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PREFACE

The Present book entitled “Differential Geometry and Tensors-1" has been
designed so as to cover the unit-wise syllabus of Mathematics-Fourth paper for
M.A./M.Sc. (Previous) students of Vardhaman Mahaveer Open University, Kota. It
can also be used for competitive examinations. The basic principles and theory
have been explained in a simple, concise and lucid manner. Adequate number of
illustrative examples and exercises have also been included to enable the students
to grasp the subject easily. The units have been written by various experts in the
field. The unit writers have consulted various standard books on the subject and

they are thankful to the authors of these reference books.
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1.0  Objectives

This unit provides a general overview of :
* Differential geometry

* Space curves

* Tangent

+ Contact of curve and surface

* Osculating plane.

1.1 Introduction

Differential geometry is that part of geometry which is treated with the help of differential calcu-
lus. There are two branches of differential geometry :

Local differential geometry : In which we study the properties of curves and surfaces in the
neighbourhood of a point.

Global differential geometry : In which we study the properties of curves and surfaces as a

whole.

1.2 Space curves

A curve in space is defined as the locus of a point whose cartesian coordinates are the functions
of a single variable parameter u, say.

We can represent a space curve in the following two ways :

As intersection of two surfaces :

Let f| (x, 3, 2) = 0, f5 (x, 3, z) = 0 be two surfaces then these equations together represent the
curve of intersection of the above surfaces. If this curve lies in a plane then it is called a plane curve,
otherwise it is called to be skew, twisted or tortous.

For example, if f; (x, y, z) = 0, represents a sphere and £, (x, y, z) = 0 represents a plane then

these two equations together represent a circle.
Parametric representation :

If the coordinates of a point on a space curve be represented by the equations of the following
form
x=f0, y=H©, z=z70 .. (1.2.1)
where f, f,, f; are real valued functions of a single real variable ¢ ranging over a set of values
a<t<b.

The equation in (1.2.1) are called parametric equation of the space curve.



1.2.1 Vector representation of a space curve :

If 7 be the position vector of a current point A on the space curve whose cartesian coordianates

be x, y, z then we know that

r = xf+yj'+zl€
or F=h0i+t O]+ Ok
or F=f()
or =@ L0, 0 L (1.2.2)

where f'is a vector valued function of a single variable . Thus space curve may be defined as :
A space curve is the locus of a point whose position vector 7 with respect to a fixed origin

may be expressed as a function of single parameter.
1.2.2 Unit tangent vector of a curve :

Consider two neighbouring points 4 (x, y, z) and B (x + dx, y + dy z + 8z) on a curve C whose

position vectors are 7 and » + dr, respectively. We have

B(x+dx, y+ 0y, z+ 62)

A(x,y 2

Fig. 1.1
AB =OB—OA=7F+57 —F =& -
Let ds be length of arc 4B measured along the curve and arc P4 = s is measured from any

convenient point P on the curve.

AB  &F
‘E‘_ChordAB

Unit vector along chord AB =

_dF Arc 4B
ds Chord 4B
But as B tends to 4, then the chord 4B tends to be tangent at P.

lim Arc AB
Also we know that B—>4 Chord AB



Hence, unit vector along tangent at 4 = lim —-———=—-1
B—4 O6s Chord AB ds
dr
=—=/F L. 1.2.4
s (1.2.4)
Unit tangent vector at 4 is denoted by 7 and is taken in the direction of s increasing
If F=(x,y,z2) ie. F=xi+yi+zk
then ;:ﬂ:(ﬂ’d_y’%J
ds \ds ds ds
ie. f:@h@jurflé ..... (1.2.5)
ds ds” ds
Since 7 is unit tangent vector, | £ ‘:1.
2 2 2
SORCRE
ds ds ds
(dx dt}z (dy dt}z [dz dth
or l=| —— | +| = —| +| ——
dt ds dt ds dt ds
dsY (dxY (dyY (dzY
or — | == YN
dt dt dt dt
or §2:x2+)’/2+z’2,
where s = é, X= ax etc. (1.2.6)
dt dt

and 7 is any parameter.
1.2.3 The equation of tangent line to a curve at a given point :

The tangent line to a curve at any point A4 is defined as the limiting position of a straight line
through the point 4 and a neighbouring point B on the curve as B tends to A along the curve.




Let 7 =7 (S) be the parametric equation of a curve and 4 be any point on it whose position

~ dr
vector is 7 and a unit tangent vector at 4 be denoted by 7 = s =r.

Let P be any point on the tangent line at 4 whose position vector is R (say).

Also 4P = wi where ‘AP‘zw

But OP = OA+ AP
R=F+wif or R=F+w?i .. (1.2.7)
Equation (1.2.2) gives us the equation of tangent line at 4.

Tangent line in cartesian form :

We maywrlte f:xf+yj+z]€
= F’:x’f+y’}'+z’l€
and E:Xz'A+Y]'+Zl€

Substituting these value in equation (1.2.2) of tangent line, we get
Xf+}§'+Zl€ =xf+yj+z/€+c(x'f+yj+z'/€)
or Xf+ﬁ+21€:(x+cx’)f+(y+cy’)}'+(z+cz')l€,
where c is a non-zero constant.
Equating coefficients of 7, j, k¢ ffom both sides

X=x+cx', Y=y+¢y, Z=z+cZ

X-x Y-y Z-z
i.e. [; = ] = ] =C’
X y z

X-x Y-y Z-z
i-e- 1 = ! = !
X y z

This is the required equation of tangent line at (x, ), z) and direction cosines of the tangent line
are proportional to x', )/, z'.

1.2.4 Equation of tangent line when the equation of the curve is given as the intersec-
tion of two surfaces :

Let the equation of two surfaces are

F,(xyz=0andF, (x,,2)=0 .. (1.2.9)

where x, y, z are functions of a parameter.
OF, dx OF dy OR dz_,

Now ox di oy di ez 4t e (1.2.10)

OF, dx OF, dy OF, dz
L2525 %, (1.2.11)
Ox dt Oy dt o0z dt



Hence from equation (1.2.3) and (1.2.4)

i j z

oy 0z 0z 0y 0Oz Ox Ox Oz ox 0y Oy Ox
which are the direction ratios of the tangent and dot represents differentiation w.r. to “¢’.
Therefore, the equation of tangent line at a point (x, y, z) on the curve of intersection of the two

given surfaces is given as

X—x Y-y Z—z

..... (1.2.13)

oy 6z 0z Oy 0Oz Ox Ox 0Oz Ox Oy Oy Ox

1.2.5 Direction-cosines of the tangent line :

Let 4 (x, y, z) and B (x + 0x, y + 0y, z + dz) be adjacent points on a given curve in rectangular
coordinate axes. or the measure of chord 4B is given by
5772 = ox2 + 82 + 82
Let s be the length of the arc measure from some fixed point P to any point 4 on the curve.

If the measure of the arc 4B of the curve be ds then

SRERGES]

' im Chord 4B 1
Since B—4 Arc AB

2 2 2
(2 ()55
ds ds ds
ds\ (dxY dy > (dz) 12
or — = — | +| —| +| — =| v |
dt dt dt dt
Hence =ttt (1.2.14)

) . dx
where x, y, z are functions of 7 and X = ?etc.
t

But %, y, z are direction ratios of a tangent line therefore the direction cosines of the tangent

line at 4 are

Fp: o dvdy d
$757 S ds’ ds’ ds
But d_r dxf+ﬂ]ﬁ+%l€.

ds =£z ds ds

The direction cosines of the tangent line are x', y', z’ which are the components of 7 where a

prime denotes differentiation with respect to s. Clearly | 7 | =1, i.e. ¥ is unit vector along the tangent.



1.2.6 Examples :

Ex.1. Find the equation to the tangent at the point 0 on the circular helix
x=acos0,y=asnO,z=C0

Sol. The vector equation of the helix is given by
F=acos0i +asinfj+C 0k
F :—asin65+ac0s6}+Cl€

The equation of the tangent in given by

R=F+\F
or Ez(acose f+asin9j’+C9/€)+k(—asin9 f+ac0sej+Cl€)
If R=Xi+Y}+Zk,

then Xf+)§'+Zl€:a(cos6—ksin6) [ +a(sin@+Xcos0) ]’+C(6+X)l€

S X—acos® Y-—-asin® Z-CO
which gives _ = = ,
—asin® acos0 C

It is the required equation of tangent line.
Ex.2. Show that the tangent at any point of the curve whose equations are
x=3t,y=322=28
makes a constant angle with line
y=z—-x=0.
Sol. The direction-rations of the tangent at ‘t’ to the given curve are
3,6t, 66 (ie, X 7,2)
The direction ratios of the given line are
1,0,1.
If 0 be the angle between the tangent and the given line, than

3x1+6tx0+61%x1

\/9+36t2+36t4)(\/1+0+1)

cos6=(

o o3(e2)

_\/§x3(1+2t2)_ﬁ

which is independent of'z, hence 0 is constant.

Ex.3. Show that the tangent at a point of the curve of the intersection of the ellipsoid

y2
tT

QN|><
o>
(@)



and the confocal whose parameter A is given by

x(X—x) _ y(Y—y) _ z(Z—z) .
az(bz—cz)(az—k) bz(cz—az)(bz—k) cz(az—bz)(c2—k)

Sol. The equation of a confocal to the ellipsoid

P
R=S5+=>+>-1=0 .. (1)
a- b” c
. 2 32 2 )
IN) F, = + + -1=0 ..
Pah bPon P
Equations to a tangent line are
X—x _ Y-y _ Z—z 3)
OF OF, OF 0F, OF 0F, 0F0F, 0FOoF, oRoF,

oy 0z 0z 0y 0Oz Ox Ox Oz ox 0y Oy Ox

OFf 2x oFf 2y OoF 2z oF, _ 2x OF, 2y OF 12z

Here , , , ) = ) =
ox a* oy b3 PFox aP-r dy BN 0z -

Putting these values in equation (3), we get

x(X—x) _ y(Y—y) _ z(Z—z)
az(bz—cz)(az—k) bz(cz—az)(bz—k) cz(az—bz)(c2—k)

which are the required equations of the tangent.

1.2.7 Self-learning exercise-1 :

1. Name the branches of differential Geometry.

If the curve lies in a plane then it is called ..... .
The intersection of two surfaces is called ........ .

Write the equation of a tangent line at a point.

A

Write the equation of tangent line when the equation of the curve is given as the intersection

of two surfaces.

1.3

Contact of curve and surface

We know that in a plane curve the tangent at A4 is the limiting position of the chord 4B when B

coincides with 4. In a similar manner if 4, 4,, ..., 4, | be points on a given curve lying on a given

surface and if 4,, Agy ooy 4,14 all coincide with 4, than we say that a curve has a contact of nth order

with the surface at 4,. We may also say that the curve and the surface has (n + 1) points of contact.

1.3.1 Definition :

If4,4,, A,,..., A, points on a given curve lic on a given surface and 4, 4,, ..., 4, coincide

with A4, then curve and surface are said to have the contact of nth order at the point A.



1.3.2 To find the condition that a curve and a surface have a contact of nth order :

Let the equation ofthe curve C be given by

F=x@,y®.z0 (1.3.1)
and the equation of the surface S be given by
feeyz=0 L (1.3.2)

The values of ¢ corresponding to the points of intersection of the curve C and surface S are the

roots of the equation

FO=f{x@®,y®,z@®y=0 .. (1.3.3)
Let =1, be aroot of the equation F (#) = 0 so that
F(ty)=0. L (1.3.4)

Then ¢ =1, give as a point of intersection of C and S.

Put t=1,+ i so that

FO=F@,+mh. L (1.3.5)
Expanding F' (¢) about 7, by Taylor’s theorem, we get
i W o
F(t)=F(ty)+h F(z0)+EF(to)+EF(zo)+... [ (1.3.6)
Since £ is a solution of the equation (1.3.4) therefore F () = 0, then we have
i W o
F(t):hF(t0)+EF(tO)+EF(tO)+... o (1.3.7)

We have the following cases :

(i If F (l‘o) # 0, then we say that the curve and the surface have a simple intersection at 7
(1)

(i) If F(to) =0, but F(to) # 0, then F (¢) is of second order of / and we say that ¢, is a
double zero of F (¢) and in this case C and S have two points of contact (or contact of first
order) at 7 (¢,).

(iii) 1f F(t,)=0,F(t,)=0, but F(t,) =0, then F (¢) is of third order of / and we say that
1y is a triple zero of F'(¢) and in this case we say that C and S have three point contact or

contact of second order.
(iv) In general if F(#,)=0,F (t,)=0,...F" " (t,)=0, but f" (¢,) # 0, then F (¢) is of nth
order of 4 and we say that C and S have a n point contact or contact of (n — 1)th order.
1.3.3 Inflexional tangent :

A straight line which meets the surface S in three coincident points i.e., it has a second order

point of contact is called inflexional tangent to the surface at that point.



1.3.4 Examples :
Ex.4. Find the plane that has three point contact at the origin with the curve
x=r-1, y= £-1, z=¢£-1.
Sol. Let the equation of the plane at the origin be
Ixt+my+nz=0 . (1)
The equations of the given curve are
x=0t-1, y=£8-1, z=¢-1 . )
At origin,
t-1=0, £-1=0, £-1=0.
Clearly, ¢ = 1 satisfies all of these three equations. Hence, at the origin, we have ¢ = 1.
Now the points of intersection of the curve (2) and the surface (1) are given by the zeroes of the
function
FO=1{-1)+m@B-1)+n-1)
or FO=It*+mP+ntt~l-m-n .. (3)
For three point contact, we should have
F(t)=0,F(t)=0.
Now F=4l+3me+2m=0 L. (4)
and F=1212+6mt+2n=0 L. Q)
At the origin i.e. at # = 1, the equation (4) and (5) become
4/+3m+2n=0,12/+ 6m+2pn=0 L. (6)

Solving equation (6), we get

[ m n
38 6
Hence the required equation of plane is
3x—-8y+6z=0.

Ex.5. Prove that if the circle
Ix+my+nz=0, x2+y*+22=2cz
has three point contact at the origin with the paraboloid
ax? + by* =2z,
then c =2+ m?)/(bl% + am?)

Sol. Let the parametric equation of the circle be

x=f10, y=£HL0, z=£0. .. (1)
Putting these values of x, ), z in the equation of the paraboloid, we get
F(=ax*+b?2-2z=0 . (2)

where x, y, z are functions of .
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For a three point contact at the origin we must have

F(t) = F(t) = F(t) =0, at the origin.

F(O=ax*+b?2-2z=0 . 3)
F(t)=2axi+2byp-2:=0 .. (4)
F(t)=(at® +by” =)+ (axi+byi)=0 L. (5)
At the origin we have :=0,ax* +by* -2=0. . (6)

Proceeding as above with the equations of the circle, we get

X+my+nz=0 xXxX+yy+zz-cz=0 . (7)
[ +mj +nz =0 LA ez -cE=0 .. (8)
At the origin from (7) cz=0ie £2=0 sothat x+my=0 ... 9)

At the origin from (8) and putting z = 0, we have

#2437 —cz =0or i+ 7 =c(ai’ + b7

b .
c:%, from (7) ==y say
ax’ + by m 1
(12+m2)
or c=F—F7-
(am2+bl )

Ex.6. Find the lines that have four point contact at (0, 0, 1) with the surface
X+ 3xyz+x2 )2 -2+ 2pz 3y -2y +2z=1
Sol. Any line through (0, 0, 1) is

x y z-1
—== =k
; p (Say) ..... (1)

Thus the parametric equations of the line are
x=1l, y=mk, z=nk+1 . (2)
Putting the values of'x, ), z in the equation of the surface we get
Fk)=0Pk*+3Im Ik (nk+ 1) + P I — m? k2 — n?k?
+ 2mk (nk+ 1) = 3Im k> = 2mk+ 2 (nk+1)—1=0
=PI+ 3Imn B+ (P -m?—n?+2mn) i2=0 .. (3)
For four point contact we must have
F(k)=0,F(k) =0,F(k)=0,F(k)=0at k=0 for(0,0,1)
F(k), F(k) are clearly zero atk=0 . 4)
F(k) =0 gives 2—m?—n?+2mn=0. F(k) =0 gives Imn=0.

Thus the direction ratios satisfy the above two relations.
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Ex.7. Find the inflexional tangents at (x, y, z) on the surface

y? z = 4ax.

Sol. We know that the inflexional tangents are tangents which have three point contact with the

given surface.

Any line through (x, v, z)) is

X=X% _Y=n_z2-4%4
= = :k
[ m n (say)

x=x,tlk, y=y tmk, z=z +nk
Substituting the values ofx, y, z in the given surface, we get
F (k)= (z, + nk) (v, + mk)* —4a (x| + lk)
F(k) =n (y; + mk)?> +2m (v, + mk) (z, + nk) — 4al
F(k) =2nm (y, + mk) + 2m? (zy +nk) + mn (y, + mk)
For three point contact at (x, y;, z;) i.e. where k= 0, we must have
F(k)=0, F(k)=0, F(k)=0
Hence from (3), (4) and (5), we get
yl2 zy—4ax; =0
2my,z, + nyi —4al =0

2mny, + 2m? z,=0

or 2ny, +mz; =0
or L_ma
2y,

Putting for n in (7), we get

2mz,

2my,z, — -y —4al =0
2y
l _ 3mylzl
8a

Putting for / and » in the equation (1), we get the required inflexional tangent as

X=X Y= _ Z—z

(3my,z,/8a) m (—mz,/2y,)

x—x - z-z
L YN L put yiz =4ax

or (?aylzz1 /4a) 2y, -

X4 _Y=h_z27%4
3x 2y -

12



is

Ex.8. Prove that the condition that four consecutive points of a curve should be coplanar

X y z
14 y" z 14 — 0
m m 14

vtz

Sol. Let the parametric equation of the given curve be

x=£0, y=H©O, z=0. . (1)

Let the parameter for a given point 4 (x,, ¥, Z) be £, so that the equation of the plane through

Ais
x—x)I+(y-y)m+(z-z)n=0. L. 2)
Putting for x, y, z from (1) and (2), we get
FO=x@-x@) I+ @®)—y)Im+[z(H)-z(E)]n=0. ... 3)
The plane (2) passes through four consecutive points if it has four point contact, i.e., if
F(t))=0,F(t,)=0,F(t,)=0,F(¢,)=0. .. (4)
These conditions are equivalent to
xl+ym+zn=0 L. ®))]
Xl+ym+zn=0 L. (6)
¥l+ym+Zn=0 andclearly F(1)=0. .. (7
Eliminating /, m, n between the above equations, we have
x oy 7
"oyt =0
L,
(Here dashes and dots represent derivative.)
1.3.5 Self-learning exercise-2 :
1. Write the condition for simple intersection of a curve and surface.
2. Write the condition for two point contact of a curve and a surface.
3. Write the condition for three point contact of a curve and a surface.
4. Write the condition for » point contact of a curve and surface.
5. Define an inflexional tangent.
1.4  Osculating plane

Definition : The osculating plane at a point P of a curve C of class greater then or equal to two

is the limiting position of the plane passing through the tangent line at P and a neighbouring point Q on

the curve C as O—P. (or which contains the tangent line at P and is parallel to the tangent at Q as

0 —P).
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Alternative : Let P, O, R be three points on a curve C, the limiting position of the plane POR,
when Q and R tend to P, is called the osculating plane at the point P.
1.4.1 To find the equation of the osculating plane :

Q
C
R P
A
r(s+ ds) R F(s)
@)
Fig. 1.3

Let ¥ =7 (s) be the given curve C of class > 2, in terms of parameter s, where s is the length of
the arc of the curve measured from a fixed point on it. Let P and Q be two neighbouring points on the
curve C with 7 () and 7 (s+8s)be their position vectors. Let R be the position vector of current

point R on the plane containing the tangent line at P and the point Q.

Here OP =F(s),O—Q=F(S+SS),ﬁ=1§
Hence PO =00-0P =F(s+8s)—F(s)
and PR :O—R—O—P:E—F(S)

Againif / be the unit tangent vector at P,

. AP,

then, f _g—r(s).

Now the vectors PR, 7 and PQ are coplanar lying in the plane POR and hence their scalar triple

product is zero.

[ﬁ, f,P—Q] =0 (1.4.1)
or [R=F(s),7(s).7 (s +8s)-F(s)|]=0 . (1.4.2)
but F(S+65)—F(S)=F'(S)8S+F”(S)(6|;) Foe (1.4.3)

We know that [a b c]=a-(b x ¢).

14



Equation (1.4.2) may be written as

[R=7(s)]-#(s)x[F(s+8s)-F(s)]=0 .. (1.4.4)
form (1.4.3) and (1.4.4)

2
or [ﬁ —F(s)] F(s)x {F"(s) (SI;) + terms of higher order of SS} =0
or [R=7(s)]-7(s)x[F"(s)+0{8s}]=0 .. (1.4.6)
The plane POR tends to be the osculating plane when Q tends to P i.e. when ds — 0, and

hence the equation of the osculating plane is
[E -7 (s)] . F’(s)x }7"(5) =0

or [R=7(s).7(s).7"(s)]=00 L. (1.4.7)

Equation (1.4.7) represents the equation of the osculating plane in terms of parameter s of the
point P.

1.4.2 Equation of the osculating plane in terms of general parameter 7 :

Let P (¢) and Q (¢ + o) be the two neighbouring points on curve C. Let position vector of P and
Obe 7(t) and 7 (¢+5t) with respect to origin, respectively.

The tangents at P and O will be parallel to the vectors F(t) and ?(t + St) , respectively.

Therefore the plane through the tangents at P (¢) and Q (¢ + 0¢) is perpendicular to the vector

F(t)xF (t+8t)
ortothevector  F(¢)x|F(t+81)=F(r)] [ F(t)xF(¢)=0]

(1) ?(r+52—?’(r) ..... (1.4.8)

N

i.e. to the vector

As Q — P, 8t — 0 in this unit the osculating plane is perpendicular to the vector 7 ()x7 (t).

If R be the position vector of any current point on the osculating plane, the equation of the

osculating plane may be written as
(R-7)-Fxi=0 or [R-FFF]=0 .. (1.4.9)

1.4.3 Equation of osculating plane in cartesian coordinates :

Let the coordinates of a point P on a given curve C be (x, y, z) and coordinates of any current

point be (X, Y, Z), these are functions of a parameter 7.

15



Then F:xf+yj+zl€
and E:Xz'A+YJA'+Zl€

Substituting these values in (1.4.9) the equation of the osculating plane is given by

(X =x)i (Y =) ] +(Z = 2) s + 3 + 2, + i + 2k | = 0

X—-x Y-y Z-z
or ooy oa= (1.4.10)
X Vv Z
which is the equation of the osculating plane at a point P (x, ; z).
Theorem : To show that when the curve is analytic, there exists a definite osculating plane
at a point of inflexion, provided the curve is not a straight line.
Proof : We know that 7' (: { ) is a unit tangent vector, therefore =1 L (1)
Differentiating w.r.t. s’ we get
27.7"=0 or F-F=0 L. )

Again differentiating, we get

=1 =N == O

VS A
FOET=0 3)
(At a point P where 7" = 0, the tangent line is called inflexional and the point P is called the
point of inflexion.)
If 7 # 0, then  is linearly independent of 7”. Differentiating successively (3) and applying, above
argument shall get
FeEmM=0, m=2 (4)
where 7™ is the first non-zero derivative of r at P.
Therefore if 7 # 0, from equation (1.4.3), we get
F(s+8s)—?(s)=%~?m (S)+0{(6S)m+l} ..... (5)

Hence the equation of the osculating plane at P is
[R=F(s),7(s), 7" (s)|=0 L. (6)
Again if for all m > 2 the derivative 7" =0, we conclude (= 7) is constant (since the curve

under consideration is analytic) i.e. the tangent vector is same at each point of the curve and hence the
curve is a straight line.
Hence equation (6) is the equation of the osculating plane at a point of inflexion P when the

curve is not straight line.
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1.4.4 To find the osculating plane at a point of a space curve given by the intersection
of two surfaces.

Let the equations of the surfaces be
f(¥F)=0and g(F)=0 (1.4.11)
The equations of the tangent planes of these surfaces are given by

(R-7)-Vf=0 and (R-F)-Vvg=0 .. (1.4.12)

where v f'and y/ g are normal vectors to f (F ) =0 and g (;7 ) = () respectively and R be the position

vector of current point on the plane.
The equation of the plane through the tangent line to the curve of intersection of the two sur-

faces is

F=(R-7)-Vf-A(R-F)-vg=0 . (1.4.13)

If (1.4.13) be the equation of the osculating plane at P, it must have three point contact with the

curve at P. Therefore the required conditions are
F=0,F=0,F=0; .. (1.4.14)
when R =7 and dashes denote differentiation with respect to parameter ‘¢’.
F =0 gives
R-Vf+(R-F)-(Vf) L R-Vg-1(R-F)-(Vg) =0 .. (1.4.15)
At P,R =7, condition (1.4.12) reduces to
FVf-AF-Vg=0 L. (1.4.16)
But we know that 7 is a tangent vector and Vf and Vg are normal vectors to f (7)=0 and
g(7) =0 and hence both
F-Vf=0and7-Vg=0 .. (1.4.17)
Hence F = 0 reduces to an identity.
Now consider the condition £ = 0at P,R =7, we have

FVf=0-LF-Vg=0

or 7»=:::Z’; ..... (1.4.18)
Now differentiating the equation (1.4.17), we get

FVf4F(Vf) =0, 7F-Vg+i-(Vg) =0, .. (1.4.19)
or FVf=—F-(Vf)
and ?-ng—?-(Vg)[
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23 = g
PV P G fomals) (1.4.20)
F-Vg ;7-(Vg)

Putting the value of A in (1.4.13), we get

or : Tiara ey R (1.4.21)

Above equation represents the equation of the osculating plane at P.

Cartesian form :
Let f(F)=1(xp.2),2(F)=g(x..2)
R=Xi+Yj+Zk, F=xi+yj+zk

vf:(%jiJ{%jjJ{Z_jnk
Vf=foivf, J+ Lk
= (Vf) =2(fu i+ Sy y+ [ 2) 1
substituting in equation (1.4.21) of the osculating plane, we get
(X[ () (22 (X-)e+(F-¥)e, +(Z-2)e (4
(xzfxx +.. 4292 f, +) (ngxx +.+2)2 g, +)

1.4.4 Examples :
EX.9. For the curve x = 3t, y = 312, z = 263, show that any plane meets it in three points
and deduce the equation to the osculating plane at t = t,.

Sol. Let the equation of the plane be

Ax+By+Cz+D=0 (1)
F(f)=34t+3B+2Cc*+D=0 .. (2)
which is cubic in ¢. Hence the plane meets the given curve in three points.
Also Xx=3, =6t =06t
i=0,y=6,Z=12¢ L. 3)

Hence the equation of osculating plane at the point ¢, is

x-3t y—3z‘12 2—21‘13
3 61, 6tf |=0
0 6 124,

or 2t12x —2ty+z= 21‘13 is the required equation of the osculating plane at 7 =7,.
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Ex.10. Find the osculating plane at the point ‘t’ on the helix.
X=acost y=asint, z=ct

Sol. We know that the equation of the osculating plane is

[R-7.7,7]=0
or (R-F)[Fxi]=0 (1)
Here F=(acost,asint,ct) L (2)
¥ =(-asint,acost,c) . 3)
F=(-acost,—asint,0) . (4)
i ik
rxXr =| —asint acost c

—acost —asint 0

o ., 2
=casinti—cacost j+a'k

= (ca sint,—cacost,a’ ) _____ (5)
Also R-F =(X-acost,Y—asint,Z—-ct) (6)
Hence (E—F)-[?xﬂ :[X—acost,Y—asint,Z—ct]{casint,—cacost,az]
or c(Xsint—Ycost)y+aZ-act=0 . (7)

Alternative method :

The equation of the osculating plane is

X-x Y-y Z-z
) ) - ¢

S THER Y
< el
N Ny

X—acost Y—asint Z-—ct

—asint acost c |=0
—acost —asint 0
or c(Xsnt—Ycost)y+aZ-act=0 . (8)

Ex.11. Prove that the osculating plane at (x|, y,, z|) on the curve of intersection of the
cylinders x* + 22 = a2, y* + 22 = b is given by
xx13 —2213 ~a* B yy13 —2213 -t

2 2
a b

Sol. We know that osculating plane at (x, , z) a point on the curve of intersection of two sur-

faces is given by
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S(X-x)f  _ E(X-x)g,
szfxx+22)>2'fyz zngxerzzyZ'gyz ..... (1)

where f=x2 + 22— a2, g=y*+ 22— b2 x, y, z are functions of ‘¢’.
y z
(1/x) (1/y) —(1/2)
.'.fx=2x,fy=O,fz=2z,fxx=2,fxy=O,fxz=0,fyy=0,fyz=0,fxz=2,gx=0,gy=2y,
g.=22¢g.=0, 8y = 0,g.=0, gy = 2, gy, = 0,g,.=2.
Hence the equation of the osculating plane at (x, y;, z,) i

xx+zz=0, yy+zz=0 or

(x—x1)2x1 Jr(z—zl)2z1 _ (y—y1)2y1 +(Z—Zl)2Z1

1 1 1 1
2l 5+ 25+
X4 Yioo4

2 2\ .2 2 2 2\.2 .2
(xx1+zzl—x1 -2 )xl Z) (yJ’1+Zzl_y1 - )yl Z)
2 2 - 2 2
X+ (Jﬁ +Zl)
Put x12+zlz —a’ and y12+212 =b?

(x)c1 + 2z, —az) X (J’)ﬁ +zz) —bz) v

a’ b
3 2\(,2_ .2 3 2\(52 _ .2
xx; +(Zzl—a )(a —Zl) Wi +(zzl—b )(b —Zl)
or =
a’ b
3.3 4., 22 33 34 32(2
xXx; —zz; —a +a (z1 +zzl) i —zz; =b" +b (Z1 +zzl)
or =
a’ b
xx —zz2—a* oy —zz) - b
1 1 _IN 1
or > = Hence proved.

a b*
Ex.12. Show that the osculating plane at (x, y, z) on the curve x> + 2ax = y* + 2by = z2 +
2cz has the equation
BP-A)x+a) X-x)+ (=) G+ b2 (Y - )+ (@ -+ (Z-2)=0
Sol. Let f=x2—y*+2ax—2by
g=x%—z2+2ax - 2cz.
Let P (x, y, z) be any point on the curve of intersection of these surfaces and x, y, z are func-
tions of ‘7.
xt—yp+ai-by=0 or x(x+a)-y(y+b)=0
xi—zz+ai—cz=0 or x(x+a)—z(z+c)=0

)'c(x+a):y(y+b)=z'(z+c)
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i J :

or (y+b)(z+c)_(z+c)(x+a)_(x+a)(y+b) ..... ()

Again [, =2(x + a), fy=—2(y+b),fz=0,
gx=2(x+a),gy=0,gz=—2(z+c)
Jue= 2y =722 = 005y =Sy =1 =0
8x=2.8,=0.2,-2.8,-8,-8,-0

The equation of the osculating plane is

(X-x)f,  Z(X-x)g,
i f +E25% f,, IX’g, +I2jig,

(X—x)(2x+2a)+(Y—y)(—2g—2b)+(Z—z)0
2(y+b) (z+¢) —2(z+¢) (x+a)

or

(X—x)(2x+2a)+(Y—y)O+(Z—Z)(—Zz—x)
2(y+b) (z+¢) —2(x+a)’ (y+b)

or TX-x)(x+a)?@B*-A)=0.
1.4.5 Self-learning exercise-3 :

1. Define osculating plane.

2. Write the equation of osculating plane.

3. Write the equation of osculating plane in cartesian coordinates.

1.5 Answers to self-learning exercises

Self-learning exercise-1

1. (a) Local differential geometry (b) Global differential geometry

2. Plane curve

3. Curve

4. X—sz—yzZ—z

x y z
X—x Y-y Z—z
oy 0z 0z 0Oy 0Oz Ox Ox 0Oz Ox Oy Oy Ox

Self-learning exercise-2

1. If F#0

2. fF=0 but =0
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If F=0,F=0 but F#0
IfF=0,F=0,.,F"'=0 but F" 20

A straight line which meets the surface S in the three coincident.
Self-learning exercise-3

Let P O, R be three points on a curve C, the limiting position of the plane POR, when Q and R
tend to P, is called osculating plane at point R.

[R—7, ?,?]:o

X-x Y-y Z-z
X b z |=0

1.6

Exercises

Find the equation of the tangent line to the curve x =¢, y =2, z =1 at the point 7 = 1.

x—=1 y-1 z-1
1 2 3
Find the equation of the tangent line at the point t = 1 to the curve »= (1 +¢, 2, 1+ £).

[Ans. ]

x=2 y-1 z-2

[Ans.
2 3

]

Define a space curve and write its parametric equations.
Determine a, A, b so that the paraboloid 2z = ax? + 2hxy + by? may have the closest possible
contact at the origin with the curve x = P22 +1, y= £ —1,z=¢—2¢+ 1. Find also the

1
order of contact. [Ans. a_h_b_ —; Fourth ]
45 -3 5 54

Show that the curve x = £, y = t2, z = £ has six point contact with the paraboloid x2 + y? = y at
the origin.
Find the equation of the osculating plane of the curve given by
¥ =(asint+bcost, acost+bsint, csin2t).

[Ans. 2cx {a cos ¢ (2 — cos 2f) — b sin ¢ (2 + cos 2¢)}

+2cy {asint (2 —cos 2t)— b cos t (2 —cos 2t)}

+2 (b% - a?) + 3¢ (b* — a?) sin 2t = 0]

For the curve x = 3¢, y = 3¢%, z = 2 show that any plane meets it in three points and deduce

the equation of the osculating plane at = 7,. [Ans. 2t °x — 2ty + 2z =2t

oo
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Unit 2 : Principal Normal and Binormal, Curvature, Torsion,
Serret-Frenet’s Formulae, Osculating Circle and
Osculating Sphere

Structure of the Unit
2.0  Objectives
2.1 Introduction
2.2 Principal normal and binormal
2.2.1 Principal normal
2.2.2 Binormal
2.2.3 The fundamental unit vectors 7, 5, b
2.2.4 Direction cosines of the tangent, principal normal and binormal
2.2.5 Self-learning exercise-1
2.3 The three fundamental planes
2.3.1 Osculating plane
2.3.2 Normal plane
2.3.3 Rectifying plane
2.3.4 Equations of principal normal and binormal
2.3.5 Self-learning exercise-2
2.4  Curvature and Torsion
24.1 Curvature
2.4.2 Torsion
2.4.3 Skew-curvature
2.4.4 Self-learning exercise-3
2.5 Serret-Frenet’s formula
2.5.1 Theorems on curvature and Torsion
2.5.2 Examples
2.6 Osculating circle and osculating sphere
2.6.1 Osculating circle
2.6.2 Properties of the locus of the centre of circle of curvature
2.6.3 Osculating sphere
2.6.4 Examples

2.7  Answers to self-learning exercises

2.8 Exercises
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2.0  Objectives

This unit provides a general overview of
* Principal normal and Binormal

* Three fundamental planes

* Curative and Torsion

* Serret-Frenet’s formula

* Osculating circle and osculating sphere

2.1 Introduction

In this unit we shall study principal normal and Binormal. Equations of principal normal
and Binormal Curvature and Torsion. Formulae for radius of curvature and radius of Torsion, Serret-
Frenet’s formula. Theorem on curvature and Torsion. In the last of this unit detailed study is given

on osculating circle and osculating sphere.

2.2 Principal Normal and Binormal

All the normals to a given curve at any point lie in the normal plane. Two nromals namely

principal normal and binormal are significant and defined in this section.

A
n
N . .
N Principal normal
. g plaNe
\ating P
oscY
——
<
Z ’\
yan C
L
I,
//
¢ ¢ P ~
et — t
Normal ¢ ¢ Tangent
plane Co

¢ Rectifying plane

B Binormal

b

Fig. 2.1
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2.2.1 Principal normal :

The principal normal at any point P of a given curve C is defined as the normal which lies
in the osculating plane at P.

From the above definition it is clear that the principal normal is the line of intersection of
the normal plane and osculating plane because being normal it must lie in normal plane and be-
ing principal normal it must lie in osculating plane.

The unit vector along principal normal shall be denoted by 7 .

2.2.2 Binormal:

The binormal at any point P of a curve C is defined as the normal which is perpendicular
to the osculating plane.

From the above definition it in clear that binormal is perpendicular to principal normal
because the perpendicular to osculating plane and the latter lies in the osculating plane.

The unit vector along the binormal shall be denoted by 5 .

2.2.3 The fundamental unit vectors , i, b

We know that principal normal and binormal are perpendicular to each other and both these
normals are perpendicular to 7. Hence these three form a triad of mutually perpendicular unit

vectors such that 7, 7, p form a right handed orthogonal system of axes.

Therefore ixi=b, ixb=t, bxf=h
A-b=0, b-t=0,f-A=0 .. (2.2.1)

AR

A
0 >7

£
b
Frenet's frame b
Fig. 2.2

2.2.4 Direction cosines of the tangent, principal normal and binormal :
We will denote the direction-cosines of tangent by (/;, m, n;) of principal normal by

({5, my, ny) and of binormal by (/3, m, ny).
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(i) when the parameter is arc length ‘s’
We know that unit tangent vector 7 is given by 7/, we have

f—r’—ﬁ—@%dy fry: 222
ds ds ds o (2.2.2)

ence 1 S’ 1 dS’ 1 ds

The binormal is perpendicular to the osculating plane. Equation of osculating plane is given

I 1
[R—;E, . 5”}0 or (R—r)-(Fxr")=0

"

Therefor the vector 7 x 7 is normal to the osculating plane. This implies that binormal is

parallel to the vector #'x 7.

P
Hence - | rIrX rfu | ..... (2.2.4)
y'z"=zy" z'x"—x'z"
= s
\/z (yr " Zy”)Z \/z (y! m_ )2
ny =22 - (2.2.5)
\/z (y’ " —Zty”)
Further & hwi = (' ><r)><r 77 ,7" (r” o ,: o
(since F-¥=1and 77"’ =O)
" y"
Hence, )
\/z (yr "n_, I \/z (y! "_ )2
Z (2.2.6)
\/z (yr "_ )2
(ii) when the parameter is ‘¢’.
Here F:xf+yj'+zl:f
F=xi+yj+zk=3xi
P =3x"i
Fxi"=Y(2"-2v (2.2.7)
Hence the principal normal being parallel to the vector
(F'xF")yx 7'
ie. [Z (y'z"-z'y") f] x %(x'T)
ie. Tz (X =x"z") =y (x'y =y’ x") i
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The direction ratios of it are
Z/(Z/x//_x/Z//) _y/(x/y//_y/x//);
x/(x/y//_y/x//) _Z/(y/Z//_Z/y//);
and y/(y/Z//_Z/y//)_x/(Z/x//_x/Z//)

_n

Since the binormal is parallel to the vector 7' x7" i.e., to X (yz"—z'y")i, its direction

ratios are
y'z"'=z'y", z'x"=x"z", x'y"—=y'x”". .. (2.2.8)
2.2.5 Self-learning exercise-1
1. Principal normal lies in the ...........ccceeeneenn. plane
20 is perpendicular to the osculating plane.

3. Give the formula for p and 7.

2.3  The three fundamental planes

At each point of the curve there is a triad of orthogonal unit vectors which determine three
fundamentals planes as shown in the figure (2.1) which contains two of these, the third being the
normal to that plane and which are mutually perpendicular.

2.3.1 Osculating plane :

The plane through P containing 7 and 7 whose normal is therefor 7 is called osculating
plane whose equation is given as (R —7)-b=0.

In cartesian coordinates let (X, Y, Z) be a current point and (x, y, z) the point whose oscu-
lating plane is determined.

R=Xi+Yj+Zk, F=xi +yj+zk
Again let (I, m,, n,) (r = 1, 2, 3) be the direction ratios of the tangent, principal normal

and binormal so that

lelf+m1}+nll€,

A=1Li+my)+nk,
b=l +my ) +nsk .
Substituting the values of R, 7 and b in (R—7)-5=0

(X =x)i+(Y =) J+(Z =)k |-| b +ms ]+ mikc | =0

or LX-x)+my(Y-»)+tny(Z-29=0 .. (2.3.1)
2.3.2 Normal plane :

The plane through P containing b and 7 whose normal is therefore 7 is called normal plane

whose equation in given by (E - 7)'f =0.
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In cartesian coordinates : Substituting the values of E, 7and ¢ 1n
(R-7)-i=0
(X =x)i+(Y=2)j+(Z=2)k || 1 +mj+nk |=0
or LW X-x)+m (Y-y+n (Z-2=0 ... (2.3.2)

2.3.3 Rectifying plane :

The plane through P containing b and 7 whose normal is therefore 7 is called rectifying
plane whose equation is given by ( R-7F ) h=0.
In cartesian coordinates : Substituting the values of R, 7 and 7 in (ﬁ -r )ﬁ =0
(X =x)i+(Y=2)]+(Z=2)k || LF +my ]+ mpk | =0

or LX=x)+tmy(Y-y)+n,(Z-2)=0 ... (2.3.3)

2.3.4 Equations of principal normal and binormal :

JANN
B Q
C
0 £
r P
R
b
Fig. 2.3

Let 7 be the position vector of any point P on the curve C referred to O as origin. Also let
R be the position vector of a current point Q on the principal normal.

We have OP = 7, O—Q = E, @ =)\n, since 7 is the unit vector along the principal normal
and A is some scalar.

Now O—Q = 0P+ @

ie. R=7F+M0 (2.3.4)
which is the required equation of the principal normal at the point P of the curve C.

Similarly, if R is the position vector of a current point R on binormal, then equation of
the binormal at the point P on the curve C is given by

R=#+pb, (2.3.5)

where L is a scalar.

28



2.3.5 Self-learning exercise-2

1. Define osculating plane.

2. Define normal plane.

3. Define rectifying plane.

4. Write equations of principal normal.
5

. Write equation of binormal.

2.4 Curvature and Torsion

2.4.1 Curvature :
The rate of change of the direction of tangent with respect to the arc length s’ as the point
P(7) moves along the curve is called curvature vector of the curve whose magnitude is denoted
by k (kappa) called the curvature at P.
di

Hence k= =|f'|=|’7"|

Radius of curvature : The reciprocal of the curvature is called the radius of curvature

and is denoted by p.

- (2.4.2)

Curvature at a point : Let P and O be two neighbouring points on a curve such that PO
= &s, where OP = s and the unit tangents at these point be denoted by ¢ and 7 + 8/ which makes

angle y and y + Oy with a fixed direction.

Fig. 2.4
Through Q draw vector 04 parallel to 7. If the vectors 04 and QB are respectively 7
and 7 4 57 then |OA|=|0B|=1 and the angle between tham is Sy.
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Also OB=QA+AB or AB=QB-QA=5i

Now from isosceles triangle QAB.

AB = ZQ—AsinSTW

‘E‘zZ‘@‘sin%

. &t indy/2
2 dy dy/2
lim | O | g SOW/2 AL
Sy—0| Sy | dy—0 Sy/2 dy
The curvature at point P
. Oy dy dy || di dt ~ .
k=1lm —=— =|—||—|=|—|= r
Jim = ‘ ol bl IR P (2.4.3)

2.4.2 Torsion :
The rate of change of the direction of binormal with respect to arc length as the point P
moves along the curve is called the torsion vector of the curve whose magnitude is denoted by t

called the torsion at P.

A

=|p

p R
Hence T=|—
ds

Radius of Torsion : The reciprocal of the torsion is called the radius of torsion and is
denoted by ¢ = l
T

Torsion at a point :

N e

B

Fig. 2.5
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Let P and Q be two neighbouring points on a curve such that PQ = & s where OP = s and
the unit binormals at these points be denoted by p and b + & b and 50 be the angle between these

vectors.

o . 50
Average rate of change of direction of the osculating plane over the arc PO =—.

N

The torsion of the curve at P

T= lim @ = @ 245
amMCE O e (2.4.5)
Aliter :
R\~_8b
A S
b
" b+8b
Q
C
b
P
Fig. 2.6
From isosceles triangle QRS, we have
rs=| 5| =2| GR [sin[ % |
~ . (00
— db =2s1n(7j
6_5 _ [ sind6/2
= 50 86/2
8_5 _ lim sin 86/2 _q
.. Torsion T at P is
db| | db||do
= == =
ds 0| ds
L (2.4.6)
ds o
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2.4.3 Skew-curvature :

The rate of change of the direction of principal normal with respect to arc length as the

point P moves along the curve is called the skew curvature vector and its magnitude is given by

dﬁ _ 2 2\ .
(_dsj_ (K +1 )
2.4.4 Self learning exercise-3

1. Give the formula for curvature.

2. QGive the formula for torsion.

2.5 Serret-Frenet Formulae

Arc derivative of three unit vectors 7,7,b are known as Serret-Frenet formulae as given

below
3 .

1. t =—=Kn
ds

2 ﬁ’:@:rl;—m:
ds

3 l;’zﬁz—rﬁ
ds

Proof : 1. Since fi=1=1.

Different with respect to arc length s

pYSL
ds

— is perpendicular to 7.
ds

But iy
ds

The equation of osculating plane at a point P on a curve is
[E —F, 7, 7"] =0

= 7"={" in the osculating plane.

Therefore { is perpendicular to j and it is also perpendicular to 7.

Hence, {' is parallel to hx/ i.e. along the principal normal 7. Therefore { is propor-

tional to 7, i.e.,
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dft .
—=t'=+xn
ds

A

= f'=xn

(The direction of the principal normal is so chosen that curvature «k is always positive)

h-b=1.

Differentiating with respect to ‘s’, we have

2. Since

.90 _
ds

A A

This implies Z—b is perpendicular to 5 and thus db lies in osculating plane.
s

ds

Also p-f =0, on differentiating with respect to s, we get

ds ds
or ﬁ-l?+bA-Kﬁ=O

ds

db -
or g-tzo (as b n)
= Z—b is perpendicular to 7 .

s

A

A

Thus ab is perpendicular to the vector b . This implies that Z—b is parallel to jx7 i.e

ds

A

db is parallel to 7.

ds
Hence b _ t1tn
ds
Taking b __ Tn
ds
(In the right hand screw system, by convention, T is negative).
3. Since A=bxi
di db . - di
—=—Xxt+bx—
ds ds s
Usi d—f =xn (f la1
sing 7 (formula 1)
and b _ —tn (formula 2),
ds

33
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t di .
we ge s =—(twnt +bxxn)
=th-xi (: Axf=—b and bxAi=—1) . (2.5.11)

The Serret-Frenet formulae can be put in the matrix form as follows :

0 k O0]]|7 {
-x 0 ’f = ’? ..... (2.5.12)
0 -t Of|p b

2.5.1 Theorems on curvature and rorsion :

Theorem 1. The necessary and sufficient condition for the curve to be a straight line is
that «x =0 at all points of the curve.

Proof : Necessary condition : Given the curve is a straight line.

To prove k=0

We know that the vector equation of a straight line is

+56, (1)

l

7=
where a and ¢ are constant vectors and s be the measure of the length of the arc from the point
whose position vector is a .

Differentiating with respect to s, we get

F=¢=#¥=0 .. ()
df ng ="
Also by definition K= =11]= |7 |=0

Hence the condition is necessary.
Sufficient condition.

Given x = 0.

To prove curve is a straight line.

Here k=0

=0 L 3)
On integration, we have

7 =¢ (aconstant vector)y ... (4)
Again, integrating, we get

r=a+sc, L. (5)

where g is another constant vector.
Clearly ¥ =d+5¢ denotes a straight line.

Hence the condition is sufficient.
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Theorem 2. The necessary and sufficient condition that a given curve be a plane curve is

that T = 0 at all point of the curve or in other words [F' 7' F"| =0

Proof : Necessary condition :

Given the given curve is a plane curve.

To prove 1t =0.

If the given curve be a plane curve then we know that tangent and normal at all points lie
in the plane of the curve. (It means that plane of the curve is the osculating plane at all points of
the curve.)

Hence the unit normal i.e. binormal 5 is same at all points which means that b is a con-

stant vector both in magnitude and direction and as such

p=2_5
ds

or —th=0
or t=0 (by Serret-Frenet formula) ... (1)
Hence the condition is necessary.
Sufficient condition :
Given 1= 0.
To prove the curve is a plane curve.
If =0
= % =—tn=0 . (2)

and hence b is a constant vector i.e. the direction of binormal is same at all points of the curve.
This means the osculating plane is same at all points of the curve i.e. osculating plane
contains the curve. Hence the curve must be a plane curve.
Hence the condition is sufficient.
Theorem 3. [f the tangent and the binormal at a point of a curve make angles 6, ¢ re-

spectively with a fixed direction, then

sin6 46 _+k
sind do T
Proof : Let 4 denotes a unit vector in the fixed direction, then by the given condition, we
have
cos@=a-t . (1)
and coshp=a b 2)
—sin Gd—? =a-1

=a-xi =x(a-n) .. (3)



and —sing—=a-b" =4-(+th) =+1(a-n)

o db=axh) =+c@n (2)
sin6 d6 _ LK
from (1) and (2) we have snodd T

Hence proved.

Theorem 4. The principal normals at consecutive points of a curve do not intersect un-
less T =0.
Proof : Let the position vectors of two consecutive points P and Q on a curve be

7and 7 +d 7 and let the principal normals at these points be 7 and 71+ d 71 respectively.

Fig. 2.7

In order to prove that the principal normals at these points may intersect, it is necessary
that the three vectors d 7, n, n+d n are coplanar.

These vectors are coplanar if

[d 7, 4, i+di] =0
or [d#A,dAl=0 (1)
ot (7.7, n']=0
or [i,h,th-xi|=0
or [i.4,7h|=0
or t|,4,5]=0
= =0
since i, A,b]=1.



Theorem 5. Prove that

P Ll
l =
|7
3 _|l_’:’ 7" Frrr|
(ll) = =1 =2
| F' < F" |

Proof : (i) We know that

Again

from (4) and (5)

from (3)

because from (4)
or

Again from equation (3)

Fl=i
7=f=xn (by Serret-Frenet formula)
Fxi"=x (i xii) =xb

L, dF di ds .,
y =—m—m=—--— =497
dt ds dt
Fr=§r+s7r"s
=57 +57 "

- = .- S
FXF"=sFx(§F +s°F")

PP = .§'3 (f;r % };-rr)

|7 x7"|=x|b|=x

K =|Fx7"|

|FIXFH| _|F’XF”|
3;13 |l_’:’|3

— .o

|l"|:S|l" |:S1:S
7' =¢ 1s unit vector.

Fxr"=xb

Differentiating again with respect to s, we have

or

Now [7' 7" 7"

FIx P+ PP =k b b

[FV I—;H Fm] — K2 T

[l_’:’ l_’:" ]7-"”]

T=" >

K
[l—;i F” FW]

[7 <7
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or

2.5.2 Examples :

Ex.1. For the curve
Prove that

Sol. Here

or

B [Fr FH l_’:”’]/.S.'6
o [ x 7"]2/(53)2
[I—;I I—/;N FW]

[I—;I > f;u]z

T:

X = 3u, y=3u2, z=2u.
3 2\?
p ——G—E(l+2u )

F = (3u, 3u?, zu?)

¥ = (3, 6u, 6u®) =3 (1, 2u, 2u?)
=3 (0, 2, 4u)

=6(0, 1, 2u)

=6(0,0,2)

R ITHE TH

S

7] =314 +4ut =3(14207)

ixi =181, 2u, 2u%] x [0, 1, 2u]
= 18 [4u? — 2u?, 0 — 2u, 1 — 0]
=18 [2u?, — 2u, 1]

Fxi| =184u? +dut +1=18(1+207)

1 2u 2u?
[777] =36.6/0 1 2u |=216
0 0 2

. e (1+22) 3 1(1+24%)
D e 2
[FxF[asas(ie2l) 3 (1e22)

3
P=%=—(l+2u2)2;

o:%:§(1+zu2)2
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3 2\2
Now for a left hand system o = _E(l +2u )

P =—G=%(l+2u2)2

Ex.2. For the curve x=aBu—u?), y=3au®, z=a Bu+u’)
show that the curvature and torsion are equal.
Sol. Here Fo=xi+y+ zk

or 7 :a(3u—u3)f+3au2}+a(3u+u3)k

Differentiating with respect to s, we get

~ dF 3\7 5 3\ £ 4
t_g _[a(3—3u )z+3auj+a(3+3u )ng ..... (D
~ dF
or P=L (G312, 6u, (3 + 32
ds ds

=3a [(1 - u?), 2u, (1 + u?)] fl—”
S

2
72 =9a% [(1 — u?)? + 4u? + (1 + u?)?] (Z,—u}
S

2
or 1=9a2[2 (1 + u®) + 4u?] (d—”J
ds
2
or 1=18a% (1 + u?)? (d—”J
ds

1

(d_g Y [a (l+u2ﬂ

P U O LT TR
V2 U1+ 1+

Differentiating again with respect to s, we get




Now

or

364>

K2 = |7 et {16”2“‘(1”2)2}

(1+u2)6

1 (l+u2)2 1 1
9| (1) |9 (142
k=t 1

3a(1+u2)2

p=3a (1 +u??

7 =xn

+u 1+u?

_ 1 [1-d? 2 | 1} {14u 2(1-u2)’ 0}

W2 1+ 14 2’

i J k
1 1-u? 2u 1
EENC R EETE E
Ly 2(1-47) .
1+u? 1+u?
o 2(1-u) g, 2(1—-u2)2+ 2.2
22 Lru® T l+u? (1+4?) @+u2f
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or po _2(1—u2) —4u
NG 1+ 7 1+4?’

2

1 1=d® 2u .
\/5 1+u® 1+u?° )
Values of j and / are same except a change of sign.

Ex.3. Find the radii of curvature and torsion of the helix

x=acosO, y=asinb, z=a 0 tano.

Sol. Here 7 =(acos0,asnb,abtan o)
7 =(—asmnb,acosO,atan a)
#=(—acos0,—asnb,0)

7 =(asin0,—acosb,0)

|7 | :a\/sin26+cos26+tan2a =g sec o
77 =a*(—sin0, cos 0, tan a)) X (— cos 0, — sin 0, 0)
= g2 (sin O tan o, — cos 0 tan a, sin® O + cos? 0)

= a2 (sin O tan o, — cos O tan o, 1)

| = az\/sin2 Otan” o+ cos” O tan” o+ 1

N

|7

:aZ\/tanonl:azsec o
—sin 0 cosO tana
777 =a’|—cos® —sin® 0
sin® —cosO 0
=a3 tan o

_|?x?|_a2seca I 5

K - = =—cos” o
|17|3 a*sec’o a
_ 2
p=asec” a
[7??]
====g5
|7 7|
tano 1 .
=——— =—5sinocoso

a4 SCC2 o da

G = a SeC AL COseC QL.
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Ex.4. Determine the function f(0) so that

x=acos0, y=asin0, z=f(0);

shall be a plane curve.

Sol. Here a cos 0, a sin 0, 1(0)),

F=(

:=(-asin®, acos b, f(6)),
#=(-acos0,—asin, 1)),
= =(asin®,—acos 0, £(0)),

The condition for a curve to be a plane curve is

FFF]=0

—asin®  acos6 f(e)
—acos® —asin® f(0)|=0

ie.

asin® —acos® f(0)

Applying R, + R;, we get

0 0 f(®)+/(®)
—acosB —asin6 7(9) =0
asin® —acos6 f(e)

or @[ f(0)+f(©)]=0
or f(©)+7(6)=0
or f®)+f(0)=4
or D*f(0)+f(0) =4

£(0)= A+ Bsin (0+C)

Ex.S5. Find the radii of curvature and torsion at a point of the curve

R+P2=a? 2P =qz,

Sol. The parametric equation of the curve may be given by
x=acosB, y=asin0, z=a cos?20
Therefore 7 =(acos 0, asinb, acos 20)
7 =a(—sin0, cos 0, — 2 sin 20)
#=a(—cos0,—sin0, -4 cos 20)

7 =a(sin 0, —cos 0, 8 sin 20)

FxF =a2(—sin6,cos6,—25in26)X(—cose,—sine,—4c0s26)

or iyi=a’(—4cos?0,45sin30,1)

42



—sin 0 cos® —2sin20
[FFF] =a’| —cos® —sin® —4cos20

sin@ —cos®  8cos20
Applying R, + R, we get
0 0 6sin 20
[777] =a’| —cos® —sin® —4cos20
sin@ —cos®  8cos20
=43 (6sin20) - 1 =6 a sin 20
Also |7 > = a? (sin? 0 + cos® 0 + 4 sin® 20)
=a?[1 +4 (1 - cos? 20)]
=a? [5 -4 cos? 20]
|7 x7 P =a* (5 + 12 cos? 20)

|7 xF [

2 =

Therefore K

@)

1
p |7

a*(s+122°/a’)

) a’ (5—422/612)3
(54° —422)3

o a2(5a2 +1222)

Hence p

1 [’7’7’7] 64’ sin 20
and U Tay S 2
c |FxF|”  a (5+12c0s 26)

a(5+122%/a’)
61— 2%/ d?

547 +12z7

6aNa® - 2> '

O =

or

2.6  Osculating circle and osculating sphere

2.6.1 Definitions of osculating circle and osculating sphere :

Osculating circle : If P, O, R are three points on a curve, the circle, POR in its limiting
position where Q, R tend to P is called the circle of curvature at P and radius of circle is the
radius of curvature and is denoted by p.

or
43



The circle which has three point contact with the curve at P is called the osculating circle
at a point P on a curve.

To find the centre and radius of circle of curvature :
A
n N

Fig. 2.8

Let ¢ be the position vector of the centre C; of the osculating circle at point P to the

curve C whose equation be 7 =7 (s). Let a be the radius of the circle
|7 -¢l=a ie |F-cf=a4 .. (1)

where 7 is the position vector of the point P. The osculating circle is the intersection of the sphere
(1) and the osculating plane at P.

The point of intersection of the curve C and sphere (1) are given by

F(s) =[F (s)-¢] —a* =0
The curve will have three point contact if

F(s)=0, F'(s)=0, F”"(s)=0

or (F-¢)-n==p L 3)



Result (2) shows that 7 is orthogonal to (¥ —¢) and as such (¥ —¢) lies in the normal
plane at P. Also by definition (¥ —¢) lies in the osculating plane at P. Hence (¥ —¢) lies along
the intersection of these two points i.e. along the principal normal at P.

( F— 5) =an 4)
where a is a scalar.

Putting (4) in (3), we get

an-n=—p=a=—p

and hence (F=¢) =—pn

Squaring, we get (7 —¢)? = p?

or a?=p?

— p=a 5)

Above equation gives the radius of curvature.

Also from 7 —¢ =—pn, we get

..... (6)

Above relation shows that the centre ¢ lies on the principal normal at a distance p from
the point P whose position vector in 7.

Results (5) and (6) give the radius and position vector of the centre of the circle of curva-
ture. (It should also be noted the sign of p is always positive.)

Cartesian form : Let (a, B, y) be the centre of the circle of curvature at a point (x, y, z) of
a given curve, and a be its radius.

The equation of the circle can be written as the intersection of

2 2 2
Sphere: (E-a) +(n=B) +(¢-y) =d’, 1
Osculating plane: 5 (§—a)+m;(n—-B)+n(C-y)=0] 77 1
where /5, m3, ny being d.c.s of the binormal.
Since the circle (1) has three point contact at (x, y, z) therefore
-+ @-pP+e-yP=a> (2
x-o)z3+@y-B)my+(z-y)ny=0 . 3)
On differentiating of (3) with respect to ‘s’, we get
(x—a) I
or (x-oyfy=0 (4)

Again differentiating (4) with respect to ‘s’ we get
dl, dx
x-o)—+)> [ —=0
IEEILIES )
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Using Serret-Frenet formulae

ﬂ = ll etc.
ds p
in equation (4), we get Z(x-o)lh==p L 5)

Squaring and adding equation (3), (4) and (5), we get
Tx-—a)=p2 (6)
From equation (2), and equation (6), we conclude that
a=op.
Now multiplying (3) by /5, (4) by /; and (5) by /, and adding, we have

(x—a)=—1Lp
Hence a=x+1p,
similarly, B=y+mpandy=n,p+z L. (7)

Thus, it is clear that the centre of curvature lies on the principal normal.
2.6.2 Properties of the locus of the centre of circle of curvature :

Property 1 : The tangent to the locus of the centre of curvature lies in the normal plane of

the original curve and is inclined to 7 at an angle tan™! [p—fj .

p

Proof : Let 7 (=¢) be position vector of centre of ¢ then

Fo=Fiph (1)
2 dfi = ra A1 ds
Lh=— =(r+pn+pn)—
: ds, ( PrTP )dsl
. A A ~ N\ ds
or h= [t tpntp (Tb —K )}g (By Serret-Frenet formulae)
1
' n ~\ ds
or f :(F)”"‘F’Tb)Tl (cpex=1) L (2)

Above relation shows that 7 lies in the plane containing b and # i.e. normal plane c.
If a be the angle made by 7, with 7, then
f =cosoii+sinab e 3)

Hence by comparing (2) and (3)

, ds ds .
p'— =cosa and pt— =sinaq,;
ds, ds,

pPT

. pt
tano = = |a=tan"' p_'

pl
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Property 2 : If the curvature k of a curve c is constant, then the curvature k; of c; is also

constant and its torsion t; varies inversely as T of the curve c.

