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PREFACE

The present book entitled ‘‘Analysis and Advanced Calculus” has been
designed so as to cover the unit-wise syllabus of MA/MSc MT-06 course for M.A./
M.Sc. Mathematics (Final) students of Vardhaman Mahaveer Open University, Kota.
It can also be used for competitive examinations. The basic principles and theory
have been explained in a simple, concise and lucid manner. Adequate number of
illustrative examples and exercises have also been included to enable the students to
grasp the subject easily. The units have been written by various experts in the field.
The unit writers have consulted various standard books on the subject and they are

thankful to the authors of these reference books.



Unit-1
Normed Linear Spaces
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1.0 Objectives

In this unit, we introduce the concept of a norm over a linear space. A Banach space is a normed
linear space which is complete metric space. The theory of normed linear spaces and Banach spaces, and
the theory oflinear operators defined on them are the fundamental of functional analysis. In this unit, we
discuss basic propeties of normed linear spaces and Banach spaces and give some examples of these
spaces.

1.1 Introduction

Usefull and important spaces are obtained if we take a linear space and define on it a metric by
means of a norm. The resulting space is called a normed linear space. Normed spaces and metric spaces
are special enough to provide a basis for a rich theory in functional analysis.

1.2 Linear (Vector) Spaces

A linear space (or vector spaces) is an additive abelian group 7 (whose elements are called
vectors) with the property that any scalar ¢ and any vector x can be combined by an operation called
scalar multiplication to yield a vector « x in such a manner that

@) a(x+y)=ax+ay;

(i) (a+B)x=ax+px;



(iif) (aB)x=a(Bx) ;

(v) lLx=x

A linear space is thus an additive abelian group whose elements can be multiplied by numbers in a
reasonable way. The two primary operations in a linear space-vector addition and scalar multiplication are
called the linear operations.

A linear space is called a real linear space or a complex linear space according as the scalars are
the real numbers or the complex number.

1.3 Basic Concepts of Norm and Normed Spaces

1.3.1 Norm and Normed Space :

If v be areal or complex linear (vector) space and || . || be a function from p/ into R (set of

reals)i.e. |.]|: N > R or x > ||x|| with xe N,

then the non-negative real number ||x|| regarded as the length of the vector x and said to be the

Norm on J and the pair (N ) - ||) is called as Normed linear space, provided for all x,y € N and all

o € R (or C), the following axioms are satisfied :
N, :|x]|z0, if x=0
N,:|x[=0<x=0
Ny et < o+
N : o x] = o [
The function | . | becomes a semi-norm and the corresponding space becomes semi-normed
linear space if N, is replaced by
Ny(p): x=0=[x|=0
Example : The metric space induced by the metric d (x,y) = |x - y| is anormed linear space.

1.3.2 Convergence in Normed Linear Space

Definition : A sequence <x, > in J i.e., normed linear space (N , ||) is said to converge to an

element x, € N if givenarbitrary € > 0, 3 a positive number (integer) , s.t

nzn,=

X, =X, < e
and we write ll_{g Xy =Xo or x, > x, as n — o L.e.,
Thus x, — x, iff ||xn —x0|| —0.

Definition : A sequence <x, > in ) is said to be a Cauchy sequence if given € > 03 a positive

integer n, such that



< €.

m,nzn,=|x, —Xx,

Definition : Asequence < x, > in J issaid to be bounded if 3 areal constant g > ¢ s.t. ||x, | < K for
all n.

Definition : Ifevery Cauchy sequence < x, > in ) isconvergenti.e. if v Cauchy sequence < x, > in

N 3 anelement x, e N s.t. x, — x,, then the normed linear space is said to be complete.

1.3.3 Summability in Normed Linear Spaces

A series Z £, of functions in a normed linear space p is summable to asum s in p ,ifthe

sequence of partial sums of the series converges, s.t.

n

S_Zfi‘_)o as n—
i=1

L€. S:fo

/o

<

The series Z £, is asbolutely summable if Z

i=1
1.3.4 Continuity in Normed Linear Space
If N, M be two normed linear spaces, then a function f : N — M is continuous at x, € N iff

v €>0,3a8§>0 s.t.

||x—x0||< o= Hf(x)—f(xo)u < e.
The function f iscontinuouson p iff f iscontinuous at each point of /.
In other words, f: N — M iscontinuousat x, e N iff V sequence < x, > in )y converging to

x, € N, the sequence < f(x,)> in M convergesto f(x,) e M ie.,iff x, > x, = f(x,) = f(x,)-

In case of three topological spaces X, Y, Z the continuous function f : X x ¥ —2 5 7 is

jointly continuous in x and y if f(x,y)=z.Inother words, if

f(x,,»,)—> f(x,y) whenever x, > x, y, >y as n — .
1.3.5 Allied Spaces to Normed Linear Spaces

Banach Space : A complete normed linear space is known as a Banach space.

Function Space : A function space is the metric space which is linear space with elements as functions
defined as X (#¢) with addition and multiplication, i.e., /X = R:(f +g)(x)=f(x)+g(x) and

(af)(x)=a f(x).
n-Dimensional Enclidean Space : If z» be a set ofall ordered 5 -tuples x = (x,,x,,.....x, ) ofreal

3



numbers, s.t. p» isareal linear space with additive and multiplicative operations such as

x+y=(X 4V, X+ Yy X, +1,) where Y=(D1,Vs0eeeen V) and

ax=(ax,ax,,..,ax,) sothat0=(0,0,.....,0) and —x = (—x,,—x,,...,—x, ) etc.

then R” is a n-dimensional space. We canregard g as composed ofreal functions f* defined

2

on (1,2,.....,n) s.t. |[f]|= [Z‘f (l)‘z} known as Euclidean norm, then normed linear space R" is
i=1
called n-dimensional Euclidern space.

n-Dimensional Unitary Space : Theset ¢ ofall » -tuples z =(z,,z,,....,z,) of complex numbers

constitutes a complex Banach space w.r.t. operations of addition and scalar multiplication and the norm

given by
- |3kl

It is known as an n-dimensional unitary space.

1.4 Theorems on Normed Spaces

Theorem 1: If )/ be anormed linear space and x, y € N, then

[ =T <=4

Proof: We can write

b= le=p)+ A<=+ by
giving  [x] =[] <[l =] (D)
and [y =[(y —x)+ x| <[y~ ]+ ] giving
A=l <y = x| = [~(x = )
=[x -] by N,
=[x~y
or [y [xl =[x~y -2)

2 and @) = =] |<lx-].
Theorem 2 : Every normed linear space is a metric space.

Proof: Let ) beanormed linear space and let

d: NxN — R defined by d (x,y)=x-»|.

4



(M]x,yeN=x-yeN=|x-y)|20 (byN)
=d(x,y)20
[M,]d(x,y)=0[x-)]=0
Sx—y=0 (by N,)
<>X=Yy
[M.]d (x,9) =[x =y =[(-1)(y-x)]
=[=1|[ly -+ (by N,)
=[y=x[=d(y.x)
[M,]d(x.y)=[x=y|=|x-z+z-y]|
<fe—zf+fz= by Ny)

= d(x,z) +d(z,y)
It follows that ;7 is a metric and hence p is a metric space.

Theorem 3 : If ) be a normed linear space with the norm |.

, then the mapping f: N — R s.t.

f(x) =|x] is continuous. In other words, the norm ||.|| on  isa continuous function.

Proof : Taking a sequence < x, > in N s.t. x, > x € N, as n — oo, we have by Theorem 1,

alil

<|x, =x| >0 as n— o

7 (x,)- 7 (x) =]

xl’l

f(x,)> f(x) as n— o0 = f is continuous.
Theorem 4 : Every convergent sequence in a normed linear space is a Cauchy sequence.

Proof: Assuming that a sequence < x, > inanormed linear space ) convergesto x, € N . We claim

that < x> is a Cauchy sequence.

Given > 0, and the sequence < x, >— x,, 3 apositive integer n, s.t.
€
nzn, :”xn —x0||<5

so that for all m,n > n,, we have

X, —X, X, —XqgtTX)—X

n



n

<|px, —)c0||+||)c0 - X

by N,.

Le.,

x, —x,||< €= thesequence < x, > is a Cauchy sequence.

Note : Its converse is not true, i.e., every Cauchy sequence (particularly in a metric space) is not
convergent.

Consider a metric d(x,y)=|x—y| in a space X =(0,1). Then the sequence

1 1
—|=—— >0 as
n m

1 , :
<x,>=<—>€X is clearly a Cauchy sequence, since d(x,y)=

X, —Xx
n

m

1 1
m,n — oo, but d(;, 0) = H — 0 a5 5, 5 oo with 0 ¢ X shows that < x, > In X isnotnecessarily a

COHVCI'gth sequence.

Theorem 5 : The limit of a convergent sequence is unique.

Proof: Consider a convergent sequence < x, > inanormed linear space ), converging to two limits

X,y st. x#y ie, <x,>—>x as wellas <x,>— y. Then |x,—x|—>0 and |x, —y|—> 0 as
s . ()

Now ||x — y|| = ||x -X,+x, — y||

S||x—xn||+

xn_y” by N3

<[k, =] +

xn_y” by N4
<0 by(l)as n—
||x—y||=0:>x—y=0 by N,

= x =y ie.,thelimitof <x, > in ) isunique.

I 1 oo Je_a b
Lemma 6: If p>1 and ;+;= 1 thena,620=a’"b S;WL;,wherethe sign of equality holds
iffa” =b7.

Proof: For 4 =( or p = (, the result is obvious. Therefore taking 4 > 0, p > 0 and k €(0, 1), i.e.,
0 < k < 1, setafunction

f(t)zl—k+kt—t" for 1 >0 (1)
and k:l,z‘:ﬁ
p b

f(O)=k(-1)-1"+1= f(1)

0 -.(2)



fr() ==kt = k(1)
so that f’(t)<0, for 0<¢<1

f’(t)>0a t>1

For 0 <¢ <1 and some ¢ s.t. ¢ < ¢ < 1, the mean value theorem of differential calculus yeilds

S()=1()

-t

= () £(1) ()

for 1~ 1 and some {4 s.t., | < 4 < ¢, the mean value theorem gives

=f'(c)=f(1)-f(t)=f"(c)(1-1)<0 for |—¢>0and f'(c)<0

f)-r() = f(d)= f(¢)- f(1)=(¢=1)f'(d)>0 for ;> 1 and f'(d)>0

t—1

= f(1)> /(1) (4)

Thus (3) and (4) = £(¢) > f(1) either ;<] or ;> 1 but 7 =1 ..(5)
and  f(1)=k(t-1)—t"+1= f(r)=0for ;=1 ..(6)
Also (2) and (5) = f(¢) >0 for ¢ =1 .(7)

s (6)and(7) = f(1)=0 for ;>0

= (1-k)+kt—t" >0

=>t"<kt+(1-k) for ;>0 ..(8)
(a)%’ la 1
=>|—| £——+1-—
b pb p
lp l
:b(gj ££+b[l——j
b p p
1
Salrpic Lyl as —L-1 .(9)
P q P q

Corollary : Ifweset 1 = ¢”b™? in(8), other assumptions being the same, then we get

1
(a”b’q); Sla”b’q +1—l
p p



1 1 1 1
or ab ? <

la!’b*q +— as —+—=1
p q P 9
Multiplying both sides by 4, this reduces to
3\
abq(li%’) Si%rE
P 49

P q
or abéa—+b—
p q

Now to show that the sign of equality holds iff ,» — 5, we have

LR (171] [ S
a’ =b"=a’ =b' =a " =b" By p

1 1 1

or aa? =b” :a:(ab);:a”:ab

Similarly p7 = gb

1 1
a” b* ab ab 1 1) i |
—+———+——ab[—+—)—ab as » q

P g P qg P g
P
Le. ab=a—+—,
P g

which follows that the sign of equality holds if ;7 — p9

Theorem 7 [Holder’s Inequality] :

...(10)

If x=(x,,x,,...,x,) and y =(y,,»,,...,,) betwo n — tuples of scalars (real or complex), then

under the norm

1
q

Z |y1- |p} , we have the inequality
L i=1

o Ve
b, =| Sl |

1

n n '%7 n q
Surl<| St | [ S |

i=1 i=1

=+, I
Il I,

1 1
where 1< p<oo and —+— =1,
p 9q

8

Proof: For yx =, y =0, the result is obvious. We therefore consider the case when x = (, y #0.



The inequality (10) of Lemma 6 for @, >0, b, > 0 yields

P pe
a,b, <%+ (1
b g (1)
Setting a, —u and b, —u , (1) reduces to
I, I,

|xl.| |y1-| Sl |xi|p +l |yz'|q
I, I, 2 2 g

summing over ; from 1 to 5, we find

R ZI Al s —— ZI |+

I, ||y|

o 2T
b+
PEAAaTT,
< p %7 p < p
os I, =| Skt | =l =3
=l+l=1
2
or Z|x il <[, 171, , since x| [y] =1, | (2)

i=1

Note : The theorem is also true for sequance x =<x, >, y =<y, > s.t.

X

n

P
Y

IEEND)

n=1 n=1

<% for p>1

Corollary : For p=2, g =2 the inequality (2) reduces to

n n 2 % n 2 %
§|xfyi|s{§l|xf| } {;m }

=, b, e
Theorem 8 [Minkowski’s Inequality] :

If x=(x,,x,,...,x,) and y =(y,,»,,...,,) betwo n — tuples ofreal or complex numbers, then



under the norm

Proof :

S
b, =[Skl pe
We have the inequality

e, <[, 1,

. pA . A pA
[gxﬁyl—r’} s@xﬂ +[;|yi|ﬂ

where 1< p<o0.

For p=1. b, =| Sl [ 1o S
so that ||x+y||1:Z|xi+yi|SZ|xi|+Z|y[| by N3
i=1 i=1 i=1
L e

which shows that the inequality holds for p=1.

1 1
Taking p >1 and setting ; = 1_; so that ¢ > 1, we have

n
e+ A7 = 2+ 0l
i=1

n
= Z|xi +yi| |xi +yi|p71

i=1

= {px+nl} o+ 0
i=1

n n
S2|x[| |x[+y[|p71+2|y[| |xi+y[|p71 by N3
i=1 i=1

n %) n _ %
s[;|xi|p} [lex +y1|q(p l)}

1

n %) n 5 A
+ [Z |y1-|p} [Z |x1- + )’i|q(p 1)} by Holder’s inequality
i=1 i=1

10



1 1

n » A n » A
il Sl | bl | Shs e |

1 1
since_=1__:>Q(P—1)=P
q p

1
u q
~{il, + b} | S|
P
i, D, e

1 1
or syl s <]+, where p-gzp[l_ﬂ:p L

or [y, <k, + [,

Note : The Theoremis also true for sequences x = <x, >, y =<y, >

s.t. anp<°°,2|yn|p<°°forp21.

i=1 i=1

1.5 Factor (quotient) Spaces

If M be a subspace of a vector space p , then 3 an equivalence relation between any two
vectors x,y € N ie., x ~y iff x—y € M , since thisrelation is :

Reflexiveie., x~x asx—x=0eM
Symmetricie., x~y=>y~x as x—yeM
:>—(x—y)=y—xeM
Transitiveie., X~y, y~z=>X~z as
x—yeMand y-zeM=>x—-y+y—z=x-zeM
. Vectors x,y being equivalent under ‘~’ =>x—-y e M.

Thus p is divided into mutually disjoint equivalence classes. We denote the set of all such

equivalence classes by IR

Let [ x| denote the equivalence class which contains the element x . Thus

x]={y:y~x}={y:y-xeM}
={y:y—x=m for some me M}
11



={y:y=x+m for some meM}={x+m:meM}
Thus [x] is the set of all sums of x and elements of jz. The set [x] is called the coset of M
determined by x and is usually writtenas x 4+ A7 . In o We define addition and scalar multiplication by
(x+M)+(y+ M)z(x+y)+M ; X, yEN

a(x+M)=(ax)+ M, a e F overwhich y is defined.

N
Here 52 is a vector (linear) space w.r.t. addition and scalar multiplication. Also A isanormed

N
linear spce and exihibits a norm for I The zero element of N/M i8S 0+ M = M -

The set of all such equivalence classes {x + M : x € N} referred as W is known as the Factor

space or Quotient space of § w.r.t. N.

Our next theorem shows that if 37 be a closed linear suspance in a normed linear space » , then

7 can be made into a normed linear space.

Theorem 9 : If js beaclosed subspace of a normed linear space p and ifthe norm ofacoset x + M

N
is the quotient space W is defined by

||x+M||: Inf.{||x+m|| im EM},

N N
then W is anormed linear space. Also if p is complex (Banach space), then so is IR

Proof: We verify all the postulates for a norm. [N 1]] since ||x + m|| is a non-negative real number and

every set of non-negative real numbers is bounded below, it follows that inf {||x + m|| meM } exists and

is non-negative, that is

lx+M|>0V xeN.

[N,] :Let x+ M = M (the zero element of%). Then x e M .
Hence ||x+ M|| =inf{||x+m|| meM, x EM}

=inf{||y||:y EM}=0

[ M being a subspace contains zero vector whose norm is real number 0]

12



Thus x+M:M:>||x+M||=0

Conversely, we have
|x+m|=0= inf {|x+m|: meM}=0
— there exists a sequence <m, >;_ in M
Such that |x +m,|— 0 as k — oo

= lim m, =—x

k—o

=>-xeM [Since ps isclosed and < m, > issequencein )f converging to —y ]

=xeM [+ M is a subspace]

N
— x+ M = M (thezero element of H)

Thus we have shown that

||x+ M||:O:>x+M: M (the zero element of N/ M)

[N,]: Let x4+ A1, y+ M e N/ M, then
|(x+ M)+ (y+M)|=|(x+y)+ M| bydefinition ofaddition of coset.
=inf {Jx+y+m|:me M} (1)
=inf {Jx+y+m+m|:meM,m eM} -(2)
[+ M isasubspace, the sets in (1) and (2) are the same]
=inf {|(x +m)+(y+m')| : m, m' e M}

<inf {Joe+ ] + ]y + o0

T m, m'eM}

[Using N, for N ,since x+m, y+m' €N ]

=inf {||x+m||:meM}+inf {||y+m' :meM}
= e+ M|+ [y + ]
(N,] ¢ o (x+ M)| = inf{o x +m]| - m e M} since a(x+M)=ax+M m%
zinf{||ax+m||:meM} if =0

13



= inf{|a| ||x+m|| tm EM}
=|a| inf{||x+m|| tm EM}

=la [+ M]

For ¢ = 0, the result is obvious.

N . .
Hence — is anormed linear space.
M

N
We now prove that if » is complete, then so is I Suppose that < x, + M > is a Cauchy

. N : . : :
sequencein ~ . Then to show that < x, + M > is convergent, it is sufficient to prove that this sequence

has convergent subsequance.

we can easily find a subsequence of the original Cauchy sequence for a fixed 5 s.t.

H(x1+M)—(x2+M)H<%

H(x2+M)—(x3+M)H<2i2

(x,+M)—(x +M)H<2in

n+l

N
We prove that this sequence is convergent in I We begin by choosing any vectory y, in

1
x,+ M ,and we select y, in x, + M such that ||y1 - y2|| < 5 We next select a vector y, in x, + M .

1
Such that [, —)/3||<2—2 containing in this way, we obtain a sequence {y,} in n such that

yn_yn+l <2_n'

Thus for z; < i, we have

<

ym _yn (ym _ym+1)+(ym+l _ym+2)+""+(yn—l _yn)

|+

..+

ym_ym+1 ym+]_ym+2 yn—l_yn

1

< + +....+
2m 2m+1 2n—l
14




1, 1 1
= I+ =+t
2m i 2 2n m

)| -]

2m l_l = 2m—1 - 2n—m
2
1
<720 as m—eo,

which follows that < y > isa Cauchy sequencein p .

Since p is complete, there exists a vector y in  suchthat y — y.Itnow follows from

H(yn+M)—(y+M)HS yn—y”—)O as n—> oo
that y + M —> y+ M .ir., y + M convergesto y+ M in % Hence 2V is complete.
M

1.6

Examples of Banach Spaces

We now describe some of the main examples of Banach spaces. In each of these, the linear

operations are understood to be defined eithr co-ordinatewise or pointwise, which ever is appropriate in
the circumstances.

Example 1: Show that the linear spaces R (real) and C (complex) are normed linear spaces under the

norm || =[x

, x € R or C as the case may be.

Also show that these spaces are complete and hence Banach spaces.

Solution : R isanormed linear space, since

N, : |x|20= |x] 20, whichis so, ¥V x e R
N, : ||x||=0©|x|=0®x=0,VxeR

Ny x4y = x+ ¥ <|x][+ ]y =[x+ ]y] ¥ x, v eR

N, : |ax|=|ax|=|a||x| =|a| |x|, o beingrealor complex.

Similarly ¢ is a normed linear space, since
N, : |x|20=x[20, vV xeC
N, : ||x||=0©|x|=0©x=0 VxeC

N, : x, y €C and x, y being thier conjugates (complex),

15



We have

|x+y|2 =(x+y)(x+y)=(x+y)()?+)7):x)?+y)7+xj7+)?y

< |)c|2 + |y|2 + 2|x;7

, by properties of complex quantities.
=|xf + [y + 2]y as [7]=
= (| +yl)

giving  [x+ ] <[x{ +]5]

= [+ <[+

Ny o] =|a x| =|allx| = o] |x

, o being real or complex.

By Theorem 4, every convergent sequence in a normed linear space being a Cauchy sequence,

thereal (R) or complex (C) normed linear space is complete and hence a Banach space.

Example 2 : Show that the linear spaces p» (Euclidean) and ¢ (Unitary) of p-tuples

x=(x,,X,,....,x,) ofreal and complex numbers are Banach space under the norm

1
n 2
W= {3 S}
Solution : N, : Since each [x,|> 0, wehave [|x]| >0

N, =0 Y =0 x =0, i=12,n

i=1

N, @ Let x=(x,x,,....,x,) and y =(y,,»,,....,»,) be any two members of C" (or R").

Then

2

b sl =[Gty ) + (1072032

=H(x1+y1, Xy 4 Vyserees X, £ 1,)

= Zn: |xi +yi|2 = Zn: |xi +yi| |xi +y[|
i=1 i=1

<2+ (il + 1)

16



n n
= Z |xl. +yz‘| |xz-|+2 |xl. +yz‘| |yz'|
i=1 i=1

= ||x + y|| ||x|| + ||x + y|| ||y , by Cauchy’s inequality.

=[x+ 1 (el 1)

If ||x + y|| = 0, then the above is evidently true. If ||x + y|| =0

Then we can divide both sides by it to obtain

e+ A <+ ]

N, : ||ax||:Ha(xl,xz,....,xn)

:||axl,ax2,....,ax

n

AS ksl | =S el

n ) %
fal {325} =l

Thus C" and R" are normed linear spaces. Again to show that the normal linear spaces R" and
C" are complete, consider a Cauchy sequence < x, >” ,1.€., <X,,X,,....,X,...> of pointsin R" or C”",

so that x, being an  -tuple ofreal or complex numbers, we can write

X, = (xl(m),xém),....,x(m))

n

so that x{") is the k" co-ordinate of x,,. Let €>0 be given. Since <x, > is a Cauchy

sequence, there exists a positive integer m, such that

2 2
x,— x| <e

Lm=m, = ||xm —xl” <e=

xl.(’") —xl.(l)‘ <& (1)

=3
i=1

This shows that the sequence < xf m) >»_ is aCauchy sequence of complex (or real) numbers for
each fixed but arbitrary i.

17



Since C (or R)is complete, each ofthese sequences converges to a point, say z, in ¢ (or R)
so that

limx" =z (i=12,.....n) -2

m—0

We now show that the Cauchy sequence < x,, > converges to the point z =(z,,z,,....,z,) € C"

(or R"). To prove this, welet /] — oo in(1). Thenby (2), for m > m,, we obtain

n

2.

i=1

2 2
x,—z < E€=|x, -2 < e

1

x —zl.‘ <=
It follows that the Cauchy sequence < x, > convergesto z e C" (or R"). Hence C" and R"
are complete spaces and consequently they are Banach spaces.

Example3: Let p be areal number such that 1< p < co. Show that the space /; ofall 5 -tuples of
scalars with the norm defined by

=

b, = {3 |

is a Banach space.

Solution : Let x =(x,,x,,...,x,) and y =(,,7,,...,»,) andlet & be any scalar. Then it is understood
here that /) is a linear space with respect to the operations, x+y=(x, +y,...,x,+,) and

ax=(ax,,...,ax,). Wenow show that /” is anormed linear space.

N, @ |x], =0, obvious since |x,|> 0 foreach ;

1
o)
N, : |, =0®{; Mp} 0

©|xl.|=0, (i=1,2,....,n)

<x =0, i=12,....,n

I
(e

< x=(x,%,,...,x,)

N e o, <[, +ly

,» by Minkowski’s inequality.

N, : ||ax||p =Ha(xl,x2,....,xn) ‘p

18



)

1
n P
“Jel{3 sI} =l I

Thus /; is anormed linear space.
Again to show that /) is complete, let < x >  bea Cauchy sequencein /; . Since each x,, is

an p -tuple of'scalars, for convenience, we shall write

m m m
x :(x1 I SO )

m

Let e> 0 be given. Since < x, > is a Cauchy sequence, there exists a positive integer m, such

that

p P
x,— x| < e

X, _x1||p <e=

l,m>2m, =

(1)

im) _x,(l)‘p <& (l = 132"'"”)

This shows that for fixed but arbitrary ;, the sequence < xl,(’”) >»_ isaCauchy sequence in C (or

R ) is complete, each of these sequences converges to a point, say z,,in C (or R )so that

-(2)

lim x" = z (i=12,..,n)

i
m—>o0

It will now be shown that the Cauchy sequence <x, > converses to the point

z= (zl,zz,... zn) € [, . To prove this, we let / — oo (1). Thenby (2), for m > m,, we obtain

p p
x,—2) < e

1 p
> ‘xl.(’”) —zl.‘ <&'=
i=1

=|x, -2 <e




It follows that the Cauchy sequence < x, > converges to ze€/,. Hence /; is complete and
therefore it is a Banach spaces.

Example 4 : Consider the linear space ofall , -tuples x = (x,,x,,...,x, ) ofscalars and define the norm

j

This space is usually denoted by the symbol /” . Show that (ZO’Z,

X

’ n

by ||x||w = rnax{ |)c1

X,

geeey

|..) is a Banach space.
Solution : We first prove that /" isa normed linear space.

N, : since each |x,|> 0, we have [x], >0.
1=0

=0

N, : ||x||w =0 < max {|x1

X, X

’ n

geeey

= |x1|=O,

x2|=O,...,

X

n

< x,=0,x,=0,...,x, =0

< (x,,%y,..,%,)=0

= x=0

N, @ let x=(x,%,,....%,), y=(V105550,)

Then [+ y|, = max {|x, + 3|, [, + 3 ooons i, +3,|}
<max { x|+ [}y [+ [y oooes |+ 3] 3
<max { x|, [x,]s..... x| }Hmax { ], [pa)seslp] }
=[x[., +[¥1.

N, : If o isany scalar, then

Jec ], = max fJor x|, @y onoofor
= max ] ], ] s evont] [}
= max { x| s oo}
=l 1],

Hence [ is anormed linear space. We now show that it is a complete space. Let < x, >”_ be

n m=1

any Cauchy sequence in /" . Since each x,, isan p -tuple of scalars, we shall write.

X, = (xl(m),xgm),...,xr(,m))

20



Let € >0 be given. Then there exits a positive integer m, suchthat /, m > m, =

X, — x,”w < e

xl('") —xl(l) , xé'") —xg) yeeens

— max { x,g'") —x,gl)‘} <€ (1)

(1)

i i

<e. =12

This shows that for fixed ;, < X,-( m) >»_ isa Cauchy sequence of complex or real numbers. Since
C (or R)is complete, it must converges to some z, € C (or R ). We assert that the Cauchy sequence

<x, > converges to z =(z,,z,,....,z,) . The prove this, we let / — o0 in (1). Then for m >m,, we

obtain

x, —z| < . Thus it follows that the Cauchy sequence < x,, > convergesto z /" . Hence /" is
a Banach space.

Example 5: If C(X) be alinear space of all bounded continous scalar valued function defined ona

topological space x . Thenshow that C (X ) is a Banach space under the norm

Ifl=su {[£(<): x € X} £ eC(x).

Solution : Giventhat C (X ) is a linear space, means C (X ) is linear under the operations of vector

addition and scalar multiplication .., /', g € C(X) and o being a scalar, we must have
(f +2)(x)=s(x)+g(x) (D)
(af)(x)=af(x) -(2)

We now show that C(X) is normed linear space.
N, : since |f(x)|=0V x € X, we have
Jr(o) 20
Ny 170 sup{lf(x): x e X} =0
o|f(x)=0vxex

@f(x)zOVxeX

< f isazero function.
N, : ||f+g||:sup{|(f+g)(x)| X eX}

:sup{|f(x)+g(x)| DX eX}
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< s}l (o) <0}
<sup{|f(x)|: x e X} +sup{lg(x)): x € X}
=171l+lel
N, laf]=s{le /)(x): x < X}
= sup{loc (x)| : x € X}
= sup{l| | £ (x) : x e X}
=|a|sup{|f(x)| : x e X}
=lal /1]

Hence C(X) is anormed linear space.

Finally we prove that C(.X) is complete as a metric space. Let < f, > be any Cauchy sequence

in C (X ) . Then for a given € > 0, there exists a positive integer m, such that

m, n=m, = <e€

S =1

:>sup{|fm—fn(x)|:x eX}< €
:>sup{|fm(x)—fn(x)|:x eX}< €

:>{|fm(x)—fn(x)|}< eVxeX.

But this is the Cauchy’s condition for uniform convergence of the sequence of bounded continous
scalar valued functions. Hence the sequence < f > must converge to a bounded continous function f

on x .Itfollows that C (X ) is complete and hence it is a Banach space.

Self-Learning Exercise - 1

1. Write whether the following statements are true or false :
) If x,y,z€ N, N beinganormed linear space. Then d (x+z, y +z)=d (x, )
(i) Every convergent sequence in a normed linear space need not be a Cauchy sequence.

(i) Let » be anormed linear space and let x,y € N . Then ||x — y|| < ‘ ||x|| — || y|| ‘

1 1 p q
v Let >1,_+_=1,a20, > .Thenabéa—+b— with equality if ¢” = p?
p p q b>0 b g q p
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V) Every normed space is metric space but the converse is not universally true.

(vi) Every metric on a linear space can be obtained from a norm.

1.7

Summary

In this unit, we have seen that the notion of the norm of a vector is a generalization of the concept

of length. Besides discussing a fairly large number of examples of Banach spaces, we proved an
interesting theorem which provides us a very useful method for constructing new normed spaces from a
given normed space.

1.8 Answer to Self-Learning Exercise
I. (1) True (i1) False (iii) False
(iv) False (v) True (Vi) False
1.9 Exercises
1. Define normed spaces, Banach spaces. Give two examples of Banach spaces.
2. Prove that the limit of'a convergent sequence in a normed space is unique.
3. Show that the set X ofall convergent sequences in a normed space is a normed space. Hence or
otherwise show that X is also a linear space.
4. Show that every complete subspace of a normed linear space in closed.
5. Show that every normed space is metric space but the converse is not universally true.
6. Prove that a metric ¢ induced by a norm on a normed space p satisfies

@) d(x+a, y+a)=d(x,y)

@  d(ex, ay)=lald(x,y)

V x, y,a € X andeveryscalar ¢ .

miNIN
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Unit -2
Bounded Linear Transformations

Structure of the Unit

2.0 Objectives

2.1 Introduction

2.2 Bounded Linear Transformation

2.3 General Properties of Bounded Linear Transformation

2.4 Weak Convergence

2.5  Equivalent Norms

2.6 Compactness and Finite Dimension
2.6.1 Compactness in Normed Spaces
2.6.2 Related Theorems

2.7  ReiszLemma

2.8 Summary

2.9  Answers to Self-Learning Exercise

2.10  Exercises

2.0 Objectives

In previous classes we have studied linear transformation from a linear space to a linear space. We
now consider linear transformations from a normed linear space to a normed linear space. In particular we
will be interested in questions related to the continuity of such transformations. As an illustration of the use
of compactness in analysis, we shall establish basic properties of finite dimensional normed linear spaces.

2.1 Introduction

In calculus we consider the real line g and real valued functions on g (or ona subset of R).
Obviously, any such function is a mapping of its domain into g . In functional analysis we consider more
general spaces, such as metric spaces and normed spaces, and mappings of these spaces.

In the case of linear space and, in particular, normed spaces, a mapping is called an operator
(transformation). In this unit, we consider general properties of bounded linear transformations. Weak
convergence is defined in terms of bounded linear transformations.

2.2 Bounded Linear Transformations

If ;y and N’ be two normed linear spaces with the same scalars, then a mapping

T:N—2 5 N',is known as an operator or a transformation and the value of 7 at x e N is

denoted by T(x).

The operator 7 is known as linear operator (transformation) if it satisfies the following two
conditions :

T(x+y):T(x)+T(y) forall x,y e N
24



and T(ax)=aT(x)forreal ¢ and x e N .

The above conditions are also equivalent to a single condition
T(ax+pBy)=aT(x)+BT(y) Va,feF and Vx,y eN.

The transformation 7 is bounded if 3 a real constant g ~ () s.t.
ol Kl v x N
The transformation 7 is continuous at apoint x, € N ifgiven € >0, 3a §(e,x,)>0 s.t.

|7(x) - 7(x,)| < € whenever |x—x,[ <.

Here 7 is continuous on j ifit is continuous at every point of 7 . It is uniformly continuous if

5(x,) > 0 is independent of x, onlys.t.

HT(x)— T(xO)H <e with |[x-x<és

The norm of a bounded operator (transformation) is defined as

I7]= sup {”ﬁ)” x 0}

or equivalenty 7] = sup {|7()]: | < 1}

and  [7]=sup {JT0)]: Iel=1 i N = {0}
we can also express it as

|7]=inf. {K : K >0 and |7(x)| < K[| for all x}
which follows that

7o <71 el

If 7= R (normed space ofreals), then 7' is known as a Functional and denoted by /. A
normed linear space consisting of all bounded linear functional over N , is known as a conjugate space

(or Dual space), denoted by N~

Note : All continuous (or bounded) linear transformation of N into N’ are denoted by B(N,N'),
where B stands for bounded.

2.3  General Properties of Bounded (or Continuous) Linear Transformations

Our main purpose in this section is to convert the requirement of continuity into several more useful
equivalent forms and to show that the set of all continuous (or bounded) linear transformation of N into

N’ canitself be made into a normed liear space in a natural way.
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Theorem 1 : If 7" be alinear transformation from a normed linear space p/ into the normed space N',
then the following statements are equivalent :

)] 7T is continuous

(ii) T is continuous at the origini.e., x, > 0= T'(x,)—> 0.

(i) 7 isboundedi.e., 3 real K >0 s.t. HT(x)H < K|x| forall x e N
(v)

If S ={x : |x| <1} isthe closed unit spherein p , thenits image 7'(S) is bounded set in
N'-
Proof: (i) < (ii) : Let 7 be continuous and < x, > is any sequence in ) suchthat x, — 0as n — .

Then by continuity of 7, wehave x - 0= T'(x,) — T'(0) = 0. Hence 7 is continuous at the origin.

Conversely, let T' be continuous at the origin and < x, > be any sequence in N such that
x, > x € N .Then

(x,—-x)>0=T(x,—x)=0 [+ T is continuous at origin]

= T(x,)-T(x)=0=T(x,)=T(x),

showing that 7' is continuous mapping.

(i) — (iii) : Let 7 be continuous at the origin and suppose, if possible 7 is not bounded that is,

there exists no real number x such that HT (x)” <K ||x|| for every x e N . Then for each positive integer
n , we can find a vector x_, such that

|7(x,)

>n

xl’l

1
— EHT(}(ZH) >1
1
— ET(}C”) >1 by N4
ttht—_;
[Note tha alx. nxn]
= T[%) >1 ['.'aT(x)zT(ax) for any scalar ¢ ]
Now set yn:L.Then vIl= ai =——>0asn—>owandso y >0 as n > . But
x| x| :
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T(y,) does not tend to 0, since HT(yn) >1.

Hence 7 is not continuous at the origin which is a contradiction. Hence 7" must be bounded.

Conversely, let 7' be bounded so that there exists a real number g - () such that

7)< &1

x|, VxeN (1)

Let < x, > be anysequence in ) suchthat x, — 0. Then

x,|—[0]=0

Also from (1),

T(xn)HS K”xn” Vn -(2)

It follows from (1) and (2) that HT (xn )

— 0 whichimplies that 7'(x,) — 0. Wehave thus shown

that x, - 0= T/(x,) — 0 and consequently 7 is continuous at the origin.

(iii) <> (iv): Assume that HT (x)” < K|x| forevery x e N andlet x be any point of the closed

unit sphere § so that x| < 1. Then HT (x)” <K forall x €SIt follows that T[S] is a bounded set in
N'-

Conversely, let 7[.S] be bounded so that there exists a real number g > () such that
HT(x)H <K forall xeS ..(3)

If x =0, then 7(x)=0 and so clearly HT(x)H <K|x

;and if x # 0, then

X X
— S vl =1
] [ I~ }
and therefore by (3)
T[i) <K=| L 1)<k
] ]

1
=T | 7(x)| <k

=[7()|< K

Thus it is shown that HT (x)” < K|x| forall x ¢ ;v . Hence 7 is bounded.
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Theorem 2 : If 7 be abounded linear transformation ofnormed space p/ into normed space N',then
the following norms are equivalent :

() |71 = sup {H]()ﬁ)u X # 0}, xeN
X

@  |7]=inf {K: K20, |T(x)|<K|x|} ¥ x eN
i)  ||7]|=sup {”T x)” x| < 1}, xeN
{

)  ||7]|=sup ||T x)” x| = 1}, xeN.

