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PREFACE

The Present book entitled ‘‘Differential Geometry and Tensors-1’’ has been

designed so as to cover the unit-wise syllabus of Mathematics-Fourth paper for

M.A./M.Sc. (Previous) students of Vardhaman Mahaveer Open University, Kota. It

can also be used for competitive examinations. The basic principles and theory

have been explained in a simple, concise and lucid manner. Adequate number of

illustrative examples and exercises have also been included to enable the students

to grasp the subject easily. The units have been written by various experts in the

field. The unit writers have consulted various standard books on the subject and

they are thankful to the authors of these reference books.
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UNIT 1 : Space Curves, Tangent, Contact of Curve and
Surface, Osculating Plane

Structure of the Unit

1.0 Objectives

1.1 Introduction

1.2 Space curves

1.2.1 Vector representation of a space curve

1.2.2 Unit tangent vector of a curve

1.2.3 The equation of tangent line to a curve at a given point

1.2.4 Equation of tangent line when the equation of the curve is given as the intersection of

two surfaces.

1.2.5 Direction cosines of the tangent line

1.2.6 Examples

1.2.7 Self-learning exercise-1

1.3 Contact of curve and surface

1.3.1 Definition

1.3.2 To find the condition that a curve and a surface have a contact of nth order

1.3.3 Inflexional tangent

1.3.4 Examples

1.3.5 Self-learning exercise-2

1.4 Osculating plane

1.4.1 To find the equation of the osculating plane

1.4.2 Equation of the osculating plane in terms of general parameter t

1.4.3 Equation of osculating plane in cartesian coordinates

1.4.4 Examples

1.4.5 Self-learning exercise-3

1.5 Answers to self-learning exercises

1.6 Exercises
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1.0 Objectives

This unit provides a general overview of :

•  Differential geometry

•  Space curves

•  Tangent

•  Contact of curve and surface

•  Osculating plane.

1.1 Introduction

Differential geometry is that part of geometry which is treated with the help of differential calcu-

lus. There are two branches of differential geometry :

Local differential geometry : In which we study the properties of curves and surfaces in the

neighbourhood of a point.

Global differential geometry : In which we study the properties of curves and surfaces as a

whole.

1.2 Space curves

A curve in space is defined as the locus of a point whose cartesian coordinates are the functions

of a single variable parameter u, say.

We can represent a space curve in the following two ways :

As intersection of two surfaces :

Let f1 (x, y, z) = 0, f2 (x, y, z) = 0 be two surfaces then these equations together represent the

curve of intersection of the above surfaces. If this curve lies in a plane then it is called a plane curve,

otherwise it is called to be skew, twisted or tortous.

For example, if f1 (x, y, z) = 0, represents a sphere and f2 (x, y, z) = 0 represents a plane then

these two equations together represent a circle.

Parametric representation :

If the coordinates of a point on a space curve be represented by the equations of the following

form

x = f1 (t),    y = f2 (t),   z = f3 (t) .....(1.2.1)

where f1, f2, f3 are real valued functions of a single real variable t ranging over a set of values

a  t  b.

The equation in (1.2.1) are called parametric equation of the space curve.
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1.2.1 Vector representation of a space curve :

If r  be the position vector of a current point A on the space curve whose cartesian coordianates

be x, y, z then we know that

r ˆˆ ˆxi yj zk  

or r 1 2 3
ˆˆ ˆ( ) ( ) ( )f t i f t j f t k  

or r = f (t)

or r = (f1 (t),  f2 (t),  f3 (t)) .....(1.2.2)

where f is a vector valued function of a single variable t. Thus space curve may be defined as :

A space curve is the locus of a point whose position vector r  with respect to  a fixed origin

may be expressed as a function of single parameter.

1.2.2 Unit tangent vector of a curve :

Consider two neighbouring points A (x, y, z) and B (x + x, y + y z + z) on a curve C whose

position vectors are r and r + r, respectively. We have

Fig. 1.1

AB


OB OA r r r r       
      .

Let s be length of arc AB measured along the curve and arc PA = s is measured from any
convenient point P on the curve.

Unit vector along chord AB
Chord

AB r
ABAB


 

 



Arc
Chord

r AB
s AB


 




.....(1.2.3)

But as B tends to A, then the chord AB tends to be tangent at P.

Also we know that
Arclim 1

ChordB A

AB
AB





4

Hence, unit vector along tangent at A Arclim 1
ChordB A

r AB d r
s AB ds


   



 

d r r
ds

 


 .....(1.2.4)

Unit tangent vector at A is denoted by t̂  and is taken in the direction of s increasing

If   ˆˆ ˆ, , . .r x y z i e r xi yi zk   
 

then ˆ , ,dr dx dy dzt
ds ds ds ds

    
 



i.e. ˆˆ ˆˆ dx dy dzt i j k
ds ds ds

   .....(1.2.5)

Since t̂  is unit tangent vector, ˆ 1.t 


2 2 2

1 dx dy dz
ds ds ds

            
     

or
2 2 2

1 dx dt dy dt dz dt
dt ds dt ds dt ds

               
     

or
2 2 2 2ds dx dy dz

dt dt dt dt
                
       

or 2 2 2 2 ,s x y z     

where , .ds dxs x etc
dt dt

   .....(1.2.6)

and t is any parameter.

1.2.3 The equation of tangent line to a curve at a given point :

The tangent line to a curve at any point A is defined as the limiting position of a straight line

through the point A and a neighbouring point B on the curve as B tends to A along the curve.

O
A

R

B
P

t

r

Fig. 1.2
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Let  r r s
 

 be the parametric equation of a curve and A be any point on it whose position

vector is r  and a unit tangent vector at A be denoted by ˆ .d rt r
ds

 




Let P be any point on the tangent line at A whose position vector is R


 (say).

Also ˆAP w t


   where AP w


But OP OA AP 
  

 ˆR r w t 
       or    R r w r  

   .....(1.2.7)

Equation (1.2.2) gives us the equation of tangent line at A.

Tangent line in cartesian form :

We may write ˆˆ ˆr xi yj zk  


 ˆˆ ˆr x i y j z k     


and ˆˆ ˆR Xi Y j Zk  


Substituting these value in equation (1.2.2) of tangent line, we get

 ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆXi Yj Zk xi yj zk c x i y j z k         

or      ˆ ˆˆ ˆ ˆ ˆ ,Xi Yj Zk x cx i y cy j z cz k         

where c is a non-zero constant.

Equating coefficients of ˆˆ ˆ, ,i j k  from both sides

, ,X x cx Y y cy Z z cz       

i.e. ,X x Y y Z z c
x y z
  

  
  

i.e.
X x Y y Z z

x y z
  

 
   .....(1.2.8)

This is the required equation of tangent line at (x, y, z) and direction cosines of the tangent line

are proportional to x, y, z.
1.2.4 Equation of tangent line when the equation of the curve is given as the intersec-

tion of two surfaces :
Let the equation of two surfaces are

F1 (x, y, z) = 0 and F2 (x, y, z) = 0 .....(1.2.9)

where x, y, z are functions of a parameter.

Now 1 1 1 0F F Fdx dy dz
x dt y dt z dt

  
     

   .....(1.2.10)

2 2 2 0F F Fdx dy dz
x dt y dt z dt

  
     

   .....(1.2.11)
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Hence from equation (1.2.3) and (1.2.4)

1 2 1 2 1 2 1 2 1 2 1 2

x y z
F F F F F F F F F F F F
y z z y z x x z x y y x

 
           

  
           

  

which are the direction ratios of the tangent and dot represents differentiation w.r. to ‘t’.

Therefore, the equation of tangent line at a point (x, y, z) on the curve of intersection of the two

given surfaces is given as

1 2 1 2 1 2 1 2 1 2 1 2

X x Y y Z z
F F F F F F F F F F F F
y z z y z x x z x y y x

  
 

           
      

           

.....(1.2.13)

1.2.5 Direction-cosines of the tangent line :

Let A (x, y, z) and B (x + x, y + y, z + z) be adjacent points on a given curve in rectangular

coordinate axes. r the measure of chord AB is given by
2r  = x2 + y2 + z2

Let s be the length of the arc measure from some fixed point P to any point A on the curve.

If the measure of the arc AB of the curve be s then
2 2 2 2r x y z

s s s s
                             

Since
Chordlim 1

ArcB A

AB
AB



2 2 2

1 ,dx dy dz
ds ds ds

            
     

or
2 2 2 2

2ds dx dy dz r
dt dt dt dt

                 
       



Hence 2 2 2 2s x y z      .....(1.2.14)

where x, y, z are functions of t and dxx
dt

 etc.

But , ,x y z    are direction ratios of a tangent line therefore the direction cosines of the tangent

line at A are

, , or , ,x y z dx dy dz
s s s ds ds ds
  

  

But ˆˆ ˆ .dr dx dy dzi j k
ds ds ds ds

  


The direction cosines of the tangent line are x, y, z which are the components of r where a

prime denotes differentiation with respect to s. Clearly 1, . .r i e r 
 

 is unit vector along the tangent.
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1.2.6  Examples :

Ex.1. Find the equation to the tangent at the point on the circular helix

x = a cos , y = a sin , z = C 

Sol. The vector equation of the helix is given by
ˆˆ ˆcos sinr a i a j C k     



ˆˆ ˆsin cosr a i a j C k      


The equation of the tangent in given by

R r r  
  

or    ˆ ˆˆ ˆ ˆ ˆcos sin sin cosR a i a j C k a i a j C k            


If ˆˆ ˆ ,R Xi Yj Zk  


then      ˆ ˆˆ ˆ ˆ ˆcos sin sin cosXi Yj Zk a i a j C k             

which gives cos sin
sin cos

X a Y a Z C
a a C
     

 
  

.

It is the required equation of tangent line.

Ex.2. Show that the tangent at any point of the curve whose equations are

x = 3t, y = 3t2, z = 2t3

makes a constant angle with line

y = z – x = 0.

Sol. The direction-rations of the tangent at ‘t’ to the given curve are

3, 6t, 6t2     . ., , ,i e x y z  

The direction ratios of the given line are

1, 0, 1.

If  be the angle between the tangent and the given line, than

cos 
  

2

2 4

3 1 6 0 6 1

9 36 36 1 0 1

t t

t t

    


   

 
 

2

2

3 1 2 1
22 3 1 2

t

t


 

 

which is independent of t, hence  is constant.

Ex.3. Show that the tangent at a point of the curve of the intersection of the ellipsoid

2 2 2

2 2 2 1x y z
a b c
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and the confocal whose parameter  is given by

 
  

 
  

 
  2 2 2 2 2 2 2 2 2 2 2 2

x X x y Y y z Z z
a b c a b c a b c a b c

  
 

     
 .

Sol. The equation of a confocal to the ellipsoid
2 2 2

1 2 2 2 1 0x y zF
a b c

     .....(1)

is
2 2 2

2 2 2 2 1 0x y zF
a b c

    
    

.....(2)

Equations to a tangent line are

1 2 1 2 1 2 1 2 1 2 1 2

X x Y y Z z
F F F F F F F F F F F F
y z z y z x x z x y y x

  
 

           
  

           

.....(3)

Here 1 1 1 2 2 2
2 2 2 2 2 2

2 2 2 2 2 2, , , , ,
3

F F F F F Fx y z x y z
x y x y za b c a b c

     
     

        

Putting these values in equation (3), we get

 
  

 
  

 
  2 2 2 2 2 2 2 2 2 2 2 2

x X x y Y y z Z z
a b c a b c a b c a b c

  
 

     

which are the required equations of the tangent.
1.2.7 Self-learning exercise-1 :
1. Name the branches of differential Geometry.
2. If the curve lies in a plane then it is called ..... .
3. The intersection of two surfaces is called ........ .
4. Write the equation of a tangent line at a point.
5. Write the equation of tangent line when the equation of the curve is given as the intersection

of two surfaces.

1.3 Contact of curve and surface

We know that in a plane curve the tangent at A is the limiting position of the chord AB when B
coincides with A. In a similar manner if A1, A2, ..., An+1 be points on a given curve lying on a given

surface and if A2, A3, ..., An+1 all coincide with A1, than we say that a curve has a contact of nth order

with the surface at A1. We may also say that the curve and the surface has (n + 1) points of contact.

1.3.1 Definition :
If A, A1, A2,..., An points on a given curve lie on a given surface and A1, A2, ..., An coincide

with A, then curve and surface are said to have the contact of nth order at the point A.
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1.3.2 To find the condition that a curve and a surface have a contact of nth order :

Let the equation of the curve C be given by

r = {x (t), y (t), z (t),} .....(1.3.1)

and the equation of the surface S be given by

f (x, y, z) = 0 .....(1.3.2)

The values of t corresponding to the points of intersection of the curve C and surface S are the

roots of the equation

F (t) = f {x (t), y (t), z (t)} = 0 .....(1.3.3)

Let t = t0  be a root of the equation F (t) = 0 so that

F (t0) = 0. .....(1.3.4)

Then t = t0  give as a point of intersection of C and S.

Put   t = t0 + h   so that

F (t) = F (t0 + h). .....(1.3.5)

Expanding F (t) about t0 by Taylor’s theorem, we get

         
2 3

0 0 0 0 ...
2 3

h hF t F t h F t F t F t        . .....(1.3.6)

Since t0 is a solution of the equation (1.3.4) therefore F (t0) = 0, then we have

       
2 3

0 0 0 ...
2 3

h hF t h F t F t F t       . .....(1.3.7)

We have the following cases :

(i) If  0 0,F t   then we say that the curve and the surface have a simple intersection at r

(t0).

(ii) If  0 0,F t   but  0 0,F t   then F (t) is of second order of h and we say that t0 is a

double zero of F (t) and in this case C and S have two points of contact (or contact of first

order) at r  (t0).

(iii) If    0 00, 0,F t F t    but  0 0,F t   then F (t) is of third order of h and we say that

t0 is a triple zero of F (t) and in this case we say that C and S have three point contact or

contact of second order.

(iv) In general if      1
0 0 00, 0,..., 0,nF t F t F t     but f n (t0)  0, then F (t) is of nth

order of h and we say that C and S have a n point contact or contact of (n – 1)th order.

1.3.3 Inflexional tangent :

A straight line which meets the surface S in three coincident points i.e., it has a second order

point of contact is called inflexional tangent to the surface at that point.
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1.3.4 Examples :

Ex.4. Find the plane that has three point contact at the origin with the curve

x = t4 –1,   y = t3 –1,   z = t2 –1.

Sol. Let the equation of the plane at the origin be

l x + m y + n z = 0 .....(1)

The equations of the given curve are

x = t4 –1,    y = t3 –1,   z = t2 –1 .....(2)

At origin,

t4 –1 = 0,   t3 –1 = 0,   t2 –1 = 0.

Clearly, t = 1 satisfies all of these three equations. Hence, at the origin, we have t = 1.

Now the points of intersection of the curve (2) and the surface (1) are given by the zeroes of the

function

F (t) = l (t4 –1) + m (t3 –1) + n (t2 –1)

or F (t) = l t4 + m t3 + n t2 – l – m – n .....(3)

For three point contact, we should have

   0, 0.F t F t  

Now F = 4l t3 + 3m t2 + 2nt = 0 .....(4)

and F  = 12l t2 + 6m t + 2n = 0 .....(5)

At the origin i.e. at t = 1, the equation (4) and (5) become

4l + 3m + 2n = 0, 12l + 6m + 2n = 0 .....(6)

Solving equation (6), we get

3 8 6
l m n
 


Hence the required equation of plane is
3x – 8y + 6z = 0.

Ex.5. Prove that if the circle

lx + my + nz = 0,   x2 + y2 + z2 = 2cz

has three point contact at the origin with the paraboloid

ax2 + by2 = 2z,

then c = (l2 + m2)/(bl2 + am2)

Sol. Let the parametric equation of the circle be

x = f1 (t),    y = f2 (t),    z = f3 (t). .....(1)

Putting these values of x, y, z in the equation of the paraboloid, we get

F (t) = ax2 + by2 – 2z = 0 .....(2)

where x, y, z are functions of t.
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For a three point contact at the origin we must have

      0,F t F t F t       at the origin.

F (t) = ax2 + by2 – 2z = 0 .....(3)

  2 2 2 0F t axx byy z       .....(4)

     2 2 0F t ax by z axx byy          .....(5)

At the origin we have 2 20, 0.z ax by z      .....(6)

Proceeding as above with the equations of the circle, we get

0 0lx my nz xx yy zz cz            .....(7)

0lx my nz     2 2 2 0x y z xx yy zz cz            .....(8)

At the origin from (7) 0 . . 0 so that 0cz i e z lx my      .....(9)

At the origin from (8) and putting 0,z   we have
2 2x y cz     2 2 2 20 or x y c ax by      

 c
2 2

2 2 ,x y
ax by






 

 
 from (7) ,x y k

m l


  
 

 say

or c
 
 

2 2

2 2

l m

am bl





.

Ex.6. Find the lines that have four point contact at (0, 0, 1) with the surface
x4 + 3xyz + x2 – y2 – z2 + 2yz – 3xy – 2y + 2z = 1

Sol. Any line through (0, 0, 1) is

 1 sayx y z k
l m n


   .....(1)

Thus the parametric equations of the line are

x = lk,   y = mk,   z = nk + 1 .....(2)

Putting the values of x, y, z in the equation of the surface we get

F (k) = l4 k4 + 3lm k2 (nk + 1) + l2 k2 – m2 k2 – n2k2

+ 2mk (nk + 1) – 3lm k2 – 2mk + 2 (nk + 1) – 1 = 0

= l4 k4 + 3lmn k3 + (l2 – m2 – n2 + 2mn) k2 = 0 .....(3)

For four point contact we must have

   0,F k F k       0, 0, 0 at 0 for 0,0,1F k F k k    

   ,F k F k  are clearly zero at k = 0 .....(4)

  0F k      gives     l2 – m2 – n2 + 2mn = 0.     0F k      gives    lmn = 0.

Thus the direction ratios satisfy the above two relations.



12

Ex.7. Find the inflexional tangents at (x, y, z) on the surface

y2 z = 4ax.

Sol. We know that the inflexional tangents are tangents which have three point contact with the

given surface.

Any line through (x1, y1, z1) is

 1 1 1 sayx x y y z z k
l m n
  

   .....(1)

 x = x1 + lk,   y = y1 + mk,    z = z1 + nk .....(2)

Substituting the values of x, y, z in the given surface, we get

F (k) = (z1 + nk) (y1 + mk)2 – 4a (x1 + lk) .....(3)

 F k = n (y1 + mk)2 + 2m (y1 + mk) (z1 + nk) – 4al .....(4)

 F k = 2nm (y1 + mk) + 2m2 (z1 + nk) + mn (y1 + mk) .....(5)

For three point contact at (x1, y1, z1) i.e. where k = 0, we must have

     0, 0, 0F k F k F k   

Hence from (3), (4) and (5), we get
2
1 1 14 0y z ax  .....(6)

2
1 1 12 4 0my z ny al   .....(7)

2mny1 + 2m2 z1 = 0

or 2ny1 + mz1 = 0

or 1

12
mzn

y
  .....(8)

Putting for n in (7), we get

21
1 1 1

1

22 4 0
2
mzmy z y al
y

   

 1 13
8

my zl
a

 .....(9)

Putting for l and n in the equation (1), we get the required inflexional tangent as

   
1 1 1

1 1 1 13 /8 / 2
x x y y z z

my z a m mz y
  

 


or  
21 1 1
1 1 12

1 11 1

put 4
23 / 4

x x y y z z y z ax
y zy z a

  
  




1 1 1

1 1 1
.

3 2
x x y y z z

x y z
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Ex.8. Prove that the condition that four consecutive points of a curve should be coplanar
is

0
x y z
x y z
x y z

  
   
  

.

Sol. Let the parametric equation of the given curve be

x = f1 (t),   y = f2 (t),   z = f3 (t). .....(1)

Let the parameter for a given point A (x0, y0, z0) be t0 so that the equation of the plane through

A is

(x – x0) l + (y – y0) m + (z – z0) n = 0. .....(2)

Putting for x, y, z from (1) and (2), we get

F (t) = [x (t) – x (t0)] l + [y (t) – y (t0)] m + [z (t) – z (t0)] n = 0. .....(3)

The plane (2) passes through four consecutive points if it has four point contact, i.e., if

       0 0 0 00, 0, 0, 0F t F t F t F t      . .....(4)

These conditions are equivalent to

0xl ym zn     .....(5)

0xl ym zn     .....(6)

0xl ym zn        and clearly    F (t0) = 0. .....(7)

Eliminating l, m, n between the above equations, we have

0.
x y z
x y z
x y z

  
   
  

(Here dashes and dots represent derivative.)

1.3.5 Self-learning exercise-2 :

1. Write the condition  for simple intersection of  a curve and surface.

2. Write the condition for two point contact of a curve and a surface.

3. Write the condition for three point contact of a curve and a surface.

4. Write the condition for n point contact of a curve and surface.

5. Define an inflexional tangent.

1.4 Osculating plane

Definition : The osculating plane at a point P of a curve C of class greater then or equal to two

is the limiting position of the plane passing through the tangent line at P and a neighbouring point Q on

the curve C as QP. (or which contains the tangent line at P and is parallel to the tangent at Q as

Q P).
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Alternative : Let P, Q, R be three points on a curve C, the limiting position of the plane PQR,
when Q and R tend to P, is called the osculating plane at the point P.

1.4.1 To find the equation of the osculating plane :

R

R

Q

C
P

r s( )

t

O

Fig. 1.3

Let  r r s
 

 be the given curve C of class  2, in terms of parameter s, where s is the length of

the arc of the curve measured from a fixed point on it. Let P and Q be two neighbouring points on the

curve C with  r s
 and  r s s 


be their position vectors. Let R


 be the position vector of current

point R on the plane containing the tangent line at P and the point Q.

Here OP


   , ,r s OQ r s s OR R    
   

Hence PQ


OQ OP 
 

    r s s r s   
 

and PR


 OR OP R r s   
   

Again if t̂  be the unit tangent vector at P,

then, t̂  .dr r s
ds

 




Now the vectors ˆ, andPR t PQ
 

 are coplanar lying in the plane PQR and hence their scalar triple

product is zero.

ˆ, , 0PR t PQ   
 

.....(1.4.1)

or        , , 0R r s r s r s s r s      
    

.....(1.4.2)

but          2 .....
2
s

r s s r s r s s r s


       
   

.....(1.4.3)

We know that    [a b c] = a.(b  c).
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Equation (1.4.2) may be written as

        0R r s r s r s s r s           
    

.....(1.4.4)

form (1.4.3) and (1.4.4)

         2

... 0
2
s

R r s r s r s s r s
 

               

    
.....(1.4.5)

or         2

terms of higher order of 0
2
s

R r s r s r s s
 

             

   

or        0 0R r s r s r s s           
   

.....(1.4.6)

The plane PQR tends to be the osculating plane when Q tends to P i.e. when s  0, and

hence the equation of the osculating plane is

      0R r s r s r s       
   

or      , , 0R r s r s r s    
   

.....(1.4.7)

Equation (1.4.7) represents the equation of the osculating plane in terms of parameter s of the

point P.

1.4.2 Equation of the osculating plane in terms of general parameter t :

Let P (t) and Q (t + t) be the two neighbouring points on curve C. Let position vector of P and

Q be  r t  and  r t t 
  with respect to origin, respectively..

The tangents at P and Q will be parallel to the vectors  r t  and   ,r t t 
  respectively..

Therefore the plane through the tangents at P (t) and Q (t + t) is perpendicular to the vector

   r t r t t  
  

or to the vector      r t r t t r t     
             0r t r t   

  

i.e. to the vector      r t t r t
r t

t
  




   .....(1.4.8)

As Q  P, t  0 in this unit the osculating plane is perpendicular to the vector    .r t r t
  

If R


 be the position vector of any current point on the osculating plane, the equation of the

osculating plane may be written as

  0R r r r   
           or   , , 0R r r r   

     .....(1.4.9)

1.4.3 Equation of osculating plane in cartesian coordinates :

Let the coordinates of a point P on a given curve C be (x, y, z) and coordinates of any current

point be (X, Y, Z), these are functions of a parameter t.
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Then ˆˆ ˆr xi yj zk  


and ˆˆ ˆR Xi Yj Zk  


Substituting these values in (1.4.9) the equation of the osculating plane is given by

      ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , 0X x i Y y j Z z k xi yj zk xi yj zk               

or 0
X x Y y Z z

x y z
x y z

  
  

  
.....(1.4.10)

which is the equation of the osculating plane at a point P (x, y, z).

Theorem : To show that when the curve is analytic, there exists a definite osculating plane

at a point of inflexion, provided the curve is not a straight line.

Proof : We know that  ˆr t   is a unit tangent vector, therefore 2 1.r  .....(1)

Differentiating w.r.t. ‘s’ we get

2 0r r  
      or      0r r  

  .....(2)

Again differentiating, we get

0r r r r      
   

0r r  
  .....(3)

(At a point P where 0,r 
  the tangent line is called inflexional and the point P is called the

point of inflexion.)

If 0,r 
 then r is linearly independent of .r  Differentiating successively (3) and applying, above

argument shall get

0, 2mr r m   
  .....(4)

where mr  is the first non-zero derivative of r at P.

Therefore if 0,mr 
  from equation (1.4.3), we get

          10
m

mms
r s s r s r s s

m


      
  

.....(5)

Hence the equation of the osculating plane at P is

     , , 0mR r s r s r s   
   

.....(6)

Again if for all m  2 the derivative 0,mr 
  we conclude  ˆr t   is constant (since the curve

under consideration is analytic) i.e. the tangent vector is same at each point of the curve and hence the

curve is a straight line.

Hence equation (6) is the equation of the osculating plane at a point of inflexion P when the

curve is not straight line.
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1.4.4 To find the osculating plane at a point of a space curve given by the intersection
of two surfaces.

Let the equations of the surfaces be

  0f r 
  and   0g r 


.....(1.4.11)

The equations of the tangent planes of these surfaces are given by

   0 and 0R r f R r g     
  

.....(1.4.12)

where  f and g are normal vectors to   0f r 
  and   0g r 

  respectively and R


 be the position

vector of current point on the plane.
The equation of the plane through the tangent line to the curve of intersection of the two sur-

faces is

    0F R r f R r g      
  

.....(1.4.13)

If (1.4.13) be the equation of the osculating plane at P, it must have three point contact with the
curve at P. Therefore the required conditions are

0, 0, 0 ;F F F    .....(1.4.14)

when R r
   and dashes denote differentiation with respect to parameter ‘t’.

0F  gives

        0R f R r f R g R r g           
    .....(1.4.15)

At , ,P R r
   condition (1.4.12) reduces to

0r f r g    
   .....(1.4.16)

But we know that r  is a tangent vector and f  and g  are normal vectors to   0f r 
  and

  0g r 
  and hence both

0 and 0r f r g   
   .....(1.4.17)

Hence 0F 
  reduces to an identity..

Now consider the condition 0 at , ,F P R r 
    we have

0 0r f r g     
  

or
r f
r g


 



 .....(1.4.18)

Now differentiating the equation (1.4.17), we get

   0, 0,r f r f r g r g         
       .....(1.4.19)

or  r f r f    
  

and  r g r g    
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,
r fr f

r g r g

 
  

  

 
  

 from (1.4.18) .....(1.4.20)

Putting the value of  in (1.4.13), we get

 
 

 
 

R r f r f
R r g r g

   
  

   

  
  

 form (1.4.20)

or
 

 
 

 
R r f R r g

r f r g

   


   

  

   .....(1.4.21)

Above equation represents the equation of the osculating plane at P.

Cartesian form :

Let        , , , , ,f r f x y z g r g x y z 
 

,R Xi Yj Zk r xi yj zk     
 

ˆˆ ˆf f ff i j k
x y z

                   

ˆˆ ˆ
x y zf f i f j f k   

     ˆ
xx xy xzf f x f y f z i      

substituting in equation (1.4.21) of the osculating plane, we get

     
 

     
 2 2... 2 ... ... 2 ...

x y z x y z

xx yz xx yz

X x f Y y f Z z f X x g Y y g Z z g

x f yz f x g yz g

         


         
.....(1.4.22)

1.4.4 Examples :

Ex.9. For the curve x = 3t, y = 3t2, z = 2t3, show that any plane meets it in three points
and deduce the equation to the osculating plane at t = t1.

Sol. Let the equation of the plane be

Ax + By + Cz + D = 0 .....(1)

 F (t) = 3At + 3Bt2 + 2Ct3 + D = 0 .....(2)

which is cubic in t. Hence the plane meets the given curve in three points.

Also 23, 6 , 6x y t z t    

0, 6, 12x y z t     .....(3)

Hence the equation  of osculating plane at the point t1 is

2 3
1 1 1

2
1 1

1

3 3 2

3 6 6 0
0 6 12

x t y t z t

t t
t

  



or 2 3
1 1 12 2 2t x t y z t        is the required equation of the osculating plane at t = t1.
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Ex.10. Find the osculating plane at the point ‘t’ on the helix.
x = a cos t,  y = a sin t,  z = ct

Sol. We know that the equation of the osculating plane is

, , 0R r r r   
    

or   0R r r r     
     .....(1)

Here  cos , sin ,r a t a t c t


.....(2)

  sin , cos ,r a t a t c 
 .....(3)

 cos , sin ,0r a t a t  
 .....(4)

 r r   sin cos
cos sin 0

i j k
a t a t c
a t a t

 
 

2sin cosca t i ca t j a k  

 2sin , cos ,ca t ca t a  .....(5)

Also R r
 

 cos , sin ,X a t Y a t Z ct    .....(6)

Hence  R r r r    
       2cos , sin , sin , cos ,X a t Y a t Z ct ca t ca t a       

or c (X sin t – Y cos t) + a Z – act = 0 .....(7)

Alternative method :
The equation of the osculating plane is

0
X x Y y Z z

x y z
x y z

  


    
    

cos sin
sin cos 0
cos sin 0

X a t Y a t Z ct
a t a t c
a t a t

  
 
 

or c (X sin t – Y cos t) + a Z – act = 0 .....(8)

Ex.11. Prove that the osculating plane at (x1, y1, z1) on the curve of intersection of the

cylinders x2 + z2 = a2,  y2 + z2 = b2 is given by

3 3 4 3 3 4
1 1 1 1

2 2
xx zz a yy zz b

a b
   

 .

Sol. We know that osculating plane at (x, y, z) a point on the curve of intersection of two sur-

faces is given by
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2 22 2

x x

xx yz xx yz

X x f X x g
x f yz f x g yz g
   


          .....(1)

where f = x2 + z2 – a2,  g = y2 + z2 – b2, x, y, z are functions of ‘t’.

 0, 0xx zz yy zz         or     
(1/ ) (1/ ) (1/ )

x y z
x y z
 


  

 fx = 2x, fy = 0, fz = 2z, fxx = 2, fxy = 0, fxz = 0, fyy = 0, fyz = 0, fxz = 2, gx = 0, gy = 2y,

gz = 2z, gxx = 0, gxy = 0, gxz = 0, gyy = 2, gyz = 0, gzz = 2.

Hence the equation of the osculating plane at (x1, y1, z1) is

       1 1 1 1 1 1 1 1

2 2 2 2
1 1 1 1

2 2 2 2

1 1 1 12 2

x x x z z z y y y z z z

x z y z

     


   
    

   

   
 

2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2
1 1 1 1

xx zz x z x z yy zz y z y z

x z y z

     


 

Put 2 2 2 2 2 2
1 1 1 1andx z a y z b   

   2 2 2 2
1 1 1 1 1 1

2 2

xx zz a x yy zz b y

a b

   


or
     3 2 2 2 3 2 2 2

1 1 1 1 1 1
2 2

xx zz a a z yy zz b b z

a b

     


or
   3 3 4 2 2 3 3 4 2 2

1 1 1 1 1 1 1 1
2 2

xx zz a a z zz yy zz b b z zz

a b

       


or
3 3 4 3 3 4
1 1 1 1

2 2
xx zz a yy zz b

a b
   

  Hence proved.

Ex.12. Show that the osculating plane at (x, y, z) on the curve x2 + 2ax = y2 + 2by = z2 +
2cz has the equation

(b2 – c2) (x + a)2 (X – x) + (c2 – a2) (y + b)2 (Y  – y) + (a2 – b2) (z + c)2 (Z – z) = 0

Sol.    Let f = x2 – y2 + 2ax – 2by

g = x2 – z2 + 2ax – 2cz.

Let P (x, y, z) be any point on the curve of intersection of these surfaces and x, y, z are func-

tions of ‘t’.

 0xx yy ax by           or        0x x a y y b    

0xx zz ax cz           or        0x x a z z c    

      x x a y y b z z c      
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or         
x y z

y b z c z c x a x a y b
 

     
  

.....(2)

Again fx = 2(x + a),   fy = – 2(y + b), fz = 0,

gx = 2(x + a), gy = 0, gz = – 2 (z + c)

fxx = 2, fyy = – 2, fzz = 0, fxy = fyz = fzx = 0

gxx = 2, gyy = 0, gzz = – 2, gxy = gyz = gzx = 0.

The equation of the osculating plane is

   
2 22 2

x x

xx yz xx yz

X x f X x g
x f yz f x g yz g
   


         

or
       

       2 2 2 2
2 2 2 2 0

2 2

X x x a Y y g b Z z

y b z c z c x a

       

    

       
       2 2 2 2

2 2 0 2

2 2

X x x a Y y Z z z x

y b z c x a y b

       


    

or (X – x) (x + a)2 (b2 – c2) = 0.

1.4.5 Self-learning exercise-3 :

1. Define osculating plane.

2. Write the equation of osculating plane.

3. Write the equation of osculating plane in cartesian coordinates.

1.5 Answers to self-learning exercises

Self-learning exercise-1

1. (a) Local differential geometry (b) Global differential geometry

2. Plane curve

3. Curve

4. X x Y y Z z
x y z
  

 
  

5.
1 2 1 2 1 2 1 2 1 2 1 2

X x Y y Z z
F F F F F F F F F F F F
y z z y z x x z x y y x

  
 

           
     

           

Self-learning exercise-2

1. If 0F 

2. If 0 but 0F F  
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3. If 0, 0 but 0F F F    

4. If 10, 0,..., 0 but 0n nF F F F    

5. A straight line which meets the surface S in the three coincident.

Self-learning exercise-3

1. Let P, Q, R be three points on a curve C, the limiting position of the plane PQR, when Q and R

tend to P, is called osculating plane at point R.

2. , , 0R r r r   
    

3. 0
X x Y y Z z

x y z
x y z

  
  

  

1.6 Exercises

1. Find the equation of the tangent line to the curve x = t, y = t2,  z = t3 at the point t = 1.

[Ans. 1 1 1
1 2 3

x y z  
  ]

2. Find the equation of the tangent line at the point t = 1 to the curve  r = (1 + t, t2, 1 + t3).

[Ans. 2 1 2
1 2 3

x y z  
  ]

3. Define a space curve and write its parametric equations.

4. Determine a, h, b so that the paraboloid 2z = ax2 + 2hxy + by2 may have the closest possible

contact at the origin with the curve x = t3 – 2t2 + 1, y = t3 – 1, z = t2 – 2t + 1. Find also the

order of contact. [Ans. 1 ; Fourth
45 3 5 54
a h b
  


]

5. Show that the curve x = t, y = t2, z = t3 has six point contact with the paraboloid x2 + y2 = y at

the origin.

6. Find the equation of the osculating plane of the curve given by
r  = (a sin t + b cos t, a cos t + b sin t, c sin 2t).

[Ans. 2cx {a cos t (2 – cos 2t) – b sin t (2 + cos 2t)}

+ 2cy {a sin t (2 – cos 2t) – b cos t (2 – cos 2t)}
+ 2 (b2 – a2) + 3c (b2 – a2) sin 2t = 0]

7. For the curve x = 3t, y = 3t2, z = 2t3 show that any plane meets it in three points and deduce

the equation of the osculating plane at t = t1. [Ans. 2t1
2x – 2t1y + z = 2t1

3]
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Unit 2 : Principal Normal and Binormal, Curvature, Torsion,
Serret-Frenet’s Formulae, Osculating Circle and
Osculating Sphere

Structure of the Unit
2.0 Objectives

2.1 Introduction

2.2 Principal normal and binormal

2.2.1 Principal normal

2.2.2 Binormal

2.2.3 The fundamental unit vectors ˆˆ ˆ, ,t n b
2.2.4 Direction cosines of the tangent, principal normal and binormal

2.2.5 Self-learning exercise-1

2.3 The three fundamental planes

2.3.1 Osculating plane

2.3.2 Normal plane

2.3.3 Rectifying plane

2.3.4 Equations of principal normal and binormal

2.3.5 Self-learning exercise-2

2.4 Curvature and Torsion

2.4.1 Curvature

2.4.2 Torsion

2.4.3 Skew-curvature

2.4.4 Self-learning exercise-3

2.5 Serret-Frenet’s formula

2.5.1 Theorems on curvature and Torsion

2.5.2 Examples

2.6 Osculating circle and osculating sphere

2.6.1 Osculating circle

2.6.2 Properties of the locus of the centre of circle of curvature

2.6.3 Osculating sphere

2.6.4 Examples

2.7 Answers to self-learning exercises

2.8 Exercises
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2.0 Objectives

This unit provides a general overview of

• Principal normal and Binormal

• Three fundamental planes

• Curative and Torsion

• Serret-Frenet’s formula

• Osculating circle and osculating sphere

2.1 Introduction

In this unit we shall study principal normal and Binormal. Equations of principal normal

and Binormal Curvature and Torsion. Formulae for radius of curvature and radius of Torsion, Serret-

Frenet’s formula. Theorem on curvature and Torsion. In the last of this unit detailed study is given

on osculating circle and osculating sphere.

2.2 Principal Normal and Binormal

All the normals to a given curve at any point lie in the normal plane. Two nromals namely

principal normal and binormal are significant and defined in this section.

Normal
plane

Principal normalN

C

Osculating plane

T
t

Rectifying plane

BinormalB

b

P

Tangent

n

Fig. 2.1
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2.2.1 Principal normal :

The principal normal at any point P of a given curve C is defined as the normal which lies

in the osculating plane at P.

From the above definition it is clear that the principal normal is the line of intersection of

the normal plane and osculating plane because being normal it must lie in normal plane and be-

ing principal normal it must lie in osculating plane.

The unit vector along principal normal shall be denoted by n̂ .

2.2.2 Binormal :

The binormal at any point P of a curve C is defined as the normal which is perpendicular

to the osculating plane.

From the above definition it in clear that binormal is perpendicular to principal normal

because the perpendicular to osculating plane and the latter lies in the osculating plane.

The unit vector along the binormal shall be denoted by b̂ .

2.2.3 The fundamental unit vectors ˆˆ ˆ, ,t n b  :

We know that principal normal and binormal are perpendicular to each other and both these

normals are perpendicular to t̂ . Hence these three form a triad of mutually perpendicular unit

vectors such that ˆˆ ˆ, ,t n b  form a right handed orthogonal system of axes.

Therefore ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ, ,t n b n b t b t n     

ˆ ˆ ˆ ˆˆ ˆ0, 0, 0n b b t t n      .....(2.2.1)

t

n

b

n

b

tO

Frenet’s frame

Fig. 2.2

2.2.4 Direction cosines of the tangent, principal normal and binormal :

We will denote the direction-cosines of tangent by (l1, m1, n1) of principal normal by

(l2, m2, n2) and of binormal by (l3, m3, n3).
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(i) when the parameter is arc length ‘s’

We know that unit tangent vector t̂  is given by r, we have

ˆˆ ˆˆ d r dx dy dzt r i j k
ds ds ds dz

    
r

.....(2.2.2)

Hence 1 1 1, ,dx dy dzl m n
ds ds ds

   .....(2.2.3)

The binormal is perpendicular to the osculating plane. Equation of osculating plane is given

by

, , 0R r r r    
r r r r    or    ( ) ( ) 0R r r r    

r r r r

Therefor the vector r r 
r r  is normal to the osculating plane. This implies that binormal is

parallel to the vector .r r 
r r

Hence
ˆ r rb

r r
 


 

r r
r r .....(2.2.4)

 l3 32 2
, ,

( ) ( )

y z z y z x x zm
y z z y y z z y

        
 

          

n3 2( )

x y y x

y z z y

   


    
.....(2.2.5)

Further ˆ ˆn̂ b t 
( ) ( ) ( )r r r r r r r r r r

r r r r r r
             

  
       

         

     

 since 1 and 0r r r r     
   

Hence, l2 22 2
, ,

( ) ( )

x ym
y z z y y z z y

 
 

          

n2 2
,

( )

z

y z z y




    
.....(2.2.6)

(ii) when the parameter is ‘t’.

Here ˆˆ ˆr xi yj zk  


ˆˆ ˆ ˆr x i y j z k x i        


ˆr x i  

 ˆ( )r r y z z y i        
  .....(2.2.7)

Hence the principal normal being parallel to the vector

( )r r r   
  

i.e. ˆ ˆ( ) ( )y z z y i x i         

i.e. {z (z x – x z) – y (x y – y x)} î
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The direction ratios of it are

z (z x – x z) – y (x y – y x);

x (x y – y x) – z (y z – z y);
and y (y z – z y) – x (z x – x z)

Since the binormal is parallel to the vector r r 
   i.e., to ˆ( ) ,y z z y i      its direction

ratios are

y z – z y,  z x – x z,  x y – y x. .....(2.2.8)

2.2.5  Self-learning exercise-1

1. Principal normal lies in the ........................... plane

2. ........................... is perpendicular to the osculating plane.

3. Give the formula for ˆ ˆand .b n

2.3 The three fundamental planes

At each point of the curve there is a triad of orthogonal unit vectors which determine three

fundamentals planes as shown in the figure (2.1) which contains two of these, the third being the

normal to that plane and which are mutually perpendicular.

2.3.1  Osculating plane :

The plane through P containing ˆ ˆandt n  whose normal is therefor b̂  is called osculating

plane whose equation is given as ˆ( ) 0R r b  
  .

In cartesian coordinates let (X, Y, Z) be a current point and (x, y, z) the point whose oscu-

lating plane is determined.

ˆ ˆˆ ˆ ˆ ˆ,R Xi Yj Zk r xi yj zk     
 

Again let (lr, mr, nr) (r = 1, 2, 3) be the direction ratios of the tangent, principal normal
and binormal so that

1 1 1
ˆˆ ˆt̂ l i m j n k   ,

2 2 2
ˆˆ ˆn̂ l i m j n k   ,

3 3 3
ˆ ˆˆ ˆb l i m j n k   .

Substituting the values of ˆ ˆ, and in ( ) 0R r b R r b  
  

      3 3 3
ˆ ˆˆ ˆ ˆ ˆ 0X x i Y y j Z z k l i m j n k              

or l3 (X – x) + m3 (Y – y) + n3 (Z – z) = 0 .....(2.3.1)

2.3.2  Normal plane :

The plane through P containing ˆ ˆandb n  whose normal is therefore t̂  is called normal plane

whose equation in given by   ˆ 0R r t  
 

.
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In cartesian coordinates : Substituting the values of ˆ, andR r t
   in

  ˆ 0R r t  
 

      1 1 1
ˆ ˆˆ ˆ ˆ ˆ 0X x i Y y j Z z k l i m j n k              

or l1 (X – x) + m1 (Y – y) + n1 (Z – z) = 0 .....(2.3.2)

2.3.3  Rectifying plane :

The plane through P containing ˆ ˆandb t  whose normal is therefore n̂  is called rectifying

plane whose equation is given by   ˆ 0R r n  
  .

In cartesian coordinates : Substituting the values of ˆ, andR r n
   in   ˆ 0R r n  

 

      2 2 2
ˆ ˆˆ ˆ ˆ ˆ 0X x i Y y j Z z k l i m j n k              

or l2 (X – x) + m2 (Y – y) + n2 (Z – z) = 0 .....(2.3.3)

2.3.4  Equations of principal normal and binormal :

n

t

R

O

Q

C

r

R

P

b

Fig. 2.3
Let r  be the position vector of any point P on the curve C referred to O as origin. Also let

R


 be the position vector of a current point Q on the principal normal.

We have ˆ, , ,OP r OQ R PQ n   
    since n̂  is the unit vector along the principal normal

and  is some scalar.

Now OQ OP PQ 
  

i.e. ˆR r n 
  .....(2.3.4)

which is the required equation of the principal normal at the point P of the curve C.

Similarly, if R


 is the position vector of a current point R on binormal, then equation of

the binormal at the point P on the curve C is given by
ˆ,R r b  

  .....(2.3.5)

where  is a scalar.
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2.3.5  Self-learning exercise-2

1. Define osculating plane.

2. Define normal plane.

3. Define rectifying plane.

4. Write equations of principal normal.

5. Write equation of binormal.

2.4 Curvature and Torsion

2.4.1  Curvature :
The rate of change of the direction of tangent with respect to the arc length ‘s’ as the point

( )P r  moves along the curve is called curvature vector of the curve whose magnitude is denoted

by k (kappa) called the curvature at P.

Hence
ˆ ˆ| | | |dtk t r

ds
   


.....(2.4.1)

Radius of curvature : The reciprocal of the curvature is called the radius of curvature

and is denoted by .


1
k

  .....(2.4.2)

Curvature at a point : Let P and Q be two neighbouring points on a curve such that PQ

= s, where OP = s and the unit tangents at these point be denoted by ˆ ˆ ˆandt t t   which makes

angle and +  with a fixed direction.

Fig. 2.4

Through Q draw vector QA


 parallel to t̂ . If the vectors andQA QB
 

 are respectively t̂

and ˆ ˆt t   then | | | | 1QA QB 
 

 and the angle between tham is .
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Also QB QA AB 
  

   or   ˆAB QB QA t   
  

Now from isosceles triangle QAB.

2 sin
2

AB QA 


 

2 sin
2

AB QA 


 

 ˆ| | 2sin
2

t 
      or    

ˆ sin 2
2

t 


 

0 0

ˆ sin 2lim lim
2

t
 

 


      or    
ˆ

1.d t
d




The curvature at point P

0
lim dk

s ds

 
 

  
ˆ ˆ ˆd dt dt t r

dt ds ds
     


. .....(2.4.3)

2.4.2  Torsion :
The rate of change of the direction of binormal with respect to arc length as the point P

moves along the curve is called the torsion vector of the curve whose magnitude is denoted by 

called the torsion at P.

Hence
ˆ ˆdb b

ds
   .....(2.4.4)

Radius of Torsion : The reciprocal of the torsion is called the radius of torsion and is

denoted by 1 . 


Torsion at a point :

Fig. 2.5
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Let P and Q be two neighbouring points on a curve such that PQ = s where OP = s and

the unit binormals at these points be denoted by ˆ ˆ ˆand andb b b    be the angle between these

vectors.

Average rate of change of direction of the osculating plane over the arc .PQ
s





The torsion of the curve at P

0
lim .
s

d
s ds 

 
  


.....(2.4.5)

Aliter :

Fig. 2.6

From isosceles triangle QRS, we have

2 sin
2

RS RS QR     
 

 

 ˆ 2sin
2

b     
 


ˆ sin 2

2
b   

    

Hence 0

ˆ sin 2lim 1
2

b


  
    

 Torsion  at P is


ˆ ˆdb db d

ds d ds


  


1d
ds


 

 .....(2.4.6)
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2.4.3  Skew-curvature :
The rate of change of the direction of principal normal with respect to arc length as the

point P moves along the curve is called the skew curvature vector and its magnitude is given by

 2 2ˆdn
ds

      
 

. .....(2.4.7)

2.4.4  Self learning exercise-3

1. Give the formula for curvature.

2. Give the formula for torsion.

2.5 Serret-Frenet Formulae

Arc derivative of three unit vectors ˆˆ ˆ, ,t n b  are known as Serret-Frenet formulae as given

below

1.
ˆˆ ˆ.dtt n

ds
   

2. ˆ ˆ ˆˆ .dnn b t
ds

     

3.
ˆˆ ˆ.dbb n

ds
     .....(2.5.1)

Proof : 1. Since  2ˆ ˆ 1t t t   .

Different with respect to arc length s

ˆˆ2 0dtt
ds
 


ˆˆ 0dtt

ds
 


ˆdt

ds
 is perpendicular to t̂ . .....(2.5.2)

But
ˆ ˆdt t r

ds
   

The equation of osculating plane at a point P on a curve is

, , 0R r r r    
   

.....(2.5.3)

 ˆr t 
  in the osculating plane.

Therefore t̂  is perpendicular to b̂  and it is also perpendicular to t̂ .

Hence, t̂  is parallel to ˆ ˆb t  i.e. along the principal normal n̂ . Therefore t̂  is propor--

tional to n̂ , i.e.,
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ˆ ˆ ˆdt t n
ds

   

 ˆ ˆt n   .....(2.5.4)

(The direction of the principal normal is so chosen that curvature  is always positive)

2. Since ˆ ˆ 1b b  .
Differentiating with respect to ‘s’, we have

ˆˆ 0dbb
ds
  .....(2.5.6)

This implies 
ˆdb

ds
 is perpendicular to b̂  and thus 

ˆdb
ds

 lies in osculating plane.

Also ˆ ˆ 0,b t   on differentiating with respect to s, we get

ˆ ˆˆˆ 0db dtt b
ds ds

   

or
ˆ ˆˆ ˆ 0db t b n

ds
    

or
ˆ

ˆ 0db t
ds

            ˆ ˆas b n


ˆdb

ds
 is perpendicular to t̂ . .....(2.5.7)

Thus 
ˆdb

ds
 is perpendicular to the vector b̂ . This implies that 

ˆdb
ds

 is parallel to ˆ ˆb t  i.e.

ˆdb
ds

 is parallel to n̂ .

Hence
ˆ

ˆ.db n
ds

   .....(2.5.8)

Taking
ˆ

ˆdb n
ds

   .....(2.5.9)

(In the right hand screw system, by convention,  is negative).

3. Since ˆ ˆn̂ b t 


ˆ ˆˆ ˆˆdn db dtt b

ds ds ds
    .....(2.5.10)

Using
ˆ

ˆdt n
ds

       (formula 1)

and
ˆ

ˆdb n
ds

     (formula 2),
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we get
ˆdn

ds
ˆˆˆ ˆ( )nt b n    

ˆ ˆb t             ˆ ˆˆ ˆˆ ˆ( and )n t b b n t      .....(2.5.11)

The Serret-Frenet formulae can be put in the matrix form as follows :

ˆ ˆ0 0
ˆ ˆ0
ˆ ˆ0 0

t t
n n

b b

    
            
          

.....(2.5.12)

2.5.1  Theorems on curvature and rorsion :

Theorem 1.  The necessary and sufficient condition for the curve to be a straight line is

that  = 0 at all points of the curve.

Proof : Necessary condition : Given the curve is a straight line.

To prove  = 0

We know that the vector equation of a straight line is

,r a s c 
    .....(1)

where anda c 
 are constant vectors and s be the measure of the length of the arc from the point

whose position vector is a .

Differentiating with respect to s, we get

0r c r   
   .....(2)

Also by definition
ˆ ˆ 0dt t r

ds
     



Hence the condition is necessary.

Sufficient condition.

Given  = 0.

To prove curve is a straight line.

Here  = 0

 0r  .....(3)

On integration, we have

r c 
   (a constant vector) .....(4)

Again, integrating, we get

,r a s c 
    .....(5)

where a  is another constant vector..

Clearly r a s c 
     denotes a straight line.

Hence the condition is sufficient.
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Theorem 2.  The necessary and sufficient condition that a given curve be a plane curve is

that  = 0 at all point of the curve or in other words   0r r r   
  

Proof : Necessary condition :
Given the given curve is a plane curve.
To prove  = 0.

If the given curve be a plane curve then we know that tangent and normal at all points lie

in the plane of the curve. (It means that plane of the curve is the osculating plane at all points of

the curve.)

Hence the unit normal i.e. binormal b̂  is same at all points which means that b̂  is a con-
stant vector both in magnitude and direction and as such

ˆˆ 0dbb
ds

  


or ˆ 0n 


or = 0    (by Serret-Frenet formula) .....(1)
Hence the condition is necessary.
Sufficient condition :
Given = 0.
To prove the curve is a plane curve.

If = 0


ˆ

ˆ 0db n
ds

   .....(2)

and hence b̂  is a constant vector i.e. the direction of binormal is same at all points of the curve.
This means the osculating plane is same at all points of the curve i.e. osculating plane

contains the curve. Hence the curve must be a plane curve.
Hence the condition is sufficient.
Theorem 3.  If the tangent and the binormal at a point of a curve make angles ,  re-

spectively with a fixed direction, then

sin .
sin

d
d

  
 

  

Proof : Let â  denotes a unit vector in the fixed direction, then by the given condition, we
have

ˆˆcos a t   .....(1)

and ˆˆcos a b   .....(2)

 ˆˆsin d a t
ds
    

       ˆ ˆa n    ˆ ˆa n   .....(3)
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and ˆˆsin d a b
ds
      ˆ ˆ( )a n     ˆ ˆ( )a n    .....(2)

from (1) and (2) we have
sin .
sin

d
d

  
 

  

Hence proved.

Theorem 4. The principal normals at consecutive points of a curve do not intersect un-

less  = 0.

Proof : Let the position vectors of two consecutive points P and Q on a curve be

andr r d r
    and let the principal normals at these points be ˆ ˆ ˆandn n d n  respectively..

O

P

n

Q

r

r 
 dr+

n  dn+

Fig. 2.7

In order to prove that the principal normals at these points may intersect, it is necessary

that the three vectors ˆ ˆ ˆ, ,d r n n d n
  are coplanar..

These vectors are coplanar if

 ˆ ˆ ˆ, , 0d r n n dn 


or  ˆ ˆ ˆ, , 0d r n d n  .....(1)

or  ˆ, , 0r n n 

or ˆˆ ˆˆ, , 0t n b t     

or ˆˆ ˆ, , 0t n b   

or ˆˆ ˆ, , 0t n b   

 = 0

since ˆˆ ˆ, , 1.t n b   
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Theorem 5.  Prove that

(i) 3
| |

| |
r r

r
 

 


 



(ii)
2

| |
| |
r r r
r r
  

 
 

  

 

Proof : (i)  We know that ˆr t 
 .....(1)

 ˆ ˆr t n   
       (by Serret-Frenet formula) .....(2)

 ˆ( )r r t n    
    b̂  .....(3)

Again d r d r dsr
dt ds dt

   
 

  sr  .....(4)

r s r s r s   
  

  

2s r s r  
 

  .....(5)

from (4) and (5) 2( )r r s r s r s r       
    

  

3( )r r s r r     
   

 .....(6)

from (3) ˆ| | | |r r b     
  .....(7)

 | |r r   
 

3 3
| | | |

| |
r r r r

s r
    


 

   

 

because from (4) | | | | .1r s r s s  
 

  

or ˆr t 
  is unit vector..

Again from equation (3) ˆr r b   
 

Differentiating again with respect to s, we have
ˆ ˆr r r r b b           

   

or ˆ ˆ0 r r b n        
          ˆ ˆ( )b n   .....(8)

Now  r r r      r r r    
  

 r r r    
  

 ˆˆ ˆn b n       [from 8]

 r r r    
= 2  .....(9)

 
 

2
r r r  




  

 
 2
r r r

r r
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6

22 3

r r r s

r r s

  


 

  


 


or 
 
 2
r r r

r r

  


 

  

 

2.5.2  Examples :

Ex.1.  For the curve    x = 3u,  y = 3u2,  z = 2u3.

Prove that   223 1 2
2

u 

Sol. Here r = (3u, 3u2, zu3)

 r = (3, 6u, 6u2) = 3 (1, 2u, 2u2)

r = 3 (0, 2, 4u)

or r = 6 (0, 1, 2u)

r = 6 (0, 0, 2)

| |r  2 4 23 1 4 4 3 1 2u u u    

r r   = 18 [1, 2u, 2u2] × [0, 1, 2u]

= 18 [4u2 – 2u2, 0 – 2u, 1 – 0]

= 18 [2u2, – 2u, 1]

 | |r r    2 4 218 4 4 1 18 1 2u u u    

 r r r  
   

21 2 2
3.6.6 0 1 2 216

0 0 2

u u
u 

 
 
   

2

3 3 22 2

18 1 2 2 1
327 1 2 1 1 2

ur r

r u u


  

 

  




   2 2 22 2

216 2 1
318.18 1 2 1 2

r r r

r r u u
  

  

    

  

   221 3 1 2 ;
2

u  


  221 3 1 2
2

u  
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Now for a left hand system   223 1 2
2

u  

   223 1 2
2

u   

Ex.2.  For the curve           x = a (3u – u3),  y = 3au2,  z = a (3u + u3)

show that the curvature and torsion are equal.

Sol. Here r ˆˆ ˆxi yj zk  

or r    3 2 3 ˆˆ ˆ3 3 3a u u i au j a u u k    

Differentiating with respect to s, we get

ˆ d rt
ds




   3 3 ˆˆ ˆ3 3 3 3 3 dua u i auj a u k
ds

       .....(1)

or ˆ d rt
ds




= a [(3 – 3u2), 6u, (3 + 3u2)] du
ds

= 3a [(1 – u2), 2u, (1 + u2)] du
ds

 2t̂ = 9a2 [(1 – u2)2 + 4u2 + (1 + u2)2] 
2du

ds
 
 
 

or 1 = 9a2 [2 (1 + u4) + 4u2] 
2du

ds
 
 
 

or 1 = 18a2 (1 + u2)2 
2du

ds
 
 
 


du
ds

 
 
   2

1
3 2 1a u


  

 t̂
2

2 2
1 1 2, , 1

1 12
u u
u u

 
     

Differentiating again with respect to s, we get

t̂
 

 
 

2

2 22 2

2 11 4 , , 0
2 1 1

uu du
dsu u

             

 
 
 

2

3 32 2

2 11 4 , , 0
6 1 1

uu
a u u
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 k2  
 

22 2
2

2 62

16 4 11ˆ| |
36 1

u u
t

a u

      
  

 
 

22

2 62

11
9 1

u

a u

    
  

   2 42

1 1
9 1a u




 
 22

1 1
3 1a u




  = 3a (1 + u2)2

Now t̂ n̂ 

or n̂ 1 t̂


 
 

 
 

2 22 2

3 32 2

3 1 2 14 , , 0
6 1 1

a u uu
a u u

     
   

 n̂  
 
 

2

2 2

2 11 4 , , 0
2 1 1

uu
u u

  
   

b̂ ˆ ˆt n 

 22

2 2 2 2

2 11 1 2 4, , 1 , , 0
1 1 1 12 2

uu u u
u u u u

               

 

2

2 2

2

2 2

ˆˆ ˆ

1 21 1
1 12 2

2 14 0
1 1

i j k

u u
u u

uu
u u




 


 

   
   

22 2 2

2 2 2 22 2

2 1 2 11 4 80 , ,
1 12 2 1 1

u uu u
u u u u
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or b̂
 2

2 2

2 11 4, , 2
1 12 2

u u
u u

    
  
 

2

2 2
1 1 2, , 1

1 12
u u
u u

 
   

  
.

Values of ˆ ˆandb t  are same except a change of sign.

Ex.3.  Find the radii of curvature and torsion of the helix

x = a cos ,  y = a sin ,  z = a tan .

Sol. Here r = (a cos , a sin , a tan )

r = (– a sin , a cos , a tan )

r = (– a cos , – a sin , 0)

r = (a sin , – a cos , 0)

 | |r 2 2 2sin cos tana       = a sec 

r r   = a2 (– sin , cos , tan ) × (– cos , – sin , 0)

= a2 (sin  tan , – cos  tan , sin2  + cos2 )

= a2 (sin tan , – cos tan , 1)

| |r r   2 2 2 2 2sin tan cos tan 1a     

2 2 2tan 1 seca a    

| |r r r    3
sin cos tan
cos sin 0

sin cos 0
a

   
    

  

= a3 tan 

 
2

2
3 3 2

| | sec 1 cos
| | sec
r r a

ar a
 

   


  


  = a sec2 

 2| |

r r r

r r

  
   

  

3

4 2
tan 1 sin cos
sec

a
aa


   



  = a sec  cosec 



42

Ex.4.  Determine the function  f () so that

x = a cos ,  y = a sin ,  z = f ();

shall be a plane curve.

Sol. Here r = (a cos , a sin , f ()),

r = (– a sin , a cos , ( )f  ),

r = (– a cos , – a sin , ( )f  ),

r = (a sin , – a cos , ( )f  ),

The condition for a curve to be a plane curve is

0r r r   
    

i.e.

sin cos ( )
cos sin ( ) 0
sin cos ( )

a a f
a a f
a a f

   
     

   







Applying R1 + R3, we get

0 0 ( ) ( )
cos sin ( ) 0
sin cos ( )

f f
a a f
a a f

  
     

   

 





or 2 ( ) ( ) 0a f f     
 

or ( ) ( ) 0f f    

or ( ) ( )f f A   

or 2 ( ) ( )D f f A   

 ( ) sin ( )f A B C    

Ex.5.  Find the radii of curvature and torsion at a point of the curve

x2 + y2 = a2,  x2 – y2 = a z,

Sol. The parametric equation of the curve may be given by

x = a cos ,  y = a sin ,  z = acos 2

Therefore r = (a cos , a sin , a cos 2)

r = a (– sin , cos , – 2 sin 2)

r = a (– cos , – sin , – 4 cos 2)

r = a (sin , – cos , 8 sin 2)

 r r   = a2 (– sin , cos , – 2 sin 2) × (– cos , – sin , – 4 cos 2)

or r r   = a2 (– 4 cos3 4 sin3 , 1)
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r r r  
    3

sin cos 2sin 2
cos sin 4cos 2
sin cos 8cos 2

a
    

      
   

Applying R1 + R3, we get

r r r  
    3

0 0 6sin 2
cos sin 4cos 2
sin cos 8cos 2

a


      
   

= a3 (6 sin 2)  1 = 6 a3 sin 2

Also 2| |r = a2 (sin2  + cos2 + 4 sin2 2)

= a2 [1 + 4 (1 – cos2 2)]

= a2 [5 – 4 cos2 2]
2| |r r   = a4 (5 + 12 cos2 2)

Therefore 2
2

6
1 | |

| |
r r

r


 


  


 
 

4 2 2

32 2 2

5 12

5 4

a z a

a z a






Hence 2
 
 

32 2

2 2 2

5 4

5 12

a z

a a z






and
1
 

  
3

2 4 2
6 sin 2

| | 5 12cos 2

r r r a
r r a

    
  

   

  

 
 2 2

2 2

5 12

6 1

a z a

z a






or 
2 2

2 2

5 12

6

a z

a a z





.

2.6 Osculating circle and osculating sphere

2.6.1 Definitions of osculating circle and osculating sphere :
Osculating circle : If P, Q, R are three points on a curve, the circle, PQR in its limiting

position where Q, R tend to P is called the circle of curvature at P and radius of circle is the

radius of curvature and is denoted by .

or
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The circle which has three point contact with the curve at P is called the osculating circle

at a point P on a curve.

To find the centre and radius of circle of curvature :

O

c

r P

c1

C

n

t

b
Fig. 2.8

Let c  be the position vector of the centre C1 of the osculating circle at point P to the

curve C whose equation be ( ).r r s
   Let a be the radius of the circle

| |r c  = a    i.e.   2| |r c   = a2 .....(1)

where r  is the position vector of the point P. The osculating circle is the intersection of the sphere

(1) and the osculating plane at P.

The point of intersection of the curve C and sphere (1) are given by

F (s)  2 2( ) 0r s c a   
 

The curve will have three point contact if

F (s) = 0,   F (s) = 0,  F (s) = 0

F (s) = 0  2 2 ,r c a  
 

F (s) = 0   0r c r   
  

or   ˆ 0r c t  
 

.....(2)

F (s) = 0   0r c r r r       
    

or   ˆ 1 0r c n    
 

or   1ˆr c n   


 

or   ˆr c n    
 

.....(3)
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Result (2) shows that t̂  is orthogonal to ( )r c   and as such ( )r c   lies in the normal

plane at P. Also by definition ( )r c   lies in the osculating plane at P. Hence ( )r c   lies along

the intersection of these two points i.e. along the principal normal at P.

  r c  ˆan .....(4)

where a is a scalar.

Putting (4) in (3), we get

ˆ ˆa n n     a = – 

and hence ( )r c  n̂  

Squaring, we get 2( )r c  = 2

or a2 = 2

  = a .....(5)

Above equation gives the radius of curvature.

Also from ˆr c n  
  , we get

ˆc r n   
.....(6)

Above relation shows that the centre c  lies on the principal normal at a distance  from

the point P whose position vector in .r

Results (5) and (6) give the radius and position vector of the centre of the circle of curva-

ture. (It should also be noted the sign of  is always positive.)

Cartesian form : Let (, , ) be the centre of the circle of curvature at a point (x, y, z) of

a given curve, and a be its radius.

The equation of the circle can be written as the intersection of

     
     

2 2 2 2

3 3 3

Sphere: ,

Osculating plane : 0

a

l m n

         


         
.....(1)

where l3, m3, n3 being d.c.s of the binormal.

Since the circle (1) has three point contact at (x, y, z) therefore

(x – )2 + (y – )2 + (z – )2 = a2 .....(2)

(x – ) l3 + (y – ) m3 + (z – ) n3 = 0 .....(3)

On differentiating of (3) with respect to ‘s’, we get

(x – ) 
dx
ds  = 0

or (x – ) l1 = 0 .....(4)

Again differentiating (4) with respect to ‘s’ we get

  1
1 0dl dxx l

ds ds
    .
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Using Serret-Frenet formulae

1 2dl l
ds




 etc.

in equation (4), we get (x – ) l2 = –  ......(5)

Squaring and adding equation (3), (4) and (5), we get

(x – )2 = 2 .....(6)

From equation (2), and equation (6), we conclude that

a = 

Now multiplying (3) by l3, (4) by l1 and (5) by l2 and adding, we have

(x – ) = – l2

Hence  = x + l2,

similarly,  = y + m2 and = n2 + z .....(7)

Thus, it is clear that the centre of curvature lies on the principal normal.

2.6.2  Properties of the locus of the centre of circle of curvature :
Property 1 : The tangent to the locus of the centre of curvature lies in the normal plane of

the original curve and is inclined to n̂  at an angle 1tan  
  

.

Proof : Let ( )r c
   be position vector of centre of c1 then

1r
 ˆr n  

 .....(1)


1

1
1

ˆ d rt
ds




 
1

ˆ ˆ dsr n n
ds

     


or 1̂t  
1

ˆˆ ˆˆ dst n b t
ds

         (By Serret-Frenet formulae)

or 1̂t  
1

ˆˆ dsn b
ds

         1   .....(2)

Above relation shows that 1̂t  lies in the plane containing ˆ ˆandb n  i.e. normal plane c.

If  be the angle made by 1̂ ˆwitht n , then

1̂t ˆˆcos sinn b    .....(3)

Hence by comparing (2) and (3)

1

ds
ds


1
cos and sin ;ds

ds
    

 tan 



  1tan 
  


.
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Property 2 : If the curvature  of a curve c is constant, then the curvature 1 of c1 is also
constant and its torsion 1 varies inversely as  of the curve c.

Proof : Now if  is constant i.e.  1/     const., then   = 0 and hence from (2)

1
1

ˆˆ dst b
ds

   .....(4)

squaring both sides  
2

1

ˆ ˆ ˆ1 1dsb b b
ds

 
     
 

or
1

1ds
ds

  

Putting in (4) 1
ˆˆ .t b

Differentiating with respect to s1,

1
1

ˆˆ dst b
ds

 

or  1 1
1ˆ ˆn n

 
      

 or   1 1̂ ˆn n   .....(5)

This relation show that n1 is parallel to n and if we choose the direction of n1 opposite to

that of n i.e. n1 = – n then from (5) we get 1 =  = constant as  is given to be constant.

