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Course Introduction

The Present book entitled “Mechanics” has been designed so as to cover the
unit-wise syllabus of Mathematics-Fifth paper for M.A./M.Sc. (Previous) students
of Vardhaman Mahaveer Open University, Kota. It can also be used for competitive
examinations. The basic principles and theory have been explained in a simple,
concise and lucid manner. Adequate number of illustrative examples and exercises
have also been included to enable the students to grasp the subject easily. The units
have been written by various experts in the field. The unit writers have consulted
various standard books on the subject and they are thankful to the authors of these

reference books.



UNIT -1
D’Alembert’s Principle

Structure of the unit

1.0 Objective

1.1 Introduction

1.2 Definitions

1.3 Moment of Inertia and Product of Intertia of Some bodies

1.4 Theorem ofParallel axes, M.I. about any line in space Principal axes and Moments
Self Learning Exercise - 1

1.5  D’Alembert’s Principle, General equation of motion

1.6  General equation of motion
Self Learning Exercise - 2

1.7 Motion of Centre of Inertia

1.8  Motionrelative to the centre of Inertia

1.9 Summary

1.10 Exercise

1.0 Objective

This unit provides a general overview of D’ Alembert’s Principle. Moment of Inertia and product
of Inertia of some bodies, After reading this unit you will be able to learn

1. About rigid body and effective forces, impressed forces
2. D’ Alembert’s Principle
3. Motion of Centre of Inertia

4. Motion relative to the centre of Inertia

1.1 Introduction

D’Alembert’s (1717-1783) was a French Mathematician. He is remembered for D’ Alembert’s
Principle for the solution of wave equation.

D’ Alembert’s suggested an important method by which the equations of motion ofa rigid body
may be obtained without writing the equations of motion of several particles and without knowing the
unknown forces. By using D’ Alembert’s Principle we will be able to convert a dynamical problem into
a statical one. Also we will apply D’ Alembert’s Principle to derive the general equations of motion ofa

rigid body for finite forces.

1.2 Definitions

Impressed Forces :
The external forces acting on a body are called impressed forces. For example, ifa body is tied to
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string then tension in the string is an impressed force. Similarly weight of a body is also an impressed force.
Effective Forces :

The force possessed by an accelerated mass particle is known as effective force i.e. product
of'mass and its acceleration of moving particle is called its effective force. For examples, if j; be the mass

. . . . . . . d’x .
of a particle and its accelerationbe f*,then m f* is called effective force of this particle. Thus m P is
t

2 2

. . .. N 14 . .
the effective force parallel to the axis of x . Similarly m e and m — are effective forces on the particle
P

along the tangent and normal respectively.

d*x d*s V2 . )
i m Fra m — etc. are called reversed effective forces ofa particle parallel
P

to x -axis, tangent and normal respectively.

Also — m

Newton’s Second Law of Motion :

Newton’s second law state that, Applied force = effective force

If F isthe applied force or external force and ; be mass of particle, f* being the acceleration,
then F=m f

Equations of Motion :

If (x, y,z) be the coordinates ofa moving particle of mass s, atany time ¢ and F,, F,, F, be the
components of forces parallel to three axes, then by Newton’s Second Law, the equations of motion of the
*x d’y d’z
particle are m e F,m Fr E,m e F; . Thus for a particle motion, the impressed force
and reversed effective force are in equilibrium.
Rigid Body : Definition :

A rigid body is formed by material particles whose mutual distances do not change under all
circumstances of motions. For a rigid body, we assume that

)] The action between its two particles act along the straight line joining them, and

(i) The action and reaction between them are equal and opposite.

1.3 Moment of Inertia and Product of Inertia of some bodies

In the study of motion of rigid body, in general linear and rotational motion, two very important
entities moment of inertia (M.I.) and product of inertia (P.I.) are needed, these two entities change with
the changing shape and size of the body even ifits mass is not altered. Now we shall define moment of
Inertia and product of Inertia. Also we shall write results of moment of Inertia and product of Inertia of
some bodies.

Moment of Inertia :
Definition 1 : Let ;; be the mass of an elementary particle of a body of mass »; and  be the

distance of'this element from the given line, then z mr’ is called the moment of Inertia of the given body

2



about the given line, where the summation is taken for all the particle of the body. M.1. of a body is clearly
a scalar quantity.

Definition 2 : For mass of M of the body, we can always find a lenght j; such that

2
2 2 2_zmr
Zmr =Mk =k ——M .

This length £ is called the “radius of gyration” of the body about the given line.

The radius of gyration of a body rotating about a given axis is equal to the distance from the axis of
rotation, the square of which when multiplied by the total mass ofthe body, will give the moment of Inertia
ofthe body about the axis, Moment of Inertia of a body is always positive or zero only.

Similarly, we can define M.I. ofa body with respect to a plane or a point.

Some Importants Symbols :
If (x, y,z) be the coordinates ofa point p, thenits distance from x-axisis PA = y2 +z2,asits

distance from x y — plane is PB(: z) and its distance from origin = OP = /x> + y* +z° , then the

moments of Inertia of the body about the coordinates ox,0y and ¢z are generally denoted by 4, B

7z

and C. A

Fi 1.1 B
k igure

Thus A= Zm (PA)2 = Zm (y2 +zz)= M.I. about ox
B=>m (22 +x2)= M.L about oy

C= Zm (x2 +y2) = M.I. about ¢z
Similarly, M.I. about origin (about a point) is denoted by g and is defined as
H= Zm (OP)2 = Zm (x2 +y° +22)
Moment of Inertia of body about yz plane, zx plane and xy planes, are defined by
A= anxz , B'= Z:my2 , C'= anzz respectively.
Important result about a Plane lamina:

The Moment of Inertia of a plane lamina about an axis perpendicular to its plane is equal to the sum
ofthe M.L.’s about any two perpendicular axes in the plane which intersects the first axis. Let the plane of
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the lamina be x y -plane (as is Fig. 1.1) so that ; = ¢ for all points lying on the plane. Any axis
perpendicular to the plane be chosen as axis of .

Then MLI about 7 -axisis = C= Y . m (x2 +y2)
M.1. about x -axisis 4= Y_m (y2 +22): dm (y2 +O)= >my

M.L about y-axisis B= Y m (z° +x%)= dmx’

thenclearly c = 4+ B
Product of Inertia :

Definition : : Let ;; be the mass of elementary particle of a body situated at the point

(x, y) referred to two mutually perpendicular lines ox and oy, then z mx y is called the product of
Inertia (P.I.) of the body with respect to the lines ox and oy .

Symbols : Ifa system of rectangular axes ox,0y,0z be taken in space and if coordinates of any

element of mass s, of the body referred to these axes be (x, y,z), then the quantities z myz, z mzXx
and z mx y are called the Products of Inertia with respect to the pair ofaxes (oy, oz) , (oz, ox) and

(ox,0p) respectively, and are usually denoted by D,E and f respectively, thus

D=Zmyz, E=Zmzx, Fzmey

Product of Inertia of any particle may be positive, negative or zero. For example, if the system

consists of only two particles, each of mass s, at the points (2, 1, —4) and (3, 2, 2)
then D=m(-4x1)+m((2x2)=—-4m+4m=0
E=m(2x-4)+m(3x2)=—-8m+6m=—2m

F=m2x1)+m(3x2)=2m+6m=_8m

Moment of Inertia in some Standard Cases :

1. M.I. of a uniformrod of length 2a and mass ps, about an axis through an extermity
: L. 4 L
and perpendicular to it is = 3 Ma
: : 4
ie., M.I.ofrod 4B about line L AL' is EMG
G
A ' ' B
< 2a >
L Figure 1.2




M.I. of auniformrod oflength 2a and mass ps about an axis through the mid

. . NS L
point and perpendicular to it is = 3 Ma
. . . 1 2 G
i.e. M.I.ofrod 4B aboutline LG L' is gMa A B
2a
Ll
Figure 1.3

M.IL of auniformrod oflength 2a and mass )z about an axis through one extremity

4 :
and making an angle @ with the rodis = 3 Ma’sin® 6

4 :
i.e. M.I.ofrod 4B aboutline L AL’ EMCZ2 sin’ 0

L Figure 1.4

M.IL. of a uniform rectangular lamina of mass 37 and sides oflength 2a and 25
about a line through its centre and

1
() Parallel to side 2a = 3 M b’ Zr; Y
D~ C
i.e. M.I. of lamina 4pCD
bout 0x = l Mb*
abou 3 2°b 0 >x
M
()  Parallel toside 2b = ?az 2
A 2a >
. . M
i.e. M.I. oflamina 4BCp about 0y = ?a Figure 1.5

1
(i)  Perpendiculartoits plane =3 M (a’ +57)

1
i.e. ML oflamina 4gCp about 0z = 3 M(a* +b)
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M.I. of a rectangular parallelopiped of mass )7 and length ofedges 2a, 2b, 2 ¢

about an axis through the centre and parallel to Ny
M
()  edgeoflength 2a = ?(b2 +c*) D% o
i.e. MLI. ofrectangular parallelopiped
gular p pIp 4 55 " .
M., . 9 >
about 0x = —(b +c )
3 D
v z
2 J< 2a s/ C
M .
(i) edge oflength 26 = 3 (a2 + cz) 4 Figure 1.6
. . M 2 2
i.e. MLI. ofrectangular parallelopiped about 0y = ER (a +c )
M
(i)  edgeoflength 2¢ = T(a2 +b?)

()

(ii)

M.I. of a circular disc of mass s and radius 4 about

()

M.I. of a circular ring of mass js andradius 4 about
. . .1 >
a diameter is = ) Ma
i.e. MLI. about diameter 4B

M
i.e. MLI. ofrectangular parallelopiped about 0z = a + b

_Ma2
2

an axis through centre perpendicular

. < 2
toitsplaneis = M a Figure 1.7

i.e. MLL. of circular ring about OL = M a®

1
a diameter is = 1 Ma’

re. M.L. of circular disc

. M,
about diameter 4B = e a

Figure 1.8



(i) about an axis through the centre and perpendicular

2

) Ma
to its plane =
2
. . . . Md
i.e. M.I. of circular disc about 0z is =
8. M.IL. ofan elliptic disc of mass js and major and minor axes oflength 2 a

and 2 about

. . M,
@) Major axis = Y b
M A
i.e. M.I. about 0 x = e b? > x
(1) Minor axis = e a’
Le. M.L about 0 = = a*
re. M.I. about oy 4 C
0. M.I. of a hollow sphere (spherical shell) of mass 37 and
: L 2 2
radius 4 about one of’its diameter = — M a
3 0
A B
24 >
i.e. MLL. ofhollow sphere about diameter

2
.= MaZ
AB (or CD)is 3 D
Figure 1.10
10.  M.IL ofasolid sphere of mass M and radius a about one of'its diameter

2
M
ISS

2

2
i.e. ML1. of solid sphere about diameter 48 = 3 Ma

Figure 1.11



11.

1.

M.I. of a solid ellipsoid of mass ps and length ofaxes 2a, 25 and 2 ¢ about

z
| | M., ‘
(@ The axis oflength 2a is = 5 (b +c )
B
i.e. MLL. of solid ellipsoid !
M < A2 x
about0x=?(b2+cz) ! y A
. MY B
(i)  theaxisoflength 25 is = < (a* +¢%) /
Figure 1.12
i.e. MLL. of solid ellipsoid
M
about 0y =~ (a® +¢?)
M
()  theaxisoflength 2cis = s (az +bz)
i.e. MLL. of solid ellipsoid
M
about 0z = < (a® +b7)
Product of Inertia of some Standard Cases :
Product of Inertia of rectangular plate of mass js and length of sides 2a,2b
ya
about its sides ox and oy is = Mab T
0
l 2a > X
O 7
Figur1.13
P.I. ofan elliptic quadrantal disc of mass )7 and major and minor axis of lengths
2a, 2b withrespect to its axes (major and minor) Y
B\
o Mab Al f
ox,0yis T 5 X

ol<—a—

Bl
Figure 1.14



3. P.L of a semi circular disc of mass 37 and radius a about the diameter (OA4) and the

y

4
tangent at its end (OY) is = Eps Ma’

T
|

i > X
0 G A
Figure 1.15
4. P.I. ofa semi circular wire of mass )7 and radius 4 about the diameter and tangent
) ) 2Ma’
at 1ts extrenmity =
T

1.4 Theorem of Parallel Axes

1. For Moment of Inertia : The M.1. ofa body about any given axis is equal to the M.1.

about the parallel axis through the centre of gravity ofthe body together with the M.I. of whole mass ofthe
body placed at C.G. taken about the given axis.

AY

AY'

......... > Xl

a Figure 1.16

i.e. ML.I. ofbody about 0 x = M.I. about G x' + M.IL. of whole mass placed at (; about o x
Similarly for o y and oz.

2. For Product of Inertia : The P.I. of a body with respect to a pair of given rectangular
axes is equal to the P.I. with respect to the pair of parallel axes through the C.G. of body together with the
P.I. of whole mass placed at C.G. with respect to the given axes.

AsinFigure 1.16
P.I. about ox, 0y = P.I1.about Gx’, Gy'+ PI. ofmass s placedat G,about ox,0y.

Similarly for oy, 0z and 0z, 0 x .



Moment of Inertia about any line in space :

The moment of a body about three mutually perpendicular axes o x, 0y, oz ata point o are
A, B, C respectively and the Products of Inertia with respect to the pair ofaxes 0 y, 0z ; 0z, ox ; 0 x, oy

be D, E, F,then M.I. ofbody about line POQ, whose direction cosines are /, m, n is

AP +Bm* +Cn* -2Dmn-2Enl-2FIm

z
N

y p Figure1.17
Principal Axes and Principal Moments :

It is always possible to find an orientation of the coordinates axes for the body such that all the
three products of Inertia vanish simultaneously. Then the three mutually perpendicular axes of coordinates
axes are known as principal axes and the correspoinding Moment of Inertia as principal moments.

Self Learning Exercise - I :

I. Is Moment of Inertia of a body is always positive or zero?
2. Is P.I. of a body always positive or zero?
3. Write MLI. of a uniformrod of mass 3z and length 2a about an axis through an

extremity and perpendicular to it.

4. Give two examples of impressed forces.

1.5 D’Alembert’s Principle

Statement : “Under all circumstances of motion, the reversed effective forces acting on each
particle of the body and the external forces form a system in equilibrium among themselves”.

Proof : Suppose a rigid body be in motion. At time ¢, let ;’ be position vector of a particle of

mass . It ;} be the resultant of external forces and R be the resultant of internal forces (i.e. mutual

actions) acting on it, then by Newton’s Second Law

10



)
- > 7

oo  F+R-m=—=0 (1)

dt

d’r
This equation shows that the three forces ;} , } and [_ m WJ are in equilibrium.

Similarly we can argue for different particles of the rigid body. Hence for the rigid body, we have

- - d2_>
LE+2 R+ —m dtzr =0 e

But the internal forces i.e. mutual actions of a body are in equilibrium i.e. Z fé = 0, thenfromeqn

(2), we have

- d2_>
YE+ Y -m =0 -03)

dzr . .
where Z -m PP reversed effective force

therefore eqn (3) shows that, the reversed effective forces acting at each particle of the system
(rigid body) and the external (impressed) forces on the systemare in equilibrium.
This proves the D’ Alembert’s Principle.

Angular Momentum of a System of Prticles : Let ;’ be the position vector, of a particle of

mass p relative to a point ¢, then the vector sum g (say),

H= Z Fxmy = Z m r x v is called angular momentum of'the system about the point ¢,
where ; is the velocity or moment of momentum is called angular momentum.

Centroid of System : Let : be the position vector of any particle of mass  ofthe system (rigid
body) relative to a point ¢ , then the point with position vector

—

S

N
r= z is defined as the centroid of the system.
m

Also, if ; be the velocity ofthe particle of mass ; and I_/) be the velocity ofthe centroid, then

11



1.6 General Equations of Motion

To deduce the general equations of motion of a rigid body from D’Alembert’s
Principle. (when froces are finite)

Let [_51 F’z and f’} be the components of external (impressed) forces parallel to the axes of

coordinates respectively acting on a particle of mass », whose coordinates are (x,y,z) at

any time ¢ . ZA

y Figure 1.18

Then the force whose components are

2 dx o (2 o
[Fi_mﬁj B (Fl—mxj’ (Fz—myj’ and (E—mzj atapoint 4 (x,y,z) together

with similar forces acting at each point of the body forming a system in equilibrium, thus we get

> (F-m%)=0,% (F-m#)=0,3 (F-mz)=0

or Y F=)mk (D)
2 E=2my (2)
DY E=Ym: .(3)

these equations state that the sum ofthe components ofthe effective forces parallel to the coordi-
nate axes, are respectively equal to the components of impressed (external) forces parallel to the same
axes.

Refer fig. 1.18 amd taking moment about oy , we get
2y (F=m2) = z(F-mj)|=0
or  Ym(-yi+zy)+) (yF-zF)=0
or Y m(yi-zj)=3 (yF-zF) .(4)

Similarly, taking moment about o y and oz, we get

12



Zm (Z)'c'—xé):Z(zFl—xl*}) ..(5)

and Zm (xj)—y)'é):Z(sz—yFl) ..(6)

these equation {(4)to (6)} state that the sum of the moments of the effective forces about the
coordinate axes are respectively equal to the sum of the moments of the external forces about the same
axes.

The set of equations (1) to (3) and (4) to (6) are the general equations of motion ofa rigid body.

Self Learning Exercise - 2

1. Write the statement of D’ Alembert’s Principle.
2. Define angular momentum.
3. Write three general equations of motion of a rigid body for moments.

1.7 Motion of Centre of Inertia

(Motion of Translation)

To show that the centre of Inertia of a body moves as if all the mass of the body were
collected at it and as if all the external forces were acting at it in directions parallel to those in
which they act.

Let (x,y,z) be the coordinates ofa particle of mass p; . Further let ()_C, ¥, 2) be the coordinates

of Centre of Inertia of body of mass 7, (i.e. z m= M),then Mx = me , throughout the motion.

Now we shall find that how the equations of motion (eg” (1) to (3) of above article) can be

simplifed by a proper choice of coordinates. We shall be interested in the resolved parts of momentum
and the resolved part of the effective force of a system in any direction. Let the chosen directionbe x -axis.

The resolved part of its momentumin yx -direction

dx
m_
dt

So that the resolved part of the momentum of whole system

dx
RN
dx dx
M===m==
py 2m py (1)

13



Similarlyin y and 7 directions

dy dy dz dz
MLm= M=
dt 2 de and Mgy 2m dt -(2)

Differentiating (1) and (2) with respect to ¢, we have

d*x d*x
M .0
d’y d’y

Mor=2m s ()
d’z B d*z

But from general equation of motion

d’ x d’y d’z
Zm dtZ :ZE’ Zm dtZ :Zsza Zm dtZ :ZF;

Hence,
d’x
Mdﬁ—ZE .(6)
d’y
Mdﬁ=ZE (7
d’z
M37=ZE ..(8)

Equation (6), (7) and (8) are the equations of motion of a particle of mass s placed at the centre

of Inertia acted upon by forces z F, z F, z F, parallel and equal to external forces acting at different

points of the body. Equations (6) to (8) are called equations of translation motion.

1.8 Motion Relative to the Centre of Inertia

(Motion of Rotation)

To show that the motion of a body about its centre of Inertia is the same as it would be if
the centre of Inertia were fixed and the same forces acted on the body.

Let ()_C, Y, 2) be the coordinates of the centre of gravity ¢ of the body with respect to axes

ox,0y and oz.Let p be a particle (mass =) of the body, whose coordinates be (x,y,z). Let

coordinats of p with respect to the axes Gx’, Gy’ and Gz' be (x',y",z'), so that

14



Figure 1.19

x=x+xV=V+yY,z=7+7 (1)

On differentiating these twice with respect to ¢, we get
F=x+¥,j=y+y,i=2+7 (2

Now we have [From equation (4) to (6) of article 1.6]

Zm(yé—zj})=2(yF3—zF2) etc. ..(3)

Using values from (2) in eqn (3), we have
Y m[(F+y) E+2) - (F+2) G+7)| =2 [(F+0)F - (E+2)E]

o Sm[FE+ e yEeyEoFFozy 252

o Ym[(FE-zP) e (vE -2 y) 4 (52 -4y )

or Y m(FE-EF) Y m(yE )+ Y m(pE - F  yE -2 )
=2 PFE-ZFE)+ X (v F,~2'F) (4)

Where Y m = M = whole mass of the body

or MGFz-z23)+ Y m(yz -2y)+5 (X mz)-zy my

2 my) -3 (X mz)=) FR-2E)+ Y (VE-2'F) (5)

Since coordinates of G withrespectto Gx’, Gy’ and Gz’ are (0, 0, 0), so we have

15



me’ =O:>me’=0 ..(6)

Zm :O:Zmy’zo (7

Z e =0= Z mz' =0 .(8)

also on differentiating these equations twice with respect to ¢

D> mi' =0 .9

D omi' =0 ..(10)

> mi =0 (11
Further from equation (6) to (8) [art 1.7]

Mx=)F (12)

My=)F (13)

Mz =Y F ..(14)

multiplying eqn (13) by 7 andeqn (14) by y and subtracting, we have

M(yz-zy)=) (VE -ZF,) ..(15)

Now onusing eqn (7), (8); (10), (11) and (15) in eqn (5) we have
z ()_/F3 —ZFz)+Zm(y'Z'—z'j)')+)7><0—2><0+§><0

-yx0=Y yF-zZF) + ). (y K-z F)

or dYm(y'i-z3) =D FE-zF) ..(16)
Similarly two more equations can be obtained as

ZM(Z' X' =x' 2') = z (z' F =X F3) ..(17)
and ZM(x' yr =y )'c") = z (x' F -y Fl) ..(18)

These eqn [(16) to (18)] would have been obtained if we had taken ¢ as origin. These are
equations of rotational motion of the rigid body about a fixed point.

Remark :

In the above two articles we have shown that motion of translation and the motion of rotation can
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be considered independently. So these two articles prove the independence of translation and rotation.
Ilustrative Examples :

Example - 1: A cricular board is placed on a smooth horizontal plane, and a boy runs round the edge of
it at a uniform rate, what is the motion ofthe board?

Solution : Let mass of circular board be ps and mass ofboy be ;.

Figure 1.20

Let G be centre of Inertia of the system. Let 4 be radius of board. Now there is no external force
acting on the system in the horizontal direction so by D’ Alembert’s Principle the centre of Inertia (G ofthe
system will remain at rest. Let x be distance of ¢, . G frompoint ¢, than

_M.o+ma ma

0G =x
Thus we observe that (G is fixed and (¢ is constant so that the centre of board o describes a
circle with (G as centre and (¢ radius.

Example-2: A uniformrod 04, oflength 2a, free to turn about its end 0, revolves with uniform
angular velocity y about its vertical oz through ¢, and is inclined at a constant angle ¢ to oz , show that

.. 3
the value of ¢ is either zero or cos™’ [ gz J .
aw

Solution : 04 isrod of length 2a and oz be vertical. Consider an element PQ = 6 x at adistance

X m .
\ — Ox wsina
P 2a —

A

mg

Z' Figure1.21
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m
x (= o P) from0, whose mass willbe 5 - 6X Draw pN perpendicularto oz. Then element

PQ describes a circle ofradius ppy about p . Hence the only effective force on the element PQ is

m .
Z&C wx sina along pn (by formula mrw?). Hence reversed effective force is

2a

reaction at o . By D’ Alembert’s Principle the reversed effective forces and external forces are in equilib-
rium. To avoid the reactions, we take moments about the line through ¢ , perpendicular to the plane of the
figure, we have

m :
[_ Sx w’ x sina J along np. The only external forces acting on the rod are its weight m g and

mg (asina) = 2[2& Sxw'x sinaj (xcosa)
a

[-- In AONP> ON = xcosa andin AOHG, HG = asina |

2

. 2a 2
sino cosa JO x°dx

or mgasina =
2a
2 . 3
_ mw’ sinacosa 8a
2a 3
2 2 .
_4a W~ sino cosa
3
. ’a
or mgasina | 1- 3 cosa |=0
g

above gives us either sina = 0,1.e. =0

2

1_4w a
3g 4daw

3 3
cosa = 0 = cosa = g2:>a=cos1[ gzj
daw

or

3g 3g
Remark : If W < 4g-then 4 5 > 1= cosa > 1 which is not possible. Hence in this case ¢ = 0

only will be possible.

Example -3 : Arod, oflength 2a is suspended by a string, of length ;, attached to one end; ifthe string
and rod revolve about the vertical with uniform angular velocity, and their inclinations to the vertical be g

and ¢ respectively, show that

3] (4tanf-3tang)sing

a  (tang—tan0)sin@
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Solution : Suppose ¢ rod 4B oflength 2a and mass m be suspended by a string (4 oflength ;.

mg

z Figure 1.22
0z be vertical through ¢. Consider an element PQ (= & x) ofrod 4p atadistance x from
end 4.Then fromthe fig. 1.22, OH =cos@, HA =1sin0
LP= LD+ DP
=HA+ DP =1sin0+xsin¢ ()
EG=asing, AE =acos¢
HJ = AE,0J =OH+ HJ =lcos@+acos¢

If the rod revolves with angular velocity (say) w , then by dynamics of particle, the reversed
effective force on p is

m m : :
20 Sxw’ LP = 20 Sxw? (Isin@+xsing) ajong 7 p (2)

The external forces on the rod are tension 7 (instring ()4 ) and weight m g actingat ¢ .

To avoid tension 7", we take moments about lines through 4 and point (), perpendicular to the
plane of'the figure respectively.

First taking moment about 4, we get

mgasing =Y. Zﬂ Sxw’ (Isinf+xsing) . xcosg
a

- Jza 2 (/sin@+ xsing) xcos¢ dx
0 2a

2

sin ¢ COS¢J .(3)

or gasing =w’ [alsin@ cos¢ +

19



Also by taking moment about point o , we get

2a n/l\/‘)2

mg(asing+/sinf) = _[0

(Isin@ + xsing) (/cos+xcosg) dx
a

IZa m M}2

v [12 sinfcos@+1xsingcos@ + [xsinfcosg + x° sin¢cos¢] dx
a

2
mw

) 2a
[lz sin@cosf (x)(z)a +[sin¢gcosd [%)

2a 0

) 2a 3 2a
+ [/sinfcos¢ Rl singcos¢g X
2 0 3 0

or g (asing + Isinf) = w* (I’ sinfcosd + alcosBsing)

2

+w [alsin@cosqﬁ +

sin ¢ cos ¢J (4

Subtracting (3) from (4), we get
glsin@ = w? (I’ sinfcos + alcosBsing) .(5)
Now, dividng eqn (3) by eqn (5), we get

2

4; sin q))cosq)

2

4; sin ¢ cos ¢ [alsin0+

alsin@sing +

asing B
/sin@ I’ sin@cosO +alcosBsin ¢ (12 sin0+alsin¢)cos0
sing (lsin@ + ?sinqﬁ)cosqﬁ

sin@  (Isin6+asing)cosd
= singcosO (/sinf+asing) = (Zsin@ + 4Tasin¢) sin@cos¢

I (singcosf — sinfcos¢) sinf = % (4sinfcos¢ — 3singcosd) sing

on multiplying by 3 and dividing by cos cos¢, we get

3/ (tan¢—tan9) sinf =a (4tan9—3tan¢) sing

:ﬂ [4tan9—3tan¢) sin¢

a tan¢g —tan @ sin@’ which is the required result.
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Example4: A thin heavy disc can turn freely, about an axis in its own plane, and this revolves
horizontalwith a uniform angular velocity v about a fixed point on itself. Show that the inclination g of the

: e osl[ & : : :
plane of the disc to the vertical is €0S l(kz—wz) ,where § is the distance of the Center of Inertia of the

disc from the axis and  is the radius of gyration of the disc about the axis.

h
Ifw” < i—z then the plane of the disc is vertical.

Solution : Let 4 is the horizontal axis (Fig - 1.23) in the plane of the disc and 47 be vertical

'

0)
/ T ) X
> ) — dmw’ NP

z 0
Figure 1.23

line through 4. Let OQ be vertical line through (). When the axis (4 revolves horizontally
about (), the plane of disc will be slightly raised and suppose @ is the inclination ofthe plane of disc to the
vertical.

Also distance of Centre of Inertia G fromaxis 04 is givento be 4 (i.e. OG = h) and the plane
of disc makes an angle @ with the vertical, so that the distance of M g fromthe axis (4 is 4sin@-

Consider an element d m at point p and draw pp and pj, perpendiculars to the verticals
through 4 and O ( pO is perpendicular from p onthe axis ()4 ). When the axis 4 revolves horizon-
tally about (), the element d m describes a cricle of radius ppy about 47 with p as centre. The

reversed effective force on element d m is d mw* NP along NP . Applying triangle law of forces, this

force can be thought of as equivalent to two components forces d mw? NL along N7, and d mw* LP
along 7.p.

The force d mw*NL along N7, is parallel to line (4 and as such its moment about (04

vanishes.

Now, taking moment about ()4, we get
Mghsin@ =Y. dmw’ LP.OL
=w’ > dm(OPsin6) (OP cos0)
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=w’sin@cos® Y. dm(OP)

=w”sinfcosd (M k?) [+ dmOP* = M K]
where [ is radius of gyration of disc about axis.
or ghsin@ = k*w” sinfcosf

or sin@ (gh — k*w’ cosf) = 0

= either sin@ = 0 1ie. 0=0
gh _ o gh
or cosf = e or 0 = cos (kz—wz)
» _8gh_ gh | 051 which o : :
when W <? = JENe >1=cost >1 which gives an impossible value of §. In that

cos@ = 0 isthe only possible value and thus the disc will remain vertical.

ExampleS: Two uniform spheres, each of mass )7 andradius ¢, are firmly fixed to the ends of two
unifrom thin rods, each of mass ; and length ;, and the other ends of the rods are freely hinged at a point
O - The whole system revolves, as in the governor of a steam-engine, about a vertical line through ¢ with
angular velocity y . Show that when the motion is steady, the rods are inclined to the vertical at an angle g
given by the equation

M(l+a)+;lm

cosH:é2 )

w M(l+a)2 wL;)ml2
Solution : Let 04 and OB betwo rods each oflength ; and mass ;. The spheres, each of radius

a and mass )y are fixed at the ends 4 and B . We take an elemant PO (: o x) at a distance x from
point (O oneither rod.

mg mg
Figure 1.24

Let 0z be vertical through ¢ and pg and ¢z be perpendiculars on the vertical ¢z . Let ¢
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be centre of one of the spheres. As the whole systems revolves as in the governor of a steam engine about
0Z »the element PQ will describes a circle ofradius pg with g as centre. Then the reversed effective

m )
force on the rod at p is (7 & xw’xsin 9) along gp, where g is angle which the rod makes with

vertical. By similar reasoning the reversed effective force on the sphere of the same side is M w’ (ZC)

along 7C.
Here from the figure, Op = x in AOPE » PE = xsinf, OE = x cosf

0G = lz’jn AOGF » GFzésinQ, OFzécosﬁ

in AOCZ, OZ =(l+a)cosO, CZ=(I+a)sind

Keeping the symmetry in consideration and taking moment about an axis through ©
perpendicular to plane cOp , we have

m

2
" {xsin@ . xcosO} dx

Mw* (I+a) sin . (I+a) cosO + Il l

= Mg(a+l) sin9+mg.§sin9

2 3
ot Mw? (I +a)’ sin6 cosd + mlw sin@ cos® [%]

sin @

= Mg(a+1)sing + ngl

2 72
or sin@ cos® [sz (l+a)2 + mw; ! }= sin@ [Mg(a+l) + ngl}

2
or sin® [WZ{M (a+l)2 + m?f }cOS@ - g{M (a+l)+m71}}: 0

either sin@ =0=60 =0

2
or w? cos6 {M(a+l)2+m3l }—g{M(a+l)+m7l}=0

M(a+l)+ 25

= cosé’:%.
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Example 6: A plank of mass ps is initially at rest along a line of greatest slope of a smooth plane
inclined at an angle ¢ to the horizontal, and aman of mass ', starting from the upper end, walks down
the plank so that is does not move; show that he gets to the other end in time

2M'a
(M+M') gsina
where ¢ is the length of the plan %

Solution : Let ox be horizontal plane and Let 4B be the plank of mass jz, resting along the line of
greatest slope ofthe inclined plane (7, . Let G be .. of plank, so weight of plank is acting through (3,

a
suchthat 4G = 5 L

Figure 1.25

Let aman come down a distance y intime ¢, starting fromthe upperand 4 ofplank. 4f£ =y,
E isposition of man after a time ¢, soitsweight /' ¢ isactingat g .If ¥ bethedistance (x = 4G, G

being C.G. of system) ofthe centre of gravity G, , ofthe plank with man onit fromend 4, then

M+M’x
=2
M+ M'
! v Ma !
or (M+M')x = (T+M x) (1)

Differentiating this relation twice with respect to ¢ , we get
(M+M')x=M'% -.(2)

which gives acceleration of (. ofthe system due to the motion of man.

Now the plank does not move so its .. is fixed but man is moving downward, so there is a
translation motion. We should consider simply the motion ofits C. (. , supposing as if all the external
forces acton it.

Thus the equation of motion ofthe ¢, (. along the plane gives

(M+M')X=Mgsina+ M gsina ..(3)
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Using eqn (2), we get

M'i=(M+M')gsina

d’x M+ M'
o adp M’

gsina

Integrating it with respect to ¢, we get

dx M+ M' )
n = YR gSMa& ¢+ C,,where C, isconstant of integration ..(4)
dx

but when 7 = (, dt =

O =0 + C, = C, = O,theneqn(4) reduces to

dx M+ M' )
— =———gsinat
dt M’

again integrating with respect to ¢, we get

M+ M r’

X sinag — + C. ..(5
M g > 2 ®)

but again initiallyat 4, y = (. when ¢ = (, then

M+ M’ . 2
from (5), X = —2 IZ gsmaoa !
) 2 M'x
== - (6)
(M+M') g sina

In order to get the time to reach the other end B of plank we put x = 4 ineqn (6), we get

2= 2 M'x s 2 M'x
(M + M’)gsina (M+M’)gsina

Example 7: A thin circular disc of mass js andradius 4 can turn freely about a thin axis (4, which
is perpendicular to its plane and passes through a point () of its circumference. The axis (4 is compelled
to move in a horizontal plane with angular velocity y» aboutitsend 4.Show that the inclination g to the

- g
vertical of the radius of the disc through () is €08 1 [WJ unless w* < § and then @ is zero.

Solution : Let the plane of the disc be a vertical plane and 47 be vertical line through 4 and (f,
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z H
Figure 1.26

be vertical line through (. When the axis ()4 moves horizontaly round 4, the disc will be raised
in its vertical plane and suppose that @ is the angle which the radius (G makes with the vertical in this
position. Take an element ., at p and draw pjy and pC perpendicular to the verticals through 4
and () respectively. p will describe a circle ofradius ppy with constant angular velocity w about p as

centre. Then the effective force is d mw? PN along pp . The reversed effective force is d m w? PN
along NP, which is equivalent to component forces d m w? NC along NC and d mw?*CP along Cp,by
triangle law of forces. But d m w* NC along N is parallelto (4, so its moment about ()4 vanishes.

Hence taking moments about (4

> dmw*CP . OC = M g(asin0) (. OG =a) ..(1)

But z dm CP . OC = Product of Inertia of the disc with respect to vertical and horizontal
lines through () as axes.
= P.I ofthe disc about parallel lines through
G+ M (asin0) (acosb) [By parallel axes theorem]

> dmCP.0C =0 + Ma*sinfcos6 .(2)
Hence onusing (2) in (1), we get

w’ M a’ sinfcosd = M gasin®
or sin@ (aw’ cosf—g) =0

which gives sinf = 0,1e., 9=0

2 2

or aw’ cos@—g=0:>cost9=[ £ J:>0=cosl[ £ J
aw aw

8 8
if w? < 4 = [WJ > 1= c0s0 > 1 which is not possible, and in that ¢cos@ = o is

only possibility.
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1.9 Summary

In this unit you have studied about M.1. and P.I. of some standard cases, about effective forces,
external forces, D’ Alembert’s Principle, Motion of Centre of Inertia, Motion relative to the centre of
Inertia. Some illustrative examples have also been considered.

1.10 Exercise

1. A rough uniform board, of mass » and length 2 a , rests on a smooth horizontal plane and a man
ofmass js walks on it from one end to the other. Find the distance through which the board

e Ans. - 2ma
moves in this time. CMam

State and prove D’ Alembert’s Principle.
Derive the general equation of motionofa rigid body using D’ Alembert’s Principle.

Derive the equation of translation motion.

A

Arod oflength 2a revolves with uniform angular velocity y about a vertical axis through a

smooth joint at one extremity of the rod so that it describes a cone of semi-vertical angle ¢ , show
that

W = 3g
dacosa

Prove also that the direction of reaction at the hinge makes with the vertical an angle

tan™' (é tana) ,
4

Answer to Self learning Exercise

Self Learning Exercise - |

1. Yes 2)  No. G) —Md

4 Tension in the string, weight ofa body
Self Learning Exercise - 11
I. See 1.13 2) See 1.14

3. Zrn(yé—zj})=2(yF3—ze)
ZM(Z)'C'—xE)=Z (ZF1 —xF3)
2mxy—y¥)=2 (xF - yF)

miNININ
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UNIT -2
Motion About a Fixed Axis

Structure of the unit
2.0 Objective
2.1 Introduction
2.2 Moment of effective forces
2.3 Some Important Results
2.3.1 Kinetic Energy about the axis of rotation
2.3.2 Principle ofangular momentum
2.3.3 Equation of motion of the body for rotational motion
2.4  Principle of conservation of energy
Self Learning Exercise - 1
2.5 The Compound Pendulum
2.6 Simple Equivalent Pendulum
2.7  Centre of Suspension and Centre of Oscillation
2.8 Reactions of the axis of rotation
Self Learning Exercise - 2
2.9  Centre of Percussion
Self Learning Exercise - 3
2.10  Summary
2.11  Exercise
2.0 Objective

This unit provides a general overview of motion about a fixed axis, moment of momentum,
moment of effective forces, Kinetic energy about the axis of rotation. Principle of angular momentum,
Principle of conservation of energy, the compound pendulum, centre of percussion of a rigid body. After

reading this unit you will be able to understand

1.

About moment of momentum of a rigid body about axis of rotation
About moment of effective forces about axis of rotation

About Kinetic Energy about the axis of rotation

About Principle of angular momentum

About Principle of conservation of energy

About compound pendulum

About centre of percussion of a rigid body

NN v A W

Introduction

We often find the rigid bodies rotating about a fixed axis. In this unit we shall consider the case
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where some line in the body is fixed and the body rotates about this line considered as a fixed axis. We
shall derive expressions for moment of momentum, moment of effective forces, kinetic energy about axis
of rotation, equation of motion about the axis of rotation. In the end of the unit we shall study about
compound pendulum and centre of percussion ofa body.

Some Important results recollected :

In polar coordinates (r,0) , whena particle moves along a curve then at any time ¢ when particle

isat P (r,@)

Figure 2.1

() Radial acceleration

= (f - r@z) ,along op (Indirection of ;- increasing)

;= ﬂ 0= d_@
where di° di
(i) Transverse acceleration = (2 PO+ r é) , perpendicular to op (Positive in the sense of 9

increasing) i.e. in the direction of pp .

(ii1) Radial velocity = 7

(iv)  Transverse velocity = /- @

Particular Case :

In case the particle is moving along a circle of radius a, then » = a (Constant) so that
F=0,7#=0
hence radial acceleration = (— a 92) along op
= a6?* along po
and transverse acceleration = ¢ @ along pN

Radial velocity = (), transverse velocity = ¢ 0,along py

2.2 Moment of effective forces

A rigid body is rotating about a fixed axis, to find the moment of the effective forces
about the axis of rotation.

Let us choose ()7 as the axis of rotation and a plane ¢ 4B be fixed in the space and it may be
29
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@

== :::.:::.\'{:::.::::.::B
P —

c T
T

P

O T X

F iz)\
Y Figure 2.2

taken as the plane of reference. Let any other plane cOpE be fixed in the body making an angle g with
the plane co4B i.e. /40D =6

Consider a particle of mass »; ofthebodyat p, and takeaplane COFG through p and which
makes an angle ¢ with the plane CO4B,1e. ZAOF = ¢ Let /ECG = « , then « is the angle between
plane cODE fixed inthe body and plane cOFG - This angle ¢ will remain constant as the body rotates
about (7 . From Fig, we have ¢ = 0 + « . Differentating with respect to ¢

¢=0+0andalso ¢H=0 (1)
i.e. the rate of change of ¢ is same as rate of change of 9.

Let PL =r and point p describes a circle of radius » about 7 as centre. Hence the
acceleration of p along py and perpendicularto pj, are

dg\ | de
R dt _rz,along PL [+ -r¢ isalong [ p]

d’ ¢ d’o '
and 7 di =r W,perpendlcular to pPL

Hence effective forces on particle p ofmass s

a0\
are mr dr ,along pr.

2

and mr W,perpendicularto PL -

2
do
The effective force m7” [E] along py cut gz at [, so its moment about )z is zero,
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d’o
whereas the moment of other effective force 77 pPE about 7 is

0\, d*6
r.\mr 2 =mr 2
dt dt

therefore the moment of all the effective forces on the body

' d’o
2 2
:Z mr dtZ = dtz (Zmr )a
o ‘
because > 1ssame for all the particles of the body

d’ 6
moment of all the effective forces = qr (M.I. of body about ()7 )

d’ o
= di Mk 2, where f is the radius of gyration of

body about 7 .

d*e
dt?

Hence Moment of all the effective forces about 7 (axis ofrotation) = Mk’

2.3 Some Important Results

2.3.1 Kinetic Energy of the body about a fixed axis :

do¢ do
Velocity of the particle of mass m at p (Seefig)is " ;=" "/~

2
1 do
Kinetic energy (K.E.) of particle p of mass m = B m [” E]

VR
&‘&
~ |
~—

(M.I. of the body about fixed axis 07 )

2
[ﬁ] . MK?
dt



2.3.2 Moment of Momentum about the axis of rotation : Principle of angular Momentum

d¢ do
Since the velocity of the particle p ofmass ; (Seefig.)is ” e r FIE ina direction perpendicular

do
to pf. and ; isalong 7 p, therefore the momentum of particle of mass s is /" [’” EJ and mr

Hence moment of momentum of particle of mass »; about ¢z are

do
r. [mr EJ and o . (mi*) = 0 [because m7 intersect 9z in [, ]

so moment of momentum ofthe whole body about (7 is
,dO do 2y do
Z ey T A (Z mr ) = ;; (M.L ofbodyabout 07)

_do >
_dt(Mk)

do
Angular momentum ~ Mk dt

2.3.3 Equation of motion about the axis of rotation :

Ifarigid body rotation about a fixed axis then the impressed forces are the external forces and
reaction on the axis of rotation. To eliminate the reactions, we take moments about the axis of rotation. By
D’ Alembert’s principle the moment of effective forces is equal to the moment of the impressed forces,
about any line. Therefore if 7, be the moment of impressed forces about the axis of rotation then by the
above principle we have

zdzé?:

Mk di’ L (This is called Principle of angular momentum)

this equation is the differential equation of the motion ofthe body.

On integrating above equation we will get g and @ interms of 7 . The constant ofintegrations are
evaluated by the known conditions on @ and g with reference to reference plane fixed in space through
oz -

Ifsomehow 7 ,the moment of external forces (called torque) vanishes, then integration provides

M k*6 (angular momentum) as constant. This shows that if moment of external force vanish about an

axis, then angular momentum of the body is conserved about that axis, this is known as Principle of
conservation of angular momentum.

Remark :

In the case of impulsive forces if w,, w, be the angular velocities of the body just before and just

after the action of impulses then the equation of motionis M k* (w, —w,) = L. Where L is the moment

ofimpulses.
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2.4 Principle of Conservation of Energy

In general, the Principle of Conservation of Energy is applicable to any system of particles forming
a dynamical system under motion due to conservative forces. In our present context, we use it when arigid
body is rotating about a fixed axis.

Kinetic Energy + Potential Energy = Constant
1 2 N2
or 5 M k” 6" +V = constant.

where J/ is the potential energy ofthe system.
Another Form :

Since change in potential energy is equal to the work done by the conservative forces, so change
in K.E. =work done by conservative forces. This equation is used to solve the problems.

Self Learning Exercise - 1

1. In polar coordinates (r, 0), when the particle is moving along a circle ofradius 4 , then give
expressions for radial and transverse accelerations.

2. When rigid body is rotating about a fixed axis, then write expression for moment of effective force.

3. Write expression for moment of momentum about axis rotation.

Hlustrative Examples :

Example 2.1 : Two unequal masses )7 and jz' rest ontwo rough planes inclined at angles @ and f to

the horizon, they are connected by a fine string passing over a small pulley of mass »; and radius 4 , which
is placed at the common vertex of two planes, show that the acceleration of either mass is

g [M (sina— pcosa) — M' (sin,B+/,t'cos,B)]] + [M+ M'+m k_j}
a

where ¢ and u' are the coefficients of friction of two planes,  is the radius of gyration of the
pulley about its axis and mass )y moves downwards.

Solution : Let PQ be horizontal plane and pC and QC are two rough planes inclined at angles ¢ and
S to PQ,respectively.

K
0
o’

M gcosf ‘1'
M‘gﬂ

Figure 2.3

33



Let mass pz descends along plane Cp adistance (say) x so that the distance moved by mass
M onplane OC (up the plane) is also x, intime ¢ (say). If during this time the pulley with centre ¢ has

rotated through an angle @ about its axis, then x = a 6 (1)

then differentiating (1) with respect to ¢

¥x=ab (2
and  ¥=q0 ..(3)
Then the equation of motion of pulley (M k*6 = L) is

MkEO=T.a-T.a .(4)

where ¢ is radius of pulleyand 7 and 7 are tensions inthe part of strings G¢ and G'C (T > T")

p
or <MHZ;:T—T ..(5)

Also equations of motion for masses js and ps' are
Mi=Mgsna-uR-T
or Mi=Mgsina —u.Mgcosa —T (" R=Mgcosa) ..(6)
and M'i=—-Mgsmf—-uR+T
or M'i=- M'gsinf— u'M'gcosp+ T (wR'=M'gcosf) ..(7)

Adding equations (5), (6) and (7), we get

2
m§¢+AH+Aﬂx=U—rw{Mgma—yMgmw—T)

+ (- M'gsinfp— u'M'gcosp + T')

2
o[ b= e[ i cosa) < o cosp)]

g|[M (sina — p cosar) — M' (sin B + ' cos )|

X =
kZ

or [sz-f‘M')
a

which is the acceleration of either mass.

Example 2.2 : A uniformrod, of mass y; and length 2 a , can turn freely about one end which is fixed, it

is started with angular velocty y from the position in which it hangs vertically, find its angular velocity at
any instant.

If w be such that the angular velocity vanishes when @ = 7, then prove that the time of
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describing an angle @ is

a T 0
2 || — | log tan (— + —)
3g 4 4
Solution :Let (4 be arod oflength 2a and mass » (Seefig.) and  be its Centre of Inertia

.. OG = a ;the vertical line (7.7 is the line fixed in the space and ()4 is the line fixed in the body. Here
the axis of rotation is the horizontal line through ().

Figure 2.4

Initially the rod is in vertical position (t =0,0=0,0= w) and let after time ¢, it makes an angle

@ with it. The external forces acting on the body are its weight m g and reactionat .In AOLG
LG =a sin@, OL = a cosO

Now taking moment about (), we have (byeqn M k260 = L)

MKk*0=-mgasin@

or gaz 0=-gasiné ( k* = % a’ for the rod)
. 3g .
or 0 =— a0 sin@ .. (1)
2d0

Multiplying both sides by di and integrating, we get

[200a: = —j3—gsin9 « 249 4iic
4a
A2 3g
or 0’ = - == (- cost) +C, ..(2)

2a
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do
Initially, when® = 0, ", = = W then from (2)

w2=3—g+C1:>C1=[w2—3—gJ’

2a 2a
> =3—gcos6’+w2 _3g
2a 2a
9 = w - 28 (1 - cos0)
or = ..(3)

2a

this gives the angular velocity ofrod at anytime ¢ . If 1 be suchthat § = 0 when = 7, then

fromeqn (3)
0o=w —3—g(l—cos7r):0=w2 _3g
2a a
3
w= |22 (4
a

this is the least value of 1, for the rod in its lowest position so it just make complelte revolutions.

Now using this value of 1, in(3), we get

92:3—g—3—g(l—cos0)=3—g(l+cos0)=3—g.2cos2g

a 2a 2a 2a
o= 2% cos? (5
a 2

0 t
Jd_é’gzj (3_8),6“
0 cos— 0 a
2
0 3
or 210gtan(%+2)= 7g.(t)

or =2 i.logtan(zvtg)
3g 4 4)

Example 2.3: A uniformrod 43 is freely movable on a rough inclined plane whose inclination to the
horizon is ; and whose coefficient of frictionis 1 , about a smooth pin fixed through the end 4 ; the rod

is held in the horizontal position in the plane and allowed to fall from this position. If g be the angle
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through which it falls from rest, show that

sin @

=l coti

Solution : Let POTS be arough inclined plane whose inclination to the horizonis ;. Let 40 bea

0

Figure 2.5
rod of mass ; and length 2a , G beitsmiddle point, so 4G =4 A© is the initial position of rod
(when ¢ =0,0=0, =0),it turnabout a pin (a fixed axis) at 4 throughanangle @ intime ¢. 4B isits
position after lime ¢ ,s0 £ OAB = 6.

The external forces are m g acting vertically down ward through G, reaction R perpendicular
torod 4B,andreactionat 4.

The component of m g along the plane is m g sini acting through G and m g cosi perpendicular
to the plane (See Fig. 2.5 (a) )

mg cosi

mg

Figure 2.5 (a)
.. R=mgcosi ..(1)
Force offriction = uR = . mg cos i

In order to avoid reaction at 4, we take moment about axis (pin) through
A (by equation M k*0 = L)
MKk0=mgsini(AE)— pu R .(AG)
or M K0 = mgsini(acos6) — u (mgcosi) . a
or k%6 = gasinicos® — p gacosi .(2)
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Multiplying both sides by 2 § and integrating, we get

k*0* =2agsinising — 2 ua gcosi® +C, ..(3)
where C, , is constant of integration
initially 6=0,0=0,¢=0,thenfrom(3) C, =0

k*0* =2agsinisin@ — 2 ya gcosi . O (4

Since the rod turns through an angle g i.e. it comes to rest after falling an angle @ and hence
0 =0, then from (4)

0=2agsinisin@ — 2 pagcosif

sin @

or = ucoti

Example 2.4: The door ofa railway carriage stands open at right angles to the length ofthe train when
the latter starts to move with an acceleration f"; the door being supposed to be smoothly hinged to the

carriage and to be uniform and of breadth 2 a , show that its angular velocity, when it turned through an

31 .
angle @ is {E sin & }

Solution : Let 4p be the axis of rotation ofthe door 4BEF ofmass js (say). When the train

/Z

N
ED

B

A
Y/F/ngz‘éf

Figure 2.6

moves with an acceleration f in direction A4 x (say), then every element ofthe door 4pgF will
have the same acceleration f* parallel to the rails (i.e. parallelto A4 x ). Let the door has turned through an
angle @ about 4p intime ¢, then component of f* perpendicular to the door in its position at time ¢ will

be 1 cos@ anshown in the fig.

Consider an elementary strip PODC ofwith d x at distance x from 4 (4 P=x)
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Solution :

M
then mass of'strip = 24 dx

Now, taking moment about 4B (by eqn M k>0 = L)

M4

2 2a
a 9=J£dx.fcos0.x
3 ) 2a

2a
M
= chos@ ‘([xdx
= Ma f cosf

.3
O=— fcosO
4a /
Multiplying bothsides by 2 § and integrating, we get

[208at =j% cosd (20) dt +

. 3 :
or 6’2=£x2sm6’+C1

but initially § = 0, § = 0

C =0

hence

0 = ';—f sinf = 0 = {z—f sin@}
a a

displaced, show that the velocity of chain, when the end reaches the plate is (

39

(1)

()

Example 2.5 : A uniform vertical circular plate, of radius 4 ; is capable of revolving about a smooth
horizontal axis through its centre; ¢ rough perfectly flexible chain, whose mass is equal to that of the plate
and whose length is equal to its circumference, hangs over its rim in equilibrium, if one end be slightly

Let  be the mass of chain or pulleyand let x be the distance moved by the ends 4 and



D
o 0
¢ ) © P DA
L) a
(n’a j 2 2
7+X na
A 2
v
B A
B .
Figure 2.7

B intime ¢, during which pulley has turned through an angle @, so by
(arc) = (radius) X (angle)

x=a0 }
= ab (D)
S
K.E. ofthe chain = 5 mx ..(2)
1 > 1
K.E. ofpulley = — mk 0 = Sm a? : 2—2 =2 mx’ ..(3)
aZ
[ k* =7 for a circular plateJ
l .2 l .2 3 .2
total K.E. = — mxX™ + - mx™ =2 m¥ ..(4)

Now, we shall find the work done by the chain

work done = m g . (distance moved by C. . of chain)

Let us find the depth of the ¢ . ofthe chain below PQ consisting ofthree parts p4, PO and
OB, where PQ isincontact with pulley.

If p be the weight per unit length of chain, then
1
weight of part of chain P4 = B Ta—-x|p

wa

1
then depth ofits .. below PO = B3 (7 - x) , similarly

Ta
weight of part OB ofchain = (7 + x) p
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1l (ra
then depth ofits .. below PO = S5t

Also, weight of semi circular chain PQ (which s in contact with pulley) = (7 a) p, and height of

2a
its centre of gravity above PO = o

me

ST

Then [by using X = ] depth of ¢ G. of whole chain below PQ (say)

(ﬂa ) l(ﬂa ) (ﬂa ) 1( ) ( 2a)
S — | = —-x|+|—+x|p.=|—+x|+map.|-—
= 2 22 2 2\ 2 T
(ﬂ_x) (”) + za
5 P17, p p
1 | 7%a® .
X = +x” = 2a
or X 27ra[4 ..(5)

Putting » = (), the depth of ¢ G. below PQ in initial position is

X, = b e - 24’
(Say) M1=5 174 ..(6)
so distance moved by (.. ofchain (in down ward direction)

1,
x (7

=(x _xl): 2ra

Therefore the work doen by chain

2
X

= AXx =X )=mg.
mg. (¥ - %)=mg. — (8)
Hence the energy equation gives
xZ
.2
n mx =mg. > ra {Fromeqn (4) and (8)}
2gx’

X% =

or 3ra ..(9)

The above relation gives the velocity of the chain after the end has moved a distance x . The end

Ta Ta
A willreachthe plate if X = B and hence putting X = By in eqn (9), the velocity of chain is given by
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2
o _ 2g (zg)::ﬂag .. |[mag

X° = . o
3ra 2 6 6

Example 2.6 : Two unequal masses m, and m, (m, > m,) are suspanded by a light string passing over
a circular pulley of mass )z and radius 4 . There is no slipping and the friction of the axis may be ne-

glected. If 1 be the acceleration, show that this is constant; and if . be the radius of gyration of the pulley
about the axis, show that

2 ﬂg—fﬁnﬁ—(g+f)né%§4f)

Calculate the pressure on the axle.

Solution : Let x be distance moved downwards by the mass m, and same distance x moved upward by

the mass m, , and let @ be the angle through which the radius of pulley ¢p has turned in time ¢ .

a/1 D\x

A

" v
mg
Bl
v Figure 2.8
mg

Then x = a 6 (since there is no slipping). On differentiating with respect to ¢ .
xza&x=a939=g (1)

Now equation of motion of the masses m, and m, are
mx=mg-—1T -.(2)
and miX=T,-mg ..(3)

where 7, and 7, are tensions inthe parts of strings OB and p/4 . Also the equation of motion of
pulley is (taking moment about the axle through ¢ )

Mk6=Ta-Ta (4
or Mk2:—2 =1 -1 {fromeqn (1)} ..(3)

Now adding eqns (2), (3) and (5), we get
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%x+%x+AM%%:omg—ﬂp{g—mﬁg+@—g)

K L
or [ml+m2+Ma—2Jx=(ml—m2)g

or ¥ = acceleration = f = (m, = m,) g ; , which is constant. ...(6)
[ml +m, + Mkzj
a
Now fromeqn (6)
kZ
f[ml+m2+Ma—2J=mlg—ng
M

o K (M) m(e- )= mle )

aZ

2

or k™= M—f {ml(g_f)_mz (g+f)} which is the required resnit. (7

Lastly to find pressure on the axle from eqn (2) and (3) (using ¥ = f), we get
mf=mg-T=T=m/(g-f)
mf=T-mg=T=m(f+g)

addingthese, T+ T, = m; g —m, f +m, f +m, g

or (T+ %)= (m+m)g+(my—m)f

which is the pressure on the axle.

2.5 The Compound Pendulum

First we shall define simple pendulum and shall show that the period of oscillation in a simple
pendulum depends only on the length of the string and not upon the quantity of mass attached.

Ifa particle is attached to one end of a light inextensible string of length ; and other end of which
is fixed and is allowed to oscillate in a vertical plane through a small angle, such a system is called simple
pendulum.

Let p be the position of the particle of mass s after time ; which is attached by light string of
length  (OA=1).Let s belengthofarcie.arc 4B =g

sothat s=10, ~5=10,5=10 (1)
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Figure 2.9

Resolving the forces along tangent at g, we get

m d’s =—mgsin6
di*
d’o .
or  ml——5=—mgsin0 {from (1)}
d’o g ‘ '
or e == N 0 (- when @ is small then sinf = 0) ..(2)

this equation shows that the motion is S.H.M. and the period of oscillation is given by,

27, \ﬁ
[
l
I
-, time period = 27 \/; ..(3)

Fromeqn (3) it is clear that the period of oscillation in simple pendulum depends only on the length
of the string and not upon the quantity of the mass attached.

Definition : A rigid body of any shape or size which is free to turn about a fixed horizontal axis, the
external forces being the gravity and the reaction of the fixed axis is called a compound pendulum.

kZ

To prove that the time of complete oscillation of a compound pendulum is 27 gh’

where  is the radius of gyration of the body about a fixed axis and j is distance of the centre
of inertia of the body from the fixed axis.
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Figure 2.10
Z
Let 70N be the fixed horizontal axis of rotation and the vertical plane through 7, onthe plane

of reference and the plane through the axis and centre of gravity G ofthe rigid body on the plane fixed in
the body. Let vertical line through 0 is 07, OG = & , fig. 2.9 represents a section perpendicular to the

axis of rotation through (3, cutting the axis of rotationat (). Let /ZOG = @, where @ is the angle which
a plane fixed in body makes with a fixed plane in space through 7.0.

The external forces on the body are its weight M g acting vertically through G and the reaction
ofthe axis at (). In order to avoid the reaction at (), we take moments about the horizontal axis through
0. The moment of M g about O is - M g (hsin®), which is negative because it has a tendency to
decrease angle 9 and moment of the reaction at () is zero about (). Then from the equation of motion

(MK 6=1L)

L.e. moment of effective forces about axis = moment of external forces

2
MEk? Zt? =— Mghsinf
d’o . gh . 0
or a2k Sm (1)

If @ is small, then replacing sin @ by @ ineqn (1), we get

gh
dﬁ:_ZTHZ_“H (u=;{) (2
which show that the motion is S.H.M.

2
Hence time of complete oscillation 7" = 2z =2 L ..(3)

Ju gh

2.6 Simple Equivalent Pendulum

Definition :- A simple pendulum having the same periodic time as that of a compound pendulum
is called simple equivalent pendulum.

[
The time of a complete oscillation of a simple pendulum of length 7 is 27 \/; . The time ofa
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2

complete oscillation ofa compound pendulum s 27 gh”

Ifthe simple pendulum is equivalent to compound pendulum, then

[ k? k>
27[\/;=27r,/a == (1)

k 2
Therefore, in the case of' a compound pendulum, the length [7) is called the length of a simple

equilvalent pendulum.

2.7 Centre of Suspension and Centre of Oscillation

Centre of Suspension : The point () (fig. 2.10) where the axis of rotation cuts the plane perpen-
dicular to it through centre of gravity G ofthe body, is called the centre of suspension.

Pid
g
-
-
"3
-
-
L
-
-
.
-
-
"3
-
-

-

@

[=K—

Q<€

01
Figure 2.11

kZ
Centre of Oscillation : Produce OG to apoint O, suchthat OO, = s = length of simple

equivalent pendulum, then this point O, is called the centre of oscillation ofthe body.

Thus we observe that if the whole mass of the body were collected at centre of oscillation O, and

2
hanged from the centre of suspension () by a string of length R the time of oscillation ofthe compound

pendulum will be same as the time of oscillation of the simple equivalent pendulum

We know that in the case ofa simple pendulum the period of oscillation depends only on the length
of the string and not on the mass attached.

Thus in the case of a simple equivalent pendulum if besides the mass of the body an additional
mass is attached at the centre of oscillation the period of oscillation remains same as prior to attaching of
the additional mass.
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To show that the centre of suspension and centre of oscillation are convertible
(or interchangeable)

Let Az be massofbodyand () the centre of suspension, O, be centre of oscillation. Let G be

z
\,,‘O— """ 0
AT A
2 h G
K
I=K—
h N
v
4
@) 0,
Figure 2.12
Centre ofInertia of body.
kZ
OG=h> 001=l=7 (D)

where £ is radius of gyration of body about axis (OZ) through . Let g be the radius of
gyration of the body about axis (GN ) through G parallel to axis of rotation, then by parallel axis theorem

Mk*=MK*+ M .(OG)’
[ M.I. about any axis through ¢ = (M.I. about parallel axis G through G) + M (OG)2 ]]
K =K* +(0G) (2

> K*+(0G)
now l=001=k—=—( )
h oG

o 00.0G=K*+ (0G)
or  K’=00,0G - (0G)
= 0G (00, - 0G) = 0G . GO,

or K> =0G .GO, ..(3)

Now we shall show that if O, be the centre of suspension then the body will swing about point
as its centre of oscillation.

Now, Suppose that when O, is the centre of suspension, then O, is the centre of oscillation (fig.
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2.12). Then arguing as above, we have
K*=0,G.GO,
or K'=GO,.GO, .(4)

Comparing equations (3) and (4), we observe that the point O, is the same as () i.e. the centre of

oscillation willbe (), when the centre of suspensionis O, .

Therefore, both the centre of suspension and oscillation are convertible.

Minimum time of oscillation of a compound pendulum : To find the minimum time of
oscillation of compound pendulum, minimum length of simple equivalent pendulum. Hence
deduce that the length of simple equivalent pendulum is infinite then there by the time of
oscillation is also infinite.

Let 7 be time period of a compound pendulum, then
2
T=2rn k— (1)
g h coe

2
where j2 _ g2 452, if 7 be the length of simple equivalent pendulum, then /= o or

2 2
I Sl Ry e
h
kZ
[=h+— .2
or I (2)

where , = 0G and g is the radius of gyration about an axis through G parallel to axis of
rotation.

Then 7 will be minimum if ; is minimum

kK> K +h k?
or 7 will be minimum if l=7 = ; =h+ 7 is minimum, for that
i _ 0=1 K =0=>h=K
dn 0= gm0 )

d*l 2K? d’l
now dh2= 0+7 andﬁ>0,forh:K

so 7 isminimum for 4 = K

2 2
h+K— =K+£=2K
h )., K

the mimimum value of = [

Minimum valueof j = 2 g - (4)
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then minimum value of'time period of compound pendulum, from (1) is

IZK
=2 —
n g ..(5)

Therefore the period is minimum when the distance between the axis of suspension and the centre

of gravity is equal to the radius of gyration (K ) about a parallel axis through the centre of gravity.

KZ
Again from eqn (2), we observe that if =0 or ;= , then l=0+6=oo and

2

K
[ =o00+——=00+0 =, then inboth the cases, ; the length of simple equivalent pendulum s infinite and
o0

consequently the time of oscillation 7 is also infinite.

Remark : In the above, } = () corresponds to the position when the axis of rotation passes through the
centre of gravityand } — o corresponds to the position when axis of rotation is at an infinite distance from
the C.G., then ; being infinite, then time of oscillation 7" is infinite.

Self Learning Exercise - 2

1. Write formula for time period of simple pendulum of length ;.

2. Define compound pendulum.

3. Write formula for time of complete oscillation of compound pendulum.
4. Define simple equivalent pendulum.

Hlustrative Examples :

Example 2.7 : Find the length of simple equivalnet pendulum in the following cases, the axis horizontal :

)] Circular disc; axis a tangent to it;
(i) Hemispehere; axis a diameter of the base;
(i) Cube of'side 2 a ; axis being diagonal of one face.

Solution : (i) Inthe fig. 2.13 we have a circular disc of mass js and radius OG = ¢, 97 1stangent to it,
which is axis. Let ; be length of simple equivalent pendulum, then

[=—

p 5 (1)

Figure 2.13
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where },=0G =4
and f is radius of gyration about axis ()7 . Then by parallel axis theorem,

(M.L. about 0z )= (M.L. about parallel axis 4GB through C.G.) + mass (OG)2

Mk =M K*+ M (a)’

2
or Mk2=M.% + Ma

2
5
k2=a—+a2 = kr==4° .2
or 1 1 (2)

and & = OG = a ,thenfromeqn (1)

5 5

= a

=4 = (2 a) , which is the length of simple equivalent pendulum.
a 4

(i) In the fig. 2.14, we have shown a hemisphere of mass 37 andradius O4 = a (Say)if ¢

3
be C.G. ofhemisphere then OG = 3% (1)

Figure 2.14

BOA is diameter of base, which is axis here. Let ; be length of simple equivalent pendulum then

kZ

! (2
h 2)
3a ) . .
where /1 = OG = ) ,and j be radius of gyration about axis o x .
_(2 2 _ 2
M.I. about BOA = (g Ma ) =Mk
2
k* == a?
5 ..(3)
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@“2) _(16
()

which is length of simple equivalent pendulum.

fromeqn(2), ; =

(i) In the fig. 2.15, we have shown a cube of side 2a andmass p7. G beits C.G. Let OD
be one diagonal of face 94 pR , which is axis here.