Proof: (i) < (ii): Since

||T||:sup {W:xvﬂ}

=) <7l as 7(0)=0 (1)
= |7 is one K’s satisfying HT (x)” < K|«
= |7z inf. {K : K >0, |T(x)| < K|} -(2)

Conversely, for x 0, and g satisfying HT (x)” < K|x|, we have

[r()] {H 2l }
<K= x#0,
x| I

= |T|< K forall K and T independent of x and K

=|7|<inf. {K : K >0, |T(x)| < K|} ~(3)

-~ (2)and 3) = 7] =inf. {K : K >0, |T(x)| < K|x[} .

= [T(< (7] ] for <1

(if) «> (iii) Since |7] = sup {HT( i ¢0}

= sup {|7 ()] : [x] <1} <[] ()
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Againforan € >0, 3 x, #0 s.t.

|71 = sup {H o H X# 0}

G T

Al

||x1||

so that on setting ¥ = ” ” with ||y||

we observe

sup {HT(x)H e < 1} > HT(J’)

i

or s {7 ()] el <1} 271

- (4)and (5) = |T]=sup {”T(x)” X < 1}

(iil) < (iv) Since as above, we have

|71 = sup {H]h()ﬁ)u DX # 0}

= [Ge)l <171

=7 for x| =1
= sup {|T(x)] : [ = 1} <[]

Further ” ” 2||T||—€

and  sup {|7(x)]: [ =1} |7 ()

_ N
where y—” ”
X

or sup {”T(x)” x| = 1} >||7]| - €
29
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Thus  sup {”T(x)” x| = 1} >||7]| .(7)
From (6) and (7), we have
[71=sup {7 o) [+l = 1}
Theorem 3 : If ), ' be normed linear spaces and B(N, N') is the set of all bounded (or

continuous) linear transformation from A into N, then B(N, N') isalso a normed linear space under

the norm
| 7] =sup {|7(x)] : x| <1} v x e,
w.r.t. pointwise linear operations
(T+S)(x)=T(x)+S(x) and (a T)(x) = T(x), for real o . Also B(N, N') is complete if
N' iscompletei.e., B(N, N') isa Banach space if N’ is a Banach space.

Proof: Sinceaset S ofall linear transformations from a normed linear space N into normed N' is itself

a linear space w.r.t. pointwise linear operations. Therefore to show that B(N, N') isa linear space, it
suffices to show that B(N, N') is a subspace of S .

Let 7;, T, e B(N, N'). Then T;, T, are bounded and so there exists real numbers K, >0 and

K, >0 such that

|7(x)]|< K, || and |73 (x)| < K, |x] forall x e N . Forscalar o, 8, we have
(e 7+ BT) ()] = (e ) (x)+ (BT) ()
=[a 7 (x)+ BT, (x)]
<Jo 5 ()+ BT ()]
=lel|7: ()| + 1817 ()]
< lof &, x|+ |8 K, ||
= (lof &, +|B ) ||
Thus o 7, + BT, is bounded and so
aT +BT, eB(N, N')
—  B(N, N') isalinear subspace of S .
Now we prove that B(N, N') is a normed linear space.
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We verify the norm postulates one by one.

N, : Since |T]=sup {|7(x)|: || <1} and |7(x)|> 0, we conclude that | 7] > 0

T
N, : ByTheorem2, | 7] = sup {H ||Ec)|C|)H IXEN,x# 0}
||T||=0c>sup {H]()ﬁ)” X €EN, x:tO}:O
x

Rt HT(x)uzo,xeN,x;f&O

[~
& |7(x)| =0, xeN, x£0
< T(x)=0VxeN
& T'=0 (zero transformation)
N, : If ,U € B(N, N’), then
T+ =sup {(T+0)(x): x e V. [ <1}
=sup {|T(x)+U(x)]: x e N, | <1}
<sup {|T(x)|+|U (x)] : x e N, || <1}
<sup {|7(x)|: x e N, || <1} +sup {|U (%)) : x e N, ] < 1}
=[7l+[ul
N, : If o isany scalar, then
Joc 7] = sup {J(e 7)(x)] : x e V. I < 1}
=sup {|a T (x)]: x e N, x| <1}
=sup {la| |[T(x)]: x e N, [ <1}
=la| sup {|T(x)]: x e N, ] <1}
=l 7]
Hence B(N, N') is anormed linear space.
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Again, we claimthat B(N, N') iscomplete if N' is complete. Suppose N’ is complete and let

< T >* beanyCauchysequencein B(N, N'). Then

I,-1,

—>0 as m,n— o0 (1)

For each y ¢ )y, we have

L, (x)-7,(x)]| =

<

T,-T,

m

x|—>0  by(l)

Hence < Y;(x) > is a Cauchy sequence in ' for each y ¢ v . Since p/’ is complete, there

exists a vector in ', which we denote by 7(x), suchthat 7,(x) — T(x). This defines a mapping 7 of

N into p'. We now show that 7 is linear and bounded. If x, y € N and «, f are scalars, then
T(ax+,8y)= lim n(axvtﬁy)

=lim [a T,(x)+BT,(»)], T being linear V1.

n—>0

= a lim T,(x)+ f lim 7)(»)

n—0 n—>0

=aT(x)+,BT(y)

This shows that 7 is linear. To show that 7 is bounded, we observe that

()= im 70| = i) < (7 ) o
<o ([7] 1)

)

T,

= (sup |7, ) || ~(2)

In view of (1), we observe that

T,

r,-1,

—>0 as myn—>o by(l)

-|z]| <

Therefore < |T||> is a Cauchy sequence of real numbers and hence convergent and bounded. So

there exists g > () such that

sup ||T[| < K -(3)

From (2) and (3), we have HT(x)H < K||x

b

showing that 7' is bounded. In other words, 7 € B(N, N'). Finally we show that 7, — T". Let

e> 0 be given. Since < 7, > is a Cauchy sequence. There exists a positive m, such that

mnzm,=|T -T|< e ..(4)
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x|| <€ ||x|| for all m, n > m, and any vector y ¢ N .

T,(x)-7,(x)] <

m

= I,-1,

Proceeding to the limit as m — oo, we find

T,(x) = T,(x)| = | 7(x) - T,(x)]| = |(7 - ) (x)] < <] (5

lim

m—>0

Since lim 7, (x ) =T (x ) , as normis a continuous function

m—>0

and lim HTm(X)H = HT(X)H

n—»0

T-T
(5) :>||T—7:, =sup{w:x¢0}£eforaﬂn2no
=|T-T)—>0 as n—>w

=T -T as n— oo
Hence B(N, N') is complete if N' is complete.

Theorem 4 : If T be a linear transformation of a normed linear space N into normed linear space N',

then inverse of 7 i.e., 7' exists and is continuous on its domain of definition iff 3 a constant g > () s.t.

Kl <|7(x)| vxeN.
Proof : Assuming that
Kl <|7(x)| vxeN, k>0 (1)
is true, we claimthat 71 exists and is continuous.
By definition of inverse mapping 7! exists <> 7 is one-one.
Taking x,,x, € N, wehave
T(x,)=T(x,) = T(x,)-T(x,)=0=T(x,—x,) =0
=>x-x,=0=x =x,
This implies 7" is one-one and so 7' exists
— 3 x eN corresponding to each y inthe domain of 7'
s.t. T(x)=yeo T '(y)=x (2)

Inview of (2), (1) can be written as

K| )<l = 0] < bl

— 7' isbounded and hence continuous.
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Conversely if 7-! exists and continuous on its domain T[N ], thentoeach x e N 3 y € T[N|

s.t. T7(y)=x< T(x)=y ie., T isone-one.

Now 7! being continuous, it is bounded and so 3 a positive constant M s.t.,
T g p

7)< Myl = vl < M)

= K| <[7(x)] for & = % >0

Theorem 5 : If T be alinear transformation from a normed linear space N into normed space N',then
T is continuous either at every point or at no point of N .

Proof : Taking arbitrary x,,x, € N and T continuousat x,toeach €>0, 35> 0 s.t.
e—x| < 6= |7(x) - T(x)| < € (1)
Then [x—x,|<d=|(x+x-x)-x|<s
=|T(x+x-x,)-T(x)|< e by (1)
= |7 (x)+ T(x,)- T(x,) - T(x,)| < e
=[7(x)-1(x)] < e

— T iscontinuous at x, .

But x,, x, beingarbitrary, 7 is continuous at all points. Conclusively if 7" is not continuous at a
particular point in p/, then it is not continuous at no point of N .

Theorem 6 : If A/ be a closed linear subspace of a normed linear space N and T be a natural mapping
N

(homomorphism) of N onto ALK (x)=x+ M, thenshow that T is continuous (or bounded) linear

transformation with ||T || <I.

N

Proof: Giventhat )7 isclosed and W is anormed linear space with the norm ofa coset x + M in W

S.t.
|+ M| =inf {|x+m|: m e M}
we claim that 7 is linear.
Forany x, y € N and «, f being scalars, we have
T(ax+pBy)=(ax+By)+ M=(ax+M)+(fy+ M)

=a(x+M)+pB(y+ M)
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or  T(ax+py)=aTl(x)+BT(y)= T islincar.
Again, we claim that 7 is continuous, since
[ =+ M=o {Jxm] m e 1}
<|x+m| vV meMm
=|x| if =0 inparticular

or HT(x)HS 1. HT(x)H V xeN as 0 e M and M is a subspace of N .

= 7 is bounded with bound 1

= T is continuous.
Ao |T]|=sup {|T(x)|: |x| <1}, x e N

<sup {||x|| : ||x|| < 1}, xeN

<1

Theorem7: If N, N' aretwo normed linear spaces and 7 is a continuous linear transformation of N

into N’ andif M is the null space (kernel) of 77, then show that 7" induces a natural linear transformation
T ofﬁ into N’ and that HTIH = ||T||

; .
Proof: Kernel or Null space of 7 is defined as

Ker (T) or N(T):{x:xEN, T(x):O}

Here is given that Ker (T) or N(T) =M.

We first claim that A7 is closed, since if x be a limit point of 57, then 3 asequence < x, > in pf
s.t. x,—>x. But 7 is continuous, therefore T(x,)— T(x). Now T(x,)=0Vn

= T(x)=0=xeM = M is closed.

Thus M being a closed subspace of W is a normed linear space with the norm of'a cost

x+ M in N/M s.t.
||x+M||=inf. {||x+m|| :meM}

Now defining 7' : N/M — N' and setting T’(x + M) = T(x) , we claim that 77 is a linear

transformation s.t. ||T || = ||T ’|| Taking two elements x + A7 and y + M of N/M and «, 8 anyscalars,
we have
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T'[a(x+ M)+B(y+M)|=T"[(ax+M)+(By+ M)]
=T"[(ax+By)+ M| bypropertyof coset
= T(ax+py)
=aT(x)+BT(y)
=aTl (x+M)+BT' (y+ M)

Thus 7" is linear

Now |T||—sup {”T’ x+M|| ||x+M||<1} xeN

Il
»

up ||T || 1nf{||x+m|| meM}<1} xeN

{
sup {”T || ||x+m||<1} xeN,meM
{

sup HT H ||x+m||<l} xeN,meM

since m € M = T(m) =0, by det. of M
=sup {|T(x+ M)|: |x|<1}.xeN

=||T| as xeN.meM=x+MeN and x cN

—x+0eN and 0 e M

Theorem8: Let /v and N' be normed linear spaces over the same scalar field and let 7 be a linear

transformation of N into N'. Then 7 is bounded ifit is continuous.

Proof: Let 7 be bounded so that there exists a real number g - () such that

|7(x)|< K| ¥ x eN (1)

To show that 7 is continuous, let x € N' be arbitrary. For any € > 0, we choose 6 = % . Then

forall y € N suchthat ||y — x| < 5, we have

|[7() = T()| = [[7( )]
SK”y—x” by (1)
€ €
<KE:€ as 5:E>||y—x||
Hence T iscontinuous at x . Since x is arbitrary, 7" is a continuous mapping.
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Conversely, let 7 be continuuous and suppose, if possible, 7" is not bounded i.e., there exists no

real number A > 0 suchthat HT(x)H < i”x” VxeN

>n|x,|.

Then for each positive integer 7 , there exists a point x, € N such that HT (x,)

Foreach 5, we let

xl’l
Yn =
n|x,
1 o
sothat |V,|= o — 0 as 5 — oo whichimplies that y, — 0 as 1 — oo. But forevery »
X, 1
7G| =] T = T(x,)
nlx, n||x,

1
n|x HT(X")
>n =1 as HT(x )H>nx
x| ' '

Which implies 7(y,) does not tend to 0 (ie., 7(0) as n—» o). Here <y, >—>0 but
<T, (»,)> -» T(0),is a contradiction showing that 7 is bounded.

2.4 Weak Convergence

If N be anormed linear space and N * its dual space, then a sequence < x, > of ) is known

as Weakly convergentto x e N, V f e N * st

limf(xn) = f(x)

n—>0
orsimply x —*—>x
le. <x, > converges weakly to x, and x is called as the weak limit of < x, >.

Note that weak convergence means convergence of the sequence of number a, = f(x,) for
every f e N *.

Weak convergence has various applications throughout analysis (for instance, in the calculus of
variation and the general theory of differential equations). The concept illustrates a basic principle of

functional analysis. For applying weak convergence one needs to know certain basic properties, which
we state in the following theorem.

Theorem 9 : The weak limit of a sequence is unique.

Proof: Let < x, > be any sequence. Let if possible x —*— x, and x, —*— x, then for an arbitrary
37



linear operater 7 e N *, N * being dual space of normed space p , we have
T(x,) > T(x,) and T(x,)— T(x)
implying that 7'(x,) = T(x) or T(x, —x)=0

Choosing 7 s.t. [T =1 and T(x, - x)=|x, — x|, we have

||)c0 - x|| =0 giving x = x,,, 1.e., the weak limit is unique.
Corollany 1: Ifthere are two sequences <x, > and <y > in N s.t.
x,——>x and y —" >y, thenitisobserved that
X, +y, —>x+y
and for any scalar ¢ .
ax, ——ax etc.

Corollany 2 : Every subsequence of < x, > converges weaklyto x i.e.,if <X, > bea subsequence of

<x,>of N s.t. x, —*— x,, then every subsequence < x,; > converges and has the same limit as the

sequence.

2.5 Equivalent Norms

Let a linear space 7 be made into a normed linear space in two ways and let the two norms of a

vector x in L be denoted by |x|, and |x|,. Then these norms are said to be equivalent, written

[~

, » if they generate the same topology on L .

When two norms are equivalent then if < x, > is a Cauchy sequence w.r.t || -|,» it is essentially a

Cauchy sequence w.r.t. || . || , and vice-versa. Moreover, in the case of equivalent norms, the class ofopen

sets defined by one is the same as the defined by the other. In other words, in any ¢ neighbourhood

(nba) induced by |.

|» a neighbourhood induced by || || , iswholly contained and conversely.

Remark : To understand the full implication of the above definition we remind the reader that a norm || . ||

ona linear space L induces the metric d (x, ) =||x — y| which in turns induces a topology on L called
the metric topology. This is the topology generated by the norm.

Theorem 10 : If N be anormed linear space, then show that the two norms || ||2 definedon N

1’

are equivalent iff 3 positive real numbers 4 and b s.t.

ald, <[x[, <ol

> VXxeN,

Proof: Ifweassume that N, is a normed linea space withnorm || ||1 and N, is anormed linear space

with norm || ||2 and that 7' (x) = x is a linear transformation with domain N, andrange N,,then 7' isa
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linear transformation wtih domain N, andrange N, ie.,

T(x)=x=>T"(x)=x (1)
Now, we have

7T is continuous «» 7' is bounded

& 3 positive number p such that

|7(x)|, <b|x

L VxeN

< [, <o

LV xeN  by(l) )

7! is continuous <> 7! is bounded

&> 7 is positive number 4 such that

|77 ()] < >

,,VxeN

< [, < 4l

LY xeN  by(l)

1
oL, <[

2,VxeN

< alx], <[

. 1
,,VxeN (onsetting a :Z) ..(3)

Also T and 7' are continuous

< inverse images of opensets in N, and N, under 7', 7' respectively are open in
N, and N,

<> opensetsin N, are the same as thosein N, ; 7, 7' being identity transformations

< Norms || ||1 and || ||2 induces the same topology on ..(4)

In view of (2), (3) and (4),

||1 and || . ||2 are equivalent
& 3 positive number 4 and p s.t.

ald, <[x[, < bl

L VXeEN.
Theorem 11 : On a finite dimensional linear space X, all norms are equivalent.

Proof: Let dim X =» and {x,x,,..,x,} beanybasis for X . Then for each x e X , there is a list of

scalars o, ,...,a, suchthat x=a,x, +a,x,+..+a x,.

Let || . ||1 and || . ||2 be two norms defined on x . Then there exists a constant > () such that

2 C(|a1|+...+|an|)
39
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Also ||x||2 =||a1x1+...+anxn 5

<l x|, +-- Her,x, |, using N,
=la, ||, +--Her | ., using N,
< K(|a1|+...+|an ), where

K = max {”)c1

.}

where a:£>0
K

X

PR n

Thus  a |, <[

1°

The reverse inequality is obtained by interchanging the roles of || . ||1 and || . ||2 in the above

argument.

2.6 Compactness and Finite Dimension

Some basic properties of finite dimensional normed linear spaces and subspaces are related to the
concept of compactness.

2.6.1 Compactness in Normed Spaces

If N be a normed linear space and A4 is a subset of N, then 4 is compact or sequentially
compact if every cover of it has a finite subcover wheras a class {G,} of open subsets of N is known as
an open cover o f N ifto each point x € N, there corresponds atleast one G, i.e., N=U G, and a

1

subclass of an open cover, which is an open cover in its own rights, is known as a subcover.

In other words, a subset 4 — N is compact if every sequencein 4 contains a convergent subse-
quence whose limit point belongs to 4 . It should be remembered that an y < ) isa limit pointof 4 N,
ifeach open nbd (or open sphere with x as centre) of x contains at least one point of 4 other than x.

In other words, an x e N is a limit point of 4 = N, iff 3 a sequence < x, >— x, where x, € 4,
X, #x, Vn.
2.6.2 Related Theorems

A general property of compact sets is expressed in the following theorem.

Theorem 12 : Every compact subset of a normed linear space is complete.

Proof: Assuming that < x, > is a Cauchy sequence of'a compact subset 4 ofthe normed linear space

(v.

. ||) . In view of compactness of 4, the sequence < x, > consists of'a convergent subsequence say

<x,>—x, €4 forany ;j, we have

o, =260 =[x, = x, + x,, = x|

+

= ||xi = X X i —X0|| by N3
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(S (S
<—4+—=€e€—>0as ;5w
2 2

. € . €
Since |, = x,||<=—0 as < x_> is a Cauchy sequence and |x,. = x| <=— 0 as x,, > x,.
2 n ni 0 2 ni 0

Hence < x, > is a convergent sequence so that 4 is complete.
Theorem 13 : Every compact subset ofa normed space is bounded but the converse is not true.
Proof : Assuming that acompact subset 4 ofnormed space N is not bounded. Every open covering of

A consists of unit open sphere S, (x,) with centres at each of its points x,,i =1,2,...,n s.t.

Ac L_JSi(xi)

Taking K = max

1<i<n

xi” and assuming that 3 an x € 4 s.t.

x| > 1+ K , Since 4 is not bounded, we must have an element x, s.t. x €S, (x,), for x € 4 and

i
Assuch |x—x,[<1.
Now, ||x|| = ||x - X, + x,.||
< o= [+ x|

<l+max|x|=1+K

Le. ||x|| <1+ K which is a contradiction of the fact that ||x|| >1+K.

Hence A is bounded.

2.7 Reisz Lemma

Theorem 14 : If M be aclosed proper subspace of a normed linear space N and 4 is a real number

suchthat 0 < g <1, then 3 avector x, € N s.t. |x,[=1and [x—x,|>a V x e M.

Proof : Selectany x, € N — M and let

h=1nf M{”x—xl” =d(x,, M)}

xXe

It is clear that ; must be strictly greater than zero for otherwise we would have
h=0=d(x,M)=0=x, eM=M [-- Mis closed]

Which contradicts the choice of x, e N - M .
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1
Now O<a<l:—>l:ﬁ>h as 4>0-
a a

Hence by definition of infimum, there exists x, € M such that

h
h<hfﬂmsz (1)

because if |x, — x, | were greater than or equalto — V x, € M, then it would contradicts the fact
a
that j, is the greatest lower bound (infinum) of {d (x95x,) 1 Xy €M } .
Moreover x, e N— M and x, e M = x, # x,,.

(o, —%,)

Setting Xa = K(x,=%) where K = e, = x| >0

=l
Then |x,||= K|x, —x,|=K K" =1.

Now let x ¢ s be arbitrary. Then K~'x +x, € M also and so

||x - X, :Hx - K()c1 - X, )H

=K H(K’lx+xo)—x1

=K . 2)
hzlgﬁg |x =] and K 'x+x, e M, we have

H(K’lier)—xl >h

But  Kh=|x,—x,| h=a by(l) (3
From (2) and (3), we have
lx=x,[>a forall x c pr.

Theorem 15: Let N be a normed linear space, and suppose the set S = {x eN: ||x|| = 1} is compact.

Then N is finite dimensional.

Proof : We know that in a metric space, a subset is compact iff it is sequentially compact is iff every
sequence has a convergent subsequence. Since S is given to be compact, every sequence in S must have

a convergent subsequence. Suppose, if possible, N is not finite dimensional. Choose x, € S andlet N,

be the subspace spanned by x,. Then N, is proper subspace of p . Since N, is finite dimensional and

.. . . 1
therefore it is closed. Hence by Reisz Lemma there exists a vector x, €S such that ||X2 -X 1|| 2 5
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Let N, be closed proper subspace of ) generated by x,, x, , then as before there must exists

x, €8S such that
||x3—x||2% if xeN

Proceeding inductively, we obtain an infinite sequence < x, > of vectors in § such that

2

X —X

n m

This sequence can therefore have no convergent subsequence. But this contradicts the hypothesis
that S iscompact. Hence N must be finite dimensional.

Self-Learning Exercise - 1
1. Write whether the following statements are true or false.
(a) We may define the norm of a bounded linear transformation 7 on N into N’ by

|7(x)

||T||=sup x#0p,xeN
J+ |

(b)  The identity operator / : N — N onanormedspace N # {0} is not bounded.
(c) The zero operator 0 : N — N’ onanormed space p is bounded and has noirm ||0|| =0.

(d) Every subsequence of < x, > converges weakly to x, where x —*— x.

(e) Two norms || . ||2 defined on a normed space p are equivalent iff 3 positive real

17
number 4 and p s.t.

al, <[x[, 2 x|, v x e N .

2. What is the zero element of the linear space B(N, N').

2.8 Summary

In this unit, we have seen that the concept oflinear transformation can be generalised from linear
spaces to normed linear spaces.

We know that in calculus are defines different types of convergence (ordinary, conditional,
absolute and uniform convergence). The yields greater flexibility in the theory and application of sequence
and series. In functional analysis, the situation is similar.

2.9 Answers to Self-Learning Exercise

1. (a) True (b) False (¢) True (d) True (e) False.

2. The zero operator 0 : N — N’
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2.10 Exercises

1.

Let N be the normed space of all polynomials on J = [0, 1] withnorm given

]| = max ‘x(t); t € J . Adifferentiation operator T is defined on ) by

Tx(t) = x’(t) ,

where the prime denotes differentiation with respect to 7 . Prove that this operator is linear but not
bounded.

Let X, Y and Z benormedspacesandlet 7: X — Y and S : Y — Z be two bounded linear
transformation. Then prove that So7 : X — Z is bounded linear transformation and

[So7] <] |1

If T be a linear transformation of normed space p into normed space N', theninverse of T
ie., 77" exists and is continuous on its domain of definitioniff 3 a constant g > () s.t.

K|x||SHT(x)H VxeN.

If T is alinear transformation of a normed linear space p/ into a normed linear space N',then
show that 7" is bounded iff 7 maps bounded setsin N into bounded setsin N'.

Give an example to show that a closed and bounded subset of normed linear space need not be
compact.

miNIN
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Unit-3
Fundamental Theorems of Functional Analysis

Structure of the Unit

3.0  Objectives

3.1 Introduction

3.2 Multilinear Mappings

3.3 Open Mapping Theorem

3.4  Closed Graph Theorem

3.5  Uniform Boundedness Theorem
3.6 Summary

3.7  Answers to Self-Learning Exercise

3.8 Exercises

3.0 Objectives

This unit contains the basis of the more advanced theory of normed and Banach spaces without
which the usefulness of these spaces and their applications would be rather limited. The three import
theorems included in this unit are, the open mapping theorem, the uniform boundedness theorem and the
closed graph theorem.

3.1 Introduction

Banach space in a linear space which is also, in a speacial way, a complete metric space. This
combination ofalgebraic and metric structures opened the posibility of studying of linear transformation of
one Banach space into another which had the additional property of being continuous.

Most of our work in this unit centres around three fundamental theorems related to continuous
linear transformation between Banach spaces. These theorems together with The Hahn-Banach theorem
are often regarded as the cornerstones of functional analysis.

3.2 Multilinear Mappings

Definition : Let X, X,,..., X, , y belinear spaces over the same field of scalars g . Amapping
[ X, xX,x.xX, —>Y
is said to be multilinear if for each i e n the mapping
x, > fay,....a,,x,,a,,,....a,)
of X, into y is linear.
Definition : Let X, X,,..., X, be normed linear spaces. Then a mapping

|| X, x X,x.xX, >R
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given by

j

= max {”)c1 X

n

[CRENES alhees

isanormon X, x X,x..xX, .

The product space X, x X, x X,..x X, of normed linear spaces X, X,,..., X, is endowed
with the norm defined above.

The following theorem is a generalization of Theorem §-Unit-2.

Theorem1: Let X, X,,...,X,, Y benormed linear spaces over the same field of scalars and let
fiX,x.xX, >Y

be a multilinear mapping. Then f* is continuous iff there exists a number ;; > () such that

<mlp [ x|

Hf(xl,xz,...,xn) X,
forany (x,,x,,...,x,) € X, x X,x..xX,.
Proof : Let first the given condition be satisfied and let (,,a, ,...,a, ) beany pointin X, x X,x..x X, .

Since £ is linear with respect to each ofits variable, therefore
(X1 %5000, )= f(a),05,..0a,) = f(x, —a,,x,,...,x,)

+f(a,x, —ay,x5,....x,) +..+ f(a,...,a, ,,x,—a,)

n

= Z(al,...,al.fl,xl. — @, Xy X))
i=1

and hence using triangle inequality

Hf(xl,xz,...,xn)—f(al,az,...,an)

n
< Z H(al,...,al.fl,xl. —al.,xl.ﬂ,...,xn)
i=1

=

)

<2 (e[ o = .-
i=1

xl’l

Let us assume that |x, —q,| < e for i en. Then |x|/<|a,[ + € and we can determine §> 0

such that |x | <|a,| + e <& fori en,and hence

Hf(xl,...,xn)—f(al,...,an) SmS’HZ ||xl.—al.||
i=1

<mndé"' e

46



Since for small values of e the choice of § is independent of <. We obtainthat f* is continuous

at (a,,a,,...,a,).
Next let f be continuous at the point (0, 0,...,0). Then there exists a number € > 0 such that
|/ (x1.x5000x,) = £(0,0,...,0)| <1
for  [(x,.%....0x,) = (0, 0,....0)| < &

Letnow (x,x,,...,x,), x,#0,...,x, # 0 beany point of X, x X,x..xX, .If

R S
BT T R ™
Then H(ylayza"'ayn) = Gand Hf(ylﬁyz""’yn) Sl
S A )|=<1
X1, X500, X, )| =<
= el bl
= Hf(xl,xz,...,xn)uém||x1||||x2||... X,
where m=

n

c
If x, =0 or x, =0 or x, =0,then f(x,,x,,...,x,) =0 and the preceeding inequality still holds.

Hence the theorem.

3.3 Open Mapping Theorem

The open mapping theorem states conditions under which a bounded linear operator is an open
mapping. The present theorem exhisits reason why Banach spaces are more satisfactory than
incomplete normed spaces. The proof ofthe open mapping theorem will be based on Baire’s category
theorem.

Let us begin by introducing the concept ofan open mapping.

Definition : If X and Y aretwo topological spaces. Thenamap f : X —2° ¥ isknownas an
open mapping if ¥V openset V of X, the set f(V) isopenin Y . Inother words, f isopenat a point
xeXx if f(U) contains a npd of f(x) whenever [/ isa nbd of x.Evidently f isopeniff f is

open at every point of X . Thus a linear mapping of one topological space into another is open iff it is
open at the origin. It should also be noted that a one-one continuous mapping f of x onto y is

homeomorphism when f* is open.

If B and B’ are Banach spaces (i.e. complete normed spaces) then the open spheres with radius

» and centre at x are denoted respectively by S(x,r) or S, (x) and S'(x,7) or S (x) whereas the
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openspheresin B, g’ respectively are denoted by S , §' withradius  and centre at origin. As such the

unit open spheres with centre at origin are S, , S| respectivelyin B, B’ .Itis easy to see that
S(x,r)=x+8, and S, =rS,
For we have
yeS(xr)e|y-x|<r
Slz<r and y-x=:z
Sy=x+z and |7|<r

Syex+sS,

r

and Sr={x:||x||<r}={x:M<l}

:{ry : ||y||<l}:rSl.
The following lemma is the key to the proof of the open mapping theorem.

Lemma: If B and B’ be Banach spacesand 7' a continuous linear transformation of B onto B’ ,then
the image of every open sphere centred at originin B contains an open sphere centred at origin in B’

Proof: Taking S, , S' as openspheres withradius » and centred at originin g, g’ respectivelyand S,

an open unit sphere, we have
S =rS
which yields
T(Sr):T(rSl):rT(Sl) ..(1)

Hence it suffies to prove that 7'(.S,) contains some S .

We begin by proving that 7 (Sl) contains some S . For each positive integer 5 , consider open
spheres S, in p.Thenitis clear that B = [_JISH.

Since T isonto, this gives
B'=T(B)= T(}_JIS,,) =UT(s,)

Since B’ is complete. it is of second category. Hence by Baire category theorem, 7 (Sno) # ¢ for

some 7, , that is 7(S,,) hasan interior point y, which may be assumed to lie in 7(S,,, ).

[The existence of such a point y, is proved as follows :
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=

y is aninterior point of 7(S,,, )

there exists anopenset G suchthat yeGc T (Sn 0) ].

But y eT(S,,) = y is anadherent point of 7'(S,,)

=

the ypqg G of y must containa point y, of 7'(S,,).

Thus y, eT(S,,) is such that y eG< T(S,,) which implies that y, is an interior point of

T(SnO) ’

The mapping of f : B'— B’ s.t. f(y) =y—Y, 1s a homomorphism. For f is evidently

one-one onto and if y € B’ issuchthat y — y,then

and

fO)=v.=yo>y=y.=f(»)

)=y +ye > y+y,=f'(»)

sothat /" and ' areboth continuous. We use the mapping /* to show that 0 is the interior point

of 7(S,,) - y,- Wehave y, isan interior point of 7'(S ).

=

there exists anopensset G suchthat y, e < 7(S,,)

() ef(G) cf[T(S,0)]

Yo=Y =0€f(G)cT(S,,)-¥ )

0 is an interior point of T(Sno ) Vo

[ f is an open map (being a homeomorphism) f (G) isanopensetin g’ and so

T(S,,)— ¥, isa nbd 0f0]

we assert that 7'(S,))— v, < T(S,,,)

Let y € T(S,,)— ¥, - Thenthere exists x €S, such that

y=T(x)—y0.

But y, € T(S,,) implies that y, = T(x,) forsome x, €S,,.

Thus y = T(x)—T(x,) = T(x - x,), ..(3)

where x, x, €§,,.Also
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X, X, €8, = x| < n,, e, | < 72,
= o= x| < el + o | < 2
=>x-X, €S5,,
= T(x—x,) €T[S,,]
= yeTl[S,,] by (3)
Thus we have shown that

y e T[S,)]- 3, = y < T[S,.,] and therefore

T[SnO]]_yOCT[SZnO]:2n0T(S1) by (1)

= T(Sno)—y0 c ZnOT(Sl) [ Ac B= ZCE] ..(4)

Since f* is homeomorphism,

F17(8,0)] = £17(8,0)] as  f(4)=f(4)

= T(S,0)-2,=T(S,))— vy = 2n,T(S,) (5
by definition of f* and (4).
The mapping

g:B' — B st g(x)=2nyx

is easily seen to be a homeomorphism and so

g[T(Sl)]I = g[T(Sl)]l

= 2n, T(S,) =2n, T(S,) by definitionof g ,
which by (5) implies that
T(S,0)— v, < 2n, T(S,) ...(6)

It follows from (2) and (6) that () is an interior point of T(S1 ) .

Hence there exists an open sphere S! with radius € >0 and centered at origin in B’ s.t.

St <1(S) .(7)

Sl

3

We complete the proofby showing that S! C 7S, ), whichis clearly equivalent to ®< < 7(s,) :
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Let y be anarbitrary point of §! so that || y|| < e.Thenby(7), y GT(SI) , which implies that y

is an adherent point of 7S, ) and hence there exists a vector y, €T'(S,) such that v = < Ee :

But y, € T(S,)= y, = T(x,) for some x, € S, sothat |x]<1.

Again we observe from (7), we have S; cT (S 1 }
2

2

and since [y — ] < Ee , we have

Y= ESIECT(S }

1
2 2
Therefore as before there exists a vector y, in r {S 1 J such that

2

S

H(y_yl)_yzu<2£2 or H)’_(J’l"')’z)u<22 ,

1
where y, = T(x,) and e, | < 5

1
Continuing in this way, we obtain a sequence < x, > in g such that ||X, || < o ,and
€
Hy—(y1+y2+m+yn) <2n ..(8)
where y, = T(x,) . Ifwe put,
s, =X, +X,...+x,, then
s, ||= [, + x4,
< ||x]|| + ||x2||+...+ X,
Sl+%+m+ 2:1 <2 ..(9)

Also, for > m, we have

=X +X

m+1 m+2

S, =S, +..4x,

|+

X ...+

xm+2 xn

m+1
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1 1 1
< m + m+1 Tt n—1
2 2 2

1(1_ 1
_ 2/71 2/’!*/71

1 (summing the GP.)

R 1 0
- 2m—1 - 2n—m—l - as m,n —> ©

Hence < s, > isa Cauchy sequence in B and since B is complete, there exists a vector x in B
such that

lims, =x

and so ||x|| = ||1im s, || = lim”sn || <2 by (9) <3, which implies that x € S,. Now
Vv, ety =T(x)+T(x,)+.+1(x,)
=T(x,+x,+..+x,)=T1(s,) ..(10)
since 7 is continuous
x=lims, = T(x)=lm7(s,)
=lim(y, +y, +...+,) by (10)
=y by (8)
Thus  y = T(x), where ||x]| < 3, so that y e T(S,)
we have now proved that
yeS.=yell(S,)

andso S CT(S,), y being anarbitrary pointin S .

1 1
SSLCET(S;)

1

S SeT(s) by

Hence 7/(S,) contains an open sphere centred at originin g .

Theorem 2 [The open mapping theorem] :

Let B and B’ be Banach spaces. If T is a continuous linear transformation of B onto B’,then
7 is an open mapping.
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Proof: We are given that the linear transformation
T:B—> B

is continuous and onto. We claim that 7" isanopenmap i.e., T (G) isanopensetin g’ forevery
openset (G in B.

Let y e T(G) be arbitrary. Then y = T(x) for some x ¢ G . Since G is openset in B, there
exists an open sphere S (x, r) in B centred at x suchthat S (x, r) < G . But as remarked earlier, we can

write S (x,r) =x+S,,where S isanopenspherein B centered at origin. Thus
x+S8.cG (D)

By our lemma, there exists an open sphere S' in g’ centered origin such that S = 7(S, ).
y+Sicy+T(S,)=T(x)+T(S,)=T(x+S,)

or Sl(y,G)CT(X+Sr)CT(G), [‘.‘y+S;:Sl(y,e)]l
by (1).

This implies that to each y € T(G)3 anopen sphere g’ centered at y and contained in 7(G).
Consquently T(G) is open.

3.4 Closed Graph Theorem

In this section, we define closed linear transformation on normed linear spaces and consider some
of their properties, in particular in connection with the important closed graph theorem.

Definition: Let y and y be any nonempty sets and let /' : X — Y be a mapping with domain x
and range in y . Then the graph of f is defined to be that subset of x x y which consists ofall ordered

pairs of the form (x,f(x)) ie.,if p beasubsetof x and 7 : D — Y, then the graph of 7 is defined as

T, :{(x,T(x)):x eD},

In the case of two normed linear spaces N, N’ with p — § and T: D — N’ thenthe graph
of'the linear transformation 7 is given by

T, :{(x,T(x)):x eD},

Remark: If N, N’ are two normed linear spaces, then n x n' is also a normed linear space with
co-ordinatewise linear operation under the norm

o) = (4 + AP )

with y e N, yeN' and 1< p< 0.
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In our future discussion, we shall mostly use the above normwith p =1 i.e., |(x, y)H = |||+ [
Definition (Closed Linear Transformation) :

Let N and N’ be normed linear spaces and let D be a subspace of § . Then a linear

transformation 7 : D — N’ is said to be closed iff x, e D, x, - x and T(x,)— y = x € D and
y= T(x) .

