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PREFACE

The present book entitled ‘‘Analysis and Advanced Calculus’’ has been

designed so as to cover the unit-wise syllabus of MA/MSc MT-06 course for M.A./

M.Sc. Mathematics (Final) students of Vardhaman Mahaveer Open University, Kota.

It can also be used for competitive examinations. The basic principles and theory

have been explained in a simple, concise and lucid manner. Adequate number of

illustrative examples and exercises have also been included to enable the students to

grasp the subject easily. The units have been written by various experts in the field.

The unit writers have consulted various standard books on the subject and they are

thankful to the authors of these reference books.
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Unit - 1
Normed Linear Spaces

Structure of the Unit
1.0 Objectives

1.1 Introduction

1.2 Linear (Vector) Spaces

1.3 Basic Concepts of Norm and Normed Spaces

1.3.1 Norm and Normed Spaces

1.3.2 Convergence in Normed Linear Spaces

1.3.3 Summability in Normed Linear Spaces

1.3.4 Continuity in Normed Linear Spaces

1.3.5 Allied Spaces to Normed Linear Spaces

1.4 Theorems on Normed Spaces

1.5 Factor (Quotient) Spaces

1.6 Examples of Banach Spaces

1.7 Summary

1.8 Answers to Self-Learning Exercise

1.9 Exercises

1.0 Objectives
In this unit, we introduce the concept of a norm over a linear space. A Banach space is a normed

linear space which is complete metric space. The theory of normed linear spaces and Banach spaces, and
the theory of linear operators defined on them are the fundamental of functional analysis. In this unit, we
discuss basic propeties of normed linear spaces and Banach spaces and give some examples of these
spaces.

1.1 Introduction
Usefull and important spaces are obtained if we take a linear space and define on it a metric by

means of a norm. The resulting space is called a normed linear space. Normed spaces and metric spaces
are special enough to provide a basis for a rich theory in functional analysis.

1.2 Linear (Vector) Spaces
A linear space (or vector spaces) is an additive abelian group L  (whose elements are called

vectors) with the property that any scalar   and any vector x  can be combined by an operation called
scalar multiplication to yield a vector  x  in such a manner that

(i)   x y x y  b g ;

(ii)      b g x x x  ;
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(iii)    b g b gx x  ;

(iv) 1. x x

A linear space is thus an additive abelian group whose elements can be multiplied by numbers in a
reasonable way. The two primary operations in a linear space-vector addition and scalar multiplication are
called the linear operations.

A linear space is called a real linear space or a complex linear space according as the scalars are
the real numbers or the complex number.

1.3 Basic Concepts of Norm and Normed Spaces
1.3.1 Norm and Normed Space :

If N  be a real or complex linear (vector) space and  || . || be a function from N  into R  (set of
reals) i.e. ||.|| : N R  or x x  with x N ,

then the non-negative real number x  regarded as the length of the vector x  and said to be the

Norm on N  and the pair N , .c h  is called as Normed linear space, provided for all x y N,   and all

R  (or C), the following axioms are satisfied :

N x1 0:  , if  x  0

N x x2 0 0:   

N x y x y3 :   

N x x4 :  

The function .  becomes a semi-norm and the corresponding space becomes semi-normed

linear space if N2  is replaced by

N p x x2 0 0b g :   

Example :   The metric space induced by the metric d x y x y,b g    is a normed linear space.

1.3.2 Convergence in Normed Linear Space

Definition :   A sequence  xn  in N  i.e., normed linear space N , .c h  is said to converge to an

element x N0   if given arbitrary  0 ,   a positive number (integer)  n0  s.t

n n x xn    0 0

and we write limn nx x


 0  or x xn  0  as n    i.e.,

Thus  x xn  0  iff x xn  0 0 .

Definition :   A sequence  xn  in N  is said to be a Cauchy sequence if given  0  a positive
integer n0  such that
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m n n x xm n,     0 .

Definition :   A sequence  xn  in N  is said to be bounded if   a real constant K  0  s.t. x Kn   for
all n .

Definition :  If every Cauchy sequence  xn  in N  is convergent i.e. if   Cauchy sequence  xn  in

N    an element x N0   s.t. x xn  0 , then the normed linear space is said to be complete.

1.3.3 Summability in Normed Linear Spaces

A series fn  of functions in a normed linear space N  is summable to a sum s  in N , if the
sequence of partial sums of the series converges, s.t.

s f i
i

n

 



1

0   as   n  

i.e. s f i
i







1

The series fn  is asbolutely summable if fn
i



  
1

1.3.4 Continuity in Normed Linear Space

If N , M  be two normed linear spaces, then a function f N M:   is continuous at x N0   iff

   0 ,   a   0  s.t.

x x f x f x     0 0 b g b g .

The function f  is continuous on N  iff f  is continuous at each point of N .

In other words, f N M:   is continuous at x N0   iff   sequence  xn  in N  converging to

x N0  , the sequence  f xnb g  in M  converges to f x M0b g  i.e., iff x x f x f xn n  0 0b g b g .

In case of three topological spaces X Y Z, ,  the continuous function f X Y Z:   into  is

jointly continuous in x  and y  if f x y z,b g  . In other words, if

f x y f x yn n, ,b g b g  whenever x xn  , y yn   as n   .

1.3.5 Allied Spaces to Normed Linear Spaces

Banach Space :   A complete normed linear space is known as a Banach space.

Function Space :  A function space is the metric space which is linear space with elements as functions
defined as X b g  with addition and multiplication, i.e., f X R f g x f x g x: :   b gb g b g b g  and

 f x f xb gb g b g .

n -Dimensional Enclidean Space :  If Rn  be a set of all ordered n -tuples x x x xn 1 2, , .....b g  of real
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numbers, s.t. Rn  is a real linear space with additive and multiplicative operations such as

x y x y x y x yn n    1 1 2 2, ,....,b g  where y y y yn 1 2, , ...... ,b g  and

   x x x xn 1 2, ,....,b g   so that 0 0 0 0, ,..... ,b g  and     x x x xn1 2, ,... ,b g  etc.

then Rn  is a n-dimensional space. We can regard Rn  as composed of real functions f  defined

on 1 2, ,......,nb g  s.t. f f i
i

n


L
NM

O
QP

 b g 2

1

1
2

 known as Euclidean norm, then normed linear space Rn  is

called n-dimensional Euclidern space.

n-Dimensional Unitary Space :   The set Cn  of all n -tuples z z z zn 1 2, , .... ,b g  of complex numbers
constitutes a complex Banach space w.r.t. operations of addition and scalar multiplication and the norm
given by

z zi
i

n


L
NM

O
QP

 2

1

1
2

It is known as an n-dimensional unitary space.

1.4 Theorems on Normed Spaces

Theorem 1 :   If N  be a normed linear space and x y N,  , then

x y x y  

Proof :   We can write

x x y y x y y     b g  by N3

giving x y x y   ...(1)

and y y x x y x x     b g , giving

y x y x x y     b g
     1 x y by N4

    x y

or y x x y   ...(2)

  (1) and (2)    x y x y .

Theorem 2 :   Every normed linear space is a metric space.

Proof :   Let N  be a normed linear space and let

d N N R:    defined by d x y x y,b g   .
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M x y N x y N x y1 0,       b g (by N1)

            d x y,b g 0

M d x y x y2 0 0,b g    

      x y 0 (by N2 )

     x y

M d x y x y y x3 1,b g b gb g    

             1 y x (by N4 )

             y x d y x,b g
M d x y x y x z z y4 ,b g      

   x z z y (by N3 )

 d x z d z y, ,b g b g
It follows that d  is a metric and hence N  is a metric space.

Theorem 3 :   If N  be a normed linear space with the norm . , then the mapping f N R:   s.t.

f x xb g   is continuous. In other words, the norm .  on N  is a continuous function.

Proof :   Taking a sequence  xn  in N  s.t. x x Nn   , as n   , we have by Theorem 1,

f x f x x xn nb g b g  

            x xn 0 as n  

 f x f xnb g b g   as  n f  is continuous.

Theorem 4 :   Every convergent sequence in a normed linear space is a Cauchy sequence.

Proof :   Assuming that a sequence  xn  in a normed linear space N  converges to x N0  . We claim
that  xn  is a Cauchy sequence.

Given  0 , and the sequence   x xn 0 ,  a positive integer n0  s.t.

n n x xn   


0 0 2

so that for all m n n,  0 , we have

x x x x x xm n m n    0 0
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     x x x xm n0 0 by N3 .

  



 

2 2

i.e.,   x xm n    the sequence  xn  is a Cauchy sequence.

Note :   Its converse is not true, i.e., every Cauchy sequence (particularly in a metric space) is not
convergent.

Consider a metric d x y x y,b g    in a space X  0 1,b g . Then the sequence

     x
n

Xn
1

, is clearly a Cauchy sequence, since d x y x x
n mn m,b g     
1 1 0  as

m n,   , but d n n
1 0 1 0,F

HG
I
KJ    as n    with 0 X  shows that  xn  in X  is not necessarily a

convergent sequence.

Theorem 5 :  The limit of a convergent sequence is unique.

Proof :   Consider a convergent sequence  xn  in a normed linear space N ,  converging to two limits

x y,  s.t. x y  i.e.,   x xn  as well as   x yn . Then x xn   0  and x yn   0  as
n   . ...(1)

Now x y x x x yn n    

              x x x yn n by N3

               1 x x x yn n by N4

            0   by (1) as n  

 x y x y    0 0 by N2

      x y   i.e., the limit of  xn  in N  is unique.

Lemma  6 :   If p 1 and 
1 1 1
p q
  , then a b a b a

p
b
q

p q,    0
1 1

, where the sign of equality holds

iff a bp q .

Proof :   For a  0  or b  0 , the result is obvious. Therefore taking a  0 , b  0  and k  0 1,b g , i.e.,

0 1 k , set a function

f t k kt t kb g    1  for t  0 ...(1)

and k
p


1 , t a

b


f t k t t fkb g b g b g     1 1 1 0 ...(2)
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     f t k kt k tk kb g c h1 11

so that  f tb g 0 ,   for 0 1 t

 f tb g 0 ,   t  1

For 0 1 t  and some c  s.t. t c  1, the mean value theorem of differential calculus yeilds

f f t
t

f c f f t f c t
1
1

1 1 0b g b g b g b g b g b gb g


          for 1 0 t  and  f cb g 0

 f t fb g b g1 ...(3)

for t  1 and some d  s.t., 1 d t , the mean value theorem gives

f t f
t

f d f t f t f db g b g b g b g b g b g b g


       
1

1
1 1 0  for t  1 and  f db g 0

          f t fb g b g1 ...(4)

Thus (3) and (4)  f t fb g b g1  either t  1 or t  1 but t  1 ...(5)

and f t k t t f tkb g b g b g     1 1 0  for t  1 ...(6)

Also (2) and (5)  f tb g 0  for t  1 ...(7)

  (6) and (7)  f tb g 0  for t  0

              1 0k kt t kb g
             t kt kk 1b g   for t  0 ...(8)

          
F
HG

I
KJ   

a
b p

a
b p

p
1

1 1 1

          
F
HG

I
KJ   

F
HG

I
KJb a

b
a
p

b
p

p
1

1 1

            a b a
p

b
q

p q
1 1

  as 1
1 1

 
p q ...(9)

Corollary :   If we set t a bp q   in (8), other assumptions being the same, then we get

a b
p

a b
p

p q p p q   c h
1 1 1 1
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or a b
p

a b
q

q
p p q


 

1 1
   as 

1 1 1
p q
 

Multiplying both sides by bq , this reduces to

ab a
p

b
q

q p
p q1 1FH IK  

or ab a
p

b
q

p q

  ...(10)

Now to show that the sign of equality holds iff a bp q , we have

a b a b a bp q p q p p    


F
HG

I
KJ

1 1 1 1 1
   as 

1 1 1
q p
 

or a a b a ab a abp p p p.


    
1 1 1b g

Similarly b abq 

 a
p

b
q

ab
p

ab
q

ab
p q

ab
p q

    
F
HG

I
KJ 

1 1    as 
1 1 1
p q
 

i.e. ab a
p

b
q

p q

  ,

which follows that the sign of equality holds  if a bp q

Theorem 7 [Holder’s Inequality] :

If x x x xn 1 2, ,... ,b g  and y y y yn 1 2, , ... ,b g  be two n  tuples of scalars (real or complex), then
under the norm

x x yp i
p

i

n p

i
p

i

n q


L
NM

O
QP

L
NM

O
QP 

 
1

1

1

1

, we have the inequality

x y x yi i
i

n

i
p

i

n p

i
p

i

n q

  
  

L
NM

O
QP

L
NM

O
QP1 1

1

1

1

  x yp q

where 1  p  and 
1 1 1
p q
  .

Proof :   For x  0 , y  0 , the result is obvious. We therefore consider the case when x  0 , y  0 .
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The inequality (10) of Lemma 6 for ai  0 , bi  0  yields

a b a
p

b
qi i

i
p

i
q

  ...(1)

Setting  a
x
xi

i

p

  and b
y
yi

i

q

 , (1) reduces to

x
x

y
y p

x
x q

y
y

i

p

i

q

i
p

p
p

i
q

q
q 

1 1

summing over i  from 1 to n , we find

1 1 1
1 1 1x y

x y
p x

x
q y

y
p q

i i
i

n

p
p i

p

i

n

q
q i

q

i

n

  
   

      
1 1

p x
x

q y
y

p
p p

p

q
q q

q

as x x x xp i
p

i

n p

p
p

i
p

i

n


L
NM

O
QP  

R
S|
T|

U
V|
W| 

 
1

1

1

       
1 1 1
p q

or x y x yi i
i

n

p q

 

1
, since x y x yi i i i ...(2)

Note :  The theorem is also true for sequance x xn  , y yn   s.t.

xn
p

n
 






1

,   yn
p

n
 






1

 for p  1

Corollary :   For p  2 , q  2  the inequality (2) reduces to

x y x yi i
i

n

i
i

n

i
i

n

  
  

RST
UVW

RST
UVW1

2

1

1
2

2

1

1
2

  x y2 2 ...(3)

Theorem 8 [Minkowski’s Inequality] :

If x x x xn 1 2, ,... ,b g  and y y y yn 1 2, , ... ,b g  be two n  tuples of real or complex numbers, then
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under the norm

x xp i
p

i

n p


L
NM

O
QP


1

1

,   p  1

We have the inequality

x y x yp p p  

i.e., x y x yi i
p

i

n p

i
p

i

n p

i
p

i

n p


L
NM

O
QP 

L
NM

O
QP 

L
NM

O
QP  

  
1

1

1

1

1

1

where 1  p .

Proof :   For p  1 , x x x xp i
p

i

n

i
i

n


L
NM

O
QP 

 
 

1
1

1

so that x y x y x yi i
i

n

i
i

n

i
i

n

    
  
  1

1 1 1
by N3

or x y x y  1 1 1 ,

which shows that the inequality holds for p  1 .

Taking p 1 and setting 
1 1 1
q p
   so that q  1, we have

x y x yp
p

i i
p

i

n

  



1

    


 x y x yi i i i

p

i

n
1

1

    


 x y x yi i i i

p

i

n

m r 1

1

    






 x x y y x yi i i

p

i

n

i i i
p

i

n
1

1

1

1
by N3

 
L
NM

O
QP 

L
NM

O
QP




 x x yi

p

i

n p

i
q p

i

n q

1

1

1
1

1

1
b g


L
NM

O
QP 

L
NM

O
QP




 y x yi

p

i

n p

i i
q p

i

n q

1

1
1

1

1
b g

   by Holder’s inequality
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  
L
NM

O
QP  

L
NM

O
QP 

 x x y y x yp i i
p

i

n q

p i
p

i

n q

1

1

1
1

1

since 
1 1 1 1
q p

q p p    b g

   
L
NM

O
QP

x y x yp p i i
p

i

n q

o t
1

1

   x y x yp p p

p
qo t

or x y x yp
p p

q
p p   , where p p

q
p

q
p

p
  

F
HG

I
KJ  1 1 1 1

or x y x yp p p  

Note :   The Theorem is also true for sequences x xn   , y yn  

s.t. xn
p

i

n

 



1
, yn

p

i

n

 



1
 for p 1 .

1.5 Factor (quotient) Spaces

If M  be a subspace of a vector space N , then   an equivalence relation between any two
vectors  x y N,   i.e., x y~  iff x y M  , since this relation is :

Reflexive i.e., x x~  as x x M  0

Symmetric i.e., x y y x~ ~  as x y M 

              x y y x Mb g
Transitive i.e., x y~ , y z x z~ ~  as

x y M   and y z M x y y z x z M        

   Vectors x y,  being equivalent under ‘~’    x y M .

Thus N  is divided into mutually disjoint equivalence classes. We denote the set of all such

equivalence classes by 
N
M .

Let x  denote the equivalence class which contains the element x . Thus

x y y x y y x M   : ~ :l q l q
     y y x m for some m M:l q
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           y y x m for some m M x m m M: :l q l q
Thus x  is the set of all sums of x  and elements of M . The set x  is called the coset of M

determined by x  and is usually written as x M . In 
N
M , we define addition and scalar multiplication by

x M y M x y M     b g b g b g  ; x y N, 

 x M x M  b g b g ,  F  over which N  is defined.

Here 
N
M  is a vector (linear) space w.r.t. addition and scalar multiplication. Also N  is a normed

linear spce and exihibits a norm for 
N
M . The zero element of N M  is 0 M M .

The set of all such equivalence classes x M x N :l q  referred as 
N
M  is known as the Factor

space or Quotient space of N  w.r.t. N .

Our next theorem shows that if M  be a closed linear suspance in a normed linear space N , then
N
M  can be made into a normed linear space.

Theorem 9 :   If M  be a closed subspace of a normed linear space N  and if the norm of a coset x M

is the quotient space 
N
M  is defined by

x M   Inf. x m m M :m r ,

then 
N
M  is a normed linear space. Also if N  is complex (Banach space), then so is 

N
M .

Proof :   We verify all the postulates for a norm. N1  since x m  is a non-negative real number and

every set of non-negative real numbers is bounded below, it follows that inf x m m M :m r  exists and
is non-negative, that is

x M x N   0 .

N2  : Let x M M   (the zero element of 
N
M ). Then x M .

Hence x M x m m M x M    inf : ,m r
  inf :y y Mm r 0

 M being a subspace contains zero vector whose norm is real number 0]
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Thus x M M x M     0

Conversely, we have

x m x m m M     0 0inf :m r
       there exists a sequence   

mk k 1  in M

Such that x mk  0  as k 

  


lim
k km x

  x M    [Since M  is closed and  mk  is sequence in M  converging to  x ]

 x M     M  is a subspace]

  x M M   (the zero element of 
N
M )

Thus we have shown that

x M x M M    0 (the zero element of N M )

N3  :  Let x M , y M N M  , then

x M y M x y M     b g b g b g by definition of addition of coset.

        inf :x y m m Mm r ...(1)

           inf : ,x y m m m M m Mm r ...(2)

 M  is a subspace, the sets in (1) and (2) are the same]

           inf : ,x m y m m m Mb g b gn s

           inf : ,x m y m m m Mm r
[Using N3  for N , since x m , y m N   ]

           inf : inf :x m m M y m m Mm r m r
        x M y M

N4  :   x M x m m M   b g m rinf : since   x M x M  b g  in 
N
M

         inf : x m m Mm r if     0
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         inf : x m m Mm r
          inf :x m m Mm r
         x M

For   0 , the result is obvious.

Hence N
M

 is a normed linear space.

We now prove that if N  is complete, then so is 
N
M . Suppose that   x Mn  is a Cauchy

sequence in 
N
M . Then to show that   x Mn  is convergent, it is sufficient to prove that this sequence

has convergent subsequance.

we can easily find a subsequence of the original Cauchy sequence for a fixed n  s.t.

x M x M1 2
1
2

   b g b g

x M x M2 3 2

1
2

   b g b g
... ... ... ...

... ... ... ...

x M x Mn n n   b g b g1
1
2

We prove that this sequence is convergent in 
N
M . We begin by choosing any vectory y1  in

x M1  , and we select y2  in x M2   such that y y1 2
1
2

  . We next select a vector y3  in x M3  .

Such that y y2 3 2

1
2

   containing in this way, we obtain a sequence ynl q  in N  such that

y yn n n 1
1
2 .

Thus for m n , we have

y y y y y y y ym n m m m m n n          1 1 2 1b g b g b g....

           y y y y y ym m m m n n1 1 2 1...

      

1
2

1
2

1
21 1m m n....
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     L
NM

O
QP 

1
2

1 1
2

1
2 1m n m...

  


 FHG
I
KJ



L

N

MMMM

O

Q

PPPP
 L

NM
O
QP



 

1
2

1 1
2

1 1
2

1
2

1 1
21m

n m

m n m

   

1
2

01m    as   m ,

which follows that  yn  is a Cauchy sequence in N .

Since N  is complete, there exists a vector y  in N  such that y yn  . It now follows from

y M y M y yn n     b g b g 0 as n  

that y M y Mn    . i.r., y Mn   converges to y M  in N
M

. Hence N
M

 is complete.

1.6 Examples of Banach Spaces
We now describe some of the main examples of Banach spaces. In each of these, the linear

operations are understood to be defined eithr co-ordinatewise or pointwise, which ever is appropriate in
the circumstances.

Example 1 :   Show that the linear spaces R  (real) and C  (complex) are normed linear spaces under the

norm x x , x R  or C  as the case may be.

Also show that these spaces are complete and hence Banach spaces.

Solution :    R  is a normed linear space, since

N x x1 0 0:    , which is so,  x R

N x x x x R2 0 0 0: ,      

N x y x y x y x y x y R3 : ,        

N x x x x4 :       ,   being real or complex.

Similarly C  is a normed linear space, since

N x x1 0 0:    ,  x C

N x x x2 0 0 0:         x C

N x y C2 : ,   and x , y  being thier conjugates (complex),
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We have

x y x y x y x y x y x x y y xy xy          2 b gd i b gb g

  x y xy2 2 2 , by properties of complex quantities.

  x y x y2 2 2   as y y

 x yc h2

giving x y x y  

 x y x y  

N x x x x4 :       ,   being real or complex.

By Theorem 4, every convergent sequence in a normed linear space being a Cauchy sequence,
the real Rb g  or complex Cb g  normed linear space is complete and hence a Banach space.

Example 2 :   Show that the linear spaces Rn  (Euclidean) and Cn  (Unitary) of n -tuples

x x x xn 1 2, , ....,b g  of real and complex numbers are Banach space under the norm

x xi
i

n


RST

UVW
 2

1

1
2

Solution :  N1 :  Since each xi  0 , we have x  0

N x x xi
i

n

i2
2

1

0 0 0:     

 , i n 12, ,......,

   x x xn1 2 0, ,..... ,b g
   x 0

N3 :   Let x x x xn 1 2, , ....,b g  and y y y yn 1 2, , ....,b g  be any two members of Cn  (or Rn ).
Then

x y x x x y y yn n  2
1 2 1 2

2
, ,...., , ,....,b g b g

    x y x y x yn n1 1 2 2
2

, ,.....,b g

     
 
 x y x y x yi i
i

n

i i i i
i

n
2

1 1

   

 x y x yi i i i
i

n

c h
1
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    
 
 x y x x y yi i i
i

n

i i i
i

n

1 1

    x y x x y y ,   by Cauchy’s inequality..

   x y x yc h
If x y  0 , then the above is evidently true. If x y  0

Then we can divide both sides by it to obtain

x y x y  

N x x x xn4 1 2: , ,....,  b g
         x x xn1 2, , ....,

      
RST

UVW 
RST

UVW 
  x xi
i

n

i
i

n
2

1

1
2

2 2

1

1
2

      
RST

UVW 

 x xi
i

n
2

1

1
2

Thus Cn  and Rn  are normed linear spaces. Again to show that the normal linear spaces Rn  and
Cn  are complete, consider a Cauchy sequence   

xi i 1 , i.e.,  x x xn1 2, ,...., ...  of points in Rn  or Cn ,
so that xi  being an n -tuple of real or complex numbers, we can write

x x x xm
m m

n
m 1 2

b g b g b ge j, ,....,

so that xk
mb g  is the k th  co-ordinate of xm . Let  0  be given. Since  xm  is a Cauchy

sequence, there exists a positive integer m0  such that

l m m x x x xm l m l1 0
2 2      

     

 x xi

m
i

l

i

n b g b g 2

1
...(1)

     x xi
m

i
lb g b g 2 2 i n 1 2, ,....,b g

     x xi
m

i
lb g b g

This shows that the sequence   
xi

m
m

b g
1  is a Cauchy sequence of complex (or real) numbers for

each fixed but arbitrary i.
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Since C  (or R ) is complete, each of these sequences converges to a point, say zi  in C  (or R )
so that

lim
m i

m
ix z


b g    i n 1 2, ,....,b g ...(2)

We now show that the Cauchy sequence  xm  converges to the point z z z z Cn
n 1 2, ,.... ,b g

(or Rn ). To prove this,  we let l   in (1). Then by (2), for m m 0 , we obtain

x z x z x zi
m

i
i

n

m m
b g           




1

2 2 2

It follows that the Cauchy sequence  xm  converges to z Cn  (or Rn ). Hence Cn  and Rn

are complete spaces and consequently they are Banach spaces.

Example 3 :   Let p  be a real number such that 1  p . Show that the space lp
n  of all n -tuples of

scalars with the norm defined by

x xp i
p

i

n p

RST

UVW


1

1

is a Banach space.

Solution :   Let x x x xn 1 2, ,... ,b g  and y y y yn 1 2, , ... ,b g  and let   be any scalar. Then it is understood

here that lp
n  is a linear space with respect to the operations, x y x y x yn n   1 1, ... ,b g  and

  x x xn 1,...,b g . We now show that ln
p  is a normed linear space.

N x p1 0:  ,  obvious since xi  0  for each i

N x xp i
p

i

n p

2
1

1

0 0:  
RST

UVW 



            

 xi

p

i

n

1

0

            xi 0 , i n 1 2, ,....,b g
            xi 0 , i n 1 2, ,....,

             x x x xn1 2 0, ,...,b g
N x y x yp p p3 :    ,  by Minkowski’s inequality..

N x x x x
p n p4 1 2: , ,....,  b g
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           x x xn p1 2, ,....,b g

        
RST

UVW 
RST

UVW 
  x xi

p

i

n p p
i

p

i

n p

1

1

1

1

        
RST

UVW
 p

i
p

i

n p
x

1

1

        
RST

UVW 

 x xi

p

i

n p

p
1

1

Thus lp
n  is a normed linear space.

Again to show that lp
n  is complete, let   

xm m 1  be a Cauchy sequence in lp
n . Since each xm  is

an n -tuple of scalars, for convenience, we shall write

x x x xm
m m

n
m 1 2, , .... ,c h .

Let  0  be given. Since  xm  is a Cauchy sequence, there exists a positive integer m0  such
that

l m m x x x xm l p m l p

p p,        0

     

 x xi

m
i

l p

i

n
pb g b g

1
...(1)

     x xi
m

i
l p pb g b g i n 1 2, ,...,b g

     x xi
m

i
lb g b g

This shows that for fixed but arbitrary i , the sequence   
xi

m
m

b g
1 is a Cauchy sequence in C  (or

R ) is complete, each of these sequences converges to a point, say zi , in C  (or R ) so that

lim
m i

m
ix z


b g    i n 1 2, ,...,b g ...(2)

It will now be shown that the Cauchy sequence  xm  converses to the point

z z z z ln p
n 1 2, ,...,b g . To prove this, we let l   (1). Then by (2), for m m 0 , we obtain

x z x zi
m

i

p

i

n
p

m p

p pb g       



1

         x zm
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It follows that the Cauchy sequence  xm  converges to z lp
n . Hence lp

n  is complete and
therefore it is a Banach spaces.

Example 4 :   Consider the linear space of all n -tuples x x x xn 1 2, ,... ,b g  of scalars and define the norm

by x x x xn
 max , ,...,1 2m r

This space is usually denoted by the symbol ln
 . Show that l n

 
, .d i  is a Banach space.

Solution :   We first prove that ln
  is a normed linear space.

N1 :   since each xn  0 , we have x

 0 .

N x x x xn2 1 20 0: max , ,...,

  m r

              x x xn1 20 0 0, ,...,

              x x xn1 20 0 0, ,...,

            x x xn1 2 0, ,...,b g
            x 0

N3 : let x x x xn 1 2, ,... ,b g , y y y yn 1 2, , ... ,b g
Then x y x y x y x yn n    


max , ,....,1 1 2 2m r

    max , ,....,x y x y x yn n1 1 2 2m r

  max , ,...., max , ,....,x x x y y yn n1 2 1 2m r m r
  

 
x y

N4 : If   is any scalar, then

   x x x xn
 max , ,....,1 2m r

            max , ,....,  x x xn1 2m r

             max , ,....,x x xn1 2m r
            

 x

Hence ln
  is a normed linear space. We now show that it is a complete space. Let   

xm m 1  be

any Cauchy sequence in ln
 . Since each xm  is an n -tuple of scalars, we shall write.

x x x xm
m m

n
m 1 2

b g b g b ge j, ,...,



21

Let  0  be given. Then there exits a positive integer m0  such that l m m x xm l,     
0

 max , ,....,x x x x x xm l m l
n
m

n
l

1 1 2 2
b g b g b g b g b g b g{ }     ...(1)

 x xi
m

i
lb g b g  , i n 1 2, ,...., .

This shows that for fixed i ,   
xi

m
m

b g
1 is a Cauchy sequence of complex or real numbers. Since

C  (or R ) is complete, it must converges to some z Ci   (or R ). We assert that the Cauchy sequence

 xn  converges to z z z zn 1 2, , .... ,b g . The prove this, we let l   in (1). Then for m m 0 , we
obtain

x zm   . Thus it follows that the Cauchy sequence  xm  converges to z ln  . Hence ln
   is

a Banach space.

Example 5 :   If C Xb g  be a linear space of all bounded continous scalar valued function defined on a

topological space X . Then show that C Xb g  is a Banach space under the norm

f f x x X sup :b gn s , f C X b g .

Solution :   Given that C Xb g  is a linear space, means C Xb g  is linear under the operations of vector

addition and scalar multiplication i.e., f g C X,  b g  and   being a scalar, we must have

f g x f x g x  b gb g b g b g ...(1)

 f x f xb gb g b g ...(2)

We now show that C Xb g  is normed linear space.

N1 : since f x x Xb g   0 , we have

       f xb g  0

N f f x x X2 0 0: sup :   b gn s

             f x x Xb g 0

             f x x Xb g 0

           f  is a zero function.

N f g f g x x X3 : sup :   b gb gn s

           sup :f x g x x Xb g b gn s
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           sup :f x g x x Xb g b gn s

            sup : sup :f x x X g x x Xb gn s b gn s
          f g

N f f x x X4 : sup :  b gb gn s

       sup : f x x Xb gn s

       sup : f x x Xb gn s

        sup :f x x Xb gn s
        f

Hence C Xb g  is a normed linear space.

Finally we prove that C Xb g  is complete as a metric space. Let  fn  be any Cauchy sequence

in C Xb g . Then for a given  0 , there exists a positive integer m0  such that

m n m f fm n,     0

        sup :f f x x Xm n b gn s

        sup :f x f x x Xm nb g b gn s

        f x f x x Xm nb g b gn s .

But this is the Cauchy’s condition for uniform convergence of the sequence of bounded continous
scalar valued functions. Hence the sequence  fn

 must converge to a bounded continous function f

on X . It follows that C Xb g  is complete and hence it is a Banach space.

Self-Learning Exercise - I

1. Write whether the following statements are true or false :

(i) If x y z N, ,  , N  being a normed linear space. Then d x z y z d x y  , ,b g b g
(ii) Every convergent sequence in a normed linear space need not be a Cauchy sequence.

(iii) Let N  be a normed linear space and let x y N,  . Then x y x y  

(iv) Let p 1, 
1 1 1
p q
  , a  0 , b  0 . Then ab a

p
b
q

p q

   with equality if a pp q
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(v) Every normed space is metric space but the converse is not universally true.

(vi) Every metric on a linear space can be obtained from a norm.

1.7 Summary
In this unit, we have seen that the notion of the norm of a vector is a generalization of the concept

of length. Besides discussing a fairly large number of examples of Banach spaces, we proved an
interesting theorem which provides us a very useful method for constructing new normed spaces from a
given normed space.

1.8 Answer to Self-Learning Exercise

1. (i) True (ii) False (iii) False

(iv)  False (v) True (Vi) False

1.9 Exercises
1. Define normed spaces, Banach spaces. Give two examples of Banach spaces.

2. Prove that the limit of a convergent sequence in a normed space is unique.

3. Show that the set X  of all convergent sequences in a normed space is a normed space. Hence or
otherwise show that X  is also a linear space.

4. Show that every complete subspace of a normed linear space in closed.

5. Show that every normed space is metric space but the converse is not universally true.

6. Prove that a metric d  induced by a norm on a normed space N  satisfies

(i) d x a y a d x y  , ,b g b g
(ii) d x y d x y  , ,b g b g

 x y a X, ,  and every scalar  .

���
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Unit - 2
Bounded Linear Transformations

Structure of the Unit
2.0 Objectives

2.1 Introduction

2.2 Bounded Linear Transformation

2.3 General Properties of Bounded Linear Transformation

2.4 Weak Convergence

2.5 Equivalent Norms

2.6 Compactness and Finite Dimension

2.6.1 Compactness in Normed Spaces

2.6.2 Related Theorems

2.7 Reisz Lemma

2.8 Summary

2.9 Answers to Self-Learning Exercise

2.10 Exercises

2.0 Objectives
In previous classes we have studied linear transformation from a linear space to a linear space. We

now consider linear transformations from a normed linear space to a normed linear space. In particular we
will be interested in questions related to the continuity of such transformations. As an illustration of the use
of compactness in analysis, we shall establish basic properties of finite dimensional normed linear spaces.

2.1 Introduction
In calculus we consider the real line R  and real valued functions on R  (or on a subset of R ).

Obviously, any such function is a mapping of its domain into R . In functional analysis we consider more
general spaces, such as metric spaces and normed spaces, and mappings of these spaces.

In the case of linear space and, in particular, normed spaces, a mapping is called an operator
(transformation). In this unit, we consider general properties of bounded linear transformations. Weak
convergence is defined in terms of bounded linear transformations.

2.2 Bounded Linear Transformations

If N  and N  be two normed linear spaces with the same scalars, then a mapping
T N N: into   , is known as an operator or a transformation and the value of T  at x N  is

denoted by T xb g .

The operator T  is known as linear operator (transformation) if it satisfies the following two
conditions :

T x y T x T y  b g b g b g    for all x y N, 
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and T x T x b g b g  for real   and x N .

The above conditions are also equivalent to a single condition

T x y T x T y F         b g b g b g ,  and  x y N, .

The transformation T  is bounded if   a real constant K  0  s.t.

T x K x x Nb g    .

The transformation T  is continuous at a point x N0   if given  0,  a   , x0 0b g  s.t.

T x T xb g b g  0   whenever x x 0  .

Here T  is continuous on N  if it is continuous at every point of N . It is uniformly continuous if
 x0 0b g   is independent of x0  only s.t.

T x T xb g b g  0    with   x x 0 

The norm of a bounded operator (transformation) is defined as

T
T x

x
x 

RS|
T|

UV|
W|

sup :
b g

0

or equivalenty  T T x x sup :b gn s1

and T T x x if N  sup :b g l qn s1 0

we can also express it as

T K K T x K x x  inf. : 0 and for allb gn s
which follows that

T x T xb g 
If  N R  (normed space of reals), then T  is known as a Functional and denoted by f . AA

normed linear space consisting of all bounded linear functional over N , is known as a conjugate space
(or Dual space), denoted by N * .

Note :  All continuous (or bounded) linear transformation of N  into N  are denoted by B N N, b g ,
where B  stands for bounded.

2.3 General Properties of Bounded (or Continuous) Linear Transformations
Our main purpose in this section is to convert the requirement of continuity into several more useful

equivalent forms and to show that the set of all continuous (or bounded) linear transformation of N  into
N  can itself be made into a normed liear space in a natural way..
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Theorem 1 :   If T  be a linear transformation from a normed linear space N  into the normed space N ,
then the following statements are equivalent :

(i) T  is continuous

(ii) T  is continuous at the origin i.e., x T xn n  0 0b g .

(iii) T  is bounded i.e.,   real K  0  s.t. T x K xb g   for all x N

(iv) If S x x : 1m r  is the closed unit sphere in N , then its image T Sb g  is bounded set in

N .

Proof : (i)   (ii) :  Let T  be continuous and  xn  is any sequence in N  such that xn  0  as n   .

Then by continuity of T , we have x T x Tn   0 0 0b g b g . Hence T  is continuous at the origin.

Conversely, let T  be continuous at the origin and  xn  be any sequence in N  such that
x x Nn   . Then

x x T x xn n    b g b g0 0  T  is continuous at origin]

            T x T x T x T xn nb g b g b g b g0 ,

showing that T  is continuous mapping.

(ii)   (iii) :  Let T  be continuous at the origin and suppose, if possible T  is not bounded that is,

there exists no real number K  such that T x K xb g   for every x N . Then for each positive integer

n , we can find a vector xn , such that

T x n xn nb g 


1 1

n x
T x

n
nb g 


1 1

n x
T x

n
nb g  by  N4

[Note that 
1 1

n x n xn n

 ]

 T x
n x

n

n

F
HG

I
KJ  1  T x T xb g b g  for any scalar  ]

Now set y x
n xn

n

n

 . Then y
x

n x nn
n

n

  
1 0  as n    and so yn  0  as n   . But
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T ynb g  does not tend to 0, since  T ynb g  1 .

Hence T  is not continuous at the origin which is a contradiction. Hence T  must be bounded.