Proof : Now if k is constant i.e. p= (I/K) = const., then p’ =0 and hence from (2)

2
squaring both sides 1= (p T lgﬁj (Z; b= 1)

ds,
T ﬁ =1
or P ds,
Putting in (4) i, =b|

Differentiating with respect to s,

L
ds,
~ N
or Ky =(-14) F or Ka=-xn .. (5)

This relation show that n, is parallel to n and if we choose the direction of n; opposite to
that of n i.e. n; = — n then from (5) we get ; = k = constant as K is given to be constant.

Thus the curvature of c is also constant.

Again, l;1 =1 %7
or Blzéx(—ﬁ) :—(Z;xﬁ) =Axb=1
b,\l =f.

Differentiating with respect to s,, we get

A oA ds
r_
ds,
’
or “hm=Kn—
pT
K2 1
or ’CII’Z:—I’Z ) _:K, —I’ZIZI’Z
T p

K2 constant
’[l =
T T

T = constant.

Above shows that torsion of ¢, is inversely proportional to torsion of c.
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Property 3 : Principal normal to c is normal to c; at the points where curvature is

stationary.
Proof : We know that the position vector ¢ of the center of curvature is given by
c=r+pn
Let the locus of ¢ (= 171) be given by
K =r+pn
Differentiating , with respect to s,, we have
i = {f+ p’ﬁ+pﬁ’}5—;

={f+p’ﬁ+p(15—Kf)} ds

ds,
={z?+p’ﬁ+prbA—f}a]—ssl
={p’ﬁ+p15}5—;

ds,
_ s .
dsl b" 1 = O
~ ., ds
ds,
If K =const = p'=0.
Therefore fhi-n=0.

which shows that principal normal is normal to the locus of center of curvature at those points

where the curvature is stationary.
2.6.3 Osculating sphere or sphere of curvature :

A sphere which has a four point contact with the curve at a point P is called the osculating

sphere at P.

Let ¢ be the centre and R the radius of sphere so that its equation is
S 2\2
(F-¢)y=r* L (1)
where 7 is the position vector of point P on the curve.

The points of intersection of the sphere with the curve 7 =7 (s) are given by

F(s)=[F(s)-¢] -R*=0 .. )
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The sphere will have a four point contact with the curve if

F=0,F'=0,F"=0,F"=0,

F=0, (F-¢) =R
F'=0, (F=¢)-#=0 or (F-¢)-1=0
F"=0,  (F=¢)-i'+Fi=0
or (F—¢)-wn+i-i=0
or (F=¢)-ka+1=0
or (f—a)-ﬁz—l:_p
K
F"=0,  (F=¢)-n'+iAa=—p
or (F=¢)-(wh-xi)+i-i=—p
or (7 —¢)-b+x(F—¢)i+i-n=—p
or (7 ~¢)-b+0+0=—p'
or (f—a)-éz%"’:—op'

Result (3) shows that 7 is orthogonal to (17 -c ) and as such it lies in the normal plane at

—~~ —~ —~~
N
|
(oY
~ ~ ~
I B s
Il
T
o
=
|
Q
-o\
Il
T

or c=rF+pn+op'b

P which contains 7 and b and hence it can be expressed as a linear combination of 7 and b.

[by (4)]

[by (5)]

Above relation gives us the position vector of the center ¢ of the osculating sphere.

Again (F—E)Z = R?

N2
or (—pﬁ—cp’b) = R?
or p? +0% p't = R?

Above relation gives us the radius R of the sphere of curvature.
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Properties of the locus of the counter of sphere of curvature.

(i) fl, n, l;l of ¢, are parallel respectively to E, n,tofc.

Proof : Let ¢ be the original curve, ¢, the locus of the centre of spherical curvature. Let
the suffix unity denote quantities belonging to c;.

The position vector ¢ = (171 say) of centre of spherical curvature is given by

:=F4ph+opb L (1)

differentiating with respect to s,

an . SO ~ ~ ~\ ds
—=(F'+p'n+pn'+c'pb+ocp'b+op'b’ | —
ds, ( pn+p p p p ) ds,
~ [~ r A L ~ r ANA 1A ds
or i = t+pn+p(rb—Kt)+(Gp +Gp)b—cprn}—s
- 1
A [a [ ra " AV rA ds
or h=|i+ptb—t+p'n+(o’p +Gp)b—pn}g
- 1
n i p (3N n |7 dS
L=||—|+op'+op" |b—
or 1 _(Gj P P } d e 2)
which shows that #; (tangent to ¢|) is || to b.
Squaring (2), we get
2 2
(dSlJ :[B+G’p’+0p”:|
ds c
dSl p r .t " P n
=L ==+o6'p'+o =4
or - [G p p} . (cp’y L 3)
from (2) & (3) h=b L (4)
Differentiating equation (4) with respect to ‘s,’.
diy _pds
ds, ds,
or K7 :—rﬁﬁ ..... (5)
ds,
which shows that 7, is parallel to 7.
i 2
Squaring (3), we get «° =1° “
ds,
Ak 6
or ds. ) © e (6)
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from (5) and (6), we get n=-n (7)
Equation (7) shows that directions of ; and n are opposite to each other.
Taking cross product of (4) and (7)
i< =bx(-A) or b=f . (8)
which shows that l;l is parallel to ¢.
(ii) The product of the torsion of ¢, at corresponding points is equal to the product of cur-

vatures at these points.

Proof : Differentiating equation (8) with respect to s,

bh=p®
ds,
iy = ki
or 1" ds, e 9)
but from equation (7) 7, =—n, hence from equation (9), we have
—C
1 s, e (10)
or T =15 [using (6)]
T
or KK =TT (11)
= pPp; = 00,

(iii) If the curvature k of ¢ is constant then curvature x; of ¢, is also constant.

Proof : The curvature x of ¢ is constant

ie. p= const.,p' =0,p"=0.
. ds p =1
equation (3) reduces to —=—=—
ds;, o «x
Hence from (6), we have
o k=L (12)
K K

1
which shows that the curvature K of ¢y is also constant.
2.6.4 Examples :

Ex.6. If a curve lies on a sphere show that p and & are related by

d, ., P
— —=0
ds(cp)+c

show that a necessary and sufficient condition that a curve lies on a sphere is that
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I
S

£+£{gj
o ds\ 7t

at every point on the curve.
Sol. Necessary condition :
Let the curve lie on a sphere then we have to prove the given condition. Now the sphere
will be osculating sphere for every point. The radius R of the osculating sphere is given by
RZ=p%+c%p2%2 L (1)
Differentiating with respect to ‘s’, we get
0=pp +c?p p'+oc p?
Dividing by p'c, we get

0=L4 p'c+ao'p’
c

p d,

—+—(op')=0
of o ds( p)

p . d(p

—+—|—1|=0
or c ds(r}

Sufficient condition : If £ 1 di(gj =0 to show that the curve lies on a sphere
c ds\t

p+o’p”=a’ [by (1)]
showing that the radius of osculating sphere is independent of the point on the curve.

Again the centre of spherical curvature is given by

C:F+pﬁ+cp’5

dc

— =f{+pn+ p(rl;—Kf)+G' p'b+cp"b—cp'th
ds

Z(B+G’ p’+0p”jl;

Q

d ] ! ! ! n .
But B+_(Gp)or2+c p'+0 P’ is zero.
G ds c

dc
o 0
or ¢ = constant vector
i.e., the centre of osculating sphere is independent of the point on the curve.
EXx.”7. Prove that the curve given by
x=asinu, y=0, z=acosu

lies on a sphere.
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Sol. Here 7 =a (sinu, 0, cos u)

i=7 =a (cos u, 0, — sin u) (%}

s
squarin, lzaz(%J2 — du_1
a 8 ds ds a
Hence f = (cosu, 0, —sin u)

[ =xn =(—sinu,0,—cosu)(ﬂj

ds
n . 1
or K = (—sinu,0,—cosu)| —
a
) ) 1 1
squaring K =—=>K=—
a a
= p = a = constant
Hence n= —sinu,O,—cosu)

b=-1i=(0,0,0)
= t=0(as p #0)
We know that curve will lie on a sphere if
d
—(op')+pt=0
—(op)+p

Here p=a

p'=0 andalso Tt =0.

. d : : ) .
Therefore, the relation d—(c p’)+ p T =0 is clearly satisfied. Hence the given curve lies
s

on a sphere.

2
2 2 2 1 1+p’
Ex.8. Prove that XY+ =t —

p o p

where dashes denote differentiation with respect to ‘s’.
Sol. Here 7F=xi+ yj’ + Z/:T
F=xT+y]+ %
Fl=x"iy" j+2"k

l—/;w :xrrri-‘_i_yrrrj-_i_zrrrk'\

(7 = () + () # ()
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= =L _
Also r=t,r=t=xn=

Hence from (1) and (2)

12

"2 yrrrZ m2 _ 1 + 1+ P
Gp p

2.7  Answers to self-learning exercises

Self-learning exercise-1

1. osculating plane.

2. Binormal
l—;r X F" . =N
,n=

3. b=

| PP

|7'><7" '

Self-learning exercise-2

1. If P O, R be three points on a curve, the limiting position of the plane POR when Q and R
tend to P, is called the osculating plane at P.

2. The plane through P and perpendicular to the tangent line at P is called the normal plane
at P of the curve.

3. The plane through P and containing tangent and binormal is called rectifying plane.

4. R=7+M\i
+

A

wn
=

N

pnb

2.8 Exercises

1. Show that the tangent and binormal at any point of the curve
x=£-1, y=\3(*-1), z=2(t-1)

make the same angle with the line % = % = % and that the three directions are coplanar.

2. Establish the Serret-Frenet formulae at a point of a space curve.
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3.

Find the radii of curvature and torsion of a helix

x=acos0,y=asin0, z=a0tan a.

Ans. p=a sec’ a, o= —_;
sin a.cos o
4. For the curve x=aBt—1), y=3ar?, z=a (3t + 1)
Show that p=0c=3a(l+r)>
5. Find the osculating plane, curvature and torsion at any point ‘0’ of the curve
x=acos20, y=asin20, z=2a sin 0.
[Ans. (sin 6 + sin 26 cos 0) x — 2 cos> Oy + 2z = 3a sin O,
3/2
2a (1 +cos” 6)

10.

G=£(5SCCG+3COSG), p= 172
3 (5+3c0529)

For the curve x=2abt, y=a*logt, z=>b*¢.
Show that p=0=(a?+2b% %)/ 2abt.
Find the equation of the osculating sphere and osculating circle at (1, 2, 3) on the curve

x=2t+1, y=32+2, z=4r+3.
[Ans. 3 (x2+)?+22)—6x—16y—18z+50=0,
3(2+)2+22)—6x—16y—182+50=0, z=3]
Show that the radius of spherical curvature of a circular helix
x=acosB,y=asin0,z=a0cota
is equal to circular curvature.
If the radius of spherical curvature is constant show that the curve either lies on a sphere
or has a constant curvature R% = p? + (cp’)?> where R is constant.
Find the equation of the osculating sphere at origin of the curve
x=a,P+3b,2+3cit, y=a, +3by2 +3cyt, z=ayf +3byt% +3cqt.

X’ y2 + 27 2x 2y 2z
9 (blcl +bycy + b5y ) a a,
Ans. s a2 o =0
e +e+e?) 2 26, 2b,
| 0 G G |
oo
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UNIT 3 : Existence and Uniqueness Theorems, Bertrand

Curves, Involute, Evolutes, Conoids, Inflexional
Tangents, Singular Points, Indicatrix

Structure of the Unit

3.0
3.1

3.2

3.3

3.4

3.5

Objectives

Existence and uniqueness theorems

3.1.1 Existence theorem

3.1.2  Uniqueness theorem

Bertrand curves

3.2.1 Definitions

3.2.2 Properties of Bertrand curves

3.2.3 Theorem based on Bertrand curves
3.2.4 Self-learning exercise-1

Involute

3.3.1 Definition

3.3.2  General equation of the involute of a given space curve
3.3.3 To find curvature of the involute
3.3.4 To find torsion of the involute

3.3.5 Examples

3.3.6 Self-learning exercise-2

Evolute

3.4.1 Definition

3.4.2 General equation of the evolute of a given space curve
3.4.3 To find curvature of the evolute
3.4.4 To find torsion of the evolute

3.4.5 Examples

3.4.6 Self-learning exercise-3

Conoids

3.5.1 Definition

3.5.2 Equation of a conoid

3.5.3 Examples

3.5.4 Self-learning exercise-4
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3.6  Inflexional tangents
3.6.1 Definition
3.6.2 Equation of the Inflexional tangents at a point of a given surface
3.6.3 Examples
3.7  Singular points
3.7.1 Definition
3.7.2  Singular tangent planes
3.7.3 Examples
3.7.4 Self-learning exercise-5
3.8  Indicatrix
3.8.1 Definition
3.8.2  Examples
3.9  Answers to self-learning exercise

3.10 Exercises

3.0  Objectives

This unit provides a general overview of :
+ Existence and uniqueness theorems

* Bertrand curves

* Involute

* Evolute

* Conoids

* Inflexional tangents

* Singular points

* Indicatrix

3.1 Existence and uniqueness theorems

Existence and uniqueness theorem for space curves is also called fundamental theorem on space
curves

3.1.1 Existence theorem :

If k (s) and 7 (s) are continuous functions of a real variable s (s > 0) then there exists a space
curve for which £ is the curvature, 7 is the torsion and s is the arc-lengths measured from some suitable

base point.
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Proof : The proof of this theorem depends on the existence theorem of the solution of differen-
tial equations which states that the linear differential equations

dx dy dz
-/ = T = - ]OCa_ ==v ..
ds by ds TZ ds v

where k and 1 are continuous functions of s in the interval 0 < s < a.
Equation (1) admits a unique set of solutions for a given set of values of x, ), zat s = 0.
In particular, there exists a unique set (x;, |, z), (x5, ¥,, Z,) and (x3, y3, z3) which have values

(1,0,0),(0, 1,0), (0, 0, 1) at s = 0, respectively.

Now,
L anter) =2 n Sy Lon fl)
=2{x (k) + 1 (12— ) =2 w1} =0 [using (1)]
Hence,
xl2 + J’12 + 212 = constant = C (say)
Since at s=0,x,(0)=1,y,(0)=0, z, (0) =0, therefore C,=1.
Thus, we get XAyiazi=Lvs. L (3.1.2)

Xy +yy 2 =1,
Similarly, we get

X3 +y3+23 =1, forVs

d
Further, g(xlxz TV, 212, )

dx, dx, dy, dy, J ( dz, dz, J
=X —= X, — || Y=ty |+ zy—=t 2y —
(lds 2dsj (ylds yzds Yds T ds
= xl(kyz) + xz(kyl) +y(1z, - kxz) T y,(12) - kxl) +zi(=,) T z5(-= ) = 0.
Hence on integration,
XXy Ty, ¥yt 2 2y = const. = d (say)
The value of the constant d;, determined by the initial conditions and we get d; = 0.

Thus we get X\ Xty y,tz,2,=0,vs. L (3.1.4)

X,X~ + +2,2,=0
Similarly, we get YT TAE }forVS ..... (3.1.5)

Hence, we have six relations given by (3.1.2) to (3.1.5) in the elements of three sets namely

(1> Y15 21)s (%95 Y5, 25) and (x3, ¥, 23) defined for each value of's.

If rzjtds, then r=r(s)
0

58



is the position vector of a point on the curve with (k, 1, s) curvature, torsion and arc-length

respectively and (f , A, 5) as unit tangent vector, unit principal normal vector and unit binormal

respectively

Hence the existence of curve is proved.

3.1.2 Uniqueness theorem :

A curve is uniquely determined, except as to position in space, when its curvature and torsion
are given functions of its arc-length.

Proof : If possible let there be two curves ¢, and ¢ having equal curvature & and equal torsion T
for the same value of's. Let the suffix unity be used for quantities belonging to ¢,. Now, if ¢, is moved
(without deformation) so that the two points on ¢ and ¢, corresponding to the same value of ‘s’

coincide. We have

%(751) =1 -k, + ki1
d sy .o .

or —o(BR) =ik vy [k =kgiven] L (3.1.6)
d o N o r N (r ) s
() =i (th ki) + (k)AL (3.1.7)
dir s\ -~ . .
g(b'bl) —b-(—wiy)+(=kA)-b, L (3.1.8)

Adding equations (1), (2) and (3), we get

doien s
g(r-tl+n.nl+b-bl)_o ..... (3.1.9)
which on integrating gives {-f+n-h+b-b =constant. .. (3.1.10)

If ¢, is moved in such a manner that at s = 0 the two triads (A, A,b and 7, ﬁl,él) coincide.

Then at the point 7 =7,,4 = /i, b = b, and then the value of constant in equation (3.1.10) becomes 3.

Thus, P-i+h-m+b-b=3 L (3.1.11)

But the sum of three cosines is equal to 3 if each angle is zero or in an integral multiple of 2.

Thus for each pair of corresponding points 7 =7, 7 =7y, b= 51 :
!

Also, i =1, gives 7' =7

ie - ’”1) =0 e, F—r =a(constant vector)

ds
But whens =0, 7 -7, =0 or 7 =7, at all corresponding points and hence the two curves

coincide or the two curves are congruent.

Hence the uniqueness theorem is proved.
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3.2 Bertrand curves

3.2.1 Definitions :

Two curves c and ¢, are said to be Bertrand curves or conjugate if the principal normals to ¢
are also principal normals to c;.

3.2.2 Properties of Bertrand curves :

Property 1. The distance between corresponding points of the two curve is constant.

Fig 3.1

Proof : Let P and P, be the corresponding points on the Bertrand curves ¢ and ¢;. 72 and 7,

be principal normals at P and P on curves ¢ and c;.
Let the corresponding quantities for the curve ¢, be denoted by the suffix unity.
Let PP, = L. Then the position vector 7 related to 7 as,
rE=F+An L (3.2.1)
where A is function of ‘s’.

Differentiating (1) with respect to °s’, we get

dnds, . e
ds, ds =t+An+An
~ ds n ~ A .
or tld—sl =t+x(rb—kt)+x A
=(1-2k)i+N A+reh L (3.2.2)

By definition 7, =7
Taking the dot product of (3.2.2) and (3.2.3) and noting that 7 . = b= 0,n-n=1

0=
which on integration gives
A = constant.
ie. PP = constant.
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Property I1. The tangents at the corresponding points of the associate Bertrand curves

are inclined at a constant angle.

Proof : If o be the angle between 7 and 7, then we have to prove that o is constant.

t1
f
o
90 —
0 - by
o
n= 1{1\1 B
Fig 3.2
But {1, =cosa
d ooy mon s ods
d —(i-4) =f-{,+i-i, =L
an ds( 1) ! " ds
ds
N ds; » . .
=0 (3.2.4)
fll .fl = 0, f'ﬁ = O
Integrating we get {-f, =constant=coso,say .. (3.2.5)
o =constant. (3.2.6)

Further, as the principal normals of the two curves coincide, it follows from the above that the

binormals of the two curves are also inclined at the same constant angle.

Property II1. The curvature and torsion of either associate Bertrand curves are connected

by a linear relation.

Proof : From property /, we have A'=0. (3.2.7)
Therefore,

~ ds; R ~

tlg =(1-Ak)t+rp L (3.2.8)
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This implies that 7,7 and b are coplanar. On taking dot product with l;l , we get

0=(1-Ak)7-b +rth-b

But, i-b = cos(90—-a) =sino and b.h =cosa ... (3.2.9)
Hence, (1-Ak)sinaa+Atcosa=0
or T= (k —%J tan oo for the curvec. . (3.2.10)

This shows that t and £ are linearly related.

Again from (3.2.1), =74\

N

=7 —A\n
Above shows that the point P(F) is at a distance — A along the normal at P, (7) and 7 is

inclined at an angle (— o) with 7. Hence (3.2.10) takes the form

1 1
T, =|K,+—|tan (-a) or ¢ =—| K;+— [tan a
1 ( 1 }J ( ) 1 ( 1 }J ..... (3.2.11)
which gives the linear relationship between 1, and X .

3.2.3 Theorem based on Bertrand curves :

Theorem. The torsion of the two Bertrand curves have the same sign and their product is
constant.

Proof : From property (III), we have

~ ds; R ~
e (Y S T X (3.2.12)
and i\l =i‘\cosa—b,\sina ..... (3.2.13)

On comparing the coefficients in (3.2.12) and (3.2.13), we get

(ds,/ds) 1-AK AT

=— L 2.14
1 cosa  —sinao 3 )
. d d
then, we have At=—sin oL, 1-AK =cos a ot (3.2.15)
ds ds
Replacing A by — A, o by — o and s by — s, and s, by s, we have
ds ds
_ =sin o—, 1+ AK, =cos . —
Aty ds, 1 as (3.2.16)

On multiplying, we have 11, = 1/A? sin? K = constant as both . and o are constants and

(1-AK) (1 +AK) =cos?a. .. (3.2.17)
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3.4.4 Self-learning exercise-1.
1. How many properties of Bertrand curves are ?
2. In which relation the torsion and curvature of Bertrand curves are connected ?

3. The angle between tangents of Bertrand curve are ......... .

3.3 Involute

3.3.1 Definition :

If tangents to a give space curve ¢ are normals to another curve ¢,, then the curve ¢ is called
involute of the curve c.

3.3.2 General equation of the involute of a given space curve :

Let ¢, be an involute of ¢ and let equation of ¢ be 7 =7 (s) Let the quantities belonging to c,
be distinguished by the suffix unity.

Any point P on ¢, is given by

OP,=OP+PP,= F=r+pi . (3.3.1)
Where 1 is to be determined. Differentiating equation (3.3.1)

h=( ik i) S
1

Involute
Evolute P t P,
N 7
C,////7 ‘t:\\ ///
\\ //
\\
¥ 7 r
. /// 1
\\ V2 t‘
\\// \
o] C1
A
Y n
Fig 3.3

But 7 is perpendicular to ¢, for an involute, hence taking dot product of both sides of equation

(3.3.2) with 7 and using 7 -7, = 0, we get

(l+u'):;TS=O e l+u=0ieds+du=0
1

hence on integration, we get stu=corp=c-s L. (3.3.3)

where c is constant of integration
R=rF+(c-s)c . (3.3.4)

This is the required equation of involute ¢, of the curve c.
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3.3.3 Curvature of the involute :
From (3.3.2) and (3.3.3), we have

. d .
tlﬁzukn where p=c—s. .. (3.3.5)

This shows that 7, is parallel to 7, Taking the direction of 7, same as that of 7, we get
ds,

=AK, =0 3.
s 1 (3.3.6)
Differentiating equation (3.3.6), we have
ﬁ:@ﬁ: Klﬁlz('[l;—Kf).L (337)
ds,  ds ds, w o 3.
1/2
2 2 2 K?
Onsquaring 2 =T K p :u where pw=c—s. .. (3.3.8)
MZKZ m K

Hence, equation (3.3.8) determine curvature of the involute.
3.3.4 Torsion of the involute :
From (3.3.7), we have

P th—Ki
1 KK (3.3.9)
Therefore using (3.3.6) and (3.3.8), we have
b =i xh —axa —TIKb o JSZT”—KbW ..... (3.3.10)
u KK, (r2+K2)
Differentiating (3.3.10) with respect to ‘s’ and using Serret-Frenet formulae, we find
N 2 X R i+ Kb
&ﬁ=;ﬁ SN ELN I A ( 3)2 {1t +KK'},
ds, ds (1:2+K2)/ ds ds (T2+K2)/
1 { A . (Tf+Kl;) { ’ ’}
or —qu K =——={tKn-Ktn+tvt+K'b; — ' +KK'{,
T (Pex)” (2 k)"
X (TZ+K2)(r'f+K'5)—(rf+K5)(rr'+KK')
or - K = 7 ,
(T2+K2)
(Kr'—rK')(Kf—ré)
or —T,ukn, = e (3.3.11)
(12+K2)
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Squaring both sides, we get

E NS
T :i% where p=c-s.

Hence equation (3.3.12) determines the torsion of the involute.
3.3.5 Example :
Ex.1. Find the involute of a circular helix given by.

x=acosB, y=asinb, z=a0Otana.

Sol. Here ¥ =(acosb, asinb, a0 tan o).
Diff. with respect to 0
- dS .
F i (-asin®, acos6, atana)
~ds )
‘=5 =(asin®, acosh, atana)

On squaring, we have

2
ds .
(— e (sm2 0+ cos’ 9) +a’tan’ o= a’sec’a

do
ds
— =aseco
do
0
or s:jasecadezaeseca
0

: ds .
Putting for Jo I (1), we get

taseca =g (—sin6,cos6,tana)

A

t =cosa(-sin6,cos6,tan o)

Now the equation of involute is,

i=rF+(c—s)t
or 7 =(acos®, asin®, abtana) +(c—a secO)cosa (—sin6,cos, tana )
or x=acosO—(c—abseca)cosa-sinb

y=acos0—(c—abseca)cosa-cosd

z=a0tan 0+ (c—a 0 sec ) sin a.
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Ex.2. Show that the distance between corresponding points of two involutes is constant.
Sol. The equation of the involute is,
R=F+(c—s)i
where ‘c’ is arbitrary constant.
Let ¢ = ¢, and ¢ = ¢, be the values of constant for the two point P and Q on the involute whose
position vectors are 7j and 7 say, so that

— ~

i=F+(q-s)i, FB=F+(c,—s)i
PQz‘ PO ‘ =| % -7 |=|(c,—¢;)t|=(c; —¢c,) = constant.

3.3.6 Self-learning exercise-2.

1. Write the formulae of curvature of an involute

2. Write the formulae of torsion of an involute.

3. Write the equation of involute.

3.4 Evolute

3.4.1 Definition :

If the tangents to a curve ¢ are normals to another curve ¢, then c is called an evolute of ¢,.
3.4.2 General equation of the evolute of a given space curve :

In other words, we are given the equation of the involute ¢ and are required to find its

evolute ¢

Let 7 =7(s) be a given curve c.

Let 7 be the position vector of any point Q on ¢, and that of the corresponding point P on ¢
be 7.

Now, since the tangent to ¢, are normals to c, the point Q must lie in the normal plane to the

curve c at P.




Thus, F=F+in+ub L (3.4.1)
where A and p are to be found out.
Differentiating with respect to ‘s, [as PO=Fi—-F=M+n b J
i =[f+k(ré—Kf)+(k’ﬁ+u’5—ur ﬁﬂﬁ
ds,
:[(l—Kk)f+(7u'—m?)ﬁ+(u'+7uf)bqﬁ (3.4.2)
as, 4.

As 7, lies in the normal plane of ¢ at P, therefore it must be parallel to 7 + Mb: hence compar-

ing this with the relation in (3.4.2), we obtain
1-KA=0 ie A=p

and —k Bl =—M+7ﬂ ie., T:—%p;t—kgt :itan_l[&j
A n AT+ ds w
T= itan_1 &
or s w) e (3.4.3)
Integrating equation (3.4.3), we get
a+ j ds =tan' £ [as p = A and a is constant]
1)
=cot™! B
p
or uzpcot(.[rds+a)

Substituting values of A and p in equation (3.4.1), we get
i :F+pﬁ+pcot(jrds+a)5. ..... (3.4.4)

This is the required equation of evolute ¢, of the curve c. As, we give different value of a, we

get infinite system of evolutes of the given curve, one evolute arising from each choice of a.

If we assume ITdS =y and a=c __2ln ..... (3.4.5)
dy
T=—"
so that s

Hence, equation (3.4.5) of the evolute becomes,

A

i =F+pi-ptan(y+c)b. L (3.4.6)
3.4.3 Curvature of the evolute :

Differentiating equation (3.4.6) with respect to ‘s,
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1 =[r+pﬁ—ptan(w+c)l;]'j%
1

=[t+p'ﬁ+p(rl;—Kf)—p'tan(w+c)5
+ tpitan(y +c)—prsec’ (\y+c)b}—

ds . ﬁ—r

= [p’+pttan(\y+c)] [ﬁ—tan(\u +c)b] :;—S
S1

:|:Krsin(w+c)—K'cos(w+c):|

- ro ds , —-K'
T ool (v x[ncos(w+c)—bs1n(w+c)}— [ p =—}

1
Hence the unit tangent to the evolute is,

4 :ﬁcos(w+c)—5sin(w+c) (3.4.7)

where ds, :|:Krsin(w+c)—K'cos(w+c):|

ds K* cos” (y+c)
Differentiating equation (3.4.7) w.r.t. s;’

Kh, =[(rl;—Kf)cos(\p+c)—ﬁsin(w+c)r+ rﬁsin(r+c)—5cos(w+c)r}£

ds,
1 ds
=[-Kcos(y+c)i |— o (3.4.8)
ds,
This equation shows that the principal normal to the evolute is parallel to 7.
We may choose the direction such that
n=—1 .....(3.4.9)
ds
Therefore K, =Kcos(y+c)—
ds,
K3cos® (y+c
or K, =—— (“’, ) o (3.4.10)
Krsin(y+c)—K'cos(y +c¢)
Hence equation (3.4.10) determines the curvature of evolute.
3.4.4 Torsion of the evolute :
We know Z;fzflxﬁl:[ﬁcos(w+c)—5sin(w+c)}<(—f)
or b :cos(w+c)5+sin(w+c)ﬁ (3.4.11)
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Differentiating this relation with respect to ‘s’

—rlﬁlj—sz —sin(y+c)th—cos(y+c)i +cos(w+c)rﬁ+sin(w+c)(r5—Kf)

S1
or —rlﬁlj—;z—Ksin(w+c)-f
3. 2
or o o —Ksin(y+c)cos” (y+c) [ =—tfrom (3.4.9)] ...(3.4.12)

' Kisin(y +¢)-K'cos(y+c)

Hence equation (3.4.12) determines the torsion of the evolute.
Now the relation between curvature and torsion is given by
Y
— =—tan(y+¢) L. (3.4.13)
K,
3.4.5 Example :
Ex. 1. Find the evolutes of the circular helix
x=acosB, y=asin®, z=a0Otana

Sol. Here F=(acos, asinb, adtana) (1)

Equation of evolute of space curve 7 =7 (s) is given by,

::F+pﬁ—ptan(\y+c)bA ..... ()
where Y= I’E ds 3)
Differentiating, (1) gives

{ =F =a(-sin, cosH, tanOL)ﬁ _____ (4)

ds

Taking module of both sides

1=4/a’sec’ o (@jjﬁza seco. (5)

ds ds

Using (5), (4) gives

i =cosa(—sin6, cosO, tana)

. cos” a

{'=Ki= (—cos6, —sin6,0) [using (5)]

a
_cos’al

which gives K ie.p=asec’ o

and A=(-cos0,—sin6,0)

A

b

{ x A =coso(sin6 tana,—cosH tan o, 1)
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~ CoS

b =—th= tan a (cos 6, —sin 6, 0)
a
S . cosa
which gives, T=smao p
1. 1 . .
\\ :.[—smoccosoc ds=—-s-sinocosa [Using (5)]
a a
= (0 sin av).

Hence the equation of evolute is given by

x=—acosetan2OL—atanasecasinetan(c+9sin0c)

y=—asin6tan2OL—atanocsecoccosetan(c+Osinoc) ----- (6)

z=a0Otana—atanasecatan(c+0sina)

Equation (6) gives required evolutes.
Ex. 2. Prove that the locus of the centre of curvature is an evolute and is given only when
the curve is plane.
Sol. The equation of evolute of space curve 7 =7 (s) is given by
::F+pﬁ—ptan(\y+c)bA ..... (1)
where ‘c’ is arbitrary constant.
The locus of the centre of curvature is given by the equation as
A=F4+pn (2)
If equations (1) and (2) represent the same curves, then on comparison, we get
tan(\y+c)=0:>\|f+c=nTt;nisaninteger ..... 3)
On differentiating with respect to ‘s’, we get
y'=0=1=0 ('-'w’=i—f=rJ ..... 4)
Hence the curve should be a plane curve.
3.4.6 Self-learning exercise-3.
1. Write down the equation of the evolute.
2. Write the formulae of the curvature of the evolute.

3. Write down the formulae of the torsion of the evolute.

4. Given relation between curvature and torsion of the evolute.

3.5 Conoids

3.5.1 Definition :

The surfaces generated by a moving straight line under certain conditions are called ruled

surfaces.
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Cone and cylinder are examples of the ruled surface.

A conoid, is defined as the locus of a line which always intersects a fixed line (a given line) and a
given curve and is parallel to a given plane.

Right conoid : If the given line is at right angles to the given plane, the locus is a right conoid.

3.5.2 Equation of a conoid :

Let the coordinate axes be so chosen as fixed line be z-axis and xy-plane be the given plane.

In such a case, the generators of the conoid will project the given curve on the plane x=11ina

curve, whose equation be taken as,

x=1lz=f» .. (3.5.1)
Let P (1, y, z) be any point on this curve, therefore
z=foyp L (3.5.2)

Let O (0, 0, z;) be the corresponding point on the fixed line. The generator of the conoid through

P is the line joining P and Q, whose equation is,

x-0 y-0 z-z
1 P "0 e (3.5.3)
Eliminating y, and z, between the eqn (3.5.2) and (3.5.3), we obtain the required equation of
the conoid i.e.,
z=fxy L (3.5.4)
3.5.3 Examples :
Ex.1. Find the equation to the conoid generated by lines parallel to the plane XOY, are
drawn to intersect OZ and the curve
2 2

X
x+y=r,—2+
a

2z
Cc

AE

Sol. The generators of the conoid are parallel to the plane XOY and intersect OZ, therefore their
equations may be written as

Z=p and x=©» L. (1)

say (x, y, W) is a point lying on the curve through which the generator of the conoid passes, then the
other point will be (0, 0, ).

Therefore the equation to the generators are,

X _y_z-p
—===— 2
S B 4 0 @

2 2

2 X 0 2p

A]SO, x12+y12 =r ,—alz +b12 = c e (3)

A 2

2 _ . —

or cr {a_z-i_b_ZJ —2“(14‘}\, ) [. xl —)Lyl] ..... (4)
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Eliminating unknown constants A and p between (1) and (4), the required locus is

Ex.2. Find the equation to the right conoid generated by lines which meet OZ, are paral-
lel to the plane XOY and intersect the circle
x=a, y2 +22=12
Sol. The generators of the conoid will project the given curve on the plane x = a is the circle
y2 +22=12,
Let (x, y, 2) or (a, ), z) is point on the circle through which the generators of the conoid pass.
Since the lines meet oz, therefore the other point will be (0, 0, z).

Therefore, the equations to the generating lines are,

X ¥y z-z

N 0

Also, yl2 + 212 =2
Eliminating y,, z, between (1) and (2), we have
xz(zz—r2)+a2y2=0

which is the required equation of the right conoid.

3.5.6 Self-learning exercise-4.
1. Define right conoid.
2. Write equation of conoid.

3. How can we obtain the equation of conoid ?

3.6 Inflexional tangents

3.6.1 Definition :
Let the equation to the line through a point (x,, y;, z;) on a given surface be

X=X :y_yl :Z_Zl :(u)
[ m n

The inflexional tangents are the lines which have three point contact inside the given surface where

Another definition : At a point P where 7" = (), the tangent line is called inflexional and the
point P is called point of inflexion.
3.6.2 The equation of the inflexional tangents at a point on given surface :

Let =1 (&, n) be the equation to the surface, the point of intersection of the line

E&—x m-y _C-z_
I m  n —(p)
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are given by ztnp=f(x+ilp,y+mp)

or

2 2
2
:f(x,y)+p(pl+qm)+2—!(rl2 +2Slm+m2k)+___

_ 0Oz 0z 0%z o’z 0%z

where = g == y=
P %175

b S = b
ox? Ox0y ?

,l"—

Therefore the equation of the tangent plane at (x, , z) is
E-x)p+tMm-»g=C¢-2z .. (3.6.3)

and the inflexional tangents are the lines of intersection of the tangent plane and the pair of planes given

by

rE—-x)2+2sMm-x)(M-y)+t(m-y=*=0. .. (3.6.4)
3.6.3 Examples :
Ex.1. Find the inflexional tangent at (x,, y,, z;) on the surface vz = 4ax
Sol. The equation to a line through (x,, y,, z;) is

XTh _YTh _ZTAa L,
[ m n

(say) L (1)

The inflexional tangents are the lines which have three point contact inside the surface where

From equation (1) substituting the values ofx, y; z in the equation of surface y%z = 4ax, we get

F (u)= (mu +yl)2 (mu+z)-4a(lu+x)=o0 . 2)
For three point contact, we have
F' (u)= (mu +y,) 2m (nu + z;) + (mu +yl)2 n—4al=0 .. 3)
F'" (u)=2m?* (nu + zy) +2mn (mu+y) +2mn (mu+y)=0 ... 4)
At u =0, the above equations (2), (3) and (4) are reduced to
yiz, —4ax =0 (5)
2my,z, —nyt —dal=0 L. (6)

2mzz1 +2mny, +2mny,; =0
or mz, +2ny,;=0 L (7)
Using (7), (6) become

3
2my,z, —;”—;lyf —4al =0 or z:%
1

Substituting value of / and » in (1), we get

X4 _YTh__ Z7A
(3my,z,/8a) m —(mz,/2y,)
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or (?aylzzl /4a) 2y, -
X=X _Y=n_z2-% )
or 3%, = 2, = 2 [using (5)]
which is the required equation of the inflexional tangent. Answer

3.7 Singular points

3.7.1 Definition :

If at a point P (x, y, z) of the surface F' (x, y, z) =0
oF _OF _OF
o o oz e
then every straight line through P (x, y, z) will meet surface in two coincident points, such a point is
called a singular point or the first order on the surface.
3.7.2 Tangents at the singular point :
The straight lines through P (x, y, z) whose direction ratio satisfy the equation

2
0 B, 0
[—+m—+n—| F=0
(ax oy azJ ..... (3.7.2)

meet the surface in three coincident points at P (x, ), z) and are called the tangents at the singular point.
Eliminating /, m, n from the equations of the straight lines and (2), we get the locus of the system

of tangents through P (x, ), z) as the surface

O°F O°F
(g—x)zax—2+...+z(n_y)(g_z)ayaz

+..=0 (3.7.3)

Singular points are classified according to the nature of the locus of the tangent lines represented
by (3.7.3) :
(i) if this locus is a proper cone, then the point P is called a conical point or conic node.
(i) when it is a pair of distinct planes, then the point P is called a biplaner node or binode.
(iii) when the pairs of planes coincide, then the point P is called uniplanar node or unode.
3.7.3 Examples :
Ex.1. Find and classify the singular points of the surface
xyz—a*(x+y+z)+2a3=0
Sol. The equation of the surface can be written as,

Fx,yz)=xyz—a*(x+y+2)+243=0 .. (1)
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Differentiating (1) with respect to x, y and z respectively, we get

oF

o =0:>yz—a2=O or yz:az, ..... 2)
oF

5 =0=xz—a>=0 or xz=a>, 3)
oF 2 2

% =0=>xy-a"=0or xy=a~- .. 4)

From (2), (3) and (4), we get (a, a, a) which is a singular point.
Now, shifting the origin at (@, a, a) by substituting x =X+ a, y=Y+ a, z=Z + a the equation
of the surface reduce to
X+a)Y+a)(Z+a)—-a* X+a+Y+a+Z+a)+2a°=0
=XYZ+a(XY+YZ+ZX)=0.
The locus of the inflexional tangents are
a(XY+YZ+7ZX)=0
which is an equation of a cone therefore (a, a, a) is a conic node.
Ex.2. Prove that the z-axis is a nodal line with unodes at the points (0, 0, — 2) and
(0, 0, 2/3) for the surface
2y +x3 = 3x%y =302 + 3 +z (2 —xy +%) =0.
Sol. The origin is singular point and the locus of the inflexional tangent is
2xy =0 = pair of planes x = 0 and y = 0.
Therefore, the origin is binode.
But x = 0 =y is the z-axis and origin lies on oz i.e. z-axis is the nodal line. Consider a point
(0, 0, — 2) on z-axis and shifting the origin at (0, 0, — 2) by substituting
x=X,y=Y,z=7-2.
The equation of surface is reduced to
—2X2 2V HAXY+ X -3X2Y-3XV2+ P+ Z(X2- XY+ VP =0
The locus of inflexional tangents is,
—2X2 -2V +4XY=0
or (X-YP?=0=>X-Y=0 and X-Y=0.
These are two coincident planes, therefore (0, 0, — 2) is a unode.
By similar treatment, we can prove (0, 0, 2/3) is also a unode.
3.7.4 Self-learning exercise-5.
1. Ifthe locus is proper cone then singular point is called ..... .

2. Write the other name of singular point.
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3.8 Indicatrix

3.8.1 Definition :
Let the plane z = 0 be taken as the tangent plane and the z-axis as normal at a given point of the
surface.

Ifz=f(x, ) is the equation of surface, expanding it by Maclaurin’s theorem we get

1
z :p)c+qy+5(r)c2 +2sxy+ty2)+...

2 2 2
where pz%, q:%, r—a j, s = 0z , t:6 j are the values at the origin.
ox oy ox 0y Ox oy

Since the tangent plane at the origin is z = 0, we have p = 0 and ¢ = 0 and therefore at the
origin
2z=m2+2sxy+02+... L. (3.8.2)
If we neglect the third and higher powers of x and y, the shape of the surface in the neighbourhood
of the origin is approximately a conicoid given by
2z=m2+2xy+n% L (3.8.3)
This conicoid is a paraboloid or parabolic cylinder according as 7t # s or 7t = 52, respectively.
The section of the surface by the plane z = / is the same as the section of the conicoid therefore
it is a conic, given by
z=h2h=rm2+2sxy+0% L. (3.8.4)
and is called the indicatrix.
Thus the conic in which a surface is cut by a parallel plane at an infinitesimal distance near the
tangent plane at any point is called the indicatrix at the point.
3.8.2 Examples :
Ex.1. Prove that the indicatrix at a point of the surface z = f (x, ) is a rectangular hy-
perbola if
A+p)t+(0+¢®)r—2pgs=0.
Sol. The equation of the surface is given by

z=f(x,y) (1)

The direction cosines of the inflexional tangents are given by

p+mg-n=0 L. (2)
and Pr+2ims + m*=0 . 3)
0z 0z o’z o’z 0%z

where p=—, g=—, r= , S = , 1= .
ox dy ox? dy dx o
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Equation (3) may be written as

2
(LJ r+z(i}+t:o
m m

L L, t
which gives ——=— 4
mm,

Also eliminating / between (2) and (3), we get

2
(n—mq} r+2ms(wJ+m2t=0
p p

or m? (rq® + tp? — 2pgs) + 2nm (— gr + ps) + n*r=0

mom, r

for which n = qzr A pzt “opgs e (%)

from equations (4) and (5), we have

L, _mm _ mm

t r q2r+p2t—2pqs

These inflexional tangents will be right angle if
Ly lh+mymy+nn,=0 (7)
Substituting (6) into (7), we get
t+r+qir+pit—2pgs =0
or (1+pHt—2pgs+(1+¢>)r=0
which is the required condition for the indicatrix to be rectangular hyperbola.
Ex.2. Prove that the points of the surface
xyz—a(yz+zx+xy)=0
at which the Indicatrix is a rectangular hyperbola, lie on the cone
AHy+)+yt )+t (x+y) =0,

Sol. The given surface equation can be written as,

. axy
(W —ay _ax) ----- (1)
o _ _ 2
Therefore, p= & = (xy i ax)(ay) a)zcy(y a) = 22 ..... 2)
Ox (xy —ay —ax) X

-z 0%z _ 222 (z+x)

Similarly q= ?, = o 1
0%z 273 o*z 22° (Z + J’)
= = and t=——=—7p"" 3)
Ox ay x2y2 ayz 4



Substituting these values into the equation of indicatrix, we have
4222 (z + 41222 (z+ 2 2 3
L”Z_“JM{H%JM R
X y y X Xy Xy

or 22 X (y+2)+ )y )+ (x+2)) =0
Therefore the required locus is

Oyttt (x+y)=0  (sincez=0) ..

which is a cone.

3.9

Answers to self-learning exercises

. K =

Self-learning exercise-1

. Three

. Linear relation

. Constant angle

Self-learning exercise-2

(12+K2)1/2
. K =——"—, where p=c-s
2
rl=iM, where p=c-s
uK(TZJrKZ)
”1=F+(c—s)f

Self-learning exercise-3

. ﬁ:F+pﬁ—ptan(w+c)5.

K cos® (y +¢)
1= ,
Krsin(y+c)—K'cos(y +c¢)

—K’sin(y +¢) cos® (y +c)
T =
' Kesin(y +c)—K'cos(y+c)

l=—tan(\4f+c).

1

Self-learning exercise-4

. Right conoid : If the given line is at right angles to the given plane, the locus is a right conoid.

. z=f(/x).
. By intersection of fixed line and given plane.
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Self-learning exercise-5

Conic node.

First order on the surface.

3.10

Exercises

A

State and prove existence and uniqueness theorems.

Prove that the distance between corresponding points of two curves is constant.

Show that the involutes of a circular helix are plane curves.

Write down the equation of conoid.

Find the equation to the conoid generated by lines parallel to the plane XOY, which are drawn to
intersect OZ and the curve

2 2

2
x4+ 427 =b2,x—2+y—2+z—2=1.
a b” c
2 2 2
2 2\| X Y o _ zZ 2 2

[AnS. (b 4 )La—2+b—2J—£l—c—2J(x +y )]
Find and classify the singular points of the surfaces
(i) xyz=ax*+ by* + cz* [Ans. (0, 0, 0) is a conic node]
(i) xyz—a* (x +y +2) + 24> = 0. [Ans. (a, a, a) is a conic node]

Prove that the indicatrix at every point of the helicoid z = ¢ tan™! (y/x) is a rectangular
hyperbola.

Prove that every point on a cone or cylinder is a parabolic point.

oo
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UNIT 4 : Envelope, Edge of Regression, Ruled Surfaces,

Developable Surface, Tangent Plane to a Ruled
Surface

Structure of the Unit

4.0
4.1
4.2

4.3

4.4
45

4.6

Objectives

Introduction

Envelope

4.2.1 Family of surfaces (one parameter)
4.2.2  Characteristic of family of surfaces

4.2.3 Envelope

4.2.4 Edge of regression

4.2.5 Family of surfaces (two parameters)
4.2.6 Self-learning exercises-1

Ruled surface

4.3.1 Equation to a ruled surface

4.3.2 Criterion for a surface to be developable
4.3.3 Self-learning exercises-2

4.3.4 Equation of tangent plane to a ruled surface
Summary

Answers to self-learning exercises

Exercises

4.0

Objectives

After studying this unit you will be able to understand :
1. characteristic, envelope and edge of regression of family of surfaces,

2. ruled surfaces, their classification and associated properties.

4.1

Introduction

Family of surfaces admit certain geometrical features such as characteristic and edge of regres-

sion which are in fact curves lying on the surface. Their study is of vital importance in the theory of dif-

ferential geometry. Similarly, envelope of family of surfaces has a unique property that it touches each

member of the family of surfaces.

There are many surfaces which are generated due to motion of straight lines. Such surfaces are

called ruled surfaces. This includes their classification as developable, skew surfaces and associated prop-

erties.
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4.2  Envelope

4.2.1 Family of surfaces (One parameter) :
An equation
Fx,y,z,)=0 . 4.2.1)
where a is a parameter, represents a family of surfaces. By assigning different real values to the param-
eter a we get different surfaces belonging to family given by (4.2.1). For specific value to a, we get a

specific surface of the family and is called member of the family of the surfaces.
4.2.2 Characteristic of a family of surfaces :

Characteristic of a surfaces is the curve of intersection of two consecutive surfaces.
Let Fx,y,z,0)=0, F(x,y,z,0o+00)=0 ... (4.2.2)
be two consecutive surfaces of the family given by (4.2.1). Then the curve of intersection of the con-

secutive surfaces (4.2.2) is given by

F(x,y,z,0+8a)—F(x,y,z,0)

F(x,y,z,a)=0, =0 .. 4.2.3
(x.7.2,) 5o (42.3)
The limiting position of the curve as do. — 0 is obtained as
oF
F(x,y,z,)=0,—=0, . 2.
(x,,2z,0) ~ (4.2.4)

which determines the characteristic curve corresponding to the value c.
4.2.3 Envelope :

The concept of envelope of a family of surface is very important. The envelope of a family of
surfaces touches every member of the family, at all points of'its characteristic. Geometrically, the enve-
lope of the family of surfaces is the locus of characteristic for all values of the parameter. Hence, the
envelope is obtained from the equation

F = O,a—F =0,
oo
by eliminating a.

Theorem 1. The envelope of a family of surfaces touches each member of the family at
all points of its characteristic.

Proof : Let F' (x, , z, a) = 0 be the family of surfaces, where a being the parameter.

Let (x,3 z o) =0, F (x, y, z, o+ dat) =0 be any two consecutive surfaces of the given family.

Then the envelope is obtained by eliminating o from the equations

F =0, oF _ 0.
oo
Consider (x, y, z, o) = 0 as equation of the envelope, where a. is not merely a constant but a
: ... OF
function of x, y, z satisfying Fe 0.
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Now, the normal to the envelope

oF
F(x,y,z,a)=0 h —=0
(x,y,z,0a) (w ere. — j

is parallel to the vector VF' i.e. parallel to the vector

>

(aF aﬁ’an » [OF OF o) « (GF' GF'GQJ
—t—— i+ —F—— | | —F——
Ox Oa Ox dy Oa Oy 0z Oa Oz

(%J¢ %‘ﬁ(%jﬂ [GF }
or — |1+ — | ]| — k. w—=0
ox oy oz oa

The vector Z(aa—Fj i is parallel to normal to the surface F (x, y, z, o) = 0. This reveals that
X

at all common points, the surface and the envelope admit the same normal, and consequently the
same tangent plane. This concludes that surface and envelope touch each other at all points of the
characteristic.

Note : Characteristic of the envelope is the curve in which two consecutive surfaces intersect.
Thus, each characteristic lies on the envelope.

4.2.4 Edge of regression :

Edge of regression is a curve that lies on the envelope. We have seen that the characteristic is
the curve in which two consecutive surfaces intersect.

Two consecutive characteristics meet in one or more points. The locus of points of intersection
of consecutive characteristics is called the edge of regression of the envelope. Obviously, the edge of
regression (a curve) lies on the envelope simply because every characteristic lies on the envelope. Edge
of regression may have the following formal definition :

“Edge of regression is the locus of the ultimate points of intersection of consecutive characteris-
tics of one parameter family of surfaces”.

Equation of the edge of regression of the envelope :

Let Fx,y,z,y=0 . (4.2.6)
be the family of surfaces, a being the parameter.
Let F(x,y,z,a)=0 and F(x,y,z a+da)=0,

be two consecutive surfaces. Then the characteristic to the surface F' (x, y, z, o) = 0 is given by

oF
F s V94 :07 _:0 ...... WL
(%.72,0)=0, = (4.2.7)

The characteristic to the surface F' (x, y, z, o + da) = 0 is given by

OF (x,y,z,00+8at)
oo

F(x,y,z,a+8a)=0, =0
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Expanding the equations (4.2.8) be Taylor’s series, we get

oF
F s Vo4 8 ..... :0
(x,y,z,0)+ a8a+

2
a—F+80c a—F+....=O ..... (4.2.9)

oo oo’

From equations (4.2.7) and (4.2.9), we obtain

=

oF _ O°F
F=0, £=0, g=0 ..... (4210)

the edge of regression is obtained by eliminating o from the equations (4.2.10).
Theorem 2. Each characteristic touches the edge of regression.
Proof : Let (x, y, z, a) =0, be family of surfaces. Then fora=o and a=a + da,
Fx,y,zo)=0 L. (4.2.11)
and Fx,y,z,aa+0)=0 . (4.2.12)
are two consecutive surfaces.

Thus the characteristic curve corresponding to the surface F (x, y, z, o ) = 0 is given by

oF
F=0, —=0 . 42.1
P (4.2.13)
and the edge of regression is given by
OF . O'F
r=0, —=0, —=0 . 42.14
P 22 ( )

We can consider edge of regression given by

F=0, a—F:O
ool

provided a is a function of x, y, z given by
0°F
=5 =0.
oo
Note that the tangent at any point P (x, ), z) to the edge of regression is nothing but the line of
intersection of the tangent planes to the surface. Consequently the tangent is normal to the vectors VF
and VF , where a. is function of x, y, z.

Thus this tangent is perpendicular to the vectors

z(a_FJﬁ_Fa_O‘J; in

oot (4.2.15)
OF, 0F, da) -

and > Stoelh (4.2.16)
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. OF _ O°F :
Using o =0, — =0, the equations (4.2.15) and (4.2.16) are reduces to
o oa

Z(g—ij Lo (4.2.17)

0*F |
i.
and Z[@x@aj ..... (4.2.18)
Vectors (4.2.17) and (4.2.18) are perpendiculars to tangent planes at P (x, y, z) to the charac-
. 8F(x,y,z,0t) ) )
teristic F' (x, y, z, o) = 0, 8— = (0. This concludes that the tangent to the edge of regression
o

is parallel to the tangent to the characteristic and consequently the two curves touch at their common
points.
4.2.5 Family of surfaces (two parameters) :
We now proceed for the case of envelope of two-parameter family of surfaces.
Envelope of two parameter family of surfaces.
Let Fx,y,z,a,)=0 . (4.2.19)
where a, b are parameters, denote a family of surfaces.
Then the consecutive surfaces for a = o, b =3 are
Fx,y,z,o,p)=0 L (4.2.20)
F(x,y,z,a+0da,p+0)=0 L. (4.2.21)
On expanding (4.2.21) by Taylor’s series, we get

oF oF
F(x,y,z,a,p)+| —06a+—06B |+...=0
(x,»,z,0,B) [80( a B Bj

when do. — 0, 5 — 0 we ought to have at a point of intersection in the limiting case :

oF oF
F=0, aéa +% op=0. (4.2.22)
Further since da, 3 are mutually independent then the identity (4.2.22) is line if
oF oF
F =0, 20 =0, % =0. (4.2.23)

Thus, we conclude that the criterion given by (4.2.23) is mandatory for two consecutive sur-
faces given by (4.2.20) and (4.2.21) to interest. On elimination of o, B we get the equation of the enve-
lope of two parameter family of surfaces.

Ex.1. Suppose that a tangent plane to the ellipsoid

22
+b—2+

| N
[\ [\

=1

QN|><
(@)
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meets the coordinate axes in points P, O, R. Prove that the envelope of the sphere OPQR is

(ax)2/3 + (by)2/3 + (CZ)ZB — ()C2 +y2 + 22)2/3
where 0 is the origin.

Sol. Let us consider

Given that the tangent plane (1) meets the axes in points P, O, R, then the equation to the sphere
OPQR is

2

)Cz,y2 +z

Note that for variable values of a, B, Y we would have different tangent planes to the ellipsoid

and consequently different spheres of the form (4), i.e., (4) constitutes a family of surfaces, where a, 3,
Y are parameters.

We denote F(x,y,z,a,ﬁ,y) Exz +y2 +Z2 —ogx—ﬁy—yz =0 ... (5)
2 2 2
a- b ¢

and ¢(Q,B,Y)E?+—2+—2—l=0 ..... (6)

The equation of the surfaces given by (5) is obtained on elimination of the parameters o, 3, and
v from the equations

This gives 2

|
|
<
|
N




1/3 113 13
ox’” By’ yz"7
or 2B s B =k (say)

ka2/3 kb2/3 ka/S’
= 1/3 , B = 1/3 , ’Y = 1/3 ...... (7)
X v z

or

The values of a., B, y as obtained in (7) are now put in (3) and (5) to yield

2523 bzyz/s 23

_ w2
a4/3 b4/3 + c4/3 =K
or (@) + )P+ (=2 L. (8)
2 2 2 [kd®? kb3 ke
and X +y 4z —x{ NE -y y1/3 -z 5 =0
or X%+ y2 +z2 =k {(ax)z/3 + (by)z/3 + (cz)2/3}
2, .2, 2
XT+y +z
or K= L 9)
(@) + )" + (e2)?
From (8) and (9), we get the required result.
Ex.2. Find the envelope of the family of planes
X . Voo z
F(x,y,2,6,0) E—cos6s1n¢+;s1nesm¢+—cos¢—1 =0.
a ¢
Sol. We have,
F(x,,2,0,) sfcosesin¢+%sinesinq)ﬁcosq)—l -0 . (1)
a ¢

The required envelope is obtained by the elimination of the parameters 0 and ¢ from the equa-
tions

F=0%L_0 % _
00 b

On differentiating (1) partially with respect to 0 and ¢, respectively, we obtain.

o = —fsinesin¢+zcos Osinp=0
00 a b
= Ysin0+2cos0=0 [ sing=0] ... 2)
a b
oF «x V. z
— =—cosBcosp+=sinBcosPp——sinp=0
% " a ¢ 5 ¢ . ¢=0 . (3)
. . ay
Equation (2) gives, tan0=— L 4)
bx
Equation (3) gives, X cosO+ %sin 0=Ztan o L &)
a c
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The equation (1) can be rewritten as

£cos6+lsin9jsin(1)=1—£cos¢ ...... (6)
a b c
Z . Z
using (5) in (6), we get Ztan ¢j sing =1 —ZCOS(P
or iSmd)jsind):l—icosd)
ccosd c
z{sin2¢+cos2¢J
or - — =1
c cos ¢
or (:OS(I):i ...... (7
c
Now using (7) in (5), we get
X y z |c? o z o ? 1
i Zeinf== |——— oCOSP=—=>tanQ =, |——
acose+bsm6 2 1 P PR (R (8)

On squaring (2) and (8) and then on adding we get
2 2( .2

frrdr= (5]

a- b ¢z

X
or —2+y—2+
a b

as the required envelope of the given family of planes.
Ex.3. Find the equation of the developable surface whose generating line passes through
the curve y* = 4ax, z = 0; x> = 4ay, z = c and show that its edge of regression is given by
ex? = 3ayz =0 =cy? — 3ax (¢ — 2).
Sol. Recall that a developable surface is generated by one parameter family of planes.
In order to find the equation of the required developable surface we first find the family of planes

F (m) = 0 (where m is parameter). The developable is obtained eliminating m from F (m) = 0 and

F (m)=0. We proceed as follows.

The equation to the tangent to the curve y = 4ax, z=0 is
y:mx+£’zz() ..... (1)
m
Then any plane touching the parabola y = 4ax, z= 0 is

( y—mx— ﬁj +Az=0, (whereA beingscalar) ... (2)
m
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The section of the plane (2) by the plane z = c is

y+kc—mx—%=0 ...... 3)
m m m

If (3) touches the parabola x2=4ay, z=c, then the equation

2
v (A a
{— + (———zﬂ =4ay,
m \m m
must have equal roots

2.2 2
he {L%J +2x£(l—%j—4ay=0,

must have equal roots.