Thus the curvature of c1 is also constant.

Again, 1 1 1
ˆ ˆ ˆb t n 

or  1̂
ˆ ˆb b n     ˆ ˆb n    ˆ ˆn̂ b t  

1̂ ˆ.b t

Differentiating with respect to s1, we get

1
1

ˆ ˆ dsb t
ds

 

or 1 1
1n n   


or
2

1 1
1 ,n n n n 

        



2

1
constant

  
 

 1 = constant.

Above shows that torsion of c1 is inversely proportional to torsion of c.
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Property 3 : Principal normal to c is normal to c1 at the points where curvature is
stationary.

Proof : We know that the position vector c  of the center of curvature is given by
ˆc r n 

 

Let the locus of  1c r
 

 be given by

1 ˆr r n 
 

Differentiating r1 with respect to s1, we have

1̂t  
1

ˆ ˆ ˆ dst n n
ds

    

  
1

ˆˆ ˆˆ dst n b t
ds

      

 
1

ˆˆ ˆˆ dst n b t
ds

    

 
1

ˆˆ dsn b
ds

  

 1̂ ˆt n  
1

ˆˆ ˆ ˆ dsn n b n
ds

      

1

ds
ds
  ˆ ˆ 0b n  

 1
1

ˆ ˆ dst n
ds
  

If  = const  = 0.

Therefore 1̂ ˆ 0.t n 

which shows that principal normal is normal to the locus of center of curvature at those points

where the curvature is stationary.

2.6.3  Osculating sphere or sphere of curvature :
A sphere which has a four point contact with the curve at a point P is called the osculating

sphere at P.

Let c be the centre and R the radius of sphere so that its equation is

 2 2r c R 
  .....(1)

where r is the position vector of point P on the curve.

The points of intersection of the sphere with the curve  r r s
   are given by

    2 2 0F s r s c R     
  .....(2)
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The sphere will have a four point contact with the curve if

0, 0, 0, 0,F F F F     

F = 0,  2 2r c R 
 

F = 0,     ˆ0 or 0r c r r c t     
    

.....(3)

F = 0,   ˆ ˆ 0r c t r t     
  

or   ˆ ˆˆ 0r c n t t    
 

or   ˆ 1 0r c n    
 

or   1ˆr c n     


 
.....(4)

F = 0,   ˆ ˆr c n r n       
  

or    ˆ ˆ ˆ ˆr c b t t n         
 

or    ˆ ˆ ˆ ˆr c b r c t t n           
   

or   ˆ 0 0r c b       
  [by (3)]

or   ˆr c b
      


 

.....(5)

Result (3) shows that t̂  is orthogonal to  r c 
 and as such it lies in the normal plane at

P which contains n̂  and b̂  and hence it can be expressed as a linear combination of ˆˆ and .n b

 ˆˆr c n b    
 

   ˆ orr c n      
 

[by (4)]

  ˆ orr c b        
  [by (5)]

   ˆˆr c n b     
 

or ˆˆc r n b     
  .....(6)

Above relation gives us the position vector of the center c of the osculating sphere.

Again  2 2r c R 
 

or  2 2ˆn̂ b R    

or 2 2 2 2R     .....(7)

Above relation gives us the radius R of the sphere of curvature.
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Properties of the locus of the counter of sphere of curvature.

(i) 1 1 1̂ˆ ˆ, ,t n b  of c1 are parallel respectively to ˆ ˆˆ, ,b n t of c.

Proof : Let c be the original curve, c1 the locus of the centre of spherical curvature. Let

the suffix unity denote quantities belonging to c1.

The position vector  1 sayc r
 

 of centre of spherical curvature is given by

1
ˆˆr r n b   

  .....(1)

differentiating with respect to s1

 1

1 1

ˆ ˆ ˆˆ ˆdr dsr n n b b b
ds ds

                   




or    1
1

ˆ ˆˆ ˆ ˆˆ ˆ dst t n b t b n
ds

                      

or  1
1

ˆ ˆˆ ˆ ˆ ˆ dst t b t n b n
ds

                  

or 1
1

ˆˆ dst b
ds

               
.....(2)

which shows that t1 (tangent to c1) is || to b.

Squaring (2), we get
2

1ds
ds

 
 
 

2           

or 1ds
ds

           
      


.....(3)

from (2) & (3)   1
ˆt̂ b .....(4)

Differentiating equation (4) with respect to ‘s1’.

1

1

ˆdt
ds 1

ˆ dsb
ds


or 1 1̂n
1

ˆ dsn
ds

  .....(5)

which shows that 1̂n  is parallel to ˆ.n

Squaring (3), we get
2

2 2

1

ds
ds

 
    

 

or
1

1

ds
ds

  
   

.....(6)
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from (5) and (6), we get 1̂ ˆn n  .....(7)

Equation (7) shows that directions of n1 and n are opposite to each other.

Taking cross product of (4) and (7)

 1 1
ˆˆ ˆ ˆt n b n       or   1̂ ˆb t .....(8)

which shows that 1̂b  is parallel to .c

(ii) The product of the torsion of c1 at corresponding points is equal to the product of cur-

vatures at these points.

Proof : Differentiating equation (8) with respect to s1

1
1

ˆ ˆ dsb t
ds

 

or 1 1
1

ˆ ˆ dsn n
ds

   .....(9)

but from equation (7) 1̂ ˆn n  , hence from equation (9), we have

1
1

ds
ds

   .....(10)

or 1
1

 
 


[using (6)]

or 1 1   .....(11)

 1 1  

(iii) If the curvature  of c is constant then curvature 1 of c1 is also constant.

Proof : The curvature  of c is constant

i.e. const., 0, 0.      

equation (3) reduces to
1

ds
ds

 
 
 

.

Hence from (6), we have

1

 


 
    or    1   .....(12)

which shows that the curvature 1 of c1 is also constant.

2.6.4  Examples :

Ex.6. If a curve lies on a sphere show that  and  are related by

  0d
ds

  


show that a necessary and sufficient condition that a curve lies on a sphere is that
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0d
ds

      

at every point on the curve.

Sol. Necessary condition :

Let the curve lie on a sphere then we have to prove the given condition. Now the sphere

will be osculating sphere for every point. The radius R of the osculating sphere is given by

R2 = 2 + 2 2 .....(1)

Differentiating with respect to ‘s’, we get

0 =  + 2   +  2

Dividing by , we get

0          


or   0d
ds

    


or 0d
ds

      

Sufficient condition : If 0d
ds

      
 to show that the curve lies on a sphere

2 2 2 2a     [by (1)]

showing that the radius of osculating sphere is independent of the point on the curve.

Again the centre of spherical curvature is given by

ˆˆC r n b     
 


dc
ds



 ˆ ˆ ˆˆ ˆˆ ˆt n b t b b n                   

b̂           

But  d or
ds

             
 

 is zero.

 0dc
ds




or c  = constant vector
i.e., the centre of osculating sphere is independent of the point on the curve.

Ex.7. Prove that the curve given by

x = a sin u,  y = 0,  z = a cos u

lies on a sphere.
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Sol. Here r  = a (sin u, 0, cos u) .....(1)

t̂ r   = a (cos u, 0, – sin u) 
du
ds

 
 
 

squaring
2

21 dua
ds

   
 

      
1du

ds a


Hence t̂  = (cos u, 0, – sin u) .....(2)

  ˆ sin ,0, cos dut n u u
ds

       
 



or   1ˆ sin ,0, cosn u u
a

      
 

squaring 2
2

1 1
aa

    

  = a = constant .....(3)

Hence  ˆ sin ,0, cosn u u   .....(4)

 ˆ ˆ ˆ 0,1,0b t n  

  ˆ ˆ 0,0,0b n  

  = 0 (as n̂   0) .....(5)

We know that curve will lie on a sphere if

  0d
ds

     

Here  = a

  = 0   and also  =0.

Therefore, the relation   0d
ds

       is clearly satisfied. Hence the given curve lies

on a sphere.

Ex.8. Prove that
2

2 2 2
2 2 4
1 1x y z

      
  

where dashes denote differentiation with respect to ‘s’.

Sol. Here ˆˆ ˆr xi yj zk  


ˆˆ ˆr x i y j z k     


ˆˆ ˆr x i y j z k     


ˆˆ ˆr x i y j z k     


       2 2 2 2r x y z     
 .....(1)
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Also
ˆˆ ˆ ˆ, nr t r t n      


 

r 2
ˆ ˆn n

  
     

  
2

ˆ ˆ
ˆb t n

   
 

 

2 2
1 1 ˆˆ ˆt b n


   

 

  2r
2

4 2 2 4
1 1 

  
   

. ......(2)

Hence from (1) and (2)

2 2 2x y z     
2

2 2 4
1 1 .

 
 
  

2.7 Answers to self-learning exercises

Self-learning exercise-1

1. osculating plane.

2. Binormal

3. ˆ ˆ, .r r rb n
r r r r
  

 
    

  

   

Self-learning exercise-2

1. If P, Q, R be three points on a curve, the limiting position of the plane PQR when Q and R
tend to P, is called the osculating plane at P.

2. The plane through P and perpendicular to the tangent line at P is called the normal plane

at P of the curve.

3. The plane through P and containing tangent and binormal is called rectifying plane.

4. ˆR r n 
 

5. ˆR r b  
 

2.8 Exercises

1. Show that the tangent and binormal at any point of the curve

 3 21, 3( 1), 2 1x t y t z t     

make the same angle with the line 
1 0 1
x y z
   and that the three directions are coplanar..

2. Establish the Serret-Frenet formulae at a point of a space curve.
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3. Find the radii of curvature and torsion of a helix

x = a cos , y = a sin ,  z = a  tan .

2sec ,
sin cos

aa
 

        
Ans.

4. For the curve x = a (3t – t3),  y = 3at2,  z = a (3t + t3)

Show that  =  = 3a (1 + t2)2.

5. Find the osculating plane, curvature and torsion at any point ‘’ of the curve

x = a cos 2,  y = a sin 2,  z = 2a sin 

[Ans. (sin  + sin 2 cos ) x – 2 cos3 y + 2z = 3a sin ,

 
 

 

3/ 22

1/ 22

2 1 cos
5sec 3cos ,

3 5 3cos

aa
        

  

6. For the curve x = 2abt,  y = a2 log t,  z = b2 t2.

Show that  =  = (a2 + 2b2 t2) / 2abt.
7. Find the equation of the osculating sphere and osculating circle at (1, 2, 3) on the curve

x = 2t + 1,    y = 3t2 + 2,    z = 4t3 + 3.

[Ans. 3 (x2 + y2 + z2) – 6x – 16y – 18z + 50 = 0,

3 (x2 + y2 + z2) – 6x – 16y – 18z + 50 = 0,   z = 3]

8. Show that the radius of spherical curvature of a circular helix

x = a cos , y = a sin , z = a  cot a
is equal to circular curvature.

9. If the radius of spherical curvature is constant show that the curve either lies on a sphere

or has a constant curvature  R2 = 2 + ()2  where R is constant.

10. Find the equation of the osculating sphere at origin of the curve

x = a1t3 + 3b1t2 + 3c1t,    y = a2t3 + 3b2t2 + 3c2t,     z = a3t3 + 3b3t2 + 3c3t.

 
 

2 2 2

1 1 2 2 3 3 1 2 3
2 2 2

1 2 3 1 2 3

1 2 3

2 2 2
9

0
3 2 2 2

0

x y z x y z
b c b c b c a a a

c c c b b b

c c c

  
 

  
 

  
 
 

Ans.
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UNIT 3 : Existence and Uniqueness Theorems, Bertrand
Curves, Involute, Evolutes, Conoids, Inflexional
Tangents, Singular Points, Indicatrix

Structure of the Unit

3.0 Objectives

3.1 Existence and uniqueness theorems

3.1.1 Existence theorem

3.1.2 Uniqueness theorem

3.2 Bertrand curves

3.2.1 Definitions

3.2.2 Properties of Bertrand curves

3.2.3 Theorem based on Bertrand curves

3.2.4 Self-learning exercise-1

3.3 Involute

3.3.1 Definition

3.3.2 General equation of the involute of a given space curve

3.3.3 To find curvature of the involute

3.3.4 To find torsion of the involute

3.3.5 Examples

3.3.6 Self-learning exercise-2

3.4 Evolute

3.4.1 Definition

3.4.2 General equation of the evolute of a given space curve

3.4.3 To find curvature of the evolute

3.4.4 To find torsion of the evolute

3.4.5 Examples

3.4.6 Self-learning exercise-3

3.5 Conoids

3.5.1 Definition

3.5.2 Equation of a conoid

3.5.3 Examples

3.5.4 Self-learning exercise-4



57

3.6 Inflexional tangents

3.6.1 Definition

3.6.2 Equation of the Inflexional tangents at a point of a given surface

3.6.3 Examples

3.7 Singular points

3.7.1 Definition

3.7.2 Singular tangent planes

3.7.3 Examples

3.7.4 Self-learning exercise-5

3.8 Indicatrix

3.8.1 Definition

3.8.2 Examples

3.9 Answers to self-learning exercise

3.10 Exercises

3.0 Objectives

This unit provides a general overview of :

•  Existence and uniqueness theorems

•  Bertrand curves

•  Involute

•  Evolute

•  Conoids

•  Inflexional tangents

•  Singular points

•  Indicatrix

3.1 Existence and uniqueness theorems

Existence and uniqueness theorem for space curves is also called fundamental theorem on space

curves

3.1.1 Existence theorem :

If k (s) and  (s) are continuous functions of a real variable s (s  0) then there exists a space

curve for which k is the curvature,  is the torsion and s is the arc-lengths measured from some suitable

base point.
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Proof : The proof of this theorem depends on the existence theorem of the solution of differen-

tial equations which states that the linear differential equations

dx
ds

, ,dy dzky z kx y
ds ds

      .....(3.1.1)

where k and  are continuous functions of s in the interval 0  s  a.

Equation (1) admits a unique set of solutions for a given set of values of x, y, z at s = 0.

In particular, there exists a unique set (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) which have values

(1, 0, 0), (0, 1, 0), (0, 0, 1) at s = 0, respectively.

Now,

 2 2 2
1 1 1

d x y z
ds

  1 1
1 1 12 dx dzdyx y z

ds ds ds
    
 

    1 1 1 1 1 1 12 0x ky y z kx z y       [using (1)]

Hence,
2 2 2
1 1 1x y z  = constant = C1 (say)

Since at s = 0, x1 (0) = 1, y1 (0) = 0, z1 (0) = 0, therefore   C1 = 1.

Thus, we get 2 2 2
1 1 1 1, .x y z s    .....(3.1.2)

Similarly, we get
2 2 2
2 2 2
2 2 2
3 3 3

1,

1, for

x y z

x y z s

   


    
.....(3.1.3)

Further,  1 2 1 2 1 2
d x x y y z z
ds

 

2 1 2 1 2 1
1 2 1 2 1 2

dx dx dy dy dz dzx x y y z z
ds ds ds ds ds ds

               
     

= x1(ky2) + x2(ky1) + y1(z2 – kx2) + y2(z1 – kx1) + z1(– y2) + z2(– y1) = 0.

Hence on integration,

x1 x2 + y1 y2 + z1 z2 = const. = d1 (say)

The value of the constant d1, determined by the initial conditions and we get d1 = 0.

Thus we get x1 x2 + y1 y2 + z1 z2 = 0,   s. .....(3.1.4)

Similarly, we get 2 3 2 3 2 3

3 1 3 1 3 1

0
for

0
x x y y z z

s
x x x x x x

   
   

.....(3.1.5)

Hence, we have six relations given by (3.1.2) to (3.1.5) in the elements of three sets namely

(x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) defined for each value of s.

If r 
0

s

t ds  ,    then      r = r (s)
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is the position vector of a point on the curve with (k, , s) curvature, torsion and arc-length

respectively and  ˆˆ ˆ, ,t n b  as unit tangent vector, unit principal normal vector and unit binormal

respectively
Hence the existence of curve is proved.
3.1.2 Uniqueness theorem :
A curve is uniquely determined, except as to position in space, when its curvature and torsion

are given functions of its arc-length.
Proof : If possible let there be two curves c1 and c having equal curvature k and equal torsion 

for the same value of s. Let the suffix unity be used for quantities belonging to c1. Now, if c1 is moved
(without deformation) so that the two points on c and c1 corresponding to the same value of ‘s’
coincide. We have

 1ˆ ˆd t t
ds

 1 1 1ˆ ˆˆ ˆt k n kn t   

or  1ˆ ˆd t t
ds

 1 1ˆ ˆˆ ˆt kn kn t       [  k1 = k given] .....(3.1.6)

 1ˆ ˆd n n
ds

    1 1 1
ˆ ˆˆ ˆˆ ˆn b kt b kt n        .....(3.1.7)

 1
ˆ ˆd b b

ds
    11 1

ˆ ˆˆ ˆb n kn b      .....(3.1.8)

Adding equations (1), (2) and (3), we get

 1 1 1
ˆ ˆˆ ˆ ˆ ˆ 0d t t n n b b

ds
      .....(3.1.9)

which on integrating gives 1 1 1
ˆ ˆˆ ˆ ˆ ˆ constantt t n n b b      . .....(3.1.10)

If c1 is moved in such a manner that at s = 0 the two triads  1 1 1
ˆ ˆˆ ˆˆ ˆ, , and , ,t n b t n b  coincide.

Then at the point 1 1 1
ˆ ˆˆ ˆ ˆ ˆ, ,t t n n b b    and then the value of constant in equation (3.1.10) becomes 3.

Thus, 1 1 1
ˆ ˆˆ ˆ ˆ ˆ 3t t n n b b      .....(3.1.11)

But the sum of three cosines is equal to 3 if each angle is zero or in an integral multiple of 2.

Thus for each pair of corresponding points 1 1 1
ˆ ˆˆ ˆ ˆ ˆ, ,t t n n b b   .

Also, 1 1ˆ ˆ givest t r r  
 

i.e.  1 10 . .,d r r i e r r a
ds

   
   

(constant vector)

But when s = 0, 1 10 orr r r r  
     at all corresponding points and hence the two curves

coincide or the two curves are congruent.

Hence the uniqueness theorem is proved.
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3.2 Bertrand curves

3.2.1 Definitions :

Two curves c and c1 are said to be Bertrand curves or conjugate if the principal normals to c

are also principal normals to c1.

3.2.2 Properties of Bertrand curves :

Property I.  The distance between corresponding points of the two curve is constant.

P r( )

b

t

t1

b1

P r ( )1 1

n1
C1

C

n

Fig 3.1
Proof : Let P and P1 be the corresponding points on the Bertrand curves c and c1. 1ˆ ˆandn n

be principal normals at P and P1 on curves c and c1.

Let the corresponding quantities for the curve c1 be denoted by the suffix unity.

Let PP1 = . Then the position vector 1r
  related to r  as,

1 ˆr r n  
  .....(3.2.1)

where  is function of ‘s’.

Differentiating (1) with respect to ‘s’, we get

1 1

1

dr ds
ds ds


ˆ ˆ ˆt n n     

or 1
1̂

dst
ds  ˆˆ ˆ ˆt b k t n      

  ˆˆ ˆ1 k t n b       .....(3.2.2)

By definition 1̂ ˆn n .....(3.2.3)

Taking the dot product of (3.2.2) and (3.2.3) and noting that ˆˆ ˆ ˆ ˆ ˆ0, 1t n b n n n     

 0 = 

which on integration gives

 = constant.

i.e. PP1 = constant.
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Property II.  The tangents at the corresponding points of the associate Bertrand curves
are inclined at a constant angle.

Proof : If  be the angle between 1ˆ ˆandt t  then we have to prove that  is constant.

t1

t

b1

b

O

n  n= 1

Fig 3.2

But 1ˆ ˆ cost t  

and  1ˆ ˆd t t
ds

 1
1 1ˆ ˆ ˆ ˆ dst t t t

ds
    

1
1 1 1ˆ ˆˆ ˆ dsK n t t K n

ds
  

1
1 1 1ˆ ˆˆ ˆ.dsK n t K t n

ds
         1ˆ ˆn n

= 0 .....(3.2.4)

 1 1̂ ˆˆ ˆ0, 0n t t n   

Integrating we get 1ˆ ˆt t constant cos , say   .....(3.2.5)

  = constant.        .....(3.2.6)

Further, as the principal normals of the two curves coincide, it follows from the above that the

binormals of the two curves are also inclined at the same constant angle.

Property III. The curvature and torsion of either associate Bertrand curves are connected
by a linear relation.

Proof : From property I, we have  = 0. .....(3.2.7)

Therefore,

1
1̂

dst
ds   ˆˆ1 k t b    .....(3.2.8)
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This implies that 1
ˆˆ ˆ, andt t b  are coplanar. On taking dot product with 1̂,b  we get

  1 1
ˆ ˆ ˆˆ0 1 k t b b b     

But,  1̂ˆ cos 90t b    1
ˆ ˆsin and . cosb b    .....(3.2.9)

Hence, (1 – k) sin  +   cos  = 0

or 1k     
tan   for the curve c. .....(3.2.10)

This shows that and k are linearly related.

Again from (3.2.1), 1 ˆr r n  
 

 1 ˆr r n 
 

Above shows that the point  P r  is at a distance –  along the normal at  1 1 ˆandP r t
 is

inclined at an angle (– ) with 1̂.t  Hence (3.2.10) takes the form

 1 1 1 1
1 1tan or tanK c K                 

.....(3.2.11)

which gives the linear relationship between 1 and K1.

3.2.3 Theorem based on Bertrand curves :

Theorem.  The torsion of the two Bertrand curves have the same sign and their product is
constant.

Proof : From property (III), we have

1
1̂

dst
ds   ˆˆ1 K t b    .....(3.2.12)

and 1̂t ˆˆ cos sint b   .....(3.2.13)

On comparing the coefficients in (3.2.12) and (3.2.13), we get

1( / )
1

ds ds 1
cos sin

K 
 

  
.....(3.2.14)

then, we have  1 1sin , 1 cosds dsK
ds ds

      .....(3.2.15)

Replacing  by – ,  by –  and s by – s1 and s1 by s, we have

– 1 1
1 1

sin , 1 cosds dsK
ds ds

      .....(3.2.16)

On multiplying, we have 1 = 1/2 sin2 K = constant as both  and  are constants and

(1 – K) (1 + K1) = cos2 . .....(3.2.17)
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3.4.4 Self-learning exercise-1.
1. How many properties of Bertrand curves are ?
2. In which relation the torsion and curvature of Bertrand curves are connected ?
3. The angle between tangents of Bertrand curve are ......... .

3.3 Involute

3.3.1 Definition :
If tangents to a give space curve c are normals to another curve c1, then the curve c1 is called

involute of the curve c.
3.3.2 General equation of the involute of a given space curve :

Let c1 be an involute of c and let equation of c be  .r r s
 

 Let the quantities belonging to c1

be distinguished by the suffix unity.

Any point P1 on c1 is given by

OP1 = OP + PP1   1 ˆr r t   .....(3.3.1)

Where  is to be determined. Differentiating equation (3.3.1)

 1
1

ˆ ˆ ˆ ˆ dst t t K n
ds

   .....(3.3.2)

P

n
O C1

t

t

r

C

Involute

P1
Evolute

r1

Fig 3.3

But t̂  is perpendicular to t1 for an involute, hence taking dot product of both sides of equation

(3.3.2) with t̂  and using 1ˆ ˆ 0,t t  we get

 
1

1 0ds
ds

    i.e. 1 +  = 0 i.e. ds + d = 0

hence on integration, we get s +  = c or  = c – s .....(3.3.3)

where c is constant of integration

  1 ˆr r c s t  
 

.....(3.3.4)

This is the required equation of involute c1 of the curve c.
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3.3.3 Curvature of the involute :
From (3.3.2) and (3.3.3), we have

1
1̂ ˆdst k n

ds
    where  = c – s. .....(3.3.5)

This shows that 1̂t  is parallel to ˆ.n Taking the direction of 1̂t  same as that of ˆ,n we get

1
1̂ ˆ,ds K t n

ds
   .....(3.3.6)

Differentiating equation (3.3.6), we have

1

1 1

ˆ ˆdt dn ds
ds ds ds

    1 1
1ˆ ˆˆK n b Kt
K

   
 .....(3.3.7)

On squaring
2 2

2
1 2 2

KK
K

 
 


  1/ 22 2

1

K
K

K

 



  where  = c – s. .....(3.3.8)

Hence, equation (3.3.8) determine curvature of the involute.
3.3.4 Torsion of the involute :

From (3.3.7), we have

1
1

ˆ ˆ
ˆ b Ktn

K K
 


 .....(3.3.9)

Therefore using (3.3.6) and (3.3.8), we have

1 1 1 1
ˆ ˆ ˆ ˆ ˆb t n n n   

 1 22 21

ˆ ˆˆ ˆˆort Kb t Kbb
KK K

   
 
  

.....(3.3.10)

Differentiating (3.3.10) with respect to ‘s’ and using Serret-Frenet formulae, we find

1 1

1

ˆdb ds
ds ds  1 22 2

ˆˆ1 ˆˆdt dbK t K b
ds dsK

         
   

 
 
 

 3 22 2

ˆˆ
,

t Kb
KK

K

 
   

 

or 1 1̂n K   
 

 1/ 22 2

1 ˆˆˆ ˆKn K n t K b
K

       
 

 
 
 

 3 22 2

ˆˆ
,

t Kb
KK

K

 
   

 

or 1 1̂n K 
     

 

2 2

3 22 2

ˆ ˆˆ ˆ
,

K t K b t K b KK

K

           


 

or 1 1̂Kn 
  

 3 22 2

ˆˆK K K t b

K

     


 
.....(3.3.11)



65

Squaring both sides, we get

2 2 2
1 K   

 
2

22 2
,

K K

K

   


 

 1
 

 2 2

K K
K K

   
 

  
  where     = c – s. .....(3.3.12)

Hence equation (3.3.12) determines the torsion of the involute.

3.3.5 Example :
Ex.1. Find the involute of a circular helix given by.

x = a cos ,   y = a sin ,   z = a  tan .

Sol. Here r = (a cos ,  a sin , a  tan ).

Diff. with respect to 


dsr
d



  sin , cos , tana a a    

 ˆ dst
d  sin , cos , tana a a    .....(1)

On squaring, we have
2ds

d
 
  

 2 2 2 2 2 2 2sin cos tan seca a a      

 ds
d

seca 

or s
0

sec seca d a


     

Putting for 
ds
d  in (1), we get

ˆ sect a   sin ,cos , tana    

t̂  cos sin ,cos , tan     

Now the equation of involute is,

1r
    ˆr c s t  



or 1r
   cos , sin , tana a a        sec cos sin ,cos , tanc a       

or x = a cos  – (c – a  sec ) cos  sin 

y = a cos  – (c – a  sec ) cos   cos 

z = a tan  + (c – a  sec ) sin 
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Ex.2. Show that the distance between corresponding points of two involutes is constant.

Sol. The equation of the involute is,

 1 ˆr r c s t  
 

where ‘c’ is arbitrary constant.

Let c = c1 and c = c2 be the values of constant for the two point P and Q on the involute whose

position vectors are 1r
 and 2r

 say, so that

 1 1 ˆr r c s t  
 

,      2 2 ˆr r c s t  
 

   2 1 1 2 1 2 constant.PQ PQ r r c c t c c       
  

3.3.6  Self-learning exercise-2.

1. Write the formulae of curvature of an involute

2. Write the formulae of torsion of an involute.

3. Write the equation of involute.

3.4 Evolute

3.4.1 Definition :
If the tangents to a curve c are normals to another curve c1, then c is called an evolute of c1.
3.4.2 General equation of the evolute of a given space curve :
In other words, we are given the equation of the involute c and are required to find its

evolute c1.

Let  r r s
 

 be a given curve c.

Let 1r
  be the position vector of any point Q on c1 and that of the corresponding point P on c

be .r

Now, since the tangent to c1 are normals to c, the point Q must lie in the normal plane to the

curve c at P.

P Q

O

b

C1

t 1

r1
r

n

n1

evolute

C

Fig 3.4
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Thus, 1
ˆˆr r n b   

  .....(3.4.1)

where  and  are to be found out.

Differentiating with respect to ‘s’,  1
ˆˆas PQ r r n b      

 

1̂t    
1

ˆ ˆˆ ˆ ˆ ˆ dst b Kt n b n
ds

           

     
1

ˆˆ ˆˆ1 dsK t n t b
ds

             .....(3.4.2)

As 1̂t lies in the normal plane of c at P, therefore it must be parallel to ˆˆ ,n b   hence compar--

ing this with the relation in (3.4.2), we obtain
1 – K  = 0    i.e.  = 

and
 


1
2 2. ., tandi e

ds
          

         

or
1tand

ds
  

    
.....(3.4.3)

Integrating equation (3.4.3), we get

1tana ds  
  

     [as  and a is constant]

 
1cot 




or            cot ds a    
Substituting values of  and  in equation (3.4.1), we get

1r
    ˆˆ cot .r n ds a b    

 .....(3.4.4)

This is the required equation of evolute c1 of the curve c. As, we give different value of a, we

get infinite system of evolutes of the given curve, one evolute arising from each choice of a.

If we assume
1and

2
ds a c    

 .....(3.4.5)

so that
d
ds


 

Hence, equation (3.4.5) of the evolute becomes,

 1
ˆˆ tanr r n c b    

  . .....(3.4.6)

3.4.3 Curvature of the evolute :

Differentiating equation (3.4.6) with respect to ‘s1’
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t1  
1

ˆˆ tan dsr n c b
ds
      

   ˆ ˆˆˆ tant n b Kt c b         

+    2

1
ˆ tan sec dsn c c b

ds
             

1

ds
ds

 
  

 


   
1

ˆtan tan dsc n c b
ds

             

   
 

   2 2
1

sin cos ˆˆ cos sin
cos

K c K c dsn c b c
dsK c

                    
2

K
K

    


Hence the unit tangent to the evolute is,

   1
ˆˆ cos sint n c b c      .....(3.4.7)

where 1ds
ds  

   
 2 2

sin cos
cos

K c K c
K c

      
  

   

Differentiating equation (3.4.7) w.r.t. ‘s1’

1 1̂K n      ˆ ˆ ˆcos sinb Kt c n c           
1

ˆˆ sin cos dsn c b c
ds

     

 
1

ˆcos dsK c t
ds

      .....(3.4.8)

This equation shows that the principal normal to the evolute is parallel to .̂t
We may choose the direction such that

1 ˆn̂ t  .....(3.4.9)

Therefore K1  
1

cos dsK c
ds

  

or K1 
 

   

3 3cos
sin cos

K c
K c K c




     
.....(3.4.10)

Hence equation (3.4.10) determines the curvature of evolute.

3.4.4 Torsion of the evolute :

We know      1 1 1
ˆ ˆˆ ˆˆ ˆ cos sinb t n n c b c t            

or    1̂
ˆ ˆcos sinb c b c n      .....(3.4.11)
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Differentiating this relation with respect to ‘s’

   1 1
1

ˆˆ ˆsin cosdsn c b c n
ds

               ˆ ˆˆcos sinc n c b Kt        

or  1 1
1

ˆˆ sindsn K c t
ds

     

or    
   

3 2

1
sin cos

sin cos
K c c

Kt c K c
    

 
   

 1 from (3.4.9)n t     .....(3.4.12)

Hence equation (3.4.12) determines the torsion of the evolute.

Now the relation between curvature and torsion is given by

1

1K


 = – tan ( + c) .....(3.4.13)

3.4.5 Example :

Ex. 1.  Find the evolutes of the circular helix
x = a cos ,   y = a sin ,   z = a  tan 

Sol. Here  cos , sin , tanr a a a    


.....(1)

Equation of evolute of space curve  r r s
   is given by,,

 1
ˆˆ tanr r n c b    

  .....(2)

where ds   .....(3)

Differentiating, (1) gives

 ˆ sin , cos , tan dt r a
ds
     

.....(4)

Taking module of both sides

2 21 sec secd da a
ds ds
       

 
.....(5)

Using (5), (4) gives

 ˆ cos sin , cos , tant      

  
2cosˆ ˆ cos , sin , 0t Kn

a
       [using (5)]

which gives
2

2cos . . secK i e a
a


   

and  ˆ cos , sin , 0n     

  ˆ ˆ ˆ cos sin tan , cos tan ,1b t n        
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2cosˆ ˆ tan cos , sin , 0b t n

a
       

which gives,
cossin

a


  

  1 1sin cos sin cosds s
a a

        [Using (5)]

= ( sin ).

Hence the equation of evolute is given by

 
 

 

2

2

cos tan tan sec sin tan sin

sin tan tan sec cos tan sin

tan tan sec tan sin

x a a c

y a a c

z a a c

          
           
        

.....(6)

Equation (6) gives required evolutes.
Ex. 2.  Prove that the locus of the centre of curvature is an evolute and is given only when

the curve is plane.
Sol. The equation of evolute of space curve  r r s

   is given by

 1
ˆˆ tanr r n c b    

  .....(1)

where ‘c’ is arbitrary constant.
The locus of the centre of curvature is given by the equation as

1 ˆr r n 
  .....(2)

If equations (1) and (2) represent the same curves, then on comparison, we get
 tan 0c c n      ; n is an integer .....(3)

On differentiating with respect to ‘s’, we get

0 0 d
ds
           

 
 .....(4)

Hence the curve should be a plane curve.

3.4.6 Self-learning exercise-3.

1. Write down the equation of the evolute.

2. Write the formulae of the curvature of the evolute.

3. Write down the formulae of the torsion of the evolute.

4. Given relation between curvature and torsion of the evolute.

3.5 Conoids

3.5.1 Definition :

The surfaces generated by a moving straight line under certain conditions are called ruled

surfaces.
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Cone and cylinder are examples of the ruled surface.

A conoid, is defined as the locus of a line which always intersects a fixed line (a given line) and a

given curve and is parallel to a given plane.

Right conoid : If the given line is at right angles to the given plane, the locus is a right conoid.

3.5.2 Equation of a conoid :

Let the coordinate axes be so chosen as fixed line be z-axis and xy-plane be the given plane.

In such a case, the generators of the conoid will project the given curve on the plane x = 1 in a

curve, whose equation be taken as,

x = 1,  z = f (y) .....(3.5.1)

Let P (1, y, z) be any point on this curve, therefore

z1 = f (y1) .....(3.5.2)

Let Q (0, 0, z1) be the corresponding point on the fixed line. The generator of the conoid through

P is the line joining P and Q, whose equation is,

1

1

0 0
1 0

z zx y
y

 
  .....(3.5.3)

Eliminating y1 and  z1 between the eqn (3.5.2) and (3.5.3), we obtain the required equation of

the conoid i.e.,
z = f (y/x) .....(3.5.4)

3.5.3 Examples :

Ex.1.  Find the equation to the conoid generated by lines parallel to the plane XOY, are
drawn to intersect OZ and the curve

2 2
2 2 2

2 2
2, .x y zx y r
ca b

   

Sol. The generators of the conoid are parallel to the plane XOY and intersect OZ, therefore their

equations may be written as

Z =     and    x = y .....(1)

say (x, y, ) is a point lying on the curve through which the generator of the conoid passes, then the

other point will be (0, 0, ).

Therefore the equation to the generators are,

1

x
x 1 0

y z
y


  .....(2)

Also, 2 2
1 1x y

2 2
2 1 1

2 2
2, x yr
ca b


   .....(3)

or
2

2
2 2

1cr
a b

 
  

 
   2

1 12 1 x y      .....(4)
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Eliminating unknown constants  and  between (1) and (4), the required locus is

2 2
2

2 2
x ycr
a b

 
  

 
  2 22z x y  .

Ex.2.  Find the equation to the right conoid generated by lines which meet OZ, are paral-

lel to the plane XOY and intersect the circle
x = a, y2 + z2 = r2.

Sol. The generators of the conoid will project the given curve on the plane x = a is the circle

y2 + z2 = r2.

Let (x, y, z) or (a, y, z) is point on the circle through which the generators of the conoid pass.

Since the lines meet oz, therefore the other point will be (0, 0, z).

Therefore, the equations to the generating lines are,

1

1 0
z zx y

a y


  .....(1)

Also, y1
2 + z1

2 = r2

Eliminating y1, z1, between (1) and (2), we have
x2 (z2 – r2) + a2 y2 = 0

which is the required equation of the right conoid.
3.5.6 Self-learning exercise-4.
1. Define right conoid.
2. Write equation of conoid.
3. How can we obtain the equation of conoid ?

3.6 Inflexional tangents

3.6.1 Definition :
Let the equation to the line through a point (x1, y1, z1) on a given surface be

1 1 1 ( )x x y y z z u
l m n
  

   .....(3.6.1)

The inflexional tangents are the lines which have three point contact inside the given surface where

u = 0.

Another definition : At a point P where 0,r 
  the tangent line is called inflexional and the

point P is called point of inflexion.

3.6.2 The equation of the inflexional tangents at a point on given surface :

Let = f (,) be the equation to the surface, the point of intersection of the line

x
l

  y z
m n

  
    .....(3.6.2)
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are given by z +   = f (x + l , y + m )

 
22

, ...
2!

f x y l m f l m f
x y x y

       
               

or      
2

2 2, 2
2!

f x y pl qm rl slm m k
      +...

where ,zp q
x





2 2 2

2 2, , ,z z z zr s t
y x yx y
   

   
   

Therefore the equation of the tangent plane at (x, y, z) is
( – x) p + ( – y)q =  – z .....(3.6.3)

and the inflexional tangents are the lines of intersection of the tangent plane and the pair of planes given
by

r ( – x)2 + 2s ( – x) ( – y) + t ( – y)2 = 0. .....(3.6.4)
3.6.3 Examples :
Ex.1.  Find the inflexional tangent at (x1, y1, z1) on the surface y2z = 4ax
Sol. The equation to a line through (x1, y1, z1) is

1x x
l
  1 1 sayy y z z u

m n
 

   .....(1)

The inflexional tangents are the lines which have three point contact inside the surface where

u = 0.

From equation (1) substituting the values of x, y, z in the equation of surface y2z = 4ax, we get

F (u) = (mu + y1)2 (nu + z1) – 4a (lu + x1) = 0 .....(2)

For three point contact, we have

F (u) = (mu + y1) 2m (nu + z1) + (mu + y1)2 n – 4al = 0 .....(3)

F (u) = 2m2 (nu + z1) + 2mn (mu + y1) + 2mn (mu + y1) = 0 .....(4)

At u = 0, the above equations (2), (3) and (4) are reduced to
2
1 1 14 0y z ax  ....(5)

2
1 1 12 4 0my z ny al   .....(6)

2m2z1 + 2mny1 + 2mny1 = 0

or mz1 + 2ny1 = 0 .....(7)

Using (7), (6) become

21 1 1
1 1 1

1

32 4 0 or
2 8
mz my zmy z y al l

y a
   

Substituting value of l and n in (1), we get

 
1

1 13 /8
x x

my z a


 
1 1

1 1/ 2
y y z z

m mz y
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or  
1

2
1 13 / 4
x x

y z a
 1 1

1 12
y y z z

y z
 

 


or
1

13
x x

x
 1 1

1 12
y y z z

y z
 

 
        [using (5)]

which is the required equation of the inflexional tangent. Answer

3.7 Singular points

3.7.1 Definition :

If at a point P (x, y, z) of the surface F (x, y, z) = 0

F
x




0F F
y z

 
  
  .....(3.7.1)

then every straight line through P (x, y, z) will meet surface in two coincident points, such a point is

called a singular point or the first order on the surface.

3.7.2 Tangents at the singular point :

The straight lines through P (x, y, z) whose direction ratio satisfy the equation

2

0l m n F
x y z

   
      

.....(3.7.2)

meet the surface in three coincident points at P (x, y, z) and are called the tangents at the singular point.

Eliminating l, m, n from the equations of the straight lines and (2), we get the locus of the system

of tangents through P (x, y, z) as the surface

    
2 2

2
2 ... 2 ... 0F Fx y z

y zx
 

        
 

.....(3.7.3)

Singular points are classified according to the nature of the locus of the tangent lines represented

by (3.7.3) :

(i) if this locus is a proper cone, then the point P is called a conical point or conic node.

(ii) when it is a pair of distinct planes, then the point P is called a biplaner node or binode.

(iii) when the pairs of planes coincide, then the point P is called uniplanar node or unode.

3.7.3 Examples :

Ex.1.  Find and classify the singular points of the surface

xyz – a2 (x + y + z) + 2a3 = 0

Sol. The equation of the surface can be written as,

F (x, y, z) = xyz – a2 (x + y + z) + 2a3 = 0 .....(1)
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Differentiating (1) with respect to x, y and z respectively, we get

F
x




2 20 0 oryz a yz a     , .....(2)

F
y




2 20 0 orxz a xz a     , .....(3)

F
z




2 20 0 orxy a xy a     . .....(4)

From (2), (3) and (4), we get (a, a, a) which is a singular point.

Now, shifting the origin at (a, a, a) by substituting x = X + a, y = Y + a, z = Z + a the equation

of the surface reduce to

(X + a) (Y + a) (Z + a) – a2 (X + a + Y + a + Z + a) + 2a3 = 0

= XYZ + a (XY + YZ + ZX) = 0.

The locus of the inflexional tangents are

a (XY + YZ + ZX) = 0

which is an equation of a cone therefore (a, a, a) is a conic node.

Ex.2.  Prove that the z-axis is a nodal line with unodes at the points (0, 0, – 2) and

(0, 0, 2/3) for the surface

2xy + x3 – 3x2y – 3xy2 + y3 + z (x2 – xy + y2) = 0.

Sol. The origin is singular point and the locus of the inflexional tangent is

2xy = 0  pair of planes x = 0 and y = 0.

Therefore, the origin is binode.

But x = 0 = y is the z-axis and origin lies on oz i.e. z-axis is the nodal line. Consider a point

(0, 0, – 2) on z-axis and shifting the origin at (0, 0, – 2) by substituting

x = X, y = Y, z = Z – 2.

The equation of surface is reduced to

– 2X2 – 2Y2 + 4XY + X3 – 3X2Y – 3XY2 + Y3 + Z (X2 – XY + Y2) = 0

The locus of inflexional tangents is,

– 2X2 – 2Y2 + 4XY = 0

or (X – Y)2 = 0  X – Y = 0    and     X – Y = 0.

These are two coincident planes, therefore (0, 0, – 2) is a unode.

By similar treatment, we can prove (0, 0, 2/3) is also a unode.

3.7.4 Self-learning exercise-5.

1. If the locus is proper cone then singular point is called ..... .

2. Write the other name of singular point.



76

3.8 Indicatrix

3.8.1 Definition :

Let the plane z = 0 be taken as the tangent plane and the z-axis as normal at a given point of the

surface.

If z = f (x, y) is the equation of surface, expanding it by Maclaurin’s theorem we get

 2 21 2 ...
2

z px qy rx sxy ty      .....(3.8.1)

where 
2 2 2

2 2, , , ,z z z z zp q r s t
x y y xx y
    

    
    

 are the values at the origin.

Since the tangent plane at the origin is z = 0, we have p = 0 and q = 0 and therefore at the

origin

2z = rx2 + 2sxy + ty2 + ... .....(3.8.2)

If we neglect the third and higher powers of x and y, the shape of the surface in the neighbourhood

of the origin is approximately a conicoid given by

2z = rx2 + 2sxy + ty2 .....(3.8.3)

This conicoid is a paraboloid or parabolic cylinder according as rt  s2 or rt = s2, respectively.

The section of the surface by the plane z = h is the same as the section of the conicoid therefore

it is a conic, given by

z = h, 2h = rx2 + 2sxy + ty2 .....(3.8.4)

and is called the indicatrix.

Thus the conic in which a surface is cut by a parallel plane at an infinitesimal distance near the

tangent plane at any point is called the indicatrix at the point.

3.8.2 Examples :

Ex.1.  Prove that the indicatrix at a point of the surface z = f (x, y) is a rectangular hy-

perbola if

(1 + p2) t + (1 + q2) r – 2pq s = 0.

Sol. The equation of the surface is given by

z = f (x, y) .....(1)

The direction cosines of the inflexional tangents are given by

lp + mq – n = 0 .....(2)

and l2r + 2lms + m2t = 0 .....(3)

where  
2 2 2

2 2, , , ,z z z z zp q r s t
x y y xx y
    

    
    

.
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Equation (3) may be written as

2

2 0l lr s t
m m

        
   

which gives 1 2

1 2

l l t
m m r

 . .....(4)

Also eliminating l between (2) and (3), we get

2
22 0n mq n mqr ms m t

p p
    

     
   

or m2 (rq2 + tp2 – 2pqs) + 2nm (– qr + ps) + n2r = 0

for which
1 2

1 2

m m
n n 2 2 2

r
q r p t pqs


  .....(5)

from equations (4) and (5), we have

1 2l l
t

1 2 1 1
2 2 2

m m n n
r q r p t pqs

 
  .....(6)

These inflexional tangents will be right angle if

l1 l2 + m1 m2 + n1 n2 = 0 .....(7)

Substituting (6) into (7), we get

t + r + q2r +p2t – 2pqs = 0

or (1 + p2)t – 2pqs + (1 + q2) r = 0

which is the required condition for the indicatrix to be rectangular hyperbola.

Ex.2.  Prove that the points of the surface

xyz – a (yz + zx + xy) = 0

at which the Indicatrix is a rectangular hyperbola, lie on the cone
x4 (y + z) + y4 (z + x) + z4 (x + y) = 0.

Sol. The given surface equation can be written as,

  
axyz

xy ay ax


  .....(1)

Therefore,
zp
x





    
 2

xy ay ax ay axy y a

xy ay ax

   


 

2

2
z

x


 .....(2)

Similarly
2

2 ,zq r
y


  22

2 4
2z z xz

x x


 


2zs
x y



 

 23 2

2 2 2 4
22 and

z z yz zt
x y y y


  


.....(3)
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Substituting these values into the equation of indicatrix, we have

   2 24 4

4 4 4 4
2 2

1 1
z z y z z xz z

x y y x
    
        

   

2 2 3

2 2 2 2
2 2 0z z z
x y x y

   

or 2z2 {x4 (y + z) + y4 (z + x) + z4 (x + z)} = 0

Therefore the required locus is

x4 (y + z) + y4 (z + x) + z4 (x + y) = 0       (since z  0) .....(4)

which is a cone.

3.9 Answers to self-learning exercises

Self-learning exercise-1

1. Three

2. Linear relation

3. Constant angle

Self-learning exercise-2

1.
 1 22 2

1 , where
K

K c s
K

 
   



2.  
 

1 2

1 2 2
, where

K K
c s

K K

   
     

  

3.  1 ˆr r c s t  
 

Self-learning exercise-3

1.  1
ˆˆ tan .r r n c b     

 

2.  
   

3 3

1
cos

sin cos
K c

K
K c K c

 


     

3.    
   

3 2

1
sin cos

sin cos
K c c

Kt c K c
    

 
    

4.  1

1
tan .c

K


   

Self-learning exercise-4

1. Right conoid : If the given line is at right angles to the given plane, the locus is a right conoid.

2. z = f (y/x).

3. By intersection of fixed line and given plane.
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Self-learning exercise-5

1. Conic node.

2. First order on the surface.

3.10 Exercises

1. State and prove existence and uniqueness theorems.

2. Prove that the distance between corresponding points of two curves is constant.

3. Show that the involutes of a circular helix are plane curves.

4. Write down the equation of conoid.

5. Find the equation to the conoid generated by lines parallel to the plane XOY, which are drawn to

intersect OZ and the curve
2 2 2

2 2 2 2
2 2 2, 1.x y zx y z b

a b c
     

[Ans.    
2 2 2

2 2 2 2
2 2 21x y zb z x y

a b c
   

          
   

]

6. Find and classify the singular points of the surfaces

(i) xyz = ax2 + by2 + cz2 [Ans. (0, 0, 0) is a conic node]
(ii) xyz – a2 (x + y + z) + 2a3 = 0. [Ans. (a, a, a) is a conic node]

7. Prove that the indicatrix at every point of the helicoid z = c tan–1 (y/x) is a rectangular

hyperbola.

8. Prove that every point on a cone or cylinder is a parabolic point.
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UNIT 4 : Envelope, Edge of Regression, Ruled Surfaces,
Developable Surface, Tangent Plane to a Ruled
Surface

Structure of the Unit
4.0 Objectives

4.1 Introduction

4.2 Envelope

4.2.1 Family of surfaces (one parameter)

4.2.2 Characteristic of family of surfaces

4.2.3 Envelope

4.2.4 Edge of regression

4.2.5 Family of surfaces (two parameters)

4.2.6 Self-learning exercises-1

4.3 Ruled surface

4.3.1 Equation to a ruled surface

4.3.2 Criterion for a surface to be developable

4.3.3 Self-learning exercises-2

4.3.4 Equation of tangent plane to a ruled surface

4.4 Summary

4.5 Answers to self-learning exercises

4.6 Exercises

4.0 Objectives

After studying this unit you will be able to understand  :
1. characteristic, envelope and edge of regression of family of surfaces,
2. ruled surfaces, their classification and associated properties.

4.1 Introduction

Family of surfaces admit certain geometrical features such as characteristic and edge of regres-
sion which are in fact curves lying on the surface. Their study is of vital importance in the theory of dif-
ferential geometry. Similarly, envelope of family of surfaces has a unique property that it touches each
member of the family of surfaces.

There are many surfaces which are generated due to motion of straight lines. Such surfaces are
called ruled surfaces. This includes their classification as developable, skew surfaces and associated prop-
erties.
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4.2 Envelope

4.2.1  Family of surfaces (One parameter) :
An equation

F (x, y, z, a) = 0 .....(4.2.1)
where a is a parameter, represents a family of surfaces. By assigning different real values to the param-
eter a we get different surfaces belonging to family given by (4.2.1). For specific value to a, we get a
specific surface of the family and is called member of the family of the surfaces.

4.2.2  Characteristic of a family of surfaces :

Characteristic of a surfaces is the curve of intersection of two consecutive surfaces.
Let F (x, y, z, ) = 0,   F (x, y, z, ) = 0 .....(4.2.2)

be two consecutive surfaces of the family given by (4.2.1). Then the curve of intersection of the con-
secutive surfaces (4.2.2) is given by

     , , , , , ,
, , , 0, 0

F x y z F x y z
F x y z

    
  


.....(4.2.3)

The limiting position of the curve as  0 is obtained as

 , , , 0, 0,FF x y z 
  


.....(4.2.4)

which determines the characteristic curve corresponding to the value .

4.2.3  Envelope :

The concept of envelope of a family of surface is very important. The envelope of a family of

surfaces touches every member of the family, at all points of its characteristic. Geometrically, the enve-

lope of the family of surfaces is the locus of characteristic for all values of the parameter. Hence, the

envelope is obtained from the equation

0, 0,FF 
 


.....(4.2.5)

by eliminating .
Theorem 1.  The envelope of a family of surfaces touches each member of the family at

all points of its characteristic.
Proof : Let F (x, y, z, a) = 0 be the family of surfaces, where a being the parameter.
Let (x, y, z, ) = 0, F (x, y, z, )  = 0 be any two consecutive surfaces of the given family.

Then the envelope is obtained by eliminating  from the equations

0, 0.FF 
 



Consider (x, y, z, ) = 0 as equation of the envelope, where  is not merely a constant but a

function of x, y, z satisfying  0.F
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Now, the normal to the envelope

 , , , 0 where  0FF x y z      

is parallel to the vector F  i.e. parallel to the vector

ˆˆ ˆF F F F F Fi j k
x x y y z z

                                

or ˆˆ ˆ . 0F F F Fi j k
x y z

                          


The vector ˆF i
x

 
  

  is parallel to normal to the surface F (x, y, z, ) = 0. This reveals that

at all common points, the surface and the envelope admit the same normal, and consequently the

same tangent plane. This concludes that surface and envelope touch each other at all points of the

characteristic.

Note : Characteristic of the envelope is the curve in which two consecutive surfaces intersect.

Thus, each characteristic lies on the envelope.

4.2.4  Edge of regression :

Edge of regression is a curve that lies on the envelope. We have seen that the characteristic is

the curve in which two consecutive surfaces intersect.

Two consecutive characteristics meet in one or more points. The locus of points of intersection

of consecutive characteristics is called the edge of regression of the envelope. Obviously, the edge of

regression (a curve) lies on the envelope simply because every characteristic lies on the envelope. Edge

of regression may have the following formal definition :

“Edge of regression is the locus of the ultimate points of intersection of consecutive characteris-

tics of one parameter family of surfaces”.

Equation of the edge of regression of the envelope :

Let F (x, y, z, a) = 0 ......(4.2.6)

be the family of surfaces, a being the parameter.

Let F (x, y, z, ) = 0   and    F (x, y, z,  + ) = 0,

be two consecutive surfaces. Then the characteristic to the surface F (x, y, z, ) = 0 is given by

 , , , 0, 0FF x y z 
  


......(4.2.7)

The characteristic to the surface F (x, y, z,  + ) = 0  is given by

   , , ,
, , , 0, 0

F x y z
F x y z

   
   


......(4.2.8)
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Expanding the equations (4.2.8) be Taylor’s series, we get

 , , , ..... 0FF x y z 
    




2

2 .... 0F F 
   

 
.....(4.2.9)

From equations (4.2.7) and (4.2.9), we obtain

2

20, 0, 0F FF  
  

 
.....(4.2.10)

the edge of regression is obtained by eliminating  from the equations (4.2.10).

Theorem 2.  Each characteristic touches the edge of regression.

Proof : Let (x, y, z, a) = 0, be family of surfaces. Then for a =    and   a =  + ,

F (x, y, z, ) = 0 .....(4.2.11)

and F (x, y, z,  + ) = 0 .....(4.2.12)

are two consecutive surfaces.

Thus the characteristic curve corresponding to the surface F (x, y, z,  ) = 0 is given by

0, 0FF 
 


.....(4.2.13)

and the edge of regression is given by

2

20, 0, 0F FF  
  

 
.....(4.2.14)

We can consider edge of regression given by

0, 0FF 
 



provided  is a function of x, y, z given by

2

2 0F



.

Note that the tangent at any point P (x, y, z) to the edge of regression is nothing but the line of

intersection of the tangent planes to the surface. Consequently the tangent is normal to the vectors F
and F, where  is function of x, y, z.

Thus this tangent is perpendicular to the vectors

ˆ,F F i
x x

       
 .....(4.2.15)

and ˆ,F F i
x x
        

 .....(4.2.16)
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Using  
2

20, 0,F F 
 

 
 the equations (4.2.15) and (4.2.16) are reduces to

ˆ,F i
x

 
  

 .....(4.2.17)

and
2

ˆ.F i
x

 
    

 .....(4.2.18)

Vectors (4.2.17) and (4.2.18) are perpendiculars to tangent planes at P (x, y, z) to the charac-

teristic F (x, y, z, ) = 0,   , , ,
0.

F x y z 



 TThis concludes that the tangent to the edge of regression

is parallel to the tangent to the characteristic and consequently the two curves touch at their common

points.

4.2.5  Family of surfaces (two parameters) :
We now proceed for the case of envelope of two-parameter family of surfaces.

Envelope of two parameter family of surfaces.

Let F (x, y, z, a, b) = 0 .....(4.2.19)

where a, b are parameters, denote a family of surfaces.

Then the consecutive surfaces for a = , b =  are

F (x, y, z, , ) = 0 .....(4.2.20)

F (x, y, z,  + ,  + ) = 0 .....(4.2.21)

On expanding (4.2.21) by Taylor’s series, we get

 , , , , ..... 0F FF x y z   
          

when  0,  0 we ought to have at a point of intersection in the limiting case :

0, 0.F FF  
    

  .....(4.2.22)

Further since ,  are mutually independent then the identity (4.2.22) is line if

0, 0, 0.F FF  
  

  .....(4.2.23)

Thus, we conclude that the criterion given by (4.2.23) is mandatory for two consecutive sur-

faces given by (4.2.20) and (4.2.21) to interest. On elimination of ,  we get the equation of the enve-

lope of two parameter family of surfaces.

Ex.1.  Suppose that a tangent plane to the ellipsoid
2 2 2

2 2 2 1x y z
a b c
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meets the coordinate axes in points P, Q, R. Prove that the envelope of the sphere OPQR is
(ax)2/3 + (by)2/3 + (cz)2/3 = (x2 + y2 + z2)2/3

where 0 is the origin.

Sol. Let us consider

1x y z
  

   .....(1)

to be the tangent plane to the ellipsoid

2 2 2

2 2 2 1x y z
a b c

   .....(2)

Then the condition of tangency ensures that

2 2 2

2 2 2 1a b c
  

  
.....(3)

Given that the tangent plane (1) meets the axes in points P, Q, R, then the equation to the sphere

OPQR is

x2, y2 + z2 – x – y – z = 0 .....(4)

Fig. 4.1
Note that for variable values of , ,  we would have different tangent planes to the ellipsoid

and consequently different spheres of the form (4), i.e., (4) constitutes a family of surfaces, where 
are parameters.

We denote 2 2 2( , , , , , ) 0          F x y z x y z x y z .....(5)

and  
2 2 2

2 2 2, , 1 0        
  
a b c

.....(6)

The equation of the surfaces given by (5) is obtained on elimination of the parameters , , and
 from the equations

 

  
 

  

F FF .

This gives      2 3 2 3 2 32 / 2 / 2 /
x y z

a b c
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or
1 3 1 3 1 3

2 3 2 3 2 3 (say)  
  

x y z k
a b c

or
2 3 2 3 2 3

1 3 1 3 1 3, ,     
k a k b k c
x y z

......(7)

The values of  as obtained in (7) are now put in (3) and (5) to yield
2 2 3 2 2 3 2 2 3

2
4 3 4 3 4 3  

a x b y c z K
a b c

or (ax)2/3 + (by)2/3 + (cz)2/3 = K2 ......(8)

and
2 3 2 3 2 3

2 2 2
1 3 1 3 1 3 0

     
               

     

k a k b k cx y z x y z
x y z

or  2 2 2 2 3 2 3 2 3( ) ( ) ( )    x y z k ax by cz

or
2 2 2

2 3 2 3 2 3( ) ( ) ( )
 


 

x y zK
ax by cz

. .....(9)

From (8) and (9), we get the required result.
Ex.2.  Find the envelope of the family of planes

( , , , , ) cos sin sin sin cos 1 0.          
x y zF x y z
a b c

Sol. We have,

( , , , , ) cos sin sin sin cos 1 0           
x y zF x y z
a b c .....(1)

The required envelope is obtained by the elimination of the parameters and from the equa-
tions

0, 0, 0 
  

 
F FF

On differentiating (1) partially with respect to and , respectively, we obtain.



F sin sin cos sin 0x y

a b
       

sin cos 0 [ sin 0]      
x y
a b

......(2)



F

cos cos sin cos sin 0x y z
a b c

         ......(3)

Equation (2) gives, tan   ay
bx

......(4)

Equation (3) gives, cos sin tan   
x y z
a b c

......(5)
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The equation (1) can be rewritten as

cos sin sin 1 cos       
 

x y z
a b c

......(6)

using (5) in (6), we get tan sin 1 cos      
 

z z
c c

or sin sin 1 cos
cos

 
     

z z
c c

or
2 2sin cos 1

cos
   

   

z
c

or cos  z
c

......(7)

Now using (7) in (5), we get

2

2cos sin 1   
x y z c
a b c z

            
2

2cos tan 1z c
c z

 
      
  
 .....(8)

On squaring (2) and (8) and then on adding we get

2 2 2 2

2 2 2 2 1
 

    
 

x y z c
a b c z

or
2 2 2

2 2 2 1x y z
a b c

  

as the required envelope of the given family of planes.

Ex.3.  Find the equation of the developable surface whose generating line passes through
the curve y2 = 4ax, z = 0; x2 = 4ay, z = c and show that its edge of regression is given by

cx2 – 3ayz = 0 = cy2 – 3ax (c – z).

Sol.  Recall that a developable surface is generated by one parameter family of planes.

In order to find the equation of the required developable surface we first find the family of planes

F (m) = 0 (where m is parameter). The developable is obtained eliminating m from F (m) = 0 and

( ) 0.F m   We proceed as follows.
The equation to the tangent to the curve y2 = 4ax, z = 0 is

, 0  
ay mx z
m

.....(1)

Then any plane touching the parabola y2 = 4ax, z = 0 is

0,ay mx z
m

      
 

    (where  being scalar) .....(2)
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The section of the plane (2) by the plane z = c is

0    
ay c mx
m ......(3)

or 2
    

 
y c ax
m m m

If (3) touches the parabola  x2 = 4ay, z = c,  then the equation
2

2 4 ,         

y c a ay
m m m

must have equal roots

i.e.,
22 2

2 2 22 4 0,             
   

c y a c y a ay
m m mm m m

must have equal roots.

This gives
2

  
am a

c mc
.

Putting this value of  in (2), we get the plane touching both the given curves and it is

 
2

0
 

       
 

a am aF m y mx z
m c cm

or    3 2 0     
zF m am a my m x a
c

.....(4)

This gives 2( ) 3 2 0.    zF m am y mx
c

.....(5)

Elimination of m from (4) and (5) will give the required developable surface.

Edge of regression :
Differentiating (5) partially with respect to m, we get

( ) 6 2 0   zF m am x
c

This gives
3


cxm
az

. ......(6)

Note that the edge of regression is given by F (m) = 0, ( ) 0,F m ( ) 0.F m  Hence putting the

value of m From (6) in ( ) 0,F m we find

2

3 2 0
3 3

z cx cxa y x
c az az
           

On simplification, we get

6x2 – 3ayz = 0 ......(7)
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Again, on putting the value of m in (4) and performing simplification, we get

27a3z3 + 9azxyc2 – 2c3x3 – 27ca3z2 = 0.

Using (7) in the above equation, we obtain

27a3z2 (z – c) – 2c2x (3ayz) + 9azxyc2 = 0.

or    
2 4

3 2
2 227 3 0

9
   

c xa z c ayz c x
a y

or    
2 4

2 2
2

3 0  
ac x z c cx c x

y

or cy2 – 3ax (c – z) = 0

Hence the edge of regression is given by

cx2 – 3ayz = 0 = cy2 – 3ax (c – z).

Ex.4.  Find the equation of the developable surface which contains the two curves

y2 = 4ax,   z = 0   and    (y – b)2 = 4cz,    x = 0

and show that its edge of regression lies on the surface

(ax + by + cz)2 = 3abx (b + y).

Sol. The given curves are

y2 = 4ax, z = 0 .....(1)

(y – b)2 = 4cz, x = 0 ......(2)

The equation to the tangent to the curve (1) is

, 0,  
ay mx z
m

(where m is the slope) .....(3)

Now, the equation to the plane that touches the parabola (1) is

0,      
 

ay mx z
m

 (where  is a scalar) .....(4)

If the plane (4) touches the curve (2), then it means that the line  
ay z
m

touches the curve

(y – b)2 = 4cz.

That is, 
2

4     
 

a z b cz
m

 must have equal roots.


2

2 2 4 2 0                   

a az z c b b
m m

  must have equal roots.

i.e.
2 2

24 2 4                 

a ac b b
m m
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On simplification, we get

 


mc
bm a

......(5)

On putting the value of from (5), in (4), we find the equation of the plane touching the curve

(2), and it is

0   


a mczy mx
m bm a .....(6)

or on simplifying it becomes

bm3x – m2 (ax + by + cz) + am (y + b) – a2 = 0 .....(7)

We denote the surface (7) by F (m).

Developable surface :
We know that a developable surface of the surface F (m) = 0 is obtained by eliminating the

parameter m from the equations F (m) = 0 and ( ) 0F m .
Differentiating (6) with respect to m, we get

2( ) 3 2 ( ) ( ) 0F m bm x m ax by cz a b y       .....(8)

From (7) and (8), we obtain

2

2
( ) ( ) 9

2( ) 6 ( )
   


   

a b y ax by cz a bxm
ax by cz abx y b

.....(9)

Using this value of m in (7), we get the required developable surface.

Edge of regression :

We know that edge of regression for the surface F (m) = 0 is obtained on elimination of m

from, F (m) = 0, ( ) 0F m  and ( ) 0,F m  we have

( ) 6 2( ) 0    F m bmx ax by cz [from (7)]

This gives, .
3
 


ax by czm

bx
.....(10)

Putting this value of m is (7), we get

 
2

3 2 ( ) 0
3 3

ax by cz ax by czbx ax by cz a b y
bx bx

      
        

   

or (ax + by + cz)2 = 3ab (b + y), .....(11)

which gives the surface on which edge of regression lies.

Ex.5.  Find the developable surface which passes through the curves

y2 = 4ax,   z = 0   and   y2 = 4bz, x = 0.

Sol. The equation to the tangent to the curves

y2 = 4ax, z = 0 .....(1)
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is y , 0  
amx z
m

.....(2)

Therefore, equation to the plane touching (1) is

0      
 

ay mx z
m .....(3)

[Remember that here m is the slope of the tangent and is a parameter].

Equation (3) touches the curve

y2 = 4bz,  x = 0 .....(4)

That means  
ay z
m

[on putting x = 0 in (4)]

and 
2

4     

a z bz
m

 has equal roots i.e., discriminant is zero. [putting  
ay z
m

 in the equation

y2 = 4bz]

or
2

2 2
2

24 0      
 

a az b z
m m

,

has equal roots. That is
2 2 2

2
2 44      

a ab
m m

or   
bm
a

.....(5)

Putting the value of  in the equation (3), we get the equation of the plane touching the given

curve as

( ) 0.    
a bmF m y mx z
m a .....(6)

Developable surface :
We know that the developable surface is obtained by eliminating m from the equations

F (m) = 0, ( ) 0.F m  Now, differentiating (6) partially with respect to m, we obtain

2( ) 0     a bzF m x
am

.....(7)

Equation (6) can be written as

2 0      
a bzy m x

am

or 2 2 20 From (7)a a bz ay m x
am m m

             


or 2 0 
ay

m
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or 2


am
y

.....(8)

On putting the value of m in equation (7), we get the developable surface as

y2 = 4ax + 4bz.

Ex.6.  Show that the edge of regression of the developable that passes through the pa-

rabolas x = 0, z2 = 4ay; y2 = 4az, x = a is given by

3 .
3( )

 


x y z
y z a x

Sol.  In order to find the required edge of regression we have to first find the plane that touches

both the given curves.

Equation to the tangent to the parabola x = 0, z2 = 4ay is

, 0.  
az my x
m

Then the plane through this tangent (i.e. touching the parabola x = 0, z2 = 4ay) is

0      
 

az my x
m .....(1)

or 2 0
   

z a xy
m mm

.....(2)

Equation (2) meets the parabola y2 = 4az, x = a therefore its section by x = a is

2
z a ay
m mm


   ......(3)

Now, if equation (3) touches the parabola  y2 = 4az,  x = a.

Then the equation
2

2 4    
 

z a a az
m mm

must have equal roots, i.e. (mz – a + am)2 = 4azm2

must have equal roots, i.e. m2 z2 + [2am2 – 2ma – 4am4] z + a2 (m – 1)2 = 0  has equal roots.

Thus we must have [2am2 – 2ma – 4am4]2 = 4a2 m2 (m – 1)2.

On solving we get
31

 
m

m
.....(4)

Putting this value of in (2) we find the plane that touches both the given parabolas as

3

2
1

   
z a my x
m mm

.....(5)

or F (m) = m3 x – m2y + mz + (x – a) = 0 .....(6)
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Edge of regression :
The edge of regression is given by

( ) 0, ( ) 0, ( ) 0   F m F m F m

From equ. (4), we find 2( ) 3 2 0   F m m x my z .....(7)

( ) 6 2 0  F m mx y

 3


ym
x .....(8)

Equation (7) can be written as

2 2 0
3 3

  
y zm m
x x

or 2 2 ( ) 0
3

   
zm m m
x

      [putting 
3


ym
x

]

or 2

3


zm
x .....(9)

Note that to obtain the answer in required form we have to perform some tricky mathematical

manipulation as follows.