C F
then h = LG =a ..(1)

E

N G H

~~~~~~~ N
2ua| Ok J i: h y
L™,
v .
B D
Figure 2.15

2

2
Here MLI. about the axis through (; parallel to the sides = 3 Ma

Now, M.I. about axis (Gx , which is parallel to the diagonal op offace 04 pB , which s inclined
at 45° to side 94 ofcube.

) 2
:(Asinz45+Bcos245—2Fs1n45cos45)=%Maz(l+l -0=>Ma* _(2)
3 2 2 3

[ "> MLL. of a body about a line through C.G. inclined at an angle g to x-axis is

= Acos’ 0+ Bsin’ 0 —2 FsinOcosb

2
here 4= M.L about x-axis = =~ M a’

3
.2 >
B = M.IL about y-axis = 3 Ma

F=PL=0 |

- M.1. about 9op = (M.I. about Gx )+ M. of ps at G about Op

= % Ma* + M(GL)' = % Ma* + Mda*
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Mk* = g Ma*> = k*= ..(3)

W | W
{Q

and =g )

then length of simple equivalnet pendulum

Example 2.8 : A solid homogeneous cone, ofheight j and vertical angle 2 «, oscillates about a horizon-
h
tal axis through its centre. Show that the length ofthe simple equivalent pendulum is 5 (4 + tan’ 06) .

Solution : Let 7 be mass of the cone of vertical angle 2 o and height j, , radius ofbase be -, then

r
from AODB, tana = n

= r=htana (1)
Figure 2.16

Let p be mass per unit volume then

M = mass of cone = volume x p

L
or M = g (7[1" h) X p
T 2, 2

or M = (g h”tan” « p) (2)

The solid cone oscillates about horizontal axis ()7, through the vertex (). Now we shall find ML.1.
of cone about (7 . Consider a circular disc at a distance x from () whose width be 6 x and radius
CQO=xtana,
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Then mass of circular disc =Area x width x p

=7 (xtanoz)2 X8X X p ..(3)

Using value of p from(2) in (3), we get

3IM 3IM
mass of circular disc = (7”2 tan” ot 5x) X Pt o = ( PE x’ 5x)

Now M.L of circular disc about diameter PCQ ofdisc

B (mass) (radiuss‘)2 _3M 25 x’tan’ o
- 4 s 4

Hence MLI. of circular disc about a parallel axis through ¢ (i.e. about (7, ), where OC = x, is

2 2
= 3;/[ x> ox [x te;n aj + (3;4 x25x) (OC)2

_ 3IM 25x [xztanza +x2j

h’ 4
3M (tan’a+4
=3 [ Z Jx45x (4

Therefore M.1. of the cone about )/, is

2 h
_ 3h1§/1 [tan :{+4J J- Sy

o

32—%4 (‘[an2 o+ 4) h?

M [i h? (tan2 o +4)} = Mk*
20
k* = 3 h? (‘[an2 o+ 4) (5)
20

_ 3h . .
Also j, = distance of ¢, of cone from O = 0G = — - Hence length of simple equivalent

k2
pendulum = [7}

3 2 2
— h°(tan" a +4
l=20 ( )=%(tan2a+4)

-
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Example 2.9 : A bent lever, whose arms are of lengths 4 and p, the angle between them being ¢ ,
makes small oscillations in its own plane about the fulcrum; prove that the length of the corresponding
simple pendulumis

2 a+b’

3 \/a4 +2a*b*cosa +b*

Solution : Let 40B bethelever bent at (), and is hanging about horizontal axis through ¢, to

>
<

N

N Yy pe—
M

Figure 2.17

swing as a componnd pendulum.

04 and OB are the arms ofthe lever of length 4 and p, let G, and G, be centres of gravity

a

of arms g4 and QB respectively, then coordinates of G, and G, are (—

, 0
> )and

b b .
OL = 5 cosa, LG = 5 SN | referred to 04 and Oy asaxes. Let p be the weight per unit length

ofarms. Let (X, y) be the coordinates of C.G., G ofthe lever, thus, we have

a b
ap.—+bp.5cosa

x=—2
ap+bp
. a’> +b*cosa
or 2 (a +b) ...(1)
ap.0+bp bsina
. o« 2
and  y = 2 _ b sina - 2)
ap+bp 2(a+b)

Now, , = distance of .. oflever from the fulcrum
h=1[()?2+)_/2) :ﬁ\/(a4+b4+2a2bzcosa) (3)
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Againif } be the radius of gyration of the lever about the axis of rotation through ), then

4(aY 4(bY
ibp kK =ap. 2[4 wpp. 22
(ap+bp) ap 3(2) p 3(2)

[ .~ MLL. of a rod of mass ;; and length 2a about an axis | to rod and through an end

4

=— Ma’ ]]
3

L _L(@+h) )
or 3 (a +b) ..(4)

2

length of simple equivalent pendulum / = 7

1 a’ +b’
- 3 a+b 2 a+b’
or 1 B

- \/a4 b 424 b cosa 3 \/a4 +b*+2a’ b’ cosa
2 (a+b)

Example 2.10: A uniform triangular lamina 4BC can oscillate in its own plane about an axis

perpendicular to the plane of the lamina through the point 4. Prove that the length of the simple
equivalent pendulum is

3(1)2 +cz) ~a’
4 \/{2(172 +cz) - az}

Solution : Let 4B be a triangular lamina of mass z; , this lamina oscillates in its own plane about a

line Z4 Z' which is perpendicular to the plane of the lamina. Side pC =4, AB=c¢>

B D H C
Figure 2.18

AC =b -Let 4p bemedian. D, E, F are midpoints of sides pC, 4C and 4B . Replace the mass of

n
3
55

the triangle by three equal particles each of mass - placed at mid points p, g and f.



Then AD?> = AB*>+BD*-2AB .BDcosB (In A 4BD)

2 2 2 2
AD2=02+(£ _y . afcHa b
2 2 2ac

2b% +2c —a?
or AD2=[—
4
AD—1 207 +2c% -a?
or =5 +2c¢" —a (1)
b

Also Distanceof g from 4 =4 E = 5

c
Distance of f from 4 =F A = >

mk? = M.L oftriangle 4BC about 47'

m 2bz+2cz—az+b2 c*
4 4 4

- % ﬂ;(AD)Z +(4E)’ +(AF)2JI =3

) m ) s ) 3b* +3c¢ —d?
or  mk —E(Sb +3c-d*) =k _[T -(2)
Also j = distance of (. fromaxis ofrotation 47'
3 2 21 2 I 2 2 2
h = AG—E(AD)—E.E\/(Zb +2c¢* —a ) —5\/(2b +2¢° —a ) .(3)

Now, length ofthe simple equivalent pendulum

3b* +3¢* —d?
k_2 12 3 30 +3c¢% —d?

h (:l)) m) 4 [m]l [fromeqn(2) & (3)]

3 (b2 +cz) —a’

" 4 \/{2 (b2 +cz) - az}

or
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Example 2.11: A simple circular pendulum is formed ofa mass s suspended from a fixed point by a
weightless wire of length ;; ifa mass z;, very small compared with p7, be knotted on to the wire at a
distance a from the point of suspension, show that the time of'a small vibration of the pendulum is approxi-

m a a
mately diminished by 5+ 7 1- 7 | oftself.

Solution : Let 7, be time of oscillation of simple circular pendulumofmass s fixed by a weightless wire

/
oflength ;,then I} = 27 . (1)

Figure 2.19

Now, let the mass 7; be knotted at p such that 9p = ; onthe wire. Let j be radius of gyration
about axis of rotation through () (i.e. about (97 ) and let j be distance of .. (oftwo masses p; and
M) from O, then

M+ ma . mx
h = Mam [by formula x = Z - ] (2

and(m + M) k> =ma’ + M I’

[ (M.I. about 7 ) =M.I. ofmass ;; about ()7 + M.1. of mass js about )7 |

B MIP* +ma?

kZ
Y -3

If 7, be time of oscillation for the compound pendulum consisting of masses »; and A7, then

T =9 Kk ma*+ M1
SRR P g(ma + M) [eqn(2)and 3)] .4

Hence, loss in the time period is given by

T,

T—T=T1——2J 5

5 1[ T -(5)
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ma’ &
! MP|1+
E_{ma2+Mlz}A_ [ lzj
now T [ Ml
L UHma = M) 1M1[1+’”")

- — + - + ...
2 M1l 2MPP  4m*lP

|

L_(y_Lma ma
T, 2 Ml 2MP
(since ﬂis small, so neglecting higher powers of ﬂ)
W ) g g higher p iY;
T, 1 ma 1 ma’ m a a
l-—=|=|= - = == === (6)
T 2 Ml 2 MI 2M | [
using (6) in eqn (5)
m a a
T1—7}={W-7(1—7)}T1 .(7)

Hence time period of pendulum is approximately diminished by

[

<

m a a
_7 1 = — 1 ofitself.

Remark : When the particle of mass ;; in attached at point 4 ie. a =1, then from eqn (7),
I, — T, = 0 = T, = T, then the time of oscillation remains unchanged. In other words the time of
oscillation of a simple pendulum depends on the length ofthe string and not on the mass attached.

Example 2.12: A sphere of radius 4, is suspended by a fine wire from a fixed point at a distance ; from
its centre, show that the time of a small oscillation is given by
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2 2
2r —51 *2a {1+lSiH2 ﬁ}
S5gl 4 2

where o represents the amplitdue of the vibration.

Solution : Let (G be the centre of the sphere of mass j7 and the axis ofrotationbe ()7 passing through
O- 0C =1 (given) (1)

Let j beradius of gyration about axis of rotation (OZ ) through .

Figure 2.20 \qu

2M
Mk? = — a’+ M (by parallel axis theoram)

or k* = (% a’ + 12) -(2)
Also, given amplitade ¢ ,i.e. § = 0, when 0 = o ..(3)
Now, the equation of motion (M k*6 = L) gives

MK 6 =— Mglsin® (by taking moment about the horizontal axis through ()

Multiplying bothsides by 2 § and integrating, we get

|28 @ a’+ 12) 0dt=[-2glsin00d1+C,

2 :
or (g a’+ 12) 0> =2glcosf+C, (@)

to find value of C,, using g = ¢, when 6 =«
O=2glcosa+ C, = C, =-2glcosa ..(3)
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then from (4), we have

2a*+51°
5

J@z =2glcosh — 2glcosa

) 2gl x5 10g!/ Yy
or 0= \/m (cos@—cosa) = \/m . (cos@—cosa)

: b

or 9=ﬁ: 120—glz 1—2sinzg—(l—2sinzg)
dt 2a” +5! 2 2

49 _ |_10gl xﬁ(sinzg—sinzg &

@ \24*+5° 2 2
49 -2 |08y
or \/sinza—sinzg 2am+31
2

2

Integrating for g, from g =() to 9 = ¢ andlet time ¢ be y = to # =¢,

J‘a dg :J‘ll \/5 lz()gl _ d _J‘ \/—\/— Adt
' \/sinza—sinzg 2am+51
2 2
where 1 :%
2a”+51

.0 o .
For integration, put SIHE = SIHE siny

1 0 a
—cos—d0O =sin— cosy d
2 "% p VA

For limit,when 6 =0 = w =0
. T
and when@ = o , then siny =1 :WZE

then from eqn (6), we get

z 1 2sin% .cosydy

2 2 _ f
J x =22(1),
0

51n51/l—sm v cosg
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T

F v =i(t1)

0

or \/1 — sin’ % sin®

or tl =

7 LA ., %
IO (l—sm Esm l//) dy

z 1 a
2 1+ =sin® =sinw +....|d
(1 g sint Gsinty o fiw

> =

z 1 .,a 1=
|:(l//)g -|-ES1I12 555:|:

=" l(l+lsinzg
or T2 4 2

Hence the time of complete oscillation = 4 ¢,

2 2
or time of oscillation = 2 7 @ (1 + 1 sin2 ﬁ)
Sg

Example 2.13: Find the time of oscillation of a compound pendulum consisting of a rod of mass ,; and
length 4 carrying at one and a sphere of mass m, and diameter 2p , the other end of the rod being fixed.

Solution : Let s, be massofrod 04 oflength a (= OA4) and m, be mass of sphere with centre at G
and radius — p . The end ) oftherod is fixed and axis of rotation (OZ ) passes through ().

Z<--._0

ATl A

a
r

Figure 2.21
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We know that M.I. of rod oflength 2a about an axis through its extremity

- % ma® = % (2 a)2 = % (length of rod)2

and hence M.I. ofarod g4 of length 4 about an axis (OZ) through its extremity

2
ma

3 (1)

1s

2
Again ML1. of a sphere of mass m, about an axis through its centre is (g m bz) and hence its

2
M.L about a parallel axis (OZ) through (), (Where OG = ¢ + b ), is m, [g b* + (a +b)2} (2

If j be the radius of gyration about an axis through ¢ (i.e. about (7 ), then
2

(m + ml) k> =m % + m, [% b + (a + b)z} [from (1) and (2)]

2

ma—+m1 [2172 + (a +b)2}
3 5

K2 = .(3)
m+ m,
Again let 3, be the distance of . of the combined body from (), then
m % +m, (a +b)
h = ..(4)

m+ m

[fromeqn(3) and (4)] ...(5)

2
T=2rx k—
gh
a2
m?+m1 {b2+(a+b)}
or T=2rn
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Example 2.14: A rectangular plate swings in a vertical plane about one of'its corners. Ifits period is one
second, find the length of the diagonal.

Solution :Considering a rectangular plate 4BCp ofmass ; and having length of sides 2a, 25 . Let G

be C.G. ofplate
Z
A\

2a

B \

D
/2b/
C

Figure 2.22

Let AG = h = 1[(,12 + b2 (1)

Now, let plate be suspended from corner 4 and allowed to swing about a horizontal axis 47, so
that plane of plate remains vertical. Let j be the radius of gyration ofthe plate about axis 47 , through 4.

a’ + b?

J +m (4G)

Then mk® =m [

o mk = Sm(@ 1 B) k= (a5 Q)

4
or k= 3 n (3)

length of simple equivalent pendulum

2 2 _
K 3 4, (4
h AG  h 3

2
Therefore time period 7' = 2 & }k—h =1 (given)
g
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4r* — =1
or ah
2
47z2><iﬁ=1 ['.'k2=4h }
g 3
_ 3¢
= h=t, (5)
3g 3g
; =AC=24AG=2h=2 =
Now length of diagonal [1 67Z2J T

Example 2.15: An ellipse of axes ¢ and p and 4 circle of radius p are cut from the same sheet of thin
uniform metal and are superposed and fixed together with their centres coincident. The figure is free to
move inits own vertical plane about one end of the major axis; show that the length ofthe equivalent simple
pendulumis

54> —ab + 2b*
4a

Solution : Let o be the density of the sheet per square area and m, and m, be masses of ellipse and

circular sheet, then
VA4 A A

Al
Figure 2.23

m, = (mwab) p (1)
and m, =(7b*) p .(2)

2
M.L of circular disc about an axis through centre () perpendicular to its plane = m, B

Hence its MLI. about an axis through 4 (i.e. about 47 ) perpendicular to its plane is
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b,
=m, [7 ta J (- A0 = a) -(3)

Similarly M.I. ofelliptic disc about an axis through 4

a’ +b° )
=m, 4 ta (by parallel axis theorem) (4

Hence if j be the radius of gyration of body about an axis (AZ ) through 4 perpendicular to the
lamina, then

(m, +m,) kK> =m a2+b2+2 + —2+2
1 2 =m 4 a m, a [fromeqn (3) and (4)]

b* +24d?

5a* +b* 2
——+ab’p [TJ [from (1) and (2)]

or nbp(a+b) k> =rnabp

k2_a(5az+b2)+b(2b2+4612)_5a2 (a+b)—azb+ab2+2b3

4 (a +b) 4 (a+Db)
B 54* (a+b)—ab(a+b)+2ab2 +2b°
B 4(a+b)
B 54* (a+b)—ab(a +b)+2b2 (a +b)
B 4(a+b)
P = 5a* —ab +2b°
= 4 ..(5)

Also h = depthof ¢.G. 0 below 4 =a

[ = length of simple equivalent pendulum

k_z_ 54> —ab + 2b*
4q

2.8 Reaction of the axis of rotation

To find the reaction of'the axis of rotation when a rigid body rotates about it under the action of
external forces such that both the body and forces are symmetrical with respect to the plane through the
centre of gravity perpendicular to the axis, and let gravity be the only external force.
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Figure 2.24

Due to symmetry ofthe rigid body, the reaction of the axis ofrotation ()7, reduces to a single force
acting at point () inthe plane ofpaper. Let the components of this single force along and perpendicular to

GO are p and O, where (5 is centre of gravity of body. Here OG = &, Now as body swings about (),
G describes a circular path with ( as centre and 4 (= OG) as radius as shown in fig. 2.22.

Radial acceleration of G along GO is = & 6>
and transverse acceleration of (G perpendicular GO is = 4 0

Let ps bemass ofbody and weight M g isacting at (G indownward direction. Then equaton of
motionof C.G., G are

2
Mh [ﬁ] =P — Mgcos6

71 (along GO) ..(1)
d* 6 .
and Mh P Q- Mgsin0 (perpendicular to GO) -(2)

Now taking moment abot the axis of rotation ()7,

2
Wehave Mkz flt?Z—Mg.hSlnH

(OG =h,so AG = hsin6) ..(3)

where f is the radius of gyration of the body about ()7, . Also moment of M g about (f, is
— M gh sin@, which is negative because tendency of Mg is to decrease @. In eqn (3) moment of
reaction components p and Q vanish, because these are actingat (.

d’o
From equations (2) and (3), on eliminating J2 We shall get the value of reaction component Q,

o de oY
and again on integrating eqn (3) by multiplying 2 d1 ) ve shall get qr and putting ineqn (1), we
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shall get p.(Constant of integration can be determined by initial conditions)

If R be theresultant reaction, then

R=.P+ 0’ ..(4)

0

and its direction will make an angle = tan”' (;)

with the direction of reaction component p i.e. with GO.
Remark : @) Horizontal component of reaction willbe = (Psin6 — Qcos6 ) (along OT)

(i)  Vertical component ofreaction willbe = Pcos6 + Qsin6  (along OH)

Hlustrative Examples :

Example 2.16: A thin uniformrod has one end attached to a smooth hinge and is allowed to fall froma
horizontal position, Show that the horizontal strain on the hinge is greatest when the rod is inclined at an

11
angle 45° to the vertical, and that the vertical strain is then ry times the weight ofthe rod.

Solution : Let 4 be arod of mass ps and length 2a . G be its centre of gravity. Then OG = a,
initially rod was horizontal i.e. in direction of O x (fig. 2.23), so that

T

1:0,9:0wh6n9=2 (1)

Figure 2.25

where @ is the angle which rod makes with vertical ¢z at time ;. When rod falls from
horizontal, then centre of gravity  is describing a circle of radius a (= OG) about O as centre. Let p

and Q be components ofreaction at () in direction of (G and perpendicularto GO .

Let R, and R, behorizontal and vertical strains on the hinge.
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Then equation of motion of (5 along G and perpendicular to G are

2
do
Ma [EJ =P — Mg cosf (along GO) .(2)
&0 o
and a T Q- Mg sin (L to GO) -.(3)

Let % beradius of gyration ofrod ()4 about axis through ¢

MkzzéMa2 = kzzéa2 (%)

Now, the moment equation about () gives

d*o

Mk a1 =—- Mgasin0 (Moments of p and Q willbe zero) ...(5)
2
or ia2 Zt? =— gasinf
d_ZH __38 sin @
or di 44 ...(6)
2d0

Multiplying by di and integrating, we get

2
do 3
[_dt] = —4‘5 cosf+ C, ~(7)
we know
. T
0=0,0=> LG =0
AN
_3g
from (7), [dt] =5 cosd ..(8)

to find p, using value of g2 ineqn (2) from (8), we get

Ma .28 cos0= P~ Mgeoso= P=> Mgeos NO)

2a

d’* o

and using value of a7 from (6) in (3), we get
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Ma . —3—gsin0 =Q—Mgsin0:>Q=lMgsin0 (10)
2a 4

Now, the horizontal strain = R,, = sum of components of p and Q inhorizontal direction OH

= P sinf + (- O cosb)

or R, = Psin@ — Q cosf ..(11)
5 : 1 :
= (E Mgcos@) sinf — (Z Mgsm@) cos6 [fromeqn (9) and (10)]
9 :
or RH = g Mgsm20 (12)

which is maximum when sin2 8 =1

sin20=1=sin>=20="=9="
2 2 4
Hence the horizontal strain is maximum when the rod is inclined at an angle 45° to the vertical.

Also vertical strain = R, = sum of components of p and Q in vertical direction OL

= PcosO + Q sin6

5 1 : :
or R, = (E Mgcos@) cosf + (Z Mgsm@) sinf [from (9) and (10)]

1 .
or R, :(g Mgcos20+ZMgs1n20)

5 w1 .2 T ( ﬂ)
== Mgcos"— +— Mgsin° — when 0 = —
p VEES T Y 3
11 11
or R, = ry Mg = ry (weight ofrod)

Example 2.17: A uniform semi circular arc of mass y; and radius (4 , is fixed at its ends to two point in the
same vertical line, and is rotating with constant angular velocity v . Show that the horizontal thrust on

the upper end is m .

g+ wa
T

Solution : Suppose the uniform semi circular arc (wire) with centre at (), mass »; andradius (OD = OE)

a, rotates about DE = (= 2a) with constant angular velocity w. Let G be C.G. of arc such that

_2a

(1)

T
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Figure 2.26

2a
Than, as wire rotates, the point (G will describe a circle of radius oG (: 7) about () as

do d* o

centre with constant angular velocity . i.e. dt = W (constant), - =0

“dtt

2
2a (d6
Hence the effective force on (G isonly 7 - o [E] acting along GO .

Let p and Q be horizontal and vertical components of reactionat p, p' and Q' be horizontal

and vertical components at point £ as shown in fig. To find the horizontal thrust (= P) atupperand p,
taking the moment of forces about lowerend g , we get

Moment of effective forces = moment of external forces

mz—awz.(OE)zP.2a+mg(—2—a)

vV vV
or 2am W2 .a=2aP - 2amg
V4 V4
2
m +aw
o pomleraer)
Va

Example 2.18: A heavy homogeneous cube, of weight }, can swing about an edge which is horizontal,
it starts from rest being displaced from its unstable position of equilibrium; when the per pendicular from
the centre of gravity upon the edge has turned through an angle g, show that the components ofthe action
at the hinge along the rightangles to this perpendicular are

% W (3 -5 cos6) and % W sin@
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Solution : Let G’ be the initial position of ¢, (. of cube in the figure.

B D
H
ya
i G
B' 0
7o
a2
AN ZZ
0 Oé éc /
,'é)‘$ A'
SO e < 24 >E
rd 2 S
p¥ 49
Figure 2.27 (a) Figure 2.27 (b)

Let ¢ be position of ¢ . when G’ O has turned through an angle 9 about the horizontal
edge 4'p’ i.e. ZG'OG =60=/ZHOG.Let 2a be the length of an edge of the cube, then

0G = OC? + CG* [from fig. 2.27 (b)]
or OG =+a*+a* = a\/i (1)

When cube swing about edge 4'B’, then Gpdescribes a circle of radius OG (= a) about ( as
centre. Let p and Q are the components of reaction of axis along and perpendicular to the direction
GO-

If M k?* = M.I. of cube about an edge
2 _ 2 2 2 8 5
then Mk =§ma +M(a\/5) ZSMCZ
. 2
[ - M. of cube of edge oflength 2 a about any line through C.G. = EM a’ ]

k* =—a’ ()

W | o0

Now, equation of motion of G along and perpendicular to GO

are  Ma+2 6* = P+ M gcosf -.(3)

and  Ma~2 0=0+Mgsin (4

Now taking moments about (), we get

MKk 6 =Mga-2 sin6 ~(5)
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8 .
or Mg a*0 = Mg+2 sinf [fromeqn (2)]

342
a

or 0= g sin@ ..(6)

using value of g from (6) in (4), we get

Max/z[i;/z gsin@jz Q0+ Mgsinf
a

Mg

or 0=- sinf = — g sin@ ..(7)

Here — ve signshow that Q is opposite direction to what is shown in the figure. (. M g = W)
Now integrating eqn (6) by multiplying 2 § , we get

342
4a

0 = -

gcosO + C, .(8)

when v = 0, § = 0 (initial condition)

342 3x/§g
= — +C = C =
T T4 T T M T (9)
Hence from (8)
L 342 342 g 342
0> = — » g cosO + » C = » g (1 — cos0) ..(10)

Using value of g2 from(10) in (3), we get

Man2 [3fg (1- cos@)} = P+ M gcosO
a

or P= Mg{% (l—cos@)—cos@}:%@—ScosG)

w
or P:?(3—5c0s9) (W =Mg)

Example 2.19: A right cone, of vertical angle 2 «, can turn freely about an axis, passing through the

centre of its base and perpendicular to the axis, if the cone starts from rest with its axis horizontal, show
that when the axis is vertical, the thrust on the fixed axis is to weight of the cone as
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1 ) 1 )
1+ —cos"a to1l ——cos”" a
2 ° 73

Solution : Let }7 be mass ofcone, 4 be radius of base (¢« = OE) and j, be height of cone (h = OD),

h
then OG = 1 where G is C.G. of cone. The cone turnround a horizontal diameter 4B ofthe base of

cone.

Py
mg D
Figure 2.28 (a) 7  Figure 2.28 (b)
(Initial Position) (Displace(}ll Position)

When cone turns, its C.G., G Will describe a circle of radius OG = 1 about () ascentre. At

anytime ¢ let axis of cone makes an angle ¢ with horizontal ()7, . Initially
t=0,0=0,0=0 (1)

Now, M.L. of cone about an axis through ¢ . and | to the axis of cone (i.e. about Gy asin fig.
2.28 (a))is

3IM (., 2
%(h +4a’) ()

If M k* be the ML of cone about axis of rotation (AB), then

M k* = ML about GY + M (OG)’

2
_3M (h* +4a*)+ M [ﬁ)
80 4

o  Mi=2 (3h* +124° +5h°) = k* = L (24* + 347 tan’ )
80 20

( In AEOD, tan o = % —a=h tana)

2
oo k*= z—o (2 + 3 tan’ @) (3

Now, equations of motion of G along and perpendicular to G are
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h) . .
M (Z) 0> =P - Mgsin6 (along GO) (4)

1A
and M (Z) 0=Mgcost - Q (L to GO) ..(5)

where p and Q are components of reactions at () along G and perpendicularto GO .Ineqn

(5), M gcos@ is positive as it is in the sense of @ increasing and Q is negative.

Also taking moment about (), we get

Mkzé?:Mg.%cosH

or k0= gTh cosd ..(6)

Integrating by multiplying both sides by 2§ w.r. to ¢
12 8h
k*0° = BN sin@ + C, (7

to determine C,, usingeqn (1), # =0, & = 0
C, =0

fromeqn (7)
K29 = gTh sin@ (8)

Now, using (6) ineqn (5), we get

MTh [4gkhz COS@J = M g cosf — Q

hZ
=M 01—
0 g cos [ 16k2}

Clearly, when the axis is vertical, then § = 90°, .. 0 =0

Now, using value of g? from(8) in (4), we get

2
P=Mgsin0+M.ﬁg—hzsin0=Mgsin0 1+ hz
4 2k 8k

hZ
when § = 90°, then £ = M g [1+ 8k2}
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P 1 20 h 20
— =1+ — v from (3), 5w = ———
or Mg [ 8 2+3tan2a} [ / () k’ 2+3tan2aj

_16+24tan’a +20 3+ 6sec’a  3cos’a + 6

8(2+3tan2a) C6sec’a -2 6-2cosa
| |
p —cos a +1 p 1+ —cos"«
e e
Mg l—gcosza w l—gcosza

2.9 Centre of Percussion

Definition :  Ifabody, rotating about a given axis, is so struck that there is no impulsive pressure on the
axis, then any point on the line of acting ofthe force is called a centre of percussion. The line of action ofthe
force is called the line of percussion.

Axis of spontaneous rotation : Ifthe line of action ofthe blow is given, then the axis about which the
body begins to turn is called the axis of spontaneous rotation. Evidently it coincides with the position of the
fixed axis in the first case.

To find the centre of percussion ofa rod suspended freely from one end struck by a blow.
Consider arod ¢4 oflength 2a and mass jz, whichis freely suspended from one end () and
struck by a horizontal blow (say) F atapoint g oftherodsuchthat OB = x (Say)

N
MIA

Q<

F
— B

NIV

A
Figure 2.29

When the rod is struck by blow g, let p be the impulsive actionat ¢ and w be the angular
velocity communicated to the rod, then velocity ofthe ¢, G. G ofrod after the blowis a w.

Hence equating the change in the momentum in the horizontal direction to the total external impulse
in that direction, we have

M(aw-0)=F + P, ie. Maw=F + P (1)
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Also we know that change in the moment of momentum about axis ofrotation through () is equal
to moment of external impulses, so we get

Mk*(w-0)=F.x+P.o (- beforeblow w = 0)

or Mk*w=Fx ..(2)

where . isradius of gyration ofrod about axis ofrotation through (),

k= % a’ ..(3)

Ifthe blow f has been given through the centre of percussion, then there should be no impulse on
the axis of rotation, so P = 0, then eqn (1) reduces to

Maw=F ..(4)

To determine the position ofthe centre of percussion we shall eliminate f between the equation
(2) and (4). From (2)

o Mkzw’
X
Now, from (4)
M 2 2
Maw = Kw = x=k— ..(5)
X a

Which is the length of simple equivalent pendulum.. therefore in this case the centre of persucssion
coincides with the centre of oscillation.

Self Learning Exercise - 3

1. Write expressions for horizontal reaction and vertical reaction.
2. Define centre of percussion.
3. Define axis of spontaneous rotation.

Ilustrative Examples :
Example 2.20: Find the position of centre of percussion in the following cases :
)] Uniform circular plane, axis is horizontal tangent.

(i) A uniform rod with one end fixed.

Solution : )] Here x = distance of . fromhorizontal tangent 4x is = a
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) P——

Figure 2.30
k beradius of gyration about horizontal tangent 4 x

2 2
k= % +a’ = % a’ [ M.I. about diameter CO = Ma J

4

distance of centre of percussion below the highest point

)_c_ a 4

(i) In this case, let length ofrod = 2 a, then

X = distance of (.. ofrod from fixed end = a , and

kZZiaZ

4
( M.I. ofrod of length 2 , about an axis through an end and perpendicular to therod is — M a’ )

distance of centre of percussion below the highest point

4a2
, T
X a 3

Example 2.21:Find the centre of percussion of a triangle 4g8C which is free to move about its
side BC.

Solution : Let pz be massoftriangle 4pC.Let p, E, F be middle points of sides pC, ¢4 and

AB respectively of triangle 4B . Draw perpendicular 47, from 4 onside BC . Also draw median
AD.Let AL =h.
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v

Figure 2.31

Take ¢ asmiddle point of p7,, OX as x-axis (alongside pC) with oy perpendicularto gC
as another coordinate axis. Then we can prove that side BC (or axis ox ) is principal axis at ().

M
The triangle 4B is kinetically equivalent to three particles each of mass 3 placedat p, E

and F.
P.I. about 0x and oy oftrinagle =P.I. of three particles D, E and f

=1M.0H.ﬁ+lM(—P0) M,
3 2 3 2 3

(for £) (for p)  (for p)
_ h h
(-+ coordinates of g and f are | OH, 5 )are |~ oPr, 5 | withrespect to ox, 0y)
Mh Mh

or PI.of AABC = e [OH - OP] = e [OL + LH — (OD + DP)]

Mh
== [LH - DP] (oD =0L)
Mh
or  PILof AA4BC about 0%, 0y = — — [— LC ~(BD - BP )}

= M—h {l bcosC — a + < COSB:|
6 |2 2 2

_ Mh [bcosC — ccos B — a
12

= All—zh l[a —a]=0



Now M k* = M.I. of A ABC about side gC

M
=M.L of three particles D,E and g each of mass ?

2 2
MM [ﬁ) M [ﬁ) s Moy =L (1)
s2) T3 T 6

X = thedepthof . ofthe centre of percussion below B¢ along a vertical through

"

=1 |

this will be point O, , which is point of intersection of axis 0y and median 4p) i.e. it is mid point

ofmedian 4p.

2.10 Summary

1. In this unit you have studied about moment of momentum, moment ofeffective forces, kinetic
energy about axis of rotation, principle of angular momentum, the compound pendulum, centre
of percussion.

2. Some results of velocities and accelerations, formula for finding length of simple equivalent
pendulum and formula for finding position of centre of percussion will help the students to easily
understand various results obtain in this unit.

2.11 Exercise

1. A uniform chain of length 20 metre and mass 40 kg. hangs in equal lengths over a solid circular
pulley of mass 10 kg. and small radius, the axis of the pulley being horizontal. Masses 0f40 kg.
and 35 kg are attached to the ends of the chain and motion takes place, show that the time taken

. 546
by the smaller mass to reach the pulley is log, (9 + 445 ) sec,where g = 9.8 m/sec’.
2. A uniform disc of mass )z, is free to turn about a horizontal axis through its centre perpendicular

to its plane. A particle of mass s is attached to a point in the edge of the disc. Ifthe motion starts
from the upward in which radius to the particle makes an angle ¢« with the upward vertical, find
the angular velocity when ; is in its lowest position.

, a being radius of the disc

W2 eos L | 2m8
2 a(2m+M)

79



10.

Arigid body can turn freely about an axis fixed in the body and in space. To find the moment of
effective forces and kinetic energy about the axis of rotation.

[moment of effective forces = M k*0; K.E. = % M k? 92}

A flat circular disc ofradius a has a hole in it of radius , whose centre is at a depth ¢ from the

centre of disc (¢ < a — b). The disc is free to oscillate in a vertical plane about a smooth

horizontal circular rod of radius p passing through the hole. Show that the length ofthe equivalent
simple pendulumis

la4—b4

2
ac

c +

Three equal particles are attached to a weightless rod at equal distance apart. The system is
suspended from, and is free to turn about, a point of the rod distance x from the middle particle.

Find the time ofa small oscillation and show that it is least when x = (0.82 a) nearly.

2 2
Fng PN t2d,  [2a3b
3xg 3g

Find the lengths of simple equivalnet pendulums in the following cases, the axis being horizontal

Q)] A circular wire, axis is a tangent to it

) 3a .. 4
(i) A cube of'side 2 a , axis being an edge. [(l) = 5 (i) 1 = 3 a\/z}

A circular area can turn freely about a horizontal axis which passes through a point () of’its
circumference and is perpendicular to its plane. [f motion commences when the diameter through

O isvertically above (), show that, when the diameter has turned through an angle g, the
components ofthe diameter has turned perpendicular to this diameter are respectively

% W (7cos0—4) and % W sin@

A uniformrod oflength 2a and weight jy is turning about its end () and starts from the position
in which it was vertically above (). When it has turned through an angle @, show that the

3 . 1
horizontal and vertical reaction are 1 Wsin6 (2 - 3 cos6) and 1 W (1-3cos)’,

A pendulum is constructed of a solid sphere of mass s and radius a which is attached to the end
ofarod ofmass ; and length p . Show that there will be no strains on the axis if the pendulum be

2 2 1 1
struck at a distance [M {g a’ + (a + b) } + 3 mbz} + [M (a + b) + B m bz} from the
axis.

Find the position of the centre of percussion of a sector of a circle, axis in the plane of sector
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perpendicular to its symmetrical radius and passing through the centre of circle.

3a (a + sina cosa)

- , a = radius of circle, 2 ¢ = angle of sector
8sina

Answers

Self Learning Exercise - 1

1. Radial acceleration (— a@z) along op , where O ispoleand p is (r, 6) point, and transverse

acceleration = ¢ @, perpendicular to radius vector Op .

2. M k? 6, where f isradius of gyration about axis of rotation.
3 M k> d_@
: dt

Self Learning Exercise - 2

/
1. r=2rn \/; 2. See art. 2.7

2

3. I'=2n E , where £ is the radius of gyration of body about a fixed axis and j, is the distance

of'the centre of inertia from fixed axis.
4. See art. 2.8

Self Learning Exercise - 3
1. R, = Psinf@ — QcosO, R, = P cosO + QOsin0
2. Seeart. 2.12 3. Seeart. 2.12

miNININ
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UNIT -3

Motion of a Rigid Body in Two Dimensions Under Finite

Forces and Impulsive Forces

Structure of the unit

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8
3.9
3.10

3.11

3.12
3.13

3.14
3.15

3.16
3.17

3.18

Objective

Introduction

Equations of Motion in Two Dimensions when the forces are finite
Kinetic Energy in terms of the Motion of Centre of Inertia and Motion Relative to Centre of Inertia
Moment of Momentum of the body about the Fixed Origin
Rolling and Sliding Frictions

Rolling ofa sphere on arough inclined plane

Slipping ofrods

Selflearning Exercise - 1

[Mlustrative Examples

Sliding and Rolling ofa sphere on an inclined plane

Rolling and Sliding of a sphere on a fixed sphere

Unstable equilibrium between two smooth spheres

Selflearning Exercise - 2

[Mlustrative Examples

Motion ofa hollow cylinder inside a cylinder

[Mlustrative Examples

Two Dimensional Motion ofrigid body under impulsive forces
Equation of motion in two dimensions under impulsive forces
[Mlustrative Examples

Change in Kinetic Energy due to action of impulse

Impact of rotating elastic sphere on a fixed horizontal rough plane
[Mlustrative Examples

Summary

Exercise

Answers of Self Learning Exercise

82



3.0 Objective

This unit provides a general overveiw of motion of arigid body in two dimensions under finite
forces and under impulsive forces. After reading this unit you will be able to learn

1. About equations of motion in two dimensions under finite forces and impulsive forces

2. About K.E. of arigid body in a two dimensional motion in terms of motion of centre of inertia and
motion relative in to centre of inertia. Also change in K.E. due to action of impulsive forces.

3. About angular momentum about origin, Rolling and Slinding frictions.

4. Rolling of sphere on a rough inclined plane and sliding ofa rod, sliding and rolling of a sphere onan
inclined plane.

5. About rolling and sliding of'a sphere on a fixed sphere, unstable euqilibrium between two smooth
spheres.

6. About rolling ofa solid cylinder, inside a rough hollow cylinder
7. About sliding and rolling of a rotating disc on a rough horizontal plane.

8. About impact of a rotating elastic sphere on a fixed horizontal rough plane.

3.1 Introduction

First we shall study here the motion in two diemnsions when the impressed forces are finite in
nature. The motion ofrigid body takes place in three dimenstions, the study of'its motion is very much
simplified when all particles of the body move parallel to a given fixed polane. Such a motion of the rigid
body is called two dimensional motion or plane motion. In such a case the motion can be considered as a
translation motion parallel to a given fixed plane plus a rotation about a suitable axis perpendicular to the
plane. This axis is often choosen to pass through the centre of mass of the body under consieration.

In this unit, secondly we shall study the motion in two dimension under impulsive forces where the
effect of finite forces on the body are neglected.

3.2 Equations of Motion in Two Dimensions when the forces are finite

We know that the motion of a rigid body consists of two independent motion :
)] The motion of'the centre of gravity (motion of translation)
(i) The motion about centre of gravity (motion of rotation)

The motion of centre of gravity : By this we mean that the total mass ps ofrigid body is supposed to be
concentrated at the ¢, . and all the external forces are transferred parallel to themselves to act at the
C.G. ofthe body.

The motion about the centre of gravity : By this we mean that the sum of moment of the effective
forces about the . ;. is equal to sum of the moments of the external forces about ¢ .

Classical method for finding the equations of motion : Let us consider the motion of a rigid body (to
start we may take a lamina) in a fixed plane (say), xy plane. Let (x, y) be the coordinate of . G. ofthe
body and s be the mass of the body concentrated at (G, then we have
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N
FZ
P, K
G (%, )
N
> X
0 Figure 3.1
M dx _ F
s > F ()
dzy
and M 5= D F (2)

where Z F, =the algebraic sum of the components of the external forces parallel to x-axis,
supposed to be acting at the C. G.

and Z F, = The algebraic sum of the components of the external forces paralle to y-axis.

For rotational motion, Let p be any particle of body of mass m whose coordinates relative to

C.G. G asorigin be ()c1 , ) ) , then from earlier knowledge else from unit-1, we have the following

equation

1d2y1_ L d7x! _ lp 1
me dr’ y dr’ —Z(sz yFl)

d dy' dx'
Y e R LR

d dy' dx'
or EZm[x‘d—yt—yld—i => (x'F - y'F) .3

dx
But [xl d_):‘ -y W] is the moment about (G ofthe velocity of particle of mass m

relative to (5.

Let 7, be line fixed in space (in x y plane) and G4 be line fixed in the body (fixed with lamina)

Let GP = r and let Gp makes anangle ¢ withline G7,. Again Let g an angle which the line G4
makes with 7, then from fig. 3.2, it is clear that
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¢ =0+ L AGP (%)

Figure 3.2

But £/ AGP = constant, because it is the angle between two fixed lines G4 and Gp so on
differentiating (4)

g _do

dt  dt )

Now the velocity of particle of mass m at p relativeto G is ” dr and hence its moment

about (G is 0

r. [r %) =7’ % =7’ % [from (5)] .(6)
- [xl % - %) = % A7)

Therefore fromeqns (3) and (7), we have
%[Z m [rz %ﬂz Z (Xle —J’lFl)

or %:Zmﬂ%}:Z(xle—ylFl)

or %:% mr2}=2(x1Fz—y1Fl)

or % :%-MW} > ("B - y'F) (8

where £ is the radius of gyration ofthe body about an axis through G perpendicular to the plane
of motioni.e. x y plane.
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d’ o

or MK T > (x'F -y'F)=(say) L .(9)

where J, is the moment of all external forces acting on the body about .

Equation (1), (2) and (9) are taken as the equations of motion of rigid body moving in two
dimensions under finite forces.

3.3 Kinetic Energy in terms of the Motion of the Centre of Inertia and
motion relative to Centre of Inertia

Let (x, y) be the coordinates of a particle of mass m ofthe rigid body referred to the fixed axes

ox and oy andlet (X, ¥) be coordinates of G referred to © as origin and (x', yl) be coordinates of p
referred to (G as origin, then (see fig. 3.1)

x=Xx+x,y=y+y (1)

1
mXx

clearly = x -coordinate of C.G. = 0
> m

>, my'

Z . =Y -coordinatesof C.G. = 0

as (x', y') are the coordinate of p referred to G as origin

Hence Y mx' =0, my' =0 (2
dx' B d_yl_
2m—==0,3m—-=0 (3)

Thus, the K.E. of the particle p of mass  is

el ()]

Hence the K.E. of the whole body is

sz {a] (]




Last two terms will be zero by virtue of eqn (3),
Hence K.E. of whole body

) (%] |z
d¢  do

where ! is the velocity of any particle of mass m relative to G and it is equalto dr =r dr

. K.E. of whole body
_\2 _\2 2
:lM d_x + d_y +lzm l"ﬁ
2 dt dt 2 dt

2
1 1 do
ZEMVZ-FE(EWZI"Z) E]

2
Loy Ly [40
2 2 dt

where J is radius of gyration of the body about a line through ¢ . perpendicular to the plane of

1
the motion. J/ is velocity of (. (5., hence ) MV? isthe K.E. ofa particle of mass jz placed at ¢ G.,and

| o 1 dx'\ (dy'Y
5 Mk 6 = 5 > myvt = 5 > ml[WJ + [7} is the K.E. of the body
relative to (.

l 2 l 2 N2
. =— MV +—- Mk’ 6
- KE. > >
= (K.E. ofa particle ofa mass js placed at (; and moving with it)
+ (K.E. of the body relative to C..)

= K.E. due to translation motion + K_E. due to rotation

3.4 Moment of Momentum of the body about the Fixed Origin

Let (x, y) be the coordinates of p referred to () as origin, (X, y) be coordinates of G referred

to ¢ asoriginand (x', y') are coordinates of p referred to (; as origin, then the moment of momentum
0 g y P G g

ofa particle of mass s at p about origin () is

dy dx dx dy
=mjx——=y Pk , where —, di’ dr e the velocities of particle of mass m parallel to

coordinate axes.
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Therefore moment of momentum of whole body is

— S m|x dy _  dx 1
P y P (1)
Now x=Xx+x,y=y+y [byeqn (1) and art. 3.3] ..(2)

mx' my'
Also [Z Z

Zm s Zm ], are the coordinates of ¢ . referred to G as

origin, so [%mnj azzmnf ]=(0, 0)

Z:mx1 =0, Z:my1 =0
or “r _O z dy =0
Also dy dy

zmxl E :E (zmxl)

and
S S = (S ) =0

..(3)

0

Now, fromeqn (1), after using (2), we have

el (g 4)- 05 %)

_ dy _dx)_ Ay dx
Zm[ di ydt] Zm[x TRRET

Rest ofthe terms vanish in view of(3)

. Moment of momentum of whole body

_dy _dx L dy' L dx!
=M — Yy — |+ -7
[x T a’t] Zm[x dr 7 di -

where M, =M [g ay _ 5 E] — moment of momentum about () ofa
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particle of mass js placedat G = Mvp ..(5)

where y is the velocity of ¢ G. of mass jz placed at G and p is the perpendicular from () of
upon the direction of velocity v of . G. G,

dy' dx'
and My = z m [xl ar ¥ WJ = Moment of momentum ofbody about G

=zm[r%)r

where dr is the velocity of particle of mass m relative to G whichis equalto ” dr (as shown

inart. 3.2)

B do| ,dO) do 2y do )
MR_ZM[FEJF_ZM[F E)—E(Zmr)—EMk ..(6)
where £ is the radius of gyration of the body about a line through G | to xy plane

o 40

Moment ofmomentum= Mvp + M 7
t

=(Moment of momentum of ¢ G. ofthe body) +(Moment of momentumrelative to C. (.)

3.5 Rolling and Sliding Friction

Friction is a self adjusting force which tends to prevent the relative motion of the point at which it
acts. But if u isthe coefficient of frictionand g be normal reaction then it has a limiting value u R

During the motion of rough bodies in any direction, we assume a friction z opposite to the direc-
tion of relative motion and assume that the point of contact is at relative rest, which is expressed by a
geometrical equation.

Further if
@) F < u R, itis the case of pure rolling.

(i) F = u R,bodyis on the commencement of slipping. It is the case ofrolling with limiting
friction.

(i) F > u R, itisthe case of rolling and sliding combined. Sliding or slipping follows and £ is
to be replaced by 1 R. Motion need to be discussed fresh without the geometrical
relations.

(v) F =0 = u = 0, s0 motion is on smooth surface. It is the case of pure sliding.
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3.6 Rolling of a sphere on a rough inclined plane

To discuss the motion of a uniform sphere which rolls down an inclined plane, rough
enough to prevent any sliping.

Figure 3.3

Let 7 bethe mass, ¢ be the radius and () be the centre of the sphere. LH is horizontal plane,
LA is aninclined plane. Initially, let the sphere be at rest with its point B in contact with 4.

At4,t=0,x=0and x =0 (1)

After time ¢, let the centre of sphere describe a distance x parallel to the inclined plane and radius
of sphere OB have turned through an angle g, i.e. £ BOD = 6

Since there is no sliding, therefore

distance AD = arc DB or x = a0 }
..(2)

sothat ¥ = @@, ¥ = a0

Here B is a line fixed in the body which makes an angle g with the normal to the plane which is
a line fixed in space.

Let g be the normal reaction and g be the frictional force then we have the following equations of
motion of centre of gravity () of sphere.

d’*x )
M ar Mgsina - F (motion of O indirectionof 47) ..(3)
and O= Mgcosa —R (motion of © perpendicular to inclined 47)  ...(4)

Also, for the motion about centre of inertia, taking the moments about (), we get

MkK*0=F.a+o0.R

or Mkzg =F.a [from(2)]
dx ) d’x
or Mkzﬁ =q° [Mg sinaa — M WJ [from (3)]
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2

or M(a2+k2)%—a2 Mgsina

2

d’*x B a’ gsina
or ar: (az N kz) ..(5)

R.H.S. is constant, so the sphere rolls down with constant acceleration. Integrating eqn (5), we get

2 .
dx a gsina

—=——1t+C

dt (az +k2) 1 ..(6)
butbyeqn(l) t=0,x=0

C =0

dx _ a’gsina ;
dt (az N kz) (7
Again integrating it, we get
a’gsina
x=—"7F——.—+C
(a®+4£) 2 7 +(8)
butagainx =0, =0=C, =0
Also from (5)

dx d*x 2a’gsina dx [dx)z _ 2a’gsina e

- = - | — =
dt de’  (a®+k*) dr \dt (a® + k%)
with above conditions C;, = 0

N2 2a° g sina
(%) S i) (8A)

2 .
l a”gsina ,

X = P (az N kz) " which is the required distance described by the sphere in time 7
...(9)
For solid sphere f? = % a’,using ineqn (5), we get
2 : 2 :
i 4 gs21na _ Sa gs;na =§gsina
(az +e azj Ta 7 ..(10)

Using ¥ from (10) in (3), we get

M.%gsina:Mgsina—F
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— F:Mgsina—gMgsina:%Mgsina

which is the frictional force and normal reaction, from eqn (4)

R=Mgcosa
Condition of pure Rolling :

Here =4l - "tanag

2 .
F — Mgsina
R Mgcosa 7

F
.. for pure rolling, R <u or F<uRr

> z tan o
73
which should be satisfied during the motion.
Kinetic energy of the body :

1 ) 1 :
K.E. of sphere (at any time ¢) = 5 Mx* + 5 MKk 6

.2
Ly Jrlez’C—2
2 2

a
2
Ly [1+k—)
2

2
a

= Mg(x sina)

which is the same as the work done by gravity and also follows from the principle of energy and work.

Particular Cases : From the symmetry of the body, we may derive corresponding results for acceleration

by subtituting the value of  (radius of gyration) for different bodies.

(1)

(12)

[byeqn(11) and (12)]

from (8 A)

For different bodies
Body radius of gyration Acceleration
k2
. ) 2, 5 .
Uniform sphere of radius g 5 a 7 gsma (see 10)
TP . 1, .
Thin solid disc of radius ¢ 5 a 3 gsina
. . . 2, 3.
Thin spherical shell of radius ¢ 3 a 3 gsina
Uniform thin ring ofradius ¢ a* 5 gsina




3.7 Slipping of Rods

() A uniform rod is held in a vertical position with one end resting upon a rough table, and
when released rotates about the end in contact with the table to discuss the motion.

Let ox be top ofperfectly rough table and ()4 be arod of mass js and length 2a (= OA4). The
rod is capable of rotating about end () end let it make an angle g with vertical.

Choosing () as origin and horizontal and vertical lines through () as axes. Then coordinates of (3
(C.G. ofrod) willbe (x, ) OG = a, GB = a sinf, OB = a cosf

x=asinf, y=acosO (1)

on differentiating w. . to ¢

x=acosO0,x=—asind O +acosd 0 .(2)
and  y=—gasin@0,j=—-acosf O —asind 0 ..(3)
A)’

1

acosf

¢

Figure 3.4

Let £ be the frictional force on the table acting along ox and g be the normalreaction at () acting
along oy (fig. 3.4) then equations of motion of C . are

d*x ) . .
M= =M (- asin@ 6” + acosf 0) = F (Inhorizontal direction) (4
and My= M(— a cos® 0* — asind é) = R — M g (Invertical direction ) ..(5)
aZ
Also VvV =i*+7° =40 andk’ = 5 (forrod 04 oflength 2 @) ..(6)
The distance fallen by ¢, . indownward direction = (¢ — a cos0) -.(7)

Hence energy equation is

1 1 .
EMV2 +5Mk2¢92 = Mg(a — a cosb)
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or

or

or

2

%Ma292+%M%[92=Mga(l— cos6) [by eqn (6)]

%Mazéz =Mga(l- cosb)

0* = 2a (l — COSQ) (8)

Differenting eqn (8) with respect to ¢

299_Z(sm9 H)SH—EsmH ..(9)

Substituting values of g and g from (8) and (9) in(4), we get

or

F=Ma|cosf. 3¢ sinf — sinf 3¢ (1 - cos6)
4a 2a

F = % Mgsin (3 cos6 — 2) ...(10)

Also fromeqn (5), on putting values of ¢ and g, we get

R= % Mg(1 -3 cos6)’ (1)

these relation (10) and (11) determine the motion.

Analysis :

()

(ii)

(i)

()

(if)

1
R does not change sign and it is always positive (eqn 11). It vanishes when c0s 6 = 3

therefore end () does not leave the table.

a2
F changes its sign as g passes through the angle cos : 3 and hence its direction is then

reversed (eqn 10)
The rati E—)OO cosé’—)l
eratio — as 3

Hence unless the plane is rough enough, there must be sliding then. (eqn (10) and (11))

(1
The end () ofrod will begin to slip for some value of g less than COS : (g], and it will slip

backwards or forward accroding as the slipping occurs before or after the inclination of

rod is €Os™' (1]
3

A uniform straight rod slides down a vertical plane its end being in contact with
two smooth planes; one horizontal and other vertical. If it starts from rest at an
angle oo with the horizontal, to discuss the motion.
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Let ¢p be the rod oflength 2 ¢ and mass jy, which is in contact with two smooth planes, one

horizontal (OCx plane) and the other vertical (ODy plane) at which the normal reaction are § and g
respectively. Let G be .. ofrod and g be the inclination of the rod to the horizontal at any time ¢.

Initiallyt:O,@:a,é:O ..(1)
Let coordinates of (G about ox , 0y as axes be (x, y) so that

x =OH = DL = a cos@ }

y=HG = asinf -(2)
on differentiating with respect to ¢, we get

x=—asin@ 0 ; ¥=—acosh O —asind O

y=acos@O ; j=—asind 6 +acosf O } ~(3)
Equations of motion of centre of gravity are

Mi=R= M(-acosf 0 —asindf)=R  (Inox direction) (4

and My=S-Mg= M(— asin@ 6 + a cosd 9) =8 — Mg(in oy direction) ...(5)

Initially, when the inclination of rod was ¢, the hieght of ¢ . was agsin o and now it is g sin 0 so

that the distance described by . . is @ (sina — sin6). Also, if y be velocity of C. G., then

Vo= ()-Cz n yz) _ (az 92)
Therefore from energy equation

1 1 :
5 My + 5 Mk* 6* = (work done by gravity)
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M ; i : :
weget - [az 0° + % 92} = Mga (sina — sin6)

:
=~
(3]
Il
w|Q,\,
L 1

: 3 . .
ot 0 = i (sina — sin6) .(6)

Differentiating with respect to ¢, and dividing by 2 9

. 3g
b=—% cos0
» cos A7)

Now putting values of g2 and g from (6) and (7) in (4), we get

M —ac0s9.3—g(sina—sin@)—asin@ —3—gc0s0 =R
2a 4a

Simplifying
R= % g cosO (3sinf — 2 sina) ..(8)

Now putting values of g2 and g from (6) and (7), in (5), we get

S=Mg+ M {— a sin @ x ;_g (sina — sin@) + a cosf x —43g cos@}
a a

=Mg+ Mg _3 Gin@sing + > sin?0 — > cos 0
2 2 4

:${4 — 6sinfsina + 6sin’0 — 3 coszé’}

- %{l — 6 sinf sina + 6 sin® 6 + 3 (1 — cos’ 9)}

_ Mg {l — 6sin@ sina + 9 sin’ 9}
4
= % {9 sin® @ — 6 sinf sina + sin’ o + (1 ~sin? a)}

or S = % {(3 sin@ — sina)’ + cos’ a} ..(9)

. 2 .
From equation (8), we find that reaction g at wall vanishes if sin @ = 3 sina , and for smaller

values of g, R becomes negative. In this stuation the rod will leave the wall with angular velocity §?2

ie. 0= \/;_g (sina — sinf) = \/g ;120: (on using sin6 = % sina) ..(10)

a
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The centre of mass G will have the horizontal velocity

g sina
2a

) . 2 .
x=—asmt90=—a§sma

_ —%JZag sin’ & e

Second Part of the Motion : (When the end p leaves the plane)

) 2 .
When sin 6 = 3 sina and R= 0

Let @ = ¢ and let S, be the normal reaction at floor. Then the equations governing the motion of

rod are
YN
)
Figure 3.6

Mx=0 ..(12)
and My=S -Mg ..(13)
taking moments about (G, we have

az .

M 5 ¢ =— S, (a cosg) .(14)

where y = a sing, .. y = a cos¢ ¢, = — asing ¢’ + a cos¢ ¢ ..(15)

using value of y from (15) in(13), we have
M(—asin¢¢2+acos¢ g'15)=S1 - Mg

Mazézs B

= 3 4 cosd cosg Mg [from (14)]

or (%+cos2¢j¢—sin¢ cos¢ ¢ =—§cos¢

97



on integrating it, we get

1 2 V2 28
(3+cos q))q) = sing + C, ..(16)

: 2 .
Initially when ¢ = @, sin¢ = 3 sin o

_ [g sina
:0:
and ¢ 2¢

2g sina sin’ o
¢ ==& [1— 9} (17

using this values of C, in(16), we get

. . 2
(% + cos? ¢j # = 2gsina [1 _sin a) B Z—gsinq) (18)
a

9 a

d¢

when the rod becomes horiozontal i.e. when ¢ = 0, Let w be the angular velocity i.e. dr =w

where ¢ = 0

W o 3gsina [1 ~ sinzaJ

> 5 (19

and by eqn (11) the rod in this elapsed time had its constant horizontal velocity
i=- ! agsin'a
Self Learning Exercise - |
1. Define two deminsional motion under finite forces.
2 Write exprssion for K.E. ofarigid body in a two dimensional motion under finite forces.
3. What is friction?
4 What is condition for pure sliding?
5 What is condition for pure rolling?
Ilustrative Examples :

Example 1: Two equal cylinders each of mass 7 are bound together by an elastic string whose tension
is 7 and roll with their axes horizontal down a rough plane of inclination ¢ . Show that their acceleration is

2 . 2uT

S gsma [1 - L} , where u is the coefficient of friction between the cylinders.

3 mg sina

Solution : Let R, F; be the normal reaction and the frictional force on the upper cylinder respectively
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Figure 3.7

and R,, F, be the normalreaction and the frictional force on the lower cylinder respectively, due to
plane 04 which is inclined at angle ¢ with the horizon. Let g be normal reaction between the two
cylinders at their point of contact g7 (fig. 3.7). Then at g7 the frinctional force u R acts away from the
inclined plane for upper cylinder and towards the inclined plane for lower cylinder. Let 7 be the tension in
the string. At any time ¢ let the cylinders move through a distance x along the inclined plane and g be the
angle turned by radius ¢ B ofcylinders. Since there is no slipping

. x=a0, ondifferentiating y = ¢ ¥ = a0 (1)

Now the equations of motion of upper cylinder are

mx =mgsina +27T — F — R (parallel to inclined plane 40)) -.(2)
and mjp=0=R —mgcosa + uR (perpendicular to inclined plane) ..(3)
and moment equation is

mk*0 = F — uRa (k isradius of gyration about axis through ¢) ...(4)

where s is mass of cylinder.

Equations of motion for lower cylinder are

mx =mgsina —2T - F, + R (parallel to inclined plane) ..(5)

my=0=R —mgcosa — uR (perpendicular to inclined plane) ...(6)
and moment equation is

mkzézl*“za—uRa (7

from eqn (4) and (7), we get

F=F (8)
Now, from equation (2) and (5), we get

mgsina +2T - F —R=mgsina -2T - F, + R
or AT -2R=0=R=2T ..(9)
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Also fromeqn (4),

ko
F=uR+m—2~0
a

az .o 2 az
—u@T)+m. 29 k=4
u2T)+m oy 5

ma x 1
E=2uT+——=—=2uT+—-mx
or 1 H 2 2 H )

Now using this value of F; and (9) ineqn (2), we get

mic'zmgsina+2T—(2yT+%)—2T

or Tm)'c'zmgsina—ZMT
2 . 2uT
or )'c':—gsma[l—L_]
3 mg sino

Example 2 : A uniformsolid cylinder is placed with its axis horizontal on a plane, whose incilination to
the horizon is ¢, show that the least coefficient of friction between it and the plane, so that is may roll and

1
not slide, is 3 tana

1
Ifthe cylinder be hollow, and of small thickness, the least value is ) tana,

Solution : At any time ¢ let the axis of cylinder describe a distance x and g be the angle turned

(fig. 3.3.) than x = ¢ @ (since there isno slinding) — % = g@and ¥ = ¢ 0

If F be the frictional force and g be normal reaction, then equations of motion of C, ;. are
Mi=Mgsina - F (parallel to inclined plane) (1)

O=Mgcosa —R (perpendicular to inclined plane) -.(2)

taking moments about the axis through the centre of gravity O, we have

mk’0=F.a
o MEE=-F.qa (3
a

Eliminating M x from (3)and (1), we have

K’ K’
» (Mgsma F) F.a or 4+ k2

Mgsina (4
and fromeqn (2), R = M g cosa

100



L L tan k* a i ;

R JERE ,but £7 = > (for solid cylinder)
F 1

—=—tanuo

R 3

F
Forpurerolling F < u R ory < u

F 1
or M> 2 = pu> 3 tana ..(5)

1
Hence for pure rolling least coefficient of friction is 3 tana

If cylinders be hollow, then k* = 42, therefore from (4)

1 F 1
F=— Mgsina - —_tana
) g andR >
i F 1
For purerolling 1 > R = u> 5 tan o0

1
.. Incase ofhollow cylinders for pure rolling least coefficient of frictions is ) tana,

Example3: A uniformrod is placed with one end in contact with a horizontal table, and is then at an
inclination ¢ to the horizon and is allowed to fall. When it becomes horizontal, show that its angular

3gsina
velocity is [gz—aJ , whether the plane be perfectly smooth or perfectly rough. Show also that the

end of the rod will not leave the plane in either case.

Solution : At any time ¢, arod 4 oflength 2 ¢ and mass ; makes angle g with the horizontal
be C.G. ofthe rod, then its coordinates are (x = a cos@, y = a sin @) Initially the rod is inclined at an

angle ¢ to the horizontal so that height of ¢, G, was a sin @ and now it is ¢ sin @. So in this time distance
travelled by ¢ G. indownward direction

(a sina — a sin@) AN (1)

Figure 3.8
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We have to find the angular velocity when the rod becomes horizontali.e. when 0 = 0

Case - I : When the plane is perfectly rough : Let z be the frictionand g be the normal reaction then the
equation of energy gives

1 1 :
5 MV + 5 Mk*6” = work done by gravity
1 Ml a2 a’ 0% | = : ino
or S M| a0+ = =mg (asina — a sin0) [by eqn (1)]
V=X 4+ = (— a sin@é)2 + (a cos@@)2 =a’ 6’
2
a
dk*=—
an 3
n (i a’ 92) =mga (sina — sinf)
2 \3
= =38 (sina — sin @) 2
o ..(2)

when @ = 0 i.e. the rod becomes horizontal then if

0 = w, then fromeqn (2)

w? =3—gsina = w= 3gsinga 3)
2a 2a

Now we have to prove that the end () will not leave the table i.e. we have to show that p is always
positive. Differentiating eqn (2), w. r. to ¢

.3 -
200 = i (= c0s0)0 , on dividing by 2 9, we get

. 3g
6 =->2 cosO
1g 5 (%)

The equation of motion of ¢ (5. in oy direction is
mj}=R—mg:>m(—asin992+acos@é)=R—mg ..(5)

Putting values of g2 and g from equations (2) and (4), we get

R=mg+ma|—sinf .3—g(sina—sin0)+c0s0 3¢ cos6
2a 4a

:%mg[4—6sina sin® + 6 sin’ @ — 3 cos’ 0
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= % [l +3 (1 - cos’0) — 6 sinax sinf + 6 sin” 0]]
= % [1+95sin>6 - 6sina sin® + 9 sin’ & sin’ @ — 9 sin® a sin” 6]
= % (1 — 6 sina sin@ + 9 sin’ & sin’ @) + 9 sin” 0 — 9 sin’ & sinze]l
= % (1 ~ 3sina sin6)’ + 9 sin® 0 (1 — sin’ a)]
or R= % (1 — 3 sina sin@)” + 9 sin® O cos’ a]l ...(6)

This shows that g is always positive for all values of g and ¢, hence the end ) ofthe rod never
leaves the plane.

Case-II:  When the plane is perfectly smooth. In this case there is no force of friction in the
horizontal direction so that (G, moves in a vertical line, the only velocity of G being along the vertical.

y=asinb, y =acosff  sO V=37 :(a cosé’é’)2

then the enrgy equation is

% (v2 + k? 92) = work done by gravity

2
% (az cos” 00 + a? 02) =mga (sina — sin6)

2 N2
ma 0

(3 cos’ 0 + l) =mga (sina — sin6)

6g (sina —sinf)

g - 68 (sina = sin0)
a (l + 3 cos’ 0) A7)

when the rod becomes horizontal = 0

0% = 3—g sinag = 0 = [3—g SinOlJ -.(8)
2a 2a

Differentiating eqn (7), w.r. to ¢, we get

5 08 6g (1 + 3 cos’ 9) (— cos6 9) — (sinar — jiné?) (— 6 cosO sinf 9)
a (1 + 3 cos’ 9)

~1-3cos’ @ + (sina — sinf) x 6 sind
(1 + 3 cos’ 9)2
103
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3¢ cosf |1+3(1—sin’6) — 6 sina sin@ + 6 sin>

0 =
of a (1 + 3 cos’ 9)2
3gcosd |4+3 (sinZH -2 sina sinH) + 3 sin’ @ — 3sin’ &
a (1 + 3 cos’ 9)2
j_ 3gcoso 1+3cos’a + 3 (sina — sin@)’
of a (l + 3 cos’ 6’)2

taking moment about ¢, we get

mk>0 =— R a cosf

az . 2 az
“ H_ _ k=
or m 3 0 R a cosO [ 3
2
R=-m< !
3 acosf
' - ma’ 1 —3gcosO |1+3cos’a + 3 (sina —sinh)’
of 3 " acosh a (1+3 cos’ 0)2

(9

1+3cos’a +3 (sina — sin0)2]

R =
or mg[ (l + 3 cos’ 6’)2

This also show that p is always positive. Therefore the end () does not leave the plane in this case
also.

Example4: A uniformrodofmass m, is placed at right angles to a smooth plane of inclination ¢ with
one end in contact with it. The rod is then released. Show that when the inclination to the plane is ¢, the

3(1-sing)’ +1
(l +3 cos’ ¢)2

reaction of the plane will be { } mg cosa.

Solution : The inclined plane 4 g is smooth and uniformrod g ofmass m and length 2 g placed at
right angles to it. So there is no force along the plane and there was no initial motion along the plane. Hence
centre of mass (G moves perpendicular to the plane. Initially its distance from the inclined plane 4p was
BG = a, so that its vertical height above the plane was GH = a cosa (In A BGH)
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Figure 3.9

Now, when the rod is released then after time ¢ let the rod make an angle ¢ with the inclined plane

AB- Referred to g4 and perpendicular to g4 as axes let the coordinates of G be (x, y)

x = BN =acos¢
y=GN =asing (In ABGN) (D)
Equation of motion G perpendicular to the plane is

mj/'=m(a cos¢¢—asin¢¢2)=—R—mgcosa

Also taking moment about (3
az .
m?(b:—Racosq) -.(2)

Initial vertical height of C . above the inclined plane was GH = a cosc , and now its vertical
height above the plane is GO = GN cosa = (a sing) cosa [by eqn (1)]

Therefore distance fallen by (G indownward direction

=GH - GQ =acosa — asing cosa

=a cosa (1 — sing) ..(3)
Energy equation gives
% [vz + K (ﬂ] = work done by gravity
m - a .
or = {az cos’ ¢ 9 + % ﬂ =mgacosa (1-sing)  [byeqn(3)] ..(4)

( Vi=yt = (a cos¢¢)2)

105



2

ﬂ;3 cos’ ¢ + 1;]] ¢’ = mga cosa (1 — sing)

o 6g (1-sing)
or ¢ - a (1 +3 COSZ ¢) cosa (5)

Differentiating this . 7, to ¢, we get

(1+3cos®¢) (- cosgpg) — (1 - sing) (- 6 cos¢ sing ¢)
(1 + 3 cos’ ¢)2

2¢&5:6—gcosa
a

dividing 2 ¢ and simplifying, we get

3gcosa cos¢

¢=_a(1+3cosz¢)

2@+30—mww 6

Substituting this value of ¢ in eqn (2), we get

Rzmg3a—mmf+10%a
(l + 3 cos’ ¢)2 '

ExampleS: A cylinder rolls down a smooth plane whose inclination to the horizon is ¢ , unwrapping as
it goes a fine string fixed to the highest point ofthe plane, find its acceleration and the tension of the string.

Solution : Let ¢ beradius and m be mass of cylinder, g is inclined plane which is smooth so that
there will be no frictional force. But when cylinder rolls the inclined plane there will be a tension 7 in the
string which is fixed to the highest point () ofthe inclined plane. When cylinder rolls along the plane, it
unwraps a length (say) x of string. Since string remains tight geometrically. we have

x=a6,sothat x = g, ¥ = a0 (1)

v mg
Figure 3.10
where ¢ is the angle which radius G p has turned in this time, initially p was at ).

Let p be normal reaction as shown in fig. 3.10, then the equations of motion of cylinder along and
perpendicular to the inlcined plane are respectively
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mx=mgsina — T ..(2)
and O=my=mgcosa — R ..(3)

Now taking moment offorces about the centre (G of cross section of cylinder, then

mk’0=T .a
at i 2 a i _ .
e ...k =—,—EQ
or m2.a T.a 2,
mx
or T:T (4)

Using this value of 7 ineqn (2), we get

. : .. 3. .
mx:mgsma—gmx :>5x:gs1na

.2
or X = gg sin ..(5)
which is acceleration of cylinder. To find tention 7 in the string, using this value of 3 in(4), we get

1
T = 3 mg sina ..(6)

3.8 Sliding and Rolling of a sphere on an inclined plane