Conversely, let T  be bounded so that there exists a real number K  0  such that

T x K x x Nb g   , ...(1)

Let  xn  be any sequence in N  such that xn  0 . Then

xn  0 0

Also from (1), T x K x nn nb g   ...(2)

It follows from (1) and (2) that T xnb g  0  which implies that  T xnb g 0 . We have thus shown

that x T xn n  0 0b g  and consequently T  is continuous at the origin.

(iii)   (iv) :   Assume that T x K xb g   for every x N  and let x  be any point of the closed

unit sphere S  so that x  1. Then T x Kb g   for all x S . It follows that T S  is a bounded set in

N .

Conversely, let T S  be bounded so that there exists a real number K  0  such that

T x Kb g     for all x S ...(3)

If x  0 , then T xb g  0  and so clearly T x K xb g  ; and if x  0 , then

x
x

S 
x
x


L
N
MM

O
Q
PP1

and therefore by (3)

T x
x

K
x

T x K
F
HG

I
KJ   

1 b g

           
1
x

T x Kb g

           T x K xb g
Thus it is shown that T x K xb g   for all x N . Hence T  is bounded.
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Theorem 2 :   If T  be a bounded linear transformation of normed space N  into normed space N , then
the following norms are equivalent :

(i) T
T x

x
x x N 

RS|
T|

UV|
W|

sup : ,
b g

0

(ii) T K K T x K x x N    inf. : ,0 b gn s

(iii) T T x x x N  sup : ,b gn s1

(iv) T T x x x N  sup : ,b gn s1 .

Proof : (i)   (ii) :   Since

T
T x

x
x 

RS|
T|

UV|
W|

sup :
b g

0

        T
T x

x
x

b g
; 0

       T x T xb g    as  T 0 0b g  ...(1)

       T  is one K’s satisfying T x K xb g 

         T K K T x K xinf. : ,0 b gn s ...(2)

Conversely, for x  0 , and K  satisfying T x K xb g  , we have

T x
x

K
T x

x
x K

b g b g
  

RS|
T|

UV|
W|
sup : ,0

       T K   for all K  and T  independent of x  and K

         T K K T x K xinf. : ,0 b gn s ...(3)

   (2) and (3)    T K K T x K xinf. : ,0 b gn s .

(ii)   (iii)  Since T
T x

x
x 

RS|
T|

UV|
W|

sup :
b g

0

         T x T xb g   for x  1

          sup :T x x Tb gn s1 ...(4)
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Again for an  0 ,  x1 0  s.t.

T
T x

x
x 

RS|
T|

UV|
W|

sup :
b g

0

         
T x

x
T1

1

b g

so that on setting y x
x

 1

1
 with y

x
x

 1

1

1 ,

we observe

sup :T x x T y T x
x

b gn s b g b g  
F
HG

I
KJ1 1

1

          
1

1
1x

T xb g b g

or sup :T x x Tb gn s 1 ...(5)

  (4) and (5)    T T x xsup :b gn s1
(iii)   (iv)  Since as above, we have

T
T x

x
x 

RS|
T|

UV|
W|

sup :
b g

0

       T x T xb g
          T   for x  1

        sup :T x x Tb gn s1 ...(6)

Further  
T x

x
T1

1

b g
  

and sup :T x x T yb gn s b g 1

where y x
x

 1

1

or sup :T x x Tb gn s   1
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Thus sup :T x x Tb gn s 1 ...(7)

From (6) and (7), we have

T T x x sup :b gn s1

Theorem 3 :   If N , N  be normed linear spaces and B N N, b g  is the set of all bounded (or

continuous) linear transformation from N  into N , then B N N, b g  is also a normed linear space under
the norm

T T x x x N   sup :b gn s1 ,

w.r.t. pointwise linear operations

T S x T x S x  b gb g b g b g  and  T x T xb gb g b g , for real  . Also B N N, b g  is complete if

N  is complete i.e., B N N, b g  is a Banach space if N  is a Banach space.

Proof :   Since a set S  of all linear transformations from a normed linear space N  into normed N  is itself
a linear space w.r.t. pointwise linear operations. Therefore to show that B N N, b g  is a linear space, it

suffices to show that B N N, b g  is a subspace of S .

Let T T B N N1 2, , b g . Then T T1 2,  are bounded and so there exists real numbers K1 0  and

K2 0  such that

T x K x1 1b g   and T x K x2 2b g   for all x N . For scalar  , , we have

   T T x T x T x1 2 1 2  b gb g b gb g b gb g

     T x T x1 2b g b g
     T x T x1 2b g b g
     T x T x1 2b g b g
     K x K x1 2

     K K x1 2c h
Thus  T T1 2  is bounded and so

 T T B N N1 2  ,b g
 B N N, b g  is a linear subspace of S .

Now we prove that B N N, b g  is a normed linear space.
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We verify the norm postulates one by one.

N1 : Since  T T x x sup :b gn s1   and  T xb g  0 , we conclude that T  0

N2 : By Theorem 2, T
T x

x
x N x  

RS|
T|

UV|
W|

sup : ,
b g

0

       
RS|
T|

UV|
W|
T

T x
x

x N x0 0 0sup : ,
b g

         
T x

x
x N x

b g
0 0, ,

         T x x N xb g 0 0, ,

         T x x Nb g 0

       T 0 (zero transformation)

N3 : If T U B N N, , b g , then

T U T U x x N x    sup : ,b gb gn s1

   sup : ,T x U x x N xb g b gn s1

   sup : ,T x U x x N xb g b gn s1

  sup : ,T x x N xb gn s1   sup : ,U x x N xb gn s1

 T U

N4 : If   is any scalar, then

 T T x x N x  sup : ,b gb gn s1

          sup : , T x x N xb gn s1

          sup : , T x x N xb gn s1

           sup : ,T x x N xb gn s1

          T

Hence B N N, b g  is a normed linear space.
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Again, we claim that B N N, b g  is complete if N  is complete. Suppose N  is complete and let

  
Tn n 1  be any Cauchy sequence in B N N, b g . Then

T Tm n  0   as  m n,  ...(1)

For each x N , we have

T x T x T T xm n m nb g b g b gb g  

             T T xm n 0 by (1)

Hence  T xnb g  is a Cauchy sequence in N  for each x N . Since N  is complete, there

exists a vector in N , which we denote by T xb g , such that T x T xn b g b g . This defines a mapping T  of

N  into N . We now show that T  is linear and bounded. If x y N,   and  ,  are scalars, then

T x y T x y
n n     


b g b glim

          


lim
n n nT x T y b g b g , Tn  being linear n .

          
 

 lim lim
n n n nT x T yb g b g

           T x T yb g b g
This shows that T  is linear. To show that T  is bounded, we observe that

T x T x T x T xn n nb g b g b g c h  lim lim lim    for all  n

    sup T xnc h

    sup T xnc h ...(2)

In view of (1), we observe that

T T T Tm n m n    0    as  m n,     by (1)

Therefore  Tn  is a Cauchy sequence of real numbers and hence convergent and bounded. So
there exists K  0  such that

sup T Kn  ...(3)

From (2) and (3), we have T x K xb g  ,

showing that T  is bounded. In other words, T B N N ,b g . Finally we show that T Tn  . Let

 0  be given. Since  Tn  is a Cauchy sequence. There exists a positive m0  such that

m n m T Tm n,     0 ...(4)
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 T x T x T T x xm n m nb g b g       for all m n m,  0  and any vector x N .

Proceeding to the limit as m , we find

lim
m m n n nT x T x T x T x T T x x


      b g b g b g b g b gb g ...(5)

Since lim
m mT x T x


b g b g , as norm is a continuous function

and lim
n mT x T x


b g b g

(5)   



R
S|
T|

U
V|
W|
 T T

T T x
x

xn
nsup :

b g
0   for all n n 0

  T Tn 0   as  n  

 T Tn    as  n  

Hence B N N, b g  is complete if N  is complete.

Theorem 4 :   If T  be a linear transformation of a normed linear space N  into normed linear space N ,
then inverse of T  i.e., T 1  exists and is continuous on its domain of definition iff   a constant K  0  s.t.

K x T x x N  b g .

Proof :  Assuming that

K x T x x N K   b g , 0 ...(1)

is true, we claim that T 1  exists and is continuous.

By definition of inverse mapping T 1  exists   T  is one-one.

Taking x x N1 2,  , we have

T x T x T x T x T x x1 2 1 2 1 20 0b g b g b g b g b g      

              x x x x1 2 1 20

This implies T  is one-one and so T 1  exists

  x N  corresponding to each y  in the domain of T 1

s.t. T x y T y xb g b g  1 ...(2)

In view of (2), (1) can be written as

K T y y T y
K

y   1 1 1b g b g

  T 1   is bounded and hence continuous.
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Conversely if T 1  exists and continuous on its domain T N , then to each x N   y T N

s.t. T y x T x y   1b g b g  i.e., T  is one-one.

Now  T 1  being continuous, it is bounded and so   a positive constant M  s.t.,

T y M y x M T x   1b g b g

   K x T xb g   for  K
M

 
1 0

Theorem 5 :   If T  be a linear transformation from a normed linear space N  into normed space N , then
T  is continuous either at every point or at no point of N .

Proof :   Taking arbitrary x x N1 2,   and T  continuous at x , to each  0 ,   0  s.t.

x x T x T x     1 1 b g b g ...(1)

Then x x x x x x      2 1 2 1 b g

           T x x x T x1 2 1b g b g     by  (1)

           T x T x T x T xb g b g b g b g1 2 1

         T x T xb g b g2

       T  is continuous at x2 .

But x1 , x2  being arbitrary, , T  is continuous at all points. Conclusively if T  is not continuous at a
particular point in N , then it is not continuous at no point of N .

Theorem 6 :   If M  be a closed linear subspace of a normed linear space N  and T  be a natural mapping

(homomorphism) of N  onto 
N
M  s.t. T x x Mb g   , then show that T  is continuous (or bounded) linear

transformation with T  1.

Proof :   Given that M  is closed and 
N
M  is a normed linear space with the norm of a coset x M  in 

N
M

s.t.

x M x m m M   inf :m r
we claim that T  is linear..

For any x y N,   and  ,  being scalars, we have

T x y x y M x M y M            b g b g b g b g
            x M y Mb g b g
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or T x y T x T y T      b g b g b g  is linear..

Again, we claim that T  is continuous, since

T x x M x m m Mb g m r    inf

             x m m M

           x   if  m  0  in particular

or T x T x x Nb g b g  1 .  as 0M  and M  is a subspace of N .

 T  is bounded with bound 1

 T  is continuous.

Also T T x x x N  sup : ,b gn s1

       sup : ,x x x N1m r
      1

Theorem 7 :   If N N,   are two normed linear spaces and T  is a continuous linear transformation of N
into N  and if M  is the null space (kernel) of T , then show that T  induces a natural linear transformation

T1  of 
N
M  into N  and that T T1  .

Proof :   Kernel or Null space of T  is defined as

Ker Tb g  or N T x x N T xb g b gm r  : , 0

Here is given that Ker Tb g  or N T Mb g  .

We first claim that M  is closed, since if x  be a limit point of M , then   a sequence  xn  in M
s.t . x xn  . But  T  is continuous, therefore T x T xnb g b g . Now T x nnb g  0

    T x x M Mb g 0  is closed.

Thus M  being a closed subspace of N , 
N
M  is a normed linear space with the norm of a cost

x M  in N M  s.t.

x M x m m M   inf. :m r
Now defining   T N M N:  and setting   T x M T xb g b g , we claim that T  is a linear

transformation s.t. T T  .  Taking two elements x M  and y M  of N M  and  ,  any scalars,
we have
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        T x M y M T x M y M   b g b g b g b g

          T x y M b g by property of coset

        T x y b g
         T x T yb g b g
             T x M T y Mb g b g

Thus T  is linear

Now       T T x M x M x Nsup : ,b gn s1

          sup : inf. : ,T x x m m M x Nb g m rn s1

          sup : , ,T x x m x N m Mb gn s1

           sup : , ,T x T m x m x N m Mb g b gn s1

since m M T m  b g 0 , by det. of M

         sup : ,T x M x x Nb gn s1

       T   as  x N , m M x M N     and x N

             x N0   and 0M

Theorem 8 :   Let N  and N  be normed linear spaces over the same scalar field and let T  be a linear
transformation of N  into N . Then T  is bounded if it is continuous.

Proof :   Let T  be bounded so that there exists a real number K  0 such that

T x K x x Nb g    ...(1)

To show that T  is continuous, let x N  be arbitrary. For any  0 , we choose  

K

. ThenThen

for all y N  such that y x   , we have

T y T x T y xb g b g b g  

          K y x by (1)

         

K

K
    as    


 

K
y x

Hence T  is continuous at x . Since x  is arbitrary, , T  is a continuous mapping.
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Conversely, let T  be continuuous and suppose, if possible, T  is not bounded i.e., there exists no

real number   0  such that  T x x x Nb g   

Then for each positive integer n , there exists a point x Nn   such that  T x n xn nb g  .

For each n , we let

y x
n xn

n

n



so that y
nn  
1 0   as  n    which implies that yn  0  as  n   . But for every n

T y T x
n x n x

T xn
n

n n
nb g b g

F
HG

I
KJ 

1


1

n x
T x

n
nb g

 
n x
n x

n

n

1  as  T x n xn nb g 

Which implies T ynb g  does not tend to 0 (i.e., T 0b g  as n   ). Here  yn 0  but

  T y Tn nb g b g0 , is a contradiction showing that T  is bounded.

2.4 Weak Convergence

If N  be a normed linear space and N *  its dual space, then a sequence  xn  of N  is known
as Weakly convergent to x N ,  f N *  s.t

lim
n nf x f x


b g b g

or simply   x xn
w 

i.e.  xn  c onverges weakly to x , and x  is called as the weak limit of  xn .

Note that weak convergence means convergence of the sequence of number a f xn n b g  for

every f N * .

Weak convergence has various applications throughout analysis (for instance, in the calculus of
variation and the general theory of differential equations). The concept illustrates a basic principle of
functional analysis. For applying weak convergence one needs to know certain basic properties, which
we state in the following theorem.

Theorem 9 :   The weak limit of a sequence is unique.

Proof :   Let  xn  be any sequence. Let if possible x xn
w  0  and x xn

w  , then for an arbitrary
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linear operater T N * , N *  being dual space of normed space N , we have

T x T xnb g b g 0    and T x T xnb g b g

implying that T x T x0b g b g  or T x x0 0 b g
Choosing T  s.t. T  1  and T x x x x0 0  b g , we have

x x0 0   giving x x 0 , i.e., the weak limit is unique.

Corollany 1 :   If there are two sequences  xn  and  yn  in N  s.t.

x xn
w    and  y yn

w  , then it is observed that

x y x yn n
w   

and for any scalar  .

 x xn
w   etc.

Corollany 2 :   Every subsequence of  xn  converges weakly to x  i.e., if  xnj  be a subsequence of

 xn  of N  s.t. x xn
w  0 , then  every subsequence  xnj  converges and has the same limit as the

sequence.

2.5 Equivalent Norms
Let a linear space L  be made into a normed linear space in two ways and let the two norms of a

vector x  in L  be denoted by x 1  and x 2 . Then these norms are said to be equivalent, written

1 2~ , if they generate the same topology on L .

When two norms are equivalent then if  xn  is a Cauchy sequence w.r.t . 1 , it is essentially a

Cauchy sequence w.r.t. . 2  and vice-versa. Moreover, in the case of equivalent norms, the class of open
sets defined by one is the same as the defined by the other. In other words, in any  neighbourhood

nb ab g  induced by . 1 , a  neighbourhood induced by 2  is wholly contained and conversely..

Remark :   To understand the full implication of the above definition we remind the reader that a norm  .

on a linear space L  induces the metric d x y x y,b g    which in turns induces a topology on L  called
the metric topology. This is the topology generated by the norm.

Theorem 10 :   If  N  be a normed linear space, then show that the two norms 1 , 2  defined on N

are equivalent iff   positive real numbers a  and b  s.t.

a x x b x x N1 2 1   , .

Proof :   If we assume that N1  is a normed linea space with norm 1  and N2  is a normed linear space

with norm 2  and that T x xb g   is a linear transformation with domain N1  and range N2 , then T 1  is a
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linear transformation wtih domain N2  and range N1  i.e.,

T x x T x xb g b g  1 ...(1)

Now, we have

T  is continuous  T  is bounded

   positive number b  such that

T x b x x Nb g 2 1  ,

    x b x x N2 1, by (1) ...(2)

T 1  is continuous  T 1  is bounded

   is positive number A  such that

T x A x x N   1
2b g ,

    x A x x N1 2 , by (1)

    
1

1 2A
x x x N,

    a x x x N1 2 , (on setting a
A


1 ) ...(3)

Also T  and T 1  are continuous

   inverse images of open sets in N2  and N1  under T , T 1  respectively are open in
      N1  and N2

   open sets in N1  are the same as those in N2  ; T , T 1  being identity transformations

   Norms 1  and 2  induces the same topology on N ...(4)

In view of (2), (3) and (4), . 1 and . 2  are equivalent

     positive number a  and b  s.t.

a x x b x x N1 2 1   , .

Theorem 11 :   On a finite dimensional linear space X , all norms are equivalent.

Proof :   Let dim X n  and x x xn1 2, ,.. ,l q  be any basis for X . Then for each x X , there is a list of

scalars   1 2, ,..., n  such that  x x x xn n     1 1 2 2 ... .

Let . 1  and . 2  be two norms defined on X . Then there exists a constant c  0  such that

x x x x Cn n n1 1 1 2 2 1 1          ... ...c h
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Also x x xn n2 1 1 2   ...

          1 1 2 2x xn n... using N3

          1 1 2 2x xn n... using N4

         K n 1 ...c h ,   where

K x xn max ,...,1 2 2n s

Thus  x x2 1 , where     
c
K

0

The reverse inequality is obtained by interchanging the roles of . 1  and . 2  in the above
argument.

2.6 Compactness and Finite Dimension
Some basic properties of finite dimensional normed linear spaces and subspaces are related to the

concept of compactness.

2.6.1 Compactness in Normed Spaces

If N  be a normed linear space and A  is a subset of N , then A  is compact or sequentially
compact if every cover of it has a finite subcover wheras a class Gil q  of open subsets of N  is known as

an open cover o f N  if to each point x N , there corresponds atleast one Gi  i.e., N U G
i i  and a

subclass of an open cover, which is an open cover in its own rights, is known as a subcover.

In other words, a subset A N  is compact if every sequence in A  contains a convergent subse-
quence whose limit point belongs to A . It should be remembered that an x N  is a limit point of A N ,
if each open nb d  (or open sphere with x  as centre) of x  contains at least one point of A  other than x .
In other words, an x N  is a limit point of A N , iff   a sequence  x xn 0  where x An  ,
x x nn  0 .

2.6.2 Related Theorems

A general property of compact sets is expressed in the following theorem.

Theorem 12 :   Every compact subset of a normed linear space is complete.

Proof :  Assuming that  xn  is a Cauchy sequence of a compact subset A  of the normed linear space

N , .c h . In view of compactness of A , the sequence  xn  consists of a convergent subsequence say

   x x Ani 0  for any i , we have

x x x x x xi i ni ni    0 0

    x x x xi ni ni 0 by N3
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  


 

2 2
0  as  i 

Since x xi ni 



2
0  as  xn  is a Cauchy sequence and x xni  


0 2

0  as x xni  0 .

Hence  xn  is a convergent sequence so that A  is complete.

Theorem 13 :   Every compact subset of a normed space is bounded but the converse is not true.

Proof :   Assuming that a compact subset A  of normed space N  is not bounded. Every open covering of

A  consists of unit open sphere S xi1b g  with centres at each of its points xi , i n 1 2, ,...,  s.t.

A S x
i

i i



1
b g

Taking K x
i n i

 
max

1
 and assuming that   an x A  s.t.

x K 1 , Since A  is not bounded, we must have an element xi  s.t. x S xi 1b g , for x A  and

A S x
i

n

i i



1
b g .

As such x xi  1 .

Now, x x x xi i  

       x x xi i

        1 1max x Ki

i.e.  x K 1  which is a contradiction of the fact that x K 1 .

Hence A  is bounded.

2.7 Reisz Lemma

Theorem 14 :   If M  be a closed proper subspace of a normed linear space N  and a  is a real number
such that 0 1 a , then   a vector x N0   s.t. x0 1  and x x a x Ma    .

Proof :  Select any x N M1    and let

h x x d x M
x M

  


inf ,1 1b gm r
It is clear that h  must be strictly greater than zero for otherwise we would have

h d x M x M M     0 01 1,b g [  M is closed]

Which contradicts the choice of x N M1   .
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Now 0 1 1 1     a
a

h
a

h    as  h  0 .

Hence by definition of infimum, there exists x M0   such that

h x x h
a

  0 1 ...(1)

because if x x0 1  were greater than or equal to h
a

x M 0 , then it would contradicts the fact

that h  is the greatest lower bound (infinum) of d x x x M0 1 0, :b gm r .

Moreover x N M1   and x M x x0 1 0   .

Setting x
x x
x x

K x xa 



 1 0

1 0
1 0

b g b g  where K x x  
1 0

1 0

Then x K x x K Ka    
1 0

1 1 .

Now let x M  be arbitrary. Then K x x M  1
0  also and so

x x x K x xa   1 0b g

   K K x x x K h1
0 1c h ...(2)

   h x x
x M

 


inf 1   and  K x x M  1
0 , we have

K x x x h   1
0 1c h

But K h x x h a  
1 0

1    by (1) ...(3)

From (2) and (3), we have

x x aa   for all x M .

Theorem 15 :   Let N  be a normed linear space, and suppose the set S x N x  : 1m r  is compact.
Then N  is finite dimensional.

Proof :   We know that in a metric space, a subset is compact iff it is sequentially compact is iff every
sequence has a convergent subsequence. Since S  is given to be compact, every sequence in S  must have
a convergent subsequence. Suppose, if possible, N  is not finite dimensional. Choose x S1   and let N1

be the subspace spanned by x1 . Then N1  is proper subspace of N . Since N1  is finite dimensional and

therefore it is closed. Hence by Reisz Lemma there exists a vector x S2   such that x x2 1
1
2

  .
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Let N2  be closed proper subspace of N  generated by x x1 2, , then as before there must exists
x S3   such that

x x3
1
2

     if   x N

Proceeding inductively, we obtain an infinite sequence  xn  of vectors in S  such that

x xn m 
1
2

.

This sequence can therefore have no convergent subsequence. But this contradicts the hypothesis
that S  is compact. Hence N  must be finite dimensional.

Self-Learning Exercise - I

1. Write whether the following statements are true or false.

(a) We may define the norm of a bounded linear transformation T  on N  into N  by

T
T x

x
x x N 

RS|
T|

UV|
W|

sup : ,
b g

0 .

(b) The identity operator I N N:   on a normed space N  0l q  is not bounded.

(c) The zero operator 0 : N N   on a normed space N  is bounded and has noirm 0 0 .

(d) Every subsequence of  xn  converges weakly to x , where x xn
w  .

(e) Two norms 1 2, .  defined on a normed space N  are equivalent iff f   positive real
number a  and b  s.t.

a x x b x x N1 2 1    .

2. What is the zero element of the linear spac e B N N, b g .
2.8 Summary

In this unit, we have seen that the concept of linear transformation can be generalised from linear
spaces to normed linear spaces.

We know that in calculus are defines different types of convergence (ordinary, conditional,
absolute and uniform convergence). The yields greater flexibility in the theory and application of sequence
and series. In functional analysis, the situation is similar.

2.9 Answers to Self-Learning Exercise
1. (a)  True (b) False (c) True (d) True (e) False.

2. The zero operator 0 : N N 
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2.10 Exercises

1. Let N  be the normed space of all polynomials on J  0 1,  with norm given

x x t t J max ;b g . A differentiation operator T  is defined on N  by

T x t x tb g b g  ,

where the prime denotes differentiation with respect to t . Prove that this operator is linear but not
bounded.

2. Let X Y,  and Z  be normed spaces and let T X Y:   and  S Y Z:   be two bounded linear
transformation. Then prove that SoT X Z:   is bounded linear transformation and

SoT S T .

3. If T  be a linear transformation of normed space N  into normed space N , then inverse of T
i.e., T 1  exists and is continuous on its domain of definition iff   a constant K  0  s.t.

K x T x x N  b g .

4. If T  is a linear transformation of a normed linear space N  into a normed linear space N , then
show that T  is bounded iff T  maps bounded sets in N  into bounded sets in N .

5. Give an example to show that a closed and bounded subset of normed linear space need not be
compact.

���
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Unit - 3
Fundamental Theorems of Functional Analysis

Structure of the Unit
3.0 Objectives

3.1 Introduction

3.2 Multilinear Mappings

3.3 Open Mapping Theorem

3.4 Closed Graph Theorem

3.5 Uniform Boundedness Theorem

3.6 Summary

3.7 Answers to Self-Learning Exercise

3.8 Exercises

3.0 Objectives
This unit contains the basis of the more advanced theory of normed and Banach spaces without

which the usefulness of these spaces and their applications would be rather limited. The three import
theorems included in this unit are, the open mapping theorem, the uniform boundedness theorem and the
closed graph theorem.

3.1 Introduction
Banach space in a linear space which is also, in a speacial way, a complete metric space. This

combination of algebraic and metric structures opened the posibility of studying of linear transformation of
one Banach space into another which had the additional property of being continuous.

Most of our work in this unit centres around three fundamental theorems related to continuous
linear transformation between Banach spaces. These theorems together with The Hahn-Banach theorem
are often regarded as the cornerstones of functional analysis.

3.2 Multilinear Mappings

Definition :   Let X X X n1 2, ,..., , Y  be linear spaces over the same field of scalars K . A mapping

f X X X Yn: ...1 2   

is said to be multilinear if for each i n  the mapping

x f a a x a ai i i i n  1 1 1, ... , , , ,... ,b g
of X i  into Y  is linear..

Definition :   Let X X X n1 2, ,...,  be normed linear spaces. Then a mapping

. : ...X X X Rn1 2   
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given by

x x x x x xn n1 2 1 2, ,..., max , ,...,b g m r

is a norm on X X X n1 2  ... .

The product space X X X Xn1 2 3  ...  of normed linear spaces X X X n1 2, ,...,  is endowed
with the norm defined above.

The following theorem is a generalization of Theorem 8-Unit-2.

Theorem 1 :   Let X X X n1 2, ,..., , Y  be normed linear spaces over the same field of scalars and let

f X X Yn: ...1  

be a multilinear mapping. Then f  is continuous iff there exists a number m  0  such that

f x x x m x x xn n1 2 1 2, ,..., ...b g 
for any x x x X X Xn n1 2 1 2, , ... , ...b g     .

Proof :   Let first the given condition be satisfied and let a a an1 2, , ... ,b g  be any point in X X X n1 2  ... .

Since f  is linear with respect to each of its variable, therefore

x x x f a a a f x a x xn n n1 2 1 2 1 1 2, , ... , , ,..., , , ... ,b g b g b g  

             f a x a x x f a a x an n n n1 2 2 3 1 1, , , ... , ... ,... , ,b g b g

           

 a a x a x xi i i i n
i

n

1 1 1
1

,..., , , ,...,b g

and hence using triangle inequality

f x x x f a a an n1 2 1 2, ,..., , ,...,b g b g

  

 a a x a x xi i i i n
i

n

1 1 1
1

,..., , , ,...,b g

  

 m a a x a x xi i i i n
i

n

1 1 1
1

... ...c h

Let us assume that x ai i   for i n . Then x ai i   and we can determine   0

such that x ai i     for i n , and hence

f x x f a a m x an n
n

i i
i

n

1 1
1

1

,..., ,...,b g b g  




          mn n 1
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Since for small values of  the choice of   is independent of . We obtain that f  is continuous

at a a an1 2, , ... ,b g .

Next let f  be continuous at the point 0 0 0, ,...,b g . Then there exists a number  0  such that

f x x x fn1 2 0 0 0 1, ,..., , ,...,b g b g 

for x x xn1 2 0 0 0, ,..., , ,...,b g b g  

Let now x x xn1 2, , ... ,b g ,  x xn1 0 0 ,...,  be any point of X X X n1 2  ... . If

y x
x

y
x

x
y

x
xn

n

n
1

1

1
2

2

2










, ,...,

Then y y yn1 2, ,...,b g   and f y y yn1 2 1, ,...,b g 





n

n
nx x x

f x x x
1 2

1 2 1
...

, ,...,b g

 f x x x m x x xn n1 2 1 2, ,..., ...b g 

where m n

1

.

If x1 0  or x2 0  or xn  0 , then f x x xn1 2 0, ,...,b g   and the preceeding inequality still holds.

Hence the theorem.

3.3 Open Mapping Theorem
The open mapping theorem states conditions under which a bounded linear operator is an open

mapping. The present theorem exhisits reason why Banach spaces are more satisfactory than
incomplete normed spaces. The proof of the open mapping theorem will be based on Baire’s category
theorem.

Let us begin by introducing the concept of an open mapping.

Definition :   If X  and Y  are two topological spaces. Then a map f X Y: into   is known as an

open mapping if   open set V of X , the set f Vb g  is open in Y . In other words, f  is open at a point

x X  if f b g  contains a nbd  of  f xb g  whenever U  is a nbd  of x . Evidently f  is open iff f  is
open at every point of X . Thus a linear mapping of one topological space into another is open iff it is
open at the origin. It should also be noted that a one-one continuous mapping f  of X  onto Y  is
homeomorphism when f  is open.

If B  and B  are Banach spaces (i.e. complete normed spaces) then the open spheres with radius

r  and centre at x  are denoted respectively by S x r,b g  or S xr b g  and S x r1 ,b g  or S xr
1 b g  whereas the
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open spheres in B , B  respectively are denoted by Sr , Sr
1  with radius r  and centre at origin. As such the

unit open spheres with centre at origin are S1 , S1
1  respectively in B , B . It is easy to see that

S x r x Sr,b g   and S r Sr  1

For we have

y S x r y x r   ,b g
      z r      and  y x z 

       y x z  and  z r

       y x Sr

and S x x r x
x
rr    

RST
UVW: :m r 1

      r y y r S: 1 1m r .

The following lemma is the key to the proof of the open mapping theorem.

Lemma :   If B  and B  be Banach spaces and T  a continuous linear transformation of B  onto B , then
the image of every open sphere centred at origin in B  contains an open sphere centred at origin in B

Proof :   Taking Sr , Sr
1  as open spheres with radius r  and centred at origin in B , B  respectively and S1

an open unit sphere, we have

S r Sr  1

which yields

T S T r S r T Srb g b g b g 1 1 ...(1)

Hence it suffies to prove that T S1b g  contains some Sr
1 .

We begin by proving that T S1b g  contains some Sr
1 . For each positive integer n , consider open

spheres Sn  in B . Then it is clear that B Sn


U
n=1

.

Since T  is onto, this gives

   F
H

I
K 

 

B T B T S T Sn nb g b gU U
n=1 n=1

Since B  is complete. it is of second category. Hence by Baire category theorem, T Sn0b g    for

some n0 , that is T Sn0b g  has an interior point y0  which may be assumed to lie in T Sn0b g .

[The existence of such a point y0  is proved as follows :
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y  is an interior point of T Sn0b g

 there exists an open set G  such that y G T Sn  0b g ].

But y T S yn 0b g  is an adherent point of T Sn0b g
 the nbd  G  of y  must contain a point y0  of T Sn0b g .

Thus y T Sn0 0 b g  is such that y G T Sn0 0  b g  which implies that y0  is an interior point of

T Sn0b g .

The mapping of f B B:     s.t. f y y yb g   0  is a homomorphism. For f  is evidently

one-one onto and if y Bn    is such that y yn  , then

f y y y y y f yn nb g b g    0 0

and f y y y y y f yn n
1

0 0
1b g b g    

so that f  and f 1  are both continuous. We use the mapping f  to show that 0 is the interior point

of T S yn0 0b g . We have y0  is an interior point of T Sn0b g .

 there exists an open set G  such that y T Sn0 0 b g

 f y f G f T Sn0 0b g b g b g 

 y y f G T S yn0 0 0 00    b g b g ...(2)

 0 is an interior point of T S yn0 0d i

 f  is an open map (being a homeomorphism) f Gb g  is an open set in B  and so

T S yn0 0b g  is a nbd  of 0]

we assert that T S y T Sn n0 0 2 0b g b g 

Let y T S yn 0 0b g . Then there exists x Sn 0  such that

y T x y b g 0 .

But y T Sn0 0 b g  implies that y T x0 0 b g  for some x Sn0 0 .

Thus y T x T x T x x   b g b g b g0 0 , ...(3)

where x , x Sn0 0 . Also
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x x S x nn, 0 0 0   , x n0 0

         x x x x n0 0 02

       x x S n0 2 0

       T x x T S n0 2 0b g
      y T S n2 0 by (3)

Thus we have shown that

y T S y y T Sn n   0 0 2 0  and therefore

T S y T S n T Sn n0 0 2 0 0 12   b g by (1)

 T S y n T Sn0 0 0 12b g b g   A B A B   ...(4)

Since f  is homeomorphism,

f T S f T Sn n0 0b g b g as f A f Ac h b g

 T S y T S y n T Sn n0 0 0 0 0 12b g b g b g    ...(5)

by definition of f  and (4).

The mapping

g B B:     s.t. g x n xb g  2 0

is easily seen to be a homeomorphism and so

g T S g T S1 1b g b g

 2 20 1 0 1n T S n T Sb g b g by definition of g ,

which by (5) implies that

T S y n T Sn0 0 0 12b g b g  ...(6)

It follows from (2) and (6) that O  is an interior point of T S1b g .
Hence there exists an open sphere S

1  with radius  0  and centered at origin in B  s.t.

S T S 
1

1b g ...(7)

We complete the proof by showing that S C T S
1

3b g , which is clearly equivalent to S T S
3

1
1b g .
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Let y  be an arbitrary point of S
1  so that y  . Then by (7), y T S 1b g , which implies that y

is an adherent point of T S1b g  and hence there exists a vector y T S1 1 b g  such that y y 


1 2 .

But y T S y T x1 1 1 1  b g b g  for some x S1 1  so that x  1.

Again we observe from (7), we have S T S
F
HG

I
KJ2

1
1
2

and since y y 


1 2 , we have

y y S T S  
F
HG

I
KJ1

2

1
1
2

.

Therefore as before there exists a vector y2  in T S1
2

F
HG

I
KJ  such that

y y y  


1 2 22
b g or y y y  


1 2 22

b g ,

where y T x2 2 b g  and x2
1
2

 .

Continuing in this way, we obtain a sequence  xn  in B  such that xn n 

1
2 1 , and

y y y yn n    


1 2 2
...b g ...(8)

where y T xn n b g . If we put,

s x x xn n  1 2 ... , then

s x x xn n   1 2 ...

         x x xn1 2 ...

          1 1
2

1
2

21... n ...(9)

Also, for n m , we have

s s x x xn m m m n     1 2 ...

     x x xm m n1 2 ....
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     

1
2

1
2

1
21 1m m n...

 
F

HG
I
KJ





1
2

1 1
2

1 1
2

m n m

(summing the G.P.)

     

1
2

1
2

01 1m n m as  m n,  

Hence  sn  is a Cauchy sequence in B  and since B  is complete,  there exists a vector x  in B
such that

lim
n ns x




and so x s sn n  lim lim 2  by (9) <3, which implies that x S 3 . Now

y y y T x T x T xn n1 2 1 2      ... ...b g b g b g
    T x x x T sn n1 2 ...b g b g ...(10)

since T  is continuous

x s T x T sn n  lim limb g b g
        lim ...y y yn1 2b g by (10)

      y by (8)

Thus y T x b g , where x  3 , so that y T S 3b g
we have now proved that

y S y T S  
'

3b g
and so S C T S

1
3b g , y  being an arbitrary point in S

1 .

1
3

1
3

1
3S T S  b g


S T S

1

13
b g by (1)

Hence T S1b g  contains an open sphere centred at origin in B .

Theorem 2 [The open mapping theorem] :

Let B  and B  be Banach spaces. If T  is a continuous linear transformation of B  onto B , then
T  is an open mapping.
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Proof :   We are given that the linear transformation

T B B:  

is continuous and onto. We claim that T  is an open map i.e., T Gb g  is an open set in B  for every
open set G  in B .

Let y T G b g  be arbitrary. Then y T x b g  for some x G . Since G  is open set in B , there

exists an open sphere S x r,b g  in B  centred at x  such that S x r G,b g . But as remarked earlier, we can

write S x r x Sr,b g  , where Sr  is an open sphere in B  centered at origin. Thus

x S Gr  ...(1)

By our lemma, there exists an open sphere S
1  in B  centered origin such that S T Sr

1 b g .

 y S y T S T x T S T x Sr r r      
1 b g b g b g b g

or S y T x S T Gr
1 ,   b g b g b g ,  y S S y  

1 1 ,b g
by (1).

This implies that to each y T G b g  an open sphere B  centered at y  and contained in T Gb g .

Consquently T Gb g  is open.

3.4 Closed Graph Theorem
In this section, we define closed linear transformation on normed linear spaces and consider some

of their properties, in particular in connection with the important closed graph theorem.

Definition :   Let X  and Y  be any non empty sets and let f X Y:   be a mapping with domain X
and range in Y . Then the graph of f  is defined to be that subset of X Y  which consists of all ordered

pairs of the form x f x, b gc h  i.e., if D  be a subset of X  and T D Y:  , then the graph of T  is defined as

T x T x x DG  , :b gc hn s .

In the case of two normed linear spaces N N,   with D N  and T D N:   , then the graph
of the linear transformation T  is given by

T x T x x DG  , :b gc hn s .

Remark :   If N N,   are two normed linear spaces, then N N   is also a normed linear space with
co-ordinatewise linear operation under the norm

x y x yp p p,b g e j 
1

with x N , y N   and 1  p .
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In our future discussion, we shall mostly use the above norm with p  1  i.e., x y x y,b g   .

Definition (Closed Linear Transformation) :

Let N  and N  be normed linear spaces and let D  be a subspace of N . Then a linear
transformation T D N:    is said to be closed iff x Dn  , x xn   and T x y x Dnb g    and

y T x b g .