This gives A=
¢ mc

Putting this value of A in (2), we get the plane touching both the given curves and it is

2
F(m)zy—mx—£+£ﬂ+iJz:0
m c cm

or F(m)s(am3+a)£+my—m2x—a=0 ..... 4)
c
This gives F(m)=3am* i+y—2mx =0. . (5
c

Elimination of m from (4) and (5) will give the required developable surface.
Edge of regression :
Differentiating (5) partially with respect to m, we get

F(m)=6amZ-2x=0
C

This gives m=—2 (6)
3az

Note that the edge of regression is given by F (m) =0, F(m) =0, F'(m) = 0. Hence putting the
value of m From (6) in F'(m) = 0, we find

2
3ai[ﬂ} +y—2[ﬂ}x:0
c | 3az 3az
On simplification, we get
6x*—3ayz=0 L. (7)
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Again, on putting the value of m in (4) and performing simplification, we get
27032 + 9azxyc? — 263x3 — 27ca’z = 0.
Using (7) in the above equation, we obtain

274322 (z — ¢) — 2¢x (Bayz) + Yazxyc? = 0.

2.4
or 27a3-%(z—c)+(3ayz)czx=0
9a”y
2.4
or 3ac2x (z—c)+(cx2)c2x=0

Y
or c?=3ax (c—2)=0

Hence the edge of regression is given by

ex? = 3ayz =0 =cy? — 3ax (¢ — 2).

Ex.4. Find the equation of the developable surface which contains the two curves

y2=dax, z=0 and (y—b)>=4cz, x=0

and show that its edge of regression lies on the surface

(ax + by + cz)? = 3abx (b + y).
Sol. The given curves are
V2 =dax,z=0
(y—b)?=4cz,x=0
The equation to the tangent to the curve (1) is
y=mx +%, z =0, (where m is the slope)

Now, the equation to the plane that touches the parabola (1) is

(y —mx— gj +Az =0, (where A is a scalar)
m

Ifthe plane (4) touches the curve (2), then it means that the line y = Lz touches the curve

m
(y—b)? =4cz.

2
That is, (i -Az— b} = 4cz must have equal roots.
m

2
= 22z — 2{40 + 2\ (i—bﬂ +(£—bj =0 must have equal roots.

m

2 2
ie. {4c+2k(£—bﬂ — 4)2 (ﬁ—bJ
m m

&9
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On simplification, we get

mc
A=—— %)
bm—a

On putting the value of A from (5), in (4), we find the equation of the plane touching the curve
(2), and it is

a mecz
y—mx——+
m bm-—a

=0 (6)

or on simplifying it becomes
bm3x —m? (ax + by +cz)+am (y+b)—a*=0 . (7
We denote the surface (7) by F (m).
Developable surface :

We know that a developable surface of the surface F' (m) = 0 is obtained by eliminating the

parameter m from the equations F (m) =0 and F(m)=0.
Differentiating (6) with respect to m, we get

F(m)=3bm*x=2m(ax+by+cz)+a(b+y)=0 ... ()
From (7) and (8), we obtain

= a(b+y)(ax+by+cz)—9a’bx
2(ax+by+cz)? —6abx (y +b)

Using this value of m in (7), we get the required developable surface.
Edge of regression :
We know that edge of regression for the surface F' (m) = 0 is obtained on elimination of m

from, F (m)=0, F(m)=0 and F(m)=0, we have

F(m)=6bmx-2(ax+by+cz)=0 [from (7)]
This gives, o &tbyrez (10)
3bx

Putting this value of m is (7), we get

2
ax+by+cz ax+by+cz
3bx| —————| 2| ——— +by+cz)+a(b+y)=0
){ b } { 3hm }(ax Y cz) a(b+y)

or (ax +by+cz)>=3ab(b+y), .. (11)
which gives the surface on which edge of regression lies.
Ex.5. Find the developable surface which passes through the curves
y2=dax, z=0 and y*=4bz,x=0.
Sol. The equation to the tangent to the curves

v =dax,z=0 . (1)
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is y=mx+L, z=0 . )
m

Therefore, equation to the plane touching (1) is

(y_mx_ﬁjmz:o ..... 3)

m

[Remember that here m is the slope of the tangent and is a parameter].

Equation (3) touches the curve

y2=4bz, x=0 . 4)
That means y= 2z [on putting x =0 in (4)]
m

2
and [i - kz} = 4bz has equal roots i.e., discriminant is zero. [putting y = 2 )z inthe equation
m

m
y? = 4bz]
2
or A% - 4b+% z+a—=0,
m m?
, 200 402d°
has equal roots. That is 4b + =7
m m
or =l (5)
a

Putting the value of A in the equation (3), we get the equation of the plane touching the given

curve as

F(m)sy—mx—i—b—mZZO.
m a

Developable surface :
We know that the developable surface is obtained by eliminating m from the equations

F (m)=0, F(m)=0. Now, differentiating (6) partially with respect to 7, we obtain

- a bz
F(m)=—x+¥—;=0 ..... (7)

Equation (6) can be written as

y—m x+i+b—z}=0

L m a
[ a a bz a
or y—m —2+—2}=O [ From(7) x+—=—2}
Lm~ m a m
or y—z—a:O
m
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or m= 2a (8)
y

On putting the value of m in equation (7), we get the developable surface as
y? =4dax + 4bz.
Ex.6. Show that the edge of regression of the developable that passes through the pa-

rabolas x = 0, 22 = 4ay; y* = 4az, x = a is given by

x_y__ ¢z
y z 3(a-x)

Sol. In order to find the required edge of regression we have to first find the plane that touches
both the given curves.
Equation to the tangent to the parabola x = 0, 22 = 4ay is
z=my+ ﬁ, x=0.
m

Then the plane through this tangent (i.e. touching the parabola x = 0, z2 = 4ay) is

a
-my—— |+Ax=0
(z my mj ..... (1)
or y=—Z ——a2+—=0 ..... (2)

m m m

Equation (2) meets the parabola y? = 4az, x = a therefore its section by x = a is

Now, if equation (3) touches the parabola y2 =4az, x=a.
) z a \a 2
Then the equation ———+— | =4az
m m m

must have equal roots,  i.e. (mz—a + ham)?* = 4azm?
must have equal roots,  i.e. m2z2 + [2ham?® — 2ma — 4am®] z + a® (mh — 1)> =0 has equal roots.

Thus we must have  [2ham? — 2ma — 4am*)* = 4a® m? (mh — 1)~

3
On solving we get A= bm (4)
m
Putting this value of A in (2) we find the plane that touches both the given parabolas as
z a l+m
y=———7+t XL (5
m m m
or Fmy=m3x—m?y+mz+x-a)=0 .. (6)
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Edge of regression :

The edge of regression is given by
F(m)=0, F(m)=0, F(m)=0

From equ. (4), we find F(m)=3m*x-2my+z=0 .. (7)
F(m)=6mx-2y=0

= m=— ()

m?—2m 2+ = =0
3x 3x
or m2—2m-(m)+i:0 [putting mzl]
3x 3x
mz—i 9
or 2T 9)

Note that to obtain the answer in required form we have to perform some tricky mathematical
manipulation as follows.

Dividing (4) by x, we obtain

m-m*LemZi1-2=0
X X X
or m® =3m® +3m> +1-2=0  [using (6), (7)]
X
or =2 (10)
X

Now, we write ;3 = m2m

N T2 [using (6), (7). (8)]
X 3x 3x

3x z
or 7_3(a—x) ..... (11)
Again, m3 - m = (m?)?
- )

X 3x) \3x

— Y__Z (12)

z 3(a—x)

From (11) and (12), the required edge of regression is obtained as

x_»y z

vy z 3(a-x)
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4.2.6 Self-learning exercises-1

1. Characteristic of the family of surfaces F (x, 3, z, o) = 0 is given by

oO*F oO*F O°F
a) F=0, —=0 h) ——=0, —— =0
@ oo’ 2 oo’ oo’
© F=0 @ F=0, £ g
oo

2. Which of'the following is not true ?
(a) characteristic may not lie on the envelope
(b) envelope touches each member of the family
(c) edge ofregression is a curve
(d) edge of regression lies on the envelope.

3. Find the envelope of the plane Ix + my + nz = 0, where al? + bm? + cn® = 0.

4.3 Ruled surface

You are familiar with the surfaces such as cones, cylinders, hyperboloid of one sheet and hyper-
bolic paraboloid. All these surfaces are generated by single parameter family of straight lines. But things
are not that simple and we need a further analysis. Hence we define ruled surfaces.

Ruled surface : A ruled surface is a surface which is generated by single parameter family of
straight lines. The line is called the generating line or ruling or generator of the ruled surface. All the
surfaces mentioned above are obviously ruled surfaces. Ruled surfaces are classified into two categories
depending upon intersection/non intersection of their consecutive generators.

Ruled surface on which consecutive generators intersect is called developable surface. Cones,
cylinders and conicoid are developable surfaces. A ruled surface on which two consecutive generators
do not intersect is called a skew surface or a scroll. Hyperboloid of one sheet and hyperbolic parabo-
loid are scrolls.

4.3.1 Equation to a ruled surface :

To find the equation of a ruled surface let us first explain directrix or base curve of a ruled sur-
face. A curve C on the ruled surface is called the base curve if it meets each generator exactly once.
Note that a ruled surface has many base curves. Now note that a ruled surface is determined by a base
curve C, say and the direction of the generator at the point of intersection of the generator and the base
curve C. After understanding the above now we find expression for a ruled surface.

Let P be a general point on the ruled surface and Q be a point on the base curve C. Let 7 (s)
and R be position vectors of Q and P respectively with respect to the origin. Further we assume that

& (s) be the unit vector along the generator at Q then the equation to the ruled surface is
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R=F(s)+1g(s) .. (4.3.1)

where A is a parameter that determines the directed distance along the generator from C.

g(s)
P z < \)Q

\l
—~
()
~—

=l
I
=

“

0
Fig. 4.2

The equation (4.3.1) can also be written in the Cartesian form.
Let (x, y, z) and (X, Y, Z) be the coordinates of the points O and P, respectively. Then we can
write F(s)=xi+yj+zk, R=Xi+Yj+Zk

g(s)=gi+g,j+g:k

where 18(s)| =+ +g5+g3 =1

using above in the equation (4.3.1) we find the equation of the ruled surface as
X-x Y-y Z-z
& &2 83

= (4.3.2)

Equation (4.3.2) emphasises that a ruled surface is determined by single parameter (1) family of

straight lines. Note that the equation (4.3.2) can also be written as
X=aZ+a, Y=bZ+
where a, b, a, 3 are functions of A.

Uptil now we have gone through the idea of ruled surface and its further classifications as devel-
opable and skew surface. The following theorem is the criterion to determine whether the ruled is devel-
opable or skew.

4.3.2 Criterion for a surface to be developable :

Theorem 1. A ruled surface is developable or skew if and only if [{,¢',8]=0 or #0
accordingly where { is the unit tangent vector at a point on the base curve, and ¢ is unit vector
along the generator through the point.

Proof : The condition is necessary :

Let C be a base curve given by 7 =7 (s) on the ruled surface. Let RS be an arc on the curve C

such that R(7) and S (7 +dF) be two consecutive points. Let arc RS = ds.
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For the neighbouring point S of R, we have the position vector

A ~ d .

Fr+dv =7 +d—rds =r+tds. (where ¢ = AT _ unit tangent vector at R)
ds ds

Let g, and g, be generators through R and S, respectively (i.e. g, and g, are consecutive gen-

erators since R, S are consecutive points on the base curve C) and gand g +dg are unit vectors along

the generators g, and g,. Let MN be shortest distance between g, and g, then MN is perpendicular to

both g, and g,. Then MN is parallel to (g +dg)x £ or to

92 g1
g g +dg

M N

Fig. 4.3

(g+8'ds)xg  [Note §+d§=§+f1—gds=§+§’ds]
s

or  MNis parallelto (&'x g)ds [ gxg=0]
Shortest distance MN = Projection of RS on MN
=d 7. (unit vector along MN)

[Note : Since g’ is perpendicularto ¢ and [g|=1 = |g'xg|=|&"|| &sin90° =| &'|]
Recall that in developable surface two consecutive generators intersect that is the shortest dis-
tance between the generators is zero. Thus we find that if the surface is developable, shortest distance

MN 1is zero.
ds

Hence 1,8, ¢]=0 { 7 = 0} ..... (4.3.4)
g
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This is the necessary condition for the ruled surface to be developable. In ruled surface to be

developable.

In the case when the surface is skew, the consecutive generators don’t interest and therefore the
shortest distance is not zero. Thus, [f , 8, g] # () is the necessary condition for a ruled surface to be

skew.

The condition is sufficient :
If [f , 8, g] =0 = the shortest distance between the consecutive generators is zero, hence the

surface is developable.
Similarly [f , 8, g] # (0 consecutive generators don’t intersect, hence the surface is skew.

Theorem 2. A ruled surface generated by x = az + o, y = bz + B is developable or skew if
a'b'—p'a'=0 or #0 respectively.
Proof. The ruled surface is given to be generated by single parameter family of straight lines
..... (4.3.5)

x=az+a, y=bz+
where a, b, o and [3 are functions of single parameter A (say). The equation (4.3.5) can be written as
(4.3.6)

x—a y-f z-0
b 1

a

Equation of ruled surface in vector form is

R=F+Ag
Then F:af+ﬁ]’+0!€:(0¢,ﬁ,0)
di .
N L=i=(a', p.0)
ds
and g=ai +bj+1-k=(a, b, 1)
’ dA ! !
- g=5=@,b, 0)
Thus (7.8 8] =(ai+p]+0-k)(¢' 2)
iJ ok
:(a’f+,6’}+0.1€). a b 0
a b 1

~(ai+ B+ 0R)-{p'i - ja + k a'b—ab")

=a'b'-p4<'. L. (4.3.8)
Thus the surface is developable if o' b' — 'a’ =0 or skew if
a'b'-pa=+0. (4.3.9)
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Aliter : The given generator can be written as

x-a y-pB z-0

- - e — (4.3.10)
Let x-a_y-B_z
a b 1
; x—(a+d0)  y—(B+8B) z-0
an a+0a b+0b 1

be consecutive generators of the surface. If the surface is developable then these generators intersect

hence shortest distance between them is zero.

da B 0
. a+da b+ob 1|=0
ie.
a b 1
doo OB O
da b 0|=0
or
a b 1
or S0 0b — 3B da=0
da &b O da 2
————— )" =0
of (82‘ 5t ot Stj( )
= a'b'—p'a"=0 [.ot+0] (4.3.11)
Ex. Find the equation to the edge of regression of the developable

y=xt—t3, z=t3y—t6.

Sol. In the given surface “¢” is the parameter. The find the edge of regression recall that the
point of intersection of the two consecutive generators of a developable surface is a point on the edge of
regression.

The given equation of the developable is nothing but composed of the generators

y=xt—t3, z= t3y—t6.

The two consecutive generators are

y=xt-£ z=ry-¢% (1)
and y=x(t+8)—(t+803, z=@+ody—(@+n® ... )
Now, solving y = xt — 3 and y = x (¢ + &) — (¢ + 5f)° and on neglecting higher powers of &t
we get
(x-32)5t=0
= x =37 [ 8t # 0]

Again solving z = 3y — 10 and z = (¢ + 57)° y — (¢ + 81)°, we get on neglecting higher powers of
St y =28,
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Using this value of y in the given generator we get
2= Q) -06=15
Thus x = 372, y =263, z= 0 is the required edge of regression.

4.3.3 Self-learning exercises-2

1. Developable surface is generated by :

(a) cones (b) cyclinders

(c) spheres (d) straight lines

Prove that the line x = 372z + 2 (1 — 3¢%), y =% (3 + 41%) — 2tz generates a skew surface.
Prove that xyz =2 is a developable surface.

Explain that a developable surface can be found to pass through two given curves.

A I S

Name two skew surfaces.
4.3.4 Equation of a tangent plane to a ruled surface :
(A) Equation in the vectorial notation :

Let 7 be the position vector of any point P on the directrix, £ be unit vector along the genera-

torat Pand 7 and £ are function of single parameter . Then the ruled surface is given by

R=7F+)Xg (4.3.13)
where R is the position vector of the current point on the ruled surface. Note that g is function of two
independent parameters A and L.

The equation to the tangent plane to the ruled surface (4.3.13) is given by
(R*-R)-(RxR,)=0 L. (4.3.14)
where suffixes ‘1’ and ‘2” denote differentiation of g with respect to p and A respectively and R* is the

position vector of the current point on the tangent plane. Thus (4.3.14) can be written as

[(R*—fe), fl+xgl,g2]=0 ...... (4.3.15)

(B) Equation in cartesian notation :

Let x=az+o,y=bz+p L. (4.3.16)
be the generator of the ruled surface, where a, b, o and 3 are functions of single parameter s.

Let us assume that (&, n, €) be a point on the ruled surface generated by (4.3.13). Then obvi-
ously &, 1, € can be regarded as functions of s and z

where &E&=az+a, n=bz+p, (=2 L. (4.3.17)

Thus, the equation of the tangent plane at the point (s, z) is given by
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E—x n-y (-z
a v &
os Os os |=0.
o Oy oz | . (4.3.18)
oz 0z 0z
Now x=azt+ta,y=bz+f
ox oy

e a'z+ao, F b'z+p" [Note thata, b, a, B are functions of s only]
N N

where a',b’, 0, 3 denote differentiation of respective quantities with respect to s.
Thus (4.3.18) becomes

E—az—o n-bz—pB C-z
az+ao bz+p 0 [=0.

...... (4.3.19)
a b 1
Performing column operations ¢; —ac; and ¢, — bey in (4.3.19), we get
g-al-a n-bC-p C-z
az+ao bz+p 0 [=0. (4.3.20)
0 0 1
On simplifying the above determinant we get
(E-al-a)(b'z+p)-M—-bL-P)(az+a)=0
az+a
or &—aC bt p m-o&-pp . (4.3.21)

Note that the equation (4.3.21) represents the equation of the plane passing through the line
€ =az + a,n = bz + PB. Recall that the line { = az + o, n = bz + B is a generator of the ruled surface at
the point (s, z). The above discussion reveals an important fact that the tangent plane at any point of a
ruled surface contains the generator through that point.

Note 1 : If the ruled surface is developable, then the tangent plane is same at all points of the
generator and involves only one parameter. This is evident from the following discussion :

Let the ruled surface is developable then o'd'—B'a’ =0

a o d o az+ad

:> b’ - BI b’ BI - b’Z+BI

=K(ay) (4.3.22)

where K is function of s. In view of this, the equation (4.3.21) takes the form
E-az-a =KMm-»6-) .. (4.3.23)
and involves only one parameter s and is independent of z. Further note that the parameter s has a fixed

value for a particular generator, therefore the tangent plane will be the same at all point of the generator.
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Note 2 : If the surface is skew, then at different points of a generator, we have different tangent
planes.

Let the surface is skew, then a'd"—pB'a’ # 0.

That means the equation (4.3.21) contains both s and z. If s is kept fixed (for a particular gen-
erator) then (4.3.21) would give different tangent planes for different values of z. That means, the tan-

gent planes are different at different points of the generator of skew surface.
Theorem. Prove that the generators of a developable surface are tangents to curve.

Proof. Let x=az+o,y=bz+p L. (4.3.24)
be generator of the developable surface, where a, b, o, B are functions of single parameter s.

Let x=az+o, y=bz+p L. (4.3.25)

and x=(a+da)z+(a+da), y=(b+0b)z+(B+3B), ... (4.3.26)

be two consecutive generators of the developable surface. We know that, two consecutive generators

of a developable surface do intersect, hence point of intersection of (4.3.25) and (4.3.26) is given by

S0l 58 50 P
—a—a—, y=P-bt, z=—=-2 3.
YEamag = E = = (4.3.27)

Here note that (4.3.27) represents a curve since a, b, o', ' are functions of parameter s only.
Thus x, y, z are functions of single parameter, hence (4.3.27) is a curve.

We have to show that the generators to the developable surface are tangents to the curve given
by (4.3.27).

The equation to the tangent to the curve (4.3.27) at point (x, y, z) is given by

E-x_n-y _L-z

B B S e (4.3.28)
where dot denotes differentiation with respect to s.
From (4.3.27), we have
da/Bs dp/ds da,/ds  BP/ds
x=a-a——, y=B-b——, z=- =—
sa/ss” P safest 2T oajes . objos [note]
_ ¥ _ :
T (4.3.29)
a a a a
Now differentiation of (4.3.29), with respect to s, we get
. (Gd—dd .. _(Bb-BBYL .
p=fdmada_ . (B6-Bbb b.f o _p: L (4.3.30)
a

using x = az, y = bz in equation (4.3.28), we get

E-x_n-y_G-z

az bz z
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or E=al—az+tx,n=bL—-bz+y
or E=al+o, n=bC+p L. (4.3.31)
Equation (4.3.30) is nothing but the generator through (x, y, z).

4.4

Summary

In this unit, you learnt that characteristic and edge of regression are the curves that lie on the

envelope. An envelope of family of the surfaces is that surface that touches every member of the family.

In the process of learning you came across with idea of ruled surfaces (developable and skew surfaces)

and associated issues.

4.5

Answers to self-learning exercises

Self-learning exercise-1

. () 2. (d) 3. (a) 4. 2+ 2 2 0
a b c

Self-learning exercise-2

. (a) 5. Hyperboloid of one sheet, hyperbolic paraboloids.

4.6 Exercises
. X Y z .

. Find the envelope of the plane + + =1 where u is the parameter.

a+u b+u cHu

. Find the envelope of the plane

[Ans. (90 — pA)?2 =4 (u2 —3hv0) (W2 —3p), where A =a+b+c—(x +y +2),

w=ab+bc+ca—x(b+c)—y(a+c)—z(a+b),v=abc—(bcx—acy— abz)]

. Find the envelope of the surface Ix + my + nz=p where a2 + b* m? + 2np = 0.

2 2
Ans. x_2+y_2:22
a b

(M—%)x+(1+7vu)y+(l—7vu)

z=pn+A where A and p are
a b c

the parameters.

2 2 2
Ans. x_2+y_2_z_2:1
a- b° ¢

. From a point P on the conicoid a®x? + b*)? + ¢?z2 = | perpendiculars PL, PM, PN are drawn
p y perp

to the coordinate planes. Find the envelope of the plane LMN.
[Ans. (ax)? + (by)?> + (c2)?? = 2%7]

oo
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UNIT 5 : Necessary and Sufficient Condition that a Surface

¢ = F (&, n) should Represent a Developable Surface,
Metric of a Surface

Structure of the Unit

5.0  Objectives
5.1 Introduction
5.2 Condition for surface C = f(§ M) to be a developable surface
5.3 Metric of surface
5.3.1 Curves on a surface and curvilinear coordinates
5.3.2 Parametric transformation
5.3.3 Regular and singular points
5.3.4 Parametric equation of some surfaces
5.3.5 Metric of a surface
5.3.6 Theorem
5.4 Summary
5.5  Answers to self-learning exercises
5.6  Exercises
5.0  Objectives
After reading this unit you will be able to understand :
1. derivation of necessary and sufficient condition for the surface = F' (€, 1) to be developablem
2. some important concepts such as parametric transformation,
3. oarametric equations of a few surfaces,
4. notion of metric of a surface.
5.1 Introduction

Last unit aimed to present an idea of developable surface. In this unit we would find a criterion

for the surface of the form £ = F' (&, 1) to be developable. Sometimes this criterion proves to be quite

handy. Many surfaces can be written in parametric form and therefore parametric transformation and
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parametric representations of many surfaces have been dealt with in this unit. The above
notions are useful in theory of metric of surface. A metric of a surface is the measure of an arc lying on

the surface.

5.2 Necessary and sufficient condition that a surface { = F (&, 1) should represent

a developable surface

Let C=FEw (5.2.1)

be a given surface. In order to seek condition that the given surface is developable, we have to use the
fact “if the surface is developable, then the tangent plane is same at all points of the generator and
contains only one parameter”.

We now proceed as follows :

The equation to the tangent plane at the point P (x, y; z) on the given surface (5.2.1) is given by

A - (S (522)
0z 0z
Denoting P=aaq=5a
then (5.2.2) is reduced to
PHrng-C=pxtqy-z
or &+ng-¢=¢, .. (5.2.3)
where db=px+qy-z

We will find the required condition making use of the tangent plane (5.2.3).
Necessary condition :

Let £ = F (&, n) be the developable surface, then the tangent plane (5.2.3) involves only one

parametric ¢ (say). Thus we can write p, ¢ and ¢ as functions of . Thus, let

r=f®, 9q=g@®, 0= .. (5.2.4)
On elimination of ¢ in the equation (5.2.4), p and ¢ can be written in terms of ¢, as given below
r=fi@, ¢=HL@ .. (5.2.5)
P _oh oq_
Thus Ox _Gq Gx_fl&
or r=fls .. (5.2.6)
2
where r:—p_—i _5q_82_8p
X  Ox Ox Oxdy Oy
) @ %
an oy  0q Oy
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or s=fi't, where t:a—q:a—zj
oy oy
From (5.2.6) and (5.2.7), on elimination of f," , we obtain
rt=s* L (5.2.8)
Thus, the condition given by equation (5.2.8) is the required necessary condition.
Sufficient condition :
Let rt=s*

Then we will show that the tangent plane (5.2.3) involves only one parameter.

For this we shall show that the Jacobian M =( implying that ¢ is function of parameter

8(x,y
(single parameter) g.
We now consider,
% o
8(4),4) | ox oOx
a(x’ y) @ a_q ..... (5 2 9)
o oy
Since db=px+tqy-—z,
o op Oq oz
L =ptx—+ L y——=xr+
Therefore pm ptx o o y PRRE AR
o Jdp Oq oz
— = x+Ly+qg-—=
and oy o 8yy q Y xs+ty. Ll (5.2.10)

Using the above expressions in the Jacobian (5.2.9), we find

3(9,9) _|rxtsy s s SRR ,
a(X,y) SX+ty t st Y tt =x(rt-s7) .. (5.2.11)
- oA, ):0 [+ rt—s*=0]
d(x,y)

= ¢ is function of g.
= Tangent plane (5.2.3) to the given surface (5.2.1) involves only one parameter.
= Surface { = F (&, n) is developable.

Hence, we conclude that 7 # — s2 = 0 is the necessary and sufficient condition for the surface

€ = F (&, ) to be developable, where 7, ¢ and s have their usual meanings.

Ex.1. Examine whether the surface z = y sin x is developable
Sol. Given that z=ysinx. L. (1)
The surface (1) is developable iff r 1 — s2 = 0.
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0%z ) o’z o’z
Now r=—s=-ysinx, t=—5=0,
ox oy

Thus rt—s2=0-cos*x. L 2)
The surface is developable if

rit—s2=—cos2x=0

2n+1 .
= X = 5 7, n being integer.

2n+1

Hence, the surface is developable when x = ( Jn, n being integer.

Ex.2. Show that the surfacez—c =/xy is developable.

Sol. Given that z=cH\xy L (1)
e compute P 4 ’ 8y2 4
&’z 1
S = = —_—
ox0y 4\/5
Th 2 1 1 o)
cn, rt—s = — =0 e ( )
l6xy 16xy

Therefore, the surface (1) is developable.

5.3 Metric of a surface

In the coming test, you will see that a surface has two family of curves on it. You are familiar
with the idea of arc length. A metric of a surface is the measure of the arc lengths of the curves on the
surface. In order to derive the formula for the metric, we need to go through some concepts and termi-
nology as follows :

We know that a curve is the locus of a point P (x, , z) whose cartesian coordinates are func-
tions of single parameter 7 (say). On the same line, we define a surface as the locus of point P (x, y, z)
whose cartesian coordinates are functions of two independent parametric # and v (say). If 7 is the po-

sition vector of the point P (x, ); z). Then the surface in vectorial notation is represented as
F=rf(uv). L (5.3.1)
5.3.1 Curves on a surface and curvilinear coordinates :
Let ¥ =7 (u, v) be the surface. Then by keeping one of the parameters among u and v fixed

and varying the other we get a family of curves on the surface. If we keep u = u, (constant), then v will

vary and the locus of the point p (x, y, z) as v varies would give a parametric curve called v-curve on
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the surface. For different values of v, we get different v-curves. This constitutes a system of curves
u = constant. Similarly, we get a system of curves v = constant i.e. u-curves on the surface 7 =r (u, v).

Notes :

1. Ifuy, v, be fixed values of u and v, then (1, v,) is a point on the surface 7 =7 (u, v)

2. (ug, vy) is called curvilinear coordinates of the surface

3. Through every point of a surface, there passes one and only one curve of each system

4. No two curves of the same system interest and two curves of different system meet only

once.
5.3.2 Parametric transformation :
Let r=r (u,v) be a surface whose parameters u and v be transformed to another set of

parameters u*, v* as given below
w*=u*(u,v), v¥=v*wv)y L. (5.3.2)
where u*, v* are single valued and derivable.

The above transformation is called proper if the Jacobian

O(u*,v*) 20
G(u,v) e, (5.3.3)
. OF _ oOoF
We, now denote I 25,1’2 =5~ ..... (5.3.4)

These partial derivatives are important since 7; and 7, have tangential directions to u-curves and
v-curves, respectively (in the sense of « and v increasing).
5.3.3 Regular and singular points :
Behaviour of the surface 7 =7 (u,v) in the neighbourhood of the point p (x, ), z) or p (F ) is
closely dependent on 7 and 7,.
The point p (17 ) on the surface is called regular point or ordinary point, if
Axih#E0 (5.3.5)
If ¥ x7 = 0, then the point is called singular point or singularity of the surface.
5.3.4 Parametric equations of some surfaces :
This section pertains to equations of some surfaces in parametric form, you are advised to
remember these as it would help you in solving the questions.
(i) Sphere : The equation of a sphere with radius a and centre at the origin is
x=asinpcosO,y=asinsinB,z=acosd

where 0 and ¢ are parameters
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<N

Fig 5.1

(ii) Surface of revolution : Note that a surface of revolution is the surface which is generated
by revolving a plane curve about an axis in the plane of the curve.
As an illustration, let us consider a plane curve
z=f(y), x=0 inYZ-plane.
Let p (0, w; z) be any point on this curve. Then obviously z = f'(w).

N

C ¢ P (O, w, Z)
P*

Y

Fig 5.2
Let us suppose that the curve is revolved about Z-axis, then the point p will traverse a circle in a

plane normal to Z-axis with the centre on the Z-axis (the axis of rotation).
Let ¢ be the centre of the circle and p* be new position of the point p, then the point p* (x, ), z)

is obtained as

x = 0L cos ¢ = CP* cos ¢ =wcos ¢

y=wsing, z=fmw L. (5.3.6)
where ¢ is the angle between XZ-plane and CP*LO.
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Note that here w and ¢ are the parameters.

Note : On the above surface, we have two family of curves. The parametric curves u = con-
stant are called parallels and the curves ¢ = constant are called meridians.

Geometrically, the parallels are curves of intersection of surface of revolution and the planes
perpendicular to the axis of revolution. The meridians are the curve of section by the planes through the
axis of revolution.

(iii) Anchor sing : Anchor ring is a surface generated by revolution of a circle in a particular
setup.

Consider a circle of radius a and with center ¢ on the Y-axis in YZ-plane. Let the centre c is
at a distance d from the origin, then the coordinates of any point P on the circle are (0, d + a cos 6,

a sin 0), where £ PCY=0 and OC =d.

z

Fig 5.3

When this circle is revolved about Z-axis, then it would give rise to the surface
7 =(d+acosB)cos¢,(d+acosB)sind,asin®) ... (5.3.7)
known as anchor ring. Here 0 and ¢ are parameters.
(iv) Helicoid : Helicoid is the surface generated by the screw motion of a curve about a fixed
line. In generation of a helicoid, a curve undergoes with two motions—curve is first translated through a

distance p (say) parallel to the fixed line (the axis) and subsequently it is revolved through an angle

¢ (say) about the axis such that B is constant.

Let % = b (constant), then 27tb is called the pitch of the helicoid.

As an illustration, let us consider a curve in XZ-plane given by

x=f(),y=0,z=g ().
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Let Z-axis be the axis of helicoid, then the equation of the helicoid is
F=(fWecosd, [f(v)ysmop, gW+bdp) .. (5.3.8)
where v and ¢ are the parameters.
(v) Right helicoid : Right helicoid is generated by screw motion of a straight line about the
fixed line (axis) such that the straight line meets the axis at right angle.
Let X-axis be the straight line generating the right helicoid, then its equation is given by
7y=(Wcoso,vsinp,ad), . (5.3.9)
a being the pitch
(vi) Right circular cone : A right circular cone is a locus of a variable straight line passing through

a fixed point (vertex) and making a constant angle o (semi-vertical angle) with a line (axis) through the

vertex.
V4
WY
Fig. 5.4
As an illustration,
7=((vcosH,vsinO,vcota) ... (5.3.10)

represents a right circular cone, whose vertex is at the origin, Z-axis being the axis of the cone and the
variable straight line lies in the YZ-plane as shown in the figure.

5.3.5 Metric of a surface : A metric of a surface is the measure of the arc lengths of the curves
on the surface.

Let 7 = F(u,v) be a surface on which a curve u = u (¢), v = v (¢) lies. Let P and Q be two
neighbouring points on this curve such that the position vectors of P and Q are 7 and 7 + dr, respec-
tively. Let A4 be a fixed point on the curve such that arc AP = s and arc PQ = ds where s is the measure
of arc length. Since P, O are neighbouring points, therefore ds is the infinitesimal distance between these

two points.
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Q (u+dv, v+dv)

Lx O/ drialds

s

u, v)
F
O
Fig. 5.5
Now dr :8_rdu+8_rdv
ou ov
=Fdu+iydv, L. (5.3.11)

h 7 —E 7 —£
where 1 du’ 2 dv'

Since P and Q are neighbouring points therefore,

PQ=chord PQ i.e. ds=| dr |
= (ds)’ =(ar). L (5.3.12)

Then, (ds)* = (7 du+7, av)’.

(7) dui® +(7)° dv? +27 -7, du dv

(ds) =Edi® +2Fdudv+G dv®, e (5.3.13)

where E=(R),F=%%.G=(%).

Equation (5.3.13) is quadratic differential form in du and dv, and is called metric or first
fundamental form. The quantities £, ' and G are called first fundamental coefficients. Note that
the values of £, F"and G vary, in general, for different points on the surface simply because these are
functions of surface parameters « and v. Alternatively we can say that the metric is the relation between
the differentials of the arc of the curve and curvilinear coordinates u, v. A metric is also referred to as
linear element.

Ex.1. Prove that for the curve x=rcos0,y=rsin0,z=0, ds? = dr? + r2d 62

Sol. o F=xi+y+zk or 7 =(rcos6,rsin6,0).

Here r and 6 are two parameters i.e. “u”=r, “v”’=0
_dr dr

o =(c0s0,sin 6,0); 7 :%:(—rsine,rcose,O).

—3

Here E=(171)2 =cos’0+sin’ 0 =1;F =7 -7 = —rcosOsin0+rcosHsin O
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G :(,72)2 =72 (sin2 0+ cos> 6) =72
Then ds?=E du? +2F du dv + G dv? = dr? + 12 do2. [Q u:r,v=9]
5.3.6 Theorem : The metric of a surface is invariant under parametric transformation.
Proof : Let ¥ =7 (u, v) be a surface and the parameters (#, v) undergo parametric transforma-
tion as given below
u*=u*(u,v);v¥=v*wvy . (5.3.14)

N F*_GF _@Gu_'_i@v
oW V' ou*  duou* ovou*

% ou - ov

= K o=F—+h—=— . (5.3.15)
ou* ou*
_+ OF or ou Or Ov
]/'2 = = — + —
ov* ouov* oOvov*
= Boop g (5.3.16)
ov* ov*
From (5.3.14), u = u (u*, v¥), v=v (u*, v¥),
ou ou
then du = au*du*"‘%d"* ..... (5.3.17)
ov ov
and dV: au*du*'F%dV* ..... (5318)

Let E* du*2 + 2F* du* dv* + G* dv*? be the metric of the given surface for the parameters
(u*, v*¥). Then

2 2
E* du*2 + 2F* du* dv* + G* dv*? =" du*? 425" - F du* dv* +7, dv*

" N 2
= (R du*+7 dv¥)
2
— (fiﬁ_u+f-'2ijdu*+(fia_u+f-28_u}dv*
ou* ou* \% ov*

=[F du+7, dv]
=72 du® + 27, - 7, du dv + i dv?
=Edi?+2Fdudv+Gav*. .. (5.3.19)

Thus we have shown that if the parameters u and v are transformed to new set of parameters

u* and v*, then the metric does not change i.e., the metric is invariant.
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Self-learning exercise-1
1. Apoint P(7) onasurface is a regular point if
@77 =0 b) 7 xF=0 (© F,xF =0 @) 7. x7 #0
2. Parametric transformation u* = u* (u, v), v¥ =v* (4, v) is proper if

ou* ov* *u* vk 0 G(u*,v*)?&o . :
(@) Foa () P R (c) o(u.v) (d) it is conviently defined.

3. With usual notations, 7 signifies for the surface 7 =7 (u, v)

(a) unit normal vector to the surface (b) normal vector to the skew surface
(c) normal vector to the envelope (d) None of these.

4. In the expression ds?> = E du? + 2 F du dv + G dv?, F stands for.

(@ F -F ®) 7 -7 © (7-5)" (d) None of these

5.4  Summary

In this unit you came across with the criterion of surface = F' (&, n) to be developable. This
criterion is an important tool to examine the surface being developable or screw. Further, you learnt that
a surface has two distinct family of curves on it. Before going to the core topic of metric of a surface,

you have learnt many essential concepts such as-parametric equation of some standard surfaces.

5.5 Answers to self-learning exercises

1. (@ 2. () 3. (d) 4. (d)

5.6 Exercises

Explain curvilinear equation of a curve lying on a surface
Derive a formula for metric of a surface

Find metric of a point P (x, , 0) in XY-plane. [Ans. ds? = dx? + dy?]

2w b=

Find metric of a point P (x, y, 0) in XY-plane where x = r cos 0, y = r sin 6.

[Ans. ds? = dr? + 1% d6?]

oo
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UNIT 6 : First, Second and Third Fundamental Forms,
Fundamental Magnitudes of Some Important
Surfaces, Orthogonal Trajectories, Normal
Curvature

Structure of the Unit
6.0  Objectives
6.1 Introduction
6.2  Fundamental forms
6.2.1 First fundamental form
6.2.2 Second fundamental form
6.2.3 Geometrical significance of second fundamental form
6.2.4 Weingarten equations
6.3  Fundamental magnitudes of some important surfaces
6.4  Orthogonal trajectories
6.4.1 Direction coefficients
6.4.2 Direction ratios
6.4.3 Orthogonal curves
6.4.4 Angle between two tangental directions on the surface
6.4.5 Family of curves and associated differential equations
6.4.6  Orthogonal trajectories
6.5  Normal curvature
6.5.1 Curvature of normal section
6.6 Summary
6.7  Self-learning exercises

6.8 Exercises

6.0  Objectives

In this unit you will study about :

1. fundamental forms of a surface,

2. fundamental magnitudes of some standard surfaces,
3. directors and orthogonal trajectories,

4. normal curvature.
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6.1 Introduction

A surface is associated with there important forms which are infold quadratic differential expres-
sions in du, dv. Each form has its definite geometrical significance and serves as a founding stone in the
development of differential geometry. To distinguish, these are called first, second and third fundamental

forms. This unit aims to discuss the forms and the related properties.

6.2 Fundamental forms

6.2.1 First fundamental form :

In the last unit you have studied about the metric. The metric of a surface determines the first
fundamental form of the surface. Thus the quadratic differential from

E du® + 2F du dv + G dv?

is called the first fundamental form and the quantities £, G H are called the first order fundamental mag-
nitudes or first fundamental coefficients. Here it should be noted that since the quantities £, £ G depend
on u and v therefore, in general, they vary from point to point on the surface.

6.2.2 Second fundamental form :

The second fundamental from of a surface r =7 (u, v) is a quadratic differential in du and dv
together with the resolved parts of the second order partial derivatives of 7 (with respect to parameter u

and v) in the direction of the normal at the point p (17 ) on the surface.

Let 7 be position vector of any arbitrary point p on the surface 7 =r (u, v). Then we denote

.0 . 8% _  0F
n{=—7=.,", = Van =
11 > 112 2122

ou’ Oudv ov?

Let L, M, N be the resolved parts of 7, 7i,,7,,respectively in the direction of normal vector
N at the point p(7), then
L=%#,-N,M =#,-N.N=#,-N .. (6.2.2)
The quantities L, M, N are called the second order fundamental magnitudes or second funda-
mental coefficients.
The quadratic differential form in du and dv
La*+2Mdudv+Na?* L (6.2.3)
is called the second fundamental form.

Note : Since the normal at the point p(F ) on the surface is parallel to the vector 7 x7,,

therefore unit normal vector py at point p (17 ) is given by
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Nxn _hxnh
|r1><r2| H

N= . where H=|FixB|. e (6.2.4)

The second fundamental coefficients L, M, N given by (6.2.3) can be expressed alternatively as
follows
We know that the unit normal vector N is parallel to the vector 7 x 7, therefore N is perpen-

dicular to both 7 and 7,.

Thus, N-F=0, (6.2.5)
and N-%=0. L (6.2.6)
On differentiating (6.2.5) with respect to u, we find
ON . . 0OF f
E'FI_" a—;:()’ or Nl"”1+N"”11=0’ ..... (627)
- ON O’F o (oF) oF
N=— and #,=—s=—)| —|=—1
where ' ou U ou? ou (ﬁu j ou
or AyN=-N,-i
- L=-N,-%,  (vL=R-N) L (6.2.8)

Similarly on differentiating (6.2.6) with respect to v, are get

A

o T

E.rzﬁ_ ov 0
or Ny %+ Ny =0
or N"722=_N2"72
or N=-N,-7 ( N= N-Fzz) ..... (6.2.9)

Further on differentiating (6.2.5) and (6.2.6) with respectively with v and u respectively, we get
M=-N,-# and M=-N,-%. .. (6.2.10)
The alternative expressions for L, M, N obtained above give rise to another expression for the

second fundamental form as follows :

We have, di =Fdu+# dv L (6.2.11)
¥ =N g+ N g,
ou ov
= dN =Ndu+Nydv, L. (6.2.12)
where leé_N’ sza_N.
ou ov
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We compute  gN -dF =(Nydu+ N,dv)-(Fidu+7dv)
= (N, 7 )du® +(N, -7 + N, -7 )du dv+(N, -7, ) v’
= —[L du®+2M du dv + N dv?]. [using (6.2.8), (6.2.9), (6.2.10)]
Thus the second fundamental form
Ldu*+2mdudv+Nd?=-dN-d&F .. (6.2.13)
6.2.3 Geometrical significance of second fundamental form :
The following theorem entails the geometrical interpretation of the second fundamental form :
Theorem. Let P (u, v) and Q (u + du, v+ dv) be two neighbouring points on the surface
r =F(u,v). Then second fundamental form L du* + 2M dudv + N dv* at the point P(u, v) is

twice the length of perpendicular from Q (u + du, v + dv) on the tangent plane at P (u, v), to a

second order approximation in du, dv.

Proof : Let 7 and ¥ + dF be the position vectors of two neighbouring points P (u, v) and
O (u+du, v+ dv) of the surface 7 = F(u,v).
Now, Fadi =F(u+du,v+adv).

Then by Taylor’s series for two variables, we have

. - 2= 2 2
F(u+du,v+dv) :F(u,v)+(a—rdu+a—rva +l or du’® + or du alv+a—raiv2 +..
Ou ov 2| ou? Oudv v’
or F+dr =F+(7 du+7 dv)+%(7“du2 +2%,du dv+7722dv2) + higher order terms
or dr = (7 du+7 dv)+%(7“du2 + 27, du dv+7722dv2) ..... (6.2.14)

(on neglecting higher order terms)
Let QA be perpendicular from Q on the tangent plane at the point P (u, v) to the surface
7 =7 (u,v), then we have

0A = Projection of PQ on normal vector N at P

=N-dF = N.[(fl du +7, dv)+%(?“du2 + 27 du dv+z722dv2)}

z(N-q)du+(N-rz)dv+%[(ﬁ-r“)du2 +2(Z\7-712)du dv +(N-r22)dv2}

* N is perpendicular to both 7 and F{l

:0+0+1[Ldu2+2Mdudv+Ndv2} ) ) A
2 = N-n=0=N-r,and L=7,-N etc.

= 204=Ldi* +2M dudv+Na* . (6.2.15)
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A
r=r(u, v)
Q
g df QA=N- dF
dar.
O 7 P
A
Fig. 6.1

6.2.4 Weingarten equations :
Let ¥ =7 (u,v) be the surface, N be the unit normal at a point p (17 ) on the surface then we
denote
N 1= 88_];7’ Az = 88_]:’
Here it is emphasized that N is perpendicular to both N, , and N. », which means that the vectors

N, N, are tangential to the surface. Therefore, the vectors N, and N,, are spanned by the vectors

7 and 7, and hence there exist scalars a, b, ¢, d such that

Ny=aF+b% .. (6.2.16)
Ny=ci+d?% .. (6.2.17)

From (6.2.16), we find

RNy=adi i +bi 7
or ~-L=aE+bF L. (6.2.18)
From (6.2.16), we find

R-Ny=afi-h+b# 5
or -M=aF+bG L. (6.2.19)
Thus solving the system of linear equations given by (6.2.18) and (6.2.19), we get

FM —-GL FL—-EM
a= 7.b= 2

EG-F EG-F

FM -GL
a= o

_ FL-EM

b=

o  a=———b=——— (6.2.20)
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Using the values of g, b in (1), we get

~ (FM-GLY. (FL-EM).
A ST M e

or H?N, =(FM -GL)# +(FL-EM)7%, ... (6.2.21)
Similarly by taking the scalar product of (6.2.17) with 7 and 7, successively, and solving the

resultant linear system, we get the values of ¢ and d as follows :

(FN-GM\ ., FM—EN
c= 72 ,d = oz e (6.2.22)
Thus from (6.2.17) we get
H?N, =(FN-GM )7 +(FM -EN)#%. .. (6.2.23)
6.3 Fundamental magnitudes of some important surfaces
(i) Anchor ring :
The parametric equation of an anchor ring is
7 =((b+acos0)cos ,(b+acos)sin¢,asin 9) """ (6.3.1)
Then we compute,
. OrF . o
K= 3 (—asmecosd),—asmesmd),acose)
= i = (—(b+acose)sin¢,(b+acose)cosd),O)
°F
K= E = (—a cosOcosd,—a cosesind),—asine)
=000 = (asinOsin p,—acosHcos §,0)
. OF ,
= aT)z = (—(b+acos 0)cos¢,—(b+acos 9)sm¢,0) ..... (6.3.2)
Thus we have
E= 1712 = a*sin® Bcos® ¢+ a” sin® Osin® ¢+ a” cos* O
= a? sin® O (cos? ¢ + sin? §) + a2 cos? 0
= a? (sin? 0 + cos? 0) = o
F=## =0,G=7=(b+acosb) .. (6.3.3)
H2-EG_F? =d* (b+acos6)2 ..... (6.3.4)
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Fig. 6.2

i j k
XFh =|  —asinBcosd —asinBsing  acosO
—(b+acosO)sing (b+acosB)cosdp 0

=—i(b+acos0)cospcosO+;(b+acosB)sindcosd
+k—a (b+ acos0)sin B cos? ¢ +a sin O (b + a cos 0) sin? ¢
N :lefz
H
Hence L=N 7, =a,M =N -7, =0and N = N -7, = (b+acos0)cosd

Thus =(—cos0cos ¢,—cos Osin ,—sin 0)

(ii) Conoidal surface :

Let the surface of revolution be

- [u cosv,usinv, f (V)]

Then i zéz(cosv,sinv,O)
7 :%:(—ucosv,ucosv,f’)
. 0%
rll :au_zz(oaoao))
2
By = 8au@rv =(—sinv,cosv,0)
_ o
Py = — =(-ucosv,—usinv, ")
ov
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Therefore E= 1712 =cos? u+sin’v=1
F =¥ -F, =—ucosvsinv+ucosvsinv+0

G=# =u*sin®v+u’cos®v+ " =ut+ L (6.3.9)

H=AEG-F? = +f2)-0=\?+f* .. (6.3.10)

L (f'sinv,—f"cosv,u)

=L 3.11
. o (63.11)
Further L=N-# =N-(0,0,0)=0
M=R7, - (f'sinv,—f"cosv,u) (=sinv,cosv,0)
\/u2 + frZ
I A
IMZ +fr2
and N=N-7, = (/'sinv,—f"cosv,u) -(—ucosv,—usinv, /")
2 2
Ju +f
3 uf”
e e (6.3.12)
(iii) Monge’s form surface :
The equation of surface given in the form z = f'(x, y) is called Monge’s form.
Let the position vector of a current point on the surface be given by
F:(x,y,z), ..... (6.3.13)

where z = f(x, ).
Since z in a function of x and y, therefore the equation (6.3.13) may be regarded as the para-

metric equation of the surface with parameters x and y.
Hence 7=(L0,p), %=(0Lq), A, =(0,0,),
i,=(0,0,s) and #,=(0,0,/) .. (6.3.14)

_ 0Oz oz 0’z B 0%z B 0’z
— 78 = 1= 7
ox o0yox oy

p_axaq_ay

where

b

and suffixes 1 and 2 denote differentiation w.r. to x and y, respectively.

Therefore E:Fl2:1+p2, F=r-r=pq, G=r22=l+q2

H=\EG- 1> =1+ p*+¢’,
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and N l_"in_"i _ (_pa_Q7l) . (6315)

A r
L=N-7 = ’
Also 1+p2+q2
A s
M=N-h,= 2, 2
I+p°+gq
AL t
N=N'l"22=

/1+p2+q2 E O (6.3.16)

6.4  Orthogonal trajectories

6.4.1 Direction coefficients :
Analogous to concept of direction coefficients in analytical geometry, we have the same notion
in differential geometry.

The discussion undertaken earlier has shown that at a point p(7) of the surface 7 =7 (u,v),
these exist three independent vectors 7, 7, and N. Among these vectors, 7 and 7 lie in the tangent plane
to the surface at p (F ) and the vector N is along the normal direction at p(? ) Consequently, we
conclude that any vector at p (17 ), can be expressed uniquely as a linear combination of #, 7, and N.
Let b be any vector at p (7), then we can write

b=AFE+pi+vN L. (6.4.1)
where A, pt and v are scalars. Here A and p are called tangential components of 4 and v is called nor-

mal component of b.
Here, we are concerned with tangential vectors i.e. the vector in which normal component v is

Z€10.

Let b =\ 7 + 1 7, be a vector along the tangent at p(7).
Then 5[ =|2r+us ]
=32[ Al 2Bl el 5 [
= EA? +2Fhu+ G’
- |5 | =(E22+2F00+ sz)l/ S (6.4.2)

Eqn. (6.4.2) provides magnitude of the tangential vector b.
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Direction coefficients, determine the direction, and these are determined by using a unit vector.
Let é =1 +m#, be a unit vector in a tangential direction at p(#) of the surface, then the

components / and m are called direction coeficients. Since ¢ is unit vector, therefore
) ) -2 ) I
| e | :1:| IF, +mr, | =lz| n | +m2| 7 | +2lm|r1-r2|
. 2 2|2
- |é|=1 =(Ez + 2ImF +Gm ) ..... (6.4.3)

We know that a metric on the curve is given by

ds? = E du? + 2F du dv + Gdv?

2 2
du du \( dv dv
l=E|— | +2F| — || — |+ G| —
. (@] i) 8) o
On comparing the equation (6.4.3) and (6.4.4), we find that
| = d_I/l and m= ﬂ .
ds ds

Hence, we may conclude that f{—u and % are the actual direction coefficients of the tangent at
s s

the point p(F) to the curve ¢ (u, v) = ¢ lying on the surface 7 = F(u,v).

Note : If (/, m) constitute the direction coefficients of the direction, then the direction coeffi-
cients of the direction opposite to the given direction are (— /, — m).

6.4.2 Direction ratios :

Direction ratios are the quantities which are proportional to the direction coefficients.

Let (A, 1) be the numbers which are proportional to the direction coefficients (/, 7). Then we

may find expressions for A and p as follows :

From (6.4.2), we have é =lry +mp, (6.4.5)
s b A+ 407

N vz 6.4.6

‘b‘ (Ek2+2FML+Gu2)/ (64.6)
On comparing (6.4.5) and (6.4.6), we find that

A H
I= 5 2T 5 \/2
(Ek +2FApu+Gu ) (Ek +2FAp+Gu )

12
or A= (Ex2 +2Fhp + sz) /
1/2
and p = (E?u2 +2F7\,M+GM2)/ m
Equation (6.4.7) provides relation between direction coefficients (/, m) and associated direction

ratios (A, W).
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The above expressions are very useful in determining the directions and are readily used.
To illustrate, let us consider a surface 7 =7 (u,v). Recall that we have two distinct family of curves
(u-curves and v-curves) on the surface. We know that 7 and 7, are the vectors along the tangents to

u-curves and v-curve respectively.

Then we have

r=1-r+0-% (6.4.8)

= A=1,u=0.
1
Consequently, /=-—,m =0 (using (6.4.7))
quently. NG g
: : e 4

Thus the unit vector in the tangential direction to u-curve is ﬁ ..... (6.4.9)
Similarly, the unit vector along the tangential direction to the v-curve is Lo (6.4.10)

JG
6.4.3 Orthogonal curves :
The parametric curves u = const., v = const. are said to be orthogonal if they intersect at right
angle i.e. the angle between their tangents at the point of intersection of the curves is 90°. Before finding

the condition for orthogonality, we find formula for the angle between parametric curves.

Let the curves u = const., v = const. do intersect in a point p (F ) at an angle o (0 < a < ).

Th __hn _F 6.4.11

en coS o, | ; || - | Tic ( )

d wo IRl 2 6.4.12

an sin o | ; || > = ( )
) H

and obviously, tan o :F ..... (6.4.13)

From the above we see that when oo = 90°, then cos o and a is zero i.e. F = 0. Conversely if
F =0 then a.=90". Thus we have F = 0 to be the necessary and sufficient condition for the parametric

curves to be orthogonal.
6.4.4 Angle between two tangential directions on the surface :

Let 0 be the angle between two tangential directions (/,, m,) and (/,, m,) on the surface
7 =7 (u,v), where [, m, =1, 2 are actual directions coefficient. Let #, and 7, denote the unit vectors

in the tangential directions, then we have,
h =i +mb,
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Then bod =6 ||fhjcoso (6.4.14)

=1-1cos® |- f -1, and unit vectors therefore |, || 7, |=1]
N cosO =4, (6.4.15)
or cos O = (L7 +m7y ) (L7 +myps )

=(4 L) (7 -7)+(lmy +myly )7 7+ (mymy ) (7 - 7))

=l LE+(hmy +mbL)F+mm, G ... (6.4.16)
Similarly, sin@ =| 4 x7, | -+ AxB=|4|| B| sin0i |

=| (47 + By ) x (L7 +mo7 ) |

= (hmy —myly)| 77 | [ Ax7i=0, #xi=0]

= (Lmy —m, ) H [~H=|AxR|] .. (6.4.17)
Thus, tan @ = 519

cos©

= H(Zlmz _mllz)
llle + (Zlmz + mllz )F + mlsz .....

(6.4.18)

The angle between tangential directions can also be determined in terms of direction ratios.
Let (A}, uy) and (X,, u,) be the direction ratios corresponding to direction coefficients (/;, m,)

and (/,, m,), then we have

I = }\‘l m = [l
b 2 V27T 2\V2
(E2] +2F 0, +Gu3) (B +2F 3, +Guf )
) Ho
I, = - T My = - VR (6.4.19)
(E?u2 +2F N, + GHz) (E?u2 +2F N0, + GMz)
Using the above we find
cosO = }Ll}\‘ZE—i_F(;\‘lMZ + Ml}\‘2)+ MlMZG (6 4 20)
3 T 4.
(E?ul2 +2FMp, + Gulz )/ (E?\,% +2F A1, + Gu%) /
sin@ = Hip—pdy) (6.4.21)

/2 12
(E?ul2 +2FMp, + Gulz ) / (E?\,% +2F 1, + Gu%) /

and consequently,
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tan § = H (M — k) S (6.4.22)

MAE+F (Mg +hy )+ i, G

From the above discussions, we conclude that the two directions be at right angles (orthogonal)
ie. 0=m/21f
Mhy, E+ (M + iy A)F+pyn, G=0 L (6.4.23)
or L E+(ljmy+ml,) F+mm,G=0. [ cos /2= 0] ..... (6.4.24)
Ex. Prove that the equation Edu*> — Gdv? = 0 denote the curves bisecting the angles be-

tween the parametric curves u = constant, v = constant on a surface v =r (u,v)

Sol. Let o) be the angle between the direction (%,? ,j and the u-curve (i.e. v = const.).
s ds
Let (15, m,) denote the direction (tangent) to the u-curve, then
1

lz=ﬁ,m2 =0'

Then, “cos o, = [}, E+ (lymy + m L)) F +m;m, G” gives

d d
COSOLl :%.LE_F O+Q.L F+O [‘.'ll:_u’ml:_v:|
ds JE ds \E ds ds
JE\ ds ds
. du dv .
Let o, be angle between the direction | —,—, | and v-curve (i.e. u = const.) and we sup-
2 ds ds

pose that (/,, m,) denote the direction of v-curve, then

1
L=0,m, =—.
2 SN
Then, we have CoS 0y = Iy, E+ (Iymy + Lym)) F+mm, G

:O+(ﬂ#+0jF+ﬂL+G

ds G ds G

:L(Fﬂmﬂ} ,
\/E ds ds

) . du dv) . .
Given that the direction (d—,d—j bisects the angle between the parametric curves, therefore
s ds

we must have,
coso, = tcoso,. L 3)

Here + and — signs correspond to internal and external bisector respectively.
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Putting the values of cos o, and cos o, from the equation (1) and (2) in equation (3), we get

JE\ ds ds \/E ds ds

or \/E(E%+F§J =J_r\/E(F@+G@j

s s ds ds
o G[EMrS) gl o]
ds ds ds ds

or GE? du? + GF? dv? + 2EFG dudv = EF? du? + EG? dv? + 2EFG dudv

or E(EG-FY)du* - G(EG-F>)dv*=0

or (EG—F%) (Edu? -G dv?) =0

= Edu?—Gdv*=0. [-- EG—F?>0].

6.4.5 Family of curves and associated differential equations :

For a surface F=rf(uy) L (6.4.25)
an implicit relation of the form 6w, vy=c L. (6.4.26)

give rise to family of curves on the surface (6.4.25), where c is a parameter, ¢ (u, v) is single valued

80 30

function of u, v and ¢ (u, v) possesses continuous derivatives Yy which don’t vanish simultaneously.
u Ov

By assigning different values to ¢, we have different members of the family of curves given by (6.4.26).
Here it should be noted that through every point of the surface, there passes one and only one curve of
the family of curves given by (6.4.26).

The family of curves can be expressed in the form of differential equation as explained below.

Consider equation (6.4.26) as family of curves on the surface (6.4.25). Differentiating (6.4.26),

we get
9% . 09
—du+—dv=0, 4.
o P (6.4.27)
= b, du+ ¢, dv=0,
0 0
where o, :£ and ¢, :8_3
Obviously on integrating ¢, du + ¢, dv =0 we would get (6.4.26), we assume
¢, =P, v) and ¢,=Q(@wv) .. (6.4.28)

Thus equation (6.4.27) becomes
pdau+Qdv=0 L. (6.4.29)
The equation (6.4.29) constitutes a differential equation of the family of curves (6.4.26).
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From (6.4.29), we have

du dv
5 B (6.4.30)
equation (6.4.30) emphasises that tangent at (u, v) to the curve has (— O, P) as its direction ratios.

6.4.6 Orthogonal trajectories :

Trajectory : A trajectory of the given family of curves is a curve which intersects every member
of the family of curves by following some definite law. If the trajectory intersects the members of the
family of curves at a constant angle o, then it is called a-trajectory. If o = 90°, then it is called an
orthogonal trajectory. Following proposition underlines the fact that every family of curves on a surface

has orthogonal trajectories.