Dividing (4) by x, we obtain

3 2 1 0    
y z am m m
x x x

or 3 3 33 3 1 0am m m
x

         [using (6), (7)]

or 3 


a xm
x

.....(10)

Now, we write 3 2m m m


3 3


 

a x z y
x x x

           [using (6), (7), (8)]

or
3

3( )



x z
y a x .....(11)

Again, m3 m = (m2)2


2

3 3
        

    

a x y z
x x x


3( )




y z
z a x

. .....(12)

From (11) and (12), the required edge of regression is obtained as

3
3( )

 


x y z
y z a x

.
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4.2.6  Self-learning exercises-1
1. Characteristic of the family of surfaces F (x, y, z, ) = 0 is given by

(a) F = 0, 
2

2 0



F

(b)
2 3

2 30, 0 
 

 
F F

(c) F = 0 (d) 0, 0
 


FF

2. Which of the following is not true ?

(a) characteristic may not lie on the envelope

(b) envelope touches each member of the family

(c) edge of regression is a curve

(d) edge of regression lies on the envelope.

3. Find the envelope of the plane lx + my + nz = 0, where al2 + bm2 + cn2 = 0.

4.3 Ruled surface

You are familiar with the surfaces such as cones, cylinders, hyperboloid of one sheet and hyper-

bolic paraboloid. All these surfaces are generated by single parameter family of straight lines. But things

are not that simple and we need a further analysis. Hence we define ruled surfaces.

Ruled surface : A ruled surface is a surface which is generated by single parameter family of

straight lines. The line is called the generating line or ruling or generator of the ruled surface. All the

surfaces mentioned above are obviously ruled surfaces. Ruled surfaces are classified into two categories

depending upon intersection/non intersection of their consecutive generators.

Ruled surface on which consecutive generators intersect is called developable surface. Cones,

cylinders and conicoid are developable surfaces. A ruled surface on which two consecutive generators

do not intersect is called a skew surface or a scroll. Hyperboloid of one sheet and hyperbolic parabo-

loid are scrolls.

4.3.1  Equation to a ruled surface :

To find the equation of a ruled surface let us first explain directrix or base curve of a ruled sur-

face. A curve C on the ruled surface is called the base curve if it meets each generator exactly once.

Note that a ruled surface has many base curves. Now note that a ruled surface is determined by a base

curve C, say and the direction of the generator at the point of intersection of the generator and the base

curve C. After understanding the above now we find expression for a ruled surface.

Let P be a general point on the ruled surface and Q be a point on the base curve C. Let ( )r s

and 

R  be position vectors of Q and P respectively with respect to the origin. Further we assume that

ˆ ( )g s  be the unit vector along the generator at Q then the equation to the ruled surface is
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ˆ( ) ( )  
 R r s g s .....(4.3.1)

where  is a parameter that determines the directed distance along the generator from C.

R

P

r s( )

Q

O

g s( )

r  r s  = ( )

Fig. 4.2
The equation (4.3.1) can also be written in the Cartesian form.

Let (x, y, z) and (X, Y, Z) be the coordinates of the points Q and P, respectively. Then we can

write ˆ ˆˆˆ ˆ ˆ ˆ( ) ,r s x i y j z k R X i Y j Z k     


1 2 3
ˆˆ ˆˆ ( )g s g i g j g k  

where 2 2 2
1 2 3ˆ| ( ) | 1g s g g g   

using above in the equation (4.3.1) we find the equation of the ruled surface as

1 2 3
( )X x Y y Z z

g g g
  

    ......(4.3.2)

Equation (4.3.2) emphasises that a ruled surface is determined by single parameter () family of

straight lines. Note that the equation (4.3.2) can also be written as

X = aZ + ,  Y = bZ + 

where a, b, ,  are functions of .

Uptil now we have gone through the idea of ruled surface and its further classifications as devel-

opable and skew surface. The following theorem is the criterion to determine whether the ruled is devel-

opable or skew.

4.3.2 Criterion for a surface to be developable :

Theorem 1.  A ruled surface is developable or skew if and only if ˆ ˆ ˆ[ , , ] 0t g g    or 0

accordingly where t̂  is the unit tangent vector at a point on the base curve, and ĝ  is unit vector

along the generator through the point.

Proof : The condition is necessary :

Let C be a base curve given by ( )r r s
   on the ruled surface. Let RS be an arc on the curve C

such that  R r  and  S r dr
 

 be two consecutive points. Let arc RS = ds.
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For the neighbouring point S of R, we have the position vector

ˆd rr d r r ds r t ds
ds

    


    .  (where ˆ d rt
ds

 


 unit tangent vector at R)

Let g1 and g2 be generators through R and S, respectively (i.e. g1 and g2 are consecutive gen-

erators since R, S are consecutive points on the base curve C) and ĝ and ˆ ˆg dg  are unit vectors along

the generators g1 and g2. Let MN be shortest distance between g1 and g2 then MN is perpendicular to

both g1 and g2. Then MN is parallel to  ˆ ˆ ˆg dg g   or to

O

r + d r 

C

g

SR

NM

1g2

g g  dg+

ds

r

Fig. 4.3

  ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ]dgg g ds g Note g dg g ds g g ds
ds

       

or MN is parallel to  ˆ ˆ ˆ ˆ[ 0]g g ds g g  

Shortest distance MN = Projection of RS on MN
.d r
 (unit vector along MN)

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ| | | |
g g d r g gd r ds
g g ds g g
  

   
  




ˆ ˆ ˆ[ , , ]
ˆ| |
dst g g
g




......(4.3.3)

[Note : Since ĝ  is perpendicular to ĝ  and ˆ| | 1g   ˆ ˆ ˆ ˆ ˆ| | | | | |sin 90 | |g g g g g       ]

Recall that in developable surface two consecutive generators intersect that is the shortest dis-

tance between the generators is zero. Thus we find that if the surface is developable, shortest distance

MN is zero.

Hence ˆ ˆ ˆ, , 0 0
| |
dst g g
g

        
 .....(4.3.4)
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This is the necessary condition for the ruled surface to be developable. In ruled surface to be

developable.

In the case when the surface is skew, the consecutive generators don’t interest and therefore the

shortest distance is not zero. Thus, ˆ ˆ ˆ, , 0t g g     is the necessary condition for a ruled surface to be

skew.

The condition is sufficient :

If ˆ ˆ ˆ, , 0t g g      the shortest distance between the consecutive generators is zero, hence the

surface is developable.

Similarly ˆ ˆ ˆ, , 0t g g     consecutive generators don’t intersect, hence the surface is skew..

Theorem 2. A ruled surface generated by x = az + ,  y = bz +  is developable or skew if

0 0b a or        respectively..
Proof. The ruled surface is given to be generated by single parameter family of straight lines

x = az + ,     y = bz +  .....(4.3.5)

where a, b,  and  are functions of single parameter  (say). The equation (4.3.5) can be written as

0
1

x y z
a b
   
  .....(4.3.6)

Equation of ruled surface in vector form is

ˆR r g 
   .....(4.3.7)

Then ˆˆ ˆ 0 ( , , 0)r i j k      


 ˆ ( , , 0)d r t
ds

  


 

and ˆˆ ˆˆ 1 ( , , 1)g ai bj k a b    


ˆ

( , , 0)dgg a b
ds

   

Thus ˆ ˆ ˆ, ,t g g      ˆˆ ˆ ˆ0i j k g g        

 
ˆˆ ˆ

ˆˆ ˆ 0. 0
1

i j k
i j k a b

a b
       

   ˆ ˆˆ ˆ ˆ ˆ0. ( )i j k b i ja k a b ab            

.b a      .....(4.3.8)

Thus the surface is developable if 0b a       or skew if

0.b a      .....(4.3.9)



98

Aliter : The given generator can be written as
0

1
x y z

a b
  

  ......(4.3.10)

Let
1

x y z
a b
 

 

and
( ) ( ) 0

1
x y z

a a b b
       

 
   

be consecutive generators of the surface. If the surface is developable then these generators intersect

hence shortest distance between them is zero.

i.e.

0
1 0
1

a a b b
a b

 
    

or

0
0 0
1

a b
a b

 
  

or ba

or
2( ) 0b a t

t t t t
           

 0 [ 0]b a t        (4.3.11)

Ex.  Find the equation to the edge of regression of the developable

y = xt – t3,    z = t3y – t 6.

Sol.  In the given surface “t” is the parameter. The find the edge of regression recall that the

point of intersection of the two consecutive generators of a developable surface is a point on the edge of

regression.

The given equation of the developable is nothing but composed of the generators

y = xt – t3,   z = t3y – t 6.

The two consecutive generators are

y = xt – t3,  z = t3y – t 6 .....(1)

and y = x (t + t) – (t + t)3,   z = (t + t)3 y – (t + t)6 .....(2)

Now, solving y = xt – t3 and y = x (t + t) – (t + t)3 and on neglecting higher powers of t,

we get

(x – 3t2) t = 0

                 x = 3t2             [t 0]

Again solving z = t3y – t6 and z = (t + t)3 y – (t + t)6, we get on neglecting higher powers of

t y = 2t3.
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Using this value of y in the given generator we get

z = t3 (2t3) – t6 = t6.

Thus x = 3t2, y = 2t3, z = t6 is the required edge of regression.

4.3.3  Self-learning exercises-2

1. Developable surface is generated by :

(a) cones (b) cyclinders

(c) spheres (d) straight lines

2. Prove that the line x = 3t2z + 2t (1 – 3t4),   y = t2 (3 + 4t2) – 2tz generates a skew surface.

3. Prove that xyz = 2 is a developable surface.

4. Explain that a developable surface can be found to pass through two given curves.

5. Name two skew surfaces.

4.3.4  Equation of a tangent plane to a ruled surface :

(A) Equation in the vectorial notation :

Let r  be the position vector of any point P on the directrix, ĝ  be unit vector along the genera-

tor at P and r and ĝ  are function of single parameter . Then the ruled surface is given by

ˆR r g  
  ......(4.3.13)

where R


 is the position vector of the current point on the ruled surface. Note that R


 is function of two

independent parameters  and .

The equation to the tangent plane to the ruled surface (4.3.13) is given by

   1 2
* 0R R R R   
   

.....(4.3.14)

where suffixes ‘1’ and ‘2’ denote differentiation of R


 with respect to  and  respectively and R* is the

position vector of the current point on the tangent plane. Thus (4.3.14) can be written as

  1 1 2
* ˆ ˆ, , 0R R r g g     
  

......(4.3.15)

(B) Equation in cartesian notation :

Let x = az + , y = bz +  .....(4.3.16)

be the generator of the ruled surface, where a, b,  and  are functions of single parameter s.

Let us assume that () be a point on the ruled surface generated by (4.3.13). Then obvi-

ously  can be regarded as functions of s and z

where = az + ,    = bz + ,  = z. ......(4.3.17)

Thus, the equation of the tangent plane at the point (s, z) is given by
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0.

x y z
x y z
s s s
x y z
z z z

    
  

  
  
  

.....(4.3.18)

Now x = az + , y = bz + 

, [Note that  ,   are functions of  only]x ya z b z a, b, s
s s
          
 

where , , ,a b     denote differentiation of respective quantities with respect to s.
Thus (4.3.18) becomes

0 0.
1

az bz z
a z b z

a b

      
       ......(4.3.19)

Performing column operations c1 – ac3 and c2 – bc3 in (4.3.19), we get

0 0.
0 0 1

a b z
a z b z
        
       .....(4.3.20)

On simplifying the above determinant we get

( ) ( ) ( ) ( ) 0a b z b a z              

or ( )a za b
b z
  

       
  .....(4.3.21)

Note that the equation (4.3.21) represents the equation of the plane passing through the line
 = az + , = bz + . Recall that the line = az + , = bz + is a generator of the ruled surface at

the point (s, z). The above discussion reveals an important fact that the tangent plane at any point of a

ruled surface contains the generator through that point.

Note 1 : If the ruled surface is developable, then the tangent plane is same at all points of the

generator and involves only one parameter. This is evident from the following discussion :

Let the ruled surface is developable then 0b a     

 (say)a a a z K
b b b z
       
    

        

where K is function of s. In view of this, the equation (4.3.21) takes the form

 – az –  = K (– b – ) ......(4.3.23)

and involves only one parameter s and is independent of z. Further note that the parameter s has a fixed

value for a particular generator, therefore the tangent plane will be the same at all point of the generator.
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Note 2 : If the surface is skew, then at different points of a generator, we have different tangent

planes.

Let the surface is skew, then 0b a      .

That means the equation (4.3.21) contains both s and z. If s is kept fixed (for a particular gen-

erator) then (4.3.21) would give different tangent planes for different values of z. That means, the tan-

gent planes are different at different points of the generator of skew surface.
Theorem. Prove that the generators of a developable surface are tangents to curve.
Proof. Let x = az + , y = bz +  

be generator of the developable surface, where a, b, ,  are functions of single parameter s.

Let x = az + ,  y = bz +  .....(4.3.25)

and x = (a + a) z + ( + ),  y = (b + b) z + ( + ), .....(4.3.26)

be two consecutive generators of the developable surface. We know that, two consecutive generators

of a developable surface do intersect, hence point of intersection of (4.3.25) and (4.3.26) is given by

, ,x a y b z
a b a b

   
        

   
.....(4.3.27)

Here note that (4.3.27) represents a curve since a, b, ,  are functions of parameter s only.

Thus x, y, z are functions of single parameter, hence (4.3.27) is a curve.

We have to show that the generators to the developable surface are tangents to the curve given

by (4.3.27).

The equation to the tangent to the curve (4.3.27) at point (x, y, z) is given by

x y z
x y z

   
 

   ......(4.3.28)

where dot denotes differentiation with respect to s.

From (4.3.27), we have

, ,s s s sx a y b z
a s a s a s b s

       
         

        [note]

, ,a bx y z
a a a a
   

       
  

   
.....(4.3.29)

Now differentiation of (4.3.29), with respect to s, we get

2 2
( ) ( ),a a a b b bx a z y b z

a b
    

   
    

  


.....(4.3.30)

using ,x az y bz     in equation (4.3.28), we get

x y z
a z b z z
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or  = a – az + x,  = b – bz + y
or = a + ,  = b +  .....(4.3.31)

Equation (4.3.30) is nothing but the generator through (x, y, z).

4.4 Summary

In this unit, you learnt that characteristic and edge of regression are the curves that lie on the
envelope. An envelope of family of the surfaces is that surface that touches every member of the family.
In the process of learning you came across with idea of ruled surfaces (developable and skew surfaces)
and associated issues.

4.5 Answers to self-learning exercises

Self-learning exercise-1

1. (d) 2. (d) 3. (a) 4.
2 2 2

0x y z
a b c
  

Self-learning exercise-2

1. (a) 5. Hyperboloid of one sheet, hyperbolic paraboloids.

4.6 Exercises

1. Find the envelope of the plane 1x y z
a u b u c u

  
  

 where u is the parameter..

[Ans. (9 – )2 = 4 (2 – 3) (2 – 3), where a + b + c – (x + y + z),
ab + bc + ca – x(b + c) – y (a + c) – z (a + b), abc – (bcx – acy – abz)]

2. Find the envelope of the surface  lx + my + nz = p  where  a2l2 + b2 m2 + 2np = 0.

2 2

2 2 2x y z
a b

 
  

 
Ans.

3. Find the envelope of the plane ( ) (1 ) (1 )x y z
a b c

    
       where and  are

the parameters.

2 2 2

2 2 2 1x y z
a b c

 
   

 
Ans.

4. From a point P on the conicoid a2x2 + b2y2 + c2z2 = 1 perpendiculars PL, PM, PN are drawn

to the coordinate planes. Find the envelope of the plane LMN.

[Ans. (ax)2/3 + (by)2/3 + (cz)2/3 = 22/3]
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UNIT 5 : Necessary and Sufficient Condition that a Surface
 = F (, ) should Represent a Developable Surface,
Metric of a Surface

Structure of the Unit

5.0 Objectives

5.1 Introduction

5.2 Condition for surface  = f () to be a developable surface

5.3 Metric of surface

5.3.1 Curves on a surface and curvilinear coordinates

5.3.2 Parametric transformation

5.3.3 Regular and singular points

5.3.4 Parametric equation of some surfaces

5.3.5 Metric of a surface

5.3.6 Theorem

5.4 Summary

5.5 Answers to self-learning exercises

5.6 Exercises

5.0 Objectives

After reading this unit you will be able to understand :

1. derivation of necessary and sufficient condition for the surface  = F (, ) to be developablem

2. some important concepts such as parametric transformation,

3. oarametric equations of a few surfaces,

4. notion of metric of a surface.

5.1 Introduction

Last unit aimed to present an idea of developable surface. In this unit we would find a criterion

for the surface of the form  = F (, ) to be developable. Sometimes this criterion proves to be quite

handy. Many surfaces can be written in parametric form and therefore parametric transformation and
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parametric representations of many surfaces have been dealt with in this unit. The above

notions are useful in theory of metric of surface. A metric of a surface is the measure of an arc lying on

the surface.

5.2 Necessary and sufficient condition that a surface  = F (, ) should represent

a developable surface

Let  = F (, ) .....(5.2.1)

be a given surface. In order to seek condition that the given surface is developable, we have to use the

fact ‘‘if the surface is developable, then the tangent plane is same at all points of the generator and

contains only one parameter’’.

We now proceed as follows :

The equation to the tangent plane at the point P (x, y, z) on the given surface (5.2.1) is given by

      0,z zx y z
x y
 

       
  .....(5.2.2)

Denoting , ,z zp q
x y
 

 
 

then (5.2.2) is reduced to

p + q –  = px + qy – z

or p +  q –  = , .....(5.2.3)

where   px + qy – z.

We will find the required condition making use of the tangent plane (5.2.3).

Necessary condition :

Let  = F (, ) be the developable surface, then the tangent plane (5.2.3) involves only one

parametric t (say). Thus we can write p, q and  as functions of t. Thus, let

p = f (t),  q = g (t),  = h (t) .....(5.2.4)

On elimination of t in the equation (5.2.4), p and  can be written in terms of q, as given below

p = f1 (q),  = f2 (q) .....(5.2.5)

Thus
p
x



1
1 .f q f s

q x
    
 

or r = 1f s .....(5.2.6)

2 2

2where ,p z q z pr s
x x x y yx

     
          

and
p
y

  1f q

q y
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or
2

1 2, where q zs f t t
y y

       
.....(5.2.7)

From (5.2.6) and (5.2.7), on elimination of 1f  , we obtain

r t = s2 .....(5.2.8)

Thus, the condition given by equation (5.2.8) is the required necessary condition.

Sufficient condition :
Let r t = s2

Then we will show that the tangent plane (5.2.3) involves only one parameter.

For this we shall show that the Jacobian  
 

,
0

,
q

x y
 




 implying that  is function of parameter

(single parameter) q.

We now consider,

 
 

,
,
q

x y
 


.

q
x x

q
y y

 
 


 
 

.....(5.2.9)

Since  = px + qy – z,

Therefore x



p q zp x y
x x x
  

   
  

= x r + s y,

and y



p q zx y q
y y y
  

   
   = x s + t y. .....(5.2.10)

Using the above expressions in the Jacobian (5.2.9), we find

 
 

,
,
q

x y
 


rx sy s
sx ty t



  

r s s s
x y

s t t t
   = x (rt – s2) .....(5.2.11)


 
 

,
0

,
q

x y
 




    [  r t – s2 = 0]

    is function of q.

   Tangent plane (5.2.3) to the given surface (5.2.1) involves only one parameter.

   Surface  = F (, ) is developable.

Hence, we conclude that r t – s2 = 0 is the necessary and sufficient condition for the surface

 = F (, ) to be developable, where r, t and s have their usual meanings.

Ex.1. Examine whether the surface z = y sin x is developable

Sol. Given that z = y sin x. .....(1)

The surface (1) is developable iff r t – s2 = 0.
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Now
2 2 2

2 2sin , 0, cosz z zr y x t s x
x yx y

  
      

  

Thus r t – s2 = 0 – cos2 x. .....(2)

The surface is developable if

r t – s2 = – cos2 x = 0

 2 1 ,
2

nx    
 

 n being integer..

Hence, the surface is developable when 2 1 ,
2

nx    
 

 n being integer..

Ex.2. Show that the surface z c x y   is developable.

Sol. Given that z c x y  .....(1)

We compute
2

2
zr

x





2
3 2 3 2

2
1 1,
4 4

zy x t x y
y

 
    



2zs
x y



 

1
4 xy



Then, 2rt s 1 1 0
16 16xy xy

   .....(2)

Therefore, the surface (1) is developable.

5.3 Metric of a surface

In the coming test, you will see that a surface has two family of curves on it. You are familiar
with the idea of arc length. A metric of a surface is the measure of the arc lengths of the curves on the
surface. In order to derive the formula for the  metric, we need to go through some concepts and termi-
nology as follows :

We know that a curve is the locus of a point P (x, y, z) whose cartesian coordinates are func-
tions of single parameter t (say). On the same line, we define a surface as the locus of point P (x, y, z)
whose cartesian coordinates are functions of two independent parametric u and v (say). If r  is the po-

sition vector of the point P (x, y, z). Then the surface in vectorial notation is represented as

 ,r r u v
 

. .....(5.3.1)

5.3.1 Curves on a surface and curvilinear coordinates :

Let  ,r r u v
 

 be the surface. Then by keeping one of the parameters among u and v fixed

and varying the other we get a family of curves on the surface. If we keep u = u0 (constant), then v will

vary and the locus of the point p (x, y, z) as v varies would give a parametric curve called v-curve on
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the surface. For different values of v, we get different v-curves. This constitutes a system of curves

u = constant. Similarly, we get a system of curves v = constant i.e. u-curves on the surface  , .r r u v
 

Notes :

1. If u0, v0 be fixed values of u and v, then (u0, v0) is a point on the surface  ,r r u v
 

2. (u0, v0) is called curvilinear coordinates of the surface

3. Through every point of a surface, there passes one and only one curve of each system

4. No two curves of the same system interest and two curves of different system meet only

once.

5.3.2 Parametric transformation :

Let  ,r r u v
  be a surface whose parameters u and v be transformed to another set of

parameters u*, v* as given below

u* = u* (u, v),    v* = v* (u, v) .....(5.3.2)

where u*, v* are single valued and derivable.

The above transformation is called proper if the Jacobian

 
 
*, *

0.
,

u v
u v




 .....(5.3.3)

We, now denote 1 2, .r rr r
u v
 

 
 

 
 

.....(5.3.4)

These partial derivatives are important since 1 2andr r   have tangential directions to u-curves and

v-curves, respectively (in the sense of u and v increasing).

5.3.3 Regular and singular points :

Behaviour of the surface  ,r r u v
 

in the neighbourhood of the point p (x, y, z) or  p r is

closely dependent on 1 2and .r r 

The point  p r  on the surface is called regular point or ordinary point, if

1 2 0r r 
  .....(5.3.5)

If 1 2 0,r r 
   then the point is called singular point or singularity of the surface.

5.3.4 Parametric equations of some surfaces :

This section pertains to equations of some surfaces in parametric form, you are advised to

remember these as it would help you in solving the questions.

(i) Sphere : The equation of a sphere with radius a and centre at the origin is

x = a sin  cos , y = a sin  sin , z = a cos 

where  and  are parameters
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Fig 5.1

(ii) Surface of revolution : Note that a surface of revolution is the surface which is generated

by revolving a plane curve about an axis in the plane of the curve.

As an illustration, let us consider a plane curve

z = f (y),    x = 0  in YZ-plane.

Let p (0, w, z) be any point on this curve. Then obviously z = f (w).

Fig 5.2

Let us suppose that the curve is revolved about Z-axis, then the point p will traverse a circle in a

plane normal to Z-axis with the centre on the Z-axis (the axis of rotation).

Let c be the centre of the circle and p* be new position of the point p, then the point p* (x, y, z)
is obtained as

x = OL cos  = CP* cos  = w cos 

y = w sin ,      z = f (w) .....(5.3.6)

where  is the angle between XZ-plane and CP*LO.
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Note that here w and  are the parameters.

Note : On the above surface, we have two family of curves. The parametric curves u = con-

stant are called parallels and the curves  = constant are called meridians.

Geometrically, the parallels are curves of intersection of surface of revolution and the planes

perpendicular to the axis of revolution. The meridians are the curve of section by the planes through the

axis of revolution.

(iii) Anchor sing : Anchor ring is a surface generated by revolution of a circle in a particular

setup.

Consider a circle of radius a and with center c on the Y-axis in YZ-plane. Let the centre c is

at a distance d from the origin, then the coordinates of any point P on the circle are (0, d + a cos ,

a sin ), where  PCY =  and OC = d.

Fig 5.3

When this circle is revolved about Z-axis, then it would give rise to the surface

r  = ((d + a cos ) cos , (d + a cos ) sin , a sin ) .....(5.3.7)

known as anchor ring. Here  and  are parameters.

(iv) Helicoid : Helicoid is the surface generated by the screw motion of a curve about a fixed

line. In generation of a helicoid, a curve undergoes with two motions–curve is first translated through a

distance  (say) parallel to the fixed line (the axis) and subsequently it is revolved through an angle

 (say) about the axis such that 


 is constant.

Let b



 (constant), then 2b is called the pitch of the helicoid.

As an illustration, let us consider a curve in XZ-plane given by

x = f (v), y = 0, z = g (v).



110

Let Z-axis be the axis of helicoid, then the equation of the helicoid is

r  = (f (v) cos ,      f (v) sin ,     g (v) + b ) .....(5.3.8)

where v and  are the parameters.

(v) Right helicoid : Right helicoid is generated by screw motion of a straight line about the

fixed line (axis) such that the straight line meets the axis at right angle.

Let X-axis be the straight line generating the right helicoid, then its equation is given by

r = (v cos , v sin , a ), .....(5.3.9)

a being the pitch

(vi) Right circular cone : A right circular cone is a locus of a variable straight line passing through

a fixed point (vertex) and making a constant angle  (semi-vertical angle) with a line (axis) through the

vertex.

Fig. 5.4

As an illustration,

r = (v cos , v sin , v cot ) .....(5.3.10)

represents a right circular cone, whose vertex is at the origin, Z-axis being the axis of the cone and the

variable straight line lies in the YZ-plane as shown in the figure.

5.3.5 Metric of a surface : A metric of a surface is the measure of the arc lengths of the curves

on the surface.

Let  ,r r u v
 

be a surface on which a curve u = u (t), v = v (t) lies. Let P and Q be two

neighbouring points on this curve such that the position vectors of P and Q are and ,r r dr
    respec-

tively. Let A be a fixed point on the curve such that arc AP = s and arc PQ = ds where s is the measure

of arc length. Since P, Q are neighbouring points, therefore ds is the infinitesimal distance between these

two points.
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P u, v( )

O
r

dr
r  dr
+ ds

Q u  dv, v  dv( + + )

Fig. 5.5

Now dr r rdu dv
u v
 

 
 

 

1 2 ,r du r dv 
  .....(5.3.11)

where 1 2, .dr drr r
du dv

 
 

 

Since P and Q are neighbouring points therefore,

PQ = chord PQ i.e. ds dr


    2 2 .ds dr
 .....(5.3.12)

Then,  2ds  2
1 2 .r du r dv 
 

   2 22 2
1 2 1 22r du r dv r r du dv   
   

 2ds 2 22 ,E du F du dv G dv   .....(5.3.13)

where    2 2
1 1 2 2, , .E r F r r G r   
   

Equation (5.3.13) is quadratic differential form in du and dv, and is called metric or first
fundamental form. The quantities E, F and G are called first fundamental coefficients. Note that

the values of E, F and G vary, in general, for different points on the surface simply because these are

functions of surface parameters u and v. Alternatively we can say that the metric is the relation between

the differentials of the arc of the curve and curvilinear coordinates u, v. A metric is also referred to as

linear element.

Ex.1. Prove that for the curve     x = r cos , y = r sin , z = 0,    ds2 = dr2 + r2d 2

Sol.                  ˆˆ ˆr xi yj zk  
     or         cos , sin ,0 .r r r  



Here r and  are two parameters i.e. ‘‘u’’  r, ‘‘v’’ = 

 1
drr
dr




    2cos , sin ,0 ; sin , cos ,0 .drr r r
d

       





Here  21E r
 2 2

1 2cos sin 1; cos sin cos sinF r r r r           
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 2
2G r
  2 2 2 2sin cos .r r   

Then ds2 = E du2 + 2F du dv + G dv2 = dr2 + r2 d2.  ,u r v  Q

5.3.6 Theorem : The metric of a surface is invariant under parametric transformation.

Proof : Let  ,r r u v
 

 be a surface and the parameters (u, v) undergo parametric transforma-

tion as given below

u* = u* (u, v) ; v* = v* (u, v) .....(5.3.14)

Now, *
1 *

rr
u








* *
r u r v
u u v u
   

 
   

 

 *
1r


1 2* *
u vr r

u u
 

 
 

  .....(5.3.15)

*
2 *

rr
v








* *
r u r v
u v v v
   

 
   

 

 *
2r


1 2* *
u vr r
v v
 

 
 

  .....(5.3.16)

From (5.3.14), u = u (u*, v*), v = v (u*, v*),

then * *
* *

u udu du dv
u v
 

 
 

.....(5.3.17)

and * *.
* *

v vdv du dv
u v
 

 
 

.....(5.3.18)

Let E* du*2 + 2F* du* dv* + G* dv*2 be the metric of the given surface for the parameters

(u*, v*). Then

E* du*2 + 2F* du* dv* + G* dv*2 2 2* 2 * * * 2
1 1 2 2* 2 * * *r du r r du dv r dv      

 2* *
1 2* *r du r dv 
 

2

1 2 1 2* *
* * * *

u v u ur r du r r dv
u u v v

                      

   

2

1 2* * * *
* * * *

u u v vr du dv r du dv
u v u v

                      

 

 21 2r du r dv 
 

2 2 2 2
1 1 2 22r du r r du dv r dv   
   

= E du2 + 2F du dv + G dv2. .....(5.3.19)

Thus we have shown that if the parameters u and v are transformed to new set of parameters

u* and v*, then the metric does not change i.e., the metric is invariant.
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Self-learning exercise-1

1. A point  P r  on a surface is a regular point if

(a) 1 2 0r r 
  (b) 1 0r r 

  (c) 2 2 0r r 
  (d) 1 2 0r r 

 

2. Parametric transformation u* = u* (u, v), v* = v* (u, v) is proper if

(a)
* *u v

u v
 


 

(b)
2 2

2 2
* * 0u v

u v
 

 
 

(c)
 
 
*, *

0
,

u v
u v




 (d) it is conviently defined.

3. With usual notations, 1r
 signifies for the surface  ,r r u v

 

(a) unit normal vector to the surface (b) normal vector to the skew surface

(c) normal vector to the envelope (d) None of these.

4. In the expression ds2 = E du2 + 2 F du dv + G dv2, F stands for.

(a) 1 1r r  (b) 2 2r r  (c)  1 2
1 2r r  (d) None of these

5.4 Summary

In this unit you came across with the criterion of surface  = F (, ) to be developable. This

criterion is an important tool to examine the surface being developable or screw. Further, you learnt that

a surface has two distinct family of curves on it. Before going to the core topic of metric of a surface,

you have learnt many essential concepts such as-parametric equation of some standard surfaces.

5.5 Answers to self-learning exercises

1. (d) 2. (c) 3. (d) 4. (d)

5.6 Exercises

1. Explain curvilinear equation of a curve lying on a surface

2. Derive a formula for metric of a surface

3. Find metric of a point P (x, y, 0) in XY-plane. [Ans. ds2 = dx2 + dy2]

4. Find metric of a point P (x, y, 0) in XY-plane where x = r cos , y = r sin 

[Ans. ds2 = dr2 + r2 d2]
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UNIT 6 : First, Second and Third Fundamental Forms,
Fundamental Magnitudes of Some Important
Surfaces, Orthogonal Trajectories, Normal
Curvature

Structure of the Unit

6.0 Objectives

6.1 Introduction

6.2 Fundamental forms

6.2.1 First fundamental form

6.2.2 Second fundamental form

6.2.3 Geometrical significance of second fundamental form

6.2.4 Weingarten equations

6.3 Fundamental magnitudes of some important surfaces

6.4 Orthogonal trajectories

6.4.1 Direction coefficients

6.4.2 Direction ratios

6.4.3 Orthogonal curves

6.4.4 Angle between two tangental directions on the surface

6.4.5 Family of curves and associated differential equations

6.4.6 Orthogonal trajectories

6.5 Normal curvature

6.5.1 Curvature of normal section

6.6 Summary

6.7 Self-learning exercises

6.8 Exercises

6.0 Objectives

In this unit you will study about :

1. fundamental forms of a surface,

2. fundamental magnitudes of some standard surfaces,

3. directors and orthogonal trajectories,

4. normal curvature.
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6.1 Introduction

A surface is associated with there important forms which are infold quadratic differential expres-

sions in du, dv. Each form has its definite geometrical significance and serves as a founding stone in the

development of differential geometry. To distinguish, these are called first, second and third fundamental

forms. This unit aims to discuss the forms and the related properties.

6.2 Fundamental forms

6.2.1 First fundamental form :

In the last unit you have studied about the metric. The metric of a surface determines the first

fundamental form of the surface. Thus the quadratic differential from

E du2 + 2F du dv + G dv2

is called the first fundamental form and the quantities E, G, H are called the first order fundamental mag-

nitudes or first fundamental coefficients. Here it should be noted that since the quantities E, F, G depend

on u and v therefore, in general, they vary from point to point on the surface.

6.2.2 Second fundamental form :

The second fundamental from of a surface  ,r r u v
 

is a quadratic differential in du and dv

together with the resolved parts of the second order partial derivatives of r (with respect to parameter u

and v) in the direction of the normal at the point  p r  on the surface.

Let r  be position vector of any arbitrary point p on the surface  , .r r u v
 

 Then we denote

2 2 2

11 12 222 2, ,r r rr r r
u vu v

  
  

  

  
  

.....(6.2.1)

Let L, M, N be the resolved parts of 11 12 22, , ,r r r   respectively in the direction of normal vector

N̂ at the point  p r , then

11 12 22
ˆ ˆ ˆ, ,L r N M r N N r N     

   .....(6.2.2)

The quantities L, M, N are called the second order fundamental magnitudes or second funda-

mental coefficients.

The quadratic differential form in du and dv

L du2 + 2M du dv + N dv2 .....(6.2.3)

is called the second fundamental form.

Note : Since the normal at the point  p r  on the surface is parallel to the vector 1 2 ,r r 

therefore unit normal vector N̂ at point  p r  is given by
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1 2 1 2

1 2

ˆ ,r r r rN
r r H
 

 


   

         where     1 2H r r 
  . .....(6.2.4)

The second fundamental coefficients L, M, N given by (6.2.3) can be expressed alternatively as

follows

We know that the unit normal vector N̂  is parallel to the vector 1 2 ,r r  therefore N̂  is perpen-

dicular to both 1 2and .r r 

Thus, 1
ˆ 0,N r 
 .....(6.2.5)

and 2
ˆ 0.N r 
 .....(6.2.6)

On differentiating (6.2.5) with respect to u, we find

1
1

ˆ ˆ 0,rN r N
u u


  

 




      or     1 1 11
ˆ ˆ 0,N r N r   

  .....(6.2.7)

where
2

1
1 11 2

ˆ
and rN r rN r

u u u uu
             

  

or 11 1 1
ˆr N N r   

 

 1 1,L N r  
            11

ˆL r N 


 .....(6.2.8)

Similarly on differentiating (6.2.6) with respect to v, are get

2
2

ˆ ˆ 0rN r N
v v


  

 




or 2 2 22
ˆ 0N r N r   

  

or 22 2 2N̂ r N r   
 

or 2 2N N r  
             22

ˆN N r 


 .....(6.2.9)

Further on differentiating (6.2.5) and (6.2.6) with respectively with v and u respectively, we get

2 1 1 2and .M N r M N r     
   .....(6.2.10)

The alternative expressions for L, M, N obtained above give rise to another expression for the

second fundamental form as follows :

We have, 1 2dr r du r dv 
   .....(6.2.11)

ˆ ˆˆ N NdN du dv
u v

 
 
 

 1 2
ˆ ,dN N du N dv 

 
.....(6.2.12)

where 1 2
ˆ ˆ

,N NN N
u v

 
 
 

 
.
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We compute ˆdN dr     1 2 1 2N du N dv r du r dv   
   

     2 2
1 1 1 2 2 1 2 2N r du N r N r du dv N r dv       
      

= – [L du2 + 2M du dv + N dv2]. [using (6.2.8), (6.2.9), (6.2.10)]

Thus the second fundamental form

L du2 + 2m du dv + N dv2 ˆdN dr  
 .....(6.2.13)

6.2.3 Geometrical significance of second fundamental form :
The following theorem entails the geometrical interpretation of the second fundamental form :

Theorem.   Let P (u, v) and Q (u + du, v + dv) be two neighbouring points on the surface

 , .r r u v
   Then second fundamental form L du2 + 2M dudv + N dv2 at the point P(u, v) is

twice the length of perpendicular from Q (u + du, v + dv) on the tangent plane at P (u, v), to a
second order approximation in du, dv.

Proof : Let andr r dr
    be the position vectors of two neighbouring points P (u, v) and

Q (u + du, v + dv) of the surface  , .r r u v
 

Now,  ,r dr r u du v dv   
  

.

Then by Taylor’s series for two variables, we have

 ,r u du v dv 
  , r rr u v du dv

u v
       

 
 2 2 2

2 2
2 2

1 ...
2

r r rdu du dv dv
u vu v

   
        

  

or r dr
     2 2

1 2 11 12 22
1 2
2

r r du r dv r du r du dv r dv            + higher order terms

or dr    2 2
1 2 11 12 22

1 2
2

r du r dv r du r du dv r dv    
     .....(6.2.14)

(on neglecting higher order terms)
Let QA be perpendicular from Q on the tangent plane at the point P (u, v) to the surface

 , ,r r u v
 

then we have

QA = Projection of PQ on normal vector ˆ atN P

N̂ dr       2 2
1 2 11 12 22

1ˆ 2
2

N r du r dv r du r du dv r dv        
    

       2
1 2 11 12

1ˆ ˆ ˆ ˆ2
2

N r du N r dv N r du N r du dv          2
22N̂ r dv   

2 210 0 2
2

L du M du dv N dv      
1 2

1 2 11

ˆ is perpendicular to both and
ˆ ˆ ˆ0  and etc.

N r r

N r N r L r N

 
 
        

 


 2QA = L du2 + 2M du dv + N dv2 .....(6.2.15)
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O r

dr

Q

r  dr+

A

r  r u, v= ( )

N

P

Fig. 6.1
6.2.4 Weingarten equations :

Let  ,r r u v
 

be the surface, N̂ be the unit normal at a point  p r on the surface then we

denote

1 2
ˆ ˆˆ ˆ, .N NN N
u v

 
 
 

Here it is emphasized that N̂  is perpendicular to both 1 2
ˆ ˆand ,N N which means that the vectors

1 2
ˆ ˆ,N N are tangential to the surface. Therefore, the vectors 1 2

ˆ ˆand ,N N  are spanned by the vectors

1 2andr r  and hence there exist scalars a, b, c, d such that

1 1 2N̂ a r b r 
  .....(6.2.16)

2 1 2N̂ c r d r 
  .....(6.2.17)

From (6.2.16), we find

1 1 1 1 1 2
ˆr N a r r b r r    

    

or – L = a E + b F .....(6.2.18)

From (6.2.16), we find

2 1 1 2 2 2
ˆr N a r r b r r    

    

or – M = aF + bG .....(6.2.19)

Thus solving the system of linear equations given by (6.2.18) and (6.2.19), we get

2 2,FM GL FL EMa b
EG F EG F

 
 

 

or 2 2,FM GL FL EMa b
H H
 

  .....(6.2.20)
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Using the values of a, b in (1), we get

1 1 22 2
ˆ FM GL FL EMN r r

H H
        

   
 

or 2
1

ˆH N    1 2FM GL r FL EM r   
  .....(6.2.21)

Similarly by taking the scalar product of (6.2.17) with 1 2andr r  successively, and solving the

resultant linear system, we get the values of c and d as follows :

2 2, .FN GM FM ENc d
H H
    

 
.....(6.2.22)

Thus from (6.2.17) we get
2

2
ˆH N    1 2FN GM r FM EN r   

 
. .....(6.2.23)

6.3 Fundamental magnitudes of some important surfaces

(i) Anchor ring :
The parametric equation of an anchor ring is

    cos cos , cos sin , sinr b a b a a       
 .....(6.3.1)

Then we compute,

1
rr 





  sin cos , sin sin , cosa a a       

2
rr 





     cos sin , cos cos ,0b a b a       

2

11 2
rr 





  cos cos , cos sin , sina a a        

2

12
rr 







 sin sin , cos cos ,0a a     

2

22 2
rr 







    cos cos , cos sin ,0b a b a         .....(6.3.2)

Thus we have
2

1E r
 2 2 2 2 2 2 2 2sin cos sin sin cosa a a      

= a2 sin2  (cos2  + sin2 ) + a2 cos2 

= a2 (sin2  + cos2 ) = a2

1 2F r r 
   22

20, cosG r b a    
 .....(6.3.3)

2 2H EG F   22 cosa b a   .....(6.3.4)
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Fig. 6.2

1 2r r 

   
sin cos sin sin cos

cos sin cos cos 0

i j k
a a a

b a b a
       

      

= – i (b + a cos ) cos  cos  + j (b + a cos ) sin  cos 

+ k – a (b + a cos ) sin  cos2  + a sin  (b + a cos ) sin2   .....(6.3.5)

Thus 1 2ˆ r rN
H



 

 cos cos , cos sin , sin        

Hence  11 12 22
ˆ ˆ ˆ, 0 and cos cosL N r a M N r N N r b a           
   .....(6.3.6)

(ii) Conoidal surface :

Let the surface of revolution be

 cos , sin ,r u v u v f v   


.....(6.3.7)

Then  1 cos , sin ,0rr v v
u


 





 2 cos , cos ,rr u v u v f
v
   





 
2

11 2 0,0,0 ,rr
u


 





 
2

12 sin ,cos ,0rr v v
u v


  
 



 
2

22 2 cos , sin ,rr u v u v f
v
    





.....(6.3.8)
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Therefore 2 2 2
1 cos sin 1E r u v   


1 2 cos sin cos sin 0F r r u v v u v v     
 

2 2 2 2 2 2 2 2
2 sin cosG r u v u v f u f      
 .....(6.3.9)

2H EG F   2 12 2 20u f u f      .....(6.3.10)

1 2ˆ r rN
H



   

2 2
sin , cos ,f v f v u

u f
 




.....(6.3.11)

Further  11
ˆ ˆ 0,0,0 0L N r N    


12
ˆM N r 
    

2 2

sin , cos ,
sin ,cos ,0

f v f v u
v v

u f

 
  



2 2

f

u f






and 22
ˆN N r 
    

2 2

sin , cos ,
cos , sin ,

f v f v u
u v u v f

u f

 
   



2 2

uf

u f




 .....(6.3.12)

(iii) Monge’s form surface :

The equation of surface given in the form z = f (x, y) is called Monge’s form.

Let the position vector of a current point on the surface be given by

 , , ,r x y z


.....(6.3.13)

where z = f (x, y).

Since z in a function of x and y, therefore the equation (6.3.13) may be regarded as the para-

metric equation of the surface with parameters x and y.

Hence      1 2 111,0, , 0,1, , 0,0, ,r p r q r t  
  

   12 220,0, and 0,0,r s r t 
 

.....(6.3.14)

where
2 2 2

2 2, , , , .z z z z zp q r s t
x y y xx y
    

    
    

and suffixes 1 and 2 denote differentiation w.r. to x and y, respectively.

Therefore 2 2 2 2
1 1 2 21 , , 1E r p F r r pq G r q        
  

2 2 21 ,H EG f p q    
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and  1 1
2 2

, ,1ˆ
1

p qr rN
H p q

 
 

 

 
. .....(6.3.15)

Also 11 2 2
ˆ ,

1

rL N r
p q

  
 



12 2 2
ˆ ,

1

sM N r
p q

  
 



22 2 2
ˆ .

1

tN N r
p q

  
 


.....(6.3.16)

6.4 Orthogonal trajectories

6.4.1 Direction coefficients :

Analogous to concept of direction coefficients in analytical geometry, we have the same notion

in differential geometry.

The discussion undertaken earlier has shown that at a point  p r  of the surface  , ,r r u v
 

these exist three independent vectors 1 2
ˆ, and .r r N   Among these vectors, 1 2andr r  lie in the tangent plane

to the surface at  p r and the vector N̂  is along the normal direction at  .p r  Consequently, we

conclude that any vector at   ,p r  can be expressed uniquely as a linear combination of 1 2
ˆ, and .r r N 

Let b̂  be any vector at   ,p r  then we can write

1 2
ˆb r r N    

   .....(6.4.1)

where ,  and  are scalars. Here  and  are called tangential components of b


and  is called nor-

mal component of .b


Here, we are concerned with tangential vectors i.e. the vector in which normal component  is

zero.

Let 1 2b r r  
    be a vector along the tangent at  .p r

Then
2

b
 2

1 2r r  
 

2 22 2
1 1 2 22r r r r      
   

2 22E F G     

 b


 1 22 22E F G      .....(6.4.2)

Eqn. (6.4.2) provides magnitude of the tangential vector .b
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Direction coefficients, determine the direction, and these are determined by using a unit vector.

Let 1 2e lr mr 
    be a unit vector in a tangential direction at  p r  of the surface, then the

components l and m are called direction coefficients. Since e  is unit vector, therefore

2 2 2 22 2
1 2 1 2 1 21 2e lr mr l r m r lm r r      

      

  1 22 21 2e El lmF Gm   
 .....(6.4.3)

We know that a metric on the curve is given by

ds2 = E du2 + 2F du dv + Gdv2

or
2 2

1 2du du dv dvE F G
ds ds ds ds

              
      

.....(6.4.4)

On comparing the equation (6.4.3) and (6.4.4), we find that

anddu dvl m
ds ds

  .

Hence, we may conclude that anddu dv
ds ds

 are the actual direction coefficients of the tangent at

the point  p r  to the curve  (u, v) = c lying on the surface  , .r r u v
 

Note : If (l, m) constitute the direction coefficients of the direction, then the direction coeffi-
cients of the direction opposite to the given direction are (– l, – m).

6.4.2 Direction ratios :
Direction ratios are the quantities which are proportional to the direction coefficients.
Let (, ) be the numbers which are proportional to the direction coefficients (l, m). Then we

may find expressions for  and  as follows :

From (6.4.2), we have 1 2e lr mr 
   .....(6.4.5)

be
b







 
1 2

1 22 22

r r

E F G

 


    

 

.....(6.4.6)

On comparing (6.4.5) and (6.4.6), we find that

   1 2 1 22 2 2 2
,

2 2
l m

E F G E F G

 
 

         

 
 

1 22 2

1 22 2

or 2

and 2

E F G l

E F G m

       

       

.....(6.4.7)

Equation (6.4.7) provides relation between direction coefficients (l, m) and associated direction
ratios (, ).
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The above expressions are very useful in determining the directions and are readily used.

To illustrate, let us consider a surface  , .r r u v
 

 Recall that we have two distinct family of curves

(u-curves and v-curves) on the surface. We know that 1 2andr r  are the vectors along the tangents to

u-curves and v-curve respectively.

Then we have

1 1 21 0r r r   
   .....(6.4.8)

  = 1,  = 0.

Consequently, 1 , 0l m
E

   (using (6.4.7))

Thus the unit vector in the tangential direction to u-curve is 1r
E



.....(6.4.9)

Similarly, the unit vector along the tangential direction to the v-curve is 2r
G



.....(6.4.10)

6.4.3 Orthogonal curves :
The parametric curves u = const., v = const. are said to be orthogonal if they intersect at right

angle i.e. the angle between their tangents at the point of intersection of the curves is 90°. Before finding

the condition for orthogonality, we find formula for the angle between parametric curves.

Let the curves u = const., v = const. do intersect in a point  p r at an angle  (0    ).

Then cos  1 2

1 2

r r F
r r EG


 
 

  .....(6.4.11)

and sin  1 2

1 2

r r H
r r EG


 
 

  .....(6.4.12)

and obviously, tan  H
F

 .....(6.4.13)

From the above we see that when  = 90°, then cos  and a is zero i.e. F = 0. Conversely if

F = 0 then  = 90°. Thus we have F = 0 to be the necessary and sufficient condition for the parametric

curves to be orthogonal.

6.4.4 Angle between two tangential directions on the surface :

Let  be the angle between two tangential directions (l1, m1) and (l2, m2) on the surface

 , ,r r u v
 

where li, mi, l = 1, 2 are actual directions coefficient. Let 1 2ˆ ˆandt t denote the unit vectors

in the tangential directions, then we have,

1 1 1 1 2ˆ ,t l r m r  

2 2 1 2 2ˆ ,t l r m r  
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Then 1 2ˆ ˆt t 1 2
ˆ ˆ cost t 
 

.....(6.4.14)

1 1cos   1 2 1 2ˆ ˆ ˆ ˆand unit vectors therefore 1t t t t   

 cos  1 2ˆ ˆt t  .....(6.4.15)

or cos     1 1 1 2 2 1 2 2l r m r l r m r   
   

       1 2 1 1 1 2 1 2 1 2 1 2 2 2l l r r l m m l r r m m r r      
     

 1 2 1 2 1 2 1 2l l E l m m l F m m G    .....(6.4.16)

Similarly, sin  1 2ˆ ˆt t  ˆ| | | | sinA B A B n    
  



   1 1 1 2 2 1 2 2l r m r l r m r      

 1 1 1 2 1 2l m m l r r  
   1 1 2 20, 0r r r r   

   


 1 1 1 2l m m l H          1 2H r r    
 

 .....(6.4.17)

Thus, tan  sin
cos






 
 

1 2 1 2

1 2 1 2 1 2 1 2

H l m m l
l l E l m m l F m m G




   .....(6.4.18)

The angle between tangential directions can also be determined in terms of direction ratios.

Let (1, 1) and (2, 2) be the direction ratios corresponding to direction coefficients (l1, m1)

and (l2, m2), then we have

   
1 1

1 11 2 1 22 2 2 2
1 1 1 2 1 1 1 1

,
2 2

l m
E F G El F G

 
 

          

   
2 2

2 21 2 1 22 2 2 2
2 2 2 2 2 2 2 2

,
2 2

l m
E F G E F G

 
 

           
.....(6.4.19)

Using the above we find

 

   
1 2 1 2 1 2 1 2

1 2 1 22 2 2 2
1 1 1 1 2 2 2 2

cos
2 2

E F G

E F G E F G

        
 

           
.....(6.4.20)

 

   
1 2 1 2
1 2 1 22 2 2 2

1 1 1 1 2 2 2 2

sin
2 2

H

E F G E F G

   
 

           
.....(6.4.21)

and consequently,
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1 2 1 2

1 2 1 2 1 2 1 2
tan

H
E F G

   
 

        
. .....(6.4.22)

From the above discussions, we conclude that the two directions be at right angles (orthogonal)

i.e.  = /2 if

12 E + (12 + 12)F + 12 G = 0 .....(6.4.23)

or l1l1 E + (l1m2 + m1l2) F + m1m2G = 0.        cos / 2 0  .....(6.4.24)

Ex. Prove that the equation Edu2 – Gdv2 = 0 denote the curves bisecting the angles be-

tween the parametric curves u = constant, v = constant on a surface  ,r r u v
 

Sol. Let 1 be the angle between the direction , ,du dv
ds ds

 
 
 

 and the u-curve (i.e. v = const.).

Let (l2, m2) denote the direction (tangent) to the u-curve, then

2 2
1 , 0l m
E

  .

Then, ‘‘cos 1 = l1l2 E + (l1m2 + m1l2) F + m1m2 G’’ gives

1cos 1 10 0du dvE F
ds dsE E

       
 

1 1,du dvl m
ds ds

    


1 du dvE F
ds dsE

   
 

.

Let 2 be angle between the direction , ,du dv
ds ds

 
 
 

 and v-curve (i.e. u = const.) and we sup-

pose that (l2, m2) denote the direction of v-curve, then

2 2
10, .l m
E

 

Then, we have cos 2 = l1l2 E + (l1m2 + l2m1) F + m1m2 G

1 10 0du dvF G
ds dsG G

 
       

 

1 du dvF G
ds dsG

   
 

.

Given that the direction ,du dv
ds ds

 
 
 

 bisects the angle between the parametric curves, therefore

we must have,

cos 1 =  cos 2. .....(3)

Here + and – signs correspond to internal and external bisector respectively.
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Putting the values of cos 1 and cos 2 from the equation (1) and (2) in equation (3), we get

1 du dvE F
ds dsE

  
 

1 du dvF G
ds dsG

    
 

or
du dvG E F
ds ds

  
 

du dvE F G
ds ds

    
 

or
2du dvG E F

ds ds
  
 

2du dvE F G
ds ds

   
 

or GE2 du2 + GF2 dv2 + 2EFG dudv = EF2 du2 + EG2 dv2 + 2EFG dudv

or E (EG – F2) du2 – G (EG – F2) dv2 = 0

or (EG – F2) (E du2 – G dv2) = 0

 E du2 – G dv2 = 0.  [  EG – F2 > 0].

6.4.5 Family of curves and associated differential equations :

For a surface  ,r r u v
 

.....(6.4.25)

an implicit relation of the form  (u, v) = c .....(6.4.26)

give rise to family of curves on the surface (6.4.25), where c is a parameter,  (u, v) is single valued

function of u, v and  (u, v) possesses continuous derivatives ,
u v
 
 

 which don’t vanish simultaneously..

By assigning different values to c, we have different members of the family of curves given by (6.4.26).

Here it should be noted that through every point of the surface, there passes one and only one curve of

the family of curves given by (6.4.26).

The family of curves can be expressed in the form of differential equation as explained below.

Consider equation (6.4.26) as family of curves on the surface (6.4.25). Differentiating (6.4.26),

we get

0,du dv
u v
 

 
 

.....(6.4.27)

 1 du + 2 dv = 0,

where 1 2and .
u v
 

   
 

Obviously on integrating 1 du + 2 dv = 0 we would get (6.4.26), we assume

1 = P (u, v)    and    2 = Q (u, v) .....(6.4.28)

Thus equation (6.4.27) becomes

P du + Q dv = 0 .....(6.4.29)

The equation (6.4.29) constitutes a differential equation of the family of curves (6.4.26).
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From (6.4.29), we have

du dv
Q P


 .....(6.4.30)

equation (6.4.30) emphasises that tangent at (u, v) to the curve has (– Q, P) as its direction ratios.

6.4.6 Orthogonal trajectories :

Trajectory : A trajectory of the given family of curves is a curve which intersects every member

of the family of curves by following some definite law. If the trajectory intersects the members of the

family of curves at a constant angle , then it is called -trajectory. If  = 90, then it is called an

orthogonal trajectory. Following proposition underlines the fact that every family of curves on a surface

has orthogonal trajectories.

Differential equation of orthogonal trajectory :

Let  (u, v) = c .....(6.4.31)

be a family of curves on the surface  ,r r u v
 

. .....(6.4.32)

Recall that here  has continuous derivatives ,
u v
 
 

 which don’t vanish simultaneously. On

differentiating (6.4.31), we have

0du dv
u v
 

 
 

      or     1 du + 2 dv = 0, .....(6.4.33)

where 1 2u v
 

   
 

.

We prescribe 1 = P (u, v), 2 = Q (u, v)

Then (6.4.33), becomes

P du + Q dv = 0      or      du dv
Q P



. .....(6.4.34)

Then (– Q, P) are direction ratios of tangent at any point (u, v) of a member of family of curves

given by (6.4.31).

Let (u, v) be direction ratios of the tangent at the point (u, v) of a member of orthogonal

trajectories of (6.4.31).

Recalling that the directions (u1, v1) (u2, v2) are orthogonal if

E u1u2 + F (u1 v2 + v1 u2) + G v1v2 = 0 .....(6.4.35)

We have for the present case,

E (– Q) u + F (– Q v + Pu) + G Pv = 0

On simplification, it reduces to

(FP – EQ) u + (GP – FQ) v = 0 .....(6.4.36)
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Equation (6.4.36) represents the differential equation of the orthogonal trajectories of the family

of curves.

Note that equation (6.4.36) is integrable simply because (FP – EQ) and (GP – FQ) (the coeffi-

cients of u, v) in (6.4.36)} are continuous.

On integrating (6.4.36), we get the equation of orthogonal trajectory.

Theorem. On a given surface, a family of curves and their orthogonal trajectories can

always be chosen as parametric curves.

Proof : We know that the differential equation

P du + Q dv = 0 .....(1)
where P, Q are functions of u and v, represents a family of curves on the surface  ,r r u v

 

Let  (u, v) = c1                (c1 being constant) .....(2)

be the solution of (1). Then , ,P Q
u v
 

   
 

    (where  0)

As discussed earlier, we know that the differential equation

(FP – EQ) u + (GP – FQ) v = 0 .....(3)

gives the orthogonal trajectories of the family of curves given by (1).

Let  (u, v) = c2                 (c2 being constant) .....(4)

is the solution of (3), then we may have

FP – EQ ,
u


 



GP – FQ v


 


        (where  0) .....(5)

In order to prove the theorem, we will show that

 
 

,
0.

,u v
  


 .....(6)

That means that the two family of curves  (u, v) = c1 and  (u, v) = c2 are mutually indepen-

dent.

Thus we examine,
 
 

,
,u v

  


1 P FP EQu u
Q GP FQ

v v

 
  

  
 

   1 P GP FQ Q FP EQ     

2 21 2 0EQ FPQ GP     
. .....(7)
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Thus  
 

,
0

,u v
  




 ensures that a family of curves and their orthogonal trajectories can always

be chosen as parametric curves. Since  is independent of , hence proper transformation u* = 

(u, v), v* =  (u, v) transforms the given family of curves and their orthogonal trajectories into the two

families of parametric curves.

Double family of curves :
We have seen that the equation P du + Q dv = 0 give rise to a family of curves on the surface

 , .r r u v
 

 Similarly, the quadratic equation

P du2 + 2Q du dv + R dv2 = 0 .....(1)

where P, Q, R are continuous functions of the parameters u and v and do not vanish together and are

such that Q2 – PR > 0, then the equation (1) give rise to two distinct family of curves as illustrated

below.

Equation (1) can be written as

2

2 0du duP Q R
dv dv

        
   

.....(2)

Equation (2) is quadratic in 
du
dv  and has two solutions

2Q Q PRdu
dv P

  
 .....(3)

which infact correspond to directions of the tangents to two distinct family of curves.

Let 1 2

1 2
,l l

m m
 be the two directions, then

2 2
1 2

1 2
,

Q Q PR Q Q PRl l
m P m P

     
  .....(4)

Thus we have 1 2 1 2

1 2 1 2

2 ,l l l lQ R
m m P m m P


    . .....(5)

If  is the angle between these two directions then

tan 
 

22
2

H Q PR
ER FQ GP




 
.....(6)

Obviously these directions are orthogonal if  = 90 i.e.,

ER – 2 PQ + GP = 0. .....(7)

Note that (7) is the necessary and sufficient condition for the curves described by (1) to be

orthogonal.
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Ex.1. Examine whether the parametric curves
x = b sin u cos v,      y = b sin u sin v,     z = b cos u

on a sphere of radius b constitute an orthogonal system.

Sol. The given sphere is
r  = (b sin u cos v, b sin u sin v, b cos u) .....(1)

The parametric curves would constitute an orthogonal system if F = 0 i.e. 1 2 0r r 
  ,

we compute 1r
  = (b cos u cos v,   b cos u sin v,    – b sin u)

2r
  = (– b sin u sin v,   b sin u cos v,   0)

1 2F r r 
  = – b2 cos u sin u cos v sin v + b2 cos u sin u sin v cos v

= 0. .....(2)

Thus the given parametric curves are orthogonal.

Ex.2. On the paraboloid x2 – y2 = z, find the orthogonal trajectories of the sections by the

planes z = constant.

Sol. Let x = u and y = v, then for the given paraboloid we have u2 – v2 = z.

Thus r  = (u, v, u2 – v2) .....(1)

is the parametric equation of the given paraboloid.

The curves of section by the planes z = constant on (1) are given by

u2 – v2 = constant         [note] .....(2)

Differentiating (2), we get

u du – v dv = 0. .....(3)

Thus, we have to find out the equation of trajectories orthogonal to family of curves given

by (3).

Recall that if P du + Q dv = 0 .....(4)

is the given family of curves, then its orthogonal trajectories are given by

(PF – QE) u + (PG – QF) v = 0 .....(5)

where (u, v) are direction ratios of the orthogonal trajectories.

Comparing (3), (4) we find

P = u, Q = – v .....(6)

 
 

2 2
1 1

2 2
2 1 2 2

1,0,2 , 1 4

0,1, 2 , 4 , 1 4

r u E r u

r v F r r uv G r v

    


         

 

    . .....(7)

Using (6) and (7) in equation (5), we get the orthogonal trajectories as

(– 4u2v + v + 4u2v) u + (u + 4uv2 – 4uv2) v = 0

or vu + 4v = 0
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or  (uv) = 0

or uv = constant

or xy = constant.              [ x = u, y = v] .....(8)

Thus the hyperbolic cylinders xy = constant are the required orthogonal trajectories.

Ex.3. Let v2 du2 + u2 dv2 be the metric of a given surface. Then find

(i) The family of curves orthogonal to the curves uv = constant

(ii) The metric corresponding to the new parameters so that these two families are para-

metric curves.

Sol. (i) Let s represent the arc length on the given surface. Then as given, we have

ds2 = v2 du2 + u2 dv2 .....(1)

Thus, E = v2, F = 0, G = u2

We have to find family of curves orthogonal to the curves

uv = constant. .....(2)

Differentiating (2), we get

u dv + v du = 0  
du u
dv v

  . .....(3)

Hence, the direction ratios of the tangent to the curve (2) are (– u, v).

Let (du, dv) be the direction orthogonal to the direction, then the condition of orthogonality i.e.

1 2 E + (1 2 + 2 1) F + 1, 2 G = 0.

or E (– u) du + G v dv = 0,  0F Q

– uv2 du + u2v dv = 0  
du dv
u v

 .....(4)

On integration of equation (4), we get

log u = log v + log (const) const.u
v

  .....(5)

Hence equation (5) is the equation of the orthogonal trajectory of family of curves (2).

(ii) If the family of curves (2) and their orthogonal trajectories (5) are taken as parametric curves,

then the new parameters u* and v* are given by

u* u
v

   and   v* = uv  u2 = u* v*    and    v2 
* .
*

v
u

 .....(6)

Now 1*
*

r rr
u u
 

 
 

 


 1 22
* * .

* * 2 *
u r v v ur r

u v u u vu
  

  
   


 

.....(7)

and 2*
*

rr
v








1 2
* 1 .

* * 2 2 *
r u r v u r r
u v v v u vu
   

   
   

 
 

.....(8)
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The new coefficients E*, F*, G* are given by

2
1* *E r
 2 2

2 2
1 2 1 22 2 2

* * , 0
4 4 *
u vr r r r F

u v u
    

   


2 2 2

2 2 2 2
* * 1 * ,

24 4 * *
u v vE G

u v u u
  

1 2* * * 0,F r r  
 

*2
2*G r


2

1 2
* 1 1

2 2 * 2
u r r

u vu
    
 

  .....(9)

Therefore, the metric referred to new parameters u*, v* is given by

ds*2 = E* du2 + 2F* du* dv* + G* dv*2

2
2 2

2
1 * 1* * .
2 2*

v du dv
u

 

Ex.4. Show that the curves du2 – (u2 + c2) dv2 = 0 from an orthogonal system on the right
helicoid

r  = (u cos v, u sin v, cv)

Sol. The given surface is r = (u cos v, u sin v, cv) .....(1)

Then 2
1E r
 2

2 2cos sin 1r v v
u
      



1 2F r r 
     cos ,sin ,0 sin , cos ,v v u v u v c  

= – u cos v sin v + u cos v sin v + 0 = 0

2
2G r


 
2

sin , cos ,r u v u v c
v
     



= u2 (sin2 v + cos2 v) + c2 = u2 + c2 .....(2)

Recall that the two family of curves given by the quadratic differential equation

P du2 + 2Q du dv + R dv2 = 0 .....(3)

constitute an orthogonal system if and only if

ER – 2FQ + GP = 0 .....(4)

The given curves are du2 – (u2 + c2) dv2 = 0 .....(5)

On comparing (3) and (5), we get

P = 1, Q = 0, R = – (u2 + c2). .....(6)

Using these values and the values of E, F, G computed above in the equation (4) we see that

(4) is identically satisfied

1 [– (u2 + c2)] – 0 + (u2 + c2)1 = 0.
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Ex.5. Show that on a right helicoid, the family of curves orthogonal to the curves

u cos v = constant is the family (u2 + a2) sin2 v = constant
Sol. Let the given right helicoid be

r  = (u cos v, u sin v, cv) .....(1)

Then from previous example

E = 1, F = 0, G = u2 + c2 .....(2)

The given family of curves is

u cos v = constant. .....(3)

On differentiating equation (3), we get

cos v du – u sin v dv = 0. .....(4)

Equation (3) implies that the direction ratios of the tangent to given curve at the point (u, v) is (u
sin v, cos v). Let (du, dv) be direction of the required orthogonal curves. Then by the condition of or-

thogonality we have

E (u sin v) du + F (u sin v dv + cos v du) + G cos v dv = 0 .....(5)

Putting the values E = 1, F = 0, G = u2 + c2 in (4), we get

u sin v du + (u2 + c2) cos v dv = 0

or 2 2
cos 0

sin
u du v dv

vu c
 



On integration, it gives

   2 21 log log sin constant.
2

u c v  

or log (u2 + c2) 2 log sin v = constant .....(6)

Equation (6) represents the required orthogonal curves family.

6.5 Normal curvature

Before embarking on the idea of normal curvature, we first have to go through some basic things

as follows :

(i) Plane section of a surface :

A plane drawn through a point on a surface cuts the surface, in general, in a plane curve.

This plane curve is called the plane section of the surface.

(ii) Normal section of the surface :

If the plane section of the surface is such that it contains the normal to the surface at that

point, the section is called the normal section. The section, which is not normal section

is called the oblique section.



135

(iii) Curvature at a point on a given surface :

The curvature at a point on a given surface is closely related to the plane section at the

point.The curvature at a point P (u, v) of the given surface  ,r r u v
 

in a direction

(du, dv) is the curvature of the plane section (curve) of the surface which passes through

the point P (u, v) and contains the direction (du, dv).

6.5.1 Curvature of normal section :

Let  ,r r u v
 

 be the given surface and P (u, v) be any point on it. Let kn denotes the curva-

ture of the normal section. By convention, we presume that the sense of the unit principal normal to the

curve i.e. n̂  and the unit surface normal i.e., N̂ are the same. Further note that kn is considered positive

when the curve is concave on the side towards which N̂  points out.