Theorem 3 :   Let N  and N  be normed linear spaces and D  be a subspace of N . Then a linear
transformation T D N:    is closed iff its graph TG  is closed.

Proof :   Assuming that T  is a closed linear transformation, we claim that its graph TG  is closed i.e., TG

contains all of its limit points. TG  is defined as

T x T x x DG  , :b gc hn s
Taking x y,b g  as a limit point of TG ,   a sequence  x T xn n, b g , x Dn   of points in TG

converging to x y,b g  i.e.,

  x T x x yn n, ,b g b g

 x T x x yn n, ,b gc h b g  0

 x x T x yn n  b g b gc h, 0

 x x T x yn n   b g 0 [see remark for the norm on N N  ]

 x xn   0   and  T x ynb g  0

 x xn    and  T x ynb g
 x D  and T x yb g  , T  being closed.

 x y TG,b g , in view of definition of graph.

 TG  is closed.

Conversely, let the graph TG  of T  be closed. We claim that T  is a closed linear transformation.

Let x Dn  , x xn   and T x ynb g .

But T TG G , since TG  is given to be closed.

 x T x x y T Tn n G G, ,b gc h b g  

 x y T x DG,b g     and  y T x b g  by definition of TG
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 T  is a closed linear transformation.

Theorem 4 [The Closed Graph Theorem] :

If B  and B  are Banach spaces and T  is a linear transformation of B  into B , then T  is
continuous   its graph is closed.

Proof :   Assuming that T  is continuous and TG  is its graph

i.e., T x T x x BG  , :b gc hn s
We claim that TG  is closed i.e., T TG G .

Since  T TG G  always. We need only prove T TG G . So let x y TG,b g . Then  x y,b g  is limit

point of TG . Hence there exists a sequence  x T xn n, b g  in TG  such that   x T x x yn n, ,b g b g ,

which implies that x xn   and T x ynb g . But, since T  is continuous, x xn   implies T x T xnb g b g

and so y T x b g . This shows that x y x T x TG, ,b g b gc h   and T TG G .

Conversely, if TG  is closed, then we claim that T  is continuous. We denote by B1  the linear space
B  renormed by

x x T x x B1   b g , .

We first show that this is actually a norm, since

N x1 1 0:     as x  0 , T xb g  0

N x x T x x2 1 0 0 0:      b g , T x xb g   0 0

N x y x y T x y3 1:     b g
           x y T x T yb g b g
           x y T x T yb g b g

           x T x y T yb gd i b gd i
         x y1 1

N x x T x x T x4 1:        b g b g

        x T xb g

         x T x xb gn s 1

As such B1  is a normed linear space.
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Now T x x T x x T x xb g b g b g    1 11 , which shows that T  being regarded as a

mapping from B1  to B  is bounded and therefore continuous. Consequently in order to show that T  is
continous from B  into B , it is sufficient to show that B  and B1  have the same topology i.e., they are
homomorphic.

We, now establish that the normed linear space B1  is a Banach space, by showing that it is
complete.

If  xn  be a Cauchy sequence in B1 , then

x xn m 1 0   as  m n,  

 x x T x xn m n m   b g 0   as  m n, 

 x x T x T xn m n m   b g b g 0   as  m n, 

 x xn m  0   and T x T xn mb g b g  0   as  m n, 

  xn  is a Cauchy sequence in B  and  T xnb g  is a Cauchy sequence in B

 x x Bn    and T x y Bnb g    as B , B  are complete ...(1)

Now  x T xn n, b g  being a Cauchy sequence in TG  (which is closed)

x t x x y Tn n G, ,b gc h b g  by (1)

 y T x b g

 x x x x T x xn n n    1 b g

    x x T x T xn nb g b g

    x x T x yn nb g
   0 by (1)

It follows that the sequence  xn  in B1  converges to x B 1 .

Hence B1  is complete. [Note that B1  and B  are the same sets so that x B x B   1 ].

Lastly to show that there is a homeomorphism between B  and B1 , we consider an identity map

I B B I x x x B: :1 1   b g .

Evidently I  is one-one onto mapping and

I x x x T x xb g b g    1 ,  x B1 .
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i.e., I x x Ib g  1 1.  is bounded and continuous.

It is also one-one onto, therefore I  is a homeomorphism from a Banach space B  to Banach
space B1 . Also T  being continuous from B1  to B  and hence it is continuous on its homomorphic image

B  i.e., T B B:    is continuous.

3.5 Uniform Boundedness Theorem
The uniform boundedness theorem is of great importance. The principle of uniform boundedness

asserts that if a sequence of bounded linear transformation T B B Nn  ,b g , n N  where B  is a Banach

space and N  is a normed space, is pointwise bounded, then the sequence Tnl q  is uniformly bounded.
Infact, it enables us to determine whether the norms of a given family of bounded linear transformations
have a finite least upper bound.

Definition :    A set F B N N ;b g  of bounded linear transformations from a normed space N  into a
normed space N  is said to be :

(a)  Pointwise bounded  if for each x X , the set T x T Fb gm r:   is a bounded set in N .

(b)  Uniformly bounded if F  is bounded set in the normed linear space B N N: b g .

In definition bb g , the boundedness of the set F  means that there is a constant M  0  such that

T M ,  T F .

Let x X , then

T x T x M xb g      T F .

This means that F  is pointwise bounded. Thus if F  is uniformly bounded set in B N N; b g , then
it is also pointwise bounded. However, the converse of this assertion may not hold good.

Theorem 5 (Uniform Boundedness Theorem)

Let B  be a Banach space, N  be a normed linear space and TGl q  a non-empty set of bounded

(and so continuous) linear transformations of B  into N  with the property that T xi b gm r  is a bounded

subset of N  for each vector x  in B , the Tim r  is a bounded  set of numbers i.e., Til q  is bounded as a

subset of B B N,b g .

Proof :   For each positive integer n , define

F x x Bn  :l   and T x ni b g   for all i q ...(1)

Then Fn  is a closed subset of B  as shown below

x F T x nn i  b g    for all  i

            T x Si n
cb g     for all  i
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where Sn
c  denotes the closed sphere in N  with centre 0 and radius n .

             x T Si n
c1   for all  i

             x T S
i i n

c1

so that F T Sn
i

i n
c  1 , which is closed, being an intersection of closed sets.

[Note that since each Ti  is continuous and Sn
c  is closed in N , each T Si n

c1  is closed in B ]

Further, B F
n

n





1
 for if B F

n
n






1
, then there eixsts some x B  such that x Fn  for any n .

 T x ni b g   for all n  by (1)

  The set T xi b gm r  is not bounded, which contradicts the hypothesis. Hence we must have

B F
n

n





1
,

so that the complete space B  is the union of sequence of its subsets. Therefore by Baire’ss
category theorem, there exists an integer n0  such that Fn0  has non-empty interior. Since Fn  is closed,

F Fn n0 0

and so Fn0  must have non-empty interior, that is, there exists some x Fn0 0 , so that Fn0  is a nbd
of x0 . Since Fn0  is closed, there exists a closed space

S x B x x r Fn    : 0 0 0m r ...(2)

Now if  y  1, then for arbitrary but fixed i

T y T z
ri ib g  F

HG
I
KJ0

,  where z r y 0

             
1 1

0 0
0 0r

T z
r

T z x xi ib g b g

            
1

0
0 0r

T z x T xi ib g b g

             
1

0
0 0r

T z x T xi ib g b g

            
1

0
0 0r

T z x T xi ib g b g
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            
1 2

0
0 0

0

0r
n n n

r
b g ,   z x 0  and x Fn0 0 .

[Note that z x x y r y r y r     0 0 0 0 0   y 1c h  so that z x S Fn  0 0 . Ofcourse

x S Fn0 0  ]

Thus T y n
ri b g  2 0

0
  if  y  1.

 T T y y n
ri i  sup :b gn s1 2 0

0

If follows that Tim r  is a bounded set of numbers.

Self-Learning Exercise

1. Write whether the following statements are true or false.

(a) The open mapping theorem states conditions under which a bounded linear operator is an
open mapping.

(b) The proof of the open mapping theorem is based on Heine-Borel theorem.

(c) A map of f X Y:   is known as an open mapping if   open set V  of X1  then set

f 1 Vb g  is open in Y , X  and Y  being topological spaces.

(d) A one-one continuous mapping of f  of X  onto Y  is homeomorphism when f  is open.

(e) The closed space theorem states conditions under which a closed linear operator will be
bounded.

(f) The closed graph theorem is usually known by the name “The Banach Steinhaus
theorem”.

(g) The uniform boundedness theorem gives condition sufficient for Tnm r  to be bounded,

where the Tn s are bounded linear transformations from a Banach space into normed
space.

3.6 Summary
In this unit, we have studied how a new normed space can be formed by taking the product of

given normed spaces. We have seen that uniform boundedness theorem gives conditions sufficient for

Tnm r  to be bounded, where the T Sn  are bounded linear transformation from a Banach space into a
normed space. The open mapping theorem states conditions under which a bounded linear transformation
is an open mapping. We have seen that the three theorems discussed in this unit require completeness.
Indeed they characterize some of the most important properties of Banach spaces which normed spaces
in general may not have.
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3.7 Answers to Self-Learning Exercise
1. (a) True (b) False (c) False

(d) True (e) True (f) False (g) True

3.8 Exercises

1. Let X X X n n1 1 2 2
, . , , . , ... , , .d i d i d i  be n -normed spaces. Then X X X X n   1 2 ...  is

a normed spaces under the norm

x x x xn n   1 1 2 2 ...

for x x x x Xn 1 2, , ...,b g .

2. Let N  be a Banach spaces, N  a normed space and T B N Nn  ,b g  such that T xnb g  is Cauchy

in N  for every x N . Show that Tnc h  is bounded.

3. If in addition N  in Problem 2 is complete, show that T x Tn x , where T B N N ,b g .

4. Let B  and B  be Banach spaces and let T  be one-one continuous linear transformation of B
into B . Then T  is a homeomorphism. In particular, , T 1  is automatically continous.

���
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Unit - 4
Continuous Linear Functionals

Structure of the Unit
4.0 Objectives

4.1 Introduction

4.2 Continuous Linear Functionals

4.3 Hahn-Banach Thearem and its Consequences

4.4 Natural Imbedding and Relexivity in Normed Spaces.

4.5 Summary

4.6 Answers to self learning Exercise

4.7 Exercises

4.0 Objectives

In this unit, We introduce the concept of linear functional, prove the Hahn-Banach theorem on the

existence of linear functionals and derive some of its many consequences.We define the dual space of a

normed space. We discuss the natural imbedding and reflexivity in normed spaces.

4.1 Introduction

It is known that R (real space) and C (complex space) are the simplest of all normed spaces. In the

present unit, we study the bounded (or continuous) linear transformations from arbitrary normed space

into the normed spaces R or C. Such bounded linear transformations are called bounded linear functionals.

All general theorems proved in the previous unit for bounded linear transformations are also valid for

bounded linear functionals. The Hahn-Banach theorem is basically an extension theorem for linear functionals.

4.2 Continuous Linear Functionals

We know that R and C are the simplest of all normed linear spaces. If we limit ourselves with the
continuous linear transtomations of a normed linear space N into R or C according as N is real or complex,
then the set B (N, R) or B (N,C) of all bounded (or countinuous) linear transformations is denoted by N 

and known as the conjugate space or Adjoint space or First dual space of N and the elements of  N 

are known as Continuous linear functionals or simply functionals.

Thus a functional on a normed linear space N is a Continuous linear transformation from N into R
or C. If these functionals are added and multiplied by scalars pointwise under the norm of a functional
defined by

      f Sup f x x ( ) : ( ) 1m r
  Sup K K f x K x V x: , ( )0m r

then N x  constitutes a Bannach space.
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4.3 Hahn-Banach Theorem and its Consequences
The Haha-Banach theorem is basically an extension theorem for linear functionals. In this theorem,

we consider a bounded linear functional f  defined on a subspace M of a given normed space N and then
we extend this from M to the entire space N in such a way that certain basic properties of  f  continue to
hold good for the extended functional.

Theorem I (Hahn-Banach Theorem) :

If M be a linear subspace of a normed linear space N and f  is a functional defined on M, then f

can be extended to a functional f0  defined on the whole space N s.t. f f0 

Proof :  We first prove the following lemma.

Lemma :   If f  be a functional defined on a linear subspace M of a normed linear space N, x M0   and

M M x x x x M and is real0 0 0   l q l q :

 is the linear subspace spanned by M and x0 , then f  can be extended to a functional f0  defined on M0

s.t. f f0 

Proof of the Lemma :   We prove the lemma for real and complex scalars separately.

Case I : When N is real normed space, then x M0   each vector m in M0  can be uniquely expressed
as m x x with x M   0

Let us define f0  on M0 , which is extension of f f s.t.

f m f x x f x f x0 0 0 0 0 0( ) ( ) ( ) ( )    

        f x r( )  0 ...(1)

with the choice of real number r f x0 0 0 ( ) ...(2)

and f x f x v x M0 ( ) ( )  (by definition of extension) ...(3)

we first claim that f0  thus defined is linear on M0.

Taking B R,    and x y M,   we have

f x x y x f x y x0 0 0 0 0( ( ) ( ) ( ) ( )              

          f x y f x0 0 0( ) ( ) ( )    

           f x y r r( ) ( )    0 by (2) and (3)

              f x f y r r( ) ( ) 0 0

             f x r f y r( ) ( )0 0

             f x x f y x0 0 0 0b g b g  by (1)
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which shows that f0  is linear on M0 .

Also f0  is an extension of f , for if x M , then x x 0 0.  so that

f x f x x f x f x f x r f x0 0 0 0 0 0 00 0 0( ) ( . ) ( ) . .      b g b g b g
i.e., f x f x V x M f0 0b g b g    is an extension of f  over M .

Thus f0  extends f  linearly to M0 . We now prove that f f0 

We have f f x x x M0 0 01  sup : ,b gn s

   sup : ,f x x x M as M M0 01b gn s

  sup : ,f x x x Mb gn s1   f f on M0 

 f

Thus f f0  ...(4)

So our problem now is to choose r0 such that f f0  . For this purpose, we first observe that if

x x1 2,  are any two vectors in M, then

f x f x f x x2 1 2 1b g b g b g    by linearity of f

 f x x2 1b g
or f x f x f x x2 1 2 1b g b g  

             f x x x x2 0 1 0b g b g

               f x x x x2 0 1 0b gd i
              f x x f x x2 0 1 0

or       f x f x x f x f x x1 1 0 2 2 0b g b g ...(5)

Which holds for arbitrary x1 , x M2   and can be written as

sup inf
y M y M

f y f y x f y f y x
 

      b gm r b gm r0 0

since between any two real numbers there always exists a real numbe r0  s.t.

sup inf
y M y M

f y f y x r f y f y x
 

       b gm r b gm r0 0 0 ,

which follows that  y M
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       f y f y x r f y f y xb g b g0 0 0 ...(6)

Taking arbitrary m x x  2 0  in M0  and setting y x



, we find

 F
HG

I
KJ      F

HG
I
KJ  f x f x x r f x f x x

   0 0 0 ...(7)

For   0 , the last two parts of inequality (7) yields

r f x f x x0 0
1 1

   
 

b g

 f x r f x xb g   0 0

 f x f x f x x0 0 0 0b g b g    by (2) and (3)

 f x x f x x0 0 0   b g
 f m f m0b g  ...(8)

or    0  the first two parts of inequality (7) yields

r f x f x x0 0  F
HG

I
KJ  

 

       
1 1

0 
f x f x xb g

       
1 1

0 
f x f x xb g    as  

1 1
 

 

where   0 .

On multiplying both sides by   (a negative quantity), we get

 r f x f x x0 0   b g (sign of inequality being reversed)

 f x r f x xb g   0 0

 f x f x f x x0 0 0 0b g b g    by (2) and (3)

 f x x f x x0 0 0   b g
 f m f m0b g  ...(9)

(8) and (9)    f m f m m M0 0b g ,   0 ...(10)

clearly for   0 , f f0 

f 0
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Replacing m  by m  in (10), we get

f m f m f m f m0 0     b g b g ...(11)

(10) and (11)  f m f m0 0b g ...(12)

Since f f m m0 0 1 sup :b gn s , m M 0 , f0  being linear functional on M0 . It follows from
(12), that

f f0  ...(13)

(4) and (13)   f f0 ...(14)

Case II :   When N  is a complex normed linear space, over C , then f  is complex valued linear
functional on M  as subspace of N . Suppose g  and h  are real and imaginary parts of f , so that

f x g x i h x x Mb g b g b g    ...(15)

Now a complex linear space can be regarded as a real linear space by restricting the scalars to real
numbers and g , h  are real valued functionals on the real space M . We have for x y M,   and a R ,

f x y f x f y  b g b g b g
          g x y i h x y g x i h x g y i h yb g b g b g b g b g b g
      g x y g x g yb g b g b g    and  h x y h x h y  b g b g b g

and f x f x g x i h x g x i h x    b g b g b g b g b g b g    

    g x g x b g b g   and h x h x b g b g

Which follows that g  and h  are linear on M . Also

g x f xb g b g   as  w u i v u w   

         f x .

Thus if f  is bounded, then so are g  and h . Consequently, , g  and h  are real linear functionals on
the real space M . Again  x M

g ix i h ix f i x i f x i g x i h x i g x h xb g b g b g b gc h b g b g b g b g      

giving g i x h xb g b g   and h i x g xb g b g

 f x g x i h x g x i g i x h i x i h xb g b g b g b g b g b g b g      ...(16)

Taking f x g x i g i xb g b g b g   and g  being a real valued functional on real space M , we have

by Case I, that g  can be extended to a real valued functional g0  on the real space M0  s.t.
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g g0  ...(17)

If we define f0  s.t. f x g x i g ix0 0 0b g b g b g    x M0 , then it can be observed that f0  is linear

on the complex space M0  such that

f f0    on M , since

f x y g x y i g i x i y0 0 0    b g b g b g , x y M,  0

      g x g y i g i x i g i y0 0 0 0b g b g b g b g
      g x i g i x g y i g i y0 0 0 0b g b g b g b g
    f x f y0 0b g b g

and if  , R , then

f i x g x i x i g x i x0 0 0          b g b g b g
                 g x g i x i g x i g i x0 0 0 0b g b g b g b g b g
             i g x i g i xb g b g b g0 0

            i f xb g b g0

Thus f0  is linear on M0 . Also g g0   on M  implies f f0   on M . What remains to prove is

that f f0  .

Let x M 0  be arbitrary and write f x r ei
0b g   , where r  0  and   real. Then

f x r e f x f e x g e xi i i
0 0 0 0b g b g c h c h        , r  being real

            g e x g e xi i
0 0

 c h

            g e x g x g xi
0 0

 by (17)     e i  1e j
           f x

This shows that f0  is bounded (hence a functional on M0 ) and that f f0  . Also as in Case

I, it is obvious that f f0  .

Therefore   f f0 

Theory of the Main Theorem :  In view of lemma, for any x N , but x M , we can have an
extension of f  on M xl q  s.t. f  is preserved for extension. If we consider the set of all positive

extensions of f  on all the subspaces M   {element of N  not in M } of N , containing M , then this set
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of extensions of f  say G  can be partially ordered as under..

Taking g g G1 2,   and relation  s.t. g g1 2   domain of g1  is contained in the domain of g2

and g x g x x1 2b g b g   dom g1b g . We claim that G,b g  is partially ordered, since it is reflexive, anti-
symmetric and transitive.

Reflexivity :   g g g G1 1 1   .

Antisymmetry :   g g1 2  and g g2 1   dom g1b g  is contained in dom g2b g  and dom g2b g  

dom g1b g
 dom g dom g1 2b g b g

 g x g x x dom g1 2 1b g b g b g    and

g x g x x dom g2 1 2b g b g b g  

 g g1 2 , domains being same and functional values equal for all points of the domain.

Transitivity :  g g1 2  and g g2 3   dom g1b g    dom g2b g  with g x g x x dom g1 2 1b g b g b g   ;

dom g2b g    dom g3b g  with g x g x2 3b g b g  x  dom g2b g
 dom g1b g    dom g3b g  with g x g x1 3b g b g   x  dom g1b g
 g g1 3

Hence the set G  is partially ordered.

Also we observe that the union of any chain of extensions is an extension and therefore there is an
upper bound for the chain. Thus every chain in G  has an upper bound. As such by Zorn’s lemma,   a
maximal extension f G0  , otherwise   an x N  and x M  s.t. f0  can be extended to the domain of

f x0 l q  i.e., M xl q  by the lemma. But this violates the maximality of f0 . Hence the domain of f0

must be the whole space N  s.t. f f0  .

We now derive some important consequences of theorem 1.

Theorem 2 :   If N  be a normed linear space and x0  is a non zero vector in N , then   a continuous
linear functional F  defined on the conjugate space N *  s.t.

F x x0 0b g    and  F  1.

Proof :   Let M x  0l q  be the linear subspace of N  spanned by x0 . Define f0  on M  by

f x x0 0 0 b g  . We claim that f0  is a functional on M  such that f 0 1 .

f0  is linear :

Let y1 , y M2   so that y x1 0 , y x2 0   for some scalars   and  . If  ,   are
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any scalars, then

f y y f x x f x0 1 2 0 0 0 0 0             b g b g b g

    b g x0   by def. of f0

    x x0 0

    f x f x0 0 0 0b g b g
  f y f y0 1 0 2b g b g

f0  is bounded.

Let y x M  0  so that y x x  0 0 . Now

f y f x0 0 0b g b g 

            x y0

Hence f0  is bounded. It follows that f0  is a functional on M .

Further f f y y M y0 0 1  sup : ,b gn s

        sup :y y 1 1m r
Now choosing    1, f x x f x x0 0 0 0 0 0 b g b g   .

Hence by Hahn-Banach theorem f0  can be extended to a norm preserving functional F N *
so that

F x f x x0 0 0 0b g b g     and  F f 0 1

Note :   As a particular case, if x y , x y N,  , so by the above theorem, there exists an f N *  such
that

f x y x y f x f y f x f y        b g b g b g b g b g0 0

This shows that N *  separates vectors in N .

Theorem 3 :  Let N  be a real normed linear space and suppose f xb g  0  for all f N * . Show that
x  0 .

Proof :   Suppose x  0 . Then by Theorem 2, there exists f N *  such that f x xb g   0 , which

contradicts the hypothesis that f xb g  0  for all f N * . Hence we must have x  0 .
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Theorem 4 :   If M  be a closed linear subspace of a normed linear space N  and x0  is a vector not in

M , then   a functional F  in conjugate space N *  s.t. F Mb g l q 0  and F x0 0b g  .

Proof :   Consider the natural mapping

T N N M:    s.t. T x x M x Nb g     ,

then T x x M x m m Mb g m r    inf :  by def.

             x m m M  by def. of infimum.

But M  being subspace, 0M , so that above result still holds for m M 0  i.e.,

T x x x Mb g    , which follows that T  is bounded and hence continuous.

Now T m m M Mb g     0  of N M ...(1)

and x M T x x M M0 0 0    b g  i.e., 0 of N M ...(2)

As such T x0b g  i.e., x M0 0   is a non zero vector (coset) in N M . Therefore by Theorem 2,

  a functional f  in N Mb g*  s.t.

f x M x M0 0 0   b g ...(3)

If we define F  on N  as

F x f T xb g b g ,

then F  is a linear transformation being the composition of F  and T .

Also F m f T m f m Mb g b g b g    0 0 by (1)

 F Mb g  0  and F x f T x f x M0 0 0 0b g b g b g   

by (2) and (3).

Theorem 5 :   If M  be a closed linear subspace of a normed linear space N  and x0  be a vector in N ,

but not in M  with the property that the distance from x0  to M  i.e., d x M d0 0,b g   , then   a bounded

linear functional F N * s.t. F  1,

F x d0b g    and  F x x Mb g   0  i.e., F Mb g l q 0 .

Proof :   We have by definition

d x x x M d   inf : ,0 0m r ...(1)

Now consider the subspace

M x x x M real0 0   : ,l q
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spanned by M  and x0 . Since x M0  , the representation of each vector y  in M0  in the form
y x x  0  is unique.

Define a mapping f0  on M0  by f y d0b g   ...(2)

Where y x x  0  and d  as in the hypothesis. Because of the uniqueness of y , the mapping
f0  is well defined. It is clear that f0  is linear on M0 .

Now f x f x d d0 0 0 00 1 1b g b g   . by (2)

and for any m M , f m f m x d f M0 0 0 00 0 0 0b g b g b g l q     . . .

Now, we claim that f 0 1 , since

f
f y

y
y0

0 0 
RS|
T|

UV|
W|

sup :
b g

, y M 0

       



 

R
S|
T|

U
V|
W|

sup : ,
f x x

x x
x0 0

0

0 0




b g

, x M ,  R

        


RST
UVW

sup :




d

x x0

0 ,    R , x M by (2)

       





R
S
||

T
||

U
V
||

W
||

sup :d

x x
0

0




,     R , x M , as d  0  and  d d

        
  

RST
UVW

d
x z

z x Msup :1

0 

           


d x z z M d
d

inf : .0

1 1 1m r by (1)

so f0  is a linear functional on M0  such that

f M0 0b g l q , f x d0 0b g   and f 0 1 ...(3)

Hence by the Hahn-Banach theorem, there exists a functional F  on the whole space N  such that

F y f y y Mb g b g  0 0   and F f 0 .

It follows from (3) that

F M F x db g l q b g 0 0;   and  f  1  as desired.
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4.4 Natural Imbedding and Reflexivity in Normed Spaces
If N  be a normed linear space, then the set of all bounded linear functionals defined on N  form

a Banach space, denoted by N *  and is known as the Dual space or the conjugate space or the adjoint
space or the first dual space of the normed space N . The space of bounded linear functionals on N *
is known as the second dual space of N  and denoted by N ** .

Taking N *  and N **  as the first and second conjugate spaces of a normed linear space N , so
that each vector x  in N  gives rise to a functional f  in N *  and a functional Fx  in N ** , we defined Fx

as

F f f x f Nx b g b g   *.

The mapping J x Fx:   of N  into N ** , where F f f x f Nx b g b g   *,  is called the
natural embedding.

If the natural imbedding J x Fx:   of N  into N **  is an onto mapping, then we call the normed
space N  as Reflexive.

Here Fx  is also known as the functional on N *  induced by the vector x  of N  and we generally
say it induced functional.

Theorem 6 :   Let N  be an arbitrary normed linear space. Then for each vector x  in N  induces a
functional Fx  on N **  defined by F f f x f Nx b g b g   * such that F xx  .

Further the mapping J N N: **  defined as J x Fxb g   x N  is an isometric isomophism
of N  into N ** .

Proof :   We first claim that Fx  is linear, since f g N, *  and scalars  , , we have

F f g f g xx      b g b g b g by def. of Fx

            f x g xb gb g b gb g
            f x g xb g b g
            F f F gx xb g b g ...(1)

Again, we claim that Fx  is bounded, since for all f N * , we have

F F f fx x sup :b gn s1

        sup :f x fb gn s1

        sup :f x f 1m r
        x ...(2)

Thus F xx  1 . . It follows that Fx  is bounded i.e., continuous. Hence Fx  is a functional on

N ** .
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For a non zero vector x  in N ,   a functional f N0  *  s.t.

f x x0b g    and f 0 1 (by Theorem 2) ...(3)

For such a functional f0 , we have

F f f xx 0 0b g b g by def. of Fx

i.e., F f xx 0b g  , where f 0 1 (by (3))

 x x F f F f Fx x x   0 0b g  f0 1c h
 x Fx ...(4)

Hence (2) and (4)  F xx ...(5)

When x  is a zero vector, then from (1), we have

F x F Fx x    0 0 0

and F0 0    as   F0 0     always.

Hence F0 0

Thus we have shown that F x x Nx    .

Now we prove that J  is an isometric isomophism i.e. J  is a one-one linear transformation as well
as an isometry.

J  is linear, since for any x y N,   and scalars  , , we have

F f f x yx y     b g b g
          f x f yb g b g b f  is a linear transformation  f N *)

         F f F fx yb g b g
         F f F fx yb gb g d ib g
         F F fx yd ib g

 F F Fx y x y     

It follows that

J x y F F F J x J yx y x y           b g b g b g
           J  is linear..

Lastly we claim that J  is an isometry, since by (5),

J x J y F F F x yx y x yb g b g     

Thus J  preserves norm, so it is an isometry. Also

J x J y J x J yb g b g b g b g    0
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 J x J yb g b g  0

 x y  0 ( J  pressure norm)

 x y  0

 x y

i.e.  J  is one-one.

Hence J N N: **  is an isometric isomorphism.

Self-Learning Exercise
1. Write whether the following statements are true or false :

(a) The norm . : N R  on a normed space X , .c h  is functional on N  which is not
linear.

(b) If f  is a bounded linear functional on a complex normed space. Then f  is linear..

(c) The Hahn-Banach theorem is an extension theorem for linear functional.

(d) If N  be a real normed linear space and f xb g  0   f N * (conjugate space). Then
x  0 .

2. If f  is a linear functional on an n -dimensional vector space X . What dimension can the null

space N fb g  have?

4.5 Summary
In this unit, we have seen that Hahn-Banach theorem is an extension theorem for linear functionals

on linear spaces. We defined the dual space of a normed space to be the set of all bounded linear functionals
on the space. We have seen that in some cases, the second dual space of a normed space, under a specific
mapping called natural embedding is isometrically isomorphic to the origional space.

4.6 Answers to Self-Learning Exercise
1. (a) True (b) False (c) True (d) False

2. n  or n1

4.7 Exercises

1. If M  be aclosed linear subspace of a normed linear space N , x0  be a point in N  but not in M
and d be the distance from x0  to M .

Then show that   a functional F  in N  (whole space) s.t.

F Mb g l q 0 , F x0 1b g   and F
d


1

.

2. State and prove Hahn-Banach theorem.

3. Show that dual of Rn  in Rn .
4. Prove that if a normed space N  is reflexive, it is complete.
5. If a normed space N  is reflexive, show that N *  is reflexive.

���
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Unit - 5
Hilbert Space and Its Basic Properties

Structure of the Unit
5.1 Objectives

5.2 Introduction

5.3 Inner Product Spaces and Examples

5.3.1 Definition

5.3.2 Examples

5.3.3 Basic Properties

5.4 Hilbert Space

5.4.1 Definition

5.4.2 Basic Properties

5.5 Some Important Theorems on Hilbert Spaces

5.6 Summary

5.7 Answers to Self-Learning Exercise

5.8 Exercises

5.1 Objectives
The aim of this unit is to study Inner product spaces and Hilbert spaces and its basic properties.

Here we shall prove Schwarz inequality, paralleogram law and polarisation identity in Hilbert spaces.

5.2 Introduction

We know that the norm on a vector space is the generalisation of the distance from the origin in an

Euclidean space. The Euclidean space is not only provided with the distance amenable to the definition of

norm, but also it is provided with the geometric concepts such as dot product. Using the dot product one

can find the magnitude of vector and express the condition of orthogonality. These concepts can be

illustrated very well by considering the Euclidean space of three dimensions. Such ideas like dot product

and condition of orthogonality are totally missing in a normed linear space. The extension of these notions

to any arbitrary infinite dimensional vector spaces leads to the definition of inner product on a vector space

in such a way that the inner product gives rise to a norm. Since an inner product is used to define a norm

on a vector space, the inner product spaces are special normed linear spaces. A complete inner product

space is called a Hilbert space. Thus every Hilbert space is a Banach space but converse is not necessarity

true. In the next four units we shall study in detail the basic theory of Hilbert spaces.



75

5.3 Inner Product Spaces

5.3.1 Definition :

Let X  be a linear space over the complex field C . An inner product on X  is a function

b g : X X C   which satisfies the following conditions :

I.    x y z x z y z x y z X    , , , , ,b g b g b g  and  , C

(Linearity in the first varible)

II. x y y x, ,b g b g   (Conjugate symmetry)

where the bar denotes the complex conjugate.

III. x x,b g  0 , x x,b g  0   iff x  0   (Positive definiteness)

A complex inner product space X  is a linear space over C  with an inner product defined on it.
We can also define inner product by replacing C  by R  in the above definition. In that case, we get a real
inner product space. Since the theory of operators on a complex inner product space alone gives
non-trivial results in some important situations.

We shall consider only complex inner product spaces.

5.3.2 Examples

Example 1 :   The space ln
2  consisting of all n  tuples x x xn 1, ... ,b g  of complex numbers and the inner

product on ln
2  is defined as x y x yi i

i

n

,b g 



1
, where y y yn 1, ... ,b g  is an inner product space.

Solution :   Let  , C  and x x xn 1, ... ,b g , y y yn 1, ... ,b g  and z z zn 1, ... ,b g  belong ln
2 . Then

I.    x y z x y zi i
i

n

i  

,b g b g

1

          
 
  x z y zi
i

n

i
i

n

1
1

1
1

           x z y z, ,b g b g

II. x y x yi i
i

n

,b g  F
HG

I
KJ


1

            x y x y x yn n1 1 2 2 ...b g
            y x y x y xn n1 1 2 2 ...
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          

 y x y xi i
i

n

1

,b g

III. x x x x xi i
i

n

i
i

n

,b g  
 
 

1

2

1

Hence  x x,b g  0  and x x,b g  0  iff xi  0  for each i  i.e., x x,b g  0  iff x  0 .

Thus ln
2  is an linear product space.

Example 2 :   The linear space l2  consisting of all complex sequences x xn b g  such that xn
n

2

1



  is

converg net is an inner product space.

Solution :   Define the inner product on l2  as

x y x yn n
n

,b g 





1

    x xnb g   and y y ln b g 2 ...(1)

First we show that the inner product

(i) is well defined. For this we have to show that

(ii) is a convergent series having the sum as a complex number.

By Cauchy’s inequality, we have

x y x yi i
i

n

i
i

n

i
i

n

  
  

F
HG

I
KJ

F
HG

I
KJ1

2

1

1
2

2

1

1
2

   
F
HG

I
KJ

F
HG

I
KJ







 x yn
n

n
n

2

1

1
2

2

1

1
2

Since xn
n

2

1



  and yn
n

2

1



  are convergent, the sequence of partial sums of the series x yn n
n

.





1

is a monotonic increasing sequence bounded above. Therefore, the series x yn n
n




1

 is convergent.

Hence x yn n
n




1

 is absolutely convergent having its sum as a complex number. Therefore (1) is

convergent so that the linear product (1) is well-defined.

The three axious for inner product space can be verified as in example 1.

Hence l2  is an inner product space.
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5.3.3 Basic Properties

The basic properties of inner product space are contained in the following theorem :

Theorem 1 :   Let X  be a complex inner product space, then

(i)    x y z x z y z  , , ,b g b g b g
(ii) x y z x y x z, , ,     b g b g b g
(iii) x y z x y x z, , ,     b g b g b g
(iv) x,0 0b g    and  0 0, xb g    x X

where  ,  and  C .

Proof :

(i)    x y z x y z   , ,b g b gc h
             x z y z, ,b g b gb g
            x z y z, ,b g b g

(ii) x y z y z x, ,     b g b g
           y x z x, ,b g b g
           y x z x, ,b g b g
           x y x z, ,b g b g

(ii) shows that an inner product is conjugate linear in the second variable.

(iii) x y z x y z, ,      b g b gc h
            x y x z, ,b g b gb g (using (ii))

           x y x z, ,b g b g
(iv) 0 0 0 0, , ,x x xb g b g b g   

where   is zero element of X

and x x, ,0 0 0b g b g  .

With the help of the inner product, on a linear space X  we can define a norm on X . Define

x x x x X  ,b g 1
2 . To prove that is a norm, we require the following
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Theorem 2 :  If x  and y  are any two vectors in an inner product space X , then

x y x y,b g  ...(2)

The inequality by (2) is also known as Schwarz inequality.

Proof :   If y  0 , then y  0  and x y,b g  0  so that both sides (2) vanish and the inequality is true.

Therefore let us assume that y  0  and  C . Then

0 2    x y x y x y  ,b g
Since x y x y x x x y y x y y          , , , , ,b g b g b g b g b g

      x x x y y x y y, , , ,b g b g b g b g   

     x y x x y y2 2 2  , ,b g b g
Therefore   x y x x y y2 2 2 0     , ,b g b g ...(3)

Now  y  0 , y  0 . So choosing

 
x y
y
,b g

2    and taking y x x y, ,b g b g

From (3) we have

x
x y x y

y
x y x y

y

x y

y
y2

2 2

2

4
2 0   

, , , , ,b g b g b gb g b g

or x
x y

y

x y

y

x y

y
2

2

2

2

2

2

2 0   
, , ,b g b g b g

or x
x y

y
2

2

2 0 
,b g

or x y x y,b g 
Remark :  In Schwaz inequality, equality holds good iff x  and y  are linearly dependent.

Theorem 3 :  If X  is an inner product space, then x x x ,b g1
2  is a norm on X .

Proof :   (i) we have x x x x x x  , ,b g b g1
2 2

Now x  0  and x  0  iff x x,b g  0  i.e. x  0
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(ii) Let x y X,  , then

x y x y x y   2 ,b g
    x x x y y x y y, , , ,b g b g b g b g
    x x x y x y y y, , , ,b g b g b g b g
   x x y y2 22 Re ,b g

   x x y y2 22 ,b g Re z z z Cb gc h  

   x x y y2 22 (using Schwarz inequality)

Thus x y x y  2 2c h
 x y x y  

(iii) For any scalar  C  and x X , we have

   x x x x x2  , ,b g b g
            2 2x

  x x

Hence .  satisfies all condition of the norm.

Since we are able to define a norm on X  with the help of the inner product, the inner product
space X  becomes a normed linear space.

