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Course Introduction

The Present book entitled ‘‘Mechanics’’ has been designed so as to cover the

unit-wise syllabus of Mathematics-Fifth paper for M.A./M.Sc. (Previous) students

of Vardhaman Mahaveer Open University, Kota. It can also be used for competitive

examinations. The basic principles and theory have been explained in a simple,

concise and lucid manner. Adequate number of illustrative examples and exercises

have also been included to enable the students to grasp the subject easily. The units

have been written by various experts in the field. The unit writers have consulted

various standard books on the subject and they are thankful to the authors of these

reference books.



UNIT - 1
D’Alembert’s Principle

Structure of the unit
1.0 Objective

1.1 Introduction

1.2 Definitions

1.3 Moment of Inertia and Product of Intertia of Some bodies

1.4 Theorem of Parallel axes, M.I. about any line in space Principal axes and Moments

Self Learning Exercise - 1

1.5 D’Alembert’s Principle, General equation of motion

1.6 General equation of motion

Self Learning Exercise - 2

1.7 Motion of Centre of Inertia

1.8 Motion relative to the centre of Inertia

1.9 Summary

1.10 Exercise

1.0 Objective

This unit provides a general overview of D’Alembert’s Principle. Moment of Inertia and product
of Inertia of some bodies, After reading this unit you will be able to learn

1. About rigid body and effective forces, impressed forces

2. D’Alembert’s Principle

3. Motion of Centre of Inertia

4. Motion relative to the centre of Inertia

1.1 Introduction
D’Alembert’s (1717-1783) was a French Mathematician. He is remembered for D’Alembert’s

Principle for the solution of wave equation.

D’Alembert’s suggested an important method by which the equations of motion of a rigid body
may be obtained without writing the equations of motion of several particles and without knowing the
unknown forces. By using D’Alembert’s Principle we will be able to convert a dynamical problem into
a statical one. Also we will apply D’Alembert’s Principle to derive the general equations of motion of a
rigid body for finite forces.

1.2 Definitions

Impressed Forces :

The external forces acting on a body are called impressed forces. For example, if a body is tied to
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string then tension in the string is an impressed force. Similarly weight of a body is also an impressed force.

Effective Forces :

The force possessed by an accelerated mass particle is known as effective force i.e. product
of mass and its acceleration of moving particle is called its effective force. For examples, if m  be the mass

of a particle and its acceleration be f , then m f  is called effective force of this particle. Thus m d x
d t

2

2  is

the effective force parallel to the axis of x . Similarly m
d s
d t

2

2  and m
v2


 are effective forces on the particle

along the tangent and normal respectively.

Also   m d x
d t

m d s
d t

m v2

2

2

2

2

, ,


 etc. are called reversed effective forces of a particle parallel

to x -axis, tangent and normal respectively..

Newton’s Second Law of Motion :

Newton’s second law state that, Applied force = effective force

If F  is the applied force or external force and m  be mass of particle, f  being the acceleration,
then F m f

Equations of Motion :

If x y z, ,b g  be the coordinates of a moving particle of mass m , at any time t  and F F F1 2 3, ,  be the
components of forces parallel to three axes, then by Newton’s Second Law, the equations of motion of the

particle are m d x
d t

F m d y
d t

F m d z
d t

F
2

2 1

2

2 2

2

2 3  , , . Thus for a particle motion, the impressed force

and reversed effective force are in equilibrium.

Rigid Body : Definition :

A rigid body is formed by material particles whose mutual distances do not change under all
circumstances of motions. For a rigid body, we assume that

(i) The action between its two particles act along the straight line joining them, and

(ii) The action and reaction between them are equal and opposite.

1.3 Moment of Inertia and Product of Inertia of some bodies
In the study of motion of rigid body, in general linear and rotational motion, two very important

entities moment of inertia (M.I.) and product of inertia (P.I.) are needed, these two entities change with
the changing shape and size of the body even if its mass is not altered. Now we shall define moment of
Inertia and product of Inertia. Also we shall write results of moment of Inertia and product of Inertia of
some bodies.

Moment of Inertia :

Definition 1 : Let m  be the mass of an elementary particle of a body of mass m  and r  be the

distance of this element from the given line, then mr 2  is called the moment of Inertia of the given body
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about the given line, where the summation is taken for all the particle of the body. M.I. of a body is clearly
a scalar quantity.

Definition 2 : For mass of M of the body, we can always find a lenght k  such that

mr M k k
mr
M

2 2 2
2

    .

This length k  is called the “radius of gyration” of the body about the given line.

The radius of gyration of a body rotating about a given axis is equal to the distance from the axis of
rotation, the square of which when multiplied by the total mass of the body, will give the moment of Inertia
of the body about the axis, Moment of Inertia of a body is always positive or zero only.

Similarly, we can define M.I. of a body with respect to a plane or a point.

Some Importants Symbols :

If x y z, ,b g  be the coordinates of a point P , then its distance from x-axis is PA y z 2 2 , as its

distance from x y   plane is PB zb g  and its distance from origin    OP x y z2 2 2 , then the

moments of Inertia of the body about the coordinates ox oy,  and oz  are generally denoted by A B,
and C .

Figure 1.1

Thus A m PA m y z    b g c h2 2 2  M.I. about ox

B m z x   2 2c h  M.I. about oy

C m x y   2 2c h  M.I. about oz

Similarly, M.I. about origin (about a point) is denoted by H  and is defined as

H m OP m x y z    b g c h2 2 2 2

Moment of Inertia of body about y z  plane, z x  plane and x y  planes, are defined by

 A m x2 ,  B m y2 ,  C mz2  respectively..

Important result about a Plane lamina:

The Moment of Inertia of a plane lamina about an axis perpendicular to its plane is equal to the sum
of the M.I.’s about any two perpendicular axes in the plane which intersects the first axis. Let the plane of

z

z
x x

y

y

A

B

Px yz, ,a f
m
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the lamina be x y -plane (as is Fig. 1.1) so that z  0  for all points lying on the plane. Any axis
perpendicular to the plane be chosen as axis of z .

Then M.I. about z -axis is   C m x y2 2c h

M.I. about x -axis is A m y z m y m y     2 2 2 20c h c h

M.I. about y -axis is B m z x m x   2 2 2c h
then clearly C A B 

Product of Inertia :

Definition : : Let m  be the mass of elementary particle of a body situated at the point

x y,b g referred to two mutually perpendicular lines ox  and oy , then m x y  is called the product of
Inertia (P.I.) of the body with respect to the lines ox  and oy .

Symbols : If a system of rectangular axes ox oy oz, ,  be taken in space and if coordinates of any

element of mass m  of the body referred to these axes be x y z, ,b g , then the quantities m y z mz x ,
and m x y  are called the Products of Inertia with respect to the pair of axes oy oz,b g , oz ox,b g  and

ox oy,b g  respectively, and are usually denoted by D E,  and F  respectively, thus

D m y z , E m z x , F m x y
Product of Inertia of any particle may be positive, negative or zero. For example, if the system

consists of only two particles, each of mass m , at the points 2 1 4, , b g  and 3 2 2, ,b g
then D m m m m        4 1 2 2 4 4 0b g b g

E m m m m m         2 4 3 2 8 6 2b g b g
F m m m m m      2 1 3 2 2 6 8b g b g

Moment of Inertia in some Standard Cases :

1. M.I. of a uniform rod of length 2a  and mass M , about an axis through an extermity

and perpendicular to it is = 
4
3

2Ma

i.e., M.I. of rod AB  about  line L A L  is 
4
3

2Ma

Figure 1.2

A B
G

2 a

L

L1
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2. M.I. of a uniform rod of length 2a  and mass M  about an axis through the mid

point and perpendicular to it is = 
1
3

2M a

i.e. M.I. of rod AB  about line L G L  is 
1
3

2M a

Figure 1.3

3. M.I. of a uniform rod of length 2a  and mass M about an axis through one extremity

and making an angle   with the rod is 
4
3

2 2M a sin 

i.e. M.I. of rod AB  about line L A L  
4
3

2 2M a sin 

Figure 1.4

4. M.I. of a uniform rectangular lamina of mass M  and sides of length 2a  and 2b
about a line through its centre and

(i) Parallel to side 2
1
3

2a M b

i.e. M.I. of lamina ABCD

about ox M b
1
3

2

(ii) Parallel to side 2 3
2b M a

i.e. M.I. of lamina ABCD  about o y M a
3

2 Figure 1.5

(iii) Perpendicular to its plane  
1
3

2 2M a bc h

i.e. M.I. of lamina ABCD  about oz M a b 
1
3

2 2c h

L1

L

GA B
2 a

2a

GA B

L

L



z y

C

x

BA

D

2 a

2 b
O
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5. M.I. of a rectangular parallelopiped of mass M  and length of edges 2 2 2a b c, ,
about an axis through the centre and parallel to

(i) edge of length 2 3
2 2a M b c c h

i.e. M.I. of rectangular parallelopiped

about ox M b c 
3

2 2c h

(ii) edge of length 2 3
2 2b M a c c h

i.e. M.I. of rectangular parallelopiped about o y M a c 
3

2 2c h

(iii) edge of length 2 3
2 2c M a b c h

i.e. M.I. of rectangular parallelopiped about o z M a b 
3

2 2c h
6. M.I. of a circular ring of mass M  and radius a  about

(i) a diameter is 
1
2

2M a

i.e. M.I. about diameter AB


M a2

2

(ii) an axis through centre perpendicular

to its plane is  M a2

i.e. M.I. of circular ring about OL M a 2

7. M.I. of a circular disc of mass M  and radius a  about

(i) a diameter is 
1
4

2M a

i.e. M.I. of circular disc

about diameter AB  = 
M a
4

2

Figure 1.6

O

A B

B1A1

C1D1

C
D z

x

y

2a

2 b

2 c

Figure 1.7

2a BA
O

L

Figure 1.8

A B
O

2 a

z
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(ii) about an axis through the centre and perpendicular

to its plane 
M a2

2

i.e. M.I. of circular disc about o z  is 
M a2

2

8. M.I. of an elliptic disc of mass M  and major and minor axes of length 2a
and 2b  about

(i) Major axis = 
M b
4

2

i.e. M.I. about o x M b
4

2

(ii) Minor axis  
M a
4

2

i.e. M.I. about o y M a
4

2

9. M.I. of a hollow sphere (spherical shell) of mass M  and

radius a  about one of its diameter  
2
3

2M a

i.e. M.I. of hollow sphere about diameter

AB  (or CD ) is 
2
3

2M a

10. M.I. of a solid sphere of mass M and radius a about one of its diameter

is 
2
5

2M a

i.e. M.I. of solid sphere about diameter AB M a
2
5

2

Figure 1.9

B1

A1 A

y
z

B

2aO

2b

x

Figure 1.10

A B

C

D

O

2a

Figure 1.11

O
A B

2 a
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11. M.I. of a solid ellipsoid of mass M  and length of axes 2 2a b,  and 2c  about

(i) The axis of length 2a  is  
M b c
5

2 2c h

i.e. M.I. of solid ellipsoid

about o x M b c 
5

2 2c h

(ii) the axis of length 2b  is  
M a c
5

2 2c h

i.e. M.I. of solid ellipsoid

about o y M a c 
5

2 2c h

(iii) the axis of length 2c  is  
M a b
5

2 2c h

i.e. M.I. of solid ellipsoid

about o z M a b 
5

2 2c h

Product of Inertia of some Standard Cases :

1. Product of Inertia of rectangular plate of mass M  and length of sides 2 2a b,

about its sides o x  and o y  is  M a b

Figur 1.13

2. P.I. of an elliptic quadrantal disc of mass M  and major and minor axis of lengths
2 2a b,  with respect to its axes (major and minor)

o x o y,  is 
M ab
2

Figure 1.12

A

B

B1

A1 b

c
O x

y

z

a

2a

O

O

y

x

Figure 1.14

B

O
AA1

B1

y

xa

b
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3. P.I. of a semi circular disc of mass M  and radius a about the diameter OAb g  and the

tangent at its end OYb g  is 
4

3
2


M a

Figure 1.15

4. P.I. of a semi circular wire of mass M  and radius a  about the diameter and tangent

at its extremity 
2 2M a


1.4 Theorem of Parallel Axes

1. For Moment of Inertia : The M.I. of a body about any given axis is equal to the M.I.
about the parallel axis through the centre of gravity of the body together with the M.I. of whole mass of the
body placed at C.G. taken about the given axis.

Figure 1.16

i.e. M.I. of body about o x   M.I. about G x   M.I. of whole mass placed at G  about o x

Similarly for o y  and o z .

2. For Product of Inertia : The P.I. of a body with respect to a pair of given rectangular
axes is equal to the P.I. with respect to the pair of parallel axes through the C.G. of body together with the
P.I. of whole mass placed at C.G. with respect to the given axes.

As in Figure 1.16

P.I. about o x o y,   P.I. about G x G y  ,  P.I. of mass M  placed at G , about o x o y, .

Similarly for o y o z,  and o z o x, .

y

GO A
x

a

y

x

z

Z1

Y1

X1G
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Moment of Inertia about any line in space :

The moment of a body about three mutually perpendicular axes o x o y oz, ,  at a point o  are
A B C, ,  respectively and the Products of Inertia with respect to the pair of axes o y oz o z ox o x oy, ; , ; ,

be D E F, , , then M.I. of body about line POQ , whose direction cosines are l m n, ,  is

Al B m C n Dmn E nl F l m2 2 2 2 2 2    

Figure 1.17

Principal Axes and Principal Moments :

 It is always possible to find an orientation of the coordinates axes for the body such that all the
three products of Inertia vanish simultaneously. Then the three mutually perpendicular axes of coordinates
axes are known as principal axes and the correspoinding Moment of Inertia as principal moments.

Self Learning Exercise - I :

1. Is Moment of Inertia of a body is always positive or zero?

2. Is P.I. of a body always positive or zero?

3. Write M.I. of a uniform rod of mass M  and length 2a  about an axis through an
extremity and perpendicular to it.

4. Give two examples of impressed forces.

1.5 D’Alembert’s Principle
Statement : “Under all circumstances of motion, the reversed effective forces acting on each

particle of the body and the external forces form a system in equilibrium among themselves”.

Proof : Suppose a rigid body be in motion. At time t , let r
  be position vector of a particle of

mass m . It F
  be the resultant of external forces and R  be the resultant of internal forces (i.e. mutual

actions) acting on it, then by Newton’s Second Law

m d r
d t

F R
2

2


 

 

x

y

z

O

P

Q
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or F R m d r
d t

 


  
2

2 0 ...(1)

This equation shows that the three forces F
 , R

  and 
F
HG

I
KJm d r

d t

2

2  are in equilibrium.

Similarly we can argue for different particles of the rigid body. Hence for the rigid body, we have

F R m d r
d t

 


    
F
H
GG

I
K
JJ 

2

2 0 ...(2)

But the internal forces i.e. mutual actions of a body are in equilibrium i.e. R


  0 , then from eqn

(2), we have

F m d r
d t




  
F
H
GG

I
K
JJ 

2

2 0 ...(3)

where 
F
HG

I
KJ m d r

d t

2

2  is reversed effective force

therefore eqn (3) shows that, the reversed effective forces acting at each particle of the system
(rigid body) and the external (impressed) forces on the system are in equilibrium.

This proves the D’Alembert’s Principle.

Angular Momentum of a System of Prticles : Let r
  be the position vector, of a particle of

mass m  relative to a point o , then the vector sum H  (say),

H r m v m r v   
   

   is called angular momentum of the system about the point o ,

where v
  is the velocity or moment of momentum is called angular momentum.

Centroid of System : Let r
  be the position vector of any particle of mass m  of the system (rigid

body) relative to a point o , then the point with position vector

r
m r
m




 
  is defined as the centroid of the system.

 Also, if v
  be the velocity of the particle of mass m  and V

  be the velocity of the centroid, then

V d r
d t

m d r
d t
m

m v
m


 

  






11



1.6 General Equations of Motion
To deduce the general equations of motion of a rigid body from D’Alembert’s

Principle. (when froces are finite)

Let F F1 2

 
,  and F3


 be the components of external (impressed) forces parallel to the axes of

coordinates respectively acting on a particle of mass m  whose coordinates are x y z, ,b g  at
any time t .

Figure 1.18

Then the force whose components are

F m d x
d t

F m x1

2

2 1

 


F
HG

I
KJ  F

H
I
K , F m y2


F

H
I
K , and F mz3


F

H
I
K  at a point A x y z, ,b g  together

with similar forces acting at each point of the body forming a system in equilibrium, thus we get

F m x1 0  b g , F m y2 0  b g , F m z3 0  b g
or F m x1   ...(1)

F m y2   ...(2)

F mz3   ...(3)

these equations state that the sum of the components of the effective forces parallel to the coordi-
nate axes, are respectively equal to the components of impressed (external) forces parallel to the same
axes.

Refer fig. 1.18 amd taking moment about ox , we get

y F mz z F m y3 3 0     b g b g

or m y z z y y F z F      b g b g3 2 0

or m y z z y y F z F    b g b g3 2 ...(4)

Similarly, taking moment about o y  and o z , we get

z
F mz3



 

mb g
A x y z, ,b g

F my2


 

F mx1



 

O

y

x

12



m z x x z z F x F    b g b g1 3 ...(5)

and m x y y x x F y F    b g b g2 1 ...(6)

these equation {(4) to (6)} state that the sum of the moments of the effective forces about the
coordinate axes are respectively equal to the sum of the moments of the external forces about the same
axes.

The set of equations (1) to (3) and (4) to (6) are the general equations of motion of a rigid body.

Self Learning Exercise - 2

1. Write the statement of D’Alembert’s Principle.

2. Define angular momentum.

3. Write three general equations of motion of a rigid body for moments.

1.7 Motion of Centre of Inertia

(Motion of Translation)

To show that the centre of Inertia of a body moves as if all the mass of the body were
collected at it and as if all the external forces were acting at it in directions parallel to those in
which they act.

Let x y z, ,b g  be the coordinates of a particle of mass m . Further let x y z, ,b g be the coordinates

of Centre of Inertia of body of mass M , (i.e. m M  ), then M x mx , throughout the motion.

Now we shall find that how the equations of motion ( eqn  (1) to (3) of above article) can be
simplifed by a proper choice of coordinates. We shall be interested in the resolved parts of momentum
and the resolved part of the effective force of a system in any direction. Let the chosen direction be x -axis.

The resolved part of its momentum in x -direction

 m d x
d t

So that the resolved part of the momentum of whole system

 m d x
d t

 M d x
d t

m d x
d t ...(1)

13



Similarly in y  and z  directions

M d y
d t

m d y
d t

  and M d z
d t

m d z
d t

  ...(2)

Differentiating (1) and (2) with respect to t , we have

M d x
d t

m d x
d t

2

2

2

  ...(3)

M d y
d t

m d y
d t

2

2

2

2  ...(4)

M d z
d t

m d z
d t

2

2

2

2  ...(5)

But from general equation of motion

m d x
d t

F
2

2 1  , m d y
d t

F
2

2 2  , m d z
d t

F
2

2 3 

Hence,

M d x
d t

F
2

2 1 ...(6)

M d y
d t

F
2

2 2 ...(7)

M d z
d t

F
2

2 3 ...(8)

Equation (6), (7) and (8) are the equations of motion of a particle of mass M  placed at the centre

of Inertia acted upon by forces F F F1 2 3  , ,  parallel and equal to external forces acting at different
points of the body. Equations (6) to (8) are called equations of translation motion.

1.8 Motion Relative to the Centre of Inertia

(Motion of Rotation)

To show that the motion of a body about its centre of Inertia is the same as it would be if
the centre of Inertia were fixed and the same forces acted on the body.

Let x y z, ,b g be the coordinates of the centre of gravity G  of the body with respect to axes

o x o y,  and o z . Let P  be a particle (mass  m ) of the body, whose coordinates be x y z, ,b g . Let

coordinats of P  with respect to the axes G x G y ,  and G z  be   x y z, ,b g , so that

14



Figure 1.19

x x x   , y y y   , z z z   ...(1)

On differentiating these twice with respect to t , we get

  x x x   ,   y y y   ,   z z y   ...(2)

Now we have [From equation (4) to (6) of article 1.6]

m y z z y y F z F    b g b g3 2 etc. ...(3)

Using values from (2) in eqn (3), we have

m y y z z z z y y y y F z z F               b g c h b g c h b g b g    3 2

or m y z y z y z y z z y z y z y z y                     

      y F z F y F z F3 2 3 2b g b g

or m y z z y y z z y y z z y y z z y                      c h b g c h
      y F z F y F z F3 2 3 2b g b g

or m y z z y m y z z y m y z z y y z z y                      c h b g c h
      y F z F y F z F3 2 3 2b g b g ...(4)

Where m M   whole mass of the body

or M y z z y m y z z y y m z z m y                c h b g d i

            z m y y m z y F z F y F z Fd i d i b g b g3 2 3 2 ...(5)

Since coordinates of G  with respect to G x , G y  and G z  are (0, 0, 0), so we have

z
z'

y'

x'G
x y z, ,b g

O

y

x

m x y zb gb g, ,
 ' , ' , 'P x y zb g
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m x
m

m x

   

 0 0 ...(6)

m y
m

m y

   

 0 0 ...(7)

mz
m

mz

   

 0 0 ...(8)

also on differentiating these equations twice with respect to t

m x  0 ...(9)

m y1 0  ...(10)

mz1 0  ...(11)

Further from equation (6) to (8) [art 1.7]

M x F   1 ...(12)

M y F   2 ...(13)

M z F   3 ...(14)

multiplying eqn (13) by z  and eqn (14) by y  and subtracting, we have

M y z z y y F z F   c h b g3 2 ...(15)

Now on using eqn (7), (8); (10), (11) and (15) in eqn (5) we have

y F z F m y z z y y z z3 2 0 0 0             b g b g  

        y y F z F y F z F0 3 2 3 2b g b g
or m y z z y y F z F          b g b g3 2 ...(16)

Similarly two more equations can be obtained as

m z x x z z F x F          b g b g1 3 ...(17)

and m x y y x x F y F          b g b g2 1 ...(18)

These eqn [(16) to (18)] would have been obtained if we had taken G  as origin. These are
equations of rotational motion of the rigid body about a fixed point.

Remark :

In the above two articles we have shown that motion of translation and the motion of rotation can
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be considered independently. So these two articles prove the independence of translation and rotation.

Illustrative Examples :

Example - 1 : A cricular board is placed on a smooth horizontal plane, and a boy runs round the edge of
it at a uniform rate, what is the motion of the board?

Solution : Let mass of circular board be M  and mass of boy be m .

Figure 1.20

Let G  be centre of Inertia of the system. Let a  be radius of board. Now there is no external force
acting on the system in the horizontal direction so by D’Alembert’s Principle the centre of Inertia G  of the
system will remain at rest. Let x be distance of C G. . G  from point o , than

OG x M o m a
M m

ma
M m

 






. .
, a  constant

Thus we observe that G  is fixed and OG  is constant so that the centre of board o  describes a
circle with G  as centre and OG  radius.

Example - 2 : A uniform rod OA , of length 2a , free to turn about its end 0, revolves with uniform
angular velocity w  about its vertical oz  through o , and is inclined at a constant angle   to oz , show that

the value of   is either zero or cos
F
HG

I
KJ

1
2

3g
a w

.

Solution : OA  is rod of length 2a  and oz  be vertical. Consider an element PQ x   at  a distance

Figure 1.21

O
aMa f ma f

B
G Boya f

Board

x
X

Y

Z

H
N

A

GQ
W

P

mg

m
a

x w
2

 sin


O
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x o Pb g  from 0, whose mass will be 
m
a

x
2

 . Draw PN  perpendicular to o z . Then element

PQ  describes a circle of radius PN  about N . Hence the only effective force on the element PQ  is

m
a

x w x
2

2 sin  along PN  (by formula mr w2 ).  Hence reversed effect ive force is

m
a

x w x
2

2 sin
F
HG

I
KJ  along NP . The only external forces acting on the rod are its weight m g  and

reaction at o . By D’Alembert’s Principle the reversed effective forces and external forces are in equilib-
rium. To avoid the reactions, we take moments about the line through o , perpendicular to the plane of the
figure, we have

m g a m
a

x w x xsin sin cos   b g b g
F
HG

I
KJ 2

2

[  in ONP , ON x cos  and in OHG HG a, sin  ]

or m g a mw
a

x d x
a

sin sin cos   z2
2

0

2

2

     
F
HG

I
KJ

mw
a

a2 3

2
8

3
sin cos . 

     
4

3

2 2a w sin cos 

or m g a w a
g

sin cos 1 4
3

0
2


F
HG

I
KJ 

above gives us either sin  0 , i.e.   0

or 1 4
3

0 3
4

3
4

2

2
1

2     
F
HG

I
KJ

w a
g

g
a w

g
a w

cos cos cos  

Remark : If w
g
a

2 3
4

 , then 
3

4
1 12

g
a w

  cos  which is not possible. Hence in this case   0

only will be possible.

Example - 3 : A rod, of length 2a  is suspended by a string, of length l , attached to one end; if the string
and rod revolve about the vertical with uniform angular velocity, and their inclinations to the vertical be 
and   respectively, show that

3 4 3l
a





tan tan sin
tan tan sin

  
  

b g
b g

18



Solution : Suppose a  rod AB  of length 2a  and mass m  be suspended by a string OA  of length l .

Figure 1.22

OZ  be vertical through O . Consider an element PQ x b g  of rod AB  at a distance x from
end A . Then from the fig. 1.22, OH l cos , HA l sin

LP LD DP 

         HA DP l xsin sin 

EG a sin , AE a cos

HJ AE OJ OH HJ l a    , cos cos 

If the rod revolves with angular velocity (say) w , then by dynamics of particle, the reversed
effective force on P  is

m
a

x w LP m
a

x w l x
2 2

2 2    sin sinb g  along LP ...(2)

The external forces on the rod are tension T  (in string OA ) and weight m g  acting at G .

To avoid tension T , we take moments about lines through A  and point O , perpendicular to the
plane of the figure respectively.

First taking moment about A , we get

m g a m
a

x w l x xsin sin sin . cos      2
2 b g

     z m
a

w l x x dx
a

2
2

0

2
sin sin cos  b g

or g a w a l asin sin cos sin cos     
F
HG

I
KJ

2
24

3 ...(3)

p ...(1)

L
GQ

D 

A

P

B

mg

E

z

x

T

 l

O

x

J

H
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Also by taking moment about point o , we get

m g a l mw
a

l x l x dx
a

sin sin sin sin cos cos        zb g b g b g
2

0

2

2

   z mw
a

l l x l x x dx
a 2

2 2

0

2

2
sin cos sin cos sin cos sin cos       

 
F
HG

I
KJ

L
N
MM

m w
a

l x l xa
a2

2
0
2

2

0

2

2 2
sin cos sin cos   b g


F
HG

I
KJ 

F
HG

I
KJ

O
Q
PPl x x

a a

sin cos sin cos   
2

0

2 3

0

2

2 3

or g a l w l a lsin sin sin cos cos sin       b g c h2 2

 
F
HG

I
KJw a l a2

24
3

sin cos sin cos    ...(4)

Subtracting (3) from (4), we get

g l w l a lsin sin cos cos sin     2 2c h ...(5)

Now, dividng eqn (3) by eqn (5), we get

a
l

a l a

l a l

a l a

l a l
sin
sin

sin sin sin cos

sin cos cos sin

sin sin cos

sin sin cos



   

   

  

  








F
HG

I
KJ



4
3

4
3

2

2

2

2c h

sin
sin

sin sin cos

sin sin cos



  

  


F
HG

I
KJ



l a

l a

4
3

b g

   F
HG

I
KJsin cos sin sin sin sin sin cos       l a l ab g 4

3

l asin cos sin cos sin sin cos sin cos sin           b g b g
3

4 3

on multiplying by 3 and dividing by cos cos ,   we get

3 4 3l atan tan sin tan tan sin       b g b g





F
HG

I
KJ

3 4 3l
a

tan tan
tan tan

sin
sin

 
 


 ,  which is the required result.
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Example 4 : A thin heavy disc can turn freely, about an axis in its own plane, and this revolves
horizontalwith a uniform angular velocity w  about a fixed point on itself. Show that the inclination   of the

plane of the disc to the vertical is cos FHG
I
KJ

1
2 2

g h
k w , where h  is the distance of the Center of Inertia of the

disc from the axis and k  is the radius of gyration of the disc about the axis.

If w
g h
k

2
2  then the plane of the disc is vertical.

Solution : Let OA  is the horizontal axis (Fig - 1.23) in the plane of the disc and AZ  be vertical

Figure 1.23

line through A . Let OQ  be vertical line through O . When the axis OA  revolves horizontally
about O , the plane of disc will be slightly raised and suppose   is the inclination of the plane of disc to the
vertical.

Also distance of Centre of Inertia G  from axis OA  is given to be h i e OG h. . b g  and the plane
of disc makes an angle   with the vertical, so that the distance of M g  from the axis OA  is hsin .

Consider an element d m  at point P  and draw PN  and PL  perpendiculars to the verticals
through A  and O  ( PO  is perpendicular from P  on the axis OA). When the axis AO  revolves horizon-
tally about O , the element d m  describes a cricle of radius PN  about AZ  with N  as centre. The

reversed effective force on element d m  is d mw NP2  along NP . Applying triangle law of forces, this

force can be thought of as equivalent to two components forces d mw NL2  along NL  and d mw LP2

along LP .

The force d mw NL2  along NL  is parallel to line OA  and as such its moment about OA
vanishes.

Now, taking moment about OA , we get

M g h d mw LP OLsin .   2

       w d m OP OP2 sin cos b g b g

P dmw NP2

L

N

A X

Z Q

G



O

d ma f
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       w d m OP2 2sin cos  b g

       w M k2 2sin cos  c h  d mOP M k 2 2

where k  is radius of gyration of disc about axis.

or g h k wsin sin cos   2 2

or sin cos g h k w 2 2 0c h
 either sin 0 i.e.   0

or cos 
g h

k w2 2 or   F
HG

I
KJ

cos 1
2 2

g h
k w

when w g h
k

g h
k w

2
2 2 2 1 1    cos , which gives an impossible value of  . In that

cos  0  is the only possible value and thus the disc will remain vertical.

Example 5 : Two uniform spheres, each of mass M  and radius a , are firmly fixed to the ends of two
unifrom thin rods, each of mass m  and length l , and the other ends of the rods are freely hinged at a point
O . The whole system revolves, as in the governor of a steam-engine, about a vertical line through O  with
angular velocity w . Show that when the motion is steady, the rods are inclined to the vertical at an angle 
given by the equation

cos . 
 

 

g
w

M l a l m

M l a ml
2 2 2

1
2
1
3

b g
b g

Solution : Let OA  and OB  be two rods each of length l  and mass m . The spheres, each of radius

a  and mass M  are fixed at the ends A  and B . We take an elemant PQ x b g  at a distance x  from
point O  on either rod.

Figure 1.24

Let OZ  be vertical through O  and PE  and CZ  be perpendiculars on the vertical OZ . Let C

O

P
QG

m g m g

m g m g

F



G

l
E

Z
C Dmw c z2

a a
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be centre of one of the spheres. As the whole systems revolves as in the governor of a steam engine about
OZ , the element PQ  will describes a circle of radius PE  with E  as centre. Then the reversed effective

force on the rod at P  is 
m
l

x w x 2 sinF
HG

I
KJ  along EP , where   is angle which the rod makes with

vertical. By similar reasoning the reversed effective force on the sphere of the same side is M w ZC2 b g
along ZC .

Here from the figure, OP x  in OPE , PE x sin , OE x cos

OG l 2 , in OGF , GF l


2
sin ,  OF l


2

cos

in OCZ , OZ l a b gcos , CZ l a b gsin

Keeping the symmetry in consideration and taking moment about an axis through O
perpendicular to plane COD , we have

M w l a l a mw
l

x x dx
o

l2
2

   zb g b g l qsin . cos sin . cos   

  M g a l m g lb g sin . sin 
2

or M w l a m w
l

x

o

l
2 2

2 3

3
 

F
HG

I
KJb g sin cos sin cos   

  M g a l m g lb g sin sin 
2

or sin cos sin  M w l a mw l M g a l m g l2 2
2 2

3 2
 

L
NM

O
QP   L

NM
O
QPb g b g

or sin cos w M a l ml g M a l m l2 2
2

3 2
0 

RST
UVW   RST

UVW
L
NM

O
QP
b g b g

 either sin   0 0

or w M a l ml g M a l ml2 2
2

3 2
0cos  

RST
UVW   RST

UVW b g b g

 
 

 
cos .

g
w

M a l ml

M a l ml2
2

2
2

3

b g
b g
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Example  6 : A plank of mass M  is initially at rest along a line of greatest slope of a smooth plane
inclined at an angle   to the horizontal, and a man of mass M , starting from the upper end, walks down
the plank so that is does not move; show that he gets to the other end in time

2 
 

M a
M M gb g sin

where a  is the length of the plan k

Solution : Let ox  be horizontal plane and Let AB  be the plank of mass M , resting along the line of
greatest slope of the inclined plane OL . Let G  be C G. .  of plank, so weight of plank is acting through G ,

such that AG a


2 .

Figure 1.25

Let a man come down a distance x  in time t , starting from the upper and A  of plank. AE x ,
E  is position of man after a time t , so its weight M g1  is acting at E . If x  be the distance ( x AG , G ,
being C G. .  of system) of the centre of gravity G1 , of the plank with man on it from end A , then

x

M a M x

M M


 

 
2

or M M x M a M x    F
HG

I
KJb g

2 ...(1)

Differentiating this relation twice with respect to t , we get

M M x M x   b g   ...(2)

which gives acceleration of C G. .  of the system due to the motion of man.

Now the plank does not move so its C G. .  is fixed but man is moving downward, so there is a
translation motion. We should consider simply the motion of its C G. . , supposing as if all the external
forces act on it.

Thus the equation of motion of the C G. .  along the plane gives

M M x M g M g    c h  sin sin  ...(3)
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Using eqn (2), we get

   M x M M g sinb g 

or
d x
d t

M M
M

g
2

2 
 


sin

Integrating it with respect to t , we get

d x
d t

M M
M

g
 


F
HG

I
KJ sin . t C 1 , where C1  is constant of integration ...(4)

but when t  0 , 
d x
d t

 0

 O O C C O   1 1 , then eqn (4) reduces to

d x
d t

M M
M

g t
 


sin

again integrating with respect to t , we get

x M M
M

g t C
 


sin
2

22
...(5)

but again initially at A , x  0 . when t  0 , then

 from (5), x M M
M

g t
 

2
2sin

 


 
t M x

M M g
2 2

b g sin ...(6)

In order to get the time to reach the other end B  of plank we put x a  in eqn (6), we get

t M x
M M g

t M x
M M g

2 2 2



 

 


 b g b gsin sin 

Example 7 : A thin circular disc of mass M  and radius a  can turn freely about a thin axis OA , which
is perpendicular to its plane and passes through a point O  of its circumference. The axis OA  is compelled
to move in a horizontal plane with angular velocity w  about its end A . Show that the inclination   to the

vertical of the radius of the disc through O  is cos
F
HG

I
KJ

1
2

g
a w  unless w

g
a

2   and then   is zero.

Solution : Let the plane of the disc be a vertical plane and AZ  be vertical line through A  and OL
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Figure 1.26

be vertical line through O . When the axis OA  moves horizontaly round A , the disc will be raised
in its vertical plane and suppose that   is the angle which the radius OG  makes with the vertical in this
position.  Take an element dm  at P  and draw PN  and PC  perpendicular to the verticals through A
and O  respectively. P  will describe a circle of radius PN  with constant angular velocity w  about N  as
centre. Then the effective force is d mw PN2  along PN . The reversed effective force is d mw PN2

along NP , which is equivalent to component forces d mw NC2  along NC  and d mw CP2  along CP , by

triangle law of forces. But d mw NC2  along NC  is parallel to OA , so its moment about OA  vanishes.

Hence taking moments about OA

d mw CP OC M g a2 . sin  b g OG ab g ...(1)

But d m CP OC.   Product of Inertia of the disc with respect to vertical and horizontal
         lines through O  as axes.
      P.I. of the disc about parallel lines through
        G M a a sin cos b g b g [By parallel axes theorem]

 d mCP OC O M a. sin cos   2   ...(2)

Hence on using (2) in (1), we get

w M a M g a2 2 sin cos sin  

or sin cos a w g2 0 c h
which gives sin  0 , i.e.,   0

or a w g g
a w

g
a w

2
2

1
20cos cos cos     

F
HG

I
KJ  

F
HG

I
KJ



if w g
a

g
a w

2
2 1 1 

F
HG

I
KJ   cos . which is not possible, and in that cos  o  is

only possibility.

A

N

O



C
G

dmb g
dmw NP2

mg

P

LZ
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1.9 Summary
In this unit you have studied about M.I. and P.I. of some standard cases, about effective forces,

external forces, D’Alembert’s Principle, Motion of Centre of Inertia, Motion relative to the centre of
Inertia. Some illustrative examples have also been considered.

1.10 Exercise
1. A rough uniform board, of mass m  and length 2a , rests on a smooth horizontal plane and a man

of mass M  walks on it from one end to the other. Find the distance through which the board

moves in this time. Ans ma
M m

. : 2


F
HG

I
KJ

2. State and prove D’Alembert’s Principle.

3. Derive the general equation of motionof a rigid body using D’Alembert’s Principle.

4. Derive the equation of translation motion.

5. A rod of length 2a  revolves with uniform angular velocity w  about a vertical axis through a
smooth joint at one extremity of the rod so that it describes a cone of semi-vertical angle  , show
that

w g
a

2 3
4


cos

Prove also that the direction of reaction at the hinge makes with the vertical an angle

tan tan F
HG

I
KJ

1 3
4

 .

Answer to Self learning Exercise

Self Learning Exercise - I

1. Yes (2) No. (3)
4
3

2M a

(4) Tension in the string, weight of a body

Self Learning Exercise - II
1. See 1.13 (2) See 1.14

3. m y z z y y F z F    b g b g3 2

m z x x z z F x F    b g b g1 3

m x y y x x F y F    b g b g2 1

����
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UNIT - 2
Motion About a Fixed Axis

Structure of the unit

2.0 Objective

2.1 Introduction

2.2 Moment of effective forces

2.3 Some Important Results

2.3.1 Kinetic Energy about the axis of rotation

2.3.2 Principle of angular momentum

2.3.3 Equation of motion of the body for rotational motion

2.4 Principle of conservation of energy

Self Learning Exercise - 1

2.5 The Compound Pendulum

2.6 Simple Equivalent Pendulum

2.7 Centre of Suspension and Centre of Oscillation

2.8 Reactions of the axis of rotation

Self Learning Exercise - 2

2.9 Centre of Percussion

Self Learning Exercise - 3

2.10 Summary

2.11 Exercise

2.0 Objective

This unit provides a general overview of motion about a fixed axis, moment of momentum,
moment of effective forces, Kinetic energy about the axis of rotation. Principle of angular momentum,
Principle of conservation of energy, the compound pendulum, centre of percussion of a rigid body. After
reading this unit you will be able to understand

1. About moment of momentum of a rigid body about axis of rotation

2. About moment of effective forces about axis of rotation

3. About Kinetic Energy about the axis of rotation

4. About Principle of angular momentum

5. About Principle of conservation of energy

6. About compound pendulum

7. About centre of percussion of a rigid body

2.1 Introduction

We often find the rigid bodies rotating about a fixed axis. In this unit we shall consider the case
28



where some line in the body is fixed and the body rotates about this line considered as a fixed axis. We
shall derive expressions for moment of momentum, moment of effective forces, kinetic energy about axis
of rotation, equation of motion about the axis of rotation. In the end of the unit we shall study about
compound pendulum and centre of percussion of a body.

Some Important results recollected :

In polar coordinates r,b g , when a particle moves along a curve then at any time t  when particle

is at P r,b g

Figure 2.1

(i) Radial acceleration

  r r 2d i , along OP  (In direction of r  increasing)

where r
d r
d t

 , 



d
d t

(ii) Transverse acceleration = 2   r r d i , perpendicular to OP  (Positive in the sense of 
increasing) i.e. in the direction of PN .

(iii) Radial velocity  r

(iv) Transverse velocity   r 

Particular Case :

In case the particle is moving along a circle of radius a, then r a  (Constant) so that

r  0 , r  0

hence radial acceleration   a  2d i  along OP

    a  2  along PO

and transverse acceleration  a   along PN

Radial velocity  0 , transverse velocity  a  , along PN

2.2 Moment of effective forces
A rigid body is rotating about a fixed axis, to find the moment of the effective forces

about the axis of rotation.

Let us choose OZ  as the axis of rotation and a plane COAB  be fixed in the space and it may be

N

r

O

P r, b g

 x
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fFi

Figure 2.2

taken as the plane of reference. Let any other plane CODE  be fixed in the body making an angle   with
the plane COAB  i.e.  AOD 

Consider a particle of mass m  of the body at P , and take a plane COFG  through P  and which
makes an angle   with the planeCOAB , i.e.  AOF   Let  ECG  , then   is the angle between
plane CODE  fixed in the body and plane COFG . This angle   will remain constant as the body rotates
about OZ . From Fig, we have     . Differentating with respect to t

    0  and also    ...(1)

i.e. the rate of change of   is same as rate of change of  .

Let PL r  and point P  describes a circle of radius r  about L  as centre. Hence the
acceleration of P  along PL  and perpendicular to PL  are

 
F
HG

I
KJ

R
S|
T|

U
V|
W|
r d

d t
r d

d t
 

2

, along PL [  r   is along LP ]

and r d
d t

r d
d t

2

2

2

2

 
 , perpendicular to PL

Hence effective forces on particle P  of mass m

are mr d
d t
F

HG
I
KJ

2

, along PL

and mr d
d t

2

2


, perpendicular to PL .

The effective force mr d
d t
F

HG
I
KJ

2

 along PL  cut OZ  at L , so its moment about OZ  is zero,

z

C

L r

P

G

F

Y

A

D

B
E


O X
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whereas the moment of other effective force mr d
d t

2

2


 about OZ  is

r mr d
d t

mr d
d t

.
2

2
2

2

2
 F

HG
I
KJ 

therefore the moment of all the effective forces on the body

  mr d
d t

d
d t

mr2
2

2

2

2
2  d i ,

because 
d
d t

2

2


 is same for all the particles of the body

 moment of all the effective forces 
d
d t

2

2


 (M.I. of body about OZ )

  
d
d t

M k
2

2
2 . , where k  is the radius of gyration of

      body about OZ .

Hence Moment of all the effective forces about OZ  (axis of rotation)  M k d
d t

2
2

2



2.3 Some Important Results
2.3.1 Kinetic Energy of the body about a fixed axis :

Velocity of the particle of mass m  at P  (See fig.) is r
d
d t

r d
d t

 


 Kinetic energy (K.E.) of particle P  of mass m  
F
HG

I
KJ

1
2

2

m r d
d t


 Kinetic energy of the whole body 
F
HG

I
KJ 1

2
2

2

m r d
d t


   
F
HG

I
KJ 1

2

2
2d

d t
mr d i

   
F
HG

I
KJ

1
2

2
d
d t


 (M.I. of the body about fixed axis OZ )

   
F
HG

I
KJ

1
2

2
2d

d t
M k .
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2.3.2 Moment of Momentum about the axis of rotation : Principle of angular Momentum

Since the velocity of the particle P  of mass m  (See fig.) is r
d
d t

r d
d t

 
 , in a direction perpendicular

to PL  and r  is along LP , therefore the momentum of particle of mass m  is m r d
d t
F

HG
I
KJ  and mr

Hence moment of momentum of particle of mass m  about OZ  are

r mr d
d t

. F
HG

I
KJ  and o mr. b g  0 [because mr  intersect OZ  in L ]

so moment of momentum of the whole body about OZ  is

m r d
d t

d
d t

mr d
d t

2 2  
  d i (M.I. of body about OZ )

 
d
d t

M k 2c h

 Angular momentum  M k d
d t

2 

2.3.3 Equation of motion about the axis of rotation :

If a rigid body rotation about a fixed axis then the impressed forces are the external forces and
reaction on the axis of rotation. To eliminate the reactions, we take moments about the axis of rotation. By
D’Alembert’s principle the moment of effective forces is equal to the moment of the impressed forces,
about any line. Therefore if L  be the moment of impressed forces about the axis of rotation then by the
above principle  we have

M k d
d t

L2
2

2


 (This is called Principle of angular momentum)

this equation is the differential equation of the motion of the body.

On integrating above equation we will get   and   in terms of t . The constant of integrations are
evaluated by the known conditions on   and   with reference to reference plane fixed in space through
OZ .

If somehow L , the moment of external forces (called torque) vanishes, then integration provides
M k 2   (angular momentum) as constant. This shows that if moment of external force vanish about an

axis, then angular momentum of the body is conserved about that axis, this is known as Principle of
conservation of angular momentum.

Remark :

In the case of impulsive forces if w w1 2,  be the angular velocities of the body just before and just

after the action of impulses then the equation of motion is M k w w L2
2 1 b g . Where L is the moment

of impulses.
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2.4 Principle of Conservation of Energy
In general, the Principle of Conservation of Energy is applicable to any system of particles forming

a dynamical system under motion due to conservative forces. In our present context, we use it when a rigid
body is rotating about a fixed axis.

Kinetic Energy + Potential Energy = Constant

or
1
2

2 2M k V    constant.

where V  is the potential energy of the system.

Another Form :

Since change in potential energy is equal to the work done by the conservative forces, so change
in K.E. = work done by conservative forces. This equation is used to solve the problems.

Self Learning Exercise - 1

1. In polar coordinates r , b g , when the particle is moving along a circle of radius a , then give
expressions for radial and transverse accelerations.

2. When rigid body is rotating about a fixed axis, then write expression for moment of effective force.

3. Write expression for moment of momentum about axis rotation.

Illustrative Examples :

Example 2.1 : Two unequal masses M  and M '  rest on two rough planes inclined at angles   and   to
the horizon, they are connected by a fine string passing over a small pulley of mass m  and radius a , which
is placed at the common vertex of two planes, show that the acceleration of either mass is

g M M M M m k
a

sin cos ' sin 'cos '          
L
NM

O
QPb g b g

2

2

where   and  '  are the coefficients of friction of two planes, k  is the radius of gyration of the
pulley about its axis and mass M  moves downwards.

Solution : Let PQ  be horizontal plane and PC  and QC  are two rough planes inclined at angles   and
  to PQ , respectively..

Figure 2.3

C

T

TR
R

Mg cos
Mg

M g' cos
M g' 

R'

G'

QP

G

T'

T '
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Let mass M  descends along plane CP  a distance (say) x  so that the distance moved by mass
M 1  on plane QC  (up the plane) is also x , in time t  (say). If during this time the pulley with centre C  has

rotated through an angle   about its axis, then x a  ...(1)

then differentiating (1) with respect to t

 x a  ...(2)

and  x a  ...(3)

Then the equation of motion of pulley M k L2  d i  is

M k T a T a2  . ' .   ...(4)

where a  is radius of pulley and T  and T '  are tensions in the part of strings GC  and G C T T' 'b g

or M k x
a

T T2
2


'  ...(5)

Also equations of motion for masses M  and M '  are

M x M g R T sin   

or M x M g M g T sin . cos      R M g cosb g ...(6)

and M x M g R T'  ' sin ' ' '    

or M x M g M g T'  ' sin ' ' cos '      R M g' ' cos b g ...(7)

Adding equations (5), (6) and (7), we get

m k
a

x M x M x T T M g M g T
2

2   '  ' sin cos      b g b g  

   M g M g T' sin ' ' cos '  b g

or  sin cos ' sin ' cosx m k
a

M M g M M
2

2
1

F
HG

I
KJ         b g b g

or


sin cos ' sin ' cos

'
x

g M M

m k
a

M M


  


F
HG

I
KJ

     b g b g
2

2

which is the acceleration of either mass.

Example 2.2 : A uniform rod, of mass m  and length 2a , can turn freely about one end which is fixed, it
is started with angular velocty w  from the position in which it hangs vertically, find its angular velocity at
any instant.

If w  be such that the angular velocity vanishes when   , then prove that the time of
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describing an angle   is

2
3 4 4
a
g

F
HG

I
KJ F

HG
I
KJlog tan  

Solution :Let OA  be a rod of length 2a  and mass m  (See fig.) and G  be its Centre of Inertia
 OG a ; the vertical line OLZ  is the line fixed in the space and OA  is the line fixed in the body. Here
the axis of rotation is the horizontal line through O .

Figure 2.4

Initially the rod is in vertical position t w  0 0, ,  d i  and let after time t , it makes an angle

  with it. The external forces acting on the body are its weight m g  and reaction at O . In OLG

LG a sin , OL a cos

Now taking moment about O , we have (by eqn M k L2   )

M k m g a2  sin  

or
4
3

2a g a sin    k a for the rod2 24
3

F
HG

I
KJ

or  sin  
3
4

g
a ... (1)

Multiplying both sides by 
2d
d t


 and integrating, we get

2 3
4

2
1

  sin . 
d t g

a
d
d t

d t Cz z   

or  cos 2
1

3
2

   
g
a

Cb g ...(2)

O

a

L
asin

G

mg

Z

A
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Initially, when  0 , 
d
d t

w
 , then from (2)

w g
a

C C w g
a

2
1 1

23
2

3
2

    
F
HG

I
KJ ,

    cos 2 23
2

3
2

g
a

w g
a

or  cos 2 2 3
2

1  w g
a
b g ...(3)

this gives the angular velocity of rod at anytime t . If w  be such that   0  when   , then
from eqn (3)

o w g
a

o w g
a

     2 23
2

1 3cosb g

 w g
a

3
...(4)

this is the least value of w  for the rod in its lowest position so it just make complelte revolutions.

Now using this value of w  in (3), we get

 cos cos . cos  
2 23 3

2
1 3

2
1 3

2
2

2
     

g
a

g
a

g
a

g
a

b g b g

  . cos
3
2

g
a ...(5)

Let t  be time of describing an angle  , then on integrating (5), we get

d g
a

d t
t





cos
.

2

3

0 0
z z F

HG
I
KJ

or 2
4 4

3log tan . 
F

HG
I
KJ 

g
a

tb g

or t a
g

 F
HG

I
KJ2

3 4 4
. log tan  

.

Example 2.3: A uniform rod AB  is freely movable on a rough inclined plane whose inclination to the
horizon is i  and whose coefficient of friction is  , about a smooth pin fixed through the end A ; the rod
is held in the horizontal position in the plane and allowed to fall from this position. If   be the angle
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through which it falls from rest, show that

sin cot


 i

Solution :  Let PQTS  be a rough inclined plane whose inclination to the horizon is i . Let AO  be a

Figure 2.5

rod of mass m  and length 2a , G  be its middle point, so AG a  AO  is the initial position of rod

(when t   0 0 0, ,   ), it turn about a pin (a fixed axis) at A  through an angle   in time t . AB  is its

position after lime t , so  OAB  .

The external forces are m g  acting vertically down ward through G ,  reaction R  perpendicular
to rod AB , and reaction at A .

The component of m g  along the plane is m g isin  acting through G  and m g icos  perpendicular
to the plane (See Fig. 2.5 (a) )

Figure 2.5 (a)

 R m g icos ...(1)

Force of friction   R m g i. cos

In order to avoid reaction at A , we take moment about axis (pin) through

A  by equation M k L2 d i
M k m g i A E R AG2 sin .  b g b g

or M k m g i a m g i a2 sin cos cos .   b g b g
or k g a i g a i2 sin cos cos    ...(2)

P Q
A E O

a

G
B

S

mg isin

i

T

R
B1

A1 i
mg mg icos

D

G
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Multiplying both sides by 2   and integrating, we get

k a g i a g i C2 2
12 2 sin sin cos      ...(3)

where C1 , is constant of integration

initially    0 0 0,  , t , then from (3) C1 0

  k a g i a g i2 2 2 2 sin sin cos .    ...(4)

Since the rod turns through an angle   i.e. it comes to rest after falling an angle   and hence
  0 , then from (4)

o a g i a g i 2 2sin sin cos  

or
sin cot


 i

Example 2.4: The door of a railway carriage stands open at right angles to the length of the train when
the latter starts to move with an acceleration f ; the door being supposed to be smoothly hinged to the
carriage and to be uniform and of breadth 2a , show that its angular velocity, when it turned through an

angle   is 
3
2

f
a

sin
RST

UVW
Solution : Let AB  be the axis of rotation of the door ABEF  of mass M  (say). When the train

Figure 2.6

moves with an acceleration f  in direction A x  (say), then every element of the door ABEF  will
have the same acceleration f  parallel to the rails (i.e. parallel to A x ). Let the door has turned through an
angle   about AB  in time t , then component of f  perpendicular to the door in its position at time t  will
be f cos  an shown in the fig.

Consider an elementary strip PQDC  of with d x  at distance x  from A A P xb g

Z

2a
E

E '



B

D
C

F

Y F '

x


P

Q

x

xA



f cos

f
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then mass of strip 
F
HG

I
KJ

M
a

d x
2

Now, taking moment about AB  by eqn M k L2  d i

M a M
a

d x f x
a4

3 2

2

0

2

 . cos .  z

     zM
a

f x d x
a

2 0

2

cos

     M a f cos

  cos 
3

4 a
f ...(1)

Multiplying both sides by 2   and integrating, we get

2 3
4

2 1
  cos    d t f

a
d t Cz z d i

or  sin 2
1

3
4

2  
f
a

C ...(2)

but initially   0 0, 

 C1 0

hence

 sin  sin   2 3
2

3
2

  
RST

UVW
f
a

f
a

Example 2.5 : A uniform vertical circular plate, of radius a ; is capable of revolving about a smooth
horizontal axis through its centre; a  rough perfectly flexible chain, whose mass is equal to that of the plate
and whose length is equal to its circumference, hangs over its rim in equilibrium, if one end be slightly

displaced, show that the velocity of chain, when the end reaches the plate is 
 a g

6
F
HG

I
KJ .

Solution : Let m  be the mass of chain or pulley and let x  be the distance moved by the ends A  and

39



Figure 2.7

B  in time t , during which pulley has turned through an angle  , so by

arc radius angleb g b g b g 

x a 

  x a 

K.E. of the chain 
1
2

2m x ...(2)

K.E. of pulley   
1
2

1
2 2

1
4

2 2
2 2

2
2mk m a x

a
m x . .


 ...(3)

 k a2
2

2


F
HG

I
KJ for a circular plate

 total K.E.   
1
2

1
4

3
4

2 2 2m x m x m x   ...(4)

Now, we shall find the work done by the chain

work done = m g . (distance moved by C G. .  of chain)

Let us find the depth of the C G. .  of the chain below PQ  consisting of three parts PA , PQ  and
QB , where PQ  is in contact with pulley..

If   be the weight per unit length of chain, then

weight of part of chain PA a x F
HG

I
KJ

1
2
 

then depth of its C G. .  below PQ a x F
HG

I
KJ

1
2 2


, similarly

weight of part QB  of chain  F
HG

I
KJ




a x
2

q ...(1)

D



O a PQ

a

Q PO
a

B
B

A

A

a
2

a
2

 a
2


a x
2
F

HG
I
KJ

40



then depth of its C G. .  below PQ a x F
HG

I
KJ

1
2 2



Also, weight of semi circular chain PQ  (which is in contact with pulley)   ab g , and height of

its centre of gravity above PQ a


2


Then by x
m x
m

using 
F
HG

I
KJ




 depth of C G. .  of whole chain below PQ  (say)

x

a x a x a x a x a a

a x a x a


F
HG

I
KJ F

HG
I
KJ  F

HG
I
KJ F

HG
I
KJ  FHG

I
KJ

F
HG

I
KJ  F

HG
I
KJ 

R
S
||

T
||

U
V
||

W
||




 



 







  

2
1
2 2 2

1
2 2

2

2 2

. . .

or x
a

a x a  
L
NM

O
QP

1
2 4

2
2 2

2 2




...(5)

Putting x  0 , the depth of C G. .  below PQ  in initial position is

(Say) x
a

a a1

2 2
21

2 4
2 

L
NM

O
QP


...(6)

so distance moved by C G. .  of chain (in down ward direction)

  x x
a

x1
21

2
b g

 ...(7)

Therefore the work doen by chain

  m g x x m g x
a

. .1

2

2
b g

 ...(8)

Hence the energy equation gives

3
4 2

2
2

m x m g x
a

 .
 {From eqn (4) and (8)}

or x g x
a

2
22

3

F
HG

I
KJ ...(9)

The above relation gives the velocity of the chain after the end has moved a distance x . The end

A  will reach the plate if x a


2 , and hence putting x a



2  in eqn (9), the velocity of chain is given by
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 .x g
a

a a g2
22

3 2 6
 F

HG
I
KJ 


 

 x a g
6

Example 2.6 : Two unequal masses m1  and m2  m m1 2b g  are suspanded by a light string passing over
a circular pulley of mass M  and radius a . There is no slipping and the friction of the axis may be ne-
glected. If f  be the acceleration, show that this is constant; and if k  be the radius of gyration of the pulley
about the axis, show that

k a g f m g f m
M f

2
2

1 2
  b g b gm r

b g
Calculate the pressure on the axle.

Solution : Let x  be distance moved downwards by the mass m1  and same distance x  moved upward by
the mass m2 , and let   be the angle through which the radius of pulley OD  has turned in time t .

Figure 2.8

Then x a   (since there is no slipping). On differentiating with respect to t .

 x a  ,    
x a x

a
    ...(1)

Now equation of motion of the masses m1  and m2  are

m x m g T1 1 1   ...(2)

and m x T m g2 2 2   ...(3)

where T1  and T2  are tensions in the parts of strings QB  and PA . Also the equation of motion of
pulley is (taking moment about the axle through o )

M k T a T a2
1 2

   ...(4)

or M k x
a

T T2
2 1 2


  {from eqn (1)} ...(5)

Now adding eqns (2), (3) and (5), we get

Q

a

D



O

T1

T1

T2

T2

B

P

x

m g2

A

m g1
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m x m x M k x
a

m g T T m g T T1 2
2

2 1 1 2 2 1 2 


       b g b g b g

or m m M k
a

x m m g1 2

2

2 1 2 
F
HG

I
KJ   b g

or x   acceleration  


 
F
HG

I
KJ

f
m m g

m m M k
a

1 2

1 2

2

2

b g , which is constant. ...(6)

Now from eqn (6)

f m m M k
a

m g m g1 2

2

2 1 2 
F
HG

I
KJ  

or k M f
a

m g f m g f2
2 1 2

F
HG

I
KJ    b g b g

or k a
M f

m g f m g f2
2

1 2   b g b gm r  which is the required resnit. ...(7)

Lastly to find pressure on the axle from eqn (2) and (3) (using x f ), we get

m f m g T T m g f1 1 1 1 1    b g
m f T m g T m f g2 2 2 2 2    b g

adding these, T T m g m f m f m g1 2 1 1 2 2    

or T T m m g m m f1 2 1 2 2 1    b g b g b g
which is the pressure on the axle.

2.5 The Compound Pendulum

First we shall define simple pendulum and shall show that the period of oscillation in a simple
pendulum depends only on the length of the string and not upon the quantity of mass attached.

If a particle is attached to one end of a light inextensible string of length l  and other end of which
is fixed and is allowed to oscillate in a vertical plane through a small angle, such a system is called simple
pendulum.

Let B  be the position of the particle of mass m  after time t  which is attached by light string of
length l OA lb g . Let s  be length of arc i.e. arc AB s

so that s l  ,   s l ,  s l  ...(1)
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Figure 2.9

Resolving the forces along tangent at B , we get

m d s
d t

m g
2

2   sin

or ml d
d t

m g
2

2


  sin {from (1)}

or
d
d t

g
l

2

2


  (  when   is small then sin  ) ...(2)

this equation shows that the motion is S.H.M. and the period of oscillation is given by,

2 2 
g
l

l
g



  time period  2 l
g ...(3)

From eqn (3) it is clear that the period of oscillation in simple pendulum depends only on the length
of the string and not upon the quantity of the mass attached.

Definition : A rigid body of any shape or size which is free to turn about a fixed horizontal axis, the
external forces being the gravity and the reaction of the fixed axis is called a compound pendulum.

To prove that the time of complete oscillation of a compound pendulum is 2
2


k
g h ,

where k  is the radius of gyration of the body about a fixed axis and h  is distance of the centre
of inertia of the body from the fixed axis.

O



T

l

s

A

B



mg
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Figure 2.10

Let LON  be the fixed horizontal axis of rotation and the vertical plane through LO  on the plane

of reference and the plane through the axis and centre of gravity G  of the rigid body on the plane fixed in
the body. Let vertical line through O  is OZ , OG h , fig. 2.9 represents a section perpendicular to the
axis of rotation through G , cutting the axis of rotation at O . Let  ZOG  , where   is the angle which
a plane fixed in body makes with a fixed plane in space through LO .

The external forces on the body are its weight M g  acting vertically through G  and the reaction
of the axis at O . In order to avoid the reaction at O , we take moments about the horizontal axis through

O . The moment of M g  about O  is - M g h sinb g , which is negative because it has a tendency to
decrease angle   and moment of the reaction at O  is zero about O . Then from the equation of motion

M k L2  d i
i.e. moment of effective forces about axis = moment of external forces

 M k d
d t

M g h2
2

2


  sin

or
d
d t

g h
k

2

2 2


  sin ...(1)

If   is small, then replacing sin  by   in eqn (1), we get

d
d t

g h
k

2

2 2


       F

HG
I
KJ

g h
k 2 ...(2)

which show that the motion is S.H.M.

Hence time of complete oscillation T k
g h

 
2 2

2


 ...(3)

2.6 Simple Equivalent Pendulum
Definition :- A simple pendulum having the same periodic time as that of a compound pendulum

is called simple equivalent pendulum.

The time of a complete oscillation of a simple pendulum of length l  is 2
l
g . The time of a

L

N

D G

mg

Z

h sin

 h
axis of rotation
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complete oscillation of a compound pendulum is 2
2


k
g h .

If the simple pendulum is equivalent to compound pendulum, then

2 2
2

 
l
g

k
g h

  l k
h

2

...(1)

Therefore, in the case of a compound pendulum, the length 
k
h

2F
HG

I
KJ  is called the length of a simple

equilvalent pendulum.

2.7 Centre of Suspension and Centre of Oscillation

Centre of Suspension : The point O  (fig. 2.10) where the axis of rotation cuts the plane perpen-
dicular to it through centre of gravity G  of the body, is called the centre of suspension.

Figure 2.11

Centre of Oscillation : Produce OG  to a point O1  such that OO k
h1

2

   length of simple

equivalent pendulum, then this point O1  is called the centre of oscillation of the body..

Thus we observe that if the whole mass of the body were collected at centre of oscillation O1  and

hanged from the centre of suspension O  by a string of length  k
h

2

, the time of oscillation of the compound

pendulum will be same as the time of oscillation of the simple equivalent pendulum

We know that in the case of a simple pendulum the period of oscillation depends only on the length
of the string and not on the mass attached.

Thus in the case of a simple equivalent pendulum if besides the mass of the body an additional
mass is attached at the centre of oscillation the period of oscillation remains same as prior to attaching of
the additional mass.

L

G

Z
h

G

O1

l KK
h


2
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To show that the centre of suspension and centre of oscillation are convertible
(or interchangeable)

Let M  be mass of body and O  the centre of suspension, O1  be centre of oscillation. Let G  be

Figure 2.12

Centre of Inertia of body.

OG h , OO l k
h1

2

  ...(1)

where k  is radius of gyration of body about axis OZb g  through O . Let K  be the radius of

gyration of the body about axis GNb g  through G  parallel to axis of rotation, then by parallel axis theorem

M k M K M OG2 2 2  . b g
M.I. about any axis through O  = (M.I. about parallel axis GN  through G )  M OGb g2

 k K OG2 2 2  b g ...(2)

now l OO k
h

K OG
OG

  


1

2 2 2b g

or OO OG K OG1
2 2.   b g

or K OO OG OG2
1

2 . b g
        OG O O OG OG G O1 1b g .

or K OG G O2
1 . ...(3)

Now we shall show that if O1  be the centre of suspension then the body will swing about point O
as its centre of oscillation.

Now, Suppose that whenO1  is the centre of suspension, then O2  is the centre of oscillation (fig.

l K K
h


2

O

Z

h

G

O1 O2

G

O1

N
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2.12). Then arguing as above, we have

K O G G O2
1 2 .

 or K G O G O2
2 1 . ...(4)

Comparing equations (3) and (4), we observe that the point O2  is the same as O  i.e. the centre of
oscillation will be O , when the centre of suspension is O1 .

Therefore, both the centre of suspension and oscillation are convertible.

Minimum time of oscillation of a compound pendulum : To find the minimum time of
oscillation of compound pendulum, minimum length of simple equivalent pendulum. Hence
deduce that the length of simple equivalent pendulum is infinite then there by the time of
oscillation is also infinite.

Let T  be time period of a compound pendulum, then

T k
g h

 2
2

 ...(1)

where k K h2 2 2  , if l  be the length of simple equivalent pendulum, then l k
h


2

 or

l K h
h


2 2

  k K h2 2 2 c h

or l h k
h

 
2

...(2)

where h OG  and K  is the radius of gyration about an axis through G  parallel to axis of
rotation.

Then T  will be minimum if l  is minimum

or T  will be minimum if  l
k
h

K h
h

h k
h

 


 
2 2 2 2

 is minimum, for that

d l
d h

K
h

h K     0 1 0
2

2 ...(3)

now
d l
d h

O K
h

2

2

2

3
2

 
F
HG

I
KJ  and 

d l
d h

O
2

2  , for h K

so l  is minimum for h K

the mimimum value of  l h K
h

K K
K

K
h k

 
F
HG

I
KJ   



2 2

2

 Minimum value of l K 2 ...(4)
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then minimum value of time period of compound pendulum, from (1) is

T K
g

 2 2
 ...(5)

Therefore the period is minimum when the distance between the axis of suspension and the centre
of gravity is equal to the radius of gyration Kb g  about a parallel axis through the centre of gravity..

Again from eqn (2), we observe that if h  0  or h   , then l O K
O

   
2

 and

l K O  


    
2

, then in both the cases, l  the length of simple equivalent pendulum is infinite and

consequently the time of oscillation T  is also infinite.

Remark : In the above, h  0  corresponds to the position when the axis of rotation passes through the
centre of gravity and h    corresponds to the position when axis of rotation is at an infinite distance from
the C G. . , then l  being infinite, then time of oscillation T  is infinite.

Self Learning Exercise - 2

1. Write formula for time period of simple pendulum of length l .

2. Define compound pendulum.

3. Write formula for time of complete oscillation of compound pendulum.

4. Define simple equivalent pendulum.

Illustrative Examples :

Example 2.7 : Find the length of simple equivalnet pendulum in the following cases, the axis horizontal :

(i) Circular disc; axis a tangent to it;

(ii) Hemispehere; axis a diameter of the base;

(ii) Cube of side 2a ; axis being diagonal of one face.

Solution : (i) In the fig. 2.13 we have a circular disc of mass M  and radius OG a , OZ  is tangent to it,
which is axis. Let l  be length of simple equivalent pendulum, then

l k
h


2

...(1)

Figure 2.13

O Z

A

a

G
B
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where h OG a 

and k  is radius of gyration about axis OZ . Then by parallel axis theorem,

(M.I. about OZ ) = (M.I. about parallel axis AGB  through C.G.) + mass OGb g2

 M k M K M a2 2 2  b g

or M k M a M a2
2

2

4
 .

or k a a k a2
2

2 2 2

4
5
4

    ...(2)

and h OG a  , then from eqn (1)

l
a

a
a  F

HG
I
KJ

5
4 5

4

2

, which is the length of simple equivalent pendulum.

(ii) In the fig. 2.14, we have shown a hemisphere of mass M  and radius OA a  (Say) if G

be C G. .  of hemisphere then OG a
3
8 ...(1)

Figure 2.14

BOA  is diameter of base, which is axis here. Let l  be length of simple equivalent pendulum then

l k
h


2

...(2)

where h OG a
 

3
8 , and k  be radius of gyration about axis o x .

M.I. about BOA M a M k F
HG

I
KJ 

2
5

2 2

 k a2 22
5

 ...(3)

D

G L

O
xB

50



 from eqn (2), l
a

a
a

F
HG

I
KJ

F
HG

I
KJ

 F
HG

I
KJ

2
5
3
8

16
15

2

which is length of simple equivalent pendulum.

(iii) In the fig. 2.15, we have shown a cube of side 2a  and mass M . G  be its C G. .  Let OD
be one diagonal of face OADB , which is axis here.

then h LG a  ...(1)

Figure 2.15

Here M.I. about the axis through G  parallel to the sides 
2
3

2M a

Now, M.I. about axis GX , which is parallel to the diagonal OD  of face OADB , which is inclined
at 45  to side OA  of cube.

    F
HG

I
KJ  A B F M a M asin cos sin cos2 2 2 245 45 2 45 45 2

3
1
2

1
2

0 2
3

c h  ...(2)

 M.I. of a body about a line through C.G. inclined at an angle   to x-axis is

      A B Fcos sin sin cos2 2 2   

here A   M.I. about x-axis 
2
3

2M a

B   M.I. about y-axis 
2
3

2M a

F  P.I. = 0

  M.I. about OD   (M.I. about GX ) + M.I. of M  at G  about OD

       
2
3

2
3

2 2 2 2M a M GL M a M ab g

C F

E H
G

x
a h

B D

AO

L

2a
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      M k M a k a2 2 2 25
3

5
3

   ...(3)

and h a ...(4)

then length of simple equivalnet pendulum

l k
h

a

a
a 

F
HG

I
KJ


2
25

3 5
3

Example 2.8 : A solid homogeneous cone, of height h  and vertical angle 2 , oscillates about a horizon-

tal axis through its centre. Show that the length of the simple equivalent pendulum is 
h
5

4 2 tan c h .

