 0 ox oy 0z

where q [u (x, Y, z), % (x, Y, z), w (x, Y, z)] Rewriting right hand side ofabove, we get
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> o>+l |1{0u Ow l{ov ou ou l1({ov ou
qQ=q+i|y=| ——— |dz—=| ——— |dyp + s —dx+— | —+— |dy+
2\ 0z 0ox 2\0x Oy ox 2\0x oy

~l|1{0v ou 1{ 0w oOv ov 1
+ 3= ———|dx——| —=—|dz} + s —dy+—
2\0x Oy 2\ 0y o0z oy 2

0z OXx

A | Ov I{ov oOu (0w oOv
+ j|—dy+—-| —+— |dx+—| —+—|dy
oy 2\0x oy 2\ oy oz

+ k 6_oody+l 8_u+8_03 dx+l 8_oo+6_v dy
0z 2\ 0z 0x 2\ oy oz

=i (exx dx+ e, dy+ e, dz) + 3 (eyy dy+e, dx+e, dz) +k (ezz dz+e, dx + €, dy)

mi D= ;{@dﬂi[a_u@jdy%(@ﬁ_wjd{

o

o

= (e, d) + (e, dF)+ K (€, dF) oo 3)
where €, = fexx +] €, + k €,

e, =ie, tje, + ke,

€, = i €, +j €, + k €,
are the strain -rate tractions of the fluid elements in the x,y and z directions respecitvely.
=

Equation (1) respesents the most general motion of a fluid motion. The first term ¢ respresents the translation
velocity vector and it represents the linear motion of all parts of the fluid element without changing the
shape of the element. Hence the first term represents the pure translatoty part ofthe motion. The second

- - -
term wxdr represants the pure rotation ofthe fluid element. The third term D represents the rate of strain
term and so the third term D gives the deformation of the fluid element. Due to this term, this velocity ofa
fluid element differs from a solid.

Thus we see that the most general motion of a fluid element can be expressed as the combination of
translation, rotation and deformation of the fluid element.
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1.6

Strain Analysis

1.6.1

1.6.2

A body is said to be strained when the various parts of the body undergo a relative displacement
under the action of some impressed force. It is a non-dimensional deformation measuring the
change in the relative positions of various parts due to any cause. However if the whole body
undergoes a displacement i.e. translation or rotation etc. without any change in the relative positions
of different parts of the body it is not a strain. There are two types of strain.

Normal Strain
It is the rate of the change in length of a part of body to the initial length, where the element is taken

to be a straight line. Ifin the unstrained state the length of'a line element /, and in the strained state

EZ_EI

¢, , then normal strain = /
1

Shearing Strain

When two elements lying on a straight line undergo a relative displacement, the change in the angle
between them before and after the displacement is known as shearing starin. If in the unstrained
state the elements are A and B, in the strained state they take the positions A' and B!, then the angle
between the straight lines AB and A'B' is the shearing strain.

1.7

Stress Analysis

1.7.1

1.7.2

Body and Surface Forces

In the study of fluid dynamics, we distinguish between two types of forces acting on a fluid element,
namely body forces and surface forces. The body forces are distributed throughout the volume of
the body and expressed as force per unit mass of the element. Examples of such forces are
(1) force dueto gravity (ii) electromagnetic force when the fluid is electrically conducting and
moving in the presence of the magnetic field and (iii) if the coordinate system is accelerating or
decelerating, centrifugal and Coriolis forces, may have to be included among the body forces.

In the space occupied by a fluid in motion or at rest, imagine a surface enclosing some part of the
fluid. The portions of the fluid close to the surface on its two sides, internal and external, exert
forces on each other which are in the nature of actions and reactions which are called internal
forces. Since they act across a surface that is imagined to separate the fluid , they are called surface
forces. These forces are expressed as “force per unit surface area of a fluid element”

Stress and Stress Vector

Let us consider a point P in the fluid and take an

infinitesimal area §g surrounding the point P. Let (x,y,z) Z 4
be the coordinate of point P referred to a set of fixed Ss

axes OX, OY, OZ. Also let , be the unit vector in the

direction of the normal to the plane area §s¢ and > 8F

consider the forces exerted across §s by the portion
of the fluid which lies on the side of 1y . The fluid may

be either in motion or at rest. These surface forces are 0

not, in general, distributed uniformaly across &g . These,
by the principle of statics, can be combined into a single X Fig. 1.3

force 81_5 through P and a single couple of moment

5 E about some axis. If we gradually shrink the area of'the plane surface to the point P both 81_5
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and 5 E tend to zero. However, for a vanishingly small area §s — (), the equivalent surface force § F

ay be assumed to be proportional to the surface area.

We know that in the case of inviscid fluid, SF is along the direction of 1, so that there is only normal
stress. On the other hand, in the case of viscous fluid, frictional forces are called into play between the
surface and the fluid so that 5 will now possess normal and tangential components sp and g .The

normal and shear stresses are defind as follows.

1.7.3

nn

Os

The normal stress = Lim
3s—0

ns

and the shear stress = Lim
8s—0 6 S

Now 51_5 /5S tends to a definite number as §s — (). This number will depend not only on the

position of the point P but also on the orientation of the area &g . Hence it is presented by the vector

symbol 15; the subscript 5 indicates the direction ofthe normalto §g at P as discussed earlier.

F. so defind, is called the stress vector or suface traction at P corresponding to the orientation f

ofthe area. Thus we have

Stress vector F = LimS—F.
n 85—0 85'

Components of Stress Tensor

Let 6,,, ©,,, ©,. bethe Cartesian components of En and f, 3, k be the unit vectors parallel to

nx? ny?
the axes. Then we have

- A

AN AN
F =0, 1+ Gnyj +0,.k

In particular, if the direction rAl is parallel to x - axis, we have
F.=c,i+0,j+o_k

N N

SimilaryFy=csﬂi+ c,j+to.k

e /.\ /} AN
and F.=c_i+o_j+ c_k

In this way nine quantities are defined at a point, which may be arranged as follows.

The above mentioned nine quantities G;; constitute the components of the stress tensor of order

two. It is expressed by t; also.

We have used the double subscript notation for stress components. The first subscript denotes the
direction of the normal to the plane on which the stress acts and the second subscript denotes the
direction of the force producing the stress. It follows that normal stresses have repeated subscripts.
The diagonal elements 6, 6, o_ are said to be normal stresses and the remaining six elements

xx vy 2

O,> 0> Oy Oy5 O, O are said to be shearing stresses. The matrix is said to be stress matrix.

6



1.8 Symmetry of Stress Tensor

% Ay B,
A A %Pl .
k/\ A2 E B2
é GXZ P
E Gxx!_; 3 ny
D: G
| )
B, C
D, G
O ,A 7 Y
n J
i
Fig. 1.4

X

In general, the motion of a fluid element can be separated into an instantaneous translation and an
instantaneous rotation. Construct a parallelopiped whose edges of length &x, dy,dz parallel to

coordinate axes and P(x, y, z) be its centre as shown in fig. 1.4. We consider the motion of'the
above parallelopiped of viscous fluid.

Here we suppose that the fluid mass of the element P 6x 6y 3z remains constant and the coordinates

1 1
of P, and P, be (X - 55?@ b2 Zj and (X + 55?@ b2 Zj respectively
At P, the force components on the face ABCD parallel to coordinate axes OX, OY, OZ are
lGxx oy Oz, G, dy 0z, o Oy SZ,J
At P, the force components on the face A, B, C, D, parallel to ABCD of area 8y 8z parallel to

ox 0o Sx 0o, dx 0o _
axes are K% +?.5—“J6y82, [% +?-a_'j8y52a (ze +?- 5)& JSJ’SZ } where | is the

X X

unit normal vector measured outward.

At P, since _ 4 is the unit normal vector measured outwards from the fluid the corresponding force
components on the rectangular surfce A B,C D, parallel to ABCD of area 8ydz are

dx 0o dx 0o dx 0o
—|o. —— 18y8z,—| 6. ——.—= [ydz — - —X 109
{(m 2anyZ(xy 2 axjyz(cxz 2 anyZ}

Hence, the force on the parallel planes A B,C,D, and A B C D, passing thourgh P, and P, are

27272 171
equivalent to a single force at P with the components of force as

dc,,

= 0x Oy 0z, %6){ SySZ,}

06
— X 5% 8y oz,
|:8X X0y 0Z

together with couples whose moments are
—0,.0x8y 6z and o, 8x 8y dz along OY and OZ respectively.

Similarly, the components of force on the parallel planes perpendicular to the y-axis are

7



ac,,

Ox Oy 62}
oy

oG, 0G
—5x 8y 8z, —2 8x dy 8z,
oy oy

together with couple whose moments are
—-0,0x8y 6z and o .8x 8y dz about OZ and OX respectively.

Similarly, the components of force on the parallel planes perpendicular to the z-axis are
oG
aG—ZXSx Sy 8z, —=8x Oy 0z, %6)6 dy &z
0z 0z 0z

together with couple whose moments are
—0,0x 8y 6z and ©_06x 38y 6z about OXand OY respectively.

Thus, the surface forces on all the six faces of the rectangular parallelopiped are equivalent to a single force
atP as

0 0 0 0 0
GGM + O yx + aczx Sx 8_)/ Sz, O + O,y + Oy Sx 8_)/ Sz, acxz + O, + aGZZ Sx 8_)/ Sz
ox oy 0z ox oy oy ox oy 0z

together with a vector couple having components as

l(cyz -c,, )6x oy Oz, (sz -G )8x dy 9z, (ny -0, )6x oy SZJ
Now let X,Y and Z are the components of external body force perunit mass at P then components
of'the total body force on the parallelopiped are.

(Xp Ox 0y 0z, Ypox Oy &z, Zp ox Oy 82,)

Taking moments about the OX through P, we get
total moment of forces = (moment of inertia about OX). (angular acceleration)

= (Gyz —Gzy)6x8y82+04 =0,
where O, and O, represent quantities of 4" and 5" order of smallness in 3x 5y 8z . Hence, to the

third order of smallness in dx 8y oz , it reduces to
(Gyz - Gzy)Sx dyo6z=0
orc,.—o,=0

or 6, =0

similarly

zy

sz = ze

and o, =0,

Thus, this shows that the stress tensor is symmetirc.
1.9 State of Stress at A Point

The state of stress at a point in the fluid is said to be completely known ifthe direction and magnitude
of'the stress vector at the point is known or can be determined from the known data for every
possible orientation of area.

Theorem : The state of stress at a point is completely known if the nine components of stress tensor at that
point are known.
Consider the motion of a small tetrahedron OABC.

8




A Fig. 1.5

X
Taking the faces of the tetrahedron OABC along the coordinate planes and face ABC has the area
A. Let ¢/,m,n be the direction cosines of normal f; to ABC drawn outwords. All the possible
stresses on the fluid element of viscous fluid are shown in fig. 1.5.
Since the tetrahedron is small, the stress across every face may be taken to be uniform. Let the

stress vectors on faces OBC, OCA, OAB and ABC are E X, E y, Ez and En respectively. Let
1_3’ the body force per unit mass acting on the fluid element and ; the acceleration ofthe element.
By using Newton's second law of motion, the equation of motion of the tetrahedron gives

AF, - AF, —mAf?y “nAF, +§pA pﬁ:%pApE ........... (1)

1
Where p is the perpendicular on ABC from O and EPAP the mass of tetrahedron,

— Al — Am — An are the areas of the faces BOC, COA and AOB respectively. Since the outward
normal on the faces are in the negative directions of the axes, which follows that the direction

cosine of the outward normal n with respect to the other three outward normals are — ¢, — m,—n.

Dividing (1) by A and assuming that the plane ABC approaches O moving parallel to itselfso that

b— O and A — O thenwe have

Fn = Fx+mMF +0F7 oo, 2)

and we know that

- AN AN AN

k. =10, +]jo, +ko,,

g AN A' AN

F =t0,+]jo, +ko,,

bd N N N

F =10, +jo, +ko,,

b A A A 3
Fz=16u+Jsz+szz ......................................... ( )

from (2) and (3), we obtain

c, =lo_+ mo, +no_
6, ={o,+mc +no_

0, ={0_.+MO6 _+N0_ ..o, 4



Which shows that, the state of stress at a point is completely known if the nine stress tensor components
are known. We also express the equations (4) in the following matrix form

GHX GXX ny GZX /g
w [T % Cw Oy ||, (5)
nz GXZ GyZ Y74 n

We know from art 1.8 that the stress tensor is symmetric i.e.

cFX

y =04, O

z=0, and 6 ,=0,.

Hence it follows that six components are sufficient to determine the state of stress at a point rather
than nine components.

1.10

Plane Stress, Principal Stresses and Principal Directions

If'we consider the state of stress in which
ny :ze = cSzz :O

then relation (4) ofart. 1.9 will be reduced to

c,=lo, +mo,,
6, ={o, +mo

aNd G, =0 e (1)

which is known as the plane stress. Let rAl be the normal to

XY plane as shown in fig. 1.6. Here normal n inclined at
angle 0 with x-axis then

¢ =cos0 ; m=sind

then (1) reduces to Onx
G, =0, cosO+c, sinb
G, =0, cos0+c  sinb g
Gy =0 e ) 0 A
when resolving the stress components along and perpendicular Fig. 1.6
to the normal rAl , we obtain normal component of stress
G = Oy COSO+ 0, sin 6
=0, cos’B+o, sin’0+20,, sin Ocos O
Z%(Gxx +ny)+%(cxx —ny)cos 20+0,,SIN20 e, 3)
and tangential component of stress
G, =0, cosf—c  sinb
= (ny —Gxx)sin 0cosO+c,, cos’B—o,, sin’0
=—%(GXX —ny)sin 20+ 0,,C08 20 i 4)
20,
If O =0= taﬂ29:m .......................................................................... (5)



If 6,, =0 and o, =oc,, thenO beindeterminate.
then from (3) and (4) we have

6 =0_=0

nn XX yy
and o =0

This state is knwon as uniform plane stress.

T
If 6,,=0and o, # o, then tan 26 = tan 2(5 + ej :

Hence for any state of stress at a point, there are two mutually perpendicular directions,
corresponding to which the tangential components of stress vanishes. These two directions given
in relation (5) are knwon as the principal directions of stress at the point and the normal stress
corresponding to them are called the pricipal stresses. The principal stresses are denoted by
G,, G,, 0, and

G,=0,, 6,=0,

XX

then o, = %(Gl +c52)+%(c51 —02)c0s29

ns

1.11 Stress in a Fluid at Rest

When the fluid is at rest then the tangential stresses do not exist which states that the stress vector
at any point of the fluid is normal to any plane surface passing through the point.

In this case the stress tensor are given by

. O 0
c;=| 0 o, O
0 0 o

For such a state of stress, considering equilibrium of an infinitesimal tetrahedron, we may see that

the magnitude of 6, 6, G, at the point is the same for all elemental planes passing through the

xx? = yy?
point. If ¢ denotes the stress at a point for time being and o is positive then G;; represents a
tensile stress, which is contrary to the experience, since in the interior of the fluid not any tensile
stresses ocuur. This means that the nature of 6;; is of compression and it will be appropriate to

replace o by—p . Then the stress in a fluid at rest is given by

b 0 0
C; = 0 —p 0
0O 0o -—bp

5 0 i#j
or G;=—Pd; U

for all orientations of the coordinate axes. The scalarp is called the hydro-static pressure at the point.

11



1.12

Stress in a Fluid in Motion

When the fluid is in motion then both the tangential and normal stresses occur and the state of stress
in a moving fluid can be expressed as

oy =- b Sij +7;;

where p resprsents pressure, which is similar to but not identical with the hydrostatic pressure and
T, represents viscous or frictional stresses.

We know that the viscous stresses are assumed to be proportional to the rates of strain occuring at
the point considered and proportionality constant, known as the viscosity coeficient and it depends
on the nature of the fluid. Thus the viscous stresses occur only when the fluid is in non-uniform
motion and the viscous stresses disappear and leaving the stress tensor as that of'a uniform pressure
in all directions in uniform motion. Ifthe fluid is at rest then the viscous stresses become zero and

the uniform pressure is known as the hydro static pressure. It is due to behaviour of t;; which is

known as the viscous stress tensor.

1.13

Relation between Stress and Rate of Strain Components

Stokes made the following assumptions in order to find the relation between stress and rate of
strain components.
(1)  The stress components are linear functions of the rate of strain components.
(i)  The relation between stress components and rate of strain components are invariant to
orientation of the coordinate axes.
(i) When the velocity gradients are zero, the stress components must reduce to hydrostatic
pressure.
We know that there are six independent stress components and six rate of strain components. To
derive the relation between stress and rate of strain it is convinient to start with the principal axes of
the two quadrics at a point, because of isotropy the principal axes of the stress quadric coincide
with those of rate of strain quadric at every point in the continuum.

It is clear that referred to the principal axes 6; =0 and €;=0when i # ;. Inview of'the first and third

assumptions the non zero components of the stress tensor c,,, 6,,, G,, arerelated to the non-

zero components of the rate of strain tensor €, €,,, €, inthe following manner

o ,=-b+a, e +a,e, +a; ey
622 == p+ a21 e11 + a22 622 + a23 633
Oy =—P+a,, €, +a;, €, +a5; Eprrrrnienininnnnnnn, (D

Where the a, are the constants to be determined.

In view of second assumption, any permutation of the ¢'s must effect the same permutation of ¢'s .

Now, permute the €,,, €,,, €;; to €,,, €;;, €, (rotation of axes) and re-arrange to obtain.

Cpy=—b+as€, +a,¢c,+a,ec;
Gy =—b+a, €, +ay €, +ayc;
G, =—bP+a5 €, 485 €y + 8y Egprrerenininienieiiiee e, 2)

Also, by interchanging the axes 1 and 2, in the first relation of set of relation (1), we have

Gy == P8, €pn+ 2, + 853 Egprrrrenreerinrieniiieience e 3)

on comparing relations (1), (2) adn (3), we obtain
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a12 - a21 - a13 - a23 - a32 - a31 - 7\' (Say)
and a,=a,=a,;= A+2U(5aY). i (4)
where A and p are the moment numbers whose physical meaning have to be obtained
On using (4), the set of equatin (1) become
o, =—b+2ne, + 7“(611 TEpt e33)
Op=—bP+2ne,+ 7“(611 TEpt e33)
Gy =— p+2ue”+7\,(e”+ezz+e33) ............................................. (5)

Now these equation (5) plus the six equations implict in the fact that 6; =€;=O0when i # j , may
all be combined into a single tensor equations as
Gy == PO +2U € FA €y By v (6)

which is the required relationship between the stress components and rate of strain components for arbitrary
choice of the coordinate axes.

We know that the state of'stress in a moving fluid given by

Gl_] - bSl_] + Tl_] ............................................................................ (7)

From (6) and (7) ; we have the relationship between the components ofthe viscous stress tensor and rate
of strain tensor given by
Ty = 2UE 5+ A€ B (8)

If considered a state of shearing motion ; the velocity field be {)/ = (Vl (x,), 0, 0) then we have

€,= €= Ldw 9)
D g, e ————————— s
Thus ; from (8) and (9) we obtain
dv,

T =Ty =H

(lx2 ------------------------------------------------------------------------------

and all the other viscous stresses are zero. 1 be the coefficient of viscosity and A is important only in the
case of compressible fluids because in an incompressible fluid it does not paly any part.

1.14 Stoke's Law of Friction

We know that the relationship between the components of the viscous stress tensor and rate of

strain tensor is given by
Ty = 2L € FA € By e (1)
It can be written as
T =7 1&g aij +2u S *{7”'_ HJ S Su ................................................. (2)
Clearly T, =(3A +2u)el.i ................................................................................ 3)
T./3 2
or /3 :(X+—uj = K(say)
€, 3

Where K is the bulk viscosity. The bulk viscosity defined as the ratio of the mean normal viscous stress to
the rate of volumetric strain in a state of pure dilation. Stokes assumed that bulk viscosity K=0 then



Using (4) inequation (1), we have

2
tij = 2“ Eij _EH €k aij ............................................................... (5)

which is the required relationship between viscous stress tensor and rate of strain tensor and is
known as "Stoke's law of friction".

1.15

Thermal Conductivity

The study of heat transfer has great importance in different branches of science and technology, In
all types of substances viz solid, liquid and gases, the temperature difference reduces with the lapse
of time flowing heat from the region of higher temperature to the region of lower temperature.
Basically, there are three modes ofheat transfer viz conduction, convection and radiation. In solids,
the process of heat transfer takes place by the mode of conduction, while in liquid and gases the
process of heat transfer takes place by the mode of conduction, convection and radiation
simultaneously.

The process ofheat transfer takes place in solid due to transfer of internal energy from one molecule
to another, known as conduction. Fourier's law of heat conduction state that the conductive heat
flow per unit area is proportional to the temperature gradient.

Where k is the constant of proportionality and is known as the coefficient ofthermal conductivity
and the negative sign show that heat flow is in the direction of decreasing temperature.

1.16

Generalized Law of Heat Conduction

In an isotropic medium in which the temperature varies in all three direction then Fourier's law of
heat conduction for each ofthe coordinate directions :

oT oT oT
-k, ——k—, -k
4 o, q, ox, ds or,
We may write these three relations in Cartesian tensor notation as
oT
=k
4 0X,

which is the three dimensional form of Fourier's law. It states that the heat flux vector g is proportional

to the temperature gradient VT and is oppositely directed. The ratio of thermal conductivity & to
the product of density p and specific heat Cp is known as the thermal diffusivity, which is usually
denoted by a and given by

k
a=—
pCp
The unit of thermal diffusivity a is the same as that of kinematic viscosity i.e.
2
[a] _ meter _ 127
sec.

1.17

Specific Heat

The specific heat C of a fluid is defined as the amount of heat required to raise the temperature of

0
a unit mass of the fluid by one degree. Thus C = 8_$ , where Q is the quantity of heat added per

unit mass of the fluid.
14



The specific heat in fact depends on the process in which the heat is added. Usually the process
considered is either at constant volume or at constant perssure, thus we have

ific h lume € —(a—Q
Specific heat at constant volume ¢, aT v

and specific heat at constant pressure C,= 8_T b

C

The ratio of the two specific heats is usually denoted by the symbol ¥ = C and is known as the

v

"adiabatie exponent" of the gas.

Self Learning Exercise

1. Fillin the blanks in following
(a) Fluid which obeys Newton's law of viscosity is kKnown as.............ccccceeverieiennene

(b) The ratio of the mean normal viscous stress to the rate of volumetric strain is

(c) Theratio ofthermal conductivity to the product of density and specific heat is
KNOWILAS ..ottt sn e

(d) The dimensions of the coefficient Of VISCOSILY 1S .......ccververieienienieerieieceiereienne
(e) thecoefficient of viscosity depends Only on ............oceeeerieeirreiniineeiniereeiieeine
2. Define normal and shearing strain.
3. What do you mean by stress vector ?
4. What is viscous stress tensor ?
5. Write down the Stoke's law of friction.