Theorem 3 : Let ) and pn' be normed linear spaces and p be a subspace of p. Then a linear
transformation 7 : D — N’ isclosed iffits graph 7. is closed.

Proof: Assuming that 7 isa closed linear transformation, we claim that its graph 7, isclosed i.e., T,

contains all of its limit points. 7. is defined as
T, = {(x, T(x)):xe D}

Taking (x,y) as a limit point of 7, 3 a sequence <x,,T(x,)>, x, €D of points in T,

converging to (x,y) ie.,

<x,,T(x,)>—(x,»)

= ‘(xn,T(xn))—(x,y)H—)O

= ‘(xn—x), (T(xn)—y)H—>0
= X, — x|| + HT(xn)—yH -0 [see remark for thenormon N x N’ ]
= |x,-2 >0 and |7(x,)-y|—>0

= x,—>x and T(x,)>y

= x eD and T(x) =y, T being closed.
= (x, y) e T, , in view of definition of graph.
= T is closed.

Conversely, let the graph 7. of 7 be closed. We claim that 7 is a closed linear transformation.
Let x,eD,x,—>xand I'(x,)—>y.

But 7. =T, ,since T is givento be closed.

= (xn,T(xn))%(x,y)eTG:TG

= (x,y) el,=>xeD and y= T(x) by definition of 7,
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= T is aclosed linear transformation.

Theorem 4 [The Closed Graph Theorem] :

If B and B’ are Banach spaces and 7 is a linear transformation of B into B’, then 7 is
continuous < its graph is closed.

Proof : Assuming that 7 is continuous and 7, isits graph

ie, T,={(x7(x)):xeB}

We claim that T, isclosedie., T, = T, .

Since T, =T, always. Weneed only prove T, < T,,. So let (x,y) €T, . Then (x,y) is limit
point of 7;, . Hence there exists a sequence < x,, T(x,)> in T}, such that <x,, T(x,)> — (x,»),

which implies that x, — x and T(x,) — y . But, since 7 is continuous, x, — x implies 7(x,) — T/(x)

and so y = T(x) . This shows that (x,y)= (x,T(x)) eland T, < T,

Conversely, if 7, is closed, then we claim that 7" is continuous. We denote by B, the linear space
B renormed by

[, = el [7()

We first show that this is actually a norm, since

,X€EB.

N, : ||)c||1 20 as ||x||2 0,

T (x)” >0

N, <, =0 o] | = 0> | =o0.

T(x)|=0=x=0
Ny <o, = s+ 7+ )]
=[x+ y+[7(x)+ T(v)]
<[+ + ) + |7 ()
= (bl+[7Col) + (1+ ()]
= [, + 11,
Ny o], = o]+ |7 x)] = o] ] + e 7 ()]
= la] [x]+|ed |7(x)]
= la] ol + |7 G} = e |,

Assuch B, is anormed linear space.
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Now [ < o) =, = ) < 1]

.» which shows that 7 being regarded as a

mapping from B, to p' is bounded and therefore continuous. Consequently in order to show that 7" is

continous from B into p’,itis sufficient to show that B and B, have the same topology i.e., they are
homomorphic.

We, now establish that the normed linear space B, is a Banach space, by showing that it is
complete.

If < x, > be a Cauchy sequence in B, , then

X, =X,[, >0 as m,n—> o
= X, - X, +HT(xn—xm) —0 as m,n—> o
= X, — X, +HT(xn)—T(xm) —0 as m,n—> o
= x, —x, || 0 and HT(xn)—T(xm) —0 as mn— o
= <x, > is a Cauchy sequence in g and < 7'(x,) > is a Cauchy sequence in p’
= x, >xeBand T(x,)—> y eB’ as g, g’ are complete (1)

Now < x,,T(x,)> being a Cauchy sequence in 7, (whichis closed)

(x,.1(x,)) = (x.3) €T, by (1)
=  y=T(x)
%, =, =, = x| +[7(x, - x)|
=[x, =l +|7(x,) - T
=[x, =l +[7(x,) - 5]
50 by (1)

It follows that the sequence < x, > in B, convergesto x € B,.

Hence B, is complete. [Note that B, and p are the same sets so that x e B= x € B, ].

Lastly to show that there is a homeomorphism between B and B, , we consider an identity map
I:B > B:I(x)=xV xeB,.

Evidently 7 is one-one onto mapping and

G = 1 <ol + [7Ce)] = e

> VXx€EB,.
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ie., Hl (x)” < L |x], = I isbounded and continuous.

It is also one-one onto, therefore 7 is a homeomorphism from a Banach space g to Banach
space B,.Also 7 being continuous from B, to B’ and hence it is continuous on its homomorphic image

B ie., T': B— B’ iscontinuous.

3.5 Uniform Boundedness Theorem

The uniform boundedness theorem is of great importance. The principle of uniform boundedness

asserts that if a sequence of bounded linear transformation 7' € B (B, N ) , n € N where B isaBanach

spaceand p isanormed space, is pointwise bounded, then the sequence {7’ } is uniformly bounded.

Infact, it enables us to determine whether the norms ofa given family of bounded linear transformations
have a finite least upper bound.

Definition : Aset F < B(N ; N') ofbounded linear transformations froma normed space N into a

normed space N' issaidto be:

(a) Pointwise bounded iffor cach y ¢ x, theset {7(x): 7 € F} isabounded setin N'.
(b) Uniformly bounded if F is bounded set in the normed linear space B(N : N').

In definition (b) , the boundedness of the set ;7 means that there is a constant M > 0 such that
ITlsM, v TeF.

Let x € X, then

[7Col <l < Ml ¥ T eF.

This means that F is pointwise bounded. Thus if £ is uniformly bounded setin B(N ; N'), then
it is also pointwise bounded. However, the converse of this assertion may not hold good.

Theorem 5 (Uniform Boundedness Theorem)

Let B beaBanach space, § be anormed linear space and {7;;} anon-empty set of bounded
(and so continuous) linear transformations of g into p with the property that {7} (x)} is a bounded

subset of p for each vector x in B, the {||7: ||} 1s abounded set ofnumbers i.e., {Z } 1sbounded as a
subset of B(B,N).

Proof: For each positive integer 7 , define
F,={x:xeB and |T(x)|<n foralli} (1)
Then F, is a closed subset of B asshown below
xeF, & |n(x)|<n forall ;

< I(x)eS; forall ;
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where S¢ denotes the closed sphere in 7 with centre 0 and radius 7 .

@xe]}’lﬂ;S;Jl forall ;

exenT[s]
so that F, =[] 7;71[5; ]l , which is closed, being an intersection of closed sets.

[Note that since each 7, is continuous and S¢ isclosedin N, each 7' ﬂiSn” ]] isclosedin B]

n=1

Further, B= U F, forif B= U F,, thenthere eixsts some y ¢ g suchthat x ¢ F, forany ».
n=1

= HY:(x)H >n forall » by (1)

= The set {7} (x)} is not bounded, which contradicts the hypothesis. Hence we must have

B=

Cs

n

so that the complete space p is the union of sequence of its subsets. Therefore by Baire’s

category theorem, there exists an integer », such that a has non-empty interior. Since F, is closed,
Fo=Fy

and so F,, must have non-empty interior, that is, there exists some x, € F,,,sothat F isa ypq
of x,. Since F, isclosed, there exists a closed space

Sz{x eB: ||x—x0||£r0} c F,

-.(2)
Now if || y|| <1, then for arbitrary but fixed ;

2

1 1
= [T == [Tz+x - x)]

0

I7(v)|=

, where z=r,y

_1 |7(z+x0) - T(x, )|

S%[HTI_(Z”O)MH—TI-(%)H]

L+l fats]
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< 1( 1) 2n,
<—(n,+n,)=—
g 0T T 2, and x, €F,.

[Note that [z +x, = x,| =|lv] = |, | = V| < 7 (- [M|<1) sothat z+x, e S F,, . Ofcourse
x,€ScF,]

2
s [T 5% it <1

2
7= sup {T.()] : | <1} < %

If follows that {||7j ||} is a bounded set of numbers.

Self-Learning Exercise

1. Write whether the following statements are true or false.
(@) The open mapping theorem states conditions under which a bounded linear operator is an
open mapping.

(b) The proof ofthe open mapping theorem is based on Heine-Borel theorem.
(©) Amapof f: X — Y isknown as an open mapping if \y openset y of X, thenset
S7'(V) isopenin y, x and y being topological spaces.

(d) A one-one continuous mapping of /' of x onto y is homeomorphism when f is open.

(e) The closed space theorem states conditions under which a closed linear operator will be
bounded.

(H The closed graph theorem is usually known by the name “The Banach Steinhaus
theorem”.

(2 The uniform boundedness theorem gives condition sufficient for { T } to be bounded,

where the 7! s are bounded linear transformations from a Banach space into normed
space.

3.6 Summary

In this unit, we have studied how a new normed space can be formed by taking the product of
given normed spaces. We have seen that uniform boundedness theorem gives conditions sufficient for

U
normed space. The open mapping theorem states conditions under which a bounded linear transformation
is an open mapping. We have seen that the three theorems discussed in this unit require completeness.
Indeed they characterize some of the most important properties of Banach spaces which normed spaces
in general may not have.

} to be bounded, where the 7' S are bounded linear transformation from a Banach space into a
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3.7

Answers to Self-Learning Exercise

1. (a) True (b) False (c) False
(d) True (e) True 63 False (2 True
3.8 Exercises
1. Let (Xl, .|1), (Xz, ||2), ,(Xn, : n) be n -normed spaces. Then X = X, x X, x..x X, is
anormed spaces under the norm
ol = el + el -+,
for  x=(x.,x,,..,x,)eX.
2. Let N beaBanach spaces, N’ anormedspaceand 7, € B(N, N') suchthat (7 x) is Cauchy
in N’ forevery x e N . Show that ( T ) is bounded.
3. Ifin addition p* inProblem 2 is complete, show that 7'x — T, where 7' e B(N, N').
4. Let B and B’ be Banach spaces and let 7 be one-one continuous linear transformation of B

into B’ . Then T is ahomeomorphism. In particular, 77! is automatically continous.

miNIN
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Unit -4
Continuous Linear Functionals
Structure of the Unit
4.0  Objectives
4.1 Introduction

4.2 Continuous Linear Functionals

4.3  Hahn-Banach Thearem and its Consequences

4.4  Natural Imbedding and Relexivity in Normed Spaces.
4.5 Summary

4.6  Answers to selflearning Exercise

4.7 Exercises

4.0 Objectives

In this unit, We introduce the concept of linear functional, prove the Hahn-Banach theorem on the
existence of linear functionals and derive some of its many consequences. We define the dual space ofa

normed space. We discuss the natural imbedding and reflexivity in normed spaces.

4.1 Introduction

It is known that R (real space) and C (complex space) are the simplest of all normed spaces. In the
present unit, we study the bounded (or continuous) linear transformations from arbitrary normed space
into the normed spaces R or C. Such bounded linear transformations are called bounded linear functionals.
All general theorems proved in the previous unit for bounded linear transformations are also valid for

bounded linear functionals. The Hahn-Banach theorem is basically an extension theorem for linear functionals.

4.2 Continuous Linear Functionals

We know that R and C are the simplest of all normed linear spaces. If we limit ourselves with the
continuous linear transtomations of a normed linear space N into R or C according as N is real or complex,

then the set B (N, R) or B (N,C) ofall bounded (or countinuous) linear transformations is denoted by pr#

and known as the conjugate space or Adjoint space or First dual space of N and the elements of p7#
are known as Continuous linear functionals or simply functionals.

Thus a functional on a normed linear space N is a Continuous linear transformation from N into R
or C. Ifthese functionals are added and multiplied by scalars pointwise under the norm of a functional
defined by

7= Sup {[r o) || oy [ <1}

=Sup{K:K20,

SO <K x| #x }
then /= constitutes a Bannach space.
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4.3 Hahn-Banach Theorem and its Consequences

The Haha-Banach theorem is basically an extension theorem for linear functionals. In this theorem,
we consider a bounded linear functional f* defined ona subspace M ofa given normed space N and then

we extend this from M to the entire space N in such a way that certain basic properties of f* continue to
hold good for the extended functional.

Theorem I (Hahn-Banach Theorem) :

IfM be a linear subspace ofa normed linear space N and f is a functional defined on M, then f
can be extended to a functional f, defined on the whole space N's.t. | f,] =] /|

Proof: We first prove the following lemma.

Lemma : If f be afunctional defined on a linear subspace M of a normed linear space N, x, ¢ M and
M, = [MU{XO}] ={x+a x,:x e M and a is real}

is the linear subspace spanned by M and x,,, then f* canbe extended to a functional f, definedon M,
st [4l=11

Proof of the Lemma : We prove the lemma for real and complex scalars separately.

Case I : When N is real normed space, then x, ¢ M = each vectormin M|, canbe uniquely expressed

as m=x+ax, withx e M

Let us define f, on M, whichis extension of of f's.t.

Jo(m) = [y (x+ox)) = fo(x)+a f, (xy)

=f(x)+ar, (1)
with the choice of real number 7, = f,(x,) -.(2)
and f,(x) = f(x)%x € M (by definition of extension) ..(3)

we first claim that £, thus defined is linear on M.

Taking B,y €R and x, y € M we have
So(Blx+ o) +y (v +o)] = [ (B + 1) + (B+7) ax, ]
= fy (Be+y Y)+(B+y)a £, (%)
= f(Bx+yy)+(B+r)ar,  by(2)and(3)
= B[ (x)+7f (v) + Bar, +yar,
=Bf () +an|+y [f(3) +oar]
=B fo(x+ax)+y fo (v+ax,) by (1)
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which shows that £, is linearon M.

Also f is anextensionof f', forif x € M, then x +0.x, so that
fo(0) = fo(x+0.x) = £, () +0. £y (x0) = £ (x) + 0.5y = £(x)

Le., fo(x)=f(x)¥x eM= f, isanextension of f over js.

Thus f, extends f linearlyto M. We now prove that |/, | =| /|

We have | f;|= sup{‘f0 (x)H|x” < 1},x eM,

>sup{|f, (x):]x| < 1}.x eMas M, > M

:sup{|f(x)|:||x|| < 1},x eM [ f,=fonM]
=|\/]
Thus £, >] /] ()

So our problem now is to choose r, such that || £, ||<| /]| . For this purpose, we first observe that if

X,,x, areany two vectors in M, then
f(x,)= f(x,)=f(x, —x,) bylinearity of f

<|f(x, —x,)

or (%)= f(x)<[ Al x|
=1 1Ces +x0) = (x + x0)]
<A + 5ol + =+ 50))
=71 ke + 5ol + 1 e+

o =f(x) =/ e+l < =1 )+ e 4+ (5)

Which holds for arbitrary x,, x, € M and can be written as
sup = (1)~ [+ sl = int £ ) =1+l

since between any two real numbers there always exists a real numbe 7, s.L.
sup {~/ ()= 1A b+-f} <1 < inf = (5) -1 [y},

which follows that V y e M
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S )=+ xol < ry <=7 )+ ]+ (6)

x
Taking arbitrary m = x + 2 x, in M, and setting V = L find

A2 Erafzns-o 2 en )
o o o o
For ¢ > 0, the last two parts of inequality (7) yields
n<= f()+— /] e+ ax)
0 o o 0
= f)ran <|f]|r+rax)
= fo(x)+afo(x) <[P+ ax by (2) and (3)
= folxtax)<|f] ||x+ax0||
onn 8)
or ¢ < ( the first two parts of inequality (7) yields
" z_f(ij_nfn LA
o o
—- L 1) e v
o o ‘
1 1 1 1
= Lr@a Lyt anl w12
where ¢ < 0.
On multiplying both sides by ¢ (a negative quantity), we get
ary <—f(x)+| /]l +a x| (sign ofinequality being reversed)
= f)ran <|f]|rrax)
= fo(x)+afo(x) <P+ ax by (2) and (3)
= folxtax)<|f] ||x+ax0||
onn -9)
(8)and (9) = fy(m)<|f|||lm| v m e M,, o =0 (10)

clearly for ¢ = 0,

=171
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Replacing ; by —m in (10), we get
Jol=m) <[ f ][ [=m]| = = fo(m) <[1] |m] (1)
(10) and (11) = |£, (m)| <[fo|| |m] .(12)

Since | /3] = sup {‘ fo (m)‘ :lm| < l}, me M,, f, being linear functionalon M, . It follows from
(12), that

Ifl<171 (13)
(4)and (13) =||/[=]/] ..(14)

CaselIl: When j is a complex normed linear space, over C,then f is complex valued linear

functional on js as subspace of . Suppose g and j are real and imaginary parts of f*, so that

f(x)zg(x)+ih(x) VxeM ..(15)

Now a complex linear space can be regarded as a real linear space by restricting the scalars to real
numbers and g, , arereal valued functionals on the real space p7. We have for x,y e M and 4 e R,

fla+y)=r(x)+1 ()
= g(x+y)+ih(x+y)=g(x)+ih(x)+g(y)+ih(y)
= g(x+y)=g(x)+g(y) and h(x+y)=h(x)+h(y)
ad  flax)=af(x)= glax)+ih(ax) = a[e()+ih(x)]
~ g(ax)=ag(x) and h(ox)=ah(x)
Which follows that g and j, are linear on 7. Also
g (<[ () as w=uriva|u<|w

S IE

Thus if f is bounded, thenso are g and j . Consequently, g and §, are real linear functionals on

the real space J/.Again V x € M
g(ix)+in(ix)= f(ix)=i(f(x))=i[g(x)+ih(x)]=ig(x)-h(x)
giving g (ix)=—h(x) and h(ix) =g (x)
F(x)=g(x)+ih(x) = g(x)=ig(ix)=h(ix)+ih(x) .(16)

Taking f(x)=g(x)—ig(ix) and g being areal valued functional on real space jz, we have

by Case I, that g can be extended to a real valued functional g, onthereal space M| s.t.
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ol = lel (17

Ifwe define f, s.t. f(x)=g,(x)—ig,(ix) Vx e M,,thenitcanbe observed that f; is linear

on the complex space M|, such that
fo=/f on jpf,since
folx+y)=g,(x+y)—ig,(ix+iy), x,y € M,
= 8(¥)+ o(¥)—igo (ix)—ig(iy)
= 8(¥) =i g (Ix)+2o(y)~ig (i)

:fo(x)+fo(y)
andif «,f €R,then

fil(a+iB)x|=g,(ax+iBx)-ig,(-Bx+iax)
=0 gy(x)+ g (ix)=i(=B) g (x)—iag,(ix)
=(a+ip)|g(x)-ig(ix)]
=(a+iB) f(x)

Thus f, islinearon M,.Also g, = g on )z implies f, = f on js.What remains to prove is
tat £, =]

Let x € M, be arbitrary and write f;(x)=re'’, where > ( and @ real. Then
|f0 (x)| =r=e"f,(x)=f,(e"’x)= g, (e"’x), r beingreal
< ‘go (eii‘gx)‘ < ||g0|| He%xH

= ol J~ | Il = N | Il = N 1] by(17) (-~ ]e|=1)

<[]l

This shows that f, is bounded (hence a functionalon A/, ) and that ||f,| <|| /] . Also as in Case
I, it is obvious that |/, < | /]-

Therefore || f 0|| = ||f ||

Theory of the Main Theorem : In view of lemma, for any y ¢ v, but x ¢ A/, we can have an

extension of f on M U{x} s.t. || f || is preserved for extension. If we consider the set of all positive

extensions of /" onallthe subspaces M | {elementof ) notin ps} of »,containing Az, then this set
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ofextensions of f say (G canbe partially ordered as under.

Taking g,,g, €G andrelation< s.t. g, < g, = domain of g, is contained in the domainof g,

and g, (x) =g (x) V x € dom (g,). We claim that (G,<) is partially ordered, since it is reflexive, anti-

symmetric and transitive.
Reflexivity : g, <g V g €G.
Antisymmetry : g <g, and g, < g = dom (g,) is contained in dom (g,) and dom (g,) <

dom (g,)
= dom(g,)=dom(g,)
=  g(x)=g,(x) V x edom(g,) and

gz(x): & (x) vV ox Edom(gz)

= g, = g, , domains being same and functional values equal for all points of the domain.
Transitivity : g, <g, and g, < g, = dom (g,) < dom (g,) with g (x)=g,(x) ¥ x edom(g,);
dom (g,) < dom (g,) with g,(x)=g,(x) V x e dom (g,)
—  dom (g,) < dom (g,) with g,(x)=g,(x) V x e dom (g,)

= g8
Hence the set (5 is partially ordered.

Also we observe that the union ofany chain of extensions is an extension and therefore there is an
upper bound for the chain. Thus every chain in (G has an upper bound. As such by Zorn’s lemma, 35 a

maximal extension f, € G, otherwise 3 an y e ¥ and x ¢ M s.t. f, canbe extended to the domain of

foU{x} ie,, MU{x} bythelemma. But this violates the maximality of f, . Hence the domain of f,
must be the whole space N s.t. | f,]|=]|/]-
We now derive some important consequences of theorem 1.

Theorem 2 : If » be anormed linear space and x, is a non zero vector in » , then 3 a continuous
linear functional F defined on the conjugate space N * s.t.

F(x)) =[x and [F]=1.

Proof : Let M ={ax,} be the linear subspace of n spanned by x,. Define f, on ps by

folax,)=al|x,|. Weclaimthat f, isafunctionalon ps suchthat | /]| =1.

f, is linear :

Let y,, v, e M sothat y, =ax,, y, = Bx, forsome scalars @ and g.1f y, § are
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any scalars, then

so that

Note:
that

Theorem 3 : Let ' be a real normed linear space and suppose f(x) =0 forall f € N *. Show that

x=0-

Proof :

contradicts the hypothesis that f(x)=0 forall f € N *. Hence we must have yx = ().

Soly m+83,)=folyax,+8Bx,) =1, [(y @ +5 B)x,]
=(y a+5B)|x,| bydef. of f,
=7 o x|+ 8B [xo]
=7 folax,)+6 /,(Bx,)
=7 fo(1)+8 fo(»2)

/. is bounded.
Let y =ax, € M sothat |[y|=|a x| =|a| |x,] . Now
‘fo(J’)‘ = ‘fo(a xo)‘

=la [ = v

Hence f, is bounded. It follows that f is a functionalon p7.

Further |/, = sup {|f0(y)| cyeM, |y< 1}

=sup {|]: <1} =1

Now choosing ¢ =1, fo(a xo) = 0‘”"0” = fo(xo) = ||x0||

Hence by Hahn-Banach theorem f; canbe extended to a norm preserving functional g ¢ p *

F(x0)= filx) =[] and 7] =[] =1

Asa particular case, if x # y, x,y € N, so by the above theorem, there exists an f € N * such

Sx=y)=lk=r#0=1(x)-1(¥)#0= 1 (x) = /()

This shows that jy * separates vectorsin » .

Suppose x = 0. Then by Theorem 2, there exists f € N * such that f(x)=x|> 0, which
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Theorem 4 : If )7 be a closed linear subspace of a normed linear space ) and x, is a vector not in
M, then 3 a functional £ inconjugate space n * s.t. F(M)={0} and F(x,)= 0.
Proof: Consider the natural mapping

T:N—>N/M st. T(x)=x+M VY xeN,
then HT(x)H=||x+M||= inf {||x+m|| im EM} by def.

<|px+m| ¥V m e M by def. of infimum.

But s being subspace, () A , so that above result still holds for ;,, = 0 € M 1€,
HT (x)” <|x| v x e M, which follows that 7 is bounded and hence continuous.

Now T(m)=m+M=M=0 of N/M (1)
and  x, e M= T(x)=x,+M=#M ie,00f N/M -(2)
Assuch T(x,) i.e., x, + M # 0 isanon zero vector (coset) in N/ M . Therefore by Theorem 2,
3 afunctional f in (N/M)* s.t.
F g+ M)=|x, + M|=0 ..(3)
Ifwe define fr on J as
F(x)=f[T(x)].
then f isa linear transformation being the composition of f and 7.
Ao F(m)=f[T(m)|=f(0)=0Y meM by (1)
F(M)=0and F(x,))= f[T(x,)|= f (x,+ M) %0
by (2) and (3).
Theorem 5 : If )z be aclosed linear subspace of'a normed linear space )y and x, bea vectorin »,

but notin jz with the property that the distance from x, to Az i.e., d(x,, M)=d >0, then 3 abounded
linear functional f ¢ p * s.t. ||F|| =1,

F(x,)=d and F(x)=0VY xeM ie., F(M)={0}.
Proof: We have by definition
d =inf {|x,—x|: x e M}, d >0 (1)
Now consider the subspace

M,={x+ax,:xeM, a real}
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spanned by ps and x,. Since x, ¢ M , the representation of each vector y in M| inthe form

¥y =X+ a x, isunique.
Define a mapping f, on M, by f,(y)=ad .2

Where y =x+a x, and 4 asin the hypothesis. Because of the uniqueness of y, the mapping
f, is well defined. It is clear that f; is linear on M.

Now fy(x,) = f,(0+1.x,)=1d =d by (2)
and forany ;¢ M, fo(m) = fy(m+0.x,)=0.d =0= f,(M)={0}.

Now, we claim that | ;] =1, since

P {‘fo(y)‘

foll = su cy#0
17l D Y }, yeM,

=sup a#0

X
Xo+—
o

, ae€R,xeM,as 4>(and |ad|:d|0£|

=d sup #:z:—ieM
o=z @

. - 1
= d[inf {|x,~ 2] : z e M} I:d.gzl by (1)
so f, isalinear functional on M, such that
So(M)={0}. fo(x)=d and |f;] =1 ()

Hence by the Hahn-Banach theorem, there exists a functional f onthe whole space p such that

F(y)=1,(y) ¥V yeM, and |F| =]/,

It follows from (3) that
F(M)=1{0}; F(x,)=d and |f]|=1 as desired.
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4.4 Natural Imbedding and Reflexivity in Normed Spaces

If v be anormed linear space, then the set of all bounded linear functionals defined on p form
a Banach space, denoted by p/ * and is known as the Dual space or the conjugate space or the adjoint
space or the first dual space of the normed space ) . The space of bounded linear functionals on py *
is known as the second dual space of )y and denoted by p **.

Taking pn * and py ** as the first and second conjugate spaces of a normed linear space p/, so
that each vector x in )y givesrise to afunctional /" in ) * and a functional F, in p *x*, we defined F.
as

F(f)=f(x)V [ eN*.

The mapping J : x — F, of ) into y =%, where F.(f)=f(x)V f eN*, is called the
natural embedding.

Ifthe natural imbedding J : x - F, of )y into p/ ** is anonto mapping, then we call the normed
space N as Reflexive.

Here F, is also known as the functionalon p * induced by the vector x of ) and we generally
say it induced functional.

Theorem 6 : Let ) be an arbitrary normed linear space. Then for each vector x in p induces a
functional . on p *x definedby F.(f)= f(x) V f €N * such that ||FY|| = ||x||

Further the mapping J : N — N ** definedas J(x)=F, V x € N is anisometric isomophism
of N into p *x*.

Proof : We first claim that £ is linear, since f,g € N * andscalars a, /8, we have
Flaf+pg)=(af+Bg)(x)  bydefofF,
= (o f)(x)+(Bg)(x)
=a f(x)+pg(x)
=aF,(f)+BF.(g) (1)

Again, we claim that F_ is bounded, since forall / € N *, we have

F,

~sup (1) -1l 1)

= sup {| () : | < 1}

~sup 71l 1< 1}

<] -

Thus ||F,[ <1.|x|. It follows that F, is bounded i.e., continuous. Hence F, is a functional on

N **.
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For anon zero vector x in J, 3 afunctional f, e N * s.t.
fo(x)=|lx| and |£]=1 (by Theorem 2) ..(3)

For such a functional £ , we have

F(fy) = fo(x) by def. of F,
i F(f,) =[] where|f,| =1 (by (3))
= M=ll= @) IENsI=]E (- 1ll=1)
SN @)
Hence (2) and (4) = ||F.| = ]| (5
When  is a zero vector, then from (1), we have

El<=[£]=£]<lol=0

and  |F[>0 as |F[>0 always.
Hene [£,]=

Thus we have shown that ||F. || = x| V x e N .

Now we prove that j is an isometric isomophismi.e. j isa one-one linear transformation as well
as an isometry.

J 1s linear, since for any x, y € N and scalars «, 3, we have

Fovipy (f)=fax+pBy)

=a f(x)+Bf(») (- f isalinear transformation V f € N *)
=aF,(f)+BF,(f)
=(a F)(N)+(BF)(f)

=(aF,+BF) (/)
=  Fog=aF +pBF
It follows that
J(ax+By)=F,. .5 =aF.+BF,=aJ(x)+BJ(y)

— J is linear.

Lastly we claim that  is an isometry, since by (5),

/()= ()] =

Thus J preserves norm, so it is an isometry. Also

J(x)zJ(y):J(x)—J(y)zO

Fx_FyH:

Fv—y

=kl
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= HJ(’C)_ J(J’)H =0

= ||x — y|| =0 (. J pressure norm)
= x-y=0

= xX=Y

i.e. J isone-one.

Hence J : N — N ** is an isometric isomorphism.

Self-Learning Exercise

1. Write whether the following statements are true or false :
(@  Thenorm||.|: N — R onanormed space (X, ||.|) is functionalon » whichis not
linear.
(b) If f is abounded linear functional on a complex normed space. Then f is linear.
(c) The Hahn-Banach theorem is an extension theorem for linear functional.
(d)  If y bearealnormed linearspace and f(x)=0 V f e N * (conjugate space). Then
x=0.
2. If f isalinear functional onan , -dimensional vector space x . What dimension can the null
space N (/) have?
4.5 Summary

In this unit, we have seen that Hahn-Banach theorem is an extension theorem for linear functionals

on linear spaces. We defined the dual space ofa normed space to be the set ofall bounded linear functionals
on the space. We have seen that in some cases, the second dual space of a normed space, under a specific
mapping called natural embedding is isometrically isomorphic to the origional space.

4.6

Answers to Self-Learning Exercise

1. (a) True (b) False (c) True (d) False

2. nor n—1

4.7

Exercises

A

If M be aclosed linear subspace of a normed linear space ), x, beapointin  butnotin ps

and d be the distance from x, to As.

Then show that 3 a functional  in p (whole space) s.t.

F(M)={0}, F(x,)=1and [F|= %.

State and prove Hahn-Banach theorem.
Show that dual of g~ in gn.

Prove that ifa normed space p is reflexive, it is complete.
Ifanormed space p is reflexive, show that p; * is reflexive.
NI
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Unit-5
Hilbert Space and Its Basic Properties

Structure of the Unit
5.1 Objectives
5.2 Introduction
5.3 Inner Product Spaces and Examples
5.3.1 Definition
5.3.2  Examples
5.3.3 Basic Properties
5.4  Hilbert Space
5.4.1 Definition
5.4.2 Basic Properties
5.5 Some Important Theorems on Hilbert Spaces
5.6 Summary
5.7  Answers to Self-Learning Exercise

5.8 Exercises

5.1 Objectives

The aim of'this unit is to study Inner product spaces and Hilbert spaces and its basic properties.
Here we shall prove Schwarz inequality, paralleogram law and polarisation identity in Hilbert spaces.

5.2 Introduction

We know that the norm on a vector space is the generalisation of the distance from the originin an
Euclidean space. The Euclidean space is not only provided with the distance amenable to the definition of
norm, but also it is provided with the geometric concepts such as dot product. Using the dot product one
can find the magnitude of vector and express the condition of orthogonality. These concepts can be
illustrated very well by considering the Euclidean space of three dimensions. Such ideas like dot product
and condition of orthogonality are totally missing in a normed linear space. The extension of these notions
to any arbitrary infinite dimensional vector spaces leads to the definition of inner product on a vector space
in such a way that the inner product gives rise to a norm. Since an inner product is used to define a norm
on a vector space, the inner product spaces are special normed linear spaces. A complete inner product
space is called a Hilbert space. Thus every Hilbert space is a Banach space but converse is not necessarity

true. In the next four units we shall study in detail the basic theory of Hilbert spaces.
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5.3 Inner Product Spaces

5.3.1 Definition :

Let x be a linear space over the complex field ¢. An inner product on x is a function

(): X x X - C which satisfies the following conditions :

L (ax+pBy.z)=a(x,z)+p(y,z) V x, y,ze X and a,f €C

(Linearity in the first varible)

II. (x,y)=(r,x) (Conjugate symmetry)

where the bar denotes the complex conjugate.
L (x,x)20, (x,x)=0 iff y = (Positive definiteness)

A complex inner product space X is alinear space over ¢ with an inner product defined on it.
We can also define inner product by replacing ¢ by g inthe above definition. In that case, we get a real
inner product space. Since the theory of operators on a complex inner product space alone gives
non-trivial results in some important situations.

We shall consider only complex inner product spaces.

5.3.2 Examples

Example 1: Thespace /; consisting ofall »; tuples x =(x,,...,x,) of complex numbers and the inner

product on /' is defined as (x,») = Z X;¥; ,where y = (¥15--.»»,) is aninner product space.

i=1

Solution : Let o, f €C and x =(x,,....,x,), y=(»,...,»,) and z=(z,,...,z,) belong . Then

n

L (ax+By.z)=) (ax +By)z

i=1

n n
=a inzl"'ﬁ Zyigl
i-1 i-1

= a(x,z)+,3(y,z)

= 1_ V. cee n_n
(X7, + %, 7, +..4X, P )

= ylfl +y2f2 +"'+ynfn
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1L (x,x)z _ XX, = _ |x

Hence (x,x)20 and (x,x)=0 iff x, =0 foreach i ie., (x,x)=0iff x=0.

Thus /' is an linear product space.

N 2
Example 2 : The linear space /, consisting of all complex sequences x = (x,) such that Z Xal 18
n=1
converg net is an inner product space.
Solution : Define the inner product on /, as
(x,y)=zxnfn V x=(x,) and y=(y,) €, (D)
n=1

First we show that the inner product

)] is well defined. For this we have to show that

(i) is a convergent series having the sum as a complex number.
By Cauchy’s inequality, we have

1

> s[5 |x,-|2j% > W

(2] ()

2 < 2 N
and Z Ya| are convergent, the sequence of partial sums of the series Z

n=1 n=1

)}

Y

xn'}%

xl’l

Since Z
n=1

is a monotonic increasing sequence bounded above. Therefore, the series Z X» Val is convergent.

n=1

Hence Z X, ¥, is absolutely convergent having its sum as a complex number. Therefore (1) is

n=1

convergent so that the linear product (1) is well-defined.

The three axious for inner product space can be verified as in example 1.

Hence /, is an inner product space.
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5.3.3 Basic Properties
The basic properties of inner product space are contained in the following theorem :

Theorem 1: Let x beacomplex inner product space, then

@) (ax—By,z)=a(x,z)-p(y,z)

@  (x.By+yz)=B(xy)+7(x.2)
@)  (x,fy-rz)=PB(xy)-7(x.2)
() (x,0)=0 and (0,x)=0 V xeX

where o, and y €C.

Proof:
M (ax-pBy,z)=(ax+(-B)r.2)
=a(x,2)+(=B)(».2)
=a(x,z)-B(y.2)

@  (x.By+yz)=(By+yzx)

=B(y.x)+y(z,x)

= ﬁ (y,x)+}7(z,x)
:,73 (x,y)+}7(x,z)

(i) shows that an inner product is conjugate linear in the second variable.

@)  (nBy-rz)=(x.By+(-r)z)

= ﬁ(x,y)+(—7/)(x,z) (using (i)

B(x.7)=7 (x.2)
(iv) (0,x)=(00,x)=0(8,x)=0

where @ is zero element of x

and (x,0)=(0,x)=0.
With the help of the inner product, on a linear space X we can define a norm on X . Define

x| =[x, x)]% V x € X . To prove that is a norm, we require the following
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Theorem 2 : If x and y are any two vectors in an inner product space x , then

-(2)

The inequality by (2) is also known as Schwarz inequality.

Proof: If y =0, then || =0 and = 0 so that both sides (2) vanish and the inequality is true.

Therefore let us assume that y # 0 and 4 . Then
0<|r—Axf =(x— Ay, x—Ay)

Since  (x—2Ay, x—Ay)=(x,x)—(x,Ap)=(Ay,x)+(Ay,1y)

= (x6,x) = 2(x,p) = A (y,x) + 1 A(»,y)

= =2 (v )= 2. (e, 0) + 2] oI

Therefore. | - 2(y.x) - 4(x.y) 2o 20 )

(%)
i—w and taking (y’x):(x,y)
From (3) we have
-2 ) Gl o e
|| I % || || I
I - S0 I 30 N C3Y IR
or 2 2
|| P Y
‘2
or |-
|| I
or

Remark : In Schwaz inequality, equality holds good iff x and y are linearly dependent.

Theorem 3 : If X is an inner product space, then ||x|| = (x,x)% isanormon X .

Proof: (i) wehave ||x|| = (x,x)% = ||x||2 =(x,x)
Now||x]|> 0 and ||x]|=0 iff (x,x)=0 ie. y=0
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(i) Let x,y € X, then

||x+y|| (x+y, x+)

= (x,x)+(x, )+ (9,%) + (v, 2)
= (x,x)+ (%, )+ (x,9) + (v, )

= +2Re (x )+

<[

(x,y)‘ + ||y||2 ( Re (z) < |z| Vze C)
< ||)c||2 +2]x]|[] +]| y||2 (using Schwarz inequality)
2
Thus ey < (] + )

= A<+

(i) For any scalar ¢ ¢ C and y ¢ x, we have

lax|” = (ax, ax)=ad(x,x)
= o |
=l
Hence |.| satisfies all condition of the norm.