Differential equation of orthogonal trajectory :

Let o(w,vy=c L. (6.4.31)
be a family of curves on the surface F=rf(uyv). L (6.4.32)
) . op 0d ) , .
Recall that here ¢ has continuous derivatives —,— which don’t vanish simultaneously. On
u Oov

differentiating (6.4.31), we have

@du +@dv:0 or ¢, dutd,dv=0, .. (6.4.33)
ou ov
9 99
where ¢, =—¢, =—.

h=2 5

We prescribe O=Pwv), ¢,=0(uv)

Then (6.4.33), becomes
Pdu+Qdv=0 o _d&v (6.4.34)

0 P
Then (— O, P) are direction ratios of tangent at any point (, v) of a member of family of curves

given by (6.4.31).
Let (Ou, 0v) be direction ratios of the tangent at the point (%, v) of a member of orthogonal
trajectories of (6.4.31).
Recalling that the directions (i, v|) (u,, v,) are orthogonal if
Eupu,+F(u; vy +tviu)+Gvv,=0 . (6.4.35)
We have for the present case,
E~Qou+F(—Q0ov+ Pou)+ GPov=0
On simplification, it reduces to

(FP—EQ)du+(GP-FQ)év=0 .. (6.4.36)
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Equation (6.4.36) represents the differential equation of the orthogonal trajectories of the family
of curves.

Note that equation (6.4.36) is integrable simply because (FP — EQ) and (GP — FQ) (the coefti-
cients of du, Ov) in (6.4.36)} are continuous.

On integrating (6.4.36), we get the equation of orthogonal trajectory.

Theorem. On a given surface, a family of curves and their orthogonal trajectories can
always be chosen as parametric curves.

Proof : We know that the differential equation

pdu+Qdv=0 L. (1)

where P, Q are functions of u and v, represents a family of curves on the surface 7 =7 (u, v)

Let ¢ (u, v)=c, (c, being constant) ... 2)
: o 99
be the solution of (1). Then ~ P = Ka, 0= kg, (where A # 0)
As discussed earlier, we know that the differential equation
(FP-EQ) du+(GP-FQ)év=0 . 3)

gives the orthogonal trajectories of the family of curves given by (1).
Let v, v)=c, (c, being constant) ... 4)

is the solution of (3), then we may have

_, v
FP-EQ =p—".
oy
GP-FQ = ME (wherep=0) ... &)

In order to prove the theorem, we will show that

o(d.y)
—2 0.
o) e (6)
That means that the two family of curves ¢ (4, v) = ¢, and y (1, v) = ¢, are mutually indepen-
dent.
@ oy
_ a(d)a\V) _|ou ou :L P FP-EQ
Thus we examine, G(u,v) % oy| w0 GP-FO
ov  ov
1
=J[P(GP—FQ)—Q(FP—EQ)]
1 [ 2 2 7
-—[EQ*-2FPO+GP ]:so- ----- (7)
pA
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o(4.v)

Thus 8(— # 0 ensures that a family of curves and their orthogonal trajectories can always
u,v

be chosen as parametric curves. Since ¢ is independent of y, hence proper transformation u* = ¢
(u, v), v¥ =y (u, v) transforms the given family of curves and their orthogonal trajectories into the two
families of parametric curves.

Double family of curves :

We have seen that the equation P du + Q dv = 0 give rise to a family of curves on the surface
r=r (u, v). Similarly, the quadratic equation

Pdu?+20dudv+Rdv*=0 .. (1)

where P, O, R are continuous functions of the parameters u and v and do not vanish together and are
such that Q2 — PR > 0, then the equation (1) give rise to two distinct family of curves as illustrated
below.

Equation (1) can be written as

du) du
P(d—J +2Q(EJ+R_O ..... (2)

1%

du
Equation (2) is quadratic in o and has two solutions

du _—Q+0° - PR 3)

o e

which infact correspond to directions of the tangents to two distinct family of curves.

L 1 L
Let ——,—2 be the two directions, then

my ny
L —0+JQ’-PR I, -0-\Q*-PR A
s P ", P e 4)
Thus we have L.,.i;ﬂ’l_l.lizﬁ. ..... %)
m, m, P m m, P
If 0 is the angle between these two directions then
6 2HAO* - PR ©
an=——"T"-"-—"7"-—-
(ER-2FQ+GP)
Obviously these directions are orthogonal if 0 =90°, i.e,
ER-2PQO+GP=0. L. (7)

Note that (7) is the necessary and sufficient condition for the curves described by (1) to be
orthogonal.
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Ex.1. Examine whether the parametric curves
x=bsinucosy, y=bsinusiny z=bcosu
on a sphere of radius b constitute an orthogonal system.

Sol. The given sphere is

¥ =(bsinucosv,bsmusinv,bcosu) ... (1)
The parametric curves would constitute an orthogonal systemif F=0i.e. 7 -7, =0,
we compute 7 =(bcosucosv, bcosusinv, —bsinu)

r, =(-=bsnusmnv, bsmnucosv, 0)

F =7 F, =—b? cos u sin u cos v sin v + b? cos u sin u sin v cos v

=0. (2)
Thus the given parametric curves are orthogonal.
Ex.2. On the paraboloid x* — y* = z, find the orthogonal trajectories of the sections by the
planes z = constant.
Sol. Let x = u and y = v, then for the given paraboloid we have u% —1? =z.
Thus F=ov,ut-vd (1)
is the parametric equation of the given paraboloid.
The curves of section by the planes z = constant on (1) are given by
u? —v* = constant [note] L. 2)
Differentiating (2), we get
uwdu—vdv=0. . 3)
Thus, we have to find out the equation of trajectories orthogonal to family of curves given
by (3).
Recall that if pdu+Qdv=0 L. (4)
is the given family of curves, then its orthogonal trajectories are given by
(PF - QFE) du+ (PG—-QF)6v=0 . (5
where (Ou, dv) are direction ratios of the orthogonal trajectories.

Comparing (3), (4) we find

PruQ==v. e (6)
S o )

7 =(1,0,2u), E=7>=1+4u ;
;"’2:(0,1,_2‘})’ F=]_"io]_/:2=_4uv’ G=I_;22:1—|—4v2 .....

Using (6) and (7) in equation (5), we get the orthogonal trajectories as
(— 4u?v + v+ 4u?v) Su + (u + 4u? — 4un?) Sv=0

or vou + 40v =20
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or d(uv)=0
or uv = constant
or Xy = constant. [‘ox=wy=v] .. (8)

Thus the hyperbolic cylinders xy = constant are the required orthogonal trajectories.

Ex.3. Let v* du? + u? dv? be the metric of a given surface. Then find
(i) The family of curves orthogonal to the curves uv = constant
(ii) The metric corresponding to the new parameters so that these two families are para-
metric curves.
Sol. (i) Let s represent the arc length on the given surface. Then as given, we have
ds: =v* dv* +v*av* L. (1)
Thus, E=v,F=0,G=u?
We have to find family of curves orthogonal to the curves
uv =constant. (2)
Differentiating (2), we get

dvtvdiu=0= -t 3
uvvu—:>dv S e 3)

Hence, the direction ratios of the tangent to the curve (2) are (— u, v).

Let (du, dv) be the direction orthogonal to the direction, then the condition of orthogonality i.e.
MAE+my+tAw) Ftp,p, G=0.

or E(~u)du+Gvdv=0, [Q F=0]

) ) du dv
—uv du+uvdv=0:>7—7 ..... 4)

On integration of equation (4), we get

log u =1log v + log (const) = Yeeonst. &)
1%

Hence equation (5) is the equation of the orthogonal trajectory of family of curves (2).
(ii) If the family of curves (2) and their orthogonal trajectories (5) are taken as parametric curves,

then the new parameters u* and v* are given by

w* =% and v*=uw = u?=u*v* and 12 = e (6)

v
N T F v 7
o Y Uour ou ou* dvour 2wl et (7)
d pro OF _OF Ou Or ov_utL, 1 o .
o 2 ov* ouov* ovov* 2u1 Dy * 2 e ()
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The new coefficients £*, F*, G* are given by

2 2
u* ) v*

7 %2 =2 Lo I —
E*=n* :4u2r1 +4v2u*2rz,. Aeh=F=0
_Eu*z 2 _lv*z
M’ W 2y
F*=F %% =0,
2

G*=i? =| —F+—h | =— L 9

2 (Zu e 2} 2 ©

Therefore, the metric referred to new parameters u*, v* is given by

ds*2 = E* du? + 2F* du* dv* + G* dv*?

)
:lv—zdu *2 %rla’v*2 .
2u* 2
Ex.4. Show that the curves du® — (u* + c2) dv* = 0 from an orthogonal system on the right
helicoid

¥ = (ucosv, usiny, cv)

Sol. The given surface is F=(ucosvusinv,ev) L. (1)
o (FY .,
Then E=1r" =] — | =cos"v+sin“v=1
ou
F =7 -# =(cosv,sinv,0)-(—usinv,ucosv,c)

=—ucosvsinv+ucosvsinv+0=0
\2
) or )
G=r =|—| =(-usinv,ucosv,c)
ov
=u? (sinfv+cos? V) +c2=ut+c2 L 2)

Recall that the two family of curves given by the quadratic differential equation

Pdu?+20dudv+Rdv*=0 .. 3)

constitute an orthogonal system if and only if
ER-2FQ+GP=0 L. 4)
The given curves are du? —(u*+cA a*=0 L (%)

On comparing (3) and (5), we get
P=1,0=0,R=—@w?*+c%». .. (6)
Using these values and the values of £, F; G computed above in the equation (4) we see that
(4) is identically satisfied
L [-@+A)] -0+ w2+ -1=0.
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Ex.5. Show that on a right helicoid, the family of curves orthogonal to the curves
u cos v = constant is the family (u* + a®) sin® v = constant

Sol. Let the given right helicoid be

F=(ucosvusmnv,cv)y . (1)
Then from previous example

E=1,F=0,G=u?*+c* .. (2)
The given family of curves is

u cosv=constant. 3)

On differentiating equation (3), we get
cosvdu—usmvdv=0. . 4)
Equation (3) implies that the direction ratios of the tangent to given curve at the point (u, v) is (u
sin v, cos v). Let (du, dv) be direction of the required orthogonal curves. Then by the condition of or-

thogonality we have
Ewsnv)ydu+F(usnvdv+cosvdu)+ Gecosvdv=0 .. &)

Putting the values £ = 1, F=0, G = u? + ¢ in (4), we get
usinvdu+ @?+c?) cosvdv=0

udu cosvdy
+ =0

or R
u2 +cz smvy

On integration, it gives

%log (u2 +c? ) +log(sinv) = constant.

or log (u? + c?) 2 log sinv=constant .. (6)

Equation (6) represents the required orthogonal curves family.

6.5 Normal curvature

Before embarking on the idea of normal curvature, we first have to go through some basic things
as follows :
(i) Plane section of a surface :
A plane drawn through a point on a surface cuts the surface, in general, in a plane curve.
This plane curve is called the plane section of the surface.
(ii) Normal section of the surface :

Ifthe plane section of the surface is such that it contains the normal to the surface at that
point, the section is called the normal section. The section, which is not normal section

is called the oblique section.
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(iii) Curvature at a point on a given surface :
The curvature at a point on a given surface is closely related to the plane section at the
point. The curvature at a point P (u, v) of the given surface 7 =7 (u,v) in a direction
(du, dv) is the curvature of the plane section (curve) of the surface which passes through
the point P (u, v) and contains the direction (du, dv).
6.5.1 Curvature of normal section :
Let ¥ =7 (u, v) be the given surface and P (1, v) be any point on it. Let k, denotes the curva-
ture of the normal section. By convention, we presume that the sense of the unit principal normal to the
curve i.e. 71 and the unit surface normal i.e., N are the same. Further note that k, is considered positive

when the curve is concave on the side towards which & points out.

We, now, have

Therefore,

Again, we know that

., dr ordu ordv _du _ dv
Fl=—r =" ¢

= — ——:rl_+r2_
ds duds dvds ds ds

Again differentiating with respect to s, we get

=

7 zi[ﬁ u'+7r v’]

ds
1 1
_I' " drl ' r " d”z '
—rlu +—U +l"2V +—v
ds ds

r ., r, 8;1 du 8;1 v , 8;2 du 811"2 dv) ,
=nu"+rV"+| L —+ L — | E—+—=—|v
Ouds Osds Ouds Ovds

r ., r., r , r ,, 1 ,, I

=Fu" PV w2V RV L (6.5.3)

Thus, we have

Il
>,

I A 2 = = 12
ARU RV R U+ 2R,uV + Y ]
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:(]Q-ﬁ)u"+(](7~172)v"+(]<7~1711)u'2 +2(](7‘1712)u'v'+(1(7~1722)v'2

=040+ Lu> +2MuV+N-V* (6.5.4)

2 2
du du \( dv dv
=L|— | +2M| — || — [+ N| —
Thos, o (dJ (dJ(dsJ [ J
L du®+2M du dv+ N du®
or k, = >
ds
L du® +2M 2
or _Ldw tIMdudviNdu” (6.5.5)

no Edu®> +2F dudv+G dv?

[-- ds?=E du? +2F du dv+ G dv?]
Equations (6.5.5) provides the curvature of the normal section, parallel to the direction (du, dv)
in terms of fundamental magnitudes.
Notes :
1. k, depends purely on the direction (du, dv) of the curve drawn on the surface and the quan-
tities £, F, G, L, M, N which are determined at given point P,
This reasoning helps us to conclude that all the curves tangent to the same direction on the
given surface have the same normal curvature, since normal curvature at a point on the
surface is the property of the surface which depends on the direction at the point on the sur-
face.

2. The reciprocal of k, is called the radius of normal curvature, and is denoted by p,.

6.6 Summary

In this unit you came across with the notion of the fundamental forms which are quadratic equa-
tion in du and dv. Each form has its definite geometrical significance. Further the directions on the sur-
face where explained and the criterion was extended to the orthogonal trajectories on the surface. Lastly

the notion of normal curvature was given.

6.7  Self-learning exercises

Write down first and second fundamental forms

Define direction coefficients.

Define direction ratios.

What are orthogonal trajectories ?

AN I

Define oblique section and normal section.
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6.8

Exercises

. Compute the fundamental magnitudes for the surface

¥ =(ucosv, usinv, f(u) + cv).

. Prove that the curves du? — (u? + ¢2) dv* = 0 form an orthogonal system on the right helicoid

7= (ucosv, usinv,cv).

. Compute E, F, G H for the surface

(i) x=u,y=v,z=u2—v2,

(ii) 2z = ax® + 2hxy + by?.

. Prove that : HNXN,=M 7, —L7,.

oo
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Unit 7 : Meunier’s Theorem, Principal direction and

Principal curvatures, First Curvature, Mean
Curvature, Gaussian Curvature, Umbilics, Radius
of Curvature of any Normal Section at an Umbilic
on z = f'(x, y). Radius of Curvature of a given
Section through any Point on 7 = f (x, y), Lines of
Curvature

Structure of the Unit

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

Objectives

Introduction

Definitions

Curvature of normal section (i.e., Normal curvature)

7.4.1 Radius of normal curvature

7.4.2 Normal curvature

Meunier’s Theorem

7.5.1 Important result

7.5.2  Self-learning exercise-1

7.5.3 Illustrative example

Principal directions and principal curvatures

7.6.1  Definitions

Equations giving the principal directions at a point of surface and to derive the differential
equation of the principal section.

There are two principal directions at every point on a surface which are mutually orthogonal.
Umbilics

The equation giving the principal curvature at a point 4 (1, v) of the surface F=r (u, v).
Some important definitions

Radius of curvature at an umbilic on the surface z = f'(x, y).

7.12.1 Self-learning exercise-2

7.12.2 Tllustrative examples
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7.13  Radius of curvature of a given section through any point of a surface z =f(x, y).
7.14  Lines of curvature
7.14.1 There are two systems of lines of curvature
7.14.2 To find the differential equation of lines of curvature at point (&, v) of the surface
1 1
r=ru,v).
7.14.3 llustrative examples
7.14.4 Self-learning exercise-3

7.15  Summary

7.16  Answers to self-learning exercises

7.17  Exercises

7.1  Objectives

This unit provides a general overview of the following and after reading this unit you will be able
to learn

1. about Meunier’s theorem,
about Principal direction and Principal curvature of the surfaces,

about first curvature, Mean curvature and Gaussian curvature,

Eal

about Umbilics, radius of curvature of any normal section at an umbilics z = f (x, y), radius of
curvature of a given section through any point on z = f(x, y),

5. about lines of curvatures.

7.2  Introduction

In this unit we shall study local non-intrinsic properties of a surface. We shall also study curva-
ture of surfaces, plane section of surfaces and oblique section of surfaces. After that we shall establish a
relationship between curvature of normal section (k, ) and curvature of oblique section (i), which is known

as Meunier’s theorem. In the end of the unit we shall study about lines of curvature.

7.3  Definitions

(i) Intrinsic property

Property of a surface deducible from the metric alone, without using the surface equation
r=r (u, v) 1s called an intrinsic property.

(ii) Plane section of a surface

A plane drawn through a point 4 of a given surface intersects it in a plane curve, known as the

plane section of the surface. In Fig. 7.1 ABC and ADE are two plane section of the surface r=r (u, v).
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(Unit surface normal)
A A
(Unit principal to normal section) N=n

Normal section

Oblique
section

(Unit tangent
vector)

Fig. 7.1

(iii) Normal section

The plane is so drawn that it contains the normal A to the surface at the point (say 4), then the
curve of intersection is called normal section. In the Fig. 7.1 the curve bounding shaded area ABC is the
normal section. Thus the normal section is parallel to the normal N to the surface.

(iv) Oblique section

The plane is so drawn that it does not contain the normal N to the surface at the point (say 4),
then the curve of intersection is called oblique section.

Note : There exist infinite number of planes of normal sections through the principal normal at
point A, but there will be only one such plane of normal section having directions (du, dv).

Principal normal ;; for normal section is parallel to surface normal A7 and principal normal 7
for oblique section is inclined at angle 6 to surface normal ;.

We adopt the convention that vector 7 has the same direction as that of vector 5 , and with this

A

convention 7= N .
(v) Curvature at a point on a given surface

Let A4 be a point with position vector 7 (u, v) on the surface 7 =7 (u, v) the normal section at 4

in the direction (dn, dv) is equal to the curvature at A4 of the normal section at 4 parallel to the direction

(dn, dv) of £.
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(vi) Fundamental Magnitudes

Let ¥ = F(u,v) be the equation of the surface and let 7 = a—r,Fz = a—r‘[hen E= 1712 =77,
ou ov
F =77, G=7 =¥, ¥ are called first order fundamental magnitudes and if N be unit normal vector

at 4 (F ), then L =7, N, M= 7y N and N = Py - N are called second order fundamental magni-

’F o o 07
a2 P auavT P o

tudes, where P =

7.4  Curvature of section (i.e., normal curvature)

Let 7 =7 (u, v) be the equation of a given surface and 4 (i,v) is any point on the surface.

Here we assume that N=r (7.4.1)
Let x, represents the curvature of normal section, which will be positive when the curve is con-

cave on side towards which j7 points out.

Now Foopodr (7.4.2)
ds
where s is arc length.
Again differentiating, we have
G
el
ds 't
or 7 =k, N [+ N=n fromequation()] ... (7.4.3)
Taking dot product by A7, we get
N7 =K, (N-N)
= N7 =k, ( N Nzl) ..... (7.4.4)
Also we know that
_, dr  OF Ou OF Ov
y =— =—t——
ds Ouds OvOs
—Fﬂ+l7ﬂ—7u’+?v’ he u’—ﬂt 7.4.5
it i 2V (where dsec.) ..... (7.4.5)
Differentiating this relation again with respect to s, we have
e AR, dB o, du
prosHU U RV +—=V (u” =——etc.)
s
~ e = Ofidu Orpdv) , (0fhdu OFdv),,
or 7" =(r1u +rv )+ —t—— U +| —=—+——=— |V
Ou ds Ovds Ou ds Ov ds
=Fu" A BV F UV BV + By (7.4.6)
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- On on
where 7, =L 7 =L etc
ov ou

Now taking dot product by A7, we get
PN =(l71u"+172v”+1711u’2 +1712u'v'+i721u'v'+7722\/'2)~]\7
:(171 ](7) u"+(172 1(7) v"+(i711 N) u'? +(7712 ~1§7)u'-v'
Ay N) v/ +(Fy - N) w2 (7:47)
But we know that
i-N=0,%-N=0 . (7.4.8)

(- unit normal vector NV is | to both direction vectors of the tangents riand r,)

ﬁl'N:L
and P, N=My (7.4.9)
’722']\7:]\7

(The resolved parts of |, 75, 75, in the direction of normal to the surface are L, M, N called
second order fundamental magnitudes)

Using values from equation (7.4.8) and (7.4.8) in equation (7.4.7), we get

A

7N =k, = Lu” +2MuV + Nv'?

2 ) 5 )
K, :L(d”J +2Md—uﬂ+N(ﬂJ =Ldu +2Mdu dv+ Ndv

g ds ds ds ds?

B Ldu? + 2Mdu dv + Nadv?
" Edu®+2Fdudv+Gd*

or K (7.4.10)

(-+ ds* = Edu? + 2Fdu dv + Gdv?, the first fundamental form)

Equation (7.4.10) gives the curvature of the normal section, usually called normal curvature par-
allel to the direction (du, dv) in terms of the fundamental magnitudes.

Remark : Since x, depends only on the direction (du, dv) of the curve drawn on the surface,
as fundamental magnitudes E, F, G, L, M, N are determined by the given point 4. So normal curvature
at a point on a surface is a property of the surface which depend on the direction at the point on the
surface. Hence all curves tangent to the same direction on a surface have the same normal curvature.

7.4.1. Radius of normal curvature

Reciprocal of the normal curvature (k) is called the radius of normal curvature and it is denoted

byp, ie

Py =—. (7.4.11)

A
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7.4.2. Normal curvature definition

Let 4 (1, v) be a point on the surface 7 =7 (u,v) . The normal curvature at 4 in the direction

(du, dv) is equal to the curvature of the normal section at 4, parallel to the direction (du, dv).

7.5 Meunier’s Theorem (or Meusnier’s theorem)

Statement : If k and «, are the curvatures of oblique and normal sections through the same
tangent line and O be the angle between these sections, then k, =« cos 0.

Proof : Refer Fig. 7.1, let / be the tangent vector to the normal section of the given surface.
Let ADE be the oblique section of the surface by a plane through 7 . Here p is the surface normal
which is also principal normal of the normal section. Let 7 be the principal normal of the oblique sec-
tion, then we have

cos@0=n-N, (7.5.1)

because 0 is the angle between the planes of sections as shown in the fig. 7.1

But, if « is the curvature of oblique section
then, for any section =xn- (7.5.2)

Now taking dot product by &, we have

7N =xi-N
=Kcos0 [by equation (7.5.1)] ... (7.5.3)
Now 7". N =normal curvature at 4 in the direction

(du, dv) = curvature of the normal section at 4 parallel to be direction
(du, dv)=x,
.. by equation (7.5.3),
K, =7"-N =K cos0
= K, =Kcos6.
Hence Proved.
7.5.1. Important result
If a sphere is described with p, as diameter then all centers of curvature lie on this sphere, pro-
vided unit tangent vector 7 is the same.
Proof : Let C be center of oblique section and C, that of normal section for all planes contain-
ing 7, as shown in the Fig. 7.2. From figure, we have
AC,=p, and AC=p and ZC,AC=0.
Join C, and C.
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S>
zZ>

Cn
_______ 7
A\
7 90°
b
‘.p ,?\
" Shpere
Al
A
Fig. 7.2
Now, we know that Kk, =k cos 0 (by Meunier’s Theorem)
1 1 0 1 1
— =—cos P, =—,p=—
or o, p Pn K, P .
= p=p,cos0. (7.5.4)

From this we conclude from A AC,C, that ZC,AC =90°.
This result is interpreted as if a sphere is described with p, as diameter, all centres of curvature
lie on this sphere, provided 7 is the same.
7.5.2. Self-learning exercise-1
1. Define intrinsic property of a surface.
Define plane section of a surface.
Define normal section and oblique section of a surface.
Define curvature at a point on a given surface.

Write formula for curvature of normal section in terms of fundamental magnitudes.

A O T

Define normal curvature and radius of normal curvature.

7. Write the statement of Meunier’s Theorem.

7.5.3. Illustrative Examples

Ex.1. Find the curvature of a normal section of the right helicoid
x=ucos¢, y=usind, z=c¢.

Sol. The curvature of normal section is given by

B Ldu?® +2Mdu dv + Ndv*
Edu® + 2Fdudv + Gdv*

n

To find k,, we shall first evaluate fundamental magnitudes £, F; G L, M, N.
Let 7 =(ucos ¢, usndp,co) L. 2)

with « and ¢ as parameters, C is constant.
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(i.e.’71 =N

Let suffixes 1 and 2 represent partial differentiations of j; with respect to u and ¢

or . _or
o9
Then on differentiating, (2) with respect to u

1 =(cos ¢, usin ¢, 0)

ou

Now differentiating equation (2) with respect to ¢, we have
7, =(—usin ¢, ucosd,c)
Now differentiating (3) with respect to u, we get
1 =(0,0,0)
Differentiating (3) with respect to ¢, we get
= (sin g, cos , 0)
Now differentiating equation (4) with respect to ¢
Ty, = (—u cos ¢, —u sin ¢, 0)
E=F-F =r"=cos’ ¢ +sin* ¢ =1,
F =F 7 =(cos¢,sin$,0)-(—usin ,u cos §,0)
=(-usingcos¢+usingcosp+0)=0
and G =5,7 =(—usin¢,ucos¢,c)-(—usin,ucos¢,c)

=u” sin’ (|)+u2 cos’ (|)+c2

or G=u?+c?
Now H=EG-F*=1.*+c*)-0*=u?+¢?
and = _H(cos¢z+s1n¢]+0k)x( us1n¢z+uc0s¢j+ck)

| i ik
=—1| cos sin 0
I, ¢ ¢
c

—using ucos¢

= —2) {f(csinq)—o)+j‘(0—ccosd>)+l€(ucos2<1>+usin2 4))}

(u2+c

1 n R R

= csin¢i—ccos¢j+uk}
u +c* {

-~ (csing,—ccosd,u)

N A (w*+¢%)

145



Now L=N-F = -(0,0,0)=0 [Fromequation(5)] ... (13)
A4=4N3ﬁ2=(—ﬁn¢,um¢,0)(cmn¢’_Ccoyhu)
(u2 +c2)
B —csin® (I)—ccos2 o+0
(u2 +c2)
—c
or M= (14)
Vu? +¢?
~ _ (csing, —ccos¢, u) _
N=N-i, = -(—ucosd, —using, 0)
Vu? +¢*
_ —cusingcos¢+ucsingcos¢+0 (15)

\/(uz + cz)
Now using values from equations (8), (9), (10), (13),(14) and (15) in equation (1), we have

—C

0+2£jdud¢+0
Ju? +c*

du’® +0+(u2+cz)d(1)2

]§n:

B —2cdudd

B \/m(du2 +(u2 +c2)d¢2)

Ex.2. Show that the curvature x at any point P of the curve of intersection of two sur-

faces is given by «°sin® o= Klz + K§ —2K,K, coso., Where K, are K, the normal curvatures of the
surfaces in the direction of the curve at P and o is the angle between their normals at that point.

Sol. Let §; and S, be the two given surfaces and ]Qfl and ](/2 be the unit normals to them at
any common point P, respectively.

Curve of intersection of S} and S,.

Let 71 be the unit principal normal to the curve of intersection at P, as shown in the Fig. 7.3.

Since ](/1, n and ](72 are to be drawn through the same tangent line, so clearly ](/1, n, ](72 are
coplanar.

Let B be angle between ;; and ]Qfl , then (o — B) is the angle between ](72 and 7. Now using

Meunier’s theorem

K =K cos fB
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and Kw=xcos(a-B) L. 2)

Curve of
intersection of

SitandS; ——§

Fig. 7.3

From equation (1),

2
and Sil’lBZWH—cosz = L _%J ..... 3)

Now from equation (2),
15 =K [ cos o cos B+ sin o sin 3]

=cos a (k cos ) + k sin o sin 3

2
1, = COS 0L K|+ sin a, ,/1—% [From (1) and (3)]

: 2 2
or () — K, cos a) = SI QL y[K" — K,

Squaring both sides
K> +K, cos” o —2K,K, cosa =sin’ o (Kz —~ Kf)
or i« +(1<12 cos’ o +x; sinz(x)—21<21<1 cosa = Kk2sin’a

or K]+ — 2Kk, cosa, =k’ sin’ o

which is the required result.

Principal direction and principal curvatures

We have seen that curvature of normal section of a surface at a point varies with the direction

(du, dv) on the surface 7 =7 (u,v) . Among all the normal sections there are two directions for which

the curvature is maximum or minimum.
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7.6.1. Definitions :

(@)

(ii)

(iii)

(iv)

")

Principal section

The normal section of a surface through a given point having maximum or minimum curva-
tures at the point are called principal sections of the surface at that point.

Principal Direction

Tangents to the principal section, i.e., directions of the principal section are called principal
directions at the given point. We shall see that, in general, there are two principal directions
at a point and these are orthogonal.

Principal Curvature

The maximum and minimum curvatures of the two principal sections of a surface are called
the principal curvatures.

Principal radius of curvature (i.e. principal radii)

Radii of curvatures of principal curvatures are called principal radius of curvature.

Surface of centres

The locus of centres of principal curvatures at all points of a given surface called surface of

centres.

1.7

Equation giving the principal directions at a point of surface and to derive the

differential equation of the principal sections

We know that normal curvature «, at point 4 (u, v) in the direction (du, dv) of surface

7 =7 (u, v) is given by

. = Ldu® + 2Mdudv + Ndv* 771
" Edu®+2Fdudv+Gav 7 o
If (1, m) be actual direction coefficients of the direction (du, dv),
h [ = au m= 4
where 75 75
Then from (7.7.1), we have
Ldu* + 2Mdudv + Ndv* 2 2
( NI () g )
K _ ds _\ds ds ds ds
Edu® +2Fdudv+Gdv’ | 2 2
PG GO%) -y i g )
ds ds ds ds ds
2 2
or k, = LU +2Mim+ Nm (a-z:@, m =ﬁj ..... (7.7.2)
El* +2FIm + Gm* ds ds
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or K, :(L12+2Mlm+Nm2) ..... (7.7.3)

. EP+2Flm+Gm*=1 L. (7.7.4)

Since L, M, N are fixed at 4, so value of i, at 4 depends upon the values /, m at A. Hence «,, is

a function of two variables /, m, which are connected by equation (7.7.3) Taking / as a function of m,

we find for stationary values by

n—0=2L—+2M
dm dm

dx di (1+mﬂJ+2Nm=0
dm

[on differentiating equation (3)]

dl dl
or LZ%-FM(Z-FWZ%}-FNWZ:O ,,,,, (7.7.5)

and by differentiating (7.7.4), we have

2Elﬂ+2F(Z+mﬂJ+ZGm =0
dm dm
dl dl
El—+F|l+m— |+Gm=0
or dm ( m dm} m=v . (7.7.6)
By equation (7.7.5), rearranging the terms
j—l(Ll+Mm)+(Ml+Nm)=0 ..... (7.7.7)
m
and by equation (7.7.6)
dl
—(El+Fm)+(Fl+Gm)=0 . (7.7.8)
dm
dl :
Eliminating i’ 1 between equation (7.7.7) and (7.7.8), we get
LI+Mm M+ Nm|
El+Fm Fl+Gm|
or (Ll+Mm)(Fl+Gm)—(El+ Fm)(MI+Nm)=0 .. (7.7.9)
Simplifying, we get
(LF—EM)I* +(GL—EN)Im+(MG—FN)m* =0
or (EM —LF)I?+(EN-GL)Im+(FN-MG)m* =0 ... (7.7.10)

This equation determines the principal directions of the principal section.
To obtain the differential equation of the principal section replace /, m by direction ratios du, dv
in equation (7.7.10), we get
(EM — LF) du? + (EN — GL) du dv + (FN — GM) du* = 0,
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which can be expressed in the form of determinant as follows :

dv' —dudv du’
E F G
L M N

-0. . (7.7.11)

This equation gives differential of the principal section.

7.8  There are two principal directions at every point on a surface which are mu-

tually orthogonal

We know that the equation determining the principal directions at a point 4 (u, v) of the surface

7 =7 (u,v) is given by

(EM —LF)I* +(EN —GL)Im+(FN - MG)m* =0 [equation (7.7.10)]
which can be expressed as
2
(EM—LF)(LJ +(EN—GL)(LJ+(FN—MG) 0 . (78.1)
m m

(on dividing above equation by m?)

[ . : o
This being a quadratic equation in —, which provides two directions, i.e. there are two roots
m

/ l
(say) m_l and m_2 of'equation (7.8.1)
1 2

—(EN-GL -
Then sum of roots = l—1+l—2 = ( ) :( GL— EN J ...... (7.8.2)

m m, (EM-LF) \EM-LF
[ 1 FN-GM
and product of roots = —-—% = (—j ..... (7.8.3)
m, m, EM —-LF
ZIZZ _ mlmZ
or N-GM _EM—-LF e (7.8.4)
Now by equation (7.8.2)
Im,+1,m _ GL—-EN Lmy, +lLm — mm,
“TEM—LE)  GL—EN _EM—-LF - (7.8.5)
mm, ( ) N EM-LF
From equation (7.8.4) and (7.8.5), we get
Lm,+Lm L[, __mmy
GL—EN FN-GM EM—LF O W
- (hmy+1,m)) =¢,(GL-EN), Il,=c,(FN-GM),
mym, =¢ (EM —LF) ..... (7.8.6)
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Now if 0 is the angle between these directions, than

H(Zlm2 —mllz)
Ell, +F(Zlm2 +mllz)+ Gmm,

tan0 =

which can be expressed as

HA(Lmy +ml,)’ = 4LLmm,
ElL, +F (llm2 +myl, ) +Gmm,

tan0 =

H\J¢ (GL—ENY —4¢,(FN —GM )-c,(EM — LF)
Ec¢,(FN—GM )+ F¢,(GL—EN)+Gc, (EM — LF)

or tan0 = [by equation (7.8.6)]

H\(GL-EN)’ —4(EM - FL)(FN-GM)
E(FN-GM)+F(GL—EN)+G(EM —LF)

or tan0 =

B H\(GL-EN)’ —4(EM - FL)(FN -GM)
 EFN —EGM + FGL— FEN +GEM —GLF

H.(GL-EN) —4(EM - FL)(FN - GM
o e A ) <0 ) )

0= g . Hence the two principal direction are mutually orthogonal.

7.9 Umbilics

To derive the condition that a point be umbilic on the surface 7 =7 (u,v).

The equation determining the principal directions at a point of surface 7 =7 (u, v) is given by

(EM —LF)I?+(EN-GL)Im+(FN-MG)m*=0 .. (7.9.1)
in this, if
EM-LF=0 = Z_L
L M
EN-GL-0 — EL_OGl_ E_F_G
L Ny L M N (7.9.2)
and FN-MG=0 = i:ﬁ
M N

[ 1 [ .
then sum of roots ——+—2 and product of roots —-——of the equation
m, m, m, n,

(EM —LM)&JZ +(EN—GL)&J+(FN—MG) =0 . (7.9.3)
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becomes 0 i.e. values of — becomes inderminate, which means that in this situation the normal curva-
m

ture becomes independent of directions (du, dv) and so has the same value for all directions through the
given point 4 (u,v) of the surface. Such a point is called an umbilic or a navel point on the surface
F=r (u, v) .

Definition : A point 4 (1,v) on the surface 7 =7 (u, v) is called an umbilic, if at the point

ty
Q
|

:m‘

6 yio-F X 7.9.4
N ot (7.9.4)

E F
L M
An umbilic can also be taken as a circular section of zero radius.

Since at each point of a sphere, the normal curvature is same, so every point of a sphere is an

umbilical point.

7.10 The equation giving the principal curvatures at a point 4 (u, v) of the surface

F=F(u,v)

By the equation (7.7.9) which determines the principal directions, we have

(Ll+Mm)(Fl+Gm)—(El+ Fm)(MI+Nm)=0 .. (7.10.1)
Ll+Mm _ Ml+Nm
- El+Fm  Fl+Gm
LI+Mm _ Ml+Nm _I(LI+Mm)+m(MIl+Nm)
= El+Fm  Fl+Gm  [(El+Fm)+m(Fl+Gm)
_ LI> +2Mml + Nm® ~
EP’ +2FIm+Gm’ ~ "
LI+ Mm  Ml+ Nm
- e (7.10.2)
= El+Fm  Fl+Gm
LI+ Mm
Hence EI+—F'n/l =K, = LI+ Mm= K, (El+Fm) ..... (7103)
MI + Nm
and Hiom ~5n (MI+Nm)=x,(FI+Gm) ... (7.10.4)
Equation (7.10.3) and (7.10.4) can be rewritten as
(L-Ex,)[+(M-Fx,)m=0 (7.10.5)
and (M-Fx,)+(N-Gx,)m=0 . (7.10.6)

On eliminating /, m, we have
L-FEx, M-Fx,

M-Fx, N-Gk, |
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=  (L-Ex,)(N-Gx,)-(M-Fx,)(M-Fxk,)=0

or  (EG-F*)x.-(EN+LG-2FM)x,+(LN-M")=0

or  H,—(EN+LG-2FM)x,+T*=0, .. (7.10.7)
where H? = EG — F? and T? = LN — M?.

This equation being quadratic in K, gives two roots say K, =« and k, = «;, which are called

two principal curvatures. Thus from equation (7.10.7), we have

sum of roots =(k, +k,) = E]\2T+LG—2F]2\4 ..... (7.10.8)
H*(=EG-F?)
d duct of roots =k -, = L= LN =M (7.10.9)
an poduct of roots =K, K, =z =—~—7=. . 10.

7.11 Same important definitions

(i) Mean curvature or mean normal curvatures
The arithmetic mean of the principal curvatures at a point is called the mean curvature. It is de-

noted by symbol p

1 EN-LG-2FM
.e. ==K, +tK )= . 7.11.1
ie u 2( b) 2(EG—F2) ( )

(i) Amplitude of normal curvatures

Amplitude of normal curvature is denoted by 4 is defined as
1
AZE(Ka—Kh) ..... (7.11.2)

(iii) First curvature
The sum of principal curvatures at a point is called the first curvature at the point, denoted by J

and given by

_EN-LG-2FM

J=(x,+x,)= &y (7.11.3)

1
then clearly W= 5 J.

(iv) Gaussian curvature (or second curvatures)
The product of the principal curvatures at a point is called the Gaussian curvature at the point,

denoted by symbol

. LN - M*
and given b K=K ‘K, =——— 7.11.4
g Yy a b EG_Fz ( )

It is also called, specific curvature or total curvature.
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(v) Minimal surface
The surface for which the first curvature is zero (or the mean curvature is zero) at all points, is
called a minimal surface.
Hence the surface will be minimal, if and only if
EN+GL-2FM =0 =p=0
= (Ka + Kb) =0
=p +p,=0
=>p, =P, Ll (7.11.5)
where p; and p, are radius of normal curvatures.
(vi) Developable surface
The surfaces for which Gaussian curvature is zero, are called developable surfaces.
Thus for developable surfaces
k=0=LN-M*=0 . (7.11.6)
Remarks :
(a) The necessary and sufficient condition for a surface to be developable is that its Gaussian
curvature should be zero.
(b) Ifthere is a surface of minimum area passing through a closed space curve, it is necessarily a

minimal surface, i.e., a surface of zero mean curvature.

7.12 Radius of curvature at an umbilic on the surface z= f (x, y)

The Principal radii of curvature are given by the equation (7.10.7), when « is replaced by 1/p
(principal radius of curvature) i.e.,
H? 1 .,
?—(EN+LG—2FM)E+T =0 (7.12.1)

For the surface z = f(x, ), we know that

E=1+p* , F=pqg , G=1+q¢* , H=+l+p’+q

=" ’ M== ’ N=L ’ Tzzl”l‘—zS A R (7.12.2)
H H H H
h 0z 0z . 0’z ; 0’z s 0’z 0’z
W ere = — N = — N = N = —- . = = .
P ox 1 oy ox’ oy’ Ox0y  Oyox
Then substituting values from equation (7.12.2) in (7.12.1) we get
Z - — L =0- e 7.12.3
= H{t(l+p )+r(l+q ) 2pqs} p+ 72 0 ( )
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But when equation of surface is given in the Monge’s form z = f° (x, y) , the condition for a

point to be umbilic is

1+ p? _pq _l+q2 _«/l+pz+q2 _H

_ P9 _ - = o 7.12.4
r s t Jrt—s> -5’ ( :
From this,
1+ p? H 1+ p°
tp P (7.12.5)
r \/rz‘—s2 H \/rz‘—s2
1+ H :r(“qz)_ 1t (7.12.6)
P m e e 12.
g -t pa_ s (7.12.7)
an S s H o e A2.

Using values from equation (7.12.5) to (7.12.7) in (7.12.3), we get

H_z_l{t r 25-8 } rt—s*

t
+r- - +
’ N \/rt—s2 \/rt—52 H’

p P
2 2(rt—s? —s?
or H_l{ ( )}-{-rt S :0’

P2 p rt—s* H’
3 2
H rt—s
or {__ J =0
p H
H rt—s’ H* _lererq2

or =E———=p= = o 7.12.8
p H \Nrt—s* Jrt—s* ( )

Thus from (7.12.4) and (7.12.8), it follows that for an umbilic

1+ p? =ﬂ=1+q2_

p
—. 7.12.9
r S t H ( )

7.12.1. Self-learning exercise-2
1. Define the following :
(i) Principal sections of the surface.
(ii) Principal direction.
(iii) Principal curvature.
(iv) Principal radius of curvature.
(v) Surface of centres.

2. Write the differential equation of the principal section of the surface 7 =7 (u, v) .
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3. Wirite the equation giving the principal directions at a point of a surface 7 =7 (u, v) .
4. Are the two principal directions at every point on a surface 7 =7 (u, v), mutually ortho-
gonal ?
5. Write the Condition that a point be umbilic on the surface 7 =7 (u, v) .
6. Define the following :
(i) Mean curvature at a point of a surface.
(i) First curvature.
(iii) Amplitude of normal curvature.
(iv) Gaussian curvature.
(v) Minimal surface.
(vi) Developable surface.
7. Write the formula for radius of curvature at are umbilic on the surface z =f'(x, y).
7.12.2. lllustrative Examples
Ex.1. Find the principal sections and principal curvatures of the surface
x=a(u+v),y=bu-v),z=uv

Sol. The position vector 7 of any point on the surface is given by

r =(xf+yj'+zl€)
or Fo=aW+v)i+bu—v) j+uvk [vector equation of surface]
or 7 =lau+v),bu-v),w] L. (1)

Here a and b are constants and u, v are parameters.

Differentiating (1) partially with respect to u, we get

or

—=n= aab SV)e 2

& =1 =(a.b.v) )
Again differentiating with respect to u, we get

oF

$=FH=(0,0,0) ..... 3)
Now differentiating equation (2) partially with respect to v, we get

o’F
=r,=(001) 4

o = =(0.0.1) “4)
Now differentiating equation (1) partially with respect to v, we get

or

—=5= a, —b u)

5, =5 =(a.-b.u) (5)
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Differentiating this with respect to v again, we get

oF
a—vz_rzz =(0,0,0)
Now 7 XT, =(a,b,v)><(a,—b,u)
=(af+bj+v/€)x(al—bj+ul€)
7k
=la b v
a -b u

zf(bu +bv)+]'(av—au)+l€(—ab—ab)

or FxF =[b(u+v),a(v-u),~2ab]
Now E:"{.‘i:f.{z:a2+b2+v2
F=’71"7z=(a,b,v),(a,—b,u)=a2—b2+uv

|
|

and G= -221722=(a2+b2+u2)

8]

Now H’=(EG-F*)=(a*+b*+V*)(a* +b* +u*)—(a’ =b* +uv
( )=( ) )-( )

or H>=a'+a’b* +a’u”> +a’b* +b* + b*u* + a> V' + bV +u™’

2

—{a4 +b* +u*Vv? =2a’b* +2a’uv —2b2uv}

=a’u’ +bu’ +a*v: + bV’ = 2a*uv + 2b%uv
=a’ (u2 +v? —2uv)+b2 (uz +? +2uv) +4a°b* .
2 2
or szaz(u—v) +b2(u+v) +4a’b*.

1/2

or Hz{a2 (u—v)2 +b? (u+v)2 +4a2b2}

Now. N:Z’é :%{(af+bj‘+vl€)x(af—b}+ul€)}
L
a —-b u
— {7 (bu )+ (av-au) o (-ab - ab)]
or N == {b(u+v).a(v-u),-2ab}
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Now L=N-# =N-(0,00=0 (13)

A 1
M=N 7, = E{(b(u +v),a(v—u),—2ab)-(0,0,l)} = —7 _____ (14)
and N=N-#,=N-(0,0,0)=0 .. (15)
—2ab\  4d’h’
2=ILN-M>=0- =—
T ( o J o e (16)
(i) Principal sections
The differential equation determining the principal sections is
(EM —LF)du’ +(EN - LG)dudv+(FN-GM)dv* =0 ... (17)

Using values of £, F G L, M, N from above equations, we get
{(a2 +b +v2)(_2abj—0}du2 +[0—0]dudv+{0—(a2 +b +u2)(_2abﬂd\z2 =0
H H
Simplifying

du dv
Nat+b* +u’ a’+b*+v*

On integrating, we get

du 4 dv

or .[ 2 o 2
JN ) ey j JNa B ) ey

+¢

u v
. 71 _ . 71
or sinh” —— =4xsinh

—+c
Y W o (18)

where ¢ is constant of integration.
Equation (18) is the equation of principal section.
(ii) Principal curvatures

The differential equation determining the principal curvatures is

H«’-(EN+LG-2FM)x+T*=0 . (19)

Using values of E, F, G and L, N, M and T2, we get
—2ab —4a’h’
Hx* — 0+0—2(a2—b2+uv)( j K+ — |=0
H H

or  H%’-4abH(a’-b*+uwv)c-4a’¥*=0 (20)
where  f? = EG - F? =(a2 +b° +vz)(a2 +b’ +u2)—(a2 -b’ +uv)2
or B=a*(u-v) +b* (u+v) +4a’s> L 1)
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On using equation (21) in (20), we get a quadratic equation in k. We can find principal curva-
tures.

Ex.2. For the hyperboloid 2z = Tx* + 6 xy — y2, prove that the principal radii at the ori-

1
gin are S and X and that the principal sections are x = 3y, 3x =—y.

Sol. The given surface is
l 2 2
z=—|Tx"+6xy—
which is the Monge’s form of equation of surface.

Here first we shall calculate p, g, 7 s, ¢ at the origin and then we shall calculate fundamental

magnitudes of this surface. Here x, y will be treated as parameters.

Now differentiating (1) partially with respect to x and y, we get

0 0.
p=a—z=(7x+3y), q=a—z=(3x—y)

X 4
S S
an For oxoy oy’

We shall find these values at the origin (0, 0, 0), so

0z 0z
B el o
Ox (0,0,0) ay (0,0,0) (2)
2 2 2
r_[a_jj =7, S:[“j =3, t={6—fj =1 . 3)
Ox (0.0.0) OxQy (0.0.0) oy (0,0.0)
Here consider 7= (x,y,f(x,y) = z)
. Oz . Oz . 0z
l’i:a (I,O,p), rz_a_(laoaq)a l’il=§_(0, 0, l")
- 0’z . 0%z
lz—axay—(0,0,s), Py == (0,0,t)
E=7-f=1+p’, F=i%=pg, G=F, 7 =1+q’
L=L M=, N=L and H=Yi+p2+s| )
H H

Using values of p, g, 7, s, t from equations (2) and (3) in equation (4), we get
E=1,F=0,G=1,H=1,L=1,M=3,N=-1 .. (5)

Now equation giving the principal curvatures is

(EG-F?)x, —(EN-2FM + LG)x, +(LN -M*)=0
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Putting the values of £, F, G, L, M, N and H from equation (5), we get
K2 -6k, -16=0 =(x,—8)(k,+2)=0

k, =8-2 (7)
0 icival radii R d R IR S |
ence principal radii are p, = Kn =3 and p, = y =5=73
Again the equation of principal section is
(EM —FL)dx* +(EN —=GL)dxdy+(FN-GM )dy’=0 .. (8)
or 3dx® —8dxdy —3dy* =0 [on using values of E, F, G, L, M and N]
or (3dx +dy)(dx—3dy) =0
L 3dx+dy=0 ordx—3dy=0
On integrating x+ty=c/,x-3y=¢, . ©)

But at the origin (0,0,0), using x =0, y = 0, we get ¢, =0, ¢, =0 [form (9)]
.. Principal sections of the origin are
3x+y=0, x-3y=0 [From (9)]
or x=—-y, x=3y L. (10)
Ex.3. Show that the points of intersection of the surface x™ + y™ + 2™ = g™ and the line
x =y =z are umbilics and that the radius of curvature at an umbilic is given by

oo 3manm
m—1
Sol. The equation of given surface is
Xty +Mm=gm L (1)
where a is a constant.
This surface may be regarded as Monge’s from [z = f{x, y)] by taking z as a function of x and y.

Differentiating equation (1) partially with respect to x and y respectively, we get

m—1
mx’"’l+0+mz’"’1%=0 :—%z—pz(iJ _____ ()
Ox ox z
B - aZ aZ m—1
0+my" " +mz""' —=0 = _Z - _ :(XJ
oy Py q 0 3)
Now, from equation (2), on taking log
m—1
IOg(—p)ZIOg(iJ = log(-p)=(m-1)[logx—logz] .. (4)
z

Differentiating this partially with respect to x, we get

1 o(p) :(m_l)[l_l@}

(—p) ox X zOx
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. L (op(LL,)

p Ox X z
1
el

(—p) oy z Oy
0z
—(m—l) il
. 1 "o
p oy z
-1
N s___(m=Dgq {
p z

From equation (3), on taking log

s _p _ 0’z
oy 0Oyox

op 0’z
Ny =—=—
ox ox?

} ...... (6)

log(—¢)=log (%Jml = log(-¢q)=(m —1)[10g(y)— log(z)]

Differentiating this partially with respect to y, we get

(-q) oy y z0y
10 1 106z
o L2 (o) 212
q Oy y zoy
t 1 1
—=(m-1 ———qj
o o)1
1+ p?
Now for an umbilic P _Mq
r )
But from (6), pqg___“=
S m—1

.. From equation (8), =2
r s m-—1
1+p° -z
or =
r m—1
~-z
or 1+ p*) = o
( i ) (m—l)

[From equation (5)]



or (1+p2) =l+p
x
z
= 1=-=
x
or p=—(x/z)

Similarly we can find, Y ="
Therefore from equation (11) and (12), we get

X"P=yn =" Dx=y=z
Therefore for an umbilic, xX=y=z

Then from equation (1),

2" 472"+ 72" =q" =3z" =q"

[ a
=z= 3]/m
Now from equation (2),

o Em—l l
p B =>p=-

Similarly from equation (3),

From equation (6),

or s = =
a a
3l/m

and H = 1+p +q° \/1+ 1) =3

Then radius of curvature is given by

:qu (_1)(_1)\/5 _—a 3/2)=(1/m)

s (m-1) 3im _(m—l)
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—da
3(/71—2)/2/71
or f ( 1)

a  am-2)/2m )
or p ( m— 1) . (numerically)

Ex.4. Show that the surface € cos x= cos y is minimal surface.

Sol. The given surface can be expressed as

cos
& = cosi} or z= log(cos y)—log(cosx) [ontaking log] ... (1)

i.e., the equation of the surface is in the form
z=f(x,») [Monge’s form]
The position vector 7 of any current point (x, ), z) on this surface is given by
F=(x,y z)=(x, y, logcosy—logcosx) .. (2)
On differentiating it partially with respect to x and y respectively
or
—=7=(L0,tan x
ox ( )
or

. =7 =(0, ],—tany) ..... 4)

and

Again differentiating (3) partially with respect to x and y, we get
i =(0,0sec’x), 7, =(0,00) .. (5)
Differentiating (4) partially with respect to y
T (O, 0,—sec’ y) ..... (6)

Il
3
Il
[—
+
—_
o
=
(3]
=
Il
172}
o
(@]
(3]
ks

Now,

Now N:lefz =(—tanx,tany,1)

H H

- —tan x, tan y,1 2
Hence L=N-FH=( xH 4 ).(o,o,seczx)zSE’I‘;’C ..... (8)

M=N-F,= (_tanx;any’l)-(o,o,o)zo and

. (—tan x, tan y,1)

_ 2
N=N'7, = 7 -(0,0,—sec2y)=ﬂ

H
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The condition for the surface to be minimal is
EN-2FM+GL=0 . 9
Putting values of E, £, G and L, M, N form equation (7) and (8) in (9), we get

2 2
sec x(—sec )’) sec” ysec” x _

EN-2FM +GL = T, -0+ 0

Hence the given surface is minimal.

Ex.S. Find the values of (i) First curvature. (ii) Gaussian curvature, at any point of right

helicoid x =u cos 0, y =usin0, z = c0.

Hence show that a right helicoid is a minimal surface.

Sol. The position vector 7 of any current point (x, y; z) on this surface is given by

Fz(xf+yj+21€)=(x,y,z)=(ucos9,usin9,c9) ..... (1)
Then on differentiating » partially with respect to u and 6, we get
or : or
¥ =—=(co0s0,sin0,0), ¥ =—=(-usinO,ucosb,c) . 2
Similarly
o'F oF
r,=—=(0,0,0), r,6 = =(—sinH,cos0,0
o (0.0.0). 7, 6ud0 ( )
2—
7y =a—’;=(—ucose,—usin6,0), ..... (3)
00
Then the fundamental magnitudes are
E=7-F=i"=1, F=F-/,=0,G=7 F,=u"+c
and H2ZEG—F221-(u2+02)—02u2+6‘2:>H=\/u2+cz
Ko X (csin®, — ccos, u)’ L=Rx7, =0
H H
~ —c ~ a’
M=N-1,=———, N=N-5, =0, T2:_—2- """ )
Nu® +¢c? H
(i) First curvature
The first curvature J of the given surface at any point (u, 0) is obtained by
EN +GL-2FM 0+0-2x0
J: ) = 3 3 :O’ (5)
EG_F l.(u +c )_O .....

which shows that first curvature for right helicoid is zero, hence it is a minimal surface.

164



(ii) Gaussian curvature
The Gaussian curvature K at any point (u, 0) is obtained by
T8 LN-M’ —c?
K = —2 = 2 = P
H h (uz +cz) ..... (6)

7.13 Radius of curvature of a given section through any point of a surface

2=f ).

Suppose the surface is z = f'(x, ).

Tangent to A

Curve by a plane _—————
intersection called

plane section A

AN, principal normal
to surface ANsis
normal to AT

Surface
z=1(x,y)
Fig 7.4
A plane cut in it is a curve A. Suppose 4 be a point of A, AT be tangent to A at 4 having direc-
tion cosines (say) /;, m, n;. Let AN, be one of the normal to AT lying in the plane of section. Let d.c.’s
of AN, be 1, m,, n,. Also let AN, be principal normal to surface at 4. If equation of surface is taken in

the form £ (x, y, z) = 0, then direction ratios of the normal to surface are

@G_FG_FM -p,—q, 1, where pzﬁ qzﬁ
PP A o Ty

Therefore d.c.’s of principal normal are

—p —q 1
\/p2+q2+l \/p2+q2+l \/l+p2+q2 ..... (7.13.1)

Let angle between the plane of the section and normal section through A7 be 6, then

165



_—ph—gmy+n,
cos 0 = m ..... (7.13.2)
Now, AT and AN/ are perpendicular, therefore
ply+qgm-n;=0 . (7.13.3)
Differentiating this equation with respect to s, we get

ds ds ds ds ds

ﬁ+ %_%4_(4 dp ﬁj:()

e S
or potq_ ot hom o =0 (7.13.4)
d d
Now we shall find values of P and X4
ds ds
d, Op dx Op dy
L ===+ == (rsm) (7.13.5)

ds  Ox ds oy ds

2
Qr:a—pzi(a—szﬁ—ietc.ll :ﬁ,m1 :Q
Ox Ox\ Ox ox ds ds

dg 0qdx ogd
4 A AL (gvm) (7.13.6)

Similarly ds Ox ds oy ds

multiplying equation (7.13.5) by /; and equation (7.13.6) by m, and adding, we get

dp  dq
(llgﬂnl g} =1, (rly +smy)+my (sl +tmy)

= (rll2 + slym; + slym; + tmlz)

= (7 +2stm el L (7.13.7)
Now using Serret-Frenet formulae, we find
ph g dm _dm (b —”—2=1(p11+qm2—n2) ..... (7.13.8)
ds ds ds p p p P

Using values from equation (7.13.7) and (7.13.8) in (7.13.4), we get

l(pl2 +gm, —nz) =(r112 +2slm, +tm12) =0
p

or (p12 +gqm, — nz) =—p (rllz +2shm; + tmlz) ..... (7.13.9)

Using this value in equation (7.13.2), we have

2 2
p (’”11 +25hmy +tmy ) - cos® 7l +2shmy +tm]

..... 7.13.10
Ji+p*+4q° p 1+ p* +4° ( )
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This relation gives radius curvature p for surface z = f(x, y) at a point 4 of'it by a plane section,

where [,, m,, n, are direction cosines of its tangent at the point (x, y, z). If 6 = 0, then from (7.3.10)

1 I+ 2shm, +tm?

p \/1+p2+q2

(7.13.11)

then this expression gives the principal radius of curvature corresponding to a given principal section.

Ex. Find the principal radii at the origin of the surface
2z = 5x* + 4xy + 2)%
Find also the radius of curvature of the section x = .

Sol. Equation of surface can be expressed as
z= l(5)62 +4xy + 2y2)
2

Deafferentating it partially with respect to x and y respectively.

0z 0z
Z—p =5x+2y, —=q=2x+2
o p Y o q Y
0’z 0%z 0%z
and r=— =5, 5= =2,t:—2:2
ox Ox Oy oy

p=0,qg=0, r=5 s=2,t=2 and H*=1+p*+q¢*=1

Now the principal curvatures for a surface in Monge’s form is given by

He—-H[(1+p)t+(1+g¢)r—2spqlx+(rt—s*)=0
Using values form equation (2), we get
K-Tk+6=0 or (k-1)(k-6)=0 = k=1,6

then principal radii of curvature (say), p, and p, are

1 1 1 1
=—=-=1, and =—=—,
P k 1 P2 K 6

Second part : The given point is origin (0, 0, 0) and the plane of the section is x —y = 0. The

equation of tangent plane of the surface z =f'(x, y) at (0, 0, 0) isz=0

Hence the direction cosines of the line

x—y=0, z=0
x_y_z=0 . x _y _z
or 11 0 110
22

1 1
are (E’E’Oj:(h’ml’nl)

where [, m , n,, are the d.c.’s of tangent through origin for curve of section.
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Now, equation of normal plane to the surface at origin (0, 0, 0) through the tangent line is,
x—-y=0 (8)
which is same as given plane.

So, 6 =0, then radius of curvature is given by

S b L o1
1 2+ 2shm vl 2 J’ N
P \/1+p2+q2 \/1+0+0
or l—w=E = p=radiusof curvature=%- ----- )

o1 2

7.14 Lines of curvature

Definition : A curve on a surface is called a line of curvature if the tangent at any point of it is
along the principal direction at that point.

7.14.1 There are two systems of lines of curvature

At each point of the surface there are two principal directions which are at right angles. Hence,
we have two orthogonal systems of lines of curvature on the surface and through each point on the sur-
face there pass two lines of curvature, one corresponding to each system.

7.14.2 To find the differential equation of lines of curvature at point (u, v) of the sur-

face r = ;'(u,v).

By definition of line of curvature, the direction of line of curvature at any point is along the prin-
cipal direction at that point, so the differential equation of the two systems of line of curvature is the
same as the differential equation of the principal section and is given by

(EM —FL) du?* + (EN— GL)du dv+ (FN- GM) dv* =0 .. (7.14.1)
this equation can be expressed in the following form
Pdu? +2Qdudv+Rd*=0 (7.14.2)
where P=EM-LF, 20=EN-GL, and R=FN-GM.

Here ER-2FQ+GP=E(FN-GM)-F(EN-GL)+ G(EM—-LF)= 0, ...(7.14.3)
which shows that lines of curvature cut orthogonally at a point on the surface = Il"(u, V).