Solution : Let M  be mass of the cone of vertical angle 2  and height h , radius of base be r , then

from ODB , tan 
r
h

 r h tan ...(1)

Figure 2.16

Let   be mass per unit volume then

M   mass of cone = volume 

or M r h 
1
3

2 c h

or M h F
HG

I
KJ


 

3
2 2tan ...(2)

The solid cone oscillates about horizontal axis OL  through the vertex O . Now we shall find M.I.
of cone about OL . Consider a circular disc at a distance x  from O  whose width be  x  and radius
CQ x tan ,

O L

x 

C
P

x
h

Q

G

D
BA

52



Then mass of circular disc  = Area   width   

         x xtanb g2 ...(3)

Using value of   from (2) in (3), we get

mass of circular disc    F
HG

I
KJ  

 
x x M

h
M

h
x x2 2

3 2 3
23 3tan

tan
c h

Now M.I. of circular disc about diameter PCQ  of disc

 
F
HG

I
KJ

mass radius M
h

x x xb g b g2

3
2

2 2

4
3

4


tan

Hence M.I. of circular disc about a parallel axis through O  (i.e. about OL ), where OC x , is


F
HG

I
KJ 

F
HG

I
KJ

3
4

3
3

2
2 2

3
2 2M

h
x x x M

h
x x OC




tan b g

 
F
HG

I
KJ

3
43

2
2 2

2M
h

x x x x
tan


F

HG
I
KJ

3 4
43

2
4M

h
x xtan 
 ...(4)

Therefore M.I. of the cone about OL  is


F

HG
I
KJ z3 4

43

2
4M

h
x x

o

htan 


 
3
20

42 2M htan c h

 L
NM

O
QP M h M k3

20
42 2 2tan c h

 k h2 2 23
20

4 tan c h ...(5)

Also  h  distance of C G. .  of cone from O OG h
 

3
4 . Hence length of simple equivalent

pendulum l
k
h




F
HG

I
KJ

2

or
l

h

h
h




F
HG

I
KJ

 

3
20

4

3
4

5
4

2 2

2
tan

tan



c h

c h
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Example 2.9 : A bent lever, whose arms are of  lengths a  and b , the angle between them being  ,
makes small oscillations in its own plane about the fulcrum; prove that the length of the corresponding
simple pendulum is

2
3 2

3 3

4 2 2 4

a b
a a b b



 cos

Solution : Let AOB  be the lever bent at O , and is hanging about horizontal axis through O , to

Figure 2.17

swing as a componnd pendulum.

OA  and OB  are the arms of the lever of length a  and b , let G1  and G2  be centres of gravity

of arms OA  and OB  respectively, then coordinates of G1  and G2  are 
a
2

0,F
HG

I
KJ  and

OL b LG b
 F

HG
I
KJ2 2

cos , sin   referred to OA  and OY  as axes. Let   be the weight per unit length

of arms. Let x y,b g  be the coordinates of C G. . , G  of the lever, thus, we have

x
a a b b

a b






  

 

. . cos
2 2

or x a b
a b






2 2

2
cos

b g ...(1)

and y
a b b

a b
b

a b









  

 
. . sin sin0

2
2

2

b g ...(2)

Now, h   distance of C G. .  of lever from the fulcrum O

 h x y
a b

a b a b  


 2 2 4 4 2 21
2

2c h b g c hcos ...(3)

y

XAG1LO
a

G



G2

b
2

B
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Again if k  be the radius of gyration of the lever about the axis of rotation through O , then

a b k a a b b
     F

HG
I
KJ  F

HG
I
KJb g 2

2 24
3 2

4
3 2

. .

 M.I. of a rod of mass m  and length 2a  about an axis   to rod and through an end


4
3

2M a

or k
a b
a b

2
3 31

3





c h
b g ...(4)

 length of simple equivalent pendulum l
k
h


2

or l

a b
a b

a b
a b a b

a b
a b a b






F
HG

I
KJ


 




 

1
3

1
2

2

2
3 2

3 3

4 4 2 2

3 3

4 4 2 2

b g . cos cos 

Example 2.10:A uniform triangular lamina ABC  can oscillate in its own plane about an axis
perpendicular to the plane of the lamina through the point A . Prove that the length of the simple
equivalent pendulum is

3

4 2

2 2

2 2 2

2b c a

b c a

 

 

c h
c ho t

Solution : Let ABC  be a triangular lamina of mass m , this lamina oscillates in its own plane about a
line ZA Z1  which is perpendicular to the plane of the lamina. Side BC a , AB c ,

Figure 2.18

AC b . Let AD  be median. D E F, ,  are midpoints of sides BC , AC  and AB . Replace the mass of

the triangle by three equal particles each of mass 
m
3  placed at mid points D , E  and F .

B

Z A
Z

b
2c

2

F E

D H C

G

a
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Then AD AB BD A B BD B2 2 2 2   . cos (In  ABD )

AD c a c a c a b
a c

2 2
2 2 2 2

2
2

2 2
  FHG

I
KJ 

 F
HG

I
KJ. .

or AD b c a2
2 2 22 2

4


 F
HG

I
KJ

or AD b c a  
1
2

2 22 2 2 ...(1)

Also Distance of E  from A A E b
 

2

Distance of F  from A F A c
 

2

 mk 2  M.I. of triangle ABC  about AZ '

           
 

 
L
NM

O
QP

m AD AE AF m b c a b c
3 3

2 2
4 4 4

2 2 2
2 2 2 2 2

b g b g b g

or mk m b c a k b c a2 2 2 2 2
2 2 2

12
3 3 3 3

12
    

 F
HG

I
KJc h ...(2)

Also h   distance of C G. .  from axis of rotation AZ '

h AG AD b c a b c a       
2
3

2
3

1
2

2 2 1
3

2 22 2 2 2 2 2b g c h c h. ...(3)

Now, length of the simple equivalent pendulum

l k
h

b c a

b c a

b c a

b c a
 

 F
HG

I
KJ

 F
HG

I
KJ


 

 

2

2 2 2

2 2 2

2 2 2

2 2 2

3 3
12

1
3

2 2

3 3

4 2 2  [from eqn (2) & (3)]

or l
b c a

b c a


 

 

3

4 2

2 2 2

2 2 2

c h
c ho t

56



Example 2.11: A simple circular pendulum is formed of a mass M  suspended from a fixed point by a
weightless wire of length l ; if a mass m , very small compared with M , be knotted on to the wire at a
distance a from the point of suspension, show that the time of a small vibration of the pendulum is approxi-

mately diminished by 
m
M

a
l

a
l2

1 F
HG

I
KJ  of itself.

Solution : Let T1  be time of oscillation of simple circular pendulum of mass M  fixed by a weightless wire

of length l , then T
l
g1 2  ...(1)

Figure 2.19

Now, let the mass m  be knotted at P  such that OP a  on the wire. Let k  be radius of gyration
about axis of rotation through O  (i.e. about OZ ) and let h  be distance of C G. .  (of two masses m  and
M ) from O , then

h M l ma
M m





by formula x
m x
m


F
HG

I
KJ


 ...(2)

and m M k ma M l  b g 2 2 2

[ (M.I. about OZ ) = M.I. of mass m  about OZ + M.I. of mass M  about OZ ]

 k M l ma
m M

2
2 2



 ...(3)

If T2  be time of oscillation for the compound pendulum consisting of masses m  and M , then

T k
g h

ma M l
g ma M l2

2 2 2

2 2 



  b g [eqn (2) and (3)] ...(4)

Hence, loss in the time period is given by

T T T T
T1 2 1

2

1

1  
F
HG

I
KJ ...(5)

O

a

m
h

G

B
mm

A

mg

l
P


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now
T
T

ma M l
l ma M l

M l ma
M l

l M l ma
M l

2

1

2 2
1

2
2

2

2

1
2

1

1





RST
UVW




F
HG

I
KJ


F
HG

I
KJ

R
S
||

T
||

U
V
||

W
||

b g .

       
F
HG

I
KJ 

F
HG

I
KJ


1 1
2

2

1
2

1
2ma

M l
M a
M l

.

       
F
HG

I
KJ  

F
HG

I
KJ1

2
1 1

2

2

2
ma
M l

ma
M l

.... ....

         
F
HG

I
KJ1 1

2 2 4

2

2

2 3

2 3
ma
M l

ma
M l

m a
m l

....

T
T

ma
M l

ma
M l

2

1

2

21 1
2 2

  
F
HG

I
KJ

since is small,  so neglecting higher powers of m
M

m
M

F
HG

I
KJ

 1 1
2

1
2 2

12

1

2

2
F
HG

I
KJ  

F
HG

I
KJ  F

HG
I
KJ

T
T

ma
M l

ma
M l

m
M

a
l

a
l

. ...(6)

using (6) in eqn (5)

T T m
M

a
l

a
l

T1 2 12
1  F
HG

I
KJ

RST
UVW. ...(7)

Hence time period of pendulum is approximately diminished by

m
M

a
l

a
l2

1. F
HG

I
KJ  of itself.

Remark : When the particle of mass m  in attached at point A  i.e. a l , then from eqn (7),
T T T T1 2 1 20     then the time of oscillation remains unchanged. In other words the time of
oscillation of  a simple pendulum depends on the length of the string and not on the mass attached.

Example 2.12:A sphere of radius a , is suspended by a fine wire from a fixed point at a distance l  from
its centre, show that the time of a small oscillation is given by
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2 5 2
5

1 1
4 2

2 2
2
l a

g l
F

HG
I
KJ RST

UVWsin

where   represents the amplitdue of the vibration.

Solution : Let G  be the centre of the sphere of mass M  and the axis of rotation be OZ  passing through
O . OC l  (given) ...(1)

Let k  be radius of gyration about axis of rotation OZb g  through O .

Figure 2.20

 M k M a M l2 2 22
5

  (by parallel axis theoram)

or k a l2 2 22
5

 F
HG

I
KJ ..(2)

Also, given amplitade  , i.e.   0 , when   ...(3)

Now, the equation of motion M k L2  d i  gives

M k M gl2  sin   (by taking moment about the horizontal axis through O )

Multiplying both sides by 2   and integrating, we get

2 2
5

22 2
1z zF

HG
I
KJ     sin   a l d t g l d t C

or
2
5

22 2 2
1a l g l CF

HG
I
KJ   cos  ...(4)

to find value of C1 , using   0 , when  

O g l C C g l    2 21 1cos cos  ...(5)



OZ

B

A

a
G

mg

l
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then from (4), we have

2 5
5

2 2
2 2

2a l g l g lF
HG

I
KJ   cos cos  

or  cos cos . cos cos    



 



2 5

2 5
10

2 52 2 2 2

1
2g l

a l
g l

a l
b g b g

or  sin sin
  

 


  F
HG

I
KJ

L
NM

O
QP

d
dt

g l
a l
10

2 5
1 2

2
1 2

22 2
2 2

1
2

or
d
dt

g l
a l

  



 F

HG
I
KJ

10
2 5

2
2 22 2

2 2
1

2
sin sin

or

d g l
a l

dt
 sin sin2 2

2 2

2 2

2 10
2 5






Integrating for  , from   0  to    and let time t  be t  0  to t t 1

d g l
a l

dt d t
t t

 




sin sin
.

2 2
0 2 20 0

2 2

2 10
2 5

2 21 1





z z z

...(6)

where 2
2 2

5
2 5



g l

a l

For integration, put sin sin sin  
2 2
 ...(7)


1
2 2 2

cos sin cos    d d

For limit, when    0 0

and when  , then sin  
  1

2

then from eqn (6), we get

1

2
1

2
2

2

2
20

2
0
1

sin sin

sin . cos

cos 

  

 



 z d

t tb g
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or

d t
 




1
2

2 2
0
2

1


z

sin sin
b g

or t d1
2 2

1
2

0
21 1

2
 F

HG
I
KJz


 



sin sin

      F
HG

I
KJz1 1 1

2 2
2 2

0
2




 


sin sin .... d

     L
NM

O
QP  L

NM
O
QP

1 1
2 2

1
2 2

1
2

1
8 20

2 2 2




 


 


b g sin . sin .

 sin .2

0
2 1

2 2
 



d 
L
NM

O
QPz

or t1
2

2
1 1 1

4 2
 F

HG
I
KJ




. sin

Hence the time of complete oscillation  4 1t

or time of oscillation  
F

HG
I
KJ2 2 5

5
1 1

4 2

2 2
2
a l

g l
sin

Example 2.13:Find the time of oscillation of a compound pendulum consisting of a rod of mass m  and
length a  carrying at one and a sphere of mass m1  and diameter 2b , the other end of the rod being fixed.

Solution : Let m  be mass of rod OA  of length a OAb g  and m1  be mass of sphere with centre at G
and radius  b . The end O  of the rod is fixed and axis of rotation OZb g  passes through O .

Figure 2.21

Z O

a
r

a

P

A

G
b

m g1
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We know that M.I. of rod of length 2a  about an axis through its extremity

  
4
3 3

2
3

2 2 2ma m a m length of rodb g b g

and hence M.I. of a rod OA  of  length a  about an axis OZb g  through its extremity

is 
ma2

3
...(1)

Again M.I. of a sphere of mass m1  about an axis through its centre is 
2
5 1

2m bF
HG

I
KJ  and hence its

M.I. about a parallel axis OZb g  through O , (where OG a b  ), is m b a b1
2 22

5
 L

NM
O
QPb g ...(2)

If k  be the radius of gyration about an axis through O  (i.e. about OZ ), then

m m k m a m b a b    L
NM

O
QP1

2
2

1
2 2

3
2
5

b g b g [from (1) and (2)]

 k
m a m b a b

m m
2

2

1
2 2

1

3
2
5

  L
NM

O
QP



b g
...(3)

Again let h  be the distance of C G. .  of the combined body from O , then

h
m a m a b

m m


 


2 1

1

b g
...(4)

Hence l k
h

m a m b a b

m a m a b
 

  L
NM

O
QP

 

2

2

1
2 2

1

3
2
5

2

b g
b g [from eqn (3) and (4)] ...(5)

therefore, period of a small oscillation

T k
g h

 2
2



or T
m a m b a b

g m a m a b


  L
NM

O
QP

 RST
UVW

2 3
2
5

2

2

1
2 2

1


b g

b g
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Example 2.14:A rectangular plate swings in a vertical plane about one of its corners. If its period is one
second, find the length of the diagonal.

Solution :Considering a rectangular plate ABCD  of mass m  and having length of sides 2a , 2b . Let G
be C G. .  of plate

Figure 2.22

Let AG h a b  2 2 ...(1)

Now, let plate be suspended from corner A  and allowed to swing about a horizontal axis AZ , so
that plane of plate remains vertical. Let k  be the radius of gyration of the plate about axis AZ , through A .

Then mk m a b m AG2
2 2

2

3


F
HG

I
KJ  b g

        
F

HG
I
KJ  m a b m a b

2 2
2 2

3
c h

or m k m a b k a b2 2 2 2 2 24
3

4
3

    c h c h ...(2)

or k h2 24
3

 ...(3)

 length of simple equivalent pendulum

l k
h

k
AG

h

h
h   

2 2
24

3 4
3

...(4)

Therefore time period T k
g h

 2 1
2

   (given)

Z
A

2a

B

G

2b

C

D
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or 4 12
2


k
g h



4 4
3

12  
h
g

 k h2
24

3


L
NM

O
QP

 h g3
16 2 ...(5)

Now length of diagonal    
F
HG

I
KJ AC AG h g g2 2 2 3

16
3

82 2  .

Example 2.15:An ellipse of axes a  and b  and a  circle of radius b  are cut from the same sheet of thin
uniform metal and are superposed and fixed together with their centres coincident. The figure is free to
move in its own vertical plane about one end of the major axis; show that the length of the equivalent simple
pendulum is

5 2
4

2 2a ab b
a

 

Solution : Let   be the density of the sheet per square area and m1  and m2  be masses of ellipse and
circular sheet, then

Figure 2.23

m a b1   b g ...(1)

and m b2
2  c h ...(2)

M.I. of circular disc about an axis through centre O  perpendicular to its plane  m b
2

2

2

Hence its M.I. about an axis through A  (i.e. about AZ ) perpendicular to its plane is

Z A

a

BO
bB'

A'

64



 
F
HG

I
KJm b a2

2
2

2  AO ab g ...(3)

Similarly M.I. of elliptic disc about an axis through A





F
HG

I
KJm a b a1

2 2
2

4 (by parallel axis theorem) ...(4)

Hence if k  be the radius of gyration of body about an axis AZb g  through A  perpendicular to the
lamina, then

m m k m a b a m b a1 2
2

1

2 2
2

2

2
2

4 2
 




F
HG

I
KJ  

F
HG

I
KJb g [from eqn (3) and (4)]

or      b a b k ab a b b b a
 




F
HG

I
KJb g 2

2 2
2

2 25
4

2
2 [from (1) and (2)]

 k
a a b b b a

a b
a a b a b a b b

a b
2

2 2 2 2 2 2 2 35 2 4
4

5 2
4


  




   


c h c h
b g

b g
b g

     
    


5 2 2

4

2 2 3a a b ab a b ab b
a b

b g b g
b g

     
    


5 2

4

2 2a a b a b a b b a b
a b

b g b g b g
b g

 k a ab b2
2 25 2

4


 F
HG

I
KJ ...(5)

Also h   depth of C G. .  O  below A a

 l   length of simple equivalent pendulum

    
 F

HG
I
KJ

k
h

a ab b
a

2 2 25 2
4

2.8 Reaction of the axis of rotation

To find the reaction of the axis of rotation when a rigid body rotates about it under the action of
external forces such that both the body and forces are symmetrical with respect to the plane through the
centre of gravity perpendicular to the axis, and let gravity be the only external force.
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Figure 2.24

Due to symmetry of the rigid body, the reaction of the axis of rotation OL  reduces to a single force
acting at point O  in the plane of paper. Let the components of this single force along and perpendicular to
GO  are P  and Q , where G  is centre of gravity of body. Here OG h , Now as body swings about O ,

G  describes a circular path with O  as centre and h OGb g  as radius as shown in fig. 2.22.

 Radial acceleration of G  along GO  is  h  2

and transverse acceleration of G  perpendicular GO  is  h 

Let M  be mass of body and weight M g  is acting at G  in downward direction. Then equaton of
motion of C G. . , G  are

M h d
d t

P M g


F
HG

I
KJ  

2

cos (along GO ) ...(1)

and M h d
d t

Q M g
2

2


  sin (perpendicular to GO ) ...(2)

Now taking moment abot the axis of rotation OL

we have M k d
d t

M g h2
2

2


  . sin OG h so AG h , sinb g ...(3)

where k  is the radius of gyration of the body about OL . Also moment of M g  about OL  is
 M g h sin , which is negative because tendency of Mg  is to decrease  . In eqn (3) moment of

reaction components P  and Q  vanish, because these are acting at O .

From equations (2) and (3), on eliminating 
d
d t

2

2


 we shall get the value of reaction component Q ,

and again on integrating eqn (3) by multiplying d
d t

2 F
HG

I
KJ , we shall get 

d
d t
F

HG
I
KJ

2

 and putting in eqn (1), we

P

T N

L

Q

O

axis
 of

rotatio
n


Mh2

Mh



mg

A
B0

Z

H

G
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shall get P . (Constant of integration can be determined by initial conditions)

If R  be the resultant reaction, then

R P Q 2 2 ...(4)

and its direction will make an angle 
F
HG

I
KJ

tan 1 Q
P

with the direction of reaction component P  i.e. with GO .

Remark : (i) Horizontal component of reaction will be  P Qsin cos b g  along OTb g
(ii) Vertical component of reaction will be  P Qcos sin  along OHb g

Illustrative Examples :

Example 2.16:A thin uniform rod has one end attached to a smooth hinge and is allowed to fall from a
horizontal position, Show that the horizontal strain on the hinge is greatest when the rod is inclined at an

angle 45  to the vertical, and that the vertical strain is then 
11
8  times the weight of the rod.

Solution : Let OA  be a rod of mass M  and length 2a . G  be its centre of gravity. Then OG a ,
initially rod was horizontal i.e. in direction of OX  (fig. 2.23), so that

t  0 0,   when 



2 ...(1)

Figure 2.25

where   is the angle which rod makes with vertical OZ  at time t . When rod falls from

horizontal, then centre of gravity G  is describing a circle of radius a OGb g  about O  as centre. Let P
and Q  be components of reaction at O  in direction of GO  and perpendicular to GO .

Let RH  and RV  be horizontal and vertical strains on the hinge.

P L Q

 X

Amg

Ga sin

a


a cos

O
RH

RV
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Then equation of motion of  G  along GO  and perpendicular to GO  are

M a d
d t

P M g


F
HG

I
KJ  

2

cos along GOb g ...(2)

and M a d
d t

Q M g
2

2


  sin  to GOb g ...(3)

Let k  be radius of gyration of rod OA  about axis through O

M k M a k a2 2 2 24
3

4
3

   ...(4)

Now, the moment equation about O  gives

M k d
d t

M g a2
2

2


  sin (Moments of P  and Q  will be zero) ...(5)

or
4
3

2
2

2a d
d t

g a
  sin

or
d
d t

g
a

2

2

3
4


  sin ...(6)

Multiplying by 
2d
d t


 and integrating, we get

d
d t

g
a

C


F
HG

I
KJ  

2

1
3
4

cos ...(7)

we know

  0 , 



2  C1 0

 from (7), 
d
d t

g
a




F
HG

I
KJ 

2
3
2

cos ...(8)

to find P , using value of  2  in eqn (2) from (8), we get

M a g
a

P M g P M g. cos cos cos3
2

5
2

      ...(9)

and using value of 
d
d t

2

2


 from (6) in (3), we get
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M a g
a

Q M g Q M g. sin sin sin
F
HG

I
KJ    

3
2

1
4

   ...(10)

Now, the horizontal strain  RH  sum of components of P  and Q  in horizontal direction OH

        P Qsin cos b g
or R P QH  sin cos  ...(11)

      
F
HG

I
KJ  F

HG
I
KJ

5
2

1
4

M g M gcos sin sin cos    [from eqn (9) and (10)]

or R M gH 
9
8

2sin  ...(12)

which is maximum when sin 2 1 

sin sin2 1
2

2
2 4

     
     

Hence the horizontal strain is maximum when the rod is inclined at an angle 45  to the vertical.

Also vertical strain  RV  sum of components of P  and Q  in vertical direction OL

       P Qcos sin 

or R M g M gV  F
HG

I
KJ  F

HG
I
KJ

5
2

1
4

cos cos sin sin    [from (9) and (10)]

or R M g M gV  F
HG

I
KJ

5
2

1
4

2 2cos sin 

       
5
2 4

1
4 4

2 2M g M gcos sin  when  
F

HG
I
KJ4

or R M gV  
11
8

11
8 (weight of rod)

Example 2.17:A uniform semi circular arc of mass m  and radius a , is fixed at its ends to two point in the
same vertical line, and is rotating with constant angular velocity w . Show that the horizontal thrust on

the upper end is m
g w a.  2



Solution : Suppose the uniform semi circular arc (wire) with centre at O , mass m  and radius OD OEb g
a, rotates about DE a  2b g  with constant angular velocity w . Let G  be C G. .  of arc such that

OG a


2


...(1)
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Figure 2.26

Than, as wire rotates, the point G  will describe a circle of radius OG a
FHG

I
KJ

2
  about O  as

centre with constant angular velocity w . i.e. 
d
d t

w
  (constant),  

d
d t

2

2 0
.

Hence the effective force on G  is only m
a d

d t
. 2

2


F

HG
I
KJ  acting along GO .

Let P  and Q  be horizontal and vertical components of reaction at D , P  and Q  be horizontal

and vertical components at point E  as shown in fig. To find the horizontal thrust  Pb g  at upper and D ,
taking the moment of forces about lower end E , we get

Moment of effective forces = moment of external forces

 m a w OE P a m g a2 2 22

 
. .b g   FHG

I
KJ

or
2 2 22a m w a a P a m g
 

.  

or P
m g a w


 2c h


Example 2.18:A heavy homogeneous cube, of weight W , can swing about an edge which is horizontal;
it starts from rest being displaced from its unstable position of equilibrium; when the per pendicular from
the centre of gravity upon the edge has turned through an angle  , show that the components of the action
at the hinge along the rightangles to this perpendicular are

1
2

3 5W  cosb g  and 
1
4

W sin

P D

Q

O G A

mg
w

Q'

P'
E

2a

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Solution : Let G  be the initial position of C G. .  of cube in the figure.

Figure 2.27 (a) Figure 2.27 (b)

Let G  be position of C G. .  when G O  has turned through an angle   about the horizontal
edge  A B  i.e.     G O G H O G . Let 2a  be the length of an edge of the cube, then

OG OC CG 2 2 [from fig. 2.27 (b)]

or OG a a a  2 2 2 ...(1)

When cube swing about edge  A B , then G  describes a circle of radius OG ab g  about O  as
centre. Let P  and Q  are the components of reaction of axis along and perpendicular to the direction
GO .

If M k 2   M.I. of cube about an edge

then M k ma M a M a2 2 2 22
3

2 8
3

  d i

 M.I. of cube of edge of length 2a  about any line through C G M a. .  2
3

2

 k a2 28
3

 ...(2)

Now, equation of motion of G  along and perpendicular to GO

are M a P M g2 2 cos   ...(3)

and M a Q M g2  sin   ...(4)

Now taking moments about O , we get

M k M g a2 2 sin  ...(5)

P

B D

H

A

A'

B'
G

aa 2

O C

2a E

2a

Q

G'
G



mg


 


2


Q

O

P
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or M a M g8
3

22  sin  [from eqn (2)]

or  sin 
3 2
8a

g ...(6)

using value of   from (6) in (4), we get

M a
a

g Q M g2 3 2
8

sin sin 
F
HG

I
KJ  

or Q M g W
   

4 4
sin sin  ...(7)

Here  v e  sign show that Q  is opposite direction to what is shown in the figure.  M g Wb g
Now integrating eqn (6) by multiplying 2  , we get

 cos 2
1

3 2
4

  
a

g C ...(8)

when v  0 ,   0 (initial condition)

 o
a

g C C g
a

    
3 2
4

3 2
41 1 ...(9)

Hence from (8)

 cos cos  2
1

3 2
4

3 2
4

3 2
4

1    
a

g g
a

C
a

g b g ...(10)

Using value of  2  from (10) in (3), we get

M a g
a

P M g2 3 2
4

1 
L
NM

O
QP
 cos cos b g

or P M g M g
  L

NM
O
QP  

3
2

1
2

3 5cos cos cos  b g b g

or P W
 

2
3 5 cosb g W M gb g

Example 2.19:A right cone, of vertical angle 2 , can turn freely about an axis, passing through the
centre of its base and perpendicular to the axis, if the cone starts from rest with its axis horizontal, show
that when the axis is vertical, the thrust on the fixed axis is to weight of the cone as
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1 1
2

2 cos   to 1
1
3

2 cos 

Solution : Let M  be mass of cone, a  be radius of base a OEb g  and h  be height of cone h ODb g ,

then OG h


4 , where G  is C G. .  of cone. The cone turn round a horizontal diameter AB  of the base of

cone.

Figure 2.28 (a) Figure 2.28 (b)

When cone turns, its C G. . , G  will describe a circle of radius OG h


4  about O  as centre. AtAt

any time t  let axis of cone makes an angle   with horizontal OL . Initially

t  0 ,   0 ,   0 ...(1)

Now, M.I. of cone about an axis through C G. .  and   to the axis of cone (i.e. about GY  as in fig.
2.28 (a)) is

3
80

42 2M h ac h ...(2)

If M k 2  be the M.I. of cone about axis of rotation ABb g , then

M k 2   M.I. about GY M OG b g2

             F
HG

I
KJ

3
80

4
4

2 2
2M h a M hc h

or M k M h a h k h h2 2 2 2 2 2 2 2

80
3 12 5 1

20
2 3     c h c htan 

 In EOD a
h

a h , tan tan   F
HG

I
KJ

or k h2
2

2

20
2 3  tan c h ...(3)

Now, equations of motion of G  along and perpendicular to GO  are

E h

A a h
4

B

C

D

D



Z

C

P A
E

O

G

mg

B

Q

90

90
b
4cos

           (Initial Position)        (Displaced Position)
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M h P M g
4

2F
HG

I
KJ   sin  (along GO ) ...(4)

and M h M g Q
4

F
HG

I
KJ   cos  (  to GO ) ...(5)

where P  and Q  are components of reactions at O  along GO  and perpendicular to GO . In eqn
(5), M g cos  is positive as it is in the sense of   increasing and Q  is negative.

Also taking moment about O , we get

M k M g h2

4
 . cos 

or k g h2

4
 cos  ...(6)

Integrating by multiplying both sides by 2   w.r. to t

k g h C2 2
12

 sin   ...(7)

to determine C1 , using eqn (1),   0 ,   0

C1 0

 from eqn (7)

k g h2 2

2
 sin  ...(8)

Now, using (6) in eqn (5), we get

M h g h
k

M g Q
4 4 2 cos cos 

F
HG

I
KJ  

 Q M g h
k

 
L
NM

O
QPcos 1

16

2

2

Clearly, when the axis is vertical, then   90 ,  Q 0

Now, using value of  2  from (8) in (4), we get

P M g M h g h
k

M g h
k

   
L
NM

O
QPsin . sin sin  

4 2
1

82

2

2

when   90 , then P M g h
k

 
L
NM

O
QP1

8

2

2
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or
P

M g
 


L
NM

O
QP1 1

8
20

2 3 2.
tan 

 from h
k

3 20
2 3

2

2 2b g,
tan




F
HG

I
KJ

         
 











16 24 20

8 2 3
3 6
6 2

3 6
6 2

2

2

2

2

2

2

tan
tan

sec
sec

cos
cos








c h

or
P

M g
P
W





 





1
2

1

1 1
3

1 1
2

1 1
3

2

2

2

2

cos

cos

cos

cos









2.9 Centre of Percussion
Definition : If a body, rotating about a given axis, is so struck that there is no impulsive pressure on the
axis, then any point on the line of acting of the force is called a centre of percussion. The line of action of the
force is called the line of percussion.

Axis of spontaneous rotation : If the line of action of the blow is given, then the axis about which the
body begins to turn is called the axis of spontaneous rotation. Evidently it coincides with the position of the
fixed axis in the first case.

To find the centre of percussion of a rod suspended freely from one end struck by a blow.

Consider a rod OA  of length 2a  and mass M , which is freely suspended from one end O  and

struck by a horizontal blow sayb g   F  at a point B  of the rod such that OB x say b g

Figure 2.29

When the rod is struck by blow F , let P  be the impulsive action at O  and w  be the angular
velocity communicated to the rod, then velocity of the C G. .  G  of rod after the blow is a w .

Hence equating the change in the momentum in the horizontal direction to the total external impulse
in that direction, we have

M a w F P  0b g , i.e. M a w F P  ...(1)
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Also we know that change in the moment of momentum about axis of rotation through O  is equal
to moment of external impulses, so we get

M k w F x P o2 0  b g . . (  before blow w  0 )

or M k w F x2  ...(2)

where k  is radius of gyration of rod about axis of rotation through O ,

 k a2 24
3

 ...(3)

If the blow F  has been given through the centre of percussion, then there should be no impulse on
the axis of rotation, so P  0 , then eqn (1) reduces to

M a w F ...(4)

To determine the position of the centre of percussion we shall eliminate F  between the equation
(2) and (4). From (2)

F M k w
x


2

,

Now, from (4)

M a w M k w
x

x k
a

  
2 2

...(5)

Which is the length of simple equivalent pendulum.. therefore in this case the centre of persucssion
coincides with the centre of oscillation.

Self Learning Exercise - 3

1. Write expressions for horizontal reaction and vertical reaction.

2. Define centre of percussion.

3. Define axis of spontaneous rotation.

Illustrative Examples :

Example 2.20:Find the position of centre of percussion in the following cases :

(i) Uniform circular plane, axis is horizontal tangent.

(ii) A uniform rod with one end fixed.

Solution : (i) Here x   distance of C G. .  from horizontal tangent AX  is  a
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Figure 2.30

k  be radius of gyration about horizontal tangent AX

   k a a a2
2

2 2

4
5
4

 M.I. about diameter CO M a


F
HG

I
KJ

2

4

 distance of centre of percussion below the highest point

 

F
HG

I
KJ
 F
HG

I
KJ

k
x

a

a
a

2
25

4 5
4

(ii) In this case, let length of rod  2a , then

x   distance of C G. .  of rod from fixed end  a , and

k a2 24
3



     b M.I. of rod of length 2a , about an axis through an end and perpendicular to the rod is 
4
3

2M a g

 distance of centre of percussion below the highest point

   F
HG

I
KJ

k
x

a

a
a

2
24

3 4
3

Example 2.21:Find the centre of percussion of a triangle ABC  which is free to move about its
  side BC .

Solution : Let M  be mass of triangle ABC . Let D , E , F  be middle points of sides BC , CA  and
AB  respectively of triangle ABC . Draw perpendicular AL  from A  on side BC . Also draw median
AD . Let AL h .

A

C D

a

G

x
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Figure 2.31

Take O  as middle point of DL , OX  as x -axis (along side BC ) with o y  perpendicular to BC
as another coordinate axis. Then we can prove that side BC  ( or  axis ox ) is principal axis at O .

The triangle ABC  is kinetically equivalent to three particles each of mass 
M
3  placed at D , E

and F .

 P.I. about OX  and oy  of trinagle = P.I. of three particles D E,  and F

   
1
3 2

1
3 2 3

M OH h M PO h M O. . . .b g

(for E )          (for F )      (for D )

(  coordinates of E  and F  are  OH h,
2

F
HG

I
KJ , are FHG

I
KJO P h,

2  with respect to ox , oy)

or P.I. of   ABC M h OH OP M h OL LH OD DP     
6 6

( )

 
M h LH DP
6 OD OLb g

or P.I. of  ABC  about ox oy M h LC BD BP,   L
NM

O
QP6

1
2

b g

          L
NM

O
QP

M h b C a c B
6

1
2 2 2

cos cos

          
M h b C c B a
12

cos cos

          
M h a a
12

0

B
P D O L H C X

A

F

h

m
3

E
M
3

F
HG

I
KJM

3
F
HG

I
KJ

y

O1
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Now M k 2   M.I. of  ABC  about side BC

           = M.I. of  three particles D E,  and F  each of mass 
M
3

M k M h M h M M h2
2 2

2 2

3 2 3 2 3
0 1

6
 F

HG
I
KJ  F

HG
I
KJ  b g ...(1)

or k h2
2

6


x   the depth of C G. .  of the centre of percussion below BC  along a vertical through O

 
k
x

h

h

2
2

6

3

e j
e j

 F
HG

I
KJ

h
2

this will be point O1 , which is point of intersection of axis oy  and median AD  i.e. it is mid point
of median AD .

2.10 Summary

1. In this unit you have studied about moment of momentum, moment of effective forces, kinetic
energy about axis of rotation, principle of angular momentum, the compound pendulum, centre
of percussion.

2. Some results of velocities and accelerations, formula for finding length of simple equivalent
pendulum and formula for finding position of centre of percussion will help the students to easily
understand various results obtain in this unit.

2.11 Exercise

1. A uniform chain of length 20 metre and mass 40 kg. hangs in equal lengths over a solid circular
pulley of mass 10 kg. and small radius, the axis of the pulley being horizontal. Masses of 40 kg.
and 35 kg are attached to the ends of the chain and motion takes place, show that the time taken

by the smaller mass to reach the pulley is 
5 6

7
9 4 5log sece d i , where g m 9 8 2. / sec .

2. A uniform disc of mass M , is free to turn about a horizontal axis through its centre perpendicular
to its plane. A particle of mass m  is attached to a point in the edge of the disc. If the motion starts
from the upward in which radius to the particle makes an angle   with the upward vertical, find
the angular velocity when m  is in its lowest position.

W m g
a m M




L
N
MM

O
Q
PP2

2
2

2
cos ,

b g a being radius of the disc
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3. A rigid body can turn freely about an axis fixed in the body and in space. To find the moment of
effective forces and kinetic energy about the axis of rotation.

          moment of effective forces  L
NM

O
QPM k K E M k2 2 21

2
; . .  

4. A flat circular disc of radius a has a hole in it of radius b  whose centre is at a depth c  from the

centre of disc c a b b g . The disc is free to oscillate in a vertical plane about a smooth
horizontal circular rod of radius b  passing through the hole. Show that the length of the equivalent
simple pendulum is

c a b
a c


1

2

4 4

2

5. Three equal particles are attached to a weightless rod at equal distance apart. The system is
suspended from, and is free to turn about, a point of the rod distance x  from the middle particle.
Find the time of a small oscillation and show that it is least when x a 0 82.b g  nearly..

T x a
x g

a b
g


L

N
MM

O
Q
PP2 3 2

3
2 2

3

2 2

 ,

6. Find the lengths of simple equivalnet pendulums in the following cases, the axis being horizontal

(i) A circular wire, axis is a tangent to it

(ii) A cube of side 2a , axis being an edge. i l a ii l ab g b g L
NM

O
QP

3
2

4
3

2,

7. A circular area can turn freely about a horizontal axis which passes through a point O  of its
circumference and is perpendicular to its plane. If motion commences when the diameter through
O  is vertically above O , show that, when the diameter has turned through an angle  , the
components of the diameter has turned perpendicular to this diameter are respectively
1
3

7 4W cos b g  and 
1
3

W sin .

8. A uniform rod of length 2a  and weight W  is turning about its end O  and starts from the position
in which it was vertically above O . When it has turned through an angle  , show that the

horizontal and vertical reaction are 
3
4

2 3W sin cos b g  and 
1
4

1 3 2W  cosb g .

9. A pendulum is constructed of a solid sphere of mass M  and radius a which is attached to the end
of a rod of mass m  and length b . Show that there will be no strains on the axis if the pendulum be

struck at a distance M a a b mb M a b m b2
5

1
3

1
2

2 2 2 2 RST
UVW 

L
NM

O
QP   L

NM
O
QPb g b g  from the

axis.

10. Find the position of the centre of percussion of a sector of a circle, axis in the plane of sector
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perpendicular to its symmetrical radius and passing through the centre of circle.

3
8

2
a

a
  





 

L
NM

O
QP

sin cos
sin

,
b g radius of circle, angle of sector

Answers

Self Learning Exercise - 1

1. Radial acceleration  a  2d i  along OP , where O  is pole and P  is r , b g  point, and transverse

acceleration  a  , perpendicular to radius vector OP .

2. M k 2  , where k  is radius of gyration about axis of rotation.

3. M k d
d t

2 

Self Learning Exercise - 2

1. T l
g

 2 2. See art. 2.7

3. T k
g h

 2
2

 , where k  is the radius of gyration of body about a fixed axis and h  is the distance

of the centre of inertia from fixed axis.

4. See art. 2.8

Self Learning Exercise - 3

1. R P QH  sin cos  , R P QV  cos sin 

2. See art. 2.12 3. See art. 2.12

����
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UNIT - 3
Motion of a Rigid Body in Two Dimensions Under Finite

Forces and Impulsive Forces

Structure of the unit
3.0 Objective

3.1 Introduction

3.2 Equations of Motion in Two Dimensions when the forces are finite

3.3 Kinetic Energy in terms of the Motion of Centre of Inertia and Motion Relative to Centre of Inertia

3.4 Moment of Momentum of the body about the Fixed Origin

3.5 Rolling and Sliding Frictions

3.6 Rolling of a sphere on a rough inclined plane

3.7 Slipping of rods

Self learning Exercise - 1

Illustrative Examples

3.8 Sliding and Rolling of a sphere on an inclined plane

3.9 Rolling and Sliding of a sphere on a fixed sphere

3.10 Unstable equilibrium between two smooth spheres

Self learning Exercise - 2

Illustrative Examples

3.11 Motion of a hollow cylinder inside a cylinder

Illustrative Examples

3.12 Two Dimensional Motion of rigid body under impulsive forces

3.13 Equation of motion in two dimensions under impulsive forces

Illustrative Examples

3.14 Change in Kinetic Energy due to action of impulse

3.15 Impact of rotating elastic sphere on a fixed horizontal rough plane

Illustrative Examples

3.16 Summary

3.17 Exercise

3.18 Answers of Self Learning Exercise
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3.0 Objective
This unit provides a general overveiw of motion of a rigid body in two dimensions under finite

forces and under impulsive forces. After reading this unit you will be able to learn

1. About equations of motion in two dimensions under finite forces and impulsive forces

2. About K.E. of a rigid body in a two dimensional motion in terms of motion of centre of inertia and
motion relative in to centre of inertia. Also change in K.E. due to action of impulsive forces.

3. About angular momentum about origin, Rolling and Slinding frictions.

4. Rolling of sphere on a rough inclined plane and sliding of a rod, sliding and rolling of a sphere on an
inclined plane.

5. About rolling and sliding of a sphere on a fixed sphere, unstable euqilibrium between two smooth
spheres.

6. About rolling of a solid cylinder, inside a rough hollow cylinder

7. About sliding and rolling of a rotating disc on a rough horizontal plane.

8. About impact of a rotating elastic sphere on a fixed horizontal rough plane.

3.1 Introduction

First we shall study here the motion in two diemnsions when the impressed forces are finite in
nature. The motion of rigid body takes place in three dimenstions, the study of its motion is very much
simplified when all particles of the body move parallel to a given fixed polane. Such a motion of the rigid
body is called two dimensional motion or plane motion. In such a case the motion can be considered as a
translation motion parallel to a given fixed plane plus a rotation about a suitable axis perpendicular to the
plane. This axis is often choosen to pass through the centre of mass of the body under consieration.

In this unit, secondly we shall study the motion in two dimension under impulsive forces where the
effect of finite forces on the body are neglected.

3.2 Equations of Motion in Two Dimensions when the forces are finite

We know that the motion of a rigid body consists of two independent motion :

(i) The motion of the centre of gravity (motion of translation)

(ii) The motion about centre of gravity (motion of rotation)

The motion of centre of gravity : By this we mean that the total mass M  of rigid body is supposed to be
concentrated at the C G. . and all the external forces are transferred parallel to themselves to act at the
C G. . of the body..

The motion about the centre of gravity : By this we mean that the sum of moment of the effective
forces about the C G. . is equal to sum of the moments of the external forces about C G. .

Classical method for finding the equations of motion : Let us consider the motion of a rigid body (to
start we may take a lamina) in a fixed plane (say), x y  plane. Let x y,a f  be the coordinate of C G. . of the
body and M  be the mass of the body concentrated at G , then we have

83



Figure 3.1

M d x
d t

F
2

2 1  ...(1)

and M d y
d t

F
2

2 2  ...(2)

where F1  = the algebraic sum of the components of the external forces parallel to x -axis,
supposed to be acting at the C G. .

and F2 = The algebraic sum of the components of the external forces paralle to y-axis.

For rotational motion, Let P  be any particle of body of mass m  whose coordinates relative to

C G. .  G  as origin be x y1 1,c h , then from earlier knowledge else from unit-1, we have the following
equation

m x d y
d t

y d x
d t

x F y F 
F
HG

I
KJ  1

2 1

2
1

2 1

2
1

2
1

1c h

or m d
d t

x d y
d t

y d x
d t

x F y F 
F
HG

I
KJ  1

1
1

1
1

2
1

1c h

or
d
d t

m x d y
d t

y d x
d t

x F y F 
F
HG

I
KJ  1

1
1

1
1

2
1

1c h ...(3)

But x d y
d t

y d x
d t

1
1

1
1


F
HG

I
KJ  is the moment about G  of the velocity of particle of mass m

relative to G .

Let GL  be line fixed in space (in x y  plane) and GA  be line fixed in the body (fixed with lamina)

Let GP r  and let GP  makes an angle   with line GL . Again Let   an angle which the line  GA
makes with GL , then from fig. 3.2, it is clear that

Y

O X

G x y,b g

Pm

F2

F1
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   AGP ...(4)

Figure 3.2

But  AGP  constant, because it is the angle between two fixed lines GA  and GP  so on
differentiating (4)

d
d t

d
d t

 
 ...(5)

Now the velocity of particle of mass m  at P  relative to G  is r
d
d t


 and hence its moment

about G  is

r r d
d t

r d
d t

r d
d t

.   F
HG

I
KJ  2 2 [from (5)] ..(6)

 
F
HG

I
KJ x d y

d t
y d x

d t
r d

d t
1

1
1

1
2 

...(7)

Therefore from eqns (3) and (7), we have

d
d t

m r d
d t

x F y F2 1
2

1
1

F
HG

I
KJ

L
NM

O
QP
   c h

or
d
d t

m r d
d t

x F y F2 1
2

1
1

 L
NM

O
QP  c h

or
d
d t

d
d t

m r x F y F . 2 1
2

1
1 L

NM
O
QP  c h

or
d
d t

d
d t

M k x F y F . 2 1
2

1
1

L
NM

O
QP   c h ...(8)

where k  is the radius of gyration of the body about an axis through G  perpendicular to the plane
of motion i.e. x y  plane.

O

P mb g

G

r




A

y

x

L

O x

y

O

85



or M k d
d t

x F y F say L2
2

2
1

2
1

1

   c h a f ...(9)

where L  is the moment of all external forces acting on the body about G .

Equation (1), (2) and (9) are taken as the equations of motion of rigid body moving in two
dimensions under finite forces.

3.3 Kinetic Energy in terms of the Motion of the Centre of Inertia and
motion relative to Centre of Inertia

Let x y,a f be the coordinates of a particle of mass m  of the rigid body referred to the fixed axes

ox  and oy and let x y,a f  be coordinates of G  referred to O as origin and x y1 1,c h be coordinates of P
referred to G  as origin, then (see fig. 3.1)

x x x  1, y y y  1 ...(1)

clearly
m x

m
x

1


  - coordinate of C G. .  0

m y
m

y
1


  - coordinates of C G. .  0

as x y1 1,c h are the coordinate of P  referred to G  as origin

Hence m x1 0  , m y1 0  ...(2)

  m d x
d t

1

0, m d y
d t

1

0  ...(3)

Thus, the K.E. of the particle P  of mass m  is


F
HG

I
KJ 

F
HG

I
KJ

R
S|
T|

U
V|
W|

1
2

2 2

m d x
d t

d y
d t

Hence the K.E. of the whole body is


F
HG

I
KJ 

F
HG

I
KJ

R
S|
T|

U
V|
W|1

2

2 2

m d x
d t

d y
d t

 
F
HG

I
KJ  

F
HG

I
KJ

R
S|
T|

U
V|
W|

1
2

1 2 1 2

m d x
d t

d x
d t

d y
d t

d y
d t


F
HG

I
KJ 

F
HG

I
KJ

R
S|
T|

U
V|
W|


F
HG

I
KJ 

F
HG

I
KJ

R
S|
T|

U
V|
W| 1

2
1
2

2 2 1 2 1 2

m d x
d t

d y
d t

m d x
d t

d y
d t

     m d x
d t

d x
d t

m d y
d t

d y
d t

. .
1 1
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Last two terms will be zero by virtue of eqn (3),

Hence K.E. of whole body


F
HG

I
KJ 

F
HG

I
KJ

L
N
MM

O
Q
PP

  1
2

1
2

2 2
2d x

d t
d y
d t

m m vd i

where v1 is the velocity of any particle of mass m  relative to G  and it is equal to r
d
d t

r d
d t

 


 K.E. of whole body


F
HG

I
KJ 

F
HG

I
KJ

L
N
MM

O
Q
PP 

F
HG

I
KJ1

2
1
2

2 2 2

M d x
d t

d y
d t

m r d
d t


 
F
HG

I
KJ1

2
1
2

2 2
2

M V m r d
d td i 

 
F
HG

I
KJ

1
2

1
2

2 2
2

M V M k d
d t


where k  is radius of gyration of the body about a line through C G. . perpendicular to the plane of

the motion. V  is velocity of C G. ., hence 
1
2

2M V  is the K.E. of a particle of mass M  placed at C G. ., and

1
2

1
2

1
2

2 2 1
1 2 1 2

2

M k m v m d x
d t

d y
d t

  
F
HG

I
KJ 

F
HG

I
KJ

L
N
MM

O
Q
PP   is the K.E. of the body

relative to G .

 K.E.  
1
2

1
2

2 2 2M V M k 

  (K.E. of a particle of a mass M  placed at G  and moving with it)

+ (K.E. of the body relative to C G. .)

  K.E. due to translation motion + K.E. due to rotation

3.4 Moment of Momentum of the body about the Fixed Origin

Let x y,a f be the coordinates of P  referred to O as origin, x y,a f  be coordinates of G  referred

to O as origin and x y1 1,c h are coordinates of P  referred to G  as origin, then the moment of momentum
of a particle of mass m  at P  about origin O is

 
F
HG

I
KJm x d y

d t
y d x

d t , where 
d x
d t

d y
d t

,  are the velocities of particle of mass m  parallel to

coordinate axes.
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Therefore moment of momentum of whole body is

 
F
HG

I
KJ m x d y

d t
y d x

d t ...(1)

Now x x x  1, y y y  1 [by eqn (1) and art. 3.3] ...(2)

Als o
m x

m
m y

m

1 1





F
HG

I
KJ, ,  a r e  t h e  c o o r d in a t e s  o f  C G. .  r e f e r r e d  t o  G  a s

o r ig in ,  s o  
m x
m

m y
m

1 1

0 0





F
HG

I
KJ , ,b g

  

 

 

 

U

V

||||

W

||||

 

 

 

 

mx my

mdx
dt

mdy
dt

mx dy
dt

dy
dt

mx

my dx
dt

dx
dt

my

1 1

1 1

1 1

1 1

0 0

0 0

0

0

,

,

d i

d i

Now, from eqn (1), after using (2), we have

m x x d y
d t

d y
d t

y y d x
d t

d x
d t  

F
HG

I
KJ   

F
HG

I
KJ

L
NM

O
QP

1
1

1
1

c h c h

 
F
HG

I
KJ  

F
HG

I
KJ m x d y

d t
y d x

d t
m x d y

d t
y d x

d t
1

1
1

1

Rest of the terms vanish in view of (3)

 Moment of momentum of whole body

 
F
HG

I
KJ  

F
HG

I
KJ x d y

d t
y d x

d t
m m x d y

d t
y d x

d td i 1
1

1
1

 
F
HG

I
KJ  

F
HG

I
KJM x d y

d t
y d x

d t
m x d y

d t
y d x

d t
1

1
1

1

..(4)

 M M sayG R a f

where M M x d y
d t

y d x
d tG  

F
HG

I
KJ   moment of momentum about O of a

Also

and

or

...(3)
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particle of mass M  placed at G M v p ...(5)

where v  is the velocity of C G. . of mass M  placed at G  and p  is the perpendicular from O of
upon the direction of velocity v of C G. . G ,

and M m x d y
d t

y d x
d tR  

F
HG

I
KJ  1

1
1

1

 Moment of momentum of body about G

       
F
HG

I
KJ m r d

d t
r

where r
d
d t


 is the velocity of particle of mass m  relative to G  which is equal to r
d
d t


 (as shown

in art. 3.2)

 M m r d
d t

r m r d
d t

d
d t

m r d
d t

M kR 
F
HG

I
KJ 

F
HG

I
KJ       2 2 2d i ...(6)

where k  is the radius of gyration of the body about a line through G   to x y  plane

 Moment of momentum  M v p M k d
d t

2 

= (Moment of momentum of C G. . of the body) + (Moment of momentum relative to C G. .)

3.5 Rolling and Sliding Friction

Friction is a self adjusting force which tends to prevent the relative motion of the point at which it
acts. But if    is the coefficient of friction and R  be normal reaction then it has a limiting value  R

During the motion of rough bodies in any direction, we assume a friction F  opposite to the direc-
tion of relative motion and assume that the point of contact is at relative rest, which is expressed by a
geometrical equation.

Further if

(i) F R  , it is the case of pure rolling.

(ii) F R  , body is on the commencement of slipping. It is the case of rolling with limiting
friction.

(iii) F R  , it is the case of rolling and sliding combined. Sliding or slipping follows and F  is
to be replaced by  R . Motion need to be discussed fresh without the geometrical
relations.

(iv) F   0 0 , so motion is on smooth surface. It is the case of pure sliding.
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3.6 Rolling of a sphere on a rough inclined plane
To discuss the motion of a uniform sphere which rolls down an inclined plane, rough

enough to prevent any sliping.

Figure 3.3

Let  M  be the mass, a  be the radius and O be the centre of the sphere. LH  is horizontal plane,
LA is an inclined plane. Initially, let the sphere be at rest with its point B  in contact with A.

 At A t,  0 , x  0  and x  0 ...(1)

After time t , let the centre of sphere describe a distance x  parallel to the inclined plane and radius
of sphere OB have turned through an angle  , i.e.  BOD 

Since there is no sliding, therefore

distance AD ar c DB  or x a 

so that  x a  ,  x a 

Here OB is a line fixed in the body which makes an angle   with the normal to the plane which is
a line fixed in space.

Let R  be the normal reaction and F  be the frictional force then we have the following equations of
motion of centre of gravity O of sphere.

M d x
d t

M g F
2

2  sin (motion of O in direction of AL) ...(3)

and O M g R cos (motion of O perpendicular to inclined AL) ...(4)

Also, for the motion about centre of inertia, taking the moments about O, we get

M k F a o R2  . .  

or M k x
a

F a2  . [from (2)]

or M k d x
d t

a M g M d x
d t

2
2

2
2

2

2 
F
HG

I
KJsin [from (3)]

p ...(2)

A

F

D

m g
HL



BRa

O 

90
d x
dt

2

2

90



or M a k d x
d t

a M g2 2
2

2
2 c h sin

or
d x
d t

a g
a k

2

2

2

2 2

sin

c h ...(5)

R.H.S. is constant, so the sphere rolls down with constant acceleration. Integrating eqn (5), we get

d x
d t

a g
a k

t C



2

2 2 1
sin

c h ...(6)

but by eqn (1) t  0 , x  0

 C1 0


d x
d t

a g
a k

t


2

2 2

sin
c h ...(7)

Again integrating it, we get

x a g
a k

t C



2

2 2

2

22
sin .

c h ...(8)

but again x  0 , t  0 C2 0

Also from (5)

2 2 22

2

2

2 2

2 2

2 2 3
d x
d t

d x
d t

a g
a k

d x
d t

d x
d t

a g
a k

x C. sin sin





F
HG

I
KJ 




 
c h c h

with above conditions C3 0

 



sin .x a g

a k
xb g c h

2
2

2 2

2 
...(8 A)

 x a g
a k

t


1
2

2

2 2
2sin

c h ,  which is the required distance described by the sphere in time t

...(9)

For solid sphere  k a2 22
5

 , using in eqn (5), we get


sin sin sinx a g

a a

a g
a

g
F

H
I
K
 

2

2 2

2

22
5

5
7

5
7

 


...(10)

Using x  from (10) in (3), we get

M g M g F. sin sin5
7

  
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 F M g M g M g  sin sin sin  5
7

2
7 ...(11)

which is the frictional force and normal reaction, from eqn (4)

R M g cos ...(12)

Condition of pure Rolling :

Here F
R

M g

M g
 

2
7 2

7

sin

cos
tan




 [by eqn (11) and (12)]

 for pure rolling, 
F
R
  or F R 

  
2
7

tan

which should be satisfied during the motion.

Kinetic energy of the body :

K.E. of sphere (at any time t )  
1
2

1
2

2 2 2M x M k 

           
1
2

1
2

2 2
2

2M x M k x
a




  
 F

H
I
K

x
a

           
F
HG

I
KJ

1
2

12
2

2M x k
a



           M g x sina f from (8 A)

which is the same as the work done by gravity and also follows from the principle of energy and work.

Particular Cases : From the symmetry of the body, we may derive corresponding results for acceleration
by subtituting the value of k  (radius of gyration) for different bodies.

For different bodies

Body   radius of gyration Acceleration

k 2

Uniform sphere of radius a
2
5

2a 5
7

g sin  (see 10)

Thin solid disc of radius a
1
2

2a 2
3

g sin

Thin spherical shell of radius a
2
3

2a 3
5

g sin

Uniform thin ring of radius a a2
1
2

g sin
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3.7 Slipping of Rods
(i) A uniform rod is held in a vertical position with one end resting upon a rough table, and

when released rotates about the end in contact with the table to discuss the motion.

Let ox  be top of perfectly rough table and OA be a rod of mass M  and length 2 a OAa f . The
rod is capable of rotating about end O end let it make an angle   with vertical.

Choosing O as origin and horizontal and vertical lines through O as axes. Then coordinates of G
(C G. . of rod) will be x y,a f OG a , GB a sin , OB a cos

 x a sin , y a cos ...(1)

on differentiating w r. . to t

 cos x a   ,  sin  cos x a a     2 ...(2)

and  sin y a    ,  cos  sin y a a     2 ...(3)

Figure 3.4

Let F  be the frictional force on the table acting along ox  and R  be the normal reaction at O acting
along oy (fig. 3.4) then equations of motion of C G. . are

M d x
d t

M a a F
2

2
2   sin  cos    d i   (In horizontal direction) ...(4)

and M y M a a R M g cos  sin        2d i  (In vertical direction ) ...(5)

Also v x y a2 2 2 2 2       and k
a2

2

3
 (for rod OA of length 2a) ...(6)

The distance fallen by C G. . in downward direction   a a cosa f ...(7)

Hence energy equation is

1
2

1
2

2 2 2M v M k M g a a   cos a f

R

F

G

O

a

a

y

M g

a sin

a cos 
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or
1
2

1
2 3

12 2
2

2M a M a M g a  cos    b g [by eqn (6)]

or
2
3

12 2M a M g a cos  b g

or  cos 2 3
2

1 
g
a
b g ...(8)

Differenting eqn (8) with respect to t

2 3
2

3
4

  sin   sin       
g
a

g
ad i ...(9)

Substituting values of   and   from (8) and (9) in (4), we get

F M a g
a

g
a

  
L
NM

O
QPcos . sin sin cos   

3
4

3
2

1a f

or F M g 
3
4

3 2sin cos a f ...(10)

Also from eqn (5),  on putting values of   and  , we get

R M g 
1
4

1 3 2cosa f ...(11)

these relation (10) and (11) determine the motion.

Analysis :

(i) R  does not change sign and it is always positive (eqn 11). It vanishes when cos 
1
3 ,

therefore end O does not leave the table.

(ii) F  changes its sign as   passes through the angle cos1 2
3  and hence its direction is then

reversed (eqn 10)

(iii) The ratio 
F
R
   as cos 

1
3

Hence unless the plane is rough enough, there must be sliding then. (eqn (10) and (11))

(iv) The end O of rod will begin to slip for some value of   less than cos F
H

I
K

1 1
3 , and it will slip

backwards or forward accroding as the slipping occurs before or after the inclination of

rod is cos F
H

I
K

1 1
3 .

(ii) A uniform straight rod slides down a vertical plane its end being in contact with
two smooth planes; one horizontal and other vertical. If it starts from rest at an
angle   with the horizontal, to discuss the motion.

94



Figure 3.5

Let CD be the rod of length 2a  and mass M , which is in contact with two smooth planes, one
horizontal (OCx  plane) and the other vertical (ODy plane) at which the normal reaction are S  and R
respectively. Let G  be C G. . of rod and   be the inclination of the rod to the horizontal at any time t .

Initially t  0,   ,   0 ...(1)

Let coordinates of G  about ox , oy as axes be x y,a f so that

x OH DL a
y HG a
  
 

UVW
cos

sin


 ...(2)

on differentiating with respect to t , we get

 sin  ;  cos  sin 

 cos  ;  sin  cos 

x a x a a

y a y a a

    

   

UV|W|
     

     

2

2 ...(3)

Equations of motion of centre of gravity are

M x R M a a R cos  sin        2d i (In ox  direction) ...(4)

and M y S M g M a a S M g sin  cos          2d i (in oy direction) ...(5)

Initially, when the inclination of rod was  , the hieght of C G. . was asin  and now it is asin  so
that the distance described by C G. . is a sin sin a f . Also, if v be velocity of C G. ., then

v x y a2 2 2 2 2    c h d i

Therefore from energy equation

1
2

1
2

2 2 2M v M k   (work done by gravity)
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we get
M a a M g a
2 3

2 2
2

2  sin sin   
L
NM

O
QP  a f  k a2

2

3


L
NM

O
QP

or  sin sin  2 3
2

 
g
a
a f ...(6)

Differentiating with respect to t , and dividing by 2 

 cos  
3
4

g
a ...(7)

Now putting values of  2 and   from (6) and (7) in (4), we get

M a g
a

a g
a

R   
F
HG

I
KJ

RST
UVW
cos . sin sin sin cos    

3
2

3
4

a f

Simplifying

R M g 
3

4
3 2cos sin sin  a f ...(8)

Now putting values of  2 and   from (6) and (7), in (5), we get

S M g M a g
a

a g
a

      
RST

UVWsin sin sin cos cos    
3
2

3
4

a f

       RST
UVWM g M g 3

2
3
2

3
4

2 2sin sin sin cos   

      
M g
4

4 6 6 32 2sin sin sin cos   m r

       
M g
4

1 6 6 3 12 2sin sin sin cos   c hn s

     
M g

4
1 6 9 2sin sin sin  m r

       
M g
4

9 6 12 2 2sin sin sin sin sin    c hn s

or S M g
  

4
3 2 2sin sin cos  a fo t ...(9)

From equation (8), we find that reaction R  at wall vanishes if sin sin 
2
3 , and for smaller

values of  , R  becomes negative. In this stuation the rod will leave the wall with angular velocity  2

i.e.  sin sin sin
  


  

3
2 2

g
a

g
a

a f on using sin sin F
HG

I
KJ

2
3 ...(10)
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The centre of mass G  will have the horizontal velocity

 sin  sin sinx a a g
a

     
2

3 2

    
1
3

2 3a g sin  ...(11)

Second Part of the Motion : (When the end D  leaves the plane)

When sin sin 
2
3 , and R  0

Let    and let S1 be the normal reaction at floor. Then the equations governing the motion of
rod are

Figure 3.6

M x  0 ...(12)

and M y S M g  1 ...(13)

taking moments about G , we have

M a S a
2

13
 cos   a f ...(14)

where y a sin ,   cos y a   ,  sin  cos y a a     2 ...(15)

using value of y  from (15) in (13), we have

M a a S M g   sin  cos    2
1d i

             
M a
a

M g
2

3



cos

 [from (14)]

or
1
3

2 2F
H

I
K   cos  sin cos  cos     

g
a

O C
x

G

D

a



S

m g

y
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on integrating it, we get

1
3

22 2
1F

H
I
K   cos  sin  

g
a

C ...(16)

Initially when   , sin sin 
2
3

and   sin
 


 

g
g2 ,

C g
a1

22 1
9

 
F
HG

I
KJ

sin sin 
...(17)

using this values of C1 in (16), we get

1
3

2 1
9

22 2
2

F
H

I
K  

F
HG

I
KJ cos  sin sin sin 

 


g
a

g
a ...(18)

when the rod becomes horiozontal i.e. when   0, Let w  be the angular velocity i.e. 
d
d t

w


where   0

w g
a

2
23

2
1

9
 

F
HG

I
KJ

sin sin 
...(19)

and by eqn (11) the rod in this elapsed time had its constant horizontal velocity

 sinx a g 
1
3

2 3

Self Learning Exercise - I

1. Define two deminsional motion under finite forces.

2. Write exprssion for K.E. of a rigid body in a two dimensional motion under finite forces.

3. What is friction?

4. What is condition for pure sliding?

5. What is condition for pure rolling?

Illustrative Examples :

Example 1 : Two equal cylinders each of mass m  are bound together by an elastic string whose tension
is T  and roll with their axes horizontal down a rough plane of inclination  . Show that their acceleration is

2
3

1 2g T
m g

sin
sin







L
NM

O
QP , where   is the coefficient of friction between the cylinders.

Solution : Let R1, F1 be the normal reaction and the frictional force on the upper cylinder respectively
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Figure 3.7

and R F2 2,  be the normal reaction and the frictional force on the lower cylinder respectively, due to
plane OA which is inclined at angle   with the horizon. Let R  be normal reaction between the two
cylinders at their point of contact H  (fig. 3.7). Then  at H  the frinctional force  R  acts away from the
inclined plane for upper cylinder and towards the inclined plane for lower cylinder. Let T  be the tension in
the string. At any time t  let the cylinders move through a distance x  along the inclined plane and   be the
angle turned by radius CB  of cylinders. Since there is no slipping

 x a , on differentiating  x a  ,  x a  ...(1)

Now the equations of motion of upper cylinder are

m x m g T F R sin    2 1 (parallel to inclined plane AO) ...(2)

and m y R m g R cos   0 1   (perpendicular to inclined plane) ...(3)

and moment equation is

m k F R a2
1

   (k  is radius of gyration about axis through C) ...(4)

where m  is mass of cylinder..

Equations of motion for lower cylinder are

m x m g T F R sin    2 2 (parallel to inclined plane) ...(5)

m y R m g R cos   0 2   (perpendicular to inclined plane) ...(6)

and moment equation is

m k F a R a2
2

   ...(7)

from eqn (4) and (7), we get

F F1 2 ...(8)

Now, from equation (2) and (5), we get

m g T F R m g T F Rsin sin       2 21 2

or 4 2 0 2T R R T    ...(9)

O
 m g

m g

x

A
F1

E
T

F2
F

R2

R1

T
T

R

R
C

D





B

H
r
R
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Also from eqn (4),

F R m k
a1

2

  

      2
2

2

T m a
a

a f .   k a2
2

2


F
HG

I
KJ

or F T m a x T m x1 2
2 2

2 1
2

    




Now using this value of F1  and (9) in eqn (2), we get

m x m g T T m x T sin


   F
H

I
K  2 2

2
2

or
3
2

2m x m g T sin  

or  sin
sin

x g T
m g

 
F
HG

I
KJ

2
3

1 2





Example 2 : A uniform solid cylinder is placed with its axis horizontal on a plane, whose incilination to
the horizon is  , show that the least coefficient of friction between it and the plane, so that is may roll and

not slide, is 
1
3

tan .

If the cylinder be hollow, and of small thickness, the least value is 
1
2

tan .

Solution : At any time t  let the axis of cylinder describe a distance x  and   be the angle turned
(fig. 3.3.) than x a   (since there is no slinding)   x a  and  x a 

If F  be the frictional force and R  be normal reaction, then equations of motion of C G. . are
M x M g F sin  (parallel to inclined plane) ...(1)

O M g R cos (perpendicular to inclined plane) ...(2)

taking moments about the axis through the centre of gravity O, we have

m k F a2  . 

or M k x
a

F a2  . ...(3)

Eliminating M x from (3) and (1), we have

k
a

M g F F a
2

sin .  b g or F k
a k

M g


2

2 2 sin ...(4)

and from eqn (2), R M g cos
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 


F
HG

I
KJ

F
R

k
a k

2

2 2 tan , but k
a2

2

2
 (for solid cylinder)

 
F
R

1
3

tan

For pure rolling F R   or
F
R
 

or      F
H

I
K

F
R

1
3

tan ...(5)

Hence for pure rolling least coefficient of friction is 
1
3

tan .

If cylinders be hollow, then k a2 2 , therefore from (4)

F M g
1
2

sin and
F
R


1
2

tan

For pure rolling     
F
R

1
2

tan

 In case of hollow cylinders for pure rolling least coefficient of frictions is 
1
2

tan .

Example 3 : A uniform rod is placed with one end in contact with a horizontal table, and is then at an
inclination   to the horizon and is allowed to fall. When it becomes horizontal, show that its angular

velocity is 
3

2
g

a
sinF

HG
I
KJ , whether the plane be perfectly smooth or perfectly rough. Show also that the

end of the rod will not leave the plane in either case.

Solution : At any time t , a rod OA of length 2a  and mass m  makes angle   with the horizontal G
be C G. . of the rod, then its coordinates are x a y a cos , sin a f Initially the rod is inclined at an
angle   to the horizontal so that height of C G. . was a sin  and now it is a sin . So in this time distance
travelled  by C G. . in downward direction

a asin sin a f ...(1)

Figure 3.8

Y

XO

AR

G

a

F

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We have to find the angular velocity when the rod becomes horizontal i.e. when   0

Case - I : When the plane is perfectly rough : Let F  be the friction and R  be the normal reaction then the
equation of energy gives

1
2

1
2

2 2 2M v M k   work done by gravity

or
1
2 3

2 2
2

2M a a m g a a  sin sin   
F
HG

I
KJ  a f [by eqn (1)]

 v x y a a a2 2 2 2 2 2       sin  cos    d i d i

and k
a2

2

3


 F
HG

I
KJ  

m a m g a
2

4
3

2 2 sin sin  b g

   sin sin  2 3
2

g
a
a f ...(2)

when   0  i.e. the rod becomes horizontal then if

  w , then from eqn (2)

w g
a

w g ga
a

2 3
2

3
2

  sin sin
 ...(3)

Now we have to prove that the end O will not leave the table i.e. we have to show that R  is always
positive. Differentiating eqn (2), w r. . to t

2 3
2

  cos    
g
a
a f , on dividing by 2  , we get

 cos  
3
4

g
a ...(4)

The equation of motion of C G. . in oy direction is

m y R m g m a a R m g sin  cos        2d i ...(5)

Putting values of  2 and   from equations (2) and (4), we get

R m g m a g
a

g
a

    
F

HG
I
KJ

L
NM

O
QP

sin . sin sin cos cos    
3
2

3
4

a f

        
1
4

4 6 6 32 2m g sin sin sin cos   
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        
m g
4

1 3 1 6 62 2cos sin sin sin   c h

        
m g
4

1 9 6 9 92 2 2 2 2sin sin sin sin sin sin sin      

        
m g
4

1 6 9 9 92 2 2 2 2sin sin sin sin sin sin sin      c h

       
m g
4

1 3 9 12 2 2sin sin sin sin   a f c h

or R m g
  

4
1 3 92 2 2sin sin sin cos   a f ...(6)

This shows that R  is always positive for all values of   and  , hence the end O of the rod never
leaves the plane.

Case - II : When the plane is perfectly smooth. In this case there is no force of friction in the
horizontal direction so that C G. . moves in a vertical line, the only velocity of G  being along the vertical.

y a sin ,  cos y a  so v y a2 2 2
  cos  d i

then the enrgy equation is

m v k
2

2 2 2 d i  work done by gravity

 
F
HG

I
KJ  

m a a m g a
2 2

2 2 2
2

2cos   sin sin   a f

m a m g a
2 2

2

6
3 1


cos sin sin

    c h a f

 



 sin sin

cos


 


2
2

6
1 3

g
a

a f
c h ...(7)

when the rod becomes horizontal   0

   
F
HG

I
KJ

 sin  sin   2 3
2

3
2

g
a

g
a ...(8)

Differentiating eqn (7), w r. . to t , we get

2 6 1 3 6

1 3

2

2 2
 

cos cos  sin sin cos sin 

cos


       




    



L

N
MM

O

Q
PP

g
a

c h d i b g d i
c h

or 2 6 1 3 6
1 3

2

2 2
  cos  cos sin sin sin

cos
  

   




    



L
N
MM

O
Q
PP

g
a

a f
c h
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or
 cos sin sin sin sin

cos


    


 

   



L

N
MM

O

Q
PP

3 1 3 1 6 6

1 3

2 2

2 2
g

a
c h

c h

    
   



L

N
MM

O

Q
PP

3 4 3 2 3 3

1 3

2 2 2

2 2
g

a
cos sin sin sin sin sin

cos

     



c h
c h

or
 cos cos sin sin

cos


   


 

  



L
N
MM

O
Q
PP

3 1 3 3
1 3

2 2

2 2
g

a
a f

c h

taking moment about G , we get

m k R a2  cos  

or m a R a
2

3
 cos    k a2

2

3


F
HG

I
KJ

  R m a
a

2

3
1.

cos





or R m a
a

g
a


    



R
S|
T|

U
V|
W|

L
N
MM

O
Q
PP

2 2 2

2 23
1 3 1 3 3

1 3
.

cos
cos cos sin sin

cos
   



a f
c h

or R m g
  



L
N
MM

O
Q
PP

1 3 3
1 3

2 2

2 2
cos sin sin

cos
  



a f
c h ...(9)

This also show that R  is always positive. Therefore the end O does not leave the plane in this case
also.