Since we are able to define anormon X with the help of the inner product, the inner product
space x becomes a normed linear space.

5.4 Hilbert Space

5.4.1 Definition: A complete inner product space is called a Hilbert space
or

Let H be a complex Banach space with a linear product defined on it. Then A said to be a

Hilbert space if a complex number (x, y) called the inner product of x and y satisfy the following
properties :

O ()=

@ (xny)=(x)
(H;) (ax+py.z)=a(xz)+B(r.z)

V x,y,zeH and a,f eC
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Remark 1: Examples (1) and (2) of § 5.3 are complete inner product spaces, since /5 and /, are

Banach spaces with norm defined as

n ) %
=13 sl |

Example 1 is a finite dimensional space beacuse underlying vector space /5 is finite while Example

2 is an infinite dimensional space.

Remark 2 : Note that the set ofall sequences x = {x, } suchthat x, isultimately zero is an incomplete

inner product space, the inner product being induced by /, , since we can find a sequence

11 1
(x,)= (1’ 2730 0, O,...) converges in /, but its limit has no zero terms.

Hence we conclude that every Hilbert space is an inner product space but converse is not necessarity
true.

5.4.2 Basic Properties

Theorem 3 : The inner product in a Hilbert space is jointly continuous i.e. if x, = x and y, >V,

then(x,,y,)— (x,») as n — .

Proof : We have

(%52 = (e 2)| =[x, ) = (%, 0) + (3,5) = (%)

- (xn’yn_y)-i_(xn_x’y)‘

<|(x,,, —y)‘ +|(x, — x,y)‘ ..(4)
By Schwarz inequality, we have
(%3, =) <[ [ = 5] (%)
and ‘(xn - x,y)‘ < ||xn - x|| I ...(6)
Using (5) and (6) in (4) we get
(x,.3,) = (o) <[l s = 20+ e, = 2] ] A7)

Since x, — x and y, — y, therefore
||xn —x|| — 0 and ||yn —y|| —0

Further since (x, ) is convergent sequence therefore it is bounded so that |x, | < M Vn

Using above in (7), we find that
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(xn’yn)%(x’y) as n—
Hence inner product in a Hilbert space is continuous.

Theorem 4 (Parallelogram Law) :

If x and y are any two vectors in a Hilbert space f7, then H(x + y)”2 + ||x - y||2 =2 (”)C”2 + ||y||2) .

Proof: Foranyx,y e H,we have
e+ = (x +2,x+ )
= (x,2) +(x,0)+ (n.x) +(y,)
=l + (e )+ (o) + o - (3)
Again x5 = (x-y.x )
= (x,x) = (x,9) = (n.2) + (».)

=[l” = ()= () + oI ~(9)
Adding (8) and (9), we get
e+l +be= oA =2(bf” +A7)
Remark : Ina Hilbert space, the norm induced by the inner product satisfies the parallelogram law.

However this is not true in general in Banach space i.e., the norm in a Banach space need not necessarily
satisfies the parallelogram law.

Theorem 5 (Polarisation Identity) :

If x,y are any two vectors in a Hilbert space g ,then

40 y) = e sl == ol +ilherinl =il

Proof : Subtracting (9) from (8), we get
ey == y|" = 2(x,5)+2(»,x) ..(10)
Replacing y by i y in(10), we get
lx+iy] —|x =iy =2(x,iv)+2(iy,x)
=27 (x,y)+2i(1,x)

=-2i(x,y)+2i(y,x) ~(11)

Multiplying both sides of (11) by ; , we get
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ilx+iy] —ilx—iv =2(x,»)=2(r.x) (12)

Adding (10) and (12) we get the required polarisation identity.

5.5 Some Important Theorems on Hilbert Spaces

Theorem 5 : If B isacomplex Banach space whose norm obeys the parallelogram law, and if an inner
product is defined on B by

4(x,y) = ||x+y||2 —||x—y||2 +i||x +iy||2 —i||x—iy||2 ..(13)
then B is a Hilbert space.

Proof: Forall x,y € B, the parallelogram law is

e+ o =l =2 (" +b1) -(14)
Now we show that the inner product on B satisfies the properties of Hilbert space.

(H,) for y=x,

(13) = 4(xx) =2l = foff +ifpe (1) = (1)
=4[ =0+l (L) ol = i](1— ) o]
= 4] + 20~ 24
=4

= (xx) =[x
(H,) Taking complex conjugates of both sides of (13), we get
4(e,y) = e == oA =i+ il off

%+ y||2 each are real)

b

( e+
=[xl [~ =0) =i =i +ii (p+i0)f
=yl =y =l =iy =il i =iy +ixf

=y 4ol =y =2l —ifly =l +iy+i]

=4(x,) (by (13))

(x,5)=(.x)
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The property

(ax+pBy,z)=a(x,z)+p(y,z2)

is equivalent to
(Hy) (x+y.2)=(x,2)+(r.2)

and (Hy,) (axy)=a(x.y)

so instead of proving H, we proove H,, and H,,.

(H,) Replacing x by (x+) and » by z in(13), we get
A9 2) = s )+ o ot ) et r) i —ilr )i (9)
Onreplacing x by (x +z) and using
[+ 3) 42 =|(x+2)+ o]+ (14) gives
[Ge+2)+ o] + e+ 2) =5 =2+ + 2]l
or x4y =2z 2ol <+ 2)-of -(16)
Ao [(x+2)of =l ) +of (by(16)
=20~ + 2l ~ |z —)
=2~y = + 2l -G+ )=}
=2y -2 + 2|’ ~(x+y)- H .(17)
Using (17) in (16) we get
e+ )+ A7 =2l 2 +2p" =20 =2 =20 + (x4 )~
Gt )+ 2 =N+ 2) = =2+ 2 + 2o ~ 2y =2 -2 -(18)
Interchanging x and y in(18) we get

sy 4o e ) of =2y w2 2 209

Adding (18) and (19) we get

o+ 20+ =+ )=

83



=l 2 ~ e =2 +y o -y -2 -(20)
Now replacing z by j> and then multiplying throughout by ; in (20), we get
i”(x + y) +izH2 —i”(x + y) - z'zH2
=ilx+izl —ifx—iz +ily+iz] —i|y-iz] ~(21)
Adding (20) and (21) we find that
H(x +y) + ZHZ - H(x + y) - ZHZ +i”(x + y) + iz”2 —i”(x + y) + iz”2

2 2 . .12 . .12
= el ==z iz =i iz

A+ d == +ily+ief ~ily-izf}
or 4 (x + y,z) =4 (x, z) +u ( v, z) (using polarisation identity)
or (x+y,z) = (x,z)+(y,z) ..(22)

(H,,) Let a eC.Thenweprove H,, forfollowing cases :

Casel: Let ¢ isa positive integer

by (22) we have

()C +Z,y) = ()C,y)-l—(Z,y)

Taking 7z = x , we get
(2x,y)=2(x,)
Hence (H,,) is true for ¢ = 2
Now assume that (H,, ) is true for a fixed positive integer £ i.e.
(kx,y)=k(x,y) ..(23)

Then ((k+1)x,y)=(kx+x,y)

=(kx,y)+(x,») (by H,,)
=k (x,y) + (x,y) (by (23))
= (k + 1) (x,y)

Thus H,, istrue for f 4 1. Hence H,, istrue for all positive integers £ .
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Casell: Let o beanegative integer.

Here first we prove that

(=x5)=—(x.»)
For this replacing x by —x in(13), we get

() =[xt A ==y il x iy —ifx—ioff
= |-G -+ i) =i i)
== =+ oA i =i =i i
— 4(x,y) (24)

(-x,y)==(x.»)

Now let a = -, where S is positive integer. Then
(ax,9)=((=P)x.») =(-(Bx). »)
==(Bx.y)=a(xy)

CaseIll: Let ¢ be arational numberie., & =

where p and ¢q are integers and g # 0. We have
p X
(OZX,)’)Z[gX,)’):(PZJ) (assumethat;=z)

=p(z.y)

Also (qz,y)=q(z,y):(z,y)=§(qz,y)

Hence (ax,y) = (qz,y)

Q|

=a(x,y)
CaselV: Let o beacomplex number.

Here first we proove that

(ix,y)=i(x,y)

Replacing x by i x in(13), we get
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4(5,0) = i =il + i+ 0l -l
] W =l Wl 2. 2
JiGe=in) e i) il i =i )
=i =i 4 e oA+ e o = e oA
=x—isf =+ +ife e ol =i -

=i fe—isf 2 peri s i o —ife- ol

i Qe oA == il =i}

=1 (x,y)
Now suppose that a = o, +icr,, where o, a, €R.

We have
(ax,y)=((a, +ia,) x,y)=(a, x+ia, x,)
=(a,x,y)+(ia,x,y)=o,(x,y)+i(a,x,y)
=a,(x,y)+ia,(x,y)

=(a,+ia,)(x,y)=a(x,y)

Thus we have proved that

(ax,y)=a(x,y) foreachscalar ¢ .

Hence p is Hilbert space.

Theorem 6 : A closed convex shubset g ofaHilbert Space p contains a unique vectors of smallest
norm.

Proof: Here first we define a convex set

Let x be a linear space real or complex. 4 normempty subset K of X is said to be convex if

x,y € K= (1-1)x+2Ay €K where ) isanyrealnumbers.t. 0< A <1.

. 1 . . X+y
Taking 4 :E,We see that if K is convex subset ofa linear space x ,then X,y € K = > ek,

Now suppose that ¢ = inf {|x| : x € K}. Thenthere existsasequence {x,} in g s.t. [x,|—>d.

+X,

2

xl’l

Since K is convex, therefore €K form,neN.
Hence using the definition of ;7 , we have
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H% (x, +x,)|2d = |x, +x,[|224d .(25)
By parallelogram law
x, x| =2]x, [ + 2] —[x, +x,
<2|x, [ +2|x,| —4d* (26)
Since |x, |, |x,| = d as n,m — oo, we get from (26) that

2
—>0 as myn—>w

X —X

n m

Hence {x,} is a Cauchy sequence. Since g is a closed subspace of a complete space, therefore

K is complete. Hence the Cauchy sequence {x,} in K convergestoapoint x in K. Since the inner

product is continuous and consequent6ly norm is also continuous.
T [|=ima, | = tim], | =4
SO x 1s a vector of smallest norm.

Uniqueness of x : Let y €K be another point with || y|| =d.

1
Then 5 (x+ y) €K . Hence by parallelogram law, we get

1 2 xZ yZ 1 2
il =20 +204l =I=(x-
| )] =2 +2l] |-
> 4> |1 2
SR
2
=d’ - H%(x—y)
<d*

1
Which contradicts the definition of ¢ , since E(X + y) €K . Hence x ¢ K is unique.

Theorem 7 : Let A be a closed linear subspace of a Hilbert space H , and x be a vecotr notin jy.

Suppose that d = d (x, M) . Then these exists a unique vector ¥, nMs.t. [x—y|=4d .
Proof: Wehave d =d(x, M)=inf {”x—y” Dy EM}
Then there exists a sequence {y,} in p7 s.t.
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lim|x-y,|=d or |x=y,|—>d

Let ym’ yn e{yn} i'e" ym’ yn GM

+
= % eM [ M is a subspace of f7]

+
Hx_ym yn Zd

= |ex-(y,+y,)|z24 (27)

By parallelogram law, we have

i CESAEIEESS |

v =,

=2 ey 42 e = fr-r)+ (-2

<2 ||x—yn||2+2 ||x—ym P _44?

—>2d*+2d*-4d*=0 as mn— o©

. {»,} isaCauchysequence in 3s which is complete. being a closed subspace of a complete
space H

= Iy, eM st {y,}> ¥,

Now ||x - y0|| = ||x —limy,

= H lim(x—yn)

=lim|x-y,|=d

Hence y, is the required vector in A/ s.t. [x -y |=d
Uniqueness of y, : Let y,,», (y, # y,) betwo vectorsin j7 s.t.
= xl=d =l =]

Now V>V, eM:—y‘er2 eM

2

Wt

=>lx—-————=2d
2

:>H2x—(y1 +y2)H >2d

By parallelogram law we have
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H(x_yl)_(x_J’2)H2 =2 ||x—y1||2 +2 ||x—yz||2 —H2x—(y1 +J’2)H2

<2d*+2d*-4d*=0

Iy =y <0=> [y, = 3] =0 ([ =3[ =0)
=>»-»=0
=20N=)

Hence y, isunique.

Self-Learning Exercise

1. State linearity in the first variable for inner product.

2. If x,y,z € H (aHilbert space) and «, 3,y € C, then fill up the blanks
@) (ax+pBy,z)=...
(ii) (x,By—7rz)=...

@ (vy)=...

3. Fill up the blanks
)] A inner product space is called a Hilbert space.
(i) The inner product in a Hilbert space is .................

4. State parallelogram law in a Hilbert space.

5. State polarisation identity in a Hilbert space.

5.6 Summary

In this unit you studied inner product space and Hilbert spaces and some basic properties associated
with these spaces.

5.7 Answers to Self-Learning Exercise

1. (ax+pBy.z)=a(x,z)+p(y,z2)

2. (i) a(x,z)+B(y,x) (ii) B(x,y)—f(x,z)
3. (1) complete (i1) jointly continuous
4 ool e =2 D) vayen

5. Aley) =l o oo wiferiof = ife-ioff
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5.8

Exercises

Let L, [0, 1] be the set of all square integrable functions on [0, 1]. Define the inner product on
L,[0,1] as

1 JE—

(f.8)=] e(r)g(t)dr v f,gel,[0,1]
Provethat L, [0, 1] is an inner product space.
Give an example of an inner product space which is not a Hilbert space.
If x isaninner product space, show that m satisfies the properties ofa norm.
If x and y are any two vectors in a Hilbert space g7 then show that
O oy -y =4Re(x.y)

(ii) (x,y)=Re(x,y)+iRe(x,iy)
For the special Hilbert space /)’ , use Cauchy’s inequality to prove the Schwarz inequality.
Define (i) Inner product space (ii) Hilbert space and give an example.

Let K be a non-empty conver subset of a Hilbert space / and x, € H . Prove that 3 a unique

point k, K s.t. d (x,,k)=|x, —k,|-

miNIN
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Unit-6
Orthogonality and Functionals in Hilbert Spaces

Structure of the Unit

6.1
6.2
6.3

6.4
6.5

6.6
6.7

6.8
6.9
6.10
6.11

Objectives

Introduction

Orthogonal Complements

6.3.1 Definition 1 (Orthogonality)
6.3.2  Definition 2 (Orhogonal Sets)
6.3.3  Definition 3 (Orthogonal Complements)
6.3.4 Pythagorean Theorem

6.3.5 Elementary Properties
Projection Theorem

Orthogonal Sets

6.5.1 Definition 1

6.5.2 Definition 2

6.5.3 Example

Important Theorems on Orthogonal Sets
Complete Orthogonal Set

6.7.1 Definition 1

6.7.2 Definition 2

6.7.3  Definition 3

6.7.4 Definition 4

6.7.5 Creteria for Orthonormal Set
6.7.6 Example

6.7.7 Properties of Orthonormal Set
Reflexivity in Hilbert Spaces

Summary

Answers to Self Learning Exercise

Exercises

6.1

Objectives

Our objective of this unit is to study orthogenality and functionals in Hilbert spaces. We shall also

study the orthonormal sets, complete orthonormal sets and reflexivity of Hilbert spaces.
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6.2 Introduction

In the last unit we defined the inner product spaces and Hilbert spaces. In this unit first we define
orthogonality in Hilbert spaces, and prove Pythagorean theorem, Projection theorem and some other
important results connected with orthogonal complements. After that the definition of orthonormal sets and
complete orthonormal sets are given and important theorems such as Bessel’s inequality, Parseval’s iden-
tity are proved. We also discuss functionals in Hilbert spaces and prove an important theorem viz Riesz
representation theorem. Lastly we prove that every Hilbert space is Reflexive.

6.3 Orthogonal Complements

6.3.1 Definition 1 (Orthogonality) :

Let x and y be any two vectors in a Hilbert space A . Then x is said to be orthogonal to

writtenas x L y if (x,y) =0

From the definition we have the following easy consequences :

)] The relation of orthognality is symmetric i.e.

xLly=ylx.Since x L y gives

(x,y)zO:>(x,y)=O or (y,x)=0:>yJ_x
(i) Ifx L y,thenax 1y VaeC.
Since (ax,y)=oa(x,y)=0,therefore x L y=>ax L y

@iy ~ Since (0, x)=0 forany x ¢ f7,therefore 0 L x V x e H

(iv)y  If x L x,then x mustbe zero. For x L x, then (x,x) 0> ||x||2 =01ie, x=0
6.3.2 Definition 2 (Orthogonal Sets) :

Two non empty subsets S, and S, ofaHilbert space A aresaid to be orthogonal denoted by
S, LS,,ifxly VxeS and ye€S,.
6.3.3 Definition 3 (Orthogonal Complement) :

Let § be anonempty subset ofa Hilbert space / . The orthogonal complement of § denoted
by g+ andread as § perpendicular, is defined as

St={xeH:x Ly VyeS}

Thus S+ is the set of all those vectors in /7 which are orthogonal to every vectorin § .
6.3.4 Pythagorean Theorem:

Statement If x and y are any two orthogonal vectors in a Hilbert space H , then

e+ 57 =l =5 =" +

Proof: Since x L y therefore
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(x,7)=0= (x+7) =0

= (y,x)=0 (1)
Now [yl = (x+y, x+)

= (x,2)+(x, )+ (v.x) + (».)

=l + " Cusing (1) 2)

simitarty s = + | -0

Combining (2) and (3) we get the Pythagorean theorem.
6.3.5 Elementary Properties :

From the definition we have the following

Theorem1: Let §, S, and S, be non empty subsets of a Hilbert space g7 . Then

0 {0t =H @i  H ={0}
i) SnSt<{o} i) S c8,=8 S and S <S5
V) g st ~v) S, LS,=S5nS,=1{0}
Proof : (i) By definition we have {0} = H (%)
Now let x e H . Since (x,0)=0 .. x e{O}L .Hence H {0}L ..(5)

Combining (4) and (5) we get {O}L =H
(i LetxeH' =(x,y)=0VyeH
Choose y = x, then (x,x):O:>||x||2 or y=0
Thus x e H' = x=0.Hence H ={0}
(i) LetyeSnS" =xesand yegt
=x L x or(xx)=0
=[x’ =0=x=0 {0}
Thus SnS* <{0}

(Remark : If § is subspace of A, then ¢ is also subspace of 7. So both § and §' contain zero
vector. Thus is § is subspace of /,then 0 e SNS* = SN S* ={0}.)
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(iv)  Let x €S, . Then x isorthogonal to every vectorin S, .
Since S, < S, , therefore x is orthogonal to every vectorin S,
whichimplies x € S;. Thus S; = S;".

In a similar manner we can prove that §;* < §;*.

(vv  Let xy e§.Then (x,y)=0 V y eS*

soif y e S, then from the definition of g+, , < g++.

Thus x ¢ § = x e§** . Hence g - g+

() IfS, NS, #{0}, thensuppose that x €S, NS, .

Since S, L S, , therefore (x,x)= 0= x|’ = 0= x =0,
therefore S, N S, ={0}.

Theorem 2 : If § isanonempty subset ofa Hilbert space A ,then $+ is a closed linear subspace of
H and hence a Hilbert space.

Proof: By definition of g+, we have
St={xeH:(x,y)=0 V yeS}
Since (0,y)=0 V y €S, therefore ( e §* andso g+ is non empty.
Let x,,x, €S* and a, § are scalars. Then
(x,y)=0and (x,,y)=0 V yeS.
Hence for every y €5, we get
(ax +Bx,,y)=a(x,y)+B(x,,y)=a0+50=0
= ax, +Bx, €St
= S+ is a subspace of A .

Now we prove that §- isa closed subset of f7 . For this let {x,} beasequenceis §* converging
to x in H .

Then we have to show that y ¢ g*. For this we should prove that (x,y)=0 V y €S.

Since x, € S*, therefore (x,,y)=0 VyeS and n € N . Since inner product is a continuous

function, therefore (x,,y) — (x,y) as n — o
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Since (x,,y)=0 Vn,therefore (x,y)=0.Thus x eS*.

Hence §* is aclosed subset of /7.

Now §+ is a closed subspace of Hilbert space /. So, S* is complete and hence it is a Hilbert
space.

6.4 Projection Theorem

In this section, we shall first develop some preliminary results for the proof of Projection Theorem.

Theorem 3 : Let A7 be aproper closed linear subspace of a Hilbert space A . Then there exists a non-

zero vector z, in H s.t. z, L M.

Proof: Since )7 is a proper closed subspace of f, therefore there eixsts a vector x in / which is not
n )f.

Let d =d(x,M)=inf {”x—y”:y EM}

As x ¢ M,s0 d>0.Again )7 is a closed subspace of g, so by Theorem 7 of unit 5, there

exists a unique vector y, in A7 s.t. |x - y,|=d . Suppose that z, = x— y, .
Now |=l-sd=d >0

Hence z, is a non zero vector. We prove that z;, L M . For this we must show that (z,,y) =0
VyeM.

For any scalar « , consider
Zmay=x—y,-ay=x-(y+ay)

Since M is a subspace of / and y, y, € M, therefore y,+ o y € M . Hence using the
definition of ;7 , we get

o= (o +ay)|=d =[z
Y P
Now [z~ oy — el = (20— @y 2~ 3) ~ (202) 2 0
o (20.20) @ (2000) - (3.2,) + 6@ (1.3)~ (20,2) 2 0
or  —@(z.y)-a(nz)tad(y.y)20 (6)

The result (6) is true for all scalars ¢ . Let a = B(z,, ) where 8 is any arbitrary real number.

Then o = B(z,,y)- Using a and ¢ in(6) we get

—ﬁ(ZO,y)(ZO,y)—ﬁ(zo,y)(zo,y)+ﬁ2 (ZO’y)(ZO’y) ”y”2 20
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or —2,8‘(20,)/)‘2 +,82 ‘(zo,y)‘z ||y||2 >0

or Bl + Bl -2]20 ()

The relation (7) is true for allreal . Suppose that (z,, y) # 0. Choosing S to be positive s.t.

By <2, then from (7). We have

Bl(Bo [ | B -2] <0

which contradicts (7). Hence (z,, y) = 0 showing that z, 1 y.

Thusz, L y V y e M =z, L y whichcompletes the proof of the theorem.
Theorem 4 : Let A7 be a linear subspace of Hilbert space /. Then As is closed if and only if
M=M"-

1\t 11 .

Proof: Let M:(M ) = M~ where ) isa subspace of /.

Using Theorem 2, 1+ isclosed. Therefore py isclosed converslylet pz be a closed subspace
of .

We know that A7 = pr++ (by Theorem 1, (v)).

Now let Ar = m++. Then Af is a proper closed subspace of Hilbert space ps*-+ . Hence by

Theorem 3, there exists a non-zero vector z, in 7+ s.t.z, L M or z, e M.
Now z, e M* and M** =z, e M N M** -(8)
Since A+ isasubspace of f , therefore
M*N M+ ={0}  (byTheorem 1, Remark (iii)) ..(9)

From (8) and (9) we have z, = 0 contradicting z, is a non-zero vector. Hence M — M** can

not be a proper inclusion. Hence we have M = M*+.
Remark : By the Theorem2, j7+ is closed subspace of H.So M* = (ML)LL =M.

Theorem5: j7 and J are closed linear subspaces of Hilbert space g s.t. M L N, then the linear
subspace M + N is closed.

Proof: Toshowthat j7 4+ v isclosed. We have prove that it contains all its limits points. Let z is a
limit point of A7 + . Then there exists a sequence {z,} in A/ + N st.z, >z in H.Now M L N,
MnNN= {0} and M + N isadirect sum ofthe subspaces s and N, therefore z, can be written
uniquelyas z, = x, +y, where x, e M and y €N .

Taking z, =x, +y, and z, =x, +y, ,wehave
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Zm_Zn :(xnz_xn)+(ynz_yn)'
Since (x, —x,)eM and (y, —y,) €N, therefore (x, —x,) L (v, —»,)

Hence by Pythagorean theorem, we get

2

"y, -,

2
=[x, -,

(6, =x,)+ (3, =)

2 2

? ..(10)

+

: Zﬂ‘l_Zl’l = xﬂ‘l_xl’l yﬂ‘l_yl’l

2
z —z | —0

Since {z, } is convergent sequence in f7 , it is a Cauchy’s sequence in / , therefore

* 0 as m,n— o . Hence {x,}

50 and

as m,n — oo . Using it in (10) we get |x,, —x, v, =V,

and {y,} are Cauchy sequences in A and N . Since A is complete and A/ and N are closed
subspaces of a complete space H , therefore jf and N are complete. Hence the Cauchy sequence

{x,} convergesto x in Az and {y,} convergesto y in N .
Now z =limz, =limx, +limy =x+yeM+N .
Therefore pz + N is closed
Now we state projection theorem.
Theorem 6 : If 7 is a closed linear subspace of a Hilbert space g ,then - vy pr*.
Proof : Since ) is asubspace of f, therefore by Theorem2, M+ isaclosedand M n M+ ={0}.
Thus in order to prove the theorem it is sufficient to verify that 7 = M + M*.

Now A and Ag+ are closed subspaces of 7, therefore by Theorem 5, M + M* is also a
closed subspace of 7.

Suppose that pr — a7+ s+, thenwe prove that = 7.
From the definition of 7, wehave jy — Ny and (M = N .

Thus N* < M* and N* <« M .Hence N* « M* n M+ ={0}.
Now N*={0}= N*"*={0} =H (1)

Since N = M + M** isaclosed subspace of f7, therefore

Nt =N ..(12)
From (11) and (12) we get
N=M+M"*=H
Self-Learning Exercise - 1
1. Define orthogonal sets.

2. State Pythagorean theorem.
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3. State Projection theorem.

4. Define orthogonal complement of a set.

Fill up the blanks

5.0 o} =

6 H = where A is a Hilbert space.

8. If § isanon empty subset of a Hilbert space, then §* isa.......... space.

9. Let As be alinear subspace ofa Hilbert space /7. Then M is closed iff ...........

10.  For any non empty subset Az ofaHilbert space g7, prt = ‘1t

6.5 Orthonormal Sets

6.5.1 Definition1: Let 7 beaHilbertspace. If x € H s.t. x| =1 ie., (x,x) =1, then x issaid to
be a unit or normal vector.

6.5.2 Definition 2 : Anonempty subset {¢,} ofthe Hilbert space f is said to be an orthonormal
set if

@ e Lle or(e.e)=0viz,

() Jef=1o0r (e,.,ej)zl for every ;.

or

A non-empty subset of Hilbert space is said to be an orthonormal set if it contains mutually or-
thogonal unit vector.

Remarks :
1. An orthonormal set cannot contain zero vector as ||0|| =0.
2. If A contains only the zero vector, then it has no orthonormal sets.
3. Every Hilbert space H = {0} posesses an orthonormal set
) ) X,
4. If {x, } is anon-empty set of mutually orthogonal vectors in 7, then le}= H isan

orthonormal set.

6.5.3 Example: Inthe Hilbertspace /;, the subset {e,,e,,...,e,} where e, isthe ;* tuple with 1 in

the ;" place and 0 elsewhere is an orthonormal set.
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6.6 Important Theorems on Orthonormal sets

Theorem7: If {¢ ,e,,...,e,} be finite orthonormal set in a Hilbert space f7,and x be any vector in
H ,then

(¥ 2 (x,el.)‘z < and (i) X—Z (x.e)e, Le, v

i=1 i

n

Proof: Let )’ZX—Z (xael-)ef . Then

i=1

bl = (v.5)

+Zl ; (v.e)(x.e)(ese)) (12)
Now (e.¢,)=0, i j and (¢,¢;)=1 (13)
Therefore
1 ; (x’ef)(x’e./)(ewe./)izzl (x.¢)(x.¢) (14)
Using (14) in (12) we get

=
=

b =l -3 (ve)ve) -3 (ve)le) + 3 (ve)(xe)

i= i=1 i=1

=" -2

i=

(x,el.)‘2 >0 ( ||y||2 > 0)
1
which gives (1)

Again consider

(-3 n) e, |- () S eve)

i=1 i=1

=(x.e,)=(x.e,)=0  (by(13))

This proves (ii).



The inequality given in (i) is also known as Bessel’s inequality for finite orthonormal sets.
Theorem 8 : If {el.} is an orthonormal set in a Hilbert space /7 andif x is any vector in z7, thenthe set
S ={e,:(x,e) # 0} is either empty or countable.

Proof: For each positive integer 5 and fixed x, consider the set

(xe, )2 > [@}

Hence S, contains atmost (7 — 1) vectors, otherwise if S, contains » or more vectors than 7,

S =<e

n 1

then we have for e, €S,

n x 2
> [ >l < )

But by Theorem 1, we have

> el <, e es, .(16)
i=1

1

Which contradicts (15). Hence S, contains atmost (n—1) vectors. Hence for each positive inte-
ger n, theset S, is finite or countably infinite, since if

xLle Vi=(x,e)=0Vithen S=¢,

if § is non-empty then it is either finite or infinite. When §' is finite, it is clearly countable but ifit is

infinite, it can be writtenas S = U S, with S, not containing more than (n - 1) elements, because if

n=1

e, €S = (x,¢)# 0, then however small be the value of ‘( x,e) *, n canbe choosen so large that

2
‘(x,ei)‘2 >M sothat e eS=e¢ €S, .
n

Now S =US, =S isexpressible as countable union of finite sets

n=1

= § 1S countable.

Theorem 9 (Bessel’s Inequality) : If {¢,} is an orthonormal set in a Hilbert space f7, then

Slexe ) <l ¥ xen.

Proof: Let S= {el. D (x,e) # O} , then by Theorem 8, § is either empty or countable. If § is empty,
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then (x,e,)=0Vi= Z‘(x,ei)‘z =0

Hence Y|(x.e,) =0<|’.
So the inequality is satisfied when § is empty.

Let S # ¢, then § is finite or countably infinite. If § is finite, then suppose that S = {e, e, ..., e, }
for some positive integer z . In this case we have by Theorem 7 that

2 2
2[eee) =2l <[l
i=1 i=1
Secondlytaking § as contally infinite, then the vectors in § canbe arranged in a definite order s.t.
S={e.e,,...,e,,....} . Inthis case

0

Z‘(x,ei)‘z =Z‘(x,en)

2

This sumis well defined if the series Z ‘(x ,€, ) is convergent irrespective of any arrangement of
n=1

its terms i.e., irrespective of the arrangements of vectors in § .

By the Bessel’s inequality for finite case, Z ‘(x )€ )‘2 = ||x ||2 is true for every positivie integer 5,
i=1

and so it must be true in limit also i.e.

im 3[(x.e)f = X e, ) <

n—oo .
ni=1

2

which follows that the series 2 |(*-€,)

n=1
convergence, this convergent series having all its terms positive is absolutely convergent. Consequently its
sum will not alter by arrangement of'its terms, which completes the proofofthe theorem.

is convergent. Moreover by the theory of absolute

Theorem 10 : If {el.} be an orthonormal set in a Hilbert space g and x be an arbitrary vectorin £,
then

x—z (x,ei) ele forVj
Proof : Taking S ={e, : (x,¢) # 0} . There arise three cases :

Casel: If g isemptyie., (x,e;)=0V i,thenwedefine Y (x,¢) e to be the zero vector
0, so that
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x—z (x,ei) e=x—-0=x
Since S=¢:(x,ej)=OVj:xJ_ e, Vj
Casell: Let S+ ¢ and § is finite, Then the result follows by Theorem 7 (ii)

Caselll: Let S # ¢ and § is countally infinite. Then arranging the vectors of § in a definite
orderas S ={e,,e,,...,e,,....} .

n

Weset 8, = Z (xael-)ef

i=1

so that for 7 > 5, we have

2

2 m 2
. - 3 fiveel

i=n+l1

S (re) e

i=n+1

s, —S

m n

= Y e feff = X Jowe) as o = 1vi

i=n+1 i=n+l1

= > 2
By Bessel’s inequality, the series Z ‘(x ael-)‘z is convergent, so that for m,n — o, Z ‘(x )€ )‘

i=1 i=n+1

can be made to converge to zero i.e.,

2
—>0 as m,n—

Sﬂ‘l - Sl’l
= the sequence {s, } is a Cauchy’s sequence in / and A is complete

— avector ¢ in [ s.t. lim s, =s

n—0

L s=D(ve)e,
n=1

Now we can define Z(x’ei)ei = Z(‘x’en) €,
n=1

Now we shall show that the above sum is well defined and does not depend upon the rearrange-
ment of vectors.

For this suppose that the vectors in § are arranged in a different manneras S = { SioSoseeis Sy } .

n

Let S'n = Z(x’fz) fz

n=1

['e]

As proved above, let s' —> s' in 7 where 5'= Z(‘x’fn) v

n=1
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Now we prove that ¢ — ¢'.

Foragiven € > 0, wecan find #, s.t.
Wz, Y|xe) <€, s, —s|< cand s - < <
ny+1

For some positive integer m, > n,, we can find all the terms of s, in s, so that s, —s, isa

finite sum ofterms of the type (x,¢,) e, for i =n, + 1, n, +2,.....
' 1P < N 2 2 . 2 >
Thus Hsmo _Sno H = Z ‘(‘xﬁe[ )‘ <€ with HS’;70 _S’I’o H < €
i=n+1

2
r_ — [ ro_ _
Now ||s s|| Hs Sy TS =S, TS, sH

! ! !
< =s [+ lsn, =l s =

<e+e+e=3¢
— 0 as ¢ is arbitrary

Hence = g

Now consider
(1= X (re)ene)=(r=se)
=(x.e,)~(s.¢,)=(x.¢,)—(lims,.e,) (17)
By continuity of the inner product we have
(lims, e, ) =1lim(s,.e, ) (18)
Using (18) in (17), we get

(- () e ) =) -timfs.
If e, %S, then (%ﬁ,){é (x.¢) ef,e_,)=0:>1im(sn,ej)=o
Hence (x-) (x.¢)e.e,)=(x.e,)=0ase =S
Butife, €S, then (5,-¢;) =[:Zl(xa€i) ene_/) .(19)

Now for n> j, we have
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[i(x,ei) ewe./) =(x.¢,) .(20)

i=1
Using (20) in (19), we get
}ijl;(swe_/)=(x’€_/)
So in this case (x—z (x,¢) e,.,ej): (x,ej)—(x,ej) =0
Thus (x—z (x.¢,) e,.,ej)zo for each ;.

Hence x-— z (x, ei) e, L e, foreach j, which completes the proofofthe theorem.

6.7 Complete Orthonormal Sets

6.7.1 Definition 1 : An orthonormalset § ina Hilbert space is complete, if there exists no other
orthonormal set containing § . Thisis § must be a maximal orthonormal set.

Thus an orthonormal set {e, } ina Hilbert space is complete if it is not possible to adjoin a vector

e to {e,} insuchawaythat {e,,e} isan orthonormal set properly containing {e, } .

6.7.2 Definition 2 : Let {¢,} be a complete orthonormal set in a Hilbert space A/ and x be any

arbitrary vector in 77 . Then the numbers (x,e,) are called the Fourier coefficients of x.

6.7.3 Definition 3: The expansion x=_ (x,¢)e, is called the Fourier expansion of .

6.7.4 Definition 4 : The expansion ||x||2 => ‘(x, e, )‘2 is called the Parseval’s equation or Parseval’s
identity.
6.7.5 Criterian for Complete Orthonormal Set

Theorem 11 : An orthonormal set § in a Hilbert space p is complete iff x L S=>x=0
VxeH.

Proof: Let § becomplete and x isany non zero vectorin g s.t., x L S. Thenthe set SU{e} where
X
€= H is an orthonormal set properly containing § , contradicting the maximality of § . Hence x = .

Converslylet x1. S = x =0.If § is noncomplete, then 3 some orthonormal set §' such that
S’ o § properly. Inthat case, let x = §' — § . Since ||x|| =1and x L S, x #0 contradicting the given
condition. Hence § must complete.

6.7.6 Example: Inthe Hilbert space [}, the set {e1 1€5seeer€, ,} , where e, isasequence with 1 in

the ,,* place and 0’s elsewhere, is a complete orthonormal set.
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Solution: Let S={e ,e,,....e,,..}. If x={x, } and y =(y,) €/, , then

1

()= 57, and o] = {z N }
n=1 n=1

Asnoted before § is an orthonormal set. Let x L S'.
Now (x,e,)=x,1+x,0+.4x,0=0
=x,=0

Similarly x L e,,..., x Le,,... willgive x, =0, x; =0,..., x, =0,....Hence x L §=>x=0
therefore the orthonormal set is complete.

6.6.7 Properties of Complete Orthonormal Sets

Theorem 12 : If /7 be a Hilbert space and {e,} be an orthonormal set in 77, then the following
statements are equivalent :

) {e,} is complete
(ii) x1l{el=>x=0
(ii1) If x is anarbitrary vector in f7,then

xX= Z (x,¢)e,

(iv) If x is anarbitrary vector in f7,then
2
=2 |(x.e)
Proof: (i) = (ii)
Let {e,} is complete, we claim that

x1l{el=>x=0

x
Suppose that x L {e,} and x % 0, then we can find a unit vector ¢~ {H} with [¢] =1, s.t.
e L {e}=(ee)=0 foreach;.