Example. 1
The stress tensor at a point P is

7 0 -2
;=10 5 0
2 0 4

Deternime the stress vector on the plane at P whose unit normalis 0 = 3 i- EJ + gk'
Solution :

We know that ﬁ:ff+m3+nf<

2 1
then here 525, m=—§ and Il:g then we have

nx G XX G Xy G Xz /g
ny | =] O »w e ||
nz G zx G zy G zz n

15



s. ] [7 0o -27|2/3
=|oc =0 5 0 ||——
6. [=2 0 4|13

s ] 4
T 10

or | |77
Gy 0

Hence the stress vector En is given by

Ed N N

N
Fu=i0,+jo, +ko,

En :4€'23
3

Which is the required stress vector.
Example : 2
What type of the motion do the following velocity components constitute ?
u=a+by-cz ; v=d-bx+ez
and w=f+cx—ey wherea,b,c,d, e, fare arbitrary constants.
Solution :

Let g = ui + Vj + wk be the velocity at a point P and q' =q+ dq be the velocity at a neighbouring
point Q. Then we known fromarticle. 1.5 that

G'= G+Wxdr +D

here given thatu=a+ by —cz
and w = f+cx — ey

- 1|~ 0w ov a[é‘u 8wj ~(Ov Ou
W=—li|l——|+j| —— |+ k| ———
2| \oy oz 0z 0Ox ox Oy

; v=d-bx+tez

W = 2ei-2q - 20k]=— 6f + 6+ bK) o 0
i j k
. Wxdf =|-e —-c -b
dx dy dz
= i(bdy_cdz)+?]'(edz—bdx)+12(cdx—edy) ............................. 2)
ou ov om
NOW EXX=&=O ; Eyy=a_y=0 ) ZZ_E=0
1 ou ov 1
=—| —+— |==(b-b)=0
and €y 2[6y+6xj 2( )

16



Hence D=0
Hence the motion of fluid of motion be translatory motion with velocity 4= ui+ V}' +wk and

rotational motion with velocity w x 47 . The rate of strain 1j =0 which means that motion is free
from deformation.
Hence the rigid body motion

Example : 3

Velocity field at point is given by 1+2y-3z, 4-2x+5z, 6+ 3x -5y. Show that it represent a rigid
body motion.

Solution :
Here giventhat v=4-2x+5z, w=6+3x-5y and u=1+2y-3z

- 1{f{ow ov): [6u 6Wja ov ou -
Here W=Z|| -1+t | == |1t == |k
2|\ oy oz 0z 0Ox ox Oy

W= —(Sf+3j+2ﬁ)

i ] k
Wxdi=-5 -3 -2
dx dy dz
or  Wxdr = (2dy-3dz)i + (5dz—2dx)j + (3dx —5dy K --erreveereerrrrrverinne. )
ou ov oW
e, =—=0; € =—=0; € =—=0
and XX aX yy ay 82
e, _ljou v =1(2—2)=0
Vo 2loy ox) 2
eﬁ:l @ a_w 21(5_5):0
2\0z oy ) 2
szzl @_'_G_u 21(3_3):0
2\ox o0z) 2

Hence D=0

Hence the motion of a fluid element is made up of only two parts viz pure translation and pure
rotation without any deformation. So the given velocity distribution represents a rigid body motion.

1.18 Summary

This unit is devoted to the study of strain and stress. We have studied about stress tensor, stokes
law of friction, thermal conductivity and specific heat also.
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1.19 Answer to self learning exercise

1. (a) Newtonian fluid
(b) Bulk Viscosity
(c¢) Thermal diffusivity
(d) ML'T!
(e) Nature of'the Fluid.
2. Seearticle 1.6
3. E = %il_l}) 2—1:
4. Seearticle 1.12
5.  Seearticle 1.14
1.20 Exercise
1. Write short notes on
(a) Viscosity
(b) Thermal conductivity
2. Define the stress at a point in a fluid and show that it is a symmetric second order tensor
3. Define Stoke's law of friction
4. Distinguish between body and surface force. Define stress at a point
5. What do you mean by thermal conductivity
6.  Show that the erate of strain tensor is a symmetric tensor
7. Show that the following velocity components represent arigid body motion

u=atby—cz ; v=d-bx tez ; w=f+cx—ey
where a, b, ¢, d e and fare arbitrary constants.
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UNIT - 2

Fundamental Equations of the Flow of
Viscous Fluids

Structure of the Unit

2.0 Objectives

2.1  Introduction

2.2 Equation of State

2.3 Equation of Continuity
2.3.1 Equation of continuity in Cartesian tensor notation
2.3.2 Equation of continuity in vector form.

2.4 Navier - Stokes Equations of Motion

2.5 Equation of Energy

2.6  Boundary Conditions

2.7 Vorticity

2.8  Circulation

2.9 Tables on the fundamental equation

2.10 Summary

2.11 Answers to self learning exercise

2.12 Exercise

2.0

Objectives

This unit provides a general overview about fundamental equations of the flow of viscous fluids.
After reading this unit you will be able to understand about the equation of state, equation of continuity,
equation of motion and equation of energy. Here in this unit you will also consider the vorticity and
circulation in a viscous incompressible fluid motion.

2.1

Introduction

The fundamental equations of the flow of viscous compressible fluids are

(a) Equationof'state ; (one)

(b) Equation of continuity ; (one)

(c) Equation ofmotion ; (three)

(d) Equation of Energy ;(one)

These equations are mathematical expressions of basic physical concepts. These are six in number and
therefore determine the six unknowns of the fluid motion i.e. velocity components (3), the temperature,
the pressure and the density, which all are the functions of both space coordinates and time.

2.2

Equation of State

The equation of state of'a substance is a relation between the pressure, temperature and the density.
It is an experimental fact that a relationship between these three thermodynamic variables exist so
there exist an equation of state corresponding to a given homogenous substance, solid, liquid or gas.
The relationship may be expressed as

£, Py T) =0 e (1)
which is known as the "Equation of state". The exact nature of the function f'is, in general, very
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complicated and varies with fluid. For gases, at high temperature or low pressure the relation (1) can
be written as

P 2
R =1+ pB(T+CTIP e @)
where B(T), C(T), .ccceevvveennene are the function of temperature only and R is the gas constant.
For the perfect gas or an ideal gas, the equation of state is given as
P=PRT o 3)

and it is called Boyle's Law. The equation of state of a viscous compressible fluid will be taken as the
equation of state of a perfect gas. If the fluid be incompressible then the equation of state is simply

p = constant

2.3

Equation of continuity

The equation of continuity aims at expressing the law of conservation of mass in mathematical form.
the law of conservation of mass states that fluid mass can neither be created nor destroyed.

Thus, in a continuous motion, the equation of continuity expresses the fact the increase in the mass of
the fluid within any closed surface drawn in the fluid in any time must be equal to the excess of the
mass that flows in over the mass that flows out.

2.3.1 Equation of continuity in Cartesian tensor notation : n;
Let us consider a closed surface S, enclosing a fixed volume . \%
V in the region occupied by the moving fluid. If 1, be the

normal unit vector in the outward direction to the elementary

surface ds of the closed surface S and v, be the velocity of

the fluid at the poiint, then the inward normal velocity is

—Vily S

Thus the mass of the fluid entering per unit time through the

element dSis —pv;n;dS. Fig. 2.1

Hence the total mass of the fluid entering per unit time through the surface S is

Therefore the rate of mass increases within surface S is simply

%{[pdv or I%d" ................. 3)

v
Here the differentiation and integration being interchangeable because a fixed volume is considered.

Now, by the law of conservation of the fluid mass, the rate of increase the mass of fluid through S
must be equal to the total rate of mass flowing into V.

o
Hence ,[ adv = _,[ pvmds 4)

v S

On applying Gauss's theorem, we have

j@dv = —IM.dv or I{@+M}dV =0

ot Ox i ot OX

\% v v J
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Since V is an arbitrary chosen volume, we deduce that

@+ 6(pv_l)
ot  Ox.

]

=0

which is the required equation of continuty in Cartesian tensor notation.

2.3.2 Equation of Continuity in Vector form q
Let S be an arbitrary small closed surface drawn in the compressible L} A
fluid enclosing a volume V and let S be taken fixed in space. Let b

s denote the element of'the surface S enclosing P and n be the

unit normal outward drawn at s and q be the fluid velocity at P.

The rate of mass flow across 8s = p(fi.q)3s

Then the total rate of mass flow across the surface S is S

_ Ip(ﬁfl)dS Fig. 2.2
S

On using Gauss-divergence theorem, the total rate of mass flow across surface

S= jv.(pq)dv

The total rate of mass flow into volume ¥ — — I VoY (1)
v
Again the mass of'the fluid within S at time t= .[ pdV
v
0 op
Hence the total rate of mass increase within surface S = 5,{ pdV = Ia AV . )
v v

By using concept of continuity, (using (1) and (2) we have

j@dv = —[V.pg)dv
Vat v

op

or I[§+V.(pQ)}d\/ =0

\Y%

op

—+(V.pq) =0
or (Vopa) = 0 3)
Dp -
—+ div g =0
Dt p q
where Dt = at + (51 . V) is known as the material derivative or differential following the motion.

0
In the case of steady compressible flow when i 0 the equation of continuity reduces to

div (pg)=0
If p is homogeneous and has the same constant value throughout the fluid, the equation of continuity
reduces to
AIV @ =0 e ®))



2.4 Navier - Stokes Equations of Motion

The equations of motion are derived from Newton's second law of motion which states that

the rate of change of linear momentum = total applied force

Let us consider a closed surface S, enclosing a volume V in the ragion occupied by the moving fluid.
The rate of change in momentum along the element ds is v; (— pvin j)ds Therefore, the rate of

change in momentum enters the controlled surface S is

v s) (1)
S
The rate at which the momentum increases in the enclosed volume V is
ol L S )
A%

From relation (1) and (2) the rate of change in linear momentum is given by

0
aipvi dv + 'S[Vi (Pij)dS .......................... (3)

In the fluid motion, there are two forces (i) force acting throughout the mass of the body of fluid, such
as gravitational forces, known as body forces and (ii) forces acting on the boundary, the fluid stresses

and are known as surface stresses. If f be the body forces per unit mass and P, be the force on the
boundary per unit area then the total applied force is given by

[otdva[Rds 4)
v S
Where the stress vector P, is given by
P=o;n; and o;=-pd;+T1;
Using (3) to (5) the equation of motion can be written as
0
—'[pvidv + J.Vi(ijﬂj)dS = '[pfidv + '[Pids
at v S v S
On using Gauss-divergence theorem, it reduces to
0 0 op Ot
—(pv,)+—pv,v,) = pf——+—
~ov)+ = (ovv)) = of, o, ox
. olpv, .
ot ot 0X ' ox; ox; 0x;
o olev)_ ap , .
using “ 5 T T a0 from equation of continuity we have
J
% + v % = pf — @4_%
P ot j ox, ' x O T (6)

which is valid for all continuous fluid medium.

Now, to use these equation to determine the velocity distribution, we insert the expression for the
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where

viscous stresses in terms of velocity gradients and fluid properties. For isotropic Newtonian fluid
these expressions are given by the constitutive equation

2
Tij = 2“ Eij _EM S Sij .......................................... (7)

i 5 DX, Ox, | (8)

1

Using (7), (8) in equation (6), we finally get

ov, ov, op 0 ov, Ov; 2 ov,
Py ——+V.— pri— + 88 + ——Si-
ot T ox. ox; 0x; Ox; 0x; 3 "Xy )| Q)

Equations (9) are knwon as Navier- Stoke's equations for the motion of a viscous compressible
fluid and are three in number. Taking p as constant and

(o) _ oMy
0x; \ 0%, Ox; | OX;

it reduces for incompressible fluids to

ov. ov. op o%v.
_Jayvy —il=pf - 24—
p[ at VJ aXJJ p 1 8X~ Maxjaxj .............................................. (10)

1

Equation (10) in vector notation can be written as

Dq = P
—=pF-Vp+uV
th P p+tpv-q

Dg_0  (.o. . o .
where Dt = a + (q.V) 1s the "material derivative" as defined earlier.

2.5

Equation of Energy

Consider the motion of a viscous compressible Newtonian fluid. Here we consider the conservation
of energy on the basis of the first law of thermodynamics. The conservation of energy requires that,
the difference in the rate of supply of energy to a controlled surface S enclosing a volume V in the
region occupied by a moving fluid and rate at which the energy goes out through S must be equal to
the net rate of increase of energy in the enclosed volume V.

This can be easily written in an equation form as the rate of heat which is produced by external
sources + the rate at which heat is produced by the work of the surface stresses — the rate of
energy loss by heat —the rate of energy loss by heat convection = the rate of increase of energy in
the enclosed volume.

or

.\[%dv+£(6ijni)ds_,£]5t pvn;ds _,Ianj ds = %jPEth ........................................ (1)

where E be the total energy of the system per unit mass. IfK and I are potential energy and internal
energy then
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Using (3) in equation (1), and changing the surface integral into volume integral by Gauss's divergence
theorem and taking V to be an arbitrary volume, then we get the qeuation of energy as :

Q, 0 _ 9 O |,9T|_ 0
+ (Vi%) x (EtPVj)+ ox [k axj o (Bep) (4)

i i
To simplify the energy equation (4) we are assuming following relations

0
(1) Using the material derivative ¢ = ot *V; ax . and combming the third and fifth terms of
]

equation (4) we have

o o 6p 8 OE.  OE
L (Eopv. )J+=(Ep)=EL L+ 2 (Hv. Ly,
axj( oY)+ at( ) t{dt - (pvj)}ﬂ{ & Y axj} ......... (5)

i

We know that the equation of continuity in the cartesian tensor notation is

Using equation (6) in (5) we obtain

0 0
aTj(Etij)+a(Etp) =p

DE

Again using relation (2) in R.H.S. of relation (7) we have

DE, { Dv, DI ok ak}
p =p|v,—+—

. +—+v.—
Dt Dt Dt ot Jaxj

k
Since potential energy is independent of time and depends only on space coordinates hence e 0

p Dt Pl Vi Dt Dt Ox, [ ()
(i) The equation of continuity is
Dv. op Oty
bt P it
p Dt p 1 axi aXJ ......................................... (9)
and Gl_] = _pal_] + ‘CU ......................................................... (10)

Using (10) in (9), it reduces to
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D 0
pF\; =pf; +g(6ij)

oK

Here Kis potential energy then f,=- o

i

6( )_ Dv, ¢k
Hence g%’ =p E+67 ..................................... (11)

j

Now the second term in equation (4) ie.—— ox. (Vlcu ) can be written as

0 0 ov,
aTj(VIG”) Via—xj(%) GijaTj
Dv. 0Jk ov
—+— |+(-pd :
pV{ Dt & J ( U_le)a j
Dv, ok ov, ov,
— pv, — T,
Dt 0x, ox; ' ox,
v Dv, N ok | oV ‘o
= PV; Dt ox, Pa [T (12)
o=t o,
where i Ox, e (13)

We know that the constitutive equation for an isotropic Newtonian fluid is

2
Ty =21 € _EH €a O e, (14)

Now using (14) in (13) we have

is the heat generated due to frictional forces and known as dissipations function.
Hence the equation of energy (4), with the help of equations (7), (8) and (12) can be simplified to

a_Q+pV D_+p %_pﬂ d) pv DV _ E_ ak_|_ 0 + aT =0
o bt Pk, Dox, "Dt o Pk Tax, | Max,

1

aQ &v, DI a[Ka—TJ+¢=O

Uox, Dt oox, | ox,

or ot p@xi th X



Again using the equation of continuity, we have
Ov. 1D D D(1
p_lzp ___p — B'_p:pp'_ —
0X p Dt p Dt Dt\ p

Thus, the energy equation (16) reduces to

24_ 2 l — @+i Ka_T +¢
p Dt th 5 Ot Ox | Bx, ) e 17)

which is the energy equations in terms of internal energy I and fluid temperature T.
For the perfect gas, we know that
p = pRT and C-C, =R
then the internal energy I is given as

1=C,T=(C,-R)T

On substituting the value I from (18) in (17) it reduces to

Dier)-Lfr), DL}, o] T
p{Dt(CpT) Dt(p}_th(pﬂ 8T+8Xj[KanJ+¢

D Dp 6Q o[ ot
—(CT)=—+—+—| k— |+
or Dt(p) o A axj[ axj} D o (19)
For incompressible fluid
Ny . 1-cCrT,
0X;

The energy equation (16) with constant viscosity and heat conductivity, becomes

pC bt =@ +Ki£ﬂj+¢

"Dt ot ox, \ Ox,
(I) _ aVi n an aVi
where H DX, | BX, | DK, (20)

2.6 Boundary Conditions

The solution of the fundamental equations ofthe flow of viscous fluids becomes fully determined
physically when the boundary and initial conditions are specified. The initial condition will be studied
in the flow problems and the boundary conditions are studied in geometrical considerations together

with the no slip conditions.

2.7 Vorticity

The Navier-Stokes equations for a viscous incompressible fluid motion may be interpreted as the
vorticity transport equations, if we assume that the external forces are conservative then they can be

derived from a force potential V, such that
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(G.V)d = V[l?fj—ﬁxﬁ ............................... )

Where Q= VX G oo, (3)

Q isthe vorticity vector. The Navier Stokes. equations may be written as

oq (- = p 1., 21—
——\qxQ)=-V|=+=q +v; [+VV
ot (@5 (p 1T 1

Taking the curl to both sides ofthe equation and keeping in view that curl of a gradient is zero then
we obtain

Z_?‘Vx(ﬁxﬁ)wvzﬁ ....................................... @)

Using the vector identity
Vx(ixQ)= (QVi-(GV)Q+3v.0-0vg
V(G5 €)= (V)G (V)0 e 5)

Because V.q=0and v. Q=0
On using (5) in (4) it reduces to

%+ (V)= (@vj+vwa
% — (OV)G+0V2D 6)

which is known as vorticity transport equation. The term (Qv)q represents the rate at which ¢

varies for a given particle when the vortex lines move with the fluid, the strengths ofthe vortices
remaining constant. The term ,,y/2() represents the rate of dissipation of vorticity through friction.

For the two dimensional motion, if § = uj + Vj then (Qv) g =0 then equation (6) reduced to

N Y (7)
Dt

This equations is of the same form as the equation ofheat conduction in the liquid. Hence vorticity
diffuses through a liquid in almost the same way as heat does. By analogy it follows that vorticity
cannot be generated within the interior of a viscous fluid.

2.8

Circulation

The circulaton is defined as the line integral of the velocity along a closed curve.

Thes L= dE (1)

The time rate of change of circulaton if the closed curve,drawn in a viscous incompressible fluid,
moves with the fluid we have
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_ ﬂ{%‘} di + a.%(df)H ................. 5

D
Here, d_ (df) 1s the difference of the velocities at the end of the line vector (dr) so that

D, o
)= V) 3)

Ifthe external forces are conservative, then the equation of motion may be written as.

Da__ V(BW J—V curlQ 4)
Dt p

where on using the following vector identity

curl Q = Vx(VxG)=V(V.q)-V’G = = VG cerrrrrerrrenn. (5)

and using equations (3) and (4) in equation (2) it reduces to

]]))I; f {E+V —%q} dr - vj;(curl Q)d

C C

=§ (—+Vf——qj vfleurl ). a7

C C

DI =

—— =—vleurlQ ).dr oo (6)

o = fleurc)
Hence the rate of change of circulation in a closed curve, drawn in a viscous incompressible fluid,
moving with the fluid depends only on the kinematic viscosity and on the space rate of change of the
vorticity components at the contour.

If v=01i.e.ifthe fluid is taken as in viscid , we get the well known "Kelvin's circulation theorem" viz,
the circulation round any closed curve moving with the fluid does not change with time, provided the
fluid is inviscid, the field of force is conservative and pressure is a single valued function of density
only.

Self Learning Exercise

Write down the equation of state for the incompressible viscous fluid.
Define conservation of mass.

State Boyle's law

Write vorticity transport equation

A

State Kelvin's circulation theorem.

2.9 Tables on The Fundamental Equations

In this article, we now present the tables of the basic fundamental equations for in compressible
fluids in Cartesian tensors and in three orthogonal coordinate systems.

28



Table 2.1

Fundamental equations ofa viscous incompressible fluid in Cartesian tensors.

Equation of State p = pRT
dp
Equation of continui T (ij ) =0
a ty ot ox,
Equations of Motion Navier- Stokes equations

ot T ox. ox, Ox, ox; 0x; 30x, !