We, now, have

ˆˆn n
dtr k n k N
ds

    ˆˆHere n N  

Therefore,

kn N̂ r   . .....(6.5.1)
Again, we know that

drr
ds

 



1 2

r du r dv du dvr r
du ds dv ds ds ds
 

   
 

 

1 2 , where ,du dvr u r v u v
ds ds

         
 

.....(6.5.2)

Again differentiating with respect to s, we get

r  1 2
d r u r v
ds

   

1 2
1 2

dr drr u u r v v
ds ds

      
r rr r

1 1 2 2
1 2

r r r rdu dv du dvr u r v u v
u ds s ds u ds v ds
                       

r r r rr r

2 2
1 2 11 12 21 22r u r v r u r u v r u v r v            
r r r r r r

2 2
1 2 11 12 222r u r v r u r u v r v         
     . .....(6.5.3)

Thus, we have

kn N̂ r 

2 2
1 2 11 12 22

ˆ 2N r u r v r u r u v r v            
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      2
1 2 11

ˆ ˆ ˆN r u N r v N r u       
  

     2
12 22

ˆ ˆ2 N r u v N r v     
 

2 20 0 2Lu Mu v N v         .....(6.5.4)

1 2 11
ˆ ˆ ˆ0 and etc.N r N r N r L       
  



Thus, kn

2 2

2du du dv dvL M N
ds ds ds ds

              
      

or kn

2 2

2
2L du M du dv N du

ds
 



or kn

2 2

2 2
2
2

L du M du dv N du
Edu F du dv G dv

 


 
 .....(6.5.5)

[  ds2 = E du2 + 2F du dv + G dv2]

Equations (6.5.5) provides the curvature of the normal section, parallel to the direction (du, dv)

in terms of fundamental magnitudes.

Notes :

1. kn depends purely on the direction (du, dv) of the curve drawn on the surface and the quan-

tities E, F, G, L, M, N which are determined at given point P.

This reasoning helps us to conclude that all the curves tangent to the same direction on the

given surface have the same normal curvature, since normal curvature at a point on the

surface is the property of the surface which depends on the direction at the point on the sur-

face.

2. The reciprocal of kn is called the radius of normal curvature, and is denoted by n.

6.6 Summary

In this unit you came across with the notion of the fundamental forms which are quadratic equa-

tion in du and dv. Each form has its definite geometrical significance. Further the directions on the sur-

face where explained and the criterion was extended to the orthogonal trajectories on the surface. Lastly

the notion of normal curvature was given.

6.7 Self-learning exercises

1. Write down first and second fundamental forms

2. Define direction coefficients.
3. Define direction ratios.

4. What are orthogonal trajectories ?

5. Define oblique section and normal section.
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6.8 Exercises

1. Compute the fundamental magnitudes for the surface
r  = (u cos v, u sin v, f (u) + cv).

2. Prove that the curves du2 – (u2 + c2) dv2 = 0 form an orthogonal system on the right helicoid
r = (u cos v, u sin v, cv).

3. Compute E, F, G, H for the surface

(i) x = u, y = v, z = u2 – v2,

(ii) 2z = ax2 + 2hxy + by2.

4. Prove that : 1 1 2
ˆ .HN N M r L r  
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Unit 7 : Meunier’s Theorem, Principal direction and
Principal curvatures, First Curvature, Mean
Curvature, Gaussian Curvature, Umbilics, Radius
of Curvature of any Normal Section at an Umbilic
on z = f (x, y). Radius of Curvature of a given
Section through any Point on z = f (x, y), Lines of
Curvature

Structure of the Unit

7.1 Objectives

7.2 Introduction

7.3 Definitions

7.4 Curvature of normal section (i.e., Normal curvature)

7.4.1 Radius of normal curvature

7.4.2 Normal curvature

7.5 Meunier’s Theorem

7.5.1 Important result

7.5.2 Self-learning exercise-1

7.5.3 Illustrative example

7.6 Principal directions and principal curvatures

7.6.1 Definitions

7.7 Equations giving the principal directions at a point of surface and to derive the differential

equation of the principal section.

7.8 There are two principal directions at every point on a surface which are mutually orthogonal.

7.9 Umbilics

7.10 The equation giving the principal curvature at a point A (u, v) of the surface ( , )r r u v
r r .

7.11 Some important definitions

7.12 Radius of curvature at an umbilic on the surface z = f (x, y).

7.12.1 Self-learning exercise-2

7.12.2 Illustrative examples
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7.13 Radius of curvature of a given section through any point of a surface z = f (x, y).

7.14 Lines of curvature

7.14.1 There are two systems of lines of curvature

7.14.2 To find the differential equation of lines of curvature at point (u, v) of the surface

( , )r r u v
r r .

7.14.3 Illustrative examples

7.14.4 Self-learning exercise-3

7.15 Summary

7.16 Answers to self-learning exercises

7.17 Exercises

7.1 Objectives

This unit provides a general overview of the following and after reading this unit you will be able

to learn

1. about Meunier’s theorem,

2. about Principal direction and Principal curvature of the surfaces,

3. about first curvature, Mean curvature and Gaussian curvature,

4. about Umbilics, radius of curvature of any normal section at an umbilics z = f (x, y), radius of

curvature of a given section through any point on z = f (x, y),

5. about lines of curvatures.

7.2 Introduction

In this unit we shall study local non-intrinsic properties of a surface. We shall also study curva-

ture of surfaces, plane section of surfaces and oblique section of surfaces. After that we shall establish a

relationship between curvature of normal section (n) and curvature of oblique section (), which is known

as Meunier’s theorem. In the end of the unit we shall study about lines of curvature.

7.3 Definitions

(i) Intrinsic property

Property of a surface deducible from the metric alone, without using the surface equation

( , )r r u v
r r  is called an intrinsic property..

(ii) Plane section of a surface

A plane drawn through a point A of a given surface intersects it in a plane curve, known as the

plane section of the surface. In Fig. 7.1 ABC and ADE are two plane section of the surface ( , )r r u v
r r .
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(Unit surface normal)

Oblique
section

(Unit tangent
vector)

A

C
E

D B Normal section

t

N = n(Unit principal to normal section)

n

Surface

r r u v =  ( , )

Fig. 7.1

(iii) Normal section

The plane is so drawn that it contains the normal N̂  to the surface at the point (say A), then the

curve of intersection is called normal section. In the Fig. 7.1 the curve bounding shaded area ABC is the

normal section. Thus the normal section is parallel to the normal N̂  to the surface.

(iv) Oblique section

The plane is so drawn that it does not contain the normal N̂  to the surface at the point (say A),

then the curve of intersection is called oblique section.

Note : There exist infinite number of planes of normal sections through the principal normal at

point A, but there will be only one such plane of normal section having directions (du, dv).

Principal normal n̂  for normal section is parallel to surface normal N̂  and principal normal n̂

for oblique section is inclined at angle to surface normal N̂ .

We adopt the convention that vector n̂  has the same direction as that of vector N̂ , and with this

convention ˆn̂ N .

(v) Curvature at a point on a given surface

Let A be a point with position vector  ,r u v on the surface  ,r r u v
 

the normal section at A

in the direction (dn, dv) is equal to the curvature at A of the normal section at A parallel to the direction

(dn, dv) of t̂ .
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(vi) Fundamental Magnitudes

Let  ,r r u v
 

be the equation of the surface and let 1 2,r rr r
u v
 

 
 

 
  then 2

1 1 1E r r r     ,

1 2F r r 
  , 2

2 2 2G r r r     are called first order fundamental magnitudes and if N̂  be unit normal vector

at A  r , then 11
ˆL r N 

 , 12
ˆM r N 

  and 22
ˆN r N 

  are called second order fundamental magni-

tudes, where 
2

11 2
rr

u






 , 

2

12
rr

u v



 


 , 

2

22 2
rr

v






 .

7.4 Curvature of section (i.e., normal curvature)

Let  ,r r u v
  be the equation of a given surface and A (u,v) is any point on the surface.

Here we assume that ˆ ˆN n .....(7.4.1)

Let n represents the curvature of normal section, which will be positive when the curve is con-

cave on side towards which N̂ points out.

Now r ˆ drt
ds

 


.....(7.4.2)

where s is arc length.
Again differentiating, we have

ˆdt r
ds

  ˆnn

or r ˆ
n N      [ ˆ ˆN n  from equation (1)] .....(7.4.3)

Taking dot product by N̂ , we get

N̂ r   ˆ ˆ
n N N 

 N̂ r  n                ˆ ˆ 1N N  .....(7.4.4)

Also we know that
drr
ds

 


 r u r v
u s v s
   

 
   

 

1 2 1 2
du dvr r r u r v
ds ds

       
(where 

duu
ds

  etc.) .....(7.4.5)

Differentiating this relation again with respect to s, we have

r
1 2

1 2
d r d rru u r v v
ds ds

      
 

 
(

2

2
d uu
ds

  etc.)

or r   1 1 2 2
1 2

r r r rdu dv du dvr u r v u v
u ds v ds u ds v ds
                       

   
 

2 2
1 2 11 12 21 22r u r v r u r u v r u v r v            
      .....(7.4.6)
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where  12r 1 1
11,r rr

v u
 

 
 

 
  etc.

Now taking dot product by N̂ , we get

ˆr N   2 2
1 2 11 12 21 22

ˆr u r v r u r u v r u v r v N             
     

       2
1 2 11 12

ˆ ˆ ˆ ˆr N u r N v r N u r N u v            
   

        2
21 22

ˆ ˆr N u v r N v     
      .....(7.4.7)

But we know that

1
ˆ 0,r N 


2

ˆ 0r N 
 .....(7.4.8)

(unit normal vector N̂ is  to both direction vectors of the tangents r1and r2)

and  
11

12

22

ˆ

ˆ

ˆ

r N L

r N M

r N N

 
  
  






.....(7.4.9)

(The resolved parts of r11, r12, r22 in the direction of normal to the surface are L, M, N called

second order fundamental magnitudes)

Using values  from equation (7.4.8) and (7.4.8) in equation (7.4.7), we get

ˆr N  2 22n Lu Mu v Nv       

or n
2 2

2du du dv dvL M N
ds ds ds ds

        
   

2 2

2
2Ldu Mdu dv Ndv

ds
 



or n
2 2

2 2
2
2

Ldu Mdu dv Ndv
Edu Fdu dv Gdv

 


  .....(7.4.10)

(ds2 = Edu2 + 2Fdu dv + Gdv2, the first fundamental form)

Equation (7.4.10) gives the curvature of the normal section, usually called normal curvature par-

allel to the direction (du, dv) in terms of the fundamental magnitudes.

Remark : Since n depends only on the direction (du, dv) of the curve drawn on the surface,

as fundamental magnitudes E, F, G, L, M, N are determined by the given point A. So normal curvature

at a point on a surface is a property of the surface which depend on the direction at the point on the

surface. Hence all curves tangent to the same direction on a surface have the same normal curvature.

7.4.1. Radius of normal curvature

Reciprocal of the normal curvature (n) is called the radius of normal curvature and it is denoted

by n  i.e.

n
1

n
 . .....(7.4.11)
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7.4.2. Normal curvature definition

Let A (u, v) be a point on the surface  ,r r u v
  . The normal curvature at A in the direction

(du, dv) is equal to the curvature of the normal section at A, parallel to the direction (du, dv).

7.5 Meunier’s Theorem (or Meusnier’s theorem)

Statement : If and n are the curvatures of oblique and normal sections through the same

tangent line and be the angle between these sections, then n= cos .

Proof : Refer Fig. 7.1, let t̂  be the tangent vector to the normal section of the given surface.

Let ADE be the oblique section of the surface by a plane through t̂ . Here N̂  is the surface normal

which is also principal normal of the normal section. Let n̂  be the principal normal of the oblique sec-

tion, then we have

cos  ˆn̂ N  , .....(7.5.1)

because is the angle between the planes of sections as shown in the fig. 7.1

But, if is the curvature of oblique section

then, for any section r n̂  . .....(7.5.2)

Now taking dot product by N̂ , we have

ˆr N  ˆn̂ N  

=  cos          [by equation (7.5.1)] .....(7.5.3)

Now ˆr N  = normal curvature at A in the direction

(du, dv)   curvature of the normal section at A parallel to be direction

(du, dv) = n

  by equation (7.5.3),

n ˆ cosr N    

 n cos  .

Hence Proved.

7.5.1.  Important result

If a sphere is described with n as diameter then all centers of curvature lie on this sphere, pro-

vided unit tangent vector t̂ is the same.

Proof : Let C be center of oblique section and Cn that of normal section for all planes contain-

ing t̂ , as shown in the Fig. 7.2. From figure, we have

nAC  =n   and    AC =  and    nC AC   .

Join Cn and C.
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A

Nn

C
90°

n

Cn

Shpere

Fig. 7.2

Now, we know that n = cos  (by Meunier’s Theorem)

or
1

n
1 cos 
  

1 1,n
n

 
 

 
  

 


 = n cos  .....(7.5.4)
From this we conclude from ACnC , that 90nC AC   .
This result is interpreted as if a sphere is described with n as diameter, all centres of curvature

lie on this sphere, provided t̂ is the same.
7.5.2. Self-learning exercise-1
1. Define intrinsic property of a surface.
2. Define plane section of a surface.
3. Define normal section and oblique section of a surface.
4. Define curvature at a point on a given surface.
5. Write formula for curvature of normal section in terms of fundamental magnitudes.
6. Define normal curvature and radius of normal curvature.

7. Write the statement of Meunier’s Theorem.

7.5.3. Illustrative Examples

Ex.1.  Find the curvature of a normal section of the right helicoid

x = u cos ,  y = u sin ,  z = c .

Sol. The curvature of normal section is given by

2 2

2 2
2
2n

Ldu Mdu dv Ndv
Edu Fdudv Gdv

 
 

 
.....(1)

To find n, we shall first evaluate fundamental magnitudes E, F, G, L, M, N.

Let r  = (u cos ,  u sin , c ) .....(2)

with  u and as parameters, C is constant.
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Let suffixes 1 and 2 represent partial differentiations of  r  with respect to u and 

(i.e. 1 2,r rr r
u
 

 
 

 
 

).

Then on differentiating, (2) with respect to u

1r
  = (cos ,  u sin ) .....(3)

Now differentiating equation (2) with respect to , we have

2r
  = (–u sin ,  u cos c) .....(4)

Now differentiating (3) with respect to u, we get

11r  = (0,0,0) .....(5)

Differentiating (3) with respect to , we get

12r = (–sin ,  cos , 0) .....(6)

Now differentiating equation (4) with respect to 

22r = (–u cos , –u sin , 0) .....(7)

 E 2 2 2
1 2 1 cos sin 1,r r r      
  .....(8)

F    1 2 cos ,sin ,0 sin , cos ,0r r u u        
 

 sin cos sin cos 0 0u u       .....(9)

and  G    2 2, sin , cos , sin , cos ,r r u u c u u c        
 

2 2 2 2 2sin cosu u c   

or G = u2 + c2 .....(10)

Now H2 = EG – F2 = 1  (u2 + c2) – 02 = u2 + c2 .....(11)

and N̂
1 2r r
H



 

   1 ˆ ˆˆ ˆ ˆ ˆcos sin 0 sin cosi j k u i u j ck
H

          

ˆˆ ˆ
1 cos sin 0

sin cos

i j k

H
u u c

  
  

 2 2

1

u c



      2 2ˆˆ ˆsin 0 0 cos cos sini c j c k u u      

2 2

1

u c



 ˆˆ ˆsin cosc i c j u k   

or N̂
 

 2 2

sin , cos ,c c u

H u c

  


 
.....(12)
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Now L  11
ˆ ˆ 0,0,0 0N r N    
      [From equation (5)] .....(13)

M =    
 12

2 2

sin , cos ,ˆ sin , cos , 0
c c u

N r
u c

  
     





 
2 2

2 2

sin cos 0c c

u c

    




or M
2 2

c

u c





.....(14)

N    22 2 2

sin , cos ,ˆ cos , sin , 0
c c u

N r u u
u c

  
       





 2 2

sin cos sin cos 0 0cu uc

u c

     
 


. .....(15)

Now using values from equations (8), (9), (10), (13),(14) and (15) in equation (1), we have

n  
2 2

2 2 2 2

0 2 0

0

c du d
u c

du u c d

 
     

   

  2 2 2 2 2 2

2c du d

u c du u c d

 


   
.

Ex.2.  Show that the curvature at any point P of the curve of intersection of two sur-

faces is given by 2 2 2 2
1 2 1 2sin 2 cos          , where 1 are 2 the normal curvatures of the

surfaces in the direction of the curve at P and is the angle between their normals at that point.

Sol. Let S1 and S2 be the two given surfaces and 1N̂  and 2N̂  be the unit normals to them at

any common point P, respectively.

Curve of intersection of S1 and S2.

Let n̂  be the unit principal normal to the curve of intersection at P,, as shown in the Fig. 7.3.

Since 1
ˆ ˆ,N n  and 2N̂  are to be drawn through the same tangent line, so clearly 1 2

ˆ ˆˆ, ,N n N  are

coplanar.

Let be angle between n̂  and 1N̂ , then (–) is the angle between 2N̂  and n̂ . Now using

Meunier’s theorem

1 = cos  .....(1)
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and 2 = cos –  .....(2)

S1P

S2
N 2

n

N 1

Curve of
intersection of
S  and S21

Fig. 7.3
From equation (1),

cos  = 1


and sin   21 cos   = 
2
1
21

 
   

. .....(3)

Now from equation (2),

2 = cos cos + sin  sin 

= cos ( cos + sin  sin 

2 = cos sin 
2
1
21

k


 [From (1) and (3)]

or (–  cos ) = 2 2
1sin    

Squaring both sides

 2 2 2 2 2 2
2 1 2 1 1cos 2 cos sin            

or  2 2 2 2 2 2 2
2 1 1 2 1cos sin 2 cos sin             

or 2 2 2 2
1 2 1 22 cos sin         

which is the required result.

7.6 Principal direction and principal curvatures

We have seen that curvature of normal section of a surface at a point varies with the direction

(du, dv) on the surface  ,r r u v
  . Among all the normal sections there are two directions for which

the curvature is maximum or minimum.
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7.6.1. Definitions :

(i) Principal section

The normal section of a surface through a given point having maximum or minimum curva-

tures at the point are called principal sections of the surface at that point.

(ii) Principal Direction

Tangents to the principal section, i.e., directions of the principal section are called principal

directions at the given point. We shall see that, in general, there are two principal directions

at a point and these are orthogonal.

(iii) Principal Curvature

The maximum and minimum curvatures of the two principal sections of a surface are called

the principal curvatures.

(iv) Principal radius of curvature (i.e. principal radii)

Radii of curvatures of principal curvatures are called principal radius of curvature.

(v) Surface of centres

The locus of centres of principal curvatures at all points of a given surface called surface of

centres.

7.7 Equation giving the principal directions at a point of surface and to derive the

differential equation of the principal sections

We know that normal curvature n at point A (u, v) in the direction (du, dv) of surface

 ,r r u v
 

 is given by

2 2

2 2

2
2n

Ldu Mdudv Ndv
Edu Fdudv Gdv

 
 

 
.....(7.7.1)

If (l, m) be actual direction coefficients of the direction (du, dv),

where
dul
ds

 , 
dvm
ds

 ,

Then from (7.7.1), we have

n 

2 2

2

2 2

2

2

2

Ldu Mdudv Ndv
ds

Edu Fdudv Gdv
ds

  
 
 
  
 
 

 

2 2

2 2

2

2

du du dv dvL M N
ds ds ds ds
du du dv dvE F G
ds ds ds ds

        
   
        
   

or n
2 2

2 2

2
2

Ll Mlm Nm
El Flm Gm

 


 
   ,du dul m

ds ds
   
 
 .....(7.7.2)
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or n  2 22Ll Mlm Nm   .....(7.7.3)

 El2 + 2Flm + Gm2 = 1 .....(7.7.4)

Since L, M, N are fixed at A, so value of n at A depends upon the values l, m at A. Hence n is

a function of two variables l, m, which are connected by equation (7.7.3) Taking l as a function of m,

we find for stationary values by

0nd
dm


 2 2 2 0dl dlLl M l m Nm
dm dm

      
 

[on differentiating equation (3)]

or 0dl dlLl M l m Nm
dm dm

     
 

.....(7.7.5)

and by differentiating (7.7.4), we have

2 2 2 0dl dlEl F l m Gm
dm dm

     
 

or 0dl dlEl F l m Gm
dm dm

     
 

.....(7.7.6)

By equation (7.7.5), rearranging the terms

    0dl Ll Mm Ml Nm
dm

    .....(7.7.7)

and by equation (7.7.6)

    0dl El Fm Fl Gm
dm

    .....(7.7.8)

Eliminating 
dl
dm , 1 between equation (7.7.7) and (7.7.8), we get

0
Ll Mm Ml Nm
El Fm Fl Gm
 


 

or       0Ll Mm Fl Gm El Fm Ml Nm      .....(7.7.9)

Simplifying, we get

     2 2 0LF EM l GL EN lm MG FN m     

or      2 2 0EM LF l EN GL lm FN MG m      .....(7.7.10)

This equation determines the principal directions of the principal section.

To obtain the differential equation of the principal section replace l, m by direction ratios du, dv

in equation (7.7.10), we get

(EM – LF) du2 + (EN – GL) du dv + (FN – GM) du2 = 0,
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which can be expressed in the form of determinant as follows :

2 2dv du dv du
E F G
L M N



 = 0. .....(7.7.11)

This equation gives differential of the principal section.

7.8 There are two principal directions at every point on a surface which are mu-

tually orthogonal

We know that the equation determining the principal directions at a point A (u, v) of the surface

 ,r r u v
   is given by

     2 2 0EM LF l EN GL lm FN MG m      [equation (7.7.10)]

which can be expressed as

     
2

0l lEM LF EN GL FN MG
m m

           
   

.....(7.8.1)

(on dividing above equation by m2)

This being a quadratic equation in 
l
m , which provides two directions, i.e. there are two roots

(say) 
1

1

l
m  and 

2

2

l
m  of equation (7.8.1)

Then sum of roots  
 

1 2

1 2

EN GLl l GL EN
m m EM LF EM LF

          
......(7.8.2)

and product of roots 1 2

1 2

l l FN GM
m m EM LF

      
.....(7.8.3)

or 1 2l l
FN GM

1 2m m
EM LF




. .....(7.8.4)

Now by equation (7.8.2)

1 2 2 1

1 2

l m l m
m m


 
GL EN
EM LF





1 2 2 1 1 2l m l m m m
GL EN EM LF


 

  .....(7.8.5)

From equation (7.8.4) and (7.8.5), we get

1 2 2 1l m l m
GL EN




1 2l l
FN GM




1 2m m
EM LF


 1c  (say)

  1 2 2 1l m l m    1 1 2 1, ,c GL EN l l c FN GM   

m1m2  1c EM LF  .....(7.8.6)
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Now if is the angle between these directions, than

tan
 
 

1 2 1 2

1 2 1 2 1 2 1 2

H l m m l
El l F l m m l Gm m




  

which can be expressed as

tan
 

 

2
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

4H l m m l l l m m
El l F l m m l Gm m

 


  

or tan
     

     

22
1 1 1

1 1 1

4H c GL EN c FN GM c EM LF
Ec FN GM Fc GL EN Gc EM LF

    


    
[by equation (7.8.6)]

or tan
    

     

2 4H GL EN EM FL FN GM
E FN GM F GL EN G EM LF

   


    

    2 4H GL EN EM FL FN GM
EFN EGM FGL FEN GEM GLF

   


    

or tan
     2 4

0
H GL EN EM FL FN GM   

  


2


  . Hence the two principal direction are mutually orthogonal.

7.9 Umbilics

To derive the condition that a point be umbilic on the surface  ,r r u v
  .

The equation determining the principal directions at a point of surface  ,r r u v
  is given by

     2 2 0EM LF l EN GL lm FN MG m      .....(7.9.1)
in this, if

0

0

and 0

E FEM LF
L M
E G E F GEN GL
L N L M N
F GFN MG
M N

    

      



    

.....(7.9.2)

then sum of  roots 1 2

1 2

l l
m m

  and product of roots 1 2

1 2

l l
m m

 of the equation

     
2

0l lEM LM EN GL FN MG
m m

           
   

.....(7.9.3)
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becomes 
0
0 , i.e. values of 

l
m  becomes inderminate, which means that in this situation the normal curva-

ture becomes independent of directions (du, dv) and so has the same value for all directions through the

given point A (u,v) of the surface. Such a point is called an umbilic or a navel point on the surface

 ,r r u v
  .

Definition : A point A (u,v) on the surface  ,r r u v
  is called an umbilic, if at the point

E F G
L M N
 

2

2

EG F H
TLN M


 


.....(7.9.4)

An umbilic can also be taken as a circular section of zero radius.

Since at each point of a sphere, the normal curvature is same, so every point of a sphere is an

umbilical point.

7.10 The equation giving the principal curvatures at a point A (u, v) of the surface

 ,r r u v
 

By the equation (7.7.9) which determines the principal directions, we have

     Ll Mm Fl Gm El Fm Ml Nm     0 .....(7.10.1)


Ll Mm
El Fm



Ml Nm
Fl Gm







Ll Mm
El Fm




Ml Nm
Fl Gm





   
   

l Ll Mm m Ml Nm
l El Fm m Fl Gm

  


  

2 2

2 2

2
2

Ll Mml Nm
El Flm Gm

 


 
n


Ll Mm
El Fm



Ml Nm
Fl Gm





n

.....(7.10.2)

Hence Ll Mm
El Fm



 n     Ll + Mm = n (El + Fm) .....(7.10.3)

and
Ml Nm
Fl Gm




  n       nMl Nm Fl Gm    .....(7.10.4)

Equation (7.10.3) and (7.10.4) can be rewritten as

    0n nL E l M F m      .....(7.10.5)

and     0n nM F l N G m      .....(7.10.6)

On eliminating l, m, we have

0n n

n n

L E M F
M F N G
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       0n n n nL E N G M F M F         

or      2 2 22 0n nEG F EN LG FM LN M        

or  2 2 22 0n nH EN LG FM T       , .....(7.10.7)

where H2 = EG – F2 and T2 = LN – M2.

This equation being quadratic in n gives two roots say n = a and n = b, which are called

two principal  curvatures. Thus from equation (7.10.7), we have

sum of roots  a b     
 2 2

2EN LG FM
H EG F

 


 
.....(7.10.8)

and product of roots =
2 2

2 2a b
T LN M
H EG F


    


. .....(7.10.9)

7.11 Same important definitions

(i) Mean curvature or mean normal curvatures
The arithmetic mean of the principal curvatures at a point is called the mean curvature. It is de-

noted by symbol 

i.e.  1
2 a b    

 2

2
2

EN LG FM
EG F
 




.....(7.11.1)

(ii) Amplitude of normal curvatures

Amplitude of normal curvature is denoted by A is defined as

 1
2 a bA     .....(7.11.2)

 (iii) First curvature

The sum of principal curvatures at a point is called the first curvature at the point, denoted by J
and given by

   2

2
a b

EN LG FMJ
EG F
 

    
 .....(7.11.3)

then clearly  
1
2

J  .

(iv) Gaussian curvature (or second curvatures)
The product of the principal curvatures at a point is called the Gaussian curvature at the point,

denoted by symbol 

and given by a b   
2

2

LN M
EG F





. .....(7.11.4)

It is also called, specific curvature or total curvature.
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(v) Minimal surface
The surface for which the first curvature is zero (or the mean curvature is zero) at all points, is

called a minimal surface.

Hence the surface will be minimal, if and only if

2 0EN GL FM   0 

  0a b    

1 2 0  

1 2   .....(7.11.5)

where and are radius of normal curvatures.

(vi) Developable surface

The surfaces for which Gaussian curvature is zero, are called developable surfaces.

Thus for developable surfaces

= 0 LN – M2 = 0 .....(7.11.6)

Remarks :

(a) The necessary and sufficient condition for a surface to be developable is that its Gaussian

curvature should be zero.

(b) If there is a surface of minimum area passing through a closed space curve, it is necessarily a

minimal surface, i.e., a surface of zero mean curvature.

7.12 Radius of curvature at an umbilic on the surface  ,z f x y

The Principal radii of curvature are given by the equation (7.10.7), when n is replaced by 1/

(principal radius of curvature) i.e.,

 
2

2
2

12 0H EN LG FM T    
  .....(7.12.1)

For the surface  ,z f x y , we know that

2 2 2 2

2
2

2

1 , , 1 , 1

, , , ,

E p F pq G q H p q
r s t rt sL M N T
H H H H

       



    


.....(7.12.2)

where   
2 2 2 2

2 2, , , , .z z z z z zp q r t s
x y x y x y y x
     

     
       

Then substituting values from equation (7.12.2) in (7.12.1) we get

    
2 2

2 2
2 2

1 11 1 2 0H rt st p r q pqs
H H


       

 
. .....(7.12.3)
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But when equation of surface is given in the Monge’s form  ,z f x y , the condition for a

point to be umbilic is

2 22 2

2 2

11 1 .
p qp pq q H

r s t rt s rt s

  
   

 
.....(7.12.4)

From this,

2 2

2 2

1 1p H p r
r Hrt s rt s
 

  
 

, .....(7.12.5)

 22

2 2

11 r qq H rt
t Hrt s rt s


  

 
, .....(7.12.6)

and 2 2
.pq H pq s

s Hrt s rt s
  

 
.....(7.12.7)

Using values from equation (7.12.5) to (7.12.7) in (7.12.3), we get

2 2

2 22 2 2

1 2H r t s s rt st r
Hrt s rt s rt s

  
           

or
 22 2

2 22

21 0
rt sH rt s

Hrt s

      
    

,

or

2
2

0H rt s
H

 
    

or
2 2 2 2

2 2

1 .H rt s H p q
H rt s rt s
  

   
  

.....(7.12.8)

Thus from (7.12.4) and (7.12.8), it follows that for an umbilic
2 21 1p pq q

r s t H
  

   . .....(7.12.9)

7.12.1. Self-learning exercise-2

1. Define the following :

(i) Principal sections of the surface.

(ii) Principal direction.

(iii) Principal curvature.

(iv) Principal radius of curvature.

(v) Surface of centres.

2. Write the differential equation of the principal section of the surface  ,r r u v
  .
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3. Write the equation giving the principal directions at a point of a surface  ,r r u v
  .

4. Are the two principal directions at every point on a surface   ,r r u v
  , mutually ortho-

gonal ?

5. Write the Condition that a point be umbilic on the surface  ,r r u v
  .

6. Define the following :

(i) Mean curvature at a point of a surface.

(ii) First curvature.

(iii) Amplitude of normal curvature.

(iv) Gaussian curvature.

(v) Minimal surface.

(vi) Developable surface.

7. Write the formula for radius of curvature at are umbilic on the surface z = f (x, y).

7.12.2. Illustrative Examples

Ex.1.  Find the principal sections and principal curvatures of the surface

x = a(u+ v), y = b(u – v), z = uv.

Sol. The position vector r  of any point on the surface is given by

r  ˆˆ ˆ( )xi yj zk  

or r  ˆ ˆ ˆ( ) ( )a u v i b u v j uv      [vector equation of surface]

or r  = [a(u + v), b(u – v), uv] ......(1)

Here a and b are constants and u, v are parameters.

Differentiating (1) partially with respect to u, we get

 1 , ,r r a b v
u


 





. .....(2)

Again differentiating with respect to u, we get

 
2

112 0,0,0r r
u


 





.....(3)

Now differentiating equation (2) partially with respect to v, we get

 
2

12 0,0,1r r
v u


 
 




.....(4)

Now differentiating equation (1) partially with respect to v, we get

 2 , ,r r a b u
v


  





.....(5)
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Differentiating this with respect to v again, we get

 
2

222 0,0,0r r
v


 





.....(6)

Now 1 2r r     , , , ,a b v a b u  

   ˆ ˆˆ ˆ ˆ ˆai bj vk ai bj uk     

ˆˆ ˆi j k
a b v
a b u




     ˆˆ ˆi bu bv j av au k ab ab      

or 1 2r r     , , 2b u v a v u ab      .....(7)

Now 2 2 2 2
1 1 1E r r r a b v        .....(8)

    2 2
1 2 , , , , ,F r r a b v a b u a b uv      
 

.....(9)

and  2 2 2 2
2 2 2G r r r a b u       

.....(10)

Now       22 2 2 2 2 2 2 2 2 2H EG F a b v a b u a b uv         

or 2 4 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2H a a b a u a b b b u a v b v u v        

 4 4 2 2 2 2 2 22 2 2a b u v a b a uv b uv     

2 2 2 2 2 2 2 2 2 22 2a u b u a v b v a uv b uv     

   2 2 2 2 2 2 2 22 2 4a u v uv b u v uv a b       .

or    2 22 2 2 2 24H a u v b u v a b     .

or      1/ 22 22 2 2 24H a u v b u v a b     .....(11)

Now, 1 2ˆ r rN
H



 

    1 ˆ ˆˆ ˆ ˆ ˆai bj vk ai bj uk
H

     

ˆˆ ˆ
1

i j k
a b v

H
a b u




      1 ˆˆ ˆi bu bv j av au k ab ab
H

      

or N̂     1 , , 2b u v a v u ab
H

    .....(12)
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Now L  11
ˆ ˆ 0,0,0 0N r N    
 .....(13)

M        12
1 2ˆ , , 2 0,0,1 abN r b u v a v u ab
H H

        
.....(14)

and N  22
ˆ ˆ 0,0,0 0N r N    
 .....(15)

T2
2 2 2

2
2

2 40 ab a bLN M
H H

       
 

.....(16)

(i) Principal sections

The differential equation determining the principal sections is

     2 2 0EM LF du EN LG dudv FN GM dv      .....(17)

Using values of E, F, G, L, M, N from above equations, we get

     2 2 2 2 2 2 2 22 20 0 0 0 0ab aba b v du dudv a b u dv
H H

                             

Simplifying

2 2 2

du
a b u  2 2 2

dv
a b v

 
 

On integrating, we get

or
   

2 22 2

du

a b u 


   
12 22 2

dv c
a b v

  
 



or
1

2 2
sinh u

a b



1

12 2
sinh v c

a b
  


.....(18)

where c1 is constant of integration.

Equation (18) is the equation of principal section.

(ii) Principal curvatures

The differential equation determining the principal curvatures is

 2 2 22 0H EN LG FM T      .....(19)

Using values of E, F, G and L, N, M and T2, we get

 
2 2

2 2 2 2
2

2 40 0 2 0ab a bH a b uv
H H

                    

or  4 2 2 2 2 24 4 0H abH a b uv a b       .....(20)

where 2 2H EG F      22 2 2 2 2 2 2 2a b v a b u a b uv       

or H2    2 22 2 2 24a u v b u v a b     .....(21)
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On using equation (21) in (20), we get a quadratic equation in We can find principal curva-

tures.

Ex.2.  For the hyperboloid 2z = 7x2 + 6 xy – y2, prove that the principal radii at the ori-

gin are 
1
8  and 

1
2

 , and that the principal sections are x = 3y, , 3x = – y.

Sol. The given surface is

 2 21 7 6
2

z x xy y   , .....(1)

which is the Monge’s form of equation of surface.

Here first we shall calculate p, q, r, s, t at the origin and then we shall calculate fundamental

magnitudes of this surface. Here x, y will be treated as parameters.

Now differentiating (1) partially with respect to x and y, we get

   7 3 , 3z zp x y q x y
x y
 

     
 

and
2 2 2

2 27, 3, 1z z zr s t
x x y y
  

      
   

We shall find these values at the origin (0, 0, 0), so

(0,0,0) (0,0,0)

0, 0,z zp q
x y

            
.....(2)

     

2 2 2

2 2
0,0,0 0,0,0 0,0,0

7, 3, 1z z zr s t
x x y y

       
                   

.....(3)

Here consider   , , ,r x y f x y z 


  1 1,0, ,zr p
x


 



  2 1,0, ,zr q

y


 



  

2

11 2 0, 0,zr r
x


 




 
2

12 0, 0, ,zr s
x y


 
 


   

2

22 2 0, 0,zr t
y


 



.



2 2
1 1 1 2 2 2

2 2

1 , , 1

, , and 1

E r r p F r r pq G r r q
r s tL M N H p q
H H H

          



      

     

.....(4)

Using values of p, q, r, s, t from equations (2) and (3) in equation (4), we get

E = 1, F = 0, G = 1, H = 1, L = 1, M = 3, N = –1 .....(5)

Now equation giving the principal curvatures is

     2 2 22 0n nEG F EN FM LG LN M         .....(6)
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Putting the values of E, F, G, L, M, N and H from equation (5), we get
2 6 16 0n n       8 2 0n n     

 n = 8, – 2 .....(7)

Hence principal radii are 1
1 1

8n

  


 and 2
1 1 1

2 2n

    
 

Again the equation of principal section is

     2 2 0EM FL dx EN GL dxdy FN GM dy      .....(8)

or 2 23 8 3 0dx dxdy dy   [on using values of E, F, G, L, M and N]

or   3 3 0dx dy dx dy  

 3dx + dy = 0  or dx – 3 dy = 0
On integrating 3x + y = c1 , x – 3y = c2 .....(9)

But at the origin (0,0,0), using x = 0, y = 0, we get c1 = 0, c2 = 0  [form (9)]

  Principal sections of the origin are

3x + y = 0,   x – 3y = 0   [From (9)]

or 3x = – y,   x = 3y .....(10)

Ex.3.  Show that the points of intersection of the surface xm + ym + zm = am and the line

x = y = z are umbilics and that the radius of curvature at an umbilic is given by

( 2) / 23
1

m ma
m

  


.

Sol. The equation of given surface is

xm + ym + zm = am,, .....(1)

where a is a constant.

This surface may be regarded as Monge’s from [z = f(x, y)] by taking z as a function of x and y.
Differentiating equation (1) partially with respect to x and y respectively, we get

1 10 0m m zmx mz
x

  
  



1mz xp
x z

          
.....(2)

1 10 0m m zmy mz
y

  
  



1mz yq
y z

          
.....(3)

Now, from equation (2), on taking log

 
1

log log
mxp

z


    
 

    log 1 log logp m x z     .....(4)

Differentiating this partially with respect to x, we get

 
 1 p

p x
 

 
  1 11 zm

x z x
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or
1 p
p x



  1 11m p
x z

     
 

 
z p
x
   



or
r
p

  11 pm
x z

    
 

     
2

2

p zr
x x

  
    



Now differentiating equation (4) partially with respect to y

 
 1 p

p y
 

     11 0 zm
z y

 
    

or
 1

1
zm

p y
p y z

 
 


or
 1m qs z

p z


                
2p zs

y y x
  

     
 ......(6)

From equation (3), on taking log

 
1

log log
myq

z


    
 

        log 1 log logq m y z      

Differentiating this partially with respect to y, we get

 
   1 1 11

q zm
q y y z y

   
      

or  1 1 11q zm
q y y z y

  
     

or   1 11t m q
q y z

 
   

 
.....(7)

Now for an umbilic
21 p pq

r s


 .....(8)

But from (6),
1

pq z
s m

 


.....(9)

 From equation (8),
21

1
p pq z

r s m
 

 


or
21 p

r


1
z

m





or  21 p
 1

z r
m


 


    11
1

z pm p
m x z
             [From equation (5)]
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or  21 p 2pz p
x


 

 1 pz
x

 

or ( / )p x z  .....(10)

Using this value of p in equation (2), we get
1mx x

z z


   
 

2

1
mx

z


    
 

 2 2m mz x   .....(11)

Similarly we can find, 2 2m my z  .....(12)

Therefore from equation (11) and (12), we get
2 2 2m m mx y z     x y z  

Therefore for an umbilic, x = y = z .....(13)

Then from equation (1),
m m m mz z z a   3 m mz a   ,x z y z 

1/3 m

az     
 

.....(14)

Now from equation (2),

1mzp
z


    
 

1p    x z

Similarly from equation (3),

1mzq
z


    
 

1q    y z

From equation (6),

 1m qs
p z

 
  1m

s
z

 
   1p q  

or
 

1/

1

3 m

m
s

a
 


 
 
 

  1/1 3 mm
a

 
 [From equation (14)]

and H 2 21 p q      2 21 1 1      3

Then radius of curvature is given by

pqH
s

 
   
  1/

1 1 3
1

3 mm
a

 



   

(1/ 2) (1/ )3
1

ma
m
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or  
( 2) / 23

1
m ma

m


 


or  
( 2) / 23

1
m ma

m
  

 .    (numerically)

Ex.4.  Show that the surface ez cos x= cos y is minimal surface.

Sol. The given surface can be expressed as

cos
cos

z ye
x

 or    log cos log cosz y x   [on taking log] .....(1)

i.e., the equation of the surface is in the form

z = f (x, y) [Monge’s form]

The position vector r  of any current point (x, y, z) on this surface is given by

   , , , , log cos log cosr x y z x y y x  


.....(2)

On differentiating it partially with respect to x and y respectively

 1 1,0, tanr r x
x


 





.....(3)

and  2 0, 1, tanr r y
y


  





.....(4)

Again differentiating (3) partially with respect to x and y, we get

 2
11 0,0,secr x

,  12 0,0,0r 


.....(5)

Differentiating (4) partially with respect to y

 2
22 0,0, secr y 

.....(6)

Now, 2 2 2
1

1 2
2 2 2

2

1 tan sec ,
tan tan ,

1 tan sec

E r x x
F r r x y
G r y y

   
    
    



 


.....(7)

     1 2 1,0, tan 0,1, tan tan , tan ,1r r x y x y     
 

Now  1 2 tan , tan ,1ˆ x yr rN
H H


 
 

Hence
   
   

   

2
2

11

12

2
2

22

tan , tan ,1 secˆ 0, 0, sec

tan , tan ,1ˆ 0, 0, 0 0 and

tan , tan ,1 secˆ 0, 0, sec

x y xL N r x
H H
x y

M N r
H

x y yN N r y
H H

 
     


 

     

 

      








.....(8)
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The condition for the surface to be minimal is

EN – 2FM + GL = 0 .....(9)

Putting values of E, F, G and L, M, N  form equation (7) and (8) in (9), we get

 2 2 2 2sec sec sec sec2 0 0
x y y xEN FM GL

H H


     

Hence the given surface is minimal.

Ex.5.  Find the values of (i) First curvature. (ii) Gaussian curvature, at any point of right

helicoid x = u cos , y = u sin  , z = c.

Hence show that a right helicoid is a minimal surface.

Sol. The position vector r of any current point (x, y, z) on this surface is given by

     ˆˆ ˆ , , cos , sin ,r xi yj zk x y z u u c       


.....(1)

Then on differentiating r partially with respect to u and , we get

   1 2cos ,sin ,0 , sin , cos ,r rr r u u c
u
 

        
 

 
 

.....(2)

Similarly

   
2 2

11 122 0,0,0 , sin ,cos ,0r rr r
u u
 

      
  

 
 

 
2

22 2 cos , sin ,0rr u u
     





. .....(3)

Then the fundamental magnitudes are

2
1 1 1 1,E r r r       1 2 0,F r r  

  2 2
2 2G r r u c    

and  2 2 2 2 2 21 0H EG F u c u c        2 2H u c  

 1 2
11

sin , cos ,ˆ ˆ, 0
c c ur rN L N r

H H
  

    
 



2
2

12 22 22 2
ˆ ˆ, 0,c aM N r N N r T

Hu c


       


  . .....(4)

(i) First curvature

The first curvature J of the given surface at any point (u,) is obtained by

 2 2 2

2 0 0 2 0 0,
1 0

EN GL FMJ
EG F u c
    

  
    .....(5)

which shows that first curvature for right helicoid is zero, hence it is a minimal surface.
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(ii) Gaussian curvature
The Gaussian curvature K at any point (u,) is obtained by

 
2 2 2

22 2 2 2
.T LN M cK

H h u c

 
  

 .....(6)

7.13 Radius of curvature of a given section through any point of a surface

z = f (x, y).

Suppose the surface is z = f (x, y).

Tangent to

90°

A

T

Surface
z = f (x, y)

Curve

Curve by a plane
intersection called
plane section

AN
AN
AT

  principal normal
to surface   is
normal to 

1

2

2

l  
, m

  ,
 n

 
2

2

2N 

Fig 7.4

A plane cut in it is a curve . Suppose A be a point of , AT be tangent to at A having direc-

tion cosines (say) l1, m1, n1. Let AN2 be one of the normal to AT lying in the plane of section. Let d.c.’s

of AN2 be l2, m2, n2. Also let AN1 be principal normal to surface at A. If equation of surface is taken in

the form F (x, y, z) = 0, then direction ratios of the normal to surface are

, ,f F F
x y z
  
  

  i.e.,   – p, – q, 1,    where    ,z zp q
x y
 

 
 

.

Therefore d.c.’s of principal normal are

2 2 2 2 2 2

1, ,
1 1 1

p q

p q p q p q

 

      .....(7.13.1)

Let angle between the plane of the section and normal section through AT be , then
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cos  2 2 2
2 21

pl qm n

p q

  


 
.....(7.13.2)

Now, AT and AN1 are perpendicular, therefore

pl1 + qm1 – n1 = 0 .....(7.13.3)

Differentiating this equation with respect to s, we get

1 1 1
1 1 0dl dm dndp dql p m q

ds ds ds ds ds
          
   

or 1 1 1
1 1 0dl dm dn dp dqp q l m

ds ds ds ds ds
      
 

.....(7.13.4)

Now we shall find values of anddp dq
ds ds

dp
ds

 1 1
p dx p dy rl sm
x ds y ds
 

   
  .....(7.13.5)

2

1 12 etc. ,p z z dx dyr l m
x x x ds dsx

                
Q

Similarly
dq
ds

 1 1
q dx q dy sl tm
x ds y ds
 

   
  .....(7.13.6)

multiplying equation (7.13.5) by l1 and equation (7.13.6) by m1 and adding, we get

1 1
dp dql m
ds ds

  
 

= l1 (rl1 + sm1) + m1 (sl1 + tm1)

 2 2
1 1 1 1 1 1rl sl m sl m tm   

 2 2
1 1 1 12rl sl m tm   .....(7.13.7)

Now using Serret-Frenet formulae, we find

 1 1 1 2 2 2
1 2 2

1dl dm dn l m np q p q pl qm n
ds ds ds

   
                

.....(7.13.8)

Using values from equation (7.13.7) and (7.13.8) in (7.13.4), we get

   2 2
2 2 2 1 1 1 1

1 2 0pl qm n rl sl m tm     


or    2 2
2 2 2 1 1 1 12pl qm n rl sl m tm      .....(7.13.9)

Using this value in equation (7.13.2), we have

 2 2 2 21 1 1 1 1 1 1 1
2 2 2 2

2 2coscos
1 1

rl sl m tm rl sl m tm

p q p q

    
  

   
.....(7.13.10)
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This relation gives radius curvature  for surface z = f (x, y) at a point A of it by a plane section,

where l1, m1, n1 are direction cosines of its tangent at the point (x, y, z). If = 0, then from (7.3.10)

2 2
1 1 1 1

2 2

21

1

rl sl m tm

p q

 


  
.....(7.13.11)

then this expression gives the principal radius of curvature corresponding to a given principal section.

Ex.  Find the principal radii at the origin of the surface
2z = 5x2 + 4xy + 2y2.

Find also the radius of curvature of the section x = y.

Sol.  Equation of surface can be expressed as

z  2 21 5 4 2
2

x xy y   .....(1)

Deafferentating it partially with respect to x and y respectively.

z p
x





5 2 , 2 2zx y q x y
y


    


and
2

2
zr

x





2 2

25, 2, 2z zs t
x y y
 

    
  

.....(2)

p = 0,  q = 0,   r = 5,   s = 2,  t = 2   and    H2 = 1 + p2 + q2 = 1 .....(3)

Now the principal curvatures for a surface in Monge’s form is given by

H42 – H [(1 + p2) t + (1 + q2) r – 2spq]  + (rt – s2) = 0

Using values form equation (2), we get

2 – 7 + 6 = 0    or    ( – 1) ( – 6) = 0   = 1, 6 .....(4)

then principal radii of curvature (say), 1 and 2 are

1 2
1 1 1 11, and

1 6
     
 

. .....(5)

Second part : The given point is origin (0, 0, 0) and the plane of the section is x – y = 0. The

equation of tangent plane of the surface z = f (x, y) at (0, 0, 0) is z = 0

Hence the direction cosines of the line

x – y = 0,   z = 0

or

0 or 1 11 1 0 0
2 2

x y z x y z
   

.....(6)

are  1 1 1
1 1, , 0 , ,
2 2

l m n   
 

.....(7)

where l1, m1, n1, are the d.c.’s of tangent through origin for curve of section.
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Now, equation of normal plane to the surface at origin (0, 0, 0) through the tangent line is,

x – y = 0 .....(8)

which is same as given plane.

So,  = 0, then radius of curvature is given by

1


2 2
1 1 1 1

2 2

5 1 1 12 2 2
2 2 22 2

1 0 01

rl sl m tm

p q

     
 

 
  

or 1 (5 / 2) 3 11 2radius of curvature
1 2 11


     


. .....(9)

7.14 Lines of curvature

Definition : A curve on a surface is called a line of curvature if the tangent at any point of it is

along the principal direction at that point.

7.14.1 There are two systems of lines of curvature

At each point of the surface there are two principal directions which are at right angles. Hence,

we have two orthogonal systems of lines of curvature on the surface and through each point on the sur-

face there pass two lines of curvature, one corresponding to each system.

7.14.2 To find the differential equation of lines of curvature at point (u, v) of the sur-

face ( , ).r r u v
r r

By definition of line of curvature, the direction of line of curvature at any point is along the prin-

cipal direction at that point, so the differential equation of the two systems of line of curvature is the

same as the differential equation of the principal section and is given by

(EM – FL) du2 + (EN – GL) du dv + (FN – GM) dv2 = 0 .....(7.14.1)

this equation can be expressed in the following form

Pdu2 + 2Qdu dv + Rdv2 = 0 .....(7.14.2)

where P = EM – LF,   2Q = EN – GL,   and   R = FN – GM.

Here ER – 2FQ + GP = E (FN – GM) – F (EN – GL) + G (EM – LF) =  0, ...(7.14.3)

which shows that lines of curvature cut orthogonally at a point on the surface ( , ).r r u v
r r

Remark :

(a) Equation (1) can be put in the following determinant form

2 2

0
dv du dv du
E F G
L M N


  (Here u and v are parameters) .....(7.14.3)
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(b) If we take the parameters x, y in place of (u, v), the above equation (7.14.3) of line of

curvature through a point on z = f (x, y) is given by

2 2

2 21 1 0

dy dx dy dx

p pq q
r s t



   .....(7.14.4)

Q E = 1 + p2,   F = pq,  G = 1 + p2,  H2 = 1 + p2 + q2

and L , , .r s tM N
H H H

  

7.14.3 Illustrative examples
Ex.1.  Prove that the cone xy = z {(x2 + z2)1/2 + (y2 + z2)1/2} passes through a line of

curvature of the paraboloid xy = az.
Sol.  From the given equation of paraboloid, we have

z 1 xy
a

 .....(1)

Differentiating partially with respect to x and y respectively

z
x



.yp
a

  .....(2)

z
y



xq
a

  .....(3)

and again differentiating r
2 2 2

2 2
10, , 0z z zs r

x y ax y
  

     
  

.....(4)

Here parameters are x and y, so differential equation of lines of curvature is given by

2 2

2 21 1 0

dy dx dy dx

p pq q
r s t



  
.....(5)

Using value of p, q, r, s, t, we get

2 2

2 2

2 2 21 1 0

10 0

dy dx dy dx

y xy x
a a a

a



  
.....(6)

expanding the determinant, we get
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2

2 2
2 2

1 10 1 0 1 0 0x ydy dx xy dx
a aa a

      
                        

or    2 2 2 2 2 2 0a x dy a y dx    

or 2 2 2 2
0dx dy

a x a y
 

  .....(7)

On integrating, we get  1 1
1sinh sinh constantx y c

a a
   .....(8)

where c1 is arbitrary constant if integration.

This relation in equation (8) provides us the surface on which the lines of curvature lie.

Equation (8) can be expressed as

2 2
1

12 2sinh 1 1x y y x c
a aa a


 
    
  

or    
2 2

12 21 1 sinh constantx y y x c
a aa a

     .....(9)

Now from equation az = xy of the paraboloid, we have

, ,x z y z
a y a x
  [using these in equation (9)]

we get    
2 2

2 21 1 constant sayz z z z K
y xx y

    

or
   

 
1 2 1 22 2 2 2

constant
z x z z y z

K
xy

  


or    1 2 1 22 2 2 2z x z y z Kxy      
.....(10)

which is a can passing through a line of curvature of xy = az.
Ex.2.  Prove that in general three lines of curvature pass through an umbilic.

Sol. Let the umbilical point be taken as origin (0, 0, 0); and xy-plane as the tangent plane at

origin, and z-axis normal at the origin.

Now tangent plane is xy-plane, so we expect that first degree terms to be zero in the equation

of surface z = f (x, y). Further, the section at umbilic being circle, so the equation of surface z = f (x, y)

will have, coefficient of x2 = coefficient of y2 and no term of xy will be present. Under these restrictions

we express the equation of surface z = f (x, y) as follows :
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2 2

3 2 2 312 3 2 ... .
3

x yz ax bx y cxy dy
     


.....(1)

Now, the condition that the normal (0, 0, 0) and other point (x, y, z) should intersect, i.e., the

two lines whose equation are

0 0 0
0 0 1

    
  .....(2)

and 1
x y z

p q
   

 
 .....(3)

should be coplanar is 1 0
0 0 1

x y z
p q   . .....(4)

On expanding, we get qx = py .....(5)

Now, differentiating equation (1) partially with respect to x and y respectively we get

2 22 22 2 ...z xp ax bxy cy
x


     
  .....(6)

and
2 22 22 2 ...z yq bx cxy dy

x


     
  .....(7)

Using values of p and q from (5) and (6) in (4), we get

2 2 3 3 2 22 22 ... 2 ...xy xyax y bxy cy bx cx y dxy        
 

or bx3 + x2y (2c – a) + xy2 (d – 2b) – cy3 = 0

divide by – x3, we get    
3 2

2 2 0y y yc b d a c b
x x x

               
     

.....(8)

Let  be the angle which tangent to a line of curvature makes with z-axis, then tan lim ( / )y x 

therefore from equation (8), we have

c tan3 + (2b – d) tan2 – (2c – a) tan – b = 0. .....(9)

This is a cubic equation in tan , so it given three lines of curvature through the umbilic, corre-

sponding to three values of tan .

7.14.4 Self-learning exercise-3

1. Write formula for radius of curvature of a given section through any point of a surface

z = f (x, y).

2. Define lines of curvature.

3. What is the differential equation of lines of curvature at point (u, v) of the surface

 ,r r u v
 

 ?

4. In general how many lines of curvature pass through an umbilic ?
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7.15 Summary

1. In this unit you have studied Meunier’s theorem, Principal direction and principal curvature at

point (u, v) on surface  , ,r r u v
r r

 about first curvature, mean curvature, and Gaussian Curva-

tures at point (u, v) on surface  , ,r r u v
r r

 about umbilic point, about formula of radius of

curvature of any normal section at an umbilic on z = f (x, y), about radius of curvature of a given

section through any point on surface of the form z = f (x, y), about lines of curvature and its

differential equation.

2. Sufficient number of examples have been solved in the unit.

3. Partial derivative p, q, r, s, t and fundamental magnitudes E, F, G and L, M, N, H, T will help

the students to easily understand the text of the unit.

4. Examples in the text have been inserted frequently to help students to understand the text of the

unit.

7.16 Answers to self-learning exercises

Self-learning exercise-1

1. See definitions of §7.3 5.
2 2

2 2
2
2n

Ldu Mdu dv Ndv
Edu Fdu du Gdv

 
 

 

6. See §7.4 (i) & (ii) 7. See Meurier’s Theorem.

Self-learning exercise-2

1. See §7.6.1 (i) to (v)

2. (EM – LF) du2 + (EN – GL) du dv + (FN – GM) dv2 = 0

3. (EM – LF) l2 + (EN – GL) lm + (FN – GM) m2 = 0

4. Yes 5.
E F G
L M N
 

6. See §7.11 (i) to (vi) 7.
 22 11 .

H qp HpqH
r s t

 
     

 

Self-learning exercise-3

1.
2 2
1 1 1 1

2 2

2cos

1

rl sl m tm

p q

 


  
2. See 7.14.2

3. Pdu2 + 2Qdu dv + Rdv2 = 0, where P = Em – LF,   Q = EN – GL,    R = FN – GM.

4. Three.
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7.17 Exercises

1. Find the curvature of the normal section of the helicoid x = u cos ,  y = u sin ,  z = f (x) + c

[Ans. 
   

    
2 2 2

2 2 2 2 2

2

1 2
n

uf du cdu dv u f fv

H f du cf du dv u c dv

  
 

    
]

2. For the surface , , ;
2 2 2

x u v y u v uvz
a b

 
    prove that the principal radii are given by

a2b22 + ab (a2 – b2 + uv) – 4 = 0
where 42 = 4a2b2 + a2 (u – v)2 + b2 (u + v)2 and that the line of curvature are given by

2 2 2 2 2 2

du dv

a b u a b v
 

   
.

3. Prove that for helicoid x = u cos ,  y = u sin ,  z = c ,
2 2

2 2 2
1 2 , whereu c u x y

c


     

and that the lines of curvature are given by

2 2

dud
u c

  


4. Find the umbilics of the ellipsoid 
2 2 2

2 2 2 1.x y z
a b c

    If P is an umbilic of this ellipsoid, then prove

that the curvature at P of any normal section through P is 
3 .ac

b
 
 
 

[Ans.    
2 2 2 20

y b z zx a

a b b c
 

  
]

5. Find the Gaussian curvature at point (u, v) of the anchor ring,

x = (b + a cos u) cos v,    y = (b + a cos u) sin v,    z = a sin u,

where the domain of u, v is 0  u  2,  0  v  2. Verify that the total curvature of the whole

surface is zero. [Ans. Gaussian curvature 
 

cos
cos
u

a b a u
 


]
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UNIT 8 : Principal Radii, Relation between Fundamental
Forms, Asymptotic Lines, Differential Equation
of an Asymptotic line, Curvature and Torsion of
an Asymptotic Line

Structure of the Unit
8.0 Objectives

8.1 Introduction

8.2 Principal radii through a point of the surface z = f (x, y).

8.3 Fundamental forms

8.4 Relation between three fundamental forms

8.5 Asymptotic lines

8.6 To show that to a given direction there is one and one only conjugate direction. Also derive the

condition for the directions (du, dv) and (Du, Dv) to be conjugate.

8.7 To show that the direction given by P du2 + 2Q dudv + R du2 = 0, are conjugate if

LR – 2MQ + NP = 0.

8.8 Family conjugate to the family of curves P du + Q dv = 0.

8.9 Conjugate directions and parametric curves.

8.10 Principal directions (lines of curvature) at a point are always orthogonal and conjugate.

8.11 A characteristic property of conjugate directions

8.11.1 Self-learning exercise-1.

8.12 Definitions

8.13 Differential equation of the asymptotic lines at any point (u, v) on the surface ( , )r r u v
 

8.14 Conditions for two asymptotic directions at a point to be real and distinct, coincident or

imaginary.

8.14.1 Asymptotic lines are orthogonal if the surface is minimal.

8.15 An asymptotic line is a curve on a surface such that the normal curvature of the surface in its

direction is zero.

8.15.1 Illustrative examples.

8.16 The necessary and sufficient condition for the parametric curves to be asymptotic lines.

8.17 If the parametric curves are asymptotic lines, then find differential equation of line of curvature

and show that first and second curvatures are 2
2FM
H

  and 
2

2 .M
H
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8.18 Osculating plane at any point of a curved asymptotic line is the tangent plane to the surfaces.

8.19 Torsion of an asymptotic line ( )r r s
   on the surface ( , )r r u v

  .

8.20 Curvature of an asymptotic line ( )r r s
   on the surface ( , )r r u v

  .

8.21 Beltrami-Enneper theorem

8.21.1 Illustrative examples

8.21.2 Self-learning exercise-2

8.22 Summary

8.23 Answers to self-learning exercise

8.24 Exercises

8.0 Objectives

This unit provides a general overview of Principal Radii, relation between three fundamental forms

of surface, Asymptotic lines and their differential equations, also curvature and torsion of an asymptotic

line. After reading this unit you will be able to learn :

1. about Principal Radii.

2. about relation between fundamental forms.

3. about Asymptotic lines and their differential equations.

4. about curvature and torsion of asymptotic lines.

8.1 Introduction

In this unit we shall study principal radii through a point of the surface z = f (x, y), relation be-

tween three fundamental forms, asymptotic lines and differential equation of asymptotic lines. In the end

of unit we shall study curvature and torsion of an asymptotic lines.

In the earlier Unit-7 we have already obtained the principal curvatures and principal sections for

the Monge’s surface z = f (x, y) from which expression for principal radii can be directly written. We

shall discuss here an alternative method.

8.2 Principal radii through a point of the surface z = f (x, y)

Equation of surface is z = f (x, y) .....(8.2.1)

If l1, m1, n1 are the direction cosines of the tangent to a normal section of the surface through

the point (x, y, z), then the radius of curvature of the section is given by

2 2
1 1 1 1

2 2

21 ,
1

rl sl m tm

p q

 


  
.....(8.2.2)



176

where
2 2 2

2 2, , , , .z z z z zp q r s t
x y x yx y
    

    
    

Equation (8.2.2) can be expressed as

2 2
2 21 1 1 121 , where 1rl s l m m t H p q

H H H
  

     

or
2 2

1 1 1 1
2 1r s tl l m m

H H H
              

     
.....(8.2.3)

Now, – p, – q, 1 are the direction ratios of the surface normal at (x, y, z), so by the condition of

perpendicularity

pl1 + qm1 – n1 = 0

or n1 = pl1 + qm1. .....(8.2.4)

On squaring, we get

n1
2 = (pl1 + qm1)2

or 1 – (l1
2 + m1

2) = p2l1
2 + q2m1

2 + 2pql1m1 [  l1
2 + m1

2 + n1
2 = 1]

or (1 + p2) l1
2 + 2pql1m1 + m1

2 (1 + q2) = 1 .....(8.2.5)

Subtracting equation (8.2.3) from equation (8.2.5), we get

2 2 2 2
1 1 1 11 2 1 0.r s tl p l m pq m q

H H H
                   

     
.....(8.2.6)

The equation (8.2.6) is quadratic equation in 1

1
,l

m
 therefore it gives two values of 1

1
,l

m  corre-

sponding to a given radius of curvature. If  is a principal radius, these sections coincide (i.e., values

coincide). Therefore for the principal radii (by condition of roots both equal B2 – 2AC = 0).

2
2 24 4 1 1 0.s r tpq p q

H H H
                  

     
.....(8.2.7)

On simplifying, we get
2 (rt – s2) – H {(1 + p2) t + (1 + q2) r – 2pqs} + H4 = 0. .....(8.2.8)

This equation gives the principal radii.

8.3 Fundamental forms

In the earlier units, we have studied first and second fundamental forms. Here we shall define

third fundamental form and then we will derive relation between them.

Three fundamental forms are given by first fundamental form
2 2 2( ) 2 ( ) ( ) ,I dr dr E du Fdudv G dv ds     

  .....(8.3.1)
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where equation of surface is regarded as ( , ),r r u v
   u, v are its parameters, and E, F, G are first

order fundamental magnitudes.

Second fundamental form

2 2 2ˆ 2 ( ),nII d r dN L du Mdudv Ndv ds       
 .....(8.3.2)

where L, M, N are second order fundamental magnitudes.

Third fundamental form.

The quadric A du2 + 2B dudv + C dv2, .....(8.3.3)

is called the third fundamental form for surface ( , )r r u v
   and is denoted by III, where

2 2
1 1 2 2 1 2

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, and and , .N NA N B N N C N N N
u v

 
     

 

 2 2ˆ ˆ 2 .III dN dN Adu B dudv C dv     .....(8.3.4)

8.4 Relation between three fundamental forms

If K is the total curvature and J is the first curvature then to show that

KI – J.II + III = 0 .....(8.4.1)

Proof. Suppose that the lines of curvature be the parametric curves, then

F = M = 0 .....(8.4.2)

Then, the two fundamental forms are reduced to

I = E du2 + G dv2 .....(8.4.3)

and II = L du2 + N dv2. .....(8.4.4)

If a, b be the principal curvatures at the point (u, v) of surface ( , )r r u v
   we have for two

parametric curves by Rodrigue’s formula

1 1 1 1
ˆ ˆ ˆ0 0a a a

dr dN r N N r
du du

         
 

.....(8.4.5)

and 2 2 2 2
ˆ ˆ ˆ0 0b b b

dr dN r N N r
dv dv

          
 

.....(8.4.6)

So, the third fundamental form is given by

2ˆ( )III dN  2
1 2

ˆ ˆN du N dv 

2 2 2 2
1 1 2 2

ˆ ˆ ˆ ˆ2N du N N dudv N dv   

       2 22 2
1 1 2 22a a b br du r r dudv r dv         
    .
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Using equations (8.4.5) & (8.4.6)

III 2 2 2 2 2 2
1 1 2 22 ( )a a b br du r r dudv r dv       
   

2 2 2 22a a b bEdu F dudv G dv      

   2 2 2 0a bEdu G dv F     

Now K.I. – J.II     2 2 2 2
a b a bEdu Gdv L du N dv         .....(8.4.8)

Using  K = ab,  and   J = a + b

 , .a a b b
L NL E N G
E G

          .....(8.4.9)

Using these values of L and N in equation (8.4.8), we get

K.I. – J.II   2 2 2 2
a b a b a b a bEdu Gdv E du Gdv            

 2 2 .a bEdu Gdv III       .....(8.4.10)

Hence K.I – J.II + III = 0. .....(8.4.11)

This equation gives a relation between three fundamental forms of the surface ( , ).r r u v
   This

can also be expressed in the form

2 0.
2
JIII II K I          

 
 .....(8.4.12)

8.5 Asymptotic lines

Before defining the asymptotic lines we shall define conjugate directions at a point of a surface

and we shall derive expressions for conjugate directions.

Definition. Conjugate directions

Conjugate directions at a given point (u, v) on a surface ( , )r r u v
   are defined as follows :

Let P be any point (u, v) on a surface (say) S and Q be a neighbouring point on it [i.e., Q is

(u + du, v + dv)].

Let tangent planes at P and Q to the surface S intersect in a line (say) LM. Then the limiting

directions of the line PQ and LM as Q  P are called conjugate directions at P.

8.6 To show that to a given direction there is one and only one conjugate direc-
tion. Also derive the condition for the two directions (du, dv) and (Du, Dv) to

be conjugate

Proof. Let ( , )r r u v
   be equation of surface. Let r  be position vector of the point P (u, v)

on this surface and r dr
 

 be position vector of point Q (u + du, v + dv), a point adjacent to P in the
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direction (du, dv). Let N̂  and ˆ ˆN dN  be unit normals at the points P ( r ) and Q ( r dr
 

) on the

surface, respectively. Then clearly d r  is the limiting position of the vector PQ


 as Q  P. . Let Dr  be

the vector along the limiting position of the line LM as Q  P.

(where D is used to denote the other direction in place of d)

then 1 2
r rPQ dr du dv r du r dv
u v
 

    
 

    

or 1 2dr r du r dv 
   .....(8.6.1)

and 1 2
ˆ ˆˆ ˆ ˆN NdN du dv N du N dv
u v

 
   
 

.....(8.6.2)

Also 1 2
r rDr Du Dv r Du r Dv
u v
 

   
 

 
  

.....(8.6.3)

Now the vector Dr  lies in the tangent plane of P ( r ) as well as that of Q ( r dr
 

) so it will be

 to both normals N̂  and ˆ ˆN dN .