Thus (e, e, ) is an orthonormal set which properly contains {e, } which contradicts the complete-

ness of {e}.} . Hence our assumption i.e., x # () is wrongand so x L {e,.} =x=0
(i) = (iii)

Let x L {e,}=x=0
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Choosingan e; {ei} , we claim that the vector

x—z (x,ei)ei Le,

For this consider

(-3 (re)ere) = (e )~ (X (veee)
=(x.¢,)=-2 (r.e) (e ¢))
=(x.e;)=(x.¢) (. ¢,)=0
= (x-X(x.e)e)Le, foreach j
S (=Y(ne)e) L{el=x-Y (ve)e=0  (vxLie}=x=0)
— 2= (re)e

(iii) = (iv) : Given that for any vector x in /7 s.t. x = Z(x,ei) e .

To prove that ||x||2 = |(x.¢ )‘2 :

We have
W = (ex) = (X (xe) e X (xe) )

=Y. (re) X (xe)) (ene))

=2 X (ve)(xe)(ee)

(iv) = (i): Given ||x||2 = |(x.¢ )‘2 .To prove that {e, } is complete.

Let {e,} be not complex. Then {e,} is a proper subset of an orthonormal set {e,, e} . Hence

taking e for x inthe hypothesis, we get

=2

(e,ei)‘2 =0.Sincee L e Vi,
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Thus [l¢|* = 0 which contradicts that e is aunit vector. Therefore {e, } isa complete orthonormal

set

Self-Learning Exercise - I1

1. Define an orthonormal set.

2. Define a complete orthonormal set.

3. Define a Fourier series for a vector x in Hilbert space £ .
4. An orthonormal set contains a zero vector (7/F)

5. Every Hilbert space H # {0} possesses on orthonormalset (7/F).

6. State Bessel’s inequality in a Hilbert space.

7. Complete the following statements :

(a) An orthonormal § ina Hilbert space A is completeiffforany x in /7, x L S=......
(b)  If{e} isanorthonormal setin 77 ,then

@) {e}is

(ii) xLl{el=>x=.

(©) If {e,,e,} is a orthonormal set in a Hilbert space H , then ||e1 —e, || =....

(d) Every non-zero Hilbert space contains a..................... set.

6.8 Functional in Hilbert Sapces

If g is a Hilbert space and if we define a continuous linear functional or simply a functional
on A asacontinuous linear transformation from A into (, then the set of all these functionals constitutes
a vector space denoted by H * are known at the conjugate space of 7.

The elements of H * are known as functionals and denoted by /. Thusif /' € H* then f isa
functional in £ * and as mentioned above f isa continuous linear functional on 7 . If we define addition

and scalar multiplication in g7 * pointwise and the normof f € H * isdefined as

1711=sup {7 ()]« [l <1}

then g * is a Banach space. By defining a suitable inner product on f7 * it is seen that A * maintains the
structure of a Hilbert space. As such the conjugate space on H * is second conjugate space (H *) * or

H** of H also becomes a Hilbert space.

Theorem 13 : Let y bea fixed elements of Hilbert space g7 and f, beascalar valued functionalon g7
defined as f,(x)=(x,y), V x e H.

Then the mapping f, is a functionalon z7 and ||y|| = H fy”'
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Proof: From the definition, we have f| , + H— € .Now we prove that f , 1s linear and continuous so
that it is a functional.

Let x,,x, e H and a, 8 € C. Then for fixed y € H, we have
fy(axl,ﬁx2)=(ax1+,3x2,y)
=a(x,y)+B(x,y)=a f,(x)+Bf,(x,)

— f, is linear.

Also forany x e {,

‘fy(x)‘:

(e <M (bySchwarzinequality) (21
Now let |y < M. Then ps >0, we get
|£,(x)| < M || = £, is bounded hence continuous.
Hence f, isa functional,
Againif y = g, then ||| = 0 and from definition f, = 0 so that [ £, | <.

Suppose that y # 0, then from (21), we get

1/, ()

||x|| < ”y” = nyH S ”y” ...(22)

sup

Y
Further since y # 0, therefore M is a unit vector setting x = - in the definition

I
[1£,]| = sup {17, ()] I < 1} we gt
SR U N VN SR
bl |- ) -1
Hence nyH >y .(23)

Thus (22) and (23) gives ] = [ £, -
From the above theorem, we can say that 7': H — H* s.t. T(y)= f, is a norm preserving
mapping.

Now we shall prove that every f € H * arises in this manner.

Theorem 14 (Risez Representation Theorem) : Let 77 be a Hilbert space and f be an arbitrary
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functional in g7*. Then there exists a unique vector y in f s.t. f(x) = (x,y)fo €H and
171=11-

Proof: Let 3 avector y € H s.t. f(x)=(x,») Vx € H. We first prove that y is unique.

Suppose that y is not unique i.e. 3 two vectors V,, ¥, € H corresponding to a functional /' € H *
s.t.

f(x)=(x,»,) and f(x)=(x,»,) VxeH
= (on)=(xy,)VxeH
=  (xy-»)=0VxeH
Taking x =y, =y, weget (v, = vy, = »,) =y, = [ =0= -y, =0=y, =,

Hence y is unique

Next we prove that y exists.

If 1 isazero functionalie. f = (,then
f(x)zO V x e H and f(x):(x,y) VxeH

= (x,y) =0V xeH

= v = ( whichshows that y = ( existswhen ' = 0.

If =0 ie. f(x)=0 forsome x ¢ 7, then consider null space say A of f s.t.
M={x: f(x)=0}, xeH

We observe that

(a) Mis non empty : Since f(0)=0:0 c M

(b) M is a subspace : Since

If x,,x, e M and «,f arescalarss.t. f(x,)=0, f(x,)=0,then
flax +Bx,)=(ax +pBx,,y)
=a(x,0)+ B(x,.)
=af(x)+Bf(x)=a0+p0=0
X;,X, € M and o and B arescalars =>ax, +fx, e M

(c) Mis a proper subspace of H : Since f(x)+0 for some

x € H= allsuch x donotbelongto Ar
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— there are elements of 7 which are not in jz

= M Iis aproper subspace of f.
(d) M is a closed subspace of H: Since A is a subspace ofa complete space H , therefore
M 1s closed

Thus f is continuous and A/ is a proper closed subspace of F , therefore 3 anon zero vector

Yy €H st. y, L M or y, € M* or we cansay that (y,,x)=0VxeM .
Now we prove that 3 a vector y € M s.t. f(x)=(x,y) V x € H. Three cases arise.
Casel: If ycg and xeM = f(x)=0
Also  f(x)=(x,y)=(x,ay,) (choosing y =« y, with y, L M)
=a(x,y))=0 as ye M and y, L M
Hence f(x)=(x,y) is satisfied for x ¢ pr and y =a y,
Casell : If x c ;7 and x = y,, then

f(x)=(x.»)= f(¥)=(ro-y,) (choosing y, =a y,)

=@ [

f(yo) N f(yo)

e o
N 1) ol

8]

Then f(x)=(x,y) is satisfied V x € M with x=y, and y=a y,.

Caselll: x cp.,and x ¢ M with x # y,
Since 7 = (@ Mt , therefore any vector x ¢ /7 is uniquely expressible as the sum of the vec-

tor m e M andavector By, € M* ie., x=m+fy,, [ isascalar.
By definition of 7,
f(m)=0= f(x=By,)=0

:f(x)—ﬁf(yo):O:ﬁ:Ty)

f(x)=f(m+By,)=f(m)+Bf(¥,)
= (m,y)+ B(vo,¥) = (m+Byy.»)

=(x,y) VxeH
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Lastly we show that ||f|| = ||y|| .

Now foreach y ¢ F 3 aunique y € H s.t.

S =(y) or [£(x) =[(x.v) <[ 1

= |fI<|y| (bydef. ofnormofa functional for which ||x|| < 1)

In the case ||y|| =0 or y =0 then ‘f(x)‘ =|(x,0))=0 V x
/(x)
o - {50l
= 1=l since |7 (o) < ]
/(x)
Sy,
[~
If y # 0, then | f]| = sup { f(x) : |x]| =1}
Y
>\ f | ing x = ~1
‘ [”y”) on setting X ||y|| or ||x||
b% 1
=Nv Y= XY
(&) oyt
1
Tl bt =11

171
o [fl<lvl and 7]z = 7] = [

Theorem 15 : The mapping v : H — H* defined by v (y)= f, where f,(x)=(x,y) for every

x € H isanadditive, one-to-one onto isometry but not linear.

Proof : (i) wehavefor y,,y, e H, w(y,+1,)=f, ..,

Hence for every x ¢ i, we get
fyl+y2 (x) = (x’yl +y2)

= (x,y1)+(x,y2)
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=/, ()47, (%)

Hence f, ., =f, +/f,, =y +y)=v()+v(»n)

Hence v is an additive.
(ii) v isone-one: Let y,,y, € H.Then l,z/(yl)=fyl and l,z/(y2)=fy2 .
Then v (n)=w()= 1, =1,
= £, (x)= 1, (%) VxeH
= (n:%) = (1:,%)
= (y,—¥,,x)=0 VxeH
Choose x = y, — y, , thenwe get (y, —y,,5, - »,) =0= |y, —y2||2 =0=>y,-1,=0

Thus v (»,)=v(»,)= », =y, =y is one-one.

(i) v isonto: Let f e H*,then 3 y e H s.t. f(x)=(x,y) since f,(x)=(x,y), therefore

we get f = f,, so that l//(y)ny = f .Hencefor f e H* 3 apre-image y in f7.Thus y is onto.

(iv) v isisometry: Let y,y, e H.Then

lv ()= () =7, - £..

=1, + £,

= Hf)’ﬁh

=[v, =]
Hence y is isometry.

(v) v isnotlinear: Let y € H and o be any scalar. Then

vi(ay)=fo,=(xay)=alny)=af(x)=av(y)
Thus the mapping is not linear. Such a mapping is called conjugate linear.
We shall refer to the above mapping v as the natural mapping between g and z7*.
6.8 Reflexivity of Hilbert Space

Theorem 16 : Every Hilbert space is reflexive.
Proof: We prove that the natural inbedding on A to H ** is an isometric isomorphism.

Suppose that x be any fixed element of A and F. be a scalar valued function defined on H * by
F(f)=f(x) Vf eH*. Then F, willbe a functional on H* ie. F, € H**. Thus each vector

X

x € H givesrise to afunctional F_ in /**. F_is called the functional on A * induced by the vector x .
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Let T: H— H** defnedby T(x)=F, V x eH.

From the theory of Banach spaces 7 is an isometric isomorphism of A into A **. We shall
show that 7 is a mapping of /7 onto H **.

Let 7, be amapping from £ into f7* s.t. T,(x)= /. where f.(y)=(y.x) Vy € H and T, be
amapping from f7* into f7** defined by T3(f,) = F, ,where F, (f)=(f,f,) for f e H*.Then
T, T, isacompositionof 7, and 7, from 4 to H**.ByTheorem15, 7, and 7, are one-one and onto.

Hence 7, 7; is the same as the natural imbedding 7. For this we provethat f(x)=(7, T;)x Vx e H

Now (7, 1) x = T, (T,(x)) = T,(f,) = F,, = T(x). In order to show that 7, 7; = T, we should

prove that F, = F, forthislet / € H*.Then f = f, where f correspondsto y inthe representation
fo(y) - (f’f’f) = (fy’fn) = (X,y) .

But (x,y)=f,(x)= f(x)= F,(f). Thus we get F, (f)=F,(f) forevery f e H*.Hence

the mappings £, and F, areequalie., I, 7, =T andso T isamapping of / onto f ** sothat fy
isreflexive.

From the above, we get

(F.F)= (F.WF&)Z (£ 1) = ()

Hence f is anisometric isomorphism of /7 onto f* sothat /7 and A ** are conjugate.

Self-Learning Exercise - I11
I. Define a functional on a Hilbert space.

2. State Riesz representation theorem.

3. Every Hilbert space is reflexive (7/F)

4. Riesz representation theorem s valid in an inner product space which is not complete (7/F) .

6.9 Summary

In this unit you studied orthogonality and functionals in Hilbert spaces. Orthonormal sets, complete
orthonormal sets and reflexivity a Hilbert spaces were defined and important results connected with them
were also proved.

6.10 Answers to Self-Learning Exercises

Exercise - I
4. H 5 ¢ 6. fob 7. closed linear 8. M= Mt
9. M
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Exercise - 11
4. F 5. T 7@ x=0 (b) (i) complete (ii) ¢
7.(c) 42 (d)complete orthonormal

Exercise - 111

3. T 4, F

6.11 Exercises

1. IfM be a non-empty subset of a Hilbert space f , then show that jz++ isthe closure ofthe set
of all linear combinations of vectorsin Af i.e. M = [2\_4 ]l .

2. Prove that in the Hilbert space /, , the set {e,,e,,...,e,,...} wWhere e, isa sequence with 1 in the
n™ place and 0’s elsewhere is an orthonormal set.

3. State and prove Bessel’s inequality in Hilbert spaces.

4. Prove that a Hilbert space A is a separable if every orthonormal set in /7 is countable.

5. Prove that an orthonormal set in a Hilbert space is linearly independent.

6. Prove that every orthonormal set in a Hilbert space is contained in some complete orthonormal
set.

7. Show that every non-zero Hilbert space contains a complete orthonormal set.

8. If A is a Hilbert space, then prove that A * is also a Hilbert space with the inner product defined
by (/.-1,) = (3).

9. Prove that conjugate space H ** of H * is a Hilber space with some inner product defined on it.

miNIN
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Unit-7
Operators on Hilbert Spaces

Structure of the Unit

7.1 Objectives
7.2 Introduction
7.3 Adjoint Operator

7.3.1 Definition

7.3.2 Remark

7.3.3  Important Theorem

7.3.4 Properties of Adjoint Operator
7.4  Self-Adjoint Operator

7.4.1 Definition

7.4.2 Properties of Self-Adjoint Operator
7.5  Positive Operator

7.5.1 Definition
7.6  Normal Operator

7.6.1  Definition

7.6.2 Properties of Normal Operators
7.7 Unitary Operator

7.7.1  Definition 1

7.7.2  Definition 2

7.7.3  Properties of Unitary Operators
7.8 Summary
7.9  Answers to Self-Learning Exercise
7.10  Exercises
7.1 Objectives

The objective of thus unit is to study various operators such as adjoint, self-adjoint, positive,
normal and unitary operators on Hilbert spaces. Various properties and results on these operators will also

be proved.

7.2

Introduction

In this unit, we shall introduce the adjoint of a bounded linear operator on a Hilbert space. With the
help of the adjoint of a bounded linear operator, we shall define three important cases of operators called
self-adjoint, normal and unitary operators. Besides this, we shall discuss in details the properties of

these operators.
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7.3 Adjoint Operator

7.3.1 Definition: The operator T* defined on g s.t.
(Tx,y)=(x,T*y) YV x,yeH

is called the adjoint of 7.

7.3.2 Remark : Though we are using the same symbol for the conjugate and adjoint operators, one
should note that the conjugate operator is defined on f7* and operates on functionals in f * , whereas if
7 * is adjoint of the operator 7', then it is an operator on g7 and operates on vectors in / . However if

we identify /7 and A * under the natural correspondence, then the adjoint of 77 and conjugate of 7
coincide.

7.3.3 Important Theorems

Theorem 1: Let 7 bean operator on a Hilbert space f7,then 3 aunique linear operator 7* on
H s.t.

(Tx,y)=(x,T*y)Vx,y eH
obviously 7 * is the adjoint operator f7 .

Proof : First we prove that 7* exists.

Let y beavectorin H and f, its corresponding functionalin £ * . Define T* on [ * into [ *
by

rf, =

Under the natural correspondence between py and f7*,let ; ¢ iy correspondingto f. € H*.
Thus starting with a vector y in f7, we arrive at the vector z in g inthe following manner

y—)fy—>T*fy=fz—>z

where T*: H*—> H*and y > f ,and z— f. areon f to p* under the natural correspondence.
The product of the above there mappings exists and it is denoted by 7.

Thus 7* isamappingon / into H s.t. T*y=z.
We define this 7* to be adjoint of 7.

Now we prove (1). for x ¢ /7 and from the definition of the conjugate 7* ofan operater 7,
(7 f,) x=£,(Tx) .3
By Riesz representation theorem, y —> f, so that we get

f(Tx)=(Tx,y) (4

Since 7T * isdefined on H *, we have
(7% £,)x = £.(x) = (x.2) (5
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But according to our definition

T*y=z ..(6)
From (3) and (4), we get

(7 £,) x=(Tx.) (7
and from (5) and (6), we get

(T f,) x=(x.T*y) (8)
From (7) and (8), we get

(Tx,y):(x,T*y) Vx,yeH

Remark : The relation (Tx,y) = (x, T *y) can also be written as (T* x,y) = (x, Ty)

(7*x,3) = (»,T*x) = (Ty,x) = (x, Ty)
Hence (T*x,y)=(x,Ty) V x,yeH

Theorem 2 : Let g be a given Hilbert space and 7* be adjoint of the operater 7. Then 7* is a
bounded linear transformation and 7 determines 7 * uniquely.

Proof : First we prove that 7* is linear. Let vectors y,,y, € H and «,f are scalars. Then for any
vector y e i , we have

(X,T*(ayl +ﬁy2)):(Tx’ay1 +ﬁ)’2)
=(Tx,a y,)+(Tx,By,)

5(Tx,y1)+Z3(Tx,y2)

5(x,T*y1)+,[_3(x,T*y2)
=(x,aT*y)+(x,8T*y,)
=(x,aT*y, +BT*y,)VxeH

= T*(ay,+By,)=aT*y +BT*y, = T* islinear.
Next we prove that 7 * is bounded.

Forany y ¢ , letus consider,
||T"‘x||2 :(T*x, T*x)
=|(T*x, T*x)| Co |7 = 0)

=|(TT*x, x) (by (1))
117



< ||T T* x|| ||x|| (by Schwarz inequality)

Sulasils

or  [7*x] <] || as 7] <7 || VxeH
|7* ] }
sup cx#0p <7
. { &
= 7 * is bounded since 7 is bounded

Lastly we show that 7* is unique. Let us assume that 7* is not unique. Let 7, be another

mapping of / into / withthe property (1). Then V x,y e H
(Tx,y) = (x.T}y)
and (Tx,y):(x,T*y)
= (xLy)=(xT*y) Vx,yeH

= (%, Ty-T*y)=0 or (x.(,-T*)y)=0 VxeH

= (I,-T*)y=0 VyeH
= Ty=T*y VyeH
= L=T*

Remark : Using (1) we note that zero and identity operators are adjoint operators since V x,y € H ,we
have

(1 (x,O *y) = (Ox,y) = (O,y) =0= (x,O) = (x,Oy)

So from the uniqueness of the adjoint we get o* = ()

@ (o 1*y)=(Ixy)=(xp)=(x1)

So from uniqueness of the adjoint operator, j* — J

7.3.4 Properties of Adjoint Operator :

Theorem 3 : Let 77 be a Hilbert space and S(H) be the complex Banach space ofall bounded linear

transformations on g into g . Then the adjoint operation 7 — 7* on (H ) , where 7 is a bounded
linear operator on 7 , has the following properties :

(a) (T+S)*=T*+S* g beanother bounded linear operator on

(b) (aT)*=aT*, a being a scalar

118



(c) (TSy*=S*T*
(d) TH**=T

© |7 =[]
O |rer)=|rf
(2 (T *)71 = (T - ) * if 7 isinvertible i.e. 7" is a non-singular operatoron 7.

Proof: (a) Wehave V x,y e H

(x,(T+8)*y) = ((T+5)x.7)

(Tx+Sx,y) =(Tx,y)+(Sx, )
=(x,T*y)+(x,5*y)
=(x,T*y+S*y)=(x,(T*+5*)y)

=  (T+S)*=T*+S* (byuniquenessofadjoint operator).

(b) Vx,y eH,wehave

(v.(@T)*y)=((aT)x.y)
=a(Tx,y)
=a(x,T*y)
= (x.a(T*))
= (o T)*=a T * (by uniqueness property).
(¢) Vx,y e H,wehave
(x.(78)*y) = ((TS)x.y) = (T(8x). )
=(Sx,T*y)=(x,S*T*y)
= (TS)*=S*T*
(d) Vx,y eH,wehave

(e, T**y) = (x,(T*)* ) = (T*x,)

=(».T*x)=(Ty,x)
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= (x,Ty)
= T**=T

(e) Vx e H,wehave
|7* x| = (T* x,T*x) = (TT*x,x) whichis a real number and > (
=|(77*x,x)
<|TT* x| |« (by Schwarz inequality)

Sulasils

or [T < |7 ] as  [T*x]#0
*
sup{”T x”:xiO}S”T”
]
or | <|]

Onreplacing 7 by 7+, (9) gives
<
o Irl<|rH by (@)
Hence (9) and (10) = |7 =]
() we have
|77 = sup {|[7* 7« oo < 1}
= sup{|[7* ()| : || < 1}
< sup{|74] |7 : [ <1}
<[[7 | sup {7 : ] < 1}
<=l Gy
7= 7 <7
Also  |Tx|* = (7%, Tx) = (T* Tx,x) =|T* Tx,x| ¥V xeH
<|7*7x||x]  (bySchwarzinequality)

<71 [l <] as |7 <[7]
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2
or sup{@:xiO}S”T*T”
]

or |1 <|T*7] (12)

Thus (1) and (12) = |[7* 7] = | 7]

(g) If 7 isanon-singular operatorson H and 7' isinverse of T, then 7' is also an operator
on H .Also

IT'=1=T7"T

=  (rT)r=1=(T7'T)*
=  (T)*T*=1=T*(T")*
= T * is invertible and so non-singular and also inverse of 7'* is (T - ) *,

Hence (T”‘)f1 =(77)*

7.4 Self-Adjoint Operator

7.4.1 Definition : Alinear operater 7 ona Hilbert space f7 is known as self-adjoint or Hermition if
T* = T orinother words, if 7 is self-adjoint

then (Tx,y) = (x,T*y) = (x,Ty)
Zero operater and Identity operator are examples of self-adjoint operater.

7.4.2 Properties of Self-Adjoint Operator
Theorem4: Anoperator T on g is self-adjoint, then (Tx,y) =(x,7y) V x,y € H and conversly.
Proof : If 7* is anadjoint operator of 77 on /7, then by definition we have
(Tx,y):(x,T*y) Vx,yeH
If 7 is self-adjoint, there 7 = 7 *. Therefore
(Tx,y) = (x,T*y) = (x,Ty) Vx,yeH
conversly let us asume that
(Tx,y):(x,Ty) Vx,yeH

But  (Tx,y)=(x,T*y)

So (x5, Ty)=(x,T*y) = (x,(T-T*)y)=0 Vx,yeH
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x20 .. (T-T*)y=0 VyeH
= T = T* = T isselfadjoint.
Theorem 5: Let 7 be a self-adjoint operator, then 74 7* and 7 * 7 are self-adjoint.
Proof : We have
(T+T*)*=T*+T**=T*+T

=T+T*

= T + T * is self-adjoint
Also  (T*T)y*=T*(T**=T*T = T*T isself-adjoint

Theorem 6 : If 7 is an arbitrary operator on Hilbert space 7, then 7= iff (Tx,y) =0
Vx,yeH.

Proof: If 7=0, then (7x,y)=(0x,y)=0 Vx,y eH .
Converslylet (Tx,y)=0 Vx,y eH.
Taking y = Tx, we get
(Tx,Tx)=0 VxeH
= | =0 VxeH
= Tx=0 VxeH

= =0

Theorem 7 : If 7 is an operator ona Hilbert space f, then (Tx,x)=0 Vx e H iff 7= .
Proof: Let 7 =), then (Tx,x)=(0x,x)=(0,x)=0 VxeH.
Conversely, let (Tx,x)=0 Vx eH .
If x,y € H and «, 8 be any scalars, then we have
(T(ax+By)ax+By)=(aTx+BTy,ax+pBy)
=(aTx,ax+By)+(BTy,ax+py)
=a(Ix,ax+By)+p(Ty,ax+py)

=a(Ix,ax)+a(Tx,By)+ B(Iyv,ax)+B(Ty,By)
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=aa(lx,x)+aB(Tx,y)+ Ba(Ty,x)+ B B(Tv,y)
=la|" (Tx,x)+a B(Tx,y)+ Ba(Ty,x)+|B (Tv.y)
= (T(ax+By).ax+By)-lo| (Tx.,x)-|B (Ty.y)=a B(Tx,y)+ fa(Ty,x)  ..(13)
Since (Tx,x)=0 V x € H , therefore left-hand side of(13) is zero. Hence we get
a B(Tx,y)+ Ba(Ty,x)=0 Vx,yeH and o, are any scalars. (14)
Taking a = f=1and ¢ =i, =1 succesivelyin(14) we get
(Tx,y)+(Ty,x)=0 (15)
and  i(Tx,y)—i(Ty,x)=0
or (Tx,y)—(Ty,x)=0 (16)
Adding (15) and (16) we get
2(Tx,y)=0 Vx,yeH
or (Tx,y)=0 Vx,ye H=>T=0 (by Theorem 6)

Theorem8: An operator 7 on a complex Hilbert space g is self-adjoint iff (Tx,x) is real
for all x.

Proof: Let 7 aself-adjoint operator on A i.e., 7= 7*. Thenforall x ¢ H,we have

(Tx,x) = (x, T*x) = (x,Tx) = (Tx,x)
Thus (7, x) is equal to its own conjugate and is therefore real.
Now suppose that (7, x) isreal forevery y ¢ £ .

Since (7Tx,x) isrealforall x € H , therefore we have

(Tx,x)=(Tx,x)=(x,T*x)=(T*x,x)
where 7 * isadjoint of 77 which exists for every x € H .
So  (Tw,x)—(T*x,x)=0 VxeH
= (Ix-T*x,x)=0 VxeH
= (T-T%xx)=0 VxeH

= T—T*=0 or T = T* = T is self-adjoint
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Theorem 9 : Let A be the set of all self-adjoint operatorsin S (H ) . Then 4 isa closed linear subspace

of B (H ) and therefore A is a real Banach space containing the identity transformation.

Proof: First we note that 4 is non-empty, since 0 is a self-adjoint operator.

Let 7,,T, € A. Then T,*=1T; and T,* =T,
Suppose that o, § be any two real numbes, Then
(@ +BL)*=(aT)*+(BT)*

—al*+pT*=al+pT,
= all+BT, 4.
Hence 4 isareal linear subspace of F .

Now we prove that 4 is closed subset of the Banach space B(H),
Let {7} bea sequence of self-adjoint operators converging to 7. Now
|[7-TH=|T~T, + T, ~T,*+T,*-T*
<|T=T |47, - T, |+ |7, * -7
<[, =71+ Jol+ (7. - 1) (<T,ed=T*=T)
<z, -1 ({74 =)
—>0a 7T >T
IT-T*=0=>T=T*
—  risselfadjoint = T e 4.
— (4 isaclosed subspace of complete Banach space (H).

= A 1s also complete and hence is a real Banach space.

Also  [*= ] — theidentity operator J ¢ 4

7.5

Positive Operators

Since (T x,x) is real for self-adjoint operators, therefore we can introduce the order relation

among them and define positive operator by considering the real values which the self-adjoint operator

take.

7.5.1 Definition: A self-adjoint operator 7 on g is said to be positive if 7> () in the order
relation.

This means (Tx,x)z 0VxeH
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From the definition, we have the following properties.

(a) The identity operator 7 and the zero operator () are positive operators, since
(1 v.5) = (vo5) =[] 20
and (Ox,x) = (O,x) =0

(b) For any arbitrary operators 7 on /, 77* and T * T are positive operators since

7T * and T * T are selfadjoint and

(TT*X,)C)Z(T*X,T*X):”T*X”2 >0

7.6 Normal Operators

7.6.1 Definition : Anoperator 77 ona Hilbert space 77 is known to be Normal if it commutes with its
adjointi.e.if 77% = 7* 7T

From the defintiion it is obvious that

(a) Every self-adjoin operators is normal, since
T=T*=TT*=T*T

(b) Both zero and identity operators are normal operators.

(©) A normal operator is non-necessarily self-adjoint.

7.6.2 Properties of Normal Operators :

Theorem 10 : If 7, and 7, are normal operators on py with the property that either commutes with

adjoint of the other, then 7, + 7, and 7, 7, are normal.
Proof: Since 7, and 7, are normal, therefore
TT*=T*Tand T, T*=T,* T, 17)
From hypothesis, we have
TT*=T,* T and T, *=T,* T, (18)
Now (I+7;) (L4 L) =(T+ 1) (T * + 1, %)

SLTL*+ ¥+ LT %+ LT, *

I
~

*T+L*T+N*L+TL* T, (from (17) and (18))
=L*(L+L)+L* (T +1,)
L*+1,*) (T +1,)
=(L+%)*(h+1)
= (7, + T,) is normal.
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= T, T, isnormal

Theorem 11 : Anoperator 7 ona Hilbert space g is normaliﬂ||T*x|| = ||Tx|| VxeH.

Proof: Let 7 isnormal, Then

IT*=T*T < TT*-T*T=0

< ((TT*-T*T)x,x)=0 VxeH
< (TT*x,x) = (T *Tx,x)

< (T*x,T*x)=(Tx,T**x)

< (T*x,T*x)=(Tx,Tx) VxeH
&[T = |1l

< | T*x||= |7 VxeH

Thoerem 12 : If 7 is a Normal Operator on f7, then HTZH =7

Proof : We have
|7 = 7]
= ()]
=|r*(1x)| vxeH

R
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Mo 7] i <1
—sup {J* 7] : ] <1}

=[7 1) =
which completes the proof of the theorem.

Theorem 13 : An arbitrary operator 77 on a Hilbert space 77 canbe uniquely expressedas 7'= 7, +i T,

and 7* =1, —iT,, where 7, and T, are self-adjoint operators.

Proof: Let 7* be the adjoint of 7. Define

1 1
B=(T+7%) and T =5 (T-T%) .(20)

Then we have

T'=T+iT,and T*=T7 —iT,

1 * 1 1
Again Tl*z[E(T+T*)} =E(T+T*)*=E(T*+T**)

:%(T*.FT) ( T**:T)

1
= E(T+ T*)=T,= T, isseclf-adjoint.

Thus an arbitrary operator 7' can be expressed in the form (20) where 7; and 7, are self-adjoint
operators. Next we show that this type of expression is unique. Let the expression is non-unique i.e. let

T'=S,+iS, where S, and S, and self-adjoint operatorson A .
Then T*=(S, +iS,)*=8*+iS,*=8*~-iS,*

1 1
Thus S'IZE(T+T*)=T1 and Szzz_l.(T_T*):Tz

Hence the expression (20) for 7" € 8 (H ) is unique.

Remark : If 7 isexpressedas 7, +i 7, and T* =T —i T, where T, and T, are self-adjoint operators

on A then 7, is called the real part of 7 and 7, is called the imaginary part of 7.
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Theorem 14 : If 7 isan operator on a Hilbert space f7, then 7 is normal iffits real and imaginary
parts commute.

Proof: Let 7=7, +iT, where 7, and 7, are self-adjoint operators on A .

We have 7%= (T, +iT,)* = T, *+i ,*=T,*—i [,*=T, i T,

=T +i(L, [ -T T,)+ T} .(22)

=T +i(LL-T,T)+ T (23)
If 7 isnormal, then 77*=T*T
(22)and (23) = ' +i(L -1 L)+ T

=T +i(LL-T,T)+ T

rﬂ

= 2L L-T,T)=0

= T, T, = T, T, = Real and imaginary parts commute
Converselyif 7, 7, = T, T,, then (22) and (23) gives

TT*=T*T= T isnormal.

Theorem 15 : Show that the set of all normal operators on a Hilbert space f7 is a closed subset of

)i (H ) which contains the set of all self-adjoint operators and is closed under scalar multiplication.

Proof: Let S be the set of all normal operators on a Hilbert space f . We first show that § is closed
subset of B(H).Let T be any limit point of § . We have to prove that T ¢ § . Since 7 is a limit point of

S, therefore 3 asequence {7 } ofdistinct points of § s.t. 7 — T as n — oo.
Now |1, =74 =|(1, ~ 79| =[1, ~ 7] >0 a5 n > o
T*>T* as n— o .(24)
Ao |TT*-T*T|=|TT*-T,T,*+T, T, *~T*T)|
<|[r7-1, 7,4+ |1, 7, *-7 1]
<|TT*-T, T4 +|T, 7,*-T,* T,+ T,* T, - T*T|
-

<|rT*-T, T * T*T -T*T|

|+

LT*-T,*T,

<|TT*-T, T *|+ |1, * T, - T* T| -(25)
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(w7 eS=T isnormal = T, T*=T *T)
Since 7 — T and T * — T *, the right hand side of (25) tends to zero which implies that
|TT*-T*T| > 0= TT*=T*T
= 7T isnormal = 7 S

This prove that § is a closed subset of B(H).

Again every self-adjoint operator is normal. Therefore § is a closed subset of (H ) containing
the set of all self-adjoint operators.

Finally we prove that § is closed for scalar multiplicationi.e. if ¢ isascalarand 7 ¢ §, then
aT €S orif 7 isnormalthen o T is also normal for any scalar ¢ .

Since 7 isnormal, therefore 77*=T*T
Now (aT)(aT)*=(aT)(al*)
=aalT*
=aa T*T=(aT*) (aT)
~(aT)* (T)
= a T isnormal.

which complete the proofofthe theorem.

7.7 Unitary Operators

7.7.1 Definition 1: Anoperator {7 ona Hilbert space p issaid to be unitaryif yyy* =y *y = |
From the definition it is obvious that
(1 If 7 is unitary, then it is normal.
@  yr=y

7.2.2 Definition2: Anoperator 7 on f issaid to be Isometric if | Tx — Ty|=|x— | Vx,y e H

Since 7 is linear, the condition is equivalent to ||Tx|| = ||x|| VxeH

Now we prove a result contained in

Theorem 16 : If 7 isan operator on a Hilbert space g7 then the following conditions are equivalent :
@  r*7=1

(b) (Tx,Ty)z(x,y) Vx,yeH
© |- vxen
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Proof: (a) = (b): Giventhat 77 =
Now (Tx,Ty)=(x,T*Ty)=(x,Iy)=(x,y) Vx,yeH
(b) = (¢): Giventhat (Tx,7y)=(x,y) Vx,y e H
Taking x =y, we get
(T, Tx) = (x,x)
= [ =
> Ind=ld  vren
(¢) = (a): By(c) we have
|z =lel - vxen
Now 7] = x|
= |5l =[]
=  (Tx,Tx)=(x,x) VxeH
=  (Tx,T**x)=(x,x)
=  (T*Tx,x)=(Ix,x) VxeH (v T**=7)
= ((T*T-D)x,x)=0 VxeH

=  T*T=1
7.7.3 Properties of Unitary Operator

Theorem 17 : Anoperator 7 on a Hilbert space z is unitary iff it is an isometric isomorphism of 7
onto itself.

Proof: Let 7 beunitary. Then 7*7 =TT*=1.

Therefore 7 is invertible and so 77 one-one and onto.
Also ||Tx||2 =(Tx,Tx)=(T*Ix,x)

= (Ix,x) = (x,x)

= |l

5 Ind=]  vsenm
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Thus 7 preserves the normand so 7' is an isometric isomorphism of A onto itself.

Conversely suppose that 7 be an isometric isomorphism of A onto itself. Then 7' is one-one

and onto. Therefore 7 is invertiblei.e. 7' exists.
= TT' =T'T=1 ...(26)
Again 7 preserves the norm, therefore
[T =[xl vxen
= T*T=1
= (T*7)T' =1T"
= THTTY)=T"'=>T*I=T"
or T*=T"'=>TT*=TT"=1
In a similar manner
T*T=T"=1
Hence 7*7 = 7TT7T*=]— T isunitary.
Remark : If 7 is anunitary operator on  , then ||T || =1.
Also ||Tx|| = ||x|| so that
|75 = sup {7 : ] < 1} = sup {Je] : ] < 1

Self-Learning Exercise

In the following questions write 7" fortrue and F for false :
1. The conjugate and adjoint operator operate, on functionals in H *(7/F).
2. If 7 be an operater on a Hilbert space F ,then

(Tx,y):(x,T*y) Vx,yeH.

where 7* is the adjoint operator of 7.(T/F).

3. frre =l (7/F)
4, O and  are self-adjoint operators (7/F)
5. A normal operator is always a sefl-adjoint (7/F)
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6. If N, and N, are normal operators then N, + N, is also a normal operator (7/F')
7. If N, and N, are normal operators then N, N, is anormal operator (7/F).
8. If 7; and 7, are self-adjoint operators, then their product 7; 7, is self-adjoint (7/F).

9. If T isanoperatoron A s.t. (Tx,x)=0 VxeH then T=0 (T/F).

10. If 7 isa Normal operator and ¢ is ascalar then « T is normal (T /F ) .

11. If ;7 bean inner product space which is not complete, then A * necessarity exists (7/F) .
Fillin the blanks :

12.  Identityisan.................... operator

13. (ST)*= oo

14. If 7 is a positive operator on Hilbert space f,then 7 4+ 7 1S .cceevvveennennee.

7.8 Summary

In this unit you studied different type of operators on Hilbert spaces and various properties
associated with these operators.