]

which are three in number

D Dp Q_ 0 or
Equation of Energy p Dt CPT] - E—FE—'_g[Kg}Hb
ov, Ov; 20v, ov,
— Ly —_— 8 !
where ¢ M{@xj ox. 3 0x, ”j} OX
D o 0

~

= V. —
and Dt ot J an
The coefficient of viscosity 1 and thermal conductivity k depend on temperature and this dependency
is significant for the flow of compressible fluids. Then there are eight unknown v ,v.,v,, p, p, T, pand
k instead of six and therefore two more equations are required. These two equations are
p= u(T) and K= K(T)
Table 2.2

Fundamental equations of a viscous incompressible fluid motion with constant fluid properties in
cartesian coordinates (X, Y, z)

: . ou ov 0w
Equation fo continuity x + g +—Z =0
Equation of Motion
Du op 5
- — = pf, —+ uV-u
X - component P Dt [ ox i
Dv 0
y - component Por = pfy—£+ nviv
Do op )
- — =pf, ——+ uVo
z - component p Dt pT, ps il
DT 0Q 5
i C,—=—+xVT+
Equation of Energy pC, DL o
—=g+ui+vi+wi
where Dt ot ox " dy .
vz _ 82 82 82
axz ayZ aZZ
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The components of the viscous stress tensors are

T, = 2 u : T =T, = N + .
A A T
VT - Y”

T, = 2 ow : T, =T, = (a—u + @j ;
7z M 82 ° zX Xz M 82 8X >

The components of the heat-flux vector are :
oT oT oT
q, =—K— ; qy =—K— and q,=—"K—
0z
Table 2.3

Fundamental equations ofa viscous incompressible fluid with constant fluid properties in cylindrical
polar coordinates (r, 0, z)

quation of continuity PR Py
Equations of Motion
I - component
Dv, v, op ( oV, 20V j
L2 = f ——+pu| Viy, ——-=-—-2
p(Dt rj P H "1t 00
0 - component
Dv, v,v, 1 op ( ) 2 ov Vej
-8 = fo———+W| Vvg—5—F-—
p(Dt r j Plo= a0 ! o0 r?
z - component
Dv op 2
g = f,——+ ul\V'v
Dt ™ M( Z)
DT _dQ
i —+xV°T+
Equation of Energy "Dt ot b,

2 2 2
\ 1ov, v ov
=y 2 R e e
where % ,{ {[ rJ [r 00 rJ [GZJ}
1ov )’ (l@vz ave)z [avr GVZT
+= +| = + + +
r 00 r o0 oz 0z oOr
D 0 0 v, 0 0 8218182 0’

v, Ly, — 229 o
Dt ot ‘o r o0 ‘oz and V=St ot T T o




The components ofthe viscous stress tensor are :

T

v, | To = Tor = rﬁEJrlavr
" o " erH@rr r 00 |

T, =2
1 1
Too :2}4(_%"'&} T T Ty :M[%"‘_avz}

roo r 0z r 00

dt,=2 v, T =T = v, +%

an 77 “’ az > zr 1Z “’ ar az >

The components of the heat flux vector are :

oT 10T oT
=-k—; qo=—k—— and =-k—
T T e 1=
Tabel 2.4

Fundamental equations of a viscous incompressible fluid with constant fluid properties in spherical
polar coordinates (, 0, ¢)

Equation of Continuity :
ov
izg(rzvr)+ : i(Ve sin 0)+ 1 —t =
r° or rsin 6 00 rsin@ o
Equation of Motion

r - component,

vi+ve ov
DVr_ 0 o :pfr_@_i_u VZVr—zzr _%5V9_2V9(;0t9_ 22' o
Dt or r r° 00 r r'sin@ 0f

0 - component ,

Dv, v.v, V,cot0 1 2 ov \ 2cosO Ov
p 9+ rYe "¢ :pfe__@_i_uv +_2 r_ - .92 e ¢
Dt r r r 00 00 r°sin“® r°sin“0 O

¢ - component ,

Dv, wv,v. vgv,cotf v
Dt r r r’sin“0 r°sin@ o r°sin” O O

Equation of Energy :
y DT_2Q S+ kVT+0,
Dt ot
where

o, =p

(GVrJZ [lav Vrjz 1 0vy, v, v,cotd ’
2 + +—=| 4| ——+——L+
or rod r rsin® 0p r r
2 ) 2 2
N ﬁ[_e} l@vr N sin® 0 ( v, N 1 Ov, NI %+r£ Vi
or\r ) r o0 r 00\sinB) rsinO O rsin® o¢p  or\ r

D_o 90 vyd Vi @

v
Dt 6t "or r 00 rsin® 0
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2
and V2;i£[r2£j+ ! i[sin@i}r ! 0

ol o) rPsin000\  00) r’sin’6 o>
The components of the viscous stress tensor are :
ov

T =2 s

LR P
To=T ré Yo +lavr

o=t SRS T )T de

lovy v

Tep = 21 ——2+—L

o= <M [r 0 }

o [smeav ) 1,
%= e = B 50 sin0 ) rsin0 06

= 2 1 8V¢+£+VGCO'[9
= HMisne o0 r

1 ov, 0V,
Td)r = Trd) = M . +r—| —
rsin® 0p or\ r

The component of the heat flux vector are :

—_Ka_T . —_Kla_T d q = —K 1 a—T
G=7Rg > =R 5y an ¢ rsin® oo

2.10 Summary

In this unit, we have learnt about the fundamental equations ofthe flow of viscous fluid. The equation
of state, equation of motion and equation of energy have been derived. We also studied about
vorticity transport equation and Kelvin's circulation theorem. These equations in different co-ordinate
system have been given in tabular form for ready reference with constant fluid properties.

2.11 Answer to Self Learning Exercise

p = constant

The fluid mass can neither be created nor destroyed.
p=pRT

See Article. 2.7

See Article. 2.8

2.12 Exercise

Nk =

[um—

Obtain Navier-Stokes equations of motion of a fluid in Cartesian coordinates

2. Obtain Navier - Stokes equations of motion in Cartesian coordinates for two dimensional
incompressible viscous flow.

Obtain equation of continuity in Cartesian coordinate system

Deduce Kelvin's circulation theorem.

5. Define circulation. Show that the time rate of change of circulation in a closed circuit. drawn in
a viscous incompressible fluid under the action of conservative forces, moving with the fluid
depends only on the kinematic viscosity and on the space rates of change of the vorticity
components at the contour.

P w

6. Prove that the vorticity () satisfies the differential equation
% - (Qvi+vv(@)
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UNIT -3

Dynamical Similarity and Inspection and
Dimensional Analysis

Structure of the Unit
3.0  Objectives
3.1 Introduction
3.2 Dynamical Similarity
3.3 Inspection Analysis
3.4 Dimensional Analysis
3.5 Buckingham r—theorem
3.6 Method of finding out The t— products.
3.7 Application of T — theorem to viscous compressible fluid motion
3.8  Physical Importance of Non-Dimensional parameters
3.8.1 Reynolds number
3.8.2 Froude number
3.8.3 Mach number
3.8.4 Prandtl number
3.8.5 Eckert number
3.8.6  Grashoff number
3.8.7 Pe'clet number
3.8.8 Brinkman number
3.8.9 Theratio of specific heats
3.8.10 Euler's number
3.9 Non-dimensional coefficient in the dynamics of viscous fluids.
3.9.1 Lift and Drag coefficient
3.9.2 coefficient of skin friction
3.9.3 Nusselt number
3.9.4 Temperature recovery factor
3.10 Summary

3.11 Answers to Self Learning Exercise
3.12 Exercise

3.0

Objectives

This unit provides a general overview of dymanical similarity and dimensional analysis, non-dimensional
parameters. After reading this unit, you will be able to learn non-dimensional parameters viz Reynolds
number, Froude number, Mach number, Prandtl number, Eckert number, Grashoff number,
Brinkmann number, and non-dimensional coefficients viz lift and drag coefficients, Skin friction,
Nusselt number, recovery factor and their importance in the study of problems in fluid dynamics.

3.1

Introduction

In previous units we have studied the fundamental equations of the flow of viscous fluids. There isno
known general method to solve these equations because these equations have non-linear character.
There are few particular cases which have the exact solutions under restricted conditions. In this
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unity and in the following units, we shall discuss some flows using the approximation based on
smallness and largeness of certain non-dimenssional numbers. But first we shall discuss how to
obtain non-dimensional number and what are they. These non dimensional quantities are very useful
when in experiments we use prototype (geometrically similar but reduced in size) ofactual bodies,
there comes the need for dynamic similarity.

3.2

Dynamical similarity (Reynold's Law)

Two fluid motions are said to be 'dynamically similar' if with geometrically similar boundaries the
flow patterns are geometrically similar.

Now we discuss the conditions under which the fluid motions are dynamically similar. In other words
we have to find out those parameters which characterise a flow problem. There are two methods for
finding these parameters viz (i) dimensional analysis and (ii) inspection analysis. In inspection analysis,
we reduce the fundamental equations into a non-dimensional form and obtain the non-dimensional
parameters from the resulting equations. In dimensional analysis, we form non dimensional parameters
from the physical quantities occurring in a problem, even when the knwoledge of the governing
equation is missing

3.3

Inspection Analysis

In this analysis, firstly the governing equations reduce in to dimensionaless forms then obtain the
non-dimensional parameters from the equations. To understand it, we take an example as follows:
The governing equations of a viscous compressible fluid are

P=PRT oo, (1)
op O B
g*a_%(PVJ)—O ................................................... )
ov, ov, op O ov, Ov, 20v
iy 2= of = + i _J_~Z"'k§
and p{ ot \s axjj pPL; an an {M {axj an 3 0x, uj} ................ 3)

where physical quantities have their usual meanings
Now, on introducing following non-dimensional quantities to reduce the above equations in a non-

dimensional form
XT ey i , VT ey L t* ey tuo p* = ﬂ M* = i
L, U, L, P, K,
N * f; £ T .. _
P f, =T _T_’Sij_aij ............................................................. (4)

where the quantities with subscripte 'o' are certain reference values associated with the flow.
Thus the governing equations (1) to (3) reduced in the non-dimensional form as :

p* = p* R T oottt et e (5)
o O [
* +_* i = 0
o ox (P ) ........................................................................................ (6)
0 oV ' oV _ fL, e _ P op”
ot Pox” u; " pu; 0Ox
TR O | Jfov, ov; 20v, .
+ M * * o~ * ij (7)
F)OUOL0 aXJ aXJ aXl 3 an ----------------------------------------------------



It is seen that the solution of above equation depends on the following non-dimensional quantities :

MO fOLO pO
p.UL, © Ug © p,Us
Hence, for the complete dynamical similarity of the flows of viscous compressible fluid past
geometrically similar bodies, when the body force is the gravitational force only, we must have the

same dimensionless quantities

3.4

Dimensional Analysis

Every physical problem innolves some physical quantities which can be measured in different units.
But the physical problem itself should not depend on the units used for measuring these quantities.
Now the question arises whether the units of each physical quantity is independent or can the units of
one physical quantity be expressed in terms of the units of other physical quantities. The answer is
that we can express the units of one physical quantity in terms of units of other physical quantities.
In dimensional analysis of any problem, we write down the dimensions of each physical quantity in
terms of fundamental units. Then by dividing and rearranging the different units, we get some non-
dimensional numbers.

In fluid dynamics there are four fundamental units, viz., length, mass, time and temperature in which
the dimensions of all the physical quantities occuring in such a flow problem can be expressed. We
shall denote the dimensions of these fundamental unitsby [L] [M] [T] and [0] repectively.

3.5

Buckingham = - Theorem

The important theorem about the non-dimensional numbers is the 7 - theorem.

Statement :

Ifthere are n variables in a given physical problem and if there are m fundamental dimensions, then
there will be (n — m) independent dimensionless parameters.

In other words, if Q, Q, Q,.cveveviiiiiinn Q, be n physical quantities involved in a physical
phenomenon and if there are m independent fundamental units in this system .

O(Qps Qv Q)=0

is equivalent to the relation

£ Ty n )=0

Where 70, T, n__are the dimensionless quantities formed by the Q 's andr is the

rank of the dimensional matrix of the physical quantities.

The proof of the above m-theorem is based on the following theorem of matrix algebra on the
solution of linear algebraic equations.

"If we have m homogenous equations with n unknown, then the number of independent solutions is
n—r, where r is the rank of the matrix of coefficients and any other solution can be expressed asa
linear combination of these linearly independent solutions."

LetQ,, Qe Q_be the physical quantities and let their dimensions be expressed in terms of m
fundamentalunitsu , U, ......cooovunneen. u_, in the following manner :

Q] = [uf“ 10 B u ‘;;"‘]

[Q,] = [ui"2 U5 e u‘;;“]

[Q,] = [uf‘" U5 e u‘;;“"]

So that a, is the exponent of u, in the dimension of Qj. The dimensional matrix of the given physical
quantities is written as the following mxn matrix
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U iay  ap a,
A= U,:ja, ay s,

um : a‘ml a‘mZ a‘mn
Now, let us form a product © of powers of Q,, Q,,.cecvvvneenene. Q. as

X X Xn
T=0Q,"Q5 et e Q,
then
_ a ay ap | app 1432 a2 ( an, Ay Ay )X"

[n]— l(ul“ Uy i u ) (u1 L R u ) ...... U U™ s u.’

Ifthe product & is dimensionless then

a X, ta X, T +a X =0

a, X, Ta, X, T +a, X =0

A X ta Xt +a x =0 or AX=0
ml 1 m2 2 mn n

which is a set of m homogenous equations in n unknowns.

Hence the number of linearly independent solutions of this equation are n—t. Thus corresponding to
each independent solution of X, we have a dimensionless product © and the number of dimension
less products in a complete set will be n—.

3.6

Method of Finding Out the © — Products

We may find the 7 - product of a complete set in following manner :

(i) Write down the dimensional matrix of n physical quantities, involving the physical phenomenon,
having mindependent units.

(i) Determine the rank of the dimensional matrix. If the rank of the matrix is r then the number of
n's willbe n—r.

(i) Select r quantities out ofthe n physical quantities as the base quantities, which have different
non zero dimensions.

(Iv) EXpressm, T ,ccivieiiennnn. n__as power products of these r quantities raised to arbitrary
integer exponents and one of the excluded, but different in different «t's, (n —r) quantities.

(v) Equate to zero the total dimension of each fundamental unit in each nt- product to get the integer
exponents.

3.7

Application of © — Theorem to Viscous compressible fluid Motion

In the fluid dynamics, the physical quantities involved are

LUp,u x g p, Cp, T

and the fundamental units in which the dimensions of all these quantities can be expressed are length,
mass, time and temperature.

(1) The dimensional matrix in the present problem is

LUp p x g p CT

L: |1 -3 -1 1 -1 2 0
M: |0 0 1 1 1 0 1 0 O
t: |10 -1 0 -1 -3 -2 -2 -2 0
6: |10 0 0 O -1 0 O -1 1



(i) The rank of the above matrix is 4 then the number of independent dimension less product be

9-4=5.
(i) Now, taking L,U,p and « as the base quantities.
(iv) Now, let
o= L U» p® ™ p;
mo= L¥ UT pvok™ gy
m,o= L Uv p™ k™ p;
T, = L™ U™ p™ " C;

=) (o) (v ) (Lnae)
n,=L" U™ p* ™ T;

— [Lx1+x2—3x3+x4—l + Mx3+x4+lt—x2—3x4—le—x3J

If 7, is dimension less, then we must have

X, +X,=3x;+x,-1=0;

X;+X,+1=0;

-x,-3x,-1=0;
-Xx,—1=0;
Therefore: x, =—-1, x,=-1, x;=-1, and x,=0
hence M =L'U"p u=—1—
: ULp
o Lg p LUpC kT
Simifarly 72 == S ST R T ™R
From these dimension less products, we can construct the five dimension less numbers as
1 1
Re:_) Fr:_> pr:TCITC4
T T,
y=l_om o L Maio L
Y T, Ts s

Hence with viscous fluid dynamics there are only five independent dimensionless groups.

3.8

Physical Importance of non-dimensional Parameters

We know that the inertia force always exists in all flow problems. Besides the inertia force, there
always exist some additional forces which are responsible for fluid motion. The required conditions
for dynamic similarity can always be obtained by considering the ratio of the inertia force and any
one of the remaining forces. Since ratios of two forces will be considered, we obtain some
dimensionless number as discussed below.

3.8.1 Reynold's Number

The ratio of inertial forces and viscous forces is termed as Reynolds Number and is given by

_ Inertia forces  pU?/L UL
Viscous forces pU/L* v

Re

Where U, L, p and p are some charecteristic values of the velocity, length, density and coefficient of
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viscosity respectivelyand v = u/p inkinematic viscosity.

The British Scientist Osborne Reynolds, demonstrated the importance of Reynolds number in the
dynamics of viscous fluid. For small Reynold number (Re<<1) the viscous forces will be predominant
and effect of viscosity will be felt in the whole flow field. On the contrary, for large Reynold number
(Re>>1), the inertia forces will be predominant and effect of viscosity can be considered to be
confined in a thin layer near a solid body known as boundary layer. For a large value ofRe, the flow
ceases to be laminar and become turbulent. The value of Reynolds Number, when the nature of flow
changes from laminar to turbulent, is called the critical Reynolds number.

3.8.2 Froude Number :

The ratio of inertia force to the gravity force is termed as Froude number and given by

Fr— Inertia force  pU’/L _U_2
gravity force pg gL

where L and U denote the characteristic length and characteristic velocity respectively. It is important
only when there is a free surface i.e. in an open channel flow problem. In such cases too the force
due to gravity may be neglected in comparison to the inertia force.

3.8.3 Mach Number :
The ratio ofthe flow velocity to the velocity of sound is known as Mach Number and given by

_ Material Velocity _ U
Sound Velocity C

where U is the velocity of flow and C be the velocity of sound, Mach number is also expressed in
terms ofthe ratio of inertia force and the elastic force. It is a measure of the compressibility of the
fluid. When the Mach number is small (Ma<<1), the fluid can be taken as incompressible and if
mach Number is nearly one or greater then one, the fluid will be compressible. However, for large
Mach numbers the effect of compressibility must be taken into account. According to the magnitude
of the Mach number the flows are. generally classified as follows.

Mach Number Type of Flow
Ma < 1 Subsonic

Ma ~ 1 Transsonic
Ma = 1 Sonic

I<Ma <6 Supersonic
Ma > 6 Hypersonic

3.8.4 Prandtl Number
The Prandtl number is a dimensioless parameter which is the ratio of the kinematic viscosity to the
thermal diffusivity and is given by

_ kinematic viscosity v u/p ne,

T = = = =
thermal diffusivity a  «/pC, K

where U(: E] is the kinematic viscosity, k the thermal conductivity, C, the specific heat at constant

pressure and a the thermal diffusivity. The ratio of these two quantities should express the relative
magnitude of diffusion of momentum and heat in the fluid. It is a measure of the relative importance
ofheat conduction and viscosity of the fluid.

The Prandtl number is a material property fo the fluid and varies with fluid. For liquid metals
the Prandtl number is very small i.e. for the Mercury Pr = 0.44 but for highly viscous fluids
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3.8.5

3.8.6

3.8.7

3.8.8

3.8.9

it may be very large e.g. for glycerine Pr = 7250. Prandtl number for air is 0.733 while for
water it is 7.0 at 60°F.

Eckert Number

2

The dimensionless parameter Eckert number is defind as Ec = CT
p

where U, C and T are the velocity, specific heat at constant pressure and some reference value of
the temperature respectively. In compressible fluids it determines the relative rise in temperature of
the fluid due to adiabatic compression. It can also be retained in incompressible flow, ifthe frictional
heat is to be considered. In high speed flow, for gases the Eckert number becomes equivalent to
Mach number and is given by

E. =(y-1)Ma?
Where Maand y=C, /C, are the Mach number and ratio of the specific heats respectively.

Grashoff Number

Grashoff number is a dimensionless parameter representing the raito of the buoyancy forces to the
viscous forces in the free convection flow system. It is given by
T,-T, )L
G- 8B(T,-T,)

2
A%

where g the gravitational acceleration, 8 the volumetric coefficient of thermal expansion, T  the
temperature ofthe wall, T the free stream temperature, L the distance from the wall. It hasa role

similar to that played by the Reynolds number in forced convection flow field and is the primary
paramoter used as a criterion for transition from laminar to turbulent boundary layer flow.

Pe'clet Number

In the theory of heat transfers, a non-dimensional parameter Pe'clet number is defined as the ratio
of UL to the thermal diffusivity and is given by

Pe:EZE'X:Re'Pr

a vV a
Hence the Pe'clet number is the product of Reynolds number and Prandtl number. It plays an

important role when the viscous force is small while thermal force is large as compared to inertia
force.

Brinkman Number
The dimensionless parameter Brinkman number is defined as
__

K(Tz - Tl)
where u, U, k, T, and T, are some reference value of the viscosity, velocity, conductivity and two
different temperatures respectively . It is a measure of the extent to which viscous heating is important
relative to the heat flow resulting from the impressed temperature difference (T -T)).

The Ratio of Specific Heats
The ratio of specific heat at constant pressure C to that at constant volume C, is usually designated

Br

as y therefore ¥ = C—p . It is a measure of'the relative complexity of the gas moleucles.

v

3.8.10 Euler Number

The ratio of pressure force to inertia force is known as Euler number and is given by

Pressure force P
Fu = =

Inertia force Vip
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Where P, V are the characteristics pressure and velocity respectively. When the pressure force is
the predominating force, Euler's number must be the same for dynamical similarity of two flows.

3.9 Non-dimensional coefficients in the Dynamics of Viscous Fluids

In order to complete the studies of non-dimensional quantities, which occur in the dynamics of
viscous fluids, let us mention some important non-dimensional coefficients which are usually calculated
in the analysis and their values are compared with experimental results.

3.9.1 Lift and Drag Coefficients

If E is the force on an obstacle placed in an otherwise undisturbed stream, due to the system of

stresses over its surface, then the component of F  in the direction of the undisturbed stream is
called the drag force and denoted by D, and the component at right angle to this called the lift and
denoted by L.

If S represents a typical area associated with the obstacle, then the drag coefficient C and lift
coefficient C, are given as
D L
Cp=—5 CL=—5—=
pU*S/2 pU*S/2
where notation have their nusal meaning.
3.9.2 Coefficient of skin friction :

The dimensionless shearing stress on the surface of'a body due to a fluid motion is known as coefficient
of'skin - friction and is given by

T
C — o
topUt2

where p the density,
U the characteristic velocity and
1 the shearing stress on the surface of the body

3.9.3 Nusselt Number

The rate ofheat transfer at the surface ofthe body is defined in terms of a non-dimensional parameter,
which is known as Nusselt number and denoted by Nu. The heat exchanged between the body and
the fluid can be calculated with the help ofa coefficient of heat transfer o (x), which is defined by
Newton's cooling law as given by

QX)) = 0 (X) (T, =T, coveoeeeeeeeeeeees e (1)
where q (x) is the quantity of heat exchanged between the wall and the fluid perunit area per unit time

atapoint x, T the wall temperature and T the free stream temperature.

According the Fourier's law, the heat exchanged between the fluid and the body due to conduction
are given by

q(x)= _K(a_j Y =0 e )

where « is the thermal conductivity and y is the normal direciton to t he surface of the body.
On using Fourier's law of heat conduction and Newton's cooling law, the rate ofheat transfer in
terms of Nusselt number is given by

Nu = a(i)'L G I:Tw) [%l:o




where negative sign shows the decrease in temperature and L be characteristic length.
This number is very important in the problems where heat transfer is in consideration.

3.9.4 Temperature Recovery Factor

The temperature which a surface assumes under the influence of internal friction is called they

recovery temperature or adiabatic wall temperature. The dimension less temperature recovery
factor is given by

r= Tr B Too
U?/2C,
It is important in the high speed flow in which the frictional heat plays an important role.

Self Learning Exercise

State the Buckingham nt-theorem.

What do you mean by critical Reynolds number ?

Which dimensionless parameter is product of Reynolds and Prandtl numbers ?

Define Newton's law of cooling

A

Define Fourier's law of heat exchange.

Example - 1

An oil of specific gravity 0.85 is flowing through a pipe of 5 cm. diameter at the rate of 3 liter/sec.
Find the type of flow, if the viscosity for the oil is 3.8 Poise.

Solution :

Discharge 3000
Area n(5/2)

Diameter of pipe = L = 5cm.

p=3.8 and p=0.85

_ULp 152.8x5x0.85

0 3.8
Since Re =171<2000 : it follows that the flow must be laminar .

Velocity ofoil= V= - =152.8cm/sec.

=171

Hence Re

Example - 2

A 1:20 model of an air-duct is to be tested in water which is 45 times more viscous and 850 times
more dense than air. What should be the pressure drop in the prototype if the pressure drop is
3 kg/cm? in the model when tested under hydrodynamically similar conditions ?

Solution :
Here we have for dynamic similerty

Re — Vprpp — Vmmem

K, Hn
where p is subscript and is considered for the prototype and m for the model

Vo _Pw Ln M

= L = Tmy_my
Vo P, L, u,

V, 80 17

\Y4 20x45 18
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and E. = =

2
Vv

= P :mep—px(—pj
Vv

P P

p m

2
m

P,V PV,

p m

2
p :3XLX(£J
P850 18

-3 2
P =3.4x10 kg/cm

which gives the required presure drop.