Remark :

(a) Equation (1) can be put in the following determinant form

' —dudv  du?
E F G |=0 (Here u and v are parameters) ... (7.14.3)
L M N
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(b) 1f we take the parameters x, y in place of (u, v), the above equation (7.14.3) of line of

curvature through a point on z =f(x, y) is given by

dy*  —dcdy dx®

1+p>  pg l+g*|=0 . (7.14.4)
r S t
Q E=1+p% F=pq, G=1+p*, H*=1+p*+q°
r S t
and L=— M=—, N=—
H H H

7.14.3 Illustrative examples
Ex.1. Prove that the cone kxy = z {(x* + z%)"? + () + 2)'*} passes through a line of
curvature of the paraboloid xy = az.

Sol. From the given equation of paraboloid, we have

z :lxy ..... (D
a

Differentiating partially with respect to x and y respectively

oz y

pw —p—a ..... 2)

0z ;

AL =4q9=—

Y 3)
2 2 2

and again differentiating r:Q:O, s = 0z :l, 0z =r=0 .. 4)

o2 oxoy a 8y2

Here parameters are x and y, so differential equation of lines of curvature is given by

dy*  —dcdy dx*
ler2 Pq lJrq2 =0

..... &)
r S t
Using value of p, g, , s, t, we get
dy2 —dx dy dx’
yz X 52
1+ - - 1+ - =0
a a a - (6)
1
0 — 0
a

expanding the determinant, we get
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2 2
dy? {0—1(“%}]“& x(0) +dx? [%H%]—O] =0
a a a a

or —(a2+x2)dy2+(a2+y2)dx2=0
dx dy
+ =0
or N \/az T (7)
. . .1 X L -1)
On integrating, we get  sinh - + sinh ~=q (constant) (8)

where ¢ is arbitrary constant if integration.
This relation in equation (8) provides us the surface on which the lines of curvature lie.

Equation (8) can be expressed as

2 2
i HM_ZJJM_Z}Q
a a a a
X yZ
or _1/1+_2i
a a

Now from equation az = xy of the paraboloid, we have

N

1+— =sinh(c¢, ) = (constant)

Q =
QN|><

X
a

Q<

z z
;, 2 [using these in equation (9)]

2 2
we get i,/Hi—zii /l+%:(constant):K(say)

z(x2 + 27 )1/2 J_rz(y2 +2° )1/2

Xy

or Z[(x2 +zz)l/2 t(y7 2 )1/1 =Ky L (10)

which is a can passing through a line of curvature of xy = az.

or

= K (constant)

Ex.2. Prove that in general three lines of curvature pass through an umbilic.

Sol. Let the umbilical point be taken as origin (0, 0, 0); and xy-plane as the tangent plane at
origin, and z-axis normal at the origin.

Now tangent plane is xy-plane, so we expect that first degree terms to be zero in the equation
of'surface z = f'(x, y). Further, the section at umbilic being circle, so the equation of surface z =f(x, y)
will have, coefficient of x> = coefficient of y* and no term of xy will be present. Under these restrictions

we express the equation of surface z = f(x, y) as follows :
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Xty
p
Now, the condition that the normal (0, 0, 0) and other point (x, y, z) should intersect, i.e., the

2z

+%(ax3+3bx2y+2cxy2+dy3)+.... _____ (1)

two lines whose equation are

£-0_n-0_£-0

0 0 T e (2)
E—x _m-y _C-z
d = == Ll 3
ant p q -1 ( )
X y z
should be coplanar is p g -1|=0- . 4)
0 0 1
On expanding, we get gx=py L &)
Now, differentiating equation (1) partially with respect to x and y respectively we get
2—az=2p=2—x+ax2+2bxy+cy2+... _____ (6)
ox p
and 2—az=2q=2—y+bx2+2cxy+dy2+... _____ (7)
ox p
Using values of p and ¢ from (5) and (6) in (4), we get
2—xy+ax2y+2bxy2 ey’ +... =2ﬂ+bx3 +2ex’y+doy? +...
p p
or bx* +x*y 2c—a)txy* (d-2b)—cy’*=0
Y ’ Y ’ Y
divide by — x3, we get c(;} +(2b—d)(;J +(a—2c)[;j—b=0 ..... (8)

Let 0 be the angle which tangent to a line of curvature makes with z-axis, then tan 0 = lim (y/ x)
therefore from equation (8), we have
ctan’0 +(2b—d) tan’ 60— (2c —a)tan®6-H=0. ... 9
This is a cubic equation in tan 6, so it given three lines of curvature through the umbilic, corre-
sponding to three values oftan 0.
7.14.4 Self-learning exercise-3
1. Write formula for radius of curvature of a given section through any point of a surface
z=f(x, ).
2. Define lines of curvature.
3. What is the differential equation of lines of curvature at point (u, v) of the surface
F=r(uv)?

4. In general how many lines of curvature pass through an umbilic ?
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7.15

Summary

1.

In this unit you have studied Meunier’s theorem, Principal direction and principal curvature at
point (i, v) on surface 1E = 1E (u, v), about first curvature, mean curvature, and Gaussian Curva-
tures at point («, v) on surface Fer (u,v) , about umbilic point, about formula of radius of
curvature of any normal section at an umbilic on z = f'(x, ), about radius of curvature of a given

section through any point on surface of the form z = f'(x, y), about lines of curvature and its

differential equation.
2. Sufficient number of examples have been solved in the unit.
3. Partial derivative p, g, 7, s, t and fundamental magnitudes E, F, G and L, M, N, H, T will help
the students to easily understand the text of the unit.
4. Examples in the text have been inserted frequently to help students to understand the text of the
unit.
7.16 Answers to self-learning exercises

Self-learning exercise-1

B Ldu® +2Mdu dv + Ndv*
Edu® +2Fdu du + Gdv*

1. See definitions of §7.3 5. k¥,

6. See §7.4 (i) & (ii) 7. See Meurier’s Theorem.
Self-learning exercise-2

1. See §7.6.1 (i) to (v)

2. (EM — LF) du?® + (EN — GL) du dv + (FN — GM) dv* =0

3. (EM—LF) >+ (EN-GL) Im + (FN - GM) m*=0

4. Y 5E
. Yes -7

6. See §7.11 (i) to (vi)

Self-learning exercise-3

, cos® i} +2shm, +tm? 5 See7.14.2
. = . See 7.14.
p \/l+p2+q2

3. Pdu? +2Qdu dv + Rdv* =0, where P=Em —LE, Q=EN-GL, R=FN-GM.
4. Three.

172



7.17

Exercises

Find the curvature of the normal section of the helicoid x =u cos 6, y=u sin 0, z=/f(x) + 0.

(“f”) du® —2cdu dv+(u2f')fv2
H{(l+f'2)du2 +2¢f" du d"+(u2 +Cz)dv2} ]

[Ans. K, =

For the surface ~ = “ " , Y 2V ,Z= ﬂ; prove that the principal radii are given by
a 2 b 2 2
a?b?p? + habp (@ —b* +uv) - A4 =0
where 412 = 4a%b? + a2 (u —v)? + b? (u + v)? and that the line of curvature are given by

du - dv

Va? +b* +u? Ja? +b* +v?

Prove that for helicoid x =u cos 0, y=usin0, z=c¢9,

2 2
u-+c

, where u? = x* + y*

P =—P2 =

and that the lines of curvature are given by

du
Vu? +c?

2 2 2
Find the umbilics of the ellipsoid x_2 + y_z + Z_z =1. If P is an umbilic of this ellipsoid, then prove
a b” ¢

do =

I+

that the curvature at P of any normal section through P is (a_gj
b

(Ans. 4 /b)) (zz) |

\/az —b? 0 _J_r\/bz—c2

Find the Gaussian curvature at point (u, v) of the anchor ring,

x=(b+acosu)cosv, y=(b+acosu)sinv, z=asinu,
where the domain of u, vis 0 <u <2m, 0 <v<2m. Verify that the total curvature of the whole

coSu

surface is zero. [Ans. Gaussian curvature Kk = ——F————
a(b+acosu)

oo
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UNIT 8 : Principal Radii, Relation between Fundamental
Forms, Asymptotic Lines, Differential Equation
of an Asymptotic line, Curvature and Torsion of
an Asymptotic Line

Structure of the Unit

8.0  Objectives

8.1 Introduction

8.2  Principal radii through a point of the surface z=f'(x, y).

8.3  Fundamental forms

8.4  Relation between three fundamental forms

8.5  Asymptotic lines

8.6  To show that to a given direction there is one and one only conjugate direction. Also derive the
condition for the directions (du, dv) and (Du, Dv) to be conjugate.

8.7  To show that the direction given by P du? + 20 dudv + R du? = 0, are conjugate if
LR —-2MQ + NP =0.

8.8  Family conjugate to the family of curves P du + Q dv =0.

8.9  Conjugate directions and parametric curves.

8.10  Principal directions (lines of curvature) at a point are always orthogonal and conjugate.

8.11 A characteristic property of conjugate directions
8.11.1 Self-learning exercise-1.

8.12  Definitions

8.13  Differential equation of the asymptotic lines at any point (&, v) on the surface 7 = 7 (u,v)

8.14  Conditions for two asymptotic directions at a point to be real and distinct, coincident or
imaginary.
8.14.1 Asymptotic lines are orthogonal if the surface is minimal.

8.15 An asymptotic line is a curve on a surface such that the normal curvature of the surface in its
direction is zero.
8.15.1 Illustrative examples.

8.16  The necessary and sufficient condition for the parametric curves to be asymptotic lines.

8.17  If'the parametric curves are asymptotic lines, then find differential equation of line of curvature

2
and —M—.

and show that first and second curvatures are —
H? H?
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8.18  Osculating plane at any point of a curved asymptotic line is the tangent plane to the surfaces.
8.19  Torsion of an asymptotic line 7 =7 (s) on the surface ¥ =7 (u,v).
8.20  Curvature of an asymptotic line 7 = 7 (s) on the surface 7 =7 (u,v).
8.21  Beltrami-Enneper theorem
8.21.1 Illustrative examples
8.21.2 Self-learning exercise-2

8.22  Summary

8.23  Answers to self-learning exercise

8.24  Exercises

8.0  Objectives

This unit provides a general overview of Principal Radii, relation between three fundamental forms
of surface, Asymptotic lines and their differential equations, also curvature and torsion of an asymptotic
line. After reading this unit you will be able to learn :

1. about Principal Radii.

2. about relation between fundamental forms.

3. about Asymptotic lines and their differential equations.

4. about curvature and torsion of asymptotic lines.

8.1 Introduction

In this unit we shall study principal radii through a point of the surface z = f'(x, y), relation be-
tween three fundamental forms, asymptotic lines and differential equation of asymptotic lines. In the end
ofunit we shall study curvature and torsion of an asymptotic lines.

In the earlier Unit-7 we have already obtained the principal curvatures and principal sections for
the Monge’s surface z = f'(x, y) from which expression for principal radii can be directly written. We

shall discuss here an alternative method.

8.2  Principal radii through a point of the surface z =f (x, y)

Equation of surface is z=fCy) L (8.2.1)
If[;, m{, n, are the direction cosines of the tangent to a normal section of the surface through
the point (x, ), z), then the radius of curvature of the section is given by
1 I + 2slmy + tm}*

p \/1+p2 +q2 A (8.2.2)
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0z oz 0%z 0%z 0’z
=— , 8§ = , L= .
o’ Ox0y Oyz

_Gx’q_ﬁy

,l"—

where p

Equation (8.2.2) can be expressed as

2 2
1= e 2sphmy m};p, where H =1+ p°+¢°

H H

r 2s t
or I (EPJ +hm (FPJ +m’ (ng = (8.2.3)

Now, — p, — ¢, 1 are the direction ratios of the surface normal at (x, y, z), so by the condition of

perpendicularity
ply+gm;—n; =0
or n,=pl,+gm. L. (8.2.4)
On squaring, we get
”12 = (Pll + qml)z
or 1—(112+m12)=p2112+q2m12+2pq11m1 [ 112+m12+n12= 1]
or (L+p» 12 +2pqlimy+m?(1+ghH=1 L. (8.2.5)

Subtracting equation (8.2.3) from equation (8.2.5), we get

p
12|14+ p2 =22 e 2im, | pg=2 |+m?| 144 =L |=0,
1 ( p I 1" Pq I 1 q )" e (8.2.6)
: : : .. . L
The equation (8.2.6) is quadratic equation in —, therefore it gives two values of T, corre-
m 1

sponding to a given radius of curvature. If p is a principal radius, these sections coincide (i.e., values

coincide). Therefore for the principal radii (by condition of roots both equal B2 — 24C = 0).

2
sp 2 TP 2 Ip
41 pg-E| -4 |1+ p*—E || 1+4*-E |=0.
(-] a(rep-2) (o0 52
On simplifying, we get
p2(rt—s?)—Hp {(1+p?) t+(1+¢?) r—2pgst + H*=0. .. (8.2.8)

This equation gives the principal radii.

8.3 Fundamental forms

In the earlier units, we have studied first and second fundamental forms. Here we shall define
third fundamental form and then we will derive relation between them.

Three fundamental forms are given by first fundamental form

[ =dF -dF = E(du)® + 2Fdudv + G (dv)* = (ds)>, (8.3.1)
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where equation of surface is regarded as 7 =7 (u,v), u, v are its parameters, and E, F, G are first

order fundamental magnitudes.

Second fundamental form
Il =—d7-dN = Ldu* +2Mdudv + Ndv* = (x,ds*), ... (8.3.2)
where L, M, N are second order fundamental magnitudes.
Third fundamental form.
The quadric Adu®+2Bdudv+Cav*, L (8.3.3)
is called the third fundamental form for surface 7 =7 (u,v) and is denoted by III, where
ou ov
Il =dN-dN = Adu* +2Bdudv+Cdv*. .. (8.3.4)
8.4 Relation between three fundamental forms
If K is the total curvature and .J is the first curvature then to show that
KI-JI+m=0 . (8.4.1)
Proof. Suppose that the lines of curvature be the parametric curves, then
r=m=0 . (8.4.2)
Then, the two fundamental forms are reduced to
I=Edi*+Gav* L. (8.4.3)
and n=Law?+Na?. L. (8.4.4)

If i, k;, be the principal curvatures at the point (1, v) of surface 7 =7 (u,v) we have for two

parametric curves by Rodrigue’s formula

Kaﬂ+d—N=O:> K, +N,=0= N, =—x,7
du du

and Kbﬂ+d—N=O:>Kbl72+]\A72=03N2=—Kbl72
dv dv

So, the third fundamental form is given by
~ 2 A A 2
11 = (dNy* =(Nydu+ Ndv)

= (=i ) du® +2[ (=1 7 )- (=15 ) v+ (= 1,75 ) dv?.
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Using equations (8.4.5) & (8.4.6)
I =i du® + 2k k, (F - 7)) dudv + K37y * dv?
= k2Edu® + 2k Kk, F dudv + ;G dv*
= Il =x,Edu’ +x,Gav* (- F=0) .. (8.4.7)
Now KL —JI =%, (Eduz + dez)—(Ka +x, )(L du® + Ndvz) ,,,,, (8.4.8)
Using K=1xk,, and J=x, +1,
L N
K,=— = L=FEx,, xy=—=>N=x,G. .. 4.

«a" a> ™b G b (8 4 9)

Using these values of L and N in equation (8.4.8), we get
K1l —-JlIl= KaKbEdu2 + KaKbdez - (Ka + K, )(EKadu2 + Kbdez)
_— (KaEduz + K,,dez) =-. (8.4.10)

Hence Ki-Jimn+ma=0. L (8.4.11)

This equation gives a relation between three fundamental forms of the surface 7 =7 (u,v). This

can also be expressed in the form

1 -2p-1I1+K-1=0. ( %z u} ..... (8.4.12)

8.5 Asymptotic lines

Before defining the asymptotic lines we shall define conjugate directions at a point of a surface
and we shall derive expressions for conjugate directions.

Definition. Conjugate directions

Conjugate directions at a given point (1, v) on a surface ¥ = 7 (u,v) are defined as follows :

Let P be any point (¢, v) on a surface (say) S and Q be a neighbouring point on it [i.e., O is
(u+du, v+ dv).

Let tangent planes at P and Q to the surface S intersect in a line (say) LM. Then the limiting

directions of the line PO and LM as Q — P are called conjugate directions at P,

8.6 To show that to a given direction there is one and only one conjugate direc-

tion. Also derive the condition for the two directions (du, dv) and (Du, Dv) to

be conjugate

Proof. Let 7 =7 (u,v) be equation of surface. Let 7 be position vector of the point P (u, v)

on this surface and 7 +dr be position vector of point Q (u + du, v + dv), a point adjacent to P in the
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direction (du, dv). Let N and N +dN be unit normals at the points P (7 ) and O (7 +d7 ) on the
surface, respectively. Then clearly d 7 is the limiting position of the vector PO as Q — P, Let DF be
the vector along the limiting position of the line LM as Q — P.

(where D is used to denote the other direction in place of d)

then P—defza—rdu+a—rdv=ﬁdu+72dv
ou ov
or dr =vdu+r,dv L. (8.6.1)
and ¥ =N g+ N gy - Nydu+N,dv . (8.6.2)
ou ov
Also Dr =a—rDu +a—rDv=71Du+F2Dv ,,,,, (8.6.3)
ou ov

Now the vector D7 lies in the tangent plane of P (7)) as well as that of Q (7 +dF ) so it will be
1 to both normals N and N +dN .

DFi-N=0 L (8.6.4)
and Df-(zhdﬁ) =0 (8.6.5)
or Di-N+Di-dN=0 or DF-dN=0 ... (8.6.6)

Using values from (8.6.2) and (8.6.3), we get

(7 Du+7 Dv)-(Nydu+ Nydv) =0

(ﬁ](fl) Dudu+(l71‘1<72) Dudv+(i72 1\71) Dvdu+(772 ZQZ) Dvdv =0

= L Dudu + M Dudv + M Dvdu + N Dvdv =0
or L Dudu + M (Dudv + Dvdu) + N Dvdv=0, .. (8.6.7)
Where Nl'l;i=L, ],\\[1"_;2=M=],\\[2'7_’i, 772']02=N.

The equation (8.6.7) is the required condition for the two directions (du, dv) and (Dv, Du) to be
conjugate.

Du

u
Also the equation (8.6.7) is linear in each of the ratio . and Dy which shows that to a given

direction there is one and only one conjugate direction.

Remarks.

(i) The symmetry of equation (8.6.7) shows that if the direction du is conjugate to directions

dv
——, then —— is conjugate to direction — i.e., the property of conjugate direction is
Dv Dv dv
reciprocal.
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(i) 1t follows from equation (8.6.7) that the directions (/,, m,) and (/,, m,) at point P are con-
jugate iff L1, + M (I;m, + myl,) + Nmm, = 0.

8.7

To show that the directions given by Pdu? + 2Qdudv + Rdv? = 0, are conjugate

if LR —2MQ + NP=0.

Proof. Given LR-2MQ+NP=0. L. (8.7.1)
The equation Pdu? + 2Qdudv + Rdv* = 0 can be expressed as

2
du du

Pl—| +20—+R=0.

(va Q——+R=0. .. (8.7.2)

This equation being quadratic in Z—u , gives two roots, say @, Du then

v dv Dy
sum of roots = (@+&j = —Q, ..... (8.7.3)
dv Dv P
and product of roots = d_u& = 5 ..... (8.7.4)
dv Dv P

Now from equation (8.6.7), we have

L Dudv + M (Dudv + Dvdu) + NDvdv = 0.

which can be expressed as

Du du Du du
L——+M| —+— |+ N=0.
Dv dv (Dv d‘,j ..... (8.7.5)

Using values from equation (8.7.3) and (8.7.4), we get

N

= LR-2MQ+NP=0, .. (8.7.6)

which is the required condition.

8.8  Family conjugate to the family of curves Pdu + Q dv=10
The equation of family of curves given by
Pdu+Qdv=0, . (8.8.1)
can be expressed as Pdu =— Qdv
du dv
—=—=k(sa
= 0 _p (say)
= du=kQ, dv=—kP. . (8.8.2)
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Now condition for two direction to be conjugate is
L Dudu+ M [Du (- dv) + Dvdu] + N Dvdv=0 .. (8.8.3)
Using equation (8.8.2) into the equation (8.8.3), we get
L Du (kQ) + M [Du (~ kP) + Dv (kQ)] *N Dv (- kP) = 0
—  k[LO Du— MPDu + MQ Dv—-NPDv] =0
or  (LO-MP)Du+(MQ-NP)Dv=0 .. (8.8.4)

which is the required result.

8.9 Conjugate directions and parametric curves.

Necessary and sufficient condition that the parametric curves through a point

to have conjugate directions is that M = 0.

Proof : The condition is necessary : The parametric curves, u = ¢ (constant) and v = ¢,

(constant), in the differential form will be

dudv=0, L. (8.9.1)

which can be expressed as 0du*+1dudv+0dv*=0. .. (8.9.2)
Comparing it with Pdu? + 20 du dv + Rdv* =0,

we find that pP=0,20=1,R=0. L. (8.9.3)

Now the direction of parametric curves are conjugate if

LR-2MQ+NP=0 L (8.9.4)
Using equation (8.9.3), we get

oO-M+0=>M=0. L. (8.9.5)
Thus the parametric curves have conjugate direction when M = 0.
The condition is sufficient : If mM=0 . (8.9.6)
and for parametric curves pP=0,R=0. . (8.9.7)
Then the condition LR — 2MQ + NP = 0 is satisfied by using (8.9.6) and (8.9.7).

Hence, if M = 0, the directions are conjugate for parametric curves.

8.10 Principal directions (line of curvature) at a point are always orthogonal and

conjugate.

Proof : We know that parametric curves u = const. and v = const., whose combined equation
is given by

du dv=0.
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The necessary and sufficient condition that these parametric curves be line of curvature are

F=0, M=0 L. (8.10.1)
and condition for parametric curves to be conjugate is

M=0. L. (8.10.2)
Also the necessary and sufficient condition for parametric curves to be orthogonal is that

F=0. ...(8.10.3)
From these we conclude that the direction of line of curvature are always orthogonal as well as

conjugate.

8.11 A characteristic property of conjugate direction.

To show that conjugate direction at a point P on a surface are parallel to con-

jugate diameters of the indicatrix at P.

Proof : Take the lines of curvature as parametric curves, so that

F=0, and M=0. . (8.11.1)
Then by equation (EG—FY)k, —(EN+LG—2FM) k,+(LN-M?) =0
becomes EG k,f ~(EN+LG)k,+LN=0
or E (Gk,~N) k,— L (Gk,— N)=0

(Ek, — L) (Gk, —N) =0

L N L
= k :E’ E(say) k :E and kb:

n a

..... (8.11.2)

Ql=

are the principal curvatures at the point P.

Now by setting point P as origin, x-axis along the principal direction v = const. at P, y-axis
along the principal direction u = const. at P and z-axis along the normal to the surface at P, then equa-
tion of indicatrix (Dupin’s indicatrix) at P is given by

2 2

X y _ _
@ik, (2h/ky) L z=h

But we know from coordinate geometry that the lines y = m x and y = m,x are conjugate

..... (8.11.3)

diameters of the conic

2

. b
=1, if mm,=t— (8.11.4)

+ S
a

2
Y
2

Q
S~

so the directions of conjugate diameters of curve given by equation (8.11.3) are given by

—_Ta
mm, =
b

..... (8.11.5)
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oo (LE) _ LG
= T NIG) T EN

Let 0, and 6, be the angles which the conjugate directions (du, dv) and (Du, Dv) make with the

parametric curve v = const., then

G dv
d m, =tan0, =,[—— A1,
an 1 1 E du (8 6)
m, =tan 0, = G Dy 8.11.7
) 2 £os e (8.11.7)
Using these values of m |, m, in to equation (8.11.5), we get
Gav [Gov__ 1G
E du \E Du EN
GdvDv__ LG
E du Du EN
Ndv D =—-LduDu
or LduDu+NdvDv=0, . (8.11.8)

which is the equation determining conjugate direction, when M = 0. Hence the result.

Alternate definition of conjugate directions :

Two directions at a point of a surface are said to be conjugate if they are parallel to the conju-
gate diameters of the indicatrix of the surface at that point.

8.11.1 Self-learning exercise-1.

1. Write a formula to find principal radii through a point of the surface z = f(x, y).

2. Write the third fundamental form of the surface.

) ) r r
3. Write the relation between three fundamental forms of a surface » =r» (u, v).
) o ) . r r
Define conjugate directions at a given point («, v) on a surface » =r (u, v).

Write the condition for two directions (du, dv) and (Du, Dv) to be conjugate.

AN

What is the necessary condition for parametric curves through a point to have conjugate

direction ?

8.12 Definitions

. o r T )
(i) Asymptotic directions : A self conjugate direction on a surface r =r (u,v) is called
asymptotic direction.
r T L .
(ii)) Asymptotic lines : A curve on a surface r =r (u,v) whose direction at each point is self

conjugate, is called an asymptotic line.
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r T
Alternate definition of asymptotic line : A curve drawn on a surface r =r (u,v) so as to
touch at each point one of the inflexional tangents through the point, is called an asymptotic line on the

surface.

8.13 Differential equation of the asymptotic lines at a point (u, v) on the surface

Ir I
F=F(uv).

Let (du, dv) be directions of an asymptotic line at any point (u, v) on the surface F=r (u, v).

Hence (du, dv) is a self-conjugate direction.

So fc totic lin du _ Du 8.13.1
o for asymptotic line oDy e (8.13.1)

where (du, dv) and (Du, Dv) are conjugate directions.

The condition of conjugacy of these two directions are
L du Du+ M (du Dv +dv Du)+ Ndv Dv=0

du Du du Du
L——+M| —+— |+ N=0.
or v Dv (dv Dv} ..... (8.13.2)

On using (8.13.1), we have

2
L(%J +2M@+N:O
dv dv
= Ldi?+2Mdudv+Nd*=0, . (8.13.3)

C e . . . g . r r . -
this is differential equation of the asymptotic lines at a point (u, v) on the surface r =r (u,v) in curvilin-

ear coordinates. Equation (8.13.3) can also be expressed in the following form

aN-dr=0. .. (8.13.4)

8.14 Conditions for two asymptotic directions at a point to be real and district,

coincident or imaginary

Differential equation of asymptotic line is

L(@jimd_w_o $.14.1
y SrN=0 (8.14.1)

du
which is quadratic in o It follows that in general asymptotic direction through every point of surface

are self conjugate.
(i) These directions will be real and distinct if the discriminant (B — 4 Ac) = 4 (M? — LN) or
(M2 — LN) is positive or (LN — M?) < 0.
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But the Gaussian curvature is

LN -M* ~ve
K:T = Kz(Hz)Z(—Ve). ..... (8.14.2)
Hence asymptotic lines are real and distinct if
K<o0 (8.14.3)

and when K < 0, the point is called hyperbolic point and the asymptotic lines at the point are parallel to
the asymptotes of the indicatrix at the point.

(i) The directions given by equation (8.14.1) will be real and coincident, if the discriminant of

equation (8.14.1) (say)

(B2—44c)=4 (M*-LN)=0 or M*-LN=0. ... (8.14.4)
Then Gaussian curvature
2
K- LNH 2M _o,

then the point is called parabolic point.
(iii) The directions given by equation (8.14.1) will be imaginary if the discriminant
“B2—44c<0” ie, 4(M?-LN)<0
= (M2 -LN)<0
= (LN-M»>0. L (8.14.5)

Then the Gaussian curvature

_ LN — M? (+ve)

K H> H?

>0

i.e. K> 0, then the point is called an elliptic point.
In this case the asymptotic lines are imaginary.
8.14.1 Asymptotic lines are orthogonal if the surface is minimal

Proof : When both roots of the differential equation

Ldv* +2M dudv+Na?=0 .. (8.14.6)
ofthe asymptotic lines are real and district, then
(M2 —LN)>0
= (LN-M»<o0. (8.14.7)
Then Gaussian curvature
K = LN-M" <0, (8.14.8)

then the point is hyperbolic and the indicatrix at the point is rectangular hyperbola and asymptotic lines

are orthogonal. In this condition, the first curvature
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J=0= EN-2MF+ GL =0,
which is condition of minimal surface.

Hence asymptotic lines are orthogonal if surface is minimal.

8.15 To show that an asymptotic line is a curve on a surface such that the normal

curvature of the surface in its direction is zero.

Proof. Differential equation of asymptotic line is
Ldi?+2Mdudv+Ndv*=0 .. (8.15.1)

and normal curvature at any point (&, v) on surface 7 = 7 (u,v) is given by

K - Ldu? + 2Mdudv + Ndv*
" Edu® +2Fdudv+Gdv*

..... (8.15.2)

Using equation (8.15.1), we get
k=0 . (8.15.3)
Hence in case of asymptotic lines K, = 0, an asymptotic line is a curve on a surface such that
the normal curvature of the surface in its direction is zero.
Remarks.
1. A curve drawn on a surface so that its osculating plane at any point contains the binormal to
the curve at the point is an asymptotic line on the surface.
2. Two asymptotic lines through any point have the same osculating plane.
3. When the principal curvatures &, and k, equal and opposite i.e., k, = — k;, the indicatrix is
a rectangular hyperbola and so asymptotic lines are at right angles.
4. The normals to a surface at points of an asymptotic line generate a skew surface whose line
of striction is the asymptotic line.
8.15.1 Illustrative Examples
Ex.1. Prove that on the surface z = f (x, y) (Monge's form) the equation of asymptotic
lines are
rdx? + 2s dxdy + t dy* = 0.
Sol. The given surface is z = f (x, ), then position vector 7 of the current point is 7 = (x, ), z),
where z = f'(x, y), x and y are taken parameters.

On differentiating partially with respect to x and y respectively

r or r o
K =é=(1, 0, p).7, =é=(o, 1, q)
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r o%r r o°r

and #,=——=(0,0,s), n,=—==(0,0, r),
12 dyor ( ) =52 ( )
r X 2)
rzzzay—zz(oa 0, f),
Therefore £ =F -1 =1+ 2 F —Fh = ,G=1rf A 3)
11 p 1" =P4q 21 q
]\A,:’l’lx’l’z _(=p.,—q.1) H? = EG-F> =14 p*+ ¢ @)
H H b C eesss
AT r r AT S S
H \/1+p2+q2 H \/1+p2+q2
o I L2 KOO &)
\/1+p2+q2

Now differential equation of asymptotic line is
Ld* +2M dudv+Ndv*=0 . (6)
Here parameters u = x, and v = y, then differential equation (6) of the asymptotic lines at point
(x, y) on the surface z = f(x, y) reduces to the form
Ldx*+2M dx dy + Ndy*=0. .. (7)

Using values from equation (5), we get

rdx? 2s dx dy z‘dy2
+ +
\/l+p2+q2 \/l+p2+q2 \/1+p2+q2

or rdx* + 2s de dy + tdy* =0, (8)

=0

which is the required equation of asymptotic line.
Ex.2. Find the asymptotic lines on the surface
z=ysinx.

Sol. Equation of the surface is of the form z = f (x, y) [monge’s form], so differential equation of

asymptotic line will be
rd®+2sdedy+tdy*=0, . (1)
0%z 0%z 0%z
where 7 = ,8 = 1= .
o’ ox0y 8y2
Surface is z=ysinx. L (2)

Differentiating partially with respect to x and y, we get

oz
pzazycosx ..... 3)
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oz .
and g=_—=smx 4

dy
r—a—zz—— sin x,s = 0’z =COS X t—G—ZZ—O
and axz Y ’ ax ay ’ ay 22 (5)

Using values of 7 s and ¢ form equation (5) in equation (1), we get

(—ysinx)dx+2cosxdxdy+0=0

= (—tanxdx+2dyjdx=0
y
) 2
Then either dx=0 or —tanxdx +—dy=0
y
when dx=0 = x=constant=c;(say) .. (6)
2
and when —tanx dx +—dy =0
y
= log (cos x) + 2 log y = (constant) = log ¢ (say) [on integrating]
or log (cos x) + log (1) = log ()
or log (cos x - y%) = log (c?)
or cosx-y2=c2 (7)

Hence form equation (6) and (7) are the equations of asymptotic lines as given x = ¢; and
¥, COS X = C,.

Ex.3. Prove that for the surface x = 3u (1 +v¥) —u3, y = 3v (1 + u?) =3, z = 3u? — 312,
the asymptotic line are u £ v = constant.

Sol. Let 7 be the position vector of any current point on the surface, then
F=Cu+v) -, 3v(A+ud) 33— (1)
On differentiating with respect to u, we get

1
I or

_ 2 2
1’1—5—3(1+V u ,2uv,2u) ,,,,, (2)

On differentiating (1) partially with respect to v

r _815 _ 2 2
r2—5—3(2uv,1+u -V ,—Zu) ..... 3)

From equation (2), on differentiating with respect to x again

II"‘“ =6(-u,v,1), similarly ;12 =6(u,v,0)
11:22 =6(u,—v,—l)
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1 1 l’: j kA
A BXE 1
Now N= 1H2 :E 3(1+v2—u2) 6uv 6u
6uv 3(1+u2—v2) —6v
~ 9 2, .2 2,.2 4 4 2.2
or N—E(—2u(l+u +v ),2v(l+u +v ),l—u —v' =2u“y )
2, 2 4)\?
. T 54(u +v +1) " T
L=N'l"11= ,M=N~l’12=0
H
2
AT —54(u2+v2+1) """ ()
and N=N-ry, = 7

Now differential equation of asymptotic line is
Ldi*+2Mdudv+Ndv*=0. .. (6)
Using values of L, M and N from equation (5) into equation (6), we get
_ 2
ﬁ(u2 +v? +l)du2 +0+ i4(u2 +v? +l) jalv2 =0
H H

or du? —dv?=0ordu=+dv=du+dv=0

On integrating (u £ v) = constant which is the required equation. Hence proved.

8.16 Necessary and sufficient condition for the parametric curves to be asymptotic

lines

Proof : The parametric curves are u = constant, and v = constant, then the combined differen-

tial equation of the parametric curves is given by

dudv=0. L. (8.16.1)
And differential equation of asymptotic lines is
Ldi? +2M dudv+Na*=0 L. (8.16.2)

(i) The condition is necessary : When the parametric curves are asymptotic lines, the above
two equations (1) and (2) must be same, so on comparing these we get
L=0,N=0,M=0. .. (8.16.3)
(i) The condition is sufficient : When L =0, N=0 and M # 0, then equation (2) reduces
to
0+2Mdudv+0=0=>dudv=0. .. (8.16.4)

which is equation (1), this shows that the asymptotic lines are parametric curves.
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8.17 If the parametric curves are asymptotic lines, then find differential equa-

tion of line of curvature and show that first and second curvatures are

2FM . —M?
and

2 o*

Proof : If the parametric curves are asymptotic lines, then
L=0,N=0,M=0 L. (8.17.1)
and the differential equation (EM — LF) du? + (EN — GL) du dv + (FN — GM) dv* =0
of lines of curvature reduces to the following form
EMdu*+0+ (0 - GM) dv* =0
= EMdu* - GM dv* =0 (QM=0 L. (8.17.2)
Now the equation of the principal curvatures
H?*«?— (EN+ GL—-2FM)x+ (LN-M?) =0
reduces to the following form H? 2+ 2FMx—-M?*=0 . (8.17.3)

which is a quadric in K, so it gives two roots. i.e., K, K;, say.

—2FM
Hence, sum of roots = (i, + K;) = 7 = J = first curvature
a2
and product of roots = (i, - k) =K = = second curvature.
Hence the result.

8.18 Osculating plane at any point of a curved asymptotic line is the tangent plane

to the surface.

Proof : Let equation of surface be ;= (u,v), and let F=7 (s) be curved asymptotic line

.
lying on this surface. Let 7 (z d_r} be the unit tangent to the asymptotic line at any point P (7) and N be

ds
the unit normal to surface at point P, then

N-f=0. (8.18.1)

Differentiating with respect to s, we get

AV i o Al
ds ds s

A N A

dI'
_r+NKﬁ:O ..... (8.18‘2)
S

A r

dt . ~ o dr . o

(Q - =xn and t= I where k = curvature, 7 = unit principal normal Vectorj
s s
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But by Serret-Frenet formulae. The differential equation of asymptotic line is

A T
aN-df=0 or N4 (8.18.3)
ds ds

then equation (8.18.2) reduces to

K(N.ﬁ)zozwﬁzo (Qk=0) .. (8.18.4)
By equation (8.18.1) and (8.18.4), we have
N-f=0and N-7i=0,
this means N is perpendicular to both 7 and 7 so N is parallel to
(ixa)=b or N=+b .. (8.18.5)

where b is unit vector along binormal.
From this, we conclude that at any point of a curved asymptotic line, the binormal is also normal
to the surface.
Let N=b L (8.18.6)
Now the equation of osculating plane to curve F=r (S) at a point P (s) is given by

I r

(R—r)-ézo ..... (8.18.7)
and equation of tangent plane to the surface at this point is given by

(15—5)-10:0 ..... (8.18.8)

The relation (8.18.6) makes the above planes coincident at the point on the curve on the
surface.

Hence the result.

I I I I
8.19 Torsion of an asymptotic line r =r (s) on the surface r =r (u,v).

We know that the unit vector along binormal b to an asymptotic line is the unit surface

normal N
ie. N=b L (8.19.1)
Differentiating both sides with respect to arc length s, we get

aNn = ab = aN =-1n, [by Serret-Frenet formulae]
ds ds ds

~N'=—th, (8.19.2)

where N/ =2
ds
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Now taking dot product of both sides of equation (8.19.2) by 7, we have

A

N-n=—1n-n

or N -h=-1 (Qa-a=1) L. (8.19.3)
now A=bxi
or A=Nxi (8.19.4)
Now, using value of 7 in equation (8.19.3), we get

1=—N'-Nxi
or rz—[ A']Qf]
or TZ[K] N' f]

AoaT

or rz[N N’ r'], ..... (8.19.6)

which is torsion of an asymptotic line.

I I I I
8.20 Curvature of an asymptotic line r =r (s) on the surface r =r (u,v).

1

f =% is the unit vector along the tangent then we know that

ds
i .~ .
“=f=xa. L (8.20.1)
ds
Now, taking dot product of both sides by 7
{-h=xn-n
or f-n=x (Qn-n=1)
k=0"Nxi  (Qia=bxi=Nxi)
or K:[f’ﬁf =[](7ff']
AT, T
o k=[N (8.20.2)

~ T ~ T . . 4.
where ¢ = 7' and ¢' = r”, is curvature of an asymptotic line.

8.21 Beltrami-Enneper theorem

Statement : At a point on a surface, where the Gaussian curvature is negative and

equal to K, the torsion of the asymptotic lines is +./-K .

. .. I T .
Proof : The torsion T of an asymptotic line 7 = r (s) is

=[N & 5'] ..... (8.21.1)
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or NA(8xr) (8.21.2)
~, dN _ONdu ONdv .

N = =GN+ Ny 8.21.3
oW ds ou ds Ov ds ! g ( )
d ,{’—i @ﬂ a_l"ﬂ ,I;u+,€ 821.4

an ds ovds ovds e (8.214)

N'Xlr”' =(]<71u'+]§72v')><(11:1 u'+11;2v')
rl)u +{(z\71x;2)+(1§/2xﬁl)}u’v#(ﬁfzxﬁz)v’z. ,,,,, (8.21.5)

Using value of ( N'x ’) from equation (8.21.5) in equation (8.21.2), we have

N (N R )u'? { (ler2)+N (Nzxq)}u'v'+1<7~(]<72x7rfz)v'2.
= T=[NN1 lrfl]u'z +{[NN1 lrfz]+[]§71(72 lrfl]}u'v#[lff N, ’{2}},2
EM-FL , EN-GL ,, FN-GM ,
or TSy + g + T (8.21.6)
by using Weingarton equations, where [1\7 Nl lﬂ = # etc.

Now let the asymptotic lines be taken as parametric curves, then

L=0,N=0,M=0. . (8.21.7)
Using L =0, N =0 into equation (8.21.6), we get
o EM—O L0+ 0-GM 2
H H
M ! !
or v=—(Eu?-Gv*) (8.21.8)
First for asymptotic line u = constant,’=0 . (8.21.9)
then from equation (8.21.8), 7= % v (8.21.10)
Now from the first fundamental form, we have
Eu?+2FW VvV +Gv3i=1 L. (8.21.11)
From this for the curve u = constant = u' = 0, we have from equation (8.21.11),
0+0+Gv?=1=Gv?=1,
then from equation (8.21.12), we get
-M
..... (8.21.12)
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Again for the asymptotic line v = constant, we have v' = 0 and from equation (8.21.11),
Eu?*=1. L (8.21.13)
And from (8.21.8),

..... (8.21.14)

The Gaussian curvature

K —=— [Q Here L=0,N=0]
H H
2
= M—2=—K:>%=i\/—l(
H
or T==+J—-K [by equation (8.21.12) and (8.21.14)]

Hence the theorem is proved.
8.21.1 Illustrative examples

Ex.4. Prove that on the surface z = f (x, y) torsion of the asymptotic lines are

()

§ (1+p2+q2) '

Sol. By Example 1, for this surface

z=f(x ).

Let » = (x, ¥, z=f(x, )) be position vector of a point then
ror ror
n=—=(L0,p),r, =—=(0,1,
1= 5 ( P) 2 oy ( Q)

Ry =(0.0,),7, = (0,0,r).75 = (0,0.7)

therefore E=1rf1-1rf1=1+pz,F=1rf1~1rf2=pq,G=;€2~;rf2=1+q2
. FXE (-p,—4q, 1)
N=A"2_3 2 T ) g _EG-F*=1+p*+q¢°
H H
and L=N"Ell= s aM=N"r”12 = > ,N=N"r”22_ t

1+ p2 + qz
Then on using values of L, M and N in the differential equation
Ldu? + 2M du dv + Ndv? = 0,

ofthe asymptotic line, we get rdx? + 2s dx dy + tdy* =0, (Here parameters are x, y)

LN -M? _(”-Sz)

Also K= Gaussian curvature =
H? H*
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or T==

which is the required result.
Ex.5. Show that the curvature of an asymptotic line may be expressed as
r r,,r r, ,f TI,,[ T,
(P F) (P )
H
Sol. We know that for an asymptotic line curvature is given by

AT, T
K= [N r r"] (box product)

1 ,r r,,1 T, 1 ’1;1;’ ’El"r””
- {(rlxrz)‘(r xr)} =T 1{2.1{, l{z.l{” [By Lagrange’s identity]

Hence the result.
Ex.6. Prove that on the surface of revolution x = u cos v, y = u sin v, z = [ (u), the

asymptotic lines are f |, du? +u /i dv? = 0. Also show that the values of their torsions are

A=)

_u(1+f1)

Sol. The position vector » of any point on the given surface is
1 .
r =(ucos v, usinv, f(u))

Differentiating partially with respect to « and v

1 1

r ) r O .
rlzéz(cosv, s1nv,f1(u)), rzza—::(—usmv,ucosv, 0)
o azr r r .
Similarly o =7, (0 0, fi;(u )), R, =(—sinv, cosv, 0)
u
and ;22 =(—ucosu,—usmnv,0)

r T .
Kxry =(—ucosv fi, —usinv f;, u)

r r T : .
E=r’=1+f% F=p-n :(—ucosvs1nv+uc0svs1nv):0
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ror .
Iy 5 » _rlxrzz(—ucosvfl, —usinv f}, u)

G=r2 =u ,N =
H H
where H2=EG - F? =12 (l+f12)
2
Also L=N.¥“=%,M=N.£2=0,N:N.}anulfl

Therefore the equation of asymptotic lines is

Ldu? +2M du dv+ N dv? =0

which on using values of L, M, N reduces to the following form

Wi g2 g2 Zg o fiidu® +uf,dv? =0
H H

which is the required equation.

Again

—M? \/ _”3f1f11
torsion T=1tvV-K =% —[Mj or r=iy

o2 u2(1+f12)

8.21.2 Self-learning exercise-2.

1.

Define :

(i) Asymptotic direction on a surface F=r (u, v).

(ii) asymptotic lines.

Write the differential equation of the asymptotic lines at a point (%, v) on the surface
F=r(u,v).

Write the condition for asymptotic lines to be orthogonal.

For Monge’s form of surface z = f'(x, y) write the equation of asymptotic line.

Write formula for torsion and curvature of an asymptotic line Fer (S) on surface
F=r(u,v).

State Beltrami-Enneper theorem.

8.22 Summary

1. In this unit you have studied about principal radii through a point of surface z =f'(x, y), relation

between three fundamental forms, asymptotic lines and differential equation of asymptotic lines

) r r . - ) .
at a point (1, v) on surface r =r (u,v) in curvilinear coordinates, curvature (k) and torsion ()

.. T T r T
of an asymptotic line » =r (S) on the surface r =r (u,v).

2. Sufficient number of examples have been solved in the unit.
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Fundamental magnitudes E, F, G and L, M, N, H and T along with differential equation which
gives the principal radii, expressions of curvature and torsion will help the students to easily

understand the text of the unit.

8.23

Answers to self-learning exercises

Self-learning exercise-1
p2(rt—s?)—Hp {1+p?) t+(1+¢> r—2pgs} + H*=0.
Il = Adu? + 2B dudv + cdu?>, where A=N? B=N,-N,,C=N;
KI—-JI+1=0
See §8.5.
LDu du + M (Du dv + Dv du) + N Dv dv = 0.
M=0

Self-learning exercise-2

See §8.12 (i) and (i)

LA+ 2Mdudv+ Ndv? =0

First curvature J = 0; i.e. surface is minimal.

rdx? + 2s dx dy + tdy* =0

5. Torsion T= [1\7 N’ ,E'] (box product) and curvature K = [1\7 r 1{"] (box product).
6. See §8.21.
8.24 Exercises
1. Prove that the asymptotic lines of the surface x = v —2u —e™¥, y = ", z = €“"" lie on the

cylinders yz + ay — ¢4 =0, xy + by + e 2 =0, where a, b are arbitrary constant.
Show that the asymptotic lines of helicoid x = u cos 0, y = v sin 0, z = ¢0 consist of the genera-

tors and the curves of intersection with coaxial right cylinders.

: . . . T T
Derive the formula for torsion and curvature of an asymptotic line » =r (S) on surface
r T
r=r(u, v).

. . . . T . r r .
Derive the differential equation of the asymptotic lines at a point (i, v) on the surface r =r (u, v) n

curvilinear coordinates.

oo
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Unit 9 : Geodesics, Differential Equation of a Geodesic,

Single Differential Equation of a Geodesic,
Geodesic on a Surface of Revolution, Geodesic
Curvature and Torsion, Gauss-Bonnet Theorem

Structure of the Unit

9.0
9.1
9.2
9.3
94
9.5
9.6
9.7
9.8

9.9

9.10
9.11
9.12
9.13

9.14

9.15

9.16

9.17

9.18

9.19

Objectives

Introduction

Normal property of a geodesic

Definition

General differential equation of geodesics on a surface r=r (u,v).
Cannonical equations of a geodesic on the surface 7 = 7 (u,v).

Differential equation of a geodesic in Gauss coefficients.

Single differential equation of a geodesic on surface.

On the general surface, a necessary and sufficient condition that the curve v = ¢ (const.) be a
geodesic is EF, + FE| —2EF, = 0.

The curve u = ¢ (const.) is a geodesic if and only if GG, + FG, —2GF, = 0.
9.9.1 Self-learning exercises-1

9.9.2 Illustrative examples

Differential equations of a geodesic on a surface f'(x, y, z) = 0.

Differential equation of geodesic on the surface z = f'(x, y), the Monge’s form.
Geodesic on a surface of revolution.

Clairut’s theorem

Geodesic on surface of revolution cuts the meridian at a constant angle, then the surface is a
right circular cylinder.

A curve on sphere is a geodesic if only if it is a great circle.

Geodesic Curvature and torsion of geodesic

An expression for K ¢ and that it is intrinsic.

The geodesic curvature vector of any curve is orthogonal to the curve.

Formulae for geodesic curvature
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9.20  Geodesic curvature in terms of Gauss coefficients

9.21  Geodesic curvature for parametric curves

9.22  Normal angle

9.23  Geodesic curvature in terms of normal angle

9.24  Expression of the torsion of a geodesic on any surface and that the torsion of an asymptotic line
is equal to the torsion of its geodesic tangent.

9.25  Expressions for the torsion of a geodesic in terms of fundamental magnitudes and also in terms
of principal curvatures.

9.26  Some important definitions

9.27  Gauss-Bonnet theorem
9.27.1 Self learning exercise-2
9.27.2 llustrative examples

9.28  Summary

9.29  Answers to self-learning exercises

9.30 Exercises

9.0 Objectives

This unit provides a general overview of geodesics, differential equation of a geodesic, single

differential equation of a geodesic, geodesic on a surface of revolution, geodesic curvature and torsion,

Gauss-Bonnet theorem. After reading this unit you will be able to learn :

—

about geodesics,

N

about the general differential equation of a geodesic on a surface,

3. about single differential equation of a geodesic when curve on surface is given by a single
relation between the parameters u and v (either v = v/u or u = u/v),

4. about geodesic on a surface of revolution,

5. about geodesic curvature and torsion on a surface,

6. about Gauss-Bonnet theorem, which gives us the relation between torsion t of a curve ¢

and torsion of its geodesic tangent.

9.1

Introduction

We know that in Euclidean space curves of shortest distance between any two points are

straight lines. But curves on a surface F=r (u, v) having shortest length are called geodesics. So roughly
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speaking “a geodesic on a surface may be defined as a curve of shortest distance between two points
on that surface”
But to find the arc of shortest distance between two points on a given surface is a very compli-

cated affair.

9.2 Normal property of a geodesic

The normal to the surface coincides with the principal normal to the curve (geodesic).

Consider a tightly stretched string on the smooth convex side of the surface to lie along the curve
(geodesic) joining two points on the surface F=r (u, v), very close to each other. The forces which
keep this small string in equilibrium are the tensions at its extremities and the reaction normal to the sur-
face. Because the string is very small so these tensions are in the osculating plane of the string and there-
fore for equilibrium the force of reaction must also lie in the same plane, which implies that the normal to

the surface coincides with the principal normal to the curve (geodesic). This property is termed as the

normal property of a geodesic.

9.3 Definition:

Geodesic (or geodesic curve) : Geodesic on a surface is defined as the curve of stationary
length (rather than strictly shortest distance) on a surface between any two points in its plane.
or
A geodesic on a surface is a curve whose osculating plane at each point contains the normal to
the surface at that point.

Hence the normal to the surface coincides with the principal normal to the geodesic.

9.4  General differential equations of geodesics on a surface F=r (u,v)

Let 7 be the position vector of any point P (u, v) on the geodesic drawn on the surface
F=r (u,v).Let /A and N be the principal normals to the geodesic curve at P and the normal to the

given surface at the same point P, respectively. Then by definition of geodesic

A=N (9.4.1)
We know that padr g,
ds
so again differentiating with respect to s,
P=f=xh = F'=xN, .. (9.4.2)

where « is the curvature of geodesic at point P
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Now F=r (u, v).
On differentiating with respect to s

F,_@_@@+Gr dv
ds Ouds Ovds
Again differentiating, we get

o L] L 900,

. {Gr du 8171 dv} , . {8172 du Or, dv} ,
ru" + ——u' [+ RV — = — Y
ouds Ovds ouds Ovds

14

= - ! - ! ! =" - ! = ! !
Fu"+ (7 u +r12v)u + AV +(Fu +r22v)v

—(Fu'+iY)- e (9.4.3)

2

_ " = = =" = 1! = 2
= llxl +l"111/l +r12uv +}"2U +}’iZUV +}"22V

Fr=Fu A E U A 28 uV PV RV (9.4.4)
Using value of " from equation (9.4.2) in (9.4.4), we get
kN =Fu"+7u” +2FuV + iV + iy (9.4.5)

Now taking scalar product of equation (9.4.5) with 7, we get

12

K7 R) =R+ (7R + 207 v (77 + (v

1
or 0 =Eu" +%Elu'2 +Euv'+ V' +(F2 —EGIJV’Z ..... (9.4.6)

w7 N=0, =L -2 (7)=27.- Lo (7.7

ou oOu ou
8E 0 - 817 .
2 oy 81/( ) 2 ov =2(7 -7 ete.

Now taking scalar product of equation (9.4.5) with 7, , we get

A

(B N) = () (B Y+ 25 B v (B BV (R v

0=Fu" +(Fl —%EzJu’z +Gu'V'+ GV +%G2v'2 ,,,,, (9.4.7)

('.’FZ-N:O,FZ-F“ F - ;E G, = oG (zg-ﬁz)etc.j

Hence equation (9.4.6) and (9.4.7) are the general differential equation of geodesics on a sur-

face 7 =11f(u, V).
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9.5 Canonical equations of a geodesic on the surface r=r (u,v)
The general differential equations of geodesics on surface F=r (u, v) are
" " l 12 ot l 12
Eu"+Fv +EElu +Eu'v'+ Fz_EGl vie=0o (9.5.1)
" " l 12 ! l 12
and Fu"+Gv'+ FI_EEZ u”+Gu'v +EGZV =0 (9.5.2)
where Elza—E,EZ:G—E, Glzﬁ,@:% etc.
ou ov ou ov
d u' ou ' 0*u . ov o o*v et
an =, U =—5 ,V=—,V =_—5 €lc
os Os’ os 0s’
These equation (9.5.1) and (9.5.2) may be written in a more compact form if we denote
T:%(Eu’2 +2Fu’v’+Gv’2) ,,,,, (9.5.3)
where u’:a—u and v’:@.
os os
Differentiating partially equation (9.5.3) with respect to 3’ and ' respectively, we get
a—T,zEu’+FV’ ..... (9.5.4)
u
oT
—=F+&" 9.5.5
and P ( )
Now differentiating (9.5.3) partially with respect to « and v, we get
aT l ! ' !
525(E1u2+21:1uv +Gv?) (9.5.6)
aT _ 1 2 (] 12
and E—E(Ezu +2F, uV'+ G,y ) ,,,,, (9.5.7)

Differentiating equation (9.5.4) with respect to s, we get

d|(oT d , , , (OE du OEdv) , s (OF du OF dv) ,
—| — =—(Eu +Fv)=Eu H——t—— U +FV'+| ——+—— |V
ds\ou' ) ds ouds Ovds ouds Ovds

=Eu"+(Eu' + EV )u' + BV +(Fu' + F,V' )V

i 8_T " 4 12 o ! 12
or ds\ ou' :(Eu +EV B’ + Equ'vi+ Fu'v + Fu ) ..... (9.5.8)
Similarly differentiating equation (9.5.5) with respect to s, we get
i 8_T " 4 2 ! [ 2
ds\ o' :(Fu +GV + Fu” + Fuvi+ Guv'+ Gyy ) ..... (9.5.9)
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Now subtracting equation (9.5.6) from equation (9.5.8), we get

d (8TJ—8—T = Eu”+Fv"+lE1u'2 +E2u'v'+(F2 —lGljv'2 =0
2 2

ds\ou') ou
- i(a_Tj_a_Tzo. ..... (9.5.10)
ds\ou') ou
Similarly subtracting equation (9.5.7) from equation (9.5.9), we get
i(@_Tj 9T Fu"+Gv'+ (Fl —lEzju'2 +Gu"' +1G2v'2 =0
ds\ov') ov 2 2
- i(a_Tj_a_Tzo, ..... 9.5.11)
ds\ov' ) ov

Hence, the equations (9.5.10) and (9.5.11) are called the canonical equations of a geodesic.

9.6

Differential equations of a geodesic in Gauss coefficients

It will be another simple form of the general differential equations of a geodesic given below

Eu”+Fv”+%E1 u” +E, u’v’+(F2 —%GIJ\/Z =0 . (9.6.1)

and  Fu"+GV+ (Fl —%Ezju’z +Gu"' +%G2 vi=oo (9.6.2)
Multiplying equation (9.6.1) by G and equation (9.6.2) by F' and subtracting, we get

(EG-F*)u" +%(GE1 —2FF, +FE, )u"”

+(GE, - FG, )u'v' +%(2GF2 -GG, —FG,)V* =0 - (9.6.3)

Dividing whole equation by (E G — F?) (= H2), we get

GE, -2FF, + FF. GE, - FG, 2GF, -GG, - FG
M"‘f‘l( 1 21 2)ur2+( 2 - I)M’V’-i-l( 2 21 2)v¢2 -0
H H 2 H
..... (9.6.4)
Using the Gauss coefficients into the equation (9.6.4), we get
and '+l +2muv +nv*=0, L. (9.6.5)
where = - (GE, —2FF, + FF,),
1
m= o (GE, - FG,),
n=-L_(2GF,~GG, - FG,).

2H?
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Similarly multiplying equation (9.6.1) by F and (9.6.2) by E and subtracting, we get
u' -+ 2puV +wr =0, L (9.6.6)

where ), 1, v are Gauss coefficients given by

1

e

A

(2EF, ~EF, - FE,), p=

(EG1 —FEz),

2

v :#(EGZ ~2FE, +FG,),

Hence equation (9.6.5) and (9.6.6) are differential equation of a geodesic in Gauss coefficients.

9.7 Single differential equation of geodesics on surface

When a curve on the surface r =r (u, v) may be determined by a single relation

between the parameters # and v either by v=v (u) or by u = u (v).

. 1 1
Proof : Let the equation of surface be » =r (u, v), u, v are parameters. A curve on a surface

may be determined by a single relation between the parameters u and v, which paves us our way to
develope a single relation between the parameters from pair of following differential equation of a geo-

desic in Gauss coefficients given by

u'+lu” +2muV +nu*>=0 L. (9.7.1)
and Vi - 2puV +wr=0 L (9.7.2)
First taking a single relation v=v@w. L (9.7.3)

then we shall reduce pair of equation (9.7.1) and (9.7.2) in to single differentiating equation.

On a geodesics, on differentiating equation (9.7.3) with respect to s

&y _y v &y (9.7.4)
ds du ds du
Again differentiating, we get
V"_I/l"ﬂ-i‘ r2d_2v (975)
in 5 .
Putting values from equation (9.7.4) and (9.7.5) in to equation (9.7.2), we get
P 2
u”ﬂ+u'2 d—‘; +A u” +2u(u’ﬂju’+v(u’ﬂj =0
du du du du
2 2
or u’zd—‘;+u”ﬂ+ku’2+2uu’2ﬂ+vu’2 (QJ =0. . (9.7.6)
du du du du

Now from equation (9.7.1),

2 2
u”z(—lu’ —2mu'v' —nv' ), Vi=u'—
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Using it in equation (9.7.6), we get

2 2 3 2
u’zﬂ—lu’zﬂ—Zmu’z(ﬂJ —nu'z(ﬂJ +ku’2+2uu’2?+vu'2(ﬂJ =0

du? du du du » du
..... (9.7.7)
Cancelling ' throughout, we get
dZV dv } dV 2 dv
=n|— | +(2m—-v)| — | +(/-2n)—-A '
du’ (du} ( )(duJ (/-2n) du (@asu'#0) .. (9.7.8)

which is single differential equation of geodesic.

Equation (9.7.8) is a second order ordinary non-linear differential equation, so it has a unique

dv
solution of v [v = v (u)] which takes a given value v, when u= u, also —— takes a value

du
) (v
du u=uy, - dU 0 at “= uo

Therefore through each point of a surface there passes a unique geodesic in a given direction.
If we start by taking the relation between parameters u and v, of the from u = u (v), then we get

the single differential of geodesic as

d*u du Y du\ du
=\l — 2u=I)| — -2m)—-n. 9.7.9
v’ (dv} +( H )(d\/} +(V )dv " ( )

On comparing equation (9.7.9) with equation (9.7.8), we see that equation (9.7.9) can be ob-

tained from (9.7.8) on interchanging u and v, and changing /, m, n by v, ., A and vice-versa.
Remark :

1. Note that unlike lines of curvature and asymptotic lines, geodesics are not determined uniquely
by the nature of surface.

2. Through any point there passes an infinite number of geodesic so each geodesic being de-
cided by its direction at the point.

3. A geodesic is uniquely determined by an initial point and tangent at that point of the
surface.

4. The differential equation of geodesic [equation (9.4.6) and (9.4.7)] are in terms of E, £, G
and £, E,, F|, F,, G, G,, (derivatives of E, F; G). Therefore if a surface is deformed
without stretching such that the length ds of each arc element does not change, then the geo-

desics remain geodesics on the deformed surface.
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9.8

On the general surface, a necessary and sufficient condition that the curve
v = ¢ (const.) be a geodesic is EF, + FE; — 2EF; = 0, when v = ¢, for all values

of u.