5.4 Hilbert Space
5.4.1 Definition :   A complete inner product space is called a Hilbert space

or

Let H  be a complex Banach space with a linear product defined on it. Then H  said to be a
Hilbert space if a complex number x y,b g  called the inner product of x  and y  satisfy the following
properties :

(i) x x x,b g  2

(ii) x y y x, ,b g b g

H3b g    x y z x z y z  , , ,b g b g b g
 x y z H, ,   and   , C
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Remark 1 :   Examples (1) and (2) of § 5.3 are complete inner product spaces, since ln
2  and l2  are

Banach spaces with norm defined as

x xi
i

n


RST

UVW
 2

1

1
2

Example 1 is a finite dimensional space beacuse underlying vector space ln
2  is finite while Example

2 is an infinite dimensional space.

Remark 2 :  Note that the set of all sequences x xn l q  such that xn  is ultimately zero is an incomplete

inner product space, the inner product being induced by l2 , since we can find a sequence

x
nnb g  F

HG
I
KJ1 1

2
1
3

1 0 0, , ,..., , , ,...  converges in l2  but its limit has no zero terms.

Hence we conclude that every Hilbert space is an inner product space but converse is not necessarity
true.

5.4.2 Basic Properties

Theorem 3 :   The inner product in a Hilbert space is jointly continuous i.e. if x xn   and y yn  ,
then x y x yn n, ,b g b g  as n   .

Proof :   We have

x y x y x y x y x y x yn n n n n n, , , , , ,b g b g b g b g b g b g    

    x y y x x yn n n, ,b g b g

    x y y x x yn n n, ,b g b g ...(4)

By Schwarz inequality, we have

x y y x y yn n n n,   b g ...(5)

and x x y x x yn n  ,b g ...(6)

Using (5) and (6) in (4) we get

x y x y x y y x x yn n n n n, ,b g b g     ...(7)

Since x xn   and y yn  , therefore

x xn   0    and   y yn   0

Further since xnb g  is convergent sequence therefore it is bounded so that x M nn  

Using above in (7), we find that
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x y x yn n, ,b g b g    as   n  

Hence inner product in a Hilbert space is continuous.

Theorem 4 (Parallelogram Law) :

If x  and y  are any two vectors in a Hilbert space H , then x y x y x y    b g e j2 2 2 22 .

Proof :   For any x y H,  , we have

x y x y x y   2 ,b g
   x x x y y x y y, , , ,b g b g b g b g

   x x y y x y2 2, ,b g b g ...(8)

Again x y x y x y   2 ,b g
   x x x y y x y y, , , ,b g b g b g b g

   x x y y x y2 2, ,b g b g ...(9)

Adding (8) and (9), we get

x y x y x y    2 2 2 22e j
Remark :   In a Hilbert space, the norm induced by the inner product satisfies the parallelogram law.
However this is not true in general in Banach space i.e., the norm in a Banach space need not necessarily
satisfies the parallelogram law.

Theorem 5 (Polarisation Identity) :

If x y,  are any two vectors in a Hilbert space H , then

4 2 2 2 2x y x y x y i x i y i x i y,b g        

Proof :   Subtracting (9) from (8), we get

x y x y x y y x    2 2 2 2, ,b g b g ...(10)

Replacing y  by i y  in (10), we get

x i y x i y x i y i y x    2 2 2 2, ,b g b g
        2 2i x y i y x, ,b g b g
         2 2i x y i y x, ,b g b g ...(11)

Multiplying both sides of (11) by i , we get
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i x i y i x i y x y y x    2 2 2 2, ,b g b g ...(12)

Adding (10) and (12) we get the required polarisation identity.

5.5 Some Important Theorems on Hilbert Spaces
Theorem 5 :   If B  is a complex Banach space whose norm obeys the parallelogram law, and if an inner
product is defined on B  by

4 2 2 2 2x y x y x y i x i y i x i y,b g         ...(13)

then B  is a Hilbert space.

Proof :   For all x y B,  , the parallelogram law is

x y x y x y    2 2 2 22e j ...(14)

Now we show that the inner product on B  satisfies the properties of Hilbert space.

H1b g    for y x ,

13b g     4 2 1 12 2 2 2
x x x i x i i x i,b g b g b g     0

       4 0 1 12 2 2 2 2x i i x i i xb g b g

     4 2 22 2 2x i x i x

    4 2x

           x x x,b g  2

H2b g Taking complex conjugates of both sides of (13), we get

4 2 2 2 2x y x y x y i x i y i x i y,b g        

 x y x y 2 2,e  each are real)

         y x y x i i y i x i i y i x2 2 2 2b g b g b g

        y x y x i i y i x i i y i x2 2 2 2 2 2

       y x y x i y i x i y i x2 2 2

 4 x y,b g (by (13))

 x y y x, ,b g b g
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The property

   x y z x z y z  , , ,b g b g b g
is equivalent to

H31b g x y z x z y z  , , ,b g b g b g
and  H32b g    x y x y, ,b g b g

so instead of proving H3  we proove H31  and H32 .

H31b g Replacing x  by x yb g  and y  by z  in (13), we get

4
2 2 2 2

x y z x y z x y z x y i z i x y i z            ,b g b g b g b g b g ...(15)

On replacing x  by x zb g  and using

x y z x z y    b g b g2 2 ,  (14) gives

x z y x z y x z y       b g b g2 2 2 22 2

or x y z x z y x z y       b g b g2 2 2 2
2 2 ...(16)

Also x z y z y x    b g b g2 2 (by (16))

             2 22 2 2
z y x z y xb g

               2 2
2 2 2

y z x x y zb g b gm r

             2 22 2 2
y z x x y zb g ...(17)

Using (17) in (16) we get

x y z x z y y z x x y z          b g b g2 2 2 2 2 2
2 2 2 2

 x y z x y z x z y y z x          b g b g2 2 2 2 2 22 2 2 2 ...(18)

Interchanging x  and y  in (18) we get

x y z x y z y z x x z y          b g b g2 2 2 2 2 22 2 2 2 ...(19)

Adding (18) and (19) we get

x y z x y z    b g b g2 2
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               x z x z y z y z2 2 2 2 ...(20)

Now replacing z  by iz  and then multiplying throughout by i  in (20), we get

i x y i z i x y i z    b g b g2 2

       i x i z i x i z i y i z i y i z2 2 2 2 ...(21)

Adding (20) and (21) we find that

x y z x y z i x y i z i x y i z          b g b g b g b g2 2 2 2

               x z x z i x i z i x i z2 2 2 2{ }

               y z y z i y i z i y i z2 2 2 2{ }
or 4 4x y z x z u y z  , , ,b g b g b g (using polarisation identity)

or x y z x z y z  , , ,b g b g b g ...(22)

H32b g Let C . Then we prove H32  for following cases :

Case I :   Let   is a positive integer

by (22) we have

x z y x y z y  , , ,b g b g b g
Taking z x , we get

2 2x y x y, ,b g b g

Hence H32b g  is true for   2

Now assume that H32b g  is true for a fixed positive integer k  i.e.

k x y k x y, ,b g b g ...(23)

Then k x y k x x y  1b gc h b g, ,

         k x y x y, ,b g b g (by H31 )

         k x y x y, ,b g b g (by (23))

         k x y1b g b g,

Thus H32  is true for k 1. Hence H32  is true for all positive integers k .
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Case II :   Let   be a negative integer..

Here first we prove that

  x y x y, ,b g b g
For this replacing x  by x  in (13), we get

4 2 2 2 2x y x y x y i x i y i x i y,b g            

           x y x y i x i y i x i yb g b g b g b g2 2 2 2

       x y x y i x i y i x i y2 2 2 2

  4 x y,b g ...(24)

   x y x y, ,b g b g
Now let    , where   is positive integer. Then

  x y x y x y, , ,b g b gc h b gc h   

   x y x y, ,b g b g

Case III :   Let   be a rational number i.e.,  
p
q

where p  and q  are integers and q  0 . We have

 x y p
q

x y p z y, , ,b g b g
F
HG

I
KJ  (assume that 

x
q

z )

 p z y,b g

Also q z y q z y z y
q

q z y, , , ,b g b g b g b g  
1

Hence  x y p
q

q z y, ,b g b g

  x y,b g
Case IV :  Let   be a complex number..

Here first we proove that

i x y i x y, ,b g b g

Replacing x  by i x  in (13), we get
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4 2 2 2 2x y i x y i x y i ix i y i ix i y,b g        

       i x i y i x i y i i x y i i x yb g b g b g b g2 2 2 2

       i x i y i x i y i i x y i i x y2 2 2 2 2 2 2 2

       x i y x i y i x y i x y2 2 2 2

        i x i y i x i y i x y i x y2 2 2 2 2 2

       i x y x y i x i y i x i y2 2 2 2{ }
 i x y,b g

Now suppose that    1 2i , where  1 2, R .

We have

    x y i x y x i x y, , ,b g b gc h b g   1 2 1 2

      1 2 1 2, , , , ,x y i x y x y i x yb g b g b g b g
  1 2x y i x y, ,b g b g
    1 2i x y x yb gb g b g, ,

Thus we have proved that

 x y x y, ,b g b g  for each scalar  .

Hence B  is Hilbert space.

Theorem 6 :   A closed convex shubset K  of aHilbert Space H  contains a unique vectors of smallest
norm.

Proof :    Here first we define a convex set

Let X  be a linear space real or complex. A  norm empty subset K  of X  is said to be convex if
x y K x y K,     1  b g  where   is any real number s.t. 0 1  .

Taking  
1
2 , we see that if K  is convex subset of a linear space X , then x y K x y K,  




2 .

Now suppose that d x x K inf :m r . Then there  exists a sequence xnl q  in K  s.t. x dn  .

Since K  is convex, therefore 
x x Kn m


2  for m n N,  .

Hence using the definition of d , we have



87

1
2

2x x d x x dn m n m    b g ...(25)

By parallelogram law

x x x x x xn m n m n m    2 2 2 22 2

      2 2 42 2 2x x dn m ...(26)

Since xn , x dm   as n m,   , we get from (26) that

x xn m 2 0    as   m n, 

Hence xnl q  is a Cauchy sequence. Since K  is a closed subspace of a complete space, therefore

K  is complete. Hence the Cauchy sequence xnl q  in K  converges to a point x  in K . Since the inner
product is continuous and consequent6ly norm  is also continuous.

Thus x x x dn n  lim lim

so x  is a vector of smallest norm.

Uniqueness of x  :   Let y K  be another point with y d .

Then  
1
2

x y K b g . Hence by parallelogram law, we get

1
2

2
2

2
2

1
2

2 2 2 2

x y x y x y    b g b g

           
d d x y

2 2 2

2 2
1
2
b g

          d x y2
21

2
b g

         d 2

Which contradicts the definition of d , since 
1
2

x y K b g . Hence x K  is unique.

Theorem 7 :   Let M  be a closed linear subspace of a Hilbert space H , and x  be a vecotr not in M .
Suppose that d d x M ,b g . Then these exists a unique vector y0  in M s.t. x y d 0 .

Proof :    We have d d x M x y y M   , inf :b g m r
Then there exists a sequence ynl q  in M  s.t.
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lim x y dn    or  x y dn 

Let y y ym n n, l q  i.e., y y Mm n, 


y y Mm n


2  M is a subspace of H ]

 x y y dm n



2

 2 2x y y dm n  b g ...(27)

By parallelogram law, we have

y y x y x ym n n m    
2 2b g b g

           2 22 2 2
x y x y x y x yn m n mb g b g

        2 2 42 2 2x y x y dn m

       2 2 4 02 2 2d d d as    m n,  

   ynl q  is a Cauchy sequence in M  which is complete. being a closed subspace of a complete
space H

  y M0    s.t.   y ynl q 0

Now x y x yn  0 lim

    lim limx y x y dn nb g
Hence y0  is the required vector in M  s.t. x y d 0

Uniqueness of y0  :   Let y y1 2,  y y1 2b g  be two vectors in M  s.t.

x y d x y   1 2 .

Now y y M y y M1 2
1 2

2
,  




       


x y y d1 2

2

         2 21 2x y y db g
By parallelogram law we have
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x y x y x y x y x y y         1 2
2

1
2

2
2

1 2
2

2 2 2b g b g b g
           2 2 4 02 2 2d d d

 y y y y1 2
2

1 20 0      y y1 2
2 0 e j

           y y1 2 0

          y y1 2

Hence y0  is unique.

Self-Learning Exercise

1. State linearity in the first variable for inner product.

2. If x y z H, ,   (a Hilbert space) and   , , C , then fill up the blanks

(i)  x y z , .....b g
(ii) x y z, .....  b g
(iii) x y, .....b g 

3. Fill up the blanks

(i) A ................. inner product space is called a Hilbert space.

(ii) The inner product in a Hilbert space is .................

4. State parallelogram law in a Hilbert space.

5. State polarisation identity in a Hilbert space.

5.6 Summary
In this unit you studied inner product space and Hilbert spaces and some basic properties associated

with these spaces.

5.7 Answers to Self-Learning Exercise

1.    x y z x z y z  , , ,b g b g b g
2. (i)   x z y x, ,b g b g (ii)   x y x z, ,b g b g

3. (i)  complete (ii)  jointly continuous

4. x y x y x y    2 2 2 22e j  x y H,

5. 4 2 2 2 2x y x y x y i x i y i x i y,b g        
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5.8 Exercises

1. Let L2 0 1,  be the set of all square integrable functions on 0 1, . Define the inner product on

L2 0 1,  as

f g g t g t dt,b g b g b g z01  f g L, ,2 0 1

Prove that L2 0 1,  is an inner product space.

2. Give an example of an inner product space which is not a Hilbert space.

3. If X  is an inner product space, show that x x,b g  satisfies the properties of a norm.

4. If x  and y  are any two vectors in a Hilbert space H  then show that

(i) x y x y x y   2 2 4 Re ,b g
(ii) x y x y i x i y, Re , Re ,b g b g b g 

5. For the special Hilbert space ln
2 , use Cauchy’s inequality to prove the Schwarz inequality..

6. Define (i) Inner product space (ii) Hilbert space and give an example.

7. Let K  be a non-empty conver subset of a Hilbert space H  and x H0  . Prove that   a unique

point k K0   s.t. d x k x k0 0 0,b g   .

���
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Unit - 6
Orthogonality and Functionals in Hilbert Spaces

Structure of the Unit
6.1 Objectives

6.2 Introduction

6.3 Orthogonal Complements

6.3.1 Definition 1 (Orthogonality)

6.3.2 Definition 2 (Orhogonal Sets)

6.3.3 Definition 3 (Orthogonal Complements)

6.3.4 Pythagorean Theorem

6.3.5 Elementary Properties

6.4 Projection Theorem

6.5 Orthogonal Sets

6.5.1 Definition 1

6.5.2 Definition 2

6.5.3 Example

6.6 Important Theorems on Orthogonal Sets

6.7 Complete Orthogonal Set

6.7.1 Definition 1

6.7.2 Definition 2

6.7.3 Definition 3

6.7.4 Definition 4

6.7.5 Creteria for Orthonormal Set

6.7.6 Example

6.7.7 Properties of Orthonormal Set

6.8 Reflexivity in Hilbert Spaces

6.9 Summary

6.10 Answers to Self Learning Exercise

6.11 Exercises

6.1 Objectives
Our objective of this unit is to study orthogenality and functionals in Hilbert spaces. We shall also

study the orthonormal sets, complete orthonormal sets and reflexivity of Hilbert spaces.
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6.2 Introduction
In the last unit we defined the inner product spaces and Hilbert spaces. In this unit first we define

orthogonality in Hilbert spaces, and prove Pythagorean theorem, Projection theorem and some other
important results connected with orthogonal complements. After that the definition of orthonormal sets and
complete orthonormal sets are given and important theorems such as Bessel’s inequality, Parseval’s iden-
tity are proved. We also discuss functionals in Hilbert spaces and prove an important theorem viz Riesz
representation theorem. Lastly we prove that every Hilbert space is Reflexive.

6.3 Orthogonal Complements
6.3.1 Definition 1 (Orthogonality) :

Let x  and y  be any two vectors in a Hilbert space H . Then x  is said to be orthogonal to y

written as x y  if x y,b g  0

From the definition we have the following easy consequences :

(i) The relation of orthognality is symmetric i.e.

x y y x   . Since x y  gives

x y x y, ,b g b g  0 0  or y x y x,b g   0

(ii) If x y , then  x y    C .

Since  x y x y, ,b g b g  0 , therefore x y x y  

(iii) Since 0 0, xb g   for any x H , therefore 0   x x H

(iv) If x x , then x  must be zero. For x x , then x x x,b g   0 02  i.e., x  0

6.3.2 Definition 2 (Orthogonal Sets) :

Two non empty subsets S1  and S2  of a Hilbert space H  are said to be orthogonal denoted by
S S1 2 , if x y x S   1  and y S 2 .

6.3.3 Definition 3 (Orthogonal Complement) :

Let S  be a non empty subset of a Hilbert space H . The orthogonal complement of S  denoted
by S   and read as S  perpendicular, is defined as

S x H x y y S     : ,l q
Thus S   is the set of all those vectors in H  which are orthogonal to every vector in S .

6.3.4 Pythagorean Theorem :

Statement If  x  and y  are any two orthogonal vectors in a Hilbert space H , then

x y x y x y    2 2 2 2

Proof :   Since x y  therefore
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x y x y,b g b g   0 0

    y x,b g 0 ...(1)

Now x y x y x y   2 ,b g
   x x x y y x y y, , , ,b g b g b g b g
 x y2 2 (using (1)) ...(2)

Similarly  x y x y  2 2 2 ...(3)

Combining (2) and (3) we get the Pythagorean theorem.

6.3.5 Elementary Properties :

From the definition we have the following

Theorem 1 :   Let S , S1  and S2  be non empty subsets of a Hilbert space H . Then

(i) 0l q  H (ii) H  0l q
(iii) S S  0l q (iv) S S S S1 2 2 1     and S S1 2

 

(v) S S  (vi) S S S S1 2 1 2 0    l q
Proof :   (i) By definition we have 0l q  H ...(4)

Now let x H . Since x,0 0b g     x 0l q . Hence H  0l q ...(5)

Combining (4) and (5) we get 0l q  H

(ii) Let x H x y y H     ,b g 0

Choose y x , then x x x,b g  0 2  or x  0

Thus x H x   0 . Hence H  0l q
(iii) Let x S S x S     and x S 

 x x  or x x,b g  0

    x x2 0 0 0l q
Thus S S  0l q

(Remark :   If S  is subspace of H , then S   is also subspace of H . So both S  and S   contain zero

vector. Thus is S  is subspace of H , then 0 0     S S S S l q .)
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(iv) Let x S 
2 . Then x  is orthogonal to every vector in S2 .

Since S S1 2 , therefore x  is orthogonal to every vector in S1

which implies x S 
1 . Thus S S2 1

  .

In a similar manner we can prove that S S1 2
  .

(v) Let x S . Then x y,b g  0    y S

so if y S  , then from the definition of S  , x S  .

Thus x S x S    . Hence S S 

(vi) If S S1 2 0  l q , then suppose that x S S 1 2 .

Since S S1 2 , therefore x x x x,b g     0 0 02 ,

therefore S S1 2 0  l q .

Theorem 2 :   If S  is a non empty subset of a Hilbert space H , then S   is a closed linear subspace of
H  and hence a Hilbert space.

Proof :   By definition of S  , we have

S x H x y y S     : ,b gm r0

Since 0 0, y y Sb g    , therefore 0 S  and so S   is non empty..

Let x x S1 2,    and  ,  are scalars. Then

x y1 0,b g   and  x y2 0,b g     y S .

Hence for every y S , we get

     x x y x y x y1 2 1 2 0 0 0     , , ,b g b g b g
  x x S1 2  

 S   is a subspace of H .

Now we prove that S   is a closed subset of H . For this let xnl q  be a sequence is S   converging
to x  in H .

Then we have to show that x S  . For this we should prove that x y,b g  0   y S .

Since x Sn 
 , therefore x yn ,b g  0   y S  and n N . Since inner product is a continuous

function, therefore x y x yn , ,b g b g  as n  
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Since x yn ,b g  0  n , therefore x y,b g  0 . Thus x S  .

Hence S   is a closed subset of H .

Now S   is a closed subspace of Hilbert space H . So, S   is complete and hence it is a Hilbert
space.

6.4 Projection Theorem
In this section, we shall first develop some preliminary results for the proof of Projection Theorem.

Theorem 3 :   Let M  be a proper closed linear subspace of a Hilbert space H . Then there exists a non-
zero vector z0  in H  s.t. z M0  .

Proof : Since M  is a proper closed subspace of H , therefore there eixsts a vector x  in H  which is not
in M .

Let d d x M x y y M   , inf :b g m r
As x M , so d  0 . Again M  is a closed subspace of H , so by Theorem 7 of unit 5, there

exists a unique vector y0  in M  s.t. x y d 0 . Suppose that z x y0 0  .

Now  z x y d0 0 0   

Hence z0  is a non zero vector. We prove that z M0  . For this we must show that z y0 0,b g 
 y M .

For any scalar  , consider

z y x y y x y y0 0 0        b g
Since M  is a subspace of H  and y , y M0  , therefore y y M0   . Hence using the

definition of d , we get

x y y d z   0 0b g

Therefore  z y z0 0
2 

Now z y z z y z y z z0
2

0
2

0 0 0 0 0        , ,b g b g
or z z z y y z y y z z0 0 0 0 0 0 0, , , , ,b g b g b g b g b g      

or      z y y z y y0 0 0, , ,b g b g b g ...(6)

The result (6) is true for all scalars  . Let   z y0 ,b g  where   is any arbitrary real number..

Then   z y0 ,b g . Using   and   in (6) we get

     z y z y z y z y z y z y y0 0 0 0
2

0 0
2 0, , , , , ,b gb g b gb g b gb g
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or   2 00
2 2

0
2 2 z y z y y, ,b g b g

or  z y y0
2 2 2 0,b g    ...(7)

The relation (7) is true for all real  . Suppose that z y0 0,b g  . Choosing   to be positive s.t.

 y 2 2 , then from (7). We have

  0
2 2 2 0, y yb g  

which contradicts (7). Hence z y0 0,b g   showing that z y0  .

Thus z y0      y M z y0  which completes the proof of the theorem.

Theorem 4 :   Let M  be a linear subspace of Hilbert space H . Then M  is closed if and only if
M M  .

Proof :   Let M M M   c h  where M  is a subspace of H .

Using Theorem 2, M   is closed. Therefore M  is closed conversly let M  be a closed subspace
of H .

We know that M M   (by Theorem 1, (v)).

Now let M M  . Then M  is a proper closed subspace of Hilbert space M  . Hence by

Theorem 3, there exists a non-zero vector z0  in M   s.t. z M0   or z M0 
 .

Now z M0 
  and M z M M    0 ...(8)

Since M   is a subspace of H , therefore

M M   0l q (by Theorem 1, Remark (iii)) ...(9)

From (8) and (9) we have z0 0  contradicting z0  is a non-zero vector. Hence M M   can
not be a proper inclusion. Hence we have M M  .

Remark :   By the Theorem 2, M   is closed subspace of H . So M M M    c h .

Theorem 5 :   M  and N  are closed linear subspaces of Hilbert space H  s.t. M N , then the linear
subspace M N  is closed.

Proof :      To show that M N  is closed. We have prove that it contains all its limits points. Let z  is a
limit point of M N . Then there exists a sequence znl q  in M N  s.t. z zn   in H . Now M N ,

M N  0l q  and M N  is a direct sum of the subspaces M  and N , therefore zn  can be written

uniquely as z x yn n n   where x Mn   and y Nn  .

Taking z x ym m m   and z x yn n n  , we have
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z z x x y ym n m n m n    b g b g .

Since x x Mm n b g  and y y Nm n b g , therefore x x y ym n m n  b g b g
Hence by Pythagorean theorem, we get

x x y y x x y ym n m n m n m n      b g b g 2 2 2

 z z x x y ym n m n m n    2 2 2 ...(10)

Since znl q  is convergent sequence in H , it is a Cauchy’s sequence in H , therefore z zm n 2 0

as m n,   . Using it in (10) we get x xm n 2 0  and y ym n 2 0  as m n,   . Hence xnl q
and ynl q  are Cauchy sequences in M  and N . Since H  is complete and M  and N  are closed
subspaces of a complete space H , therefore M  and N  are complete. Hence the Cauchy sequence

xnl q  converges to x  in M  and ynl q  converges to y  in N .

Now z z x y x y M Nn n n      lim lim lim .

Therefore M N  is closed

Now we state projection theorem.

Theorem 6 :   If M  is a closed linear subspace of a Hilbert space H , then H M M   .

Proof :   Since M  is a subspace of H , therefore by Theorem 2, M   is a closed and M M  0l q .

Thus in order to prove the theorem it is sufficient to verify that H M M   .

Now M  and M   are closed subspaces of H , therefore by Theorem 5, M M   is also a
closed subspace of H .

Suppose that N M M   , then we prove that N H .

From the definition of N , we have M N  and M N  .

Thus N M   and N M  . Hence N M M     0l q .

Now N N H     0 0l q l q ...(11)

Since N M M    is a closed subspace of H , therefore

N N  ...(12)

From (11) and (12) we get

N M M H  

Self-Learning Exercise - I

1. Define orthogonal sets.

2. State Pythagorean theorem.
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3. State Projection theorem.

4. Define orthogonal complement of a set.

Fill up the blanks

5. 0l q ............

6. H ............   where H  is a Hilbert space.

7. If M  and N  are subspaces of a Hilbert space H  and M N , then M N ............

8. If S  is a non empty subset of a Hilbert space, then S   is a .......... space.

9. Let M  be a linear subspace of a Hilbert space H . Then M  is closed iff ...........

10. For any non empty subset M  of a Hilbert space H , M  .....

6.5 Orthonormal Sets

6.5.1 Definition 1 :   Let H  be a Hilbert space. If x H  s.t. x  1  i.e., x x,b g  1, then x  is said to
be a unit or normal vector.

6.5.2 Definition 2 :   A non empty subset eil q  of the Hilbert space H  is said to be an orthonormal
set if

(a) e ei j  or e ei j,d i  0   i j

(b) ei  1  or e ei j,d i  1 for every i .

or

A non-empty subset of Hilbert space is said to be an orthonormal set if it contains mutually or-
thogonal unit vector.

Remarks :

1. An orthonormal set cannot contain zero vector as 0 0 .

2. If H  contains only the zero vector, then it has no orthonormal sets.

3. Every Hilbert space H  0l q  posesses an orthonormal set

4. If xil q  is a non-empty set of mutually orthogonal vectors in H , then e x
xi

i

i
l q  RST

UVW  is an

orthonormal set.

6.5.3 Example :   In the Hilbert space ln
2 , the subset e e en1 2, , ... ,l q  where ei  is the i th  tuple with 1 in

the i th  place and 0 elsewhere is an orthonormal set.
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6.6 Important Theorems on Orthonormal sets

Theorem 7 :   If e e en1 2, , ... ,l q  be finite orthonormal set in a Hilbert space H , and x  be any vector in

H , then

(i) x e xi
i

n

,b g 2

1

2


  and (ii) x x e e ei i j

i

n

 

 ,b g

1
  j

Proof :   Let  y x x e ei i
i

n

 

 ,b g

1
. Then

y y y2  ,b g

         
F
HG

I
KJ 

 x x e e x x e ei i
i

n

j j
j

n

, , ,b g d i
1 1

         
 
 x x x e e x x e x ei i
i

n

j j
j

n

, , , , ,b g b gb g d id i
1 1

        

 x e x e e ei
j

n

j i j
i

n

, , ,b gd id i
11

...(12)

Now e ei j,d i  0 , i j  and e ei i, c h  1 ...(13)

Therefore

x e x e e e x e x ei
j

n

j i j
i

n

i i
i

n

, , , , ,b gd id i b gb g
 
 

11 1
...(14)

Using (14) in (12) we get

y x x e x e x e x e x e x ei i
i

n

i i
i

n

i i
i

n
2 2

1 1 1

   
  
  , , , , , ,b gb g b gb g b gb g

         

x x ei
i

n
2 2

1

0,b g  y 2 0e j
which gives (i)

Again consider

x x e e e x e x e e ei i j
i

n

j i i j
i

n


F
HG

I
KJ  

 
 , , , , ,b g d i b g d i

1 1

           x e x ej j, ,d i d i 0 (by (13))

This proves (ii).
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The inequality given in (i) is also known as Bessel’s inequality for finite orthonormal sets.

Theorem 8 :   If eil q  is an orthonormal set in a Hilbert space H  and if x  is any vector in H , then the set

S e x ei i : ,b gm r0  is either empty or countable.

Proof :   For each positive integer n  and fixed x , consider the set

S e x e
x
nn i i 

F
HG

I
KJ

R
S|
T|

U
V|
W|

: ,b g2
2

Hence Sn  contains atmost n 1b g  vectors, otherwise if Sn  contains n  or more vectors than n ,

then we have for e Si n

x e n
x
n

xi
i

n

,b g 2

1

2
2


   ...(15)

But by Theorem 1, we have

x e xi
i

n

,b g 2

1

2


  , e Si n ...(16)

Which contradicts (15). Hence Sn  contains atmost n 1b g  vectors. Hence for each positive inte-

ger n , the set Sn  is finite or countably infinite, since if

x ei     i x e ii,b g 0  then S   ,

if S  is non-empty then it is either finite or infinite. When S  is finite, it is clearly countable but if it is

infinite, it can be written as S S
n

n





1
 with Sn  not containing more than n 1b g  elements, because if

e S x ei i  ,b g 0 , then however small be the value of x ei,b g 2 , n  can be choosen so large that

x e
x
ni,b g 2

2

   so that e S e Si i n   .

Now S S S
n

n 





1
 is expressible as countable union of finite sets

         S   is countable.

Theorem 9 (Bessel’s Inequality) :   If eil q  is an orthonormal set in a Hilbert space H , then

x e x x Hi,b g 2 2
   .

Proof :   Let S e x ei i : ,b gm r0 , then by Theorem 8, S  is either empty or countable. If S  is empty,,
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then x e i x ei i, ,b g b g   0 0
2

Hence x e xi,b g 2 20  .

So the inequality is satisfied when S  is empty..

Let S   , then S  is finite or countably infinite. If S  is finite, then suppose that S e e e 1 2 3, ,... ,l q
for some positive integer n . In this case we have by Theorem 7 that

x e x e xi
i

i
i

n

, ,b g b g2

1

2

1

2

 
  

Secondly taking S  as contally infinite, then the vectors in S  can be arranged in a definite order s.t.
S e e en 1 2, , ... , ,....l q . In this case

x e x ei n
n

, ,b g b g2 2

1
 





This sum is well defined if the series x en
n

,b g 2

1



  is convergent irrespective of any arrangement of

its terms i.e., irrespective of the arrangements of vectors in S .

By the Bessel’s inequality for finite case, x e xi
i

n

,b g 2

1

2


   is true for every positivie integer n ,

and so it must be true in limit also i.e.

lim , ,
n i

i

n

n
ni

x e x e x


 



  b g b g2

1

2

1

2

which follows that the series x en
n

,b g 2

1



  is convergent. Moreover by the theory of absolute

convergence, this convergent series having all its terms positive is absolutely convergent. Consequently its
sum will not alter by arrangement of its terms, which completes the proof of the theorem.

Theorem 10 :  If eil q  be an orthonormal set in a Hilbert space H  and x  be an arbitrary vector in H ,
then

x x e e ei i i  ,b g  for  j

Proof :   Taking S e x ei i : ,b gm r0 . There arise three cases :

Case I :   If S  is empty i.e., x e ii,b g  0 , then we define x e ei i,b g  to be the zero vector

0 , so that
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x x e e x xi i    ,b g 0

Since S x e j x e jj j       ,d i 0

Case II :   Let S    and S  is finite, Then the result follows by Theorem 7 (ii)

Case III :  Let S    and S  is countally infinite. Then arranging the vectors of S  in a definite

order as S e e en 1 2, , ..., , .....l q .

We set s x e en i i
i

n



 ,b g

1

so that for m n , we have

s s x e e x e em n i i
i n

m

i i
i n

m

  
   
 2

1

2
2

1

, ,b g b g

    
   
 x e e x ei i

i n

m

i
i n

m

, ,b g b g2 2

1

2

1
   as  e ii

2 1 .

By Bessel’s inequality, the series x ei
i

,b g 2

1



  is convergent, so that for m n,   , x ei
i n

,b g 2

1 




can be made to converge to zero i.e.,

s sm n 2 0    as   m n,  

 the sequence snl q  is a Cauchy’s sequence in H  and H  is complete

 a vector s  in H  s.t. limn ns s




 s x e ei n
n






 ,b g
1

Now we can define x e e x e ei i n n
n

, ,b g b g 




1

Now we shall show that the above sum is well defined and does not depend upon the rearrange-
ment of vectors.

For this suppose that the vectors in S  are arranged in a different manner as S f f fn 1 2, ,..., , ...l q .

Let s x f fn i i
n

n

' ,

 b g

1
.

As proved above, let s sn' '  in H  where s x f fn n
n

' ,




b g
1
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Now we prove that s s  .

For a given  0 , we can find n0  s.t.

 n n0 , x ei
n

,b g 2 2

10

 




 , s sn    and     s sn

For some positive integer m n0 0 , we can find all the terms of sn0
 in sm0

 so that   s sm n0 0
 is a

finite sum of terms of the type x e ei i,b g  for i n n  0 01 2, ,.....

Thus      
 



s s x em n i
i n

0 0

2 2 2

1

,b g  with     s sm n0 0

2 2

Now           s s s s s s s sm m n n
2

0 0 0 0

         s s s s s sm m n n0 0 0 0

     3

  0  as  is arbitrary

Hence s s 

Now consider

x x e e e x s ei i j j   , , ,b gd i d i

          x e s e x e s ej j j n j, , , lim ,d i d i d i d i ...(17)

By continuity of the inner product we have

lim , lim ,s e s en j n jd i d i ...(18)

Using (18) in (17), we get

x x e e e x e s ei i j j n j   , , , lim ,b gd i d i d i

If  e Sj  , then s e x e e en j i i j
i

n

, , ,d i b g
F
HG

I
KJ 


1

0  lim ,s en jd i 0

Hence x x e e e x ei i j j   , , ,b gd i d i 0  as e Sj 

But if e Sj  , then s e x e e en j i i j
i

n

, , ,d i b g
F
HG

I
KJ


1

...(19)

Now for n j , we have
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x e e e x ei i j
i

n

j, , ,b g d i

FHG

I
KJ 1

...(20)

Using (20) in (19), we get

lim , ,
n n j js e x e


d i d i

So in this case x x e e e x e x ei i j j j    , , , ,b gd i d i d i 0

Thus x x e e ei i j  , ,b gd i 0  for each j .

Hence x x e e ei i j  ,b g  for each j , which completes the proof of the theorem.

6.7 Complete Orthonormal Sets
6.7.1 Definition 1 :   An orthonormal set S  in a Hilbert space is complete, if there exists no other
orthonormal set containing S . This is S  must be a maximal orthonormal set.

Thus an orthonormal set eil q  in a Hilbert space is complete if it is not possible to adjoin a vector

e  to eil q  in such a way that e ei ,l q  is an orthonormal set properly containing eil q .

6.7.2 Definition 2 :   Let eil q  be a complete orthonormal set in a Hilbert space H  and x  be any

arbitrary vector in H . Then the numbers x ei,b g  are called the Fourier coefficients of x .

6.7.3 Definition 3 :   The expansion x x e ei i ,b g  is called the Fourier expansion of x .

6.7.4 Definition 4 :   The expansion x x ei
2 2
 ,b g  is called the Parseval’s equation or Parseval’ss

identity.

6.7.5 Criterian for Complete Orthonormal Set

Theorem 11 :    An orthonormal set S  in a Hilbert space H  is complete iff f x S x   0
 x H .

Proof :   Let S  be complete and x  is any non zero vector in H  s.t., x S . Then the set S el q  where

e x
x


F
HG

I
KJ  is an orthonormal set properly containing S , contradicting the maximality of S . Hence x  0 .

Conversly let x S x   0 . If S  is non complete, then   some orthonormal set S  such that

 S S  properly. In that case, let x S S   . Since x  1  and x S , x  0  contradicting the given
condition. Hence S  must complete.

6.7.6 Example :   In the Hilbert space ln
2 , the set e e en1 2, ,... , ,...l q , where en  is a sequence with 1 in

the nth  place and 0’s elsewhere, is a complete orthonormal set.
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Solution :   Let S e e en 1 2, , ..., ,...l q . If x xn l q  and y y ln
n b g 2 , then

x y x yn n
n

,b g 





1

   and   x xn
n

2 2

1

1
2


L
NM

O
QP





As noted before S  is an orthonormal set. Let x S .

Now x e x x xn, . . ... .1 1 21 0 0 0b g     

        x1 0

Similarly  x e 2 ,... , x en ,...  will give x2 0 , x3 0 ,... , xn  0,... . Hence x S x   0
therefore the orthonormal set is complete.

6.6.7 Properties of Complete Orthonormal Sets

Theorem 12 :   If H  be a Hilbert space and eil q  be an orthonormal set in H , then the following
statements are equivalent :

(i) eil q  is complete

(ii) x e xi  l q 0

(iii) If x  is an arbitrary vector in H , then

x x e ei i ,b g
(iv) If x  is an arbitrary vector in H , then

x x ei
2 2
 ,b g

Proof :   (i)   (ii)

Let eil q  is complete, we claim that

x e xi  l q 0

Suppose that x ei l q  and x  0 , then we can find a unit vector  e
x
x


RST

UVW  with e  1 , s.t.

e ei l q e ei,b g 0  for each i .

Thus e ei,b g  is an orthonormal set which properly contains eil q  which contradicts the complete-

ness of eil q . Hence our assumption i.e., x  0  is wrong and so x e xi  l q 0

(ii)   (iii)

Let x e xi  l q 0
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Choosing an e ej il q , we claim that the vector

x x e e ei i j  ,b g
For this consider

x x e e e x e x e e ei i j j i i j   , , , , ,b gd i d i b gd i

        x e x e e ej i i j, , ,d i b g d i

         x e x e e ej i j j, , ,d i b g d i 0

 x x e e ei i j  ,b gd i  for each j

 x x e e e x x e ei i i i i     , ,b gd i l q b g 0  x e xi  l qc h0

 x x e ei i ,b g
(iii)   (iv) :   Given that for any vector x  in H  s.t. x x e ei i ,b g .