Example 4 : A uniform rod of mass m , is placed at right angles to a smooth plane of inclination   with
one end in contact with it. The rod is then released. Show that when the inclination to the plane is  , the

reaction of the plane will be 
3 1 1

1 3

2

2 2
 



R
S|
T|

U
V|
W|

sin
cos

cos





a f
c h m g .

Solution : The inclined plane AB is smooth and uniform rod BC  of mass m  and length 2a  placed at
right angles to it. So there is no force along the plane and there was no initial motion along the plane. Hence
centre of mass G  moves perpendicular to the plane. Initially its distance from the inclined plane AB was
BG a , so that its vertical height above the plane was GH a cos  (In  BGH)
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Figure 3.9

Now, when the rod is released then after time t  let the rod make an angle   with the inclined plane

AB. Referred to BA and perpendicular to BA as axes let the coordinates of G  be x y,a f
  

 
UVW

x BN a
y GN a

cos
sin


 (In  BGN ) ...(1)

 Equation of motion G  perpendicular to the plane is

m y m a a R m g cos  sin  cos        2d i
Also taking moment about G

m a R a
2

3
 cos   ...(2)

Initial vertical height of C G. . above the inclined plane was GH a cos , and now its vertical
height above the plane is GQ GN a cos sin cos  a f [by eqn (1)]

Therefore distance fallen by G  in downward direction

   GH GQ a acos sin cos  

          a cos sin 1a f ...(3)

 Energy equation gives

m v k
2

2 2 2   work done by gravity

or
m a a m g a
2 3

12 2 2
2

2cos   cos sin    
L
NM

O
QP  a f [by eqn (3)] ...(4)

 v y a2 2 2
  cos d ie j

L

m g

A

C

R

G
G

B

Q

 m g

N
H
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   
m a m g a

2
2 2

6
3 1 1cos  cos sin   a f

or  sin
cos

cos



2
2

6 1
1 3





g

a
a f

c h ...(5)

Differentiating this w r. . to t , we get

2 6 1 3 1 6

1 3

2

2 2
  cos

cos cos  sin cos sin 

cos
  

     




    



L

N
MM

O

Q
PP

g
a

c h c h b g c h
c h

dividing 2   and simplifying, we get

 cos cos
cos

sin
 


 


 

3
1 3

1 3 1
2 2

2g
a c h a f ...(6)

Substituting this value of   in eqn (2), we get

R m g
 



R
S|
T|

U
V|
W|

3 1 1
1 3

2

2 2
sin
cos

. cos





a f
c h

Example 5 : A cylinder rolls down a smooth plane whose inclination to the horizon is  , unwrapping as
it goes a fine string fixed to the highest point of the plane, find its acceleration and the tension of the string.

Solution : Let a  be radius and m  be mass of cylinder, , BO is inclined plane which is smooth so that
there will be no frictional force. But when cylinder rolls the inclined plane there will be a tension T  in the
string which is fixed to the highest point O of the inclined plane. When cylinder rolls along the plane, it
unwraps a length (say) x  of string. Since string remains tight geometrically. we have

x a  , so that  x a  ,  x a  ...(1)

Figure 3.10

where   is the angle which radius GP  has turned in this time, initially P  was at O.

Let R  be normal reaction as shown in fig. 3.10, then the equations of motion of cylinder along and
perpendicular to the inlcined plane are respectively

L
B



PR
G


 x

x

m x

m g
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m x m g T sin  ...(2)

and O m y m g R   cos ...(3)

Now taking moment of forces about the centre G  of cross section of cylinder, then

m k T a2  . 

or m a x
a

T a
2

2
.


.  k a x
a

2
2

2
 

F
HG

I
KJ,

 

or
m x T


2
 ...(4)

Using this value of T  in eqn (2), we get

m x m g m x sin  
1
2   

3
2
 sinx g 

or  sinx g
2
3

 ...(5)

which is acceleration of cylinder. To find tention T  in the string, using this value of x  in (4), we get

T m g
1
3

sin ...(6)

3.8 Sliding and Rolling of a sphere on an inclined plane
An imperfactly rough sphere moves from rest down a plane inclined at an angle   to the horizon;

To discuss its motion.

Figure 3.11

Let G  be centre of sphere of mass m  and radius a , and move along a rough inclined plane OCA
of inclination   with horizon. Also let x  be the distance describe by the centre G  in time t  and the sphere
has rolled through an angle  , i.e.  CGB  .   is the angle between radius GB , which was initially
normal to the inclined plane and normal GC  at time t . Initially point B  was at O, so there

t  0, x  0 , x  0 ,   0 ,   0 ...(1)

Referred to ox  and oy as axes, coordinates of G  are x y,a f. We take that the friction is not

m gx

L
90

C

O

y

A

x


a

R

G
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enough to produce pure rolling hence the sphere slides as well as turns, and the maximum friction  R acts
up the inclined plane as shown in fig. 3.11, where   is coefficient of friction.

There is no motion perpendicular to the inclined plane and as such the C G. . G  of the sphere
always moves parallel to the plane

 y  coordinate of C G. .   constant,    , y y0 0 ...(2)

Hence the equation of motionof centre of gravity (along and perpendicular to inclined plane) are

m x mg R sin   ...(3)

m y R m g cos  0  ...(4)

and moment equation about G  is

m k R a2   ...(5)

where k  is radius of gyration of sphere about axis through G , so k a2 22
5



 m a R a. 2
5

2   ...(6)

Eliminating R  between eqn (3) and (4)

 sin cosx g g   a f ...(7)

Integrating it with respect to t

 sin cosx g g t C    a f 1 ...(8)

but t  0 , x  0 ,  C1 0 [by eqn (1)]

   sin cosx g g t  a f ...(9)

again integrating

x g t C  sin cos  a f
2

22

again by eqn (1), x  0 , t  0, we get C2 0

  x g tsin cos  a f
2

2
...(10)

Now from eqn (4), using value of R  in eqn (6), we get

2
5

2m a a m g cos   a f

or  cos



5
2

g
a ...(11)
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integrating it with respect to t

 cos .


 
5
2 3

g
a

t C

Initially t  0,   0 , hence C3 0

  cos



5
2

g
a

t ...(12)

again integrating

  
 

5
2 2

2

4
g

a
t Ccos

Again,   0 , t  0, hence C4 0

 
 5

4
2g

a
tcos

...(13)

Now velocity of point of contact C down the plane

= velocity of centre G  + velocity of C relative to G

        sin cos cosx a g t a g
a

t   
 d i a f 5

2 [by eqn (9) and (12)]

velocity of C down the plane

 
g t
2

2 7sin cos   ...(14)

From eqn (8), we will have the following three cases for  discussion :

First Case : Slding with rolling :

If 2 7 0sin cos   a f  or 2 7sin cos    or  
2
7

tan , then the velocity

of the point of contact C does not vanish and is always positive for all values of t . So the point of contact
C always slides down and the maximum friction  R always acts. In other words sliding of  the sphere with
turning takes place. Therefore the motion is entirely determined by equations (9), (10) and (12), (13).

Second Case :Rolling with limiting friction :

When  2 7 0 2
7

sin cos tan       a f .

In this case the velocity of C vanishes at the start and is always zero. Therefore it is the
case of pure rolling, the maximum friction  R  is always being exterted. Hence motion is determined
by equations (12) and (13). We can also apply geometrical relation x a  .

Third Case : Pure rolling : when 2 7 0sin cos   a f  or  
2
7

tan , then velocity of the point

of contact appears to be negative. In other words if maximum force of friction  R is allowed to e xe r t ,

109



the point of contact will slide upwards the inclined plane which is not possible as the friction acts only with
a force which is sufficient to keep the point of contact at rest. Hence in this case pure rolling takes place
from the begining but maximum force of friction is not exerted. So the equation of motion written above
(eqn (9), (10), (11) and (12)) will not hold good. If F  be the force of friction (not maximum) then
corresponding equations of motion are

m x m g F sin  (along the plane) ...(15)

m y R m g cos  0  (perpendicular to the plane) ...(16)

and m k F a2  

or m a F a2
5

2   (moment eqn about G ) ...(17)

Since the point of contact is at rest

   x a 0 or  x a  ...(18)

which may also be obtained by the geometrical equation x a  .

Using value of F  from (17) in (15), we get

m x m g m a sin .   
2
5 or   sinx x g 

2
5



 sin x g a 
5
7

  ...(19)

On integrating and using eqn (1), we get

 sin x g t a 
5
7

  ...(20)

again integrating and using eqn (1), we get

x a g t a 
5

14
2sin  ...(21)

Remarks : (1) when   0 (pure sliding) i.e. motion on smooth plane, then from eqn (9), (10), (12)
and (13), we get

 sinx gt  , x g t
1
2

2 sin

  0 ,   0

this shows that the sphere will slide on the inclined plane as particle whose mass is equal to the
mass of the sphere. There will no rolling at all.

(ii) Application of work and energy principle :

(a) where there is pure sliding (no friction), there is no loss of kinetic energy.

(b) where there is pure rolling, there is no loss of K.E.

(c) where, there is sliding and rolling combined, energy is lost.
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3.9 Rolling and Sliding of a Sphere on a Fixed Sphere
A solid homogeneous sphere, resting on the top of another fixed sphere, is slightly displaced and

begins to roll down it, then it will slip when the common normal makes with the vertical an angle   given by
the equation

2 5 3 2sin sin cos     a f a f

where   is the angle of friction. Also the upper sphere would leave the lower when   F
H

I
K

cos 1 10
17 .

Further, if both the sphere are taken as smooth, then the upper would leave the lower when

  F
H

I
K

cos 1 2
3 .

Let O be the centre of the fixed sphere of radius OD a , whose highest point is D . The moving
sphere of radius b  was initially resting at the top of fixed sphere, so that QB  was vertical and the point of
contact Q was at D . After time t  Let point of contact be A and the position BQ is as shown in the fig.
3.12.

Figure 3.12

As the sphere rolls down,

ar c DA ar c QA

 a b  , then a b   ...(1)

where   and   are the angles which common normal OAB makes with the vertical and BQ, a line
fixed in the moving sphere, respectively. Let R  and F  be the normal reactions and the friction acting on the
upper sphere. Now point B  describes a circle of radius OB a b a f  about O as centre, so that its
accelerations are

a ba f  2 along BO and

a ba f  perpendicular to BO

Hence equations of motion of B  are

x

y

C

D

R

O

 a

b
B

F

Q



H
m g
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m a b m g R  a f  cos 2 (along BO) ...(2)

and m a b m g F  a f  sin  (perpendicular to BO) ...(3)

where m  is mass of moving sphere.

Referred to O as the origin, the coordinates of centre B  are

x a b y a b   a f a fb gsin , cos 

so that v x y a b a b a b2 2 2 2 2 2 2          cos  sin  a fd i a fd i a f   ...(4)

Also initially (when Q was at B ) B  was at a height a ba f  and now its height is
a b BH a f cos , so that the distance fallen in downward direction is

      a b a b a ba f a f a f a fcos cos 1 ...(5)

The energy equation gives

m x y m k
2 2

2 2 2 2
      c h d i   work done by gravity

    m g  (distance fallen)   m g a ba f a f1 cos

or a b b a b
b

g a b 
F

H
I
K   a f a f a f2 2

2 2
22

5
2 1  cos   ...(6)

 k b and a
b

by eqn2 22
5

1 L
NM

O
QP

   a f

or  cos 2 10
7

1



g

a ba f a f ...(7)

Differentiating (7), w r. . to t  and can celling 2  , we have

 sin 


5
7

g
a ba f ...(8)

Subtituting value of  2 from (7) in eqn (2), we get

R m g m g m g
    cos cos cos  

10
7

1
7

17 10a f a f ...(9)

Now using value of   from (8) in eqn (3), we get

F m g m g m g  sin sin sin  5
7

2
7 ...(10)

Now, the sphere will slip, when the friction becomes limiting

if F R  or F R tan     tana f
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or
2
7 7

17 10m g m gsin tan . cos   a f
[using value of F  and R  from eqn (10) and (9)]

or 2 17 10sin cos cos sin    a f
or 2 5 3 2sin cos cos sin cos sin       a f a f
or 2 5 3 2sin sin cos     a f a f ...(11)

which is required result.

The upper sphere will leave the lower one, when R  0, so from eqn (9), we have,

17 10 0 10
17

1cos cos     F
H

I
K

a f

which is another required result.

When both the spheres are smooth : In this case F  0  so that energy equation becomes

1
2 2

12 2m v m a b m g a b    a f a f a f cos 

or  cos 2 2 1



g

a ba f a f ...(12)

Now, equation of motion of B , along BO will remains unchanged, so from eqn (2)

R m g m a b  cos  a f 2

      


m g m a b g
a b

cos cos a f a f a f2 1 (from (12)

     m g 3 2cosb g ...(13)

The upper sphere will leave the lower if R  0

i.e. 3 2 0 2
3

1cos cos     F
H

I
K



3.10 Unstable equilibrium between two smooth spheres
Two unequal smooth spheres are placed one on the top of the other in unstable equilibirum, the

lower sphere resting on a smooth table. The system is slighty disturbed, then the sphere will separate when
the line joining their centres makes an angle   with the vertical given by the equation

m
m M

  cos cos3 3 2 0  ,

Where M  is the mass of the lower and m  of the upper sphere.

Suppose A and B  be the centres, a  and b  be radii and M , m  the given masses of lower and
upper spheres respectively. Let G  be their common cetnre of gravity which lies on the line of centres AB.
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Figure 3.13

When the system is disturbed, the centre B  of upper sphere describes a circle of radius
AB a b a f about A as centre.

The coordinates of C G. . of lower and upper spheres with respect to O as centre and OX  and
OY  as fixed horizontal and vertical axes are

A x a ,a f and B a b x a a b   b g b gsin , cos 

Since the table and sphere are smooth there will be no horizontal force on the combined system of
two spheres. Thus the  linear momentum equation in horizontal direction is

d
d t

M x m x a b       cos a fn s  0

or     M m x m a b Kb g b g cos    (constant of integration ) Initially,  x  0  ,
when t  0, so that K  0

 cos x m
M m

a b


b g b g   ...(1)

Also, the kinetic energy of the system is

       LNM OQP
1
2

1
2

2 2 2
M x m x a b a b  cos  sin b gd i b gd i   

 Velocity of A x O  b g2 2 , velocity of B a b a b    LNM OQPb gd i b gd icos  sin    
2 2

y

M
E

C O
x

M g

A

G
R



R1

m x

m x

m g
a bb g 

B


D

m
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  


L
NM

O
QP

1
2

12 2 2m a b m
M m

b g cos   ...(2)

Further the work energy equation gives

1
2

12 2 2m a b m
M m

m g a b a b 


L
NM

O
QP    b g b g b gcos  cos  

Since B  has fallen through a distance a b a b  a f a f cos

M m g
a b

M m 


 sin  cos2 2 2 1  c h b g b g ...(3)

Differentiating and simplifying

M m m
m M
a b

g  



sin  sin cos  sin2 2     c h b g
...(4)

By the horizontal motion of lower sphere

M x R sin 

where R  is the reaction between the spheres

Using this, with (1), we get

M m
m M

a b R


  b g b g d icos  sin  sin    2
...(5)

The spheres will seperate when R  0, so from (5), we get

cos  sin     2 ...(6)

Eliminating  2 from (4) and (6), we get

 sin 

g

a b ...(7)

Again from (6) and (7)

 cos


2 


g
a b ...(8)

In the end, eliminating  2 from (3) and (8)

m m Mcos cos3 3 2   b g b g

or
m

m M
  cos cos3 3 2 0 
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Self Learning Exercise - 2

1. In case of pure sliding of a sphere on an inclined plane, is there loss of K.E.?

2. In case of sliding and rolling combined of a sphere on inclined plane, is there loss of K.E.?

3. In case of pure rolling of a sphere on an inclined plane, is there loss of K.E.?

4. Write a relation between   (coefficient of friction) and   (angle of friction).

Illustrative Examples :

Example 6 : A sphere is projected with an under twist down a rough inclined plane, show that it will
turn back in the course of its motion if 2 5a w u   tana f , where u  is the initial linear velocity
and w  the initial angulars velocity of the sphere,   is the coefficient of  friction and   is the inclination of the
plane.

Solution : Let ABO  be inclined plane and G  be centre of sphere of mass m  and radius a . The
sphere has been projected with an under hand twist down the rough inclined plane OBA, so that its linear
velocity is u and angular velocity w  as shown in the fig. 3.14.

Figure 3.14

Initially t  0, x w , x  0 ,   0 ,   w ...(1)

where   is angle turned by diametre GD  and x  be distance moved by sphere.

Hence initial velocity of point of contact B , down the plane

=  velocity of G  + velocity of B  relative to G

=  u a w a f 0  ( motion is sliding and rolling)

Therefore the force of friction  R acts up the plane. Then equations of motion of G  are

m x mg R sin   (parallel to inclined OBA  in direction OBA) ...(2)

and m y R m g cos  0  (perpendicular to inclined plane) ...(3)

or R m g cos ...(4)

y

x

w

D
E B

 R
Ox

G
R


a

w

u

A
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and moment equation of G  is

m k R a2  .  

or m a R a2
5

2     for sphere k a2 22
5

F
H

I
K ...(5)

Now putting the value of R  from (4) in (2), we have

m x m g m g sin cos   

or  sin cosx g   a f ...(6)

Now using value of R  from (4) in (5), we have

2
5

2m a a m g . cos   

or a g cos  
 

5
2

...(7)

on integrating (6) w r. . to t

 sin cosx g t C    a f 1

but initially by eqn (1), t  0, x u

 C u1

    sin cosx g t u  a f ...(8)

Now integrating eqn (7), we have

a g C cos    
5
2 2

by eqn (1),  t  0,   w

 C aw2

   a g t a w cos  5
2 ...(9)

Suppose that the sphere will cease to go down after time t t 1

so x  0, when  t t 1

 from (8), we get

0 4
1 1    


g t u t

g
sin cos

cos sin
  

  
a f a f ...(10)

Putting this value of t  in eqn (9), we get value of a   at this time as

a g
g

a w cos
cos sin

  
  

 


L
NM

O
QP


5
2

4
b g
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Now a   will be positive if

a w u
g





5

2
0 

  
cos

cos sinb g
or 2 5a w u    cos sin cos a f
or 2 5a w u   tana f
which is the desired result.

Example 7 : A rough cylinder, of mass M , is capable of motion about its axis, which is horizontal; a
particle of mass m  is palced on it vertically above the axis and the system is slightly disturbed. Show that
the particle will slip on the cylinder when its has moved through an angle   given by

   M m M m  6 4a f cos sin

where   is the coefficient of friction.

Solution : Rough cylinder of mass M  moves about its axis OZ  which is horizontal with a particle of
mass m  placed on it vertically above the axis. After slightly disturbing after a time t , the radius OA aa f
makes an angle   with the vertical and F  is the force of friction which keeps the particle at rest. Referred
to O as origin and ox oy,  as coordinate axes the coordinates of particle at A are x a y a cos , sin a f

Figure 3.15

    sin  ,  cos x a y a   

   v x y a2 2 2 2 2   ...(1)

Now the energy equation gives

       
1
2 2

2
2M a        

1
2

2 2m a   work done by gravity  m g a 1 cosa f

K E due to rotation. .a f K E of particle. .a f
or a M m m g  2 4 12a f a f cos  ...(2)
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Differentiating w r. . to t  and dividing by 2  , we get

a M m m g 2 2a f  sin  ...(3)

The particle m  describes a circle about O as centre therefore its equation of motion are

m a m g R cos 2   (along AO) ...(4)

and m a m g F sin   (perpendicular to AO) ...(5)

Now, we shall find values of F  and R  using equation (2), (3), (4) and (5).

Using value of  2 from (2) in (4), we get

m
m g

M m
m g R

4 1
2



L
NM

O
QP
 

cos
cos




a f
a f

 


  R m g
M m

M m m
2

2 4 1a f a fcos cos 

    
 

m g
M m

M m m
2

6 4a f cos ...(6)

Now putting value of   from eqn (3) in (5), we have

    m m g
M m

m g F2
2
sin sin




L
NM

O
QP  

or F m g m g
M m

m M g
M m

 





sin sin sin



2

2 2

2

...(7)

on dividing eqn (7) by (6), we have

F
R

M
M m m


 

sin
cos

6 4a f ...(8)

The particle will slips from the cylinder when F R 

or
F
R

M
M m m

 
 

 


sin
cos6 4a f

or M m m M  6 4a f    cos sin

or M m M m  6 4a f    cos sin

which is desired result.

3.11 Motion of a Hollow Cylinder Inside a Cylinder
A hollow cylinder of radius a , is fixed with its axis horizontal; inside it moves a solid

cylinder, of radius b ,whose angular velocity in its lowest position is given,  if the friction between
the cylinder be sufficient to prevent any sliding, discuss the motion.
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Figure 3.16

The Fig. 3.16 represents vertical section through the centre of gravity B  of the rolling cylinder. Let
the radius of fixed cylinder be a ODa f with O as centre. Let ox oy,  be axes. Let m  be mass and
b BCa f be radius of moving cylinder with centre at B . Initially C was at its lowest position D  and OD
is vertical Let BC  turn through an angle   with vertical in time t .

Since there is no sliding between the cylinders,  therefore

ar c DA ar c CA

     a b a b b    a f a f

 


 
b

a b and a b b a f    ...(1)

where   is the angle which the line of centres makes with vertical. Let R  and F  be the normal
reaction and frictional force at A respectively. The centre B  describe a circle of radius OB a b b g
about O as centre. Then, the radial acceleration of B a b a f  2  along BO and transverse acceleration

of B a b a f  , perpendicular to BO. So equations of motion of B  are

m a b R m g  a f  cos 2 ...(2)

and m a b F m g  a f  sin  ...(3)

The coordinates of B  with respect to O as origin are

B x LB y OL ,a f
or x LB OB a b   cos cos b g

y OL OB  sin   a ba f sin

or  sin x a b  a f  ,   cos y a b a f  (on differentiating)
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          sin  cos  x y a b a b a b2 2 2 2 2 2a fn s a fn s a f   ...(4)

So kinetic energy of moving cylinder at any time t  is

  
m x y m k
2

1
2

2 2 2 2  c h 

  
m a b m b
2

1
2 2

2 2
2

2a f     k b2
2

2


F
HG

I
KJ

  
L

NMM
O
QPP

m a b
a b

2 2
2 2

2
2a f a f   [by eqn (1)]

 L
NM

O
QP  

m a b m a b
2

3
2

3
4

2 2 2 2a f a f   ...(5)

If   w  be the angular velocity at the lowest position of the moving cylinder, then

K.E. at time of projection   
3
4

2 2m a b wa f [by eqn (5)] ...(6)

Hence by work energy equation, we have

Change in K.E. = Work done by gravity

       
3
4

3
4

12 2 2 2m a b m a b w m g a ba f a f a f a f cos 

or  cos 2 2 4
3

1 


w g
a ba f a f ...(7)

this equation cannot be integrated, in a compact form. So on differentiating eqn (7) with respect to
t  and dividing by 2  , we have

 sin 



2

3
g

a ba f ...(8)

Now from eqn (2),

R m g m a b  cos  a f 2

       



RST

UVW
m g m a b w g

a b
cos cos a f a f a f2 4

3
1  [by eqn (7)]

or R m g m a b w m g
    cos cos a f a f2 4

3
1

       m a b w m ga f a f2

3
7 4cos ...(9)
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From eqn (3),

F m g m a b  sin  a f

      



RST

UVW
m g m a b g

a b
sin sin a f a f

2
3 [by eqn (8)]

or F m g
1
3

sin ...(10)

Hence equations (7), (9) and (10) determine motion.

From (10), when    0 0F , which shows that friction is zero at the lowest point and for
any other position F  is positive.

Following are other main points of discussion :

Case - I : When the cylinder makes complete revolution :

The cylinder may roll round completely when reaction R  is zero at highest point E , i.e.
when    so from eqn (9)

0
3

7 42    m a b w m ga f a f

 


w g
a b

2 11
3 a f ...(11)

Hence velocity of centre B  is

  


a b w
g a ba f a f11

3
(on using value of w) ...(12)

This gives least velocity of projection in order that moving cylinder may roll completely round the
outer fixed cylinder.

Case - II : When the moving cylinder leaves the fixed cylinder :

The moving cylinder, if it does not roll round completely, will leave the lower body when
R  0, that position (value of angle  ) is given by putting R  0 in equation (9), so

0
3

7 42   m a b w m ga f a fcos

or cos cos 
 

  
RST

UVW
4 3

7
1
7

4
32

1
2g a b w

g
a b w

g
a f a f

at this angle moving cylinder will leave the fixed cylinder.

Case - III : When the moving cylinder makes oscillations :

If the moving cylinder makes small oscillation about the lowest point D  of the fixed
cylinder. Then angle   is always small   0a f

Hence from eqn (8), taking   for sin , we have
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  


2
3

g
a ba f

which is a S.H.M. of time period

T
a b

g



2

3
2


a f

Illustrative Example :

Example 8 : A homogeneous sphere of radius a rotating with angular velocity w about a horizontal
diameter, is gently placed on a table whose coefficient of friction is  . Show that there will be slipping at

the point of contact for a time 
2
7

a w
g , and then the sphere will roll with angular velocity 

2
7
w

.

Solution : POL  is a table and G  be centre, m  be mass and a  is the radius of sphere, which is placed
on table.

Figure 3.17

Initially the sphere is gently placed on the table, so velocity (linear) of the C G. . G  of the sphere is
zero while initial angular velocity is w . Let at time t , x  be the distance described by the C G. . in the
horizontal direction and   the angle turned by the sphere.

So initially t  0, x  0 , x  0 ,   w ...(1)

Now, the initial velocity of point of contact O

= ( init ia l ve lo c it y  o f C G G. . )  +  ( init ia l ve lo c i t y o f po int  o f co nt ac t
     w i t h  r e s p e c t  t o  G )   O a wa f

 Initial velocity of O aw  (In the backward direction )

Since, initially sphere was rotating, the point of contact will slip in the direction a f (backward)
and consequently the force of friction  R will act in forward a f direction. (As shown in the fig. 3.17)
Therefore the equations of motion are

m x R   (In horizontal direction ) ...(2)

R

w

L
P  ROx

m g


G
a

x

A
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and O R m g  (In vertical direction A ) ...(3)

and by moment equation

m k R a2    ...(4)

from (3), R m g  using in (2) and (4)

m x m g x g     ...(5)

and m a a m g2
5

2  .    k a2 22
5

F
H

I
K

or a g  
5
2 ...(6)

Integrating eqn (5), we have x gt C  1

by eqn (1), x  0 , t C  0 01

 x gt ...(7)

Now integrating eqn (6), we have

a g t C   
5
2 2

again by eqn (1), t  0 ,   w

    a w O C C aw2 2

   a g t a w 5
2 ...(8)

Now, the velocity of point of contact   x ad i

           g t gt a w5
2

         F
H

I
K

7
2
 g t a w ...(9)

The point of contact will come to rest, when  x a  0

 by eqn (9), 
7
2

2
7




g t a w t a w
g

   ...(10)
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Therefore after time 
2
7

a w
g , the slipping will stop and pure rolling will begin and at this time the

angular velocity is obtained by putting value of t  from (10) in (8)

  
F
HG

I
KJ  a g a w

g
a w w a 


5
2

2
7

2
7

  2
7
w

...(11)

As rolling starts, suppose frictional force be F  and then the equations of motion are

m x F  (along Table) ...(12)

and m a F a2
5

2  .   (Moment eqn) ...(13)

Also    x a x a    0 ,      x a ...(14)

using value of F  from (12) in (13)

m a m x a2
5

2   .  

     m a ad i (from (14)]

 
7
5

0m a  ,   0

on itegrating,    (constant)

or  
2
7
w

[when the rolling commenced, by eqn (11)]

which is the desired result.

Example 9 : A disc rolls on the inside of a fixed hollow circular cylinder whose axis is horizontal, the
plane of the disc being vertical and perpendicular to the axis of the cylinder, if when in its lowest position,

its centre is moving with a velocity 
8
3

g a ba f  show that the centre of the disc will describe an angle 

about the centre of the cylinder in time 
3

2 4 4

1
2a b

g
RST

UVW F
H

I
K

a f
log tan  

.

Solution : As shown in the fig. 3.18, let O be the centre of the fixed hollow cylinder of radius a OBa f.
Let D  be centre of the disc of mass m  and radius DC b   (line fixed in the moving body) DC  was
initially vertical when C  coincided with B  and making an angle   with the vretical (line fixed in space) at
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time t . The disc rolls on the inside of a fixed cylinder so that

Figure 3.18

ar c BA ar c CA

or a b   a f
or b a b  a f ...(1)

on differentiating with respect to t

b a b   a f ...(2)

Now, coordinates of D  referred to O as origin are

x LD y OL ,a f
x a b a f sin , y a b a f cos ...(3)

On differentiating

 cos x a b a f   ,  sin y a b  a f  

          cos  sin  x y a b a b a b2 2 2 2 2 2c h a fn s a fn s a f    

since initial velocity of the centre  
8
3
g a ba f

i.e. a b g a b  a f a f 8
3

 


 2 8
3

g
a ba f , at t  0 ...(5)

Now kinetic energy of rolling disc at any time t  is given by

m gy

B

L F

A

O x
R

C
D

 

rolling disc
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  
1
2

1
2

2 2 2 2m x y m k  c h 

  
1
2 2 2

2 2
2

2m a b m ba f  .   by eqn and k b for disc4
2

2
2

a f 
L
NM

O
QP

or K.E. of disc at time t     
m a b m a b
2 4

2 2 2 2a f a f   [by eqn (2)]

          
3
4

2 2a ba f  ...(6)

Initial K.E. of disc   


3
4

8
3

2m a b g
a b

a f a f
      2 m g a ba f ...(7)

Initially distance of D  below O was a ba f  and after time t  it is OL , so distance risen by D  in
upward direction         OD OL a b a b a ba f a f a f a f a fcos cos 1

 Energy equation gives

         3
4

22 2m a b m g a b   a f a f  work done by gravity    m g a ba f a f1 cos

or
3
4

2 12 2m a b m g a b    a f a f cos 

      m g a ba f a f1 cos

or  cos 
cos

  


2 2
24

3
1

8 2
3




  


g
a b

g
a ba f a f a f

or  . cos 



8

3 2
g

a bb g
Integrating it, we have

d t
a b

g
d

t

0 0

3
8 2z z
b g sec 




or t
a b

g
a b

g



F

H
I
K 


F

H
I
K

3
8

2
4 4

3
2 4 4

a f a f
. log tan . log tan   

which is desired result.

3.12 Two Dimensional Motion of a Rigid Body Under Implusive Forces
Here, in this part we shall study instantaneous motion in two dimensions of a rigid body under

impulsive forces. While studying the effect of impulsive forces on the motion of the body the effect of finite
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forces on the body is neglacted. First we shall define impuluse of a force and impulsive force.

When very large force act on a body for a very short time then their effects are measured by their
impulses. Let u  be the velocity of a particle of mass m  at any time t  and F  be the force acting on it in the

same direction, its acceleration being 
d v
d t .

Then equation of motion is, m
d v
d t

F ...(1)

Let T  be the time for which the force acts and velocity changes from v to v1, then on integrating
eqn (1), we have

m d v F d t
v

v T1

0z z

or m v v F d t
T1

0
  zc h ...(2)

If force F  increases infinitely and at the same time time T  decreases without limit, then R.H.S. of
eqn (2) may have a definite limit (say) I , and as such eqn can be written as

m v v I1  c h ...(3)

Now, if V  be the greatest value of velocity during the interval T  then the space described by
particle is less than VT . But as T VT  0 0, From which we conclude that the particle has not
displaced during the action of the force F . In fact particle had no time to displace but the velocity has
changed from v  to v .

So, we observe that when infinite forces act on a body for indefinitely short time, the displacement
of body is zero and the force is measured by change in velocity.

Definition : A force measured by the change of velocity is called impulsive force. Alos I (asin eqn
(3)) is the impulse of this impulsive force.

3.13 Equation of Motion in Two-Dimensions Under Impulsive Forces
The equations of motion in two dimensions when the forces acting on the body are finite, are [by

art 3.2, equations (1), (2) and (9)]

M d x
d t

F
2

2 1  or
d
d t

M d x
d t

FF
HG

I
KJ   1 ...(1)

M d y
d t

F
2

2 2  or
d
d t

M d y
d t

FF
HG

I
KJ   2 ...(2)

and moment equation is

M k x F y F2 1
2

1
1

   c h

or
d
d t

M k x F y F2 1
2

1
1

d i c h  ...(3)
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Where x y,a f  are the coordinates of centre of gravity. M  be mass of body. When large forces act
for a very short time than we say that it is an impulse and than we shall deduce from above equations the
corresponding equations which give the initial motion of a body under the action of implusive forces.

If the forces be impulsive, let T  be the short time during which the impulsive forces act on the
body, then on integrating eqn (1), we have

M d x
d t

F d t
t

T
TRST

UVW 




z
0

0

10{ }

or M d x
d t

F
TRST

UVW  
0

1 , where F F d t
T

1
1

10
 z ...(4)

then F1
1 is the impulse acting at the point x y,a f parallel to x -axis

If u  and u1 be the velocities of the centre of gravity parallel to x-axis, just before and just after the
application of the impulsive forces, then integrating eqn (4), we have

M u u F1
1
1  c h ...(5)

Similarly integrating equation (2), we get

M d y
d t

F d t F
t

T
TRST

UVW
 





z 
0

0

20 2
1{ }

where F F d t
T

2
1

20
 z  is the impulse parallel to y -axis

or M v v F1
2
1  c h ...(6)

where v and v1 are the velocities of the centre of gravity parallel to y -axis,  just before and just
after the application of the impulsive forces.

Equation (5) and (6) state that change in the linear momentum of thes mass M , supposed
collected at the centre of gravity, in any direction is equal to the sum of impulses in that direction.

Now integrating eqn (3), we have

M k x F d t y F d t x F y F
t

T
T T

2

0

0 1
2

1

0
1

0

1
2
1 1

1
1n s c h




 

RST
UVW
 z z 

where F F d t
T

2
1

2
0

 z  etc.

or M k w w x F y F2 1 1
2
1 1

1
1  c h c h ...(7)

where w  and w1 be the angular velocities of the body just before and just after the application of
impulsive forces.

Equation (7) states that change in moment of momentum (or angular momentum) about the centre
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of gravity is equal to the sum of moments of the impulses of the forces about the centre of gravity.

Hence equations (5), (6) and (7) give the equation of motion in two dimension under impulsive
forces.

Illustrative Examples :

Example 10 : Two equal uniform rods AB and AC are freely hinged at A and rest in a straight line on a

smooth table. A blow is struck at it perpendicular to the rods; show that the K.E. generated is 
7
4  times

what it would be if the rods were rigidly fastened together at A.

Solution :

Case - I : When rods are freely hinged at A.

Let m  be mass and length 2a  of each rod AB and AC. Let P  be the impulse applied at
end B  and let u w1 1,  and u w2 2,  be linear and angular velocities of the rods AB and AC  respectively
after the application of blow.

Figure 3.19

Let  Q be the impulsive action at the joint A equal and opposite on the two rods when blow is
struck (fig. 3.19).

The equation of motion (for impulsive forces) are (for rod AB )

m u P Q1 0  b g ...(1)

and m a w P Q a.
2

13
 a f ...(2)

Rod AB started from rest.

Similarly for rod AC

m u Q2  ...(3)

and m a w Q a
2

23
 . ...(4)

Now both rods AB and AC are connected at A, therefore the velocity of A as found from each
rod must be the same

   u aw u aw1 1 2 2 ...(5)

CG2AP
B

G1

w1 w2

u1 u2Q

Q

A
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From equations (1)-(4), we have

u P Q
m1 


...(6)

w
P Q
m a1

3


a f
...(7)

u Q
m2  ...(8)

w Q
m a2
3

 ...(9)

Using above values of u w u1 1 2, ,  and w2  in eqn (5), we get

P Q
m

P Q
m a

a Q
m

a Q
m a





 

3 3a f . .

or     2 8
4

P Q Q P
...(10)

Now using value of Q from (10), in (6) and (7), we have

u P
m1

5
4

 , a w P
m1

9
4

 ...(11)

Similarly using value of Q from (10), in (8) and (9), we have

u P
m2 4

  , a w P
m2

3
4

  ...(12)

therefore K.E. of the system = K.E. of rod AB + K.E. of rod AC

 F
H

I
K  F

H
I
K

m u a w m u a w
2

1
3 2

1
31

2 2
1
2

2
2 2

2
2  K E m v m k. .  L

NM
O
QP

1
2

1
2

2 2 2

K.E. of the system = 
m P

m
P
m

m P
m

P
m2

25
16

27
16 2 16

3
16

2

2

2

2

2

2

2

2
L
NM

O
QP  

L
NM

O
QP

[on using value of  u u1 2,  and w w1 2,  from (11) and (12)]

or K.E. of the system = 
7
4

2

1
P
m

E sayF
HG

I
KJ  a f ...(13)
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Case - II : When the rods are fastened together at A :

In this case rods AB and AC  will be considered as forming one rod BC , the reaction Q
at A vanishes.

Figure 3.20

The length of complete rod BC  is takes as 4a and mass 2m acting at the centre of gravity of the
system at A.

Just after applying blow at B , let u  be the linear velocity and w  be angular velocity of rod BC .
The equations of motion of rod BC  for impulsive force are

2mu P (motion of C G. .) ...(14)

and 2 4
3

22m a w P a. . (motion about C G. .) ...(15)

then from eqn (14), u
P
m


2 ...(16)

and a w P
m


3
4 (from eqn (15) ...(17)

therefore K.E. of the system  F
H

I
K

1
2

2 4
3

2 2 2m u a wa f

        
P
m

2

(by eqn (16) and (17))

 K.E. of system in this case  
P
m

E say
2

2 a f ...(18)

Required relation between the K.E. in the two cases is given by

E
E

P
m

P
m

1

2

2

2

7
4 7

4


F
HG

I
KJ
F
HG

I
KJ



or E E1 2
7
4



 (K.E. when the rods are freely hinged at A) = 
7
4

F
H

I
K  (K.E. when they are rigidly

       fastened at A)

which is required result.

CA

B
w

P

u
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3.14 Change in K.E. due to action of impulse

A body of mass M  is acted upon by of blow of impulse I  at given point A. If V  and V1 are the
velocities of A in the direction of I  just before and just after the action of I . Show that the change in K.E.

of the body is 
1
2

1I V Vc h .
Let M  be mass and G  be centre of gravity of the rigid body. Take x -axis parallel to the direction

of I , where I  is blow of impulse at A.

Figure 3.21

Let u v,  be the velocities of C G G. .  in x  and y  direction before the action of I  and let u v1 1,  be
the velocities of G  in x  and y  direction respectively..

Let w and w1  be angular velocities just before and just after the action of blow I  about G .

Let coordinates of  A about ox oy,  be x y,a f and coordinates of A about G x G y1 1,  be x y1 1,c h.
Then the equations of motion are

M u u I1  b g (change in linear momentum is equal to ...(1)

  sum of impulses in that direction)

M v v O1  b g ...(2)

and M k w w y I2
1

1  b g ...(3)

(change in angular momentum is equal to moment of impulses)

Now, we are given that

V  (velocity of A parallel to ox  before impulse) = (velocity of G  parallel to ox ) +
        (velocity of A relative to G )

or V u y w  1c h ...(4)

Similarly V u y w1
1

1
1 c h ...(5)

Thus change in K.E. of body

     
1
2

1
21

2
1
2 2

1
2 2 2 2 2M u v k w M u v k wc h c h

I

y'

v'

G

v
x w w1

x '

O

y

x

A x y,b g
x y' , 'b g I
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     
M u u M v v M k w w
2 2

1
21

2 2
1
2 2 2

1
2 2c h c h c h

       M u u u u M v v M k w w w w1 1 1
2 2 2

1 1
1
2

1
2

1
2

b g b g c h b g b g.

     RST
UVW

1
2

0
21

1
1I u u I y w wb g b g [by eqn (1), (2) and (3)]

     
1
2

1
21

1
1

1 1I u y w u y w I V Vc h c hn s c h [by eqn (4) and (5)]

 The change in K.E.  
I V V
2

1c h

3.15 Impact of Rotating elastic sphere on a fixed horiozontal rough plane
A uniform sphere, rotating with an angular velocity w  about an axis perpendicular to the plane of

motion of its centre, impinges on a rough horizontal plane, to find the resulting change in its motion.

First we assume that the plane is rough enough to prevent sliding.

Figure 3.22

Let G  be centre of the impnging sphere of mass m  and radius a . Let u  and v be the components
of the linear velocities along and perpendicular to the plane (NL) and w  be the angular velocity just before
the impact whereas u v1 1,  be the components of linear velocity and w1 the angular velocity just after the
impact. Let R  be normal impulsive reaction and F  be impulsive friction, as shown in the fig. 3.22. Then
equation of motion are

m u u F1   c h  ...(1)    (    =     
  )

change in momentum sum of impulses
along the plane

m v v R1  c h     ...(2)     (   =    
  )

change in momentum sum of impulses perpendicular
to the plane

and m k w w F a2 1  c h . ...(3)

(change in moment of momentum about G  = moment of Impulses)

N L
F O

G

R

w

w1

v

u
v1

u1

a
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Where k  is radius of gyration k a for solid sphere2 22
5

F
H

I
K  about axis through G .

Since, the point of contact O is instantaneously reduced to rest, there being no sliding,

  u a w1 1 0 ...(4)

Also, if e is the cofficient of restitution, then by Newton’s law of elastic collision

Velocity of separation  e  (velocity of approach)

or v e v1  ...(5)

Now using value of F  from eqn (1) in (3), we get

m k w w a m u u2 1 1   c h c h

or
2
5

2 1 1a w w a u u   c h c h

or 2 5 51 1a w a w u u   c h
From (4)

7 5 2 1
7

5 21 1 1u u a w u u a w a w     a f a f ...(6)

Also form (1),

F m u u m u u a w    L
NM

O
QP

1 1
7

5 2c h a f

   
2
7
m u a wa f ...(7)

Now we consider following cases :

Case - I : When u a w , then from eqn (7), F  0 . Hence there is no frictional force, then by eqn
(1) and (3) u u1    and w w1  , which shows that u  and w  do not change.

Case - II : When u a w

Then by eqn (7), F  is  ve , which show that direction of F  will be opposite to what has
been shown fig. 3.22. By eqn (1), u u1   and by eqn (3) w w1  , therefore when the point of contact O
is moving  directiona f before impact, the angular velocity is decreased by the impact, while the
horizontal velocity is increased.

Case - III : When u a w , then by eqn (7), F  is  v e , i.e. F  acts in  directiona f as shown in fig.
3.22. Then by eqn (1) and (3) u u1   and w w1  . Therefore the point of contact O before impact is
moving, in direction a f, and the angular velocitiy is increased while horizontal velocity is diminished.

 Case - IV : When the angular velocity w  before impact is reversed. In this sign of w  is changed and
we have
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u a w u a w1 1 1
7

5 2  a f ...(8)

and F m u a w 
2
7

b g [by eqn (7)] ...(9)

Again there arise two cases :

(a) If u a w
2
5 , then by eqn (8), u w1 10   therefore we conclude that after impact the sphere

rebounds from the plane vertically with no spin as w1 0 .

(b) If u a w
2
5 , then u1 is negative and the sphere rebounds towards the direction from which it

came. Alos vertical velocity after impact is ev  and R m e v 1a f .

Illustrative Examples :

Example 11 : Two equal uniform rods, AB and BC , are freely jointed at B  and turn about a smooth
joint at A. When the rods are in a straight line, w being the angular velocity of AB and x  the velocity of the
centre of mass of BC BC:  impinges on a fixed inelastic obstale at a point D ; Show that the rods are

instantaneous brought to rest if BD a u a w
u a w





F
HG

I
KJ2 2

3 2 , where 2a  is the length of either rod.

Solution : Let m  be mass and 2a  be the length of each rod AB and BC .

Figure 3.23

Let G1 and G2  be the centres of gravity of rods AB and BC  respectively. Let R  be an impulsive
action between the rods at B , equal and opposite. When the rods BC  impings on a fixed inelastic obstacle
at a point D , such that BD x .

  G D x a2 a f, Let P  be the impulsive action due to the impingement at the fixed obstacle D.

If the rods are instantaneously brought to rest, then the equation of motion of rod AB is

m k w R a. .2 2 (Taking moment about A)  k a2 24
3

F
HG

I
KJ ...(1)

and equation of motion of rod BC  are

m u P R  ...(2)

m a w P x a R a
2

13
  a f . ...(3)

A C
DB

B

R

R x

w w1

u

G1 G2
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Since the rods are connected at B , the motion of B  as deducted from each rod must be the same

 2a w  velocity of G2  + velocity of  G u aw1 1  ...(4)

w u a w
a1
2


F

H
I
K ...(5)

Using values of P  and w1 from eqn (2) and eqn (5) in (3), we get

m a u a w m u R x a R a.
3

2    a f a f a f

or
m a u a w m u x a R x
3

2   a f a f ....(6)

Now using value of R  from (1) in above eqn (6), we have

m a u a w mu x a m a w x
3

2 2
3

   a f a f . .

or
a u a w u u w a x a u a w

u a w
BD

3
2 3 1

3
3 2 2 2

3 2
     




a f a f

which is required result t .

3.16 Summary

In this unit you have studied about equations of motion in two dimensions under finite forces and
under impulsive forces, some results of Kinetic Energy of a rigid body in two dimensions, Rolling and
Sliding friction conditions, sliding of a rod, sliding and rolling of a sphere on an inclined plane, equation of
motion of impulsive forces. Change in K.E. due to action of impulse will help the students to easily
understand various results obtained in this unit.

3.17 Exercise

1. A rough uniform rod of length 2a , is placed on a rough table at right angles to its edge; if its centre
of gravity initially be at a distance b  beyond the edge, show that the rod will begin to slide when it

has turned through an angle tan


F
HG

I
KJ

1
2

2 29
 a

a b , where   is the coefficient of friction.

2. A uniform rod is held at an inclination   to the horizon with one end in contact with a horizontal
table whose coefficient of friction is  . If it is then released, show that it will commence to slide if


 





F
HG

I
KJ

3
1 3 2

sin cos
sin

if   45, then  
3
5 .

3. A cylinder rolls down a smooth plane whose inclination to the horizon is  , unwrapping as it goes,
a fine string fixed to the highest point of the plane; find its acceleration and the tension of the string.

(Ans. : Acceleration 

a

a k
g

2

2 2 sin , tension 

k

a k
m g

2

2 2 sin )

137



4. If a sphere be projected up an inclined plane, for which  
1
7

tan , with velocity V  and an

initial angular velocity w (in the direction in which it would roll up), and if V a w , Show that the
friction acts downwards at first and upwards after wards, and prove that the whole time during

which the sphere rises is 
17 4
18

V a w
g


sin .

5. A solid uniform sphere resting on another fixed sphere is slightly displaced and begins to roll down.
Show that it will slip when the common normal makes with the vertical an angle given by
2 17 10sin cos cos    a f , where   is the initial angle of the common normal with the
vertical and   is the coefficient of friction.

6. A circular cylinder of radius a  and radius of gyration k  rolls without slipping inside a fixed hollow
cylinder of radius b . show that the plane through their axes moves like a circular pendulum of

length a b k
a

 
F
HG

I
KJa f 1

2

2 .

7. Four equal uniform, rods AB, BC , CD and DE  are freely jointed at B C,  and D  and lie on a
smooth table in the form of a square. The rod AB is struck by a blow at A at right angles to AB
from the inside of the square; Show that the inital velocity of  A is 79 times that of E .

8. Two equal uniform rods, AB and AC , are freely jointed at A and are placed on a smooth table
so as to be at right angles. The rod AC is struck by a blow at C in a direction perpendicular to
itself; Show that the resulting velocities of the middle point of AB and AC  are in the ratio 2 : 7.

3.18 Answers of Self Learning Exercise

Self Learning Exercise - I

1. See art 3.1 2. K.E. of body  
1
2

1
2

2 2Mv M k 

3. Friction is self adjusting force which tends to prevent the relative motion of the point at which it
acts.

4.   0 5. F R 

Self Learning Exercise - II

1. No 2. Yes 3. No 4.   tan

����
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UNIT - 4
Motion in Three Dimensions

Under Finite Forces

Structure of the unit
4.0 Objective

4.1 Introduction

4.2 Moving axes and fixed axes

4.3 Euler’s dynamical Equations of motion

4.4 Illustrative Examples

4.5 Instantaneous axis of rotation

4.6.1 K.E. of a body with one fixed point

4.6.2 Angular momentum about a fixed point

4.7 Vector form of Euler’s Equations of Motion

4.8 Eulerian angles  ,  , 

4.9 Euler’s Geometrical Equations of Motion

4.10 Deducation of Euler’s Equations from Lagrange’s Equations

4.11 Illustrative Examples

4.12 Self Evaluation Exercise

4.13 Summary

4.14 Exercise

4.0 Objective
When a rigid body performs three dimensional motion, its motion is translatory as well as

rotational. In many situation a point of rigid body is fixed, in this case the body performs a rotational
motion. Here in this unit our objective is to consider such types of motion of a rigid body.

4.1 Introduction
A rigid body, free to move has six degrees of freedom. Its position, is fully determined when three

points of it are given. The nine coordinates of these three points are connected by three relations
expressing the invariable lengths of the three lines joining them. Hence in all, the body has six degrees of
freedom.

When a rigid body is moving about a fixed point, it has 6-3 = 3 degrees of freedom and therefore
three constraints. In this unit we establish Euler’s equations of motion to discuss such motions of a rigid
body.

4.2 Moving axes and fixed axes
Suppose a rigid body is moving about a fixed point O of itself. We take OA, OB, OC the

principal axes which are fixed in the body and moving with the body; and OX , OY , OZ  be axes fixed in
space. Let   1 2 3, ,  be components of angular velocity of the body at time t  about OX OY OZ, , ; and
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w w w1 2 3, ,  be components of angular velocity about OA OB OC, ,  respectively. Consider a vector V .

Let V V Vx y z, ,  be its components along the axes OX OY OZ, ,  and V V V1 2 3, ,  be its components
along the principal axes OA OB OC, ,  respectively. If   , ,  be the inclinations of OA OB, , and OC to
OX  respectively. Then we have

V V V Vx   1 2 3cos cos cos  

Differentiating with respect to t , we get

  cos  sin  cos  sin  cos  sinV V V V V V Vx      1 1 2 2 3 3        

Let OA, OB, OC momentarily coincide with OX OY OZ, ,  at time t , then

  0 , 



2 , 




2

then the above relation becomes

   V V V Vx   1 2 3 

Since   is the angle which OB makes with OX , therefore   denotes the rate at which OB is
receding from OX ; also the same rate is denoted by  3  and in the same sense, therefore

  3

Figure 4.1

Similarly   denotes the rate at which OC is receding from OX ; also the same rate is denoted by
 2 but in the opposite sense, therefore   2 . Hence the above relation becomes

 V V V Vx   1 2 3 3 2 

similarly  V V V Vy   2 3 1 1 3 

 V V V Vz   3 1 2 2 1 

If OA, OB, OC coincide with OX , OY , OZ  at time t , then 1 1 w ,  2 2 w ,  3 3 w ;

amd above three relations can be written as

C

Z

B

A X

Q1

Q2

Q3

O
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 

 

 

V V V w V w

V V V w V w

V V V w V w

x

y

z

  

  

  

U
V||

W||

1 2 3 3 2

2 3 1 1 3

3 1 2 2 1

...(1)

These relations establish a rule that how the components of a vector along the axes fixed in space
can be expressed in terms of the components of the same vector along the principal axes and angular
velocities w w w1 2 3, ,  about them.

As an example, if h h h1 2 3, ,  be components of angular momentum of the body about OA OB OC, ,
and h h hx y z, ,  those about OX OY OZ, , , then

 

 

 

h h h w h w

h h h w h w

h h h w h w

x

y

z

  

  

  

U
V
||

W||

1 2 3 3 2

2 3 1 1 3

3 1 2 2 1

...(2)

As another example, if V  denotes the resultant angular velocity of a body about an instantaneous
axis with components w w w1 2 3, ,  about OA OB OC, , ,  and w w wx y z, ,  about OX OY OZ, , , then

 

 

 

w w w w
w w w w

w w w w

x

y

z

  
  

  

U
V|
W|

1 2 3 3 2

2 3 1 1 3

3 1 2 2 1

 
 

 
...(3)

4.3 Euler’s Dynamical Equations of Motion
Suppose a rigid body is moving about a fixed point O of itself under the action of external forces.

Let OX OY OZ, ,  be axes fixed in space and OA OB OC, ,  be principal axes fixed in the body and moving
with the body. Let L M N, ,  be components of external forces along OX OY OZ, , ; w w w1 2 3, ,  be com-
ponents of angular velocity and  A B C, ,  be moments of inertia about OA OB OC, ,  respectively..

Let h h hx y z, ,  be the components of angular momentum about OX OY OZ, , ; and h h h1 2 3, ,  the
corresponding quantities about OA OB OC, , , then we have from (form last article ...... eqn (2))

 h h h w h wx   1 2 3 3 2 ...(1)

with two more similar relations.

Let x y z, ,a f be coordinates of a particle of mass m  of rigid body relative to OA OB OC, , .

Therefore position vector of this point r x i y j z k

      and velocity v x i y j z k


        , if  w

  be

resultant angular velocity, thenw w i w j w k

  1 2 3

   and

v w r
  
 

               x i y j z k w i w j w k x i y j z k       1 2 3e j e j
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







x z w y w
y x w z w
z y w x w

 
 
 

U
V|
W|

2 3

3 1

1 2

...(2)

If  H
  be resultant angular momentum, then

H r m v
  
 

 h i h j h k x i y j z k x i y j z k1 2 3
                   e j e j

 h m y z z y1    a f
using (2) we get

h m y y w x w z x w z w1 1 2 3 1    b g b g
         w m y z w m x y w m z x1

2 2
2 3c h

      Aw F w E w1 2 3

Similarly

h Bw Dw F w2 2 3 1  

h C w E w Dw3 3 1 2  

where A B C, ,  are M.I. and D E F, ,  are P.I. of rigid body about principal axes OA OB OC, , .

But D E F   0

so that h Aw1 1 , h Bw2 2 , h C w3 3

  h Aw1 1 ,  h B w2 2 ,  h C w3 3

Substituting these in (1)

 h A w B C w wx   1 2 3b g
Also we have h Lx  , h My  h Nz 

 A w B C w w L1 2 3  a f ...(3)

Similarly

B w C A w w M 2 3 1  a f ...(4)

C w A B w w N 3 1 2  a f ...(5)

Equation (3), (4) and (5) are known as Euler’s Dynamical equations of motion.

4.4 Illustrative Example
Example 1 : A body having an axis of symmetry OC, moves about a fixed point O under no forces
except a constant retarding couple k C about the axis OC. If A A C, ,  are the moments of Inertia and
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w w w1 2 3, ,  the angular velocities about the principal axes OA OB OC, , . Show that at time t ,

w t k t1
1
2

 F
HG

I
KJ

L
NM

O
QP cos  ,

w t k t2
1
2

  F
HG

I
KJ

L
NM

O
QP sin 

w k t3  

where  
A C
A , the initial values of w w w1 2 3, ,  being  , ,O  respectively..

Solution : Here components of external forces are

L  0 , M  0 , N k C

and M.I.’s are A A C, ,

From Euler’s equations of motion

A w A C w w1 2 3 0  a f ...(1)

A w C A w w 2 3 1 0  a f ...(2)

C w k C 3   ...(3)

From (3) w k3    w k t3  

when t  0, w3   ,  C1   w k t3  

Hence from (1) and (2)

w A C
A

w w k t w1 2 3 2


  b g

w A C
A

w w k t w2 3 1 1 


   b g

Let u w i w 1 2

 u k t w i w i k t u       b g b g b g2 1


u
u

i k t   b g
on integration and applying initial conditions

u e t k ti  F
HG

I
KJ

  1
2

2

Equating real and imaginary parts we get the required results.
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Example 2 : If 2 1
2

2
2

3
2T Aw Bw C w    and C be the moments of the impressed forces about the

instantaneous axis of rotation and w  be the resultant angular velocity, prove that

d T
d t

w G

Also, prove that
d
d t

I w w G F
H

I
K 

1
2

2

where I  is the moment of inertia about the instantaneous axis and A B C, ,  have their usual meaning

Solution : Given that 2 1
2

2
2

3
2T Aw Bw C w  

therefore
d T
d t

A w w B w w C w w  1 1 2 2 3 3   ...(1)

we know that the Euler’s dynamical equations referred to principal axes are

A w B C w w L

A w C A w w M

A w A B w w N







1 2 3

2 3 1

3 1 2

  

  

  

U
V|

W|

b g
b g
b g

...(2)

From (1) and (2), we have

d T
d t

w L B C w w w M C A w w     1 2 3 2 3 1a f a f

            w N A B w w L w M w N w3 1 2 1 2 3a f ...(3)

If l m n, ,  are the direction cosines of the instantaneous axis of rotation referred to the principal
axis, fixed in body, then

w l w1  , w m w2  , w n w3  and G L l M m N n   ...(4)

Therefore (3) becomes

d T
d t

w L l M m N n G w   a f ...(5)

Further, from (5)

2 2 2 2 2 2T Al B m C n w I w   c h ...(6)

or T I w
1
2

2

so that
d
d t

I w G w1
2

2 2F
H

I
K 
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4.5 Intantaneous axis of rotation

When a body moves about a fixed point O and at time t  if w w w1 2 3, ,  are the components of
angular velocities about the axes OA OB OC, ,  fixed in the body then direction cosines of the resultant axis

of rotation with these axes are 
w
w

w
w

w
w

1 2 3, , , where w w w w  1
2

2
2

3
2  since, w w w1 2 3, ,  are func-

tions of time t , therefore resultant axis of rotation changes with time. Hence at different instant, there are
different axes of rotation. On account of its temporary character, it is called instantaneous axis of rotation
or simply instantaneous axis.

Example 3 : A rigid body, symmetrical about an axis, so that B A , is supported at its centre of
gravity which is fixed and the only forces that have moments about the C G. . are equivalent to a retarding
frictional couple, proportational to the angular velocity and acting in a plane at right angles to the
instantaneous axis. Assuming C A , prove that the equations of motion can be integrated in the form

w e e
C t

A t
1   F

H
I
K

 




. sin

w e e
C t

A t
2   F

H
I
K

 




. cos

w n e t
3 



where n, ,   are constants,  
n C A

A
a f

 and   is a constant defined by a constant couple.

Solution : Here L w  1, M w  2 , N w  3 , B A , so Euler’s equations of motion are

A w A C w w w1 2 3 1   b g  ...(1)

A w A C w w w 2 3 1 2   a f  ...(2)

C w w 2 3   ...(3)

Integrating (3) we get w n e
t
C

3 
 ...(4)

Using (4) in (1) and (2), we have

A w A C n e w w
t
C1 2 1   a f 



A w A C n e w w
t
C 2 1 2   a f 



Putting u w i w 1 2 , we get

u i e
A

u
t
C L

NM
O
QP

 

Integrating and separating real and imaginary parts, we get
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w e e
t

A
t
C

1 
RST

UVW
 




 
cos

w e e
t

A
t
C

2   RST
UVW

 



 
sin

where   is a constant.

Putting C  for   and  for 

2  in above equations we get the required results.

Also we note that

w w
w m

e oA C
t

1
2

2
2

3
2

2

2

2 1 1
 

 F
HG

I
KJ 

as t   C Ab g

Ultimately w w w w1
2

2
2

1 20 0    

Hence the axis of rotation is the axis of greatest moments i.e. the least axis of the figure.

Example 4 : An uniaxial body is supported at its centre of mass and is rotating initially with angular
velocity w about an axis perpendicular to the axis of symmetry. Prove that if a couple of constant moment
l  is applied above the axis of symmetry, the instantaneous axis will describe a cone whose equation
referred to the axis fixed in the body, of which that of z  coincides with the axis of symmetry, is

2 2 2 1 2 2Al x y y
x

C C A w z  c h b gtan .

Solution : Initially we take w w1  ,  w2 0 ,  w3 0

here B A , L  0 , M  0 , N l

Euler’s equations of motion are

A w A C w w1 2 3 0  a f ...(1)

A w A C w w 2 3 1 0  a f ...(2)

C w l 3  ...(3)

From (1) and (2) we get





w
w

w
w

1

2

2

1

 

 on integration w w w1
2

2
2 2  constant

eqn (3) gives w l
C

t l t
C3   constant  as t  0, w3 0

Hence (1) and (2) imply

A w A C l
C

w t1 2 b g
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A w A C l
C

w t 2 1  b g

Putting u w i w 1 2 , we get

u A C
AC

l t i u 


on integration u w e
i A C

AC
l t




 2

2

Equating real and  imaginary parts.

w w C A
AC

l t1
2

2


RST
UVWcos

w w C A
AC

l t2
2

2


RST
UVWsin

If w1 be the resultant angular velocity, d c s'  of instantaneous axis are 
w
w

w
w

w
w

1 2 3

'
,

'
,

' , for which we

will write x y z, ,  to find the equation of cone.

Now      w w w w w w2
1
2

2
2

3
2 2

3
2

tan 









1 2

1

2
3
2 3

2

2
2

2 2 2
w
w

C A
AC

l t
C A C

Al
w

C A
Al

C w
w

wb g b g

But x y w w
w

2 2 1
2

2
2

2 



i.e.  


w w
x y

2
2

2 2

Hence the locus of instantaneous axis is

tan 



1 2

2

2 22
y
x

C A C
Al

z w
x y

b g
c h

or 2 2 2 1 2 2Al x y y
x

C C A w z  c h b gtan

4.6.1 (a) Kinetic Energy of a body with one point fixed

If x y z, ,a f be coordinates of a particle of mass m  referred to OA OB OC, ,  with O as fixed point,
we have

velocity components x z w y w 2 3, y x w z w 3 1,  z y w x w 1 2

 K E. . T m x y z  1
2

2 2 2  c h

         1
2 2 3

2
3 1

2
1 2

2m z w y w x w z w y w x wb g b g b g
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         
1
2

2 2 21
2

2
2

3
2

2 3 3 1 1 2A w B w C w Dw w E w w F w wc h
If OA OB OC, ,  be principal axes at O, then

D E F   0

T A w B w C w  
1
2 1

2
2
2

3
2c h

4.6.2 (b) Angular Momentum about a fixed point

If  H
  is angular momentum about the fixed pointO, then

H m r v m r w r
     
    FH IK 

       FH IKL
NM

O
QP

   
m r w r w r2 .

          m x y z w i w j w k2 2 2
1 2 3c h e j  

      w x w y w z x i y j z k1 2 3b g e j  

             Aw F w E w i B w D w F w j C w E w D w k1 2 3 2 3 1 3 1 2b g b g b g  

If OA OB OC, ,  be principal axes of the body at O, then

H Aw i Bw j C w k

  1 2 3

  

i.e. components of the angular momentum about OA OB OC, ,  are

H Aw1 1 , H Bw2 2 , H C w3 3

4.7 Vector form of Euler’s equations of motion

If H
  be the angular momentum of the body relative to the fixed point O and G

  be the sum of the
moments of the external forces about O then equation of motion of the body is

d H
d t

G





or
d H
d t

W H G


  
  

4.8 Eulerian angles  ,  , 

Suppose a rigid body turns about a fixed point O. In order to know the position of the body in
space, at any time t , with reference to initial position, three angles  ,  ,   are choosen to define the
position of the principal axes and therefore the body itself. The angles  ,  ,   are called Eulerian angles.
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To understand the concepts of  ,  ,   construet a spherical surface of radius unity with centre at
O. Let the axes OX , OY , OZ  which are fixed in space, meet the spherical surface in the points x y z, , .
At any time t , when the body is rotating about O, let the moving axes meet the surface in the points
A B C, , , then   is angle between OZ  and OC,   is the angle between the plane ZOC  and the plane
CDA  and   in the angle between the plane ZOC  and the plane ZOX .

Figure 4.2

To express   and   more precisely, draw a line OK  perpendicular to the plane ZOC . Normals
to the planes COA  and ZOX  are respectively OB and OY .

Since the angles between any two planes is the same as the angle between their normals, therefore
we observe from the figure that,   is the angle between OK  and OB.   is the angle between OK  and
OY .

4.9 Euler’s Geomatrical Equations of Motion

Let a rigid body be moving about a fixed point O on it. If w w w1 2 3, ,  be the component angular
velocities about the principal axes OA OB OC, , , to determine w w w1 2 3, ,  in term of Eulerian angles  ,  ,
  and  ,  ,  .

Let OX , OY , OZ  be the axes fixed in the space. Suppose   , ,  be the Eulerian angles
determining the position of the body at time t .

Figure 4.3
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Angle   is in ZOC  plane therefore the angular velocity   is about the line OK

which is normal to this plane. The line OK  being perpendicular the both OZ  and OC lies in the
XOY  plane as well as in AOB  plane.

Angle   is in AOB  plane, therefore angular velocity   is about OC  which is normal to the plane
AOB .

Angle   is in XOY  plane, therefore angular velocity   is about OZ  which is normal to the plane
XOY .

Now we find the direction cosines of lines OK , OC and OZ  with respect to the principal axes
OA OB OC, , .

Since OK  is perpendicular to OC and is in AOB  plane making angle   with OB therefore
direction cosines of OK  are sin , cos , O and dc s'  of OC are clearly 0 0 1, , . To find the direction OZ
draw a line OM  perpendicular to OC in the plane ZOC , The line OM , in virtue of its being in ZOC  plane,
is perpendicular to OK  and by virtue of its being perpendicular to OC, lies in AOB  plane. Thus both OM
and OK  lie in AOB  plane and are mutually perpendicular, and as OK  makes the angle   with  OB,
therefore OM  must make an angle   with OA.

Now the direction cosines of OZ  about the co-planer lines OC and OM  are cos , sin  .

But the direction cosines of OM  about OA OB,  are

cos , sin 

 direction cosines of OZ  about OA OB OC, ,  are

 sin cos , sin sin , cos    

Hence components of   about OA OB OC, ,  are  sin ,  cos ,    O  the components of   about

OA OB OC, ,  are O O, ,   and the components of   about  OA OB OC, ,  are

  sin cos ,  sin sin ,  cos       

Now, if w w w1 2 3, ,  denote the components of angular velocities about the principal axes
OA OB OC, ,  respectively then from above results, we have

w1   sin  sin cos    

w2   cos  sin sin    

w3    cos  

These are called Euler’s geometrical equations of motion.

4.10 Deduction of Euler’s Equations from Lagrange’s Equations
Suppose a rigid body is moving about a fixed point O under the action of external forces. Let

OA OB OC, ,  be principal axes at O and at time t .   , ,  be Eulerian angles which are the generlised
coordinates of the body. Let w w w1 2 3, ,  be angular velocities and A B C, ,  are moments of inertia of the
body about OA OB OC, ,  respectively. The kinetic energy T  is given by
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T A w B w C w  
1
2 1

2
2
2

3
2c h

The Euler’s Geometrical equations are

w1   sin  sin cos    

w2   cos  sin sin    

w3    cos  

Hence kinetic energy T  can be regarded as the function of the generalised coordinates  , ,
and generalised velocities  ,  ,    .



 





 





 





 

T T
w

w T
w

w T
w

w
     

1

1

2

2

3

3

          









T
w

T
w

T
w

C w
1 2 3

30 0 1. . .


 





 





 





 

T T
w

w T
w

w T
w

w
  

1

1

2

2

3

3

            Aw Bw1 2 0 cos  sin sin  sin  sin cos         d i d i
        Aw w Bw w1 2 2 1

        A B w wa f 1 2

If   be the work function of the system and N  be the moment of external forces about axis OC,
then


 

 N

Lagrange’s   equation is

d
d t

T T
 


 


 

F
HG

I
KJ  



or
d
d t

C w A B w w N3 1 2b g a f  

or C w A B w w N 3 1 2  a f
This is third Euler’s Equation.

Similarly we can duduce other two Euler’s equations.
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4.11 Illustrative Examples

Example 5 : Show that in the free motion of body with an axis of symmetry Ca f  about its C G. . If n
denotes the spin about the axis C and   denotes the Euler’s third angle then

A A C n  a f .

Solution : Here   constant  and   0

From Euler’s first two geometrical equations of motion we have by squaring

sin 2 2
1
2

2
2  w w

 sin  tan    w w n i1
2

2
2

From Euler’s third equation

cos     n

tan tan   n i nc h

but we have tan tan 
A
C

i


n i
n

A
C

itan
 tan






or
C
A

n n  d i or C n A n  d i

 A A C n  a f

Example 6 : Prove that for a rigid body moving about a fixed point 
d T
d t

W G
 

.  where G  is the

moment of external forces about fixed point and T H w
 1

2
.  where H  is the angular momentum about

the fixed point.

Solution : Here W w i w j w k

  1 2 3

  

G Li M j N k

    

H A w F w E w i Bw D w F w j

     1 2 3 2 3 1l q l q 

             C w E w D w k3 1 2l q 

T A w B w C w D w w E w w F w w     
1
2

2 2 21
2

2
2

3
2

2 3 3 1 1 2m r
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 H W A w F w E w w B w Dw F w w
 

     . 2 2 3 1 2 3 1 2l q l q
         C w E w Dw w3 1 2 3l q

 2T

d T
d t

A w w Bw w  1 1 2 2  ......b g

The equation of motion is

d H
dt

G



 or

d H
d t

W H G


  
  

 W d H
d t

W G



 

. . ...(1)

W d H
d t

w A w F w E w w Bw D w F w




     .      1 1 2 3 2 2 3 1b g b g

  w C w E w F w3 3 1 2  b g


d T
d t

 using (1)
d T
d t

W G
 

.

Example 7 : A body turns about a fixed point and

2 2 2 21
2

2
2

3
2

2 3 3 1 1 2T Aw Bw C w Dw w E w w F w w      .

Show that, if the axes are fixed in the body, but are not necessarily principal axes, Euler’s
equations of motion  may be written in the form

d
d t

T
w

T
w

w T
w

w L






1 2

2
3

3
F
HG

I
KJ   

with two similar expressions.

