## Vardhaman Mahaveer Open University, Kota

## Analysis and Advanced Calculus

## Vardhaman Mahaveer Open University, Kota

Analysis and Advanced Calculus

| Unit No. | Unit Name | Page No. |
| :--- | :--- | ---: |
| Unit - 1 | Normed Linear Spaces | $1-23$ |
| Unit - 2 | Bounded Linear Transformations | $24-44$ |
| Unit - 3 | Fundamental Theorems of Functional Analysis | $45-60$ |
| Unit - 4 | Continuous Linear Functionals | $61-73$ |
| Unit -5 | Hilbert Space and Its Basic Properties | $\mathbf{7 4 - 9 0}$ |
| Unit - 6 | Orthogonality and Functionals in Hilbert Space | $\mathbf{9 1 - 1 1 4}$ |
| Unit - 7 | Operators on Hilbert Spaces | $115-133$ |
| Unit - 8 | Projections on a Hilbert Space and Spectral Theory | $134-150$ |
| Unit -9 | The Derivative | $151-163$ |
| Unit - 10 | Higher Derivatives | $164-182$ |
| Unit - 11 | The Integral in a Banach Space | $183-195$ |
| Unit - 12 | Differential Equations | $196-206$ |

## Course Development Committee

Chairman
Prof. (Dr.) Naresh Dadhich
Vice-Chancellor
Vardhaman Mahaveer Open University, Kota

| Co-ordinator/Convener and Members |  |
| :--- | :--- |
| Subject Convener | Co-ordinator |
| Prof. D.S. Chauhan | Dr. Anuradha Sharma |
| Department of Mathematics | Assistant Professor |
| University of Rajasthan, Jaipur | Department of Botany, V.M.O.U., Kota |
| Members : |  |

1. Prof. V.P. Saxena
Ex Vice-Chancellor
Jiwaji University,
Gwalior (MP)
2. Prof. S.C. Rajvanshi

Department of Mathematics Institute of Eng. \& Tech. Bhaddal, Ropar (Punjab)
3. Prof. P.K. Banerjee

Emeritus Fellow (UGC)
Department of Mathematics
J.N.V. University, Jodhpur
4. Prof. S.P. Goyal

Emeritus Scientist (CSIR)
Department of Mathematics
University of Rajasthan, Jaipur
5. Dr. A.K. Mathur

Associate Prof. (Retired)
Department of Mathematics
University of Rajasthan, Jaipur
6. Dr. K.N. Singh

Associate Prof. (Retired)
Department of Mathematics
University of Rajasthan, Jaipur
7. Dr. Paresh Vyas

Assistant Professor
Department of Mathematics
University of Rajasthan, Jaipur
8. Dr. Vimlesh Soni

Lecturer
Department of Mathematics Govt. PG College, Kota (Raj.)
9. Dr. K.K. Mishra

Lecturer
Department of Mathematics
M.S.J. College, Bharatpur (Raj.)

## 10. Dr. K.S. Shekhawat

Lecturer, Department of Mathematics
Govt. Shri Kalyan College, Sikar (Raj.)

## Editing and Course Writing

## Editor

## Prof. D.S. Chauhan

Department of Mathematics
University of Rajasthan, Jaipur

## Writers

1. Dr. A.K. Goyal

Department of Mathematics
M.S.J. College, Bharatpur

## 3. Dr. Keshav Sharma

Department of Mathematics
R.R. Government College, Alwar
2. Prof. S.P. Goyal

Emeritus Scientist (CSIR)
Department of Mathematics
University of Rajasthan, Jaipur

## Academic and Administrative Management

| Prof. (Dr.) Naresh Dadhich | Prof. B.K. Sharma <br> Vice-Chancellor | Mr. Yogendra Goyal |
| :---: | :---: | :---: |
| Director (Academic) |  |  |
| Vardhaman Mahveer Open University, | Vardhaman Mahveer Open University, | Material Production and |
| Kota | Kota | Distribution Department |

## Course Material Production

## Mr. Yogendra Goyal

Assistant Production Officer
Vardhaman Mahaveer Open University, Kota

## PREFACE

The present book entitled "Analysis and Advanced Calculus" has been designed so as to cover the unit-wise syllabus of MA/MSc MT-06 course for M.A./ M.Sc. Mathematics (Final) students of Vardhaman Mahaveer Open University, Kota. It can also be used for competitive examinations. The basic principles and theory have been explained in a simple, concise and lucid manner. Adequate number of illustrative examples and exercises have also been included to enable the students to grasp the subject easily. The units have been written by various experts in the field. The unit writers have consulted various standard books on the subject and they are thankful to the authors of these reference books.

## Unit-1

## Normed Linear Spaces

## Structure of the Unit

### 1.0 Objectives

1.1 Introduction
1.2 Linear (Vector) Spaces
1.3 Basic Concepts of Norm and Normed Spaces
1.3.1 Norm and Normed Spaces
1.3.2 Convergence in Normed Linear Spaces
1.3.3 Summability in Normed Linear Spaces
1.3.4 Continuity in Normed Linear Spaces
1.3.5 Allied Spaces to Normed Linear Spaces
1.4 Theorems on Normed Spaces
1.5 Factor (Quotient) Spaces
1.6 Examples ofBanach Spaces
1.7 Summary
1.8 Answers to Self-Learning Exercise

### 1.9 Exercises

### 1.0 Objectives

In this unit, we introduce the concept of a norm over a linear space. A Banach space is a normed linear space which is complete metric space. The theory of normed linear spaces and Banach spaces, and the theory of linear operators defined on them are the fundamental of functional analysis. In this unit, we discuss basic propeties of normed linear spaces and Banach spaces and give some examples of these spaces.

### 1.1 Introduction

Usefull and important spaces are obtained if we take a linear space and define on it a metric by means of a norm. The resulting space is called a normed linear space. Normed spaces and metric spaces are special enough to provide a basis for a rich theory in functional analysis.

### 1.2 Linear (Vector) Spaces

A linear space (or vector spaces) is an additive abelian group $L$ (whose elements are called vectors) with the property that any scalar $\alpha$ and any vector $x$ can be combined by an operation called scalar multiplication to yield a vector $\alpha x$ in such a manner that
(i) $\alpha(x+y)=\alpha x+\alpha y$;
(ii) $(\alpha+\beta) x=\alpha x+\beta x$;
(iii) $\quad(\alpha \beta) x=\alpha(\beta x)$;
(iv) $\quad$ 1. $x=x$

A linear space is thus an additive abelian group whose elements can be multiplied by numbers in a reasonable way. The two primary operations in a linear space-vector addition and scalar multiplication are called the linear operations.

A linear space is called a real linear space or a complex linear space according as the scalars are the real numbers or the complex number.

### 1.3 Basic Concepts of Norm and Normed Spaces

### 1.3.1 Norm and Normed Space :

If $N$ be a real or complex linear (vector) space and $\|$. $\|$ be a function from $N$ into $R$ (set of reals) i.e. $\|\|:. N \rightarrow R$ or $x \rightarrow\|x\|$ with $x \in N$,
then the non-negative real number $\|x\|$ regarded as the length of the vector $x$ and said to be the Norm on $N$ and the pair $(N,\|\cdot\|)$ is called as Normed linear space, provided for all $x, y \in N$ and all $\alpha \in R$ (or C), the following axioms are satisfied :

$$
\begin{aligned}
& N_{1}:\|x\| \geq 0, \quad \text { if } x \neq 0 \\
& N_{2}:\|x\|=0 \Leftrightarrow x=0 \\
& N_{3}:\|x+y\| \leq\|x\|+\|y\| \\
& N_{4}:\|\alpha x\|=|\alpha|\|x\|
\end{aligned}
$$

The function $\|\cdot\|$ becomes a semi-norm and the corresponding space becomes semi-normed linear space if $N_{2}$ is replaced by

$$
N_{2}(p): x=0 \Rightarrow\|x\|=0
$$

Example: The metric space induced by the metric $d(x, y)=\|x-y\|$ is a normed linear space.

### 1.3.2 Convergence in Normed Linear Space

Definition : A sequence $<x_{n}>$ in $N$ i.e., normed linear space $(N,\|\cdot\|)$ is said to converge to an element $x_{0} \in N$ if given arbitrary $\in>0, \exists$ a positive number (integer) $n_{0}$ s.t

$$
n \geq n_{0} \Rightarrow\left\|x_{n}-x_{0}\right\|<\epsilon
$$

and we write $\lim _{n \rightarrow \infty} x_{n}=x_{0}$ or $x_{n} \rightarrow x_{0}$ as $n \rightarrow \infty$ i.e.,
Thus $x_{n} \rightarrow x_{0}$ iff $\left\|x_{n}-x_{0}\right\| \rightarrow 0$.
Definition : A sequence $<x_{n}>$ in $N$ is said to be a Cauchy sequence if given $\in>0 \exists$ a positive integer $n_{0}$ such that

$$
m, n \geq n_{0} \Rightarrow\left\|x_{m}-x_{n}\right\|<\in
$$

Definition : A sequence $<x_{n}>$ in $N$ is said to be bounded if $\exists$ a real constant $K>0$ s.t. $\left\|x_{n}\right\| \leq K$ for all $n$.

Definition : If every Cauchy sequence $\left\langle x_{n}>\right.$ in $N$ is convergent i.e. if $\forall$ Cauchy sequence $<x_{n}>$ in $N \exists$ an element $x_{0} \in N$ s.t. $x_{n} \rightarrow x_{0}$, then the normed linear space is said to be complete.

### 1.3.3 Summability in Normed Linear Spaces

A series $\sum f_{n}$ of functions in a normed linear space $N$ is summable to a sum ${ }_{s}$ in $N$, if the sequence of partial sums of the series converges, s.t.

$$
\left\|s-\sum_{i=1}^{n} f_{i}\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

$$
\text { i.e. } \quad s=\sum_{i=1}^{\infty} f_{i}
$$

The series $\sum f_{n}$ is asbolutely summable if $\sum_{i=1}^{\infty}\left\|f_{n}\right\|<\infty$

### 1.3.4 Continuity in Normed Linear Space

If $N, M$ be two normed linear spaces, then a function $f: N \rightarrow M$ is continuous at $x_{0} \in N$ iff $\forall \in>0, \exists$ a $\delta>0$ s.t.

$$
\left\|x-x_{0}\right\|<\delta \Rightarrow\left\|f(x)-f\left(x_{0}\right)\right\|<\in
$$

The function $f$ is continuous on $N$ iff $f$ is continuous at each point of $N$.
In other words, $f: N \rightarrow M$ is continuous at $x_{0} \in N$ iff $\forall$ sequence $<x_{n}>$ in $N$ converging to $x_{0} \in N$, the sequence $<f\left(x_{n}\right)>$ in $M$ converges to $f\left(x_{0}\right) \in M$ i.e., iff $x_{n} \rightarrow x_{0} \Rightarrow f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$.

In case of three topological spaces $X, Y, Z$ the continuous function $f: X \times Y \xrightarrow{\text { into }} Z$ is jointly continuous in $x$ and $y$ if $f(x, y)=z$. In other words, if

$$
f\left(x_{n}, y_{n}\right) \rightarrow f(x, y) \text { whenever } x_{n} \rightarrow x, y_{n} \rightarrow y \text { as } n \rightarrow \infty .
$$

### 1.3.5 Allied Spaces to Normed Linear Spaces

Banach Space : A complete normed linear space is known as a Banach space.
Function Space: A function space is the metric space which is linear space with elements as functions defined as $X(\neq \phi)$ with addition and multiplication, i.e., $f: X \rightarrow R:(f+g)(x)=f(x)+g(x)$ and $(\alpha f)(x)=\alpha f(x)$.
$\boldsymbol{n}$-Dimensional Enclidean Space: If $R^{n}$ be a set of all ordered $n$-tuples $x=\left(x_{1}, x_{2}, \ldots . . x_{n}\right)$ of real
numbers, s.t. $R^{n}$ is a real linear space with additive and multiplicative operations such as
$x+y=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right) \quad$ where $\quad y=\left(y_{1}, y_{2}, \ldots \ldots, y_{n}\right) \quad$ and $\alpha x=\left(\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{n}\right)$ so that $\mathbf{0}=(0,0, \ldots ., 0)$ and $-x=\left(-x_{1},-x_{2}, \ldots,-x_{n}\right)$ etc.
then $R^{n}$ is a $\boldsymbol{n}$-dimensional space. We can regard $R^{n}$ as composed of real functions $f$ defined on $(1,2, \ldots \ldots, n)$ s.t. $\|f\|=\left[\sum_{i=1}^{n}|f(i)|^{2}\right]^{1 / 2}$ known as Euclidean norm, then normed linear space $R^{n}$ is called $n$-dimensional Euclidern space.
$\boldsymbol{n}$-Dimensional Unitary Space: The set $C^{n}$ of all $n$-tuples $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ of complex numbers constitutes a complex Banach space w.r.t. operations of addition and scalar multiplication and the norm given by

$$
\|z\|=\left[\sum_{i=1}^{n}\left|z_{i}\right|^{2}\right]^{1 / 2}
$$

It is known as an n-dimensional unitary space.

### 1.4 Theorems on Normed Spaces

Theorem 1: If $N$ be a normed linear space and $x, y \in N$, then

$$
|\|x\|-\|y\|| \leq\|x-y\|
$$

Proof: We can write

$$
\begin{align*}
& \qquad \begin{array}{l}
\|x\|=\|(x-y)+y\| \leq\|x-y\|+\|y\| \quad \text { by } N_{3} \\
\text { giving } \quad\|x\|-\|y\| \leq\|x-y\|
\end{array} \\
& \text { and } \quad\|y\|=\|(y-x)+x\| \leq\|y-x\|+\|x\| \text {, giving }  \tag{1}\\
& \qquad \begin{aligned}
\|y\|-\|x\| \leq\|y-x\| & =\|-(x-y)\| \\
& =\mid-1\|x-y\| \quad \text { by } N_{4} \\
& =\|x-y\|
\end{aligned} \\
& \text { or } \quad\|y\|-\|x\| \leq\|x-y\| \\
& \therefore \text { (1) and (2) } \Rightarrow \mid\|x\|-\|y\|\|\leq\| x-y \| .
\end{align*}
$$

Theorem 2 : Every normed linear space is a metric space.
Proof: Let $N$ be a normed linear space and let

$$
d: N \times N \rightarrow R \text { defined by } d(x, y)=\|x-y\| .
$$

$$
\begin{align*}
& \left.\left[M_{1}\right] x, y \in N \Rightarrow x-y \in N \Rightarrow\|(x-y)\| \geq 0 \quad \text { (by } N_{1}\right) \\
& \Rightarrow d(x, y) \geq 0 \\
& {\left[M_{2}\right] d(x, y)=0 \Leftrightarrow\|x-y\|=0} \\
& \Leftrightarrow x-y=0  \tag{2}\\
& \Leftrightarrow x=y \\
& {\left[M_{3}\right] d(x, y)=\|x-y\|=\|(-1)(y-x)\|} \\
& =|-1|\|y-x\| \quad\left(\text { by } N_{4}\right)  \tag{4}\\
& =\|y-x\|=d(y, x) \\
& {\left[M_{4}\right] d(x, y)=\|x-y\|=\|x-z+z-y\|} \\
& \leq\|x-z\|+\|z-y\| \quad\left(\text { by } N_{3}\right) \\
& =d(x, z)+d(z, y) \\
& \left(\text { y } \mathrm{N}_{3}\right. \text { ) }
\end{align*}
$$

It follows that $d$ is a metric and hence $N$ is a metric space.
Theorem 3: If $N$ be a normed linear space with the norm $\|$.$\| , then the mapping f: N \rightarrow R$ s.t. $f(x)=\|x\|$ is continuous. In other words, the norm $\|\cdot\|$ on $N$ is a continuous function.

Proof: Taking a sequence $<x_{n}>$ in $N$ s.t. $x_{n} \rightarrow x \in N$, as $n \rightarrow \infty$, we have by Theorem 1,

$$
\begin{aligned}
& \quad\left|f\left(x_{n}\right)-f(x)\right|=\left|\left\|x_{n}\right\|-\|x\|\right| \\
& \leq\left\|x_{n}-x\right\| \rightarrow 0 \text { as } \quad n \rightarrow \infty \\
& \therefore \quad f\left(x_{n}\right) \rightarrow f(x) \text { as } n \rightarrow \infty \Rightarrow f \text { is continuous. }
\end{aligned}
$$

Theorem 4 : Every convergent sequence in a normed linear space is a Cauchy sequence.
Proof: Assuming that a sequence $<x_{n}>$ in a normed linear space $N$ converges to $x_{0} \in N$. We claim that $\left\langle x_{n}\right\rangle$ is a Cauchy sequence.

Given $\in>0$, and the sequence $\left\langle x_{n}>\rightarrow x_{0}, \exists\right.$ a positive integer $n_{0}$ s.t.

$$
n \geq n_{0} \Rightarrow\left\|x_{n}-x_{0}\right\|<\frac{\in}{2}
$$

so that for all $m, n>n_{0}$, we have

$$
\left\|x_{m}-x_{n}\right\|=\left\|x_{m}-x_{0}+x_{0}-x_{n}\right\|
$$

$$
\begin{aligned}
& \leq\left\|x_{m}-x_{0}\right\|+\left\|x_{0}-x_{n}\right\| \quad \text { by } N_{3} . \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

i.e., $\left\|x_{m}-x_{n}\right\|<\epsilon \Rightarrow$ the sequence $<x_{n}>$ is a Cauchy sequence.

Note : Its converse is not true, i.e., every Cauchy sequence (particularly in a metric space) is not convergent.

Consider a metric $d(x, y)=|x-y|$ in a space $X=(0,1)$. Then the sequence $<x_{n}>=\left\langle\frac{1}{n}\right\rangle \in X$, is clearly a Cauchy sequence, since $d(x, y)=\left|x_{n}-x_{m}\right|=\left|\frac{1}{n}-\frac{1}{m}\right| \rightarrow 0$ as $m, n \rightarrow \infty$, but $d\left(\frac{1}{n}, 0\right)=\left|\frac{1}{n}\right| \rightarrow 0$ as $n \rightarrow \infty$ with $0 \notin X$ shows that $<x_{n}>$ in $X$ is not necessarily a convergent sequence.

Theorem 5 : The limit of a convergent sequence is unique.
Proof : Consider a convergent sequence $\left\langle x_{n}\right\rangle$ in a normed linear space $N$, converging to two limits $x, y$ s.t. $x \neq y$ i.e., $\left.<x_{n}\right\rangle \rightarrow x$ as well as $<x_{n}>\rightarrow y$. Then $\left\|x_{n}-x\right\| \rightarrow 0$ and $\left\|x_{n}-y\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Now $\quad\|x-y\|=\left\|x-x_{n}+x_{n}-y\right\|$

$$
\begin{array}{cc}
\leq\left\|x-x_{n}\right\|+\left\|x_{n}-y\right\| & \text { by } N_{3} \\
\leq \mid-1\left\|x_{n}-x\right\|+\left\|x_{n}-y\right\| & \text { by } N_{4} \\
\leq 0 \text { by }(1) \text { as } n \rightarrow \infty & \\
\therefore \quad\|x-y\|=0 \Rightarrow x-y=0 & \text { by } N_{2} \\
& \Rightarrow x=y \text { i.e., the limit of }<x_{n}>\text { in } N \text { is unique. }
\end{array}
$$

Lemma 6: If $p>1$ and $\frac{1}{p}+\frac{1}{q}=1$, then $a, b \geq 0 \Rightarrow a^{1 / p} b^{1 / q} \leq \frac{a}{p}+\frac{b}{q}$, where the sign of equality holds iff $a^{p}=b^{q}$.

Proof : For $a=0$ or $b=0$, the result is obvious. Therefore taking $a>0, b>0$ and $k \in(0,1)$, i.e., $0<k<1$, set a function

$$
\begin{equation*}
f(t)=1-k+k t-t^{k} \text { for } t \geq 0 \tag{1}
\end{equation*}
$$

and $\quad k=\frac{1}{p}, t=\frac{a}{b}$

$$
\begin{equation*}
f(t)=k(t-1)-t^{k}+1 \Rightarrow f(1)=0 \tag{2}
\end{equation*}
$$

$$
f^{\prime}(t)=k-k t^{k-1}=k\left(1-t^{k-1}\right)
$$

so that $f^{\prime}(t)<0$, for $0<t<1$

$$
f^{\prime}(t)>0, \quad t>1
$$

For $0<t<1$ and some $c$ s.t. $t<c<1$, the mean value theorem of differential calculus yeilds

$$
\begin{align*}
& \frac{f(1)-f(t)}{1-t}=f^{\prime}(c) \Rightarrow f(1)-f(t)=f^{\prime}(c)(1-t)<0 \text { for } 1-t>0 \text { and } f^{\prime}(c)<0 \\
& \Rightarrow f(t)>f(1) \tag{3}
\end{align*}
$$

for $t>1$ and some $d$ s.t., $1<d<t$, the mean value theorem gives

$$
\begin{align*}
\frac{f(t)-f(1)}{t-1}=f^{\prime}(d) & \Rightarrow f(t)-f(1)=(t-1) f^{\prime}(d)>0 \text { for } t>1 \text { and } f^{\prime}(d)>0 \\
& \Rightarrow f(t)>f(1) \tag{4}
\end{align*}
$$

Thus (3) and (4) $\Rightarrow f(t)>f(1)$ either $t<1$ or $t>1$ but $t \neq 1$
and $\quad f(t)=k(t-1)-t^{k}+1 \Rightarrow f(t)=0$ for $t=1$
Also (2) and (5) $\Rightarrow f(t)>0$ for $t \neq 1$
$\therefore$ (6) and (7) $\Rightarrow f(t) \geq 0$ for $t \geq 0$

$$
\begin{align*}
& \Rightarrow(1-k)+k t-t^{k} \geq 0 \\
& \Rightarrow t^{k} \leq k t+(1-k) \text { for } t \geq 0 \tag{8}
\end{align*}
$$

$$
\Rightarrow\left(\frac{a}{b}\right)^{1 / p} \leq \frac{1}{p} \frac{a}{b}+1-\frac{1}{p}
$$

$$
\Rightarrow b\left(\frac{a}{b}\right)^{1 / p} \leq \frac{a}{p}+b\left(1-\frac{1}{p}\right)
$$

$$
\begin{equation*}
\Rightarrow a^{1 / p} b^{1 / q} \leq \frac{a}{p}+\frac{b}{q} \text { as } 1-\frac{1}{p}=\frac{1}{q} \tag{9}
\end{equation*}
$$

Corollary : If we set $t=a^{p} b^{-q}$ in (8), other assumptions being the same, then we get

$$
\left(a^{p} b^{-q}\right)^{\frac{1}{p}} \leq \frac{1}{p} a^{p} b^{-q}+1-\frac{1}{p}
$$

or $\quad a b^{-\frac{q}{p}} \leq \frac{1}{p} a^{p} b^{-q}+\frac{1}{q} \quad$ as $\frac{1}{p}+\frac{1}{q}=1$
Multiplying both sides by $b^{q}$, this reduces to

$$
\begin{align*}
& a b^{q(1-1 / p)} \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} \\
& \text { or } \quad a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} \tag{10}
\end{align*}
$$

Now to show that the sign of equality holds iff $a^{p}=b^{q}$, we have

$$
\begin{aligned}
& \quad a^{p}=b^{q} \Rightarrow a^{\frac{1}{p}}=b^{\frac{1}{q}} \Rightarrow a^{\left(1-\frac{1}{p}\right)}=b^{\frac{1}{p}} \text { as } \frac{1}{q}=1-\frac{1}{p} \\
& \text { or } \quad a \cdot a^{-\frac{1}{p}}=b^{\frac{1}{p}} \Rightarrow a=(a b)^{\frac{1}{p}} \Rightarrow a^{p}=a b
\end{aligned}
$$

Similarly $b^{q}=a b$
$\therefore \quad \frac{a^{p}}{p}+\frac{b^{q}}{q}=\frac{a b}{p}+\frac{a b}{q}=a b\left(\frac{1}{p}+\frac{1}{q}\right)=a b \quad$ as $\frac{1}{p}+\frac{1}{q}=1$
i.e. $a b=\frac{a^{p}}{p}+\frac{b^{q}}{q}$,
which follows that the sign of equality holds if $a^{p}=b^{q}$

## Theorem 7 [Holder's Inequality] :

If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be two $n-$ tuples of scalars (real or complex), then under the norm

$$
\begin{aligned}
& \|x\|_{p}=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{1 / p}\left[\sum_{i=1}^{n}\left|y_{i}\right|^{p}\right]^{1 / q}, \text { we have the inequality } \\
& \begin{aligned}
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| & \leq\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{1 / p}\left[\sum_{i=1}^{n}\left|y_{i}\right|^{p}\right]^{1 / q} \\
& =\|x\|_{p}\|y\|_{q}
\end{aligned}
\end{aligned}
$$

where $1<p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$.
Proof: For $x=0, y=0$, the result is obvious. We therefore consider the case when $x \neq 0, y \neq 0$.

The inequality (10) of Lemma 6 for $a_{i} \geq 0, b_{i} \geq 0$ yields

$$
\begin{equation*}
a_{i} b_{i} \leq \frac{a_{i}^{p}}{p}+\frac{b_{i}^{q}}{q} \tag{1}
\end{equation*}
$$

Setting $a_{i}=\frac{\left|x_{i}\right|}{\|x\|_{p}}$ and $b_{i}=\frac{\left|y_{i}\right|}{\|y\|_{q}}$, (1) reduces to

$$
\frac{\left|x_{i}\right|}{\|x\|_{p}} \frac{\left|y_{i}\right|}{\|y\|_{q}} \leq \frac{1}{p} \frac{\left|x_{i}\right|^{p}}{\|x\|_{p}^{p}}+\frac{1}{q} \frac{\left|y_{i}\right|^{q}}{\|y\|_{q}^{q}}
$$

summing over $i$ from 1 to $n$, we find

$$
\left.\begin{array}{l}
\begin{array}{rl}
\frac{1}{\|x\|_{p}\|y\|_{q}} \sum_{i=1}^{n}\left|x_{i} \| y_{i}\right| \leq & \frac{1}{p\|x\|_{p}^{p}} \sum_{i=1}^{n}\left|x_{i}\right|^{p}+\frac{1}{q\|y\|_{q}^{q}} \sum_{i=1}^{n}\left|y_{i}\right|^{q} \\
= & \frac{1}{p\|x\|_{p}^{p}}\|x\|_{p}^{p}+\frac{1}{q\|y\|_{q}^{q}}\|y\|_{q}^{q}
\end{array} \\
\\
=\frac{1}{p}+\frac{1}{q}=1 \quad\left\{a s\|x\|_{p}=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{1 / p} \Rightarrow\|x\|_{p}^{p}=\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right\}
\end{array}\right\}
$$

Note: The theorem is also true for sequance $x=<x_{n}>, y=<y_{n}>$ s.t.

$$
\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}<\infty, \quad \sum_{n=1}^{\infty}\left|y_{n}\right|^{p}<\infty \text { for } p \geq 1
$$

Corollary: For $p=2, q=2$ the inequality (2) reduces to

$$
\begin{align*}
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| & \leq\left\{\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right\}^{1 / 2}\left\{\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right\}^{1 / 2} \\
& =\|x\|_{2}\|y\|_{2} \tag{3}
\end{align*}
$$

Theorem 8 [Minkowski's Inequality] :
If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be two $n-$ tuples of realor complex numbers, then
under the norm

$$
\|x\|_{p}=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{1 / p}, \quad p \geq 1
$$

We have the inequality

$$
\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}
$$

i.e., $\quad\left[\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}\right]^{1 / p} \leq\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{1 / p}+\left[\sum_{i=1}^{n}\left|y_{i}\right|^{p}\right]^{1 / p}$
where $1<p<\infty$.
Proof : For $p=1,\|x\|_{p}=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right] \Rightarrow\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
so that $\|x+y\|_{1}=\sum_{i=1}^{n}\left|x_{i}+y_{i}\right| \leq \sum_{i=1}^{n}\left|x_{i}\right|+\sum_{i=1}^{n}\left|y_{i}\right| \quad$ by $N_{3}$
or $\quad\|x+y\|_{1} \leq\|x\|_{1}+\|y\|_{1}$,
which shows that the inequality holds for $p=1$.
Taking $p>1$ and setting $\frac{1}{q}=1-\frac{1}{p}$ so that $q>1$, we have

$$
\begin{aligned}
&\|x+y\|_{p}^{p}= \sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p} \\
&= \sum_{i=1}^{n}\left|x_{i}+y_{i}\right|\left|x_{i}+y_{i}\right|^{p-1} \\
&= \sum_{i=1}^{n}\left\{\left|x_{i}+y_{i}\right|\right\}\left|x_{i}+y_{i}\right|^{p-1} \\
& \leq \sum_{i=1}^{n}\left|x_{i}\right|\left|x_{i}+y_{i}\right|^{p-1}+\sum_{i=1}^{n}\left|y_{i}\right|\left|x_{i}+y_{i}\right|^{p-1} \quad \text { by } N_{3} \\
& \leq {\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{1 / p}\left[\sum_{i=1}^{n}\left|x_{i}+y_{1}\right|^{q(p-1)}\right]^{1 / q} } \\
& \quad+\left[\sum_{i=1}^{n}\left|y_{i}\right|^{p}\right]^{1 / p}\left[\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{q(p-1)}\right]^{1 / q} \quad \text { by Holder’s inequality }
\end{aligned}
$$

$$
\begin{aligned}
& =\|x\|_{p}\left[\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}\right]^{1 / q}+\|y\|_{p}\left[\sum_{i=1}^{n}\left|x_{i}+y_{1}\right|^{p}\right]^{1 / q} \\
& \quad \text { since } \frac{1}{q}=1-\frac{1}{p} \Rightarrow q(p-1)=p \\
& =\left\{\|x\|_{p}+\|y\|_{p}\right\}\left[\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}\right]^{\frac{1}{q}} \\
& =\left\{\|x\|_{p}+\|y\|_{p}\right\}\|x+y\|_{p}^{\frac{p}{q}}
\end{aligned}
$$

or

$$
\|x+y\|_{p}^{p-\frac{p}{q}} \leq\|x\|_{p}+\|y\|_{p} \text {, where } p-\frac{p}{q}=p\left(1-\frac{1}{q}\right)=p \frac{1}{p}=1
$$

$$
\text { or } \quad\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}
$$

Note: The Theorem is also true for sequences $x=\left\langle x_{n}\right\rangle, y=\left\langle y_{n}\right\rangle$
s.t. $\quad \sum_{i=1}^{n}\left|x_{n}\right|^{p}<\infty, \sum_{i=1}^{n}\left|y_{n}\right|^{p}<\infty$ for $p \geq 1$.

### 1.5 Factor (quotient) Spaces

If $M$ be a subspace of a vector space $N$, then $\exists$ an equivalence relation between any two vectors $x, y \in N$ i.e., $x \sim y$ iff $x-y \in M$, since this relation is :

Reflexive i.e., $\quad x \sim x$ as $x-x=0 \in M$
Symmetric i.e., $x \sim y \Rightarrow y \sim x$ as $x-y \in M$

$$
\Rightarrow-(x-y)=y-x \in M
$$

Transitive i.e., $\quad x \sim y, y \sim z \Rightarrow x \sim z$ as

$$
x-y \in M \text { and } y-z \in M \Rightarrow x-y+y-z=x-z \in M
$$

$\therefore$ Vectors $x, y$ being equivalent under ${ }^{\prime} \sim$ ' $\Rightarrow x-y \in M$.
Thus $N$ is divided into mutually disjoint equivalence classes. We denote the set of all such equivalence classes by $\frac{N}{M}$.

Let $[x]$ denote the equivalence class which contains the element $x$. Thus

$$
\begin{aligned}
{[x]=\{y: y \sim x\} } & =\{y: y-x \in M\} \\
& =\{y: y-x=m \text { for some } m \in M\}
\end{aligned}
$$

$$
=\{y: y=x+m \text { for some } m \in M\}=\{x+m: m \in M\}
$$

Thus $[x]$ is the set of all sums of $x$ and elements of $M$. The set $[x]$ is called the coset of $M$ determined by $x$ and is usually written as $x+M \cdot \operatorname{In} \frac{N}{M}$, we define addition and scalar multiplication by $(x+M)+(y+M)=(x+y)+M ; x, y \in N$
$\alpha(x+M)=(\alpha x)+M, \alpha \in F$ over which $N$ is defined.
Here $\frac{N}{M}$ is a vector (linear) space w.r.t. addition and scalar multiplication. Also $N$ is a normed linear spce and exihibits a norm for $\frac{N}{M}$. The zero element of $N / M$ is $0+M=M$.

The set of all such equivalence classes $\{x+M: x \in N\}$ referred as $\frac{N}{M}$ is known as the Factor space or Quotient space of $N$ w.r.t. $N$.

Our next theorem shows that if $M$ be a closed linear suspance in a normed linear space $N$, then $\frac{N}{M}$ can be made into a normed linear space.

Theorem 9: If $M$ be a closed subspace of a normed linear space $N$ and if the norm of a coset $x+M$ is the quotient space $\frac{N}{M}$ is defined by

$$
\|x+M\|=\operatorname{Inf} .\{\|x+m\|: m \in M\}
$$

then $\frac{N}{M}$ is a normed linear space. Also if $N$ is complex (Banach space), then so is $\frac{N}{M}$.
Proof: We verify all the postulates for a norm. $\left[N_{1}\right]$ since $\|x+m\|$ is a non-negative real number and every set of non-negative real numbers is bounded below, it follows that inf $\{\|x+m\|: m \in M\}$ exists and is non-negative, that is

$$
\begin{aligned}
& \qquad \begin{array}{l}
\|x+M\| \geq 0 \forall x \in N . \\
{\left[N_{2}\right]: \text { Let } x+M=M \text { (the zero element of } \frac{N}{M} \text { ). Then } x \in M .} \\
\text { Hence }\|x+M\|=\inf \{\|x+m\|: m \in M, x \in M\} \\
=\inf \{\|y\|: y \in M\}=0 \\
\qquad[\because M \text { being a subspace contains zero vector whose norm is real number } 0]
\end{array}
\end{aligned}
$$

Thus $\quad x+M=M \Rightarrow\|x+M\|=0$
Conversely, we have

$$
\begin{aligned}
\|x+m\|=0 & \Rightarrow \inf \{\|x+m\|: m \in M\}=0 \\
& \Rightarrow \text { there exists a sequence }<m_{k}>_{k=1}^{\infty} \text { in } M
\end{aligned}
$$

Such that $\left\|x+m_{k}\right\| \rightarrow 0$ as $k \rightarrow \infty$

$$
\Rightarrow \lim _{k \rightarrow \infty} m_{k}=-x
$$

$$
\Rightarrow-x \in M \quad\left[\text { Since } M \text { is closed and }<m_{k}>\text { is sequence in } M \text { converging to }-x\right. \text { ] }
$$

$$
\Rightarrow x \in M \quad[\because M \text { is a subspace }]
$$

$$
\left.\Rightarrow x+M=M \text { (the zero element of } \frac{N}{M}\right)
$$

Thus we have shown that

$$
\|x+M\|=0 \Rightarrow x+M=M \quad \text { (the zero element of } N / M)
$$

$\left[N_{3}\right]:$ Let $x+M, y+M \in N / M$, then

$$
\|(x+M)+(y+M)\|=\|(x+y)+M\| \quad \text { by definition of addition of coset. }
$$

$$
\begin{equation*}
=\inf \{\|x+y+m\|: m \in M\} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=\inf \left\{\|x+y+m+m\|: m \in M, m^{\prime} \in M\right\} \tag{2}
\end{equation*}
$$

$[\because M$ is a subspace, the sets in (1) and (2) are the same $]$
$=\inf \left\{\left\|(x+m)+\left(y+m^{\prime}\right)\right\|: m, m^{\prime} \in M\right\}$
$\leq \inf \left\{\|x+m\|+\left\|y+m^{\prime}\right\|: m, m^{\prime} \in M\right\}$
[Using $N_{3}$ for $N$, since $x+m, y+m^{\prime} \in N$ ]
$=\inf \{\|x+m\|: m \in M\}+\inf \left\{\left\|y+m^{\prime}\right\|: m \in M\right\}$

$$
=\|x+M\|+\|y+M\|
$$

$\left[N_{4}\right]:\|\alpha(x+M)\|=\inf \{\|\alpha x+m\|: m \in M\}$
since $\alpha(x+M)=\alpha x+M$ in $\frac{N}{M}$

$$
=\inf \{\|\alpha x+m\|: m \in M\} \quad \text { if } \alpha \neq 0
$$

$$
\begin{aligned}
& =\inf \{|\alpha|\|x+m\|: m \in M\} \\
& =|\alpha| \inf \{\|x+m\|: m \in M\} \\
& =|\alpha|\|x+M\|
\end{aligned}
$$

For $\alpha=0$, the result is obvious.
Hence $\frac{N}{M}$ is a normed linear space.
We now prove that if $N$ is complete, then so is $\frac{N}{M}$. Suppose that $\left\langle x_{n}+M\right\rangle$ is a Cauchy sequence in $\frac{N}{M}$. Then to show that $\left\langle x_{n}+M>\right.$ is convergent, it is sufficient to prove that this sequence has convergent subsequance.
we can easily find a subsequence of the original Cauchy sequence for a fixed $n$ s.t.

$$
\begin{aligned}
& \left\|\left(x_{1}+M\right)-\left(x_{2}+M\right)\right\|<\frac{1}{2} \\
& \left\|\left(x_{2}+M\right)-\left(x_{3}+M\right)\right\|<\frac{1}{2^{2}} \\
& \text {... ... ... ... } \\
& \left\|\left(x_{n}+M\right)-\left(x_{n+1}+M\right)\right\|<\frac{1}{2^{n}}
\end{aligned}
$$

We prove that this sequence is convergent in $\frac{N}{M}$. We begin by choosing any vectory $y_{1}$ in $x_{1}+M$, and we select $y_{2}$ in $x_{2}+M$ such that $\left\|y_{1}-y_{2}\right\|<\frac{1}{2}$. We next select a vector $y_{3}$ in $x_{3}+M$. Such that $\left\|y_{2}-y_{3}\right\|<\frac{1}{2^{2}}$ containing in this way, we obtain a sequence $\left\{y_{n}\right\}$ in $N$ such that $\left\|y_{n}-y_{n+1}\right\|<\frac{1}{2^{n}}$.

Thus for $m<n$, we have

$$
\begin{aligned}
\left\|y_{m}-y_{n}\right\| & =\left\|\left(y_{m}-y_{m+1}\right)+\left(y_{m+1}-y_{m+2}\right)+\ldots .+\left(y_{n-1}-y_{n}\right)\right\| \\
& \leq\left\|y_{m}-y_{m+1}\right\|+\left\|y_{m+1}-y_{m+2}\right\|+\ldots+\left\|y_{n-1}-y_{n}\right\| \\
& <\frac{1}{2^{m}}+\frac{1}{2^{m+1}}+\ldots+\frac{1}{2^{n-1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2^{m}}\left[1+\frac{1}{2}+\ldots+\frac{1}{2^{n-m-1}}\right] \\
& =\frac{1}{2^{m}}\left[\frac{1-\left(\frac{1}{2}\right)^{n-m}}{1-\frac{1}{2}}\right]=\frac{1}{2^{m-1}}\left[1-\frac{1}{2^{n-m}}\right] \\
& <\frac{1}{2^{m-1}} \rightarrow 0 \text { as } m \rightarrow \infty
\end{aligned}
$$

which follows that $\left\langle y_{n}\right\rangle$ is a Cauchy sequence in $N$.
Since $N$ is complete, there exists a vector $y$ in $N$ such that $y_{n} \rightarrow y$. It now follows from

$$
\left\|\left(y_{n}+M\right)-(y+M)\right\| \leq\left\|y_{n}-y\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

that $y_{n}+M \rightarrow y+M$.i.r., $y_{n}+M$ converges to $y+M$ in $\frac{N}{M}$. Hence $\frac{N}{M}$ is complete.

### 1.6 Examples of Banach Spaces

We now describe some of the main examples of Banach spaces. In each of these, the linear operations are understood to be defined eithr co-ordinatewise or pointwise, which ever is appropriate in the circumstances.

Example 1 : Show that the linear spaces $R$ (real) and $C$ (complex) are normed linear spaces under the norm $\|x\|=|x|, x \in R$ or $C$ as the case may be.

Also show that these spaces are complete and hence Banach spaces.
Solution : $\quad R$ is a normed linear space, since

$$
\begin{aligned}
& N_{1}:\|x\| \geq 0 \Rightarrow|x| \geq 0, \text { which is so, } \forall x \in R \\
& N_{2}:\|x\|=0 \Leftrightarrow|x|=0 \Leftrightarrow x=0, \forall x \in R \\
& N_{3}:\|x+y\|=|x+y| \leq|x|+|y|=\|x\|+\|y\| \forall x, y \in R \\
& N_{4}:\|\alpha x\|=|\alpha x|=|\alpha||x|=|\alpha|\|x\|, \alpha \text { being real or complex. }
\end{aligned}
$$

Similarly $C$ is a normed linear space, since

$$
\begin{aligned}
& N_{1}:\|x\| \geq 0 \Rightarrow|x| \geq 0, \forall x \in C \\
& N_{2}:\|x\|=0 \Leftrightarrow|x|=0 \Leftrightarrow x=0 \quad \forall x \in C \\
& N_{2}: x, y \in C \text { and } \bar{x}, \bar{y} \text { being thier conjugates (complex), }
\end{aligned}
$$

We have

$$
\left.\begin{array}{l}
\qquad \begin{array}{rl}
|x+y|^{2} & =(x+y)(\overline{x+y})=(x+y)(\bar{x}+\bar{y})=x \bar{x}+y \bar{y}+x \bar{y}+\bar{x} y \\
& \leq|x|^{2}+|y|^{2}+2|x \bar{y}|, \text { by properties of complex quantities. } \\
& =|x|^{2}+|y|^{2}+2|x||y| \text { as }|\bar{y}|=|y| \\
& =(|x|+|y|)^{2}
\end{array} \\
\text { giving } \quad|x+y| \leq|x|+|y|
\end{array}\right\} \quad\|x+y\| \leq\|x\|+\|y\| \text {. }
$$

By Theorem 4, every convergent sequence in a normed linear space being a Cauchy sequence, the real $(R)$ or complex $(C)$ normed linear space is complete and hence a Banach space.

Example 2 : Show that the linear spaces $R^{n}$ (Euclidean) and $C^{n}$ (Unitary) of $n$-tuples $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of real and complex numbers are Banach space under the norm

$$
\|x\|=\left\{\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right\}^{\frac{1}{2}}
$$

Solution : $N_{1}$ : Since each $\left|x_{i}\right| \geq 0$, we have $\|x\| \geq 0$

$$
\begin{aligned}
N_{2}:\|x\|=0 \Leftrightarrow \sum_{i=1}^{n}\left|x_{i}\right|^{2} & =0 \Leftrightarrow x_{i}=0, i=1,2, \ldots \ldots, n \\
& \Leftrightarrow\left(x_{1}, x_{2}, \ldots ., x_{n}\right)=0 \\
& \Leftrightarrow x=0
\end{aligned}
$$

$N_{3}:$ Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be any two members of $C^{n}$ (or $\left.R^{n}\right)$.
Then

$$
\begin{aligned}
\|x+y\|^{2} & =\left\|\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right\|^{2} \\
& =\left\|\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots ., x_{n}+y_{n}\right)\right\|^{2} \\
& =\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{2}=\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|\left|x_{i}+y_{i}\right| \\
& \leq \sum_{i=1}^{n}\left|x_{i}+y_{i}\right|\left(\left|x_{i}\right|+\left|y_{i}\right|\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|\left|x_{i}\right|+\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|\left|y_{i}\right| \\
& =\|x+y\|\|x\|+\|x+y\|\|y\|, \text { by Cauchy's inequality. } \\
& =\|x+y\|(\|x\|+\|y\|)
\end{aligned}
$$

If $\|x+y\|=0$, then the above is evidently true. If $\|x+y\| \neq 0$
Then we can divide both sides by it to obtain

$$
\begin{aligned}
&\|x+y\| \leq\|x\|+\|y\| \\
& N_{4}:\|\alpha x\|=\left\|\alpha\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\| \\
&=\left\|\alpha x_{1}, \alpha x_{2}, \ldots,, \alpha x_{n}\right\| \\
&=\left\{\sum_{i=1}^{n}\left|\alpha x_{i}\right|^{2}\right\}^{1 / 2}=\left\{\sum_{i=1}^{n}|\alpha|^{2}\left|x_{i}\right|^{2}\right\}^{1 / 2} \\
&=|\alpha|\left\{\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right\}^{1 / 2}=|\alpha|\|x\|
\end{aligned}
$$

Thus $C^{n}$ and $R^{n}$ are normed linear spaces. Again to show that the normal linear spaces $R^{n}$ and $C^{n}$ are complete, consider a Cauchy sequence $\left\langle x_{i}\right\rangle_{i=1}^{\infty}$, i.e., $\left\langle x_{1}, x_{2}, \ldots, x_{n} \ldots\right\rangle$ of points in $R^{n}$ or $C^{n}$, so that $x_{i}$ being an $n$-tuple of real or complex numbers, we can write

$$
x_{m}=\left(x_{1}^{(m)}, x_{2}^{(m)}, \ldots, x_{n}^{(m)}\right)
$$

so that $x_{k}^{(m)}$ is the $k^{t h}$ co-ordinate of $x_{m}$. Let $\in>0$ be given. Since $<x_{m}>$ is a Cauchy sequence, there exists a positive integer $m_{0}$ such that

$$
\begin{align*}
l_{1} m \geq m_{0} & \Rightarrow \mid x_{m}-x_{l}\|<\epsilon \Rightarrow\| x_{m}-x_{l} \|^{2}<\epsilon^{2} \\
& \Rightarrow \sum_{i=1}^{n}\left|x_{i}^{(m)}-x_{i}^{(l)}\right|<\epsilon^{2}  \tag{1}\\
& \Rightarrow\left|x_{i}^{(m)}-x_{i}^{(l)}\right|^{2}<\epsilon^{2} \quad(i=1,2, \ldots, n) \\
& \Rightarrow\left|x_{i}^{(m)}-x_{i}^{(l)}\right|<\epsilon
\end{align*}
$$

This shows that the sequence $\left\langle x_{i}^{(m)}\right\rangle_{m=1}^{\infty}$ is a Cauchy sequence of complex (or real) numbers for each fixed but arbitrary i.

Since $C$ (or $R$ ) is complete, each of these sequences converges to a point, say $z_{i}$ in $C$ (or $R$ ) so that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} x_{i}^{(m)}=z_{i} \quad(i=1,2, \ldots ., n) \tag{2}
\end{equation*}
$$

We now show that the Cauchy sequence $\left\langle x_{m}\right\rangle$ converges to the point $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in C^{n}$ (or $R^{n}$ ). To prove this, we let $l \rightarrow \infty$ in (1). Then by (2), for $m \geq m_{0}$, we obtain

$$
\sum_{i=1}^{n}\left|x_{i}^{(m)}-z_{i}\right|<\epsilon^{2} \Rightarrow\left\|x_{m}-z\right\|^{2}<\epsilon^{2} \Rightarrow\left\|x_{m}-z\right\|<\epsilon
$$

It follows that the Cauchy sequence $\left\langle x_{m}>\right.$ converges to $z \in C^{n}$ (or $R^{n}$ ). Hence $C^{n}$ and $R^{n}$ are complete spaces and consequently they are Banach spaces.

Example 3: Let $p$ be a real number such that $1 \leq p<\infty$. Show that the space $l_{p}^{n}$ of all $n$-tuples of scalars with the norm defined by

$$
\|x\|_{p}=\left\{\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right\}^{\frac{1}{p}}
$$

is a Banach space.
Solution : Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ and let $\alpha$ be any scalar. Then it is understood here that $l_{p}^{n}$ is a linear space with respect to the operations, $x+y=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)$ and $\alpha x=\left(\alpha x_{1}, \ldots, \alpha x_{n}\right)$. We now show that $l_{n}^{p}$ is a normed linear space.

$$
N_{1}:\|x\|_{p} \geq 0, \text { obvious since }\left|x_{i}\right| \geq 0 \text { for each } i
$$

$$
\begin{aligned}
N_{2}:\|x\|_{p}=0 & \Leftrightarrow\left\{\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right\}^{\frac{1}{p}}=0 \\
& \Leftrightarrow \sum_{i=1}^{n}\left|x_{i}\right|^{p}=0 \\
& \Leftrightarrow\left|x_{i}\right|=0, \quad(i=1,2, \ldots, n) \\
& \Leftrightarrow x_{i}=0, \quad i=1,2, \ldots, n \\
& \Leftrightarrow x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0
\end{aligned}
$$

$$
N_{3}:\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}, \text { by Minkowski's inequality. }
$$

$$
N_{4}:\|\alpha x\|_{p}=\left\|\alpha\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\|_{p}
$$

$$
\begin{aligned}
& =\left\|\left(\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{n}\right)\right\|_{p} \\
& =\left\{\sum_{i=1}^{n}\left|\alpha x_{i}\right|^{p}\right\}^{\frac{1}{p}}=\left\{\sum_{i=1}^{n}|\alpha|^{p}\left|x_{i}\right|^{p}\right\}^{\frac{1}{p}} \\
& =\left\{|\alpha|^{p} \sum_{i=1}^{n}\left|x_{i}\right|^{p}\right\}^{\frac{1}{p}} \\
& =|\alpha|\left\{\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right\}^{\frac{1}{p}}=|\alpha|\|x\|_{p}
\end{aligned}
$$

Thus $l_{p}^{n}$ is a normed linear space.
Again to show that $l_{p}^{n}$ is complete, let $\left\langle x_{m}\right\rangle_{m=1}^{\infty}$ be a Cauchy sequence in $l_{p}^{n}$. Since each $x_{m}$ is an $n$-tuple of scalars, for convenience, we shall write

$$
x_{m}=\left(x_{1}^{m}, x_{2}^{m}, \ldots, x_{n}^{m}\right) .
$$

Let $\in>0$ be given. Since $\left\langle x_{m}>\right.$ is a Cauchy sequence, there exists a positive integer $m_{0}$ such that

$$
\begin{align*}
l, m \geq m_{0} & \Rightarrow\left\|x_{m}-x_{l}\right\|_{p}<\in \Rightarrow\left\|x_{m}-x_{l}\right\|_{p}^{p}<\epsilon^{p} \\
& \Rightarrow \sum_{i=1}^{n}\left|x_{i}^{(m)}-x_{i}^{(l)}\right|^{p}<\epsilon^{p}  \tag{1}\\
& \Rightarrow\left|x_{i}^{(m)}-x_{i}^{(l)}\right|^{p}<\epsilon^{p} \quad(i=1,2, \ldots, n) \\
& \Rightarrow\left|x_{i}^{(m)}-x_{i}^{(l)}\right|<\epsilon
\end{align*}
$$

This shows that for fixed but arbitrary $i$, the sequence $\left\langle x_{i}^{(m)}\right\rangle_{m=1}^{\infty}$ is a Cauchy sequence in $C$ (or $R$ ) is complete, each of these sequences converges to a point, say $z_{i}$, in $C$ (or $R$ ) so that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} x_{i}^{(m)}=z_{i} \quad(i=1,2, \ldots, n) \tag{2}
\end{equation*}
$$

It will now be shown that the Cauchy sequence $\left\langle x_{m}\right\rangle$ converses to the point $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in l_{p}^{n}$. To prove this, we let $l \rightarrow \infty$ (1). Then by (2), for $m \geq m_{0}$, we obtain

$$
\begin{aligned}
\sum_{i=1}^{n}\left|x_{i}^{(m)}-z_{i}\right|^{p}<\epsilon^{p} & \Rightarrow\left\|x_{m}-z\right\|_{p}^{p}<\epsilon^{p} \\
& \Rightarrow\left\|x_{m}-z\right\|<\epsilon
\end{aligned}
$$

It follows that the Cauchy sequence $\left\langle x_{m}\right\rangle$ converges to $z \in l_{p}^{n}$. Hence $l_{p}^{n}$ is complete and therefore it is a Banach spaces.

Example 4: Consider the linear space of all $n$-tuples $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of scalars and define the norm by $\|x\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}$

This space is usually denoted by the symbol $l_{\infty}^{n}$. Show that $\left(l_{\infty}^{n},\|\cdot\|_{\infty}\right)$ is a Banach space.
Solution : We first prove that $l_{\infty}^{n}$ is a normed linear space.
$N_{1}$ : since each $\left|x_{n}\right| \geq 0$, we have $\|x\|_{\infty} \geq 0$.

$$
\begin{aligned}
N_{2}:\|x\|_{\infty}=0 & \Leftrightarrow \max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}=0 \\
& \Leftrightarrow\left|x_{1}\right|=0,\left|x_{2}\right|=0, \ldots,\left|x_{n}\right|=0 \\
& \Leftrightarrow x_{1}=0, x_{2}=0, \ldots, x_{n}=0 \\
& \Leftrightarrow\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \\
& \Leftrightarrow x=0
\end{aligned}
$$

$N_{3}:$ let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$
Then $\|x+y\|_{\infty}=\max \left\{\left|x_{1}+y_{1}\right|,\left|x_{2}+y_{2}\right|, \ldots,\left|x_{n}+y_{n}\right|\right\}$

$$
\begin{aligned}
& \leq \max \left\{\left|x_{1}\right|+\left|y_{1}\right|,\left|x_{2}\right|+\left|y_{2}\right|, \ldots,\left|x_{n}\right|+\left|y_{n}\right|\right\} \\
& \leq \max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}+\max \left\{\left|y_{1}\right|,\left|y_{2}\right|, \ldots,\left|y_{n}\right|\right\} \\
& =\|x\|_{\infty}+\|y\|_{\infty}
\end{aligned}
$$

$N_{4}:$ If $\alpha$ is any scalar, then

$$
\begin{aligned}
\|\alpha x\|_{\infty} & =\max \left\{\left|\alpha x_{1}\right|,\left|\alpha x_{2}\right|, \ldots,\left|\alpha x_{n}\right|\right\} \\
& =\max \left\{|\alpha|\left|x_{1}\right|,|\alpha|\left|x_{2}\right|, \ldots,|\alpha|\left|x_{n}\right|\right\} \\
& =|\alpha| \max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\} \\
& =|\alpha|\|x\|_{\infty}
\end{aligned}
$$

Hence $l_{\infty}^{n}$ is a normed linear space. We now show that it is a complete space. Let $\left\langle x_{m}\right\rangle_{m=1}^{\infty}$ be any Cauchy sequence in $l_{\infty}^{n}$. Since each $x_{m}$ is an $n$-tuple of scalars, we shall write.

$$
x_{m}=\left(x_{1}^{(m)}, x_{2}^{(m)}, \ldots, x_{n}^{(m)}\right)
$$

Let $\in>0$ be given. Then there exits a positive integer $m_{0}$ such that $l, m \geq m_{0} \Rightarrow\left\|x_{m}-x_{l}\right\|_{\infty}<\in$

$$
\begin{align*}
& \Rightarrow \quad \max \left\{\left|x_{1}^{(m)}-x_{1}^{(l)}\right|,\left|x_{2}^{(m)}-x_{2}^{(l)}\right|, \ldots .,\left|x_{n}^{(m)}-x_{n}^{(l)}\right|\right\}<\epsilon  \tag{1}\\
& \Rightarrow \quad\left|x_{i}^{(m)}-x_{i}^{(l)}\right|<\epsilon, \quad i=1,2, \ldots, n .
\end{align*}
$$

This shows that for fixed $i,\left\langle x_{i}^{(m)}\right\rangle_{m=1}^{\infty}$ is a Cauchy sequence of complex or real numbers. Since $C$ (or $R$ ) is complete, it must converges to some $z_{i} \in C$ (or $R$ ). We assert that the Cauchy sequence $<x_{n}>$ converges to $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$. The prove this, we let $l \rightarrow \infty$ in (1). Then for $m \geq m_{0}$, we obtain
$\left\|x_{m}-z\right\|<\in$. Thus it follows that the Cauchy sequence $<x_{m}>$ converges to $z \in l_{\infty}^{n}$. Hence $l_{\infty}^{n}$ is a Banach space.

Example 5: If $C(X)$ be a linear space of all bounded continous scalar valued function defined on a topological space $X$. Then show that $C(X)$ is a Banach space under the norm

$$
\|f\|=\sup \{|f(x)|: x \in X\}, f \in C(X) .
$$

Solution : Given that $C(X)$ is a linear space, means $C(X)$ is linear under the operations of vector addition and scalar multiplication i.e., $f, g \in C(X)$ and $\alpha$ being a scalar, we must have

$$
\begin{align*}
& (f+g)(x)=f(x)+g(x)  \tag{1}\\
& (\alpha f)(x)=\alpha f(x) \tag{2}
\end{align*}
$$

We now show that $C(X)$ is normed linear space.

$$
\begin{gathered}
N_{1}: \text { since }|f(x)| \geq 0 \forall x \in X, \text { we have } \\
\|f(x)\| \geq 0 \\
N_{2}:\|f\|=0 \Leftrightarrow \sup \{|f(x)|: x \in X\}=0 \\
\Leftrightarrow|f(x)|=0 \forall x \in X \\
\Leftrightarrow f(x)=0 \forall x \in X \\
\Leftrightarrow f \text { is a zero function. }
\end{gathered}
$$

$$
\begin{aligned}
N_{3}:\|f+g\| & =\sup \{|(f+g)(x)|: x \in X\} \\
& =\sup \{|f(x)+g(x)|: x \in X\}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sup \{|f(x)|+|g(x)|: x \in X\} \\
& \leq \sup \{|f(x)|: x \in X\}+\sup \{|g(x)|: x \in X\} \\
& =\|f\|+\|g\| \\
N_{4}:\|\alpha f\| & =\sup \{|(\alpha f)(x)|: x \in X\} \\
= & \sup \{|\alpha f(x)|: x \in X\} \\
= & \sup \{|\alpha||f(x)|: x \in X\} \\
= & |\alpha| \sup \{|f(x)|: x \in X\} \\
= & |\alpha|\|f\|
\end{aligned}
$$

Hence $C(X)$ is a normed linear space.
Finally we prove that $C(X)$ is complete as a metric space. Let $<f_{n}>$ be any Cauchy sequence in $C(X)$. Then for a given $\in>0$, there exists a positive integer $m_{0}$ such that

$$
\begin{aligned}
m, n \geq m_{0} & \Rightarrow\left\|f_{m}-f_{n}\right\|<\epsilon \\
& \Rightarrow \sup \left\{\left|f_{m}-f_{n}(x)\right|: x \in X\right\}<\epsilon \\
& \Rightarrow \sup \left\{\left|f_{m}(x)-f_{n}(x)\right|: x \in X\right\}<\epsilon \\
& \Rightarrow\left\{\left|f_{m}(x)-f_{n}(x)\right|\right\}<\in \forall x \in X .
\end{aligned}
$$

But this is the Cauchy's condition for uniform convergence of the sequence of bounded continous scalar valued functions. Hence the sequence $<f_{n}>$ must converge to a bounded continous function $f$ on $X$. It follows that $C(X)$ is complete and hence it is a Banach space.

## Self-Learning Exercise - I

1. Write whether the following statements are true or false :
(i) If $x, y, z \in N, N$ being a normed linear space. Then $d(x+z, y+z)=d(x, y)$
(ii) Every convergent sequence in a normed linear space need not be a Cauchy sequence.
(iii) Let $N$ be a normed linear space and let $x, y \in N$. Then $\|x-y\| \leq|\|x\|-\|y\||$
(iv) Let $p>1, \frac{1}{p}+\frac{1}{q}=1, a \geq 0, b \geq 0$. Then $a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}$ with equality if $a^{p}=p^{q}$
(v) Every normed space is metric space but the converse is not universally true.
(vi) Every metric on a linear space can be obtained from a norm.

### 1.7 Summary

In this unit, we have seen that the notion of the norm of a vector is a generalization of the concept of length. Besides discussing a fairly large number of examples of Banach spaces, we proved an interesting theorem which provides us a very useful method for constructing new normed spaces from a given normed space.

### 1.8 Answer to Self-Learning Exercise

1. (i) True
(ii) False
(iii) False
(iv) False
(v) True
(Vi) False

### 1.9 Exercises

1. Define normed spaces, Banach spaces. Give two examples of Banach spaces.
2. Prove that the limit of a convergent sequence in a normed space is unique.
3. Show that the set $X$ of all convergent sequences in a normed space is a normed space. Hence or otherwise show that $X$ is also a linear space.
4. Show that every complete subspace of a normed linear space in closed.
5. Show that every normed space is metric space but the converse is not universally true.
6. Prove that a metric $d$ induced by a norm on a normed space $N$ satisfies
(i) $d(x+a, y+a)=d(x, y)$
(ii) $\quad d(\alpha x, \alpha y)=|\alpha| d(x, y)$
$\forall x, y, a \in X$ and every scalar $\alpha$.

# Unit - 2 <br> Bounded Linear Transformations 

## Structure of the Unit

### 2.0 Objectives

2.1 Introduction
2.2 Bounded Linear Transformation
2.3 General Properties of Bounded Linear Transformation
2.4 Weak Convergence

### 2.5 Equivalent Norms

2.6 Compactness and Finite Dimension

### 2.6.1 Compactness in Normed Spaces

### 2.6.2 Related Theorems

### 2.7 ReiszLemma

2.8 Summary
2.9 Answers to Self-Learning Exercise
2.10 Exercises

### 2.0 Objectives

In previous classes we have studied linear transformation from a linear space to a linear space. We now consider linear transformations from a normed linear space to a normed linear space. In particular we will be interested in questions related to the continuity of such transformations. As an illustration of the use of compactness in analysis, we shall establish basic properties of finite dimensional normed linear spaces.

### 2.1 Introduction

In calculus we consider the real line $R$ and real valued functions on $R$ (or on a subset of $R$ ). Obviously, any such function is a mapping of its domain into $R$. In functional analysis we consider more general spaces, such as metric spaces and normed spaces, and mappings of these spaces.

In the case of linear space and, in particular, normed spaces, a mapping is called an operator (transformation). In this unit, we consider general properties of bounded linear transformations. Weak convergence is defined in terms of bounded linear transformations.

### 2.2 Bounded Linear Transformations

If $N$ and $N^{\prime}$ be two normed linear spaces with the same scalars, then a mapping $T: N \xrightarrow{\text { into }} N^{\prime}$, is known as an operator or a transformation and the value of $T$ at $x \in N$ is denoted by $T(x)$.

The operator $T$ is known as linear operator (transformation) if it satisfies the following two conditions:

$$
T(x+y)=T(x)+T(y) \text { for all } x, y \in N
$$

and $\quad T(\alpha x)=\alpha T(x)$ for real $\alpha$ and $x \in N$.
The above conditions are also equivalent to a single condition

$$
T(\alpha x+\beta y)=\alpha T(x)+\beta T(y) \forall \alpha, \beta \in F \text { and } \forall x, y \in N
$$

The transformation $T$ is bounded if $\exists$ a real constant $K>0$ s.t.

$$
\|T(x)\| \leq K\|x\| \forall x \in N
$$

The transformation $T$ is continuous at a point $x_{0} \in N$ if given $\in>0, \exists$ a $\delta\left(\in, x_{0}\right)>0$ s.t.

$$
\left\|T(x)-T\left(x_{0}\right)\right\|<\in \text { whenever }\left\|x-x_{0}\right\|<\delta
$$

Here $T$ is continuous on $N$ if it is continuous at every point of $N$. It is uniformly continuous if $\delta\left(x_{0}\right)>0$ is independent of $x_{0}$ only s.t.

$$
\left\|T(x)-T\left(x_{0}\right)\right\|<\in \text { with }\left\|x-x_{0}\right\|<\delta
$$

The norm of a bounded operator (transformation) is defined as

$$
\|T\|=\sup \left\{\frac{\|T(x)\|}{\|x\|}: x \neq 0\right\}
$$

or equivalenty $\|T\|=\sup \{\|T(x)\|:\|x\| \leq 1\}$
and

$$
\|T\|=\sup \{\|T(x)\|:\|x\|=1 \text { if } N \neq\{0\}\}
$$

we can also express it as

$$
\|T\|=\operatorname{inf.}\{K: K \geq 0 \text { and }\|T(x)\| \leq K\|x\| \text { for all } x\}
$$

which follows that

$$
\|T(x)\| \leq\|T\|\|x\|
$$

If $N^{\prime}=R$ (normed space of reals), then $T$ is known as a Functional and denoted by $f$. A normed linear space consisting of all bounded linear functional over $N$, is known as a conjugate space (or Dual space), denoted by $N^{*}$.

Note : All continuous (or bounded) linear transformation of $N$ into $N^{\prime}$ are denoted by $B\left(N, N^{\prime}\right)$, where $B$ stands for bounded.

### 2.3 General Properties of Bounded (or Continuous) Linear Transformations

Our main purpose in this section is to convert the requirement of continuity into several more useful equivalent forms and to show that the set of all continuous (or bounded) linear transformation of $N$ into $N^{\prime}$ can itself be made into a normed liear space in a natural way.

Theorem 1: If $T$ be a linear transformation from a normed linear space $N$ into the normed space $N^{\prime}$, then the following statements are equivalent :
(i) $\quad T$ is continuous
(ii) $\quad T$ is continuous at the origin i.e., $x_{n} \rightarrow 0 \Rightarrow T\left(x_{n}\right) \rightarrow 0$.
(iii) $\quad T$ is bounded i.e., $\exists$ real $K \geq 0$ s.t. $\|T(x)\| \leq K\|x\|$ for all $x \in N$
(iv) If $S=\{x:\|x\| \leq 1\}$ is the closed unit sphere in $N$, then its image $T(S)$ is bounded set in $N^{\prime}$.

Proof: (i) $\Leftrightarrow$ (ii) : Let $T$ be continuous and $<x_{n}>$ is any sequence in $N$ such that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then by continuity of $T$, we have $x \rightarrow 0 \Rightarrow T\left(x_{n}\right) \rightarrow T(0)=0$. Hence $T$ is continuous at the origin.