To prove that x x ei
2 2
 ,b g .

We have

x x x x e e x e ei i j j
2    , , , ,b g b g d ie j

         x e x e e ei j i j, , ,b g d i d i

        
i

i
j

j i jx e x e e e, , ,b gd id i

        x e x e e ei
i

i i j, , ,b gb gd i

        x e x ei
i

i, ,b gb g   as  e e ei j i,d i  2 1

        x ei,b g 2

(iv)   (i) :   Given x x ei
2 2
 ,b g . To prove that eil q  is complete.

Let eil q  be not complex. Then eil q  is a proper subset of an orthonormal set e ei ,l q . Hence
taking e  for x  in the hypothesis, we get

e e ei
2 2

0  ,b g . Since e e ii  ,
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Thus e 2 0  which contradicts that e  is a unit vector. Therefore eil q  is a complete orthonormal
set

Self-Learning Exercise - II

1. Define an orthonormal set.

2. Define a complete orthonormal set.

3. Define a Fourier series for a vector x   in Hilbert space H .

4. An orthonormal set contains a zero vector T Fb g
5. Every Hilbert space H  0l q  possesses on orthonormal set T Fb g .

6. State Bessel’s inequality in a Hilbert space.

7. Complete the following statements :

(a) An orthonormal S  in a Hilbert space H  is complete iff for any x  in H , x S ......

(b) If eil q  is an orthonormal set in H , then

(i) eil q  is .................

(ii) x e xi  l q ...

(c) If e e1 2,l q  is a orthonormal set in a Hilbert space H , then e e1 2 ....

(d) Every non-zero Hilbert space contains a .................... set.

6.8 Functional in Hilbert Sapces

If H  is a Hilbert space and if we define a continuous linear functional or simply a functional
on H as a continuous linear transformation from H  into C , then the set of all these functionals constitutes
a vector space denoted by H *  are known at the conjugate space of H .

The elements of H *  are known as functionals and denoted by f . Thus if f H * , then f  is a
functional in H *  and as mentioned above f  is a continuous linear functional on H . If we define addition
and scalar multiplication in H *  pointwise and the norm of f H *  is defined as

f f x x sup :b gn s1
then H *  is a Banach space. By defining a suitable inner product on H *  it is seen that H *  maintains the
structure of a Hilbert space. As such the conjugate space on H *  is second conjugate space H * *b g  or

H **  of H  also becomes a Hilbert space.

Theorem 13 :   Let y  be a fixed elements of Hilbert space H  and f y  be a scalar valued functional on H
defined as f x x yy b g b g , ,  x H .

Then the mapping f y  is a functional on H  and y f y .
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Proof :   From the definition, we have f Hy :  C . Now we prove that f y  is linear and continuous so
that it is a functional.

Let x x H1 2,   and  , C . Then for fixed y H , we have

f x x x x yy    1 2 1 2, ,b g b g 

                x y x y f x f xy y1 2 1 2, ,b g b g b g b g
  f y  is linear..

Also for any x H ,

f x x y x yy b g b g , (by Schwarz inequality) ...(21)

Now let y M . Then M  0 , we get

f x M x fy yb g    is bounded hence continuous.

Hence f y  is a functional.

Again if y  0 , then y  0  and from definition f y  0 so that f yy  .

Suppose that y  0 , then from (21), we get

sup
f x

x
y f yy

y

b g
   ...(22)

Further since y  0 , therefore 
y
y  is a unit vector setting x y

y
   in the definition

f f x xy y sup :b go t1 , we get

f f y
y

y
y

y
y

y y yy y
F
HG

I
KJ 

F
HG

I
KJ  , ,1 b g

Hence f yy  ...(23)

Thus (22) and (23) gives y f y .

From the above theorem, we can say that T H H: *  s.t. T y f yb g   is a norm preserving
mapping.

Now we shall prove that every f H *  arises in this manner..

Theorem 14 (Risez Representation Theorem) :  Let H  be a Hilbert space and f  be an arbitrary
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functional in H * . Then there exists a unique vector y  in H  s.t. f x x y f x Hb g b g  ,  and

f y .

Proof :   Let   a vector y H  s.t. f x x y x Hb g b g  , . We first prove that y  is unique.

Suppose that y  is not unique i.e.   two vectors y y H1 2,   corresponding to a functional f H *
s.t.

f x x yb g b g , 1  and f x x yb g b g , 2   x H

 x y x y x H, ,1 2b g b g  

 x y y x H, 1 2 0   b g
Taking x y y 1 2 , we get  y y y y y y y y y y1 2 1 2 1 2

2
1 2 1 20 0         ,b g

Hence y  is unique

Next we prove that y  exists.

If f  is a zero functional i.e. f  0 , then

f x x Hb g   0  and f x x y x Hb g b g  ,

 x y x H,b g   0

 y  0  which shows that y  0  exists when f  0 .

If f  0  i.e. f xb g  0  for some x H , then consider null space say M  of f  s.t.

M x f x x H  : ,b gm r0
We observe that

(a)  M is non empty  :   Since f 0 0b g   : 0 M

(b)  M is a subspace :   Since

If x x M1 2,   and  ,  are scalars s.t. f x1 0b g  , f x2 0b g  , then

f x x x x y   1 2 1 2  b g b g,

             x y x y1 2, ,b g b g
                  f x f x1 2 0 0 0b g b g . .

   x x M1 2,   and   and   are scalars    x x M1 2

(c)  M is a proper subspace of H :  Since f xb g  0  for some

x H    all such x  do not belong to M
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              there are elements of H  which are not in M
             M  is a proper subspace of H .

(d)  M is a closed subspace of H :  Since M  is a subspace of a complete space H , therefore
M  is closed

Thus f  is continuous and M  is a proper closed subspace of H , therefore   a non zero vector

y H0   s.t. y M0   or y M0 
  or we can say that y x x M0 0,b g    .

Now we prove that   a vector y M  s.t. f x x y x Hb g b g  , . Three cases arise.

Case I :  If x H  and x M f x  b g 0

Also f x x y x yb g b g b g , , 0 (choosing y y  0  with y M0  )

           x y, 0 0b g   as x M  and y M0 

Hence f x x yb g b g ,  is satisfied for x M  and y y  0

Case II :  If x H  and x y 0 , then

f x x y f y y yb g b g b g b g  , ,0 0 0 (choosing y y0 0  )

  y0
2

giving    
f y
y

f y
y

0

0
2

0

0
2

b g b g

Then f x x yb g b g ,  is satisfied  x M  with x y 0  and y y  0 .

Case III :   x H , and x M  with x y 0

Since H M M   , therefore any vector x H  is uniquely expressible as the sum of the vec-

tor m M  and a vector  y M0 
  i.e., x m y   0 ,   is a scalar..

By definition of m ,

f m f x yb g b g   0 00

       f x f y
f x
f y

b g b g b g
b g 0 0

 f x f m y f m f yb g b g b g b g    0 0

            m y y y m y y, , ,b g b g b g 0 0

           x y x H,b g
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Lastly we show that f y .

Now for each x H    a unique y H  s.t.

f x x yb g b g ,    or  f x x y x yb g b g ,

 f y (by def. of norm of a functional for which x  1)

In the case y  0  or y  0  then f x xb g b g ,0 0   x

and so f
f x

x
x 

RS|
T|

UV|
W|
sup :

b g
0 0

 f y , since f x x yb g 

  
f x

x
y

b g

If y  0 , then f f x x sup :b gm r1

    
F
HG

I
KJf y

y    on setting x y
y

   or     x  1

    
F
HG

I
KJ 

y
y

y
y

x y, ,1 b g

            
1 2

y
y y

 f y

so f y  and f y f y  

Theorem 15 :   The mapping  : *H H  defined by  y f yb g   where f x x yy b g b g ,  for every

x H  is an additive, one-to-one onto isometry but not linear..

Proof :  (i) we have for y y H1 2,  ,  y y f y y1 2 1 2
  b g

Hence for every x H , we get

f x x y yy y1 2 1 2  b g b g,

   x y x y, ,1 2b g b g
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   f x f xy y1 2
b g b g

Hence f f f y y y yy y y y1 2 1 2 1 2 1 2        b g b g b g
Hence   is an additive.

(ii)    is one-one :  Let y y H1 2,  . Then  y f y1 1
b g   and  y f y2 2

b g  .

Then  y y f fy y1 2 1 2
b g b g  

 f x f xy y1 2
b g b g  x H

 y x y x1 2, ,b g b g
  y y x1 2 0,b g  x H

Choose x y y 1 2 , then we get y y y y y y y y1 2 1 2 1 2
2

1 20 0        ,b g 0

Thus   y y y y1 2 1 2b g b g     is one-one.

(iii)   is onto :  Let  f H * , then   y H  s.t. f x x yb g b g ,  since f x x yy b g b g , , therefore

we get f f y , so that  y f fyb g   . Hence for f H *    a pre-image y  in H . Thus   is onto.

(iv)   is isometry :   Let y y H1 2,  . Then

 y y f f f fy y y y1 2 1 2 1 2
b g b g     

    f y yy y1 2 1 2

Hence   is isometry..

(v)   is not linear :   Let y H  and   be any scalar. Then

     y f x y x y f x yy yb g b g b g b g b g    , ,

Thus the mapping is not linear. Such a mapping is called conjugate linear.

We shall refer to the above mapping   as the natural mapping between H  and H * .

6.8 Reflexivity of Hilbert Space
Theorem 16 :   Every Hilbert space is reflexive.

Proof :   We prove that the natural inbedding on H  to H **  is an isometric isomorphism.

Suppose that x  be any fixed element of H  and Fx  be a scalar valued function defined on H *  by

F f f xx b g b g   f H * . Then Fx  will be a functional on H *  i.e. F Hx  ** . Thus each vector

x H  gives rise to a functional Fx  in H **. Fx  is called the functional on H *  induced by the vector x .
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Let T H H: **  defined byT x F x Hxb g    .

From the theory of Banach spaces T  is an isometric isomorphism of H  into H ** . We shall
show that T  is a mapping of H  onto H ** .

Let T1  be a mapping from H  into H *  s.t. T x f x1b g   where f y y xx b g b g ,  y H  and T2  be

a mapping from H *  into H **  defined by T f Fx f x2 b g  , where F f f ff xx
b g b g ,  for f H * . Then

T T2 1  is a composition of T2  and T1  from H  to H ** . By Theorem 15, T1  and T2  are one-one and onto.

Hence T T2 1  is the same as the natural imbedding T . For this we prove that f x T T x x Hb g b g  2 1

Now T T x T T x T f F T xx f x2 1 2 1 2b g b gc h b g b g    . In order to show that T T T2 1  , we should

prove that F Fx f x
  for this let f H * . Then f f y  where f  corresponds to y  in the representation

F y f f f f x yf x y nx
b g b g d i b g  , , , .

But x y f x f x F fy x,b g b g b g b g   . Thus we get F f F ff xx
b g b g  for every f H * . Hence

the mappings Ffn
 and Fx  are equal i.e., T T T2 1   and so T  is a mapping of H  onto H **  so that H

is reflexive.

From the above, we get

F F F F f f x yx y f f y xx y
, , , ,d i e j d i b g  

Hence f  is an isometric isomorphism of H  onto H *  so that H  and H **  are conjugate.

Self-Learning Exercise - III

1. Define a functional on a Hilbert space.

2. State Riesz representation theorem.

3. Every Hilbert space is reflexive T Fb g
4. Riesz representation theorem is valid in an inner product space which is not complete T Fb g .

6.9 Summary
In this unit you studied orthogonality and functionals in Hilbert spaces. Orthonormal sets, complete

orthonormal sets and reflexivity a Hilbert spaces were defined and important results connected with them
were also proved.

6.10 Answers to Self-Learning Exercises
Exercise - I

4. H 5.  6. 0l q 7. closed linear 8. M M 

9. M
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Exercise - II

4. F 5. T 7 (a) x  0 (b)  (i) complete (ii) 0

7. (c) 2 (d) complete orthonormal

Exercise - III

3. T 4. F

6.11 Exercises

1. If M be a non-empty subset of a Hilbert space H , then show that M   is the closure of the set

of all linear combinations of vectors in M  i.e. M M  .

2. Prove that in the Hilbert space l2 , the set e e en1 2, ,... , ,...l q  where en  is a sequence with 1 in the
nth place and 0’s elsewhere is an orthonormal set.

3. State and prove Bessel’s inequality in Hilbert spaces.

4. Prove that a Hilbert space H  is a separable if every orthonormal set in H  is countable.

5. Prove that an orthonormal set in a Hilbert space is linearly independent.

6. Prove that every orthonormal set in a Hilbert space is contained in some complete orthonormal
set.

7. Show that every non-zero Hilbert space contains a complete orthonormal set.

8. If H  is a Hilbert space, then prove that H *  is also a Hilbert space with the inner product defined

by f f y xx y, ,d i b g .

9. Prove that conjugate space H **  of H *  is a Hilber space with some inner product defined on it.

���
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Unit - 7
Operators on Hilbert Spaces

Structure of the Unit
7.1 Objectives

7.2 Introduction

7.3 Adjoint Operator

7.3.1 Definition

7.3.2 Remark

7.3.3 Important Theorem

7.3.4 Properties of Adjoint Operator

7.4 Self-Adjoint Operator

7.4.1 Definition

7.4.2 Properties of Self-Adjoint Operator

7.5 Positive Operator

7.5.1 Definition

7.6 Normal Operator

7.6.1 Definition

7.6.2 Properties of Normal Operators

7.7 Unitary Operator

7.7.1 Definition 1

7.7.2 Definition 2

7.7.3 Properties of Unitary Operators

7.8 Summary

7.9 Answers to Self-Learning Exercise

7.10 Exercises

7.1 Objectives
The objective of thus unit is to study various operators such as adjoint, self-adjoint, positive,

normal and unitary operators on Hilbert spaces. Various properties and results on these operators will also
be proved.

7.2 Introduction
In this unit, we shall introduce the adjoint of a bounded linear operator on a Hilbert space. With the

help of the adjoint of a bounded linear operator, we shall define three important cases of operators called
self-adjoint, normal and unitary operators. Besides this, we shall discuss in details the properties of
these operators.
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7.3 Adjoint Operator
7.3.1 Definition : The operator T* defined on H  s.t.

T x y x T y, , *b g b g   x y H,

is called the adjoint of T .

7.3.2 Remark :  Though we are using the same symbol for the conjugate and adjoint operators, one
should note that the conjugate operator is defined on H *  and operates on functionals in H * , whereas if
T *  is adjoint of the operator T , then it is an operator on H  and operates on vectors in H . However if
we identify H  and H *  under the natural correspondence, then the adjoint of T  and conjugate of T
coincide.

7.3.3 Important Theorems

Theorem 1 :  Let  T  be an operator on a Hilbert space H , then    a unique linear operator T *  on
H  s.t.

T x y x T y x y H, , * ,b g b g  

obviously T *  is the adjoint operator H .

Proof :   First we prove that T *   exists.

Let y  be a vector in H  and f y  its corresponding functional in H * . Define T *  on H *  into H *
by

T f fy z* 

Under the natural correspondence between H  and H * , let z H  corresponding to f Hz  * .
Thus starting with a vector y  in H , we arrive at the vector z  in H  in the following manner

y f T f f zy y z   *

where T H H* : * *  and y f y  and z f z  are on H  to H *  under the natural correspondence.
The product of the above there mappings exists and it is denoted by T * .

Thus T *  is a mapping on H  into H  s.t. T y z*  .

We define this T *  to be adjoint of T .

Now we prove (1). for x H  and from the definition of the conjugate T *  of an operater T ,

T f x f T xy y*d i b g ...(3)

By Riesz representation theorem, y f y  so that we get

f Tx Tx yy b g b g , ...(4)

Since T *  is defined on H * , we have

T f x f x x zy z* ,d i b g b g  ...(5)
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But according to our definition

T y z*  ...(6)

From (3) and (4), we get

T f x Tx yy* ,d i b g ...(7)

and from (5) and (6), we get

T f x x T yy* , *d i b g ...(8)

From (7) and (8), we get

Tx y x T y x y H, , * ,b g b g  

Remark :  The relation Tx y x T y, , *b g b g  can also be written as T x y x Ty* , ,b g b g

T x y y T x Ty x x Ty* , , * , ,b g b g b g b g  

Hence T x y x Ty* , ,b g b g    x y H,

Theorem 2 :   Let H  be a given Hilbert space and T *  be adjoint of the operater T . Then T *  is a
bounded linear transformation and T  determines T *  uniquely..

Proof :   First we prove that T *  is linear. Let vectors y y H1 2,   and  ,  are scalars. Then for any
vector x H , we have

x T y y Tx y y, * ,   1 2 1 2  b gc h b g
         Tx y Tx y, , 1 2b g b g
          Tx y Tx y, ,1 2b g b g
          x T y x T y, * , *1 2b g b g
         x T y x T y, * , * 1 2b g b g
           x T y T y x H, * * 1 2b g

 T y y T y T y T* * * *   1 2 1 2   b g  is linear..

Next we prove that T *  is bounded.

For any x H , let us consider,,

T x T x T x* * , *2  b g
 T x T x* , *b g ( T * 2 0 )

 T T x x* ,b g (by (1))
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 T T x x* (by Schwarz inequality)

 T T x x*

or T x T x*  as T x T x*   x H

or sup
*

:
T x

x
x T

RST
UVW
0

 T *  is bounded since T  is bounded

Lastly we show that T *  is unique. Let us assume that T *  is not unique. Let T1  be another
mapping of H  into H  with the property (1). Then  x y H,

Tx y x T y, ,b g b g 1

and Tx y x T y, , *b g b g

 x T y x T y, , *1b g b g  x y H,

 x T y T y, *1 0 b g or x T T y, *1 0 b gc h  x H

 T T y1 0 *b g  y H

 T y T y1  *  y H

 T T1  *

Remark :   Using (1) we note that zero and identity operators are adjoint operators since  x y H, , we
have

(i) x y x y y x x y, * , , , ,0 0 0 0 0 0b g b g b g b g b g    

So from the uniqueness of the adjoint we get 0 0* 

(ii) x I y I x y x y x I y, * , , ,b g b g b g b g  

So from uniqueness of the adjoint operator, I I* 

7.3.4 Properties of Adjoint Operator :

Theorem 3 :  Let H  be a Hilbert space and  Hb g  be the complex Banach space of all bounded linear

transformations on H  into H . Then the adjoint operation T T * on  Hb g , where T  is a bounded
linear operator on H , has the following properties :

(a) T S T S  b g* * * S  be another bounded linear operator on H

(b)  T Tb g* * ,   being a scalar
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(c) TS S Tb g* * *

(d) T T*** 

(e) T T* 

(f) T T T*  2

(g) T T* *b g c h 1 1 if T  is invertible i.e. T  is a non-singular operator on T .

Proof :  (a)  We have  x y H,

x T S y T S x y, * ,  b gc h b gc h
              Tx Sx y Tx y Sx y, , ,b g b g b g
            x T y x S y, * , *b g b g
              x T y S y x T S y, * * , * *b g b gc h

 T S T S  b g* * * (by uniqueness of adjoint operator).

(b)   x y H, , we have

x T y T x y, * , b gc h b gc h

          Tx y,b g
          x T y, *b g
         x T y, * b gc h

  T Tb g* * (by uniqueness property).

(c)   x y H, , we have

x TS y TS x y T Sx y, * , ,b gc h b gc h b gc h 

        Sx T y x S T y, * , * *b g b g
     TS S Tb g* * *

(d)   x y H, , we have

x T y x T y T x y, ** , * * * ,b g b gc h b g 

      y T x T y x, * ,b g b g
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      x Ty,b g
     T T** 

(e)   x H , we have

T x T x T x TT x x* * , * * ,2  b g b g  which is a real number and  0

 TT x x* ,b g
 T T x x* (by Schwarz inequality)

 T T x x*

or T x T x*  as T x*  0

 sup
*

:
T x

x
x T

RST
UVW
0

or T T*  ...(9)

On replacing T  by T * , (9) gives

T T** *

or T T * by (d) ...(10)

Hence (9) and (10)  T T*

(f)  we have

T T T Tx x* sup * :  1m r

           sup * :T Tx xb gn s1

           sup * :T Tx x 1m r
           T Tx x* sup : 1m r
           T T T* 2 (by (e))

 T T T*  2 ...(11)

Also Tx Tx Tx T Tx x T Tx x2   , * , * ,b g b g    x H

          T Tx x* (by Schwarz inequality)

          T T x x* as Tx T x
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or sup : *
Tx
x

x T T
2

2 0
R
S|
T|

U
V|
W|


or T T T2  * ...(12)

Thus (11) and (12)  T T T* 2

(g)  If T  is a non-singular operators on H  and T 1  is inverse of  T, then T 1  is also an operator
on H . Also

TT I T T  1 1

 TT I T T  1 1c h c h* * *

 T T I T T  1 1c h c h* * * *

 T *  is invertible and so non-singular and also inverse of T *  is T 1c h* .

Hence T T* *b g c h 1 1

7.4 Self-Adjoint Operator
7.4.1 Definition :  A linear operater T  on a Hilbert space H  is known as self-adjoint or Hermition if
T T*   or in other words, if T  is self-adjoint

then Tx y x T y x Ty, , * ,b g b g b g 

Zero operater and Identity operator are examples of self-adjoint operater.

7.4.2 Properties of Self-Adjoint Operator

Theorem 4 :   An operator T  on H  is self-adjoint, then Tx y x Ty, ,b g b g   x y H,  and conversly..

Proof :   If T *  is an adjoint operator of T  on H , then by definition we have

Tx y x T y, , *b g b g  x y H,

If T  is self-adjoint, there T T * . Therefore

Tx y x T y x Ty, , * ,b g b g b g   x y H,

conversly let us asume that

Tx y x Ty, ,b g b g  x y H,

But Tx y x T y, , *b g b g

So x Ty x T y x T T y, , * , *b g b g b gc h    0  x y H,
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   x  0    T T y *b g 0  y H

 T T T *  is self adjoint.

Theorem 5 :  Let T  be a self-adjoint operator, then T T * and T T*  are self-adjoint.

Proof :   We have

T T T T T T    * * * ** *b g
     T T *

 T T *  is self-adjoint

Also T T T T T T T T* * * * * * *b g b g    is self-adjoint

Theorem 6 :  If T  is an arbitrary operator on Hilbert space H , then T  0  iff Tx y,b g  0

 x y H, .

Proof :  If T  0 , then Tx y x y, ,b g b g 0 0   x y H, .

Conversly let Tx y,b g  0   x y H, .

Taking y Tx , we get

Tx Tx,b g  0  x H

 Tx 2 0  x H

 Tx  0  x H

 T  0

Theorem 7 :  If T  is an operator on a Hilbert space H , then Tx x,b g  0  x H  iff T  0 .

Proof :   Let T  0 , then Tx x x x x, , ,b g b g b g  0 0 0   x H .

Conversely, let Tx x,b g  0   x H .

If x y H,   and  ,  be any scalars, then we have

T x y x y Tx Ty x y           b gc h b g, ,

           Tx x y Ty x y, ,b g b g
           Tx x y Ty x y, ,b g b g
             Tx x Tx y Ty x Ty y, , , ,b g b g b g b g
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           Tx x Tx y Ty x Ty y, , , ,b g b g b g b g

          2 2Tx x Tx y Ty x Ty y, , , ,b g b g b g b g

 T x y x y Tx x Ty y Tx y Ty x             b gc h b g b g b g b g, , , , ,2 2 ...(13)

Since Tx x,b g  0   x H , therefore left-hand  side of (13) is zero. Hence we get

  Tx y Ty x, ,b g b g  0  x y H,  and  ,  are any scalars. ...(14)

Taking    1 and   i ,   1  succesively in (14) we get

Tx y Ty x, ,b g b g  0 ...(15)

and i Tx y i Ty x, ,b g b g  0

or Tx y Ty x, ,b g b g  0 ...(16)

Adding (15) and (16) we get

2 0Tx y,b g   x y H,

or Tx y,b g  0     x y H T, 0 (by Theorem 6)

Theorem 8 :   An operator T  on a complex Hilbert space H  is self-adjoint iff f Tx x,b g  is real
for all x .

Proof :   Let T  a self-adjoint operator on H  i.e., T T * . Then for all x H , we have

Tx x x T x x Tx Tx x, , * , ,b g b g b g b g  

Thus Tx x,b g  is equal to its own conjugate and is therefore real.

Now suppose that Tx x,b g  is real for every x H .

Since Tx x,b g  is real for all x H , therefore we have

Tx x Tx x x T x T x x, , , * * ,b g b g b g b g  

where T *  is adjoint of T  which exists for every x H .

So Tx x T x x, * ,b g b g  0  x H

 Tx T x x * ,b g 0  x H

 T T x x * ,b gc h 0  x H

 T T * 0 or T T T *  is self-adjoint
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Theorem 9 :  Let A be the set of all self-adjoint operators in  Hb g . Then A  is a closed linear subspace

of  Hb g  and therefore A is a real Banach space containing the identity transformation.

Proof :   First we note that A  is non-empty, since 0 is a self-adjoint operator..

Let T T A1 2,  . Then T T1 1*   and T T2 2* 

Suppose that  ,   be any two real numbes, Then

   T T T T1 2 1 2  b g b g b g* * *

               T T T T1 2 1 2* *

  T T A1 2  .

Hence A  is a real linear subspace of H .

Now we prove that A  is closed subset of the Banach space  Hb g ,

Let Tnl q  be a sequence of self-adjoint operators converging to T . Now

T T T T T T T Tn n n n      * * * *

       T T T T T Tn n n n* * *

      T T T Tn n0 b g*  T A T Tn n n  *b g
   2 T Tn  T T* c h
 0  as T Tn 

 T T T T   * *0

 T  is self-adjoint  T A .

 A  is a closed subspace of complete Banach space  Hb g .

 A  is also complete and hence is a real Banach space.

Also I I*   the identity operator I A

7.5 Positive Operators

Since Tx x,b g  is real for self-adjoint operators, therefore we can introduce the order relation
among them and define positive operator by considering the real values which the self-adjoint operator
take.

7.5.1 Definition :  A self-adjoint operator T  on H  is said to be positive if T  0  in the order
relation.

This means Tx x,b g  0   x H
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From the definition, we have the following  properties.

(a) The identity operator I  and the zero operator 0  are positive operators, since

I x x x x x, ,b g b g  2 0

and 0 0 0x x x, ,b g b g 

(b) For any arbitrary operators T  on H , TT *  and T T*  are positive operators since

TT *  and T T*  are self adjoint and

TT x x T x T x T x* , * , * *b g b g  2 0

7.6 Normal Operators
7.6.1 Definition :   An operator T  on a Hilbert space H  is known to be Normal if it commutes with its
adjoint i.e. if TT T T* *

From the defintiion it is obvious that

(a) Every self-adjoin operators is normal, since

T T TT T T  * * *

(b) Both zero and identity operators are normal operators.

(c) A normal operator is non-necessarily self-adjoint.

7.6.2 Properties of Normal Operators :

Theorem 10 :   If T1  and T2  are normal operators on H  with the property that either commutes with
adjoint of the other, then T T1 2  and T T1 2  are normal.

Proof :   Since T1  and T2  are normal, therefore

T T T T1 1 1 1* *  and T T T T2 2 2 2* * ...(17)

From hypothesis, we have

T T T T1 2 2 1* *  and T T T T2 1 1 2* * ...(18)

Now T T T T T T T T1 2 1 2 1 2 1 2    b g b g b g b g* * *

        T T T T T T T T1 1 1 2 2 1 2 2* * * *

        T T T T T T T T1 1 2 1 1 2 2 2* * * * (from (17) and (18))

        T T T T T T1 1 2 2 1 2* *b g b g
       T T T T1 2 1 2* *b g b g
       T T T T1 2 1 2b g b g*

 T T1 2b g  is normal.
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Also T T T T T T T T1 2 1 2 1 2 2 1b gb g b g b g* * *

           T T T T1 2 2 1* *b g
           T T T T1 2 2 1* *b g b g
           T T T T2 1 1 2* *b g b g
           T T T T2 1 1 2* *b g
           T T T T2 1 1 2* *b g
           T T T T2 1 1 2* *b g b g
           T T T T1 2 1 2b g b g*

 T T1 2   is normal

Theorem 11 :  An operator T  on a Hilbert space H  is normal iff f T x T x*    x H .

Proof :   Let T  is normal, Then

TT T T TT T T* * * *    0

         TT T T x x* * ,b gc h 0  x H

        TT x x T Tx x* , * ,b g b g
        T x T x Tx T x* , * , **b g b g
        T x T x Tx Tx* , * ,b g b g  x H

        T x Tx* 2 2

        T x Tx*  x H

Thoerem 12 :  If T  is a Normal Operator on H , then T T2 2

Proof :  We have

T x TTx2 

          T Txb g
          T Tx* b g  x H [ T  is normal   Tx T x *   x H ]

Hence T x T Tx2  * b g ...(19)
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Also T T x x2 2 1 sup :o t

        sup * :T Tx x 1m r

        T T T* 2

which completes the proof of the theorem.

Theorem 13 :  An arbitrary operator T  on a Hilbert space H  can be uniquely expressed as T T i T 1 2

and T T i T*  1 2 , where T1  and T2  are self-adjoint operators.

Proof :  Let T *  be the adjoint of T . Define

T T T1
1
2

  *b g   and T i
T T2

1
2

  *b g ...(20)

Then we have

T T i T 1 2  and T T i T*  1 2

Again T T T T T T T1
1
2

1
2

1
2

* *
*

* * * ** L
NM

O
QP    b g b g b g

      
1
2

T T*b g  T T** b g

        
1
2 1 1T T T T*b g   is self-adjoint.

Also T
i

T T
i

T T2
1
2

1
2

* *
*

* 
L
NM

O
QP   b g b g

        
1
2 2 2i

T T T T*b g  is self-adjoint.

Thus an arbitrary operator T  can be expressed in the form (20) where T1  and T2  are self-adjoint
operators. Next we show that this type of expression is unique. Let the expression is non-unique i.e. let
T S i S 1 2  where S1  and S2  and self-adjoint operators on H .

Then T S i S S i S S i S* * * * * *     1 2 1 2 1 2b g

Thus S T T T1 1
1
2

  *b g   and S
i

T T T2 2
1
2

  *b g

Hence the expression (20) for T H b g  is unique.

Remark :   If T  is expressed as T i T1 2  and T T i T*  1 2  where T1  and T2  are self-adjoint operators
on H  then T1  is called the real part of T  and T2  is called the imaginary part of T .
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Theorem 14 :   If T  is an operator on a Hilbert space H , then T  is normal iff its real and imaginary
parts commute.

Proof :   Let T T i T 1 2  where T1  and T2  are self-adjoint operators on H .

We have T T i T T i T T i T T i T* * * * * *       1 2 1 2 1 2 1 2b g
Now TT T i T T i T*   1 2 1 2b g b g

          T i T T T T T1
2

2 1 1 2 2
2b g ...(22)

and T T T i T T i T*   1 2 1 2b g b g
            T i T T T T T1

2
1 2 2 1 2

2b g ...(23)

If T  is normal, then TT T T* *

(22) and (23)     T i T T T T T1
2

2 1 1 2 2
2b g

             T i T T T T T1
2

1 2 2 1 2
2b g

 2 01 2 2 1i T T T T b g
 T T T T1 2 2 1   Real and imaginary parts commute

Conversely if T T T T1 2 2 1 , then (22) and (23) gives

T T T T T* *   is normal.

Theorem 15 :   Show that the set of all normal operators on a Hilbert space H  is a closed subset of
 Hb g  which contains the set of all self-adjoint operators and is closed under scalar multiplication.

Proof :   Let S  be the set of all normal operators on a Hilbert space H . We first show that S  is closed
subset of  Hb g . Let T  be any limit point of S . We have to prove that T S . Since T  is a limit point of

S , therefore   a sequence Tnl q  of distinct points of S  s.t. T Tn   as n   .

Now T T T T T Tn n n* * *     b g 0  as n  

 T Tn * *   as  n   ...(24)

Also T T T T TT T T T T T Tn n n n* * * * * *    

             TT T T T T T Tn n n n* * * *

               TT T T T T T T T T T Tn n n n n n n n* * * * * *

               TT T T T T T T T T T Tn n n n n n n n* * * * * *

             TT T T T T T Tn n n n* * * * ...(25)
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 T S Tn n b  is normal  T T T Tn n n n* * g
Since T Tn   and T Tn * * , the right hand side of (25) tends to zero which implies that

TT T T TT T T* * * *   0

     T  is normal  T S

This prove that S  is a closed subset of  Hb g .

Again every self-adjoint operator is normal. Therefore S  is a closed subset of  Hb g  containing
the set of all self-adjoint operators.

Finally we prove that S  is closed for scalar multiplication i.e. if   is a scalar and T S , then
 T S  or if T  is normal then  T  is also normal for any scalar  .

Since T  is normal, therefore TT T T* *

Now    T T T Tb g b g b g b g* *

          T T *

           T T T T* *b g b g
          T Tb g b g*

  T  is normal.

which complete the proof of the theorem.

7.7 Unitary Operators
7.7.1 Definition 1 :  An operator U  on a Hilbert space H  is said to be unitary if UU U U I* * 

From the definition it is obvious that

(i) If U  is unitary, then it is normal.

(ii) U U*  1

7.2.2 Definition 2 :   An operator T  on H  is said to be Isometric if Tx Ty x y     x y H,

Since T  is linear, the condition is equivalent to Tx x  x H

Now we prove a result contained in

Theorem 16 :  If T  is an operator on a Hilbert space H  then the following conditions are equivalent :

(a) T T I* 

(b) Tx Ty x y, ,b g b g    x y H,

(c) T x x   x H
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Proof : (a)   (b) :  Given that  T T I* 

Now Tx Ty x T Ty x Iy x y, , * , ,b g b g b g b g       x y H,

(b)   (c) :  Given that Tx Ty x y, ,b g b g   x y H,

Taking x y , we get

Tx Tx x x, ,b g b g

 Tx x2 2

 Tx x  x H

(c)   (a) :  By (c) we have

Tx x  x H

Now Tx x

 Tx x2 2

 Tx Tx x x, ,b g b g  x H

 Tx T x x x, ** ,b g b g

 T Tx x I x x* , ,b g b g  x H  T T** b g

 T T I x x* , b gc h 0  x H

 T T I* 

7.7.3 Properties of Unitary Operator

Theorem 17 :  An operator T  on a Hilbert space H  is unitary iff it is an isometric isomorphism of H
onto itself.

Proof :  Let T  be unitary. Then T T TT I* *  .

Therefore T  is invertible and so T  one-one and onto.

Also Tx Tx Tx T Tx x2  , * ,b g b g
          Ix x x x, ,b g b g

          x 2

 Tx x  x H
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Thus T  preserves the norm and so T  is an isometric isomorphism of H  onto itself.

Conversely suppose that T  be an isometric isomorphism of H  onto itself. Then T  is one-one
and onto. Therefore T  is invertible i.e. T 1  exists.

 T T T T I  1 1 ...(26)

Again T  preserves the norm, therefore

Tx x  x H

 T T I* 

 T T T I T*b g  1 1

 T T T T T I T* *    1 1 1c h

or T T T T TT I* *    1 1

In a similar manner

T T T I*  1

Hence T T TT I T* *    is unitary..

Remark :  If T  is an unitary operator on H , then T  1.

Also Tx x  so that

Tx Tx x x x   sup : sup :1 1m r m r
Self-Learning Exercise

In the following questions write T  for true and F  for false :

1. The conjugate and adjoint operator operate, on functionals in H T F*b g .

2. If T  be an operater on a Hilbert space H , then

Tx y x T y, , *b g b g   x y H, .

where T *  is the adjoint operator of T T F.b g .

3. TT T*  2  T Fb g

4. O  and I  are self-adjoint operators T Fb g
5. A normal operator is always a sefl-adjoint T Fb g
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6. If N1  and N2  are normal operators then N N1 2  is also a normal operator T Fb g
7. If N1  and N2  are normal operators then N1 N2  is a normal operator T Fb g .

8. If T1  and T2  are self-adjoint operators, then their product T T1 2  is self-adjoint T Fb g .

9. If T  is an operator on H  s.t. Tx x,b g  0  x H  then T  0   T Fb g .

10. If T  is a Normal operator and   is a scalar then  T  is normal T Fb g .

11. If H  be an inner product space which is not complete, then H *  necessarity exists T Fb g .

Fill in the blanks :

12. Identity is an .................... operator

13. STb g*   ....................

14. If T  is a positive operator on Hilbert space H , then I T  is ....................

7.8 Summary

In this unit you studied different type of operators on Hilbert spaces and various properties
associated with these operators.

7.9 Answers to Self-Learning Exercise

1. F 2. T 3. T 4. T

5. F 6. F 7. F 8. F

9. T 10. T 11. F

12. Self-adjoint 13. T S* * 14. Non-singular

7.10 Exercises

1. Define an adjoint operator on a Hilbert space H  and give an example.

2. Show that the adjoint operation is one-one onto as a mapping  Hb g  into itself.

3. Prove that every scalar multiple of self-adjoint operator is also normal.

4. Let H  be a Hilbert space and T S,  be the set of bounded operators on H . Prove that if

(i) S  and T  are self-adjoint and ST TS , then ST  is self-adjoint.

(ii) S  and T  are normal and ST T S* * , then ST  is normal.

5. If T  is an arbitrary operator on a Hilbert space H  and  ,  are scalars s.t.   , then show
that  T T *  is normal.
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6. If T  is a normal operator on a Hilbert space H  and   is a scalar, then show that T I   is
normal.

7. Show that an operator T  on a Hilbert space H  is unitary iff T eil qc h  is a complete orthonormal

set whenever eil q  is.