 ˆ 0Dr N  .....(8.6.4)

and  ˆ ˆ 0Dr N dN  


.....(8.6.5)

or ˆ ˆ 0Dr N Dr dN         or    ˆ 0Dr dN  .....(8.6.6)
Using values from (8.6.2) and (8.6.3), we get

   1 2 1 2
ˆ ˆ 0r Du r Dv N du N dv   

 

       1 1 1 2 2 1 2 2
ˆ ˆ ˆ ˆ 0r N Dudu r N Dudv r N Dvdu r N Dvdv       

   

 L Dudu + M Dudv + M Dvdu + N Dvdv = 0

or L Dudu + M (Dudv + Dvdu) + N Dvdv = 0, .....(8.6.7)

where 1 1 1 2 2 1 2 2
ˆ ˆ ˆ ˆ, , .N r L N r M N r r N N       

   

The equation (8.6.7) is the required condition for the two directions (du, dv) and (Dv, Du) to be

conjugate.

Also the equation (8.6.7) is linear in each of the ratio 
du
dv  and 

Du
Dv  which shows that to a given

direction there is one and only one conjugate direction.

Remarks.

(i) The symmetry of equation (8.6.7) shows that if the direction du
dv

 is conjugate to directions

Du
Dv , then 

Du
Dv  is conjugate to direction du

dv
 i.e., the property of conjugate direction is

reciprocal.
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(ii) It follows from equation (8.6.7) that the directions (l1, m1) and (l2, m2) at point P are con-

jugate iff   Ll1l2 + M (l1m2 + m1l2) + Nm1m2 = 0.

8.7 To show that the directions given by Pdu2 + 2Qdudv + Rdv2 = 0, are conjugate

if LR – 2MQ + NP = 0.

Proof. Given LR – 2MQ + NP = 0. .....(8.7.1)

The equation Pdu2 + 2Qdudv + Rdv2 = 0 can be expressed as

2

2 0.du duP Q R
dv dv

     
 

.....(8.7.2)

This equation being quadratic in du
dv

 , gives two roots, say ,du Du
dv Dv

 then

sum of roots 2du Du Q
dv Dv P

     
 

, .....(8.7.3)

and product of roots .du Du R
dv Dv P

   .....(8.7.4)

Now from equation (8.6.7), we have

L Dudv + M (Dudv + Dvdu) + NDvdv = 0.

which can be expressed as

0.Du du Du duL M N
Dv dv Dv dv

     
 

.....(8.7.5)

Using values from equation (8.7.3) and (8.7.4), we get

2 0R QL M N
P P

         
   

 LR – 2MQ + NP = 0, .....(8.7.6)

which is the required condition.

8.8 Family conjugate to the family of curves P du + Q dv = 0

The equation of family of curves given by

Pdu + Qdv = 0, .....(8.8.1)

can be expressed as Pdu = – Qdv

 (say)du dv k
Q P

 


 du = kQ, dv = – kP. .....(8.8.2)
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Now condition for two direction to be conjugate is

L Du du + M [Du (– dv) + Dvdu] + N Dvdv = 0 .....(8.8.3)

Using equation (8.8.2) into the equation (8.8.3), we get

L Du (kQ) + M [Du (– kP) + Dv (kQ)] +N Dv (– kP) = 0

 k [LQ Du – MPDu + MQ Dv –NPDv] = 0

or (LQ – MP) Du + (MQ – NP) Dv = 0 .....(8.8.4)

which is the required result.

8.9 Conjugate directions and parametric curves.

Necessary and sufficient condition that the parametric curves through a point

to have conjugate directions is that M = 0.

Proof : The condition is necessary : The parametric curves, u = c1 (constant) and v = c2

(constant), in the differential form will be

du dv = 0, .....(8.9.1)

which can be expressed as 0 du2 + 1du dv + 0 dv2 = 0. .....(8.9.2)

Comparing it with Pdu2 + 2Q du dv + Rdv2 = 0,

we find that P = 0, 2Q = 1, R = 0. .....(8.9.3)

Now the direction of parametric curves are conjugate  if

LR – 2MQ + NP = 0 .....(8.9.4)

Using equation (8.9.3), we get

0 – M + 0  M = 0. .....(8.9.5)

Thus the parametric curves have conjugate direction when M = 0.

The condition is sufficient :  If M = 0 .....(8.9.6)

and for parametric curves P = 0, R = 0. .....(8.9.7)

Then the condition LR – 2MQ + NP = 0 is satisfied by using (8.9.6) and (8.9.7).

Hence, if M = 0, the directions are conjugate for parametric curves.

8.10 Principal directions (line of curvature) at a point are always orthogonal and

conjugate.

Proof : We know that parametric curves u = const. and v = const., whose combined equation

is given by

du dv = 0.
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The  necessary and sufficient condition that these parametric curves be line of curvature are

F = 0,    M = 0 .....(8.10.1)

and condition for parametric curves to be conjugate is

M = 0. .....(8.10.2)

Also the necessary and sufficient condition for parametric curves to be orthogonal is that

F = 0. ...(8.10.3)

From these we conclude that the direction of line of curvature are always orthogonal as well as

conjugate.

8.11 A characteristic property of conjugate direction.

To show that conjugate direction at a point P on a surface are parallel to con-

jugate diameters of the indicatrix at P.

Proof : Take the lines of curvature as parametric curves, so that

F = 0,   and   M = 0. .....(8.11.1)

Then by equation (EG – F2) 2
nk  – (EN + LG – 2FM) kn + (LN –M2) = 0

becomes EG 2
nk  – (EN + LG) kn + LN = 0

or E (Gkn – N) kn – L (Gkn – N) = 0

(Ekn – L) (Gkn – N) = 0

 ,n
L Nk
E G

  (say)       anda b
L Nk k
E G

  .....(8.11.2)

are the principal curvatures at the point P.

Now by setting point P as origin, x-axis along the principal direction v = const. at P, y-axis

along the principal direction u = const. at P and z-axis along the normal to the surface at P, then equa-

tion of indicatrix (Dupin’s indicatrix) at P is given by

   
2 2

1, .
2 2a b

x y z h
h k h k

   .....(8.11.3)

But we know from coordinate geometry that the lines y = m1x and y = m2x are conjugate

diameters of the conic

2 2 2

1 22 2 21, if ,x y bm m
a b a

    .....(8.11.4)

so the directions of conjugate diameters of curve given by equation (8.11.3) are given by

1 2
a

b

km m
k

  .....(8.11.5)
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 1 2 .

/
L E LGm m
N G EN

   

Let 1 and 2 be the angles which the conjugate directions (du, dv) and (Du, Dv) make with the

parametric curve v = const., then

and 1 1tan G dvm
E du

   .....(8.11.6)

22 tan .G Dvm
E Du

   .....(8.11.7)

Using these values of m1, m2 in to equation (8.11.5), we get

G dv G Dv LG
E du E Du EN

  

G dv Dv LG
E du Du EN

 

N dv D  = – L du Du
or L du Du + N dv Dv = 0, .....(8.11.8)

which is the equation determining conjugate direction, when M = 0. Hence the result.

Alternate definition of conjugate directions :

Two directions at a point of a surface are said to be conjugate if they are parallel to the conju-

gate diameters of the indicatrix of the surface at that point.

8.11.1 Self-learning exercise-1.
1. Write a formula to find principal radii through a point of the surface z = f (x, y).
2. Write the third fundamental form of the surface.

3. Write the relation between three fundamental forms of a surface  , .r r u v
r r

4. Define conjugate directions at a given point (u, v) on a surface  , .r r u v
r r

5. Write the condition for two directions (du, dv) and (Du, Dv) to be conjugate.

6. What is the necessary condition for parametric curves through a point to have conjugate

direction ?

8.12 Definitions

(i) Asymptotic directions : A self conjugate direction on a surface  ,r r u v
r r

is called

asymptotic direction.

(ii) Asymptotic lines : A curve on a surface  ,r r u v
r r

whose direction at each point is self

conjugate, is called an asymptotic line.
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Alternate definition of asymptotic line : A curve drawn on a surface  ,r r u v
r r

 so as to

touch at each point one of the inflexional tangents through the point, is called an asymptotic line on the

surface.

8.13 Differential equation of the asymptotic lines at a point (u, v) on the surface

 , .r r u v
r r

Let (du, dv) be directions of an asymptotic line at any point (u, v) on the surface  , .r r u v
r r

Hence (du, dv) is a self-conjugate direction.

So for asymptotic line ,du Du
dv Dv

 .....(8.13.1)

where (du, dv) and (Du, Dv) are conjugate directions.

The condition of conjugacy of these two directions are

L du Du + M (du Dv + dv Du) + N dv Dv = 0

or 0.du Du du DuL M N
dv Dv dv Dv

     
 

.....(8.13.2)

On using (8.13.1), we have

2

2 0du duL M N
dv dv

     
 

 L du2 + 2M du dv + N dv2 = 0, .....(8.13.3)

this is differential equation of the asymptotic lines at a point (u, v) on the surface  ,r r u v
r r

 in curvilin-

ear coordinates. Equation (8.13.3) can also be expressed in the following form

ˆ 0.dN dr 
r .....(8.13.4)

8.14 Conditions for two asymptotic directions at a point to be real and district,

coincident or imaginary

Differential equation of asymptotic line is

2

2 0du duL M N
dv dv

     
 

.....(8.14.1)

which is quadratic in .du
dv  It follows that in general asymptotic direction through every point of surface

are self conjugate.

(i) These directions will be real and distinct if the discriminant (B2 – 4 Ac) = 4 (M2 – LN) or

(M2 – LN) is positive or (LN – M2) < 0.
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But the Gaussian curvature is
2

2
LN MK

H


         2
ve

ve .K
H


   .....(8.14.2)

Hence asymptotic lines are real and distinct if

K < 0 .....(8.14.3)

and when K < 0, the point is called hyperbolic point and the asymptotic lines at the point are parallel to

the asymptotes of the indicatrix at the point.

(ii) The directions given by equation (8.14.1) will be real and coincident, if the discriminant of

equation (8.14.1) (say)

(B2 – 4 Ac) = 4 (M2 – LN) = 0    or     M2 – LN = 0. .....(8.14.4)

Then Gaussian curvature
2

2 0,LN MK
H


 

then the point is called parabolic point.

(iii) The directions given by equation (8.14.1) will be imaginary if the discriminant

‘‘B2 – 4 Ac < 0’’     i.e.,    4 (M2 – LN) < 0

 (M2 – LN) < 0

 (LN – M2) > 0. .....(8.14.5)

Then the Gaussian curvature

 2

2 2 0
veLN MK

H H


 

i.e. K > 0, then the point is called an elliptic point.

In this case the asymptotic lines are imaginary.

8.14.1 Asymptotic lines are orthogonal if the surface is minimal

Proof : When both roots of the differential equation

Ldu2 + 2M du dv + N dv2 = 0 .....(8.14.6)

of the asymptotic lines are real and district, then

(M2 – LN) > 0

 (LN – M2) < 0. .....(8.14.7)

Then Gaussian curvature

2

2 0,LN MK
H


  .....(8.14.8)

then the point is hyperbolic and the indicatrix at the point is rectangular hyperbola and asymptotic lines

are orthogonal. In this condition, the first curvature



186

J = 0  EN – 2MF + GL = 0,

which is condition of minimal surface.

Hence asymptotic lines are orthogonal if surface is minimal.

8.15 To show that an asymptotic line is a curve on a surface such that the normal

curvature of the surface in its direction is zero.

Proof. Differential equation of asymptotic line is

L du2 + 2M du dv + N dv2 = 0 .....(8.15.1)

and normal curvature at any point (u, v) on surface ( , )r r u v
   is given by

2 2

2 2
2 .
2n

Ldu Mdudv NdvK
Edu Fdudv Gdv

 


 
.....(8.15.2)

Using equation (8.15.1), we get

Kn = 0. .....(8.15.3)
Hence in case of asymptotic lines Kn = 0, an asymptotic line is a curve on a surface such that

the normal curvature of the surface in its direction is zero.

Remarks.

1. A curve drawn on a surface so that its osculating plane at any point contains the binormal to

the curve at the point is an asymptotic line on the surface.

2. Two asymptotic lines through any point have the same osculating plane.

3. When the principal curvatures ka and kb equal and opposite i.e., ka = – kb, the indicatrix is

a rectangular hyperbola and so asymptotic lines are at right angles.

4. The normals to a surface at points of an asymptotic line generate a skew surface whose line

of striction is the asymptotic line.

8.15.1 Illustrative Examples

Ex.1.  Prove that on the surface z = f (x, y) (Monge’s form) the equation of asymptotic

lines are

r dx2 + 2s dxdy + t dy2 = 0.

Sol. The given surface is z = f (x, y), then position vector r  of the current point is r = (x, y, z),

where z = f (x, y), x and y are taken parameters.

On differentiating partially with respect to x and y respectively

   1 21, 0, , 0, 1,r rr p r q
x y
 

   
 

r rr r
.....(1)

where , etc.z zp q
x y
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2 2

12 11 2

2

22 2

and 0, 0, , 0, 0, ,

0, 0, ,

r rr s r r
y x x

rr t
y

 
       


    

r r

r .....(2)

Therefore 2
1 1 1 ,E r r p F   
r r 2

1 2 2 2, 1r r pq G r r q      
r r r r .....(3)

1 2ˆ r rN
H



r r   2 2 2 2, ,1

, 1 .
p q

H EG F p q
H

 
      .....(4)

11 122 2 2 2

22 2 2

ˆ ˆ,
1 1

ˆ
1

r r s sL N r M N r
H Hp q p q

tN N r
p q

        
    


  
  

r r

r .....(5)

Now differential equation of asymptotic line is

Ldu2 + 2M du dv + N dv2 = 0 .....(6)

Here parameters u = x, and v = y, then differential equation (6) of the asymptotic lines at point

(x, y) on the surface z = f (x, y) reduces to the form

Ldx2 + 2M dx dy + Ndy2 = 0. .....(7)

Using values from equation (5), we get

2 2

2 2 2 2 2 2

2 0
1 1 1

rdx s dx dy tdy

p q p q p q
  

     

or rdx2 + 2s dx dy + tdy2 = 0, .....(8)

which is the required equation of asymptotic line.

Ex.2.  Find the asymptotic lines on the surface

z = y sin x.

Sol. Equation of the surface is of the form z = f (x, y) [monge’s form], so differential equation of

asymptotic line will be

r dx2 + 2s dx dy + t dy2 = 0, .....(1)

where 
2 2 2

2 2, ,z z zr s t
x yx y

  
  

  
.

Surface is z = y sin x. .....(2)

Differentiating partially with respect to x and y, we get

coszp y x
x


 


.....(3)
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and sinzq x
y


 
 .....(4)

and
2 2 2

2 2sin , cos , 0z z zr y x s x t
x yx y

          
   

.....(5)

Using values of r, s and t form equation (5) in equation (1), we get

(– y sin x) dx2 + 2 cos x dx dy + 0 = 0


2tan 0x dx dy dx
y

 
   
 

Then either dx = 0      or    – tan x dx 2 0dy
y

 

when dx = 0     x = constant = c1 (say) .....(6)

and when – tan x dx 2 0dy
y

 

 log (cos x) + 2 log y = (constant) = log c2 (say) [on integrating]

or log (cos x) + log (y2) = log (c2)

or log (cos x  y2) = log (c2)

or cos x  y2 = c2 .....(7)

Hence form equation (6) and (7) are the equations of asymptotic lines as given x = c1 and

y2 cos x = c2.

Ex.3. Prove that for the surface x = 3u (1 + v2) – u3, y = 3v (1 + u2) – v3, z = 3u2 – 3v2,

the asymptotic line are u  v = constant.

Sol. Let rr  be the position vector of any current point on the surface, then

r
r  = (3u (1 + v2) – u3, 3v (1 + u2) – v3, 3u2 – 3v2) .....(1)

On differentiating with respect to u, we get

 2 2
1 3 1 , 2 ,2rr v u uv u

u


   


rr
.....(2)

On differentiating (1) partially with respect to v

 2 2
2 3 2 ,1 , 2rr uv u v u

v


    


rr
.....(3)

From equation (2), on differentiating with respect to x again

   
 

11 12

22

6 , ,1 , similarly 6 , ,0

6 , , 1

r u v r u v

r u v

   


   

r r

r .....(4)
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Now 1 2ˆ r rN
H



r r

 
 

2 2

2 2

ˆˆ ˆ
1 3 1 6 6

6 3 1 6

i j k

v u uv u
H

uv u v v

  

  

or     2 2 2 2 4 4 2 29ˆ 2 1 ,2 1 ,1 2N u u v v u v u v u v
H

        

 

 

22 2

11 12

22 2

22

54 1
ˆ ˆ, 0

54 1
ˆand

u v
L N r M N r

H

u v
N N r

H

         

  
  


r r

r


Now differential equation of asymptotic line is

L du2 + 2M du dv + N dv2 = 0. .....(6)

Using values of L, M and N from equation (5) into equation (6), we get

   22 2 2 2 2 254 541 0 1 0u v du u v dv
H H

        
 

or du2 – dv2 = 0 or du =  dv  du  dv = 0

On integrating (u  v) = constant which is the required equation. Hence proved.

8.16 Necessary and sufficient condition for the parametric curves to be asymptotic

lines

Proof : The parametric curves are u = constant, and v = constant, then the combined differen-

tial equation of the parametric curves is given by

du dv = 0. .....(8.16.1)

And differential equation of asymptotic lines is

Ldu2 + 2M du dv + N dv2 = 0 .....(8.16.2)

(i) The condition is necessary : When the parametric curves are asymptotic lines, the above

two equations (1) and (2) must be same, so on comparing these we get

L = 0, N = 0, M  0. .....(8.16.3)

(ii) The condition is sufficient : When L = 0, N = 0 and M  0, then equation (2) reduces

to

0 + 2M du dv + 0 = 0  du dv = 0. .....(8.16.4)

which is equation (1), this shows that the asymptotic lines are parametric curves.
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8.17 If the parametric curves are asymptotic lines, then find differential equa-

tion of line of curvature and show that first and second curvatures are

22 and .2 2
FM M
H H



Proof : If the parametric curves are asymptotic lines, then

L = 0, N = 0, M  0 .....(8.17.1)

and the differential equation (EM – LF) du2 + (EN – GL) du dv + (FN – GM) dv2 = 0

of lines of curvature reduces to the following form

EMdu2 + 0 + (0 – GM) dv2 = 0

 EMdu2 – GM dv2 = 0           ( Q  M  0) .....(8.17.2)

Now the equation of the principal curvatures

H2 2 – (EN + GL – 2FM)  + (LN – M2) = 0

reduces to the following form H2 2 + 2FM – M2 = 0 .....(8.17.3)

which is a quadric in , so it gives two roots. i.e., a, b, say.

Hence, sum of roots = (a + b) 2
2FM
H


  = J = first curvature

and product of roots = (a b) = K 
2

2
M
H


  = second curvature.

Hence the result.

8.18 Osculating plane at any point of a curved asymptotic line is the tangent plane

to the surface.

Proof : Let equation of surface be  , ,r r u v
r r

 and let  r r s
r r

 be curved asymptotic line

lying on this surface. Let ˆ drt
ds

  
 

r
 be the unit tangent to the asymptotic line at any point P (r) and N̂  be

the unit normal to surface at point P, then

ˆ ˆ 0.N t  .....(8.18.1)

Differentiating with respect to s, we get

ˆ ˆˆˆ 0dN dtt N
ds ds

        or    
ˆ ˆ ˆ 0dN d r N n

ds ds
    

r
.....(8.18.2)

ˆ ˆˆ ˆand , where curvature, unit principal normal vectordt d rn t n
ds ds

 
      

 

r
Q
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But by Serret-Frenet formulae. The differential equation of asymptotic line is

ˆˆ 0 or 0dN d rdN d r
ds ds

   
rr

.....(8.18.3)

then equation (8.18.2) reduces to

   ˆ ˆˆ ˆ0 0 0N n N n       Q .....(8.18.4)

By equation (8.18.1) and (8.18.4), we have

ˆ ˆˆ ˆ0 and 0,N t N n   

this means N̂ is perpendicular to both ˆˆ ˆand sot n N  is parallel to

  ˆˆ ˆt n b      or   ˆN̂ b  .....(8.18.5)

where b̂  is unit vector along binormal.

From this, we conclude that at any point of a curved asymptotic line, the binormal is also normal

to the surface.

Let ˆˆ .N b .....(8.18.6)

Now the equation of osculating plane to curve  r r s
r r

 at a point P (s) is given by

  ˆ 0R r b  
r r

.....(8.18.7)

and equation of tangent plane to the surface at this point is given by

  ˆ 0R r N  
r r . .....(8.18.8)

The relation (8.18.6) makes the above planes coincident at the point on the curve on the

surface.

Hence the result.

8.19 Torsion of an asymptotic line  r r s
r r

 on the  surface  , .r r u v
r r

We know that the unit vector along binormal b̂  to an asymptotic line is the unit surface

normal N̂

i.e. ˆN̂ b .....(8.19.1)

Differentiating both sides with respect to arc length s, we get

ˆˆdN db
ds ds


ˆ

ˆ,dN n
ds

    [by Serret-Frenet formulae]

ˆ ˆ,N n   .....(8.19.2)

where  ˆ .dNN
ds
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Now taking dot product of both sides of equation (8.19.2) by ˆ,n  we have

ˆ ˆ ˆ ˆN n n n    

or  ˆ ˆ ˆ ˆ 1N n n n     Q .....(8.19.3)

now ˆ ˆn̂ b t 

or ˆ ˆn̂ N t  .....(8.19.4)

Now, using value of n̂  in equation (8.19.3), we get

ˆ ˆ ˆN N t    

or ˆ ˆ ˆN N t     

or ˆ ˆ ˆN N t    

or ˆ ˆ ,N N r     
r

.....(8.19.6)

which is torsion of an asymptotic line.

8.20 Curvature of an asymptotic line  r r s
r r

 on the surface  , .r r u v
r r

ˆ drt
ds


r

 is the unit vector along the tangent then we know that

ˆ ˆ ˆdt t n
ds

   . .....(8.20.1)

Now, taking dot product of both sides by n̂

ˆ ˆ ˆ ˆt n n n    

or  ˆ ˆ ˆ ˆ 1t n n n     Q

 ˆˆ ˆˆ ˆ ˆ ˆˆt N t n b t N t       Q

or ˆ ˆˆt n t      ˆ ˆ ˆN t t   

or ˆ ,N r r     
r r

.....(8.20.2)

where ˆ ˆand ,t r t r   
r r  is curvature of an asymptotic line.

8.21 Beltrami-Enneper theorem

Statement : At a point on a surface, where the Gaussian curvature is negative and

equal to K, the torsion of the asymptotic lines is .K 

Proof : The torsion  of an asymptotic line  r r s
r r

 is

ˆ ˆN N r     
r

.....(8.21.1)
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or  ˆ ˆN N r    
r

.....(8.21.2)

Now
ˆˆ dNN

ds
  1 2

ˆ ˆ ˆ ˆN du N dv N u N v
u ds v ds

      
 

.....(8.21.3)

and
drr
ds

 
rr

1 2
r du r dv r u r v
v ds v ds
      
 

r r r r
.....(8.21.4)

 N̂ r 
r    1 2 1 2

ˆ ˆN u N v r u r v      
r r

        2 2
1 1 1 2 2 1 2 2

ˆ ˆ ˆ ˆ .N r u N r N r u v N r v          
r r r r

.....(8.21.5)

Using value of  N̂ r 
r from equation (8.21.5) in equation (8.21.2), we have

        2 2
1 1 1 2 2 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .N N r u N N r N N r u v N N r v               
r r r r

  2 2
1 1 1 2 2 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆN N r u N N r N N r u v N N r v                     
r r r r

or 2 2EM FL EN GL FN GMu u v v
H H H
         .....(8.21.6)

by using Weingarton equations, where 1 1
ˆ ˆ etc.EM FLN N r

H
   

r

Now let the asymptotic lines be taken as parametric curves, then

L = 0, N = 0, M  0. .....(8.21.7)

Using L = 0, N = 0 into equation (8.21.6), we get

2 200 0EM GMu v
H H

           
   

or  2 2M Eu Gv
H

    .....(8.21.8)

First for asymptotic line u = constant, u = 0 .....(8.21.9)

then from equation (8.21.8), 2MG v
H

   .....(8.21.10)

Now from the first fundamental form, we have

Eu2 + 2Fu v + Gv2 = 1 .....(8.21.11)

From this for the curve u = constant  u = 0, we have from equation (8.21.11),

0 + 0 + Gv2 = 1  Gv2 = 1,

then from equation (8.21.12), we get

M
H


  .....(8.21.12)
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Again for the asymptotic line v = constant, we have v = 0 and from equation (8.21.11),

Eu2 = 1. .....(8.21.13)

And from (8.21.8),

2 , .ME Mu
H H

     .....(8.21.14)

The Gaussian curvature

2 2

2 2
LN M M

H H
 

    [ Q  Here L = 0, N = 0]


2

2
M M

HH
    

or     [by equation (8.21.12) and (8.21.14)]

Hence the theorem is proved.

8.21.1 Illustrative examples
Ex.4.  Prove that on the surface z = f (x, y) torsion of the asymptotic lines are

 
 

2

2 2
.

1

s rt

p q




 

Sol. By Example 1, for this surface

z = f (x, y).

Let  rr  = (x, y, z = f (x, y))  be position vector of a point then

   1 21,0, , 0,1,r rr p r q
x y
 

   
 

r rr r

     12 11 220,0, , 0,0, , 0,0,r s r r r t  
r r r

therefore 2 2
1 1 1 2 2 21 , , 1E r r p F r r pq G r r q          
r r r r r r

  2 2 2 21 2 , , 1ˆ , 1
p qr rN H EG F p q

H H
 

      
r r

and  11 122 2
ˆ ˆ,

1

rL N r M N r
p q

    
 

r r  222 2 2 2
ˆ,

1 1

s tN N r
p q p q

   
   

r .

Then on using values of L, M and N in the differential equation

Ldu2 + 2M du dv + Ndv2 = 0,

of the asymptotic line, we get rdx2 + 2s dx dy + tdy2 = 0, (Here parameters are x, y)

Also K = Gaussian curvature 
 22

2 4

rt sLN M
H H


 



195

 Torsion 
2 2

4 2
s st s stK

H H
 

       

or
2

2 2 ,
(1 )

s st
p q


  
 

which is the required result.

Ex.5. Show that the curvature of an asymptotic line may be expressed as

     1 2 2 1r r r r r r r r
H

       
r r r r r r r r

.

Sol. We know that for an asymptotic line curvature is given by

 N̂ r r    
r r

(box product)

 N̂ r r   
r r    1 2r r

r r
H


   
r r

r r

    1 2
1 r r r r
H

    
r r r r

 
1 1

2 2

1 r r r r
r r r rH

  


  

r r r r
r r r r [By Lagrange’s identity]

        1 2 2 1
1 r r r r r r r r
H

        
r r r r r r r r

Hence the result.

Ex.6. Prove that on the surface of revolution x = u cos v,  y = u sin v, z = f (u), the

asymptotic lines are f11 du2 + u f1 dv2 = 0. Also show that the values of their torsions are

 
 

3
1 11

2 2
1

.
1

u f f

u f






Sol. The position vector rr  of any point on the given surface is

rr  = (u cos v, u sin v, f (u))
Differentiating partially with respect to u and v

    1 1 2cos , sin , , sin , cos , 0r rr v v f u r u v u v
u v
 

    
 

r rr r

Similarly     
2

11 11 122 0, 0, , sin , cos , 0r r f u r v v
u


   


r r r

and 22rr  = (– u cos u, – u sin v, 0)

 1 2 1 1cos , sin ,r r u v f u v f u   
r r

  2 2
1 1 1 21 , cos sin cos sin 0E r f F r r u v v u v v        
r r r
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2 2
2

ˆ,G r u N 
r  1 11 2 cos , sin ,u v f u v f ur r

H H
 

 
r r

where H2 = EG – F2 = u2  2
11 f

Also
2

11 1
11 12 22

ˆ ˆ ˆ, 0,uf u fL N r M N r N N r
H H

        
r r r

Therefore the equation of asymptotic lines is

Ldu2 + 2M du dv + N dv2 = 0

which on using values of L, M, N reduces to the following form

2
2 2 2 211 1

11 10 or 0uf u fdu dv f du uf dv
H H

   

which is the required equation.

Again torsion 
2

2
LN MK

H
 

        
 

     or     
 
 

3
1 11

2 2
1

.
1

u f f

u f


  



8.21.2 Self-learning exercise-2.

1. Define :

(i) Asymptotic direction on a surface  , .r r u v
r r

(ii) asymptotic lines.

2. Write the differential equation of the asymptotic lines at a point (u, v) on the surface

 , .r r u v
r r

3. Write the condition for asymptotic lines to be orthogonal.

4. For Monge’s form of surface z = f (x, y) write the equation of asymptotic line.

5. Write formula for torsion and curvature of an asymptotic line  r r s
r r

 on surface

 , .r r u v
r r

6. State Beltrami-Enneper theorem.

8.22 Summary

1. In this unit you have studied about principal radii  through a point of surface z = f (x, y), relation

between three fundamental forms, asymptotic lines and differential equation of asymptotic lines

at a point (u, v) on surface  ,r r u v
r r

 in curvilinear coordinates, curvature () and torsion ()

of an asymptotic line  r r s
r r

 on the surface  , .r r u v
r r

2. Sufficient number of examples have been solved in the unit.
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3. Fundamental magnitudes E, F, G and L, M, N, H and T along with differential equation which

gives the principal radii, expressions of curvature and torsion will help the students to easily

understand the text of the unit.

8.23 Answers to self-learning exercises

Self-learning exercise-1

1. 2 (rt – s2) – H {1 + p2) t + (1 + q2) r – 2 pqs} + H4 = 0.

2. III = Adu2 + 2B du dv + c du2,     where   2 2
1 1 2 1

ˆ ˆ ˆ ˆ, ,A N B N N C N   

3. KI – JII + III = 0

4. See §8.5.

5. LDu du + M (Du dv + Dv du) + N Dv dv = 0.

6. M = 0

Self-learning exercise-2

1. See §8.12 (i) and (ii)

2. Ldu2 + 2M du dv + N dv2 = 0

3. First curvature J = 0; i.e. surface is minimal.

4. rdx2 + 2s dx dy + tdy2 = 0

5. Torsion ˆ ˆN N r     
r

 (box product) and curvature N̂ r r     
r r

  (box product).

6. See §8.21.

8.24 Exercises

1. Prove that the asymptotic lines of the surface x = v – 2u – e–u, y = ev–u, z = eu–v lie on the

cylinders yz + ay – ea = 0, xy + by + e –b = 0, where a, b are arbitrary constant.

2. Show that the asymptotic lines of helicoid x = u cos , y = v sin , z = c consist of the genera-

tors and the curves of intersection with coaxial right cylinders.

3. Derive the formula for torsion and curvature of an asymptotic line  r r s
r r

on surface

 , .r r u v
r r

4. Derive the differential equation of the asymptotic lines at a point (u, v) on the surface  ,r r u v
r r

in

curvilinear coordinates.
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Unit 9 : Geodesics, Differential Equation of a Geodesic,
Single Differential Equation of a Geodesic,
Geodesic on a Surface of Revolution, Geodesic
Curvature and Torsion, Gauss-Bonnet Theorem

Structure of the Unit

9.0 Objectives

9.1 Introduction

9.2 Normal property of a geodesic

9.3 Definition

9.4 General differential equation of geodesics on a surface ( , )r r u v
r r .

9.5 Cannonical equations of a geodesic on the surface ( , )r r u v
r r .

9.6 Differential equation of a geodesic in Gauss coefficients.

9.7 Single differential equation of a geodesic on surface.

9.8 On the general surface, a necessary and sufficient condition that the curve v = c (const.) be a

geodesic is EF2 + FE1 – 2EF1 = 0.

9.9 The curve u = c (const.) is a geodesic if and only if GG1 + FG2 – 2GF2 = 0.

9.9.1 Self-learning exercises-1

9.9.2 Illustrative examples

9.10 Differential equations of a geodesic on a surface f (x, y, z) = 0.

9.11 Differential equation of geodesic on the surface z = f (x, y), the Monge’s form.

9.12 Geodesic on a surface of revolution.

9.13 Clairut’s theorem

9.14 Geodesic on surface of revolution cuts the meridian at a constant angle, then the surface is a

right circular cylinder.

9.15 A curve on sphere is a geodesic if only if it is a great circle.

9.16 Geodesic Curvature and torsion of geodesic

9.17 An expression for g
r

 and that it is intrinsic.

9.18 The geodesic curvature vector of any curve is orthogonal to the curve.

9.19 Formulae for geodesic curvature
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9.20 Geodesic curvature in terms of Gauss coefficients

9.21 Geodesic curvature for parametric curves

9.22 Normal angle

9.23 Geodesic curvature in terms of normal angle

9.24 Expression of the torsion of a geodesic on any surface and that the torsion of an asymptotic line

is equal to the torsion of its geodesic tangent.

9.25 Expressions for the torsion of a geodesic in terms of fundamental magnitudes and also in terms

of principal curvatures.

9.26 Some important definitions

9.27 Gauss-Bonnet theorem

9.27.1 Self learning exercise-2

9.27.2 Illustrative examples

9.28 Summary

9.29 Answers to self-learning exercises

9.30 Exercises

9.0 Objectives

This unit provides a general overview of geodesics, differential equation of a geodesic, single

differential equation of a geodesic, geodesic on a surface of revolution, geodesic curvature and torsion,

Gauss-Bonnet theorem. After reading this unit you will be able to learn :

1. about geodesics,

2. about the general differential equation of a geodesic on a surface,

3. about single differential equation of a geodesic when curve on surface is given by a single

relation between the parameters u and v (either v = v/u or u = u/v),

4. about geodesic on a surface of revolution,

5. about geodesic curvature and torsion on a surface,

6. about Gauss-Bonnet theorem, which gives us the relation between torsion of a curve c

and torsion of its geodesic tangent.

9.1 Introduction

We know that in Euclidean space curves of shortest distance between any two points are

straight lines. But curves on a surface ( , )r r u v
r r  having shortest length are called geodesics. So roughly
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speaking “a geodesic on a surface may be defined as a curve of shortest distance between two points

on that surface”

But to find the arc of shortest distance between two points on a given surface is a very compli-

cated affair.

9.2 Normal property of a geodesic

The normal to the surface coincides with the principal normal to the curve (geodesic).

Consider a tightly stretched string on the smooth convex side of the surface to lie along the curve

(geodesic) joining two points on the surface ( , )r r u v
r r , very close to each other. The forces which

keep this small string in equilibrium are the tensions at its extremities and the reaction normal to the sur-

face. Because the string is very small so these tensions are in the osculating plane of the string and there-

fore for equilibrium the force of reaction must also lie in the same plane, which implies that the normal to

the surface coincides with the principal normal to the curve (geodesic). This property is termed as the

normal property of a geodesic.

9.3 Definition:

Geodesic (or geodesic curve) : Geodesic on a surface is defined as the curve of stationary

length (rather than strictly shortest distance) on a surface between any two points in its plane.

or

A geodesic on a surface is a curve whose osculating plane at each point contains the normal to

the surface at that point.

Hence the normal to the surface coincides with the principal normal to the geodesic.

9.4 General differential equations of geodesics on a surface ( , )r r u v
r r

Let r  be the position vector of any point P (u, v) on the geodesic drawn on the surface

( , )r r u v
r r . Let n̂  and N̂  be the principal normals to the geodesic curve at P and the normal to the

given surface at the same point P, respectively. Then by definition of geodesic

ˆn̂ N .....(9.4.1)

We know that ˆd rr t
ds

  


 ,

so again differentiating with respect to s,

ˆ ˆr t n   
     ˆr N  

 , .....(9.4.2)

where  is the curvature of geodesic at point P.
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Now ( , )r r u v
r r .

On differentiating with respect to s

 1 2
dr r du r dvr ru r v
ds u ds v ds

       
 

  
   . .....(9.4.3)

Again differentiating, we get

r
   1 2

1 2

d r d r
ru u r v v

ds ds
   

         
   

 
 

1 1 2 2
1 2

r r r rdu dv du dvru u r v v
u ds v ds u ds v ds

                                 

   
 

   1 11 12 2 21 22ru r u r v u r v r u r v v            
     

2 2
1 11 12 2 12 22ru r u r u v r u r u v r v                 

r 2 2
1 11 12 2 222ru r u r u v r v r v              . .....(9.4.4)

Using value of  r from equation (9.4.2) in (9.4.4), we get

N̂ 2 2
1 11 12 2 222ru r u r u v r v r v              . .....(9.4.5)

Now taking scalar product of equation (9.4.5) with 1,r  we get

 1
ˆr N 

          2 2
1 1 1 11 1 12 1 2 1 222r r u r r u r r u v r r v r r v              
         

or 0 2 2
1 2 2 1

1 1
2 2

Eu E u E u v Fv F G v            
 

.....(9.4.6)

   

   

2 1
1 1 1 1 1 11

2 1
2 1 1 1 12

ˆ 0, 2 2

2 2 etc.

rEr N E r r r r
u u u

rEE r r r r
v v v

             
        

   


    




   

Now taking scalar product of equation (9.4.5) with 2r
 , we get

 2
ˆr N 

          2 2
2 1 2 11 2 12 2 2 2 222r r u r r u r r u v r r v r r v              
         

0
2 2

1 2 1 2
1 1
2 2

Fu F E u G u v Gv G v            
 

.....(9.4.7)

 2 2 11 1 2 1 2 12
1ˆ 0, , 2 etc.
2

Gr N r r F E G r r
u

          
    



Hence equation (9.4.6) and (9.4.7) are the general differential equation of geodesics on a sur-

face ( , )r r u v
r r .
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9.5 Canonical equations of a geodesic on the surface ( , )r r u v
r r

The general differential equations of geodesics on surface ( , )r r u v
r r  are

2 2
1 2 2 1

1 1 0
2 2

Eu Fv E u E u v F G v            
 

.....(9.5.1)

and
2 2

1 2 1 2
1 1 0
2 2

Fu Gv F E u G u v G v            
 

.....(9.5.2)

where 1 2 1 2, , , etc.E E G GE E G G
u v u v
   

   
   

and
2 2

2 2, , , etc.u u v vu u v v
s s s s

         
   

These equation (9.5.1) and (9.5.2) may be written in a more compact form if we denote

 2 21 2
2

T Eu Fu v Gv      .....(9.5.3)

where  uu
s
 


 and vv
s
 


.

Differentiating partially equation (9.5.3) with respect to u  and v  respectively, we get

T Eu Fv
u
   


.....(9.5.4)

and
T Fu Gv
v
   


.....(9.5.5)

Now differentiating (9.5.3) partially with respect to u and v, we get

 2 2
1 1 1

1 2
2

T E u F u v G v
u
      


.....(9.5.6)

and  2 2
2 2 2

1 2
2

T E u F u v G v
v

      


.....(9.5.7)

Differentiating equation (9.5.4) with respect to s, we get

 d T d Eu Fv
ds u ds

      
E du E dv F du F dvEu u Fv v
u ds v ds u ds v ds
                       

   1 2 1 2Eu E u E v u Fv Fu F v v            

or
d T
ds u

 
  

 2 2
1 2 1 2Eu Fv E u E u v Fu v F u             .....(9.5.8)

Similarly differentiating equation (9.5.5) with respect to s, we get

d T
ds v

 
  

 2 2
1 2 1 2Fu Gv F u F u v G u v G v             .....(9.5.9)
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Now subtracting equation (9.5.6) from equation (9.5.8), we get

2 2
1 2 2 1

1 1 0
2 2

d T T Eu Fv E u E u v F G v
ds u u

                       

 0d T T
ds u u

       
. .....(9.5.10)

Similarly subtracting equation (9.5.7) from equation (9.5.9), we get

2 2
1 2 1 2

1 1 0
2 2

d T T Fu Gv F E u G u v G v
ds v v

                           

 0d T T
ds v v

       
 .....(9.5.11)

Hence, the equations (9.5.10) and (9.5.11) are called the canonical equations of a geodesic.

9.6 Differential equations of a geodesic in Gauss coefficients

It will be another simple form of the general differential equations of a geodesic given below

2 2
1 2 2 1

1 1 0
2 2

Eu Fv E u E u v F G v            
 

.....(9.6.1)

and
2 2

1 2 1 2
1 1 0
2 2

Fu Gv F E u G u v G v            
 

.....(9.6.2)

Multiplying equation (9.6.1) by G and equation (9.6.2) by F and subtracting, we get

   2 2
1 1 2

1 2
2

EG F u GE FF FE u    

    2
2 1 2 1 2

1 2 0
2

GE FG u v GF GG FG v           .....(9.6.3)

Dividing whole equation by (E G – F2) (= H2), we get

   1 1 2 2 12
2 2

21
2

GE FF FF GE FG
u u

H H
  

  
 2 1 2 2

2

21
2

GF GG FG
u v v

H
 

    = 0

.....(9.6.4)

Using the Gauss coefficients into the equation (9.6.4), we get

and 2 22 0,u lu mu v nv        .....(9.6.5)

where  1 1 22

1 2
2

l GE FF FF
H

   ,

 2 12

1 ,
2

m GE FG
H

 

 2 1 22

1 2 .
2

n GF GG FG
H
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Similarly multiplying equation (9.6.1) by F and (9.6.2) by E and subtracting, we get
2 22 0u u u v v           , .....(9.6.6)

where  , are Gauss coefficients given by

 1 2 12

1 2
2

EF EF FE
H

    ,  1 22

1
2

EG FE
H

   ,

 2 2 12

1 2
2

EG FE FG
H

    .

Hence equation (9.6.5) and (9.6.6) are differential equation of a geodesic in Gauss coefficients.

9.7 Single differential equation of geodesics on surface

When a curve on the surface ( , )r r u v
r r  may be determined by a single relation

between the parameters u and v either by v = v (u) or by u = u (v).

Proof : Let the equation of surface be ( , )r r u v
r r , u, v are parameters. A curve on a surface

may be determined by a single relation between the parameters u and v, which paves us our way to
develope a single relation between the parameters from pair of following differential equation of a geo-
desic in Gauss coefficients given by

2 22 0u l u mu v nu        .....(9.7.1)

and 2 22 0v u u v v           .....(9.7.2)

First taking a single relation v = v (u). .....(9.7.3)

then we shall reduce pair of equation (9.7.1) and (9.7.2) in to single differentiating equation.

On a geodesics, on differentiating equation (9.7.3) with respect to s

dv dv du dvv u
ds du ds du

     . .....(9.7.4)

Again differentiating, we get

2
2

2

dv d vv u u
du du

    . .....(9.7.5)

Putting values from equation (9.7.4) and (9.7.5) in to equation (9.7.2), we get

22
2 2

2 2 0dv d v dv dvu u u u u u
du du du du

                     
    

or
22

2 2 2 2
2 2 0d v dv dv dvu u u u u

du du du du
             
 

. .....(9.7.6)

Now from equation (9.7.1),

 2 22 , dvu lu mu v nv v u
du
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Using it in equation (9.7.6), we get

2 32
2 2 2 2

2 2d v dv dv dvu lu mu nu
du du du du

           
   

2
2 2 22 0dv dvu u u

du du
          
 

.....(9.7.7)

Cancelling 2u throughout, we get

   
3 22

2 2 2d v dv dv dvn m l
du du du du

            
   

(as 0u  ) .....(9.7.8)

which is single differential equation of geodesic.

Equation (9.7.8) is a second order ordinary non-linear differential equation, so it has a unique

solution of v [v = v (u)] which takes a given value v0 when u= u0, also 
dv
du  takes a value

0 0u u

dv dv
du du

      
     at u = u0.

Therefore through each point of a surface there passes a unique geodesic in a given direction.

If we start by taking the relation between parameters u and v, of the from u = u (v), then we get

the single differential of geodesic as

   
3 22

2 2 2d u du du dul m n
dv dv dv dv

              
   

. .....(9.7.9)

On comparing equation (9.7.9) with equation (9.7.8), we see that equation (9.7.9) can be ob-

tained from (9.7.8) on interchanging u and v, and changing l, m, n by  and vice-versa.

Remark :

1. Note that unlike lines of curvature and asymptotic lines, geodesics are not determined uniquely

by the nature of surface.

2. Through any point there passes an infinite number of geodesic so each geodesic being de-

cided by its direction at the point.

3. A geodesic is uniquely determined by an initial point and tangent at that point of the

surface.

4. The differential equation of geodesic [equation (9.4.6) and (9.4.7)] are in terms of E, F, G

and E1, E2, F1, F2, G1, G2, (derivatives of E, F, G). Therefore if a surface is deformed

without stretching such that the length ds of each arc element does not change, then the geo-

desics remain geodesics on the deformed surface.
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9.8 On the general surface, a necessary and sufficient condition that the curve

v = c (const.) be a geodesic is  EF2 + FE1 – 2EF1 = 0, when v = c, for all values

of u.

On the curve v = c (constant), we may take u as a parameter, so that v = c, u = t (say)

0, 1v u   . .....(9.8.1)
On differentiating with respect to t

0, 1v u             
duu
dt

  
 
 .....(9.8.2)

Hence  2 21 2
2

T Eu Fu v Gv      . .....(9.8.3)

Now differentiating (9.8.3) partially with respect to u and u , we get

T
u



2 21 2
2

E F Gu u v v
u u u
         

   

 1 1 1
1 1 2 1 0 0
2

E F G       11, 0, etc.Eu v E
u

     
 

or
T
u

 1

1
2

E .....(9.8.4)

and
T
u

 

 1 2 2 1
2

Eu F v E                  1, 0u v   .....(9.8.5)

Now differentiating equation (9.8.3) partially with respect to v and v , we get

T
v




2 2
2

1 12
2 2

E F Fu u v v E
v v v

          
    .....(9.8.6)

[by equation (9.8.2) and 2
EE
v





]

T
v


 

 1 2 2
2

Fu Gv F     .....(9.8.7)

Now U (say) d T T
dt u u

            

 
1

1
2

d E
E

dt
  1

1
2

dE E
du

  1
1 2

EE 

 U 1

2
E

 .....(9.8.8)

and V (say) 2 1 2
1 1
2 2

d T T dF E F E
dt v v dt

                
.....(9.8.9)

1
dF dFF
dt du
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Now the necessary and sufficient condition for the curve u = u (t) , v = v (t) (t-parameter) to

be geodesic is

0T TV U
u v

 
 

  
,      for all values of t. .....(9.8.10)

On using values from equation (9.8.5), (9.8.7), (9.8.8) and (9.8.9), we get

T TV U
u v

 


   1 2 1
1 1 0
2 2

F E E E F      
 

 2 1 12 0EF FE EF   . .....(9.8.11)

Hence the result.

Note : If the parametric curves are orthogonal then F = 0 and obviously F1 = 0, then from

above equation (9.8.11) we get,  EE2 + 0 – 0 = 0

 E2 = 0, when v = c, for all values of u,

 E is independent of v, so E is function of u only  i.e., E = E (u).

9.9 The curve u = c (constant) is a geodesic if and only if GG1 + FG2 – 2GF2 = 0.

On the curve  u = c, we may take v as a parameter, so

u = c, u = t t-parameter, then

0, 1u v   .

Now proceeding exactly on the same lines as in 9.8, we get

GG1 + FG2 – 2 GF2 = 0. .....(9.9.1)

Note : If the parametric curves are orthogonal then F = 0 and F2 = 0, then from above equa-

tion (9.9.1), we get

GG1 = 0  G1 = 0  0G
u





 0dG

dc
    G is independent of u.

Hence G is function of v only i.e.,     G = G (v).

9.9.1  Self-learning exercise-1

1. What is normal property of geodesic ?

2. Define geodesic.

3. Write the general differential equations of geodesics on a surface ( , )r r u v
r r .

4. Write the canonical equations of a geodesic on the surface ( , )r r u v
r r .

5. Like lines of curvature and asymptotic lines, can geodesic be determined uniquely by the na-

ture of surface ?

6. On the general surface ( , )r r u v
r r  what is the necessary and sufficient condition that the

curve v = c (constant) be a geodesic ?
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9.9.2 Illustrative Examples

Ex.1.  Prove that the curves u + v = constant are geodesics on a surface with metric

(1 + u2) du2 – 2uv  and   v + (1 + v2) dv2.

Sol. The parametric equation of the given curve u + v = constant, can be taken as u = t,

v = c – t. .....(1)

So on differentiating these with respect to t

1, 1u v    .....(2)

Here E = 1 + u2,   F = – uv,    G = (1 + v2) .....(3)

Now we know that

 2 21 2
2

T Eu Fuv Gv      .....(4)

Using values of E, F and G from equation (3), we get

   2 2 2 21 1 2 1 1
2

T u u uvuv v v          .....(5)

On differentiating (5) with respect to u and v, we get

2T uu vu v
u


  


      1 1t c t c      ......(6)

2T uu v vv t c t c
v


      


   ......(7)

Now differentiating (5) with respect to u  and v , we get

       2 21 1 1 1T u u uvv t t c t ct
u


         


 


......(8)

         22 21 1 1 1T u vu v v t c t c t ct c
v


             


 


......(9)

Now  1 0d T T dU ct c c c
dt u u dt

            
......(10)

and  21 0d T T dV ct c c
dt v v dt

           
......(11)

then    20 1 0 1 0T TV U ct ct c
u v
 

      
  

[by equation (8), (9), (10) and (11)]

Hence the relation 0T TV U
u v
 

 
  

,

for all values of t.

Therefore the given curve u + v = constant is a geodesic.
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Ex.2.  Prove that the curves of the family 
3

2

v
u

  constant, are geodesics on a surface with

metric v2 du2 – 2 uv dv du + 2 u2 dv2 ; (u > 0, v > 0).

Sol. The parametric equation of the given curve can be conveniently chosen to be

u = ct3,   v = ct2,   c = (constant) .....(1)

The differentiating equation (1) with respect to t
23 , 2u ct v ct   .....(2)

then E = v2,   F = – uv,  G = 2u2 .....(3)

Therefore,  2 21 2
2

T Eu Fuv Gv      .....(4)

Using values of E, F and G from (3) in (4), we get

 2 2 2 21 2 2
2

T v u uvuv u v      .....(5)

On differentiating equation (5) partially with respect to u

22T vuv uv
u


  


         22 2 33 2 2 2ct ct ct ct ct  

3 5 3 5 3 56 8 2c t c t c t    [by equation (1) and (2)]

Now partially differentiating equation (5) with respect to v, we get

2 3 63T vu uuv c t
v


  


   [by (1), (2)]

Now differentiating equation (5) partially with respect to u  and v , we get

2 3 6T v u uvv c t
u


  


 



and 2 3 72T uvu u v c t
v


   


 



Now
d T TU
dt u u

      
 3 6 3 5 3 52 4d c t c t c t

dt
  

and
d T TV
dt v v

      
 3 7 3 6 3 63 4d c t c t c t

dt
  

then T TV U
u v

      
     3 6 3 6 3 5 3 74 4c t c t c t c t   6 12 6 124 4 0c t c t  

Hence
T TV U
u v

      
= 0 , for all values of t.

This shows that the given family 
3

2

v
u

constant (c) is a geodesic for all values of c.
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9.10 D i f fer ent ial  equat ion of  a geodesics on the sur face F (x, y, z) = 0.

We have discussed about the differential equation of a geodesic on a surface whose equation

was given in parametric form. Now we shall find equation of geodesic when equation of surface is given

in the implicit form F (x, y, z) = 0.

Equation of surface is F (x, y, z) = 0. .....(9.10.1)

We know that if r  be the position vector of a point

then ˆdrr t
ds

  

Again differentiating with respect to s
ˆr t n    



or ˆˆr n N    
 ,      (  for geodesic ˆn̂ N ) .....(9.10.2)

where is the curvature.

But  ˆˆ ˆr xi yj zk      ˆˆ ˆr x i y j z k     


 .....(9.10.3)

where 
2

2

d xx
ds

   etc.

and N̂  be normal at a point on the surface F (x, y, z) = 0, so

     2 2 2 2 2 2

ˆˆ ˆ ˆˆ ˆ
ˆ

/ / / x y z

F F FF F F i j ki j k
x y zx y zN
F F FF x F y F z

                 
        

.....(9.10.4)

where  /xF F x    etc.

Therefore ˆr N    
2 2 2

2 2 2
ˆˆ ˆd x d y d zi j k

ds ds ds
 

  
 

 
2 2 2

ˆˆ ˆ

x y z

F F Fi j k
x y z
F F F

   
      

 
.....(9.10.5)

Comparing coefficients of ˆ ˆ,i j  and k̂ , we get

 2

2 2 2 2

/

x y z

F xd x
ds F F F

  


 


 
 

2 2

2 2 2

/
/

x y z

d x ds
F y F F F




   
.....(9.10.6)

Similarly
 
 

2 2

2 2 2

/
/

x y z

d y ds
F y F F F




    .....(9.10.7)

 
 

2 2

2 2 2
x y z

d z ds
F y F F F




   
. .....(9.10.8)
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Hence from equation (9.10.6) to (9.10.8), we get

     2 2 2 2 2 2

x y z

d x ds d y ds d z ds
F F F

  . .....(9.10.9)

If the integral of one of these equations is found, it will contain two arbitrary constants and with

the equation to the surface F (x, y, z) = 0, will represent the geodesics.

9.11 Differential equation of geodesics on the surface z = f (x, y), the Monge’s form.

Taking x, y as parameters, let r be the position vector of any point on the surface z = f (x, y),
then

r  = (x,  y,  f (x, y) = z). .....(9.11.1)

On differentiating with respect to x and y partially. we get

 1 1,0,rr p
x


 





,  2 0,1,rr q
y


 



, ,z zp q

x y
 

 
 

 
2

11 2 0,0,rr r
x


 





,  
2

12 0, 0,rr s
x y


 
 


,  

2

22 2 0,0,rr t
y


 



. .....(9.11.2)

Hence E = 1 1r r   = 1 + p2, F = 1 2r r   = pq, G = 2 2r r   = 1 + q2

H2 = EG – F2 = ( 1 + p2 ) ( 1 + q2 ) –p2 q2 = ( 1 + p2 + q2 ) .....(9.11.3)
Further, the Gauss coefficients are obtained as

2 2 2, ,pr ps ptl m n
H H H

  

and 2 2 2, , ,qr qs qt
H H H

     .....(9.11.4)

where  2
1 1 2

1 2 etc.
2

l H GE FE FE  

Hence the single differential equation

   
32

2 3 2d v dv dv dvn m l
du du du du

           
   

  

with  u = x,  and  v = y  becomes

   
3 22

2
2 2 2d y dy dy dyH pt ps qt pr qs qr

dx dx dx dx
           
   

 
22

2 2
21 2d y dy dy dyp q p q t s r

dx dx dx dx
               

     
.....(9.11.5)

which is differential equation of geodesic for surface z = f (x, y).
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9.12 Geodesic on a surface of revolution

Let the surface of revolution be

x = u cos , y = u sin  , z = f (u) .....(9.12.1)

Let r  be position vector of a point on this surface

then r  = (u cos , u sin , f (u)). .....(9.12.2)

Differentiating with respect u and  partially, we get

   1 2cos ,sin , , sin , cos ,0r rr f r u u
u r
         
 

 
 



and  
2

11 2 0,0, ,rr f
u
  



  

2

12 sin , cos , 0rr
r


    
  




,

 
2

22 2 cos , sin ,0rr u u
     





.....(9.12.3)

then  2 2
1 1 2 2 2 21 , 0,E r r f F r r G r r u              

 1 2 cos , sin ,1r r u f f      
 

,  H2 = EG – F2 = u2 (1 + f2)  ......(9.12.4)

Also   2
1 2 12 2

1 2
2 2

EEEF EE FE
H H

      (F = 0)

but  2 / 0E E   

 0   and  1 22

1 1
2

EG FE
H u

    ,  2 2 12

1 2
2

EG FF FG
H

     = 0. ......(9.12.5)

For the present form of geodesic, we use the equation of geodesics given below
2 22 0v u u v v           ,

2

2

20 0 0d du d
ds u ds ds
 
    , where  

2

2

d vv
ds

   etc. ......(9.12.6)

Multiplying by u2 , we get
2

2
2 2 0d du du u

ds ds ds
 
  ,

which can be expressed as 2 0d du
ds ds

   
 

. ......(9.12.7)

On integrating, we get 2
1

du h
ds

 . (say) ......(9.12.8)

which is called the first integral of the equation of geodesic, where h1 is constant of integration.

It is independent of form of  f (u).
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Now we shall find the complete integral of equation (9.12.8), for this we proceed as follows :

The metric of surface  ,r r u v
   is

ds2 = Edu2 + 2Fdu dv + Gdv2. ......(9.12.9)

In the present case, u = u, v = , then above equation reduces to,

ds2 = Edu2 + 2Fdu d + G d2. ......(9.12.10)

Using values of E, F and G from equation (9.12.4), we get

ds2 = (1 + f2) du2 + u2 d2 ......(9.12.11)

Now equation (9.12.8) may be expressed as

u2 d  = h1ds

or u4 d  = 2 2
1h ds

or u4 d    2 2 2 2 2
1 1h f du u d   

u4 d  – h1
2u2 d  2 2 2

1 1h f du 

u2 (u2 – h1
2) d  2 2 2

1 1h f du 

or  1/ 22 2
1u u h d   1/ 22

1 1h f du  

 d 
1/ 22

1
2 2

1

1h f du
u u h
 

    
......(9.12.12)

On integrating, we get



1/ 22
1

12 2
1

1 1
1
h f du c

u u h
 

    
 ......(9.12.13)

where c1 is again another arbitrary constant of integration.

As the differential equation of geodesic is of second order and its solution (9.12.13) involves

two arbitrary constants h1 and c1.

Hence, it is the complete integral of the differential equation of geodesic on the surface of revo-

lution.

Note : If the arbitrary constant h1 = 0 in equation (9.12.13), then  =  0 + c1   = c1

(constant), which in this case is geodesics and are the meridians.

Hence every meridian is a geodesic on the surface of revolution.

9.13 Clairut’s theorem

If the geodesic on the surface of revolution intersects the meridian ( = constant) at any point P

at an angle , then u sin  is constant, where u is the distance of point P from the axis.
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Fig . 9.1

Geometrical derivation of the result :

The projection of arc ds of the geodesic on the circular section (See Fig. 9.1) through point P is

ds cos (90 – ) = PQ .....(9.13.1)

This arc PQ subtend an angle dat the centre O of the circular section of radius ˆ,u  but by

formula,

arcangle=
radius

arcarc PQd PQ u d
u

     .....(9.13.2)

Using (9.13.2) into (9.13.1), we get

ds sin  = u d 

 sin du
ds


  .....(9.13.3)

But 1 (constant)du h
ds

 


 1
du u h
ds
   

 

 1sin constant,u h   
this is called Clairut’s theorem.

It may be stated explicitly as follows :

At every point of a geodesic on a surface of revolution, the radius (u) of the circle of latitude

multiplied by the sine of the angle between the geodesic and the meridian is constant.
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Remark : From above equation (9.13.4), we draw one important conclusion that h1 is the mini-

mum distance from the axis of a point on the geodesic, and is attained at the point where the geodesic

cuts a meridian at right angles.

9.14 A geodesic on a surface of revolution cuts the meridian at a constant angle, then

the surface is a right circular cylinder.

The equation of the surface of revolution is given by

x = u cos ,    y = u sin ,   z = f (u). .....(9.14.1)

Then by Clairut’s theorem, if a geodesic on a surface of revolution cuts the medium through any

point P on it at angle , then we have

u sin = h1 (constant), .....(9.14.2)

where 2 2u x y  , is the distance of the point P from the axis.

But, it is given that a geodesic cuts all the meridians at constant angle, so = constant and

 
1 constant

sin constant
hu  


 = (constant) = a (say)

 u2 = a2

  x2 + y2 = a2. .....(9.12.4)

which is equation of a right circular cylinder, whose axis is z-axis and radius is a.

9.15 A curve on sphere is a geodesic if and only if it is a great circle.

(i) The condition is necessary : Let C be a geodesic curve on a sphere. Let n̂  be the normal

to curve C at a point P and let N̂  be the normal to the surface of the sphere at P. Then by the normal

property of the geodesic

ˆn̂ N . .....(9.15.1)

At point of the sphere, the normals pass through the centre of sphere, also the principal normal

at every point of C will pass through the centre of sphere, which is a fixed point for the sphere.

Let r be the position vector of point P on the geodesic and let â  be the position vector of the

centre of the sphere.

Then ˆ ˆr a n  
 , .....(9.15.2)

where is a scalar parameter which is function of arc lengths.

Now differentiating equation (9.15.2) with respect to s, we have

dr
ds

 ˆ ˆdn dn
ds ds
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 t̂  ˆ ˆ ˆ db t n
ds


      [by Serret-Frenet’s formulae]

or t̂   ˆ ˆ ˆ db t n
ds


    .....(9.15.3)

Equating the coefficients of b̂ on both sides, we get

0  = 0 as 0   torsion =  0. .....(9.15.4)

Hence the curve C is a plane curve. So the curve C (geodesic) on the sphere is a plane curve

whose normals at each point of it pass through the centre of the sphere. Hence C is a section of the

sphere by plane passing through its center. That is, C is a great circle.

(ii) The condition is sufficient : If C is a great circle on the sphere, then at each point of C

the principal normal to C coincides with the surface normal to the sphere. Therefore by normal property

curve C is a geodesic.

9.16 Geodesic curvature and torsion of a geodesic

Geodesic (tangential) curvature : Let S be any surface  ,r r u v
 

and C be a curve on this

surface. Let r  be position vector of a point P on the curve C.

O

r

P

r1

C Q

r2
g

geodesic

t

n

D
n Principal

normal to the
curve  at .C PB

Tangent plane

to surfa
ce

N
surface
normal

Fig 9.2
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Then the curvature vector of a curve C on surface at a point P, with the tangent direction t̂  is

ˆ
ˆdt r n

ds
    


.....(9.16.1)

and it lies in the plane (see -plane in Fig. 9.2), through P perpendicular to t̂ , this plane also contains

the surface normal N̂ .

Then according to the Meusnier’s theorem, the projection of the curvature vector   on this

surface normal N̂  is, the curvature vector of the normal section in direction t̂ . It is represented by n
 .

Our main aim is to study the projection of  on the tangent plane, which is called the vector of tangential

curvature. It has been denoted by symbol g . So we have the relation

n g    
  

. .....(9.16.2)

The equation (9.16.2) implies that the curvature vector is the sum of the normal curvature and

tangential curvature vectors.

The tangential curvature vector  g


 is generally called as geodesic curvature vector..

9.17 An expression for g and that it is intrinsic

We know that the curvature vector r  at any point P on a curve C can be expressed as a linear

combination of vectors

1
ˆ , rN r

u
   




,    and      2
rr
v
   




as given below 1 2
ˆ

nr N r r    
   , .....(9.17.1)

where and  are scalars.

Taking dot product by N̂ , we get

ˆr N       1 2
ˆ ˆ ˆ ˆ

n N N r N r N       
 

 ˆr N  0 0n       1 2
ˆ ˆ ˆ ˆ1, 0N N r N r N       

 


 n ˆr N  .....(9.17.2)

So it is deduced that 1 2g r r   
.....(9.17.3)

Now taking dot product of equation (9.17.1) by 1r
 , we get

1r r 
       1 1 1 2 1

ˆ
n N r r r r r       

    

 2
1 2 10 r r r   
  

or  1r r 
 

E F   2
1 1 2,E r F r r    
  

 .....(9.17.4)

but r r 
  d T T U

ds u u
       

,
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then from equation (9.17.4),

U E F   . .....(9.17.5)

Now taking dot product of equation (9.17.1) by 2r
 , we get

2r r 
       2 1 2 2 2

ˆ
n N r r r r r      

    

or r r 
  0 F G    2 2G r r 

 


and r r 
  d T T V

ds v v
       

 .U F G   .....(9.17.6)

Solving  equations (9.17.5) and (9.17.6), we get

   2 2

1 1,GU FV EV FU
H H

     . .....(9.17.7)

Equation (9.17.7) shows that values of and are intrinsic.

Hence the geodesic curvature g  is intrinsic.

Now in case of geodesic r  is parallel to N̂ , therefore geodesic curvature vector (, is zero

for geodesic.

9.18 The geodesic curvature vector of any curve is orthogonal to the curve

Proof :     ˆdrr t
ds

  


 , again differentiating

ˆ ˆr t n   
 .....(9.18.1)

and r  can be expressed as a linear combination of the vectors N̂ , 1r
 and 2r

 , so we can write

1 2
ˆ

nr N r r     
   . .....(9.18.2)

Now, form (9.18.1) and (9.18.2), we have

ˆnn 1 2
ˆ

n N r r    
  .....(9.18.3)

Taking to product by t̂  1 2
ˆˆ ˆ ˆˆn nn t N t r r t        

 

 1 2
ˆ0 0 r r t    

   ˆˆ ˆˆ 0, 0n t N t   

 ˆ0 g t  


 g


 is orthogonal to t̂ .  1 2g r r   
  



Hence geodesic curvature vector g is orthogonal to the curve.

Hence the result.
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9.19 Formulae for geodesic curvature

If parameter s (arc length), then show that geodesic curvature N̂ r rg      
 

, and if

we replace parameter s by t, then show that

   1
3

T TV t U tg u vHs
     
   

.

Proof : In the article 9.18, we have proved that the geodesic curvature vector g


 of a curve is

orthogonal to the curve. Also we know that vector g


 lies in the tangent plane (See Fig. 9.2), so it is

perpendicular to the surface normal vector N̂  also. Thus g


 is orthogonal to both the unit vectors  ˆr t 

and N̂ . Hence it is parallel to the unit vector N̂ r  . Hence

 ˆ
g g N r   
 

,     where    g g  


. .....(9.19.1)

Now ˆ
n gr N    



 ˆ ˆ
n gr N N r     

 
.....(9.19.2)

Now taking scalar product by  N̂ r


, we get

 N̂ r r  
         ˆ ˆ ˆ ˆ

n gN r N N r N r          
  

or N̂ r r   
 

 = 0 + 1g        ˆ ˆ ˆ ˆ0 and 1N r N N r N r        
  



 ˆ
g N r r     

 
.....(9.19.3)

which is the required result.

Now, if we replace the parameter s by t,

then
 
 

/
/

dr dtdr rr
ds ds dt s

   
 

 .....(9.19.4)

Again differentiating with respect to ‘s’, we get

3 3 2
0d r d r dt s r r s s r rr

ds s dt s ds s s s
                 
     

            

    
      0s &&Q .....(9.19.5)

Using equation (9.19.4) and (9.19.5) in (9.19.3), we get

2 3
1ˆ ˆ

g
r rN N r r
s s s

         

     
 

.....(9.19.6)
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But we know that 1 2ˆ r rN
H



 

 1 2
1 23 3

1 1
g

r r r r r r r r
Hs Hs
          

 
        

 

or      1 1
1 23 3

2 2

1 1
g

r r r r
r r r r

r r r rHs Hs
 

     
 

              

or        1 2 1 23
1

g r r r r r r r r
Hs

                


      (by Lagrange’s Identity) .....(9.19.7)

Now, if we take  2 21 2
2

T Eu Fuv Gv      (where duu
dt

  etc.) .....(9.19.8)

then 1 2
dr r du r dvr r u r v
dt u dt v dt

 
      

 

  
     .....(9.19.9)

Squaring, we get 2r  21 2 ,r u r v 
 
 

then 2r    1 2 1 2r u r v r u r v   
   
   

       2 2
1 1 1 2 2 1 2 2r r u r r u v r r u v r r v       
       

     

 2 2Eu Fu v Fu v Gv        

  2 22Eu Fu v Gv     

 2r = 2T  [by equation (9.19.8)]

or T 21
2

r  .....(9.19.10)

Differentiating with respect to u

T
u

 

 1 2
1 2
2

rr r r u r v
u u
 

    
 

     
 

    [by equation (9.19.9)]

   1 10r r r r    
    

or
T
u

   1r r 

  .....(9.19.11)

Similarly,
T
v


   2r r 

  .....(9.19.12)

Now differentiating equation (9.19.10) with respect to u, we get

T
u



 1 2
1 2
2

rr r r u r v
u u
 

    
 

         [by equation (9.19.9)]

   11 21 1
dr r u r v r r
dt

              [just as equation (9.19.9)]
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or
T
u



 1
dr r
dt

 
  .....(9.19.13)

Similarly,
T
v




 2
dr r
dt

 
  .....(9.19.14)

Now we know that U (t) d T T
dt u u

      

   1 1
d dr r r r
dt dt

   
    

or U (t)  11
1 1

d rd rr r r r r r
dt dt

       


         .....(9.19.15)

Similarly, V (t) 2r r 
  .....(9.19.16)

Now, using equation (9.19.11), (9.19.12) and (9.19.15), (9.19.16) in equation (9.19.7), we get

g    1 T TV t U t
Hs u v

       
.....(9.19.17)

If parameter t = s, so that 1s   then we get

g    1 T TV s U s
H u v

       
.....(9.19.18)

Hence, equation (9.19.17) and (9.19.18) are formulae for g.