7.9 Answers to Self-Learning Exercise

1. F 2. T 3. T 4. T
5. F 6. F 7. F 8. F
9. T 10. T 11. F

12. Self-adjoint ~ 13. T*S* 14.  Non-singular

7.10 Exercises

1. Define an adjoint operator on a Hilbert space A/ and give an example.
2. Show that the adjoint operation is one-one onto as a mapping f3 (H ) into itself.
3. Prove that every scalar multiple of self-adjoint operator is also normal.

4. Let H beaHilbert spaceand T, S be the set of bounded operators on g . Prove that if
)] S and T are self-adjoint and S7 = 7S, then ST is self-adjoint.

(i) S and 7 arenormaland S7*= T7T*S,then §7 is normal.

5. If T is an arbitrary operator on a Hilbert space / and «, 8 are scalars s.t. |a| = | Jij

that ¢ T+ B T * is normal.

, then show
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10.
11.

If 7 is anormal operator on a Hilbert space / and A is a scalar, then show that 7— A1 is
normal.

Show that an operator 7 ona Hilbert space A isunitary iff 7 ({el- }) is a complete orthonormal
set whenever {e, } is.
Show that the set of unitary operators on a Hilbert space F/ , forms a multiplicative group.

If 7 is a linear operator on a Hilbert space /7, then 7 is unitary iffadjoint of 7" exists and
IT*=T*T=1.

If T is self-adjoint, any operator § unitarily equivalent to 7 is also self-adjoint.

Let 7 benormaland 4 and B be self-adjoint operators s.t. 7= A +i B . Then prove that
AB=BA-

miNIN
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Unit-8
Projections on a Hilbert Space and Spectral Theory

Structure of the Unit
8.1 Objectives
8.2  Introduction
8.3  Projections on a Hilbert Space
8.3.1 Definition
8.3.2 Important Results
8.4  Invariance and Reducilility
8.4.1 Definition
8.4.2 Properties
8.5  Orthogonal Projection
8.5.1 Definition
8.5.2 Important Result
8.6  Eigenvalues and Eigenvectors
8.6.1 Definition of Eigenvalues and Eigenvectors
8.6.2 Properties of Eigenvalues and Eigenvectors
8.7  Existence of Eigenvalues
8.8 Spectral Theorem
8.9 Summary
8.10  Answers to Self Learning Exercise

&.11  Exercises

8.1 Objectives

In this unit first we study projection on a Hilbert space H and properties of the projection

operator on F . We also study spectral theory of operators on finite dimensional Hilbert spaces.

8.2 Introduction

The aim of this unit is to study the projection on a Hilbert space. Invariance, reducilility and
orthogonal projections will also be studied. Next we shall study to some extent in detail the relation
between linear operators on a finite dimensional Hilbert space and matrices as a preliminary step towards
the study of spectral theory of operators on finit dimensional Hilbert spaces. After a brief study of the
spectrum of an operator and its properties, we shall establish the spectral theorem for normal operators on
a finite dimensional Hilbert space and indicate the spectral theorems for self-adjoint, positive and unitary

operators.
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8.3 Projections

We have already defined a projection on a Banach space B and Hilbert space H i.e. it is an
idempotent linear operator P on B s.t. itis a continuous linear transformation from B (or H ) into itself

with the property P? = P . It has also been shown that B (or H) = M ® N where
M={Px:xeB} and N={xeB:Px=¢}

M is called the range and N, the null space of P.
8.3.1 Definition :

Perpendicular Projection: A projection p on a Hilbert space / is known as a perpendicu-
lar projection on A ifthe range ps and null space N of p are orthogonali.e., M L N . Thus by
projection p on g we mean a perpendicular projectionon £ .

8.3.2 Important Results :

Thoerem 1 : If p isaprojection on a Hilbert space f7 withrange js andnull space p/,then M L N
iff p isselfadjoint, and inthis case 7 = p7+.

Proof : By definition we have p2 _ p and = M@® N Let M L N.Then we prove that p is
self-adjoint. By projection theorem each vector ; < /7 canbe uniquely represented as z = x +y, where
xeM,)yE N s.t.

Pz=P(x+y)=x and Py=0
Since M L N, wehave (x,y)=0 ..(1)

Using (1), we get

(Pz,z) = (x,z) = (x,x +y) = (x,x) + (x,y) = (x,x) ..(2)
and (P*z,z):(z,Pz):(z,x):(x+y,x)=(x,x)+(y,x)=(x,x) ...(3)
(2)and (3)

= (Pz,z)z(P*z,z) VzeH

= ((P-P¥zz)=0 V:zeH

=  P-P*=0

= P*= p— P isself-adjoint.

Conversly suppose that p is self-adjoint i.e., px— p.
Now, let x € o7 and y € N. Then

(x,y)=(Px,y) ( p being projectionon ff and x e M = Px=x)

=(x,P*y)=(x,Py)
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=(x,0)=0as yeN ..Py=0
(x,y)=0:> M1N
Lastly we prove that N = M* where M 1L N
Forany yeNand NI M =>x1M=>xeM = NcM" .

Taking A to be proper closed linear subspace of Hilbert space M* i.e. N # M*.So 3 anon-
zero vector z, e M* s.t. z, LN . Also z, L M.

z,LMand 2y AN=z, AM®N=H=z, L H
= z, = () since only zero vector is orthogonal to whole space 7 .

This contradicts that z, is a non zero vector. Hence ' cannot be proper subset of A7+ and the
only possibility is that = A7+

Theorem 2 : If p isthe projection ona closed linear subspace js ofaHilbert space f7,then

() P isthe projectionon js of H < ] — P istheprojectionon p L
(i) XeM& Px=x< ||Px|| = ||x||
Proof: (i) P isthe projectionon 4 « P> = p and p*= p ...(4)

Therefore (I — P)*=1*-P*=1-P
and ([-P)'=(I-P)([-P)=1*~IP-P[+P*=[-P-P+P=IP
— (1 — P) isalso a projectionon A .

Now we prove that if’ P isdefined on A7, then (7 — P) isdefinedon A7+ . Forthislet N be the
range of (1 - P) . Then

xeN:>(I—P)x=x= or x—Px=x= Px=0
= x € Null space of P = x e M+ as )+ being coincident with null space

NcM*
Also xeM = Px=0=>x-Pr=x=([-P)x=x

— x erangeof (/—P)=xeN

M*cN ...(6)
(5) and (6)
= N=M"
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= If p is projection on a closed linear subspace As of H,then (1 - P) is projection on
M-
Conversly : If (I—P) is a projection on Af* then I—(I—P): P is the projection on
(ML)L =M" =M , since M is closed.

(i) If Px=x,then Px istherange of Pie. x € range of P i.e. x e M.

Conversly, if x € M , then assuming that Px =y, we prove that y=x .
Now Px=y= P(Px)=Py=> P’x=Py=> Px= Py (-~ P*=P)

= P(x—y)=0 =(x - y) € null space of P

= (x—y)eM",as p* is the null space of P

= x—y=z(say), where ze M*
Now y=Px=yerangeofPie M

Thus x=y+z where yeM and zeM"

Since x e M , we can write x=x+0
Since H=M@® M*,wehave z=0sothat x=y

AgainIf Px=x= ||Px|| = ||x||

Conversly if | Px]| = x|, then we have
||x||2 = HPx+([— P)xH2 where Pxe M and (I - P)x e M*

assuch Py and (/ — P)x are orthogonal vecotrs.

Using Phythagorean theorem, we get
e =1 Pl (7 = P)f
=[] + (7~ )l

=[(7-P)f =0
=>x—Px=0= Px=x

Thus x e M < Px =x®||Px||=||x||
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Theorem 3 : If P is a projecton on 4 Hilbert space H, then prove that
O |Px<|]| VxeH i Pz

@iy P isa positive operator (ivy 0<P<I
Proof': (i) We have | Px|| +[(7 - P)x| =[x

= [P <[l as = [(1- Pl 20

= |Px|<|x| VxeH

, VxeH

Pr|<lx

@ by,
= Sup{”Px”:”x”S J_} <l VxeH
= ||P||£J_, x € H being arbitrary.

(ii1) For any vector x € H, P being projectiononHie. P* = P, P* = P and Px € range of P so that
P(Px)=Px
We have

(Px, P)=(PPx,x)=(Px, P"x)=(Px, Px)=|Px| 20

= P20 ie. Pisapositive operator

(iv)  Since P and 7 — P are projections on H, therefore >0 and / — P>0 or P>/.Thus 0< P</.

8.4 Invariance and Reducibility

8.4.1 Definitions : Let T be a linear operater on a Hilbert space H, then M is invariant under T if
xeM=TxeM ie. T(M)= M

Obviously M is invariant under Zero operator and every closed subspace is invariant under iden-
tity operater 1.

Now M being a closed subspace of H, M itselfis a Hilhert space so that T may be regarded as
operater on M also.

If T on H induces an operator 7,, onM ands.t. T,,(x)=T(x)VxeM,
then 7,, isknown as restriction of T on M.

weknowthat H=H=M® M*

where M is a closed linear subspace of Hilbert space H. Then T is said to be reduced by M if both
Mand p -+ are invasiant under T. We sometimes also say that M reduces T instead of saying that T
is reduced by M.
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8.4.2 Properties

Theorem 4 : A closed linear subspace M ofa Hilbert space H is invariant under an operater 7<> M

is invariant under 7~ .
Proof: Let M be invariantunder Ti.e. xeM =TxeM .
Suppose that y e M+ = y is orthogenal to every vector in M (7

=y is orthogonal to Tx as 7x € M by (7)
= (Ix,y)=0

= (x,T*y)zo, xeM

= Ty is orthogenal to every vector x € M
=T yeM"

— M*isinvariant under 7"

Convessly, suppose that A/* be invariant under 7.

Since M™* is a closed linear subspace of H and is invariant under 7", therefore by the theorem

M* = M isinvariantunder 7" = T.

Theorem 5 : A closed linear subspace M ofa Hilbert Sapce H reduces an operator 7'<> M is invariant
under both T and T*.

Proof: MreducesT = M and js* bothare invariant under T. But A/ = M is invariant under T*.
Hence M is invariant both under T and T*.

Conversly, IfMis invariant under both T and T*, then M is invariant under T and A/~ is invariant under " =T
— BothM and M™ are invariant under T.

— Mreduces T .

Theorem 6 : If P is the projection on a closed linear subspace M ofa Hilbert space H, then

)] M is invariant under an operator T« TP =PTP

(i) M reduces anoperator T « TP=PT
Proof (i) Let M be invariant under T and x be an arbtrary vector of H. Then Px e M' (range of P)
= TPx e M, M is invariant under T.
Since P is a projection and M is the range, therefore
TPx e M = P maps TPy into itself.
Hence PTPx=TPxVx e H = PTP=TP
Conversly : Let PTP =TP
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Since P is a projection with range M and an x € M , therefore Px=x=TPx=T1x

Using hypothens we have PTPx=TPx=Tx

Since P maps elements of M into the same element P(T Px) =TPx means TPx e M = Tx = M . Hence

x € M = Tx € M, therefore M is invariant under T.

(i) Mreduces T = M is invariant under both T and 7 *

= TP = PTP and 7% p— pr* p bycase (i)
= TP=PTP and (T* P)*=(PT*P)*
=>TP=PITP and P*T**=P*T**p*
= TP=PTP and PT=PTP ( T**=Tand P*= P)
=TP=PT
Conversly : Suppose that TP= PT= PTP=PPT=P’T=PT (=P’ =P)

Also TPP= PTP=>TP* = PTP=>TP= PTP
*TP=PT= PTP=PT and TP= PTP

= M reduces T

8.5 Orthogeral Projection

8.5.1 Definition : Two perpendicular projections P and Q on a Hilbert space H are known as
orthogonal if PQ = O. In other words P and Q and Q are orthogoral iff their ranges M and N are
orthogenal

8.5.2 Important Result :

Theorem : If P and Q are projections on closed linear subspaces M and N of a Hilbert space H, then
M1N& PO=0<Q0P=0

Proof: P and Q are projectionsonH = P*= P, Q*=Q

Also O*=0 and [ *=1.

L PO=0&(PO)*=0*<0*P*=0*<0P=0

Now we provethat M | N < PQ=0

For any vector y e N and M L N = y is orthogonal to every vector in M
ie. yeN=>yeM  =>Nc M*

and for any vector z € H and Q is projection on H

= Qz e N (the range of Q) whereas N = M+
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= Qz e M~ (the null space of P)
= P(Qz)=0 = PQz=0VzeH
=PQO=0
Conversly : fPQ=0and x e M,y €N, then
Px=x (- Mbeing range of P)and Qy=y (--Nisrange of Q)
(x,y) = (Px, Qy) = (x, pP* Qy): (x, PQy)('.‘ P*= P)
=(x,0y)=(x,0)=0where xeM,yeN

= M L N ie.MandN are orthogonal

8.6 Eigenvalue and Eigenvector

8.6.1 Definition : Let T be an operator on a Hilbert space H. Then a scalar } is called the eignvalue

(or characteristic or proper or latent or spectral value) of T if there exists a non-zero vector x € H s.t.
Tx=Ax

It A is an eigenvalue of T, then the non zero vector x e H s.t. Tx=Ax is called the eignvector
(characteristic or proper or latent or spectral vector) of T.

Each eigenvalue has one or more eigenvector whereas each eigenvector corresponds one
eigenvalue. If H has no non-zero vectors, then T cannot have any eigenvector and hence the whole theory
reduces to triviality. We therefore develop the spectral theory on the assumption that H {0}.

The set of all eigenvalues of T is known as the spetrum of T and denoted by (7).
8.6.2 Properties of eigenvalue and eigenvector
From the definition of eigenvalue and eigenvector, we have the following properties:

Theorem 8 : If x is an eigenvector of T corresponding to eigenvalue } , and ¢ is a non-zero scalar, then
o is also an eigenvector of T corresponding to same eigenvalue.

Proof: Since x is an eigenvector of T corresponding to eigenvalue A therefore x#0 and 7x=Ax .
If o # 0 then ax#0. Also T (ax) =aTx = aAx=A(ax)

Hence ax is also eigenvector of T coresponding to same eigenvalue J .

This property tells us that corresponding to a single eigenvalue there may correspond more than
one eigenvector.

Theorem 9 : If x is an eigenvector of T, then x cannot correspond more than one eigenvalue of
T.

Proof: If possible, let A, and A, he two distinct eigenvalues of T for eigenvector x. Then Tx=4,x and

Tx=A,x.Hence A, x=24,x=>(4,—4,)x=0=>1,—-1,=0 (~x#0) =1, =4,.
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Theorem 10 : Let ;4 be an eigenvalue of an operator T on a Hilbert space. If M, is the set consisting of

all eigenvectors of T corresponding to the eigenvalue } and the zero vector 0, then M, is a non-zero
closed linear subspace of H invariant under T.

Proof: Bydef. xeM, iff T, =4, (8)
By hypothens 0 € M, and 0 vector also satisfies (8).
Therefore M, ={x eH:Tx = Ax}
={x eH:(T—M)x:O}
Againif x,y e M, and «, f arescalars, then
Tx=Ax and Ty=Ay . We have
T(ax+ﬁy):T(ax)+ Ty(ﬁy)
=aTx+pTy
=alx+p Ay
=Max+py)
S>ox+pfyeM,
= M, isalinear subspace of H.

Also T and I are continuous, M, is the null space of the continuus transformation 77— 17 . Hence

M, is closed.
Furtherlet xe M,

Since M, is alinear subspace of H, therefore x € M, = Ax=Tx € M, = M, isinvariant under

The closed subspace M, is called the eignspace of T corresponding to the eigenvalue ; .

Theorem 11 : IfT is a normal operator on a Hilert space H, then y is an eigenvector of T with eigen-

value 2 iff x is an eigenvector of T* with } as eigenvalue.

Proof : Let T is a normal operator on H. Then TT*=T*T. Now 7T — Al is also normal, therefore
(7 an)x|=|(T-21)*x| vx eH

Also adjoint operation is conjugate linear, therefore
(T—Al)*=T*-Al*=T*-AI

From the above two relations we get
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||Tx—/1x||:HT*x—/_1xH Vx eH

Hence Tx—Ax =0 iff T*x—Ax=0
Thusif x is aneigenvector of T with eigenvalue } iff }} is aneigenvector of T* with eigenvalue } .
Theorem 12 : IfT is a normal operator on a Hibert space H then each eigenspace of T reduces T.

Proof : Let M, be the eigenspace of T corresponding to the eigenvalue J . To prove that M, reduces

T. We have to show that M, is invariant under both T and T*.

We know that M, is invariant under T (see Theorem 10). Let x € M,. Then
Tx=Ax=>T*x=Ax. Since M,is a subspace, erM,l whenever xeM,. Hence
xeM, = T*x=2x € M, .Hence M, isinvariant under 7*. Thus M, reducesT.

Theorem 13 : IfT is normal operator ona Hilbert space H, then eigenspaces of T are pairwise orthogonal.

Proof: Let M; and M, (i# /) be eigenspaces of an operator T on Hilbert space H corresponding to

distinct eigenvalues A, and 4. Let x, € M, and x, € M, so that
Ix;=2,x, and Ix; :A./x./

Now li(xi,xj):(lixi,x.)

J

= xLx; Vx, €M, and x; €4,

= M, LM, (jand j are arbitrary)

8.7 Existence of Eigenvalues

An immediate question that arises before us is :

Does an arbitrary operator T on a Hilbert space H necessarily have an eigenvalue? We shall give an
example to show that it is not necessary for an arbitrary operator T on a Hilbert Space H to possess an
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eigenvalue.

Consider the Hilbert space /, and the operator Tor /, definedby T{x,,x,,... }={0,x,,x,,...}

Let ) be aneigenvalue of T. Then 3 anon-zero vector y={y,,»,,»,,....} in Ls.t. Ty=A4y.

Now Ty=Ay=T{y, Vs, Vseeee =201, V00 Vioeonni}

= 10,7000, ={, 0y, Ay,
= A, =0,4, =y,,...

Now y is a non-zero vector = y, #0. Therefore Ay, =0=>4=0.Then Ay,=y, =y, =0
and this contradicts the fact that y is a non-zero vector. Thesefore T cannot have an eigenvalue.

But if the Hilbert space H is finite dimensional then T on H will have eigenvalues. It should be
recalled that if H is finite dimensional, then every linear transformation on H is continuous and is therefore

an operator H. So in this case the set ,B(H ) is the collection of all linear transformation on H.

Theorem 14: An operator T on a finite-dimensional Hilbert space H is singular < there exists a non-
zero vector x inHs.t. Tx=0.

Proof : Let 3 a non-zero vector x on Hs.t. 7x= 0. We have Tx=7.0=x =0 but x#0 by our

assumption i.e. x and () are distinct vectors in H so that T is not one-one and hence T is not non-singular
i.e.T is singular.

Conversly : Let T be singular. To Show that 3 a non-zero vector x €H s.t. Tx=0. Now 7Tx=0
= x=0 = 7 isone one, since

Iy=Tz= T(y—z):0:>y—z=0:>y=z.

Since H is finite dimensional, therefore T is one-one implies T is onto and so T is non-singular. This
contradicts the hypothesis that T is singular. Hence there must exist a non-zero vector x s.t. 7x =0.

Theorems 15 : If T is an arbitrary operator on a finite dimentional Hilbert space H, then the eigenvalues
of T constitute a non empty finite subset of the complex plane. Furthermore, the number of points in this
does not exceed the dimension 7 of the space H.

Proof: } is aneigenvalue of 7<= 3 anon-zero vector yx s.t. Tx=Ax
P 3 anon-zero vector x s.t. (T—Al)x=0
<  operator T— AJ is singular
=  det (T—-Al)=01ie. [T-Al|=0
If B be any ordered basis for H, then
det(T — Al)=det(|T - Al|,)=det([T], - A[1],)

0,i#j

:det([T]]B —A[éﬂl) where 5, ={

Li=j
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=det ([ai/]l—ﬂ.[é'i/]]) (onsetting T=[%Jlm)
a,—A a, ... a,,
det(T—Al)=0=| " = A e az =0 .(9)
a,, Ay e a, —A

L.H.S of (9) when expanded, yields a polynomial equationin ; ofdegree n, withcomplex coefficients
having complex roots. But every operator T on H has a eigenvalue and (9) has exactly n roots in complex
plane, some of which may be repeated, therefore has distinct eigen values < ni.e. not exceeding 7, the
dimension of H.

8.8 Spectral Theorem

We shall require the following result to prove an important theorem known as spectral theorem:

Theorem 16: If P, P,,..., P, are the projections on closed linear subspaces M, M,,...., M, ofa

194725

Hilbert space H, then P= P, + P,+...+P, isaprojection <> the P.’s are pairwise orthogenal and then P

is the projectionon M =M, + M,+....+ M.

Proof: P.’s are projectionson H= P> =P and P =P,i=1,2,n and B P,=0 fori=# .
Now P=P,+PB+.....4# P> P =P + P +.....+ P,
=P+P+..+P =P
= P isselfadjoint.

Also P> =PP=(B+ P,+...+P) (P, + P+..+P)

=P’ +P +...+P “BP =0 fori#;
=P+P+..+P =P
Hence is a projection on H.

Conversly : If P's are projections on Hi.e. Pis a projectionon Hor P* = P and P* = P.We prove
that P, =0 fori# ;.

For any vector z e H we have
(Pz, z) = (PPZ, z) = (Pz, P*z) = (Pz, Pz) = ||Pz||2 ...(10)
Iffor any vector x € M, (range of P)sothat Px =x,

2

Px

n
then [" = 22{" < 2P =Rl 4.+
1=1
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IN

(Px,x)+(Px,x)+... 4+ Px,x)

<((B+ B+....t P)x,x)=(Px,x) =| x|

So [ <[P and [ P" <[]

— the sign of equality holds throughout the above computation, thereby giving that

|2+l =2 0P and | = 0 for i#

= |Px|=0 for i#

= Px=0fori#j

— x e nullsapcea P(i # j) whoserangeis M; and null spaceis M.

= xeM; fori#j with xeM,

= x isorthogonalto therange M, forevery P, with i# j

ie. xeM, =M, LM, Vi+j

— every vector in range P/( Jj= 1,...,n) is orthogornal to the range M, for every P with i# j

= range of P, is orthogonal to the range of every P with i# ;.

Lastly we show that P is the projectionon M =M, + M, +....+ M, . It will be so if the range of
Psay R(P)=M

Any x eR(P):> Px=x

= Bx+Px+.+Px=x

where Px € M|, P,(x) e M,,...,P(x) e M,
=>xeM +M,+. . +M, =M

~R(P)cM

Alsoan x e M = x, e M, for 1<i<n with x=x, +x,+...4x, and M=M + M, +...+ M.
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=[Pxf =l = [Px]= |
= Px,=x,=x, eR(P)Vi

=X, +X, +.....4+x, > x €R(P) as R(P) isa linear subspace of H
. McR(P)
Hence M= R(P):> P isaprojection on M.

Statement of spectral Theorem :

Let T be an operator on a finite dimensional Hilbert space Hwith 4,,4,,....,4

..,A,, as the distinct
eigenvalues of T and with M, M,

...., M be their corresponding eigenspaces. If B, P,,...., P, be the
projections on these eigenspace, then following statements are equiralent:

@) The M,'s are pairwise orthogonal and span H.

(i) The P's are pairwise orthogonaland P, + P, +....+ P, = [ and

T=AP+A,P+...+1, P,
(ii1) T is anormal operator on H.

Proof: (i) = (ii) : Since M,'s are pairwise orthogornal and span H, therefore each vector x € 1 is

uniquely expressible as x=x, + x, +....4x,,,x, e M, Vi=12,...,m. .(11)

M's are pairwise orthogonal and P's are projectionon M,'s
= P's are pairwise orthogonal by Theorem 16
= FP=0,i#j

For any vector x e H, (11) yields

x = P(x, +x,+..4x,)=Bx, + Px, +....+ Px, ..(12)
M, being range of P and x, e M, = Px, = x,.

If j#i and M; L M, for j+i
=>X; eM' for j#i

= Bx, =0, M;" being null space of P.

So Px, and Fx; =0=Px=x, Vi=L,2,.....om ..(13)

Now VxeH,Ix=x=x+x,,...+X

m

=Px+Px+...+P x

147



=(B+P+...4P,)x

= [=P+P+.4P,=) P (14

i=1
Also Vx e H,Tx=T(x, + x,+....x,,)

=Tx, +Tx,+....+1x

m

=Ax +Ax, +.. 44 x

m--m

as x, eM,=>Tx, =1 .x,
m m

=A,Px+A,Px+...4+4, P x

=(4, B +A,P+....+A, P )x

= T:2'1P1+2'2P2+ """ +2'um:ZA[P[ (15)
i=1
The above expression with (14) is called spectral resolution of T.
(ii ):> (iii ) : Since each P, being a projection, we have P"= P and P’ = P, P sare pairwise orthogenal

and i # j= F P, =0 and given that

T =(AP+A,P+...42,P,)

m-— m

Therefore TT" =|2,|" P? +|A,| P2 +... 4|4, P* as BP, =0 fori# .(16)

2
L,

=4[ P+, B ta

m

2
Am

Similary 7" T=|4,|" P, +|1,[ B+...42,| P, (17)

(16)and (17) = TT*=T*T—= T is normal

(éii)=> (i) : Let T be normal. We prove that M,'s are pairwise orthogenal which is true by Theorem 13

as M,'s are eigenspaces of T. Again by Theorem 16, M,'s being pairwise orthogonal and P's are
projectionson M,'s, P's are pairwise othogenal. Theorem 16 also gives M =M, + M, +.....+M, .M

being a closed linear subspace of H, then its associate projection P=P, + P, +...+ P, .
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Also T is normal on //=> each M, of T reduces T and P, being orthogonal projection on

closed linear subspace M, ofH, M, reduces T means P T=TP,
TP=T(B + P,+....+P,)
=1TP, +TP, +...+TP,
=BT+PT+...+PT
=(B+P+..+P)T=PT
Hence TP= PT and P is projection on M = M reduces T and so j/* is invariant under
T= M"+{0} and all eigenvectors of T being constrained in M, the restriction T to A7+ say that W is
an operator on a non-trivial finite dimensional Hilbert space M* and Wx=Tx VxeM™ .

Now x being an eigenvector for W corresponding to the eigenvalue 1 , we have x e M and
Wx=2x.

Thus Wx=Tx and Wx = Ax = Tx = Ax = x isalso an eigenvector for T. But T has no eigenvector
in A+ since all the eigenvectors for T are inM with A7 () M+ = {0}, therefore W is an operater on a finite
dirnrensional Hilbert space )+, having no eigenvecter and no eigenvalue, therefore A7+ = {0} thereby

contradicting the hypothesis A+ = {0} in which case every operater on a non-zero finite dimensional
Hilbert space would have an eigenvalue.

Consequently, M+ ={0}=>M=H

= M,'s span H.
Self Learning Exercise

In the following questions write T for true and F for false statement :

1. If P is a profection on a Hilbert space H, then P is a positive operator (T/F/)

2 . ||Px|| < ||x|| VxeH (T/F)

3. If x isaneigenvector of T, then x corresponds more than one eigenvalue of T. (T/F)

4. If T is a normal vector on a Hilbert space H, then each eigenspace of T reduces T. (T/F/)

5. An arbitrary operator T on a Hilbert space H possesses necessarily an eigenvalue (T/F)

6. If P be a projection on a closed linear subspace M of a Hilbert space H then 7 — P is the
projectionon M* (T/F)

7. Let P be a projection on a closed linear subspace M of a Hilbert space H, then

X eM@”Px”: .....

149



8. Let P be a projection on a Hilbert space H, then
@ |P<.... b))  ...<|Ps....

9. Ifa closed linear subspace M of the Hilbert space H reduces an operator T «» M,'s invariant
under ....and .....

10.  IfTisanormal operator on a Hilbert space H then eigenspaces of T are pairwise....

8.9 Summary

In this unit you studied the projection on a Hilbert space, invariance and reducilibilty of an operator
on a Hilbert space. Spectral theory in Hilbert space was also discussed.

8.10 Answers to Self-Learning Exercise

LT 2T 3F 4T 5F 6T 7. |4 8.(a)I (b) O and I

9. Tand T°  10.Orthognal

8.11 Exercises

1. Write a short note on Projection on a Hilbert space
2. Define orthogenal Porjection, reducibility and Invariance of an operator on a Hilbert space.
3. IfP and Q are projections on closed linear subspaces M and N of a Hilbert space H, then prove

that PQ is a projection iff PQ = QP. Also show that PQ is a projectionon M [N .

4. IfP and Q are projections on closed linear subspaces M and N of a Hilbert space H, then prove
that following statements are equivalent

@&  P<Q i |Px<|ox| vx
(ii1) McN (v) QP=P
v) PO=P
5. Show by an example that it is not necessary for an arbitrary operator on a Hilbert space H to

possess an eigenvalue

6. Define spectral resolution for an operator on a Hilbert space and prove that spectral resolution of
a normal operater on a finite dimensional non-zero Hilbert space is unique.

7. If M's are eigenspaces for a normal operator T on a Hilbert space H, then prove that M. 's
span H.

miNIN
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Unit-9
The Derivative

Structure of the Unit

9.0  Objectives

9.1 Introduction

9.2  Derivative

9.3 Directional Derivative

9.4  Mean Value Theorem and its Applications
9.5 Summary

9.6  Answers to Self Learning Exercise

9.7 Exercises

9.0 Objectives

This unit introduces an important concept of derivative of functions in abstract-spaces, particularly
in Banach sapces. We are already know the notion of derivative of a real valued function. Now we need
to modify this notion of derivative of functions from Banach spaces to Banach spaces.

9.1 Introduction

Areal valued function /' on R hasaderivative D f (a) or f ’(a) atapoint ; ¢ g ifand only if

for each € > 0 there existsa § > () such that

— —f'(a)< € whenever 0<|x—a|<5
X—a

‘f(X)—f(a)

Frechet generalized this concept of derivative of a mapping f on anormed linear space J into
anormed linear space )s. The derivativeof f atapoint ; ¢ N existsand it is a linear transformation g

of )y into py ifit satisfies the inequality, for € >0,

|£(x)- f(a)-g(x—a)|< e|x—a

b

whenever ||x - a|| <9o.

9.2 Derivative

Definition : Let x and y beanytwo Banach spaces and j» an opensubset in ), then two functions
fi:V—>Yand f, : V- X aresaid to be tangential to each other at apoint ,, ¢/ if, we have

)

S

X#V

=0

which follows that
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A1) =10)

If f,, f, aretangentialat y and f,, f; are also tangentialat y,then f,, f, aretangentialat v,
since we have the inequality,

1) = £ =)A= L)+ A - £
Hence this relation is an equivalence relation.

Theorem 1: Let x and y be any two Banach spaces over the same filed g . Inthe set ofall functions
tangential to a function f at y cJ, there is at most one function ¢: X —> Y, of the

form¢(x)= f(v)+g(x—v),where g: X — Y islinear, where V is an non-empty open subset of x .
Proof: Suppose there are two functions ¢ and ¥ from Y into y givenby
§(x) = £(v)+g(x=v) and v (x) = £()+ g, (+—)
Assume h(x) = g(x) - & (¥).

then clearly 4 is linear and

i PO _

O
x#0 X

Thus for given e > 0 there exists @& > 0 such that
[n(x)] < €llx]| whenever [ < &

But € > 0 isan arbitraril y small so that
h(x)=0 forany .

= g£=8&
Hence ¢=vw
Derivative of a Map :

Definition : Let y and y be Banachspaces and 7 be a non-empty open subset of x . A continuous
mapping f : V' — Y issaid to be differentiable at the point y, ¢}/ ifthere exists a linearmapping g : X — Y

such that the mapping x — f (x) - f (v) and x > g (x - v) are tangential at the point v, that is

)0 gl
= R -

X#V

Let xy =y 4+ 4 ey, Wweassume

n(h)=f(v+h)—f(v)—g(h):>f(v+h)=f(v)+g(h)+n(h) ..(2)
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where from equation (1), we have

=0 .(3)
n being a function from N — Y, where p is aneighbourhood of () ¢ x, suchthat N+v V.
A function f : V' — Y issaid to be differentiable in 7 if f is differentiable at each point of 7 .

If 1 is differentiable in 7 , then for eachpoint v eV, D f (v) € L(x, y) , which is the space of all
linear map from x into y.

Example 1: The derivative of the constant function f : /' — Y is the zero linear map, because
|f(x)=f(v)-g(x=v)|=0 forany v,x eV, if g isthe zero map of L(x,y).
Example2 : The derivative of a continuous linear mapping f : V' — Y is the mapping f itself, because
[ (@)= f ()= (=) = [ ()= £ () = £ () + £ ()
=0 ., Vx,vel

Theorem?2: Let x and y be Banach spaces and j7 be the non-empty open subset of x . Suppose
that f : 7V — Y and g:V — Y be differentiable in 7 and 4 be any scalar in g . Then the function

(f+g):V—>Y and a f:V—Y defined by af(x)=af(x), (f+g)(x)=rf(x)+g(x), are
differentiable in j andforall y ¢y, D(a f)(v)=aDf(v), D(f+g)(v)=Df(v)+Dg(v)

Let us prove, D(f+g)(v)=Df(v)+Dg(v)

Proof: Since f and g are differentiable at y, ¢}/, so that

[f (x)=r(»)=Df (v)(x-v)]

lim =0
) =]
i ) 0)- D0
oy =1
Now,

|7+ 9))-( +9) ()= (D1 () + D () (x )

o8 [x =+

X#V

o @-r0)-D )

o8 =]

X#V
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o ls)-20)-Pg()x-v)
=

X#V

=0+0=0
The D(f+g)(v)=Df(v)+Dg(v), Vvel
Similarly, we can prove that D(a f)(x)=aD f(v).

Theorem 3 (Derivative of a composite mapping ) : Let x, y and z be Banach spaces over the
same field x . Suppose that f* isa function on an opensubset 7 of x into anopen subset jy of y and

g isafunctionon py into 7z .If f isdifferentiable at a point , ¢}/ and g is differentiable at the point
w=f (v) eW ,then g ofis differentiable at y and

D(gof)(v)=(Dg( (v) o D f(v)
o (gof) (") =(g'(f () o S'(¥)
Proof: Let k ey besuchthat f(v)+k el .
Given that g is differentiable at f/(v), so we have

g(f()+k)=g(f(n)+Deg(f(v)-k+y (k) (1)
&)l _,

where 11{11’n ” ”

Now let j ¢ ¥ besuchthat 4 cp

Giventhat f isdifferentiable at , ¢/, so we have

f(v+h)=f(v)+Df(v).h+7](h)

where 11rn

N ||h|| ...(2)
Now, we have
(gof )(v+h)=g {f(v+h)}

=g {f(v)+Df(v) . h+17(h)} [Fromeqn. (1)]

Using eqn. (1), we get

(20)(v )= (/) + De(F (). (DS () hsn(i)}+y (D () . e (i)

154



:(gof)(v)+(Dg(f(v))0Df(v)) ch+ @ (h)

where ¢(h) = Dg(f(v)) n(h) + (//(Df(v)h + n(h))
Now we claim that

| ()

=0
=0 |

Let for € > 0 there exists u > 0 such that ||k|| <u,

v (%)] < <l

Also there exists a § > () such that ||h|| <9,

[n(n)] < eli] and D £(v).h+n(h)] < u

Then for |4 < &, we have
(k)= |Dg (s () n(k)+w (D (). h+n(n)
<|pg(£ () n(®)|+|w (D). h+ n(n)|

<[pg (s @) [n(m)] €[5 (). 1+ n (i)

<[pg(ro)] <l + <l s ] + - <]

= [e@)|<(lpg(r)+Ips @)+ ) <]

Thus the equation (3) can be written as

igor) v+ ~(g0r) ()~ (Dg(v) 0 D1 (V)

lim

=0
=0 7]

Hence D(gof)(v)= (Dg(f("))) oDf(v)
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Definition : Abijection f onaBanachspace x onto aBanach space y is said to be a homeomorphism

ifboth f and ' are continuouson x and y respectively.

Theorem 4 : Let yx and y be Banach spaces over the same field x of scalars. Let f be a
homeororphism of an open subset |7 of Y onto an open subset j of y and let g be the inverse

homoeomorphismof 7 onto 7 . If f isdifferentiable at ; <7 and D f (a) is a linear homeomorphism
of x onto y,then g is differentiable at the point b = f (a) eW and

Dg(b)=[Df(a)]"

Proof: It is clear that the linear mapping D f (a) of x onto y hasaninverse linear mapping. Let it be

t= [D f (a)}]fl of y onto x .Itis also continuous and there is a finite positive real number 37 such that

()<

Suppose that ;, ¢ x besuchthat , 4 <) .Since f is differentiable at 4, so that we have

VyeY (D)

F(a+h)=rf(a)+Df(a)h+n(h) -2)
[n(#)] _
where 1}1rn W =0

1
Let for given 0< € < EYVE there exists §'> () such that

Hn(h)‘ < , whenever ||| < &' ..(3)

Since g is continuous at b = f(a) €W, then for given §'> 0 there exists § > ( such that

g (b+ k) g(b)| 6", whenever [l < 5
Now, [i=t(r(a+h)-f(@)|=[t {D.s(a) . h=(r(a-+h)- F(a)))

= ‘t {Df(a).h—f(a"‘h)"'f(a)}u

=t (=n(m)) from eqn. (2)
<M Hn(h)” fromeqn. (1)
<M € || from eqn. (3) ..(4)

Now, [[A]=|h=t(f(a+n)-s(a)+t(f(a+h))-f(a)

<|[n-t(f(a+n)-1(a)|+|t(f(a+n)-1(a)
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<Me|H+ M| flarn)-f(@)  fom(1)&@)

<< L+ ] £(a+h)- f(a)
= |Hl=2m]s(a+n)-1(a) ()
Suppose g(b+k)=a+h,then
s (b+ k)~ g (b) 1 (k)
:Ha+h—a—t(f(a+h))—f(a)”
=|h—t(f(a+n)-£(a)|
< € M|h| From (4)
<empu|f(a+h)-fa)}  From(s)
=2 M’ |f(a+h)- f(a)

= [e+i)-gl)-r(k)< ek,  e=2em

Hence for given € > 0 thereexists & > 0 such that

lg(b+k)—g(b)—t(k)|< €||k| , whenever [k]|< &

Hence g is differentiable at b = f(a) €W and Dg(b)=t= [Df(a)]lfl

9.3 Directional Derivative

Definition : Let x and y be Banach space over the same field ¢ of'scalars and j» be an open subset
of x.Let f beafunctionfrom J/ into y and y be aunit vector in J , then the directional derivative of

f at x ey inthe direction of unit vector v is denoted by D, f(x) and is defined by

h _
Sl Z) / (x), ifthis limit exists.