8. Show that the set of unitary operators on a Hilbert space H , forms a multiplicative group.

9. If T  is a linear operator on a Hilbert space H , then T  is unitary iff adjoint of T  exists and
TT T T I* *  .

10. If T  is self-adjoint, any operator S  unitarily equivalent to T  is also self-adjoint.

11. Let T  be normal and A  and B  be self-adjoint operators s.t. T A i B  . Then prove that
AB BA .

���
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Unit - 8
Projections on a Hilbert Space and Spectral Theory

Structure of the Unit
8.1 Objectives

8.2 Introduction

8.3 Projections on a Hilbert Space

8.3.1 Definition

8.3.2 Important Results

8.4 Invariance and Reducilility

8.4.1 Definition

8.4.2 Properties

8.5 Orthogonal Projection

8.5.1 Definition

8.5.2 Important Result

8.6 Eigenvalues and Eigenvectors

8.6.1 Definition of Eigenvalues and Eigenvectors

8.6.2 Properties of Eigenvalues and Eigenvectors

8.7 Existence of Eigenvalues

8.8 Spectral Theorem

8.9 Summary

8.10 Answers to Self Learning Exercise

8.11 Exercises

8.1 Objectives

In this unit first we study projection on a Hilbert space H  and properties of the projection

operator on H . We also study spectral theory of operators on finite dimensional Hilbert spaces.

8.2 Introduction

The aim of this unit is to study the projection on a Hilbert space. Invariance, reducilility and

orthogonal projections will also be studied. Next we shall study to some extent in detail the relation

between linear operators on a finite dimensional Hilbert space and matrices as a preliminary step towards

the study of spectral theory of operators on finit dimensional Hilbert spaces. After a brief study of the

spectrum of an operator and its properties, we shall establish the spectral theorem for normal operators on

a finite dimensional Hilbert space and indicate the spectral theorems for self-adjoint, positive and unitary

operators.
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8.3 Projections

We have already defined a projection on a Banach space B  and Hilbert space H  i.e. it is an
idempotent linear operator P  on B  s.t. it is a continuous linear transformation from B  (or H ) into itself
with the property P P2  . It has also been shown that B  (or H )  M N  where

M Px x B :l q   and  N x B Px  :l 0 }

M  is called the range and N , the null space of P .

8.3.1 Definition :

Perpendicular Projection :  A projection P  on a Hilbert space H  is  known as a perpendicu-
lar projection on H  if the range M  and null space N  of P  are orthogonal i.e., M N . Thus by
projection P  on H  we mean a perpendicular projection on H .

8.3.2 Important Results :

Thoerem 1 :   If P  is a projection on a Hilbert space H  with range M  and null space N , then M N
iff P  is self adjoint, and in this case N M  .

Proof :  By definition we have P P2   and H M N    Let M N . Then we prove that P  is
self-adjoint. By projection theorem each vector z H  can be uniquely represented as z x y  , where
x M , y N  s.t.

Pz P x y x  b g  and Py  0

Since M N , we have x y,b g  0 ...(1)

Using (1), we get

Pz z x z x x y x x x y x x, , , , , ,b g b g b g b g b g b g      ...(2)

and P z z z Pz z x x y x x x y x x x* , , , , , , ,b g b g b g b g b g b g b g       ...(3)

(2) and (3)

 Pz z P z z, * ,b g b g  z H

 P P z z * ,b gc h 0  z H

 P P * 0

 P P P*   is self-adjoint.

Conversly suppose that P  is self-adjoint i.e., P P*  .

Now, let x M  and y N . Then

x y Px y, ,b g b g ( P  being projection on H  and x M Px x   )

          x P y x Py, * ,b g b g
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          x,b 0 ) = 0  as y N    Py 0

 x y M N,b g   0

Lastly we prove that N M   where M N

For any x N  and N M x M x M N M        .

Taking N  to be proper closed linear subspace of Hilbert space M   i.e. N M  . So   a non-

zero vector z M0 
  s.t. z N0  . Also z M0  .

 z M0   and z N z M N H z H0 0 0      

 z0  0  since only zero vector is orthogonal to whole space H .

This contradicts that z0  is a non zero vector. Hence N  cannot be proper subset of M   and the
only possibility is that N M  .

Theorem 2 :  If P  is the projection on a closed linear subspace M  of a Hilbert space H , then

(i) P  is the projection on M  of H I P   is the projection on M 

(ii) x M Px x Px x    

Proof : (i) P  is the projection on H P P 2  and P P*  ...(4)

Therefore  I P I P I P    b g* * *

and I P I P I P I IP PI P I P P P IP            b g b gb g2 2 2

 I Pb g  is also a projection on H .

Now we prove that if P  is defined on M , then I Pb g  is defined on M  . For this let N  be the

range of I Pb g . Then

x N I P x x    b g  or x Px x Px    0

 x  Null space of P x M    as M   being coincident with null space

 N M 

Also x M Px x Px x I P x x         0 b g
  x  range of I P x N  b g

 M N  ...(6)

(5) and (6)

 N M 
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 If P  is projection on a closed linear subspace M  of H , then I Pb g  is projection on

M  .

Conversly : If I Pb g  is a projection on M   then I I P P  b g  is the projection on

M M M   c h , since M is closed.

(ii) If Px x , then Px  is the range of P i.e. x range of P  i.e. x M .

Conversly, if x M , then assuming that Px y , we prove that y x .

Now Px y P Px Py P x Py Px Py      b g 2  P P2 c h
  P x yb g 0   x yb g  null space of P

   x y Mb g , as M   is the null space of P

  x y z sayb g, where z M 

Now y Px y   range of P i.e. M

Thus x y z   where y M  and z M 

Since x M , we can write x x 0

Since H M M   , we have z 0 so that x y

Again If Px x Px x  

Conversly if Px x , then we have

x Px I P x2 2
  b g  where Px M  and I P x M  b g

as such Px  and I P xb g  are orthogonal vecotrs.

Using Phythagorean theorem, we get

x Px I P x2 2 2
  b g

  x I P x2 2b g

  I P xb g 2
0

  x Px 0  Px x

Thus x M Px x Px x    
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Theorem 3 : If  P  is a projecton on a  Hilbert space H, then prove that

(i) Px x x H   (ii) P I

(iii) P is a positive operator (iv) 0 P I

Proof : (i) We have Px I P x x2 2 2  b g

 Px x2 2  as   I P xb g 2
0

   Px x x H

(ii) by (i), Px x x H  ,

    Sup Px x x H:m r 1

  P x H,  being arbitrary..

(iii) For any vector x H , P being projection on H i.e. P P P P* , 2  and Px  range of P so that

P Px Pxb g
We have

Px P PPx x Px P x Px Px Px, , , ,*b g b g c h b g    2 0

 P 0  i.e. P is a positive operator

(iv) Since P and I P  are projections on H, therefore P0  and I P 0  or P I . Thus 0 P I .

8.4 Invariance and Reducibility
8.4.1 Definitions : Let T be a linear operater on a Hilbert space H, then  M is invariant under T if
x M Tx M    i.e. T M Mb g

Obviously M is invariant under Zero operator and every closed subspace is invariant under iden-
tity operater I.

Now M being a closed subspace of H, M itself is a Hilhert space so that T may be regarded as
operater on M also.

If T on H induces an operator TM  on M and s.t. T x T x x MM b g b g   ,

then TM  is known as restriction of T on M.

we know that H = H M M  

where M is a closed linear subspace of Hilbert space H. Then T is said to be reduced by M if both
M and M   are invasiant under T. We sometimes also say that M reduces T instead of saying that TT
is reduced by M.
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8.4.2 Properties

Theorem 4 : A closed linear subspace M of a Hilbert space H is invariant under an operater T M 

is invariant under T* .

Proof : Let M be invariant under T i.e. x M Tx M   .

Suppose that y M y   is orthogenal to every vector in M ....(7)

 y is orthogonal to Tx as Tx M  by (7)

 Tx y,b g 0

  x T y x M, ,*c h 0

 T y*  is orthogenal to every vector x M

  T y M*

 M is invariant under T*

Convessly, suppose that M   be invariant under T * .

Since M   is a closed linear subspace of H and is invariant under T * , therefore by the theorem
M M   is invariant under T T**  .

Theorem 5 : A closed linear subspace M of a Hilbert Sapce H reduces an operator T M is invariant
under both T and T*.

Proof : M reduces T  M  and M   both are invariant under T. But M M   is invariant under T*.T*.

Hence M is invariant both under T and T*.

Conversly, If M is invariant under both T and T*, then M is invariant under T and M   is invariant under T T** 

  Both M and M   are invariant under T.T.

  M reduces T .

Theorem 6 : If P is the projection on a closed linear subspace M of a Hilbert space H, then

(i) M is invariant under an operator TTP = PTP

(ii) M reduces an operator T   TP = PT

Proof (i) Let M be invariant under T and x be an arbtrary vector of H. Then Px M  (range of P)

 TPx M M, is invariant under T..

Since P is a projection and M is the range, therefore

TPx M P  maps TPx  into itself.

Hence PTPx TPx x H PTP TP    

Conversly : Let PTP = TP
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Since P is a projection with range M and an x M , therefore Px x TPx Tx  

Using hypothens we have PTPx TPx Tx 

Since P maps elements of M into the same element P TPx TPxb g  means TPx M Tx M   . Hence
x M Tx M   ,  therefore M is invariant under T..

(ii) M reduces T   M is invariant under both T and T *

 TP PTP  and T P PT P* *   by case (i)

 TP PTP  and T P PT P* * * *b g b g

 TP PTP  and P T P T P* ** * ** *

 TP PTP and PT PTP  T T and P P** * b g
 TP PT

Conversly : Suppose that TP PT PTP PPT P T PT    2     P P2 c h
Also TPP PTP TP PTP TP PTP    2

TP PT PTP PT    and TP PTP

 M  reduces T

8.5 Orthogeral Projection
8.5.1 Definition : Two perpendicular projections P and Q on a Hilbert space H are known as
orthogonal if PQ = O. In other words P and Q and Q are orthogoral iff their ranges M and N are
orthogenal

8.5.2 Important Result :

Theorem : If P and Q are projections on closed linear subspaces M and N of a Hilbert space H, then
M N PQ O QP     0

Proof : P and Q are projections on H   P P Q Q* , *

Also O O*  and I I* .

       PQ O PQ O Q P O QPb g* * * * * 0

Now we prove that M N PQ O  

For any vector y N  and M N y   is orthogonal to every vector in M

i.e. y N y M N M     

and for any vector z H  and Q  is projection on H

 Qz N  (the range of Q) whereas N M 
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  Qz M  (the null space of P)

 P Qzb g 0    PQz O z H

 PQ 0

Conversly : If PQ = O and x M y N , , then

Px x  (  M being range of P) and Q y y  (N is range of Q)

    x y Px Qy x P Qy x PQy P P, , , * , *b g b g b g b gb g

 x Oy x, ,b g b 0) = 0 where x M y N ,

 M N  i.e. M and N are orthogonal

8.6 Eigenvalue and Eigenvector

8.6.1 Definition : Let T be an operator on a Hilbert space H. Then a scalar   is called the eignvalue
(or characteristic or proper or latent or spectral value) of T if there exists a non-zero vector x H  s.t.
Tx x

It   is an eigenvalue of T, then the non zero vector x H  s.t. Tx x  is called the eignvector
(characteristic or proper or latent or spectral vector) of T.

Each eigenvalue has one or more eigenvector whereas each eigenvector corresponds one
eigenvalue. If H has no non-zero vectors, then T cannot have any eigenvector and hence the whole theory
reduces to triviality. We therefore develop the spectral theory on the assumption that H {0}.

The set of all eigenvalues of T is known as the spetrum of T and denoted by  Tb g .

8.6.2 Properties of eigenvalue and eigenvector

From the definition of eigenvalue and eigenvector, we have the following properties:

Theorem 8 : If x is an eigenvector of T corresponding to eigenvalue  , and   is a non-zero scalar, then
  is also an eigenvector of T corresponding to same eigenvalue.

Proof : Since x  is an eigenvector of T corresponding to eigenvalue   therefore x 0  and Tx x .

If   0 then x 0 . Also TT     x Tx x xb g b g  

Hence x is also eigenvector of T coresponding to same eigenvalue  .

This property tells us that corresponding to a single eigenvalue there may correspond more than
one eigenvector.

Theorem 9 : If x is an eigenvector of  T, then x cannot correspond more than one eigenvalue of
T.

Proof : If possible, let 1  and  2 he two distinct eigenvalues of T for eigenvector x. Then Tx x1  and

Tx x 2 . Hence      1 2 1 2 1 20 0x x x      b g  x  0b g    1 2 .
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Theorem 10 : Let   be an eigenvalue of an operator T on a Hilbert space. If M  is the set consisting of

all eigenvectors of T corresponding to the eigenvalue   and the zero vector 0, then M  is a non-zero
closed linear subspace of  H  invariant under T.

Proof : By def. x M   iff Tx x ...(8)

By hypothens 0M  and 0 vector also satisfies (8).

Therefore M x H Tx x   :l q
   x H T I x: b gm r0

Again if x y M,    and  ,  are scalars, then

Tx x  and Ty y . We have

T x y T x Ty y     b g b g b g
  Tx Ty

    x y

   x yb g
    x y M

 M  is a linear subspace of  H.

Also T and I are continuous, M  is the null space of the continuus transformation T I . Hence

M  is closed.

Further let x M 

Since M  is a linear subspace of  H, therefore x M x Tx M M        is invariant under
T.

The closed subspace M  is called the eignspace of T corresponding to the eigenvalue  .

Theorem 11 : If T is a normal operator on a Hilert space H, then x is an eigenvector of  T with eigen-
value   iff x  is an eigenvector of  T* with   as eigenvalue.

Proof : Let T is a normal operator on  H. Then TT*=T*T. Now T I  is also normal, therefore

T I x T I x x H     b g b g*
Also adjoint operation is conjugate linear, therefore

T I T I T I      b g* * * *

From the above two relations we get
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Tx x T x x x H     *

Hence Tx x  0  iff T x x*   0

Thus if x  is an eigenvector of  T with eigenvalue   iff   is an eigenvector of  T* with eigenvalue  .

Theorem 12 : If T is a normal operator on a Hibert space H then each eigenspace of T reduces T.

Proof : Let M  be the eigenspace of T corresponding to the eigenvalue  . To prove that M  reduces

T. We have to show that M  is invariant under both T and T*.

We know that M  is invariant under T (see Theorem 10). Let x M  . Then

Tx x T x x   * . Since M is a subspace,   x M  whenever x M  . Hence

x M T x x M    * . Hence M  is invariant under T * . Thus M  reduces T.T.

Theorem 13 : If T is normal operator on a Hilbert space H, then eigenspaces of T are pairwise orthogonal.

Proof : Let Mi  and M j  i jb g  be eigenspaces of an operator T on Hilbert space H corresponding to

distinct eigenvalues  i  and  j . Let x Mi i  and x Mj j  so that

Tx xi i i  and Tx xj j j

Now  i i j i i jx x x x, ,d i d i

 Tx xi j,d i

 x T xi j, *d i

 x xi j j,d i

  j i jx x,d i

   i j i jx xd id i, 0

 x xi j,d i 0   i j

 x xi j  x Mi i  and x j j

 M Mi j   ( i  and j  are arbitrary)

8.7 Existence of Eigenvalues
An immediate question that arises before us is :

Does an arbitrary operator T on a Hilbert space H necessarily have an eigenvalue? We shall give an
example to show that it is not necessary for an arbitrary operator T on a Hilbert Space H to possess an
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eigenvalue.

Consider the Hilbert space l2  and the operator T or l2  defined by T x x x x1 2 1 20, ,... , , , ...l q l q

Let   be an eigenvalue of  T. Then   a non-zero vector y y y y 1 2 3, , , ....l q  in l s t2 . . Ty y .

Now Ty y T y y y y y y   1 2 3 1 2 3, , ,..... , , ,.....l q l q
 0 1 2 1 2 3, , , .... , , , ....y y y y yl q l q  

   y y y1 2 10, ,...

Now y  is a non-zero vector  y1 0 . Therefore  y1 0 0   . Then y y y2 1 1 0  
and this contradicts the fact that y is a non-zero vector. Thesefore T cannot have an eigenvalue.

But if the Hilbert space H is finite dimensional then T on H will have eigenvalues. It should be
recalled that if  H is finite dimensional, then every linear transformation on H is continuous and is therefore
an operator H. So in this case the set  Hb g is the collection of all linear transformation on H.

Theorem 14: An operator T on a finite-dimensional Hilbert space H is singular  there exists a non-
zero vector x  in H s.t. Tx  0 .

Proof : Let   a non-zero vector x  on H s.t. Tx  0. We have Tx T x  .0 0  but x 0  by our
assumption i.e. x  and 0 are distinct vectors in H so that T is not one-one and hence T is not non-singular
i.e.T is singular.

Conversly : Let T be singular. To Show that   a non-zero vector x H  s.t. Tx 0 . Now Tx  0
 x 0  T  is one one, since

Ty Tz T y z y z y z        b g 0 0 .

Since H is finite dimensional, therefore T is one-one implies T is onto and so T is non-singular. This
contradicts the hypothesis that T is singular. Hence there must exist a non-zero vector x  s.t. Tx  0 .

Theorems 15 :  If T is an arbitrary operator on a finite dimentional Hilbert space H, then the eigenvalues
of  T constitute a non empty finite subset of the complex plane. Furthermore, the number of points in this
does not exceed the dimension n of  the space H.

Proof :   is an eigenvalue of T  a non-zero vector x  s.t. Tx x

   a non-zero vector x  s.t. T I x b g 0

 operator T I  is singular

 det T I b g 0  i.e. T I  0

If B be any ordered basis for H, then

det det detT I T I T IB B B      b g c h c h

 det T B ij e j  where  ij i j

i j
 



1

0

,

,n
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 det aij ij e j  (on setting T aij mxn
 )

 det

.....
.....

.....

T I

a a a
a a a

a a a

n

n

n n nn

  













b g 0 0

11 12 1

21 22 2

1 2

   ...(9)

L.H.S of (9) when expanded, yields a polynomial equation in   of degree n, with complex coefficients
having complex roots. But every operator T on H has a eigenvalue and (9) has exactly n roots in complex
plane, some of which may be repeated, therefore has distinct eigen values   n i.e. not exceeding n, the
dimension of H.

8.8 Spectral Theorem
We shall require the following result to prove an important theorem known as spectral theorem:

Theorem 16 : If P P Pn1 2, ,...,  are the projections on closed linear subspaces M M Mn1 2, ,....,  of a

Hilbert space H, then P P P Pn   1 2 ....  is a projection   the Pi ’s are pairwise orthogenal and then P

is the projection on M M M Mn   1 2 ..... .

Proof : Pi ’s are projections on H P Pi 2  and P P i ni
* , , , 1 2  and P Pi j  0  for i j .

Now P P P P P P P Pn n        1 2 1 2...... .......* * * *

    P P P Pn1 2 ....

 P  is self adjoint.

Also P P P P P P P P Pn n
2

1 2 1 2       ..... ...b gb g
   P P Pn1

2
2
2 2..... P Pi j  0  for i j

    P P P Pn1 2 ....

Hence is a projection on H.

Conversly : If P si '  are projections on H i.e. P is a projection on H or P P2   and P P*  . We prove
that P Pi j  0  for i j .

For any vector z H  we have

Pz z PPz z Pz P z Pz Pz Pz, , , ,*b g b g c h b g    2 ...(10)

If for any vector x M i (range of Pi ) so that Px xi  ,

then x Px Px P x P xi i n

n
2 2 2

1
2 2

1 1

    

 ....
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

 Px xi

n

,b g
1 1

   P x x P x x P x xn1 2, , .... ,b g b g b g

     P P P x x Px x Pxn1 2
2..... , ,b gc h b g

 x 2

So x Px2 2  and Px x2 2

  the sign of equality holds throughout the above computation, thereby giving that

Px Pxi i
i

n
2 2

1



  and Pxi

2 0 for i j

 Pxi 0  for i j

  Pxi  0  for i j

  x null sapce a P i ji b g  whose range is Mi  and null space is Mi
 .

  x M i   for i j  with x Mi

  x  is orthogonal to the range M i  for every Pi  with i j

i.e. x M M M i jj j i    

  every vector in range P j nj  1,...,b g  is orthogornal to the range M i  for every Pi  with i j

  range of Pj  is orthogonal to the range of every Pi  with i j .

Lastly we show that P is the projection on M M M Mn   1 2 ..... . It will be so if the range of

P say R P Mb g 
Any x R P Px x  b g

    P P P x xn1 2 .....b g
    P x P x P x xn1 2 ...

where P x M P x M P x Mn n1 1 2 2  , ,...,b g b g
     x M M M Mn1 2 ....

 R P Mb g
Also an x M x Mi i    for 1 i n  with x x x xn   1 2 ....  and M M M Mn   1 2 .... .



147

   Px x Px xi i i i
2 2

    Px x x R P ii i i b g
   x x xn1 2 ......  x R Pb g  as R Pb g   is a linear subspace of H

 M R Pb g
Hence M R P P b g  is a projection on M.

Statement of spectral Theorem :

Let T be an operator on a finite dimensional Hilbert space H with   1 2, ,...., m  as the distinct
eigenvalues of T and with M M Mn1 2, ,....,  be their corresponding eigenspaces. If P P Pn1 2, ,....,  be the
projections on these eigenspace, then following statements are equiralent:

(i) The M si '  are pairwise orthogonal and span H.

(ii) The P si '  are pairwise orthogonal and P P P In1 2   ....  and
T P P Pm m     1 1 2 2 .....

(iii) T  is a normal operator on H.

Proof : (i)   (ii) : Since M si '  are pairwise orthogornal and span H, therefore each vector x H  is
uniquely expressible as x x x x x M i mm i i      1 2 1 2.... , , ,..., . ...(11)

M si '  are pairwise orthogonal and P si '  are projection on M si '

 P si '  are pairwise orthogonal by Theorem 16

  P P i ji j 0,

For any vector x H , (11) yields

Px P x x x Px Px P xi i n i i i n       1 2 1 2... .....b g ...(12)

M i  being range of Pi  and x M Px xi i i i i   .

If j i  and M Mj i  for j i

  x Mj i  for j i

  Px Mi j i0,  being null space of Pi .

So Pxi i  and Px Px x i mi j i i    0 1 2, ,...., ...(13)

Now      x H Ix x x x xm, ,....1 2

   P x P x P xm1 2 ....
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   P P P xm1 2 ....b g

     

I P P P Pm i
i

n

1 2
1

.... ...(14)

Also     x H Tx T x x xm, ....1 2b g
   Tx Tx Txm1 2 .....

     1 1 2 2x x xm m....

as x M Tx xi i i i i  

     1 1 2 2P x P x P xm m.....

     1 1 2 2P P P xm m.....b g

     

T P P P Pm m i i
i

m

   1 1 2 2
1

..... ....(15)

The above expression with (14) is called spectral resolution of  T.

ii iiib g b g  : Since each Pi  being a projection, we have P Pi i
*   and P Pi i

2  , P si
' are pairwise orthogenal

and i j P Pi j   = 0 and given that

T Pi i
i

m





1

    T P P Pm m
* *....  1 1 2 2b g

     1 1 2 2P P Pm m
* * *.....

     1 1 2 2P P Pm m.....

Therefore TT P P Pm m
* ....     1

2
1
2

2
2

2
2 2 2  as P Pi j  0  for i j ...(16)

     1
2

1 2
2

2
2P P Pm m....

Similary T T P P Pm m
* ....     1

2
1 2

2
2

2 ...(17)

(16) and (17)   TT T T T* *  is normal

iii ib g b g  : Let T be normal. We prove that M si '  are pairwise orthogenal which is true by Theorem 13

as M si '  are eigenspaces of T. Again by Theorem 16, M si '  being pairwise orthogonal and P si '  are
projections on M si ' , P si '  are pairwise othogenal. Theorem 16 also gives M M M Mm   1 2 ...... . M
being a closed linear subspace of  H, then its associate projection P P P Pm   1 2 .... .
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Also T is normal on H  each M i  of  T reduces T and Pi  being orthogonal projection on
closed linear subspace M i  of H, M i  reduces T means P T TPi i

    TP T P P Pm1 2 .....b g
    TP TP TPm1 2 ....

    PT P T P Tm1 2 ....

     P P P T PTm1 2 ....b g
Hence TP PT  and P is projection on M M  reduces T and so M   is invariant under

T M  0l q  and all eigenvectors of  T being constrained in M, the restriction T to M   say that W is

an operator on a non-trivial finite dimensional Hilbert space M   and Wx Tx x M    .

Now x being an eigenvector for W corresponding to the eigenvalue  , we have x M   and
Wx x .

Thus Wx Tx  and Wx x Tx x x      is also an eigenvector for T. But T has no eigenvector

in M   since all the eigenvectors for T are in M with M M  {0}, therefore W is an operater on a finite

dirnrensional Hilbert space M  , having no eigenvecter and no eigenvalue, therefore M   {0} thereby

contradicting the hypothesis M   {0} in which case every operater on a non-zero finite dimensional
Hilbert space would have an eigenvalue.

Consequently, M   {0} M H

    M M M Hm1 2 .....

 M si '  span H.

Self Learning Exercise

In the following questions write T for true and F for false statement :

1. If  P is a profection on a Hilbert space H, then P is a positive operator (T/F/)

2 . Px x x H   (T/F)

3. If x  is an eigenvector of  T, then x  corresponds more than one eigenvalue of  T. (T/F)

4. If  T is a normal vector on a Hilbert space H, then each eigenspace of T reduces T. (T/F/)

5. An arbitrary operator T on a Hilbert space H possesses necessarily an eigenvalue (T/F)

6. If P be a projection on a closed linear subspace M of a Hilbert space H then I P  is the
projection on M   (T/F)

7. Let P be a projection on a closed linear subspace M of a Hilbert space H, then

x M Px  .....
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8. Let P be a projection on a Hilbert space H, then

(a) P  .... (b) .... .... P

9. If a closed linear subspace M of the Hilbert space H reduces an operator T   M si '  invariant
under .... and .....

10. If T is a normal operator on a Hilbert space H then  eigenspaces of  T are pairwise....

8.9 Summary
In this unit you studied the projection on a Hilbert space, invariance and reducilibilty of an operator

on a Hilbert space. Spectral theory in Hilbert space was also discussed.

8.10 Answers to Self-Learning Exercise

1. T 2. T 3. F 4. T 5. F 6. T 7. x 8. a Ib g     b O and Ib g
9. T and T* 10. Orthognal

8.11 Exercises
1. Write a short note on Projection on a Hilbert space

2. Define orthogenal Porjection, reducibility and Invariance of an operator on a Hilbert space.

3. If P and Q are projections on closed linear subspaces M and N of a Hilbert space H, then prove
that PQ is a projection iff PQ = QP. Also show that PQ is a projection on M N .

4. If P and Q are projections on closed linear subspaces M and N of a Hilbert space H, then prove
that following statements are equivalent

(i) P Q (ii) Px Qx x 

(iii) M N (iv) QP P

(v) PQ P

5. Show by an example that it is not necessary for an arbitrary operator on a Hilbert space H to
possess an eigenvalue

6. Define spectral resolution for an operator on a Hilbert space and prove that spectral resolution of
a normal operater on a finite dimensional non-zero Hilbert space is unique.

7. If M si '  are eigenspaces for a normal operator T on a Hilbert space H, then prove that M si '
span H.

���



151

Unit - 9
The Derivative

Structure of the Unit
9.0 Objectives

9.1 Introduction

9.2 Derivative

9.3 Directional Derivative

9.4 Mean Value Theorem and its Applications

9.5 Summary

9.6 Answers to Self Learning Exercise

9.7 Exercises

9.0 Objectives
This unit introduces an important concept of derivative of functions in abstract-spaces, particularly

in Banach sapces. We are already  know the notion of derivative of a real valued function. Now we need
to modify this notion of derivative of functions from Banach spaces to Banach spaces.

9.1 Introduction

A real valued function f  on R  has a derivative D f ab g  or f ab g  at a point a R  if and only if
for each  0  there exists a   0  such that

f x f a
x a

f ab g b g b g


  '  whenever 0   x a 

Frechet generalized this concept of derivative of a mapping f  on a normed linear space N  into
a normed linear space M .  The derivative of f  at a point a N  exists and it is a linear transformation g
of N  into M  if it satisfies the inequality, for  0 ,

f x f a g x a x ab g b g b g      ,

whenever  x a   .

9.2 Derivative
Definition :  Let X  and Y  be any two Banach spaces and V  an open subset in X , then two functions
f V Y1 :   and f V X2 :   are said to be tangential to each other at a point v V  if, we have

lim
x v
x v

f x f x
x v






1 2 0

b g b g

which follows that
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f v f v1 2b g b g

If f1 , f2  are tangential at v  and f2 , f3  are also tangential at v , then f1 , f3  are tangential at v ,
since we have the inequality,

f x f x f x f x f x f x1 3 1 2 2 3b g b g b g b g b g b g    

Hence this relation is an equivalence relation.

Theorem 1 :  Let X  and Y  be any two Banach spaces over the same filed K . In the set of all functions
tangential to a function f  at v V , there is at most one function  : X Y , of the

form x f v g x vb g b g b g   , where g X Y:   is linear, where V is an non-empty open subset of X .

Proof :   Suppose there are two functions   and   from X  into Y  given by

 x f v g x vb g b g b g    and  x f v g x vb g b g b g  1

Assume h x g x g xb g b g b g  1 ,

then clearly h  is linear and

lim
x
x

h x
x




0

0

0
b g

Thus for given  0  there exists a  0  such that

h x xb g     whenever x  

But  0  is an arbitraril y small so that

h xb g  0 for any x .

 g g 1

Hence  

Derivative of a Map :

Definition :   Let X  and Y  be Banach spaces and V  be a non-empty open subset of X . A continuous
mapping f V Y:   is said to be differentiable at the point v V  if there exists a linear mapping g X Y: 

such that the mapping x f x f v b g b g  and x g x v b g  are tangential at the point v , that is

lim
x v
x v

f x f v g x v
x v



  




b g b g b g
0 ...(1)

Let x v h V   , we assume

n h f v h f v g h f v h f v g h n hb g b g b g b g b g b g b g b g         ...(2)
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where from equation (1), we have

lim
h

n h
h


0

0
b g

...(3)

n  being a function from N Y , where N  is a neighbourhood of 0X , such that N v V  .
A function f V Y:   is said to be differentiable in V  if f  is differentiable at each point of V .

If f  is differentiable in V , then for each point v V , D f v L x yb g b g , , which is the space of all
linear map from X  into Y .

Example 1 :   The derivative of the constant function f V Y:   is the zero linear map, because

f x f v g x vb g b g b g    0  for any v x V,  , if g  is the zero map of L x y,b g .

Example2 :  The derivative of a continuous linear mapping f V Y:   is the mapping f  itself, because

f x f v f x v f x f v f x f vb g b g b g b g b g b g b g      

    0 ,  x v V,

Theorem 2 :   Let X  and Y  be Banach spaces and V be the non-empty open subset of X . Suppose
that f V Y:   and g V Y:   be differentiable in V  and a  be any scalar in K . Then the function

f g V Y b g :  and  f V Y:   defined by a f x a f xb g b g , f g x f x g x  b gb g b g b g , are

differentiable in V  and for all v V , D a f v a D f vb gb g b g , D f g v D f v D g v  b gb g b g b g
Let us prove, D f g v D f v D g v  b gb g b g b g

Proof :   Since f  and g  are differentiable at v V , so that

lim
x v
x v

f x f v D f v x v
x v



  




b g b g b gb g
0

and lim
x v
x v

g x g v D g v x v
x v



  




b g b g b gb g
0

Now,

lim
x v
x v

f g x f g v D f v D g v x v
x v



     



b gb g b gb g b g b gc hb g


  




lim
x v
x v

f x f v D f v x v
x v

b g b g b gb g
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
  




lim
x v
x v

g x g v D g v x v
x v

b g b g b gb g

  0 0 0

The D f g v D f v D g v  b gb g b g b g ,  v V

Similarly, we can prove that D a f x a D f vb gb g b g .

Theorem 3 (Derivative of a composite mapping ) :   Let X , Y  and Z  be Banach spaces over the
same field K . Suppose that f  is a function on an open subset V  of X  into an open subset W  of Y  and
g  is a function on W  into Z . If f  is differentiable at a point v V  and g  is differentiable at the point

w f v W b g , then g  of is differentiable at v  and

D g of v D g f v o D f vb gb g b gc hd i b g

or g of v g f v o f vb g b g b gc hd i b g' ' '

Proof :  Let k Y  be such that f v k Wb g  .

Given that g  is differentiable at f vb g , so we have

g f v k g f v D g f v k kb gc h b gc h b gc h b g   .  ...(1)

where lim
k

k
k


0

0
 b g

Now let h X  be such that v h V 

Given that f  is differentiable at v V , so we have

f v h f v D f v h h   b g b g b g b g. 

where lim
h

h
h


0

0
 b g

...(2)

Now, we have

g of v h g f v hb gb g b gm r  

          g f v D f v h hb g b g b gm r.  [From eqn. (1)]

Using eqn. (1), we get

g of v h g f v D g f v D f v h h D f v h hb gb g b gc h b gc h b g b gm r b g b gc h     . . .  
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          g of v D g f v o D f v h hb gb g b gc h b gd i b g.  ...(3)

where    h D g f v h D f v h hb g b gc h b g b g b gc h   ...(4)

Now we claim that

lim
h

h
h


0

0
 b g

Let for  0  there exists   0  such that k   ,

 k kb g  

Also there exists a   0  such that h   ,

 h hb g     and  D f v h hb g b g.   

Then for h   , we have

   h D g f v h D f v h hb g b gc h b g b gc h b g  .

            D g f v h D f v h hb gc h b g b gc h b g  .

             D g f v h D f v h hb gc h b g b g b g .

                D g f v h D f v h hb gc h b g .

  h D g f v D f v hb g b gc h b ge j    


 h

h
D g f v D f v

b g b gc h b ge j    

But  0  arbitrary, so that

lim
h

h
h


0

0
 b g

Thus the equation (3) can be written as

lim
h

g of v h g of v D g v o D f v h
h

  


0
0

b g b g b g b g b gc h b g

Hence D g of v D g f v o D f vb gb g b gc hd i b g
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Definition :  A bijection f  on a Banach space X  onto a Banach space Y  is said to be a homeomorphism

if both f  and f 1  are continuous on X  and Y  respectively..

Theorem 4 :    Let X  and Y  be Banach spaces over the same field K  of scalars. Let f  be a
homeororphism of an open subset V  of X  onto an open subset W  of Y  and let g  be the inverse
homoeomorphism of W  onto V . If f  is differentiable at a V  and D f ab g  is a linear homeomorphism

of X  onto Y , then g  is differentiable at the point b f a W b g  and

D g b D f ab g b g
1

Proof :   It is clear that the linear mapping D f ab g  of X  onto Y  has an inverse linear mapping. Let it be

t D f a
b g 1  of Y  onto X . It is also continuous and there is a finite positive real number M  such that

t y M yb g  ,  y Y ...(1)

Suppose that h X  be such that a h V  .Since f  is differentiable at a , so that we have

f a h f a D f a h h   b g b g b g b g ...(2)

where lim
h

h
h


0

0
 b g

Let for given 0
1

2
  '

M , there exists  ' 0  such that

 h hb g  ' , whenever h   ' ...(3)

Since g is continuous at b f a W b g , then for given  ' > 0 there exists   0  such that

g b k g b  b g b g  ' , whenever k  

Now, h t f a h f a t D f a h f a h f a      b gc h b g b g b g b gc hn s.

     t D f a h f a h f ab g b g b gm r.

   t h b gc h from eqn. (2)

    M h b g from eqn. (1)

    M h' from eqn. (3) ...(4)

Now, h h t f a h f a t f a h f a      b gc h b g b gc h b g

            h t f a h f a t f a h f ab gc h b g b gc h b g
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          M h M f a h f a' b g b g from (1) & (4)

         
1
2

h M f a h f ab g b g

 h M f a h f a  2 b g b g ...(5)

Suppose g b k a h  b g , then

g b k g b t k  b g b g b g
     a h a t f a h f ab gc h b g

   h t f a h f ab gc h b g
 ' M h From (4)

   ' M M f a h f a2 b g b gn s From (5)

   2 2' M f a h f ab g b g

 g b k g b t k k    b g b g b g ,  2 2' M

Hence for given  0  there exists   0  such that

g b k g b t k k    b g b g b g ,  whenever k  

Hence g  is differentiable at b f a W b g  and D g b t D f ab g b g 
1

9.3 Directional Derivative
Definition :  Let X  and Y  be Banach space over the same field K  of scalars and V  be an open subset
of X . Let f  be a function from V  into Y  and v  be a unit vector in V , then the directional derivative of

f  at  x V  in the direction of unit vector v  is denoted by D f xv b g  and is defined by

D f x
f x hv f x

hv h
b g b g b g


 


lim

0
,  if this limit exists.

Theorem 5 :   Suppose that X  and Y  be Banach spaces over the same filed K  of scalars and V  be an
open subset of X . Let f V Y:   is differentiable at x V . Then all the directional derivatives of f
exists at x  and

D f x D f x vv b g b g . , where v V  is a unit vector..

Proof :   Suppose h X  be such that x h V  . Given that f  is differentiable at x V , so that

f x h f x D f x h h   b g b g b g b g ,
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where lim
h

h
h


0

0
 b g

Since v V  is a unit vector and let s  is arbitrary small, then we have

f x sv f x D f x sv sv   b g b g b g b g b g.  ...(1)

where lim
s

sv
sv


0

0
 b g

 lim
s

sv
s


0

0
 b g

 lim
s

sv
s


0

0
 b g

Hence from (1), we have

lim lim .
s s

f x sv f x
s

D f x v
sv
s 

 
 

RST
UVW0 0

b g b g b g b g

           D f x vb g . 0

 D f x D f x vv b g b g .