Conversely, let $T$ be continuous at the origin and $\left\langle x_{n}\right\rangle$ be any sequence in $N$ such that $x_{n} \rightarrow x \in N$. Then

$$
\begin{aligned}
\left(x_{n}-x\right) \rightarrow 0 & \Rightarrow T\left(x_{n}-x\right)=0 \quad[\because T \text { is continuous at origin }] \\
& \Rightarrow T\left(x_{n}\right)-T(x)=0 \Rightarrow T\left(x_{n}\right)=T(x)
\end{aligned}
$$

showing that $T$ is continuous mapping.
(ii) $\rightarrow$ (iii) : Let $T$ be continuous at the origin and suppose, if possible $T$ is not bounded that is, there exists no real number $K$ such that $\|T(x)\| \leq K\|x\|$ for every $x \in N$. Then for each positive integer $n$, we can find a vector $x_{n}$, such that

$$
\begin{aligned}
& \left\|T\left(x_{n}\right)\right\|>n\left\|x_{n}\right\| \\
\Rightarrow & \frac{1}{n\left\|x_{n}\right\|}\left\|T\left(x_{n}\right)\right\|>1 \\
\Rightarrow & \left\|\frac{1}{n\left\|x_{n}\right\|} T\left(x_{n}\right)\right\|>1 \\
& \quad \text { by } N_{4} \\
\Rightarrow & \left\|T\left(\frac{x_{n}}{n\left\|x_{n}\right\|}\right)\right\|>1 \quad[\because \alpha T(x)=T(\alpha x) \text { for any scalar } \alpha]
\end{aligned}
$$

Now set $y_{n}=\frac{x_{n}}{n\left\|x_{n}\right\|}$. Then $\left\|y_{n}\right\|=\frac{\left\|x_{n}\right\|}{n\left\|x_{n}\right\|}=\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$ and so $y_{n} \rightarrow 0$ as $n \rightarrow \infty$. But
$T\left(y_{n}\right)$ does not tend to 0 , since $\left\|T\left(y_{n}\right)\right\|>1$.
Hence $T$ is not continuous at the origin which is a contradiction. Hence $T$ must be bounded.
Conversely, let $T$ be bounded so that there exists a real number $K>0$ such that

$$
\begin{equation*}
\|T(x)\| \leq K\|x\|, \forall x \in N \tag{1}
\end{equation*}
$$

Let $\left\langle x_{n}\right\rangle$ be any sequence in $N$ such that $x_{n} \rightarrow 0$. Then

$$
\begin{equation*}
\left\|x_{n}\right\| \rightarrow\|0\|=0 \tag{2}
\end{equation*}
$$

Also from (1), $\left\|T\left(x_{n}\right)\right\| \leq K\left\|x_{n}\right\| \forall n$
It follows from(1) and (2) that $\left\|T\left(x_{n}\right)\right\| \rightarrow 0$ which implies that $T\left(x_{n}\right) \rightarrow 0$. We have thus shown that $x_{n} \rightarrow 0 \Rightarrow T\left(x_{n}\right) \rightarrow 0$ and consequently $T$ is continuous at the origin.
(iii) $\Leftrightarrow$ (iv) : Assume that $\|T(x)\| \leq K\|x\|$ for every $x \in N$ and let $x$ be any point of the closed unit sphere $S$ so that $\|x\| \leq 1$. Then $\|T(x)\| \leq K$ for all $x \in S$. It follows that $T[S]$ is a bounded set in $N^{\prime}$ 。

Conversely, let $T[S]$ be bounded so that there exists a real number $K \geq 0$ such that

$$
\begin{equation*}
\|T(x)\| \leq K \text { for all } x \in S \tag{3}
\end{equation*}
$$

If $x=0$, then $T(x)=0$ and so clearly $\|T(x)\| \leq K\|x\|$; and if $x \neq 0$, then

$$
\frac{x}{\|x\|} \in S \quad\left[\because\left\|\frac{x}{\|x\|}\right\|=1\right]
$$

and therefore by (3)

$$
\begin{aligned}
\left\|T\left(\frac{x}{\|x\|}\right)\right\| \leq K & \Rightarrow\left\|\frac{1}{\|x\|} T(x)\right\| \leq K \\
& \Rightarrow \frac{1}{\|x\|}\|T(x)\| \leq K \\
& \Rightarrow\|T(x)\| \leq K\|x\|
\end{aligned}
$$

Thus it is shown that $\|T(x)\| \leq K\|x\|$ for all $x \in N$. Hence $T$ is bounded.

Theorem 2: If $T$ be a bounded linear transformation of normed space $N$ into normed space $N^{\prime}$, then the following norms are equivalent :
(i) $\quad\|T\|=\sup \left\{\frac{\|T(x)\|}{\|x\|}: x \neq 0\right\}, x \in N$
(ii) $\quad\|T\|=$ inf. $\{K: K \geq 0,\|T(x)\| \leq K\|x\|\} \forall x \in N$
(iii) $\quad\|T\|=\sup \{\|T(x)\|:\|x\| \leq 1\}, x \in N$
(iv) $\quad\|T\|=\sup \{\|T(x)\|:\|x\|=1\}, x \in N$.

Proof: (i) $\Leftrightarrow$ (ii) : Since

$$
\begin{align*}
\|T\| & =\sup \left\{\frac{\|T(x)\|}{\|x\|}: x \neq 0\right\} \\
& \Rightarrow\|T\| \geq \frac{\|T(x)\|}{\|x\|} ; x \neq 0 \\
& \Rightarrow\|T(x)\| \leq\|T\|\|x\| \text { as } T(0)=0  \tag{1}\\
& \Rightarrow\|T\| \text { is one K’s satisfying }\|T(x)\| \leq K\|x\| \\
& \Rightarrow\|T\| \geq \text { inf. }\{K: K \geq 0,\|T(x)\| \leq K\|x\|\} \tag{2}
\end{align*}
$$

Conversely, for $x \neq 0$, and $K$ satisfying $\|T(x)\| \leq K\|x\|$, we have

$$
\begin{align*}
\frac{\|T(x)\|}{\|x\|} \leq K & \Rightarrow \sup \left\{\frac{\|T(x)\|}{\|x\|}: x \neq 0,\right\} \leq K \\
& \Rightarrow\|T\| \leq K \text { for all } K \text { and } T \text { independent of } x \text { and } \mathrm{K} \\
& \Rightarrow\|T\| \leq \operatorname{inf.}\{K: K \geq 0,\|T(x)\| \leq K\|x\|\} \tag{3}
\end{align*}
$$

$\therefore$ (2) and (3) $\Rightarrow\|T\|=\inf$. $\{K: K \geq 0,\|T(x)\| \leq K\|x\|\}$.
(ii) $\Leftrightarrow$ (iii) Since $\|T\|=\sup \left\{\frac{\|T(x)\|}{\|x\|}: x \neq 0\right\}$

$$
\begin{align*}
& \Rightarrow\|T(x)\| \leq\|T\|\|x\| \text { for }\|x\| \leq 1 \\
& \Rightarrow \sup \{\|T(x)\|:\|x\| \leq 1\} \leq\|T\| \tag{4}
\end{align*}
$$

Again for an $\in>0, \exists x_{1} \neq 0$ s.t.

$$
\begin{aligned}
\|T\| & =\sup \left\{\frac{\|T(x)\|}{\|x\|}: x \neq 0\right\} \\
& \Rightarrow \frac{\left\|T\left(x_{1}\right)\right\|}{\left\|x_{1}\right\|}>\|T\|-\epsilon
\end{aligned}
$$

so that on setting $y=\frac{x_{1}}{\left\|x_{1}\right\|}$ with $\|y\|=\frac{\left\|x_{1}\right\|}{\left\|x_{1}\right\|}=1$,
we observe

$$
\begin{aligned}
\sup \{\|T(x)\|:\|x\| \leq 1\} \geq\|T(y)\| & =\left\|T\left(\frac{x_{1}}{\left\|\left(x_{1}\right)\right\|}\right)\right\| \\
& =\frac{1}{\left\|\left(x_{1}\right)\right\|}\left\|T\left(x_{1}\right)\right\|
\end{aligned}
$$

or $\quad \sup \{\|T(x)\|:\|x\| \leq 1\} \geq\|T\|$
$\therefore$ (4) and (5) $\Rightarrow\|T\|=\sup \{\|T(x)\|:\|x\| \leq 1\}$
(iii) $\Leftrightarrow$ (iv) Since as above, we have

$$
\begin{aligned}
& \|T\|=\sup \left\{\frac{\|T(x)\|}{\|x\|}: x \neq 0\right\} \\
& \Rightarrow\|T(x)\| \leq\|T\|\|x\| \\
& =\|T\| \text { for }\|x\|=1
\end{aligned} \quad \begin{aligned}
& \Rightarrow \sup \{\|T(x)\|:\|x\|=1\} \leq\|T\|
\end{aligned}
$$

Further $\frac{\left\|T\left(x_{1}\right)\right\|}{\left\|x_{1}\right\|} \geq\|T\|-\epsilon$
and $\quad \sup \{\|T(x)\|:\|x\|=1\} \geq\|T(y)\|$
where $y=\frac{x_{1}}{\left\|x_{1}\right\|}$
or
$\sup \{\|T(x)\|:\|x\|=1\} \geq\|T\|-\epsilon$

Thus $\quad \sup \{\|T(x)\|:\|x\|=1\} \geq\|T\|$
From (6) and (7), we have

$$
\|T\|=\sup \{\|T(x)\|:\|x\|=1\}
$$

Theorem 3: If $N, N^{\prime}$ be normed linear spaces and $B\left(N, N^{\prime}\right)$ is the set of all bounded (or continuous) linear transformation from $N$ into $N^{\prime}$, then $B\left(N, N^{\prime}\right)$ is also a normed linear space under the norm

$$
\|T\|=\sup \{\|T(x)\|:\|x\| \leq 1\} \forall x \in N,
$$

w.r.t. pointwise linear operations
$(T+S)(x)=T(x)+S(x)$ and $(\alpha T)(x)=\alpha T(x)$, for real $\alpha$. Also $B\left(N, N^{\prime}\right)$ is complete if $N^{\prime}$ is complete i.e., $B\left(N, N^{\prime}\right)$ is a Banach space if $N^{\prime}$ is a Banach space.

Proof: Since a set $S$ of all linear transformations from a normed linear space $N$ into normed $N^{\prime}$ is itself a linear space w.r.t. pointwise linear operations. Therefore to show that $B\left(N, N^{\prime}\right)$ is a linear space, it suffices to show that $B\left(N, N^{\prime}\right)$ is a subspace of $S$.

Let $T_{1}, T_{2} \in B\left(N, N^{\prime}\right)$. Then $T_{1}, T_{2}$ are bounded and so there exists real numbers $K_{1} \geq 0$ and $K_{2} \geq 0$ such that

$$
\begin{aligned}
& \left\|T_{1}(x)\right\| \leq K_{1}\|x\| \text { and }\left\|T_{2}(x)\right\| \leq K_{2}\|x\| \text { for all } x \in N . \text { For scalar } \alpha, \beta \text {, we have } \\
& \qquad \begin{aligned}
\left\|\left(\alpha T_{1}+\beta T_{2}\right)(x)\right\| & =\left\|\left(\alpha T_{1}\right)(x)+\left(\beta T_{2}\right)(x)\right\| \\
& =\left\|\alpha T_{1}(x)+\beta T_{2}(x)\right\| \\
& \leq\left\|\alpha T_{1}(x)\right\|+\left\|\beta T_{2}(x)\right\| \\
& =|\alpha|\left\|T_{1}(x)\right\|+\mid \beta\left\|T_{2}(x)\right\| \\
& \leq|\alpha| K_{1}\|x\|+|\beta| K_{2}\|x\| \\
& =\left(|\alpha| K_{1}+|\beta| K_{2}\right)\|x\|
\end{aligned}
\end{aligned}
$$

Thus $\alpha T_{1}+\beta T_{2}$ is bounded and so

$$
\begin{aligned}
& \alpha T_{1}+\beta T_{2} \in B\left(N, N^{\prime}\right) \\
\Rightarrow \quad & B\left(N, N^{\prime}\right) \text { is a linear subspace of } S .
\end{aligned}
$$

Now we prove that $B\left(N, N^{\prime}\right)$ is a normed linear space.

We verify the norm postulates one by one.
$N_{1}:$ Since $\|T\|=\sup \{\|T(x)\|:\|x\| \leq 1\}$ and $\|T(x)\| \geq 0$, we conclude that $\|T\| \geq 0$
$N_{2}:$ By Theorem 2, $\|T\|=\sup \left\{\frac{\|T(x)\|}{\|x\|}: x \in N, x \neq 0\right\}$
$\therefore\|T\|=0 \Leftrightarrow \sup \left\{\frac{\|T(x)\|}{\|x\|}: x \in N, x \neq 0\right\}=0$
$\Leftrightarrow \frac{\|T(x)\|}{\|x\|}=0, x \in N, x \neq 0$
$\Leftrightarrow\|T(x)\|=0, x \in N, x \neq 0$
$\Leftrightarrow T(x)=0 \forall x \in N$
$\Leftrightarrow T=0 \quad$ (zero transformation)
$N_{3}$ : If $T, U \in B\left(N, N^{\prime}\right)$, then

$$
\begin{aligned}
\|T+U\| & =\sup \{\|(T+U)(x): x \in N,\| x\|\leq 1\|\} \\
& =\sup \{\|T(x)+U(x)\|: x \in N,\|x\| \leq 1\} \\
& \leq \sup \{\|T(x)\|+\|U(x)\|: x \in N,\|x\| \leq 1\} \\
& \leq \sup \{\|T(x)\|: x \in N,\|x\| \leq 1\}+\sup \{\|U(x)\|: x \in N,\|x\| \leq 1\} \\
& =\|T\|+\|U\|
\end{aligned}
$$

$N_{4}$ : If $\alpha$ is any scalar, then

$$
\begin{aligned}
\|\alpha T\| & =\sup \{\|(\alpha T)(x)\|: x \in N,\|x\| \leq 1\} \\
& =\sup \{\|\alpha T(x)\|: x \in N,\|x\| \leq 1\} \\
& =\sup \{|\alpha|\|T(x)\|: x \in N,\|x\| \leq 1\} \\
& =|\alpha| \sup \{\|T(x)\|: x \in N,\|x\| \leq 1\} \\
& =|\alpha|\|T\|
\end{aligned}
$$

Hence $B\left(N, N^{\prime}\right)$ is a normed linear space.

Again, we claim that $B\left(N, N^{\prime}\right)$ is complete if $N^{\prime}$ is complete. Suppose $N^{\prime}$ is complete and let $<T_{n}>_{n=1}^{\infty}$ be any Cauchy sequence in $B\left(N, N^{\prime}\right)$. Then

$$
\begin{equation*}
\left\|T_{m}-T_{n}\right\| \rightarrow 0 \text { as } m, n \rightarrow \infty \tag{1}
\end{equation*}
$$

For each $x \in N$, we have

$$
\begin{aligned}
\left\|T_{m}(x)-T_{n}(x)\right\| & =\left\|\left(T_{m}-T_{n}\right)(x)\right\| \\
& \leq\left\|T_{m}-T_{n}\right\|\|x\| \rightarrow 0 \quad \text { by }(1)
\end{aligned}
$$

Hence $\left\langle T_{n}(x)\right\rangle$ is a Cauchy sequence in $N^{\prime}$ for each $x \in N$. Since $N^{\prime}$ is complete, there exists a vector in $N^{\prime}$, which we denote by $T(x)$, such that $T_{n}(x) \rightarrow T(x)$. This defines a mapping $T$ of $N$ into $N^{\prime}$. We now show that $T$ is linear and bounded. If $x, y \in N$ and $\alpha, \beta$ are scalars, then

$$
\begin{aligned}
T(\alpha x+\beta y) & =\lim _{n \rightarrow \infty} T_{n}(\alpha x+\beta y) \\
& =\lim _{n \rightarrow \infty}\left[\alpha T_{n}(x)+\beta T_{n}(y)\right], T_{n} \text { being linear } \forall n . \\
& =\alpha \lim _{n \rightarrow \infty} T_{n}(x)+\beta \lim _{n \rightarrow \infty} T_{n}(y) \\
& =\alpha T(x)+\beta T(y)
\end{aligned}
$$

This shows that $T$ is linear. To show that $T$ is bounded, we observe that

$$
\begin{align*}
\|T(x)\|=\left\|\lim T_{n}(x)\right\|=\lim \left\|T_{n}(x)\right\| & \leq \lim \left(\left\|T_{n}\right\|\|x\|\right) \text { for all } n \\
& \leq \sup \left(\left\|T_{n}\right\|\|x\|\right) \\
& =\left(\sup \left\|T_{n}\right\|\right)\|x\| \tag{2}
\end{align*}
$$

In view of(1), we observe that

$$
\left\|T_{m}\right\|-\left\|T_{n}\right\| \mid \leq\left\|T_{m}-T_{n}\right\| \rightarrow 0 \quad \text { as } m, n \rightarrow \infty \quad \text { by }(1)
$$

Therefore $<\left\|T_{n}\right\|>$ is a Cauchy sequence of real numbers and hence convergent and bounded. So there exists $K \geq 0$ such that

$$
\begin{equation*}
\sup \left\|T_{n}\right\| \leq K \tag{3}
\end{equation*}
$$

From (2) and (3), we have $\|T(x)\| \leq K\|x\|$,
showing that $T$ is bounded. In other words, $T \in B\left(N, N^{\prime}\right)$. Finally we show that $T_{n} \rightarrow T$. Let $\in>0$ be given. Since $<T_{n}>$ is a Cauchy sequence. There exists a positive $m_{0}$ such that

$$
\begin{equation*}
m, n \geq m_{0} \Rightarrow\left\|T_{m}-T_{n}\right\|<\in \tag{4}
\end{equation*}
$$

$\Rightarrow \quad\left\|T_{m}(x)-T_{n}(x)\right\| \leq\left\|T_{m}-T_{n}\right\|\|x\|<\in\|x\|$ for all $m, n \geq m_{0}$ and any vector $x \in N$.
Proceeding to the limit as $m \rightarrow \infty$, we find

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|T_{m}(x)-T_{n}(x)\right\|=\left\|T(x)-T_{n}(x)\right\|=\left\|\left(T-T_{n}\right)(x)\right\| \leq \in\|x\| \tag{5}
\end{equation*}
$$

Since $\lim _{m \rightarrow \infty} T_{m}(x)=T(x)$, as norm is a continuous function
and $\quad \lim _{n \rightarrow \infty}\left\|T_{m}(x)\right\|=\|T(x)\|$

$$
\begin{align*}
& \Rightarrow\left\|T-T_{n}\right\|=\sup \left\{\frac{\left\|\left(T-T_{n}\right) x\right\|}{\|x\|}: x \neq 0\right\} \leq \in \text { for all } n \geq n_{0}  \tag{5}\\
& \Rightarrow\left\|T-T_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty \\
& \Rightarrow T_{n}-T \text { as } n \rightarrow \infty
\end{align*}
$$

Hence $B\left(N, N^{\prime}\right)$ is complete if $N^{\prime}$ is complete.
Theorem 4: If $T$ be a linear transformation of a normed linear space $N$ into normed linear space $N^{\prime}$, then inverse of $T$ i.e., $T^{-1}$ exists and is continuous on its domain of definition iff $\exists$ a constant $K \geq 0$ s.t. $K\|x\| \leq\|T(x)\| \forall x \in N$.

Proof: Assuming that

$$
\begin{equation*}
K\|x\| \leq\|T(x)\| \forall x \in N, K \geq 0 \tag{1}
\end{equation*}
$$

is true, we claim that $T^{-1}$ exists and is continuous.
By definition of inverse mapping $T^{-1}$ exists $\Leftrightarrow T$ is one-one.
Taking $x_{1}, x_{2} \in N$, we have

$$
\begin{aligned}
T\left(x_{1}\right)=T\left(x_{2}\right) & \Rightarrow T\left(x_{1}\right)-T\left(x_{2}\right)=0 \Rightarrow T\left(x_{1}-x_{2}\right)=0 \\
& \Rightarrow x_{1}-x_{2}=0 \Rightarrow x_{1}=x_{2}
\end{aligned}
$$

This implies $T$ is one-one and so $T^{-1}$ exists
$\Rightarrow \quad \exists x \in N$ corresponding to each $y$ in the domain of $T^{-1}$
s.t. $\quad T(x)=y \Leftrightarrow T^{-1}(y)=x$

In view of (2), (1) can be written as

$$
K\left\|T^{-1}(y)\right\| \leq\|y\| \Rightarrow\left\|T^{-1}(y)\right\| \leq \frac{1}{K}\|y\|
$$

$$
\Rightarrow T^{-1} \text { is bounded and hence continuous. }
$$

Conversely if $T^{-1}$ exists and continuous on its domain $T[N]$, then to each $x \in N \exists y \in T[N]$ s.t. $T^{-1}(y)=x \Leftrightarrow T(x)=y$ i.e., $T$ is one-one.

Now $T^{-1}$ being continuous, it is bounded and so $\exists$ a positive constant $M$ s.t.,

$$
\begin{aligned}
\left\|T^{-1}(y)\right\| \leq M\|y\| & \Rightarrow\|x\| \leq M\|T(x)\| \\
& \Rightarrow K\|x\| \leq\|T(x)\| \text { for } K=\frac{1}{M}>0
\end{aligned}
$$

Theorem 5: If $T$ be a linear transformation from a normed linear space $N$ into normed space $N^{\prime}$, then $T$ is continuous either at every point or at no point of $N$.

Proof: Taking arbitrary $x_{1}, x_{2} \in N$ and $T$ continuous at $x$, to each $\in>0, \exists \delta>0$ s.t.

$$
\begin{equation*}
\left\|x-x_{1}\right\|<\delta \Rightarrow\left\|T(x)-T\left(x_{1}\right)\right\|<\in \tag{1}
\end{equation*}
$$

Then $\left\|x-x_{2}\right\|<\delta \Rightarrow\left\|\left(x+x_{1}-x_{2}\right)-x_{1}\right\|<\delta$

$$
\begin{aligned}
& \Rightarrow\left\|T\left(x+x_{1}-x_{2}\right)-T\left(x_{1}\right)\right\|<\in \quad \text { by }(1) \\
& \Rightarrow\left\|T(x)+T\left(x_{1}\right)-T\left(x_{2}\right)-T\left(x_{1}\right)\right\|<\epsilon \\
& \Rightarrow\left\|T(x)-T\left(x_{2}\right)\right\|<\epsilon
\end{aligned}
$$

$\Rightarrow T$ is continuous at $x_{2}$.
But $x_{1}, x_{2}$ being arbitrary, $T$ is continuous at all points. Conclusively if $T$ is not continuous at a particular point in $N$, then it is not continuous at no point of $N$.

Theorem 6: If $M$ be a closed linear subspace of a normed linear space $N$ and $T$ be a natural mapping (homomorphism) of $N$ onto $\frac{N}{M}$ s.t. $T(x)=x+M$, then show that $T$ is continuous (or bounded) linear transformation with $\|T\| \leq 1$.

Proof : Given that $M$ is closed and $\frac{N}{M}$ is a normed linear space with the norm of a coset $x+M$ in $\frac{N}{M}$ s.t.

$$
\|x+M\|=\inf \{\|x+m\|: m \in M\}
$$

we claim that $T$ is linear.
For any $x, y \in N$ and $\alpha, \beta$ being scalars, we have

$$
\begin{aligned}
T(\alpha x+\beta y) & =(\alpha x+\beta y)+M=(\alpha x+M)+(\beta y+M) \\
& =\alpha(x+M)+\beta(y+M)
\end{aligned}
$$

or

$$
T(\alpha x+\beta y)=\alpha T(x)+\beta T(y) \Rightarrow T \text { is linear. }
$$

Again, we claim that $T$ is continuous, since

$$
\begin{aligned}
\|T(x)\| & =\|x+M\|=\inf \{\|x+m\| m \in M\} \\
& \leq\|x+m\| \forall m \in M \\
& =\|x\| \text { if } m=0 \text { in particular }
\end{aligned}
$$

or $\quad\|T(x)\| \leq 1 .\|T(x)\| \forall x \in N$ as $0 \in M$ and $M$ is a subspace of $N$.
$\Rightarrow \quad T$ is bounded with bound 1
$\Rightarrow \quad T$ is continuous.
Also $\quad\|T\|=\sup \{\|T(x)\|:\|x\| \leq 1\}, x \in N$

$$
\leq \sup \{\|x\|:\|x\| \leq 1\}, x \in N
$$

$$
\leq 1
$$

Theorem 7: If $N, N^{\prime}$ are two normed linear spaces and $T$ is a continuous linear transformation of $N$ into $N^{\prime}$ and if $M$ is the null space (kernel) of $T$, then show that $T$ induces a natural linear transformation $T^{1}$ of $\frac{N}{M}$ into $N^{\prime}$ and that $\left\|T^{1}\right\|=\|T\|$.

Proof : Kernel or Null space of $T$ is defined as
$\operatorname{Ker}(T)$ or $N(T)=\{x: x \in N, T(x)=0\}$
Here is given that $\operatorname{Ker}(T)$ or $N(T)=M$.
We first claim that $M$ is closed, since if $x$ be a limit point of $M$, then $\exists$ a sequence $<x_{n}>$ in $M$ s.t. $\quad x_{n} \rightarrow x$. But $T$ is continuous, therefore $T\left(x_{n}\right) \rightarrow T(x)$. Now $T\left(x_{n}\right)=0 \forall n$ $\Rightarrow T(x)=0 \Rightarrow x \in M \Rightarrow M$ is closed.

Thus $M$ being a closed subspace of $N, \frac{N}{M}$ is a normed linear space with the norm of a cost $x+M$ in $N / M$ s.t.

$$
\|x+M\|=\inf .\{\|x+m\|: m \in M\}
$$

Now defining $T^{\prime}: N / M \rightarrow N^{\prime}$ and setting $T^{\prime}(x+M)=T(x)$, we claim that $T^{\prime}$ is a linear transformation s.t. $\|T\|=\left\|T^{\prime}\right\|$. Taking two elements $x+M$ and $y+M$ of $N / M$ and $\alpha, \beta$ any scalars, we have

$$
\begin{aligned}
T^{\prime}[\alpha(x+M)+\beta(y+M)] & =T^{\prime}[(\alpha x+M)+(\beta y+M)] \\
& =T^{\prime}[(\alpha x+\beta y)+M] \quad \text { by property of coset } \\
& =T(\alpha x+\beta y) \\
& =\alpha T(x)+\beta T(y) \\
& =\alpha T^{\prime}(x+M)+\beta T^{\prime}(y+M)
\end{aligned}
$$

Thus $T^{\prime}$ is linear
Now $\quad\left\|T^{\prime}\right\|=\sup \left\{\left\|T^{\prime}(x+M)\right\|:\|x+M\| \leq 1\right\}, x \in N$

$$
=\sup \{\|T(x)\|: \inf .\{\|x+m\|: m \in M\} \leq 1\}, x \in N
$$

$$
=\sup \{\|T(x)\|:\|x+m\| \leq 1\}, x \in N, m \in M
$$

$$
=\sup \{\|T(x)+T(m)\|:\|x+m\| \leq 1\}, x \in N, m \in M
$$

$$
\text { since } m \in M \Rightarrow T(m)=0, \text { by det. of } M
$$

$$
=\sup \{\|T(x+M)\|:\|x\| \leq 1\}, x \in N
$$

$$
=\|T\| \text { as } x \in N, m \in M \Rightarrow x+M \in N \text { and } x \in N
$$

$$
\Rightarrow x+0 \in N \text { and } 0 \in M
$$

Theorem 8 : Let $N$ and $N^{\prime}$ be normed linear spaces over the same scalar field and let $T$ be a linear transformation of $N$ into $N^{\prime}$. Then $T$ is bounded if it is continuous.

Proof: Let $T$ be bounded so that there exists a real number $K>0$ such that

$$
\begin{equation*}
\|T(x)\| \leq K\|x\| \forall x \in N \tag{1}
\end{equation*}
$$

To show that $T$ is continuous, let $x \in N$ be arbitrary. For any $\in>0$, we choose $\delta=\frac{\epsilon}{K}$. Then for all $y \in N$ such that $\|y-x\|<\delta$, we have

$$
\begin{aligned}
\|T(y)-T(x)\| & =\|T(y-x)\| \\
& \leq K\|y-x\| \quad \text { by }(1) \\
& <K \frac{\epsilon}{K}=\epsilon \quad \text { as } \quad \delta=\frac{\epsilon}{K}>\|y-x\|
\end{aligned}
$$

Hence $T$ is continuous at $x$. Since $x$ is arbitrary, $T$ is a continuous mapping.

Conversely, let $T$ be continuuous and suppose, if possible, $T$ is not bounded i.e., there exists no real number $\lambda>0$ such that $\|T(x)\| \leq \lambda\|x\| \forall x \in N$

Then for each positive integer $n$, there exists a point $x_{n} \in N$ such that $\left\|T\left(x_{n}\right)\right\|>n\left\|x_{n}\right\|$.
For each $n$, we let

$$
y_{n}=\frac{x_{n}}{n\left\|x_{n}\right\|}
$$

so that $\left\|y_{n}\right\|=\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$ which implies that $y_{n} \rightarrow 0$ as $n \rightarrow \infty$. But for every $n$

$$
\begin{aligned}
\left\|T\left(y_{n}\right)\right\| & =\left\|T\left(\frac{x_{n}}{n\left\|x_{n}\right\|}\right)\right\|=\left\|\frac{1}{n\left\|x_{n}\right\|} T\left(x_{n}\right)\right\| \\
& =\frac{1}{n\left\|x_{n}\right\|}\left\|T\left(x_{n}\right)\right\| \\
& >\frac{n\left\|x_{n}\right\|}{n\left\|x_{n}\right\|}=1 \text { as }\left\|T\left(x_{n}\right)\right\|>n\left\|x_{n}\right\|
\end{aligned}
$$

Which implies $T\left(y_{n}\right)$ does not tend to 0 (i.e., $T(0)$ as $\left.n \rightarrow \infty\right)$. Here $<y_{n}>\rightarrow 0$ but $<T_{n}\left(y_{n}\right)>\nrightarrow T(0)$, is a contradiction showing that $T$ is bounded.

### 2.4 Weak Convergence

If $N$ be a normed linear space and $N *$ its dual space, then a sequence $<x_{n}>$ of $N$ is known as Weakly convergent to $x \in N, \forall f \in N^{*}$ s.t

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)
$$

or simply $x_{n} \xrightarrow{w} x$
i.e. $\left\langle x_{n}\right\rangle$ c onverges weakly to $x$, and $x$ is called as the weak limit of $\left\langle x_{n}\right\rangle$.

Note that weak convergence means convergence of the sequence of number $a_{n}=f\left(x_{n}\right)$ for every $f \in N^{*}$.

Weak convergence has various applications throughout analysis (for instance, in the calculus of variation and the general theory of differential equations). The concept illustrates a basic principle of functional analysis. For applying weak convergence one needs to know certain basic properties, which we state in the following theorem.

Theorem 9: The weak limit of a sequence is unique.
Proof: Let $\left\langle x_{n}\right\rangle$ be any sequence. Let if possible $x_{n} \xrightarrow{w} x_{0}$ and $x_{n} \xrightarrow{w} x$, then for an arbitrary
linear operater $T \in N^{*}, N^{*}$ being dual space of normed space $N$, we have

$$
T\left(x_{n}\right) \rightarrow T\left(x_{0}\right) \quad \text { and } \quad T\left(x_{n}\right) \rightarrow T(x)
$$

implying that $T\left(x_{0}\right)=T(x)$ or $T\left(x_{0}-x\right)=0$
Choosing $T$ s.t. $\|T\|=1$ and $T\left(x_{0}-x\right)=\left\|x_{0}-x\right\|$, we have
$\left\|x_{0}-x\right\|=0$ giving $x=x_{0}$, i.e., the weak limit is unique.
Corollany 1: If there are two sequences $<x_{n}>$ and $<y_{n}>$ in $N$ s.t.

$$
\begin{gathered}
x_{n} \xrightarrow{w} x \text { and } y_{n} \xrightarrow{w} y \text {, then it is observed that } \\
x_{n}+y_{n} \xrightarrow{w} x+y
\end{gathered}
$$

and for any scalar $\alpha$.

$$
\alpha x_{n} \xrightarrow{w} \alpha x \text { etc. }
$$

Corollany 2: Every subsequence of $\left\langle x_{n}\right\rangle$ converges weakly to $x$ i.e., if $\left\langle x_{n j}\right\rangle$ be a subsequence of $\left.<x_{n}\right\rangle$ of $N$ s.t. $x_{n} \xrightarrow{w} x_{0}$, then every subsequence $\left.<x_{n j}\right\rangle$ converges and has the same limit as the sequence.

### 2.5 Equivalent Norms

Let a linear space $L$ be made into a normed linear space in two ways and let the two norms of a vector $x$ in $L$ be denoted by $\|x\|_{1}$ and $\|x\|_{2}$. Then these norms are said to be equivalent, written $\left\|\left\|_{1} \sim\right\|\right\|_{2}$, if they generate the same topology on $L$.

When two norms are equivalent then if $\left\langle x_{n}\right\rangle$ is a Cauchy sequence w.r.t $\|.\|_{1}$, it is essentially a Cauchy sequence w.r.t. $\|\cdot\|_{2}$ and vice-versa. Moreover, in the case of equivalent norms, the class of open sets defined by one is the same as the defined by the other. In other words, in any $\in$ neighbourhood ( $n b a$ ) induced by $\|\cdot\|_{1}, a$ neighbourhood induced by $\left\|\|_{2}\right.$ is wholly contained and conversely.

Remark: To understand the full implication of the above definition we remind the reader that a norm $\|\cdot\|$ on a linear space $L$ induces the metric $d(x, y)=\|x-y\|$ which in turns induces a topology on $L$ called the metric topology. This is the topology generated by the norm.

Theorem 10: If $N$ be a normed linear space, then show that the two norms $\left\|\left\|_{1},\right\|\right\|_{2}$ defined on $N$ are equivalent iff $\exists$ positive real numbers $a$ and $b$ s.t.

$$
a\|x\|_{1} \leq\|x\|_{2} \leq b\|x\|_{1}, \quad \forall x \in N
$$

Proof: If we assume that $N_{1}$ is a normed linea space with norm $\left\|\|_{1}\right.$ and $N_{2}$ is a normed linear space with norm $\left\|\|_{2}\right.$ and that $T(x)=x$ is a linear transformation with domain $N_{1}$ and range $N_{2}$, then $T^{-1}$ is a
linear transformation wtih domain $N_{2}$ and range $N_{1}$ i.e.,

$$
\begin{equation*}
T(x)=x \Rightarrow T^{-1}(x)=x \tag{1}
\end{equation*}
$$

Now, we have
$T$ is continuous $\Leftrightarrow T$ is bounded
$\Leftrightarrow \exists$ positive number $b$ such that

$$
\begin{gather*}
\|T(x)\|_{2} \leq b\|x\|_{1}, \forall x \in N \\
\Leftrightarrow\|x\|_{2} \leq b\|x\|_{1}, \forall x \in N \quad \text { by (1) } \tag{2}
\end{gather*}
$$

$T^{-1}$ is continuous $\Leftrightarrow T^{-1}$ is bounded
$\Leftrightarrow \exists$ is positive number $A$ such that

$$
\begin{align*}
& \left\|T^{-1}(x)\right\|^{\prime} \leq A\|x\|_{2}, \forall x \in N \\
\Leftrightarrow & \|x\|_{1} \leq A\|x\|_{2}, \forall x \in N \quad \text { by (1) } \\
\Leftrightarrow & \frac{1}{A}\|x\|_{1} \leq\|x\|_{2}, \forall x \in N \\
\Leftrightarrow & a\|x\|_{1} \leq\|x\|_{2}, \forall x \in N \quad \quad\left(\text { on setting } a=\frac{1}{A}\right) \tag{3}
\end{align*}
$$

Also $T$ and $T^{-1}$ are continuous
$\Leftrightarrow$ inverse images of open sets in $N_{2}$ and $N_{1}$ under $T, T^{-1}$ respectively are open in $N_{1}$ and $N_{2}$
$\Leftrightarrow$ open sets in $N_{1}$ are the same as those in $N_{2} ; T, T^{-1}$ being identity transformations
$\Leftrightarrow$ Norms $\left\|\|_{1}\right.$ and $\| \|_{2}$ induces the same topology on $N$
In view of (2), (3) and (4), $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are equivalent
$\Leftrightarrow \exists$ positive number $a$ and $b$ s.t.

$$
a\|x\|_{1} \leq\|x\|_{2} \leq b\|x\|_{1}, \forall x \in N .
$$

Theorem 11 : On a finite dimensional linear space $X$, all norms are equivalent.
Proof : Let $\operatorname{dim} X=n$ and $\left\{x_{1}, x_{2}, . ., x_{n}\right\}$ be any basis for $X$. Then for each $x \in X$, there is a list of scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that $x=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n}$.

Let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ be two norms defined on $X$. Then there exists a constant $c>0$ such that

$$
\|x\|_{1}=\left\|\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n}\right\|_{1} \geq C\left(\left|\alpha_{1}\right|+\ldots+\left|\alpha_{n}\right|\right)
$$

Also

$$
\begin{array}{rlr}
\|x\|_{2} & =\left\|\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}\right\|_{2} & \\
& \leq\left\|\alpha_{1} x_{1}\right\|_{2}+\ldots+\left\|\alpha_{n} x_{n}\right\|_{2} & \text { using } N_{3} \\
& =\left|\alpha_{1}\right|\left\|x_{1}\right\|_{2}+\ldots+\left|\alpha_{n}\right|\left\|x_{n}\right\|_{2} & \text { using } N_{4} \\
& \leq K\left(\left|\alpha_{1}\right|+\ldots+\left|\alpha_{n}\right|\right), \text { where } & \\
K= & \max \left\{\left\|x_{1}\right\|_{2}, \ldots,\left\|x_{n}\right\|_{2}\right\} &
\end{array}
$$

Thus $\quad \alpha\|x\|_{2} \leq\|x\|_{1}$, where $\alpha=\frac{c}{K}>0$

The reverse inequality is obtained by interchanging the roles of $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ in the above argument.

### 2.6 Compactness and Finite Dimension

Some basic properties of finite dimensional normed linear spaces and subspaces are related to the concept of compactness.

### 2.6.1 Compactness in Normed Spaces

If $N$ be a normed linear space and $A$ is a subset of $N$, then $A$ is compact or sequentially compact if every cover of it has a finite subcover wheras a class $\left\{G_{i}\right\}$ of open subsets of $N$ is known as an open cover of $N$ if to each point $x \in N$, there corresponds atleast one $G_{i}$ i.e., $N=U_{i} G_{i}$ and a subclass of an open cover, which is an open cover in its own rights, is known as a subcover.

In other words, a subset $A \subset N$ is compact if every sequence in $A$ contains a convergent subsequence whose limit point belongs to $A$. It should be remembered that an $x \in N$ is a limit point of $A \subset N$, if each open $n b d$ (or open sphere with $x$ as centre) of $x$ contains at least one point of $A$ other than $x$. In other words, an $x \in N$ is a limit point of $A \subset N$, iff $\exists$ a sequence $<x_{n}>\rightarrow x_{0}$ where $x_{n} \in A$, $x_{n} \neq x_{0} \quad \forall n$.

### 2.6.2 Related Theorems

A general property of compact sets is expressed in the following theorem.
Theorem 12 : Every compact subset of a normed linear space is complete.
Proof: Assuming that $\left.<x_{n}\right\rangle$ is a Cauchy sequence of a compact subset $A$ of the normed linear space $(N,\|\cdot\|)$. In view of compactness of $A$, the sequence $<x_{n}>$ consists of a convergent subsequence say $<x_{n i}>\rightarrow x_{0} \in A$ for any $i$, we have

$$
\begin{aligned}
\left\|x_{i}-x_{0}\right\| & =\left\|x_{i}-x_{n i}+x_{n i}-x_{0}\right\| \\
& \leq\left\|x_{i}-x_{n i}\right\|+\left\|x_{n i}-x_{0}\right\| \quad \text { by } N_{3}
\end{aligned}
$$

$$
<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \rightarrow 0 \text { as } i \rightarrow \infty
$$

Since $\left\|x_{i}-x_{n i}\right\|<\frac{\epsilon}{2} \rightarrow 0$ as $<x_{n}>$ is a Cauchy sequence and $\left\|x_{n i}-x_{0}\right\|<\frac{\epsilon}{2} \rightarrow 0$ as $x_{n i} \rightarrow x_{0}$.
Hence $<x_{n}>$ is a convergent sequence so that $A$ is complete.
Theorem 13 : Every compact subset of a normed space is bounded but the converse is not true.
Proof: Assuming that a compact subset $A$ of normed space $N$ is not bounded. Every open covering of $A$ consists of unit open sphere $S_{1}\left(x_{i}\right)$ with centres at each of its points $x_{i}, i=1,2, \ldots, n$ s.t.

$$
A \subset \bigcup_{i=1} S_{i}\left(x_{i}\right)
$$

Taking $K=\max _{1 \leq i \leq n}\left\|x_{i}\right\|$ and assuming that $\exists$ an $x \in A$ s.t.
$\|x\|>1+K$, Since $A$ is not bounded, we must have an element $x_{i}$ s.t. $x \in S_{1}\left(x_{i}\right)$, for $x \in A$ and $A \subset \bigcup_{i=1}^{n} S_{i}\left(x_{i}\right)$.

As such $\left\|x-x_{i}\right\|<1$.
Now, $\quad\|x\|=\left\|x-x_{i}+x_{i}\right\|$

$$
\begin{aligned}
& \leq\left\|x-x_{i}\right\|+\left\|x_{i}\right\| \\
& <1+\max \left\|x_{i}\right\|=1+K
\end{aligned}
$$

i.e. $\|x\| \leq 1+K$ which is a contradiction of the fact that $\|x\|>1+K$.

Hence $A$ is bounded.

### 2.7 Reisz Lemma

Theorem 14: If $M$ be a closed proper subspace of a normed linear space $N$ and $a$ is a real number such that $0<a<1$, then $\exists$ a vector $x_{0} \in N$ s.t. $\left\|x_{0}\right\|=1$ and $\left\|x-x_{a}\right\| \geq a \forall x \in M$.

Proof: Select any $x_{1} \in N-M$ and let

$$
h=\inf _{x \in M}\left\{\left\|x-x_{1}\right\|=d\left(x_{1}, M\right)\right\}
$$

It is clear that $h$ must be strictly greater than zero for otherwise we would have

$$
h=0 \Rightarrow d\left(x_{1}, M\right)=0 \Rightarrow x_{1} \in \bar{M}=M \quad[\because \mathrm{M} \text { is closed }]
$$

Which contradicts the choice of $x_{1} \in N-M$.

Now $\quad 0<a<1 \Rightarrow \frac{1}{a}>1 \Rightarrow \frac{h}{a}>h \quad$ as $h>0$.
Hence by definition of infimum, there exists $x_{0} \in M$ such that

$$
\begin{equation*}
h<\left\|x_{0}-x_{1}\right\| \leq \frac{h}{a} \tag{1}
\end{equation*}
$$

because if $\left\|x_{0}-x_{1}\right\|$ were greater than or equal to $\frac{h}{a} \forall x_{0} \in M$, then it would contradicts the fact that $h$ is the greatest lower bound (infinum) of $\left\{d\left(x_{0}, x_{1}\right): x_{0} \in M\right\}$.

Moreover $x_{1} \in N-M$ and $x_{0} \in M \Rightarrow x_{1} \neq x_{0}$.
Setting $x_{a}=\frac{\left(x_{1}-x_{0}\right)}{\left\|x_{1}-x_{0}\right\|}=K\left(x_{1}-x_{0}\right)$ where $K=\left\|x_{1}-x_{0}\right\|^{-1}>0$
Then $\quad\left\|x_{a}\right\|=K\left\|x_{1}-x_{0}\right\|=K K^{-1}=1$.
Now let $x \in M$ be arbitrary. Then $K^{-1} x+x_{0} \in M$ also and so

$$
\begin{align*}
\left\|x-x_{a}\right\| & =\left\|x-K\left(x_{1}-x_{0}\right)\right\| \\
& =K\left\|\left(K^{-1} x+x_{0}\right)-x_{1}\right\| \geq K h \tag{2}
\end{align*}
$$

$\because h=\inf _{x \in M}\left\|x-x_{1}\right\|$ and $K^{-1} x+x_{0} \in M$, we have

$$
\left\|\left(K^{-1} x+x_{0}\right)-x_{1}\right\| \geq h
$$

But $\quad K h=\left\|x_{1}-x_{0}\right\|^{-1} h \geq a \quad$ by (1)
From (2) and (3), we have

$$
\left\|x-x_{a}\right\| \geq a \text { for all } x \in M .
$$

Theorem 15 : Let $N$ be normed linear space, and suppose the set $S=\{x \in N:\|x\|=1\}$ is compact. Then $N$ is finite dimensional.

Proof : We know that in a metric space, a subset is compact iff it is sequentially compact is iff every sequence has a convergent subsequence. Since $S$ is given to be compact, every sequence in $S$ must have a convergent subsequence. Suppose, if possible, $N$ is not finite dimensional. Choose $x_{1} \in S$ and let $N_{1}$ be the subspace spanned by $x_{1}$. Then $N_{1}$ is proper subspace of $N$. Since $N_{1}$ is finite dimensional and therefore it is closed. Hence by Reisz Lemma there exists a vector $x_{2} \in S$ such that $\left\|x_{2}-x_{1}\right\| \geq \frac{1}{2}$.

Let $N_{2}$ be closed proper subspace of $N$ generated by $x_{1}, x_{2}$, then as before there must exists $x_{3} \in S$ such that

$$
\left\|x_{3}-x\right\| \geq \frac{1}{2} \quad \text { if } \quad x \in N
$$

Proceeding inductively, we obtain an infinite sequence $\left\langle x_{n}\right\rangle$ of vectors in $S$ such that $\left\|x_{n}-x_{m}\right\| \geq \frac{1}{2}$.

This sequence can therefore have no convergent subsequence. But this contradicts the hypothesis that $S$ is compact. Hence $N$ must be finite dimensional.

## Self-Learning Exercise - I

1. Write whether the following statements are true or false.
(a) We may define the norm of a bounded linear transformation $T$ on $N$ into $N^{\prime}$ by

$$
\|T\|=\sup \left\{\frac{\|T(x)\|}{\|x\|}: x \neq 0\right\}, x \in N
$$

(b) The identity operator $I: N \rightarrow N$ on a normed space $N \neq\{0\}$ is not bounded.
(c) The zero operator $0: N \rightarrow N^{\prime}$ on a normed space $N$ is bounded and has noirm $\|0\|=0$.
(d) Every subsequence of $\left\langle x_{n}\right\rangle$ converges weakly to $x$, where $x_{n} \xrightarrow{w} x$.
(e) Two norms $\left\|\left\|_{1},\right\| \cdot\right\|_{2}$ defined on a normed space $N$ are equivalent iff $\exists$ positive real number $a$ and $b$ s.t.

$$
a\|x\|_{1} \leq\|x\|_{2} \geq b\|x\|_{1} \forall x \in N .
$$

2. What is the zero element of the linear spac e $B\left(N, N^{\prime}\right)$.

### 2.8 Summary

In this unit, we have seen that the concept of linear transformation can be generalised from linear spaces to normed linear spaces.

We know that in calculus are defines different types of convergence (ordinary, conditional, absolute and uniform convergence). The yields greater flexibility in the theory and application of sequence and series. In functional analysis, the situation is similar.

### 2.9 Answers to Self-Learning Exercise

1. 

(a) True
(b) False
(c) True
(d) True
(e) False.
2. The zero operator $0: N \rightarrow N^{\prime}$

### 2.10 Exercises

1. Let $N$ be the normed space of all polynomials on $J=[0,1]$ with norm given $\|x\|=\max |x(t)| ; t \in J$. A differentiation operator $T$ is defined on $N$ by

$$
T x(t)=x^{\prime}(t),
$$

where the prime denotes differentiation with respect to $t$. Prove that this operator is linear but not bounded.
2. Let $X, Y$ and $Z$ be normed spaces and let $T: X \rightarrow Y$ and $S: Y \rightarrow Z$ be two bounded linear transformation. Then prove that $S o T: X \rightarrow Z$ is bounded linear transformation and $\|S o T\| \leq\|S\|\|T\|$.
3. If $T$ be a linear transformation of normed space $N$ into normed space $N^{\prime}$, then inverse of $T$ i.e., $T^{-1}$ exists and is continuous on its domain of definition iff $\exists$ a constant $K \geq 0$ s.t. $K\|x\| \leq\|T(x)\| \forall x \in N$.
4. If $T$ is a linear transformation of a normed linear space $N$ into a normed linear space $N^{\prime}$, then show that $T$ is bounded iff $T$ maps bounded sets in $N$ into bounded sets in $N^{\prime}$.
5. Give an example to show that a closed and bounded subset of normed linear space need not be compact.

# Unit - 3 <br> <br> Fundamental Theorems of Functional Analysis 

 <br> <br> Fundamental Theorems of Functional Analysis}

## Structure of the Unit

### 3.0 Objectives

### 3.1 Introduction

### 3.2 Multilinear Mappings

### 3.3 Open Mapping Theorem

3.4 Closed Graph Theorem
3.5 Uniform Boundedness Theorem
3.6 Summary
3.7 Answers to Self-Learning Exercise

### 3.8 Exercises

### 3.0 Objectives

This unit contains the basis of the more advanced theory of normed and Banach spaces without which the usefulness of these spaces and their applications would be rather limited. The three import theorems included in this unit are, the open mapping theorem, the uniform boundedness theorem and the closed graph theorem.

### 3.1 Introduction

Banach space in a linear space which is also, in a speacial way, a complete metric space. This combination of algebraic and metric structures opened the posibility of studying of linear transformation of one Banach space into another which had the additional property of being continuous.

Most of our work in this unit centres around three fundamental theorems related to continuous linear transformation between Banach spaces. These theorems together with The Hahn-Banach theorem are often regarded as the cornerstones of functional analysis.

### 3.2 Multilinear Mappings

Definition : Let $X_{1}, X_{2}, \ldots, X_{n}, Y$ be linear spaces over the same field of scalars $K$. A mapping

$$
f: X_{1} \times X_{2} \times \ldots \times X_{n} \rightarrow Y
$$

is said to be multilinear if for each $i \in \underline{n}$ the mapping

$$
x_{i} \rightarrow f\left(a_{1}, \ldots, a_{i-1}, x_{i}, a_{i+1}, \ldots, a_{n}\right)
$$

of $X_{i}$ into $Y$ is linear.
Definition : Let $X_{1}, X_{2}, \ldots, X_{n}$ be normed linear spaces. Then a mapping

$$
\|\cdot\|: X_{1} \times X_{2} \times \ldots \times X_{n} \rightarrow R
$$

given by

$$
\left\|\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\|=\max \left\{\left\|x_{1}\right\|,\left\|x_{2}\right\|, \ldots,\left\|x_{n}\right\|\right\}
$$

is a norm on $X_{1} \times X_{2} \times \ldots \times X_{n}$.
The product space $X_{1} \times X_{2} \times X_{3} \ldots \times X_{n}$ of normed linear spaces $X_{1}, X_{2}, \ldots, X_{n}$ is endowed with the norm defined above.

The following theorem is a generalization of Theorem 8-Unit-2.
Theorem 1: Let $X_{1}, X_{2}, \ldots, X_{n}, Y$ be normed linear spaces over the same field of scalars and let

$$
f: X_{1} \times \ldots \times X_{n} \rightarrow Y
$$

be a multilinear mapping. Then $f$ is continuous iff there exists a number $m>0$ such that

$$
\left\|f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\| \leq m\left\|x_{1}\right\|\left\|x_{2}\right\| \ldots x_{n} \|
$$

for any $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X_{1} \times X_{2} \times \ldots \times X_{n}$.
Proof: Let first the given condition be satisfied and let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be any point in $X_{1} \times X_{2} \times \ldots \times X_{n}$.
Since $f$ is linear with respect to each of its variable, therefore

$$
\begin{aligned}
\left(x_{1}, x_{2}, \ldots, x_{n}\right) & -f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=f\left(x_{1}-a_{1}, x_{2}, \ldots, x_{n}\right) \\
& +f\left(a_{1}, x_{2}-a_{2}, x_{3}, \ldots, x_{n}\right)+\ldots+f\left(a_{1}, \ldots, a_{n-1}, x_{n}-a_{n}\right) \\
& =\sum_{i=1}^{n}\left(a_{1}, \ldots, a_{i-1}, x_{i}-a_{i}, x_{i+1}, \ldots, x_{n}\right)
\end{aligned}
$$

and hence using triangle inequality

$$
\begin{aligned}
& \left\|f\left(x_{1}, x_{2}, \ldots, x_{n}\right)-f\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right\| \\
& \quad \leq \sum_{i=1}^{n}\left\|\left(a_{1}, \ldots, a_{i-1}, x_{i}-a_{i}, x_{i+1}, \ldots, x_{n}\right)\right\| \\
& \quad \leq \sum_{i=1}^{n}\left(m\left\|a_{1}\right\| \ldots\left\|a_{i-1}\right\|\left\|x_{i}-a_{i}\right\|\left\|x_{i+1}\right\| \ldots\left\|x_{n}\right\|\right)
\end{aligned}
$$

Let us assume that $\left\|x_{i}-a_{i}\right\| \leq \in$ for $i \in \underline{n}$. Then $\left\|x_{i}\right\| \leq\left\|a_{i}\right\|+\in$ and we can determine $\delta>0$ such that $\left\|x_{i}\right\| \leq\left\|a_{i}\right\|+\in \leq \delta$ for $i \in \underline{n}$, and hence

$$
\begin{aligned}
\left\|f\left(x_{1}, \ldots, x_{n}\right)-f\left(a_{1}, \ldots, a_{n}\right)\right\| & \leq m \delta^{n-1} \sum_{i=1}^{n}\left\|x_{i}-a_{i}\right\| \\
& \leq m n \delta^{n-1} \in
\end{aligned}
$$

Since for small values of $\in$ the choice of $\delta$ is independent of $\in$. We obtain that $f$ is continuous at $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Next let $f$ be continuous at the point $(0,0, \ldots, 0)$. Then there exists a number $\in>0$ such that

$$
\begin{aligned}
& \left\|f\left(x_{1}, x_{2}, \ldots, x_{n}\right)-f(0,0, \ldots, 0)\right\| \leq 1 \\
& \left\|\left(x_{1}, x_{2}, \ldots, x_{n}\right)-(0,0, \ldots, 0)\right\| \leq \in
\end{aligned}
$$

for
Let now $\left(x_{1}, x_{2}, \ldots, x_{n}\right), x_{1} \neq 0, \ldots, x_{n} \neq 0$ be any point of $X_{1} \times X_{2} \times \ldots \times X_{n}$. If

$$
y_{1}=\frac{\epsilon x_{1}}{\left\|x_{1}\right\|}, y_{2}=\frac{\epsilon\left\|x_{2}\right\|}{\left\|x_{2}\right\|}, \ldots, y_{n}=\frac{\epsilon\left\|x_{n}\right\|}{\left\|x_{n}\right\|}
$$

Then $\left\|\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right\|=\in$ and $\left\|f\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right\| \leq 1$

$$
\begin{aligned}
& \Rightarrow \quad\left\|\frac{\epsilon^{n}}{\left\|x_{1}\right\|\left\|x_{2}\right\| \ldots\left\|x_{n}\right\|} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\|=\leq 1 \\
& \Rightarrow \quad\left\|f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\| \leq m\left\|x_{1}\right\|\left\|x_{2}\right\| \ldots\left\|x_{n}\right\|
\end{aligned}
$$

where $m=\frac{1}{\epsilon^{n}}$.
If $x_{1}=0$ or $x_{2}=0$ or $x_{n}=0$, then $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ and the preceeding inequality still holds.
Hence the theorem.

### 3.3 Open Mapping Theorem

The open mapping theorem states conditions under which a bounded linear operator is an open mapping. The present theorem exhisits reason why Banach spaces are more satisfactory than incomplete normed spaces. The proof of the open mapping theorem will be based on Baire's category theorem.

Let us begin by introducing the concept of an open mapping.
Definition : If $X$ and $Y$ are two topological spaces. Then a map $f: X \xrightarrow{\text { into }} Y$ is known as an open mapping if $\forall$ open set V of $X$, the set $f(V)$ is open in $Y$. In other words, $f$ is open at a point $x \in X$ if $f(\cup)$ contains a $n b d$ of $f(x)$ whenever $U$ is a $n b d$ of $x$. Evidently $f$ is open iff $f$ is open at every point of $X$. Thus a linear mapping of one topological space into another is open iff it is open at the origin. It should also be noted that a one-one continuous mapping $f$ of $X$ onto $Y$ is homeomorphism when $f$ is open.

If $B$ and $B^{\prime}$ are Banach spaces (i.e. complete normed spaces) then the open spheres with radius $r$ and centre at $x$ are denoted respectively by $S(x, r)$ or $S_{r}(x)$ and $S^{1}(x, r)$ or $S_{r}^{1}(x)$ whereas the
open spheres in $B, B^{\prime}$ respectively are denoted by $S_{r}, S_{r}^{1}$ with radius $r$ and centre at origin. As such the unit open spheres with centre at origin are $S_{1}, S_{1}^{1}$ respectively in $B, B^{\prime}$. It is easy to see that

$$
S(x, r)=x+S_{r} \quad \text { and } \quad S_{r}=r S_{1}
$$

For we have

$$
\begin{aligned}
y \in S(x, r) & \Leftrightarrow\|y-x\|<r \\
& \Leftrightarrow\|z\|<r \quad \text { and } \quad y-x=z \\
& \Leftrightarrow y=x+z \text { and }\|z\|<r \\
& \Leftrightarrow y \in x+S_{r}
\end{aligned}
$$

and

$$
\begin{aligned}
S_{r} & =\{x:\|x\|<r\}=\left\{x: \frac{\|x\|}{r}<1\right\} \\
& =\{r y:\|y\|<1\}=r S_{1} .
\end{aligned}
$$

The following lemma is the key to the proof of the open mapping theorem.
Lemma: If $B$ and $B^{\prime}$ be Banach spaces and $T$ a continuous linear transformation of $B$ onto $B^{\prime}$, then the image of every open sphere centred at origin in $B$ contains an open sphere centred at origin in $B^{\prime}$

Proof: Taking $S_{r}, S_{r}^{1}$ as open spheres with radius $r$ and centred at origin in $B, B^{\prime}$ respectively and $S_{1}$ an open unit sphere, we have

$$
S_{r}=r S_{1}
$$

which yields

$$
\begin{equation*}
T\left(S_{r}\right)=T\left(r S_{1}\right)=r T\left(S_{1}\right) \tag{1}
\end{equation*}
$$

Hence it suffies to prove that $T\left(S_{1}\right)$ contains some $S_{r}^{1}$.
We begin by proving that $\overline{T\left(S_{1}\right)}$ contains some $S_{r}^{1}$. For each positive integer $n$, consider open spheres $S_{n}$ in $B$. Then it is clear that $B=\bigcup_{\mathrm{n}=1}^{\infty} S_{n}$.

Since $T$ is onto, this gives

$$
B^{\prime}=T(B)=T\left(\bigcup_{\mathrm{n}=1}^{\infty} S_{n}\right)=\bigcup_{\mathrm{n}=1}^{\infty} T\left(S_{n}\right)
$$

Since $B^{\prime}$ is complete. it is of second category. Hence by Baire category theorem, $\overline{T\left(S_{n 0}\right)} \neq \phi$ for some $n_{0}$, that is $\overline{T\left(S_{n 0}\right)}$ has an interior point $y_{0}$ which may be assumed to lie in $T\left(S_{n 0}\right)$.
[The existence of such a point $y_{0}$ is proved as follows:
$y$ is an interior point of $\overline{T\left(S_{n 0}\right)}$
$\Rightarrow \quad$ there exists an open set $G$ such that $\left.y \in G \subset \overline{T\left(S_{n 0}\right)}\right]$.
But $y \in \overline{T\left(S_{n 0}\right)} \Rightarrow y$ is an adherent point of $T\left(S_{n 0}\right)$
$\Rightarrow \quad$ the $n b d \quad G$ of $y$ must contain a point $y_{0}$ of $T\left(S_{n 0}\right)$.
Thus $y_{0} \in T\left(S_{n 0}\right)$ is such that $y_{0} \in G \subset \overline{T\left(S_{n 0}\right)}$ which implies that $y_{0}$ is an interior point of $\overline{T\left(S_{n 0}\right)}$.

The mapping of $f: B^{\prime} \rightarrow B^{\prime}$ s.t. $f(y)=y-y_{0}$ is a homomorphism. For $f$ is evidently one-one onto and if $y_{n} \in B^{\prime}$ is such that $y_{n} \rightarrow y$, then

$$
f\left(y_{n}\right)=y_{n}-y_{0} \rightarrow y-y_{0}=f(y)
$$

and

$$
\bar{f}^{1}\left(y_{n}\right)=y_{n}+y_{0} \rightarrow y+y_{0}=\bar{f}^{1}(y)
$$

so that $f$ and $f^{-1}$ are both continuous. We use the mapping $f$ to show that 0 is the interior point of $\overline{T\left(S_{n 0}\right)}-y_{0}$. We have $y_{0}$ is an interior point of $\overline{T\left(S_{n 0}\right)}$.
$\Rightarrow \quad$ there exists an open set $G$ such that $y_{0} \in \subset \overline{T\left(S_{n 0}\right)}$
$\left.\Rightarrow \quad f\left(y_{0}\right) \in f(G) \subset f \overline{\left[T\left(S_{n 0}\right)\right.}\right]$
$\Rightarrow \quad y_{0}-y_{0}=0 \in f(G) \subset \overline{T\left(S_{n 0}\right)}-y_{0}$
$\Rightarrow \quad 0$ is an interior point of $\overline{T\left(S_{n_{0}}\right)}-y_{0}$
$\left[\because f\right.$ is an open map (being a homeomorphism) $f(G)$ is an open set in $B^{\prime}$ and so $\overline{T\left(S_{n 0}\right)}-y_{0}$ is a $n b d$ of 0 ]
we assert that $T\left(S_{n 0}\right)-y_{0} \subset T\left(S_{2 n 0}\right)$
Let $y \in T\left(S_{n 0}\right)-y_{0}$. Then there exists $x \in S_{n 0}$ such that

$$
y=T(x)-y_{0} .
$$

But $y_{0} \in T\left(S_{n 0}\right)$ implies that $y_{0}=T\left(x_{0}\right)$ for some $x_{0} \in S_{n 0}$.
Thus $y=T(x)-T\left(x_{0}\right)=T\left(x-x_{0}\right)$,
where $x, x_{0} \in S_{n 0}$. Also

$$
\begin{aligned}
x, x_{0} \in S_{n 0} & \Rightarrow\|x\|<n_{0}, \quad\left\|x_{0}\right\|<n_{0} \\
& \Rightarrow\left\|x-x_{0}\right\| \leq\|x\|+\left\|x_{0}\right\|<2 n_{0} \\
& \Rightarrow x-x_{0} \in S_{2 n 0} \\
& \Rightarrow T\left(x-x_{0}\right) \in T\left[S_{2 n 0}\right] \\
& \Rightarrow y \in T\left[S_{2 n 0}\right] \quad \text { by (3) }
\end{aligned}
$$

Thus we have shown that
$y \in T\left[S_{n 0}\right]-y_{0} \Rightarrow y \in T\left[S_{2 n 0}\right]$ and therefore

$$
\begin{array}{rlc} 
& T\left[S_{n 0}\right]-y_{0} \subset T\left[S_{2 n 0}\right]=2 n_{0} T\left(S_{1}\right) & \text { by }(1) \\
\Rightarrow & \overline{T\left(S_{n 0}\right)-y_{0}} \subset \overline{2 n_{0} T\left(S_{1}\right)} & {[\because A \subset B \Rightarrow \bar{A} \subset \bar{B}]} \tag{4}
\end{array}
$$

Since $f$ is homeomorphism,

$$
\begin{align*}
& f \overline{\left[T\left(S_{n 0}\right)\right]} \subset \overline{f\left[T\left(S_{n 0}\right)\right]} \quad \text { as } \quad f(\bar{A})=\overline{f(A)} \\
\Rightarrow \quad & \overline{T\left(S_{n 0}\right)}-y_{0}=\overline{T\left(S_{n 0}\right)-y_{0}} \subset \overline{2 n_{0} T\left(S_{1}\right)} \tag{5}
\end{align*}
$$

by definition of $f$ and (4).
The mapping

$$
g: B^{\prime} \rightarrow B^{\prime} \text { s.t. } g(x)=2 n_{0} x
$$

is easily seen to be a homeomorphism and so

$$
\begin{aligned}
\overline{g\left[T\left(S_{1}\right)\right]} & =g \overline{\left[T\left(S_{1}\right)\right]} \\
\Rightarrow \quad \overline{2 n_{0} T\left(S_{1}\right)} & =2 n_{0} \overline{T\left(S_{1}\right)} \quad \text { by definitionof } g,
\end{aligned}
$$

which by (5) implies that

$$
\begin{equation*}
\overline{T\left(S_{n 0}\right)}-y_{0} \subset 2 n_{0} \overline{T\left(S_{1}\right)} \tag{6}
\end{equation*}
$$

It follows from (2) and (6) that $O$ is an interior point of $\overline{T\left(S_{1}\right)}$.
Hence there exists an open sphere $S_{\epsilon}^{1}$ with radius $\in>0$ and centered at origin in $B^{\prime}$ s.t. $S_{\epsilon}^{1} \subset \overline{T\left(S_{1}\right)}$

We complete the proofby showing that $S_{\epsilon}^{1} C T\left(S_{3}\right)$, which is clearly equivalent to ${ }_{\frac{\epsilon}{3}}^{1} \subset T\left(S_{1}\right)$.

Let $y$ be an arbitrary point of $S_{\epsilon}^{1}$ so that $\|y\|<\epsilon$. Then by (7), $y \in \overline{T\left(S_{1}\right)}$, which implies that $y$ is an adherent point of $T\left(S_{1}\right)$ and hence there exists a vector $y_{1} \in T\left(S_{1}\right)$ such that $\left\|y-y_{1}\right\|<\frac{\in}{2}$.