An imperfactly rough sphere moves from rest down a plane inclined at an angle ¢ to the horizon;
To discuss its motion.

Figure 3.11

Let i be centre of sphere of mass m and radius ¢, and move along a rough inclined plane 04
ofinclination ¢ with horizon. Also let x be the distance describe by the centre (G intime ¢ and the sphere

has rolled through an angle g, i.e. £/ CGB = 0. g is the angle between radius GB, which was initially
normal to the inclined plane and normal G at time ¢. Initially point g was at (), so there

t=0,x=0,x=0,0=0,0=0 (1)
Referred to ox and oy as axes, coordinates of (G are (x, y). We take that the friction is not

107



enough to produce pure rolling hence the sphere slides as well as turns, and the maximum friction u R acts
up the inclined plane as shown in fig. 3.11, where p is coefficient of friction.

There is no motion perpendicular to the inclined plane and as such the ¢ G. G of the sphere
always moves parallel to the plane

y coordinate of C.G. = constant, .. y =0, y =0 ..(2)
Hence the equation of motionof centre of gravity (along and perpendicular to inclined plane) are

mxX=mgsina — uR ..(3)

my=0=R—-—mgcosa ..(4)
and moment equation about (5 is

mkzézuRa -(5)

2
where £ is radius of gyration of sphere about axis through (5, so & P = 5 a’

m.%cfézuRa ...(6)

Eliminating R between eqn(3) and (4)
¥=(gsina — ugcosa) (7

Integrating it with respect to ¢

X =(gsina — ugcosa)t+ C ..(8)
butt=0,%=0,.. C, =0 [by eqn (1)]

X =(gsina— ugcosa)t ..(9)
again integrating

: r
x=g(sina — ycosa) B +C,

againbyeqn(1), x =0,7=0,wegetC, =0
tZ
x =g (sina — ucosa) 5 ..(10)

Now from eqn (4), using value of g ineqn (6), we get

2 .
3 ma’d = pua (mg cosa)

§oHE

or
2a

cosa (1)
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integrating it with respect to ¢

-5
6’=ﬂcosoz.z‘+(f3

2a

Initially + = 0, § = 0, hence C, = 0

0= JHE cosa t
2a
again integrating
2
0— Sugcosa t—+C4
2a 2

Againa 0 = 0, t = 0, hence C4 =0

_Sugcosa 2
4a

0

Now velocity of point of contact ¢ down the plane

=velocity of centre (G + velocity of ¢ relative to G

y Sugcosa
2a

=)'c+(—a9)=gt(sina—ucosa)—a t
velocity of ¢ down the plane

:5[2 sina — 7 u cosat

From eqn (8), we will have the following three cases for discussion :

First Case :  Slding withrolling :

(12)

(13)

[byeqn(9) and (12)]

(14)

2
If(2sina — 7p cosa) > 00r2 sina > 7 u cosa or # < 5 tan o, then the velocity

Second Case : Rolling with limiting friction :

When (2 sina — 7y cosar) = O:u:%tana,

of'the point of contact ¢ does not vanish and is always positive for all values of ¢. So the point of contact
C always slides down and the maximum friction u R always acts. In other words sliding of the sphere with
turning takes place. Therefore the motion is entirely determined by equations (9), (10) and (12), (13).

In this case the velocity of ¢ vanishes at the start and is always zero. Therefore it is the

by equations (12) and (13). We can also apply geometrical relation x = a 6.
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case of pure rolling, the maximum friction u R is always being exterted. Hence motion is determined

2
Third Case: Purerolling: when (2 sina — 7y cosa) < 0 or 4 > 5 tan &, then velocity of the point

of contact appears to be negative. In other words if maximum force of friction i R is allowed toexert,



the point of contact will slide upwards the inclined plane which is not possible as the friction acts only with
a force which is sufficient to keep the point of contact at rest. Hence in this case pure rolling takes place
from the begining but maximum force of friction is not exerted. So the equation of motion written above
(eqn (9), (10), (11) and (12)) will not hold good. If F be the force of friction (not maximum) then
corresponding equations of motion are

mx=mgsina — F (along the plane) ..(15)
my=0=R—-mgcosa (perpendicular to the plane)  ...(16)
and  mk’0=Fa

2 .
or me a0 =Fa (moment eqn about () .(17)

Since the point of contact is at rest
x—af=0 or x=ab .(18)
which may also be obtained by the geometrical equation x = a 6.

Using value of g from(17) in (15), we get

mx:mgsma—m.gae or X+—X=gsha

.S . .

xz;gsma =af ...(19)
On integrating and using eqn (1), we get

.5 . :

x:7gs1nat:a0 ...(20)
again integrating and using eqn (1), we get

5 : )
x:aﬁgsmat =al ..(21)

Remarks : (1) when u = 0 (pure sliding) i.e. motion on smooth plane, then from eqn (9), (10), (12)
and (13), we get

1 .
X =gt sina, X ZEgtz SIn @

9:050:0

this shows that the sphere will slide on the inclined plane as particle whose mass is equal to the
mass of the sphere. There will no rolling at all.

(ii) Application of work and energy principle :
(a) where there is pure sliding (no friction), there is no loss of kinetic energy.
(b) where there is pure rolling, there is no loss of K.E.

(c) where, there is sliding and rolling combined, energy is lost.
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3.9 Rolling and Sliding of a Sphere on a Fixed Sphere

A solid homogeneous sphere, resting on the top of another fixed sphere, is slightly displaced and
begins to roll down it, then it will slip when the common normal makes with the vertical an angle g given by
the equation

2sin(@ — a)=5sind (3 cosO — 2)

- (10
where  is the angle of friction. Also the upper sphere would leave the lower when € = cos : (ﬁ] .

Further, if both the sphere are taken as smooth, then the upper would leave the lower when

6 = cos™ (2]
3

Let O be the centre ofthe fixed sphere ofradius OD = a, whose highest point is ;). The moving
sphere of radius p was initially resting at the top of fixed sphere, so that OB was vertical and the point of

contact O was at p. After time ¢ Let point of contact be 4 and the position BQ is as shown in the fig.
3.12.

y
A
C R
o
F
DIN Y5
/510
Y/
< Q—/ |H 2 X
|
Figure 3.12
As the sphere rolls down,
arc DA =arc QA
= al=bg, then a0 = b ¢ (1)

where g and ¢ are the angles which common normal () 4 3 makes with the vertical and BQ, a line
fixed in the moving sphere, respectively. Let g and g be the normal reactions and the friction acting on the
upper sphere. Now point p describes a circle of radius OB (= a + b) about () as centre, so that its
accelerations are

(a +b) @  along poand

(a+Db)0O perpendicular to 3O

Hence equations of motion of g are
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m(a+b) 0> =mgcosO — R (along BO) (2

and  m(a+b)0=mgsind - F (perpendicularto pO) ...(3)
where m is mass of moving sphere.

Referred to ¢ as the origin, the coordinates of centre B are
(x =(a+b)sin6, y = (a + b) cosb)
sothat v’ = X* + j° = ((a + b) cos@@)2 - (— (a + b) sin@@)2 =(a +b)’ & ..(4)

Also initially (when Q was at p) p was at a height (a + b) and now its height is

(a + b) cos6 = BH, so that the distance fallen in downward direction is
=(a+b)—(a+b)cosO =(a+b)(l - cosb) ..(5)

The energy equation gives
m . . m w2
Bl (x2 + yz) + 5 k? (¢ + 9) = work done by gravity

= mg x (distance fallen) = mg (a + b) (1 — cos6)

2 2
o (arny o (“ij 0 =2g (a +b) (1 - cos0) -(6)
) 2 ) . a -
[ k* ==b* and ¢ =— 0 by eqn (1)}
5 b
h2 10g
or 6> = m (1 — cos0) (7

Differentiating (7), w.r. to ¢ and can celling 2 9, we have

h=—28

T+’ -®

Subtituting value of g2 from (7) ineqn (2), we get
10g mg
R=mg cosH—m7—(1—cost9)=7—(17 cosd —10) (9)
Now using value of g from (8) ineqn (3), we get
: 5 : 2 :
F:mgs1n0—7mgs1n0:7mgs1n9 ...(10)
Now, the sphere will slip, when the friction becomes limiting

if F=uR or F=Rtan 4 (v pu=tan i)
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or %mgsiné’:tanl.%(ﬂ cos — 10)

[using value of F and R fromeqn (10) and (9)]
or 2sin6 cosA = (17 cos@ — 10) sin A
or 2 (sin@ cos A — cos@ sind) =5 (3 cosO — 2) sind
or 2sin (0 — A)=5sind (3 cosO — 2) ~(11)
which is required result.

The upper sphere will leave the lower one, when R = 0, so from eqn (9), we have,

(17 cos® —10) =0 = 0 = cos "' (%)

which is another required result.

When both the spheres are smooth : In this case ' = 0 so that energy equation becomes

%mvz:%(a+b)92:mg(a+b)(l—cos0)

‘s 2
or 0 = ” +gb) (1 — cos6) .(12)

Now, equation ofmotion of g, along g will remains unchanged, so fromeqn (2)

R=mgcosO—m(a+b)6

2
=mg cost —m (a + b) @ +gb) (1 - cos®) (from (12)

=mg (3 cosd — 2) ..(13)

The upper sphere will leave the lower if R = 0

e, 3cosO-2-=0=0= coslg)

3.10 Unstable equilibrium between two smooth spheres

Two unequal smooth spheres are placed one on the top of the other in unstable equilibirum, the
lower sphere resting on a smooth table. The system is slighty disturbed, then the sphere will separate when
the line joining their centres makes an angle g with the vertical given by the equation

cos’@ —3cosf +2=0
m+ M i

Where )7 is the mass of the lower and s of the upper sphere.

Suppose 4 and B be the centres, ¢ and p be radii and pz, m the given masses of lower and
upper spheres respectively. Let G be their common cetnre of gravity which lies on the line of centres 4p.
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>x

Figure 3.13

When the system is disturbed, the centre p of upper sphere describes a circle of radius
AB (= a + b) about 4 as centre.

The coordinates of ¢ . of lower and upper spheres with respect to () as centre and O x and
OY as fixed horizontal and vertical axes are

A(-x,a) and  Bl(a+b)sin0 - x,a + (a + b) cosf)

Since the table and sphere are smooth there will be no horizontal force on the combined system of
two spheres. Thus the linear momentum equation in horizontal direction is

%[—Mx+m{—fc+(a+b)cos99}]:0

or — (M +m) % +m(a+b)cos 6 = K (constant of integration ) Initially, ¥ = 0=6,
when ¢ = 0, sothat K = 0

. m /
¥ = m (a +b) cos6 0 (D)

Also, the kinetic energy of the system is

:%sz +%m[(—x+(a+b)cos99)2 +(— (a+b)sin99)2}

) 5 ) N2 ) N2
Velocity of 4 = (~ x)° + O, velocityof B = [((a + b) cos6 9) + (— (a +b) sin6 9) }
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=%m(cz+b)2 [1— COSZH:| >

+m
Further the work energy equation gives

1

5m(a+ ) {1—

M+ m

Since g has fallen through a distance [(a +b)—(a + b) cos 9]]

(M + msin 6) 0% = —=5— (M + m) (1 - cos6)
a+b

Differentiating and simplifying

(M + m sin’ 9) 0 + m sinf cosH 6 = % g sinf
a

By the horizontal motion of lower sphere
MX = R sinf
where R is the reaction between the spheres

Using this, with (1), we get

_Mm_ (a +b) (cos@ 0 — sin@ 92) = R sin6
(m + M )
The spheres will seperate when R = 0, so from (5), we get

cos 0 = sinf 6°
Eliminating g2 from (4) and (6), we get

0=—5_sing
b
Again from (6) and (7)

_ gcosO
a+b

0
In the end, eliminating §? from (3) and (8)

mcos’ 0 = (m + M) (3 cos6 — 2)

or B cos’0—3cosf +2=0
M
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(3
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(5

..(6)
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Self Learning Exercise - 2

1.
2.
3.
4.

In case of pure sliding ofa sphere on an inclined plane, is there loss of K.E.?
In case of'sliding and rolling combined of a sphere on inclined plane, is there loss of K.E.?
In case of pure rolling ofa sphere on an inclined plane, is there loss of K.E.?

Write a relation between u (coefficient of friction) and 3 (angle of friction).

Hlustrative Examples :

Example 6 :
turn back in the course ofits motionif 2aw (u — tan ) > 5 pu, where y is the initial linear velocity

and w the initial angulars velocity of the sphere, 1 is the coefficient of friction and ¢ is the inclination of the
plane.

Solution :

velocity is ¢ and angular velocity w as shown in the fig. 3.14.

Figure 3.14

Initially =0, x =w, x=0,0=0,0=w e))
where g is angle turned by diametre Gp and x be distance moved by sphere.

Hence initial velocity of point of contact g, down the plane

velocity of G + velocity of g relative to (G
= (u + aw) > 0 (- motion is sliding and rolling)

Therefore the force of friction i R acts up the plane. Then equations of motion of G are

mxX=mgsina — uR (parallel to inclined )B4 indirection 0p4)  ...(2)
and my=0=R-mgcosa (perpendicular to inclined plane) ..(3)
or R=mg cosa . (4)
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A sphere is projected with an under twist down a rough inclined plane, show that it will

Let 4B be inclined plane and (G be centre of sphere of mass m and radius o. The
sphere has been projected with an under hand twist down the rough inclined plane OB 4, so that its linear



and moment equation of G is

mkzéz—uR.a

. 2
or m%azé’:—uRa ( for sphere k* =§a2)

Now putting the value of g from(4) in(2), we have
mxX=mgsina — umg cosa
or ¥=g(sina — ucosa)

Now using value of g from (4) in (5), we have
gmazéz — jua.mg cosa

_Spugcosa

ad =
or B

on integrating (6) w.r. to ¢
Xx=g(sina — pycosa)t+ C
but initiallybyeqn (1), = 0, x = u
SC=u
Xx=g(sina— pcosa)t+u

Now integrating eqn (7), we have

aé’:—gugcosoz+C2

byeqn(l), = an =W

S G =aw

- 5
a@z—Eugcosat+aw

Suppose that the sphere will cease to go down after time ¢ = ¢,

SO x =0, when t =1

-, from(8), we get

0=g(sinad — pcosa)t, +u=t =

g (u cosa — sina)

Putting this value of t in eqn (9), we get value of 4 @ at this time as

4

aéz—%ugcosa[
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g (4 cosa — sina)}

..(5)

...(6)

(7

..(8)

..(9)

...(10)



Now g @ will be positive if

Sucosau
aw — - >0
2g (ucosa - sina)

or 2aw (u cosa —sina) > 5 pu cosa

or 2aw (u —tana) >5 pu

which is the desired result.

Example 7: Arough cylinder, of mass jz, is capable of motion about its axis, which is horizontal; a
particle of mass m is palced on it vertically above the axis and the system is slightly disturbed. Show that
the particle will slip on the cylinder when its has moved through an angle g given by

w(M+ 6m)cosd — Msin0 =4mu

where p is the coefficient of friction.

Solution : Rough cylinder of mass }s moves about its axis () which is horizontal with a particle of
mass m placed on it vertically above the axis. After slightly disturbing after a time ¢, the radius O4 (= a)
makes an angle g with the vertical and £ is the force of friction which keeps the particle at rest. Referred
to O as originand ox, oy as coordinate axes the coordinates ofparticle at 4 are (x = a cos@, y = a sin6)

N

“ .
Figure 3.15
)&:—asin99,y:acos99
V=i 4= at (1)
Now the energy equation gives
1 az ) l 2 N2 .
5M79 + 5 ma 0° = work done by gravity = mga (1 — cos6)

(K.E. due to rotation) (K.E. of particle)

or  a(M+2m)0* =4mg(1-cosb) (2
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Differentiating . 7. to ¢ and dividing by 2 g, we get
a(M+2m)0=2mgsind -.(3)
The particle  describes a circle about () as centre therefore its equation of motion are
ma@® = mg cosf — R (along 40) (4

and  mal=m gsinf — F (perpendicular to 40)) ..(5)
Now, we shall find values of g and g using equation (2), (3), (4) and (5).
Using value of g2 from (2) in (4), we get

4mg (1 - cos0)
(M +2m)

}: mg cosd — R
R= &[(M+ 2m) cos@ —4m (1 - cosH)]

S [(M + 6m) cosf — 4m] ..(6)
Now putting value of g fromeqn (3) in (5), we have

) )
- [ mg sinf

=mgsinf — F
M +2m

2m’ g sin@ _ mMg

F= in@ — = in 6
or e s M +2m M +2m - = (7)
on dividing eqn (7) by (6), we have

F_ M sin 6

R (M +6m)cosd—4m - (®)

The particle will slips from the cylinder when F' = y R

Fo_ N M sin@ B
or R Y (M + 6m) cos@ — 4m H

or (M +6m) pcos® —4muy =M sin0

or (M +6m) ucos@ — Msind =4mpu
which is desired result.

3.11 Motion of a Hollow Cylinder Inside a Cylinder

A hollow cylinder of radius g, is fixed with its axis horizontal; inside it moves a solid
cylinder, of radius 5,whose angular velocity in its lowest position is given, if the friction between
the cylinder be sufficient to prevent any sliding, discuss the motion.
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Figure 3.16

The Fig. 3.16 represents vertical section through the centre of gravity g ofthe rolling cylinder. Let
the radius of fixed cylinder be a (= OD) with () as centre. Let ox, oy be axes. Let i be mass and

b (= BC) be radius of moving cylinder with centre at g. Initially ¢ was at its lowest position p and Op

is vertical Let g turnthroughan angle ¢ with vertical intime ¢ .
Since there is no sliding between the cylinders, therefore
arc DA=arc CA
=a0=bO+¢d)=(a—-b)0=>b¢

b
a->b

0= 9 and (a-b)0=b¢ (1)

where g is the angle which the line of centres makes with vertical. Let g and g be the normal

reaction and frictional force at 4 respectively. The centre g describe a circle of radius OB (= a—b)
about () as centre. Then, the radial acceleration of B = (a — b) 6” along B and transverse acceleration

of B=(a - b) 0, perpendicular to 3. So equations of motion of g are
m(a—b)0* =R —mg cosb ..(2)
and  m(a-b)0=F—mgsind ..(3)
The coordinates of g with respect to () as origin are
B(x=LB,y=0L)
or x = LB = OB cos0 =(a — b) cosf
y=0L = OB sinf =(a— b)sin

or  x=-(a—-b)sin00, y=(a-b)cosfO (on differentiating)
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i+ 3 = {-(a - b)singd} + {(a— b) cos00) = (a — b) & .(4)

So kinetic energy of moving cylinder at any time ¢ is

=i 5 ke

2

:%(a—b)292+%m§¢2 [‘-"3:%}

- % _(a PG ;b)z 92} [by eqn (1)]

:% % (a - bY 92}=%m (a - b) 0 (5)

If § = w be the angular velocity at the lowest position of the moving cylinder, then
K_E. at time of projection = % m(a— by w [by eqn (5)] .(6)

Hence by work energy equation, we have

Change in K.E. = Work done by gravity

%m(a—b)zéz—%m(a—b)zw2 =—-mg(a—->b)(l-cosH)
: 4g
0> =w’ ——=2— (1 -cos@
or w 3(a-b) ( ) .(7)

this equation cannot be integrated, in a compact form. So on differentiating eqn (7) with respect to
¢ and dividing by 2 9, we have

- —2g )
0= —3 (a-b) sin @ (8)

Now fromeqn (2),

R=mgcosO +m(a—-b)6

5 4
:mgc0s9+m(a—b) {W —jj(a—fb)(l—cosé’)} [byeqn(7)]

or R:mgcos0+m(a—b)w2—4ng(l—cos0)

=m(a-b)w + % (7 cos6 — 4) -9
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Fromeqn (3),

F=mgsin0+m(a—>b)0

_ -2 :
=mgsin@ + m (a —b) {?a(a——gb) sm@} [by eqn (8)]

1 .
or F:Emg sin @ ...(10)

Hence equations (7), (9) and (10) determine motion.

From (10), when @ = 0 = F = 0, which shows that friction is zero at the lowest point and for
any other position £ is positive.

Following are other main points of discussion :
Case-1: When the cylinder makes complete revolution :

The cylinder may roll round completely when reaction g is zero at highest point g, i.e.
when 0 = 7 so fromeqn (9)

0=m(a—b)w2+%(—7—4)

2 llg
= w :3(a——b) .(11)

Hence velocity of centre g is

11g (a - b)

=(a-b)w= 3

(onusing value of y) ..(12)

This gives least velocity of projection in order that moving cylinder may roll completely round the
outer fixed cylinder.

Case-11: When the moving cylinder leaves the fixed cylinder :

The moving cylinder, if it does not roll round completely, will leave the lower body when
R = 0, that position (value of angle @) is given by putting R = 0 in equation (9), so

ozm(a—b)wu%wcose—@
4g -3 (a—-b)w 3(a — b) w?
or cosfO = & (a )W :}0:(:05711 4_(a—)w
g 7 g

at this angle moving cylinder will leave the fixed cylinder.
Case-III: When the moving cylinder makes oscillations :

If the moving cylinder makes small oscillation about the lowest point p ofthe fixed
cylinder. Then angle ¢ is always small (6 — 0)

Hence from eqn (8), taking g for gin 9, we have
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é:_z—gg
3(a-0)

which is a S.H.M. of time period

3(a-0b)
2g

T=2rx

Ilustrative Example :

Example 8 : A homogeneous sphere of radius a rotating with angular velocity w about a horizontal
diameter, is gently placed on a table whose coefficient of friction is . Show that there will be slipping at

aw 2w
the point of contact for a time Tug’ and then the sphere will roll with angular velocity -

Solution : POL is atable and G be centre, m be mass and ¢ is the radius of sphere, which is placed
on table.

Figure 3.17

Initially the sphere is gently placed on the table, so velocity (linear) ofthe . G. G ofthe sphere is
zero while initial angular velocity is w. Let at time ¢, x be the distance described by the ¢ . in the
horizontal direction and g the angle turned by the sphere.

So initially t=0,x=0,x=0,0=w (1)
Now, the initial velocity of point of contact O

= (initial velocity of C.G.G) *+ (initial velocity of point of contact
with respect to G) =(0 + aw)

. Initial velocity of O = aw (Inthe backward direction <)

Since, initially sphere was rotating, the point of contact will slip in the direction («—) (backward)

and consequently the force of friction 1 R will act in forward (—) direction. (As shown in the fig. 3.17)
Therefore the equations of motion are

mx=uR (In horizontal direction —) -.(2)
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and O=R-mg (In vertical direction 1)
and by moment equation

mk*0 = — URa
from(3), R = m g using in(2) and (4)

mx=umg=Xx=pUug

. 5
S 5
af=-=
or SHE

Integrating eqn (5), wehave X = ugt + C,
byeqn(l),x=0,t=0=C =0
X=ugt

Now integrating eqn (6), we have

a@z—%ugt+€2

againbyeqn(1),7=0,0 = w

aw=0+C, = C, =aw
- 5
a@z—Eugt+aw

Now, the velocity of point of contact = (x - a 9)

:ugt+§ugt—aw

—(Z t—aw)
2#8

The point of contact will come to rest, when x — a6 = 0

7 2 aw
- byeqn(9), E/Jgt —aw=1t= > E

124

..(3)

..(4)

..(5)

...(6)

(7

..(8)

..(9)

...(10)



2 aw

T pg
angular velocity is obtained by putting value of  from (10) in (8)

. 5 2aw 2wa
al=——ug|l—|+aw=
2 Tug 7

Therefore after time , the slipping will stop and pure rolling will begin and at this time the

= o="" (11)

As rolling starts, suppose frictional force be 7 and then the equations of motion are

mx =F (along Table) ..(12)

2 .
and m ri 0=-F.a (Moment eqn) .(13)
Also x —a0=0=x=al, ..%=ab ..(14)

using value of g from (12) in (13)

m%azéz—m)'c'.a

=-m(ab)a (from (14)]

b

= %maézo_-_é:()
on itegrating, @ = (constant)

or 0 = — [when the rolling commenced, by eqn (11)]

which is the desired result.

Example9: A discrolls on the inside ofa fixed hollow circular cylinder whose axis is horizontal, the
plane ofthe disc being vertical and perpendicular to the axis of the cylinder, if when in its lowest position,

/8
its centre is moving with a velocity 3 g (a — b) show that the centre of the disc will describe an angle i
o [3a-b)” 9
about the centre of the cylinder in time 2—g log tan 1 + 1)

Solution : Asshown inthe fig. 3.18, let () be the centre ofthe fixed hollow cylinder ofradius a (= OB).

Let p be centre of the disc of mass m and radius DC = b (line fixed in the moving body) pC was
initially vertical when ¢ coincided with g and making an angle g with the vretical (line fixed in space) at
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time ¢. The disc rolls on the inside of a fixed cylinder so that

rolling disc

Figure 3.18
arc BA=arc CA

or ap=>b(0+ 9¢)

or b0 =(a—-0b)¢

on differentiating with respect to ¢
bO=(a-b)¢

Now, coordinates of p referred to () as origin are
(x =LD,y=0L)
x=(a—->b)sing, y=(a—b)cos¢

On differentiating

x=(a—b)cos¢ ¢, y=—(a—Db)sing ¢

2

(3 +3%) = {(a - b) cosg ¢} +{~(a ~ b)sing §} = (a~b) §*

8
since initial velocity of the centre = ?g (a - b)
- 8
ie. (a—b)¢= ?g(a—b)
3(a-byi=0

Now kinetic energy of rolling disc at any time ¢ is given by
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2
=—m(a—-b) ¢+ B 0* [by eqn (4) and k> = b? for disc}

or K_E. of disc at time ¢ = % (a - b) ¢* + % (a - b) ¢ [by eqn (2)]

% (a-b)¢ .(6)

8g

. . . 3 2
Initial K.E. of disc = " (a = b) x 3(a—-b)

=2mg (a - b) -(7)

Initially distance of p below O was (a — b) and after time ¢ it is O, , so distance risen by p in

upward direction = (OD — OL) = (a — b) — (a — b) cos¢p = (a — b) (1 — cos®)

Energy equation gives
% m(a — b)Y ¢* —2mg (a — b) = work done by gravity = — mg (a — b) (1 — cos¢)

2

or %m(a—b) ¢’ =mg (a—b)[2 -1+ cosg]

=mg(a—>b)(l+cosg)

2 ¢
., 4g .Z_SgCOSA
o ¢—3(a_b)(l+cos¢):>¢— 3(a—b)

ik .cosﬂ

or =35 %

Integrating it, we have

Jtdt: ?’(C;—(;b) J: sec%d(/b

or t = M.2logtan(£+ﬂj: M.logtan(ﬁJrﬂj
8g 4 4 2 4 4

which is desired result.

3.12

Two Dimensional Motion of a Rigid Body Under Implusive Forces

Here, in this part we shall study instantaneous motion in two dimensions ofa rigid body under

impulsive forces. While studying the effect of impulsive forces on the motion of the body the effect of finite
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forces on the body is neglacted. First we shall define impuluse of a force and impulsive force.

When very large force act ona body for a very short time then their effects are measured by their
impulses. Let 3 be the velocity of a particle of mass s at any time ¢ and g be the force acting on it in the

dv
same direction, its acceleration being di

dv

Then equation of motion is, 77 dr =F (1)

Let 7 be the time for which the force acts and velocity changes from y to ,!, then on integrating
eqn (1), we have

J:lmdv = JOTth

or m (v1 — v) = JOTth ..(2)

Ifforce f increases infinitely and at the same time time 7 decreases without limit, then R.H.S. of
eqn (2) may have a definite limit (say) 7, and as such eqn can be written as

m (v1 - v) =1 ...(3)

Now, if I be the greatest value of velocity during the interval 7 then the space described by
particle is less than 7. Butas 7' — 0 = VT — 0, From which we conclude that the particle has not

displaced during the action of the force f. In fact particle had no time to displace but the velocity has
changed from y to .

So, we observe that when infinite forces act on a body for indefinitely short time, the displacement
ofbody is zero and the force is measured by change in velocity.

Definition : A force measured by the change of velocity is called impulsive force. Alos I (asin eqn
(3)) is the impulse of this impulsive force.

3.13 Equation of Motion in Two-Dimensions Under Impulsive Forces

The equations of motion in two dimensions when the forces acting on the body are finite, are [by
art 3.2, equations (1), (2) and (9)]

d’x d dx
M = E F — | M —|= E K
FPE 1 or J1 dt] | ..(1)
d’y d dy
M = E E — | M —|= E E
A7 > or J1 dt] > ..(2)
and moment equation is

Mkzézz:(xl}g —ylFI)

d 2/ 1 1
or E(Mk 0)=>(x'F-)'F) (3
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Where (X, ¥) are the coordinates of centre of gravity. s be mass of body. When large forces act

for a very short time than we say that it is an impulse and than we shall deduce from above equations the
corresponding equations which give the initial motion of a body under the action of implusive forces.

Ifthe forces be impulsive, let 7 be the short time during which the impulsive forces act on the
body, then on integrating eqn (1), we have

el -5 {[ s

=0

T
dx T
or {M E}o => B, where ' = JO Fdt ..(4)

then £ is the impulse acting at the point (x, y) parallel to x-axis

If 4 and ;! be the velocities of the centre of gravity parallel to x-axis, just before and just after the
application of the impulsive forces, then integrating eqn (4), we have

(u - u) Z F! ..(5)

Similarly integrating equation (2), we get

{M %}H =S Ra=YF

t=0
T
where F, = J;) F, d t is the impulse parallel to y-axis

or MG -v)=> F ..(6)

where y and /! are the velocities of the centre of gravity parallel to y-axis, just before and just
after the application of the impulsive forces.

Equation (5) and (6) state that change in the linear momentum of thes mass s, supposed
collected at the centre of gravity, in any direction is equal to the sum of impulses in that direction.

Now integrating eqn (3), we have
AT =0 T T
Mo} =% {xlj Edt-y' | Fldt} =3 (x'F - y'R)
0 0
T
where B =_|. Fdt e,
0

or MK’ (w1 - w) = Z (xl E -y Fl'l) -(7)

where w and ;! be the angular velocities ofthe body just before and just after the application of
impulsive forces.

Equation (7) states that change in moment of momentum (or angular momentum) about the centre
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of gravity is equal to the sum of moments of the impulses of the forces about the centre of gravity.

Hence equations (5), (6) and (7) give the equation of motion in two dimension under impulsive
forces.

Ilustrative Examples :

Example 10 : Two equal uniformrods 4p and 4 are freely hinged at 4 and rest in a straight line on a

smooth table. 4 blow is struck at it perpendicular to the rods; show that the K.E. generated is % times
what it would be if the rods were rigidly fastened together at 4.

Solution :

Case-1: When rods are freely hinged at 4.

Let s be mass and length 2 g ofeachrod 4p and 4. Let p be the impulse applied at
end B and let u,, w, and u,, w, be linear and angular velocities of the rods 4p and 4 respectively
after the application of blow.

u, 0 U,
W T w,
B—{ | A4 ] |
» + \ G, Q+ A\ G, C
Figure 3.19

Let QO be the impulsive action at the joint 4 equal and opposite on the two rods when blow is
struck (fig. 3.19).

The equation of motion (for impulsive forces) are (forrod 4B)

m(u -0)=P-0Q (1)
aZ

and m. E (P+Q)a (2
Rod 4p started fromrest.
Similarly forrod 4C

mu, = Q ...(3)

aZ

and m 3 w,=0.a (4

Now bothrods 4p and 4 are connected at 4, therefore the velocity of 4 as found from each
rod must be the same

u —aw, = u, +aw, ..(3)

130



From equations (1)-(4), we have

P -
y =20 .(6)
m
_3(P+0)
w, = — .(7)
_9
u, = - ..(8)
30
w, = —
. ...(9)
Using above values of i, w,, u, and w, ineqn(5), we get
- 3(P
P0 3(+Q , 0, 30
m ma m ma
P
or —2P=8Q:>Q=—Z ...(10)
Now using value of O from (10), in (6) and (7), we have
W SP 9P
T T .(11)
Similarly using value of O from (10), in (8) and (9), we have
P 3P
2T T Am ..(12)

therefore K.E. of the system=K.E. ofrod 45 +K.E. ofrod 4C

1 1 :
:%(uf+%a2wf)+%(uf+§azwg) |:.'.K'E':EmV2+§mk202:|

25 p? 27P2} m[Pz 3P2}

+ — + —
16m*  16m? 16m*  16m

m
K.E. of the system = > [ >

[on using value of u,, u, and w,, w, from (11) and (12)]

7 P?
or  KE.ofthesystem=| - |= £ (say) ..(13)
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Case-11: When the rods are fastened together at 4 :

In this case rods 4B and 4 will be considered as forming one rod B, the reaction O
at 4 vanishes. u

w
5 7" _
+ \ 4 C
P
Figure 3.20

The length of complete rod g istakes as 4 @ and mass 2 m acting at the centre of gravity of the
systemat 4.

Just after applying blow at B, let i be the linear velocity and w be angular velocity ofrod gC.
The equations of motion of rod g¢ for impulsive force are

2mu =P (motionof C.G.) ...(14)
4 , :
and 2m. F4vW= P.2a (motionabout C.G.) ..(15)
P
then fromeqn (14), m ...(16)
3P
and aw= am (fromeqn (15) .(17)

1 4
therefore K.E. of the system = — (2m) (uz t3 a’ wz}

PZ
=— (byeqn(16) and (17))
m
2
K.E. of systemin this case = — = E, (say) ..(18)
m

Required relation between the K.E. in the two cases is given by

L _ j—
2 ’
[ j

7
or EIZZEZ

I

7
(K.E. when the rods are freely hinged at 4) = (Z} (K.E. when they are rigidly

fastened at 4)

which is required result.
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3.14 Change in K.E. due to action of impulse

A body of mass M is acted upon by of blow of impulse 7 at given point 4. If " and /! are the
velocities of 4 in the direction of 7 just before and just after the action of 7. Show that the change in K.E.

ofthebodyis% 1(V+71").

Let M bemass and G be centre of gravity of the rigid body. Take x -axis parallel to the direction
of 7, where [ is blow of impulse at 4. )j\

Figure 3.21

Let u, v be the velocities of C.G. G in x and y direction before the action of 7 and let ,, v, be
the velocities of (7 in x and y direction respectively.

Let w and w, be angular velocities just beforIe and just after the action of blow j about ¢ .
Let coordinates of 4 about ox, oy be (x, y) and coordinates of 4 about Gx', G y' be (xl, yl).
Then the equations of motion are
M (”1 — u) =1 (change in linear momentum is equal to (D)
sum of impulses in that direction)
M(v,-v)=0 ..(2)
and Mk’ (wl - w) =—y'I ..(3)
(change in angular momentum is equal to moment of impulses)

Now, we are given that

V = (velocity of 4 parallelto ox before impulse) = (velocity of G parallel to ox ) +
(velocity of 4 relative to )

or V= (u -y w) --(4)

Similarly V' = (u, — y' w,) ..(5)

Thus change in K.E. of body

%M(uf+vf+k2wf)—%M(u2+v2+k2w2)
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:M(ul—u).%(ul+u)+%M(vf—v2)+%Mk2 (w, —w) (w, +w)

= % I(u +u)+0+ {— é v (w + W)} [byeqn (1), (2) and (3)]
= % I = ')+ (e =y w)} = % I(V+7")  [byeqn(4)and(5)]
The change inK.E. = é (V + Vl)

3.15 Impact of Rotating elastic sphere on a fixed horiozontal rough plane

A uniform sphere, rotating with an angular velocity w about an axis perpendicular to the plane of
motion of'its centre, impinges on arough horizontal plane, to find the resulting change in its motion.

First we assume that the plane is rough enough to prevent sliding.

R
A

A
Q

Figure 3.22

Let G be centre of the impnging sphere of mass i and radius ¢. Let i and v be the components
ofthe linear velocities along and perpendicular to the plane (NL) and w be the angular velocity just before

the impact whereas ', ' be the components of linear velocity and ;' the angular velocity just after the

impact. Let g be normal impulsive reaction and g be impulsive friction, as shown in the fig. 3.22. Then
equation of motion are

m (ul - u) = — F..(l1) (changein momentum = sum of impulses
along the plane)
m (vl + v) =R ..Q2) (changein momentum =sum of impulses perpendicular

to the plane)

and mk® (w1 - w) =F.a ...(3)
(change in moment of momentum about (G =moment of Impulses)
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2 .
Where  is radius of gyration (k ? = 5 a’ for solid spher €j about axis through ¢ .

Since, the point of contact () is instantaneously reduced to rest, there being no sliding,
u' —aw' =0 -(4)
Also, if ¢ is the cofficient of restitution, then by Newton’s law of elastic collision

Velocity of separation = e (velocity of approach)

or vl =ev (5)

Now using value of g fromeqn (1) in (3), we get

mk’ (w1 —w)z —am (ul —u)
2 2 1 1
or ga(w—w):—a(u —u)
or 2(aw1—aw)=—5ul+5u
From (4)
Tu' =(5u+2aw):>ul2%(5u+2aw)=aw1 ..(6)
Also form (1),

Fzm(u—ul)zm[u—%(5u+2aw)}

=— (u—aw) (7

Now we consider following cases :

Case-1: When u = aw, then fromeqn (7), F = 0. Hence there is no frictional force, then by eqn

(1)and (3) ' = » and ' = y, which shows that ;4 and w do not change.

Case-11: Whenu < aw
Then by eqn (7), F is —ve, which show that direction of f will be opposite to what has
been shown fig. 3.22. Byeqn (1), ' > y andbyeqn(3) w' < w, therefore when the point of contact

is moving (<« direction) before impact, the angular velocity is decreased by the impact, while the
horizontal velocity is increased.

Case-1III: Whenu > aw,thenbyeqn(7), pis +ve,ie. factsin (<« direction) as shown in fig.
3.22. Thenbyeqn (1) and (3) ' <  and ' < w. Therefore the point of contact () before impact is

moving, in direction (— ), and the angular velocitiy is increased while horizontal velocity is diminished.

Case-IV: When the angular velocity w before impact is reversed. In this sign of w is changed and
we have
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u' =aw' 2%(5u—2aw) ..(8)

2m
and F = ~ (u+aw) [by eqn (7)] .(9)
Again there arise two cases :

2
(@) Ifu = 5 aw, thenbyeqn(8), 4' = 0 = w' therefore we conclude that after impact the sphere

rebounds from the plane vertically with no spin as ' = 0.

2
(b) Ifu < 5 aw  then ;' is negative and the sphere rebounds towards the direction from which it
came. Alos vertical velocity after impactisevand R = m (1 + e) v.

Ilustrative Examples :

Example 11 : Two equal uniformrods, 4p and BC, are freely jointed at g and turn about a smooth
jointat 4. When the rods are in a straight line, w being the angular velocity of 45 and x the velocity ofthe
centre of mass of BC : BC impinges on a fixed inelastic obstale at a point py; Show that the rods are

2u—aw

m] ,where 2 ¢ is the length of either rod.

instantaneous brought to rest if BD = 2 a [

Solution : Let m be mass and 2 g be the length of eachrod 4p and gC.

R u
w 1
4 . c
G | yB Glp
RN e x M

Figure 3.23

N B

Let G, and G, be the centres of gravity ofrods 4p and B( respectively. Let g be an impulsive
action between the rods at g, equal and opposite. When the rods g impings on a fixed inelastic obstacle
atapoint p, suchthat BD = x.

- G, D = (x — a), Let p bethe impulsive action due to the impingement at the fixed obstacle p.

Ifthe rods are instantaneously brought to rest, then the equation of motion ofrod 4pg is

4
m.kK>w=R.2a (Taking moment about 4) (kz = Eazj ..(1)

and equation of motion ofrod g are
mu=P— R ..(2)

2
a

m?wlzP(x—a)+R.a ..(3)
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Since the rods are connected at g, the motion of B as deducted from each rod must be the same

2aw = velocity of G, +velocity of G, = u — aw, (4
" = (u - 2aw] 5
| . ..(5)

Using values of p and w, fromeqn (2) and eqn (5) in(3), we get
m.%(u—Zaw)=(mu+R)(x—a)+Ra

or %(u—zaw):mu(x—a)+Rx ....(6)

Now using value of g from (1) in above eqn (6), we have

%(u—Zaw)=mu(x—a)+m.%aw. X

1 _
or g(u—2aw+3u)=—(3u+2wa):>x=2a2u$:BD
3 3 3u—-2aw

which is required result 7.

3.16

Summary

In this unit you have studied about equations of motion in two dimensions under finite forces and

under impulsive forces, some results of Kinetic Energy of a rigid body in two dimensions, Rolling and
Sliding friction conditions, sliding of a rod, sliding and rolling of a sphere on an inclined plane, equation of
motion of impulsive forces. Change in K.E. due to action of impulse will help the students to easily
understand various results obtained in this unit.

3.17

Exercise

1.

A roughuniformrod oflength 2 g, is placed on a rough table at right angles to its edge; ifits centre
of gravity initially be at a distance p beyond the edge, show that the rod will begin to slide when it

2

m], where u is the coefficient of friction.

has turned through an angle tan”' [

Auniformrod is held at an inclination ¢ to the horizon with one end in contact with a horizontal
table whose coefficient of friction is 4. Ifit is then released, show that it will commence to slide if

< 3sina cosa
H 1+ 3sin’«a

3
if ¢ = 45°,then u < g
A cylinder rolls down a smooth plane whose inclination to the horizon is ¢ , unwrapping as it goes,
a fine string fixed to the highest point ofthe plane; find its acceleration and the tension of the string.

2 2
, a . . k .

(Ans. : Acceleration = ——— gsina , tension = ———5mgsina)

a +k a +k
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1
Ifa sphere be projected up an inclined plane, for which ¢ = 7 tan &, with velocity J7 and an

initial angular velocity yv (in the direction in which it would rollup), and if V7 > a w, Show that the
friction acts downwards at first and upwards after wards, and prove that the whole time during
17V +4aw

which the sphere rises is m.

A solid uniform sphere resting on another fixed sphere is slightly displaced and begins to roll down.
Show that it will slip when the common normal makes with the vertical an angle given by

2sinf = p (17 cos@ — 10 cos ), where ¢ is the initial angle of the common normal with the
vertical and u is the coefficient of friction.

A circular cylinder of radius ¢ and radius of gyration f rolls without slipping inside a fixed hollow
cylinder ofradius p. show that the plane through their axes moves like a circular pendulum of

k2
length (@ — b) (1 + ?)

Four equal uniform, rods 4B, BC, CD and pg are freely jointed at B, C and p and lie on a
smooth table in the form ofa square. The rod 4p is struck by a blow at 4 at right anglesto 4B
from the inside ofthe square; Show that the inital velocity of 4 is 79 times that of £ .

Two equal uniformrods, 4B and 4, are freely jointed at 4 and are placed on a smooth table
so as to be at right angles. The rod 4 is struck by a blow at ¢ in a direction perpendicular to
itself; Show that the resulting velocities of the middle point of 4pand 4 areintheratio2: 7.

3.18

Answers of Self Learning Exercise

Self Learning Exercise - |

4.

1 1 .
See art 3.1 2. K.E. of body = 5 My + ) Mk 6

Friction is self adjusting force which tends to prevent the relative motion of the point at which it
acts.

u=0 5. F<uR

Self Learning Exercise - 11

1.

No 2. Yes 3. No 4. U =tanA

miNININ
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UNIT -4
Motion in Three Dimensions
Under Finite Forces

Structure of the unit

4.0  Objective

4.1 Introduction

4.2 Moving axes and fixed axes

4.3 Euler’s dynamical Equations of motion

4.4  Illustrative Examples

4.5  Instantaneous axis ofrotation

4.6.1 K.E. ofabody with one fixed point

4.6.2 Angular momentum about a fixed point

4.7  Vector form of Euler’s Equations of Motion
4.8  Eulerianangles g, ¢, ¥

4.9  Euler’s Geometrical Equations of Motion
4.10  Deducation of Euler’s Equations from Lagrange’s Equations
4.11  Tllustrative Examples

4.12  SelfEvaluation Exercise

4.13  Summary

4.14 Exercise

4.0 Objective

When a rigid body performs three dimensional motion, its motion is translatory as well as
rotational. In many situation a point of rigid body is fixed, in this case the body performs a rotational
motion. Here in this unit our objective is to consider such types of motion of a rigid body.

4.1 Introduction

Arigid body, free to move has six degrees of freedom. Its position, is fully determined when three
points of it are given. The nine coordinates of these three points are connected by three relations
expressing the invariable lengths of the three lines joining them. Hence in all, the body has six degrees of
freedom.

When a rigid body is moving about a fixed point, it has 6-3 =3 degrees of freedom and therefore
three constraints. In this unit we establish Euler’s equations of motion to discuss such motions of a rigid
body.

4.2 Moving axes and fixed axes

Suppose a rigid body is moving about a fixed point () of itself. We take 04, OB, OC the
principal axes which are fixed in the body and moving with the body; and 0 x, Oy, Oz be axes fixed in

space. Let 8,, 6,, 0, be components of angular velocity of the body at time s about OX, OY, OZ; and
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w,, w,, w, be components of angular velocity about 04, OB, OC respectively. Consider a vector /.

Let V., V,, V. be its components along the axes OX, OY, OZ and V,, V,, V; be its components

along the principal axes 04, OB, OC respectively. If a, 3, y be the inclinations of 04, OB, and O to
0Xx respectively. Then we have

V.=V cosa +V, cosp+V, cosy
Differentiating with respect to ¢, we get
V.=V, cosa — Vasina + V, cos § — I/Z,Bsin,B +V, cosy — V, ysiny

Let 04, OB, OC momentarily coincide with OX, OY, OZ at time ¢, then

V4 V4
a=0.  B=2. 1=
then the above relation becomes

V.=V, -V, B -Wy

X

Since f is the angle which ¢ makes with O, therefore ,B denotes the rate at which OB is
receding from (x; also the same rate is denoted by 6, and in the same sense, therefore

. YA
,3:03

Figure 4.1

Similarly y denotes the rate at which O is receding from (x; also the same rate is denoted by
0, but in the opposite sense, therefore y = 6,. Hence the above relation becomes

V.=V, = V,0,+ V0,
similarlyV, = V, - V, 0, + V; 6,
V.=V, =¥0,+V,0,
If 04, OB, OC coincide with O x, Oy, 07 attime ¢,then 6, = w,, 0, = w,, 0, = w;;

amd above three relations can be written as
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I/),=I./2_I/3W1+I/1W3 (1)

These relations establish a rule that how the components ofa vector along the axes fixed in space
can be expressed in terms of the components of the same vector along the principal axes and angular

velocities w,, w,, w, about them.

Asanexample, if 1,, h,, h, be components of angular momentum of the body about 04, OB, OC
and i, h,, h, those about OX, OY, OZ, then

x> Tty

ﬁx =ﬁl —hw, + how,
ky = Bz - h3 w, + hl W,y (2)

ﬁz=ﬁ3—h1w2 +h, w,

As another example, if J7 denotes the resultant angular velocity of'a body about an instantaneous
axis with components w,, w,, w, about O4, OB, OC, and w,, w , w_about OX, OY, OZ, then

wo=w, —w, 0, +w, 0, .0

4.3 Euler’s Dynamical Equations of Motion

Suppose a rigid body is moving about a fixed point () ofitself under the action of external forces.
Let OX, OY, OZ be axes fixed in space and 04, OB, OC be principal axes fixed in the body and moving
with the body. Let L, M, N be components of external forces along OX, OY, OZ; w,, w,, w, be com-
ponents ofangular velocity and 4, B, C be moments of inertia about OA4, OB, OC respectively.

Let i, h,, h_be the components of angular momentum about OX, OY, OZ;and h,, h,, h, the

x> Tty

corresponding quantities about O4, OB, OC, then we have from (form last article ...... eqn (2))

h.=h — hyw, +how, (1)
with two more similar relations.
Let (x, y, z) be coordinates of a particle of mass m of rigid body relative to 04, OB, OC.
Therefore position vector of this point » — 7 4 yj + zk and velocity v =i+ yj + 2k if , be

resultant angular velocity, theny — Wi +w, ]+ w, % and
- - -
V=wxr
N xf+y'j+z'l€=(wlf+w2j+w31€)x(x2+y'j+z'1€)
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X=zw, —yw,

V=AW T EW )

Z=Yyw —XW,
If 77 be resultant angular momentum, then
H=Y rxmyv
N hlf+h2f+h3l€:2(xf+yj‘+zl€)x()'cf+yf+z'l€)
h, :Z m(yz—zy)
using (2) we get
h = z m [y (yw, = xw,) —z (xw, — zwl)]l
=w, Z m(y2 +22)—w2 Z mxy—w, Z mzx
=Aw, — Fw, — Ew,
Similarly
h, = Bw, — Dw, — Fw,
hy =Cw, — Ew, — Dw,
where A, B, C are M.l.and D, E, F are P.I. ofrigid body about principal axes O4, OB, OC.
But D=E=F=0
sothat 4, = Aw,, h, = Bw,,  hy=Cw,
=  h =AW, h=Bw, h=CuW
Substituting these in (1)

h, = Aw, — (B - C) w, w,

Alsowehave h =L, h, =M h,=N
A, = (B=C)w, wy = L ~(3)
Similarly
B, —(C— A)w, w, =M (&)
Cw, —(4-B)w, w, =N ..(5)

Equation (3), (4) and (5) are known as Euler’s Dynamical equations of motion.

4.4

Illustrative Example

Example 1: A body having an axis of symmetry ¢, moves about a fixed point () under no forces

except a constant retarding couple k C about the axis . If 4, A, C are the moments of Inertia and
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w,, w,, w, the angular velocities about the principal axes 04, OB, OC. Show that at time ¢,

w, = 0 cos [At (Q_%ktﬂ’
: 1
w, =—.Qsm[ﬂ.t(.(2—§ktﬂ

w, =0 -kt
where 4 = ;1 , the initial values of w,, w,, w, being Q, O, Q) respectively.
Solution : Here components of external forces are

L=0,M=0,N=kC
and M.I.’sare 4, 4, C
From Euler’s equations of motion
Aw, —(A-C)w,w, =0

Aw, —(C— A) wyw, =0

Cw,=-kC
From (3) W, =—k oW, =0 —kt
when =0, w, =Q, LG =Q Wy, =0 -kt
Hence from (1) and (2)
WIZA_C wywy = A (2 —kt)w,
wzz—A;lC wyw, =—A(Q2—kt)w,

Let  wu=w +iw,
u=A(Q2—-kt)(w, —iw)=—21i(Q—-kt)u
o L 2i(@-k)
u
on integration and applying initial conditions
—iA 1 2
u=—-Q0e (Qt—zkt )

Equating real and imaginary parts we get the required results.
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Example2: If27 = Aw] + Bw; + Cw; and C be the moments of the impressed forces about the

instantaneous axis ofrotation and w be the resultant angular velocity, prove that

ar _ wG
dt
L (l Iwzj =wG
Also, prove that P >

where  is the moment of inertia about the instantaneous axis and 4, B, C have their usual meaning
Solution:  Giventhat 27 = Aw + Bw} + Cw:

dT . : :
therefore P Aw W + Bw, w, + Cwyw, (1)

we know that the Euler’s dynamical equations referred to principal axes are

A, —(B=C)w,wy, =L
Aw, —(C—=A)wyw, =M

(2)
Aw, — (4 - B)wyw, =N
From (1) and (2), we have
dT
P [L+(B—C) w2w3]|+w2 [M+(C—A) w3w1]l
+ W, [NJr(A—B) WIWZ]ZLW1+MW2+NW3 ..(3)

If [, m, n are the direction cosines of the instantaneous axis of rotation referred to the principal
axis, fixed in body, then

w, =Ilw,w, =mw, wy =nw and G=LI+Mm+ Nn ..(4)
Therefore (3) becomes

dT

—=w(LI+Mm+ Nn)=Gw

= ) (%)

Further, from (5)

2T = (AP + Bm* + Cn*) w* = Iw’ ..(6)

or TZ—[W2
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4.5 Intantaneous axis of rotation

When a body moves about a fixed point ¢ and at time ¢ if w,, w,, w; are the components of
angular velocities about the axes 04, OB, OC fixed in the body then direction cosines of the resultant axis

. . W W, W .
of rotation with these axes are —-, —>, —, where w = \/w? + w? + w? since, w;, w,, w; are func-
woww

tions of time ¢, therefore resultant axis of rotation changes with time. Hence at different instant, there are
different axes of rotation. On account of its temporary character, it is called instantaneous axis of rotation
or simply instantaneous axis.

Example3: A rigid body, symmetrical about an axis, so that B = 4, is supported at its centre of
gravity which is fixed and the only forces that have moments about the . ;. are equivalent to a retarding
frictional couple, proportational to the angular velocity and acting in a plane at right angles to the
instantaneous axis. Assuming C > A4, prove that the equations of motion can be integrated in the form

_CAt . o _
w=ae A.sm(;e ’“+e]

_CAt o
w,=ae Z .cos(—e’“ +e]
A

w,=ne
where n, o, o are constants, o = # and ) is a constant defined by a constant couple.
Solution : Here L = -Aw,, M = —Aw,,N = —Aw;, B = A4, so Euler’s equations of motion are

Aw, —(4-C)w, wy=— 2w, (1)

AWw, +(A4-C)w, w, =— 4w, -(2)

Cw, =—Aw, ..(3)

Integrating (3) we get Wy = n e’l% ..(4)

Using (4) in (1) and (2), we have
) Ay
Aw, —(A-C)ne "“w,=—Aw,

. Y
Aw, +(A-C)ne “w =-21w,

Putting u = w, + iw,, we get

Integrating and separating real and imaginary parts, we get
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At At
w, =aefé cos{%e /C}

7&1 . o} 7&1
w,=—ae /i sm{—e /C}
A
where ¢ 1s a constant.

T
Putting C), for ) and ¢ for - inabove equations we get the required results.

2
Also we note that
2 2 2 11
w, +w a” M)
= ( ) — 0 as t— o (- C> A)
w; m

Hence the axis of rotation is the axis of greatest moments i.e. the least axis of the figure.

Example4: Anuniaxial body is supported at its centre of mass and is rotating initially with angular
velocity w about an axis perpendicular to the axis of symmetry. Prove that if a couple of constant moment
/ 1s applied above the axis of symmetry, the instantaneous axis will describe a cone whose equation
referred to the axis fixed in the body, of which that of 7 coincides with the axis of symmetry, is

241 (¥ + ) tan” L= C(C— ) w22,
X

Solution : Initially we take w, = w, w, =0, wy =0
here B=A,L=0,M=0, N=1

Euler’s equations of motion are

Aw, —(A-C)w, w; =0 (1)

AW, +(A-C)wy w, =0 (2)

Cw, =1 (3
From (1) and (2) we get

W W

W, w,

onintegration w’ + w; = constant = w’

[ It
eqn (3) gives W, = E t + constant = E ast =0, w, = 0
Hence (1) and (2) imply
Aw, = (A4 - C)szt
C
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) [
Ay == (4= C) = wt
Putting u = w, + i w,, we get

—A_Cltiu

u =

. . i 4-C ]tV
2
onintegration ,, — , o 4C

Equating real and imaginary parts.

C_A 2
W, = W CoS [t
24C

. C_A 2
w, = W sin [t
2AC
W, W;

. . . w .
If ' be the resultant angular velocity, d ¢ s of instantaneous axis are —-» —» —-, for which we
woowow

will write x, y, z to find the equation of cone.
Now w” =w’ +w +w; =w" +w;,

4&_(1—1412 (C_A)C 2 (C_A)szz e

tan = t = W, = —-—Ft -
w, 24C 241 241 W'
2 2 w4+ w? 2 w’
But x> +)y’=—"1—2 je. W'=
ul y W'Z 1.€ x2+y2

Hence the locus of instantaneous axis is

tan~ 2 = (€-4)C z° W
X 241 (x2 + yz)

or  241(x +y)tan L=C(C- 4) w2
X

4.6.1 (a) Kinetic Energy of a body with one point fixed

If (x, y, z) be coordinates of a particle of mass m referred to 04, OB, OC with () as fixed point,
we have

velocity components X = zw, — yw,, Yy =XW; —ZW,, Z=yw, — X W,
K.E. TZ%Z m (¥ + 3 +2)
1
=3 > m [(zw2 — yw3)2+ (xw, — zwl)2 +(yw, - xwz)z]l
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If O4, OB, OC be principal axes at (), then
D=E=F=0

T:%(Awf+Bw§+Cw32)

1
=3 (A wi + Bw; + Cwi —2Dw,w, —2Ew,w, —2Fw1w2)

4.6.2 (b) Angular Momentum about a fixed point

If 7 is angular momentum about the fixed point ), then
Femixi=3 mix(ix?)
-y m[rz;_(:.;)ﬂ
=y m[(x2 +y° +zz)(wlf +w2f+w3/€)

—(wx+w,y+wz) (xf+yj'+z/€)]l

=(Aw1—Fw2—Ew3)f+(Bw2—Dw3—FWI)JA'+(CW3—EWI—DW2)I€

If 04, OB, OC be principal axes of the body at (), then

— S

H= Awlf + szf + Cw, k
i.e. components of the angular momentum about 04, OB, OC are

H =Aw,, H,= Bw,, H; = Cw;,

4.7 Vector form of Euler’s equations of motion

If 77 be the angular momentum of the body relative to the fixed point ¢ and G be the sum of the

moments of the external forces about () then equation of motion of the body is

ai _ ¢
dt

or d—H+I7V><ZI:Z?
dt

4.8 Eulerian angles g, ¢, v

Suppose a rigid body turns about a fixed point (). In order to know the position of the body in
space, at any time ¢, with reference to initial position, three angles g, ¢, ¥ are choosen to define the
position of the principal axes and therefore the body itself. The angles g, ¢,  are called Eulerian angles.
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To understand the concepts of g, ¢, ¥ construet a spherical surface of radius unity with centre at
O- Let the axes Ox, OY, Oz which are fixed in space, meet the spherical surface in the points x, y, z.
At any time ¢, when the body is rotating about (), let the moving axes meet the surface in the points
A, B, C, then g is angle between (7 and O(C, ¢ is the angle between the plane zQ(C and the plane
CDA and y inthe angle between the plane 7z and the plane z0x .

Z

Figure 4.2

To express ¢ and ¥ more precisely, draw a line Qg perpendicular to the plane 7. Normals
to the planes C04 and zOx are respectively OB and Oy .

Since the angles between any two planes is the same as the angle between their normals, therefore
we observe from the figure that, ¢ is the angle between Ok and OB. v is the angle between Ok and

oY-

4.9 Euler’s Geomatrical Equations of Motion

Let a rigid body be moving about a fixed point ¢ on it. If w,, w,, w, be the component angular
velocities about the principal axes OA4, OB, OC, to determine w,, w,, w, in term of Eulerian angles g, ¢,
w and g, ¢, v .

Let 0X, OY, OZ be the axes fixed in the space. Suppose 0, ¢, v be the Eulerian angles
determining the positionofthe bodyattime ¢. |7

Figure 4.3
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Angle g is in zO(C plane therefore the angular velocity ¢ is about the line Qg

which is normal to this plane. The line Qg being perpendicular the both ()7 and O lies in the
XOY plane as wellas in 4R plane.

Angle ¢ isin 4OB plane, therefore angular velocity ¢ is about 9C which is normal to the plane
AOB-

Angle v isin YOy plane, therefore angular velocity y is about ()7 whichis normal to the plane
XOY -

Now we find the direction cosines of lines Ok, OC and 7 with respect to the principal axes
OA, OB, OC.

Since QK is perpendicular to O and is in 4OB plane making angle ¢ with Op therefore

direction cosines of QK are sin¢g, cos¢, O and 4. s of OC areclearly 0, 0, 1. To find the direction 07

draw a line Ops perpendicularto O inthe plane zC, Theline Oz, invirtue of its being in ZOC plane,
is perpendicular to O and by virtue of'its being perpendicular to O, lies in 4 OB plane. Thus both O
and QK lie in 4B plane and are mutually perpendicular, and as Qg makes the angle ¢ with OB,

therefore )/ must make an angle ¢ with 0 4.
Now the direction cosines of ()7 about the co-planer lines O and Qps are cos 0, sin Q.
But the direction cosines of (ps about OA4, OB are
cos ¢, — sin ¢
. direction cosines of ()7 about 04, OB, OC are

— sin @ cos @, sin @ sin ¢, cos O

Hence components of ¢ about O4, OB, OC are 0 sin ¢, O cos¢, O the components of ¢ about
04, OB, OC are 0, O, ¢ and the components of y about 04, OB, OC are

—  sinf cos@, v sinf sing, y cosd

Now, if w,, w,, w, denote the components of angular velocities about the principal axes
OA, OB, OC respectively then from above results, we have

w, = 0 sing — y sin@ cos¢
w, = 0 cos¢ + i sin 0 sin ¢
Wy = ¢ + v cos@

These are called Euler’s geometrical equations of motion.

4.10 Deduction of Euler’s Equations from Lagrange’s Equations

Suppose a rigid body is moving about a fixed point () under the action of external forces. Let
04, OB, OC be principal axes at () and at time ¢. 0, ¢, y be Eulerian angles which are the generlised

coordinates of the body. Let w,, w,, w, be angular velocities and 4, B, C are moments of inertia of the
body about 04, OB, OC respectively. The kinetic energy 7 is given by
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T = % (4w + Bw;, + Cw})

The Euler’s Geometrical equations are
w, = 0 sing — y sin@ cos¢
w, = 0 cos¢ + y sin0 sin ¢
Wy = ¢ + v cos@

Hence kinetic energy 7 can be regarded as the function of the generalised coordinates@, ¢, v
and generalised velocities 0, ¢, v/

dT _ 0T Jow N oT Jw, N oT Jw,
Ap Ow, ¢  Ow, A  Ow, ¢

= or .0+ or .0+ or 1 =Cw,
ow, ow, ow,

dT _ JT ow, N oT Jw, N oT Jw,
o9 ow, 09 Ow, Idp Ow, ¢

=Aw, (9 cos¢ + y sinf sin¢) + Bw, (— 0 sing + i sin0 cos¢) +0

=Aw, w, — Bw, w,

=(4 - B)w, w,
If | be the work function of the system and ) be the moment of external forces about axis OC,
then
aJ_y
o¢

Lagrange’s ¢ equation is

d [ﬁT] oT _ oU

dt\6¢) o9 o4
d
ot E(CM@)—(A -B)w, w, =N

or Cw, —(4-B)w, w, =N
This is third Euler’s Equation.
Similarly we can duduce other two Euler’s equations.
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4.11 Illustrative Examples

Example5: Show that in the free motion of body with an axis of symmetry (C) aboutits C, G. If n
denotes the spin about the axis ¢ and ¢ denotes the Euler’s third angle then

Ap=(4-C)n.

Solution : Here 6 = constant and § = (

From Euler’s first two geometrical equations of motion we have by squaring
sin’ Qy° = w + w;

=  sinf y =,w +w, =ntani

From Euler’s third equation

cosl w=n-—¢

tanf = ntani/(n - ¢)

A )
but we have  tanf = C tan i

ntani A .
-=—tan i
n—¢
Sn=(n-9) Cn=a(n-9)
or p or n=A\n
Ap=(4-C)n

—

dT
- G where G is the

Example 6 : Prove that for a rigid body moving about a fixed point i =

I

1 » -
moment of external forces about fixed point and 7" = 5 H . w where g is the angular momentum about
the fixed point.
Solution : Here 7 = Wi +w, )+ wk

G=Li+M]}+Nk
[_‘}:{AWI—FWZ ~Ew,}i +{Bw,~ Dw, — Fw,} ]

+{Cw,— Ew, - Dw,} k

1
T:E{Awf+sz2 +Cw32 -2Dw,w, =2Ew,w, —2Fw1w2}

152



I_:I. I7V={AWZ—FW2 — Ew,} w, + {Bw,— Dw, — Fw,} w,
+{Cw,— Ew, — Dw,} w,
=2T

dr

o =(Aw, W, + Bw,w, +......)

The equation of motion is

aH_c o HpeE=¢
t t
VV.d—ilsz.é (1)
L4l . . . . . .
W.WZWI(AWI—sz—Ew3)+w2(Bw2—Dw3—le)
+w, (Cw, — Ew, — F,)

_dr
di

AT - -
using (1) E:W'G

Example 7: A body turns about a fixed point and
2T = Aw; + Bw, + Cw; —2Dw, w, —2Ew, w, —2Fw, w,.

Show that, if the axes are fixed in the body, but are not necessarily principal axes, Euler’s
equations of motion ~ may be written in the form

d(or orT N orT
dt \ ow,

with two similar expressions.

Solution : Ifthe axes are not the principal axes the equations of motion are
dh,
—h,w, +hywy, =1L
di 2 Ws 3 W3 etc
oT
where i = Aw, = Fw, — Ew, =_o'°
Wi

or oT
Similarly /> = o hy = P
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Substituting the values of 4, h,, h, we have

d 0T oT orT
- Wy + Wy = L etc
dt \ ow, ow, ow,

similarly we can find other two equation of motion

4.12 Self Evaluation Exercise

1. What do you mean by moving axes?

2 Define isntantaneous axis of rotation?

3. Write Euler’s Equations of motion?

4 What are the Euler’s angles?

5 Write dwon the Euler’s geometrical equation of motion?

4.13 Summary

In this unit we have discussed the motion ofa rigid body about a fixed point (). The fixed point
lies in the body. We have derived Euler’s dynamical equations of motion. To determine the position of rigid
body in space three angles 6, ¢, v are defined, these are called Eulerian angles. The relations between

angular velocities 9, ¢, v and w;, w,, w;, called Euler’s geometrical equation of motion are also stablished.

4.14 Exercise

1. A rigid body possesses an axis of symmetry (¢ and moves about () under a retarding couple
A Cw, about OC ; A beinga constant, 4, 4, C be principal moments of inertia at () and

w,, w,, w, being the angular velocity components about the principal axes, the third axis being

OC - Initially the body is given an angular velocity y about a line inclined at ¥ to (. Prove that
ultimately the instantneous axis will be perpendicular to OC.

2. A body is moving about a fixed point () and has all its moment of inertia at () equal. If, ¢, v be

the Eulerian coordinates of the axes 04, OB, OC fixed in the body. Show that the angular
moments about the axes fixed in space are respectively.

h, = A (- siny § + sin6 cosy §)

h = A4 (cosy/é + sin @ siny ¢)

y

h, = A (¢ cosb + )

miNININ
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UNIT -5
Motion in Three Dimensions
(Under no Forces)

Structure of the unit

5.0  Objective

5.1 Introduction

5.2 Invariable Line

5.3  Integrals of Energy and Angular Momentum
5.3.1 Locus ofInvariable Line

5.4  lllustrative Exmaples

5.5  Motion of Symmetrical bodies under no forces

5.6.  llustrative Examples

5.7  Motion under impulsive forces

5.8 Illutstrative Examples

5.9  SelfEvaluation Questions

5.10  Summary

5.11 Exercise

5.0 Objective

In this unit we will consider centain important situation arising in rigid body dynamics, where the
Euler’s equations are applicable and there is, no force acting on the rigid body. This type of motion ofa
rigid body is called force free motion or simply free motion. In this motion the centre of gravity of rigid
body is either at reast or moving with a uniform velocity. Consequently we need to consider only the

rotational motion of the body.

5.1 Introduction

When a rigid body turns about a fixed point () under no forces, the angular momentum about
every axis through () fixed in space is constant. Thus the rigid body has a constant angular momentum
which we denote by g . The axis of g is fixed in space and is known as Invariable Line. A plane