3.10 Summry

After studying this unit, you are able to reduce any fundamental governing equations into a non-
dimensional form of’it. You are also capable to understand the dimension less parameters and their
physical importance in dynamics of viscous fluids and its practical utility.

3.11 Answers to self learning exercise

1.
2.

5.

See article 3.5

The value of Reynolds number, when the nature of flow changes from laminar to turbulent is
called critical Reynolds number.

Pe=Re.Pr
See article 3.9.3
See article 3.9.3

3.12 Exercise

1
2.
3.
4

Explain the principal of dynamic similarity
State and prove Buckingham nt-theoram
What are the dimensions of coefficient of viscosity and kinematic viscosity ?

Find out the complete set of T-products when the physical quantities involved in a phenomenon
areL, U, p, 1, g p, Cp and T. Symbols have their usual meanings.

Explain the physical significance of the Reynold number, Mach number, Prandtl number and
Froude number

Define following non-dimensional coefficients
(a) Lift and drag coefficient

(b) Skin friction coefficient

(c) Nusselt number

(d) Recovery factor.

42



UNIT - 4

Exact Solutions of The Navier- Stoke's Equations

Structure of the Unit

4.0 Objectives
4.1 Introduction
4.2  Steady incompressible flow with constant fluid properties
4.3  Flow between parallel plates
4.3.1 Plane Couette flow
4.4  Plane Poisseuille flow
4.5 Generalized plane Couette flow
4.5.1 Volume rate of flow
4.5.2 Coefficient of skin friction
4.6  Flow ina circular pipe
4.6.1 Coefficient of skin friction
4.7  Flow in tubes of uniform cross section
4.7.1 Circular cross section
4.7.2 Annular cross section
4.7.3 Elliptic cross section
4.7.4 Equilateral triangular cross section
4.7.5 Rectangular cross section
4.8  Flow between two concentric rotating cylinders
4.8.1 Torque
Self learning exercise
4.9  Answers to selflearning exercise

4.10 Summary
4.11 Exercise

4.0

Objectives

This units provides some exact solutions of the Navier - Stoke's equations for steady incompressible
flow with constant fluid properties by changing them to solvable differential equation under certain
boundary conditions for symmetrical channels.

4.1

Introduction

The Navier-Stoke's equations are second order non linear partial differential equations. There is no
any known general method to solve these equations. Only in few special cases exact solution can be
obtained with certain assumptions about the state of the fluid and configuration ofthe flow pattern.
In this unit, we propose to study some useful real problems for which exact solution are possible, viz;
the steady incompressible flow with constant fluid properties. Now we present some solvable viscous
flow problems by analytical methods.

4.2

Steady Incompressible Flow with Constant Fluid Properties

Ifat various points of the flow field all quantities such as velocity, density, pressure associated with
the flow field remains unchanged with time then the motion is said to be steady . Ifthe said quantities
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depend on time then motion is said to be unsteady. In steady motion the various quantities of flow
field are the functions of'the space coordinate and independent of time. In the incompressible fluid
motion, the density of the fluid remains unchanged or constant throughout the flow field. In this unit
we shall study only some exact solutions for steady incompressible fluid motions.

4.3

Flow between Parallel Plates

A very simple solution of the fundamental governing equations can be obtained for the flow between
two parallel plates which are kept at a finite distance apart.

Consider a steady laminar flow of viscous
incompressible fluid between two infinite parallel
plates which are kept at a finite distance h.

Let the x-axis be along the direction of the flow,
the y-axisis taken at right angle to it and thewidth | -------. -}
ofthe plates, parallel to z-axis, be large compared
to the distance between the plates. Here we use h
the word "infinite" implies that the width of the
plates is large compared to the distance between =~ | - ------ e -
them.

Hence the motion is two dimensional and Fig. 4.1

therefore all the variables will be independent of

z-coordinate The motion of the fluid between the two plate is caused due to difference in pressure
at different points in x-direction, i.e. the motion is due to a pressure gradient and the motion takes
place only in x-direction. Thus

0
= 0)

where u, v, w are velocity component in the directions of x, y and z - axis.

0 5 u=u(xy) 5 v=0; W=0 and P=p(XY) et (1)

In the absence of body force, the Navier - Stokes equations (Reftable 2.2) becomes

) . ou
Equation of continuity : F 0 e, ()
. : op d’u
Equations of motion : 0 = — 8_x+ W ......................... 3)
and 0= - % ....................................... 4)

Equations (2) and (4) respectively show that u is the function of y only and pressure p is a function
ofx only. Therefore, the equation (3) becomes a total differential equation

Fu_ 1 5
dy? T d s (5)

Differentiating both sides w.r. to x, we have

g d(d
o-Ldp _{QJ_O
p dx dx \ dx
dp
so that x constant...........cceevveeeeeiennennnnn. (6)



On integrating equation (5), we find

du = —1@ y+A
dx p dx
Again inlegrating, we have

u=t dp y’+Ay+B
2u dx
where A and B are arbitrary constants to be determined by the boundary conditions for the different
type of flows.
4.3.1 Plane Couette Flow

The flow between two parallel infinite plates one of which is at rest and the other moving with a
uniform velocity U in its own plane and the pressure gradient be zero then it is known as Plane
Couette flow. In this flow the flow is due to motion ofthe bounding plate which transmits the motion
in successive layer of the fluid

If stationary plate is taken in the direction of x-axis and the distance between the plates be h and
upper plate has been given a velocity U parallel to x-axis then the boundary conditions are

y=0;u=0
V=h;U=U. e (8)

Hence the velocity distribution in this flow in absence of a pressure gradient d_y is obtain from

equation (7) and is given by
u=Ay+B
On using boundary conditions to find constants

We have AZ% and B=0

u=—
Hence h y
u_y
or U f ——————— e 9)

which is the velocity distribution in non-dimenssional form and which is linear as shown in fig 4.1.
The graph shown there is called the velocity profile.

The volume rate of flow Q per unit width per unit time, at any normal section is given by

Q=fudy (10)
0
Substituting the value of u from equation (9) in (10), we have
RS (11)



where shearing stress T _is given by
(0]

On substituting the value of t_ from (13) in(12), we find

_mwUh o 2

C; = = =—
! pU?/2 pUh Re

C, =2 (Reis Reynolds number = o
f—Re( e 1s Reynolds number = " )

Hence the value of skin friction is fixed.

4.4 Plane Poiseuille Flow

Consider the steady laminar flow of viscous y
incompressible fluid between two infinite
stationary parallel plates at distance 2b apart.
Let x-axis be taken in the middle of the channel LLLLLLLLLLBLLLLL L L LSS LSS LY
parallel to the plate. Let x-axis be the direction u=0
of flow and y-axis in the direction perpendicular u(y)

to the flow. The width of the plates is parallel to 2b 0 X
Z-axis.

The width of the plates be large compared to | u=0
the distance between the plates. The motion is TTTTT 7777777 @ 7 7777777777777
now two dimensional and therefore all the Fic. 4.2

: iy . g+
variables will be independent of z-coordinate.

Hence
0

2 ()20 u=u(,9),v=0 5 0=0; and P=p(X, ¥) oo (1
Further, the equation of continuity and the equation of motion reduce to

From above governing equations,we conclude that u will be a functin of y only and p will be a
function ofx only thus these equations can be written as

@u_1ap
dy’ p dx



Differentiating both sides, w.r. to x, we find

2
0=ld—€ = i[QJZ()S@:COHSt- ........................... (6)
p dx dx \ dx dx ’
On integrating equation (5), we have
d_u — l d_py +A
dy p dx

Again integrating , we have

1 dp
u=——y +Ay+B
21 dx y Y D e (7
The boundary conditions are

V=2D U=0 i (8)

On using boundary conditions in equation (7), we find

0= 9P By Ab

2p dx
and 0 =L@b2 +B—-Ab
2p dx
1 d
So that A =0 and B=_2 L2
p dx

which is parabolic and these velocity profiles are as shown in fig 4.2 and the maximum velocity occurs in
the middle of the channel (at y = 0) which is

_Ld_pb2 = _b_z dp

u = —_—
max 21 dx QL dog T (10)
Hence the Non-dimensional velocity distribution in a plane Poiseuille flow is given by
2
u y
o [l'_i§7j ......................................................................... (11)

The average velocity distribution for the present flow is given by

1 b
=—[ud
u, 2bjbu y
1 b yZ
:Eumdxj’[l—?j dy

b
_ umax _y_3 ’
TR
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4.5 Generalized Plane Couette Flow

Consider the steady laminar flow of viscous incompressible fluid between two infinite parallel plates
one of which is at rest and the other is moving with uniform velocity U in its own plane and the
pressure gradient is non zero. If the x-axis is taken along the stationary plate and the distance
between the plates be denoted by h, then the boundary conditions are

y=20 ; u=0

y=nh 3 U= U e (1)
The motion is two dimensional and therefore all the variables will be independent of z-coordinate.
0
Hencea( )=0 ; u=u(x,y), v=0, w=0 and p=p (X,y).oo....... ()
Further the equation of continuity and equations of motion reduce to
ou
20
ey 3)
op 0u
O=——+p—~
dx K y? T 4
p
0=——
and y o (%)

From above equations, we conclude that u is the function of'y only and p is function of x only,
therefore these equaton can be written as

du_1dp
dy? L T (6)
p .
where is constant.
dx
On integrating, we have
1dp >
u=—-—y +Ay+B
21 dx y Y D (7)

where A and B are arbitrary constants to be determined by the boundary condutions (1). Using (1) in (7),
we have.
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A=Y _dp I

= . =0
h dx 2p
Hence
2
TS AV A T A (8)
h 2u dx h h
Let us introduce the dimension less pressure gradient as.
h? d
P= [— _pj .............................................................................. 9)
2uU dx
Then the velocity distribution in a generalized plane couette flow, in non-dimensional form, is given by
u_y y y
—=24p2|1-2L
TR [ hj ........................................................................ (10)

From equation (10) it is clear that the velocity field will depend on the nature of the non-dimensional
pressure gradient P. There are three possible different cases for the nature of P.
B Casel P>0

When the pressure is decreasing in the direction of flow then the velocity distribution is positive over
the entire width between the plates, as shown fig. 4.3

1.0 U

Black
Flow

v

-0.2 (0) 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Fig. 4.3

[ ] Casell P=0

When the pressure gradient is zero or when the pressure is constant throughout flow then the velocity
distribution is linear which is clearly the case of plane couctte flow.

| Caselll P<0

When the pressure is increasing in the direction of the flow or in other words, for an adverse pressure
gredient, we find that a back flow may occur near the stationary plate at P<-1. It is due to the
influence ofthe adverse pressure gradient which surpasses the dragging action of the faster layer on
the fluid particles in that ragion.

4.5.1 Volume rate of flow

The volume rate of flow Q per unit width per unit time at any normal section of the channel is given



Substituting the value of u from the equation (10) in equation (11), we have

Q=U1B+p%[l_%ﬂdy

If P =-3, then the volume rate of flow becomes zero. This means that there is no net flow across any
section perpendicular to the direction of motion.

4.5.2 Coefficient of skin Friction

The shearing stress on the stationary plate is given by

oeutt) pftr-2)]

puU
T, =—(P+1
=2 (e
Hence the coefficient of skin friction in the present case at stationary plate is
1, uUP+1) 2u(P+1) 2(1+P)
! pU?/2 hpU?/2 hpU Re

pU o . .
where R€ =—— is Reynolds number. Clearly C,is positive if P is positive and it will be negative if

P<-1 in the case of back flow and zero if P

=1

4.6 Flow in a circular pipe (Hagen - Poiseuille Flow)

Consider the steady laminar flow, without body force of'an incompressible fluid through an infinite

circular pipe of radius R with axial symmetry as shown in fig. 4.4. Such a motion is maintained by the

presence of a pressure gradient along the axis of the pipe.

Now let the axis of the pipe be .

taken as z-axis along which the
flow takes place and r denotes

[

outward fromthe z-axis. Due to

the radial distance measured /

0
axial symmetry of flow %= 0

=7
=

or in other words, all the variables will be independent of 6. Also the only non-zero component of

velocity is V , Hence the governing equations from table No.2.3 of unit 2 in cylindrical coordinates

reduce to

ov,
oz

I
(e




p
X0
Pl B —— )
o°V, 10V,| op
and M "o +; Br | B e 3)

Hence from equations (1) and (2), it is clear that V_is a function of r only and p is the function of z only.
Therefore the equation (3) can be written as

dZVZJrldVZ _dp
H dr? r dr

d
Since p is not a function ofr and V_is not a function of Z then equation (4) can be valid only when d_Iz) is

a constant.

Equation (4) is now written as

d[rd\/z}_ig

dr| dr p dz
On integrating, we have
2
r dv, - dp +A
dr  2udz
dv, rdp A
or =S T
dr  2pdz r
Again integrating, we have
2
VvV, = & —+ Alogr+B (5)
dz 4p
Where A and B are arbitrary constents to be determinied by the following boundary conditions.
dv,
r=0 ; el 0 (due to symmetry)
r=R ; V =0 (No slip condition).............. (6)
Therefore, the equation (5) and equations (6) give
1dp R®
A=0  4dz’ 1)
Hence equation (5) becomes
2 2
\ __Ridp 1_[Lj 7
4“ dZ R -------------------------------
C . . . d_p i
which is the form ofa paraboloid of revolution as shown fig. 4.4. The pressure gradient =z L

where L be the distance between two sections of the pipe where the pressures p, and p, are measured.
The maximum velocity occurs on the axis of the pipe and is given by
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2
V)= L

4u dz
p-p, R’
(V.), = D T ®)
Hence the velocity distribution in a non-dimensional form in Hagen-Poiseuille flow is given by
()
(Vz )max R | e 9)

The average velocity over a croos section can be obtained as

R
IVZ.andr
Vv, =2

nR?

_R_zﬁzl(v)
8udz 2 °

The volume rate of flow Q given by

Q=nR’V,

nR*

= %L T O (11)

4.6.1 Coefficient of Skin Friction
The shearing stress on the wall of the pipe is given by (table 2.3 of unit 2)

) ={nde) -2

=R 2 dZ

T pRY (13)

z

2R
If Reynolds number Re =
16

then equation (13) reduces to

Cy

Showing that skin friction can be obtained from the knowledge of Reynold number. The above
formula is used to determine energy losses in pipe flow.
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4.7 Flow in tube of Uniform Cross-Section

In usual practice the pipes of different shapes are employed in order to transport a given fluid.
Consider the steady flow of a viscous incompressible fluid through a tube of arbitrary, but uniform
cross section. Let z-axis be parallel to the generators ofthe tube. The only non-zero component of
velocity is the velocity along z-axis, therefore.

UTVT0 oo e (1)
and the equation of continuity reduces to
om
-0
T e 2)

which shows that o is a function of x and y only.
The Navier-stokes equations of motion in Cartesian coordinates, in the absence of any external

force are
9p _
X 0 et 3)
op
P_y
Dy | s s (€))
o’ 0’w)| Op
and H[QWL oy’ j BT (5)

Since it is clear from equations (3) and (4) that m is independent ofz and p is independent of x and
y , then equation (5) takes the form

O’w  0’w) dp
,"L aXZ + ayz _E ........................................................... (6)

Diffrentiating both sides of equation (6). w.r. to z we get.
0= i(d_pJ
dz\ dz

d
iving d—z = constant =—P (say)

Hence the problemreduces to the solution of the equation

with the boundary condition ® =0 on the surface ofthe tube.

Thus the problem reduces to solving Poission's equation (7) with the boundary cordition ®=0 on
the surface of the tube. Direct solution of it is not easy. So to simplify the solution we convert
equation (7) into a Laplace equation by the transformation

which satisfy the two dimensional Laplace equation
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oy &
o 0 e 9)
dx’ dy

with the boundary condition

on the surface ofthe tube.

We will now discuss some of'the solutions of the equation (9) subject to condition (10), for tubes of
different cross section and shall calculate the volume rate of flow in each case.

4.7.1 Tube of Circular Cross-Section
Let the cross-section of the tube a circle
X2 4 Y7 €87 e (11)

Since on the surface of the tube r=a,
the suitable solution of the Laplace equation (9) is

2

Pa
= A(const.) = —
v =A( ) i (12)
with the boundary condition (10). Hence the velocity distribution is given by
P 2 2
o=—o>I\a -r
4n ( ) ................................................................... (13)

The volume rate of flow Q is given by

Q= jw.2nr dr

:[43 a’—r? 2nr dr = g—ﬁ:[(az—rz)r.dr

2u 4 8
The results for velocity and volume rate are identical to those obtained for Hagen-Poiseuille flow.

4.7.2 Tube of Annular Cross Section
The suitable solution of the Laplace equation (9) for this type of flow is

W=Alogr + B (15)

The boundary conditions on y are

Pr a* Pn ,
—a

r=a —ia2
R ™
P
r=b ; =—Db?
% Qu ———————————————————————— (16)

with the help of (16), we determine the constants A and B.
On subsitiluting boundary conditions (16) in equation (15) we have.
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2

Aloga+B=£a
4p

and Alogb+B=£b2
4p
which gives that
P
Aloga—logb)=—/(a> - b’
(loga—logb) 4u( )
_ P a’—b’
i log(a/b) ......................................................................... (17)

—iaz _ P loga. a’—b’
i B log(ajb) s (18)

Substituting these value in (15), we obtain

B

Hence the velocity distribution in the annular region between two concentric cylinders of radii a and

(b <a) will be obtain on substituting eq (19) inthe equation ® = ¥V — E r’

Pl/, , , 2\ log(r/a)
= — - -b
o= Pl e el o) o
The volume rate of flow Q is given by

Q= iw.an.dr = —275}1{(312 —rz)r+ ( 2 —bz)log(r/a)'r} dr

2 41

2u| 4 41log(a/b)
P/, ..\ la®=b? ]
Hence Q= a{(a B )_ (log(a/b) ] .......................................................... 21



Then the average velocity in the annulus is given by

o = Q
* " nfa?—b?)
P 2 2 2 _]:)2
Hence ®, = @{(a +b )_ fzg(a/b))} ................................................... (22)

The shearing stress is obtained on using equation (20) as

dm_g{_zﬁ a’-b?) 1 1}
log(a/b) (r/a) a

P {w 2r} ................................................................. (23)

T =u— =
m“dr4

"4 log(a/b)r -
Hence the shearing stress at the inner and outer surface ofthe annulus are respectively given by
P[ (a’-b> ]
(. ), =— o) D | e (24)

4| b.log(a/b)

_Pllai-b?)
and (1), = 1| alog(a/b) 28 | (25)

which shows that the shearing stress at both walls are positive.

4.7.3 Tube of Elliptic Cross-Section
Let the cross-section of the tube be an ellipse

2 2

X
a—2+z—2=1 .................................................................................... (26)
Let Y = A(xz—y2)+B ...................................................................... (27)

be a suitable solution of the Laplace equation for the present tube then

® = A(xz—y2)+B—%(xz+y2) ................................................ (28)

Since on the boundary of the pipe @ = 0

then i(Xz +y2)= A(Xz _yz)"'B

4p
1 P 1 P
— | — A | x4+ —| —+A =1
or B[4u j B[4u jy ....................... (29)
Equation (29) must be identical to ellipse (26)
If 1 3—A =i2 and 1 3+A =i2
Bl 4u a Bl 4p b
on solving, we have
P (a®-b’ P a’b’
A=— and B=—
A eI 2um ......................................... (30)



Hence the velocity distribution in an elliptic cylinder is given by

21.2 2 2
wo_babl Xy
j—”“ 21D FEJTC PSSR (31)

The volume rate of flow Q is given by

Q= ”wdxdy
Pa’b> X2 yz

= l-———-—=—|dx d

2ufa’ +b) -U[ a’ b’ Y

212 2 2

= Pazb > nab—%nab.a——%nabb—

2ula” +b a b 4
3 nPa’b’ 5

an D ) s (32)

4.7.4 Tube of Equilateral Triangular Cross-Section

Let the each side of the triangle be oflength 2a./3 , the z-axis passes through the centre of gravity

of the section and the axes of'x and y are perpendicular to the two sides as shown. The equation to
the boundary in present case will be

Y
(x—a) (X—\/§y+2a)(x+\/§y+2a):0 .................... (33)
The suitable solution of the Laplace equation is A
60° N
N S5 s ) L : O, (34) 5 2wl . | .
NEYE
then W = A(C ~3xy?)+ B-— (x4 y?) (35) o
g Y s | .
Fig. 4.5

On the boundary of the pipe w = 0 and if x = a is a part of the boundry, we have

%(a2 +y2) = A(a3 —3ay2)+B

Therefore
2
Aa’+B= Pa
4p
P
-3aA = —
and m
hich oi A=- P and B—Paz
which gives 121a g (36)

Using (36) in (35), we otbain the velocity distribution in an equilateral triangular cylinder as

w :—12};& (x3 —3xy2)+¥—%(x2 +y2)
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P

= (x—a)(x—\/gy+2aXx+\/§y+2a)

- 12pa TN T EEENET TS 37
The volume rate of flow Q is given by
Q= ” wdx dy
(X}Za)
P a 3
=— I(x3 —3xy” +3ax’ +3ay’ — 4a3) dx dy
12“3 x=—2a y=—(x+23)/\/§
a 4
=— P j gX4+Eax3+4azx2 —§a3x—10a dx
6v3pa 3.\ 3 3 3 3
QOJB L 7T (38)
The average flow over an equilateral traangular cross - section is given by
A i ~ Flux
verage flow = Area

4
_ 27 Pa [;.321.231\/5)

2043 po

RS
T g0 s (39)
4.7.5 Tube of Rectangular Cross - Section
Consider the flow through a rectangular pipe whose cross-section is bounded by the planes

x =*a and y = £ b .Thentheproblemis to solve the equation

Yo, do_ P

PYCIPY LT (40)
with the boundary conditions

X=*Ta ;0 o=0 - (I)

x=2b 5 ©=0 (I (41)

Let the particular integral of the equation (40) satisfying the first boundary condition be
©, = P (a2 —X 2)

2p
which is not satisfies by the I boundary condition.