But $y_{1} \in T\left(S_{1}\right) \Rightarrow y_{1}=T\left(x_{1}\right)$ for some $x_{1} \in S_{1}$ so that $\|x\|<1$.
Again we observe from (7), we have $S_{\frac{\epsilon}{2}}^{1} \subset \overline{T\left(S_{\frac{1}{2}}\right)}$
and since $\left\|y-y_{1}\right\|<\frac{\epsilon}{2}$, we have

$$
y-y_{1} \in S_{\frac{\epsilon}{2}}^{1} \subset T \overline{\left(S_{\frac{1}{2}}\right)} .
$$

Therefore as before there exists a vector $y_{2}$ in $T\left(S_{\frac{1}{2}}\right)$ such that

$$
\left\|\left(y-y_{1}\right)-y_{2}\right\|<\frac{\epsilon}{2^{2}} \quad \text { or } \quad\left\|y-\left(y_{1}+y_{2}\right)\right\|<\frac{\epsilon}{2^{2}}
$$

where $y_{2}=T\left(x_{2}\right)$ and $\left\|x_{2}\right\|<\frac{1}{2}$.
Continuing in this way, we obtain a sequence $<x_{n}>$ in $B$ such that $\left\|x_{n}\right\|<\frac{1}{2^{n-1}}$, and

$$
\begin{equation*}
\left\|y-\left(y_{1}+y_{2}+\ldots+y_{n}\right)\right\|<\frac{\epsilon}{2^{n}} \tag{8}
\end{equation*}
$$

where $y_{n}=T\left(x_{n}\right)$. If we put,
$s_{n}=x_{1}+x_{2} \ldots+x_{n}$, then

$$
\begin{align*}
\left\|s_{n}\right\| & =\left\|x_{1}+x_{2}+\ldots+x_{n}\right\| \\
& \leq\left\|x_{1}\right\|+\left\|x_{2}\right\|+\ldots+\left\|x_{n}\right\| \\
& \leq 1+\frac{1}{2}+\ldots+\frac{1}{2^{n-1}}<2 \tag{9}
\end{align*}
$$

Also, for $n>m$, we have

$$
\begin{aligned}
\left\|s_{n}-s_{m}\right\| & =\left\|x_{m+1}+x_{m+2}+\ldots+x_{n}\right\| \\
& \leq\left\|x_{m+1}\right\|+\left\|x_{m+2}\right\|+\ldots+\left\|x_{n}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& <\frac{1}{2^{m}}+\frac{1}{2^{m+1}}+\ldots+\frac{1}{2^{n-1}} \\
& =\frac{\frac{1}{2^{m}}\left(1-\frac{1}{2^{n-m}}\right)}{1-\frac{1}{2}} \quad \text { (summing the G.P.) } \\
& =\frac{1}{2^{m-1}}-\frac{1}{2^{n-m-1}} \rightarrow 0 \text { as } m, n \rightarrow \infty
\end{aligned}
$$

Hence $<s_{n}>$ is a Cauchy sequence in $B$ and since $B$ is complete, there exists a vector $x$ in $B$ such that

$$
\lim _{n \rightarrow \infty} s_{n}=x
$$

and so $\|x\|=\left\|\lim s_{n}\right\|=\lim \left\|s_{n}\right\| \leq 2$ by $(9)<3$, which implies that $x \in S_{3}$. Now

$$
\begin{align*}
y_{1}+y_{2}+\ldots+y_{n} & =T\left(x_{1}\right)+T\left(x_{2}\right)+\ldots+T\left(x_{n}\right) \\
& =T\left(x_{1}+x_{2}+\ldots+x_{n}\right)=T\left(s_{n}\right) \tag{10}
\end{align*}
$$

since $T$ is continuous

$$
\begin{aligned}
x=\lim s_{n} \Rightarrow T(x) & =\lim T\left(s_{n}\right) & & \\
& =\lim \left(y_{1}+y_{2}+\ldots+y_{n}\right) & & \text { by }(10) \\
& =y & & \text { by }(8)
\end{aligned}
$$

Thus $\quad y=T(x)$, where $\|x\|<3$, so that $y \in T\left(S_{3}\right)$
we have now proved that

$$
y \in S_{\epsilon}^{\prime} \Rightarrow y \in T\left(S_{3}\right)
$$

and so $S_{\epsilon}^{1} C T\left(S_{3}\right), y$ being an arbitrary point in $S_{\epsilon}^{1}$.

$$
\begin{aligned}
& \frac{1}{3} S_{\epsilon}^{1} \subset \frac{1}{3} T\left(S_{3}\right) \\
\Rightarrow \quad & \frac{S_{\epsilon}^{1}}{3} \subset T\left(S_{1}\right) \quad \text { by }(1)
\end{aligned}
$$

Hence $T\left(S_{1}\right)$ contains an open sphere centred at origin in $B^{\prime}$.

## Theorem 2 [The open mapping theorem] :

Let $B$ and $B^{\prime}$ be Banach spaces. If $T$ is a continuous linear transformation of $B$ onto $B^{\prime}$, then $T$ is an open mapping.

Proof: We are given that the linear transformation

$$
T: B \rightarrow B^{\prime}
$$

is continuous and onto. We claim that $T$ is an open map i.e., $T(G)$ is an open set in $B^{\prime}$ for every open set $G$ in $B$.

Let $y \in T(G)$ be arbitrary. Then $y=T(x)$ for some $x \in G$. Since $G$ is open set in $B$, there exists an open sphere $S(x, r)$ in $B$ centred at $x$ such that $S(x, r) \subset G$. But as remarked earlier, we can write $S(x, r)=x+S_{r}$, where $S_{r}$ is an open sphere in $B$ centered at origin. Thus

$$
\begin{equation*}
x+S_{r} \subset G \tag{1}
\end{equation*}
$$

By our lemma, there exists an open sphere $S_{\epsilon}^{1}$ in $B^{\prime}$ centered origin such that $S_{\epsilon}^{1} \subset T\left(S_{r}\right)$.
$\therefore \quad y+S_{\epsilon}^{1} \subset y+T\left(S_{r}\right)=T(x)+T\left(S_{r}\right)=T\left(x+S_{r}\right)$
or

$$
S^{1}(y, \in) \subset T\left(x+S_{r}\right) \subset T(G), \quad\left[\because y+S_{\epsilon}^{1}=S^{1}(y, \in)\right]
$$

by (1).
This implies that to each $y \in T(G) \exists$ an open sphere $B^{\prime}$ centered at $y$ and contained in $T(G)$. Consquently $T(G)$ is open.

### 3.4 Closed Graph Theorem

In this section, we define closed linear transformation on normed linear spaces and consider some of their properties, in particular in connection with the important closed graph theorem.

Definition : Let $X$ and $Y$ be any non empty sets and let $f: X \rightarrow Y$ be a mapping with domain $X$ and range in $Y$. Then the graph of $f$ is defined to be that subset of $X \times Y$ which consists of all ordered pairs of the form $(x, f(x))$ i.e., if $D$ be a subset of $X$ and $T: D \rightarrow Y$, then the graph of $T$ is defined as

$$
T_{G}=\{(x, T(x)): x \in D\} .
$$

In the case of two normed linear spaces $N, N^{\prime}$ with $D \subset N$ and $T: D \rightarrow N^{\prime}$, then the graph of the linear transformation $T$ is given by

$$
T_{G}=\{(x, T(x)): x \in D\} .
$$

Remark : If $N, N^{\prime}$ are two normed linear spaces, then $N \times N^{\prime}$ is also a normed linear space with co-ordinatewise linear operation under the norm

$$
\|(x, y)\|=\left(\|x\|^{p}+\|y\|^{p}\right)^{\frac{1}{p}}
$$

with $x \in N, y \in N^{\prime}$ and $1 \leq p<\infty$.

In our future discussion, we shall mostly use the above norm with $p=1$ i.e., $\|(x, y)\|=\|x\|+\|y\|$.

## Definition (Closed Linear Transformation) :

Let $N$ and $N^{\prime}$ be normed linear spaces and let $D$ be a subspace of $N$. Then a linear transformation $T: D \rightarrow N^{\prime}$ is said to be closed iff $x_{n} \in D, x_{n} \rightarrow x$ and $T\left(x_{n}\right) \rightarrow y \Rightarrow x \in D$ and $y=T(x)$.

Theorem 3: Let $N$ and $N^{\prime}$ be normed linear spaces and $D$ be a subspace of $N$. Then a linear transformation $T: D \rightarrow N^{\prime}$ is closed iff its graph $T_{G}$ is closed.

Proof: Assuming that $T$ is a closed linear transformation, we claim that its graph $T_{G}$ is closed i.e., $T_{G}$ contains all of its limit points. $T_{G}$ is defined as

$$
T_{G}=\{(x, T(x)): x \in D\}
$$

Taking $(x, y)$ as a limit point of $T_{G}, \exists$ a sequence $<x_{n}, T\left(x_{n}\right)>, x_{n} \in D$ of points in $T_{G}$ converging to $(x, y)$ i.e.,

$$
\begin{aligned}
& <x_{n}, T\left(x_{n}\right)>\rightarrow(x, y) \\
\Rightarrow & \left\|\left(x_{n}, T\left(x_{n}\right)\right)-(x, y)\right\| \rightarrow 0 \\
\Rightarrow \quad & \left\|\left(x_{n}-x\right),\left(T\left(x_{n}\right)-y\right)\right\| \rightarrow 0 \\
\Rightarrow \quad & \left.\left\|x_{n}-x\right\|+\left\|T\left(x_{n}\right)-y\right\| \rightarrow 0 \quad \text { [see remark for the norm on } N \times N^{\prime}\right] \\
\Rightarrow \quad & \left\|x_{n}-x\right\| \rightarrow 0 \text { and }\left\|T\left(x_{n}\right)-y\right\| \rightarrow 0 \\
\Rightarrow \quad & x_{n} \rightarrow x \text { and } T\left(x_{n}\right) \rightarrow y \\
\Rightarrow \quad & x \in D \text { and } T(x)=y, T \text { being closed. } \\
\Rightarrow \quad & (x, y) \in T_{G}, \text { in view ofdefinition of graph. } \\
\Rightarrow \quad & T_{G} \text { is closed. }
\end{aligned}
$$

Conversely, let the graph $T_{G}$ of $T$ be closed. We claim that $T$ is a closed linear transformation.
Let $\quad x_{n} \in D, x_{n} \rightarrow x$ and $T\left(x_{n}\right) \rightarrow y$.
But $\quad T_{G}=\overline{T_{G}}$, since $T_{G}$ is given to be closed.
$\Rightarrow \quad\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow(x, y) \in \overline{T_{G}}=T_{G}$
$\Rightarrow \quad(x, y) \in T_{G} \Rightarrow x \in D$ and $y=T(x)$ by definition of $T_{G}$
$\Rightarrow \quad T$ is a closed linear transformation.

## Theorem 4 [The Closed Graph Theorem] :

If $B$ and $B^{\prime}$ are Banach spaces and $T$ is a linear transformation of $B$ into $B^{\prime}$, then $T$ is continuous $\Leftrightarrow$ its graph is closed.

Proof: Assuming that $T$ is continuous and $T_{G}$ is its graph
i.e., $\quad T_{G}=\{(x, T(x)): x \in B\}$

We claim that $T_{G}$ is closed i.e., $T_{G}=\overline{T_{G}}$.
Since $T_{G} \subset \overline{T_{G}}$ always. We need only prove $\overline{T_{G}} \subset T_{G}$. So let $(x, y) \in \overline{T_{G}}$. Then $(x, y)$ is limit point of $T_{G}$. Hence there exists a sequence $\left\langle x_{n}, T\left(x_{n}\right)\right\rangle$ in $T_{G}$ such that $\left\langle x_{n}, T\left(x_{n}\right)\right\rangle \rightarrow(x, y)$, which implies that $x_{n} \rightarrow x$ and $T\left(x_{n}\right) \rightarrow y$. But, since $T$ is continuous, $x_{n} \rightarrow x$ implies $T\left(x_{n}\right) \rightarrow T(x)$ and so $y=T(x)$. This shows that $(x, y)=(x, T(x)) \in T_{G}$ and $\overline{T_{G}} \subset T_{G}$.

Conversely, if $T_{G}$ is closed, then we claim that $T$ is continuous. We denote by $B_{1}$ the linear space $B$ renormed by

$$
\|x\|_{1}=\|x\|+\|T(x)\|, x \in B .
$$

We first show that this is actually a norm, since

$$
\begin{aligned}
& N_{1}:\|x\|_{1} \geq 0 \quad \text { as }\|x\| \geq 0,\|T(x)\| \geq 0 \\
& \begin{aligned}
& N_{2}:\|x\|_{1}= 0 \\
& \begin{aligned}
N_{3}:\|x+y\|_{1} & =\|x+y+\| T(x)\|=0 \Leftrightarrow\| x\|=0,\| T(x) \|=0 \Leftrightarrow x=0 \\
& =\|x+y\|+\|T(x)+T(y)\| \\
& \leq\|x\|+\|y\|+\|T(x)\|+\|T(y)\| \\
& =(\|x\|+\|T(x)\|)+(\|y\|+\|T(y)\|) \\
& =\|x\|_{1}+\|y\|_{1} \\
N_{4}:\|\alpha x\|_{1} & =\|\alpha x\|+\|T(\alpha x)\|=|\alpha|\|x\|+\|\alpha T(x)\| \\
& =|\alpha|\|x\|+|\alpha|\|T(x)\| \\
& =|\alpha|\{\|x\|+\|T(x)\|\}=|\alpha|\|x\|_{1}
\end{aligned}
\end{aligned} . \begin{array}{l}
\end{array}
\end{aligned}
$$

As such $B_{1}$ is a normed linear space.

Now $\|T(x)\| \leq\|x\|+\|T(x)\|=\|x\|_{1} \Rightarrow\|T(x)\| \leq 1\|x\|_{1}$, which shows that $T$ being regarded as a mapping from $B_{1}$ to $B^{\prime}$ is bounded and therefore continuous. Consequently in order to show that $T$ is continous from $B$ into $B^{\prime}$, it is sufficient to show that $B$ and $B_{1}$ have the same topology i.e., they are homomorphic.

We, now establish that the normed linear space $B_{1}$ is a Banach space, by showing that it is complete.

If $\left\langle x_{n}\right\rangle$ be a Cauchy sequence in $B_{1}$, then

$$
\begin{align*}
& \left\|x_{n}-x_{m}\right\|_{1} \rightarrow 0 \text { as } m, n \rightarrow \infty \\
\Rightarrow \quad & \left\|x_{n}-x_{m}\right\|+\left\|T\left(x_{n}-x_{m}\right)\right\| \rightarrow 0 \text { as } m, n \rightarrow \infty \\
\Rightarrow \quad & \left\|x_{n}-x_{m}\right\|+\left\|T\left(x_{n}\right)-T\left(x_{m}\right)\right\| \rightarrow 0 \text { as } m, n \rightarrow \infty \\
\Rightarrow \quad & \left\|x_{n}-x_{m}\right\| \rightarrow 0 \text { and }\left\|T\left(x_{n}\right)-T\left(x_{m}\right)\right\| \rightarrow 0 \text { as } m, n \rightarrow \infty \\
\Rightarrow \quad & <x_{n}>\text { is a Cauchy sequence in } B \text { and }<T\left(x_{n}\right)>\text { is a Cauchy sequence in } B^{\prime} \\
\Rightarrow \quad & x_{n} \rightarrow x \in B \text { and } T\left(x_{n}\right) \rightarrow y \in B^{\prime} \text { as } B, B^{\prime} \text { are complete } \tag{1}
\end{align*}
$$

Now $\left\langle x_{n}, T\left(x_{n}\right)\right\rangle$ being a Cauchy sequence in $T_{G}$ (which is closed)

$$
\begin{align*}
&\left(x_{n}, t\left(x_{n}\right)\right) \\
& \Rightarrow \quad y=(x, y) \in T_{G} \\
& \therefore \quad\left\|x_{n}-x\right\|_{1} \\
&=\left\|x_{n}-x\right\|+\left\|T\left(x_{n}-x\right)\right\| \\
&=\left\|x_{n}-x\right\|+\left\|T\left(x_{n}\right)-T(x)\right\| \\
&=\left\|x_{n}-x\right\|+\left\|T\left(x_{n}\right)-y\right\|  \tag{1}\\
& \rightarrow 0
\end{align*}
$$

by (1)

It follows that the sequence $\left\langle x_{n}\right\rangle$ in $B_{1}$ converges to $x \in B_{1}$.
Hence $B_{1}$ is complete. [Note that $B_{1}$ and $B$ are the same sets so that $x \in B \Rightarrow x \in B_{1}$ ].
Lastly to show that there is a homeomorphism between $B$ and $B_{1}$, we consider an identity map

$$
I: B_{1} \rightarrow B: I(x)=x \forall x \in B_{1} .
$$

Evidently $I$ is one-one onto mapping and

$$
\|I(x)\|=\|x\| \leq\|x\|+\|T(x)\|=\|x\|_{1}, \quad \forall x \in B_{1} .
$$

i.e., $\quad\|I(x)\| \leq 1 .\|x\|_{1} \Rightarrow I$ is bounded and continuous.

It is also one-one onto, therefore $I$ is a homeomorphism from a Banach space $B$ to Banach space $B_{1}$. Also $T$ being continuous from $B_{1}$ to $B^{\prime}$ and hence it is continuous on its homomorphic image $B$ i.e., $T: B \rightarrow B^{\prime}$ is continuous.

### 3.5 Uniform Boundedness Theorem

The uniform boundedness theorem is of great importance. The principle of uniform boundedness asserts that if a sequence of bounded linear transformation $T_{n} \in B(B, N), n \in N$ where $B$ is a Banach space and $N$ is a normed space, is pointwise bounded, then the sequence $\left\{T_{n}\right\}$ is uniformly bounded. Infact, it enables us to determine whether the norms of a given family of bounded linear transformations have a finite least upper bound.

Definition : A set $F \subset B\left(N ; N^{\prime}\right)$ of bounded linear transformations from a normed space $N$ into a normed space $N^{\prime}$ is said to be :
(a) Pointwise bounded if for each $x \in X$, the set $\{T(x): T \in F\}$ is a bounded set in $N^{\prime}$.
(b) Uniformly bounded if $F$ is bounded set in the normed linear space $B\left(N: N^{\prime}\right)$.

In definition $(b)$, the boundedness of the set $F$ means that there is a constant $M>0$ such that $\|T\| \leq M, \forall T \in F$.

Let $x \in X$, then

$$
\|T(x)\| \leq\|T\|\|x\| \leq M\|x\| \quad \forall T \in F .
$$

This means that $F$ is pointwise bounded. Thus if $F$ is uniformly bounded set in $B\left(N ; N^{\prime}\right)$, then it is also pointwise bounded. However, the converse of this assertion may not hold good.

## Theorem 5 (Uniform Boundedness Theorem)

Let $B$ be a Banach space, $N$ be a normed linear space and $\left\{T_{G}\right\}$ a non-empty set of bounded (and so continuous) linear transformations of $B$ into $N$ with the property that $\left\{T_{i}(x)\right\}$ is a bounded subset of $N$ for each vector $x$ in $B$, the $\left\{\left\|T_{i}\right\|\right\}$ is a bounded set of numbers i.e., $\left\{T_{i}\right\}$ is bounded as a subset of $B(B, N)$.

Proof: For each positive integer $n$, define

$$
\begin{equation*}
F_{n}=\left\{x: x \in B \text { and }\left\|T_{i}(x)\right\| \leq n \text { for all } i\right\} \tag{1}
\end{equation*}
$$

Then $F_{n}$ is a closed subset of $B$ as shown below

$$
\begin{aligned}
x \in F_{n} & \Leftrightarrow\left\|T_{i}(x)\right\| \leq n \quad \text { for all } i \\
& \Leftrightarrow T_{i}(x) \in S_{n}^{c} \quad \text { for all } i
\end{aligned}
$$

where $S_{n}^{c}$ denotes the closed sphere in $N$ with centre 0 and radius $n$.

$$
\begin{aligned}
& \Leftrightarrow x \in T_{i}^{-1}\left[S_{n}^{c}\right] \text { for all } i \\
& \Leftrightarrow x \in \cap T_{i}^{-1}\left[S_{n}^{c}\right]
\end{aligned}
$$

so that $F_{n}=\bigcap T_{i}^{-1}\left[S_{n}^{c}\right]$, which is closed, being an intersection of closed sets.
[Note that since each $T_{i}$ is continuous and $S_{n}^{c}$ is closed in $N$, each $T_{i}^{-1}\left[S_{n}^{c}\right]$ is closed in $B$ ]
Further, $B=\bigcup_{n=1}^{\infty} F_{n}$ for if $B \neq \bigcup_{n=1}^{\infty} F_{n}$, then there eixsts some $x \in B$ such that $x \notin F_{n}$ for any $n$.
$\Rightarrow \quad\left\|T_{i}(x)\right\|>n$ for all $n$ by (1)
$\Rightarrow \quad$ The set $\left\{T_{i}(x)\right\}$ is not bounded, which contradicts the hypothesis. Hence we must have

$$
B=\bigcup_{n=1}^{\infty} F_{n},
$$

so that the complete space $B$ is the union of sequence of its subsets. Therefore by Baire's category theorem, there exists an integer $n_{0}$ such that $\overline{F_{n 0}}$ has non-empty interior. Since $F_{n}$ is closed, $\overline{F_{n 0}}=F_{n 0}$
and so $F_{n 0}$ must have non-empty interior, that is, there exists some $x_{0} \in F_{n 0}$, so that $F_{n 0}$ is a $n b d$ of $x_{0}$. Since $F_{n 0}$ is closed, there exists a closed space

$$
\begin{equation*}
S=\left\{x \in B:\left\|x-x_{0}\right\| \leq r_{0}\right\} \subset F_{n 0} \tag{2}
\end{equation*}
$$

Now if $\|y\|<1$, then for arbitrary but fixed $i$

$$
\begin{aligned}
\left\|T_{i}(y)\right\| & =\left\|T_{i}\left(\frac{z}{r_{0}}\right)\right\| \text {, where } z=r_{0} y \\
& =\frac{1}{r_{0}}\left\|T_{i}(z)\right\|=\frac{1}{r_{0}}\left\|T_{i}\left(z+x_{0}-x_{0}\right)\right\| \\
& =\frac{1}{r_{0}}\left\|T_{i}\left(z+x_{0}\right)-T_{i}\left(x_{0}\right)\right\| \\
& \leq \frac{1}{r_{0}}\left[\left\|T_{i}\left(z+x_{0}\right)\right\|+\left\|-T_{i}\left(x_{0}\right)\right\|\right] \\
& =\frac{1}{r_{0}}\left[\left\|T_{i}\left(z+x_{0}\right)\right\|+\left\|T_{i}\left(x_{0}\right)\right\|\right]
\end{aligned}
$$

$$
\leq \frac{1}{r_{0}}\left(n_{0}+n_{0}\right)=\frac{2 n_{0}}{r_{0}}, \quad z+x_{0} \text { and } x_{0} \in F_{n 0} .
$$

[Note that $\left\|z+x_{0}-x_{0}\right\|=\|y\|=\left\|r_{0} y\right\|=r_{0}\|y\| \leq r_{0}(\because\|y\| \leq 1)$ so that $z+x_{0} \in S \subset F_{n 0}$. Ofcourse $\left.x_{0} \in S \subset F_{n 0}\right]$

Thus $\quad\left\|T_{i}(y)\right\| \leq \frac{2 n_{0}}{r_{0}}$ if $\|y\| \leq 1$.

$$
\therefore \quad\left\|T_{i}\right\|=\sup \left\{\left\|T_{i}(y)\right\|:\|y\| \leq 1\right\} \leq \frac{2 n_{0}}{r_{0}}
$$

If follows that $\left\{\left\|T_{i}\right\|\right\}$ is a bounded set of numbers.

## Self-Learning Exercise

1. Write whether the following statements are true or false.
(a) The open mapping theorem states conditions under which a bounded linear operator is an open mapping.
(b) The proof of the open mapping theorem is based on Heine-Borel theorem.
(c) A map of $f: X \rightarrow Y$ is known as an open mapping if $\forall$ open set V of $X_{1}$ then set $f^{-1}(\mathrm{~V})$ is open in $Y, X$ and $Y$ being topological spaces.
(d) A one-one continuous mapping of $f$ of $X$ onto $Y$ is homeomorphism when $f$ is open.
(e) The closed space theorem states conditions under which a closed linear operator will be bounded.
(f) The closed graph theorem is usually known by the name "The Banach Steinhaus theorem".
(g) The uniformboundedness theorem gives condition sufficient for $\left\{\left\|T_{n}\right\|\right\}$ to be bounded, where the $T_{n}^{\prime} \mathrm{s}$ are bounded linear transformations from a Banach space into normed space.

### 3.6 Summary

In this unit, we have studied how a new normed space can be formed by taking the product of given normed spaces. We have seen that uniform boundedness theorem gives conditions sufficient for $\left\{\left\|T_{n}\right\|\right\}$ to be bounded, where the $T_{n}^{\prime} S$ are bounded linear transformation from a Banach space into a normed space. The open mapping theorem states conditions under which a bounded linear transformation is an open mapping. We have seen that the three theorems discussed in this unit require completeness. Indeed they characterize some of the most important properties of Banach spaces which normed spaces in general may not have.

### 3.7 Answers to Self-Learning Exercise

| 1. | (a) | True | (b) | False | (c) | False |  |  |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- |
|  | (d) | True | (e) | True | (f) | False | (g) | True |

### 3.8 Exercises

1. Let $\left(X_{1},\|\cdot\|_{1}\right),\left(X_{2},\|\cdot\|_{2}\right), \ldots,\left(X_{n},\|\cdot\|_{n}\right)$ be $n$-normed spaces. Then $X=X_{1} \times X_{2} \times \ldots \times X_{n}$ is a normed spaces under the norm

$$
\|x\|=\left\|x_{1}\right\|_{1}+\left\|x_{2}\right\|_{2}+\ldots+\left\|x_{n}\right\|_{n}
$$

for $\quad x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X$.
2. Let $N$ be a Banach spaces, $N^{\prime}$ a normed space and $T_{n} \in B\left(N, N^{\prime}\right)$ such that $\left(T_{n} x\right)$ is Cauchy in $N^{\prime}$ for every $x \in N$. Show that $\left(\left\|T_{n}\right\|\right)$ is bounded.
3. If in addition $N^{\prime}$ in Problem 2 is complete, show that $T_{n} x \rightarrow T_{x}$, where $T \in B\left(N, N^{\prime}\right)$.
4. Let $B$ and $B^{\prime}$ be Banach spaces and let $T$ be one-one continuous linear transformation of $B$ into $B^{\prime}$. Then $T$ is a homeomorphism. In particular, $T^{-1}$ is automatically continous.

## Unit - 4

## Continuous Linear Functionals

## Structure of the Unit

### 4.0 Objectives

4.1 Introduction
4.2 Continuous Linear Functionals
4.3 Hahn-Banach Thearem and its Consequences
4.4 Natural Imbedding and Relexivity in Normed Spaces.

### 4.5 Summary

4.6 Answers to self learning Exercise

### 4.7 Exercises

### 4.0 Objectives

In this unit, We introduce the concept of linear functional, prove the Hahn-Banach theorem on the existence of linear functionals and derive some of its many consequences. We define the dual space of a normed space. We discuss the natural imbedding and reflexivity in normed spaces.

### 4.1 Introduction

It is known that R (real space) and C (complex space) are the simplest of all normed spaces. In the present unit, we study the bounded (or continuous) linear transformations from arbitrary normed space into the normed spaces R or C . Such bounded linear transformations are called bounded linear functionals. All general theorems proved in the previous unit for bounded linear transformations are also valid for bounded linear functionals. The Hahn-Banach theorem is basically an extension theorem for linear functionals.

### 4.2 Continuous Linear Functionals

We know that R and C are the simplest of all normed linear spaces. If we limit ourselves with the continuous linear transtomations of a normed linear space N into R or C according as N is real or complex, then the set $\mathrm{B}(\mathrm{N}, \mathrm{R})$ or $\mathrm{B}(\mathrm{N}, \mathrm{C})$ of all bounded (or countinuous) linear transformations is denoted by $N^{*}$ and known as the conjugate space or Adjoint space or First dual space of N and the elements of $N^{*}$ are known as Continuous linear functionals or simply functionals.

Thus a functional on a normed linear space N is a Continuous linear transformation from N into R or C. If these functionals are added and multiplied by scalars pointwise under the norm of a functional defined by

$$
\begin{aligned}
\|f\|=\operatorname{Sup}\{|f(x)|: & :\|(x)\| \leq 1\} \\
& =\operatorname{Sup}\{K: K \geq 0,|f(x)| \leq K\|x\| \nvdash x\}
\end{aligned}
$$

then $N^{*}$ constitutes a Bannach space.

### 4.3 Hahn-Banach Theorem and its Consequences

The Haha-Banach theorem is basically an extension theorem for linear functionals. In this theorem, we consider a bounded linear functional $f$ defined on a subspace M of a given normed space N and then we extend this from M to the entire space N in such a way that certain basic properties of $f$ continue to hold good for the extended functional.

## Theorem I (Hahn-Banach Theorem) :

If M be a linear subspace of a normed linear space N and $f$ is a functional defined on M , then $f$ can be extended to a functional $f_{0}$ defined on the whole space N s.t. $\left\|f_{0}\right\|=\|f\|$

Proof: We first prove the following lemma.
Lemma : If $f$ be a functional defined on a linear subspace M of a normed linear space $\mathrm{N}, x_{0} \notin M$ and

$$
M_{0}=\left[M \bigcup\left\{x_{0}\right\}\right]=\left\{x+\alpha x_{0}: x \in M \text { and } \alpha \text { is real }\right\}
$$

is the linear subspace spanned by M and $x_{0}$, then $f$ can be extended to a functional $f_{0}$ defined on $M_{0}$ s.t. $\left\|f_{0}\right\|=\|f\|$

Proof of the Lemma: We prove the lemma for real and complex scalars separately.
Case I: When N is real normed space, then $x_{0} \notin M \Rightarrow$ each vector m in $M_{0}$ can be uniquely expressed as $m=x+\alpha x_{0}$ with $x \in M$

Let us define $f_{0}$ on $M_{0}$, which is extension of of $f$ s.t.

$$
\begin{gather*}
f_{0}(m)=f_{0}\left(x+\alpha x_{0}\right)=f_{0}(x)+\alpha f_{0}\left(x_{0}\right) \\
=f(x)+\alpha r_{0} \tag{1}
\end{gather*}
$$

with the choice of real number $r_{0}=f_{0}\left(x_{0}\right)$
and $f_{0}(x)=f(x) \nmid x \in M$ (by definition of extension)
we first claim that $f_{0}$ thus defined is linear on $\mathrm{M}_{0}$.
Taking $B, \gamma \in R$ and $x, y \in M$ we have

$$
\begin{aligned}
f_{0}\left(\beta\left(x+\alpha x_{0}\right)+\gamma\left(y+\alpha x_{0}\right)\right] & =f_{0}\left[(\beta x+\gamma y)+(\beta+\gamma) \alpha x_{0}\right] \\
& =f_{0}(\beta x+\gamma y)+(\beta+\gamma) \alpha f_{0}\left(x_{0}\right) \\
& =f(\beta x+\gamma y)+(\beta+r) \alpha r_{0} \quad \text { by (2) and (3) } \\
& =\beta f(x)+\gamma f(y)+\beta \alpha r_{0}+\gamma \alpha r_{0} \\
& =\beta\left[f(x)+\alpha r_{0}\right]+\gamma\left[f(y)+\alpha r_{0}\right] \\
& =\beta f_{0}\left(x+\alpha x_{0}\right)+\gamma f_{0}\left(y+\alpha x_{0}\right) \quad \text { by (1) }
\end{aligned}
$$

which shows that $f_{0}$ is linear on $M_{0}$.
Also $f_{0}$ is an extension of $f$, for if $x \in M$, then $x+0 . x_{0}$ so that

$$
f_{0}(x)=f_{0}\left(x+0 \cdot x_{0}\right)=f_{0}(x)+0 \cdot f_{0}\left(x_{0}\right)=f(x)+0 \cdot r_{0}=f(x)
$$

i.e., $f_{0}(x)=f(x) \nvdash x \in M \Rightarrow f_{0}$ is an extension of $f$ over $M$.

Thus $f_{0}$ extends $f$ linearly to $M_{0}$. We now prove that $\left\|f_{0}\right\|=\|f\|$
We have $\left\|f_{0}\right\|=\sup \left\{\left|f_{0}(x)\right|:\|x\| \leq 1\right\}, x \in M_{0}$

$$
\begin{align*}
& \geq \sup \left\{\mid f_{0}(x):\|x\| \leq 1\right\}, x \in M \text { as } M_{0} \supset M \\
& =\sup \{\mid f(x):\|x\| \leq 1\}, x \in M \quad\left[\because f_{0}=f \text { on } M\right] \\
& =\|f\| \tag{4}
\end{align*}
$$

Thus $\quad\left\|f_{0}\right\| \geq\|f\|$
So our problem now is to choose $\mathrm{r}_{0}$ such that $\left\|f_{0}\right\| \leq\|f\|$. For this purpose, we first observe that if $x_{1}, x_{2}$ are any two vectors in M , then

$$
\begin{aligned}
f\left(x_{2}\right)-f\left(x_{1}\right)= & f\left(x_{2}-x_{1}\right) \text { by linearity of } f \\
& \leq\left|f\left(x_{2}-x_{1}\right)\right|
\end{aligned}
$$

or

$$
\begin{align*}
& f\left(x_{2}\right)-f\left(x_{1}\right) \leq\|f\|\left\|x_{2}-x_{1}\right\| \\
&=\|f\|\left\|\left(x_{2}+x_{0}\right)-\left(x_{1}+x_{0}\right)\right\| \\
& \leq\|f\|\left(\left\|x_{2}+x_{0}\right\|+\left\|-\left(x_{1}+x_{0}\right)\right\|\right) \\
&=\|f\|\left\|x_{2}+x_{0}\right\|+\|f\|\left\|x_{1}+x_{0}\right\| \\
&-f\left(x_{1}\right)-\|f\|\left\|x_{1}+x_{0}\right\| \leq-f\left(x_{2}\right)+\|f\|\left\|x_{2}+x_{0}\right\| \tag{5}
\end{align*}
$$

or
Which holds for arbitrary $x_{1}, x_{2} \in M$ and can be written as

$$
\sup _{y \in M}\left\{-f(y)-\|f\|\left\|y+x_{0}\right\|\right\} \leq \inf _{y \in M}\left\{-f(y)-\|f\|\left\|y+x_{0}\right\|\right\}
$$

since between any two real numbers there always exists a real numbe $r_{0}$ s.t.

$$
\sup _{y \in M}\left\{-f(y)-\|f\|\left\|y+x_{0}\right\|\right\} \leq r_{0} \leq \inf _{y \in M}\left\{-f(y)-\|f\|\left\|y+x_{0}\right\|\right\}
$$

which follows that $\forall y \in M$

$$
\begin{equation*}
-f(y)-\|f\|\left\|y+x_{0}\right\| \leq r_{0} \leq-f(y)+\|f\|\left\|y+x_{0}\right\| \tag{6}
\end{equation*}
$$

Taking arbitrary $m=x+2 x_{0}$ in $M_{0}$ and setting $y=\frac{x}{\alpha}$, we find

$$
\begin{equation*}
-f\left(\frac{x}{\alpha}\right)-\|f\|\left\|\frac{x}{\alpha}+x_{0}\right\| \leq r_{0} \leq-f\left(\frac{x}{\alpha}\right)+\|f\|\left\|\frac{x}{\alpha}+x_{0}\right\| \tag{7}
\end{equation*}
$$

For $\alpha>0$, the last two parts of inequality (7) yields

$$
\begin{align*}
& r_{0} \leq-\frac{1}{\alpha} f(x)+\frac{1}{\alpha}\|f\|\left\|x+\alpha x_{0}\right\| \\
\Rightarrow & f(x)+\alpha r_{0} \leq\|f\|\left\|x+\alpha x_{0}\right\| \\
\Rightarrow \quad & f_{0}(x)+\alpha f_{0}\left(x_{0}\right) \leq\|f\|\left\|x+\alpha x_{0}\right\| \quad \text { by (2) and (3) } \\
\Rightarrow & f_{0}\left(x+\alpha x_{0}\right) \leq\|f\|\left\|x+\alpha x_{0}\right\| \\
\Rightarrow & f_{0}(m) \leq\|f\|\|m\| \tag{8}
\end{align*}
$$

or $\alpha<0$ the first two parts of inequality (7) yields

$$
\begin{aligned}
r_{0} & \geq-f\left(\frac{x}{\alpha}\right)-\|f\|\left\|\frac{x}{\alpha}+x_{0}\right\| f_{0} \\
& =-\frac{1}{\alpha} f(x)-\|f\|\left|\frac{1}{\alpha}\right|\left\|x+\alpha x_{0}\right\| \\
& =-\frac{1}{\alpha} f(x)+\frac{1}{\alpha}\|f\|\left\|x+\alpha x_{0}\right\| \quad \text { as }\left|\frac{1}{\alpha}\right|=-\frac{1}{\alpha}
\end{aligned}
$$

where $\alpha<0$.
On multiplying both sides by $\alpha$ (a negative quantity), we get

$$
\begin{array}{ll} 
& \alpha r_{0} \leq-f(x)+\|f\|\left\|x+\alpha x_{0}\right\| \quad \text { (sign of inequality being reversed) } \\
\Rightarrow \quad & f(x)+\alpha r_{0} \leq\|f\|\left\|x+\alpha x_{0}\right\| \\
\Rightarrow \quad & f_{0}(x)+\alpha f_{0}\left(x_{0}\right) \leq\|f\|\left\|x+\alpha x_{0}\right\| \quad \text { by (2) and (3) } \\
\Rightarrow \quad & f_{0}\left(x+\alpha x_{0}\right) \leq\|f\|\left\|x+\alpha x_{0}\right\| \\
\Rightarrow \quad & f_{0}(m) \leq\|f\|\|m\| \\
\text { (8) and (9) } \Rightarrow f_{0}(m) \leq\|f\|\|m\| \forall m \in M_{0}, \alpha \neq 0  \tag{10}\\
\text { clearly for } \alpha=0,\left\|f_{0}\right\|=\|f\|
\end{array}
$$

Replacing $m$ by $-m$ in(10), we get

$$
\begin{equation*}
f_{0}(-m) \leq\|f\|\|-m\| \Rightarrow-f_{0}(m) \leq\|f\|\|m\| \tag{11}
\end{equation*}
$$

(10) and (11) $\Rightarrow\left|f_{0}(m)\right| \leq\left\|f_{0}\right\|\|m\|$

Since $\left\|f_{0}\right\|=\sup \left\{\left|f_{0}(m)\right|:\|m\| \leq 1\right\}, m \in M_{0}, f_{0}$ being linear functional on $M_{0}$. It follows from (12), that

$$
\begin{equation*}
\left\|f_{0}\right\| \leq\|f\| \tag{13}
\end{equation*}
$$

(4) and (13) $\Rightarrow\left\|f_{0}\right\|=\|f\|$

Case II : When $N$ is a complex normed linear space, over $C$, then $f$ is complex valued linear functional on $M$ as subspace of $N$. Suppose $g$ and $h$ are real and imaginary parts of $f$, so that

$$
\begin{equation*}
f(x)=g(x)+i h(x) \forall x \in M \tag{15}
\end{equation*}
$$

Now a complex linear space can be regarded as a real linear space by restricting the scalars to real numbers and $g, h$ are real valued functionals on the real space $M$. We have for $x, y \in M$ and $a \in R$,

$$
\begin{aligned}
f(x+y) & =f(x)+f(y) \\
& \Rightarrow g(x+y)+i h(x+y)=g(x)+i h(x)+g(y)+i h(y) \\
& \Rightarrow g(x+y)=g(x)+g(y) \text { and } h(x+y)=h(x)+h(y)
\end{aligned}
$$

and

$$
\begin{aligned}
f(\alpha x)=\alpha f(x) & \Rightarrow g(\alpha x)+i h(\alpha x)=\alpha[g(x)+i h(x)] \\
& \Rightarrow g(\alpha x)=\alpha g(x) \text { and } h(\alpha x)=\alpha h(x)
\end{aligned}
$$

Which follows that $g$ and $h$ are linear on $M$. Also

$$
\begin{aligned}
& |g(x)| \leq|f(x)| \text { as } w=u+i v \Rightarrow|u| \leq|w| \\
& \quad \leq\|f\|\|x\| .
\end{aligned}
$$

Thus if $f$ is bounded, then so are $g$ and $h$. Consequently, $g$ and $h$ are real linear functionals on the real space $M$.Again $\forall x \in M$

$$
g(i x)+i h(i x)=f(i x)=i(f(x))=i[g(x)+i h(x)]=i g(x)-h(x)
$$

giving $\quad g(i x)=-h(x)$ and $h(i x)=g(x)$

$$
\begin{equation*}
\therefore \quad f(x)=g(x)+i h(x)=g(x)-i g(i x)=h(i x)+i h(x) \tag{16}
\end{equation*}
$$

Taking $f(x)=g(x)-i g(i x)$ and $g$ being a real valued functional on real space $M$, we have by Case I, that $g$ can be extended to a real valued functional $g_{0}$ on the real space $M_{0}$ s.t.

$$
\begin{equation*}
\left\|g_{0}\right\|=\|g\| \tag{17}
\end{equation*}
$$

If we define $f_{0}$ s.t. $f_{0}(x)=g_{0}(x)-i g_{0}(i x) \forall x \in M_{0}$, then it can be observed that $f_{0}$ is linear on the complex space $M_{0}$ such that

$$
\begin{aligned}
& f_{0}=f \text { on } M, \text { since } \\
& \begin{aligned}
f_{0}(x+y) & =g_{0}(x+y)-i g_{0}(i x+i y), x, y \in M_{0} \\
& =g_{0}(x)+g_{0}(y)-i g_{0}(i x)-i g_{0}(i y) \\
& =g_{0}(x)-i g_{0}(i x)+g_{0}(y)-i g_{0}(i y) \\
& =f_{0}(x)+f_{0}(y)
\end{aligned}
\end{aligned}
$$

and if

$$
\alpha, \beta \in R \text {, then }
$$

$$
\begin{aligned}
f_{0}[(\alpha+i \beta) x] & =g_{0}(\alpha x+i \beta x)-i g_{0}(-\beta x+i \alpha x) \\
& =\alpha g_{0}(x)+\beta g_{0}(i x)-i(-\beta) g_{0}(x)-i \alpha g_{0}(i x) \\
& =(\alpha+i \beta)\left[g_{0}(x)-i g_{0}(i x)\right] \\
& =(\alpha+i \beta) f_{0}(x)
\end{aligned}
$$

Thus $f_{0}$ is linear on $M_{0}$. Also $g_{0}=g$ on $M$ implies $f_{0}=f$ on $M$. What remains to prove is that $\left\|f_{0}\right\|=\|f\|$.

Let $x \in M_{0}$ be arbitrary and write $f_{0}(x)=r e^{i \theta}$, where $r \geq 0$ and $\theta$ real. Then

$$
\begin{aligned}
\left|f_{0}(x)\right| & =r=e^{-i \theta} f_{0}(x)=f_{0}\left(e^{-i \theta} x\right)=g_{0}\left(e^{-i \theta} x\right), r \text { being real } \\
& \leq\left|g_{0}\left(e^{-i \theta} x\right)\right| \leq\left\|g_{0}\right\|\left\|e^{-i \theta} x\right\| \\
& =\left\|g_{0}\right\|\left\|e^{-i \theta}\right\|\|x\|=\left\|g_{0}\right\|\|x\|=\|g\|\|x\| \quad \text { by }(17) \quad\left(\because\left|e^{-i \theta}\right|=1\right) \\
& \leq\|f\|\|x\|
\end{aligned}
$$

This shows that $f_{0}$ is bounded (hence a functional on $M_{0}$ ) and that $\left\|f_{0}\right\| \leq\|f\|$. Also as in Case I, it is obvious that $\left\|f_{0}\right\| \leq\|f\|$.

Therefore $\left\|f_{0}\right\|=\|f\|$
Theory of the Main Theorem : In view of lemma, for any $x \in N$, but $x \notin M$, we can have an extension of $f$ on $M \cup\{x\}$ s.t. $\|f\|$ is preserved for extension. If we consider the set of all positive extensions of $f$ on all the subspaces $M \cup$ \{element of $N$ not in $M$ \} of $N$, containing $M$, then this set
of extensions of $f$ say $G$ can be partially ordered as under.
Taking $g_{1}, g_{2} \in G$ and relation $\leq$ s.t. $g_{1} \leq g_{2} \Rightarrow$ domain of $g_{1}$ is contained in the domain of $g_{2}$ and $g_{1}(x)=g_{2}(x) \forall x \in \operatorname{dom}\left(g_{1}\right)$. We claim that $(G, \leq)$ is partially ordered, since it is reflexive, antisymmetric and transitive.

Reflexivity : $\quad g_{1} \leq g_{1} \forall g_{1} \in G$.
Antisymmetry : $g_{1} \leq g_{2}$ and $g_{2} \leq g_{1} \Rightarrow \operatorname{dom}\left(g_{1}\right)$ is contained in dom $\left(g_{2}\right)$ and dom $\left(g_{2}\right) \subset$ $\operatorname{dom}\left(g_{1}\right)$

$$
\begin{array}{ll}
\Rightarrow \quad & \operatorname{dom}\left(g_{1}\right)=\operatorname{dom}\left(g_{2}\right) \\
\Rightarrow & g_{1}(x)=g_{2}(x) \forall x \in \operatorname{dom}\left(g_{1}\right) \text { and } \\
& g_{2}(x)=g_{1}(x) \forall x \in \operatorname{dom}\left(g_{2}\right) \\
\Rightarrow \quad & g_{1}=g_{2}, \text { domains being same and functional values equal for all points of the domain. }
\end{array}
$$

Transitivity : $g_{1} \leq g_{2}$ and $g_{2} \leq g_{3} \Rightarrow \operatorname{dom}\left(g_{1}\right) \subset \operatorname{dom}\left(g_{2}\right)$ with $g_{1}(x)=g_{2}(x) \forall x \in \operatorname{dom}\left(g_{1}\right)$;

$$
\begin{aligned}
& \operatorname{dom}\left(g_{2}\right) \subset \operatorname{dom}\left(g_{3}\right) \text { with } g_{2}(x)=g_{3}(x) \forall x \in \operatorname{dom}\left(g_{2}\right) \\
\Rightarrow & \operatorname{dom}\left(g_{1}\right) \subset \operatorname{dom}\left(g_{3}\right) \text { with } g_{1}(x)=g_{3}(x) \forall x \in \operatorname{dom}\left(g_{1}\right) \\
\Rightarrow & g_{1} \leq g_{3}
\end{aligned}
$$

Hence the set $G$ is partially ordered.
Also we observe that the union of any chain of extensions is an extension and therefore there is an upper bound for the chain. Thus every chain in $G$ has an upper bound. As such by Zorn's lemma, $\exists$ a maximal extension $f_{0} \in G$, otherwise $\exists$ an $x \in N$ and $x \notin M$ s.t. $f_{0}$ can be extended to the domain of $f_{0} \cup\{x\}$ i.e., $M \cup\{x\}$ by the lemma. But this violates the maximality of $f_{0}$. Hence the domain of $f_{0}$ must be the whole space $N$ s.t. $\left\|f_{0}\right\|=\|f\|$.

We now derive some important consequences of theorem 1.
Theorem 2: If $N$ be a normed linear space and $x_{0}$ is a non zero vector in $N$, then $\exists$ a continuous linear functional $F$ defined on the conjugate space $N *$ s.t.

$$
F\left(x_{0}\right)=\left\|x_{0}\right\| \text { and }\|F\|=1
$$

Proof : Let $M=\left\{\alpha x_{0}\right\}$ be the linear subspace of $N$ spanned by $x_{0}$. Define $f_{0}$ on $M$ by $f_{0}\left(\alpha x_{0}\right)=\alpha\left\|x_{0}\right\|$. We claim that $f_{0}$ is a functional on $M$ such that $\left\|f_{0}\right\|=1$.
$f_{0}$ is linear :
Let $y_{1}, y_{2} \in M$ so that $y_{1}=\alpha x_{0}, y_{2}=\beta x_{0}$ for some scalars $\alpha$ and $\beta$. If $\gamma, \delta$ are
any scalars, then

$$
\begin{aligned}
f_{0}\left(\gamma y_{1}+\delta y_{2}\right) & =f_{0}\left(\gamma \alpha x_{0}+\delta \beta x_{0}\right)=f_{0}\left[(\gamma \alpha+\delta \beta) x_{0}\right] \\
& =(\gamma \alpha+\delta \beta)\left\|x_{0}\right\| \text { by def. of } f_{0} \\
& =\gamma \alpha\left\|x_{0}\right\|+\delta \beta\left\|x_{0}\right\| \\
& =\gamma f_{0}\left(\alpha x_{0}\right)+\delta f_{0}\left(\beta x_{0}\right) \\
& =\gamma f_{0}\left(y_{1}\right)+\delta f_{0}\left(y_{2}\right)
\end{aligned}
$$

## $f_{0}$ is bounded.

Let $y=\alpha x_{0} \in M$ so that $\|y\|=\left\|\alpha x_{0}\right\|=|\alpha|\left\|x_{0}\right\|$. Now

$$
\begin{aligned}
\left|f_{0}(y)\right| & =\left|f_{0}\left(\alpha x_{0}\right)\right| \\
& =|\alpha|\left\|x_{0}\right\|=\|y\|
\end{aligned}
$$

Hence $f_{0}$ is bounded. It follows that $f_{0}$ is a functional on $M$.
Further $\left\|f_{0}\right\|=\sup \left\{\left|f_{0}(y)\right|: y \in M,\|y\| \leq 1\right\}$

$$
=\sup \{\|y\|:\|y\| \leq 1\}=1
$$

Now choosing $\alpha=1, f_{0}\left(\alpha x_{0}\right)=\alpha\left\|x_{0}\right\| \Rightarrow f_{0}\left(x_{0}\right)=\left\|x_{0}\right\|$.
Hence by Hahn-Banach theorem $f_{0}$ can be extended to a norm preserving functional $F \in N^{*}$ so that

$$
F\left(x_{0}\right)=f_{0}\left(x_{0}\right)=\left\|x_{0}\right\| \text { and }\|F\|=\left\|f_{0}\right\|=1
$$

Note : As a particular case, if $x \neq y, x, y \in N$, so by the above theorem, there exists an $f \in N^{*}$ such that

$$
f(x-y)=\|x-y\| \neq 0 \Rightarrow f(x)-f(y) \neq 0 \Rightarrow f(x) \neq f(y)
$$

This shows that $N *$ separates vectors in $N$.
Theorem 3 : Let $N$ be a real normed linear space and suppose $f(x)=0$ for all $f \in N^{*}$. Show that $x=0$.

Proof: Suppose $x \neq 0$. Then by Theorem 2, there exists $f \in N^{*}$ such that $f(x)=\|x\|>0$, which contradicts the hypothesis that $f(x)=0$ for all $f \in N^{*}$. Hence we must have $x=0$.

Theorem 4: If $M$ be a closed linear subspace of a normed linear space $N$ and $x_{0}$ is a vector not in $M$, then $\exists$ a functional $F$ in conjugate space $N *$ s.t. $F(M)=\{0\}$ and $F\left(x_{0}\right) \neq 0$.

Proof: Consider the natural mapping

$$
T: N \rightarrow N / M \text { s.t. } T(x)=x+M \forall x \in N,
$$

then $\quad\|T(x)\|=\|x+M\|=\inf \{\|x+m\|: m \in M\}$ by def.

$$
\leq\|x+m\| \forall m \in M \text { by def. of infimum. }
$$

But $M$ being subspace, $0 \in M$, so that above result still holds for $m=0 \in M$ i.e., $\|T(x)\| \leq\|x\| \forall x \in M$, which follows that $T$ is bounded and hence continuous.

Now $\quad T(m)=m+M=M=0$ of $N / M$
and $\quad x_{0} \notin M \Rightarrow T\left(x_{0}\right)=x_{0}+M \neq M$ i.e., 0 of $N / M$
As such $T\left(x_{0}\right)$ i.e., $x_{0}+M \neq 0$ is a non zero vector (coset) in $N / M$. Therefore by Theorem 2, $\exists$ a functional $f$ in $(N / M) *$ s.t.

$$
\begin{equation*}
f\left(x_{0}+M\right)=\left\|x_{0}+M\right\| \neq 0 \tag{3}
\end{equation*}
$$

If we define $F$ on $N$ as

$$
F(x)=f[T(x)]
$$

then $F$ is a linear transformation being the composition of $F$ and $T$.
Also $\quad F(m)=f[T(m)]=f(0)=0 \forall m \in M \quad$ by (1)
$\therefore \quad F(M)=0$ and $F\left(x_{0}\right)=f\left[T\left(x_{0}\right)\right]=f\left(x_{0}+M\right) \neq 0$
by (2) and (3).
Theorem 5: If $M$ be a closed linear subspace of a normed linear space $N$ and $x_{0}$ be a vector in $N$, but not in $M$ with the property that the distance from $x_{0}$ to $M$ i.e., $d\left(x_{0}, M\right)=d>0$, then $\exists$ abounded linear functional $F \in N *$ s.t. $\|F\|=1$,

$$
F\left(x_{0}\right)=d \text { and } F(x)=0 \forall x \in M \text { i.e., } F(M)=\{0\} .
$$

Proof: We have by definition

$$
\begin{equation*}
d=\inf \left\{\left\|x_{0}-x\right\|: x \in M\right\}, d>0 \tag{1}
\end{equation*}
$$

Now consider the subspace

$$
M_{0}=\left\{x+\alpha x_{0}: x \in M, \alpha \text { real }\right\}
$$

spanned by $M$ and $x_{0}$. Since $x_{0} \notin M$, the representation of each vector $y$ in $M_{0}$ in the form $y=x+\alpha x_{0}$ is unique.

Define a mapping $f_{0}$ on $M_{0}$ by $f_{0}(y)=\alpha d$
Where $y=x+\alpha x_{0}$ and $d$ as in the hypothesis. Because of the uniqueness of $y$, the mapping $f_{0}$ is well defined. It is clear that $f_{0}$ is linear on $M_{0}$.

Now $\quad f_{0}\left(x_{0}\right)=f_{0}\left(0+1 \cdot x_{0}\right)=1 d=d \quad$ by $(2)$
and for any $m \in M, f_{0}(m)=f_{0}\left(m+0 . x_{0}\right)=0 . d=0 \Rightarrow f_{0}(M)=\{0\}$.
Now, we claim that $\left\|f_{0}\right\|=1$, since

$$
\begin{align*}
\left\|f_{0}\right\| & =\sup \left\{\frac{\left|f_{0}(y)\right|}{\|y\|}: y \neq 0\right\}, \quad y \in M_{0} \\
& =\sup \left\{\frac{\left|f_{0}\left(x+\alpha x_{0}\right)\right|}{\left\|x+\alpha x_{0}\right\|}: x \neq 0, \alpha \neq 0\right\}, \quad x \in M, \alpha \in R \\
& =\sup \left\{\frac{|\alpha d|}{\left\|x+\alpha x_{0}\right\|}: \alpha \neq 0\right\}, \quad \alpha \in R, \quad x \in M \quad \text { by (2) } \\
& =\sup \left\{\frac{d}{\left\|x_{0}+\frac{x}{\alpha}\right\|}: \alpha \neq 0\right\}, \quad \alpha \in R, x \in M, \text { as } d>0 \text { and }|\alpha d|=d|\alpha| \\
& =d \sup \left\{\frac{1}{\left\|x_{0}-z\right\|}: z=-\frac{x}{\alpha} \in M\right\} \quad \text { by (1) }
\end{align*}
$$

so $f_{0}$ is a linear functional on $M_{0}$ such that

$$
\begin{equation*}
f_{0}(M)=\{0\}, f_{0}\left(x_{0}\right)=d \text { and }\left\|f_{0}\right\|=1 \tag{3}
\end{equation*}
$$

Hence by the Hahn-Banach theorem, there exists a functional $F$ on the whole space $N$ such that

$$
F(y)=f_{0}(y) \forall y \in M_{0} \text { and }\|F\|=\left\|f_{0}\right\| .
$$

It follows from (3) that

$$
F(M)=\{0\} ; F\left(x_{0}\right)=d \text { and }\|f\|=1 \text { as desired. }
$$

### 4.4 Natural Imbedding and Reflexivity in Normed Spaces

If $N$ be a normed linear space, then the set of all bounded linear functionals defined on $N$ form a Banach space, denoted by $N^{*}$ and is known as the Dual space or the conjugate space or the adjoint space or the first dual space of the normed space $N$. The space of bounded linear functionals on $N^{*}$ is known as the second dual space of $N$ and denoted by $N^{* *}$.

Taking $N^{*}$ and $N^{* *}$ as the first and second conjugate spaces of a normed linear space $N$, so that each vector $x$ in $N$ gives rise to a functional $f$ in $N^{*}$ and a functional $F_{x}$ in $N^{* *}$, we defined $F_{x}$ as

$$
F_{x}(f)=f(x) \forall f \in N^{*}
$$

The mapping $J: x \rightarrow F_{x}$ of $N$ into $N^{* *}$, where $F_{x}(f)=f(x) \forall f \in N^{*}$, is called the natural embedding.

Ifthe natural imbedding $J: x \rightarrow F_{x}$ of $N$ into $N^{* *}$ is an onto mapping, then we call the normed space $N$ as Reflexive.

Here $F_{x}$ is also known as the functional on $N^{*}$ induced by the vector $x$ of $N$ and we generally say it induced functional.

Theorem 6: Let $N$ be an arbitrary normed linear space. Then for each vector $x$ in $N$ induces a functional $F_{x}$ on $N^{* *}$ defined by $F_{x}(f)=f(x) \forall f \in N^{*}$ such that $\left\|F_{x}\right\|=\|x\|$.

Further the mapping $J: N \rightarrow N^{* *}$ defined as $J(x)=F_{x} \forall x \in N$ is an isometric isomophism of $N$ into $N^{* *}$.

Proof: We first claim that $F_{x}$ is linear, since $f, g \in N^{*}$ and scalars $\alpha, \beta$, we have

$$
\begin{align*}
F_{x}(\alpha f+\beta g) & =(\alpha f+\beta g)(x) \quad \text { by def. of } F_{x} \\
& =(\alpha f)(x)+(\beta g)(x) \\
& =\alpha f(x)+\beta g(x) \\
& =\alpha F_{x}(f)+\beta F_{x}(g) \tag{1}
\end{align*}
$$

Again, we claim that $F_{x}$ is bounded, since for all $f \in N^{*}$, we have

$$
\begin{align*}
\left\|F_{x}\right\| & =\sup \left\{\left|F_{x}(f)\right|:\|f\| \leq 1\right\} \\
& =\sup \{|f(x)|:\|f\| \leq 1\} \\
& =\sup \{\|f\|\|x\|:\|f\| \leq 1\} \\
& \leq\|x\| \tag{2}
\end{align*}
$$

Thus $\left\|F_{x}\right\| \leq 1 .\|x\|$. It follows that $F_{x}$ is bounded i.e., continuous. Hence $F_{x}$ is a functional on $N^{* *}$.

For a non zero vector $x$ in $N, \exists$ a functional $f_{0} \in N^{*}$ s.t.

$$
\begin{equation*}
f_{0}(x)=\|x\| \text { and }\left\|f_{0}\right\|=1 \quad(\text { by Theorem 2) } \tag{3}
\end{equation*}
$$

For such a functional $f_{0}$, we have

$$
\begin{array}{ll} 
& F_{x}\left(f_{0}\right)=f_{0}(x) \quad \text { by def. of } F_{x} \\
\text { i.e., } & F_{x}\left(f_{0}\right)=\|x\| \text {, where }\left\|f_{0}\right\|=1 \quad \text { (by (3)) } \\
\Rightarrow & \|x\|=|\|x\||=\left|F_{x}\left(f_{0}\right)\right| \leq\left\|F_{x}\right\|\left\|f_{0}\right\|=\left\|F_{x}\right\| \quad\left(\because\left\|f_{0}\right\|=1\right) \\
\Rightarrow & \|x\| \leq\left\|F_{x}\right\|
\end{array}
$$

Hence (2) and (4) $\Rightarrow\left\|F_{x}\right\|=\|x\|$
When $x$ is a zero vector, then from (1), we have

$$
\left\|F_{x}\right\| \leq\|x\| \Rightarrow\left\|F_{x}\right\|=\left\|F_{0}\right\| \leq\|0\|=0
$$

and $\quad\left\|F_{0}\right\| \geq 0$ as $\left\|F_{0}\right\| \geq 0 \quad$ always.
Hence $\left\|F_{0}\right\|=\|0\|$
Thus we have shown that $\left\|F_{x}\right\|=\|x\| \forall x \in N$.
Now we prove that $J$ is an isometric isomophismi.e. $J$ is a one-one linear transformation as well as an isometry.
$J$ is linear, since for any $x, y \in N$ and scalars $\alpha, \beta$, we have

$$
\begin{aligned}
& F_{\alpha x+\beta y}(f)= f(\alpha x+\beta y) \\
&=\alpha f(x)+\beta f(y) \quad\left(\because f \text { is a linear transformation } \forall f \in N^{*}\right) \\
&=\alpha F_{x}(f)+\beta F_{y}(f) \\
&=\left(\alpha F_{x}\right)(f)+\left(\beta F_{y}\right)(f) \\
&=\left(\alpha F_{x}+\beta F_{y}\right)(f) \\
& \Rightarrow \quad F_{\alpha x+\beta y}=\alpha F_{x}+\beta F_{y}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
J(\alpha x+\beta y) & =F_{\alpha x+\beta y}=\alpha F_{x}+\beta F_{y}=\alpha J(x)+\beta J(y) \\
& \Rightarrow J \text { is linear. }
\end{aligned}
$$

Lastly we claim that $J$ is an isometry, since by (5),

$$
\|J(x)-J(y)\|=\left\|F_{x}-F_{y}\right\|=\left\|F_{x-y}\right\|=\|x-y\|
$$

Thus $J$ preserves norm, so it is an isometry. Also

$$
J(x)=J(y) \Rightarrow J(x)-J(y)=0
$$

$$
\begin{aligned}
& \Rightarrow \quad\|J(x)-J(y)\|=0 \\
& \Rightarrow \quad\|x-y\|=0 \\
& \Rightarrow \quad x-y=0 \\
& \Rightarrow \quad x=y \\
& \text { i.e. } J \text { is one-one. } \\
& \text { Hence } J: N \rightarrow N^{* *} \text { is an isometric isomorphism. }
\end{aligned}
$$

## Self-Learning Exercise

1. Write whether the following statements are true or false :
(a) The norm $\|\cdot\|: N \rightarrow R$ on a normed space $(X,\|\cdot\|)$ is functional on $N$ which is not linear.
(b) If $f$ is a bounded linear functional on a complex normed space. Then $\bar{f}$ is linear.
(c) The Hahn-Banach theorem is an extension theorem for linear functional.
(d) If $N$ be a real normed linear space and $f(x)=0 \forall f \in N^{*}$ (conjugate space). Then $x \neq 0$.
2. If $f$ is a linear functional on an $n$-dimensional vector space $X$. What dimension can the null space $N(f)$ have?

### 4.5 Summary

In this unit, we have seen that Hahn-Banach theorem is an extension theorem for linear functionals on linear spaces. We defined the dual space of a normed space to be the set of all bounded linear functionals on the space. We have seen that in some cases, the second dual space of a normed space, under a specific mapping called natural embedding is isometrically isomorphic to the origional space.

### 4.6 Answers to Self-Learning Exercise

1. 

(a) True
(b) False
(c) True
(d) False
2. $n$ or $n-1$

### 4.7 Exercises

1. If $M$ be aclosed linear subspace of a normed linear space $N, x_{0}$ be a point in $N$ but not in $M$ and $d$ be the distance from $x_{0}$ to $M$.

Then show that $\exists$ a functional $F$ in $N$ (whole space) s.t.

$$
F(M)=\{0\}, F\left(x_{0}\right)=1 \text { and }\|F\|=\frac{1}{d} .
$$

2. State and prove Hahn-Banach theorem.
3. Show that dual of $R^{n}$ in $R^{n}$.
4. Prove that if a normed space $N$ is reflexive, it is complete.
5. If a normed space $N$ is reflexive, show that $N^{*}$ is reflexive.

# Unit - 5 <br> Hilbert Space and Its Basic Properties 

## Structure of the Unit

### 5.1 Objectives

5.2 Introduction
5.3 Inner Product Spaces and Examples
5.3.1 Definition
5.3.2 Examples
5.3.3 Basic Properties
5.4 Hilbert Space
5.4.1 Definition
5.4.2 Basic Properties
5.5 Some Important Theorems on Hilbert Spaces
5.6 Summary
5.7 Answers to Self-Learning Exercise

### 5.8 Exercises

### 5.1 Objectives

The aim of this unit is to study Inner product spaces and Hilbert spaces and its basic properties. Here we shall prove Schwarz inequality, paralleogram law and polarisation identity in Hilbert spaces.

### 5.2 Introduction

We know that the norm on a vector space is the generalisation of the distance from the origin in an Euclidean space. The Euclidean space is not only provided with the distance amenable to the definition of norm, but also it is provided with the geometric concepts such as dot product. Using the dot product one can find the magnitude of vector and express the condition of orthogonality. These concepts can be illustrated very well by considering the Euclidean space of three dimensions. Such ideas like dot product and condition of orthogonality are totally missing in a normed linear space. The extension of these notions to any arbitrary infinite dimensional vector spaces leads to the definition of inner product on a vector space in such a way that the inner product gives rise to a norm. Since an inner product is used to define a norm on a vector space, the inner product spaces are special normed linear spaces. A complete inner product space is called a Hilbert space. Thus every Hilbert space is a Banach space but converse is not necessarity true. In the next four units we shall study in detail the basic theory of Hilbert spaces.

### 5.3 Inner Product Spaces

### 5.3.1 Definition :

Let $X$ be a linear space over the complex field $C$. An inner product on $X$ is a function ( ) : $X \times X \rightarrow C$ which satisfies the following conditions:
I. $(\alpha x+\beta y, z)=\alpha(x, z)+\beta(y, z) \forall x, y, z \in X$ and $\alpha, \beta \in C$
(Linearity in the first varible)
II. $\overline{(x, y)}=(y, x)$ (Conjugate symmetry)
where the bar denotes the complex conjugate.
III. $(x, x) \geq 0,(x, x)=0$ iff $x=0$ (Positive definiteness)

A complex inner product space $X$ is a linear space over $C$ with an inner product defined on it. We can also define inner product by replacing $C$ by $R$ in the above definition. In that case, we get a real inner product space. Since the theory of operators on a complex inner product space alone gives non-trivial results in some important situations.

We shall consider only complex inner product spaces.

### 5.3.2 Examples

Example 1: The space $l_{2}^{n}$ consisting of all $n$ tuples $x=\left(x_{1}, \ldots, x_{n}\right)$ of complex numbers and the inner product on $l_{2}^{n}$ is defined as $(x, y)=\sum_{i=1}^{n} x_{i} \bar{y}_{i}$, where $y=\left(y_{1}, \ldots, y_{n}\right)$ is an inner product space.

Solution : Let $\alpha, \beta \in C$ and $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$ and $z=\left(z_{1}, \ldots, z_{n}\right)$ belong $l_{2}^{n}$. Then
I. $\quad(\alpha x+\beta y, z)=\sum_{i=1}^{n}\left(\alpha x_{i}+\beta y_{i}\right) \bar{z}_{i}$

$$
\begin{aligned}
& =\alpha \sum_{i=1}^{n} x_{i} \bar{z}_{1}+\beta \sum_{i=1}^{n} y_{i} \bar{z}_{1} \\
& =\alpha(x, z)+\beta(y, z)
\end{aligned}
$$

II. $\overline{(x, y)}=\overline{\left(\sum_{i=1}^{n} x_{i} \bar{y}_{i}\right)}$

$$
\begin{aligned}
& =\overline{\left(x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+\ldots+x_{n} \bar{y}_{n}\right)} \\
& =y_{1} \bar{x}_{1}+y_{2} \bar{x}_{2}+\ldots+y_{n} \bar{x}_{n}
\end{aligned}
$$

$$
=\sum_{i=1}^{n} y_{i} \bar{x}_{i}=(y, x)
$$

III. $(x, x)=\sum_{i=1}^{n} x_{i} \bar{x}_{i}=\sum_{i=1}^{n}\left|x_{i}\right|^{2}$

Hence $(x, x) \geq 0$ and $(x, x)=0$ iff $x_{i}=0$ for each $i$ i.e., $(x, x)=0$ iff $x=0$.
Thus $l_{\hat{2}}^{n}$ is an linear product space.
Example 2: The linear space $l_{2}$ consisting of all complex sequences $x=\left(x_{n}\right)$ such that $\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}$ is converg net is an inner product space.
Solution : Define the inner product on $l_{2}$ as

$$
\begin{equation*}
(x, y)=\sum_{n=1}^{\infty} x_{n} \bar{y}_{n} \quad \forall x=\left(x_{n}\right) \text { and } y=\left(y_{n}\right) \in l_{2} \tag{1}
\end{equation*}
$$

First we show that the inner product
(i) is well defined. For this we have to show that
(ii) is a convergent series having the sum as a complex number.