perpendicular to it is called an invariable plane.

Under force free motion of rigid body the kinetic energy is also constant. In this unit we consider
the problems on the motion ofrigid body under no force condtion.

5.2 Invariable Line

Suppose a rigid body is moving about a fixed point () under no forces. Let O4, OB, OC be the
principal axes at O; w,, w,, w, the angular velocities and 4, B, C the moments of inertia of the body

about these axes. Then components of angular momentum about these axes are 4 w,, Bw,, Cw; and the
resultant axis of these components is called Invariable Line.
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5.3 Integrals of Energy and Angular Momentum

Let us now consider above system regarding the rigid body then Euler’s equations under not

forces are

Aw, —(B-C)w,w, =0 (1)
Bw, —(C—-A4A)w,w, =0 (2)
Cvw, —(4-B)yww,=0 ..(3)

Multiplying (1) by w, , (2) by w, and (3) by w, then adding we get
Aw,w, + Bw, w, + Cwy, W, =0
on integration (A wl + Bw; + C wf) = constant ..(4)

— 2T = constant

where 7 is the kinetic energy and is constant.
This is becuase there in no external force to do the work, so the Kinetic Energy of the body
remains constant.

Equation (4) is called integral of energy.
Again multiplying (1) by Aw,, (2) by Bw,, (3) by Cw, then adding we get

A wow, + BPwyw, + CPwyw, =0
onintegtration4> w; + B’ w; + C* w; = constant ..(5)

or H = constant

where g is the angular momentum and is constant.
This is due to the fact that the moment of external forces is zero as there is no force, so that angular
momentum remains constant.

5.3.1 Locus ofInvariable Line :

On dividing (4) by (5), we have
A w + B*w; + C*w; _iz
Aw] + Bw; + Cw; 2T

H> (A w? B*w? (C*w?
AW + B*w; + CPwi = L+ 2 4 2

27\ 4 B C

2 2 2
or Awfl—]{ +BN§1—]{ +C%@1—‘H =0
2AT 2BT 2CT

Let (x, y, z) be coordinates of any point on the invariable line. Since it passes through ¢ and has

direction cosines proportioanlto A w,, Bw,, Cw,

X yo__z _,

Aw, - Bw, Cw,
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Substituing these in (6) we get

2 2 2
x’ l—H +y° l—H + z° l—H =0
2AT 2BT 2CT

which is the equation of a cone with vertex at ().

Since quantities 4, B, C, H, T are constant and 4, B, C are constant with respect to body,
hence the above cone is fixed in the body and it is called invariable cone.

5.4 Illustrative Examples

Example 1: Prove that, ifa rectangular parallelopiped (edges 2 a, 2 a, 2 b) rotates about its centre of

gravity, its angular velocity about one principal axis is constant and about the other principal axes is
periodic, the period being to the period about the first mentioned principal axis as

(b2 + az) : (b2 - az)

1 2
Solution : Here 4= 3 M(a2 + bz) =B C= 3 Ma’

L=M=N=0

Euler’s equations of motion are

AV, = (4= C)w, wy =0 (1)

B, — (C = A) wy w, =0 o))

Civ, — (A — A)w, w, =0 e
From (3)

w; = n (constant) (say)

Again, from (1) and (2)

(a® + b*) i, = (B> — ) nw, (4
(a® +b*) o, == (B> —a®) nw, ..(5)
(a* +6*) ity == (b —a*) nPw,

) p-at)

which is charctristic of S.H.M.

. 2 27 (@ + b
The periodic time 7" = ; (bz ~ az)j(az N bz) = " (22 _ az))
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2

The period of first I, = 7

Hence T:7T, =(a’ + b*):(b* - a*)

Example2: A body moves under no forces about a point (), the principal moments of inertia at O
being 6 4, 3 4 and 4. Initially the angular vleocity of the body has components w;, = n, w, = 0, w; = 3n
about the principal axes. Show that at any later time

w, = — /5 ntanh /5 nt

and ultimately the body rotates about the mean axis.
Solution : Here A=64,B=34,C=A4;L=M=N=0
Euler’s equations of motion are
Aw, —(B-C)w, wy; =0
Bw, —(C—-A)w, w, =0
Cw, —(4-B)yw, w,=10

Substituting for 4, B, C, we get

3w, =w, wy (D)
3w, ==5w, w, -(2)
Wy =3w, w, ..(3)
Dividing (1) by (2)
W
W, Sw,
= Swow +w, w, =0
Integrating 5w +w; = a,where q is constant.
Initially w, = n, w, =0 Soa=5n
Swl+wi =5n" (4

Dividing (1) by (3), we have

3w, wy

= or9w, w, —w,w, =0
1 1 3 3
3w,

W;
Integrating 9w’ — w; = b, where p is constant

initially w, =, w, =3n .. b=0

2 2
Ow; —w; =0
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= 3W1 =w, (5)

From (3) 3w, = — Sw,w, = — 15w; using(5)

.2 2

or W, =w, —5n
df=— 9w
or 5 2 2
n-—w,

1 w
i iont=——+—tanh' | —=|+C
on ntegration n \/g [n /—5)
initially ¢ = 0, w, = 0, ~C=0

Hence w, = — n+/5 tan A (nt\/g)

e —e "
As t — oo, tanh(nt\/g)—)1 [ tanhx=—x — —)lasx—)oo)
e’ +e
w, = —n5 as [ —> o0
From (4) and (5) we get

Wl = 0, W3 = 0
Thus ultimately w, = 0, w; = 0but w, = —/5 n

i.e. the body rotates about mean axis.

Example 3: A lamina rotating with uniform angular velocity » about an axis through its centre of gravity
perpendicular to its plane has an additional angular velocity A n impressed upon it about the axis of least

B+ A4
moments ; (4 < B < C) where X = B4 Prove that at time ¢, its angular velocitiesare A n sechnt,

An tanhnt and n sechnt . Also show that it will ultimately revolve about the axis of mean moment.
Solution : Axis of least moment is ()4, since 4 < B < C
. initial conditions are w, = An, w,= 0, w;=n

Euler’s equations of motion under no force are

Aw, —(B-C)w, w, =0 (1)

Bw, —(C—-A4A)w, w, =0 -(2)

Cw, —(4-B)w, w, =0 ..(3)
For lamina C = A + B, therefore above equations become

W= —w, wy ...(4)

W, =w, w, ..(5)
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Py =—w, w, ..(6)

Dividing (4) by (5), we have

W _m . .
W, w, or ww, +w, w, =0
Integrating, w? + w; = a, where ¢ is constant
initially w, = An, w, =0, a=An"
wi +w; = A0 (7

Dividing (4) by (6), we get

W Ws

A, w, O w W, — A w; W, =0
Integrating,  w; — Aw; = b where p is consntant
Initialty w, =An, wy=n ~b=0
Hence w = 2> wi or w, = Aw,

Now fromeqn (5) W, = wyw = % Wy

1
= (An* =), using (7)

On integration, we get

dw
t:ﬂ“J’lznz_zwz
2

=A.Ltanh*1&+C

n An
Initially t =0, w, =0 ne=0
z‘=ltanh’1 el
n An

w, = An tan h nt

consequently from (4), we obtain

w. = Ansechnt
1

w, =— w, = nsechnt
A

Thus at any time; angular velocities are

w, = A nsechnt, w, = A ntanhnt, wy = n sechnt
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. . 2
Now Limit sec hnt = Limit —————=10
t— © t—> © e +€

nt nt

e —e
and Limit tan h n t = Limit = 0

t—> © t>o e + e
Thus ultimately the values of w,, w,, w, are O, A n, O i.e. the body will ultimately rotate about

mean axis.

Example 4 : A rigid body rotates freely about its centre of mass under no forces. The body is rotating
with angular velocity w about the axis of greatest moment ¢ when a small angular momentum Ap is
applied about the axis of least moment 4. Show that the instantaneous axis moves in the body with period

2 , (C-B)(C-4) ,
QO = w
o , where 1B .
Solution : Initially w; = w, w, = p (since initially 4w, = Ap ) Euler’s equations of motion, under

no force, are

Aw, —(B-C)w,w, =0 (1)
Bw, —(C—-A)w,w, =0 (2)
and Cw, —(4-B)ww,=0 ..(3)

Dividing (1) by (2), we have

Aw, _ [C-B)|w
Bw, C—-4) w’

or A(C—-A)w,w,+B(C—-B)w,w, =0

Intigrating A(C — A) w; + B(C — B) wi = a (constant)
mitally w, = p, w, =0 na=A(C—-A4)p’
Hence 4 (C — A)w; + B(C - B)w; = A(C— A)p’

both sides are positiveas C > B > A4

This relations shows that when p is small, w, and w, both must be small, so the product of w,, w,
may be neglacted, and then, Euler’s third equation reduces to

w; =0 or w, = constant = w (initial)

Differentaiting (1) and taking w, = w, we have

Av'{/1=—(C—B)ww2=— w’w, by (2)

oo C-B(C-4)
or 1 4. B 1
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.. 2 —
or W= — Q% w, where Q" = < B w
H 0d = =2
ence period =~

ExampleS: A rectangular parallelopiped whose edges are a, 2 a, 3a can turn freely about is centre

45 .
and is set rotating about a line perpendicular to the mean axis and making an angle €0s 1 g with the least
axis. Prove that ultimately the body will rotate about mean axis.

Solution : Let w be the initial angular velocity then

5 (5
Initially w, = wcos@ = ] W,ow, =0, w; =wsinf = g was 0 = cos™ (g)

P>+ (2a) +Ba) 13 ,

Here = = =—a
3 3 3
c+ad Ba) +d 10 ,
B = = =—2a
3 3 3
Co a+b a* + (2a) 54

3 3 3

There is no external force, therefore Euler’s equations of motion are
Aw, —(B-C)w, w, =0
Bw, —(C—A4A)w, w, =0

and Cw,-(A4-B)w, w,=0

Putting the values of 4, B, C, we have

13w, =5w, w, (D)
10w, = - 8w, w .(2)
and  Sw, = 3w, w, ..(3)

Dividing (1) by (2), we have

Bw, _ 5w, ' '
104, = 8w, or 52w w, +25w,w, =0

Integrating, 52 w; + 25w; = a , where g is constant

Initiall w—éw 0 'a—ﬁw2
A B BT

325
Hence 52 le + 25 sz = E W2 (4)
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Dividing (1) by (3), we have

13w, 5w,

5w3 - 3W1 or 39W1 Wl - 25 W3 W3 = 0

on integration 39 w; — 25 wi = b where p, is constant

39
initially Wy = =W, wy = £W, ~b=0
8 8
Hence 39w12 — 25w32 =0
using (5) in (2)
10w, = — @ w;
8+/39 (325 ) 2)
= L[ 22y - 25
5v52 \ 16 "2 by (4)
LB o)
5 16
on Integration 431 - —10 J' 13 dw,
> (wz - 25w22)
16
4 5w
=-10 ——— tanh™" 2
54/325w 325
4
20w
=— tanh~ ———
13w V325w
or V39w t=—tanh' 20w,
2 V325w
w 325 V39
or Wy, = tanh | —— wt
20 2
. 13 tan @ wt
4 2
V39
Butwhent_)oo’tanh |:T wt|—1 oW, = — W;/E

and from (4)and (5) w, =0, w; =0
Hence the body ultimately rotates about the mean axis.

163

(5



Example 6 : A rectangular lamina 43Cp in which BC = /2 4B, canturn freely about the middle
point O of 4p. Initially it is set rotating with angular velocity () about a line through () perpendicular to
AD and making a angles 3()° with the plane of the rectangle. Show that after time ¢, the components of

1 1 1 1
angular velocity ofthe rectangle about the principal axis at () are ) Q3 sech ) Q1 ) Q43 tanh 5 Q¢
d l Q sech l Qt
and - 5 @

Solution : Let G be the centre of gravity of the lamina and ) be the normal to the plane of
lamina.Then OG, OA, ON are the principal axes at (. Initially the lamina is rotating about a line Qg
perpendicular to 4 and making an angle 3()° with the plane ofthe lamina. Thus O is inthe plane NOG

to which (4 is normal. So direction cosines of QK are cos 30°, cos 90°, cos 60°

K
N A / B

60
30°

Figure 5.1
N

1.e. 7, 0, E

Initially the lamina is rotating about K, so that initially

NG I
WIZTQ’WZZO’M%:EQ

Euler’s equations of motion under no forces, are
Aw, —(B-C)w, w, =0
Bw, —(C—A)w, w, =0
Cw, —(4-B)w, w, =0

Let AB=2a .. BC=2+2a

2

2
A = M.I. of lamina aboutOG = 3 Ma

1 4
B = M.I. of lamina about O4 = 3 Ma* + Ma* = 3 M a?

C = M.I. oflaminaabout ON = 4 + B =2 M a>

Substituting the values of 4, B, C inthe Euler’s equations we have
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W= —w, w,
W, =W, w,
3w, =—wy w,

Dividing (1) by (2) and intigrating, we get

w; + w, = a (constant)

V3 .'.a:%Q2

Initially w, = - Q,w, =0

3
w12+w22:ZQ2

Dividing (1) by (3) and integrating , we get

w; =3 w; + b (constant)

3 1
IQ w, =—Q sothath =0

But init; _ N3
ut initially w, 7 )
wi =3w; or w1=\/§w3
: . L
Equation (2)is W, = W3 W = f wi by (5)
Zf(ZQ —Wf) by (4)
dw
onintegration, ! = V3 _[ 3 :
~ QZ _ WZ
4 2
=3 tan b 22 4 C
co )
—Q
2
Initially, t=0,w,=0 c=0
t= 2 tant | 2
Q NEX)
or W2=—3Qt h(thj
2
, 1
using (4) w,=—Qsech (E Qtj

(1)
()
-(3)

(4

(5



1 1 1
from(5) Wy = f w, = E Q) sec (E Qt)

Example 7: A uniform elliptic disc is free to move about a focus and in set rotating with initial angular
velocity () about an axis perpendicular to the corresponding latus retum and making an angle g with the

A
plane ofthe disc. If cos 26 = 3 where 4, B are moments of inertia of the disc about the major axis and

latus rectum respectively. Prove that after time s the component angular velocity ofthe disc about the

major axis will be
B-4 —
sech | Qt B-4
2B 2B |
Solution : Let § be afocusand g7, the semi latus rectum and §¢C normal to the plane ofthe disc.
L 1
S 0 y

C
Figure 5.2

Thus S4, SL, SC are the principal axes at §. Suppose initial axis of rotationis §7 which is given

perpndicular to §7 , therefore it lies in the plane 54 making angle g with §4, so that direction cosines of
S7 are

cos O, cos 90°, cos (90° - 9), i.e cos®, 0, sin@
. Initially w, = Qcosf, w, =0, w, = Qsind
Euler’s equations of motion under no forces are
Aw, —(B-C)w, w, =0
Bw, —(C—A4A)w, w, =0
Cw, —(4-B)yw, w, =0

Forlamina C= A4 + B

Above equation becomes

W, o= —w, w, ..(1)
W, =w, w, ..(2)
B+4 .

B4 Wy == W W, or A2 W, = —ww, ...(3)
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B+ A4
A=
where B_ 4

Dividing (1) by (2) and integrating we obtain

w; + w, = a (constant)
Initially w, = Q cos 8, w, =0 . a=Q" cos’ 0

we +w; = Q% cos’ 0 (4
Again dividing (1) by (3) and integrating

w; = A>w] + b (constant)

Initially w, = Q cos@, w; = Qsind
b=0Q? (cos2 6 — A*sin’ 0) =0 { cos 260 = é}
B

Hence w’ = 2> w; ..(5)
Now equation (2) is

1

Mo =W W = 2 " using (5)
= l (Qz 2 — 2) .
= P CoSs w; usmg(4)
onintegration ! = ﬂ“j 3 dzwz - = A tan A~ W, L C
® Q" cos” 0 — w, Q cosO Q cosO
Imtlallyt:(), W2:0 -'-CZO
t= tan b~ —22
Hence O cos0 O cosd
Q
or w, = Q cosf tan h ( cos® t)
Then from (4), we have
Q
w = Q% cos’ @ —w; = Q7 cos’ 0 — Q° cos’ 6 tan h’ ( C;SQ t)
Q
w, = Q cos 0 sec h ( cos® t)
= Q - sech| Q¢ - ag — €0s 0 = _|——

167



Hence from (5)

1 B-4 A+ B B-4
Wy =—w = Q - sech|Qt |[——
A B+ A4 2B 2B

=Q B_Asech Q¢ u
2B 2 )

Example 8 : The principal moments of inertia of a body at the centre of mass are 4, 3.4, 6 4. The

body is so started that its angular velocities about the axis are 3 n, 2 n, n respectively. If in the subsequent

motion under no forces w,, w,, w, denote the angular velocities about the principal axis at time ¢, prove
that

n
w, = 3w, :fsechu and  w, =3ntanhu

where # =3nt + % log5.
Solution : Euler’s equations of motion under no forces, are
Aw, —(B-C)w, w, =0
Bw, —(C—A)w, w, =0
Cw, —(4-B)w, w, =0
Here 4=4,B=34,C=64

Substituting in the above equations, we have

W, == 3w, w, (D)
3w, =5w,w, ..(2)
3w, = —ww, ...(3)
Dividing (1) by (3)
W, 3w,
3w, :71 or w, W, = 9w, W,
On integration
w =9w. +a, a 1s a constant
Initially w, = 3n, wy = n, Sa=0
wh =9w;  or w, = 3w, .(4)
Dividing (2) by (3)
X—z=—5x—z or Wy, =— 5w,
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Example 9 :

Solution :

On integration

w; =—5w; +b, b isa constant

Initially w, =2n, wy, = n,
Hence w] =— 5w; + 9 n’
Now equation (2) gives

3w, =5w, w,

=15w; by (4)
= W, = 5w =9n° —w; by (5)
i z‘—itanh’1 N i
Integrating, 35 35 , ¢ 1sa constant
Initially t=0,w,=2n 3n
11 3+2 1
=-——1lo =——log+/5
302 T3-2 3¢
1 W, 1
Hence t = —tan b~ —2 — — log +/5
3n 3n 3n
or 3nt +log /5 =tanh” %

~b=9n’

.'.C:—Ltanh’12
3

or w, =3n tanh(3nt+log ﬁ)

=3ntan hu, where i = 3n¢ + log /5

which is required result.

w, = F cosx, w, = F sinx

wy = 5= F{(1 - esin’x) /(2 - &)},

where £ isa constant, equalto 2 /2 where ) is the initial angular velocity along major, minor axis
and normal to its plane.

1 1
A=—Mb B=-Mdsd*C=4+B=—M
Here 4 , 4 , é
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(5

An elliptical lamina acted on by no external forces is set rotating about a line through its
centre which makes equal angles with the major and minor axes and with the normal to its plane. Prove

that, if ¢ be the acceutricity of the ellipse, and w,, w,, w, the angular velocities about the major and
minor axes and the normal to the plane. then



Euler’s equations of motion under no forces are
Aw, —(B-C)w, w, =0
Bw, —(C—-A4A)w, w, =0
Cw, —(4-B)w, w, =0

Putting the values of 4, B, C, we get

W= —w, w, ..(1)

W, =W, w, -(2)
b -a’

Wy = B+ W, W, ...(3)

Dividing (1) by (2), we get

W W . D=0
—=-—= woW, + W, W, =
W, W,

On integration

w; + w; = F’ (constant)
Let  w, = Fcosx, w, = Fsinx
Initially w, = A, w, = A, wy; =4 - F= A2
Dividing (2) by (3) we have

W,

b* +a w,

. 2 2
W, b —a w,

2 2
. b"—a .
or Wy W, = bz N Cl2 W, W,
On integration
b2 2
wi = 5 5 wi+ C
b” +a

Initially w, = 1, wy = 4
b -a’
C=X|1-
[ b2+a2]

2 4*
=)
[bz + a2]

Putting the values of ¢ and w,
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wy = Ry (Fsinx)2 + F? X { b= 4 (1 B ez)}
= —a’e F*sin*x + F* a’
a2(2—e2) a2(2—e2)
_ 1 —e’sin’x

-
w, =F \/{(1 — ¢’ sin’ x)/(2 - ez)}

5.5 Motion of Symmetrical Bodies under no forces

A solid of revolution whose principal moments at the centre of inertia are 4, 4, C (C > A) is set
spinning with angular velocity w about an axis passing through the centre ofinertia and making an angle ;
with the axis of figure. Prove that the instantaneous axis of rotation describes in the body a right cone of

2w Aseci
semivertical angle ; in the period ( C— A) v and that the axis of figure discribes a right cone in space of

A .. ) 2r
semi vertical angle 9 where tan 6 = E tan 7 in the period E’ where Q sinf = wsini or

w . 2 2
Q:Z\/Azsmzz + C? cos?i .

Here B=Aand L=M=N=0

Initial conditions are w; = wcosi, w, = wsini, w, = 0 Euler’s equations under no forces are

. C-4
Aw,—(B-C)w,w, =0  or W= — W, W, (1)
. . C-4
Bw,-(C—-A4A)w,w, =0 or W= MW (2)
Cw,—(4-B)w,w,=0 or W, =0 ..(3)
From (3) w, = constant = w cosi (Initially)
Dividing (1) by (2)
W W,
W_z__;l or ww, +w, w, =0
Integrating w; + w; = a (constant)
Initially w, = wsini, w, =0, sa=w sin’i
W+ w; = w’sin’ i -(4)

2 2 2 2 s 2 2 2 . 2
wy +w, +w; =w'sini+wcosi=w
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which shows that the angular velocity is w throughout the motion.

C-4

Now (1) = W= WCoSi W, as w; = w Cos i

C-A4Y 2 2. .
== 7] WeosTim using (2) -(5)

The direction cosines of instantaneous axis are proportional to w;, w,, w;; therefore the angle
with the instantaneous axis makes with the axis of solid is

4 w . [ wecosi 1 ) )
cos - = cos [— =cos” (cos i) =i

2 W

W2+ wl Wl
which shows that instantaneous axis makes a constant angle ; with the axis of figure (). Hence
we can say that it describes a right circular cone of semi vertical angle ;, the period is seen from (5) as

21 _2mAseci

\/(C;A wcosij2 _W(C_A)

The direction cosines of invariable line (line fixed in space) are proportionalto A w,, Bw,, Cw;.

Hence the angle g which the axis of figure makes with the invariable line is given by

Cw,
\/Awlz +Bw, + Cw;

cos 0 =

_ Cw,
\/Az(wf+w§)+Cw32 as B =4

Cw cosi

\/(Az w?sin’i + C* w? cos? i)

3 C
\/A2 tan’i + C*

A . . . .
or tan 0 = bl tan i, thus g is constant which shows that the axis of figure (O describes about

A .
invariable lien (in space) a right circular cone of semivertical angle 9, where tan 6 = C tan i

Since O describes a cone of semivertical angle g, about the invariable line with angular velocity
Q. therefore
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Figure 3
velocityof C = Q. CK

where g is the foot of perpendicular from ¢ oninvariable line.

Also, since throughout the motion angular velocity ofthe body is w about the instantaneous axis,

therefore velocityof C = w . CI
where j is the foot of the perpendicular from ¢ on the instantaneous axis.
Both these values of velocity of ¢ must be identical, therefore

Q.CK=w.ClI
= Q.0Csinf =w. OC sini

sin i
= Q=w-—
sin 6
w 5 5 A .
= \/Azsmzz + C?cos’i as tan @ = P tan i

5.6 Illustrative Examples

Example 10 : Auniformthin circular disc is set rotating with an angular velocity y about an axis through
the centre making an angle ; with the normal. Prove that the semi vertical angle g ofthe cone described

by the axis of disc is given by

tan @ :l tan i
2

2r
If w be angular velocity, prove that above cone is discribed in the period W \/1 +3cosiit

Solution : Here normal to the disc is the axis of figure. Initial conditions are w; = wcosi, w, = wsini,
w,=0since B=4,C=A4+B

Euler’s equation of motion under no forces are
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AWI - (B - C) w, Wy = 0 = Wl = - W, Wy (1)
. . _(C-4)

Bw, - (C-A)w,w=0 = w,= VR -(2)

CWw, —(4A-B)w, w,=0 = W, =0 ..(3)
Integrating (3), we get w, = constant = wcosi ..(4)
Dividing (1) by (2), we have

W W,

W_z__;l or ww, +w, w, =0
On integration w; + w; = a (constant)
Initially w, = wsini, w, =0 soa=wsin’i

w4+ ws = wisin’i ..(5)

The direction cosines of invariable line are proportional to A w,, Aw,, Cw;, and if g be the angle
between the axis of figure and the invariable line, then

Cw,
cosf =
\/A2 (wl2 + wf) + C*w}
B C
B \/Az tan?i + C using (4) and (5)
or tanf = é tan i
1 1

Here AZZ]WCZ2 CZE]WCZ2

b

tan0 = l tan i
2

This proves the required result.

If () be the angular velocity ofthe axis of disc about the invariable line, than we have fromart 5.5

Q= % \/(Az sin?i + C? cos? z')

~ L,
—W\/[Sll’l l+?COS ZJ

= w \fsin®i + 4 cos’i

= w4/l +3cos’i
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The period = -~
e perio O

B 21
w\/l + 3 cos’i

Example 11 : Ifthe earth be regarded as a solid of revolution, whose principal moments of inertia at its
centre of gravity are 4, A, C. Show that its axis of rotation describes a cone of very small angle about the

C_ 4 siderial days.

axis of the figure in period

Solution : Let the earth be set rotating with angular velocity w about an axis, passing through the
centre of gravity and making an angle ; with the axis of figure. Thus initially w;, = w cosi,

w, =wsini, w, =0

Euler’s equations under no forces are

Aw, =(B-C)w, w3:>w1=—(C;A) W, W, e))
B, =(C = A)w, w, = W, = (C;A)% w, (2
CWw,=(A-B)yw, w, =>w, =0 ..(3)
from (3) w, = constant = wcosi ..(4)
w, w
Dividing (1) by (2) W_z = 71 or ww, +w,w, =0
onintegration w; + w; = C (constant)
Initially w, = w sin i, w, =0 o C=wsin’i
w. + wi = wsin’i ..(5)

Differentiating (1), we get

. (C—A) .
W, =- y W COS i W,

- A
=—(C )wz cos’ i w,
A

The direction cosines of instantaneous axis are proportional to w,, w,, w;,

.". Instantaneous axis makes with the axis of figure an angle

- w - w Ccos I - N
:cosl[ 3 }:cos1 = cos ' (cos i) = i

2 2 2 . . .
W2+ w4 \/wz (cos’i + sin’ i)

Hence instantaneous axis describes about the axis of figure a right cone of semivertical angle ; in
the period
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21 _ 2mAseci

w(C;A)cosi_W(C_A)

2 A . .
= m (since ; issmallso sec i = 1)
__A4 o
C_ 4 siderial days.
as one siderial day — 2_”
w

5.7 Motion under impulsive forces

Suppose a rigid body is moving about a fixed point (). At O let O4, OB, OC be the principal axes
which are fixed in the body but move along with the body.

Let the rigid body be given an impulse such that the moments of the impulsive force about
OA, OB, OC arerespectively L, M, N. Suppose that w,, w,, w, and w|, w;, w; are the components
of angular velocities just before and just after the application of impulsive force. Hence angular momentum
about 4 just before and just after the impulse are 4w, and 4 w/.

Similarly angular momentum just before and just after the impulse are
Bw,, Bw, about OB
and Cw,, Cw; about OC

Since change in angular momentum about any line is equal to the moment of the impulse about the
same line, therefore taking moments about 04, OB, OC, we have respectively

Aw -w)=L
B(w, —w,) =M
C(wj-wy))=N

These are Euler’s equations of motion for impulsive forces.

5.8 Illustrative Examples

Example 12 : Show that for a body ofrevolution the maximum value of the angle between the axis ofthe
impulsive couple acting on it and the instantaneous axis of initial motion set up by the couple in the body is

.4 (C—-A4
Sin
C+4)

Solution : Let L, M, N be the components of impulsive couple about the axes of moments of inertia

(4, A, C), equations of the motion are
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C(w,-0)=N

These equation show that the axis of couple is same as the invariable line, the angle between the

instantaneous axis and the invariable line is (i — 6). Formax (i — )

di—e-0 o= di_d0
dt dt dt
Now tanf =—tani
seczé’—:ésecziﬂ
d C d
2 A 2 . .
= sec HZEsec i Using (1)

= 1+tan29:%(l+tan2i)

2
= 1+A—2tan2i:£(l+tan2i)
C C
tan’i = g S tan’ @ = é
A C

} |C /A
tani = |—, tan0 = |—
A C

Hence sin (i — 0) = sini cos@ — cos i sinf =

(i-0)= sinl[g :L j]

which is required angle.

C-4
C+ 4

(1)

Example 13 : A disc, in the form ofa portion of parabola bounded by its latus rectum and its axis, has its
vertex A fixed, and is stuck by a blow through the end of'its latus rectum perpendicular to its plane. Show

that the disc starts revolving about a line through 4 inclined at an angle tan ™ (%) to the axis.

Solution : Taking parabolic portion in zx plane. equation ofparabola is

2
z°=4ax
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(X’O’Z) —

a,o)

—

Figure 5.4
Let MLI. of portion about 4X, AY, AZ are A, B, C respectively, then

If D, E, F be products of inertia about these axesthen D= O = F,

a 1 2
E:JO pzdx‘xEZZEa“p

Using Euler’s equations for impulsive forces

16 2

Epa“w;—ga“pwz’:—P.Za ..(1)
172,

RPG wy, = ..(2)
gpa“wz’—%pa“w;:P.a ..(3)

Eliminating p between (1) and (3)
25 w! = 14w!
If axis of rotation make an angle ¢ with the axis of parabola then

w! _ﬂ
25

N

tan ¢ =
w

!/
X
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5.9 Self Evaluation Questions
1. Define invariable line.
2. What is the locus of Invariable line?

3. Write down the equations of motion for impulsive forces.

5.10 Summary

This unit is devoted to the study of motion ofrigid body when there is no force acting on the body.
It has been shown that under no forces situation the Kinetic Energy and Angular Momentum remain
constant. In these conditions the body will rotate about an axis, which does not change its position in
space, this axis is known as invariable line. It has also been shown that the instantaneous axis describes a
cone about axis if figure 7 (inthe body) and the axis of figure describes a cone about invariable line in
space. So many examples are given on the conditions. In the last Euler’s equations for impulsive forces
have been derived and some solved examples are given on these.

5.11 Exercise

1. A solid cube is in motion about an angular point which is fixed. Ifthere are no external forces and
w,, w,, w, are the angular velocities about the edges through the fixed point, prove that

w, + w, + wyand w’ + w; + w; are each constant.

2. A uniform circular disc free to turn about its centre which is fixed, is set rotating with angular
velocity w about an axis which makes an angle 45° with the axis of disc. Prove that in the
subsequent motion the axis of the disc describes a right cone about an axis making an angle

I Y . _ _ o
tan ! E with the initial axis of rotation with constant angular VelocnyE w® 10

3. A right circular cone whose altitude j, is double of the radius ofthe base, can turn about its centre
of gravity as a fixed point and is set rotating about an axis inclined at an angle ; to the axis of

3h . .
figure. Prove that the vertex of the cone will describe a circle of radius e sm 1,

4. A uniform right ciruclar cone of vertical angle 2 ¢ moves under no force except at its vertex which
is fixed. It is set rotating about a generater. Show that its axis describes in space a right cone of
angle 2 3 where

1
tan f = ) tana + 2cota

miNININ
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UNIT -6
Conservation of Momentum and Energy

Structure of the unit

6.0  Objective

6.1 Introduction

6.2  Conservation of Momentum under finite forces
6.2.1 Principle of Conservation of Linear Momentum
6.2.2 Principle of Conservation of Angular Momentum
6.2.3 Illustrative Examples

6.3 Conservation of Momentum under Impulsive Forces
6.3.1 Principle of Conservation of Linear Momentum
6.3.2 Principle of Conservation of Angular Momentum
6.3.3 Illustrative Exmaples

6.4  Conservation of Energy
6.4.1 Conservative Forces
6.4.2 Principle of Conservation of Energy
6.4.3 Theorem
6.4.4 Theorem
6.4.5 lllustrative Examples

6.5 Self Evaluation Exercise

6.6 Summary

6.7 Exercise

6.0 Objective

The linear momentum of a particle is defined as the product of'its mass m and velocity y i.e.mv.
The rigid body is considered as the collection of particles, so the linear momentum of rigid body is given by
the vector sum of the linear momentum of the particles of the body moving in parallel straight lines with
equal velocity y and therefore the linear momentum of body is equal to the total mass of body and its
velocity v.

Generally, the motion ofbody is not always translatory, there arise some situations in which motion
of'body is rotational also. Thus, we use another term called Angular Momentum which relates to the
rotational motion. The energy of a body is defined as its capacity of doing work. In dynamics we consider
only mechanical energy. It is of two types, the kinetic and potential. The Kinetic Energy of a body is by
virtue of its motion and measured by the amount of work which it does in coming to rest. The potential
energy of'a body is the work it can do in moving from its actual position to some standard position.

Our objective in this unit is to study the principales of conservation of momentum and energy.
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6.1 Introduction

In mechanics the mass and energy are considered as two distinct physical quantities and there are
separate conservation laws. In this unit we are interested in the formulation of laws in which linear as well
as angular momentum of'a body is considered in cases when the forces are finite as well as impulsive. The
law of conservation of energy has also been studied in this unit.

6.2 Conservation of Momentum under finite forces

In this section we study the principles of conservation of linear momentum and angular momentum
of rigid body under the action of finite forces.

6.2.1 Principle of Conservation of Linear Momentum :

“If a rigid body is moving under the action of some external forces whose sum of re-
solved parts parallel to a line is zero, throughout the motion, the momentum of the body parallel
to that line remains constant throughout the motion.”

Suppose a rigid body is moving under the action of some external forces and (x, y, z) be
coordinates of'its any particle, of mass 1, at any time ¢ refered to fixed axes. Let X, ¥, Z be the resolved

parts, parallel to the axes, of external forces acting on the particle. By D’ Alembert Principle, the general
equations of motion of rigid body are

domi=) X (1)
Z my = Z Y (2)
Y mi=) Z ..(3)

Let y -axis be the fixed striaght line, and it is so choosen that sum of resolved parts of the external

forces parallel to it is zero throughout the motion, i.e. Z X=0.

Hence from(1) Y| m ¥ =0 (%)
We know that

- W’ Z m = M, x isthe x — coordinates of centre of gravity of body.

Then from (4)

Mx=0 — M X = constant (5)

Eqn (5) states that total linear momentum of the rigid body parallel to x -axis remains constant
throughout the motion.

Hence it is shown that if a line is such that sum of resolved parts of the forces parallel to it is zero
throughout the motion, the total linear momentum parallel to it remains unchanged during the motion.

6.2.2 Principle of Conservation of Angular Momentum :

“If arigid body is moving under the action of external forces the sum of whose moments
about a given line is zero throughout the motion, the moment of momentum (or angular
momentum) of the body about that line remains unchanged during the motion.”
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Let X, Y, Z beresolved parts of the external forces parallel to the axes acting on the particle of

mass m , whose coordinates are (x, y, z) at time ¢.

Taking the given line as x-axis, then sum of the moments of external forces about the given line
(x —axis) is Z (yZ-z7)

By D’ Alembert principle, we have

Zm(yé—zj)):Z(yZ—zY) ...(6)

If D> m(yZ-zY)=0,then(6)gives

d
d =0
X miyz-z)
= E m (yz — z y) = constant (7

Now Z m (yz — z y) is the angular momentum of'the rigid body. Hence eqn (7) shows that the
total moment of momentum of'the body about x-axis is constant throughout the motion.

Hence it is shown that ifa line is such that moment of external forces about it is zero throughout the
motion, the angular momentum (or moment of momentum) about it remains unchanged during the motion.

6.2.3 Illustrative Examples :

Example 1: A smallinsect moves along a uniform bar, of mass equal to itself and of length 2 g, the ends

2a
of which are constrained to remain on the circumference of a fixed circle whose radius is f’ Ifthe insect

starts from the middle point ofthe bar and move along the bar with relative velocity J7, show that the bar
in time ¢ will turn through angular

1 LVt
— tan = —

V3 a’

Solution : Let g be the angle through which the bar 4 g turns in time ¢ Let p be the position of the
insect after time ¢ after starting from .

Figure 6.1
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L CP=Tt

2a ? a
OC =~0A> — AC* = (—) — g%l ==
and |: '\/3 a \/§

OP = ,/(OC* + CP?)

By e
3

Since the moment of external forces about vertical axis through () vanishes throughout the motion,
therefore the moment of momentum about this line remains unchanged

m(0C9.OC+%a29)+m(V.OC+OP9.0P):0

2 5. a (1 2 22)'
= —a0+V.—=+|za +V't10=0
361 \/g 361

QZﬁZ_ Va
dt V3 (a> + 771

Hence the angle turned by the bar in time ¢ is given by

1 LVt
= — —tan

j o+ 1V 3 a
negative sign signifies that the rod turns in a dirrection opposite to the motion of insect.

Example 2 : A uniform straight rod, of length 24, has two small rings at its ends which can
respectively slide on thin smooth horizontal and vertical wires () x and )y . The rod starts at an angle ¢

to the horizon with angular velocity \/ {3 g(l-sina)/2 a} and moves down wards. Show that it will

T a T
strike the horizontal wire at the end of time 2 (% g) log {COt (g - Z) tan g}

Solution : Suppose G be the centre of gravity ofrod AB (= 2 a) and g the angle made by it with

the horizontal at any time 7. The coordinates of ¢ G.G of the rod are (a cos 6, asin ) as shown.

Therefore the velocity ofthe C.G. = \/{(— a sin@ 9)2 + (a cos® 9)2} =ab
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> X
Figure 6.2
Hence the Kinetic Energy of rod at any time ¢
—m{ya0 )
2
2 2 92
=—ma 0
3 (D)
.. 2 , 3g ) .
Initial K.E.:gma .2—(1—sma)=mga (I —sina) -(2)
a

and Initial angular velocity

: 3 .
0= \/ {ﬁ (1 —sin a)} (given)

Now the work energy equation gives

%mazéz —mga (1 —sina)=mgasina — mg (a sin6)

or 0= 3¢ (1 - sin @)
2a

a9 _

or dt_

3 .
i \/(1 — sin ) (— ive signshows that g decreases with time ¢) ...(3)

Therefore, the required time from 0 = ¢ to § = 0 is

_ [2_61} L
38 ’ \/cose—sine
2 2
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_ [iJ [ cosec (% - g) do

3g

2] {2,

a

a T oa T
t=2 _||—| log {cot (— - —) tan—},
3g 8 4 8

Example3: A uniform circular board, of mass js and radius ¢, is placed on a perfectly smooth
horizontal plane and free to rotate about a vertical axis through its centre; aman of mass 7 , wal k s
round the edge of the board whose upper surface is rough enough to privent his slipping : when he has
walked completely round the board to his starting point, show that board has turned through an angle

M’
—4r
M+2M
Solution : Let the board has turned through an angle g at time ¢ and radius to the man makes an

angle ¢ with the fixed line O4,.

Figure 6.3

The forces acting on the system are all vertical; therefore there moments about the vertical through
O are zero throughout the motion; hence moment of momentum about this axis through () remains unal-
tered throughout the motion.

2
ie. M%[9+M’a2¢=0

1
integrating 5 M6+ M ¢=0 (1)
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[The constnt of integration vanishes becuase intially g and ¢ are zero]
When the man returnes to his starting point 4,
p—-0=2rm -.(2)

Eliminating ¢ between (1) and (2), we have
%M0+M’(27r+0):0

MV
S —p
(M +2M")

or 0 =

The negative sign shows that the board turns in a direction opposite to that of the man.

Example 4 : A particle of mass s within a rough circular tube, of mass j4 lying on a horizontal plane
and initially the tube is at rest while particle has an angular vleocity round the tube. Show that by the time

M
relative motion ceases the fraction M+ 2m of'the initial kinetic energy has been dissipated by friction.

Solution : Let G be the common (. G. of Az and m, then

i_a—x_ a
M M+m (1)

Figure 6.4

Let 4 be the velocity ofthe particle p when motion started, the tube being at rest.

Since there is no force on the system in the horizontal plane throughout the motion, therefore
horizontal momentum remains unaltered throughout the motion.

_ mu
[y ()

ie. (M +m)v=mu or v

This determines the motion of common centre of gravity ¢ .

When the system begins to move, let v and ;' be the angular velocities of the tube and the
particle about (.

The forces acting on the system are all vertical; therefore their moments vanish about the vertical
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axis through G throughout the motion, hence moment of momentum about G remains unaltered through-
out the motion

. 2
ie. M (azw + xzw) +m(a—x) w =mu(a-x)
The relative motion ceases when w' = w and then

Yo mu (a — x) _ mu (a — x)
M(az+)c2)+m(a—x)2 M{(a—x)z+2ax}+m(a—x)2

mu

M{(a—x)+ 2ax}+m(a—x)

a—Xx

miu

X

(M +m)(a—x)+2aM -

From (1) we have

mu B mu
aM +2aM a(M+2m) -G)

At this time kinetic energy ofthe system

:%(M+m)v2+%M(a2+x2)w2+%m(a—x)2w

now putting the values of',,2 and y from(2) and (3)

2.2
KE—Lmuw |, M |
2 M+m M+ m

2 M+ 2m

12[11\4}12121\4

=— mu — =—mu ——mu ————
2 M+2m 2 2 M+2m
1 , M
,-,lossofK,E,:Emu Miom
__ M o
M+ 2m of'intial kinetic energy.

Example5: A uniformsquare plate 4 gCp ofmass js andside 2 g, lies on a smooth horizontal plane;
it is struck at 4 by a particle of mass m moving with velocity 7 in the direction of 4p, the particle

remaining attached to the plate. Determine the subsiquent motion ofthe system and show that its angular
velocity is
_m_ 3
M+4m 2a
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Solution : Let 0 be the centre of square and (5 the centre of gravity of the system (particle and the
square), then

0G AG A0 a2

m_M_M+m=M+m (1)
D C
oM 2a
G
y v B
Figure 6.5

Let j! be the velocity of the system after impact, then by principle of linear momentum we have

(M+m)V'=mV or V= ml
M+ m

This gives velocity of G after impact.

After impact let w be the angular velocity about (. Since moments of foces (weights and
reaction) about vertical through (5 is zero, therefore angular momentum about it remains unchanged,
hence

2
M (23‘)‘ + Osz w+ MAGw. AG = m (Vsin45’). AG

2
o MZZ w+M(OG)2w+m(AG2)w:m—VAG
V2
M 2a2w+M 2a* m? Wt m 2a*m? _mVax/EM
or : (M+m)2 (M+m)2 2 M+m from(1)
2 + M M
or M.2a w+2a* Mm (m )2w=m Va
3 (m+M) (m+M)
2a’ 2a* Mmw  mMVa
or M w + =
3 M+ m M+ m
or 2a2 l+ n w = MVa
3 M+m M+ m
2a
or T(M+4m)w=mV
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m__ 3y

wW=———..
or M+4m 2a

this gives angular velocity after impact.

6.3 Conservation of Momentum Under Impulsive Forces

This section is denoted to the study of motion ofrigid bodies under the action of impulsive forces.
Here principles of conservation of linear momentum and angular momentum have been discussed.

6.3.1 Principle of Conservation of Linear Momentum :

“If the sum of impulses of the forces parallel to a certain fixed line vanishes, the mo-
mentum in that directions remains the same just before and after the applications of impulses.”

Let the fixed line be taken as x-axis then by D’ Alembert’s principle, the equation of motion is
’x
m—s=> X
d t2 z

o Aznd)-px

Now when the forces are impulsive and duration of the impluse be a small time ¢, then integrating
the last equation, we have

[Zm %} [ Y xdai=Yx

where x be the impulse ofthe forces parallel to the x-axis. If u, v are the velocities of the particle
before and after the impulse, then the equation reduces to

Zm (u—v):ZX’

The equation shows, that the change in total momentum parallel to the x-axis is equal to the sum
of the impulses in that directions. IfZX’ = 0 then Zm (u - v) =0= Zmu = va.

i.e. total momentum after impulse = total momentum before impulse.

Hence it is shown that if the sum of impulses parallel to a line is zero, the total momentum in that
direction remains unchanged.

6.3.2 Principle of Conservation of Angular Momentum :

“If the sum of the moments of the impulses about a certain line vanishes, the angular
momentum about that line remains the same before and after the application of the impulses.”

Let the fixed line be supposed as x-axis. The moment equation of motion using D’ Alembert’s
principle




Now, when the forces are impulses and duration of impulse be a small time 7, then integrating the
last equation, we have

{Z m[y%—z%ﬂzzzﬂ (yZ-zY)dt

=Y (b7 =¥

i.e. the angular momentum after impulse - angular momentum before impulse = sum of the
moments of the impulses.

If the sum of the moments of impulses about x-axis is zero, then
angular momentum after impulse = angular momentum before impulse.

Hence, it has been shown that if the sum of moments of impulses about a line is zero, the angular
momentum or moment of momentum about it remains unchanged.

6.2.3 Illustrative Examples :

Example 6 : A uniform square lamina, of mass 7 and side 2 a, is moving freely about a diagonal with
uniform angular velocity w when one of the corners not in the diagonal becomes fixed, show that the new

1 2
angular velocity is 7 w and that the impulse of the force on the fixed point is - Maw.
Solution : It is given that the square lamina 4 gCp of mass )y is rotating about a diagonal gp with
angular velocity . Let initial direction ofrotation be such that ¢ was moving upward from the paper.
Since the diagonal gp is set free and a corner 4 is suddenly fixed, then the square begins to turn about
aline 47 parallelto pp,through 4.Let ,,! be the angular velocity ofthe square about 47 .

D C

2a

0
0
G
#
G
+
G
a e
#
&
5
’
o
o
o

.
N |
]
A ™ 2
. a
S,
.
.

Figure 6.6

Since the impulseis at 4, therefore moment ofthe impulse about 47, is zero. Hence the moment
of momentumabout 47, remains same before and after the fixing, therefore,

M {k2 + (AG)z} w = MK w

{Here k* about BD = 1 a?cos =+ 1 a?sin? X = 1 az}
3 4 3 4 3
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After fixing the velocity of centre of gravity of the square right angle to 4G is ¢ +/2 w'. Hence, the
impulse in given by

Impulse = change of momentum

=MaN2 w' -0

V2

=— Maw.
7

Example 7: Arodoflength 2 ¢, is moving about one end with uniform angular velocity upon a smooth
horizontal plane. Suddenly this end is set free and a point, distant p from this end, is fixed; find the motion,

o 4a
considering the cases when b <, =, > ER

Solution : Let 4p betherod oflength 2 ¢ and mass m and G be its centre of gravity. Suppose the
rod is moving with uniform angular velocity w about theend 4. Let ;! be angular velocity of rod when the
end 4 is set free and a point () ofrod is suddenly fixed, when 4O = b. As the impulses is at (), then the
moment of impulse about () will be zero, therefore the moment of momentum about the axis through o

before and after the fixing i.e. impulse remains unchanged. Hence
w w

* @ ‘-\ @ ‘\ ®
A€— p—>0 / G /
Figure 6.7

1

m{%az+(a—b)2}w1=m{§a2+a(a—b)}w

3a(4a—bj
1 3

or w =
a® +3(a—-b)

4a
If(i) b < 3 then ! is positive, which shows that the rod will rotate in the same direction after
the impulse as before.

4a
(i) b= ER w' = 0, which shows that the rod will reduce to rest after the impulse and

a
(ii1) b> ER then ,,! is negative, which depicts that the rod will rotate in opposite such after

the impulse.
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Example 8 : A circular plate is turning in its own plane about a point 4 on its circumference. Suddenly
4 1s freed and point B, also on the circumference, fixed show that the plate will be reduced to rest if the
arc 4p is one third of the cirumference.

Solution : 4 is set free and g is suddenly fixed. Let ;! be the angular velocity just after fixture.
aw'

Figure 6.8

Let ¢ be the centre and ACB = 6. On account of sudden fixture at g the impulse is at g,

therfore moment of impulse about B is zero; hence moment of momentum about B remains the same
before and after fixture.

a a’
ie. m{?wl+a2 wl}zm[?w+aw.acos0}

ie. w' = %(l+2cos9)w

The plate will be reduced to rest of 1! = (

1
ieif 1+2cos@=0 or COSQ:_E
2r 2ma

Le. QZT = al = 3

= Arc 4p is one-third ofthe circumference.

Example9: A uniform cube is spinning freely with angular velocity w about a diagonal through a
corner (), when suddenly the diagonal through () of one of the faces through () becomes fixed. Show that
242

o W
the new angular velocity is 53

Solution : Let 2 a be the side of cube; therefore length of'its diagonal

= \/(2a)2 + (2(1)2 + (2a)2 =2a+3

and length ofa diagonal of aface = /44 + 44> = 224
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So inclination ofthe diagonal ofthe cube to the diagonal of the face

=cos”’ 2v2a =cos”’ \/Z
23a 3

Before sudden fixture cube was revolving about its diagonal with angular velocity ,,,!, resolved

2
parts of this angular velocity about the diagonal of the face = w \/;

The distance ofthe centre of gravity of the cube from the diagonal of the face is equalto 4 . For the
cube about any axis through its centre,

24?
3

K =

Due to the radius fixing ofthe diagonal of the face, the impulse is at this diagonal, so moment ofthe
impulse about this diagonal is zero; hence moment of momentum about this diagonal of the face must
remain the same before and after the fixture.

2a | , 2 a? 2
ie. m 3 w +a w |=m w 3

ie. S5w! =2\EW or w' =% %W

Example 10 : Three equal uniform rods placed in a straight line are freely joined and move with velocity
y perpendicular their lengths. If the middle point of the middle rod be suddenly fixed, show that the ends of

4ra
the two rods will meet in time 9y where ¢ is the length of each rod.

(8]

Solution : Let AB, BC, CD be three rods each of length 4 and mass ;. Consider the motion of

AR impulsive force acts at g ; therefore moments of impulsive force about p vanishes. Hence the moment
of momentumof 4B about p before and after fixture remains unaltered.

AAD

A @

X 2r ""' v “1 14
1 A} 3
(4 ¥
G C

1 B GZ G3
Figure 6.9

/ L
\ ]

If w be angular velocity of 4p just after the fixture wehave m . v . % a=m 1 aw

This gives w = 3_v
2a
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3v

Similarly for the motion of ¢, we get its angular velocity also equal to 24

Now when the ends of rods will meet, that is when 4 and p willmeet, then 45 and DBC will

T
be equilateral triangle, that is when 4 and p¢ each has turned through an angle 3 s shown in figure.

2% dra

Required time 3/ v .
2a

6.4 Conservation of Energy

6.4.1 Conservative Forces :

The forces acting in a system are called conservative when work done by the forces
viz J (Xdx + Ydy+ Zdz) is independent of the path followed from initial to the final position of the
body and depends only on the cofiguration, of the body at times ¢, and 7, .

Ifthe forces acting on the system are conservatives, then J(X dx + Ydy + Zdz)is complete

differential of some quantity j/ , then forces are said to be conservative

J(de+Ydy+Zdz)=dV

ZJ(de+Ydy+Zdz)=JdV

or in other words the forces have the potential }7. If 4 and p are configurations of the system at
times ¢, and z,, then we have

flav-n-,

6.4.2 Principle of Conservation of Energy :

“If a system moves under the action of finite forces and ifthe geometric relations ofthe system do
not contain time explicitly, the change in the Kinetic Energy of the system in passing from one configuration
to another is equal to the corresponding work done by the forces.”

Let X, Y, Z be the components of external forces parallel to the axes acting on the particle of

mass m whose coordinates are (x, y, z) at time ¢.

o d’x *y d’z
We have by D’ Alembert’s principle, the forces X — m T Y —m PR Z—-m i acting on
the particle and similar force acting on the other particles of the system, forma system of forces in equilibrium.

Therefore by principle of virtual work.

2 2 2
Z X—md—f ox + Y—md—); oy + Z—md—f 0z|=0
dt dt dt
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where 6 x, § y, 6 z are very small arbitrary displacements of the particlem consistent with the
geometrical conditions at time ¢.

Ifthe geometrical relations do not contain time explicitly, then the geometrical relations which hold

x
at time ¢ will hold throughout the time 6 ¢, therefore we can take the arbitrary displacements di 51,

92 50 22 5

a1 5 an of'the particle in time 5¢,

Sustituting these in the last equations, we have

2 2 2
zm dfﬁ_{_d_{ﬂ_{_dzzﬁ :Z Xﬁ.{.Yﬂ.{.Zﬁ
dt dt dt dt dt dt dt dt dt

Integrating with respect to ¢

z%m[[%J +[%J +[%J] =ZI(de+Ydy+Zdz)

i.e. the changes in the kinetic energy of the system from time ¢, to ¢, is equal to the work done by
the external forces on the body from one configuration of the body at time ¢, to the configuration at time ¢, .

6.4.3 Theorem : When a body moves under the action of a system of conservative forces, the sum of
its Kinetic and Potential energies is constant throughout the motion.

Proof : We know that if 4 and p are configurations ofthe body at times ¢, and z,, then

B
K.E.attime 1, - K.E.attime t, = [ dV =V, 7V, (1)

The potential energy of the body in any position 4 is the work, which the forces do in moving the
body from this position 4 to a standard position, say C.

PE.attime 1, = [ (Xdx+Ydy+Zdz)=[ av="v.-7, Q)

PE.attime ¢, = JC (Xdx+Ydy+ Zdz) = deVz Ve — Vg ..(3)

B

subtracting (3) from (2), we have
PE.attime ¢ -PE.attimes, = (V. = V,) = (V. = V,) =V, = V, .(4)
comparing (1) and (4), we get

K.E. at time t,-K.E.at time t, =PE.at time t,-PE.at time t, >KUE.at time t, +PE.
at time t, = KE.at time t, + PE.at time 4

. sumof K.E & P.E time ¢, = sumofK.E. & P.E at time ¢,

Hence sum of K.E. & P.E. ofa body is same at all times.

6.4.4 Theorem : The K.E. ofrigid body, moving in any manner is at any instant equal to the Kinetic
Energy of the whole mass, supposed to be collected at its centere of inertia and moving with it
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together with the kinetic energy of the whole mass relative to its centre of inertia.

Proof: Let (x, y, z) be the coordinates of any elementary particle of mass » in the body at time 7.

(X, y, Z) be the coordinate of centre of gravity G of the body. Let (x', ', z') be coordinates of the
particle referred to (. ;. as origin, therefore we have

x=x+xHby=y+ysz=7+2
Since me’zO, Zmy’zO, Zmz’zO

= > mi'=0, > my'=0, > m=0 (1)
Now, total K.E. of the body

:%Zm(x2+y2+z'2)
:%Zm[(fc+)&’)2 w G+ ) +(Z*+Z-r)2]
:%Zm[(fz+)72+22)+%Zm()'c’2+y’2+z"2)

+);c2mX'+);/Zmy’+z;Zmz"

- % dm(xX 43 +27)+ % Dim (a7 437+ 27 from (1)

1 1
= ) (square of velocity C. G.) Z m + 5 Z m (square of velocityof mw.r to )

1
=3 MVv* + K_E. ofbody relative to G

where vy is velocity of C. G.
Hence
The total K.E. of the body
=K.E. of mass js supposed to be collected at C (. of body
+ K.E. of body relative to G .
6.4.5 Illustrative Exmaples :

Example 11 : A uniformrod, oflength 2 a, is placed with one end in contact with a smooth horizontal
table and is then allowed to fall, if ¢ be the initial inclination to the vertical, show that its angular velocity

)}
S ) 6gcosa—cos€é ) )
when it is inclined at angle g is \— ————=——5 - . Find also the reaction ofthe table.
a 1+3sin°0

Solution :Let 4p be therod oflength 2 ¢ and mass . The end 4 is in contact with the table. Since there
is no horizontal force on the rod, therefore its . (. moves downword in a vertical line, through (3, let this
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vertical through G cut horizontal plane at py, then p is a fixed point.
B

> =

mg

II777777777777777777777777777777777777
D
Figure 6.10

Let the horizontal and the vertical lines through py are coordinate axes, then coordinates of (; are
(0, acos0)

We have from energy equation
1 az 2 . 2 p 2
S Mgt sin 060> =mg (acosa — acosb)

B % cosa — cosO

= 0’ :
a 1+3sin*0 @
B )
- - 6_g cosa ‘C(;)SH
a 1+3sin"6
it proves first result.
Differenting (1) and dividing by 2 9, we get
j 3g sind (1 + 3 sin’ 9) — 6 sinf cosO (cosa — cosb)
a (1+ 3 sin>0)
3gsinf [4 + 3 (cos’ 6 — 2 cosa cosﬁ)]]
- a(1+3sin’ 9)2
3gsiné [l +3sin*a + 3 (cos@ — cosa)z]l
- a (1 +3sin® 0)2 +2)
Taking moments of all forces about (7, we have
az .
m 3 0 = Rasinf ..(3)

Using (2) and (3) we get
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1+ 3sin’a + 3 (cosé — cosar)’
(1+3sin’0)

R=mg

This gives reaction of the table.

Example 12 : Two link rods g4pand B(, each oflength 2 ¢ are freely joined at g, 4p canturnround
the rod 4 and ¢ can move freely on a vertical straight line through 4. Initially the rods are held in a
horizontal line, ¢ being in coincidence with 4 and they are then released. Show that when the rods are
inclined at an angle g to the horizontal, the angular velocity ofeither is

3_g sin @
a 1+3cos’6 )

Solution : It is given that 2 ¢ be the length and m be the mass ofeachrod 4p and g, which are freely
joined at g. Taking fixed point 4 as origin and horizontal and vertical through 4 as axes shown in the

figure. The coordinates of the centre of gravity ofthe rod 4p are (a cos 6, a sin0) and therod g are

(a cos0, 3a sin0)
4 >x

T

(acosf,asinf)

(acosb,3asin0)

Figue 6.11

Hence the work energy equation gives

2 2
lm 2024 g2 +lm 4 g +(— siné’é’)2 +(3acos6’6’)2
2 3 2 3

mgasinf + mg.3asinf

or a0’ (1+3cos’0) =3 gsin0

9 _ 3_g Sil’l@
or a 1+3cos*6

It is the required angular velocity.
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Example 13 : A straight uniform rod of mass m, is placed at right angles to a smooth plane of
inclinationg with one end in contact with it, the rod is then released. Show that when its inclination to the
plane is ¢, the reaction of the plane will be

3(1-sing)’ +1

s— cosa
(3 cos® ¢ +1)
Solution : We have equation of motion of rod
2 .. .
R-mg cosa=mﬁ(a sin¢)=ma(cos¢¢—sin¢ ¢2) (1)
az .
and m 3 ¢ =— Racos¢ (2)
R
Be <
mg
= > X
Figue 6.12

Eliminating R between (1) & (2), we get

2
m % ¢ =—acosg [mg cosa + ma cos¢d — ma sin¢¢2]

ie. a (% + cos’ ¢) ¢ — asing cospp* = — g cosa cos @ .(3)

1 :
Integrating ¢ (5 + cos’ ¢) ¢’ =—2gcosa sing + C

T .
when (/5:5,(/):0 . C=2gcosa
Hence a (% + cos’ ¢) ¢* = 2g cosa (1 - sing)
6g cosa (1 - sing)

1+3 cos’ ¢ ()
199
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Now from(2), (3) and (4), we have

3(1-sing)” +1
(1 +3cos’ ¢)2

R=mg cosa , which is positive.

Hence lower end of the rod will never leave the plane.

Example 14 : A sphere of radius p, rolls without slipping down the cycloid. x = a (6 + sin6),

vy = a (1 — cos0). It starts fromrest with its centre on the horizontal line y = 2 a. Show that the velocity
7 ofits centre, when at its lowest point is given by

=198 0, ).
7

Solution : Let ¢ be the centre ofthe sphere of radius p and the radius B is fixed. Initially, the point g
was in contact with 4 and let at time ¢ the radius ¢ B makes angle ¢ with the vertical. The point of contact

is p at which the tangent makes an angle y with the horizontal and length OP = ¢ — s length AP = ¢

£90° S

O Figure 6.13

Since there is no sliding between the cycloid and the sphere, therefore
length AP = arc gp
ie. c—s=b(¢-vy) (1)

Let 7 be the velocity of centre ¢
V' = velocity of point P + velocity of ¢ relative to p

—5—by
=—b(p-y)- by [from (1)]

=—b¢
ie. V=—b¢ (2)
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Now energy equation gives

B )
%m_2b5¢ +V2}=mg[2a—b]
. 112,
ie. om|SV V| =mgl2a-b] [from (2)]
T7V?
Le. s =2g(2a->b)

or szlng(Za—b),

6.5 Self Evaluation Questions
1. Write Principle of Consevation of linear momentum under finite forces.
2. State the Principle of Conservation of angular momentum under finite force.
3. What is the Principle of work and energy?
4. What do you mean by Conservation forces?
6.6 Summary

The unit is devoted to the study of Conservation of momentum and energy in case of finite forces

and also for impulsive forces. Principle of Conservation of linear and angular momentum for finite forces
resepectively have been discussed. Also the cases of impulsive forces are considered. At the end principle
of conservation of energy in described.

6.7

Exercise

1.

A circular disc of radius a lies on a smooth horizontal table when a point 4 onthe cirucmference
is compelled to move in the direction ofthe tengent at the point with velocity 3 . Show that the disc

2u
begins to the turn with angular velocity [g] .

A circular plate rotates about an axis through its centre perpendicular to its plane with angular
velocity w. This axis set free and a point on the cirucmference of the plate fixed. Show that the

1
resulting angular velocity is 3 w.

An equilateral triangle, formed of uniformrods freely hinged at their ends is falling freely with one
side horizontal and uppermost. If the middle of'this side be suddenly stopped, Show that the
impulsive actions of the upper and lower hinges are in the ratio /13 : 1.

A rectangular lamina, whose sides are of length 2 ¢ and 2 b is at rest when one corner is caught
and suddenly made to move with prescribed speed J7 in the plane ofthe lamina. Show that the

3V
greatest angular velocity which can be imparted to the lamina is 4 \/m .
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10.

A circular disc is moving with angular velocity () about an axis through its centre perpendicular to
its plane. An insect alights on its edge and crawls along a curve drawn on the disc in the form of the

1
laminscate with uniform relative angular velocity n €, the curve touching the edge of the disc.The

1
mass of the insect being 16 th of that of the disc, Show that the angle turned through by the disc

. (24 (N7 ~x
when the insects gets to the centre is ﬁ tan EX e

Ifthe earth, supposed to be uniform sphere, had in a certain period contracted slightly, so that its

1 48
radius was less (;j th then before, show that the length of the day would have shortened by P
hours.
An elleptic lamina is rotating about its centre on a smooth horizontal table. If w,, w,, w, be its
angular velocities when the extremity of major axis, its focus and the extremity of minor axis,

7 6 5

. _— = — 4 —
respectively becomes fixed, prove that W w,  w,

An elliptic area, of eccentricity e, is rotating with angular velocity y about one latus rectum:
suddenly this latus rectum is loosed and the other fixed. Show that the new angular velocity is
1-4¢

=W
I +4e

A cube is rotating with angular velocity 1 about a diagonal when suddenly the diagonalis let go
and one ofthe edges which does not meet the diagonal is fixed, show that the resulting angular

1
velocity about this edges is D 3w,

A uniform cricular disc of radius a is rolling without slipping along a smooth horizontal plane with
velocity 7 when the highest point becomes suddenly fixed. Prove that the disc will make a com

plete revolution round the point if ? > 24 4 g

miNININ
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UNIT -7
Generalised Co-ordinates

Structure of the unit

7.0  Objective

7.1 Introduction

7.2 Generalised Co-ordinates
7.2.1 Degree of Freedom
7.2.2 Holonomous System
7.2.3  Conservative System
7.2.4 Selflearning exercises

7.3 Lagrange’s Equations
7.3.1 Lagrange’s function

7.4  Principle of Energy

7.5 Small Oscillations

7.6  Lagrange’s Equations for Impulsive Forces

7.7 Summary

7.8  Answers to selflearning exercise
7.9  Exercise

7.0 Objective

In this unit we will learn about the generalised coordintes degrees of freedom. Also we will
understand about solving of dynamical problems (i) with the help of generalised coordinates components
ofa given dynamical system and (ii) Kinetic Energy. We will also learn about Lagrange equations of
Holonomic and non - Holonomic systems. Also we will learn about Lagrange’s equation for motion due to
impulsive forces.

7.1 Introduction

In order to attack a class of dynamical problems for conservative system there were generally two
approaches which were considered viz (i) D’ Alemberts equations of motion, and (ii) principle of
conservation of energy However, since impulsive forces are non-conservative, these methods present a
good amount of difficulty to the extent that the second approach is not applicable.

For such problems, Lagrange’s equations are found to be useful for solving all dynamical problems
of conservative or non-conservative system. This unit deals with these equation in solving certain such

problems through examples.

7.2 Generalised Co-ordinates

All those independent variables which determine the position of dynamical system or a material
system on a body at any given instant are called its generalised coordinates. These generalised
coordinates may be distances, angles or other quantities relating to them.
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7.2.1 Degrees of Freedom

The number of independent motions which a dynamical system can have (admits) are called its
degrees of freedom. Also, the number of independent motion is the same as the number of generalised
coordinates. Hence the number of degrees of freedom of the system is equal to the number of generalised
coordinates.

The degree of freedom of a particle moving in space is three, because three co-ordinates, say
x,y and z are required to specify its position in space. A free rigid body possesses six degrees of
freedom, because its position is determined by the three coordiantes x,y,z ofan assigned point of the

body together with three angle ; ¢, the Eulerian angles 0, ¢, v , which determine its orientation. The

degrees of freedom ofa system containing 5 particles moving in space is 37 as it requires 37 coordinates
to specify its position.

7.2.2 Holonomous System

Let 0, ¢, y,.... bethe generalised coordinates of a system, then the cartesian coordinates (x, y,z)
ofany point of it at any time ; can be expressed as functions of generalised coordinates and time ¢ as