Solution : If the axes are not the principal axes the equations of motion are

d h
d t

h w h w L1
2 2 3 3    etc

where h Aw F w E w T
w1 1 2 3

1

   



Similarly h
T
w2

2



 , h

T
w3

3




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Substituting the values of h h h1 2 3, ,  we have

d
d t

T
w

T
w

w T
w

w L






1 2

2
3

3
F
HG

I
KJ     etc

similarly we can find other two equation of motion

4.12 Self Evaluation Exercise
1. What do you mean by moving axes?

2. Define isntantaneous axis of rotation?

3. Write Euler’s Equations of motion?

4. What are the Euler’s angles?

5. Write dwon the Euler’s geometrical equation of motion?

4.13 Summary
In this unit we have discussed the motion of a rigid body about a fixed point O. The fixed point O

lies in the body. We have derived Euler’s dynamical equations of motion. To determine the position of rigid
body in space three angles   , ,  are defined, these are called Eulerian angles. The relations between
angular velocities  ,  ,     and w w w1 2 3, , , called Euler’s geometrical equation of motion are also stablished.

4.14 Exercise
1. A rigid body possesses an axis of symmetry OC and moves about O under a retarding couple

C w3  about  OC ;   being a constant, A A C, ,  be principal moments of inertia at O and
w w w1 2 3, ,  being the angular velocity components about the principal axes, the third axis being
OC. Initially the body is given an angular velocity w about a line inclined at   to OC. Prove that
ultimately the instantneous axis will be perpendicular to OC.

2. A body is moving about a fixed point O and has all its moment of inertia at O equal. If  , ,  be
the Eulerian coordinates of the axes OA OB OC, ,  fixed in the body. Show that the angular
moments about the axes fixed in space are respectively.

h Ax   sin  sin cos     d i
h Ay  cos  sin sin     d i
h Az   cos   c h

����
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UNIT - 5
Motion in Three Dimensions

(Under no Forces)

Structure of the unit
5.0 Objective

5.1 Introduction

5.2 Invariable Line

5.3 Integrals of Energy and Angular Momentum

5.3.1 Locus of Invariable Line

5.4 Illustrative Exmaples

5.5 Motion of Symmetrical bodies under no forces

5.6. Illustrative Examples

5.7 Motion under impulsive forces

5.8 Illutstrative Examples

5.9 Self Evaluation Questions

5.10 Summary

5.11 Exercise

5.0 Objective
In this unit we will consider centain important situation arising in rigid body dynamics, where the

Euler’s equations are applicable and there is, no force acting on the rigid body. This type of motion of a
rigid body is called force free motion or simply free motion. In this motion the centre of gravity of rigid
body is either at reast or moving with a uniform velocity. Consequently we need to consider only the
rotational motion of the body.

5.1 Introduction
When a rigid body turns about a fixed point O under no forces, the angular momentum about

every axis through O fixed in space is constant. Thus the rigid body has a constant angular momentum
which we denote by H . The axis of H  is fixed in space and is known as Invariable Line. A plane
perpendicular to it is called an invariable plane.

Under force free motion of rigid body the kinetic energy is also constant. In this unit we consider
the problems on the motion of rigid body under no force condtion.

5.2 Invariable Line

Suppose a rigid body is moving about a fixed point O under no forces. Let OA OB OC, ,  be the
principal axes at O; w w w1 2 3, ,  the angular velocities and A B C, ,  the moments of inertia of the body
about these axes. Then components of angular momentum about these axes are A w B w C w1 2 3, ,  and the
resultant axis of these components is called Invariable Line.
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5.3 Integrals of Energy and Angular Momentum
Let us now consider above system regarding the rigid body then Euler’s equations under not

forces are

A w B C w w1 2 3 0  a f ...(1)

B w C A w w 2 3 1 0  a f ...(2)

C w A B w w3 1 2 0  a f ...(3)

Multiplying (1) by w1 , (2) by w2  and (3) by w3  then adding we get

Aw w Bw w C w w1 1 2 2 3 3 0    

on integration Aw B w C w1
2

2
2

3
2  c h  constant ...(4)

 2T  constant

where T  is the kinetic energy and is constant.

This is becuase there in no external force to do the work, so the Kinetic Energy of the body
remains constant.

Equation (4) is called integral of energy.

Again multiplying (1) by Aw1, (2) by Bw2 , (3) by C w3 then adding we get

A w w B w w C w w2
1 1

2
2 2

2
3 3 0    

on integtrationA w B w C w2
1
2 2

2
2 2

3
2    constant ...(5)

or H  constant

where H  is the angular momentum and is constant.

This is due to the fact that the moment of external forces is zero as there is no force, so that angular
momentum remains constant.

5.3.1 Locus of Invariable Line :

On dividing (4) by (5), we have

A w B w C w
Aw B w C w

H
T

2
1
2 2

2
2 2

3
2

1
2

2
2

3
2

2

2
 
 



 A w B w C w H
T

A w
A

B w
B

C w
C

2
1
2 2

2
2 2

3
2

2 2
1
2 2

2
2 2

3
2

2
    

F
HG

I
KJ

or A w H
AT

B w H
BT

C w H
C T

2
1
2

2
2

2
2

2
2

3
2

2

1
2

1
2

1
2

0
F
HG

I
KJ  

F
HG

I
KJ  

F
HG

I
KJ 

Let x y z, ,a f be coordinates of any point on the invariable line. Since it passes through O and has
direction cosines proportioanl to Aw B w C w1 2 3, ,

x
A w

y
B w

z
C w

r
1 2 3

  
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Substituing these in (6) we get

x H
AT

y H
BT

z H
C T

2
2

2
2

2
2

1
2

1
2

1
2

0
F
HG

I
KJ  

F
HG

I
KJ  

F
HG

I
KJ 

which is the equation of a cone with vertex at O.

Since quantities A B C H T, , , ,  are constant and A B C, ,  are constant with respect to body,,
hence the above cone is fixed in the body and it is called invariable cone.

5.4 Illustrative Examples

Example 1 : Prove that, if a rectangular parallelopiped (edges 2 2 2a a b, , ) rotates about its centre of
gravity, its angular velocity about one principal axis is constant and about the other principal axes is
periodic, the period being to the period about the first mentioned principal axis as

b a b a2 2 2 2 c h c h:

Solution : Here A M a b B  
1
3

2 2c h , C M a
2
3

2

L M N   0

Euler’s equations of motion are

A w A C w w1 2 3 0  a f ...(1)

B w C A w w 2 3 1 0  a f ...(2)

C w A A w w 3 1 2 0  a f ...(3)

From (3)

w n3   (constant)  (say)

Again, from (1) and (2)

a b w b a n w2 2
1

2 2
2  c h c h ...(4)

a b w b a n w2 2
2

2 2
1   c h c h ...(5)

 a b w b a n w2 2 2

1
2 2 2 2

1   c h c h

or w b a
b a

n w1

2 2

2 2

2
2

1 



F
HG

I
KJ

which is charctristic of S.H.M.

The periodic time T
n b a a b

a b
n b a


 





2 2

2 2 2 2

2 2

2 2

 

c h c h
c h
c h/
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The period of first T
n1

2




Hence T T a b b a: :1
2 2 2 2  c h c h

Example 2 : A body moves under no forces about a point O, the principal moments of inertia at O
being 6 3A A,  and A. Initially the angular vleocity of the body has components w n1  , w2 0 , w n3 3
about the principal axes. Show that at any later time

w n h n t2 5 5  tan

and ultimately the body rotates about the mean axis.

Solution : Here A A 6 , B A 3 , C A  ; L M N   0

Euler’s equations of motion are

A w B C w w1 2 3 0  a f
B w C A w w 2 3 1 0  a f
C w A B w w 3 1 2 0  a f

Substituting for A B C, , , we get

3 1 2 3w w w ...(1)

3 52 3 1w w w  ...(2)

w w w3 1 23 ...(3)

Dividing (1) by (2)





w
w

w
w

1

2

2

15
 

 5 01 1 2 2w w w w  

Integrating 5 1
2

2
2w w a  , where a is constant.

Initially w n1  , w2 0  a n5 2

 5 51
2

2
2 2w w n  ...(4)

Dividing (1) by (3), we have

3
3

1

3

3

1





w
w

w
w

  or 9 01 1 3 3w w w w  

Integrating  9 1
2

3
2w w b  , where b  is constant

initially w n1  , w n3 3  b 0

 9 01
2

3
2w w 

158



 3 1 3w w ...(5)

From (3) 3 5 152 3 1 1
2w w w w    using (5)

or w w n2 2
2 25 

or d t d w
n w

 


2
2

2
25

on integration t n
h w

n
C 

F
HG

I
KJ 

1
5 5

1 2tan

initially t  0, w2 0 ,  C 0

Hence w n h nt2 5 5  tan d i

As t h n t  , tan 5 1d i  tan h x e e
e e

as x
x x

x x



  
F
HG

I
KJ



 1

 w n2 5  as t  

From (4) and (5) we get

w1 0 , w3 0

Thus ultimately w1 0 , w3 0  but w n2 5 

i.e. the body rotates about mean axis.

Example 3 : A lamina rotating with uniform angular velocity n  about an axis through its centre of gravity
perpendicular to its plane has an additional angular velocity  n  impressed upon it about the axis of least

moments ; A B C a f where 
2 




B A
B A , Prove that at time t, its angular velocities are  n h n tsec ,

 n h n ttan  and n h n tsec . Also show that it will ultimately revolve about the axis of mean moment.

Solution : Axis of least moment is OA, since A B C 

 initial conditions are w n1   , w2 0 , w n3 

Euler’s equations of motion under no force are

A w B C w w1 2 3 0  a f ...(1)

B w C A w w 2 3 1 0  a f ...(2)

C w A B w w 3 1 2 0  a f ...(3)

For lamina C A B  , therefore above equations become

w w w1 2 3  ...(4)

w w w2 3 1 ...(5)

159



2
3 1 2w w w  ...(6)

Dividing (4) by (5), we have





w
w

w
w

1

2

2

1

 or w w w w1 1 2 2 0  

Integrating, w w a1
2

2
2  , where a  is constant

initially  w n1   , w2 0 ,  a n2 2

 w w n1
2

2
2 2 2   ...(7)

Dividing (4) by (6), we get





w
w

w
w

1

3

3

1
 or w w w w1 1 3 3 0  

Integrating, w w b1
2

3
2  where b  is consntant

Initially w n1   , w n3   b 0

Hence w w1
2 2

3
2  or w w1 3 

Now from eqn (5) w w w w2 3 1 1
21

 


      
1 2 2

2
2


 n wc h, using (7)

On integration, we get

t d w
n w


z


2

2 2
2
2

   
 

. tan1 1 2

n
h w

n
C

Initially t  0 , w2 0  e 0

 t
n

h w
n

 1 1 2tan


 w n h nt2   tan

consequently from (4), we obtain

w n h n t1
2   sec

 w w n h n t3 1
1

 


sec

Thus at any timet  angular velocities are

w n hnt1   sec , w n hnt2   tan , w n h nt3  sec
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Now Limit h n t Limit
e et t nt nt    


sec 2 0

and Limit h n t Limit e e
e et t

n t nt

nt nt   







tan 0

Thus ultimately the values of w w w1 2 3, ,  are O n O, ,  i.e. the body will ultimately rotate about
mean axis.

Example 4 : A rigid body rotates freely about its centre of mass under no forces. The body is rotating
with angular velocity w  about the axis of greatest moment C  when a small angular momentum Ap is
applied about the axis of least moment A. Show that the instantaneous axis moves in the body with period

2


, where 2 2
 C B C A

A B
wa f a f

.

Solution : Initially w w3  , w p1   (since initially A w Ap1  ) Euler’s equations of motion, under
no force, are

A w B C w w1 2 3 0  a f ...(1)

Bw C A w w 2 3 1 0  a f ...(2)

and C w A B w w 3 1 2 0  a f ...(3)

Dividing (1) by (2), we have

Aw
Bw

C B
C A

w
w




1

2

3

1

 



F
HG

I
KJ ,

or A C A w w B C B w w   a f a f1 1 2 2 0 

Intigrating A C A w B C B w a   a f a f1
2

2
2  (constant)

initally w p1  , w2 0   a A C A pa f 2

Hence A C A w B C B w A C A p    a f a f a f1
2

2
2 2

both sides are positive as C B A 

This relations shows that when p is small, w1 and w2  both must be small, so the product of w w1 2,
may be neglacted, and then, Euler’s third equation reduces to

w3 0 or w w3  constant  (initial)

Differentaiting (1) and taking w w3  , we have

A w C B w w
C B C A

B
w w 1 2

2
1    

 b g b g b g
by  (2)

or 
.

w
C B C A

A B
w w1

2
1 

 a f a f
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or w w1
2

1   where 2 2
 C B C A

A B
wa f a f

.

Hence period 
2 w


Example 5 : A rectangular parallelopiped whose edges are a a a, ,2 3  can turn freely about is centre

and is set rotating about a line perpendicular to the mean axis and making an angle cos1 5
8  with the least

axis. Prove that ultimately the body will rotate about mean axis.

Solution : Let w  be the initial angular velocity then

Initially w w w1
5
8

 cos , w2 0 , w w w3
39
8

 sin  as   F
H

I
K

cos 1 5
8

Here A b c a a
a







2 2 2 2
2

3
2 3

3
13
3

a f a f

B c a a a
a







2 2 2 2
2

3
3

3
10
3

a f

C a b a a a








2 2 2 2 2

3
2

3
5

3
a f

There is no external force, therefore Euler’s equations of motion are

A w B C w w1 2 3 0  a f
B w C A w w 2 3 1 0  a f

and C w A B w w 3 1 2 0  a f
Putting the values of A B C, , , we have

13 51 2 3w w w ...(1)

10 82 3 1w w w  ...(2)

and 5 33 1 2w w w ...(3)

Dividing (1) by (2), we have

13
10

5
8

1

2

2

1





w
w

w
w

   or 52 25 01 1 2 2w w w w  

Integrating, 52 251
2

2
2w w a  , where a  is constant

Initially w w1
5
8

 , w2 0  a w325
16

2

Hence 52 25 325
161

2
2
2 2w w w  ...(4)
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Dividing (1) by (3), we have

13
5

5
3

1

3

3

1





w
w

w
w

   or 39 25 01 1 3 3w w w w  

on integration 39 251
2

3
2w w b   where b  is constant

initially w w1
5
8

 , w w3
39
8

 ,  b 0

Hence 39 25 01
2

3
2w w  ...(5)

using (5) in (2)

10 8 39
52 1

2w w 

            F
H

I
K

8 39
5 52

325
16

252
2
2w w by (4)

            F
H

I
K

4 3
5

325
16

252
2
2w w

on Integration 4 3
5

10 325
16

25

2

2
2
2

t d w

w w
 

F
H

I
K

z

           
  10 4

5 325
5
325
4

1 2

w
h w

w
tan

             8
5 13

20
325

1 2

w
h w

w
tan

or
39
2

20
325

1 2w t h w
w

  tan

or w w h w t2
325

20
39
2


L
NM

O
QPtan

      
L
NM

O
QP

w h wt13
4

39
2

tan

But when t   , tan h w t39
2

1
L
NM

O
QP    w w

2
13

4

and from (4) and (5) w1 0 , w3 0

Hence the body ultimately rotates about the mean axis.
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Example 6 : A rectangular lamina ABCD  in which BC AB 2 , can turn freely about the middle
point O of AD. Initially it is set rotating with angular velocity  about a line through O perpendicular to
AD and making a angles 30  with the plane of the rectangle. Show that after time t , the components of

angular velocity of the rectangle about the principal axis at O are 
1
2

3 1
2

 sec h t , 
1
2

3 1
2

 tan h t

and 
1
2

1
2

 sec h t .

Solution : Let G  be the centre of gravity of the lamina and ON  be the normal to the plane of
lamina.Then OG OA ON, ,  are the principal axes at O. Initially the lamina is rotating about a line OK
perpendicular to AD and making an angle 30  with the plane of the lamina. Thus OK  is in the plane NOG
to which OA is normal. So direction cosines of OK  are cos , cos , cos30 90 60  

Figure 5.1

i.e.
3

2
, 0 , 

1
2

Initially the lamina is rotating about OK , so that initially

w1
3

2
  , w2 0 , w3

1
2

 

Euler’s equations of motion under no forces, are

A w B C w w1 2 3 0  a f
B w C A w w 2 3 1 0  a f
C w A B w w 3 1 2 0  a f

Let AB a 2  BC a2 2

A   M.I. of lamina aboutOG M a
2
3

2

B   M.I. of lamina about OA M a M a M a  
1
3

4
3

2 2 2

C   M.I. of lamina about ON A B M a   2 2

Substituting the values of A B C, ,  in the Euler’s equations we have

D C

BA

K

N

GO

60
30
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w w w1 2 3  ...(1)

w w w2 3 1 ...(2)

3 3 3 2w w w  ...(3)

Dividing (1) by (2) and intigrating, we get

w w a1
2

2
2  constantb g

Initially w1
3

2
  , w2 0  a 3

4
2

 w w1
2

2
2 23

4
   ...(4)

Dividing (1) by (3) and integrating , we get

w w b1
2

3
23  constantb g

But initially w1
3

2
  , w2

1
2

 ,  so that b  0

 w w1
2

3
23 or w w1 33 ...(5)

Equation (2) is w w w w2 3 1 1
21

3
  by (5)

    F
H

I
K

1
3

3
4

2
2
2 w by (4)

on integration, t d w

w



z3 3

4

1

2
2
2

  
 F

HG
I
KJ
3 2

3 3
2

1 2. tan



h w C

Initially, t  0, w2 0  c 0

 t w


F
HG

I
KJ

2 2
3

1 2

 
tan

or w h t2
3

2
1
2

 F
H

I
K tan

using (4) w h t1
3

2
1
2

 F
H

I
K sec
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from (5) w w t3 1
1
3

1
2

1
2

  F
H

I
K sec

Example 7 : A uniform elliptic disc is free to move about a focus and in set rotating with initial angular
velocity   about an axis perpendicular to the corresponding latus retum and making an angle   with the

plane of the disc. If cos 2 
A
B , where A B,  are moments of inertia of  the disc about the major axis and

latus rectum respectively. Prove that after time t  the component angular velocity of the disc about the
major axis will be

 
B A

B
h t B A

B
F

HG
I
KJ

L
NM

O
QP2 2

sec .

Solution : Let S  be a focus and SL  the semi latus rectum and SC normal to the plane of the disc.

Figure 5.2

Thus SA SL SC, ,  are the principal axes at S . Suppose initial axis of rotation is SI  which  is given
perpndicular to SL , therefore it lies in the plane CSA making angle   with SA, so that direction cosines of
SI  are

cos , cos , cos 90 90  c h, i.e cos , , sin 0

 Initially w1  cos , w2 0 , w3  sin

Euler’s equations of motion under no forces are

A w B C w w1 2 3 0  a f
B w C A w w 2 3 1 0  a f
C w A B w w 3 1 2 0  a f

For lamina C A B 

 Above equation becomes

w w w1 2 3  ...(1)

w w w2 3 1 ...(2)

B A
B A

w w w


  3 1 2 or 2
3 1 2w w w  ...(3)

L

C

A

I

S 
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where 
2 




B A
B A

Dividing (1) by (2) and integrating we obtain

w w a1
2

2
2  constantb g

Initially w1   cos  , w2 0   a 2 2cos 

 w w1
2

2
2 2 2   cos  ...(4)

Again dividing (1) by (3) and integrating

w w b1
2 2

3
2  constantb g

Initially w1   cos , w3   sin

 b   2 2 2 2 0cos sin  c h  cos 2 RST
UVW

A
B

Hence w w1
2 2

3
2  ...(5)

Now equation (2) is

w w w w2 3 1 1
21

 
 using (5)

 
1 2 2

2
2


 cos wc h using (4)

on integration t d w
w

h w C


 z 



 

2
2 2

2
2

1 21
  cos cos

tan
cos

Initially t  0, w2 0  c 0

Hence  t h w
 

  cos
tan

cos
1 2

or w h t2  F
H

I
K

cos tan cos





Then from (4), we have

w w h t1
2 2 2

2
2 2 2 2 2 2    F

H
I
K  

cos cos cos tan cos
  




  F
H

I
Kw h t1 

cos sec cos





    
 F

HG
I
KJ 

A B
B

h t A B
B2 2

sec as 
1

2
cos 

B A
B
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Hence from (5)

w w B A
B A

A B
B

h t B A
B3 1

1
2 2

 



 F
HG

I
KJ

 sec

     
 F

HG
I
KJ 

B A
B

h t B A
B2 2

sec .

Example 8 : The principal moments of inertia of a body at the centre of mass are A A A, ,3 6 . The
body is so started that its angular velocities about the axis are 3 2n n n, ,  respectively. If in the subsequent
motion under no forces w w w1 2 3, ,  denote the angular velocities about the principal axis at time t , prove
that

w w n hu1 33 9
5

  sec and w n hu2 3 tan

where u n t 3 1
2

5log .

Solution : Euler’s equations of motion under no forces, are

A w B C w w1 3 2 0  a f
B w C A w w 2 3 1 0  a f
C w A B w w 3 1 2 0  a f

Here A A , B A 3 , C A 6

Substituting in the above equations, we have

w w w1 2 33  ...(1)

3 52 3 1w w w ...(2)

3 3 1 2w w w  ...(3)

Dividing (1) by (3)





w
w

w
w

1

3

3

13
3

 or w w w w1 1 3 39 

On integration

w w a1
2

3
29  , a  is a constant

Initially w n1 3 , w n3  ,  a 0

 w w1
2

3
29 or w w1 33 ...(4)

Dividing (2) by (3)





w
w

w
w

2

3

3

2

5  or w w w w2 2 3 35  
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On integration

w w b2
2

3
25   , b  is a constant

Initially w n2 2 , w n3  ,  b n9 2

Hence w w n2
2

3
2 25 9   ...(5)

Now equation (2) gives

3 52 3 1w w w

         15 3
2w by (4)

 w w n w2 3
2 2

2
25 9   by (5)

Integrating, t
n

h w
n

c
F
HG

I
KJ 

1
3 3

1 2tan , c is a constant

Initially t  0, w n2 2    C
n

h1
3

2
3

1tan

    



 
1

3
1
2

3 2
3 2

1
3

5
n n

log log

Hence t
n

h w
n n

 1
3 3

1
3

51 2tan log

or 3 5
3

1 3n t h w
n

  log tan

or w n h nt2 3 3 5 tan logd i
       3n h utan , where  u n t 3 5log

which is required result.

Example 9 : An elliptical lamina acted on by no external forces is set rotating about a line through its
centre which makes equal angles with the major and minor axes and with the normal to its plane. Prove
that, if e be the acceutricity of the ellipse, and w w w1 2 3, ,  the angular velocities about the major and
minor axes and the normal to the plane. then

w F x1  cos , w F x2  sin

w x F e x e3
2 2 21 2    sin /c h c hn s ,

where F  is a constant, equal to  2  where   is the initial angular velocity along major, minor axis
and normal to its plane.

Solution : Here A M b
1
4

2, B M a
1
4

2 ,C A B M a b   
1 2 2


c h
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Euler’s equations of motion under no forces are

A w B C w w1 2 3 0  a f
B w C A w w 2 3 1 0  a f
C w A B w w 3 1 2 0  a f

Putting the values of A B C, , , we get

w w w1 2 3  ...(1)
w w w2 3 1 ...(2)

w b a
b a

w w3

2 2

2 2 1 2

 ...(3)

Dividing (1) by (2), we get




 

w
w

w
w

w w w w1

2

2

1
1 1 2 2 0    

On integration

w w F1
2

2
2 2  constantb g

Let w F x1  cos , w F x2  sin

Initially w1   , w2   , w3    F  2

Dividing (2) by (3) we have





w
w

b a
b a

w
w

2

3

2 2

2 2
3

2





or w w b a
b a

w w3 3

2 2

2 2 2 2 



On integration

w b a
b a

w C3
2

2 2

2 2 2
2






Initially w2   , w3  

  



F
HG

I
KJC b a

b a
2

2 2

2 21

   
F
HG

I
KJ2

2

2 2

2 a
b a

Putting the values of C and w2
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w b a
b a

F x F a
b a3

2
2 2

2 2
2 2

2

2 2






sina f  b a e2 2 21 c hn s

     






a e

a e
F x F a

a e

2 2

2 2
2 2 2

2

2 22 2c h c hsin

    



F e x

e
2

2 2

2

1
2

sin
c h

   w F e x e3
2 2 21 2sin /c h c hn s

5.5 Motion of Symmetrical Bodies under no forces

A solid of revolution whose principal moments at the centre of inertia are A A C C A, , a f is set
spinning with angular velocity w  about an axis passing through the centre of inertia and making an angle i
with the axis of figure. Prove that the instantaneous axis of rotation describes in the body a right cone of

semivertical angle i  in the period 
2  A i
C A w

sec
b g  and that the axis of figure discribes a right cone in space of

semi vertical angle   where tan tan 
A
C

i , in the period 
2


, where  sin sin  w i  or

  
w
A

A i C i2 2 2 2sin  cos  .

Here B A  and L M N   0

Initial conditions are w w i3  cos , w w i1  sin , w2 0  Euler’s equations under no forces are

A w B C w w1 2 3 0  a f or w C A
A

w w1 2 3 


...(1)

Bw C A w w 2 3 1 0  a f or w C A
A

w w2 3 1


...(2)

C w A B w w 3 1 2 0  a f or w3 0 ...(3)

From (3) w w i3  constant cos (Initially)

Dividing (1) by (2)





w
w

w
w

1

2

2

1

  or w w w w1 1 2 2 0  

Integrating  w w a1
2

2
2  constantb g

Initially w w i1  sin , w2 0 ,  a w i2 2sin

  w w w i1
2

2
2 2 2sin ...(4)

     w w w w i w i w1
2

2
2

3
2 2 2 2 2 2sin cos
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which shows that the angular velocity is w throughout the motion.

Now (1)   


 cos w C A
A

w i w1 2 as w w i3  cos

    
F

HG
I
KJ

C A
A

w i w
2

2 2
1cos using (2) ...(5)

The direction cosines of instantaneous axis are proportional to w w w1 2 3, , ; therefore the angle
with the instantaneous axis makes with the axis of solid is

cos cos cos cos cos  

 


F
HG

I
KJ  1 3

1
2

2
2

3
2

1
2

1w
w w w

w i
w

i ia f

which shows that instantaneous axis makes a constant angle i  with the axis of figure OC. Hence
we can say that it describes a right circular cone of semi vertical angle i , the period is seen from (5) as

2 2
2

 

C A
A

w i

A i
w C AF

H
I
K




cos

sec
a f

The direction cosines of invariable line (line fixed in space) are proportional to Aw Bw C w1 2 3, , .
Hence the angle   which the axis of figure makes with the invariable line is given by

cos  
 

C w
A w B w C w

3

1
2

2
2

3
2

            

C w
A w w C w

3

2
1
2

2
2

3
2c h as B A

           

C w i
A w i C w i

cos
sin cos2 2 2 2 2 2c h

           

C
A i C2 2 2tan

or  tan tan 
A
C

i , thus   is constant which shows that the axis of figure OC describes about

invariable lien (in space) a right circular cone of semivertical angle  , where tan tan 
A
C

i

Since OC describes a cone of semivertical angle  , about the invariable line with angular velocity
 , therefore
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Figure 3

velocity of C CK  .

where K  is the foot of perpendicular from C on invariable line.

Also, since throughout the motion angular velocity of the body is w  about the instantaneous axis,
therefore velocity of C w C I .

where I  is the foot of the perpendicular from C on the instantaneous axis.

Both these values of velocity of C must be identical, therefore

 . .CK w C I

  . sin . sinOC w OC i

  w isin
sin 

 
w
A

A i C i2 2 2 2sin cos as tan tan 
A
C

i

5.6 Illustrative Examples
Example 10 :  A uniform thin circular disc is set rotating with an angular velocity w about an axis through
the centre making an angle i  with the normal. Prove that the semi vertical angle   of the cone described
by  the axis of disc is given by

tan tan 
1
2

i

If w  be angular velocity, prove that above cone is discribed in the period 
2

1 3 2


w i cos .

Solution : Here normal to the disc is the axis of figure. Initial conditions are w w i3  cos , w w i1  sin ,
w2 0  since B A , C A B 

Euler’s equation of motion under no forces are
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A w B C w w1 2 3 0  a f   


w
C A

A
w w1 2 3

a f
...(1)

B w C A w w 2 3 1 0  a f  


w
C A

A
w w2 3 1

a f
...(2)

C w A B w w 3 1 2 0  a f  w3 0 ...(3)

Integrating (3), we get w w i3  constant cos ...(4)

Dividing (1) by (2), we have





w
w

w
w

1

2

2

1

  or w w w w1 1 2 2 0  

On integration w w a1
2

2
2  constantb g

Initially w w i1  sin , w2 0  a w i2 2sin

  w w w i1
2

2
2 2 2sin ...(5)

The direction cosines of invariable line are proportional to Aw Aw C w1 2 3, ,  and if   be the angle
between the axis of figure and the invariable line, then

cos 
 

C w
A w w C w

3

2
1
2

2
2 2

3
2c h

          

C
A i C2 2 2tan using (4) and (5)

or tan tan 
A
C

i

Here A M a
1
4

2 , C M a
1
2

2

 tan tan 1
2

i

This proves the required result.

If  be the angular velocity of the axis of disc about the invariable line, than we have from art 5.5

  
w
A

A i C i2 2 2 2sin cosc h

      
F
HG

I
KJw i C

A
isin cos2

2

2
2

       w i isin cos2 24

       w i1 3 2cos
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The period 
2


       

2
1 3 2


w icos

Example 11 : If the earth be regarded as a solid of revolution, whose principal moments of inertia at its
centre of gravity are A A C, , . Show that its axis of rotation describes a cone of very small angle about the

axis of the figure in period 
A

C A  siderial days.

Solution : Let the earth be set rotating with angular velocity w  about an axis, passing through the
centre of gravity and making an angle i  with the axis of figure. Thus initially w w i3  cos ,

w w i1  sin , w2 0

Euler’s equations under no forces are

A w B C w w w C A
A

w w 1 2 3 1 3 2    
F

H
I
Ka f ...(1)

Bw C A w w w C A
A

w w 2 3 1 2 3 1   
F

H
I
Ka f ...(2)

C w A B w w w 3 1 2 3 0   a f ...(3)

from (3) w w i3  constant cos ...(4)

Dividing (1) by (2) 




w
w

w
w

1

2

2

1

  or w w w w1 1 2 2 0  

on integration w w C1
2

2
2  constantb g

Initially w w i1  sin , w2 0  C w i2 2sin

  w w w i1
2

2
2 2 2sin ...(5)

Differentiating (1), we get

 cos w C A
A

w i w1 2 
F

H
I
K

      
F

H
I
K

C A
A

w i w2 2
1cos

The direction cosines of instantaneous axis are proportional to w w w1 2 3, ,

  Instantaneous axis makes with the axis of figure an angle


 

F
HG

I
KJ



   cos cos cos

cos sin
cos cos1 3

1
2

2
2

3
2

1

2 2 2

1w
w w w

w i
w i i

i i
c h

a f

Hence instantaneous axis describes about the axis of figure a right cone of semivertical angle i  in
the period
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
FH IK




2 2 

w C A
A

i

A i
w C Acos

sec
a f




2 A
w C Aa f (since i  is small so sec i  1)



A

C A siderial days.

as one siderial day  2
w

.

5.7 Motion under impulsive forces

Suppose a rigid body is moving about a fixed point O. At O let OA OB OC, ,  be the principal axes
which are fixed in the body but move along with the body.

Let the rigid body be given an impulse such that the moments of the impulsive force about
OA OB OC, ,  are respectively L M N, , . Suppose that w w w1 2 3, ,  and   w w w1 2 3, ,  are the components
of angular velocities just before and just after the application of impulsive force. Hence angular momentum
about OA just before and just after the impulse are Aw1 and A w1 .

Similarly angular momentum just before and just after the impulse are

Bw Bw2 2,  about OB

and C w C w3 3,  about OC

Since change in angular momentum about any line is equal to the moment of the impulse about the
same line, therefore taking moments about OA OB OC, , ,  we have respectively

A w w L  1 1b g
B w w M  2 2b g
C w w N  3 3b g

These are Euler’s equations of motion for impulsive forces.

5.8 Illustrative Examples
Example 12 : Show that for a body of revolution the maximum value of the angle between the axis of the
impulsive couple acting on it and the instantaneous axis of initial motion set up by the couple in the body is

sin 


F
HG

I
KJ

1 C A
C A .

Solution : Let L M N, ,  be the components of impulsive couple about the axes of moments of inertia
A A C, ,a f, equations of the motion are

A w L1 0 b g
B w M2 0 b g
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C w N3 0 b g
These equation show that the axis of couple is same as the invariable line, the angle between the

instantaneous axis and the invariable line is i  a f. For max i  a f
d
d t

i  a f 0  
d i
d t

d
d t


...(1)

Now tan tan 
A
C

i

 sec sec2 2
d

d t
A
C

i d i
d t

 sec sec2 2
A
C

i Using (1)

   1 12 2tan tan
A
C

ic h

   1 1
2

2
2 2A

C
i A

C
itan tanc h

 tan2 i C
A

 tan2  A
C

 tan i C
A

,  tan 
A
C

Hence sin sin cos cos sini i i C A
C A

   



  a f

  



F
HG

I
KJ

i C A
C A

a f sin 1

which is required angle.

Example 13 : A disc, in the form of a portion of parabola bounded by its latus rectum and its axis, has its
vertex A fixed, and is stuck by a blow through the end of its latus rectum perpendicular to its plane. Show

that the disc starts revolving about a line through A inclined at an angle tan F
H

I
K

1 14
25

 to the axis.

Solution : Taking parabolic portion in ZX  plane. equation of parabola is

z a x2 4
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Figure 5.4

Let M.I. of portion about AX AY AZ, ,  are A B C, ,  respectively, then

A z d x z a
a

 z  . 1
3

16
15

2

0

4

C z d x x a
a

 z  . 2

0

44
7

B A C a  
172
105

4

If D E F, ,  be products of inertia about these axes then D O F  ,

E z d x x z a
a

 z  . 1
2

2
30

4

Using Euler’s equations for impulsive forces

16
15

2
3

24 4 a w a w P ax z     . ...(1)

172
105

04 a wy  ...(2)

4
7

2
3

4 4 a w a w P az x    . ...(3)

Eliminating P  between (1) and (3)

25 14  w wz x

If axis of rotation make an angle   with the axis of parabola then

tan  




w
w

z

x

14
25

  F
H

I
K

 tan 1 14
25

Z

Y

A X

P
x o z, ,b g

S
a o,b g
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5.9 Self Evaluation Questions
1. Define invariable line.

2. What is the locus of Invariable line?

3. Write down the equations of motion for impulsive forces.

5.10 Summary
This unit is devoted to the study of motion of rigid body when there is no force acting on the body.

It has been shown that under no forces situation the Kinetic Energy and Angular Momentum remain
constant. In these conditions the body will rotate about an axis, which does not change its position in
space, this axis is known as invariable line. It has also been shown that the instantaneous axis describes a
cone about axis if figure V  (in the body) and the axis of figure describes a cone about invariable line in
space. So many examples are given on the conditions. In the last Euler’s equations for impulsive forces
have been derived and some solved examples are given on these.

5.11 Exercise
1. A solid cube is in motion about an angular point which is fixed. If there are no external forces and

w w w1 2 3, ,  are the angular velocities about the edges through the fixed point, prove that
w w w1 2 3   and w w w1

2
2
2

3
2   are each constant.

2. A uniform circular disc free to turn about its centre which is fixed, is set rotating with angular
velocity w  about an axis which makes an angle 45  with the axis of disc. Prove that in the
subsequent motion the axis of the disc describes a right cone about an axis making an angle

tan1 1
2   with the initial axis of rotation with constant angular velocity 

1
2

102w .

3. A right circular cone whose altitude h  is double of the radius of the base, can turn about its centre
of gravity as a fixed point and is set rotating about an axis inclined at an angle i  to the axis of

figure. Prove that the vertex of the cone will describe a circle of radius 
3
4
h isin .

4. A uniform right ciruclar cone of vertical angle 2  moves under no force except at its vertex which
is fixed. It is set rotating about a generater. Show that its axis describes in space a right cone of
angle 2  where

tan tan cot   
1
2

2

����
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UNIT - 6
Conservation of Momentum and Energy

Structure of the unit
6.0 Objective

6.1 Introduction

6.2 Conservation of Momentum under finite forces

6.2.1 Principle of Conservation of Linear Momentum

6.2.2 Principle of Conservation of Angular Momentum

6.2.3 Illustrative Examples

6.3 Conservation of Momentum under Impulsive Forces

6.3.1 Principle of Conservation of Linear Momentum

6.3.2 Principle of Conservation of Angular Momentum

6.3.3 Illustrative Exmaples

6.4 Conservation of Energy

6.4.1 Conservative Forces

6.4.2 Principle of Conservation of Energy

6.4.3 Theorem

6.4.4 Theorem

6.4.5 Illustrative Examples

6.5 Self Evaluation Exercise

6.6 Summary

6.7 Exercise

6.0 Objective
The linear momentum of a particle is defined as the product of its mass m  and velocity v i.e.mv .

The rigid body is considered as the collection of particles, so the linear momentum of rigid body is given by
the vector sum of the linear momentum of the particles of the body moving in parallel straight lines with
equal velocity v and therefore the linear momentum of body is equal to the total mass of body and its
velocity v.

Generally, the motion of body is not always translatory, there arise some situations in which motion
of body is rotational also. Thus, we use another term called Angular Momentum which relates to the
rotational motion. The energy of a body is defined as its capacity of doing work. In dynamics we consider
only mechanical energy. It is of two types, the kinetic and potential. The Kinetic Energy of a body is by
virtue of its motion and measured by the amount of work which it does in coming to rest. The potential
energy of a body is the work it can do in moving from its actual position to some standard position.

Our objective in this unit is to study the principales of conservation of momentum and energy.
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6.1 Introduction
In mechanics the mass and energy are considered as two distinct physical quantities and there are

separate conservation laws. In this unit we are interested in the formulation of laws in which linear as well
as angular momentum of a body is considered in cases when the forces are finite as well as impulsive. The
law of conservation of energy has also been studied in this unit.

6.2 Conservation of Momentum under finite forces
In this section we study the principles of conservation of linear momentum and angular momentum

of rigid body under the action of finite forces.

6.2.1 Principle of Conservation of Linear Momentum :

“If a rigid body is moving under the action of some external forces whose sum of re-
solved parts parallel to a line is zero, throughout the motion, the momentum of the body parallel
to that line remains constant throughout the motion.”

Suppose a rigid body is moving under the action of some external forces and x y z, ,a f  be
coordinates of its any particle, of mass m , at any time t  refered to fixed axes. Let X Y Z, ,  be the resolved
parts, parallel to the axes, of external forces acting on the particle. By D’Alembert Principle, the general
equations of motion of rigid body are

m x X  ...(1)

m y Y  ...(2)

m z Z  ...(3)

Let X -axis be the fixed striaght line, and it is so choosen that sum of resolved parts of the external
forces parallel to it is zero throughout the motion, i.e. X  0.

Hence from (1) m x  0 ...(4)

We know that

x
m x
m

 
 , m M  , x  is the x   coordinates of centre of gravity of body..

Then from (4)

M x  0  M x constant ...(5)

Eqn (5) states that total linear momentum of the rigid body parallel to x -axis remains constant
throughout the motion.

Hence it is shown that if a line is such that sum of resolved parts of the forces parallel to it is zero
throughout the motion, the total linear momentum parallel to it remains unchanged during the motion.

6.2.2 Principle of Conservation of Angular Momentum :

“If a rigid body is moving under the action of external forces the sum of whose moments
about a given line is zero throughout the motion, the moment of momentum (or angular
momentum) of the body about that line remains unchanged during the motion.”

181



Let X Y Z, ,  be resolved parts of the external forces parallel to the axes acting on the particle of
mass m , whose coordinates are x y z, ,a f at time t .

Taking the given line as x -axis, then sum of the moments of external forces about the given line
x axisa f  is y Z z Y a f

By D’Alembert principle, we have

m y z z y y Z z Y    b g b g ...(6)

If m y Z z Y  a f 0, then (6) gives

d
d t

m y z z y   a f 0

   m y z z y a f constant ...(7)

Now m y z z y  a f is the angular momentum of the rigid body. Hence eqn (7) shows that the
total moment of momentum of the body about x-axis is constant throughout the motion.

Hence it is shown that if a line is such that moment of external forces about it is zero throughout the
motion, the angular momentum (or moment of momentum) about it remains unchanged during the motion.

6.2.3 Illustrative Examples :

Example 1 : A small insect moves along a uniform bar, of mass equal to itself and of length 2a , the ends

of which are constrained to remain on the circumference of a fixed circle whose radius is 
2

3
a

, If the insect

starts from the middle point of the bar and move along the bar with relative velocity V , show that the bar
in time t  will turn through angular

1
3

1tan V t
a .

Solution : Let   be the angle through which the bar AB turns in time t  Let P  be the position of the
insect after time t  after starting from C.

Figure 6.1

B

C

P
V

A




O

OP 
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 CP V t

and OC OA AC a a a
   F

HG
I
KJ 

L
NM

O
QP
2 2

2
22

3 3

  OP OC CP2 2c h

      F
H

I
K

1
3

2 2 2a V t

Since the moment of external forces about vertical axis through O vanishes throughout the motion,
therefore the moment of momentum about this line remains unchanged

 F
H

I
K   m OC OC a m V OC OP OP .  .  .  

1
3

02 d i

   F
H

I
K 

2
3 3

1
3

02 2 2 2a V a a V t .  

   



d

d t
V a

a V t3 2 2 2c h
Hence the angle turned by the bar in time t  is given by

  


 z 1
3

1
32 2 20

1V a
a V t

V t
a

t
tan

negative sign signifies that the rod turns in a dirrection opposite to the motion of insect.

Example 2 : A uniform straight rod, of length 2a , has two small rings at its ends which can
respectively slide on thin smooth horizontal and vertical wires OX  and OY . The rod starts at an angle 

to the horizon with angular velocity 3 1 2g a sin /a fm r  and moves down wards. Show that it will

strike the horizontal wire at the end of time 2 3 8 4 8
a

ge j log cot tan  
F

H
I
K

RST
UVW.

Solution : Suppose G  be the centre of gravity of rod AB a 2a f and   the angle made by it with
the horizontal at any time t . The coordinates of C G G. .  of the rod are a acos , sin a f  as shown.

Therefore the velocity of the C G a a a. . sin  cos         d i d i{ }2 2
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Figure 6.2

Hence the Kinetic Energy of rod at any time t

 RST
UVW

1
2

1
3

2 2 2 2m a a  


2
3

2 2m a  ...(1)

Initial K E m a g
a

m g a. . . sin sin   
2
3

3
2

1 12  a f a f ...(2)

and Initial angular velocity

 sin  
RST

UVW
3
2

1g
a
a f (given)

Now the work energy equation gives

2
3

12 2m a m g a m g a m g a sin sin sin      a f a f

or  sin 2 3
2

1 
g
a
a f

or
d
d t

g
a


  

3
2

1 sina f ( i v e  sign shows that   decreases with time t ) ...(3)

Therefore, the required time from    to   0  is

t a
g

d
 

F
HG

I
KJ z2

3 1
0




sin

   


F
HG

I
KJ


z2

3
2 2

0

a
g

d 
 cos sin

A

Y

X

B

G

O

m g
a cos



a sin


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   
F
HG

I
KJ F

H
I
Kza

g
d

3 4 20

  
cosec

    
F
HG

I
KJ F

H
I
K

RST
UVW2

3 8 4 0

a
g

log tan   

  
F
HG

I
KJ F

HG
I
KJ

R
S
||

T
||

U
V
||

W
||

2
3

8

8 4 0

a
g

log
tan

tan



 



 
F
HG

I
KJ F

H
I
K

RST
UVWt a

g
2

3 8 4 8
log cot tan  

.

Example 3 : A uniform circular board, of mass M  and radius a , is placed on a perfectly smooth
horizontal plane and free to rotate about a vertical axis through its centre; a man of mass M , w a l k s
round the edge of the board whose upper surface is rough enough to privent his slipping : when he has
walked completely round the board to his starting point, show that board has turned through an angle


 
M

M M2
4 .

Solution : Let  the board has turned through an angle   at time t  and radius to the man makes an
angle   with the fixed line OA0 .

Figure 6.3

The forces acting on the system are all vertical; therefore there moments about the vertical through
O are zero throughout the motion; hence moment of momentum about this axis through O remains unal-
tered throughout the motion.

i.e. M a M a
2

2

2
0    

integrating 
1
2

0M M    ...(1)

A

A0




M

O
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[The constnt of integration vanishes becuase intially   and   are zero]

When the man returnes to his starting point A,

    2 ...(2)

Eliminating   between (1) and (2), we have

1
2

2 0M M     a f

or   


 
M

M M2
4a f

The negative sign shows that the board turns in a direction opposite to that of the man.

Example 4 : A particle of mass m  within a rough circular tube, of mass M  lying on a horizontal plane
and initially the tube is at rest while particle has an angular vleocity round the tube. Show that by the time

relative motion ceases the fraction 
M

M m 2  of the initial kinetic energy has been dissipated by friction.

Solution : Let G  be the common C G. . of M  and m , then

x
m

a x
M

a
M m





 ...(1)

Figure 6.4

Let u  be the velocity of the particle P  when motion started, the tube being at rest.

Since there is no force on the system in the horizontal plane throughout the motion, therefore
horizontal momentum remains unaltered throughout the motion.

i.e. M m v m u a f or v mu
M m


 ...(2)

This determines the motion of common centre of gravity G .

When the system begins to move, let w  and w  be the angular velocities of the tube and the
particle about G .

The forces acting on the system are all vertical; therefore their moments vanish about the vertical

M G
C x
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axis through G  throughout the motion, hence moment of momentum about G  remains unaltered through-
out the motion

i.e. M a w x w m a x w m u a x2 2 2     c h a f a f
The relative motion ceases when  w w  and then

w
mu a x

M a x m a x
mu a x

M a x a x m a x




  




   

b g
c h b g

b g
b g{ } b g2 2 2 2 22

    


 


RST
UVW  

mu

M a x a x
a x

m a xa f a f2

    


  


m u

M m a x a M x
a x

a f a f 2

From (1) we have

w m u
a M a M

m u
a M m





2 2a f ...(3)

At this time kinetic energy of the system

     
1
2

1
2

1
2

2 2 2 2 2 2M m v M a x w m a x wa f c h a f

now putting the values of v2  and w from (2) and (3)

K E m u
M m

M
M m

m u
M m

. . 





L
NM

O
QP  

1
2

1 1
2

2
2

2 2
2 2

          


L
NM

O
QP  


1
2

1
2

1
2

1
2 2

2 2 2mu M
M m

mu mu M
M m

 loss of K E. . 
1
2 2

2mu M
M m

            
M

M m2 of intial kinetic energy.

Example 5 : A uniform square plate ABCD  of mass M  and side 2 a , lies on a smooth horizontal plane;
it is struck at A by a particle of mass m  moving with velocity V  in the direction of AB, the particle
remaining attached to the plate. Determine the subsiquent motion of the system and show that its angular
velocity is

m
M m

V
a 4

3
2

.
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Solution : Let O be the centre of square and G  the centre of gravity of the system (particle and the
square), then

OG
m

AG
M

AO
M m

a
M m

 





2
...(1)

Figure 6.5

Let V1 be the velocity of the system after impact, then by principle of linear momentum we have

M m V mV a f 1 or V mV
M m

1 


This gives velocity of G  after impact.

After impact let w  be the angular velocity about G . Since moments of foces (weights and
reaction) about vertical through G  is zero, therefore angular momentum about it remains unchanged,
hence

M a OG w M AG w AG m V AG2
3

45
2

2
F
HG

I
KJ  . sin .c h

or M a w M OG w m AG w m V AG2
3 2

2
2 2  a f c h

or M a w M a m
M m

w m a m
M m

m V a M
M m

. 2
3

2 2
2

22 2 2

2

2 2

2






a f a f from (1)

or M a w a M m
m M
m M

w m MV a
m M

. 2
3

2
2

2
2







b g
b g b g

or M a w a M m w
M m

m M V a
M m

. 2
3

22 2







or 2 1
3

2a m
M m

w m V a
M m




F
HG

I
KJ 



or
2
3

4a M m w mV a f

C

BA

D

V

G

OM 2 a

m
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or w m
M m

V
a


 4

3
2

.

this gives angular velocity after impact.

6.3 Conservation of Momentum Under Impulsive Forces
This section is denoted to the study of motion of rigid bodies under the action of impulsive forces.

Here principles of conservation of linear momentum and angular momentum have been discussed.

6.3.1 Principle of Conservation of Linear Momentum :

“If the sum of impulses of the forces parallel to a certain fixed line vanishes, the mo-
mentum in that directions remains the same just before and after the applications of impulses.”

Let the fixed line be taken as x -axis then by D’Alembert’s principle, the equation of motion is

m d x
d t

X
2

2 

or
d
d t

m d x
d t

X F
HG

I
KJ 

Now when the forces are impulsive and duration of the impluse be a small time  , then integrating
the last equation, we have

m d x
d t

X d t X  zL
NM

O
QP   

0
0




where X  be the impulse of the forces parallel to the x -axis. If u v,  are the velocities of the particle
before and after the impulse, then the equation reduces to

m u v X   a f
The equation shows, that the change in total momentum parallel to the x -axis is equal to the sum

of the impulses in that directions. If   X 0 then m u v  b g 0  mu m v.

i.e. total momentum after impulse =  total momentum before impulse.

Hence it is shown that if the sum of impulses parallel to a line is zero, the total momentum in that
direction remains unchanged.

6.3.2 Principle of Conservation of Angular Momentum :

“If the sum of the moments of the impulses about a certain line vanishes, the angular
momentum about that line remains the same before and after the application of the impulses.”

Let the fixed line be supposed as x -axis. The moment equation of motion using D’Alembert’ss
principle

is m y d z
d t

z d y
d t

y Z zY
2

2

2

2
F
HG

I
KJ    b g

or m d
d t

y d z
d t

z d y
d t

y Z zY
F
HG

I
KJ    b g
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Now, when the forces are impulses and duration of impulse be a small time  , then integrating the
last equation, we have

m y d z
d t

z d y
d t

y Z zY d t
F
HG

I
KJ

L
NM

O
QP

  z
0

0


 b g

           y Z z Ya f
i.e. the angular momentum after impulse - angular momentum before impulse = sum of the

moments of the impulses.

If the sum of the moments of impulses about x-axis is zero, then

angular momentum after impulse = angular momentum before impulse.

Hence, it has been shown that if the sum of moments of impulses about a line is zero, the angular
momentum or moment of momentum about it remains unchanged.

6.2.3 Illustrative Examples :

Example 6 : A uniform square lamina, of mass M  and side 2a , is moving freely about a diagonal with
uniform angular velocity w  when one of the corners not in the diagonal becomes fixed, show that the new

angular velocity is 
1
7

w  and that the impulse of the force on the fixed point is 
2

7
M a w .

Solution : It is given that the square lamina ABCD  of mass M  is rotating about a diagonal BD with
angular velocity w. Let initial direction of rotation be such that C  was moving upward from the paper..
Since the diagonal BD  is set free and a corner A  is suddenly fixed, then the square begins to turn about
a line AL  parallel to BD , through A. Let w1 be the angular velocity of the square about AL .

Figure 6.6

Since the impulse is at A, therefore moment of the impulse about AL  is zero. Hence the moment
of momentum about AL  remains same before and after the fixing, therefore,

M k AG w M k w2 2 1 2 a fn s

Here about k BD a a a2 2 2 2 2 21
3 4

1
3 4

1
3

  RST
UVWcos sin 

C

B
A

D

G

L
2 a

a 2
2a
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or M a a w M a w
2

2 1
2

3
2

3


RST
UVW  .

 w w1

7

After fixing the velocity of centre of gravity of the square right angle to AG  is a w2 1. Hence, the
impulse in given by

Impulse = change of momentum

 = M a w2 01 

 = 
2

7
M a w .

Example 7 : A rod of length 2a , is moving about one end with uniform angular velocity upon a smooth
horizontal plane. Suddenly this end is set free and a point, distant b  from this end, is fixed; find the motion,

considering the cases when b
a

  , , 4
3 .

Solution : Let AB be the rod of length 2a  and mass m  and G  be its centre of gravity. Suppose the
rod is moving with uniform angular velocity w  about the end A. Let w1 be angular velocity of rod when the
end A is set free and a point O of rod is suddenly fixed, when AO b . As the impulses is at O, then the
moment of  impulse about O will be zero, therefore the moment of momentum about the axis through O
before and after the fixing i.e. impulse remains unchanged. Hence

Figure 6.7

m a a b w m a a a b w1
3

1
3

2 2 1 2 RST
UVW   RST

UVWb g b g

or w
a a b

a a b
w1

2 2

3 4
3
3


F

H
I
K

 a f .

If (i) b
a


4
3 , then w1 is positive, which shows that the rod will rotate in the same direction after

the impulse as before.

(ii) b a


4
3 , w1 0 , which shows that the rod will reduce to rest after the impulse and

(iii) b a


4
3 , then w1 is negative, which depicts that the rod will rotate in opposite such after

the impulse.

A b O

w

G

w
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Example 8 : A circular plate is turning in its own plane about a point A on its circumference. Suddenly
A is freed and point B , also on the circumference, fixed show that the plate will be reduced to rest if the
arc AB is one third of the cirumference.

Solution : A is set free and B  is suddenly fixed. Let w1 be the angular velocity just after fixture.

Figure 6.8

Let C  be the centre and ACB   . On account of sudden fixture at B  the impulse is at B ,
therfore moment of impulse about B  is zero; hence moment of momentum about B  remains the same
before and after fixture.

i.e. m a w a w m a w a w a
2

1 2 1
2

2 2


L
NM

O
QP  

L
NM

O
QP. cos

i.e. w w1 1
3

1 2  cosb g

The plate will be reduced to rest of w1 0

i.e. if 1 2 0 cos or cos  
1
2

i.e.  


2
3  a a 


2

3

 Arc AB is one-third of the circumference.

Example 9 : A uniform cube is spinning freely with angular velocity w  about a diagonal through a
corner O, when suddenly the diagonal through O of one of the faces through O becomes fixed. Show that

the new angular velocity is 
2 2
5 3

w .

Solution : Let 2a  be the side of cube; therefore length of its diagonal

   2 2 2 2 32 2 2a a a ab g b g b g

and length of a diagonal of a face    4 4 2 22 2a a a

A

B
C



a w

a w

w

w
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So inclination of the diagonal of the cube to the diagonal of the face

 
F
HG

I
KJ

 cos cos1 12 2
2 3

2
3

a
a

Before sudden fixture cube was revolving about its diagonal with angular velocity w1, resolved

parts of this angular velocity about the diagonal of the face  w 2
3

The distance of the centre of gravity of the cube from the diagonal of the face is equal to a . For the
cube about any axis through its centre,

k a2
22

3


Due to the radius fixing of the diagonal of the face, the impulse is at this diagonal, so moment of the
impulse about this diagonal is zero; hence moment of momentum about this diagonal of the face must
remain the same before and after the fixture.

i.e. m a w a w m a w2
3

2
3

2
3

2
1 2 1

2


F
HG

I
KJ 

F
HG

I
KJ

i.e. 5 2 2
3

1w w or w w1 2
5

2
3



Example 10 : Three equal uniform rods placed in a straight line are freely joined and move with velocity
v perpendicular their lengths. If the middle point of the middle rod be suddenly fixed, show that the ends of

the two rods will meet in time 
4
9
 a
v , where a is the length of each rod.

Solution : Let AB BC CD, ,  be three rods each of length a  and mass m . Consider the motion of
AB impulsive force acts at B ; therefore moments of impulsive force about B  vanishes. Hence the moment
of momentum of AB about B  before and after fixture remains unaltered.

Figure 6.9

If w be angular velocity of AB just after the fixture we have m v a m a w. . 1
2

1
3

2

This gives w v
a


3
2

A D
C

w wv vv

G1 G2 G3
B

A D

2
3

2
3


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Similarly for the motion of CD, we get its angular velocity also equal to 
3
2

v
a .

Now when the ends of rods will meet, that is when A and D  will meet, then ABC and DBC will

be equilateral triangle, that is when AB and DC each has turned through an angle 
2
3


 as shown in figure.

 Required time   
2

3
3

2

4
9




v
a

a
v .

6.4 Conservation of Energy
6.4.1 Conservative Forces :

The forces acting in a system are called conservative when work done by the forces

viz X d x Y d y Z d z z a f is independent of the path followed from initial to the final position of the

body and depends only on the cofiguration, of the body at times t1  and t2 .

If the forces acting on the system are conservatives, then X d x Yd y Z d z z a f is complete
differential of some quantity V , then forces are said to be conservative

X d x Yd y Z d z dV  z b g

   z zX d x Yd y Z d z dVb g
or in other words the forces have the potential V . If A and B  are configurations of the system at

times t1 and t2 , then we have

d V V VBA

B

A z
6.4.2 Principle of Conservation of Energy :

“If a system moves under the action of finite forces and if the geometric relations of the system do
not contain time explicitly, the change in the Kinetic Energy of the system in passing from one configuration
to another is equal to the corresponding work done by the forces.”

Let X Y Z, ,  be the components of external forces parallel to the axes acting on the particle of
mass m  whose coordinates are x y z, ,a f at time t .

We have by D’Alembert’s principle, the forces X m d x
d t


2

2 , Y m d y
d t


2

2 , Z m d z
d t


2

2  acting on

the particle and similar force acting on the other particles of the system, form a system of forces in equilibrium.

Therefore by principle of virtual work.

X m d x
d t

x Y m d y
d t

y Z m d z
d t

z
F
HG

I
KJ  

F
HG

I
KJ  

F
HG

I
KJ

L
NM

O
QP


2

2

2

2

2

2 0  
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where   x y z, ,  are very small arbitrary displacements of the particlem consistent with the
geometrical conditions at time t .

If the geometrical relations do not contain time explicitly, then the geometrical relations which hold

at time t  will hold throughout the time  t , therefore we can take the arbitrary displacements 
d x
d t

t ,

d y
d t

t , 
d z
d t

t  of the particle in time  t ,

Sustituting these in the last equations, we have

m d x
d t

d x
d t

d y
d t

d y
d t

d z
d t

d z
d t

X d x
d t

Y d y
d t

Z d z
d t

2

2

2

2

2

2 
L
NM

O
QP   

F
HG

I
KJ 

Integrating with respect to t

1
2

2 2 2

1

2

m d x
d t

d y
d t

d z
d t

X d x Y d y Z d z
t

tF
HG

I
KJ 

F
HG

I
KJ 

F
HG

I
KJ

L
N
MM

O
Q
PP    z a f

i.e. the changes in the kinetic energy of the system from time t1  to t2  is equal to the work done by
the external forces on the body from one configuration of the body at time t1 to the configuration at time t2 .

6.4.3 Theorem : When a body moves under the action of a system of conservative forces, the sum of
its Kinetic and Potential energies is constant throughout the motion.

Proof : We know that if A and B  are configurations of the body at times t1  and t2 , then

K.E. at time t K E2  . . at time t dV V VB AA

B

1   z ...(1)

The potential energy of the body in any position A is the work, which the forces do in moving the
body from this position A to a standard position, say C.

 P.E. at time  t X d x Y d y Z d z dV V V
A

C

C AA

C

1      z za f ...(2)

P.E. at time t X d x Y d y Z d z dV V V
B

C

C BB

C

2      z za f ...(3)

subtracting (3) from (2), we have

P.E. at time t1  - P.E. at time t V V V V V VC A C B B A2      b g b g ...(4)

comparing (1) and (4), we get

K.E. at time t2  - K.E. at time t1   P.E. at time t1 - P.E. at time t2  K.E. at time t2  + P.E..E.
at time t2   K.E. at time t1   P.E. at time t1

 sum of K.E & P.E time t2  sum of K.E. & P.E at time t1

Hence sum of K.E. & P.E. of a body is same at all times.

6.4.4 Theorem : The K.E. of rigid body, moving in any manner is at any instant equal to the Kinetic
Energy of the whole mass, supposed to be collected at its centere of inertia and moving with it
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together with the kinetic energy of the whole mass relative to its centre of inertia.

Proof : Let x y z, ,a f be the coordinates of any elementary particle of mass m  in the body at time t .
x y z, ,a f be the coordinate of centre of gravity G  of the body. Let x y z1 1 1, ,c h  be coordinates of the

particle referred to C G. . as origin, therefore we have

x x x  1 , y y y  1 , z z z  1

Since m x   0 , m y  0, m z  0

 m x   0 , m y  0, m z  0 ...(1)

Now, total K.E. of the body

  1
2

2 2 2m x y z  c h

        1
2

2 2 2
m x x y y z z     c h c h c h

        L
NM 1

2
1
2

2 2 2 2 2 2m x y z m x y z     c h c h

             x m x y m y z m z

         1
2

1
2

2 2 2 2 2 2m x y z m x y z     c h c h from (1)


1
2  (square of velocity C G. .) m   1

2
m  (square of velocity of mw r.  to G )

 
1
2

2M v  K.E. of body relative to G

        where v is velocity of C G. .
Hence

The total K.E. of the body

= K.E. of mass M  supposed to be collected at C G. . of body

+ K.E. of body relative to G .

6.4.5 Illustrative Exmaples :

Example 11 : A uniform rod, of length 2 a , is placed with one end in contact with a smooth horizontal
table and is then allowed to fall, if   be the initial inclination to the vertical, show that its angular velocity

when it is inclined at angle   is 
6

1 3 2

1
2g

a
cos cos

sin
 





RST

UVW . Find also the reaction of the table.

Solution :Let AB be the rod of length 2a  and mass m . The end A is in contact with the table. Since there
is no horizontal force on the rod, therefore its C G. . moves downword in a vertical line, through G , let this
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vertical through G  cut horizontal plane at D , then D  is a fixed point.

Figure 6.10

Let the horizontal and the vertical lines through D  are coordinate axes, then coordinates of G  are
0, cosa a f

We have from energy equation

1
2 3

2
2 2 2m a a m g a a

RST
UVW  sin  cos cos   b g

 



 . cos cos

sin


 


2
2

6
1 3

g
a (1)

 



L
NM

O
QP

 . cos cos
sin


 


6

1 3 2

1
2g

a

it proves first result.

Differenting (1) and dividing by 2  , we get

 sin sin sin cos cos cos

sin


     




  



3 1 3 6

1 3

2

2 2
g

a
c h a f

c h

    
 



3 4 3 2

1 3

2

2 2

g

a

sin cos cos cos

sin

   



c h
c h

    
  



3 1 3 3

1 3

2 2

2 2

g

a

sin sin cos cos

sin

   



a f
c h ..(2)

Taking moments of all forces about G , we have

m a Ra
2

3
 sin  ...(3)

Using (2) and (3) we get

B

R

A D

G



mg
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R m g
  


1 3 3

1 3

2 2

2

sin cos cos
sin

  


a f
c h

This gives reaction of the table.

Example 12 : Two link rods AB and BC , each of length 2a  are freely joined at B , AB can turn round
the rod A and C  can move freely on a vertical straight line through A. Initially the rods are held in a
horizontal line, C  being in coincidence with A and they are then released. Show that when the rods are
inclined at an angle   to the horizontal, the angular velocity of either is

3
1 3 2

g
a

sin
cos



F
HG

I
KJ .

Solution : It is given that 2a  be the length and m  be the mass of each rod AB and BC , which are freely
joined at B . Taking fixed point A as origin and horizontal and vertical through A as axes shown in the
figure. The coordinates of the centre of gravity of the rod AB are a acos , sin a f  and the rod BC  are
a acos , sin 3a f

Figue 6.11

Hence the work energy equation gives

1
2 3

1
2 3

3
2

2 2 2
2

2 2 2
m a a m a a   sin  cos     

F
HG

I
KJ    

RST
UVWd i d i

 m ga m g asin . sin 3

or a g cos sin  2 21 3 3 c h

or  sin
cos








F
HG

I
KJ

3
1 3 2

g
a

It is the required angular velocity.
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Example 13 : A straight uniform rod of mass m , is placed at right angles to a smooth plane of
inclination  with one end in contact with it, the rod is then released. Show that when its inclination to the
plane is  , the reaction of the plane will be

m g
3 1 1

3 1

2

2 2
 



sin
cos

cos





a f
c h

Solution : We have equation of motion of rod

R m g m d
d t

a m a   cos sin cos  sin      
2

2
2a f d i ...(1)

and m a R a
2

3
 cos   ...(2)

Figue 6.12

Eliminating R  between (1) & (2), we get

m a a m g ma ma
2

2

3
 cos cos cos  sin        

i.e. a a g1
3

2 2F
H

I
K   cos  sin cos  cos cos      ...(3)

Integrating  a g C1
3

22 2F
HG

I
KJ   cos  cos sin   

when 



2 ,   0  C g2 cos

Hence a g1
3

2 12 2F
H

I
K  cos  cos sin   a f

or a
g cos sin

cos


 


2
2

6 1
1 3





b g

...(4)

R

G
B A

mg

X



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Now from (2), (3) and (4), we have

R m g
 


cos

sin

cos






3 1 1

1 3

2

2 2
b g
c h , which is positive.

Hence lower end of the rod will never leave the plane.

Example 14 : A sphere of radius b , rolls without slipping down the cycloid. x a  sina f ,
y a 1 cosa f . It starts from rest with its centre on the horizontal line y a 2 . Show that the velocity
V  of its centre, when at its lowest point is given by

V g a b2 10
7

2 a f.
Solution : Let C be the centre of the sphere of radius b  and the radius CB  is fixed. Initially, the point B
was in contact with A and let at time t  the radius CB makes angle   with the vertical. The point of contact
is P  at which the tangent makes an angle   with the horizontal and length OP c s   length AP c

Figure 6.13

Since there is no sliding between the cycloid and the sphere, therefore

length AP   arc BP

i.e. c s b   b g ...(1)

Let V  be the velocity of centre C

 V   velocity of point P  velocity of C relative to P

      s b 

       b b    d i [from (1)]

      b 

i.e. V b   ...(2)

C





A

 900

P

O
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Now energy equation gives

1
2

2
5

2
2 2

2m b V m g a b



L
NM

O
QP  

i.e.
1
2

2
5

22 2m V V m g a bL
NM

O
QP   [from (2)]

i.e.
7

5
2 2

2V g a b a f

or V g a b2 10
7

2 b g .

6.5 Self Evaluation Questions
1. Write Principle of Consevation of linear momentum under finite forces.

2. State the Principle of Conservation of angular momentum under finite force.

3. What is the Principle of work and energy?

4. What do you mean by Conservation forces?

6.6 Summary

The unit is devoted to the study of Conservation of momentum and energy in case of finite forces
and also for impulsive forces. Principle of Conservation of linear and angular momentum for finite forces
resepectively have been discussed. Also the cases of impulsive forces are considered. At the end principle
of conservation of energy in described.

6.7 Exercise
1. A circular disc of radius a lies on a smooth horizontal table when a point A on the cirucmference

is compelled to move in the direction of the tengent at the point with velocity u . Show that the disc

begins to the turn with angular velocity 
2
3

u
a

F
HG

I
KJ .

2. A circular plate rotates about an axis through its centre perpendicular to its plane with angular
velocity w . This axis set free and a point on the cirucmference of the plate fixed. Show that the

resulting angular velocity is 
1
3

w.

3. An equilateral triangle, formed of uniform rods freely hinged at their ends is falling freely with one
side horizontal and uppermost. If the middle of this side be suddenly stopped, Show that the
impulsive actions of the upper and lower hinges are in the ratio 13 1: .

4. A rectangular lamina, whose sides are of length 2a  and 2b is at rest when one corner is caught
and suddenly made to move with prescribed speed V  in the plane of the lamina. Show that the

greatest angular velocity which can be imparted to the lamina is 
3

4 2 2

V
a b .
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5. A circular disc is moving with angular velocity  about an axis through its centre perpendicular to
its plane. An insect alights on its edge and crawls along a curve drawn on the disc in the form of the

laminscate with uniform relative angular velocity 
1
4
 , the curve touching the edge of the disc.The

mass of the insect being 
1

16 th of that of the disc, Show that the angle turned through by the disc

when the insects gets to the centre is 
24

7
7

3 4
1F

HG
I
KJ

F
HG

I
KJ tan 

.

6. If the earth, supposed to be uniform sphere, had in a certain period contracted slightly, so that its

radius was less 
1
n

F
H

I
K th then before, show that the length of the day would have shortened by 

48
n

hours.

7. An  elleptic lamina is rotating about its centre on a smooth horizontal table. If w w w1 2 3, ,  be its
angular velocities when the extremity of major axis, its focus and the extremity of minor axis,

respectively becomes fixed, prove that 
7 6 5

1 2 3w w w
  .

8. An elliptic area, of eccentricity e , is rotating with angular velocity w  about one latus rectum:
suddenly this latus rectum is loosed and the other fixed. Show that the new angular velocity is
1 4
1 4

2

2




e
e

w .

9. A cube is rotating with angular velocity w  about a diagonal when suddenly the diagonal is let go
and one of the edges which does not meet the diagonal is fixed, show that the resulting angular

velocity about this edges is 
1

12
3 w .

10. A uniform cricular disc of radius a is rolling without slipping along a smooth horizontal plane with
velocity V  when the highest point becomes suddenly fixed. Prove that the disc will make a com
plete revolution round the point if V a g2 2 4 .

����
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UNIT - 7
Generalised Co-ordinates

Structure of the unit
7.0 Objective

7.1 Introduction

7.2 Generalised Co-ordinates

7.2.1 Degree of Freedom

7.2.2 Holonomous System

7.2.3 Conservative System

7.2.4 Self learning exercises

7.3 Lagrange’s Equations

7.3.1 Lagrange’s function

7.4 Principle of Energy

7.5 Small Oscillations

7.6 Lagrange’s Equations for Impulsive Forces

7.7 Summary

7.8 Answers to self learning exercise

7.9 Exercise

7.0 Objective

In this unit we will learn about the generalised coordintes degrees of freedom. Also we will
understand about solving of dynamical problems (i) with the help of generalised coordinates components
of a given dynamical system and (ii) Kinetic Energy. We will also learn about Lagrange equations of
Holonomic and non - Holonomic systems. Also we will learn about Lagrange’s equation for motion due to
impulsive forces.

7.1 Introduction

In order to attack a class of dynamical problems for conservative system there were generally two
approaches which were considered viz (i) D’Alemberts equations of motion, and (ii) principle of
conservation of energy However, since impulsive forces are non-conservative, these methods present a
good amount of difficulty to the extent that the second approach is not applicable.