Now we take a suitable solution @, for the Laplace equation, so that

satisfies the equation (40) and all the boundary conditions (41)

for the symmetry of the cross-section, it is obvious that m must be an even function of x and y. Since , is
the even function of x and ®, should be an even functioninx and y.
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Now take o, = X(x). Y(y)

. . o’w 0’
as a solutionto the equation PYE + oy =0
- 1 d2X+ 1d°Y
Therefore X dx’ Y dy2

1 d*x 1 d*Y
or Xad Y dy? T (42)

L.H.S. of (42) is a function of x alone whereas R.H.S. is a function of'y only. So equation (42) is

valid only if each side is a constant say C> so it gives

_ldzx_cz_isz
X dx’ Y dy’
d2X+czx—0 and sz— ClY =0
or Ix n dyz B i (43)

On solving (43), We have
X = Acos (C,x)+ B sin(C,x)
and Y =Ccosh (C,y) + Dsinh(C,y)
Since w, is an even function ofx and y, we must have B=D =0

so that the terms sin (C x) and sinh(C_y) must be zero when x =ta and y=%b

Hence ®,= ZAn COS(CnX) COSh(Cn)’) ............................................. (44)

n=0

Now from equation (42) , we have

O=0+0,
®= Zi(a2 ~x*)+ YA, cos(C,x)cosh(C,y) ... (45)
,"L n=0

subject to the boundary conditions (41)
The first boundary conditions of (41) gives that

cos(C,a)=0
(2n + l)n
C,=—+—
=, g (46)
and the second boundary condition, now requires
P/, ., = cos(2n+1)n (2n+1)nb
I PR =) An h
o (2> -x?) Z:; S coshi 47)

for —a<x<a
Multiplying both sides by cos (2n + 1)% and integrating between the limits —a to a and noting that

59



'[cos (2m+1)r COS(2n+l)na dx 2 ° if n#m

o 2a 2a aif n=m
then we find
n 2
An = — P(-1)".32a g
2p 7’ (Zn + l)3 cosh [(Zn + l). ;} .
a

Hence the velocity distributioin in a channel of rectangular cross- section is given by

" b
W = i (a2 —xz)— 3042 i(—l) cos(2n+1)%cosh(2n+l)g—a
2n P o (2n+1)3 COSh(2n+1)§b ...................... (48)
a

And the volume rate of flow Q is given by

sz. jcodx dy

-b —a

Pl8ah 512a% & tanh (2n+l)—
DY 2a (49)

= E 3 TCS e (2n+1)5 ...........................

4.8 Flow between Two Concentric Rotating Cylinders (Couette Flow)

Vo (r)

F AN
Y
/ /]

[e— = —>|

/

Fig. 4.6

Let us consider the flow between two concertric rotating cylinders. Letr, o and r,, o, be the

radius and angular velocity ofthe inner and of the outer cylinder respectively.

Assuming that z-axis is along the common axis of the cylinders and r denotes the radial distance
measured outward from the z-axis. In this case the non-zero component of velocity is V, and there
is no pressure grdient in the 0-direction. Hence the equation of continuity and the equations of

motion (table 2.3 of unit 2) in cylindrical polar coordinates reduces to

aVG
ZYe _
GO D e (1)
which shows that \A is the function of r.
\'A d
A )
r dr



d’v, d (V,
+—|—1|=0
dr2 dr ( J ............................................ (3)

r
on integrating equation (3), we obtain
B
Vo = Ar + PR 4

where A and B are constents of integration to be determined by using the boundary condition.
r=1; Vy=10
r=r1, ; Vo = L0, ceeinieieinieeie e &)

Onusing (5) in (4) we have

Lo, = A1 +—
L

Lo, = Ar, + —

L,
On solving these, we have
2 2
A = W,I, — O
- 2 2
L, =1
2.2
I T
_ 1 b
and B=- 2 2 ((’02_(’01)
I, -1

Substituting these value in equation (4), we obtain the velocity distribution as.

1 2.2 1?2
_ ( 2 2) ( )rl T
Vo = 752 |\ 01, =01} )= 0, —®,

T - r

The radial pressure distribution may, be calculated from equation (2).

Equation (2) may be written as

d_p = EVGZ
dr r
dp _p 1 2 ) 1t ’
or dar - ?m (0)21‘2 — O )r_((’)z_(’)l) .
p 2 ) rlzrzz 2 2 141’24 2
= (1‘2 _ g2 )2 (0)21‘2 O ) r r (0)21‘2 o1 )((’32 (’31)"' 3 ((’32 - (’31)
2 1
On integrating, we have
2 4_4
p= ﬁ |:(0)2r22 ~o,2f % — 2122 (o,r2 — 0,12 (o, — o, )logr - rérrg (0, — o, )2} +C )

where C is the constant of integration to be determined by taking p=p, atr=r, then

2 4.4
C=p, ﬁ{(&)zrﬁ —or’ )2 r§—2r12r22 (cozr,f —or’ ).(032 ~o,)logt, — grrg (co2 —, )}

1
Hence on substituting the value of C in equation (7) we obtain the pressure distribution as
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2 2
p:pl+ﬁ{(mzr;_mlrf)2 {r 2r1 }

4.4
r rr 1 1
28 (0,17 — o1 o, — @) log + - (o, - wz)z[—z - —H ............................. )
I, 2 S o
If theinner cylinder isat rest then =0 and in that particular case, the velocity components v, is given by
2 2
) !
Vo = r——
L - [ rj ..................................................................... 9)

2.2

_ 2uo,nr,

To = 2 2
L=
when the inner cylinder is taken at rest.

4.8.1 TORQUE

The torque is the force which is required to turn the outer cyulinder. This may now be easily claculated
as the product of the force and the arm ofthe couple as

M = 7r,L (Tre)r=r2'2r2
r'r;
= 4nul 2o
K e (11)

where L is the length ofthe cylinder.

Self Learning Exercise

1. Define plane Couette flow

2. What is the difference between plane Couette flow and plane Poiseuille flow ?
3.  How do you explain a back flow in case of generalized Couette flow ?

4. Define volume rate of flow

4.9 Answers to Self Learning Exercise

1. Seearticle.4.3.1

2. Seecarticle.4.3. & 4.4
3. Seecarticle. 4.5

4. Seearticle.4.5.1

4.10 Summary

In this unit, you have studied about the exact solutions of the Navier-Stoke's equations for the
steady viscous incompressible fluid motion between two parallel plate, between two concentric
rotating cylinder and flow in tubes of uniform cross-section. You have also studied about volume rate
of flow, coefficient of skin friction and torque in the fluid motions.
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Thus you are now aware that the Navier-Stoke's equations can have exact solutions for certain flow
through channels of simple geometry.

4.11 Exercise

1.

Discuss the flow of an incompressible viscous fluid between two parallel plates taking the fluid
properties to be constant when one ofthe plated is given a constant velocity in its own plane.

Discuss the plane Poiseuille flow between two parallel plates.

Discuss the generalized plane Couette flow. Derive the results for various characteristic for
plane Couette flow taking that as a particular case.

A viscous incompressible fluid moves in a steady flow under constant pressure gradient P parallel
to the axis in the annular space between two coaxial cylinders ofradii a and b (b <a). Show that
the volume rate of flow is given by

Q =Kb4|:(n4 _1)_M}

8u logn
where n= a/b

27Pa*

5. Show that the volume rate of flow is given by Q= m in the steady flow of a viscous

incompressible fluid through a tube with uniform equilateral triangular cross section.

Find the velocity distribution for the steady flow ofa viscous incompressible fluid in the annular
region between two concentric cylinders.

Obtain the viscous stress in the flow between two concentric rotating cylinder when the inner
cylinder being at rest. Also find the torque
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UNIT -5

Stagnation point flow and flow due to a rotating disc

Structure of the Unit

5.0  Objectives

5.1 Introduction

5.2 Definitions

5.3 Stagnation point below (Hiemenz flow)
5.4 Flow dueto arotating disc

5.5 Self learning exercise

5.6  Summary

5.7 Answers to selflearning exercise

5.8 Exercise

5.0

Objectives

The purpose of this unit is to find some more, to be precise two exact solutions of Navier-Stokes
equations. The two problems are (i) Stagnation point flow (Hiemenz flow) and (ii) Flow due to a
rotating circular disc (Kar man flow)

5.1

Introduction

In this unit we shall get exact solutions of Navier-Stokes equations for two problems of different
geometry.

First problem popularly known as Hiemenz flow discuss the flow in the neighbourhood ofa stagnation
point in two dimensions. In this problem the velocity distribution shows the presence ofa boundary
layer, about which we will learn later, of small thickness for small kinematic viscosity.

The second problemis about a flow due to a rotating disc, popularly known as Karmans problem.
In this flow also we will have an effect due to boundary layer whose thickness is again small for small
kinematic viscosity.

In both the problems, velocity distributions have been shown graphically.

5.2

Definitions

5.2.1 Stagnation Point
Stagnation Point is the point where the velocity is zero in the potential flows i.e. the flow of
an ideal fluid.

5.2.2 Boundary Layer :
It is a small layer near wall in which all the viscous effects are supposed to be confined and
out of this layer the flow is treated as potential flow.

5.3

Stagnation Point Flow (Hiemenz Flow)

An exact solution of the flow ofa viscous incompressible fluid in the neighbourhood of a stagnation
point in a plane may be obtained by considering the flow at a large distance fromthe stagnation
point to be the potential flow i.e. the flow ofan ideal or non viscous fluid.

The velocity and pressure in a potential flow in the neighbourhoods of the stagnation point considered
aspole x=0, y=0ina plane arc.

U=DbX, V=DVt (1A)
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o X
Fig. 5.1
Bernoulli equation
P .1 2_D
=4+ .
and o 2 q P
p. 1 ( 2 2)_ Po
p 2 P
where p, is the pressure at stagnation point.
o1 bz( 2 2)
Thus P, —Pp —EP X7t YT ) (1B)

When viscosity is included, we take the following forms ofthe velocity and pressure distribution for the
flow

W=XF(y), V= = ()i (2)

and P,—p = %bz[x2 B () e 3)

where prime denote differential with respectto y
We know that Navier-Stokes equations in two dimensional steady motion are

ou  ou lop (o*y o™u
UV = Y T e 4
ox Oy p Ox dx” dy
WL v 1o fOv O
and aX ay p ay dXZ dyZ .............................. (5)
using (2), (3),1in (4) and (5) we get
R S T TSR TR (6)
LI )
Boundary conditions are :
y=0, u=v=0
ie.f = =0 [(by using (2) & (3)]-veevvveeveeninanns (8)
and atoriginp =p ie. F=0....cocooooi, 9)

and at a large distance, U=uas y — ©



So bx:xfl(oo)
T I (10)

So in all, the boundary condition are

y=0, f=f'=F=0
y—0, f'=b
in order to solve the equation (6) for f, we make the following transformation

ne By ()= Vovi)

Therefore

oy df dn \ﬁ i

(v)= o dy Vbv ¢'(n) oL ) — (12)
and

11 11 b

f''(y) = b¢"(n) poE - (13)

111 bz 111

f (y)=7¢ ) (14)

Using (12), (13), (14) in (6) with B.C.S (11) equation (6) becomes
¢111+ d)d)ll _ (1)12 +1:0
&o | d oY
ie. —43)+¢ d; [ F 1 =0 e (15)
dn® dn dn

with corresponding boundary condition for ¢ as

1’] :0’ (i):O’ (1)1:0
n_)w’ (1)1:1 .................................................

here a prime indicates differentiation with respect to n
Equation (15) was first solved numerically by Hiemenz and the solution was later improved by L. Howarth.
The dimension less velocity in the x-direction is given by

u_xP'y)_ ) _
0T Tt =¢'(M)  [HOM (12)] covveeeveeeeeeeeceeeeeeeeennes (17)

The unknown function F(y) occuring in the expression for pressure in equation (3) will be obtained by
integrating equation (7)

b’F = 2vf' +f?

= 2v.bd' +bve® [from (12)]

substitute the value of F in equation (3) we get the required pressure distribution
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Fig. 5.2

fromthe fig.5.2 it is seen that for 1 = 2.4 maximum velocity is reached and the corresponding value

of'y obtained from the relation

b
n= y\/; , we symbolise it as &

so that

24= 8\/E
\%

If v is smallthen 6 will be small and it can be said that the viscous effects are confined in a very thin

layer near the wall and the thickness of the layer is proportional to /v

5.4

Flow due to a rotating disc (Karman Flow)

Let us confider the flow due to a disc which rotates
with an angular velocity w about an axis perpendicular Vo \Y
to its plane in a fluid other wise at rest. In order to
avoid the edge effect the disc is considered to be of
infinite radius. Due to the action of centrifugal forces
the fluid near the disc will be thrown outward so the \‘\
radial component v_exists. Due to rotation of disc
azimuthal component v, also exists and so is the axial r
component v_.

0
Thus in this case all the three components of velocity \\

in the cylindrical polar coordinates exist.
The boundary conditions for the motion are

at z=0, v, =0, vy=100, v, =0
and

Fig. 5.3

as z — oo, v, =0, ve=0

Since the motion is steady and symmetrical in O-direction, so we have
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M:0 and M=0
ot 00

therefore reduced flow equation are

iton of continuit -lﬁ(w )+8VZ_0
equal Oon o1 con ll'lIlly . r ar r 82

Navier-Stokes equations for the fluid motion

r - Component -

0 - Component -

p[v ov, iy oV, . Vrvej _ u[azve +18V9 N 0%, _&j

or * 0z r o> ro oz r?

z- Component -

[ ov, avzj p [82VZ 16v, azvzj
p| v, +v,—=| = ——+p +— +

or ° oz 0z o> r o 0z’

Now we take the following form of velocity and pressure distribution.

vV, = (Drf(z)

ve=orglz) 1)
VZ _ (V(D)l/z h(Z)

p =pLoP(z)

substituting (1) in the equations of motion and equation of continuity, we have

% g((,orzf)+m h'=0

12
ie. 20f+/vo h' =0 = 2f + (XJ D =0 o )
(O]
Y v Y
fz—&f{;} hf‘z(;} E e 3)
A% vz A%
2fg + (—J hg' = (—J 8 e (4)
Q)] (O]
v 12
hhl:—P‘+(—J N e (5)
Q)]

where a prime denotes differentiation w.r.t.z.
In order to remove the coefficient (v/e)/*and (v/®), we make the following transformation
12
n=(w/v)". z
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Using (6) in equations (2) to (5) we get
2F+H' =0
F2 G2 A F H Z F" oottt (7)
2FG+G'H = G"

and HH'=-p'*H"

with the boundary conditions

n=0, F=0, G=1, H=0

N, F=0, Go0 e, (8)

where a prime now denotes differentiation w.r.t. to n.

The solution of first three equation of (7) can be obtained with the help of the boundary condition in
(8) and then the last of equation(7) will give P in terms of H. Van Karman was the first to obtain a
solution of this system of equations by an approximate method which was later improved by Cochran
and other workers.

and

It is evident from figure 5.4 that the

value of F,G and H-tend 1.0
asymptotically to their limiting values. o
However all of these limiting values 0.8 ;
are attained approximately about
1n=5. We have considered M interms
of'z and if we consider this value of
n =5 corresponding to some z = 4

"

.
%, A
FG,H %

S, we have F-radial

If (v/o) is small then § will also be

small and once again we will have a o S5 16 20 25 30 35 40 45
boundary layer type of flow. The
circumfrential shearing stress on the
plane on the plate will be

T 6 0
z0 "L a
Z z=0

12
- er[ﬂj G'(0) o (10)

A\

Fig. 5.4

and the frictional moment on one side ofthe disc is
m = —Irrze2nrdr
0



5.5 Self Learning Exercise

Lo is a point where the velocity is zero in potential flow.
2. " 40" —¢" +1=0 equation correspondto ...........ococuvueuiiriirieiininn. flow.

3. Flow due to arotating disc is also known as...........c...c........

5.6 Summary

In this unit we have discussed two important problems which give exact solution to Navier-Stokes
equations.

In the first one we considered a flow which is near a stagation point, defined as the point with zero
velocity in potential flow.

In the second problem. a flow is considered which is due to rotation ofa disc and the flow is above
the infinite disc. An important aspect of'this is that in this flow all the three velocity components exist
in cylindrical polar coordinates .

5.7 Answer to Self Learning Exercise

1. Stagnation Point
2. Hiemanz

3. Karman flow

5.8 Exercise

Discuss stagnation point flow of an incompressible, viscous fluid (Hiemanz flow)

2. Aviscous incompressible fluid is bounded on one side (Z > 0) by a circular disc of infinite radius
and lying at z= 0 and rotating about its axis r = 0. Verify that the steady flow is given by

v, =arF(m), v,=arG(n), v,= (voo)l/ *H(n)

and  p=pvoP(n)

where o is the angular velocity of the plate and

12
®
n= (;J Z with other symbols have their usual meanings
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UNIT - 6

Unsteady Motion of Fluids

Structure of the Unit

6.0 Objectives

6.1 Introduction

6.2  Definitions

6.3  Concept of unsteady motion

6.4  Stokes first problem

6.5 Stokes second problem

6.6  Self learning exercise

6.7 Answer to self learning exercise

6.8 Exercise

6.0

Objectives

In this unit you will learn about unsteady motion of a fluid . In unsteady flows the velocity mainly is
considered to be depending on time. This type of flow has many important applications in the fields
of Engineering

6.1

Introduction

Unsteady motion is the study of fluid motion whenever the flow is time dependent. We start with
"Flow due to a plane-wall suddenly set in motion "which is known as Stokes first problem and
follow it with the "Flow due to an oscillating plane wall" which is known as Stokes second problem.
Sometime it is also called as Rayleigh's problem.

6.2

Definitions

Unsteady Motion : Ifthe velocity changes with time then we call the motion to be an unsteady
motion.

Startup Flows : Whenatt=01ie. nitially entire fluid is at rest.

6.3

Concept of Unsteady Flow

Exact solutions of the unsteady Navier Stokes
equations exist when there already exist exact solutions
of'the corresponding steady flow

Suppose the infinite long flat plate is considered in the
X-direction.

Initially both the plate and the fluid are at rest, suddenly
the plate is jerked into motion in its own plane with a
constant velocity U.

Because the motion of the boundary is in X-direction 0

two components in y-and z-directions v and w Fig. 6.1

respectively are zero. So the only non zero component of velocity is u which is a function of y and t
only. The pressure is uniform at every point in the fluid over the wall, hence it is assumed to be
constant. Hence, the Navier-Stokes equations in cartesian co-ordinate reduce to
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ou o’u
—_— =V —
ot oy’

This is the governing equation for unsteady motion of the fluid over and due to moving plate.

6.4

Stoke's First Problem

We consider the flow close to a wall which is suddenly set into motion with a constant velocity U in
its own plane. this problem was first solved by G.G. Stokes (1856) in his famous treatment of the
pendulum.

S
N\
\
P IIII I I I I I I I I IIIIIIIIIIIII e it > X
t > 0 UO _—
Fig. 6.2

Here the motion is due to plate suddenly started with a constant velocity U, in x-direction in its own-
plane. When plate moves with a velocity U, the fluid adjescent to it also moves with velocity U, .
The initial and boundary conditions on u (y, t) are

t<0 u(y,0) (initially )
t>0 y=0 u(0.t)=yU, (1)

y = Ulec,t)=0

The reduced Navier Stokes equation in cartesion coordinates as given in (6.3) is

du_ vd'u 5
BE Gyl T (2)
To solve equation (2) we make the following substitution
y
u=U,f and n=
of(n) Ly 3)
du _du On 1 Yy ( 1 3/2}
—=——=U,[f(n)—=| ——=t
so that o on o 0 (ﬂ) 2\/; >

_Uofl(n)
TR
and ou Ou 0O 1
n 1
—=——=Uf"(n)
o oy o
I ¢ AR (4)
& — 0 11
ayz 4vt ( )
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substituting (4) in (2), we have.

2t

or f“(n) +2nf1(n) =0....

where prime denotes differentiation w.r.t. to n.
The corresponding boundary conditions are then

n=0, £(0)=1
n >, f()=0
Integrating equation (5), we have
f'(n)=Ce™
Hence

n
f(n) = ClJ’einzdn +C,
0

a  n=0, f=1= 1=C
Also n— o, =0, sothat

0=C, [edn+1
0
or

C, = -1 _

T e dn
1]

-2
Jn

2%
Hence f(n)Zﬁ.[e "+l
0

= —erf(n)+1

= erfc(n)
Hence the velocity u is given by

u=U, f(n) = Ugerfe(n)
where erf and erfc are known standard functions error
function and compumentary error function. Numerical
values for different n are known.
The velocity profile are shown in the figure 6.3

They continuously decrease as n— o ie. they
asymptotically reach their limiting value zero

For all practical purpose when the value reaches at n =2
and therefore the corresponding value of'y, which we call

as 8, be comes § = 4+/vt -

This distance d is called the penetration depth with standard
condition. This penetration depth is proportional to the
square root ofthe product of viscosity & time.
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6.5 Stokes Second Problem

Another simple unsteady flow is that in which a plane wall oscillates with a prescribed velocity

U, cosnt when initially plane was at rest where U, is the amplitude and n is the frequency of the

oscillation of the wall. This flow was first studied by Stokes and later by Lord Rayleigh. In the
literature it is known either as Stokes second problem or simply Rayleigh problem.

Due to the presence of the fluid, amplitude of the fluid motion will be function of'y and frequency will
remain unchanged. Hence for the flow here

u="f(y)cosnt = Realpart (f (y)ei“‘) ............................................................ (1)
Now the reduced Navier Stokes equation for unsteady motionis (refer 6.3)
a_,ou )
ot Gy T (2)

Substituting (1) in (2) we get the differential equation
ineintf(y) — V.eimfll (y)

or f“(y)—%f(y)= O e (3)
d> in
)

with boundary conditions
u(0,t) = f(0) e™ = U™

= f(O) = Uo
U(oc,t) = f(oc) e —()
or f(OC) -0
o ¥Y=O MO = Uy @)

y—>o© f(oo):>0

So solution of equation is
(1+),[ o+ (s 2y
Ale \/;y +Aze f ................................................... (5)
when y — 0 then f(o0) — 0 so we have A =0
—(1+i) iAy

Therefore f(y)= Ae 2v

at y=0 ; f(0)=U, = A,=U,

so from (5)
£(y) = er““)@y ................................................... (6)
from (1) and (6)

(), 2 R
u= realpar{UOelme o y] = U,e ”F ’ cos(nt - /iyJ
2v
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[ n u
Ifwe put peAall then U= ¢ " cos(nt 1)

0

This shows that u is periodic in both y and t.
The velocity profiles, for this flow are shown in fig.6.4 for different values ofnt.

6.6 Self Learning Exercise

1. Flow due to a plane - wall suddenly set in motion is known as....................
2. Flow due to an oscillating plane wall is known as..........cccccceeeevieneenenncnne
3. Reduce Navier Stokes equation are ............cceeceveeeeeenieesieeineerieeseeesieesneens

6.7 Answer Self Learning Exercise

1. Stokes first problem
2. Stokes second problem or Rayleigh problem

ou O%u
—=V—

ot oy’

6.8 Exercise

1. Discuss the flow due to a plane wall suddenly set in motion in its own plane in an infinite mass of
viscous incompressible fluid, which is otherwise at rest.