On the curve v = ¢ (constant), we may take u as a parameter, so that v=c, u = ¢ (say)
v=0,u=1. L. (9.8.1)
On differentiating with respect to ¢

) ) . du
v=0,u=1 u_E ..... (9.8.2)

Hence T:%(Eaz +2FL2\>+G\>2). ..... (9.8.3)

Now differentiating (9.8.3) partially with respect to u and u , we get

or —1[8—Ea2+28—Fuv'+a—Gv'2}

ou 2| ou ou ou
E
:%(E1.1+2F1x]x()+Gle) (‘.’d:l,\'}:O,EI:Z—etC.J
u
oT
— =—F
or " L (9.8.4)
or 1 . )
and — =—(2Eu+2F 1v)=E (va=1v=0) .. (9.8.5)
ou 2
Now differentiating equation (9.8.3) partially with respect to v and v, we get
or :l 8_Ea2+28_FL.”.}+6_F‘.)2 :lEz ..... (9.8.6)
ov 2\ ov ov ov 2

[by equation (9.8.2) and E, = g—E]
v

ol 1
— =—(2Fu+2Gv\=F L 9.8.7
o~ (220Y) 057
d(orY (or) d(E) 1. dE 1 E
_AfA () = F =F-—L
Now  Ulsay) dt(aaj (auJ d 2" du 20 2
El
N v="2 (9.8.8)
d(oT\ oTf dF 1 1
and V (say) :E(EJ_E:E_EQ :(FI _EEZJ ..... (9.8.9)
(E:d_F:d_FJ
dt du
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Now the necessary and sufficient condition for the curve u = u (¢) , v = v (¢) (t-parameter) to

be geodesic is

v _ 9T _o.  forallvalesofz. ... (9.8.10)
oi  ov

On using values from equation (9.8.5), (9.8.7), (9.8.8) and (9.8.9), we get

T T
y oL _ylf _ E—lEzE—lE,on
ou ov 2 2
= EF,+FE -2FEF,=0. L. (9.8.11)
Hence the result.

Note : If the parametric curves are orthogonal then /= 0 and obviously /', = 0, then from
above equation (9.8.11) we get, EE, +0-0=0
= E, =0, whenv = c, for all values of

= E is independent of v, so E is function of u only i.e., E = E (u).

9.9  The curve u = ¢ (constant) is a geodesic if and only if GG, + FG, - 2GF, = 0.

On the curve u = ¢, we may take v as a parameter, so

u=c,u=t t-parameter, then

u=0,v=1.
Now proceeding exactly on the same lines as in 9.8, we get

GG, +FG,-2GFy=0. . (9.9.1)
Note : If the parametric curves are orthogonal then /= 0 and F’, = 0, then from above equa-

tion (9.9.1), we get

GG,=0 = G,;=0 :%:O = d—G:O = G is independent of u.

ou dc
Hence G is function of vonly i.e, G=G ().

9.9.1 Self-learning exercise-1

What is normal property of geodesic ?

Define geodesic.

Write the general differential equations of geodesics on a surface 7 = r (u, v).

Write the canonical equations of a geodesic on the surface r = 7 (u, v).

wohk w D=

Like lines of curvature and asymptotic lines, can geodesic be determined uniquely by the na-
ture of surface ?
6. On the general surface 7 = 7 (u, v) what is the necessary and sufficient condition that the

curve v = ¢ (constant) be a geodesic ?
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9.9.2 Illustrative Examples

Ex.1. Prove that the curves u + v = constant are geodesics on a surface with metric

(1 + u?) du? = 2uv and v+ (1 +12) dv2.

Sol. The parametric equation of the given curve u + v = constant, can be taken as u = ¢,

V=C—L1 (1)
So on differentiating these with respect to ¢
i=1, v=-1 2)
Here E=1+u% F=—-w, G=(1+v» .. (3)
Now we know that
T= l(Ea2 2FWHGY) (4)
2
Using values of E, F'and G from equation (3), we get
r=l(e) i i1 (1e?) ] )
2
On differentiating (5) with respect to u and v, we get
a—Tzule—va\')zt-l—(c—t)~(—1)=c ...... (6)
ou
a—T——uuv+V\>2—t+c—t—c 7
o, duvtvyistte-t=co e (7)
Now differentiating (5) with respect to # and v, we get
a—Tz(l+u2)u—uV\'fz(l+12)—t(c—t)(—l)=1+ct ______ (8)
oul
GT_ . 2\ 2 _ 2
g——uvu+(l+v )v——t(c—t)+{l+(c—t) }(—1)—(ct—1—c ) ______ 9)
Now Uzi(a—TJ—a—Tzi(l+ct)—c=c—c=O ...... (10)
dt\ou) ou dt
d(oT\ oT d
=—| = |-—="Aet-1-¢*)=¢c=0 11
and dt(av'j oy dt( ) (b
oT oT 5 :
then V?—UE=O(I—01)—O(ct—1—c)zO [by equation (8), (9), (10) and (11)]
U
Hence the relation Va—T—U a—T=0,
Ou ov

for all values of 7.

Therefore the given curve u + v = constant is a geodesic.
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3
Y . :
Ex.2. Prove that the curves of the family — = constant, are geodesics on a surface with
u
metric v* du® —2 uv dv du + 2 u* dv* ; (u> 0, v>0).
Sol. The parametric equation of the given curve can be conveniently chosen to be
u=ct, v=ct?, c¢=(constanty .. (1)

The differentiating equation (1) with respect to ¢

uw=3ct’, v=2¢ L. (2)

then E=v}, F=—w, G=2.4 .. 3)
1, ... e

Therefore, T= E(Eu2 +2Fuv+ sz) ..... 4)

Using values of E, F'and G from (3) in (4), we get

1
T =—(vu® = 2uviy + 2u™V’
al ) (5)
On differentiating equation (5) partially with respect to u
aT _ . e .2 2 2 3 2
F +2uv” = —(ct )(301‘ )(201‘) + 2(ct )(201‘)
=60t +8c’ =201 [by equation (1) and (2)]
Now partially differentiating equation (5) with respect to v, we get
aa—T = vii® —uiiy =3¢’ [by (1), (2)]
v

Now differentiating equation (5) partially with respect to # and v, we get

a—?zv%—quﬁf
ou
T
— =—uvii+2uv =ct’
and po
d(oT\ oI d
U=—|— |-— =—(ct°) =2 =4
Now dt(@d} y dt(c ) c c
d(oT\ oI d
V=— —|-— ==(")-3c%°" =4’
and dt(@\'}j o~ ) =4
aT aT 3.6 3.6 3.5 3.7
then (Va—UEJ 2(40[ )(Ct )—(4Cl )(Cl ) =405 — 40 =0
oT oT
Hence (V—._U—.j =0, for all values of ¢.
ou ov

3
v
This shows that the given family — =constant (c) is a geodesic for all values of c.
u
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9.10 Differential equation of a geodesics on the surface F (x, , 2) = 0.

We have discussed about the differential equation of a geodesic on a surface whose equation

was given in parametric form. Now we shall find equation of geodesic when equation of surface is given

in the implicit form F (x, y, z) = 0.
Equation of surface is F(x ) 2)=0.
We know that if 7 be the position vector of a point

dr
ds

Again differentiating with respect to s

N)

then 7=

P =t'=xn'
or 7 =—xh=xN, (- forgeodesic i=N)
where K« is the curvature.
But r=(xf+yj+zl€) = 7" :(x”f+y"}'+z"/€),
where x” =j etc.
ds*

and N be normal at a point on the surface F (x, y, z) = 0, so

i— +hk— +hk——
A 6x 8y 0z ox 8y 0z

N = =
J@F 1ox) +(0F 1oy) +(oF [az)  FI+F +F

where F, =(0F / ox) ete.

2OF | A8F ~OF [aF ~OF AGFJ

k|1 S

~OF ~OF ~OF
ox ay oz

Therefore r”:K]\Afﬁ[ i+ y}'+ kj =
s

ds*> ds° " ds® F!+F!+F;
Comparing coefficients of 7, / and k , we get
d’x  «(0F /ox) (d*x/ds?) K
ds® /FX2+17}?+1722 = (oF / oy) /EC2+17}?+1722
(a*yrds*) <
Similarly (8F/6y) /sz +Fy2 PP
(dzz/dsz) K

(oFjay) — [F? T+ F?
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Hence from equation (9.10.6) to (9.10.8), we get

(d°x/ds’) _(d’y/ds’) (d’z/as®) (9.10.9)
F, F, F,

If the integral of one of these equations is found, it will contain two arbitrary constants and with

the equation to the surface F' (x, y, z) = 0, will represent the geodesics.

9.11 Differential equation of geodesics on the surface 7 = f(x, y), the Monge’s form.

Taking x, y as parameters, let 7 be the position vector of any point on the surface z = f (x, y),

then
=y fey=2. L. (9.11.1)
On differentiating with respect to x and y partially. we get
or L _Or _ 0z 0z
== 1 7. 0 1 =—, = —
- 82" .0 . 0r
Ri=ga=(00r), Ta=goo=(005),  Rm=2m=(000). . 0112

Hence E=7 -7 =1+p2, F=7-F, =pq, G=F,-1, = 1 + ¢*
H=EG-F=(1+p) (1+ @A) p*F#=(1+p*+4*>) . (9.11.3)

Further, the Gauss coeflicients are obtained as

pr ps pt
_qr qs qt
and H27 M:?’U:?’ ..... (9.11.4)
where lzéH2 (GE, -2FE, + FE,) etc.
Hence the single differential equation
2
4 (DY o) D)4 (12 20) 2 2
du du du du
with u=x, and v =y becomes
d’y dy &y dy
H>—=pt +(2 t +(pr—2qs)—-
dx’ p(de (ps q)(dx (pr qS)dx v
d’y ( dy Y . b
(1+p2+q2)?=(pg—q){t(a P (9.11.5)

which is differential equation of geodesic for surface z = f'(x, y).

211



9.12 Geodesic on a surface of revolution

Let the surface of revolution be

x=ucosO,y=usn®,z=fw .. (9.12.1)
Let 7 be position vector of a point on this surface
then 7 =(@mcos®,usin®, f(w). L. (9.12.2)

Differentiating with respect u and 0 partially, we get

jzg—r:(cose,sine,f'), 7 :%:(—usine,ucose,())

u r

O N - OF .
and ’”11:7=(0,0,f ), 1’12=m=(—sm9,cos9,0)’
o°F
7, =——==(-ucos0,—usin 0,0
n =30 ( ) (9.12.3)
then E=7F=(1+f"), F=f/=0, G=FF=u’
FxF=u(—f"cos0,—f'sin6,1), Z=EG-F*=u>(1+f% ... (9.12.4)
1 EE
Also kzsz(zEE—EE2+FE1)=—2H22 (-+F=0)

but E, = (0E /36) =0

1 1 1
AL=0 and M=F(EG1 —FE2)=;, v ZW(EGZ —2FF,-FG,) =0. ....(9.12.5)

For the present form of geodesic, we use the equation of geodesics given below

VA 2uuV +wW' =0,

a0 5, 2dudd o here v =2 o (9.12.6)
— ———+0=0, ere V. =—5etc. ... A2,
ds’ u ds ds W ds’
o d*0 du do

Multiplying by 12 , we get u’ e +2u s =0,

which can be expressed as da (uz a8 j -0 (9.12.7)
ds ds
) ) ,do
On integrating, we get u I =h . (sayy L. (9.12.8)

which is called the first integral of the equation of geodesic, where /4 is constant of integration.

It is independent of form of f'(u).
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Now we shall find the complete integral of equation (9.12.8), for this we proceed as follows :

The metric of surface 7 =7 (u,v) is

ds? = Edu* + 2Fdu dv + Gav*. .. (9.12.9)
In the present case, u = u, v =0, then above equation reduces to,

ds?=FEdv*+2Fdud®d+ Gdo*t. .. (9.12.10)
Using values of E, F and G from equation (9.12.4), we get

ds? =1+ du* +u?ae*> L. (9.12.11)
Now equation (9.12.8) may be expressed as

utdo = h,ds

or utd & = hlds’
or A d 02 =i {(1+ 7)) du +1°d67 |

u4 deZ_hIZuZ deZ Zhl2 (1+f’2)du2
12 (u2_h12)d62 :h12 (1+f’2)du2

oo u(u’-n) d0 =xh(1+ /7)) du

1/2
1+ 1"
- do =i£[ ; fzj dw L (9.12.12)
ulu —h
On integrating, we get
moot(1+r2Y"
0 =i7f; S| dua L (9.12.13)
1

where ¢ is again another arbitrary constant of integration.

As the differential equation of geodesic is of second order and its solution (9.12.13) involves
two arbitrary constants /, and c,.

Hence, it is the complete integral of the differential equation of geodesic on the surface of revo-
lution.

Note : If the arbitrary constant /2, = 0 in equation (9.12.13),then0 =+ 0+ ¢, = 0=,
(constant), which in this case is geodesics and are the meridians.

Hence every meridian is a geodesic on the surface of revolution.

9.13 Clairut’s theorem

If the geodesic on the surface of revolution intersects the meridian (6 = constant) at any point P

at an angle , then u sin y is constant, where u is the distance of point P from the axis.
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geodesic =7

Fig.9.1

Geometrical derivation of the result :

The projection of arc ds of the geodesic on the circular section (See Fig. 9.1) through point P is

dscos(90-y)=PQ L. (9.13.1)
This arc PQ subtend an angle d0 at the centre O of the circular section of radius #, but by
formula,
arc
angle= —
radius
d0="C  sepo=ua0 . (9.13.2)
u

Using (9.13.2) into (9.13.1), we get

dssmy=ud0

siny = uﬁ 9.13.3
= v 7 (9.13.3)
But L h, (constant)

ds
do

= U(UXJ:]’II
= usiny = h =constant, (9.13.4)

this is called Clairut’s theorem.

It may be stated explicitly as follows :
At every point of a geodesic on a surface of revolution, the radius () of the circle of latitude

multiplied by the sine of the angle between the geodesic and the meridian is constant.
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Remark : From above equation (9.13.4), we draw one important conclusion that /4, is the mini-
mum distance from the axis of a point on the geodesic, and is attained at the point where the geodesic

cuts a meridian at right angles.

9.14 A geodesic on a surface of revolution cuts the meridian at a constant angle, then

the surface is a right circular cylinder.

The equation of the surface of revolution is given by
x=ucos®, y=wusin®, z=f(w. .. (9.14.1)
Then by Clairut’s theorem, if a geodesic on a surface of revolution cuts the medium through any
point P on it at angle , then we have

usiny = h,(constant), (9.14.2)

where u =+/x” +y? | is the distance of the point P from the axis.

But, it is given that a geodesic cuts all the meridians at constant angle, so = constant and

constant
h1 = = (constant) = a (say)
siny  (constant)

u=

= u-=a
= x2+yr=a (9.12.4)

which is equation of a right circular cylinder, whose axis is z-axis and radius is a.

9.15 A curve on sphere is a geodesic if and only if it is a great circle.

(i) The condition is necessary : Let C be a geodesic curve on a sphere. Let 72 be the normal
to curve C at a point P and let NV be the normal to the surface of the sphere at P. Then by the normal
property of the geodesic

AN (9.15.1)

At point of the sphere, the normals pass through the centre of sphere, also the principal normal
at every point of C will pass through the centre of sphere, which is a fixed point for the sphere.
Let 7 be the position vector of point P on the geodesic and let 4 be the position vector of the

centre of the sphere.

Then F—a=n. L. (9.15.2)
where A is a scalar parameter which is function of arc lengths.

Now differentiating equation (9.15.2) with respect to s, we have

dr dn .d\
— =A—+n—
ds ds ds
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. A~ AdA ,
= (= x(Tb—Kf )‘H’lE [by Serret-Frenet’s formulae]
~ ~ dA
or 7 =(M)b—7u<t+ng ..... (9.15.3)

Equating the coefficients of f, on both sides, we get
Mm=0=>1t=0as A#0 = torsion=0. .. (9.15.4)
Hence the curve C is a plane curve. So the curve C (geodesic) on the sphere is a plane curve
whose normals at each point of it pass through the centre of the sphere. Hence C is a section of the
sphere by plane passing through its center. That is, C is a great circle.
(ii) The condition is sufficient : If C is a great circle on the sphere, then at each point of C
the principal normal to C coincides with the surface normal to the sphere. Therefore by normal property

curve C is a geodesic.

9.16 Geodesic curvature and torsion of a geodesic

Geodesic (tangential) curvature : Let S be any surface 7 =7 (u, v) and C be a curve on this

surface. Let 7 be position vector of a point P on the curve C.

A
N
surface

normal p \
A
n

Principal
normal to the
curve C at P.




Then the curvature vector of a curve C on surface at a point P, with the tangent direction ; is

a ., . .
—=r=xn=< . (9.16.1)
ds

and it lies in the plane (see a-plane in Fig. 9.2), through P perpendicular to 7, this plane also contains
the surface normal N .
Then according to the Meusnier’s theorem, the projection of the curvature vector ¥ on this
surface normal N is, the curvature vector of the normal section in direction 7 . It is represented by K,.
Our main aim is to study the projection of k on the tangent plane, which is called the vector of tangential
curvature. It has been denoted by symbol i, . So we have the relation
K=K,+,. . (9.16.2)
The equation (9.16.2) implies that the curvature vector is the sum of the normal curvature and

tangential curvature vectors.

The tangential curvature vector (Tc < ) is generally called as geodesic curvature vector.

9.17 An expression for K, and that it is intrinsic

We know that the curvature vector 7 at any point P on a curve C can be expressed as a linear

o) [
ou ov

as given below P =, N+M AuE, (9.17.1)

combination of vectors

I

where A and p are scalars.

Taking dot product by A7, we get

= N =k, +A-0+p-0 [...]Q.]Q:L,‘fi.]\?:():;z,]\}]
= K, =N (9.17.2)
So it is deduced that x, =A 7 +ps, (9.17.3)

Now taking dot product of equation (9.17.1) by 7, we get
PR =, (N )+ (5 F) + (A7)

=04A 7 +p(7 7)

or (F"-7) =NE+nF [“E=%, F=F-/] .. (9.17.4)
but 7F :i(a_TJ_a_T:U,
ds\ou') ou
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then from equation (9.17.4),
U=\AE+pF. L. (9.17.5)

Now taking dot product of equation (9.17.1) by 7, , we get

T =, (NB )+ 1 (F R )+ u( - 7)

or .7 =0+AF+uG [-G=F-F]
afery ot
and rerds\ov') ov
U=AF+pG. L. (9.17.6)

Solving equations (9.17.5) and (9.17.6), we get

1

1
x:F(GU—FV), uzﬁ(EV—FU), ..... (9.17.7)

Equation (9.17.7) shows that values of A and p are intrinsic.
Hence the geodesic curvature «, is intrinsic.
Now in case of geodesic 7" is parallel to N , therefore geodesic curvature vector () , ) is zero

for geodesic.

9.18 The geodesic curvature vector of any curve is orthogonal to the curve

— d ~ . . . .
Proof: --7' = d—r =1, again differentiating
s

P=t'=xai L. (9.18.1)
and 7" can be expressed as a linear combination of the vectors A7, 7 and 7, so we can write
=k N+AF+us,. (9.18.2)
Now, form (9.18.1) and (9.18.2), we have

K A=k N+ F+p7 (9.18.3)

Taking to product by 7 K A-f=x N-i+ (M7 +p7)-i

0=0+(AF +uE)-7 (-d=0,N-7=0)
= 0=I_ig-f
= K, is orthogonal to 7. ( K, =AF] +w72)

Hence geodesic curvature vector Kg is orthogonal to the curve.

Hence the result.
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9.19 Formulae for geodesic curvature

If parameter s (arc length), then show that geodesic curvature x o = [N F' F":| , and if

we replace parameter s by ¢, then show that

Proof : In the article 9.18, we have proved that the geodesic curvature vector K, of a curve is
orthogonal to the curve. Also we know that vector K, lies in the tangent plane (See Fig. 9.2), so it is
perpendicular to the surface normal vector A also. Thus K, is orthogonal to both the unit vectors 7' (: ¢ )

and N . Hence it is parallel to the unit vector N x7'. Hence

R, =k, (Nx7), where [f|=x,. .. (9.19.1)
Now 7=k N+ K,
=1, N, (N ) ..... (9.19.2)

Now taking scalar product by (]\Af XF' ), we get

A

or [N 7 f”] —0+ K, -1 {-.-(Nxf')-z\?:oand(Nxf')-(z\?xf')=1}
K =[N 7 f"] ..... (9.19.3)

which is the required result.

Now, if we replace the parameter s by z,

L, _dr _(drldt)
V =—= =
then ds  (ds/dr)

L. | .

..... (9.19.4)

Again differentiating with respect to ‘s’, we get

d(7) d(rF)dt (sF-F5) sF-0 F
G pr)_d\r)ar_ — - JQ &0] . 9.19.5)
' ds[jj dt[jj ds [ § j . | (

Using equation (9.19.4) and (9.19.5) in (9.19.3), we get

S I N
Kg{zv; j—z};g[]v”] ..... (9.19.6)
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But we know that N=—-—=

o el R T
or Kq =HLS3{(FI 17) (172 F)—("l F)(FZ 17)} (by Lagrange’s Identity) ... (9.19.7)
Now, if we take T = %(Eu2 +2Fuv+ G\'/z) (where u = % etc.) .. (9.19.8)

then P A AT .Y

Squaring, we get 72 =(Fu+7 ),

then 7 = (R r ) (7 i+ 7 9)
= (7R )i’ +(7-5)uv+(7 7 )i v+(7 7 )b
= (B + Fivv+ Fi v+ G

= = (Ed* +2Fi v+ GV

= ;2 =2T

or TZ%I;Z

Differentiating with respect to g

or 1..o0r . 0O -
— =—2r-—=r‘—_(r1 u+r, v)
ou 2 ot o
=7 (r1+0)=(17 ’”1)

or - .

or 5 Z(l"'l"l)

Similart T =(7-%)

Y v 2

Now differentiating equation (9.19.10) with respect to u, we get
T .o .
8_ =12,7.6_r=,7.i(,71 u+r ",)
ou 2 ou ou
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..... (9.19.9)

-2

[by equation (9.19.8)]

..... (9.19.10)

[by equation (9.19.9)]

..... (9.19.11)

..... (9.19.12)

[by equation (9.19.9)]

[just as equation (9.19.9)]



or -d

or - =F~E(ﬁ) ..... (9.19.13)
Similarl, o _;.i(;) 9.19.14
Y, Py dt 2) ( A5, )

Now we know that U (¢) = i(@Tj _ oT

dt\ o) ou
di=_\ - d,.
:E( ”1)— E(’i)
woodi s d(R) sl
U@ =r-p+r —+—v.——L=¢.7 . 9.19.15
or () =r-n+r 7 r i r-n ( )
Similarly, vity=r-%, L (9.19.16)

Now, using equation (9.19.11), (9.19.12) and (9.19.15), (9.19.16) in equation (9.19.7), we get

1 [oT oT
K, =—<s—V(¢)-——U()y .. 9.19.17
g HS‘{@LZ (1) ov' ()} ( )
If parameter ¢ = s, so that § =1 then we get
1 |oT oT
K = Vis)-—U(s)\ ... 9.19.18
g H{@u’ (5) ov' (S)} ( :

Hence, equation (9.19.17) and (9.19.18) are formulae for K-
Another form : We know that u” U (s) + v’V (s) =0

v!

U (s) =—;V(s) ..... (9.19.19)

Putting this value in (9.19.18), we get

u
:V(S){ ,a_T+ ;+6_T}=V(S) [ ;a_T ,a_T:2T21:|
H-u' | ou oV’ Hu' ou' o'
V(s)
or K, =——> 9.19.20
¢~ Iy ( )
which is value of Kg in terms of V' (s).
Similarly in terms of U (s), Kg will be
K, v (9.19.21)
V74%
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9.20 Geodesic curvature in terms of Gauss coefficients.

1 1 1
We know that rr=nu'+r,y L (9.20.1)
Again differentiating with respect to ‘s’, we get
r, T r r r r
r"=n lu'z +21,u'V' + rzzv'2 +ru"+nVv L (9.20.2)
r, r r, T r r r r r
then 7'x7 =(ru'+ry')x (’”11 u'? + 28, UV + 1y VU + rzv”)

I T\ ;3 r .r r r,y ,, T r r
:[(rlxr“)u +(2r1><2r12+r2><r11)u v+(r1xr22+2r2><r12)

uv'? + (1{2 X 1{22 )v'3 + (lgl X ;2 ) (u'v” - u"v')] ..... (9.20.3)

X1 )u +{1§7~(21E1x£2)+1§7-(1{2x;€11)}u'2v'

Iy

+{N-(1rf1 x;rfzz)+]§7~(2lrfz x;rflz)}u'v'z +I§7~(1rfz x;rfzz)v'3 + N(zgl x;gz)(u’v" u"v')

= Hu" +(21,LH—Z)u’zv’+{vH+2(—mH)}u’v'2 +(—nH )V + H(uV" —v'u")

or k, :Hu'(v”+7\,u'2 +2uu’v’+Uv’z)—Hv’(u”Hu’2 +2mu'v'+nv'2) ...... (9.20.4)

which is the formula for geodesic curvature in terms of Gauss coefficients A, u, v, /, m and n.

A

Since  N-(nxn) =N-HN=H

N 1
R G N e [UIRALE GR D ICR1]

H
1 1 1 1
=—|| F—=E, |E-—EF |=—[2EF,—EE, - FE,|=\H
H 2 2 2H

Similarly

N- (’ix”lz) WH, N - (’ix’r’zz) vH

N- (II’:ZXI"“) —IH,N - (rzx;rﬂu):—mH and

N-(xtp)=—nH. (9.20.5)
9.21 Geodesic curvature for parametric curves.
(i) For the parametric curve v = ¢ (constant) i.e., u = curve, we have
V=0, Vv'=0 L. (9.21.1)

But k, = Hu'(v" + "+ 2V + vV’ ) - Hv'(u" + '+ 2mu'v' + nv'z)
(kg)u :(kg)v:c zHu’(O+Mt’2 +0+0)—H><0(u"+lu’2 +0+0)
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(k). = (Hu’3k) ........ (9.21.2)

2
Now ds* = Edu® :L:(d_“J B (9.21.3)
E \ds E JE
Then equation (9.21.2) reduces to
-3/2
(kg)u :(H;LE ) ...... (9.21.4)

(#i) For the parametric curve u = (constant) ¢ (say) i.e., v=curve, thenu’ =0, u”” =0 and

proceeding as above we get

(kg )v = (kg )u=c = (—nHv’3).

= (k) =-nHG™? [Qv=¢?] (9.21.5)
Remark : If the parametric curves are orthogonal, we have
F=0, this gives H?=EG, k:__Ez and n:__Gl
2G 2E

E, 1 0

Hence (ke ), =570 __@5(\@) ........ 9.21.6)

-G 1 0
and k) =——L =— ~(J&). . (9.21.7)
(ko). =565 = Trg aa ¥©)
Ex.3. Find the geodesic curvature of the curve u = constant, on the surface
. 1 5
x=ucosO, y=usmn, z:Eau .
Sol. Let ;- be position vector of any point on the surface then
11; = (u cos 0, u sin 9,%au2j
Differentiating with respect to « and 0
or t . or .
— =7 =(co0s0,sin0,au),—=r, =(—usin0,ucos 6,0
2= )=l )
then  E=rn=(1+a%’), F=r-n=0 . (1)
Gob b then oG =20 L )
ou
: —Hn G
Since (kg )u=consant B G3/2 ’ but "= "3k

_ G, _ 2u
(kg)lFC 2G\/E 2u2\/1+a2u2

u
= ﬁ, which is the required result.
+a‘u
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9.22 Normal angle

Definition : The angle between the principal normal ;; and the surface normal 7 is known as
normal angle, it is denoted by symbol 5,

(/) Here angle i is positive if the rotation from 7 to A7 is in the sense from 7 to binormal p,

S4
N
Q
AN
SN
@
&
%\)
4
Qf$
)
w
0 A
A
t“ Principal normal
Fig. 9.3

(i) Angle i is negative if the rotation from 7 to N is in the sense from b to h

All three vectors N, 7 and p lie in the same plane. So angle between N and b is (g - WJ.

]Q-Ezcos(90—v7):sinw ...... (9.22.1)
and N . ﬁ =COSW. e (9222)

9.23 Geodesic curvature in terms of normal angle.

CAT,T

We know that K = Nr'r"]

or e =[Nit]  [QF=i r=1]
g | - 0=
__AA ~ ..A’_ ~

or Kg—_Nl‘Kl’l] [.I—Kl’l]

or K, =ksinw (9.23.1)
1. _
or Ky =Esm w,o (9.23.2)

1. .
where p =— is the radius of curvature of the curve.
K

224



Remark : We also know that

r=x,N+x,

Taking dot product with N, we gets

A

—n " e —
r-N=x,N-N+K,-

2)

Kcosw=x, -1+0 [ Kg-]\}:O]

or K,=Kcosw. (9.23.3)
Now, on dividing equation (9.23.1) by (9.23.3), we get
K

< =tmw=x, =K, tanw (9.23.4)

Kn

On squaring and adding equations (9.23.1) and (9.23.3), we get

Kp+ko =K. (9.23.5)

9.24 Expression of the torsion of a geodesic on any surface, and that the torsion of

an asymptotic line is equal to the torsion of its geodesic tangent.

Let c be a curve on a surface S, let 7 be position vector of any point P of curve c, then

A

b=txn. (9.24.1)
Differentiating with respect to s (arc length), we get

b _dt o5& (9.24.2)
ds ds ds

By Serret-Frenet formulae, equation (9.24.2) is reduced to

—TN=KnxXn+itx—
ds

A

N ~ dn
or —m =0+t XE ..... (9.24.3)

Now, if the curve C'is geodesic on surface S, then 7 = N , we also denote T by T o S the torsion

of the geodesic, then by equation (9.24.3), we get

Taking dot product by N, we get
T, N-N :]\Af-(fxiff') z—N'(]Q'xf)

or T, = N-(N'xf) - [N Nt] ..... (9.24.4)

which is the basic expression for the torsion of a geodesic on a surface S.
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Torsion found in equation (9.24.4) is same as the torsion of an asymptotic line. The geodesic
which touches a curve at any point is often called its geodesic tangent at the point. Hence the torsion of

an a asymptotic line is equal to the torsion of its geodesic tangent.

9.25 Expressions for the torsion of a geodesic in terms of fundamental magnitudes

and also in terms of principal curvatures.

We know that Torsion of a geodesic is

T, =[N N F’] ..... (9.25.1)

~ dN ONdu ONdv .
N N=—=——+——=N,u'+N,Vv . 9.25.2
oW ds oOuds Ovds 14 2V ( )

., dF oFdu Fdv _ , _
and ro= =——+——=nRUu +nv

STt SRR (9.25.3)

A

N'x7' =(]\A71 u'+ N, v’)x(?l u'+7 V')
=(](71><171)u'2+(]§71><172)u'v'+(1\72xﬁ)u'v'+(1§72x;72)v'2

Taking dot product of both sides with vector N, we get

N-(]Q'x?’) :[N-(le ﬁ)u'z +N~(Nl ><172)u'v'+1<7~(1\72 xfl)u'v' +N-(N2 x@)v'z}

i ﬁ]u'z +[1§7 N, @}u'v#[i\Af N, ﬁ}u'v' +[]<7 N, 172]\1'2

g
..... (9.25.4)
o5 =] EM—FL o FM —GL
NN 7| ML z = M -GL
But [ 1 1] == ,[NN1 rz]— =
[NN f] EN—FM’[NNZE}:FN—GM, ..... (9.25.5)
H H
Using equation (9.25.5) in to (9.25.4), we get
l ! ! !
T, :E[(EM—FL)u 2+ {(FM ~GL)+(EN = FM )}u'v'+(FN = GM )v"” |
or rg:%{(EM—GL)u’Z+(EN—GL)u’v’+(FN—GM)v’2}, ..... (9.25.6)

which is an expression for t o in terms of fundamental magnitudes.

To find expression in terms of principal curvatures chose the lines of curvature as parametric
curves so that F=0, M =0 and H? = EG = H = \/EG , then above equation (9.25.5) reduces to the

following form

T, :ﬁ{(EN—GL)u’v’} =JEG (%—%}uv ..... (9.25.7)
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Now let y be the angle which the geodesic makes with the parametric curve v = ¢ (constant),

then
cosy=u'VE andsiny=v~G .. (9.25.8)
Then using these in equation (9.25.7), we get
T, = N_L siny cos
s \'6 E yeosy L. (9.25.9)

But the principal curvatures k , and «, are given by

L N
K, :Eand K =5 e (9.25.10)
So that (9.25.9) can be written as
1 :
T, =5(Ka —K,)sin2y, (9.25.11)

which is expression of T o in terms of principal curvatures.
From equation (9.25.11), it follows that t o is maximum when
2 =90° = y=m/4,
hence the geodesic bisecting the angle between the line of curvature has maximum torsion.
Remark : If t o and T, be the torsions of two orthogonal geodesics then from equation (9.25.11)

above, we have

Ty =%(Kb—1<a)sin2w ..... (A)
1 .
and Ty =%(Kb—1<a)sin2(\y+g} =5(Kb—'<a)(—sm2w)
! l b
= T, :_E(K”_K“)szw ..... (B)

In adding equation (A) and (B), we get
T, +1, =0=>1, =1,

which shows that two orthogonal geodesics have their torsion equal but opposite in sign.

9.26 Some important definition

(i) Simply connected region R : The region R, in which every closed curve lying in the region
R on a surface can be contracted continuously into a point without leaving R, is called simply
connected region [See Fig 9.4].

(ii) Excess of a closed curve C [ex (¢)] : Suppose a simply connected region R (See Fig 9.3)

be enclosed by a closed curve (say) C, consisting of n arcs 4y 4, 4; 4,, ..., A, | A,, where
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A, = A4,, making at the vertices exterior angles o, a,, ..., a,; then the excess of closed curve C is
denoted by ex (c) is defined as

Fig.9.4

ex(c)=2n—(o; +a,+..+a,) —J.Kgds

C

or ex(c)=2m - a, - j keds .. (9.26.1)

r=1 c
where Kg being the geodesic curvature of the arcs.
(iii) Total curvature of R : The total curvature or Gaussian curvature of an arc on a surface is

denoted by K and is given by

K_LN—MZ s 0262
EG—F2 Hz ..... .20.
__ L O(FE _G ), 1 0(2F E _FE
o 2Hou\EH H) 2Ho\H H EH) =7 (9.26.3)
Therefore, the total curvature of a simply connected region R is given by
j j wds. L (9.26.4)
R

9.27 Gauss-Bonnet theorem

Statement : Any curve which encloses a simply connected region R, the excess of the closed

curve C is equal to the total curvature of R, i.e., ex(c) = I I K ds.
R

Proof : Let us consider a surface 7 =7 (u, v) of class 3 with u, v as parameters, let ¢ be a closed
curve, which is boundary of a simply connected region R on the surface. (see Fig 9.4). Let ¢ consists of
n (finite) smooth arcs

AgAp Ay Ay A, A5 (where dy=4,)

>Ip—-1“n>
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such that each arc is of class 2 and these are positively described in anti-clockwise direction. Let
a(r=1,2,3,.., n) be the exterior angle between the tangents to the arcs 4, | 4, and 4,4, ,, at the
vertex 4,, measured with usual convention. So that — 7 <o, <.

The geodesic curvature Kq exists at every point of ¢ except possibly at the vertices A
(r=1,2,..,n).

r

Then by Liuville’s formula, we have

K, = ﬁ+£(k%+ dv}
g ds E ds ds) (9271)

or j K ds = j (d0+Pdu+Qdv) (onintegrating overc) ... (9.27.2)

C
where 0 is the angle between the curve ¢ and the parametric curve v = constant (u-curve) and P, Q are

functions of parameter, u, v, which are given by

P(uv) = M ——(2EF,-EE,-FE)). .. (9.27.3)
"E  2HE

al’ld Q (Ll, V) = E = L(EGl _FE2 ). ..... (9.27.4)
E 2HE

Now, the parametric curves v = ¢ (constant) form a family in the region R enclosed by curve C,

the tangent to C turns through 2 relative to these curves, so that

'[d6+zn:a, =2n
c r=l

or [275 - Z;,aj =fae (9.27.5)

But by definition of excess of a closed curve C, we have

ex (¢) =2m — ZOL jK ds

r=l1

or ex () = [d0—[ x,ds [by equation (9.27.5)]
=— j (Pdu+Qav) [by equation (9.27.2)]
= ex (c) = I I (@—G—PJ du dv [using Green’s theorem] ..... (9.27.6)

But in curvilinear coordinates, area of surface element ds (say) is given by

ds=|nduxrdv|=|n x &|dudv=Hdudv .. (9.27.7)
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or

ISW

B dudv.
H

Using it in (9.27.6), we get

_[[Ll(oQ_opr
ex (¢) = j 1{ H(au ades. ..... (9.27.8)

But we know that the intrinsic formula for Gaussian curvature or total curvature K at any point

(u, v) on the surface is obtained by

or

1 0 1 1 0 1
= E@(E(FEZ —EGI)J+E§(E(2EFI —EF, —FEl)J ..... (9.27.9)
)
H |Ou Ov

Using this value in (9.27.8), we get

ex (c) = j j Kds, .. (9.27.10)
R

which shows that the excess of the closed curve c is equal to the total curvature of R.

Hence the theorem.

9.27.1 Self-learning exercise-2

1.

2
3.
4

LA A L

10.
11.

What is differential equation of a geodesic on a surface F'(x, y, z) =0 ?
Write the differential equation of geodesic on the surface z = f (x, y).

State Clairut’s theorem.

If a geodesic on a surface of revolution cuts the meridian at a constant angle, is surface a
right cylinder ?

Is a curve on sphere a geodesic if it is a great circle ?

Define geodesic curvature.

Define normal angle.

Write geodesic curvature in terms of normal angle w.

Are two orthogonal geodesic have their torsion equal in magnitude and sign ?
Define excess of a closed curve C.

State Gauss Bonnet theorem.

9.27.2 Tllustrative examples

Ex.4. Geodesic are drawn on a catenoid so as to cross the meridians at an angle whose

sine is c/u, where u is the distance of the point of crossing from the axis. Prove that the polar

equation to their projections on the xy-plane is u-c_ 2% where o is an arbitrary constant.

u+c
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Sol. A catenoid is a surface of revolution, obtained by revolving the catenary about its directrix.

Let its equation be

x=ucose,y=usin6,z=ccosh1(%} ..... (1)

Then for a geodesic curve on its surface

40
u’ —oshe )

It is given that geodesic cuts the meridians at an angle, say v,

whose sine is 5, SO sin \41:5. ..... 3)
u u
We know that sny -, (4)
ds
Using (3) in (4 ¢ L R L 5
sing (3) in (4), we ge » 7 5 o° e %)

Then form equation (2) and (5), we have i, =c.

Now we find that the equation of the geodesic becomes

du 1 u-—c
O+a=c =—lo
qu—cz 2 gu+c

u-—=c¢ u—c
= e2(9+(l) _

or 2(0+a)=log
u+c u+c

where a is constant of integration.

2,.2 2
+y° z .
s—+— = 1, crosses a meridian at an
a c

Ex.5. A geodesic on the ellipsoid of revolution al

angle 0 at a distance u from the axis. Prove that at the point of crossing it makes an angle

1 cucos0

\/{a4 —4? (a2 _ 2 )} with the axis.

COS

Sol. The given equation of the ellipsoid of revolution may be expressed as

u

2
X=ucosv,y=usinv,z = [1__2j ..... (1)
a

where u, v are parameters. Let 7 be position vector of a point, then

r . u’
r=|ucosv, usinv, c 1——2 :

a
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r )
1 =| cosv, sinv, — =—

r or .
and r, =—=(—usinv, ucosv, 0)
ov
rr r u? rr rr
and E:rl.rl:rlzzl-kﬁ’F:rl.rz:O’G:rz.r2:u2 (2)
a (a —u ) .....

Then surface element ds is given by
ds? = Edu® + 2 Fdu dv + G dv?

2 2
I:E(%J +2Fﬂ@+G(ﬂJ

ds ds ds ds
2 2 2 2
cu du 2 dv
l+—F—— — | +u"|— | =1 F=0) .. 3
of az(az_uz) (dsj U (dsj (Q ) 3)

Now we know that the first integral of a geodesic on a surface of revolution [of the form

x=usinyy=usinv, z=f(u)]is

2 dv
u—=G 4
=G @
Also, it is given that the geodesic crosses a meridian at an angle 6, therefore
. dv
sm =y—. L. 5
. 6))

On using equation (5) in (3), we get

cAu? du 2
I+ — (—j +sin0=1
ds

22 2
1+L (@j =cos’ 0

= a2 (az_uz) ds ) e (6)
2
Now 22 = ¢? {l - —ZJ, on differentiating with respect to s, we get
a
dz 2u du dz c*u du
2z—= 2(0——2—j =———— (7)
ds a” ds ds a“z ds



or cosp—=——— (8)
where angle ¢ (say) is the angle which geodesic makes with z-axis.

2
From equation (8), du = _w

) cu

using in equation (6), we get

a z 2 2
—+ cos” ¢ =cos” 0

4
or az (az_uz) cu
2( 2 2
czu2 az—uz 2.2 29 cla —u
coszd)— cos?@=— 1 O Q =
= - - - 2
a222 (a4 —a2u2 +c2u2) a4 —u2 (a2 —cz) a
cucos0 1 cucos0
or cos¢= = ¢ =cos

J (- P Py

which is the required result.

Ex.6. Prove that the projection on the xy-plane of the geodesics on the catenoid

u=ccosh (EJ are given by
¢

where a is an arbitrary constant.

Sol. A catenoid is obtained by revolving a catenary about its directrix, hence its equation is

x=ucosO,y=usinb,z =ccosh_l(zj=f(u) (say) .. (1)
c
The equation of geodesics on the surface of revolution is given by
al|l+f 2 )
do = i;{uz e }du [by equation (9), §9.12] .. ()
where 7= 4 .
du
Now by uzccosh(ij, du =cxsinh(£j-lzsinh(iJ
c) dz c)c c
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dz 1 ﬂ_ 1

> s > flee—— 3
du sinh(z/c) du ! sink (z/¢) 3)
then by equation (2), we have
l+%

o=+ a sinh” (z/c) J . 1 N

T ccosh (z/¢) \/uz_a2 u [on using values of « and /']

a du -

:i X . ziz 25

esinh (z/¢) 2 — 42 [Ql+smh : cos h |

——
or B =+ a du Qsinh(ijz‘/cosbzi—lz u—z—l
\/( 2 2 c c c

u® —c? ) (u —a’ )
Ex.7. Show that for a geodesic

2 = (k-1 ) (K, ~K) or = [l_ijﬂi_lj.

p pa pb p

which is the required result.

Sol. The torsion and curvature of a geodesic are given by

TZ%(Kb—Ka)Sinhjl ..... (1)

and K=K, cos? y + K5, sin? (by Euler’s theorem) ..... 2)
where v is the angle between the line of curvature and the geodesic tangent.

Now (K, — ) =K, — (K, cos? ¢ + K, sin? )

=K, (1 - sin? ) — K, cos?y = Ky cosZ y — Ky cosZ
or (K, — 1) = (K, — K,) cosfy L 3)
Similarty (k—x,)=(x, cos? y + K5, sin? ) — K,
or (k—x,)=(K,—K,) sinfy (4)

multiplying equation (3) and (4), we get

(1, — 1) (k=) = (i, — Ka)2 sin? y cos? y = 12
or (i, — 1) (K—x,) = 72, which is the required result.
1 1
But x=—, ¥, =—, K, =—, then above equation reduces to
p Py Py

[i_lj (l—ij = 1 (Where T= lj
p, PP P.) O s e (5)

which is another form of the result.
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Ex.8. Prove that at the origin the geodesic curvature of the section of the surface
2z = ax? + by?, by the plane Ix + my + nz =0, is
n (b + am®)/(I? + m?)3/2,

Sol. The given point is (0, 0, 0) and the plane of the given section is

Ix+my+nz=0. . (1)
Then the equation of the tangent plane of the surface

2z=ax?+by? attheoriginis, z=0
ie., Ox+0y+z=0. L. (2)
Therefore the direction cosines of the line of intersection of planes (1) and (2), which will be the

direction cosines of a tangent through origin to the given section of surface, are obtained as

-m 1
11:—, mlz—, nlzo'
NI +m? NI +m?

Let the equation of the normal plane to the given surface at the origin through the tangent line be

Ax+w+vz=0 4)
then M+ pmy +vn; =0
A
-Am+ul=0 =—=—
or U ] m e (5)
Also v=0. (6)

Now plane given in equation (4) passes through z-axis.

A
Hence A A
m

Y
! 0

AT ? 1

Apov
or —=—=—" = =
I m 0 Pim?i0® JP+m?
N L | S (7)
o R — ,v=0. .
\]lz-l-mz \/lz-i—mz

Now the direction cosines of the normal to the given section (1) are
[ m n
’ % 8
\/12+m2+n2 \/12+m2+n2 \/12+m2+n2 ®)

If O be the angle between (7) and (8) then

2, 2
+
080 = % . 9)
I“+m°+n
The radius of curvature of a given section through any point of a surface is obtained by the ex-

pression
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cos® I+ 2shm, +tm?

..... (10)
p \/1+p2+q2

For the given surface 2z = ax? + by?, we have at the originp =0, ¢=0, r=a, s=0and = b.

Using value of cos 6 form (9) and these values of p, ¢, , s, t in equation (10), we get

1 \/12 +m? B am? + bl?

N

or 0= (2 +m232 (am? + b2y (2 + m? + n2) 12
1 2, VY o2 2, 2\V2
but K—E, SO K—(l +m ) (am +bl )(l +m”+n ) _____ (11)
Also, if ¢ is the angle between the given section and the normal section, then
cos &= (12 + m2)V2 (12 + m2 + 2112
Hence by Meunier’s theorem
k, =xcos =L +m?@m+oi2 L. (12)

therefore, the geodesic curvature Kg of the required section is given by k* = k> + Kz

(am2 +bl? )2 (12 +m? +n2) ~ (am2 +b12)2

- R (12+m2)3 (12+m2)2
_(am2+b12)2n2
) (12+m2)3

o B =n(amzwtblz)

which is the required result.
Ex.10. Find the Gaussian curvature at the point (u, v) of the anchor ring
;= (g(u) cos v, g(u) sin v, f(u)).
where g (u) = (b + a cos u), f (u) = a sin u and the domain of u, v is
0<u<2m 0<vy<2m,
verify that the total curvature of the whole surface is zero.
Sol. We have position vector of a point (say) II",

1{=((b+acosu)cosv, (b+acosu)sinv, asinu)

. 1 1 1 1 1
then by finding 7, 7,, i, ii5, 5, We can get
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E=a* F=0,G=(0b+acosu)’, H*=a*>(b+acosu)*> ... (1)
L=a,M=0,N=cosu(b+acosuw) .. 2)

Then the Gaussian curvature k is given by

K_LN—M2 B cosu
H? a(b+acosu) 3)

Then the total curvature of the whole surface is

= IKdS
2n 2m
= I I kH du dv
u=0v=0
2n2mn CoS U
= I I—a(b+acosu)du dv  [on using values form (3) and (1)]
o 3 a(b+acosu)
2n 2n

= I Tcosu du dv = Icosu(v)?t du
00 0

=2 [ cosu du=2m(0)=0
0

.". total curvature = 0. Hence verified.

9.28

Summary

1.

In this unit you have studied about geodesic, differential equation of a geodesic, single
differential equation of a geodesic, when the relation between parameters u and v be of the form
u=u(v) or v=v (u), geodesic on a surface of revolution. About geodesic curvature and tor-
sion and their expressions in different forms, about Gauss-Bonnet theorem.

Sufficient number of examples have solved in the unit.

Differential equation of geodesic in different forms and formulae for geodesic curvature and tor-
sion will help the students to easily understand the text of the unit.

Examples in the text have been inserted frequently to help students to understand the text of the

unit.

9.29

Answers to self-learning exercises

Self-learning exercise-1

. See §9.2.
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. See §9.3.

. Eu" +%Elu'2 +E, u’v’+Ev"+(F2 —%GlJV'z =0and

Fu”+(Fl —%EzJu’z +G, u’v’+Gv”+%G2v'2 =0

ds\ ou' ) ou ds\ oV 8v

2 2
" lu?  2muY +nu'? =0and v+ A u! +2uuv'+vv'© =0

i
v’

=x(§i} +(2u —1)(‘;}2 +(v—2m)%—n

. No.

8. EF, + FE, - 2EF, =0

. Integral of one of the equation

Self-learning exercise-2

d*x d?y d’z
ds’ B ds? B ds’

F

x y z

, with the equation F'(x, y, z) =0

9.30

. (1+P2+q2)%=(17% qj{t(%j2+2s%+r}

. See §9.13. 4. Yes. (see §9.14) 5. Yes. (see §9.15)

. See §9.16. 7. See §9.22. 8. K, Z%Sinw

. No (see §9.25) 10. See §9.26(ii). 11. See §9.27.
Exercises

Eal o A

Derive the general differential equations of geodesic on a surface F=r (u, v). [Ans. See §9.4]
[Ans. See §9.5]
[Ans. See §9.6]

Find the single differential equation of geodesics, on surface » = (1, v), when a curve on the

Derive the canonical equation of a geodesic on the surface F=r ( ,v)

Derive the differential equations of a geodesic in Gauss coefficient.

surface may be determined by a single relation between the parameters, u and v either by
[Ans. See §9.7]
Show that for surface, a necessary and sufficient condition that the curve v = ¢ (constant) be a

geodesic is EF, + FE| — 2EF), [Ans. See §9.8]

v=v(u)orbyu=u (v).

= (0, when v = ¢, for all values of u.
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10.

11.

12.
13.

Find the differential equation of geodesics on the surface z = f'(x, v), the Monge’s form.
[Ans. See §9.11]

State and prove Clairant’s theorem. [Ans. See §9.13]

Find an expression of Kg (geodesic curvature) and show that it is intrinsic. [Ans. See §9.17]

Derive the formula for geodesic curvature of the form k - [ N ;E’ ;E”] [Ans. See §9.19]

Find the geodesic curvature in terms of normal angle. [Ans. k ¢ = lsin w]
p

Derive the basic expression for the torsion of a geodesic on a surface.  [Ans. T, = [N N'i ] ]

State and prove Gauss-Bonnet theorem. [Ans. See §9.27]

Prove that on a surface with metric ds? = a® du® + b* dv? the geodesic curvature of the curve

ob
u=c is (ab)! (5}

oo
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Unit 10 : Gauss Formulae, Gauss’s Characteristic Equation
Weingarten Equations, Mainardi-Codazzi Equa-
tions. Fundamental Existence Theorem for Surfaces,
Parallel Surfaces, Gaussian and Mean Curvature for
a Parallel Surface, Bonnet’s Theorem on Parallel

Surfaces.

Structure of the Unit

10.0  Objective

10.2  Introduction

10.3  Gauss’s formulae

10.4  Weingarten equations

10.5 Mainardi-Codazzi equations.

10.6  Illustrative examples

10.7  Fundamental existence theorem for surfaces.
10.8  Parallel surfaces

10.9  Gaussian and mean curvature for the parallel surface.
10.10 Bonnet’s is theorem for parallel surfaces
10.11 Self-learning exercises

10.12  Summary

10.13 Answers to self-learning exercises

10.14 Exercises

10.0 Objectives

Six fundamental magnitudes £, F, G and L, M, N and their partial derivatives play an important
role in the surface theory. Gauss’s formulae and Gauss’s characteristic equations are some of the rela-

tions between them.

10.1 Introduction

This unit is devoted to the study of some relations between E, F, G and L, M, N and their par-
tial derivatives. We also study the fundamental existence theorem for surfaces and Bonnets theorem on

parallel surfaces.
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10.2 Gauss’s formulae

The Gauss’s formulae or Gauss’s equations are given below

n :L]\A7+lr1 +Ar
Fp=MN+mr+pre (10.2.1)
"y :NN-FI’ZI_"I-FVI"Z

where /, m, n; A, n, v are called Christoffel symbols and are suitable functions of £, F, G and their

partial derivatives with respect to u and v.

Proof : Second order partial derivative of 7 w. r. to u and v can be expressed linearly in terms

of 7,7 and A as given below.

Fo=AN+IF+A%, .. (10.2.2)
F,=BN+mF+ur,, . (10.2.3)
P,=CN+ni+vi, .. (10.2.4)

where 4, B, C; [, m, n ; A, , v are the coefficients to be determined.
Taking scalar multiplication of (10.2.2) by a7, we get
1711-]9=A]§7-]\A7=Aas 171-]\A7=0=172-N
A=Las7,-N=L.
Similarly B=MmM,C=N. L. (10.2.5)

Hence the relation (10.2.2) to (10.2.3) assume the form (10.2.1).

Now to determine /, m, n ; A, i, v we proceed as follow :

oF 0 /. . OF - -
Clearly E1=E=a(ﬁ2)=2ﬁ gt ’Ezzg=2r1 My s
oF . _ . _ oF . _ -
FI=E=FH nEnh, ’Fz:E:”lz n+tn-rpe o L (10.2.6)
oG . .
GI—E—2F2 hh 3 Gy =201,
T | L. 1
Hence ’”1"”11=§E1 > ’”11"’2=F1_§E1
| |
i1, =§E2 ; Bl =§G1 ..... (10.2.7)
. 1 .
’i'rzzze_EGl ; hKeh,==G,
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Multiplying (10.2.2) by 7 and 7, successively scalarly, we get

Y

"7;1
Fo=IF+2G e (10.2.8)

St

IE+AF}

Using (10.2.7) in (10.2.8) and then on solving we get

1

SE=IE+2F and Fl—%EZ:ZF+lG, ..... (10.2.9)

where values of / and A are given by

1

2

1
I= (GE,~2FF, +FE,), A:F(2EE—EE2+FE1),

Proceeding exactly with (10.2.3) and (10.2.4), we get

1

m=
2H?

1
(GF,-FG,) ; u :F(EGI —FE,)

1 1

n= F(2GF2 -GG, -FG,), v= F(EG2 —-2FF,+FG)). ... (10.2.10)

Corollary : In the case, the parametric curves are orthogonal, then F =0 and H? = EG.

Hence Z:G—Evlzzi’ m:ﬂ’ :—i;
2H° 2FE 2F 2F
T (10.2.11)
2G 2G 2G
Thus Gauss’s formulae become
i :LN""lErl _irz
2 E, 2G
=M N+—Zr+—Lr,,
~ G G
=NN-——Lr+——=r
and 7, E 4 Gt e (10.2.12)

10.3 Gauss’s characteristic equations

It states that

T? :%(21712 —Ey, =G, )+(m*E+2muF + 1’G) —(In E+(Iv+2An) F +AvG)

where 7> = LN - M.
Proof : Taking scalar product of first and third Gauss’s formulae and subtracting the square of

the second, we get
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FooT, :(LNHFI +172)~(N1§7+n71+vfz)—(MI§7+mF1+;u72)2

=LN-M>~(In—-m* )&} +(Iv+An=2mu)7 -7 +(Av - u* )7}

=77 +(In—m*)E+(lv=2mu+An)F+(Av-p’)G .. (10.3.1)
-2 . 1 N 1 [, TGN
But E=7r" ie, EEzz -7, and EE22:”12+”1"’122
F=rrie, F,=n,-hh+nr, and F, =15, 5 +7, T+, Ty +7 Ty
_ 1
G=r"=>—-G =k}, and EG Ty hy + 1 Ty,

Ly N PR

1
Hence 5(E22+GU—2F12) S Y (10.3.2)

From (10.3.1) and (10.3.2), we get desired characteristic equation as

T? :%(21712 —Ey, =G, )+(m*E+2muF + *G)—(InE+(lv+An)F + v G),

Corollary 1. Gauss’s characteristic equation can be put in the following form using the values of
l,m,n; A, pn, v form10.2

= T T E ) (10.3.3)

1 o( F 1 1 8 2F E, FE
ou H 2 8v

LN-M? :EH—(E—Ez ——GJ +—H

Corollary 2. Suppose 7 =7 (u,v) represents a surface. We know that at any point (u, v) on
the surface, the Gaussian curvature K is given by

=LN—M2 1 8(FE Gj+l 8(2F E, FEJ

H>  2Hou\EH H) 2H ov H_?_EH

[Using (10.3.3) equation of corollary 1]

_ii(FEz—EGI}_LQ(ZEFI—FEI—EEzJ (1034)

H ou 2HE H ov 2HE
where H? = EG — F*

The formula (10.3.4) gives Gaussian curvature K in terms of first fundamental magnitudes E, F,
G and their partial derivatives with respect to « and v.
Thus equation (10.3.4) is intrinsic formula for Gaussian curvature. In the case, the parametric

curves are orthogonal, /= 0 and then F'; = 0.

1o( GY 1, 0 E
IN-M? =21 [ G 1y of & P
= H@u( Hj 2 Gv( HJ [ F=0]

But H?=EG-F?’=EG
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1 0 1
VEG | Ou| JE Ou vl JG  ov

51—

10.4 Weingarten equations

The formulae H? N,=(FM - GL) #;+ (FL-EM) 7,
and H? N, = (FN— GM) 7.+ (FM — EN) F,
are known as Weingarten formulae or Weingarten equations.
Proof : Since N=1=N-N,=0, N-N,=0.
Thus N, and N, are perpendicular to 77 . Hence, these lie in the plane of 7 and 7, .
Hence N =47 +B% L. (10.4.1)
Taking scalar multiplication of (10.4.1) with 7 and 7, successively, we get
—L=AE+BF, —M=AF+ BG.
Solving for 4 and B, we get
A=(FM—-GLY(EG - F?), B=(FL — EM)/(EG — F?)
But EG — F2 = H2, therefore by (10.4.1)
H? N, =(FM~GL) i, + (FL - EM) 7,

Similarly we can get second equation.

10.5 Mainardi—Codazzi equations

The three fundamental magnitudes L, M, N are not functionally independent. They are related
through the equations.
Ly-M;=mL—-({-p)M-\AN
My~ N, =nL—(m~-Vv)M—puN.
which are called Mainardi-Codazzi equations.
Proof : Consider the identity

0 . 0.
5( )= au( ) (10.5.1)
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Putting the values of 7, and 7, from Gauss’s formula in (10.5.1), we get

0 0

5(LN+ZIF1 +ﬂprz):£(MN+mr1 +ur2)
= LN+LE+ARB+LN,+17, +AF, =MN+mF7 +u 7, + MN, + mF, + ur,

(10.5.2)

Now substituting the values of 7 ,7,,7, form Gauss’s formulae and the values of ]\Af1 and N. 5

1°

form Weingarten equations, namely
N, =L(FM ~GL)F: JrL(FL—EM)f2
H H

1

and N, :H—(FN—GM)FI+?(FM—EN)FZ ..... (10.5.3)

The identity (10.5.2) is expressed in terms of vectors N , ¥, I, (non-coplaner vectors).
On equating the coefficients of N on both sides, we get
L,+IM+AN =M +mL+uM
or L-M =mL-(I-p)M-AN . (10.5.4)
which is the first Mainardi-Codazzi equation.

Now consider the identity

2ey-2Ey. (10.5.5)
ov ou
From Gauss’s formula, we have
Fy=MN+mF +ur,; 7y =NN+nf+vi, .. (10.5.6)
Putting these values in (10.5.5), we get
M,N+m 7 +MN, +mF,+pur, =NN+n7 +Vi,+ NN, +ni, +VFi, ... (10.5.7)

Substituting in (10.5.7), the values of 7 ,7,,7, from Gauss’s formulae and for ](fl, ]sz from

1
Weingarten equation, we get a vector identity and then equating coefficients of j; on both sides of the
identity, we get
My —mN+uN=N; +nL+vM
or My—~N;=nL-(m-v)M+p~N, .. (10.5.8)

which is second Mainardi-Codazzi equation.

10.6 Illustrative examples

Ex.1. Show that for the surface z = f (x, y) with x, y are parameters.

jopro_ps o pto, g4 gl

B R A R L T T
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Sol. We have for the surface z =f(x, y).