Theorem 5: Supposethat y and y be Banach spaces over the same filed g of'scalars and 7 be an
opensubsetof x.Let f :V — Y isdifferentiable at y <}/ . Thenall the directional derivatives of f
existsat x and

va(x) = Df(x).v , where |, ¢/ isa unit vector.
Proof: Suppose ;, ¢ ¥ besuchthat y 4, <) . Giventhat f isdifferentiable at x <)/, so that
f(x+h)=f(x)+Df(x) h+n(h),
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h
where }1_1;1% Hn”E/l”)H =0

Since y, ¢ isaunit vector and let s is arbitrary small, then we have

f(x+sv):f(x)+Df(x).(sv)+n(sv) (D)

where lim HU(SV)H =0

s—>0 ||SV|| B

n(sv)

lim =0
s—>0

. AN %
=g

Hence from (1), we have

lim LOH=I) {Df(x) v "(SV)}

s—>0 Ky s—>0

= D, f(x)=Df(x).v
9.4 Mean Value Theorem and its Applications

In this section we study mean value theorem for a mapping defined on a Banach space.

Theorem 6 : Let x be a Banach space over the field g of scalars and let f :[a,h]—> X and

g :[a,b] > R be continuous and differentiable functions such that HD f (t)” <D g(t) at each point
t e(a,b) . Then

|/ ()~ f(a) < g(b)-g(a)
Proof: Let >0 andlet 7 be the set of real numbers s €[a,b| suchthat V r [a,s)
|7 (r)-1(a) < g(r)-gla)+ e(r—a+1) ()
It is given htat
[pr()|<Delt) v ie(ab)
=  Dg(1)=0 Vi e(a,b)

— g isanincreasing function on (a,b). Since f isacontinuous function in closed interval [a,b]

s0 it is uniformly continuous in [a,b], then there is a real number p e (a,b]] suchthat V g €[a, p)
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|7 (q)-r(a)|< e o)

Since g in increasing function ¢ €[a, p| so that

e< g(q)—g(a) + e(q—a+l) ..(3)
From (2) & (3), we obtain

[£(a)-s(a)] < ()~ g(a) + elg-a+1)
= p €T and hence 7 in non-empty

Now we define a function 4 : [a,b] — R as follows

h(s)=|/(s) = f (@) -8 (s) +g(a) - els—a+1) 4
Then clearly 4, is continuous in [a,b] and also A (s)<0 VseT.
Then T is a closed subset of [a,b] and so it is bounded.
Now 7 isanon-void bounded subset of g .

Hence supremum of 7" existsin [a,b].

Let supermumof § = ¢

We shall show that . — p .

As contradiction we suppose that ¢ 2 p i.e. g<c<p-

Giventhat f and g are differentiable in (a,b) and so that there in a real number g €(c,b) such

that Vs € (c,q)

(s=¢)

Hf(s)—f(c)—Df(c)(s—c)”é € 5 ..(5)
and  g(s)-g(c)-Dg(c)(s—)< E(S;C) (6)
Now, Hf (S)—f(C)H
=17 (s)=f()=Df(e)(s=e)+ D f(c)(s=c)|
SHf(s)—f(c)—Df(c)(s—c)H+HDf(c)(s—c)”
<~ (s=9+[Df () (s=0) From (5)
< Ee (s—c)+Dglc) (s—c) H|Df(t)||£ Dg(1) Vt e(a,b)
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< Ee (s—c)+g(s)—g(c)+§(s—c)

= -1 < 2l)-(e) + <ls—)

Since ¢ e T, therefore
Hf(c)—f(a)HSg(c)—z(a)+ e(c—a+l)
Thus Vs €[c,q)
17 (s)=f(a)| =]/ (s)=f () + F ()= f(a))]
<[1 (s)= 1 )+ ()~ 1 (@)
<g(s)-g(c) + e(s—c)+g(c)—g(a) + e(c—a+1) From (7) & (8)

O 7@l e g+ els-as
= seT and g>¢

which is the contradiction to the fact that ¢ is the supermum of 77, so our assumption . < j was
wrong and hence . = p and

Hf(b)—f(a)”ﬁg(b)—g(a) + e(b—a+1)

But € > 0 is anarbitrary small and so

|7 (6)-1(a) < g(b)-g(a)

Theorem 7 (Mean value Theorem) : Let x and y be any two Banach spaces over the same field g
ofscalars and J» be anopen subset of x .Let f : V' — Y be continuous function. Let u,v be any two

distinct points of j suchthat [u,v] C V" and f is differentiable in [, v]. Then

||f(v)—f(u)|| <|lv—u| sup {”Df(x)” X e[u,v]]}

Proof : We define a mapping g : [0,1] = Y such that
g(t):f(u+t(v—u)) vt e[0,]]

As 1 is differentiable in [u,v] , therefore g is differentiable in [O, 1]]
Dg(t)= {Df(u+t(v—u))} (v-u)
— ||Dg(t)|| = H(v—u) Df(u+t(v—u))”

— HDg(t)H < H(v—u)” sup {HDf(uﬂ‘(v—u))H .t €0, 1]]} (1)
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Let c=|v—u| sup {HD flute(v— u))” ¢ €0, 1]]}

Now we define a mapping 4 : [0, 1] — R such that
h(t)=ct

Then j, is obviously continuous and differentiable in [0, 1]
Dh(t)=c

From (1), we have
|Dg(r)|<c=Dh(r)

=  |pg(t)|<Dn(r)  vre(0))

Now we know that if g : [0, 1]— Y and % : [0, 1] > R are continuous and differentiable such
that

|Dg(r)|< Dh(t) ateachpoint ¢ e(0,1),
then  [g(1)— g(0)| <k (1)-A(0) [From theorem 6]
= O)-r)seo
= s s
= [ <v-ul sup {[Df (s t(v=w))] £ <[0.1]}

— ||f (v)—f(u)” <|lv—u| sup {”Df(x)” DX e[u,v]}

Theorem 8 : Let x be a Banach space over the field g of'scalars, and 7 be an open subset of x .
Suppose f : ¥ — R be afunction. Let y and y be any two distinct pointsin 7 such that [u,v] = V

and f is differentiable at all points of [, v]. Then
fO)-fW)=Df(u+t(v—u)).(v—u) where ¢ €(0,1).
Proof : We define a mapping g : [0, 1] > R such that
g(s)=fu+s(v-u)), Vs €[0,1] (1)
As f is differentiable in [u,v], therefore g is differentiable in [0, 1], and
Dg(s)=Df(u+s(v-u)).(v—u), se[0,] -Q2)
Now from Lagrange’s mean value theorem, there exists a real number ¢ €(0, 1) such that

161



= g(l)—g(0)=Df(u+t(v—u)).(v—u) ..(3)
From (1),

g()=s(). g(0)=f(u)
Using these in (3), we obtain

f()-fW)=Df(u+t(v—u)).(v—u), t (0, 1)

Theorem 9 : Let x and y be anytwo Banach spaces over the same field g ofscalars and 7 be an
opensubset of x.Let f :}/ — Y beacontinuous function and let 3 and y be any two distinct points

in j suchthat [u,v] = ¥ and f is differentable in [u,v]. Suppose g : X — Y be any continuous linear
function. Then

lf ()= £ ()= g (v=u)| <o -],
where ¢ ¢ R besuchthat [D f(x)—g|<c, Vx e[u,]
Proof: We define a mapping 4 : V' — Y such that
h(x)=f(x)-g(x-v), VxeV (1)
Then clearly j, is continuous and differentiable in [, v]

and Dh(x)=Df(x)-g, x eV, since g is linear ..(2)

Now since 4 : ¥ — Y is continuous function and u,v €V be such that [u,v] =V and 7 is

differentiable in [u, v] , then from mean value theorem, we have

||h (v)—h (u)” <|v—u| sup {”Dh (x)" DX e[u,v]]}

Using (1) & (2), we have

|7 () (=v)~ 1)+ g lu=v)| < v —ul sup {|D 1 ()~ ] : ¥ [uv]}
= ) -fw)-gv-u)<cly—u
where |Df(x)—g|<e Vx lu]

Self-Learning Exercise

1. Define, when two functions f; and f, defined onanopen subset of a Banach space are tangential
at a point.
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Define derivative on a Banach space.

3. True/Fase Statements :
(@) The derivative of the constant function f* onanopensubset |y of a Banach space x
into Banach space y is the zero map.
(b) The derivative of a continuous linear mapping f* onanopensubset j7 ofa Banach space
X into a Banach space y is the mapping f itself.
9.5 Summary

In this unit we studied the notion of derivative of function from one Banach space into another

Banach space and concepts of mean value Theorem in Banach spaces.

9.6 Answers to Self-Learning Exercise
1. See text 2. See Text 3.(a) True (b) True

9.7 [Exercises

1. Let f be adifferentiable function on a non void connected open subset j ofa Banach space x
over x into aBanachspace y over g suchthat D f =0.Then f isa constant function.

2. Let f; [a,b] — X and g ; [a,b] — R are continuous and differentiable function such that
HDf(t)H < Dg(t) at each point ¢ e(a,b) , then

[/ (6) - f(a)| < 2(b) - g(a).
3. Let x, y be Banachspace over g andlet j7, j be opensubsetsin x respectively. Let

f :V — Y bedifferentiable at a point ; ¢y and g : W — X be differentiable at the point
b eWw,where b= f(a).If fog=1, and gof =1, . Then

Dg(b)=[D f(a)]"

miNIN
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Unit-10
Higher Derivatives

Structure of the Unit

10.0  Objectives

10.1  Introduction

10.2  Continuously differentiable maps

10.3  Higher Derivatives

10.4  Taylor’s Theorem

10.5  Existence theorems on differentiable maps
10.6  Summary

10.7  Answers to Self Learning Exercise

10.8  Exercises

10.0 Objectives

In this unit we shall study the concept of higher derivatives ofa function on Bahach spaces, which
have an important role in the study of these functions.

10.1 Introduction

In this unit we shall introduce higher derivatives of functions defined on Banach spaces and the
concept of continuously differentiable maps on Banach spaces (C"-maps), partial derivatives, Taylor’s
theorem and existence theorems will be discussed with their applications.

10.2 Continuously differentiable Maps (C1 —maps)

Definition: Let x and y be Banach spaces over the same field K and V be an open subset of X.
Suppose f:V— 7Y is adifferentiable function at each point of V. Then £ is said to be a continuously

differentiable map (C' - map) in'V if and only if the function Df :V — L(X,Y) is continuous.

Definition : Let V be a non-empty open subset of a Banach space X = X, x X, andlet f be a function
of Vinto Y. Suppose (a,,a,) eV , we define ¥, ={x, € X,:(x,,a,) €V'}. Then ¥, is an open subset of
X

1
We also define a mapping g:¥, — Y suchthat g(x,)=f(x,,a,) Vx, €V,
Similarly we define the set

v, z{x2 elX,: (al,xz)eV} and the mapping
h:V, — Y such that

h(x,)=f(a,,x,) V x, €V,
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The mapping f:V — Y issaid to be differentiable with respect to the first variable at the point
(a,,a,) iff g is differentiable at a,, and we write Dg(a,)=D, f(a,,a,) or f,(a,,a,). The derivative
D, f(a,,a,) is called the partical derivative of f withrespect to the first variable at (a,,a, ) , it is a linear

map of X, intoy.

Similarly, we can define the partial derivative D, f(a,,a, ) withrespect to the second variable
Thus, we have D, f(a,,a,) €L(X,,Y)

and D, f(a,,a,)eL(X,.Y)

Theorem1: Let f be acontinuous mapping of an open subset V of X, x X, into Y. Then f isa

C'—map nViff f be differentiable at each point with respect to the first and the second variable. Also
the mappings (a,,a,)— D, f(a,,a,) and (a,,a,)— D, f(a,,a,) are continuous on V. Further at each

point (x,,x,) €V, the derivative of / is given by

Df(a,,a,)(x,,x,)= D,f(a,,a,)x,+ D, f(a,,a,)x,

Proof : First suppose that f is C' —map onVinto Y. Let (a,,a,)eV thenfor (x ,x,)el and given

>0 there exists 6 >0 such that
|1 (3 = £ (@)= DF a0, (5 %,) ~ (4.
<e(xx) - (aa,)]
Put  x, =a,,weget
|1 (x005) - £ (@)~ Df (a,,) (5, 0,) - (4.

Se”(xl,az)—(al,az)u (1)

Since,
[(x1,02) = (a1, ) [ =] (6 a0, = 5)
=|(x=a,,0)]

=[x =a))]

Using it in (1), we have

b

Hf(xl,az)—f(al,az)— Df(al,az)(x1 —al,O) HS e”(x1 —al)

for H(x1 ~a,) H <6
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Thus f is differentiable with respect to the first variable at (a,,a, )
and D, f(a,,a, )x, =Df (a,,a,).(x,,0)
Similarly we have

D, f(a,,a,)x, =Df (a,,a,).(0,x,)

Now
Df(al 7a2)(x1 axz) = Df(al Ay ){(xl ’O) + (O’x2 )}
=Df (a,,a,)(x,,0)+ Df (a,,4,)(0,x,)

= le(al X2 )xl + sz(al s )xz
Which is the required result.

Since Df" is continuous, therefore D, f* and D, f* are also continuous on V.

Conversely suppose that D, f and D, f are continuous and differentiable at each point

(a,a,) €V .

To prove, f is C' —map , we have
f(al +X,a, +xz)_f(alaaz)_(le(alaaz)xl +D2f(a1,a2)x2)
=f(a, +x,a, +x,)— f(a,,a, +x,)— D, f(a,,a,)x,

+ f(a,,a, +x,)— f(a,,a,)—D, f(a,,a,)x, (2)
Let
g(z)=f(a,+z,a, +x,)-D,f(a,,a,)z,
Where z=#x and te(O,l)

So that
Dg(z)=D, f(a, +z,a, +x,)—D,f(a,,a,)
Since D, f is continuous so for any €>0 there is open ball of radius 7, , and centered at (a,,a, )

such that forall (x,,x,) €B((a,,a, );n,) we have

Hle(a1 +z,a, +x2)—Df1(a1,a2)HS g,

for z=1x,t 6(0,1)

So by the mean value theorem,
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, z¢€(0,x,)

le(x) - g(0)]|< €,

= Hf(a1 +x,a, +x,)— f(a,,a,)x, —le(al,az)xluﬁ e”xl” ..(3)

Since D, f* isalso continuous, similarly,

We have, for
(xlaxz) GB((alaaz ); 772),
Hf(al,a2 +x,)- f(a,a,)- D, f(a,,a, )xzué e”xz” ..(4)

Let us take T]: min(nl 5 772)

Now, from equation (2), we have
17 (e, + .0, +x,) = £ (a.0,) = (D, f (@), )x, + Dy f (@, a,)x, )|
:Hf(a1 +x,,a, +x,)— f(ay,a, +x,)— D, f(a,,a,)x,
+f(ay.a, +x,) - f(a,a,) - D, f(a,.a,)x,
<|f(a,+x.a, +x,)— f(ay,a, +x,) = D f (a0, x|

+ Hf(alaaz +x2) _f(alaaz)_ sz(alaaz)xzu
Using (3) and (4), we obtain

Hf(al + X4, +x2)_f(a1aa2)_(D1f(a1aa2)x1 +D2f(a1aa2)x2)u

< el + el

= ([ + )
Since e is arbitrary small positive quantity, therefore f is differentiableat (a,,a, )

Since D, f and D, f" are continuous then Df" is also continuous in V.

Hence f is ¢! map.

10.3 Higher Derivatives

Suppose x and y be Banach spaces over the same field K ofscalars and V be an open non-void

subset of X. f:V'—Y isa C' —map thenthe map Df:V — L(X,Y) is continuous. If the map Dy is

differentiable at a given point v €}, then D (Df (v)) will be a linear map X — L(X,Y). This map is

called the second derivative of f* at y and is denoted by D’ f(v). Themap Df is continuous implies

that D” f(v) is a continuous linear map i.e. D f(v) EL(X, L(X, Y)) f Df is differentiable on V, then
wehaveamap D f:V — L(X, L(X, Y)) . It this map is continuous, we say that f isa C*> —map .
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Since L(X,L(X, Y))=L(X?, Y)
We write D*f(v) e L(XZ,Y)

Continuing in this manner, f isa C"~' —map thenthe map D" f:V — L(X”’l , Y) in continuous. Its
derivative, if it exists at v €V is called the ,,* derivative of f at y and is denoted by D" f'(v) and it is an

element of L(X”,Y) _

If p*' ¢ indifferentiable on V, then we have the map D" f:V — L(X” , Y) .
It this map is continuous, then we say that /" is C" —map .

For each veV andeach (x,,x,,....,x,) € X", wehave

D" f(v).(x1, Xy, ) =D(D" £(v). ) (355 X550005, ) -
From the definition of higher derivatives, we obtain the following properties :
1. Let f:V — Y inm-times differentiable in Vand D" f* is n-times differentiable in V. Then by
induction £ is (m+n) times differentiable in V and
D" (Dmf) — Dm+nf

2. Let f:V—Y and g:V — Y aren-times differentiable in V. Then £+ g is also n-times differetiable
inVand

D'(f+g)=D"f+D"g
Moreover forall k €K, kf is n-times differentiable in V and
D' (kf)=k D" f
Theorem 2 : Let X andY be Banach spaces over the same field K ofscalars and 7 be an open subset

of x.Let f:V —7Y is twice differentiable at a point ve¥ . Then D*f(v)eL(X>,Y) is a bilinear

symmetric mapping i.e. forall (x,y)eX x X,

D () (3.3)= D £ (9)3)
Proof : We define a mapping g as follows :
gl y)=f(v+x+y)-f(v+x)-f(v+y)+ f(v)
Then clearly g is a symmetri functionin (x,y).
Also
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(6.0~ (D2 (v).3)
=g(x.3)~ Df (v+y).x+ DF (v).x+ Df (v+ y)ox = DF (v).x
(D f(v).y)A]
<|g(x.)~ Df (v+ y)ox + Df (v).]

+HDf(v +y).x=Df (v).x— (sz(v),y).xu (1)

As Df isdifferentiable at v €/ then for given v €l then for given €>0 there existsa 6>0
such that

|2 (v y) = D1 (v) = D* £ (v).y|< €] for |y} <6
therefore
HDf(v +y).x—Df (v).x— (sz(v)y).xué e||y|| ||x||

< el (Iy]+{)

o o
for <2 and <

Now suppose

s(x):f(v+x+y)—f(v+x)—Df(v+y).x+Df(v).x ..(3)

From mean volue theorem, we have

||s(x) —s(0) || < x| sup {”s’ (tx)”:t elo, 1]]}
From (3), we get

S'(x)zDf(v+x+y)—Df(v+x)—Df(v+y)+Df(v)

Using it in above, we have

||s(x) — S(O)”S ] sup{”Df(v +ix+y)-Df (v+ix)-Df (v+y)+ Df(v)” 1 €[0, 1]]} (4

Now

HDf(v +tx+y)—Df(v +tx)— Df(V+J’)+Df(V)H
—Wor (v+y+ )= D (v) - D* () + )} = {Df (v + 1) - Df (v)
=D () ()}~ {Dr (v + ) - D1 (v) - D1 ().}
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< e(ly+xf) + €] + €]
Since
[+ x| <[+ [ex]
<[]+ I~ w1€(0,1) = o] <[]
Using it in above, we have
HDf(v +y+ tx) — Df(v + tx) — Df(v +y) + Df(v)”

< (oA + el + e+ <l

=2+

Using it in (4), we get

() = s(0)] <[lx|2 & ]+ 1)

Substituting the values of s(x) and s(0) from(3), we have
Hf(v+x+y)—f(v+x)—Df(v+y).x+Df(v)x—f(v+y)—f(v)”

<2 e (Jl + 1) (5)

Now from (1) and (2), we get

lo(x.2) = (D £ (). )| <] (v x4 ) = £ (v 0) = £ (v 3)
+f( ) Df(v+y)x+Df x”

+ €l + 1)

Using (5), we obtain
Je(e.) = (D27 (v)3)o <2 <l (o + )
+ el -+ 1)
=[a(x.3) = (D2 (). 3) <3 <] (o + ) .

Interchanging x and y, we obtain

lg(v.x) = (D2 £ (v).x). o] <3 <y + ) D

Now,
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(D (v).x). 9= (D1 (v).5).4]
~[er. )= (D7 £ ()-9)-x = g(r.x)+ (D1 (v)-2)5]
< Je.)= (D1 (0)-9)-2] + |e(.x) (D1 (v)-2)5]
<3 | (] 1) + 3] (<o)

S3e(d+bl)  From@and()

But ¢ is an arbitrary small, therefore
(D*f(v)-x).y=(D*f(v).y)x
= D ()x)= D (4)(0-)

Proved

Theorem3: Let x and y be Banach spaces over the same field g of scalars and V be an open
subset of x . Suppose f:V— Y be ann-times differentiable function on V. Then for each permutation p

of n and each point (x,,x,,.....x,)€X" andeach veV,

D”f(v)(xp(l),xp(z),....,xp(n))zD"f(v)(xl,xz,....,xn)
Proof : We shall prove this result by induction on n. For n =2, this reduces to theorem (2) i.e.
D’ f(v)(x,,x,)=D"f(v)(x,,x, ), which we have already proved.
Let us assume that the result is true for (n— 1) ie. D"~ f(v) is a symetric member of L(X"™',Y)
Now suppose x, € X , then

for (x,,....,x, ) e X", we have

D" f(v).(x1 %y x, )= D(D" f(v). ) (5,0 x,)

Now we know that each permutation of » is a composition of consecutive transpoitions (r,7 + 1)

of n . Since by hypothesis D" f(v) is a symmetric function of X" intoY, for r=2,3,....n.

D" f(v).(x, %y 50X, , X, e X, )= D" f (V) (X, %5, X, X, X))

So now, it is sufficient to show that

D" f(v).(x,%,....,x,)=D" f(v).(x,,%,....,x,)



But we know that D" f(v) = D (D'Hf)(V), and so that

(D" f(v).x,).x, =(D" f(v)-x;).x,

Consqeuently

D" f(v).(x,,%y5ecc0x,)=D" f(v).(x,,x,,...,X,)

Proved

10.4 Taylor’s Theorem

Theorem4: Let f be afunction defined on the interval [a,b] of R into R such that f is s times

differentiable in [a,b] and (m+1) times differentiable in interval (a,5) . Then

(b _a)mH
(m+1)!

D" f(a)+ D" f(c)

Where ¢ €(a,b)

Proof : Giventhat f:[a,b]— R be a function. We define a function g on [a,b]as follows :

(b—x)

g(x)=f(b)-f(x)-(b-x)Df (x)...... oy 1D'"f(x)
_A% Vxe[a,b]] ..(1)

Where A is a constant can be determined by putting
g(a)=g(b)
Put x=b in eg" (1), we get
g(b)=0 = g(a)=0

Put x=a in eg" (1), we obtain

o(@)= 1(b)- £(a)~(b-a) Dt (a).. " ;1"‘) D" f(a)
(b_a)m+1
(m+l)'
= 1(b)=7(a)+ () Dr(a) ..t UL Dmf(a)+A.(ZE’;+)1; 0
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Now from eq” (1), it is clear that

@) g(x) is continuous in [a,b]

(ii) g(x) is differentiable in (a,b) and

i) gla)=g(b)
Hence by Rolle’s theorem there exists ¢ €(a,b) such that
g'(c)=0

Differentiate eg” (1) w.r. ¢ x, we get

b-x)" . 1)(b-x)"
g'(x)=—1'(x)+ £'(x)..... —%Dw f(x)+A.%
putting x=c, we have
gv(c):_(b_f)m D"Hlf(c)+A. (b_f)m
m! m!
= A=D""f(c) v g'(c)=0and h—c=0

Substituting the value of A in (2), we get

£(6)= f(a)+(b-a) D (@)t L= D p(a)

m!

(b _ a)mH
(m+1)!

+ Dm+1f (C)

Where ¢ €(a,b)
Theorem 5: Let x he a Banach space over the field K of scalars, and let I be an open interval in R
containing [0,1].If y:/— X is (n+1) times continuously differentiable function ofa single variable

t €l . Then

y'(0) L v"(0), Jl(l—t) s

v )=y O)+y (0)+ == =

Proof : We know that if the function /* on [0,1] has a continuous derivative /", then

S)=10)=[ f(t)ar (1)
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We define a function f onl as follows :

£0) =y () + (1= (1) ot T Q)

1(1-12)" 1
- J. ( nt) l//nJrl(l‘)dl‘:J.Of'(l‘)dt
Using eq” (1), we get

70 70)= [ Ly

n!

w(1)-y(0)-y'(0)- W;('O) ..... - W;('O) =f(;(1 ;f Ly o)t

'(1 — t)n l'[/Hl(l‘)dt

0 p!
Proved

Theorem 6 : Let x be a Banach space over a field K of scalars and let I be an open interval in R

containing [0, 1].

If y:I— X isan (n+1) times differentiable function of a single variable # €/ and if ‘ ! (I)HS M for
t €0,1].

Then

PO =p(O)+ (1= () ot T D)
and,
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~ _M(l_t)/ﬁl
 (n+1)!

g(?)

V¢ €0,1] ..(2)
From equation (1), we have

(-0 o

n!

|pr ()=

=M‘

n!

l//nJrl(t)H

|Dr (1)< =)y E)

n!

From equation (2), we have

= Dg(t)=——— ..(4)
From (3) and (4), we have
HDf(t)H < Dg(t), forall ¢ €{0,1}

Now we know that if /:[0,1]— Y and g:[0,1]— R are continuous and differentiable functions
such that HDf(t)HS Dg(t), V't €(0,1), then we have

|£(1)- 7(0)|<g(1)- £(0), by theorem (6) unit (9)
Using (1) and (2), we get

o w(0) z,/"(o)||< [ M

y (1)—y (0)—yw'(0) TR p H_O [ (n+l)']
' ”(O) H(O)

= l//(l)—l//(O)—l//(O)——Wz! ......... _Wn' H_(n+l)!

Theorem 7 (Taylor’s formula with Lagrange’s Reminder) : Let yx and y be Banach space over

the same field g of scalars and 7 be an open subset of x.Let f:¥ — Y bean (n+1) times

differentiable function. If the interval [a ,a+ h] is contained in 7 and if

f”“(x)”é M, y ey .Then

n+l

/"(a)

n!

M|h
(n+l)!

h"| <

Hf@+M—f@»¢w@hmf
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Proof : We define a mapping ¢ : [0,1] — Y as follows :

b(0)=fla+th).. Vieo,1]
¢n+l(t) — hn+1fn+l(a+th)

+1 H

W ()

=
= o (@< Ml
Now suppose that
1-—
()= 90) (-9 s
Therefore
1Y
Wr(t) — ( 't) ¢n+1(t)
n!
1Y
— Wr(t)u ( 't) ¢n+1(t)H
n!
1
N O B

We define again g : [0,1] — R as follows::

_ (1 - t)” n+l
so that
1- t
pa()= L pip
Using (6) in (4), we get

HD(//(t)HSDg(t) , t 6[0, 1]]

Then by mean value theorem, we have

v (1) -y (0)] < (1)-£(0)

using (3) and (5), we obtain
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#(0)

n!

H(I)(l) ¢(0) ¢(0) <0 { (n+l)!}

n+l

Using (1), we get

hl’l
n!

Hf(“h)‘f(f’)—hf'(o) o

Theorem 8 (Taylor’s Formula with Integral Remainder) : Let y and y be Banach space over the
same field K of'scalars and V be an open subset of X. Suppose f:/'— Y be a function of class 1.

Ifthe closed interval [a,a + h] is contained in J . Then

flasm)=sla)sh o)+ pria) .

/"(a)

! l_tn n+ n+
+J.O%f Ya+th). k"' dt

Proof : We define a function y : [0, 1] —> Y asfollows :

w(t)=f(a+th), Vi €0, 1] (1)

w'(t)=hf'(a+th)
l//”.(t) =h2.f"(a+.th)

: : : )
W (6)= 1" f"(a+1h)
Suppose,
10=v O+ 1-0w0) +.+ "Ly

Since,

F()-1(0)= I;f'(t)dt , then by theorem (5), we have

y ()= (0)-p'(0) LY - U0y

n! n!
Using (1) and (2), we obtain
Fla+h)=£(0)+h f'(0)+% 77(0) +...+% 77(0)

n+1
+fh (1=2)" f"™a+1th) dt

0 pn!
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10.5 Existence Theorems on Differentiable Functions

In this section we shall prove the implicit function theorem and the inverse function theorem.

Theorem 9 (Implicit function Theorem) : Let x, y and 7 be Banach space over field g, let f be
a continuous function on an open subset j of x x y into z such that at each point (x,y) €W the
partial derivative D, f (x, y) existsand D, f* isa continuous functionon j into L (Y VA ) and let (u,v) ew

be such that f (u,v) =0and D, f (u,v) is a linear homoeomorphismof y onto 7 . Then there exists an

open neighbourhood {7 of 4 and an open neighbourhood 7 of v such that U xJ W and a unique
continuous function g on {7 into p such that

g(u):v and for each x ¢(/, f(x,g(x)):O.

If 1 is differentiable at (u,v) then g is differentiable at 5, and

Dg(u) = —(D2 f(u,v))i1 oD, f (u,v) .
Proof : We define a function /4 : W — Y as follows :
h(x.)=y=(Dof () (f (x.7)). ¥ (x.)eW D)

= h(x,y)zy ifff(x,y)zO. -.(2)

j, is continuous in 7, therefore D,h(x, y) existsat each (x,y) €W and D,k is continous on
W

Let yy' be an open ball with centre 5 and radius ¢ and p' be a closed ball with centre  and
radius e such that

U'xV'cW andforall (x,y) eU’ x V"

|Dy A (x.y)| s% ~(3)
Now by mean value theorem,

()= ()< Sl =31 v evr, yyrer
Let gy is an open bell with centre 3 and it contained in /', then

Hh (x,v)- vH SEE (4
Now,

Hh (x,y) - VH = Hh (x,y) —h (x,v) +h (x,v) — VH

< Hh (x,y) —h (x,v)” + Hh (x, v) - VH
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that

then

1 €
< E”y - v|| + 5 [From (4) and (5)]
= Hh(x,y)—v”é € [As y,v €)', :>||y—v||£ €, ' € istheradius of p' |

Since j' is closed and y is complete and V' ¥, therefore ' is also complete.

Then by Banach fixed point theorem there exists a unique linear transformation g': U"— V' such

h(x.g'(x)) = g'(x)

Using (2), we obtain
f(x.g'(x))=0 .(6)

Let 7 be the interior of 7+ andlet U = g™'(V) and let g be the restriction of g’ to the set {7,

g'(x)=g(x), xer

Then, we have
f(x,g(x)) =0 and g(u) =v.
Now let f is differentiable at (u,v) and x be anyelement in x suchthat ;4 x cUU

Let y :g(u+x)—g(u),then

f(u+x,g(u+x)):0

= f(u+x,g(u)+y) 0 (7

As f isdifferentiable at (u,v) , therefore given € > 0, there exists 6 > 0 such that ||x|| <0.

Therefore,
| (. g () + ¥) = £ (1, () = px—qy| < (] + 1)
where p = D1f(uag(u))

q=D,f(u.g(u))

then we have
px + gy <e(lx] + 1) - (8)

Since f(u+x,g(u+x)) :O:f(u,g(u))

Giventhat ¢ = D, f* is alinear homeomorphism, therefore
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lla™'op) v+ o<l I+ ar]
<efg | (I +) ©
Let el | =1

Now,

=]y +(4op) x~(47'op) ]

<+l o) ohr o

= s %(||X|| +[y])+ g op] Il from (9)
Thus

o+ A < 21| (1+ [ o)) (10
Now,

e+ )20 ~{-{a "op)e]|

[+ (a7op)]
< efa™| (J«l+ 1) [From (9)]
< e”q’lu 2||x|| (1+Hq710pu) [From (10)]

o)) {-(a'on)}

= ] <2¢fg| (1+[a7op])

But ¢ is arbitrary number therefore g is differentiable and
Dg(u)=—-q 'op

= _{Dz f(”’v)}ila D, f(u,v)

Theorem 10 (Inverse Function Theorem) : Let yx and y be Banach spaces over the same field g

of scalars and j be an open subset of x . Let 1 < besuchthat D f(w) is a linear homeomorphism
of x into y. Then there exists an open neighbourhood ¢y of , contained in jy and an open

neighbourhood 7 of f(w) containedin y suchthat /" therestrictionof f tothe set {7 is ¢! homeo-

morphismof {7 onto J, its inverseina ¢! homeomorphismof 7 onto {/, and
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DS (£(w)=(Ds (W)

ItftDf (x) is a linear homeomorphismof x into y,forall y ¢y, then f is anopen mapping of
w into y . If D f (x) is alinear homeomorphismof x onto y forall y ¢ and f isinjective then f
isa ¢! homeomorphism of f () onto 7 .

Proof: We define a function 4 : W x Y — Y as follows:
h(x,y)=f(x)-
Then D, h(x,y)=D f(x) and D, h(x,y)=-1,
V(x,y) e WxY
=  hpisac'mapon pxy

Then by implicit function theorem, there exists an open neighbourhood ¢/’ of y contained in 7,

an open neighbourhood 7 of f (w) containedin y anda ' map g : ¥ — U suchthat £ (g(»))=y,
Vy eV and g(f(w)):w.

We take U = g (V)

Then UcU', g isabijection of 7 onto {7 and U =U' ' (v), which is an open subset of

Let f’ isaninverseof g ,and /' isa ¢! homeomorphismof ¢/ and ', g isa (! homeomor-
phismof j onto ¢ and D £ (f (w)) = (Df'(w))f1

Now suppose f'(x) is a linear homeomorphismof x onto y, V x e . Then by the first part,
for each x ey, there is an open neighbourhood {7 of x contained in jy7, such that restriction of 1" to ¢/

is a homeomorphism of {7 onto its image. Hence f is an open mapping of j into y .
Moreover, let f is also injective. Then f is a bijection of j onto f (/) and so that a homeo-
morphism of jy onto f (W).
Self-Learning Exercise
1. Define ¢! map
2. Define higher derivatives

10.6 Summary

In this unit we studied higher derivatives of functions defined on Banach spaces. We also studied

the Taylor’s theorem and existence theorems on differentiable function.
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10.7 Answers to Self-Learning Exercise

1. See text 2. See text
10.8 Exercises
L. Let f : W — Y ,where jy is anopensubset ofthe product X, x X, x...x X  ofBanach spaces
X, X,,....,X, overfield g suchthat f istwice differentiable at ,, < 7. Then for
i,j=12,........ N7
D,(D,f)(w)=D,(D.f)(w)
2.

Let x and y be Banach spaces over field ¢ andlet f bea (¢~ -map of an opensubset jy of
X into L (X, Y) . Then the map (w,x) - (f(w),x) isalso 7 -map.

miNIN

182



Unit-11
The Integral in a Banach Space
Structure of the Unit
11.0  Objectives
11.1  Introduction
11.2  Subdivision
11.3  Step function

11.4  Integral ofa step Function

11.5 Regulated Function

11.6  Basic Properties of Integrals

11.7  Summary

11.8  Answers to Self Learning Exercire

11.9  Exercises

11.0 Objectives

In this unit, we introduce integral of'a regulated function through step function and discuss some of
its basic properties.

11.1 Introduction

At elementary stage, the subject of integration is generally introduced as the inverse of differentiation,
so that a function F is called an integral ofa given function f if F" (x) =f (x) , for all values of x belonging

to the domain of the function f . The reference to integration from summation point of view was always

associated with the geometric concepts. To formulate an independent theory of integration, the German
mathematician, Riemann, gave a purely arithmatic treatment to the subject and developed the subject
entirely free from the intuitive dependence on geometrical concepts.

The Riemann integral depends very explicitly on the order structure of the real line. Accordingly,
we have studied the integration ofreal valued function ofreal variable in under-gradark courses. In this
unit, we courider the integral ofa function of one variable into a Banach space. To study integration of such
functions, we take slightly different approach than for real valued functions of a real variable. First we
detive the integral of a regulated function through step functions and then prove some basic properties of
the integrals.

11.2 Subdivision

Let [a,b] be a compact interval of the real line. Aset of points {a,,a, ,....,a, } of [a,b] is called

a subdivision of [a,b|
if a=a,<...<a,=b.