Another form : We know that u U (s) + v V (s) = 0

 U (s)  v V s
u


 


.....(9.19.19)

Putting this value in (9.19.18), we get

g    1 T v TV s V s
H u u v

        

   V s V sT Tu v
H u u v Hu

             
2 1T Tu v T

u v
         



or g
 V s

Hu



.....(9.19.20)

which is value of g in terms of V (s).
Similarly in terms of U (s), g will be

g
 U s

Hv
 


. .....(9.19.21)
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9.20 Geodesic curvature in terms of Gauss coefficients.

We know that 1 2r r u r v   
r r r

.......(9.20.1)
Again differentiating with respect to ‘s’, we get

2 2
11 12 22 1 22r r u r u v r v r u r v          

r r r r r r ......(9.20.2)

then 1r r 
r r    2 2

1 2 11 12 22 1 22r u r v r u r u v r v r u r v             
r r r r r r r

     3 2
1 11 1 12 2 11 1 22 2 122 2 2r r u r r r r u v r r r r            
r r r r r r r r r r

     2 3
2 22 1 2u v r r v r r u v u v            
r r r r

    .....(9.20.3)

Now, g  N̂ r r   
r r

      3 2
11 1 12 2 11

ˆ ˆ ˆ2N r r u N r r N r r u v           
r r r r r r

      2 3
1 22 2 12 2 22

ˆ ˆ ˆ2N r r N r r u v N r r v          
r r r r r r   1 2N̂ r r u v u v      

r r

        3 2 2 32 2Hu H l u v vH mH u v nH v H u v v u                   

or kg    2 2 2 22 2Hu v u u v v Hv u lu mu v nv                      ......(9.20.4)

which is the formula for geodesic curvature in terms of Gauss coefficients , , , l, m and n.

Since  1 2N̂ r r 
r r ˆ ˆN HN H  

 1 11N̂ r r 
r r       21 2

1 11 11 2 1 1 11 2 1
1r r r r r r r r r r r

H H
          

r r r r r r r r r

 1 2 1 1 2 1
1 1 1 1 2

2 2 2
F E E E F EF EE FE H

H H
             

Similarly

   1 12 1 22
ˆ ˆ,N r r H N r r H       

r r r r

   2 11 2 12
ˆ ˆ,N r r lH N r r mH       

r r r r
 and

 2 22
ˆ .N r r nH   

r r
......(9.20.5)

9.21 Geodesic curvature for parametric curves.

(i) For the parametric curve v = c (constant) i.e., u = curve, we have

v= 0,     v= 0 ......(9.21.1)

But    2 2 2 22 2gk Hu v u u v v Hv u lu mu v nv                     

       2 20 0 0 0 0 0g gu v c
k k Hu u H u lu
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   3
g u

k Hu  ........(9.21.2)

Now
2

2 2 21 1 1duds Edu u u
E ds E E

          
 

........(9.21.3)

Then equation (9.21.2) reduces to

   3/ 2
g u

k H E  . ......(9.21.4)

(ii) For the parametric curve u = (constant) c (say) i.e., v = curve, then u  = 0, u  = 0 and

proceeding as above we get

     3 .g gv u c
k k nHv


  

   3/ 2 1/ 2
g v

k nHG v G     Q .......(9.21.5)

Remark : If the parametric curves are orthogonal, we have

F = 0,  this gives  H2 = EG, 2

2
E
G


    and  1

2
Gn
E




Hence    2 1
2g u

Ek E
vE G EG


   
 ........(9.21.6)

and    1 1
2g v

Gk G
uG E EG

 
   


. .....(9.21.7)

Ex.3. Find the geodesic curvature of the curve u = constant, on the surface

x = u cos ,     y = u sin ,    21 .
2

z au

Sol. Let rr  be position vector of any point on the surface then

21cos , sin ,
2

r u u au    
 

r

Differentiating with respect to u and 

   1 2cos ,sin , , sin , cos ,0r rr au r u u
u
 

        
 

r r

then  2 2
1 1 1 21 , 0E r r a u F r r      
r r r r .....(1)

2
2 2 ,G r r u  
r r  then 1 2G G u

u


 


.....(2)

Since   3/ 2consant
,g u

Hnk
G


  but  1

2
Gn
E

 

  g u c
k



1
2 2 2

2
2 2 1

G u
G E u a u

 


2 2
,

1

u

a u



   which is the required result.
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9.22 Normal angle

Definition : The angle between the principal normal n̂  and the surface normal N̂  is known as

normal angle, it is denoted by symbol .w
(i) Here angle w is positive if the rotation from n̂  to N̂  is in the sense from n̂  to binormal ˆ.b

b

t

N

n

w

Surfa
ce

 norm
al

Principal normal

O

Fig. 9.3
(ii) Angle w  is negative if the rotation from n̂  to N̂  is in the sense from b̂  to ˆ.n

All three vectors ˆ ˆ,N n  and b̂  lie in the same plane. So angle between N̂  and b̂  is .
2

w  
 

  ˆˆ cos 90 sinN b w w    ......(9.22.1)

and ˆ ˆ cos .N n w  ......(9.22.2)

9.23 Geodesic curvature in terms of normal angle.

We know that ˆ
g N r r     

r r

or ˆ ˆ ˆ ˆ,g N t t r t r t         
rr r

Q

or ˆ ˆ ˆˆ ˆg N t n t n          

ˆ ˆ ˆN t n    

 ˆ ˆ ˆN t n     ˆ ˆˆ ˆ ˆN b t n b      

or sing w   .....(9.23.1)

or
1 sin ,g w 
 .....(9.23.2)

where 1
 


 is the radius of curvature of the curve.



225

Remark : We also know that
ˆ

n gr N    


Taking dot product with ˆ ,N  we gets
ˆ ˆ ˆ ˆ

n gr N N N N       


cos 1 0nw     ˆ ˆ ˆˆ0 cosg N r N n N w              




or cosn w   . .....(9.23.3)
Now, on dividing equation (9.23.1) by (9.23.3), we get

tan tang
g n

n
w w


    

 .....(9.23.4)

On squaring and adding equations (9.23.1) and (9.23.3), we get
2 2 2
g n     . .....(9.23.5)

9.24 Expression of the torsion of a geodesic on any surface, and that the torsion of

an asymptotic line is equal to the torsion of its geodesic tangent.

Let c be a curve on a surface S, let r  be position vector of any point P of curve c, then
ˆ ˆ ˆ.b t n  .....(9.24.1)

Differentiating with respect to s (arc length), we get

ˆ ˆ ˆˆˆdb dt dnn t
ds ds ds

    .....(9.24.2)

By Serret-Frenet formulae, equation (9.24.2) is reduced to

ˆˆˆ ˆ ˆ dnn n n t
ds

     

or
ˆˆˆ 0 dnn t

ds
    .....(9.24.3)

Now, if the curve C is geodesic on surface S, then ˆˆ ,n N we also denote  by g as the torsion

of the geodesic, then by equation (9.24.3), we get

ˆˆ ˆg
dNN t
ds

   .

Taking dot product by ˆ ,N  we get

ˆ ˆ
g N N   ˆ ˆˆN t N      ˆ ˆ ˆN N t   

or  ˆ ˆ ˆg N N t    ˆ ˆ ˆ ,N N t    .....(9.24.4)

which is the basic expression for the torsion of a geodesic on a surface S.
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Torsion found in equation (9.24.4) is same as the torsion of an asymptotic line. The geodesic
which touches a curve at any point is often called its geodesic tangent at the point. Hence the torsion of
an a asymptotic line is equal to the torsion of its geodesic tangent.

9.25 Expressions for the torsion of a geodesic in terms of fundamental magnitudes

and also in terms of principal curvatures.

We know that Torsion of a geodesic is

ˆ ˆ
g N N r     


.....(9.25.1)

Now 1 2
ˆ ˆ ˆˆ ˆ ˆdN N du N dvN N u N v

ds u ds v ds
       
 

.....(9.25.2)

and 1 2
dr r du r dvr r u r v
ds u ds v ds

       
 

  
  

......(9.25.3)

 N̂ r      1 2 1 2
ˆ ˆN u N v r u r v      

 

       2 2
1 1 1 2 2 1 2 2

ˆ ˆ ˆ ˆN r u N r u v N r u v N r v            
   

Taking dot product of both sides with vector ˆ ,N we get

 ˆ ˆN N r  
      2

1 1 1 2 2 1
ˆ ˆ ˆ ˆ ˆ ˆN N r u N N r u v N N r u v             

     2
2 2

ˆ ˆN N r v    


or ˆ ˆN N r   
 2

1 1 1 2 2 1
ˆ ˆ ˆ ˆ ˆ ˆ

g N N r u N N r u v N N r u v                  
  

 2
2 2

ˆ ˆN N r v    


.....(9.25.4)

But 1 1
ˆ ˆN N r  


1 2

ˆ ˆ,EM FL FM GLN N r
H H
    



2 1
ˆ ˆN N r  


2 2

ˆ ˆ, .EN FM FN GMN N r
H H
    

 .....(9.25.5)

Using equation (9.25.5) in to (9.25.4), we get

        2 21
g EM FL u FM GL EN FM u v FN GM v

H
             

or       2 21 ,g EM GL u EN GL u v FN GM v
H

          .....(9.25.6)

which is an expression for g in terms of fundamental magnitudes.
To find expression in terms of principal curvatures chose the lines of curvature as parametric

curves so that F = 0, M = 0 and H2 = EG  H EG , then above equation (9.25.5) reduces to the

following form

  1 .g
N LEN GL u v EG u v
G EEG

         
 

.....(9.25.7)



227

Now let  be the angle which the geodesic makes with the parametric curve v = c (constant),

then

cos and sinu E v G     .....(9.25.8)

Then using these in equation (9.25.7), we get

sin cosg
N L
G E

      
 

.....(9.25.9)

But the principal curvatures a and b are given by

and ,a b
L N
E G

    .....(9.25.10)

So that (9.25.9) can be written as

 1 sin 2 ,
2g a b      .....(9.25.11)

which is expression of g in terms of principal curvatures.

From equation (9.25.11), it follows that g is maximum when

2 = 90°    / 4,  

hence the geodesic bisecting the angle between the line of curvature has maximum torsion.

Remark : If g and g be the torsions of two orthogonal geodesics then from equation (9.25.11)

above, we have

g  1 sin 2
2 b a     .....(A)

and g  1 sin 2
2 2b a

       
 

   1 sin 2
2 b a     

 g  1 sin 2
2 b a      .....(B)

In adding equation (A) and (B), we get

0 ,g g g g        

which shows that two orthogonal geodesics have their torsion equal but opposite in sign.

9.26 Some important definition

(i) Simply connected region R : The region R, in which every closed curve lying in the region

R on a surface can be contracted continuously into a point without leaving R, is called simply

connected region [See Fig 9.4].

(ii) Excess of a closed curve C [ex (c)] : Suppose a simply connected region R (See Fig 9.3)

be enclosed by a closed curve (say) C, consisting of n arcs A0 A1, A1 A2, ...., An–1 An, where
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A0 = An, making at the vertices exterior angles 1, 2, ..., n; then the excess of closed curve C is

denoted by ex (c) is defined as

2

1

3

A

A1

A2

A3

R

C

A   A=0 1

n

Fig.9.4

ex (c) = 2 – (1 + 2 + ... + n) g
c

ds 

or ex (c) = 2 
1

n

r g
r c

ds


     .....(9.26.1)

where g being the geodesic curvature of the arcs.

(iii) Total curvature of R : The total curvature or Gaussian curvature of an arc on a surface is

denoted by K and is given by

2 2

2 2
LN M TK
EG F H


 


.....(9.26.2)

or 2 1 1 2 121 1
2 2

FE G F E FEK
H u EH H H v H H EH

               
.....(9.26.3)

Therefore, the total curvature of a simply connected region R is given by

.
R

ds  .....(9.26.4)

9.27 Gauss-Bonnet theorem

Statement : Any curve which encloses a simply connected region R, the excess of the closed

curve C is equal to the total curvature of R, i.e.,   .
R

ex c ds  

Proof : Let us consider a surface  ,r r u v
 

of class 3 with u, v as parameters, let c be a  closed

curve, which is boundary of a simply connected region R on the surface. (see Fig 9.4). Let c consists of

n (finite) smooth arcs

A0 A1, A1 A2, ..., An–1 An ;       (where A0 = An)
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such that each arc is of class 2 and these are positively described in anti-clockwise direction. Let

r(r = 1, 2, 3,..., n) be the exterior angle between the tangents to the arcs Ar–1 Ar and Ar Ar +1 at the

vertex Ar, measured with usual convention. So that –  < r < 

The geodesic curvature g exists at every point of c except possibly at the vertices Ar
(r = 1, 2, ..., n).

Then by Liuville’s formula, we have

g
d H du dv
ds E ds ds
       

 
.....(9.27.1)

or  
c c

ds d P du Q dv          (on integrating over c) .....(9.27.2)

where  is the angle between the curve c and the parametric curve v = constant (u-curve) and P, Q are

functions of parameter, u, v, which are given by

P (u, v)  1 2 1
1 2 .

2
H EF EE FE
E HE


    .....(9.27.3)

and Q (u, v)  1 2
1 .

2
H EG FE
E HE


   .....(9.27.4)

Now, the parametric curves v = c (constant) form a family in the region R enclosed by curve C,

the tangent to C turns through 2 relative to these curves, so that

1
2

n

r
rc

d


   

or
1

2
n

r
r c

d


 
     

 
  .....(9.27.5)

But by definition of excess of a closed curve C, we have

ex (c)
1

2
n

r g
r c

ds


      

or ex (c) g
c c

d ds    [by equation (9.27.5)]

 
c

P du Q dv   [by equation (9.27.2)]

 ex (c)
R

Q P du dv
u v

                  [using Green’s theorem] .....(9.27.6)

But in curvilinear coordinates, area of surface element ds (say) is given by

1 2 1 2ds r du r dv r r dudv H dudv    
r r r r

.....(9.27.7)
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or ds du dv
H

 .

Using it in (9.27.6), we get

ex (c) 1

R

Q P ds
H u v

         . .....(9.27.8)

But we know that the intrinsic formula for Gaussian curvature or total curvature  at any point

(u, v) on the surface is obtained by

   2 1 1 2 1
1 1 1 1 2

2 2
K FE EG EF EF FE

H u HE H v HE
               

.....(9.27.9)

or
1 .Q PK

H u v
       

Using this value in (9.27.8), we get

ex (c) ,
R

Kds   .....(9.27.10)

which shows that the excess of the closed curve c is equal to the total curvature of R.

Hence the theorem.

9.27.1 Self-learning exercise-2
1. What is differential equation of a geodesic on a surface F (x, y, z) = 0 ?

2. Write the differential equation of geodesic on the surface z = f (x, y).

3. State Clairut’s theorem.

4. If a geodesic on a surface of revolution cuts the meridian at a constant angle, is surface a

right cylinder ?

5. Is a curve on sphere a geodesic if it is a great circle ?

6. Define geodesic curvature.

7. Define normal angle.

8. Write geodesic curvature in terms of normal angle .w

9. Are two orthogonal geodesic have their torsion equal in magnitude and sign ?

10. Define excess of a closed curve C.

11. State Gauss Bonnet theorem.

9.27.2  Illustrative examples

Ex.4. Geodesic are drawn on a catenoid so as to cross the meridians at an angle whose

sine is c/u, where u is the distance of the point of crossing from the axis. Prove that the polar

equation to their projections on the xy-plane is 2( ) ,u c e
u c





 where  is an arbitrary constant.
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Sol. A catenoid is a surface of revolution, obtained by revolving the catenary about its directrix.

Let its equation be

x = u cos , y = u sin , z = c cos h–1 u
c

 
 
 

.....(1)

Then for a geodesic curve on its surface

2
1

du h
ds


  .....(2)

It is given that geodesic cuts the meridians at an angle, say ,

whose sine is ,c
u

 so sin c
u

  . .....(3)

We know that sin  du
ds


 .....(4)

Using (3) in (4), we get
c du
u ds


  2 du c

ds


  .....(5)

Then form equation (2) and (5), we have h1 = c.

Now we find that the equation of the geodesic becomes

2 2
duc

u c
 

 log
2

u c
u c

 




or  2 log u c
u c


   


2( ) u ce
u c

 
 



where  is constant of integration.

Ex.5.  A geodesic on the ellipsoid of revolution 
2 2 2

2 2 1,x y z
a c


   crosses a meridian at an

angle  at a distance u from the axis. Prove that at the point of crossing it makes an angle

  
1

4 2 2 2

coscos cu

a u a c



 
 
 

  
 

 with the axis.

Sol. The given equation of the ellipsoid of revolution may be expressed as

x = u cos v, y = u sin v, z 
2

21 uc
a

 
   

 
.....(1)

where u, v are parameters. Let r
r  be position vector of a point, then

2

2cos , sin , 1 ur u v u v c
a

  
       

r .
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1

2 2 2
cos , sin ,

1 /

uc rr v v
ua u a

 
  

        

r

and  2 sin , cos , 0rr u v u v
v


  


r

and  
2 2

2 2
1 1 1 1 2 2 22 2 2

1 , 0,c uE r r r F r r G r r u
a a u

          


r r r r r r r
.....(2)

Then surface element ds is given by

ds2 = Edu2 + 2 Fdu dv + G dv2

2 2

1 2du du dv dvE F G
ds ds ds ds

        
   

or  
2 22 2

2
2 2 2

1 1c u du dvu
ds dsa a u

           
     

       0F Q .....(3)

Now we know that the first integral of a geodesic on a surface of revolution [of the form

x = u sin v, y = u sin v, z = f (u)] is

2
1

dvu G
ds

 .....(4)

Also, it is given that the geodesic crosses a meridian at an angle , therefore

sin  dvu
ds

 . .....(5)

On using equation (5) in (3), we get

 
22 2

2
2 2 2

1 sin 1c u du
dsa a u

        
   

  
22 2

2
2 2 2

1 cosc u du
dsa a u

       
   

.....(6)

Now z2 
2

2
21 ,uc

a
 

   
 

 on differentiating with respect to s, we get

2
2

2 2
22 0dz u du dz c u duz c

ds ds ds dsa a z
      
 

.....(7)
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or
2

2cos dz c u du
ds dsa z

   .....(8)

where angle  (say) is the angle which geodesic makes with z-axis.

From equation (8), 
2

2
cosdu a z

ds c u


   using in equation (6), we get

 
2 2 4 2

2 2
4 22 2 2

1 cos cos
1

c u a z
c ua a z

      
  

or  
4 2 2 2 2 4 2

2 2
4 22 2 2

cos cosa a u c u a z
c ua a u

 
    




 

   
2 2 2 2 2 2 2

2 2
2 2 4 2 2 2 2 4 2 2 2

coscos cos
c u a u c u

a z a a u c u a u a c

 
   

   

 2 2 2
2

2

c a u
z

a

 
 
 
 
Q

or
   

1

4 2 2 2 4 2 2 2

cos coscos coscu cu

a u a c a u a c
 

    
   

which is the required result.

Ex.6. Prove that the projection on the xy-plane of the geodesics on the catenoid

u = c cos h z
c

 
 
 

 are given by

   2 2 2 2
,adud

u c u a
 

 

where a is an arbitrary constant.

Sol. A catenoid is obtained by revolving a catenary about its directrix, hence its equation is

x = u cos , y = u sin , z  1cosh uc f u
c

    
 

 (say) .....(1)

The equation of geodesics on the surface of revolution is given by

2

2 2
1a fd du

u u a
      

  
        [by equation (9), §9.12] .....(2)

where dff
du

  .

Now by cos ,z duu c h
c dz

   
 

1sin sinz zc h h
c c c
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or  
1

sin /
dz
du h z c


 
1

sin /
df f
du h z c

   .....(3)

then by equation (2), we have

d  

2

2 2

11
sin ( )

cos /
h z ca du

c h z c u a

 
 

  


[on using values of u and f ]

  2 2sin /
a du

c h z c u a
  


2 21 sin cosz zh h

c c
    
Q

or d
  2 2 2 2

a du

u c u a
 

 

2
2

2sin cos 1 1z z uh b
c c c

                
Q

which is the required result.

Ex.7.  Show that for a geodesic

  2
2

1 1 1 1 1
a b

a b
or

  
                  

.

Sol.  The torsion and curvature of a geodesic are given by

 1 sin 2
2 b a      .....(1)

and  = a cos2  + b sin2  (by Euler’s theorem)    .....(2)

where  is the angle between the line of curvature and the geodesic tangent.

Now (b – ) = b – (a cos2  + b sin2 )

= b (1 – sin2 ) – a cos2 = b cos2  – b cos2 

or (b – ) = (b – a) cos2  .....(3)

Similarly ( – a) = (a cos2  + b sin2 ) – a
or ( – a) = (b – a) sin2  .....(4)

multiplying equation (3) and (4), we get

(b – ) ( – a) = (b – a)2 sin2 cos2 = 2

or (b – ) ( – a) = 2,   which is the required result.

But 
1 1 1, , ,a b

a b
     

  
 then above equation reduces to

2
1 1 1 1 1 1where
b a

                    
.....(5)

which is another form of the result.
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Ex.8. Prove that at the origin the geodesic curvature of the section of the surface

2z = ax2 + by2, by the plane lx + my + nz = 0, is

n (bl2 + am2)/(l2 + m2)3/2.

Sol.  The given point is (0, 0, 0) and the plane of the given section is

lx + my + nz = 0. .....(1)

Then the equation of the tangent plane of the surface

2z = ax2 + by2    at the origin is,    z = 0

i.e., 0x + 0y + z = 0. ......(2)

Therefore the direction cosines of the line of intersection of planes (1) and (2), which will be the

direction cosines of a tangent through origin to the given section of surface, are obtained as

1 1 12 2 2 2

1, , 0ml m n
l m l m


  

 
. .....(3)

Let the equation of the normal plane to the given surface at the origin through the tangent line be

x + y + z = 0 .....(4)

then l1+ m1 + n1 = 0

or 0m l
l m
 

      .....(5)

Also  = 0. .....(6)

Now plane given in equation (4) passes through z-axis.

Hence l


0m
 

 

or 0l m
  
 

2 2 2

2 2 2 2 2

1

0l m l m

  
 

  


2 2

,l

l m
  

 2 2
, 0m

l m
  


. .....(7)

Now the direction cosines of the normal to the given section (1) are

2 2 2 2 2 2 2 2 2
, ,l m n

l m n l m n l m n     
.....(8)

If  be the angle between (7) and (8) then

2 2

2 2 2cos l m
l m n


 

 
. .....(9)

The radius of curvature of a given section through any point of a surface is obtained by the ex-

pression
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cos


2 2
1 1 1 1

2 2

2

1

rl sl m tm

p q

 


 
.....(10)

For the given surface 2z = ax2 + by2, we have at the origin p = 0, q = 0, r = a, s = 0 and t = b.

Using value of cos  form (9) and these values of p, q, r, s, t in equation (10), we get

2 2 2 2

2 22 2 2

1 l m am bl
l ml m n

 


  

or  = (l2 + m2)3/2 (am2 + bl2)–1 (l2 + m2 + n2)–1/2

but     3 2 1 22 2 2 2 2 2 21 , so l m am bl l m n


       
 .....(11)

Also, if  is the angle between the given section and the normal section, then

cos  = (l2 + m2)1/2 (l2 + m2 + n2)–1/2

Hence by Meunier’s theorem

n =  cos  = (l2 + m2)–1 (am2 + bl2) ......(12)

therefore, the geodesic curvature g of the required section is given by 2 2 2
n g    

 2 2 2
g n    

   
 

 
 

2 22 2 2 2 2 2 2

3 22 2 2 2

am bl l m n am bl

l m l m

   
 

 

 
 

22 2 2

32 2

am bl n

l m






or g
 
 

2 2

3 22 2
,

n am bl

l m






which is the required result.

Ex.10. Find the Gaussian curvature at the point (u, v) of the anchor ring

 ( ) cos , ( ) sin , ( )r g u v g u v f u
r

.

where g (u) = (b + a cos u), f (u) = a sin u and the domain of u, v is
0 < u < 2, 0 < v < 2,

verify that the total curvature of the whole surface is zero.

Sol.  We have position vector of a point (say) ,rr

    cos cos , cos sin , sinr b a u v b a u v a u  
r

then by finding 1 2 11 12 22, , , ,r r r r rr r r r r
 we can get
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E = a2, F = 0, G = (b + a cos u)2, H2 = a2 (b + a cos u)2 .....(1)

L = a, M = 0, N = cos u (b + a cos u) .....(2)

Then the Gaussian curvature  is given by

 
2

2
cos

cos
LN M u

a b a uH


  
 .....(3)

Then the total curvature of the whole surface is

s

Kds 

2 2

0 0u v

H du dv
 

 

  

   
2 2

0 0

cos cos
cos
u a b a u du dv

a b a u

 

 
  [on using values form (3) and (1)]

 
2 2 2

2
0

0 0 0

cos cosu du dv u v du
  

   

 
2

0

2 cos 2 0 0u du


    

 total curvature = 0. Hence verified.

9.28 Summary

1. In this unit you have studied about geodesic, differential equation of a geodesic, single

differential equation of a geodesic, when the relation between parameters u and v be of the form

u = u (v) or v = v (u), geodesic on a surface of revolution. About geodesic curvature and tor-

sion and their expressions in different forms, about Gauss-Bonnet theorem.

2. Sufficient number of examples have solved in the unit.

3. Differential equation of geodesic in different forms and formulae for geodesic curvature and tor-

sion will help the students to easily understand the text of the unit.

4. Examples in the text have been inserted frequently to help students to understand the text of the

unit.

9.29 Answers to self-learning exercises

Self-learning exercise-1

1. See §9.2.
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2. See §9.3.

3. 2 2
1 2 2 1

1 1 0 and
2 2

Eu E u E u v Ev F G v            
 

2 2
1 2 1 2

1 1 0
2 2

Fu F E u G u v Gv G v            
 

4. 0 and 0d d
ds u u ds v v

                   

5. 2 2 2 22 0 and 2 0u l u m u v nu v u u v v v                  

6.    
3 22

2 2 2d u du du dul m n
dv dv dvdv

              
   

7. No.

8. EF2 + FE1 – 2EF1 = 0

Self-learning exercise-2

1. Integral of one of the equation 

2 2 2

2 2 2
,

x y z

d x d y d z
ds ds ds
F F F

     
     
        with the equation F (x, y, z) = 0

2.  
22

2 2
21 2d y dy dy dyp q p q t s r

dx dx dxdx

              
     

3. See §9.13. 4. Yes. (see §9.14) 5. Yes. (see §9.15)

6. See §9.16. 7. See §9.22. 8.
1sing w
l

 

9. No (see §9.25) 10. See §9.26(ii). 11. See §9.27.

9.30 Exercises

1. Derive the general differential equations of geodesic on a surface  , .r r u v
r r

[Ans. See §9.4]

2. Derive the canonical equation of a geodesic on the surface  , .r r u v
r r

[Ans. See §9.5]
3. Derive the differential equations of a geodesic in Gauss coefficient. [Ans. See §9.6]
4. Find the single differential equation of geodesics, on surface r = r (u, v), when a curve on the

surface may be determined by a single relation between the parameters, u and v either by

v = v (u) or by u = u (v). [Ans. See §9.7]
5. Show that for surface, a necessary and sufficient condition that the curve v = c (constant) be a

geodesic is EF2 + FE1 – 2EF1 = 0, when v = c, for all values of u. [Ans. See §9.8]
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6. Find the differential equation of geodesics on the surface z = f (x, y), the Monge’s form.

[Ans. See §9.11]
7. State and prove Clairant’s theorem. [Ans. See §9.13]

8. Find an expression of g (geodesic curvature) and show that it is intrinsic. [Ans. See §9.17]

9. Derive the formula for geodesic curvature of the form g N̂ r r    
r r [Ans. See §9.19]

10. Find the geodesic curvature in terms of normal angle. [Ans. 1 sing w 


]

11. Derive the basic expression for the torsion of a geodesic on a surface. [Ans. ˆ ˆ ˆg N N t     ]

12. State and prove Gauss-Bonnet theorem. [Ans. See §9.27]
13. Prove that on a surface with metric ds2 = a2 du2 + b2 dv2 the geodesic curvature of the curve

u = c    is   (ab)–1 .b
u
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Unit 10 : Gauss Formulae, Gauss’s Characteristic Equation
Weingarten Equations, Mainardi-Codazzi Equa-
tions. Fundamental Existence Theorem for Surfaces,
Parallel Surfaces, Gaussian and Mean Curvature for
a Parallel Surface, Bonnet’s Theorem on Parallel
Surfaces.

Structure of the Unit

10.0 Objective

10.2 Introduction

10.3 Gauss’s formulae

10.4 Weingarten equations

10.5 Mainardi-Codazzi equations.

10.6 Illustrative examples

10.7 Fundamental existence theorem for surfaces.

10.8 Parallel surfaces

10.9 Gaussian and mean curvature for the parallel surface.

10.10 Bonnet’s is theorem for parallel surfaces

10.11 Self-learning exercises

10.12 Summary

10.13 Answers to self-learning exercises

10.14 Exercises

10.0 Objectives

Six fundamental magnitudes E, F, G and L, M, N and their partial derivatives play an important
role in the surface theory. Gauss’s formulae and Gauss’s characteristic equations are some of the rela-
tions between them.

10.1 Introduction

This unit is devoted to the study of some relations between E, F, G and L, M, N and their par-
tial derivatives. We also study the fundamental existence theorem for surfaces and Bonnets theorem on
parallel surfaces.
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10.2 Gauss’s formulae

The Gauss’s formulae or Gauss’s equations are given below

11 1 2

12 1 2

22 1 2

ˆ

ˆ

ˆ

r L N l r r

r M N m r r

r N N n r r

  
   
   








.....(10.2.1)

where l, m, n; are called Christoffel symbols and are suitable functions of E, F, G and their

partial derivatives with respect to u and v.

Proof : Second order partial derivative of r  w. r. to u and v can be expressed linearly in terms

of 1 2,r r   and N̂  as given below..

11 1 2
ˆr A N l r r  

  
 , .....(10.2.2)

12 1 2
ˆr B N m r r  

  
 , .....(10.2.3)

22 1 2
ˆr C N n r r  

  
 , .....(10.2.4)

where A, B, C ; l, m, n ; are the coefficients to be determined.

Taking scalar multiplication of (10.2.2) by N̂ , we get

11
ˆ ˆ ˆr N A N N A   

 as 1 2
ˆ ˆ0r N r N   

 

 A = L as 11
ˆr N L 

 .

Similarly B = M, C = N. .....(10.2.5)

Hence the relation (10.2.2) to (10.2.3) assume the form (10.2.1).

Now to determine l, m, n ; we proceed as follow :

Clearly  2
1 1 1 11 2 1 12

1 11 2 1 12 2 12 2 1 22

1 2 12 2 2 22

2 ; 2 ;

;

2 ; 2

E EE r r r E r r
u u v
F FF r r r r F r r r r
u v
GG r r G r r
u

             
            
  
 

      

    

       

   

.....(10.2.6)

Hence 1 11 1 11 2 1 1

1 12 2 2 12 1

1 22 2 1 2 22 2

1 1;
2 2
1 1;
2 2

1 1;
2 2

r r E r r F E

r r E r r G

r r F G r r G

     

    

     

   

   

   

.....(10.2.7)



242

Multiplying (10.2.2) by 1r
  and 2r

  successively scalarly, we get

1 11

2 11

r r l E F
r r l F G




   
   

 

  .....(10.2.8)

Using (10.2.7) in (10.2.8) and then on solving we get

1 1 2
1 1and
2 2

E l E F F E l F G      , .....(10.2.9)

where values of l and are given by

 1 1 22

1 2
2

l GE FF FE
H

   ,  1 2 12

1 2
2

EF EE FE
H

    .

Proceeding exactly with (10.2.3) and (10.2.4), we get

   1 1 1 22 2

1 1;
2 2

m GF FG EG FE
H H

   

 2 1 22

1 2
2

n GF GG FG
H

   ,  2 2 12

1 2
2

EG FF FG
H

    . .....(10.2.10)

Corollary : In the case, the parametric curves are orthogonal, then F = 0 and H2 = EG.

Hence 1 1 2 1
2 , , ;

2 2 2 2
GE E E Gl m n
H E E E

    

2 1 2, ,
2 2 2
E G G
G G G

      . .....(10.2.11)

Thus Gauss’s formulae become

2
11 1 2

1

1ˆ
2 2

EEr L N r r
E G

   ,

2 1
12 1 2

ˆ
2 2
E Gr M N r r
E G

   ,

and 1 2
22 1 2

ˆ
2 2
G Gr N N r r
E G

   .....(10.2.12)

10.3 Gauss’s characteristic equations

It states that

   2 2 2
12 22 11

1 2 2
2

T F E G m E m F G          ln E l n F G     

where 2 2T L N M  .

Proof : Taking scalar product of first and third Gauss’s formulae and subtracting the square of

the second, we get
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2
11 22 12r r r         2

1 2 1 2 1 2
ˆ ˆ ˆL N l r r N N n r r M N m r r          

     

   2 2 2
2 1 22L N M ln m r l n m r r             2 2

2r   

     2 2 22T ln m E l m n F G            .....(10.3.1)

But 2
1E r    i.e.,   2 1 12

1
2

E r r 
    and  2

22 12 1 122
1
2

E r r r    

1 2F r r 
  i.e.,  2 12 2 1 22F r r r r   

      and  12 12 21 121 2 11 22 1 221F r r r r r r r r       
       

2
2 1 2 12

1
2

G r G r r   
  

  and  11 21 12 2 121
1
2

G r r r r   
   

Hence  22 11 12
1 2
2

E G F  2
12 11 22r r r     . .....(10.3.2)

From (10.3.1) and (10.3.2), we get desired characteristic equation as

      2 2 2
12 22 11

1 2 2 ln
2

T F E G m E m F G E l n F G              .

Corollary 1. Gauss’s characteristic equation can be put in the following form using the values of
l, m, n ; form 10.2

2
2 1

1 1
2

FL N M H E G
u EH H
       

1 2 121
2

F E FEH
v H H EH
       

.....(10.3.3)

Corollary 2. Suppose  ,r r u v
 

 represents a surface. We know that at any point (u, v) on
the surface, the Gaussian curvature K is given by

2

2

L N M
H




 2 1 1 2 121 1
2 2

FE G F E FE
H u EH H H v H H EH

               

[Using (10.3.3) equation of corollary 1]

2 1 1 1 221 1
2 2

FE EG EF FE EE
H u HE H v HE

              
.....(10.3.4)

where  H2 = EG – F2.

The formula (10.3.4) gives Gaussian curvature K in terms of first fundamental magnitudes E, F,
G and their partial derivatives with respect to u and v.

Thus equation (10.3.4) is intrinsic formula for Gaussian curvature. In the case, the parametric

curves are orthogonal, F = 0 and then F1 = 0.


2 1 21 12

2
G EL N M H

H u H v H
               

 0F 

But H2 = EG – F2 = EG.
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2

2

L N M
H




 1 21
2

G E
H u H v H
                

1 21 1 1
2 2

G E
H u vEG EG
     

           

   1 1 1G E

u u v vEG E G

             
       

    

 .

10.4 Weingarten equations

The formulae H2 N1 = (FM – GL) 1r
 + (FL – EM) 2r



and H2 N2 = (FN – GM) 1r
 + (FM – EN) 2r



are known as Weingarten formulae or Weingarten equations.

Proof : Since 1 2
ˆ ˆ ˆ ˆ ˆ1 0, 0N N N N N      .

Thus 1N


 and 2N


 are perpendicular to N̂ . Hence, these lie in the plane of 1r
  and 2r

 .

Hence 1 1 2N Ar Br 
   .....(10.4.1)

Taking scalar multiplication of (10.4.1) with 1r
  and 2r

  successively, we get

– L = AE + BF,     – M = AF + BG.

Solving for A and B, we get

A = (FM – GL)/(EG – F2), B = (FL – EM)/(EG – F2)

But EG – F2 = H2, therefore by (10.4.1)

H2 1N


 = (FM – GL) 1r
  + (FL – EM) 2r



Similarly we can get second equation.

10.5 Mainardi–Codazzi equations

The three fundamental magnitudes L, M, N are not functionally independent. They are related

through the equations.

L2 – M1 = mL – (l –) M –N

M2 – N1 = nL – (m – )M – N.

which are called Mainardi-Codazzi equations.

Proof : Consider the identity

   11 12r r
v u
 


 

 
.....(10.5.1)
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Putting the values of 11r  and 12r  from Gauss’s formula in (10.5.1), we get

   1 2 1 2
ˆ ˆL N l r r M N m r r

v u
  

    
 

   

 2 2 1 2 2 2 12 22
ˆL N l r r L N l r r     

   
 1 1 1 1 2 1 11 12

ˆ ˆM N m r r MN m r r      
    .

....(10.5.2)

Now substituting the values of 11 22 12, ,r r r    form Gauss’s formulae and the values of 1N̂  and 2N̂

form Weingarten equations, namely

   1 1 22 2

1 1N̂ FM GL r FL EM r
H H

   
 

and    2 1 22 2

1 1N̂ FN GM r FM EN r
H H

    
.....(10.5.3)

The identity (10.5.2) is expressed in terms of vectors N̂ , r1, r2 (non-coplaner vectors).

On equating  the coefficients of N̂  on both sides, we get

2 1L l M N M m L M     

or  2 1L M m L l M N      .....(10.5.4)

which is the first Mainardi-Codazzi equation.

Now consider the identity

   12 22r r
v u
 


 

 
. .....(10.5.5)

From Gauss’s formula, we have

12 1 2 22 1 2
ˆ ˆ;r MN m r r r NN n r r      

      .....(10.5.6)

Putting these values in (10.5.5), we get

2 1 1 2 12 22
ˆM N m r M N m r r   

    1 1 1 2 1 11 12
ˆN N n r r NN n r r      

    .....(10.5.7)

Substituting in (10.5.7), the values of  11 22 12, ,r r r   from Gauss’s formulae and for 1 2
ˆ ˆ,N N from

Weingarten equation, we get a vector identity and then equating coefficients of N̂  on both sides of the

identity, we get

M2 – mN + N = N1 + nL + M

or M2 – N1 = nL – (m –) M + N, .....(10.5.8)

which is second Mainardi-Codazzi equation.

10.6 Illustrative examples

Ex.1.  Show that for the surface z = f (x, y) with x, y are parameters.

2 2 2 2 2 2, , ; , ,pr ps pt qr qs qtl m n
H H H H H H

        .
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Sol. We have for the surface z = f (x, y).

E = 1 + p2, F = pq, G = 1 + q2,

E1 = 2pr, F1 = rq + pq, G1 = 2qs,

and E2 = 2ps, F2 = sq + pt, G2 = 2qt. .....(1)

Again l  1 1 22

2 2GE FF FE
H

  

      2
2

1 1 2 2 2
2

q pr pq rq ps pq ps
H

    

 2 2 2 2
2 2

1 2 2 2 2 2
2

pqpq prq prq p qs p qs
H H

      .....(2)

Similarly, on putting these values in experience for m, n,  we get the required results.

Ex.2.  For any surface prove that

   log , logH l H m
u v

  
   

 
.

where u and v are parameters and symbols have their usual meaning.
Sol. We have  H2 = EG – F2

  log H
u



 2 2
2

1 1 1log
2 2

H H
u H u
        

 2 1 1 1
2 2

21
2 2

E G G E FFEG F
H u H

 
  


. .....(1)

Using values of Christoffel symbols from §10.2, we get

l   1 2 1 1 22

1 2
2

GE FE FE EG FE
H

    

 1 1 12

1 2
2

E G EG FF
H

   . .....(2)

From (1) and (2),  log H l
u


 


.

Similarly, we can prove the second result.

Ex.3.  Show that for the right helicoid  r  = (u cos v, u sin v, cv).

l = 0, m = 0, n = – u ; = 0,  2 2

u
n c

 


, v = 0.

Sol. We have  r  = (u cos v, u sin v, cv)

    1 2cos ,sin ,0 , sin , cos ,r v v r u v u v c  
 

  2 2 2 2
1 1 2 21, 0,E r F r r G r u c          

2 2 2 2H EG F u c    .....(1)
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Therefore E1 = 0, E2 = 0, F1 = 0 = F2 ;  G1 = 2u, G2 = 0.

Again l  1 1 22

1 2 0
2

GE FF FF
H

   

   1 2 12

1 2 0
2

EF EE FE
H

   

m  2 12

1 0
2

GE FG
H

   ,   1 22 2 2

1
2

uEF FE
H u c

  


n    2 1 22 2 2

1 12
2 2

GF GG FG
H u c

   


 [– (u2 + c2)2u] = – u,

  2 2 12

1 2 0
2

EG FF EG
H

     

Ex.4. From the Gauss’s characteristic equation deduce that, when the parametric curves
are orthogonal

1 1 1G E
u u v vEG E G

       
                 

   .

Sol. In case parametric curves are orthogonal, we have

F = 0,       F1 = 0 .....(1)

Hence equation (3) of §10.3 corollary 1, we have

2 1 21 1
2 2

G ELN M H H
u H v H
               

.....(2)

But H2 = EG – F2 = EG.

 
2

2

LN M
H




1 21
2

G E
H u H v H
                

1 21 1 1
2 2

G E
H u vEG EG
     

          

1 1 1G E
u u v vEG E G

                  
. .....(3)

Ex.5.  Show that the surface whose metric is given by
ds2 = du2 + D2 dv2,

l = 0, m = 0, n = – DD1,    = 0, 1 2, .D D
D D
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Sol. Comparing ds2 = du2 + D2 dv2 with

ds2 = E du2 + 2F dudv + G dv2 .....(1)

Here, we have E = 1,   F = 0,   G = D2,   H2 = EG – F2 = D2

 E1 = 0,    G1 = 2DD1;    E2 = 0, G2 = 2DD1

2 1 1 2 20, ,
2 2 2 2
E G D G D
G G D G D

         .....(2)

Ex.6. For a surface given by ds2 =  (du2 + dv2) prove that

1 2 1 2 1 2, , , , ,
2 2 2 2 2 2

l m n     
         

     

and further show that Mainardi-Codazzi relations become

   2 1
2 1 1 2

1 1,
2 2

L M L N N M L N 
     

 

Also show that the Gauss characteristics equation then

   2 2 2
1 2 11 22

1 1 .
2 2

LN M         

Sol. Comparing ds2 =  (du2 + dv2) with

ds2 = E du2 + 2F dudv + G dv2

E = ,   F = 0,    G = .

As  = 0, the Gauss’s coefficient reduces to

1 2 1 2 1 21 1 1 1 1 1, , , , , .
2 2 2 2 2 2

l m n     
          

     

Hence, the Mainardi-Codazzi relations become

 2 1 1 2 2
2 1

1 1 1 1 1
2 2 2 2 2

L M L M N L N     
            

and  1 2 2 1 1
2 1

1 1 1 1 1 .
2 2 2 2 2

M N L M N L N     
             

Ex.7. Show that when the lines of curvature are chosen as parametric curves, the Codazzi
relations expressed in terms of E, G, L, N and their derivatives are

2 2 1 1
1 1, .
2 2

L N L NL E N G
E G E G

         
   

Show also that the equation of Gauss may be written as

1 1 0.LN G E
u u v vEG G G
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Sol. The Codazzi equations are
L2 – M1 = mL – (l – ) M – N .....(1)
M2 – N1 = nL – (m – ) M – N .....(2)

Since lines of curvature are parametric curves, we have F = 0, M = 0.
Also then the Gaussian coefficients are

2 2 2 2 1 2, , , , , .
2 2 2 2 2 2
E E G E G Gl m n
E E E G G G

          

Thus, the equation (1) reduces to

2 2
2 2

1
2 2 2
E E L NL L N E
E G E G

     
 

and equation (2) reduces to

1 1
1 1 1

1or .
2 2 2
G G L NN L N N G
E G E G

       
 

For the second part, from Ex.4 above, we have

1 1 1 .G E
u u v vLG E G

       
                 

.....(3)

In this case
2

2 .LN M LN
EG F EG


  


 0F M Q

Putting this value of k in (3), we get the required result.

10.7 Fundamental existence theorem for surfaces

Statement : When the coefficients of the two quadratic differential forms
E du2 + 2 F dvdu + G dv2    and   L du2 + 2M dudv + N dv2

are such that the first form is positive definite and the six coefficients satisfy the Gauss’ characteristic
equation and the Mainardi-Codazzi equations, then there exists a surface, uniquely determined to within
a Euclidean displacement, for which these forms are respectively the first and second fundamental forms.

Proof. The proofs of this theorem depends on the existence and uniqueness theorems of the first
order differential equations which can be obtained from the two given fundamental quadratic differential
forms.

It is easy, if we choose the principal directions and the normal N̂  to the surface ( , )r r u v
r r  in

the curvilinear coordinates, as the coordinate axes. In this case F = 0 = M and quadratic differential

forms reduces to

E du2 + G dv2     and   L du2 + N dv2 .....(10.7.1)

Let ˆˆ ( , ), ( , )u v u v   denote the unit tangent vectors along the parametric curves v = constant

(u-curve) and u = constant (v-curve), respectively.
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Then 1 2
1 1ˆˆ , .r r
E G

    .....(10.7.2)

In this statement of the theorem, we have given that the fundamental coefficients E, F, G and L,

M, N satisfy Gauss’s characteristics equation and the Mainardi-Codazzi equations and the Weingarten

equations which are Gauss’s equations

11 1 2
1 ˆE E Er r r LN

u G vE
 

  
 

r r r

12 1 2
1 1E Gr r r

v uE G
 

 
 

r r r

22 1 2
1 ˆG G Gr r r NN

E u vG
 

   
 

r r r
.....(10.7.3)

Weingarten equations

1 1 2 2, .L NN r N r
E G

   
r r

.....(10.7.4)

Differentiating (10.7.2) partially with respect to u and v. Using (10.7.3) and (10.7.4), we find

ˆ ˆ1 1ˆ ˆˆ , ;E L GN
u v v uG E E
   

    
   

ˆ ˆ1 1 ˆˆ ˆ, ;E G N N
u v v uG E G
   

    
   

ˆ ˆ ˆˆ and .N L N N
u vE G

 
     

 
.....(10.7.5)

Thus six first order partial differential equations for the triad       ˆ ˆˆ , , , , ,u v u v N u v   are

necessary conditions to be satisfied so that their exists a surface  ,r r u v
r r

 exists with 2
1 ,r E
r

2
1 2 20,r r r G  
r r r  and the equations (10.7.5) admits at least one solution ˆ ˆˆ( , , )N   which assumes the

prescribed values u0, v0 for u and v in a given interval such that  u(0) = u0,  v(0) = v0.

Now,  if there are two surfaces S, S* with the same prescribed fundamental forms then an Eu-

clidean displacement we can arrange the triad  ˆ ˆˆ , , N   and ˆ ˆˆ( *, *, *)N   to coincide when u = u0,

v = v0 and therefore they all coincide for all values of u and v.

Hence, the surfaces S and S* differ by atmost a Euclidean motion. This proves the uniqueness

of the solutions limited within the Euclidean displacement.
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10.8 Parallel surfaces

A surface S is said to be parallel to another surface S* if the points of S* are at a constant

distance along the normal to S.

Clearly if ( )P rr  is any point on S, then corresponding point Q on S* is given by

ˆ*r r cN 
r r .....(10.8.1)

where c is a scalar constant whose magnitude represents the distance along normal i.e.,

.PQ c
uuur

Fundamental magnitudes of S* :

Clearly on differentiating (10.8.1) with respect to u and v successively we can get fundamental

magnitudes provided we know 1 2, .N N
r r

 1 2,N N
r r

 are given by Weingarten formula.

As a particular case if lines of curvature are parametric curves i.e., F = 0 = M, the Weingarten

formulae reduces to
2

1 1, when 0EGN GLr H EG F M      
r r

Q .....(10.8.2)

Writing , ,a b
L N
E G
     we shall have fundamental magnitudes E*, F*, G*, L*, M*, N* as

   2 2* 1 , * 0, * 1a bE E c F G G c      

   2* 1 , * 0, * 1a bL c L M N c        

Also  2* 1 2 .H H c c     .....(10.8.3)

It at once follows that curves on S* corresponding to lines of curvature of S are also lines of

curvature on S*.

10.9 Gaussian and mean curvature for the parallel surfaces

We have *
* * *2

*2

L N M
H




   
   2 22

1 1 0
1 1

a b

a b

LN c c
H c c

    


   

   1 1a bc c



   

2 2

0.
1 2

LN
c c H
          

Q .....(10.9.1)

Remark : In the above proof, we have not taken into account the case when 1 1or .
a b

c   
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This happens in case parallel surfaces are spheres of radii 2B concentric with S. Then parallel

surfaces degenerate into points.

Thus first part of the Bonnet’s theorem can be modified into the following :

“For every surface with constant positive Gaussian curvature k there exists at least one (non-

singular) parallel surface with constant mean curvature.

10.10 Bonnet’s theorem on parallel surfaces

For every surface with constant positive Gaussian curvature B–2, in general, there are associated

two surfaces of constant mean curvatures ( 2B)–1, which are parallel to the surface S and distant  B
from it, and for every surface S with constant mean curvature (2B)–1 there is a parallel surface of con-

stant Gaussian curvature B–2 distant B from it.

Proof. Here = B–2    and   c =  B.

 
* * * *

* *

1 1
2 2 2

a b L N
E G

     
     

  

2

1 , fromabove
2 1 2

c
c c

   
       

 
   

1
11 2

2 1
B

B
B


 

   
  

Conversely, using  = (2B)–1,   c = – B,  we have

*
 

* * *2

*2 22
,

1 2
L N M LN

H Hc c
            

Q

 1 21 2(2 )B B B




   

2
2

1 (constant)B
B

  . .....(10.10.2)

Hence proved.

Remark : In the above proof also, we have not taken into account the case when

1 1or .
a b

c   
 

10.11 Self-learning exercises

1. Write Gauss’s characteristic equation.

2. What are the Weingarten formulae ?
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3. Define parallel surfaces.

4. Write Mainardi-Codazzi equations.

5. State Bonnets theorem on parallel surfaces.

10.12 Summary

In this unit we have derived. Gauss’s formulae in the form of partial differential equations and

Gauss’s characteristic equation. We have also studied the Weingarten formula and Mainardi-Codazzi

equations. Fundamental existence theorem for parallel surfaces has also been studied in this unit. For

parallel surfaces Bonnet’s theorem has also been discussed. Some solved question on above theorems

have been given in the exercises.

10.13 Answers to self-learning exercises

1. § 10.3

2. § 10.4

3. § 10.8

4. § 10.5

5. § 10.10

10.14 Exercises

1. Obtain the fundamental equation of surface theory.

2. Obtain the equation of Weingarten and use them to establish Mainardi-Codazzi equations.

3. Prove that the Gaussian curvature at a point is expressible in terms of the fundamental magni-

tudes of the first order and their derivatives of the first two orders.

4. Prove the Gauss characteristic equation and deduces that, when parametric curves are ortho-

gonal

   1 1 1G E
u u v vEG E G

                   
.
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11.0 Objective

Tensor calculus is the generalisation of the differential geometry of Gauss and Riemann. Einstien

used it as a most suitable tool for the study of his general theory of relativity. The reason behind it is that

a physicist wants to formulate the laws of physics which remain same (i.e. invariant) when we go from

one frame of reference to another. The objective of this unit is to define the tensorial quantities and their

properties. We also study the algebra of tensorial quantities in this unit.

11.1 Introduction

The tensor formulation became popular when Einstien (1879-1955) used it as an excellent tool

for the presentation of his general theory of relativity. It has now become an excellent tool in the study of

many branches of theoretical physics, such as mechanics, Fluid Mechanics, Elasticity, Plasticity, Electro-

magnetic theory etc.

Tensor analysis is the generalization of vector calculus. It handles the answers to the questions

such as :

(i) are all basic physical laws expressible in terms of scalars and vectors ?

(ii) which transformation is suitable for the invariant character of physical laws ?

(iii) how a certain physical law be written if wider class of transformation is introduced ?

It is a basic principal of tensor analysis that we should not tie ourselves down to any our system

of coordinates, we seek statements which are true, not for one system of coordinates but for all. The

transformation laws for the components of an entity from one coordinate system to another are the basic

criteria to determine the tensor character of that entity. In other words :

“A tensor is an entity whose components, when are being transformed from one coordi-

nate system to another, obey certain basic transformation laws.” The study of these laws is the

prime aim of this unit.

11.2 Space of N-dimensions

We know that in the three dimensional rectangular space, the coordinates of a point are given by

triplets in the form (x, y, z) where x, y, z are three numbers. But this representation is not suitable if we

want to generalizes the concept of space from three dimension to N-dimensions. That is why it is

advisable to use a triplet (x1, x2, x3) in place of (x, y, z) where 1, 2, 3 are the superscripts not power

indices. In general, the coordinate of a point in N-dimensional space are given by the N-tuples of the

form (x1, x2, x3, ... xN) where 1, 2, ... N are not powers of x but are the superscripts of x and N  2.

This type of N-dimension space is denoted by VN.
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11.3 Coordinate transformation

Consider two different frames of references of N-dimensions. Let the coordinates of a point with

respect to these frames be respectively (x1, x2, ... xN) and  1 2, ,... .Nx x x  Suppose these coordinates

of the two systems have the following independent relations :

 1 2, ,...i i Nx x x x x     (i = 1, 2,..., N) .....(11.3.1)

where ix  are single valued, continuous functions and have continuous derivatives for certain ranges of

x1, x2, ... xN. Under these conditions equations (11.3.1) can be solved for xi as functions of ix given by

   1 2, ,... 1,2,3,... i i Nx x x x x i N .....(11.3.2)

The relations given by (11.3.1) and (11.3.2) define a transformation of coordinates from one

frame of reference to another.

Differentiating (11.3.1), we get

idx 1 2
1 2 ...  

   
  

i i i
N

N
x x xdx dx dx
x x x

 
1







iN
j

j
j

x dx
x

. .....(11.3.3)

11.4 Summation convention

We know that the expression

a1x1 + a2x2 + a3x3 + ... + aNxN .....(11.4.1)

is represented by 
1

.


N

i
i

i
a x

According to summation convention we drop sigma sign and merely write the above sum

as aix
i.

(a) Thus by summation convention we mean that if a small latin index (superscripts or subscripts)

is repeated in a term then it is understood that we are to sum over this index from 1 to N unless other-

wise stated. This summation convention was first used by Einstien.
(b) Indicial (or Range) convention : When a small latin index is used either as superscript or

subscripts occurs unrepeated in a term, it takes all values from 1 to N unless otherwise stated, N being
the number of dimensions of the space.

The unrepeated latin index used in a term is called free or real index and takes all values from 1
to N. For example ‘i’ is the free index in the following expressions :

 1 2 3, , ,... ,i i Nx x x x x x .....(11.4.2)

and  1 2 3, , ,... ,i i Nx x x x x x .....(11.4.3)

(c) Dummy index : Any index, which is repeated in a given term so that the summation con-

vention applies, is called a dummy index or dummy suffix. This is also called umbral or dextral index.
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11.5 Kronecker delta

The Kronecker delta which is denoted by ,i
j  is defined as :

1 ,
.

0 ,


   
i
j

if i j
if i j

.....(11.5.1)

Thus, we have 1 2 3
1 2 3 ... 1        N

N    (no summation over N)
1 2
2 3 ... 0     ......(11.5.2)

and 1 2
1 2 ... 1 1 ... 1 .           i N

i N N ......(11.5.3)

An important properly of Kronecker delta is that

,i j i
j A A  .....(11.5.4)

since in the L.H.S. summation is carried over j.

If may also be noted that ,
i

i
jj

x
x


 


 since the coordinates x1, x2,... xN are independent.

Similarly .
 



i
i
jj

x
x

Ex.1. Use Einstien is summation convention to write the following :

(i) 1 2
1 2 ...  k k k N

NA B A B A B

(ii)      2 22 1 2 2
11 22 ...    N

NNds g dx g dx dx g dx

1 2 2 1 1 1
12 21 1 1...     N

N Ng dx dx g dx dx g dx g dx dx

Sol. (i) 1 2
1 2 ...   k k k N k i

N iA B A B A B A B

(ii) 2 1 2

1 1
.

 

 
N N

ij
i j

ds g dx dx

Ex.2. Show that

(i) i j i
j kk    (ii)

k i
k
ji j

x x
x x

 
  

 
Sol. (i)  i j

j k
1 2 3

1 2 3 ... ...i i i i k i N
k k k k k N k                

0 0 ... (1) 0 ... 0      i
k  [no summation over k]

. i
k

(ii)
k i

i j
x x
x x

 
 

1 2

1 2 ...
k k k N

j j N j
x x x x x x
x x x x x x

     
   
     





k

j
x
x

 [By chain rule]

. k
j



258

11.6 Contravariant vectors

 If a set of N quantities Ai in a coordinate system xi are transformed to the set of another N

quantities jA  in the coordinate system jx  by the equations





p
p q

q
xA A
x

then Ai are said to be components of a contravariant vector or contravariant tensor of the first order or

first rank.

Note : It is a convention that contravariant tensors are denoted by superscripts, with the

exception of the coordinates xi, which may behave as contravariant vector in special conditions (see

Theorem 2)

Theorem 1. The law of transformation of a contravariant vector is transitive.
Proof. Let Ai be the components of a contravariant vector in the coordinate system xi and they

are related to the components jA  of same vector in the coordinate system ,jx  then we have by the

law of transformation





j
j i

i
xA A
x

.....(11.6.1)

Now, a further change of coordinates from ...... to x*k, the new components A*k by contravariant

law is given by
*

*
k

k j
j

xA A
x



 .....(11.6.2)

Combining (11.6.1) and (11.6.2), we get

A*k
*k j

i
j i

x x A
x x

 
 
 

*k
i

i
x A
x



 .....(11.6.3)

This shows that the law of transformation of contravariant vector is transitive.

Theorem 2. The coordinates xi behave like a contravariant vector with respect to linear
transformation of the type ,j i i

jx a x  where j
ia  are a set of N2 constants.

Proof. We have  j j i
ix a x .....(11.6.4)

Differentiating, we get .
j

j
ii

x a
x





.....(11.6.5)

Combining (11.6.4) and (11.6.5), we get

,
j

j i
i

xx x
x


 
 .....(11.6.6)

which shows that xi behaves like a contravariant vector.
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Illustrative examples

Ex.3. If a vector has components , ,   
 

   
dx dyx y x y
dt dt  in rectangular cartesian coordi-

nates then ,r are its components in polar coordinates.
Sol. Here, the space is two dimensional.

Let for rectangular cartesian coordinates x1 = x, x2 = y for polar coordinates

 1 2,  x r x

where 2 2 2 1, tan   
yx y r
x

.

 ,   xx yy rr .....(1)

 2 2 2.xx yy x y rr r          .....(2)

 
2

2 2

2

1 .
1

xy yx r xy yx
y x
x


    



     
.....(3)

Using (1) and (3)

  2 2 4 2 2 2 2 2r r r x y x y      

 2 2 2 2 2.     r r x y .....(4)

Using contravariant law





j
j i

i
xA A
x

1 2
1 2 . 

 
 

j jx xA A
x x

.....(5)

 1A
1 1

1 2
1 2

x x r rA A x y
x yx x

   
    

  
 

.   


  
x y rrx y r
r r r .....(6)

2A
2 2

1 2
1 2

 
 
 
x xA A
x x

2 2
 

    
 

   
y xx y x y

x y r r

2 .
  

  xy yx
r

.....(7)

Ex.4. A vector has components , x y  in rectangular cartesian coordinates then its respec-

tive components in polar coordinates are

2 2, .       r r r
r

Sol. Assuming 1 2,  A x A y .....(1)
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We find 1A
r rx y
x y
 

 
 
 

2 2  
 

  xx yy rr r
r r

 2.  rr r .....(2)

2A x y
x y
 

 
 
 

2

2 2
2  

 
   xy yx r r r

r r

2 .   r
r .....(3)

Note : It is noted form above examples that the velocity and acceleration components are

contravariant vectors.

11.7 Covariant vectors

If a set of N quantities Ai in a coordinate system xi are transformed to a set of another N quanti-

ties jA  in the coordinate system jx  by the equations

,



q

p qp
xA A
x

.....(11.7.1)

then Ai are said to be the components of a covariant vector or covariant tensor of first order or first

rank.

Note : The components of covariant vectors are denoted by subscript as a convention.

Theorem 3. The law of transformation for a covariant vector is transitive.

Proof. Let the components of a covariant vector in the coordinate system xi be Ai and compo-

nents of same vector in coordinate system be ,j
jx A  then by covariant law of transformation.

.



i

j ij
xA A
x

.....(11.7.2)

Now for the further change of coordinates from system jx  to x*k  the new components *
kA

by covariant law are given by

*
* .




j

k jk
xA A
x

.....(11.7.3)

Combining (11.7.2) and (11.7.3) *
kA

*
 

 
 

j i

ik j
x x A
x x

* ,



i

ik
x A
x

.....(11.7.4)

which shows that the law of transformation of covariant vectors is transitive.
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Theorem 4. These exists no distinction between contravariant and covariant vectors when
we restrict ourselves to coordinate transformations of the type

, i i m i
mx a x b

where bi are N constants which do not necessarily form the components of a contravariant vec-
tor and i

ma  are N2 constants which do not necessarily form the components of a tensor such that

.i i r
r m ma a  

Proof.   We have . i i m i
mx a x b ....(11.7.5)

Multiplying by i
ra  and summing over index i, we get

 i i i i m i i
r r m ra x a a x a b .....(11.7.6)

Using given relation , i i r
r m ma a

we have i i
ra x    r m i i

m rx a b  . r i i
rx a b .....(11.7.7)

Now, replacing the free index r by m on both sides, we obtain

. m i i i i
m mx a x a b .....(11.7.8)

From (11.7.5) and (11.7.6), it follows that

, 
 

 

i m
i
mm i

x xa
x x

which sows that transformation laws for contravariant and covariant vectors respectively, define the same

type of entity in the present ease.

11.8 Invariant

A function I of N coordinates xi [I = I (xi)] is called an in variant or a scalar or tensor of zero

order with respect to coordinate transformations if ,I I  where    
jI I I x  is the value of I in

new coordinate system .jx
Ex.5. A covariant tensor of first order has components xy, 2y – z2, xz in rectangular coor-

dinates. Determine its covariant components in spherical polar coordinates.

Sol. Here we have three dimensional space

x1 = x,    x2 = y,    x3 = z,
1 2 3, , ,x r x x    

where x = r sin  cos ,     y = r sin  sin ,     z = r cos . .....(1)

Taking A1 = xy,    A2 = 2y – z2,    A3 = xz. .....(2)

Using covariant transformation law

iA
j

ji
x A
x





1 2 3

1 2 3.i i i
x x xA A A
x x x
  

  
  

.....(3)
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We find that 1A
1 2 3

1 2 31 1 1
x x xA A A
x x x
  

  
  

2(2 ) ( )x y zxy y z xz
r r r
  

   
  

= (sin  cos ) r2 sin2  sin  cos  + sin  sin  (2r sin  sin  – r2 cos2 )

+ cos  r2 sin  cos  cos .        ....(4)

Similarly from (3)

2A
1 2 3

1 2 32 2 2
x x xA A A
x x x
  

  
  

  2(2 ) ( )x y zxy y z xz  
   
  

= (r cos  cos ) r2 sin2  sin  cos  + (r cos  sin ) (2r sin  sin  – r2 cos2 )

– (r sin  (r2 sin  cos  cos )        .....(5)

and 3A
1 2 3

1 2 33 3 3
x x xA A A
x x x
  

  
  

= (– r sin  cos ) r2 sin2  sin  cos  + (r sin  cos ) (2r sin  sin  – r2 cos2 )

     .....(6)

11.9 Second order tensors

(a) Contravariant tensor of rank two : If a set of N2 quantities Aij in a coordinate system xi

are trans formed to another set of N2 quantities klA  in coordinate system jx  by the equations

,
k l

kl ij
i j

x xA A
x x

 

 

.....(11.9.1)

then Aij are called components of a contravariant tensor of rank two or second order.

(b) Covariant tensor of second order : If a set of N2 quantities Aij in a coordinate system xi

are transformed to another set of N2 quantities klA  in a coordinate system jx  by the relations

,
i j

kl ijk l
x xA A
x x
 


 

.....(11.9.2)

then Aij are said to be the components of a covariant tensor of rank two or second order.

(c) Mixed tensor of second order : If a set of N2 quantities i
jA  in a coordinate system xi are

transformed to another set of N2 quantities k
lA  in the coordinate system jx  by the relations

,
k j

k i
l ji l

x xA A
x x

 

 

.....(11.9.3)

then i
jA are said to be the components of a mixed tensor (contravariant rank one and covariant rank

one) of second order or second rank.
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Theorem 5. The Kronecker delta is a mixed tensor of second order whose components in
any other coordinate system again constitute the Kronecker delta.

Proof. The Kronecker delta is

1 , ,
0 , .

i
j

if i j
if i j


   

.....(11.9.4)

Let i
j be the components in coordinate system xi and corresponding components in bej k

lx 

we have
k j

i
ji l

x x
x x

 


 

k j

j l
x x
x x

 

   

k
k
ll

x
x


  
 .....(11.9.5)

 i
j behaves like a mixed tensor (contravariant rank one and covariant of rank one) of second

order.

Theorem 6. If Aij be a covariant tensor of second order and Bi, Ci are contravariant

vectors, prove that Aij B
i Ci is an invariant.

Proof. We have Aij a covariant tensor of rank two

 ,
i j

pq ijp q
x xA A
x x
 


 

.....(11.9.6)

and Bi, Ci are  contravariant vectors

,
p

p k
k

xB B
x





.....(11.9.7)

,
q

q l
l

xC B
x





.....(11.9.8)

Multiplying equations (11.9.6), (11.9.7) and (11.9.8), we get

p q
pqA B C

i j p q
k l

ijp q k l
x x x x A B C
x x x x
   


   

i j k l
k ijl A B C  

= Aij B
k Cl .....(11.9.9)

which shows invariant character of Aij B
i Ci.