x=x(1,0,9,y,...),
y=y(,0,4v.,..)

z=1z (t@q)l//)

Ifthese functions do not contain derivatives of generalised coordinates with respect to time; ¢
they do not involve quantities like , ¢, v ,... or higher derivatives with respect to ¢ then such a system s

called a holonomous or holonomic system. Alternatively the independent variables in terms of which the
motion is to be found may be any we please, with the restriction, that the coordinates of every particle of
the body can, ifrequired, be expressed in terms of them by means of equations which do not contain any
differential coefficients with regard to the time. When the systems admits of such a choice of indepen-
dent coordinates, it is said to be holonomous.

Note : In holonomous system all generalised coordinates are independent to each other.
7.2.3 Conservative system

If all the forces acting on a system and doing work ar derivable from a potential function (or
potential enegy) J/ (say), then the system is called conservative, otherwise it is non-conservative and the
forces are known as conservative forces.

7.2.4 Self learning Exercise
1. The degree of freedom for a single particle moving in space at any time ¢ is
@@ 2 (b) 3 ) 4 d o6

2. A system in which functions which do not contain derivatives of generalised coordinates
with respect to time are called .......................

3. Conservative forces are derivable form...................
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7.3 Lagrange’s Equations

To derive Lagrange’s equations of motion in generalised coordinates for a holonomic dynamical
system under finite forces.

Let p be atypical particle of mass ; ofarigid body at a time ¢ and let (x, y,z) be its
7N

y Fig.7.1

coordinates referred to rectangular axes. Also let 6,9, v ,.... be the generalised coordinates ofthe system.

Since the cartesian coordinates (x, v, z) be expressed in terms of generalised coordinates and time ¢, we
have

x=x(t,0,9y,.), y=y(t.0,¢y,..), z=z(1,0,¢,y,...) ..(1)

Assume that the system is holonomous, therefore, the equation (1) do not contain @, ¢, ... or
any other derivative with respect to time. Differentiating (1) with respect to ¢, we have

dx . Ox 0JxdO Jxd¢ OJIx dy
—=X= =+ —+ — —+ ...
dt ot 00 dt J¢ dt Jy dt
X—@+Q9+Q¢+ﬁ'+
or EPRREY: o9 é’WW ----- -.(2)

with similar expressions for y and ;.
On differentiating (2) partially with regard to ¢, we have

o5 _ox
20 00 ...(3)

oy 0Oy 0: oz

Similarly 20 0000 o8 St
Now, differentiating (2) again partially with regard to @, we have

ox Ox ox . ox - ox .
— = +—— 0+ o+ v+
o0 000t 00 00 0¢ 000y
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o [ Odx o [ox) . o [ dx) - o [Ox) .
=—|—=|+—=|—=|0+—|—|o+—|— |y +
ot \ 00 00\ 00 o9\ 00 oy \ 00
Ifwe compare R.H.S. of (4) with R.H.S. of (2) we observe that (4) can be obtained from (2) if we

Ox d [ax

replace x by 20 and hence L.H.S. of (4) takes the form dr %J inthe L.H.S. of (2)

ox _d (ox
00 dt\oe (3

- dy _d (dy) dz _d [0z
S 50~ di\00) 66  di o0
Let 7 be the kinetic energy ofthe system, then

T:%Z m (%% + 37 +2%) ..(6)

Differentiating it partially with regard to g we have

oT . OX 0"y oz
— =Y m|i—+ +Z—+.. (7
o0 o0 0”0 o0
Again differentiating (6) partially with respect to 9, we have
ﬂ—z m| 2%y 390 ;92
o0 o0 220 “a0 ~(®)

Now, by D’ Alembert’s principle (which states that the reversed effective forces acting at each
point ofthe system and the impressed (external) forces form a system of forces in equilibrium) therefore,
by giving the systems a small virtual displacement consistent with the geometrical conditions at time ¢,
the total virtual work done by the system is zero, in other words,

the virtual work done by effective forces = the virtual work done by the impressed forces.

Now, the virtual work done by effective forces for a variation of 9 alone

=2m X@+ é’y+ oz 00 )
00 0"0 20

T £ A . B A B R | Y
di\o6) ~di\o0) “diloo



. OX . 0z

Again using (7) and (8), we have

the virtual work done by effective forces for a variation of @ alone

d (6T oT
:%5(55]_55}59 (11

Now, virtual work done by impressed forces for a variation of g alone,
ax X 0" v oz
=2 [ Y=g 50) 60 (12)

where XY, Z are the impressed forces on the system. Again, if j be the work function of the
system, then we have

ow
X:Ee‘[c

Therefore, the virtual work done by impressed forces for a variation of g alone
— é’_W @ + é’_W Q + é’_W 2 o0

ox 00 Jdy 00 Jz 00

=g %0 (13)
Equating (11) and (13), we have

d (or)_or _ow
dt\o0) 0606 060

Similarly, we have the equation

d[oT) _or _aw
dt\op) o9 ¢

d (0T or ow
., - = ..(14)

dt\oy ) oy oy
and so on, there being one equation corresponding to each generalised coordinate of the system.
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These equations are the Lagrange’s equations in generalised coordinates for finite forces under
a holonomous dynamical system.

If  be the potential function and jp be the work function, then we know that

V + W = constant
= W =constant -V ..(15)
Then the Lagrange’s equations (14) become

d (or)_or _ _adr
dt\o0) 66 o0

d [oT) oT __ov
dt\o¢) o9 ¢

d é’TJ or oV

di \ oy _é’W _é’W etc. ...(16)

Equations (16) are the Lagrange’s equations in generalised coordinates for finite forces under a
holonomous conservative dynamical system.

7.3.1 Lagrange’s function

When the forces are conservative and a potential function J/ exists the Lagrange’s @-equation
from (16) is

dt\ o0 o6 o6

S A
dt\ 00 o6
d | 0 0

- E {% (T—V)} - % (T—V)= 0 (- V doesnot contain g, ¢,etc.)
d (L oL

=>—|—==|-—=—==0
dt\ 00 o0

Similarly

d oLy _JL _

dt\op) oI¢

dfoL) oL _,

7i\50 e ofc. ..(17)
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where J, = 7/, is called the Lagrange’s function or Lagrangian function or kinetic potential.

7.4 Principle of Energy

To deduce the principle of energy from the Lagrange’s equations.

The principle of energy can be deduced from Lagrange’s equations when the geometrical relation
do not contain the time explicitly.

If 0, ¢, v, .... are the generalised coordinates of a holonomous conservative dynamical system
with potential function 7, then the Lagrange’s equations are

d (or)_or _ _Jdv
dt\20) 66 00>

da(or)_or__or
dt\o¢| o¢  o¢°

d (0T oT v
= etc ..(18)

dt\oy | oy ow
If x,y,z do not contain time ¢ explicitly, we have

x—@@+@¢+ﬁ v+
50 o9 é,wl// ---Getc. ...(19)

so that the kinetic energy 7 gives

T==3 m(+y" +2)

oz . Oz . Oz .
+|—=0+—0+—y + ..
o6 op oy
—A0* + A, A 24,00+ 24, 0y + 24, dyr + ... ...(20)

where the coefficients 4,,, 4,,, 4;;, ... 4,, A5, Ay;,... are functionof 6,¢,y etc.

Equation or relation (20) shows that, the kinetic energy 7 is a homogeneous quadratic function of
0,,1,...

Hence by Euler’s theorem, we have

§OT 40T . oT

-+ QO — + — + ..... =2T
PY: ¢§¢ wﬁy./ ..(21)
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Also 7 is afunctionof 0,¢,v .

ar _or,

dt 60 ¢¢

Now multiplying the Lagrange’s equations (18) by 8, ¢, vy,...

..(22)

respectively and then adding, we

{using (21) and (22)}

..(23)

i.e. the sum of the kinetic and potential enegies of a system of conservative forces is constant

have
. d &T . oT .d (0T
o R R R e e
dt 69 5(/5 dt \ oy
0”T . 0T
- ¢— v—+ ...
0”0 o¢ 0"1//
d é’T . oT
or — q)— — ... -
dt é’@ o¢ oy
0”T ) 0”T
— ¢—+ + ...
0”0 o¢ 0"1//
d dT dv
— 27 - —= - —
or dt( ) dt dt
or t(T+V) 0
.. T+V = constant
throughout the motion.

Ilustrative examples :
Example 1 :

Solution :

0

Use Lagrange’s equations to find the equation of motion of'a simple pendulum.

Let ; be the length of the simple pendulum, 7; be the mass and ¢ the angle made by



the string 9p with the vertical (4 after time ¢ . Here g is only the generalised coordinate. Now the
velocity V, ofthe pop at B willbe equal to /6.

Therefore, if 7 bethe g g ofthe system, then

1 . .
T:Em(m)z:%z2 0

Again, if Jy be the work function of the system, then
W=mgOA"+ C=mg.lcos@ + C
where (, is any constant, which adjusts the initial position ofthe pendulum (bob) .
Now, applying Lagrange’s @ - equation, we get
d [MJ T oW

di\o0) 06 o6

d m o, . .
— 2. =0I"0|-0=- [sin@
or dt( ) mglsin

2
or mi*0=—-mglsin®
or éz—(%) sin @
or 6=- (%) 0 {Since @ is verysmall .. sin0~ 0 }

which is the required equation of the motion.

Example2: Abeadofmass py,slidesonasmooth fixed wire, whose inclination to the verticalis ¢ ,
and has hinged to it arod of mass 5; and length 2/, which can move freely in the vertical plane throgh the
wire. Ifthe system starts from rest with the rod hanging vertically, show that

{4 M +m (1+3cos2 9)} 10 = 6 (M+m) gsina (sin@—sina)
where @ is the angle between the rod and the lower part of the wire.

Solution : Let 4, Q, be the fixed wire whose inclination to the vertical 4, B, is a , where 4, B,
be the initial position of the rod. At time ¢, let the bead of mass ps beat 4 andtherod 4B
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Fig. 7.3

of mass s and length 2/ be inclined at an angle g to the lower part of the fixed wire 4, Q,. Let
A4, A = x be the distance moved by bead on the fixed wire in time 7. Here x and @ give the position
of'the system at any time t, therefore, x and @ are taken as generalised coordinates of the system.

The weights of the bead (of mass js) and the rod (of mass ;) are acting vertically
downwards at 4 and G (C.G. fo the rod) respectively. Thus, if 7 and j are the g g and the
work function of the system respectively then with the help of figure, we get

T = K.E. ofthe system= K E ofthebead + g g oftherod

- % M+ % {(x2 +120*+2%10 cos(%+0)) + g 92}

%(Mer)x2 +%m1292 — mlx0sin6 (1)

and

w = work function = work done by weight of the bead + work done by weight of the rod

=Mg.AL+mg.AP+C ,where C isany constant
=Mg.xcosa+mg(4,L+NG)+C
=Mg.xcosa+mg {xcosa+lcos(9—a)} +C

or W= (M+m) gx cosa +mglcos(9—a) +C -.(2)

Now, applying Lagrange’s equations

d (0T oT ow
Lagrange’s x - equation is dilox ] ox = ox
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Here

% {(M+m) X — ml@sin@} -0= (M+m)gc0sa

or (M+m))'é—ml(ésin0+9200s0)=(M+m) gcosa ..(3)

d [é’TJ oT oW

Similarly, Lagrange’s @ - equation is 71\ 201 20" 20
Here
d 4 L. y |
or 77 EMI 0 —mlxsin0 +mlx000s0:—mglszn(0—a)
4

or 3 ml*0 — ml {)'ccos 00+ Xsin@} + mlx6cosd = — mglsin(6— o)

or %mlzé—mlisinﬁz—mglsin(@—a) (4

Eliminating 3 between equations (3) and (4), we get

N2 -
imlzé—mlsine (M+m)gcosa+m10 cosO + mlOsin0
3 (M+m)

o

= (M+m)gl{cosasin0—sin(0—a)} = (M+m)glsinacos9 ..(5)

}: —mglsin (0—a)

w |

(M+m)—msin2 0} 10 — ml? 6 sinOcos0

Multiplying it by 2 8, we get
{% (M+m) — msin’® 0} 210 0 — mI*6* sin6 cos6 20
=(M+m) glsinocos020

or 12%[{§ (M+m)—msin20} 92}=2(M+m) glsinacos 0
Integrating it, we get
I? {% (M+m) — msin® 0} 0* = 2(M+m) glsina sin@+ C, ..(6)

Initially when the rod was vertical at 4, i.e.
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when 9= ¢, § = ¢ from(6) we have

C,=-2(M+m)glsin’a (7

Hence, the equation (6) gives
, |4 ) h2 . . )
[ {§(M+m)—mszn 9}0 =2(M+m) gl{szna sin@ — sin a}

or [ {4 (M +m) = 3msin’ 9} 0> =6(M+m)g {sina sin@ — sin’ a}
or 1{4M +4m — 3m(1-cos’ 9)} 0 =6 (M+m) gsina (sin@ — sina)

or [ {4M +m (1+3 cos’ 9)} 0% =6 (M+m) gsina (sin@ — sina)

Example3: A uniform rod, of mass 3m and length 2/ has its middle point fixed and a mass m
attached at one extremity. The rod when in a horizontal position is set rotating about a vertical axis through

2n
its centre with an angular velocity equal to W/Tg . Show that the heavy end of the rod will fall till the

inclination of the rod to the verticalis cos ™' {\/ n+1- n} , and will then rise again.

Solution : Let 4B betherod ofmass 3m and length 2/. The middle point () of the rod be fixed
and amass m be attached at the extrimity 4 ofthe rod. Initially let the rod be at rest along

mg

Fig. 7.4

0Xx takenasaxis of x.Letaline Oy perpendicular to the plane of paper and a line ()7 perpendicular
to Ox betaken as axes of y and 7 respectively. () is taken as origin.

Let at any time ¢, the rod turn through an angle ¢ fromits initial position () with an angular

. 2n
velocity ¢ = W/Tg .Also let @ be the inclination of the rod with ()7 at this time ¢ . Take an element
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PQ =d ¢ fo therod such that OP =&, then the coordinates of the point p onthe rod are (x,y,z) ,
where

x=E&sinOcos¢, y=EsinOsing, z=EcosO (D)
Then, x=EcosO cosg O — Esin® sing ¢

y=~EcosH sin¢9+ £sin O cos¢ ¢ -(2)

z=—Esind 0
Therefore, the velocity of P, V), is

V=% +y +2

=& (0°+¢*sin’ 0) ..(3)
If IV, be the velocity of mass ; at 4, then we have on putting &=/

Vi="1(0°+¢ sin’ 0) (4

Now, the mass ofthe element PQ = 3m dé.

21

therefore, the g g ofthe element PO = % ) [32—’7; d éj v

_ % [32_”; dﬁj £ (6 + 4 sin” 0)

1
Thus, the ¥ £ ofthe rod AB = j % [32—”; déj £ (67 +§* sin 0)
-1

=—j (0> +¢* sin*0) £d &

-1

_3m h2 o, 42 a2 l 2
_4—1(0 + ¢ sin 0).2!5 dé&
or, K. E. ofthe rod AB:%(QZWZSZ'"Z@) r .(4)

1 : .
Also, the g g ofthe mass ;; at 4 = 5 ml? (92 + ¢ sin® 9) ..(5)
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Thus, if 7 bethe g g ofthe system, then
= K. E. oftherod 4B+ K. E. ofthe mass ; at 4

2

ml* ;. -, ml
= 5 (0 + ¢~ sin 0)+

(92 + ¢ sin’ 0)

T=ml (6% +¢ sin0) .(6)
Again, if jy be the work function of the system, then

w = work done by weight ofthe mass , at 4 =mg . OR

=mglcosf (7
Now, applying Lagrange’s equations, we get

Lagrange’s @ - equation as

d . .
— 2ml’0; —2ml* ¢ sin@cos® = — mglsinb
dt{ m } ml~ ¢~ sin6co g

oo 1O-1¢ sin@cos@z—%sin@ ..(8)
Lagrange’s ¢ - equation gives

% (2ml* ¢sin*6) - 0=0

d ..
ot 27 (q)sin2 0) =0

on integration, we get

¢sin®@ = C (Say) .(9)
But Initially when 6 = % = \/? (given)
whichgives C= 2';g (10)
Therefore, the equation (9) gives

sin 0 = 2’;5’ (1)

Subslituting the value of ¢ in equation (8), we get
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16— l( 2ng )sin@cos@z —%sin@

Isin* 0
or 200-4 ngcotOcosec’d = — gsinf --(12)
Multiplying it by 2 @ and then integrating, we get
16> +2ngcot’ 0= gcos+C, ..(13)
. .o . _ 7Z' p _
But initially, when 6 = A 60=0,
whichgives  C, =0
Thus, we get
10 +2ngcot*> 0= gcosO ...(14)
Now, the rod will fall till § = ¢, i.e.
2 ngcot’ 0= gcosh
or cos 0 (2ncos0—sin2 0) =0 ..(15)
which gives
either cos@=0 or 2ncos@—sin*0 =0
-, when cos@ = () then 6 = % , which gives initial position ofthe system.
When 2ncos@—sin>0=0
then 2ncosO- (l—cos2 0) =0
—2n + \4n* +4
or cos@ = . .
2
or cosO=~n*+1-n (leaving - sign because 6 < %)
or H:cos’l{\/n2 +1—n} ...(16)
which gives the required result.
Again, from equation (12), we get
ho_|& sin* @—4ncosO
21 sin’ 0 -(17)
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If we substitute the value of @ from (16) inthe R.H.S. of(17), then g comes out to be positive,
thus at that time the rod begins to rise again.

7.5 Small Oscillations

To explain how Lagrange’s equations are used in case of small oscillations.
or

Use of Lagrange’s equations in finding the small oscillations of a conservative system
about a position of equlibrium.

In the case of small oscillations the generalised coordinates 8, ¢,y ,... should be so chosen that
they vanish in the position of equlibrium.

Since the system makes small oscillations about the position of equilibrium the generalised coordi-
nates 6, ¢,y ,... as also their derivatives will remain small during the whole motion.

If x,y,z do not contain time ¢ explicity thenthe g g isahomogeneous quadratic function of
0, ¢, ... etc. Therefore, K. E. T and the work function jy ofthe system are given by

T=A,0 +A, ¢ +Ag > + ...+ 2A4,00+2 4,0y +2 A4, ¢vr... (1)
and W=C+BO+B,¢+By +..+B,0°+B,¢"+B, vy’ ... (2)

Now, choosing X,Y,Z suchthat 6, ¢, v,... be expressed in terms of X,Y,Z by the follow-
ing equations

O0=2,X+A,Y+A,Z
o=pmX+u,Y+uZ ..(3)
v=vX+v,Y+v.,Z

Againchoose 4,'s, u."s, v,'s insuch a way that when the above values of 6, ¢, v,... and their

derivatives are substituted in equation (1) and (2), then there is no term containing XY, YZ, ZX in T

and there is no term containing X Y, Y Z, ZX in , then X, Y, Z are called the Principal or Normal
coordinates.

Thus when X, Y, Z are the principal coordinates then from (1) and (2), we have
T=A X" + A,V + A7 +... (%)
and  W=C'+BX+BY+BZ+..+ B X +B,Y’+B.Z" + ... (5)

Then the Lagrange’s equations are

d (T oT ow
di\oXx ) ox ox-°c

d )
or oy (2 4/,X) - 0= (B/+2 B}, X)
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or 2 A\ X = B/ +2 B], X etc.
which can be put in the forms
X=-WX, Y=-W}Y, Z=—- W} Z etc.

which represent S.H.M. giving the small oscillations about the position of equilibrium. Thus we can
conclude that, when the equation of motion of a system can be reduced by the variables X,Y,Z to
equations of S.H.M., then the coordinates X, Y, Z, are called the principal or normal coordinates.

Example 4 : Two equal rods 4B and BC, each of length ;, smoothly jointed at g, are
suspended from 4 and oscillates in a vertical plane through 4. Show that the periods of normal

2r
oscillations are — , where,
n

-8t

Solution : Let m be the mass ofthe rod 4B and pC which are smoothly jointed at B. Also Let
G, ,and G, be the centres of gravity of therods 4p and B respectivelyand 9 and ¢ their inclinations
to the vertical at any time ¢ .

A
[
— v
0 0
P i 1
10 z
Q BN ~¢
¢ ~, 8
SRS PSS SUSS £ el 7)) I
R r\n/g g ( G2
Z

Fig. 7.5 mg

[, .
G, isturninground B with velocity 5 ¢ ,while g is turning round 4 withvelocity /. Now if
7 and  arethe g E. and work function of the system, then, we have
T = K. E. ofthe system

= K.E. oftherod 4B+ K E. oftherod BC
m . m .
= Ve +K 67} + 5 Ve +K5 ¢} (1)

Where V;; and V;; are the velocities of the G, and G, , C.G. ofthe rods AB and BC

and K, and K, are their radii of gyration ofthese rods respectively.
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gives

(10) + (é ¢)2 +2(10) (é (b) cos (§—6) + % (g (}5}

1292 Sy 12¢2 L.
[ 3 J+l 0 +T+l 0 ¢ .1 (for smalloscillation cos(¢— 0) ~ 1)

ml

=2 {4 g 4309 )
and

W=mg.AP+mg. AR + C,where C isany constant

zmg.§c0S9+mg (40+BS) + C ..(3)
[ [
= mg.Ecosé’ +mg lcos0+zcos¢ +C
mgl

== (3cosO+cosp) + C --(4)

Now, here 9 and ¢ are taken as generalised coordinates. Therefore, Lagrange’s ¢ - equation

2
d ml (86+39) _0=-"80 36ne
dt | 6 2
or 80+3¢d=-9 (%) sin@ {For small oscillation sin@ ~ 0 }
or 8é+3<}5=—9(§)9 .(5)

and Lagrange’s ¢ - equation gives

d (nl* .., .. mgl .
E{?(2¢+30)}—0=— > .Sll’l¢

or 2¢+30:—3(§)S1n¢
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=-3 (gj ) {For small oscillation sin¢ ~ ¢)

or 2¢+39=—3(§)¢ ..(6)

Now, the equation (5) and (6) can be written as

{8D2+9 (%j} 6+3D¢=0,

and 3D29+{2D2 +3 (%)} $=0 (D
where D = i
dt

Eliminating ¢ in the equation (7), we get

oo (oo oo ()} -or] -

B 2
on |7D*+4z (% D*+27 (% } 0=0 ~(8)

2r
Ifthe periods of small oscillation are e then

weput 6= A4 cos(nt + B) ,where 4 and B are constants
then DO = - An sin(nt+ B), and
D@ =—n” Acos (nt+ B)

or D*0 = — n*0,smilarly p* 9 = n* 0 ...(9)

. with the help of(9), equation (8) becomes

2
-]} -0

2
7n —4{%} n+27 (%j =0 (0 % 0)
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Therefore, we get

A ) -+(5)

Bl 2.7

o e[ )(0)

Example5: A unifromrod, of mass 5m and length 2 a , turns freely about one end which is fixed, to

its other extermity is attached one end of a light string of length 2 a , which carries at its other end a particle
of'mass p; , show that the periods of small oscillations in a vertical plane are the same as those of simple

a 20
perdulums of lengths 3 and —a

Solution : Let 04 bearodoflength 2a and mass 5m, whose one end is fixed at (¢ and G be its

centre of gravity. Let 4 partical of mass y; be attached at theend B ofastring 4B oflength 2a which
is attached to the rod at the end 4.

)

— ad
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Let after time ¢, the inclinations of the rod and string to the vertical be @ and ¢ respectively Now,
if 7 bethe g E. ofthe system, then

T = K.E. oftherod + K.E. ofthe particle of mass » at B
Sm : m
= {ng +K292} T Vs , where ¥, be the velocity
ofthe ¢ G. oftherod, f be its radius of gyration and ¥, be the velocity of mass »; at 5.

roim {(ae)z L 92} 2 J(2ad) + (2ad) +2.(240) (207) cos(4-0)
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_5m 2 2 az'z m 2 )2 2 52 25
_T{aew?e + {4207 +aa’ 9 480 09}
{For small oscillation cos (¢ —0) ~ 1}

2
or T=m3“ {1667 +6¢* +126 ¢} (1)

Again, if jy be the work function of the system, then
w = work done by weight oftherod at G, C.G. oftherod

+ work done by weight of the particle at p

=5mg.0S +mg.0Q + C,where ( isany constant
=5mg.acos@ + mg.(OP+AR)+C
=5mgacosO + mg {2acos@+2acosg}+C
or W=Tmgacos@+2mgacosp+C ..(2)

Here @ and ¢ are taken an generalised coordinates of the system, therefore, by Lagrange’s

equations, Lagrange’s @ - equation gives.

2
% {m; (329 + 12¢)} -0=—-Tmgasin6

)sin@

or  320+12¢=-21 (% } 2 {For small oscillation sin 6 ~ 6} .3)

or 329+12£j)=—21(

Q |og

Lagrange’s ¢ -equation gives

2
% {m; (12¢+129)} ~0=-2mgasing
a
or 29+20=- (%) ¢ (for small oscillation sin¢g ~ ¢)...(4)

Equation (3) and (4) can be written as

{32 D’ +21 (%)} 0+12D% =0 ..(3)
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and 2D°0+ {2 D* + %} $=0 ..(6)

Eliminating ¢ between equation (5) and (6),

[ o (5] -2

B 2
or 40D* +74 (g) D’ +21 (f) } 0=0 (7

Now, put 6 = 4 cos(wt + B), then
DO =— wAdsin(wt + B), D’ 0 = —w” Acos(wt + B)

or D?* 0 = — w? 0 and similarly p* 9 = w* @

Then the equation (7) becomes

2
{40w4 — 74w (g) +21 (g) } 0=0
a a

2
or 40wt —74w? [E]421| & =0 (- 6 % 0)
a a

o ot (D) o500

300 <)
or M Tole) O T,

2r
Thus, if ¢ be the time period of small oscillation then 7 = Y and if ; be the length of simple

equivalent pendulum, then

[l 2r
t=2r \P:_ , which gives [ = >
g w w

Thus, in the present case, the lengths of equivalent simple pendulum are W2 and .2
1 2

20a dZ_a
or —7 an 3
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Example 6 : A perfectly rough sphere lying inside a hollow cylinder, which rests on a perfectly rough
plane, is slightly displaced from its position of equilibrium. Show that the time of'a small oscillation is

(5 i)

where 4 is the radius of the cylinder, p that of the sphere, and M,m are the masses of the

cylinder and sphere respectively.

Solution :

Fig. 7.7

The figure in the vertical cross - section through the centres of the cylinders and sphere.

Let ¢ and ¢’ be the centres of the cylinder and the sphere. Initially the point 4, ofthe cylinder
and sphere be coincident, therefore, let C4, and C'4, are lines fixed in the cylinder and sphere respec-

tively These lines are initially vertical and after a time ¢ , make angles v and ¢ with the vertical. Let g be
the angle which the line joining centres ¢ and ¢’ makes with the vertical. There is no slipping between the
cylinder and horizontal plane and also between the cylinder and sphere. Let the cylinder ralls a distance x
on the plane, Therefore, with the help of figure, we have

x=A,A=Arc AyA=avy
and  Arc A P = Arc B,P
ie. a(y+0)=b(0+9)
or bgp=(a-b)0+ay
sothat b = CO + ayr (1)

where C =4 —p

Referred to the horizontal and vertical through

A, as coordinates axes, the coordinates (x,,,) of ¢ and (x/,y!) of ¢’ are given by
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x,=0A4 (or 4yA)=ay,y =a
..(2)
x! =OK (or 4)K) = OA+ AK = ay +Csin0
y!=C'K=a-C cos0
If V. and V. be the velocitites of ¢ and ¢’ respectively then we get
Vel =x"+3 =d"y’ .3
and V. =x7+p7= (atj/ + Ccosé’é’)2 +(Csin6’«9)2
"+ Ois very small
2 -2 2 N2 o
=y’ +C 0’ +2aCy 0 . cosO ~ 1, sinf ~ 0 +(4)
Now, if 7 bethe g . ofthe system, then we have
T = K.E. ofthe cylinder + K. E. ofthe sphere
= [#+K1 v’} + 5 {VC,2 +K? ¢2}
where K, and K, are the radii of gyration of the cylinder and sphere respectively.
. : : L2,
or T:%{x2+a2y/2}+%{azy/2+C292+2acy/9+gb2¢2}
- % {ay?+a’ v} + % {az Wi+ C*0*+2aCy 0 + 3 (C9+ay/)2}
(10M+7m) 2 2 7m 2 N2 . 7
=—~a + —(C° 0" +2aCy 0 ..(5
m AT v 6) (5)
Again, if Jy be the work function of the system, then
Ww = work done by weight ofthe sphere
= —mg(a—Ccos®) {Distanceis measured inupward direction}  ...(6)

Here v and @ are taken as generalised coordinates of the system. We have from Lagrange’s
equations :

Lagrange’s v equation gives.

d {(IOM +7m) a* yr*

= +ZmaC9 ~0=0
dt 5 5

or  TmCO+(10M+7Tm)ay =0 A7)
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and Lagrange’s @ - equation gives

d [Tm : .
E{W(2C20+2a(§y/)}—0=—mg€9 (-0 issmall, .. sinf ~ 0)
or  7CHO +7Tay =-5g0 - (®)

Eliminating v between equations (7) and (8), we get

{7TaC(10M+7m) - 49maC} 0 =-5ag(10 M+7m)6

. I0OM+7m g
or 9:_{[ ST, ]-(a_b)}G .(9)

which represents an equation of simple harmonic motion (S.H.M.) with the time of small

oscillation
a—-b 14 M
=2r
g 10OM+T7m )

Example 7: A uniform straight rod, oflength 2 a is freely movable about its centre and a particle of
mass one third that ofthe rod is attached by a light inextensible sting, of length ¢ , to one end ofthe rod;

a
show that one period of principal oscillation is (\/g + 1) T \/; .

Solution : Let 4B bearodoflength 2a ofmass m» and having its centre of gravity at (5, Also let

a particle of mass attached at ¢ and is connected by a light string g oflength a at the lower end
P 3

B ofthe rod.

Fig. 7.8

Atanytime ¢,let @ and ¢ be the inclinations of the rod and the string to the vertical respectively.
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Here 9 and ¢ are taken as generalised coordinats of the system.

Now, if 7 bethe g E. ofthe system, then we get

T = % {VG2 +K° 92} + % (%) {(a@)z +(a¢'5)2 +2 (a@)(aé)) cos(q)—@)}

where V. be the velocity of .. ofthe rod (whichis zero) and g be its radius of gyration.

or T =

N3

2
a m (5 2 52 25
{?9}+g(a0 +a’ ¢ +2a’0 ¢)

(for small oscillation cos (¢ - 9) ~1)

2
ma

[20°+¢ +204} (1)

Again, if jy be the work function, then

m
W = work done by the particle of mass (?) at C

m
=38 {OC}+C' where (' is any constant.
= %{acos@+acos¢}+€’ (2)

(as OC=QR+RC=PB+RC=acosf+acosg)

Now, Lagrange’s @ equation gives

d (ma®, . .. .
E{mg (49+2¢)}_0=%(—asm0)

a

g

or 20+ ¢=-2 (Z) 0 (for small oscillation sin @ ~ 0)

and Lagrange’s ¢ equation gives

d |ma* .- . mg .
E{ 5 (2¢+20)}—0=—Tasm¢

or d+0= —(%) ) (For small oscillation, sin¢ (¢ ¢) - (4)
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Ifweput D = di’ then the equation (3) and (4) become
t

{202 +(§j} 0+ D% =0 (5
and D°O+ {Dz +(§j}¢ =0 ..(6)

Eliminating ¢ between equation (5) and (6) on multiplying equation (5) by {Dz +(_j} nd

equation (6) by 2 and then on subtacting, we get

(5} o2} oo
ot :D“ +3 (f) D'+ (fﬂ ()

Now, put @ = Acos(wt+ B), then

DO =-wdsin (wt+B), D*0=-w’Acos(wt+B)=-n'0
and similarly
=~ D*0=w'0

The equation (7) thus becomes
2
{w“ -3 (gj w? + (gj } 0 =0
a a

2
or w4—3(§)w2+g—2 =0, 90

which is a quedratic in ,,2 let the two roots be w, and w,
2 & 2 _ 8
so that ™ —Z(?’_\E) and W2 = 24 (3"“/5)

one period of principal oscillation corespending to w, is given by

2—7[:>27r 2a

¥ g(3-+5)
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rationalize

e (B o
= z(v5+1) \E

7.6 Lagrange’s Equation for Impulsive Forces

To establish Lagrange’s equations for impulsive forces

Let 0, ¢, w,.... are generalised coordinates of the system and (x,y,z) be the cartesion

coordinates ofany particle of mass m ofthe system referred to the rectangular axes. Since the cartesian
coordinates are functions of generalised coordinates and time ¢ as

x=x(,0,9y...), y=y(t.0,0,y,..), z=z(t,0,,y,...) (1)
Now differentiating (1) with respect to ¢, we get

dr _
dt

X_Q'Fﬁg'i'ﬁé'i'ﬂ y +

Again, differentiating (2) partially with respect to g we get

ox Ox

00 00

oy Jdy 0z Oz
Similarly, we have % = %, % = % , etc. ...(3)

Since we are here dealing with non-conservative systems, the geometrical equations may contain
the time explicitly, but they do not contain 0, ¢, v, ..... Now, consider a number of simultaneously applied

impulses acting on a dynamical system, we also have p’ Alemberts principle for impulsive forces, which
states that “the change of momentum in a certain direction is equal to the impulsive of the forces in that
direction.”

Therefore, the sum of'the virtual moments of the components of the change of momentum is equal
to the sum of the virtual moments ofthe applied impulses.

Let (%,,7,.Z,) and (%, y,,z,) be the velocities of the particle of mass s just before and just after

the application ofthe impulses respectively. Then the virtual work ofthe system the changes of moments is

> m{(k —x,) Sx+ (3, —3) 6y + (2,—2,)5 2} .(4)
and if X,Y,Z be the components of the applied impulses at (x, y,z) thenthe virtual work of the
system of impulses is
D {Xox+Ysy+Zsz} ..(5)
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Since the virtual works ofthe two systems are equal, we get
D om (%, =%)0x + (3= 39)0y +(,-2)0z} =D {XSx+YSy+Zsz}
Now, if 7 bethe g g ofthe system, then

T:%Zm()'c2+j/2+z'2)

ST O S
then 55 00 Y o0 7 o0 = (7)

Now, let the syffix (y to values refer just before, and the suffix /1’ to values just after the applica-
tion of the impulse. Also, we have

5x=%50+ X 59+ X 50
00°" " 55 °% " 5y 1
~(®)
dy ay Jy J
5 50+ 255+ 5y,
Y= EY: 04 ¢ e 4 etc.

Now,

z m (%, 8 Xy + Y0 ¥y +2,0 2y) = Z m{[

PRSP Py
&9 00, 6,

oT AT
- [%lae + [5—(}5)05415 T, (9)

Similarly

. . : oT oT
z m(x15x1+y15y1+zl5zl):[ﬁj 00 + [—J 0P+ ........ .(10)
1 1
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Also,

z (X5x+Y5y+Z5z)

_Z{[ 5)( 5); ZﬁZJ60+[X@+YQ+Z£)6¢+ ...... }
59 00 ¢ o¢ a9

=PS6O0+Q0¢+... .(11)
where P, O, ...... are the generalised components ofthe impulse.

Hence, with the help of (9), (10), and (11), the equation (6) takes the form

{[%] [Z;)}” {[?;) [Z;)}M = PEO+05p+.....(12)

Since 66, 6 9,..... are independent, therefore, we get
or) _(or) _,
a0 ), a0 ),
aor) (o) _,
o9 1 o9 i etc. ..(13)

there being one equation corresponding to each of the generalised coordinates of the
system. These equations are the Lagrange’s equations for impulsive forces.

Example 8: Three equaluniformrods 4B, BC, CD, each ofthe mass »; and length 2a , are at rest
in a straight line smoothly jointed at g and C. 4 blow j is given to the middle rod at distance ¢ from its

21
centre () ina direction perpendicular to it; show that the initial velocity of () is Im> and that the initial

angular velocities of the rods are

(5a+9¢c)1  6cl (5a-9¢)1

10ma* ~ Sma’ and 10ma’
Solution : v u x 0 ab v ¢
PRI B T NS S S N
G J o+’ lc G, /
ay,al 1 ag
Fig. 7.9

Let O be the middle point of the middle rod pC, 4 blow J is given to the middle rod in a
direction perpendicular to it at the point p, suchthat Op = . Let 3 and g be the linear and angular

velocities ofthe rod B( just after the impulse. Also let v and ¢ be the angular velocities ofthe rods 4B
and Cp respectively at time ¢ . Let 3, and v be the linear velocities of ¢ G, G, ofrod 4B and that of
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G, ofrod ¢p respectively.
Now,
Velocity ofend B oftherod 4p inadirection | toit

=velocity ofend B oftherod pC inadirection | toit.

or u—ay=x-ab
or u=x-ab+avy (D)
Similar

velocity ofend ¢ oftherod pc inadirection | toit

=velocity ofend B oftherod ¢p inadirection | toit.
or X+al=v- a(})

or v=x+a0+ag¢ .(2)
If 7 bethe g E. ofthe system, then we have
T = K.E. oftherod AB +K.E. oftherod BC + K. E. oftherod Ccp

2 2 2
e S by . QUL IV S &
2 3 2 3 2 3

2 2

2
:%[(;‘c—a0+ay))2+%l]/2+x2+%92+(x+a9+aw)2+%¢2}
or

T=%[3x2+%a292 +%a2¢2 +gazl/'/2 +2a)'c¢'5+2a)'clj/+2a29¢—2a291jl}

.(3)
Since before impulse the system was at rest.
.. K.E. ofthe system just before impulse (), = 0
AlsoIf U =1(6x +cd0) ..(3)

o U is the virtual work of'the impulse, then on applying Lagrange’s equations, we get

Lagrange’s x equation gives
ory _(or) _ . .
0% ), 0% ). coefficientof 6x n SU

or %(6x+2a¢+2atj/)—0:1
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T |
or 3X+ap+ay=— (4
m

Similarly, Lagrange’s @ - equation gives
%(% a’0® +24* ¢ —2a21/'/2)—0 =1c

T . : . Ic

—ab+ap—-ay =—
or 3 p-ay=—. .(5)
Lagrange’s ¢ -equation gives

%(§a2¢+2ax+2a292)—0=0

or x+a9+%a¢20 ..(6)
and Lagrange’s y -equation gives

m 8 2 . . 2/

—|-ay+2ax—-2a"60)-0=0

2 \3

.4
or x—a9+§ay/ =0 (7

Now, adding equation (6) and (7), we get

4 . 4
2x+—adp+—ay =0
30TV

3. : .
or Ex+a¢+at//=0 (8)

Again, subtacting equation (8) from equation (4), we get

3. 1
—X = —
2 m
.21
or X :E (9)

which gives the initial velocity of ().

Similarly, subtacting equation (7) from equation (6), we get

.4 . 4
200+ —ad——ay =0
3 ¢ a4

3 . . .
or Ea9+a¢—ay/=0 (10)
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Subtracting this from the equation (5), we get

or 0= 7, (11

which gives the angular velocity of the middle rod g .
Substituting the values of y from(9) and g from (11) in equation (7), we get

21 6cl 4

+—ay =0

3m Sma 3 v

. (Sa —9c) 1
or Y = oma> .(12)
which gives the angular velocity oftherod ¢p.
Similarly, on substituting the values of x and g in equation (6), we get

. (Sa + 9c) 1

¢p=- lomd (13)

which gives the angular velocity oftherod 4B .

Example9: Three equal uniformrods AB, BC,CD are smoothlyjointed at g and ¢ and the ends
4 and pare fastened to smooth fixed points whose distance apart is equal to the length of either rod. The
frame being at rest in the form of a square. Ablow j is given perpendicularto 4p atits middle point

37
and in the plane ofthe square. Show that the energy set up is dom’ where z; is the mass of each rod.

Find also the blows at the joints 4 and (.

Solution : A D
\ 2a \
I >>——~1—> ab 0
Gl \ G2
2a0 1\
1 3 C’
B [B B’ 1 c C
Fig. 7.10

Here 5 is the mass of each ofthe rods 4B, BC,CD eachoflength 2a . Alsolet 4 and p are
fixed points such that 4D =2a so that 4gCp form asquare. The blow ; is given at the middle point
G, oftherod 4p ina direction perpendicular to it. After the blow, the rods 45 and ¢p will turn

through the same angle say ¢ and the rod ¢ will remain parallel to 4p . Therefore, just after the
application of flow,
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Velocity ofrod AB= velocity ofrod DC=a 0 and velocity oftherod BC=2a 0
Now, if 7 bethe g g ofthe system just after the blow then
T = K.E. oftherod AB + K.E. oftherod DC + K.E. oftherod BC

=2 (K E. oftherod 4B)+ K E. oftherod BC

2
-2 {ﬂ [azéz +a_92)} +ﬂ(2a9)2
2 3 2

10 :
or T = ? maz 82 (1)

and if 6 u be the virtual work done by the impulse, then

ou=1.a60 (2)
Since, before the impulse the system was at rest, therefore g g just before the impulse was zero.

Now, Lagrange’s @ -equation gives

oT oT
- = coeflicientof 60 in Su
1 0

00 00
or Emazé —-0=1a
3
. 37
or 0= 20ma (3

Substituting this value of g in(1), we get the required energy setup by blow is

2
ngma2 31
3 20ma

_3r
= 40m .(4)

or T

Againlet /; and /. are the impulses at the ends B and ¢ as shownin the figure.

Now, considering the motion ofthe rod 4p and taking moments about 4, we have
Change in angular momentum about the axis through 4

=moments of the impulses about this axis

or m.%azézl.a—lB.Za
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I 2 . I 2 37
or IB:E__maez———ma- (form(3))

or I,==1

Again considering the motion of the rod ¢p and taking moment about p, we have

4 ,. 1
m.gazezlc.za orle =15 (form (3))

7.7

Summary

To solve dynamical poblems of conservative or non-conservative system kinetic energy forces

and couples and the generalised coordinates of the components of this system have been found to be very
useful. In this unit the degrees of freedom, generalized coordinates have been explained. The Lagrange’s
equations have been established for the finite and impulsive froces. Principle of energy has been derived
using Lagranges equations moreover the Lagranges equations are used in case of' small oscillation. For
every type of above a good number of examples have been solved.

7.8 Answers to self learning exercise
Exercise
1. (B) ) Holonomous  (3) Potential function
7.9 Exercise
1. Auniform bar, oflength 2 a , is hung from a fixed point by a string of length p fastened to one end
of the bar. Show that when the system makes small oscillation in a vertical plane, the length ; of the
simple equivalent pendulum is a root of the quadratic
12—(4—“+b]1+ﬂ=0
3 3
2. At the lowest point of a smooth circular tube, of mass 37 and radius 4, is placed a particle of
mass m ; the tube hangs in a vertical plane from its highest point, which is fixed and can turn freely
in its own plane about this point. Ifthe system be slightly displaced, show that the periods of the
two independent oscillations of the system are
2a M
27r1/[—} and 2 7w /( jﬁ.
g M+m) g
3. A uniformrod, oflength 2 a , which has one end attached to a fixed point by a light inextensible

5
string, of length (E) @ inperforming small oscillations in a vertical plane about its position of

equilibrium. Find its position at any time and show that the periods of'its principal oscillations are

2r S_a V4 4
3g and 3g
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A particle p moves ona smooth horizontal circular wire ofradius 4 , which is free to rotate about
a vertical axis through a point (), distance ¢ fromthe centre ¢ . Ifthe £ PCO = 6, show that

a0+w(a—ccos) = cw’sinb,
where 1y is the angular velocity of the wire.

Two heavy particles m, m' are attached to the points 4, B of 4 light inextensible string, of which

T
the upper extermity () is fixed. Prove that the periods of small oscillations are ——, where 5 is
n

given by

s o (m+m' (1 lj m+m') ,
— -+—|g+ =0
" "( m j(z )% [mll']g :

where O4A=1, AB=1".

Six equal uniformrods form a regular hexagon, loosely jointed at the angular points, and rest on a
smooth table; a blow is given perpendicularly to one of themat its middle point; find the resulting
motion and show that the opposite rod begins to move with one tenth of the velocity of the rod
that is struck.

miNININ
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UNIT -8
Motion of a top

Structure of the unit

8.0  Objective

8.1 Introduction

8.2  Equation of Motion ofa Top

8.3  Steady Motion of a Top

8.4  Stability Conditions for the Motion ofa Top
8.4.1 When the axis of the top is vertical

8.4.2 When the axis of the top is not vertical

8.5 Limits of @

8.6 Summary

8.7 Exercise

8.0 Objective

The objective of this unit is to understand a top and its motion about the axis of symmerty, The
stability of this motion in the cases when the axis ofthe top can either be vertical or non-vertical is to be
understood.

8.1 Indtroduction

In this unit we shall study the motion of a top, defined here in, about its axis of symmetry on a plane
which is rough enough to prevent slipping.

< vertex
Top
Fig. 8.1

Top : Arigid body which is sysmmetrical about an axis and teminates at one end of the axis ina
sharp point is known as a top or a gyro-state. The sharp point is called the vertex of the top. The top thus
is a sysmmertical solid of revolution whose centre of gravity lies on its axis.
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8.2 Equation of Motion of a Top

A top, two of whose principal moments about the centre ofinertia are equal due to its symmetry
about its axis, moves under the action of gravity about a fixed point () inthe axis of unequal moment the
top be initially set spinning about its axis which was initially at rest.

7N

Fig. 8.2

Here we shall apply Lagrange’s equations to determine the equation of motion ofthe top

Let atop spin with its vertex () fixed in a contact with a floor rough enough to prevent slipping. Let
OC, be the axis of the top and (5 its centre of gravity, (97 the vertical is such that in which the axis 0z
was at zero time, Oy and QX are horizontal and are at right angles.

Let O4,, OB, be two perpendicular lines, each perpendicular to OC,, (04,, OB,, OC, are
principal axes at (). Let 4 be the moment ofinertia about O4, or OB, ,and ¢ that about OC, .

Attime ¢, let OC, be inclined at an angle 9 to the vertical ()7 and let the plane ZOC, be turned
through an angle v fromits initial position. Also let ¢ be the angle between the plane ZOC, and the plane
C,04,.Thus 6, ¢, v are the Eulerian angles at (). Againlet w,, w,, w, are the angular velocities of the

top about O4,,0B, and OC, respectively, then the Euler’s geometrical relations i.e. relations between

0, ¢, v and w,, w,, w, are given by
w, = Osin ¢ — v sin O cos ¢
w, = 0cosd +y sinOsin ¢

Wy = ¢+ cos (1)
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Now, if 7 be the K.E. of the system. then

1
T'= 5 (4w} + Aw) +Cwy}) {-+ 4,B,C areprincipal moments of inertiaand 4 = B}

{A (wl2 +w22)+Cw32}

l\)|>—d

T:%{A (92+tj/2sin2 9)+C (¢+y)c0s9)2} (2)
Also, if 7 be the work function of the system, then

W = constant - mghcos6
or W = mgh(cosi — cos0) ..(3)
where m is the mass ofthe top, ;, = 0G and1ibe the initial value of .

Now, here g, ¢ and y are taken as generalised coordinates of the system, then applying
Lagrange’s equations,

6 - equation is

d(or)_or _ow
dt\oeo) 0660 o660

ie. %(A@) —~ At//zsinecose—C((}ﬁﬂ/’/cos@) (— wsin@) = mghsin@
or A0 — Ay’ sinOcosO+Cyr ¢+ cos)sind = mghsin (%)

similarly, Lagrange’s ¢ -equation gives

% {C (¢+y)cos0)} =0

or (})+ y cosf =constant = n (say) ..(5)

and Lagrange’s v -equation gives

d . .
P {Ay/smzé’ + Ccos0(¢+y/cos0)} =0

or Aysin® 6 + Ccos6(§+ 1 cosf) = constant = D (say) ...(6)
with the help of equation (5), the equations (4) and (6) become

AO— Ay* sin® CcosO + Cnysin@=mghsin® (7
and  Aysin®0 + Cn cos@ = D .(8)
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Also, T = ) {A (9 ?+y/% sin® 9) +cn’ } since the top is rotating under gravity which is a conser-
vative system of forces, the law of conservation of energy gives

T +V = constant » Where J/ = constant - w

thus 7= constant +w

or A (92 +yr” sin’ 9) + cn® = constant—2m g hcos®
or A (92 +y° sin® 0) + 2mghcos@ = constant = E (say) ...(9)

where E is any constant which includes cn”.

Thus the equations (7), (8) and (9) are the equations of motion ofa top. The constant p and g
in the equations of motion of a top are usually determined from the initial values given for the motion.

Note : (1) Generally the equation (8) which is also known as angular momentum equation and
equation (9), which is energy equation are considered as equations of motion of a top.

2) The constant p and g are not the products of inertia but simple constants.

3) The motion of the axis ofa top due to change in '9" is called nutation and due to change
in ¥ isis called precession. The general motion of the top about its fixed vertex () is a combination of

these two when it is given a constant angular velocity w, (: n) , called spin about its axis.

8.3 Steady Motion of a Top

The motion of a top is said to be steady ifit spins about its vertex () insucha way that its axis OC,
makes the same angle with the vertical ()7 throughout the motion. In other words, when the axis ofthe
top describes a cone around the vertical with constant angular velocity at a constant angle to the vertical,
then the motion of'the top is said to be steady motion.

Now for steady motion of the top

0 = constant = ¢ (say), then
0=0=0,Also y cosd = constant ( ¢ = O)

or / = constant = w (say)
Therefore, from the @-equation of the motion of the top i.e. from
AO— Ay? sinOcos@+ Cnyysind =m g hsind we get

—Acosasina w* +Cnwsina =mghsina

or Acosaw’ —Cnw+mgh =0 ..(10)
Thus there are two possible real values of yy , if

C’n* >4 Amghcosa ..(11)

This is the necessary condition for steady motion of a top and the angular velocities are called
precessional angular velocities.
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Particular Case : If o = A , then from equation (10), we have

mgh
W:[ Cn J ..(12)

Then, ifthe top is given an angular velocity , about OC,, when OC, is horizontaland OC, be

mgh

given an angular velocity [ Cn J about (7 ,then OC, will continue to revolve uniformaly in a horizontal

plane round the vertical ()7 Again, ifthe top is set in motion in the usual manner and  is very large, then
from equation (10), we get

_Cnt \/Czn2 —4Amghcosa

w
2 Acosa
_ 1 CntCn \/1_ 4Amg2hzcosa
2 Acosa Cn
_ 1 {CniCn( 1 4Amg2hzcosaj}
2 Acosa 2 Cn
Cn 2Amghcosaj
=1 £|l-—2——
or w > Acosar { ( o }(nearly)
~ Cn mgh
or " dcosa and Cn (nearly) ..(13)

obviously the first value of 4y is large and second is very small, since 5 is considered very large.

8.4 Stability Conditions for the Motion of a Top

8.4.1 When the axis of the top is vertical

A top is spinning with an angular velocity 5 about an axis which is vertical, to find the condition of
stability, if the axis be given a slight nutation. (or a top is executing steady motion with angular velocity »
about its axis which is vertical, to show that the motion is stable).

Let the motion ofa top be disturbed in such a way that g is very small i.e. there is slight nutation
initially, so the general equation of motion of the top are

A0 — Ay sin@cosO+Cn yrsind =mghsind (1)
and  Ayssin’ @+ Cncos =D .(2)
For steady motion with axis vertical (initially)
we have 0=0,y=n

then the equation (2) gives p = Cn
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But for steady motion, the necessary condition is
C’n* >4 Amghcosa

therefore, when ¢ = 0, thisreduces to
C’n*>>4A4Amgh

Now, let the motion be slightly disturbed. The disturbed motion is a general motion of the top

therefore, its equations are

A0 — Ay?sinOcos@+Cnysind=mghsin0 ..(3)
and Ay sin’ @+ Cncos@=Cn .(4)
From equation (4), we get

Cn(1-cosb) Cn
= = .05

sin@  1+cos@

Ay
with the help of'this, the equation (1) becomes

2.2 22
Azé—c—nzsin000s0+ ¢n

sinf = Amghsin®
(1+cos0) (1+cos0)

Since @ is small, therefore writing @ for sin@ and 1 for cos@, the above equation reduces to

2 2 2.2
Azé—cf 9+C2” 0= Amgh6
- C’n* -4 Amgh
or 9=—[ Ve Jé’ ..(6)

Since C*n* >4 Am g h , therefore, the coefficient of g is negative. Thus, the above equation (6)

is characteristic ofharmonic motion (S.H.M.). Thus the motion of the axis of the top is S.H.M. about the
vertical 7 fromwhich @ is measured. In other words, axis of the top, if disturbed slightly fromits vertical
position is in steady motion, will tend to come back to its original postion. Hence the steady motion, in
which axis of the top is vertical, is stable,

The period of nutation is

44°
=2 o
C'n"—4Amgh

4A4Ar
\/C2n2—4Amgh -(7)

8.4.2 When the Axis of top is not Vertical

A top is executing steady motion, with its axis, inclined at a constant angle ¢ to the vertical, and

precessional velocity yy ; to show that motion is stable.
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a top is executing steady motion with a constant spin 5 about its axis which is inclimed at a
constant angle ¢ to the vertical, then initially 9 = ¢, § = (), Y7 =constant =w (say), then the equation of
motion of the top (1) and (2) give

Aw’cosa—Cnw + mgh=0 ...(8)

and  D=Awsin’ a+Cncosa ..(9)

Let the steady motion of the top be slightly disturbed so that motion of the top then are general and
so its equations are

AO— Ay sin@cosO+ Cnyrsind=mghsin0 ..(10)
and Ay sin’ @+ Cncosd= Awsin’ a +Cncosa ~(11)
eliminating s between (10) and (11), we see

A%sin® 00 — {A wsin’ a + Cn(cosa —cos6’)}2 cos@+ Cnsin’ 0 x

{Awsin® a + Cn(cosa —cosf)} = Amghsin* 0 .(12)

Now, put g = g+ e, where ¢ is small (i.e. e<< 1) then neglecting quantities of second and
higher order of e and on simplification the abov equation (12) becomes

2
E=— wz—zmghcosa+ mgh c
A Aw

) (A w —mgh cosoz)2 +m’ g’ h’sin’ a
or €=- VERE € ..(13)

which shows that the coefficient of ¢ is always negative. Therefore, the equation (13) represents
a S.H.M. which shows that the axis of the top, if disturbed slightly from its position in steady motion, will
tend to come back to the original position i.e. the steady motion, with axis inclined at an angle ¢ to the
vertical, is stable. The period of this small oscillation is

2 2
Y A w . .(14)
{AZ w'=2Amghw’ cosa + (mgh) }

In case the top is set in motion such that 5 is very large and the two values of the precessional
velocity are appronimately given as

W= Cn mgh
Acosa °' Cn

therefore, when 5 is large, the first value is large and the second is small as shown earlier. For a
small oscillation yy is considered small then the period of oscillation is given by
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2w Aw
mgh

(neglecting ,,,2 and ;4 in the denominater of (14))

mgh
Cn

which when considered with (8), wherein on neglecting 2, w = we

2w A
get the form of'this period as Cn

8.5 Limits of ¢

A top is set spinning with angular velocity 5 about its axis. Initially the axis being instantaneously at
rest and inclined at an angle ; to the vertical; discuss the range of angle @, between the axis oftop and
vertical, in which its subsequent motion is included.

Initially given that @ = i, @ = 0, v =0, w, = n then the equation of motion of the top
Ay sin® 0+ Cn cos@ = Cn cosi (1)
and 4 (92 +y° sin’ 0) = 2mgh(cosi—cos0) (2)
eliminating y» from (1) and (2), we get
A*sin® 00% = Asin®> @ 2mgh (cosi—cos) — n*C* (cosi —cos0)’
=2Amgh (cosi—cos0) {sinz 0-2p (cosi—cos@)}
=2Amgh (cosd—cosi) {(cos@—p)2 - (p’ —2pc0si+1)}

n’C?
where p = 414—”%3}1 ..(3)

Now, ¢ will vanishwhen 9 =; or 6, or 8,, where

cos01=p—\/p2—2pcosi+] ..(4)

or cos@,=p + \/pz —2pcosi+1 ..(5)
since p is always positive and if 0 <i < 77 ,

p’—2pcosi+1<1+ p’

therefore, cos 6, > 1, whichmeans 6, isimaginary and is not admissible

Also  p-—cosi < \/(p—cosi)z +(1—coszi)

< \/pZ—chosi+]
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therefore p — cosi < p — cos0, (From (4))
Le. cos0, < cosi
or 0,>i

Again, it may be noted that if cos @ > cos i ,1.e. 6 < i, the equation (3) implies that 9?2 is negative

which will give an imaginary value of g, and is therefore, inadmissible. Thus @ cannot be less than ;.

Hence the top is never at an inclination less than ; or at a greater inclination than 6, i.e. the motion
is included between these limits. Thus

i <6< cos {p - \/pz—chosi+l}

Hlustrative Examples :

Example 1: A circular disc, of radius 4, has a thin rod pushed through its centre perpendicular to its
plane, the length of the rod being equal to the radius of the disc. Show that the system can not spin with the
rod vertical unless the angular velocity is greater than

20g

a

Solution:  Here the body formed by pushing a rod into a circular disc at its centre and
perpendicular to the plane, be a top with one free end of the rod be a vertex. At any time ¢, let the rod

i.e. axis of the top makes an angle 9 with the vertical 07 .

Z
A
a
A 0
\“'\
Q; > X
'O
'O
K
Y Fig. 8.3
Now, we know that for a steady motion ofa top,
C’n* >4 Amghcosa (1)

where 4 is the moment of inertia of the top about an axis through its vertex and perpendicular to
its axis, C be the ML.I. about its axis O, }; be the distance ofthe (G ofthe top from the vertex, m, be
the mass oftop and o be the inclination of axis of the top with vertical .
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Here, we have

A =M.L ofthe top about an axis perpendicular to its axis (C and passing through
vertex O .

1
=7 ma’ + ma’ (by parallel theorem)

h=a (= CG ofthetopisat )
a=0 (rod is vertical)

. the top will execute steady motion with axis vertical, if

C’n>>4Amgh

[1 2)2 2 5 2
or —ma” | .n >4.Zma .mg.a

2
or na>2og
2
or n> o8
a

Example 2 : Ifinitially the axis of the top is horizontal and it is set spinning with angular velocity y ina
horizontal plane, prove that the axis will start torise if n Cw > m gh andthat, when nCw = 2m g h ,the

Aw

. oy . . -1
axis will rise to an angular distance €95 [

ne J , provided that 4w < n C, and will there be at instan-

taneous rest. 4,C and , have their usual meanings.

Solution : The equations of motion of a top are
A0 — Ay? sin@cosO+Cniysin@=mghsind (1)
Avrsin® @ + Cn cos@ = D ..(2)
and A (07 +y’sin’ 0) + 2mghcosO=E (3)
Initially
0=”2,9:0,Qj/:w (given)
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Now, the axis of the top will start rising from the initial position if the initial value of ¢ is negative,
therefore from equation (1), we get

A (9) =— (an - mgh) ..(4)

initial

thus, (Q)inmal will be negative only when Cnw > m g h . Further, applying initial conditions to

equations (2) and (3), we get
D=Awand E = Ay’
Thus, the equation of motion ofthe top (2) and (3) become
A yrsin® 0 + Cncos@ = Aw ..(5)
and A6 + Ay sin® @ + 2mgh cos@ = Aw ...(6)

Eliminating v/ between equations (5) and (6), we get

Aw — Cncos0
A sin* 6

2
A0+ Asin® 0 { } + 2mgh cosO = Aw’

or A*sin® 0 0% + (Aw — Cncos0)2+ 2Amgh cosO sin® 0 = A* w* sin” 0
If2mgh = Cnw,thenwe have
A* sin* 0 6* + (Aw - Cncos@)zz A*w?sin® @ — Cnw Asin® 0 cos0
or A’ sin* 0 0 = Awsin® 6 (Aw — Cncosf) — (Aw - Cncosé’)2
=(Aw — Cncos0) {Aw (l—cos2 9) - (Aw—CncosH)}
=(Aw - Cncos0) {Cncos@ — Awcos’ 0}

or A*sin®*0 6* = cosO (Aw — Cncos) (Cn — Awcos0) (7)

Now, for instantaneous rest, g = (), then from equation (7), the rod will be at instantaneously rest,
when

cos@ (Aw — Cncos®) (Cn— Awcos) =0 ..(8)

= either cosO@=0 or Aw—- Cncos@=0 or Cn — Awcos@ =0, but when cos@=0 or

0= % , this gives the initial position, and when

af Aw
Aw — Cncos®=0, which gives 0 = cos I[E], provided 4w < Cn and when

Cn — Aw cos@ = 0 which gives
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0 =cos™ [ﬁj
Aw
which is impossible when Aw < Cn. Thus the rod will rise to an angular distance

ol Aw
cos Cn |- provided Aw < Cn.

Example3: A symmetrical top is set in motion on a rough horizontal plane with an angular motion
about its axis of figure, the axis being inclined at an angle ; to the vertical. Show that between the greatest
approach to and recess from the vertical, the centre of gravity describes an arc

h tan™ sin
p—cosi

where p and j, have their usual meanings.

Solution : The equations of motion of the top are
Aysin® @+ Cncosd =D (1)
and A (07 +y’sin’ 0)+2mgh cosf = E (2)

where p and g are constants, which can be determined by initial conditions. Here, the initial
condition are when @=;, 9=0, ¥ =0, therefore, equations (1) and (2) give D= Cncosi and

E =2mghcosi thus, the equations (1) and (2) become
A sin® 0 = Cn(cosi - cos 0) ..(3)
and A4 (92+t//2 sin’ 0)=2mgh(cosi—cos0) (4
eliminating y» fromequations (3) and (4), we get

n? (cosi —cos 9)2

A+ 4
A" sin” 0

= 2mgh(cosi—cos9)

or A* sin® 0 0% = Asin* 0 ngh(cosi—cosé’) —-c'n’ (cosi—cosé’)2
if c*n? =4Amgh.p,then, we have
A* sin® 0 0° =2 Amgh(cosi— cos 0) {sin2 0-2p (cosi—cos@)}
=2Amgh(cosO—cosi) {2pc0si—2pc0s6—l+c0s2 9}
or Asin® 0 0° :2mgh(cos0—cosi) {(p—cos@)2 —(1—2pcosi+p2)}
or Asin® 0 0% =2mgh(cosO - cosi) {(p—cos@)z—)f}
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where 4> =1-2 pcosi+ p*

or Asin® 00* :2mgh(cosi—0050) {iz—(p—cosé’)z}

Asin® 0 6
2mgh(cosi—cosO) =
or g ( ) 12 _ (p —cos 0)2 ...(5)

with the help of equation (5), the equation (4) becomes

Asin® 0 0°
2 —(p—cos@)2

A (92 +y sin® 0) =

sin® 0 0’
s —(p—cos@)2

or 0% + vy’ sin” 6 =

Dividing both the sides by g2, we get

2 .2
1+(d—"’) sin 0= S0 (6)
do X =(p-cos0)

But from geometry, we know that the length of an elementry are g is given by

ds® = h*(d6® +sin® 6 dys*)

1 (dsY dl//)2 -
— | = =1+| % 0
or e (d@) (d@ Sin (7

Therefore with the help of (7), the equation (6) becomes
1 ( ds )2 3 sin” 0
h* \do 2 —(p-cos)’

l(ﬁ)_ sin @
or h\do \/lz —(p—cos@)2

hsin@do
or \/ﬂ, p cos@ -.(8)

since, we know that g vanish for 9=; and 6=6,, where cosf,=p—-1 or

p— \/ 1-2pcosi+ p* . Therefore, on integrating the equation (8), we get

sin0do

(p- cos@
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sin0do

or hJ \/}f

(p- cos@

91
s=h|sin (—p—cosé’)
or 1 l_
T p—cos@l) in! [p—cosi)
A A

i ()

L[ p—cosi
or s=hcosl( ) )

N2
b tan! \//12 —(p—cosi)
p—Cosi

P \/1—2pcosi+p2—p2—cos2i+2pcosz'
= h tan
p—cCosi

= h tan™ sini
p—cCosi

Example4: When the axis of a symmetrical top is stationary and then spin is large and equalto 5, a
blow  is applied perpendiucalar to the axis at a distance 4 from the fixed point. Prove that the maximum

angular deflection of the axis is approximately 2 tan™' [é—dj , C being the moment of inertia of the top
n

about its axis of symmetry.
Solution : The equations of motion of the top are
Ayrsin® @+ Cncos@ =D (1)
and A4 (92+t//2 sin’ 9) +2mghcos=FE (2

Let ok be a line perpendicular to vertical ()7 and axis of symmetry of the top, (¢ both. Thus
the angular velocity g is about O . Initially, O is stationary ; ¢ . coincident with vertical ¢z . Thus

OK coincides with (4 and § is about (4. Thus the value of g before the action of impulse is zero.
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When the blow J is applied to a point on O at adistance 4 from vertex (fixed point) (), perpendicular
to its axis.

Since, the change in angular momentum about any line
= sum of moments of the impulses about the same line.

Therefore, by taking moment about ()4, we have

: o-79
A6 =Jd or y

. Jd
Thus initally 6 =0, 6 = =~ (3

Therefore, applying initial conditions to equations (1) and (2), we get

Jd?
D=Cnand E=2mgh+ ..(4d)
with the help of (4), the equations (1) and (2) beocome
Ay sin* 0+ Cncosf = Cn ..(5)
and A(Qz+l/'/sinz6’)+2mghcos6?=2mgh+*]2d%6l ...(6)
Eliminating v/ between equations (5) and (6), we get
2
. Cn(l-cos® 2d?
A92+A{HISTCZO;)} sin®@=2mgh (1—cos9)+Jd (7
But for maximum deviation g = (), therefore, the equation (7) gives
C*n*(1- 0 2 2 12
" ( SOS ) =2mgh (l—cos0)+J d
Asin” 0
2
J2d? C*n? (2 sin’ %) 0
y = 7 5 —2mg(2sin25)
or . 0
A| 2sin—cos
25y onts)
szz Czl’lz 2 0 .2 0
= t —4mgh sin” —
o an 04~ amgh sin® 2
2 72 2.2 2 0 2 0
or J°d” = C°n" tan 5 1-44Amgh . cos 5 ..(8)
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Since the spin 5 is large, therefore, the second term in the bracket on the R.H.S ofequation (8)
can be neglected, thus, we get

J’d* = C*n® tan’® 0

or Cntanngd

Jd
0=2tan"| =
or an [an

which is the required result.

8.6 Summary

In this unit we have learnt about the motion ofa top which has also been defined. The equation of
this motion have been derived along with the equation of energy. The steady motion of this top too has
been considered for the case when the axis of the top continues to make the same angle with origin.
Condition of stability have been discussed when during the motion of the axis oftop is (i) vertical (ii) not
vertical.

8.7 Exercise

I. Show that in order that it may be possible for a uniform cone of height 5 and vertical angle 2 «x ,
to spin as a top on its vertex on a rough horizontal plane, it is necessary that

5g(4+tan’ a)sina

n° > 7
htan” a
where w, =n.
T
2. Ifthe top be started when its axis makes an angle 3 with the upward drawn vertical, so that the
A [3Mgh

initial spin about its axis is —;

C 1 and the angular velocity ofits axis in azimuth is

Mgh

2 34 its angular velocity in the meridian plane being initially zero, show that the inclination

@ of'its axis to the vertical at any time ¢ is given by the equation

secO = l+sech{t MTgh}

so that the axis continually approaches to the vertical without ever reaching it.
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3.

Ifa top is made by running a thin pin through the centre of a circular dise ofradius 3 inches, so that

the length of the pin below the disc is 2 inches, prove that, for steady motion in which the rim does
not touch the ground, the number ofrevolutins per second about the axis must exceed

Ll ( = 4.5 approx)
37 (13)% :

A top consists of a thin uniform spherical shell of radius 4 and centre ¢ and is free to move about

a fixed point () ofits surface. The radius () makes an angle 9 with the upward vertical ()7 and

: .2
 isthe angle between the plane 7 and a fixed vertical plane. Initially, € = 2, 0=0y= 57
15g

where 7 = o0 is the spin of the top about its axis. Show that subsequently

cos@=tanh’ ¢ 3g
10a |’

Show tha the vertical pressure of the top on the point of support is equal to its weight when the
inclination of'its axis to the vertical in given by

34Amghcos’ 0—(n’c> +2Ambgh) cos@+n’c’a—Amgh=0

where ¢ and p are constants depending on the initial circumstances of motion.

miNININ
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UNIT -9
Hamilton’s Principle and Principle of Least Action

Structure of the unit

9.1 Introduction

9.2 Hamilton’s Principle and Principle of Least Action

9.3 Distinction between Hamilton’s Principle and Principle of Least Action
9.4  Deduction of Lagrange’s Equations from Hamiltion’s Principle

9.5 Summary

9.6 Exercise

9.1 Introduction

In this unit two important principles of dynamics viz Hamilton’s Principle and the principle of
least action are disscused. A clear distinction between these two principles which is also discussed in the
unit. The Principle due to Hamiltion has been found to be useful in deducting Lagrange’s equations of
motion.

9.2 Hamilton’s Principle and Principle of Least Action

Consider a holonomous dynamical conservative system. Suppose the system to have definite
motion from terminus A to terminus B, which may be called its actual motion. This may be visualised by

particle of mass »; at any point p , whose coordinates at time ; are (x, v, z) to move continuously along
the arc of a curve AB so that successive positions of the particle respresent successive configurations of

the system. Let 7, and ¢,, be the times at which the configurations are represented by A and B

respectively. Again consider a slighty different motion in which the path is contiguous to the actual path but
having the same terminii, the times at the terminii being the same as for the actual path.

Now, by D’ Alembert’s principle, “the reversed effective forces acting at each point of the system
and there external (impressed) forces form a system in equilibium.” Therefore, giving the system a virtual