By Cauchy's inequality, we have

$$
\begin{aligned}
\sum_{i=1}^{n}\left|x_{i} \bar{y}_{i}\right| & \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right)^{1 / 2} \\
& \leq\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}\right)^{1 / 2}\left(\sum_{n=1}^{\infty}\left|y_{n}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

Since $\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}$ and $\sum_{n=1}^{\infty}\left|y_{n}\right|^{2}$ are convergent, the sequence of partial sums of the series $\sum_{n=1}^{\infty}\left|x_{n} \cdot \bar{y}_{n}\right|$ is a monotonic increasing sequence bounded above. Therefore, the series $\sum_{n=1}^{\infty}\left|x_{n} \bar{y}_{n}\right|$ is convergent.

Hence $\sum_{n=1}^{\infty} x_{n} \bar{y}_{n}$ is absolutely convergent having its sum as a complex number. Therefore (1) is convergent so that the linear product (1) is well-defined.

The three axious for inner product space can be verified as in example 1.
Hence $l_{2}$ is an inner product space.

### 5.3.3 Basic Properties

The basic properties of inner product space are contained in the following theorem:
Theorem 1 : Let $X$ be a complex inner product space, then
(i) $(\alpha x-\beta y, z)=\alpha(x, z)-\beta(y, z)$
(ii) $\quad(x, \beta y+\gamma z)=\bar{\beta}(x, y)+\bar{\gamma}(x, z)$
(iii) $\quad(x, \beta y-\gamma z)=\bar{\beta}(x, y)-\bar{\gamma}(x, z)$
(iv) $\quad(x, 0)=0$ and $(0, x)=0 \quad \forall x \in X$
where $\alpha, \beta$ and $\gamma \in C$.

## Proof:

(i) $(\alpha x-\beta y, z)=(\alpha x+(-\beta) y, z)$

$$
\begin{aligned}
& =\alpha(x, z)+(-\beta)(y, z) \\
& =\alpha(x, z)-\beta(y, z)
\end{aligned}
$$

(ii) $\quad(x, \beta y+\gamma z)=\overline{(\beta y+\gamma z, x)}$

$$
\begin{aligned}
& =\overline{\beta(y, x)+\gamma(z, x)} \\
& =\bar{\beta} \overline{(y, x)}+\bar{\gamma} \overline{(z, x)} \\
& =\bar{\beta}(x, y)+\bar{\gamma}(x, z)
\end{aligned}
$$

(ii) shows that an inner product is conjugate linear in the second variable.
(iii) $\quad(x, \beta y-\gamma z)=(x, \beta y+(-\gamma) z)$

$$
\begin{aligned}
& =\bar{\beta}(x, y)+\overline{(-\gamma)}(x, z) \quad \text { (using (ii)) } \\
& =\bar{\beta}(x, y)-\bar{\gamma}(x, z)
\end{aligned}
$$

(iv) $(0, x)=(0 \theta, x)=0(\theta, x)=0$
where $\theta$ is zero element of $X$
and $(x, 0)=\overline{(0, x)}=0$.
With the help of the inner product, on a linear space $X$ we can define a norm on $X$. Define $\|x\|=[(x, x)]^{1 / 2} \forall x \in X$. To prove that is a norm, we require the following

Theorem 2: If $x$ and $y$ are any two vectors in an inner product space $X$, then

$$
\begin{equation*}
|(x, y)| \leq\|x\|\|y\| \tag{2}
\end{equation*}
$$

The inequality by (2) is also known as Schwarz inequality.
Proof: If $y=0$, then $\|y\|=0$ and $\quad|(x, y)|=0$ so that both sides (2) vanish and the inequality is true. Therefore let us assume that $y \neq 0$ and $\lambda \in C$. Then

$$
0 \leq\|x-\lambda y\|^{2}=(x-\lambda y, x-\lambda y)
$$

Since $\quad(x-\lambda y, x-\lambda y)=(x, x)-(x, \lambda y)-(\lambda y, x)+(\lambda y, \lambda y)$

$$
\begin{align*}
& =(x, x)-\bar{\lambda}(x, y)-\lambda(y, x)+\lambda \bar{\lambda}(y, y) \\
& =\|x\|^{2}-\lambda(y, x)-\bar{\lambda}(x, y)+|\lambda|^{2}\|y\|^{2} \tag{3}
\end{align*}
$$

Therefore $\|x\|^{2}-\lambda(y, x)-\bar{\lambda}(x, y)+|\lambda|^{2}\|y\|^{2} \geq 0$
Now $y \neq 0,\|y\| \neq 0$. So choosing

$$
\lambda=\frac{(x, y)}{\|y\|^{2}} \text { and taking }(y, x)=\overline{(x, y)}
$$

From (3) we have

$$
\|x\|^{2}-\frac{(x, y) \overline{(x, y)}}{\|y\|^{2}}-\frac{\overline{(x, y)}(x, y)}{\|y\|^{2}}+\frac{|(x, y)|^{2}}{\|y\|^{4}}\|y\|^{2} \geq 0
$$

or $\quad\|x\|^{2}-\frac{|(x, y)|^{2}}{\|y\|^{2}}-\frac{|(x, y)|^{2}}{\|y\|^{2}}+\frac{|(x, y)|^{2}}{\|y\|^{2}} \geq 0$
or $\quad\|x\|^{2}-\frac{|(x, y)|^{2}}{\|y\|^{2}} \geq 0$
or

$$
|(x, y)| \leq\|x\|\|y\|
$$

Remark : In Schwaz inequality, equality holds good iff $x$ and $y$ are linearly dependent.
Theorem 3 : If $X$ is an inner product space, then $\|x\|=(x, x)^{1 / 2}$ is a norm on $X$.
Proof: (i) we have $\|x\|=(x, x)^{1 / 2} \Rightarrow\|x\|^{2}=(x, x)$
Now $\|x\| \geq 0$ and $\|x\|=0$ iff $(x, x)=0$ i.e. $x=0$
(ii) Let $x, y \in X$, then

$$
\begin{aligned}
\|x+y\|^{2} & =(x+y, x+y) \\
& =(x, x)+(x, y)+(y, x)+(y, y) \\
& =(x, x)+(x, y)+\overline{(x, y)}+(y, y) \\
& =\|x\|^{2}+2 \operatorname{Re}(x, y)+\|y\|^{2} \\
& \leq\|x\|^{2}+2|(x, y)|+\|y\|^{2} \quad(\because \operatorname{Re}(z) \leq|z| \forall z \in C) \\
& \leq\|x\|^{2}+2\|x\|\|y\|+\|y\|^{2} \quad \quad \quad \text { using Schwarz inequality) }
\end{aligned}
$$

Thus $\quad\|x+y\|^{2} \leq(\|x\|+\|y\|)^{2}$
$\Rightarrow \quad\|x+y\| \leq\|x\|+\|y\|$
(iii) For any scalar $\alpha \in C$ and $x \in X$, we have

$$
\begin{aligned}
\|\alpha x\|^{2} & =(\alpha x, \alpha x)=\alpha \bar{\alpha}(x, x) \\
& =|\alpha|^{2}\|x\|^{2}
\end{aligned}
$$

$\therefore \quad\|\alpha x\|=|\alpha|\|x\|$
Hence $\|$.$\| satisfies all condition of the norm.$
Since we are able to define a norm on $X$ with the help of the inner product, the inner product space $X$ becomes a normed linear space.

### 5.4 Hilbert Space

5.4.1 Definition : A complete inner product space is called a Hilbert space
or
Let $H$ be a complex Banach space with a linear product defined on it. Then $H$ said to be a Hilbert space if a complex number $(x, y)$ called the inner product of $x$ and $y$ satisfy the following properties:
(i) $\quad(x, x)=\|x\|^{2}$
(ii) $\overline{(x, y)}=(y, x)$
$\left(H_{3}\right) \quad(\alpha x+\beta y, z)=\alpha(x, z)+\beta(y, z)$
$\forall x, y, z \in H$ and $\alpha, \beta \in C$

Remark 1 : Examples (1) and (2) of § 5.3 are complete inner product spaces, since $l_{\hat{2}}^{n}$ and $l_{2}$ are Banach spaces with norm defined as

$$
\|x\|=\left\{\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right\}^{1 / 2}
$$

Example 1 is a finite dimensional space beacuse underlying vector space $l_{\hat{2}}^{n}$ is finite while Example 2 is an infinite dimensional space.

Remark 2: Note that the set of all sequences $x=\left\{x_{n}\right\}$ such that $x_{n}$ is ultimately zero is an incomplete inner product space, the inner product being induced by $l_{2}$, since we can find a sequence

$$
\left(x_{n}\right)=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, 0,0, \ldots\right) \text { converges in } l_{2} \text { but its limit has no zero terms. }
$$

Hence we conclude that every Hilbert space is an inner product space but converse is not necessarity true.

### 5.4.2 Basic Properties

Theorem 3 : The inner product in a Hilbert space is jointly continuous i.e. if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$ as $n \rightarrow \infty$.

Proof: We have

$$
\begin{align*}
\left|\left(x_{n}, y_{n}\right)-(x, y)\right| & =\left|\left(x_{n}, y_{n}\right)-\left(x_{n}, y\right)+\left(x_{n}, y\right)-(x, y)\right| \\
& =\left|\left(x_{n}, y_{n}-y\right)+\left(x_{n}-x, y\right)\right| \\
& \leq\left|\left(x_{n}, y_{n}-y\right)\right|+\left|\left(x_{n}-x, y\right)\right| \tag{4}
\end{align*}
$$

By Schwarz inequality, we have

$$
\begin{equation*}
\left|\left(x_{n}, y_{n}-y\right)\right| \leq\left\|x_{n}\right\|\left\|y_{n}-y\right\| \tag{5}
\end{equation*}
$$

and $\quad\left|\left(x_{n}-x, y\right)\right| \leq\left\|x_{n}-x\right\|\|y\|$
Using (5) and (6) in (4) we get

$$
\begin{equation*}
\left|\left(x_{n}, y_{n}\right)-(x, y)\right| \leq\left\|x_{n}\right\|\left\|y_{n}-y\right\|+\left\|x_{n}-x\right\|\|y\| \tag{7}
\end{equation*}
$$

Since $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, therefore

$$
\left\|x_{n}-x\right\| \rightarrow 0 \quad \text { and } \quad\left\|y_{n}-y\right\| \rightarrow 0
$$

Further since $\left(x_{n}\right)$ is convergent sequence therefore it is bounded so that $\left\|x_{n}\right\| \leq M \forall n$ Using above in (7), we find that

$$
\left(x_{n}, y_{n}\right) \rightarrow(x, y) \text { as } n \rightarrow \infty
$$

Hence inner product in a Hilbert space is continuous.

## Theorem 4 (Parallelogram Law) :

If $x$ and $y$ are any two vectors in a Hilbert space $H$, then $\|(x+y)\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)$.
Proof: For any $x, y \in H$, we have

$$
\begin{align*}
\|x+y\|^{2} & =(x+y, x+y) \\
& =(x, x)+(x, y)+(y, x)+(y, y) \\
& =\|x\|^{2}+(x, y)+(y, x)+\|y\|^{2}
\end{align*}
$$

Again $\|x-y\|^{2}=(x-y, x-y)$

$$
\begin{align*}
& =(x, x)-(x, y)-(y, x)+(y, y) \\
& =\|x\|^{2}-(x, y)-(y, x)+\|y\|^{2}
\end{align*}
$$

Adding (8) and (9), we get

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)
$$

Remark : In a Hilbert space, the norm induced by the inner product satisfies the parallelogram law. However this is not true in general in Banach space i.e., the norm in a Banach space need not necessarily satisfies the parallelogram law.

## Theorem 5 (Polarisation Identity) :

If $x, y$ are any two vectors in a Hilbert space $H$, then

$$
4(x, y)=\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}
$$

Proof: Subtracting (9) from (8), we get

$$
\begin{equation*}
\|x+y\|^{2}-\|x-y\|^{2}=2(x, y)+2(y, x) \tag{10}
\end{equation*}
$$

Replacing $y$ by $i y$ in(10), we get

$$
\begin{align*}
\|x+i y\|^{2}-\|x-i y\|^{2} & =2(x, i y)+2(i y, x) \\
& =2 \bar{i}(x, y)+2 i(y, x) \\
& =-2 \bar{i}(x, y)+2 i(y, x) \tag{11}
\end{align*}
$$

Multiplying both sides of (11) by $i$, we get

$$
\begin{equation*}
i\|x+i y\|^{2}-i\|x-i y\|^{2}=2(x, y)-2(y, x) \tag{12}
\end{equation*}
$$

Adding (10) and (12) we get the required polarisation identity.

### 5.5 Some Important Theorems on Hilbert Spaces

Theorem 5: If $B$ is a complex Banach space whose norm obeys the parallelogram law, and if an inner product is defined on $B$ by

$$
\begin{equation*}
4(x, y)=\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2} \tag{13}
\end{equation*}
$$

then $B$ is a Hilbert space.
Proof: For all $x, y \in B$, the parallelogram law is

$$
\begin{equation*}
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) \tag{14}
\end{equation*}
$$

Now we show that the inner product on $B$ satisfies the properties of Hilbert space.
$\left(H_{1}\right)$ for $y=x$,

$$
\begin{aligned}
(13) \Rightarrow 4(x, x) & =\|2 x\|^{2}-\|0\|^{2}+i\|x(1+i)\|^{2}-i\|x(1-i)\|^{2} \\
& =4\|x\|^{2}-0+i|(1+i)|^{2}\|x\|^{2}-i|(1-i)|^{2}\|x\|^{2} \\
& =4\|x\|^{2}+2 i\|x\|^{2}-2 i\|x\|^{2} \\
& =4\|x\|^{2} \\
\Rightarrow(x, x) & =\|x\|^{2}
\end{aligned}
$$

$\left(H_{2}\right) \quad$ Taking complex conjugates of both sides of (13), we get

$$
\begin{align*}
& 4 \overline{(x, y)}=\|x+y\|^{2}-\|x-y\|^{2}-i\|x+i y\|^{2}+i\|x-i y\|^{2} \\
&\left(\because\|x+y\|^{2},\|x+y\|^{2}\right. \text { each are real) } \\
&=\|y+x\|^{2}-\|-(y-x)\|^{2}-i\|i(y-i x)\|^{2}+i\|-i(y+i x)\|^{2} \\
&=\|y+x\|^{2}-\|y-x\|^{2}-i|i|^{2}\|y-i x\|^{2}+i|-i|^{2}\|y+i x\|^{2} \\
&=\|y+x\|^{2}-\|y-x\|^{2}-i\|y-i x\|^{2}+i\|y+i x\| \\
&= 4(x, y) \quad \quad \text { (by (13)) } \tag{13}
\end{align*}
$$

$$
\therefore \quad \overline{(x, y)}=(y, x)
$$

The property

$$
(\alpha x+\beta y, z)=\alpha(x, z)+\beta(y, z)
$$

is equivalent to
$\left(H_{31}\right) \quad(x+y, z)=(x, z)+(y, z)$
and $\left(H_{32}\right) \quad(\alpha x, y)=\alpha(x, y)$
so instead of proving $H_{3}$ we proove $H_{31}$ and $H_{32}$.
$\left(H_{31}\right)$ Replacing $x$ by $(x+y)$ and $y$ by $z$ in (13), we get

$$
\begin{equation*}
4(x+y, z)=\|(x+y)+z\|^{2}-\|(x+y)-z\|^{2}+\|(x+y)+i z\|^{2}-i\|(x+y)-i z\|^{2} \tag{15}
\end{equation*}
$$

On replacing $x$ by $(x+z)$ and using

$$
\begin{align*}
& \|(x+y)+z\|^{2}=\|(x+z)+y\|^{2},(14) \text { gives } \\
& \|(x+z)+y\|^{2}+\|(x+z)-y\|^{2}=2\|x+z\|^{2}+2\|y\|^{2} \\
& \|(x+y)+z\|^{2}=2\|x+z\|^{2}+2\|y\|^{2}-\|(x+z)-y\|^{2} \tag{16}
\end{align*}
$$

or
Also $\quad\|(x+z)-y\|^{2}=\|(z-y)+x\|^{2}$

$$
\begin{align*}
& =2\|z-y\|^{2}+2\|x\|^{2}-\|(z-y)-x\|^{2}  \tag{16}\\
& =2\|-(y-z)\|^{2}+2\|x\|^{2}-\|-\{(x+y)-z\}\|^{2} \\
& =2\|y-z\|^{2}+2\|x\|^{2}-\|(x+y)-z\|^{2} \tag{17}
\end{align*}
$$

Using (17) in (16) we get

$$
\begin{align*}
& \|(x+y)+z\|^{2}=2\|x+z\|^{2}+2\|y\|^{2}-2\|y-z\|^{2}-2\|x\|^{2}+\|(x+y)-z\|^{2} \\
\therefore \quad & \|(x+y)+z\|^{2}-\|(x+y)-z\|^{2}=2\|x+z\|^{2}+2\|y\|^{2}-2\|y-z\|^{2}-2\|x\|^{2} \tag{18}
\end{align*}
$$

Interchanging $x$ and $y$ in(18) we get

$$
\begin{equation*}
\|(x+y)+z\|^{2}-\|(x+y)-z\|^{2}=2\|y+z\|^{2}+2\|x\|^{2}-2\|x-z\|^{2}-2\|y\|^{2} \tag{19}
\end{equation*}
$$

Adding (18) and (19) we get

$$
\|(x+y)+z\|^{2}-\|(x+y)-z\|^{2}
$$

$$
\begin{equation*}
=\|x+z\|^{2}-\|x-z\|^{2}+\|y+z\|^{2}-\|y-z\|^{2} \tag{20}
\end{equation*}
$$

Now replacing $z$ by $i z$ and then multiplying throughout by $i$ in(20), we get

$$
\begin{align*}
i\|(x+y)+i z\|^{2} & -i\|(x+y)-i z\|^{2} \\
& =i\|x+i z\|^{2}-i\|x-i z\|^{2}+i\|y+i z\|^{2}-i\|y-i z\|^{2} \tag{21}
\end{align*}
$$

Adding (20) and (21) we find that

$$
\begin{aligned}
\|(x+y)+z\|^{2} & -\|(x+y)-z\|^{2}+i\|(x+y)+i z\|^{2}-i\|(x+y)+i z\|^{2} \\
& =\left\{\|x+z\|^{2}-\|x-z\|^{2}+i\|x+i z\|^{2}-i\|x-i z\|^{2}\right\} \\
& +\left\{\|y+z\|^{2}-\|y-z\|^{2}+i\|y+i z\|^{2}-i\|y-i z\|^{2}\right\}
\end{aligned}
$$

or $\quad 4(x+y, z)=4(x, z)+u(y, z) \quad$ (using polarisation identity)
or $\quad(x+y, z)=(x, z)+(y, z)$
$\left(H_{32}\right)$ Let $\alpha \in C$. Then we prove $H_{32}$ for following cases :
Case I: Let $\alpha$ is a positive integer
by (22) we have

$$
(x+z, y)=(x, y)+(z, y)
$$

Taking $z=x$, we get

$$
(2 x, y)=2(x, y)
$$

Hence $\left(H_{32}\right)$ is true for $\alpha=2$
Now assume that $\left(H_{32}\right)$ is true for a fixed positive integer $k$ i.e.

$$
\begin{equation*}
(k x, y)=k(x, y) \tag{23}
\end{equation*}
$$

Then $\quad((k+1) x, y)=(k x+x, y)$

$$
\begin{array}{ll}
=(k x, y)+(x, y) & \left(\text { by } H_{31}\right) \\
=k(x, y)+(x, y) & (\text { by }(23)) \\
=(k+1)(x, y) &
\end{array}
$$

Thus $H_{32}$ is true for $k+1$. Hence $H_{32}$ is true for all positive integers $k$.

Case II: Let $\alpha$ be a negative integer.
Here first we prove that

$$
(-x, y)=-(x, y)
$$

For this replacing $x$ by $-x$ in (13), we get

$$
\begin{align*}
4(x, y) & =\|-x+y\|^{2}-\|-x-y\|^{2}+i\|-x+i y\|^{2}-i\|-x-i y\|^{2} \\
& =\|-(x-y)\|^{2}-\|-(x+y)\|^{2}+i\|-(x-i y)\|^{2}-i\|-(x+i y)\|^{2} \\
& =\|x-y\|^{2}-\|x+y\|^{2}+i\|x-i y\|^{2}-i\|x+i y\|^{2} \\
& =-4(x, y)  \tag{24}\\
\therefore \quad(-x, y) & =-(x, y)
\end{align*}
$$

Now let $\alpha=-\beta$, where $\beta$ is positive integer. Then

$$
\begin{aligned}
(\alpha x, y) & =((-\beta) x, y)=(-(\beta x), y) \\
& =-(\beta x, y)=\alpha(x, y)
\end{aligned}
$$

Case III : Let $\alpha$ be a rational number i.e., $\alpha=\frac{p}{q}$
where $p$ and $q$ are integers and $q \neq 0$. We have

$$
\begin{aligned}
(\alpha x, y) & \left.=\left(\frac{p}{q} x, y\right)=(p z, y) \quad \text { (assume that } \frac{x}{q}=z\right) \\
& =p(z, y)
\end{aligned}
$$

Also $\quad(q z, y)=q(z, y) \Rightarrow(z, y)=\frac{1}{q}(q z, y)$

Hence $(\alpha x, y)=\frac{p}{q}(q z, y)$

$$
=\alpha(x, y)
$$

Case IV: Let $\alpha$ be a complex number.
Here first we proove that

$$
(i x, y)=i(x, y)
$$

Replacing $x$ by $i x$ in(13), we get

$$
\begin{aligned}
4(x, y) & =\|i x+y\|^{2}-\|i x-y\|^{2}+i\|i x+i y\|^{2}-i\|i x-i y\|^{2} \\
& =\|i(x-i y)\|^{2}-\|i(x+i y)\|^{2}+i\|i(x+y)\|^{2}-i\|i(x-y)\|^{2} \\
& =|i|^{2}\|x-i y\|^{2}+|i|^{2}\|x+i y\|^{2}+i|i|^{2}\|x+y\|^{2}-i|i|^{2}\|x-y\|^{2} \\
& =\|x-i y\|^{2}-\|x+i y\|^{2}+i\|x+y\|^{2}-i\|x-y\|^{2} \\
& =-i^{2}\|x-i y\|^{2}+i^{2}\|x+i y\|^{2}+i\|x+y\|^{2}-i\|x-y\|^{2} \\
& =i\left\{\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}\right\} \\
& =i(x, y)
\end{aligned}
$$

Now suppose that $\alpha=\alpha_{1}+i \alpha_{2}$, where $\alpha_{1}, \alpha_{2} \in R$.
We have

$$
\begin{aligned}
(\alpha x, y) & =\left(\left(\alpha_{1}+i \alpha_{2}\right) x, y\right)=\left(\alpha_{1} x+i \alpha_{2} x, y\right) \\
& =\left(\alpha_{1}, x, y\right)+\left(i \alpha_{2} x, y\right)=\alpha_{1}(x, y)+i\left(\alpha_{2} x, y\right) \\
& =\alpha_{1}(x, y)+i \alpha_{2}(x, y) \\
& =\left(\alpha_{1}+i \alpha_{2}\right)(x, y)=\alpha(x, y)
\end{aligned}
$$

Thus we have proved that

$$
(\alpha x, y)=\alpha(x, y) \text { for each scalar } \alpha .
$$

Hence $B$ is Hilbert space.
Theorem 6 : A closed convex shubset $K$ of aHilbert Space $H$ contains a unique vectors of smallest norm.

Proof : Here first we define a convex set
Let $X$ be a linear space real or complex. $A$ normempty subset $K$ of $X$ is said to be convex if $x, y \in K \Rightarrow(1-\lambda) x+\lambda y \in K$ where $\lambda$ is any real number s.t. $0 \leq \lambda \leq 1$.

Taking $\lambda=\frac{1}{2}$, we see that if $K$ is convex subset of a linear space $X$, then $x, y \in K \Rightarrow \frac{x+y}{2} \in K$.
Now suppose that $d=\inf \{\|x\|: x \in K\}$. Then there exists a sequence $\left\{x_{n}\right\}$ in $K$ s.t. $\left\|x_{n}\right\| \rightarrow d$.

Since $K$ is convex, therefore $\frac{x_{n}+x_{m}}{2} \in K$ for $m, n \in N$.
Hence using the definition of $d$, we have

$$
\begin{equation*}
\left\|\frac{1}{2}\left(x_{n}+x_{m}\right)\right\| \geq d \Rightarrow\left\|x_{n}+x_{m}\right\| \geq 2 d \tag{25}
\end{equation*}
$$

By parallelogram law

$$
\begin{align*}
\left\|x_{n}-x_{m}\right\|^{2} & =2\left\|x_{n}\right\|^{2}+2\left\|x_{m}\right\|^{2}-\left\|x_{n}+x_{m}\right\|^{2} \\
& \leq 2\left\|x_{n}\right\|^{2}+2\left\|x_{m}\right\|^{2}-4 d^{2} \tag{26}
\end{align*}
$$

Since $\left\|x_{n}\right\|,\left\|x_{m}\right\| \rightarrow d$ as $n, m \rightarrow \infty$, we get from (26) that

$$
\left\|x_{n}-x_{m}\right\|^{2} \rightarrow 0 \quad \text { as } \quad m, n \rightarrow \infty
$$

Hence $\left\{x_{n}\right\}$ is a Cauchy sequence. Since $K$ is a closed subspace of a complete space, therefore $K$ is complete. Hence the Cauchy sequence $\left\{x_{n}\right\}$ in $K$ converges to a point $x$ in $K$. Since the inner product is continuous and consequent6ly norm is also continuous.

Thus $\quad\|x\|=\left\|\lim x_{n}\right\|=\lim \left\|x_{n}\right\|=d$
so $x$ is a vector of smallest norm.
Uniqueness of $x$ : Let $y \in K$ be another point with $\|y\|=d$.
Then $\frac{1}{2}(x+y) \in K$. Hence by parallelogram law, we get

$$
\begin{aligned}
\left\|\frac{1}{2}(x+y)\right\|^{2} & =2\left\|\frac{x}{2}\right\|^{2}+2\left\|\frac{y}{2}\right\|^{2}-\left\|\frac{1}{2}(x-y)\right\|^{2} \\
& =\frac{d^{2}}{2}+\frac{d^{2}}{2}-\left\|\frac{1}{2}(x-y)\right\|^{2} \\
& =d^{2}-\left\|\frac{1}{2}(x-y)\right\|^{2} \\
& <d^{2}
\end{aligned}
$$

Which contradicts the definition of $d$, since $\frac{1}{2}(x+y) \in K$. Hence $x \in K$ is unique.
Theorem 7: Let $M$ be a closed linear subspace of a Hilbert space $H$, and $x$ be a vecotr not in $M$. Suppose that $d=d(x, M)$. Then these exists a unique vector $y_{0}$ in M s.t. $\left\|x-y_{0}\right\|=d$.

Proof: We have $d=d(x, M)=\inf \{\|x-y\|: y \in M\}$
Then there exists a sequence $\left\{y_{n}\right\}$ in $M$ s.t.

$$
\lim \left\|x-y_{n}\right\|=d \text { or }\left\|x-y_{n}\right\| \rightarrow d
$$

Let $y_{m}, y_{n} \in\left\{y_{n}\right\}$ i.e., $y_{m}, y_{n} \in M$

$$
\begin{align*}
& \Rightarrow \quad \frac{y_{m}+y_{n}}{2} \in M \quad[\because \mathrm{M} \text { is a subspace of } H] \\
& \Rightarrow \quad\left\|x-\frac{y_{m}+y_{n}}{2}\right\| \geq d \\
& \Rightarrow \quad\left\|2 x-\left(y_{m}+y_{n}\right)\right\| \geq 2 d \tag{27}
\end{align*}
$$

By parallelogramlaw, we have

$$
\begin{aligned}
\left\|y_{m}-y_{n}\right\|^{2} & =\left\|\left(x-y_{n}\right)-\left(x-y_{m}\right)\right\|^{2} \\
& =2\left\|x-y_{n}\right\|^{2}+2\left\|x-y_{m}\right\|^{2}-\left\|\left(x-y_{n}\right)+\left(x-y_{m}\right)\right\|^{2} \\
& \leq 2\left\|x-y_{n}\right\|^{2}+2\left\|x-y_{m}\right\|^{2}-4 d^{2} \\
& \rightarrow 2 d^{2}+2 d^{2}-4 d^{2}=0 \quad \text { as } \quad m, n \rightarrow \infty
\end{aligned}
$$

$\therefore\left\{y_{n}\right\}$ is a Cauchy sequence in $M$ which is complete. being a closed subspace of a complete space $H$

$$
\Rightarrow \quad \exists y_{0} \in M \quad \text { s.t. } \quad\left\{y_{n}\right\} \rightarrow y_{0}
$$

Now $\quad\left\|x-y_{0}\right\|=\left\|x-\lim y_{n}\right\|$

$$
=\left\|\lim \left(x-y_{n}\right)\right\|=\lim \left\|x-y_{n}\right\|=d
$$

Hence $y_{0}$ is the required vector in $M$ s.t. $\left\|x-y_{0}\right\|=d$
Uniqueness of $y_{0}$ : Let $y_{1}, y_{2}\left(y_{1} \neq y_{2}\right)$ be two vectors in $M$ s.t.

$$
\left\|x-y_{1}\right\|=d=\left\|x-y_{2}\right\| .
$$

Now $\quad y_{1}, y_{2} \in M \Rightarrow \frac{y_{1}+y_{2}}{2} \in M$

$$
\begin{aligned}
& \Rightarrow\left\|x-\frac{y_{1}+y_{2}}{2}\right\| \geq d \\
& \Rightarrow\left\|2 x-\left(y_{1}+y_{2}\right)\right\| \geq 2 d
\end{aligned}
$$

By parallelogramlaw we have

$$
\begin{gathered}
\left\|\left(x-y_{1}\right)-\left(x-y_{2}\right)\right\|^{2}=2\left\|x-y_{1}\right\|^{2}+2\left\|x-y_{2}\right\|^{2}-\left\|2 x-\left(y_{1}+y_{2}\right)\right\|^{2} \\
\leq 2 d^{2}+2 d^{2}-4 d^{2}=0 \\
\therefore \quad\left\|y_{1}-y_{2}\right\|^{2} \leq 0 \Rightarrow\left\|y_{1}-y_{2}\right\|=0 \quad\left(\because\left\|y_{1}-y_{2}\right\|^{2} \geq 0\right) \\
\Rightarrow y_{1}-y_{2}=0 \\
\Rightarrow y_{1}=y_{2}
\end{gathered}
$$

Hence $y_{0}$ is unique.

## Self-Learning Exercise

1. State linearity in the first variable for inner product.
2. If $x, y, z \in H$ (a Hilbert space) and $\alpha, \beta, \gamma \in C$, then fill up the blanks
(i) $(\alpha x+\beta y, z)=\ldots$.
(ii) $(x, \beta y-\gamma z)=\ldots .$.
(iii) $\overline{(x, y)}=\ldots$.
3. Fill up the blanks
(i) A ................. inner product space is called a Hilbert space.
(ii) The inner product in a Hilbert space is $\qquad$
4. State parallelogram law in a Hilbert space.
5. State polarisation identity in a Hilbert space.

### 5.6 Summary

In this unit you studied inner product space and Hilbert spaces and some basic properties associated with these spaces.

### 5.7 Answers to Self-Learning Exercise

1. $(\alpha x+\beta y, z)=\alpha(x, z)+\beta(y, z)$
2. 

(i) $\alpha(x, z)+\beta(y, x)$
(ii) $\bar{\beta}(x, y)-\bar{\gamma}(x, z)$
3. (i) complete
(ii) jointly continuous
4. $\quad\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) \quad \forall x, y \in H$
5. $\quad 4(x, y)=\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}$

### 5.8 Exercises

1. Let $L_{2}[0,1]$ be the set of all square integrable functions on $[0,1]$. Define the inner product on $L_{2}[0,1]$ as

$$
(f, g)=\int_{0}^{1} g(t) \overline{g(t)} d t \quad \forall f, g \in L_{2}[0,1]
$$

Prove that $L_{2}[0,1]$ is an inner product space.
2. Give an example of an inner product space which is not a Hilbert space.
3. If $X$ is an inner product space, show that $\sqrt{(x, x)}$ satisfies the properties of a norm.
4. If $x$ and $y$ are any two vectors in a Hilbert space $H$ then show that
(i) $\quad\|x+y\|^{2}-\|x-y\|^{2}=4 \operatorname{Re}(x, y)$
(ii) $(x, y)=\operatorname{Re}(x, y)+i \operatorname{Re}(x, i y)$
5. For the specialHilbert space $l_{2}^{n}$, use Cauchy's inequality to prove the Schwarz inequality.
6. Define (i) Inner product space (ii) Hilbert space and give an example.
7. Let $K$ be a non-empty conver subset of a Hilbert space $H$ and $x_{0} \in H$. Prove that $\exists$ a unique point $k_{0} \in K$ s.t. $d\left(x_{0}, k\right)=\left\|x_{0}-k_{0}\right\|$.

# Unit-6 <br> Orthogonality and Functionals in Hilbert Spaces 

## Structure of the Unit

### 6.1 Objectives

### 6.2 Introduction

### 6.3 Orthogonal Complements

6.3.1 Definition 1 (Orthogonality)
6.3.2 Definition 2 (Orhogonal Sets)
6.3.3 Definition 3 (Orthogonal Complements)
6.3.4 Pythagorean Theorem

### 6.3.5 Elementary Properties

6.4 Projection Theorem
6.5 Orthogonal Sets
6.5.1 Definition 1
6.5.2 Definition 2
6.5.3 Example
6.6 Important Theorems on Orthogonal Sets
6.7 Complete Orthogonal Set
6.7.1 Definition 1
6.7.2 Definition 2
6.7.3 Definition 3
6.7.4 Definition4
6.7.5 Creteria for Orthonormal Set
6.7.6 Example
6.7.7 Properties of Orthonormal Set
6.8 Reflexivity in Hilbert Spaces
6.9 Summary
6.10 Answers to SelfLearning Exercise
6.11 Exercises

### 6.1 Objectives

Our objective of this unit is to study orthogenality and functionals in Hilbert spaces. We shall also study the orthonormal sets, complete orthonormal sets and reflexivity of Hilbert spaces.

### 6.2 Introduction

In the last unit we defined the inner product spaces and Hilbert spaces. In this unit first we define orthogonality in Hilbert spaces, and prove Pythagorean theorem, Projection theorem and some other important results connected with orthogonal complements. After that the definition of orthonormal sets and complete orthonormal sets are given and important theorems such as Bessel's inequality, Parseval's identity are proved. We also discuss functionals in Hilbert spaces and prove an important theorem viz Riesz representation theorem. Lastly we prove that every Hilbert space is Reflexive.

### 6.3 Orthogonal Complements

### 6.3.1 Definition 1 (Orthogonality) :

Let $x$ and $y$ be any two vectors in a Hilbert space $H$. Then $x$ is said to be orthogonal to $y$ written as $x \perp y$ if $(x, y)=0$

From the definition we have the following easy consequences :
(i) The relation of orthognality is symmetric i.e.

$$
\begin{aligned}
& x \perp y \Rightarrow y \perp x . \text { Since } x \perp y \text { gives } \\
& (x, y)=0 \Rightarrow \overline{(x, y)}=0 \text { or }(y, x)=0 \Rightarrow y \perp x
\end{aligned}
$$

(ii) If $x \perp y$, then $\alpha x \perp y \forall \alpha \in C$.

$$
\text { Since }(\alpha x, y)=\alpha(x, y)=0 \text {, therefore } x \perp y \Rightarrow \alpha x \perp y
$$

(iii) $\operatorname{Since}(0, x)=0$ for any $x \in H$, therefore $0 \perp x \forall x \in H$
(iv) If $x \perp x$, then $x$ must be zero. For $x \perp x$, then $(x, x)=0 \Rightarrow\|x\|^{2}=0$ i.e., $x=0$

### 6.3.2 Definition 2 (Orthogonal Sets) :

Two non empty subsets $S_{1}$ and $S_{2}$ of a Hilbert space $H$ are said to be orthogonal denoted by $S_{1} \perp S_{2}$, if $x \perp y \forall x \in S_{1}$ and $y \in S_{2}$.

### 6.3.3 Definition 3 (Orthogonal Complement) :

Let $S$ be a non empty subset of a Hilbert space $H$. The orthogonal complement of $S$ denoted by $S^{\perp}$ and read as $S$ perpendicular, is defined as

$$
S^{\perp}=\{x \in H: x \perp y, \forall y \in S\}
$$

Thus $S^{\perp}$ is the set of all those vectors in $H$ which are orthogonal to every vector in $S$.

### 6.3.4 Pythagorean Theorem :

Statement If $x$ and $y$ are any two orthogonal vectors in a Hilbert space $\boldsymbol{H}$, then

$$
\|x+y\|^{2}=\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}
$$

Proof: Since $x \perp y$ therefore

$$
\begin{align*}
(x, y)=0 & \Rightarrow \overline{(x+y)}=0 \\
& \Rightarrow(y, x)=0 \tag{1}
\end{align*}
$$

Now $\quad\|x+y\|^{2}=(x+y, x+y)$

$$
\begin{align*}
& =(x, x)+(x, y)+(y, x)+(y, y) \\
& =\|x\|^{2}+\|y\|^{2} \quad(\operatorname{using}(1)) \tag{2}
\end{align*}
$$

Similarly $\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}$
Combining (2) and (3) we get the Pythagorean theorem.

### 6.3.5 Elementary Properties :

From the definition we have the following
Theorem 1: Let $S, S_{1}$ and $S_{2}$ be non empty subsets of a Hilbert space $H$. Then
(i) $\quad\{0\}^{\perp}=H$
(ii) $H^{\perp}=\{0\}$
(iii) $S \cap S^{\perp} \subset\{0\}$
(iv) $\quad S_{1} \subset S_{2} \Rightarrow S_{2}^{\perp} \subset S_{1}^{\perp}$ and $S_{1}^{\perp \perp} \subset S_{2}^{\perp \perp}$
(v) $\quad S \subset S^{\perp \perp}$
(vi) $\quad S_{1} \perp S_{2} \Rightarrow S_{1} \cap S_{2}=\{0\}$

Proof: (i) By definition we have $\{0\}^{\perp} \subset H$
Now let $x \in H$. Since $(x, 0)=0 \therefore x \in\{0\}^{\perp}$. Hence $H \subset\{0\}^{\perp}$
Combining (4) and (5) we get $\{0\}^{\perp}=H$
(ii) Let $x \in H^{\perp} \Rightarrow(x, y)=0 \forall y \in H$

Choose $y=x$, then $(x, x)=0 \Rightarrow\|x\|^{2}$ or $x=0$
Thus $\quad x \in H^{\perp} \Rightarrow x=0$. Hence $H^{\perp}=\{0\}$
(iii) Let $x \in S \cap S^{\perp} \Rightarrow x \in S$ and $x \in S^{\perp}$
$\Rightarrow x \perp x$ or $(x, x)=0$
$\Rightarrow\|x\|^{2}=0 \Rightarrow x=0 \in\{0\}$
Thus $\quad S \cap S^{\perp} \subset\{0\}$
(Remark: If $S$ is subspace of $H$, then $S^{\perp}$ is also subspace of $H$. So both $S$ and $S^{\perp}$ contain zero vector. Thus is $S$ is subspace of $H$, then $0 \in S \cap S^{\perp} \Rightarrow S \cap S^{\perp}=\{0\}$.)
(iv) Let $x \in S_{2}^{+}$. Then $x$ is orthogonal to every vector in $S_{2}$.

Since $S_{1} \subset S_{2}$, therefore $x$ is orthogonal to every vector in $S_{1}$
which implies $x \in S_{1}^{\perp}$. Thus $S_{2}^{\perp} \subset S_{1}^{\perp}$.
In a similar manner we can prove that $S_{1}^{\perp \perp} \subset S_{2}^{\perp \perp}$.
(v) Let $x \in S$. Then $(x, y)=0 \forall y \in S^{\perp}$
so if $y \in S^{\perp}$, then from the definition of $S^{\perp \perp}, x \in S^{\perp \perp}$.
Thus $x \in S \Rightarrow x \in S^{\perp \perp}$. Hence $S \subset S^{\perp \perp}$
(vi) If $S_{1} \cap S_{2} \neq\{0\}$, then suppose that $x \in S_{1} \cap S_{2}$.

Since $S_{1} \perp S_{2}$, therefore $(x, x)=0 \Rightarrow\|x\|^{2}=0 \Rightarrow x=0$, therefore $S_{1} \cap S_{2}=\{0\}$.

Theorem 2 : If $S$ is a non empty subset of a Hilbert space $H$, then $S^{\perp}$ is a closed linear subspace of $H$ and hence a Hilbert space.

Proof: By definition of $S^{\perp}$, we have

$$
S^{\perp}=\{x \in H:(x, y)=0 \quad \forall y \in S\}
$$

Since $(0, y)=0 \forall y \in S$, therefore $0 \in S^{\perp}$ and so $S^{\perp}$ is non empty.
Let $\quad x_{1}, x_{2} \in S^{\perp}$ and $\alpha, \beta$ are scalars. Then

$$
\left(x_{1}, y\right)=0 \text { and }\left(x_{2}, y\right)=0 \quad \forall y \in S .
$$

Hence for every $y \in S$, we get

$$
\begin{aligned}
& \left(\alpha x_{1}+\beta x_{2}, y\right)=\alpha\left(x_{1}, y\right)+\beta\left(x_{2}, y\right)=\alpha 0+\beta 0=0 \\
\Rightarrow \quad & \alpha x_{1}+\beta x_{2} \in S^{\perp} \\
\Rightarrow \quad & S^{\perp} \text { is a subspace of } H .
\end{aligned}
$$

Now we prove that $S^{\perp}$ is a closed subset of $H$. For this let $\left\{x_{n}\right\}$ be a sequence is $S^{\perp}$ converging to $x$ in $H$.

Then we have to show that $x \in S^{\perp}$. For this we should prove that $(x, y)=0 \forall y \in S$.
Since $x_{n} \in S^{\perp}$, therefore $\left(x_{n}, y\right)=0 \forall y \in S$ and $n \in N$. Since inner product is a continuous function, therefore $\left(x_{n}, y\right) \rightarrow(x, y)$ as $n \rightarrow \infty$

Since $\left(x_{n}, y\right)=0 \forall n$, therefore $(x, y)=0$. Thus $x \in S^{\perp}$.
Hence $S^{\perp}$ is a closed subset of $H$.
Now $S^{\perp}$ is a closed subspace of Hilbert space $H$. So, $S^{\perp}$ is complete and hence it is a Hilbert space.

### 6.4 Projection Theorem

In this section, we shall first develop some preliminary results for the proof of Projection Theorem.
Theorem 3: Let $M$ be a proper closed linear subspace of a Hilbert space $H$. Then there exists a nonzero vector $z_{0}$ in $H$ s.t. $z_{0} \perp M$.

Proof: Since $M$ is a proper closed subspace of $H$, therefore there eixsts a vector $x$ in $H$ which is not in $M$.

Let $d=d(x, M)=\inf \{\|x-y\|: y \in M\}$
As $x \notin M$, so $d>0$. Again $M$ is a closed subspace of $H$, so by Theorem 7 of unit 5 , there exists a unique vector $y_{0}$ in $M$ s.t. $\left\|x-y_{0}\right\|=d$. Suppose that $z_{0}=x-y_{0}$.

Now $\left\|z_{0}\right\|=\left\|x-y_{0}\right\|=d>0$
Hence $z_{0}$ is a non zero vector. We prove that $z_{0} \perp M$. For this we must show that $\left(z_{0}, y\right)=0$ $\forall y \in M$.

For any scalar $\alpha$, consider

$$
z_{0}-\alpha y=x-y_{0}-\alpha y=x-\left(y_{0}+\alpha y\right)
$$

Since $M$ is a subspace of $H$ and $y, y_{0} \in M$, therefore $y_{0}+\alpha y \in M$. Hence using the definition of $d$, we get

$$
\left\|x-\left(y_{0}+\alpha y\right)\right\| \geq d=\left\|z_{0}\right\|
$$

Therefore $\left\|z_{0}-\alpha y\right\| \geq\left\|z_{0}\right\|^{2}$
Now $\quad\left\|z_{0}-\alpha y\right\|^{2}-\left\|z_{0}\right\|^{2}=\left(z_{0}-\alpha y, z_{0}-\alpha y\right)-\left(z_{0}, z_{0}\right) \geq 0$
or $\quad\left(z_{0}, z_{0}\right)-\bar{\alpha}\left(z_{0}, y\right)-\alpha\left(y, z_{0}\right)+\alpha \bar{\alpha}(y, y)-\left(z_{0}, z_{0}\right) \geq 0$
or $\quad-\bar{\alpha}\left(z_{0}, y\right)-\alpha\left(y, z_{0}\right)+\alpha \bar{\alpha}(y, y) \geq 0$
The result (6) is true for all scalars $\alpha$. Let $\alpha=\beta\left(z_{0}, y\right)$ where $\beta$ is any arbitrary real number. Then $\bar{\alpha}=\beta \overline{\left(z_{0}, y\right)}$. Using $\alpha$ and $\bar{\alpha}$ in (6) we get

$$
-\beta \overline{\left(z_{0}, y\right)}\left(z_{0}, y\right)-\beta\left(z_{0}, y\right) \overline{\left(z_{0}, y\right)}+\beta^{2}\left(z_{0}, y\right) \overline{\left(z_{0}, y\right)}\|y\|^{2} \geq 0
$$

or $\quad-2 \beta\left|\left(z_{0}, y\right)\right|^{2}+\beta^{2}\left|\left(z_{0}, y\right)\right|^{2}\|y\|^{2} \geq 0$
or $\quad \beta\left|\left(z_{0}, y\right)\right|^{2}+\left[\beta\|y\|^{2}-2\right] \geq 0$
The relation (7) is true for all real $\beta$. Suppose that $\left(z_{0}, y\right) \neq 0$. Choosing $\beta$ to be positive s.t. $\beta\|y\|^{2}<2$, then from (7). We have

$$
\beta\left|\left(\beta_{0}, y\right)\right|^{2}\left[\beta\|y\|^{2}-2\right]<0
$$

which contradicts (7). Hence $\left(z_{0}, y\right)=0$ showing that $z_{0} \perp y$.
Thus $z_{0} \perp y \forall y \in M \Rightarrow z_{0} \perp y$ which completes the proof of the theorem.
Theorem 4: Let $M$ be a linear subspace of Hilbert space $H$. Then $M$ is closed if and only if $M=M^{\perp \perp}$ 。

Proof: Let $M=\left(M^{\perp}\right)^{\perp}=M^{\perp \perp}$ where $M$ is a subspace of $H$.
Using Theorem 2, $M^{\perp \perp}$ is closed. Therefore $M$ is closed conversly let $M$ be a closed subspace of $H$.

We know that $M \subset M^{\perp \perp}$ (by Theorem 1, (v)).
Now let $M \neq M^{\perp \perp}$. Then $M$ is a proper closed subspace of Hilbert space $M^{\perp \perp}$. Hence by Theorem 3, there exists a non-zero vector $z_{0}$ in $M^{\perp \perp}$ s.t. $z_{0} \perp M$ or $z_{0} \in M^{\perp}$.

Now $z_{0} \in M^{\perp}$ and $M^{\perp \perp} \Rightarrow z_{0} \in M^{\perp} \cap M^{\perp \perp}$
Since $M^{\perp}$ is a subspace of $H$, therefore

$$
\begin{equation*}
M^{\perp} \cap M^{\perp \perp}=\{0\} \quad(\text { by Theorem 1, Remark (iii)) } \tag{9}
\end{equation*}
$$

From (8) and (9) we have $z_{0}=0$ contradicting $z_{0}$ is a non-zero vector. Hence $M \subset M^{\perp \perp}$ can not be a proper inclusion. Hence we have $M=M^{\perp \perp}$.

Remark: By the Theorem 2, $M^{\perp}$ is closed subspace of $H$. So $M^{\perp}=\left(M^{\perp}\right)^{\perp \perp}=M^{\perp \perp \perp}$.
Theorem 5: $M$ and $N$ are closed linear subspaces of Hilbert space $H$ s.t. $M \perp N$, then the linear subspace $M+N$ is closed.

Proof: To show that $M+N$ is closed. We have prove that it contains all its limits points. Let $z$ is a limit point of $M+N$. Then there exists a sequence $\left\{z_{n}\right\}$ in $M+N$ s.t. $z_{n} \rightarrow z$ in $H$. Now $M \perp N$, $M \cap N=\{0\}$ and $M+N$ is a direct sum of the subspaces $M$ and $N$, therefore $z_{n}$ can be written uniquely as $z_{n}=x_{n}+y_{n}$ where $x_{n} \in M$ and $y_{n} \in N$.

Taking $z_{m}=x_{m}+y_{m}$ and $z_{n}=x_{n}+y_{n}$, we have

$$
z_{m}-z_{n}=\left(x_{m}-x_{n}\right)+\left(y_{m}-y_{n}\right) .
$$

Since $\quad\left(x_{m}-x_{n}\right) \in M$ and $\left(y_{m}-y_{n}\right) \in N$, therefore $\left(x_{m}-x_{n}\right) \perp\left(y_{m}-y_{n}\right)$
Hence by Pythagorean theorem, we get

$$
\begin{align*}
& \left\|\left(x_{m}-x_{n}\right)+\left(y_{m}-y_{n}\right)\right\|^{2}=\left\|x_{m}-x_{n}\right\|^{2}+\left\|y_{m}-y_{n}\right\|^{2} \\
\Rightarrow \quad & \left\|z_{m}-z_{n}\right\|^{2}=\left\|x_{m}-x_{n}\right\|^{2}+\left\|y_{m}-y_{n}\right\|^{2} \tag{10}
\end{align*}
$$

Since $\left\{z_{n}\right\}$ is convergent sequence in $H$, it is a Cauchy's sequence in $H$, therefore $\left\|z_{m}-z_{n}\right\|^{2} \rightarrow 0$ as $m, n \rightarrow \infty$. Using it in (10) we get $\left\|x_{m}-x_{n}\right\|^{2} \rightarrow 0$ and $\left\|y_{m}-y_{n}\right\|^{2} \rightarrow 0$ as $m, n \rightarrow \infty$. Hence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequences in $M$ and $N$. Since $H$ is complete and $M$ and $N$ are closed subspaces of a complete space $H$, therefore $M$ and $N$ are complete. Hence the Cauchy sequence $\left\{x_{n}\right\}$ converges to $x$ in $M$ and $\left\{y_{n}\right\}$ converges to $y$ in $N$.

Now $z=\lim z_{n}=\lim x_{n}+\lim y_{n}=x+y \in M+N$.
Therefore $M+N$ is closed
Now we state projection theorem.
Theorem 6: If $M$ is a closed linear subspace of a Hilbert space $H$, then $H=M \oplus M^{\perp}$.
Proof : Since $M$ is a subspace of $H$, therefore by Theorem 2, $M^{\perp}$ is a closed and $M \cap M^{\perp}=\{0\}$. Thus in order to prove the theorem it is sufficient to verify that $H=M+M^{\perp}$.

Now $M$ and $M^{\perp}$ are closed subspaces of $H$, therefore by Theorem 5, $M+M^{\perp}$ is also a closed subspace of $H$.

Suppose that $N=M+M^{\perp}$, then we prove that $N=H$.
From the definition of $N$, we have $M \subset N$ and $M^{\perp} \subset N$.
Thus $N^{\perp} \subset M^{\perp}$ and $N^{\perp} \subset M^{\perp \perp}$. Hence $N^{\perp} \subset M^{\perp} \cap M^{\perp \perp}=\{0\}$.
Now $N^{\perp}=\{0\} \Rightarrow N^{\perp \perp}=\{0\}^{\perp}=H$
Since $N=M+M^{\perp \perp}$ is a closed subspace of $H$, therefore

$$
\begin{equation*}
N^{\perp \perp}=N \tag{12}
\end{equation*}
$$

From (11) and (12) we get

$$
N=M+M^{\perp \perp}=H
$$

## Self-Learning Exercise - I

1. Define orthogonal sets.
2. State Pythagorean theorem.
3. State Projection theorem.
4. Define orthogonal complement of a set.

## Fill up the blanks

5. $\quad\{0\}^{\perp}=$ $\qquad$
6. $H^{\perp}=$ $\qquad$ where $H$ is a Hilbert space.
7. If $M$ and $N$ are subspaces of a Hilbert space $H$ and $M \perp N$, then $M \cap N=$. $\qquad$
8. If $S$ is a non empty subset of a Hilbert space, then $S^{\perp}$ is a $\qquad$ space.
9. Let $M$ be a linear subspace of a Hilbert space $H$. Then M is closed iff. $\qquad$
10. For any non empty subset $M$ of a Hilbert space $H, M^{\perp}=\ldots .{ }^{\perp \perp \perp}$

### 6.5 Orthonormal Sets

6.5.1 Definition 1: Let $H$ be a Hilbert space. If $x \in H$ s.t. $\|x\|=1$ i.e., $(x, x)=1$, then $x$ is said to be a unit or normal vector.
6.5.2 Definition 2 : Anon empty subset $\left\{e_{i}\right\}$ of the Hilbert space $H$ is said to be an orthonormal set if
(a) $e_{i} \perp e_{j}$ or $\left(e_{i}, e_{j}\right)=0 \quad \forall i \neq j$
(b) $\quad\left\|e_{i}\right\|=1$ or $\left(e_{i}, e_{j}\right)=1$ for every $i$.
or
A non-empty subset of Hilbert space is said to be an orthonormal set if it contains mutually orthogonal unit vector.

## Remarks :

1. An orthonormal set cannot contain zero vector as $\|0\|=0$.
2. If $H$ contains only the zero vector, then it has no orthonormal sets.
3. Every Hilbert space $H \neq\{0\}$ posesses an orthonormal set
4. If $\left\{x_{i}\right\}$ is a non-empty set of mutually orthogonal vectors in $H$, then $\left\{e_{i}\right\}=\left\{\frac{x_{i}}{\left\|x_{i}\right\|}\right\}$ is an orthonormal set.
6.5.3 Example : In the Hilbert space $l_{2}^{n}$, the subset $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ where $e_{i}$ is the $i^{\text {th }}$ tuple with 1 in the $i^{\text {th }}$ place and 0 elsewhere is an orthonormal set.

### 6.6 Important Theorems on Orthonormal sets

Theorem 7: If $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be finite orthonormal set in a Hilbert space $H$, and $x$ be any vector in $H$, then
(i) $\quad \sum_{i=1}^{n}\left|\left(x, e_{i}\right)\right|^{2} \leq|x|^{2} \quad$ and
(ii) $\quad x-\sum_{i=1}^{n}\left(x, e_{i}\right) e_{i} \perp e_{j} \forall j$

Proof: Let $y=x-\sum_{i=1}^{n}\left(x, e_{i}\right) e_{i}$. Then

$$
\begin{align*}
\|y\|^{2} & =(y, y) \\
& =\left(x-\sum_{i=1}^{n}\left(x, e_{i}\right) e_{i}, x-\sum_{j=1}^{n}\left(x, e_{j}\right) e_{j}\right) \\
= & (x, x)-\sum_{i=1}^{n}\left(x, e_{i}\right)\left(e_{i}, x\right)-\sum_{j=1}^{n} \overline{\left(x, e_{j}\right)}\left(x, e_{j}\right) \\
& +\sum_{i=1}^{n} \sum_{j=1}^{n}\left(x, e_{i}\right) \overline{\left(x, e_{j}\right)}\left(e_{i}, e_{j}\right) \tag{12}
\end{align*}
$$

$\operatorname{Now}\left(e_{i}, e_{j}\right)=0, i \neq j$ and $\left(e_{i}, e_{i}\right)=1$
Therefore

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{n}\left(x, e_{i}\right) \overline{\left(x, e_{j}\right)}\left(e_{i}, e_{j}\right)=\sum_{i=1}^{n}\left(x, e_{i}\right) \overline{\left(x, e_{i}\right)} \tag{14}
\end{equation*}
$$

Using (14) in (12) we get

$$
\begin{aligned}
\|y\|^{2} & =\|x\|^{2}-\sum_{i=1}^{n}\left(x, e_{i}\right) \overline{\left(x, e_{i}\right)}-\sum_{i=1}^{n}\left(x, e_{i}\right) \overline{\left(x, e_{i}\right)}+\sum_{i=1}^{n}\left(x, e_{i}\right) \overline{\left(x, e_{i}\right)} \\
& =\|x\|^{2}-\sum_{i=1}^{n}\left|\left(x, e_{i}\right)\right|^{2} \geq 0 \quad\left(\because\|y\|^{2} \geq 0\right)
\end{aligned}
$$

which gives (i)
Again consider

$$
\begin{aligned}
\left(x-\sum_{i=1}^{n}\left(x, e_{i}\right) e_{i}, e_{j}\right) & =\left(x, e_{j}\right)-\sum_{i=1}^{n}\left(x, e_{i}\right)\left(e_{i}, e_{j}\right) \\
& =\left(x, e_{j}\right)-\left(x, e_{j}\right)=0 \quad(b y(13))
\end{aligned}
$$

This proves (ii).

The inequality given in (i) is also known as Bessel's inequality for finite orthonormal sets.
Theorem 8: If $\left\{e_{i}\right\}$ is an orthonormal set in a Hilbert space $H$ and if $x$ is any vector in $H$, then the set $S=\left\{e_{i}:\left(x, e_{i}\right) \neq 0\right\}$ is either empty or countable.

Proof: For each positive integer $n$ and fixed $x$, consider the set

$$
S_{n}=\left\{e_{i}:\left|\left(x, e_{i}\right)^{2}>\left(\frac{\|x\|^{2}}{n}\right)\right|\right\}
$$

Hence $S_{n}$ contains atmost $(n-1)$ vectors, otherwise if $S_{n}$ contains $n$ or more vectors than $n$, then we have for $e_{i} \in S_{n}$

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\left(x, e_{i}\right)\right|^{2}>n \frac{\|x\|^{2}}{n}=\|x\|^{2} \tag{15}
\end{equation*}
$$

But by Theorem 1, we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\left(x, e_{i}\right)\right|^{2} \leq\|x\|^{2}, e_{i} \in S_{n} \tag{16}
\end{equation*}
$$

Which contradicts (15). Hence $S_{n}$ contains atmost $(n-1)$ vectors. Hence for each positive integer $n$, the set $S_{n}$ is finite or countably infinite, since if

$$
x \perp e_{i} \forall i \Rightarrow\left(x, e_{i}\right)=0 \forall i \text { then } S=\phi
$$

if $S$ is non-empty then it is either finite or infinite. When $S$ is finite, it is clearly countable but if it is infinite, it can be written as $S=\bigcup_{n=1}^{\infty} S_{n}$ with $S_{n}$ not containing more than $(n-1)$ elements, because if $e_{i} \in S \Rightarrow\left(x, e_{i}\right) \neq 0$, then however small be the value of $\left|\left(x, e_{i}\right)\right|^{2}, n$ can be choosen so large that

$$
\left|\left(x, e_{i}\right)\right|^{2}>\frac{\|x\|^{2}}{n} \text { so that } e_{i} \in S \Rightarrow e_{i} \in S_{n} \text {. }
$$

Now $S=\bigcup_{n=1}^{\infty} S_{n} \Rightarrow S$ is expressible as countable union of finite sets
$\Rightarrow S$ is countable.
Theorem 9 (Bessel's Inequality): If $\left\{e_{i}\right\}$ is an orthonormal set in a Hilbert space $H$, then

$$
\sum\left|\left(x, e_{i}\right)\right|^{2} \leq\|x\|^{2} \forall x \in H .
$$

Proof: Let $S=\left\{e_{i}:\left(x, e_{i}\right) \neq 0\right\}$, then by Theorem $8, S$ is either empty or countable. If $S$ is empty,
then $\left(x, e_{i}\right)=0 \forall i \Rightarrow \sum\left|\left(x, e_{i}\right)\right|^{2}=0$
Hence $\sum \mid\left(x, e_{i}\right)^{2}=0 \leq\|x\|^{2}$.
So the inequality is satisfied when $S$ is empty.
Let $S \neq \boldsymbol{\phi}$, then $S$ is finite or countably infinite. If $S$ is finite, then suppose that $S=\left\{e_{1}, e_{2}, \ldots, e_{3}\right\}$ for some positive integer $n$. In this case we have by Theorem 7 that

$$
\sum_{i=1}\left|\left(x, e_{i}\right)\right|^{2}=\sum_{i=1}^{n}\left|\left(x, e_{i}\right)\right|^{2} \leq\|x\|^{2}
$$

Secondly taking $S$ as contally infinite, then the vectors in $S$ can be arranged in a definite order s.t. $S=\left\{e_{1}, e_{2}, \ldots, e_{n}, \ldots.\right\}$. In this case

$$
\sum\left|\left(x, e_{i}\right)\right|^{2}=\sum_{n=1}^{\infty}\left|\left(x, e_{n}\right)\right|^{2}
$$

This sum is well defined if the series $\sum_{n=1}^{\infty}\left|\left(x, e_{n}\right)\right|^{2}$ is convergent irrespective of any arrangement of its terms i.e., irrespective of the arrangements of vectors in $S$.

By the Bessel's inequality for finite case, $\sum_{i=1}^{n}\left|\left(x, e_{i}\right)\right|^{2} \leq\|x\|^{2}$ is true for every positivie integer $n$, and so it must be true in limit also i.e.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|\left(x, e_{i}\right)\right|^{2}=\sum_{n i=1}^{\infty}\left|\left(x, e_{n}\right)\right|^{2} \leq\|x\|^{2}
$$

which follows that the series $\sum_{n=1}^{\infty}\left|\left(x, e_{n}\right)\right|^{2}$ is convergent. Moreover by the theory of absolute convergence, this convergent series having all its terms positive is absolutely convergent. Consequently its sum will not alter by arrangement of its terms, which completes the proof of the theorem.

Theorem 10: If $\left\{e_{i}\right\}$ be an orthonormal set in a Hilbert space $H$ and $x$ be an arbitrary vector in $H$, then

$$
x-\sum\left(x, e_{i}\right) e_{i} \perp e_{i} \text { for } \forall j
$$

Proof: Taking $S=\left\{e_{i}:\left(x, e_{i}\right) \neq 0\right\}$. There arise three cases :
Case I: If $S$ is empty i.e., $\left(x, e_{i}\right)=0 \forall i$, then we define $\sum\left(x, e_{i}\right) e_{i}$ to be the zero vector 0 , so that

$$
x-\sum\left(x, e_{i}\right) e_{i}=x-0=x
$$

Since $S=\phi \Rightarrow\left(x, e_{j}\right)=0 \forall j \Rightarrow x \perp e_{j} \forall j$
Case II: Let $S \neq \phi$ and $S$ is finite, Then the result follows by Theorem 7 (ii)
Case III : Let $S \neq \phi$ and $S$ is countally infinite. Then arranging the vectors of $S$ in a definite order as $S=\left\{e_{1}, e_{2}, \ldots, e_{n}, \ldots ..\right\}$.

We set $s_{n}=\sum_{i=1}^{n}\left(x, e_{i}\right) e_{i}$
so that for $m>n$, we have

$$
\begin{aligned}
\left\|s_{m}-s_{n}\right\|^{2} & =\left\|\sum_{i=n+1}^{m}\left(x, e_{i}\right) e_{i}\right\|^{2}=\sum_{i=n+1}^{m}\left\|\left(x, e_{i}\right) e_{i}\right\|^{2} \\
& =\sum_{i=n+1}^{m}\left|\left(x, e_{i}\right)\right|^{2}\left\|e_{i}\right\|^{2}=\sum_{i=n+1}^{m}\left|\left(x, e_{i}\right)\right|^{2} \quad \text { as }\left\|e_{i}\right\|^{2}=1 . \forall i
\end{aligned}
$$

By Bessel's inequality, the series $\sum_{i=1}^{\infty}\left|\left(x, e_{i}\right)\right|^{2}$ is convergent, so that for $m, n \rightarrow \infty, \sum_{i=n+1}^{\infty}\left|\left(x, e_{i}\right)\right|^{2}$ can be made to converge to zero i.e.,

$$
\begin{aligned}
& \left\|s_{m}-s_{n}\right\|^{2} \rightarrow 0 \quad \text { as } \quad m, n \rightarrow \infty \\
\Rightarrow & \text { the sequence }\left\{s_{n}\right\} \text { is a Cauchy's sequence in } H \text { and } H \text { is complete } \\
\Rightarrow & \text { a vector } s \text { in } H \text { s.t. } \lim _{n \rightarrow \infty} s_{n}=s \\
\Rightarrow & s=\sum_{n=1}^{\infty}\left(x, e_{i}\right) e_{n}
\end{aligned}
$$

Now we can define $\sum\left(x, e_{i}\right) e_{i}=\sum_{n=1}^{\infty}\left(x, e_{n}\right) e_{n}$
Now we shall show that the above sum is well defined and does not depend upon the rearrangement of vectors.

For this suppose that the vectors in $S$ are arranged in a different manner as $S=\left\{f_{1}, f_{2}, \ldots, f_{n}, \ldots\right\}$.
Let $s_{n}^{\prime}=\sum_{n=1}^{n}\left(x, f_{i}\right) f_{i}$.

As proved above, let $s_{n}^{\prime} \rightarrow s^{\prime}$ in $H$ where $s^{\prime}=\sum_{n=1}^{\infty}\left(x, f_{n}\right) f_{n}$

Now we prove that $s=s^{\prime}$.
For a given $\in>0$, we can find $n_{0}$ s.t.
$\forall n \geq n_{0}, \sum_{n_{0}+1}^{\infty}\left|\left(x, e_{i}\right)\right|^{2}<\epsilon^{2},\left\|s_{n}-s\right\|<\epsilon$ and $\left\|s_{n}^{\prime}-s^{\prime}\right\|<\epsilon$

For some positive integer $m_{0}>n_{0}$, we can find all the terms of $s_{n_{0}}$ in $s_{m_{0}}^{\prime}$ so that $s_{m_{0}}^{\prime}-s_{n_{0}}^{\prime}$ is a finite sum of terms of the type $\left(x, e_{i}\right) e_{i}$ for $i=n_{0}+1, n_{0}+2, \ldots$.