For such problems, Lagrange’s equations are found to be useful for solving all dynamical problems
of conservative or non-conservative system. This unit deals with these equation in solving certain such
problems through examples.

7.2 Generalised Co-ordinates

All those independent variables which determine the position of dynamical system or a material
system on a body at any given instant are called its generalised coordinates. These generalised
coordinates may be distances, angles or other quantities relating to them.
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7.2.1 Degrees of Freedom

The number of independent motions which a dynamical system can have (admits) are called its
degrees of freedom. Also, the number of independent motion is the same as the number of generalised
coordinates. Hence the number of degrees of freedom of the system is equal to the number of generalised
coordinates.

The degree of freedom of a particle moving in space is three, because three co-ordinates, say
x y and z,  are required to specify its position in space. A free rigid body possesses six degrees of
freedom, because its position is determined by the three coordiantes x y z, ,  of an assigned point of the
body together with three angle i e. .  the Eulerian angles   , , , which determine its orientation. The
degrees of freedom of a system containing n  particles moving in space is 3n  as it requires 3n  coordinates
to specify its position.

7.2.2 Holonomous System

Let   , , ,.... be the generalised coordinates of a system, then the cartesian coordinates x y z, ,b g
of any point of it at any time t  can be expressed as functions of generalised coordinates and time t  as

x x t , , , ,....  b g ,

y y t , , , ,....  b g

z z t , , , ,....  b g
If these functions do not contain derivatives of generalised coordinates with respect to time i e. .

they do not involve quantities like  ,  ,    ,... or higher derivatives with respect to t  then such a system is
called a holonomous or holonomic system. Alternatively the independent variables in terms of which the
motion is to be found may be any we please, with the restriction, that the coordinates of every particle of
the body can, if required, be expressed in terms of them by means of equations which do not contain any
differential coefficients with regard to the time. When the systems admits of  such a choice of indepen-
dent coordinates, it is said to be holonomous.

Note : In holonomous system all generalised coordinates are independent to each other.

7.2.3 Conservative system

If all the forces acting on a system and doing work ar derivable from a potential function (or
potential enegy) V  (say), then the system is called conservative, otherwise it is non-conservative and the
forces are known as conservative forces.

7.2.4 Self learning Exercise

1. The degree of freedom for a single particle moving in space at any time t  is

(a) 2 (b) 3 (c) 4 (d) 6

2. A system in which functions which do not contain derivatives of generalised coordinates
with respect to time are called .......................

3. Conservative forces are derivable form ...................
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7.3 Lagrange’s Equations
To derive Lagrange’s equations of motion in generalised coordinates for a holonomic dynamical

system under finite forces.

Let P  be a typical particle of mass m  of a rigid body at a time t  and let x y z, ,b g  be its

Fig. 7.1

coordinates referred to rectangular axes. Also let   , , ,.... be the generalised coordinates of the system.

Since the cartesian coordinates x y z, ,b g  be expressed in terms of generalised coordinates and time t , we
have

x x t , , , ,...  b g , y y t , , , ,...  b g , z z t , , , ,...  b g ...(1)

Assume that the system is holonomous, therefore, the equation (1) do not contain  ,  ,  ,...    or
any other derivative with respect to time. Differentiating (1) with respect to t , we have

d x
d t

x x
t

x d
d t

x d
d t

x d
d t

      .....





 
 

 




or     .....x x
t

x x x
    








 





 ...(2)

with similar expressions for y  and z .

On differentiating (2) partially with regard to  , we have


 


 



x x
 ...(3)

Similarly 








y y
 , 









z z
  etc.

Now, differentiating (2) again partially with regard to  , we have





 




 
   

 
  


    ...x x

t
x x x

    
2 2

2

2 2

xo

y

z

P mb g

205



       
F
HG

I
KJ 

F
HG

I
KJ 

F
HG

I
KJ 

F
HG

I
KJ 















 












t

x x x x   ...

If we compare R.H.S. of (4) with R.H.S. of (2) we observe that (4) can be obtained from (2) if we

replace x  by 



x
 and hence L.H.S. of (4) takes the form 

d
d t

x


F
HG

I
KJ  in the L.H.S. of (2)

 
F
HG

I
KJ







x d
d t

x
...(5)

similarly 







 





,

y d
d t

y z d
d t

z


F
HG

I
KJ 

F
HG

I
KJ  etc.

Let T  be the kinetic energy of the system, then

T m x y z  1
2

2 2 2  c h ...(6)

Differentiating it partially with regard to   we have













T m x x y y z z












 ...   

F
HG

I
KJ ...(7)

Again differentiating (6) partially with respect to  , we have








 




T m x x y y z z
   

F
HG

I
KJ 








... ...(8)

Now, by D’Alembert’s principle (which states that the reversed effective forces acting at each
point of the system and the impressed (external) forces form a system of forces in equilibrium) therefore,
by giving the systems a small virtual displacement consistent with the geometrical conditions at time t ,
the total virtual work done by the system is zero, in other words,

the virtual work done by effective forces = the virtual work done by the impressed forces.

Now, the virtual work done by effective forces for a variation of   alone

  
F
HG

I
KJ m x x y y z z

  









  ...(9)

   
F
HG

I
KJ

RST
UVW

d
d t

m x x y y z z
  

 


 


 

 

 
F
HG

I
KJ 

F
HG

I
KJ 

F
HG

I
KJ

RST
UVW

m x d
d t

x y d
d t

y z d
d t

z
  


 


 


 

 
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   
F
HG

I
KJ

RST
UVW

d
d t

m x x y y z z



 


 













 

   
RST

UVWm x x y y z z

















     (Using (3) and (5) ...(10)

Again using (7) and (8), we have

the virtual work done by effective forces for a variation of   alone


F
HG

I
KJ 

RST
UVW

d
d t

T T
 


 

  ...(11)

Now, virtual work done by impressed forces for a variation of   alone,

  
F
HG

I
KJ X x Y y Z z








  ...(12)

where X Z,Y,  are the impressed forces on the system. Again, if W  be the work function of the
system, then we have

X W
x



  etc.

Therefore, the virtual work done by impressed forces for a variation of   alone

  
F
HG

I
KJ 









 





 

 
W
x

x W
y

y W
z

z





 
W

...(13)

Equating (11) and (13), we have

d
d t

T T W








F
HG

I
KJ  

Similarly, we have the equation

d
d t

T T W
 


 


 

F
HG

I
KJ  

d
d t

T T W








F
HG

I
KJ   ...(14)

and so on, there being one equation corresponding to each generalised coordinate of the system.

207



These equations are the Lagrange’s equations in generalised coordinates for finite forces under
a holonomous dynamical system.

If V  be the potential function and W  be the work function, then we know that

V W   constant

 W constant V ...(15)

Then the Lagrange’s equations (14) become

d
d t

T T V
 







F
HG

I
KJ   

d
d t

T T V
 


 


 

F
HG

I
KJ   

d
d t

T T V








F
HG

I
KJ       etc. ...(16)

Equations (16) are the Lagrange’s equations in generalised coordinates for finite forces under a
holonomous conservative dynamical system.

7.3.1 Lagrange’s function

When the forces are conservative and a potential function V  exists the Lagrange’s  -equation
from (16) is

d
d t

T T V
 







F
HG

I
KJ   


F
HG

I
KJ   

d
d t

T T V



 b g 0

 
RST

UVW   
d
d t

T V T V



  b g b g 0 ( V  does not contain  ,  , etc.)


F
HG

I
KJ  

d
d t

L L



  0

Similarly

d
d t

L L
 


 

F
HG

I
KJ   0

d
d t

L L





F
HG

I
KJ   0    etc. ...(17)
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where L T V  , is called the Lagrange’s function or Lagrangian function or kinetic potential.

7.4 Principle of Energy

To deduce the principle of energy from the Lagrange’s equations.

The principle of energy can be deduced from Lagrange’s equations when the geometrical relation
do not contain the time explicitly.

If   , , , .... are the generalised coordinates of a holonomous conservative dynamical system
with potential function V , then the Lagrange’s equations are

d
d t

T T V
 







F
HG

I
KJ    ,

d
d t

T T V
 


 


 

F
HG

I
KJ    ,

d
d t

T T V








F
HG

I
KJ    etc ...(18)

If x y z, ,  do not contain time t  explicitly, we have

    ...x x x x
   





 





    etc. ...(19)

so that the kinetic energy T  gives

T m x y z  1
2

2 2 2  c h

   
F
HG

I
KJ    

F
HG

I
KJ

R
S|
T|

1
2

2 2

m x x x y y y




 











 





   ...    ...

   
F
HG

I
KJ
UVW


 



 






z z z   ...

       A A A A A A11
2

22
2

33
2

12 13 232 2 2   ...       ...      ...(20)

where the coefficients A A A A A A11 22 33 12 13 23, , , ... , , ,... are function of   , ,  etc.

Equation or relation (20) shows that, the kinetic energy T  is a homogeneous quadratic function of
 ,  ,  ,...  

Hence by Euler’s theorem, we have










.....

 



 





T T T T    2 ...(21)

G
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Also T  is a function of   , , ....... and  ,  ,  ,....    etc, hence

d T
d t

T T T T T T
       

 

 
 

 


 


 
 

 


   ..... 






 ... ...(22)

Now multiplying the Lagrange’s equations (18) by  ,  ,  ,...    respectively and then adding, we
have










.....

 



 





d
d t

T d
d t

T d
d t

TF
HG

I
KJ 

F
HG

I
KJ 

F
HG

I
KJ 

L
NM

O
QP

   
L
NM

O
QP     

F
HG

I
KJ

   ...    ...





 











 





T T T V V V

or
d
d t

T T T T T T








..... 








..... 


 
 

 


 


 
 

 


  
F
HG

I
KJ    

F
HG

I
KJ

L
NM

O
QP

   
F
HG

I
KJ     

F
HG

I
KJ

   ...    ...





 







 



 





T T T V V V

or
d
d t

T d T
d t

d V
d t

2a f    {using (21) and (22)}

or
d
d t

T V b g 0

  T V  constant ...(23)

i e. .  the sum of the kinetic and potential enegies of a system of conservative forces is constant
throughout the motion.

Illustrative examples :

Example 1 : Use Lagrange’s equations to find the equation of motion of a simple pendulum.

Solution : Let l  be the length of the simple pendulum, m  be the mass and   the angle made by

    Fig. 7.2

m g
BA

A

O


l
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the string OB  with the vertical OA  after time t . Here   is only the generalised coordinate. Now the
velocity VB  of the bob  at B  will be equal to l  .

Therefore, if T  be the K E. .  of the system, then

T m l m l 
1
2 2

2 2 2  d i

Again, if W  be the work function of the system, then

W m g OA C m g l C    . cos

where C , is any constant, which adjusts the initial position of the pendulum bobb g .

Now, applying Lagrange’s   - equation, we get

d
d t

T T W








F
HG

I
KJ  

or
d
d t

m l m g l2
2

02.  sin F
HG

I
KJ   

or m l m g l2  sin  

or  sin   F
HG

I
KJ

g
l

or    F
HG

I
KJ

g
l {Since   is very small  sin  }

which is the required equation of the motion.

Example 2 : A bead of mass M , slides on a smooth fixed wire, whose inclination to the vertical is  ,
and has hinged to it a rod of mass m  and length 2 l , which can move freely in the vertical plane throgh the
wire. If the system starts from rest with the rod hanging vertically, show that

4 1 3 62 2M m l M m g    cos  sin sin sin    c ho t b g b g

where   is the angle between the rod and the lower part of the wire.

Solution : Let A Q0 0  be the fixed wire whose inclination to the vertical A B0 0  is  , where A0  B0

be the initial position of the rod. At time t , let the bead of mass M  be at A  and the rod AB
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Fig. 7.3

of mass m  and length 2 l  be inclined at an angle   to the lower part of the fixed wire A0  Q0. Let
A A x0   be the distance moved by bead on the fixed wire in time t . Here x and   give the position

of the system at any time t, therefore, x  and   are taken as generalised coordinates of the system.

The weights of the bead (of mass M ) and the rod (of mass m ) are acting vertically
downwards at A  and G  ( C G. .  fo the rod) respectively. Thus, if T  and W  are the K E. .  and the
work function of the system respectively then with the help of figure, we get

T K E . .  of the system = K E. . of the bead + K E. .  of the rod

     
RST

UVW
1
2 2

2 2 3
2 2 2 2

2
2M x m x l x l l

     cos     d ie j

   
1
2

2
3

2 2 2M m x m l ml xb g     sin   ...(1)

and

W   work function = work done by weight of the bead + work done by weight of the rod

  M g A L m g A P C. .0 0  , where C  is any constant

   M g x m g A L NG C. cos 0b g
    M g x m g x l C. cos cos cos   b gm r

or W M m g x m g l C    b g b gcos cos   ...(2)

Now, applying Lagrange’s equations

Lagrange’s x - equation is 
d
d t

T
x

T
x

W
x










F
HG

I
KJ  

A

M g

m g

N

 b g

 



A0

L

B0

 2 b g
P

x

x

l 

G


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Here

d
d t

M m x ml M m g    b gn s b g  sin cos  0

or M m x ml M m g    b g d i b g  sin  cos cos    2 ...(3)

Similarly, Lagrange’s   - equation is 
d
d t

T T W








F
HG

I
KJ  

Here

or
d
d t

ml ml x ml x m g l4
3

2   sin   cos sin     RST
UVW    b g

or
4
3

2ml ml x x m l x m g l  cos  sin   cos sin            n s a f

or
4
3

2ml ml x m g l sin sin      b g ...(4)

Eliminating x  between equations (3) and (4), we get

4
3

2
2

ml ml
M m g ml ml

M m
m g l sin

cos  cos  sin
sin 

    
 

  


RST
UVW
  

b g
b g b g

or
4
3

2 2 2 2M m m l ml RST
UVW b g sin   sin cos    

   M m g lb g b gm rcos sin sin     M m g lb g sin cos  ...(5)

Multiplying it by 2  , we get

4
3

2 22 2 2 2M m m l ml RST
UVW b g sin    sin cos       

 M m g lb g sin cos   2

or l d
d t

M m m M m gl2 2 24
3

2 RST
UVW

L
NM

O
QP  a f a fsin  sin cos     

Integrating it, we get

l M m m M m g l C2 2 2
1

4
3

2 RST
UVW   b g b gsin  sin sin    ...(6)

Initially when the rod was vertical at A0  i.e.
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when   ,   0  from (6) we have

C M m g l1
22  b g sin  ...(7)

Hence, the equation (6) gives

l M m m M m g l2 2 2 24
3

2 RST
UVW   b g b g m rsin  sin sin sin    

or l M m m M m g4 3 62 2 2    b gm r b g m rsin  sin sin sin    

or l M m m M m g4 4 3 1 62 2     cos  sin sin sin    c hn s a f a f

or l M m M m g4 1 3 62 2    cos  sin sin sin    c hn s a f a f
Example 3 : A uniform rod, of mass 3m  and length 2 l  has its middle point fixed and a mass m
attached at one extremity. The rod when in a horizontal position is set rotating about a vertical axis through

its centre with an angular velocity equal to 
2n g

l . Show that the heavy end of the rod will fall till the

inclination of the rod to the vertical is cos  1 2 1n n{ } , and will then rise again.

Solution : Let AB  be the rod of mass 3m  and length 2 l . The middle point O of the rod be fixed
and a mass m  be attached at the extrimity A  of the rod. Initially let the rod be at rest along

Fig. 7.4

OX  taken as axis of x . Let a line OY  perpendicular to the plane of paper and a line OZ  perpendicular
to OX  be taken as axes of y  and z  respectively. . O is taken as origin.

Let at any time t , the rod turn through an angle   from its initial position OX  with an angular

velocity  
2 n g

l . Also let   be the inclination of the rod with OZ  at this time t . Take an element

A

B

Y

X

l cos


m g
Z

O
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PQ d   fo the rod such that OP  , then the coordinates of the point P  on the rod are x y z, ,b g ,
where

x    sin cos , y    sin sin , z   cos ...(1)

Then,  cos cos  sin sin x         

 cos sin  sin cos y          ...(2)

 sin z     

Therefore, the velocity of P Vp,  is

V x y zP
2 2 2 2    

    2 2 2 2  sind i ...(3)

If VA  be the velocity of mass m  at A , then we have on putting   l

V lA
2 2 2 2 2   sin  d i ...(4)

Now, the mass of the element PQ m
l

d
3
2

 .

therefore, the K E. .  of the element PQ m
l

d VP
F
HG

I
KJ

1
2

3
2

2. .


F
HG

I
KJ 

1
2

3
2

2 2 2 2m
l

d       sind i

Thus, the K E. .  of the rod AB m
l

d
l

l


F
HG

I
KJ 


z 1

2
3
2

2 2 2 2      sind i

 

z3

4
2 2 2 2m

l
d

l

l
  sin    d i

  z3
4

22 2 2 2

0

m
l

d
l

  sin .    d i

or, K E. .  of the rod  AB m l 
2

2 2 2 2  sin  d i ...(4)

Also, the K E. .of the mass m  at A ml 
1
2

2 2 2 2  sin  d i ...(5)
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Thus, if T  be the K E. .  of the system, then

 K E. . of the rod AB K E . .  of the mass m  at A

      
ml ml2

2 2 2
2

2 2 2

2 2
  sin   sin     d i d i

T ml 2 2 2 2  sin  d i ...(6)

Again, if W  be the work function of the system, then

W   work done by weight of the mass m  at A   m g O R.

 m gl cos ...(7)

Now, applying Lagrange’s equations, we get

Lagrange’s   - equation as

d
d t

ml ml m g l2 22 2 2  sin cos sin    n s   

or l l g  sin cos sin      2

2 ...(8)

Lagrange’s   - equation gives

d
d t

ml2 0 02 2 sin c h  

or
d
d t

 sin 2 0c h 

on integration, we get

 sin 2  C (Say) ...(9)

But Initially when 



2 ,  

2 n g
l (given)

which gives C n g
l


2

...(10)

Therefore, the equation (9) gives

 sin 2 2


n g
l ...(11)

Subslituting the value of   in equation (8), we get
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l l n g
l

g
sin

sin cos sin


   F
HG

I
KJ  

2
24

or 2 4 2l n g ec g cot cos sin      ...(12)

Multiplying it by 2   and then integrating, we get

l n g g C cot cos  2 2
12   ...(13)

But initially, when    2 0,  ,

which gives C1 0

Thus, we get

l n g g cot cos  2 22  ...(14)

Now, the rod will fall till   0 , i.e.

2 2n g gcot cos 

or cos cos sin  2 02n  c h ...(15)

which gives

either cos  0 or 2 02ncos sin  

  when cos  0  then   2 , which gives initial position of the system.

When 2 02ncos sin  

then 2 1 02n cos cos   c h

or cos 
  2 4 4

2

2n n

or cos   n n2 1 (leaving - sign because   2 )

or    cos 1 2 1n n{ } ...(16)

which gives the required result.

Again, from equation (12), we get

 sin cos
sin


 


 

F
HG

I
KJ

RST
UVW

g
l

n
2

44

3 ...(17)
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If we substitute the value of   from (16) in the R.H.S. of (17), then   comes out to be positive,
thus at that time the rod begins to rise again.

7.5 Small Oscillations

To explain how Lagrange’s equations are used in case of small oscillations.

or

Use of Lagrange’s equations in finding the small oscillations of a conservative system
about a position of equlibrium.

In the case of small oscillations the generalised coordinates   , , ,... should be so chosen that
they vanish in the position of equlibrium.

Since the system makes small oscillations about the position of equilibrium the generalised coordi-
nates   , , ,... as also their derivatives will remain small during the whole motion.

If x y z, ,  do not contain time t  explicity then the K E. .  is a homogeneous quadratic function of
 ,  ,  ...    etc. Therefore, K E T. .  and the work function W  of the system are given by

T A A A A A A      11
2

22
2

33
2

12 13 232 2 2   ...       ...      ...(1)

and W C B B B B B B       1 2 3 11
2

22
2

33
2     ...  ... ...(2)

Now, choosing X Z,Y,  such that   , , ,...  be expressed in terms of X Z,Y,  by the follow-
ing equations

     1 2 3X Y Z

     1 2 3X Y Z ...(3)

     1 2 3X Y Z

Again choose   i i is s s' , ' , '  in such a way that when the above values of   , , ,...  and their

derivatives are substituted in equation (1) and (2), then there is no term containing   ,   ,  X Y Y Z Z X  in T
and there is no term containing X Y Y Z ZX, ,  in W , then X Y Z, ,  are called the Principal or Normal
coordinates.

Thus when X Y Z, ,  are the principal coordinates then from (1) and (2), we have

T A X A Y A Z      11
2

22
2

33
2   ... ...(4)

and W C B X B Y B Z B X B Y B Z               1 2 3 11
2

22
2

33
2... ... ...(5)

Then the Lagrange’s equations are

d
d t

T
X

T
X

W
X










F
HG

I
KJ   , etc

or
d
d t

A X B B X2 0 211 1 11     c h b g

q
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or 2 211 1 11    A X B B X  etc.

which can be put in the forms

 ,  , X W X Y W Y Z W Z     1
2

2
2

3
2   etc.

which represent S.H.M. giving the small oscillations about the position of equilibrium. Thus we can
conclude that, when the equation of motion of a system can be reduced by the variables X Z,Y,  to
equations of S.H.M., then the coordinates X Z,Y, , are called the principal or normal coordinates.

Example 4 : Two equal rods AB  and BC , each of length l , smoothly jointed at B , are
suspended from A  and oscillates in a vertical plane through A . Show that the periods of normal

oscillations are 
2
n , where,

n g
l

2 3 6
7

 F
HG

I
KJ .

Solution : Let m  be the mass of the rod AB  and BC  which are smoothly jointed at B. Also Let
G1 , and G2  be the centres of gravity of the rods AB  and BC  respectively and   and   their inclinations
to the vertical at any time t .

Fig. 7.5

G2  is turning round B  with  velocity 
l
2
 , while B  is turning round A  with velocity l  . Now if

T  and W  are the K E. .  and work function of the system, then, we have

T K E . .  of the system

    K E. .  of the rod AB  K E. .  of the rod BC

      
m V K m V KG G2 21 2

2
1
2 2 2

2
2 2  n s n s ...(1)

Where VG1
 and VG2

 are the velocities of the G1  and G2 , C G. .  of the rods AB  and BC
and K1  and K2  are their radii of gyration of these rods respectively..

A

B

P

Q

R

C

S

G1

G2
l 

l 

l
2


m g


 b g

m g
Z

l
2


219



  T m l l
 F

HG
I
KJ  F

HG
I
KJ

RS|T|
UV|W|2 2

1
3 2

2 2
2  

  F
H

I
K  F

H
I
K   F

H
I
K

RST
UVW

m l l l l l
2 2

2
2

1
3 2

2
2 2

    cos       d i d i a f


F
HG

I
KJ   

RST|
UVW|

m l l l l
2 3 3

1
2 2

2 2
2 2

2





  .



  (for small oscillation cos   a f 1 )

  
ml2

2 2

6
4 3      n s ...(2)

and

W m g A P m g AR C  . . , where C  is any constant

       m g l m g AQ BS C. cos
2

 b g ...(3)

      F
HG

I
KJ m g l m g l l C. cos cos cos

2 2
  

      
m g l C

2
3cos cos b g ...(4)

Now, here   and   are taken as generalised coordinates. Therefore, Lagrange’s s   - equation
gives

d
d t

ml m g l2

6
8 3 0

2
3  . sin  

RST
UVW   d i

or 8 3 9  sin     F
H

I
K

g
l {For small oscillation sin  }

or 8 3 9      F
H

I
K

g
l ...(5)

and Lagrange’s   - equation gives

d
d t

n l m g l2

6
2 3 0

2
  . sin  

RST
UVW   d i

or 2 3 3  sin     F
H

I
K

g
l
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     F
HG

I
KJ3 g

l
 {For small oscillation sin  )

or 2 3 3      F
HG

I
KJ

g
l ...(6)

Now, the equation (5) and (6) can be written as

8 9 3 02 2D g
l

D F
H

I
K

RST
UVW    ,

and 3 2 3 02 2D D g
l

   F
H

I
K

RST
UVW  ...(7)

where D d
d t



Eliminating   in the equation (7), we get

8 9 2 3 9 02 2 4D g
l

D g
l

D F
H

I
K

RST
UVW  F

H
I
K

RST
UVW 

L
NM

O
QP 

on 7 4 27 04 2
2

D z g
l

D g
l

 F
H

I
K  F

H
I
K

L
NM

O
QP  ...(8)

If the periods of small oscillation are 
2
n , then

we put   A nt Bcosb g , where A  and B  are constants

then D An nt B   sina f, and

D n A nt B2 2   cos a f
or D n2 2   , similarly D n4 4  ...(9)

  with the help of (9), equation (8) becomes

7 4 27 04 2
2

n z g
l

n g
l

 F
H

I
K  F

H
I
K

RST
UVW

.  , which gives

7 4 27 04 2
2

n z g
l

n g
l

 F
H

I
K  F

H
I
K    0b g
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Therefore, we get

n
z g

l
z g

l
g
l2

2 2

4 4 4 7 27

2 7


FH IK  FH IK
RST

UVW  FH IK. .

.

or n g
l

2 3 6
7

 F
HG

I
KJ
F
HG

I
KJ .

Example 5 : A unifrom rod, of mass 5m  and length 2a , turns freely about one end which is fixed, to
its other extermity is attached one end of a light string of length 2a , which carries at its other end a particle
of mass m , show that the periods of small oscillations in a vertical plane are the same as those of simple

perdulums of lengths 
2
3
a

 and 
2 0
7 a .

Solution : Let OA  be a rod of length 2a  and mass 5m , whose one end is fixed at O  and G  be its
centre of gravity. Let a  partical of mass m  be attached at the end B  of a string AB  of length 2a  which
is attached to the rod at the end A .

Fig. 7.6

Let after time t , the inclinations of the rod and string to the vertical be   and   respectively Now,,
if T  be the K E. .  of the system, then

T K E . .  of the rod  K E. .  of the particle of mass m  at B

  
5
2 2

2 2 2 2m V K m VG B
n s , where VG  be the velocity

of the C G. .  of the rod, k  be its radius of gyration and VB  be the velocity of mass m  at B .

T m a a m a a a a 
RST

UVW    
5
2 3 2

2 2 2 2 2
2 2

2 2 2    .   cos       d i d i d i d i d i a f{ }

Z

Q

P

S

A

B
 

2a 

2 a 

a 

m g

R


 b g

5m g

G


O
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 
RST

UVW   
5
2 3 2

4 4 82 2
2

2 2 2 2 2 2m a a m a a a          n s

{For small oscillation cos   b g 1}

or T ma
  

2
2 2

3
16 6 12      n s ...(1)

Again, if W  be the work function of the system, then

W   work done by weight of the rod at G , C G. .  of the rod

     work done by weight of the particle at B

  5m g OS m g OQ C. . , where C  is any constant

   5m g a m g OP AR C. cos . a f
   5 2 2m g a m g a a Ccos cos cos  k p

or W m g a m g a C  7 2cos cos  ...(2)

Here   and   are taken an generalised coordinates of the system, therefore, by Lagrange’ss
equations, Lagrange’s   - equation gives.

d
d t

ma m g a
2

3
32 12 0 7  sin  

RST
UVW   d i

or 32 12 21  sin     F
HG

I
KJ

g
a

or 32 12 21      FH IKg
a {For small oscillation sin  } ...(3)

Lagrange’s  -equation gives

d
d t

m a m g a
2

3
12 12 0 2  sin  

RST
UVW   d i

or 4 4 2  sin     F
HG

I
KJ

g
a

or 2 2      F
H

I
K

g
a (for small oscillation sin  )...(4)

Equation (3) and (4) can be written as

32 21 12 02 2D g
l

D F
H

I
K

RST
UVW    ...(5)
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and 2 2 02 2D D g
a

  RST
UVW  ...(6)

Eliminating   between equation (5) and (6),

32 21 2 24 02 2 4D g
a

D g
a

D F
H

I
K

RST
UVW  F

H
I
K

RST
UVW 

L
NM

O
QP 

or 40 74 21 04 2
2

D g
a

D g
a

 F
H

I
K  F

H
I
K

L
NM

O
QP  ...(7)

Now, put   A w t Bcosb g , then

D w A w t B   sin b g , D w A wt B2 2   cosa f
or D w2 2    and similarly D w4 4 

Then the equation (7) becomes

40 74 21 04 2
2

w w g
a

g
a

 F
H

I
K  F

H
I
K

RST
UVW



or 40 74 21 04 2
2

w w g
a

g
a

 F
HG

I
KJ  F

HG
I
KJ    0b g

or 20 7 2 3 02 2w g
a

w g
a

 F
H

I
K

RST
UVW  F

H
I
K

RST
UVW .

or w g
a1

2 7
20

 F
H

I
K  or   w

g
a2

2 3
2

 F
H

I
K

Thus, if t  be the time period of small oscillation then t w


2
 and if l  be the length of simple

equivalent pendulum, then

t l
g w

 2 2



 , which gives l

g
w

 2

Thus, in the present case, the lengths of equivalent simple pendulum are 
g

w1
2  and  

g
w2

2

or
20

7
a

 and 
2
3
a
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Example 6 : A perfectly rough sphere lying inside a hollow cylinder, which rests on a perfectly rough
plane, is slightly displaced from its position of equilibrium. Show that the time of a small oscillation is

2 14
10 7


a b

g
M

M m
F

HG
I
KJ 
F
HG

I
KJ

where a  is the radius of the cylinder, b  that of the sphere, and M m,  are the masses of the
cylinder and sphere respectively.

Solution :

Fig. 7.7

The figure in the vertical cross - section through the centres of the cylinders and sphere.

Let C  and C  be the centres of the cylinder and the sphere. Initially the point A0  of the cylinder
and sphere be coincident, therefore, let CA0  and C A0  are lines fixed in the cylinder and sphere respec-
tively These lines are initially vertical and after a time t , make angles   and   with the vertical. Let   be
the angle which the line joining centres C  and C  makes with the vertical. There is no slipping between the
cylinder and horizontal plane and also between the cylinder and sphere. Let the cylinder ralls a distance x
on the plane, Therefore, with the help of figure, we have

x A A Arc A A a  0 0 

and Arc A P Arc B P0 0

i e. .  a b     b g b g
or b a b a    b g
so that b C a      ...(1)

where C a b 

Referred to the horizontal and vertical through

A0  as coordinates axes, the coordinates x yc c,b g  of C  and  x yc c,b g  of C  are given by

A0

C

A

 

CB

Y

O
X


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x OA or A A ac  0b g  , y ac 

     x OK or A K OA AK a Cc 0b g  sin

    y C K a Cc cos

If VC  and VC  be the velocitites of C  and C  respectively then we get

V x y aC c c
2 2 2 2 2     ...(3)

and V x y a C CC c c       2 2 2 2 2
   cos  sin   d i d i

  a C a C2 2 2 2 2      
 

  
is very small

s  
F
HG

I
KJcos ,1 in ...(4)

Now, if T  be the K E. .  of the system, then we have

T K E . .  of the cylinder  K E. .  of the sphere

   

M x K m V KC2 2
2

1
2 2 2

2
2 2   m r n s

where K1  and K2  are the radii of gyration of the cylinder and sphere respectively..

or T M x a m a C ac b     RST
UVW2 2

2 2
5

2 2 2 2 2 2 2 2 2           m r

          RST
UVW

M a a m a C a C C a
2 2

2 2
5

2 2 2 2 2 2 2 2 2
              m r d i

   


 
10 7

10
7
10

22 2 2 2M m
a m C aCa f d i       ...(5)

Again, if W  be the work function of the system, then

W   work done by weight of the sphere

  m g a C cosa f {Distance is measured in upward direction} ...(6)

Here   and   are taken as generalised coordinates of the system. We have from Lagrange’ss
equations :

Lagrange’s   equation gives.

d
d t

M m a
m aC

10 7
5

7
5

0 0
2 2


RST

UVW  
a f  



or 7 10 7 0mC M m a    a f ...(7)

q ...(2)
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and Lagrange’s   - equation gives

d
d t

m C aC m g C7
10

2 2 02    RST
UVW   d i (   is small,  sin  )

or 7 7 5C a g      ...(8)

Eliminating   between equations (7) and (8), we get

7 10 7 49 5 10 7a C M m m aC a g M m    a fm r a f 

or  .  
F

HG
I
KJ 

F
HG

I
KJ

RST
UVW

10 7
14
M m

M
g

a b ...(9)

which represents an equation of simple harmonic motion (S.H.M.) with the time of small
oscillation


F

HG
I
KJ 
F
HG

I
KJ2 14

10 7


a b
g

M
M m .

Example 7 : A uniform straight rod, of length 2a  is freely movable about its centre and a particle of
mass one third that of the rod is attached by a light inextensible sting, of length a , to one end of the rod;

show that one period of principal oscillation is 5 1d i  a
g .

Solution : Let AB  be a rod of length 2a  of mass m  and having its centre of gravity at G , Also let

a particle of mass 
m
3

F
HG

I
KJ  attached at C  and is connected by a light string BC  oflength a at the lower end

B  of the rod.

Fig. 7.8

At any time t , let   and   be the inclinations of the rod and the string to the vertical respectively..

P



B


Q

  m g
3

F
HG

I
KJ

C

a  

a 
R



a 

A

G
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Here   and   are taken as generalised coordinats of the system.

Now, if T  be the K E. .  of the system, then we get

T m V K m a a a aG   F
HG

I
KJ   

2
1
2 3

22 2 2 2 2     cos      n s d i c h d ic h b g{ }

where VG  be the velocity of C G. .  of the rod (which is zero) and K  be its radius of gyration.

or T m a m a a a
RST

UVW   
2 3 6

2
2

2 2 2 2 2 2        d i

(for small oscillation cos   b g 1)

  
m a2

2 2

6
2 2      n s ...(1)

Again, if W  be the work function, then

W   work done by the particle of mass 
m
3

F
H

I
K  at C

      
m g QC C
3

. k p , where C  is any constant.

        
m g a a C
3

cos cos k p ...(2)

as Q C Q R RC PB RC a a     cos cos b g
Now, Lagrange’s   equation gives

d
d t

ma m g a
2

6
4 2 0

3
  sin  

RST
UVW   d i b g

or 4 2 2  sin     F
HG

I
KJ

g
a

or 2 2      F
HG

I
KJ

g
a (for small oscillation sin  )

and Lagrange’s   equation gives

d
d t

ma m g a
2

6
2 2 0

3
  sin  

RST
UVW   d i

or       FHG
I
KJ

g
a (For small oscillation, sin  ) ...(4)
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If we put D d
d t

 , then the equation (3) and (4) become

2 02 2D g
a

D FH
I
K

RST
UVW    ...(5)

and D D g
a

2 2 0   FH
I
K

RST
UVW  ...(6)

Eliminating   between equation (5) and (6) on multiplying equation (5) by D g
a

2  FH
I
K

RST
UVW and

equation (6) by D2  and then on subtacting, we get

2 02 2 4D g
a

D g
a

D FH
I
K

RST
UVW  FH

I
K

RST
UVW 

L
NM

O
QP 

or D g
a

D g
a

4 2
2

3 F
H

I
K  F

H
I
K

L
NM

O
QP ...(7)

Now, put   A w t Bcosb g , then

D w A w t B   sin a f, D w A w t B w2 2 2     cos b g
and similarly

 D w4 4 

The equation (7) thus becomes

w g
a

w g
a

4 2
2

3 0 F
HG

I
KJ  F

HG
I
KJ

RS|T|
UV|W|



or w g
a

w g
a

4 2
2

23 0 F
HG

I
KJ   ,   0

which is a quedratic in w2  let the two roots be w1  and w2

so that w g
a1

2

2
3 5 d i  and w g

a2
2

2
3 5 d i

 one period of principal oscillation corespending to w1  is given by

2 2 2
3 51




w
a

g


d i
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rationalize

2 2 6 2 5
4

1 5
1

2
 

w
g
a

a
g

 F
HG

I
KJ

F
HG

I
KJ  d i

  5 1d i a
g

7.6 Lagrange’s Equation for Impulsive Forces
To establish Lagrange’s equations for impulsive forces

Let   , , ,....  are generalised coordinates of the system and x y z, ,b g  be the cartesion
coordinates of any particle of mass m  of the system referred to the rectangular axes. Since the cartesian
coordinates are functions of generalised coordinates and time t  as

x x t , , , ,...  b g , y y t , , , ,...  b g , z z t , , , ,...  b g ...(1)

Now differentiating (1) with respect to t ,  we get

dx
dt

x x
t

x x x
         ...







 





 etc ...(2)

Again, differentiating (2) partially with respect to   we get





 



x x


Similarly, we have 




 



y y
 , 





 



z z
 , etc. ...(3)

Since we are here dealing with non-conservative systems, the geometrical equations may contain
the time explicitly, but they do not contain  ,  ,  , ....   . Now, consider a number of simultaneously applied
impulses acting on a dynamical system, we also have D ’ Alemberts principle for impulsive forces, which
states that “the change of momentum in a certain direction is equal to the impulsive of the forces in that
direction.”

Therefore, the sum of the virtual moments of the components of the change of momentum is equal
to the sum of the virtual moments of the applied impulses.

Let  ,  , x y z0 0 0b g  and  ,  , x y z1 1 1b g  be the velocities of the particle of mass m  just before and just after
the application of the impulses respectively. Then the virtual work of the system the changes of moments is

m x x x y y y z z z     1 0 1 0 1 0     b g b g b gm r   ...(4)

and if X Z,Y,  be the components of the applied impulses at x y z, ,b g  then the virtual work of the
system of impulses is

X x Y y Z z    l q ...(5)
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Since the virtual works of the two systems are equal, we get

m x x x y y y z z z X x Y y Z z     1 0 1 0 1 0        b g b g b gm r l q     

Now, if T  be the K E. .  of the system, then

T m x y z  1
2

2 2 2  c h

then












T m x x y y z z












  

F
HG

I
KJ ...(7)

Now, let the syffix ' '0  to values refer just before, and the suffix ' '1  to values just after the applica-
tion of the impulse. Also, we have



 

 

 

 



x x x x
   ,....



 

 

 

 



y y y y
   ,.... etc.

Now,

m x x y y z z  0 0 0 0 0 0    b g   
F
HG

I
KJ

RST m x x y y z z
  0

0

0
0

0

0
0

0

0


 


 


 

 

  
F
HG

I
KJ 

UVW
   ....x x y y z z

0
0

0
0

0

0
0

0

0


 


 


 

 

  
F
HG

I
KJ

RST m x x y y z z











0

0

0
0

0

0
0

0

0


 


 


 

 

  
F
HG

I
KJ 

UVW











 ....x x y y z z

0
0

0
0

0

0
0

0

0


 


 


 

 

Therefore, using (7)


F
HG

I
KJ 

F
HG

I
KJ 




 

 

 
T T
 

........
0 0

...(9)

Similarly

m x x y y z z T T   
F
HG

I
KJ 

F
HG

I
KJ   

 
........1 1 1 1 1 1

1 1

  



 

 

 b g ...(10)

q ...(8)
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Also,

X x Y y Z z    b g

  
F
HG

I
KJ   

F
HG

I
KJ 

RST
UVW X x Y y Z z X x Y y Z z

 

 


 

 

 


 


 

  ......

  P Q    ... ...(11)

where P Q, , ...... are the generalised components of the impulse.

Hence, with the help of (9), (10), and (11), the equation (6) takes the form







 

 


 

     
T T T T P Q    .... ....

F
HG

I
KJ 

F
HG

I
KJ

RS|T|
UV|W|


F
HG

I
KJ 

F
HG

I
KJ

RS|T|
UV|W|

   
1 0 1 0

...(12)

Since    , ,.....  are independent, therefore, we get







T T P 
F
HG

I
KJ 

F
HG

I
KJ 

1 0


 


 

T T Q
 

F
HG

I
KJ 

F
HG

I
KJ 

1 0
etc. ...(13)

there being one equation corresponding to each of the generalised coordinates of the
system. These equations are the Lagrange’s equations for impulsive forces.

Example  8 : Three equal uniform rods AB BC CD, , , each of the mass m  and length 2a , are at rest
in a straight line smoothly jointed at B  and C . A  blow I  is given to the middle rod at distance c from its

centre O  in a direction perpendicular to it; show that the initial velocity of O  is 
2
3

I
m , and that the initial

angular velocities of the rods are

5 9
10

6
52 2

a c I
m a

c I
m a

a f ,  and 
5 9
10 2

a c I
ma
b g

.

Solution :

Fig. 7.9

Let O  be the middle point of the middle rod BC , A  blow I  is given to the middle rod in a
direction perpendicular to it at the point P , such that OP c . Let x  and   be the linear and angular

velocities of the rod BC  just after the impulse. Also let   and   be the angular velocities of the rods AB
and CD  respectively at time t . Let u  and v  be the linear velocities of C G. .  G1  of rod AB  and that of
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G2  of rod CD  respectively..

Now,

Velocity of end B  of the rod AB  in a direction   to it

= velocity of end B  of the rod BC  in a direction   to it.

or u a x a     

or u x a a      ...(1)

Similar

velocity of end C  of the rod BC  in a direction   to it

= velocity of end B  of the rod CD  in a direction   to it.

or   x a v a   

or v x a a      ...(2)

If T  be the K E. .  of the system, then we have

T K E . .  of the rod AB K E . . of the rod BC K E . . of the rod CD

 
RST

UVW  
RST

UVW  
RST

UVW
m u a m x a m v a
2 3 2 3 2 3

2
2

2 2
2

2 2
2

2     

         
L
NM

O
QP

m x a a a x a x a a a
2 3 3 3

2 2
2 2

2
2 2 2

2               d i d i

or

T m x a a a a x a x a a       L
NM

O
QP2

3 7
3

4
3

4
3

2 2 2 22 2 2 2 2 2 2 2 2                 

...(3)

Since before impulse the system was at rest.

 K E. .  of the system just before impulse Tb g0 0

Also If    U I x c a f ...(3)

U  is the virtual work of the impulse, then on applying Lagrange’s equations, we get

Lagrange’s x  equation gives







T
x

T
x 

F
HG

I
KJ 

F
HG

I
KJ 

1 0
coefficient of  x  in U

or
m x a a I
2

6 2 2 0      c h
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or 3   x a a I
m

    ...(4)

Similarly, Lagrange’s   - equation gives

m a a a I c
2

14
3

2 2 02 2 2 2 2 2     F
H

I
K  

or
7
3

a a a I c
a m

       ...(5)

Lagrange’s  -equation gives

m a a x a
2

8
3

2 2 0 02 2 2    F
H

I
K  

or   x a a   4
3

0 ...(6)

and Lagrange’s  -equation gives

m a a x a
2

8
3

2 2 0 02 2    F
H

I
K  

or   x a a   
4
3

0 ...(7)

Now, adding equation (6) and (7), we get

2 4
3

4
3

0  x a a   

or
3
2

0  x a a    ...(8)

Again, subtacting equation (8) from equation (4), we get

3
2
x I

m


or x I
m


2
3 ...(9)

which gives the initial velocity of 0.

Similarly, subtacting equation (7) from equation (6), we get

2 4
3

4
3

0a a a      

or
3
2

0a a a       ...(10)
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Subtracting this from the equation (5), we get

7
3

3
2

F
H

I
K a I c

a m


or  
6

5 2

c I
m a , ...(11)

which gives the angular velocity of the middle rod BC .

Substituting the values of x  from (9) and   from (11) in equation (7), we get

2
3

6
5

4
3

0I
m

c I
m a

a  

or   
5 9

10 2

a c I
ma

b g
, ...(12)

which gives the angular velocity of the rod CD .

Similarly, on substituting the values of x  and   in equation (6), we get

  
5 9

10 2

a c I
ma

b g
, ...(13)

which gives the angular velocity of the rod AB .

Example 9 : Three equal uniform rods AB BC CD, ,  are smoothly jointed at B  and C  and the ends
A  and Dare fastened to smooth fixed points whose distance apart is equal to the length of either rod. The

frame being at rest in the form of a square. A blow I  is  given perpendicular to AB  at its middle point

and in the plane of the square. Show that the energy set up is 
3
4

2I
om , where m  is the mass of each rod.

Find also the blows at the joints A  and C .

Solution :

Fig. 7.10

Here m  is the mass of each of the rods AB BC CD, ,  each of length 2a . Also let A  and D  are
fixed points such that AD a 2  so that ABCD  form a square. The blow I  is given at the middle point
G1  of the rod AB  in a direction perpendicular to it. After the blow, the rods AB  and CD  will turn
through the same angle say   and the rod BC  will remain parallel to AD . Therefore, just after the
application of flow,

2a 

a I
G1 G2

IB
IC C CB B

 

2aA D
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Velocity of rod AB  velocity of rod DC a   and velocity of the rod BC a 2 

Now, if T  be the K E. .  of the system just after the blow then

T K E . .  of the rod AB K E . .  of the rod DC K E . .  of the rod BC

    = 2 ( K E. .  of the rod AB ) + K E. .  of the rod BC

    
F
HG

I
KJ

RST
UVW
2

2 3 2
22 2

2
2 2m a a m a    d i

or T ma
10
3

2 2 ...(1)

and if  u  be the virtual work done by the impulse, then

  u I a . ...(2)

Since, before the impulse the system was at rest, therefore K E. .  just before the impulse was zero.

Now, Lagrange’s  -equation gives







T T
 

F
HG

I
KJ 

F
HG

I
KJ 

1 0
coefficient of    in  u

or
20
3

02ma I a  

or  
3

20
I
ma ...(3)

Substituting this value of   in (1), we get the required energy setup by blow is

T ma I
ma


F
HG

I
KJ

10
3

3
20

2
2

or T I
m


3
40

2

...(4)

Again let I B  and IC  are the impulses at the ends B  and C  as shown in the figure.

Now, considering the motion of the rod AB  and taking moments about A , we have

Change in angular momentum about the axis through A
= moments of the impulses about this axis

or m a I a I aB.  . .4
3

22   
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or I I m a I m a I
m aB    

F
HG

I
KJ2

2
3 2

2
3

3
20

 . (form (3))

or I IB 
2
5

Again considering the motion of the rod CD  and taking moment about D , we have

m a I aC.  .4
3

22    or I
I

C 
10 (form (3))

7.7 Summary

To solve dynamical poblems of conservative or non-conservative system kinetic energy forces
and couples and the generalised coordinates of the components of this system have been found to be very
useful. In this unit the degrees of freedom, generalized coordinates have been explained. The Lagrange’s
equations have been established for the finite and impulsive froces. Principle of energy has been derived
using Lagranges equations moreover the Lagranges equations are used in case of small oscillation. For
every type of above a good number of examples have been solved.

7.8 Answers to self learning exercise
Exercise

1. (B) (2) Holonomous (3) Potential function

7.9 Exercise

1. A uniform bar, of length 2a , is hung from a fixed point by a string of length b  fastened to one end
of the bar. Show that when the system makes small oscillation in a vertical plane, the length l  of the
simple equivalent pendulum is a root of the quadratic

l a b l a b2 4
3 3

0 F
H

I
K  

2. At the lowest point of a smooth circular tube, of mass M  and radius a , is placed a particle of
mass m ; the tube hangs in a vertical plane from its highest point, which is fixed and can turn freely
in its own plane about this point. If the system be slightly displaced, show that the periods of the
two independent oscillations of the system are

2 2


a
g

F
HG

I
KJ  and 2 M

M m
a
g

F
H

I
K .

3. A uniform rod, of length 2a , which has one end attached to a fixed point by a light inextensible

string, of length 
5

12
F
HG

I
KJ a , in performing small oscillations in a vertical plane about its position of

equilibrium. Find its position at any time and show that the periods of its principal oscillations are

2 5
3


a
g  and 

a
g3
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4. A particle P  moves on a smooth horizontal circular wire of radius a , which is free to rotate about
a vertical axis through a point O , distance c from the centre C . If the  PCO  , show that

a w a c c w  cos sin    a f 2 ,

where w  is the angular velocity of the wire.

5. Two heavy particles m m,   are attached to the points A B,  of a  light inextensible string, of which

the upper extermity O  is fixed. Prove that the periods of small oscillations are 
2
n , where n  is

given by

n n m m
m l l

g m m
ml l

g4 2 21 1 0
 F

H
I
K 


F
H

I
K 

 


F
HG

I
KJ  ,

where OA l AB l  , .

6. Six equal uniform rods form a regular hexagon, loosely jointed at the angular points, and rest on a
smooth table; a blow is given perpendicularly to one of them at its middle point; find the resulting
motion and show that the opposite rod begins to move with one tenth of the velocity of the rod
that is struck.

����
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UNIT - 8
Motion of a top

Structure of the unit
8.0 Objective

8.1 Introduction

8.2 Equation of Motion of a Top

8.3 Steady Motion of a Top

8.4 Stability Conditions for the Motion of a Top

8.4.1 When the axis of the top is vertical

8.4.2 When the axis of the top is not vertical

8.5 Limits of  

8.6 Summary

8.7 Exercise

8.0 Objective

The objective of this unit is to understand a top and its motion about the axis of symmerty, The
stability of this motion in the cases when the axis of the top can either be vertical or non-vertical is to be
understood.

8.1 Indtroduction

In this unit we shall study the motion of a top, defined here in, about its axis of symmetry on a plane
which is rough enough to prevent slipping.

Fig. 8.1

Top : A rigid body which is sysmmetrical about an axis and teminates at one end of the axis in a
sharp point is known as a top or a gyro-state. The sharp point is called the vertex of the top. The top thus
is a sysmmertical solid of revolution whose centre of gravity lies on its axis.

Top

 vertex

239



8.2 Equation of Motion of a Top

A top, two of whose principal moments about the centre of inertia are equal due to its symmetry
about its axis, moves under the action of gravity about a fixed point O  in the axis of unequal moment the
top be initially set spinning about its axis which was initially at rest.

Fig. 8.2

Here we shall apply Lagrange’s equations to determine the equation of motion of the top

Let a top spin with its vertex O  fixed in a contact with a floor rough enough to prevent slipping. Let
OC1  be the axis of the top and G  its centre of gravity, , OZ  the vertical is such that in which the axis OZ
was at zero time, OY  and OX  are horizontal and are at right angles.

Let OA1 , OB1  be two perpendicular lines, each perpendicular to OC1 , ( OA1 , OB1 , OC1  are
principal axes at O ). Let A  be the moment of inertia about OA1 or OB1 , and C  that about OC1 .

At time t , let OC1  be inclined at an angle   to the vertical OZ  and let the plane ZOC1  be turned
through an angle   from its initial position. Also let   be the angle between the plane ZOC1  and the plane
C OA1 1 . Thus   , ,  are the Eulerian angles at O . Again let w w w1 2 3, ,  are the angular velocities of the
top about OA OB1 1,  and OC1  respectively, then the Euler’s geometrical relations i.e. relations between
  , ,  and w w w1 2 3, ,  are given by

w1   sin  sin cos    

w2   cos  sin sin    

w3    cos   ...(1)
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Now, if T  be the K.E. of the system. then

T Aw Aw C w  
1
2 1

2
2
2

3
2c h  A B C, ,l  are principal moments of inertia and A B q

  
1
2 1

2
2
2

3
2A w w Cwc ho t

T A C   
1
2

2 2 2 2  sin   cos     d i d i{ } ...(2)

Also, if W  be the work function of the system, then

W   constant - mgh cos

or W mgh i cos cosb g ...(3)

where m  is the mass of the top, h OG  and i be the initial value of  .

Now, here  ,   and   are taken as generalised coordinates of the system, then applying
Lagrange’s equations,

 - equation is

d
dt

T T w








F
HG

I
KJ  

i.e.
d
dt

A A C m g h  sin cos   cos  sin sin         d i d i a f    2

or A A C m g h  sin cos    cos sin sin            2 c h ...(4)

similarly, Lagrange’s  -equation gives

d
d t

C   cos   c ho t 0

or   cos    constant = n  (say) ...(5)

and Lagrange’s  -equation gives

d
d t

A C sin cos   cos     2   c ho t 0

or A C sin cos   cos     2   c h constant = D  (say) ...(6)

with the help of equation (5), the equations (4) and (6) become

A A C Cn m g h  sin cos  sin sin        2 ...(7)

and A C n D sin cos  2   ...(8)
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Also, T A cn  
1
2

2 2 2 2  sin  d io t  since the top is rotating under gravity which is a conser-

vative system of forces, the law of conservation of energy gives

T V  constant , where V  constant - w
thus T  constant + w

or A cn m g h  sin cos   2 2 2 2 2   d i constant

or A m g h  sin cos   2 2 2 2  d i constant = E  (say) ...(9)

where E  is any constant which includes cn2 .

Thus the equations (7), (8) and (9) are the equations of motion of a top. The constant D  and E
in the equations of motion of a top are usually determined from the initial values given for the motion.

Note : (1) Generally the equation (8) which is also known as angular momentum equation and
equation (9), which is energy equation are considered as equations of motion of a top.

(2) The constant D  and E  are not the products of inertia but simple constants.

(3) The motion of the axis of a top due to change in ' '  is called nutation and due to change
in   is is called precession. The general motion of the top about its fixed vertex O  is a combination of
these two when it is given a constant angular velocity w n3 b g , called spin about its axis.

8.3 Steady Motion of a Top

The motion of a top is said to be steady if it spins about its vertex O  in such a way that its axis OC1
makes the same angle with the vertical OZ  throughout the motion. In other words, when the axis of the
top describes a cone around the vertical with constant angular velocity at a constant angle to the vertical,
then the motion of the top is said to be steady motion.

Now for steady motion of the top

  constant  (say), then

   0 , Also  cos   constant    0c h
or   constant w  (say)

Therefore, from the  -equat ion of the motion of the top i.e. from

A A Cn m g h  sin cos  sin sin        2  we get

  A w Cn w m g hcos sin sin sin   2

or A w Cn w m g hcos 2 0   ...(10)

Thus there are two possible real values of w , if

C n A m g h2 2 4 cos ...(11)

This is the necessary condition for steady motion of a top and the angular velocities are called
precessional angular velocities.
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Particular Case : If   2 , then from equation (10), we have

w m g h
C n


F
HG

I
KJ ...(12)

Then, if the top is given an angular velocity n  about OC1 , when OC1  is horizontal and OC1  be

given an angular velocity 
m g h
C n

F
HG

I
KJ  about OZ , then OC1  will continue to revolve uniformaly in a horizontal

plane round the vertical OZ Again, if the top is set in motion in the usual manner and n  is very large, then
from equation (10), we get

w
Cn C n Am g h

A


 2 2 4
2

cos
cos




     
RST

UVW
1

2
1 4

2 2A
Cn C n A m gh

C ncos
cos




     F
H

I
K

RST
UVW

1
2

1 1
2

4
2 2A

Cn C n Am g h
C ncos

cos




or w C n
A

Am g h
C n

  F
H

I
K

RST
UVW2

1 1 2
2 2cos

cos



 (nearly)

or w C n
A


cos  and 

m g h
C n  (nearly) ...(13)

obviously the first value of w  is large and second is very small, since n  is considered very large.

8.4 Stability Conditions for the Motion of a Top
8.4.1 When the axis of the top is vertical

A top is spinning with an angular velocity n  about an axis which is vertical, to find the condition of
stability, if the axis be given a slight nutation. (or a top is executing steady motion with angular velocity n
about its axis which is vertical, to show that the motion is stable).

Let the motion of a top be disturbed in such a way that   is very small i.e. there is slight nutation
initially, so the general equation of motion of the top are

A A C n m g h  sin cos  sin sin        2 ...(1)

and A C n D sin cos  2   ...(2)

For steady motion with axis vertical (initially)

we have   0 ,   n

then the equation (2) gives D Cn
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But for steady motion, the necessary condition is

C n A m g h2 2 4 cos

therefore, when   0 , this reduces to

C n A m g h2 2 4

Now, let the motion be slightly disturbed. The disturbed motion is a general motion of the top
therefore, its equations are

A A C n m g h  sin cos  sin sin        2 ...(3)

and A C n C n sin cos  2   ...(4)

From equation (4), we get

A
C n C n


cos

sin cos



 







1
12

b g
...(5)

with the help of this, the equation (1) becomes

A C n C n Am g h2
2 2

2

2 2

1 1


cos
sin cos

cos
sin sin


 


 





b g b g

Since   is small, therefore writing   for sin  and 1 for cos , the above equation reduces to

A C n C n Am g h2
2 2 2 2

4 2
     

or   
F

HG
I
KJ

C n Am g h
A

2 2

2
4

4 ...(6)

Since C n Am g h2 2 4 , therefore, the coefficient of   is negative. Thus, the above equation (6)
is characteristic of harmonic motion (S.H.M.). Thus the motion of the axis of the top is S.H.M. about the
vertical OZ  from which   is measured. In other words, axis of the top, if disturbed slightly from its vertical
position is in steady motion, will tend to come back to its original postion. Hence the steady motion, in
which axis of the top is vertical, is stable,

The period of nutation is




2 4
4

2

2 2
A

C n A m gh




4
42 2

A
C n A m g h


...(7)

8.4.2 When the Axis of top is not Vertical

A top is executing steady motion, with its axis, inclined at a constant angle   to the vertical, and
precessional velocity w ; to show that motion is stable.
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a top is executing steady motion with a constant spin n  about its axis which is inclimed at a
constant angle   to the vertical, then initially   ,   0 ,   =constant = w (say), then the equation of
motion of the top (1) and (2) give

A w C n w m g h2 0cos    ...(8)

and D A w C n sin cos2   ...(9)

Let the steady motion of the top be slightly disturbed so that motion of the top then are general and
so its equations are

 A A C n m g h  sin cos  sin sin        2 ...(10)

and A C n A w C n sin cos sin cos    2 2   ...(11)

eliminating   between (10) and (11), we see

A A w C n C n2 3 2 2 2sin  sin cos cos cos sin         b gm r

A w C n Am g hsin cos cos sin2 4     b gm r ...(12)

Now, put    , where  is small (i.e.  1) then neglecting quantities of second and
higher order of  and on simplification the abov equation (12) becomes

 cos   
F
HG

I
KJ

R
S|
T|

U
V|
W|
w m g h

A
m g h
Aw

2
2

2


or 
cos sin

 
 R

S|
T|

U
V|
W|


A w m g h m g h
A w

2 2 2 2 2 2

2 2

 c h
...(13)

which shows that the coefficient of  is always negative. Therefore, the equation (13) represents
a S.H.M. which shows that the axis of the top, if disturbed slightly from its position in steady motion, will
tend to come back to the original position i.e. the steady motion, with axis inclined at an angle   to the
vertical, is stable. The period of this small oscillation is


 

2
2

2 2

2 4 2 2


A w
A w A m gh w m g hcos a fo t

...(14)

In case the top is set in motion such that n  is very large and the two values of the precessional
velocity are appronimately given as

w C n
A


cos  or 

m g h
C n

therefore, when n  is large, the first value is large and the second is small as shown earlier. For a
small oscillation w  is considered small then the period of oscillation is given by
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2 A w
m g h (neglecting w2  and w4  in the denominater of (14))

which when considered with (8), wherein on neglecting w2 , w m g h
C n

  we

get the form of this period as 
2 A
C n

8.5 Limits of 
A top is set spinning with angular velocity n  about its axis. Initially the axis being instantaneously at

rest and inclined at an angle i  to the vertical; discuss the range of angle  , between the axis of top and
vertical, in which its subsequent motion is included.

Initially given that      i w n,  ,  ,0 0 3  then the equation of motion of the top

A C n C n i sin cos cos  2   ...(1)

and A m g h i  sin cos cos   2 2 2 2  d i b g ...(2)

eliminating   from (1) and (2), we get

A A m gh i n C i2 2 2 2 2 2 22sin  sin cos cos cos cos      a f a f
          2 22Am g h i p icos cos sin cos cos  b g b gm r

            2 2 12 2A m g h i p p p icos cos cos cos a f a f c hn s

where p n C
Am g h


2 2

4 ...(3)

Now,   will vanish when   i  or  1  or  2 , where

cos cos 1
2 2 1   p p p i ...(4)

or cos cos 2
2 2 1   p p p i ...(5)

since p  is always positive and if o i   2 ,

p p i p2 22 1 1   cos

therefore, cos 2 1 , which means  2  is imaginary and is not admissible

Also p i p i i    cos cos cosb g c h2 21

    p p i2 2 1cos
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therefore p i p  cos cos 1 (From (4))

i.e. cos cos 1  i

or 1  i

Again, it may be noted that if cos cos  i , i.e.   i , the equation (3) implies that  2 is negative
which will give an imaginary value of  , and is therefore, inadmissible. Thus   cannot be less than i .

Hence the top is never at an inclination less than i  or at a greater inclination than  1  i.e. the motion
is included between these limits. Thus

i p p p i     cos cos1 2 2 1{ }
Illustrative Examples :

Example 1 : A circular disc, of radius a , has a thin rod pushed through its centre perpendicular to its
plane, the length of the rod being equal to the radius of the disc. Show that the system can not spin with the
rod vertical unless the angular velocity is greater than

2o g
a

Solution : Here the body formed by pushing a rod into a circular disc at its centre and
perpendicular to the plane, be a top with one free end of the rod be a vertex. At any time t , let the rod
i.e. axis of the top makes an angle   with the vertical OZ .

Fig. 8.3

Now, we know that for a steady motion of a top,

C n Am g h2 2 4 cos ...(1)

where A  is the moment of inertia of the top about an axis through its vertex and perpendicular to
its axis, C  be the M.I. about its axis OC, h  be the distance of the CG  of the top from the vertex, m  be
the mass of top and   be the inclination of axis of the top with vertical .

X

Y

Z

A 
a

a

C
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Here, we have

A = M.I. of the top about an axis perpendicular to its axis OC and passing through
       vertex O .

     
1
4

2 2ma ma (by parallel theorem)

    
5
4

2ma

C = M.I. of the top about its axis OC

     
ma2

2

h a (C G  of the top is at C )

  0 (rod is vertical)

  the top will execute steady motion with axis vertical, if

C n Am g h2 2 4

or
1
2

4 5
4

2
2

2 2ma n ma mg aF
HG

I
KJ . . . .

or n a o g2 2

or n o g
a


2

Example 2 : If initially the axis of the top is horizontal and it is set spinning with angular velocity w  in a
horizontal plane, prove that the axis will start to rise if n C w m g h  and that, when n C w m g h 2 , the

axis will rise to an angular distance cos
F
HG

I
KJ

1 A w
nc , provided that Aw nC , and will there be at instan-

taneous rest. A C,  and n  have their usual meanings.

Solution : The equations of motion of a top are

A A C n m g h  sin cos  sin sin        2 ...(1)

A C n D sin cos  2   ...(2)

and A m g h E  sin cos   2 2 2 2  d i ...(3)

Initially

  2 ,   0 ,   w (given)
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Now, the axis of the top will start rising from the initial position if the initial value of   is negative,
therefore from equation (1), we get

A C n w m g hd i b g
initial

   ...(4)

thus, d i
initial

 will be negative only when C n w m g h . Further, applying initial conditions to
equations (2) and (3), we get

D A w  and E A  2

Thus, the equation of motion of the top (2) and (3) become

A C n A w sin cos  2   ...(5)

and A A m g h A w  sin cos   2 2 2 22   ...(6)

Eliminating   between equations (5) and (6), we get

A A A w C n
A

m g h A w sin cos
sin

cos 



2 2

2

2
22

RST
UVW  

or A A w C n Am g h A w2 2 2 2 2 2 2 22sin  cos cos sin sin        b g
If 2 m g h C n w , then we have

A A w C n A w C n w A2 2 2 2 2 2 2 2sin  cos sin sin cos        b g
or A A w A w C n A w C n2 2 2 2 2sin  sin cos cos       b g b g

            A w C n A w A w C ncos cos cos  b g c h b go t1 2

         A w C n C n A wcos cos cos  b g m r2

or A Aw C n C n Aw2 2 2sin  cos cos cos      a f a f ...(7)

Now, for instantaneous rest,   0 , then from equation (7), the rod will be at instantaneously rest,
when

cos cos cos  A w C n C n A w  b g b g 0 ...(8)

  either cos  0  or A w C n cos 0  or C n A w cos 0 , but when cos  0  or

  2 , this gives the initial position, and when

A w C n cos 0 , which gives  
F
HG

I
KJ

cos 1 Aw
C n , provided Aw C n  and when

C n Aw cos 0 which gives
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 
F
HG

I
KJ

cos 1 C n
A w

which is impossible when Aw C n . Thus the rod will rise to an angular distance

cos
F
HG

I
KJ

1 A w
C n , provided Aw C n .

Example 3 : A symmetrical top is set in motion on a rough horizontal plane with an angular motion
about its axis of figure, the axis being inclined at an angle i  to the vertical. Show that between the greatest
approach to and recess from the vertical, the centre of gravity describes an arc

h i
p i

tan sin
cos




F
HG

I
KJ

1

where p  and h  have their usual meanings.

Solution : The equations of motion of the top are

A C n D sin cos  2   ...(1)

and A m g h E  sin cos   2 2 2 2  d i ...(2)

where D  and E  are constants, which can be determined by initial conditions. Here, the initial
condition are when   i ,   0 ,   0 , therefore, equations (1) and (2) give D C n i cos  and
E m g h i 2 cos  thus, the equations (1) and (2) become

A C n i sin cos cos  2  b g ...(3)

and A m g h i  sin cos cos   2 2 2 2  d i b g ...(4)

eliminating   from equations (3) and (4), we get

A A
c n i

A
m g h i cos cos

sin
cos cos




2
2 2 2

2 4 2


 
b g b g

or A A m g h i c n i2 2 2 2 2 2 22sin  sin cos cos cos cos       b g b g
if c n A m g h p2 2 4 . , then, we have

A Am g h i p i2 2 2 22 2sin  cos cos sin cos cos       b g b gm r
             2 2 2 1 2A m g h i p i pcos cos cos cos cos  a f m r

or A m g h i p p i psin  cos cos cos cos2 2 2 22 1 2        b g b g c ho t

or A m g h i psin  cos cos cos2 2 2 22       a f a fn s
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where 2 21 2  p i pcos

or A m g h i psin  cos cos cos2 2 2 22      b g b go t

or 2
2 2

2 2m g h i A
p

cos cos sin 

cos
 

 


 
 

b g b g ...(5)

with the help of equation (5), the equation (4) becomes

A A
p

  sin sin 

cos
  

 
 

2 2 2
2 2

2 2 
 

d i b g

or   sin sin 

cos
  

 
 

2 2 2
2 2

2 2 
 pb g

Dividing both the sides by  2 , we get

1
2

2
2

2 2 FHG
I
KJ 

 
d
d p



 
 

sin sin
cosb g ...(6)

But from geometry, we know that the length of an elementry are ds  is given by

ds h d d2 2 2 2 2   sin c h

or
1 12

2 2
2

h
ds
d

d
d



F
HG

I
KJ   FHG

I
KJ sin ...(7)

Therefore with the help of (7), the equation (6) becomes

1
2

2 2

2 2h
ds
d p


 

F
HG

I
KJ 

 
sin

cosb g

or
1

2 2h
ds
d p



 

F
HG

I
KJ   

sin

cosb g

or d s h d

p


 

sin

cos

 

 2 2b g ...(8)

since, we know that   vanish for   i  and   1 , where cos 1  p  or

p p i p  1 2 2cos . Therefore, on integrating the equation (8), we get

ds h d

ps

s

i 



z z
 0

2 2

1 sin

cos

 

 

 

b g
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or s h d

pi


 

z sin

cos

 

 



2 2

1

b g

or s h p

i


F

HG
I
KJ

L
NM

O
QP

sin cos1
1





    
F

HG
I
KJ 

F
HG

I
KJ

RST
UVW

 h p p isin cos sin cos1 1 1
 

    
 F

HG
I
KJ 

F
HG

I
KJ

RS|T|
UV|W|

 h p p p isin sin cos1 1
   cos 1  pb g

     
F

HG
I
KJ

RST
UVW

h p i
2

1sin cos

or s h p i


F
HG

I
KJ

cos cos1



   
 


R
S|
T|

U
V|
W|

h
p i

p i
tan

cos
cos

1
2 2 a f

   
    



R
S|
T|

U
V|
W|

h
p i p p i p i

p i
tan

cos cos cos
cos

1
2 2 21 2 2

    
F
HG

I
KJ

h i
p i

tan sin
cos

1

Example 4 : When the axis of a symmetrical top is stationary and then spin is large and equal to n , a
blow J  is applied perpendiucalar to the axis at a distance d  from the fixed point. Prove that the maximum

angular deflection of the axis is approximately 2 1tan , F
HG

I
KJ

J d
C n

C  being the moment of inertia of the top

about its axis of symmetry.

Solution : The equations of motion of the top are

A C n D sin cos  2   ...(1)

and A m g h E  sin cos   2 2 2 2  d i ...(2)

Let OK  be a line perpendicular to vertical OZ  and axis of symmetry of the top, OC  both. Thus
the angular velocity   is about OK . Initially, , OC  is stationary i e. . coincident with vertical OZ . Thus

OK  coincides with OA  and   is about OA. Thus the value of   before the action of impulse is zero.
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When the blow J  is applied to a point on OC  at a distance d  from vertex (fixed point) O , perpendicular
to its axis.

Since, the change in angular momentum about any line

= sum of moments of the impulses about the same line.

Therefore, by taking moment about OA , we have

A J d  or  
J d
A

Thus initially   0 ,  J d
A ...(3)

Therefore, applying initial conditions to equations (1) and (2), we get

D C n  and E m g h J d
A

 2
2 2

...(4)

with the help of (4), the equations (1) and (2) beocome

A C n C n sin cos  2   ...(5)

and A m g h m g h J d
A

  sin cos   2 2 2 2
2 2   d i ...(6)

Eliminating   between equations (5) and (6), we get

A A
C n

A
m g h J d

A
 cos

sin
sin cos




 2
2

2
2

2 21
2 1

RST
UVW   

b g b g ...(7)

But for maximum deviation   0 , therefore, the equation (7) gives

C n
A

m g h J d
A

2 2 2

2

2 21
2 1


  

cos
sin

cos





b g b g

or
J d

A

C n

A
m g

2 2 2 2 2 2

2
2

2 2

2
2 2

2 2
2

 F
H

I
K

 F
H

I
K

sin

sin cos
sin



 

d i

or
J d

A
C n

A
m gh

2 2 2 2
2 2

2 4
2

 tan sin 

or J d C n A m g h2 2 2 2 2 2

2
1 4

2
 RST

UVWtan . cos 
...(8)
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Since the spin n  is large, therefore, the second term in the bracket on the R.H.S of equation (8)
can be neglected, thus, we get

J d C n2 2 2 2 2

2
 tan 

or C n J dtan
2


or  
F
HG

I
KJ

2 1tan J d
C n

which is the required result.