displacement consistant with the geometrical conditions at time ¢ , we have

Y A(X-m)Sx+ (Y-mj) 5y +(Z2-mz) 5z} =0 ()

where X,Y,Z aretheimpressed forces on the systemand mx,m y,mz are the effective forces.

But D, {X5x+Y5y+Z§z}=—[a—V5x+é)—V5y+ﬁ5zJ=—5V

Ox oy Oz -(2)

where J is the potential function (energy) of the system.

Let (x, y,z) be the coordinates ofthe particle of mass p; in the actual motion and (x’, y’,z’) are
the corresponding coordinates in the displaced path, then we have

ox=x"-x,0y=y"-y,0z=z"-z2 ..(3)
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Similarly, if (u,v, w) be the components of velocity of the particle for the actual motion and

(u',v',w") be the corresponding velocity components for the displaced path, then

ou=u"—u,ov=v'—-v,o0w=w'—-w ..(4)
Now
csx= L s -+ L (s
Xox (x5x) xdt( x)
=—(x5x)—xz(x’—x)
=—(x5x)—fc{ﬂ—d—x}
dt dt dt
=%(§c5x)—fc{u’—u}
=— (¥6x)— % Su
)esx:i(xsx)—xax
dt
similarly,
soy="(yoy) - 36y andZ6z="0(:62) - 25z 5)
y y_dt yoy)-yoy di
Then

o (E6x+ Sy 4562) = — m H% (i6x) + % (75y) + % (2'52)} {58k + 9O+ 2'52'}}

:—m[% (xOx +)>5y+z'5z)—(x5x+y5y+z'5z')} ..(6)
Therefore, with the help of (2) and (6), the equation (1) becomes

—5V—Z m {E (X6x+y0y+z6z)—(x6x +y5y+z§z)}=0
Integrating this form 7, to 7, we
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[ovar+ [Ym {% (i0x + 8y +25z) — (5% + yOy + 2'52')} dt=0

or jant +[YmEsx+ysy+ z'sz)]: - j Yom(i6% + 30y +252)dt=0 (g

ty )
But at the terminii, which are fixed

o0x=0=0y=06z

therefore, Zm ()'c5x + yoy+ 2'52)]]? =0

Thus, the equation (6) becomes

jant - j dm(i6x+ Sy +282)dt=0 (7

to to
Now, if T be the kinetic energy of the system,

then,
1
I'=— E m()'c2+j/2+z'2)

ST=Y m(¥6%+ 38y +:252) .(8)

with the help of'this, the equation (7) become

].5th— ]. 0T dt=0

ty to

or  JoW-Tydt=0 o  [8(T-V)dt=0

ty ty

or J“dr =0 .(9)

)
where 7 = 7, 1is the Lagrange’s function.

But }SLdt = j[ (L'-L)dt = }L’dr - }Ldr

ty ty fy fy

or ].é‘Ldl‘:é‘].Ldl‘ ..(10)

ty fy
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Hence, (9) becomes.

5det=0 (1)

fy

We define S = J Ld t,asthe Hamilton’s Principal function, then (11) gives

55=0 (12)

This is known as Hamilton’s principle. It states that “if the time from one configuration to another
is prescribed, the principal function § has a stationary value in the actual path as compared to a
contiguous path i.e. the system will choose that path for which the principal function is stationary.”

Again, If F be the total energy ofthe system,

then, E=T+V

Therefore, Lagranges function
L=T-V=T-(E-T)=2T-E

therefore, if £ is constant, then equation (11) gives

5 [(2T-E)dt=0

fy

or 5J2Tdf=0 .(13)

fy

We define 4 = JZ T d t, as the Hamilton’s characteristic function, then (13) gives

ty

04=0 ..(14)

This is known as the Principle of Least Action. It states that “if the total energy of a system is
prescribed as it passes from one configuration to another, the action in the actual path is a minimum when
compared with a contiguous path i.e. the system will choose that path for which the action is the least.”

9.3 Distinction between Hamilton’s Principle and Principle of Least Action

In Hamilton’s Principlei.e. 6 S = 0, the time of description ¢, — ¢, is prescribed (fixed) as the
system moves from one configuration A to the another configuration B, whereas in the Principle of Least
Actionie. 5 4 =0, there is no restriction of the time of description ¢, — ¢, but the total energy (sum of
kinetic and potential energies) between the end point, A and B is prescribed (fixed).
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9.4 Deduction of Lagrange’s Equations from Hamilton’s Principle

Consider a holonomous, conservative dynamical system with , generalised coordinates
0,,0,,0,,.....0, . Let T and V are the kinetic and potential energies ofthe system and L be the Lagrangian
function defined as 7, = 77— . Since the Lagrangian function 7, = 7— ) ,isa functionof 6,,6,,6,,...0,

and 4,,0,,0,,...0, attime 7, then we have

oL " OL
SL=Y. —5 99 +> —5 99 ()

r=1 r r=1 r

Now, the Hamilton’s Principle gives,

6S=6]Ldt= 0

fy

or }5Ldt=0

fy

[ JL oL
o e zdalus oo
t [« oL (s oL
o {2—59 69,} dt + | {Z% 59r}df =0
l oL g oL d
w J{Zggo0far 5 g w00 @

d
Integrating the second integral by parts taking at (66,) asthe second function, we get

t [« oL oL b d (oL
{25_0,50’} dt +[Z%.59,L - | {Z E[a_é,)w’} dt=0

r [0

{Z j—@Lae,}dt—tjl {Z %[j—é].ae,}w:o

r t()

—

fy

g

—

or

fy

(the middle term vanishes asall 660, = 0 at ¢, and ¢,)

or

N E—

Zﬁaer—zi oL .80, |dt=0
a0 dt\ o0,

r
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T d (L) JL
or J [Z {E [%) - %} 591 dt =0 .(3)

fy

Since the system is a holonomous system, so, 66,,66,,66, .... 50, are arbitrary and

independent to each other, therefore, the above integral (3) will vanish, if the coefficient of 5 0, separately
vanishes, that is

d(oLy oL _,
d1 59r 50, ,r=123,....n

which are the Lagrange’s equations of motion for conservative system in terms of Lagrange’s
function.
Hlustrative Exmaples :

Example 1: Show that the Hamilton’s principle function § for simple harmonic motion in a
straight line is

Ju (7 +x7) cos (t=1,) = 2xx,
2sin (t—to) \/;

where x,x, are the displacements from the centre of force at times ¢,z respectively.

or

A particle moves in a straight line with central acceleration 1 x between two points x, and x, in

the prescribed time ¢, — ¢, . Show that Hamilton’s principle function § is

Ju {(xl2 +x7) cos (t, —t,) {Ju — 2x, xo}
2sin (tl—to) \/;

Solution : The equation of simple harmonic motion is

F=—ux (1)

Solution of'this equation is

x=Acost\/;+ Bsint\/; -.(2)

so that X, =Acost0\/ﬁ + Bsintoﬁ -(3)
where A and B are constants

If 7 be the kinetic energy per unit mass of the system, then

T:l)'c2 :—{—\/ﬁ AsintJu +Ju B cost\/ﬁ}2

1
2

\S]

or ng(— AsintJu + B cost\/;)2 (4
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For the simple harmonic motion, the force per unit massis —u x , therefore, if 7 be the potential
function, then

o V=opux’

:%‘u (Acost U + Bsint \/;)2 --(5)

Now, the Hamilton’s principle function § is defined as
t

S =j Ldt= [ (T-V)dt

to to

{(—Asint u + Bcost \/;)2 —(Acost u + Bsint \/;)2} dt

I
N =
S~

- gj {(B> = A4*)cos2t\[u — 2 A Bsin2¢ u} dt

[(B2 — A*)sin21 4y + 2 ABcos2t \/;]ll

)

Ju
4
g [(B2 —Az) (sinzt\/; — sin2¢, \/;) +2A4B (cos2t \/; — cos2t, \/;)]l

— VA [(B2 —Az)sin(t—to) \/; cos(t+1,) \/; + 2 ABsin(t—t,) \/; sin (7 +12,) \/;]l

N‘é‘

sin (t—1,) /1 {(B2 — A%) cos(t+1,) /u — 2 ABsin(t—1,) \/;} ..(6)

Now, solving equation (2) and (3) for Aand B, we get

A B
xsinz‘m/ﬁ—x0 sint\/ﬁ - X, cost u—xcostm/ﬁ

1
- Sinty/ p cost\/;—sint U costO\/;

xsinto\/ﬁ—xosint\/ﬁ X, cost\/ﬁ—xcosto\/ﬁ
A= : B = :
sin(t—1,) \[u ’ sin(, —t) \[u
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B - A = ! x; €821/t + X7 OS2ty 1t — 2xx,cO8(t+1,)+ 1
Nm

sin’(¢—1,) 4/ 1

and

2A4AB = ! {— x; sin2t\/;—xzsin2t0\/;+2x0xsin(t+t0)\/;}

sin’® (t—1,) \/Z

substituting the values of (B* — AZ) sin (t—1,) \/u and 2 4 B sin (¢ —1,) \/; in(6), we get

S = Jn T ﬂ;{xg co8s2 41t + x* cos2 ity i — 2xx, cos(t+t0)\/;}'

~ 2sin (t=1,) 1
cos(t+1,) Ju +{x sin2¢ [ + x”sin24,/uu — 2x, xsin(¢+¢,)} sin (1+1,) ﬁ]‘
Nm

B 2sin (11,

" [xé {cos2tfu cos(t+1,)[u + sin2¢ [ sin (t+1,)/u]

+x° {cos2t0\/; cos (t+1,) /1 + sin2¢,/u sin (t+t0)}
- 2xx, {cos2 (t+1,) A[ut +sin® (t+12,) \/;Hl

or = rsin(i-1) i [xg cos (t—1,) [ + x*cos (t, —1) Ju — 2xx0]l
__ Au 2, 2
or S = 2sin(t—/j‘0) T {(x +x2)cos(t —,) /1 - 2xx0}

which is the required result.

Example2: A heavybead ofmass s is freely movable on a smooth circular wire of radius ¢4 , which
is made to rotate about the vertical diameter with spin w, 0 being the angle made by the radius through the
bead at any time with the downwards vertical, prove that the action A is

2

0, %
2H 2 i
A:Jmaz{ +—gcos0+w2s1n20} do
i, ma a

where H is the Hamiltonian of the system.

Solution : Let ¢ be the centre of the smooth circular wire of radius a which is made to rotate about
a vertical diameter 4B withspin . Let p be the position ofthe bead of mass s , at time ¢, such that
/AOP = 0 and distance of p fromthe vertical diameter 4B be x . Thusat time ¢, the particle is moving
on the fixed circular were under the following forces :
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Q—y/ P zmwzx
A
vmg

Fig. 9.1
() Weight mg acting vertically downward

(1) the force mw’x (= mw’asin 0) in the horizontal direction.

Hence if y be the work function of the system, then

X
w=mg acosf + J;) mw’xd x
1
=mg acosO + 5 mw’ x*

=mg acosf +%mw2a2sin29 (1)

Again, if velocity of the bead at p is 4@ therefore, if 7 be the K.E. of the system, then
_ 1 2 N2
T= S ma 0 .(2)

)
Now, the action 4 = J. 2Tdt

fy

:].2T%d9

=ma’ J 0do .(3)
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Since the potential exists, the Hamiltonian g7 is equal to sum of the kinetic and the potential
energies, that is

1 . 1 .
H=T+ Vzgmazé’—(mgacos9+5mw2a2sm29}

2H 2 :
- + 7g cos@+w’sin’ 0 (4

u
oo 0=

Hence, from (3) the action 4 is given

0 b2
2H 2 )
A=ma’ I {—+—g cos@+w2sm20} do
ma a

2
0o

Example 3: A particle of unit mass moves along (x under a constant force f* starting fromrest at the
originattime s = (. If 7 and 7 are the kinetic and potential energies of the particle, calculate

T(T—V)dt

0

Evaluate this for the varied motion in which the position of particle is given by

1
X = Ef t* + eft (f - fo) where ¢ is a constant; and show that the result is in agreement with

Hamilton’s principle. What are the essential features of the varried motion that ensure this agreement?

Solution : The particle moves along x with acceleration f* starting from rest, therefore its actual
path is

1
X=Eft2 so that ¥ = £t

x* = % e (1)

N | —

Thus, 7=

Since particle moves from ¢ = () to 7 = ¢, therefore end points of the actual motion are () and
1.

Efto'

The potential j7 at a distance x, at time ¢ is

1 2 1 2.2
Therefore,
T—V_lfz 2_(_lf2t2)_f2t2
- 5 = -3
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. Inactual path,
ty

J(T—V)dtzjfztzdtzéfztj (@)

0

and the varied path is given by

x:%fﬂ + eft(t—to)z {(l+2€)ft2—2eftt0} ..(5)

1
2

1
Putting ¢ = ¢ and ¢ =¢,, we see that end points of the varied motion are also ¢ and Ef fy .
Hence end points, of the actual path and the varied path, coincide.
Now, velocity in varied path = (1+2¢€) f1—€ef 1,

Therefore, in varied path

T:%{(l+2e)ft— eft,} :%{(1+4e+462)f2t2—(2 e+d) 1,1+ € 710} ..(6)

and potential

V:—fB {1+29) ft2—2eft0t}}=—%[(l+2e) rfe=2¢4 .

therefore, in the varied path

T—V:%H(l+4e+4ez)+ (l+2e)}f2t2—(4 c+4 &) fiyt+ Ef° tg]l

%[(2+6e+ 4S) 10 -(4e+4E) P11+ € 1] (8)

Hence in the varied path

jo (T—V)dr:jo %[(2+6e+462)f2t2—(4e+4ez)f2t0t+ €11 d

0 0

1_ 2 f2t3 2 1 2 .3 2 2 .3
=— (2+6e+4e)—°—(4e+4e)—f ty+e€ [t
2| 3 2

_1_1 2 2 2 2,3

=3 5(2+6e+4e)—(2€+2€)+e 7t
:l__+_€2 £

213 ‘
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1 1 2 2.3
ZE(HEG )f i -.(9)

1
which is minimum if € = 0 and then the minimum value is 3 Vs , which is the same as in the actual

path. Also we see that when € = 0, the varied path coincides with the actual path. Hence the result is in
agreement with Hamilton’s principle.

Example 4 : A particle ofunit mass is projected so that its total energy is } ina field of force of which

the potential energy is ¢ (r) atadistance  fromthe origin. Deduce from the principle of energy and least
action that the differential equation ofthe path is

c’ [ﬁ +[%ﬂ =rtlh-¢(r)]

Solution : Let 7 and 7 be the kinetic and potential energies ofthe systemand 4, be the total energy

then
h=T+V
or T=h-v=h-¢(r) (since V' = ¢(r) is given)
1

or 5 V?=h—¢(r), where j isthe velocity

or ¥ =v2 {h-¢(r)" (1)

l
Now, the action A= J.2 Tdt

to

:]Lz.%Vzdt

[ Ly _ds
=des {.V—dt}

fy

2
i ] ds ,(d6
:\/EJ' {h—¢(r)}éds E_{IJFF [Ej}

NN

fy

o A= \/Ejl {h - ¢(r)}% {1 + 2 [%} } dr e
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or  A=2[ f(r.0)dr -3)

Since g is absent from ', therefore, we have

ﬂ = ,_do
50" € (constant) , where 6 = 0

5 ) 2 nl 12
o0 e} e}
or {h - q)(r)}% % {1 + 7 0’2}7% . (2r201) =c

or {h - q)(r)}% d =c

or € {rz +(%)2} =r*{h-¢(r)}

which is the required equation.

9.5 Summary

In this unit we have derived two important principles of dynamics viz Hamilton’s principle and
principle of least action. We have also discussed the important distinction between the two principles. The
usefulness ofthe Hamilton’s principle has been emphasized by deriving Lagrange’s equations using Hamiltin’s
principle.

9.6 Exercise

1. State and prove the principle ofleast action for a conservation holonomic system.

2. A particle moves in a plane curve, under the central acceleration w? r, between two fixed
p p

points (x,,y,) and (x,,y,) in the prescribed time 7, —7,; prove that Hamilton’s principle

function § is

w 2 2 2 2
—x +y +x, + cosw (t,—t,) — 2 (x, x, +
2 sinw (tl _to) [( 1 TN 0 J’O) ( 1 0) ( 1 %0 TN J’O)]l
3. A projectile is launched in a vertical plane with a velocity whose horizontal and vertical
pro]j p Yy

components are V_ and ¥, respectively. Calculate the value of the integral,
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ty
nrw
J Ldt where t, =—
0 w
Evaluate this integral for the varied path given by the equations
| .
x=Vt,y= Vyt—Egt +esinwt

where ¢ is a small constant quantity.

Show that the integral J Ldt isgreater for the varied path than, that for the actual path, but
0

the result is in agreement with Hamilton’s principle.

A mass p attached to a coil spring having a constant £ , oscillates along a smooth horizonatal
line with a motion given by

[k
x=Asinwt,where w = ,|—.
m

Assuming a varied path represented by
X=Asinwt+esin2wt.
Where ¢ is a small constant quantity, show that for the actual path taken over the integral

T
t=—

2w
detzo

t=0

3
and that for the varied path this integral is equal to 3 mrwe

A particle of unit mass is projected so that its total energy is j , in a field of a force is a which the

potential energy in ¢ (r) at a distance , fromthe origin. Find the differential equation of
the path.

Lo
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10.0 Objective

In this unit, our object is to be aware about the fundamental propeties of a fluid and approches to
solve hydrodynamical problems. We also study about path line, stream line and function in it.

10.1 Introduction

In general, the matter is classified in two categories viz solids and fluids. A solid may be rigid or
elastic. Here we will not go into further classfication of solids but keep ourselves concerned with the fluids.
The fluid differs from solid in that it yields to a shearing stress and cannot be in equilibrium under such a
stress. This stress leads to the deformation of'the fluid and culminates into a flow. The properties of the
fluids are directly related to the molecular structure and to the nature ofthe forces between molecules.

Hydrodynamics or Fluid dynamics is that branch of science which is concerned about the study of
the motion of fluids or that of bodies in contact with the fluid.

10.2 Characteristics of a fluid

The fluids are divided in two categories viz liquids and gases. this classification is based on the
binding intermolicular force existing in the fluids. In case of liquids, this is such that the volume of'the liquids
remains unchanged to a great extent, while the shape alters to take the shape of the container. In case ofthe
gases, this intermolecular force is too small resulting in change in volume and shape depending on the
capacity and shape of the container. The property by virtue of which the volume of'the fluid changes is
called the compressibility. In general the liquids are regarded as incompressible fluids while gases are
regarded as compressible fluids. Real fluids have five physical characteristics; These are pressure,
density, volume, termperature and viscosity.

10.2.1 Denstiy :
p atapoint may be defined as

_ Lim o
ov—0 5V

where 6 v is the volume element around a point in the fluid and & m is the mass of the fluid

contained within 6 v . The specific volume of a fluid is defind as the volume per unit mass and it is clearly
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the reciprocal of the density.
10.2.2 Pressure :

When a fluid is contained in a vessel, it exerts a force at each point of the inner side of the vessel.
Such a force per unit area is called pressure. Mathematically, the pressure P at any point may be defined as

p=Lim—=

where 6 A4 is an elementry area around the point and & F is the normal force due to fluidon 6 4 .

10.2.3 Compressibility :

The compressibility of a fluid is defined as the variation of the density, with the variation of
pressure. Mathematically

op dp
dp o 7 =>dp=k 7 where k is called the Bulk Modulus of'the fluid.

10.2.4 Viscosity :

It is common experiance that when two solids are in contact and one solid moves over another,
there is a property which prevents the slipping. This property is known as friction. A corresponding
property of the fluid is called viscosity. Viscosity is that property of fluids as a result of which they present
some resistance to sharing i.e. sliding movement of one particle past or near another. It was observed that
viscous forces vary directly with the relative velocity of sliding between adjacent particles or parts of a
fluid. Hance the shear stress is proportional to the velocity gradient, that is

du

ra 5=
'udy

Where 7 is the shear stress and 1, the constant of proportionality is called the coefficient of
viscosity of the fluid. This equation is called Newton’s law of viscosity. The ratio of the coefficient of
viscosity 4 to the density p ofthe fluid is known as the coefficient of kinematic viscosity and represented

asv = % The viscosity ofa fluid is practically independent of pressure and observed to be dependent
on temperature only.
10.3 Kinds of Fluid
The fluids are classified in two forms viz Ideal (perfect) fluid and Real (Actual) fluid.
10.3.1 Ideal Fluid :

The fluids which have no viscosity, surface tension and incompressibility are known as Ideal fluids.
In ideal fluid, there are no tangential forces between the adjoining layers of the fluid but only normal
stresses are present. The pressure at every point of an ideal fluid is equal in all directions, whether the fluid
be at rest or in motion. This theory defines some concepts of the flow such as wave motion, the lift and the
induced drag of an airfoil etc, but it fails to define the phenomena such as skinfriction, drag of'a body etc
Ideals fluids also known as perfect fluids or Inviscid fluids.

10.3.2 Real Fluid :

The fluid which actually exist in nature are considered real fluid. These fluids possess all the
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properties of fluids i.e. viscosity, pressure, density, volume and temperature are present. Real fluids are
further classified as follows.

@) Incompressible fluid :

Ifthe density of the fluid is constant then it is called incompressible fluid. In real liquid (e.g. oil,
water, mercury, etc.) the density is not exactly constant, but considered almost constant. Generally water
is considered as an incompressible fluid.

(i) Compressible Fluid :

A fluid in which density is not constant but it is assumed that density is a function of hydrostatic
pressure is considered as a compressible fluid. Generally air is considered as compressible fluid.

@iii) Newtonian Fluid :
Fluid which obeys Newton’s law ofviscosity is classified as Newtonian fluid.
(iv)  Non-Newtonian Fluid :

Fluids which donot obey Newton’s law of viscosity (relation between stress and rate of strain) are
known as Non-Newtonian fluid. Some Non-Newtonian fluids are power law fluid, prandtl fluid, oldroyd
fluid, walters fluid depending on the relation between stress and rate of strain.

v) Isotropic Fluid :

Fluid in which the relation between the components of stress and rate of strain remains unchanged
by a rotation ofthe coordinate system are called Isotropic fluid.

10.4 Kinds of Fluid Flow

Fluid flow may be characterized in the following kinds :
10.4.1 Steady Flow :

The fluid flow in which the fluid characteristics, i.e. velocity, density, pressure, temperature are
independent of time is called steady flow.

In the steady flow, fluid particles move along the stream line and the position of stream line does
not change with the time.

(About the stream lines we will know more later.)
10.4.2 Unsteady flow :

The fluid flow in which all physical properties of the fluid in the motion vary with time is known as
unsteady flow.

10.4.3 Laminar flow :

A flow, in which each fluid particle traces out a definite curve and the curves traced out by any two
different fluid particles do not intersect, is said to be laminar flow. So laminar flow is a well ordered flow in
which layers are assumed to slide over one another in similar fashion.

10.4.4 Turbulent flow :

A flow, in which each fluid particle does not trace out a definite curve and the curves traced out by
fluid particles intersects, is said to be turbulent. So turbulent flow is an irregular nature of flow in which
various layers move in disorderly manner.
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10.4.5 Uniform Flow :

A flow, in which the fluid particles possess equal velocities at each section of the channel or pipe is
called uniform.

10.4.6 Non-Uniform Flows :

A flow, in which the fluid particles possess different velocities at each section of the channel or pipe
is called non-uniform. These terms are usually used in connection with flow in channels.

10.4.7 Rotational Flow :

A flow, in which the fluid particles go on rotating about their own axes, while flowing, is said to be
rotational.

10.4.8 Irrotational Flow :

A flow, in which the fluid particles do not rotate about their own axes, while flowing, is said to be
irrotational.

10.4.9 Barotropic Flow :

A flow is said to be barotropic, when the pressure is a function of the density.

10.5 Description of fluid motion

A flow field is the description of the flow of a fluid by representing all fundamental flow properties
as a function of position in space and time. Here we shall study only the kinematics of the flow field. The
fluid motion can be studied through the following two methods

1. Lagrange’s Method

2. Euler’s Method

Both these methods are due to Euler.
10.5.1 Lagrange’s Method

In this motion, any fluid particle is selected and its motion is studied. In other words we try to study
the history of each fluid particle to deal with the position, velocity and acceleration of the individual par-
ticles.

Let a particle be initially at a point P_ with cartesian coordinates (a, b, ¢) move to another point P
with coordinates (X, y, z) after the lapse oftime ¢. Clearly these coordinates at P will depend on the initial
position and the lapsed time, so that

x= f(a,b,c,t) ; y=g(a,b,c,t); z=h(a,b,c,t).

The function ', g and j, are continous function of g,b,c and ¢ in most problems and they

possess partial differential coefficients with respect to a,b,c and ¢ . This method enables us to have the
components of velocity and acceleration as

_9/ ,_ 98 L0
ot Y= 5 ot
. é’zf . é’zg . Oh
T YT T

274



The fundamental equation of motion in Lagrangian form are non-linear and it leads to many
difficulties while solving a problem. This method is useful in some special refrences such as certain one-
dimensional problems. Generally it is not as conveniant and fruitful as the Euler’s method.

10.5.2 Euler’s Method

In this method, we fix a point in space and study the motion of fluid particles as they pass through
this point. In other words, the consideration is given to velocities and acceleration of different particles at
a particular point rather than the variation in velocities and accerlerations of particle along their various
paths.

In this method. ifthe velocity components are u,v and y inthe directions of axes at the point

(x, y,z) at time ¢ then u,v,w are the functions of the position and time.

10.6 Relationship between the Lagrangian and Eulerian method

To establish relationship between these two methods, we investigate a relation between the
particle parameters and space parameters.

10.6.1 Lagrangian to Eulerian :
Let ¢ be some physical quantity involving Lagrangian description

=9 (a,b,c,t) .. (1)

Here we want to express a, b, ¢ in terms of the coordinates x, y, z ofa point in the space. In
Lagrangian method, it is defind as

x=fi(a,b,c,t); y=1f, (a,b,c,t) 5 z=f, (a,b, ¢, 1) ..(2)

On solving these relations, we obtain
a=g (x,y,z,1) ib=g, (x,y,z,1) s c=g, (x, y, 2, 1) .(3)

Using (3) in (1), we get

Q=0 [gl(x, v, Z, t),g2 (x, v, Z, t),g3(x, v, Z, t)]] ..(4)
Which express ¢ interms of Euler’s description
10.6.2 Eulerian to Lagrangian :

Let v be some physical quantity involving Euler’s description
yv=y (x,,z1) ..(5)
Let u,v,w arethe velocity components at the point (x, y, z) atanytime ¢, whichis defined as
u=F/(x,y,zt); v=F(x, y, z,t) ; w=F(x, y, z,¢) ..(6)
We know that in Lagrangian method,

R
ot otc ot -(7)
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Where x,y,z are function ofthe variables a,b,c and ¢ .

Using (7) in (6), the velocity components ofa fluid particle is given by

ox 0 Oz

5 Az, 5—f=Fz(xa v,z 1) = F(x 5, 20) (8
On integrating, we obtain

x:f‘l(XO’yO’ZOJ); y:fz(xoayoazoat); Z:f;(xoayoazoat) (9)

Where x,,,,z, are taken as initial coordinates of the fluid particle. Choosing the particle

parameters a,b,c equalto x,,,,z, respectively, then

W= l,z/[fl(a,b,c,z‘),f2 (a,b,c,t);]‘}(a,b,c,t)]]
Which express ¥ in terms of Lagrangian description.

10.7 Velocity of a fluid Particle

Le P and Q be the positions of the fluid particle at any time  and ¢ + & ¢ withrespect to the fixed
point O such that

op=radoo=7, 157

Then the velocity ; ofthe fluid particle at P is defind as

- - - p

(r+5r)—r - ©
g=Lim— 2 -9r
q 5t—0 ot dt P

If r =xf+yj'+zl€ then

r
> dxa dy’: dz » A 0 r
=—i+—j+—k=ui +vj+wk
a T a a !
0 —
H u_d_x V_d—y dW_é Fig. 10.1
ence g 7 e ig. 10.

10.8 The Material Derivative

Let f(r, t) represent a flow parameter i.e. velocity, density etc at any instant ¢ . Ifin a small

time & ¢, the particle moves to a new position and flow parameter is represented by f'(r + 6 r, ¢t +51¢), then

Sr=f(r+dr,t+8t)—f(r, 1)

This may be expressed in two parts, one as a change due to local variation with time ofthe fluid
property at a given position and other due to change of position at a given time. Hence

Sf=f(r+6r,t+8t)—f(r,t+8t)+ f(r,t+81)—f(r, 1)
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of=6rV f(r, t+5t)+5t%f(r, ?)

of or 0
—=—=—1YV ,t+o0t)+—f(r, t
5151 f(r ) mf(r )

Lt of _ Lt {ﬁ Vv f(r, t+5t)}+5Lt0%f(h )

5t—>0 5t 50| St

& _of dr g,
dt ot dt

i:ﬂ+@.v)f

dt Ot
d & - . . . . . . . . .
Hence a = En +| ¢.V |, This is known as material derivative or differential following the motion

of'the fluid. This implies that we are calculating the rate of change of some quantities associated with the
same fluid particle as it moves about. In cartesian coordinate system, this material derivative is

expressed as

d 0 0 0 0
7 or + UE + v&_y + WE where u,v,w are the velocity components of a fluid paritcle at
(x,y,z) attime ¢ inthe direction of the axes.

Ifa,,a, and a_ are the acceleration components ofthe fluid particle, then acceleration in vector

notation is a =—=—+(q.V)q

= + +
andhence = m S T G Y S T Y

10.9 Stream Lines

A stream line is a curve drawn in the fluid such that at any instant oftime the tangent at point is in the
direction of motion of the fluid at that point. In other words, the stream lines are imaginary lines in the fluid
such that the tangent at each point represents the direction of the velocity. Stream lines are also called lines

of flow.

If 4 : be the element of arc length along a stream line and ¢ be the fluid velocity then the
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directions of tangent and the velocity are parallel. So the equation of stream line is given by the
relation ; x d;) =0
= (dxf+dyj+dz/€) X (uf+vj'+wl€)= 0
Pj ok
=|dx dy dz|=0

u \% w

= (wdy—vdz){ —(wdx —udz)] +(vdx—udy)k =0
Hence wdy —vdz = 0

wdx —udz =0

vdx —udy =0

From these, we arrive at

dr_dy _dw

u v oz
which is the differential equation of stream lines in cartesian, coordinates, where u, v, w are the
velocity components in the direction of three axes at any point (x, ,z) .
Thus the velocity of the fluid at any point on the stream line is along the tangent to it at the point.
10.9.1 Stagnation Point

The two stream lines cannot intersect except at a point where the velocity is zero and that point is
called the stagnation point.

10.9.2 Stream filament

If stream lines are drawn through every point ofa closed curve then we get a stream tube. A stream
tube whose cross section is a curve of infinitesimal dimension, is called a stream filament.

In the steady motion, the product of the speed and cross-section is constant along stream filament
ofaliquid. The stream filament is widest at places where the speed is least and is narrowest at place where
the speed is greatest.

10.10 Path lines

A path line is the curve or trajectory along which a particular fluid particle travels during its motion.
The differential equation of path lines are

—

dr -~
_=q

dt

dx dy dz
—_— =Yy c — =y +- — =W
dt > dt > dt
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where

bd ~ ~ A bd ~ ~ A
g=ui +vj+wk and p = xi +yj 47k -

10.11 Difference between the Stream line and Path line

The stream lines indicate how each particle moves at a given instant while the path lines indicate
how a given particle moves at each instant. In case of steady motion, the stream lines and the path line

become identical.

10.12 Surfaces Orthogonal to Stream Lines

We know that the curve given by differential equations

dv _dy _ds

w

orthogonally cut the surfaces whose differential equation is

udx+vdy+wdz=0

(1)

()

Ifthe curve (1) represents the stream line, then the surface (2) is cut orthogonally by the stream line

if (udx + v dy + wdz) is integrable. To find the integrability condition for equation (2), let

or

Hence

or

Similarly

do =% (udx+vdy+wdz)

é’—(Ddx +é’—¢dy+é’—¢dz =

L (udx+vdy+ wdz)
Ox oy Oz A

= uZA@.VZA@.w:A@
Ox > ay Oz

ow 51}_}L . +@&_¢_A > B

é’_y_z_ dyoz 0Oy Oz 0yoz

ow v _0A dp 04 d¢

oy 0z Oy Oz Oz Oy

ou ow _0A Op i D¢

Az Ox Oz Ox Ox Oz

ov du OA dp 0A d¢

Ax Oy Ox Oy é’_y'é’x

o1 29
0z Oy

On multiplying (3), (4) and (5) by u,v and y respectively then adding, we obtain

ow Ov ou Oow ov  Ju
Uul——— | +v|l——— | +w|— - —
Jy Oz 0z Ox ox Oy

Which is the condition that such orthogonal surfaces exist.
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10.13 Two dimensional motion

When the fluid motion is such that it is same in all planes parallel to a fixed plane and also there is
no velocity parallel to the fixed line normal to fixed plane, it is called two dimensional motion. Generally the
fixed plane is taken as xy-plane and the fixed line is taken as z-axis. Hence in two diamensional motion, the
velocity components are only 4 and y with 1, = (), where 3 and y are functions of x,y and ¢ only.

10.14 Stream function in two diamensions

Let 4 and vy be the velocity components in two diamensional motion, then the differential equation
of the stream lines is

@:d—y:vdx—udyzo (D)
u v

Which is the differential equation of the form

Mdx+Ndy=0

oM ON
It is an exact differential equation if 3y = ox -

_dv_ Odu

1C. 5)/ ﬁx
ou Ov

=—+—=0 (2)
&x ﬁy cee

which is the equation of continuity for the incompressible fluid in two dimensions. Hence, eqn (1)

is exact, say dy then, vdx —udy =dy = é’—y/dx+é’—y/dy =0 ..(3)
Ox oy
—0 0
So that u = 5;” and v = a_li (4

which leadsto d v =0
or Y = constant

This function y is known as the stream function or current function. The stream function is con-
stant along a stream line and consequantly equation of stream lines are obtained from y = ¢, by giving
arbitrary values to the constant c.

10.15 Physical significance of stream function

Let A be any fixed point and P is any orbitrary point in the plane.
ABP and ACP be two of possible curves joining A and P. These curves
bound a region R between them and we assume that no fluid can either

be created nor distroyed in R. If the fluid motion is from right to left then

A
fig. 10.2

280



the rate at which the fluid flows in R across ABP is equal to the rate at which the fluid flows out of R from
right to left across ACP. Thus the flux across ACPis equal to the flux across any curve joining A and P. For
any fixed point A, the flux solely depends on the position of p and time ¢ . Thus flux is called the stream
function and is denoted by v . The stream function y isa function ofthe position and time. The difference
of two values ofthe current function at two points in the plane represents the flow across any line joining
the two point.

10.16 Velocity in terms of stream function

Let 65 be anelement of an arc AB Only the velocity perpendicular to 6 s will contribute to two
flux across 6 s . The velocity along & s contributes nothing
B

os

fig. 10.3

-» Fluid across the element ofarc & s

(v + S8y ) —w = normal velocity x J's

— normal velocity = (W +5W)_W = oy

os os
Hence normal velocity = 5Lto 55—1// = O;—W .
Nid S S

Where v and w + 6 y are the values of stream function at A and B respectively.

Velocity in terms of stream function in cartesian coordinate

If 4 and y are components of velocity at the point P(x,y)

y

oy

P
(x,») Sx

fig. 10.4

Velocity fromright to left across 6 y
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= Lim OV _ov v

o0 Gy dy oy

and velocity from right to left across 6 x

v SV Oy
x>0 §x  Ox ox
-0y oy . . . o .
Hence u = P V= P are the velocity components in terms of stream function in cartesian
y X

coordiate as seen earlier.

If ¢, and g, be the velocity components in the directions of » and @ respectively then velocity

formright to left acorss 60 = —¢

r

9o g
_ i OV 1oy
5050 o0 r 060
' , 50 P(r,0)
and velocity from right to left across & r
0 S
=g, 0 Initial Line - X
. 0y Oy
= g;l_lzg E = E fig. 10.5
1 oy _v . . o
Thus,. 4, =~ - 50 and 90 = 5, are the velocity components in terms of stream function in

polar coordinate.

Self Learning exercise :

1. Fill in the blanks in following
(a) Fluid which obeys Newton’s law of viscosity in knownas ...............
(b) Fluid in which density is not constant is knownas..............

(c) The fluid flow in which all physical properties of the fluid in the motion vary with the time is
knownas ............

(d) The ratio ofthe coefficient of viscosity to the density of the fluid is known as the
coefficient of ..................

(e) Generally air is considered as ............. fluid.
2. A flow, in which the fluid particle possess different velocity at each section of the channel is
known as
(a) uniform flow (b) non-uniform flow
(c) unsteady flow (d) barotropic flow
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10.

In which approach the fluid particle is selected and studied its motion?
(a) Lagrangian approch (b) Eulerian approch
(c) Both (d) None of these

In which method, a point is fixed in space and study the motion of fluid particle as they pass
through the point?

(@) Lagrange method (b) Euler’s method
(c) In both methods (d) None of these
In the stream line the direction of tangent and velocity are

(a) perpendicullar (b) parallel

(c) opposite (d) not defined
The stream line and path lines are same if the flow motion is

(a) unsteady (b) steady

(c) turbulent (d) ofany type

Write down the velocity components in terms of stream function in polar coordinates of any

fluid motion.
Find the equation of the stream line for the flow where ;= —x and v=y.
Define stream function and its physical significance.

Determine the acceleration of a fluid particle of the flow field

q :xyztf+x2ytj'+xyzl€

Example 1: For atwo-dimensional flow the velocities at a point in the fluid may be expressed in the

Eulerian coordinates by

u=x+y+2t and v=2y+t¢

Determine the Lagrange coordinate as function of the initial position x, and y, and the time ¢ .

Solution : Given u=x+y+2t and v=2y+¢ (D)
dx dy
u=—=x+y+2t v=—"-=2y+t
then 7 y and r y ..(2)
or Dx—x—-y=2t =>(D-1)x—-y=2t -.(3)
and Dy-2y=t :>(D—2)y=t ..(4)
d
hy D=—,
where ”
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Fromeqn (4) we have

.1
y=Ceé’ _Z(2t+l) .(3)
and using (5) in (3) we have
(D=1)x—C, & +%(2t+1) Y

or (D— l)x = Cl 621 +%(6l‘ — 1)

or x=Ce"+C e —%(6t+ 5) ..(6)

wt=0;x=x,5 =Y,

1 1
Fromeqn (5) yOZC]_Z :C1:y0+z
o 5
and from eqn (6) Xo—y0+Z+C2—Z: C,=x,—y,+1
t 1 2t 1
Hence x=(x, =y, +1)e' + Yot Je _Z(6t+5)

y:(yo +%)e2’ —%(2t+l)

Where, the Lagrangian system is the function of the initial position x,, y, and the time ¢.

Example 2 : The velocity components for a two dimensional flow system can be given in the Eulerian
system by

1
u=2x+2y+3t; v=x+y+5t

Find the displacement of a fluid particle in the Lagrangian system.

Solution : The velocities may be expressed in terms of'the displacement as
dx
u=- -=2x+2y+3t = (D-2)x-2y=3 (1)
dy 1 t
v=—"=x+y+— = (D-1)y-x=—
" Y+ (D-1)y-x=2 -(2)
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On eliminating x from (1) and (2), we have
D(D-3)y=2t+ 1

7 1
= y=C+Ce" ——t——=1’
y=4t+4 18 3 -(3)

Substituting the value of y in the equation (2), we have

1, 7 7
x=-C +2C,e" + =1 ——t——
! : 37 9 18 ~(3)

The arbitrary constants C, and C, are determined by using the initial condtions :
X=Xx,, =Y, at = (), we obtain

7
v, =C +C,; xoz—C1+2C2—§

1 7
Hence G = _g(xo -2y, +E)
1 7
G :g(xo"')’o"'ﬁj ..(5)

Using (5) in (3) and (4), we have

x—l[x -2 +l}+%[x+ +l}e3’+lt2—zt—l
S R CART Y MY U CRETY ML LT
d ——l[x -2 +l}+l[x+ +l:|€3t—lt+lt2
an Y R e O T Y e Ty AT

which are the required displacements x and y inthe Lagrangian system where x,, y, are initial
position and the time ¢ .

—

Example 3 : Find the equation of the stream lines for the flow ¢ = Xt —yj

Solution : By the definition of the stream lines, we have
qgxdr=0
or (xf—yj’) X (dxf+dyj')=0
= (xdy+ydx)l€:0
= xdy+ydx=0

_, & _—d

X y
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on solving
xXy=c
which represents the equation of stream line.
Example4: Find the equation of the stream lines passing through the point (1, 1, 1) for an

incompressible flow ; =2xi —yj — zk -

Solution : Given ¢ = 2x7i — yj — zk = ui —vj — wk
then y=2x;v=-yand w=—;
The differential equation of the stream lines are

dx _dy _dz
oy = (1)

Taking the first two members of (1), we obtain

xy’ =C, -(2)
Similary on taking first and third member of (1), we have

dx _ _,dz
X z
=G, ()

Where C, and C, are integration constants.

The stream lines are passing through point (1, 1, 1)then
C =1=C,

Hence the required stream lines are
xy'=1and 72—

ExampleS: Givenu=-Wy, y = Wx and 1 = ( : show that the surfaces intersecting the stream line
orthogonally exist and are the planes through z-axis.

Solution : The diffrential equation of stream line
& _dy _d
are T o (1)

= Wxdx+Wydy =0 and dz=0

or xdx+ydy=0and dz=0

On integrating

x*+y*=C, and z = C, (2
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Hence the stream line are circles given by the intersection of surfaces (2).

Now, the surfaces which cut the stream lines orthogonally are

udx+vdy+wdz=0

ie. —Wydx+Wxdy+0.dz=0
dx d
or =20
X oy
On integrating
o
¢ =x=c
v y

which represents a plane through z-axis and cuts the stream line (2) orthogonally.

2
cy c’x
r—z,v:r—zand w = 0 where »

distance from z-axis, find the surfaces which are orthogonal to stream line, the liquid being homogenous.

Example 6 : The velocity components of fluid are given by © = —

Solution : The differential equation of stream lines

dx dy dz
are — ==
u vow

_ de _ dy _dz
LC. -c’y/rt x/rt 0
—dx dy dz
or ==
y x 0

which gives x* + y* = C, and z = C,
The sufraces which cut the stream line orthogonally, are given by

udx+vdy+wdz=0

2 2
—Cy Cc X
i dx + dy=0
1.€. )C2+y2 )C2+y2 Yy
_d_x+d_y=0
x oy

Y
= ;ch =S y=cx

The curve y = ¢,x gives the surfaces which are othogonal to the stream lines x* + y* = ¢, and
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T X, oA 3 ) )
Example 7: The velocity field at a point in fluid is givenas ¢ = 71 +)J + 0.k, obtain path lines.

Solution : The differential equation of path lines are given by

- d d)C/,\ dy/\ d ~
N B Y A R
R At A A

de x dx dt
or s ==
dt t X t

X
>—=¢=>x=cqt
t

dy

y
E:y:;:dt:y:cze’ and dz=0=>z=c,.

Hence the path lines are
x=c¢t; y=ce and z=c,

Example 8 : Determine the stream line if the velocity of an incompressible fluid at the point (x, v, z) is
given by
[3xz 3yz 322 -7’ J
52 . 5°? 5
ror r

where 7% = x> + > +2°

. . 3xz 3 yz 32 —7° ) ) .
Solution : Given that u = o V= o and w= then the differential equation of the
r
stream line are
e _dv _dz
u vow
d« dy dz
- - 22
ie. 3—{_2 3% (32" =)
r r I
dx dy = dz
or 3xz 3yz (327 -17) ..(1)

Taking the first two member of (1), we have

ydx  xdy :ﬁ_ﬁ
3xyz 3xyz x y
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()

= x=cqy

Now from (1), we have

dx dy dz xdx+ydy+zdz

3xz - 3yz - (322 —rz) - 3x°z+3y°z+32" —z

_ xdx+ydy+zdz
32()c2 +y° +zz)—r22

_xdx+ydy+zdz
ZZ(x2 +y° +Zz) ...(3)

Now from (3), we have

dx xdx+ydy+zdz
3xz 22(x2+y2 +zz)

2dx 1 2(xdx+ydy+zdz)
3 x 2 (x2+y2+22)
On integrating

2 1
glogx :Elog(x2 +y” +27)+logC,

)% (%)

2 2 2 2
N =, (F+y 4z
Hence the required stream lines are the curves of intersection of curves. x =¢;y and

).

2,
X = (X +y’+2

Find the stream lines and paths of'the particles when

Example 9 :
— 4 -
(+0): " (0 (1+1)
Solution : Stream lines are given by
& _dy_dz
u v.ow
_ dx _ dy _ dz
x/(1+t) y/(1+t) z/(1+t)
dx dy dz
or = == (1)
X y oz
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dx dy x
Taking the first two members of (1), o

7 = ; = ¢ and on taking the first and third members

dx dz . . . . .

of (1), — =—=— = ¢, Hence the required stream lines are given by the intersection of curves x = ¢,y
X z z

and x=c,z.

The p ath ofthe particles (Path line) are given by

u—ﬁ— al :ﬁ— dt = logx =log(l+¢)+logc
dt (1+1)  x  (1+1) 8 8 86

:>x=c3(1+t)

similarly V_d_yz v dy dt

di (l+t):>y (1+t):>y:C4(l+t)

and z=c,(1+1)
Hence the required path of the fluid particles are given by x = c3(l+t); y= c4(1+t);
z=c(1+1).

Example 10 : Find the stream lines and path lines of the particles of the velocity field.

X

“= ,v=yand y=0
(1+12)

Solution : Given that

X
u = — — . _
147 = Y>w=0 (1)
Stream line :
The differential equation of the stream lines are
b _dy _dz
u v.ow
. dc  _dy_dz
On integrating
dx dy
(1+z‘).7=7 and g — 0
=  (I+17)logx =logy—1logc, and z =c,
or y=cx"" and z =,
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Hence in the plane z = ¢, , the stream lines are y = clx(“’) )

Path Line :
The path lines are given by
dx X dx dt
dt (1+¢)  x (1+1)
v:ﬁzyzﬂzdt:yzqe’
dt y
w=£=0:dz=0:z=c5
dt
Hence the path lines are

)C=C3(1+l‘);y:c4et andz:cs.

Example 11 : A velocity field is given by g = —xi + ( y+ t)]A . Find the stream function and the stream
line for this field at s = 2.

Solution : Given that the velocity field g = —xi + ( y+ t)j then y = —x and v=y+t¢.

We know that
0
“:_é,_y;:_x (1)
y
and V:E:y‘” ..(2)

By integrating (1) with respect to y, we have

l//=xy+f(x,t) ..(3)
0 0
or ﬁ—y;:y+§—j;=y+t
- 2L
Ox
or S (x,t)=xt+g(¢) ..(4)
Using (4) in (3) we have

l//=xy+xt+g(t)

If t=2;W=xy+2x+ g(2) g(2) = constant
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The stream lines are given by y = constant

therefore x( v+ 2) = constant

which are rectangular hyperbolas.

Example 12 : Find the stream function y/(x, y,) for the given velocity field u = Uz and v = x..
Solution : We know that

G

0
oy and V= v

ox

Then here given that 4y =z and y = x

oY _ _
.ﬁ—y——Ul‘jl//—_Uyt"'f(x’t) (1)
oy _of
- Ox Ox (4
Also given that
oy
VZE:x .(3)
From (2) and (3) we have
of 1,
e A () &)

Using (4) in (1) we have
1,
W= —Uyt+5x +g(7)
Which in the required stream function.

Example 13: If u=2xy and v= (a2 +x° - yz) are the velocity components of a fluid motion, then
find the stream function.

Solution : By the definition of stream function, we know that
oy oy
U=—— v=—
oy and Ox

Here given that u = 2xy and v = (a® +x* = ?)

oy
—=-2x
S0 y 4

(1)
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oy 2 2 2
R + _
and Ox axTx -y ..(2)

Integrating (1) with respect to y, we have

y =-xp" + f(x,1) ..(3)
Deffrentiating (3), w.r. to x, we have

oy », 9f

—r — _ + —

ox 7 " ox (4)
Using (2) in (4) we obtain

of _ a’ +x*

Ox

On integrating w.r. to x, we have

3

f(x.t)= [azx +%J+ g(t)

which in the required stream function.

10.17 Summary

In this unit, we studied about charateristics of a fluid, kinds of fluids, kinds of fluid flow approches
to solve hydrodynamical problems. We also studied about stream line, path line and stream function in two
dimensional flow. Now we are in position to study the equation of continuity in various coordinate systems.

10.18 Answers to self Learning exercise

(1) (a)Newtonian Fluid
(b) Compressible Fluid
(c) Unsteady Flow
(d) Kinematic Viscosity
(e) Compressible
(2)  (b)Non Uniform Flow
(3)  (a) Lagrangian Approch
(4)  (b)Euler’s Method
(5)  (b)parallel
(6)  (b)steady

10y oy

@) q, = 00 and 9o :E

r

8) Xy = constant
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9) See text

A

(10) Zz(xy2+xy4t+2x3y2t2)f +(x2y+2x2y3t+x4yt2)] +(Xy3Z+x3th+x2y22)/€.

10.19 Exercise

1. The velocity components in two dimensional flow system in Eulerian system are given by
u=(x+y)+2t ; v:(x+y)+t
The find the displacment of a fluid particle in Lagrangian system

2 1.3
xX=¢+ce ——t+—1t" ——
4 4 4
2t 1 2
y=c +ce ——t—zt
1 3
Ans. where ¢, :_E[XO - y0+2}

where x =x,, y=y, whent=0

2. The velocity components in a two dimensional flow field for an incompressible fluid are given by
u=-3y" and y, = _¢y thenfind the equation of stream line at the point (1, 1)

[3x2 =y’ +2]|
3. Find the equation of the stream line for the flow ; =e"coshyi —e'sinhyj-
[ex sinhy = c]
4. Ifthe velocity components ofa flow field are given by
3x% -1’ 3x 3xz
— 5]" ; V= SyandWZ—5
r r r

where 7> = x? + y? + z* then prove that the stream lines are intersection of the surfaces
y p
3
()c2 +y° +zz) = c(y2 +zz)

by the plane passing through OX.

5. Show that the velocity vector g is everywhere tangent to lines in the xy -plane along which
¥ = constant.
6. What are stream lines? Are stream lines and the path lines of a fluid always the same?
7. Determine the stream line if the motion is specified by
S k(xi-yj
q= %; where J be the constant. [x=cy]
(x*+7)
ooon
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UNIT - 11
Equation of Continuity-I

Structure of the unit

11.0  Objective

11.1  Introduction

11.2  Velocity Potential

11.3  Rotational and Irrotational Motion

11.4  Concept of equation of Continuity

11.5 Equation of Continuity by Euler’s Method.

11.6  Equation of Continuity by the Lagrangian Method

11.7  Equivalance oftwo forms of equation of Continuity

11.8  Some Symmetrical forms ofa equation of Continuity
11.8.1 Cylindircal Symmetry
11.8.2 Spherical Symmetry

11.9  Summary

11.10 Answer to selflearning exercise

11.11 Exercise

11.0 Objective

In this unit our objective is to study about the velocity potential, rotational and irrotational motion
in fluid flow. We will also study about the concept of conservation of mass in mathematical form as equa-

tion of continuity.

11.1

Introduction

The equation of continuity simply expresses the law of conservation of mass in a mathematical
expression. The law of conservation of mass states that the fluid mass can neither be created nor dstroyed.
The fluid motion is possible only if the equation of continuity is satisfies for this fluid motion.

11.2

Velocity Potential (Velocity function)

Ifit is assumed that the expression u dx + vdy + wdz is an exact differential, it is conventionally conve-

Suppose that the fluid velocity of a particle at a point (x, Vv, z) at any instant is ; =ui +vj + wh -

nient to express

—d¢p=udx+vdy+wdz

or - @dxwtﬁdywt@dz =udx+vdy+wdz
Ox oy Oz
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op _ o4 3¢

then ”:_E, = oy and =5,

which clearly show that ¢ is a function of x,y and > only. Hence

¢ =¢(x..2)
Then the velocity of fluid at the point is given by

29, 20 20,

1="8x" "oy’ oz

Here, ¢ is called the velocity potential or velocity function. The negative sign is conventional but it
ensures that the flow is from higher potential to lower potential.

11.3 Rotational and Irrotational motion

Rotation of a fluid particle is defined as the average of the angular velocities of two mutually
perpendicular linear sides of elementary rectangular element of the fluid particle. In presence of this
average the motion is said to be rotational and if this average is zero then the motion is said to be
irrotational.

Consider 4 rectangular element ABCD in two dimensional flow suchthat AB= 6 x and AD =6y
as shown in the figure. v

A Cl
D' D C
Ju
Vi ou+—396
0 Jy g Bl
] +é’v5x
5)/ v o x
50, u bx
X
4 B

Figure 11.1

Upon rotating the element about 4 during a small interval 6 ¢, the sides of element become 4B’
and 4p'. B’ and p’ approximately lie on BC and extended CD.

Let 4 and y be the components of velocityat 4 thenthe components of velocity along BC and

DCare v +& ox and u +& 0 y respectively.
Ox 0

ov
. velocity of p relative to 4 along BC = > Sx
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and velocity of D relativeto 4 along DC = % ox

y

Hence is small interval & ¢, we have

BB’=@5x6t and DD’=—@ oyot
Ox y

If 66, and 6 6, are the angles through which AB and AD respectively have turned in time 6 ¢,
then the angular velocity of AB about the 7 -axis i.e. perpendicular to the plane through A is

50, ..  tando,

Aim —"=lim — [50,insmall= 56, = tan56,]

BB’ ,
= lim @: lim 28
S5t—>0 5t 5t—>0 AB5t

@5)6.51‘
Ox ov

m ——=—
510 5x.0t Ox

50, v
m = —
5t—0 61‘ 5)(

Again the angular velocity of AD about 7 -axis is

lim 00, ~ lim tano 0,
5t>0 St 6t—0 ot

DD’ ,
— lim @zlim _DD"
St—>0 ot 5t->0 AD.Ot

_@é‘yé‘t

The average of the angular velocities of AB and AD about the 7 -axis, considered perpendicular to

x—y plane, be w, and is given as

, 1fov o 1
© 2\ox Oy (1)

In the similar manner the average angular velocity components @ ., @, and @ in three
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dimensional flow may be obtained as follows :

1({dw JOv 1{du Jw
O =—| ——— e =—| ———
2 2

* oy Oz 0z Ox
L _l(ov_ou )
and :=2\2x ay -(2)

Hence the angular velocity ) ofa fluid element is given by
w:wxf+wyj+wzl€ ...(3)

This ¢ is known as rotationand @, @, and @ are known as the camponents of rotation.

Ifthis average angular velocity is zero then the particle is said to have zero rotation and the flow is
said to be irrotational. Therefore, in two dimensional irrotational flow, we have

w,.=0 :@—@zo
Ox Oy
ou_ov
or Jy Ox

In three dimensional flow, the conditions for irrotational are given by
—
0=0=>w0,=0;0,=0;0_ =0

ow _dv du_ow ov_ou
or Ay 0z’ Jdz x> Jdx Oy

If the fluid motion is rotational then the spin components &, n, £ are given by

_l = g—l @_Q
5_560" 2{ 0y oz

_1 g lfdu_ow
n_Ew}’ g 2\ 0z Ox
1 1({Jdv Ju
= — f— = — ——
& za)z d 2\ Ox é’yj

We know that the velocity components 3 and y are functions of x, y, ¢ and = () intwo
dimensional flow. Hence the spin components are given by

%8:1 aw_vi_,
2\ 0y o0z
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I1({dv Ju 1| J(Jy 0 oy
and ¢T3 5050|550 - -
2{dx Jdy) 2|dx\dx ) Oy dy

or 24/:

If the motion be irrotational so that £ = 0 then we obtain

Vi =0
Showing that for irrotational motion ofa fluid stream function satisfies Laplace’s equation. It is also

evident that when the velocity potential ¢ exists, all the above conditions are satisfied, then the motion is
irrotational.

11.4 Concept of Equation of Continuity

The equation of continuity simply expresses the law of conservation of mass in a mathematical
form. As is known that the law of conservation of mass states that the fluid mass can neither be created nor
destroyed. Thus if we consider any given volume of fluid in space bounded by a closed surface, then at any
instant, the flow of fluid across the boundary surface from without inwards minus that from within outward
must be equal to the increase in the mass of the fluid within the surface.

If 7 be the volume and p be the density of a small element of the fluid, then the equation of
continuity states that the mass of the fluid remains unchanged in the time inteval ¢ ¢ following the motion.

Therefore
D
—(p)=0
Dt(p )
DV _ Dp
—+V——=0
or P Dy Dt

11.5 Equation of Continuity (Vector Form) by Euler’s Method

Consider a volume V of moving fluid enclosed within a surface S. Let P(x, y,z) be any

Figure 11.2

point of S and p the density of the fluid which can be considered a function of time and space
coordinates.
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Let 6 s denote an element of the surface S enclosing P. Let 5 be the unit vector in the direction of
the outward drawn normal at any point of the surface § S and g be the velocity of the fluid. Then the

velocity in the outward drawn normal direction will be 7.4 . Thus,

rate of mass flow across 55 = p (ﬁg) 5SS

The mass of the fluid entering the whole surface S in unit time will be
=— J P (ﬁ ;) dS
S

- J V. (p q) v (By Gauss divergance theorem)...(1)
7
Also the mass of the fluid within the volume V bounded by the surface S is.
= _[ pdV
)
Hence rate of increase of mass within S

o
=2 _[pdV

_[2r
—lg;dV Q)

Then by the law of conservation of the fluid mass the rate of increase of the mass of fluid within V
in unit time must be equal to the total rate of mass flowing into V.

Hence from (1) and (2), we have

. .(’jd
lét 4 lv pq |dV

o0 (o)
—+V. dV=0
or ‘V[ [ o1 PYq
Since this result is true for every value of the volume, we get the above expression in the form
o v (ed)
—+V. =0
Py Pq .(3)

5 p . ( Hj
—+div =0

or o1 Pq

which is the equation of continuity.
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Equation (3) may be written as

%+pdivg+g .grad p=0

Dp L2

—+pdivg=0
or YR .(4)
where is the known differential following the motion. Ifthe fluid is incompressible and uniform

Dt

ap
density p is constant so that En =0 Thus for incompressible fluid the equation of continuity becomes
divg =0 ..(5)
Cor. Thus equation of continuity can be obtained in Cartesian coordinates by taking

g=ui+vj+wk-
Hence from (3)

0"/) 7 A O ~ 0 2 o r _
—+[z E‘i‘] é)—y+kzj.(zpu+]pv+kpw)—0

op 0O 0 0
—+—(pu)+—(pv)+—(pw)=0
or ~ s (pu) 2 (pv) > (pw) ..(6)
Where y, v and 1 are components offluid velocity in x, y and z directions
Eqn (6) can also be derived directly and we will deal with it in next unit. It must also be clear that
this approach is due to Eulerian approach of study.

11.6 Equation of Continuity by the Lagrangian Method

Z

Y Figure 11.3

At any instant, let the cartesian coordinate of a fluid particle p be (a,b, c) .After atime ¢, let the

coordinate of this particle be (x, v, z) , then these coordinates will depend on the initial position and the
time elapsed.

Hence x = f(a,b,c,t) ; y = gla,b,c,t) ; z=h(a,b,c,t)
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Consider a fluid tetrahedron such that one of the vertices is at p and the edges are oflengths d a,

0b and 6 ¢ parallel to three axes respectively. Hence the coordinate of the other three vertices are

A(a+68a,b,c), B(a,b+6b,c) and C(a,b,c+5c) where Sa, §b and & ¢ are taken to be small.

Now if p, is the initial density of the fluid, then the mass of the fluid within the tetrahedron
PABC

:% p, 5a &b e ()

After atime ¢, let the new positionsof p, 4,B and ¢ be P’, A’, B’ and (' respectively. Ifthe

coordinates of 4’, B’ and ¢ are (x,,¥,,z,), (x,,¥,,2,) and (x;,y;,2,) respectively, then

x,=f(a+8a,b,c,t)

af
=f(a,b,c,t)+%5a + (Higher power of Sa)

Ox
X=X+ %5 a, (Neglecting higher power of a)

Similarly

b2 =g(a+5a,b,c)=y+ﬂ oa
da

Oz
=hla+da,b,c)=z+—0
and A (a a C) z Ep a

Threfor the relative coordinate of 4’ withrespectto pr willbe

@ 5a,Q 5a,£ oa
oa oa oa

Proceding in similar manner, we obtain the relative coordinate of g’ and ¢’ with
respect to pr as.

9% 55,92 55,27 5b | ana | X 56,22 56,97 5¢
ob" b b de’ e de
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an
oa

@51,
ob

9% 5.
oc

N —

9V sa
Ja

oy

ob

QSC
oc

ob

Hence the volume of the tetrahedron p’4'p’(’ are

9% §a

Ja

ng
ob

250
oc

| J_O"(x
g J da ob dc where _ﬁ(abc)

If p is the density of the fluid after a time s the mass ofthe fluid within p'4'g'c’ willbe

%Jpé‘a oboc ..(2)

Since the mass contained within the tetrahedron does not change due to law of conservation of
mass, we have from (1) and (2)

%pJ&z ob 5c=%p05a obdc

or  pJ=p,

which is the required equation of continuity in Lagrangian form.

11.7 Equivalence of two forms of equation of continuity

It can be shown that the two forms of equation of continuity obtained through Eulerian approach
and Lagrangian approach are equivalent.

The equation of continuity in Lagrangian form is

d
pJ=p, so that E(pJ):O
dJ dp
—+J—=0
or P d d (1)
where 7 is the differential following the motion.
The velocity components in the two systems are connected by the equation
u= d_x = d_y d w = é 2
dt ’ dar " dt ~(2)

303



Also x =x(a,b,c,t) Y =y(a,b,c,t) Dz =z(a,b,c,t) ..(3)

L Ou_ 0 (dx) d|ox
"Pa da\dt) dt\oa (@)
we can demonstrate the following two dimensional differential coefficients to extend to the case of
three dimensional coefficient

i[&(x, y)}: d [6x oy Ox 6)/}
dt

dt | 6(a, b) da 6b  0b da
_dfox é’y dx d|(2dy
" di\ da ) ob é’a “dt\ ob

dfox)oy ox dfoy
dt\ b ) da ok dt\ da

Jdu Jy Jdx Jdv Jdu Jdy Jx OJv

" fPa b Pa b Ob da Ob da

[é’u Jy Ju é’yj [é’x ov  Ox é’vJ

a2 )] dw)  2wy)
- dt[&(a, b)} "~ 0(a.b)  O(a,b) +(3)
Similarly
i[&(x, v, z)} _ (u, y, z) . O(x,v,z) I(x,y, w)
dt 6(51, b, c) 6(51, b, c) 5(a, b, c) 6(51 b c)
L dJ
== .(6)

e —
dc Ox dec Oy odc 0z dc -(7)
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u u
On Eliminating é’_y and 5 We obtain

du Jdx oJu Oy 0Oz
ox da da da da
du Ox Ju Oy 0z
ox ob b oOb db ®
Jdu Ox Ju Oy Oz
ox dc Oc dc dc

—. - =0
or ox é’(a,b,c) é’(a,b,c)
; Ou O(u,y,z)
or ox é’(a,b,c) -(9)
o J ou 3 é’(x,v,z)
Sll’nllarly ay - a(a’b’c) (10)
ow  O(x,y,w)
J =
and &Z a(a’b’c) ...(11)

On adding (9) to (11) we obtain

é’(u,y,z)+é’(x,v,z)+0"(x,y,w) _ @+ﬁ+0”_w
é’(a,b,c) é’(a,b,c) é’(a,b,c) ox Oy 0z

Using (6), we have

(12)

dr " \ox oy oz

dJ_J ou Ov Jw
Ox Oy 0z

Using (1), we have

or Ot

V2 -
or —p"‘V(PQJZO

which is Eulerian form of equation of continuity as shown earlier.
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11.8 Some Symmetrical forms of equation of continuity

The equation of continuity takes a simplified form in cases when the motion of the fluid possesses
certain symmetrical properties as shown below.

11.8.1 Cylindrical Symmetry :
Let P(r,0,z) be a fluid particle. Let p (r,¢) be the density and g, (r,¢) be the velocity at p
perpendicular to axis OZ.

Consider an element of fluid consisting of two cylinders ofradii » and » + 6 » with axis of it be z-
axis and bounded by planes at unit distance apart.

Then rate of flow across the inner surface

=pqr.27zr=f(r,t) (D)

Rate of flow across the outer surface

:f(r+5r,t) ..(2)
Rate of change of mass within the element
0
=—(p.2nr.d
m(p nr.or)
ap
=2nror —
Py ..(3)

Suppose that the element of the fluid contains neither sources nor sinks. Then by the law of con-
servation of mass, the rate of increase of the mass within the element must be equal to the rate of mass
flowing into the element.

Hence

2nr 5r%=f(r,t)—f(r+5r,t)

=f(r,t)—[f(r,t)+5r %f(r,t)w&..l

op 0
2nr or Vi or &_f (r.1) (onneglecting higher powers)
r
Now using (1)
ap
or 2rr E: - E[pqﬂﬂr]
op 0
or 2rr E: - ZHE(P%’”)
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dp. 1
t r

o
o 5 (pg,r)=0 (4

or
r_,
If p = constant then o »we have

ap
_~ — 0
P (g,7)

On integrating with respect to -, we have
rq,= g(t) ..(5)
Ifthe flow is steady, g(¢) reduces to an absolute constant. Hence for the steady flow.

r g, = constant ...(6)
Which is the equation of continuity due to cylindrical symmetry.
11.8.2 Spherical Symmetry :

Let P(r, 0, q)) be a fluid particle. Also let p(r, t) be the density and ¢, (r, t) the velocity at p is
the radial direction .

Consider an element of'the fluid consisting of two concentric spheres of radii » and » + 6 » with
O as centre as Plying on the inner sphere.

Hence rate of flow across the inner surface

=pq,drnr’ = f(r.1) (1)

Thus rate of flow across the outer surface

= f(r+6r,) ..(2)

Rate of change of mass within the element

=g(p.47rr2.5r)

_ 2o 0P
=4rr 51’5 (3

Using concept of law of conservation of mass, the rate of increase of the mass within the element
must be equal to the rate of mass flowing into the element minus the rate of mass flowing out of the element

Hence

A’ 5r%=f(r,t)—f(r+5r,t)
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0
or :f(r,t)—[f(r,t)+5r.Ef(r,t)wt...}

0
=-or Ef (r.1) (neglecting higher powers of'small & )

2 59_ 0 2
or Arr-or 27 or .E[pqrhrr ]l by (1)

op 0
drr*Sr —L=-6rdn— (1’
or Treor Ey r no”r (r pqr)

1 0
or 2 T\ . (4)

ap

If p be constant then En 0 then we have

5 2 5 2
(pr qr)=035(r q,)=0 (5

or

On integrating with respect to ;- , we have

If the motion is steady, g() reduces to an absolute constant. Thus for a steady flow

r?q, = constant ..(6)

which is the equation of continuity due to spherical symmetry.

Self learning Exercise :

1. The fluid motion is said to be irrotational if
(a) curl g =0 (b) divg=0