Thus $\left\|s_{m_{0}}^{\prime}-s_{n_{0}}^{\prime}\right\|^{2} \leq \sum_{i=n+1}^{\infty}\left|\left(x, e_{i}\right)\right|^{2}<\epsilon^{2}$ with $\left\|s_{m_{0}}^{\prime}-s_{n_{0}}^{\prime}\right\|^{2}<\epsilon^{2}$
Now $\quad\left\|s^{\prime}-s\right\|^{2}=\left\|s^{\prime}-s_{m_{0}}^{\prime}+s_{m_{0}}^{\prime}-s_{n_{0}}+s_{n_{0}}-s\right\|$

$$
\begin{aligned}
& \leq\left\|s^{\prime}-s_{m_{0}}^{\prime}\right\|+\left\|s_{m_{0}}^{\prime}-s_{n_{0}}\right\|+\left\|s_{n_{0}}-s\right\| \\
& \leq \in+\in+\in=3 \in \\
& \rightarrow 0 \text { as } \in \text { is arbitrary }
\end{aligned}
$$

Hence $s=s^{\prime}$
Now consider

$$
\begin{align*}
\left(x-\sum\left(x, e_{i}\right) e_{i}, e_{j}\right) & =\left(x-s, e_{j}\right) \\
& =\left(x, e_{j}\right)-\left(s, e_{j}\right)=\left(x, e_{j}\right)-\left(\lim s_{n}, e_{j}\right) \tag{17}
\end{align*}
$$

By continuity of the inner product we have

$$
\begin{equation*}
\left(\lim s_{n}, e_{j}\right)=\lim \left(s_{n}, e_{j}\right) \tag{18}
\end{equation*}
$$

Using (18) in (17), we get

$$
\left(x-\sum\left(x, e_{i}\right) e_{i}, e_{j}\right)=\left(x, e_{j}\right)-\lim \left(s_{n}, e_{j}\right)
$$

If $e_{j} \neq S$, then $\left(s_{n}, e_{j}\right)=\left(\sum_{i=1}^{n}\left(x, e_{i}\right) e_{i}, e_{j}\right)=0 \Rightarrow \lim \left(s_{n}, e_{j}\right)=0$
Hence $\left(x-\sum\left(x, e_{i}\right) e_{i}, e_{j}\right)=\left(x, e_{j}\right)=0$ as $e_{j} \neq S$
But if $e_{j} \in S$, then $\left(s_{n}, e_{j}\right)=\left(\sum_{i=1}^{n}\left(x, e_{i}\right) e_{i}, e_{j}\right)$
Now for $n>j$, we have

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left(x, e_{i}\right) e_{i}, e_{j}\right)=\left(x, e_{j}\right) \tag{20}
\end{equation*}
$$

Using (20) in (19), we get

$$
\lim _{n \rightarrow \infty}\left(s_{n}, e_{j}\right)=\left(x, e_{j}\right)
$$

So in this case $\left(x-\sum\left(x, e_{i}\right) e_{i}, e_{j}\right)=\left(x, e_{j}\right)-\left(x, e_{j}\right)=0$
Thus $\quad\left(x-\sum\left(x, e_{i}\right) e_{i}, e_{j}\right)=0$ for each $j$.
Hence $x-\sum\left(x, e_{i}\right) e_{i} \perp e_{j}$ for each $j$, which completes the proof of the theorem.

### 6.7 Complete Orthonormal Sets

6.7.1 Definition 1 : An orthonormal set $S$ in a Hilbert space is complete, if there exists no other orthonormal set containing $S$. This is $S$ must be a maximal orthonormal set.

Thus an orthonormal set $\left\{e_{i}\right\}$ in a Hilbert space is complete if it is not possible to adjoin a vector $e$ to $\left\{e_{i}\right\}$ in such a way that $\left\{e_{i}, e\right\}$ is an orthonormal set properly containing $\left\{e_{i}\right\}$.
6.7.2 Definition 2 : Let $\left\{e_{i}\right\}$ be a complete orthonormal set in a Hilbert space $H$ and $x$ be any arbitrary vector in $H$. Then the numbers $\left(x, e_{i}\right)$ are called the Fourier coefficients of $x$.
6.7.3 Definition 3: The expansion $x=\sum\left(x, e_{i}\right) e_{i}$ is called the Fourier expansion of $x$.
6.7.4 Definition 4: The expansion $\|x\|^{2}=\sum\left|\left(x, e_{i}\right)\right|^{2}$ is called the Parseval's equation or Parseval's identity.

### 6.7.5 Criterian for Complete Orthonormal Set

Theorem 11: An orthonormal set $S$ in a Hilbert space $H$ is complete iff $x \perp S \Rightarrow x=0$ $\forall \boldsymbol{x} \in \boldsymbol{H}$.

Proof: Let $S$ be complete and $x$ is any non zero vector in $H$ s.t., $x \perp S$. Then the set $S \cup\{e\}$ where $e=\left(\frac{x}{\|x\|}\right)$ is an orthonormal set properly containing $S$, contradicting the maximality of $S$. Hence $x=0$.

Conversly let $x \perp S \Rightarrow x=0$. If $S$ is non complete, then $\exists$ some orthonormal set $S^{\prime}$ such that $S^{\prime} \supset S$ properly. In that case, let $x=S^{\prime}-S$. Since $\|x\|=1$ and $x \perp S, x \neq 0$ contradicting the given condition. Hence $S$ must complete.
6.7.6 Example : In the Hilbert space $l_{2}^{n}$, the set $\left\{e_{1}, e_{2}, \ldots, e_{n}, \ldots\right\}$, where $e_{n}$ is a sequence with 1 in the $n^{\text {th }}$ place and 0 's elsewhere, is a complete orthonormal set.

Solution : Let $S=\left\{e_{1}, e_{2}, \ldots, e_{n}, \ldots\right\}$. If $x=\left\{x_{n}\right\}$ and $y=\left(y_{n}\right) \in l_{2}^{n}$, then

$$
(x, y)=\sum_{n=1}^{\infty} x_{n} \bar{y}_{n} \quad \text { and } \quad\|x\|^{2}=\left[\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}\right]^{1 / 2}
$$

As noted before $S$ is an orthonormal set. Let $x \perp S$.
Now $\left(x, e_{1}\right)=x_{1} \cdot 1+x_{2} \cdot 0+\ldots+x_{n} \cdot 0=0$

$$
\Rightarrow x_{1}=0
$$

Similarly $x \perp e_{2}, \ldots, x \perp e_{n}, \ldots$ will give $x_{2}=0, x_{3}=0, \ldots, x_{n}=0, \ldots$. Hence $x \perp S \Rightarrow x=0$ therefore the orthonormal set is complete.

### 6.6.7 Properties of Complete Orthonormal Sets

Theorem 12: If $H$ be a Hilbert space and $\left\{e_{i}\right\}$ be an orthonormal set in $H$, then the following statements are equivalent :
(i) $\left\{e_{i}\right\}$ is complete
(ii) $x \perp\left\{e_{i}\right\} \Rightarrow x=0$
(iii) If $x$ is an arbitrary vector in $H$, then

$$
x=\sum\left(x, e_{i}\right) e_{i}
$$

(iv) If $x$ is an arbitrary vector in $H$, then

$$
\|x\|^{2}=\sum\left|\left(x, e_{i}\right)\right|^{2}
$$

Proof : (i) $\Rightarrow$ (ii)
Let $\left\{e_{i}\right\}$ is complete, we claim that

$$
x \perp\left\{e_{i}\right\} \Rightarrow x=0
$$

Suppose that $x \perp\left\{e_{i}\right\}$ and $x \neq 0$, then we can find a unit vector $e=\left\{\frac{x}{\|x\|}\right\}$ with $\|e\|=1$, s.t. $e \perp\left\{e_{i}\right\} \Rightarrow\left(e, e_{i}\right)=0$ for each $i$.

Thus $\left(e, e_{i}\right)$ is an orthonormal set which properly contains $\left\{e_{i}\right\}$ which contradicts the completeness of $\left\{e_{i}\right\}$. Hence our assumption i.e., $x \neq 0$ is wrong and so $x \perp\left\{e_{i}\right\} \Rightarrow x=0$
(ii) $\Rightarrow$ (iii)

Let $x \perp\left\{e_{i}\right\} \Rightarrow x=0$

Choosing an $e_{j} \in\left\{e_{i}\right\}$, we claim that the vector

$$
x-\sum\left(x, e_{i}\right) e_{i} \perp e_{j}
$$

For this consider

$$
\begin{aligned}
&\left(x-\sum\left(x, e_{i}\right) e_{i}, e_{j}\right) \\
&=\left(x, e_{j}\right)-\left(\sum\left(x, e_{i}\right) e_{i}, e_{j}\right) \\
&=\left(x, e_{j}\right)-\sum\left(x, e_{i}\right)\left(e_{i}, e_{j}\right) \\
&=\left(x, e_{j}\right)-\left(x, e_{i}\right)\left(e_{j}, e_{j}\right)=0 \\
& \Rightarrow \quad\left(x-\sum\left(x, e_{i}\right) e_{i}\right) \perp e_{j} \text { for each } j \\
& \Rightarrow \quad\left(x-\sum\left(x, e_{i}\right) e_{i}\right) \perp\left\{e_{i}\right\} \Rightarrow x-\sum\left(x, e_{i}\right) e_{i}=0 \quad\left(\because x \perp\left\{e_{i}\right\} \Rightarrow x=0\right) \\
& \Rightarrow \quad x=\sum\left(x, e_{i}\right) e_{i} \\
& \text { (iii) } \Rightarrow \text { (iv): Given that for any vector } x \text { in } H \text { s.t. } x=\sum\left(x, e_{i}\right) e_{i} .
\end{aligned}
$$

To prove that $\|x\|^{2}=\sum\left|\left(x, e_{i}\right)\right|^{2}$.
We have

$$
\begin{aligned}
\|x\|^{2}=(x, x) & =\left(\sum\left(x, e_{i}\right) e_{i}, \sum\left(x, e_{j}\right) e_{j}\right) \\
& =\sum\left(x, e_{i}\right) \overline{\sum\left(x, e_{j}\right)}\left(e_{i}, e_{j}\right) \\
& =\sum_{i} \sum_{j}\left(x, e_{i}\right) \overline{\left(x, e_{j}\right)}\left(e_{i}, e_{j}\right) \\
& =\sum_{i}\left(x, e_{i}\right) \overline{\left(x, e_{i}\right)}\left(e_{i}, e_{j}\right) \\
& =\sum_{i}\left(x, e_{i}\right) \overline{\left(x, e_{i}\right)} \text { as }\left(e_{i}, e_{j}\right)=\left\|e_{i}\right\|^{2}=1 \\
& =\sum^{2}\left|\left(x, e_{i}\right)\right|^{2}
\end{aligned}
$$

(iv) $\Rightarrow$ (i): Given $\|x\|^{2}=\sum\left|\left(x, e_{i}\right)\right|^{2}$. To prove that $\left\{e_{i}\right\}$ is complete.

Let $\left\{e_{i}\right\}$ be not complex. Then $\left\{e_{i}\right\}$ is a proper subset of an orthonormal set $\left\{e_{i}, e\right\}$. Hence taking $e$ for $x$ in the hypothesis, we get

$$
\|e\|^{2}=\sum\left|\left(e, e_{i}\right)\right|^{2}=0 . \text { Since } e \perp e_{i} \forall i
$$

Thus $\|e\|^{2}=0$ which contradicts that $e$ is a unit vector. Therefore $\left\{e_{i}\right\}$ is a complete orthonormal set

## Self-Learning Exercise - II

1. Define an orthonormal set.
2. Define a complete orthonormal set.
3. Define a Fourier series for a vector $\boldsymbol{x}$ in Hilbert space $H$.
4. An orthonormal set contains a zero vector $(T / F)$
5. Every Hilbert space $H \neq\{0\}$ possesses on orthonormal set $(T / F)$.
6. State Bessel's inequality in a Hilbert space.
7. Complete the following statements :
(a) An orthonormal $S$ in a Hilbert space $H$ is complete iff for any $x$ in $H, x \perp S \Rightarrow \ldots \ldots$
(b) If $\left\{e_{i}\right\}$ is an orthonormal set in $H$, then
(i) $\left\{e_{i}\right\}$ is $\qquad$
(ii) $\quad x \perp\left\{e_{i}\right\} \Rightarrow x=\ldots$
(c) If $\left\{e_{1}, e_{2}\right\}$ is a orthonormal set in a Hilbert space $H$, then $\left\|e_{1}-e_{2}\right\|=\ldots$.
(d) Every non-zero Hilbert space contains a set.

### 6.8 Functional in Hilbert Sapces

If $H$ is a Hilbert space and if we define a continuous linear functional or simply a functional on $H$ as a continuous linear transformation from $H$ into $\boldsymbol{C}$, then the set of all these functionals constitutes a vector space denoted by $H^{*}$ are known at the conjugate space of $H$.

The elements of $H^{*}$ are known as functionals and denoted by $f$. Thus if $f \in H^{*}$, then $f$ is a functional in $H^{*}$ and as mentioned above $f$ is a continuous linear functional on $H$. If we define addition and scalar multiplication in $H^{*}$ pointwise and the norm of $f \in H^{*}$ is defined as

$$
\|f\|=\sup \{|f(x)|:\|x\| \leq 1\}
$$

then $H^{*}$ is a Banach space. By defining a suitable inner product on $H^{*}$ it is seen that $H^{*}$ maintains the structure of a Hilbert space. As such the conjugate space on $H^{*}$ is second conjugate space $\left(H^{*}\right)^{*}$ or $H^{* *}$ of $H$ also becomes a Hilbert space.

Theorem 13: Let $y$ be a fixed elements of Hilbert space $H$ and $f_{y}$ be a scalar valued functional on $H$ defined as $f_{y}(x)=(x, y), \forall x \in H$.

Then the mapping $f_{y}$ is a functional on $H$ and $\|y\|=\left\|f_{y}\right\|$.

Proof: From the definition, we have $f_{y}: H \rightarrow \boldsymbol{C}$. Now we prove that $f_{y}$ is linear and continuous so that it is a functional.

Let $x_{1}, x_{2} \in H$ and $\alpha, \beta \in \boldsymbol{C}$. Then for fixed $y \in H$, we have

$$
\begin{aligned}
& \begin{aligned}
& f_{y}\left(\alpha x_{1}, \beta x_{2}\right)=\left(\alpha x_{1}+\beta x_{2}, y\right) \\
&=\alpha\left(x_{1}, y\right)+\beta\left(x_{2}, y\right)=\alpha f_{y}\left(x_{1}\right)+\beta f_{y}\left(x_{2}\right) \\
& \Rightarrow f_{y} \text { is linear. }
\end{aligned}
\end{aligned}
$$

Also for any $x \in H$,

$$
\begin{equation*}
\left|f_{y}(x)\right|=|(x, y)| \leq\|x\|\|y\| \quad \text { (by Schwarz inequality) } \tag{21}
\end{equation*}
$$

Now let $\|y\| \leq M$. Then $M>0$, we get

$$
\left|f_{y}(x)\right| \leq M\|x\| \Rightarrow f_{y} \text { is bounded hence continuous. }
$$

Hence $f_{y}$ is a functional.
Again if $y=\mathbf{0}$, then $\|y\|=0$ and from definition $f_{y}=0$ so that $\left\|f_{y}\right\| \leq\|y\|$.
Suppose that $y \neq 0$, then from (21), we get

$$
\begin{equation*}
\sup \frac{\left|f_{y}(x)\right|}{\|x\|} \leq\|y\| \Rightarrow\left\|f_{y}\right\| \leq\|y\| \tag{22}
\end{equation*}
$$

Further since $y \neq 0$, therefore $\frac{y}{\|y\|}$ is a unit vector setting $x=\frac{y}{\|y\|}$ in the definition

$$
\begin{aligned}
& \left\|f_{y}\right\|=\sup \left\{\left|f_{y}(x)\right|:\|x\| \leq 1\right\} \text {, we get } \\
& \left\|f_{y}\right\| \geq\left|f_{y}\left(\frac{y}{\|y\|}\right)\right|=\left(\frac{y}{\|y\|}, y\right)=\frac{1}{\|y\|}(y, y)=\|y\|
\end{aligned}
$$

Hence $\left\|f_{y}\right\| \geq\|y\|$
Thus (22) and (23) gives $\|y\|=\left\|f_{y}\right\|$.
From the above theorem, we can say that $T: H \rightarrow H^{*}$ s.t. $T(y)=f_{y}$ is a norm preserving mapping.

Now we shall prove that every $f \in H^{*}$ arises in this manner.
Theorem 14 (Risez Representation Theorem) : Let $H$ be a Hilbert space and $f$ be an arbitrary
functional in $H^{*}$. Then there exists a unique vector $y$ in $H$ s.t. $f(x)=(x, y) \forall f x \in H$ and $\|f\|=\|y\|$.

Proof: Let $\exists$ a vector $y \in H$ s.t. $f(x)=(x, y) \forall x \in H$. We first prove that $y$ is unique.
Suppose that $y$ is not unique i.e. $\exists$ two vectors $y_{1}, y_{2} \in H$ corresponding to a functional $f \in H^{*}$ s.t.

$$
\begin{aligned}
& f(x)=\left(x, y_{1}\right) \text { and } f(x)=\left(x, y_{2}\right) \forall x \in H \\
\Rightarrow \quad & \left(x, y_{1}\right)=\left(x, y_{2}\right) \forall x \in H \\
\Rightarrow \quad & \left(x, y_{1}-y_{2}\right)=0 \forall x \in H
\end{aligned}
$$

Taking $x=y_{1}-y_{2}$, we get $\left(y_{1}-y_{2}, y_{1}-y_{2}\right)=\left\|y_{1}-y_{2}\right\|^{2}=0 \Rightarrow y_{1}-y_{2}=0 \Rightarrow y_{1}=y_{2}$
Hence $y$ is unique
Next we prove that $y$ exists.
If $f$ is a zero functional i.e. $f=\mathbf{0}$, then

$$
\begin{array}{ll} 
& f(x)=0 \forall x \in H \text { and } f(x)=(x, y) \forall x \in H \\
\Rightarrow \quad & (x, y)=0 \forall x \in H \\
\Rightarrow \quad & y=\mathbf{0} \text { which shows that } y=\mathbf{0} \text { exists when } f=\mathbf{0} .
\end{array}
$$

If $f \neq \mathbf{0}$ i.e. $f(x) \neq 0$ for some $x \in H$, then consider null space say $M$ of $f$ s.t.

$$
M=\{x: f(x)=0\}, x \in H
$$

We observe that
(a) $\mathbf{M}$ is non empty : Since $f(0)=0: \mathbf{0} \in M$
(b) $M$ is a subspace : Since

If $x_{1}, x_{2} \in M$ and $\alpha, \beta$ are scalars s.t. $f\left(x_{1}\right)=0, f\left(x_{2}\right)=0$, then

$$
\begin{aligned}
f\left(\alpha x_{1}+\beta x_{2}\right) & =\left(\alpha x_{1}+\beta x_{2}, y\right) \\
& =\alpha\left(x_{1}, y\right)+\beta\left(x_{2}, y\right) \\
& =\alpha f\left(x_{1}\right)+\beta f\left(x_{2}\right)=\alpha \cdot 0+\beta \cdot 0=0
\end{aligned}
$$

$\therefore \quad x_{1}, x_{2} \in M$ and $\alpha$ and $\beta$ are scalars $\Rightarrow \alpha x_{1}+\beta x_{2} \in M$
(c) $\mathbf{M}$ is a proper subspace of $\mathbf{H}$ : Since $f(x) \neq 0$ for some
$x \in H \Rightarrow$ all such $x$ do not belong to $M$

$$
\begin{aligned}
& \Rightarrow \quad \text { there are elements of } H \text { which are not in } M \\
& \Rightarrow \quad M \text { is a proper subspace of } H .
\end{aligned}
$$

(d) $\mathbf{M}$ is a closed subspace of $\mathbf{H}$ : Since $M$ is a subspace of a complete space $H$, therefore $M$ is closed

Thus $f$ is continuous and $M$ is a proper closed subspace of $H$, therefore $\exists$ a non zero vector $y_{0} \in H$ s.t. $y_{0} \perp M$ or $y_{0} \in M^{\perp}$ or we can say that $\left(y_{0}, x\right)=0 \forall x \in M$.

Now we prove that $\exists$ a vector $y \in M$ s.t. $f(x)=(x, y) \forall x \in H$. Three cases arise.
Case I : If $x \in H$ and $x \in M \Rightarrow f(x)=0$
Also $\quad f(x)=(x, y)=\left(x, \alpha y_{0}\right) \quad$ (choosing $y=\alpha y_{0}$ with $\left.y_{0} \perp M\right)$

$$
=\bar{\alpha}\left(x, y_{0}\right)=0 \quad \text { as } x \in M \text { and } y_{0} \perp M
$$

Hence $f(x)=(x, y)$ is satisfied for $x \in M$ and $y=\alpha y_{0}$
Case II : If $x \in H$ and $x=y_{0}$, then

$$
\begin{aligned}
& f(x)=(x, y) \Rightarrow f\left(y_{0}\right)=\left(y_{0}, \alpha y_{0}\right) \quad\left(\text { choosing } y_{0}=\alpha y_{0}\right) \\
& =\bar{\alpha}\left\|y_{0}\right\|^{2} \\
& \text { giving } \bar{\alpha}=\frac{f\left(y_{0}\right)}{\left\|y_{0}\right\|^{2}} \Rightarrow \alpha=\frac{\overline{f\left(y_{0}\right)}}{\left\|y_{0}\right\|^{2}}
\end{aligned}
$$

Then $f(x)=(x, y)$ is satisfied $\forall x \in M$ with $x=y_{0}$ and $y=\alpha y_{0}$.
Case III : $x \in H$, and $x \notin M$ with $x \neq y_{0}$
Since $H=M \oplus M^{\perp}$, therefore any vector $x \in H$ is uniquely expressible as the sum of the vector $m \in M$ and a vector $\beta y_{0} \in M^{\perp}$ i.e., $x=m+\beta y_{0}, \beta$ is a scalar.

By definition of $m$,

$$
\begin{aligned}
f(m)=0 & \Rightarrow f\left(x-\beta y_{0}\right)=0 \\
& \Rightarrow f(x)-\beta f\left(y_{0}\right)=0 \Rightarrow \beta=\frac{f(x)}{f(y)} \\
\therefore \quad f(x)= & f\left(m+\beta y_{0}\right)=f(m)+\beta f\left(y_{0}\right) \\
= & (m, y)+\beta\left(y_{0}, y\right)=\left(m+\beta y_{0}, y\right) \\
= & (x, y) \forall x \in H
\end{aligned}
$$

Lastly we show that $\|f\|=\|y\|$.
Now for each $x \in H \quad \exists$ a unique $y \in H$ s.t.

$$
\begin{aligned}
f(x)=(x, y) & \text { or }|f(x)|=|(x, y)| \leq\|x\|\|y\| \\
& \Rightarrow\|f\| \leq\|y\| \quad \text { (by def. of norm of a functional for which }\|x\| \leq 1)
\end{aligned}
$$

In the case $\|y\|=0$ or $y=0$ then $|f(x)|=|(x, 0)|=0 \forall x$

$$
\begin{aligned}
& \text { and so }\|f\|=\sup \left\{\frac{|f(x)|}{\|x\|}: x \neq 0\right\}=0 \\
& \begin{array}{l}
\Rightarrow\|f\|=\|y\| \text {, since }|f(x)| \leq\|x\|\|y\| \\
\Rightarrow \frac{|f(x)|}{\|x\|} \leq\|y\|
\end{array}
\end{aligned}
$$

$$
\text { If } y \neq 0 \text {, then }\|f\|=\sup \{f(x):\|x\|=1\}
$$

$$
\begin{aligned}
& \geq\left|f\left(\frac{y}{\|y\|}\right)\right| \text { on setting } x=\frac{y}{\|y\|} \text { or } \quad\|x\|=1 \\
& =\left|\left(\frac{y}{\|y\|}, y\right)\right|=\frac{1}{\|y\|}|(x, y)|
\end{aligned}
$$

$$
=\frac{1}{\|y\|}\|y\|^{2}=\|y\|
$$

$\therefore \quad\|f\| \geq\|y\|$
so $\quad\|f\| \leq\|y\|$ and $\|f\| \geq\|y\| \Rightarrow\|f\|=\|y\|$
Theorem 15 : The mapping $\psi: H \rightarrow H^{*}$ defined by $\psi(y)=f_{y}$ where $f_{y}(x)=(x, y)$ for every $x \in H$ is an additive, one-to-one onto isometry but not linear.

Proof: (i) we have for $y_{1}, y_{2} \in H, \psi\left(y_{1}+y_{2}\right)=f_{y_{1}+y_{2}}$
Hence for every $x \in H$, we get

$$
\begin{aligned}
f_{y_{1}+y_{2}}(x) & =\left(x, y_{1}+y_{2}\right) \\
& =\left(x, y_{1}\right)+\left(x, y_{2}\right)
\end{aligned}
$$

$$
=f_{y_{1}}(x)+f_{y_{2}}(x)
$$

Hence $f_{y_{1}+y_{2}}=f_{y_{1}}+f_{y_{2}} \Rightarrow \psi\left(y_{1}+y_{2}\right)=\psi\left(y_{1}\right)+\psi\left(y_{2}\right)$
Hence $\psi$ is an additive.
(ii) $\psi$ is one-one : Let $y_{1}, y_{2} \in H$. Then $\psi\left(y_{1}\right)=f_{y_{1}}$ and $\psi\left(y_{2}\right)=f_{y_{2}}$.

Then $\quad \psi\left(y_{1}\right)=\psi\left(y_{2}\right) \Rightarrow f_{y_{1}}=f_{y_{2}}$

$$
\begin{aligned}
& \Rightarrow f_{y_{1}}(x)=f_{y_{2}}(x) \quad \forall x \in H \\
& \Rightarrow\left(y_{1}, x\right)=\left(y_{2}, x\right) \\
& \Rightarrow\left(y_{1}-y_{2}, x\right)=0 \quad \forall x \in H
\end{aligned}
$$

Choose $x=y_{1}-y_{2}$, then we get $\left(y_{1}-y_{2}, y_{1}-y_{2}\right)=0 \Rightarrow\left\|y_{1}-y_{2}\right\|^{2}=0 \Rightarrow y_{1}-y_{2}=\mathbf{0}$
Thus $\quad \psi\left(y_{1}\right)=\psi\left(y_{2}\right) \Rightarrow y_{1}=y_{2} \Rightarrow \psi$ is one-one.
(iii) $\psi$ is onto : Let $f \in H^{*}$, then $\exists y \in H$ s.t. $f(x)=(x, y)$ since $f_{y}(x)=(x, y)$, therefore we get $f=f_{y}$, so that $\psi(y)=f_{y}=f$. Hence for $f \in H^{*} \exists$ a pre-image $y$ in $H$. Thus $\psi$ is onto.
(iv) $\psi$ is isometry: Let $y_{1}, y_{2} \in H$. Then

$$
\begin{aligned}
\left\|\psi\left(y_{1}\right)-\psi\left(y_{2}\right)\right\| & =\left\|f_{y_{1}}-f_{y_{2}}\right\|=\left\|f_{y_{1}}+f_{-y_{2}}\right\| \\
& =\left\|f_{y_{1}-y_{2}}\right\|=\left\|y_{1}-y_{2}\right\|
\end{aligned}
$$

Hence $\psi$ is isometry.
(v) $\psi$ is not linear : Let $y \in H$ and $\alpha$ be any scalar. Then

$$
\psi(\alpha y)=f_{\alpha y}=(x, \alpha y)=\bar{\alpha}(x, y)=\bar{\alpha} f_{y}(x)=\bar{\alpha} \psi(y)
$$

Thus the mapping is not linear. Such a mapping is called conjugate linear.
We shall refer to the above mapping $\psi$ as the natural mapping between $H$ and $H^{*}$.

### 6.8 Reflexivity of Hilbert Space

Theorem 16: Every Hilbert space is reflexive.
Proof: We prove that the natural inbedding on $H$ to $H^{* *}$ is an isometric isomorphism.
Suppose that $x$ be any fixed element of $H$ and $F_{x}$ be a scalar valued function defined on $H^{*}$ by $F_{x}(f)=f(x) \forall f \in H^{*}$. Then $F_{x}$ will be a functional on $H^{*}$ i.e. $F_{x} \in H^{* *}$. Thus each vector $x \in H$ gives rise to a functional $F_{x}$ in $H^{* *} . F_{x}$ is called the functional on $H^{*}$ induced by the vector $x$.

Let $T: H \rightarrow H^{* *}$ defined by $T(x)=F_{x} \forall x \in H$.
From the theory of Banach spaces $T$ is an isometric isomorphism of $H$ into $H^{* *}$. We shall show that $T$ is a mapping of $H$ onto $H^{* *}$.

Let $T_{1}$ be a mapping from $H$ into $H^{*}$ s.t. $T_{1}(x)=f_{x}$ where $f_{x}(y)=(y, x) \forall y \in H$ and $T_{2}$ be a mapping from $H^{*}$ into $H^{* *}$ defined by $T_{2}\left(f_{x}\right)=F_{f_{x}}$, where $F_{f_{x}}(f)=\left(f, f_{x}\right)$ for $f \in H^{*}$. Then $T_{2} T_{1}$ is a composition of $T_{2}$ and $T_{1}$ from $H$ to $H^{* *}$. By Theorem 15, $T_{1}$ and $T_{2}$ are one-one and onto. Hence $T_{2} T_{1}$ is the same as the natural imbedding $T$. For this we prove that $f(x)=\left(T_{2} T_{1}\right) x \forall x \in H$

Now $\left(T_{2} T_{1}\right) x=T_{2}\left(T_{1}(x)\right)=T_{2}\left(f_{x}\right)=F_{f_{x}}=T(x)$. In order to show that $T_{2} T_{1}=T$, we should prove that $F_{x}=F_{f_{x}}$ for this let $f \in H^{*}$. Then $f=f_{y}$ where $f$ corresponds to $y$ in the representation $F_{f_{x}}(y)=\left(f, f_{x}\right)=\left(f_{y}, f_{n}\right)=(x, y)$.

But $(x, y)=f_{y}(x)=f(x)=F_{x}(f)$. Thus we get $F_{f_{x}}(f)=F_{x}(f)$ for every $f \in H^{*}$. Hence the mappings $F_{f_{n}}$ and $F_{x}$ are equal i.e., $T_{2} T_{1}=T$ and so $T$ is a mapping of $H$ onto $H^{* *}$ so that $H$ is reflexive.

From the above, we get

$$
\left(F_{x}, F_{y}\right)=\left(F_{f_{x}}, F_{f_{y}}\right)=\left(f_{y}, f_{x}\right)=(x, y)
$$

Hence $f$ is an isometric isomorphism of $H$ onto $H^{*}$ so that $H$ and $H^{* *}$ are conjugate.

## Self-Learning Exercise - III

1. Define a functional on a Hilbert space.
2. State Riesz representation theorem.
3. Every Hilbert space is reflexive $(T / F)$
4. Riesz representation theorem is valid in an inner product space which is not complete $(T / F)$.

### 6.9 Summary

In this unit you studied orthogonality and functionals in Hilbert spaces. Orthonormal sets, complete orthonormal sets and reflexivity a Hilbert spaces were defined and important results connected with them were also proved.

### 6.10 Answers to Self-Learning Exercises

## Exercise - I

4. $H \quad$ 5. $\quad \phi \quad$ 6. $\quad\{0\} \quad$ 7. closed linear $\quad$ 8. $\quad M=M^{\perp \perp}$
5. $M$

## Exercise - II

$\begin{array}{llllll}\text { 4. } & F & 7 & \text { (a) } x=\mathbf{0} & \text { (b) (i) complete (ii) } \mathbf{0}\end{array}$
7. (c) $\sqrt{2} \quad$ (d) complete orthonormal

## Exercise - III

3. $T$ 4. $F$

### 6.11 Exercises

1. If M be a non-empty subset of a Hilbert space $H$, then show that $M^{\perp \perp}$ is the closure of the set of all linear combinations of vectors in $M$ i.e. $M^{\perp \perp}=[\bar{M}]$.
2. Prove that in the Hilbert space $l_{2}$, the set $\left\{e_{1}, e_{2}, \ldots, e_{n}, \ldots\right\}$ where $e_{n}$ is a sequence with 1 in the $\mathrm{n}^{\text {th }}$ place and 0 's elsewhere is an orthonormal set.
3. State and prove Bessel's inequality in Hilbert spaces.
4. Prove that a Hilbert space $H$ is a separable if every orthonormal set in $H$ is countable.
5. Prove that an orthonormal set in a Hilbert space is linearly independent.
6. Prove that every orthonormal set in a Hilbert space is contained in some complete orthonormal set.
7. Show that every non-zero Hilbert space contains a complete orthonormal set.
8. If $H$ is a Hilbert space, then prove that $H^{*}$ is also a Hilbert space with the inner product defined by $\left(f_{x}, f_{y}\right)=(y, x)$.
9. Prove that conjugate space $H^{* *}$ of $H^{*}$ is a Hilber space with some inner product defined on it.

## Unit - 7 <br> Operators on Hilbert Spaces

## Structure of the Unit

### 7.1 Objectives

### 7.2 Introduction

### 7.3 Adjoint Operator

### 7.3.1 Definition

### 7.3.2 Remark

### 7.3.3 Important Theorem

7.3.4 Properties ofAdjoint Operator

### 7.4 Self-Adjoint Operator

### 7.4.1 Definition

### 7.4.2 Properties ofSelf-Adjoint Operator

7.5 Positive Operator
7.5.1 Definition
7.6 Normal Operator
7.6.1 Definition

### 7.6.2 Properties of Normal Operators

### 7.7 Unitary Operator

### 7.7.1 Definition 1

### 7.7.2 Definition 2

### 7.7.3 Properties of Unitary Operators

7.8 Summary
7.9 Answers to Self-Learning Exercise
7.10 Exercises

### 7.1 Objectives

The objective of thus unit is to study various operators such as adjoint, self-adjoint, positive, normal and unitary operators on Hilbert spaces. Various properties and results on these operators will also be proved.

### 7.2 Introduction

In this unit, we shall introduce the adjoint of a bounded linear operator on a Hilbert space. With the help of the adjoint of a bounded linear operator, we shall define three important cases of operators called self-adjoint, normal and unitary operators. Besides this, we shall discuss in details the properties of these operators.

### 7.3 Adjoint Operator

7.3.1 Definition : The operator $\mathrm{T}^{*}$ defined on $H$ s.t.

$$
(T x, y)=\left(x, T^{*} y\right) \quad \forall x, y \in H
$$

is called the adjoint of $T$.
7.3.2 Remark: Though we are using the same symbol for the conjugate and adjoint operators, one should note that the conjugate operator is defined on $H^{*}$ and operates on functionals in $H^{*}$, whereas if $T^{*}$ is adjoint of the operator $T$, then it is an operator on $H$ and operates on vectors in $H$. However if we identify $H$ and $H^{*}$ under the natural correspondence, then the adjoint of $T$ and conjugate of $T$ coincide.

### 7.3.3 Important Theorems

Theorem 1: Let $T$ be an operator on a Hilbert space $H$, then $\exists$ a unique linear operator $T^{*}$ on $H$ s.t.

$$
(T x, y)=\left(x, T^{*} y\right) \forall x, y \in H
$$

obviously $T^{*}$ is the adjoint operator $H$.
Proof : First we prove that $T^{*}$ exists.
Let $y$ be a vector in $H$ and $f_{y}$ its corresponding functional in $H^{*}$. Define $T^{*}$ on $H^{*}$ into $H^{*}$ by

$$
T^{*} f_{y}=f_{z}
$$

Under the natural correspondence between $H$ and $H^{*}$, let $z \in H$ corresponding to $f_{z} \in H^{*}$. Thus starting with a vector $y$ in $H$, we arrive at the vector $z$ in $H$ in the following manner

$$
y \rightarrow f_{y} \rightarrow T^{*} f_{y}=f_{z} \rightarrow z
$$

where $T^{*}: H^{*} \rightarrow H^{*}$ and $y \rightarrow f_{y}$ and $z \rightarrow f_{z}$ are on $H$ to $H^{*}$ under the natural correspondence. The product of the above there mappings exists and it is denoted by $T^{*}$.

Thus $T^{*}$ is a mapping on $H$ into $H$ s.t. $T^{*} y=z$.
We define this $T^{*}$ to be adjoint of $T$.
Now we prove (1). for $x \in H$ and from the definition of the conjugate $T^{*}$ of an operater $T$,

$$
\begin{equation*}
\left(T^{*} f_{y}\right) x=f_{y}(T x) \tag{3}
\end{equation*}
$$

By Riesz representation theorem, $y \rightarrow f_{y}$ so that we get

$$
\begin{equation*}
f_{y}(T x)=(T x, y) \tag{4}
\end{equation*}
$$

Since $T^{*}$ is defined on $H^{*}$, we have

$$
\begin{equation*}
\left(T^{*} f_{y}\right) x=f_{z}(x)=(x, z) \tag{5}
\end{equation*}
$$

But according to our definition

$$
\begin{equation*}
T^{*} y=z \tag{6}
\end{equation*}
$$

From (3) and (4), we get

$$
\begin{equation*}
\left(T^{*} f_{y}\right) x=(T x, y) \tag{7}
\end{equation*}
$$

and from (5) and (6), we get

$$
\left(T^{*} f_{y}\right) x=\left(x, T^{*} y\right)
$$

From (7) and (8), we get

$$
(T x, y)=\left(x, T^{*} y\right) \forall x, y \in H
$$

Remark : The relation $(T x, y)=\left(x, T^{*} y\right)$ can also be written as $\left(T^{*} x, y\right)=(x, T y)$

$$
\left(T^{*} x, y\right)=\overline{\left(y, T^{*} x\right)}=\overline{(T y, x)}=\overline{(x, T y)}
$$

Hence $\left(T^{*} x, y\right)=(x, T y) \quad \forall x, y \in H$
Theorem 2: Let $H$ be a given Hilbert space and $T^{*}$ be adjoint of the operater $T$. Then $T^{*}$ is a bounded linear transformation and $T$ determines $T *$ uniquely.

Proof: First we prove that $T^{*}$ is linear. Let vectors $y_{1}, y_{2} \in H$ and $\alpha, \beta$ are scalars. Then for any vector $x \in H$, we have

$$
\begin{aligned}
&\left(x, T^{*}\left(\alpha y_{1}+\beta y_{2}\right)\right)=\left(T x, \alpha y_{1}+\beta y_{2}\right) \\
&=\left(T x, \alpha y_{1}\right)+\left(T x, \beta y_{2}\right) \\
&=\bar{\alpha}\left(T x, y_{1}\right)+\bar{\beta}\left(T x, y_{2}\right) \\
&=\bar{\alpha}\left(x, T^{*} y_{1}\right)+\bar{\beta}\left(x, T^{*} y_{2}\right) \\
&=\left(x, \alpha T^{*} y_{1}\right)+\left(x, \beta T^{*} y_{2}\right) \\
&=\left(x, \alpha T^{*} y_{1}+\beta T^{*} y_{2}\right) \forall x \in H \\
& \Rightarrow \quad T^{*}\left(\alpha y_{1}+\beta y_{2}\right)=\alpha T^{*} y_{1}+\beta T^{*} y_{2} \Rightarrow T^{*} \text { is linear. }
\end{aligned}
$$

Next we prove that $T^{*}$ is bounded.
For any $x \in H$, let us consider,

$$
\begin{aligned}
\left\|T^{*} x\right\|^{2} & =\left(T^{*} x, T^{*} x\right) \\
& =\left|\left(T^{*} x, T^{*} x\right)\right| \\
& =\left|\left(T T^{*} x, x\right)\right| \quad\left(\because\left\|T^{*}\right\|^{2} \geq 0\right)
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\leq\left\|T T^{*} x\right\|\|x\| \quad \text { (by Schwarz inequality) } \\
\leq\|T\|\left\|T^{*} x\right\|\|x\| \\
\text { or } \quad\left\|T^{*} x\right\| \leq\|T\|\|x\| \quad \text { as } \quad\left\|T^{*} x\right\| \leq\|T\|\|x\| \quad \forall x \in H \\
\text { or } \quad \sup \left\{\frac{\left\|T^{*} x\right\|}{\|x\|}: x \neq 0\right\} \leq\|T\| \\
\Rightarrow \quad T^{*} \text { is bounded since } T \text { is bounded }
\end{array} \text { } l
\end{aligned}
$$

Lastly we show that $T^{*}$ is unique. Let us assume that $T^{*}$ is not unique. Let $T_{1}$ be another mapping of $H$ into $H$ with the property (1). Then $\forall x, y \in H$

$$
\begin{array}{ll} 
& (T x, y)=\left(x, T_{1} y\right) \\
\text { and } & (T x, y)=\left(x, T^{*} y\right) \\
\Rightarrow \quad & \left(x, T_{1} y\right)=\left(x, T^{*} y\right) \quad \forall x, y \in H \\
\Rightarrow \quad & \left(x, T_{1} y-T^{*} y\right)=0 \quad \text { or } \quad\left(x,\left(T_{1}-T^{*}\right) y\right)=0 \quad \forall x \in H \\
\Rightarrow \quad & \left(T_{1}-T^{*}\right) y=0 \quad \forall y \in H \\
\Rightarrow \quad & T_{1} y=T^{*} y \quad \forall y \in H \\
\Rightarrow \quad & T_{1}=T^{*}
\end{array}
$$

Remark: Using (1) we note that zero and identity operators are adjoint operators since $\forall x, y \in H$, we have
(i) $(x, 0 * y)=(0 x, y)=(0, y)=0=(x, 0)=(x, 0 y)$

So from the uniqueness of the adjoint we get $0^{*}=0$
(ii) $\quad\left(x, I^{*} y\right)=(I x, y)=(x, y)=(x, I y)$

So from uniqueness of the adjoint operator, $I^{*}=I$

### 7.3.4 Properties of Adjoint Operator:

Theorem 3 : Let $H$ be a Hilbert space and $\beta(H)$ be the complex Banach space of all bounded linear transformations on $H$ into $H$. Then the adjoint operation $T \rightarrow T^{*}$ on $\beta(H)$, where $T$ is a bounded linear operator on $H$, has the following properties :

> (a) $\quad(T+S)^{*}=T^{*}+S^{*} \quad S$ be another bounded linear operator on $H$
> (b) $\quad(\alpha T)^{*}=\bar{\alpha} T^{*}, \quad \alpha$ being a scalar
(c) $\quad(T S)^{*}=S^{*} T^{*}$
(d) $T^{* * *}=T$
(e) $\quad\left\|T^{*}\right\|=\|T\|$
(f) $\quad\|T * T\|=\|T\|^{2}$
(g) $\quad\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*} \quad$ if $T$ is invertible i.e. $T$ is a non-singular operator on $T$.

Proof: (a) We have $\forall x, y \in H$

$$
\begin{aligned}
(x,(T+S) * y) & =((T+S) x, y) \\
& =(T x+S x, y)=(T x, y)+(S x, y) \\
& =\left(x, T^{*} y\right)+\left(x, S^{*} y\right) \\
& =\left(x, T^{*} y+S^{*} y\right)=\left(x,\left(T^{*}+S^{*}\right) y\right)
\end{aligned}
$$

$\Rightarrow \quad(T+S)^{*}=T^{*}+S^{*} \quad$ (by uniqueness of adjoint operator).
(b) $\forall x, y \in H$, we have

$$
\begin{aligned}
& \begin{aligned}
\left(x,(\alpha T)^{*} y\right) & =((\alpha T) x, y) \\
& =\alpha(T x, y) \\
& =\alpha\left(x, T^{*} y\right) \\
& =\left(x, \bar{\alpha}\left(T^{*} y\right)\right)
\end{aligned} \\
& \Rightarrow \quad(\alpha T)^{*}=\bar{\alpha} T^{*} \text { (by uniqueness property). } \\
& \text { (c) } \forall x, y \in H, \text { we have }
\end{aligned}
$$

$$
\begin{aligned}
(x,(T S) * y) & =((T S) x, y)=(T(S x), y) \\
& =\left(S x, T^{*} y\right)=\left(x, S^{*} T^{*} y\right) \\
\Rightarrow \quad(T S)^{*} & =S^{*} T^{*}
\end{aligned}
$$

(d) $\forall x, y \in H$, we have

$$
\begin{aligned}
\left(x, T^{* *} y\right) & =\left(x,\left(T^{*}\right)^{*} y\right)=\left(T^{*} x, y\right) \\
& =\overline{\left(y, T^{*} x\right)}=\overline{(T y, x)}
\end{aligned}
$$

$$
\begin{aligned}
& =(x, T y) \\
\Rightarrow \quad T^{* *} & =T
\end{aligned}
$$

(e) $\forall x \in H$, we have

$$
\begin{aligned}
\left\|T^{*} x\right\|^{2} & =\left(T^{*} x, T^{*} x\right)=\left(T T^{*} x, x\right) \text { which is a real number and } \geq 0 \\
& =\left|\left(T T^{*} x, x\right)\right| \\
& \leq\left\|T T^{*} x\right\|\|x\| \quad \quad \text { (by Schwarz inequality) } \\
& \leq\|T\|\left\|T^{*} x\right\|\|x\|
\end{aligned}
$$

or $\quad\left\|T^{*} x\right\| \leq\|T\|\|x\| \quad$ as $\quad\left\|T^{*} x\right\| \neq 0$
$\therefore \quad \sup \left\{\frac{\left\|T^{*} x\right\|}{\|x\|}: x \neq 0\right\} \leq\|T\|$
or $\quad\|T *\| \leq\|T\|$
On replacing $T$ by $T^{*}$, (9) gives

$$
\left\|T^{* *}\right\| \leq\left\|T^{*}\right\|
$$

or

$$
\begin{equation*}
\|T\| \leq\left\|T^{*}\right\| \quad \text { by }(\mathrm{d}) \tag{10}
\end{equation*}
$$

Hence (9) and (10) $\Rightarrow\left\|T^{*}\right\|=\|T\|$
(f) we have

$$
\begin{align*}
&\left\|T^{*} T\right\|=\sup \left\{\left\|T^{*} T x\right\|:\|x\| \leq 1\right\} \\
&=\sup \left\{\left\|T^{*}(T x)\right\|:\|x\| \leq 1\right\} \\
& \leq \sup \left\{\left\|T^{*}\right\|\|T x\|:\|x\| \leq 1\right\} \\
& \leq\left\|T^{*}\right\| \sup \{\|T x\|:\|x\| \leq 1\} \\
& \leq\left\|T^{*}\right\|\|T\|=\|T\|^{2} \quad \text { (by (e)) } \\
& \therefore \quad\left\|T^{*} T\right\| \leq\|T\|^{2} \tag{11}
\end{align*}
$$

Also $\quad\|T x\|^{2}=(T x, T x)=\left(T^{*} T x, x\right)=\left|T^{*} T x, x\right| \quad \forall x \in H$

$$
\begin{aligned}
& \leq\left\|T^{*} T x\right\|\|x\| \quad \text { (by Schwarz inequality) } \\
& \leq\left\|T^{*} T\right\|\|x\|\|x\| \quad \text { as } \quad\|T x\| \leq\|T\|\|x\|
\end{aligned}
$$

or $\quad \sup \left\{\frac{\|T x\|^{2}}{\|x\|^{2}}: x \neq 0\right\} \leq\left\|T^{*} T\right\|$
or $\quad\|T\|^{2} \leq\left\|T^{*} T\right\|$
Thus (11) and (12) $\Rightarrow\|T * T\|=\|T\|^{2}$
(g) If $T$ is a non-singular operators on $H$ and $T^{-1}$ is inverse of T , then $T^{-1}$ is also an operator on $H$. Also

$$
\begin{aligned}
& T T^{-1}=I=T^{-1} T \\
\Rightarrow \quad & \left(T T^{-1}\right)^{*}=I^{*}=\left(T^{-1} T\right)^{*} \\
\Rightarrow \quad & \left(T^{-1}\right)^{*} T^{*}=I=T^{*}\left(T^{-1}\right)^{*} \\
\Rightarrow \quad & T^{*} \text { is invertible and so non-singular and also inverse of } T^{*} \text { is }\left(T^{-1}\right)^{*} .
\end{aligned}
$$

Hence $\left(T^{*}\right)^{-1}=\left(T^{-1}\right) *$

### 7.4 Self-Adjoint Operator

7.4.1 Definition : A linear operater $T$ on a Hilbert space $H$ is known as self-adjoint or Hermition if $T^{*}=T$ or in other words, if $T$ is self-adjoint
then $(T x, y)=\left(x, T^{*} y\right)=(x, T y)$
Zero operater and Identity operator are examples of self-adjoint operater.

### 7.4.2 Properties of Self-Adjoint Operator

Theorem 4: An operator $T$ on $H$ is self-adjoint, then $(T x, y)=(x, T y) \forall x, y \in H$ and conversly.
Proof: If $T^{*}$ is an adjoint operator of $T$ on $H$, then by definition we have

$$
(T x, y)=\left(x, T^{*} y\right) \quad \forall x, y \in H
$$

If $T$ is self-adjoint, there $T=T^{*}$. Therefore

$$
(T x, y)=\left(x, T^{*} y\right)=(x, T y) \quad \forall x, y \in H
$$

conversly let us asume that

$$
(T x, y)=(x, T y) \quad \forall x, y \in H
$$

But $\quad(T x, y)=\left(x, T^{*} y\right)$

So

$$
(x, T y)=\left(x, T^{*} y\right) \Rightarrow\left(x,\left(T-T^{*}\right) y\right)=0 \quad \forall x, y \in H
$$

$$
\begin{aligned}
& \therefore \quad x \neq 0 \therefore\left(T-T^{*}\right) y=0 \quad \forall y \in H \\
& \Rightarrow \quad T=T^{*} \Rightarrow T \text { is self adjoint. }
\end{aligned}
$$

Theorem 5: Let $T$ be a self-adjoint operator, then $T+T^{*}$ and $T^{*} T$ are self-adjoint.
Proof: We have

$$
\begin{aligned}
\left(T+T^{*}\right)^{*} & =T^{*}+T^{* *}=T^{*}+T \\
& =T+T^{*} \\
\Rightarrow \quad T & +T^{*} \text { is self-adjoint }
\end{aligned}
$$

Also $\quad\left(T^{*} T\right)^{*}=T^{*}\left(T^{*}\right)^{*}=T^{*} T \Rightarrow T^{*} T$ is self-adjoint

Theorem 6: If $T$ is an arbitrary operator on Hilbert space $H$, then $T=0$ iff $(T x, y)=0$ $\forall x, y \in H$.

Proof: If $T=0$, then $(T x, y)=(0 x, y)=0 \forall x, y \in H$.

Conversly let $(T x, y)=0 \quad \forall x, y \in H$.
Taking $y=T x$, we get

$$
\begin{array}{rll} 
& (T x, T x)=0 & \forall x \in H \\
\Rightarrow & \|T x\|^{2}=0 & \forall x \in H \\
\Rightarrow \quad & T x=0 & \forall x \in H \\
\Rightarrow \quad & T=0 &
\end{array}
$$

Theorem 7: If $T$ is an operator on a Hilbert space $H$, then $(T x, x)=0 \forall x \in H$ iff $T=0$.

Proof: Let $T=0$, then $(T x, x)=(0 x, x)=(0, x)=0 \quad \forall x \in H$.

Conversely, let $(T x, x)=0 \quad \forall x \in H$.

If $x, y \in H$ and $\alpha, \beta$ be any scalars, then we have

$$
\begin{aligned}
(T(\alpha x+\beta y), \alpha x+\beta y) & =(\alpha T x+\beta T y, \alpha x+\beta y) \\
& =(\alpha T x, \alpha x+\beta y)+(\beta T y, \alpha x+\beta y) \\
& =\alpha(T x, \alpha x+\beta y)+\beta(T y, \alpha x+\beta y) \\
& =\alpha(T x, \alpha x)+\alpha(T x, \beta y)+\beta(T y, \alpha x)+\beta(T y, \beta y)
\end{aligned}
$$

$$
\begin{array}{r}
=\alpha \bar{\alpha}(T x, x)+\alpha \bar{\beta}(T x, y)+\beta \bar{\alpha}(T y, x)+\beta \bar{\beta}(T y, y) \\
=|\alpha|^{2}(T x, x)+\alpha \bar{\beta}(T x, y)+\beta \bar{\alpha}(T y, x)+|\beta|^{2}(T y, y) \\
\Rightarrow(T(\alpha x+\beta y), \alpha x+\beta y)-|\alpha|^{2}(T x, x)-|\beta|^{2}(T y, y)=\alpha \bar{\beta}(T x, y)+\beta \bar{\alpha}(T y, x) \tag{13}
\end{array}
$$

Since $(T x, x)=0 \quad \forall x \in H$, therefore left-hand side of(13) is zero. Hence we get

$$
\begin{equation*}
\alpha \bar{\beta}(T x, y)+\beta \bar{\alpha}(T y, x)=0 \quad \forall x, y \in H \text { and } \alpha, \beta \text { are any scalars. } \tag{14}
\end{equation*}
$$

Taking $\alpha=\beta=1$ and $\alpha=i, \beta=1$ succesively in(14) we get

$$
\begin{equation*}
(T x, y)+(T y, x)=0 \tag{15}
\end{equation*}
$$

and $\quad i(T x, y)-i(T y, x)=0$
or $\quad(T x, y)-(T y, x)=0$
Adding (15) and (16) we get

$$
2(T x, y)=0 \quad \forall x, y \in H
$$

or $\quad(T x, y)=0 \quad \forall x, y \in H \Rightarrow T=0 \quad$ (by Theorem 6)
Theorem 8: An operator $T$ on a complex Hilbert space $H$ is self-adjoint iff $(T x, x)$ is real for all $x$.

Proof : Let $T$ a self-adjoint operator on $H$ i.e., $T=T^{*}$. Then for all $x \in H$, we have

$$
(T x, x)=\left(x, T^{*} x\right)=(x, T x)=\overline{(T x, x)}
$$

Thus $(T x, x)$ is equal to its own conjugate and is therefore real.
Now suppose that $(T x, x)$ is real for every $x \in H$.
Since $(T x, x)$ is real for all $x \in H$, therefore we have

$$
(T x, x)=\overline{(T x, x)}=\overline{\left(x, T^{*} x\right)}=\left(T^{*} x, x\right)
$$

where $T^{*}$ is adjoint of $T$ which exists for every $x \in H$.

$$
\begin{array}{lll}
\text { So } & (T x, x)-\left(T^{*} x, x\right)=0 & \forall x \in H \\
\Rightarrow & \left(T x-T^{*} x, x\right)=0 & \forall x \in H \\
\Rightarrow & \left(\left(T-T^{*}\right) x, x\right)=0 & \forall x \in H \\
\Rightarrow & T-T^{*}=0 \quad \text { or } & T=T^{*} \Rightarrow T \text { is self-adjoint }
\end{array}
$$

Theorem 9: Let A be the set of all self-adjoint operators in $\beta(H)$. Then $A$ is a closed linear subspace of $\beta(H)$ and therefore A is a real Banach space containing the identity transformation.

Proof: First we note that $A$ is non-empty, since 0 is a self-adjoint operator.
Let $T_{1}, T_{2} \in A$. Then $T_{1}^{*}=T_{1}$ and $T_{2}{ }^{*}=T_{2}$
Suppose that $\alpha, \beta$ be any two real numbes, Then

$$
\begin{aligned}
&\left(\alpha T_{1}+\beta T_{2}\right)^{*}=\left(\alpha T_{1}\right)^{*}+\left(\beta T_{2}\right)^{*} \\
&=\bar{\alpha} T_{1}^{*}+\bar{\beta} T_{2}^{*}=\alpha T_{1}+\beta T_{2} \\
& \Rightarrow \quad \alpha T_{1}+\beta T_{2} \in A .
\end{aligned}
$$

Hence $A$ is a real linear subspace of $H$.
Now we prove that $A$ is closed subset of the Banach space $\beta(H)$,
Let $\left\{T_{n}\right\}$ be a sequence of self-adjoint operators converging to $T$. Now

$$
\begin{aligned}
& \left\|T-T^{*}\right\|=\left\|T-T_{n}+T_{n}-T_{n}{ }^{*}+T_{n} *-T^{*}\right\| \\
& \leq\left\|T-T_{n}\right\|+\left\|T_{n}-T_{n} *\right\|+\left\|T_{n} *-T^{*}\right\| \\
& \leq\left\|T_{n}-T\right\|+\|0\|+\left\|\left(T_{n}-T\right) *\right\| \quad\left(\because T_{n} \in A \Rightarrow T_{n}{ }^{*}=T_{n}\right) \\
& \leq 2\left\|T_{n}-T\right\| \quad(\because\|T *\|=\|T\|) \\
& \rightarrow 0 \text { as } T_{n} \rightarrow T \\
& \therefore \quad\left\|T-T^{*}\right\|=0 \Rightarrow T=T^{*} \\
& \Rightarrow \quad T \text { is self-adjoint } \Rightarrow T \in A . \\
& \Rightarrow \quad A \text { is a closed subspace of complete Banach space } \beta(H) \text {. } \\
& \Rightarrow \quad A \text { is also complete and hence is a real Banach space. } \\
& \text { Also } \quad I^{*}=I \Rightarrow \text { the identity operator } I \in A
\end{aligned}
$$

### 7.5 Positive Operators

Since $(T x, x)$ is real for self-adjoint operators, therefore we can introduce the order relation among them and define positive operator by considering the real values which the self-adjoint operator take.
7.5.1 Definition : A self-adjoint operator $T$ on $H$ is said to be positive if $T \geq 0$ in the order relation.

This means $(T x, x) \geq 0 \quad \forall x \in H$

From the definition, we have the following properties.
(a) The identity operator $I$ and the zero operator 0 are positive operators, since

$$
(I x, x)=(x, x)=\|x\|^{2} \geq 0
$$

and $\quad(0 x, x)=(0, x)=0$
(b) For any arbitrary operators $T$ on $H, T T^{*}$ and $T^{*} T$ are positive operators since $T T^{*}$ and $T^{*} T$ are self adjoint and

$$
\left(T T^{*} x, x\right)=\left(T^{*} x, T^{*} x\right)=\left\|T^{*} x\right\|^{2} \geq 0
$$

### 7.6 Normal Operators

7.6.1 Definition : An operator $T$ on a Hilbert space $H$ is known to be Normal if it commutes with its adjoint i.e. if $T T^{*}=T^{*} T$

From the defintiion it is obvious that
(a) Every self-adjoin operators is normal, since

$$
T=T^{*} \Rightarrow T T^{*}=T^{*} T
$$

(b) Both zero and identity operators are normal operators.
(c) A normal operator is non-necessarily self-adjoint.

### 7.6.2 Properties of Normal Operators:

Theorem 10: If $T_{1}$ and $T_{2}$ are normal operators on $H$ with the property that either commutes with adjoint of the other, then $T_{1}+T_{2}$ and $T_{1} T_{2}$ are normal.

Proof: Since $T_{1}$ and $T_{2}$ are normal, therefore

$$
\begin{equation*}
T_{1} T_{1}^{*}=T_{1}^{*} T_{1} \text { and } T_{2} T_{2}^{*}=T_{2}^{*} T_{2} \tag{17}
\end{equation*}
$$

From hypothesis, we have

$$
\begin{equation*}
T_{1} T_{2}^{*}=T_{2} * T_{1} \text { and } T_{2} T_{1}^{*}=T_{1}^{*} T_{2} \tag{18}
\end{equation*}
$$

Now $\left(T_{1}+T_{2}\right)\left(T_{1}+T_{2}\right)^{*}=\left(T_{1}+T_{2}\right)\left(T_{1}^{*}+T_{2}^{*}\right)$

$$
\begin{align*}
& =T_{1} T_{1}^{*}+T_{1} T_{2} *+T_{2} T_{1}^{*}+T_{2} T_{2}^{*} \\
& =T_{1}^{*} T_{1}+T_{2} * T_{1}+T_{1}^{*} T_{2}+T_{2} * T_{2}  \tag{17}\\
& =T_{1}^{*}\left(T_{1}+T_{2}\right)+T_{2} *\left(T_{1}+T_{2}\right) \\
& =\left(T_{1} *+T_{2} *\right)\left(T_{1}+T_{2}\right) \\
& =\left(T_{1}+T_{2}\right) *\left(T_{1}+T_{2}\right)
\end{align*}
$$

$\Rightarrow \quad\left(T_{1}+T_{2}\right)$ is normal.

Also $\quad\left(T_{1} T_{2}\right)\left(T_{1} T_{2}\right)^{*}=\left(T_{1} T_{2}\right)\left(T_{2} * T_{1} *\right)$

$$
\begin{aligned}
& =T_{1}\left(T_{2} T_{2} *\right) T_{1}^{*} \\
& =\left(T_{1} T_{2} *\right)\left(T_{2} T_{1} *\right) \\
& =\left(T_{2} * T_{1}\right)\left(T_{1} * T_{2}\right) \\
& =T_{2} *\left(T_{1} T_{1} *\right) T_{2} \\
& =T_{2}^{*}\left(T_{1} * T_{1}\right) T_{2} \\
& =\left(T_{2} * T_{1} *\right)\left(T_{1} T_{2}\right) \\
& =\left(T_{1} T_{2}\right) *\left(T_{1} T_{2}\right)
\end{aligned}
$$

$\Rightarrow \quad T_{1} T_{2}$ is normal
Theorem 11: An operator $T$ on a Hilbert space $H$ is normal iff $\left\|T^{*} x\right\|=\|T x\| \forall x \in H$.
Proof: Let $T$ is normal, Then

$$
\begin{array}{rlrl}
T T^{*}=T^{*} T & \Leftrightarrow T T^{*}-T^{*} T=0 & \\
& \Leftrightarrow\left(\left(T T^{*}-T^{*} T\right) x, x\right)=0 & & \forall x \in H \\
& \Leftrightarrow\left(T T^{*} x, x\right)=\left(T^{*} T x, x\right) & & \\
& \Leftrightarrow\left(T^{*} x, T^{*} x\right)=\left(T x, T^{* *} x\right) & & \\
& \Leftrightarrow\left(T^{*} x, T^{*} x\right)=(T x, T x) & & \forall x \in H \\
& \Leftrightarrow\left\|T^{*} x\right\|^{2}=\|T x\|^{2} & & \\
& \Leftrightarrow\left\|T^{*} x\right\|=\|T x\| & \forall x \in H
\end{array}
$$

Thoerem 12 : If $T$ is a Normal Operator on $H$, then $\left\|T^{2}\right\|=\|T\|^{2}$
Proof: We have

$$
\begin{align*}
\left\|T^{2} x\right\| & =\|T T x\| \\
& =\|T(T x)\| \\
& =\left\|T^{*}(T x)\right\| \quad \forall x \in H \quad\left[\because T \text { is normal } \therefore\|T x\|=\left\|T^{*} x\right\| \forall x \in H\right] \tag{19}
\end{align*}
$$

Hence $\left\|T^{2} x\right\|=\left\|T^{*}(T x)\right\|$

Also $\quad\left\|T^{2}\right\|=\sup \left\{\left\|T^{2} x\right\|:\|x\| \leq 1\right\}$

$$
\begin{aligned}
& =\sup \left\{\left\|T^{*} T x\right\|:\|x\| \leq 1\right\} \\
& =\left\|T^{*} T\right\|=\|T\|^{2}
\end{aligned}
$$

which completes the proof of the theorem.
Theorem 13: An arbitrary operator $T$ on a Hilbert space $H$ can be uniquely expressed as $T=T_{1}+i T_{2}$ and $T^{*}=T_{1}-i T_{2}$, where $T_{1}$ and $T_{2}$ are self-adjoint operators.

Proof : Let $T^{*}$ be the adjoint of $T$. Define

$$
\begin{equation*}
T_{1}=\frac{1}{2}\left(T+T^{*}\right) \text { and } T_{2}=\frac{1}{2 i}\left(T-T^{*}\right) \tag{20}
\end{equation*}
$$

Then we have

$$
T=T_{1}+i T_{2} \text { and } T^{*}=T_{1}-i T_{2}
$$

Again $T_{1}^{*}=\left[\frac{1}{2}\left(T+T^{*}\right)\right]^{*}=\frac{1}{2}\left(T+T^{*}\right)^{*}=\frac{1}{2}\left(T^{*}+T^{* *}\right)$

$$
=\frac{1}{2}\left(T^{*}+T\right) \quad\left(\because T^{* *}=T\right)
$$

$$
=\frac{1}{2}\left(T+T^{*}\right)=T_{1} \Rightarrow T_{1} \text { is self-adjoint. }
$$

Also $\quad T_{2}^{*}=\left[\frac{1}{2 i}\left(T-T^{*}\right)\right]^{*}=-\frac{1}{2 i}\left(T^{*}-T\right)$

$$
=\frac{1}{2 i}\left(T-T^{*}\right)=T_{2} \Rightarrow T_{2} \text { is self-adjoint. }
$$

Thus an arbitrary operator $T$ can be expressed in the form(20) where $T_{1}$ and $T_{2}$ are self-adjoint operators. Next we show that this type of expression is unique. Let the expression is non-unique i.e. let $T=S_{1}+i S_{2}$ where $S_{1}$ and $S_{2}$ and self-adjoint operators on $H$.

Then $\quad T^{*}=\left(S_{1}+i S_{2}\right)^{*}=S_{1} *+\bar{i} S_{2}^{*}=S_{1} *-i S_{2} *$
Thus $\quad S_{1}=\frac{1}{2}\left(T+T^{*}\right)=T_{1}$ and $S_{2}=\frac{1}{2 i}\left(T-T^{*}\right)=T_{2}$
Hence the expression (20) for $T \in \beta(H)$ is unique.
Remark: If $T$ is expressed as $T_{1}+i T_{2}$ and $T^{*}=T_{1}-i T_{2}$ where $T_{1}$ and $T_{2}$ are self-adjoint operators on $H$ then $T_{1}$ is called the real part of $T$ and $T_{2}$ is called the imaginary part of $T$.

Theorem 14: If $T$ is an operator on a Hilbert space $H$, then $T$ is normal iff its real and imaginary parts commute.

Proof: Let $T=T_{1}+i T_{2}$ where $T_{1}$ and $T_{2}$ are self-adjoint operators on $H$.
We have $T^{*}=\left(T_{1}+i T_{2}\right)^{*}=T_{1}{ }^{*}+\bar{i} T_{2}^{*}=T_{1}^{*}-i T_{2}^{*}=T_{1}-i T_{2}$
Now $\quad T T^{*}=\left(T_{1}+i T_{2}\right)\left(T_{1}-i T_{2}\right)$

$$
\begin{equation*}
=T_{1}^{2}+i\left(T_{2} T_{1}-T_{1} T_{2}\right)+T_{2}^{2} \tag{22}
\end{equation*}
$$

and

$$
\begin{align*}
T^{*} T & =\left(T_{1}-i T_{2}\right)\left(T_{1}+i T_{2}\right) \\
& =T_{1}^{2}+i\left(T_{1} T_{2}-T_{2} T_{1}\right)+T_{2}^{2} \tag{23}
\end{align*}
$$

If $T$ is normal, then $T T^{*}=T^{*} T$

$$
\begin{aligned}
& \text { (22) and (23) } \Rightarrow T_{1}^{2}+i\left(T_{2} T_{1}-T_{1} T_{2}\right)+T_{2}^{2} \\
& = \\
& \Rightarrow \quad T_{1}^{2}+i\left(T_{1} T_{2}-T_{2} T_{1}\right)+T_{2}^{2} \\
& \Rightarrow \quad 2 i\left(T_{1} T_{2}-T_{2} T_{1}\right)=0 \\
& \Rightarrow \quad T_{1} T_{2}=
\end{aligned} T_{2} T_{1} \Rightarrow \text { Real and imaginary parts commute } \quad l \text {. }
$$

Conversely if $T_{1} T_{2}=T_{2} T_{1}$, then (22) and (23) gives

$$
T T^{*}=T^{*} T \Rightarrow T \text { is normal. }
$$

Theorem 15 : Show that the set of all normal operators on a Hilbert space $H$ is a closed subset of $\beta(H)$ which contains the set of all self-adjoint operators and is closed under scalar multiplication.

Proof : Let $S$ be the set of all normal operators on a Hilbert space $H$. We first show that $S$ is closed subset of $\beta(H)$. Let $T$ be any limit point of $S$. We have to prove that $T \in S$. Since $T$ is a limit point of $S$, therefore $\exists$ a sequence $\left\{T_{n}\right\}$ of distinct points of $S$ s.t. $T_{n} \rightarrow T$ as $n \rightarrow \infty$.