8.6 Summary

In this unit we have learnt about the motion of a top which has also been defined. The equation of
this motion have been derived along with the equation of energy. The steady motion of this top too has
been considered for the case when the axis of the top continues to make the same angle with origin.
Condition of stability have been discussed when during the motion of the axis of top is (i) vertical (ii) not
vertical.

8.7 Exercise

1. Show that in order that it may be possible for a uniform cone of height h  and vertical angle 2 ,
to spin as a top on its vertex on a rough horizontal plane, it is necessary that

n
g

h
2

2

4

5 4


 tan sin
tan

 


c h

where w n3  .

2. If the top be started when its axis makes an angle 

3  with the upward drawn vertical, so that the

initial spin about its axis is 
A
C

M g h
A

3
, and the angular velocity of its axis in azimuth is

2
3

M g h
A , its angular velocity in the meridian plane being initially zero, show that the inclination

  of its axis to the vertical at any time t  is given by the equation

sec sec  
RST

UVW
1 h t M g h

A

so that the axis continually approaches to the vertical without ever reaching it.
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3. If a top is made by running a thin pin through the centre of a circular dise of radius 3 inches, so that
the length of the pin below the disc is 2 inches, prove that, for steady motion in which the rim does
not touch the ground, the number of revolutins per second about the axis must exceed

80
3 13

4 51
4 a f a f . approx .

4. A top consists of a thin uniform spherical shell of radius a  and centre C and is free to move about
a fixed point O of its surface. The radius OC  makes an angle   with the upward vertical OZ  and

  is the angle between the plane ZOC  and a fixed vertical plane. Initially, , 
    
2

0 2
5

,  ,  n ,

where n
g
n


15
2  is the spin of the top about its axis. Show that subsequently

cos tan 
RST

UVW
h t g

a
2 3

10 .

5. Show tha the vertical pressure of the top on the point of support is equal to its weight when the
inclination of its axis to the vertical in given by

3 2 02 2 2 2 2A m g h n c A m b g h n c a A m g hcos cos     c h
where a  and b  are constants depending on the initial circumstances of motion.

����
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UNIT - 9
Hamilton’s Principle and Principle of Least Action

Structure of the unit
9.1 Introduction

9.2 Hamilton’s Principle and Principle of Least Action

9.3 Distinction between Hamilton’s Principle and Principle of Least Action

9.4 Deduction of Lagrange’s Equations from Hamiltion’s Principle

9.5 Summary

9.6 Exercise

9.1 Introduction

In this unit two important principles of dynamics viz Hamilton’s Principle and the principle of
least action are disscused. A clear distinction between these two principles which is also discussed in the
unit. The Principle due to Hamiltion has been found to be useful in deducting Lagrange’s equations of
motion.

9.2 Hamilton’s Principle and Principle of Least Action
Consider a holonomous dynamical conservative system. Suppose the system to have definite

motion from terminus A to terminus B, which may be called its actual motion. This may be visualised by
particle of mass m  at any point p , whose coordinates at time t  are x y z, ,b g  to move continuously along
the arc of a curve AB so that successive positions of the particle respresent successive configurations of
the system. Let t0  and t1 , be the times at which the configurations are represented by A and B
respectively. Again consider a slighty different motion in which the path is contiguous to the actual path but
having the same terminii, the times at the terminii being the same as for the actual path.

Now, by D’Alembert’s principle, “the reversed effective forces acting at each point of the system
and there external (impressed) forces form a system in equilibium.” Therefore, giving the system a virtual
displacement consistant with the geometrical conditions at time t , we have

X m x x Y m y y Z m z z        b g b g b gm r   0 ...(1)

where X Y Z, ,  are the impressed  forces on the system and m x m y mz, ,  are the effective forces.

But X x Y y Z z V
x

x V
y

y V
z

z V  











      
F
HG

I
KJ   l q ...(2)

where V is the potential function (energy) of the system.

Let x y z, ,b g  be the coordinates of the particle of mass m  in the actual motion and   x y z, ,b g  are
the corresponding coordinates in the displaced path, then we have

  x x x y y y z z z        , , ...(3)
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Similarly, if u v w, ,b g  be the components of velocity of the particle for the actual motion and

  u v w, ,b g  be the corresponding velocity components for the displaced path, then

  u u u v v v w w w        , , ...(4)

Now

  x x d
d t

x x x d
d t

x   b g b g

            
d
d t

x x x d
d t

x x b g b g

          



RST
UVW

d
d t

x x x d x
d t

d x
d t

 b g

            
d
d t

x x x u u b g l q

          
d
d t

x x x u  b g

   x x d
d t

x x x x   b g

similarly,

   y y d
d t

y y y y   b g  and    z z d
d t

z z z z   b g ...(5)

Then

            
RST

UVW   
L
NM

O
QP

m x x y y z z m d
d t

x x d
d t

y y d
d t

z z x x y y z z                   a f a f a f a f k p

      
L
NM

O
QPm d

d t
x x y y z z x x y y z z             a f a f ...(6)

Therefore, with the help of (2) and (6), the equation (1) becomes

      
RST

UVW       V m d
d t

x x y y z z x x y y z z        a f a f 0

Integrating this form t0  to t1 , we
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      V d t m d
d t

x x y y z z x x y y z z d t
t

t

t

t

     
RST

UVW z z
0

1

0

1

0        a f a f

or       V d t m x x y y z z m x x y y z z dt
t

t

t

t

t

t

      z  z
0

1

0

1

0

1

0        a f a f   (6)

But at the terminii, which are fixed

  x y z  0

therefore, m x x y y z z
t

t
       b g

0

1 0

Thus, the equation (6) becomes

   V d t m x x y y z z d t
t

t

t

t

   z z
0

1

0

1

0     b g ...(7)

Now, if T be the kinetic energy of the system,

then,

T m x y z  1
2

2 2 2  c h

      T m x x y y z z     b g ...(8)

with the help of this, the equation (7) become

 V d t T d t
t

t

t

t

 z z
0

1

0

1

0

or  V T d t
t

t

 z a f
0

1

0 or  T V d t
t

t

 z a f
0

1

0

or  L d t
t

t

z
0

1

0 ...(9)

where L T V  , is the Lagrange’s function.

But  L d t L L d t L d t L d t
t

t

t

t

t

t

t

t

     z z zz
0

1

0

1

0

1

0

1

a f

or  L d t L d t
t

t

t

t

z z
0

1

0

1

...(10)
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Hence, (9) becomes.

 L d t
t

t

0

1

0z  ...(11)

We define S L d t
t

t

 z
0

1

, as the Hamilton’s Principal function, then (11) gives

 S  0 ...(12)

This is known as Hamilton’s principle. It states that “if the time from one configuration to another
is prescribed, the principal function S  has a stationary value in the actual path as compared to a
contiguous path i.e. the system will choose that path for which the principal function is stationary.”

Again, If E  be the total energy of the system,

then, E T V 

Therefore, Lagranges function

L T V T E T T E      a f 2

therefore, if E  is constant, then equation (11) gives

 2 0
0

1

T E d t
t

t

 z b g

or  2 0
0

1

T d t
t

t

z ...(13)

We define A T d t
t

t

 z 2
0

1

, as the Hamilton’s characteristic function, then (13) gives

 A  0 ...(14)

This is known as the Principle of Least Action. It states that “if the total energy of a system is
prescribed as it passes from one configuration to another, the action in the actual path is a minimum when
compared with a contiguous path i.e. the system will choose that path for which the action is the least.”

9.3 Distinction between Hamilton’s Principle and Principle of Least Action

In Hamilton’s Principle i.e.  S  0 , the time of description t t1 0  is prescribed (fixed) as the
system moves from one configuration A to the another configuration B, whereas in the Principle of Least
Action i.e.  A  0 , there is no restriction of the time of description t t1 0  but the total energy (sum of
kinetic and potential energies) between the end point, A and B is prescribed (fixed).
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9.4 Deduction of Lagrange’s Equations from Hamilton’s Principle

Consider a holonomous, conservative dynamical system with n  generalised coordinates
   1 2 3, , ,..... n . Let T and V are the kinetic and potential energies of the system and L be the Lagrangian
function defined as L T V  . Since the Lagrangian function L T V  , is a function of    1 2 3, , ,... n

and  ,  ,  ,...    1 2 3 n  at time t , then we have





 

 

 L L L

rr

n

r
rr

n

r 
 
 

1 1


 ...(1)

Now, the Hamilton’s Principle gives,

 S L d t
t

t

 z
0

1

0

or  L d t
t

t

0

1

0z 

or

 

 

 

 
L L dt

r
r

r
r

t

t

 z 
RST

UVW 


0

1

0 (from (1))

or

 

 

 

 
L dt L d t

r
r

t

t

r
r

t

t

z zRST
UVW 

RST
UVW 

0

1

0

1

0


or

 

 

 

 
L dt L d

d t
d t

r
r

t

t

r
r

t

t

z zRST
UVW 

RST
UVW 

0

1

0

1

0 b g ...(2)

Integrating the second integral by parts taking 
d
d t r b g  as the second function, we get




 



 



 
L dt L d

d t
L d t

r
r

t

t

r
r

t

t

r
r

t

t

z  zRST
UVW


L
NM

O
QP 

F
HG

I
KJ

RST
UVW


0

1

0

1

0

1

0 .  .

or

 

 

 

 
L dt d

d t
L d t

r
r

t

t

r
r

t

t

z zRST
UVW 

F
HG

I
KJ

RST
UVW


0

1

0

1

0 .

(the middle term vanishes as all   r  0  at t0  and t1 )

or

 

 

 

 
L d

d t
L dt

r
r

r
r

t

t

 z 
F
HG

I
KJ

L
NM

O
QP

 .
0

1

0
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or
d
d t

L L dt
r r

r
t

t 





 
F
HG

I
KJ 

RST
UVW

L
N
MM

O
Q
PP z

0

1

0 ...(3)

Since the system is a holonomous system, so,        1 2 3, , .... n  are arbitrary and
independent to each other, therefore, the above integral (3) will vanish, if the coefficient of   r  separately
vanishes, that is

d
d t

L L
r r


 


 

F
HG

I
KJ   0, r n 1 2 3, , ,....

which are the Lagrange’s equations of motion for conservative system in terms of Lagrange’s
function.

Illustrative Exmaples :

Example 1 : Show that the Hamilton’s principle function S  for simple harmonic motion in a
straight line is

 



x x t t x x
t t

2
0
2

0 0

0

2

2

  



c h b g
b g

cos

sin

where x x, 0  are the displacements from the centre of force at times t t, 0  respectively..

or

A particle moves in a straight line with central acceleration  x  between two points x0  and x1 in
the prescribed time t t1 0 . Show that Hamilton’s principle function S  is

 



x x t t x x

t t
1
2

0
2

1 0 1 0

1 0

2

2

  



c h b go t
b g

cos

sin

Solution : The equation of simple harmonic motion is

x x  ...(1)

Solution of this equation is

x A t B t cos sin  ...(2)

so that x A t B t0 0 0 cos sin  ...(3)

where A and B are constants

If T  be the kinetic energy per unit mass of the system, then

T x A t B t   
1
2

1
2

2 2
 sin cos   n s

or T A t B t  
  
2

2
sin cosd i ...(4)
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For the simple harmonic motion, the force per unit mass is  x , therefore, if V  be the potential
function, then

  




V
x

x

or V x
1
2

2

 
1
2

2
  A t B tcos sind i ....(5)

Now, the Hamilton’s principle function S  is defined as

S L d t T V d t
t

t

t

t

  z z
0 0

b g

    z    
2

2 2

0

A t B t A t B t d t
t

t

sin cos cos sind i d i{ }

  z  
2

2 2 22 2

0

B A t A B t d t
t

t

c ho tcos sin

  


 
4

2 2 22 2

0

B A t A B t
t

tc hsin cos

    


   
4

2 2 2 2 22 2
0 0B A t t A B t tc h d i d isin sin cos cos

            


   
2

22 2
0 0 0 0B A t t t t A B t t t tc h b g b g b g b gsin cos sin sin

     


  
2

20
2 2

0 0sin cos sint t B A t t A B t tb g c h b g b go t ...(6)

Now, solving equation (2) and (3) for A and B, we get

A
x t x t

B
x t x tsin sin cos cos0 0 0 0   




     
1

0 0sin cos sin cost t t t   

 



A
x t x t

t t
sin sin

sin
0 0

0

 
b g  , B

x t x t
t t





0 0

0

cos cos
sin

 
b g
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B A
t t

x t x t x x t t2 2
2

0
0
2 2

0 0 0
1 2 2 2 


  
sin

cos cos cosb g b go t
  

and

2 1 2 2 22
0

0
2 2

0 0 0A B
t t

x t x t x x t t


   
sin

sin sin sinb g b go t
  

substituting the values of B A t t2 2
0 c h b gsin   and 2 0A B t tsin b g   in (6), we get

S
t t

x t x t x x t t


  



  

2
2 2 2

0
0
2 2

0 0 0sin
cos cos cosb g b go t .

cos sin sin sin sint t x t x t x x t t t t     0 0
2 2

0 0 0 02 2 2b g b gn s b g   




  



   

2
2 2

0
0
2

0 0sin
cos cos sin sin

t t
x t t t t t tb g b g b go t

   x t t t t t t2
0 0 0 02 2cos cos sin sin  b g b go t

   2 0
2

0
2

0x x t t t tcos sinb g b go t 

or S
t t

x t t x t t x x


   



 

2
2

0
0
2

0
2

0 0sin
cos cosb g b g b g

or S
t t

x x t t x x


  





2
2

0

2
0
2

0 0sin
cosb g c h b go t

which is the required result.

Example 2 : A heavy bead of mass m  is freely movable on a smooth circular wire of radius a , which
is made to rotate about the vertical diameter with spin w,  being the angle made by the radius through the
bead at any time with the downwards vertical, prove that the action A is

A ma H
ma

g
a

w d  
RST

UVWz 2
2

2 2

1
22 2

1

2

cos sin  




where H is the Hamiltonian of the system.

Solution : Let O  be the centre of the smooth circular wire of radius a which is made to rotate about
a vertical diameter AB  with spin w . Let P  be the position of the bead of mass m , at time t , such that
 AOP   and distance of P  from the vertical diameter AB  be x . Thus at time t , the particle is moving
on the fixed circular were under the following forces :
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Fig. 9.1

(i) Weight mg  acting vertically downward

(ii) the force m w x m w a2 2 sinc h  in the horizontal direction.

 Hence if w  be the work function of the system, then

w mg a mw x d x
x

  zcos 2

0

     mg a m w xcos 1
2

2 2

     mg a m w acos sin 1
2

2 2 2 ...(1)

Again, if velocity of the bead at P  is a   therefore, if T  be the K.E. of the system, then

T m a
1
2

2 2 ...(2)

Now, the action A T d t
t

t

 z 2
0

1

       z 2
0

1

T d t
d

d
t

t




       z 2 1
2

12 2 2

0

1

. 
m a d







      zm a d2

0

1

 




...(3)

O

P
Q x

a

A

B

mg

mw x2

w


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Since the potential exists, the Hamiltonian H  is equal to sum of the kinetic and the potential
energies, that is

H T V m a mg a m w a    F
H

I
K

1
2

1
2

2 2 2 2 cos sin  

or  cos sin  2
2

2 22 2
  

H
m a

g
a

w ...(4)

Hence, from (3) the action A  is given

A ma H
ma

g
a

w d  
RST

UVWz2
2

2 2

1
22 2

0

1

cos sin  




.

Example 3 : A particle of unit mass moves along OX  under a constant force f  starting from rest at the
origin at time t  0 . If T  and V  are the kinetic and potential energies of the particle, calculate

T V d t
t

z b g
0

0

Evaluate this for the varied motion in which the position of particle is given by

x f t f t t t   
1
2

2
0b g  where  is a constant; and show that the result is in agreement with

Hamilton’s principle. What are the essential features of the varried motion that ensure this agreement?

Solution : The particle moves along OX  with acceleration f  starting from rest, therefore its actual
path is

x f t
1
2

2  so that x f t

Thus, T x f t 
1
2

1
2

2 2 2 ...(1)

Since particle moves from t  0  to t t 0 , therefore end points of the actual motion are O  and

1
2 0

2f t .

The potential V  at a distance x , at time t  is

V f x f f t f t    F
HG

I
KJ  

1
2

1
2

2 2 2
...(2)

Therefore,

T V f t f t f t   FHG
I
KJ 

1
2

1
2

2 2 2 2 2 2
...(3)
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  In actual path,

T V d t f t d t f t
t t

  z zb g
0

2 2

0

2
0
3

0 0 1
3 ...(4)

and the varied path is given by

x f t f t t t f t f t t        
1
2

1
2

1 2 22
0

2
0b g b gm r ...(5)

Putting t  0  and t t 0 , we see that end points of the varied motion are also O  and 
1
2 0

2f t .

Hence end points, of the actual path and the varied path, coincide.

Now, velocity in varied path    1 2 0b g f t f t

Therefore, in varied path

T f t f t f t f t t f t             
1
2

1 2 1
2

1 4 4 2 40
2 2 2 2

0
2 2

0
2 2

0
2a fm r c h c hn s  ...(6)

and potential

V f f t f t t f t f t     L
NM

O
QP      

1
2

1 2 2 1
2

1 2 22
0

2 2 2
0a fm r a f ...(7)

therefore, in the varied path

T V f t f t t f t            
1
2

1 4 4 1 2 4 42 2 2 2 2
0

2 2
0
2c h b go t c h

        
1
2

2 6 4 4 42 2 2 2 2
0

2 2
0
2c h c hf t f t t f t ...(8)

Hence in the varied path

T V d t f t f t t f t d t
t t

         z zb g c h c h
0

2 2 2 2 2
0

2 2
0
3

0

0 0 1
2

2 6 4 4 4

        
L
NM

O
QP

1
2

2 6 4
3

4 4 1
2

2
2

0
3

2 2
0
3 2 2

0
3c h c hf t f t f t

        L
NM

O
QP

1
2

1
3

2 6 4 2 22 2 2 2
0
3c h c h f t

  L
NM

O
QP

1
2

2
3

1
3

2 2
0
3f t
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  F
HG

I
KJ

1
3

1 1
2

2 2
0
3f t ...(9)

which is minimum if 0  and then the minimum value is 
1
3

2
0
3f t , which is the same as in the actual

path. Also we see that when  0 , the varied path coincides with the actual path. Hence the result is in
agreement with Hamilton’s principle.

Example 4 : A particle of unit mass is projected so that its total energy is h  in a field of force of which
the potential energy is  rb g  at a distance r  from the origin. Deduce from the principle of energy and least
action that the differential equation of the path is

c r d r
d

r h r2 2
2

4
F
HG

I
KJ

L
N
MM

O
Q
PP  


 b g .

Solution : Let T  and V  be the kinetic and potential energies of the system and h  be the total energy
then

h T V 

or T h V   h r b g (since V r  b g  is given)

or
1
2

2V h r   b g , where V  is the velocity

or V h r 2
1

2 b gm r ...(1)

Now, the action A T d t
t

t

 z 2
0

1

 z 2 1
2

2

0

1

. V d t
t

t

 z V d s
t

t

0

1

V d s
d t


RST

UVW

 z2
1

2

0

1

h r d s
t

t

 b gm r 
d s
d r

r d
d r

 
F
HG

I
KJ

R
S|
T|

U
V|
W|

R
S|
T|

U
V|
W|

1 2
2

1
2



or A h r r d
d r

d r
t

t

  
F
HG

I
KJ

R
S|
T|

U
V|
W|

L

N
MMM

O

Q
PPP

z2 1
1

2 2
2

1
2

0

1


b gm r ...(2)
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or A f r d r
t

t

 z2 1

0

1

, c h ...(3)

where f r h r r d
dr

, 
1 1

2 2
2

1
2

1c h b gm r   F
HG

I
KJ

RS|T|
UV|W|

Since   is absent from f , therefore, we have




f c1   (constant) , where 
1 

d
dr

or



 1

1
2 2 1

1
21h r r c L

NM
O
QP b gm r m r

or h r r r c   


  b gm r m r c h1
2 2 2

1
2 2 11

2
1 2.

or h r r

r dr
d

c

 FHG
I
KJ

RS|T|
UV|W|





b gm r1
2

2

2
2

1
2

or c r dr
d

r h r2 2
2

4 FHG
I
KJ

RS|T|
UV|W|
 


 b gm r

which is the required equation.

9.5 Summary

In this unit we have derived two important principles of dynamics viz Hamilton’s principle and
principle of least action. We have also discussed the important distinction between the two principles. The
usefulness of the Hamilton’s principle has been emphasized by deriving Lagrange’s equations using Hamiltin’s
principle.

9.6 Exercise
1. State and prove the principle of least action for a conservation holonomic system.

2. A particle moves in a plane curve, under the central acceleration w r2 , between two fixed

points x y0 0,b g  and x y1 1,b g  in the prescribed time t t1 0 ; prove that Hamilton’s principle
function S  is

w
w t t

x y x y w t t x x y y
2

2
1 0

1
2

1
2

0
2

0
2

1 0 1 0 1 0sin
cos


     b g c h b g b g

3. A projectile is launched in a vertical plane with a velocity whose horizontal and vertical
components are Vx  and Vy  respectively. Calculate the value of the integral,
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L d t
t

0

0z  , where t
n
w0 


Evaluate this integral for the varied path given by the equations

x V tx , y V t g t w ty  
1
2

2 sin ,

where  is a small constant quantity..

Show that the integral L d t
t

0

0z  is greater for the varied path than, that for the actual path, but

the result is in agreement with Hamilton’s principle.

4. A mass m  attached to a coil spring having a constant k , oscillates along a smooth horizonatal
line with a motion given by

x A w t sin , where w
k
m

 .

Assuming a varied path represented by

x A wt wt sin sin 2 .

Where  is a small constant quantity, show that for the actual path taken over the integral

L d t
t

t
w





z 
0

2

0



and that for the varied path this integral is equal to 
3
8

2m w  .

5. A particle of unit mass is projected so that its total energy is h , in a field of a force is a which the
potential energy in  rb g  at a distance r  from the origin. Find the differential equation of
the path.

����
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10.0 Objective

In this unit, our object is to be aware about the fundamental propeties of a fluid and approches to
solve hydrodynamical problems. We also study about path line, stream line and function in it.

10.1 Introduction

In general, the matter is classified in two categories viz solids and fluids. A solid may be rigid or
elastic. Here we will not go into further classfication of solids but keep ourselves concerned  with the fluids.
The fluid differs from solid in that it yields to a shearing stress and cannot be in equilibrium under such a
stress. This stress leads to the deformation of the fluid and culminates into a flow. The properties of the
fluids are directly related to the molecular structure and to the nature of the forces between molecules.

Hydrodynamics or Fluid dynamics is that branch of science which is concerned about the study of
the motion of fluids or that of bodies in contact with the fluid.

10.2 Characteristics of a fluid
The fluids are divided in two categories viz liquids and gases. this classification is based on the

binding intermolicular force existing in the fluids. In case of liquids, this is such that the volume of the liquids
remains unchanged to a great extent, while the shape alters to take the shape of the container. In case of the
gases, this intermolecular force is too small resulting in change in volume and shape depending on the
capacity and shape of the container. The property by virtue of which the volume of the fluid changes is
called the compressibility. In general the liquids are regarded as incompressible fluids while gases are
regarded as compressible fluids. Real fluids have five physical characteristics; These are pressure,
density, volume, termperature and viscosity.

10.2.1 Denstiy :

  at a point may be defined as








Lim m
vv 0

where  v  is the volume element around a point in the fluid and  m  is the mass of the fluid
contained within  v . The specific volume of a fluid is defind as the volume per unit mass and it is clearly
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the reciprocal of the density.

10.2.2 Pressure :

When a fluid is contained in a vessel, it exerts a force at each point of the inner side of the vessel.
Such a force per unit area is called pressure. Mathematically, the pressure P at any point may be defined as

p = Lim F
AA


 0

where  A  is an elementry area around the point and  F  is the normal force due to fluid on  A .

10.2.3 Compressibility :

The compressibility of a fluid is defined as the variation of the density, with the variation of
pressure. Mathematically

dp dp k d

 





   where k is called the Bulk Modulus of the fluid.

10.2.4 Viscosity :

It is common experiance that when two solids are in contact and one solid moves over another,
there is a property which prevents the slipping. This property is known as friction. A corresponding
property of the fluid is called viscosity. Viscosity is that property of fluids as a result of which they present
some resistance to sharing i.e. sliding movement of one particle past or near another. It was observed that
viscous forces vary directly with the relative velocity of sliding between adjacent particles or parts of a
fluid. Hance the shear stress is proportional to the velocity gradient, that is

  
du
dy

du
dy

 

Where   is the shear stress and  , the constant of proportionality is called the coefficient of
viscosity of the fluid. This equation is called Newton’s law of viscosity. The ratio of the coefficient of
viscosity   to the density   of the fluid is known as the coefficient of kinematic viscosity and represented

as  
 . The viscosity of a fluid is practically independent of pressure and observed to be dependent

on temperature only.

10.3 Kinds of Fluid
The fluids are classified in two forms viz Ideal (perfect) fluid and Real (Actual) fluid.

10.3.1 Ideal Fluid :

The fluids which have no viscosity, surface tension and incompressibility are known as Ideal fluids.
In ideal fluid, there are no tangential forces between the adjoining layers of the fluid but only normal
stresses are present. The pressure at every point of an ideal fluid is equal in all directions, whether the fluid
be at rest or in motion. This theory defines some concepts of the flow such as wave motion, the lift and the
induced drag of an airfoil etc, but it fails to define the phenomena such as skinfriction, drag of a body etc
Ideals fluids also known as perfect fluids or Inviscid fluids.

10.3.2 Real Fluid :

The fluid which actually exist in nature are considered real fluid. These fluids possess all the
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properties of fluids i.e. viscosity, pressure, density, volume and temperature are present. Real fluids are
further classified as follows.

(i) Incompressible fluid :

If the density of the fluid is constant then it is called incompressible fluid. In real liquid (e.g. oil,
water, mercury, etc.) the density is not exactly constant, but considered almost constant. Generally water
is considered as an incompressible fluid.

(ii) Compressible Fluid :

A fluid in which density is not constant but it is assumed that density is a function of hydrostatic
pressure is considered as a compressible fluid. Generally air is considered as compressible fluid.

(iii) Newtonian Fluid :

Fluid which obeys Newton’s law of viscosity is classified as Newtonian fluid.

(iv) Non-Newtonian Fluid :

Fluids which donot obey Newton’s law of viscosity (relation between stress and rate of strain) are
known as Non-Newtonian fluid. Some Non-Newtonian fluids are power law fluid, prandtl fluid, oldroyd
fluid, walters fluid depending on the relation between stress and rate of strain.

(v) Isotropic Fluid :

Fluid in which the relation between the components of stress and rate of strain remains unchanged
by a rotation of the coordinate system are called Isotropic fluid.

10.4 Kinds of Fluid Flow

Fluid flow may be characterized in the following kinds :

10.4.1 Steady Flow :

The fluid flow in which the fluid characteristics, i.e. velocity, density, pressure, temperature are
independent of time is called steady flow.

In the steady flow, fluid particles move along the stream line and the position of stream line does
not change with the time.

(About the stream lines we will know more later.)

10.4.2 Unsteady flow :

The fluid flow in which all physical properties of the fluid in the motion vary with time is known as
unsteady flow.

10.4.3 Laminar flow :

A flow, in which each fluid particle traces out a definite curve and the curves traced out by any two
different fluid particles do not intersect, is said to be laminar flow. So laminar flow is a well ordered flow in
which layers are assumed to slide over one another in similar fashion.

10.4.4 Turbulent flow :

A flow, in which each fluid particle does not trace out a definite curve and the curves traced  out by
fluid particles intersects, is said to be turbulent. So turbulent flow is an irregular nature of flow in which
various layers move in disorderly manner.
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10.4.5 Uniform Flow :

A flow, in which the fluid particles possess equal velocities at each section of the channel or pipe is
called uniform.

10.4.6 Non-Uniform Flows :

A flow, in which the fluid particles possess different velocities at each section of the channel or pipe
is called non-uniform. These terms are usually used in connection with flow in channels.

10.4.7 Rotational Flow :

A flow, in which the fluid particles go on rotating about their own axes, while flowing, is said to be
rotational.

10.4.8 Irrotational Flow :

A flow, in which the fluid particles do not rotate about their own axes, while flowing, is said to be
irrotational.

10.4.9 Barotropic Flow :

A flow is said to be barotropic, when the pressure is a function of the density.

10.5 Description of fluid motion

A flow field is the description of the flow of a fluid by representing all fundamental flow properties
as a function of position in space and time. Here we shall study only the kinematics of the flow field. The
fluid motion can be studied through the following two methods

1. Lagrange’s Method

2. Euler’s Method

Both these methods are due to Euler.

10.5.1 Lagrange’s Method

In this motion, any fluid particle is selected and its motion is studied. In other words we try to study
the history of each fluid particle to deal with the position, velocity and acceleration of the individual par-
ticles.

Let a particle be initially at a point Po with cartesian coordinates (a, b, c) move to another point P
with coordinates (x, y, z) after the lapse of time t . Clearly these coordinates at P will depend on the initial
position and the lapsed time, so that

x f a b c t ( , , , )  ; y g a b c t ( , , , ) ; z h a b c t ( , , , ) .

The function f , g  and h  are continous function of a b c, ,  and t  in most problems and they
possess partial differential coefficients with respect to a b c, ,  and t . This method enables us to have the
components of velocity and acceleration as

x f
t



  ; y g

t


  ; z h

t




x f
t





2

2  ; y g
t





2

2  ; z h
t





2

2
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The fundamental equation of motion in Lagrangian form are non-linear and it leads to many
difficulties while solving a problem. This method is useful in some special refrences such as certain one-
dimensional problems. Generally it is not as conveniant and fruitful as the Euler’s method.

10.5.2 Euler’s Method

In this method, we fix a point in space and study the motion of fluid particles as they pass through
this point. In other words, the consideration is given to velocities and acceleration of different particles at
a particular point rather than the variation in velocities and accerlerations of particle along their various
paths.

In this method. if the velocity components are u v,  and w  in the directions of axes at the point
x y z, ,b g at time t  then u v w, ,  are the functions of the position and time.

10.6 Relationship between the Lagrangian and Eulerian method

To establish relationship between these two methods, we investigate a relation between the
particle parameters and space parameters.

10.6.1 Lagrangian to Eulerian :

Let   be some physical quantity involving Lagrangian description

  a b c t, , ,b g ... (1)

Here we want to express a b c, ,  in terms of the coordinates x y z, ,  of a point in the space. In
Lagrangian method, it is defind as

x f a b c t 1 , , ,b g  ; y f a b c t 2 , , ,b g  ; z f a b c t 3 , , ,b g ...(2)

On solving these relations, we obtain

a g x y z t 1 , , ,b g  ; b g x y z t 2 , , ,b g  ; c g x y z t 3 , , ,b g ...(3)

Using (3) in (1), we get

  g x y z t g x y z t g x y z t1 2 3, , , , , , , , , , ,b g b g b g ...(4)

Which express   in terms of Euler’s description

10.6.2 Eulerian to Lagrangian :

Let   be some physical quantity involving Euler’s description

  x y z t, , ,b g ...(5)

Let u v w, ,  are the velocity components at the point x y z, ,b g  at any time t , which is defined as

u F x y z t 1 , , ,b g ; v F x y z t 2 , , ,b g  ; w F x y z t 3 , , ,b g ...(6)

We know that in Lagrangian method,

u x
t



 , v y

t


 , w z

t


 ...(7)
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Where x y z, ,  are function of the variables a b c, ,  and t .

Using (7) in (6), the velocity components of a fluid particle is given by




x
t

F x y z t 1 , , ,b g  ; 



y
t

F x y z t 2 , , ,b g  ; 



z
t

F x y z t 3 , , ,b g ...(8)

On integrating, we obtain

x f x y z t 1 0 0 0, , ,b g ; y f x y z t 2 0 0 0, , ,b g ; z f x y z t 3 0 0 0, , ,b g ...(9)

Where x y z0 0 0, ,  are taken as initial coordinates of the fluid particle. Choosing the particle
parameters a b c, ,  equal to x y z0 0 0, ,  respectively, then

  f a b c t f a b c t f a b c t1 2 3, , , , , , , ; , , ,b g b g b g
Which express   in terms of Lagrangian description.

10.7 Velocity of a fluid Particle

Le P and Q be the positions of the fluid particle at any time t  and t t  with respect to the fixed
point O such that

OP r
  

  and OQ r r
   

  

Then the velocity q


 of the fluid particle at P is defind as

q Lim
r r r

t
d r
d tt





  



FH IK 






0

If r xi yj zk

      then

q dx
dt

i dy
dt

j dz
dt

k ui vj wk

          

Hence u
dx
dt

 , v
dy
dt

   and w dz
dt

 . Fig. 10.1

10.8 The Material Derivative

Let f r t,b g  represent a flow parameter i.e. velocity, density etc at any instant t . If in a small

time  t , the particle moves to a new position and flow parameter is represented by f r r t t  ,b g , then

  r f r r t t f r t   , ,b g b g
This may be expressed in two parts, one as a change due to local variation with time of the fluid

property at a given position and other due to change of position at a given time. Hence

    f f r r t t f r t t f r t t f r t       , , , ,b g b g b g b g

o

P

Q

r

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    


f r f r t t t
t

f r t   , ,a f a f








 


f
t

r
t

f r t t
t

f r t   , ,a f a f

Lt f
t

Lt r
t

f r t t Lt
t

f r t
t t t  









  

  
RST

UVW0 0 0
. , ,a f a f

df
dt

f
t

d r
dt

f  





.

df
dt

f
t

q f  FH IK



.

Hence
d
dt t

q  FH IK



. . This is known as material derivative or differential following the motion

of the fluid. This implies that we are calculating the rate of change of some quantities associated with the
same fluid particle as it moves about. In cartesian coordinate system, this material derivative is
expressed as

d
dt t

u
x

v
y

w
z

   










  where u v w, ,  are the velocity components of a fluid paritcle at

x y z, ,b g  at time t  in the direction of the axes.

If a ax y,  and az  are the acceleration components of the fluid particle, then acceleration in vector

notation is a d q
d t

q
t

q q


 
 

   FH IK



.

and hence a du
dx

u
t

u u
x

v u
y

w u
zx



    










 ,

a dv
dy

v
t

u v
x

v v
y

w v
zy


    











 ,

a dw
dz

w
t

u w
x

v w
y

w w
zz


    











 .

10.9 Stream Lines

A stream line is a curve drawn in the fluid such that at any instant of time the tangent at point is in the
direction of motion of the fluid at that point. In other words, the stream lines are imaginary lines in the fluid
such that the tangent at each point represents the direction of the velocity. Stream lines are also called lines
of flow.

If d r


 be the element of arc length along a stream line and q


 be the fluid velocity then the
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directions of tangent and the velocity are parallel. So the equation of stream line is given by the

relation q d r
 
  0

      d x i d y j d z k ui v j w k     e j e j 0

 

  i j k
dx dy dz
u v w

0

      wdy v dz i wdx udz j v dx udy kb g b g b g   0

Hence wdy v dz  0

wdx u dz  0

v dx u dy  0

From these, we arrive at

dx
u

dy
v

dw
z

 

which is the differential equation of stream lines in cartesian, coordinates, where u v w, ,  are the
velocity components in the direction of three axes at any point x y z, ,b g .

Thus the velocity of the fluid at any point on the stream line is along the tangent to it at the point.

10.9.1 Stagnation Point

The two stream lines cannot intersect except at a point where the velocity is zero and that point is
called the stagnation point.

10.9.2 Stream filament

If stream lines are drawn through every point of a closed curve then we get a stream tube. A stream
tube whose cross section is a curve of infinitesimal dimension, is called a stream filament.

In the steady motion, the product of the speed and cross-section is constant along stream filament
of a liquid. The stream filament is widest at places where the speed is least and is narrowest at place where
the speed is greatest.

10.10 Path lines

A path line is the curve or trajectory along which a particular fluid particle travels during its motion.
The differential equation of path lines are

d r
d t

q






and
dx
dt

u  ; 
dy
dt

v  ; 
dz
dt

w
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where q ui vj wk

      and r xi yj zk


     .

10.11 Difference between the Stream line and Path line

The stream lines indicate how each particle moves at a given instant while the path lines indicate
how a given particle moves at each instant. In case of steady motion, the stream lines and the path line
become identical.

10.12 Surfaces Orthogonal to Stream Lines

We know that the curve given by differential equations

dx
u

dy
v

dz
w

  ...(1)

orthogonally cut the surfaces whose differential equation is

u dx v dy wdz   0 ...(2)

If the curve (1) represents the stream line, then the surface (2) is cut orthogonally by the stream line
if u dx v dy w dz b g  is integrable. To find the integrability condition for equation (2), let

d u dx v dy wdz


  
1 b g

or
 


 


 
 x

dx
y

dy
z

dz udx v dy wdz    
1 b g

 u
x


 
  ; v

y
 

 
  ; w

z
 

 


Hence







 
 

 


 



 
 

 


 


w
y

v
z y z y z y z z y

    
2 2

or






 


 


 


 


w
y

v
z y z z y

  . ...(3)

Similarly






 


 


 


 


u
z

w
x z x x z

   . ...(4)







 


 


 


 


v
x

u
y x y y x

  . . ...(5)

On multiplying (3), (4) and (5) by u v,  and w  respectively then adding, we obtain

u w
y

v
z

v u
z

w
x

w v
x

u
y




















F
HG

I
KJ  

F
HG

I
KJ  

F
HG

I
KJ  0

Which is the condition that such orthogonal surfaces exist.
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10.13 Two dimensional motion

When the fluid motion is such that it is same in all planes parallel to a fixed plane and also there is
no velocity parallel to the fixed line normal to fixed plane, it is called two dimensional motion. Generally the
fixed plane is taken as xy-plane and the fixed line is taken as z-axis. Hence in two diamensional motion, the
velocity components are only u  and v  with w  0 , where u  and v  are functions of x y,  and t  only..

10.14 Stream function in two diamensions

Let u  and v  be the velocity components in two diamensional motion, then the differential equation
of the stream lines is

dx
u

dy
v

v dx u dy    0 ...(1)

Which is the differential equation of the form

M dx N dy  0

It is an exact differential equation if 






M
y

N
x

 .

ie. 






v
y

u
x

 

  






u
x

v
y

0 ...(2)

which is the equation of continuity for the incompressible fluid in two dimensions. Hence, eqn (1)

is exact, say d  then, v dx udy d
x

dx
y

dy    






0 ...(3)

So that u
y





 and v
x





...(4)

which leads to d  0

or    constant

This function   is known as the stream function or current function. The stream function is con-
stant along a stream line and consequantly equation of stream lines are obtained from   c , by giving
arbitrary values to the constant c.

10.15 Physical significance of stream function

Let A be any fixed point and P is any orbitrary point in the plane.

ABP and ACP be two of possible curves joining A and P. These curves

bound a region R between them and we assume that no fluid can either

be created nor distroyed in R. If the fluid motion is from right to left then

fig. 10.2

C
R

B

A

P
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the rate at which the fluid flows in R across ABP is equal to the rate at which the fluid flows out of R from
right to left across ACP. Thus the flux across ACP is  equal to the flux across any curve joining A and P. For
any fixed point A, the flux solely depends on the position of P  and time t . Thus flux is called the stream
function and is denoted by  . The stream function   is a function of the position and time. The difference
of two values of the current function at two points in the plane represents the flow across any line joining
the two point.

10.16 Velocity in terms of stream function

Let  s  be an element of an arc AB Only the velocity perpendicular to  s  will contribute to two
flux across  s . The velocity along  s  contributes nothing

fig. 10.3

  Fluid across the element of arc  s

    a f  normal velocity   s

  normal velocity =   





 


b g
s s

Hence normal velocity  


Lt
s ss





0

.

Where   and    are the values of stream function at A and B respectively..

Velocity in terms of stream function in cartesian coordinate

If u  and v  are components of velocity at the point P x y,b g .

D

fig. 10.4

Velocity from right to left across  y

A

B

 s

 x

 y

v

u
x y,b g

P

x

y
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   


u Lim
y yy





0   u

y



and velocity from right to left across  x

  


v Lim
x xx





0   v

x



Hence u
y





; v
x





 ;  are the velocity components in terms of stream function in cartesian

coordiate as seen earlier.

If qr  and q  be the velocity components in the  directions of r  and   respectively then velocity
form right to left acorss r qr  

 


Lim
r r 


 


0

1

and velocity from right to left across  r

 q 

 


Lim
r rr





0     fig. 10.5

Thus,. q rr  
1 

   and q r



  are the velocity components in terms of stream function in

polar coordinate.

Self Learning exercise :

1. Fill in the blanks in following

(a) Fluid which obeys Newton’s law of viscosity in known as ...............

(b) Fluid in which density is not constant is known as .............

(c) The fluid flow in which all physical properties of the fluid in the motion vary with the time is
      known as ............

(d) The ratio of the coefficient of viscosity to the density of the fluid is known as the
      coefficient of ...................

(e) Generally air is considered as ............. fluid.

2. A flow, in which the fluid particle possess different velocity at each section of the channel is
known as

(a) uniform flow (b) non-uniform flow

(c) unsteady flow (d) barotropic flow

XO

q qr

P r,b gr



 

Initial Line
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3. In which approach the fluid particle is selected and studied its motion?

(a) Lagrangian approch (b) Eulerian approch

(c) Both (d) None of these

4. In which method, a point is fixed in space and study the motion of fluid particle as they pass
through the point?

(a) Lagrange method (b) Euler’s method

(c) In both methods (d) None of these

5. In the stream line the direction of tangent and velocity are

(a) perpendicullar (b) parallel

(c) opposite (d) not defined

6. The stream line and path lines are same if the flow motion is

(a) unsteady (b) steady

(c) turbulent (d) of any type

7. Write down the velocity components in terms of stream function in polar coordinates of any
fluid motion.

8. Find the equation of the stream line for the flow where u x   and v y .

9. Define stream function and its physical significance.

10. Determine the acceleration of a fluid particle of the flow field

q xy t i x y t j x y z k

  2 2  

Example 1 : For a two-dimensional flow the velocities at a point in the fluid may be expressed in the
Eulerian coordinates by

u x y t   2  and v y t 2

Determine the Lagrange coordinate as function of the initial position x0  and y0  and the time t .

Solution : Given u x y t   2  and v y t 2 ...(1)

then u dx
dt

x y t    2  and v
dy
dt

y t  2 ...(2)

or Dx x y t   2    D x y t1 2a f ...(3)

and Dy y t 2   D y t2b g ...(4)

where D d
dt

 .
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From eqn (4) we have

y
D

t

1

2b g

y C e tt  1
2 1

4
2 1b g ...(5)

and using (5) in (3) we have

D x C e t tt    1 1
4

2 1 21
2a f a f

or D x C e tt   1 1
4

6 11
2b g b g

or x C e C e tt t   1
2

2
1
4

6 5a f ...(6)

 t  0 ; x x 0 ; y y 0

From eqn (5) y C0 1
1
4

     C y1 0
1
4

and from eqn (6) x y C0 0 2
1
4

5
4

       C x y2 0 0 1

Hence x x y e y e tt t    F
H

I
K  0 0 0

21 1
4

1
4

6 5b g a f

y y e tt F
HG

I
KJ  0

21
4

1
4

2 1b g

Where, the Lagrangian system is the function of the initial position x0 , y0  and the time t .

Example 2 : The velocity components for a two dimensional flow system can be given in the Eulerian
system by

u x y t  2 2 3  ; v x y t  
1
2

Find the displacement of a fluid particle in the Lagrangian system.

Solution : The velocities may be expressed in terms of the displacement as

u dx
dt

x y t   2 2 3    D x y t2 2 3b g ...(1)

v dy
dt

x y   
1
2

   D y x t1
2

a f ...(2)
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On eliminating x  from (1) and (2), we have

D D y t  3 2 1
2b g

    y C C e t tt
1 2

3 27
18

1
3 ...(3)

Substituting the value of y  in the equation (2), we have

x C C e t tt     1 2
3 22 1

3
7
9

7
18 ...(4)

The arbitrary constants C1  and C2  are determined by using the initial condtions :

x x 0 , y y 0  at t  0 , we obtain

y C C0 1 2  ; x C C0 1 22 7
18

   

Hence C x y1 0 0
1
3

2 7
18

   F
H

I
K

C x y2 0 0
1
3

7
18

  F
HG

I
KJ ...(5)

Using (5) in (3) and (4), we have

x x y x y e t tt  L
NM

O
QP   L

NM
O
QP   

1
3

2 7
18

2
3

7
18

1
3

7
9

7
180 0 0 0

3 2

and y x y x y e t tt   L
NM

O
QP   L

NM
O
QP  

1
3

2 7
18

1
3

7
18

7
18

1
30 0 0 0

3 2

which are the required displacements x  and y  in the Lagrangian system where x0 , y0  are initial
position and the time t .

Example 3 : Find the equation of the stream lines for the flow q xi yj

  

Solution : By the definition of the stream lines, we have

q d r
 
  0

or xi yj dx i dy j      c h c h 0

  x dy y dx kb g  0

  x dy y dx 0

 
dx

x
dy
y
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on solving

xy c

which represents the equation of stream line.

Example 4 : Find the equation of the stream lines passing through the point (1, 1, 1) for an

incompressible flow q xi yj zk

  2    .

Solution : Given q xi yj zk ui vj wk

     2      

then u x 2 ; v y   and w z 

The differential equation of the stream lines are

dx
x

dy
y

dz
z2





 ...(1)

Taking the first two members of (1), we obtain

xy C2
1 ...(2)

Similary on taking first and third member of (1), we have

dx
x

dz
z

 2

xz C2
2 ...(3)

Where C1  and C2  are integration constants.

The stream lines are passing through point 1 1 1, ,a fthen

C C1 21 

Hence the required stream lines are

xy2 1  and xz2 1

Example 5 : Given u Wy  , v Wx  and w  0 : show that the surfaces intersecting the stream line
orthogonally exist and are the planes through z-axis.

Solution : The diffrential equation of stream line

are
dx
Wy

dy
Wx

dz


 
0 ...(1)

  Wx dx Wydy 0 and dz  0

or x dx y dy  0  and dz  0

On integrating

x y C2 2
1   and z C 2 ...(2)
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Hence the stream line are circles given by the intersection of surfaces (2).

Now, the surfaces which cut the stream lines orthogonally are

u dx v dy wdz   0

i.e.    Wy dx Wx dy dz0 0.

or
dx
x

dy
y

  0

On integrating

x
y

c  x cy

which represents a plane through z-axis and cuts the stream line (2) orthogonally.

Example 6 : The velocity components of fluid are given by u
c y
r

 
2

2 , v c x
r


2

2  and w  0 where r

distance from z-axis, find the surfaces which are orthogonal to stream line, the liquid being homogenous.

Solution : The differential equation of stream lines

are
dx
u

dy
v

dz
w

 

i.e.
dx

c y r
dy

c x r
dz


 2 2 2 2 0/ /

or


 
dx
y

dy
x

dz
0

which gives x y C2 2
1   and z C 2

The sufraces which cut the stream line orthogonally, are given by

u dx v dy wdz   0

i.e.







c y

x y
dx c x

x y
dy

2

2 2

2

2 2 0

   
dx
x

dy
y

0

 
y
x

c3  y c x3

The curve y c x 3  gives the surfaces which are othogonal to the stream lines x y c2 2
1   and

z c 2 .
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Example 7 : The velocity field at a point in fluid is given as q
x
t

i yj o k

    .  , obtain path lines.

Solution : The differential equation of path lines are given by

q d r
dt

dx
dt

i dy
dt

j dz
dt

k x
t

i yj o k




           . 

or
dx
dt

x
t

dx
x

dt
t

  

   
x
t

c x c t1 1

dy
dt

y dy
y

dt y c et     2  and dz z c  0 3 .

Hence the path lines are

x c t 1 ; y c et 2  and z c 3

Example 8 : Determine the stream line if the velocity of an incompressible fluid at the point x y z, ,b g  is
given by

3 3 3
5 5

2 2

5
x z
r

yz
r

z r
r

, , F
HG

I
KJ

where r x y z2 2 2 2  

Solution : Given that u
xz

r


3
5 , v

yz
r


3

5  and w
z r

r


3 2 2

5  then the differential equation of the

stream line are

dx
u

dy
v

dz
w

 

i.e.

dx
xz
r

dy
yz

r

dz
z r

r

3 3 3
5 5

2 2

5

 
c h

or
dx
xz

dy
yz

dz
z r3 3 3 2 2 
c h ...(1)

Taking the first two member of (1), we have

y dx
x y z

x dy
xy z

dx
x

dy
y3 3

  
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 x c y1 ...(2)

Now from (1), we have

dx
xz

dy
yz

dz
z r

x dx y dy z dz
x z y z z zr3 3 3 3 3 32 2 2 2 2 2 




 
  c h

       
 
  

x dx y dy z dz
z x y z r z3 2 2 2 2c h

       
 
 

x dx y dy z dz
z x y z2 2 2 2c h ...(3)

Now from (3), we have

dx
xz

x dx y dy z dz
z x y z3 2 2 2 2

 
 c h

 
 
 

2
3

1
2

2
2 2 2

dx
x

x dx y dy z dz
x y z

.
a f
c h

On integrating

2
3

1
2

2 2 2
2log log logx x y z C   c h

 x c
2

3
2

x y z2 2 2
1

2 c h ...(4)

Hence the required stream lines are the curves of intersection of curves. x c y 1  and

x c x y z
2

3
2

2 2 2
1

2  c h .

Example 9 : Find the stream lines and paths of the particles when

 u x
t


1b g , v y

t


1b g , w z
t


1b g

Solution : Stream lines are given by

dx
u

dy
v

dz
w

 










dx
x t

dy
y t

dz
z t/ / /1 1 1b g b g b g

or   
dx
x

dy
y

dz
z ...(1)
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Taking the first two members of (1), 
dx
x

dy
y

x
y

c   1  and on taking the first and third members

of (1), 
dx
x

dz
z

x
z

c   2  Hence the required stream lines are given by the intersection of curves x c y 1

and x c z 2 .

The p  ath of the particles (Path line) are given by

  


 


   u dx
dt

x
t

dx
x

dt
t

x t c
1 1

1 3a f a f a flog log log

  x c t3 1b g

similarly v dy
dt

y
t

dy
y

dt
t

y c t 


 


  
1 1

14b g b g b g

and z c t 5 1b g
Hence the required path of the fluid particles are given by x c t 3 1b g ; y c t 4 1b g ;

z c t 5 1b g .

Example 10 : Find the stream lines and path lines of the particles of the velocity field.

u x
t


1b g , v y  and w  0

Solution : Given that

u x
t


1  ; v y  ; w  0 ...(1)

Stream line :

The differential equation of the stream lines are

dx
u

dy
v

dz
w

 

i.e.
dx

x t
dy
y

dz
/ 1 0

 b g ...(2)

On integrating

1 t dx
x

dy
y

b g.  and dz  0

   1 1t x y ca f log log log  and z c 2

or y c x t 
1

1b g  and z c 2
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Hence in the plane z c 2 , the stream lines are y c x t 
1

1b g .

Path Line :

The path lines are given by

u dx
dt

x
t

dx
x

dt
t

x c t 


 


  
1 1

13b g b g b g

v dx
dt

y dy
y

dt y c et      4

w dz
dt

dz z c     0 0 5

Hence the path lines are

x c t 3 1b g ; y c et 4  and z c 5 .

Example 11 : A velocity field is given by q xi y t j


    b g . Find the stream function and the stream

line for this field at t  2 .

Solution : Given that the velocity field q xi y t j


    b g  then u x   and v y t  .

We know that

u
y

x   

 ...(1)

and v
x

y t  

 ...(2)

By integrating (1) with respect to y , we have

  xy f x t,b g ...(3)

or




x

y f
x

y t   

 



f
x

t

or f x t xt g t,b g b g  ...(4)

Using (4) in (3) we have

   xy xt g tb g
If t  2  ;    xy x g2 2b g  g 2b g   constant
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The stream lines are given by    constant

therefore x y  2b g  constant

which are rectangular hyperbolas.

Example 12 : Find the stream function  x y t, ,b g  for the given velocity field u t   and v x .

Solution : We know that

u
y

 

  and v x





Then here given that u t   and v x

      




y

t y t f x t  ,b g ...(1)

 




x

f
x ...(2)

Also given that

v
x

x 

 ...(3)

From (2) and (3) we have




f
x

x f x g t   
1
2

2 b g ...(4)

Using (4) in (1) we have

     y t x g t1
2

2 b g
Which in the required stream function.

Example 13 : If u xy 2  and v a x y  2 2 2c h  are the velocity components of a fluid motion, then
find the stream function.

Solution : By the definition of stream function, we know that

u
y

 

  and v

x




Here given that u xy 2  and v a x y  2 2 2c h

so

 y

xy 2 ...(1)
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and

 x

a x y  2 2 2
...(2)

Integrating (1) with respect to y , we have

   xy f x t2 ,b g ...(3)

Deffrentiating (3), w.r. to x , we have





x

y f
x

  2
...(4)

Using (2) in (4) we obtain




f
x

a x 2 2

On integrating w.r. to x , we have

f x t a x x g t,b g b g 
F
HG

I
KJ 

2
3

3

which in the required stream function.

10.17 Summary

In this unit, we studied about charateristics of a fluid, kinds of fluids, kinds of fluid flow approches
to solve hydrodynamical problems. We also studied about stream line, path line and stream function in two
dimensional flow. Now we are in position to study the equation of continuity in various coordinate systems.

10.18 Answers to self Learning exercise

(1) (a) Newtonian Fluid

(b) Compressible Fluid

(c) Unsteady Flow

(d) Kinematic Viscosity

(e)  Compressible

(2) (b) Non Uniform Flow

(3) (a) Lagrangian Approch

(4) (b) Euler’s Method

(5) (b) parallel

(6) (b) steady

(7) q
rr  
1 
  and  q r






(8) xy   constant
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(9) See text

(10) a xy xy t x y t i

  2 4 3 2 22c h     x y x y t x yt j2 2 3 4 22c h     xy z x yz t x y z k3 3 2 2c h  .

10.19 Exercise
1. The velocity components in two dimensional flow system in Eulerian system are given by

u x y t  b g 2  ; v x y t  b g
The find the displacment of a fluid particle in Lagrangian system

Ans.

x c c e t t

y c c e t t

c x y

c x y

x x y y t

t

t

    

   

   L
NM

O
QP

  L
NM

O
QP

  

L

N

MMMMMMMMMMMM

O

Q

PPPPPPPPPPPP

1 2
2 2

1 2
2 2

1 0 0

2 0 0

0 0

3
4

1
4

3
4

3
4

1
4

1
2

3
4

1
2

3
4

0

where

where   when ,

2. The velocity components in a two dimensional flow field for an incompressible fluid are given by
u y 3 2  and v x 6  then find the equation of stream line at the point (1, 1)

3 22 3x y 

3. Find the equation of the stream line for the flow q e h yi e h y jx x

 cos  sin  .

e h y cx sin 

4. If the velocity components of a flow field are given by

u x r
r


3 2 2

5 ; v xy
r


3

5  and w xz
r


3

5

where r x y z2 2 2 2    then prove that the stream lines are intersection of the surfaces

x y z c y z2 2 2 3 2 2   c h c h
by the plane passing through OX.

5. Show that the velocity vector q


 is everywhere tangent to lines in the xy -plane along which
   constant.

6. What are stream lines? Are stream lines and the path lines of a fluid always the same?
7. Determine the stream line if the motion is specified by

q
k x i y j

x y








 c h
c h2 2 ;  where k  be the constant. x cy

����
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Structure of the unit
11.0 Objective

11.1 Introduction

11.2 Velocity Potential

11.3 Rotational and Irrotational Motion

11.4 Concept of equation of Continuity

11.5 Equation of Continuity by Euler’s Method.

11.6 Equation of Continuity by the Lagrangian Method

11.7 Equivalance of two forms of equation of Continuity

11.8 Some Symmetrical forms of a equation of Continuity

11.8.1 Cylindircal Symmetry

11.8.2 Spherical Symmetry

11.9 Summary

11.10 Answer to self learning exercise

11.11 Exercise

11.0 Objective

In this unit our objective is to study about the velocity potential, rotational and irrotational motion
in fluid flow. We will also study about the concept of conservation of mass in mathematical form as equa-
tion of continuity.

11.1 Introduction

The equation of continuity simply expresses the law of conservation of mass in a mathematical
expression. The law of conservation of mass states that the fluid mass can neither be created nor dstroyed.
The fluid motion is possible only if the equation of continuity is satisfies for this fluid motion.

11.2 Velocity Potential (Velocity function)

Suppose that the fluid velocity of a particle at a point x y z, ,b g  at any instant is q ui vj wk

     .

If it is assumed that the expression u dx v dy wdz   is an exact differential, it is conventionally conve-
nient to express

   d u dx v dy wdz

or   
F
HG

I
KJ   

 


 


 
x

dx
y

dy
z

dz udx v dy wdz

UNIT - 11
Equation of Continuity-I
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then u
x

 
 
 , v

y
 

 
  and w

z
 

 


which clearly show that   is a function of x y,  and z  only. Hence

  x y z, ,b g
Then the velocity of fluid at the point is given by

q
x

i
y

j
z

k


   
 


 


 


  

      
F
HG

I
KJ  i

x
j

y
k

z











q grad
 
    

Here,   is called the velocity potential or velocity function. The negative sign is conventional but it
ensures that the flow is from higher potential to lower potential.

11.3 Rotational and Irrotational motion

Rotation of a fluid particle is defined as the average of the angular velocities of two mutually
perpendicular linear sides of elementary rectangular element of the fluid particle. In presence of this
average the motion is said to be rotational and if this average is zero then the motion is said to be
irrotational.

Consider a  rectangular element ABCD in two dimensional flow such thatAB   x  and AD   y
as shown in the figure.

Figure 11.1

Upon rotating the element about A  during a small interval t , the sides of element become AB
and AD . B  and D  approximately lie on BC and extended CD.

Let u  and v  be the components of velocity at A  then the components of velocity along BC and

DC are v v
x

x



  and u u
y

y



  respectively..

 velocity of B  relative to A along BC v
x

x





D

Y

XA

C1

C

B1

B

  2

 1

 y

v
D1

 xu

u u
y

y





v v
x

x




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and velocity of D  relative to A  along DC u
y

x





Hence is small interval  t , we have

BB v
x

x t 



   and DD u
y

y t  



 

If  1  and   2  are the angles through which AB and AD respectively have turned in time  t ,
then the angular velocity of AB about the z -axis i.e. perpendicular to the plane through A is

lim lim tan
 

 


 
t tt t 


0

1

0

1      1 1 1in small  tan

     





 
lim lim

.  t t

BB
AB
t

BB
AB t0 0

     


lim
.

.




 

 

t

v
x

x t

x t
v
x0

lim


 



t t

v
x


0

1

Again the angular velocity of AD about z -axis is

lim lim tan
 

 


 
t tt t 


0

2

0

2

     





 
lim lim

.  t t

DD
AD
t

DD
AD t0 0

     



lim

.




 

 t

u
y

y t

y t0

      



u
y

The average of the angular velocities of AB and AD about the z -axis, considered perpendicular to
x y  plane, be wz  and is given as






z

v
x

u
y

 
F
HG

I
KJ

1
2 ...(1)

In the similar manner the average angular velocity components  x ,  y  and  z  in three
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dimensional flow may be obtained as follows :






x

w
y

v
z

 
F
HG

I
KJ

1
2  ; 





y

u
z

w
x

 
F
HG

I
KJ

1
2

and 




z

v
x

u
y

 
F
HG

I
KJ

1
2 ...(2)

Hence the angular velocity 
  of a fluid element is given by

   

  x y zi j k   ...(3)

This 


 is known as rotation and  x ,  y  and  z  are known as the camponents of rotation.

If this average angular velocity is zero then the particle is said to have zero rotation and the flow is
said to be irrotational. Therefore, in two dimensional irrotational flow, we have

 z  0   






v
x

u
y

0

or     






u
y

v
x



In three dimensional flow, the conditions for irrotational are given by

 

  0 0x

 ;  y  0 ;  z  0

or






w
y

v
z

  ; 






u
z

w
x

  ; 






v
x

u
y



If the fluid motion is rotational then the spin components   , ,  are given by

 
1
2 x

  
F
HG

I
KJ







1
2

w
y

v
z

 
1
2 y

  
F
HG

I
KJ







1
2

u
z

w
x

 
1
2 z

  
F
HG

I
KJ







1
2

v
x

u
y

We know that the velocity components u  and v  are functions of x , y , t  and w  0  in two
dimensional flow. Hence the spin components are given by








 
F
HG

I
KJ 

1
2

0w
y

v
z
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






 
F
HG

I
KJ 

1
2

0u
z

w
x

and 


















 
F
HG

I
KJ 

F
HG

I
KJ  

F
HG

I
KJ

L
NM

O
QP

1
2

1
2

v
x

u
y x x y y

or 2
2

2

2

2
2  


 


   
x y

If the motion be irrotational so that   0  then we obtain

 2 0

Showing that for irrotational motion of a fluid stream function satisfies Laplace’s equation. It is also
evident that when the velocity potential   exists, all the above conditions are satisfied, then the motion is
irrotational.

11.4 Concept of Equation of Continuity

The equation of continuity simply expresses the law of conservation of mass in a mathematical
form. As is known that the law of conservation of mass states that the fluid mass can neither be created nor
destroyed. Thus if we consider any given volume of fluid in space bounded by a closed surface, then at any
instant, the flow of fluid across the boundary surface from without inwards minus that from within outward
must be equal to the increase in the mass of the fluid within the surface.

If V  be the volume and   be the density of a small element of the fluid, then the equation of
continuity states that the mass of the fluid remains unchanged in the time inteval  t  following the motion.
Therefore

D
Dt

Va f  0

or 
DV

Dt
V D

Dt
  0

11.5 Equation of Continuity (Vector Form) by Euler’s Method

Consider a volume V of moving fluid enclosed within a surface S. Let P x y z, ,b g  be any

Figure 11.2

point of S and   the density of the fluid which can be considered a function of time and space
coordinates.

V

 s
P

n

q



S
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Let  s  denote an element of the surface S enclosing P. Let n  be the unit vector in the direction of

the outward drawn normal at any point of the surface  S and q
  be the velocity of the fluid. Then the

velocity in the outward drawn normal direction will be  . n q . Thus,

rate of mass flow across    s n q S FH IK


 .

The mass of the fluid entering the whole surface S in unit time will be

  FH IKz 


S

n q d S .

   FH IKz 
.

V

q d V (By Gauss divergance theorem) ...(1)

Also the mass of the fluid within the volume V bounded by the surface S is.

 z 
V

d V

Hence rate of increase of mass within S

 z



t

d V
V

 z   t
d V

V
...(2)

Then by the law of conservation of the fluid mass the rate of increase of the mass of fluid within V
in unit time must be equal to the total rate of mass flowing into V.

Hence from (1) and (2), we have

    FH IKz z  



t

d V q d V
V V

.

or     
 



t

q d V
V

 FH IK
L
NM

O
QP 

z . 0

Since this result is true for every value of the volume, we get the above expression in the form

 



t

q FH IK 


. 0 ...(3)

or
 



t

div q F
H

I
K 



0

which is the equation of continuity.
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Equation (3) may be written as

 


 
t

div q q grad  
 

. 0

or
D
Dt

div q
 


0 ...(4)

where 
D
Dt  is the known differential following the motion. If the fluid is incompressible and uniform

density   is constant so that 
 
 t

 0 . Thus for incompressible fluid the equation of continuity becomes

div q

 0 ...(5)

Cor.  Thus equation of continuity can be obtained in Cartesian coordinates by taking

q ui v j wk

     .

Hence from (3)

 











  
t

i
x

j
y

k
z

i u j v k w  
F
HG

I
KJ      .   e j 0

or
 





 


 



t x

u
y

v
z

w   a f a f a f 0 ...(6)

Where u , v  and w  are components of fluid velocity in x , y  and z  directions

Eqn (6) can also be derived directly and we will deal with it in next unit. It must also be clear that
this approach is due to Eulerian approach of study.

11.6 Equation of Continuity by the Lagrangian Method

Figure 11.3

At any instant, let the cartesian coordinate of a fluid particle P  be a b c, ,b g . After a time t , let the

coordinate of this particle be x y z, ,b g , then these coordinates will depend on the initial position and the
time elapsed.

Hence x f a b c t , , ,b g  ; y g a b c t , , ,b g  ;  z h a b c t , , ,b g

X

Z

Y

O

A
B

C C1

B1

A1

P P1
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Consider a fluid tetrahedron such that one of the vertices is at P  and the edges are of lengths  a ,
 b  and  c  parallel to three axes respectively. Hence the coordinate of the other three vertices are

A a a b c , ,b g , B a b b c, ,b g  and C a b c c, , b g  where  a ,  b  and  c  are taken to be small.

Now if 0  is the initial density of the fluid, then the mass of the fluid within the tetrahedron
PABC


1
6 0   a b c ...(1)

After a time t , let the new positions of P , A B,  and C  be   P A B, ,  and C respectively. If the

coordinates of  A B,  and C  are x y z1 1 1, ,b g, x y z2 2 2, ,b g  and x y z3 3 3, ,b g  respectively, then

x f a a b c t1   , , ,b g

     f a b c t f
a

a, , ,b g 


  + (Higher power of  a )

x x x
a

a1  



 . (Neglecting higher power of  a )

Similarly

y g a a b c y y
a

a1    



, ,b g

and z h a a b c z z
a

a1    



, ,b g

Threfor the relative coordinate of A  with respect to P  will be













x
a

a y
a

a z
a

a, ,
F
HG

I
KJ

Proceding in similar manner, we obtain the relative coordinate of B  and C  with
respect to P  as.













x
b

b y
b

b z
b

b, ,
F
HG

I
KJ  and 













x
c

c y
c

c z
c

c, ,
F
HG

I
KJ
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Hence the volume of the tetrahedron    P A B C  are


1
6




 


 






























x
a

a y
a

a z
a

a

x
b

b y
b

b z
b

b

x
c

c y
c

c z
c

c


1
6




  
x y z
a b c

a b cb g
b g


1
6

J a b c    where J
x y z
a b c




b g
b g

If   is the density of the fluid after a time t  the mass of the fluid within    P A B C  will be


1
6

J a b c    ...(2)

Since the mass contained within the tetrahedron does not change due to law of conservation of
mass, we have from (1) and (2)

1
6

1
6 0       J a b c a b c

or  J  0

which is the required equation of continuity in Lagrangian form.

11.7 Equivalence of two forms of equation of continuity

It can be shown that the two forms of equation of continuity obtained through Eulerian approach
and Lagrangian approach are equivalent.

The equation of continuity in Lagrangian form is

 J  0 so that
d
dt

Jb g  0

or  d J
dt

J d
dt

  0 ...(1)

where 
d
dt  is the differential following the motion.

The velocity components in the two systems are connected by the equation

u dx
dt

  , v dy
dt

  and w dz
dt

 ...(2)
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Also x x a b c t , , ,b g  ; y y a b c t , , ,b g  ; z z a b c t , , ,b g ...(3)

  F
HG

I
KJ 

F
HG

I
KJ










u
a a

dx
dt

d
dt

x
a  etc. ...(4)

we can demonstrate the following two dimensional differential coefficients to extend to the case of
three dimensional coefficient

d
dt

x y
a b

d
dt

x
a

y
b

x
b

y
a
















,
,

b g
b g

L
NM

O
QP
 

L
NM

O
QP


F
HG

I
KJ 

F
HG

I
KJ

d
dt

x
a

y
b

x
a

d
dt

y
b













.


F
HG

I
KJ 

F
HG

I
KJ

d
dt

x
b

y
a

x
b

d
dt

y
a













   
























u
a

y
b

x
a

v
b

u
b

y
a

x
b

v
a

. .

 
F
HG

I
KJ  

F
HG

I
KJ

























u
a

y
b

u
b

y
a

x
a

v
b

x
b

v
a

.


L
NM

O
QP
 

d
dt

x y
a b

u y
a b

x v
a b










,
,

,
,

,
,

b g
b g

b g
b g

b g
b g ...(5)

Similarly

d
dt

x y z
a b c

u y z
a b c

x v z
a b c

x y w
a b c













, ,
, ,

, ,
, ,

, ,
, ,

, ,
, ,

b g
b g

b g
b g

b g
b g

b g
b g

L
NM

O
QP
  

  
d J
dt ...(6)

Also, we know that






















u
a

u
x

x
a

u
y

y
a

u
z

z
a

  . . .






















u
b

u
x

x
b

u
y

y
b

u
z

z
b

  . . .






















u
c

u
x

x
c

u
y

y
c

u
z

z
c

  . . . ...(7)
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On Eliminating 



u
y   and 




u
z , we obtain














































u
x

x
a

u
a

y
a

z
a

u
x

x
b

u
b

y
b

z
b

u
x

x
c

u
c

y
c

z
c

.

.

.







 0
...(8)

or









u
x

x y z
a b c

u y z
a b c

.
, ,
, ,

, ,
, ,

b g
b g

b g
b g  0

or J u
x

u y z
a b c








, ,
, ,

b g
b g ...(9)

similarly J u
y

x v z
a b c








, ,
, ,

b g
b g ...(10)

and J w
z

x y w
a b c








, ,
, ,

b g
b g ...(11)

On adding (9) to (11) we obtain



















u y z
a b c

x v z
a b c

x y w
a b c

J u
x

v
y

w
z

, ,
, ,

, ,
, ,

, ,
, ,

b g
b g

b g
b g

b g
b g    

F
HG

I
KJ

Using (6), we have

d J
dt

J u
x

v
y

w
z

  
F
HG

I
KJ








 ...(12)

Using (1), we have











 


J u
x

v
y

w
z

J
t

 
F
HG

I
KJ   0

or
 










t

u
x

v
y

w
z

  
F
HG

I
KJ  0

or
 



t

q  FH IK 


0

which is Eulerian form of equation of continuity as shown earlier.
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11.8 Some Symmetrical forms of equation of continuity

The equation of continuity takes a simplified form in cases when the motion of the fluid possesses
certain symmetrical properties as shown below.

11.8.1 Cylindrical Symmetry :

Let P r z, ,b g  be a fluid particle. Let  r t,b g  be the density and q r tr ,b g  be the velocity at P
perpendicular to axis OZ.

Consider an element of fluid consisting of two cylinders of radii r  and r r  with axis of it be z-
axis and bounded by planes at unit distance apart.

Then rate of flow across the inner surface

  q r f r tr . ,2 b g ...(1)

Rate of flow across the outer surface

 f r r t ,b g ...(2)

Rate of change of mass within the element





  
t

r r. .2b g

 2   


r r
t ...(3)

Suppose that the element of the fluid contains neither sources nor sinks. Then by the law of con-
servation of mass, the rate of increase of the mass within the element must be equal to the rate of mass
flowing into the element.