11.10 Higher order tensors

If a set of Nm+n quantities 1 2
1 2

.....
...

m
n

i i i
j j jA  in a coordinate system xi are transformed to another set of

Nm+n quantities 1 2
1 2

...
.....

m
n

p p p
q q qA  in, the coordinate system jx  by the relations

1 2 1 2
1 2 1 2

1 2 1 21 2 1 2

... ...
..... ...... ... ,

m n
m m
n nm n

p jp p j j
p p p i i i

q q q j j ji i i q q q
x x x x x xA A
x x x xx x

     

     .....(11.10.1)

then 1 2
1 2

.....
...

m
n

i i i
j j jA  are said to be the components of a mixed tensor of (m + n)th order contravariant of mth

order and covariant of nth order.
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Theorem 7. The transformation of the tensors form a group i.e. the law of transformation
of tensors possesses transitive property.

Sol. Without loss of generality, we can consider a mixed tensor i
jA  in a coordinate system xi

and consider the transformation of coordinates from xi to jx  and then x*l. Let the corresponding

components of the tensor be *and ,k p
l qA A  then

,
k j

k i
l ji l

x xA A
x x

 

 

.....(11.10.2)

and
*

*
* .

p l
p r

q lk q
x xA A
x x

 

 

.....(11.10.3)

Combining (11.10.2) and (11.10.3), we get

* p
qA

*

*

p k l j
i
jk i q l

x x x x A
x x x x

   

   

 
*

* ,
p j

i
ji q

x x A
x x

 


 
.....(11.10.4)

which shows that the transformation of tensors possesses transitive property i.e. transformation of ten-

sors form a group.

11.11 Zero tensor

A tensor whose components relatively to every coordinate system are all zero is known as zero

tensor.

11.12 Symmetric tensor

A tensor is called symmetric with respect to two contravariant or two covariant in dices

if its components remain unaltered upon interchange of the indices.
e.g. the tensor pqr

stA  is said to be symmetric in p and q if

,pqr qpr
st stA A .....( 11.12.1)

and it is said to be symmetric in s and t if

.pqr pqr
st tsA A .....(11.12.2)

Theorem 8. A symmetric tensor of the second order has atmost  1
.

2
N N   different

components in VN.
Sol. Let Aij be a symmetric tensor of order two. The total number of its components in an array,

in a VN

A11 A12 ........... A1N

A21 A22 ........... A2N

...............................

AN1 AN2 ......... ANN, .....(11.12.3)
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are N2, out of which all the N diagonal terms will  be different and the rest (N2 – N) will  be equal in

pairs due to symmetric property. The number of such pairs will be 
 2

.
2

N N
 Hence the total number

of independent components
2

2
N NN 

 

 1 1 .
2

N N  .....(11.12.4)

Theorem 9. If a tensor is symmetric with respect to two contravariant indices (or covari-
ant indices) in any coordinate system it remains symmetric with respect to these two indices in

any other coordinate system.
Proof. Due to involvement of only two indices in symmetric property, there in no loss of gener-

ality if we take contravariant tensor viz. Aij = Aji, it is symmetric in i, j.

We have pqA .
p q

ij
i j

x x A
x x

 

 

p q
ji

i j
x x A
x x

 

 

[due to symmetry]

q p
ji

j i
x x A
x x
 


 

.qpA
Hence the proposition.

11.13 Skew symmetric tensor

A tensor is called skew symmetric with respect to two contravariant or two covariant

indices if its components change sign upon interchange of the indices. e.g. ijk jik
pq pqA A   is skew

symmetric in i and j and if
ijk ijk
pq qpA A 

is said to be skew symmetric in p and q.
If a tensor is skew symmetric with respect to any two contravariant indices and also any two

covariant indices, then it is called skew-symmetric tensor.

Notes :
(i) The property of skew symmetry (like that of symmetry) in also independent  of the choice

of the coordinate system.

(ii) Skew-symmetry, like symmetry cannot be defined with respect to the indices of which one

denotes contravariance and the other covariance.
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(iii) A skew-symmetric tensor Aij of second order has at most 
 1

2
N N 

 different arithmeti-

cal components, as all the N diagonal terms Aii (no summation) are zero in this case.

11.14 Algebraic operations with tensors

(i) Addition : The sum of two or more tensors of the same rank and same type is a tensor of

same rank and same type.

Let ,
i q

i p
j qp j

x xA A
x x
 


 

.....(11.14.1)

and .
i q

i p
j qp j

x xB B
x x
 


 

.....(11.14.2)

Adding (11.14.1) and (11.14.2) we get

 i i
j jA B   .

i q
p p
q qp j

x x A B
x x
 

 
 

.....(11.14.3)

This shows that p p p
q q qA B C   (say) is a tensor of same rank and type.

Remark : It can easily be verified that the addition of tensors is commutative and associative.

(ii) Subtraction : The difference of two tensors of the same rank and same type is also a tensor

of the same rank and same type.

It immediately follows from above equations (11.14.1) and (11.14.2) that p p p
q q qA B D   is also a

tensor.

(iii) Outer multiplication : The product of two tensors is a tensor whose rank is the sum of the

ranks of given tensors.

This process involving ordinary multiplication of the components of the tensor is called open prod-

uct or outer product of the two tensors, for example : the outer product of a tensor ij
lmnA  by a tensor

k
pqB is a tensor ijk

lmnpqC  is a mixed tensor of rank 8, contravariant of rank 3 and covariant of rank 5.

Notes :

(i) The converse of above product rule is not always true i.e. not every tensor can be written as

a product of two tensors of lower ranks, for this, the reason is that the division of tensors is

not always possible.

(ii) The division, in usual sense, of one tensor by another is not defined.

Theorem 10. Outer multiplication of tensors is commutative and associative.

Proof. Commutative law : Let andij p
qlA B  be two tensors,

then hk
mA ,

h k l
ij
li j m

x x x A
x x x

  

  

.....(11.14.4)

r
sB .

r q
p
qp s

x x B
x x

 

 

.....(11.14.5)
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Multiplying (11.14.4) and (11.14.5), we get

hk r
m sA B .

h k l r q
ij p

qli j m p s
x x x x xA B
x x x x x

    
  
    

. .
h k l r q

ij p
qli j m p s

x x x x x A B
x x x x x

     
        

.....(11.14.6)

Now multiplying (11.14.5) and (11.14.4)

r hk
s mB A .

r q h k l
p ij

q lp s i j m
x x x x xB A
x x x x x
    

  
    

.
h k l r q

p ij
q li j m p s

x x x x x B A
x x x x x

     
        

.....(11.14.7)

Equations (11.14.6) and (11.14.7) show that the expression within brackets in the R.H.S. are

same therefore we can say

.ij p p ij
q ql lA B B A .....(11.14.8)

Associative law : Here we are to prove that

   .ij p k ij p k
q m q ml lA B C A B C

Proceed as usual.

(iv) Contraction : If one contravariant and one covariant index of tensor (mixed tensor) are set

equal, the result indicates that a summation over the equal indices (dummy indices) is to be taken ac-

cording to the summation convention. This resulting sum is a tensor of rank two less than that of the

original tensor. The process is called contraction.

Consider a tensor ij
pqrA  of rank five. If we put j = r, we get ir

pqrA  a tensor of rank 3 obtained

by contracting .ij
pqrA

kl
stuA .

k l p q r
ij
pqri j s t u

x x x x x A
x x x x x

    
 
    

.....(11.14.9)

Putting   j = r kl
stuA

k l p q r
ir
pqri r s t u

x x x x x A
x x x x x

    
 
    

k p q
l ir
u pqri s t

x x x A
x x x

  
  
  

.....(11.14.10)

 ku
stuA

k p q
ir
pqri s t

x x x A
x x x

  
 
  

 k
stA

k p q
i
pqi s t

x x x A
x x x

  
 
  

.....(11.14.11)

This is a law of transformation of a tensor of rank 3.
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Thus after contraction we get a tensor of rank 3. Contravariant rank (2 – 1) and covariant rank

(3 – 1).

Notes :
(i) We never contracts the indices of same type as the resulting sum is not necessarily a tensor.

(ii) The process of contraction reduces the order by two and may be repeatedly used, if so

desired, to contract new tensors, whose order will always be non-negative.

(v) Inner multiplication : The process of outer multiplication, followed by a contraction, we

obtain a new tensor called inner product of the given tensor. The process is called inner multiplication.

For example : The outer product of and is .ij p ij p
q ql lA B A B  Putting p = l, we get the inner product

ij l ij
q qlA B C .

Again if we put p = l, j = q, we have another inner product iq l i
qlA B D .

Note : It can easily be verified that inner multiplication of tensors is commutative and associa-

tive.

11.15 Illustrative examples

Ex.5. If  = aij A
i Aj, then we can always write  = bij A

i Aj where bij is symmetric.
Sol.  = aij A

i Aj. .....(1)

On interchanging the dummy indices

 = aji A
j Ai. .....(2)

Adding (1) and (2), we get 2 = (aij + aji)A
i Aj

or  = bij A
i Aj, .....(3)

where bij  1 ,
2 ij jia a 

which is symmetric, i.e. bij = bji.

Ex.6.  If Ars is skew-symmetric and Brs is symmetric, prove that Ars Brs = 0

Sol Given that Ars = – Asr and Brs = Bsr on changing the dummy indices in Ars Brs, we get

Ars Brs = Asr Bsr = – Ars Brs

or 2Ars Brs = 0       Ars Brs = 0.

Ex.7.  If aij is a symmetric covariant tensor and bi a covariant vector which satisfy the

relation  aij bk + ajk bi + aki bj = 0, prove that either

aij = 0      or    bi = 0.

Sol. Let aij bk = Aijk , .....(1)

then Aijk is a third order covariant tensor which is symmetric with respect to the pair of indices i and  j
due to symmetric property of aij. Also replacing the indices i, j and k by i , k and i respectively on both

sides, we find

aji bi = Ajki, .....(2)
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is symmetric with respect to j and k and similarly

aki bj = Akij, .....(3)

is symmetric with respect to k and i.
Hence aijk is a symmetric tensor.

Adding (1), (2) and (3), we get

Aijk + Ajki + Akij = 0

 3Aijk = 0

 aij bk = 0

 aij = 0

or bk = 0    i.e.    bi = 0. .....(4)

Ex.8. If uij  0 are the components of a tensor of the type (0, 2) and if the equation
fuij + guji = 0.

holds, then prove that either f = g and uij is skew symmetric or f = – g and uij is symmetric.

Sol. Given that fuij + guji = 0. .....(1)

Changing the free indices, we may write it as

fuji + guij = 0. .....(2)

Adding (1) and (2), we get (f + g) (uij + uji) = 0. .....(3)

 (i) either uij + uji = 0 i.e. uij is skew symmetric, and then from (1) it follows that f = g.

(ii) or f = – g and then from (1) it follows that uij is symmetric.

11.16 Quotient law of tensors

In the study of tensor analysis some times it becomes necessary that whether a given entity is a

tensor or not. Theoretically we may say that if components of an entity obey tensor transformation laws,

then it is a tensor otherwise not. However in practice it is troublesome and a simple test is provided by a

law known as Quotient law, which is as follows :

Theorem 11. An entity whose inner product with an arbitrary tensor is a tensor, is itself a

tensor.
Proof. Let A (i, j, k) be given entity in a coordinate system xi, and ij

mB  be an arbitrary tensor

whose inner product with A (i, j, k) is a tensor Cmk i.e.

 , , .ij
m mkA i j k B C .....(11.16.1)

We have to show that A (i, j, k) is a tensor.

In the coordinate system ,ix  we have

 , , .pq
n nrA p q r B C .....(11.16.2)

But we have ,
p q m

pq ij
n mi j n

x x xB B
x x x

  

   .....(11.16.3)
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.
m k

nr mkn r
x xC C
x x
 


 

.....(11.16.4)

Using (11.16.3) and (11.16.4) in (11.16.2), we get

 , ,
p q m

ij
mi j n

x x xA p q r B
x x x

  
  

m k

mkn r
x x C
x x
 


 

 , , .
m k

ij
mn r

x x A i j k B
x x
 


 

  [using (11.16.1)]

    , , , , 0
m p q k

ij
mn i j r

x x x xA p q r A i j k B
x x x x

    
  

    

On inner multiplication by 
n

s
x
x



   , , , , 0
p q k

m ij
s mi j r

x x xA p q r A i j k B
x x x

   
   

   

    , , , , 0
p q k

ij
si j r

x x xA p q r A i j k B
x x x

   
  

   
.....(11.16.5)

Form above equation we cannot jump to the conclusion that the expression within bracket van-

ishes. Since here i and j are dummy indices which imply summation and it is the sum which is zero.

However since ij
sB  is an arbitrary tensor we can arrange that only one of its components is non-zero.

Now each component of ij
sB  may be chosen in turn as that one which does not vanish. Therefore the

expression within brackets is identically zero.

Hence    , , , , 0.
p q k

i j r
x x xA p q r A i j k
x x x

  
 

  
.....(11.16.6)

Taking inner multiplication with ,
i j

m n
x x
x x
 
 

 we get

   , , , ,
k i j

p q
m n r m n

x x xA p q r A i j k
x x x
  

  
  

    , , , , , ,
k i j

r m n
x x xA m n r A i j k
x x x
  


  

.....(11.16.7)

which shows that A (i, j, k) is a tensor of third order, and is covariant in i, j, and k and therefore may be

written as Aijk.
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11.17 Illustrative examples

Ex.9. Use Quotient law to prove that Knonecker delta is a mixed tensor of order two.
Sol. Let Aj be an arbitrary contravariant vector, then by property of Kronecker delta, we have

,i j i
j A A  .....(1)

which is again a tensor of order one (contravariant).

Hence by Quotient law i
j  is a mixed tensor of order two.

Ex.10. If Ai and Bi are arbitrary contravariant vectors and Cij A
i Bj is an invariant, show

that Cij is a covariant tensor of second order.
Sol. Given that Cij A

i Bj is invariant, we have

.i j p q
ij pqC A B C A B .....(1)

Further, Ai and Bi are contravariant vectors, therefore

,
p

p i
i

xA A
x





.....(2)

and .
q

q j
j

xB B
x





.....(3)

Substituting (2) and (3) in (1), we get

0
p q

i j
ij pq i j

x xC C A B
x x

  
     

.....(4)

   Ai, Bj are arbitrary vectors, therefore

,
p q

ij pq i j
x xC C
x x

 


 
.....(5)

which shows that Cij is a covariant tensor of rank two.

Ex.11. If Ai is an arbitrary contravariant vector and Cij A
i Aj is an invariant, show that

Cij + Cji is a covariant tensor of second order.

Sol. Proceeding as in Example 10, equation (4) in the present case may be written as

0.
p q

i j
ij pq i j

x xC C A A
x x

  
     

.....(1)

This quadratic form, vanishes for arbitrary Ai, but we can not jump to the conclusion that the

expression within bracket is zero. We remember that in the form bij A
i Aj, the coefficient of the product

A1 A2 is mixed up with the coefficient of A2 A1, it is in fact b12 + b21. Thus interchanging the dummy

indices i and j, and adding these two results, we can deduce only that

.
p q p q

ij ji pq pqi j j i
x x x xC C C C
x x x x

   
  

   
.....(2)
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On changing the dummy indices p and q in last term, equation (2) becomes

    ,
p q

ij ji pq qp i j
x xC C C C
x x

 
  

 
.....(3)

which establishes the tensor character of (Cij + Cji) as covariant tensor of the order two.

11.18 Relative tensor

If the component of a tensor 1 2
1 2

...
...

r
s

p p p
q q qA  transform according to the equation

1 1
1 2 1 2

1 2 1 2 1 1

... ...
... ... ... ...

sr
r r

s s r s

w qu u q
u u u p p p
v v v q q q p p v v

x x x x xA A
x x x x x

    


    

then 1 2
1 2

...
.....

r
s

p p p
q q qA  is called a tensor of weight w, where 

x
x

  is the Jacobian of transformation. If

w = 1, the relative tensor is called a tensor density. If w = 0, the tensor is said to  be absolut or simply

tensor.

Note : If the rank of relative tensor is one then it is called relative vector. Hence if

,
w p

p u
u

x xA A
x x

 


 

then Ap is a relative vector of weight w. If w = 1, the relative vector is called a vector density. If w = 0,

the relative vector is called absolute vector or simply vector.

11.19 Conjugate (or Reciprocal) symmetric tensor

Consider a covariant symmetric tensor Aij of rank two. Let d denotes the determinant | Aij | with

elements Aij i.e. d = | Aij | and d  0. We define Aij by

cofactor of in the determinant | |
,ij ijij A A

A
d

 .....(11.19.1)

Aij is a contravariant symmetric tensor of rank two and is said to be conjugate (or reciprocal) ten-

sor of Aij.

Theorem 12. If  (i, j) is the cofactor of Aij in the determinant d = | Aij |  0 and Aij is
defined by

 ,
,ij i j

A
d




then show that .rj r
ij iA A  

Proof. From the properties of determinants we have following two results :

(i) Aij  (i, j) = d  ,
1,ij

i j
A

d




  Aij A
ij = 1. .....(11.19.2)
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(ii) Aij  (r, j) = 0


 ,

0ij
r j

A
d


     d  0

 Aij A
rj = 0                if i  r

(i) and (ii) 
1
0

rj
ij

if i r
A A

if i r


  

i.e. .rj r
ij iA A   .....(11.19.3)

Theorem 13. Prove that Aij (defined as above in theorem 12) is a symmetric contravariant
tensor of rank two.

Proof. Given
 ,

,ij i j
A

d


 .....(11.19.4)

where  (i, j) is a cofactor of Aij in d = | Aij |.

Since Aij is covariant symmetric tensor, so  (i, j) is symmetric and hence  , iji j
A

d


  is sym-

metric.

Now it remains to prove that Aij is a tensor.

we know .rj r
ij iA A   .....(11.19.5)

We cannot apply the quotient law directly to this equation to establish the tensor character of Arj

because Aij is not arbitrary.

Now consider the arbitrary contravariant vector k. Then Bp = Akp k is an arbitrary covariant

tensor.

Multiplying this equation by Aip, we have

Aip Bi = Aip Akp k

i k
k    = i

 Aip Bp = i. .....(11.19.6)

Since Bp in arbitrary vector, hence by quotient law Aip is a contravariant tensor of rank two.

Hence Aij is a contravariant tensor of rank two.

11.20 Illustrative example

Ex.12. If Aij is a symmetric covariant tensor of rank two and Bij is formed by dividing the
cofactor of Aij in the determinant | Aij | = a (say) by | Aij | itself, show that

(i) 1ijB
a

        and          (ii) Aij B
ij = N

Sol. By theory of determinants

.ik k
ij jA B   .....(1)
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(i) ik k
ij jA B  

 1ika B 

 1 .ikB
a

 .....(2)

(ii) Again, form (1) identifying j and k, we get

.ij j
ij jA B N  

Ex.13. If Aij = 0 for i  j, show that the conjugate tensor Bij = 0 for i  j and Bii 
1
iiA

  (no

summation).

Sol. We have .ik k
ij jA B   .....(1)

(i) Let k  j, then 0 = Aij B
ik

= A1j B
1k + A2j B

2k + ... + Ajj B
jk + ... + ANj B

Nk

= 0 + 0 + ... + Ajj B
jk + ... + 0 = Ajj B

jk     (No summation over j).

But Ajj  0 (No summation over j)

Hence Bjk = 0, j  k.

i.e. Bij = 0, i  j

(ii) Let k = j, then from (1)

1 = Aij B
ij

= Aj1 Bi1 + Ai2 Bi2 + ... + Aii B
ii + ... + AiN BiN.

= 0 + 0 + ... Aii B
ii + ... + 0 = Aii B

ii (No summation over i).

But Aii  0 (No summation over i)

Hence 1ii
iiB

A
 (No summation).

11.21 Self-learning exercises

1. What do you mean by Eienstien summation convention ?

2. What are dummy and free indices ?

3. Define Kronecker delta.

4. Define contravariant and covariant vectors.

11.22 Summary

The unit starts with the introduction of tensors in the space of N dimensions. By giving the

concepts of indicial and summation convention we have defined the covariant and contravariant tensors
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of one or more ranks. Here we study the different properties of tensor entities. In algebra of tensors we

define addition, subtraction, outer multiplications, contraction and inner-multiplication. Some theorems

and examples on above concepts are given. The symmetric and skew-symmetric tensors have also been

studied in this unit. To test whether a given quantity is a tensor or not, the quotient law of tensors is

given. In the end conjugate tensors have been defined.

11.23 Answers to self-learning exercises

1. § 11.4(a)
2. § 11.4(b), (c)
3. § 11.5

4. § 11.6, § 11.7.

11.24 Exercise

1. Prove that the transformation of tensors form a group.

2. Show that a second rank covariant (or contravariant) tensor is expressible as a sum of two tensors

one of which is symmetric and other is antisymmetric.

3. Prove that the contracted tensor i
jA  is a scalar..

4. Show that the tensor equation i
j i ja      where  is an invariant and j an arbitrary tensor,,

demands that

.i i
j ja   

5. Show that the contraction of the outer product of the tensors Ap and Bq is an invariant.
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Unit 12 : Riemannian Space, Metric Tensor, Indicator,
Permutation Symbol and Permutation Tensors,
Christoffel Symbols and their Properties

Structure of the Unit

12.0 Objective

12.1 Introduction

12.2 Metric tensors and Riemannian space

12.3 Conjugate metric tensor

12.4 Indicator

12.5 Illustrative examples

12.6 Permutation symbols and tensors

12.7 Christoffel’s symbols

12.8 Properties of Christoffel symbols

12.9 Illustrative examples

12.10 Laws of transformation of Christoffel symbols

12.11 Self-learning exercises

12.12 Summary

12.13 Answers to self-learning exercises

12.14 Exercises

12.0 Objective

In this unit our objective is to generalize the concept of distance between any two neighboring

points from three dimensional space to N-dimensional Riemannian space. We introduce a particular type

of tensor, called metric tensor which has a great importance in the theory of tensor analysis. We also

consider two types of expressions due to Christoffel involving the derivatives of the components of

metric tensor of fundamental tensor gij and gij. These expressions will be called Christoffel symbols of

first and second kind.

12.1 Introduction

We know that in Euclidean space of three dimensional rectangular cartesian coordinates the

distance ds between two neighbouring points (x1, x2, x3) and (x1 + dx1, x2 + dx2, x3 + dx3) is given by

ds2 = (dx1)2 + (dx2)2 + (dx3)2 = dxi dxi, i = 1, 2, 3 .....(12.1.1)
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The distance ds is also called the line element. If we take the coordinates of points in any of the

curvilinear coordinates (e.g. cylindrical or spherical polar coordinates) such as (x*1, x*2, x*3) then xi

are functions of x*i and dxi are linear homogeneous functions of dx*i given by

*
*

i
i m

m

xdx dx
x





 (i, m = 1, 2, 3) .....(12.1.2)

when we substitute dxi from (12.1.2) in (12.1.1), we get a homogeneous quadratic function in dx*i viz.,

2 * *
* *

i i
m n

m n
x xds dx dx

x x
  
    

         (summation over i) .....(12.1.3)

which can be written as ds2 = * * *m n
mng dx dx       (m, n = 1, 2, 3) .....(12.1.4)

where *
* *

i i

mn m n
x xg

x x
 


 

     (summing over i) .....(12.1.5)

The differential expression of R.H.S. of (12.1.3) which represents ds2 is called the metric form

or fundamental form of the space under consideration.

Motivated by the above fact, the idea of distance was extended by Riemann, originator of ten-

sor calculus, to a space of N-dimensions.

12.2 Metric tensor and Riemannian space

The quadratic differential form

ds2 = gij dxi dxj, .....(12.2.1)

which expresses the distance between two neighbouring points, whose coordinates in a VN are xi and

xi + dxi, is called a Riemannian metric or line element, gij in called metric tensor or fundamental tensor.

The N-dimensional space characterised by a Riemannian metric is called a Riemannian space

and is denoted by ‘Riemannian – VN’.

Here we postulate that the line element ds is independent of coordinate system i.e. ds2 is an

invariant. We will show that gij is a symmetric covariant tensor of order two, it is called the fundamen-

tal covariant tensor or metric tensor of Riemannian space.

Theorem 1.  The fundamental tensor gij is a covariant symmetric tensor of the order two.

Proof : The line element or metric is given by

ds2 = gij dxi dxj .....(12.2.2)

Consider a coordinate transformation from the system xi to  1, 2,3, ...,ix i N  as

 1 2 3, , , ..., ,i i
Nx x x x x x

so that the metric gij dxi dxj transforms to .i j
ijg dx dx  But we have ds2 is invariant.
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 ds2 = gij dxi dxj i j
ijg dx dx .....(12.2.3)

p q
pqg dx dx

p q
i j

pq i j
x xg dx dx
x x

 


 

or 0
p q

i j
ij pq i j

x xg g dx dx
x x

  
     

.....(12.2.4)

As explained in Example 11 of Unit 11, we deduce  from (12.2.4)

that (gij + gji)  
p q

pq qp i j
x xg g
x x

 
 

 
.....(12.2.5)

which shows that (gij + gji) is covariant tensor of the second order.

Now we can write gij    1 1
2 2ij ji ij jig g g g    .....(12.2.6)

Then gij dxi dxj    1 1
2 2

i j i j
ij ji ij jig g dx dx g g dx dx    .....(12.2.7)

On interchanging the dummy indices in R.H.S., we get

gij dxi dxj    1 1
2 2

j i j i
ji ij ji ijg g dx dx g g dx dx    .....(12.2.8)

Adding (12.2.7) and (12.2.8), we get

2gij dxi dxj = (gij + gji) dxi dxj .....(12.2.9)

which show that gij is symmetric. Thus combining the two conclusions that (gij + gji) is a covariant ten-

sor of the second order and gij is symmetric, we conclude that 2gij or gij is a symmetric covariant ten-

sor of the second order.

Note : We call a N-dimensional space as Euclidean space of N-dimensions if its metric is

ds2 = (dx1)2 + (dx2)2 + (dx3)2 + ... + (dxN)2

i.e. gij = 0,   i  j    and     gii = 1      (no summation).

12.3 Conjugate metric tensor

We know that gij is a symmetric covariant tensor of the second order and g = | gij |  0, we can

define

( , )ij G i jg
g

 .....(12.3.1)

where G (i, j) is the cofactor of gij in the determinant g.

It follows from Theorem 13 of Unit 11 that gij is a symmetric contravariant tensor of the second

order and is said to be conjugate of gij i.e. conjugate metric tensor. It is also called the fundamental
contravariant tensor.
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Hence the fundamental covariant tensor gij and fundamental contravariant tensor gij, being con-

jugate, are related to each other by the equation

.ik k
ij jg g   .....(12.3.2)

12.4 Indicator

It in implied that the metric in Euclidean space is positive definite i.e. ds2 > 0.

But in the theory of relativity, the metric of the four dimensional space (space-time) is given by

ds2 = – (dx1)2 – (dx2)2 – (dx3)2 + c2 (dx4)2, .....(12.4.1)

where c is the velocity of light and x4 is the time coordinate. This metric is not positive definite. We see

that ds2 > 0 when x1, x2, x3 are constants along the curves, it is zero when, say, x2 and x3 are constants

and x1 = cx4 and negative when x4 in constant.

Thus, in general, for some displacement dxi, the form ds2 may be positive and for others it may

be zero or negative. If ds2 = 0, for dxi not all zero, i.e. the two points are not coincident the displace-

ment is called a null displacement. A curve along which the displacement gij dxi dxj is null despite of the

fact that the two points are not coincident, is called a null curve. For any displacement dxi which is not

null, we introduce an indicator e, which is + 1 or –1, so as to make ds2 always positive, i.e.

ds2 = egij dxi dxj, .....(12.4.2)

where e is called an indicator.

12.5 Illustrative examples

Ex.1.  If a metric of a V3 is given by

ds2 = 5 (dx1)2 + 3 (dx2)2 + 4 (dx3)2 – 6 (dx1) (dx2) + 4 (dx2) (dx3)

find    (i) g     and     (ii) gij.

Sol. When we compare the given metric with the metric

ds2 = gij dxi dxj (i, j = 1, 2, 3)

we find that

g11 = 5, g22 = 3, g33 = 4, g12 = g21 = –3, g23 = g32 = 2, g13 = g31 = 0. .....(1)



5 3 0
3 3 2

0 2 4
ijg

 
   
  

 g = | gij | = 4.    .....(2)

To get conjugate of gij, we find

G (1, 1) = 8, G (1, 2) = G (2, 1) = 12, G (2, 3) = G (3, 2) = – 10,

G (2, 2) = 20, G (3, 1) = G (1, 3) = – 6, G (3, 3) = 6. .....(3)
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Since 
( , ) ,ij G i jg
g

   we obtain

11 22 33 12 2132, 5, , 3
2

g g g g g     , 23 32 31 135 3, .
2 2

g g g g      .....(4)



32 3
2
53 5 .
2

3 5 3
2 2 2

ijg

  
 
   
 
  
  

.....(5)

Ex.2.  Show that the metric of a Euclidean space, referred to cylindrical coordinates is

given by

ds2 = (dr)2 + (r d)2 + (dz)2.

Determine its metric tensor and conjugate metric tensor.

Sol. We have
2 ,i j p q

ij pqds g dx dx g dx dx  .....(1)

where in rectangular coordinates

x1 = x, x2 = y, x3 = z

g12 = g21 = g13 = g31 = g23 = g32 = 0, g11 = g22 = g33 = 1, .....(2)

and in cylindrical coordinates
1 2 3, , ; cos , sin , and ?pqx r x x z x y r z z g          .....(3)

By covariant transformation law

.
i j

pq ijp q
x xg g
x x
 


 

.....(4)

Therefore 11g
1 1

i j

ij
x x g
x x
 


 

2 2 21 2 3

11 22 331 1 1
x x xg g g
x x x

       
                   

2 2 2x y z
r r r
                     

= cos2  + sin2  + 0 = 1. .....(5)

22g
2 2 2x y z                     

= r2 sin2  + r2 cos2  + 0 = r2 .....(6)
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33g
2 2 2x y z

z z z
                     

= 0 + 0 + 1 = 1 .....(7)

12 1 2

i j

ij
x xg g
x x
 


 

1 1 2 2 3 3

11 22 331 2 1 2 1 2
x x x x x xg g g
x x x x x x

              
                                  

x x y y z z
r r r
                                    

= – r cos  sin  + r sin  cos  + 0. .....(8)

Similarly 13 230g g   due to symmetric property 21 31 320, 0, 0.g g g  

Hence ds2 1 2 2 2 3 2
11 22 33( ) ( ) ( )g dx g dx g dx  

= (dr)2 + (rd)2 + (dz)2. .....(9)

The metric tensor pqg  in cylindrical coordinates is given by

2

1 0 0

0 0 .
0 0 1

pqg r
 
 

  
 
 

Clearly 2 ,pqg g r  .....(10)

and conjugate metric tensor ,pqg  which is the inverse of the matrix (10), is

2

1 0 0
10 0 .

0 0 1

pqg
r

 
 
 
 
 
 

Ex. 3.  Show that the metric of a Euclidean space, referred to spherical coordinates is

given by

ds2 = (dr)2 + (rd)2 + (r sin  d )2.

Determine its metric tensor and conjugate metric tensor.

Sol. We have ds2 = gij dxi dxj ,p q
pqg dx dx .....(1)

where in rectangular coordinates

x1 = x, x2 = y, x3 = z

g11 = g22 = g33 = 1, gij = 0, i  j .....(2)

and in spherical polar coordinates
1x 2 3, ,r x x    

x = r sin cos , y = r sin  sin  , z = r cos  .....(3)

we have to find .pqg
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By covariant law .

i j

pq ijp q
x xg g
x x
 


  .....(4)

Therefore 11 1 1

i j

ij
x xg g
x x
 


 

2 2 21 2 3

11 22 331 1 1
x x xg g g
x x x

       
                   

2 2 2x y z
r r r
                     

= sin2  cos2 + sin2  sin2  + cos2  = 1 .....(5)

22g
2 2 2x y z                     

= r2 cos2 cos2  + r2 cos2 sin2 + r2 sin2  = r2 .....(6)

33g
2 2 2x y z       

              

= r2 sin2 sin2 + r2 sin2 cos2 + 0 .....(7)

= r2 sin2 

12g
1 2

i j

ij
x x g
x x
 


 

1 1 2 2 3 3

11 22 331 1 1 2 1 2
x x x x x xg g g
x x x x x x

              
                                  

x x y y z z
r r r
                                    

= sin cos(rcos cos) + (sin sin) (rcos sin) + cos (– r sin )

= r sin cos (cos2 + sin2) – r sin  cos .....(8)

= 0.

Similarly 13 230, 0.g g  .....(9)

By the symmetric property 21 31 320 0.g g g    .....(10)

Hence 2ds 1 2 2 2 3 2
11 22 33( ) ( ) ( )g dx g dx g dx  

= (dr)2 + (rd)2 + (r sin  d )2. .....(11)

The metric tensor pqg  in spherical polar coordinates is given by

2

2

1 0 0

0 0 .

0 0 sin
pqg r

r

 
 

  
  

.....(12)

Clearly 4 2| | sin .pqg g r   .....(13)
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The conjugate metric tensor ,pqg  which is the inverse of matrix ,pqg in given by

2

2

1 0 0
10 0 .

10 0
sin

pqg
r

r

 
 
 
   
 
 
  

Ex. 4.  Show that

(i) (ghj gik – ghk gij) g
hj = (N – 1) gik

(ii) ( ) hj
hk il hl ik il ikj k l

k k kg g g g g g g
x x x
  

  
  

Sol. We have gij g
ik = .k

j .....(1)

(i) (ghj gik – ghk gij)g
hj = ghj g

hj gik – ghj ghk gij

j
ik ijkNg g 

= Ngik – gik

= (N – 1) gik.

(ii) ( ) hj
hk il hl ikj

k g g g g g
x


 


hj hj
hk il hl ikj j

k kg g g g g g
x x
 

 
 

j j
il ikk lj j

k kg g
x x
 

   
 

.il ikk l
k kg g
x x
 

 
 

Ex. 5.  Show that

(i) gij gkl dgik = – dgjl

(ii) gij gkl dgik = – dgjl

Sol. We have

(i) gij gik
j
k  .....(1)

On differentiation gij dgik + gik dgij = 0

or gij dgik = – gik dgij. .....(2)

Taking inner product on both sides of (2) by gkl, we get

gij gkl dgik = – gkl gik dgij

l ij
idg 

= – dg lj

= – dg jl. [by symmetric property]
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(ii) Relation (i) may be written as

gik gij .k
j 

On differentiation gij dgik + gik dgij = 0

or gij dgik = – gik dgij
gij gkl dgik = – gik gkl dgij

i
l ijdg 

= – dgij = – dgjl.

Hence proved.

12.6 Permutation symbols and tensors

The permutation symbol is written as eijk and in the Euclidean three dimensional space V3 is

defined as

0 , if any two of are equal
1 , if isa cyclic permutation
1 , if is anticyclic permutation

ijk

i, j,k
e i, j,k

i, j,k


 


.....(12.6.1)

Thus e112 = e113 = e221 = e223 = e331 = e332 = e111 = e222 = e333 = 0

e123 = e231 = e312 = + 1

e132 = e321 = e213 = – 1 .....(12.6.2)

We now introduce an entity defined by

1; ,ijk
ijk ijk ijkge e

g
    .....(12.6.3)

where g is the determinant of metric tensor gij of the space referred, which may not necessarily be rect-

angular. We shall now prove that although eijk is not a tensor, in general, both ijk and ijk are tensors

covariant and contravariant respectively. These are called permutation tensors in three dimensional

space, It is clear from the definitions of eijk, ijk and ijk that they are skew-symmetric in all three

indices.

Theorem 2.  The entities defined by (permutation tensor)

,
1; ijk

ijk ijk ijkg e e
g

   

are respectively covariant and contravariant tensors, where eijk is a permutation symbol and g is
the determinant of the metric tensor gij.

Proof : We have
i j k

ijk l m n
x x xe
x x x
  
  

j i k

jik l m n
x x xe
x x x
  


  

(interchanging the dummy indices i and j)

i j k

ijk m l n
x x xe
x x x
  

 
  

(using skew-symmetric property of eijk)
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This shows that 
i j k

ijk l m n
x x xe
x x x
  
  

 is skew-symmetric in l and m.

Similarly, it can be shown that it can  be shown that it is skew-symmetric in all l, m and n. But

this expression, apart from the sign, is the Jacobian determinant .
r

s
x
x

  From the theory of determi-

nants, it therefore follows that

i j k i

ijk lmnl m n j
x x x xe e
x x x x
   


    .....(12.6.4)

Now by covariant law we know that

.
i j

pq ijp q
x xg g
x x
 


 

.....(12.6.5)

Therefore pqg
i j

ijp q
x x g
x x
 


 

or
2

.
r

s
xg g
x


 


.....(12.6.6)

Suppose in the coordinate system ,ix the entity ijk be denoted by ,lmn  where

.lmn lmng e  .....(12.6.7)

Now, using (12.6.4) and (12.6.6) in (12.6.7), we find

lmn
i j k

ijk l m n
x x xg e
x x x
  


  

,
i j k

ijk l m n
x x x
x x x
  


  

.....(12.6.8)

which shows that ijk is a third order covariant tensor.

Also writing elmn for elmn and ijke  for eijk we have

1lmn lmne
g

 
r lmn

s
x e
x g



 [using (12.6.6)]

1 l m n
ijk

i j k
x x xe
x x xg
  


  

[using (12.6.4)]

,
l m n

ijk
i j k

x x x
x x x
  


  

.....(12.6.9)

which shows that lmn in a contravariant tensor of third order.
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12.7 Christoffel symbols

These are the two expressions due to Christoffel involving contravariant fundamental tensor gij

and the partial derivations of the components of the fundament tensor gij.

The Christoffel symbols of the first and second kind are denoted by [i j, n] and ,k
ij 
   respec-

tively and are defined as

[ij, k]
1
2

jk ijik
i j k

g gg
x x x

  
   

   
.....(12.7.1)

 k
ij  ,khg ij h .....(12.7.2)

Notes :

(i) The symbols [ij, k] and  l
ij  may also be represented by Tk,ij and l

ijT  respectively..

However we shall use only the brackets type representation.

(ii) These symbols, in general, are not tensors.

(iii) All, but one of the indices of the Christoffel symbols are regarded as subscripts. The ex-

ception in the index l which is treated as the superscript in the symbol of second kind.

(iv) Both the symbols are symmetric with respect to the indices i and j.

(v) In Euclidean space of N-dimensions g11 = g22 = ... = gNN = 1   and    gii = 0, i  j in this

case all the Christoffel symbols are zero.

(vi) Since gij is a symmetric tensor and has ( 1)
2

N N   independent components in the space

VN , then ij
k

g
x



 will have 

( 1)
2

N NN 
 independent components. Therefore the number of

independent components of Christoffel symbols of a kind are 
2 ( 1) .

2
N N 

12.8 Properties of Christoffel symbols

Property I : [ij, m] l
lm ijg    

Proof : By definition we have
l
ij 
  = glk [ij, k] .....(12.8.1)

Taking inner product by glm, we get

 l
lm ijg  
  = glm glk [ij, k]

 ,k
m ij k   = [ij, m].

Hence proved.
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Property II : ik
j

g
x




= [ij, k] + [kj, i]

Proof : We know by definition

[ij, k]
1
2

jk ijik
j i k

g gg
x x x

  
   

   
.....(12.8.2)

and [kj, i]
1
2

ij jkik
j k i

g gg
x x x

  
   

   
.....(12.8.3)

keeping in the mind the symmetric property of gij, adding above two expressions, we get

[ , ] [ , ] .ik
j

gij k kj i
x


 


   Hence proved

Property III :
mk

l
g
x




   mi k ki m
il ilg g  

Proof : We know that gij g
ik .k

j  .....(12.8.4)

Differentiating with respect to xl, we get

0
ik

ij ik
ij l l

ggg g
x x


 

 

or
ik

ij l
gg
x




ijik
l

g
g

x


 


.....(12.8.5)

Taking inner product with gim, we obtain
ik

m
i l

g
x





ijik jm
l

g
g g

x


 


.....(12.8.6)

Now using property 2, we finally get
mk

l
g
x




 [ , ] [ , ]ik jmg g jl i il j  

= –gik gjm [jl, i] – gik gjk [il, j]

   jm k ik m
ij ilg g  

    ,mj k ki m
ij ilg g   .....(12.8.7)

where the dummy index in the first term has been replaced by i.

Property IV :  i
ij

1
2 j

g
g x





 log ,if is positivej g g
x





  log ,if is negativej g g
x
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Proof : We have the matrix of gij as

11 12 1

21 22 2

1 2

...
...

.

N

N

ij

N N NN

g g g
g g g

g

g g g

 
 
 
 
 
 
  

  

   .....(12.8.8)

Since g denotes the determinant of gij, we have

11 12 1

21 22 2

1 2

...
...

.

N

N

N N NN

g g g
g g g

g

g g g

 
 
 
 
 
 
  

  

   .....(12.8.9)

Differentiating it with respect to xj, we get

111 12

21 22 2

1 2

...

...

N
j j j

Nj

N N NN

gg g
x x x

g g g g
x

g g g

  
    

  
  

 
  

    

11 12 1

21 22 2

1 2

...
...

.....

...

N

N

N N NN
j j j

g g g
g g g

g g g
x x x

 
 
 

   
 
   
    

  
.....(12.8.10)

Clearly, cofactor of 11
j

g
x




= cofactor of g11 in g = gg11 etc. .....(12.8.11)

Thus j
g
x



11 12 1111 12 ... ...NN
j j j

gg ggg gg gg
x x x

          

1 21 2 ...N N NNN N NN
j j j

g g ggg gg gg
x x x

          

.ik ik
j

ggg
x





.....(12.8.12)

Now using property II, we get

j
g
x



= ggik ([ij, k] + [kj, i])

i k
g g

ij kj
   

    
   

i i
g g

ij ij
   

    
   

 (as k is dummy index so it is replaced by i)

2 .
i

g
ij
 

  
 

.....(12.8.13)
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Hence
i
ij
 
 
 

 1 log , if is positive
2 j j

g g g
g x x
 

 
 

 log , if is negativej g g
x


 


Hence proved.

12.9 Illustrative examples

Ex.5.  Calculate the Christoffel symbols corresponding to the metric

ds2 = (dx1)2 + G(x1, x2) (dx2)2

where G is a function of x1 and x2.

Sol. Here N = 2 i.e. it is a two dimensional space, where

g11 = 1, g22 = G (x1, x2), g12 = 0, g21 = 0.

The number of Christoffel symbols of a kind will be

 2 1
2

N N 
 

22 (2 1) 6.
2

 
 

I. First kind :

Case I : i = j = k, then [ii, i]
1
2

ii
i

g
x





  (No summations)

Hence [11, 1] = 0, [22, 2] 2
1 .
2

G
x





.....(1)

Case II : i = j  k, then [ii, k] 1 .
2

ij
k

g
x


 


.....(2)

Therefore [11, 2] = 0, [22, 1] 1
1 .
2

G
x


 


.....(3)

Case III : i = k  j, then [ij, i] 1 .
2

ij
i

g
x





.....(4)

Therefore [12, 1] = 0, [21, 2]
1

1 .
2

G
x





.....(5)

Case IV : i  j  k
It is redundant in two dimensional space

II. Second kind :
1 , 0,ii ij

ii
g g i j

g
  

[ , ]lll
g ij l

ij
 

 
 

.....(6)
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Hence  
22

1
1 2 10, [12, 2] ,

12 12 2
Gg

G x
    

     
   

.....(7)

11
1

1 1 10, [22,1] ,
11 22 2

Gg
x

    
      

   
.....(8)

22
2

2 2 10, [22,2] ,
11 22 2

Gg
G x

    
     

   
.....(9)

Ex.6.  Surface of sphere is a two dimensional Riemannian space. Compute the Christoffel

symbols

Sol. For a sphere, r is constant, the metric of the surface of a sphere is given by

ds2 = r2 (d)2 + r2 sin2 (d)2.

Here g11 = r2, g22 = r2 sin2, g12 = g21 = 0

and 11 22 12 21
2 2 2

1 1, , 0
sin

g g g g
r r

   


.....(1)

(i) First kind :

(a) i = j = k, then [ii, i] 1 .
2

ii
i

g
x





[No summation]

Therefore [11, 1] = 0, [22, 2] = 0. .....(2)

(b) i = j  k, then [ii, k] 1
2

ii
k

g
x


 


Therefore [11, 2] = 0, [22, 1] = – r2 sin cos .....(3)

(c) i = k  j, then [ij, i] 1
2

ii
j

g
x





Therefore [12, 1] = 0, [21, 2] = r2 sin cos. .....(4)

(d) i  j  k,

Redundant in two dimensional space

(ii) Second kind :
l
ij
 
 
 

= gll [ij, l] (No summation)

The non-zero components are

1
22
 
 
 

= g11 [22, 1] = – sin cos

and
2
21
 
 
 

= g22 [21, 2] = cot .....(5)

The remaining four will be zero.
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Ex.7.  Calculate the Christoffel symbols corresponding to the metric

ds2 = (dx1)2 + (x1)2 (dx2)2 + (x1)2 (sin x2)2 (dx3)2

Sol. For the given metric

g11 = 1, g22 = (x1)2, g33 = (x1)2 (sin x2)2 .....(1)

and  gij = 0, i  j.

(I) Christoffel symbols of the first kind :

Since N = 3, the total number of independent components to be determined are 
2( 1) 18.

2
N N 



We know that [ij, k] 1 .
2

jk ijik
j i k

g gg
x x x

  
   

   
.....(2)

Here, there are four cases.

Case I : i = j = k, then (1) becomes

[ii, i] 1
2

ii
i

g
x





 (No summations)

 We find [11, 1] = 0, [22, 2] = 0, [33, 3] = 0 .....(3)

Case II : i = j  k, then (1) becomes

[ii, k] 1 1
2 2

ijik ik ii
j i k k

gg g g
x x x x

   
     

    

Therefore we find

[11, 2] = 0, [11, 3] = 0, [22, 1] = – x1

[22, 3] = 0, [33, 1] = –x1 (sin x2)2,

[33, 2] = – (x1)2 sin x2 cos x2 .....(4)

Case III : i = k  j, then (1) gives

[ij, i] 1
2

ji ijii
j i i

g gg
x x x

  
   

   
 1

2
ii
j

g
x





Therefore we find

[12, 1] = 0, [13, 1] = 0, [21, 2] = x1, [23, 2] = 0

[31, 3] = x1 (sin x2)2, [32, 3] = (x1)2 sin x2 cos x2

Case IV : i  j  k, then (2) by virtue of (1), becomes [ij, k] = 0.

Hence, [12, 3] = 0, [23, 1] = 0, [31, 2] = 0 .....(6)

(II) Christoffel symbols of second kind :

We have
11 22

11

1 1,g g
g

  33
1 2 1 2 2 2
1 1,

( ) ( ) (sin )
g

x x x
 

and gij = 0, i  j .....(7)
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We know that
l
ij
 
 
 

= glk [ij, k] .....(8)

Here too, we have to find out 18 independent components

Since gij = 0 when i  j.

We have from (2)
l
ij
 
 
 

= gll [ij, l] (No summation over i) .....(9)

The non-zero components are

1
22
 
 
 

11 1 11 1 2 21
[22,1] , [33,1] (sin )

33
g x g x x 

      
 

2
33
 
 
 

22 2 2[33, 2] sin cosg x x  

2
12
 
 
 

22
1

1[12, 2]g
x

 

3
13
 
 
 

33
1

1[13,3] ,g
x

 

3
32
 
 
 

33 2[32,3] cotg x  .....(10)

The remaining twelve components will be zero.

Ex.8.  If the metric of a VN is such that gij = 0 for i  j, show that

10,
2

ii
i

ii

i i g
jk jj g x

    
     

   

   log ; logii iij i
i i

g g
ij iix x
    

    
    

where i, j and k are not equal, and the summation convention does not apply.

Sol. Here
1 and 0,ii ij

ii
g g i j

g
  

(i) i
jk

 
 
 

[ , ] [ , ], ( 0, )il ii ilg jk l g jk i g i l   

= 0                        ( fundamental tensors are zero when i  j  k) .....(1)

(ii)
i
jj

 
 
 

1 1[ , ]
2 2

il il iiil ii
l i

g gg jj l g g
x x

 
    

 

1 .
2

ii
i

ii

g
g x


 

 .....(2)
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(iii)
i
ij
 
 
 

= gil [ij, l] = gii [ij, l]

1 1
2 2

ii ii ii
j j

ii

g gg
gx x

 
 

 

 log .iij g
x





.....(3)

(iv)
i
ii
 
 
 

= gil [ii, l]

1[ , ]
2

ii
ii ii

i
gg ii i g
x


 



 1 log .
2

ii
iiii i i

g g
g x x

 
 

  .....(4)

12.10 Laws of transformation of Christoffel symbols

Theorem 3.  The Christoffel symbols are not tensor quantities.

Proof : Let us consider the transformation of the Christoffel symbols from the coordinate sys-

tem xi to .kx

(i) By definition we know that

[ , ]lm n 1
2

in mn lm
m l n

g g g
x x x
         

.....(12.10.1)

and [ij, k] 1
2

jk ijik
j i k

g gg
x x x

  
      

.....(12.10.2)

We know that by covariant law

lmg
i j

ijl m
x x g
x x
 


 

.....(12.10.3)

Differentiating with respect to ,nx  we get

lm
n

g
x




2 2i i k i j i j
ij

ij ijl m k n n l m l m n

gx x x x x x xg g
x x x x x x x x x x

      
  
         

.....(12.10.4)

Similarly (by cyclic order)

mn
l

g
x




2 2j k i j k j k
jk

jk jkm n l i l m n m n l

gx x x x x x xg g
x x x x x x x x x x

      
  
         

.....(12.10.5)

2 2k i j k i k i
nl ki

ki kim n l m j m n l n l m
g gx x x x x x xg g
x x x x x x x x x x x
       

  
          

.....(12.10.6)
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Multiplying (12.10.5) and (12.10.6) by 
1
2

 
 
 

 and (12.10.4) by 
1
2

  
 

 then adding keeping in

view (12.10.1) and (12.10.2) we get on changing the dummy indices appropriately, we get

,lm n    
2

,
i j k k i

ikl m n n l m
x x x x xij k g
x x x x x x
    

 
     

 
2

,
i j k i j

l m n n l m
x x x x xij k
x x x x x x
    

 
     

.....(12.10.7)

which shows that Christoffel symbols of first kind do not behave like tensors.

(ii) By contravariant law, we have

npg .
n p

rs
r s

x x g
x x
 


 

.....(12.10.8)

Taking inner multiplication of (12.10.7) by npg  and its corresponding equivalent from (12.10.8),

we get

,npg lm n    
2

,
i j p p j

k rs rs i
r ij rl m s s l m

x x x x xij k g g g
x x x x x x

     
 

     

or
p

lm
 
 
 

 
2

,
i j p p j

ks is
ijl m s s l m

x x x x xg ij k g g
x x x x x x
    

 
     

 
2i j p p j

s
ij l m s j l m

x x x x x
x x x x x x
    

 
     

.....(12.10.9)

which shows that Christoffel symbols of second kind also do not behave like tensors.

Remark : We have proved that Christoffel symbols are not tensor quantities. But in some very

special case of linear transformation of coordinates, viz.

,j j m j
mx a x b 

where j
ma  and bj are constants, we have

2
0.

j

l m
x

x x



 

and the equations (12.10.8) and (12.10.9) become

,lm n    , ,
i j k

l m n
x x xij k
x x x
  


  

.....(12.10.10)

p
lm
 
 
 

,
p i j

s l m
s x x x
ij x x x
    

  
   

.....(12.10.11)

which shows that in the case of linear transformation Christoffel symbols transform like a tensor.
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Note : Taking inner multiplication of (12.10.9) by ,
r

p
x
x



 we get

r

p
p x

lm x
  
 

 
 

2i j j
s r r
ij s jl m l m

x x x
x x x x

   
 

   


2 r

l m
x

x x

 

r i j

p l m
p rx x x

lm ijx x x
     

    
     

.....(12.10.12)

It is an important result and should be remembered. It expresses the second order partial

derivative of xr with respect to ix  in terms of the first derivatives and Christoffel symbols of the second

kind.

12.11 Self-learning exercises

1. Define metric tensor.

2. Define permutation tensors.

3. What do you mean by indicator.

4. Show that g dxi dxj in invariant.

5. How many independent components of Christoffel symbols in V3.

12.12 Summary

In this unit we have generalised the concept of distance to the Riemannian space by metric and

defined metric tensor, a covariant symmetric tensor of rank two, some examples are given to calculate

components of metric tensor in different Riemannian spaces. We have defined Christoffel symbols of

first and second kinds, which are the expressions of partial derivatives of fundamental tensor gij. Some

properties of these symbols are given and some examples are given to calculate these symbols. In the

end we have shown that Christoffel symbols are not tensor quantities.

12.13 Answers to self-learning exercises

1. § 12.2

2. § 12.6

3. § 12.4

4. § 12.2

5. 18

12.14 Exercises

1. Show that gij is a covariant tensor of order two.
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2. Prove that gij is a symmetric contravariant tensor of rank two.
3. What are the fundamental tensors and show that :

Aij dgij = – Aij dgij.
4. Prove that :

(i) gij gkl dgik = – dgil,

(ii) gij gkl dgik = – dgjl.

5. Prove that the permutation tensors are tensor of third order and also show that

ijk = gil gjm gkn lmn,

where the symbols have their usual meanings.

6. Show that the transformation of Christoffel symbols form a group.

7. Evaluate Christoffel symbols in spherical coordinates.

8. Prove that the Christoffel symbols are not tensor.
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Unit 13 : Covariant Differentiation of Tensors, Ricci Theorem,
Intrinsic Derivative

Structure of the Unit

13.0 Objective

13.1 Introduction

13.2 Covariant differentiation of vectors

13.3 Covariant differentiation of second order tensors

13.4 Ricci’s theorem

13.5 Illustrative examples

13.6 Divergence of a vector

13.7 Gradient of a scalar

13.8 Laplacian of a scalar

13.9 Curl of a covariant vector

13.10 Illustrative examples

13.11 Intrinsic derivative (absolute  derivative)

13.12 Self-learning exercise

13.13 Summary

13.14 Answers to self-learning exercises

13.15 Exercise

13.0 Objective

The objective of this unit is to study the behavior of partial derivatives of vectors and tensors

and consequently covariant differentiation. The properties of covariant differentiation and its uses are also

the points of study.

13.1 Introduction

The transformation laws of partial derivatives of covariant, contravariant vectors and tensors are

not like tensor quantities. So we investigate a particular form of partial derivative which behaves like

tensors and it will be called covariant derivative.
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13.2 Covariant differentiation of vectors

Here we study the transformation laws of the partial derivatives of contravariant and covariant

vectors. We also investigate that these partial derivatives behave like tensors or not.

(i) Covariant derivative of contravariant vector :
We have from contravariant law of vector

Ak 



k
i

i
x A ,
x

......(13.2.1)

Differentiating partially with respect to xj, we get




k

j
A
x

2    
  
     

k n i k n
i

i j n n i j
x x A x x A .
x x x x x x

.....(13.2.2)

The presence of second form on the R.H.S. of above equation shows that the partial derivative




k

j
A .
x

 does not behave like a tensor..

Putting the value of
2



k

n i
x

x x
     

    
     

k r s

p i n
s

kp x x x
rin x x x

in the above equation, we have




k

j
x
x

          
        

          

k r s n k n i
i

p i n j i j n
s

kp x x x x x x AA
rin x x x x x x x

or



k

j
A
x

r k n k n i
s i i
ji p j i j n

k px x x x x AA A
rs imx x x x x x
        

        
        

...(13.2.3)

Using (13.2.1) and making suitable changes of dummy indices, we may write

k
r

j
kA A
rjx
 

  
  

p k n
i

n p j
pA x xA .
inx x x

    
    

    
......(13.2.4)

Introducing following comma notation, viz.

k
, jA

k
r

j
kA A
rjx
 

   
  

.....(13.2.5)

the above equation may be written as

k
, jA

k n
p

,n p j
x xA ,
x x
 


 

......(13.2.6)

which shows that k
, jA  behaves like a mixed tensor of second order. It is called covariant derivative of a

contravariant vector Ak with respect to xj.
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(ii) Covariant derivative of covariant vector :
We have from covariant transformation law of vector

Ak 



i

ik
x A .
x

.....(13.2.7)

Differentiating partially with respect to x j, we get




k
j

A
x

2  
 
    

i n i
i

i ,k j n j k
Ax x x A

x x x x x
......(13.2.8)

Substituting
2 i i l m

j k p j k
p ix x x x
jk lmx x x x x

     
     
       

and making suitable changes in  dummy indices.




k
j

A
x

i n i l m
i

ik j n p j k
p iAx x x x x A
jk lmx x x x x x

       
       
         

or
 

  
  

k
pj

pA A
jkx

    
    

     

i n
i

ln k j
lA x xA .
nix x x ......(13.2.9)

Introducing the comma notation, viz.

Ak,j
 

   
  

k
pj

pA A ,
jkx

......(13.2.10)

we get above relation as Ak,j
 


 

i n

i ,n k j
x xA ,
x x

.....(13.2.11)

which shows that Ak,j behave like a covariant tensor of second order. If is called covariant derivative of

covariant vector Ak with respect to x j.
Note : Expression (13.2.6) and (13.2.11) are very important and should be remembered. These

may be taken as definition of covariant derivatives of contravariant and covariant derivatives respec-

tively.

13.3 Covariant differentiation of second order tensors

In order to extend the process of covariant differentiation to tensors of order more than one, we

choose, without loss of generality, a mixed tensor i
jA .

We have from transformation law

i
jA

 
  
 

i l
m
lm j

x x A .
x x

......(13.3.1)

Taking inner product with 
m

j
x ,
x




 we get




m
i
ji

x A
x

l
m
lj

x A .
x





......(13.3.2)



300

Differentiating with respect to x k, we find

2 im m
ji

jk i i k

Ax xA
x x x x

 


   

2 l l r m
m
lk j j k r

x x x AA
x x x x x
   

   
    

......(13.3.3)

Using value of second order derivative, we get

       
     

        

im s t m
ji

jp k i i k

Ap mx x x xA
ki stx x x x x

ml s t l r
m l
lp k j j k r

p l Ax x x x xA .
kj stx x x x x x

        
      

          
    .......(13.3.4)

Now using (13.2.2) and changing appropriate dummy indices

mm i l r
n i t ml
j p l ki k j k r

i p m tAx A x xA A A A .
kn kj rt rlx x x x x

            
             

              
.....(13.3.5)

Introducing the comma notation

i
j ,kA

    
     
    

i
j n i

j pk

A i p
A A ,

kn kjx
.....(13.3.6)

the above relation may be written as




m
i
j ,ki

x A
x

 

 

l r
m
l ,rj k

x x A .
x x

.....(13.3.7)

Taking inner multiplication by 



n

m
x ,
x

 we get

n i
i j ,kA

  
 
  

n l r
m
l ,rm j k

x x x A
x x x

or n
j ,kA

  
 
  

n l r
m
l ,rm j k

x x x A
x x x

......(13.3.8)

This shows that n
j ,kA  is a mixed tensor of third order, contravariant of rank one and covariant of

rank two. It is called the covariant derivative of m
lA  with respect to x r.

Note : The covariant derivative i
j ,kA  defined by (13.3.6) contains three terms :

(i) The partial derivative of Aj
i with respect of xk.

(ii) A positive sign term similar to that which occurs in the covariant derivative of a contravariant

vector.

(iii) A negative sign term similar to that which occurs in the covariant derivative of a covariant

vector.

13.4 Ricci’s theorem

The covariant derivatives of the tensors gij, g
ij and i

j all vanish identically.
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Proof : (i) Covariant derivative of gij with respect to xk

gij,k
    

     
    

ij
rj irk

g r r
g g

ik jkx

   


  


ij
k

g
ik , j jk ,i

x
[Using property (1) of Christoffel symbols]

 
 
 

ij ij
k k

g g
x x

       [Using property (2) of Christoffel symbols]

= 0. .....(13.4.1)

(ii) Covariant derivative of gij with respect to xk

ij
,kg

   
     
    

ij
rj ir

k
i jg g g

rk rkx

ij ij

k k
g g
x x

 
 
 

= 0,             [Using property (3) of Christoffel symbols] ......(13.4.2)

(iii) Covariant derivative of i
j  with respect to xk

i
j ,k

i
j l i

j ik
i l
lk jkx

    
       
    

i
j
k

i l
jk jkx

    
     
    

[Using property of Kronecker delta]





i
j
kx

= 0              [  i
j  is a constant either 1 or 0] ......(13.4.3)

Hence 0 0 0ij i
ij ,k j ,k,kg , g ,   

which shows that the tensors gij, g
ij and i

j  may be treated as constants in covariant differentiation.

13.5 Illustrative examples

Ex.1. Prove that

 1j j j
i , j i kj

k
A A g A .

ijxg
 

   
  

Show that if associate tensor Aij is symmetric, then

 1 1
2

jkj j jk
i , j ij i

g
A A g A .

x xg
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Sol. We have from process of covariant differentiation

j
i ,kA    

     
    

j
r ji
i rk

j rA A A
rk ikx

......(1)

Putting k = j, we get

j
i , jA

j
r ji
i rj

j rA A A
rj ijx
   

     
    

 log
j

r ji
i rj r

rA A g A
ijx x
  

    
   

 1j
j ji

i ki j
kA A g A
ijx xg
  

    
   

[on making suitable changes in dummy indices]

 1 j j
i kj

k
A g A

ijxg
 

   
  

......(2)

This proves the first result.

Now
 
 
 

j
k

k
A

ij
  j lk

kA g ij,l

= Ajl [ij, l]

1
2

  
   

   

jl ijjl il
j i l

g ggA
x x x

1 1 1
2 2 2

 
  

  
jl ijjl jlil

j i l

g ggA A
x x x

1 1 1
2 2 2

ij jl ijlj jl jl
l i l

g g g
A A A ,

x x x
  

  
  

......(3)

where in the first term the dummy indices suitably have been changed. Since Aij is symmetric the first

and the last term will cancel out and therefore

 
 
 

j
k

k
A

ij
1
2

jkjk
i

g
A .

x





......(4)

Substituting this result in (1), we get the required result as

j
i , jA  1 1

2
j jk ik

ij i
gA g A .

x xg


 
 

Ex.2. Prove that

 1ij ij jk
, j j

i
A g A A

jkxg
 

   
  

Show that the last term vanishes if Aij is skew-symmetric.
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Sol. We have from covariant differentiation

ij
,lA

ij
ir rj

l
j iA A A .

rl rlx
   

     
    

......(1)

Putting l = j, we get

ij
, jA

ij
ir rj

j
j iA A A

rj rjx
   

     
    

1
2

ij
ir rj

j r
iA gA A
rjgx x
  

    
   

[using property (4) of Christoffel symbols]

1ij
ir kj

j r
igA A A
kjx xg

  
    
   

1 ij
ij kj

j j
igAg A A
kjx xg

   
     

     

[making suitable changes in dummy indices]

 1 ij jk
j

i
g A A .

jkxg
 

   
  

.......(2)

This proves the first result.

If Aij is skew-symmetric, then

kj i
A

kj
 
 
 

jk i
A

kj
 

   
 

kj i
A

jk
 

   
 

 [interchanging the dummy indices]

kj i
A

kj
 

   
 

 [using symmetric prop. of Christoffel symbols]

 2 kj i
A

kj
 
 
 

 = 0

 kj i
A

kj
 
 
 

 = 0.

Hence, if Aij is skew-symmetric, then

ij
, jA  1 ij

j g A .
xg





Hence Proved.
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Ex.3. If Aijk is a skew-symmetric tensor, show that

 1 ijk
k g A ,

xg



is a tensor.
Sol. Since Aijk is a skew-symmetric tensor, we have

Aijk = – Ajik, Aijk = – Aikj, Aijk = – Akji. ......(1)
We know that

ijk
,lA

ijk
rjk irk ijr

l
i j kA A A A
rl rl rlx
     

        
      

......(2)

Contracting over i and l (l = i), we get

ijk
,iA

ijk
rjk irk ijr

i
i j kA A A A
ri ri rix
     

        
      

.....(3)

But irk j
A

ri
 
 
 

rik irkj j
A A ,

ri ir
   

      
   

similarly, 2 0.ijr k
A

ri
 

 
 

......(4)

Hence, ijk
,iA

ijk
rjk

i
iA A
rix
 

   
  

 1ijk
rjk

i r
A A g
x xg

 
 

    1 ijk
j A g .

xg



 .....(5)

Since left hand side, which is a covariant derivative of a tensor is a tensor, the right hand side

will also be a tensor.

13.6 Divergence of a vector

(i) Divergence of a contravariant vector Ai is defined as the contraction of its covariant deriva-

tive. It is denoted by div Ai and is an invariant. Thus

div Ai = Ai
,i. .....(13.6.1)

(ii) The divergence of a covariant vector Ai is denoted by div Ai and is defined as

div Ai = gjk Aj,k. .....(13.6.2)

It is also an invariant.

Note : The concept of divergence may be extended to the contravariant tensors of higher order

or to mixed tensors. The divergence of a tensor may be obtained first by taking a covariant derivative of

it and contracting over a superscript and the subscript of covariant derivative.

Thus,  i i
j j ,idiv A A . .....(13.6.3)

The order is reduced by one in taking its divergence.



305

Theorem 1. If Ai is a contravariant vector, then

 1i i
idiv A A g .

xg





Proof. The covariant derivative of Ai is given by

i
, jA

i
r

j
iA A .
rjx
 

   
  

......(13.6.4)

Contracting over i and j (j = i), we get
idiv A i

,iA

i
r

i
iA A
rix
 

   
  

 1i
r

i r
A A g
x xg
 

 
 

[changing dummy index r to i]

 1i
i

i i
A A g
x xg
 

 
 

 1 i
i A g .

xg



 ......(13.6.5)

Theorem 2. To prove that

 1 rk i
i krdiv A g g A div A

xg


 


where Ai and Ai are the contravariant and covariant components of the same vector A.
Proof. We have by definition

div Ai = gjk Aj,k

jjk
rk

A r
g A

jkx
  

    
   

jr
jjk rk

rk j

A j gg A g
kjx x

    
     

   
[using property (3) of Christoffel symbols]

jr
jjk rk

r rk j

A j gg g A A
jkx x

   
   

  

 1 jr
rk rkr

r rk k j
A gg g A g A
x x xg
  

  
  

 1 rk
kr krk

k kr r r
A gg g A g A
x x xg
  

  
  

[on changing the dummy indices]

 1 kr
kr g g A .

xg



 ......(13.6.6)
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But grk Ak = Ar           (associate vector) ......(13.6.7)

Therefore above relation may be written as

div Ai  1 r
r g A

xg





= div Ar

= div Ai.

Hence proved.

Remark : According to Ricci’s theorem gij be have like a constant in covariant differentiation,

we may write

div Ai  jk jk
j ,k j ,k

g A g A 

= (Ak),k = div Ak

= div Ai.

13.7 Gradient of a scalar

If I is a scalar function of coordinates xi, the gradient of I is defined by

grad I ,i i
II ,
x


 


......(13.7.1)

where I,i is a covariant vector.
Theorem 3. The covariant differentiation of invariants is commutative, that is

   ,i , j, j ,i
I I .

Proof. We have ,iI i
I .
x





.....(13.7.2)

Therefore,  ,i , j
I ,rj i

rI I
ijx x
           

2

j i r
rI I
ijx x x
  

   
    

2

i j r
rI I
jix x x

  
   
    

= (I,j),i. ......(13.7.3)

13.8 Laplacian of a scalar

If I is a scalar functions of coordinate xi, then the divergence of grad I is defined as the Laplacian

of I and it is denoted by 2I.