2. Viscous incompressible fluid occupies the regiony > 0 on one side of an infinite plate y=0. The
plate oscillates with a velocity U cos nt in the x-direction. Show that the velocity distribution of

the fluid motionis givenby u = er—ncos(m,n)

12
|
n=(2) ¥
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UNIT -7

Starting Flow and Suction / Injection Through Porous Walls

Structure of the Unit

7.0  Objectives

7.1  Introduction

7.2 Definitions

7.3 Starting flow in plane-Couette motion
7.4  Suction/ Injection through porous walls
7.5  Self learning exercisxe

7.6  Summary

7.7  Answer to selflearning exercise

7.8  Exercise

7.0

Objectives

The purpose of'this unit is to discuss starting flow in plane-Couette motion and suction/injection
through porous walls. These are two different types of fluid motions. While one is a study of an

unsteady motion and other has practical utility

7.1

Introduction

In this unit two types of motion are considered, one is a typical unsteady problem where in time is
measured at the initial level when the plane wall is started to cause the flow in the channel. So even
ifthe flow at a later stage becomes a Couette flow the velocity profiles are changed with time.

In another problem the boundaries have been considered porous and to cause the change in motion
of'the fluid which is moving with a constant velocity the same fluid is injected and sucked at the two
plates with equal constant velocities.

7.2

Definitions

7.2.1 Suction : When the fluid is drawn out through porous boundaries the process is called
suction.

7.2.2 Injection  : When the fluid is pushed in through the porous boundary the process is
called injection.

7.2.3 Starting flow : Anunsteady flow in which the time is measured from the moment the fluid is
given a motion.

7.3

Starting Flow in Plane-Couette Motion

Consider aplate placed along x-axis which is suddenly set in motion e

in its own plane with a constant velocity u = U, in the presence of u=0
another plate which is at rest and is parallel to the lower plate at a
distance 'h'. Take the x-axis along the lower plate and the y-axis is
taken normal to the plates. The fluid between the plates is at rest
before starting motion of lower plate. The governing equations of
motion of viscous incompressible fluid between parallel plates is given

«—=c—>
ST

u:U(] e

— =V —
by ot ay2 ............................................... (1) Fig. 7.1



where u is the velocity component along x-axis, t is the time and v is the kinematic viscosity.

This equation is the outcome of the consideration of Navier-Stokes and equation of continuity with the
geometry of the problem in two dimensions. The initial and boundary conditions are :

Initial condition :

Boundary conditions are

t>0 : u=U, when y=0 )
W= 0 whenyoh | T

To solve let us introduce the transformation

U= UgF(M) oo (3)

hy n= X di ionl tit

where 2 /vt 'sadimensionless quantity
Fromabove

@ _ Uofl (n)

T

o’'u U,
— 0 fll

and oy 4wt (ﬂ)
Hence from (1) we have

f“(n)—i—2nf1(n):0 ............................................. 4)
where prime denotes differentiation w.r.t. ton.
Now the boundary conditions are reduces to

n=0  f(n) =1 S

n=n, £ (T'I) _ | &)
where n = h (say)

24wt

Solving equation (4) , we have

f (n) =1—erf (n) = erfCn oo (6)
as the particular solution, which satisfies the first boundary condition,, where

_ 2 f -n’dn
erfn = ﬁje
0

Iff(n) is a solution of (4) then f (oml + n) is also a solution of it, where o is an arbitrary constant. Thus the
solution of equation (4), which satisfies both the boundary conditions in (5), can be taken as

Ul=2f(2nm +n) —Z:;f[2(n+l)m -]

0

= erfc(n)— erfc(2n1 - n) + erfc(an + n)— erfc(4n1 - n)+ elrfc(4n1 + n) .................... (7

vt
The velocity profiles for different values of \/; infig.7.2 show as to how the stationaryupper wall effect

the velocity variation.
As expected the velocity tends asymptotically to the linear distribution of the steady state as the time gets
larger to approach infinite value.
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fig. 7.2

7.4 Suction / Injection Through Porous Walls

In this section we will discuss the problems which also give exact solution to Navier-Stokes equations.
In this we are going to consider boundaries which are porous through which fluid can be sucked and
or can be injected in. By porous boundaries we mean that the boundary has very fine holes distributed
un infinity all along the boundary.

We will here discuss two problems (i) flow between two parallel porous plates, and (ii) plane
Couette flow with porous walls.

7.4.1 Flow between two parallel Porous plates. y

Here we take two parallel infinite plates at y=—h
and y =h and the main flow is along x-axis and
the same fluid as the one which is flowing in the
channel is pressed in (injected) through lower v,

porous wall at velocity v, and through the upper 1 1 1 1 * y=h
porous wall the fluid is taken out (sucked) with
some velocity v, thus suction and injection are
both in the direction of y-axis as shown in the
fig.7.3. All the physical quantities are independent
of z, hence this flow can be treated as two
dimensional flow. L VR T T T

Now, with above geometry, the equation of
continuity and Navier-Stokes equation reduce to Fig.7.3

so that v is constant and hence V=V,

and Vo ="

an an W .................................

1 op
0=_-—-—-2X
By T e 3)

so that pis independent of'y

u__1op, du
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p _
10).4

From (2) therefore we here the equation

and hence

d’u vydu P

d_yz _7d_y _p_v ....................... ®))
Voy
Solving(5) ~ W=A+—y+Be " (6)
PVo
under the boundary conditions
y=2h. u=0. i (7
which gives L LIS 7 N )
PV v
B= _Ph cosechVLh
PV v

From (6) and (8) we get the required velocity expression
7.4.2 Plane Couette flow with porous walls

In this flow there is no pressure gradient and hence — % =P =0 and the upper plate is moving with

a constant velocity U in its own plane. With these minor changes equation (5) becomes

y=-h, u=0
y=h, u=U

This is the expression for the velocity distribution for the flow in plane Coutte flow with porous
boundaries.

7.5 Self Learning Exercise

1.  What is meant by porous boundaries ?
2. How the starting flow is an unsteady motion ?
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7.6 Summary

In this unit three problems have been discussed. One is a representative problem of an unsteady
flow and other two are problems when the boundaries have been treated to be porous

In the first problem a form of Couette flow is considered when the time is measured with the start of
motion of the upper plate. Velocity distribution is calculated in terms of error function.

In second and third problems the boundaries have been considered to be porous and there is
injection ofthe same fluid from one boundary while there is suction at other boundary. Two problems
correspond to plane Poiseuille flow and plane Couette flow.

7.7 Answers to Self Learning Exercise

1. The boundary has very fine holes distributed uniformly all along the boundary.

2. Insuch flow problems initial velocity consideration are made so that all the subsequent motion
becomes time dependent

2 fog
—|€
3. \/;0 n

7.8 Exercise

1. Discuss the starting flow in plane Couette Motion (see 7.3)
2. Obtain an expression for the flow between two parallel Porous plates (see 7.4.1)
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UNIT - 8

Temperature Distribution in Fluid Motion

Structure of the Unit
8.0  Objectives
8.1 Introduction
8.2  Flow between parallel plates (Temperature distribution)
8.2.1 Plane Couette Flow
8.2.2 Plane Poiseuille Flow
8.2.3 Generalised plane Couette flow
8.3  Temperature distribution in a pipe
8.3.1 Wallat constant temperature.
8.3.2 Wall at uniform temperature gradient.
8.4 Temperature distribution between two concentric rotating cylinders
8.5 Temperature distribution of plane-Couetle flow with Transpiration cooling
8.6  Self learning exercise
8.7 Answer to selflearning exercise
8.8 Exercise.

8.0

Objectives

After studying this unit, you should be able to know application of temperature distribution in various
simple physical phenomena of fluid flow . You will get an idea of temperature distribution in parallel
plates, in a pipe, between two concentric rotating cylinders and plane Couette flow with Transpiration
cooling.

8.1

Introduction

In the study of fluid flows it is not only important to discuss velocity and related characteristics but it
is also useful and important to know as to how much heat is exchanged between the fluid and the
body in contact, which can be in the form of boundaries.

It will be useful to learn about the heat transfer in the cases of flow through the channels of various
geometries. Here we will discuss the heat transfer problems through channels of simple cross section
like flow between parallel plates. in circular cylinder or pipes, between concentric rotating cylinders.
An important dimensionless coefficient Nusselt number is a measure of heat conduction which has
also been calculated in various problems.

8.2

Flow between Parallel Plates (Temperature distribution)

The equation of energy for the steady flow between two parallel plates without heat addition, becomes

2 2
PCvua—T=Kaf+u@ ............................................................... (1)
0x oy oy

oT
We K and p are taken to be constants, if the plates are kept at constant temperature then ox =0
X
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So equation (1) becomes

From equation (2) we will calculate the temperature distribution for different situations between
parallel plates.

8.2.1 Plane Couette Flow u=y T=T,

y=h

You have in earlier unit, obtained

the velocity distribution for the plane Couette flow as

u_y
U h
Therefore
du_U y=0 u=0 T=T,
dy h Fig. 8.1

where h is the distance between the plates and U is the velocity of upper plane in its own plane.
So in case of plane Couette flow equation (2) becomes

o v
& T 3)

We consider that the plates are kept at different temperture so that the boundary condition for the
temperature are.

y=0; T=T,
yoh g T, s 4)

where T >T,

Integrating equation (3) twice, we find that

where a, and a, are constants
Using (4) in (5) we get

a, =T,

U’ |1
and &1 = |:(T1 _T0)+ M2k } E

Hence

2 2

pus o, pu- |1
T=- +| (T, =T, )+ —xy+T,
2]]2}’ {(1 o) 2k}h yr i

y pU%[ vy
T-T =(T -T, )L +—2|1-Z
=T O)h 2kh[ h}

= -1, =X+EC.Pr.ZXl[1—Z} (6)
TI_TO h h 2 h ----------------------------



U’
EC =
Where C, (T, T, ) (Eckert number)

e,
Pr = ” (Prandtl number)

The dimensionless coefficient of heat transfer viz. Nusselt number at the uppere plate is given by

___h (or
Nu = (T1 _TO)( ayl=h ...................................................... (7

oT
Subsituting value of g from (7) in (6) we find

Thus the Nusselt number will be positive if ECPr>2 and in this case the heat will be transferred from
fluid to the upper plate. If Ec.Pr.<2 then the Nusselt number will be negative i.e. the reversal in the
heat transfer will take place and the heat will be transferred from upper plate to the fluid.
if Ec. Pr=2there willbe no transfer of heat between the fluid and upper plate.

1.0
84

64
y/h

4 ¢

24

Ifboth the plates are kept at the same constant temperature T_ then the boundary conditions are
y=0; T=T,
y — h ; T — TO .............................................

Now integrating (3) twice we get

U2
T =—iﬁy2 +a,y+a,
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a, = T,
Using (9) we get —pU?
a, =

' 2kh
-1, = 5V 1y ) (10)
0 2k h ........................................
For maximum value of T
dar_ 0 = y=h/2
dy
Thus the max. temperature exist in the middle of the
T=T,—>U
channel 0
1.0
S o Lok (11) y/h
R —— y
0.5
T-T, 4y
—=—(1-4/h
so the T T, h (1-4/h)
which is parabolic in nature (fig. 8.3)
Also the Nusselt number at the lower plate is definedas
0‘5 T _ T 1 .O
N, :‘_h(a_TJ ., Fig. 8.3 > ST
(TO - Tm) 8y y=0 !

Ifwe assume that at one of the plate, say the stationary plate, no heat transfer takes place (adiabatic
wall) then B.C's are

y=0, —=0
OF e (12)
y=h, T=T,
Using (12) in(3) we get
_],LUZ yz
T-T ==, [l—ﬁj ............................................ (13)

The temperature which an insulated surface assumes under the influence of internal friction is known
as recovery temperature (Tr). The difference between recovery temperature and the temperature of
the upper plate is given by (13) as

pu?
Tr _Tl ZK

T-T y’
So that T — Tl = [l - Fj which is paraboic in nature (fig. 8.4). The recovery factor in a plane
r 1

Couette flow is defined as

= aCp P e, (15) (Prandtl number)



1.0

0.5

T-T,
T-T,
Fig. 8.4

8.2.2 Plane Poiseuille Flow

From the earlier unit we know that the velocity distribution for the plane-Poiseuille flow is given by

where distance between two plates is 2 b and u_ is the maximum velocity in the mid plane

du _ 2u,y
SO dy b2

Now with this on using equation (3) for the heat conduction we get

ET_ (o) iy’
dyz dy b4 ---------------------------------------------

Let both the plates be kept at the same constant temperature T, therefore, the boundary conditions are

y=2b, T=T, s, (17) y
Hence the solution of equation (16) is given by y=+b
__bU, ‘+Ay +B (18)
3kb 4 y y ..............................
Using (17) in (18) we get 0 5 X
2
pu
A=0 and B=T;+—*
. ° " 3k
Thus (18) becomes
y=—b
pup (o y" :
T-T, =3—k(1—b—4J .............................. (19) Fig. 8.5
dT
Further the maximum temperature occurs, when d_y =0

which givesy =0
Therefore the maximum temperature exists in the middle of the channel y =0 and is given by
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m T Lo TG e (20)
T- T0 =1- i .. .
Also T T, p* - Thisis shown infig. 8.6
1.0
y/b
0 ; I | | 1.0
2 4 6 8
-1.0 0.5
LT,
Tm_TO
Fig. 8.6

8.2.3 Generalized Plane Couette Flow
The velocity distribution in the generalized Couette flow is given by as we have obtained it in earlier

unit
2
W20 PUY(¥) Ul g P
h h h) h h
du U 2Py
—=—|{1+P)——
so that dy h [( ) h }
and therefore the equation (3) becomes
d’T U’ ,  4P%y? y
k= F{(HP) F s PP e 21)

Let both the plates be kept at the same constant temperature T . Here the boundary conditions are

y=0; T=T,
y — h ; T — TO -----------------------------------------------------------------------------
The solution of equation (21) with the B.C's (22) is

T-T,= L;[IJ: {3(“P)z(l—%J—‘lP(HP){l—(ﬂz}ﬂ’z[l—(g ﬂ% ................... 23)

The temperature gradient at the lower plate is given by
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dT)  pU? >
(ELO = I (24)

This shows that the heat will always be transferred from the fluid to the lower plate irrespective to the
sign of P.

8.3 Temperature distribution in a Pipe

T,

r
l Tm
ol \R —
| / Z

T,

Fig. 8.7

The steady laminar flow through a long straight circular pipe, without body forces the velocity
distribution is given by the relation

R’ dp l: [rjz:l R’ { rz}
v, = |- o = —Pl-— where P:—@ ....................... (1)
4u dz R 4u R d

which has been obtained in an earlier unit as Hagen-Poiseuille flow and where v_is velocity component
in z-direction and r denotes the radial distance measured outward from the z-axis and R is the radius
of the pipe

The non zero component of velocity is v_and the energy equation for steady flow of a viscous
incompressible fluid through the pipe without addition of external heat becomes

c,V a—T—K 82T+18_T+82T + (GVZT
p v'z 8Z - 81_2 r ar 822 ,"L .............. (2)

here p and K are taken to be constants.
Here we consider two cases
(1 when the wall of the pipe is kept at a constant temperature

(i) when the wall of the pipe is kept at a uniform temperature gradient.

8.3.1 Wall at Constant Temperature

oT
Ifthe wall of the pipe is kept at a constant temperature then . =0 and equation (2) then becomes

d*T 1dT ov, Y 2P | 4u ) 5
K TR Y P20 (R i . i ,
[ R er u[ arj u{ 4J i (S 3)
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2

R°P
(Ve = (V)0 = an [Max. velocity occur on the axis of the pipe]

The boundary condition are
r=0, T =finite
r=R, T=T,
Solution of equation (3) can be obtained by putting

dT
o V' so that (3) be comes

N (AN
o r R4

which is a linear differential equations with integreting factor=r
Hence the solution is

—4p [(v,). ] xridr+A

Vr= IKR“

—4 [(Vz )m ]2 r3 A
= KRF: X Z + ?
ar_—ap[v).F e
dr KR 4 1
Integrating again we get

u )T

KR*

T= xlr4+Alogr+B

or

__M[(Vz) ]2 4
=T TRRE I +AlZr+B e ®))

4
Applying the B.C's (4) we get

u(v, )
= B=T, m
A=0 and ot 1k

Hence equation (5) becomes

Y N PR CA

4kR* © 4K
2 4
_ M(Vz )m r
T—R——;;—P—E% .................................................... (6)
The maximum temperature exists on the axis of the pipei.e. at r=0
2
\'%
so T —-T,= M ................................................ (7
4k

where T = Maximum Temperature
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Hence the non-dimensional tempereature distribution is given by

T-T, _,_ r
T _T, RE e (8)
The mean temperature over a cross section is given by
R
.[ T.2nr dr - 2 o
Tmean — 0 nrz — T() + EE(VZ )m ........................................ ( )

and the rate of heat transfer in terms of the Nusselt number at the wall is given by

2R oT
N, ——WLELR =12 e, (10)

mean

8.3.2 Wall at uniform Temperature gradient

oT
Let the wall of the pipe is kept at a constant temperature gradient i.e. — = A (Constant)

0z
We may assume the solutjion of equation (2) in the form T = Az + g(r) ................... (11)
v RPN
But z 4,.,[ R2
( ) RzP v, 1 rz

\4 = =|l-—

& el T Ve LR
r2

soV, = {1 _F} A (12)

use (11) & (12) in (2) and and neglecting the dissipation term we get

r’ d’g 1dg
C l-— |A=K|—=+--2
p V(Vz)max|: R2:| [drz r dr

ﬁ l% _ pCv(Vz)max'A l—i
o dr’ rdr K Rz_
C.lv
Let B= PC.( Ié)max then
d’g 1dg r’
= Tdr =B{1—? .......................................... (13)
Then corresponding B.C.'s are
r=0; g is finite (14)
and e

Solution of (13) is given by the following method

dg
2 _G
Let R
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2
d_G+ng l_r_z
dR r R

which is linear different equation with integrating factor = r
Hence the solution

2
Gr='[B 1—%}rdr+C1

Integrating we get

=B ﬁ— rt +C, logr+C
Sid DREPE 1108

using (14)in(15) we get
r=0 then C,=0

3
whenr=R then C, = —EBRz
So from (15)
r’ r' 3 )
gL _|_2gr
© {4 16R2} 16
So from (11)
2 4
T=Az+B|———— _3 pRr?
4 16R 16

AR? ’ !
or T=AZ—pCV(VZ)‘mlx N +i r
K 16 4\R 16 R

Max. temperature T _ exists on the axis of the pipe.

2
(VZ )m"”‘ AR X S

Tm =Az— pCV
K 16




Now we calculate the unweighted mean temperature (T__ ) and weightedmean temperature (T__ )
with respect to the velocity i.e. the temperature which is measured in fluid which is mixed after

passing through the pipe, respectively.

R
IT.2nr dr 5

Ty == Az- POV, ) AR 1 (18)

R K 12

R
IT.VZandr ,

T = 0 :AZ_E pCV(VZ)mAR

e 96 K (19)

R
.[ v,.2nrdr
0

The Nusselt number, based on the un-weighted mean temperature T__ is given by

2R oT
Nu=——|—| =6
(Tmean T, )( o Jr:R ....................................... (20)
where T =Az
When Nusselt number is based on the weighted mean temperature T, _, we have
2R oT 48
NU =S| | T s 1)
(Tmean - Tw) ar r=R 1 1

8.4 Temperature Distribution between Two Concentric Rotating Cylinders

The equation of energy for steady flow of a viscous incompressible fluid between two concertric
rotating cylinders without addition of external heat in cylindrical polar coordinates reduces to

2
1d{ dt d(v
0 . dt(r er p{r dr( . ﬂ ............................... (1)
The boundary condition are
r=r ; T=T,
..................................................... 2)

r=r,; T=T,
For the flow between two concertric cylinder velocity distribution is given by, which we have already
derived in earlier unit.

1
Vo= 2 {(Wzrzz _erlz)r - (Wz _Wl)rl 2 } ........... 3)
L —n

where r,,w and r,,w, are the radius and angular velocity of'the inner and of the outer cylinders

respectively.
Putting the value of v, from (3) inequation (1), we get

2 4 4
():Ei(rd_TJ+4“(W2_W1)2M1r1 Xi4
r dt\ dr (r22 —rlz) T

d( dT 4 (wy—w, Py 1
r W T T (2 .y 3 4)
(0) dt dr K (1'22 _rlz)z P GARIIIII PP PRPPRPPRIERRERORS



Integrating (4) w.r.t.r we have

rd_T _ 2 (w, _W1)2§14r; xi+A
dr K (r22 _rlz) r2

dr _ 2u (W, —w, )i’ xi+é
or dt K (r22 _rlz )2 r3 r

Again integrating we have

_ 2 4.4
Tz—ﬂ—(Wz Wl) hh xiz+A logr+B

K (rzz _ r12 )2 2T ®))
Applying the boundary condition (2) we finaly get

T-T, N(r2 —rl2 )rz2 10g(r/rl)
= 1-N )+ —=r 1
TZ —_ Tl (rzz _ rlz )rz + ( )+ log(rz /rl) ........................ (6)

H(Wz —-W )2 1'121.22
N =
where (rzz - rlz )(Tz -T )

where Nis a non-dimensional parameter

Equation (6) gives the required temperature distribution in the fluid between two concentric rotating
cylinders.

8.5 Temperature Distribution of Plane-Couette flow with Transpiration Cooling

Consider steady flow of'a viscous incompressible fluid between two parallel plates placed at a
distance 'h' apart with lower plate placed along x-axis.

The y-axis is taken normal to the plates. The lower plate is at rest and some fluid is injected at the
rate v  through it and the upper plate is moving with velocity U in its own plane i.e. parallel to x-axis
and same fluid is withdrawn (suction) at the same rate v, through it.

Since the plates are infinite, then non zero component of velocity u will be function ofy only.

Hence the equation continuity and the navier Stokes equation be come

dv

I =0 e, (1) .. visindependent ofy
y

and y

Vo
o NN

o . . ———> ,""
The boundary condition being h /
y=0 ; u=0, v=yv, Uy vo)

y=h ; u=U, v=y,

Hence from (1) v=v,

u=0
X
2 becomes &2 = PYo du ror T
. (2) becomes 4y dy Vo Fig. 8.8
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Solving (2) subject to boundary conditioning (3) we get

u eM-1

v
Where N Z% and A= % which is injection parameter

Let the temperature at lower plate be T and that at upper plate be T, both T , T, being considered
constants. So the governing equation for steady flow of a viscous incompressible fluid in the absence of
external heat in present case is

c.V d—T—kdzT+ d—uz 5
Ppody dyz W] e, &)

where p is the density, c, is the specific heat at constant pressure and K is the thermal conductivity
The boundary canditions are

y=0; T=T,
yoh o ToT, o s (6)
Introducing following non-dimensional parameters
T = T-T,
Tl - To
Uz
c= Eckert Number
Co (Tl - T, ) ( . )
uc,
P = < (Prandtl Number)
P, =A.p, (Peclet Number)

The equation (5) with the help of equation (4) can be written as

T T 2hn
d—z —PC1 d— = —EC.PC1 —e > (7)
dT] dn ( 13 _1) .........................

and the corresponding B.C's are

n=0; T =0
and R (8)

The solution of the equation (7), Subject to the boundary condition is

o EcPl e [1-ebrrh} {1—e<2%—"3)"}>< nP -1] P! -1

B (ex _1)2 (2%—1);) (2%—1);) e ] QTP ] e 9

Ifheat generated due to internal friction is neglected i.e. if the Ec is taken to be zero then (9) becomes.