Now $\quad\left\|T_{n}{ }^{*}-T^{*}\right\|=\left\|\left(T_{n}-T^{*}\right)\right\|=\left\|T_{n}-T\right\| \rightarrow 0$ as $n \rightarrow \infty$
$\therefore \quad T_{n}{ }^{*} \rightarrow T^{*}$ as $n \rightarrow \infty$
Also $\quad\left\|T T^{*}-T^{*} T\right\|=\left\|T T^{*}-T_{n} T_{n}{ }^{*}+T_{n} T_{n}{ }^{*}-T^{*} T\right\|$

$$
\begin{align*}
& \leq\left\|T T^{*}-T_{n} T_{n} *\right\|+\left\|T_{n} T_{n} *-T^{*} T\right\| \\
& \leq\left\|T T^{*}-T_{n} T_{n} *\right\|+\left\|T_{n} T_{n}^{*}-T_{n} * T_{n}+T_{n} * T_{n}-T^{*} T\right\| \\
& \leq\left\|T T^{*}-T_{n} T_{n} *\right\|+\left\|T_{n} T_{n}^{*}-T_{n} * T_{n}\right\|+\left\|T_{n} * T_{n}-T^{*} T\right\| \\
& \leq\left\|T T^{*}-T_{n} T_{n} *\right\|+\left\|T_{n} * T_{n}-T^{*} T\right\| \tag{25}
\end{align*}
$$

$$
\left(\because T_{n} \in S \Rightarrow T_{n} \text { is normal } \Rightarrow T_{n} T_{n}^{*}=T_{n} * T_{n}\right)
$$

Since $T_{n} \rightarrow T$ and $T_{n}{ }^{*} \rightarrow T^{*}$, the right hand side of (25) tends to zero which implies that

$$
\begin{aligned}
\left\|T T^{*}-T^{*} T\right\| \rightarrow 0 & \Rightarrow T T^{*}=T^{*} T \\
& \Rightarrow T \text { is normal } \Rightarrow T \in S
\end{aligned}
$$

This prove that $S$ is a closed subset of $\beta(H)$.
Again every self-adjoint operator is normal. Therefore $S$ is a closed subset of $\beta(H)$ containing the set of all self-adjoint operators.

Finally we prove that $S$ is closed for scalar multiplication i.e. if $\alpha$ is a scalar and $T \in S$, then $\alpha T \in S$ or if $T$ is normal then $\alpha T$ is also normal for any scalar $\alpha$.

Since $T$ is normal, therefore $T T^{*}=T^{*} T$
Now $\quad(\alpha T)(\alpha T)^{*}=(\alpha T)\left(\bar{\alpha} T^{*}\right)$

$$
\begin{aligned}
& =\alpha \bar{\alpha} T T^{*} \\
& =\bar{\alpha} \alpha T^{*} T=\left(\bar{\alpha} T^{*}\right)(\alpha T) \\
& =(\alpha T)^{*}(\alpha T)
\end{aligned}
$$

$\Rightarrow \alpha T$ is normal.
which complete the proof of the theorem.

### 7.7 Unitary Operators

7.7.1 Definition 1 : An operator $U$ on a Hilbert space $H$ is said to be unitary if $U U^{*}=U^{*} U=I$

From the definition it is obvious that
(i) If $U$ is unitary, then it is normal.
(ii) $U^{*}=U^{-1}$
7.2.2 Definition 2: An operator $T$ on $H$ is said to be Isometric if $\|T x-T y\|=\|x-y\| \forall x, y \in H$ Since $T$ is linear, the condition is equivalent to $\|T x\|=\|x\| \forall x \in H$

Now we prove a result contained in
Theorem 16: If $T$ is an operator on a Hilbert space $H$ then the following conditions are equivalent :
(a) $\quad T * T=I$
(b) $\quad(T x, T y)=(x, y) \quad \forall x, y \in H$
(c) $\quad\|T x\|=\|x\| \forall x \in H$

Proof: $\mathbf{( a )} \Rightarrow \mathbf{( b )}$ : Given that $T^{*} T=I$
Now $\quad(T x, T y)=\left(x, T^{*} T y\right)=(x, I y)=(x, y) \quad \forall x, y \in H$
(b) $\Rightarrow$ (c): Given that $(T x, T y)=(x, y) \forall x, y \in H$

Taking $x=y$, we get

$$
\begin{aligned}
& (T x, T x)=(x, x) \\
\Rightarrow \quad & \|T x\|^{2}=\|x\|^{2} \\
\Rightarrow \quad & \|T x\|=\|x\| \quad \forall x \in H \\
\text { (c) } \Rightarrow & (\mathbf{a}): \text { By (c) we have } \\
& \|T x\|=\|x\| \quad \forall x \in H \\
\text { Now } \quad & \|T x\|=\|x\| \\
\Rightarrow \quad & \|T x\|^{2}=\left\|x^{2}\right\| \\
\Rightarrow \quad & (T x, T x)=(x, x) \\
\Rightarrow \quad & \left(T x, T^{* *} x\right)=(x, x) \\
\Rightarrow \quad & \left(T^{*} T x, x\right)=(I x, x) \quad \forall x \in H \\
\Rightarrow \quad & \left(\left(T^{*} T-I\right) x, x\right)=0 \quad \forall x \in H \\
\Rightarrow \quad & T^{*} T=I
\end{aligned}
$$

### 7.7.3 Properties of Unitary Operator

Theorem 17: An operator $T$ on a Hilbert space $H$ is unitary iff it is an isometric isomorphism of $H$ onto itself.

Proof: Let $T$ be unitary. Then $T * T=T T^{*}=I$.
Therefore $T$ is invertible and so $T$ one-one and onto.
Also $\quad\|T x\|^{2}=(T x, T x)=\left(T^{*} T x, x\right)$

$$
\begin{aligned}
& =(I x, x)=(x, x) \\
& =\|x\|^{2} \\
\Rightarrow \quad\|T x\| & =\|x\| \quad \forall x \in H
\end{aligned}
$$

Thus $T$ preserves the norm and so $T$ is an isometric isomorphism of $H$ onto itself.
Conversely suppose that $T$ be an isometric isomorphism of $H$ onto itself. Then $T$ is one-one and onto. Therefore $T$ is invertible i.e. $T^{-1}$ exists.

$$
\begin{equation*}
\Rightarrow \quad T T^{-1}=T^{-1} T=I \tag{26}
\end{equation*}
$$

Again $T$ preserves the norm, therefore

$$
\begin{array}{ll} 
& \|T x\|=\|x\| \quad \forall x \in H \\
\Rightarrow & T^{*} T=I \\
\Rightarrow & \left(T^{*} T\right) T^{-1}=I T^{-1} \\
\Rightarrow & T^{*}\left(T T^{-1}\right)=T^{-1} \Rightarrow T^{*} I=T^{-1} \\
\text { or } & T^{*}=T^{-1} \Rightarrow T T^{*}=T T^{-1}=I
\end{array}
$$

In a similar manner

$$
T^{*} T=T^{-1}=I
$$

Hence $T^{*} T=T T^{*}=I \Rightarrow T$ is unitary.
Remark: If $T$ is an unitary operator on $H$, then $\|T\|=1$.
Also $\quad\|T x\|=\|x\|$ so that

$$
\|T x\|=\sup \{\|T x\|:\|x\| \leq 1\}=\sup \{\|x\|:\|x\| \leq 1\}
$$

## Self-Learning Exercise

In the following questions write $T$ for true and $F$ for false :

1. The conjugate and adjoint operator operate, on functionals in $H^{*}(T / F)$.
2. If $T$ be an operater on a Hilbert space $H$, then

$$
(T x, y)=\left(x, T^{*} y\right) \quad \forall x, y \in H
$$

where $T^{*}$ is the adjoint operator of $T .(T / F)$.
3. $\quad\left\|T T^{*}\right\|=\|T\|^{2} \quad(T / F)$
4. $\quad O$ and $I$ are self-adjoint operators $(T / F)$
5. A normal operator is always a sefl-adjoint $(T / F)$
6. If $N_{1}$ and $N_{2}$ are normal operators then $N_{1}+N_{2}$ is also a normal operator $(T / F)$
7. If $N_{1}$ and $N_{2}$ are normal operators then $N_{1} N_{2}$ is a normal operator $(T / F)$.
8. If $T_{1}$ and $T_{2}$ are self-adjoint operators, then their product $T_{1} T_{2}$ is self-adjoint $(T / F)$.
9. If $T$ is an operator on $H$ s.t. $(T x, x)=0 \forall x \in H$ then $T=0(T / F)$.
10. If $T$ is a Normal operator and $\alpha$ is a scalar then $\alpha T$ is normal $(T / F)$.
11. If $H$ be an inner product space which is not complete, then $H^{*}$ necessarity exists $(T / F)$.

Fill in the blanks :
12. Identity is an $\qquad$ operator
13. $(S T)^{*}=$ $\qquad$
14. If $T$ is a positive operator on Hilbert space $H$, then $I+T$ is $\qquad$

### 7.8 Summary

In this unit you studied different type of operators on Hilbert spaces and various properties associated with these operators.

### 7.9 Answers to Self-Learning Exercise

| 1. | F | 2. | T | 3. | T | 4. | T |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5. | F | 6. | F | 7. | F | 8. | F |
| 9. | T | 10. | T | 11. | F |  |  |
| 12. | Self-adjoint | 13. | $T^{*} S^{*}$ | 14. | Non-singular |  |  |

### 7.10 Exercises

1. Define an adjoint operator on a Hilbert space $H$ and give an example.
2. Show that the adjoint operation is one-one onto as a mapping $\beta(H)$ into itself.
3. Prove that every scalar multiple of self-adjoint operator is also normal.
4. Let $H$ be a Hilbert space and $T, S$ be the set of bounded operators on $H$. Prove that if
(i) $\quad S$ and $T$ are self-adjoint and $S T=T S$, then $S T$ is self-adjoint.
(ii) $\quad S$ and $T$ are normal and $S T^{*}=T^{*} S$, then $S T$ is normal.
5. If $T$ is an arbitrary operator on a Hilbert space $H$ and $\alpha, \beta$ are scalars s.t. $|\alpha|=|\beta|$, then show that $\alpha T+\beta T^{*}$ is normal.
6. If $T$ is a normal operator on a Hilbert space $H$ and $\lambda$ is a scalar, then show that $T-\lambda I$ is normal.
7. Show that an operator $T$ on a Hilbert space $H$ is unitary iff $T\left(\left\{e_{i}\right\}\right)$ is a complete orthonormal set whenever $\left\{e_{i}\right\}$ is.
8. Show that the set of unitary operators on a Hilbert space $H$, forms a multiplicative group.
9. If $T$ is a linear operator on a Hilbert space $H$, then $T$ is unitary iff adjoint of $T$ exists and $T T^{*}=T^{*} T=I$.
10. If $T$ is self-adjoint, any operator $S$ unitarily equivalent to $T$ is also self-adjoint.
11. Let $T$ be normal and $A$ and $B$ be self-adjoint operators s.t. $T=A+i B$. Then prove that $A B=B A$.

# Unit - 8 <br> Projections on a Hilbert Space and Spectral Theory 

## Structure of the Unit

### 8.1 Objectives

8.2 Introduction

### 8.3 Projections on a Hilbert Space

### 8.3.1 Definition

8.3.2 Important Results

### 8.4 Invariance and Reducilility

### 8.4.1 Definition

### 8.4.2 Properties

8.5 Orthogonal Projection
8.5.1 Definition
8.5.2 Important Result
8.6 Eigenvalues and Eigenvectors

### 8.6.1 Definition of Eigenvalues and Eigenvectors

### 8.6.2 Properties of Eigenvalues and Eigenvectors

8.7 Existence of Eigenvalues
8.8 Spectral Theorem
8.9 Summary
8.10 Answers to SelfLearning Exercise
8.11 Exercises

### 8.1 Objectives

In this unit first we study projection on a Hilbert space $H$ and properties of the projection operator on $H$. We also study spectral theory of operators on finite dimensional Hilbert spaces.

### 8.2 Introduction

The aim of this unit is to study the projection on a Hilbert space. Invariance, reducilility and orthogonal projections will also be studied. Next we shall study to some extent in detail the relation between linear operators on a finite dimensional Hilbert space and matrices as a preliminary step towards the study of spectral theory of operators on finit dimensional Hilbert spaces. After a brief study of the spectrum of an operator and its properties, we shall establish the spectral theorem for normal operators on a finite dimensional Hilbert space and indicate the spectral theorems for self-adjoint, positive and unitary operators.

### 8.3 Projections

We have already defined a projection on a Banach space $B$ and Hilbert space $H$ i.e. it is an idempotent linear operator $P$ on $B$ s.t. it is a continuous linear transformation from $B$ (or $H$ ) into itself with the property $P^{2}=P$. It has also been shown that $B$ (or $H$ ) $=M \oplus N$ where

$$
M=\{P x: x \in B\} \text { and } N=\{x \in B: P x=\mathbf{0}\}
$$

$M$ is called the range and $N$, the null space of $P$.

### 8.3.1 Definition :

Perpendicular Projection: A projection $P$ on a Hilbert space $H$ is known as a perpendicular projection on $H$ if the range $M$ and null space $N$ of $P$ are orthogonal i.e., $M \perp N$. Thus by projection $P$ on $H$ we mean a perpendicular projection on $H$.

### 8.3.2 Important Results :

Thoerem 1: If $P$ is a projection on a Hilbert space $H$ with range $M$ and null space $N$, then $M \perp N$ iff $P$ is self adjoint, and in this case $N=M^{\perp}$.

Proof : By definition we have $P^{2}=P$ and $H=M \oplus N$ Let $M \perp N$. Then we prove that $P$ is self-adjoint. By projection theorem each vector $z \in H$ can be uniquely represented as $z=x+y$, where $x \in M, y \in N$ s.t.

$$
\begin{equation*}
P z=P(x+y)=x \text { and } P y=0 \tag{1}
\end{equation*}
$$

Since $\quad M \perp N$, we have $(x, y)=0$
Using (1), we get

$$
\begin{equation*}
(P z, z)=(x, z)=(x, x+y)=(x, x)+(x, y)=(x, x) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(P^{*} z, z\right)=(z, P z)=(z, x)=(x+y, x)=(x, x)+(y, x)=(x, x) \tag{3}
\end{equation*}
$$

(2) and (3)

$$
\begin{array}{ll}
\Rightarrow & (P z, z)=\left(P^{*} z, z\right) \quad \forall z \in H \\
\Rightarrow & \left(\left(P-P^{*}\right) z, z\right)=0 \quad \forall z \in H \\
\Rightarrow & P-P^{*}=0 \\
\Rightarrow & P^{*}=P \Rightarrow P \text { is self-adjoint. }
\end{array}
$$

Conversly suppose that $P$ is self-adjoint i.e., $P^{*}=P$.
Now, let $x \in M$ and $y \in N$. Then

$$
\begin{aligned}
(x, y) & =(P x, y) \quad(P \text { being projection on } H \text { and } x \in M \Rightarrow P x=x) \\
& =\left(x, P^{*} y\right)=(x, P y)
\end{aligned}
$$

$$
=(x, \mathbf{0})=0 \text { as } y \in N \quad \therefore P y=0
$$

$\therefore \quad(x, y)=0 \Rightarrow M \perp N$
Lastly we prove that $N=M^{\perp}$ where $M \perp N$
For any $x \in N$ and $N \perp M \Rightarrow x \perp M \Rightarrow x \in M^{\perp} \Rightarrow N \subset M^{\perp}$.
Taking $N$ to be proper closed linear subspace of Hilbert space $M^{\perp}$ i.e. $N \neq M^{\perp}$. So $\exists$ a nonzero vector $z_{0} \in M^{\perp}$ s.t. $z_{0} \perp N$. Also $z_{0} \perp M$.
$\therefore \quad z_{0} \perp M$ and $z_{0} \perp N \Rightarrow z_{0} \perp M \oplus N=H \Rightarrow z_{0} \perp H$
$\Rightarrow \quad z_{0}=\mathbf{0}$ since only zero vector is orthogonal to whole space $H$.
This contradicts that $z_{0}$ is a non zero vector. Hence $N$ cannot be proper subset of $M^{\perp}$ and the only possibility is that $N=M^{\perp}$.
Theorem 2: If $P$ is the projection on a closed linear subspace $M$ of a Hilbert space $H$, then
(i) $\quad P$ is the projection on $M$ of $H \Leftrightarrow I-P$ is the projection on $M^{\perp}$
(ii) $\quad x \in M \Leftrightarrow P x=x \Leftrightarrow\|P x\|=\|x\|$

Proof: (i) $P$ is the projection on $H \Leftrightarrow P^{2}=P$ and $P^{*}=P$
Therefore $(I-P)^{*}=I^{*}-P^{*}=I-P$
and $\quad(I-P)^{2}=(I-P)(I-P)=I^{2}-I P-P I+P^{2}=I-P-P+P=I P$
$\Rightarrow \quad(I-P)$ is also a projection on $H$.
Now we prove that if $P$ is defined on $M$, then $(I-P)$ is defined on $M^{\perp}$. For this let $N$ be the range of $(I-P)$. Then

$$
\begin{array}{ll} 
& x \in N \Rightarrow(I-P) x=x=\text { or } x-P x=x \Rightarrow P x=\mathbf{0} \\
\Rightarrow & x \in \text { Null space of } P \Rightarrow x \in M^{\perp} \text { as } M^{\perp} \text { being coincident with null space } \\
\therefore & N \subset M^{\perp}
\end{array}
$$

Also $\quad x \in M^{\perp} \Rightarrow P x=\underline{0} \Rightarrow x-P x=x \Rightarrow(I-P) x=x$

$$
\Rightarrow x \in \operatorname{range} \text { of }(I-P) \Rightarrow x \in N
$$

$$
\begin{equation*}
\therefore \quad M^{\perp} \subset N \tag{6}
\end{equation*}
$$

(5) and (6)

$$
\Rightarrow \quad N=M^{\perp}
$$

$\Rightarrow \quad$ If $P$ is projection on a closed linear subspace $M$ of $H$, then $(I-P)$ is projection on $M^{\perp}$.

Conversly : If $(I-P)$ is a projection on $M^{\perp}$ then $I-(I-P)=P$ is the projection on $\left(M^{\perp}\right)^{\perp}=M^{\perp \perp}=M$, since M is closed.
(ii) If $P x=x$, then $P x$ is the range of P i.e. $x \in$ range of $P$ i.e. $x \in M$.

Conversly, if $x \in M$, then assuming that $P x=y$, we prove that $y=x$.
Now $P x=y \Rightarrow P(P x)=P y \Rightarrow P^{2} x=P y \Rightarrow P x=P y \quad\left(\because P^{2}=P\right)$
$\Rightarrow P(x-y)=\mathbf{0} \Rightarrow(x-y) \in$ null space of P
$\Rightarrow(x-y) \in M^{\perp}$, as $M^{\perp}$ is the null space of P
$\Rightarrow x-y=z($ say $)$, where $z \in M^{\perp}$
Now $y=P x \Rightarrow y \in$ range of $P$ i.e. $M$
Thus $x=y+z$ where $y \in M$ and $z \in M^{\perp}$
Since $x \in M$, we can write $x=x+0$
Since $H=M \oplus M^{\perp}$, we have $z=0$ so that $x=y$
Again If $P x=x \Rightarrow\|P x\|=\|x\|$
Conversly if $\|P x\|=\|x\|$, then we have

$$
\|x\|^{2}=\|P x+(I-P) x\|^{2} \text { where } P x \in M \text { and }(I-P) x \in M^{\perp}
$$

as such $P x$ and $(I-P) x$ are orthogonal vecotrs.
Using Phythagorean theorem, we get

$$
\begin{aligned}
& \|x\|^{2}=\|P x\|^{2}+\|(I-P) x\|^{2} \\
& =\|x\|^{2}+\|(I-P) x\|^{2} \\
& \Rightarrow\|(I-P) x\|^{2}=0 \\
& \Rightarrow x-P x=\mathbf{0} \Rightarrow P x=x
\end{aligned}
$$

Thus $x \in M \Leftrightarrow P x=x \Leftrightarrow\|P x\|=\|x\|$

Theorem 3: If P is a projecton on $a$ Hilbert space H , then prove that
(i) $\quad\|P x\| \leq\|x\| \quad \forall x \in H$
(ii) $\quad\|P\| \leq I$
(iii) P is a positive operator
(iv) $0 \leq P \leq I$

Proof: (i) We have $\|P x\|^{2}+\|(I-P) x\|^{2}=\|x\|^{2}$

$$
\begin{aligned}
& \Rightarrow\|P x\|^{2} \leq\|x\|^{2} \text { as } \Rightarrow\|(I-P) x\|^{2} \geq 0 \\
& \Rightarrow\|P x\| \leq\|x\| \quad \forall x \in H
\end{aligned}
$$

(ii) $\quad$ by (i), $\|P x\| \leq\|x\|, \quad \forall x \in H$

$$
\begin{aligned}
& \Rightarrow \quad \operatorname{Sup}\{\|P x\|:\|x\| \leq \perp\} \leq 1 \quad \forall x \in H \\
& \Rightarrow\|P\| \leq \perp, x \in H \text { being arbitrary }
\end{aligned}
$$

(iii) For any vector $x \in H, \mathrm{P}$ being projection on H i.e. $P^{*}=P, P^{2}=P$ and $P x \in$ range of P so that $P(P x)=P x$

We have

$$
(P x, P)=(P P x, x)=\left(P x, P^{*} x\right)=(P x, P x)=\|P x\|^{2} \geq 0
$$

$\Rightarrow P \geq 0$ i.e. P is a positive operator
(iv) Since P and $I-P$ are projections on H , therefore $P \geq 0$ and $I-P \geq 0$ or $P \geq I$. Thus $0 \leq P \leq I$.

### 8.4 Invariance and Reducibility

8.4.1 Definitions : Let T be a linear operater on a Hilbert space H , then M is invariant under T if $x \in M \Rightarrow T x \in M$ i.e. $T(M) \subseteq M$

Obviously M is invariant under Zero operator and every closed subspace is invariant under identity operater I.

Now M being a closed subspace of H , M itself is a Hilhert space so that T may be regarded as operater on M also.

If $T$ on H induces an operator $T_{M}$ on M and s.t. $T_{M}(x)=T(x) \forall x \in M$, then $T_{M}$ is known as restriction of T on M .
we know that $\mathrm{H}=H=M \oplus M^{\perp}$
where M is a closed linear subspace of Hilbert space H . Then T is said to be reduced by M if both M and $M^{\perp}$ are invasiant under T . We sometimes also say that M reduces T instead of saying that T is reduced by M .

### 8.4.2 Properties

Theorem 4: A closed linear subspace M of a Hilbert space H is invariant under an operater $T \Leftrightarrow M^{\perp}$ is invariant under $T^{*}$.

Proof: Let M be invariant under Ti.e. $x \in M \Rightarrow T x \in M$.
Suppose that $y \in M^{\perp} \Rightarrow y$ is orthogenal to every vector in M
$\Rightarrow y$ is orthogonal to Tx as $T x \in M$ by (7)
$\Rightarrow(T x, y)=0$
$\Rightarrow\left(x, T^{*} y\right)=0, \quad x \in M$
$\Rightarrow T^{*} y$ is orthogenal to every vector $x \in M$
$\Rightarrow T^{*} y \in M^{\perp}$
$\Rightarrow M^{\perp}$ is invariant under $T^{*}$
Convessly, suppose that $M^{\perp}$ be invariant under $T^{*}$.
Since $M^{\perp}$ is a closed linear subspace of $H$ and is invariant under $T^{*}$, therefore by the theorem $M^{\perp}=M$ is invariant under $T^{* *}=T$.

Theorem 5 : A closed linear subspace M of a Hilbert Sapce H reduces an operator $T \Leftrightarrow M$ is invariant under both T and $\mathrm{T}^{*}$.

Proof: M reduces $\mathrm{T} \Rightarrow M$ and $M^{\perp}$ both are invariant under T. But $M^{\perp \perp}=M$ is invariant under $\mathrm{T}^{*}$. Hence M is invariant both under T and $\mathrm{T}^{*}$.

Conversly, If M is invariant under both $T$ and $T^{*}$, then $M$ is invariant under $T$ and $M^{\perp}$ is invariant under $T^{* *}=T$
$\Rightarrow$ Both M and $M^{\perp}$ are invariant under T .
$\Rightarrow \mathrm{M}$ reduces T .
Theorem 6: If $P$ is the projection on a closed linear subspace $M$ of a Hilbert space $H$, then
(i) M is invariant under an operator $\mathrm{T} \Leftrightarrow \mathrm{TP}=\mathrm{PTP}$
(ii) M reduces an operator $\mathrm{T} \Leftrightarrow \mathrm{TP}=\mathrm{PT}$

Proof (i) Let M be invariant under T and x be an arbtrary vector of H . Then $P x \in M$ (range of P )
$\Rightarrow T P x \in M, M$ is invariant under T .
Since $P$ is a projection and $M$ is the range, therefore
$T P x \in M \Rightarrow P$ maps $T P x$ into itself.
Hence $P T P x=T P x \forall x \in H \Rightarrow P T P=T P$
Conversly : Let $\mathrm{PTP}=\mathrm{TP}$

$$
\text { Since } \mathrm{P} \text { is a projection with range } \mathrm{M} \text { and an } x \in M \text {, therefore } P x=x \Rightarrow T P x=T x
$$

Using hypothens we have $P T P x=T P x=T x$
Since P maps elements of M into the same element $P(T P x)=T P x$ means $T P x \in M \Rightarrow T x=M$. Hence $x \in M \Rightarrow T x \in M$, therefore M is invariant under T .
(ii) M reduces $\mathrm{T} \Rightarrow \mathrm{M}$ is invariant under both T and $T^{*}$

$$
\begin{aligned}
& \Rightarrow T P=P T P \text { and } T^{*} P=P T^{*} P \text { by case (i) } \\
& \Rightarrow T P=P T P \text { and }\left(T^{*} P\right)^{*}=\left(P T^{*} P\right)^{*} \\
& \Rightarrow T P=P T P \text { and } P^{*} T^{* *}=P^{*} T^{* *} P^{*} \\
& \Rightarrow T P=P T P \text { and } P T=P T P\left(\because T^{* *}=T \text { and } P^{*}=P\right) \\
& \Rightarrow T P=P T
\end{aligned}
$$

Conversly: Suppose that $T P=P T \Rightarrow P T P=P P T=P^{2} T=P T \quad\left(\because P^{2}=P\right)$
Also $T P P=P T P \Rightarrow T P^{2}=P T P \Rightarrow T P=P T P$
$\because T P=P T \Rightarrow P T P=P T$ and $T P=P T P$
$\Rightarrow M$ reduces T

### 8.5 Orthogeral Projection

8.5.1 Definition : Two perpendicular projections P and Q on a Hilbert space H are known as orthogonal if $\mathrm{PQ}=\mathrm{O}$. In other words P and Q and Q are orthogoral iff their ranges M and N are orthogenal

### 8.5.2 Important Result :

Theorem : If P and Q are projections on closed linear subspaces M and N of a Hilbert space H , then

$$
M \perp N \Leftrightarrow P Q=O \Leftrightarrow Q P=0
$$

Proof: P and Q are projections on $\mathrm{H} \Rightarrow P^{*}=P, Q^{*}=Q$
Also $O^{*}=O$ and $I^{*}=I$.

$$
\therefore P Q=O \Leftrightarrow(P Q)^{*}=O^{*} \Leftrightarrow Q^{*} P^{*}=O^{*} \Leftrightarrow Q P=0
$$

Now we prove that $M \perp N \Leftrightarrow P Q=O$
For any vector $y \in N$ and $M \perp N \Rightarrow y$ is orthogonal to every vector in M

$$
\text { i.e. } y \in N \Rightarrow y \in M^{\perp} \Rightarrow N \subset M^{\perp}
$$

and for any vector $z \in H$ and $Q$ is projection on H

$$
\Rightarrow Q z \in N \text { (the range of } \mathrm{Q} \text { ) whereas } N=M^{\perp}
$$

$$
\begin{aligned}
& \Rightarrow Q z \in M^{\perp} \text { (the null space of } \mathrm{P} \text { ) } \\
& \Rightarrow P(Q z)=\mathbf{0} \Rightarrow P Q z=O \forall z \in H \\
& \Rightarrow P Q=0
\end{aligned}
$$

Conversly : If $\mathrm{PQ}=\mathrm{O}$ and $x \in M, y \in N$, then

$$
\begin{aligned}
& P x=x(\because \mathrm{M} \text { being range of } \mathrm{P}) \text { and } Q y=y \quad(\because \mathrm{~N} \text { is range of } \mathrm{Q}) \\
& \begin{aligned}
\therefore(x, y) & =(P x, Q y)=\left(x, P^{*} Q y\right)=(x, P Q y)\left(\because P^{*}=P\right) \\
& =(x, O y)=(x, \mathbf{0})=0 \text { where } x \in M, y \in N
\end{aligned}
\end{aligned}
$$

$\Rightarrow M \perp N$ i.e. M and N are orthogonal

### 8.6 Eigenvalue and Eigenvector

8.6.1 Definition : Let T be an operator on a Hilbert space H . Then a scalar $\lambda$ is called the eignvalue (or characteristic or proper or latent or spectral value) of T if there exists a non-zero vector $x \in H$ s.t. $T x=\lambda x$

It $\lambda$ is an eigenvalue of T, then the non zero vector $x \in H$ s.t. $T x=\lambda x$ is called the eignvector (characteristic or proper or latent or spectral vector) ofT.

Each eigenvalue has one or more eigenvector whereas each eigenvector corresponds one eigenvalue. If H has no non-zero vectors, then T cannot have any eigenvector and hence the whole theory reduces to triviality. We therefore develop the spectral theory on the assumption that $\mathrm{H} \neq\{0\}$.

The set of all eigenvalues of T is known as the spetrum of T and denoted by $\sigma(T)$.

### 8.6.2 Properties of eigenvalue and eigenvector

From the definition of eigenvalue and eigenvector, we have the following properties:
Theorem 8 : If x is an eigenvector of $T$ corresponding to eigenvalue $\lambda$, and $\alpha$ is a non-zero scalar, then $\alpha$ is also an eigenvector of T corresponding to same eigenvalue.

Proof: Since $x$ is an eigenvector of T corresponding to eigenvalue $\lambda$ therefore $x \neq 0$ and $T x=\lambda x$.
If $\alpha \neq 0$ then $\alpha x \neq 0$. Also $\mathrm{T}(\alpha x)=\alpha T x=\alpha \lambda x=\lambda(\alpha x)$
Hence $\alpha x$ is also eigenvector of T coresponding to same eigenvalue $\lambda$.
This property tells us that corresponding to a single eigenvalue there may correspond more than one eigenvector.

Theorem 9: If $\boldsymbol{x}$ is an eigenvector of $T$, then $\boldsymbol{x}$ cannot correspond more than one eigenvalue of T.

Proof: If possible, let $\lambda_{1}$ and $\lambda_{2}$ he two distinct eigenvalues of T for eigenvector $x$. Then $T x=\lambda_{1} x$ and $T x=\lambda_{2} x$. Hence $\lambda_{1} x=\lambda_{2} x \Rightarrow\left(\lambda_{1}-\lambda_{2}\right) x=0 \Rightarrow \lambda_{1}-\lambda_{2}=0(\because x \neq 0) \Rightarrow \lambda_{1}=\lambda_{2}$.

Theorem 10: Let $\lambda$ be an eigenvalue of an operator T on a Hilbert space. If $M_{\lambda}$ is the set consisting of all eigenvectors of T corresponding to the eigenvalue $\lambda$ and the zero vector 0 , then $M_{\lambda}$ is a non-zero closed linear subspace of H invariant under T .

Proof: By def. $x \in M_{\lambda}$ iff $T_{x}=\lambda_{\underline{\underline{x}}}$
By hypothens $\mathbf{0} \in M_{\lambda}$ and $\mathbf{0}$ vector also satisfies (8).
Therefore

$$
\begin{aligned}
M_{\lambda}= & \{x \in H: T x=\lambda x\} \\
& =\{x \in H:(T-\lambda I) x=0\}
\end{aligned}
$$

Again if $x, y \in M_{\lambda}$ and $\alpha, \beta$ are scalars, then

$$
T x=\lambda x \text { and } T y=\lambda y . \text { We have }
$$

$$
\begin{array}{r}
T(\alpha x+\beta y)=T(\alpha x)+T y(\beta y) \\
=\alpha T x+\beta T y \\
=\alpha \lambda x+\beta \lambda y \\
=\lambda(\alpha x+\beta y)
\end{array}
$$

$\Rightarrow \alpha x+\beta y \in M_{\lambda}$
$\Rightarrow M_{\lambda}$ is a linear subspace of H .
Also T and I are continuous, $M_{\lambda}$ is the null space of the continuus transformation $T-\lambda I$. Hence $M_{\lambda}$ is closed.

Further let $x \in M_{\lambda}$
Since $M_{\lambda}$ is a linear subspace of $H$, therefore $x \in M_{\lambda} \Rightarrow \lambda x=T x \in M_{\lambda} \Rightarrow M_{\lambda}$ is invariant under T.

The closed subspace $M_{\lambda}$ is called the eignspace of T corresponding to the eigenvalue $\lambda$.
Theorem 11: If T is a normal operator on a Hilert space $H$, then $\boldsymbol{x}$ is an eigenvector of $T$ with eigenvalue $\lambda$ iff $x$ is an eigenvector of $\mathrm{T}^{*}$ with $\bar{\lambda}$ as eigenvalue.

Proof: Let T is a normal operator on H . Then $\mathrm{TT}^{*}=\mathrm{T}^{*} \mathrm{~T}$. Now $T-\lambda I$ is also normal, therefore

$$
\|(T-\lambda I) x\|=\|(T-\lambda I) * x\| \forall x \in H
$$

Also adjoint operation is conjugate linear, therefore

$$
(T-\lambda I)^{*}=T^{*}-\bar{\lambda} I^{*}=T^{*}-\bar{\lambda} I
$$

From the above two relations we get

$$
\|T x-\lambda x\|=\left\|T^{*} x-\bar{\lambda} x\right\| \forall x \in H
$$

Hence $T x-\lambda x=0$ iff $T^{*} x-\bar{\lambda} x=0$
Thus if $x$ is an eigenvector of Twith eigenvalue $\lambda$ iff $\lambda$ is an eigenvector of $T^{*}$ with eigenvalue $\bar{\lambda}$. Theorem 12: IfT is a normal operator on a Hibert space $H$ then each eigenspace of $T$ reduces $T$.

Proof: Let $M_{\lambda}$ be the eigenspace of T corresponding to the eigenvalue $\lambda$. To prove that $M_{\lambda}$ reduces T. We have to show that $M_{\lambda}$ is invariant under both T and $\mathrm{T}^{*}$.

We know that $M_{\lambda}$ is invariant under T (see Theorem 10). Let $x \in M_{\lambda}$. Then $T x=\lambda x \Rightarrow T^{*} x=\bar{\lambda} x$. Since $M_{\lambda}$ is a subspace, $\bar{\lambda} x \in M_{\lambda}$ whenever $x \in M_{\lambda}$. Hence $x \in M_{\lambda} \Rightarrow T^{*} x=\bar{\lambda} x \in M_{\lambda}$. Hence $M_{\lambda}$ is invariant under $T^{*}$. Thus $M_{\lambda}$ reduces T.

Theorem 13 : If T is normal operator on a Hilbert space $H$, then eigenspaces of $T$ are pairwise orthogonal.
Proof: Let $M_{\hat{i}}$ and $M_{j}(i \neq j)$ be eigenspaces of an operator T on Hilbert space H corresponding to distinct eigenvalues $\lambda_{i}$ and $\lambda_{j}$. Let $x_{i} \in M_{i}$ and $x_{j} \in M_{j}$ so that

$$
T x_{i}=\lambda_{i} x_{i} \text { and } T x_{j}=\lambda_{j} x_{j}
$$

Now $\lambda_{i}\left(x_{i}, x_{j}\right)=\left(\lambda_{i} x_{i}, x_{j}\right)$

$$
=\left(T x_{i}, x_{j}\right)
$$

$$
=\left(x_{i}, T^{*} x_{j}\right)
$$

$$
=\left(x_{i}, \bar{\lambda}_{j} x_{j}\right)
$$

$$
=\lambda_{j}\left(x_{i}, x_{j}\right)
$$

$\Rightarrow\left(\lambda_{i}-\lambda_{j}\right)\left(x_{i}, x_{j}\right)=0$
$\Rightarrow\left(x_{i}, x_{j}\right)=0 \quad \because \lambda_{i} \neq \lambda_{j}$
$\Rightarrow x_{i} \perp x_{j} \quad \forall x_{i} \in M_{i}$ and $x_{j} \in \lambda_{j}$
$\Rightarrow M_{i} \perp M_{j} \quad(i$ and $j$ are arbitrary $)$

### 8.7 Existence of Eigenvalues

An immediate question that arises before us is :
Does an arbitrary operator T on a Hilbert space H necessarily have an eigenvalue? We shall give an example to show that it is not necessary for an arbitrary operator T on a Hilbert Space H to possess an
eigenvalue.
Consider the Hilbert space $l_{2}$ and the operator T or $l_{2}$ defined by $T\left\{x_{1}, x_{2}, \ldots\right\}=\left\{0, x_{1}, x_{2}, \ldots\right\}$
Let $\lambda$ be an eigenvalue of T. Then $\exists$ a non-zero vector $y=\left\{y_{1}, y_{2}, y_{3}, \ldots.\right\}$ in $l_{2}$ s.t. Ty $=\lambda y$.
Now $\quad T y=\lambda y \Rightarrow T\left\{y_{1}, y_{2}, y_{3}, \ldots.\right\}=\lambda\left\{y_{1}, y_{2}, y_{3}, \ldots.\right\}$
$\Rightarrow\left\{0, y_{1}, y_{2}, \ldots.\right\}=\left\{\lambda y_{1}, \lambda y_{2}, \lambda y_{3}, \ldots.\right\}$
$\Rightarrow \lambda y_{1}=0, \lambda y_{2}=y_{1}, \ldots$
Now $y$ is a non-zero vector $\Rightarrow y_{1} \neq 0$. Therefore $\lambda y_{1}=0 \Rightarrow \lambda=0$. Then $\lambda y_{2}=y_{1} \Rightarrow y_{1}=0$ and this contradicts the fact that y is a non-zero vector. Thesefore T cannot have an eigenvalue.

But if the Hilbert space H is finite dimensional then T on H will have eigenvalues. It should be recalled that if H is finite dimensional, then every linear transformation on H is continuous and is therefore an operator H . So in this case the set $\beta(H)$ is the collection of all linear transformation on H .

Theorem 14: An operator $T$ on a finite-dimensional Hilbert space $H$ is singular $\Leftrightarrow$ there exists a nonzero vector $\boldsymbol{x}$ in H s.t. $T x=0$.

Proof : Let $\exists$ a non-zero vector $x$ on H s.t. $T x=\mathbf{0}$. We have $T x=T .0 \Rightarrow x=0$ but $x \neq 0$ by our assumption i.e. $x$ and 0 are distinct vectors in H so that T is not one-one and hence T is not non-singular i.e. $T$ is singular.

Conversly : Let T be singular. To Show that $\exists$ a non-zero vector $x \in H$ s.t. $T x=0$. Now $T x=\mathbf{0}$ $\Rightarrow x=\mathbf{0} \Rightarrow T$ is one one, since

$$
T y=T z \Rightarrow T(y-z)=0 \Rightarrow y-z=0 \Rightarrow y=z .
$$

Since H is finite dimensional, therefore T is one-one implies T is onto and so T is non-singular. This contradicts the hypothesis that T is singular. Hence there must exist a non-zero vector $x$ s.t. $T x=0$.

Theorems 15 : If T is an arbitrary operator on a finite dimentional Hilbert space H , then the eigenvalues of T constitute a non empty finite subset of the complex plane. Furthermore, the number of points in this does not exceed the dimension $n$ of the space H .

Proof: $\lambda$ is an eigenvalue of $T \Leftrightarrow \exists$ a non-zero vector $x$ s.t. $T x=\lambda x$

$$
\begin{array}{ll}
\Leftrightarrow & \exists \text { a non-zero vector } x \text { s.t. }(T-\lambda I) x=\mathbf{0} \\
\Leftrightarrow & \text { operator } T-\lambda I \text { is singular } \\
\Rightarrow & \operatorname{det}(T-\lambda I)=0 \text { i.e. }|T-\lambda I|=0
\end{array}
$$

If $B$ be any ordered basis for $H$, then

$$
\begin{array}{r}
\operatorname{det}(T-\lambda I)=\operatorname{det}\left(|T-\lambda I|_{B}\right)=\operatorname{det}\left([T]_{B}-\lambda[I]_{B}\right) \\
=\operatorname{det}\left([T]_{B}-\lambda\left[\delta_{i j}\right]\right) \text { where } \delta_{i j}=\left\{\begin{array}{l}
0, i \neq j \\
1, i=j
\end{array}\right.
\end{array}
$$

$$
\begin{align*}
& =\operatorname{det}\left(\left[a_{i j}\right]-\lambda\left[\delta_{i j}\right]\right)\left(\text { on setting } T=\left[a_{i j}\right]_{m \times n}\right) \\
\therefore & \operatorname{det}(T-\lambda I)=0 \Rightarrow\left|\begin{array}{lllc}
a_{11}-\lambda & a_{12} & \ldots . . & a_{1 n} \\
a_{21} & a_{22}-\lambda & \ldots . . & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \ldots . . & a_{n n}-\lambda
\end{array}\right|=0 \tag{9}
\end{align*}
$$

L.H.S of (9) when expanded, yields a polynomial equation in $\lambda$ ofdegree $n$, with complex coefficients having complex roots. But every operator T on H has a eigenvalue and (9) has exactly n roots in complex plane, some of which may be repeated, therefore has distinct eigen values $\leq n$ i.e not exceeding $n$, the dimension of H .

### 8.8 Spectral Theorem

We shall require the following result to prove an important theorem known as spectral theorem:
Theorem 16: If $P_{1}, P_{2}, \ldots, P_{n}$ are the projections on closed linear subspaces $M_{1}, M_{2}, \ldots, M_{n}$ of a Hilbert space H , then $P=P_{1}+P_{2}+\ldots+P_{n}$ is a projection $\Leftrightarrow$ the $P_{\hat{i}}$ 's are pairwise orthogenal and then P is the projection on $M=M_{1}+M_{2}+\ldots .+M_{n}$.

Proof : $P_{i}$ 's are projections on $H \Rightarrow P_{i}^{2}=P$ and $P_{i}^{*}=P, i=1,2, n$ and $P_{i} P_{j}=0$ for $i \neq j$.
Now $P=P_{1}+P_{2}+\ldots \ldots+P_{n} \Rightarrow P^{*}=P_{1}^{*}+P_{2}^{*}+\ldots \ldots+P_{n}^{*}$

$$
=P_{1}+P_{2}+\ldots+P_{n}=P
$$

$\Rightarrow P$ is self adjoint.
Also $P^{2}=P P=\left(P_{1}+P_{2}+\ldots .+P_{n}\right)\left(P_{1}+P_{2}+\ldots+P_{n}\right)$

$$
\begin{array}{ll}
=P_{1}^{2}+P_{2}^{2}+\ldots .+P_{n}^{2} & \because P_{i} P_{j}=0 \text { for } i \neq j \\
=P_{1}+P_{2}+\ldots+P_{n}=P
\end{array}
$$

Hence is a projection on H .
Conversly : If $P_{i}{ }^{\prime} s$ are projections on Hi.e. P is a projection on H or $P^{2}=P$ and $P^{*}=P$. We prove that $P_{i} P_{j}=0$ for $i \neq j$.

For any vector $z \in H$ we have

$$
\begin{equation*}
(P z, z)=(P P z, z)=\left(P z, P^{*} z\right)=(P z, P z)=\|P z\|^{2} \tag{10}
\end{equation*}
$$

If for any vector $x \in M_{i}$ (range of $P_{i}$ ) so that $P_{i} x=x$,
then $\|x\|^{2}=\left\|P_{i} x\right\|^{2} \leq \sum_{\mathrm{l}=1}^{n}\left\|P_{i} x\right\|^{2}=\left\|P_{1} x\right\|^{2}+\ldots+\left\|P_{n} x\right\|^{2}$

$$
\begin{aligned}
& \leq \sum_{1=1}^{n}\left(P_{i} x, x\right) \\
& \leq\left(P_{1} x, x\right)+\left(P_{2} x, x\right)+\ldots+\left(P_{n} x, x\right) \\
& \leq\left(\left(P_{1}+P_{2}+\ldots \ldots+P_{n}\right) x, x\right)=(P x, x)=\|P x\|^{2} \\
& \leq\|x\|^{2}
\end{aligned}
$$

So $\|x\|^{2} \leq\|P x\|^{2}$ and $\|P x\|^{2} \leq\|x\|^{2}$
$\Rightarrow$ the sign of equality holds throughout the above computation, thereby giving that
$\left\|P_{i} x\right\|^{2}=\sum_{i=1}^{n}\left\|P_{i} x\right\|^{2}$ and $\left\|P_{i} x\right\|^{2}=0$ for $i \neq j$
$\Rightarrow\left\|P_{i} x\right\|=0$ for $i \neq j$
$\Rightarrow P_{i} x=0$ for $i \neq j$
$\Rightarrow x \in$ null sapce a $P_{i}(i \neq j)$ whose range is $M_{\hat{i}}$ and null space is $M_{i}^{\perp}$.
$\Rightarrow x \in M_{i}^{\perp}$ for $i \neq j$ with $x \in M_{i}$
$\Rightarrow x$ is orthogonal to the range $M_{i}$ for every $P_{i}$ with $i \neq j$
i.e. $x \in M_{j} \Rightarrow M_{j} \perp M_{i} \forall i \neq j$
$\Rightarrow$ every vector in range $P_{j}(j=1, \ldots, n)$ is orthogornal to the range $M_{i}$ for every $P_{i}$ with $i \neq j$
$\Rightarrow$ range of $P_{j}$ is orthogonal to the range of every $P_{i}$ with $i \neq j$.
Lastly we show that P is the projection on $M=M_{1}+M_{2}+\ldots .+M_{n}$. It will be so if the range of P say $R(P)=M$

Any $x \in R(P) \Rightarrow P x=x$

$$
\begin{aligned}
& \Rightarrow\left(P_{1}+P_{2}+\ldots .+P_{n}\right) x=x \\
& \Rightarrow P_{1} x+P_{2} x+\ldots+P_{n} x=x
\end{aligned}
$$

where $P_{1} x \in M_{1}, P_{2}(x) \in M_{2}, \ldots, P_{n}(x) \in M_{n}$
$\Rightarrow x \in M_{1}+M_{2}+\ldots .+M_{n}=M$
$\therefore R(P) \subset M$
Also an $x \in M \Rightarrow x_{i} \in M_{i}$ for $1 \leq i \leq n$ with $x=x_{1}+x_{2}+\ldots+x_{n}$ and $M=M_{1}+M_{2}+\ldots+M_{n}$.

$$
\begin{aligned}
& \Rightarrow\left\|P x_{i}\right\|^{2}=\left\|x_{i}\right\|^{2} \Rightarrow\left\|P x_{i}\right\|=\left\|x_{i}\right\| \\
& \Rightarrow P x_{i}=x_{i} \Rightarrow x_{i} \in R(P) \forall i \\
& \Rightarrow x_{1}+x_{2}+\ldots . .+x_{n} \Rightarrow x \in R(P) \text { as } R(P) \text { is a linear subspace of } \mathrm{H} \\
& \therefore M \subset R(P)
\end{aligned}
$$

Hence $M=R(P) \Rightarrow P$ is a projection on M .

## Statement of spectral Theorem :

Let T be an operator on a finite dimensional Hilbert space H with $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ as the distinct eigenvalues of T and with $M_{1}, M_{2}, \ldots, M_{n}$ be their corresponding eigenspaces. If $P_{1}, P_{2}, \ldots, P_{n}$ be the projections on these eigenspace, then following statements are equiralent:
(i) The $M_{i}$ 's are pairwise orthogonal and span H .
(ii) The $P_{i}^{\prime} s$ are pairwise orthogonal and $P_{1}+P_{2}+\ldots+P_{n}=I$ and

$$
T=\lambda_{1} P_{1}+\lambda_{2} P_{2}+\ldots . .+\lambda_{m} P_{m}
$$

(iii) $\quad T$ is a normal operator on H .

Proof: (i) $\Rightarrow$ (ii) : Since $M_{i}^{\prime} s$ are pairwise orthogornal and span H , therefore each vector $x \in H$ is uniquely expressible as $x=x_{1}+x_{2}+\ldots .+x_{m}, x_{i} \in M_{i} \forall i=1,2, \ldots, m$.
$M_{i}{ }^{\prime} s$ are pairwise orthogonal and $P_{i}{ }^{\prime} s$ are projection on $M_{i}{ }^{\prime} s$
$\Rightarrow P_{i}^{\prime} s$ are pairwise orthogonal by Theorem 16
$\Rightarrow \quad P_{i} P_{j}=0, i \neq j$
For any vector $x \in H$,(11) yields
$P_{i} x=P_{i}\left(x_{1}+x_{2}+\ldots+x_{n}\right)=P_{i} x_{1}+P_{i} x_{2}+\ldots .+P_{i} x_{n}$
$M_{i}$ being range of $P_{i}$ and $x_{i} \in M_{i} \Rightarrow P_{i} x_{i}=x_{i}$.
If $j \neq i$ and $M_{j} \perp M_{i}$ for $j \neq i$
$\Rightarrow x_{j} \in M_{i}^{\perp}$ for $j \neq i$
$\Rightarrow P_{i} x_{j}=0, M_{i}^{\perp}$ being null space of $P_{i}$.
So $P_{i} x_{i}$ and $P_{i} x_{j}=0 \Rightarrow P_{i} x=x_{i} \forall i=1,2, \ldots, m$
Now $\forall x \in H, I x=x=x_{1}+x_{2}, \ldots+x_{m}$

$$
=P_{1} x+P_{2} x+\ldots+P_{m} x
$$

$$
\begin{align*}
& \quad=\left(P_{1}+P_{2}+\ldots+P_{m}\right) x \\
& \Rightarrow I=P_{1}+P_{2}+\ldots+P_{m}=\sum_{i=1}^{n} P_{i} \tag{14}
\end{align*}
$$

Also $\forall x \in H, T x=T\left(x_{1}+x_{2}+\ldots . x_{m}\right)$

$$
\begin{align*}
= & T x_{1}+T x_{2}+\ldots .+T x_{m} \\
= & \lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots+\lambda_{m} x_{m} \\
& \quad \text { as } x_{i} \in M_{i} \Rightarrow T x_{i}=\lambda_{i} x_{i} \\
& =\lambda_{1} P_{1} x+\lambda_{2} P_{2} x+\ldots .+\lambda_{m} P_{m} x \\
& =\left(\lambda_{1} P_{1}+\lambda_{2} P_{2}+\ldots .+\lambda_{m} P_{m}\right) x \\
\Rightarrow T= & \lambda_{1} P_{1}+\lambda_{2} P_{2}+\ldots .+\lambda_{m} P_{m}=\sum_{i=1}^{m} \lambda_{i} P_{i} \tag{15}
\end{align*}
$$

The above expression with (14) is called spectral resolution of T.
$(i \boldsymbol{i i}) \Rightarrow(i \boldsymbol{i i})$ : Since each $P_{i}$ being a projection, we have $P_{i}^{*}=P_{i}$ and $P_{i}^{2}=P_{i}, P_{i}^{\prime} s$ are pairwise orthogenal and $i \neq j \Rightarrow P_{i} P_{j}=0$ and given that

$$
\begin{align*}
& T=\sum_{i=1}^{m} \lambda_{i} P_{i} \\
& \therefore T^{*}=\left(\lambda_{1} P_{1}+\lambda_{2} P_{2}+\ldots+\lambda_{m} P_{m}\right)^{*} \\
& =\bar{\lambda}_{1} P_{1}^{*}+\bar{\lambda}_{2} P_{2}^{*}+\ldots .+\bar{\lambda}_{m} P_{m}^{*} \\
& =\bar{\lambda}_{1} P_{1}+\bar{\lambda}_{2} P_{2}+\ldots .+\bar{\lambda}_{m} P_{m} \tag{16}
\end{align*}
$$

Therefore $T T^{*}=\left|\lambda_{1}\right|^{2} P_{1}^{2}+\left|\lambda_{2}\right|^{2} P_{2}^{2}+\ldots+\left|\lambda_{m}\right|^{2} P_{m}^{2}$ as $P_{i} P_{j}=0$ for $i \neq j$

$$
=\left|\lambda_{1}\right|^{2} P_{1}+\left|\lambda_{2}\right|^{2} P_{2}+\ldots+\left|\lambda_{m}\right|^{2} P_{m}
$$

Similary $T^{*} T=\left|\lambda_{1}\right|^{2} P_{1}+\left|\lambda_{2}\right|^{2} P_{2}+\ldots+\left|\lambda_{m}{ }^{2}\right| P_{m}$
(16) and (17) $\Rightarrow T T^{*}=T^{*} T \Rightarrow T$ is normal
$(i \boldsymbol{i i}) \Rightarrow(\boldsymbol{i})$ : Let T be normal. We prove that $M_{i}{ }^{\prime} s$ are pairwise orthogenal which is true by Theorem 13 as $M_{i}{ }^{\prime} s$ are eigenspaces of T. Again by Theorem 16, $M_{i}{ }^{\prime} s$ being pairwise orthogonal and $P_{i}^{\prime} s$ are projections on $M_{i}{ }^{\prime} s, P_{i}{ }^{\prime} s$ are pairwise othogenal. Theorem 16 also gives $M=M_{1}+M_{2}+\ldots \ldots+M_{m} . \mathrm{M}$ being a closed linear subspace of H , then its associate projection $P=P_{1}+P_{2}+\ldots+P_{m}$.

Also T is normal on $H \Rightarrow$ each $M_{i}$ of T reduces T and $P_{i}$ being orthogonal projection on closed linear subspace $M_{i}$ of $\mathrm{H}, M_{i}$ reduces T means $P_{i} T=T P_{i}$

$$
\begin{aligned}
\therefore \quad T P & =T\left(P_{1}+P_{2}+\ldots .+P_{m}\right) \\
& =T P_{1}+T P_{2}+\ldots+T P_{m} \\
& =P_{1} T+P_{2} T+\ldots+P_{m} T \\
& =\left(P_{1}+P_{2}+\ldots+P_{m}\right) T=P T
\end{aligned}
$$

Hence $T P=P T$ and P is projection on $M \Rightarrow M$ reduces T and so $M^{\perp}$ is invariant under $T \Rightarrow M^{\perp} \neq\{\underline{0}\}$ and all eigenvectors of T being constrained in M , the restriction T to $M^{\perp}$ say that W is an operator on a non-trivial finite dimensional Hilbert space $M^{\perp}$ and $W x=T x \quad \forall x \in M^{\perp}$.

Now $x$ being an eigenvector for $W$ corresponding to the eigenvalue $\lambda$, we have $x \in M^{\perp}$ and $W x=\lambda x$.

Thus $W x=T x$ and $W x=\lambda x \Rightarrow T x=\lambda x \Rightarrow x$ is also an eigenvector forT. But T has no eigenvector in $M^{\perp}$ since all the eigenvectors for T are in M with $M \cap M^{\perp}=\{\mathbf{0}\}$, therefore W is an operater on a finite dirnrensional Hilbert space $M^{\perp}$, having no eigenvecter and no eigenvalue, therefore $M^{\perp}=\{\boldsymbol{0}\}$ thereby contradicting the hypothesis $M^{\perp} \neq\{\mathbf{0}\}$ in which case every operater on a non-zero finite dimensional Hilbert space would have an eigenvalue.

Consequently, $M^{\perp}=\{\mathbf{0}\} \Rightarrow M=H$

$$
\begin{aligned}
& \Rightarrow M_{1}+M_{2}+\ldots . .+M_{m}=H \\
& \Rightarrow M_{i}^{\prime} s \text { span } \mathrm{H} .
\end{aligned}
$$

## Self Learning Exercise

In the following questions write T for true and F for false statement :

1. If P is a profection on a Hilbert space H , then P is a positive operator $(\mathrm{T} / \mathrm{F} /)$
$2 \quad .\|P x\| \leq\|x\| \forall x \in H$
2. If $x$ is an eigenvector of $T$, then $x$ corresponds more than one eigenvalue of $T$. (T/F)
3. If T is a normal vector on a Hilbert space H , then each eigenspace of T reduces T. (T/F/)
4. An arbitrary operator $T$ on a Hilbert space $H$ possesses necessarily an eigenvalue (T/F)
5. If P be a projection on a closed linear subspace M of a Hilbert space H then $I-P$ is the projection on $M^{\perp}(\mathrm{T} / \mathrm{F})$
6. Let $P$ be a projection on a closed linear subspace $M$ of a Hilbert space $H$, then

$$
x \in M \Leftrightarrow\|P x\|=\ldots .
$$

8. Let P be a projection on a Hilbert space H , then
(a) $\quad\|P\| \leq \ldots$
(b) $\quad \ldots \leq\|P\| \leq \ldots$
9. If a closed linear subspace M of the Hilbert space H reduces an operator $\mathrm{T} \Leftrightarrow M_{i}{ }^{\prime} s$ invariant under .... and ....
10. If T is a normal operator on a Hilbert space H then eigenspaces of T are pairwise....

### 8.9 Summary

In this unit you studied the projection on a Hilbert space, invariance and reducilibilty of an operator on a Hilbert space. Spectral theory in Hilbert space was also discussed.

### 8.10 Answers to Self-Learning Exercise

1. T
2. T
3. F
4. T
5. F
6. T
7. $\|x\|$
8. (a)I
(b) $O$ and $I$
9. $T$ and $T^{*}$ 10. Orthognal

### 8.11 Exercises

1. Write a short note on Projection on a Hilbert space
2. Define orthogenal Porjection, reducibility and Invariance of an operator on a Hilbert space.
3. If P and Q are projections on closed linear subspaces M and N of a Hilbert space H , then prove that PQ is a projection iff $\mathrm{PQ}=\mathrm{Q}$. Also show that PQ is a projection on $M \cap N$.
4. If P and Q are projections on closed linear subspaces M and N of a Hilbert space H , then prove that following statements are equivalent
(i) $P \leq Q$
(ii) $\quad\|P x\| \leq\|Q x\| \forall x$
(iii) $\quad M \subseteq N$
(iv) $\quad Q P=P$
(v) $\quad P Q=P$
5. Show by an example that it is not necessary for an arbitrary operator on a Hilbert space H to possess an eigenvalue
6. Define spectral resolution for an operator on a Hilbert space and prove that spectral resolution of a normal operater on a finite dimensional non-zero Hilbert space is unique.
7. If $M_{i}^{\prime} s$ are eigenspaces for a normal operator T on a Hilbert space H , then prove that $M_{i}{ }^{\prime} s$ span $H$.

# Unit -9 <br> The Derivative 

## Structure of the Unit

9.0 Objectives
9.1 Introduction
9.2 Derivative
9.3 Directional Derivative
9.4 Mean Value Theorem and its Applications
9.5 Summary
9.6 Answers to Self Learning Exercise

### 9.7 Exercises

### 9.0 Objectives

This unit introduces an important concept of derivative of functions in abstract-spaces, particularly in Banach sapces. We are already know the notion of derivative of a real valued function. Now we need to modify this notion of derivative of functions from Banach spaces to Banach spaces.

### 9.1 Introduction

A real valued function $f$ on $R$ has a derivative $D f(a)$ or $f^{\prime}(a)$ at a point $a \in R$ if and only if for each $\in>0$ there exists a $\delta>0$ such that

$$
\left|\frac{f(x)-f(a)}{x-a}-f^{\prime}(a)\right|<\in \text { whenever } 0<|x-a|<\delta
$$

Frechet generalized this concept of derivative of a mapping $f$ on a normed linear space $N$ into a normed linear space $M$. The derivative of $f$ at a point $a \in N$ exists and it is a linear transformation $g$ of $N$ into $M$ ifit satisfies the inequality, for $\in>0$,

$$
\|f(x)-f(a)-g(x-a)\| \leq \in\|x-a\|,
$$

whenever $\|x-a\| \leq \delta$.

### 9.2 Derivative

Definition : Let $X$ and $Y$ be any two Banach spaces and $V$ an open subset in $X$, then two functions $f_{1}: V \rightarrow Y$ and $f_{2}: V \rightarrow X$ are said to be tangential to each other at a point $v \in V$ if, we have

$$
\lim _{\substack{x \rightarrow v \\ x \neq v}} \frac{\left\|f_{1}(x)-f_{2}(x)\right\|}{\|x-v\|}=0
$$

which follows that

$$
f_{1}(v)=f_{2}(v)
$$

If $f_{1}, f_{2}$ are tangential at $v$ and $f_{2}, f_{3}$ are also tangential at $v$, then $f_{1}, f_{3}$ are tangential at $v$, since we have the inequality,

$$
\left\|f_{1}(x)-f_{3}(x)\right\| \leq\left\|f_{1}(x)-f_{2}(x)\right\|+\left\|f_{2}(x)-f_{3}(x)\right\|
$$

Hence this relation is an equivalence relation.
Theorem 1: Let $X$ and $Y$ be any two Banach spaces over the same filed $K$. In the set of all functions tangential to a function $f$ at $v \in V$, there is at most one function $\phi: X \rightarrow Y$, of the form $\phi(x)=f(v)+g(x-v)$, where $g: X \rightarrow Y$ is linear, where V is an non-empty open subset of $X$.

Proof: Suppose there are two functions $\phi$ and $\psi$ from $X$ into $Y$ given by

$$
\phi(x)=f(v)+g(x-v) \text { and } \psi(x)=f(v)+g_{1}(x-v)
$$

Assume $h(x)=g(x)-g_{1}(x)$,
then clearly $h$ is linear and

$$
\lim _{\substack{x \rightarrow 0 \\ x \neq 0}} \frac{\|h(x)\|}{\|x\|}=0
$$

Thus for given $\in>0$ there exists $a \delta>0$ such that

$$
\|h(x)\| \leq \in\|x\| \text { whenever }\|x\| \leq \delta
$$

But $\quad \in>0$ is an arbitraril $y$ small so that

$$
\begin{aligned}
& h(x)=0 \text { for any } x . \\
\Rightarrow \quad & g=g_{1}
\end{aligned}
$$

Hence $\phi=\psi$

## Derivative of a Map :

Definition : Let $X$ and $Y$ be Banach spaces and $V$ be a non-empty open subset of $X$. A continuous mapping $f: V \rightarrow Y$ is said to be differentiable at the point $v \in V$ if there exists a linear mapping $g: X \rightarrow Y$ such that the mapping $x \rightarrow f(x)-f(v)$ and $x \rightarrow g(x-v)$ are tangential at the point $v$, that is

$$
\begin{equation*}
\lim _{\substack{x \rightarrow v \\ x \neq v}} \frac{\|f(x)-f(v)-g(x-v)\|}{\|x-v\|}=0 \tag{1}
\end{equation*}
$$

Let $x=v+h \in V$, we assume

$$
n(h)=f(v+h)-f(v)-g(h) \Rightarrow f(v+h)=f(v)+g(h)+n(h)
$$

where from equation (1), we have

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\|n(h)\|}{\|h\|}=0 \tag{3}
\end{equation*}
$$

$n$ being a function from $N \rightarrow Y$, where $N$ is a neighbourhood of $0 \in X$, such that $N+v \subset V$. A function $f: V \rightarrow Y$ is said to be differentiable in $V$ if $f$ is differentiable at each point of $V$.

If $f$ is differentiable in $V$, then for each point $v \in V, D f(v) \in L(x, y)$, which is the space of all linear map from $X$ into $Y$.

Example 1: The derivative of the constant function $f: V \rightarrow Y$ is the zero linear map, because

$$
\|f(x)-f(v)-g(x-v)\|=0 \text { for any } v, x \in V \text {, if } g \text { is the zero map of } L(x, y)
$$

Example2 : The derivative of a continuous linear mapping $f: V \rightarrow Y$ is the mapping $f$ itself, because

$$
\begin{aligned}
\|f(x)-f(v)-f(x-v)\| & =\|f(x)-f(v)-f(x)+f(v)\| \\
& =0, \quad \forall x, v \in V
\end{aligned}
$$

Theorem 2: Let $X$ and $Y$ be Banach spaces and $V$ be the non-empty open subset of $X$. Suppose that $f: V \rightarrow Y$ and $g: V \rightarrow Y$ be differentiable in $V$ and $a$ be any scalar in $K$. Then the function $(f+g): V \rightarrow Y$ and $\alpha f: V \rightarrow Y$ defined by a $f(x)=a f(x),(f+g)(x)=f(x)+g(x)$, are differentiable in $V$ and for all $v \in V, D(a f)(v)=a D f(v), D(f+g)(v)=D f(v)+D g(v)$

Let us prove, $D(f+g)(v)=D f(v)+D g(v)$
Proof: Since $f$ and $g$ are differentiable at $v \in V$, so that

$$
\begin{aligned}
& \quad \lim _{\substack{x \rightarrow v \\
x \neq v}} \frac{\|f(x)-f(v)-D f(v)(x-v)\|}{\|x-v\|}=0 \\
& \text { and } \quad \lim _{\substack{x \rightarrow v \\
x \neq v}} \frac{\|g(x)-g(v)-D g(v)(x-v)\|}{\|x-v\|}=0
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \lim _{\substack{x \rightarrow v \\
x \neq v}} \frac{\|(f+g)(x)-(f+g)(v)-(D f(v)+D g(v))(x-v)\|}{\|x-v\|} \\
& \quad \leq \lim _{\substack{x \rightarrow v \\
x \neq v}} \frac{\|f(x)-f(v)-D f(v)(x-v)\|}{\|x-v\|}
\end{aligned}
$$

$$
\begin{aligned}
& +\lim _{\substack{x \rightarrow v \\
x \neq v}} \frac{\|g(x)-g(v)-D g(v)(x-v)\|}{\|x-v\|} \\
& =0+0=0
\end{aligned}
$$

The $D(f+g)(v)=D f(v)+D g(v), \forall v \in V$
Similarly, we can prove that $D(a f)(x)=a D f(v)$.
Theorem 3 (Derivative of a composite mapping ) : Let $X, Y$ and $Z$ be Banach spaces over the same field $K$. Suppose that $f$ is a function on an open subset $V$ of $X$ into an open subset $W$ of $Y$ and $g$ is a function on $W$ into $Z$. If $f$ is differentiable at a point $v \in V$ and $g$ is differentiable at the point $w=f(v) \in W$, then $g$ of is differentiable at $v$ and

$$
\begin{aligned}
& D(g \circ f)(v)=(D g(f(v))) \circ D f(v) \\
\text { or } \quad & (g \circ f)^{\prime}(v)=\left(g^{\prime}(f(v))\right) \circ f^{\prime}(v)
\end{aligned}
$$

Proof: Let $k \in Y$ be such that $f(v)+k \in W$.
Given that $g$ is differentiable at $f(v)$, so we have

$$
\begin{equation*}
g(f(v)+k)=g(f(v))+D g(f(v)) \cdot k+\psi(k) \tag{1}
\end{equation*}
$$

where $\lim _{k \rightarrow 0} \frac{\|\mu(k)\|}{\|k\|}=0$
Now let $h \in X$ be such that $v+h \in V$
Given that $f$ is differentiable at $v \in V$, so we have

$$
f(v+h)=f(v)+D f(v) \cdot h+\eta(h)
$$

where $\lim _{h \rightarrow 0} \frac{\|\eta(h)\|}{\|h\|}=0$
Now, we have

$$
\begin{align*}
(g \circ f)(v+h) & =g\{f(v+h)\} \\
& =g\{f(v)+D f(v) \cdot h+\eta(h)\} \tag{1}
\end{align*}
$$

Using eqn. (1), we get

$$
(g \circ f)(v+h)=g(f(v))+D g(f(v)) \cdot\{D f(v) \cdot h+\eta(h)\}+\psi(D f(v) \cdot h+\eta(h))
$$

$$
\begin{equation*}
=(g o f)(v)+(D g(f(v)) o D f(v)) \cdot h+\phi(h) \tag{3}
\end{equation*}
$$

where $\quad \phi(h)=D g(f(v)) \eta(h)+\psi(D f(v) h+\eta(h))$
Now we claim that

$$
\lim _{h \rightarrow 0} \frac{\|\phi(h)\|}{\|h\|}=0
$$

Let for $\in>0$ there exists $\mu>0$ such that $\|k\| \leq \mu$,

$$
\|\psi(k)\| \leq \in\|k\|
$$

Also there exists a $\delta>0$ such that $\|h\| \leq \delta$,

$$
\|\eta(h)\| \leq \in\|h\| \text { and }\|D f(v) \cdot h+\eta(h)\| \leq \mu
$$

Then for $\|h\| \leq \delta$, we have

$$
\begin{aligned}
\|\phi(h)\| & =\|D g(f(v)) \eta(h)+\psi(D f(v)) \cdot h+\eta(h)\| \\
& \leq\|D g(f(v)) \eta(h)\|+\|\psi(D f(v)) \cdot h+\eta(h)\| \\
& \leq\|D g(f(v))\|\|\eta(h)\|+\in\|D f(v) \cdot h+\eta(h)\| \\
& \leq\|D g(f(v))\| \in\|h\|+\in\|D f(v)\|\|h\|+\in \cdot \in\|h\| \\
\Rightarrow \quad\|\phi(h)\| & \leq(\|D g(f(v))\|+\|D f(v)\|+\in) \in\|h\| \\
\Rightarrow \quad \frac{\|\phi(h)\|}{\|h\|} & \leq(\|D g(f(v))\|+\|D f(v)\|+\in) \in
\end{aligned}
$$

But $\in>0$ arbitrary, so that

$$
\lim _{h \rightarrow 0} \frac{\|\phi(h)\|}{\|h\|}=0
$$

Thus the equation (3) can be written as

$$
\lim _{h \rightarrow 0} \frac{\|(g \circ f)(v+h)-(g \circ f)(v)-(D g(v)) \circ D f(v) h\|}{\|h\|}=0
$$

Hence $D(g o f)(v)=(D g(f(v)))$ o $D f(v)$

Definition : Abijection $f$ on a Banach space $X$ onto a Banach space $Y$ is said to be a homeomorphism if both $f$ and $f^{-1}$ are continuous on $X$ and $Y$ respectively.