E=1+p?  F=pq, G=1+¢>
E, =2pr, F,=rq+pq, G, = 2gs,
and E, =2ps, F, =sq + pt, Gy,=2q. L. (1)
. 2
Again 12?((?E1 —2FF, +FE,)

T2 {(1+4*)2pr=2pq (rq+ ps)+ pa (2ps)}

(2pq+2prg* —2prq® —2p*qs+2p’qs) = % ..... 2)

2H?

Similarly, on putting these values in experience for m, n, A, p, v, we get the required results.

Ex.2. For any surface prove that

%(logH):Z+u, %(logH)=m+v,

where u and v are parameters and symbols have their usual meaning.

Sol. We have H? =EG — F2
0 o (1 2 1 1 0 2
L (loeH) =L 210 H? |== —. % (H
5, log 1) 6u(2 o8 j T

_ IZQ(EG_Fz):EIGJfGIEZ—zFE. ..... (1)
2H? ou 2H

Using values of Christoffel symbols from §10.2, we get
Iy = _2;2 (GE, + FE, - 2FE, + EG, - FE,

1
= F(EIG +EG,-2FF)- (2

0
From (1) and (2), a(lOgH):l"'ﬂ.
Similarly, we can prove the second result.

Ex.3. Show that for the right helicoid ¥ = (u cos v, u sin v, cv).

[=0,m=0,n=—u;Ar=0, “:(nzuTz)a v=0.

Sol. We have 7 = (u cos v, u sin v, cv)

7 =(cosv,sinv,0), 7 =(-usinv,ucosv,c)

ty

:,712:1, F=

Q

— 52 _
=F =u +c

=3

7 =0,
H>=EG-F*=u*+¢* . (1)



Therefore £, =0, E,=0,F, =0=F,; G, =2u, G,=0.

Again I = 2;]2 (GE,—2FF, +FF,)=0
k:zlz(zEE—EEz—FEl)zo
m = IZ(GEZ—FG1)=O,M= IZ(EFI—FEZ): =
2H 2H u +c
n =5(2GF, -GG, ~FG,) :2(u++c2) 2+ D] =
v:#(EGz—zFFZ+EGI):O. ----- )

Ex.4. From the Gauss's characteristic equation deduce that, when the parametric curves

Lo 1aJG) o 1 &JE)|
_\/E@u\/féu ovlJG v

Sol. In case parametric curves are orthogonal, we have

are orthogonal

F=0, - F=0 . (1)
Hence equation (3) of §10.3 corollary 1, we have
o= tg 2 G Ly B @
2 ou\ H) 2 o\ H) 7
But H?=EG-F’=EG
_LN-M’

K
H2

OO0
At L]

1 o 1 o JG o( 1 o
Lot o gLl L ;
VEG {(%{ [\/E ou j ﬁv[\/a ov ﬂ ©)
Ex.5. Show that the surface whose metric is given by
ds? = du® + D* dv*,
DZ

Dl
[=0,m=0,n=-DD;, .=0,H="0, VL=—2.




Sol. Comparing ds? = du? + D? dv* with
ds? =E du® + 2F dudv+ G av* L. (1)
Here, we have E=1, F=0, G=D? H*=EG-F*=D?
E,=0, G,=2DD;; E,=0,G,=2DD,
E

netr o -
i M

G D, G, D,
L=l p=—2=2 2)
2G 2D 26 D

Ex.6. For a surface given by ds* = ¢ (du® + dv?) prove that

N TP K SR I
20 20 20 2007 27 20

and further show that Mainardi-Codazzi relations become

LM =2 n), N oM, =10 (LN
29 ¢

1
2

Also show that the Gauss characteristics equation then

2 1 2 2 1
LN—M 254)((1)1 +¢2 )_E(¢11+¢22)'

Sol. Comparing ds* = ¢ (du® + dv?) with
ds® = E du? + 2F dudv + G dv?
E=¢, F=0, G=0¢.

As ¢ =0, the Gauss’s coefficient reduces to

1¢1 m= 1¢2 n=-— 1(1)1 = l& H—l(l U:lﬁ
29 2¢° 2¢° 207 24 24
Hence, the Mainardi-Codazzi relations become
L—M = 19, (lﬂ—ld’leJrlﬁN:lﬂ(uN)
2¢ 2¢0 24 2¢ 29
and Mz—le—lﬂL [1ﬁ—1¢2jM—1ﬂN=1$(L+N).
29 2¢ 29¢ 24 24

EXx.7. Show that when the lines of curvature are chosen as parametric curves, the Codazzi

relations expressed in terms of E, G, L, N and their derivatives are

Lolg (LN Lo (L)
2 E G 2 E G

Show also that the equation of Gauss may be written as

LN 3{1@@} GLIGfJ
ou

—+ PE—
JEG JG ou ovlJG ov
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Sol. The Codazzi equations are
Lz_Mlsz_(l_u)M_kN ..... (1)
Mz_lenL_(m_U)M_MN ..... (2)
Since lines of curvature are parametric curves, we have F'= 0, M = 0.
Also then the Gaussian coefficients are
E2 EZ _ GZ }\, E2 _ Gl GZ .

Z:_am:_a - T >
2F 2F 2F

Thus, the equation (1) reduces to

L2 :£L+£N:1E2 £+E
2F 2G 2

and equation (2) reduces to

N = G, G 1 (L Nj

~ LN or N ==G,| =+—|.
2E 2G 2 \E G

For the second part, from Ex.4 above, we have

__ L |o(1aNG) a1 oVE
K_\/E ou \/E ou ov \/5 Bv R, (3)

LN -M? LN
EG-F* EG
Putting this value of k in (3), we get the required result.

In this case

10.7 Fundamental existence theorem for surfaces

Statement : When the coefficients of the two quadratic differential forms
Edu*+2Fdvdu+Gadv? and L du®+2M dudv+ N dv?
are such that the first form is positive definite and the six coefficients satisfy the Gauss’ characteristic
equation and the Mainardi-Codazzi equations, then there exists a surface, uniquely determined to within
a Euclidean displacement, for which these forms are respectively the first and second fundamental forms.

Proof. The proofs of this theorem depends on the existence and uniqueness theorems of the first
order differential equations which can be obtained from the two given fundamental quadratic differential
forms.

It is easy, if we choose the principal directions and the normal A7 to the surface = Il"(u, V) in
the curvilinear coordinates, as the coordinate axes. In this case /"= 0 = M and quadratic differential
forms reduces to

Edw*+Gdv* and Ldu*>+Na* ... (10.7.1)

Let a.(u, v), ﬁ(u, v) denote the unit tangent vectors along the parametric curves v = constant

(u-curve) and u = constant (v-curve), respectively.
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..... (10.7.2)

Then a=—=1, B=—F7

JE' JG

In this statement of the theorem, we have given that the fundamental coefficients £, F, G and L,

M, N satisfy Gauss’s characteristics equation and the Mainardi-Codazzi equations and the Weingarten

equations which are Gauss’s equations

r_lﬁx/fr_x/EG\/Er N

+ILN

r= T T
llx/EGuIGavz

;_1aﬁ;+1a\/5;
12\/58‘}1\/5&{2

r \/—8\/5r 1 aJEr ~

— v, + NN
n = E ou h \/5 5y 2T e (10.7.3)
Weingarten equations
Lr Nr
N, = _Erl’ N, = —Erz. ..... (10.7.4)

Differentiating (10.7.2) partially with respect to « and v. Using (10.7.3) and (10.7.4), we find

a6, 1 &WE~ L ~ 3 1 oJG »
aZ_ B+——N, ————B
ou G v JE JE @

o NG v v JE o L ye

B 1 oVE, afa 1af N

N_ Lgogg N__Ng 1075
o JE o & (1072
Thus six first order partial differential equations for the triad { u, v 1\7 (u v)} are

. . o r
necessary conditions to be satisfied so that their exists a surface r = (u v) exists with r =F,

qu -Ir"z =0, 1{22 = G and the equations (10.7.5) admits at least one solution (6, 3, N') which assumes the
prescribed values u, v, for u and v in a given interval such that #(0) = u, v(0) = v,

Now, ifthere are two surfaces S, $* with the same prescribed fundamental forms then an Eu-
clidean displacement we can arrange the triad (d, [3, N ) and (&*, ﬁ*, N *) to coincide when u = u,,
v =, and therefore they all coincide for all values of u and v.

Hence, the surfaces S and $* differ by atmost a Euclidean motion. This proves the uniqueness

of'the solutions limited within the Euclidean displacement.
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10.8 Parallel surfaces

A surface S is said to be parallel to another surface S* if the points of S* are at a constant
distance along the normal to S.

Clearly if P(ll") is any point on S, then corresponding point Q on $* is given by

Fe—r_cN (10.8.1)
where c is a scalar constant whose magnitude represents the distance along normal i.e.,
uum
‘ PO ‘ =c.

Fundamental magnitudes of S* :

Clearly on differentiating (10.8.1) with respect to # and v successively we can get fundamental
magnitudes provided we know ]ifl, ]ifz, ]ifl, ]{/2 are given by Weingarten formula.

As a particular case if lines of curvature are parametric curves i.e., F'= 0 = M, the Weingarten
formulae reduces to

1

EGN,=-GLr, [QH*=EG when F=0=M] .. (10.8.2)

L N
Writing 7 =x,, E = K,, we shall have fundamental magnitudes E*, F*, G*, L*, M*, N* as
E*=E(1+cx,)’, F*=0, G*=G(l+cx,)’
L¥=x(1+ck, )L, M*¥*=0, N¥*=%(l+cx,)’

Also H*=H(1+2pc+xc). (10.8.3)

It at once follows that curves on §* corresponding to lines of curvature of S are also lines of

curvature on S*.

10.9 Gaussian and mean curvature for the parallel surfaces

LN -M"

We have K I’

_LN(l+c1<a) (l+c1<h)—0
H2(1+c1<a)2 (1+c1<,))2
3 K
(I+cx,) (1+cx,)

I S [QK:LN‘O} ..... (10.9.1)
1+ 2pc + K’ H’?

: 1 1
Remark : In the above proof, we have not taken into account the case when ¢ = ——or ——.

K K,

a
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This happens in case parallel surfaces are spheres of radii 2B concentric with S. Then parallel
surfaces degenerate into points.

Thus first part of the Bonnet’s theorem can be modified into the following :

“For every surface with constant positive Gaussian curvature k there exists at least one (non-

singular) parallel surface with constant mean curvature.

10.10 Bonnet’s theorem on parallel surfaces

For every surface with constant positive Gaussian curvature B2, in general, there are associated
two surfaces of constant mean curvatures (£ 2B)~!, which are parallel to the surface S and distant + B
from it, and for every surface S with constant mean curvature (2B)~! there is a parallel surface of con-
stant Gaussian curvature B2 distant B from it.

Proof. Here x=B2 and c=+B.

L) 1 E+Aﬁ
ST W0E G

:J_rl LCKZ , fromabove
2\ 1+2pc+c’x

..... (10.10.1)

Conversely, using = (2B) !, ¢=—B, we have

* *_ *)
]{*:LN *ZM — K = [Q K=—
H (l+2uc+1<c )

K
(1-22B)"- B+«B?)

= % =B~ (constant). .. (10.10.2)

Hence proved.

Remark : In the above proof also, we have not taken into account the case when

1 1
¢c=——o0r ——.
K K,

a

10.11 Self-learning exercises

1. Write Gauss’s characteristic equation.

2. What are the Weingarten formulae ?

252



3. Define parallel surfaces.
4. Write Mainardi-Codazzi equations.

5. State Bonnets theorem on parallel surfaces.

10.12 Summary

In this unit we have derived. Gauss’s formulae in the form of partial differential equations and
Gauss’s characteristic equation. We have also studied the Weingarten formula and Mainardi-Codazzi
equations. Fundamental existence theorem for parallel surfaces has also been studied in this unit. For
parallel surfaces Bonnet’s theorem has also been discussed. Some solved question on above theorems

have been given in the exercises.

10.13 Answers to self-learning exercises

1. §10.3
2. §10.4
3. §10.8
4. §10.5
5. §10.10

10.14 Exercises

1. Obtain the fundamental equation of surface theory.

2. Obtain the equation of Weingarten and use them to establish Mainardi-Codazzi equations.

3. Prove that the Gaussian curvature at a point is expressible in terms of the fundamental magni-
tudes of the first order and their derivatives of the first two orders.

4. Prove the Gauss characteristic equation and deduces that, when parametric curves are ortho-

gonal

=iz gt )l aat )

oo
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Unit 11 : Tensor Analysis, Kronecker Delta, Contravariant and
Covariant Tensors, Symmetric Tensors, Quotient law
of Tensors, Relative tensor

Structure of the Unit

11.0  Objective

11.1  Introduction

11.2  Space of N-dimensions

11.3  Coordinate transformation

11.4  Summation convention

11.5 Kronecker delta

11.6  Contravariant vectors

11.7  Covariant vector

11.8  Invariant

11.9  Second order tensors

11.10 Higher order tensors

11.11 Zero tensor

11.12  Symmetric tensor

11.13 Skew symmetric tensor

11.14 Algebraic operations with tensor
11.15 Tllustrative examples

11.16 Quotient law of tensor

11.17 Tllustrative examples

11.18 Relative tensors

11.19 Conjugate (or Reciprocal) symmetric tensor
11.20 Tllustrative examples

11.21 Self-learning exercise

11.22  Summary

11.23 Answer to self-leaning exercises

11.24 Exercise

254



11.0 Objective

Tensor calculus is the generalisation of the differential geometry of Gauss and Riemann. Einstien
used it as a most suitable tool for the study of his general theory of relativity. The reason behind it is that
a physicist wants to formulate the laws of physics which remain same (i.e. invariant) when we go from
one frame of reference to another. The objective of this unit is to define the tensorial quantities and their

properties. We also study the algebra of tensorial quantities in this unit.

11.1 Introduction

The tensor formulation became popular when Einstien (1879-1955) used it as an excellent tool
for the presentation of his general theory of relativity. It has now become an excellent tool in the study of
many branches of theoretical physics, such as mechanics, Fluid Mechanics, Elasticity, Plasticity, Electro-
magnetic theory etc.

Tensor analysis is the generalization of vector calculus. It handles the answers to the questions
suchas :

(i) are all basic physical laws expressible in terms of scalars and vectors ?

(i) which transformation is suitable for the invariant character of physical laws ?

(iii) how a certain physical law be written if wider class of transformation is introduced ?

It is a basic principal of tensor analysis that we should not tie ourselves down to any our system
of coordinates, we seek statements which are true, not for one system of coordinates but for all. The
transformation laws for the components of an entity from one coordinate system to another are the basic
criteria to determine the tensor character of that entity. In other words :

“A tensor is an entity whose components, when are being transformed from one coordi-
nate system to another, obey certain basic transformation laws.” The study of these laws is the

prime aim of this unit.

11.2 Space of N-dimensions

We know that in the three dimensional rectangular space, the coordinates of a point are given by
triplets in the form (x, y, z) where x, ), z are three numbers. But this representation is not suitable if we
want to generalizes the concept of space from three dimension to N-dimensions. That is why it is
advisable to use a triplet (x!, x?, x*) in place of (x, y, z) where 1, 2, 3 are the superscripts not power
indices. In general, the coordinate of a point in N-dimensional space are given by the N-tuples of the
form (x!, x2, x3, ... xV) where 1, 2, ... N are not powers of x but are the superscripts of x and N > 2.

This type of N-dimension space is denoted by V.
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11.3 Coordinate transformation

Consider two different frames of references of N-dimensions. Let the coordinates of a point with
respect to these frames be respectively (x!, x2, ... xV) and (x x2,.x" ) Suppose these coordinates
of'the two systems have the following independent relations :

¥ =% (oY) (=L2..N) (11.3.1)

where X' are single valued, continuous functions and have continuous derivatives for certain ranges of

x!, x%, ... x". Under these conditions equations (11.3.1) can be solved for x as functions of x given by

X =xi()?1,)?2,‘.‘)_cN) (i=1,23,..N) . (11.3.2)
The relations given by (11.3.1) and (11.3.2) define a transformation of coordinates from one
frame of reference to another.
Differentiating (11.3.1), we get
. i / o
P =£d +£d C Z—dxf ..... (11.3.3)

o' o’ ox Jj=1 ox’

11.4 Summation convention

We know that the expression
ax' tax* +ax*+ . tax L (11.4.1)

N
is represented by Z ax'.
i=1

According to summation convention we drop sigma sign and merely write the above sum
as ay'.

(a) Thus by summation convention we mean that if a small latin index (superscripts or subscripts)
is repeated in a term then it is understood that we are to sum over this index from 1 to N unless other-
wise stated. This summation convention was first used by Einstien.

(b) Indicial (or Range) convention : When a small latin index is used either as superscript or
subscripts occurs unrepeated in a term, it takes all values from 1 to N unless otherwise stated, NV being
the number of dimensions of the space.

The unrepeated latin index used in a term is called free or real index and takes all values from 1

to V. For example ‘i’ is the free index in the following expressions :

X =xi()?l,)?2,)?3,...)?]v), ..... (11.4.2)

and ¥ =)_ci(xl,x2,x3,.‘.xN), ..... (11.4.3)

(c) Dummy index : Any index, which is repeated in a given term so that the summation con-

vention applies, is called a dummy index or dummy suffix. This is also called umbral or dextral index.
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11.5 Kronecker delta

The Kronecker delta which is denoted by 53- , is defined as :

8,-:{1 , ifi=]

ol o, ifi#g

Thus, we have 8%:8%:62:,,,:6%:1 (no summation over N)
8, =83=..=0

and 8 =8 +8 +.. 43N =1+ 1+...+1=N.

An important properly of Kronecker delta is that
i 4 g
8,4 =4,
since in the L.H.S. summation is carried over ;.

i

..... (11.5.1)

...... (11.5.2)
...... (11.5.3)

..... (11.5.4)

X . , .
If may also be noted that — = 8';, since the coordinates x!, x2,... x" are independent.

ox
&

Similarly — =5,

Ex.1. Use Einstien is summation convention to write the following :

(i) A'B'+A5B*+..+ AN B"

(ii) ds? = g (dxl)z +g5 (dxzdx2)+...+gNN (de)2

+gdxdx? + gy dldx! + .+ g ydx! + gy dx” dx!

Sol. () A'B'+ AB*+. ..+ AvBY = 4B’

N N
(ii) ds® = z Zgiidxldxz.
i=l j=1
Ex.2. Show that
ox* ox

. iej _ i o OX _ sk
(i) &3] =3 i) <2 =)

Sol. (i) &', 8] =8]8} +85 8 +85 8 +...+8) 8 +..+8y 5

=0+0+..+8,(1)+0...4+0 [no summation over £]

=3,

3 ox* ox' _ox'ox ox'ox’ o' ox”
() 0% ox' ox ox' oxtox | ox" ox

B ok
ax.i

k

= Sj .
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11.6 Contravariant vectors

If a set of N quantities A’ in a coordinate system x’ are transformed to the set of another N
q Y

quantities A’ in the coordinate system X/ by the equations

then A’ are said to be components of a contravariant vector or contravariant tensor of the first order or
first rank.

Note : It is a convention that contravariant tensors are denoted by superscripts, with the
exception of the coordinates x', which may behave as contravariant vector in special conditions (see
Theorem 2)

Theorem 1. The law of transformation of a contravariant vector is transitive.

Proof. Let A be the components ofa contravariant vector in the coordinate system x’ and they
are related to the components 4’ of same vector in the coordinate system %/, then we have by the

law of transformation

A ==4 L (11.6.1)

Now, a further change of coordinates from ...... to x ™, the new components 4™ by contravariant

law is given by

* 6x*k —
At = = (11.6.2)
Combining (11.6.1) and (11.6.2), we get
VPE A
A*kzﬁx . .8xv 4
ox’ ox'
6x*k i
Y 4L (11.6.3)

This shows that the law of transformation of contravariant vector is transitive.
Theorem 2. The coordinates x' behave like a contravariant vector with respect to linear

; A J 2
transformation of the type X’ =a;x', where a/ are a set of N* constants.

Proof. We have X/ = a{ X (11.6.4)
: . !
Differentiating, we get F =a;. L (11.6.5)
28
Combining (11.6.4) and (11.6.5), we get
x/ = ox’ X'
o T e (11.6.6)

which shows that x behaves like a contravariant vector.
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Illustrative examples

(. dx . dy
Ex.3. If a vector has components X,V (x = an = Ej in rectangular cartesian coordi-
nates then ,Qare its components in polar coordinates.
Sol. Here, the space is two dimensional.

Let for rectangular cartesian coordinates x' = x, x> = y for polar coordinates

—1=r,)?2=e
where x* + y* =2, tan™" RA
X
xXxX+yy=rr, L (1)
= X+t =met L (2
1 T ‘
zxy fxzﬁjrzezxy—yx.
1+y7 () 3)
X
Using (1) and (3)
2.2 442 (2 2\(.2, .2
rre+ro —(x +y )(x +y)
= Pt =xt 4
Using contravariant law
. J o J J
= 4 =a’71 A1+6)_CZ A (5)
ox' Ox Ox
—1 —1
A' =8_x1A1+8_x2A2 :@m@.y
ox ox ox Oy
Y. FF
=—X+=y=—=7
p ry S e (6)
2 2
A? —a_LIAl aiZAZ
ox ox
—@ +@y—_l)b+_y
ox Oy P2t
Xy — yx
== .. (7)

Ex.4. A vector has components X,y in rectangular cartesian coordinates then its respec-

tive components in polar coordinates are
i—r0%,0+=76.
r

Sol. Assuming A= 4= L (1)
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We ﬁl’ld Zl _ 8r % Gry

_x —_—
ox oy
e Fv )
_ XK+ yp i r 0 e (2)
v r
7 _@..+@..
ox ny
_Xp—yxX 20— 2r0r
== >
r r
.2 .
6z 3)

Note : It is noted form above examples that the velocity and acceleration components are

contravariant vectors.

11.7 Covariant vectors

Ifa set of N quantities A, in a coordinate system x’ are transformed to a set of another N quanti-

ties Z ; in the coordinate system x/ by the equations

Zp=%Aq, ..... (11.7.1)
ox?
then A’ are said to be the components of a covariant vector or covariant tensor of first order or first
rank.
Note : The components of covariant vectors are denoted by subscript as a convention.
Theorem 3. The law of transformation for a covariant vector is transitive.

Proof. Let the components of a covariant vector in the coordinate system x’ be 4, and compo-

nents of same vector in coordinate system X’ be 4 ;» then by covariant law of transformation.

-
Aj =5A1 ..... (11.7.2)

Now for the further change of coordinates from system 5/ to x™ the new components A4,

by covariant law are given by

4 =a)’;—*kAj. ..... (11.7.3)
Combining (11.7.2) and (11.7.3) .
ox " ox’
a i
=4, (11.7.4)
ox

which shows that the law of transformation of covariant vectors is transitive.
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Theorem 4. These exists no distinction between contravariant and covariant vectors when
we restrict ourselves to coordinate transformations of the type
—i_ iom | i
X =a,x +b,
where b' are N constants which do not necessarily form the components of a contravariant vec-

tor and afn are N? constants which do not necessarily form the components of a tensor such that

da =8 .

Proof. We have X =a x"+b. ...(11.7.5)
Multiplying by a’ and summing over index i, we get

dx=dd x"+db' L. (11.7.6)
Using given relation da =8,
we have dx =8 x"+d b =x"+db. .. (11.7.7)
Now, replacing the free index » by m on both sides, we obtain

"=d x'-d, b. L. (11.7.8)
From (11.7.5) and (11.7.6), it follows that

o "

which sows that transformation laws for contravariant and covariant vectors respectively, define the same

type of entity in the present ease.

11.8 Invariant

A function 7 of N coordinates x’ [/ =1 (x)] is called an in variant or a scalar or tensor of zero
order with respect to coordinate transformations if 7 = 7, where 1 [7 =1 ()? J )J is the value of / in

new coordinate system X/ .
Ex.5. A covariant tensor of first order has components xy, 2y — z2, xz in rectangular coor-
dinates. Determine its covariant components in spherical polar coordinates.
Sol. Here we have three dimensional space
xl=x, =y, x=z
X =rx=0,% =9,
where x=rsinBcos¢, y=rsinOsind, z=rcosB. .. (1)
Taking A, =xy, A,=2y- 22, Ay=xz. L (2)

Using covariant transformation law

_ J
4 :aLA/.

o'
| 2 3
LSRN SN
ox' ox' ox'
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- o o’ o’
ox ox ox

4y
Ox oy ). Oz
> 7 ar( y—z7) e (x2)

= (sin 0 cos @) 72 sin® O sin ¢ cos ¢ + sin O sin ¢ (27 sin O sin ¢ — 72 cos’ 0)

+cos0rsinBcosPpcosO.  ...(4)
Similarly from (3)
B ox? o’
2 af2 1 6)?2 2 6)?2 3
Ox oy ). Oz
=— +—=—QR2y-z7)+—
ae(x)’) 86( y—z7) % (xz)
= (7 cos 0 cos ¢) 72 sin® O sin ¢ cos ¢ + (+ cos O sin ¢) (27 sin O sin ¢ — 72 cos? 0)
—(rsin@® (”?sinOcos Ocos ) ... %)

and 4; = A4+ A, +

11.9 Second order tensors

(a) Contravariant tensor of rank two : Ifa set of N> quantities 4% in a coordinate system x/
are trans formed to another set of N? quantities 7% in coordinate system X by the equations
q A Y y q
kAl
ox . ox i
ox' Ox’

then A7 are called components of a contravariant tensor of rank two or second order.

A¥ = . (11.9.1)

(b) Covariant tensor of second order : Ifa set of N? quantities Aij in a coordinate system x'

are transformed to another set of N2 quantities A,, in a coordinate system X’ by the relations
q Kl V! y

- ox' ox’ (11.9.2)
T T 7 e .
ot ol Y
then A are said to be the components of a covariant tensor of rank two or second order.
(c) Mixed tensor of second order : Ifa set of N? quantities A;. in a coordinate system x’ are

transformed to another set of N2 quantities A* in the coordinate system ¥/ by the relations
q J Y Y

P

— L 11.9.3
/ axz 6)_(51 J ( )

then A;. are said to be the components of a mixed tensor (contravariant rank one and covariant rank

one) of second order or second rank.
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Theorem 5. The Kronecker delta is a mixed tensor of second order whose components in
any other coordinate system again constitute the Kronecker delta.
Proof. The Kronecker delta is
L, ifi=],
A

Let 8’} be the components in coordinate system x’ and corresponding components in X’ be Slk

8 =

! (11.9.4)

ﬁfkﬁx-jsi _oxtox! oxt <

- .= . = —_—
ox ox ' ox/ ox  ax L e (11.9.5)

we have

= 8’} behaves like a mixed tensor (contravariant rank one and covariant of rank one) of second
order.

Theorem 6. If Ay. be a covariant tensor of second order and B', C' are contravariant
vectors, prove that A, B C'is an invariant.

Proof. We have Al./. a covariant tensor of rank two

o
ek (11.9.6)
and B, C' are contravariant vectors
_ o
pr="p5 (11.9.7)
ox
&
co=<B (11.9.8)
ox
Multiplying equations (11.9.6), (11.9.7) and (11.9.8), we get
— zpmg . OX o) axP x|
A BPCY = B*"C
=5} 8] 4;B*C’
-4,8C L (11.9.9)

which shows invariant character of 4 5 B C.

11.10 Higher order tensors

Ifa set of N"™*" quantities A;IIIZ; in a coordinate system x’ are transformed to another set of

ZPIPZ'"pm

. . _j .
a0r.q. 1, the coordinate system X/ by the relations

N™" quantities

hly.y

Zplpzpm _ afpl aXPZ afpm axll axJZ axln

Q92+ dn axil axiz axim ox? ox4 ma)?qn IJyedn® e (11101)

iy ... i . . .
then 4 5. are said to be the components of a mixed tensor of (m + n)™ order contravariant of m™

order and covariant of n order.
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Theorem 7. The transformation of the tensors form a group i.e. the law of transformation
of tensors possesses transitive property.
Sol. Without loss of generality, we can consider a mixed tensor A;. in a coordinate system x’

and consider the transformation of coordinates from x’ to X/ and then x*. Let the corresponding

components of the tensor be 4 and A;” , then

& a
A/f=§E Lo (11.10.2)
e, OxP X -,
and °P =éaxi*ql41 S (11.10.3)
Combining (11.10.2) and (11.10.3), we get
* kA=l i * i
Ap OO O o i 0x " o) A (11.10.4)

o' o' ax'?ox’ T ox ax
which shows that the transformation of tensors possesses transitive property i.e. transformation of ten-

sors form a group.

11.11 Zero tensor

A tensor whose components relatively to every coordinate system are all zero is known as zero

tensor.

11.12 Symmetric tensor

A tensor is called symmetric with respect to two contravariant or two covariant in dices
if its components remain unaltered upon interchange of the indices.

e.g. the tensor 477" is said to be symmetric in p and ¢ if
=g (11.12.1)

and it is said to be symmetric in s and ¢ if
AT =g (11.12.2)

Theorem 8. A symmetric tensor of the second order has atmost w different

components in V,,

Sol. Let Ai/. be a symmetric tensor of order two. The total number of its components in an array,

ma Vy
A Apy e Ay
Ay Ay o A,y
Ay Ay v Aws (11.12.3)



are N2, out of which all the N diagonal terms will be different and the rest (N> — N) will be equal in

2
pairs due to symmetric property. The number of such pairs will be M Hence the total number
of independent components
NN
1
:EN(NH). ..... (11.12.4)

Theorem 9. If a tensor is symmetric with respect to two contravariant indices (or covari-
ant indices) in any coordinate system it remains symmetric with respect to these two indices in
any other coordinate system.

Proof. Due to involvement of only two indices in symmetric property, there in no loss of gener-
ality if we take contravariant tensor viz. A7 = A", it is symmetric in i, j.

P Axd
We have VI =6_L6_L AV
ox' ox’
ol ox?
= o A [due to symmetry]
X' Ox-
- a_iqa_Lp Y
ox’ ox'
_ .

Hence the proposition.

11.13 Skew symmetric tensor

A tensor is called skew symmetric with respect to two contravariant or two covariant
indices if its components change sign upon interchange of the indices. e.g. Azlq‘ = —A;;Z‘ is skew
symmetric in i and j and if

Aty ==
is said to be skew symmetric in p and gq.

If a tensor is skew symmetric with respect to any two contravariant indices and also any two
covariant indices, then it is called skew-symmetric tensor.

Notes :

(i)  The property of skew symmetry (like that of symmetry) in also independent ofthe choice

of'the coordinate system.

(ii)) Skew-symmetry, like symmetry cannot be defined with respect to the indices of which one

denotes contravariance and the other covariance.
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different arithmeti-

N(N-1)
2

(iii) A skew-symmetric tensor 47 of second order has at most

cal components, as all the N diagonal terms A" (no summation) are zero in this case.

11.14 Algebraic operations with tensors

(i) Addition : The sum of two or more tensors of the same rank and same type is a tensor of

same rank and same type.

— _ ox' ox? y
Let ey (11.14.1)
- o oxt
and B,=———B/. 11.14.2
TP ax’ ! ( )
Adding (11.14.1) and (11.14.2) we get
- = X axt
1 1 _ P P
(Aj+Bj) -5 _a)—c-"(A" +B! ) ..... (11.14.3)

This shows that A7 + By = C/ (say) is a tensor of same rank and type.

Remark : It can easily be verified that the addition of tensors is commutative and associative.
(i) Subtraction : The difference of two tensors of the same rank and same type is also a tensor

of the same rank and same type.
It immediately follows from above equations (11.14.1) and (11.14.2) that 47 — B} = DY is also a

tensor.

(iii) Outer multiplication : The product of two tensors is a tensor whose rank is the sum of the
ranks of given tensors.

This process involving ordinary multiplication of the components of the tensor is called open prod-
uct or outer product of the two tensors, for example : the outer product of a tensor AZn , Dy a tensor
qu is a tensor C ;{fnpq is a mixed tensor of rank 8, contravariant of rank 3 and covariant of rank 5.

Notes :

(i) The converse of above product rule is not always true i.e. not every tensor can be written as

a product of two tensors of lower ranks, for this, the reason is that the division of tensors is
not always possible.

(ii) The division, in usual sense, of one tensor by another is not defined.

Theorem 10. Outer multiplication of tensors is commutative and associative.
Proof. Commutative law : Let 4/ and BJ be two tensors,

_ —h A=k Al
then i =6xv 8x. ox
ox' ox/ ox™

m
=, 0x" 0x1

R (11.14.4)

] o

s A (11.14.5)
X X
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Multiplying (11.14.4) and (11.14.5), we get

g OO gy O O
ox' ox’ ox™ T oxP ox

N

ox" oxt ax! " oxt)
= = A B (11.14.6)

-— 4] B?.
ox' ox’ ox™ oxf ox®
Now multiplying (11.14.5) and (11.14.4)

o r oAg hoak AL
Bsr A,},l,k =6‘)? 8x B;)&)? 6)7 8x Al‘/.
ox? ox* ox' ox’ ox"

ox" ax* ox' ox’ oxt J

= — . —— BP A/

Laxt ox’ ox™ ox? ox’ gl L (11.14.7)

Equations (11.14.6) and (11.14.7) show that the expression within brackets in the R.H.S. are

same therefore we can say
A4'By =B 4. (11.14.8)
Associative law : Here we are to prove that
y ‘ y ‘
(47 BY) Ch =47 (BICy).
Proceed as usual.
(iv) Contraction : If one contravariant and one covariant index of tensor (mixed tensor) are set
equal, the result indicates that a summation over the equal indices (dummy indices) is to be taken ac-

cording to the summation convention. This resulting sum is a tensor of rank two less than that of the

original tensor. The process is called contraction.

ir

pqr @ tensor of rank 3 obtained

Consider a tensor qur ofrank five. If we put j = r, we get 4

o Al
by contracting A,

i ot ox ox’ ' o (11149
Stu axi axj a)?s 6)7 6)?“ pqre e . .

Putting < ot ox o’ o' e,
uttm =r = — - r
gJ stu axz axr a)?.s a)?t 6)_Cu pq

&t o axt 5 4
—g'a)?s 5 wApgr (11.14.10)

e O o,
Stu axi a)—CS a)—ct pqr

_ k P A4
= A; =%-?Y%A;q ..... (11.14.11)
X X~ OX

This is a law of transformation of a tensor of rank 3.
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Thus after contraction we get a tensor of rank 3. Contravariant rank (2 — 1) and covariant rank
3-D.

Notes :

(i) We never contracts the indices of same type as the resulting sum is not necessarily a tensor.

(i) The process of contraction reduces the order by two and may be repeatedly used, if so

desired, to contract new tensors, whose order will always be non-negative.

(v) Inner multiplication : The process of outer multiplication, followed by a contraction, we

obtain a new tensor called inner product of the given tensor. The process is called inner multiplication.

For example : The outer product of 47 and BY is AV BY. Putting p = I, we get the inner product
A) B, =Cl.

Again if we put p = [, j = g, we have another inner product Af" Bf] =D'.

Note : It can easily be verified that inner multiplication of tensors is commutative and associa-

tive.

11.15 Illustrative examples

Ex5.1f ¢ = ail.AiAf, then we can always write ¢ = bil.AiAf where b, is symmetric.

Sol. b= ay.A"A-". ..... (1)
On interchanging the dummy indices

¢ =a, 44 L (2)
Adding (1) and (2), we get 2¢ = (ay. + ajl,)A’ A
or b= by.A’ A, 3)
where by :%(aij'"aﬁ)’

which is symmetric, i.e. by. = bﬁ.
Ex.6. If A™ is skew-symmetric and B, _is symmetric, prove that A B, = 0
Sol Given that 4™ =—A4* and B, = B on changing the dummy indices in 4" B, we get
Ars BVS - Asr Bsr - _Ars BVS

or 24*B =0 = A*B_=0.

Ex7. If a; Is a symmetric covariant tensor and b; a covariant vector which satisfy the
relation a; b, + ay b.+a, bj =0, prove that either

a;= 0 or b =0.

Sol. Let a; b, = Ay ()
then Ay.k is a third order covariant tensor which is symmetric with respect to the pair of indices i and
due to symmetric property of a;. Also replacing the indices 7, j and k by i, k and i respectively on both
sides, we find

ab=A, L )
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is symmetric with respect to j and & and similarly
a,; bj =Ag e 3)
is symmetric with respect to k and i.
Hence Ay
Adding (1), (2) and (3), we get

Ay T A+ A =0

is a symmetric tensor.

= 34, =0
= a; b,=0
= a;= 0
or b,=0 ie b=0. L. 4)
Ex8. If U+ 0 are the components of a tensor of the type (0, 2) and if the equation
Juy+ gu; =0.
holds, then prove that either f = g and uy; is skew symmetric or f=— g and u,; is symmetric.
Sol. Given that fuy. +gu, = o. . (1)
Changing the free indices, we may write it as
fuﬂ +gu; = o. . (2)
Adding (1) and (2), we get (f+eo (uy. + uﬁ) =0 L. 3)

= (i) either u;tu;=010e u, is skew symmetric, and then from (1) it follows that /= g.
(ii) or f=—g and then from (1) it follows that U is symmetric.

11.16 Quotient law of tensors

In the study of tensor analysis some times it becomes necessary that whether a given entity is a
tensor or not. Theoretically we may say that if components of an entity obey tensor transformation laws,
then it is a tensor otherwise not. However in practice it is troublesome and a simple test is provided by a
law known as Quotient law, which is as follows :

Theorem 11. An entity whose inner product with an arbitrary tensor is a tensor, is itself a
tensor.

Proof. Let 4 (i, j, k) be given entity in a coordinate system x’, and BZ; be an arbitrary tensor

whose inner product with 4 (i, j, k) isatensor C _ i.e.
A(i, jk)B)=Cp. L (11.16.1)
We have to show that 4 (i, j, k) is a tensor.

In the coordinate system X', we have

A(p.q.r)B)*=C,,. L (11.16.2)
— . 0xP ox? ax"
But we have B = PRI E— A (11.16.3)
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= " ox*
nr afn afr
Using (11.16.3) and (11.16.4) in (11.16.2), we get

Cour (11.16.4)

- ox? ox? ox™ ;. ox™ axt
A(p,q,l”) i i L Pm = n r —mk
ox! ox’ ox ox" ox
O O 46/ k)B] using (1L16.1)
= s ) m* us1n, .10.
& o 8
M| - oxP axd  oxk .
A(p,g,r)=———-=——=A4(i,j,k)|Bi =0
= Gf"{(pq)éx’éxf %" (8.7 )}
On inner multiplication by ——
- oxP oxd  oxk .
8" A(p,q,r)———————A(i,j,k)|B! =0
l{(pq )axlax/ ox" (8. )}
- ol axd  oxk .
A(p,q,r)=—=—-——A(i,j,k) |B" =0
- { (p.q )ax' P (i,J )} V=0 . (11.16.5)

Form above equation we cannot jump to the conclusion that the expression within bracket van-
ishes. Since here 7 and j are dummy indices which imply summation and it is the sum which is zero.
However since B;"' is an arbitrary tensor we can arrange that only one of its components is non-zero.
Now each component of B.? may be chosen in turn as that one which does not vanish. Therefore the

expression within brackets is identically zero.

- ox? axd oxt
Hence A p.q.r - - A iajak =0. . 11.16.6
ox' ox’
Taking inner multiplication with Lm xn » we get
X" Ox
- o ox' o’
A(p,q,r)d881 = A(i, j, k
(p.q.7) o o o A JK)
- ok oxt ox/
: A m7n,r = 9 A i’ "k S seess 11.16‘7

which shows that 4 (i, j, k) is a tensor of third order, and is covariant in i, j, and k£ and therefore may be

writtenas 4..,.
ijk
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11.17 Illustrative examples

Ex.9. Use Quotient law to prove that Knonecker delta is a mixed tensor of order two.
Sol. Let 4/ be an arbitrary contravariant vector, then by property of Kronecker delta, we have
sal=4, L (D)
which is again a tensor of order one (contravariant).
Hence by Quotient law 8’} is a mixed tensor of order two.
Ex.10. If A" and B' are arbitrary contravariant vectors and Cy.A" B is an invariant, show
that Cy. is a covariant tensor of second order:
Sol. Given that Cy. A' B is invariant, we have
c;4B'=C, 4"B*. .. (1)

Further, A’ and B’ are contravariant vectors, therefore

_ P
AP = a_L A, 2)
Ox'
ol
and Bi=—pB. 3
o 3)
Substituting (2) and (3) in (1), we get
-C X7 &7 A'B’ =0
R PP -~/ = . 4)
- A', B are arbitrary vectors, therefore
_ 6_” a—q
=C,,——, (5)

i ~pq o' o’
which shows that Cy. is a covariant tensor of rank two.
Ex.1. If A" is an arbitrary contravariant vector and Cy. A" A is an invariant, show that
Cy. + Cii is a covariant tensor of second order.

Sol. Proceeding as in Example 10, equation (4) in the present case may be written as

= ox? ox i
{ ij Cpq axi GXJJAA =0 . (1)
This quadratic form, vanishes for arbitrary 4’, but we can not jump to the conclusion that the
expression within bracket is zero. We remember that in the form bl./.Ai A, the coefficient of the product
A" 4% is mixed up with the coefficient of 42 4", it is in fact b, + b,,. Thus interchanging the dummy

indices 7 and j, and adding these two results, we can deduce only that

_ afp a)?q _ a)_CP a)?‘]
Gt Ci=Cog T T o
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On changing the dummy indices p and ¢ in last term, equation (2) becomes

.
(Cz'ﬁcﬁ):(cpﬁcqp)éé’

which establishes the tensor character of (Cl,]. + Cﬁ.) as covariant tensor of the order two.

11.18 Relative tensor

If the component of a tensor A(IZ 1(112’ qu " transform according to the equation
- ox [ ox"  ox“ ox" 9x
[ L R - P1Py-Pr
B — —
Wt ox | 1t gxPr oxPr 90X 0X

ox

then A{flqu'"f;’ is called a tensor of weight w, where is the Jacobian of transformation. If
192

w =1, the relative tensor is called a tensor density. If w= 0, the tensor is said to be absolut or simply
tensor.

Note : If the rank of relative tensor is one then it is called relative vector. Hence if

W [e—
. 0x?

ox*’

| ox
ox

AP

then A” is a relative vector of weight w. If w= 1, the relative vector is called a vector density. I[f w= 0,

the relative vector is called absolute vector or simply vector.

11.19 Conjugate (or Reciprocal) symmetric tensor

Consider a covariant symmetric tensor Al.j of rank two. Let d denotes the determinant | Al.j | with

elements 4 i.e. d =| 4, | and d # 0. We define 47 by

i cofactor of 4;; in the determinant | 4;; |

47 = p s (11.19.1)

AV is a contravariant symmetric tensor of rank two and is said to be conjugate (or reciprocal) ten-
sor of 4.

Theorem 12. I § (i, j) is the cofactor ofAy. in the determinant d = | Aii | # 0 and Ay. is
defined by

A7 = M’
d

then show that A,-jArj =3;.

Proof. From the properties of determinants we have following two results :
&(i./)
d
= Al,l.A?f=1. ..... (11.19.2)

(l) A,,a(lr])zd: AU =1,
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(i) A; 8@ )=0

= 4}@:0 d+0

= Ay.A’f=0 ifi#r
@and (i) = A,.jA*fz{l yi=r
0 ifi#r
ie. A A7 =8 (11.19.3)
Theorem 13. Prove that A7 (defined as above in theorem 12) is a symmetric contravariant

tensor of rank two.

Proof. Given Ar=222220 (11.19.4)

where & (i, ) is a cofactor of 4, ind =[ 4.

Since 4, is covariant symmetric tensor, so € (i, j) is symmetric and hence ¥ = A" is sym-

metric.

Now it remains to prove that Ay. is a tensor.

we know A A7 =87 L (11.19.5)

We cannot apply the quotient law directly to this equation to establish the tensor character of 47
because Ay. is not arbitrary.

Now consider the arbitrary contravariant vector C¥. Then Bp =4 i ¢k is an arbitrary covariant
tensor.

Multiplying this equation by 4%, we have

AP B.= A" 4, ck
=5 ¢k =g
= Aipo= ¢ (11.19.6)
Since Bp in arbitrary vector, hence by quotient law 4% is a contravariant tensor of rank two.

Hence 47 is a contravariant tensor of rank two.

11.20 Illustrative example

Ex.12. If Ail. is a symmetric covariant tensor of rank two and BY is formed by dividing the
cofactor of Ail. in the determinant | Ail. | =a (say) by | Ail. | itself, show that
)| B |- L and  ()a,B7=N
4 .

Sol. By theory of determinants
A% =85 (1)
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® 41| 8 |8

J

= a ‘ B* ‘zl

i 1
= ‘ B ‘ e )

a
(ii) Again, form (1) identifying j and k, we get
4,;B7 =8/ =N.
y 1
Ex.13. IfAi,' = 0 for i #j, show that the conjugate tensor BY =0 for i #j and B" = E (no
summation).

Sol. We have Ao =8 (1)

(i) Let k #j, then 0=4, B

=A, B¥+4, B*+ .. +4 B*+ .. +4, B%
j 2j i Nj

=0+0+...+4, B+ .. +0=4,B" (No summation over j).
But A/./. #0 (No summation over )
Hence Bk =0,j+k.
ie. Bi=0,i#j
(ii) Let k=, then from (1)
1 =4 B/
ij
=A, B'"+A4, B2+ .. +A4, Bi+. +A4, BV
7l i2 ii iN
=0+0+..4,B"+...+0=4,B" (No summation over 7).
But A,#0 (No summation over 7)
Hence B = % (No summation).
A

11.21 Self-learning exercises

. What do you mean by Eienstien summation convention ?
. What are dummy and free indices ?

1
2
3.
4

Define Kronecker delta.

. Define contravariant and covariant vectors.

11.22 Summary

The unit starts with the introduction of tensors in the space of N dimensions. By giving the

concepts of indicial and summation convention we have defined the covariant and contravariant tensors
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of one or more ranks. Here we study the different properties of tensor entities. In algebra of tensors we
define addition, subtraction, outer multiplications, contraction and inner-multiplication. Some theorems
and examples on above concepts are given. The symmetric and skew-symmetric tensors have also been
studied in this unit. To test whether a given quantity is a tensor or not, the quotient law of tensors is

given. In the end conjugate tensors have been defined.

11.23 Answers to self-learning exercises

1. §11.4(a)
2. §11.4(0), (c)
3. §11.5

4. §11.6,§ 11.7.

11.24 Exercise

1. Prove that the transformation of tensors form a group.
2. Show that a second rank covariant (or contravariant) tensor is expressible as a sum of two tensors
one of which is symmetric and other is antisymmetric.
3. Prove that the contracted tensor A;. is a scalar.
4. Show that the tensor equation aj. A =al j where o is an invariant and Xj an arbitrary tensor,
demands that
a;; =80

5. Show that the contraction of the outer product of the tensors 4 and Bq is an invariant.

oo
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Unit 12 : Riemannian Space, Metric Tensor, Indicator,
Permutation Symbol and Permutation Tensors,
Christoffel Symbols and their Properties

Structure of the Unit

12.0  Objective

12.1  Introduction

12.2  Metric tensors and Riemannian space
12.3  Conjugate metric tensor

12.4  Indicator

12.5  Tllustrative examples

12.6  Permutation symbols and tensors
12.7  Christoffel’s symbols

12.8  Properties of Christoffel symbols
12.9  Tllustrative examples

12.10 Laws of transformation of Christoffel symbols
12.11 Self-learning exercises

12.12 Summary

12.13 Answers to self-learning exercises

12.14 Exercises

12.0 Objective

In this unit our objective is to generalize the concept of distance between any two neighboring
points from three dimensional space to N-dimensional Riemannian space. We introduce a particular type
of tensor, called metric tensor which has a great importance in the theory of tensor analysis. We also
consider two types of expressions due to Christoffel involving the derivatives of the components of
metric tensor of fundamental tensor g and g¥. These expressions will be called Christoffel symbols of

first and second kind.

12.1 Introduction

We know that in Euclidean space of three dimensional rectangular cartesian coordinates the
distance ds between two neighbouring points (x!, x2, x¥) and (x! + dx!, x2 + @2, x3 + dx3) is given by
ds? = (dx)2 + (dx®)? + (d3) =didd i=1,2,3 ... (12.1.1)
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The distance ds is also called the line element. If we take the coordinates of points in any of the
curvilinear coordinates (e.g. cylindrical or spherical polar coordinates) such as (x*!, x*2, x"3) then x’

. £ 7 . . k7 .
are functions of x"* and dx* are linear homogeneous functions of dx™* given by

o
dx’ Za)f‘m <" Gm=1,2,3) .. (12.1.2)
X

when we substitute dx’ from (12.1.2) in (12.1.1), we get a homogeneous quadratic function in dx"? viz.,

o' ox' oy
ds? | ———— |dx "dx™" : :
[ax m o j (summation overi) ... (12.1.3)
which can be written as ds? = g dx"dx"  (mn=1,2,3) .. (12.1.4)
* ox' ox' ) )
where 8wn =%, ~%, (summingovery) ... (12.1.5)
ox " Ox

The differential expression of R.H.S. of (12.1.3) which represents ds? is called the metric form
or fundamental form of the space under consideration.
Motivated by the above fact, the idea of distance was extended by Riemann, originator of ten-

sor calculus, to a space of N-dimensions.

12.2 Metric tensor and Riemannian space

The quadratic differential form
ds? = gjadxad, L (12.2.1)
which expresses the distance between two neighbouring points, whose coordinates in a V), are x' and
x! +dx', is called a Riemannian metric or line element, gjj in called metric tensor or fundamental tensor.

The N-dimensional space characterised by a Riemannian metric is called a Riemannian space
and is denoted by ‘Riemannian — V.

Here we postulate that the line element ds is independent of coordinate system i.e. ds? is an
invariant. We will show that gjj is a symmetric covariant tensor of order two, it is called the fundamen-
tal covariant tensor or metric tensor of Riemannian space.

Theorem 1. The fundamental tensor g is a covariant symmetric tensor of the order two.

Proof : The line element or metric is given by

ds? = gpadxad L (12.2.2)

Consider a coordinate transformation from the systemx’ to X' (i =1,2,3,..,N) as

X =X (%,5%, %, Xy )

so that the metric gjj dx! dv/ transforms to g dx "dx’. But we have ds? is invariant.
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ds?=g. didv =g, dx' dx’ .. (12.2.3)
ij j
= 8pq dx" dx”

& &
K

_ o oxPox?) i
or Lg,-j ~8pq E@J dxdx’=0 (12.2.4)
As explained in Example 11 of Unit 11, we deduce from (12.2.4)

N
that (85 8) =(,y + gqp)éé ..... (12.2.5)

which shows that (gl.j + gjl.) is covariant tensor of the second order.

: 1 1
Now we can write gj = E(gy +g; ) +E(g” — gﬁ) ..... (12.2.6)
o Co o
Then g dx' dvf = E(g,.j +g; ) dx'dx’ +5(g,.j L - (12.2.7)

On interchanging the dummy indices in R.H.S., we get

i

o1 o1 :
g dx' dx’/ :E(gji +gij)dxjdx +E(gji —gi/.)dxfdx ..... (12.2.8)

Adding (12.2.7) and (12.2.8), we get
2gl.j dx’ dx = (gl.j + gji) addd L (12.2.9)
which show that g is symmetric. Thus combining the two conclusions that le.j tg; ;) is a covariant ten-
sor of the second order and g is symmetric, we conclude that 2gl.j org is a symmetric covariant ten-
sor of the second order.
Note : We call a N-dimensional space as Euclidean space of N-dimensions if its metric is
ds? = (dxh)? + (dx?)? + (dx3)? + ... + (dcV)?

ie. g = 0, i#j and g;=1 (no summation).

12.3 Conjugate metric tensor

We know that g is a symmetric covariant tensor of the second order and g = | gjj | # 0, we can
define
gl = GG, )
g

where G (i, j) is the cofactor of g in the determinant g.

..... (12.3.1)

It follows from Theorem 13 of Unit 11 that g7 is a symmetric contravariant tensor of the second
order and is said to be conjugate of g i.e. conjugate metric tensor. It is also called the fundamental

contravariant tensor.
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Hence the fundamental covariant tensor gjj and fundamental contravariant tensor g?, being con-

jugate, are related to each other by the equation

gig=8" (12.3.2)

12.4 Indicator

It in implied that the metric in Euclidean space is positive definite i.e. ds* > 0.
But in the theory of relativity, the metric of the four dimensional space (space-time) is given by
ds? =—(dx')? — (dx?)? — (A2 + 2 (b2, (12.4.1)
where c is the velocity of light and x* is the time coordinate. This metric is not positive definite. We see
that ds? > 0 when x!, x2, x3 are constants along the curves, it is zero when, say, x% and x3 are constants
and x! = ex* and negative when x* in constant.

Thus, in general, for some displacement dx’, the form ds? may be positive and for others it may
be zero or negative. If ds? = 0, for dx’ not all zero, i.e. the two points are not coincident the displace-
ment is called a null displacement. A curve along which the displacement g dx! d¥ is null despite of the
fact that the two points are not coincident, is called a null curve. For any displacement dx’ which is not
null, we introduce an indicator e, which is + 1 or —1, so as to make ds? always positive, i.e.

ds? = egyddad, L (12.4.2)

where e is called an indicator.

12.5 Illustrative examples

Ex.1. If a metric of a V5 is given by
ds? =5 (dx1)? + 3 (dx?)? + 4 (dx3)? = 6 (dxd) (dx?) + 4 (dx?) (dx3)
find ()g and (i) g7
Sol. When we compare the given metric with the metric

ds? =g di' dd (i, j=1,2,3)

we find that
8117580738348 817 383780283781 =0 - (1)
5 30
0 2 4
g=lg;l=4 .. )

To get conjugate of gjp we find
G(1,1)=8,G(1,2)=G2,1)=12,G(2,3)=G (3,2)=-10,
G(2,2)=20,63,1)=G6(1,3)=-6,G(3,3)=6. .. 3)
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Since gij: , We obtain
g
5 3
¢l=2gR=5g" =2 g0 =gt =3, gP =P =D =gt ©)
2 2 2
2 3 3
2
. 5
V=3 5 =\ 5
g 2 Q)
3.5 3
L 2 i

Ex.2. Show that the metric of a Euclidean space, referred to cylindrical coordinates is
given by
ds? = (dr)* + (r d0)? + (dz)?.
Determine its metric tensor and conjugate metric tensor.

Sol. We have
ds’ = ggdx'dx’ =g, dxPax?, .. ¢))
where in rectangular coordinates
xl=x,x?=y,x*=z

€281 813781 83 80=081=8p=ex3=L .. (2)
and in cylindrical coordinates

X =rx=0,% =z;x=cosb,y=rsinb,z=zand g, =? ... 3)

By covariant transformation law

- ox' ox’
gpq p ngi. ..... 4)
i J
Therefore g = ailail .
ox ox
2 2 2
ox’! ox? ox’
= = gt o gn*t o &33
(533
or or or
=cos?@+sn?0+0=1. . &)
2 2 2
RO
00 00 00
=r2sin? 0+~ cos?0+0=,2 .. (6)
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(VL ) ()
> 0z Oz Oz

—0+0+1=1 (7)

12 a)?l 6‘)?2 ij o' I ar? 11 o' N o2 22 o' I o2 33
SIEHEIEHE)E)
or )\ 00 or )\ 00 or )\ 00

=—rcosOsnO+rsinbcos6+0. . (8)

Similarly g,; = 0= g,; due to symmetric property g,, =0,g;, =0,g;, =0.
Hence ds? = 21(dx')? + 8y (dX*)? + g3 (dx°)

=(dry? + (0> + (@2~ L ©)

The metric tensor g, in cylindrical coordinates is given by

gpg =

- o O

0
2

r

0

(=

Clearly g=|g, =~ L (10)

and conjugate metric tensor g ,,, which is the inverse of the matrix (10), is

1 0

0
_ 1
gpq:() r—z 0.
0

0 1

Ex. 3. Show that the metric of a Euclidean space, referred to spherical coordinates is
given by
ds? = (dr)* + (rd0)* + (r sin 0 d $)2.
Determine its metric tensor and conjugate metric tensor.
Sol. We have ds? = g dxt d¥ = gy axrdx?, L (D
where in rectangular coordinates
xl=x,x2=y,x3=
811=822=g33=1ag,-j=0ai¢j ..... 2)
and in spherical polar coordinates
¥ =rxr =07 =0
x=rsinBcos p,y=rsinOsin¢,z=rcos® .. 3)

we have to find g,
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ox’ ox’

By covariant law Epg = ﬁﬁ 8. 4)
o 2 \2 32
_ ox' ox/ ox' Ox ox
Therefore g, = 6‘_1 o & = 8_1 gt g gnt E 833
2 2 2
ORCRD
or or or
=sin? 0 cos?p +sin? O sin® p+cos2O0=1 .. (5
2 2 2
RORORS
00 00 00
=12 cos20 cos? (1) +72 cos?0 sin?p + 2 sin2 0 =12 ... (6)
g (&) (@) (=Y
¥ = 20) 20) T30
=72 sin?0 sin?dp + 2 sin®@ cos?p+0 .. (7)
=72 sin O
_ ox' o’
812 = a_l 6_2

[ )
BRI

= sinB cosd(rcosO cosd) + (sin sind) (rcosO sing) + cosO (— 7 sin 0)

= rsind cosO (cos?p + sin?p) —rsinOcos® ... (8)
=0.
Similarly g5:=0,g=0. 9)
By the symmetric property g,, =0=¢g;,=g,,=0. .. (10)
Hence ds® =2 (dx')? + 2y (dx?)? + Z33(dx’ )’
=(dr)?+ (d0)? + (rsin0d p)>. .. (11)

The metric tensor g, in spherical polar coordinates is given by

1 0 0
— 2
8 =|0 7 L (12)
0 0 r>sind
Clearly g=g, l=rsin*0. (13)



The conjugate metric tensor g??_ which is the inverse of matrix g, , in given by

1 0 0
_ 1
gpq =10 — 0
0 o > l.
L 7“sin0 |
Ex. 4. Show that
(i) (ghj Sk~ S &) &7 =(N-1) gy
- Ok ok
(ii) —(ghkglz gngu)8" =——&1——8u
ox ox
Sol. We have g; gk=o8 . (1)
(i) (ghj gir — 8ni gij)ghj:ghj ghj gik—ghj Enk 8ij
= Ngy —5]g;
= Ngi — 8ix
=(N-1) g
- Ok ok
(u)_(ghk 8il _ghlgik)ghj :thkg gzl _thlg gzk
ok _; ok _;
=—308/g,——9/ g
o/ KT g 1o
ok ok

= E?x_k 8il — g ik
Ex. 5. Show that
i) g7 ¢ dgy =—dg'
(i) g; gy dg’* = - dg;,

Sol. We have

(i) glhg =8 L. (1)
On differentiation gy dg, + g, dgi =0

or gl dg, =— g dgv. 2)

Taking inner product on both sides of (2) by g, we get
g g dgy =g g dg¥
=-8idg’

=—dg/l. [by symmetric property]
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(ii) Relation (i) may be written as

ghg; =5
On differentiation g dg'* + gik dg; =0
or g de't=—gi* de,
g & dg* = - g* g, dg;,
= -8,dg;
=— dgl-j =— dgjl.

Hence proved.