The subdivision consists of ; poitns. A subdivision S, of [a,b]] 1s said to be refinement of a
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subdivision S, of [a,b] iff each point of S, is a point of S, ie, S, S,.Let S, and S, be two
subdivisions of [a,b], then there exists a unique subdivision S (= S, U S, ) whose points are the point of

S, or S, and which is a refinement of both S, and S, .

11.3 Step Function

Let [a,b] be compact interval of g and let x be a Banach space over g . Then a function
f :[a,b]—> X is called a step function with respect to a subdivision (a, : i en) of [a,b] ifffor each ;
inn—i, f(a,,a,,) isasingleton. We say that f is a Step function on [a,b] into x iffit is a step

function with respect to some subdivision of [a,b] .

Thus a function f on [a,b] into Y isa step functionon [a,b] into x iffthere exists a subdivi-
sion (a, :i en) of [a,b], n>2 andthere existsalist (x, : i en—1) ofpoints of x such that for each ;

in n—1 and each ¢ in (a,, a,,,), f(¢)=x,.

1

11.4 Integral of a Step Function

Let f be a step function on compact interval [a,b] of R into a Banach space x . Let
S =(a, : i en) besubdivision of [a,b] suchthat f isa step function with respect to S . For each i in

n—1,let x, beapoint of x suchthatfollall / in (a,,a,,), f(t)=x,. Thenwe put

n—

Mﬂ=ZQWWJ%

1

Now let j be a fixed element of n—1 and let ¢; be any point of (a »a jﬂ) . Then
S, = (al,...,aj,cj,ajﬂ,...,an)
is a subdivision of [@,b] suchthat S, is refinement of § . Moreover
I (f)=(a, —al)x1+...+(cj — aj)xj - (aj+1 —cj)xj+...
0,005~ L)
Now let 7 be a subdivision of [a,b] suchthat 7 is arefinement of § . Then by induction,
I(f) = 1:(f)

Finally let {7 be any other subdivision of [a,b] withrespect to which £ is a step function. Then

by definition 11.2, there exists a subdivision 7 of [a,b] suchthat p is arefinement ofboth § and /.
Hence

[S(f)zlu(f)zll/(f)'
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Consequently, we define the integral of a step function f on [a,b] into x as the
n—1

vector Z (am _al-) X,
i=1

where (a, : i en) is a subdivision of [a,b] suchthat f is a step function with respect to this

subdivision, and where for each ; in n—1, there is a vector x, € X such that

f(t) =X, forall ¢ G(a,-aaHl)

and denote it by Jj f or ij(t) dt

Evidently

J.1

n—1
< 2l —a |
i=1

< r_lZ=1:|al.+1 —a,|sup {Hf(t)” it e[a,b]}

=(b—a)sup{|f(t) : t €[a.b]}
=(b-a)|/]

Now if we consider the set S ([a b, X ) of all step functions on a compact internal [a,b]= R into

a Banach space Y then this set tuns out to be a Banach space with norm as stated above. This is evident
form the following theorem.

Theorem1: Let [a,b] be a compact interval of g and let x beaBanachspace over g . Then the set

S ([a b, X ) of all step functions on [a,b] into Y is a vector subspace of the Banach space B ([a bl, X )

of all bounded functions on [a,b] into x with Sup. norm
f =\ f]=sup {”f(t)” ot e[a,b]}
and the map f — Ibf is a continuous linear map of S ([a,b], X) into x .

Proof: Let f,g €S ([a,b], X) ie., f and g be step functions on [a,b] into Yy with respect to
subdivisions § and 7 of [a,b] respectively. Let U = (a, : i €n) be arefinement ofboth § and 7, then
f and g are step functions withrespect to {/ also and so for each ; in n—1 there are vectors x, and
y, in x suchthat foreach ¢ €(a,,a,,,), f(t)=x, and g(¢) =y,
() +g(t)=x+,
e, (f+g)t=x+y, foreachte(a,a,,)
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Hence f + g isastep functionon [a,b] into x withrespectto (7 andso f +g €S([a,b], X).

Also for each ¢ €K, a f is a step function on [a,b] into x with respect to § i.e.
af eS([a,b], X).

For each f in S([a,b], X), I,(f) is a finite subset of x and so it is bounded. Thus

S ([a,b}], X) is a vector subspace of B ([a,b], X) . The function f — ij on S ([a,b}], X) into y is
clearly linear and continuous with a norm less than or equal to p — .

11.5 Regulated Function

Let [a,b] be a compact interval of g and x be a Banach space over g . Then a member of the

closure of the vector subspace S ([a,b], X ) ofall step functions an [a,b] into X inthe Banach space

B([a,b], X) is called a regulated function on [a,b] into x .

b
The unique continuous linear extension ofthe map f* — _[ feX, feS ([a bl, X ) to closure of
S ([a b, X ) will be denoted by the same symbol f — '[b / and for each regulated function £ on [a,b]

b
into x, [ f willbe called the integral of f .

The class of regulated functions is larger than the class of continuous functions. In support of'this
we have the following theorem.

Theorem2: Let f be a function on a compact interval [a,b] of R into a Banach space x over g.

Then f isregulated iff the following conditions are satisfied.

Q)] for each point ¢ e[a,b)

lti_I}gf (f ) exists

>c

(i) for eachpoint ¢ € (a ,b]

lim £(¢) exists.

<c

In particular, if f* is continuous, then f is regulated.

Proof : Firstby,let f* beregulated. Let , be any positive real number, then thereisa g in S ([a,b], X )
such that

r
— <
Ir -sl<"
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Let ¢ beany point of [a,b]. Since g is a step function on [a,b], thereisa 4 in [a,b] such that

¢ <d and for each ¢ and ;!'in [c,d]] Hg(t)—g(tl) Sg,
and so,
I -7 ()20~ 0 e -2 e () <525 =
Hence

1,1_133 /(2) exists, as x is complete.

>c

Similarly, we can prove that lim / (¢) exists.

Next suppose that f* satisfies condition (i) and (ii). Let »» be any positive real number. Then for
each ¢ in [a,b], there exists real number p(c) and g(c) such that the open interval ( p(c)q (c))

contains ¢ and for all pairs of point ¢ and ;’ in [a,b]ﬁ(p(c),c) or [a,b]ﬁ(c,q(c))

<r.

(6 -1()
Since [a,b] is compact, there exists a finite subset ¢ of [a,b] suchthat [@.b] U, (ple)q(e)),

Let {a, : i en} beaset of points in the finite set

(a,6) U {[a,b] N (CLEJC(p(C),q(C)))}

arranged in increasing order. For each ; in n—1, (a;,q,,,) is contained in ( p(c),c) or (c,q(c))

i+l
for some ¢ in ¢ and

lr(0)-r1(r)

<r

for all pairs of points s and ¢ in (q,,a,,,).

Define a function g on [a,b] into x such that for each i en, g(a,)= f(a,) and for each
i en—1 and foreach ¢t €(a,,a,,,), g(t)= f(s,), where s, is the middle point of (a,,a,,,) . Then g is

astep functionon [a,b] into x and for each ¢ €[a,b],

l7(6)-g(e)]<r

Hence |f —g|<r andso f isregulated.
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Remark: (1) Let [a,b] be a compact interval of g andlet x bea Banach space for any two regulated

functions f and g on [a,b] into x andanyscalar ¢ € K
b b b
Lug=[r]s.

b b b
'[ (af)=aff,sincethemap f—)'[f is linear.
(2) Givenanysequence { f, : n € N} inclosure of(S[a,b]],X) convergingto f in B([a,b]],X),

b
then f isinclosure ofS([a,b]],X) and the sequence {L f,ine N} in Yy converses to '[bf n x.

11.6 Basic Properties of Integrals

Theorem 3 : Let f be aregulated function on a compact interval [a,b] of R into aBanach space x

over K, and ¢ be any point of [a,b]. Then the restriction of f to [a,c| (respectively [c,b]) is aregu-

lated function on [a,c| (respectively [¢,b]) into x and Jj f= J: [+ J‘:’ 1.

Proof: Let f beastep functionon [a,b], then clearly restriction of f to [a,c| (respectively [c,b])is

a step function on [a,c] (respectively [¢,b])and
b c b
Jor=lr+]r.
Now let f be aregulated function on [a,b]
Then there isa sequence { f, : n € N} of step functionon [a,b] convergingto f in B([a,b], X).
b c b
Then by the aobve remark _[ f= L f+ L f.

Theorem 4 : Let f be aregulated function on a compact interval [a,b] of g into a Banach space x

over g and g be a continuous linear map of x into a Banach space y over g . Then gof isregulated
and

J| eor)=2([ 7).

Proof: Let f* be astep function, then clearly gof is also a step function and

J| eor)=g([ 1)

Now let f be a regulated function in [a,b]. Then there is a sequence {f, : n € N} of step

functions on [a,b] into x convergingto f in B = ([a,b],X) .Foreach , ¢ N
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||f—fn||—>0 as n— .

= |

= the sequence {g, f, : x € N} ofstep functions on [a,b] into y converges to gofin

B([a,b], X) (1)

Here gof isregulated.

b b
By the definition of the integral, the sequence {L f,ineN } converges to '[ finx.

Since g is continuous and linear, the sequence

{(gjjf) ‘n EN} converges to gjjf iny .(2)

but foreach , ¢ §

J[ eor)=¢([ 1)
Hence J gof U f)

Definition : Let f be aregulated function on a compact interval [a,b] of R into a Banach space x .

Let ¢ and 4 be any points of [a,b] suchthat ¢ < 4 . Then we define

d c
J;f - _J.d f
Theorem 5: Let f be aregulated function on a compact interval [a,b] of R into a Banach space x .

Thenat each ¢ €[a,b], the function F : [a,b] —> X, F (¢ _[ /. t €[a,b] is continuous.

Proof: f bearegulated functionon [a,b], so there is a sequence {f, :n e N} ofstep functions on

[a,b] converginto f in B([a,b], X ) . Therefore

[ < (t-a)

s

Consequently the function

<|(z-a) 7] (1)

F:la,b]|> X, F(t I f, ] is continuous.
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Theorem 6: Let f be acontinuous function ona comapact interval [a,b] of R into a Banach space

x over g.Let f bethe function ¢ —> J‘[ f on[a,b] into x.Let g be any differentiable function on

[a,b] into x such that Dg=f. Then fF is differentiable, DF=f and
b
[ 7=F@)-F(a)=g(b)-2(a).

Proof: Let ¢ beany point of [a,b] and let ; be any real number suchthat ¢+t €[a,b] and ¢ =0

Then
[ r(e)de=11(c).

where f(c) is the constant function on [a,b], assigning f(c) to all points of [a,b]. Hence

P )=FO)  po) =2 [ (r(0)- 1) at

t t

and so by (1) of Theorem 5, we get

HF(CH‘)—F(C)_f(C)

1
<o M O-7C] S0 as ¢ [ iscontinuous

Hence DF(c)= f(c), so that

DF = f = Dg {"-Dg = f given}

= F — g is constant function on [a,b]. But f (a) =0,and

Hence [ f =F(b)-F(a)=g(b)-g(a).

Theorem7: Let / bea C' map onacompact interval [a,b] into a compact interval [¢,d | of p and

let g be a continuous function on [c,d | into a Banach space x over g .Then

[[(r)e(r(s)ds=]"" gle)ar.

/(a)

Proof: Let 4 :[c,d]|— X be defined by

h(t) :I: g(u)du, t e[c,d]]

Then by Theorem 6, Dh = g and

ﬂgg@m:Mﬂ@fﬁU@» ()
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By chain rule for each s €[a,b]
D(hof )(s) = Dh(f(s))o D f (s)
=(Df(s)) DA(/(s))
=(Df(s)) g(f(5)) [+ Dh=g]

Hence again by Theorem 6, we have

[[(D.1(5)) g(r(s))ds = n(1(5)) ~h(/(a)

= Lf((:)) g(t)dt from (1)

Theorem 8 : Let {7 be an open subset of a Banach space x over g, let [a,b] be a compact interval

of R, let f be acontinuous function on U x [a,b] into a Banach space y over g andlet g: U —Y
be defined as

b
g(x)=[ f(x.0dt, xeu,
then g is continuous. If D f exists as a continuous functionon U x[a,b] into L(X,Y),then g
b
is ¢! map and for each x eU , Dg(x)= L D,f (x.t)dt .

Proof: Since f is continuousin U x[a,b] and [a,b] is compact, for each positive real number  and
each point x ¢/ , there is a positive real number . such that forall ¢ € [a,b] and forall 5’ ¢y suchthat

||x’ —x|| <r',

I (Gerst) = f(et)| < (1)

b
a

and so Hg(x’) — g(x)” < I

fx0)= 1 (x.1)

‘ dt [by definitionof g ]

Sr(b—a) [by (1)]
Hence g isconitnuousin /.
Next suppose that D, f exists as a continuous functionon U x[a,b]. Let » beany positive real

number and let x be any pointin {/ . Since D, f is continuousin U x[a,b] and [a,b] is compact, there

is a positive real number ; such that for all x €[a,b] and forall ' ¢y suchthat ||x’ - x|| <r.

‘Sr

HD1 f(x',t) - D, f(x,t)

Then for all ¢ e[a,b] and for all » ¢ x suchthat ||x’ —x|| <r.
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Hf(x+x',z‘)—f(x,z‘)—D1 f(x,t).x' <rlx’ ..(2)
and so
Hg(x+x')—g(x)—Jj D, f(x,t).x'dt”
- Lbf(x+x’,t)dt—Lbf(x,t)dt —j;le(x,t)x'dtH [by def. of g]

[ (£ (300 = £ (5,0)= DS (x,0) ") H
<r|x'|(6-a) [by (2)]
But by Theorem4 forall 7 €[a,b] and forall ' e/
b b
J D, f(x,t)x'dt = U D, f(x,t)dt) x'
as u — u(x') is continuous and linear functionon L(X,Y).
Hence Dg(x) = Jj D, f(x,t)dt X

Theorem 9 : Let 1 be aregulated function on a compact interval [a,b] of g into R suchthat 4 <

and forall 7 in [a,b], /()2 0. Then | f(r)ds >0.
If f is continuous at a point ¢ of [a,b] and f(c) >0, then

Ib f()de>0

Proof: Given f isaregulated function, so there exists a sequence { f, : n € N} of'step functions on

[a,b] convergingto f in B([a,b],X) such that for each 5 € N' and for each ¢ €[a,b], f,(¢)= 0 and
S0 I:f”(t)dt >0
Hence Ibf(t)dt >0

Next suppose that f is continuous at a point ¢ of [a,b] and f (c) > 0. Then there is a positive

real number ;- such that for all # €[a,b] with |t - c| < r implies that

S @< 1),

If ¢ = a , choose a positive real number s < - such that [a,a +s| <[a,b], then
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>0 [ f(c)>0]

If ¢ # a , choose a positive real number s < suchthat (c—s,c) < [a,b] then
b c—s c b
[ r@yae=["ryde+|_sleyde+] s(e)de

2%sf(c)>0

Theorem 10: Let / be acontinuous function on a compact interval [a,b] of R into the topological
dual y * ofaBanachspace x over R suchthat ; 4 andforeach ¢'-map g on [a,b] into x with
g(a)=g(b)=0 and

f:<g(t),f(t)>dt:0,

Then f(¢)=0 foreach 7 €[a,b].

Proof : Asa contradiction, let f (r) # 0 for some r €[a,b]. Since f is continuous, we may suppose

that ;- is different from 4 and p . Since f(r) # 0, thereis an x ¢ x suchthat < x,f(r) >#0.

Let <x, f (r) >>0. Since f is continuous, there is a positive real number s such that
[r—s,r+s]] c [a,b] and for each ¢ e[r—s,r+s] , <x,f(t) >>0.
Let 5 be a ¢'-map on [r—s,r+s] into R such that ;> (for example h(t)zO if

t ¢(r—s,r+s) adn h(l‘)z((l‘—l’)z—sz)2 if 1 e(r—s,r+s).

Let g be the function on [a,b] suchthat g(¢)=h(¢) . x forall  €[a,b]. Then g isa (! -map
on[a,b] into x suchthat g(a)=g(b)=0 and < g(¢), f(t)>>0 foreach 7 e(r—s,r +s),

Hence by Theorem 9, we have
b
I <g(t), f(t)>dt>0
which is not possible, so our assumption was wrong.
Hence f(¢)=0 foreach ¢ €[a,b].

Theroem 11 : Let [a,b] be acompact interval, let g be aregulated function on [a,b] into {r eR:r> O}

and let j, be a continuous function on [a,b] into g such that for all z €[a,b]
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h(e)<g(t)+c[ h(s)ds ()

a

where ¢ is a positive real number. Then for all ¢ € [a,b]

h(t)<g(t)+c J: g(s) e ) ds

Proof: Let j:[a,b] > R be defined as

J(e)={ h(s) ds. t <[a.b] e
Then for each ¢ €[a,b]
D j(t)=h(t)
<g(t)+cj(t) [by (1) and (2)] .03

Let k :[a,b] —> R be defined as
k(t)=j(t) e“(t—a), t €a,b]
Then for each ¢ e[a,b]

Dk(t)=(Dj(t)=cj(t)e

< g(f)e ) [by (3)]
By the definition of j and f, itis clear that
J(a)=0=k(a)

By mean value theorem, forall 7 € [a,b]] , we have

k(1)< Ib g(s) e ) ds Then

< ec(“”)J‘tg(s) e U ds ..(4)
Hence by (1) and (2), we have
h(t)<g(t)+cj(2)

<g(t)+cel™ J: g(s) et ds [by (4)]

=g(t)+ cJ.l 2(s) e"Vds
Self-Learning Exercise
1. Write whether the following statements are true or false.
(a) A subdivision § ofacompact interval [a , b]] is said to be refinement ofa subdivision 7" of

[a,b] iff each point of § isapointof 7 ie., § T.
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(b) The function f — Jj f isnot a continuous linear map ofthe set .S ([a,b], X ) (the set of
all step functions on [a,b] into x )into x .

(©) If 1 is continuous, then f is regulated.

(d)  Ifanysequence {f, :n e N} in CI (S[a,b],X) convergingto f in B ([a,b], X),then
f €8 ([a,b],X).

(e) If £ and g be regulated functions on a compact interval [a,b] of R into a Banach space

X over g ,then gofis also regulated.

11.7 Summary

In this unit, we have seen that by taking slightly different approach than for real valued function of
areal variable, we can find the integral of a function of one variable into a Banach space. We also discuss
various properties of such integrals.

11.8 Answers to Self-Learning Exercise
1. (a) False (b) False (c) True
(d) False (e) False

11.9 Exercises

1. Define integral of a step function. If [a,b] be compact interval of g and x be Banach space.

Prove that the set S ([a,b], X ) ofall step functions on [a,b] into ¥ is a vector subspace of the
Banach space B ([a,b], X ) ofallbounded functions on [a,b] into x with sup norm
I =\ f=sup {1 (1)) : ¢ €[a.b]}.

2. Define regulated function. If f be aregulated function on a compact interval [a,b] of R intoa

Banach space x . Prove thatat each ¢ e[a,b] the function £ : [a b - X, F '[ f,
€[a,b] is continuous.

3. Let f bearegulated function defined on a compact interval [a,b] of R into a Banach space
X - Show that for each positive real number e, there is a positive real number § such that for
any increasing sequence a = a, <t,<a, <,...,<a, <t,<a,, <..<a, = b of points of [a,b].

n—1

f 1 1+1 1

i=1

<e

suchthat |a,, —a,|<5,ien—1,

miNIN
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Unit-12
Differential Equations

Structure of the Unit

12.0  Objectives

12.1  Introduction

12.2  First Order Differential Equations
12.3  Approximate Solutions

12.4  Lipschitz’s Property

12.5  Locally Lipschitz

12.6  Maximal Integral Solution

12.7  Summary

12.8  Answers to Self Learning Exercise

12.9  Exercises

12.0 Objectives

The present unit is devoted to differential equations. Existence and uniqueness theorems for ordinary
differential equations are proved.

12.1 Introduction

In many practical problems we come across with a differential equation which cannot be solved by
one of the standard methods known so far. Vaious methods have been formulated for getting to any
desired degree of accuracy the numerical solution ofthe above mentioned type of differential equation with
numerical confficients and given conditions. We have studied the Picard’s integration method for finding an
approximate solution of the initial value of the form

dy

—=f(xy), ¥x)= (1

dx (x,3). ¥(x) =, (1)
Theorems which state the conditions under which an initial value problem of the form (1) has at

least one solution, only one solution are called existence theorem and uniqueness theorem respectively.

The purpose of'this unit is to introduce differential equations. Starting with the definitions of a differantial

equation and its solution, existence and uniqueness theorems for ordinary differential equations are

obtained.

12.2 First order Differential Equations

Throughout this unit X denotes a Banach space over the real field R, /' denotes a function ofa

d
single real variable ; with valuesin x . Further if f is differentiable, its derivative A will again be
dt

considered as a function with valuesin y .
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Definition : Let I be an interval of R,V be a subset of a Bananch space x over x andlet g be a

continuous map of / xU into Y . Thenan equation ofthe type

dx

=g(t,x), (t,x)elxW
o = 8lx), (1)
is called a differential equation.

Definition : A differentiable map f';/— W is called an integral solution of the differential equation

dx

u = g(t ,X) ifand only if Df (t) = g(t, f (t)) for each ¢ €1 . Anintegral solution of the differential equa-

tion is also called an integral solution for g .

Now let (¢,,x,) be an interior point of /x W . Let J' be an open subset of W containing x,.

Then a differentiable map h: /'— W' is called an integral solution for g at (#,,x,) if A(z,)=x, and j, is

an intgral solution for restriction of g to I'xW".

Amap f;I'x W' —W is called a local flow for g at (z,,x,) iffforeach x eW", f(z,,x)=x
andthemap ¢ : I'—> W, ¢(¢) = f(¢,x) for ¢ eI' is an integral solution for g at (t5,x). Thus f isalocal

flow for gat (¢,,x,) iff £(¢,,x)=x and D, f(¢,x) :g(t,f(t)) for each x el

Theorem 1 : Let I be an open integral of R, let j7 be an open subset of a Banach space x over g.Let

(t5,x,) be point of I xW and let g be a continuous map of / x W into x . Thena continuous maph :

I—W is anintegral solution for g at (¢,,x,) ifffor each ¢ €/
h(t) =X, + Jj g(s,h(s))ds )

Proof : Given that g and j are continuous so the map s — g(s,h(s)) of jinto X is continuous.

Firstly let / be an integral solution for g at (7,,x, ), then clearly

h(t)=x,+ Jj g(s,h(s))ds
foreach t €/

Next let for each ¢ €/
h(t)=x, + Jj g(s,h(s))ds ,

then j, is differentiable in 7 and its derivative is the map s — g(s, h(s)) and so § is anintegral solution for

gat (¢,,x,).

197



12.3 Approximate Solution

Let > () be arealnumber. A differentiable map f:/— W isan approximate solution within

d.
or an e-approxmate solution for the differential equation d—: = g(t,X) if Hf'(t) - g(t,f(t))”ée for all

tel.

12.4 Lipschitz’s Property

Let /" bea function on a subset W of a Banach space x over K into a Banach space x over

K - Let V be any subset of jp and let ¢ be any positive real number, then f* is said to be ¢ — lipschitz on
Viffforall x and x' inV

£ ()= () < e =]

Let I be any subset of R and let g be a function on 7 x W into y . Then g s said to be ¢ — Lipschitz
on V uniformly with respect to [ iff forall # €/ andall x and x' inV

Hg(t, x) - g(t,x')” < c||x - x'||

Now we shall prove a lemma which compares two approximate solutions ofa differential equa-
tion. We first prove an anxillany lemma.

Lemma 2 : let 4 beanon-negative continuous functiononan interval {0, c},(c>0) satisfying the inequality
u(t)< at+ kJ.; u(s)ds (D)
for all ¢ 6[0,0] ,then

u(t)< (ekt - 1) for ¢ €[0,¢]

|

Proof : Let v(t) = JZ u(s)ds ,
then v'(¢)=u(z),v(0) = 0 and so inequality (1) reduces to v'(¢) < at +k v(¢), .(2)
which is a differential inquality.
Taking w(t)=e"v(¢), then
w(0)=e"((0)-bo(o)

<e" at {by (2)}

Since w(0)=0, the mean value inquality gives w(¢)< JZ as gk Jg

Integrating the right hand side by parts, we obtain
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w(t) < %(1 —e" —kre") (3
Therefore v(¢) = " w(t) {by(?))}
< %(ek’ —1- kt)

since u(t) =v'(¢) <at +kv(t) , therefore

u(t) <at +%(e’“ —1- kt)

Lemma 3 : (Fundamental Lemma) :

Let I be an open interval of R. Let W be an open subset of a real Banach space x andlet g be
a continuous map of / x W into x suchthat g isc-lipschitz on W uniformly with respect to I, where c is

a poritive real number. Let », and r, be two positive real numbers such that for all 7 €/

|07,(t) - g(t. £1(e))| <1 and |DA (1) - (e, £:(0)) < (4

o dx
ie., f,,f, are r, — approximate solution and 7, — approximate solution of the equation 7 =gt ,x) re-

ec\t—s\ —1
el +(n +”2)
C

Proof : We can assume that ¢ — () and #>0. Then

spectively. Then for all ¢ and ¢ inl

1i(6) = 1.0 < | £i(s) = £ (s)

HDfl - Dfy(t H HDfl gt (e ))+g(t,fl(t)—g(t,fz(t))+g(t,fz(t))—sz(t))H

< HDf1 (t) — g )

1D, () - g(t.£2(2))

+ele.£1(0)) - gle. 1)
<r +ry+ gt /(1) - 8. £2(0)| {oy (1)}
<n+n+c|fi(6)- A0 (- g isc-Lipschilzon W)
Taking r=r, +r, and f(r)=f,(t) - f,(t), we have
|pr (@)<r+dr o)
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So by mean value inquality for >0, we have
() =r O <, (r+ e ()]
But |f (u)|<]f (u) - £ (0)]+]£ (0)]
Hence for each 4 in [0,¢], we have
|£(6)= 1 @< (r+d O+ | ()~ £ (O

Putting |[(¢)— £(0)| =Ah(¢) and r+c|| £ (0)|=b,

Then (2) reduces to

h(t)<bt+c| h(u)du

and therefore by Lemma 2, we have

h(t)< b

2(6” -1) for tel

Rewriting the values of /() and p, we have

- rioj <" VO e
Hence

lr@)<lr @) -r )+ (o)

A0

= (e =D+ )"

c

Hence again rewriting the values of f'(¢) and », we have

n+n

1£1(0) = £ === (e = 1) +|£i(s) - £(s)

C

If x, = f,(s) and x, = f,(s) be their initial values at s €/ . Then for all 7 €/ , we have

(n+n)

Hfl (0)-1x (t)H = (ec‘H‘ B 1) +[x, = x| e

C
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Now we shall make use of the fundamental lemma in proving the following theorems

Theorem 4 : (Uniqueness Theorem)

Let I be an interval in R, W a subset of a Banach space X over K and let g:/xW — X be a

continuous function c-Lipsehitz in x € X , If there are two exact solutions, f, and f, : [ — X ofthe

d.
differential equation d—)th g(,x) andif fi(s) = f,(s) for s el , thenthe functions f, and f, are identical

m the interval I.

Proof : Putting f,(s)=f,(s), ,=0,, =0 in the inquelity of the fundamental lemma, we have

1)~ £u(e)] = 0 for r el
:fl :fz

Hence the theorem.

Theorem 5 (Existence Theorem)

Let I be a closed interval in R, W be a closed set in a Banach space x and g : I/ xW — X be

a continuous function whichis c-Lipschitzin x € X . Let (s,x,) €/ x W, forgiven >0,let f:7— X be

dx
an r-approximate solution of the differential equation 7 =g (l‘ , X ) such that 1 (s) = x, , then there exists in

Ianexact solution ¢:/ — X ofthe differential equation such that ¢(s)=x, .

Proof : Let {r, } bea decrearing squence of positive real numbers such that ll_{g 1, =0 Foreach neN,

let f, :/— X bean r, —approximate solutionsuch that f, (s) = x, . By the fundamental lemma, we have

+
S (l‘)—fp(l‘)HS . (eC(H) - 1) forall r el .
c
ec(t—s) —1
Let ——<m forall ¢ €/. Then
c

1,0 =1, <, 1, )m
and thus { 1} isa cauchy squance. Therefore the squence { f, } has a limit.

Let ll_{gf » =9 then ¢ isa continuous function 7 — X .

Since (t, f,(¢)) € Ix U forall neN all t € and since Uisaclosed set in X, therefore (¢, ¢(¢)) eI xU
forall el .

Also each f, isan r, -approximate solution, therefore
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and so by the mean value inquality, we have

t—s|

£.(8)=x, _J: g(U,f,,(u))du

<r,

since li_{gfn(t): #(7)

and lim J:) g(u £, (u))du = J‘: glu,¢(u))du

n—o0

Therefore in the limit 7 — oo, the above inquality reduces to
¢(t) =X, + I: g(u, ¢(u))du

Which gives ¢'(¢) = g(t,¢(t))

Hence ¢ is an exact solution of the differential equation with ¢(s)= £, (s) = x,.

12.5 Locally Lipschitz

Let I be an interval in R, W be a subset of a real Banach space x . A function g:/ xW — X is
locally Lipschitz if for each point (z,,x,) €I x W, there exists a neighbourhood J xV of (z,,x,) €I x W
and ¢>0 such that

Hg(t,xl) - g(z‘,x2 )H < c||)c1 - x2||
foreach teJ and x,x, €/ .

In other words g is locally Lipschitz, if the restriction of g to J xV isc-Lipschitzin x € X .
Theorem 6 (Global Uniqueness Theorem) :

Let I be an interval in R, W be a subset of a Banach space x and g:/xW — X be alocally

Lipschitz function. If there are two exact solutions f, and f, : /— X of the differential equation

dx

7 =g(t,x ) and ifthey are equal for one value t_ ¢ 7 , then they are identical in the entire I.

Proof : Let J be a subset of I given by

J{t el fi(0)= £:(0)}
Now we shall establish that the set J is simultaneously open and closed in 1.

Since the function f, — f, is continuous, therefore J is a closed set.

Now let f,(z,) = 15(,) =x,
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Since g is locally Lipschitz, there exists a neigbhbourhood N of (¢,,x, ) in I x W as well as a real

number k£ >0 such that g is k-Lipschitz in N. Let >0 be such that # €/ and |t - t0| <a imply that
(t,fl(t)) and (t,fz(t)) are in N. Then the uniqueness theorem 4 yields f,(¢)=/,(¢) for all

teIN[t,—a,t,+a]. This shows that J is open in 1.

Since I is connected set and J is both open and a closed set in I, the theorem is proved.

Theorem 7 : Let I be an open interval of R, let W be an open subset ofa real Banach space X, let g be
a continuous map of / x W into x such that there esixts two real numbers p and ¢ both greater than 0,

sup(|[g(t,x)|:(.x) e I x W) <b

and g is ¢ — Lipschitz on W uniformly with respect to all compact subsets of I. Let (¢, x,) be any point
of I xW and letr be a real number such that 0<r <1 and the closed ball B(x,,2r)c W . Let abe areal

number such that 0<a <r / bc and theinterval J={¢, —a,t,+a}tc1.

Then for each x eB(x,,r), there exists a unique map 4, :J— B(x,,2r) such that #_is an

integral solution for g at (¢,,x) . Moreover the map
f:JIxB(xy,r)—> B(x,,2r), f(¢,x) = h(t) isacontinuous local flow at (¢,,x,) forg.

Furthermore, there is a positive real number e such that the function x — % _ is a e-Lipschitz on

B(x,.r).

Proof : Let x € B(x,,2r) and H_ be the set of all continuous functions 4:J— B (x,,2r) such that
h(t,)=x.Then H_isaclosed subset of the complete metric space Z ofall continuous functions of J into

B (x,,2r) with the topology of uniform convergence onJand so H_ isitselfis a complex subspace of Z.

Let e_be the functionon H_ suchthatforall 7 H andall t €J
(ex (h))(t) =x+ Jto g(s,h(s))ds ,

thenforall s ¢ J, (ex (h))(t) e B(x,,2r) andso e (h) isa continuous map ofJinto B(x,,2r).

Since (e, (1))(t,) = x, e, isamap of H, into itselffor each 4, and 4, in H,_,we have

ex(hl)—ex(hz)u <rl, —h| (1)

therefore by Banach fixed point theorem, there is a unique /#_ € H_ such that

h(0)=(e,(r))(0)=x + [ g(si(s))ds

foreach reJ and £ (#,)=x andso h,_ isanintegral solution for g at (¢,x).
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It also follows that f* isalocal flow for g at (¢,,x,).

To prove the last part of the theorem, let x and y be any two points of B (x,,7). Then
[ =e,(h)|=[e.(h.) = e, ()]

=sup{|(e, (n.))(¢) = (e, (1))} €7}

=[x -] - (2)

Hence

e,(h)-e,(e,(h))|<r]n —e,(n)] {ov (1)}

=) {by(2)}

therefore for any natural number n

He’; (h,)—er"(h, )H <r'|x-y| ..(3)

[ e ()| <l = e, ()] e, () = € (1 )]+
+en(n) = (m,)]

S(1+r+....+r”)||x —y|| {by(2)and (3)}

< Jx— @
L

Again for any natural number n

et ()=, = ler(h,)=e;(n,)

<rh. -1
therefore

limfer ()~ =0 [0<r<1]

= lime{(h,) = h, (5)
Consequently
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h, —h,|=1im

n—>0

hx _ en+l(hx)

y

{by (5)}
< (b @)}

— 1
and so the map x — h_is e-Lipschitzon B(x,,r), where €= 1, - Now the map x — A_is e-Lipschitz

implies that it is continuous and that f* is continuous.

12.6 Maximal Intergal Solution

Let I be an open interval of R, let W be an open subset of a real Banach space X, and let gbe a
continuous map of / xW into x suchthat g is c-Lipschitz on p uniformly with respect to all compact

subsets of I, where ¢ is a positive real number. Let (7,,x,) be any point of 7 x W, and F be the set of all
integral solutions for g at (7,,x,) with open domains. If f, and f, are any two members of F then by

Remark 1, f, and f, coincideon D, (f,)ND,(f,).Let f be the unionofallmembers of f and j be
the union of domains of the members of £ . Then Jis an open interval ofl and f* is an integral solution for

gat (1,,x,), called the maximal integral solution for g at (7,,x,) .

Theorem 8 : Let (a,b) be an open interval of R, let W be an open subset ofa real Banach space X and
let g be a continuous map of (a,b) x W into x such that g is c-Lipschitz on W uniformly with respect to
(a,b).Let f be the maximal integral solution for g at a point (z,,x,) of (a,b) x W with domain (a',')
such that there exists a positive real number » with the property that (a',a'+r) and (b'=r,b") are con-

tained in (a,b) , the closures of fI[(a' ,a'+r)]l and ﬁ[(b'—r,b‘)]l are contained in W, and there is a positive

real number m such that
(e £ (1)) <m
forall 7 €(a',b') . Then a'=a and b'=b

Proof : Since /" is the maximal integral solution for g at (7., x, ) , therefore by theorem 1 for each 7 €(a',5'),

we have
f(t) =X, + J:) g(s,f(s))ds

and |[£(1,)— £ (t,)|<m|(t, - 1,)| forall 1,,t, e(a',b")
Hence tlgglf () and }l_f?f (£) exist and belong to W.

If possible, suppose that a'#a . Then by theorem 7, there is an integral solution /"' for g at
(a',}i_}ngf (¢ )) .So Df'=Df on (a',a'+t), where ' is a positive real number and so '/ is constant
on (a',a'+t).
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Now lim /() =lim 1 (1)

t—a'
therefore f/'—f =0 on (a',a'+1).
This shows that fdefined on (a',5") is not a maximal integral solution for g at (¢,,x, ), whichis a
contradiction to the given condition.

Hence a'=a . Similarly, we can show that b'=b.

Self-Learning Exercise

1. Write whether the following statements are true or false.
(@) Theorem under which an initial value problems of the form
dy

e =f (X ) y), y (Xo) = Y, has at least one solution is called uniqueness theorem.

(b) If f, and f, be two integral solutions for a continuous map g : / x W — X atapoint

(t,x,) € x W with open domains 7, and I, respectively. Then £, and f, coincide on
1 UL,
(c)  Afunction g : I xW — X is locally lipschitz if for each point (z,,x,) € I x W, there

existsa nbd Jxy of (¢,,x,) and ¢ > ( such that

Hg(t,xl)—g(t,xz)u sc ”xl —x2||

foreach s ¢ and x,,x, €V .

12.7 Summary

In this unit, we have seen that a fundamental lemma compares two approximate solutions ofa

differential equation. We also see that a local flow always exists if a continuous map g : I/ xW — X
satisties Lipschitz condition.

12.8 Answers to Self-Learning Exercise

1. (a) False (b) False (c) True

12.9 Exercises

I. Let 7 be anintervalin g, j asubset of Banachspace x andlet g: I xW — X bea

continuous function ¢ -Lipschitzin y ¢ x . Ifthere are two exact solutions f, and f, : [ > X
dx

of the differential equation 5 g(t,x) andif fi(ty)=1>(8) » t, €I thenthe function £, and

f, areidentical in the interval j .

2. Let g(¢,x) beareal valued continuous function defined inthe set || < a , [x| <b in g2, such that

g(#,x)<0 for £,x>0 and g(z,x)>0 for #,x <0.Show that x — ¢ is the unique solution of

d
the differential equation d—); = g(#,x) definedina ypq of ¢ and such that x(0)=0.

RN
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