Theorem 4: Let $X$ and $Y$ be Banach spaces over the same field $K$ of scalars. Let $f$ be a homeororphism of an open subset $V$ of $X$ onto an open subset $W$ of $Y$ and let $g$ be the inverse homoeomorphism of $W$ onto $V$. If $f$ is differentiable at $a \in V$ and $D f(a)$ is a linear homeomorphism of $X$ onto $Y$, then $g$ is differentiable at the point $b=f(a) \in W$ and

$$
D g(b)=[D f(a)]^{-1}
$$

Proof: It is clear that the linear mapping $D f(a)$ of $X$ onto $Y$ has an inverse linear mapping. Let it be $t=[D f(a)]^{-1}$ of $Y$ onto $X$. It is also continuous and there is a finite positive real number $M$ such that

$$
\begin{equation*}
\|t(y)\| \leq M\|y\|, \quad \forall y \in Y \tag{1}
\end{equation*}
$$

Suppose that $h \in X$ be such that $a+h \in V$. Since $f$ is differentiable at $a$, so that we have

$$
\begin{equation*}
f(a+h)=f(a)+D f(a) h+\eta(h) \tag{2}
\end{equation*}
$$

where $\lim _{h \rightarrow 0} \frac{\|\eta(h)\|}{\|h\|}=0$

Let for given $0<\epsilon^{\prime} \leq \frac{1}{2 M}$, there exists $\delta^{\prime}>0$ such that

$$
\begin{equation*}
\|\eta(h)\| \leq \epsilon^{\prime}\|h\| \text {, whenever }\|h\| \leq \delta^{\prime} \tag{3}
\end{equation*}
$$

Since $g$ is continuous at $b=f(a) \in W$, then for given $\delta^{\prime}>0$ there exists $\delta>0$ such that

$$
\|g(b+k)-g(b)\| \leq \delta^{\prime}, \text { whenever }\|k\| \leq \delta
$$

Now, $\|h-t(f(a+h))-f(a)\|=\|t\{D f(a) \cdot h-(f(a+h)-f(a))\}\|$

$$
\begin{array}{ll}
=\|t\{D f(a) \cdot h-f(a+h)+f(a)\}\| \\
=\|t(-\eta(h))\| & \text { from eqn. (2) } \\
\leq M\|\eta(h)\| & \text { from eqn. (1) } \\
\leq M \in^{\prime}\|h\| & \text { from eqn. (3) } \tag{4}
\end{array}
$$

Now, $\quad\|h\|=\|h-t(f(a+h))-f(a)+t(f(a+h))-f(a)\|$

$$
\leq\|h-t(f(a+h))-f(a)\|+\|t(f(a+h))-f(a)\|
$$

$$
\begin{align*}
& \leq M \in^{\prime}\|h\|+M\|f(a+h)-f(a)\| \quad \text { from (1) \& (4) } \\
& \leq \frac{1}{2}\|h\|+M\|f(a+h)-f(a)\| \\
\Rightarrow \quad\|h\| & \leq 2 M\|f(a+h)-f(a)\| \tag{5}
\end{align*}
$$

Suppose $g(b+k)=a+h$, then

$$
\begin{align*}
&\|g(b+k)-g(b)-t(k)\| \\
&=\|a+h-a-t(f(a+h))-f(a)\| \\
&=\|h-t(f(a+h))-f(a)\| \\
& \leq \epsilon^{\prime} M\|h\| \text { From (4) }  \tag{4}\\
& \leq \epsilon^{\prime} M\{2 M\|f(a+h)-f(a)\|\} \quad \text { From (5) }  \tag{5}\\
&=2 \in^{\prime} M^{2}\|f(a+h)-f(a)\| \\
& \Rightarrow \quad\|g(b+k)-g(b)-t(k)\| \leq \in\|k\|, \quad \in=2 \in M^{2}
\end{align*}
$$

Hence for given $\in>0$ there exists $\delta>0$ such that

$$
\|g(b+k)-g(b)-t(k)\| \leq \in\|k\|, \text { whenever }\|k\| \leq \delta
$$

Hence $g$ is differentiable at $b=f(a) \in W$ and $D g(b)=t=[D f(a)]^{-1}$

### 9.3 Directional Derivative

Definition : Let $X$ and $Y$ be Banach space over the same field $K$ of scalars and $V$ be an open subset of $X$. Let $f$ be a function from $V$ into $Y$ and $v$ be a unit vector in $V$, then the directional derivative of $f$ at $x \in V$ in the direction of unit vector $v$ is denoted by $D_{v} f(x)$ and is defined by

$$
D_{v} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h v)-f(x)}{h}, \text { if this limit exists. }
$$

Theorem 5 : Suppose that $X$ and $Y$ be Banach spaces over the same filed $K$ of scalars and $V$ be an open subset of $X$. Let $f: V \rightarrow Y$ is differentiable at $x \in V$. Then all the directional derivatives of $f$ exists at $x$ and

$$
D_{v} f(x)=D f(x) \cdot v, \text { where } v \in V \text { is a unit vector. }
$$

Proof: Suppose $h \in X$ be such that $x+h \in V$. Given that $f$ is differentiable at $x \in V$, so that

$$
f(x+h)=f(x)+D f(x) h+\eta(h),
$$

where $\lim _{h \rightarrow 0} \frac{\|\eta(h)\|}{\|h\|}=0$
Since $v \in V$ is a unit vector and let $s$ is arbitrary small, then we have

$$
\begin{equation*}
f(x+s v)=f(x)+D f(x) \cdot(s v)+\eta(s v) \tag{1}
\end{equation*}
$$

where $\lim _{s \rightarrow 0} \frac{\|\eta(s v)\|}{\|s v\|}=0$

$$
\begin{aligned}
& \Rightarrow \quad \lim _{s \rightarrow 0}\left\|\frac{\eta(s v)}{s}\right\|=0 \\
& \Rightarrow \quad \lim _{s \rightarrow 0} \frac{\eta(s v)}{s}=0
\end{aligned}
$$

Hence from (1), we have

$$
\begin{aligned}
& \lim _{s \rightarrow 0} \frac{f(x+s v)-f(x)}{s}=\lim _{s \rightarrow 0}\left\{D f(x) \cdot v+\frac{\eta(s v)}{s}\right\} \\
&=D f(x) \cdot v+0 \\
& \Rightarrow \quad D_{v} f(x)=D f(x) \cdot v
\end{aligned}
$$

### 9.4 Mean Value Theorem and its Applications

In this section we study mean value theorem for a mapping defined on a Banach space.
Theorem 6: Let $X$ be a Banach space over the field $K$ of scalars and let $f:[a, b] \rightarrow X$ and $g:[a, b] \rightarrow R$ be continuous and differentiable functions such that $\|D f(t)\| \leq D g(t)$ at each point $t \in(a, b)$. Then

$$
\|f(b)-f(a)\| \leq g(b)-g(a)
$$

Proof : Let $\in>0$ and let $T$ be the set of real numbers $s \in[a, b]$ such that $\forall r \in[a, s)$

$$
\begin{equation*}
\|f(r)-f(a)\| \leq g(r)-g(a)+\in(r-a+1) \tag{1}
\end{equation*}
$$

It is given htat

$$
\begin{array}{ll} 
& \|D f(t)\| \leq D g(t) \\
\Rightarrow & \forall t \in(a, b) \\
& D g(t) \geq 0
\end{array} \quad \forall t \in(a, b)
$$

$\Rightarrow g$ is an increasing function on $(a, b)$. Since $f$ is a continuous function in closed interval $[a, b]$ so it is uniformly continuous in $[a, b]$, then there is a real number $p \in(a, b]$ such that $\forall q \in[a, p)$

$$
\begin{equation*}
\|f(q)-f(a)\| \leq \in \tag{2}
\end{equation*}
$$

Since $g$ in increasing function $q \in[a, p]$ so that

$$
\begin{equation*}
\in \leq g(q)-g(a)+\in(q-a+1) \tag{3}
\end{equation*}
$$

From (2) \& (3), we obtain

$$
\begin{aligned}
& \|f(q)-f(a)\| \leq g(q)-g(a)+\in(q-a+1) \\
\Rightarrow \quad & p \in T \text { and hence } T \text { in non-empty }
\end{aligned}
$$

Now we define a function $h:[a, b] \rightarrow R$ as follows

$$
\begin{equation*}
h(s)=\|f(s)-f(a)\|-g(s)+g(a)-\in(s-a+1) \tag{4}
\end{equation*}
$$

Then clearly $h$ is continuous in $[a, b]$ and also $h(s) \leq 0 \forall s \in T$.
Then $T$ is a closed subset of $[a, b]$ and so it is bounded.
Now $T$ is a non-void bounded subset of $R$.
Hence supremum of $T$ exists in $[a, b]$.
Let supermum of $S=c$
We shall show that $c=b$.
As contradiction we suppose that $c \neq b$ i.e. $a \leq c<b$.
Given that $f$ and $g$ are differentiable in $(a, b)$ and so that there in a real number $q \in(c, b)$ such that $\forall s \in(c, q)$

$$
\begin{equation*}
\|f(s)-f(c)-D f(c)(s-c)\| \leq \in \frac{(s-c)}{2} \tag{5}
\end{equation*}
$$

and $\quad\|g(s)-g(c)-D g(c)(s-c)\| \leq \in \frac{(s-c)}{2}$
Now, $\|f(s)-f(c)\|$

$$
\begin{aligned}
& =\|f(s)-f(c)-D f(c)(s-c)+D f(c)(s-c)\| \\
& \leq\|f(s)-f(c)-D f(c)(s-c)\|+\|D f(c)(s-c)\| \\
& \leq \frac{\in}{2}(s-c)+\|D f(c)\|(s-c) \quad \text { From (5) } \\
& \left.\leq \frac{\in}{2}(s-c)+D g(c)(s-c) \quad \right\rvert\, \because\|D f(t)\| \leq D g(t) \forall t \in(a, b)
\end{aligned}
$$

$$
\begin{array}{r}
\leq \frac{\epsilon}{2}(s-c)+g(s)-g(c)+\frac{\epsilon}{2}(s-c) \\
\Rightarrow \quad\|f(s)-f(c)\| \leq g(s)-g(c)+\in(s-c)
\end{array}
$$

Since $c \in T$, therefore

$$
\|f(c)-f(a)\| \leq g(c)-2(a)+\in(c-a+1)
$$

Thus $\quad \forall s \in[c, q)$

$$
\begin{aligned}
&\|f(s)-f(a)\|=\|f(s)-f(c)+f(c)-f(a)\| \\
& \leq\|f(s)-f(c)\|+\|f(c)-f(a)\| \\
& \leq g(s)-g(c)+\in(s-c)+g(c)-g(a)+\in(c-a+1) \text { From (7) \& (8) } \\
& \Rightarrow \quad\|f(s)-f(a)\| \leq g(s)-g(a)+\in(s-a+1) \\
& \Rightarrow \quad s \in T \text { and } s>c
\end{aligned}
$$

which is the contradiction to the fact that $c$ is the supermum of $T$, so our assumption $c<b$ was wrong and hence $c=b$ and

$$
\|f(b)-f(a)\| \leq g(b)-g(a)+\in(b-a+1)
$$

But $\quad \in>0$ is an arbitrary small and so

$$
\|f(b)-f(a)\| \leq g(b)-g(a)
$$

Theorem 7 (Mean value Theorem) : Let $X$ and $Y$ be any two Banach spaces over the same field $K$ of scalars and $V$ be an open subset of $X$. Let $f: V \rightarrow Y$ be continuous function. Let $u, v$ be any two distinct points of $V$ such that $[u, v] C V$ and $f$ is differentiable in $[u, v]$. Then

$$
\|f(v)-f(u)\| \leq\|v-u\| \sup \{\|D f(x)\|: x \in[u, v]\}
$$

Proof: We define a mapping $g:[0,1] \rightarrow Y$ such that

$$
g(t)=f(u+t(v-u)) \quad \forall t \in[0,1]
$$

As $f$ is differentiable in $[u, v]$, therefore $g$ is differentiable in $[0,1]$

$$
\begin{array}{ll}
\therefore & D g(t)=\{D f(u+t(v-u))\} \cdot(v-u) \\
\Rightarrow & \|D g(t)\|=\|(v-u) D f(u+t(v-u))\| \\
\Rightarrow & \|D g(t)\| \leq\|(v-u)\| \sup \{\|D f(u+t(v-u))\|: t \in[0,1]\} \tag{1}
\end{array}
$$

Let $\quad c=\|v-u\| \sup \{\|D f(u+t(v-u))\|: t \in[0,1]\}$
Now we define a mapping $h:[0,1] \rightarrow R$ such that

$$
h(t)=c t
$$

Then $h$ is obviously continuous and differentiable in $[0,1]$

$$
\therefore \quad D h(t)=c
$$

From (1), we have

$$
\begin{aligned}
& \|D g(t)\| \leq c=\operatorname{Dh}(t) \\
\Rightarrow \quad & \|D g(t)\| \leq \operatorname{Dh}(t) \quad \forall t \in(0,1)
\end{aligned}
$$

Now we know that if $g:[0,1] \rightarrow Y$ and $h:[0,1] \rightarrow R$ are continuous and differentiable such that

$$
\|D g(t)\| \leq D h(t) \text { at each point } t \in(0,1)
$$

then $\quad\|g(1)-g(0)\| \leq h(1)-h(0)$
[From theorem 6]
$\Rightarrow \quad\|f(v)-f(u)\| \leq c-0$
$\Rightarrow \quad\|f(v)-f(u)\| \leq c$
$\Rightarrow \quad\|f(v)-f(u)\| \leq\|v-u\| \sup \{\|D f(u+t(v-u))\|: t \in[0,1]\}$
$\Rightarrow \quad\|f(v)-f(u)\| \leq\|v-u\| \sup \{\|D f(x)\|: x \in[u, v]\}$
Theorem 8: Let $X$ be a Banach space over the field $K$ of scalars, and $V$ be an open subset of $X$. Suppose $f: V \rightarrow R$ be a function. Let $u$ and $v$ be any two distinct points in $V$ such that $[u, v] \subset V$ and $f$ is differentiable at all points of $[u, v]$. Then

$$
f(v)-f(u)=D f(u+t(v-u)) \cdot(v-u) \text { where } t \in(0,1)
$$

Proof: We define a mapping $g:[0,1] \rightarrow R$ such that

$$
\begin{equation*}
g(s)=f(u+s(v-u)), \quad \forall s \in[0,1] \tag{1}
\end{equation*}
$$

As $f$ is differentiable in $[u, v]$, therefore $g$ is differentiable in $[0,1]$, and

$$
\begin{equation*}
D g(s)=D f(u+s(v-u)) \cdot(v-u), \quad s \in[0,1] \tag{2}
\end{equation*}
$$

Now from Lagrange's mean value theorem, there exists a real number $t \in(0,1)$ such that

$$
\begin{align*}
& \frac{g(1)-g(0)}{1-0}=g^{\prime}(t), \quad 0<t<1 \\
\Rightarrow \quad & g(1)-g(0)=g^{\prime}(t) \\
\Rightarrow \quad & g(1)-g(0)=D f(u+t(v-u)) \cdot(v-u) \tag{3}
\end{align*}
$$

From (1),

$$
g(1)=f(v), \quad g(0)=f(u)
$$

Using these in (3), we obtain

$$
f(v)-f(u)=D f(u+t(v-u)) \cdot(v-u), \quad t \in(0,1)
$$

Theorem 9: Let $X$ and $Y$ be any two Banach spaces over the same field $K$ of scalars and $V$ be an open subset of $X$. Let $f: V \rightarrow Y$ be a continuous function and let $u$ and $v$ be any two distinct points in $V$ such that $[u, v] \subset V$ and $f$ is differentable in $[u, v]$. Suppose $g: X \rightarrow Y$ be any continuous linear function. Then

$$
\|f(v)-f(u)-g(v-u)\| \leq c\|v-u\|
$$

where $c \in R$ be such that $\|D f(x)-g\| \leq c, \forall x \in[u, v]$
Proof: We define a mapping $h: V \rightarrow Y$ such that

$$
\begin{equation*}
h(x)=f(x)-g(x-v), \forall x \in V \tag{1}
\end{equation*}
$$

Then clearly $h$ is continuous and differentiable in $[u, v]$ and $\quad D h(x)=D f(x)-g, x \in V$, since $g$ is linear

Now since $h: V \rightarrow Y$ is continuous function and $u, v \in V$ be such that $[u, v] \subset V$ and $h$ is differentiable in $[u, v]$, then from mean value theorem, we have

$$
\|h(v)-h(u)\| \leq\|v-u\| \sup \{\|D h(x)\|: x \in[u, v]\}
$$

Using (1) \& (2), we have

$$
\begin{aligned}
& \|f(v)-g(v-v)-f(u)+g(u-v)\| \leq\|v-u\| \sup \{\|D f(x)-g\|: x \in[u, v]\} \\
\Rightarrow & \|f(v)-f(u)-g(v-u)\| \leq c\|v-u\|
\end{aligned}
$$

where $\|D f(x)-g\| \leq c \forall x \in[u, v]$

## Self-Learning Exercise

1. Define, when two functions $f_{1}$ and $f_{2}$ defined on an open subset of a Banach space are tangential at a point.
2. Define derivative on a Banach space.
3. True/Fase Statements :
(a) The derivative of the constant function $f$ on an open subset $V$ of a Banach space $X$ into Banach space $Y$ is the zero map.
(b) The derivative of a continuous linear mapping $f$ on an open subset $V$ of a Banach space $X$ into a Banach space $Y$ is the mapping $f$ itself.

### 9.5 Summary

In this unit we studied the notion of derivative of function from one Banach space into another Banach space and concepts of mean value Theorem in Banach spaces.

### 9.6 Answers to Self-Learning Exercise

1. See text
2. See Text
3. (a) True
(b) True

### 9.7 Exercises

1. Let $f$ be a differentiable function on a non void connected open subset $V$ of a Banach space $X$ over $K$ into a Banach space $Y$ over $K$ such that $D f=0$. Then $f$ is a constant function.
2. Let $f ;[a, b] \rightarrow X$ and $g ;[a, b] \rightarrow R$ are continuous and differentiable function such that $\|D f(t)\| \leq D g(t)$ at each point $t \in(a, b)$, then

$$
\|f(b)-f(a)\| \leq g(b)-g(a) .
$$

3. Let $X, Y$ be Banach space over $K$ and let $V, W$ be open subsets in $X$ respectively. Let $f: V \rightarrow Y$ be differentiable at a point $a \in U$ and $g: W \rightarrow X$ be differentiable at the point $b \in W$, where $b=f(a)$. If $f \circ g=I_{y}$ and $g$ of $=I_{X}$. Then

$$
D g(b)=[D f(a)]^{-1}
$$

# Unit-10 <br> Higher Derivatives 

## Structure of the Unit

### 10.0 Objectives

### 10.1 Introduction

### 10.2 Continuously differentiable maps

### 10.3 Higher Derivatives

### 10.4 Taylor's Theorem

### 10.5 Existence theorems on differentiable maps

### 10.6 Summary

### 10.7 Answers to SelfLearning Exercise

### 10.8 Exercises

### 10.0 Objectives

In this unit we shall study the concept of higher derivatives of a function on Bahach spaces, which have an important role in the study of these functions.

### 10.1 Introduction

In this unit we shall introduce higher derivatives of functions defined on Banach spaces and the concept of continuously differentiable maps on Banach spaces ( $\mathrm{C}^{\mathrm{n}}$-maps), partial derivatives, Taylor's theorem and existence theorems will be discussed with their applications.

### 10.2 Continuously differentiable Maps ( $C^{1}$ - maps)

Definition: Let $X$ and $Y$ be Banach spaces over the same field K and V be an open subset of X . Suppose $f: V \rightarrow Y$ is a differentiable function at each point of V . Then $f$ is said to be a continuously differentiable map $\left(C^{1}-m a p\right)$ in V if and only if the function $D f: V \rightarrow L(X, Y)$ is continuous.

Definition : Let V be a non-empty open subset of a Banach space $X=X_{1} \times X_{2}$ and let $f$ be a function of $V$ into Y. Suppose $\left(a_{1}, a_{2}\right) \in V$, we define $V_{1}=\left\{x_{1} \in X_{1}:\left(x_{1}, a_{2}\right) \in V\right\}$. Then $V_{1}$ is an open subset of $X_{1}$

We also define a mapping $g: V_{1} \rightarrow Y$ such that $g\left(x_{1}\right)=f\left(x_{1}, a_{2}\right) \forall x_{1} \in V_{1}$
Similarly we define the set

$$
\begin{aligned}
& V_{2}=\left\{x_{2} \in X_{2}:\left(a_{1}, x_{2}\right) \in V\right\} \text { and the mapping } \\
& h: V_{2} \rightarrow Y \text { such that } \\
& h\left(x_{2}\right)=f\left(a_{1}, x_{2}\right) \forall x_{2} \in V_{2}
\end{aligned}
$$

The mapping $f: V \rightarrow Y$ is said to be differentiable with respect to the first variable at the point $\left(a_{1}, a_{2}\right)$ iff $g$ is differentiable at $a_{1}$, and we write $\operatorname{Dg}\left(a_{1}\right)=D_{1} f\left(a_{1}, a_{2}\right)$ or $f_{1}^{\prime}\left(a_{1}, a_{2}\right)$. The derivative $D_{1} f\left(a_{1}, a_{2}\right)$ is called the partical derivative of $f$ with respect to the first variable at $\left(a_{1}, a_{2}\right)$, it is a linear map of $X_{1}$ into $y$.

Similarly, we can define the partial derivative $D_{2} f\left(a_{1}, a_{2}\right)$ with respect to the second variable
Thus, we have $D_{1} f\left(a_{1}, a_{2}\right) \in L\left(X_{1}, Y\right)$
and $D_{2} f\left(a_{1}, a_{2}\right) \in L\left(X_{2}, Y\right)$
Theorem 1: Let $f$ be a continuous mapping of an open subset V of $X_{1} \times X_{2}$ into Y . Then $f$ is a $C^{1}$ - map in V iff $f$ be differentiable at each point with respect to the first and the second variable. Also the mappings $\left(a_{1}, a_{2}\right) \rightarrow D_{1} f\left(a_{1}, a_{2}\right)$ and $\left(a_{1}, a_{2}\right) \rightarrow D_{2} f\left(a_{1}, a_{2}\right)$ are continuous on $V$. Further at each point $\left(x_{1}, x_{2}\right) \in V$, the derivative of $f$ is given by

$$
D f\left(a_{1}, a_{2}\right)\left(x_{1}, x_{2}\right)=D_{1} f\left(a_{1}, a_{2}\right) x_{1}+D_{2} f\left(a_{1}, a_{2}\right) x_{2}
$$

Proof : First suppose that $f$ is $C^{1}$-map on V into Y. Let $\left(a_{1}, a_{2}\right) \in V$ then for $\left(x_{1}, x_{2}\right) \in V$ and given $\in>0$ there exists $\delta>0$ such that

$$
\begin{align*}
& \left\|f\left(x_{1}, x_{2}\right)-f\left(a_{1}, a_{2}\right)-D f\left(a_{1}, a_{2}\right)\left(\left(x_{1}, x_{2}\right)-\left(a_{1}, a_{2}\right)\right)\right\| \\
& \qquad \leq \in\left\|\left(x_{1}, x_{2}\right)-\left(a_{1}, a_{2}\right)\right\| \\
& \text { Put } \quad x_{2}=a_{2} \text {, we get } \\
& \left\|f\left(x_{1}, a_{2}\right)-f\left(a_{1}, a_{2}\right)-D f\left(a_{1}, a_{2}\right)\left(\left(x_{1}, a_{2}\right)-\left(a_{1}, a_{2}\right)\right)\right\| \\
& \qquad \leq \in\left(x_{1}, a_{2}\right)-\left(a_{1}, a_{2}\right) \| \tag{1}
\end{align*}
$$

Since,

$$
\begin{array}{r}
\left\|\left(x_{1}, a_{2}\right)-\left(a_{1}, a_{2}\right)\right\|=\left\|\left(x_{1}-a_{1}, a_{2}-a_{2}\right)\right\| \\
=\left\|\left(x_{1}-a_{1}, 0\right)\right\| \\
=\left\|\left(x_{1}-a_{1}\right)\right\|
\end{array}
$$

Using it in (1), we have

$$
\begin{aligned}
& \left\|f\left(x_{1}, a_{2}\right)-f\left(a_{1}, a_{2}\right)-D f\left(a_{1}, a_{2}\right)\left(x_{1}-a_{1}, 0\right)\right\| \leq \in\left\|\left(x_{1}-a_{1}\right)\right\|, \\
& \quad \text { for }\left\|\left(x_{1}-a_{1}\right)\right\| \leq \delta
\end{aligned}
$$

Thus $f$ is differentiable with respect to the first variable at $\left(a_{1}, a_{2}\right)$
and $D_{1} f\left(a_{1}, a_{2}\right) x_{1}=D f\left(a_{1}, a_{2}\right) \cdot\left(x_{1}, 0\right)$
Similarly we have

$$
D_{2} f\left(a_{1}, a_{2}\right) x_{2}=D f\left(a_{1}, a_{2}\right) \cdot\left(0, x_{2}\right)
$$

Now

$$
\begin{array}{rl}
D f\left(a_{1}, a_{2}\right)\left(x_{1}, x_{2}\right)=D & f\left(a_{1}, a_{2}\right)\left\{\left(x_{1}, 0\right)+\left(0, x_{2}\right)\right\} \\
& =D f\left(a_{1}, a_{2}\right)\left(x_{1}, 0\right)+D f\left(a_{1}, a_{2}\right)\left(0, x_{2}\right) \\
& =D_{1} f\left(a_{1}, a_{2}\right) x_{1}+D_{2} f\left(a_{1}, a_{2}\right) x_{2}
\end{array}
$$

Which is the required result.
Since $D f$ is continuous, therefore $D_{1} f$ and $D_{2} f$ are also continuous on V .
Conversely suppose that $D_{1} f$ and $D_{2} f$ are continuous and differentiable at each point $\left(a_{1}, a_{2}\right) \in V$.

To prove, $f$ is $C^{1}$-map, we have

$$
\begin{align*}
f\left(a_{1}+x_{1}, a_{2}+\right. & \left.x_{2}\right)-f\left(a_{1}, a_{2}\right)-\left(D_{1} f\left(a_{1}, a_{2}\right) x_{1}+D_{2} f\left(a_{1}, a_{2}\right) x_{2}\right) \\
& =f\left(a_{1}+x_{1}, a_{2}+x_{2}\right)-f\left(a_{1}, a_{2}+x_{2}\right)-D_{1} f\left(a_{1}, a_{2}\right) x_{1} \\
& +f\left(a_{1}, a_{2}+x_{2}\right)-f\left(a_{1}, a_{2}\right)-D_{2} f\left(a_{1}, a_{2}\right) x_{2} \tag{2}
\end{align*}
$$

Let

$$
g(z) \equiv f\left(a_{1}+z, a_{2}+x_{2}\right)-D_{1} f\left(a_{1}, a_{2}\right) z,
$$

Where $z=t x$ and $t \in(0,1)$
So that

$$
D g(z)=D_{1} f\left(a_{1}+z, a_{2}+x_{2}\right)-D_{1} f\left(a_{1}, a_{2}\right)
$$

Since $D_{1} f$ is continuous so for any $\in>0$ there is open ball of radius $\eta_{1}$, and centered at $\left(a_{1}, a_{2}\right)$ such that for all $\left(x_{1}, x_{2}\right) \in B\left(\left(a_{1}, a_{2}\right) ; \eta_{1}\right)$ we have

$$
\begin{gathered}
\left\|D_{1} f\left(a_{1}+z, a_{2}+x_{2}\right)-D f_{1}\left(a_{1}, a_{2}\right)\right\| \leq \epsilon, \\
\text { for } z=t x_{1}, t \in(0,1)
\end{gathered}
$$

So by the mean value theorem,

$$
\begin{align*}
& \left\|g\left(x_{1}\right)-g(0)\right\| \leq \in\left\|x_{1}\right\|, \quad z \in\left(0, x_{1}\right) \\
& \Rightarrow\left\|f\left(a_{1}+x_{1}, a_{2}+x_{2}\right)-f\left(a_{1}, a_{2}\right) x_{2}-D_{1} f\left(a_{1}, a_{2}\right) x_{1}\right\| \leq \in\left\|x_{1}\right\| \tag{3}
\end{align*}
$$

Since $D_{2} f$ is also continuous, similarly,
We have, for

$$
\begin{align*}
& \left(x_{1}, x_{2}\right) \in B\left(\left(a_{1}, a_{2}\right) ; \eta_{2}\right) \\
& \left\|f\left(a_{1}, a_{2}+x_{2}\right)-f\left(a_{1}, a_{2}\right)-D_{2} f\left(a_{1}, a_{2}\right) x_{2}\right\| \leq \in\left\|x_{2}\right\| \tag{4}
\end{align*}
$$

Let us take $\eta=\min \left(\eta_{1}, \eta_{2}\right)$
Now, from equation (2), we have

$$
\begin{aligned}
& \| f\left(a_{1}+\right. x_{1}, a_{2}+ \\
&\left.x_{2}\right)-f\left(a_{1}, a_{2}\right)-\left(D_{1} f\left(a_{1}, a_{2}\right) x_{1}+D_{2} f\left(a_{1}, a_{2}\right) x_{2}\right) \| \\
&=\| f\left(a_{1}+\right.\left.x_{1}, a_{2}+x_{2}\right)-f\left(a_{1}, a_{2}+x_{2}\right)-D_{1} f\left(a_{1}, a_{2}\right) x_{1} \\
&+f\left(a_{1}, a_{2}+x_{2}\right)-f\left(a_{1}, a_{2}\right)-D_{2} f\left(a_{1}, a_{2}\right) x_{2} \| \\
& \leq\left\|f\left(a_{1}+x_{1}, a_{2}+x_{2}\right)-f\left(a_{1}, a_{2}+x_{2}\right)-D_{1} f\left(a_{1}, a_{2}\right) x_{1}\right\| \\
&+\left\|f\left(a_{1}, a_{2}+x_{2}\right)-f\left(a_{1}, a_{2}\right)-D_{2} f\left(a_{1}, a_{2}\right) x_{2}\right\|
\end{aligned}
$$

Using (3) and (4), we obtain

$$
\begin{aligned}
\| f\left(a_{1}+\right. & \left.x_{1}, a_{2}+x_{2}\right)-f\left(a_{1}, a_{2}\right)-\left(D_{1} f\left(a_{1}, a_{2}\right) x_{1}+D_{2} f\left(a_{1}, a_{2}\right) x_{2}\right) \| \\
& \leq \in\left\|x_{1}\right\|+\in\left\|x_{2}\right\| \\
& =\in\left(\left\|x_{1}\right\|+\left\|x_{2}\right\|\right)
\end{aligned}
$$

Since $\in$ is arbitrary small positive quantity, therefore $f$ is differentiable at $\left(a_{1}, a_{2}\right)$
Since $D_{1} f$ and $D_{2} f$ are continuous then $D f$ is also continuous in V .
Hence $f$ is $C^{1}$ map.

### 10.3 Higher Derivatives

Suppose $X$ and $Y$ be Banach spaces over the same field K of scalars and V be an open non-void subset of $\mathrm{X} . f: V \rightarrow Y$ is a $C^{1}$ - map then the map $D f: V \rightarrow L(X, Y)$ is continuous. If the map $D f$ is differentiable at a given point $v \in V$, then $D(D f(v))$ will be a linear map $X \rightarrow L(X, Y)$. This map is called the second derivative of $f$ at $v$ and is denoted by $D^{2} f(v)$. The map $D f$ is continuous implies that $D^{2} f(v)$ is a continuous linear map i.e. $D^{2} f(v) \in L(X, L(X, Y))$. If $D f$ is differentiable on V , then we have a map $D^{2} f: V \rightarrow L(X, L(X, Y))$. It this map is continuous, we say that $f$ is a $C^{2}$ - map.

Since $L(X, L(X, Y)) \cong L\left(X^{2}, Y\right)$
We write $D^{2} f(v) \in L\left(X^{2}, Y\right)$
Continuing in this manner, $f$ is a $C^{n-1}$ - map then the map $D^{n-1} f: V \rightarrow L\left(X^{n-1}, Y\right)$ in continuous. Its derivative, if it exists at $v \in V$ is called the $n^{t h}$ derivative of $f$ at $v$ and is denoted by $D^{n} f(v)$ and it is an element of $L\left(X^{n}, Y\right)$.

If $D^{n-1} f$ in differentiable on V , then we have the map $D^{n} f: V \rightarrow L\left(X^{n}, Y\right)$.
It this map is continuous, then we say that $f$ is $C^{n}$ - map .
For each $v \in V$ and each $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}$, we have

$$
D^{n} f(v) \cdot\left(x_{1}, x_{2} \ldots . ., x_{n}\right)=D\left(D^{n-1} f(v) \cdot x_{1}\right)\left(x_{2}, x_{3}, \ldots, x_{n}\right) .
$$

From the definition of higher derivatives, we obtain the following properties :

1. Let $f: V \rightarrow Y$ in m-times differentiable in V and $D^{m} f$ is n -times differentiable in V . Then by induction $f$ is $(m+n)$ times differentiable in V and
$D^{n}\left(D^{m} f\right)=D^{m+n} f$
2. Let $f: V \rightarrow Y$ and $g: V \rightarrow Y$ are n-times differentiable in V . Then $f+g$ is also n-times differetiable in V and
$D^{n}(f+g)=D^{n} f+D^{n} g$
Moreover for all $k \in K, k f$ is n-times differentiable in V and

$$
D^{n}(k f)=k D^{n} f
$$

Theorem 2: Let X and Y be Banach spaces over the same field $K$ of scalars and $V$ be an open subset of $X$. Let $f: V \rightarrow Y$ is twice differentiable at a point $v \in V$. Then $D^{2} f(v) \in L\left(X^{2}, Y\right)$ is a bilinear symmetric mapping i.e. for all $(x, y) \in X \times X$,

$$
D^{2} f(v) \cdot(x, y)=D^{2} f(v)(y, x)
$$

Proof: We define a mapping $g$ as follows:

$$
g(x, y)=f(v+x+y)-f(v+x)-f(v+y)+f(v)
$$

Then clearly $g$ is a symmetri function in $(x, y)$.
Also

$$
\begin{align*}
& \left\|g(x, y)-\left(D^{2} f(v) \cdot y\right) \cdot x\right\| \\
& =\| g(x, y)-D f(v+y) \cdot x+D f(v) \cdot x+D f(v+y) \cdot x-D f(v) \cdot x \\
& \quad-\left(D^{2} f(v) \cdot y\right) \cdot x \| \\
& \leq\|g(x, y)-D f(v+y) \cdot x+D f(v) \cdot x\| \\
& \quad+\left\|D f(v+y) \cdot x-D f(v) \cdot x-\left(D^{2} f(v) \cdot y\right) \cdot x\right\| \tag{1}
\end{align*}
$$

As $D f$ is differentiable at $v \in V$ then for given $v \in V$ then for given $\in>0$ there exists a $\delta>0$ such that

$$
\left\|D f(v+y)-D f(v)-D^{2} f(v) \cdot y\right\| \leq \in\|y\| \text { for }\|y\| \leq \delta
$$

therefore

$$
\begin{gathered}
\left\|D f(v+y) \cdot x-D f(v) \cdot x-\left(D^{2} f(v) y\right) \cdot x\right\| \leq \in\|y\|\|x\| \\
\leq \in\|x\|(\|y\|+\|x\|)
\end{gathered}
$$

for $\|x\| \leq \frac{\delta}{2}$ and $\|y\| \leq \frac{\delta}{2}$
Now suppose

$$
\begin{equation*}
s(x)=f(v+x+y)-f(v+x)-D f(v+y) \cdot x+D f(v) \cdot x \tag{3}
\end{equation*}
$$

From mean volue theorem, we have

$$
\|s(x)-s(0)\| \leq\|x\| \sup \left\{\left\|s^{\prime}(t x)\right\|: t \in[0,1]\right\}
$$

From (3), we get

$$
s^{\prime}(x)=D f(v+x+y)-D f(v+x)-D f(v+y)+D f(v)
$$

Using it in above, we have

$$
\begin{equation*}
\|s(x)-s(0)\| \leq\|x\| \sup \{\|D f(v+t x+y)-D f(v+t x)-D f(v+y)+D f(v)\|: t \in[0,1]\} \tag{4}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \|D f(v+t x+y)-D f(v+t x)-D f(v+y)+D f(v)\| \\
& \begin{aligned}
=\|\left\{D f(v+y+t x)-D f(v)-D^{2} f(v)(y+t x)\right\}- & \{D f(v+t x)-D f(v) \\
& \left.\quad-D^{2} f(v) \cdot(t x)\right\}-\left\{D f(v+y)-D f(v)-D^{2} f(v) \cdot y\right\} \|
\end{aligned}
\end{aligned}
$$

$$
\leq \in(\|y+t x\|)+\in\|y\|+\in\|t x\|
$$

Since

$$
\begin{aligned}
\|y+t x\| & \leq\|y\|+\|t x\| \\
& \leq\|y\|+\|x\|
\end{aligned} \quad \because t \in(0,1) \Rightarrow\|t x\| \leq\|x\|
$$

Using it in above, we have

$$
\begin{aligned}
\| D f(v+ & y+t x)-D f(v+t x)-D f(v+y)+D f(v) \| \\
\leq & \in(\|y\|+\|x\|)+\in\|y\|+\in\|x\| \\
& =2 \in(\|x\|+\|y\|)
\end{aligned}
$$

Using it in (4), we get

$$
\|s(x)-s(0)\| \leq\|x\| .2 \in(\|x\|+\|y\|)
$$

Substituting the values of $s(x)$ and $s(0)$ from (3), we have

$$
\begin{align*}
\| f(v+x+y)- & f(v+x)-D f(v+y) \cdot x+D f(v) x-f(v+y)-f(v) \| \\
\leq & \in\|x\|(\|x\|+\|y\|) \tag{5}
\end{align*}
$$

Now from (1) and (2), we get

$$
\begin{aligned}
\left\|g(x, y)-\left(D^{2} f(v) \cdot y\right) \cdot x\right\| \leq \| f(v & +x+y)-f(v+x)-f(v+y) \\
& +f(v)-D f(v+y) \cdot x+D f(v) \cdot x \| \\
+ & \in\|x\|(\|x\|+\|y\|)
\end{aligned}
$$

Using (5), we obtain

$$
\begin{align*}
& \left\|g(x, y)-\left(D^{2} f(v) \cdot y\right) \cdot x\right\| \leq 2 \in\|x\|(\|x\|+\|y\|) \\
& +\in\|x\|(\|x\|+\|y\|) \\
& \Rightarrow\left\|g(x, y)-\left(D^{2} f(v) \cdot y\right) \cdot x\right\| \leq 3 \in\|x\|(\|x\|+\|y\|) \tag{6}
\end{align*}
$$

Interchanging $x$ and $y$, we obtain

$$
\begin{equation*}
\left\|g(y, x)-\left(D^{2} f(v) \cdot x\right) \cdot y\right\| \leq 3 \in\|y\|(\|x\|+\|y\|) \tag{7}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& \left\|\left(D^{2} f(v) \cdot x\right) \cdot y-\left(D^{2} f(v) \cdot y\right) \cdot x\right\| \\
& \quad=\left\|g(x, y)-\left(D^{2} f(v) \cdot y\right) \cdot x-g(y, x)+\left(D^{2} f(v) \cdot x\right) \cdot y\right\| \\
& \quad \leq\left\|g(x, y)-\left(D^{2} f(v) \cdot y\right) \cdot x\right\|+\left\|g(y, x)-\left(D^{2} f(v) \cdot x\right) \cdot y\right\| \\
& \quad \leq 3 \in\|x\|(\|x\|+\|y\|)+3 \in\|y\|(\|x\|+\|y\|) \\
& \quad=3 \in(\|x\|+\|y\|)^{2} \quad \quad \text { From (6) and (7) }
\end{aligned}
$$

But $\in$ is an arbitrary small, therefore

$$
\begin{aligned}
& \left(D^{2} f(v) \cdot x\right) \cdot y=\left(D^{2} f(v) \cdot y\right) x \\
& \quad \Rightarrow D^{2} f(v)(x, y)=D^{2} f(v)(y, x)
\end{aligned}
$$

Proved
Theorem 3 : Let $X$ and $Y$ be Banach spaces over the same field $K$ of scalars and V be an open subset of $X$. Suppose $f: V \rightarrow Y$ be an n-times differentiable function on V . Then for each permutation $p$ of $\underline{n}$ and each point $\left(x_{1}, x_{2}, \ldots . x_{n}\right) \in X^{n}$ and each $v \in V$,

$$
D^{n} f(v)\left(x_{p(1)}, x_{p(2)}, \ldots, x_{p(n)}\right)=D^{n} f(v)\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Proof : We shall prove this result by induction on n . For $\mathrm{n}=2$, this reduces to theorem (2) i.e. $D^{2} f(v)\left(x_{1}, x_{2}\right)=D^{2} f(v)\left(x_{2}, x_{1}\right)$, which we have already proved.

Let us assume that the result is true for $(n-1)$ i.e. $D^{n-1} f(v)$ is a symetric member of $L\left(X^{n-1}, Y\right)$ Now suppose $x_{1} \in X$, then
for $\left(x_{2}, \ldots ., x_{m}\right) \in X^{n-1}$, we have

$$
D^{n} f(v) \cdot\left(x_{1}, x_{2}, \ldots, x_{n}\right)=D\left(D^{n-1} f(v) \cdot x_{1}\right)\left(x_{2}, \ldots, x_{n}\right)
$$

Now we know that each permutation of $\underline{n}$ is a composition of consecutive transpoitions $(r, r+1)$ of $\underline{n}$. Since by hypothesis $D^{n-1} f(v)$ is a symmetric function of $X^{n-1}$ into Y , for $r=2,3, \ldots n$.

$$
\therefore \quad D^{n} f(v) \cdot\left(x_{1}, x_{2}, \ldots x_{r}, x_{r+1} \ldots, x_{n}\right)=D^{n} f(v) \cdot\left(x_{1}, x_{2} \ldots, x_{r+1}, x_{r} \ldots x_{n}\right)
$$

So now, it is sufficient to show that

$$
D^{n} f(v) \cdot\left(x_{1}, x_{2} \ldots, x_{n}\right)=D^{n} f(v) \cdot\left(x_{2}, x_{1} \ldots \ldots, x_{n}\right)
$$

But we know that $D^{n} f(v)=D^{2}\left(D^{n-2} f\right)(v)$, and so that

$$
\left(D^{n} f(v) \cdot x_{1}\right) \cdot x_{2}=\left(D^{n} f(v) \cdot x_{2}\right) \cdot x_{1}
$$

Consqeuently

$$
D^{n} f(v) \cdot\left(x_{1}, x_{2}, \ldots, x_{n}\right)=D^{n} f(v) \cdot\left(x_{2}, x_{1}, \ldots, x_{n}\right)
$$

Proved

### 10.4 Taylor's Theorem

Theorem 4: Let $f$ be a function defined on the interval $[a, b]$ of R into R such that $f$ is $m$ times differentiable in $[a, b]$ and $(m+1)$ times differentiable in interval $(a, b)$. Then

$$
f(b)=f(a)+(b-a) D f(a)+\ldots .+\frac{(b-a)^{m}}{m!} D^{m} f(a)+\frac{(b-a)^{m+1}}{(m+1)!} D^{m+1} f(c)
$$

Where $c \in(a, b)$
Proof: Given that $f:[a, b] \rightarrow R$ be a function. We define a function $g$ on $[a, b]$ as follows :

$$
\begin{align*}
g(x)=f(b)-f(x)-(b-x) D f(x) \ldots \ldots \frac{(b-x)^{m}}{m!} D^{m} f(x) \\
-A \frac{(b-x)^{m+1}}{(m+1)!} \quad \forall x \in[a, b] \tag{1}
\end{align*}
$$

Where $A$ is a constant can be determined by putting

$$
g(a)=g(b)
$$

Put $x=b$ in $e q^{n}$ (1), we get

$$
g(b)=0 \Rightarrow g(a)=0
$$

Put $x=a$ in $e q^{n}(1)$, we obtain

$$
\begin{gather*}
g(a)=f(b)-f(a)-(b-a) D f(a) \ldots \cdot \frac{(b-a)^{m}}{m!} D^{m} f(a) \\
-A \cdot \frac{(b-a)^{m+1}}{(m+1)!} \\
\Rightarrow f(b)=f(a)+(b-a) D f(a)+\ldots .+\frac{(b-a)^{m}}{m!} D^{m} f(a)+A \cdot \frac{(b-a)^{m+1}}{(m+1)!}
\end{gather*}
$$

$$
\because g(a)=0
$$

Now from $e q^{h}(1)$, it is clear that
(i) $\quad g(x)$ is continuous in $[a, b]$
(ii) $g(x)$ is differentiable in $(a, b)$ and
(iii) $\quad g(a)=g(b)$

Hence by Rolle's theorem there exists $c \in(a, b)$ such that

$$
g^{\prime}(c)=0
$$

Differentiate $e q^{n}(1)$ w.r. $t x$, we get

$$
g^{\prime}(x)=-f^{\prime}(x)+f^{\prime}(x) \ldots . \cdot-\frac{(b-x)^{m}}{m!} D^{m+1} f(x)+A \cdot \frac{(m+1)(b-x)^{m}}{(m+1)!}
$$

putting $x=c$, we have

$$
\begin{aligned}
& g^{\prime}(c)=-\frac{(b-c)^{m}}{m!} D^{m+1} f(c)+A \cdot \frac{(b-c)^{m}}{m!} \\
& \Rightarrow \quad A=D^{m+1} f(c) \quad \because g^{\prime}(c)=0 \text { and } b-c \neq 0
\end{aligned}
$$

Substituting the value of A in(2), we get

$$
\begin{array}{r}
f(b)=f(a)+(b-a) D f(a)+\ldots+\frac{(b-a)^{m}}{m!} D^{m} f(a) \\
+ \\
+\frac{(b-a)^{m+1}}{(m+1)!} D^{m+1} f(c)
\end{array}
$$

Where $c \in(a, b)$
Theorem 5: Let $X$ he a Banach space over the field K of scalars, and let I be an open interval in R containing [0,1]. If $\psi: I \rightarrow X$ is $(n+1)$ times continuously differentiable function of a single variable $t \in I$. Then

$$
\psi(1)=\psi(0)+\psi^{\prime}(0)+\frac{\psi^{n}(0)}{2!} \ldots+\frac{\psi^{n}(0)}{n!}+\int_{0}^{1} \frac{(1-t)^{n}}{n!} \psi_{(t)}^{n+1} d t
$$

Proof: We know that if the function $f$ on $[0,1]$ has a continuous derivative $f^{\prime}$, then

$$
\begin{equation*}
f(1)-f(0)=\int_{0}^{1} f^{\prime}(t) d t \tag{1}
\end{equation*}
$$

We define a function $f$ on I as follows :

$$
\begin{aligned}
& f(t)=\psi(t)+(1-t) \psi^{\prime}(t)+\ldots \ldots+\frac{(1-t)^{n}}{n!} \psi^{n}(t) \\
\therefore & f^{\prime}(t)=\psi^{\prime}(t)+(1-t) \psi^{\prime \prime}(t)-\psi^{\prime}(t)+\ldots \ldots+\frac{(1-t)^{n}}{n!} \psi^{n+1}(t) \\
\Rightarrow \quad & \frac{(1-t)^{n}}{n!} \psi^{n+1}(t)=f^{\prime}(t) \\
\Rightarrow \quad & \int_{0}^{1} \frac{(1-t)^{n}}{n!} \psi^{n+1}(t) d t=\int_{0}^{1} f^{\prime}(t) d t
\end{aligned}
$$

Using $e q^{n}$ (1), we get

$$
f(1)-f(0)=\int_{0}^{1} \frac{(1-t)^{n}}{n!} \psi^{n+1}(t) d t
$$

Using (2), we get

$$
\begin{aligned}
& \psi(1)-\psi(0)-\psi^{\prime}(0)-\frac{\psi^{\prime \prime}(0)}{2!} \ldots .-\frac{\psi^{n}(0)}{n!}=\int_{0}^{\prime} \frac{(1-t)^{n}}{n!} \psi^{n+1}(t) d t \\
\Rightarrow & \psi(1)=\psi(0)+\psi^{\prime}(0)-\frac{\psi^{\prime \prime}(0)}{2!}+\ldots .+\frac{\psi^{n}(0)}{n!}+\int_{0}^{\prime} \frac{(1-t)^{n}}{n!} \psi^{n+1}(t) d t
\end{aligned}
$$

Proved
Theorem 6: Let $X$ be a Banach space over a field K of scalars and let I be an open interval in R containing $[0,1]$.

If $\psi: I \rightarrow X$ is an $(n+1)$ times differentiable function of a single variable $t \in I$ and if $\left\|\psi^{n+1}(t)\right\| \leq M$ for $t \in[0,1]$.

Then

$$
\left\|\psi(1)-\psi(0)-\psi^{\prime}(0)-\frac{\psi^{\prime \prime}(0)}{2!} \ldots .-\frac{\psi^{n}(0)}{n!}\right\| \leq \frac{M}{(n+1)!}
$$

Proof: We define two functions $f:[0,1] \rightarrow X$ and $g:[0,1] \rightarrow R$ as follows:

$$
\begin{equation*}
f(t)=\psi(t)+(1-t) \psi^{\prime}(t)+\ldots .+\frac{(1-t)^{n}}{n!} \psi^{n}(t) \tag{1}
\end{equation*}
$$

and,

$$
\begin{equation*}
g(t)=\frac{-M(1-t)^{n+1}}{(n+1)!} \quad \forall t \in[0,1] \tag{2}
\end{equation*}
$$

From equation(1), we have

$$
\begin{align*}
\|D f(t)\| & =\left\|\frac{(1-t)^{n}}{n!} \psi^{n+1}(t)\right\| \\
& =\frac{(1-t)^{n}}{n!}\left\|\psi^{n+1}(t)\right\| \\
\|D f(t)\| & \leq \frac{(1-t)^{n}}{n!} \cdot M \tag{3}
\end{align*}
$$

From equation(2), we have

$$
\begin{align*}
& D g(t)=\frac{M(1-t)^{n}}{(n+1)!} \cdot(n+1) \\
\Rightarrow \quad & D g(t)=\frac{M(1-t)^{n}}{n!} \tag{4}
\end{align*}
$$

From (3) and (4), we have

$$
\|D f(t)\| \leq D g(t), \text { for all } t \in\{0,1\}
$$

Now we know that if $f:[0,1] \rightarrow Y$ and $g:[0,1] \rightarrow R$ are continuous and differentiable functions such that $\|D f(t)\| \leq D g(t), \forall t \in(0,1)$, then we have

$$
\|f(1)-f(0)\| \leq g(1)-g(0), \text { by theorem (6) unit (9) }
$$

Using (1) and (2), we get

$$
\begin{aligned}
& \left\|\psi(1)-\psi(0)-\psi^{\prime}(0)-\frac{\psi^{\prime \prime}(0)}{2!} \ldots \ldots \ldots \frac{\psi^{n}(0)}{n!}\right\| \leq 0-\left(-\frac{M}{(n+1)!}\right) \\
\Rightarrow & \left\|\psi(1)-\psi(0)-\psi^{\prime}(0)-\frac{\psi^{\prime \prime}(0)}{2!} \ldots \ldots . .-\frac{\psi^{n}(0)}{n!}\right\| \leq \frac{M}{(n+1)!}
\end{aligned}
$$

Theorem 7 (Taylor's formula with Lagrange's Reminder) : Let $X$ and $Y$ be Banach space over the same field $K$ of scalars and $V$ be an open subset of $X$. Let $f: V \rightarrow Y$ be an $(n+1)$ times differentiable function. If the interval $[a, a+h]$ is contained in $V$ and if $\left\|f^{n+1}(x)\right\| \leq M, x \in V$. Then

$$
\left\|f(a+h)-f(a)-f^{\prime}(a) h-\ldots-\frac{f^{n}(a)}{n!} h^{n}\right\| \leq \frac{M\|h\|^{n+1}}{(n+1)!}
$$

Proof: We define a mapping $\phi:[0,1] \rightarrow Y$ as follows :

$$
\begin{align*}
& \phi(t)=f(a+t h), . \quad \forall t \in[0,1]  \tag{1}\\
& \phi^{n+1}(t)=h^{n+1} f^{n+1}(a+t h) \\
\Rightarrow \quad & \left\|\phi^{n+1}(t)\right\|=\left\|h^{n+1} f^{n+1}(a+t h)\right\| \\
\Rightarrow \quad & \left\|\phi^{n+1}(t)\right\| \leq M\|h\|^{n+1} \tag{2}
\end{align*}
$$

Now suppose that

$$
\begin{equation*}
\psi(t)=\phi(t)+(1-t) \phi^{\prime}(t)+\ldots+\frac{(1-t)^{n}}{!n} \phi^{n}(t), t \in[0,1] \tag{3}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
& \psi^{\prime}(t)=\frac{(1-t)^{n}}{n!} \phi^{n+1}(t) \\
\Rightarrow & \left\|\psi^{\prime}(t)\right\|=\frac{(1-t)^{n}}{n!}\left\|\phi^{n+1}(t)\right\| \\
\Rightarrow & \left\|\psi^{\prime}(t)\right\| \leq \frac{(1-t)^{n}}{n!} M\|h\|^{n+1} \quad[\text { From }(2)] \tag{4}
\end{align*}
$$

We define again $g:[0,1] \rightarrow R$ as follows :

$$
\begin{equation*}
g(t)=-M \frac{(1-t)^{n}}{(n+1)!}\|h\|^{n+1} \tag{5}
\end{equation*}
$$

so that

$$
\begin{equation*}
D g(t)=M \frac{(1-t)^{n}}{n!}\|h\|^{n+1} \tag{6}
\end{equation*}
$$

Using (6) in (4), we get

$$
\|D \psi(t)\| \leq D g(t), \quad t \in[0,1]
$$

Then by mean value theorem, we have

$$
\|\psi(1)-\psi(0)\| \leq g(1)-g(0)
$$

using (3) and (5), we obtain

$$
\left\|\phi(1)-\phi(0)-\phi^{\prime}(0)-\ldots-\frac{\phi^{n}(0)}{n!}\right\| \leq 0-\left\{-\frac{M .\|h\|^{n+1}}{(n+1)!}\right\}
$$

Using (1), we get

$$
\left\|f(a+h)-f(0)-h f^{\prime}(0)-\ldots-\frac{h^{n}}{n!} f^{n}(0)\right\| \leq \frac{M\|h\|^{n+1}}{(n+1)!}
$$

Theorem 8 (Taylor's Formula with Integral Remainder): Let $X$ and $Y$ be Banach space over the same field $K$ of scalars and V be an open subset of X . Suppose $f: V \rightarrow Y$ be a function of class $C^{n+1}$. If the closed interval $[a, a+h]$ is contained in $V$. Then

$$
\begin{aligned}
f(a+h)=f(a)+ & h f^{\prime}(a)+\frac{h^{2}}{2!} f^{\prime \prime}(a)+\ldots+\frac{h^{n}}{n!} f^{n}(a) \\
& +\int_{0}^{1} \frac{(1-t)^{n}}{n!} f^{n+1}(a+t h) \cdot h^{n+1} d t
\end{aligned}
$$

Proof: We define a function $\psi:[0,1] \rightarrow Y$ as follows:

$$
\begin{align*}
& \psi(t)=f(a+t h), \forall t \in[0,1]  \tag{1}\\
& \left.\begin{array}{c}
\psi^{\prime}(t)=h f^{\prime}(a+t h) \\
\psi^{\prime \prime}(t)=h^{2} f^{\prime \prime}(a+t h) \\
\vdots \\
\vdots \\
\psi^{n}(t)=h^{n} f^{n}(a+t h)
\end{array}\right\}
\end{align*}
$$

Suppose,

$$
f(t)=\psi(t)+(1-t) \psi^{\prime}(t)+\ldots+\frac{(1-t)^{n}}{n!} \psi^{n}(t)
$$

Since,

$$
\begin{aligned}
& f(1)-f(0)=\int_{0}^{1} f^{\prime}(t) d t, \text { then by theorem (5), we have } \\
& \psi(1)-\psi(0)-\psi^{\prime}(0)-\ldots-\frac{\psi^{n}(0)}{n!}=\int_{0}^{1} \frac{(1-t)^{n}}{n!} \psi^{n}(t) d t
\end{aligned}
$$

Using (1) and (2), we obtain

$$
\begin{aligned}
f(a+h)=f(0)+ & h f^{\prime}(0)+\frac{h^{2}}{2!} f^{\prime \prime}(0)+\ldots+\frac{h^{n}}{n!} f^{n}(0) \\
& +\int_{0}^{1} \frac{h^{n+1}}{n!}(1-t)^{n} f^{n+1}(a+t h) d t
\end{aligned}
$$

### 10.5 Existence Theorems on Differentiable Functions

In this section we shall prove the implicit function theorem and the inverse function theorem.
Theorem 9 (Implicit function Theorem) : Let $X, Y$ and $Z$ be Banach space over field $K$, let $f$ be a continuous function on an open subset $W$ of $X \times Y$ into $Z$ such that at each point $(x, y) \in W$ the partial derivative $D_{2} f(x, y)$ exists and $D_{2} f$ is a continuous function on $W$ into $L(Y, Z)$ and let $(u, v) \in W$ be such that $f(u, v)=0$ and $D_{2} f(u, v)$ is a linear homoeomorphism of $Y$ onto $Z$. Then there exists an open neighbourhood $U$ of $u$ and an open neighbourhood $V$ of $v$ such that $U \times V \subset W$ and a unique continuous function $g$ on $U$ into $V$ such that

$$
g(u)=v \text { and for each } x \in U, f(x, g(x))=0
$$

If $f$ is differentiable at $(u, v)$ then $g$ is differentiable at $u$ and

$$
D g(u)=-\left(D_{2} f(u, v)\right)^{-1} o D_{1} f(u, v)
$$

Proof: We define a function $h: W \rightarrow Y$ as follows :

$$
\begin{align*}
& h(x, y)=y-\left(D_{2} f(u, v)\right)^{-1}(f(x, y)), \forall(x, y) \in W  \tag{1}\\
\Rightarrow \quad & h(x, y)=y \text { iff } f(x, y)=0 \tag{2}
\end{align*}
$$

$h$ is continuous in $W$, therefore $D_{2} h(x, y)$ exists at each $(x, y) \in W$ and $D_{2} h$ is continous on $W$.

Let $U^{\prime}$ be an open ball with centre $u$ and radius $\in$ and $V^{\prime}$ be a closed ball with centre $v$ and radius $\in$ such that

$$
\begin{align*}
& U^{\prime} \times V^{\prime} \subset W \text { and for all }(x, y) \in U^{\prime} \times V^{\prime} \\
& \left\|D_{2} h(x, y)\right\| \leq \frac{1}{2} \tag{3}
\end{align*}
$$

Now by mean value theorem,

$$
\left\|h(x, y)-h\left(x, y^{\prime}\right)\right\| \leq \frac{1}{2}\left\|y-y^{\prime}\right\| \forall x \in U^{\prime}, y, y^{\prime} \in V^{\prime}
$$

Let $U^{\prime \prime}$ is an open bell with centre $u$ and it contained in $U^{\prime}$, then

$$
\begin{equation*}
\|h(x, v)-v\| \leq \frac{\in}{2} \tag{4}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\|h(x, y)-v\| & =\|h(x, y)-h(x, v)+h(x, v)-v\| \\
& \leq\|h(x, y)-h(x, v)\|+\|h(x, v)-v\|
\end{aligned}
$$

$$
\begin{array}{ccc} 
& \leq \frac{1}{2}\|y-v\|+\frac{\in}{2} & {[\text { From (4) and (5)] }} \\
\Rightarrow & \|h(x, y)-v\| \leq \epsilon & {\left[\text { As } y, v \in V^{\prime}, \Rightarrow\|y-v\| \leq \in, \because \in \text { is the radius of } V^{\prime}\right]}
\end{array}
$$

Since $V^{\prime}$ is closed and $Y$ is complete and $V^{\prime} \subset Y$, therefore $V^{\prime}$ is also complete.
Then by Banach fixed point theorem there exists a unique linear transformation $g^{\prime}: U^{\prime \prime} \rightarrow V^{\prime}$ such that

$$
h\left(x, g^{\prime}(x)\right)=g^{\prime}(x)
$$

Using (2), we obtain

$$
\begin{equation*}
f\left(x, g^{\prime}(x)\right)=0 \tag{6}
\end{equation*}
$$

Let $V$ be the interior of $V^{\prime}$ and let $U=g^{-1}(V)$ and let $g$ be the restriction of $g^{\prime}$ to the set $U$, then

$$
g^{\prime}(x)=g(x), x \in V
$$

Then, we have

$$
f(x, g(x))=0 \text { and } g(u)=v .
$$

Now let $f$ is differentiable at $(u, v)$ and $x$ be any element in $X$ such that $u+x \in U$
Let $y=g(u+x)-g(u)$, then

$$
\begin{align*}
& f(u+x, g(u+x)) \\
\Rightarrow \quad & =0  \tag{7}\\
\Rightarrow \quad f(u+x, g(u)+y) & =0
\end{align*}
$$

As $f$ is differentiable at $(u, v)$, therefore given $\in>0$, there exists $\delta>0$ such that $\|x\| \leq \delta$. Therefore,

$$
\|f(u+x, g(u)+y)-f(u, g(u))-p x-q y\| \leq \in(\|x\|+\|y\|)
$$

where $\quad p=D_{1} f(u, g(u))$

$$
q=D_{2} f(u, g(u))
$$

then we have

$$
\|p x+q y\| \leq \in(\|x\|+\|y\|)
$$

Since $f(u+x, g(u+x))=0=f(u, g(u))$
Given that $q=D_{2} f$ is a linear homeomorphism, therefore

$$
\begin{align*}
\left\|\left(q^{-1} o p\right) x+y\right\| & \leq\left\|q^{-1}\right\|\|p x+q y\| \\
& \leq \in\left\|q^{-1}\right\|(\|x\|+\|y\|) \tag{9}
\end{align*}
$$

Let $\in\left\|q^{-1}\right\|=\frac{1}{2}$
Now,

$$
\begin{aligned}
\|y\|=\left\|y+\left(q^{-1} o p\right) x-\left(q^{-1} o p\right) x\right\| \\
\leq\left\|y+\left(q^{-1} o p\right) x\right\|+\left\|q^{-1} o p\right\|\|x\| \\
\Rightarrow \quad\|y\| \leq \frac{1}{2}(\|x\|+\|y\|)+\left\|q^{-1} o p\right\|\|x\| \quad \text { from }(9)
\end{aligned}
$$

Thus

$$
\begin{equation*}
\|x\|+\|y\| \leq 2\|x\|\left(1+\left\|q^{-1} o p\right\|\right) \tag{10}
\end{equation*}
$$

Now,

$$
\begin{gather*}
\left\|g(u+x)-g(u)-\left\{-\left(q^{-1} o p\right) x\right\}\right\| \\
=\left\|y+\left(q^{-1} o p\right) x\right\| \\
\leq \in\left\|q^{-1}\right\|(\|x\|+\|y\|)  \tag{From}\\
\leq \in\left\|q^{-1}\right\| 2\|x\|\left(1+\left\|q^{-1} o p\right\|\right)  \tag{From}\\
\Rightarrow \quad \frac{\left\|g(u+x)-g(u)-\left\{-\left(q^{-1} o p\right)\right\} x\right\|}{\|x\|} \leq 2 \in\left\|q^{-1}\right\|\left(1+\left\|q^{-1} o p\right\|\right)
\end{gather*}
$$

But $\in$ is arbitrary number therefore $g$ is differentiable and

$$
\begin{aligned}
D g(u) & =-q^{-1} o p \\
& =-\left\{D_{2} f(u, v)\right\}^{-1} o D_{1} f(u, v)
\end{aligned}
$$

Theorem 10 (Inverse Function Theorem) : Let $X$ and $Y$ be Banach spaces over the same field $K$ of scalars and $W$ be an open subset of $X$. Let $w \in W$ be such that $D f(w)$ is a linear homeomorphism of $X$ into $Y$. Then there exists an open neighbourhood $U$ of $w$ contained in $W$ and an open neighbourhood $V$ of $f(w)$ contained in $Y$ such that $f^{\prime}$ the restriction of $f$ to the set $U$ is $C^{1}$ homeomorphism of $U$ onto $V$, its inverse in a $C^{1}$ homeomorphism of $V$ onto $U$, and

$$
D f^{\prime-1}(f(w))=\left(D f^{\prime}(w)\right)^{-1}
$$

If $D f(x)$ is a linear homeomorphism of $X$ into $Y$, for all $x \in W$, then $f$ is an open mapping of $W$ into $Y$. If $D f(x)$ is a linear homeomorphism of $X$ onto $Y$ for all $x \in W$ and $f$ is injective then $f$ is a $C^{1}$ homeomorphism of $f(W)$ onto $W$.