. e ]
T = e (10)

1
e"c —1




In order to see the heat transfer at the stationary plate, let us calculate the dimensionless coefficient
ofheat transfer (Nusselt number.)

With present notations.
Nu = [aaij ...................................................... (11)
N )
putting the values of T* from (10) in(11) and after simplification, we find
P,
Nu = GEL ] s e (12)

when L =0i.e. P! =0, the value of Nusselt number is unity and it goes on decreasing as the value

of P!increases, which shows the cooling of stationary plate with the injection process.

8.6 Self Learning Exercise
1. Write down the temperature distribution equation in plane Couette flow
2. Write down dimensionaless temperature distribution in Hagen Poiseville flow.
3. Write down the energy equation in plane Coutte flow with transpriration cooling.
8.7 Answer to Self Learngin Exercise
- T,-T, h 2 h h
T-T, r'
2 =l
T, -T, R
P 2
3. pc,v ar_ k T + du
Sy oyt T dy
8.8 Exercise
1. Discuss the temperature distribution in plane-Couette flow.
2. Discuss the temperature distribution in plane Poiseuille flow.
3. Discuss the temperature distribution in Generalised Couette flow.
4. Discuss the temperature distribution in pipe.
5. Discuss the temperature distribution between two concentric rotating cylinders.
6. Discuss the temperature distribution ofplane-Couette flow with transpiration cooling.
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UNIT -9

Theory of very Slow Motion

Structure of the Unit

9.0  Objectives

9.1 Introduction

9.2 Stokes equations for slow motion

9.3  Stokes flow past a sphere
9.3.1 Stresses on the surface of the sphere
9.3.2 Drag onthe surface of the sphere
9.3.3 Stokes stream function

9.4 Selflearning exercise-1

9.5 Oseen flow
9.5.1 Oseenequation
9.5.2 Oseen flow past a sphere
9.5.3 Stream Functions

9.6 Selflearning exercise-2

9.7 Summary

9.8 Answer to selflearning exercise

9.9 Exercises

9.0

Objectives

In this unit you will study
1. Navier-Stokes equations deduction to the case of slow motion.
2. Stokes flow past a sphere.

3. Oseen flow past a sphere.

9.1

Introduction

In the past units you have gone through Navier-Stokes equation and a few exact solutions admissible
by these equations for some simple configurations.

The exact solutions obtained hither to are valid for all values of Reynold number, Re except some
critical Re values. The cases Re<<1 which corresponds to very slow motion and Re —s oo which
leads to turbulent flow are of special type and have been instrumental in the development and
understanding of fluid mechanics. These two cases give rise to altogether different simplifications to
Navier -Stokes equations. This unit discusses the case of Re<<1 which is useful in understanding the
flow phenomenon of slow motion of fluid past a sphere and cylinder. The case Re — oo giverise to
boundary layer theory which has been dealt with in seperate units.

The present unit entails the slow motion of a fluid past a sphere wherein Stokes flow and Oseen
Flow would be discussed. The theory of slow motion finds application in lubrications theory as well.
Note that when Re is quite small (Re<<1) that is viscosity of the fluid is large or the characteristic
length and velocity of the body are small, then the viscous forces will be apprecibly larger then the
inertia forces. Hence for Re<<1 the inertia terms may be neglected from the Navier-Stokes equation
as a first approximation. These reduced equations are known as Stokes equations and contrary to
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non linear Navier Stokes equations, these are ordinary differential equations which are easily amenable
to solution.

A fundamental point to note is that order of Stokes equations and that of Navier-Stokes equations
is the same.

It was Stokes, who first used the simplified Stokes equation to examine the slow flow past a sphere.

9.2 Stoke's Equation for Slow Motion

Ifthe fluid velocity is very low, then quantities containing squares of the velocity are negligible in
comparison to other quantities, hence the above equations for slow motion reduce to

WV = () cveerveeemmeenmeenieeereenieesneeesseeieesseeesreeeueenseeenaneens 3)
—=——Vp+VV'V
o o PEVY oV 4

We take divergence of (4) and make use of (3) to yield with V*p = 0 which is Laplacian equation

We now take up the discussion on Stoke's flow past a sphere.

9.3 Stoke's Flow Past a Sphere

Let us consider steady flow with uniform stream velocity U,
U_ past a solid sphere of radius a. The sphere is kept Nx----=-==-f---=mmmm7 P(x, y, z)
fixed at its position. The fluid motion is considered to be
very slow (Re <<1). o
A Cartesian coordinate system is considered as shown in A0
the figure (9.1) 0]
Thus the Stokes equation for the setup are
a + N + ow =0  (equation of continuity) _(5) 7
ox 0Oy 0z Fig. 9.1
Vs (6)

n ox
R 7)

H Oy
R L (8)

n oz

when v = (u,v,w) is the velocity
The boundary conditions are
r=a:u=v=w=0
r>o:u=U_, v=w=0
ANAP =0 oo 9)
Now we have to prescribe pressure in view of the physical set up. Following points are worth noting.
1. The pressure is harmonic function

2. The pressure on negative side of the sphere (x < 0) i.e. the side of the sphere facing the
approaching flow is higher as compared to other of the side of the sphere (x > 0) ultimately pressure
vanishes at infinity.
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Thus, we have

A(3x* 1
A3 1)
plrr r

Vzvzéﬂ
por
A 3xz
Viw ="
N L5 e (12)

The equations (12) are linear partial differential equations and their particular integrals can be determined
by a closer look on the symmetry and a slice of mathematical endeavour. Following points are to be noted.
1. The flow is symmetrical about yz-plane vis-a vis x-axis
2. uisevenfunctionof x,y, z
3. visoddabout xand y and eveninz
4. wiseveninybutoddinx, z
Above facts lead to conclude that u, v, w have particular integrals respectively as
~A X’ -Axy -Axz
2ur’ 2urt’ 2pr’
In order to obtain complete solution, we need to solve
Viu=0, Vv=0. Vw=0
For this, suitable solutions (harmonic functions) ofthese equations are added to particular integrals
to give rise to complete solutions so that the conditions onu,v,w are not violated even after adding
particular integral
Quantities comprising

1 0% (1
u,, ;, y; are added tou

o* (1
ox by ; 1s added to v

o* (1
ox 07 ; 1s added to w

Thus, the complete solution is obtained as

2 2
u:—AX—+U +E+C(3X —iJ

3 5 3
2ur Coor roor
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A xy Xy
V——2——3 3D 5
pnr r

A xz XZ

\%% =—2——3 3D—5
pr r

where B, C, D are constants to be determined. Having known u, v, w as above, further note that equation
of continuity must be satisfied. Hence

X x A x Bx
&+5+E = _[15CX2+15D(Y2+Zz)]r—7+(9c+6D)r—5—$r—3—r—3 .................... (13)

Here it is noticeable that if C=D, then first two terms cancel out and if B= _Z then last two terms

A
cancel each other and consequently equation of continuity is satisfied. Now on putting B =~ Z in
the expression for u and on making use of boundary conditions, we get

3 Aa’
A=—palU_, C=D=
> K G (14)

Consequently, we obtain

3axy(a’
V=Zr—3[r—z—1JUW .................................................................. (16)
3axz(a’
T [r—z—lJUm ................................................................. (17)
_ 3uU_ ax
B ey (18)

9.3.1 Stresses on the surface of the sphere :
The pressure p as derived above is the difference of the actual pressure from the pressure of
undisturbed stream.
(1) Now, the pressure at the point x=—a, a
(leading and trailing stagnation points respectively)

are
_3uU, _3pU,

P (19)

(i) The normalstresses on the surface of the sphere are given by
ov,

s =P+ T ) = =PH205 | (20)

(i) Tangential stress is
0(vy) lov
= = — =2 |+ —-—L
(00)es = (T ) e P{f Gr( . J 3 } .................................. @1)



Where v_, v, are the radial, tangential components of the A
velocity in a meridian plane as shown in the figure (9.2), when A

X =rcos0
<=~

-
-_—
-_—
—_
-
-_—
- -

y =rsin0cos¢ .

z = rsin Osin ¢ &
Hence, we compute
v, = ucosf+(vcosd+wsing)sind

r

X 'y z
= uU—+vV=+w-—
r r r

v, = (Vcosh+ wsin ¢)cos®—usin

Xy ZX Uuw
= V—+W———

wr Wr r

w =rsin0

when _ 2 2
W=y +z

_ 1 3a  a’ 0
Vo = T ar ar U SING e (23)

This gives

(Grr)r:a :iugcose
2 a

(Gre)r:a = - %uTwsin 0 s

9.3.2 Drag on the surface of the sphere

Having determined the stresses, we now compute
the drag on the sphere as follows

drag D= I(Gn )r:a cos 6(2na sin G)ade
0
+ I(Gre ). cos(g + GJ (2rasin 0) add
0

=2napU  +4mapU

Thus D =6nuU a is the Stokes expression for the drag

1
on the sphere. Note that out of the total drag 3 rd ofthe

drag (2rapU ) is due to normal stresses and %rd i.e. 4mpU_ is due to the shear stress.
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9.3.3 Stoke's Stream Function:

Stream function describes the flow pattern. The stream function V is given as

y= —T (+? sin O Jv,d0
0

1 oy U, 1 3a_a’ ), .,
T 20 =——21-"—+_— [r"sin" 0
when v, Zsin6 00 Thus WV 5 ( S to3
Note -1 Stream function v as obtained above can be viewed as composed of two parts , and v,
1 . 1(aY
where Y, = _EU‘”rZ sin’ e|:1 +5(?j }

v, = %Umarsin2 0

Physically vy, signifies irrotational flow past a doublet (a singularity) situated at the origin. Note
that \, contributes nothing to the total force on the sphere.
Physically \y, represents rotationed flow and has a singularity at r = 0 known as "Stokeslet"
Stokeslet can be summarised physically as a force applied to the fluid at a point. The dgrag
6muU a experienced by the sphere is purely due to the Stokeslet.

Note -2 A case ofa sphere moving uniformly through a viscous fluid can be made out if we superimpose
on the flow field a velocity —U _ in the direction of x. The stream function of the superimposed
flow is given by

Y= %Uwr2 sin® 0

Note -3  The stream lines y =constant have neen depicted in the following figure. The stream lines indicate
the flow pattern.

U,
X
Fig. 9.4
9.4 Self Learning Exercise — 1

1. The condition for very slow motion is

(a) Re>1 (b) Re<1 (c) Re>>1 (d) Re<<l
2. Inthe theory of very slow motion, which of the following is true for the pressure p

(@) Vp=0 (b) Vp=0 (c) V’p=0 (d) Vp=0

3. InStoke's flow past a sphere, the sphere ofradius a (where notations have their usual meanings)
(a) Experiences no drag

(b) Experiences drag of magnitude 6pU

(c) Experiences dgar of magnitude 6uU_a

(d) Experiences dgar of magnitude 6uU_an
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9.5 Oseen Flow

9.5.1 Oseen Equations

()

Oseen analyzed the validity of Stoke's equations for the slow motion and extended pertinent
submissions. He pointed out Stoke's assumptions are into valid at large distance from the body. He
argued that

In deducing Stoke's equation form the Navier equations, the inertia term (V, V) v were neglected

and the viscous terms /25, were taken into account. He reasoned that the order of ratio of inertial

term to the viscous term at a distance r is

U/t Ur ULr
v v v L

2
r

R, —
L

" : U : . vU
[Note that order of inertia term at distance r is — and that of viscous termis 2 ]
r

r
The above ratio unequivocally says that stoke's equations are valid when both Re and L e small.

That means that Stoke's equation would describe the flow "accuratly" in the neighborhood ofthe
body and when Re is small. He questioned the situation what happens when Re is small but r is quite
large. Oseen improved the situation and suggested that for larger and small Re, we may retain only
those inertia terms which are of comparable magnitudes.

With the viscous terms and at large distance r, an appropriate approximation can be made to the
effect that one may regard the flow as a small perturbation (departrue) from the uniform flow.

That is velocity v can be taken as

v=U_+1u
where U, =unoformstream velocity at infinity
i = small perturbationin U

Substituting v=U_ +u" inthe Navier - Stoke's equations, we get

v ) S (1)
%+(ﬁ'v)ﬁ* @ V)i = Lvprvwr )
Acknowledging the lesser contribution of (ﬁ* ,V)ﬁ*

and involved mathematical difficulty due to non linearity of this term, Oseen neglected this term and
carried out his analysis with the following improved equations.

VAL 2= () cvveemeeeennreeeireeeteeeireeeireesaeeeseaeesaneeeseneeesaneens 3)

aﬁ* i * 1 *
—+|\U-VJi' ==—Vp+VvV*i
2 ( ) > PHVVU 4)

These are called Oseen's equations.

Note -1

In the neighbourhood of the body, Oseen equations are exactly the same as those of Stokes equations

since the term (fjw A% )ﬁ* would be negligible in comparison to the viscous term.
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Note - 2
Oseen' equations are valid for any large r and for any large Re. Further it should be noted that if Re
is small and r is large, then the equations are valid in the whole flow region since they are valid at
large distance whereas in finite region they are slight departure from the Navier-Stokes equations by
negligible inertia terms.
Having gone through Oseen' reasoning we, now, move to our main problem, that is, Oseen' flow
past a sphere which is an improvement on Stokes solution.

9.5.2 Oseen' flow past a sphere
Let us consider a steady flow with uniform stream U _ past a solid sphere of radius a held fixed. A

Cartesian coordinate system is chosen in such a way that the origin is at the centre of the sphere and
the x-axis is in the direction of the flow.
Thus, the Oseen' equations for the steady flow reduce to

out ov  ow
+——+ =0 e, (5)
ox oy oz
pU, . +% = UVPU e (6)
ov' .
PUwa—X"‘%:MVzV .............................................. (7)
pr—+%= VW e (8)

(Where v=ui+Vv'j+ w*kj

and the boundary conditions are

r=a, U =-U_, V=0 W =0rrccerer. 9)

V2P = 0 et (10)

[Recall it, we have obtained this expression in the case of Stokes flow]

Let ¢ be harmonic functionie. V=0, ..cccoverrurrremnee. (11)

then particular solution to momentum equations (6 - 8) can be obtained if we express
0

p=pU, O e (12)
ox

. 00 . 0 . 00
u=-—"">- V=" W=—,
and ox oy Dp e (13)

.__0b, ]
ox
L (14)
oy
w’ =—@+woj
oz

where (u,, v,, W) constitute the solution of the following equations,
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and follow the continuity equation

ou, OV, , OW,
+—24 =
ox 0y 0z
Now, note that if & is the function such that

o V 2
8—X=U—WV G e (17)

Then, we can determine the solutions of (15) as

U
“Tox v
_ 08
oy
_ %

W, =
0
0z i

00

Vo

Now, note that the equation (17) can be redesigned as

(V22 02) € E =0 covererrmnrnssmcenssssneeneesnneeessncenes (19)

U

where o= 2—3 .................................................... (20)

(19) has the solution of the form

1 ox
Forsmallar’ Wehave’ aZA ;—OL+—+ .................... ””(22)

We, now, come back to equation (14) and (18).
Making use of with (20) with some simplifications we obtain

u ——@+ % 20§

Ox OX
Jo_ 00 8
dy Oy
W o 00 8
0z 0z
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equation (21) is completely determined if we have expression for unknown quantity ¢. Note that o, & are

available with us. For this we prescribe ¢ as follow on taking note ofthe fact that ¢ must have only zonal
harmonics of negative degree

o (1 0’ (1 o’ (1
d):BO +B1&[;j + Bzyt;j +B3§[;j+ .............. (24)

Using (22), (24) in ;" — component of(23) making use of boundary conditions (9) and equating zero the
coefficients of different power of x, we ultimately obtain.

3av ~U,a’

ow
I
>
I

w
I

a e
where (note that) ao. = ﬁ = e is taken to be small.

Consequent upon the above analysis, the velocity components are obtained as

. 3axy(a’
v=v :Z?(?_IJUDO ................................................ (25)
2
v =3

Note that equation (25) are the same as were obtained by Stoke's.Consequently the drag coefficient
in Oseen' analysis comes out to be the same as we obtained in Stoke's flow
9.5.3 Stream Function :

Stream function provides the flow pattern, hence, now we devise the formula for it.
The stream function vy is given as

T—-%T+a—f 20£,C080 ..o (27)
0

Thus W=rzf[%—%+2aicosej5iﬂ9d9 ......................... (28)
0

on making use of ¢, & as obtained above, we obtain

3
v =%va(l +cos)1 —e -0 | U%sin2 0o (29)
For small values of ar, we have
3 a’ .
Y = ZUOO ar [1—3?j sin®@ (30)



Note that expression (30) is the same as we S—
obtained in the Stoke's flow analysis. \\%—<—

The distinctions of Oseen' flow from Stoke's flow

is exhibited in the flow pattern when we plot the U 0-0
steam lines. The stream lines y =constant are

depicted in the figure (9.5) /

The figure shows that in Oseen's flow the stream ﬁ

lines are different in front of and behind the sphere. P
In fact behind the sphere we come a cross a wake.

9.6

Self Learning Exercise - 2

1. Oseen's equations for slow motion are valid
(a) inthe neighbourhood of the body only
(b) not in the neighbourhood of the body
(c) intheneigbourhood ofthe body but not at large distance
(d) atany distance from the body.

2. InOseen slow motion analysis for the flow past a sphere perturbation is assumed in
(a) viscosity
(b) pressure
(c) density
(d) velocity

9.7

Summary

In this unit one has discussed the theory of very slow motion which is the case of very small Reynolds

number values. For small Re values, the governing non-linear Navier-Stoke's equations can be
simplified to give rise to ordinary differential equations which are rather amenable to analytical solution.
You have seen how Stoke's deduced his equations for the slow motion and devised solution for the
flow past a sphere. He devised expressions for quantities of interest such as drag and the stream
function. Oseen' put in efforts to remove the short comings of Stokes analysis. Oseen' method is
valid for every distance from body whereas that of Stoke's is true in the neighbourhood of'the body.

9.8 Answer to Self-Learning Exercise
Self Learning Exercise -1
1. @ 2. (c) 3. (d)
Self Learning Exercise -2
1. @ 2. (d)
9.9 Exercise

1. Write a short note on the theory of very slow motion with reference to Stoke's flow past a sphere

2. Show that drag on a sphere ofradius r for the Stoke's flow past the sphere is 6nruU_ where
notations have their usual meanings

3. Explain Stoke's flow past a sphere
Explain Oseen's flow past a sphere

How Oseen's method is an improvement on the method by Stokes
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UNIT - 10

Concept of Boundary Layer Theory

Structure of the Unit

10.0  Objectives
10.1  Introduction
10.2  Boundary Layer
10.2.1  Applications
10.3  Prandtl Boundary Layer Theory
10.4  Characteristic boundary layer parameters
10.5 Selflearning exercise
10.6  Summary
10.7  Answer to selflearning exercise
10.8  Exercise

10.0

Objectives

After studying this unit you will be able to understand
1. The notion of boundary layer, its genesis and applications.

2. Various characteristics of boundary layer

10.1

Introduction

Boundary layer theory propounded by Ludwig Prandtl, a German Physicist, in 1904 in his seminal
paper at Heidelberg entitled "On the Motion of fluid with very Little Friction" proved to be
revolutionary in the development of fluid mechanics. Prandtl's eight page paper and 10 minutes
presentation gave the world a key to many unresolved problems in fluid mechanics at the beginning
ofthe 20th century.

This theory emphasized the importance of viscosity in large Reynolds number flows. The theory
bridged the gap of then prevalent classical hydrodynamics and the hydraulics. The former dealt
with the theoretical analysis of the flow but did not have answer to many practical flow problems
e.g. drag experienced by a body flowing through fluid, fluid flowing past a body, pressure loss in
tubes due to fluid motion etc., the latter dealt with practical flow problems and their solutions based
on the experimental data which mostly covered the engineering aspect of fluid motion. Prandtl's
boundary layer theory showed the way to overcome similar challenges. His theory is the original
example of the use of the singular perturbation method which he applied to governing partial
differential equations. Note that the boundary layer theory was all about the flow with very low
viscosity fluids (such as air, water) for which Re(Reynolds number) — oo . It may be noted that
Re =« is considered to be corresponding to ideal fluid flow i.e. zero viscosity or non viscous
fluids. Here it is worth to keep in mind that real fluid flows have large or moderate but finite Re
values. Prandtl's boundary layer theory is a theory to determine the asymptotic behaviors of flows
for high Reynolds number or in other words high Reynolds number flows which are small perturbation
from the limiting case R —» oo . This is what Prandtl did.

10.2

Boundary Layer

In his theory, Prandtl theorized that when low viscosity (however small) fluid flows past a body, the
viscous effects such as stresses and forces due to viscosity, diffusion of vorticity etc. are significant
and comparable in magnitude with convection and other inertia forces in a very thin fluid layer
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adjacent to the surface in contact with the fluid, . This thin layer is called the boundary layer. The flow field
outside this layer may be regarded as in viscid. Prandtl used no slip condition while devising the boundary
layer theory. No slip-condition means that the effect of friction is to cause the fluid immediately adjacent to
the surface to stick to surface. The boundary layer to hypothesis supports the intuitive expectations that for
the small viscosity fluid flows the effects of viscosity on the flow are unimportant over most ofthe flow field
but the no slip condition at the surface must be satisfied for even vanishingly small viscosity.
The physical significance of the no slip condition is that there is zero relative velocity between the surface
and the fluid adjacent to it. Since the viscosity is very small and if the fluid path along the surface is not too
long, then the velocity changes appreciably over very short distance normal to the surface of the immersed
bodyina fluid flow.
Thus boundary layer region is the region of very large velocity gradients. If we recall Newton's shear stress
law which states that shear stress is proportional to velocity gradient. Thus local shear stress can be very
significant within the boundary layer. This theory solved the dilemma of zero drag resulted from the potential
flow theory which was in practice prior to Prandtl's work.
One may recall that prior to Prandtl, potential flow (incompressible) irrotational flow theory was successfully
used in many very high Reynolds number flow problems where complete negation of viscons effects served
as a good approximation but resulted a zero drag. This phenomenon remained unexplained then. Further,
potential flow theory failed to satisfy the no-slip condition contrary to what was observed in real situations.
Prandtl's theory was outcome of theoretical and experimental investigations. It was shows that the flow
past a body can be partitioned into two regions

(1) A very thin layer (boundary layer) adjacent to the surface where viscosity effects dominate.

[note that the boundary-layer thickness is supposed everywhere to be small compared with
distances parallel to the boundary over which the flow velocity change appreciably]
(i) Outside this layer, the fluid may be regarded as inviscid or may be treated as a potential flow.