(¢ gradg=0 (d  None of these
2. In rotational motion, the components of the rotation are called --------- .
3. What is the condition for a possible liquid motion?
. - > K (y-yi) | | .
4. Whether the motion specified by ¢ ZW is a possible motion for an

incompressible fluid motion?
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5. Test the motion specified by

3xz 3yz 32277
=—% ,V=—5 and w=—75—
r r r

for possible incompressible fluid motion.

6. Find the velocity vector ; for the velocity potential ¢ = c(x2 -y’ ) .

11.9 Summary

In this unit, we studied about the concept of law of conservation of mass in terms of equation of
continuity for the fluid motions. We also studied the equation of continuity in Euler’s and Lagrangian
approch and their equivalance. In this unit, we also familearized with the velocity potential, rotational and
irrotational motions in two dimensional fluid motion.

11.10 Answers to self learning exercise

1. (@ curlg=0
Spin components
Statisfies the equation of continuity

Yes, possible fluid motion

A

Possible fluid motion

6. q=2c()-x)

Example 1: Show that

_ —2xyz ()c2 -y’ )Z y

are the velocity components of a possible fluid motion. Is this motion irrotational?

Solution : A fluid motion is only possible if the velocity components satisfy the equation of continuity.
Here

-2xyz ou _—2yz(y2—3x2)

Ll=(x2+y2)z 3% (x2+y2)3
o (xz—yz)z ﬁ:2yz(y2—3x2)
(x2+y2)2 3y (x2+y2)3

Wwe Y ow
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h: @4'@4'&—“}_0
so that ox dy o0z

Since this equation of continuity is satisfied the flow is possible.
For the motion to be irrotational, we must show that spin components are zero.

That is we have show that

ow Ov ou Ow

= —_— :0 = — = —

c=0= oy Oz 7 dz  Ox
ox Oy

ow x> -y’ oy

Here 5y, (x2+y2)2_0"2

ou  —-2xy Ow

oz (+y?) Ox

ﬁ_ —2xz(x2 —3)/2)2 _@
and 5 7 (xz +y2)3 = dy

Hence the motion is irrotational.

Example2: If the velocity of an incompressible fluid at the point (x,y,z) is given by

3xz 3yz 327 -1 o . . cosd
PRI prove that the liquid motion is possible and the velocity potential is e
Solution : Given that
3xz 3yz 3z -7
U=—5,v= )’5 and w= s— where > = x* +y° +2°.
r r r
For the motion to be possible, we must show that the equation of continuity

du Jv Ow
—t—+—=0 (1)
ox Jy Oz

1s satisfied. Here

ou 3z 15x°z

ox r r’

ov 3z 15y’z
=75 7

oy
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ow_9z 152°

oz r’ r’

and

@ + ﬁ + &_W = O
Thus 5,75, oz
Hence the fluid motion is possible.

Further, velocity potential ¢ is given by

dgb:—[ﬁ dx+% dy+? dzj

Ox y z

=—(udx+vdy+wdz)

or d¢=—i5[3z (xdx+ydy+zdz)—r2dz]

r

:—i 3zrdr—ridz
| ]

r

_rzdz—3z rdr

5
r

B rPdz—z.3r.dr

6
r

i)

= 4= z rcosf cos6
1’3 1’3 l"2

. . cosf
Hence. Velocity potential ¢ = >

Example3: Show that if the velocity potential of an irrotational fluid motion is equal to
2 2 2N -1 )/
A(x +y +z) ztan ( x)

The lines of flow will be on the series of the surfaces

2

(x2+)7 +22) =S (x? +y2)A
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Solution : The velocity potential ¢ is given

by ¢:A(x2+y2+2 2ztan (3/)

p=dAr” ztanl(%) (1)

So that
-3
u=- o9 =3Azxr” tan1y+ﬂ
ox X (x2+y2)
-3
V=- 79 =3Azyr tan™ 1y Azxr
ay X (x2+y2)
w= 99 34227 tan' 2 — 477 tanl()/)
4 X X
or X or y or =z
Whete 12 = 47+ 2 and 5= s gy = s g2y
The equation of lines of flow are given by
dx _dy _dz
u v.oow
dx dy
Le. - -
3Azxr tanl)/ Az% 3AZyr75tan711—AzZLr2
)C +y) X (x +y)
_ dz
A2 ) (2)
A(3Z r r )tan /x
xdx+ydy+zdz xdx+ydy
= 2 2 2\ .2 = 2 2\ -2
(3x +3y"+3z )’” -1 (3x +3y )r
xdx+ydy+zdz_r2(xdx+ydy)
2 3()62 +y2)
2 (xdv+ydy+zdz) 2 (2xdu+2ydy)
T Eet) 3 (@)
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On integrating
log ()c2 +y° +zz) = % ﬂilog(x2 +y2)+ logc]l
x> +yr 4zt = [c(x2 +y2)]%

which gives the required series ofthe surfaces on which the lines of flow will lie.

Example4: Show that ¢ = (x—1)(y —¢) represents the velocity potential of an incompressible two

diamensional fluid. Show that the stream line at time " ;" are the curves (x — t)2 —(y- t)z = constant and
the path of the fluid particles have the equation

log (x—y)z%[(x+y)—a(x—y)l]+b

where 4 and b are constants.

Solution : Given that velocity potential

o=(x=1)(y~1) (1)

o¢
= u=—-——=—(y—t

il )

v=- 9P (x4

dy
ou Ov du Ov
and Ix 0° ﬁ_y = 0. Thus the equation of continuity Ox + 5_)/ =0 i satisfied. Hence given

(1) represents the velocity potential of an incompressible two dimensional flow.

Also the equations of stream line are

@ZQ: dx dy
u v -(y-t) —(x-1)

or (x—1)dx —(y—t) dy=0
On integrating

(x—t)z —(y—t)z = constant ..(2)
which are the required stream lines.

And the paths of particles, are given by

u=—=—(y—1) = —=t-y ..(3)
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v=—=—(x—-t) = ——=t-x (4

From (3) and (4) we have

&, b

PR =2t—(x+y) (5

dz dx dy
Now suppose that z=x+y, - E:EJFE

Then (5) gives

dz

—=2t-z
dt

dz
—4z=2t
or 7

which is a linear different equation whose solution is

ze' =J2te’dt+C1

or z=2t-2+Ce"

or x+y=2t-2+Ce" ..(6)
Again from (3) and (4) we have

dx _dy _ NN dx_dy:dt
dt dt xX—y
Onintegrating log(x —y)—logc, = ¢
= x_y:czet ...(7)

From (6) and (7), we have

—1 t

(x+y)—a(x-y) =2t-2+ce _ 4

&

a
=2¢-2 taking @ =~

2

Hence %[(x+y)—a(x—y)l]= (1-1) ..(8)
From (7) we have

t=log(x—y)-logc,
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= (r-1)=log(x—y)-b ..(9)

Using (9) in (8), we have

%[(x+y)—a(x—y)l] =log(x—y)+b

11.11 Exercise

Prove that the liquid motion is possible when velocity at point (x, Vv, z) is given by

3x* -1 3xy 3xz )
Uu=—-—5—,vV=—5, W=—7 where > = x* + y> + z* and the stream linea are the
r r r

3 2 .
intersection of the surfaces ()c2 +y*+ 2 ) =c ( o+ zz) by the plane passing through OX.
State if the motion is irrotational, with reasons.

Show that the following velocity field is a possible case of irrotational flow ofan incompressible
fluid :

u=yzt;v=zxt and w=xyt
1
Show that the velocity potential ¢ = 5 (x* +y* —22%) satisfies the Laplace equation and

represents the flow against a fixed plane wall. Also find the stream line. [ yz= c]l

Give the physical significance implied in the equation of continuity in fluid motion.

Show that for an incompressible fluid, the equation of continuity becomes ;y, ; =0-

Find the equation of continuity in Lagrange’s method. Show that it is equivalant to

op Ju oOv JOw
—+p|—+—+— =0
ot ox Oy 0z :

miNININ
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UNIT - 12
Equation of Continuity-II

Structure of the unit

12.0  Objective

12.1  Introduction

12.2  Equation of conitnuity in Cartesian Coordinates
12.3  Equation of conitnuity in Cylindrical Coordinates
12.4  Equation of conitnuity in Spherical Coordinates
12.5  Equation of conitnuity of a liquid flow through a channel or a pipe
12.6  Boundary Surface

12.7  Condition for a surface may be boundary surface
12.8  Summary

12.9  Answers to selflearning exercise

12.10 Exercise

12.0 Objective

In this unit, we will learn about the equation of conitnuity in various coordinate systems i.e. cartesian,

cylindrical, spherical polar coordinate etc. We will also study about the concept of boundary surface.

12.1

Introduction

The equation of continuity is always found by the fact that the mass contained inside a given volume

of fluid remains unaltered throughout the motion. Using this conecpt, we will obtain equation of continuity
in cartesian coordinate system, cylindrical polar coordinate system and spherical polar coordinate sys-
tem. These forms help in dealing problems of fluid motion through various geometric forms of the flow.
We will also obtain the condition that the surface represent the boundary surface.

12.2

Equation of continuity in cartesian coordinates system

Sl
R! P!
oz
Sy v o O (x+38x,y,2)
vP(x,y,z)
R (x,y+8y,z2) o'
0 — X
Figure 12.1
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Let there be a fluid particle at P (x, y,z) and p (x, v,z, t) be the density of the fluid at p at any
time ¢ . Let u,v,w be the velocity components at p parallel to the rectangular coordinate axes.

Now construct a small parallelopiped with edges o x, 6 y and 6 z parallel to coordinate axes
having point P at one ofthe angular point as shown in figure.

Now mass of fluid that passes through the plane face prpr’s per unit time parallel to OX

=p(6y 6z)u=f(x,y,2) (1)

Where 6 y 6 z is the area of the cross-section and y is the velocity with which the fluid crosses
the face pRR'S.

Now mass of fluid that passes out through the plane face P’Q’ QS per unit time

= f(x+6x,y,2)

=f(x,y,z)+8x . é’if(x,y,z)+ higher powers of § x
X

0
=f(x,y,2)+5x -Ef(X,y,Z) to the first order approximation.

Therefore the excess (increase) fluid in the parallelopiped in a unit time in x -direction

= Fluid mass enters in through pgrp's - Fluid mass leaves through PQ'QS’ per
unit time

:f(xay,Z)—f(x+5x,y,z)

=—0x. %(x,y,z)

=-0x. 4

E(pu 0y 6z) using (1)

)5y

o ()

Similarly increase in the fluid mass in parallelopiped in y -direction through faces POS'S
and RO'P'R’ is

o(pv)
:_Ty5x5y5z .(3)

and increase in the fluid mass in parallelopiped in 7 -direction through faces. POQ'R and
SS'P'R' s
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o(pw)
=—Ty5x 6y bz (4

The total excess flow in parallelopiped, on using (2), (3), (4)

_ | 9(pu) N (pv) N o(pw)

Sx8y 5
ox oy | oz | N0Y°F -(5)

Again the total mass in the parallelo piped = p.ox 6y 6z
Hence increase in mass of the parallelopiped in unit time = ? O0xd0yodz ...(6)
t

Now, by the law of conservation of mass, the rate of increase of the mass of the fluid within the

parallelopiped must be equal to the total excess flow in the parallelopiped in unit time. Hence from (5) and
(6), we have

é é é
56y 629L = _5x 5y 5,20, o) low)
ot Ox oy Oz

ap s o(pu) s (pv) s d(pw)
ot Ox ay Oz

or =0

which is the equation of continuity in cartesian coordinates.

Ifthe fluid is homogenous and incompressible, density o is constant the equation of continuity
reduces to

ou oOv Jow
+t—t—=

—+—+—=0
ox Jy Oz

12.3 Equation of continuity in cylindrical polar coordinates

Z
N
S
g!
WISz
or
u P
p!

r |

Figure 12.2
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Let p be apoint whose cylindrical polar coordinate are (r,0,z), with p as one corner. construct
a parallelopiped with edges

PO=r660, PS=6z and PP' =5r.Let u,v, and y are the velocity components along PP’
PQ and pg respectively.

Thus mass flow entering through PORS per unit time along - direction is
=pu(r 60 6z)=pur 60 6z= f(r,0,z)
and fluid mass getting out through the face P'Q'R'S" per unit time is

=f(r+d6r 0z)

= f(r,0,z)+ 5r.%’9’2) + Higher powers of 6
r

Therefore excess of flow along ;- - direction is

= man that enters through PORS - mass that flows out through P'Q'R'S’

=— 51’.—5 f (r,@,q))
or

——5r 2 (pur 5052
or

:—%(pur) or o6 oz (1)

Similarly the excess of flow along @ direction when fluid mass entering through pp's’s and out

through OO’ R'R per unit time = — % (pv)Sr 06z (2

and the excess of flow along 7 -direction when fluid mass entering through POQ’P’ and out flow
0
through SRR'S’ perunittime = = 5~ (pwr)dr 606z ..(3)

Hence the total excess flow in parallelopiped in unit time is

== | L (pur)+ o)+ (pwr) |67 50 6 -(4)

The vloume of'the parallelopiped is
=rd60.0r.0z
The fluid mass in the parallelopiped at any time
=prorob oz
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The rate of change in fluid mass in parallelopiped
=£(pr)5r 0006z 5)
5 t see

Hence, by the law of conservation of the fluid mass, the rate of change of the mass ofthe fluid
within the parallelopiped must be equal to the total excess flow in parallelopiped in unit time (4) and (5), we
have

d(pr) s o(pur) s d(pv) o

- =0
o o tTag taP)
0 0 0 0
or ré’—f+5(pur)+%(p\))+z(pw’”)=0
or E+;E(pur)+;%(pv)+z(pw)zo (6)

which is the equation of continuity in cylindrical polar coordinates.

Ifthe fluid in homigenous and incompressible, density o is constant then equation of conitnuity (6)
reduces to

é’(ur) +l é’(v) +é’w _
or r 00 Oz

1
r

12.4 Equation of continuity in spherical polar coordinates

(rsin@ 59)

Figure 12.3

Let P (r, 0, (1)) be a point in the fluid. On constructing a curvilinear parallelopiped with three
ajdacent edges as PP'=o6r, PO=r 660 and PS =rsin6 6 ¢ where p isone corner ofit. Let the
velocity components be u, v, w inthe directions of »,0, ¢ respectively.

The mass of the fluid that flows in through the face PORS due to velocity component
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per unit time is
=p(ré6.rsin@60)u=f (r,0,9) (1)

The mass of the fluid that flows out through the face P’Q’R’'S’ due to flow along pp’
(r-direction) per unit time

=f(r+o6r,0,9)

o
=f(r,0,¢)+5r.5f (r,0,¢)+ Higher powers & r
Therefore excess of flow along pp’

= Fluid mass enters through PORS - Fluid mass flows out through P'Q'R'S’

0
==0or 'Ef (.6.9) (neglecting higher powers of 6 )

% .
== dr.— (pr?sin6)56 & ¢

= j(przsin9)5r595¢

r

= d pr’)sin@ 5r 660 5¢
0

r

-(2)

Similarly excess of flow in over out through faces pp’g’g and QQ'R’'R due to velocityy along
PO (9 - direction) per unit time is

=—r 50%(psin0v) Sré¢

=—7rdordb 5¢é’—é’6’(pv sin6) ..(3)

and the excess of flow from faces POQ'P’ and sRrR's’ dueto flow along PS (q) — direction)
per unit time is

0
=—ré’—¢(pw)5r505¢

C_r6r 50 5¢é’—é’¢)(pw) ()

Therefore the total excess flow in the parallelopiped per unit time from all faces
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=—06rdo60 6¢|sinb % (purz) +r % (pvsind) + r 0,)—0;5 (pw) (5

Also, we know that the total mass of the fluid in parallelopiped

= pr’sinf 5r 80 6¢

Hence the rate of change in the fluid mass in the parallelopiped

:%(pﬂ Sin0 51 50 5)

0
=5r505¢ —(pr’sinf
r o é’t(pr sin ) ..(6)

Using the concept of law of mass conservation, the rate of change in fluid mass
= total excess flow per unit time
then from (5) and (6), we have

g(pr2 sin0)+sin0 %(purz)vtré%(pvsiné?)vtr %(pw) =0

or r*sin@ %+sin0 %(pur2)+ré%(pvsin0)+r %(pw):o

6p 1 6, . 1 o, | 1 0
—_— = — + —(pvsinf)+ —(pw)=0
I L0 haveny el CAE L) ey PTG

which is the equation of continuity in spherical polar coordinates.

The equation for homogeneous incompressible fluid reduces to

1 0 ) 1 0 . 1 Jow
——(ur )+ — —(vsin@)+ —— —=
r or sinf 060 sinf J¢

12.5 Equation of continuity of a liquid flow through a channel or a pipe

S,D S, F
Figure 12.4
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Let an incompressible fluid continuously flow through a channel or a pipe whose crossection area
may or may not be fixed. Then the quantity ofliquid passing through all section is the same per second due
to law of conservation of mass.

Let us suppose that some liquid is flowing through a tapering pipe as shown in figure. Let S, S, , S,
be the areas of the pipe and V,,V,,V; are the velocities of liquid at the section 4B,CD, EF respectively.
If 0,,0,,0, be the total quantity of liquid flowing across the section AB,CD and EF respectively then

O =8V, 0,=8V, and O, =SV,

From the law of conservation of mass, the total quantity of liquid flowing across the section 4B,CD
and gr must be same. Hence

0=0=0
Therefore SV, =8V, =8V,
which is the equation of continuity ofa liquid flowing through a channel or pipe.

Self Learning Exercies - |

1. The equation of continuity for the homogenous steady incompressible fluid is

(a) curl ; =0 (b) div ; =0 (c) grad ; =0 (d) None of these

2. Write down the equation of continuity of a liquid flow through a pipe.
3. What is the physical significance of equation of continuity?

: 1 : : L
4. Isthe velocity field ;= ; v="r+ —>w=0 satisfy the equation of conitnuity

d*>v d (v)
|t ]=0
dr® dr\r

Example 1: A mass of fluid moves in such a way that each particle describes a circle in one plane about
a fixed axis. Show that the equation of continuity is

2p  pw)
ot 00

=0

Where w be the angular velocity of a particle whose azimuthal angle is @ at time t.

Solution : Given that the motion is in a plane and a fluid particle describes a circle of radius ;- . At any
instant with fluid particle at P consider an element PORS suchthat PS =6r and PO =r956 . Thereis
no motion along radial direction pg .Hence

the excess of flow in over flow out along PQ per unit time

2
;0607

=—rd0.
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Figure 12.5

=— é’—é’é’(pwr)Er 00

Also mass of'the fluid inside the element

=porrob

-, change in the mass ofthe element

=g(p5rr 50)

Hence the equation of continuity is

0 0
—(pSrréo)+—(pwr)oré=0
m(p ) 59(/3 )

dp d(pw)

or ot 00

which is the required equation of continuity.

Example 2 : If o isthe cross sectional area ofa stream filament, establish the equation of continuity

in the form a1 (po)+ by (po q) =0 where  is measured along the filament in the direction of flow and

q isthe spead.

Solution : Let p be the point. Consider a volume bounded by the cross -sections through p and
another at a distance g from p.Hence POQ'P’ be the stream filament whose cross sectional area is o

and arc PQ=90s. 1
<A\

ds

p< 7 P! Figure 12.6
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The rate ofthe excess of the flow in over the flow out along PQ per unit time
0
=—-0s—I(po
S, (Pod)
Again, the total mass of'the fluid within the stream filamentis = po d's
.. therate of change in mass of the stream filament = &i (pods)
t

Hence equation of continuity is

0 0
—(pods)=—-—O6s—I(po
m(p ) 5S(p q)

o o
—(po)+—I(poq)=0
or m(p ) 5S(p q)

which is the required equation of continuity.

Example 3 : Ifthe lines of motion are curves on the surfaces of cones having their vertices at the origin
and the axis of z for common axis, Prove that the equation of continuity is
0 0 2pu cosec O
9P, 2 (pw)+ P, —
or Or r r 06

(pw)=0

where 3 and y are the velocity components in the directions in which » and ¢ increase.

Solution : Let origin () be the common vertex and oz the axis, be the axis of z . Consider a cone
0ABR of semi vertical angle 9. Let P (r,H, q)) be a point on the surface of the cone and PP=6r,

PS=rd6, PQ=rsinf 6 ¢ being edges of the curvilinear parallelopiped as shown in the figure.
Z A

Figure 12.7

Y

Since the lines of motion are curves on the surface of cone, there will be no motion perpendicular

to the surface ofthe cone, hence there is no velocity along the edge pg (along @-direction). Since velocity

along pg is zero, the excess of flow in over flow out along pg vanishes. 3 and  are the velocity
componates along » and ¢ directions respectively.
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Again

rate of excess of flow-in over flow out along pp’

—_sr. 2 (pu.r50.rsin6 5¢)
or

= — sinf@ &i (I"zpu).5l” o0 5¢

r

and rate of excess of flow in over flow out along PO

= — rsinf L (pw Sr.r66)
rsinfd¢

=—rorob 5¢é’—é’q)(pw)

Also, the rate of increase in mass of the parallelopiped

= i por.r 60.rsinf 6 ¢
ot

_25in0 2L 515054
ot
Hence the equation of continuity is given by

r*sin@ % 5ré08¢=—05rs6035¢ sineﬁi(purz)w g
r

or r sin0%+ sin@%(purz)ﬂf %(pw)zo

odp 1 0 ) 1 0
e + — =0
of ot &r(pur ) rsin @ &qb(pw)

or @JrL[rz M+2rpu}r

0
=0
ot r? r (pw)

rsin @ é’_¢

ap N é’(pu)+2pu +cosec9 7

— =0
or ot or r ro 0¢ (pw)

which is the required equation of continuity.
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Example4: A massoffluid is inmotion so that the liens of motion lie on the surface of coaxial cylinders,
show that the equation of continuity is

ap , 10(pu)  (pv)
ot r 00 Oz

=0

where u,v are the velocity perpendicular and parallel to ~ .

Solution : Consider a fluid particle p, whose cylindrical coordinates are (r, 0, z). Construct a curilinear

parallelopiped taking p as one corner ofit and the edgesbe PQ=6r, PS=r56 and PP'=05z.

The fluid motion lies on the surface of co-axial cylinders, so there is no motion along PQ then the

excess flow along PQ is zero. ZA
The excess flow in over flow out along pg < 1 S! R
=-rd0 4 (pudroz) Sz -Q’J
rof
S
P R
= —6r805z—(pu) P
00
or
and the excess flow in over flow out along pp’ 0 X
7
= _525(9‘”’59 67) Figure 12.8

=—-0rof SZi(pvr)
Oz

Also the mass of the fluid in the parallelopiped is
=proborodz

.. The rate of change in mass of the parallelopiped

—r506r85:°P
ot

Hence the equation of continuity is

op 0 0
000rdz—=-3606rdz|— +—
r roz— roz [0”9 (pu) > (pvr)}

op 1 2

0
or o1 ;Of,g(p”)"'_(p"):o

Oz

which is the required equation of continuity.
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Example 5 : If every particel moves on the surface of a sphere prove that the equation of
continuity is

%cos@+%(pwcos0)+é%(pw’ cosf)=0

p being the density, 9, ¢ the latitude and longitude of any element, and w ,  the angular
velocities ofthe elelment in latitude and longitude respectively.

Solution : Consider a fluid p onthe semi-circle 4pp making an angle ¢ with semi-circle 4CB .
Suppose that Op makes an angle 9 with (¢ . Constructing an elementry parallelopiped on the surface

of'a sphere whose edges are PQ=56r, PP'=ro6 and PS =rcosf 6 ¢ andas p one corner of it.

Z/
A R! o'
Q
s\ AP, W
S,
P
0} 4"] > ¥
/] 1 C
00 w
Y
B
Figure 12.9

Let p be the density of the fluid at p. Since every particle moves on the surface ofthe sphere,
there will be no velocity along PQ ie. in the radial direction. Here the velocity along pp’ and pg are wr
and 'y cos@ because w and ,, are the angular velocity in latitude and longitude directions respectively.
Since velocity along PQ is zero then the rate of excess of law in over flow out along PQ is zero

Now, the excess of flow in over flow out along pp’ per unit time

=—réo évg(pwrﬁr.rcosé@q))

r

0
=—r26r8085p—(pwcosb
¢59(p )

and the excess of flow in over flow out along pg per unit time

=—rcosh 5 ¢ l %(prcos@w’ Srréo)

r cosf 0

0
=— 2 6rd085p— (pw'cosb
¢5¢(p )
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Hence the total excess flow through parallelopiped per unit time is

0 0
=1 6r 80 5¢ | —(pwcosf)+—(pw'cosd
1?81 50 54| —(pweosb) a¢(pw )
Again, the rate of increase in mass of the element

= gt(p Or r 80.r cos 0 5¢)

=7’ c0s95r595¢&—p
ot

Hence the equation of continuity in given by
op 0 0
2 06rd069—L=—-r*6rd05¢ — 0)+— "cos @
rcosf or ¢ >, reor ¢ é,e(pwcos ) 0,,¢(pw cos0)

op 0 0
——cos@+—(pwcosB)+—(pw'cosd)=0
or >, 59(/3 ) M(p )

Example 6 : Ifthe lines of motion are curves on the surface of spheres all touching the plane of xy at
the origin (), the equation of continuity is

rsin0@+M+sin9

ot 04

M+(pu)(l+2cost9) =0

Where  intheradius ¢p ofone sphere, p the angle pc(, u the velocity inthe plane pC(,

v the perpendicular velocity and ¢ the inclination of the plane pC( to a fixed plane through
the axis of 7.

Z A\

Y Figure 12.10

Solution : Let Cand (! be the centres of two spheres ofradii  and r + J r respectively. p be the
point on the smaller sphere.
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Let PQ, PR and pg be the edges ofthe elementry parallelopiped. Here PR =r56;
PS =rsinf 6 ¢ where ¢ is the angle that the plane pC( makes with a fixed plane through 7 -axis.

To Find the length PQ , we have
CP=r;C'QO=r+6r, CC'"=6r and ZPCO=0
In ACC'Q, we have
C'0* = CC™ + CO* —2CC'.CQO cos OCC"
or (r+67)" =67 +(r+ PQ) =26r.(r + PQ)cos(r - 0)
or 2r8r=2r.PO+ PO’ +2r8r cosO+25r PQ cosf
or 2r8r(1-cosf)=2r.PQ+ PQO*+25r.PQ.cos0
Since PQ and & r are small quantitites, so neglacting PQ*, §r* and 6. PQ. Thus we have
2ror (1—cos9)z2rPQ
= PO =(1-cos0) Sr

Thus we have determined the three edges of the elementary parallelopiped as PQ = (1 —Cos 9) or,

PS=r 66 and PR =rsin@§ ¢ . Since the lines of motion are curves on the surface of spheres touching

the plane of xy , there would be no motionalong PQ , then the excess flow in over flow out along PQ is
Zero.

Now, the excess flow-in over flow out along pg per unit time

=—ro0

d [pu(1-cos6)5r.rsings ¢

r

=—rdrd035¢|sind (1—cos@)é%(pu)+pu{cos0 (1-cosO)+sin’ 0}}

=—rdrd035¢|sind (1—cos@)é%(pu)+pu{cos0 (1-cos)+(1-cos’ 0)}}

=—r(l-cos) 5r606¢ [Sine %(pu)ntpu (1+2cos@)}

and the excess of flow in over flow out along pR per unit time

= —rsin@ 5 ¢ ﬁ[pv(l—cos@) Sr.r 0|
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— r(1-cos0) 57 50 56 2 (pv)
¢
Also, the rate of increase in mass of the element

:g[p(l—cosé’) Sr.r60.rsinf 5¢|

— 1 sin0 (1-cos6) 57 50 5¢ 2L
ot
Hence the equation of continuity is given by

r?sin6 (1-cos6) 57 56 5 ¢ %:

—r (1—cos0) 5r 50 5¢ | sin6 %vtpu (1+2cos@) |- r (1—cosB) 5r 50 5 ¢ O%(pv)

or rsiné %+sin9 %(puh%(pvhpu (1+2c0s0)=0

which is the required equation of continuity.

12.6 Boundary Surface

Physical conditions that should be satisfied on given boundaries of the fluid are called as boundary
conditions. At the boundary of the fluid the equation of continuity is replaced by a special surface condi-
tion. When the fluid is in contact with an impermeable bounding surface, the velocity of a fluid portete at any
point of the boundary relative to the surface must be tangential to the boundary.

A surface is a boundary surface if at any point of'this surface the normal component of the fluid
velocity is equal to the normal component of the velocity of the surface. Ifit is not so, then the contact
between the fluid and the surface will break.

12.7 Condition for a surface may be boundary surface

Imn 7 P

Figure 12.11
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Let the surface be F (x,y,z, t) = 0. Take a point P (x,y,z) on the boundary of this surface
such that the direction cosine of the normal be /m and 5 . Also the normal velocity of the boundary
at p be . Afterasmalltime 6¢, p movesto p’ suchthat PP’ =} &t . The projections of pp’ on

the axes x,y and z willbe [ V'6¢t, mV 6t and n V' 6¢. Butafter time 1+ ¢, point pr continues to be on
the surface hence

F(x+1VSt,y+mVot, z+nVt, t+5t)=0

Expanding by Taylor’s theorem, we obtain

F (x,y,z,t)+ ﬁ1V+ﬁmV+ﬁnV+ﬁ St + Higherpowersof ¢ =0
Ox oy Oz ot

On neglecting higher powers of §¢ and using F (x,,z,¢) =0 we have

oF/ot

V=-

But /,m,n are direction cosine of pp’ to the surface F (x y z 1)=0;s0

[ . om _n 1
oF/0x OF/dy OF/0z §7F2+ §7F2+ AR Y
Ox oy Oz
2 2 2
OF OF OF OF OF OF
=1 +m +n = =] +|— Q)
Ox oy oz Ox y oz

Using (2) in (1), we have

OF /0t
\/[&FJ +[&F) +[&F) .03)
Ox oy Oz

and we know that the normal velocity in the direction pp’ at p be V =ul + vimm + wn where

V=-

u,v,w are velocity components and must satisfy the equation of continuity.

OF OF OF
u +v +w

Ox oy Oz

(53]
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V=ul+vm+wn=

From (3) and (4), we have



or +u +v +w =0
ot Ox oy Oz

DF
== =0
or Dt

D
Hence if F (x, V,Z, t) = 0 be boundary surface, then at every point on it, % = () where Dr is
t

the differential following the motion. Hence the expression for normal velocity of the boundary surface is
given by

_OF/ ot
2 2 2
OF OF OF
J[5XJ [5y) [52)

Self Learning Exerecise 11

V=

1. At the boundary surface the normal velocity component of the fluid is ....... to the normal
component of velocity of the surface.

2. Write down the condition for a surface representing a boundary surface.

3. Write down the condition for a surface to represent the boundary surface if the boundary
surface is at rest.

Example 7: Show that the ellipsoid
2

2 2
X WYz
25??7+kt[37+27):1

is a possible form of the boundary surface of a liquid.

Solution : We know that the surface F (x,y,z,7) =0 represents the boundary surface if

DF OF OF OF OF
—=0= + u + v + w =0 (1)
Dt ot Ox oy Oz

where u,v and y satisfy the equation of continuity Here

2 2 2
X WY oz
= [?7)‘1:0

at a2k2 t2n+1 b2 2

F 2 2 2 2
° S S L. nkt”l[y—+z—)
c
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OF 2x

ox  a*kit”

IF _2kt"y

oy b?

IF _ 2kt"z
and oz &

Using there in (1), we have

0

2 2 2 n n

X 2n e z 2xu  2kt'yv 2kt'zw
~ %2 Tma ket yz T 2.2,2n zy + 2 =
a k™t b° ¢ a‘kt b c

(u_ﬂj 2x e ny 2kyt" N 2kzt" _0
or t ) a* ke 2t ) b’ 2t) ¢
which will hold if
nx ny nz
22 _0.-v+—=0. w+—=0
“ ¢t 0; 2t ;and 2t
nx —ny —nz
- V= w =
- t 2t ; and 2t

These value of u,v, w can be seen to satisfy the equation of continuity. Hence the given surface is
a boundary surface.

Example 8 : Show that

2 2 2
2—2 VGE: Z}—z ¢ (1) + i—z w (t)=1,where f().4 (¢).w (t)=1 isapossible
form of the boundary surface.

Solution : Given that

Foyz)="5 (1) + 15 0 (1) + 5 w(0)-1=0 D)

will be a possible form of the boundary surface ifit satisfies

OF oF oF oF
+u +Vv +w =0 (2)
ot Ox oy Oz




o 20 [u+xf’(t)}+2_y 0 [HW'(”}z—f v (0 [WH""(”}:o

a 21(n) | &’ ¢(1) | 40
which satisfies only when
L e e v
2 70T 200 T W)
But there value of u,v and v must satisfy the equation of continuity
ou ov ow_
ox Jy Oz
o L 1) 12yl
2 /() 2 ¢() 2 w()
S0, o) v ()

T 7 e vl

or % [log f(¢)+log ¢ () +logy (¢)] =0

= flog /(1) 4(). (1) =0

which is true for given condition /(7). ¢(¢) . w (1) =1.

Example9: Show that ellipsoid

2 2 2
X Vv oz
a2k2t4+kt2[b2 +02J=1

is a possible form of the boundary surface ofa liquid at time ¢ .

™t ky' , kZt,
a’k?*  b? c*

Solution : Here F (x,y,z,t) = -1=0 (1)

Now (1) will represent a boundary surface if it satisfies

OF OF OF OF
+u +v +w =0 2)
ot Ox oy Oz

oF —4x° Jr2ky2 +222k
Now ot aZ kZ tS bZ CZ

or _ 2
ox a*k*t!
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OF _2ky ,

Es
oF _2k:z 2
and 9z &

Putting these in (2), we have

4x* +2kt£ 2k22t+ 2xu 2kyvt’ 2kzwt2_
a Kkt b? c? ak*tt b* c?
2x 2x 2ykt2[ y} 2zkt2[ z}
——— |u——|+ v+ =+ w+—(=0
e { t } B> t c? t
It 1s satisfied if
t t t

=0

Which satisfies the equation of conitinuity therefore the given surface is a possible boundary sur-

face of'the fluid.

12.8 Summary

In this unit, we studied the forms of equation of continuity in different coordinate systems. The
concept of boundary surface is introduced and the conditions required for a given surface to be a boundry

surface are discused.

12.9 Answer to self learning exercise

Exercise I
L. b divqg=0
2. SV = constant, where § is sectional areaand J/ is the velocity
3. The mathematical representation of Law of mass conservation.
av _ 1_i d’v_2
4. YGS dl" r2 N drz - r3
d’v d (v 2 2
ot ) 5=0
dr= dr\r) r r
Exercise 11
1. Equal
OF OF OF OF
o) +u +v +w =0
: ot Ox oy Oz
OF OF OF
3. u + v + w =0
Ox oy Oz
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12.10 Exercise

1. Derive the equation of continuity for a constant density fluid.

2. Show that in a two-dimensional incompressible steady flow fleld the equation of continuity is
satisfied with the velocity components in rectangular coordinates given by

2 2
X" =y 2xy
u(x,y)=—"- v(x,y)=—""——
) (xz +y2)2 and (xz +y2)2
3. The particle of a fluid moves symmetrically in space with regard to a fixed centre. Prove that the
equation of continuity is
1
°p “@Jf—zi( u)=0
ot or r° Or
Where 4 is the velocity at distance ;.
4. Each particle of a mass ofliquid moves in a plane through the axis of 7 . Find the equation
of continuity.
dp 1 0 2 0 :
—+— —|pur’)+ —(pvsinf)=0
Ans. o0 o P g 2ePind)
5. Homogenous liquid moves so that the path of any particle p lies inthe plane pox , where

0Xx 1s fixed axis. Prove that if 9p = ;- and the ~/ XOP = 0, the equation of continuity may
be written as

i(urz) _ 2 (vrsin@) =0
or ou
Where u,v are the component velocities along and perpendicular to gp inthe plane pox
and u =cos0.
2 2
x y 1
6. Show that pe) f(e)+ b_zm =lisa possible form of the boundary surface of a liquid.
xZ yZ
7. Show that — sin’ ¢ + 1= cosec’ t =1 is a possible form for the boundary surface of a liquid.
a
xZ yZ ZZ
8. Show that — e’ + I cost + — e 'sect =1 isapossible form for the boundary surface
a

ofaliquid.

miNININ
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UNIT - 13
Equation of Motion-I

Structure of the unit

13.0  Objective

13.1 Introduction

13.2  Euler’s dynamical equations of motion in vector notation
13.3  Euler’s dynamical equations of motion in Cartesian coordinates
13.4  Conservative Field of Force

13.5 Integration of the equation of motion

13.6  Bernoulli’s theorem

13.7  Helmholtz equation

13.8  Permanence ofirrotational motion

13.9  Working rule to solve problems

13.10 Summary

13.11 Answer to selflearning exercise

13.12 Exercise

13.0 Objective

In this unit, our aim is to study Euler’s equations of motion in various forms and integrate the
equation ofmotion to get the Bernoulli’s equation and Bernoulli’s theorem for the fluid motion. The Helmholtz

equation is also obtained through various approches.

13.1

Introduction

velocity. In the fluid motion, the momentum per unit volume is defined by M = pg, where p be the
density of the fluid and ¢ be the velocity of the fluid particle. The Newton’s second law of motion states
that the rate of change in momentum is directly proportional to the external force applied on it and this
changes takes always in the direction of the fluid flow. In other words, the net force acting on the fluid
particle is equal to the product of mass of the body and acceleration of the fluid particle.

The Euler’s equations of motion are based on the law of conservation of mass and Newton’s
second law of motion. The momentum ofa body is defined as the product ofthe mass of the body and its

13.2

Euler’s dynamical equations of motion in vector notation

q

i
S
Figure 13.1
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Consider a closed surface § such that it encloses a non-viscous fluid and is in motion with the
fluid. This motion ensures that at any time § wll contain same fluid particles.

Now take any point p within the surface §, p be the density of the fluidat p and 61 be an

elementary volume which encloses p and ; be the fluid velocity at p.

Since the mass p S 7 ofthe element remains unchanged during the motion, the momentum A_;[ of
the volume p in § is given by

jy:JgpdV (1)

The rate of change of momentum is

Q
Q“\ai

q
—pdV+|q—(pdV
ld Jq (pdV)
d
But here ~~ di (pdV)=0 since pdV is always constant, so

dM _(dg
= 157 Q)

Again, let ;} be the external force per unit mass acting on fluid and p be the pressure at a point
of the surface element ;¢ then total force on the fluid in volume J

= [Fpav -3
Vv
And the force due to pressure in the outward normal direction
= — J p.nds
N
- .[ VpdV (By Gauss throrem) (4
7

Hence from the Newton’s second law of motion, rate of change of momentum = total force acting
on the mass in the direction of the momentum, we have

JiquV jdeV jvpdV

Vv

=£@f—vﬂdV
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v

dq
or J.[pEpF-i‘vp\JdV:O

But volume  enclosed in § is arbitrary, so we have

N

dq

4 _hp_v
P =P p
dqg - 1
4 _F_y
or oy 5 p

(5

7 - - - d V2 -
@_{_(qV)q:F_le '.'—:—+(q.V)
ot o)

Which is the Euler’s dynamical equation in vector notation.

13.3 Euler’s dynamical equations of motion in cartesian coordinate

Z

4

— > X6x8ydcz

S S!

R
o 1
pdydx | °F Rl [p+@5xj5y52
Sy P 6)(,' é’x

Y Figure 13.2

Consider a point P (x,y,z) ofa fluid. Let p be the pressure per unit area, p be the density,

u,v,w be the components of velocity and X,Y,Z the components of external force per unit mass in the
direction of axes respectively.

Construct a rectangular parallelopiped having faces parallel to coordinate planes and edges
PP'=6x, PO=0y and PS=0z
The pressure on the face PORS = p §y 5z = f(x,y,z) (say)

Then the pressure on the face P'Q'R'S’
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= f(x+6x,y,2)

=f(x,y,z)+%5x+...

op
=pdéydz+ EM 6xdyoz on neglecting second order terms

=[p+@5xj 0yoz
Ox

Also since x is the force per unit mass parallel to y -axis, the force on the rectangular parallelopiped
inx-direction=X pdx oy dz

du
Again, the acceleration along x -axis is dt then the rate of change of momentum along x -axis is

du
=—pOoxoyo
aPereres

Hence, the equation of motion along x -axis is

p5x5y5z%:Xp5x5y5z+p5y5z—[p+?5x]5y5z
X

du op
. 2T x p- £
Le. pdt p Ox
d 10
or Lox--2L
dt p Ox
or @+UQ+V@+W@:X—1@ (1)
ot Ox oy Oz p Ox

similarly, the equations of motionin y and 7 directions will be

ov ov ov ov 1 dp
—tu—+v—F+w—=Y-—— Q)
ot Ox oy Oz p Oy
ow ow ow ow 1 dp

and + u +v +w =7 -—— (3)
ot Ox oy Oz p Oz

respectively.

Equation (1) to (3) are known as Euler’s dynamical equations of motion in cartesian
coordinates.
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13.4 Conservative Field of Force

A field of force having components X, Y and 7z parallel to axes is called conservative if the work
done by the force per unit mass from one point to the other is independent of the path of the motion.

Hence Xdx+Ydy+Zdz=—-dV

ot de+Ydy+Zdz——é’—Vd —é’—de—ﬁd

Ox oy Oz

= X:—ﬁ—V.Yz_ﬁ_VandZ:_ﬂ/
ox > oy Oz

where J/ is called potential function and depends upon the initial and final positions of the moving
mass.

13.5 Integration of the equations of motion

Suppose the motion be irrotational, so that velocity potential ¢ exists and the system of force be
conservative so that the external forces are derivable from a potential function 7, such that

N

u:_é’x’ __é’y’ == 3, (1)
ar aov aov
X=- Y=—— Z=-—

and Ix dy > Oz ..(2)

Since the motion is irrotational, so that spin components should vanish

ow ov Ju é’w ov @

oy 0z 0z ox ™oy 4y -3
The equation of motion are

Jdu Ju Ju Jdu 1 dp

—tu—+v—tw—=X-—— -5 (&)
ot ox Oy oz p Ox
v odv  Ov ov 1 dp
—tu—+v—Fw—=Y-— L (5)
ot Jdx Oy Oz p Oy
ow  Jdw  Ow ow 1 dp

and tU——FV W =L — — ..(6)
ot Ox oy Oz p Oz



o 0O¢ ou Ov ow av 1 dp
and —|—— |[tu—+v—+w—=-——"-—-—"F
ot\ oz oz Oz oz oz p Oz

These equation may be written as

ox\ Jt) 2 Ox ox p Ox
oy\ ot) 22y Jy p Oy
ol o) 120 ,, 5 av 1 Jdp
— ||+ — (V' +W)=———— =
and é’z[ é’tj 2 z(u v ) oz p Oz )

Multiplying (7) by 4, (8) by dy and (9) by 4, then adding, we get

[z[_@]dﬂﬁ[_@]dﬁi[_@]dz}
ox\ ot oy\ ot oz\ ot

l i 2 2 2 i 2 2 2 i 2 2 2
+2{0”x(u +Vv +w )dx+é,y(u +vi+w )dy+é’z(u +v +w )dz}

_ | dx + o dy+0’)V dz 1 é’—pdx+@dy+é’—pdz
Ox y Oz p| ox y Oz

d[—@] +%d (u2+v2+w2): - dV—ldp
P

1 1
or d[—a—J+5dq2 +dV+;dP=0 where ¢* = u® +v +w’

Assuming a functional relatioship between p and p and integrating we obtain

_9¢ + 1 g +V + Jd—p = constant
ot 2 Jo)
dp o¢ 1 ,
or J o ot 2 q constant = C ...(10)

Where C is an arbitrary function of the time.
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Casel:

If p isconstant, then

E—@+lq2+V=C
p ot 2

which is the Bernoulli’s equation for the unsteady, irrotational motion of'an incompressible fluid.
Casell :

If motion is steady, then the Bernoulli’s equation takes the form

£+V+lq2=C as ﬁzo
2 ot

Jol

Where C is an absolute constant.

13.6 Bernoulli’s theorem

The theorem states that “in a steady fluid motion, which is not irrotational, if potential function
exists such that the external forces are derivable from this, then

Jd—p+l q> +V =C (OR)
p 2
Show that

1
Jd—p+—q2 +V=C
p 2

Where the motion is steady and the velocity potential does not exists, 7 being the potential
function from which the external forces are derivable.
B

T \[(p+%5sj a

Proof :

(A
A
p o/ Figure 13.3

Let 4B beastream line in the fluid. Consider an element & s of'this stream line and construct a

small cylinder of cross-section ¢ and ¢ s as axis.

N
If 9 be the velocity and § the component of external force per unit mass along the stream line,
then the equation of motion is
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dq op
Ss. =1 — HaSs S + —|lp+ZL s
paos ; paos pa [p ; sja

—

dq 1 dp
o los P
dt p Os
dq Oq 1 ép d o o
_ 2 _=S___ e —=—4g—
o o T T T, o di ot 1os

—

. 0 . )
Here motion is steady therefore N =0 and since the component of external force § is
t

derivable from potential function then § = — a

os

Hence

Integrating it along the stream line, we obtain

1
Lpopofie
2 P

dp 1 ,
—+—q +V=C
or Jp Zq

Where constant ¢ depends upon the stream line choosen. This is the Bernoulli’s theorem.

13.7 Helmholtz Equation

The Euler’s dynamical equation of motion in the direction of x -axis in cartesian coordinates is

Jdu Ju Ju ou 1 dp
—tu—+v—+ =

we o EsAT T (1)
ot ox Oy Oz p Ox
where u, v, w are velocity components along axes respectively and

ov ov ov

X=-——,Y=—-—, Z=——— arethe components of external forces which are
ox oy 0z

conservative with potential function .

Now

ou Ju Ou ou Ju Ov ou ow av 1 Jdp
— t+t|lu—tv—tw— |+ V| ——— |t W] ——— | = — - — —
ot Ox Ox Ox Jy Ox
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ou 1 0 ,, , ) v 1 Jdp
— 4+ ——(u" Vv + +v(-28) + 2 =————
or oty oty W) v (20) + 2w = = 0 Ox
where &,77,¢ are the spin components and ¢* = y* +v* +w’.
or ou 15q° Covgrawn=-L_Lop
ot 2 Ox ox p Ox
ou 0 dp 1 ,
— = 2v{+2wn=——|V+|—F+=
or o1 vE+2wn é’x[ Ip 2Q}
u o0
or E—ZVC+ZW77——E ..(2)
dp 1
where & = J7+Eq2 +V and p is a function of p.
Similarly we obtain
ov o0
Y oweEr2uc=-22
or T AweTAue =5 -3
ow o0
X _oun+ave=-22
5, 2unt2ve=-——= .(4)

Deffrantating (3) partially with respect to z and differentiating (4) partially with respect to y then
eliminative O, we have

2
o 5——2 o¢ 2§@+2u%
oz ot Oz Oz Oz
2
_Pw 0, du ov 0k
Ay ot oy "oy Oy dy
o L[N 5, [9N,980 5,98 40, 08
ot oy Oz Jy Oz oy Oz
ov é’w ou
+2 2n—-2¢ —=
é[ Py 52) "ay Cé’z ..(5)

On adding and subtracting 2 y % , we have
X

2%+2u@+2v@+2 0”§+2§ ou ﬁ+é’_w
ot Ox oy Oz Ox Jy Oz
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_25@_2,7@_24@:0
Ox ay Oz

or [%+u§+v%+w§)+§[au+av+awl=§@+n?+§@
y

ot ox  dy oz ox Oy oz ox oz
dé du JOv Ow ou ou ou
or ol Bl et IR S/ e e ...(6)
dt ox Jdy 0Oz Ox y Oz
4_29

tuU—+V—+w— - .
dt Ot Ox oy o From the equation of continuity

dp ou oOv Ow
—+p|l—+—+—1|=0
dt ox Jy Oz
ou ov ow_ 1dp
we get ox  dy oz o di ..(7)

Using (7) in (6), we obtain

df_Edp_ ou  ou

du
+n—+4¢—
dt p dt Ox oy Oz

1dé &dp_Eou nou ¢ ou
pdt p dt podx pdy p oz

or

or dt -.(8)

which is the first Helmholtz equation.
Similarty

d [ﬂj_éﬁ+ﬂﬁ+£ﬁ

dt P _pé’x pJdy p oz )

d [g}_gaw+ﬂaw+£aw

and dt o _p ox pdy p oz ...(10)

These equation (8) to (10) are the Helmholtz equations. To obtain another form of Helmholtz
equations, we take Helmholtz equation in x -direction (8),

d(s|_&du nou ¢ ou
dt\p pJOdx pdy poz
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_g0u nov ¢cow m(ou 0Jv) ¢fou_Jw
pox pdx pdx pl\dy Ox

:£@+ﬂﬁ+£a—w+ﬂ(—2é’)+£(2n)
pox pox pox p p

d (& Eou nov ¢ ow
Hence . | | - .t -t 52
dt\p poOx pdx p Ox

Similarly other two equations (9) and (10) gives

:ipz_ééz+ﬂéz+£éz
dt\p) pJdy pJdy py

and E -

d (€ gou nov ¢ ow
o) p oz pdz p Oz

which give the other form of Helmholtz equations.

13.8 Permanence of irrotational motion

If £, n,and £ be zero at any instant of time ¢ then

Dis|_Lfn|_ D]
Dt \ p Dt \p Dt \ p
D¢ _Dn_D¢_
Dt Dt Dt

if p is constant

= &, n and ¢ are constants.

ou Ov

Let us assume that axox T > are all finite and less than a quantity 7, then

S
x p

n i
p M p

cannot increase if they satisfy the equations

22051849

Let &+ n+ ¢ = pw,weget fromthe above equation
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D£f(w)=3lw

Onintegratip w=Ce”" , w=0.

Ifwhen ¢ = w =0 then ¢ = o Henceif y, = ( attime ; = () it must be so for all times. Since

is the sum of three quantities &, 7, which cannot be negative. Hence 4, = (), it follows that each ofthese
three quantities must be zero,

E=0=n=(

Hence, if the motion is irrotational at any instant, it must be so for all times. In other words, ifonce,
the velocity potential exists, it exists for all time. This is known as the principle of permanance of irrotational
motion.

13.9 Working rule to solve problems

1. Read the question and obtained the equations of motion as
ou ou u ou 1 dp
—tu—+v—+tw—=X —— ——
ot Ox oy Oz p Ox
ov ov ov ov 1 dp
—tu—+v—+w—=Y-——%
ot Ox oy Oz p Oy
ow ow ow ow 1 dp

and + u + v +w =/Z-——=
ot Ox oy Oz p Oz

The general problem of hydro-dynamics is to find values of u,v,w, p and p as functions
of x,y,z and ¢ .

2. The equation of motion are not sufficient for the purpose and we need other relation. In all
problems we make use of the equation of continuity.

3. With the help of'initial and boundary conditions, the problem is solved particularly.

Self Learninig Exercise

I. Ifthe velocity potential does not exist then motion is
(@) rotational (b) irrotational
(c) translational (d) rotational as well as translational

2. Write down the Bernoulli’s equation for the unsteady, irrotational motion of an incompressible
fluid.

3. Define the conservative field of force.

Example 1: Air, obeying Boyle’s law, is in motion in a uniform tube of small section, Prove that if p be
the density and v be the velocity at a distance x froma fixed point at time ¢,

Fp &
el (UL
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Solution : Air, obeying Boyle’s law

~p=kp

The equation of continuity in this case is

and the equation of motion is

é’v+ é’v: 1 dp

ar et
ot Ox p Ox

v, v _

Using (1), o1 +v&x

k dp

p Ox

On differentiating (2) partially with respect to t., we obtain

Fp o o0
Ll 2 (pv)=0
o Yo o)
Fp | ov op
- —+—|p—+v—|=0
e 5p é’x[p o1 vé’t}
From (2) and (3)
Fp o ov  kodp o(pv)
or —t PV ——=tVvi————|=0
ar dx| ox pox ox
2 I o
or é’f_ipvﬁvﬂz (pv)+k@=0
ot ox|  Ox Oox Oox
Fp oo op
CE_ S (pva)+kZE =0
o 5 x| ax P é’x}
Fp ) Fp O )
or oo (P HkR)=0 = - (7 +4) p] =0

which is the required result.

(1)

-(2)

..(3)

Example 2 : A pulse travelling along a fine straight uniform tube filled with gas causes the density at

time ¢ and distance x from the origin where the velocity is u, to become p, ¢ (vt — x). Prove that the

velocity 4 is given by

(ug—v) ¢ (v1)
¢ (vi—x)

v+
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Solution : If p be the density ofthe gas at a distance x and 3 the velocity there then according to
given condition

p=p, ¢ (vi—x) (1)

and the equation of continuity is

or o tp o tuz =0 )

ap ,
From (1), we have "5 == pov ¢ (vi—x)

o
and 5—§= —po ¢ (vi—x) (3

Using (3) in(2), it becomes

poved (vi—x)+p, ¢ (vt—x)% —u py¢’ (vi—-x)=0

or (v—u) ¢’ (Vf—x)+¢(vt—x)%:0

o du +¢ (vt—x) dr =0

(v=u) ¢ (vi-x)

On integrating, we get

—log(v—u)—log ¢(v¢—x) = constant
or (v—u) ¢ (vi—-x)=C
which ¢ is the constant of integration. But initially when x = 0 ; u=u,= C = (v—u,) ¢ (vt)
Hence (v—u) ¢ (vi—x)=(v—u,) ¢ (vt)

_(v—u,) 8 (v)

or voHE ¢ (vi—x)

(ug—v) ¢ (v1)
¢ (vi—x)

Which is the required result.

or u=v+
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Example 3: A sphereis at rest in an infinate mass of homogeneous liquid of density o, the pressure at
infinity being 7 ; show that, ifthe radius g ofthe sphere varies in any manner, the pressure at the surface
of'the sphere at any time is

2
1 Jd> ., [dR
T+ = R )+ | —
2p{dt2 (%) [dtj}
Solution : Let y be the velocity of the fluid at a distance ;- from the centre of the sphere at any time
¢t and p the pressure, then the equation of continuity is

r’ v:F( t)
ov_F'(1)
ot (1)

The equation of motion is

v v 1
ot or p or
Using (1), we have

F@), ov__1op

2 Ve T T oy (2)

On integrating w.r.¢.r, We get

Hence

F' ()
or p=ﬂ+§[2#ﬂ} ..3)

If p be the pressure on the surface ofthe sphere ofradius g and j be the velocityat  — g (on
the surface ofthe sphere) then

P=7Z+§|:2%(t)—V2:| (4
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Again from (1), R’V = F(r)

dR
or F(t):Rz'E
, , d*R dRY
F (f):R .dtz +2R E (5)

Using (5) in (4), we obtain

2 2 2
P=7Z+£ 2 R.d f+2 d—R - d—R
2 dt dt dt

. 2
P=ntPl|a g LR 5[4R
2 dt di

d2 R2 2
or P=7r+£ (2)+ dR
2| dt dt

which is the required result.

Example 4 : Steam is rushing from a boiler through a conical pipe the diameter ofthe ends of which are
D and g . If y and y be the corresponding velocities of the steam and if the motion be suppossed to be
that of divergance from the vertex of the cone,

v D? (vV-1?)2k
Prove that —=—Fe€
V d

where £ is the pressure divided by the density and supposed constant.
C

P-

Figure 13.4

Solution : Let 4B and ¢p be the ends ofthe conical pipe. 7 and y are the velocities at the ends
where the diameters are p and 4 . Also let p, and p, be the densitites of steam at these ends. Then the

equation of continuity can be written directly by the fact that mass of the steam that crosses 4p and ¢p
is the same. Thus equation of continuity is,
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p, vd’
p—1= D (1)
2

or

Now, if at any distance » from 4B, the velocityis 4, pressureis p and densityis o then the
equation of motion gives

1
or = por Q)
Nowas p/p=k = p=pk

ou k Op

then U E =

p or

On integrating, we have

2

u u2

?=—k[logp—logA]] — p=dE
But here

p=p,when y—y = p = A

and p=p, whenu=v:>p2=Agv%k

so tha o, Ev%"

From (1) and (2), we obtain

vd? EV%"
I/vl)2 Evzz
D2 (u27V2)
or 1 = e 4
Vo d

which is the required result.

Example5: Aninfinite mass of fluid is acted onby a force vf% per unit mass directed to the origin.

Ifinitially the fluid is at rest and there is a cavity in the form ofthe surface - = ¢ init, show that the cavity

P!
will be filled up after an interval of time ( % /J) ’ oL

Solution : Let , be the velocity at a distance ;- from the origin and p be the pressure there at
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any time ¢ . Then equation of continuity is 7> v' = F(¢) (D)
and the equation of motion is

é’v+,é’_v__ o 1 dp

av - 2 9P
ot y or' “ p or' -(2)
ov' . ,
Using (1) — =F (6)/ 7" o0 that
F gt)+v,&v _ /,i 1 &p'
r' or' S0 p Or

Integrating .7, to -, we get

Q)

When ' 50 ; y=0, p=0 = C=0.

- F' (1)

1 2u
Hence ——, +— v’ =
r 2

5 —% (3

r

Let - be theradius of the cavity at time  and y be the velocity there, then putting p = 0 (onthe
surface of cavity), the motion of the cavity is given by

— F' 1, 2
0,1, =—1/f (4

r 2 p

Now from equation (1), we have

rzv:F(t) = F’(z‘):2rv2 +r2vﬂ

dr
then equation (4) reduces to
—2\)2—r'vd—+lv2 :2_1ﬂ
r 2 ,,A
dv 3 , 2u
or rvdr 2 Yo r%
dv 3 ? 3
V— 4+ —-—=-2ur"?
of dr 2 r H
a’ 3 -3
or %+;v2=—4uré (5)
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which is a linear differential equation whose solution is given by

r =—4yjr3/2dr + G [ F= ej%d’ _ 3

Initially p = ¢ ; y=0 = C=——¢

then V21’3=8—u(0%—1’%)
5

dr 8 u (C - )
or V=—=—

dt 5 vz

Here we take negative sign since  decreases with the increase in ¢.

\/;J /dr

On taking / / sin2 @

5 J% s1n 30.c.2sinfcosOd O
\/ bz
8u —sin’ 0)}] ’

t_ A
V5u

which is the required result.

Example 6 : An infinite fluid in which is a spherical hollow shell of radius a is initially at rest under the
action of no forces. If a constant pressure p is applied at infinity, show that the time of filling
up the cavity is

= 2)" 2 ([5)

Solution : Let , be the velocity at a distance ,’ and pressure p at any time ¢, also let y the
velocity and ;- theradius of cavity. From the equation of continuity, we get

r’zv:F(t):rzv (1)
L av' _F'(1)
which gives us that Py 2 -.(2)
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and the equation of motion is

ov' oV 1 dp

—+y —=
ot or' p or'

. F'(t) ,0v_ 13p
Onusing (2), — 7 TV or :_;W

On integrating with respect to -, we get

F'(¢)

!’

r

Jrlv'zzCl—£
2 P

where ( is the constant of integration and when
r—>ow;v=0,p=P—> CIZ%

' 12 _
Hence —F—m+L=_u
r’ 2 o,

Now, on the surface of cavity ;' = -, y' =, p=0

1 2
then _ @,V _P -(3)
o)
To calculate F’ (t) , we differentiate (1), we have

dv
F'(t)=2rv’ +riv—
() v +ry " ..(4)

From (3) and (4), we have

dv 1
2V —vr—+ V' =P
dr 2 /P

a3, 2P
or -tV =-—
dr r o,

which is a linear differatial equation, solution of it is given by

Vit = — 2P Jrzdr+C2
p

2Py
vird = — 4 +C,

3p

} 2P
when r=g,y=0 = C2=2Pa = v2r3=—( 3 3)

3p 3p
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1
th v—ﬂ—— 2P (a _FB)A
. dt 3p ,,%

where negative sign before the radical is taken since » decreases as ¢ increases. If ¢ is the time

of filling up the cavity

[ 2
-~ \2r a(as_rz)% onputting = gsin” @

3 2a smO asin /OCOSOdO
_ 3p Iﬂ/ 3
2pP aé cos@
= %a /2—'1'; [“sin” 0 do
/3p
2P 5
2.)% /2

@77 2a\/grr

we know that

T W_\/_zz 12n
and Th

sinn

putting 7 = A , we have

7B =R
B = e
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From (6) and (7), we have

3 \/;27\/5 _2%.7r.\/;
E7_2%(ﬁ@2_¢3(%f

putting these values in (5), we obtain the time of filling up the cavity

= wa ()5 (%)

which is the required result.

Example 7: An infinite mass of homogenous. incompressible fluid is at rest subject to a uniform
pressure p and contains a spherical cavity of radius ¢ filled with a gas at a pressure m P. Prove that if the
inertia of the gas be neglected and Boyle’s law be supposed to hold throughout the ensuing motion, the
radius of the sphere will oscillate between the value a and 54 , where 5, is determined by the equation

1+3mlogn—n’ =0

2
If 1 be nearly equal to 1, the time of an oscillation will be 2 C; P , p being the density ofthe
P

fluid.

Solution : Let ' be the velocity at a distance ,# from the centre of cavityand p be the pressure
there, then the equation of continuity is

ry! = F(t) (1)
and equation of motion is

ov' oV 1 dp

—+y — =
ot or' p or'
onusing (1), we have

!’

F() o 1op

'’ or' p or'
On integrating with respect to -, we get

F(t)‘i‘%\/’z:cl—%

!’

r
! ! —P
when 7' > o, v :0,p:P:>C1—%).

Hence — (1) + 1 V2= P-pr ..(2)
r' 2 o,

359



Now, let » be the radius of the cavity at time ¢, v the velocity and p’ be the pressure there, then

since air inside obeys Boyle’s law,

4
—7rr3p’=§ ra’ . mP

when ;' — -, p=p', v’ = (motion of the surface ofthe cavity)
From (2), we have

F@), 1, P dmP
r 2 p r.p

t d
Now putting v =— :F’(t)=2rv2 +rv—
in equation (3), we have

dr

2
dv %v2=—§li (r3—ma3)

which is linear differential equation whose solution is given as

Py = _2P l(1*3—ma3)dr + C,
pr

2P |7
= __{r__ maBIOgr}+ G,
p |3

2P| a’
when =g ;=0 :sz—[a?—mcfloga}
ol

Hence v*r* = 2P [a3 -

Jol

+ma’ logi}
a
If v =0 r=na theneqn (4) gives
a’—n*a’ +3ma’logn=0
or 1-n’+3mlogn=0
which is the required relation for 5 .

2" Part :

(3

(4

dr dx

When p; isnearly equalto 1. Let = ¢ — x where x being small, so that y = — = == = x then

equation (4) gives.
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.2 3 2P 3 X 3 X
x(a+x) ==—a |1-|1+=| +3.1.1og/ 1 +—
3p a a

3 2 2
or 562613(1+£) =2—Pa3 1- 1+3—x+3i2+... -3 {_lx_ﬁ
a 3p a a a 2a

2 P 9 x2 . .
B 5 ) a’ (Neglecting higher power of x )
PN L
pa

Now differentiating w.r.fo .t, we have

2ii=— 25
pa

e 3P

or paz

which is the §77ps and the time period 7 is given by

——=T=2r
3P V

Example 8 : A spherical hollow ofradius a initially exists in an infinite fluid subject to constant pressure
at infinity. Show that the pressure at distance  fromthe centre when the radius ofthe cavity is x is to the

pressure at infinity as

3x?rt +(a3 —4)c3)r3 —(a3 —x3)x3 S 3xrt

Solution : Let at time ¢, ' be the velocity at adistance ;7 and p the pressure there, then equation

of continuity is
rv' =F (t)
and equation of motion is

L .

v =
ot or' p or'
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onusing (1)

F(@) Lo 1 op

!
2

r or' p or'

On integrating, with respect to -, we have

O
r' 2 P

Let 7 be the pressure at infinity, so when 7' — o0, p=7, ' = () = C, _T

F'(t 1 nT—p
Hence _¥+EV = ..(2)

Now let v be the velocity of the inner surface of radius x and pressure p = 0 then for the motion
of inner surface, we have

@)1z (3
X 2 o)
F'(ty 1 F(t) =
o0y (4
F(t Fit
as F(t)=x'v=>v= (2) ord—x=# = 2x’dx =2F (t)dt,

X dt X

so multiplying (4) by 2x*dx =2 F (¢)dt

we get
F' 1 F?
— ()ZF(t)d +—#.2x2dx=£.2x2dx
X 2 x o)
2F(t) F' 1
or Mdt+—2F2(t)dx:2£x2dx
X X P
F2 (¢
or d[— ()j_zﬁxzdx
X p
On integrating, we have
F*(1) 2
- ():—ﬂx3+Cz
X 3p
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2w 4

Now, when x=a,v=0=>C, =—-—a
3p
F* (¢ 2
- SR YRR

(5

which is the velocity of the inner surface when it is a hollow ofradius x . On using the value of ,,2
in equation (2), we have

F(t)= 2=~ ~——~ ..(6)

Now putting the value of F’ (t) from (6) in equation (2), we obtain the motion of any point in the

fluid at the distance ,» onusing 7'*v' =x? v

llﬂ (a34x3)] 1 ,x* 7-p

r!

o |3pT X

or = et at distance ;' =

or

p 3x2r4+(a3—4x3)r3—(a3—x3)x3
or T 3x*rt
which is the required result.

Example 9 : A sphere is at rest in an infinite mass of homogeneous liquid of density p , the pres sure at

infinity being p. Ifthe radius R of'the sphere varies in such a way that R = a +b cosnt where p < 4.
Show that pressure at the surface of the sphere at any time is

bn’p

(b—4acosnt—5bcos2nt).
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Solution : Let , be the velocity at a distance , at any time ¢ and p be the pressure there. Again,
let v be the velocity on the surface of sphere of radius R, where R = a + b cosnt . The equation of

continuity is
ry = F (1) =R’ (1)
Theref v = F’(t) 2
erefore Py 2 (2)

The equation of motion is

ov' , OV 1 dp

—+y —=
ot or' p or'

On using (2)
F’(t)_i_ﬁ[l 12 _l@
'’ or' \2 p or'
On integrating

This ——, + vV ="+ (3

Now the pressure p at the surface ofthe sphere ofradius g given by on putting

r=R,v=v

where R =a +bcosnt .

F_wz}

or p=P+p[

R 2 .(4)
From (1), we have
2 2
PO%*ibmﬁzsz55+R2@i=2Rvﬁ)+R2dfasV=£3
dr dt dt dt dt dt

364



Using these values in (4), we have

dRY d*R 1(de2
=P+p|2|—| +R - = | —
P p (dt) a2 \ar

- , )
=P+p z(d—R) +Rd§
2 dt dt

=P+p [% (-bnsinnt)’ + (a+bcosnt) (—bn’ cosnt)}

2
=P+ pl72n ﬂ;3 bsin’ nt — 2 bcos* nt — 2acosntjl

pbn’

=P+ ﬂi3 b (1-cos2nt) — 2 b (1+cos2nt) — 4a cosntiﬂ

pbn’

p=P+ [b—5b cos2nt — 4acosnt]

which is the required pressure.

Example 10 : Liquid is contained between two parallel planes, the surface is a circular cylinder of radius
a whose axis is perpendicular to the planes. All the liquid within a concentric circular cylinder ofradius p
is suddenly annihilated. Prove that if 7 be the pressure at the outher surface, the initial pressure at any
point on the liquid distance  from the centre is

. logr—logh
loga —logh

Solution : Here the motion of the liquid will take place in such a manner so that each element ofthe
liquid moves towards the axis ofthe cylinder |z| = b . Hence the free surface would be cylinderical. Thus

the fluid velocity , will be radial and it is a function of .+ and time ¢ only. Let p be the pressure at a
distance , . Then the equation of continuity is

r'v' = F(t) ..(1)
. oV _F'(1)
which gives Py - ..(2)

The equation of motion is

ov' oV 1 dp

— 4V — =
ot or' p or'
Using (2), we have

F0, 2 (L) Lo
7' or' \2
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On integrating
F'(t) lo r’+lv’2 --Z,c
g 7 P .(3)
Initiallywhen ¢=0, y'=0, p=P
P
then  F'(0) logr'=——+C --(4)
ol

Agan P = when =, and p=( when ;' —p

. F'(0) loga = “Zic
P
and  F'(0)logh=C

which gives that C = — logbL and

plog(%;)

F'(0)= plo;( %) then using these values in (4), we get
P 7 oy Z:logb
P plog(%) — plog(%)
_ log r' —logb
T )
_ . logr'—logh
~ 7 loga—logh

Onreplacing ' = ;-, we obtain the required result

P log r—logbh
" loga—logh

Example 11 : A stream in a horizontal pipe, after passing a contraction in the pipe at which its sectional
areais 4 isdelivered at atmospheric pressure at a place, where the sectional areais B . Show that ifa
side tube is connected with the pipe at the former place, water will be sucked up through it into the pipe
from a reservior at a depth

E (L _ L
2g\ 4> B’
below the pipe, s being the delivery per second.
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Solution :

Figure 13.5

Let y be the velocity in the tube of smaller section 4 and p the pressure at that section. Further
let v and 7 be the corresponding quantities at the bigger section g ofthe figure. Then by Bernoulli’s

p,1 5
theorem, we have ; + 5 9 = constant then we obtain that

£+1V2:£+1V2
p 2 p 2
1 1
or ;(p—ﬂ)=5(V2—V2) ()

Let 5 be the height through which water is sucked up, then

The equation of continuity is
Av=BV =s (delivery per second)

sothat =g/ g4and y =4/ B ...(3)

Onusing (2) and (3) in equation (1), we have

1 h_li_i
S PENT T B

h_i(i_i
or 2¢\ 4> B’

which is the required result.

13.10 Summary

In this unit, we studied the equations of motion in vector and cartesian forms. we integrated the
equation of motion and obtained Bernoulli’s theorem. We also derived the Helmholtz equation. Now we
are capable solving the hydrodynamical problems for fluid motion by using equation of continuity,
equations of motion with the help of given boundary conditions.
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13.11 Answers to Self Learning Exercise

1. (d) rotational as well as translational.
p_0¢ 1

2. ;‘E"‘qu"'V:constant.

3. The work done by the force is independent of path of motion,

13.12 Exercise

1. An elastic fluid, the weight of which is neglected, obeying Boyle’s law, is in motion in a uniform
straight tube. Show that on the hypothesis of parallel section ofthe velocity at any time at a
distance » froma fixed point in the tube is define by the equation

2 2
ot or ot or or"-

2. A gas is moving in a uniform straight tube. Prove that if the density be f (at - x) at a point
where ¢ is the time and x is the distance of the point from an end of the tube, its velocity is

af(at—x)+(v—a)f(at)
S (at - x)
where v is the velocity at that end of the tube and ¢ is a constant.
. . 4 5. :

3. A mass of liquid of density o and volume 3 7 ¢, isin the form of a spherical shell, a constant
pressure 7 is exerted on the external surface of the shall, there is no pressure on the internal
surface and no other forces act on the liquid. Initially the liquid is at rest and the internal radius of
the shell is 2c. Prove that the velocity of the internal surface, when its radius is ¢ is

147z 2"
3p 251
4 s T o :

4. A volume 3 7 ¢ of gravitating liquid of density p is initially in the form of a spherical shell of
infinitely great radius. Ifthe liquid shell contracts under the influence of'its own attraction there
being no external or internal pressure, show that when the radius of the inner spherical surface is
x , its velocity will by given by

V2= 4”—?/52 [224 +22°x+22°x" =32 - 3x4]]
15x
where ¥ isthe constant of gravitationand ,3 — 3 4 3.