Hence

2 
 


r r
t

f r t f r r t  , ,b g b g

           
L
NM

O
QPf r t f r t r

r
f r t, , , ....a f a f a f




2 
 






r r
t

r
r

f r t  ,b g (on neglecting higher powers)

Now using (1)

or 2 2
 





 r
t r

q rr 

or 2 2
 






r
t r

q rr  b g
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or
 






t r r

q rr 
1 0b g ...(4)

If    constant then 
 
 t

 0 , we have


 
 r

q rrb g  0

On integrating with respect to r , we have

r q g tr  b g ...(5)

If the flow is steady, g tb g  reduces to an absolute constant. Hence for the steady flow..

r qr   constant ...(6)

Which is the equation of continuity due to cylindrical symmetry.

11.8.2 Spherical Symmetry :

Let P r, , b g  be a fluid particle. Also let  r t,b g  be the density and q r tr ,b g  the velocity at P  is
the radial direction .

Consider an element of the fluid consisting of two concentric spheres of radii r  and r r  with
O  as centre as Plying on the inner sphere.

Hence rate of flow across the inner surface

  q r f r tr 4 2 ,b g ...(1)

Thus rate of flow across the outer surface

 f r r t ,b g ...(2)

Rate of change of mass within the element





  
t

r r. .4 2c h

 4 2 
 


r r
t ...(3)

Using concept of law of conservation of mass, the rate of increase of the mass within the element
must be equal to the rate of mass flowing into the element minus the rate of mass flowing out of the element

Hence

4 2 
 


r r
t

f r t f r r t  , ,b g b g

307



or             
L
NM

O
QPf r t f r t r

t
f r t, , . , ....a f a f a f




           



r
t

f r t,b g (neglecting higher powers of small  r )

or 4 42 2 
 






 r r
t

r
r

q rr  . by (1)

or 4 42 2 
 


 



r r
t

r
r

r qr  c h

or
 






t r r

r qr 
1 02

2c h ...(4)

If   be constant then 
 
 t

 0  then we have





r

r qr
2 0c h   


 r

r qr
2 0c h ...(5)

On integrating with respect to r , we have

r q g tr
2  b g

If the motion is steady, g tb g  reduces to an absolute constant. Thus for a steady flow

r qr
2   constant ...(6)

which is the equation of continuity due to spherical symmetry.

Self learning Exercise :

1. The fluid motion is said to be irrotational if

(a) curl q


 0 (b) div q

 0

(c) grad q

 0 (d) None of these

2. In rotational motion, the components of the rotation are called ---------.

3. What is the condition for a possible liquid motion?

4. Whether the motion specified by q
k xj yi

x y






2

2 2

a f
 is a possible motion for an

incompressible fluid motion?
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5. Test the motion specified by

u x z
r


3

5  , v y z
r


3

5  and w z r
r


3 2 2

5

for possible incompressible fluid motion.

6. Find the velocity vector q


 for the velocity potential   c x y2 2c h .

11.9 Summary

In this unit, we studied about the concept of law of conservation of mass in terms of equation of
continuity for the fluid motions. We also studied the equation of continuity in Euler’s and Lagrangian
approch and their equivalance. In this unit, we also familearized with the velocity potential, rotational and
irrotational motions in two dimensional fluid motion.

11.10 Answers to self learning exercise

1. (a) curl q

 0

2. Spin components

3. Statisfies the equation of continuity

4. Yes, possible fluid motion

5. Possible fluid motion

6. q c yj xi


 2  c h
Example 1 : Show that

u x y z

x y






2
2 2 2c h  ; v

x y z

x y






2 2

2 2 2
c h
c h  and w y

x y


2 2c h
are the velocity components of a possible fluid motion. Is this motion irrotational?

Solution : A fluid motion is only possible if the velocity components satisfy the equation of continuity.
Here

u x y z

x y






2
2 2 2c h   

 






u
x

y z y x

x y

2 32 2

2 2 3

c h
c h

v
x y z

x y






2 2

2 2 2

c h
c h   








v
y

y z y x

x y

2 32 2

2 2 3

c h
c h

w y
x y


2 2c h  




w
z

0
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so that









u
x

v
y

w
z

   0

Since this equation of continuity is satisfied the flow is possible.

For the motion to be irrotational, we must show that spin components are zero.

That is we have show that

  0  






w
y

v
z

 ;    0   






u
z

w
x

and   0  






v
x

u
y

Here






w
y

x y

x y

v
z







2 2

2 2 2c h

 






u
z

x y

x y

w
x







2
2 2 2c h

and






v
x

x z x y

x y

u
y


 




2 32 2 2

2 2 3

c h
c h

Hence the motion is irrotational.

Example 2 : If the velocity of an incompressible fluid at the point x y z, ,b g  is given by

3 3 3
5 5

2 2

5
x z
r

y z
r

z r
r

, , F
HG

I
KJ  prove that the liquid motion is possible and the velocity potential is 

cos
r 2 .

Solution : Given that

u x z
r


3

5  , v y z
r


3

5  and w z r
r


3 2 2

5  where r x y z2 2 2 2   .

For the motion to be possible, we must show that the equation of continuity










u
x

v
y

w
z

   0 ...(1)

is satisfied. Here




u
x

z
r

x z
r

 
3 15

5

2

7




v
y

z
r

y z
r

 
3 15

5

2

7
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and



w
z

z
r

z
r

 
9 15

5

3

7

Thus









u
x

v
y

w
z

   0

Hence the fluid motion is possible.

Further, velocity potential   is given by

d
x

dx
y

dy
z

dz
 


 


 


   
F
HG

I
KJ

         u dx v dy w dzb g

or d
r

z x dx y dy z dz r d z     
1 35

2b g

        
1 35

2

r
z r dr r d z

      
r d z z r d r
r

2

5
3

      
r d z z r d r

r

3 2

6
3. .

d d z
r

  F
HG

I
KJ3

     z
r

r
r r3 3 2

cos cos

Hence. Velocity potential 



cos

r 2

Example 3 : Show that if the velocity potential of an irrotational fluid motion is equal to

A x y z z y
x

2 2 2
3

2 1  FH IK
 c h tan

The lines of flow will be on the series of the surfaces

x y z c x y2 2 2 2
3 2 2 2

3   c h c h
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Solution : The velocity potential   is given

by    
 A x y z z y

x
2 2 2

3
2 1c h e jtan

  FH IK A r z y
x

3 1tan ...(1)

So that

u
x

A z x r y
x

A z y r
x y

   


 
 


3 5 1

3

2 2
tan c h

v
y

A z y r y
x

A z x r
x y

   


 
 


3 5 1

3

2 2
tan c h

w
z

A z r y
x

Ar y
x    FH IK    


3 2 5 1 3 1tan tan

Where r x y z2 2 2 2    and 



r
x

x
r

  , 



r
y

y
r

  , 



r
z

z
r

 .

The equation of lines of flow are given by

dx
u

dy
v

dz
w

 

i.e.
dx

A z x r y
x

A z y r
x y

dy

A z y r y
x

A z x r
x y

3 35 1
3

2 2
5 1

3

2 2
 


 






F
HG

I
KJ





L
N
MM

O
Q
PPtan tanc h c h


  

dz

A z r r y
x3 2 5 3 1c h tan ...(2)


 

  



 

x dx y dy z dz
x y z r

x dx y dy
x y r3 3 3 1 3 32 2 2 2 2 2 2c h c h

x dx y dy z dz r x dx y dy
x y

 



2 3

2

2 2

a f
c h

or
2 2

3
2 2

2 2 2 2 2

x dx y dy z dz
x y z

x dx y dy
x y

 

 





b g
c h

b g
c h
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On integrating

log log logx y z x y c2 2 2 2 22
3

    c h c h

x y z c x y2 2 2 2 2
2

3   c h
which gives the required series of the surfaces on which the lines of flow will lie.

Example 4 : Show that    x t y tb gb g  represents the velocity potential of an incompressible two

diamensional fluid. Show that the stream line at time " "t  are the curves x t y t   a f a f2 2  constant and
the path of the fluid particles have the equation

log x y x y a x y b     b g b g b g1
2

1

where a  and b  are constants.

Solution : Given that velocity potential

   x t y tb g b g ...(1)

     u
x

y t 


a f

v
y

x t    
 


b g

and 



u
x
 0  ‘ 




v
y
 0 . Thus the equation of continuity 







u
x

v
y

  0  is satisfied. Hence given

(1) represents the velocity potential of an incompressible two dimensional flow.

Also the equations of stream line are

dx
u

dy
v

dx
y t

dy
x t

 
 


 a f a f

or x t dxa f    y t dyb g 0

On integrating

x t y t   b g b g2 2  constant ...(2)

which are the required stream lines.

And the paths of particles, are given by

u dx
dt

y t   b g   
dx
dt

t y ...(3)
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v dy
dt

x t   b g   
dy
dt

t x ...(4)

From (3) and (4) we have

dx
dt

dy
dt

t x y   2 b g ...(5)

Now suppose that z x y  ,   
dz
dt

dx
dt

dy
dt

Then (5) gives

dz
dt

t z 2

or
dz
dt

z t  2

which is a linear different equation whose solution is

z e t e dt Ct t z 2 1

or z t C e t   2 2 1

or x y t C e t    2 2 1 ...(6)

Again from (3) and (4) we have

dx
dt

dy
dt

x y dx dy
x y

dt   





On integrating log logx y c t  a f 2

  x y c et
2 ...(7)

From (6) and (7), we have

x y a x y t c e a
c

et t        b g b g 1
1

2

2 2

        2 2t taking c
a
c1

2



Hence
1
2

11x y a x y t    b g b g b g ...(8)

From (7) we have

t x y c  log logb g 2
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    t x y b1b g b glog ...(9)

Using (9) in (8), we have

1
2

1x y a x y x y b     b g b g b glog

11.11 Exercise

1. Prove that the liquid motion is possible when velocity at point x y z, ,b g  is given by

u x r
r


3 2 2

5  , v
x y
r


3

5  , w
x z
r


3

5  where r x y z2 2 2 2    and the stream linea are the

intersection of the surfaces x y z c y z2 2 2 3 2 2 2
   c h c h  by the plane passing through OX.

State if the motion is irrotational, with reasons.

2. Show that the following velocity field is a possible case of irrotational flow of an incompressible
fluid :

u y z t ; v z x t  and w x y t

3. Show that the velocity potential    
1
2

22 2 2a x y zc h  satisfies the Laplace equation and

represents the flow against a fixed plane wall. Also find the stream line. y z c2 

4. Give the physical significance implied in the equation of continuity in fluid motion.

5. Show that for an incompressible fluid, the equation of continuity becomes div q

 0 .

6. Find the equation of continuity in Lagrange’s method. Show that it is equivalant to

 










t

u
x

v
y

w
z

  
F
HG

I
KJ  0 .

����
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Structure of the unit
12.0 Objective

12.1 Introduction

12.2 Equation of conitnuity in Cartesian Coordinates

12.3 Equation of conitnuity in Cylindrical Coordinates

12.4 Equation of conitnuity in Spherical Coordinates

12.5 Equation of conitnuity of a liquid flow through a channel or a pipe

12.6 Boundary Surface

12.7 Condition for a surface may be boundary surface

12.8 Summary

12.9 Answers to self learning exercise

12.10 Exercise

12.0 Objective

In this unit, we will learn about the equation of conitnuity in various coordinate systems i.e. cartesian,
cylindrical, spherical polar coordinate etc. We will also study about the concept of boundary surface.

12.1 Introduction

The equation of continuity is always found by the fact that the mass contained inside a given volume
of fluid remains unaltered throughout the motion. Using this conecpt, we will obtain equation of continuity
in cartesian coordinate system, cylindrical polar coordinate system and spherical polar coordinate sys-
tem. These forms help in dealing problems of fluid motion through various geometric forms of the flow.
We will also obtain the condition that the surface represent the boundary surface.

12.2 Equation of continuity in cartesian coordinates system

Figure 12.1

UNIT - 12
Equation of Continuity-II
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Let there be a fluid particle at P x y z, ,b g  and  x y z t, , ,b g be the density of the fluid at P  at any
time t . Let u v w, ,  be the velocity components at P  parallel to the rectangular coordinate axes.

Now construct a small parallelopiped with edges  x ,  y  and  z  parallel to coordinate axes
having point P at one of the angular point as shown in figure.

Now mass of fluid that passes through the plane face PRR S  per unit time parallel to OX

   y z u f x y zb g b g, , ...(1)

Where  y z  is the area of the cross-section and u  is the velocity with which the fluid crosses
the face PRR S .

Now mass of fluid that passes out through the plane face  P Q QS per unit time

 f x x y z , ,b g

  f x y z x
x

f x y z, , . , ,b g b g



higher powers of  x

 f x y z x
x

f x y z, , . , ,b g b g

  to the first order approximation.

Therefore the excess (increase) fluid in the parallelopiped in a unit time in x -direction

= Fluid mass enters in through PRR S  - Fluid mass leaves through PQ QS   per
unit time

  f x y z f x x y z, , , ,b g b g

 



x f
x

x y z. , ,b g

  


  x
x

u y z. a f using (1)

 
 


  
u

x
x y zb g

...(2)

Similarly increase in the fluid mass in parallelopiped in y -direction through faces PQS S
and RQ P R    is

 
 


  
v

y
x y zb g

...(3)

and increase in the fluid mass in parallelopiped in z -direction through faces. PQQ R  and
SS P R    is
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 
 


  
w
y

x y zb g
...(4)

The total excess flow in parallelopiped, on using (2), (3), (4)

   
L
NM

O
QP

 


 


 


  
u

x
v

y
w

z
x y zb g b g b g

...(5)

Again the total mass in the parallelo piped     . x y z

Hence increase in mass of the parallelopiped in unit time   


  
t

x y z. ...(6)

Now, by the law of conservation of mass, the rate of increase of the mass of the fluid within the
parallelopiped must be equal to the total excess flow in the parallelopiped in unit time. Hence from (5) and
(6), we have

  
 


  
 


 


 


x y z
t

x y z
u

x
v

y
w
z

   
L
NM

O
QP

a f a f a f

or
 


 


 


 
t

u
x

v
y

w
z

   
b g b g b g

0

which is the equation of continuity in cartesian coordinates.

If the fluid is homogenous and incompressible, density   is constant the equation of continuity
reduces to










u
x

v
y

w
z

   0

12.3 Equation of continuity in cylindrical polar coordinates

Figure 12.2
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Let P  be a point whose cylindrical polar coordinate are r z, ,a f , with P  as one corner. construct
a parallelopiped with edges

PQ r   , PS z  and PP r  . Let u v, ,  and w  are the velocity components along PP  ,
PQ  and PS  respectively..

Thus mass flow entering through PQRS  per unit time along r  direction is

          u r z u r z f r zb g b g, ,

and fluid mass getting out through the face    P Q R S  per unit time is

 f r r z b g

  f r z r f r z
r

, , . , ,   


a f a f  Higher powers of  r

Therefore excess of flow along  r  - direction is

= man that enters through PQRS  - mass that flows out through    P Q R S

  



 r
r

f r. , ,b g

   


   r
r

u r za f

 



    
r

ur r zb g ...(1)

Similarly the excess of flow along   direction when fluid mass entering through PP S S   and out

through QQ R R   per unit time  

 

    v r zb g ...(2)

and the excess of flow along z -direction when fluid mass entering through PQQ P  and out flow

through SRR S   per unit time  



    
z

wr r zb g ...(3)

Hence the total excess flow in parallelopiped in unit time is

   
L
NM

O
QP






 





    
r

ur v
z

wr r zb g b g b g ...(4)

The vloume of the parallelopiped is

 r r z   . .

The fluid mass in the parallelopiped at any time

     r r z
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The rate of change in fluid mass in parallelopiped





    
t

r r zb g ...(5)

Hence, by the law of conservation of the fluid mass, the rate of change of the mass of the fluid
within the parallelopiped must be equal to the total excess flow in parallelopiped in unit time (4) and (5), we
have

 


 


 
 





r

t
u r
r

v
z

wrb g b g b g b g    0

or r
t r

u r v
z

wr 













   b g b g b g 0

or
 














t r r

u r
r

v
z

w   
1 1 0b g b g b g ...(6)

which is the equation of continuity in cylindrical polar coordinates.

If the fluid in homigenous and incompressible, density   is constant then equation of conitnuity (6)
reduces to

1 1 0
r

u r
r r

v w
z





 




b g b g
  

12.4 Equation of continuity in spherical polar coordinates

Figure 12.3

Let P r, , b g  be a point in the fluid. On constructing a curvilinear parallelopiped with three

ajdacent edges as PP r   , PQ r    and PS r sin    where P  is one corner of it. Let the
velocity components be u v w, ,  in the directions of r, ,   respectively..

The mass of the fluid that flows in through the face PQRS  due to velocity component u
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per unit time is

        r r u f r. sin , ,b g b g ...(1)

The mass of the fluid that flows out through the face    P Q R S  due to flow along PP 
(r-direction) per unit time

 f r r  , ,a f

  f r r
r

f r, , . , ,  



 a f a f  Higher powers  r

Therefore excess of flow along PP 

= Fluid mass enters through PQRS  - Fluid mass flows out through    P Q R S

  



 r
r

f r. , ,b g (neglecting higher powers of  r )

  



     r
r

r. sin2c h

 



      
r

r r2 sinc h

 



      
r

r r2c hsin ...(2)

Similarly excess of flow in over out through faces PP S S   and QQ R R   due to velocityv  along

PQ   directionb g  per unit time is

  r v r 



    sinb g

  r r v    



 sinb g ...(3)

and the excess of flow from faces PQQ P   and SRR S   due to flow along PS direction b g
per unit time is

  r w r
 

     b g

  r r w    

 

b g ...(4)

Therefore the total excess flow in the parallelopiped per unit time from all faces
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   
L
NM

O
QP     








 

 

r
r

ur r v r wsin sin2c h b g b g ...(5)

Also, we know that the total mass of the fluid in parallelopiped

       r r2 sin

Hence the rate of change in the fluid mass in the parallelopiped





      
t

r r2 sinc h

     



 r
t

r 2 sinc h ...(6)

Using the concept of law of mass conservation, the rate of change in fluid mass

= total excess flow per unit time

then from (5) and (6), we have




  







 




t

r
r

ur r v r w2 2 0sin sin sinc h c h b g b g  
L
NM

O
QP 

or r
t r

u r r v r w2 2 0sin sin sin
 










 



   c h b g b g

or
 











 



 


t r r

u r
r

v
r

w   
1 1 1 02

2c h a f a f
sin

sin
sin

which is the equation of continuity in spherical polar coordinates.

The equation for homogeneous incompressible fluid reduces to

1 1 1 02

r r
u r v w

 

 




 

c h a f  
sin

sin
sin

12.5 Equation of continuity of a liquid flow through a channel or a pipe

Figure 12.4

A

C
E

S1 B
D FS2 S3

V1

V2

V3

322



Let an incompressible fluid continuously flow through a channel or a pipe whose crossection area
may or may not be fixed. Then the quantity of liquid passing through all section is the same per second due
to law of conservation of mass.

Let us suppose that some liquid is flowing through a tapering pipe as shown in figure. Let S S S1 2 3, ,
be the areas of the pipe and V V V1 2 3, ,  are the velocities of liquid at the section AB CD EF, ,  respectively..
If Q Q Q1 2 3, ,  be the total quantity of liquid flowing across the section AB CD,  and EF  respectively then

Q S V1 1 1 , Q S V2 2 2  and Q S V3 3 3 .

From the law of conservation of mass, the total quantity of liquid flowing across the section AB CD,
and EF  must be same. Hence

Q Q Q1 2 3 

Therefore S V S V S V1 1 2 2 3 3 

which is the equation of continuity of a liquid flowing through a channel or pipe.

Self Learning Exercies - I

1. The equation of continuity for the homogenous steady incompressible fluid is

(a) curl q

 0 (b) div q


 0 (c) grad q


 0 (d) None of these

2. Write down the equation of continuity of a liquid flow through a pipe.

3. What is the physical significance of equation of continuity?

4. Is the velocity field u  0 ; v r
r

 
1

, w  0  satisfy the equation of conitnuity

d v
dr

d
dr

v
r

2

2 0 F
HG

I
KJ  ?

Example 1 : A mass of fluid moves in such a way that each particle describes a circle in one plane about
a fixed axis. Show that the equation of continuity is

 


 
t

w
 

b g
0

Where w  be the angular velocity of a particle whose azimuthal angle is   at time t.

Solution : Given that the motion is in a plane and a fluid particle describes a circle of radius r . At any
instant with fluid particle at P consider an element PQRS  such that PS r   and PQ r   . There is
no motion along radial direction PS . Hence

the excess of flow in over flow out along PQ  per unit time

  r
r

w r 

 

 . b g
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Figure 12.5

 

 

   wr rb g

Also mass of the fluid inside the element

   r r

  change in the mass of the element





  
t

r rb g

Hence the equation of continuity is




   
 

   
t

r r w r ra f a f  0

or   
 


 
t

wb g
0

which is the required equation of continuity.

Example 2 : If   is the cross sectional area of a stream filament, establish the equation of continuity

in the form 



 



t s

qa f a f  0  where s  is measured along the filament in the direction of flow and

q  is the spead.

Solution : Let P  be the point. Consider a volume bounded by the cross -sections through P  and
another at a distance ds  from P . Hence PQQ P   be the stream filament whose cross sectional area is 
and arc PQ s  .

    Figure 12.6P
P1

Q1

Q

q

ds

O X

Y

 
r


 r
r 

R
w r

Q

P
S
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The rate of the excess of the flow in over the flow out along PQ  per unit time

   


s
s

qa f

Again, the total mass of the fluid within the stream filament is    s

  the rate of change in mass of the stream filament  


 
t

sa f

Hence equation of continuity is




   



t

s s
s

qa f a f 

or



 



t s

qa f a f  0

which is the required equation of continuity.

Example 3 : If the lines of motion are curves on the surfaces of cones having their vertices at the origin
and the axis of z  for common axis, Prove that the equation of continuity is

 






  

 


r r
w u

r r
w   b g b g2 0cosec

where u  and w  are the velocity components in the directions in which r  and   increase.

Solution : Let origin O  be the common vertex and oz  the axis, be the axis of z . Consider a cone

OAB  of semi vertical angle  . Let P r, , b g  be a point on the surface of the cone and PP r  ,

PS r   , PQ r sin    being edges of the curvilinear parallelopiped as shown in the figure.

Figure 12.7

Since the lines of motion are curves on the surface of cone, there will be no motion perpendicular
to the surface of the cone, hence there is no velocity along the edge PS (along  -direction). Since velocity
along PS  is zero, the excess of flow in over flow out along PS vanishes. u  and w are the velocity
componates along r  and   directions respectively..

AB

Y

X

Z

O

SR

Q P

S1

P1Q1

R1


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Again

rate of excess of flow-in over flow out along PP

  



     r
r

u r r. . . sinb g

  sin .



     
r

r u r2c h

and rate of excess of flow in over flow out along PQ

  r
r

w r rsin
sin

. 
  

   b g

  r r w    

 

b g

Also, the rate of increase in mass of the parallelopiped





     
t

r r r. . sinb g

 r
t

r2 sin .
 


    

Hence the equation of continuity is given by

r
t

r r
r

ur r w2 2sin . sin
 


          





 

  
L
NM

O
QPc h b g

or r
t r

u r r w2 2 0sin sin
 








 

  c h b g

or
 









 


t r r

u r
r

w  
1 1 02

2c h a f
sin

or
 


 






 


t r

r
u

r
r u

r
w 

L
NM

O
QP  

1 2 1 02
2 a f a f

sin

or
 


 


  
 


t

u
r

u
r r

w   
b g b g2 0cosec

which is the required equation of continuity.
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Example 4 : A mass of fluid is in motion so that the liens of motion lie on the surface of coaxial cylinders,
show that the equation of continuity is

 


 


 
t r

u v
z

  
1 0

b g b g

where u v,  are the velocity perpendicular and parallel to z .

Solution : Consider a fluid particle P , whose cylindrical coordinates are r z, ,a f. Construct a curilinear
parallelopiped taking P  as one corner of it and the edges be PQ r  , PS r    and PP z   .

The fluid motion lies on the surface of co-axial cylinders, so there is no motion along PQ  then the
excess flow along PQ  is zero.

The excess flow in over flow out along PS

        r
r

u r z  
 

  a f

          



r z ub g

and the excess flow in over flow out along PP

         


   z
z

v r ra f Figure 12.8

           



r z
z

v rb g

Also the mass of the fluid in the parallelopiped is

     r r z

  The rate of change in mass of the parallelopiped

 r r z
t

     


Hence the equation of continuity is

r r z
t

r z u
z

v r   
 


   







  
L
NM

O
QPa f a f

or
 










t r

u
z

v  
1 0b g b g

which is the required equation of continuity.

P
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 z
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S1
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Sr 

 r
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Example 5 : If every particel moves on the surface of a sphere prove that the equation of
continuity is

 






 

 

 
t

w wcos cos cos   b g b g 0

  being the density,  ,   the latitude and longitude of any element, and w , w  the angular
velocities of the elelment in latitude and longitude respectively.

Solution : Consider a fluid P  on the semi-circle APB  making an angle   with semi-circle ACB .
Suppose that OP  makes an angle   with OC . Constructing an elementry parallelopiped on the surface
of a sphere whose edges are PQ r , PP r     and PS r cos    and as P  one corner of it.

Figure 12.9

Let   be the density of the fluid at P . Since every particle moves on the surface of the sphere,
there will be no velocity along PQ  ie. in the radial direction. Here the velocity along PP   and PS  are wr
and w r cos  because w  and w  are the angular velocity in latitude and longitude directions respectively..
Since velocity along PQ  is zero then the rate of excess of law in over flow out along PQ  is zero

Now, the excess of flow in over flow out along PP   per unit time

  r
r

wr r r 

 

    . . cosb g

  r r w2      
 

 cosa f

and the excess of flow in over flow out along PS  per unit time

  r
r

r w r rcos
cos

cos  



 

    
1 b g

  r r w2      
 

 cosa f

X

Y

Z

A

B
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Q1
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

w

O
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Hence the total excess flow through parallelopiped per unit time is

  
L
NM

O
QPr r w w2 1    


 

 

 

 cos cosa f c h

Again, the rate of increase in mass of the element





    
t

r r r. . cosa f

 r r
t

2 cos   


Hence the equation of continuity in given by

r r
t

r r w w2 2cos cos cos     
 


    



 

 

    
L
NM

O
QPa f a f

or
 


 
 

  
 

 
t

w wcos cos cos   a f a f 0

Example 6 : If the lines of motion are curves on the surface of spheres all touching the plane of xy  at
the origin O , the equation of continuity is

r
t

v u
usin sin cos

 


 
 


 
 

     
b g b g b gb g1 2 0

Where r  in the radius CP  of one sphere, D  the angle PCO , u  the velocity in the plane PCO ,
v  the perpendicular velocity and   the inclination of the plane PCO  to a fixed plane through
the axis of z .

Figure 12.10

Solution : Let C and C1  be the centres of two spheres of radii r  and r r  respectively. . P  be the
point on the smaller sphere.

C

C1

R
P Q

 r

 1
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

O

Y

X

Z
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Let PQ PR,  and PS  be the edges of the elementry parallelopiped. Here PR r   ;
PS r sin    where   is the angle that the plane PCO makes with a fixed plane through z -axis.

To Find the length PQ , we have

CP r ;   C Q r r , CC r    and  PCO 

In CC Q , we have

      C Q CC CQ CC CQ QCC2 2 2 2 . cos

or r r r r PQ r r PQ          b g b g b g b g2 2 2 2 . cos

or 2 2 2 22r r r PQ PQ r r r PQ       . cos cos

or 2 1 2 22r r r PQ PQ r PQ      cos . . .cosb g
Since PQ  and  r  are small quantitites, so neglacting PQ2 ,  r 2  and  r PQ. . Thus we have

2 1 2r r r PQ  cosb g
  PQ r1 cos b g

Thus we have determined the three edges of the elementary parallelopiped as PQ r 1 cos b g ,

PS r    and PR r sin   . Since the lines of motion are curves on the surface of spheres touching
the plane of xy , there would be no motion along PQ , then the excess flow in over flow out along PQ  is
zero.

Now, the excess flow-in over flow out along PS  per unit time

  r
r

u r r 



     1 cos . sinb g

     
L
NM

O
QPr r u u      


 

    sin cos cos cos sin1 1 2b g b g b gm r

      
L
NM

O
QPr r u u      


 

    sin cos cos cos cos1 1 1 2b g b g b g c ho t

    
L
NM

O
QPr r u u1 1 2cos sin cos      




  a f a f a f

and the excess of flow in over flow out along PR  per unit time

  r
r

v r rsin
sin

cos .  

  

    1b g
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  r r v1 cos     

 

b g b g

Also, the rate of increase in mass of the element

 



       
t

r r r1 cos . . sinb g

 r r
t

2 1sin cos      
 


b g

Hence the equation of continuity is given by

r r
t

2 1sin cos      
 


 b g

       
L
NM

O
QP
 r r

u
u r r v1 1 2 1cos sin cos cos      

 


       

 

b g b g b g b g b g

or r
t

u v usin sin cos
 








 

      b g b g b g1 2 0

which is the required equation of continuity.

12.6 Boundary Surface

Physical conditions that should be satisfied on given boundaries of the fluid are called as boundary
conditions. At the boundary of the fluid the equation of continuity is replaced by a special surface condi-
tion. When the fluid is in contact with an impermeable bounding surface, the velocity of a fluid portete at any
point of the boundary relative to the surface must be tangential to the boundary.

A surface is a boundary surface if at any point of this surface the normal component of the fluid
velocity is equal to the normal component of the velocity of the surface. If it is not so, then the contact
between the fluid and the surface will break.

12.7 Condition for a surface may be boundary surface

Figure 12.11

l m n, , P1

P x y z, ,b g
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Let the surface be F x y z t, , ,b g  0 . Take a point P x y z, ,b g  on the boundary of this surface

such that the direction cosine of the normal be l m1  and n . Also the normal velocity of the boundary
at P  be V . After a small time  t , P  moves to P  such that PP V t   . The projections of PP   on
the axes x y,  and z  will be l V t , mV t  and nV t . But after time t t , point P  continues to be on
the surface hence

F x l V t y m V t z n V t t t       , , ,a f 0

Expanding by Taylor’s theorem, we obtain

F x y z t F
x

l V F
y

mV F
z

nV F
t

t, , ,a f   
F
HG

I
KJ 













  Higher powers of  t  0

On neglecting higher powers of  t  and using F x y z t, , ,b g  0  we have

V F t

l F
x

m F
y

n F
z

 
 

 









/

...(1)

But l m n, ,  are direction cosine of PP   to the surface F x y z tb g  0 ; so

l
F x

m
F y

n
F z F

x
F
y

F
z

      








/ / /
  

F
HG

I
KJ 

F
HG

I
KJ 

F
HG

I
KJ

1
2 2 2

   
F
HG

I
KJ 

F
HG

I
KJ 

F
HG

I
KJl F

x
m F

y
n F

z
F
x

F
y

F
z



















2 2 2

...(2)

Using (2) in (1), we have

V F t

F
x

F
y

F
z

 
F
HG

I
KJ 

F
HG

I
KJ 

F
HG

I
KJ

 










/
2 2 2

...(3)

and we know that the normal velocity in the direction PP   at P  be V u l v m wn    where
u v w, ,  are velocity components and must satisfy the equation of continuity..

V ul v m wn
u F

x
v F

y
w F

z

F
x

F
y

F
z

   
 

F
HG

I
KJ 

F
HG

I
KJ 

F
HG

I
KJ



















2 2 2
...(4)

From (3) and (4), we have
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   












F
t

u F
x

v F
y

w F
z

or












F
t

u F
x

v F
y

w F
z

    0

or
D F
D t

 0

Hence if F x y z t, , ,b g  0  be boundary surface, then at every point on it, D F
D t

 0  where 
D
Dt

 is

the differential following the motion. Hence the expression for normal velocity of the boundary surface is
given by

V F t

F
x

F
y

F
z




F
HG

I
KJ 

F
HG

I
KJ 

F
HG

I
KJ

 










/
2 2 2

Self Learning Exerecise II

1. At the boundary surface the normal velocity component of the fluid is ....... to the normal
component of velocity of the surface.

2. Write down the condition for a surface representing a boundary surface.

3. Write down the condition for a surface to represent the boundary surface if the boundary
surface is at rest.

Example 7 : Show that the ellipsoid

x
a k t

k t y
b

z
cn

n
2

2 2 2

2

2

2

2 1 
F
HG

I
KJ 

is a possible form of the boundary surface of a liquid.

Solution : We know that the surface F x y z t, , ,b g  0  represents the boundary surface if

DF
Dt

F
t

u F
x

v F
y

w F
z

     0 0









 ...(1)

where u v,  and w  satisfy the equation of continuity Here

F x
a k t

k t y
b

z
cn

n  
F
HG

I
KJ  

2

2 2 2

2

2

2

2 1 0




F
t

x
a k

n
t

n k t y
b

z
cn

n   
F
HG

I
KJ


2

2 2 2 1
1

2

2

2

2

2.
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


F
x

x
a k t n

2
2 2 2




F
y

k t y
b

n


2

2

and



F
z

k t z
c

n


2

2

Using there in (1), we have

  
F
HG

I
KJ    

x
a k

n
t

n k t y
b

z
c

x u
a k t

k t y v
b

k t z w
cn

n
n

n n2

2 2 2 1
1

2

2

2

2 2 2 2 2 2
2 2 2 2 0

or u n x
t

x
a k t

v n y
t

k y t
b

w n z
t

k z t
cn

n n

F
H

I
K  

F
HG

I
KJ  

F
HG

I
KJ 

2
2

2
2

2 02 2 2 2 2

which will hold if

u n x
t

  0  ; v n y
t

 
2

0  ; and w n z
t

 
2

0

 u n x
t  ; v n y

t


2  ; and w n z

t


2

These value of u v w, ,  can be seen to satisfy the equation of continuity. Hence the given surface is
a boundary surface.

Example 8 : Show that

x
a

f t y
b

t z
c

t
2

2

2

2

2

2 1b g b g b g    , where f t t tb g b g b g. .   1  is a possible

form of the boundary surface.

Solution : Given that

F x y z t x
a

f t y
b

t z
c

t, , ,b g b g b g b g    
2

2

2

2

2

2 1 0  ...(1)

will be a possible form of the boundary surface if it satisfies













F
t

u F
x

v F
y

w F
z

    0 ...(2)

Using (1) is (2), we have

x
a

f t y
b

t z
c

t u x
a

f t v y
b

t w z
c

t
2

2

2

2

2

2 2 2 2
2 2 2 0        b g b g b g b g b g b g   .

334



or
2

2
2 2 02 2 2

x
a

f t u x f t
f t

y
b

t v y t
t

z
c

t w z t
t

a f a f
a f a f a f

a f a f a f
a f

L
NM

O
QP  

L
NM

O
QP  

L
NM

O
QP 








which satisfies only when

u x
f t
f t

 
1

2
b g
b g  , v

y t
t

 


b g
b g2  ; w

z t
t

 



b g
b g

But there value of u v,  and w  must satisfy the equation of continuity










u
x

v
y

w
z

   0

 









1
2

1
2

1
2

0
f t
f t

t
t

z t
t

b g
b g

b g
b g

b g
b g







or









f t
f t

t
t

z t
t

b g
b g

b g
b g

b g
b g







0

or d
d t

f t t tlog log logb g b g b g    0

 
d
d t

f t t tlog . .b g b g b g  0

which is true for given condition f t t tb g b g b g. .   1.

Example 9 : Show that ellipsoid

x
a k t

k t y
b

z
c

2

2 2 4
2

2

2

2

2 1 
F
HG

I
KJ 

is a possible form of the boundary surface of a liquid at time t .

Solution : Here F x y z t x t
a k

k y
b

t k z
c

t, , ,b g     
2 4

2 2

2

2
2

2

2
2 1 0 ...(1)

Now (1) will represent a boundary surface if it satisfies













F
t

u F
x

v F
y

w F
z

    0 ...(2)

Now



F
t

x
a k t

k y
b

t z k
c

t


 
4 2 22

2 2 5

2

2

2

2




F
x

x
a k t


2

2 2 4

335






F
y

k y
b

t
2

2
2

and



F
z

k z
c

t
2

2
2

Putting these in (2), we have

      
4 2 2 2 2 2 0

2

2 2 5

2

2

2

2 2 2 4

2

2

2

2

x
a k t

k t y
b

k z
c

t x u
a k t

k y v t
b

k z w t
c

or
2 2 2 2 02 2 4

2

2

2

2

x
a k t

u x
t

y k t
b

v y
t

z k t
c

w z
t

L
NM

O
QP  L

NM
O
QP  L

NM
O
QP 

It is satisfied if

u x
t


2

 ; v
y
t

   and w z
t



Which satisfies the equation of conitinuity therefore the given surface is a possible boundary sur-
face of the fluid.

12.8 Summary

In this unit, we studied the forms of equation of continuity in different coordinate systems. The
concept of boundary surface is introduced and the conditions required for a given surface to be a boundry
surface are discused.

12.9 Answer to self learning exercise
Exercise I

1. b div q


 0
2. SV   constant, where S  is sectional area and V  is the velocity
3. The mathematical representation of Law of mass conservation.

4. Yes :
d v
d r r

 1 1
2  ; 

d v
d r r

2

2 3

2



d v
d r

d
d r

v
r r r

2

2 3 3
2 2 0 F

H
I
K   

Exercise II

1. Equal

2.












F
t

u F
x

v F
y

w F
z

    0

3. u F
x

v F
y

w F
z










   0
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12.10 Exercise
1. Derive the equation of continuity for a constant density fluid.

2. Show that in a two-dimensional incompressible steady flow fleld the equation of continuity is
satisfied with the velocity components in rectangular coordinates given by

u x y x y

x y
,b g

c h






2 2

2 2 2  and v x y x y

x y
,b g

c h




2
2 2 2

3. The particle of a fluid moves symmetrically in space with regard to a fixed centre. Prove that the
equation of continuity is

 


 



t

u
r r r

r u  
1 02

2c h

Where u  is the velocity at distance r .

4. Each particle of a mass of liquid moves in a plane through the axis of z . Find the equation
of continuity.

Ans.
 









 

 
t r r

ur
r

v  
L
NM

O
QP

1 1 02
2c h b g

sin
sin

5. Homogenous liquid moves so that the path of any particle P  lies in the plane POX , where
OX  is fixed axis. Prove that if OP r  and the  XOP  , the equation of continuity may
be written as





 


r

ur v r2 0c h b g sin

Where u v,  are the component velocities along and perpendicular to OP  in the plane POX
and   cos .

6. Show that 
x
a

f t y
b f t

2

2

2

2

1 1b g b g .  is a possible form of the boundary surface of a liquid.

7. Show that 
x
a

t y
b

t
2

2
2

2

2
2 1sin  cosec  is a possible form for the boundary surface of a liquid.

8. Show that 
x
a

e y
b

t z
c

e tt t
2

2

2

2

2

2 1  cos sec  is a possible form for the boundary surface

of a liquid.

����
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Structure of the unit
13.0 Objective

13.1 Introduction

13.2 Euler’s dynamical equations of motion in vector notation

13.3 Euler’s dynamical equations of motion in Cartesian coordinates

13.4 Conservative Field of Force

13.5 Integration of the equation of motion

13.6 Bernoulli’s theorem

13.7 Helmholtz equation

13.8 Permanence of irrotational motion

13.9 Working rule to solve problems

13.10 Summary

13.11 Answer to self learning exercise

13.12 Exercise

13.0 Objective

In this unit, our aim is to study Euler’s equations of motion in various forms and integrate the
equation of motion to get the Bernoulli’s equation and Bernoulli’s theorem for the fluid motion. The Helmholtz
equation is also obtained through various approches.

13.1 Introduction

The Euler’s equations of motion are based on the law of conservation of mass and Newton’s
second law of motion. The momentum of a body is defined as the product of the mass of the body and its
velocity. In the fluid motion, the momentum per unit volume is defined by M q  , where   be the
density of the fluid and q  be the velocity of the fluid particle. The Newton’s second law of motion states
that the rate of change in momentum is directly proportional to the external force applied on it and this
changes takes always in the direction of the fluid flow. In other words, the net force acting on the fluid
particle is equal to the product of mass of the body and acceleration of the fluid particle.

13.2 Euler’s dynamical equations of motion in vector notation

Figure 13.1

UNIT - 13
Equation of Motion-I

SV

 ds

 v P
n

q

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Consider a closed surface S  such that it encloses a non-viscous fluid and is in motion with the
fluid. This motion ensures that at any time S  wll contain same fluid particles.

Now take any point P  within the surface S ,   be the density of the fluid at P  and V  be an

elementary volume which encloses P  and q


 be the fluid velocity at P .

Since the mass  V  of the element remains unchanged during the motion, the momentum M


 of
the volume V  in S  is given by

M q d V
V

 
 z  ...(1)

The rate of change of momentum is

d M
d t

d q
d t

d V q d
d t

d V
V V

 


 z z a f

But here 
d
d t

d Va f  0 since  d V  is always constant, so

d M
d t

d q
d t

d V
V

 

 z  ...(2)

Again, let F
  be the external force per unit mass acting on fluid and p  be the pressure at a point

of the surface element ds  then total force on the fluid in volume V


z F d V

V

 ...(3)

And the force due to pressure in the outward normal direction

  z p n d s
S

. 

  z p d V
V

(By Gauss throrem) ...(4)

Hence from the Newton’s second law of motion, rate of change of momentum = total force acting
on the mass in the direction of the momentum, we have

d q
d t

d V F d V p d V
V V V


z z z   

       FH IK
z  F p d V

V
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or  
d q
d t

F p d V
V




  
F
HGG

I
KJJ

z 0

But volume V enclosed in S  is arbitrary, so we have

 d q
d t

F p



  

or
d q
d t

F p



  

1


...(5)

where 
d
d t  is the differential following the motion. Therefore equation (5) should be written as


 

q
t

q q F p


  
 FH IK   . 1


d
d t t

q  FH IK



.

Which is the Euler’s dynamical equation in vector notation.

13.3 Euler’s dynamical equations of motion in cartesian coordinate

Figure 13.2

Consider a point P x y z, ,b g  of a fluid. Let p  be the pressure per unit area,   be the density,,
u v w, ,  be the components of velocity and X Y Z, ,  the components of external force per unit mass in the
direction of axes respectively.

Construct a rectangular parallelopiped having faces parallel to coordinate planes and edges

PP x    ,  PQ y   and PS z 

The pressure on the face PQRS p y z f x y z   , ,b g  (say)

Then the pressure on the face    P Q R S

Z

Y

X

Q1

P1

S1

R1

S
R

Q

P  x y

 z
p p

x
x y z

F
HG

I
KJ




  

X x y z  

p y x 

O
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 f x x y z , ,b g

  f x y z f
x

x, , ...b g 




 p y z p
x

x y z 



   on neglecting second order terms

 
F
HG

I
KJp p

x
x y z


  

Also since X  is the force per unit mass parallel to x -axis, the force on the rectangular parallelopiped
in x-direction  X x y z   

Again, the acceleration along x -axis is 
d u
d t  then the rate of change of momentum along x -axis is


d u
d t

x y z   

Hence, the equation of motion along x -axis is

         



  x y z d u
d t

X x y z p y z p p
x

x y z   
F
HG

I
KJ

i.e.  



d u
d t

X p
x

 

or
d u
d t

X p
x

 
1




or










 




u
t

u u
x

v u
y

w u
z

X p
x

    
1

...(1)

similarly, the equations of motion in y  and z directions will be











 




v
t

u v
x

v v
y

w v
z

Y p
y

    
1

...(2)

and










 




w
t

u w
x

v w
y

w w
z

Z p
z

    
1

...(3)

respectively.

Equation (1) to (3) are known as Euler’s dynamical equations of motion in cartesian
coordinates.
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13.4 Conservative Field of Force

A field of force having components X Y,  and Z  parallel to axes is called conservative if the work
done by the force per unit mass from one point to the other is independent of the path of the motion.

Hence X dx Y dy Z dz dV   

or X dx Y dy Z dz V
x

dx V
y

dy V
z

dz     









  X V
x


  ; Y

V
y

 

  and Z V

z
 




where V  is called potential function and depends upon the initial and final positions of the moving
mass.

13.5 Integration of the equations of motion

Suppose the motion be irrotational, so that velocity potential   exists and the system of force be
conservative so that the external forces are derivable from a potential function V , such that

u
x

 
 
  , v

y
 

 
  , w

z
 

 
 ...(1)

and X V
x

 

  , Y

V
y

 

  , Z V

z
 


 ...(2)

Since the motion is irrotational, so that spin components should vanish







w
y

v
z

  ,  






u
z

w
x

  and 






v
x

u
y

 ...(3)

The equation of motion are











 




u
t

u u
x

v u
y

w u
z

X p
x

    
1

...(4)











 




v
t

u v
x

v v
y

w v
z

Y p
y

    
1

...(5)

and










 




w
t

u w
x

v w
y

w w
z

Z p
z

    
1

...(6)

Using results from (1) to (3) in (4) to (6), we have




 












 


t x

u u
x

v v
x

w w
x

V
x

p
x


F
HG

I
KJ      

1




 












 


t y

u u
y

v v
y

w w
y

V
y

p
y


F
HG

I
KJ      

1
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and



 












 


t z

u u
z

v v
z

w w
z

V
z

p
z


F
HG

I
KJ      

1

These equation may be written as




 






 


x t x

u v w V
x

p
x


F
HG

I
KJ      

1
2

12 2 2c h ...(7)




 






 


y t y

u v w V
y

p
y


F
HG

I
KJ      

1
2

12 2 2c h ...(8)

and



 






 


z t z

u v w V
z

p
z


F
HG

I
KJ      

1
2

12 2 2c h ...(9)

Multiplying (7) by dx , (8) by dy  and (9) by dz  then adding, we get
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
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V
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dx V
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dy V
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dz p
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dx p
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dz1

which may be written as

d
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d u v w dV dp
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I
KJ      

 
 
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12 2 2c h

or d
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dq dV dp
F
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I
KJ    

 
 

1
2

1 02
where q u v w2 2 2 2  

Assuming a functional relatioship between p  and   and integrating we obtain

    z 
 t

q V d p1
2

2  constant

or
d p

t
q V


 


   z 1
2

2
 constant = C ...(10)

Where C is an arbitrary function of the time.
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Case I :

If   is constant, then

p
t

q V C


 


   
1
2

2

which is the Bernoulli’s equation for the unsteady, irrotational motion of an incompressible fluid.

Case II :

If motion is steady, then the Bernoulli’s equation takes the form

p V q C

  

1
2

2
as

 
 t

 0

Where C is an absolute constant.

13.6 Bernoulli’s theorem
The theorem states that “in a steady fluid motion, which is not irrotational, if potential function

exists such that the external forces are derivable from this, then

d p q V C


  z 1
2

2  (OR)

Show that

d p q V C


  z 1
2

2

Where the motion is steady and the velocity potential does not exists, V  being the potential
function from which the external forces are derivable.

Proof :

Figure 13.3

Let AB  be a stream line in the fluid. Consider an element  s  of this stream line and construct a
small cylinder of cross-section   and  s  as axis.

If q


 be the velocity and S  the component of external force per unit mass along the stream line,
then the equation of motion is

A

B

p

 s

p p
s

s
F
HG

I
KJ




 
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
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s S p p p
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s.


   
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d q
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1

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
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  
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
d
d t t

q
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 






Here motion is steady therefore 


q
t



 0  and since the component of external force S  is

derivable from potential function then S V
s

 



Hence

q q
s

V
s

p
s




  . 



 




1

Integrating it along the stream line, we obtain

1
2

2q V d p C   z 

or
d p q V C


  z 1
2

2

Where constant C  depends upon the stream line choosen. This is the Bernoulli’s theorem.

13.7 Helmholtz Equation
The Euler’s dynamical equation of motion in the direction of x -axis in cartesian coordinates is











 




u
t

u u
x

v u
y

w u
z

X p
x

    
1

...(1)

where u v w, ,  are velocity components along axes respectively and

X V
x

 



 , Y
V
y

 



 ,  Z V
z

 



 are the components of external forces which are

conservative with potential function V .

Now
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or






  
 
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

u
t x

u v w v w V
x

p
x

        
1
2

2 2 12 2 2c h b g

where   , ,  are the spin components and q u v w2 2 2 2   .

or






 

 
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
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v w V
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p
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2 2 12

or



 

 

u
t

v w
x

V d p q     
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

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
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u
t

v w Q
x

   2 2 ...(2)

where Q
d p q V  z 

1
2

2
 and   is a function of p.

Similarly we obtain
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 
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   2 2 ...(3)
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
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


w
t

u v Q
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   2 2 ...(4)

Deffrantating (3) partially with respect to z  and differentiating (4) partially with respect to y  then
eliminative Q , we have
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On adding and subtracting 2u
x
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

, we have
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where 
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Using (7) in (6), we obtain
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which is the first Helmholtz equation.
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These equation (8) to (10) are the Helmholtz equations. To obtain another form of Helmholtz
equations, we take Helmholtz equation in x -direction (8),
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Similarly other two equations (9) and (10) gives
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which give the other form of Helmholtz equations.

13.8 Permanence of irrotational motion

If  ,  , and   be zero at any instant of time t then
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   0 if   is constant

   ,   and   are constants.
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u
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Let       w , we get from the above equation
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D
Dt

w l wb g  3

On integratip w C e l t 3  , w  0 .

If when t w  0  then C  0  Hence if w  0  at time t  0  it must be so for all times. Since w
is the sum of three quantities   , ,  which cannot be negative. Hence w  0 , it follows that each of these
three quantities must be zero,

    0

Hence, if the motion is irrotational at any instant, it must be so for all times. In other words, if once,
the velocity potential exists, it exists for all time. This is known as the principle of permanance of irrotational
motion.

13.9 Working rule to solve problems
1. Read the question and obtained the equations of motion as
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and
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The general problem of hydro-dynamics is to find values of u v w, , , p  and   as functions
of x y z, ,  and t .

2. The equation of motion are not sufficient for the purpose and we need other relation. In all
problems we make use of the equation of continuity.

3. With the help of initial and boundary conditions, the problem is solved particularly.

Self Learninig Exercise

1. If the velocity potential does not exist then motion is

(a) rotational (b) irrotational

(c) translational (d) rotational as well as translational

2. Write down the Bernoulli’s equation for the unsteady, irrotational motion of an incompressible
fluid.

3. Define the conservative field of force.

Example 1 : Air, obeying Boyle’s law, is in motion in a uniform tube of small section, Prove that if   be
the density and v be the velocity at a distance x  from a fixed point at time t ,

 






2

2

2

2
2

t x
v k c ho t
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Solution : Air, obeying Boyle’s law

 p k  ...(1)

The equation of continuity in this case is
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On differentiating (2) partially with respect to t., we obtain
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which is the required result.

Example 2 : A pulse travelling along a fine straight uniform tube filled with gas causes the density at
time t  and distance x  from the origin where the velocity is u0  to become  0 v t xb g . Prove that the
velocity u  is given by

v
u v v t

v t x





0b g b g
b g



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Solution : If   be the density of the gas at a distance x  and u  the velocity there then according to
given condition

   0 v t xb g ...(1)

and the equation of continuity is
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

 
x

v t x   0 b g ...(3)

Using (3) in (2), it becomes

   



 0 0 0 0v v t x v t x u
x

u v t x       b g b g b g

or v u v t x v t x u
x

     b g b g b g 



0

or
d u

v u
v t x
v t x

dx



 


a f

a f
a f




0

On integrating, we get

    log logv u v t xb g b g constant

or v u v t x  b g b g C

which C  is the constant of integration. But initially when x  0  ; u u 0  C v u v t0b g a f

Hence v u v t x v u v t   b g b g b g b g 0

or v u
v u v t

v t x
 




0b g b g
b g




or u v
u v v t

v t x
 




0b g b g
b g




Which is the required result.
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Example 3 : A sphere is at rest in an infinate mass  of homogeneous liquid of density  , the pressure at
infinity being  ; show that, if the radius R  of the sphere varies in any manner, the pressure at the surface
of the sphere at any time is

  
F
HG

I
KJ

R
S|
T|

U
V|
W|

1
2

2

2
2

2
d
d t

R d R
d tc h

Solution : Let v  be the velocity of the fluid at a distance r  from the centre of the sphere at any time
t  and p  the pressure, then the equation of continuity is

r v F t2  b g

 



v
t

F t
r
b g
2 ...(1)

The equation of motion is





 




v
t

v v
r

p
r

  
1

Using (1), we have


  

F t
r

v v
r

p
r

b g
2

1
 


 ...(2)

On integrating w r t r. . . , we get




  
F t

r
v C pb g 1

2
2



The initial conditions are

r    , v  0  ; p    C 


Hence




 
F t

r
v pb g 1

2
2 



or p
F t

r
v 




L
NM

O
QP


2

2 2b g
...(3)

If P  be the pressure on the surface of the sphere of radius R  and V  be the velocity at r R  (on
the surface of the sphere) then

P
F t

R
V 




L
NM

O
QP


2

2 2b g
...(4)
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Again from (1), R V F t2  b g

or F t R d R
d t

b g  2 .

  
F
HG

I
KJF t R d R

d t
R d R

d t
b g 2

2

2

2

2. ...(5)

Using (5) in (4), we obtain

P R d R
d t

d R
d t

d R
d t

  
F
HG

I
KJ

R
S|
T|

U
V|
W|

F
HG

I
KJ

L
N
MM

O
Q
PP


2

2 2
2

2

2 2

.

P R d R
d t

d R
d t

  
F
HG

I
KJ

L
N
MM

O
Q
PP


2

2 3
2

2

2

.

or P
d R

d t
d R
d t

  
F
HG

I
KJ

L
N
MM

O
Q
PP


2

2 2

2

2c h

which is the required result.

Example 4 : Steam is rushing from a boiler through a conical pipe the diameter of the ends of which are
D  and d . If V  and v  be the corresponding velocities of the steam and if the motion be suppossed to be
that of divergance from the vertex of the cone,

Prove that
v
V

D
d

e v V k



2

2
22 2d i/

where k  is the pressure divided by the density and supposed constant.

Figure 13.4

Solution : Let AB  and CD  be the ends of the conical pipe. V  and v  are the velocities at the ends
where the diameters are D  and d . Also let 1  and  2  be the densitites of steam at these ends. Then the
equation of continuity can be written directly by the fact that mass of thesteam that crosses AB  and CD
is the same. Thus equation of continuity is,

A

B

C

D
1

2

D d
v

V
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   1
2

1
2

2

1

2

2D V d vF
H

I
K  F

H
I
K .

or



1

2

2

2
v d
VD ...(1)

Now, if at any distance r  from AB , the velocity is u , pressure is p  and density is   then the
equation of motion gives

u u
r

p
r


 




 
1

...(2)

Now as p k    p k

then u u
r

k p
r


 




 

On integrating, we have

u k A
2

2
  log log   Ae

u
k

2
2

But here

  1  when u V Ae
V

k  1
2

2

and   2  when u v Ae
v

k  2
2

2

so that



1

2

2

2

2

2
e

e

V
k

v
k

...(2)

From (1) and (2), we obtain

v d
V D

e

e

V
k

v
k

2

2

2

2

2

2

or
v
V

D
d

e
u V

k
2

2
2

2 2d i

which is the required result.

Example 5 : An infinite mass of fluid is acted on by a force v 3
2  per unit mass directed to the origin.

If initially the fluid is at rest and there is a cavity in the form of the surface r c  in it, show that the cavity

will be filled up after an interval of time 2
5

1
2 5

4
e j c .

Solution : Let v  be the velocity at a distance r  from the origin and p  be the pressure there at
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any time t . Then equation of continuity is   r v F t2 b g ...(1)

and the equation of motion is













 



   


v

t
v v

r
r p

r
3

2 1
...(2)

Using (1)



  

v
t

F t ra f / 2
, so that




 


 





F t
r

v v
r r

p
r

a f
2 3

2

1





 .

Integrating w r. .  to r , we get





  


 
F t

r
v

r

p Cb g 1
2

22
1

2




When   r  ;   v 0 , p  0    C 0 .

Hence
 


  




F t
r

v
r

pb g 1
2

22
1

2


 ...(3)

Let r  be the radius of the cavity at time t  and v  be the velocity there, then putting p  0 (on the
surface of cavity), the motion of the cavity is given by

 
 

F t
r

v
r

b g 1
2

22
1

2


...(4)

Now from equation (1), we have

r v F t2  b g    F t r v r v dv
dr

b g 2 2 2

then equation (4) reduces to

   2 1
2

22 2
1

2
v rv dv

dr
v

r



or   r v dv
dr

v
r

3
2

22
1

2



or v dv
dr

v
r

r   3
2

2
2 3

2

or
dv
dr r

v r
2

2 3
23 4    ...(5)
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which is a linear differential equation whose solution is given by

v r r d r C2 3 3 2
14  z  I F e rr

dr
.  z 

3
3

          
8
5

5 2
1

 r C

Initially r c  ; v  0    C c1

5
28

5


then v r c r2 3 5
2

5
28

5
 FH IK



or v dr
dt

c r

r
  

FH IK8
5

5
2

5
2

1
2

3
2

 .

Here we take negative sign since r  decreases with the increase in t .

t r dr

c r
c

 


z5
8

3
2

5
2

5
2

1
2

0


.

e j

On taking r c
5

2
5

2 2 sin 

t c c d

c
 


z5

8
2

1

3
2 3

5
2 2

1
20

2


   





. sin . . sin cos

sinc h

t c
2

5
5

4


.

which is the required result.

Example 6 : An infinite fluid in which is a spherical hollow shell of radius a is initially at rest under the
action of no forces. If a constant pressure P  is applied at infinity, show that the time of filling
up the cavity is


2

1
2 5

6
3

2 1
3a

P
F
HG

I
KJ FH IK



.

Solution : Let v  be the velocity at a distance r  and pressure p  at any time t , also let v  the
velocity and r  the radius of cavity. From the equation of continuity, we get

  r v F t r v2 2b g ...(1)

which gives us that








v
t

F t
r
a f
2 ...(2)
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and the equation of motion is





 





 



 


v
t

v v
r

p
r

1

On using (2),



 


 


F t
r

v v
r

p
r

b g
2

1
 




On integrating with respect to r , we get





   
F t

r
v C pb g 1

2
2

1 

where C  is the constant of integration and when

  r  ;  v 0  , p P C P  1 

Hence 






 
F t

r
v P pa f 2

2 

Now, on the surface of cavity  r r ,  v v , p  0

then 


 
F t

r
v Pa f 2

2 
...(3)

To calculate F tb g , we differentiate (1), we have

  F t r v r v dv
dr

b g 2 2 2 ...(4)

From (3) and (4), we have

   2 1
2

2 2v v r dv
dr

v P


or
dv
dr r

v P2
23 2

  


which is a linear differatial equation, solution of it is given by

v r P r dr C2 3 2
2

2
  z

v r P r C2 3
3

2
2

3
  



when r a , v  0     C P a v r P a r2

3
2 3 3 32

3
2
3 

c h
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then v dr
dt

P a r

r
  

2
3

3 3
1

2

3
2

c h

where negative sign before the radical is taken since r  decreases as t  increases. If t  is the time
of filling up the cavity

t
P

r dr

a ra
 


z3

2

3
2

3 3 1
2

0

c h on putting r a sin
2

3

  



z3
2

2
3

3
2

1
3

3
20

2    





P

a a d

a

sin sin cos

cos

t a
P

d z2
3

3
2

2
3

0

2
 


sin

   

2
3

3
2

5
6

1
2

2 5
6

1
2

a
P
 .

.

.

t a
P

a
P

 
2
3

3
2

5
6

1
2

2 4
3

2
3

3
2

5
6

1
2

2 1
3

1
3

 .

.
. .

.

. ...(5)

we know that

n n
n

n.
.
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1

2
2

22 1



and n n
n

.
sin

1 a f 


putting n  1
3 , we have

1
3

5
6

2
3

2
2

3 1
. 




 



5
6

2
3

1
3

2 1
3

2
3

2

 . .

e j
...(6)

and
1

3
2

3
3

.
sin



   

 
3

2

2
3 ...(7)
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From (6) and (7), we have

5
6

2
3

2 1
3

2

3 1
3

1
3

2

43

2 


 
 .

.

. .

.e j e j
putting these values in (5), we obtain the time of filling up the cavity

t a
P




 2 5
6

3

2 1
3e j e j.

which is the required result.

Example 7 : An infinite mass of homogenous. incompressible fluid is at rest subject to a uniform
pressure P  and contains a spherical cavity of radius a  filled with a gas at a pressure m P . Prove that if the
inertia of the gas be neglected and Boyle’s law be supposed to hold throughout the ensuing motion, the
radius of the sphere will oscillate between the value a and na , where n  is determined by the equation

1 3 03  m n nlog

If m  be nearly equal to 1, the time of an oscillation will be 2
3

2


a
P

,   being the density of the

fluid.

Solution : Let v  be the velocity at a distance r  from the centre of cavity and p  be the pressure
there, then the equation of continuity is

  r v F t2 b g ...(1)

and equation of motion is





 





 



 


v
t

v v
r

p
r

1

on using (1), we have




 


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
F t
r

v v
r

p
r

b g
2

1
 




On integrating with respect to r , we get





   
F t

r
v C pb g 1

2
2

1 

when   r  ,  v 0 , p P   C P
1  .

Hence 


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F t

r
v P pa f 1

2
2


...(2)
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Now, let r  be the radius of the cavity at time t , v  the velocity and p  be the pressure there, then
since air inside obeys Boyle’s law,

4
3

4
3

3 3 r p a m P  .

  p a m P
r

3

3

when  r r , p p  ,  v v  (motion of the surface of the cavity)

From (2), we have




  
F t

r
v P a m P

r
a f 1

2
2

3

3 . ...(3)

Now putting v
F t
r


b g
2    F t r v r v dv

dr
b g 2 2 2

in equation (3), we have

dv
dr r

v P
r

r m a
2

2
4

3 33 2
   


c h

which is linear differential equation whose solution is given as

r v P
r

r m a dr C3 2 3 3
2

2 1
   z

c h

         
L
NM

O
QP 

2
3

3
3

2
P r m a r C


log

when r a  ; v  0   
L
NM

O
QPC P a m a a2

3
32

3
log

Hence v r P a r m a r
a

2 3
3 3

32
3





L
NM

O
QP

log ...(4)

If  v  0  ; r na  then eqn (4) gives

a n a ma n3 3 3 33 0  log

or 1 3 03  n m nlog

which is the required relation for n .

2nd Part :

When m  is nearly equal to 1. Let r a x   where x  being small, so that v dr
dt

dx
dt

x     then

equation (4) gives.
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 . . logx a x P a x
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P x
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x
a

x
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....

      
L
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O
QP

2
3

9
2

2

2

P x
a (Neglecting higher power of x )

x P
a

x2
2

23
 



Now differentiating w r to t. . . , we have

2 3 22  x x P
a

x x 


or x P
a

x 
3

2

which is the SHM  and the time period T  is given by

T
P
a

T a
P

  
2
3

2
3

2

2






.

Example 8 : A spherical hollow of radius a initially exists in an infinite fluid subject to constant pressure
at infinity. Show that the pressure at distance r  from the centre when the radius of the cavity is x  is to the
pressure at infinity as

3 4 32 4 3 3 3 3 3 3 2 4x r a x r a x x x r   c h c h :

Solution : Let at time t , v  be the velocity at a distance r  and p  the pressure there, then equation
of continuity is

  r v F t2 b g ...(1)

and equation of motion is





 





 



 


v
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v v
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p
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1
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on using (1)


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 
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
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
F t
r

v v
r

p
r

b g
2
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

On integrating, with respect to r , we have





   
F t

r
v C pb g 1

2
2

1 

Let   be the pressure at infinity, so when   r  , p   ,  v 0   C1



Hence 


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F t

r
v pb g 1

2
2 

 ...(2)

Now let v  be the velocity of the inner surface of radius x  and pressure p  0  then for the motion
of inner surface, we have




 
F t

x
vb g 1

2
2 

 ...(3)

or 


 
F t

x
F t

x
b g b g1

2

2

4


 ...(4)

as F t x v v
F t
x

b g b g
  2

2  or
dx
dt

F t
x


b g
2   2 22x dx F t dtb g ,

so multiplying (4) by 2 22x dx F t dt b g
we get




 
F t

x
F t dt

F t
x

x dx x dxb g b g b g2 1
2

2 2
2

4
2 2. .



or
 

 
2 1 22

2 2F t F t
x

dt
x

F t dx x dxa f a f a f 


or d
F t

x
x dx

F
HG

I
KJ 

2
22b g 



On integrating, we have

  
F t

x
x C

2
3

2
2
3

b g 

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Now, when x a  ; v  0    C a2
32

3



then   
F t

x
x a

2
3 32

3
b g c h



On using F t x vb g  2 ,

v x a x2 3 3 32
3

 



c h ...(5)

which is the velocity of the inner surface when it is a hollow of radius x . On using the value of v2

in equation (2), we have

  
L
NM

O
QP 




L
NM

O
QPF t x v x a x

x
b g

2 3 3

32 3









.

 


F t
a x

x
b g c h

3
43 3

2. ...(6)

Now putting the value of F tb g  from (6) in equation (2), we obtain the motion of any point in the

fluid at the distance r  on using   r v x v2 2




L
N
MM

O
Q
PP  


1

3
4 1

2

3 3

2
2

4

4r
a x

x
v x

r
p





.
c h
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









 




p a x
x r

x a x
r3

4
3

3 3

2

3 3

4.
c h c h

at distance  r r

or
p a x

x r
x a x

x
 





1

4
3

3 3

2

3 3

4

c h c h

or
p x r a x r a x x

x r


   3 4
3

2 4 3 3 3 3 3 3

2 4

c h c h

which is the required result.

Example 9 : A sphere is at rest in an infinite mass of homogeneous liquid of density , the pres sure at
infinity being P . If the radius R  of the sphere varies in such a way that R a b nt  cos  where b a .
Show that pressure at the surface of the sphere at any time is

P b n b a nt b nt  
2

4
4 5 2 cos cosa f.
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Solution : Let v  be the velocity at a distance r  at any time t  and p  be the pressure there. Again,
let v  be the velocity on the surface of sphere of radius R , where R a b nt  cos . The equation of
continuity is

   r v F t R v2 2b g ...(1)

Therefore





v
t

F t
r
b g
2 ...(2)

The equation of motion is





 





 



 


v
t

v v
r

p
r

1

On using (2)







F
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I
KJ  


F t
r r

v p
r

b g
2

21
2

1
 




On integrating





    
F t

r
v p Cb g 1

2
2



when r    ,  v 0 , p P   C P


Thus 



  
F t

r
v P pb g 1

2
2

 ...(3)

Now the pressure p  at the surface of the sphere of radius R  given by on putting

r R  ,  v v




 
F t

R
v P pb g 1

2
2



where R a b nt  cos .

or p P
F t

R
v 




L
NM

O
QP

b g 1
2

2
...(4)

From (1), we have

   F t d
dr

v R R v dR
dt

R dv
dt

b g c h2 22 .  
F
HG

I
KJ 2

2
2

2

2R dR
dt

R d R
dt  as V

dR
dt


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Using these values in (4), we have

p P dR
dt

R d R
dt

dR
dt

  F
HG

I
KJ   F
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I
KJ

L
NMM

O
QPP

 2 1
2

2 2

2

2

      F
HG

I
KJ 

L
NMM

O
QPP

P dR
dt

R d R
dt


3
2

2 2

2

         L
NM

O
QPP b n nt a b nt b n nt

3
2

2 2sin cos cosa f a f c h

      P bn b nt b nt a nt 2
2 2

2
3 2 2sin cos cos

        P bn b nt b nt a nt 2

4
3 1 2 2 1 2 4cos cos cosb g b g

p P b n b b nt a nt   
 2

4
5 2 4cos cos

which is the required pressure.

Example 10 : Liquid is contained between two parallel planes, the surface is a circular cylinder of radius
a whose axis is perpendicular to the planes. All the liquid within a concentric circular cylinder of radius b
is suddenly annihilated. Prove that if   be the pressure at the outher surface, the initial pressure at any
point on the liquid distance r  from the centre is


log log
log log

r b
a b



Solution : Here the motion of the liquid will take place in such a manner so that each element of the
liquid moves towards the axis of the cylinder z b . Hence the free surface would be cylinderical. Thus
the fluid velocity v  will be radial and it is a function of r  and time t  only. Let p  be the pressure at a
distance r . Then the equation of continuity is

  r v F tb g ...(1)

which gives










v
t

F t
r
a f

...(2)

The equation of motion is





 





 



 


v
t

v v
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p
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1

Using (2), we have







F
H

I
K  


F t

r r
v p

r
a f 

 



1
2
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On integrating

      F t r v p Ca f log 1
2

2

 ...(3)

Initially when t  0 ,  v 0 , p P

then     F r P C0a f log


...(4)

Again P    when  r a  and P  0  when  r b

    F a C0b g log 


and  F b C0b g log

which gives that C b
a

b
  log

log


 e j
 and

  F
a

b
0b g

e j


 log
  then using these values in (4), we get

P
a

b
r b

a
b









  

log
log . log

loge j e j

or P r b
a

b


  log log
log e j

    
 


 . log log
log log

r b
a b

On replacing  r r , we obtain the required result

P r b
a b





 . log log
log log

Example 11 : A stream in a horizontal pipe, after passing a contraction in the pipe at which its sectional
area is A  is delivered at atmospheric pressure at a place, where the sectional area is B . Show that if a
side tube is connected with the pipe at the former place, water will be sucked up through it into the pipe
from a reservior at a depth

s
g A B

2

2 22
1 1

F
HG

I
KJ

below the pipe, s  being the delivery per second.
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Solution :

Figure 13.5

Let v  be the velocity in the tube of smaller section A  and p  the pressure at that section. Further
let V  and   be the corresponding quantities at the bigger section B  of the figure.Then by Bernoulli’ss

theorem, we have 
p q

 

1
2

2
 constant   then we obtain that

p v V





  
1
2

1
2

2 2

or
1 1

2
2 2


p V v  b g c h ...(1)

Let h  be the height through which water is sucked up, then

 g h p  ...(2)

The equation of continuity is

Av BV s  (delivery per second)

so that v s A /  and V s B / ...(3)

On using (2) and (3) in equation (1), we have

1 1
2

2

2

2

2
 g h s

A
s
B

 
L
NM

O
QP

or h s
g A B

 F
HG

I
KJ

2

2 22
1 1

which is the required result.