9.4 Mean Value Theorem and its Applications
In this section we study mean value theorem for a mapping defined on a Banach space.

Theorem 6 :   Let X  be a Banach space over the field K  of scalars and let f a b X: ,   and

g a b R: ,   be continuous and differentiable functions such that D f t D g tb g b g  at each point

t a b ,b g . Then

f b f a g b g ab g b g b g b g  

Proof :   Let  0  and let T  be the set of real numbers s a b ,  such that  r a s, g
f r f a g r g a r ab g b g b g b g b g      1 ...(1)

It is given htat

D f t D g tb g b g  t a b,b g
 D g tb g  0  t a b,b g
  g  is an increasing function on a b,b g . Since f  is a continuous function in closed interval a b,

so it is uniformly continuous in a b, , then there is a real number p a b ,b  such that  q a p, g
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f q f ab g b g   ...(2)

Since g  in increasing function q a p ,  so that

     g q g a q ab g b g b g1 ...(3)

From (2) & (3), we obtain

f q f a g q g a q ab g b g b g b g b g      1

 p T  and hence T  in non-empty

Now we define a function h a b R: ,   as follows

h s f s f a g s g a s ab g b g b g b g b g b g       1 ...(4)

Then clearly h  is continuous in a b,  and also h sb g  0  s T .

Then T  is a closed subset of a b,  and so it is bounded.

Now T  is a non-void bounded subset of R .

Hence supremum of T  exists in a b, .

Let supermum of S c

We shall show that c b .

As contradiction we suppose that c b  i.e. a c b  .

Given that f  and g  are differentiable in a b,b g  and so that there in a real number q c b ,b g  such

that  s c q,b g

f s f c D f c s c
s cb g b g b gb g b g

    

2

...(5)

and g s g c D g c s c
s cb g b g b gb g b g

    

2

...(6)

Now, f s f cb g b g

     f s f c D f c s c D f c s cb g b g b gb g b gb g
     f s f c D f c s c D f c s cb g b g b gb g b gb g




  
2

s c D f c s cb g b g b g From (5)




  
2

s c D g c s cb g b g b g  D f t D g tb g b g  t a b,b g
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


   



2 2

s c g s g c s cb g b g b g b g

 f s f c g s g c s cb g b g b g b g b g     

Since c T , therefore

f c f a g c a c ab g b g b g b g b g      2 1

Thus  s c q, g
  f s f ab g b g    f s f c f c f ab g b g b g b g

   f s f c f c f ab g b g b g b g
          g s g c s c g c g a c ab g b g b g b g b g b g1 From (7) & (8)

 f s f a g s g a s ab g b g b g b g b g      1

 s T   and s c
which is the contradiction to the fact that c  is the supermum of T , so our assumption c b  was

wrong and hence c b  and

f b f a g b g a b ab g b g b g b g b g      1

But  0  is an arbitrary small and so

f b f a g b g ab g b g b g b g  

Theorem 7 (Mean value Theorem) :  Let X  and Y  be any two Banach spaces over the same field K
of scalars and V  be an open subset of X . Let f V Y:   be continuous function. Let u v,  be any two

distinct points of V  such that u v C V,  and f  is differentiable in u v, . Then

f v f u v u D f x x u vb g b g b gn s   sup : ,

Proof :   We define a mapping g Y: ,0 1   such that

g t f u t v ub g b gc h    t 0 1,

As f  is differentiable in u v, , therefore g  is differentiable in 0 1,

 D g t D f u t v u v ub g b gc hn s b g   .

 D g t v u D f u t v ub g b g b gc h   

 D g t v u D f u t v u tb g b g b gc ho t    sup : ,0 1 ...(1)
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Let   c v u D f u t v u t    sup : ,b gc ho t0 1

Now we define a mapping h R: ,0 1   such that

h t c tb g 
Then h  is obviously continuous and differentiable in 0 1,

 Dh t cb g 
From (1), we have

D g t c D h tb g b g 

 D g t Dh tb g b g  t 0 1,b g
Now we know that if g Y: ,0 1   and h R: ,0 1   are continuous and differentiable such

that

D g t Dh tb g b g    at each point   t  0 1,b g ,

then g g h h1 0 1 0b g b g b g b g   [From theorem 6]

 f v f u cb g b g   0

 f v f u cb g b g 

 f v f u v u D f u t v u tb g b g b gc ho t     sup : ,0 1

 f v f u v u D f x x u vb g b g b gn s   sup : ,

Theorem 8 :   Let X  be a Banach space over the field K  of scalars, and V  be an open subset of X .
Suppose f V R:   be a function. Let u  and v  be any two distinct points in V  such that u v V, 

and f  is differentiable at all points of u v, . Then

f v f u D f u t v u v ub g b g b gc h b g    .   where t  0 1,b g .

Proof :  We define a mapping g R: ,0 1   such that

g s f u s v ub g b gc h   ,  s 0 1, ...(1)

As f  is differentiable in u v, , therefore g  is differentiable in 0 1, , and

D g s D f u s v u v ub g b gc h b g   . , s 0 1, ...(2)

Now from Lagrange’s mean value theorem, there exists a real number t  0 1,b g  such that
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g g
g t

1 0
1 0

b g b g b g


 ' , 0 1 t

 g g g t1 0b g b g b g  '

 g g D f u t v u v u1 0b g b g b gc h b g    . ...(3)

From (1),

g f v1b g b g ,  g f u0b g b g

Using these in (3), we obtain

f v f u D f u t v u v ub g b g b gc h b g    . , t  0 1,b g
Theorem 9 :  Let X  and Y  be any two Banach spaces over the same field K  of scalars and V  be an
open subset of X . Let f V Y:   be a continuous function and let u  and v  be any two distinct points

in V  such that u v V,   and f  is differentable in u v, . Suppose g X Y:   be any continuous linear
function. Then

f v f u g v u c v ub g b g b g     ,

where c R  be such that D f x g cb g  ,  x u v,

Proof :   We define a mapping h V Y:   such that

h x f x g x vb g b g b g   ,  x V ...(1)

Then clearly h  is continuous and differentiable in u v,

and Dh x D f x gb g b g  , x V ,  since g  is linear ...(2)

Now since h V Y:   is continuous function and u v V,   be such that u v V,   and h  is

differentiable in u v, , then from mean value theorem, we have

h v h u v u D h x x u vb g b g b gn s   sup : ,

Using (1) & (2), we have

f v g v v f u g u v v u D f x g x u vb g b g b g b g b gn s        sup : ,

 f v f u g v u c v ub g b g b g    

where D f x g c x u vb g    ,

Self-Learning Exercise

1. Define, when two functions f1  and f2  defined on an open subset of a Banach space are tangential
at a point.
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2. Define derivative on a Banach space.

3. True/Fase Statements :

(a) The derivative of the constant function f  on an open subset V  of a Banach space X
into Banach space Y  is the zero map.

(b) The derivative of a continuous linear mapping f  on an open subset V  of a Banach space

X  into a Banach space Y  is the mapping f  itself.

9.5 Summary
In this unit we studied the notion of derivative of function from one Banach space into another

Banach space and concepts of mean value Theorem in Banach spaces.

9.6 Answers to Self-Learning Exercise
1. See text 2. See Text 3. (a) True (b) True

9.7 Exercises

1. Let f  be a differentiable function on a non void connected open subset V  of a Banach space X
over K  into a Banach space Y  over  K  such that D f  0 . Then f  is a constant function.

2. Let f a b X; ,   and g a b R; ,   are continuous and differentiable function such that

D f t D g tb g b g  at each point t a b ,b g , then

f b f a g b g ab g b g b g b g   .

3. Let X , Y  be Banach space over K  and let V , W  be open subsets in X  respectively. Let. Let
f V Y:   be differentiable at a point a U  and g W X:   be differentiable at the point

b W , where b f a b g . If fog I y  and g of I X . Then

D g b D f ab g b g
1

���
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Unit - 10
Higher Derivatives

Structure of the Unit
10.0 Objectives

10.1 Introduction

10.2 Continuously differentiable maps

10.3 Higher Derivatives

10.4 Taylor’s Theorem

10.5 Existence theorems on differentiable maps

10.6 Summary

10.7 Answers to Self Learning Exercise

10.8 Exercises

10.0 Objectives
In this unit we shall study the concept of higher derivatives of a function on Bahach spaces, which

have an important role in the study of these functions.

10.1 Introduction
In this unit we shall introduce higher derivatives of functions defined on Banach spaces and the

concept of continuously differentiable maps on Banach spaces (Cn-maps), partial derivatives, Taylor’s
theorem and existence theorems will be discussed with their applications.

10.2 Continuously differentiable Maps C maps1 d i
Definition : Let X  and Y  be Banach spaces over the same field K and V be an open subset of X.

Suppose f V Y:   is a differentiable function at each point of V. Then f  is said to be a continuously

differentiable map C map1 c h  in V if and only if the function Df V L X Y: , b g  is continuous.

Definition : Let V be a non-empty open subset of a Banach space X X X 1 2  and let f  be a function

of V into Y. Suppose a a V1 2,b g , we define V x X x a V1 1 1 1 2  : ,b gm r . Then V1  is an open subset of

X1

We also define a mapping g V Y: 1 such that g x f x a x V1 1 2 1 1b g b g  ,

Similarly we define the set

V x X a x V2 2 2 1 2  : ,b gm r  and the mapping

h V Y: 2   such that

h x f a x x V2 1 2 2 2b g b g  ,
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The mapping f V Y:   is said to be differentiable with respect to the first variable at the point

a a1 2,b g  iff g  is differentiable at a1 , and we write Dg a D f a a1 1 1 2b g b g ,  or f a a1 1 2
' ,b g . The derivative

D f a a1 1 2,b g  is called the partical derivative of f  with respect to the first variable at a a1 2,b g , it is a linear

map of X1  into y..

Similarly, we can define the partial derivative D f a a2 1 2,b g  with respect to the second variable

Thus, we have D f a a L X Y1 1 2 1, ,b g b g

and D f a a L X Y2 1 2 2, ,b g b g

Theorem 1 : Let f  be a continuous mapping of an open subset V of X X1 2  into Y. Then f  is a

C map1   in V iff f  be differentiable at each point with respect to the first and the second variable. Also

the mappings a a D f a a1 2 1 1 2, ,b g b g  and a a D f a a1 2 2 1 2, ,b g b g  are continuous on V. Further at each

point x x V1 2, ,b g  the derivative of f  is given by

Df a a x x D f a a x D f a a x1 2 1 2 1 1 2 1 2 1 2 2, , , ,b gb g b g b g 

Proof : First suppose that f  is C map1   on V into Y. Let a a V1 2,b g  then for x x V1 2,b g  and given

0  there exists  0  such that

f x x f a a Df a a x x a a1 2 1 2 1 2 1 2 1 2, , , , ,b g b g b g b g b gc h  

 x x a a1 2 1 2, ,b g b g
Put x a2 2 , we get

f x a f a a Df a a x a a a1 2 1 2 1 2 1 2 1 2, , , , ,b g b g b g b g b gc h  

 x a a a1 2 1 2, ,b g b g ...(1)

Since,

x a a a x a a a1 2 1 2 1 1 2 2, , ,b g b g b g   

 x a1 1 0,b g

 x a1 1b g
Using it in (1), we have

f x a f a a Df a a x a x a1 2 1 2 1 2 1 1 1 10, , , ,b g b g b gb g b g     ,

for x a1 1 b g 
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Thus f  is differentiable with respect to the first variable at a a1 2,b g
and D f a a x Df a a x1 1 2 1 1 2 1 0, , . ,b g b g b g

Similarly we have

D f a a x Df a a x2 1 2 2 1 2 20, , . ,b g b g b g

Now

Df a a x x Df a a x x1 2 1 2 1 2 1 20 0, , , , ,b gb g b g b g b gm r 

 Df a a x Df a a x1 2 1 1 2 20 0, , , ,b gb g b gb g
 D f a a x D f a a x1 1 2 1 2 1 2 2, ,b g b g

Which is the required result.

Since Df  is continuous, therefore D f1  and D f2  are also continuous on V.V.

Conversely suppose that D f1  and D f2  are continuous and differentiable at each point

a a V1 2,b g .

To prove, f  is C map1  , we have

f a x a x f a a D f a a x D f a a x1 1 2 2 1 2 1 1 2 1 2 1 2 2    , , , ,b g b g b g b gc h
     f a x a x f a a x D f a a x1 1 2 2 1 2 2 1 1 2 1, , ,b g b g b g
   f a a x f a a D f a a x1 2 2 1 2 2 1 2 2, , ,b g b g b g ....(2)

Let

g z f a z a x D f a a zb g b g b g   1 2 2 1 1 2, , ,

Where z tx  and t 0 1,b g
So that

Dg z D f a z a x D f a ab g b g b g   1 1 2 2 1 1 2, ,

Since D f1  is continuous so for any 0  there is open ball of radius 1 , and centered  at a a1 2,b g
such that for all x x B a a1 2 1 2 1, , ;b g b gc h   we have

D f a z a x Df a a1 1 2 2 1 1 2   , , ,b g b g
for z tx t 1 0 1, ,b g

So by the mean value theorem,
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g x g x1 10b g b g  ,   z x 0 1,b g

      f a x a x f a a x D f a a x x1 1 2 2 1 2 2 1 1 2 1 1, , ,b g b g b g ...(3)

Since D f2  is also continuous, similarly,,

We have, for

x x B a a1 2 1 2 2, , ; ,b g b gc h 

f a a x f a a D f a a x x1 2 2 1 2 2 1 2 2 2, , ,   b g b g b g ...(4)

Let us take    min ,1 2b g
Now, from equation (2), we have

f a x a x f a a D f a a x D f a a x1 1 2 2 1 2 1 1 2 1 2 1 2 2    , , , ,b g b g b g b gc h
     f a x a x f a a x D f a a x1 1 2 2 1 2 2 1 1 2 1, , ,b g b g b g

   f a a x f a a D f a a x1 2 2 1 2 2 1 2 2, , ,b g b g b g
     f a x a x f a a x D f a a x1 1 2 2 1 2 2 1 1 2 1, , ,b g b g b g

   f a a x f a a D f a a x1 2 2 1 2 2 1 2 2, , ,b g b g b g
Using (3) and (4), we obtain

f a x a x f a a D f a a x D f a a x1 1 2 2 1 2 1 1 2 1 2 1 2 2    , , , ,b g b g b g b gc h
 x x1 2

 x x1 2c h
Since  is arbitrary small positive quantity, therefore f is differentiable at a a1 2,b g
Since D f1  and D f2 are continuous then Df  is also continuous in V.V.

Hence f  is C1  map.

10.3 Higher Derivatives
Suppose X  and Y  be Banach spaces over the same field K of scalars and V be an open non-void

subset of X. f V Y:   is a C map1   then the map Df V L X Y: , b g  is continuous. If the map Df  is

differentiable at a given point v V , then D Df vb gc h  will be a linear map X L X Y ,b g . This map is

called the second derivative of f  at v  and is denoted by D f v2 b g . The map Df  is continuous implies

that D f v2 b g  is a continuous linear map i.e. D f v L X L X Y2 b g b gc h , , . If Df  is differentiable on V, then

we have a map D f V L X L X Y2 : , , b gc h . It this map is continuous, we say that f  is a C map2  .
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Since L X L X Y L X Y, , ,b gc h c h 2

We write D f v L X Y2 2b g c h ,

Continuing in this manner, f  is a C mapn 1  then the map D f V L X Yn n 1 1: ,c h  in continuous. Its

derivative, if it exists at v V  is called the nth derivative of f  at v  and is denoted by D f vn b g  and it is an

element of L X Yn ,c h  .

If D fn1  in differentiable on V, then we have the map D f V L X Yn n: , c h .

It this map is continuous, then we say that f  is C mapn  .

For each v V  and each x x x Xn
n

1 2, , .... ,b g ,  we have

D f v x x x D D f v xn
n

nb g b g b gc h. , ..... , .1 2
1

1   x x xn2 3, ,... ,b g .

From the definition of higher derivatives, we obtain the following properties :

1. Let f V Y:   in m-times differentiable in V and D fm  is n-times differentiable in V. Then by

induction f  is m nb g  times differentiable in V and

D D f D fn m m nc h  

2. Let f V Y:   and g V Y:   are n-times differentiable in V. Then f g  is also n-times differetiable
in V and

D f g D f D gn n n  b g
Moreover for all k K , kf  is n-times differentiable in V and

D kf k D fn nb g
Theorem 2 : Let X and Y be Banach spaces over the same field K  of scalars and V  be an open subset

of X . Let f V Y:   is twice differentiable at a point v V . Then D f v L X Y2 2b g c h ,  is a bilinear

symmetric mapping i.e. for all x y X X,b g  ,

D f v x y D f v y x2 2b g b g b gb g. , ,

Proof : We define a mapping g  as follows :

g x y f v x y f v x f v y f v,b g b g b g b g b g       

Then clearly g  is a symmetri function in x y,b g .

Also



169

g x y D f v y x, . .b g b gc h 2

       g x y Df v y x Df v x Df v y x Df v x, . . . .b g b g b g b g b g

 D f v y x2 b gc h. .

   g x y Df v y x Df v x, . .b g b g b g

   Df v y x Df v x D f v y xb g b g b gc h. . . .2 ...(1)

As Df  is differentiable at v V  then for given v V  then for given 0  there exists a  0
such that

Df v y Df v D f v y y   b g b g b g2 .  for y 

therefore

Df v y x Df v x D f v y x y x   b g b g b gc h. . .2

 x y xc h

for x 

2  and y 


2

Now suppose

s x f v x y f v x Df v y x Df v xb g b g b g b g b g       . . ...(3)

From mean volue theorem, we have

s x s x s tx tb g b g b gn s  0 0 1sup ' : ,

From (3), we get

s x Df v x y Df v x Df v y Df v'b g b g b g b g b g       

Using it in above, we have

s x s x Df v tx y Df v tx Df v y Df v tb g b g b g b g b g b gn s         0 0 1sup : , ...(4)

Now

Df v tx y Df v tx Df v y Df v      b g b g b g b g

        Df v y tx Df v D f v y tx Df v tx Df vb g b g b gb gm r b g b gm2

    D f v tx Df v y Df v D f v y2 2b g b gr b g b g b gm r. .
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   y tx y txc h
Since

y tx y tx  

 y x t 0 1,b g  tx x

Using it in above, we have

Df v y tx Df v tx Df v y Df v      b g b g b g b g
    y x y xc h
  2 x yc h

Using it in (4), we get

s x s x x yb g b g c h   0 2.

Substituting the values of s xb g  and s 0b g  from (3), we have

f v x y f v x Df v y x Df v x f v y f v         b g b g b g b g b g b g.

  2 x x yc h ...(5)

Now from (1) and (2), we get

g x y D f v y x f v x y f v x f v y, . .b g b gc h b g b g b g        2

f v Df v y x Df v x. .b g b g b g   

 x x yc h
Using (5), we obtain

g x y D f v y x x x y, . .b g b gc h c h   2 2

 x x yc h

    g x y D f v y x x x y, . .b g b gc h c h2 3 ...(6)

Interchanging x  and y , we obtain

g y x D f v x y y x y, . .b g b gc h c h   2 3 ...(7)

Now,
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D f v x y D f v y x2 2b gc h b gc h. . . .

   g x y D f v y x g y x D f v x y, . . , . .b g b gc h b g b gc h2 2

   g x y D f v y x g y x D f v x y, . . , . .b g b gc h b g b gc h2 2

     3 3x x y y x yc h c h

  3
2

x yc h From (6) and (7)

But  is an arbitrary small, therefore

D f v x y D f v y x2 2b gc h b gc h. . .

 D f v x y D f v y x2 2b gb g b gb g, ,

Proved

Theorem 3 : Let X  and Y  be Banach spaces over the same field K  of scalars and V be an open
subset of X . Suppose f V Y:   be an n-times differentiable function on V. Then for each permutation p

of n  and each point x x x Xn
n

1 2, , .....b g  and each v V ,

D f v x x x D f v x x xn
p p p n

n
nb ge j b gb gb g b g b g1 2 1 2, ,...., , ,....,

Proof : We shall prove this result by induction on n. For n = 2, this reduces to theorem (2) i.e.

D f v x x D f v x x2
1 2

2
2 1b gb g b gb g, , , which we have already proved.

Let us assume that the result is true for n 1b g  i.e. D f vn1 b g  is a symetric member of L X Yn1 ,c h
Now suppose x X1 , then

for x x Xm
n

2
1,.... , ,b g   we have

D f v x x x D D f v x x xn
n

n
nb g b g b gc hb g. , , ...., . .....,1 2

1
1 2 

Now we know that each permutation of n  is a composition of consecutive transpoitions r r, 1b g
of n  . Since by hypothesis D f vn1 b g  is a symmetric function of X n1  into Y, for r n2 3, ,.... .

 D f v x x x x x D f v x x x x xn
r r n

n
r r nb g b g b g b g. , , ... , .... , . , ... , , ....1 2 1 1 2 1 

So now, it is sufficient to show that

D f v x x x D f v x x xn
n

n
nb g b g b g b g. , .... , . , .....,1 2 2 1
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But we know that D f v D D f vn nb g c hb g 2 2 ,  and so that

D f v x x D f v x xn nb gc h b gc h. . . .1 2 2 1

Consqeuently

D f v x x x D f v x x xn
n

n
nb g b g b g b g. , , .... , . , ,... ,1 2 2 1

Proved

10.4 Taylor’s Theorem

Theorem 4 : Let f  be a function defined on the interval a b,  of R into R such that f  is m  times

differentiable in a b,  and m1b g  times differentiable in interval a b,b g . Then

f b f a b a Df a
b a

m
D f a

b a
m

D f c
m

m
m

mb g b g b g b g b g b g b g
b g b g    








.....

! !

1
1

1

Where c a b ,b g
Proof : Given that f a b R: ,   be a function. We define a function g on a b, as follows :

g x f b f x b x Df x
b x

m
D f x

m
mb g b g b g b g b g b g b g   


......

!







A
b x
m

mb g
b g

1

1 !  x a b, ...(1)

Where A is a constant can be determined by putting

g a g bb g b g

Put x b  in eqn  (1), we get

g bb g0    g ab g 0

Put x a  in eqn (1), we obtain

g a f b f a b a Df a
b a

m
D f a

m
mb g b g b g b g b g b g b g   


.....

!







A
b a
m

m

.
!

b g
b g

1

1

     








f b f a b a Df a
b a

m
D f a A

b a
m

m
m

m

b g b g b g b g b g b g b g
b g.....

!
.

!

1

1 ...(2)

 g ab g 0
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Now from eqh  (1), it is clear that

(i) g xb g  is continuous in a b,

(ii) g xb g  is differentiable in a b,b g  and

(iii) g a g bb g b g

Hence by Rolle’s theorem there exists c a b ,b g  such that

g c'b g 0

Differentiate eqn (1) w.r. t  x , we get

g x f x f x
b x

m
D f x A

m b x
m

m
m

m

' ' ' .....
!

.
!

b g b g b g b g b g b gb g
b g  




 


1 1
1

putting x c , we have

g c
b c

m
D f c A

b c
m

m
m

m

'
!

.
!

b g b g b g b g
 




1

  A D f cm 1 b g  g c'b g0  and b c  0

Substituting the value of A in (2), we get

 f b f a b a Df a
b a

m
D f a

m
mb g b g b g b g b g b g    


....

!






b a

m
D f c

m
mb g

b g b g
1

1

1 !

Where c a b ,b g
Theorem 5 : Let X  he a Banach space over the field K of scalars, and let I be an open interval in R
containing 0 1, . If  : I X  is n 1b g  times continuously differentiable function of a single variable
t I . Then

  
 

1 0 0
0

2
0 1

0

1 1b g b g b g b g b g b g
b g    

z |

!
...

! !

n n n

t
n

n
t

n
dt

Proof : We know that if the function f  on 0 1,  has a continuous derivative f ' , then

f f f t dt1 0
0

1b g b g b g  z ' ...(1)
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We define a function f  on I as follows :

f t t t t
t

n
t

n
nb g b g b g b g b g b g    


  1

1
' ......

!
...(2)

      
 f t t t t t

t
n

t
n

n' ' " ' ......
!

b g b g b g b g b g b g b g   1
1 1


1 1

t
n

t f t
n

nb g b g b g
!

'


1 1

0

1

0

1 
 zz t

n
t dt f t dt

n
nb g b g b g

!
'

Using eqn  (1), we get

f f
t

n
t dt

n
n1 0

1 1

0

1b g b g b g b g 
 z !



Using (2), we get

  
 

1 0 0
0

2
0 1 1

0
b g b g b g b g b g b g b g    

 z'
"

!
.....

! !
'n n

n

n
t

n
t dt

   
 

1 0 0
0

2
0 1 1

0
b g b g b g b g b g b g b g     

 z'
"

!
.....

! !
|n n

n

n
t

n
t dt

Proved

Theorem 6 :  Let X  be a Banach space over a field K of scalars and let I be an open interval in R
containing 0 1, .

If  : I X  is an n 1b g  times differentiable function of a single variable t I  and if  n t M 1b g  for

t 0 1, .

Then

  
 

1 0 0
0

2
0

1
b g b g b g b g b g

b g    


'
"

!
.....

! !

n

n
M

n

Proof : We define two functions f X: ,0 1   and g R: ,0 1   as follows :

f t t t t
t

n
t

n
nb g b g b g b g b g b g    


  1

1
' .....

!
...(1)

and,
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g t
M t

n

n

b g b g
b g

 


1
1

1

!  t 0 1, ....(2)

From equation (1), we have

Df t
t

n
t

n
nb g b g b g

 1 1

!



 1 1t
n

t
n

nb g b g
!



Df t
t

n
M

n

b g b g


1
!

. ....(3)

From equation (2), we have

Dg t
M t

n
n

n

b g b g
b g b g





1

1
1

!
.

 Dg t
M t

n

n

b g b g


1
!

...(4)

From (3) and (4), we have

Df t Dg tb g b g , for all t 0 1,l q
Now we know that if f Y: ,0 1   and g R: ,0 1   are continuous and differentiable functions

such that Df t Dg t tb g b g b g  , ,0 1 , then we have

f f g g1 0 1 0b g b g b g b g   , by theorem (6) unit (9)

Using (1) and (2), we get

   
 

1 0 0
0

2
0

0
1

b g b g b g b g b g
b g      


F
HG

I
KJ

"
!

.........
! !

n

n
M

n

   
 

1 0 0
0

2
0

1
b g b g b g b g b g

b g    


'
"

!
.........

! !

n

n
M

n

Theorem 7 (Taylor’s formula with Lagrange’s Reminder) :  Let X  and Y  be Banach space over
the same field K  of scalars and V  be an open subset of X . Let f V Y:   be an n 1b g  times

differentiable function. If the interval a a h,   is contained in V  and if f x Mn 1b g , x V . Then

f a h f a f a h
f a

n
h

M h
n

n
n

n

     




b g b g b g b g
b g' ...

! !

1

1
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Proof : We define a mapping   : ,0 1  Y  as follows :

 t f a t hb g b g  ,.  t 0 1, ...(1)

 n n nt h f a t h   1 1 1b g b g

  n n nt h f a t h   1 1 1b g b g

  n nt M h 1 1b g ...(2)

Now suppose that

   t t t t
t

n
t

n
nb g b g b g b g b g b g     


1

1
...

!
, t  0 1, ...(3)

Therefore,

 
  t

t
n

t
n

nb g b g b g1 1

!

  
  t

t
n

t
n

nb g b g b g1 1

!

  
  t

t
n

M h
n

nb g b g1 1

!
[From (2)] ...(4)

We define again g R: ,0 1   as follows :

g t M
t

n
h

n
nb g b g

b g 



1
1

1

! ...(5)

so that

D g t M
t

n
h

n
nb g b g


 1 1

!
...(6)

Using (6) in (4), we get

D t D g t b g b g , t  0 1,

Then by mean value theorem, we have

 1 0 1 0b g b g b g b g  g g

using (3) and (5), we obtain
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  


1 0 0
0

0
1

1

b g b g b g b g
b g       


R
S|
T|

U
V|
W|



...
!

.
!

n n

n
M h

n

Using (1), we get

f a h f h f h
n

f
M h

n

n
n

n

      




b g b g b g b g b g0 0 0
1

1

...
! !

Theorem 8 (Taylor’s Formula with Integral Remainder) :  Let X  and Y  be Banach space over the
same field K  of scalars and V be an open subset of  X. Suppose f V Y:   be a function of class Cn1 .

If the closed interval a a h,   is contained in V . Then

f a h f a h f a h f a h
n

f a
n

n       b g b g b g b g b g
2

2!
...

!

     


 z 1 1 1

0

1 t
n

f a t h h dt
n

n nb g b g
!

.

Proof :  We define a function  : ,0 1  Y  as follows :

 t f a t hb g b g  ,  t 0 1, ...(1)

   

   

 

U

V
||

W
||







t h f a t h

t h f a t h

t h f a t hn n n

b g b g
b g b g

b g b g

2

   ...(2)

Suppose,

f t t t t
t

n
t

n
nb g b g b g b g b g b g     


  1

1
...

!

Since,

f f f t dt1 0
0

1b g b g b g  z ' , then by theorem (5), we have

  


1 0 0
0 1

0

1b g b g b g b g b g b g    
z' ...

! !

n n
n

n
t

n
t dt

Using (1) and (2), we obtain

f a h f h f h f h
n

f
n

n      b g b g b g b g b g0 0
2

0 0
2

'
!

...
!

      


z h
n

t f a t h dt
n

n n
1

1

0

1
1

!
b g b g
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10.5 Existence Theorems on Differentiable Functions
In this section we shall prove the implicit function theorem and the inverse function theorem.

Theorem 9 (Implicit function Theorem) :   Let X , Y  and Z  be Banach space over field K , let f  be

a continuous function on an open subset W  of X Y  into Z  such that at each point x y W,b g  the

partial derivative D f x y2 ,b g  exists and D f2  is a continuous function on W  into L Y Z,b g  and let u v W,b g
be such that f u v,b g  0 and D f u v2 ,b g  is a linear homoeomorphism of Y  onto Z . Then there exists an
open neighbourhood U  of u  and an open neighbourhood V  of v such that U V W   and a unique
continuous function g  on U  into V  such that

g u vb g   and for each x U , f x g x, b gc h  0 .

If f  is differentiable at u v,b g  then g  is differentiable at u  and

D g u D f u v o D f u vb g b gc h b g 


2
1

1, , .

Proof :   We define a function h W Y:   as follows :

h x y y D f u v f x y, , ,b g b gc h b gc h 


2
1 ,  x y W,b g ...(1)

 h x y y,b g   iff f x y,b g  0 . ...(2)

h  is continuous in W , therefore D h x y2 ,b g  exists at each x y W,b g  and D h2  is continous on
W .

Let U '  be an open ball with centre u  and radius  and V '  be a closed ball with centre v  and
radius  such that

U V W' '   and for all x y U V,b g   

D h x y2
1
2

,b g  ...(3)

Now by mean value theorem,

h x y h x y y y, , ' 'b g b g  
1
2  x U ' , y y V, ' '

Let U" is an open bell with centre u  and it contained in U ' , then

h x v v,b g 

2 ...(4)

Now,

h x y v h x y h x v h x v v, , , ,b g b g b g b g    

          h x y h x v h x v v, , ,b g b g b g
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         
1

2 2
y v [From (4) and (5)]

 h x y v,b g   [As y v V, ' ,    y v ,  is the radius of V ' ]

Since V  is closed and Y  is complete and V Y' , therefore V '  is also complete.

Then by Banach fixed point theorem there exists a unique linear transformation g U V' : " '  such
that

h x g x g x, ' 'b gc h b g

Using (2), we obtain

f x g x,  b gc h 0 ...(6)

Let  V  be the interior of V  and let U g V 1b g  and let g  be the restriction of g  to the set U ,
then

g x g x'b g b g , x V

Then, we have

f x g x, b gc h  0  and g u vb g  .

Now let f  is differentiable at u v,b g  and x  be any element in X  such that u x U 

Let y g u x g u  b g b g , then

f u x g u x  , b gc h 0

 f u x g u y  , b gc h 0 ...(7)

As f  is differentiable at u v,b g , therefore given  0 , there exists   0  such that x   .

Therefore,

f u x g u y f u g u px qy x y       , ,b gc h b gc h c h

where p D f u g u 1 , b gc h
q D f u g u 2 , b gc h

then we have

px qy x y  c h ...(8)

Since f u x g u x f u g u   , ,b gc h b gc h0

Given that q D f 2  is a linear homeomorphism, therefore
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q op x y q px qy   1 1c h

            q x y1 c h ...(9)

Let  q 1 1
2

Now,

y y q op x q op x   1 1c h c h

    y q op x q op x1 1c h

 y x y q op x   1
2

1c h from (9)

Thus

x y x q op   2 1 1e j ...(10)

Now,

g u x g u q op x    b g b g c ho t1

  y q op x1c h

  q x y1 c h [From (9)]

   q x q op1 12 1e j [From (10)]


g u x g u q op x

x
q q op

   
  



 
b g b g c ho t e j

1

1 12 1

But  is arbitrary number therefore g  is differentiable and

D g u q opb g   1

 


D f u v o D f u v2
1

1, ,b gm r b g
Theorem 10 (Inverse Function Theorem) :  Let X  and Y  be Banach spaces over the same field K
of scalars and W  be an open subset of X . Let w W  be such that D f wb g  is a linear homeomorphism
of X  into Y . Then there exists an open neighbourhood U  of w  contained in W  and an open
neighbourhood V  of f wb g  contained in Y  such that f '  the restriction of f  to the set U  is C1  homeo-
morphism of U  onto V , its inverse in a C1  homeomorphism of V  onto U , and
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D f f w D f w' ' 
1 1b gc h b gc h

If D f xb g  is a linear homeomorphism of X  into Y , for all x W , then f  is an open mapping of

W  into Y . If D f xb g  is a linear homeomorphism of X  onto Y  for all x W  and f  is injective then f

is a C1  homeomorphism of f Wb g onto W .

Proof :  We define a function h W Y Y:    as follows :

h x y f x y,b g b g 

Then D h x y D f x1 ,b g b g  and  D h x y I y2 ,b g  
  x y W Y,b g

 h  is a C1  map on W Y

Then by implicit function theorem, there exists an open neighbourhood U  of w  contained in W ,

an open neighbourhood V  of f wb g  contained in Y  and a C1  map g V U:    such that f g y yb gc h  ,

 y V  and g f w wb gc h  .

We take U g V b g
Then U U ' , g  is a bijection of V  onto U  and U U f ' 1 vb g , which is an open subset of

X .

Let f  is an inverse of g , and f  is a C1  homeomorphism of U  and V , g  is a C1  homeomor-

phism of V  onto U  and D f f w D f w' ' 
1 1b gc h b gc h

Now suppose f xb g  is a linear homeomorphism of X  onto Y ,  x W . Then by the first part,

for each x W , there is an open neighbourhood U  of x  contained in W , such that restriction of f  to U
is a homeomorphism of U  onto its image. Hence f  is an open mapping of W  into Y .

Moreover, let f  is also injective. Then f  is a bijection of W  onto f Wb g  and so that a homeo-

morphism of W  onto f Wb g .

Self-Learning Exercise

1. Define C1  map

2. Define higher derivatives

10.6 Summary

In this unit we studied higher derivatives of functions defined on Banach spaces. We also studied

the Taylor’s theorem and existence theorems on differentiable function.
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10.7 Answers to Self-Learning Exercise
1. See text 2. See text

10.8 Exercises

1. Let f W Y:  , where W  is an open subset of the product X X X n1 2  ...  of Banach spaces
X X X n1 2, ,....,  over field K  such that f  is twice differentiable at w W . Then for

i j n, , ,........, 1 2

D D f w D D f wi j j id ib g b gb g

2. Let X  and Y  be Banach spaces over field K  and let f  be a Cn -map of an open subset W  of

X  into L X Y,b g . Then the map w x f w x, ,b g b gc h  is also Cn -map.

���
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Unit - 11
The Integral in a Banach Space

Structure of the Unit
11.0 Objectives

11.1 Introduction

11.2 Subdivision

11.3 Step function

11.4 Integral of a step Function

11.5 Regulated Function

11.6 Basic Properties of Integrals

11.7 Summary

11.8 Answers to Self Learning Exercire

11.9 Exercises

11.0 Objectives
In this unit, we introduce integral of a regulated function through step function and discuss some of

its basic properties.

11.1 Introduction

At elementary stage, the subject of integration is generally introduced as the inverse of differentiation,
so that a function F is called an integral of a given function f if F x f x'b g b g , for all values of x  belonging

to the domain of the function f . The reference to integration from summation point of view was always
associated with the geometric concepts. To formulate an independent theory of integration, the German
mathematician, Riemann, gave a purely arithmatic treatment to the subject and developed the subject
entirely free from the intuitive dependence on geometrical concepts.

The Riemann integral depends very explicitly on the order structure of the real line. Accordingly,
we have studied the integration of real valued function of real variable in under-gradark courses. In this
unit, we courider the integral of a function of one variable into a Banach space. To study integration of such
functions, we take slightly different approach than for real valued functions of a real variable. First we
detive the integral of a regulated function through step functions and then prove some basic properties of
the integrals.

11.2 Subdivision

Let a b,  be a compact interval of the real line. A set of points a a an1 2, , ....,l q  of a b,  is called

a subdivision of a b,

if, a a a bn   1 .... .

The subdivision consists of n  poitns. A subdivision S2  of a b,  is said to be refinement of a
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subdivision S1  of a b,  iff each point of S1  is a point of S2  i.e, S S1 2 . Let  S1  and S2  be two

subdivisions of a b, , then there exists a unique subdivision S S S 1 2b g  whose points are the point of

S1  or S2  and which is a refinement of both S1  and S2 .

11.3 Step Function

Let a b,  be compact interval of R  and let X  be a Banach space over K . Then a function

f a b X: ,   is called a step function with respect to a subdivision a i ni : b g  of a b,  iff for each i

in n i , f a ai i, 1b g  is a singleton. We say that f  is a Step function on a b,  into X  iff it is a step

function with respect to some subdivision of a b, .