Thus 2I = div grad I = div I,i. ......(13.8.1)
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Theorem 4. Prove that

(i) div grad I  2 1 rk
,krI g g I ,

xg


  


(ii) div grad I 
2

2 jk
j k r

rI II g .
jkx x x

   
           

Proof. (i) From theorem 2 we have

div Ai  1 rk
kr g g A ,

xg





.....(13.8.2)

where Ai is a covariant vector.

Since gradient of a scalar I is a covariant vector, setting Ai = I,i in the above equation, we get

div A,i  1 rk
,kr g g A

xg





 2I  1 rk
,kr g g I .

xg





.....(13.8.3)

(ii) 2I = div I,i = gjk (I,j),k

,ijk
,rk

rI
g I

jkx
   

    
   

2
,ijk

j k r
rI Ig .
jkx x x

   
         

......(13.8.4)

13.9 Curl of a covariant vector

From a covariant vector Ai in V3, we can form the contravariant vector

Bk = jik Ai,j ......(13.9.1)

and call Bk the curl of vector Ai and written as curl Ai.

Thus curl Ai = B k = jik Ai,j .....(13.9.2)
We may also write on interchanging the dummy indices i and j as

Bk =ijk Aj,i = – jik Ai,j .....(13.9.3)

Hence 2Bk =jik (Ai,j – Aj,i)

 Bk  1
2

jik
i , j j ,iA A   .....(13.9.4)

Thus curl Ai may also be defined as

curl Ai  1
2

k jik
i , j j ,iB e A A .   .....(13.9.5)
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13.10 Illustrative examples

Ex.4. If Aij is the curl of a covariant vector,  prove that
0ij ,k jk ,i ki , jA A A .  

Show further that this expression is equivalent to

0ij ik ki
k k j

A A A .
x x x
  

  
  

If Aij = Bi,j – Bj,i,
prove that Aij,k + Ajk,i + Aki,j = 0.
Sol. Let Bi is a covariant vector and let its curl be  Aij.
Thus curl Bi = Aij
 Bi,j – Bj,i = Aij. .....(1)

we have Bi,j
i

pj
pB B .
ijx
 

   
  

......(2)

Inter changing i and j, we get

Bj,i
j j

p pi i

B Bp p
B B

ji ijx x
    

      
    

.....(3)

 Aij
ji

i , j j ,i j i

BBB B
x x


   

 
.....(4)

Now, we have

Aij,k
ij

pj ipk

A p p
A A

ik jkx
    

     
    

.....(5)

22
j p j pi i

j k i k j p p i

B B B Bp pB B
ik jkx x x x x x x x

          
           
             

 ......(6)

Similarly Ajk,i
ik

pk ipi
p pA A A
ji kix

   
     
    

.....(7)

or Ajk,i

2 2
j p j pk k

k i i j k p p j

B B B Bp pB B
ji kix x x x x x x x

          
           
             

.....(8)

Similarly, Aki,j
ij

pi ipj

A p p
A A

kj ijx
    

     
    

.....(9)

Aki,j

2 2
pk i i

i j j k i p

B pB B B
kjx x x x x x

    
      
        

 pk
p k

B pB .
ijx x

  
    

    
 ......(10)

Adding (5), (7) and (9), we get

Ajk,i + Aki,j + Aij,k = 0.

Proved I part.
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Again, we are given Aij = Bi,j – Bj,i

 Aji =  Bj,i – Bi,j

= – (Bi,j – Bj,i)

= – Aij

 Aij + Aji = 0. .....(11)

Equation (11) shows that Aij is antisymmetric.

Adding (5), (7) and (9) and using (11), we get

Aij,k + Ajk,i + Aki,j
ij jk ki
k i j

A A A .
x x x
  

  
  

.....(12)

Hence from (12) if follows that

Aij,k + Ajk,i + Aki,j = 0

is equivalent to 0ij jk ki
k i j

A A A .
x x x
  

  
  

Proved II part.
Ex.5. Evaluate div Aj in (i) cylindrical polar coordinates, and (ii) spherical polar coordi-

nates.
Sol. (i) For cylindrical polar coordinates

x1 = r,    x2 = ,    x3 = z
g11 = 1,   g22 = r2,    g33 = 1,    gij = 0, i  j

g = | gij | = r2 ......(1)
The physical components in cylindrical polar coordinates of Ar, A and Az.
Therefore (A)2 = (Ar)2 + (A)2 + (Az)2 .....(2)
Also (A)2 = g11 (A1)2 + g22 (A2)2 + g33 (A3)2 .....(3)

Hence Ar 1 1 2 2 3 3
11 22 33

zg A A , A g A rA , A g A A      .....(4)

Now, by definition div A j  1 i
i g A

xg





 1 i
i rA

r x





     1 2 3
2 3

1
i rA rA rA

r x x x
         

     1 r zrA A rA
r r z

         

1r z rA A A A .
r r z r

  
   

  
.....(5)

(ii) For spherical polar coordinates

x = r,    x2 = ,    x3 = 

g11 = 1,   g22 = r2,    g33 = r2 sin2,    gij = 0,   i j
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g = | gij | = r4 sin2. .....(6)

The physical components are denoted by Ar, A, Aand are given by
1 1 2 3

11 , , sinrA g A A A rA A r A      .....(7)

By definition div A j  1 i
i g A

xg





 2
2

1 sin
sin

i
i r A

r x


 
 

     2 1 2 2 2 3
2 2 3

1 sin sin sin
sin i r A r A r A

r x x x
             

     2
2

1 sin sin
sin

rr A r A rA
xr

    
         

1 1 2 cot
sin

r rA A A A A
r r r r r

 
   

    
   

. .....(8)

13.11 Intrinsic derivative (Absolute derivative)

The intrinsic derivative or absolute derivative of a covariant vector Ai along a curve x j = x j (t)

is defined as the inner product of the covariant derivative of Ai and 
jdx

dt
 i.e. ,

j

i j
dxA
dt

 and is denoted

by .iA
t




Thus iA
t


 , .

j j
i i

i j r
rdA dAdx dxA A
ijdt dt dt dt
 

     
 

.....(13.11.1)

Similarly the intrinsic derivative of contravariant vector Ai.

iA
t




, .
j i j

i r
j

idx dA dxA A
rjdt dt dt
 

    
 

.....(13.11.2)

The vectors Ai or Ai are said to move parallelly along a curve if their intrinsic derivatives along

that curve are zero, respectively.

Similarly we can define the intrinsic derivative of higher order tensor 1 2
1 2

, .....
, ....

m
n

i i i
j j jA  along a curve

xk = xk (t) defined by

1 2
1 2

, .....
, ....

m
n

i i i
j j jA

t




1 2

1 2 ,

, .....
, .... ,m

n k

k
i i i
j j j

dxA
dt

  .....(13.11.3)

where summation is taken over the index  k.

Thus the intrinsic derivative is a tensor of the same order and type as the original tensor.
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The intrinsic derivative of an invariant I is defined as

I
t

 , ,

i i

i i
dx I dx dII
dt dt dtx


  


.....(13.11.4)

which is same as its total derivative.

The intrinsic derivatives of higher order can easily be defined as

 
2

2

i
ji

j
A

A
t tt

  
 
    

,

k
i
j k

dxA
t dt
 

     

,
,

.
k p

i
j k

p

dx dxA
dt dt

 
   
 

......(13.11.5)

Theorem 8. The intrinsic derivatives of gij, g
ij and i

j  are zero.

Proof.    , 0
k

ij ij k

dxg g
t dt


 


  [using Ricci theorem]

   
,

0
k

ij ij
k

dxg g
t dt


 


   
,

0.
k

i i
j j k

dx
t dt


   


13.12 Illustrative examples

Ex.6. Show that

2

2

i i j kidx d x dx dx .
jkt dt dt dtdt

   
        

Sol. Let 
i

idx A
dt

   (contravariant vector)

Now
idx

t dt
 
    

  ,

j
i i

j
dxA A

t dt


 


i j
r

j
iA dxA
rj dtx

  
    

   

i j
ridA dxA

rjdt dt
 

   
 

i r jid dx dx dx
rjdt dt dt dt

   
        

2

2 .
i j kid x dx dx

jk dt dtdt
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Ex.7. If two unit vectors Ai and Bi are defined along a curve C such that their intrinsic
derivatives along C are zero, show that the angle between them is constant.

Sol. It is given, that , ,0, 0,
j j

i i
j j

dx dxA B
ds ds

  .....(1)

at every point of C.

Therefore , , 0,
j j

k
i j ik j

dx dxA g A
ds ds

  .....(2)

Also , , 0,
i j

k
i j ik j

dx dxB g B
ds ds

  .....(3)

at every point of C.

Let  be the angle between unit vectors Ai and Bi, then

cos  = Ai B
i

 cosd
ds

  
,

j
i

i j

dxA B
ds



 sin d
ds


   , ,

j
i i

i j i j
dxA B A B
ds

     [using (1) & (2)]

sin d
ds


 = 0. .....(4)

From (4) it follows that either = 0 or  = constant.

But 0 being included in constant, we conclude

 = constant.

Hence Proved.
Ex.8. If the intrinsic derivative of a vector Ai along a curve C vanishes at every point of

the curve, then show that the magnitude of the vector Ai is constant along the curve.
Sol. Let the equation of the curve C be

xi = xi (s). .....(1)

It is given that , 0,
j

i
j

dxA
ds

   at every point of C. .....(2)

We know that Ai = gik A
k    and    (gik), j  = 0. .....(3)

Therefore, ,

j

i j
dxA
ds , 0

j
k

ik j
dxg A
ds

    at every point of C. .....(4)

Since, A2 = Ai A
i

2dA
ds    2

,

j
i

i j

dxA A A
s ds


 


 , ,

j
i i

i j i j
dxA A A A
ds
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, ,

j j
i i

i j i j
dx dxA A A A
ds ds

   
       
   

= 0.          [using (1) and (2)] .....(5)

Hence A2 = constant.

i.e. magnitude of vector Ai is constant.

Hence proved.

13.12 Self-learning exercises

1. What do you understand by the covariant derivative of a covariant vector ?
2. Define covariant derivative of a contravariant vector.
3. Show that the covariant derivative of a covariant tensor of second order is a covariant tensor of

third order.
4. Define intrinsic derivatives of a tensor.

5. Show that r
s

A
x



 is not a tensor even though Ap is a covariant tensor of rank one.

13.13 Summary

In this unit we have studied the partial differentiation of tensors. We have defined a particular

process of it, called covariant differentiation. The properties of covariant differentiation like Ricci’s theo-

rem have also been studied. The use of covariant differentiation to define gradient, divergence and curl
have also been discussed.

13.14 Answers to self-learning exercises

1. § 13.2(ii) 2. § 13.2(i)
3. § 13.3 4. § 13.11

5. § 13.2(i)

13.15 Exercise

1. State and prove Ricci’s theorem on fundamental tensors.

2. Prove that the covariant derivative of the tensor aik with respect to xk, that is ,
ik
ka  has the expres-

sion

 ,
1 .ik ik im

k k
i

a g a a
kmxg
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Unit 14 : Geodesics, Differential Equation of Geodesic,
Geodesic Coordinates, Field of Parallel Vectors

Structure of the Unit
14.0 Objective

14.1 Introduction

14.2 Geodesic

14.3 Euler’s condition

14.4 Differential equation of geodesic in a VN

14.5 Curvature of a curve

14.6 Null geodesic

14.7 Illustrative examples

14.8 Geodesic coordinates

14.9 Illustrative examples

14.10 Field of parallel vectors (Parallelism of vectors)

14.11 Parallelism of a vector of variable magnitude along a curve

14.12 Illustrative examples

14.13 Self-learning exercises

14.14 Summary

14.15 Answers to self-learning exercises

14.16 Exercises

14.0 Objectives

The geodesic, a curve of stationary length on the surface, Riemannian coordinates, geodesic co-
ordinates are the points of study of this unit. Parallelism of vectors and fundamental theorem on Rieman-
nian geometry have also been given.

14.1 Introduction

In the calculus, we study the process of finding stationary values of a function. While in calculus
of variation we find a path on which an integral has stationary value. This gives a process to find shortest
path joining any two points on a surface, which we call the geodesic curve.

14.2 Geodesic

“A geodesic, in a Riemannian space VN, is a curve whose length has stationary value with re-

spect to arbitrary small variations of the curve, the end points being held fixed.”
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Geodesic on a surface in Euclidean three dimensional space may be defined as the curve along

which the shortest distance measured on the surface between any two points in its plane.

The differential equations of a geodesic can be obtained with the help of Euler’s equations, which

are derived by the technique of calculus of variations.

14.3 Euler’s condition

Theorem. The integral  1

0

,
t i i

t
f x x dt   has stationary value on the curve whose differential

equations are

0,i i

f d f
x dt x
       

where  .
i

i dxx
dt



Proof. Let xi = xi (t) be a parametric equation of a curve C in VN joining two fixed points

A (t = t0) and B (t = t1) on it. Let the integral I =  1

0

,
t i i

t
f x x dt   has stationary value on the curve C

and C be a neighbouring curve whose equation is given by

xi = xi (t) + i (t),
where  is small and i (t) are arbitrary continuous differentiable functions of t, satisfying i (t0) = 0,

i (t1) = 0 to ensure that the curve passes through A and B. The value of I taken along the curve C is

thus a function of of the form

   1

0

,
t i i i i

t
I f x x dt      .....(14.3.1)

Since the integral I is stationary on C for which = 0, we have the condition I (0) = 0.

Differentiating (14.3.1) with respect to 

  1

0

,
t i i i i

t
f x x dt 

  
  

 1

0

,
t i i i i

t
f x x dt 

  
 

   1

0

, ,
t i i i i i i i i i i

it
f x x f x x dt

x
                 

The stationary requirement I (0) = 0, now gives

   1

0

, , 0
t i i i i i i

i it
f x x f x x dt

x x
         


 .....(14.3.2)

The second term becomes as

1

0

t

it
i

dt
x



 


1
1

0
0

t
ti i

i it
t

f d f dt
x dt x
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1

0

.
t i

it

d f dt
dt x

       
.....(14.3.3)

Since i (t0) = 0 = i (t1), thus equation (14.3.2) becomes

1

0
0.

t i
i it

f d f dt
x dt x


          

  .....(14.3.4)

Since i is arbitrary, subject to its being differentiable and vanishing at A and B, equation (14.3.4)

implies that

0.i i

f d f
x dt x
      

.....(14.3.5)

Hence (14.3.5) are necessary conditions for the integral I to be stationary. These are called Euler’s

conditions or Euler’s equations.

14.4 Differential equation of geodesics in a VN

Using the property that geodesic curve is a path of stationary length joining two points A and B

in it, we shall now find the differential equations of it in the space VN.

In the Riemannian space VN, we have

ds2 = egij dxi dxj


2ds

dt
 
 
 

i j

ij
dx dxeg
dt dt

 

 s    1/ 2
, , (say)i j i i

ijeg x x f x x    

Now, s  1 1

0 0

1/ 2t t i j
ijt t

ds dt eg x x dt
dt

    

or  1

0

, .
t i i

t
f x x dt   .....(14.4.2)

In order that s is stationary, the function f must satisfy the Euler’s equations viz.,

0.i i

f d f
x dt x
      

.....(14.4.3)

Now we have f  1/ 2i j
ijeg x x s    .....(14.4.4)

and gij being a function of xi, therefore

l

f
x



1 .
2

ij i j
l

g
e x x

s x





 


.....(14.4.5)

Also, l

f
x



 1
2

i j j i
ij l leg x x

s
   



 2
i j

il lj
e x g x g
s
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 2
i i

il il
e x g x g
s

  


i
il

e x g
s

 


. .....(14.4.6)

Now l

d f
dt x

 
  

2

j
i i iil

il ilj

ge dx ex g x s x g
s x dt s
 

     
   

  .....(14.4.7)

Substituting (14.4.5) and (14.4.6) in (14.4.3), we get

1 0
2

iji j i j i iil
il ill j

g g sx x x x g x x g
x x s

        


     




1 0
2

jl iji i i j i j i jil
il il j i l

g ggsg x x g x x x x x x
s x x x

  
        


       



  , 0i i i j
il il

sg x x g x x ij l
s

  


   


 

Taking inner product by glm, we get

0m i m i i j
i i

msx x x x
ijs

 
 

   
 


   




2

2 0.
m m i jmd x s dx dx dx

ijdt s dt dt dt
 

   
 



 

These are the differential equations of a geodesic in parameter t. These may further be simpli-

fied, if we choose the arc distance s alone C as a parameter, i.e., s = t. Then,

1, 0.s s   .....(14.4.10)

Hence (14.4.9) reduces to
2

2 0.
m i jmd x dx dx

ijds ds ds
 

   
 

.....(14.4.11)

These are the required differential equations of geodesic. These constitute N-differential equa-

tions of the second order, and in terms of the intrinsic derivative may be written as

0.
mdx

s ds



 
 

 
.....(14.4.12)

Theorem 1. In general, one and only one geodesic passes through two specified points

lying in a small neighbourhood of a point O of a VN.
Proof. The differential equations of a geodesic curve in a VN are

2

2 0.
i j kid x dx dx

jkds ds ds
 

   
 

......(14.4.13)

These are N differential equations of second order, therefore, their general solution will involve

2N constants. The theory of differential equations states that these constants will be uniquely determined
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if the initial values of xi and 
idx

ds
 are given at a point. It means geometrically, that at any point of the

space there is a unique geodesic with given direction. Since the geodesic is defined in terms of the curve

passing through two points, it will be unique when the points are sufficiently close to one another.

Notes :

1. The geodesic may be unique unless the points are sufficiently close to one another. On the

surface of the sphere there is a unique geodesic passing through any two points, except when

the two points are at the ends of a diameter. In the latter case, all great circles passing through

the two points are geodesics.

2. In Euclidean space VN, using orthogonal coordinates, all Christoffel symbols vanish. There-

fore, the differential equation of geodesic become
2

2 0,
id x

ds


whose solution is xi = Ais + Bi,

when Ai and Bi are constant vectors. These represent straight lines. Hence in Euclidean space

VN, the geodesic are straight lines.

14.5 Curvature of a curve

Let xi = xi (s) be the equation of a curve C in the space VN. The unit tangent vector to C is

defined as (dxi/ds) and it is denoted by t̂  with ti as its coutravariant component, thus

.
i

i dxt
ds

 .....(14.5.1)

First Curvature :

The intrinsic derivative of ti along the curve C is called the first curvature vector or principal

normal of curve C relative to VN and is denoted by pi,

Thus, pi
,

i
i
j
dxt
ds

 .....(14.5.2)

or pi
2

2

i j kid x dx dx
jkds ds ds

 
   

 
. .....(14.5.3)

The magnitude of a first curvature vector pi is called first curvature of C relative to VN and is

denoted by . Therefore

2 = pi pi = gij p
i pj. .....(14.5.4)

If i denotes the components of the unit principal normal, then

i
ip


 ,    pi = i. .....(14.5.5)



319

We have the differential equation of geodesic as
2

2 0
i i kid x dx dx

jkds ds ds
 

   
 

 pi = 0


 i = 0

 = 0. .....(14.5.6)

Thus we conclude that a geodesic in Riemannian space VN is the curve whose first curvature

relative to VN is zero at all points. It gives the alternative definition of geodesic as :

“A geodesic in the Riemannian space VN is a curve whose first curvature relative VN vanishes at

all points.”

14.6 Null-geodesics

Along any portion of a curve which is not null, we have

1.
jidx dxg e eij ds ds e

     
 .....(14.6.1)

Differentiating with respect to s, we get

i j

ij
d dx dxg
ds ds ds
 

 
 

i j

ij
dx dxg

s ds ds



 
  

 

2
i j

ij
dx dxg
ds s ds




 
  

 
 2 0 0.

i

ij
dxg
ds

  


de
ds = 0, .....(14.6.2)

which shows that the indicator e cannot change along a geodesic. Therefore, the unit tangent vector 
idx

ds
which is not null at any point, cannot be null at any other point on the geodesic.

Contrary to it, if the initial direction is null, then the curve is null and we cannot introduce the arc

distance s (which is zero) as parameter.

Thus null geodesic is a null curve xi = xi (t) which is the solution of the equation

2

2 0.
i i kid x dx dx

jk dt dtdt
 

  
 

.....(14.6.3)

14.7 Illustrative examples

Ex.1. Assume that we live in a space for which the line element is

ds2 = (dx1)2 + [(x1)2 + c2] (dx2)2,

which is the surface of a right helocid immersed in a Euclidean three dimensional space. Deter-

mine the differential equation of geodesic.
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Sol. Here we have g11 = 1,   g12 = 0,   g21 = 0, g22 = (x1)2 + c2.

Therefore the Christoffel symbols of second kind are

1 2 1 1
0, 0, 0, 0,

11 11 21 12
       

          
       

 
 

1

221 21 2

2 2
log ,

12 21
xg

x x c

    
     

    

122
1

11

1 21 , 0.
22 222

g x
g x

   
       

   

Thus the differential equations of the geodesics on the surface are

2 1 2
1

2 0,d x dxx
dsds

 
   

 

and  
2 2 1 1 2

2 21 2

2 0.d x x dx dx
ds dsds x c

  


Ex.2. Obtain the differential equations of geodesics for the metric

   
2 2 2 2 21 .ds f x dx dy dz dt

f x
   

Sol. Here x1= x,    x2 = y,    x3 = z,     x4 = t.

1
11 22 33 44 1

1( ), 1, 1,
( )

g f x g g g
f x

   

gij = 0,     i  j. .....(1)

Therefore
11 22 33 44 1

1
1 , 1, 1, ( )
( )

g g g g f x
f x

   

gij = 0,     i  j. .....(2)

Thus, the non-zero symbols of second kind are

44
1 1 3 1

11

1 1 1 1 1
44 2 2 2

g f
g f fx x f x

     
            

   441 1
4 4 1log log

14 41 2
dg f

x dx
    

      
   

   111 1
1 1log log .

11 2
dg f

x dx
  

  
 

.....(3)

The differential equations of geodesics are
2

2 0.
i j kid x dx dx

jk ds dsds
 

  
 

.....(4)
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Hence, taking

(i) i = 1,
2 1 1 1 4 4

2
1 1

0
11 44

d x dx dx dx dx
dx ds ds dsds

   
       
   

   
2 22

2 2
1 1log log 0
2 2

d x d dx d dtf f
dx ds dx dsds f

        
   

.....(5)

(ii) i = 2,
2 2 2

2 20, . ., 0d x d yi e
ds ds

  .....(6)

(iii) i = 3,
2 3 2

2 20, . ., 0d x d zi e
ds ds

  .....(7)

(iv) i = 4,
2 4 4 1

2
4

2 0
41

d x dx dx
ds dsds

 
   

 

      or  
2

2 log 0.d t d dt dxf
dx ds dsds

   .....(8)

These are the required differential equation of the geodesics.

Ex3. Show that the curve given by

1 cos cosx C r dr  
2 cos sinx C r dr  
3 sinx C r dr 
4x C r dr 

where r,  are functions of t, is a real null curve in the V4 space whose metric is
ds2 = – (dx1)2 – (dx2)2 – (dx3)2 + C2 (dx4)2,

but not a null geodesic, in general.
Sol. For the given curve, we have

2ds
dt

 
 
 

2 2 2 21 2 3 4
2dx dx dx dxC

dt dt dt dt
       

                  
       

2 2 2 2 2 2 2 2 2 2 2 2 2cos cos cos sin sinC r C r C r C r        

= 0. .....(1)

Therefore, S 2

1
0,

t

t

ds dt
dt

   .....(2)

along the given curve. Hence it is a null curve.

In a V4 space, whose metric is (1) the Christoffel symbols vanish and therefore the equations of

a geodesic are
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2

2 0.
id x

dt
 .....(3)

These equation are not satisfied in general, by the given curve. Hence it is not a null geodesic in
general. However if we take  and r as constants equations (3) will be satisfied and the null curve will
become a null geodesic.

Ex.4. Show that on the surface of a sphere, all great circles are geodesics while no other
circle is a geodesic.

Sol. The metric on the surface of a sphere of radius a is given by
(ds)2 = a2 (d)2 + a2 sin2  (d)2. .....(1)

Here g11 = a2,    g22 = a2 sin2 ,    g12 = g21 = 0. .....(2)

The non-zero Christoffel symbols of second kind are

2 2 1
cot , sin cos .

12 21 22
     

           
     

.....(3)

The geodesic equation is
2

2 0.
i j kid x dx dx

jk ds dsds
 

   
 

.....(4)

Therefore the geodesic equations reduce to (x1 = ,   x2 = )

 
22

2 sin cos 0 1, 2d d i j k
dsds

         
 

.....(5)

and    
2

2 2cot 0 2, 1, 2 or 2, 2, 1d d d i j k i j k
ds dsds

  
         .....(6)

(i) We consider a great circle on the surface of the sphere and choose the normal to the plane of

the circle as the z-axis ( = 0), so that this great circle is the equator. Its parametric equation is

1 2 1, , 0
2

C s C C
      .....(7)

where C1, C2 are independent of s,  and .
Clearly equation (7) satisfies equations (5) and (6).
Therefore the great circle is geodesic, since the choice of the polar axis  = 0 is arbitrary, it

follows that any great circle is a geodesic.
(ii) Consider, a circle on the sphere, whose plane does not pass through the centre of the sphere.

Taking the normal to the plane of the circle as  = 0, the parametric equation of the circle is

0 0 0, , 0
2


        

 = k1s + k2,    k1  0, .....(8)
where k1, k2 are independent of s,  and .

It may be noted that on substitution of equations (8) in (5) and (6), the equation (6) is satisfied

but equation (5) reduces to
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k1
2 sin 0 cos 0 = 0,

which is not true under the given conditions on  and . Hence any circle, not being a great circle, on the

surface of a sphere is not a geodesic.

14.8 Geodesic coordinates

In Euclidean space VN the components of the fundamental tensor gij are constants and therefore

all the Christoffel symbols are zero at every point of the Euclidean space. However it is not possible to

have such a coordinate system for an arbitrary VN. Although it is always possible to choose a coordi-

nates system, so that all Chritoffel symbols are zero at a particular point P0
, i.e., in which gij are locally

constants, such a coordinates system is known as geodesic coordinate system with the pole at P0.

Thus we can define it as :

“A coordinates system is said to be a geodesic coordinate system with the pole at a point P0 if

relative to this coordinate system the components of the fundamental tensor gij are locally constants in

the neighbourhood of the point P0, i.e.,

0ij
k

g
x





at P0 for all values of i, j and k.”

It is to be noted that in this case the first covariant derivative at P0 reduces to the corresponding

partial derivative. Hence

0
0

, 0at
at

at .
i i

i r
j j jP

P

iA AA A P
rjx x

              

Theorem 2. It is always possible to choose a coordinate system so that all the Christoffel
symbols vanish at a particular point P0 (Geodesic coordinate system).

Proof. Let xi be any coordinate system and at a particular point P0 the value of xi is (0)
ix . Wee

introduce a new coordinate system ix  defined by the equation

   (0) (0) (0)
(0)

1
2

i i i m m n ni
x x x x x x x

mn
 

     
  .....(14.8.1)

Here the index (0) is used for the values at P0. Differentiating (14.8.1) with respect to xj

i

j
x
x

    (0) (0)

(0) (0)

1 1
2 2

i n m
m m n n

j j j
i ix x xx x x x

mn mnx x x
     

       
     

   (0) (0)
(0) (0)

1 1
2 2

i m m n m n n
j j j

i i
x x x x

mn mn
   

          
   

 (0)
(0)

.i n n
j

i
x x

jn
 

    
   .....(14.8.2)
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Hence
(0)

i

j
x
x

 
   

 .i
j   .....(14.8.3)

This shows that the Jacobian determinant 
(0)

i

j
x
x

 
   

 is not zero and therefore the transforma-

tion (14.8.1) is permissible in the neighbourhood of P0.

Taking inner multiplication of (14.8.2) with ,
j

k
x
x



 we get

i
k  (0)

(0)

,
i j

n n
k k

ix xx x
jnx x

  
   
  

.....(14.8.4)

which implies that at P0

i
k

(0)

i

k
x
x

 
    

. .....(14.8.5)

Differentiating (14.8.4) with respect to hx , we find

 
2 2

(0)
(0)

0 .
i n j i

n n
h k h k h k

i ix x x xx x
jn jnx x x x x x

      
      
         .....(14.8.6)

Hence at P0

2

(0)(0) (0) (0)

0 .
i n j

h k h k
ix x x
jnx x x x

        
                     

.....(14.8.7)

Using (14.8.5), we get

2

(0) (0)(0)

0 ,
i

n j
h kh k

i ix
jn hkx x

     
                  

.....(14.8.8)

therefore at P0
(0) (0)

,
i i

i i
j kj k

x x
x x

    
             

.

and
2

(0)(0)

.
i

h k
ix

hkx x
   

         
.....(14.8.9)

We know that
2

,
p i j p j

s l m j l m
p s x x x x x

lm ij x x x x x x
        

    
        

therefore
(0)

p
lm
 
 
 

2

(0) (0) (0) (0) (0) (0)

p i j p j

s l m j l m
s x x x x x
ij x x x x x x
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(0) (0)

p i j p
s j m j

s j
ij lm
   

        
   

(0) (0)

0.
p p

lm lm
   

     
   

.....(14.8.10)

This prove that theorem.

Theorem 3. The necessary and sufficient conditions that a system of coordinates be geo-
desic with the pole P0 are that their second covariant derivatives, with respect to the metric of
the space, all vanish at P0.

Proof. We know that
2

.
r r i j

l m p l m
p rx x x x

lm ijx x x x x
      

    
       

 .....(14.8.11)

Interchanging the coordinate system xi and ix the equation (14.8.11) can be written as

2 r

l m
x

x x

 

r i j

p l m
p rx x x

lm ijx x x
     

    
     


i j

l m
r x x
ij x x
   
 

  

r r

m l p
px x

lmx x x

      
             

 , , .r r
l pm

p
x x

lmx
  

    
   

Hence
i j

l m
r x x
ij x x
   
 

  
 , ,,

.r r
l lmm

x x     .....(14.8.12)

Necessary condition : If the coordinate system ix  be a geodesic coordinate system with pole

at P0, then

00 at ,
r

P
ij
 

 
 

and therefore from (14.8.12) it follows that   , 00 at .r
lmx P

Sufficient condition : Courversely suppose that

, 00 at .r
lmx P

then equation (14.8.12) implies 00 at
i j

l m
r x x P
ij x x
   

 
  

.

Thus, 00 at , as 0, 0.
i j

l m
r x xP
ij x x
   

   
  

Hence the proposition.
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14.9 Illustrative examples

Ex.5. Show that the coordinate system ix  defined by

(0)

1 ,
2

i i m ni
x x x x

mn
 

   
 

is a geodesic coordinate system with the pole at the origin.

Sol. Since the pole is at the origin (xm)(0) = 0, then ix  becomes a particular case of theorem 2.

We can prove it independently as follows :

i

j
x
x

 (0) (0)

1 1
2 2

i m n m n
j j j

i i
x x

mn mn
   

        
   

(0)

.i n
j

i
x

jn
 

    
  .....(1)

Also, we have
2 i

j k
x

x x


  (0) (0)

.n
k

i i
jn jk

   
     
   

.....(2)

Hence
2

(0)(0) (0)

and .
i i

i
jj j k

ix x
jkx x x

      
                 

.....(3)

Now , .
i i

i
jk k j r

ix xx
jkx x x

     
          

.....(4)

at the pole   , (0)
i
jkx

2

(0)(0) (0)

i i

j k r
rx x
jkx x x

      
                

(0) (0)

0.i
r

i r
jk jk

   
     
    .....(5)

Hence proved the result.

Ex.6. Show that at the pole P0 of a geodesic coordinate system

2

, .i
i jk lj k k

lAA A
ijx x x
  

   
    

Sol. Since we have , .i
i j rj

rAA A
ijx
 

   
  

.....(1)

Taking covariant derivative of (1), we get

 , , ,,
i

i j r i r r jk jk

r r rAA A A A
ij jk ikx x
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2

, , , .i r
i jk r i r r jj k k k

r r r rA AA A A A
ij ij jk ikx x x x
        

           
          

.....(2)

Now, we know that in geodesic coordinate system at the pole P0 the Christoffel symbols vanish

and therefore (2) reduces to
2

, .i
i jk rj k k

rAA A
ijx x x
  

   
    

.....(3)

14.9 Riemannian coordinates

The Riemannian coordinate system is a particular case of geodesic coordinate system. Hence

every Riemannian coordinate system is necessarily a geodesic coordinate system but converse is not

always true. To define Riemannian coordinate system we consider an arbitrary fixed point P0 in VN . We

define the quantity i such that

(0)

,
i

i dx
ds

 
    

 
 ......(14.9.1)

where suffix (0) indicates the value related to P0. Let c be the geodesic through P0 in VN. Since one and

one geodesic c will pass through P0 in the direction of i, such that

yi = si, .....(14.9.2)

defines the Riemannian coordinate system. Here P(yi) is a point on the geodesic c and s is the arc length

along the curve form P0 to P.

Theorem 4. The Riemannian coordinates are geodesic coordinates with the pole at P0.

Proof. The differential equation of geodesic c in terms of Riemannian coordinates yi relative to

VN are given by
2

2 0,
i j kid y dy dy

jk ds dsds
 

  
 

.....(14.9.3)

where
i
jk

 
 
 

 is the Christoffel symbol relative to the coordinates yi. Since the P(yi), defined by (14.9.2)

is on the geodesic c given by (14.9.1). This must satisfy it, therefore

0 0,j ki
jk

 
    
 

.....(14.9.4)

,i iy s Q  then (14.9.4) becomes

0.i ki
y y

jk
 

 
 

.....(14.9.5)

Equation (14.9.5) holds throughout the space VN. It also implies that

00 at .
i

P
jk

 
 

 
.....(14.9.6)
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Since at P0, yi  0,  yk  0.

Hence the Riemannian coordinates are geodesic coordinates with the pole at P0.

14.10 Field of parallel vectors (Parallelism of vectors)

The vectors Ai constitute a field of parallel vectors along the curve xi = xi (t) in a VN , if Ai is a

solution of the differential equation

, 0.
i i

i i
i j l

lA dAdx dxA A
ijt dt dt dt
 

      
.....(14.10.1)

The concept of parallelism is given by Levi-Civita. These are N-differential equations of first

order, therefore the general solution will involve N-constants. According the theory of differential equa-

tion, if the initial values of Ai are given at a point of the curve these constants will uniquely be deter-

mined, i.e., Ai will be determined uniquely at all other points if it is given at one point of the curve. Thus

we can say that a field of parallel vectors is obtained from a given vector by parallel propagation (dis-

placement) along the curve.

The condition (14.10.1) is in covariant form, we can write it in the contravariant form as

  0
i

jij ij
j

AA g A g
t t t

 
  

  

 , 0.
i j i j

i k
j

iA dx dA dxA A
jkt dt dt dt

 
      



Theorem 5. The magnitude of all vectors of a field of parallel vectors is constant.

Proof. If A be the magnitude of vector Ai, then

(A)2 = e(A) gij A
i Aj.

Differentiating with respect to parameter t, we find

2 dAA
dt    ( ) ( )

i j i j
A ij A ij

d e g A A e g A A
dt t


 



( )2 ,
i

j
A ij

Ae g A
t






as the total derivative becomes the intrinsic derivative in the case of scalars (e(A) gij A
i Aj is a scalar).

Using (14.10.2), we find that

2 dAA
dt = 0

  2dA A
dt = 0

 A2 = constant

 A = constant.

Hence the theorem.
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Theorem 6. Prove that the geodesic is an auto parallel curve.
Or

Prove that the unit tangent vectors form a field of parallel vectors along a geodesic.
Proof. The differential equation of a geodesic are

2

2 0
i j kid x dx dx

jk ds dsds
 

   
 

 0
i j kid dx dx dx

jkds ds ds ds
   

         

 0
i j j k

j
idx dx dx dx
jkds ds ds dsx

   
         

 0
i k j

j
idx dx dx
jkds ds dsx

    
            


,

0
i j

j

dx dx
ds ds

 
  

 

 , 0,
j

i
j

dxt
ds



which shows that the unit tangent vectors 
i

i dxt
ds

  form a field of parallel vectors along a geodesic.

Hence proved.

14.11 Parallelism of vector of variable magnitude along a curve

We know that Ai or Aj constitute a field of parallel vectors along the curve xi = xi (t) if their

intrinsic derivative with respect to t is zero. Further from Theorem 5, we find that the magnitude of all

vectors of a field of parallel vectors is constant.

We shall now define the parallelism of two vectors whose magnitude need not to be constant.

‘Two vectors at a point are said to be parallel, if their corresponding components are propor-

tional.’

Clearly, a vector Bi is called parallel to a vector Ai at each point of a curve c if

Bi = Ai,

where  is an arbitrary scalar function of arc length s.

Theorem 7. The necessary and sufficient condition for a vector Bi of variable magnitude
to suffer a parallel displacement along a curve c is that

 , .
j

i i
j

dxB B f s
ds
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Proof. Necessary condition : First we suppose that Ai constitute a field of parallel vectors

along the curve c, then the magnitude of Ai is constant and

, 0.
j

i
j

dxA
ds

 .....(14.11.1)

Now, we know that if Bi is parallel to Ai at each point of c, then

Bi = Ai. .....(14.11.2)

Therefore, ,

j
i
j

dxB
ds  

,

j
i

j

dxA
ds

 

,

j j
i i
j j

dx dxA A
ds dsx


  



0
id B

ds


  


[using (14.11.1) & (14.11.2)]

 logi dB
ds

 

 ,

j
i
j

dxB
ds  iB f s , .....(14.11.3)

where  logd s
ds

   = f (x). .....(14.11.4)

This shows that equation (14.11.3) is necessary condition for the vector Bi of variable magni-

tude to suffer a parallel displacement along c.

Sufficiently condition : Conversely suppose that Bi is a vector of variable magnitude, such that

,

j
i
j

dxB
ds  iB f s . .....(14.11.5)

Taking Ai = Bi F (s), .....(14.11.6)

we have ,

j
i
j

dxA
ds  

,

j
i

j

dxFB
ds



,

j i
i i
j j

dx F dxFB B
ds dsx


 



 i i dFFB f s B
ds

 

  .i dFB Ff s
ds

    
.....(14.11.7)

Choosing F such that

  0,dFFf s
ds

  .....(14.11.8)
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because of arbitrary nature of F (s), we find

, 0,
i

i
j

dxA
ds



which shows that Ai form a field of parallel vectors along c and is of constant magnitude, then (14.11.6)

implies that Bi is parallel along c.

14.12 Illustrative examples

Ex.7. Show that the vector Bi of variable magnitude suffers a parallel displacement along

a curve c if and only if

 , , 0.
j

l i i l
j j

dxB B B B
ds

 

Sol. We know from Theorem 7, that Bi suffers a parallel displacement along c if and only if

 ,

i
i i
j

dxB B f s
ds

 .

Taking outer multiplication by Bi, we get

 , .
j

l i l i
j

dxB B B B f s
ds

 .....(1)

Interchanging the suffixes i and l, we find

 , .
j

i l i l
j

dxB B B B f s
ds

 .....(2)

Subtracting (2) from (1), the required result is obtained as

 , , 0.
j

l i i l
j j

dxB B B B
ds

   .....(3)

Theorem 8. (Fundamental theorem of Riemannian geometry).
With a given fundamental tensor of a Riemannian manifold (Riemannian space VN), there

exists exactly one symmetric connection with respect to which the parallel displacement preserves
scalar product.

Proof. Let Ai and Bi be two unit vectors defined along a curve c in space VN and these vectors

suffer parallel displacement along c, then

, 0,
j

i
j

dxA
ds

 .....(1)

, 0,
j

i
j

dxB
ds

 .....(2)

The scalar product of Ai and Bi is gij A
i Bj, where gij is the given fundamental tensor.

The parallel displacement preserves scalar product if the intrinsic derivative of gij A
i Bj is zero.
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We have   , , ,,

k k k k
i j i j i j i j

ij ij k ij k ij kk

dx dx dx dxg A B g A B g A B g A B
ds ds ds ds

     
            
     

Using (1), (2) and Ricci theorem i.e.,  gij,k = 0.

So the R.H.S. is zero and this proves the theorem.

14.13 Self-learning exercises

1. Define Geodesic.

2. Write Euler’s condition of calculus of variation.

3. Define first curvature ?

4. What is null geodesic ?

5. What is field of parallel vectors ?

6. Write fundamental theorem of Riemannian geometry.

14.14 Summary

Geodesic in a surface is the curve of stationary length on a surface between any two points in its

plane. It is the main point of the study in this chapter. We obtained a differential equation whose solution

will give the geodesic curve. The geodesic coordinates and Riemannian coordinates have also been studied.

14.15 Answers to self-learning exercises

1. § 14.2 2. § 14.3 3. § 14.5

4. § 14.6 5. § 14.10 6. Theorem 8.

14.16 Exercises

1. Show that it is always possible to choose a geodesic coordinate system for any VN with an arbi-

trary point P0.

2. Obtain the equations of geodesic for the metric

   22 2 2 2 2 .ktds e dx dy dz dt   

3. Show that the great circles on sphere are geodesic.
4. Obtain the differential equation of geodesic for the metric

   
2 2 2 2 21ds f x dx dy dz dt

f x
    .

5. Give an example of a geodesic coordinate system.
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Unit 15 : Riemannian-Christoffel Tensor and its Properties,
Covariant Curvature Tensor, Einstein Space,
Bianchi’s Identity, Einstein Tensor, Flat Space,
Isotropic Point, Schur’s Theorem

Structure of the Unit

15.0 Objective

15.1 Introduction

15.2 Properties of Riemann-Christoffel tensor

15.3 Covariant curvature tensor

15.4 Properties of covariant curvature tensor

15.5 Illustrative examples

15.6 Contraction of Riemann-Christoffel tensor-Ricci tensor

15.7 Curvature invariant-Einstein space

15.8 Einstein tensor

15.9 Riemannian curvature of a VN at a point

15.10 Illustrative examples

15.11 Flat space

15.12 Isotropic point

15.13 Illustrative examples

15.14 Self-learning exercises

15.15 Summary

15.16 Answers to self-learning exercises

15.17 Exercises

15.0 Objectives

The objective of this unit is to study the commutativity of the process of covariant differentiation

of vectors and hence we define Riemann’s symbols of first and second kinds. The contraction of

Riemann-Christoffel tensor and Ricci tensor are the points of study. In the end Einstein space, Einstein

tensor and flat space are the points of study.
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15.1 Introduction

We have studies that the covariant differentiation of invariant is commutative. Now we shall in-

vestigate this property of commutative nature for covariant differentiation of vectors. For the study let us

take the covariant derivative of an arbitrary covariant vector Ai

, .i
i j j

AA A
ijx 
 

   
  

 .....(15.1.1)

Differentiating again covariantly with respect to xk, we get

 , , ,,
.i

i j j ik jk

AA A A A
ij ik jkx x   

         
         
        


2

,
i

i jk k j k k
A AA A

ij ijx x x x



      

     
      

i
j

A AA A
j ik i jkx x


 

               
                         



Now interchanging the suffices j and k, we find that

2

,
i

i jk j k j j
A AA A

ik ikx x x x



      

     
      

i
k

A AA A
k ij i kjx x


 

               
                         



Subtracting (15.1.3) from (15.1.2) and interchanging  we get

 , ,i jk i kj j kA A A
ik ij j ik k jx x

                 
                           

.....(15.1.4)

Since left hand side of (15.1.4) is a covariant tensor of third order and A be the arbitrary

covariant vector in the right hand side, therefore from quotient law it follows that the coefficient of A in

R.H.S. must be a mixed tensor of fourth order, contavariant of rank one and covariant of rank three. Let

us denote this quantity by .ijkR  i.e.,

.ijk j kR
ik ij j ik k ijx x

                
                       

. .....(15.1.5)

The tensor .ijkR defined by (15.1.5) is known as Riemann-Christoffel tensor or mixed cur--
vature tensor and thus, we have

, , . .i jk i kj ijkA A R A
  .....(15.1.6)

The symbol .ijkR  is also called Riemann’s symbol of second kind.*

* Riemann’s symbol of the first kind is introduced later on.
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Now it is clear that the necessary and sufficient condition for covariant differentiation of a vector

Ai to be commutative is that Riemann-Christoffel tensor be identically zero or .ijkR  = 0.

Note : .ijkR  is formed exclusively from the fundamental tensor gij and its derivatives upto sec-

ond order. It does not depend on the choice of Ai.

15.2 Properties of Riemann-Christoffel tensor

Property–I : The Riemann-Christoffel tensor is skew-symmetric in the last two subscripts, i.e.,

. .ijk ikjR R   . .....(15.2.1)
Proof. The result immediately follows from (15.1.5).

Property–II : .ijkR  has cyclic property in its subscripts, i.e.,

. . . 0.ijk jki kijR R R     .....(15.2.2)
Proof. By definition (15.1.5), we have

.ijk j kR
ik ij ik j ij kx x

                
                       

.....(15.2.3)

. jki k iR
ji jk ji k jk ix x

                
                       

.....(15.2.4)

.kij i jR
kj ki kj i ki jx x

                
                       

.....(15.2.5)

Adding these, we get

. . . 0.ijk jki kijR R R     .....(15.2.6)

Hence the result follows.

Property–III : .ijkR  vanishes on contraction in  and i, i.e.,

. jkR
 = 0. .....(15.2.7)

Proof. In equation (15.2.5) of §15.2 contracting over  and i, we get

. jk j kR
k j k j j kx x




               
                           

.....(15.2.8)

The last two terms cancel out as  and  are dummy indices, therefore using Property–4 of

Christoffel symbols, we get

. log log 0.jk j k k jR g g
x x x x




                 
.....(15.2.9)

15.3 Covariant curvature tensor

The covariant curvature tensor is defined as

. .rijk r ijkR g R
 .....(15.3.1)



336

It is fourth order covariant tensor and is also called as Riemann tensor. The symbol Rrijk is

also called Riemann’s symbol of first kind. It is an associate tensor of Riemann-Christoffel tensor.

The properties of Rrijk can easily be studies if we express it in a more suitable form. Substituting

the value of .ijkR  in the above definition, we get

Rrijk r j kg
ik ij ik j ij kx x

                 
                         

r
r rj j k

gg g
ik ik ijx x x


 

            
          
          

r
r rk

g g g
ij ik j ij kx


 

           
                  

        .....(15.3.2)

Using properties (15.3.1) and (15.3.2) of Christoffel symbols, the above expression reduces to

Rrijk       , , ,j ik r rj j r
ikx
 

     
  

       , , ,k ij r rk k r
ijx
 

     
  

   , ,j r k r
ik ij
    

      
   

       , , , ,j kik r ij r rk r rj r
ij ikx x
     

      
     

.....(15.3.3)

the remaining terms cancel out by suitable changes of dummy indices. It can further be simplified as

Rrijk
1 1
2 2

ijir kr ik ir ir
j k i r k j i r

gg g g g g
x x x x x x x x

                        
       , , , , .g ij rk g ik rj            .....(15.3.4)

Finally, we have

Rrijk

2 22 21
2

ij rjrk ik
i j r k r j i k

g gg g
x x x x x x x x

   
    
         

         , , , , ,g rk ij rj ik        .....(15.3.5)

which is an important formula from the point of view of studying the properties.

15.4 Properties of covariant curvature tensor

Property–I : Rrijk is skew-symmetric in the pair of first two indices, i.e.,

Rrijk = – Rirjk
     (skew-symmetric property) .....(15.4.1)

The above result can easily be proved by interchanging r and i in (15.3.2) of §15.3.

Property–II : Rrijk is skew-symmetric in the pair of last two indices, i.e.,

Rrijk = – Rrikj      (skew-symmetric property) .....(15.4.2)

It can also be proved by interchanging  j and k in (15.3.2) of §15.3.
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Property–III : Rrijk is symmetric in two pairs (first and last) of indices, i.e.,

Rrijk = Rjkri      (symmetric property) .....(15.4.3)

If may be easily seen from (15.3.2) of §15.3 by interchanging r and j, then i and k.

Property–IV : Rrijk has cyclic property in last three indices, i.e.,

Rrijk + Rrjki + Rrkij = 0     (cyclic property) .....(15.4.4)

Proof : We have Rrijk . .r ijkg R
 .....(15.4.5)

Giving cyclic rotation to i, j, k and adding, we get

Rrijk + Rrjki + Rrkij . . .r ijk r jki r kijg R g R g R  
    

 . . .r ijk jki kijg R R R  
  

= 0.    [using property–II of §15.2] .....(15.4.6)

Property–V : (Bianchi’s identity).
The differential property satisfied by covariant derivative states

Rrijk,p + Rrikp,j + Rripj,i = 0

or equivalently . , . , . , 0.ijk p ikp j ipj kR R R     .....(15.4.7)

Proof : The identity is proved conveniently, by choosing geodesic coordinate system with the

pole at P0, so that all the Christoffel symbols vanish at P0. We recollect that by choosing so, the first

covariant derivative of any tensor at P0 reduces to the corresponding partial derivative. For example

0
0

, at
at

.
i

i
j jP

P

AA
x

         
.....(15.4.8)

Now . ,ijk j kR
ik ij ik j ij kx x

                
                       

at P0 becomes .ijk j kR
ik ijx x

      
    
    

and  
2 2

. ,
.ijk p j p kp

R
ik ijx x x x

      
    
      

.....(15.4.9)

Similarly, after cyclic rotation to j, k, p, we get

 
2 2

. ,ikp j k j pj
R

ip ikx x x x
      

    
      

.....(15.4.10)

and  
2 2

. ,
.ipj k p k jk

R
ij ipx x x x

      
    
      

.....(15.4.11)

Adding these three expressions (15.4.9) to (15.4.11), we get

     . . ., , ,
0.ijk jkp kpjp j i

R R R     .....(15.4.12)
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Taking inner multiplication by gr and remembering that the fundamental tensor behave like a

constant is covariant differentiation, we obtain

     . . ., , ,
0.r ijk r jkp r ipjp j k

g R g R g R  
    

or Rrijk,p + Rrikp,j + Rripj,k = 0. .....(15.4.13)

This is Bianchy identity.

15.5 Illustrative examples

Ex.1. Prove that 
2

1212 2
GR G

u


 


 for the V2 whose line element is ds2 = du2 + G2 dv2,

where G is a function of u and v.
Or

Show that the component R1212 of the curvature tensor for a V2 with metric

ds2 = dx2 + f (x, y) dy2    equals   
22

2
1 1 .
2 4

f f
f xx

       

Sol. For the metric

ds2 = du2 + G2 dv2,

we have x1 = u,   x2 = v, g11 = 1,   g22
 = G2,   g12 = 0,   g21 = 0. .....(1)

Since Rrijk

2 22 21
2

ij rjrk ik
i j r k i k r j

g gg g
x x x x x x x x

   
    
         

      , , , ,g rk ij rj ik     

the value of R1212 is given by

R1212       
2 2

11 12
2 2 1 1

1 0 0 12, 21, 11, 22,
2

g g g
x x x x

  
               

        
2

2 11
2

1 12,1 21,1 11,1 22,1
2

G g
u


   


      22 12,2 21,2 11, 2 22, 2g 

 11 22 22 22
1 1

1 1 12 0
2 2 2

g gGG g g
u u x x

                 

 
2

2
2

1 1 .
2 4

GG G
u u uG
               

.....(2)

 R1212
2

2
GG

u


 


. .....(3)

Taking G f  and u = x the alternative form may easily be obtained.
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15.6 Contraction of Riemann-Christoffel tensor-Ricci tensor

Theorem 1. The Riemann-Christoffel tensor .ijkR  (or mixed curvature tensor) can be con-
tracted in two different ways-one of these leads to a zero tensor and other to a symmetric tensor

Rij, known as Ricci-tensor.
Proof. We have by definition

.ijkR
j kik ij ik j ij kx x

               
                       

.....(15.6.1)

(i) Contracting over i and , i.e., setting i = , we get

. jkR
 j kk j k j j kx x

               
                           

.....(15.6.2)

Interchanging the dummy indices  and , the last two terms cancel out. Further, using property

of Christoffel symbols

. jkR
    log logj k k jg g

x x x x
                

= 0. .....(15.6.3)
(ii) Contracting over k and , i.e., setting k = , we get

.ijR
 j i ij i j ijx x

               
                         

.....(15.6.4)

Writing, (Ricci tensor)

Rij = . .r
ij rijR g R 
  .....(15.6.5)

The above expression becomes

Rij    log logj i g g
ij i j ijx x x x 

                                        

.....(15.6.6)

It may easily be observed that, by interchanging i and j in (15.6.6), that

Rij = Rji       (symmetric property) .....(15.6.7)

Thus Rij is a symmetric tensor and is called Ricci tensor. It is defined by (15.6.5) and (15.6.6).

Notes :
1. The contraction over  and j (j = ) does not yield any new tensor, because

.i k ik ikR R R 
    

[using skew-symmetric property of Riemann-Christoffel tensor.]

where is Ricci tensor with negative sign.

2. If g is negative, replace log g  by log g  in (15.6.6).
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15.7 Curvature invariant-Einstein space

The curvature invariant R is defined as

.ij i
ij iR g R R  .....(15.7.1)

A space for which at every point of it
Rij = Igij, .....(15.7.2)

where I is an invariant and it is called on Einstein space. The inner multiplication of (15.7.2) by gij and
using (15.7.1), we get

R = NI. .....(15.7.3)

Hence for an Einstein space

Rij .ij
R g
N

 .....(15.7.4)

15.8 Einstein tensor

It is defined as

i
jG

1 ,
2

il i
jl jg R R   .....(15.8.1)

and it has a considerable importance in the theory of relativity.

Theorem 2. The divergence of Einstein tensor vanishes, i.e.,

, 0.i
j iG 

Proof. We have from Bianchy identity

, , , 0.rijk p rikp j ripj kR R R   ......(15.8.2)

Taking inner multiplication of the above relation by gij grk, we get

     , , ,
0.ij rk ij rk ij rk

rijk rikp ripjp j k
g g R g g R g g R   .....(15.8.3)

Using the definition of Ricci tensor and the skew-symmetric property of covariant curvature ten-

sor, we find

     , , ,
0.ij ij rk

ij ip rpp j k
g R g R g R  

or      , , ,
0j k

p pp j k
R R r  

or      , , ,
j j
p pp j j

R R R 

or   ,, 2 j
p jpR R

or , ,
1 1 ,
2 2

j
p j p p

RR R
x


 


.....(15.8.4)

where j ij
p ipR g R  is the associate tensor of Rip.

Now
1 .
2

i i i
j j jG R R   .....(15.8.5)
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Taking its divergence and using (15.8.4), we get

 i
jdiv G ,

i
j iG

  ,,

1
2

i i
j j ij

R R  

, ,
1 1 0.
2 2j jR R   .....(15.8.6)

Hence Proved.

Theorem 3. An Einstein space VN (N > 2) has constant curvature (Curvature inva-
riant R).

Proof. Taking inner multiplication of Bianchy identity by gij grk, we get

,
1 ,
2

j
p j p

RR
x





.....(15.8.7)

where .j ij
p ipR g R

In an Einstein space VN, we have

.ip ip
RR g
N

 .....(15.8.8)

Taking inner multiplication of it by gij, we get

ij ij
ip ip

Rg R g g
N



or .j j
p p

RR
N

  .....(15.8.9)

Now taking covariant derivative with respect to xj, we get

, , ,
1 1 .i j

p j p j pR R R
N N

   .....(15.8.10)

Hence from (15.8.7) & (15.8.8), we conclude that

1 1 0, . ., 0, since 2
2 p p

R Ri e N
N x x

         
.

or we can say that R is constant.

Thus Einstein space VN (N > 2) has constant curvature.

15.9 Riemannian curvature of a VN at a point

If Ai and Bi be any two contravariant vectors at a point of a VN, then

 
,

r j i k
rijk

r j i k
rj ik rk ij

R A A B B

g g g g A A B B
 



is called the Riemannian curvature of the space VN associated with the vectors Ai and Bi.

It is an invariant, which is unaltered at a point, when the two vectors determining it are replaced

by any linear combination of them.
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15.10 Illustrative examples

Ex.2. The metric of V2 formed by the surface of a sphere of radius a is

ds2 = a2 d2 + a2 sin2  d2,

in spherical polar coordinates. Show that the curvature of the surface of the sphere is 2
1 ,
a

 which

is constant.

Sol. For the metric ds2 = a2 d2 + a2 sin2  d2,

we have x1 = ,    x2 = ,  g11 = a2,    g22 = a2 sin2 ,    g12 = 0,   g21 = 0. .....(1)

Therefore, 11 12 4 2

21 22
sin .

g g
g a

g g
   .....(2)

Now R1212

22
2222 22

1 1 1
1 1
2 2

g gg
x x x
         

   
22

2 2 2 2
2 2 2

1 1sin sin
2 4 sin

a a
a

          

 R1212 = a2 sin2 . .....(3)

 
2 2

1212
4 2 2

sin 1 ,
sin

R a
g a a


  




which is curvature of the surface of the sphere.

Ex.3. Show that the Riemannian of a V2 is uniquely determined at each point, and its value
is given by

1212R
g

 

Sol. In a two-dimensional space, at any point of it, there exists only two independent vectors.

Therefore the Riemannian curvature of a V2 is uniquely determined at each point. In a V2 the number of

independent components of Rrijk is 1. The value of  can easily be found by choosing the two vectors

whose components are (1, 0) and (0, 1) respectively. Then

 

1 2 1 2
1212 1212

1 2 1 2
11 22 12 21

,R A B A B R
gg g g g A B A B

  


as A1 = 1, B2 = 1.

15.11 Flat space

A space for which the Riemannian curvature is identically zero at every point of it ( = 0), is

called a flat space.
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Theorem 4. The necessary and sufficient condition for a space VN to be flat is that the

Riemann-Christoffel tensor be identically zero, i.e., . 0.ijkR 

Proof : Necessary condition :
Let the space VN be flat, them  = 0 at every point of VN , i.e.,

Rrijk A
r Bj Bi Bk = 0,

for all vectors Ai and Bi. From it we cannot jump to the conclusion that Rrijk = 0. It must be remem-

bered that in the form Rrijk A
r Bj Bi Bk  the coefficient of the product Ar Aj Bi Bk is mixed up with the

coefficients of Aj Ar Bi Bk, Ar Aj Bk Bi  and Aj Ar Bk Bi, it is fact Rrijk + Rjirk + Rrkji + Rjkri which

may be obtained by interchanging the dummy indices as follows :

Rrijk A
r Aj Bi Bk = 0 .....(15.11.1)

Also Rjirk A
j Ar Bi Bk = 0 .....(15.11.2)

Rrkji A
r Aj Bk Bi = 0 .....(15.11.3)

Rjkri A
j Ar Bk Bi = 0 .....(15.11.4)

On addition, (Rrijk + Rjirk + Rrkji + Rjkri) A
r Aj Bi Bk = 0. .....(15.11.5)

This implies that for arbitrary Ai, Bi

Rrijk + Rjirk + Rrkji + Rjkri = 0.

 Rrijk + Rrkji + Rrkji + Rrijk = 0 [using symmetric property]

 2(Rrijk + Rrkji) = 0,

 Rrijk = Rrkji.                       [using skew-symmetric property] .....(15.11.6)

Interchanging i, j and k cyclically in (15.11.6), we get

Rrjki = Rrijk. .....(15.11.7)

From (15.11.6) and (15.11.7), we have

Rrijk = Rrjki = Rrkij. .....(15.11.8)

Now substituting (15.11.8) in the cyclic property–IV of §15.4

Rrijk + Rrjki + Rrkij = 0. .....(15.11.9)

we find 3Rrijk = 0

 Rrijk = 0. .....(15.11.10)

Since, Rrijk .r ijkg R
 ,

and gris an arbitrary, it implies that

.ijkR = 0. .....(15.11.11)

Sufficeint condition : Conversely, if .ijkR = 0. i.e., Rrijk = 0, then it in clear  = 0.
Hence the theorem.

Note : Taking inner multiplication of Ai,j = 0 with ,
jdx

dt
 we get

, 0
j

i j
dxA
dt
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 0.iA
t






This shows that in a flat space the property of parallelism is independent of the choice of a curve.

Thus parallelism is an absolute property of a flat space.

15.12 Isotropic point

An isotropic point in Riemannian space is a point at which the Riemannian curvature is indepen-

dent of the vectors Ai and Bi associated to it.

It implies that [Rrijk –  (grj gik – gij grk)] A
r Aj Bi Bk = 0, .....(15.12.1)

for all vectors Ai and Bi at the isotropic point.

Now we define a tensor Trijk by the equation

Trijk = Rrijk –  (grj gik – gij grk). .....(15.2.2)

then (15.2.1) reduces to Trijk A
r Aj Bi Bk = 0. .....(15.12.3)

Proceeding parallel to Theorem 4, we conclude from (15.12.3) that will be true for any vectors

Ai and Bi if

Trijk + Tjirk + Trkji + Tjkri = 0. ......(15.12.4)

According to (15.12.2) we see that the tensor Trijk satisfies the same four properties as by Rrijk
viz.

Trijk = – Tirjk ;   Trijk = – Trikj ;   Trijk = Tjkri

and Trijk + Trjki + Trkij = 0. .....(15.12.5)

Hence repeating the same steps as in (15.12.3), replacing Rrijk by Trijk, we finally get

Trijk = 0. .....(15.12.6)

Thus from (15.12.2) to (15.12.6), it follows that at an isotropic point the Riemannian curvature

satisfies the condition

Rrijk =  (grj gik – gij grk). .....(15.12.7)

Now we state an important theorem due to Schur.

Theorem 5. (Schur’s theorem).

If a Riemannian space VN (N > 2) is isotropic at each point in a region, then the Rieman-

nian curvature is constant throughout that region.

(Such a space VN is called a space of constant curvature).

Proof. We know that if the Riemannian space VN is isotropic at each point in a region, then

Rrijk =  (grj gik – gij grk), .....(1)

where  is the function of coordinates xi.

Taking covariant differentiation of (1) with respect to xi, we get

Rrijk,t = (grj gik – gij grk) ,t. .....(2)

since the covariant derivative of the metric tensor vanishes.
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Permuting the subscripts j, k, t cyclically, we find

Rrikt,j = (grk git – gik grt) ,j .....(3)

and Rritj,k = (grt gij – git grj) ,k. .....(4)

Adding equations (2), (3) and (4) and using Bianchi identity, we get

(grj gik – gij grk) ,t + (grk git – gik grt) ,j + (grt gij – git grj) ,k= 0. .....(5)

Taking inner multiplication by grj gik, we find

     2
, , , 0j k j k i j k k

j t t t j r j t kk kN N N               

      2
, , ,1 1 0j k
t t j t kN N N N          

 (1 – N) [,t + ,t – N,t] = 0

 (1 – N) (2 – N) ,t = 0. .....(6)

But N > 2, therefore ,t = 0, but this is simply 0.tx





 Hence it follows that  is a constant.

Such a VN is called space of constant curvature. Hence the theorem is proved.

15.13 Illustrative examples

Ex.4. If the metric of a two dimensional flat space is  f (r) [(dx1)2 + (dx2)2],

where    (r)2 = (x1)2 + (x2)2,    show that   f (r) = c (r)k,   where c and k are constants.

Sol. We have the metric

ds2 = f (r) {(dx1)2 + (dx2)2},

therefore g11 = f (r),   g22 = f (r),    g12 = 0,    g21 = 0. .....(1)

The only non-zero component of Rrijk in a V2 is R1212 which in the present case is given by

R1212

2 22 2

1 1 2 2 1 2
1 1
2 2

f f f f
fx x x x x x

                                
.....(2)

In a V2,  1212 .R
g



For a flat space  = 0, i.e.
R1212 = 0.

Hence
2 2

1 1 2 2
f f

x x x x
 


   

2 2

1 2
1 .f f
f x x

                
.....(3)

But f = f (r) (r)2 = (x1)2 + (x2)2. .....(4)

Therefore, changing (3) to polar coordinates, we get

2

2
1f f
r rr

 




21 .f
f r

    
.....(5)
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Let, F = log f (r). .....(6)

Then (5) reduces to

2

2
1 0d F dF
r drdr

 

 0, . ., (constant)d dF dFr i e r
dr dr dr

     
 

or , . ., log .dF ri e F
dr r A


   .....(7)

From (6) and (7), we conclude that f (r) = c (r)k, where c and k are constants.

Ex.5. Prove that, in space VN of constant curvature ,
(i) Rij = – (N – 1) gij,    and

(ii) R = – N (N – 1) .

Deduce that a space of constant curvature is an Einstein space.
Sol. In the space of constant curvature

(i) Rrijk =  (grj gik – gij grk). .....(1)

Taking inner product with grk, we get

grk Rrijk   ,k
j ik ijg g N    .....(2)

Using the definition of Ricci tensor, we have
Rij =  (1 – N) gij. .....(3)

(ii) Again taking the inner product of (1) by gij, we get

gij Rij =  (1 – N) gij gij
 R =  (1 – N) N. .....(4)

From (3) and (4), it follows that

Rij .ij
R g
N

 .....(5)

This shows that a space VN (N > 2) of constant curvature is an Einstein space.

Ex.6. In a V2, prove that
R (gij grj – gij grk) = – 2 Rrijk

and hence that Rg = – 2 R1212.

In this case, prove also that the components of Ricci tensor are proportional to the com-
ponents of metric tensor that is

g Rik = – R1212 gik.

Sol. Since a V2 is isotropic, the equation

Rrijk =  (grj gik – gij grk), .....(1)

holds throughout any V2.
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Using the method of example 5, we get

Rij = –  gij,     N = 2 .....(2)

and R = – 2. .....(3)

From (1) and (3), – 2Rrijk = R (grj gik – gij grk)

 – 2R1212 = R (g11 g22 – g12
2)

 – 2R1212 = R.g. .....(4)

Now from equation (2), (3) and (4),

gRij 1212 .
2 ij ij
R gg R g   .....(5)

This gives the required result.

15.14 Self-learning exercises

1. Define Riemann-Christoffel tensor.

2. Write the necessary and sufficeint conditions for covariant differentiation of a vector Ai to

be commutative.

3. Define covariant curvature tensor.

4. What is Ricci tensor ?

5. What is Bianchy identity ?

6. Define Einstein tensor.

7. What is the divergence of Einstein tensor ?

8. What do you mean by flat space ?

9. Write the statement of Schur’s theorem.

15.14 Summary

In this unit we have studied the commutativity of covariant differentiation of vectors and defined

Riemann-Christoffel tensor. On the basis of this we have defined covariant curvature tensor. The prop-

erties of covariant curvature tensor are also given. The contraction in Riemann-Christoffel tensor gives

Ricci tensor. Then the Einstein space has been defined. Bianchy identity and Einstein tensor have also

been studied. The divergence of Einstein tensor vanishes. A space for which Riemann curvature is identi-

cally zero at every point of it, is called flat space.

15.15 Answers to self-learning exercises

1. § 15.1 2. § 15.1 3. § 15.3

4. § 15.6 5. § 15.4 6. § 15.8

7. § 15.8 8. § 15.11 9. § 15.12
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15.16 Exercises

1. Prove that

, , ,p
l mn l nm plmnB B R B 

where Bp is an arbitrary covariant tensor of rank 1 and deduce that p
lmnR  is a tensor..

2. Define Riemann’s symbols of first and second kind. If Bi are components of a vector, prove that

, , .i jk i kj ijkB B B R
 

3. Show that the space of constant curvature is Einstein space.

4. For a V2 space, prove that

gRij = – gij R1212   and   gR  = – 2R1212.

Hence deduce that every V2 is an Einstein space.

5. Show that the number of independent components of the covariant curvature tensor in a space

of N-dimension is

 2 21 1 .
12

N N 
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