Proof: We define a function $h: W \times Y \rightarrow Y$ as follows:

$$
h(x, y)=f(x)-y
$$

Then $D_{1} h(x, y)=D f(x)$ and $D_{2} h(x, y)=-I_{y}$

$$
\begin{aligned}
& \quad \forall(x, y) \in W \times Y \\
& \Rightarrow \quad h \text { is a } C^{1} \text { map on } W \times Y
\end{aligned}
$$

Then by implicit function theorem, there exists an open neighbourhood $U^{\prime}$ of $w$ contained in $W$, an open neighbourhood $V$ of $f(w)$ contained in $Y$ and a $C^{1}$ map $g: V \rightarrow U^{\prime}$ such that $f(g(y))=y$, $\forall y \in V$ and $g(f(w))=w$.

We take $U=g(V)$
Then $U \subset U^{\prime}, g$ is a bijection of $V$ onto $U$ and $U=U^{\prime} \cap f^{-1}(\mathrm{v})$, which is an open subset of $X$.

Let $f^{\prime}$ is an inverse of $g$, and $f^{\prime}$ is a $C^{1}$ homeomorphism of $U$ and $V, g$ is a $C^{1}$ homeomorphism of $V$ onto $U$ and $D f^{\prime-1}(f(w))=\left(D f^{\prime}(w)\right)^{-1}$

Now suppose $f(x)$ is a linear homeomorphism of $X$ onto $Y, \forall x \in W$. Then by the first part, for each $x \in W$, there is an open neighbourhood $U$ of $x$ contained in $W$, such that restriction of $f$ to $U$ is a homeomorphism of $U$ onto its image. Hence $f$ is an open mapping of $W$ into $Y$.

Moreover, let $f$ is also injective. Then $f$ is a bijection of $W$ onto $f(W)$ and so that a homeomorphism of $W$ onto $f(W)$.

## Self-Learning Exercise

1. Define $C^{1}$ map
2. Define higher derivatives

### 10.6 Summary

In this unit we studied higher derivatives of functions defined on Banach spaces. We also studied the Taylor's theorem and existence theorems on differentiable function.

### 10.7 Answers to Self-Learning Exercise

1. Seetext 2. Seetext

### 10.8 Exercises

1. Let $f: W \rightarrow Y$, where $W$ is an open subset of the product $X_{1} \times X_{2} \times \ldots \times X_{n}$ of Banach spaces $X_{1}, X_{2}, \ldots, X_{n}$ over field $K$ such that $f$ is twice differentiable at $w \in W$. Then for

$$
i, j=1,2, \ldots \ldots \ldots, n
$$

$$
D_{i}\left(D_{j} f\right)(w)=D_{j}\left(D_{i} f\right)(w)
$$

2. Let $X$ and $Y$ be Banach spaces over field $K$ and let $f$ be a $C^{n}$-map of an open subset $W$ of $X$ into $L(X, Y)$. Then the map $(w, x) \rightarrow(f(w), x)$ is also $C^{n}$-map.

## Unit - 11

## The Integral in a Banach Space

## Structure of the Unit

### 11.0 Objectives

### 11.1 Introduction

### 11.2 Subdivision

### 11.3 Step function

### 11.4 Integral of a step Function

### 11.5 Regulated Function

### 11.6 Basic Properties of Integrals

### 11.7 Summary

11.8 Answers to SelfLearning Exercire

### 11.9 Exercises

### 11.0 Objectives

In this unit, we introduce integral of a regulated function through step function and discuss some of its basic properties.

### 11.1 Introduction

At elementary stage, the subject of integration is generally introduced as the inverse of differentiation, so that a function F is called an integral of given function $f$ if $F^{\prime}(x)=f(x)$, for all values of $x$ belonging to the domain of the function $f$. The reference to integration from summation point of view was always associated with the geometric concepts. To formulate an independent theory of integration, the German mathematician, Riemann, gave a purely arithmatic treatment to the subject and developed the subject entirely free from the intuitive dependence on geometrical concepts.

The Riemann integral depends very explicitly on the order structure of the real line. Accordingly, we have studied the integration of real valued function of real variable in under-gradark courses. In this unit, we courider the integral of a function of one variable into a Banach space. To study integration of such functions, we take slightly different approach than for real valued functions of a real variable. First we detive the integral of a regulated function through step functions and then prove some basic properties of the integrals.

### 11.2 Subdivision

Let $[a, b]$ be a compact interval of the real line. A set of points $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of $[a, b]$ is called a subdivision of $[a, b]$
if, $\quad a=a_{1} \leq \ldots \leq a_{n}=b$.
The subdivision consists of $n$ poitns. A subdivision $S_{2}$ of $[a, b]$ is said to be refinement of a
subdivision $S_{1}$ of $[a, b]$ iff each point of $S_{1}$ is a point of $S_{2}$ i.e, $S_{1} \subset S_{2}$. Let $S_{1}$ and $S_{2}$ be two subdivisions of $[a, b]$, then there exists a unique subdivision $S\left(=S_{1} \cup S_{2}\right)$ whose points are the point of $S_{1}$ or $S_{2}$ and which is a refinement of both $S_{1}$ and $S_{2}$.

### 11.3 Step Function

Let $[a, b]$ be compact interval of $R$ and let $X$ be a Banach space over $K$. Then a function $f:[a, b] \rightarrow X$ is called a step function with respect to a subdivision $\left(a_{i}: i \in \underline{n}\right)$ of $[a, b]$ iff for each $i$ in $\underline{n-i}, f\left(a_{i}, a_{i+1}\right)$ is a singleton. We say that $f$ is a Step function on $[a, b]$ into $X$ iff it is a step function with respect to some subdivision of $[a, b]$.

Thus a function $f$ on $[a, b]$ into $X$ is a step function on $[a, b]$ into $X$ iffthere exists a subdivision $\left(a_{i}: i \in \underline{n}\right)$ of $[a, b], n \geq 2$ and there exists a list $\left(x_{i}: i \in \underline{n-1}\right)$ of points of $X$ such that for each $i$ in $\underline{n-1}$ and each $t$ in $\left(a_{i}, a_{i+1}\right), f(t)=x_{i}$.

### 11.4 Integral of a Step Function

Let $f$ be a step function on compact interval $[a, b]$ of $R$ into a Banach space $X$. Let $S=\left(a_{i}: i \in \underline{n}\right)$ be subdivision of $[a, b]$ such that $f$ is a step function with respect to $S$. For each $i$ in $\underline{n-1}$, let $x_{i}$ be a point of $X$ such that foll all $t$ in $\left(a_{i}, a_{i+1}\right), f(t)=x_{i}$. Then we put

$$
I_{S}(f)=\sum_{i=1}^{n-1}\left(a_{i+1}-a_{i}\right) x_{i}
$$

Now let $j$ be a fixed element of $\underline{n-1}$ and let $c_{j}$ be any point of $\left(a_{j}, a_{j+1}\right)$. Then

$$
S_{1}=\left(a_{1}, \ldots, a_{j}, c_{j}, a_{j+1}, \ldots, a_{n}\right)
$$

is a subdivision of $[a, b]$ such that $S_{1}$ is refinement of $S$. Moreover

$$
\begin{aligned}
I_{S_{1}}(f)=\left(a_{2}-a_{1}\right) x_{1}+\ldots+\left(c_{j}-a_{j}\right) x_{j} & +\left(a_{j+1}-c_{j}\right) x_{j}+\ldots \\
& +\left(a_{n}-a_{n-1}\right) x_{n-1}=I_{S}(f)
\end{aligned}
$$

Now let $T$ be a subdivision of $[a, b]$ such that $T$ is a refinement of $S$. Then by induction,

$$
I_{S}(f)=I_{T}(f)
$$

Finally let $U$ be any other subdivision of $[a, b]$ with respect to which $f$ is a step function. Then by definition 11.2, there exists a subdivision $V$ of $[a, b]$ such that $V$ is a refinement of both $S$ and $U$. Hence

$$
I_{S}(f)=I_{U}(f)=I_{V}(f)
$$

Consequently, we define the integral of a step function $f$ on $[a, b]$ into $X$ as the vector $\sum_{i=1}^{n-1}\left(a_{i+1}-a_{i}\right) x_{i}$,
where $\left(a_{i}: i \in \underline{n}\right)$ is a subdivision of $[a, b]$ such that $f$ is a step function with respect to this subdivision, and where for each $i$ in $\underline{n-1}$, there is a vector $x_{i} \in X$ such that

$$
f(t)=x_{i} \text { for all } t \in\left(a_{i}, a_{i+1}\right)
$$

and denote it by $\int_{a}^{b} f$ or $\int_{a}^{b} f(t) d t$
Evidently

$$
\begin{aligned}
\left\|\int_{a}^{b} f\right\| & \leq \sum_{i=1}^{n-1}\left|a_{i+1}-a_{i}\right|\left\|x_{i}\right\| \\
& \leq \sum_{i=1}^{n-1}\left|a_{i+1}-a_{i}\right| \sup \{\|f(t)\|: t \in[a, b]\} \\
& =(b-a) \sup \{\|f(t)\|: t \in[a, b]\} \\
& =(b-a)\|f\|
\end{aligned}
$$

Now if we consider the set $S([a, b], X)$ of all step functions on a compact internal $[a, b] \subset R$ into a Banach space $X$ then this set tuns out to be a Banach space with norm as stated above. This is evident form the following theorem.

Theorem 1: Let $[a, b]$ be a compact interval of $R$ and let $X$ be a Banach space over $K$. Then the set $S([a, b], X)$ of all step functions on $[a, b]$ into $X$ is a vector subspace of the Banach space $B([a, b], X)$ of all bounded functions on $[a, b]$ into $X$ with Sup. norm

$$
f \rightarrow\|f\|=\sup \{\|f(t)\|: t \in[a, b]\}
$$

and the map $f \rightarrow \int_{a}^{b} f$ is a continuous linear map of $S([a, b], X)$ into $X$.
Proof: Let $f, g \in S([a, b], X)$ i.e., $f$ and $g$ be step functions on $[a, b]$ into $X$ with respect to subdivisions $S$ and $T$ of $[a, b]$ respectively. Let $U=\left(a_{i}: i \in \underline{n}\right)$ be a refinement of both $S$ and $T$, then $f$ and $g$ are step functions with respect to $U$ also and so for each $i$ in $\underline{n-1}$ there are vectors $x_{i}$ and $y_{i}$ in $X$ such that for each $t \in\left(a_{i}, a_{i+1}\right), f(t)=x_{i}$ and $g(t)=y_{i}$

$$
f(t)+g(t)=x_{i}+y_{i}
$$

i.e., $\quad(f+g) t=x_{i}+y_{i}$ for each $t \in\left(a_{i}, a_{i+1}\right)$

Hence $f+g$ is a step function on $[a, b]$ into $X$ with respect to $U$ and so $f+g \in S([a, b], X)$.
Also for each $\alpha \in K, \alpha f$ is a step function on $[a, b]$ into $X$ with respect to $S$ i.e. $\alpha f \in S([a, b], X)$.

For each $f$ in $S([a, b], X), I_{m}(f)$ is a finite subset of $X$ and so it is bounded. Thus $S([a, b], X)$ is a vector subspace of $B([a, b], X)$. The function $f \rightarrow \int_{a}^{b} f$ on $S([a, b], X)$ into $X$ is clearly linear and continuous with a norm less than or equal to $b-a$.

### 11.5 Regulated Function

Let $[a, b]$ be a compact interval of $R$ and $X$ be a Banach space over $K$. Then a member of the closure of the vector subspace $S([a, b], X)$ of all step functions an $[a, b]$ into $X$ in the Banach space $B([a, b], X)$ is called a regulated function on $[a, b]$ into $X$.

The unique continuous linear extension of the map $f \rightarrow \int_{a}^{b} f \in X, f \in S([a, b], X)$ to closure of $S([a, b], X)$ will be denoted by the same symbol $f \rightarrow \int_{a}^{b} f$ and for each regulated function $f$ on $[a, b]$ into $X, \int_{a}^{b} f$ will be called the integral of $f$.

The class of regulated functions is larger than the class of continuous functions. In support of this we have the following theorem.

Theorem 2: Let $f$ be a function on a compact interval $[a, b]$ of $R$ into a Banach space $X$ over $K$. Then $f$ is regulated iff the following conditions are satisfied.
(i) for each point $c \in[a, b)$

$$
\lim _{\substack{t \rightarrow c \\ t>c}} f(t) \text { exists }
$$

(ii) for each point $c \in(a, b]$

$$
\lim _{\substack{t \rightarrow c \\ t<c}} f(t) \text { exists. }
$$

In particular, if $f$ is continuous, then $f$ is regulated.
Proof: First by, let $f$ be regulated. Let $r$ be any positive real number, then there is a $g$ in $S([a, b], X)$ such that

$$
\|f-g\| \leq \frac{r}{3}
$$

Let $c$ be any point of $[a, b]$. Since $g$ is a step function on $[a, b]$, there is a $d$ in $[a, b]$ such that $c<d$ and for each $t$ and $t^{1}$ in $[c, d]\left\|g(t)-g\left(t^{1}\right)\right\| \leq \frac{r}{3}$.
and so,

$$
\left\|f(t)-f\left(t^{\prime}\right)\right\| \leq\|f(t)-g(t)\|+\left\|g(t)-g\left(t^{\prime}\right)\right\|+\left\|g\left(t^{\prime}\right)-f\left(t^{\prime}\right)\right\| \leq \frac{r}{3}+\frac{r}{3}+\frac{r}{3}=r
$$

Hence

$$
\lim _{\substack{t \rightarrow c \\ t>c}} f(t) \text { exists, as } X \text { is complete. }
$$

Similarly, we can prove that $\lim _{\substack{t \rightarrow c \\ t<c}} f(t)$ exists.

Next suppose that $f$ satisfies condition (i) and (ii). Let $r$ be any positive real number. Then for each $c$ in $[a, b]$, there exists real number $p(c)$ and $q(c)$ such that the open interval $(p(c), q(c))$ contains $c$ and for all pairs of point $t$ and $t^{\prime}$ in $[a, b] \cap(p(c), c)$ or $[a, b] \cap(c, q(c))$

$$
\left\|f(t)-f\left(t^{\prime}\right)\right\| \leq r
$$

Since $[a, b]$ is compact, there exists a finite subset $C$ of $[a, b]$ such that $[a, b] \subset \underset{c \in C}{U}(p(c), q(c))$.
Let $\left\{a_{i}: i \in \underline{n}\right\}$ be a set of points in the finite set

$$
(a, b) \cup\left\{[a, b] \cap\left(\bigcup_{c \in C}(p(c), q(c))\right)\right\}
$$

arranged in increasing order. For each $i$ in $\underline{n-1},\left(a_{i}, a_{i+1}\right)$ is contained in $(p(c), c)$ or $(c, q(c))$ for some $c$ in $C$ and

$$
\left\|f(t)-f\left(t^{\prime}\right)\right\| \leq r
$$

for all pairs of points $t$ and $t^{\prime}$ in $\left(a_{i}, a_{i+1}\right)$.
Define a function $g$ on $[a, b]$ into $X$ such that for each $i \in \underline{n}, g\left(a_{i}\right)=f\left(a_{i}\right)$ and for each $i \in \underline{n-1}$ and for each $t \in\left(a_{i}, a_{i+1}\right), g(t)=f\left(s_{i}\right)$, where $s_{i}$ is the middle point of $\left(a_{i}, a_{i+1}\right)$. Then $g$ is a step function on $[a, b]$ into $X$ and for each $t \in[a, b]$,

$$
\|f(t)-g(t)\| \leq r
$$

Hence $\|f-g\| \leq r$ and so $f$ is regulated.

Remark: (1) Let $[a, b]$ be a compact interval of $R$ and let $X$ be a Banach space for any two regulated functions $f$ and $g$ on $[a, b]$ into $X$ and any scalar $\alpha \in K$

$$
\begin{aligned}
& \int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} f, \\
& \int_{a}^{b}(\alpha f)=\alpha \int_{a}^{b} f, \text { since the map } f \rightarrow \int_{a}^{b} f \text { is linear. }
\end{aligned}
$$

(2) Given any sequence $\left\{f_{n}: n \in N\right\}$ in closure of $(S[a, b], X)$ converging to $f$ in $B([a, b], X)$, then $f$ is in closure of $S([a, b], X)$ and the sequence $\left\{\int_{a}^{b} f_{n}: n \in N\right\}$ in $X$ converses to $\int_{a}^{b} f$ in $X$.

### 11.6 Basic Properties of Integrals

Theorem 3: Let $f$ be a regulated function on a compact interval $[a, b]$ of $R$ into a Banach space $X$ over $K$, and $c$ be any point of $[a, b]$. Then the restriction of $f$ to $[a, c]$ (respectively $[c, b]$ ) is a regulated function on $[a, c]$ (respectively $[c, b])$ into $X$ and $\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f$.

Proof: Let $f$ be a step function on $[a, b]$, then clearly restriction of $f$ to $[a, c]$ (respectively $[c, b]$ ) is a step function on $[a, c]$ (respectively $[c, b]$ ) and

$$
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f
$$

Now let $f$ be a regulated function on $[a, b]$
Then there is a sequence $\left\{f_{n}: n \in N\right\}$ of step function on $[a, b]$ converging to $f$ in $B([a, b], X)$. Then by the aobve remark $\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f$.

Theorem 4: Let $f$ be a regulated function on a compact interval $[a, b]$ of $R$ into a Banach space $X$ over $K$ and $g$ be a continuous linear map of $X$ into a Banach space $Y$ over $K$. Then $g o f$ is regulated and

$$
\int_{a}^{b}(g o f)=g\left(\int_{a}^{b} f\right)
$$

Proof: Let $f$ be a step function, then clearly $g o f$ is also a step function and

$$
\int_{a}^{b}(g \circ f)=g\left(\int_{a}^{b} f\right)
$$

Now let $f$ be a regulated function in $[a, b]$. Then there is a sequence $\left\{f_{n}: n \in N\right\}$ of step functions on $[a, b]$ into $X$ converging to $f$ in $B=([a, b], X)$. For each $n \in N$

$$
\begin{align*}
& \left\|g o f-g o f_{n}\right\| \leq\|g\|\left\|f-f_{n}\right\| . \\
\Rightarrow \quad & \left\|g o f-g o f_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty, \text { since }\left\|f-f_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty . \\
\Rightarrow \quad & \text { the sequence }\left\{g_{0} f_{n}: x \in N\right\} \text { of step functions on }[a, b] \text { in to } Y \text { converges to gof in } \\
& B([a, b], X) \tag{1}
\end{align*}
$$

Here gof is regulated.

By the definition of the integral, the sequence $\left\{\int_{a}^{b} f_{n}: n \in N\right\}$ converges to $\int_{a}^{b} f$ in $X$.
Since $g$ is continuous and linear, the sequence

$$
\begin{equation*}
\left\{\left(g \int_{a}^{b} f\right): n \in N\right\} \text { converges to } g \int_{a}^{b} f \text { in } Y \tag{2}
\end{equation*}
$$

but for each $n \in N$

$$
\int_{a}^{b}\left(g o f_{n}\right)=g\left(\int_{a}^{b} f_{n}\right)
$$

Hence $\int_{a}^{b}(g \circ f)=g\left(\int_{a}^{b} f\right)$
Definition : Let $f$ be a regulated function on a compact interval $[a, b]$ of $R$ into a Banach space $X$. Let $c$ and $d$ be any points of $[a, b]$ such that $c<d$. Then we define

$$
\int_{c}^{d} f=-\int_{d}^{c} f
$$

Theorem 5: Let $f$ be a regulated function on a compact interval $[a, b]$ of $R$ into a Banach space $X$. Then at each $t \in[a, b]$, the function $F:[a, b] \rightarrow X, F(t)=\int_{a}^{t} f, t \in[a, b]$ is continuous.

Proof : $f$ be a regulated function on $[a, b]$, so there is a sequence $\left\{f_{n}: n \in N\right\}$ of step functions on $[a, b]$ convergin to $f$ in $B([a, b], X)$. Therefore

$$
\begin{align*}
& \left\|\int_{a}^{t} f_{n}\right\| \leq(t-a)\left\|f_{n}\right\| \forall n \in N \\
\Rightarrow \quad & \left\|\int_{a}^{t} f\right\| \leq \mid(t-a)\| \| f \| \tag{1}
\end{align*}
$$

Consequently the function

$$
F:[a, b] \rightarrow X, F(t)=\int_{a}^{t} f, \quad t \in[a, b] \text { is continuous. }
$$

Theorem 6: Let $f$ be a continuous function on a comapact interval $[a, b]$ of $R$ into a Banach space $X$ over $K$. Let $F$ be the function $t \rightarrow \int_{a}^{t} f$ on $[a, b]$ into $X$. Let $g$ be any differentiable function on $[a, b]$ into $X$ such that $D g=f$. Then $F$ is differentiable, $D F=f$ and $\int_{a}^{b} f=F(b)-F(a)=g(b)-g(a)$.

Proof : Let $c$ be any point of $[a, b]$ and let $t$ be any real number such that $c+t \in[a, b]$ and $t \neq 0$ Then

$$
\int_{c}^{c+t} f(c) d t=t f(c)
$$

where $f(c)$ is the constant function on $[a, b]$, assigning $f(c)$ to all points of $[a, b]$. Hence

$$
\frac{F(c+t)-F(c)}{t}-f(c)=\frac{1}{t} \int_{c}^{c+t}(f(t)-f(c)) d t
$$

and so by (1) of Theorem 5, we get

$$
\left\|\frac{F(c+t)-F(c)}{t}-f(c)\right\| \leq \frac{1}{|t|} \cdot\|t\|\|f(t)-f(c)\| \rightarrow 0 \text { as } t \rightarrow c[\because f \text { is continuous }]
$$

Hence $D F(c)=f(c)$, so that

$$
\begin{array}{ll} 
& D F=f=D g \quad\{\because D g=f \text { given }\} \\
\Rightarrow \quad & D(F-g)=0 \\
\Rightarrow \quad & F-g \text { is constant function on }[a, b] . \text { But } f(a)=0, \text { and } \\
\text { Hence } & \int_{a}^{b} f=F(b)-F(a)=g(b)-g(a) .
\end{array}
$$

Theorem 7: Let $f$ be a $C^{1}$ map on a compact interval $[a, b]$ into a compact interval $[c, d]$ of $R$ and let $g$ be a continuous function on $[c, d]$ into a Banach space $X$ over $K$. Then

$$
\int_{a}^{b}(D f(s)) g(f(s)) d s=\int_{f(a)}^{f(b)} g(t) d t
$$

Proof: Let $h:[c, d] \rightarrow X$ be defined by

$$
h(t)=\int_{c}^{t} g(u) d u, t \in[c, d]
$$

Then by Theorem 6, $D h=g$ and

$$
\begin{equation*}
\int_{f(a)}^{f(b)} g(t) d t=h(f(b))-h(f(a)) \tag{1}
\end{equation*}
$$

By chain rule for each $s \in[a, b]$

$$
\begin{aligned}
D(h o f)(s) & =\operatorname{Dh}(f(s)) o D f(s) \\
& =(D f(s)) \operatorname{Dh}(f(s)) \\
& =(D f(s)) g(f(s)) \quad[\because D h=g]
\end{aligned}
$$

Hence again by Theorem 6, we have

$$
\begin{aligned}
\int_{a}^{b}(D f(s)) g(f(s)) d s & =h(f(b))-h(f(a)) \\
& =\int_{f(a)}^{f(b)} g(t) d t \quad \text { from(1) }
\end{aligned}
$$

Theorem 8: Let $U$ be an open subset of a Banach space $X$ over $K$, let $[a, b]$ be a compact interval of $R$, let $f$ be a continuous function on $U \times[a, b]$ into a Banach space $Y$ over $K$ and let $g: U \rightarrow Y$ be defined as

$$
g(x)=\int_{a}^{b} f(x, t) d t, \quad x \in U
$$

then $g$ is continuous. If $D f$ exists as a continuous function on $U \times[a, b]$ into $L(X, Y)$, then $g$ is $C^{1}$ map and for each $x \in U, D g(x)=\int_{a}^{b} D_{1} f(x, t) d t$.

Proof : Since $f$ is continuous in $U \times[a, b]$ and $[a, b]$ is compact, for each positive real number $r$ and each point $x \in U$, there is a positive real number $r^{\prime}$ such that for all $t \in[a, b]$ and for all $x^{\prime} \in U$ such that $\left\|x^{\prime}-x\right\| \leq r^{\prime}$,

$$
\begin{equation*}
\left\|f\left(x^{\prime}, t\right)-f(x, t)\right\| \leq r \tag{1}
\end{equation*}
$$

and so $\left\|g\left(x^{\prime}\right)-g(x)\right\| \leq \int_{a}^{b}\left\|f\left(x^{\prime}, t\right)-f(x, t)\right\| d t \quad \quad$ [by definition of $g$ ]

$$
\begin{equation*}
\leq r(b-a) \tag{1}
\end{equation*}
$$

Hence $g$ is conitnuous in $U$.
Next suppose that $D_{1} f$ exists as a continuous function on $U \times[a, b]$. Let $r$ be any positive real number and let $x$ be any point in $U$. Since $D_{1} f$ is continuous in $U \times[a, b]$ and $[a, b]$ is compact, there is a positive real number $t^{\prime}$ such that for all $x \in[a, b]$ and for all $x^{\prime} \in U$ such that $\left\|x^{\prime}-x\right\| \leq r^{\prime}$.

$$
\left\|D_{1} f\left(x^{\prime}, t\right)-D_{1} f(x, t)\right\| \leq r
$$

Then for all $t \in[a, b]$ and for all $x^{\prime} \in X$ such that $\left\|x^{\prime}-x\right\| \leq r^{\prime}$.

$$
\begin{equation*}
\left\|f\left(x+x^{\prime}, t\right)-f(x, t)-D_{1} f(x, t) . x^{\prime}\right\| \leq r\left\|x^{\prime}\right\| \tag{2}
\end{equation*}
$$

and so

$$
\begin{aligned}
\| g(x+ & \left.x^{\prime}\right)-g(x)-\int_{a}^{b} D_{1} f(x, t) \cdot x^{\prime} d t \| \\
& =\left\|\int_{a}^{b} f\left(x+x^{\prime}, t\right) d t-\int_{a}^{b} f(x, t) d t-\int_{a}^{b} D_{1} f(x, t) x^{\prime} d t\right\| \quad \quad[\text { by def. of } g] \\
& =\left\|\int_{a}^{b}\left(f\left(x+x^{\prime}, t\right)-f(x, t)-D_{1} f(x, t) \cdot x^{\prime}\right) d t\right\| \\
& \leq r\left\|x^{\prime}\right\|(b-a) \quad[\operatorname{by}(2)]
\end{aligned}
$$

But by Theorem 4 for all $t \in[a, b]$ and for all $x^{\prime} \in U$

$$
\int_{a}^{b} D_{1} f(x, t) x^{\prime} d t=\left(\int_{a}^{b} D_{1} f(x, t) d t\right) x^{\prime}
$$

as $u \rightarrow u\left(x^{\prime}\right)$ is continuous and linear function on $L(X, Y)$.
Hence $D g(x)=\int_{a}^{b} D_{1} f(x, t) d t$.
Theorem 9: Let $f$ be a regulated function on a compact interval $[a, b]$ of $R$ into $R$ such that $a<b$ and for all $t$ in $[a, b], f(t) \geq 0$. Then $\int_{a}^{b} f(t) d t \geq 0$.

If $f$ is continuous at a point $c$ of $[a, b]$ and $f(c)>0$, then

$$
\int_{a}^{b} f(t) d t>0
$$

Proof: Given $f$ is a regulated function, so there exists a sequence $\left\{f_{n}: n \in N\right\}$ of step functions on $[a, b]$ converging to $f$ in $B([a, b], X)$ such that for each $n \in N$ and for each $t \in[a, b], f_{n}(t) \geq 0$ and so $\quad \int_{a}^{b} f_{n}(t) d t \geq 0$

Hence $\int_{a}^{b} f(t) d t \geq 0$
Next suppose that $f$ is continuous at a point $c$ of $[a, b]$ and $f(c)>0$. Then there is a positive real number $r$ such that for all $t \in[a, b]$ with $|t-c|<r$ implies that

$$
\frac{1}{2} f(c)<f(t)
$$

If $c=a$, choose a positive real number $s<r$ such that $[a, a+s] \subset[a, b]$, then

$$
\begin{aligned}
\int_{a}^{b} f(t) d t & =\int_{a}^{a+s} f(t) d t+\int_{a+s}^{b} f(t) d t \\
& \geq \frac{1}{2} s f(c) \\
& >0
\end{aligned} \quad[\because f(c)>0]
$$

If $c \neq a$, choose a positive real number $s<r$ such that $(c-s, c) \subset[a, b]$ then

$$
\begin{aligned}
\int_{a}^{b} f(t) d t & =\int_{a}^{c-s} f(t) d t+\int_{c-s}^{c} f(t) d t+\int_{c}^{b} f(t) d t \\
& \geq \frac{1}{2} s f(c)>0
\end{aligned}
$$

Theorem 10: Let $f$ be a continuous function on a compact interval $[a, b]$ of $R$ into the topological dual $X *$ of a Banach space $X$ over $R$ such that $a<b$ and for each $C^{1}$-map $g$ on $[a, b]$ into $X$ with $g(a)=g(b)=0$ and

$$
\int_{a}^{b}<g(t), f(t)>d t=0 .
$$

Then $f(t)=0$ for each $t \in[a, b]$.
Proof: As a contradiction, let $f(r) \neq 0$ for some $r \in[a, b]$. Since $f$ is continuous, we may suppose that $r$ is different from $a$ and $b$. Since $f(r) \neq 0$, there is an $x \in X$ such that $\langle x, f(r)\rangle \neq 0$.

Let $<x, f(r) \gg 0$. Since $f$ is continuous, there is a positive real number $s$ such that $[r-s, r+s] \subset[a, b]$ and for each $t \in[r-s, r+s],\langle x, f(t) \gg 0$.

Let $h$ be a $C^{1}$-map on $[r-s, r+s]$ into $R$ such that $h \geq 0$ (for example $h(t)=0$ if $t \notin(r-s, r+s)$ adn $h(t)=\left((t-r)^{2}-s^{2}\right)^{2}$ if $t \in(r-s, r+s)$.

Let $g$ be the function on $[a, b]$ such that $g(t)=h(t) . x$ for all $t \in[a, b]$. Then $g$ is a $C^{1}$-map on $[a, b]$ into $X$ such that $g(a)=g(b)=0$ and $\langle g(t), f(t) \gg 0$ for each $t \in(r-s, r+s)$,

Hence by Theorem 9, we have

$$
\int_{a}^{b}<g(t), f(t)>d t>0
$$

which is not possible, so our assumption was wrong.
Hence $f(t)=0$ for each $t \in[a, b]$.
Theroem 11 : Let $[a, b]$ be a compact interval, let $g$ be a regulated function on $[a, b]$ into $\{r \in R: r \geq 0\}$ and let $h$ be a continuous function on $[a, b]$ into $R$ such that for all $t \in[a, b]$

$$
\begin{equation*}
h(t) \leq g(t)+c \int_{a}^{t} h(s) d s \tag{1}
\end{equation*}
$$

where $c$ is a positive real number. Then for all $t \in[a, b]$

$$
h(t) \leq g(t)+c \int_{a}^{t} g(s) e^{C(t-s)} d s
$$

Proof: Let $j:[a, b] \rightarrow R$ be defined as

$$
j(t)=\int_{a}^{t} h(s) d s, t \in[a, b]
$$

Then for each $t \in[a, b]$

$$
\begin{align*}
D j(t) & =h(t) \\
& \leq g(t)+c j(t) \quad[\text { by }(1) \text { and }(2)] \tag{3}
\end{align*}
$$

Let $k:[a, b] \rightarrow R$ be defined as

$$
k(t)=j(t) e^{-c}(t-a), t \in[a, b]
$$

Then for each $t \in[a, b]$

$$
\begin{aligned}
D k(t) & =(D j(t)-c j(t)) e^{-c(t-a)} \\
& \leq g(t) e^{-c(t-a)} \quad[\operatorname{by}(3)]
\end{aligned}
$$

By the definition of $j$ and $k$, it is clear that

$$
j(a)=0=k(a)
$$

By mean value theorem, for all $t \in[a, b]$, we have

$$
\begin{align*}
k(t) & \leq \int_{a}^{b} g(s) e^{-c(s-a)} d s \\
j(t) & =k(t) e^{c(t-a)} \\
& \leq e^{c(t-a)} \int_{a}^{t} g(s) e^{-c(s-a)} d s \tag{4}
\end{align*}
$$

Hence by (1) and (2), we have

$$
\begin{align*}
h(t) & \leq g(t)+c j(t) \\
& \leq g(t)+c e^{(t-a)} \int_{a}^{t} g(s) e^{-c(s-a)} d s  \tag{4}\\
& =g(t)+c \int_{a}^{t} g(s) e^{c(t-s)} d s
\end{align*}
$$

## Self-Learning Exercise

1. Write whether the following statements are true or false.
(a) A subdivision $S$ of a compact interval $[a, b]$ is said to be refinement of a subdivision $T$ of $[a, b]$ iff each point of $S$ is a point of $T$ i.e., $S \subset T$.
(b) The function $f \rightarrow \int_{a}^{b} f$ is not a continuous linear map of the set $S([a, b], X)$ (the set of all step functions on $[a, b]$ into $X)$ into $X$.
(c) If $f$ is continuous, then $f$ is regulated.
(d) If any sequence $\left\{f_{n}: n \in N\right\}$ in $C l(S[a, b], X)$ converging to $f$ in $B([a, b], X)$, then $f \in S([a, b], X)$.
(e) If $f$ and $g$ be regulated functions on a compact interval $[a, b]$ of $R$ into a Banach space $X$ over $K$, then gof is also regulated.

### 11.7 Summary

In this unit, we have seen that by taking slightly different approach than for real valued function of a real variable, we can find the integral of a function of one variable into a Banach space. We also discuss various properties of such integrals.

### 11.8 Answers to Self-Learning Exercise

1. 

(a) False
(b) False
(c) True
(d) False
(e) False

### 11.9 Exercises

1. Define integral of a step function. If $[a, b]$ be compact interval of $R$ and $X$ be Banach space. Prove that the set $S([a, b], X)$ of all step functions on $[a, b]$ into $X$ is a vector subspace of the Banach space $B([a, b], X)$ of all bounded functions on $[a, b]$ into $X$ with sup norm

$$
f \rightarrow\|f\|=\sup \{\|f(t)\|: t \in[a, b]\}
$$

2. Define regulated function. If $f$ be a regulated function on a compact interval $[a, b]$ of $R$ into a Banach space $X$. Prove that at each $t \in[a, b]$ the function $F:[a, b] \rightarrow X, F(t)=\int_{a}^{t} f$, $t \in[a, b]$ is continuous.
3. Let $f$ be a regulated function defined on a compact interval $[a, b]$ of $R$ into a Banach space $X$. Show that for each positive real number $\in$, there is a positive real number $\delta$ such that for any increasing sequence $a=a_{1} \leq t_{1} \leq a_{2} \leq, \ldots, \leq a_{i} \leq t_{i} \leq a_{i+1} \leq \ldots \leq a_{n}=b$ of points of $[a, b]$. such that $\left|a_{i+1}-a_{i}\right| \leq \delta, i \in \underline{n-1}, \quad\left\|\int_{a}^{b} f(t) d t-\sum_{i=1}^{n-1} f\left(t_{i}\right)\left(a_{i+1}-a_{i}\right)\right\| \leq \epsilon$.

# Unit-12 <br> Differential Equations 

## Structure of the Unit

### 12.0 Objectives

12.1 Introduction
12.2 First Order Differential Equations
12.3 Approximate Solutions
12.4 Lipschitz's Property
12.5 Locally Lipschitz
12.6 Maximal Integral Solution
12.7 Summary
12.8 Answers to SelfLearning Exercise
12.9 Exercises

### 12.0 Objectives

The present unit is devoted to differential equations. Existence and uniqueness theorems for ordinary differential equations are proved.

### 12.1 Introduction

In many practical problems we come across with a differential equation which cannot be solved by one of the standard methods known so far. Vaious methods have been formulated for getting to any desired degree of accuracy the numerical solution of the above mentioned type of differential equation with numerical confficients and given conditions. We have studied the Picard's integration method for finding an approximate solution of the initial value of the form

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \tag{1}
\end{equation*}
$$

Theorems which state the conditions under which an initial value problem of the form (1) has at least one solution, only one solution are called existence theorem and uniqueness theorem respectively. The purpose of this unit is to introduce differential equations. Starting with the definitions of a differantial equation and its solution, existence and uniqueness theorems for ordinary differential equations are obtained.

### 12.2 First order Differential Equations

Throughout this unit X denotes a Banach space over the real field $R, f$ denotes a function of a single real variable $t$ with values in $X$. Further if $f$ is differentiable, its derivative $\frac{d f}{d t}$ will again be considered as a function with values in $X$.

Definition : Let I be an interval of $R, W$ be a subset of Bananch space $X$ over $K$ and let $g$ be a continuous map of $I \times U$ into $X$. Then an equation of the type

$$
\frac{d x}{d t}=g(t, x), \quad(t, x) \in I \times W
$$

is called a differential equation.
Definition : A differentiable map $f ; I \rightarrow W$ is called an integral solution of the differential equation $\frac{d x}{d t}=g(t, x)$ if and only if $D f(t)=g(t, f(t))$ for each $t \in I$. An integral solution of the differential equation is also called an integral solution for $g$.

Now let $\left(t_{0}, x_{0}\right)$ be an interior point of $I \times W$. Let $I^{\prime}$ be an open subset of W containing $x_{0}$. Then a differentiable map $\mathrm{h}: I^{\prime} \rightarrow W^{\prime}$ is called an integral solution for $g$ at $\left(t_{0}, x_{0}\right)$ if $h\left(t_{0}\right)=x_{0}$ and $h$ is an intgral solution for restriction of $g$ to $I^{\prime} \times W^{\prime}$.

A map $f ; I^{\prime} \times W^{\prime} \rightarrow W$ is called a local flow for $g$ at $\left(t_{0}, x_{0}\right)$ iff for each $x \in W^{\prime}, f\left(t_{0}, x\right)=x$ and the map $\phi: I^{\prime} \rightarrow W, \phi(t)=f(t, x)$ for $t \in I^{\prime}$ is an integral solution for $g$ at $\left(t_{0}, x\right)$. Thus $f$ is a local flow for g at $\left(t_{0}, x_{0}\right)$ iff $f\left(t_{0}, x\right)=x$ and $D_{1} f(t, x)=g(t, f(t))$ for each $x \in W^{\prime}$.

Theorem 1 : Let I be an open integral of $R$, let $W$ be an open subset of a Banach space $X$ over $K$. Let $\left(t_{0}, x_{0}\right)$ be point of $I \times W$ and let $g$ be a continuous map of $I \times W$ into $X$. Then a continuous map h:
$I \rightarrow W$ is an integral solution for $g$ at $\left(t_{0}, x_{0}\right)$ iff for each $t \in I$

$$
h(t)=x_{0}+\int_{t_{0}}^{t} g(s, h(s)) d s .
$$

Proof: Given that $g$ and $h$ are continuous so the map $s \rightarrow g(s, h(s))$ of $I$ into $X$ is continuous.
Firstly let $h$ be an integral solution for g at $\left(t_{0}, x_{0}\right)$, then clearly

$$
h(t)=x_{0}+\int_{t_{0}}^{t} g(s, h(s)) d s
$$

for each $t \in I$
Next let for each $t \in I$

$$
h(t)=x_{0}+\int_{t_{0}}^{t} g(s, h(s)) d s
$$

then $h$ is differentiable in $I$ and its derivative is the map $s \rightarrow g(s, h(s))$ and so $h$ is an integral solution for $g$ at $\left(t_{0}, x_{0}\right)$.

### 12.3 Approximate Solution

Let $\in>0$ be a real number. Adifferentiable map $f: I \rightarrow W$ is an approximate solution within $\in$ or an $\in$-approxmate solution for the differential equation $\frac{d x}{d t}=g(t, x)$ if $\left\|f^{\prime}(t)-g(t, f(t))\right\| \leq \in$ for all $t \in I$.

### 12.4 Lipschitz's Property

Let $f$ be a function on a subset W of a Banach space $X$ over K into a Banach space $X$ over $K$. Let V be any subset of $W$ and let c be any positive real number, then $f$ is said to be $c-$ lipschitz on V iff for all $x$ and $x^{\prime}$ in V

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\| \leq c\left\|x-x^{\prime}\right\|
$$

Let I be any subset of R and let g be a function on $I \times W$ into $Y$. Then $g$ is said to be $c-$ Lipschitz on V uniformly with respect to I iff for all $t \in I$ and all $x$ and $x^{\prime}$ in V

$$
\left\|g(t, x)-g\left(t, x^{\prime}\right)\right\| \leq c\left\|x-x^{\prime}\right\|
$$

Now we shall prove a lemma which compares two approximate solutions of a differential equation. We first prove an anxillany lemma.

Lemma 2 : let $u$ be a non-negative continuous function on an interval $\{0, c\},(c>0)$ satisfying the inequality

$$
\begin{equation*}
u(t) \leq \text { at }+k \int_{0}^{t} u(s) d s \tag{1}
\end{equation*}
$$

for all $t \in[0, c]$, then

$$
u(t) \leq \frac{a}{k}\left(e^{k t}-1\right) \text { for } t \in[0, c]
$$

Proof: Let $v(t)=\int_{0}^{t} u(s) d s$,
then $v^{\prime}(t)=u(t), v(0)=0$ and so inequality (1) reduces to $v^{\prime}(t) \leq$ at $+k v(t)$,
which is a differential inquality.
Taking $w(t)=\bar{e}^{k t} v(t)$, then

$$
\begin{aligned}
& w^{\prime}(t)=\bar{e}^{k t}\left(v^{\prime}(t)-k v(t)\right) \\
& \leq \bar{e}^{k t} \text { at } \quad\{b y(2)\}
\end{aligned}
$$

Since $w(0)=0$, the mean value inquality gives $w(t) \leq \int_{0}^{t}$ as $\bar{e}^{k s} d s$
Integrating the right hand side by parts, we obtain

$$
\begin{equation*}
w(t) \leq \frac{a}{k^{2}}\left(1-\bar{e}^{k t}-k t \bar{e}^{k t}\right) \tag{3}
\end{equation*}
$$

Therefore $v(t)=e^{k t} w(t)$

$$
\leq \frac{a}{k^{2}}\left(e^{k t}-1-k t\right)
$$

since $u(t)=v^{\prime}(t) \leq a t+k v(t)$, therefore

$$
\begin{gathered}
u(t) \leq a t+\frac{a}{k}\left(e^{k t}-1-k t\right) \\
=\frac{a}{k}\left(e^{k t}-1\right)
\end{gathered}
$$

## Lemma 3 : (Fundamental Lemma) :

Let I be an open interval of R . Let W be an open subset of a real Banach space $X$ and let $g$ be a continuous map of $I \times W$ into $X$ such that $g$ is c-lipschitz on W uniformly with respect to I , where c is a poritive real number. Let $r_{1}$ and $r_{2}$ be two positive real numbers such that for all $t \in I$

$$
\begin{equation*}
\left\|D f_{1}(t)-g\left(t, f_{1}(t)\right)\right\| \leq r_{1} \text { and }\left\|D f_{2}(t)-g\left(t, f_{2}(t)\right)\right\| \leq r_{2} \tag{4}
\end{equation*}
$$

i.e., $f_{1}, f_{2}$ are $r_{1}$ - approximate solution and $r_{2}$ - approximate solution of the equation $\frac{d x}{d t}=g(t, x)$ respectively. Then for all $s$ and $t$ in I

$$
\left\|f_{1}(t)-f_{2}(t)\right\| \leq\left\|f_{1}(s)-f_{2}(s)\right\| e^{c|t-s|}+\left(r_{1}+r_{2}\right)\left(\frac{e^{|t|-s \mid}-1}{c}\right)
$$

Proof: We can assume that $s=0$ and $t>0$. Then

$$
\begin{array}{ll}
\left\|D f_{1}(t)-D f_{2}(t)\right\|=\left\|D f_{1}(t)-g\left(t, f_{1}(t)\right)+g\left(t, f_{1}(t)-g\left(t, f_{2}(t)\right)+g\left(t, f_{2}(t)\right)-D f_{2}(t)\right)\right\| \\
\leq\left\|D f_{1}(t)-g\left(t, \delta_{1(t)}\right)\right\|+\left\|D f_{2}(t)-g\left(t, f_{2}(t)\right)\right\| & \\
& \quad\left\|g\left(t, f_{1}(t)\right)-g\left(t, f_{2}(t)\right)\right\| \\
\leq r_{1}+r_{2}+\left\|g\left(t, f_{1}(t)\right)-g\left(t, f_{2}(t)\right)\right\| & \{b y(1)\}  \tag{1}\\
\leq r_{1}+r_{2}+c\left\|f_{1}(t)-f_{2}(t)\right\| & (\because g \text { is c-Lipschilz on })
\end{array}
$$

Taking $r=r_{1}+r_{2}$ and $f(t)=f_{1}(t)-f_{2}(t)$, we have

$$
\|D f(t)\| \leq r+c\|f(t)\|
$$

So by mean value inquality for $t>0$, we have
$\|f(t)-f(0)\| \leq \int_{0}^{t}(r+c\|f(u)\|) d u$
But $\|f(u)\| \leq\|f(u)-f(0)\|+\|f(0)\|$
Hence for each $u$ in $[0, t]$, we have

$$
\begin{equation*}
\|f(t)-f(0)\| \leq(r+c\|f(0)\|) t+c \int_{0}^{t}\|f(u)-f(0)\| d x \tag{2}
\end{equation*}
$$

Putting $\|f(t)-f(0)\|=h(t)$ and $r+c\| \| f(0) \|=b$,
Then (2) reduces to

$$
h(t) \leq b t+c \int_{0}^{t} h(u) d u
$$

and therefore by Lemma 2, we have

$$
h(t) \leq \frac{b}{c}\left(e^{c t}-1\right) \text { for } t \in I
$$

Rewriting the values of $h(t)$ and $b$, we have

$$
\|f(t)-f(0)\| \leq \frac{r+c\|f(0)\|}{c}\left(e^{c t}-1\right)
$$

Hence

$$
\begin{aligned}
\|f(t)\| \leq & \|f(t)-f(0)\|+\|f(0)\| \\
& \leq \frac{r+c\|f(0)\|}{c}\left(e^{c t}-1\right)+\|f(0)\| \\
& =\frac{r}{c}\left(e^{c t}-1\right)+\|f(0)\| e^{c t}
\end{aligned}
$$

Hence again rewriting the values of $f(t)$ and $r$, we have

$$
\begin{aligned}
& \left\|f_{1}(t)-f_{2}(t)\right\| \leq \frac{r_{1}+r_{2}}{c}\left(e^{c|t-s|}-1\right)+\left\|f_{1}(s)-f_{2}(s)\right\| e^{c|t-s|} \\
& \\
& \quad[\because s=0, t>0]
\end{aligned}
$$

If $x_{1}=f_{1}(s)$ and $x_{2}=f_{2}(s)$ be their initial values at $s \in I$. Then for all $t \in I$, we have

$$
\begin{equation*}
\left\|f_{1}(t)-f_{2}(t)\right\| \leq \frac{\left(r_{1}+r_{2}\right)}{c}\left(e^{c|t-s|}-1\right)+\left\|x_{1}-x_{2}\right\| e^{c|t-s|} \tag{3}
\end{equation*}
$$

Now we shall make use of the fundamental lemma in proving the following theorems
Theorem 4 : (Uniqueness Theorem)
Let I be an interval in R , W a subset of a Banach space X over K and let $g: I \times W \rightarrow X$ be a continuous function c-Lipsehitz in $x \in X$, If there are two exact solutions, $f_{1}$ and $f_{2}: I \rightarrow X$ of the differential equation $\frac{d x}{d t}=g(t, x)$ and if $f_{1}(s)=f_{2}(s)$ for $s \in I$, then the functions $f_{1}$ and $f_{2}$ are identical in the interval I.

Proof: Putting $f_{1}(s)=f_{2}(s), r_{1}=0, r_{2}=0$ in the inquelity of the fundamental lemma, we have

$$
\begin{aligned}
& \left\|f_{1}(t)-f_{2}(t)\right\|=0 \text { for } t \in I \\
& \Rightarrow f_{1}=f_{2}
\end{aligned}
$$

Hence the theorem.
Theorem 5 (Existence Theorem)
Let I be a closed interval in R , W be a closed set in a Banach space $X$ and $g: I \times W \rightarrow X$ be a continuous function which is c -Lipschitz in $x \in X$. Let $\left(s, x_{0}\right) \in I \times W$, for given $r>0$, let $f: I \rightarrow X$ be an r-approximate solution of the differential equation $\frac{d x}{d t}=g(t, x)$ such that $f(s)=x_{0}$, then there exists in I an exact solution $\phi: I \rightarrow X$ of the differential equation such that $\phi(s)=x_{0}$.

Proof: Let $\left\{r_{n}\right\}$ be a decrearing squence of positive real numbers such that $\lim _{n \rightarrow \infty} r_{n}=0$. For each $n \in N$, let $f_{n}: I \rightarrow X$ be an $r_{n}$-approximate solution such that $f_{n}(s)=x_{0}$. By the fundamental lemma, we have

$$
\left\|f_{n}(t)-f_{p}(t)\right\| \leq \frac{r_{n}+r_{p}}{c}\left(e^{c(r-s)}-1\right) \text { for all } t \in I .
$$

Let $\frac{e^{c(t-s)}-1}{c} \leq m$ for all $t \in I$. Then

$$
\left\|f_{n}(t)-f_{p}(t)\right\| \leq\left(r_{n}+r_{p}\right) m
$$

and thus $\left\{f_{n}\right\}$ is a cauchy squance. Therefore the squence $\left\{f_{n}\right\}$ has a limit.
Let $\lim _{n \rightarrow \infty} f_{n}=\phi$, then $\phi$ is a continuous function $I \rightarrow X$.
Since $\left(t, f_{n}(t)\right) \in I \times U$ for all $n \in N$ all $t \in I$ and since U is a closed set in $X$, therefore $(t, \phi(t)) \in I \times U$ for all $t \in I$.

Also each $f_{n}$ is an $r_{n}$-approximate solution, therefore

$$
\left\|D f_{n}(t)-g\left(t, f_{n}(t)\right)\right\| \leq r_{n},
$$

and so by the mean value inquality, we have

$$
\left\|f_{n}(t)-x_{0}-\int_{s}^{t} g\left(u, f_{n}(u)\right) d u\right\| \leq r_{n}|t-s|
$$

since $\lim _{n \rightarrow \infty} f_{n}(t)=\phi(t)$
and $\lim _{n \rightarrow \infty} \int_{t_{0}}^{t} g\left(u, f_{n}(u)\right) d u=\int_{s}^{t} g(u, \phi(u)) d u$
Therefore in the limit $n \rightarrow \infty$, the above inquality reduces to

$$
\phi(t)=x_{0}+\int_{s}^{t} g(u, \phi(u)) d u
$$

Which gives $\phi^{\prime}(t)=g(t, \phi(t))$
Hence $\phi$ is an exact solution of the differential equation with $\phi(s)=f_{n}(s)=x_{0}$.

### 12.5 Locally Lipschitz

Let I be an interval in R , W be a subset of a real Banach space $X$. A function $g: I \times W \rightarrow X$ is locally Lipschitz if for each point $\left(t_{0}, x_{0}\right) \in I \times W$, there exists a neighbourhood $J \times V$ of $\left(t_{0}, x_{0}\right) \in I \times W$ and $c>0$ such that

$$
\left\|g\left(t, x_{1}\right)-g\left(t, x_{2}\right)\right\| \leq c\left\|x_{1}-x_{2}\right\|
$$

for each $t \in J$ and $x_{1}, x_{2} \in V$.
In other words g is locally Lipschitz, if the restriction of $g$ to $J \times V$ is c -Lipschitz in $x \in X$.
Theorem 6 (Global Uniqueness Theorem) :
Let I be an interval in R , W be a subset of a Banach space $X$ and $g: I \times W \rightarrow X$ be a locally Lipschitz function. If there are two exact solutions $f_{1}$ and $f_{2}: I \rightarrow X$ of the differential equation $\frac{d x}{d t}=g(t, x)$ and if they are equal for one value $\mathrm{t}_{\mathrm{o}} \in I$, then they are identical in the entire I .

Proof : Let J be a subset of I given by
$J\left\{t \in I: f_{1}(t)=f_{2}(t)\right\}$
Now we shall establish that the set J is simultaneously open and closed in I.
Since the function $f_{1}-f_{2}$ is continuous, therefore J is a closed set.
Now let $f_{1}\left(t_{0}\right)=f_{2}\left(t_{0}\right)=x_{0}$

Since $g$ is locally Lipschitz, there exists a neigbhbourhood N of $\left(t_{0}, x_{0}\right)$ in $I \times W$ as well as a real number $k>0$ such that $g$ is k -Lipschitz in N . Let $\alpha>0$ be such that $t \in I$ and $\left|t-t_{0}\right| \leq \alpha$ imply that $\left(t, f_{1}(t)\right)$ and $\left(t, f_{2}(t)\right)$ are in N . Then the uniqueness theorem 4 yields $f_{1}(t)=f_{2}(t)$ for all $t \in I \bigcap\left[t_{0}-\alpha, t_{o}+\alpha\right]$. This shows that J is open in I .

Since $I$ is connected set and $J$ is both open and a closed set in $I$, the theorem is proved.
Theorem 7 : Let I be an open interval of R, let W be an open subset of a real Banach space X , let $g$ be a continuous map of $I \times W$ into $X$ such that there esixts two real numbers $b$ and $c$ both greater than 0 ,

$$
\sup (\|g(t, x)\|:(t, x) \in I \times W) \leq b
$$

and $g$ is $c$-Lipschitz on W uniformly with respect to all compact subsets ofI. Let $\left(t_{o}, x_{0}\right)$ be any point of $I \times W$ and let r be a real number such that $0<r<1$ and the closed ball $\bar{B}\left(x_{0}, 2 r\right) \subset W$. Let a be a real number such that $0<a<r / b c$ and the interval $J=\left\{t_{0}-a, t_{0}+a\right\} \subset I$.

Then for each $x \in \bar{B}\left(x_{0}, r\right)$, there exists a unique map $h_{x}: J \rightarrow \bar{B}\left(x_{0}, 2 r\right)$ such that $h_{x}$ is an integral solution for $g$ at $\left(t_{0}, x\right)$. Moreover the map

$$
f: J \times \bar{B}\left(x_{0}, r\right) \rightarrow \bar{B}\left(x_{0}, 2 r\right), f(t, x)=h_{x}(t) \text { is a continuous local flow at }\left(t_{0}, x_{0}\right) \text { for } g .
$$

Furthermore, there is a positive real number e such that the function $x \rightarrow h_{x}$ is a e-Lipschitz on $\bar{B}\left(x_{0}, r\right)$.

Proof : Let $x \in \bar{B}\left(x_{0}, 2 r\right)$ and $H_{x}$ be the set of all continuous functions $h: J \rightarrow \bar{B}\left(x_{0}, 2 r\right)$ such that $h\left(t_{0}\right)=x$. Then $H_{x}$ is a closed subset of the complete metric space Z of all continuous functions of J into $\bar{B}\left(x_{0}, 2 r\right)$ with the topology of uniform convergence on J and so $H_{x}$ is itself is a complex subspace of Z .

Let $e_{x}$ be the function on $H_{x}$ such that for all $h \in H_{x}$ and all $t \in J$

$$
\left(e_{x}(h)\right)(t)=x+\int_{t_{0}}^{t} g(s, h(s)) d s
$$

then for all $t \in J,\left(e_{x}(h)\right)(t) \in \bar{B}\left(x_{0}, 2 r\right)$ and so $e_{x}(h)$ is a continuous map of J into $\bar{B}\left(x_{0}, 2 r\right)$.
Since $\left(e_{x}(h)\right)\left(t_{0}\right)=x, e_{x}$ is a map of $H_{x}$ into itself for each $h_{1}$ and $h_{2}$ in $H_{x}$, we have

$$
\begin{equation*}
\left\|e_{x}\left(h_{1}\right)-e_{x}\left(h_{2}\right)\right\| \leq r\left\|h_{1}-h_{2}\right\| \tag{1}
\end{equation*}
$$

therefore by Banach fixed point theorem, there is a unique $h_{x} \in H_{x}$ such that

$$
h_{x}(t)-\left(e_{x}\left(h_{x}\right)\right)(t)=x+\int_{t_{0}}^{t} g\left(s, h_{x}(s)\right) d s
$$

for each $t \in J$ and $h_{x}\left(t_{0}\right)=x$ and so $h_{x}$ is an integral solution for $g$ at $\left(t_{0}, x\right)$.

It also follows that $f$ is a local flow for $g$ at $\left(t_{0}, x_{0}\right)$.
To prove the last part of the theorem, let x and y be any two points of $\bar{B}\left(x_{0}, r\right)$. Then

$$
\begin{align*}
\left\|h_{x}-e_{y}\left(h_{x}\right)\right\|= & \left\|e_{x}\left(h_{x}\right)-e_{y}\left(h_{x}\right)\right\| \\
& =\sup \left\{\left\|\left(e_{x}\left(h_{x}\right)\right)(t)-\left(e_{y}\left(h_{x}\right)\right)(t)\right\|: t \in J\right\} \\
& =\|x-y\| \tag{2}
\end{align*}
$$

Hence

$$
\begin{aligned}
\left\|e_{y}\left(h_{x}\right)-e_{y}\left(e_{y}\left(h_{x}\right)\right)\right\| \leq r\left\|h_{x}-e_{y}\left(h_{x}\right) t\right\| & \{b y(1)\} \\
=r\|x-y\|, & \{b y(2)\}
\end{aligned}
$$

therefore for any natural number $n$

$$
\begin{equation*}
\left\|e_{y}^{n}\left(h_{x}\right)-e_{y}^{n+1}\left(h_{x}\right)\right\| \leq r^{n}\|x-y\| \tag{3}
\end{equation*}
$$

and so

$$
\begin{align*}
\left\|h_{x}-e_{y}^{n+1}\left(h_{x}\right)\right\| & \leq\left\|h_{x}-e_{y}\left(h_{x}\right)\right\|+\left\|e_{y}\left(h_{x}\right)-e_{y}^{2}\left(h_{x}\right)\right\|+\ldots . . \\
& +\left\|e_{y}^{n}\left(h_{x}\right)-e_{y}^{n+1}\left(h_{x}\right)\right\| \\
& \leq\left(1+r+\ldots .+r^{n}\right)\|x-y\| \\
& \leq \frac{1}{1-r}\|x-y\| \tag{4}
\end{align*}
$$

Again for any natural number $n$

$$
\begin{align*}
\| e_{y}^{n}\left(h_{x}\right) & -h_{y}\|=\| e_{y}^{n}\left(h_{x}\right)-e_{y}^{n}\left(h_{y}\right) \| \\
& \leq r\left\|e_{y}^{n-1}\left(h_{x}\right)-e_{y}^{n-1}\left(h_{y}\right)\right\|  \tag{1}\\
& \leq r^{n}\left\|h_{x}-h_{y}\right\|
\end{align*}
$$

therefore

$$
\begin{array}{ll}
\lim _{n \rightarrow \infty}\left\|e_{y}^{n}\left(h_{x}\right)-h_{y}\right\|=0 & {[\because 0<r<1]} \\
\Rightarrow \lim _{n \rightarrow \infty} e_{y}^{n}\left(h_{x}\right)=h_{y} &
\end{array}
$$

Consequently

$$
\begin{aligned}
\left\|h_{x}-h_{y}\right\| & =\lim _{n \rightarrow \infty}\left\|h_{x}-e_{y}^{n+1}\left(h_{x}\right)\right\| & \{b y(5)\} \\
& \leq \frac{1}{1-r}\|x-y\| & \{b y(4)\}
\end{aligned}
$$

and so the map $x \rightarrow h_{x}$ is e-Lipschitz on $\bar{B}\left(x_{0}, r\right)$, where $e=\frac{1}{1-r}$. Now the map $x \rightarrow h_{x}$ is e-Lipschitz implies that it is continuous and that $f$ is continuous.

### 12.6 Maximal Intergal Solution

Let $I$ be an open interval of $R$, let $W$ be an open subset of a real Banach space $X$, and let $g$ be a continuous map of $I \times W$ into $X$ such that $g$ is c-Lipschitz on $W$ uniformly with respect to all compact subsets of I , where c is a positive real number. Let $\left(t_{0}, x_{0}\right)$ be any point of $I \times W$, and F be the set of all integral solutions for g at $\left(t_{0}, x_{0}\right)$ with open domains. If $f_{1}$ and $f_{2}$ are any two members of F then by Remark 1, $f_{1}$ and $f_{2}$ coincide on $D_{m}\left(f_{1}\right) \cap D_{m}\left(f_{2}\right)$. Let $f$ be the union of all members of $F$ and $J$ be the union of domains of the members of $F$. Then J is an open interval of I and $f$ is an integral solution for g at $\left(t_{0}, x_{0}\right)$, called the maximal integral solution for g at $\left(t_{0}, x_{0}\right)$.

Theorem 8 : Let $(a, b)$ be an open interval of R , let W be an open subset of a real Banach space X and let g be a continuous map of $(a, b) \times W$ into $X$ such that g is c -Lipschitz on W uniformly with respect to $(a, b)$. Let $f$ be the maximal integral solution for $g$ at a point $\left(t_{0}, x_{0}\right)$ of $(a, b) \times W$ with domain $\left(a^{\prime}, b^{\prime}\right)$ such that there exists a positive real number $r$ with the property that $\left(a^{\prime}, a^{\prime}+r\right)$ and $\left(b^{\prime}-r, b^{\prime}\right)$ are contained in $(a, b)$, the closures of $f\left[\left(a^{\prime}, a^{\prime}+r\right)\right]$ and $f\left[\left(b^{\prime}-r, b^{\prime}\right)\right]$ are contained in W , and there is a positive real number $m$ such that

$$
\|g(t, f(t))\| \leq m
$$

for all $t \in\left(a^{\prime}, b^{\prime}\right)$. Then $a^{\prime}=a$ and $b^{\prime}=b$
Proof: Since $f$ is the maximal integral solution for $g$ at $\left(t_{0}, x_{0}\right)$, therefore by theorem 1 for each $t \in\left(a^{\prime}, b^{\prime}\right)$, we have

$$
f(t)=x_{0}+\int_{t_{0}}^{t} g(s, f(s)) d s
$$

and $\left\|f\left(t_{1}\right)-f\left(t_{2}\right)\right\| \leq m\left|\left(t_{1}-t_{2}\right)\right|$ for all $t_{1}, t_{2} \in\left(a^{\prime}, b^{\prime}\right)$
Hence $\lim _{t \rightarrow a^{\prime}} f(t)$ and $\lim _{t \rightarrow b^{\prime}} f(t)$ exist and belong to $W$.
If possible, suppose that $a^{\prime} \neq a$. Then by theorem 7, there is an integral solution $f^{\prime}$ for $g$ at $\left(a^{\prime}, \lim _{t \rightarrow a^{\prime}} f(t)\right)$. So $D f^{\prime}=D f$ on $\left(a^{\prime}, a^{\prime}+t\right)$, where $t^{\prime}$ is a positive real number and so $f^{\prime}-f$ is constant on $\left(a^{\prime}, a^{\prime}+t\right)$.

Now $\lim _{t \rightarrow a^{\prime}} f^{\prime}(t)=\lim _{t \rightarrow a^{\prime}} f(t)$
therefore $f^{\prime}-f=0$ on $\left(a^{\prime}, a^{\prime}+t\right)$.
This shows that f defined on $\left(a^{\prime}, b^{\prime}\right)$ is not a maximal integral solution for g at $\left(t_{0}, x_{0}\right)$, which is a contradiction to the given condition.

Hence $a^{\prime}=a$. Similarly, we can show that $b^{\prime}=b$.

## Self-Learning Exercise

1. Write whether the following statements are true or false.
(a) Theorem under which an initial value problems of the form

$$
\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0} \text { has at least one solution is called uniqueness theorem. }
$$

(b) If $f_{1}$ and $f_{2}$ be two integral solutions for a continuous map $g: I \times W \rightarrow X$ at a point $\left(t_{0}, x_{0}\right) \in I \times W$ with open domains $I_{1}$ and $I_{2}$ respectively. Then $f_{1}$ and $f_{2}$ coincide on $I_{1} \cup I_{2}$.
(c) A function $g: I \times W \rightarrow X$ is locally lipschitz if for each point $\left(t_{0}, x_{0}\right) \in I \times W$, there exists a $n b d J \times V$ of $\left(t_{0}, x_{0}\right)$ and $c>0$ such that

$$
\left\|g\left(t, x_{1}\right)-g\left(t, x_{2}\right)\right\| \leq c\left\|x_{1}-x_{2}\right\|
$$

for each $t \in J$ and $x_{1}, x_{2} \in V$.

### 12.7 Summary

In this unit, we have seen that a fundamental lemma compares two approximate solutions of a differential equation. We also see that a local flow always exists if a continuous map $g: I \times W \rightarrow X$ satisties Lipschitz condition.

### 12.8 Answers to Self-Learning Exercise

1. 

(a) False
(b) False
(c) True

### 12.9 Exercises

1. Let $I$ be an interval in $R, W$ a subset of Banach space $X$ and let $g: I \times W \rightarrow X$ be a continuous function $c$-Lipschitz in $x \in X$. If there are two exact solutions $f_{1}$ and $f_{2}: I \rightarrow X$ of the differential equation $\frac{d x}{d t}=g(t, x)$ and if $f_{1}\left(t_{0}\right)=f_{2}\left(t_{0}\right), t_{0} \in I$ then the function $f_{1}$ and $f_{2}$ are identical in the interval $I$.
2. Let $g(t, x)$ be a real valued continuous function defined in the set $|t| \leq a,|x| \leq b$ in $R^{2}$, such that $g(t, x)<0$ for $t, x>0$ and $g(t, x)>0$ for $t, x<0$. Show that $x=0$ is the unique solution of the differential equation $\frac{d x}{d t}=g(t, x)$ defined in a $n b d$ of 0 and such that $x(0)=0$.