13.10 Summary

In this unit, we studied the equations of motion in vector and cartesian forms. we integrated the
equation of motion and obtained Bernoulli’s theorem. We also derived the Helmholtz equation. Now we
are capable solving the hydrodynamical problems for fluid motion by using equation of continuity,
equations of motion with the help of given boundary conditions.

A
B

V p v

h


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13.11 Answers to Self Learning Exercise
1. (d) rotational as well as translational.

2.
p

t
q V


 


   
1
2

2
 constant.

3. The work done by the force is independent of path of motion,

13.12 Exercise
1. An elastic fluid, the weight of which is neglected, obeying Boyle’s law, is in motion in a uniform

straight tube. Show that on the hypothesis of parallel section of the velocity at any time at a
distance r  from a fixed point in the tube is define by the equation
















v
t r

v v
t

v v
r

k v
r

2

2
2

2

22 
F
HG

I
KJ  .

2. A gas is moving in a uniform straight tube. Prove that if the density be f at xb g  at a point
where t  is the time and x  is the distance of the point from an end of the tube, its velocity is

a f at x v a f at
f at x

  


b g b g b g
b g

where v  is the velocity at that end of the tube and a  is a constant.

3. A mass of liquid of density   and volume 
4
3

3 c , is in the form of a spherical shell, a constant

pressure   is exerted on the external surface of the shall, there is no pressure on the internal
surface and no other forces act on the liquid. Initially the liquid is at rest and the internal radius of
the shell is 2c. Prove that the velocity of the internal surface, when its radius is c is

14
3

2
2 1

1
3

1
3




.


4. A volume 
4
3

3 c  of gravitating liquid of density   is initially in the form of a spherical shell of

infinitely great radius. If the liquid shell contracts under the influence of its own attraction there
being no external or internal pressure, show that when the radius of the inner spherical surface is
x , its velocity will by given by

V z
x

z z x z x zx x2
2

4 3 2 2 3 44
15

2 2 2 3 3    
  

where   is the constant of gravitation and z x c3 3 3  .

5. A mass of uniform liquid is in the form of a thick spherical shall bounded by concentric spheres of
radii a  and b  a bb g . The cavity is filled with gas the pressure of which varies according to
Boyle’s law and is initially equal to the atmospheric pressure   and the mass of which may be
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neglected. The other surface of the shell is exposed to atmospheric pressure. Prove that if the
system is symmetrically distrubuted, so that each particle along a line joining it to the centre, the
time of a small oscilation is

2
3

1
2

 


a b a
b

. RST
UVW

a f

where   is density of the fluid.

6. A mass of liquid of density   whose external surface is a long circular cylinder of radius a , which
is subjcet to a constant pressure  , surrounds a co-axial long circular cylinder of radius b. The
internal cylinder is suddenly destroyed. Show that if v  is the velocity at the internal surface when
the radius is r , then

v
b r

r
r a b

r

2
2 2

2
2 2 2

2

2




 L
N
MM

O
Q
PP





c h
c h

log

7. A sphere whose radius at time t  is b a nt cos  is surrounded by liquid extending to infinity under
no force. Prove that the pressure at distance r  from the centre is less than the pressure at an ifinite
distance by


n a
r

b a nt a nt b nt a
r

nt b a nt
2

2
3

2 31 3 1
2

    L
NM

O
QPcos sin cos sin cosb g c h b g

����
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Structure of the unit
14.0 Objective

14.1 Introduction

14.2 Lagrange’s Equations of Motion

14.3 Cauchy’s Integrals

14.4 Impulsive Force

14.5 Equations of motion under impulsive forces in vector form

14.6 Equations of motion under impulsive forces in cartesian form

14.7 Summary

14.8 Answer to self learning exercise

14.9 Exercise

14.0 Objective

In this unit, our aim is to study the Lagranges equations of motion and Cauchy’s integral. The
equation of motion under impulsive forces in vector and cartesian forms are also obtained and then solving
the hydrodynamical problems based on it.

14.1 Introduction

In the previous unit, we studied the equations of motion and their applications to hydrodynamical
problems under various condition. In present unit, we deal the equations of motion under impulsive forces
and their applications. If sudden changes in velocity are produced at the boundaries of a perfect fluid or if
impulsive forces are applied to it, then the disturbances produced are instantly transmitted to every part of
the fluid. An impulsive force does not remain constant but changes first from zero to maximum and then
maximum to zero Impulse of a force is a measure of total effect of the force.

14.2 Lagrange’s Equation of Motion

Let a b c, ,b g  be initial coordinates of a fluid particle and after a any time t , x y z, ,b g  be the
coordinate of the same particle. In this case a b c, ,  and t  are independent variables. In order to get the
required equations, we have to obtain x y z, ,  in terms  of a b c, ,  and t . If we assume that the external
forces are conservative and there exists a potential function V  for them. We have the equations of motion
as follows,





 




2
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1x
t

V
x

p
x

   ...(1)





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

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V
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p
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   ...(2)

UNIT - 14
Equations of Motion-II
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and


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 


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p
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To get derivatives only with respect to a b c, ,  and t , we multiply (1) by 

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x
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y
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z
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similarly, we obtain




















 




2

2

2

2

2

2

1x
t

x
b

y
t

y
b

z
t

z
b

V
b

p
b

. . .     ...(5)

and



















 




2

2

2

2

2

2

1x
t

x
c

y
t

y
c

z
t

z
c

V
c

p
c

. . .     ...(6)

Equation (4), (5) and (6) are the Lagranges equations of motion. These equation (4) to (6),

together with the equation of continuity 




x y z
a b c

, ,
, ,

b g
b g  0  are known as Lagrange’s hydrodynamical

equations.

14.3 Cauchy’s Integrals

Let a b c, ,  be the initial coordinates of a particle and x y z, ,  the coordinates of the same particle
at time t . We know that a b c t, , ,  are the independent variable due to Lagrangian method. Now assuming
the existence of a potential function V  for the external forces, equations of motion in Lagrange’s method
are
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Taking   as a function of p , we take

Q V dp
  z  ...(4)

Then from (4), we have
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On using (5) in equation (4) of Lagrange’s form in preceding article, we have
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Similarly using (6) and (7) along with equations (5) and (6) of preceding article, we have
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




u
t

x
a

v
t

y
a

w
t

z
a

Q
a

. . .    ...(11)






















u
t

x
b

v
t

y
b

w
t

z
b

Q
b

. . .    ...(12)

and





















u
t

x
c

v
t

y
c

w
t

z
c

Q
c

. . .    ...(13)

Differentiating (12) and (13) partially with respect to c  and b  respectively for eliminating
Q , we get











c

Q
b b

Q
c

F
HG

I
KJ 

F
HG

I
KJ
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or
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 
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 
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 
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
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I
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F
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
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2 2

0w
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.
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

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 
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
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b

x
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b

x
t c
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x
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
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I
KJ  

2 2

 
F
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I
KJ  




















 





 t

v
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y
c

v
c

z
b

v
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y
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v
c

y
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.
2 2

 
F
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I
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
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


 


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
 t
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b

z
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w
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z
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w
b

z
t c

w
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.
2 2

0

But 

 




2 x
t b

u
b

  and 

 




2 x
t c

u
c

  etc,  so that   last  two terms out  of bracket are

identical then we get

or   




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
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
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v
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. . . . . .
F
HG

I
KJ  

F
HG

I
KJ  

F
HG

I
KJ

L
NM

O
QP
 0

On integrating w r. .  to t , we have
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
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
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
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
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x
c

u
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x
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v
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y
c

v
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y
b
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z
c

w
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b

A. . . . . .
F
HG

I
KJ  

F
HG

I
KJ  

F
HG

I
KJ 

Initially

x a y b z c  , ,  , u u v v w w  0 0 0, ,  and initial spin components are

          0 0 0 0, , ; (initial density)

so









x
a

y
b

z
c

   1    and  


















x
b
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c

y
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y
c

z
a

z
b

      0

then A w
b

v
c

  






0 0
02

Hence

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



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
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










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. . . .
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KJ  
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 
F
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












w
b

z
c

w
c

z
b

. . 2 0 ...(14)

373



Now using





















u
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u
x

x
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y
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u
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z
a

  . . .   etc ...(15)

in (14) we have
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. . . . . .

         
F
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
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. . . . . . 2 0

or
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x


F
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F
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I
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F
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I
KJ 

F
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KJ. . .

 
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KJ 

F
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I
KJ 




















x
b

y
c

x
c

y
b

v
x

u
y

. . 2 0

or 2 2 2 2 0











.
,
,

.
,
,

,
,

y z
b c

z x
b c

x y
b c

a f
a f

a f
a f

a f
a f  

or 












y z
b c

z x
b c

x y
b c

,
,

,
,

,
,

a f
a f

a f
a f

a f
a f   0 ...(16)

where 2 





 
w
y

v
z

 , 2 





 
u
z

w
x

 and 2 





 
v
x

u
y

 are the spin components.

Similarly














y z
c a

z x
c a

x y
c a

,
,

,
,

,
,

b g
b g

b g
b g

b g
b g   0 ...(17)

and 












y z
a b

z x
a b

x y
a b

,
,

,
,

,
,

b g
b g

b g
b g

b g
b g   0 ...(18)

On multiplying (16), (17), (18) by 









x
a

x
b

x
c

, ,  respectively and then adding, we obtain
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
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


x y z
a b c

x
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x
b

x
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, ,
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b g
b g   0 0 0 ...(19)

similarly
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



x y z
a b c

y
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a f   0 0 0 ...(20)

and 
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





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



x y z
a b c

z
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z
b

z
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, ,

a f
a f   0 0 0 ...(21)

where
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.
,
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,
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.
,
,

a f
a f

a f
a f

a f
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a f  

The equation of continuity in Lagrangian form is






x y z
a b c

, ,
, ,

b g
b g  0

 






x y z
a b c
, ,
, ,

a f
a f

0 ...(22)

Hence
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z
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c ...(25)

These equations are called Cauchy’s integrals.

Now we prove that the Cauchy’s integrals are the integrals of the Helmholtz equation. To prove
this we differentiate equation (23) with respect to t , we get
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t b
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t c
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
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
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Again multiplying equation (23), (24) and (25) by 






u
x

u
y

,  and 



u
z  respectively then adding,

we get
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From (26) and (27), we get
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Similarly

d
dt

v
x

v
y

v
z



















F
HG

I
KJ   

and
d
dt
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F
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KJ   

These are the Helmholtz equations. Hence Cauchy’s integrals are the integrals of the Hemholtz
equations.

14.4 Impulsive force
Let sudden velocity change be produces at the boundaries of an incompressible fluid or that

impulsive forces be made to act to its interior. Then it is known that the impulsive pressure at any point is
the same in every direction. Moreover the disturbances produced in both cases are propagated
(trans mitted) instantaneously throughout the fluid. An impulsive force does not remain constant, but changes
first from zero to maximum and then maximum to zero. Thus it is not possible to measure easily the value
of impulsive force because it changes with time. In such cases, we measures the total effect of the force,
called impulse.

14.5 Equation of motion under Impulsive forces in vector form

S

V

I

P

n

 s

q1



q2



Figure 14. 1
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Let S  be an arbitrary small closed surface drawn in the incompressible fluid enclosing a volume

V . Let I  be the impulsive body force per unit mass. Let this impulse change the velocity v at P r t,b g
instantaneously from q1 to q2  and let it produce impulsive pressure on the boundary S  .

Let w  denote the impulsive pressure on the element  s  of S . Let n  be the unit outward drawn
normal at  s . Let   be the density of the fluid.

On applying Newton’s second law for impulsive motion to the fluid enclosed by S .

Total impulse applied = change of momentum

   FH IKz zz  
I d V n w d s q q d V

V VS

  2 1 ...(1)

By Gauss Divergence theorem we know that

n w d s w d V
VS

 zz ...(2)

From (1) and (2), we have

I w q q d V
S

    FH IKL
NM

O
QP 

 z 2 1 0

Since is an arbitrary small volume then

I w q q    FH IK 
 

2 1 0

or q q I w2 1
1 

   
 ...(3)

which is the equation of motion under impulsive forces in vector form.

Case I :- When external impulsive body forces are absent and impulsive pressures are present then
eqn of motion reduces to

q q w2 1
1 

   
 ...(4)

Taking divergence and using equation of continuity

 


. q 0    we have  2 0w    is constant

Case II :- If the external impulsive body force is absent and impulsive pressure be present then

motion is started from rest then q1 0

  ; I  0 . The equation of motion reduces to

q w
  

F
HG

I
KJ  q q2

 

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showing that there exists a velocity potential  


w
 and the motion is irrotational.

Case III :- Let there be no extraneous impulses. If 1  and  2  denote the velocity potential just
before and just after the impulsive action. Then

q1 1


      and  q2 2


      ; I  0

The equation of motion reduces to

       
2 1
1 w

or    w   2 1b g
Integrating taking density   as constant, we have

w C    2 1b g
where C  be the constant and may be omitted by regarding it as an extra pressure and constant

throughout the fluid then equation of motion is.

w     2 1

Case IV :- If 1 0  and   1  then we find the actual motion, for which a single valued velocity
potential exists, could be produced instantaneously from rest by applying appropriate impulses. Hence we
can say that velocity potential is the impulsive pressure at any point. It is also seen that when a rotational
motion exists in a fluid, the motion could neither be created nor destroyed by impulsive pressure.

14.6 Equations of motion under impulsive force in Cartesian form

Figure 14.2

Q Q1

R
R1

P1

S1

O

Y

X

Z

w y z 

 z

 y
 x

P x y z, ,b g

w w
x

x y z
F
HG

I
KJ




  

S
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Let there be a fluid particle at P x y z, ,b g  and   be the density of the incompressible fluid. Let

u v w1 1 1, ,  and u v w2 2 2, ,  be the velocity components at the point P  just before and just after the impulsive

action. I Ix y,  and I z  be the components of the external impulsive forces per unit mass of the fluid.

Construct a small parallelopiped whose edges PP x   , PQ z   and PS y   parallel to their
respective coordinate axes having P  as one of the angular corner as shown in figure. Let w  be the
impulsive pressure at P . Then we have

Inpulsive pressure on the face PQRS w y z f x y z   , ,b g ...(1)

Again Impulsive pressure on the face    P Q R S

 f x x y z , ,b g

  f x y z x
x

f x y z, , . , , ....b g b g

  higher power of  x

The net impulsive pressure on the opposite faces PQRS  and    P Q R S  along the x-axis.

   
L
NM

O
QPf x y z f x y z x

x
f x y z, , , , . , , ....b g b g b g




  



x

f x y z
x

.
, ,b g

        (neglecting higher powers of  x)

  



 x
x

w y z. b g (by 1)

 



  
w
x

x y z ...(3)

Again, the impulse on the elementary parallelopiped along the x -axis due to external impulsive
body force Ix

    x y z Ix ...(4)

The change in momentum along x -axis

    x y z u u2 1b g ...(5)

On using Newton’s second law for impulsive motion to the fluid enclosed by the parallelopied in
x -direction

Total impulse applied along x -axis = change of momentum along x -axis

       



       x y z u u w
x

I x y z x y z u ux2 1 2 1b g b g
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or  



u u I w
xx2 1  b g ...(6)

Similarly

 



v v I w
yy2 1  b g ...(7)

and  



w w I w
zz2 1  b g ...(8)

These are the motion of an incompressible fluid under impulsive forces.

Now multiplying equation (6) by dx , (7) by dy  and (8) by dz  and then adding, we have

  u u dx v v w w dz2 1 2 1 2 1    b g b g b g

     
L
NM

O
QP










I dx I dy I dz w
x

dx w
y

dy w
z

dzx y z

or d w I dx I dy I dz u u dx v v w w dzx y z         c h b g b g b g2 1 2 1 2 1 ...(9)

If 1  and  2  be the velocity potentials just before and just after, so that

d u dx v dy w dz1 1 1 1   b g
and d u dx v dy w dz 2 2 2 2   b g

 d d u u dx v v dy w w dz 1 2 2 1 2 1 2 1      b g b g b g ...(10)

and if external impulses are derived from a potential function V  then

    d V V
x

dx V
y

dy V
z

dz








   d V I dx I dy I dzx y z ...(11)

Now using (10) and (11) is equation (9), we have

d w d V d d      2 1b g
If   is constant, then integrating, we have

w V C      2 1b g ...(12)

C  be the constant of integration and may be omitted as an extra pressure, which being constant
throughout would not effect the motion and if V  0  then we get

w    2 1b g ...(13)
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If initially the fluid is at rest so that   0  then w    2  ; which clearly implies that by applying a
suitable impulse motion can be obtained whose velocity potential is same as the impulsive pressure.

Cor I :- Now we show that the impulsive pressure satisfies Laplace’s equation. The equation
of continuity, just before and just after the impulsive action are



















u
x

v
y

w
z

u
x

v
y

w
z

1 1 1 2 2 20     

these equation in terms of velocity potential 1  and  2  are

 


 


 


 


 


 


2
1

2

2
1

2

2
1

2

2
2

2

2
2

2

2
2

20
x y z x y z

     

or
  


  


  



2
2 1

2

2
2 1

2

2
2 1

2 0









b g b g b g

x y z

or

 


 


 

2

2

2

2

2

2 0
x

w
y

w
z

wF
HG

I
KJ 

F
HG

I
KJ 

F
HG

I
KJ 

If   is constant then










2

2

2

2

2

2 0w
x

w
y

w
z

  

This shows that the impulsive pressure w  satisfies the Laplace’s equation.

Self Learning Exercise

1. The Cauchy’s integrals are the integral of

(a) Euler’s dynamical equation of motion,

(b) Lagrange’s hydrodynamical equation,

(c) Equation of continuity

(d) Helmholtz equation.

2. In the absence of extraneous impulses the impulsive pressure at any point of a liquid satisfies

(a) The equation of continuity

(b) Laplace’s equation

(c) Newton’s second law of motion

(d) None of these.

3. How is impulse related to momentum?
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Example 1 : A mass of liquid surrounds a solid sphere of radius a  and its outer surface, which is a
concentric spheres of radius b , is subject to a given constant pressure P , no other force being in action
on the liquid. The solid sphere suddenly shrinks into a concentric sphere. It is required to determine
the subsequent motion and the impulsive action on the sphere.

Solution : At any time t , let v  be the velocity at a distance r  from the centre, p  the pressure and
 the density there.

The equation of continuity is

   






r v F t v
t

F t
r

2
2b g b g

 ...(1)

and the equation of motion is





 





 



 

v
t

v v
r

p
r

1
...(2)

Using (1) in (2), we get




 


 

F t
r

v v
r

p
r

b g
2

1
 




On integrating with respect to r , we get





    
F t

r
v p Cb g 1

2
2

1 ...(3)

Now let r  and R  be the internal and external radii of the fluid at any time t , v  and V  be the
velocities there, so that when

 r r  ,  v v  , p  0  


 
F t

r
V Cb g 1

2
2

1 ...(4)

and  r R ,  v V , p P  


  
F t

R
V C Pa f 1

2
2

1  ...(5)

From (4) and (5), we have

  F
H

I
K   F t

r R
v V Pa f c h1 1 1

2
2 2

 ....(6)

From eqn (1), we have

r v R V F t2 2  a f

i.e. r dr R dR F t2 2  a f on taking v
dr
dt

  and V
dR
dt

 .

Now, multiplying (6) by 2 2 22 2F t dt R d R r d rb g    and
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putting v
F t
r


b g
2  and V

F t
R


b g
2 , we have

  F
H

I
K  L

NM
O
QP 2 1 1 1

2
1 1 22
2 2

2F t F t
r R

dt F t
r

dr
R

dr P r dra f a f a f


On integrating, we obtain

 L
NM

O
QP  F t

r R
C P r2

1
31 1 2

3
a f

 ...(7)

Initially when r a , v  0 , F tb g  0     C P a1
32

3

Thus (7) becomes

F t
r R

P a r2 3 31 1 2
3

a f c hF
H

I
K  



or v r
r R

P a r2 4 3 31 1 2
3

F
H

I
K  


c h ...(8)

where R r b a3 3 3 3   .

Equation (8) represent the required subsequent motion and now we find the impulsive pressure on
the sphere. Let r  be the radius of the solid sphere and w  the impulsive pressure at a distance r , then

d w v d r r v
r

d r     


 
2

2

On integrating w r v
r

C



 2

3

But when  r R  ; w  0    C r v
R3

2

Hence the impulsive pressure when  r r  is given by

w r v
r R

 F
HG

I
KJ 2 1 1

Also the whole impulse on the sphere

  F
HG

I
KJ4 4 1 12 4  r w r v

r R


F

HG
I
KJ4 3 r v R r

R
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Example 2 : A portion of homogenous fluid is confined between two concentric spheres of radii A  and
a , and is attracted towards their centre by a force varying inversely as the square of the distance. The
inner spherical surface is suddenly annihilated and when the radii of the inner and outer surface of the fluid
are r  and R  the fluid impinges on a solid ball concentric with these surfaces, prove that the impulsive
pressure at any point of the ball for different values of R  and r  varies as

a r A R
r R

2 2 2 2

1
21 1

   F
HG

I
KJ

L
NM

O
QPc h

Solution : Let v  be the velocity at a distance r  from the centre of the sphere at any time t  and p
the pressure there. Then the equation of continuity is

   






r v F t v
t

F t
r

2
2b g b g

 ...(1)

Taking  r 2  as the force towards the centre of the sphere, the equation of motion is













 



 





v
t

v v
r r

p
r2

1

or






F
HG

I
KJ  





F t
r r

v
r

p
r

b g
2

2
2

1
2

1





  (using (1))

On integrating





  

 

F t
r

v
r

p Ca f 1
2

2
1


 ...(2)

Now r  and R  be the internal and external radii of the fluid at any time t , and v V,  be the
velocities there, thus we have

when  r R ,  v V , p  0  


  
F t

R
V C

R
b g 1

2
2

1


...(3)

and

when  r 0  ;  v v  ; p  0   


  
F t

r
v C

r
b g 1

2
2

1


...(4)

On subtracting (4) from (5), we get

  L
NM

O
QP    F

HG
I
KJF t

r R
v V

r R
b g c h1 1 1

2
1 12 2  ...(5)

But from equation (1), we have

r v R V F t2 2  b g
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therefore r dr R dR F t dt2 2  b g ...(6)

On using (6) in (5), we get on multiplying by 2 F t dta f

         F
H

I
K  L

NM
O
QP2 1 1 1

2
2 22

4 4F t F t dt
r R

F t F t
r

F t
R

a f a f a f a f a f dt F t
r

F t
R

dt L
NM

O
QP 2 2a f a f

or   F
HG

I
KJ  L

NM
O
QP  2 1 1 1

2
2 2 2 22

2 2F t F t dt
r R

F t dr
r

d R
R

r d r R d Rb g b g b g 

On integrating

 F
HG

I
KJ   F t

r R
r R C2 2 2

2
1 1b g c h

Since r a  ; R A  ; v  0   F tb g 0  then C a A2
2 2   c h

Then  L
NM

O
QP    F t

r R
r R a A2 2 2 2 21 1b g c h ...(7)

If w  be the impulsive pressure at a distance r , then

d w v d r   

       



F t
r

d rb g
2

On integrating

w
F t

r
C




b g
3

But when  r R , w  0 then C
F t
R3  

 b g

Hence w F t
r R



L

NM
O
QP b g 1 1

Hence the impulsive pressure at any point of the ball where  r r  is given by

w F t
r R

 L
NM

O
QP b g 1 1

...(8)

On substituting the value of F tb g  from (7), we have

w
r R a A

R r
r R


  

F
HG

I
KJ

L
NM

O
QP

 2 2 2 2

1 1
1 1c h

.
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or w a r A R
r R

    F
H

I
K  2 2 2 2 1 1c h .

Hence which shows that the required pressure varies as

w a r A R
r R

 2 2 2 2

1
21 1

   F
HG

I
KJ

L
NM

O
QPc h

Example 3 : A sphere of radius a is surrounded by infinite liquid of density  , the pressure at infinity
being  . The sphere is suddenly annihilated. Show that the pressure at a distance r  from the  centre

immediately falls to  1F
HG

I
KJ

a
r . Show further that if the liquid is brought to rest by impinging on a concen-

tric sphere of radius a 2 , the impulsive pressure sustained by the surface of this sphere is

7 62
1

2  /c h
Solution : Let v  be the velocity at a distance r  from the centre of the sphere at any time t  and p
the pressure there. Then the equation of continuity is

   






r v F t v
t

F t
r

2
2b g b g

 ...(1)

The equation of motion is





 





 



 


v
t

v v
r

p
r

1

On using (1), it reduces to







F
H

I
K  


F t
r r

v p
r

a f
2

21
2

1
 




On integrating





    
F t

r
v p Cb g 1

2
2

1

When   r  ; p   ,  v 0   C1



Hence 



  
F t

r
v pb g 1

2
2 

 ...(2)

When the sphere is suddenly annihilated, we have

t  0 ,  r a ,  v 0  and p  0
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Then from equation (2), we have





F

a
0a f 



or   F a0b g 


So that immediately after annihilation t  0b g  the equation (2) becomes

a
r

p





 
0

or
a
r

p 

 

Thus the pressure at the time of annihilation, when  r r , is given by

p a
r

 F
HG

I
KJ 1 ...(3)

which is the required first result.

 Now if w  be the impulsive pressure at distance r , then we have

d w v d r   

d w v r
r

d r 



2

2 as r v r v2 2  

where r  is the radius and v  the velocity of the inner surface

On integrating  w v r
r

C



2

2

when   r  , w  0  C2 0

thus w v r
r





2

...(4)

which gives the impulsive pressure w  at a distance r . Since r a 2  then equation (4) reduces to

w v a
r




1
4

12 . ...(5)

Now to find the velocity v  at the inner surface, we have    r r v v;  and p  0 , then equation
(2) reduces to




 
F t

r
vb g 1

2
2 


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or  L
NM

O
QP  

1 2 1
2

2 2 2

r
r v r v dv

dr
v 

 ...(6)

as F t r v F t r v dr
dt

r dv
dr

dr
dt

r v r v dv
dr

b g b g      2 2 2 22 2.

On multiplying equation (6) by 2 2r d r  and then integrating we get

  v r r C2 3 3
3

2
3



when r a ; v  0 ;   C a
3

32
3



or v r a r2 3 3 32
3

 



c h

the velocity v  on the surface of the sphere of radius a 2  is given by replacing r  by a 2  then

v a a
a

2
3 3

3

2
3

8
8





. /

/

v2 14
3



 ...(7)

Using these value in (5), the impulsive pressure at a distance r  is given by

w a
r


F
HG

I
KJ 

 
4

14
3

1
2 2

...(8)

On putting  r a
2   in (8) we obtain the impulsive pressure at the surface of the sphere of

radius a 2

i.e. w a
a


F
HG

I
KJ

 
4

14
3 2

1
2 2

.
/

or w a

F
HG

I
KJ

7
6

2
1

2 

which is the required result.
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14.7 Summary
In this unit, we studied the Cauchy’s integral and equations of motion under impulsive force. Now

we are capable of solving hydrodynamical problems based on impulsive force and pressure with the use of
given various condtions. We also learnt that the Cauchy’s integrals are the integrals of the Helmholtz
equations.

14.8 Answers to self learning exercise
1. (b) Helmhotz equation

2. (b) Laplace’s equation

3. Impulse = change in momentum

14.9 Exercise

1. Prove that if w  be the impulsive pressure, 1  and  2  be the velocity potentials immediately
before and after an impulse acts, V  the potential of the impulse,

w v      2 1b g  constant
2. Prove that in the absence of external impuleses the impulsive pressure at any point of a liquid

satisfies the Laplace’s equation.
3. Prove that the Cauchy’s integrals are the integrals of the Helmholtz equations.
4. If a bomb shell explodes at a great depth beneath the surface of the sea, prove that the impulsive

pressure at any point varies inversly as the distance from the centre of the shell.

����

����
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15.0 Objective

In previous units, we studied the equation of continuity and equations of motion for the fluid
motions. Now in this unit, we will discuss two dimensional motion and study the complex  potential,
Cauchy-Riemann equations, source, sink, Doublets and their images in two dimensional motion.

15.1 Introduction

When the fluid motion is such that it is same in all planes parallel to a fixed plane and also there is
no velocity parallel to the fixed line and normal to fixed plane then it is called two dimensional motion.
Generally the fixed plane is taken as xy -plane and the fixed line is taken as z -axis.

UNIT - 15
Motion in Two Dimensions
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In two dimensional motion, the velocity components are only u  and v  with w  0  and also that u
and v  are the functions of x y,  and t  only. Moreover, when we speak of the flow across a curve in this
plane, we means the flow across unit length of a cylinder on that curve with generators parallel to z -axis.
When we speak of points in that planes, we mean straight line parallel to z -axis through that point.

15.2 Lagrange’s stream function
Let u  and v  be the components of velocity in two dimensional motion, then the differential

equation of the stream line is

dx
u

dy
v

    or   v dx u dy  0 ...(1)

and the equation of continuity is







u
x

v
y

  0 ...(2)

But (2) is the condition that (1) is an exact differential equations. Thus v dx u dy  is a complete
differential say  , so that

v dx u dy     




x

dx
y

dy

so that u
y

 



 and v
x





This function   is known as the stream function or the current function. In previous unit, we
studied that the stream function is constant along a stream line. The stream function exists in all types of
two-dimensional motion whether rotational or irrotational.

15.3 Irrotational motion in two-dimensions

We know that the velocity potential   may exist only when the motion is irrotational. Thus if 
exists, we have

u
x

 
 
  and v y

 
 
 ...(1)

Also if   is stream function, then we have

u
y

 

  and v

x


 ...(2)

From (1) and (2), we have

 



x y

  and 
 



y x

  ...(3)
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which are called Cauchy Riemann equation in Cartesian coordinates.

Hence   i  is an analytic function of z x iy  . Moreover   and   are known as conjugate
functions. On multiplying and re - writing, (3) gives

 





 



x x y y

  0 ...(4)

showing that the famalies of curves given by    constant and    constant intersect
orthogonally.

Differenting the equation given in (3) with respect to x  and y  respectively, we get

 


 
 

2

2

2

x x y
   and  

 


 
 

2

2

2

y y x
   

which gives
 


 


2

2

2

2 0
x y

  ...(5)

Again, deifferentiating the equation given in (3) with respect to y  and x  respectively, we get

 
 

 


2 2

2y x y
  and 

 
 

 


2 2

2x y x
 

which give
 


 


2

2

2

2 0
x y

  ...(6)

Equations (5) and (6) show that   and   satisfy Lapalce’s equation when a two dimensional
irrotational motion is considered. Functions   and   are said to be conjugate functions if they satisfy (4),
(5) and (6). In the light of the above discussions, the following points should be observed

(1) The stream function   exists whether the motion is irrotational or not.

(2) The velocity potential   can exist only when the motion is irrotational.

(3) When the motion is not irrotational, the velocity potential does not exist.

15.4 Complex Potential

In an irrotational motion if   represents the velocity potential and   the stream function, then
expression w i    is defined as complex potential of the fluid motion since   and   both are
functions of x  and y , the complex potential w  can be expressed as the funtion of z

i.e. w f z i  a f    where z x iy 

Thus if w i f x iy f z      b g b g

    
 



x

i
x

f x iyb g
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and
 



y

i
y

i f x iy   a f

which gives

 





 



y

i
y

i
x

i
x

  
F
HG

I
KJ

On equating real and imaginary parts, we have




 
x y

   and 



 
y x



which are the same results we have obtained in the previous article. These are called Cauchy-
Riemann equations to be satisfy by an analytic function w i   . Such functions  and   are called
conjugate funtions.

15.5 Magnitude of velocity

Let w f z b g  be the complex potential, then

w i    and z x iy  ...(1)

Also we know that
 



x y

    and   
 



y x

  ...(2)

From (1), we have

d w
d z

z
x x

i
x

. 


 





   and 



z
x
 1 as z x iy 

  
d w
d z x

i
y

 


 
 (On using (2)) ...(3)

or
d w
d z

u iv    u
x

 
 
  ;  v y

 
 
 ...(4)

From (3) and (4), we see that the magnitude of velocity q  at any point in a two dimensional

irrotational motion is given by 
d w
d z , where

d w
d z x y

u v q
F
HG

I
KJ  

F
HG

I
KJ

R
S|
T|

U
V|
W|

  
 


 


2 2 12
2 2 1

2c h

Therefore the magnitude of the velocity    
d w
d z

q u v2 2 . The points where velocity is

zero are known as stagnation points.
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15.6 Cauchy-Riemann equations in polar coordinates

Let      i f z f r eib g c h ...(1)

Differentating (1) with respect to r  and  , we get

 





 

r
i

r
f r e ei i  c h . ...(2)

and
 





   i f r e r i ei ic h . ...(3)

From (2) and (3), we easily obtain

 





 





  
F
HG

I
KJi i r

r
i

r

On equating real and imaginary parts, we get

 





  r
r  and 




 


 r
r

or
 



r r


1

 and 
1
r r
 





  ...(4)

which are the Cauchy-Riemann equations in polar coordinates.

15.7 Sources and Sinks
If the motion of a fluid consists of symmetrical radial flow in all directions proceeding from a point

then the point is called a simple source. If the flow is such that the fluid is directed radially inwards to the
point from all directions in a symmetrical manner, then the point is a simple sink. The sources involve
continuous creation of fluid at the point and the sink involves continuous annihilation and the velocities in
the region of such points approach infinite values.

15.7.1 Strength of a source :

The strength of a source is defined in terms of the amount of liquid flowing out from it. If 2m  is
the volume of the fluid flowing out per unit time then m  is called the strength of the source. Sink is a source
of negative strength mb g .

Let qr  be the radial velocity at a distance r  from the source, then amount of liquid flowing out of
circle of radius r  is 2 m

Therefore 2 2 r q mr 

or q m
rr  ...(1)

Now, we try to get the expressions for the velocity potential   and the stream function   due to
a source. At any radial distance r  from the source, the transverse velocity be zero and the entire velocity
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is radial which is given by

q
r rr    
1 


 
 (   Cauchy-Riemann equation) ...(2)

From (1) and (2) we have

 
 r

m
r

   and  
1
r

m
r




On integrating, we obtain

   log r  and    m ...(3)

where the constant of integration will be merged in   and  .

Thus curves of equi-velocity potential curves are r   constant i.e. concentric circles centred on
the source and stream line are    constant, i.e. straight lines radiating from the source.

15.8 Complex potential of sources
Let there be a source of strength m   at origin. Then from the expressions for the velocity potential

and the stream function for a souce of strength m  at the origin, we have

w i m r i m      log

       m r eilog 

or w m z  log ...(1)

which is the complex potential of the sources at the origin. If the source be at the point A  whose
coordinates are  ,b g  so that a i   , then transferring the origin to A , we obtain

w z m x i y       log logb g
where  x y,a f  be the coordinates of any point referred to A . If P  be the point  x y,b g  referred

to origin O , we have

  x x   and   y y 

Hence w m x i y    log  b g b g

w m x iy i    log b g b g 

w m z a  logb g ...(2)

The relation between w  and z  for sources of strengths m m m1 2 3, , .....  situated at the points
z z z1 2 3, , .....  is

w m z z m z z m z z      1 1 2 2 3 3log log log .....b g b g b g ...(3)

or w m r e m r e m r ei i i   1 1 2 2 3 3
1 2 3log . log . log . .....  c h c h c h
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where r r r1 2 3, , .....  are the distance of a point P  of the plane from the points z a a a 1 2 3, , ....  and
  1 2 3, , ....  are the angles these distances make with a fixed direction.

Therefore

w m r i m r i m r i      1 1 1 2 2 2 3 3 3log log log .....  b g b g b g
or         i m r i m m r i m1 1 1 1 2 2 2 2log log .....

On equating real and imaginary parts, we have

    m r m r m r1 1 2 2 3 3log log log .....

and        m m m1 1 2 2 3 3 ....

15.9 Doublets

A combinations of a source of strength m  and a sink of strength m  at a small distance  s  apart,
where in the limit m  is taken infinitely large and  s  infinitely small such that the product m s  remains
finite and equal to  , then it is called a doublet of strength  . The line  s taken in the sense from sink to
source is called the axis of the doublet.

15.10 Complex potential for a doublet

Figure 15.1

Let A  and B  be the positions of source and sinks of strengths m  and m  respectively at
distance  s apart. Let P  be any point a distance r  from A  at which we shall calculate the complex
potential. AN  is the perpendicular from A  to PB . Then

BN PB PN 

   r r r r   and cos 



r
s . ...(1)

Now the velocity potential at P  due to the doublet

     m r m r rlog logb g b g

   
F

HG
I
KJ  F

HG
I
KJm r r

r
m r

r
log log 1

 s

N

B A

r

P

m m
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  F
HG

I
KJ 

L
NM

O
QP

m r
r

r
r

  2 1
2

. ......

On neglecting higher powers of  r , we have

 
 m r

r

or     
 

m s
r r

. cos .cos
[from (1)] ...(2)

where   m s  is the strength of the doublet when m ,  s 0 .

we know 
 



r r


1

...(3)

From (2), we have 
 


 
r r
 

cos
2 ...(4)

Using (4) in (3) we obtain




 
 

cos
r

On integrating, we get


 

  
sin
r

F ra f ...(5)

Again since

1
r r
 
 




 

we have

    L
NM

O
QP

   sin sin
r r

F r2 2 a f

or  F rb g 0

or F rb g   constant ...(6)

Therefore   
 

sin
r ...(7)

Hence the complex potential w  at point P

w i
r

i
r r

i             cos sin cos sina f
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w
r

e
r e z

i
i    


Note 1: Equi-potential curves are given by    constant

i.e.
 cos

r
  constant

or
cos

r
C 1

or r C rcos  1
2

or x C x y 1
2 2c h

which represent circles touching the y -axis at the origin.

Note 2 : Stream lines are given by    constant

i.e.



 sin

r constant  C2

or sin  C r2

or r C rsin  2
2

or y C x y 2
2 2c h

which represent circle touching the x -axis at the origin.

Note 3 : If the doublet makes an angle   with x -axis, then we write    for  , so that

w
r e

e
r e

e
zi

i

i

i

  

  
 







b g

             Figure 15.2

If the doublet be at point A x y1 1,b g  where z x i y1 1 1   then complex potential at the
point is given by

w e
z z

i



 

1

Y

A
X

mb g

mb gB

P




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If there are a number of doublets of strength  1 2, ,....  at points z z1 2, ,....  and whose axes are
inclined at angles  1 2, ,....  with the x -axis then the complex potential of these will be given by

w e
z z

e
z z

e
z z

i i
r

i

r

r







 
    

1

1

1

2

1 2

.....

15.11 Applications

(a) Let us take a source m  at the point a,0b g  and a sink mb g  at the point a,0b g . The
complex potential

Figure 15.3

w m z a m z a    log logb g b g

w m
z a
z a

 



log b g
b g

and velocity potential

   m r m rlog log1 2

or    m r
r

log 1

2

where r1  and r2  are the distances of point P  from a,0b g  and a,0b g . Also, the stream function

    m m1 2

or     m 1 2b g
where 1 and  2 are the angles as shown in figure.

Curves of equi-velocity potential (  constant) and stream line (  constant) are such that the
stream lines are co-axial circles passing through A  and B . The flow is directed from source to sink. The
equi-velocity potential lines are also circles with centre along x -axis such that the points A  and B  are the
inverse points of these circles. The two families intersect orthogonally.

a,0b g a,0b g
 1 2

r2

r1

mb gmb g

P r,b gY

O
X

A
B
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Now to calculate the magnitude of the velocity q , we have

q d w
d z

m
z a

m
z a

a m
z a z a

  







 

2
a f a f

thus q a m
z a z a

a m
r r


 


2 2

1 2.

or  q a m
r i a r i a


   

2
cos sin cos sin   b g b g

or
q a m

r a a r


 

2

42 2 2 2 2 2c h cos 

     

2
2 24 2 2 4

a m
r a r acos 

Now to obtain an expression for  , we have

w m z a
z a

 



. log

or e z a
z a

w
m 




or exp
cos sin
cos sin


F

HG
I
KJ

L
NM

O
QP 

 
 

   
 

i
m

r i a
r i a
b g
b g

or e
m

i
m

r a i a r
r a r

m   
 

cos sin sin
cos sin

F
HG

I
KJ 

 

 

2 2

2 2 2

2
b g

Equating real and imaginary parts, we have

e
m

r a
r a a r

m 


cos
cos




 

2 2

2 2 2
c h

and e
m

a r
r a a r

m  


sin sin
cos



 

2
22 2

From these, we get

tan sin tan sin 



m

a r
r a

m a r
r a





  


F
H

I
K

2 2
2 2

1
2 2c h
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   constant means stream lines are family of circles

x y a y a2 2 22 0   

(b) Let us take source m  at the point a, 0b g  and a sink m  at 0, ab g .

Figure 15.4

The complex potential w  at P

w m z a m z ai    log logb g b g

     



F
HG

I
KJm z a

z ai
log ...(1)

Therefore velocity potential

   m r m rlog log1 2 ...(2)

and the stream function

         m m m1 2 1 2b g ...(3)

where r r1 2 1,   and  2  are the distances AP BP,  and their inclinations with the x -axis.

Then using (1)

w i m r a i r m r i r a             log cos sin log cos sinb g b g

or       i m R e m R ei i.log log 1
1

where R r acos cos   and R rsin sin 

R r1 1cos cos  and R r a1 1sin sin  

or        i m R
R

i mlog
1

1b g

OC A

B
mb g

mb g

a,0b g

0,ab g

r2

r1
r

 1 2

P x y,b g
r,b g

...(4)
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Now equating real and imaginary parts using (4), we get


 

 
 

 

 

L

N
MM

O

Q
PPm

r a r

r r a
log

cos sin

cos sin

b g b g
b g b g

2 2

2 2

or 



 
 
 

L
NM

O
QP

m r a r a
r a r a

log cos
sin

2 2

2 2

1
22

2

and   






    


F
HG

I
KJ 

F
HG

I
KJ

L
NM

O
QP

 m m r
r a

r a
r1

1 1b g tan sin
cos

tan sin
cos


 

 
 

 
 

L
NM

O
QP

m
a r a
r a r

tan
sin cos

sin cos
1

2

2

b g
b g

Also
d w
d z

m
z a z a i

m
a i

z a z a i
 





L
NM

O
QP  


 

1 1 1b g
b g b g

q d w
d z

a m i
z a z a i

a m
r r

 


 


.
.

.1 2

1 2

a f

       
2 . .

cos sin . cos sin
a m

r a i r r i r a   b gm r b gm r

q a m

r a r a r a r a


   

2

2 22 2 2 2

. .

cos . sin c h c h

which is magnitude of the velocity.

15.12 Images in two dimensions

If there are a number of sources, sinks, doublets etc. in a liquid and if a surface S  which is of
purely geometrical character is drawn in the liquid so that

(1) a number of sources, sinks, doublets etc lie within the surface and others lie outside,

(2) there is no flux of liquid across this surface i.e. velocity normal to surface in zero.

then the system of sources, sinks, doublets etc. on one side of S  is said to be the image of the
system of sources, sinks, doublets etc on the other side with respect to S . The method of images is
used to determine the complex potential due to source, sinks and doblets in the presence of rigid
boundaries.
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15.13 Image of a source with respect to a straight line

Figure 15.5

Suppose that image of the source m  at A a,0b g  on x -axis is required with respect to OY . TakeTake
an equal source at B  such that OA OB . Let P  be any point on OY  such that AP BP r  . Then the

velocity at P  due to source a A  is 
m
r  along AP  and velocity at P  due to source at B  is 

m
r  along BP .

The normal components of both of these radial velocitites at the point P  will be 
m
r

cos , but they

will be is opposite directions. Therefore they will nullify each other. Hence at P , there will be no velocity
across the straight line OY .

Therefore the image of a simple source with respect to a straight line in two dimension is an equal
source at equi-distant from the straight line opposite to the source.

Alternate method :

Consider two equal sources of strength m  at points A a, 0b g  and B a , 0b g , then complex
potential at

Figure 15.6

P  is given by

w m z a m z a    log logb g b g
       m z a z alog b g b g
      m r e r ei ilog .1 2

1 2 c h
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w m r r i m i     log 1 2 1 2   b g
on equating real parts, we have

   m r rlog 1 2

        L
NM

O
QPm x a y x a y. log .b g b g2 2 2 2

      
m x a y x a y
2

2 2 2 2. log .b g b g

Hence the velocity components in x -direction will be

 
 x

m
x a

x a y
x a

x a y




 




 

L
N
MM

O
Q
PP

b g
b g

b g
b g2 2 2 2

If P  takes a position on y -axis at Q  so that velocity components at Q  in x -direction will be
obtained by putting x  0 in above, and we will have

 
 
 x

0

Hence there is no flow perpendicular to the line OY  and thus the line OY  is a stream line due to
equal sources at A  and B . The same is true for a sink.

15.14 Image of a doublet with respect to a straight line

Figure 15.7

Take the y -axis along the straight line. Let the given doublet AA  be placed such that its axis is
inclimed at angle   with the x -axis. Clearly the image of constitutent source A  and sink A  of the given
doublet will be equal source B  and sink B  repectively. It is obvious that the location of B  will be such
that it is at such a distance from the line which is equal to the distance of A . Similarly A  and B  will be
situated with respect to the given line. From geometry it is clear that AA  and BB  are antiparallel and
both are inclined at an angle   with x -axis but in opposite sense. Hence the image of a doublet is a equal
doublet but the axes are antiparallel.
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15.15 Image of a source with respect to a circle :

Figure 15.8

Let us determine the image of a source of strength m  at a point A  with respect to the circle with
O as  its centre. Let OA f  and B  be the inverse point of A  with respect to the circle. If a be the radius

of the circle, then OA OB a.  2  so that OB a f 2 .

Let there be a source of strength m  at B . If w  be the complex potential due to sources at A  and
B , then we get

w m z f m z a f    log logb g c h2

w m r f i r r a
f

i r     
F
HG

I
KJ 

RST
UVW

L
NMM

O
QPP

log cos sin log cos sin   a fl q
2

writing  i w  and equating real part we get

        
F
HG

I
KJ

L
NM

O
QP

m r f f r r a
f

r a
f2

2 22 2 2
4

2

2

log cos log cosc h

Differentiating   with respect to r , we get

 








r

m r f
r f f r

r a
f

r a
f r a

f

 


 



F
HG

I
KJ

 
F
HG

I
KJ

L

N

MMMM

O

Q

PPPP2
2

2

2

2
2 2

2

2 4
2

2

cos
cos

cos

cos

b g

Hence normal velocity at any point Q  on the circle

 
F
HG

I
KJ 

 
 r r a
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


 




F
HG

I
KJ  
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PPPP
m a f

a f f a

a
f

f a

a
f

a f f a

cos
cos

cos

cos







2 2 2

2
2 22 2

a f

c h


  

 

L

N
MMM

O

Q
PPP

m
a f f

a f
a f f a

cos cos

cos

 



2

2 2 2


m
a

Now if  we place a sources of strength mb g  (i.e. a sink) at O , the normal velocity due to it at Q

will be m
a  and hence the normal velocity of the system will be reduced to zero.

Hence the image system for a source outside a circle consists of an equal source at the inverse
point and an equal sink at the centre of the circle.

15.16 Image of a doublet with respect to a circle

Figure 15.9

Let us determine the image of a doublet AA  outside the circle with its axis inclimed at angle 
with OX  such that, there is a source m  at A  and a sink mb g  at A  and AA  small. Let B  and B  be
the inverse points of A  and A  respectively with respect to circle whose centre is O .

so that OA OB OA OB a. .    2 ...(1)

Where a  is the radius of the circle.

Now the image of source m  at A  consists of a source m  at B  and a sink mb g  at O . Similarly,,

the image of sink mb g  at A  consists of a sink at B  and a source m  at O . Compounding these, we see

that source m  and sink mb g  at O  nullify each other then the image of the given doublet AA  is another
doublet BB .

mb g
O

mb g
mb gA

f
B mb g

mb g

 A mb g



B
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Let the strength of the given doublet AA  be 

then   
 

Lim m AA
A A

. ...(2)

From (1), we have
OA
OA

OB
OB




...(3)

which show that trinagle OAA and OB B  are similar..

From these similar triangles,

BB
AA

OB
OA

OB OA
OA OA

a
OA OA








 




.
. .

2

...(4)

Now if strength of doublets B B  is   then

  
 

 Lim m BB
B B

.b g

      


 
Lim a

OA OA
m AA

A A

2

.
. b g  On using (4)

     
 a
f

2

2  OA OA f  

Also since   OBB  , BB  is antiparallel to AA . Thus the image of  a doublet of strength 

at a distance f aa f  from the centre of a circle of radius a is a doublet of strength 
 a
f

2

2  at the inverse point

with its axis antiparallel to that of AA .

15.17 Significance of Images

Whenever a two dimensional irrotational motion is confined to given rigid boundaries, we can
consider this motion to have been caused by the presence of sources and sinks. By imagining a suitable set
of sources and sinks, on either sides of the rigid boundary, called the image system, we can find such
stream lines as will give the given boundaries as the stream lines, because velocity normal to the rigid
boundary as well as to the stream lines, is zero. Thus a motion constrained by the boundaries is no longer
so, with the advantage that we can predict the nature of the velocity and pressure at every point of the fluid.

Self Learning :

1. The curves of constant velocity potential cut the stream line .............. .

2. The points where velocity is ............ are called as stagnation point.

3. When the motion is not irrotational, the velocity potential .............. exists.

4. Write the complex potential when a source of strength m  and a sink of strength mb g  at a

point a, 0b g  and 0, ab g  respectively..
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5. What arrangement of sources and sinks will give rise to the function w m
z a

z



log

2c h
.

6. Write the complex potential due to a doublet which makes an angle   with x -axis.

7. Find the lines of flow in the two dimensional fluid motion given by

    i n x iy e i nt1
2

2 2a f
Example 1 : Show that the velocity potential.

 
 

 

1
2

2 2

2 2
log

x a y
x a y
b g
b g

gives a possible motion. Determine the stream lines and show also that the curves of equal speed
( q = constant) are ovals of Cassinni given by r r   constant

Solution : Given that

      
1
2

1
2

2 2 2 2log logx a y x a ya f a f

    


 




 
u

x
x a

x a y
x a

x a y
 


b g
b g

b g
b g2 2 2 2 ...(1)

and v
y

y
x a y

y
x a y

   
 


 

 
 b g b g2 2 2 2 ...(2)

From (1)



u
x

y x a
x a y

y x a
x a y

 
 

 


 

 

2 2

2 2 2

2 2

2 2 2
a f

a f
a f

a f ...(3)

From (2) 


v
y

x a y
x a y

x a y
x a y

 
 

 


 

 

a f
a f

a f
a f

2 2

2 2 2

2 2

2 2 2 ...(4)

Adding (3) and (4) we see that the equation of continuity







u
x

v
y

  0  is satisfied. Hence the given motion is possible.

To find the stream line, we have from Cauchy-Riemann eqns

 



x y

   and  
 



y x

 

Now


 y

x a
x a y

x a
x a y




 



 

a f
a f

a f
a f2 2 2 2
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On integrating w r t y. . . , we get

 





 tan tan1 1y
x a

y
x a

f xb g b g b g ...(5)

Therefore


 x

y
x a y

y
x a y

f x 
 


 

 b g b g b g2 2 2 2 ...(6)

As



 
x y

 

Thus by (2) and (6) we get  f xb g 0

or f xb g   constant

Hence omitting the additive constant in  , we get (5) as

 x y y
x a

y
x a

, tan tanb g b g b g





 1 1

   

 

tan 1
2 2 2

2 ay
x y ac h

Hence the stream line are given by   constant

Therefore tan 
 

F
HG

I
KJ 

1
2 2 2

2 ay
x y a  constant = c

or y
c

x y a  
1 2 2 2c h

or x y c y a2 2 2  

which are circles. Now if c  0 , the stream line is the circle passing through a, 0b g  and a, 0b g
and if c  is infinite then stream line is y  0 .

Now w i  

        w x a y x a y i y
x a

i y
x a

      


F
HG

I
KJ 


F
HG

I
KJ

 1
2

1
2

2 2 2 2 1 1log log tan tanb g b g

     log logx a iy x a iya f a f
        w z a z a   log logb g b g  where z x iy 

Hence q d w
d z z a z a

a
z a z a

a
r r

 






 




1 1 2 2
.
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where r  and r  are the distances of the point x y,b g  from a,0b g  and a,0b g . The curves of
equal speed are given by

q  constant or
2a
r r

  constant

  r r  constant

These curves are called Cassinni’s ovals.

Example 2 : What arrangement of sources and sinks will give rise to the function

w z a
z

 
F
HG

I
KJlog

2

?.

Draw a rough sketch of a stream line. Prove that two of the stream lines sub divide into the circle
r a  and the axis of y .

Solution : Here w z a
z

z a
z

 
F
HG

I
KJ 

F
HG

I
KJlog log

2 2 2

        log log logz a z a za f a f
which shows that there are two sinks of unit strength at the point z a and z a   and a source

of unit strength at origin. Further

w i x a iy x a iy x iy           log log logb g b g b g

w i x a y i y
x a

     


L
NM

O
QP

 
1
2

2 2log tanb g b g

      


L
NM

O
QP
   FH IK
L
NM

O
QP

 1
2

1
2

2 2 1 2 2 1log tan log tanx a y i y
x a

x y i y
xb g b g c h

Equating imaginary parts on both sides, we have

 





 FH IK  tan tan tan1 1 1y
x a

y
x a

y
xb g b g

    






 

 tan
.

tan1 1

1

y
x a

y
x a

y
x a

y
x a

y
x

      
 FH IK tan tan1

2 2 2
12 x y

x y a
y

x

    
 

 
tan 1

2 2 2

2 2 2

y x y a
x x y a
c h
c h

410



The stream line are given by   constant

y x y a

x x y a

2 2 2

2 2 2

 

 


c h
c h  constant

If the constant tends to infinity, the stream lines are given by

x x y a2 2 2 0  c h
i.e. x  0  and x y a2 2 2    i.e. r a

Hence the rough sketch of the stream lines is as shown in the following figure. In this figure there is
a source of unit strength at origin O  and there are two sinks each of unit strength at A a,0b g  and B a ,0b g .

Figure 15.10

Example 3 : An area A  is bounded by that part of the x -axis for which x a  and by that branch of
x y a2 2 2   which is in the postive quadrant. There is a two dimensional unit source at a,0b g  which

sends out liquid uniformaly in all directions. Show by means of the transformation w z a log 2 2c h  that in
steady motion the stream lines of the liquid within the area A  are portions of rectangular hyperbola. Find

the stream lines corresponding to   0 ;  4 ,  2 . If 1  and  2  are the distances of a point P  within

the fluid from the points  a,0b g  show that the velocity of the fluid at P  is measured by 
2

1 2

OP O
 .

,

being the origin.

Solution : Given w z a log 2 2c h

or w x iy a  log b g2 2

XX

Y

Y

O

B A
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or      i x y a i xylog 2 2 2 2c h

or     
 

1
2

4 22 2 2 2 2 2 1
2 2 2log tanx y a x y i x y

x y a
c h

Equating the imaginary parts, we have

 
 

tan 1
2 2 2

2 x y
x y a ...(1)

The stream lines are given by    constant  tan 1 C

2
2 2 2

x y
x y a

C
 

 ...(2)

When C  0 , stream line (2) reduce to xy  0  i.e. x  0  and y  0 . Again if C   , equation

(2) reduces x y a2 2 2 0    or x y a2 2 2  .

Hence the liquid flows in the area A  bounded by x y 0 0,  and x y a2 2 2   in the positive
quadrant.

Now w z a z a   log logb g b g
which shows that there is a source of unit strength at a,0b g  and equal source at a,0b g . Here the

source at a,0b g  is the image of the source at a,0b g  w r. .  to y -axis.

d w
d z

z
z a

z
z a z a





 

2 2
2 2 b g b g

 q d w
d z

z
z a z a

OP
 

 


2 2

1 2

.
. 

From (1), the stream line corresponding to   0  is

2 02 2 2

x y
x y a 



or x  0    and   y  0

The stream lines corresponding to   4  is

2
4 12 2 2

x y
x y a 

 tan

or x y a x y2 2 2 2  

or x y x y a2 2 22 0   
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which are parallel lines x y a  

Stream line corresponding to   2  is

2
22 2 2

x y
x y a 

  tan 

or x y a2 2 2 0  

these required stream lines are circles with centre at 0 0,a f and radius a  .

Example 4 : Between the fixed boundaries 



6  and 


 

6 , there is a two-dimensional liquid

motion due to a source of strength m  at the point r c ,  b g  and a sink at the origin, absorbing water
at the same rate as the source produces it. Find the stream function and show that one of the stream lines
is a part of the curve

  3 33 3sin sin c .

Solution : Let us transform the z -plane to  -plane by the transformation

  z3

where z r ei   and   R ei  so that Re r ei i  3 3

i.e. R r 3   and   3

Therefore the boundaries    6  in z -plane transform to    2  in  -plane. The point

c, b g  transforms to c3 3, c h and the point 0 0,b g  remains there itself.

(i) (ii)

Figure 15.11

The image system with regards to imaginary axis   2  in  -plane consists of

(i) A source of strength mb g  at c3 3, c h  and its image an equal source mb g  at c3 3, c h
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mb g

mb g
c,b g

 
 

6

X


 


6

Z-plane

 - plane

  2

   2

3 3

c3 3,  c h

C3

C3

S c3 3, c hS ma f

ma f ma f 





(ii) A sink of strength mb g  at 0 0,b g  and its image an equal sink mb g  at 0 0,b g .

And hence, the complex potential in ( -plane) will be given by

w m c e m m c e mi i        log log log log     3 3 3 30 0c h b g e j b gb g

          m c e m m c e mi ilog log log log    3 3 3 3c h c h
On putting   z3  we have

w m z c e z c e m z    log log3 3 3 3 3 3 32 c h c h

           m z c z c i i m zlog cos sin cos sin log6 6 3 3 3 3 3 3 6   b g

         m r e c i c r e m r ei i ilog sin log6 6 6 3 3 32 3 6  c h as z r ei 

w m r c r c   log cos sin sin6 3 3 66 2 3 3  c h

          i r c r m r i r6 3 36 2 3 3 6sin sin cos log cos sin    c h a f
On equating imaginary parts to obatain stream line, we have


  

  
 


 

L
NM

O
QP 

m r c r
r c r c

mtan sin sin cos
cos sin sin

1
6 3 3

6 3 3 6
6 2 3 3

6 2 3 3
6

on using formula log log tanx iy x y i y
x    a f c h1

2
2 2 1

Now putting   0 ; the stream line is given by

tan sin sin cos
cos sin sin

6 6 2 3 3
6 2 3 3

6 3 3

6 3 3 6
  

  



 

r c r
r c r c

or sin cos sin sin cos sin sin cos6 6 2 3 3 6 6 2 3 36 3 3 6 6 3 3       r c r c r c r   c h c h
or 2 3 3 6 3 6 6 03 3 6r c csin sin sin cos cos sin       

or 2 3 3 2 3 3 03 3 6r c csin cos . sin cos    

or cos sin sin3 3 3 03 3  r c c h

when cos3 0     
6  which are the given boundaries.

  other stream line for   0  is part of the curve

r c3 33 3sin sin  .
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Example 5 : In the case of the motion of liquid in a part of a plane bounded by a straight line due to a
source in the plane, prove that if m  is the mass of fluid of density   generated at the source per unit of
time, the pressure on the length 2 l  of the boundary immediatly opposite to the source is less than that on
an equal length at a great distance by

1
2

1 12

2
1

2 2

m
c c

l
l c




tan 


RST
UVW

where c is the distance of the source from the boundary..

Solution :

Figure 15.12

Let the bounding line OY  be taken as y -axis and 
m

2  be the source at A c, 0b g . The equivalent

image system consists of

a source 
m

2  at A c, 0b g  and its image S  a source 
m

2  at  c, 0b g . Hence the complex

potential is given by

w m z c m z c    
2 2 

log logb g b g

w m z c  
2

2 2


log c h

Hence the velocity q
d w
d z

m z
z c

 
2

2
2 2

If P z o iy b g  is a point on y -axis, then the speed at this point is given by

q m i y
y c


 2

2
2 2




m y
y c2 2 2

OX 1 X

Y

P iy0b g
Q

2lS1 S
c,0b g c,0b g
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Now for pressure, we use Bernoulli’s theorem. Let q  0  at infinite distance from y -axis and let
p0  be the pressure there, then

p p q
 
 0

2

2




 


p p q m y

y c
0

2 2

2

2

2 2 22
1
2  c h

Therefore the required difference in pressure

  
 

z zp p dy m y
y c

dy
l

l

l

l

0

2

2

2

2 2 2
1
2

b g
c h







zm y
y c

dy
l2

2

2

2 2 2
0


c h

On putting y c dy c d  tan sec  2  and keeping the limits of integration for y  as such,
we get

 zm c
c

c d
l2

2

2 2

4 4
2

0







 
tan
sec

. sec

  z zm
c

d m
c

d
l l2

2
2

2

2
0 02

1 2


 



 sin cosb g

 L
NM

O
QP

1
2

1 12

2
0

m
c c

l


  sin cos

 


L
NM

O
QP  


L
NM

O
QP

 1
2

1 1
2

12

2
1

2 2
0

2

2
1

2 2

m
c

y
c

y
y c

m
c

l
c

l
l c

l






tan tan

which is required result.

Example 6 : In the case of the two-dimensional fluid motion produce by a source of strength m  placed
at a point S  outside a rigid circular disc of radius a whose centre is O . Show that the velocity of slip of the
fluid in contact with the disc is greatest at the points where the line joining S to the ends diameter at right
angles to OS  cut the circle and prove that its magnitude at these points is

2
2 2

m OS
OS a

.
c h
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Solution :

Figure 15.13

Let S  be the inverse point of S  with regard to the circular disc, so that if OS c  and OS a
c 

2

where S  is in the inverse point of S  and OS OS a.   2  where a be the radius of the circle. The equiva-
lent image system consists of

(i) a source of m  at S
(ii) a source of strength m  at S , and

(iii) a sink of strength mb g  at O .

The complex potential w  at any point is

w m z c m z a
c m z     log log loga f e j2

or
d w
d z

m
z c

m

z a
c

m
z









b g e j2

or q d w
d z

m
z c

m

z a
c

m
z

 







b g e j2

or q m
z a z a

z c z z a
c


 

 

b g b g
b g e j2 ...(1)

Now to find the velocity at any point on the boundary of the disc, we put z a ei 

 q m
a e a a e a

a e c a e a
c

a e

i i

i i i


 

 
F
HG

I
KJ

 

  

c h c h
c h

2

or q m c
e e

a ce ce a

i i

i i
 

 

1 1 

 

c h c h
c h c h

O
mb g mb g

S1 S

ma f

c
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or q mc
a c a c


 

2
22 2

sin
cos


 ...(2)

For maximum/minimum value of q

dq
d

mc
a c a c a c

a c a c

   




  

 

L

N
MM

O

Q
PP 2

2 2

2
0

2 2

2 2 2

cos cos sin sin

cos

c h b g
c h

or a c a c2 2 2 0  c hcos

or cos sin 


 



2
2 2

2 2

2 2
a c

a c
a c
a c

...(3)

As   0  gives minimum zero velocity, value of   given by (3) corresponds to the maximum value
of q . On using (2) in (1), we obtain

q
mc a c

a c

a c a c a c
a c

ma x 




L
NM

O
QP

 


F
HG

I
KJ

2

2 2

2 2

2 2

2 2
2 2

.

        


2
2 2

m c
c a

q m OS
OS ama x 


2

2 2

.

The boundary being stream line, the velocity on the boundary is the velocity of the slip.

Example 7 : A source S  and a sink T  of equal strength m  are situated within the space bounded by
a circle whose centre is O . If S  and T  are at equal distances from O  an opposite side of it and on the
same diameter AOA . Show that the velocity of the liquid at any point P  is

2
2 2

m OS OA
OS

PA PA
PS PS PT PT

. . .
. . .

 
 

where S  and T  are the inverse points of S  and T  with respect to the circle.

Solution :

Figure 15.14
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Let AOA  be the diameter of the circle of radius OA OA a    with centre O . Let S and T
be the inverse points of S  and T , the distances are further been shown in the figure. At S  and T  be the
source and sinks of equal strength. Image system will consists

(i) Source mb g  at S (ii) Source mb g  at S

(iii) Sink mb g  at T (iv) Sink mb g  at T

then the complex potential will be

w m z b m z a
b m z b m z a

b        log log log loga f e j a f e j2 2

where OS b OT  , OS OT a
b   

2  and OA OA a   .

On differentiating, we obtain

dw
dz

m
z b

m

z a
b

m
z b

m

z a
b












a f e j a f e j2 2

The velocity at any point P ,

q dw
dz

m
z b z a

b
z b z a

b
 












1 1 1 1
2 2a f e j a f e j


  

   
2

2 2

2 2m
a b

b
z a z a

z b z b z a
b z a

b
.
c h a f a f

a f a f e j e j


  

   
2

2 2

2 2m
b a

b
z a z a

z b z b z a
b z a

b
.

. . .

c h

q m OS OA
OS

PA PA
PS PS PT PT


 

 
2

2 2

. .
. . .

which is the required result.

Example 8 : In the parts of an infinite plane bounded by a circular quadrant AB  and the productions
of the radii OA OB,  there is two-dimensional motion due to the production of liquid at A , and its obsorption
at B , at the uniform rate m . Find the velocity potential of the motion and show that the fluid which issuses
from A  in the direction making an angle   with OA  follows the path whose polar equation is

r a  sin cot cot
1

2 2 2
1

22 2   cosec

the positive sign being taken for all the square roots.
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Solution : The equivalent image system of source 
m

2  at A  with respect to circular boundary

consists of a source 
m

2  at A , a source 
m

2  at A  because A  is the inverse point of

itself and a sink 
m

2  at O .

Figure 15.15

As per given the image system of 
m
2  at A with respect to the lines OA  and OB is

(i) Sources 
m m

2 2 
  at A .

(ii) Sources 
m m

2 2 
  at A  (image of the source A ).

(iii) Sink 
m

2  at O .

Similarly considering the image system of 
m

2  at B  with respect to circular boundary and

OA OB, , we get.

(i) Sinks  
m m

2 2   at B

(ii) Sinks  
m m

2 2   at B

(iii) Source 
m

2  at O .

O


F
HG

I
KJ

m
2

m
2

F
HG

I
KJ

m m
2 2 


m m

2 2 
 A A

B m m
 

2 2 
P

B
 

m m
2 2 
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The complex potential given source and sinks at any point P  is given by

w m z a m z a m z ai m z ai        
   

log log log logb g b g b g b g

where the source and sink at centre of the circular boundary cancel each other.

w i m z a m z a       
 

log log2 2 2 2c h c h ...(1)

On equating real parts to both sides, we have


 

    
m z a m z i alog log2 2 2 2 2

         
m z a z a m z i a z i a
 

log . log .

    



m BP B P
AP A P

log .
. ...(2)

Putting z ei   in (1) then equating imaginary parts, we get





 




 





 m r
r a

m r
r a

tan sin
cos

tan sin
cos

1
2

2 2
1

2

2 2

2
2

2
2c h c h

 


m a r
r a

tan sin1
2 2

4 4

2 2
...(3)

The required stream line that leaves A  at an inclination   is given by




 
m

Therefore   


m m a r
r a




tan sin1
2 2

4 4

2 2
c h

or r a r a4 2 2 42 2 0  sin cot 

or r a a a2 2 4 2 2 41
2

2 2 4 2 4  sin cot sin cot   

where (-) sign has been omitted because r2  is non-negative quantity, Thus, we have

r a  LNM OQPsin cot cot2 22 2
1

2
   cosec{ }

which is required result.
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15.18 Summary
In this unit, we studied the complex potential of sources, sinks and doublets in two-dimensional

motion. Now, we are also capable to obtain the complex potential of source, sinks, and doublet with the
use of images with respect to straight line and circle.

15.19 Answers to self learning exercise
(1) Orthogonally

(2) Zero

(3) does not

(4) w m z a m z a i    log logb g b g
(5) Sources of strength m  at origin and equal sinks at (1, 0) and (-1, 0).

(6) w e
z

i x


 

(7) r 2  sin   n tb g  constant.

15.20 Exercise
1. In two dimensional irrotational motion, show that if the stream lines are confocal ellipses

x
a

y
b

2

2

2

2
1







 c h c h

then       A a b Blog 2 2e j  and the velocity at any point is inversly proportional

to the square root of the rectangle under the focal readii of the point.

2. The sources, each of strength m  are placed at the points a a, , ,0 0b g b g  and a sink of strength

2m  at the origin. Show that the stream lines are the curves x y a x y xy2 2 2 2 2 2   c h c h

where   is a variable parameter. Show also that the fluid speed at any point is 
2 2

1 2 3

m a
r r r  where

r r r1 2 3, ,  are the distances of the points from the sources and the sink.

3. Let there be a source of strength m  at a, 0b g  and a sink mb g  at  a, 0b g . Find   , ,  and
velocityq . Ans. {See article 15.11}

4. If there are sources at a, 0b g , a, 0b g  and sinks at 0, ab g , 0,  aa f all of equal strength. Show
that the circle through these four points is a stream line.

5. Find the stream function of two-dimensional motion due to two equal sources and an equal sink
midway between them. In a region bounded by a quadrantal arc and its radii, deduce the motion
due to a source and an equal sink situated at the ends of the bounding radii. Show that the stream
line leaving either end at angle   with radius is

r a2 2sin sin     b g b g
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6. Use the method of images to prove that if there be a source m  at a point z0  in a fluid bounded by

the lines   0  and 



3 , the solution is

     i m z z z zlog 3
0
3 3

0c h c h
where z x i y0 0 0   and z x i y0 0 0  .

7. Between the fixed boundaries 



4  and 


 

4 , there is a two-dimensional liquid motion

due to a source of strength m  at the point r a ,  0b g  and an equal sink at the point

r b ,  0b g . Show that the stream function is




  

L
N
MM

O
Q
PP

m
r a b

r r a b a b
tan

sin
cos

1
4 4 4

8 4 4 4 4 4

4
4

c h
c h





Show also that the velocity at r , b g  is

4

2 4 2 4

4 4 3

8 4 4 8 1
2 8 4 4 8 1

2

m a b r

r a r a r b r b



   

c h
c h c hcos cos 

8. In the two dimensional motion of an infinite liquid there is a rigid boundary consisting of that part
of the circle x y a2 2 2   which lies in the first and fourth quadrants and the part of y -axis which

lie outside the circle. A  simple source of strength m  is placed at the point f , 0b g  where f a .

Prove that the speed of the fluid at the point a acos , sin b g  of the semi-circular boundary is

4 2 2 22 4 4 2 2a m f a f a fsin / cos  c h .

����
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