U(x) ; | Potential flow
v [ Boundary layer
Fig. 10.1

10.2.1 Applications

Initially the theory was formulate for laminar flow of an incompressible fluid which successesfully

agreed with the experimental investigations. This simulated the growth of'the fluid mechanics and

the idea was exetended to compressible and turbulent flows. With the advent and challenges of

flight technology and urge to design optimal equipment, boundary layer theory proved to be good

simulation tool. The aerodymanic shapes of present day four wheelers are due to boundary layer

analysis. Now, we briefly outline the applications of boundary layer theory

1. It served a basis to many branches of fluid and mechanics aerodynamic such as airfoil theory
and gas dynamics

2. It helped to compute frictional drag of bodies in a flow whether body is in motion in the fluid
or the fluid is in motion past the fixed body

3. Itextended explanation to reverse flow situations in many flow regimes. It facilitated the
understanding of separation of flow from the body and the formation of eddies at the back of
the body.

4.  Like the boundary layer equations for momentum. boundary layer approximations for thermal
and solutal regime have been devised.
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The boundary layer theory has got so much significance that all its different area have emerged as
full fledged branches in themselves.

10.3 Prandtl's Boundary Leyer Theory

Uptil now you have had a fair idea of boundary layer. and its historic background. In this section we

sharpen our understanding of the notion
First we consider flow over an airfoil shaped body as shown in the figere 10.2. The body experiences
a net aerodynamic force due to the fluid pressure and shear stress.

Pressure -------> Shear Stress

\ ‘/ ——> Pressure
T

Pressure

Fig. 10.2

Intuitively you can reason that to get the net aerodynamic force both the pressure distribution and
shear stress distribution first be determined and then integrated over the whole surface ofthe airfoil.
The computation of pressure is rather easier as compared to shear stress, simply because in computing
the pressure we may assume that the fluid is inviscid. But this cannot be done for shear computation.
For it, one has to take internal friction into account and the complexity begins! This is one example
where in Navier-Stokes equations are hard to solve.

10.4 Characteristicsc Boundary Layer parameters

We now present some characteristic parameters of boundary layer whose computation provide vital
insight into the phenomena and are important in many practical problems.
() Boundary layer Thickness '§'
Boundary layer thickness is the distance in which the velocity in boundary layer approaches to
the potential flow velocity asymptotically. Boundary layer thickness is the distance from the
wall where the fluid velocity u in boundary layer differs from the potential flow velocity U by
1%1.e.
boundary layer thickness

8 = (y), =99%U
(i) Displacement Thickness '3',
This is more sensible measure of boundary layer thickness and is defined as

5, = T[l—%] dy

0

Physically it can be thought of as the distance through which stream lines just outside the
boundary layer are displaced laterally by the fluid retardation in the boundary layer.
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(iii) Momentum thickness J,

The momentum thickness §, is defined as

Tu u
S, = |—=|1-—|d
2 '([ U [ Uj y
(iv) Skin Friction
The shearing stress on the surface y = 0 or the skin friction is given by

L[
W uayyzo

10.5Self Learning Exercies

1. Boundary layer theory was formulated by
(a) Reynolds
(b) Sakiadis
(c) Blasius
(d) Prandtl
2. Boundary layer theory formulation considers
(a) Slip condition
(b) No - slip condition
(c) Variable pressure
(d) Variable temperature
3. Inthe pressure in the boundary layer is SAME...........cccuveriieniieiieeiieiieieee e
4. The bounary layer flow the viscous effect ofthe fluid is...........ccooeeeiiniiiiieniiieeeeee

10.6 Summary

In this unit an introductory note to the motion of boundary layer was presented. The motion is

applicable to describe the mechanics of vanishingly small viscosity fluid flow. The theory has beena
great success to serve as s key tool to devise state of art also dynamic designs of automobiles,
missile technology, high speed airplanes, sophisticated war airplanes to name a few.

It has also helped in dealing with problem inclusive of drag like in case of ship sailing.

The applications of boundary layer theory are so varied that it has led to grow various branches in
fluid mechanics undoubtedly advent of commercial software, development of numerical software
techniques have helped to analyse many boundary layer equations for laminar and turbulent flow.

10.7 Answers to Self Learning Exercise

1. (d)

2. (b

3. Asthat ofat the edge of boundary layer

4. Confined in a thin layer adjacent to the wall.

10.8 Exercise

1. Write a note on boundary layer theory
2. Write a note on characteristic parameters of boundary layer theory
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UNIT - 11

Velocity and Thermal Boundary Layer in Two Dimensional Flow

Structure of the Unit

11.0  Objectives

11.1  Introduction

11.2  Velocity boundary layer derivation
11.2.1  Order of magnitude approach
11.2.2  Asymptotic approach

11.3  Self learning exercise

11.4  Thermal boundary layer

11.5 Summary

11.6  Answer to selflearning exercise

11.7  Exercise

11.0

Objectives

After studying this unit you will be able to
1. derive the velocity boundary layer equations for two dimensional flow

2. derive the thermal boundary layer equations for two dimensional flow

11.1

Introduction

In previous unit we have learnt about the existence and importance of the boundary layer. We have
learnt that how Prandtl presented a theory which could answers to some unresolved practical
problems.

In this chapter we will understand the existence and the altered Navier-Stokes equations in the
boundary layer above which there is potential flow.

The velocity boundary layer equations have been obtained through two approaches viz. order of
magnitude approach and asymptotic approach alongwith necessary boundary condition.

It is also seen in the previous unit that a thermal boundary layer also exists which is an elegans to
momentum boundary layer. In this unit is has been suggested that boundary layer approximations
can be defined through the order of magnitude approach.

11.2

Velocity Boundary layer Equations in Two Dimensional Form

We will derive boundary layer equatons for the flow past a solid plane wall by two different
approaches viz order of magnitude approach and the asymptotic approach.

Let us consider a two dimensional flow ofa viscous incompressible fluid over a plane solid wall.
A Cartesian co ordinate system is considered as shown in the figure.

u d(x)

Fig. 11.1
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Two dimensional Navier-Stokes equations and equation of continuity are

ou Ov

&+5=0 ................................................................... (1)
ou odu du op o’'u o’u

o TtV e U e 2)
ot ox 0Oy p Ox ox~ Oy

ov oOv 0ov op o’v o’
StV = et Ut | 3)
o ox dy pody \ox' Oy

and the boundary condtions are

y=0 ; u=v=0

Yoo 5 U= UX ) =U, i (4)

where (u, v) are the velocity components in (X, y) directions and U _ is the free stream (potential)

velocity. Note that since the wall is solid, hence due to no slip condition u=v=0 at y=0.
Further it should be noted that velocity component u which is zero at the wall, grows rapidly in
the boundary layer to match the free stream velocity at the edge of the boundary layer
ie.y—>o ; u—->U_]

Let us assume that the boundary layer thickness is & . Note that in this thin boundary layer region
& << L where L is the characteristic length. For convenience, in this discussion we take [, = 1 .In
the boundary layer region, viscous effects are significant.

11.2.1 Order of magnitude approach
We now use order of magnitude here for each terms in the governing equations and it is denoted by

00).

Let us consider quantities t, x and u of 0 (1) and y of 0(8) where & <<1
We observe that the quantities

2
%, Z—u, 2—121 are each of 0(1)
X O0X

2

.. Ou o’u
Further, we note that the quantities g and oy areof 0 (8’1) and 0 (8’2)

respectively.
It is pertinent to note that since yis of 0 () therefore the normal velocity component v is of 0 ().

[ v=2 0 (y)=s, O(t):l}

ot
= vis of 0(8)
Like wise we conclude that
ov ov ov 0> o*v 1
g is of 0 (1) and the quantities 2 x O_XZ are of 0 (8) each and a_y2 isof 0 5

This order of magnitude analysis enables us to determine the significant terms to be retained or we
2
. . u C g .
can say the terms which can be omitted. Thus we see that the term 2 which is of 0 (I) is
X
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o’u o’u). 1
negligible in comparision to 8_}/2 since 0 (WJ 15? which is large. With these consideration

equation (2) becomes

2
M 1 O

o ox Oy 0 ox Vayz ......................................... (3)

Further it is presumed that the viscous term enjoys the same order as that of the inertia term, that is of 0 (1).
This leads to conclude that v is 0(82 ) This reasoning has been validated by some exact solutions.

In view ofthe above analysis, the eq. (3) suggests that

1P s of 0(3)
p Oy
Physically this means that the pressure in the boundary layer grows with O (8?) and thus may be neglected.
This finding is of utmost importance to conclude that the pressure is constant in the normal direction and
may be taken equal to the pressure at the edge of the boundary layer where it is computed by the inviscid
free stream flow.

1 oU . oU
Ths —~2 =Xy &
poy ot ox

where U is the potential flow velocity. In view ofthe above analysis, the boundary layer equations for the
unsteady two dimensional incompressible flow over a solid plane wall are

ou ov

—+= =0

ox 0Oy

du Oou ou oU _oU o*U

—Hu_—+V— = —+U——+V—— . (4)
ot ox y ot oy

together with the boundary conditions.
y=0 ; u=0=v

y—oo ; u-Uxt)=U,

11.2.2 Asymptotic Approach

The boundary layer equations derived above may alternatively be obtained by asymptotic approach.
Infact, the boundary layer equations are asymptotic form of Navier-Stokes equations at large
Reynolds number.

Let us again consider the equations (1) - (3)

We introduce the following non dimensional quantities.

-t _ X _ 'y _— u _ VvV _p

t:—’ X:—’ y:—’ u:—’ V:—’ p:—

T X Y U \Y P

where T, X, Y, U, V, Pare the characteristic measure of the corresponding quantities.
On putting these quantitics in the equations (1) - (3) we find,

ou XV ov

—tor==0 ... (5)

ox YU oy
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X du _du XVau P dp v d0u vX ou
—tu_—+_——-——= 2_+ 2+ B D eereeteeeantteettettttanttetnnstenns (6)
UTat & YUdy pU X XU YU oy

PX 0p v 0°Vv uvX 0V
= ~—7 st 3 D eeeerereereareneaerernaa (7
pYUV oy XU X’ Y’Udy

considering X and U as the fundamental units, we have

T:z, P=pU’
U

XU
and Re = (Reynolds number)

the units of measurement of Y and V are computed taking note of the fact that the equations
(5)-(7) ought to have a single flow parameter i.e. Reynolds number Re. Consequently, we take

XV wa X
YU Y-U
X U
:>Y: s V:—
Re JRe oo s ®)

+ +—
o5 “ReTox? T Re oyt (11)

1(av _ _avj_ & 1 8V 10

We have seen that boundary layer equations hold good for large Re values. Thus when Re is large,

1
then small parameter JRe is pertinent parameter in boundary layer analysis. In order to have the

solution of the above equatons we introduce the following expansions

1 1
:VO+\/R_eV1+(\/R_e)Z Vet (13)

1
p:po+\/R_ep1+(\/R_e)Zp2 ....................... (14)

Making use ofthese perturbations is the equation (9)-(11) and then comparing the terms independent
ofRe

we obtain
Ouy OV _
BX Gy s



= +u, +Voay_ ox gt (16)
Py
0=——Xo

P — (17)

On converting these equations in dimensional form and dropping the index zero, we get the same

equations as we got through order of magnitude approach. The equation _5 is not taken into

account since it is assumed that the pressure is independent of'y in the boundary layer and infact the
same as at the outer edge ofthe boundary layer.

11.3

Self Learning Exercise

1. Velocity components in the boundary layer adjescent to stationary plane wall
(a) remain same throughout
(b) dimension as one goes towards the potential flow.
(c) grows rapidly as one goes towards the potential flow

2. Boundary layer equation are form of Navier - Stokes

equation at large.......... cocovev ceveereen e e

11.4

Thermal Boundary Layer

The concept of thermal boundry layer is analogous to the momentum boundry layer. When a fluid
flows over a heated / cooled body then transfer of heat is experinced . As we know there are three
modes of heat transfer conduction, convection and radiation. Radiative heat transfer is significant if
the thermal regime involves high temperature. In the present text we will not discuss the radiation
aspects. Coming back to the central issue of the thermal boundary layer, it is seen that at high
Reynolds number, the thermal regime also exhibits boundary layer character. That means temperature
field can be divided into two regions (i) The region close to the wall where thermal conductivity k
has a key role and (ii) the region in which k can be neglected.

This unit is restricted to the analysis when the density and viscosity are consent i.e. not dependent
on temperature and pressure. This pre condition is ensured by the assumption that temperature
and pressure difference within the boundary layer are small. Here it is pertinent to remind that in
general momentum boundary layer thickness and thermal bounary layer thickness are not the same.

Further, it is to be remembered of that we derived the boudnary layer equaiton for momentum for
fluids having small viscosity. For small thermal conductivity fluids, the energy equation can be
simplified to yield thermal boundary layer equations.

We known that energy equation for two dimensional steady flow ofa viscous incompressible
fluid is

oT 0T o’T 0°T
pPClu—+v—|=x yﬁLW FO e, (1)

where (u, v) are velocity components in (X, y) directions, T is the temperature, p is the density and

C, is specific heat at constent pressure, k is the thermal conductivity and ¢ is the viscous dissipation
given by
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¢= 2{(%}2 +(%JZJ+M{(%T + (%Jz +2%%} ............ )

The boundary layer approximation for the eq. (1) can be derived by order of magnitude as we
have done earlier for the momentum equations.

Let 6, denote the thermal boundary layer thickness and 6 is the thickness of velocity boundary
layer then v is of 0(J).

11.5 Summary

In this unit, you have learnt to derive the boundary layer equations for momentum and the energy
regimes. We have seen that same momentum boundary layer equation are derived by order of
magnitude approach and asymptotic approach (i.e. Re — oo ). The analysis was made for the flow
of'viscous incompressible fluid past a thin plate. Similarly, formulation for the thermal boundary
layer was also made through order of magnitude approach.

11.6 Answer to Self Learning Exercise.

1. (¢)
2. (1) asymptotic
(2) Reynolds number

11.7 Exercise

1. Derive two dimensional boundary layer equation for the viscous incompressibel fluid flow past
a thin plate

2. Derive two dimensional thermal boundary layer equation for the viscous in compressible fluid
flow past a thin plate.
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UNIT - 12

Blasius - Topfer Solution

Structure of the Unit

12.0  Objectives

12.1  Introduction

12.2  Boundary Layer flow on flat plate (Blasius topfer solution)
12.2.1 Blasius series solution

12.3  Thermal boundary layer : simple solution for P=1

12.4  Selflearning exercise

12.5  Summary

12.6  Answer to selflearning exercise

12.7  Exercises

12.0

Objectives

In this unit you learn the derivation of

1. boundary layer solution of viscous incompressible fluid flow over a flat plate. This solution
has been initiated by Blasius

2. asimple solutions of thermal boundary layer flow over a flat plate in a particular case when
Prandt] number has been taken as unity.

12.1

Introduction

The boundary layer flow along a thin flat plate is the simplest example of boundary layer theory.
This case was infact the first example of the boundary layer theory proposed by Ludwig Prandtl
(1904). The analysis presented here is part of doctoral thesis of H. Blasius (1908).

In this unit we will also discuss the solution of a thermal boundary layer problem of a forced
convection laminar boundary layer flow past a flat plate for a particular value of Prandtl number
which has been taken as unity.

12.2

Boundary Layer Flow on Flat Plate

Boundary layer on a flat plate (Blasius Topfer solution)

Blasius produced a solution to the steady boundary layer flow on a flat plate with the help of the
similarity solution. The partial differential equations were reduced to ordinary differential equation.
The resultant system is amenable to the solution.

Here we consider a steady flow of a viscous incompressible fluid over a very thin solid flat plate. It
is assumed that the plate is semi infinite in length. A Cartesian coordinate system is considerd as

shown in the figure wherein y
x-axis is taken along the flat U U, U,
plate and the y-axis " /
perpendicular to it with origin [ S _ __/
at the edge of'the plate. The - edge of
plate starts at x = 0 and __ | UooE T 7 boundary layer
extends along the x-axis. The al 5 u(x,y)
fluid flows parallel to the plate / S x
)

with free stream velocity U
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In this case, the potential flow velocity is uniformi.e. U_ hence there is no pressure gradient along
the x-axix. Thus

1 op U, du,, _0
p Ox dx

Thus the equation of continuity and boundary layer equations for the two dimensional flow and for

the flow considered here become.

ou oOv
T T e (1)
ox 0Oy

Ox By D aR s (2)
together with the boundary conditions
V=0 5 U=V=0 e 3)
Vo0 ; U U, i, 4)

It is pertinent to note that we can hope for similar solution since the setup has no characteristic
length, therefore we can presume that the velocity profiles at different distances from the leading
edge (i.e. x=0) are similar to one another. In the foregoing analysis we would explore the possibility
of simlar solution so that the equation (2) is converted to ordinary differential equation.

Seeking Similar Solutions :

By dimensional considerations and reasoning we find that

S(X) ~ T

00

o Y
Hence we can have similarity M~ S(X)

XV U
= /7 = et e e e e e e e e araaeaas ®))
1 y/ U, Y LX

Let v be stream function so that the velocities take the form

v

The equation suggests that the dimension of y is the same as that of ,/oU _x

Hence we canset \ = /U, £(17).eveerereceneeineninceieeineeineeenne (7

nbeing a dimensionless quantity
Inview of(6) and (7) the velocity components are obtained as

* 007 Nl fiiieeeeeeeessssssssssssssssssssssssssssssssnnnns 8
oy  on dy ®
5 ov o d oU
v W N VNN O (e ) )
ox ox On ox X



where f' denots derivative of f with respect to 1. Similarly
ou 0 U

o " Vel e

@zi(uwfl)zuw\/gf“
oy Oy LX

82_u=i U &f“ =U &f“l
oy> oyl “Vox "V ux

Susbstituting the values ofu and v and the partial derivaties as obtained above,in the equation (2) we get
DM L FFT 2 () vveveere et )
and the corresponding boundary conditions (3), (4) take the form
n=0 ; =0, f'=0
) I e (10)
n— o S !

The equation (9) along with boundary condition (10) is known as Blasius equation. Note that (9)
does not have closed form solution since it is a non-linear differential equation. It can be solved
numerically. However, Blasius himself succeeded in presenting a series solution to it subject to the
boundary conditions (10)

12.2.1 Blasius Series Solution

Blasius idea for obtaining a series solution was to obtain series expansions for f{1)) about =0 and
for large 1 and to join these two expansions at a suitable value of these two expansions at a suitable

value of .
Series Solution about n =0
Let us consider
a a
fn) = a,+am+=2n"+=n h
M) = a,+an BT o
So that
f'(n) = a1+a2n+a—3n2+a—4n3+ .................
2 B |
a a
') = az+am+§“nz+l_§n3+ .......................................................... (11)

£170) = a, +an+ =02+ 2
(ﬂ) 3 Ham 2 n 3 n )
where primes denote differential with respect to 1. Since for

n=0, f=0, f'=0
we have clearly

By =0 =8 e (12)
We now substitute the above expansions in the equation (9), and on simplification we obtain
2 3
2a3+2a4n+(a§+2a5)n7+(4a2a3+2a6)%+ ....... =0 (13)

Note that (13) is an identity which holds for every value ofn. Hence coefficients of different powers of
must vanish identically. This leads to

a
2
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Thus we see that the coefficients in the expensions (11) are either zero or canbe expressed in terms of a,
In view of the above analysis, we find that

f(n)zﬁnz aj s llaj g

2 —Eﬂ +4|§ M o (14)
Series Solution for large 1 (i.e, 11— )
£ f .o [ Lan . : :
T T, on integration f = Ae "2 whereAis constant of integration

On integrating again and taking the boundary conditon n — o0, f' — 1 into account, we get

f'=1+A T[ejgdnjd
= n

Integrating again,

where B is also a constant of integration
As a first approximation as m — <, Blasius set

using (16) inintegral (15), we get

n{m (n-B)dn nfn _(n-B)
f(n)Zn—B+AI[IeJ 2 dn}dn or f(n)Zn—B+AJUeITdndn}dn

00| o0

Note that f(n) as obtained above satisfies the condition 1 — 0, ' (n) —1

However the constants Aand B are still to be evaluated. Infact, the constants a , Aand B are chosen in
such a way that f(n), f'(n) and f'(n) are continuous when the expeansions are joined. Sufficient number
of'terms in these expansions are taken into account to get the desired accuracy. The values obtained by
Blasius himselfare

a,=0.332, B=1.73, A=0.231

12.3 Thermal Boundary Layer : Simple Solution for P =1

Here we will consider a particular problem of flow past a flat plate [forced convection laminar
boundary layer flow past a flat plate for P =1]

Let us consider a steady flow of a viscous incompressible fluid over a thin semi-infinite flat plate.
The insulated flat plate is considered at temperature T . The free stream velocity is U and
tempreture T, plate is assumed to be along the direction of fluid stream. A Cartesian coordinate

system is considered and the origin is taken at the leading edge of the plate and axis ofx along the
plate. Thus the two dimensional flow is governed by the equations

ou 8V_O

8_x+5_ ............................................ (1)
G, ou O 5
x 'y Gy T 2)

u +V +
and ox oy pC, oy’ pC



with the boundary conditions
y=0 ; u=v=0, T=T,
Y30 ; WU, TopT, rwomemmmms (4)

vC,p

The solution of the above equation (3) can easily be obtained for the case P =1 Note that when P, =

then is means that L =——. This is the special situation when the equation (2) and (3) seem is to be

pCp
identical in the sense that u, T may be interchanged to get the either equation with the boundary conditions (4)
T-T u

(O,

T _T I8 replaced by U

T-T, u - T-T, _ -

Hence we take T.-T, ~ U, or T -T, U,
T-T, . u

or T _T [ oo %)

(5) is known as Croccos first integral for P =1
which gives the solution for temperature distribution in terms of wall temperature, uniform stream
temperature, velocity distribution in the boundary layer and uniform stream velocity.

12.4 Self Learning Exercise

1. Boundary layer flow on a flat plate is also Known as ..........ccceecevieniiiiinicinccneenes
Blasius equation have closed form situation

True or False

3. P=1implies v =

4. What is Croccos first integral ?

N

12.5 Summary

In this unit we have discussed two problems. One is a fluid boundary layer flow problem over a flat
plate. This leads to Blasius Topfer solution in a non linear differential equation form. This solution of
this form was carried and by Blasius which has been given here. Another problem s of thermal
boundary layer in a fluid moving over an insulated plate at a constant temperature. which is different
from the uniform flow temperature. This solution leads to Croccos first integral for P=1 i.e. Prandtl
number equal to unity.

12.6 Answer to Self Learning Exercise

1. Basius-Topfer solution
2. False
K
3. pC,
T-T, u
4 =1-
' T,-T, U,

12.7 Exercises

1. Discuss the boundary layer flow over a flat plate.

2. Obtain Crocco's first integral for P =1
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