5. A mass of uniform liquid is in the form of a thick spherical shall bounded by concentric spheres of

radii ¢ and p, (@ <b). The cavity is filled with gas the pressure of which varies according to
Boyle’s law and is initially equal to the atmospheric pressure 7 and the mass of which may be
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neglected. The other surface of the shell is exposed to atmospheric pressure. Prove that if the
system is symmetrically distrubuted, so that each particle along a line joining it to the centre, the
time of'a small oscilation is

(b—a>}%

2ra {p. 37b

where p is density of the fluid.

A mass of liquid of density p whose external surface is a long circular cylinder of radius o , which
is subjcet to a constant pressure 7 , surrounds a co-axial long circular cylinder ofradius b. The
internal cylinder is suddenly destroyed. Show that if  is the velocity at the internal surface when
the radius is », then

o 27 (b*—r?)
2 2 bz
Sii

A sphere whose radius at time ¢ is b + a cosnt is surrounded by liquid extending to infinity under

no force. Prove that the pressure at distance » fromthe centre is less than the pressure at an ifinite
distance by

p 2 (b+acosnt) [a(l—?asin2 nt)+bcosnt +% %sin2 nt (b+a cosnt)ﬂ
r r

miNININ
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UNIT - 14
Equations of Motion-II

Structure of the unit

14.0  Objective

14.1  Introduction

14.2  Lagrange’s Equations of Motion

14.3  Cauchy’s Integrals

14.4  Impulsive Force

14.5  Equations of motion under impulsive forces in vector form
14.6  Equations of motion under impulsive forces in cartesian form

14.7  Summary

14.8  Answer to selflearning exercise
14.9 Exercise

14.0 Objective

In this unit, our aim is to study the Lagranges equations of motion and Cauchy’s integral. The
equation of motion under impulsive forces in vector and cartesian forms are also obtained and then solving
the hydrodynamical problems based on it.

14.1 Introduction

In the previous unit, we studied the equations of motion and their applications to hydrodynamical
problems under various condition. In present unit, we deal the equations of motion under impulsive forces
and their applications. If sudden changes in velocity are produced at the boundaries of a perfect fluid or if
impulsive forces are applied to it, then the disturbances produced are instantly transmitted to every part of
the fluid. An impulsive force does not remain constant but changes first from zero to maximum and then
maximum to zero Impulse ofa force is a measure of total effect of the force.

14.2 Lagrange’s Equation of Motion

Let (a,b,c) be initial coordinates of a fluid particle and after a any time ¢, (x, y,z) be the
coordinate of the same particle. In this case a,b,c and ¢ are independent variables. In order to get the

required equations, we have to obtain x,y,z interms of ¢,b,c and ¢ . If we assume that the external
forces are conservative and there exists a potential function 7 for them. We have the equations of motion
as follows,

Fx__ov _17p
o ox p ox -

>y av 1 Jdp
2 T T LT 5. ..(2)
ot Jdy p Oy
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and 5t2 - 52 p 52 ....(3)

Ox ay
To get derivatives only with respect to a,b,c and ¢, we multiply (1) by 9> (2) by Pa and (3)

Oz
by Pa then adding, we get

& x é’x+é’2y QJFO"ZZ Oz v ox oV Jy

o "da Ot "da O fa  Sx da Iy da

ov.oz 10p ox 1Jp dy 17Jp 0z

0z da pdx da pdy da p dz da

Fx Ox Oy ay &’z Oz av 1 0dp

==+ == 4+ —=—— ==
O 27 %a OF da 00 da  da p da ()

similarly, we obtain

Fx Ox Oy ay &’z Oz av 1Jp

==+ == =
or ob o1 ob of ob b p ob )

Fx Ox Oy ay &’z 0Oz oav _1dp

. + . + .
and 52 5. T o ec | or dc de  p dc -(6)

Equation (4), (5) and (6) are the Lagranges equations of motion. These equation (4) to (6),

0 (x, v, z)
together with the equation of continuity £ é’(a—bc) = Po are known as Lagrange’s hydrodynamical

equations.

14.3 Cauchy’s Integrals

Let a,b,c be the initial coordinates of a particle and x, y,z the coordinates of the same particle

attime ¢ . We know that g, b, c,¢ are the independent variable due to Lagrangian method. Now assuming

the existence ofa potential function 7 for the external forces, equations of motion in Lagrange’s method
are

o~ ox pox ~()

9 -(2)

22 T A0 T 40 ...(3)
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Taking p asa function of p, we take
dp
O=V+ J7 (4

Then from (4), we have
o0 oV 1 7dp
ST St ..(5)
da Jda p Ja

o0 oV 1 dp
—o =+t — - ..(6)
ob b p b

90 _ov 1p
and dec e p dc (7

On using (5) in equation (4) of Lagrange’s form in preceding article, we have

& x é’x+é’2y QJF& Jz 00

017 Ga o da of P4 da -(8)

Similarly using (6) and (7) along with equations (5) and (6) of preceding article, we have

Fx Ox Oy QJFO"ZZ Oz

ox Oy __ 99
or ob o1 ob o ob  ob -(9)

& x é’x+é’2y QJFO"ZZ Oz o0

and 57 ge T o o o de | e ~(10)
Ox oy Oz

Writing o1 =u, N =V and En = W equation (8), (9) and (10) may be written as
du Odx ov Jdy JOw Oz o0
ot ot s (1)
ot da 0Ot Jda Ot OJa da
du Ox oOv Jdy JIw Oz o0
ot S T Ty (12)
ot b Jt ob Jt Ob ob
ou ox ov oy 0w oz 00

and 5 e T ot e ot e oc ~(13)

Differentiating (12) and (13) partially with respect to ¢ and p respectively for eliminating

0, we get
0 [00)_ 2 (29
de\ob | ob\ dc
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obot dc  dcot Ib

Au 0x Fu Ox N >v oy v dy
or obot oc  Ocdt Ob

N Fw Oz FPw Oz 0
Obot Oc  Ocdt b

+_
ob dc  Oc 0Ob ob Jtdc Jc Jtob

o [é’u Ax Ou axj du &x Odu Ox
or Z Y

é’(o”vo”y ov é’z]_é’v 3y Loy 3y
ot

b dc dc db) Ob dtde  de Otdb

é’[é’w Sz Ow azj ow Pz ow Pz

t— |- : + =
ot\ b 6c Jc db) b Jtdc e Itdb

Fx _ou  Px _ou
But o10b  ob and oide o etc, so that last two terms out of bracket are

identical then we get

6{[% ox _ o &cH@ oy _ov Q][ﬁ_w oz _ow zﬂ_o

O 5¢llob dec odc ob) \ob dc oS¢ b ob dc  Oc b

On integrating .. to ¢, we have

Ju Ox é’ué’x+ﬁﬂ_ﬁﬂ+é’wé’z é’wﬁ_A
ob 6c  Oc b ob 6c  Oc b ob dc  Oc b
Initially

x=a,y=b,z=c,u=u, v=v,, w=w, and initial spin components are

$=&0,n=1,8=C 5 P=p, (initial density)

ox Oy Oz ox Ox oJy Jdy 0Oz Oz
da 0b Oc ob Oc Jda Jc Jda Ob
then Azﬁwo—%:2§0
b dc
Ju ox Jdu ox| (dv dy v dy
Hence | 5 5. " 5¢ a6 ) "\ ob 6c bc ob
L| O 0z _dw oz 5,
ob ¢ oc ob 0 -(14)
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' ou Jdu Ox Jy 0Oy Ou Oz
Now using %—5-%+5—y-%+5~% etc ..(15)

in (14) we have

ox ob Oy b Oz b

0"0____ ox  Oc é’yo”c 0"20"0

@[au ox  ou dy  ou 0”2) Ox (é’u ox  ou dy  Ou 0”2]

ox db ' 2y ob oz ob

ox Oc é’y oc 0"2 dc

L ou (@ ox v dy v 0”2) dy (é’v dx  dv dy Ov 0”2]
"oy

ox ob Oy ob oz b

0"2 [é’w é’x ow é’y aw é’zj Oz [é’w é’x ow Jdy oOw Oz
ob

S T A A
é’c Ox é’c Ay dc Iz dc

(0)

=

oy oz 0z oy\(ow _ov) (oz ox oz ox)(2u_ow
éb dc  Ob dc Jy 0Oz ' '

Ox Jy Ox Oy ov  Ju
| .= | | ———|=2¢,
ob dc  Jdc Ob Ox Oy

o G R
or ¢ jgz 2 +1 jEZ )CC; +¢ i,g: i)) =& ..(16)
where 2& = ?—Vy” - % 2n = % - i—: and 2.0 = % _ % are the spin components.
Similarly

S S S A7)
and ¢ gg;; +17 jgzz; +¢ i((zi; =<, (18)

ox Ox Ox
On multiplying (16), (17), (18) by a0’ 0b dec respectively and then adding, we obtain
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o(x,y,2) ox Ox ox

N 4 - 4 _

S Aabe) P aa T s T G
similarly

I(x,y,2) ay dy Iy

NS < 4+ —Z 4+ -7

M b)) oa T on TS G

o(x,y,z) Oz Oz Oz

NS - + - + _-

and & (a,b,c) o o Mo ob Co P

o(x,y,z) Ox O(y,z) JIx Iz)

where 5 be) ~ a d(be) | b d(c.a)

The equation of continuity in Lagrangian form is

é’(x,y,z)_
P é’(a,b,c) =P
N é’(x,y,z)z&
ola,b,c) p
Hence
S _S0x M Ox & 9%
p Py da p, db  p, Jc
N_%0 0¥ M0V & 0¥
p Py da  p, b p, dc
L blb o moz g0z
p Py Ga  p, b p, dc

These equations are called Cauchy’s integrals.

..(19)

...(20)

.21

..(22)

..(23)

..(24)

...(25)

Now we prove that the Cauchy’s integrals are the integrals of the Helmholtz equation. To prove
this we differentiate equation (23) with respect to ¢, we get

d|E|_% O (ox| M 2 (0
dt \ p p, da \ Ot p, 0b\ ot
d (& E, du mn, du &, du
or vl Y T L
dt \ p p, da p, b p, Jc

j+

ox
ot

&y 9

p_oé’c

H

...(26)

ou Ju ou

Again multiplying equation (23), (24) and (25) by ax é’_y and 2 respectively then adding,

we get
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Sou, nou §ou_g ou Ox Ou Oy
pdx pdy pdz p,\Ox da Iy da
L Mfdu ox ou oy ou oz) & (ou ox
Py \Ox b Jdy b Jz b P, \Ox Oc
o 2w nou & ou_ oy Ou My Ou b O
pox pdy pdz p,da p, db p, Oc
From (26) and (27), we get
ds|_gou nodu ¢ou
dt \ p pox pdy p oz
Similarly
dfn)_&dv _nov ¢ov
dt \ p pox pdy p oz
=£é’w+ﬂé’w+£é’w

d
and ar [%J

p Ox

pJdy p oz

ou Oz
Oz da

Ay dc

ou oy, ou oz

zaﬁ

27

These are the Helmholtz equations. Hence Cauchy’s integrals are the integrals of the Hemholtz

equations.

14.4 Impulsive force

Let sudden velocity change be produces at the boundaries of an incompressible fluid or that

impulsive forces be made to act to its interior. Then it is known that the impulsive pressure at any point is
the same in every direction. Moreover the disturbances produced in both cases are propagated
(trans mitted) instantaneously throughout the fluid. An impulsive force does not remain constant, but changes
first from zero to maximum and then maximum to zero. Thus it is not possible to measure easily the value
of impulsive force because it changes with time. In such cases, we measures the total effect of the force,
called impulse.

14.5 Equation of motion under Impulsive forces in vector form

<

Figure 14. 1
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Let § be anarbitrary small closed surface drawn in the incompressible fluid enclosing a volume
y . Let 1 be the impulsive body force per unit mass. Let this impulse change the velocity v at P(r,¢)

instantaneously from ¢, to ¢, and let it produce impulsive pressure on the boundary § .

Let 35 denote the impulsive pressure on the element 6 s of §. Let ; be the unit outward drawn

normalat s . Let p be the density of the fluid.

On applying Newton’s second law for impulsive motion to the fluid enclosed by § .

Total impulse applied = change of momentum
Vv N Vv
By Gauss Divergence theorem we know that
[aiwds=[vwdy e

From (1) and (2), we have

J.[Ip—Vv_v—p(q_;—glﬂdV=0
S

Since is an arbitrary small volume then
lp—Vv_v—p(qz—ql)=0

- > 1 _
or —q, =1 - ;V w ..(3)

which is the equation of motion under impulsive forces in vector form.

Casel :- When external impulsive body forces are absent and impulsive pressures are present then
eqn of motion reduces to
-q=-—1vw
—4h =T (4
2 1 P 4)

Taking divergence and using equation of continuity
\val g — 0 wehave V> w =0 " p is constant

Case II :- Ifthe external impulsive body force is absent and impulsive pressure be present then

motion is started from rest then q—; = 0 ; I = 0. The equation of motion reduces to
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and the motion is irrotational.

| =

showing that there exists a velocity potential ¢ =

CaseIIl :-  Let there be no extraneous impulses. If ¢, and ¢, denote the velocity potential just
before and just after the impulsive action. Then

g9, =—V ¢, and 4, =-V¢,:1=0
The equation of motion reduces to
I o
V¢, +V =——Vw
P
or Vw=pV(p,-¢)

Integrating taking density p as constant, we have

w=p(p,-6)+C

where ¢ be the constant and may be omitted by regarding it as an extra pressure and constant
throughout the fluid then equation of motion is.

w=pd,—pé

CaselIV:- If ¢, =0 and p=1 thenwe find the actual motion, for which a single valued velocity

potential exists, could be produced instantaneously from rest by applying appropriate impulses. Hence we
can say that velocity potential is the impulsive pressure at any point. It is also seen that when a rotational
motion exists in a fluid, the motion could neither be created nor destroyed by impulsive pressure.

14.6 Equations of motion under impulsive force in Cartesian form

7z
Q o'
R 62 1
R _ oW
woyod « [w+a5xj5y5z
s ox
P (x,y,z) P!
S S!
0 X
Figure 14.2
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Let there be a fluid particle at P (x,y,z) and p be the density of the incompressible fluid. Let
u,,v,,w, and u,,v,,w, be the velocity components at the point p just before and just after the impulsive
action. /,,/, and /_ be the components of the external impulsive forces per unit mass of the fluid.

Construct a small parallelopiped whose edges PP'=06x, PQ =0z and PS =0 y parallel to their
respective coordinate axes having p as one of the angular corner as shown in figure. Let 3 be the
impulsive pressure at p. Then we have

Inpulsive pressure on the face PORS =w Sy 5z = f(x,,z) ..(1)

Again Impulsive pressure on the face P'Q'R'S’

=f(x+6x,y,2)
0
=f (x,y,z)+5x E f(x,y,z) *.--- higher power of & x

The net impulsive pressure on the opposite faces PORS and P'Q'R’S’ along the x-axis.

= f (x.y.2)-| f (x,y,z)+5x.é,if(x,y,z) +.
x

A CN ) —
SToX. T (neglecting higher powers of § x)
—_sx. L (woy s
. Y (by 1)
ow
:—55)(:5)/52 (3)

Again, the impulse on the elementary parallelopiped along the x -axis due to external impulsive

body force /_
=poxoyozl, ..(4)
The change in momentum along y -axis
=p&x8y bz (u,—u) ..(3)

On using Newton’s second law for impulsive motion to the fluid enclosed by the parallelopied in
x -direction

Total impulse applied along x -axis = change of momentum along x -axis

L.—0x0yoz (uz—ul)i’—w+plx5x 5y8z=pSxS8ydz(u,—u)
X
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or

or  Plw-u)=pl - N ..(6)
Similarly
ow
p(vz—vl)zply _é’_y (7
ow
and P (m-w)=pl - S (8

These are the motion of an incompressible fluid under impulsive forces.

Now multiplying equation (6) by g4y, (7) by dy and (8) by 4, and then adding, we have
p(u,—u)de +p(v,—v)+ p(w,—-w)dz

ow ow ow
+ +

=pl|l. dc+1 dv+1 dz|— dx d dz

dw =p (Ix dx + 1, dy + I, dz) -p [(u2 —u,) dx + (v, —v,) + (W, —w,) dz]l ...(9)
If ¢, and ¢, be the velocity potentials just before and just after, so that

d¢, =— (udx + v dy + w, dz)
and  d¢, =— (u,dx +v,dy + w, dz)

cdgy —dd, = [(uy —w)dx + (v, = v)dy + (w, — w,)dz] ..(10)
and if external impulses are derived from a potential function j7 then

—de—é’de—é’de—é’V dz

Ox oy Oz

—dV =1 dc+ 1 dy+1 dz -(11)
Now using (10) and (11) is equation (9), we have

dw=—pdV+p(d¢,-dé,)
If p is constant, then integrating, we have

w=p(p,—¢)-pV+C .(12)

C be the constant of integration and may be omitted as an extra pressure, which being constant

throughout would not effect the motionand if 7 = () then we get

w=p(p, - ) (13)
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Ifinitially the fluid is at rest so that ¢ = 0 then W = p ¢, ; which clearly implies that by applying a
suitable impulse motion can be obtained whose velocity potential is same as the impulsive pressure.

CorlI:- Now we show that the impulsive pressure satisfies Laplace’s equation. The equation

of continuity, just before and just after the impulsive action are

du, Jv,  Ow, du, Ov, Ow,
+ + =0= + +
ox Jdy 0z dx Oy Oz

these equation in terms of velocity potential ¢, and ¢, are

N N it N it 2
ox’ oy’ oz’ ox’ oy’ oz’

or

o> (w) & (w) & (w
or 2 el el el Bl Bl Rl
ox \ p oy -\ p oz" \ p

If p is constant then

o;w Ow w
o "oy T
This shows that the impulsive pressure 3; satisfies the Laplace’s equation.
Self Learning Exercise
1. The Cauchy’s integrals are the integral of
(a) Euler’s dynamical equation of motion,
(b) Lagrange’s hydrodynamical equation,
(©) Equation of continuity
(d) Helmholtz equation.
2. In the absence of extraneous impulses the impulsive pressure at any point of a liquid satisfies
(a) The equation of continuity
(b) Laplace’s equation
(c) Newton’s second law of motion
(d) None of'these.

3. How is impulse related to momentum?
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Example 1: A mass of liquid surrounds a solid sphere of radius 4 and its outer surface, which is a
concentric spheres of radius p , is subject to a given constant pressure p, no other force being in action
on the liquid. The solid sphere suddenly shrinks into a concentric sphere. It is required to determine
the subsequent motion and the impulsive action on the sphere.

Solution : Atanytime ¢, let 7 bethe velocity at adistance ,’ fromthe centre, p the pressure and
p the density there.

The equation of continuity is

oy F'(t
riv = F(t) = a—vt= r,(z) ()

and the equation of motion is

é’v’+ , OV 1 dp

ot ar  por +(2)
Using (1) in (2), we get

F(t) oo

op

1
'’ or' p Or
On integrating with respect to -, we get

F'(1)

!’

r

2

1 p
+—v"===+C
5" P 1 ..(3)

Now let » and R be the internal and external radii of the fluid at any time ¢, y and 7 be the
velocities there, so that when

F'(¢t) 1
r=r>v=y,p=0 = _JWL_Vz:Cl --(4)
r 2
F@ 1 _, P
, , _ = ——+=-V"=C, ——
and ' =R,v=V,p=P R > 1 P ..(5)
From (4) and (5), we have
1 1 1 P
—F ()| ==+ (-1 =2
()(r Rj 5 ) 5 ..(6)
Fromeqn (1), we have
rv=RV =F(t)
) , , ) _dr V_dR
L€. r’dr=RdR = F(t) on taking V_E and _E'

Now, multiplying (6) by 2 F(¢)dt =2R*d R = 2r* d r and
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, F() F(t
putting v = " and V' =—>~, we have

R
—2F(t) F'(¢) (l - lj dt + 1 F* (1) [der - der} = 2r2 dr
r R 2 r R p
On integrating, we obtain
2 1 1| 2P ,
- F (1) [; - ;} =G+ 3, (7
2P
Initially when =g, y= 0, F(t)=0 = C1=—$a
Thus (7) becomes
F () (l _ l) 2P
r R 3p
2 4 1_1}_25 33
o vr(r x) =3, (8)

where p3 _ ;3 = p3 _ /3.

Equation (8) represent the required subsequent motion and now we find the impulsive pressure on
the sphere. Let » be the radius ofthe solid sphere and 3;; the impulsive pressure at a distance ;- , then

2
dw=—-pv'dr =—p%dr’
r

2
rvy

Onintegrating w=——+ C;

r

priv
R

But when =R >w=0 :>C3=_
Hence the impulsive pressure when ;. — ;- is given by

w= rzv(l—l
-7 r R

Also the whole impulse on the sphere

=47rr2v_v=47rr4vp(l — i)

r R
R—r
=4rriv
p( R )
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Example 2: A portion of homogenous fluid is confined between two concentric spheres of radii 4 and
a , and is attracted towards their centre by a force varying inversely as the square of the distance. The
inner spherical surface is suddenly annihilated and when the radii of the inner and outer surface ofthe fluid
are r and R the fluid impinges on a solid ball concentric with these surfaces, prove that the impulsive
pressure at any point of the ball for different values of g and ;- varies as

{(a2 —r - A+ R?) G - %ﬂ%

Solution : Let , be the velocity at a distance ,# from the centre of the sphere at any time ¢ and p
the pressure there. Then the equation of continuity is

" ov' _ F'(1)
Py = F(t) = PR Ne))

Taking y 12 38 the force towards the centre of the sphere, the equation of motion is

ov' ov' U 1 dp
ot or' r' p or'

or - +W =2 -5 (using (1))

On integrating

—th)+lv’2: ﬁ’—BWLC1

r 2 roop

-(2)

Now » and R be the internal and external radii of the fluid at any time ¢, and v,/ be the
velocities there, thus we have

F'(t 1
when =R, v =y, p=0 = —&+5V2=C1+% ..(3)
and
F'(t 1
when r’:();v’:v;p=0:> _&4'_‘}2=C11+ﬂ (4)
r 2 r
On subtracting (4) from (5), we get
1 1 1 1 1
—F' ()| —=—=|+=(V-V)=u|—--—
()[r R} S (*=77) u(r R) (5

But from equation (1), we have

rzv:RzV:F(t)

384



therefore r* dr = R* dR = F (t)dt ..(6)

On using (6) in (5), we get on multiplying by 2 F(¢) dt

2r) Poa(L- L) LR [2E0 - 2K0],  [260 200,

I 1 1 2dr  2dR

o _zF@pwgm(-—_)+5F%g[z _

r R r R?

}zlu[Zrdr—ZRdR]

On integrating

- F*(1) (1—%)=u(r2—R2)+ G,

r
Since r=q ; R=A4;v=0 = F(t)=0 then C, = — p (a’ - 4°)

I 1

Then - F7(2) [; - E} =u(r-R-a*+4°) (7

If 35 be the impulsive pressure at a distance ,’ , then

dw=—-pv'dr

But when ;7 = R, 3 = 0 then C; = —

PF()
R

— 1 1
Hence W =pF(t) [_, - _}
Hence the impulsive pressure at any point of the ball where ;7 — ;- is given by

W:pFOwl—%} (®)

r

On substituting the value of F (¢) from(7), we have




1 1

— 2 2 2 2

w = a —-r —-A+R).|———

o P \/ﬂ ( ) (r Rj

Hence which shows that the required pressure varies as
I 1 %

W a {(a2 —rP - A*+R?) (— - —ﬂ

r R

Example 3: A sphere of radius a is surrounded by infinite liquid of density o, the pressure at infinity
being 7 . The sphere is suddenly annihilated. Show that the pressure at a distance » from the centre

a
immediately falls to 77 (1 - ;) . Show further that if the liquid is brought to rest by impinging on a concen-

tric sphere of radius ‘/ , the impulsive pressure sustained by the surface ofthis sphere is

(77zp2/6)%

Solution : Let , be the velocity at a distance ,/ from the centre of the sphere at any time ¢ and p
the pressure there. Then the equation of continuity is

2 ov' _ F'(1)
Py =F(t) = el (1)

The equation of motion is

ov' oV 1 dp

—+ Vv — =
ot or' p or'
Onusing (1), it reduces to

F(), (lv'2)= 1 op

'’ or\2 p or'
On integrating
F'(¢
—~ §)+l r-_P, ¢
r P

When /= s p=7, =0 = C =
Jo)

F'(t 1 -
Hence — # + v = E ..(2)

When the sphere is suddenly annihilated, we have

t=0,r"=a>-v' =0 and p:o
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Then from equation (2), we have

PO _x
a p

arnr

F'(0)=- ==

o PO

So that immediately after annihilation (¢ = 0) the equation (2) becomes

a—7r,+0= P
pr p
arn

or —=T-p
r

Thus the pressure at the time of annihilation, when ;7 — -, is given by

a
p—ﬂ(l—;) ..(3)

which is the required first result.
Now if 3 be the impulsive pressure at distance ;- , then we have
dw=—-pv'dr'
r2
dV_V:‘Pverr' as r’v=r"?y
where ;- is theradius and y the velocity of the inner surface
2
. . _ r
Onintegrating w = pv—+G,
r
when ;' =0, Ww=0 = (=0

2
r

thus w=pv— ..(4)

r

which gives the impulsive pressure 3; ata distance ;. Since r = A then equation (4) reduces to

(2) reduces to

w = l va’ l 5
4 P T .(5)
Now to find the velocity y at the inner surface, we have »' = ; v' = v and p =0, then equation
F'(¢
r 2 P

387



|

|
—
[\

~

<I\)
+

\I\)
<

&|§~
[
+

| —
<I\)
Il
SR

..(6)

or

as F(t):rzv:F’(t):2rvﬂ+r2Q.ﬂ:bfvz+r2v—v
dt dr dt dr

On multiplying equation (6) by 2 »*d r and then integrating we get

— = 2—”r3 + G
3p
B 2ra’
when r:a;vz();:cz—_ 3p

or 4

the velocity y on the surface ofthe sphere of radius % is given by replacing - by % then

, 27 a-al8

vi=—.
3p  a’/8
, l4rm
Y=, (7

Using these value in (5), the impulsive pressure at a distance ;- is given by

%o
_ 14
W = % [3—;[) - (8)

r

On putting ' = % in (8) we obtain the impulsive pressure at the surface of the sphere of

radius %

1
) _ p(l4rn % a’
1e. w=—"7|——| -
41\ 3p al?

Trpa’ %
or V_VZE 6 )

which is the required result.
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14.7

Summary

In this unit, we studied the Cauchy’s integral and equations of motion under impulsive force. Now

we are capable of solving hydrodynamical problems based on impulsive force and pressure with the use of
given various condtions. We also learnt that the Cauchy’s integrals are the integrals of the Helmholtz

equations.

14.8 Answers to self learning exercise

1. (b) Helmhotz equation

2. (b) Laplace’s equation

3. Impulse = change in momentum

14.9 Exercise

1. Prove that if y;; be the impulsive pressure, ¢, and ¢, be the velocity potentials immediately
before and after an impulse acts, j the potential of the impulse,

W+ pv+p(¢,—¢,)= constant

2. Prove that in the absence of external impuleses the impulsive pressure at any point of a liquid
satisfies the Laplace’s equation.

3. Prove that the Cauchy’s integrals are the integrals of the Helmholtz equations.

4. Ifa bomb shell explodes at a great depth beneath the surface ofthe sea, prove that the impulsive

pressure at any point varies inversly as the distance from the centre ofthe shell.

miNININ

Lo
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UNIT - 15
Motion in Two Dimensions
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Summary
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15.0

Objective

In previous units, we studied the equation of continuity and equations of motion for the fluid
motions. Now in this unit, we will discuss two dimensional motion and study the complex potential,
Cauchy-Riemann equations, source, sink, Doublets and their images in two dimensional motion.

15.1

Introduction

When the fluid motion is such that it is same in all planes parallel to a fixed plane and also there is
no velocity parallel to the fixed line and normal to fixed plane then it is called two dimensional motion.
Generally the fixed plane is taken as xy -plane and the fixed line is taken as 7 -axis.

390



In two dimensional motion, the velocity components are only 3 and y with ,, = ( and also that
and y are the functions of x,y and ¢ only. Moreover, when we speak ofthe flow across a curve in this
plane, we means the flow across unit length of a cylinder on that curve with generators parallel to 7 -axis.
When we speak of points in that planes, we mean straight line parallel to 7 -axis through that point.

15.2 Lagrange’s stream function

Let 4 and y bethe components of velocity in two dimensional motion, then the differential
equation of the stream line is

&_& dx —udy =0 1
= or vdx-udy= (D)

and the equation of continuity is

du Ov
5 2,0 )
&x &y “es

But (2) is the condition that (1) is an exact differential equations. Thus vdx —u dy is acomplete

differential say Jw , so that

0 0
vdx —udy =0y :%dx +&—V;dy

0 _ oy
sothat u =—<Y and v = P
oy X
This function v is known as the stream function or the current function. In previous unit, we
studied that the stream function is constant along a stream line. The stream function exists in all types of
two-dimensional motion whether rotational or irrotational.

15.3 Irrotational motion in two-dimensions

We know that the velocity potential ¢ may exist only when the motion is irrotational. Thus if ¢
exists, we have

o Y,

“:_aand":_éy_y (1)

Also if v is stream function, then we have

oy Oy
é’_y and V = Ox ..(2)

From (1) and (2), we have

99 _oy 9 _ oy
ox Oy and dy Ox ..(3)
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which are called Cauchy Riemann equation in Cartesian coordinates.

Hence ¢ + iy isananalytic function of z = x +iy . Moreover ¢ and y are known as conjugate
functions. On multiplying and re - writing, (3) gives

o9 dy  O¢ Jy
-5t -=0 ..(4)
Ox Odx Oy Oy

showing that the famalies of curves given by ¢ = constant and y = constant intersect
orthogonally.

Differenting the equation given in (3) with respect to x and y respectively, we get

>’¢ Iy é’zq)__ >’y
x>  Ix 3y and oy’ Jy 0x
Feo ¢
which gives 1 + 55 =0 ..(5)

Again, deifferentiating the equation given in (3) withrespect to y and x respectively, we get

Fo Sy ;¢ Py

Oy Ox - oy’ and Ox Oy - ox?

ay
whichgive 57+ =0 .(6)

Equations (5) and (6) show that ¢ and v satisfy Lapalce’s equation when a two dimensional

irrotational motion is considered. Functions ¢ and y are said to be conjugate functions if they satisfy (4),
(5) and (6). In the light of the above discussions, the following points should be observed

(1) The stream function y exists whether the motion is irrotational or not.
) The velocity potential ¢ can exist only when the motion is irrotational.

3) When the motion is not irrotational, the velocity potential does not exist.

15.4 Complex Potential

In an irrotational motion if ¢ represents the velocity potential and v the stream function, then

expression w = ¢+iy is defined as complex potential of the fluid motion since ¢ and v both are
functions of x and y, the complex potential 1 canbe expressed as the funtion of

Le. w= f(z)=¢+iy where z=x+iy
Thus if w=¢+il//:f(x+iy):f(z)
= %+i ész’(xHy)
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o .oy ., :
— + i ——=7f"(x+i
and By 5y f( y)

which gives

ﬁ+i0"l// [@H-O"WJ

oy é’_yzl Ox ox

On equating real and imaginary parts, we have

ov_ 08 ov_ 04
ox é’yandé’y Ox

which are the same results we have obtained in the previous article. These are called Cauchy-

Riemann equations to be satisfy by an analytic function w = ¢ +iy . Such functions ¢ and y are called
conjugate funtions.

15.5 Magnitude of velocity

Let w=f (z) be the complex potential, then

w=¢+iy and z=x+iy (D)

o4 O op oy

Also we know that Ox = é’_y and Gy T ox ..(2)

From (1), we have

dw Jdz _d¢ .y Oz

4z ox ox loyad 5 =1 as z=x+iy
dw 04 .04 '
o Z_E_lﬁ_y (Onusing (2)) ..(3)
dw_ . L o o9

or Z—_U'FZV . U—_E; V:—&—y (4)

From (3) and (4), we see that the magnitude of velocity g at any point in a two dimensional

dw

dz

(- (] e

Therefore the magnitude of the velocity =

, Where

irrotational motion is given by

aw
dz

Lud g = Ju® +v* . The points where velocity is
z

zero are known as stagnation points.

393



15.6 Cauchy-Riemann equations in polar coordinates

Let ¢+iy = f(z)=f(re”) (D)

Differentating (1) with respect to » and @, we get

. _ ' i0 i0
o +15_f (re ).e -(2)
¢ . oy oo .
and %+l%:f(l"€g).l"l€9 (3)

From (2) and (3), we easily obtain
99 OV _ [ 90,0v
00 00 or or
On equating real and imaginary parts, we get

__ oy ow_ o9

00 o and 59 =7 5,

2 _lov 106 oy
o o 00 ™y 50" o ()
which are the Cauchy-Riemann equations in polar coordinates.

15.7 Sources and Sinks

Ifthe motion of a fluid consists of symmetrical radial flow in all directions proceeding from a point
then the point is called a simple source. Ifthe flow is such that the fluid is directed radially inwards to the
point from all directions in a symmetrical manner, then the point is a simple sink. The sources involve
continuous creation of fluid at the point and the sink involves continuous annihilation and the velocities in
the region of such points approach infinite values.

15.7.1 Strength of a source :

The strength of a source is defined in terms of the amount of liquid flowing out fromit. If 2m 7 is
the volume of the fluid flowing out per unit time then y, is called the strength ofthe source. Sink is a source

ofnegative strength (—m).

Let g, be the radial velocity at a distance » fromthe source, then amount ofliquid flowing out of

circle ofradius  is 2t m

Therefore 2rrq, =2mm

or q9, =

(1)

m
r

Now, we try to get the expressions for the velocity potential ¢ and the stream function y due to
a source. At any radial distance » from the source, the transverse velocity be zero and the entire velocity
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is radial which is given by

1 dy o
qr - — ; —0 = — E ( o Cauchy-Rlemann equatlon) .--(2)
From (1) and (2) we have
o __m _L1ov_m

é’r__7and_r o0  r
On integrating, we obtain

¢ =—logr and v = — m6 ..(3)
where the constant of integration will be merged in ¢ and v .

Thus curves of equi-velocity potential curves are » = constant i.e. concentric circles centred on
the source and stream line are @ = constant, i.e. straight lines radiating from the source.

15.8 Complex potential of sources

Let there be a source of strength 7; at origin. Then from the expressions for the velocity potential
and the stream function for a souce of strength 7; at the origin, we have

w=¢+iy =—mlogr—-im0
=—mlogre'’
or w=-mlogz (1)

which is the complex potential of the sources at the origin. If the source be at the point 4 whose

coordinates are (a, 8) so that @ = o +if3, then transferring the originto 4, we obtain
w=—logz' =-mlog(x'+iy’)

where (x', y') be the coordinates ofany point referred to 4. If p be the point (x,y) referred
to origin (), we have

xX'=x—-«a and y’:y—ﬁ

Hence w= —mlog[(x—a)ﬂ(y—ﬁ)]l

w=—mlog|(x+iy)—(a+ip)|

w=-mlog(z—a) .2
The relation between w and z for sources of strengths m,,m,,m; ..... situated at the points
21325323 oener 18
w=—m,log(z—z,)—m,log(z—z,)—m,log(z—z,)..... ..(3)
or w=—m, log(r,.€""" ) —m, log(r, €' ) — mylog(r, . ).....
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where 7,,7,,7; ..... are the distance ofa point p ofthe plane from the points z = a,,a, ,a, ... and

0,,0,,0,.... are the angles these distances make with a fixed direction.

Therefore

w=-—m,(logr,+i0,)—m,(logr, +i6,)—m,(logr, +i0,).....
or p+iy =—m, logr, —im, 0, — m, logr, —im,0, .....
On equating real and imaginary parts, we have

¢ =—m, logr, — m, logr, — m, logr, .....

and wy=-m6, -m0, -m0, — ...

15.9 Doublets

A combinations of a source of strength 5; and a sink of strength — ;; at asmall distance & s apart,
where in the limit 7; is taken infinitely large and 6 s infinitely small such that the product m & s remains

finite and equal to u, then it is called a doublet of strength 1 . The line ¢ s taken in the sense from sink to
source is called the axis ofthe doublet.

15.10 Complex potential for a doublet

P

N

2] os
B A

—m
Figure 15.1 o

Let 4 and B be the positions of source and sinks of strengths +7 and —m respectively at
distance o s apart. Let p be any point a distance » from 4 at which we shall calculate the complex
potential. 4 isthe perpendicular from 4 to pp . Then

BN = PB—- PN

or
=r+8r—r=06rand 6089=g. (D)

Now the velocity potential at p due to the doublet

¢ = —mlogr—(-m)log(r+6r)

r+or or
= mlog =mlog| 1+—
r r
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or
p=m<"
r
.0 0 .cos@
or b= m.5scos® _ u.cos Cfrom (1]

r r

where y=md s is the strength ofthe doublet when m — 0, 55 — 0.

¢ _ 1oy
wekoow 5 "= 50
J¢ _ ucosb
From (2), we have or 2
Using (4) in (3) we obtain
Jy _ ucosb
o0 r

On integrating, we get

= — usin@ + F(r)
r

Again since
1o __oy
r 06 or

we have

_ usinf [usm@ N F’(r)}

2 2

r r
or F'(r)=0
of F(r)= constant
Therefore W= uSinG

Hence the complex potential y at point p

w=¢+iy = poosf [ psin6 :ﬁ(cosé’—isiné’)
r r r
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Note 1: Equi-potential curves are given by ¢ = constant

. ucoso
1.€. = constant
cos@
or = C]
r
or rcosf = Cr’

or x=C(x*+y%)

which represent circles touching the y -axis at the origin.

Note 2 : Stream lines are given by ¥ = constant

. —usin@

Le. —— =constant = C,
r

or sinf=C,r

or rsind=C, r’

or yzCz(x2+y2)

which represent circle touching the x -axis at the origin.

Note 3 : Ifthe doublet makes an angle ¢ with x -axis, then we write @ — ¢ for @, so that

io

Ho_pet _ue

w= - -
rel(@—a) rel@ z

A

/\Y

P

B
(+m) Figure 15.2

X

(=m)

S

If the doublet be at point A(x,,y,) where z, = x, +i y, then complex potential at the

point is given by
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Ifthere are a number of doublets of strength 1, 1, ,.... at points z ,z,,.... and whose axes are

inclined at angles o |, ,.... withthe x -axis then the complex potential of these will be given by

w=te L HC L =Z—”“€
zZ—Z Z—2z, z—Z
15.11 Applications

(@) Let us take a source » at the point (a,O) and a sink (—m) at the point (—a,O) . The
complex potential

Y P (r,@)
r
Ul
é"")_ 0, (bm) 00
(~a0) O A4 (a,0)
Figure 15.3
w = —m log (z—a) + m log (z+a)

(z-a)

w=—m log
(z+a)
and velocity potential
¢ =—mlogr, + mlogr,
r
or ¢ =—mlog —+
r

where 7, and r, are the distances of point p from (a,O) and (—a,O) . Also, the stream function
w=-m0 +mb,
or y=—m(6,-0,)
where 0, and 6, are the angles as shown in figure.
Curves of equi-velocity potential ( ¢ = constant) and stream line (' = constant) are such that the
stream lines are co-axial circles passing through 4 and g . The flow is directed from source to sink. The

equi-velocity potential lines are also circles with centre along x -axis such that the points 4 and p are the
inverse points ofthese circles. The two families intersect orthogonally.
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Now to calculate the magnitude of the velocity ¢ , we have

_|dw|_‘_ m_, m |_| —2am |
q_|dz|_ z—a z+a|_‘(z—a)(z+a)‘
B 2am _2am
ths %1 g z+d 5
B 2am
or 9=

‘ﬂ:r (cosO+isinB) — a]” w:r (cos@+isinf) + a]”

2am

q =
or \/(rz +az)2 —4a*r* cos’ 0

2am
\/r4 —2d’*r*cos20+a’

Now to obtain an expression for v , we have

z—a
w=—m.log

z+a
or e m=222
z+a

or exp {_ (‘/”_”/’ﬂ _ r(cosO+isin@)—a

m r(cosO+isin0)+a

2 2 . 3
_ .. r-—a +i2arsin@
or e’m (cosK - zsmﬂ) = (

2 .
m m rcos@+a) +r’sin’ 0

Equating real and imaginary parts, we have

2 2
r'—a
E(ﬁ/m COSZZ - (2 )
m r +a +2arcosf

; sim gin ¥ _ —2arsinf
an m r*+a*+2arcosf

From these, we get

v —2arsind Zarsiné’j

tan —=————F— = WY = — mtanl(—
m (rz—az) r’—a’
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= = constant means stream lines are family of circles
x’+y*-2ay—-a*=0
(b)  Letus take source p atthe point (a, 0) and asink —p at (0, a).

PRACH)
(r.6)

(a,0)

Figure 15.4

The complex potential v at p

w=-mlog (z—a) + m log (z—ai)

Z—d
=—m log (z—ai) (1)

Therefore velocity potential

¢=—mlogr + mlogr, -.(2)
and the stream function
w=-m6, +m6,=-—m(0,-0,) ..(3)

where 7;, r, 6, and 6, are the distances 4P, BP and their inclinations with the x -axis.

Thenusing (1)
w=¢+iy =—mlog[(rcos@—a)+irsin@| + m log [rcos@+i (rsinf—a)
or p+iy =—m.log Re'” + mlog R e

where Rcosff=rcos@—a and  Rsinf = rsinf
..(4)

R cospB, =rcos@ and R ;sinf, =rsinf-a

or ¢+iw=—mlog§—im(ﬁ—ﬁl)

1
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Now equating real and imaginary parts using (4), we get

\/(r cosf — a)2 +(r siné?)2
\/(r cosé’)2 +(r siné’—a)2

¢ =—mlog

or ¢ =—mlog

) 2 %
r~—2arcosf@+a
r*—=2arsinf +a’

rcos@—a rcos@

and W=-m(B-p)=-m [tan1 (ﬂ) — tan”’ (—rsine—aﬂ

ar(sinf+ cos@)—az}

= —mtan’
v [r2+ar(sin9+cos9)

Also dz z—a z—ai (z—a) (z—ai)

_ V2 am
H(r cos@—a)+irsin0}‘ . Hr cosO+i(r sin@—a)}‘

\/E.a.m

q =
\/(rz —2arcos0+a2) .\/(r2 —2arsin0+a2)

which is magnitude of the velocity.

15.12 Images in two dimensions

Ifthere are a number of sources, sinks, doublets etc. in a liquid and if a surface § which is of
purely geometrical character is drawn in the liquid so that

(D) a number of'sources, sinks, doublets etc lie within the surface and others lie outside,
) there is no flux of liquid across this surface i.e. velocity normal to surface in zero.

then the system of sources, sinks, doublets etc. on one side of § is said to be the image of the
system of sources, sinks, doublets etc on the other side with respect to § . The method of images is
used to determine the complex potential due to source, sinks and doblets in the presence of rigid
boundaries.
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15.13 Image of a source with respect to a straight line

mlr gm/ r
P
r r
(+m) 0 0 (+m)
B (_a,O) O A (a 50)
Figure 15.5

Suppose that image of the source ;; at A4 (a,O) on yx -axis is required with respect to Oy . Take
an equal source at g suchthat 04 = OB . Let p beanypoint on Oy suchthat 4p = pp = ;. Thenthe

m m
velocityat p duetosourcea 4 is - along 4p andvelocityat p duetosourceat B is - along pp.

m
The normal components of both of these radial velocitites at the point p willbe - cos6  but they

will be is opposite directions. Therefore they will nullify each other. Hence at p, there will be no velocity
across the straight line Oy .

Therefore the image of a simple source with respect to a straight line in two dimension is an equal
source at equi-distant from the straight line opposite to the source.

Alternate method :

Consider two equal sources of strength ; at points 4 (a, 0) and B (—a, 0), then complex
potential at

0 P (x,y)

"
(+m) () 0
B(-a,0) 0 A (a.0)

Figure 15.6
P is given by

w=— mlog(z—a) — mlog(z+a)
=—mlog (z—a) (z+a)
= —mlog (e .r,e”)
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w=—mlogrr,—im(0,+0,)=¢+iy
on equating real parts, we have

$ = mlogr, 1,

=—m.log [\/(x—a)z +y° .\/(x+a)2 +y2}

¢ =2 tog [(x=a) +3] [(rea) +)7]

Hence the velocity components in x -direction will be

@—m[ (x—a) N (x+a) ]
(

o”x_ x—a)2+y2 ()cha)ery2

If p takesa position on y -axisat Q so that velocity components at Q in y -direction will be
obtained by putting x = 0 inabove, and we will have

_99_,
ox

Hence there is no flow perpendicular to the line Oy and thus the line Oy is a stream line due to
equal sources at 4 and B . The same is true for a sink.

15.14Image of a doublet with respect to a straight line

B’ (+m) Y A’ (+m)
a o
! & — X
X' < & 2 |€<—> 1, <—> ( 0)
(-4, 0) 0 e
B (—m) 4 (—m)
Figure 15.7

Take the y -axis along the straight line. Let the given doublet 44’ be placed such that its axis is
inclimed at angle & withthe x -axis. Clearly the image of constitutent source 4’ andsink 4 ofthe given
doublet will be equal source p’ and sink B repectively. It is obvious that the location of g’ willbe such
that it is at such a distance from the line which is equal to the distance of 4’ . Similarly 4 and g will be
situated with respect to the given line. From geometry it is clear that 44’ and pp’ are antiparallel and

both are inclined at an angle @ with x -axis but in opposite sense. Hence the image of a doublet is a equal
doublet but the axes are antiparallel.
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15.15Image of a source with respect to a circle :

Figure 15.8

Let us determine the image of a source of strength ; atapoint 4 withrespect to the circle with
Oas itscentre. Let O4 = f and B be the inverse point of 4 with respect to the circle. If a be the radius

ofthe circle, then 04 . OB = q* sothat OB = az/f.

Let there be a source of strength 7; at g.If 1y be the complex potential due to sourcesat 4 and
B, then we get

W= — mlog (Z—f) - mlog (Z_az/f)

w=-m {log {(rcos@— f)+irsin6} + log {[rcos@—a—;}tirsinHH

writing ¢ + i w = w and equating real part we get

a 2ra

¢ = —%[log (7 + f7 = 2 f rcos0) + log [r2+f—42— G 2cos@ﬂ

Differentiating ¢ withrespect to -, we get

2 2 2
or 2|r+f"=2frcosf r2+%2—2r[i{)0059

2 [r—azcoseJ
o¢  m| 2(r—fcosd) \ f

Hence normal velocity at any point O onthe circle

__[9¢
- é’r r=a
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a
i feosd ?(f—a cos6)
- az+f2—2facos6?Jr a’
[fz)(az+f2—2facos0)
B 2
a—fcos@+f/a—fcos9
- a’+ f*=2 facosb
_m
a

Now if we place a sources of strength (—m) (i.e. asink) at (), the normal velocity due to it at O

willbe — % and hence the normal velocity of the system will be reduced to zero.

Hence the image system for a source outside a circle consists of an equal source at the inverse
point and an equal sink at the centre of the circle.

15.16 Image of a doublet with respect to a circle

Figure 15.9

Let us determine the image ofa doublet 44’ outside the circle with its axis inclimed at angle

with Ox such that, there is a source +m at 4 and a sink (—m) at 4’ and 44’ small. Let B and B’ be
the inverse points of 4 and 4’ respectively with respect to circle whose centre is ().

sothat OA.OB = 04' .OB' = a’ (1)
Where 4 is the radius of'the circle.

Now the image of source ; at 4’ consists ofasource »,; at ' andasink (—m) at (. Similarly,
the image of sink (—m) at 4 consists ofasink at g and asource , at (0. Compounding these, we see

that source 5; and sink (—m) at O nullify each other then the image of the given doublet 4 4’ is another
doublet gg’.
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Let the strength ofthe given doublet 44’ be u

then M= Lim m. AL -(2)
. . 0 04 OB’ 3
rom (1), we have oA~ OB ..(3)

which show that trinagle 044’ and Op' B are similar.

From these similar triangles,

BB OB OB .04 &
AA'" 04 04.04'" 0O4.04 ~(4)

Now if strength of doublets g'g is u’ then
p' = Lim (m . BB')

2

. a ’ .
= ox on A Onusing (4
pa’
Y O4=04'=f

Also since Z OBB' = a, gp’ isantiparallel to 44’ . Thus the image of a doublet of strength

2

f2

ata distance /(> a) fromthe centre ofa circle ofradius a is a doublet of strength at the inverse point

with its axis antiparallel to that of 4 4.

15.17 Significance of Images

Whenever a two dimensional irrotational motion is confined to given rigid boundaries, we can
consider this motion to have been caused by the presence of sources and sinks. By imagining a suitable set
of sources and sinks, on either sides of the rigid boundary, called the image system, we can find such
stream lines as will give the given boundaries as the stream lines, because velocity normal to the rigid
boundary as well as to the stream lines, is zero. Thus a motion constrained by the boundaries is no longer
so, with the advantage that we can predict the nature of the velocity and pressure at every point of the fluid.

Self Learning :

1. The curves of constant velocity potential cut the stream line .............. .

2. The points where velocity is ............ are called as stagnation point.

3. When the motion is not irrotational, the velocity potential .............. exists.

4. Write the complex potential when a source of strength 5, and a sink of strength (—m) ata

point (a, 0) and (0, a) respectively.
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(-a)

5. What arrangement of sources and sinks will give rise to the function w = m log

z
6. Write the complex potential due to a doublet which makes an angle ¢ with x -axis.
7. Find the lines of flow in the two dimensional fluid motion given by

2int

p+iy =— %n (x+iy)’ e
Example 1: Show that the velocity potential.

2

2
1 x+a) +
¢:—10g—( )2 yz
2 (x—a) +y

gives a possible motion. Determine the stream lines and show also that the curves of equal speed
(g = constant) are ovals of Cassinni given by r ' = constant

Solution : Given that

¢ = % log [(x+a)2 +y2]l —~ % log [(x—a)2 +y2]l

u=—@:— (x+a) N (x—a)
ox (x+a)2 +y° (x—a)2 +y° (1)
__99 __ Y y
and V7 oy (x+a)2 +y° ’ (x—a)2 +y° -(2)
From (1) @ = - Y —();+a)2 >+ Y _()Z_a)z 5 ..(3)
ox [(x+a) +y] [(x—a) +y ]I
From (2) ov = — (x+a)2 v + (x—a)z +y22 ..(4)

dy [(x+a)2+y2]l2 [(x—a)2+y2]l
Adding (3) and (4) we see that the equation of continuity

Ju  Ov
o + ﬁ_y = 0 js satisfied. Hence the given motion is possible.

To find the stream line, we have from Cauchy-Riemann eqns

9 _oy 09 __ v
ox Oy and oy Ox
Now
Jdy _ (x+a)  (x-a)
Ay (x+a)+y* (x—a)+y
408
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On integrating w.r.t.y , we get

_ -1 . -1 y
v = tan (ra) tan (r—a) + f(x) ..(5)
Therefore
&l// _ y Yy '
ox (x+a)2 +y° ’ (x—a)2 +y’ + /) +©

Thusby (2)and (6) we get  f'(x)=0

or /(x) = constant

Hence omitting the additive constant in v , we get (5) as

) = tan™ Y _ tan™! Y
v (x. y) = tan (xta) " (x-a)
_ —2ay
=tan' — %
an (x2+y2_a2)

Hence the stream line are given by ¥ = constant

—2ay

2 ) = constant=c¢

tan” | ————
Therefore [xz + ) —a

1
or yzz(x2+y2—a2)
or Xayt—cy=a

which are circles. Now if ¢ = (), the stream line is the circle passing through (a, 0) and (-a, 0)

and if ¢ isinfinite then stream lineis y = 0.

Now w=¢+iy

_l 2 2 _l RY: 2 | Yy TP Yy
w-zlog[(x+a) +y]l 2log[(x a) +y]l+ztan (x+a) itan (x—a)

= log [(x+a)+iy] — log [(x —a)+iy]
w=log (z+a) — log (z—a) where z = x + iy

2a 2a

i

z+a| . [z—d] rr
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where  and , are the distances of the point (x,y) from (a,0) and (—a,0). The curves of
equal speed are given by

a
¢q = constant or —, = constant

= rr' = constant

These curves are called Cassinni’s ovals.

Example 2: What arrangement of sources and sinks will give rise to the function

w=logl z—— |9
z

Draw arough sketch ofa stream line. Prove that two of the stream lines sub divide into the circle
7 = g and the axisof y.

2 2 2
a z"—a
Solution : Here W=log [Z - ?J = log [ J

z

=log (z—a)+log (z+a)—logz

which shows that there are two sinks of unit strength at the point z = g and z = — and a source
ofunit strength at origin. Further

w=¢+iy =log(x—a+iy)+log(x+a+iy)—log(x+iy)

w:¢+it//:[%log[(x—a)2+y2]+itan b4 }

(r-a)

[ boiray it 2o )i ()

Equating imaginary parts on both sides, we have

— tan-! - Yo )/)
v = tan (x_a)+tan (x+a) tan (x

Yy n Yy
— ot X—a  xta - )/
1 Y _ Y X
xX—a x+a
- Xy -1
= tan’ — tan (J/)
x2_y2 aZ X
! y(x2+y2+a2)
x(x2+y2—a2)
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The stream line are given by y = constant

Y (xz +y2 +a2) = constant

X ()c2 +y° - az)
Ifthe constant tends to infinity, the stream lines are given by
X (x2 +y° —a2)= 0

Le. x=0and x> +)’ =4” ie. r=q

Hence the rough sketch of the stream lines is as shown in the following figure. In this figure there is

a source of unit strength at origin () and there are two sinks each of unit strength at A (a ,0) and B (—a ,O) .

Figure 15.10
Example3: Anarea 4 is bounded by that part of the x -axis for which x > 4 and by that branch of

x> —y* = a” which s in the postive quadrant. There is a two dimensional unit source at (a,O) which

sends out liquid uniformaly in all directions. Show by means of the transformation w = log(z* —a*) that in

steady motion the stream lines of the liquid within the area 4 are portions of rectangular hyperbola. Find

the stream lines corresponding to y =0 ; 77 , % If p, and p, are the distances ofa point p within

2 OP

the fluid from the points (+ @,0) show that the velocity of the fluid at p is measured by ﬁ , 0
172

being the origin.

Solution : Given w = log(z* - a’)

or w= log[(xﬂ'y)2 —az]l
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or ¢+il//=logﬂ;(x2—y2—a2)+2ixy;ﬂ

1 2xy
2 2

1
ot =— log[(x2 —y —az)2 +4x2y2]+ itan 5
X =y —a

2

Equating the imaginary parts, we have

_ 2xy
L e N (1)
The stream lines are givenby = constant = tan™' C
2xy
=C
PR (2)

When ¢ = (, stream line (2) reduce to xy =0 i.e. x = and y =0.Againif C — oo, €quation

(2)reduces x* — y* —a® =0 orx* —y* =a?.

Hence the liquid flows in the area 4 boundedby x =0, y =0 and x* — y* = ¢’ inthe positive
quadrant.

Now w=log(z—a)+log(z+a)

which shows that there is a source of unit strength at (a,0) and equalsource at (—a,0) . Here the

source at (—a,0) is the image of'the source at (a,0) w.r. to y -axis.

2l 2.0P

z=dz+al  p, . p,

From (1), the stream line corresponding to y =0 is

2x
2 zy 7=0
x’+y’—a

or x=0 and y=0

The stream lines corresponding to v = % is

2xy
—————— =tan%/, =1
X’ +y'-a’ A
or x’+y*—a® =2xy

or ¥’ +y?-2xy-a* =0
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which are parallel lines x — y = + a

Stream line corresponding to v = % is

2xy
————=tan U, =0
x*+yi-a’ A

or x’+y*-a’ =0

these required stream lines are circles with centre at (0, 0) and radius ¢ .

T T
Example 4: Between the fixed boundaries 6 = s and 0 = e there is a two-dimensional liquid

motion due to a source of strength »; at the point (r = ¢, 6 = ) and a sink at the origin, absorbing water

at the same rate as the source produces it. Find the stream function and show that one ofthe stream lines
is a part of the curve

y*sin 3a = ¢’ sin36.
Solution : Let us transform the 7 -plane to £ -plane by the transformation
=7
where z =re'’ and £ = Re'? sothat Re' = ;¢
Le. R=;% and ¢ =30
Therefore the boundaries 6 = % in z -plane transformto ¢ = £ % in £ -plane. The point

(¢, &) transforms to (03, 3a) and the point (0, 0) remains there itself.

n
@ Ay g7 (i1)
° (om) (¢, 7 =3a)
(c.@)
o
> X
(=m)
g T
6
Z-plane ¢=—T70 5

Figure 15.11
¢ - plane

The image system with regards to imaginary axis¢ = * % in £ -plane consists of

(i) Asource of strength (+m) at (03 ,30£) and its image an equal source (+m) at (03 T — 3a)

413



(i) A sink of strength (—m) at (0, 0) and its image an equal sink (—m) at (0, 0).

And hence, the complex potential in (£ -plane) will be given by
w=—mlog ({—c'e”) + mlog ({—0) — mlog (é—c3ei(”73a)) + mlog (£ -0)

=—mlog ({—c’¢™) + mlog & — mlog ({—c’e™**) + mlog &
On putting ¢ = z° we have

w = —mlog(z’ —c’e™) (z* +cPe™*) + 2mlog 2’

= — mlog [z°—¢® +2°¢* (cos3a — isin3a — cos3a — isin3a)| + 6mlog:z

= — mlog (r’e”’ —c® —2ic*re™ sin3a) + 6mlogre” as z = re'’

w = — mlog [(r6 cos66 + 2¢’r’ sin3a sin39—c6)

+i(r’sin60 — 2% sin3a cos30)]| + 6mlog(rcos@+irsinf)

On equating imaginary parts to obatain stream line, we have

4| 7%sin60 - 2’ sin3a cos36
v = — mtan < TR - - |+ 6mo
r’cos68 + 2c’r sin3asin30—c
) 1 o
onusing formula log (x+iy) = 5 log (x2 +y2) + itan 1%

Now putting y = 0; the stream line is given by

r*sin60 — 2% sin3a cos36

6

tan60 = TR - 3
r’cos60 + 2c¢’r’sin3asin3f—c

orsin66 (r6 cos660 +2c°r sin3asin39—cé) = cos66 (r6 sin60 — 2¢°r sin3a c0s39)

or 2r°c’sin3a [sin30sin60 + cos30cos60] — ¢*sin60 =0
or 273 sin3a cos30—c® . 2sin360cos360=0
or cos36 (r3 sin3a —¢’ sin30)=0

when cos360 =0 = 0=z % which are the given boundaries.
-, other stream line for y = 0 is part of the curve

rPsin3a =c¢’sin36.
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ExampleS: Inthe case of the motion of liquid in a part of a plane bounded by a straight line due to a
source in the plane, prove that if m p is the mass of fluid of density p generated at the source per unit of

time, the pressure on the length 2/ ofthe boundary immediatly opposite to the source is less than that on
an equal length at a great distance by

1 m’p { 1, 1 / }
— —tan  — —
2 70 le c I'+c’
where ¢ is the distance of the source from the boundary.

S Y
Solution : A

T L 0
— P (0+iy)

Figure 15.12

m
Let the bounding line ()y betaken as y -axisand 5 _ be the source at 4 (c, 0). The equivalent
2r q

image system consists of

m m
asource 5 — at A (¢, 0) and its image §' a source 5. at (—¢, 0). Hence the complex

potential is given by
m m
w=-—1log(z—c)——log(z+c
2r g(=-¢) 2 g(z+¢)
m 2 2
w=-—1Io -c
5 log (7 -¢)
dw| m | 2z
Hence the velocity 4 = Jz = DY PR

IfP (z =0+ iy) is a point on y -axis, then the speed at this point is given by

m

2iy
q_27r

2 2

m Y

C2r Y +c’
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Now for pressure, we use Bernoulli’s theorem. Let g = 0 at infinite distance from y -axis and let

p, be the pressure there, then

P9
P 2

2

L PP _q _1my
P2 27 (ad)

2

Therefore the required difference in pressure

I}
B B lmp
fine o R o
mZ y2
=—2PI—zdy

n o(yz-l-cz)

Onputting y = ctand = dy = csec’ 0 d 6 and keeping the limits of integration for y as such,
we get

c.sec’0do

)
_msz-cztanzé’
- 2 4 4

Ty Cosec

mp ., mp
=7 lsm 0d0 =+ !(I—COSZH)dH

1m2p[1 1. !
- zp —6’——sm6’cos@}
2 7 |c c

- |c c y+c c c I'+c

2 ! 2
1 1
:%mzp l‘[anfll— 4 } :Em p{—tanli— ! }

which is required result.

Example 6 : Inthe case ofthe two-dimensional fluid motion produce by a source of strength ; placed
atapoint § outside a rigid circular disc of radius a whose centre is (). Show that the velocity of slip of the
fluid in contact with the disc is greatest at the points where the line joining § to the ends diameter at right
angles to S cut the circle and prove that its magnitude at these points is

2m . OS
(08* -a?)
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Solution :

Figure 15.13

Let g’ be the inverse point of § with regard to the circular disc, so that if 0§ = - and OS’ = a%

where g is in the inverse point of § and OS . OS’ = a* where a be the radius of the circle. The equiva-

lent image system consists of
(1 asource of i at §

(i) a source of strength ,; at g, and
(ii1) a sink of strength (—m) at 0.

The complex potential  at any point is

w=—mlog (z—c) — m log (z—a%) + m logz

dw —-m —-m m
= +

or dz (z—c¢) (z—a%) z

or qz‘dz‘z (z—c)+(z_a%)+;
or q=’"‘ z_a)lzva) ‘ (1)

(z—c) z (z—a%)

Now to find the velocity at any point on the boundary of'the disc, we put z = g ¢’

(a ei‘g —a) (a ei‘g +a)

2
. . a .
(a e'’ —c) [a e’ —j ae’

C

qg=m

or q:mc‘(a—céig) (ceig—a)‘



3 2mcsin@
1 a’+c*—2accosb +(2)

or

For maximum/minimum value of g

dq cosf(a’ +¢c* —2accosf)—sin(2a csin)
— =2mc 5 =0
do (a2+c2—2accos9)
or (a2+cz)cos9—2ac:O
a’ —c*
cosf = = sinf = ..(3
of a’+c* a’+c* )

As 9 = () gives minimum zero velocity, value of @ given by (3) corresponds to the maximum value
of ¢ . Onusing (2) in (1), we obtain

a’—c*
2me .| —H5——
a +c

qmax = 2 2 2ac
a’+c -2ac| ———
a +c
B 2mec
ct—d?
_2m.OS
qmax OSz_az

The boundary being stream line, the velocity on the boundary is the velocity ofthe slip.

Example 7: Asource § andasink 77 ofequal strength »; are situated within the space bounded by
a circle whose centreis . If § and 7 are at equal distances from () an opposite side of it and on the
same diameter 404’ . Show that the velocity of the liquid at any point p is

0S* + 04* PA . PA’
oS PS.PS.PT.PT

2m .

where ¢’ and 7 are the inverse points of § and 7 with respect to the circle.

Solution : a2’ i a2 ‘P (x+1iy)
b b
«>he> _<—>‘b<—>
(=m) T" A\ T 0 S)4 5 (+m)

Figure 15.14
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Let 404’ be the diameter ofthe circle of radius O4 = OA’ = a withcentre . Let grand 77

be the inverse points of § and 7, the distances are further been shown in the figure. At § and 7 be the
source and sinks of equal strength. Image system will consists

6) Source (+m) at § (ii) Source (+m) at g’
(i) ~ Sink (—m) at T (iv)  Sink (—m) at 7
then the complex potential will be

w=—mlog (z—b) — mlog (Z_a%) + mlog(z+b) + mlog (Z+a%)

where 0§ =b =0T, 0S' = OT" =a% and 04=04"'=a-
On differentiating, we obtain

dw —-m m m m
— = - +

dz  (z—Db) (Z_a%) (z+b)+(2+a%)

The velocity at any point p,

=|dw|:m - B
a=[2 (z—b)+(z—“%) (z+D) (z+a4)‘
—2m (a2+b2)‘ (z-a)(z+a) ‘
b (z—b)(Z+b)(Z_a%)(Z+a%)‘
—2m (b*+a’) |Z_a||z+za| 2
b |z—b|.|Z+b|-Z_a/b"Z+a/b‘
0S? + OA> PA . PA'
q=2m.

(0N PS.PS .PT.PT

which is the required result.

Example 8 : In the parts of an infinite plane bounded by a circular quadrant 4p and the productions
oftheradii OA, OB there is two-dimensional motion due to the production of liquid at 4, and its obsorption

at B, atthe uniformrate p; . Find the velocity potential of the motion and show that the fluid which issuses
from 4 inthe direction making an angle 1 with (4 follows the path whose polar equation is

P2
r = asin’ 26 [cotu + \/cot2 1 + cosec® 20|
the positive sign being taken for all the square roots.
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m
Solution : The equivalent image system of source g at 4 with respect to circular boundary

m m
consists of a source 55 at 4,asource 5 - at 4 because 4 isthe inverse point of

m
itselfand a sink — 27 0.

m m
2 2rw

_mm B isis
n 2x igure 15.

m
As per given the image system of Eys at 4 withrespect to the lines 04 and OB is

m m
@) Sources 5~ + LAt 4
m m
(i) Sources 5, * 5 at 4 (image ofthe source 4).
2 2nm
m

(iii) Sink ~ 5" at 0.
m
Similarly considering the image system of ~ 25 B with respect to circular boundary and

OA, OB, we get.

_ _ m m
)] Smks_ﬁ_ﬁatg

. . m m
(i) Slnks_%_%ath

e m
(1) Source g Ao
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The complex potential given source and sinks at any point p is given by
w=— ﬂlog(z—a) ~ 2 og (z+a) + ™ log (z—ai) + U log(z+ai)
T T T T

where the source and sink at centre of the circular boundary cancel each other.
w:¢+iw:—ﬂlog(zz—a2)+ﬂlog (z* +a*) (1)
T T
On equating real parts to both sides, we have

m m .
¢=- —log‘z2 —az‘ + — log ‘zz —zzaz‘
n n

m m : :
= — ;log[|z—a|.|z+a|]] + = log [|z—za|.|z+za|]

m, BP . B'P

0 —
T gAP.A’P

-.(2)
Putting , — ¢ in(1) then equating imaginary parts, we get

m. r>sin20 m._ r*sin20
Y =— —tan > oy +— tan > >
T (r cos260—a ) P (r cos26+a )

2.2
_ M g 24720 .0

T r —a

The required stream line that leaves 4 atan inclination u is given by

m
v=-—H
T
m . om, 2a’r*sin20
Therefore s H== . tan (r4 —a4)
or r* —2a’r*sin26 cotyu—a* =0

or r :%[ZazsinZG cotu+\/4a4sin229 c0t2u+4a4]l

where (-) sign has been omitted because ;2 is non-negative quantity, Thus, we have

b
r=a [sin26’ {cot/,t + \/cot2 1 + cosec’ 26’” ’
which is required result.

421



15.18 Summary

In this unit, we studied the complex potential of sources, sinks and doublets in two-dimensional
motion. Now, we are also capable to obtain the complex potential of source, sinks, and doublet with the
use of images with respect to straight line and circle.

15.19 Answers to self learning exercise

(D) Orthogonally
2) Zero
3) does not

4  w=-mlog(z—a)+ mlog(z—ai)

5) Sources of strength s, at origin and equal sinks at (1, 0) and (-1, 0).

iox

ue
z

© w=

(7) ;2 sin(0+nt) = constant.

15.20 Exercise
1. In two dimensional irrotational motion, show that if the stream lines are confocal ellipses
2 2
X
+ 2 =1

(@®+2) (b7+4)

then v = 4 log (\/ a*+ 2 + b+ ) + B and the velocity at any point is inversly proportional

to the square root of the rectangle under the focal readii of the point.
2. The sources, each of strength ; are placed at the points (—a, 0), (a, 0) and a sink of strength
2m at the origin. Show that the stream lines are the curves ()c2 +y° )2 =a’ ()c2 —y +1 xy)

2
2ma

where | is a variable parameter. Show also that the fluid speed at any point is where

1 hh

r,r,,r, arethe distances of the points from the sources and the sink.

3. Let there be a source of strength s at (a, 0) and asink (—m) at (—a, 0).Find ¢, y, ® and
velocityq . Ans. {Seearticle 15.11}

4. Ifthere are sources at (a, 0), (—a, 0) andsinksat (0, a), (0, — a) all of equal strength. Show
that the circle through these four points is a stream line.

5. Find the stream function of two-dimensional motion due to two equal sources and an equal sink
midway between them. In a region bounded by a quadrantal arc and its radii, deduce the motion
due to a source and an equal sink situated at the ends of the bounding radii. Show that the stream
line leaving either end at angle ¢ withradius is

r* sin(a +0) = a’ sin(a — 6)
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Use the method of images to prove that if there be a source 7; ata point z, ina fluid bounded by

the lines 9 = 0 and 6 = % , the solution is

¢+iy = — mlog ﬂi(23 _Zg) (23 _ZO)]

where z, =x,+iy, and z, = x, —iy,.

T T
Between the fixed boundaries 6 = 71 and 0= — Ve there is a two-dimensional liquid motion

due to a source of strength s at the point (r = a, 6 = 0) and an equal sink at the point

(r =b, 0= O) . Show that the stream function is

r*(a* —b4)sin49

r—rt(a’ +b4) cosdO+a'b*

— m tan™'

Show also that the velocity at (r, ) is

4 m (a4 —l)“)r3
(r8—2a4 r cos46’+ag)y2 (r8 -2b*rt cos46’+bg)y2

In the two dimensional motion of an infinite liquid there is a rigid boundary consisting of  that part
ofthe circle x* + y* = ¢* which lies in the first and fourth quadrants and the part of y -axis which

lie outside the circle. 4 simple source of strength ; is placed at the point (', 0) where / >a.

Prove that the speed of the fluid at the point (a cos6,a sin@) ofthe semi-circular boundary is

4amf*sin20/(a’+ f*-2a’ f? cos26).

miNININ
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