Thus a function f  on a b,  into X  is a step function on a b,  into X  iff there exists a subdivi-

sion a i ni : b g  of a b, , n  2  and there exists a list x i ni :  1b g  of points of X  such that for each i

in n 1  and each t  in a ai i, 1b g , f t xib g  .

11.4 Integral of a Step Function

Let f  be a step function on compact interval a b,  of R  into a Banach space X . Let

S a i ni :b g  be subdivision of a b,  such that f  is a step function with respect to S . For each i  in

n 1 , let xi  be a point of X  such that foll all t  in a ai i, 1b g , f t xib g  . Then we put

I f a a xS i i i
i

n

b g b g 




 1
1

1

Now let j  be a fixed element of n 1  and let c j  be any point of a aj j, 1d i . Then

S a a c a aj j j n1 1 1 , ... , , , , ...,d i
is a subdivision of a b,  such that S1  is refinement of S . Moreover

I f a a x c a x a c xS j j j j j j1 2 1 1 1b g b g d i d i       ... ...

            a a x I fn n n S1 1b g b g
Now let T  be a subdivision of a b,  such that T  is a refinement of S . Then by induction,

I f I fS Tb g b g

Finally let U  be any other subdivision of a b,  with respect to which f  is a step function. Then

by definition 11.2, there exists a subdivision V  of a b,  such that V  is a refinement of both S  and U .
Hence

I f I f I fS U Vb g b g b g  .
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Consequently, we define the integral of a step function f  on a b,  into X  as the

vector a a xi i i
i

n






 1
1

1

b g ,

where a i ni : b g  is a subdivision of a b,  such that f  is a step function with respect to this

subdivision, and where for each i  in n 1 , there is a vector x Xi   such that

f t xib g   for all t a ai i , 1b g

and denote it by f
a

bz  or f t dt
a

b b gz
Evidently

f a a x
a

b

i i
i

n

iz  




1
1

1

            




 a a f t t a bi i
i

n

1
1

1

sup : ,b gn s

            b a f t t a bb g b gn ssup : ,

           b a fb g
Now if we consider the set S a b X, ,c h  of all step functions on a compact internal a b R,   into

a Banach space X  then this set tuns out to be a Banach space with norm as stated above. This is evident
form the following theorem.

Theorem 1 :   Let a b,  be a compact interval of R  and let X  be a Banach space over K . Then the set

S a b X, ,c h  of all step functions on a b,  into X  is a vector subspace of the Banach space B a b X, ,c h
of all bounded functions on a b,  into X  with Sup. norm

f f f t t a b  sup : ,b gn s

and the map f f
a

b
 z  is a continuous linear map of S a b X, ,c h  into X .

Proof :  Let f g S a b X, , , c h  i.e., f  and g  be step functions on a b,  into X  with respect to

subdivisions S  and T  of a b,  respectively. Let U a i ni :b g  be a refinement of both S  and T , then

f  and g  are step functions with respect to U  also and so for each i  in n 1  there are vectors xi  and

yi  in X  such that for each t a ai i , 1b g , f t xib g   and g t yib g 
f t g t x yi ib g b g  

i.e., f g t x yi i  b g  for each t a ai i , 1b g



186

Hence f g  is a step function on a b,  into X  with respect to U  and so f g S a b X  , ,c h .

Also for each K ,  f  is a step function on a b,  into X  with respect to S  i.e.

 f S a b X , ,c h .

For each f  in S a b X, ,c h , I fmb g  is a finite subset of X  and so it is bounded. Thus

S a b X, ,c h  is a vector subspace of B a b X, ,c h . The function f f
a

b
 z  on S a b X, ,c h  into X  is

clearly linear and continuous with a norm less than or equal to b a .

11.5 Regulated Function

Let a b,  be a compact interval of R  and X  be a Banach space over K . Then a member of the

closure of the vector subspace S a b X, ,c h  of all step functions an a b,  into X  in the Banach space

B a b X, ,c h  is called a regulated function on a b,  into X .

The unique continuous linear extension of the map f f X
a

b
 z , f S a b X , ,c h  to closure of

S a b X, ,c h  will be denoted by the same symbol f f
a

b
 z  and for each regulated function f  on a b,

into X , f
a

bz  will be called the integral of f .

The class of regulated functions is larger than the class of continuous functions. In support of this
we have the following theorem.

Theorem 2 :   Let f  be a function on a compact interval a b,  of R  into a Banach space X  over K .

Then f  is regulated iff the following conditions are satisfied.

(i) for each point c a b , g
lim
t c
t c

f t



b g  exists

(ii) for each point c a b ,b
lim
t c
t c

f t



b g  exists.

In particular, if f  is continuous, then f  is regulated.

Proof :  First by, let f  be regulated. Let r  be any positive real number, then there is a g  in S a b X, ,c h
such that

f g r
 

3
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Let c  be any point of a b, . Since g  is a step function on a b, , there is a d  in a b,  such that

c d  and for each t  and t1 in c d,   g t g t rb g c h 1

3 .

and so,

f t f t f t g t g t g t g t f t r r r rb g b g b g b g b g b g b g b g              
3 3 3

Hence

lim
t c
t c

f t



b g  exists, as X  is complete.

Similarly, we can prove that lim
t c
t c

f t



b g  exists.

Next suppose that f  satisfies condition (i) and (ii). Let r  be any positive real number. Then for

each c  in a b, , there exists real number p cb g  and q cb g  such that the open interval p c q cb g b gc h,

contains c  and for all pairs of point t  and t  in a b p c c, , b gc h  or a b c q c, , b gc h
f t f t rb g b g   .

Since a b,  is compact, there exists a finite subset C  of a b,  such that a b U p c q c
c C

, ,


b g b gc h .

Let a i ni : l q  be a set of points in the finite set

a b a b p c q c
c C

, , ,b g b g b gc h  


F
H

I
K

RST
UVW

arranged in increasing order. For each i  in n 1 , a ai i, 1b g  is contained in p c cb gc h,  or c q c, b gc h
for some c  in C  and

f t f t rb g b g  

for all pairs of points t  and t  in a ai i, 1b g .

Define a function g  on a b,  into X  such that for each i n , g a f ai ib g b g  and for each

i n 1  and for each t a ai i , 1b g , g t f sib g b g , where si  is the middle point of a ai i, 1b g . Then g  is

a step function on a b,  into X  and for each t a b , ,

f t g t rb g b g 

Hence f g r   and so f  is regulated.
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Remark : (1)  Let a b,  be a compact interval of R  and let X  be a Banach space for any two regulated

functions f  and g  on a b,  into X  and any scalar  K

f g f f
a

b

a

b

a

b
  z z zb g ,

 f f
a

b

a

bb gz z , since the map f f
a

b
 z  is linear..

(2)  Given any sequence f n Nn : l q  in closure of S a b X, ,c h  converging to f  in B a b X, ,c h ,

then f  is in closure of S a b X, ,c h  and the sequence f n Nna

b
: z{ }  in X  converses to f

a

bz  in X .

11.6 Basic Properties of Integrals

Theorem 3 :   Let f  be a regulated function on a compact interval a b,  of R  into a Banach space X
over K , and c  be any point of a b, . Then the restriction of f to a c,  (respectively c b, ) is a regu-

lated function on a c,  (respectively c b, ) into X  and f f f
a

b

a

c

c

bz z z  .

Proof :   Let f  be a step function on a b, , then clearly restriction of f  to a c,  (respectively c b, ) is

a step function on a c,  (respectively c b, ) and

f f f
a

b

a

c

c

bz z z  .

Now let f  be a regulated function on a b,

Then there is a sequence f n Nn : l q  of step function on a b,  converging to f  in B a b X, ,c h .
Then by the aobve remark f f f

a

b

a

c

c

bz z z  .

Theorem 4 :  Let f  be a regulated function on a compact interval a b,  of R  into a Banach space X
over K  and g  be a continuous linear map of X  into a Banach space Y  over K . Then gof  is regulated
and

gof g f
a

b

a

bb gz z FH IK .

Proof :  Let f  be a step function, then clearly gof  is also a step function and

gof g f
a

b

a

bb gz z FH IK
Now let f  be a regulated function in a b, . Then there is a sequence f n Nn : l q  of step

functions on a b,  into X  converging to f  in B a b X , ,c h . For each n N
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gof gof g f fn n   .

 gof gofn  0  as n   , since f f n  0  as n   .

 the sequence g f x Nn0 : l q  of step functions on a b,  in to Y  converges to gof in

B a b X, ,c h ...(1)

Here gof  is regulated.

By the definition of the integral, the sequence f n Nna

b
: z{ }  converges to f

a

bz  in X .

Since g  is continuous and linear, the sequence

g f n N
a

bzFH IK RST
UVW:  converges to g f

a

bz  in Y ...(2)

but for each n N

gof g fna

b

na

bb gz z FH IK

Hence gof g f
a

b

a

bb gz z FH IK
Definition :  Let f  be a regulated function on a compact interval a b,  of R  into a Banach space X .

Let c  and d  be any points of a b,  such that c d . Then we define

f f
c

d

d

cz z 

Theorem 5 :   Let f  be a regulated function on a compact interval a b,  of R  into a Banach space X .

Then at each t a b , , the function F a b X: ,  , F t f
a

tb g  z , t a b ,  is continuous.

Proof :   f  be a regulated function on a b, , so there is a sequence f n Nn : l q  of step functions on

a b,  convergin to f  in B a b X, ,c h . Therefore

f t a f n Nna

t

nz    b g

 f t a f
a

tz  b g ...(1)

Consequently the function

F a b X: ,  , F t f
a

tb g  z ,   t a b ,  is continuous.
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Theorem 6 :   Let f  be a continuous function on a comapact interval a b,  of R  into a Banach space

X  over K . Let F  be the function t f
a

t
 z  on a b,  into X . Let g  be any differentiable function on

a b,  into X  such that Dg f . Then F  is differentiable,  DF f  and

f F b F a g b g a
a

bz    b g b g b g b g .

Proof :   Let c  be any point of a b,  and let t  be any real number such that c t a b  ,  and t  0

Then

f c dt t f c
c

c t b g b g
z ,

where f cb g  is the constant function on a b, , assigning f cb g  to all points of a b, . Hence

F c t F c
t

f c
t

f t f c dt
c

c t 
  

zb g b g b g b g b gc h1

and so by (1) of Theorem 5, we get

F c t F c
t

f c
t

t f t f c
 

  
b g b g b g b g b g1 .    0   as  t c   f  is continuous]

Hence DF c f cb g b g , so that

DF f Dg  Dg fl  given}

 D F g b g 0

 F g  is constant function on a b, . But f ab g  0 , and

Hence f F b F a g b g a
a

bz    b g b g b g b g .

Theorem 7 :   Let f  be a C1  map on a compact interval a b,  into a compact interval c d,  of R  and

let g  be a continuous function on c d,  into a Banach space X  over K . Then

D f s g f s ds g t dt
a

b

f a

f bb gc h b gc h b gb g
b gz z .

Proof :  Let h c d X: ,   be defined by

h t g u du t c d
c

tb g b g z , ,

Then by Theorem 6, Dh g  and

g t dt h f b h f a
f a

f b b g b gc h b gc hb g
b gz   ...(1)
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By chain rule for each s a b ,

D hof s Dh f s o D f sb gb g b gc h b g

       D f s Dh f sb gc h b gc h
       D f s g f sb gc h b gc h  Dh g

Hence again by Theorem 6, we have

D f s g f s ds h f b h f a
a

b b gc h b gc h b gc h b gc hz  

 z g t dt
f a

f b b gb g
b g

from (1)

Theorem 8 :  Let U  be an open subset of a Banach space X  over K , let a b,  be a compact interval

of R , let f  be a continuous function on U a b ,  into a Banach space Y  over K  and let g U Y: 
be defined as

g x f x t dt
a

bb g b g z , , x U ,

then g  is continuous. If D f  exists as a continuous function on U a b ,  into L X Y,b g , then g

is C1  map and for each x U , D g x D f x t dt
a

bb g b g z 1 , .

Proof :   Since f  is continuous in U a b ,  and a b,  is compact, for each positive real number r  and

each point x U , there is a positive real number r  such that for all t a b ,  and for all  x U  such that

   x x r ,

f x t f x t r  , ,b g b g ...(1)

and so g x g x f x t f x t dt
a

b
    zb g b g b g b g, , [by definition of g ]

            r b ab g [by (1)]

Hence g  is conitnuous in U .

Next suppose that D f1  exists as a continuous function on U a b , . Let r  be any positive real

number and let x  be any point in U . Since D f1  is continuous in U a b ,  and a b,  is compact, there

is a positive real number t  such that for all x a b ,  and for all  x U  such that    x x r .

D f x t D f x t r1 1  , ,b g b g
Then for all t a b ,  and for all  x X  such that    x x r .
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f x x t f x t D f x t x r x      , , , .b g b g b g1 ...(2)

and so

g x x g x D f x t x dt
a

b
   z' , . 'b g b g b g1

     z z zf x x t dt f x t dt D f x t x dt
a

b

a

b

a

b
, , ,b g b g b g1 [by def. of g ]

     z f x x t f x t D f x t x dt
a

b
, , , .b g b g b gc h1

  r x b ab g [by (2)]

But by Theorem 4 for all t a b ,  and for all  x U

D f x t x dt D f x t dt x
a

b

a

b

1 1, ' , 'b g b gz z FH IK
as u u x b g  is continuous and linear function on L X Y,b g .

Hence D g x D f x t dt
a

bb g b g z 1 , .

Theorem 9 :  Let f  be a regulated function on a compact interval a b,  of R  into R  such that a b

and for all t  in a b, , f tb g  0 . Then f t dt
a

b b gz  0 .

If f  is continuous at a point c  of a b,  and f cb g  0 , then

f t dt
a

b b gz  0

Proof :  Given f is a regulated function, so there exists a sequence f n Nn : l q  of step functions on

a b,  converging to f  in B a b X, ,c h  such that for each n N  and for each t a b , , f tnb g  0  and

so f t dtna

b b g z 0

Hence f t dt
a

b b g z 0

Next suppose that f  is continuous at a point c  of a b,  and f cb g  0. Then there is a positive

real number r  such that for all t a b ,  with t c r   implies that

1
2

f c f tb g b g .

If c a , choose a positive real number s r  such that a a s a b, ,  , then
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f t dt f t dt f t dt
a

b

a

a s

a s

bb g b g b gz z z 




    
1
2

s f cb g

     0  f cb g  0

If c a , choose a positive real number s r  such that c s c a b , ,b g  then

f t dt f t dt f t dt f t dt
a

b

a

c s

c s

c

c

bb g b g b g b gz z z z  




     
1
2

0s f cb g

Theorem 10 :   Let f  be a continuous function on a compact interval a b,  of R  into the topological

dual X *  of a Banach space X  over R  such that a b  and for each C1 -map g  on a b,  into X  with

g a g bb g b g  0  and

  z g t f t dt
a

b b g b g, 0 .

Then f tb g  0 for each t a b , .

Proof :  As a contradiction, let f rb g  0  for some r a b , . Since f  is continuous, we may suppose

that r  is different from a  and b . Since f rb g  0 , there is an x X  such that   x f r, b g 0 .

Let   x f r, b g 0 . Since f  is continuous, there is a positive real number s  such that

r s r s a b  , ,  and for each t r s r s  , ,  x f t, b g 0 .

Let h  be a C1 -map on r s r s ,  into R  such that h  0  (for example h tb g  0  if

t r s r s  ,b g  adn h t t r sb g b ge j  2 2
2

 if t r s r s  ,b g .

Let g  be the function on a b,  such that g t h t xb g b g .  for all t a b , . Then g  is a C1 -map

on a b,  into X  such that g a g bb g b g  0  and  g t f tb g b g, 0  for each t r s r s  ,b g ,

Hence by Theorem 9, we have

  z g t f t dt
a

b b g b g, 0 ,

which is not possible, so our assumption was wrong.

Hence f tb g  0 for each t a b , .

Theroem 11 : Let a b,  be a compact interval, let g  be a regulated function on a b,  into r R r : 0l q
and let h  be a continuous function on a b,  into R  such that for all t a b ,
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h t g t c h s ds
a

tb g b g b g  z ...(1)

where c  is a positive real number. Then for all t a b ,

h t g t c g s e dsC t s

a

tb g b g b g b g  z
Proof :   Let j a b R: ,   be defined as

j t h s ds
a

tb g b g z , t a b , ...(2)

Then for each t a b ,

D j t h tb g b g

 g t c j tb g b g [by (1) and (2)] ...(3)

Let k a b R: ,   be defined as

k t j t e t acb g b g b g  , t a b ,

Then for each t a b ,

D k t D j t c j t e c t ab g b g b gc h b g   

  g t e c t ab g b g [by (3)]

By the definition of j  and k , it is clear that

j a k ab g b g 0

By mean value theorem, for all t a b , , we have

k t g s e dsc s a

a

bb g b g b g  z Then

j t k t ec t ab g b g b g 

           ze g s e dsc t a c s a

a

tb g b gb g ...(4)

Hence by (1) and (2), we have

h t g t c j tb g b g b g 

          zg t ce g s e dst a c s a

a

tb g b gb g b g [by (4)]

        zg t c g s e dsc t s

a

tb g b g b g

Self-Learning Exercise
1. Write whether the following statements are true or false.

(a) A subdivision S  of a compact interval a b,  is said to be refinement of a subdivision T  of

a b,  iff each point of S  is a point of T  i.e., S T .
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(b) The function f f
a

b
 z  is not a continuous linear map of the set S a b X, ,c h  (the set of

all step functions on a b,  into X ) into X .

(c) If f  is continuous, then f  is regulated.

(d) If any sequence f n Nn : l q  in Cl S a b X, ,c h  converging to f  in B a b X, ,c h , then

f S a b X , ,c h .

(e) If f  and g  be regulated functions on a compact interval a b,  of R  into a Banach space
X  over K , then gof is also regulated.

11.7 Summary
In this unit, we have seen that by taking slightly different approach than for real valued function of

a real variable, we can find the integral of a function of one variable into a Banach space. We also discuss
various properties of such integrals.

11.8 Answers to Self-Learning Exercise
1. (a) False (b) False (c) True

(d) False (e) False

11.9 Exercises

1. Define integral of a step function. If a b,  be compact interval of R  and X  be Banach space.

Prove that the set S a b X, ,c h  of all step functions on a b,  into X  is a vector subspace of the

Banach space B a b X, ,c h  of all bounded functions on a b,  into X  with sup norm

f f f t t a b  sup : ,b gn s .

2. Define regulated function. If f  be a regulated function on a compact interval a b,  of R  into a

Banach space X . Prove that at each t a b ,  the function F a b X: ,  , F t f
a

tb g  z ,

t a b ,  is continuous.

3. Let f  be a regulated function defined on a compact interval a b,  of R  into a Banach space

X . Show that for each positive real number , there is a positive real number   such that for

any increasing sequence a a t a a t a a bi i i n         1 1 2 1,..., ...  of points of a b, .

such that a ai i  1  , i n 1 ,    f t dt f t a a
a

b

i i i
i

n

b g b gb gz    




1
1

1

.

���
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Unit - 12
Differential Equations

Structure of the Unit
12.0 Objectives

12.1 Introduction

12.2 First Order Differential Equations

12.3 Approximate Solutions

12.4 Lipschitz’s Property

12.5 Locally Lipschitz

12.6 Maximal Integral Solution

12.7 Summary

12.8 Answers to Self Learning Exercise

12.9 Exercises

12.0 Objectives
The present unit is devoted to differential equations. Existence and uniqueness theorems for ordinary

differential equations are proved.

12.1 Introduction
In many practical problems we come across with a differential equation which cannot be solved by

one of the standard methods known so far. Vaious methods have been formulated for getting to any
desired degree of accuracy the numerical solution of the above mentioned type of differential equation with
numerical confficients and given conditions. We have studied the Picard’s integration method for finding an
approximate solution of the initial value of the form

dy
dx

f x y y x y , ,b g b g0 0 ...(1)

Theorems which state the conditions under which an initial value problem of the form (1) has at
least one solution, only one solution are called existence theorem and uniqueness theorem respectively.
The purpose of this unit is to introduce differential equations. Starting with the definitions of a differantial
equation and its solution, existence and uniqueness theorems for ordinary differential equations are
obtained.

12.2 First order Differential Equations

Throughout this unit X denotes a Banach space over the real field R f,  denotes a function of a

single real variable t  with values in X . Further if f  is differentiable, its derivative 
df
dt  will again be

considered as a function with values in X .
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Definition : Let I be an interval of R W,  be a subset of a Bananch space X  over K  and let g  be a
continuous map of I U  into X . Then an equation of the type

dx
dt

g t x t x I W  , , ,b g b g
is called a differential equation.

Definition : A differentiable map f I W;   is called an integral solution of the differential equation

dx
dt

g t x ,b g  if and only if Df t g t f tb g b gc h ,  for each t I . An integral solution of the differential equa-

tion is also called an integral solution for g .

Now let t x0 0,b g  be an interior point of I W . Let I '  be an open subset of W containing x0 .

Then a differentiable map h : I W' '  is called an integral solution for g  at t x0 0,b g  if h t x0 0b g  and h  is
an intgral solution for restriction of g  to I W' ' .

A map f I W W; ' '   is called a local flow for g  at t x0 0,b g  iff for each x W ' , f t x x0 ,b g 
and the map  : 'I W ,  t f t xb g b g ,  for t I '  is an integral solution for g at t x0 ,b g . Thus f  is a local

flow for g at t x0 0,b g  iff f t x x0 ,b g   and D f t x g t f t1 , ,b g b gc h  for each x W ' .

Theorem 1 : Let I be an open integral of R,  let W  be an open subset of a Banach space X  over K . Let

t x0 0,b g  be point of I W  and let g be a continuous map of I W  into X . Then a continuous map h :

I W  is an integral solution for g  at t x0 0,b g  iff for each t I

h t x g s h s ds
t

tb g b gc h  z0
0

, .

Proof : Given that g  and h  are continuous so the map s g s h s , b gc h  of I into X  is continuous.

Firstly let h  be an integral solution for g at  t x0 0,b g , then clearly

h t x g s h s ds
t

tb g b gc h  z0
0

,

for each t I

Next let for each t I

h t x g s h s ds
t

tb g b gc h  z0
0

, ,

then h  is differentiable in I  and its derivative is the map s g s h s , b gc h  and so h  is an integral solution for

g at t x0 0,b g .
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12.3 Approximate Solution

Let  0  be a real number. A differentiable map f I W:   is an approximate solution within 

or an -approxmate solution for the differential equation 
dx
dt

g t x ,b g  if f t g t f t' ,b g b gc h  for all

t I .

12.4 Lipschitz’s Property

Let f  be a function on a subset W of a Banach space X  over K into a Banach space X  over

K . Let V be any subset of W  and let c be any positive real number, then f  is said to be c  lipschitz on
V iff for all x  and x'  in V

f x f x c x xb g b g  ' '

Let I be any subset of R and let g be a function on I W into Y . Then g is said to be c  Lipschitz
on V uniformly with respect to I iff for all t I  and all x  and x'  in V

g t x g t x c x x, , ' 'b g b g  

Now we shall prove a lemma which compares two approximate solutions of a differential equa-
tion. We first prove an anxillany lemma.

Lemma 2 : let u  be a non-negative continuous function on an interval 0 0, ,c cl q b g  satisfying the inequality

u tb g  at + k u s ds
t b g
0z ...(1)

for all t c 0, , then

u t a
k

ektb g c h 1  for t c 0,

Proof : Let v t u s ds
tb g b g z0 ,

then v t u t v' ,b g b g b g 0 0  and so inequality (1) reduces to v t'b g   at  k v tb g, ...(2)

which is a differential inquality.

Taking w t e v tktb g b g , then

w t e v t kv tkt' 'b g b g b gc h 

e kt  at by 2b gm r

Since w 0 0b g , the mean value inquality gives w t
tb g z0 as e dsks

Integrating the right hand side by parts, we obtain
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w t a
k

e kt ekt ktb g c h  2 1 ...(3)

Therefore v t e w tktb g b g by 3b gm r

  
a
k

e ktkt
2 1c h

since u t v t at kv tb g b g b g  ' , therefore

u t at a
k

e ktktb g c h   1

 
a
k

ekt 1c h
Lemma 3 : (Fundamental Lemma) :

Let I be an open interval of R. Let W be an open subset of a real Banach space X  and let g  be
a continuous map of I W  into X  such that g  is c-lipschitz on W uniformly with respect to I, where c is
a poritive real number. Let r1  and r2  be two positive real numbers such that for all t I

Df t g t f t r1 1 1b g b gc h ,  and Df t g t f t r2 2 2b g b gc h , ...(4)

i.e., f f1 2,  are r1  approximate solution and r2  approximate solution of the equation 
dx
dt

g t x ,b g  re-

spectively. Then for all s  and t  in I

f t f t f s f s e r r e
c

c t s
c t s

1 2 1 2 1 2
1b g b g b g b g b g    

F
HG

I
KJ




Proof : We can assume that s  0  and t 0 . Then

Df t Df t Df t g t f t g t f t g t f t g t f t Df t1 2 1 1 1 2 2 2b g b g b g b gc h b g b gc h b gc h b gd i      , , , ,

   Df t g t Df t g t f tt1 1 2 2b g e j b g b gc hb g, ,

 g t f t g t f t, ,1 2b gc h b gc h

   r r g t f t g t f t1 2 1 2, ,b gc h b gc h by 1b gm r
   r r c f t f t1 2 1 2b g b g (  g  is c-Lipschilz on W)

Taking r r r 1 2  and f t f t f tb g b g b g 1 2 , we have

Df t r c f tb g b g 
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So by mean value inquality for t 0 , we have

f t f r c f u
tb g b g b gd i  z0
0

du

But f u f u f fb g b g b g b g  0 0

Hence for each u  in 0, t , we have

f t f r c f t c f u f dx
tb g b g b gd i b g b g    z0 0 0

0
...(2)

Putting f t f h tb g b g b g 0  and r c f b | 0b g ,

Then (2) reduces to

h t bt c h u du
tb g b g  z0

and therefore by Lemma 2, we have

h t b
c

ectb g c h 1  for t I

Rewriting the values of h tb g and b , we have

f t f
r c f

c
ectb g b g b g c h 


0

0
1

Hence

f t f t f fb g b g b g b g  0 0




 
r c f

c
e fct0

1 0
b g c h b g

  
r
c

e f ect ct1 0c h b g

Hence again rewriting the values of f tb g  and r , we have

f t f t r r
c

e f s f s ec t s c t s
1 2

1 2
1 21b g b g e j b g b g 


   

s t 0 0,

If x f s1 1 b g  and x f s2 2 b g  be their initial values at s I . Then for all t I , we have

f t f t
r r

c
e x x ec t s c t s

1 2
1 2

1 21b g b g b g e j 


    ....(3)
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Now we shall make use of the fundamental lemma in proving the following theorems

Theorem 4 : (Uniqueness Theorem)

Let I be an interval in R, W a subset of a Banach space X over K and let g I W X:   be a
continuous function c-Lipsehitz in x X , If there are two exact solutions, f1  and f2  : I X  of the

differential equation 
dx
dt

g t x ,b g  and if f s f s1 2b g b g  for s I , then the functions f1  and f2  are identical

in the interval I.

Proof : Putting f s f s1 2b g b g , r r1 20 0 ,  in the inquelity of the fundamental lemma, we have

f t f t1 2 0b g b g   for t I

 f f1 2

Hence the theorem.

Theorem 5 (Existence Theorem)

Let I be a closed interval in R, W be a closed set in a Banach space X  and g  : I W X   be

a continuous function which is c-Lipschitz in x X . Let s x I W, ,0b g   for given r 0 , let f I X:   be

an r-approximate solution of the differential equation 
dx
dt

g t x ,b g  such that f s xb g  0 , then there exists in

I an exact solution  : I X  of the differential equation such that  s xb g 0 .

Proof : Let rnl q  be a decrearing squence of positive real numbers such that limn nr
 0 . For each n N ,

let f I Xn :   be an rn  approximate solution such that f s xn b g  0 . By the fundamental lemma, we have

f t f t
r r

c
en p

n p c r sb g b g e jb g 


 1  for all t I .

Let 
e

c
m

c t s 


b g 1
 for all t I . Then

f t f t r r mn p n pb g b g d i  

and thus fnl q  is a cauchy squance. Therefore the squence fnl q  has a limit.

Let limn nf


 , then   is a continuous function I X .

Since t f t I Un, b gc h   for all n N  all t I  and since U is a closed set in X ,  therefore t t I U,b gc h 

for all t I .

Also each fn  is an rn -approximate solution, therefore
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Df t g t f t rn n nb g b gc h , ,

and so by the mean value inquality, we have

f t x g u f u du r t sn ns

t

nb g b gc h   z0 ,

since limn nf t t


b g b g

and lim , ,
n n s

t

t

t
g u f u du g u u du


 zz b gc h b gc h

0

Therefore in the limit n , the above inquality reduces to

 t x g u u du
s

tb g b gc h  z0 ,

Which gives  ' ,t g t tb g b gc h

Hence   is an exact solution of the differential equation with  s f s xnb g b g  0 .

12.5 Locally Lipschitz

Let I be an interval in R, W be a subset of a real Banach space X . A function g I W X:    is

locally Lipschitz if for each point t x I W0 0, ,b g   there exists a neighbourhood J V  of t x I W0 0,b g 

and c0  such that

g t x g t x c x x, ,1 2 1 2b g b g  

for each t J  and x x V1 2,  .

In other words g is locally Lipschitz, if the restriction of g  to J V  is c-Lipschitz in x X .

Theorem 6 (Global Uniqueness Theorem) :

Let I be an interval in R, W be a subset of a Banach space X  and g I W X:    be a locally
Lipschitz function. If there are two exact solutions f1  and f2  : I X  of the differential equation

dx
dt

g t x ,b g  and if they are equal for one value toI , then they are identical in the entire I.

Proof : Let J be a subset of I given by

J t I f t f t : 1 2b g b gm r
Now we shall establish that the set J is simultaneously open and closed in I.

Since the function f f1 2  is continuous, therefore J is a closed set.

Now let f t f t x1 0 2 0 0b g b g 
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Since g  is locally Lipschitz, there exists a neigbhbourhood N of t x0 0,b g  in I W  as well as a real

number k 0  such that g is k-Lipschitz in N. Let  0  be such that t I  and t t 0   imply that

t f t, 1b gc h  and t f t, 2b gc h  are in N. Then the uniqueness theorem 4 yields f t f t1 2b g b g  for all

t I t to   0  , . This shows that J is open in I.

Since I is connected set and J is both open and a closed set in I, the theorem is proved.

Theorem 7 : Let I be an open interval of R, let W be an open subset of a real Banach space X, let g be
a continuous map of I W  into X  such that there esixts two real numbers b  and c  both greater than 0,

sup , : ,g t x t x I W bb g b gd i  

and g  is c  Lipschitz on W uniformly with respect to all compact subsets of I. Let t xo , 0b g  be any point

of I W  and let r be a real number such that 0 1 r  and the closed ball B x r W0 2,b g . Let a be a real

number such that 0 a r bc/  and the interval J t a t a I   0 0,l q .

Then for each x B x r 0 ,b g , there exists a unique map h J B x rx : , 0 2b g  such that hx  is an

integral solution for g at t x0 ,b g  . Moreover the map

f J B x r B x r f t x h tx: , , , ,  0 0 2b g b g b g b g  is a continuous local flow at t x0 0,b g  for g.

Furthermore, there is a positive real number e such that the function x hx  is a e-Lipschitz on

B x r0 ,b g .

Proof : Let x B x r 0 2,b g  and Hx  be the set of all continuous functions h J B x r: , 0 2b g  such that

h t x0b g . Then Hx  is a closed subset of the complete metric space Z of all continuous functions of J into

B x r0 2,b g  with the topology of uniform convergence on J and so Hx  is itself is a complex subspace of Z.

Let ex  be the function on Hx  such that for all h Hx  and all t J

e h t x g s h s dsx t

tb gc hb g b gc h  z ,
0

,

then for all t J , e h t B x rx b gc hb g b g 0 2,  and so e hx b g  is a continuous map of J into B x r0 2,b g .

Since e h t x ex xb gc hb g0  ,  is a map of Hx  into itself for each h1  and h2 in Hx , we have

e h e h r h hx x1 2 1 2b g b g   ...(1)

therefore by Banach fixed point theorem, there is a unique h Hx x  such that

h t e h t x g s h s dsx x x xt

tb g b gc hb g b gc h   z ,
0

for each t J  and h t xx 0b g   and so hx  is an integral solution for g at t x0 ,b g .
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It also follows that f  is a local flow for g  at t x0 0,b g .

To prove the last part of the theorem, let x and y be any two points of B x r0 ,b g . Then

h e h e h e hx y x x x y x  b g b g b g

  sup :e h t e h t t Jx x y xb gc hb g b gd ib g{ }
 x y ...(2)

Hence

e h e e h r h e h ty x y y x x y xb g b gd i b g   by 1b gm r

 r x y , by 2b gm r
therefore for any natural number n

e h e h r x yy
n

x y
n

x
nb g b g  1 ...(3)

and so

h e h h e h e h e hx y
n

x x y x y x y x     1 2b g b g b g b g ......

  e h e hy
n

x y
n

xb g b g1

    1 r r x yn....c h by and2 3b g b gm r





1

1 r
x y ...(4)

Again for any natural number n

e h h e h e hy
n

x y y
n

x y
n

yb g b g d i  

  r e h e hy
n

x y
n

y
1 1b g d i by 1b gm r

 r h hn
x y

therefore

lim
n y

n
x ye h h


 b g 0 0 1 r

 


lim
n y

n
x ye h hb g ...(5)

Consequently
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h h h e hx y n x y
n

x  


lim 1b g by 5b gm r





1

1 r
x y by 4b gm r

and so the map x hx  is e-Lipschitz on B x r0 ,b g , where e r



1

1 . Now the map x hx  is e-Lipschitz

implies that it is continuous and that f  is continuous.

12.6 Maximal Intergal Solution
Let I be an open interval of R, let W be an open subset of a real Banach space X, and let g be a

continuous map of I W  into X  such that g  is c-Lipschitz on W  uniformly with respect to all compact

subsets of  I, where c is a positive real number. Let t x0 0,b g  be any point of I W , and F be the set of all

integral solutions for g at t x0 0,b g  with open domains. If f1  and f2  are any two members of F then by

Remark 1, f1  and f2  coincide on D f D fm m1 2b g b g . Let f  be the union of all members of F  and J  be

the union of domains of the members of F . Then J is an open interval of I and f  is an integral solution for

g at t x0 0,b g , called the maximal integral solution for g at t x0 0,b g .

Theorem 8 : Let a b,b g  be an open interval of R, let W be an open subset of a real Banach space X and

let g be a continuous map of a b W,b g  into X  such that g is c-Lipschitz on W uniformly with respect to

a b,b g . Let f  be the maximal integral solution for g at a point t x0 0,b g  of a b W,b g  with domain a b' , 'b g
such that there exists a positive real number r  with the property that a a r' , 'b g  and b r b' , 'b g  are con-

tained in a b,b g , the closures of f a a r' , 'b g  and f b r b' , 'b g  are contained in W, and there is a positive
real number m such that

g t f t m, b gc h 
for all t a b ' , 'b g . Then a a'  and b b'

Proof : Since f  is the maximal integral solution for g at t x0 0,b g , therefore by theorem 1 for each t a b ' , 'b g ,
we have

f t x g s f s ds
t

tb g b gc h  z0
0

,

and f t f t m t t1 2 1 2b g b g b g    for all t t a b1 2, ' , 'b g
Hence lim't a

f t


b g  and lim't b
f t


b g  exist and belong to W.

If possible, suppose that a a' . Then by theorem 7, there is an integral solution f '  for g at

a f t
t a

' , lim
'
b ge j . So Df Df'  on a a t' , 'b g , where t '  is a positive real number and so f f'  is constant

on a a t' , 'b g .
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Now  lim ' lim
' 't a t a
f t f t

 
b g b g

therefore f f'  0  on a a t' , 'b g .

This shows that f defined on a b' , 'b g  is not a maximal integral solution for g at t x0 0,b g , which is a
contradiction to the given condition.

Hence a a' . Similarly, we can show that b b' .

Self-Learning Exercise
1. Write whether the following statements are true or false.

(a) Theorem under which an initial value problems of the form

dy
dx

f x y y x y , ,b g b g0 0  has at least one solution is called uniqueness theorem.

(b) If f1  and f2  be two integral solutions for a continuous map g I W X:    at a point

t x I W0 0,b g   with open domains I1  and I2  respectively. Then f1  and f2  coincide on

I I1 2 .

(c) A function g I W X:    is locally lipschitz if for each point t x I W0 0,b g  , there

exists a nb d J V  of t x0 0,b g  and c  0  such that

g t x g t x c x x, ,1 2 1 2b g b g  

for each  t J  and x x V1 2,  .

12.7 Summary
In this unit, we have seen that a fundamental lemma compares two approximate solutions of a

differential equation. We also see that a local flow always exists if a continuous map g I W X:  
satisties Lipschitz condition.

12.8 Answers to Self-Learning Exercise
1. (a) False (b) False (c) True

12.9 Exercises

1. Let I  be an interval in R , W  a subset of Banach space X  and let g I W X:    be a
continuous function c -Lipschitz in x X . If there are two exact solutions f1  and f I X2 : 

of the differential equation 
dx
dt

g t x ,b g  and if f t f t1 0 2 0b g b g  , t I0   then the function f1  and

f2  are identical in the interval I .

2. Let g t x,b g  be a real valued continuous function defined in the set t a , x b  in R2 , such that

g t x,b g  0  for t x,  0  and g t x,b g  0  for t x,  0 . Show that x  0  is the unique solution of

the differential equation 
dx
dt

g t x ,b g  defined in a nbd  of 0  and such that x 0 0b g  .
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