12.6 Permutation symbols and tensors

The permutation symbol is written as € and in the Euclidean three dimensional space V5 is
defined as

0 , if any two of i, j, k are equal
ey =Tl ,  ifi jkisacyclicpermutation (12.6.1)
-1 , ifi j kisanticyclic permutation
Thus e112 T €113 7 €1 T €03 T €331 T €332 €111 T €00 T 33370

€13 = €3 =e3p =11

ep=ep =ei3=—-1 .. (12.6.2)
We now introduce an entity defined by

l]k \/_ 1k’ _\/g ljk’ ..... (1263)

where g is the determinant of metric tensor g of the space referred, which may not necessarily be rect-
angular. We shall now prove that although e, ik is not a tensor, in general, both € ijk and €7 are tensors
covariant and contravariant respectively. These are called permutation tensors in three dimensional

space, It is clear from the definitions of e ijk and €7* that they are skew-symmetric in all three

ijle <
indices.
Theorem 2. The entities defined by (permutation tensor)
Sik=NE Cij > = ﬁ ik,
are respectively covariant and contravariant tensors, where €k is a permutation symbol and g is
the determinant of the metric tensor g

Proof : We have

. ox' ox’ oxt . ox’ ox' oxk (interchanging the d indices i and /)
ik T 0 = Cjik — —mn —, (interchanging the dummy indices i an
ol o ot * ox! ox™ o S Y /
oxt ox’ oxk . )
= =€ _6)?'" _6)? e (using skew-symmetric property of el.jk)
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‘ ox' ox’ oxk
This shows that € —————
Toxt ox" Ox

Similarly, it can be shown that it can be shown that it is skew-symmetric in all /, m and n. But

is skew-symmetric in / and m.

ox"
this expression, apart from the sign, is the Jacobian determinant Erlk From the theory of determi-
nants, it therefore follows that
,otadad o far
ik 6?1 " ot Imn 5)?j ..... (1264)
Now by covariant law we know that
8y = a—xiaijg (12.6.5)
Pq o P a)?q 7/ T .0.
= ox' || ex’
Therefc = = || o
erefore ‘ Epq ‘ =7 || ot ‘ 8jj
2
g-| & ‘g 12.6.6
or o S (12.6.6)

Suppose in the coordinate system ' the entity €, be denoted by €;,,,, where

Gm=vE @G- (12.6.7)
Now, using (12.6.4) and (12.6.6) in (12.6.7), we find

_ o' ox’ oxt
Smn =\/§ ez’ikgéb?m ox"

ox' ax’ ox*
=Eiik Eﬁ a)_cn s (1268)

which shows that e iik 1s a third order covariant tensor.

. . Z s
Also writing ¢ for e, and g¥* for e We have

r Imn
Imn __ 1 Imn = Ox [ . (1266)]
€ —@e a)?s \/g usimng .0.
\lf_”k 2)_6, Z)ﬁ, ?_Ck [using (12.6.4)]
ik ax 8x ox"
== (12.6.9)

which shows that €/ in a contravariant tensor of third order.
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12.7 Christoffel symbols

These are the two expressions due to Christoffel involving contravariant fundamental tensor g7

and the partial derivations of the components of the fundament tensor g

The Christoffel symbols of the first and second kind are denoted by [ j, n] and [ﬂ, respec-

tively and are defined as
1(0g) Og,; 08
j k] ==| =L+ 12.7.1
. 4 2 [ ot ol axk ( )
k .
="y . (12.7.2)
Notes :
(i) The symbols [ij, k] and {fj} may also be represented by 7j i and 7}11. respectively.
However we shall use only the brackets type representation.

(ii)) These symbols, in general, are not tensors.

(iii) All, but one of the indices of the Christoffel symbols are regarded as subscripts. The ex-

ception in the index / which is treated as the superscript in the symbol of second kind.

(iv) Both the symbols are symmetric with respect to the indices i and ;.
(v) In Euclidean space of N-dimensions g,; = g,, =...=gyy=1 and g;=0,i#; in this
case all the Christoffel symbols are zero.
. . . N(N+1) . .
(vi) Since g;; is a symmetric tensor and has — independent components in the space
og, . N(N+1) .
V» then 8_2 will have N 5 independent components. Therefore the number of
28
: : _ N*(N+1
independent components of Christoffel symbols of a kind are %
12.8 Properties of Christoffel symbols
Property I : [, m] = &, [”
Proof : By definition we have
I .
= (12.8.1)

Taking inner product by g, , we get

2in| b | = & & 107, K]

=8, [ij. k] = [ij, m].

Hence proved.
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og ik

Property 11 : —= =1, k] t+ [k, 1]
o
Proof : We know by definition
.. 1( Ogy agjk agij
ikl =—| ="+ —"——-— .. 12.8.2
. 4 2 [ ol oo et ( )
.. 1( Ogy agij og Jjk
and ki,il=—| *“+—-—"—7| . 12.8.3
1] 2[6)6'/ ok ax ( )

keeping in the mind the symmetric property of g adding above two expressions, we get

[i7,k]+[Kf,i]= Zg—’j‘ Hence proved

X
agmk i |k ki
Property I1I : o =—g" {il}_g {:7}
Proof : We know that g, gk _ s (12.8.4)

Differentiating with respect to x/, we get

ik Po.
ij agl +% *=0
X
agik _ @ aglj
or glyg =-& y ..... (12.8.5)

agik ik agi'
8" = =—ggm— 12.8.6
Coor &8 ox! ( )
Now using property 2, we finally get
agmk _ ik _jm i i i i
1 g 8 ([] 7l]+[l 7.]])
ox
=g gm [jl, i] - g* g* (i, ]
e}
-—g"{il- (12.8.7)
where the dummy index in the first term has been replaced by i.
A
Property IV : { ,-j} 2g ox’

= gal {log \/g} ,1f g is positive

= %{1%: , /(—g)} ,if g is negative
-
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Proof : We have the matrix of g;;as

_811 812-- &In 1

821 82 &N
8ij =

| 8N1 &N2  ENN |

Since g denotes the determinant of g;» we have

_811 812+ &In 1

821 82 &on
g =

| 8N1 8N2 EAN |

Differentiating it with respect to ¥/, we get

_agn

gglNJ +

] aglg'_' Gguﬂ g1 iz &N
og ox’ ox’ ox’ &1 &2 &on
— =821 &2 &n Fot] ...
Ox’
ogy1  0Zn2 Og vy
L&Nn1 &N2 8NN | | ox/ ol T e |
0gy _ 11
Clearly, cofactor of _8 ; = cofactor of g;; iIng =gg"" etc.
"
0 og og og
Thus _g:( 11.1 o 1j2gg12 4 1;\/
Ox’ Ox ox ox
Jg og og
+(—]‘j’.1 gg™! +—]\;2 gg +...+—Nj?v
Ox ox Oox
. o
ik gzk
=gg" =+
o

Now using property II, we get

axj_
AL
_gij gkj

i

)
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0 )
8 — gg* (i, K] + [, 1])

..... (12.8.8)

..... (12.8.9)

..... (12.8.10)

..... (12.8.11)

..... (12.8.12)

i i
=& { }JF g { } (as k is dummy index so it is replaced by i)

..... (12.8.13)



i 1 8g 0
= lo if g is positive
Hence {l]} 2g P 8x { g\/_ } g18p

= % {log E} ,1f g 1s negative

Hence proved.

12.9 Illustrative examples

Ex.5. Calculate the Christoffel symbols corresponding to the metric
ds? = (dxh)? + G(x!, x2) (dx?)?
where G is a function of x' and x*.
Sol. Here N =2 i.e. it is a two dimensional space, where

g1 = 1.8, =G (', %), g,,=0,8, =0.
The number of Christoffel symbols of a kind will be

N*(N+1) _2%-2+)

=6.
2 2
L. First kind :
1 g
Casel :i=j=k, then [, ] = 2 e (No summations)
Hence [11,1]1=0,[22,2] = ! 8G2 .....
2 Ox
do..
Case Il : i = # k, then [i, k] = 1 gZ L
2 Ox
Therefore [11,2]=0,[22,1] = —la—Gl .....
2 0x
do..
CaseMl:i=k#j then  [ji] =20 .
2 o'
Therefore [12, 11=0,[21, 2] = 1 8G .....
200
CaselV:izj#k
It is redundant in two dimensional space
ii 1 ij . .
II. Second Kind : g =;,g =0,i#j

[
{.}=g“[z‘j,z] .....
y
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1 2 1 0G
Hence { }:Oa{ }2822[12,2]2—— ..... (7)

12 12 2G ax'’
1 1 1 0G
=0, =g''22,1]=—==—=,
{11} {22} g [2211=—3 P L ®)
2 2 1 6G
=0, =o22[22,2]=——,
{11} {22} g 122,2] e e )

Ex.6. Surface of sphere is a two dimensional Riemannian space. Compute the Christoffel
symbols
Sol. For a sphere,  is constant, the metric of the surface of a sphere is given by

ds? = 12 (d0)? + 12 sin?0 (dd)2.

Here g = ”, gn = 72 sin0, g€17=8;=0
n_ 1l 2 1 12 _ 21
=5 = ’ = =0
and g r2 g r2 Sinz 0 g g (1)
(i) First kind :
1 0g;
(a) i =j =k, then [i, i] = — i [No summation]
2 ox'
Therefore [1i, 11=o0,[22,2y=0. L. (2)
(b) i=j+k, then lii, K] :_laiz
2 ox
Therefore [11,2]=0,[22,1]=—=#sin@cos® .. (3)
(¢) i = k #j, then [ij, i] _108
2 ox/
Therefore [12,1]1=0,[21,2]=#2sin®cos®. . 4)
d)i+j#k,
Redundant in two dimensional space
/
(ii) Second kind : ij =g"[ij, ] (No summation)
The non-zero components are
1
(= g1 [22, 1] =—sind cosd
2
and 1l = g2 [21,2]=coté6 L (5)

The remaining four will be zero.
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Ex.7. Calculate the Christoffel symbols corresponding to the metric
dS2 — (dxl)Z + (xl)Z (dx2)2 + (xl)Z (Sll’l x2)2 (dx3)2

Sol. For the given metric

gn=1g»n= (xl)z’ 833~ (xl)z (Sinxz)z ----- (1)
and gl-j=0,i¢j.
(I) Christoffel symbols of the first kind :
: : . N*(N+1)
Since N = 3, the total number of independent components to be determined are —— =18.
. 0g, 0g;
We know that A e ?)
2{ ox/  ox' ox
Here, there are four cases.
Case I :i=j =k, then (1) becomes
1 o0g;; .
[i, i] = —i’,’ (No summations)
2 ox'
. We find [11,1]=0,][22,2]=0,]33,3]=0 .. 3)

Case Il : i = # k, then (1) becomes

, . ba, )
(i k) =[O Do %% ) 108,
2\ ox/  ox'  ox 2 ox

Therefore we find

[11,2]=0, [11,3]=0,[22, 1]=—x!

[22,3]=0, [33, 1]=—x! (sinx?)2,

[33,2] =— (x})?sinx? cosx*2 L. 4)
Case IIl : i = k #, then (1) gives

1 08 +8gj,- _agij _l%
AN T 2 ox/

[, 1] =

Therefore we find
[12,1]1=0,[13,1]=0, [21,2] =x',[23,2]=0
[31, 3] =x! (sinx?)?, [32, 3] = (x1)? sin x% cos x2
Case IV : i #j # k, then (2) by virtue of (1), becomes [ij, k] = 0.
Hence, [12,3]=0,[23,1]=0,[31,2]=0 ... (6)
(II) Christoffel symbols of second kind :

1 1 1

11 22 33

:_:1’ = N = —-———
We have g g g (xl)z(sinxz)z

and 8= 0,i=j (7
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)
We know that {l]} = gk [ij, k]

Here too, we have to find out 18 independent components

Since g¥=0wheni=#].
[
We have from (2) ij = gl [ij, 1] (No summation over i)

The non-zero components are

1
=g''[22,1]= —xl,{33} = g''[33,1] = —x'(sin x?)*

3
{32} = g>°[32,3]=cot x*

The remaining twelve components will be zero.

Ex.8. If the metric of a Vy is such that 8= 0 for i # j, show that

{i}—o {i}—_L%
gy ) 2y o
{;}=£{1og\/g_ﬁ};{;}= fl0g/2; |

where i, j and k are not equal, and the summation convention does not apply.

0
ox’

il

1 i ..
Sol. Here g'=—and g’ =0,i#j

8ii
: i . g .
(i) { ,k} = g"[ jk,11=g"[ jk,i], (-g’=0, i#l)
J
=0 (.. fundamental tensors are zero when i #j # k)
I iy 1 ;0g;, 1, 0g;
i =g ll=—zg —=—2g" ="
@ {JJ} 27 ot 27 o'
_ 1 dgy
2g; ox'
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[ . .
(iii) {U} =g [ij, N=g"[ij, 1]

_l ii0gi _ 1 0gy

27 ox/  2g, ox’

=£{log\/g7n} ..... 3)

i .
(iv) {il}=gﬂ [ii, 1]

R

=g"[ii,i]=—g" —=—

g 2g o
1 og; O

=———=L=—"Ilo il

29" o Gx’{ g gu} ..... 4)

12.10 Laws of transformation of Christoffel symbols

Theorem 3. The Christoffel symbols are not tensor quantities.

Proof : Let us consider the transformation of the Christoffel symbols from the coordinate sys-

tem x' to x*.
(i) By definition we know that
(mon] = 1| %8in +a§m[n _ag,m} ..... (12.10.1)
200z & "
(Ao, Oo.. Oo.
and [, k] = | %8 %8 | (12.102)
2l ox/ ' axf

We know that by covariant law

5, oo

m =—F g e (12.10.3)
axl axm y
Differentiating with respect to X", we get
g, ox' o&x' 9g; ok 9%t ox! ox' o*x/
n ; " k . + —1 " gi/' + ] " ~—n gi/' ..... (12104)
ox ox ox" ox" ox" ox"ox ox" 7 Ox Ox"ox"
Similarly (by cyclic order)
og,. ox oxk ox' Og ik o*x/ ot ox’ 9%xk
I~ m n Al .i + | A—m n gik + m n A=l gik """ (12105)
ox ox" ox" ox ox' oxox"ox" T ox" ox'oOx
08, ax* ax' ax’ ag,, N *x* o ot o (12.10.6)

= - i +t——g
F" oo " % e ae " & o™ T
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1 1
Multiplying (12.10.5) and (12.10.6) by (Ej and (12.10.4) by (_EJ then adding keeping in

view (12.10.1) and (12.10.2) we get on changing the dummy indices appropriately, we get

i A Ak kA2
[lm,n] =a_xl(3x Oox [ij,k]+6x ﬁlx g
ox' ox™" ox" ox" ox'ox™

ik

o' ox/ oxk e’ 9%y’

=k ==t .. (12.10.7)
ox' ox" ox" ox" Ox Ox
which shows that Christoffel symbols of first kind do not behave like tensors.
(ii) By contravariant law, we have
gv & & oo (12.10.8)

a)?r afs

Taking inner multiplication of (12.10.7) by " and its corresponding equivalent from (12.10.8),

we get

ox' ox/ 5k ol Y 2 R
[ m r K g +g?7g r K ) m
ox! ox O o’ oxlox

g"” [ im.n] =[ij.k]

P ksr.. 10x ox! ox? L oxP o%x!
or = [ ? ]_l m_s+g?ig s [ A—m
Im ox ox" oOx ox’ Ox Ox

N

_{ }Gxi ox’/ ex? +6)_cp *x’
y a)?l a)—cm axs ax] aflafm
which shows that Christoffel symbols of second kind also do not behave like tensors.

..... (12.10.9)

Remark : We have proved that Christoffel symbols are not tensor quantities. But in some very

special case of linear transformation of coordinates, viz.

X =al X" +b7,
where a-y{l and ¥/ are constants, we have
azx.i
o
and the equations (12.10.8) and (12.10.9) become
[Im,n =[Z~J-,k]a_xllai; ﬁxi L (12.10.10)
ox" ox" ox
p s| ox? ox' o’
{lm} :{i]} o w (12.10.11)

which shows that in the case of linear transformation Christoffel symbols transform like a tensor.
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r

0
Note : Taking inner multiplication of (12.10.9) by aic

, we get
P

5 r i J 2
p| Ox _ {;} 6xl ox 57 + 61 X 5;
Im| ox? oxtox™ T oxox™

o’x" | p|ax" r ox' o’
a)?la)—cm Im a)?p l.] a)_Cl a?m ..... (121012)

It is an important result and should be remembered. It expresses the second order partial
derivative of x” with respect to X " in terms of the first derivatives and Christoffel symbols of the second

kind.

12.11 Self-learning exercises

Define metric tensor.
Define permutation tensors.
What do you mean by indicator.

Show that g dx’ d¥ in invariant.

A

How many independent components of Christoffel symbols in V5.

12.12 Summary

In this unit we have generalised the concept of distance to the Riemannian space by metric and
defined metric tensor, a covariant symmetric tensor of rank two, some examples are given to calculate
components of metric tensor in different Riemannian spaces. We have defined Christoffel symbols of
first and second kinds, which are the expressions of partial derivatives of fundamental tensor g Some
properties of these symbols are given and some examples are given to calculate these symbols. In the

end we have shown that Christoffel symbols are not tensor quantities.

12.13 Answers to self-learning exercises

§12.2
§12.6
§12.4
§12.2
18

A

12.14 Exercises

1. Show that g; is a covariant tensor of order two.
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2. Prove that g7 is a symmetric contravariant tensor of rank two.

3. What are the fundamental tensors and show that :

AV dgij = —Al-j dgij,

. Prove that :

(i) g g dg; = - dg",

(i) g; g5y dg™ = — dgj,

. Prove that the permutation tensors are tensor of third order and also show that
Sijk ~ &it Ejm Ekn elmn,

where the symbols have their usual meanings.

. Show that the transformation of Christoffel symbols form a group.

. Evaluate Christoffel symbols in spherical coordinates.

. Prove that the Christoffel symbols are not tensor.

oo
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Unit 13 : Covariant Differentiation of Tensors, Ricci Theorem,
Intrinsic Derivative

Structure of the Unit

13.0  Objective

13.1 Introduction

13.2  Covariant differentiation of vectors

13.3  Covariant differentiation of second order tensors
13.4  Ricci’s theorem

13.5 Illustrative examples

13.6  Divergence of a vector

13.7  Gradient ofa scalar

13.8 Laplacian ofa scalar

13.9  Curl of a covariant vector

13.10 Tllustrative examples

13.11 Intrinsic derivative (absolute derivative)
13.12 Self-learning exercise

13.13 Summary

13.14 Answers to self-learning exercises

13.15 Exercise

13.0 Objective

The objective of this unit is to study the behavior of partial derivatives of vectors and tensors
and consequently covariant differentiation. The properties of covariant differentiation and its uses are also

the points of study.

13.1 Introduction

The transformation laws of partial derivatives of covariant, contravariant vectors and tensors are
not like tensor quantities. So we investigate a particular form of partial derivative which behaves like

tensors and it will be called covariant derivative.
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13.2 Covariant differentiation of vectors

Here we study the transformation laws of the partial derivatives of contravariant and covariant
vectors. We also investigate that these partial derivatives behave like tensors or not.
(i) Covariant derivative of contravariant vector :

We have from contravariant law of vector

i axk —i
A==, (13.2.1)
ox

Differentiating partially with respect to ¥/, we get

oA" _ot ot oAl ot &
o/ o ox! ox" ox'ex ox!

..... (13.2.2)

The presence of second form on the R.H.S. of above equation shows that the partial derivative

oA ,
F- does not behave like a tensor.
-

Putting the value of

o’x* bl axt k| ox
X" X' in| ox? |r,) ox' ox"
in the above equation, we have

ot _Hﬁ}axk {k}ax’ st}ﬁ)_c" S ot o o

o/ | linfaxr |n]ox ox |ax’ T o o ox”
Ak k r . > k no_ k n i
or o, axiés‘j.A’= Pl ox af_A,+ax_ax_aAl (13.2.3)
ox’ rs| ox' im) 0x? ox’ ox' ox/ ox'
Using (13.2.1) and making suitable changes of dummy indices, we may write
od* [k| , |o4” [p|-i|ox* ox”
— 4 == = e (13.2.4)
ox 1j ox in ox? ox’
Introducing following comma notation, viz.
ko (k
4% oA Iy (13.2.5)
oo\
the above equation may be written as
4k =2P£a)?n (13.2.6)
y N e e 2.

which shows that A,'j. behaves like a mixed tensor of second order. It is called covariant derivative of a

contravariant vector A% with respect to x'.
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(ii) Covariant derivative of covariant vector :
We have from covariant transformation law of vector
Ak =— ox’
P
Differentiating partially with respect to x/, we get
o4 _x' ox" 84 ’x -
o ok o o 6x-’6xk 4 L (13.2.8)

N _oF _[pla [T]alow
Substituting o’ ok ]k axp Im| ox/ ox*

and making suitable changes in dummy indices.

aAk _afi.afn alql-i_ p 5.?1'_ l_ a—ilafm Z
ox/ oxk oo/ ax | k) exP  |Im)ox! oxt |

4. (13.2.7)

%_pA_G_IZi_Z_ZG)?i.G)T"
or o k[ o nil o o e (13.2.9)
Introducing the comma notation, viz.
A
T (13.2.10)
we get above relation as A, . =Zlna_ikaf . (13.2.11)
/ T oxt ox’

which shows that 4 k) behave like a covariant tensor of second order. Ifis called covariant derivative of
covariant vector A, with respect to x/.

Note : Expression (13.2.6) and (13.2.11) are very important and should be remembered. These
may be taken as definition of covariant derivatives of contravariant and covariant derivatives respec-

tively.

13.3 Covariant differentiation of second order tensors

In order to extend the process of covariant differentiation to tensors of order more than one, we

choose, without loss of generality, a mixed tensor A;

We have from transformation law

. & -,
! _E.J.Al S (13.3.1)
. oox”
Taking inner product with F we get
-
m !
aa_—A’ =(;£Am ...... (13.3.2)
28 As
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Differentiating with respect to x ¥, we find

azfm Ai +afm azjl 3 ale Zm afl afr aAm

AL : = - A" +— — 13.3.3
oo o axk adax! T o et ox ( )
Using value of second order derivative, we get
kij ox?  |st]ox® ox' |7 ox' axk
& |1 |ox* ox' |-, Ox X" o4
_ {p}i— S L (13.3.4)
ki) oxP |st] ox* ox/ ox’ ox* ox"
Now using (13.2.2) and changing appropriate dummy indices
ﬁm 8A' l n p i ﬁl ﬁr aZ[m >t fﬁ - m t_
. + A4; - 4, |=— ——+4 -4 .
o {ka {kn} ’ {k]} p} o Gx'{ﬁr 1 ATV (13.3.5)
Introducing the comma notation
. oA, i 120
A, =—L+ A} - A, L 13.3.6
TR oxk {kn} / {k]} P ( )
the above relation may be written as
afm . afl afr _
—A4, =— D 13.3.7
o A ekt ( )
Taking inner multiplication by — -, we get
g T &g,
PR o ok T
g O & g, (13.3.8)
or . = e o e .
Ik o oxd ok T

This shows that 4}, is a mixed tensor of third order, contravariant of rank one and covariant of
rank two. It is called the covariant derivative of 4" with respect to x”.

Note : The covariant derivative A;  defined by (13.3.6) contains three terms :

(i) The partial derivative of Aji with respect of x.

(ii) A positive sign term similar to that which occurs in the covariant derivative of a contravariant
vector.

(iii) A negative sign term similar to that which occurs in the covariant derivative of a covariant

vector.

13.4 Ricci’s theorem

The covariant derivatives of the tensors g., g/ and &', all vanish identically.
&jj J Y-
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Proof : (i) Covariant derivative of g with respect to x*

ag,j r r
8ijk = a" — & . 8ir Jk

g o
= ok —[ik, j]-[Jjk.i] [Using property (1) of Christoffel symbols]
og ij og ij .
= AP [Using property (2) of Christoffel symbols]
x x
=0. (13.4.1)

(ii) Covariant derivative of g/ with respect to x*

. og¥ i [
i o + rj + ir
TS {k} ¢ {k}

o o
ot axk
=0, [Using property (3) of Christoffel symbols] ...... (13.4.2)

(iii) Covariant derivative of 8’} with respect to x*

0d'; i [
= Gx_'j‘ + {j k} - {j k} [Using property of Kronecker delta]
_%;
oxk
=0 [-- & isaconstanteither 1or0] .. (13.4.3)
Hence gk =0, g’{c =0, 83.,,6 =0

which shows that the tensors 8 g/ and 8’} may be treated as constants in covariant differentiation.

13.5 Illustrative examples

Ex.1. Prove that

- () )

Show that if associate tensor AV is symmetric, then

0 1 08 jk
l/ \/’ax/(A’j‘/g) zAjk 81"
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Sol. We have from process of covariant differentiation

.04/ Jj |7
Al =25 Ly A7+ 1
1,k axk 1 {l"k} 7 {Zk} ( )

, J
TR D E S
T e rj ij

o4 arleelE)- 4

Putting k=, we get

fo

_6A1:i J 1 ¢ j k
- ox' +4; \/gaxj (\/7) A {l]}

[on making suitable changes in dummy indices]

This proves the first result.
Now a{} = (o)
= A3, 1]
_L [agzl agjl _ agijj
2 /' o

L O 198 1 08
2 ax] 2 ax 2 le

:lA/j %4_1141’1 agﬂ _lAﬂ%

2 a2 ox' 2 '’
where in the first term the dummy indices suitably have been changed. Since 4% is symmetric the first

and the last term will cancel out and therefore

|k 1 . 0g.
Al == a2
/ {U} A= (4)

Substituting this result in (1), we get the required result as

_ L0 L 98k
AJJ _@axf (Ai \/g) 2A '

ox'

Ex.2. Prove that

= a4 )

Show that the last term vanishes if AV is skew-symmetric.
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Sol. We have from covariant differentiation

B i |
ai =9 g L L S 1)
’ ox’ rl rl

Putting / =/, we get

.. i |
ai 2O gl ]
R 7 7

i .
04 g L 1 og L l
) 2g ox" rj

[using property (4) of Christoffel symbols]

6A” o g a\f Ak’{ }
\/7 ox" kj

L mod”  yog ] 4l
= AT NS | g
\/gl:\/g ox’ " ox’ }_ {k]}

[making suitable changes in dummy indices]

( o (IAU)Jr A% {]k} ....... )

This proves the first result.
If A7 is skew-symmetric, then

ki ki

|
=AY {jk} [interchanging the dummy indices]

i
A3 =0,
- {k]}

Hence Proved.
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Ex.3. If A is a skew-symmetric tensor, show that

ToarlE )

is a tensor.

Sol. Since 4%* is a skew-symmetric tensor, we have

Ak =_ gtk gk =_ giki gk =_ g1 L (1)
We know that
y ik [ -k
S R WD A T L 2)
' ox! rl rl rl
Contracting over i and / (/ = i), we get
y ik [ -k
e = +A’f"{ }+A”k{]}+AW{ } ----- 3)
’ ox' 7l 7i ri
ri ri ir|’
- |k
similarly, 2475 ¢=0.. 4)
ri
y ik
Hence, Al{k = o 47 { }
’ ax Vi

ijk 1l
o LI L)

Since left hand side, which is a covariant derivative of a tensor is a tensor, the right hand side

will also be a tensor.

13.6 Divergence of a vector

(i) Divergence of a contravariant vector A’ is defined as the contraction of its covariant deriva-

tive. It is denoted by div A’ and is an invariant. Thus

divA'=4'. L (13.6.1)
(ii) The divergence of a covariant vector 4. is denoted by div 4; and is defined as
div A,= g"kAjyk. ..... (13.6.2)

It is also an invariant.

Note : The concept of divergence may be extended to the contravariant tensors of higher order
or to mixed tensors. The divergence of a tensor may be obtained first by taking a covariant derivative of
it and contracting over a superscript and the subscript of covariant derivative.

Thus, div(Aj.) A (13.6.3)

The order is reduced by one in taking its divergence.
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Theorem 1. If A" is a contravariant vector; then

div A =%%(A’\/§).

Proof. The covariant derivative of A’ is given by

. A’
4. = ‘ +A’{ } ...... (13.6.4)
] axf U
Contracting over i and j (j = i), we get
divA = A
= aA. +4" { : }
ox' ri
=6A, +4" L 2 (\/g) [changing dummy index 7 to i]
i \/g o’
6A’ 4 1 © ( )

\/78)6
\/_Gx (A f) ...... (13.6.5)

Theorem 2. 7o prove that

div4, = Lir{\/g grkAk} =divA'

\/Eax

where A" and A_ are the contravariant and covariant components of the same vector A.
Proof. We have by definition

div A,=g" 4,
8A 4 { r }
g 6x " jk
g k)| de i 3) of Christoffel symbol
ok . ki o [using property (3) o istoffel symbols]

[on changing the dummy indices]

1 i (Veg"4). . (13.6.6)
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But gra, =4 (associate vector) ... (13.6.7)

Therefore above relation may be written as

Ve )

1 0
divA. =—F—=—
' \/§ ox
=divA"
=div A
Hence proved.
Remark : According to Ricci’s theorem g” be have like a constant in covariant differentiation,

we may write

divA; = gjkA.i,k - (gjkA.i ),k
= (Y, = div A"

=div A"

13.7 Gradient of a scalar

If I is a scalar function of coordinates x’, the gradient of / is defined by

I
grad I =1, :a_i, ...... (13.7.1)

ox
where ; IS a covariant vector.

Theorem 3. The covariant differentiation of invariants is commutative, that is

([,i ),j - ([J ),i '

ol
Proof. We have I, =— L (13.7.2)
Toox
o (ol r
1. = ol B Ir
Therefore, ( i ), o/ (ax’j , { l]}

_ ol |r
ox’ox’  ox” |ij

@ e
ox'ox’  ox" | ji

=) (13.7.3)

13.8 Laplacian of a scalar

If 7 is a scalar functions of coordinate x’, then the divergence of grad I is defined as the Laplacian

of I and it is denoted by V2I.
Thus V3= divgradl=divl. .. (13.8.1)
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Theorem 4. Prove that

0
(i) div grad I = Vi=—— grkly
e N

A o ol [r
i) div erad [ =V = g/*| —— — .

Proof. (i) From theorem 2 we have

div A, = JIE air (Jae™4,).

where Al. IS a covariant vector.

(13.8.2)

Since gradient of a scalar / is a covariant vector, setting 4, =/ ; in the above equation, we get

div 4, fa (\/_ ’kAyk)

1,]

1 0
N V2 = Veg*r,) .. (13.8.3)
\/g o’ ,
(ii) V2 =div 1= g (),
6[ 1, r
g .
6x jk
W 0L o[ 13.8.4
=g ——— . - .0.
ax/oxt  ox" |k ( )
13.9 Curl of a covariant vector
From a covariant vector 4, in V;, we can form the contravariant vector
Bf= e-""kAiJ. ...... (13.9.1)
and call B* the curl of vector A; and written as curl 4.
Thus curlAl.=Bk= EﬁkA,;, ..... (13.9.2)
We may also write on interchanging the dummy indices iand j as
Bf= e”kA = e”kA ..... (13.9.3)
Hence 2BF= e/ (A ~4;)
1 .
ke _ ik
= B == ¢ (4,-4,) . (13.9.4)
Thus curl A, may also be defined as
ook ik
curl 4, = B = e (4 .—AJ.,,.). ..... (13.9.5)
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13.10 Illustrative examples

Ex.A. If A is the curl of a covariant vector, prove that
ij

Ajp+ Ay + 4y ;=0
Show further that this expression is equivalent to
aA’J aA aAkl _
8xk o Gx’
If 4,=B,-B,,
prove that Az/ P A/kz Ali =0.
Sol. Let B; 1s a covariant vector and let its curl be Ai/..
Thus curl B = Ail.
= B .—B..=A4..
ij i ij
OB,
we have B . =—--B p .
Voo P i

Inter changing i and j, we get

p B g IPL_ 9B g p
Sl axz p ]l axl p l]

0B, 0B,
A o o

Now, we have

OA..
PRSI A S
i,k axk 12 ik p ]k
2
_ az.Bl. ~ a.Bj ~ aBé_ﬁBj r|_ GBi_GB{’ p
ax‘oxt  ax‘axt \ox/  ox? ) ik oxP  ox' )| Jjk

. 0A;, p p
Similarl A, =—%—4 A
Y Jk,i P pk { jz} ip { kz}

.- 0°B; _0°B, (0B, @B, \[p| (9B; 9B,)[p
or ki axkoxt  axiex! \ox* ox? )| ji oxP  ox/ )| ki

- o,
S Y, AkiJ:a)C_j pi k] Azp

A4, . = o’B, _ ’B, (9B, o8B {p} 0B, 0B, \|p
kijoxiox’  oxioxk \ ax!  ox? )| k] T 6x_p_8x_k {l]}

Adding (5), (7) and (9), we get
Ajit Ay Ay =0-
Proved I part.
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is equivalent to

nates.

Again, we are given Ail. =B, -B,;
A.= B..—B,.
gio i T

=—(B,-5,)

i
= A;+4,=0. (11)
Equation (11) shows that Ai/. is antisymmetric.
Adding (5), (7) and (9) and using (11), we get
04y | Ody | o4y

ok e e/

Az:;:k + Ajki + Akz:j =

Hence from (12) if follows that

Ajget Aji T A =0
04y + 04, kL O
ot ot o/

Proved II part.

Ex.5. Evaluate div A in (i) cylindrical polar coordinates, and (i) spherical polar coordi-

Sol. (i) For cylindrical polar coordinates
xl=r, x*=0, x¥*=z

g1 =1 gy,=7" gz=1, g;=0,i#]

g=] g =7 (1)
The physical components in cylindrical polar coordinates of A", 4% and 4.
Therefore AP =A@+l +@» ()
Also AY=g, @Y +g,dD +g, ALH* L 3)
Hence A =g A=A A =g, A =rd?, A =g, A2=4 .. 4)

Now, by definition ~ div A/ = ﬁ% (Ve 4')

1[; (FA1)+&C12(FA2)+;;3(FA3)}

=%[§(rA’)+%(A9)+§(rAZ)}

oA" 104% o4 A
+— + +—.
or r 00 0z r

(ii) For spherical polar coordinates

X=r, x>=0, ¥*=9¢

g11=1, g22=r2, g33=r2sin26, gij=0, i#]
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g=| 8 |=r*sin®0. L (6)
The physical components are denoted by 4", 4%, 4% and are given by

A =g, A =4 A =ra? A=rsin0d> .. (7)
. T i
By definition div A’ =——l,(\/§A )

\/gﬁx

1 0 ) ;
B r2 sin@g(l/2 sin0.4 )
= 2 sline :é(rz sin91611)+axiz(r2 sin9A2)+%(r2 sin9A3)}

r*sin©| Ox

= ! _i(,ﬁ sineAr)+%(rsin9Ae)+a%)(rA¢)}

R I 1 04% 24" cotd 4
ot — +——t 4. L (8)
or r 00 rsin® 0 r r

13.11 Intrinsic derivative (Absolute derivative)

The intrinsic derivative or absolute derivative of a covariant vector 4, along a curve x/=x7 ()

dx’ dx/
is defined as the inner product of the covariant derivative of 4, and % ie. 4 ; % and is denoted
OA;
b L.
Y ot
J J
Thus O _, A _dAd _dd ri a (13.11.1)
St Jodt dt dt i dt
Similarly the intrinsic derivative of contravariant vector A4'.
A gdd dA fi)| , dd
oA =4, —=—+y A4 — . (13.11.2)
St e dt |1j dt

The vectors 4, or A’ are said to move parallelly along a curve if their intrinsic derivatives along

that curve are zero, respectively.

. L. . ) iy iy,
Similarly we can define the intrinsic derivative of higher order tensor 42" along a curve
y fl 7]2""Jn

x* = x* (f) defined by

i17i2 """ Ui k
Joladn = gt 20 (13.11.3)
St JisJ2Ink dt

where summation is taken over the index k.

Thus the intrinsic derivative is a tensor of the same order and type as the original tensor.
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The intrinsic derivative of an invariant / is defined as

S, ' _add _dl
ot

) = =—, 13.11.4
tdt ox dt dt ( )

which is same as its total derivative.

The intrinsic derivatives of higher order can easily be defined as

8 iy (84 ] s, axf
— (A ) =—| —L | =2 4, =
61‘2( -’) 61‘[ St} 6t£ Ih

_[ 4 dxk ) dx?
e (13.11.5)
P

Theorem 8. The intrinsic derivatives of g, g’ and & are zero.

Proof. g(g,-j ) = ( g )’k dditk =0 [using Ricci theorem]
S ( N
2o )le), 2
8 (o N
S01)-(t) 4o

13.12 Illustrative examples

Sfadt)_ a2 [i]a axt
St\ dt | di* |jk) dt dt

Ex.6. Show that

Sol. Let czc = 4’ (contravariant vector)
t
i . dx!
Now S| dx :E(A'):Aljdi
ot| dt ot odt

oA" i) . |dx/
= — + A |—
ox’ |r dt

i ; J
:dA + ! Ardi

d \|rj] dt
_dfax') [i|ax dx’
dt\ dt ) |rj) dt dt

d’x i|dx/ dx*
= + - .
dar* | jk| dt at
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Ex.7. If two unit vectors A' and B' are defined along a curve C such that their intrinsic

derivatives along C are zero, show that the angle between them is constant.

Sol. It is given, that AL dL] =0, B'. dij =0, . (1)
7 ds ! ds
at every point of C.
dx’ o dx!
Thereft 4 —=g4 A—=0, . 2
erefore i g 8ir 4 s ()
dx’ o dx’
Als B .—=g, B"—=0, . 3
0 i,] ds 8ik i ds ( )
at every point of C.
Let 0 be the angle between unit vectors A’ and B, then
cos® =4 B
d o\ dx’
fhall 0) =(4B") —
" (cos0) ( )’j %
. de i i dxj .
N ~sin0— _(Al.B’j+Ai’jB )g [using (1) & (2)]
sn0dl o, (4)
ds

From (4) it follows that either 6 = 0 or 6 = constant.
But 0 being included in constant, we conclude
0 = constant.
Hence Proved.
Ex.8. If the intrinsic derivative of a vector A' along a curve C vanishes at every point of

the curve, then show that the magnitude of the vector A' is constant along the curve.

Sol. Let the equation of the curve Cbe

xt=x(s). L (1)
.. i dxj .
It is given that A4 e =0, ateverypointofC. .. (2)
s
We know that A,=g, A% and (g,) ;= o. L. 3)
j j
Therefore, A . ax’ =g, A" ax =( ateverypointofC. ... (4)
7 ds 7 ds
Since, A*=4.A4
2 ‘ j
a4 :E(Az):(AiAz) dx’
ds s Jods
i i dx’
_(Al.’jA +A,.A,J.)z
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J J
{ deA,_'_ALA,de
ds

0. [using(Dand 2] .. (5)
Hence A% = constant.
i.e. magnitude of vector 4’ is constant.

Hence proved.

13.12 Self-learning exercises

1. What do you understand by the covariant derivative of a covariant vector ?

2. Define covariant derivative of a contravariant vector.

3. Show that the covariant derivative of a covariant tensor of second order is a covariant tensor of
third order.

4. Define intrinsic derivatives of a tensor.

OA, . . .
5. Show that a—: is not a tensor even though Ap is a covariant tensor of rank one.
e

13.13 Summary

In this unit we have studied the partial differentiation of tensors. We have defined a particular

process of it, called covariant differentiation. The properties of covariant differentiation like Ricci’s theo-
rem have also been studied. The use of covariant differentiation to define gradient, divergence and cur!

have also been discussed.

13.14 Answers to self-learning exercises

1. §13.2(i) 2.§ 13.2(i)
3. §13.3 4.§ 13.11
5. §13.2(i)

13.15 Exercise

1. State and prove Ricci’s theorem on fundamental tensors.
2. Prove that the covariant derivative of the tensor a’ with respect to x*, that is ai,f has the expres-

sion

oo
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Unit 14 : Geodesics, Differential Equation of Geodesic,
Geodesic Coordinates, Field of Parallel Vectors

Structure of the Unit

14.0  Objective

14.1 Introduction

14.2  Geodesic

14.3  Euler’s condition

14.4  Differential equation of geodesic ina V),

14.5  Curvature of a curve

14.6  Null geodesic

14.7  Tllustrative examples

14.8  Geodesic coordinates

14.9  Tllustrative examples

14.10 Field of parallel vectors (Parallelism of vectors)
14.11 Parallelism of a vector of variable magnitude along a curve
14.12 Tllustrative examples

14.13 Self-learning exercises

14.14 Summary

14.15 Answers to self-learning exercises

14.16 Exercises

14.0 Objectives

The geodesic, a curve of stationary length on the surface, Riemannian coordinates, geodesic co-
ordinates are the points of study of this unit. Parallelism of vectors and fundamental theorem on Rieman-

nian geometry have also been given.

14.1 Introduction

In the calculus, we study the process of finding stationary values of a function. While in calculus
of variation we find a path on which an integral has stationary value. This gives a process to find shortest

path joining any two points on a surface, which we call the geodesic curve.

14.2 Geodesic

“A geodesic, in a Riemannian space Vy; is a curve whose length has stationary value with re-

spect to arbitrary small variations of the curve, the end points being held fixed.”
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Geodesic on a surface in Euclidean three dimensional space may be defined as the curve along
which the shortest distance measured on the surface between any two points in its plane.
The differential equations of a geodesic can be obtained with the help of Euler’s equations, which

are derived by the technique of calculus of variations.

14.3 Euler’s condition

Theorem. The integral Ltl f (xi, )'ci) dt has stationary value on the curve whose differential

equations are

B ox’

CTEAN
ox' dt S

Loodx
where x' =—.
dt

Proof. Let x' = x’ (f) be a parametric equation of a curve C in ¥ joining two fixed points
A (t=1y) and B (¢ = t,) on it. Let the integral / =Ltl f (xi, )'ci) dt has stationary value on the curve C
and C’be a neighbouring curve whose equation is given by
X =x' () + en' (o),
where e is small and 1 (¢) are arbitrary continuous differentiable functions of ¢, satisfying 1’ (ty) =0,

n' (¢,) = 0 to ensure that the curve passes through 4 and B. The value of / taken along the curve C"is

thus a function of € of the form
1(e)=[" f(x+en’, ¥+eq')ar .. (14.3.1)

Since the integral / is stationary on C for which € = 0, we have the condition /" (0) = 0.

Differentiating (14.3.1) with respect to
, _ 0 rn i i i
I(e)_ELO f(x+en,x+e17)dt

- t: aief(Xi+€ni’ )'ci+eﬁi)dt

4

- {n"%f(x#en", xi+eﬁi)+17if(xi+eni, )'ci+e77i)} dt

[}

The stationary requirement /”(0) = 0, now gives
4 0 ) ) 0 ) .
—f(x, X )+t —f(x, ¥)} dt=0. ... (14.3.2)
J‘to {n axl f( ) n axl f( )}

The second term becomes as
w0, of 1" ¢ d afJ,.
I, prall [ax' ’7} J, dr(ax’ 7
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4 . d af
[ L[ L
J.n dt(@)&’} ..... (14.3.3)

Since 1 (£,) = 0 =1 (#,), thus equation (14.3.2) becomes

v [of d (o))
LO {§_E [gj}" de=0. (14.3.4)

Since 1)’ is arbitrary, subject to its being differentiable and vanishing at 4 and B, equation (14.3.4)
implies that

g 4 (QJ 0. (14.3.5)

ox' dt \ ox'
Hence (14.3.5) are necessary conditions for the integral / to be stationary. These are called Euler’s

conditions or Euler’s equations.

14.4 Differential equation of geodesics in a V),

Using the property that geodesic curve is a path of stationary length joining two points 4 and B
in it, we shall now find the differential equations of it in the space V.

In the Riemannian space V), we have

ds? = eg;; dx’ dx/

L ([
dat) " ar
= § =(€g,-j )-Cij)”z :f(xi, x")’ (say) e (14.4.1)
4 ds 4 o i\2
Now, s = . Edt: . (eg,.jx x’) dt
or - j ! A 2 — (14.4.2)
In order that s is stationary, the function f must satisfy the Euler’s equations viz.,
of dfof
—_— | — =0.
axl dt (axl j ..... (14.4.3)
.\1/2
Now wehave — f=(eg,x'x’) =5 . (14.4.4)
and gjj being a function of ¥, therefore
T =——e—_—Xxx. 14.4.
ox' 28 ¢ ox' o ( 2
F N e
Also, T =55 (67 +%'5/)

zzi; ()'c’ g, +x g,j)
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e .
=-fe. (14.4.6)
d(of _ xl%ﬂ_i_ ¥ _igxf
Now |7 | 5| oy g TEY TESYe (14.4.7)
Substituting (14.4.5) and (14.4.6) in (14.4.3), we get
1 - 0g.; . 0g,
_xz v _ 29U lx_/ 1l+ sz + xl _0
b o’ ( o & j 8
= g, ¥ —=x"g, +—| x'x/ St 4 i 1%—""1'& =0
! ! ! ox' ox'
= g ¥ -Sig +¥ ¥y, 1]=0. .. (14.4.8)
$

Taking inner product by g, we get
P - l.mx’+x'xf{}=0

s y
d2xm S dxm +{m}ﬂﬂ

a5 dr i

0. (14.4.9)

= dt dt

These are the differential equations of a geodesic in parameter ¢. These may further be simpli-
fied, if we choose the arc distance s alone C as a parameter, i.e., s = ¢. Then,

s=1, §=0. . (14.4.10)

2. m i J
Hence (14.4.9) reduces to dxz e (14.4.11)
ds ij| ds ds

These are the required differential equations of geodesic. These constitute N-differential equa-

tions of the second order, and in terms of the intrinsic derivative may be written as

i dxm B 0
5S dS S e ( 1 4‘4. 12)

Theorem 1. In general, one and only one geodesic passes through two specified points
lying in a small neighbourhood of a point O of a V.
Proof. The differential equations of a geodesic curve ina V), are

d*x’' i |dx/ dxt
7Ty, ’ =0. .
ds jk| ds ds

(14.4.13)

These are N differential equations of second order, therefore, their general solution will involve

2N constants. The theory of differential equations states that these constants will be uniquely determined
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if the initial values of x’ and d_); are given at a point. It means geometrically, that at any point of the
space there is a unique geodesic with given direction. Since the geodesic is defined in terms of the curve
passing through two points, it will be unique when the points are sufficiently close to one another.

Notes :

1. The geodesic may be unique unless the points are sufficiently close to one another. On the
surface of the sphere there is a unique geodesic passing through any two points, except when
the two points are at the ends of a diameter. In the latter case, all great circles passing through
the two points are geodesics.

2. In Euclidean space V', using orthogonal coordinates, all Christoffel symbols vanish. There-
fore, the differential equation of geodesic become

d’x'
ds’ -

whose solution is x'=Als + B,

0,

when A4 and B’ are constant vectors. These represent straight lines. Hence in Euclidean space

Vx» the geodesic are straight lines.

14.5 Curvature of a curve

Let x' = x' (s) be the equation of a curve C in the space V. The unit tangent vector to C is
defined as (dx"/ds) and it is denoted by 7 with # as its coutravariant component, thus

dx'

f=—.
ds

..... (14.5.1)

First Curvature :
The intrinsic derivative of # along the curve C is called the first curvature vector or principal

normal of curve C relative to ¥y and is denoted by p,

Thus, P (14.5.2)
5. dS
) 2 i : j k
or g S (14.5.3)
ds jk| ds ds

The magnitude of a first curvature vector p' is called first curvature of C relative to Vyand is
denoted by k. Therefore
e=pip=g;0'P. . (14.5.4)
Ifn’ denotes the components of the unit principal normal, then

ny :%, = p=w. L. (14.5.5)
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We have the differential equation of geodesic as

d*x' i | dx' dx*
Lt lE g
ds jk| ds ds

pi=

=

Ol

= =0 = x=0.

..... (14.5.6)
Thus we conclude that a geodesic in Riemannian space V), is the curve whose first curvature

relative to V), is zero at all points. It gives the alternative definition of geodesic as :

“A geodesic in the Riemannian space V), is a curve whose first curvature relative V), vanishes at
all points.”

14.6 Null-geodesics

Along any portion of a curve which is not null, we have

& ad [1}
glf ds ds ' '

..... (14.6.1)
e
Differentiating with respect to s, we get
A d a5 ad
ds o ds ds os Ei ds ds
dx' & ( dx/ dx'
=2 T | T = — ()=
Ei ds 55[ dsj 28, ds 0=0.
de _o 14.6.2
= 7 (14.6.2)

. . . , dx’
which shows that the indicator e cannot change along a geodesic. Therefore, the unit tangent vector —
which is not null at any point, cannot be null at any other point on the geodesic.

Contrary to it, if the initial direction is null, then the curve is null and we cannot introduce the arc
distance s (which is zero) as parameter.

Thus null geodesic is a null curve x’ = x’ (£) which is the solution of the equation

d>x i) dx dx*
+ —=0.
dar> | jk| dt dt

14.7 TIllustrative examples

..... (14.6.3)

Ex.1. Assume that we live in a space for which the line element is
ds? = (dx")? + [(x")? + 2] (dx?)?,

which is the surface of a right helocid immersed in a Euclidean three dimensional space. Deter-
mine the differential equation of geodesic.
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Sol. Here we have g, =1, g,=0, g,,=0,g,,= (2 + 2
Therefore the Christoffel symbols of second kind are

o 2n s -

{2}={2}=i1(10g gzz):)zc—l,
12 21} ox (xl) +c2

! :_Lagi:_xl 2 =0.
22 2g,, &' T |22

Thus the differential equations of the geodesics on the surface are

d’x* 2x ax ax?
and d2+12 2Edsz
§ (x) +c
Ex.2. Obtain the differential equations of geodesics for the metric
1
ds® = f(x)dx* +dy* +dz* + de’.
Sol. Here xl=x x2=y xX=z x*=t
2=/ G gn=l gn=l gu-—r
1= v 8n =L 83=L 84 =
rah
g;=0, i=#j (1)
1
Therefore g'= 15> g?=1 g”=1 g¥=r@uh
f(x)
gi=0, i=j L (2)

Thus, the non-zero symbols of second kind are

Pl__ 1 Qa1 Of1) 1 0of
44 2g;, ox' 2f '\ f) 2f ax
4 4 0 1 d
(e St s

1 0 1 d
=—1l =———(lo .
{11} axl{og 21 soglees) 3)
The differential equations of geodesics are

d?x i dx dx*
=+ =0 ()
ds jk| ds ds
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Hence, taking

o d’x' JU]dx ax [ 1]dxt axct
@ i=1, as> 11 dx ds  |44] ds ds
d*x 1d xY 1 d dr Y
TX 29 g AP L 10g 1)) =0
RN gf)(dsj 2f2dx( gf)(dsj """ ®)
d*x* - d?
i) i=2, d;; -0, ie. X2y= ..... (6)
d2 3 . d2
(iii) i = 3, ds’; =0, ie, ;22=0 ..... %
L d’xt 4|t axd
(v) i=4, a2 a1 as ds
d’t d dt dx
T2 (log ) 4.2 ),
or e dx( g f) it (8)

These are the required differential equation of the geodesics.

Ex3. Show that the curve given by

x1=C'[ rcosO cosd dr
X =C'[ rcosO sind dr
x3:C'[ rsin0 dr

xt=cC I rdr
where 1, 0, ¢ are functions of t, is a real null curve in the V, space whose metric is
dS2 - (dxl)Z _ (dx2)2 _ (dx3)2 + C2 (dx4)2,
but not a null geodesic, in general.

Sol. For the given curve, we have

2 2 2 2
dsY _ (@) e ) fac ) ofddt
dt dt dt dt dt

=— C*r? cos? Bcos? - C*r? cos? Osin’ (I)—Czr2 sin? 0+ C%?
=0. (1)

Therefore, s=(*%S.g=0, )
Lo dt

along the given curve. Hence it is a null curve.
In a V, space, whose metric is (1) the Christoffel symbols vanish and therefore the equations of

a geodesic are
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d’x'
=0. 3
dr? )

These equation are not satisfied in general, by the given curve. Hence it is not a null geodesic in

general. However if we take 0, ¢ and » as constants equations (3) will be satisfied and the null curve will
become a null geodesic.

Ex.4. Show that on the surface of a sphere, all great circles are geodesics while no other
circle is a geodesic.

Sol. The metric on the surface of a sphere of radius a is given by

(ds)?=d? (do)? +a*sin? 0 (dp)2.. .. (1)
Here g = a2, €n = a? sin? 6, g€y=8&1=0. L. (2)

The non-zero Christoffel symbols of second kind are

2] 2] 0 1_.e 0
(=121 =cot 0, 7 =-smbocoso. 3)

The geodesic equation is

d’x +{ i }dxj _dxk

a2 k| ds as e )

Therefore the geodesic equations reduce to (x! =0, x2=¢)

a0 doY .
————sinBcosO8| — | =0 (i=1, j=k=2) .
2 ~sinBcos (ds} (i=1,j ) 6))
2
and d_j)+200t9@@=0(z'=2,j=1,k=2)or(i=2,j=2,k=1) ..... (6)

ds ds ds

(i) We consider a great circle on the surface of the sphere and choose the normal to the plane of
the circle as the z-axis (0 = 0), so that this great circle is the equator. Its parametric equation is

ezg, 0=Cis+Cy, C,#0

where C|, C, are independent of's, 0 and ¢.

Clearly equation (7) satisfies equations (5) and (6).

Therefore the great circle is geodesic, since the choice of the polar axis 6 = 0 is arbitrary, it
follows that any great circle is a geodesic.

(ii) Consider, a circle on the sphere, whose plane does not pass through the centre of the sphere.

Taking the normal to the plane of the circle as 6 = 0, the parametric equation of the circle is
0=0,, 0, ¢g, 0<0,<m

o6=ks+k, k=0 L. (8)
where k|, k, are independent of s, 0 and ¢.
It may be noted that on substitution of equations (8) in (5) and (6), the equation (6) is satisfied

but equation (5) reduces to
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k12 sin 0, cos 6, =0,
which is not true under the given conditions on 6 and ¢. Hence any circle, not being a great circle, on the

surface of a sphere is not a geodesic.

14.8 Geodesic coordinates

In Euclidean space V), the components of the fundamental tensor g;; are constants and therefore
all the Christoffel symbols are zero at every point of the Euclidean space. However it is not possible to
have such a coordinate system for an arbitrary V. Although it is always possible to choose a coordi-
nates system, so that all Chritoffel symbols are zero at a particular point Py i.e., in which gl.j are locally
constants, such a coordinates system is known as geodesic coordinate system with the pole at P,
Thus we can define it as :

“A coordinates system is said to be a geodesic coordinate system with the pole at a point P if
relative to this coordinate system the components of the fundamental tensor g;; are locally constants in
the neighbourhood of the point P,,, i.e.,

Ggij

ok =0

at P, for all values of i, j and £.”

It is to be noted that in this case the first covariant derivative at P reduces to the corresponding

(4] = L R R Y
“dathy | ox/ 7)., ox
at

Theorem 2. It is always possible to choose a coordinate system so that all the Christoffel

partial derivative. Hence

symbols vanish at a particular point P, (Geodesic coordinate system).

Proof. Let X’ be any coordinate system and at a particular point P, the value of ¥ is xéo) . We

introduce a new coordinate system X' defined by the equation

X =x _xéO) +%{”:”}(0) (xm _x(ng))) (xn _x(n())) ..... (14.8.1)

Here the index (0) is used for the values at P,,. Differentiating (14.8.1) with respect to ¥
ox' ' 1 m om\OX" 1| ox" ., .
Ox- ox/ 2 |mn ) ox’/ 2 |mn ) ox/
1| 1]
=0 +— x™ = x/0,)0" +— " (x" —x/
7 {mn}m)( (0)) 7'y {mn} J ( (0))

(i
:81+ n_ n .
J { jn}(o)(x R (14.8.2)
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Hence ( xjj :Slj'
Ox )

This shows that the Jacobian determinant

%)
ox’ ©

tion (14.8.1) is permissible in the neighbourhood of 7,

ox’
Taking inner multiplication of (14.8.2) with %, we get
X

Si — axi + l (xn_xn )%
ko ok Jjn o (0) a)?k’

5 = o'
k afk (O)'

Differentiating (14.8.4) with respect to X", we find

which implies that at P,

0= o%x' N [ | ox" ij+ i (xn_xn) o%x!
ox"ox*  |jn] ox" ox*  inJ, O oxh ox*

Hence at P()

0_( o%x j +{i} (Gx”] {8}6’)
- I~k . h P :
XX Jgy UM\ X)) LX)y

Using (14.8.5), we get

o%x’ i . i
O(WJ {,} K 8/’«=—{hk} ’
(0) (0) (0)

therefore at P, 6)?1. j =5 (a_xl] =3 -
(0) (0)

ox 77 axt
2 .
and %j = _{hlk} .
Ox" Ox (0) (0)
We know that

{ﬁ}_{s} ox" o' ol ox? o
Im| |ij] ox* ox' ox” ox/ ox'ox™’

..... (14.8.3)

1s not zero and therefore the transforma-

..... (14.8.4)

..... (14.8.5)

..... (14.8.6)

..... (14.8.7)

..... (14.8.9)

therefore

=l 5 (&) (2] A57)
) . s ) m i
m] gy W0y \Ox" )y N )iy LOE™ ) LOX7 )
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A
l.j s Y j¥m J Im
(0) (0)

:{p} _{p} -0. (14.8.10)
Im ©) Im )

This prove that theorem.

Theorem 3. The necessary and sufficient conditions that a system of coordinates be geo-
desic with the pole P are that their second covariant derivatives, with respect to the metric of
the space, all vanish at P,

Proof. We know that

o%x" |p 8xr_ rloxt ox’
o \mlwr il (14.8.11)

Interchanging the coordinate system x’ and ¥’ the equation (14.8.11) can be written as

o’x  [pla [rla &
ox' ox™ Im| oxP  |ij) ox' ox™

Flex o/ | o (ox") [p)ox
= ij] ox' ox™ | ox" ox’ Im| ox?
e [P
- | Ox™ (x’l) {lm}x’p}'
r ﬁi ﬁj —r —r
Hence {ij}@ﬁ =—(% )m =% (14.8.12)

Necessary condition : If the coordinate system X' be a geodesic coordinate system with pole

at P, then
r
{}zO at i,
y

and therefore from (14.8.12) it follows that X, =0 atF,.

Sufficient condition : Courversely suppose that

X}, =0 ath.
then equation (14.8.12) implies il od o atry
_ . ;
Thus, r =0 atF,, as ail #0, & #0.
ij Ox ox"

Hence the proposition.
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14.9 TIllustrative examples

Ex.5. Show that the coordinate system x' defined by

IR
x’=x’+—{ } x"-x",
2 |\mn ©)

is a geodesic coordinate system with the pole at the origin.

Sol. Since the pole is at the origin (xm)(o) =0, then X’ becomes a particular case of theorem 2.

We can prove it independently as follows :

a_i . . .
i}, :8’1.+%{ : } 87x”+%{ : } x"8’}
ox- mnj o, mnj o,

, I
=9 +{ ' } x".
I (0
Also, we have

o’x' (i s |
oxlax®  \jn| T k[
(0) (0)

(6?} =& and (—82? j —{ ! }

Hence i - i Ak R :

ox’ © ox’ Ox © jk )
oo _6)?’{1'}

Now ok x| e |k

y 25 ox! r
at the pole (x,jk )(0) h (axf o J { ox” J {jk }
0) 0) ©

Hence proved the result.

Ex.6. Show that at the pole P of a geodesic coordinate system

0% 4, o |1
A, =——— 4 .
PR oot T ot {ij }

0A. r
Sol. Since we have 4; ;= i -4, { }

Taking covariant derivative of (1), we get

_i %_ r B r B r
(Ai’j)’k_ﬁxk {6)6-’ 4 {ZJH Ar {jk} A {ik}
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0° 4, o |r| 04 |r r r
= A =4 S B} A 2
MR oxd ok T ok {y} ox* {y} A”{jk} ”’{ik} @)

Now, we know that in geodesic coordinate system at the pole P, the Christoffel symbols vanish
and therefore (2) reduces to

0* 4, o [r
= - A S 3
Ak ol oxt T axk {l]} ©)

14.9 Riemannian coordinates

The Riemannian coordinate system is a particular case of geodesic coordinate system. Hence
every Riemannian coordinate system is necessarily a geodesic coordinate system but converse is not
always true. To define Riemannian coordinate system we consider an arbitrary fixed point P, in V,. We

define the quantity & such that

&"{di] (14.9.1)
77y PR 9.

where suffix (0) indicates the value related to P. Let ¢ be the geodesic through P, in V.. Since one and
one geodesic ¢ will pass through P, in the direction of &, such that
yi=sE, (14.9.2)
defines the Riemannian coordinate system. Here P()/) is a point on the geodesic c and s is the arc length
along the curve form P to P.
Theorem 4. The Riemannian coordinates are geodesic coordinates with the pole at P,
Proof. The differential equation of geodesic ¢ in terms of Riemannian coordinates )* relative to

Vs are given by

2. : Jogk
A . (14.9.3)
ds jk| ds ds
i . .
where {j k} is the Christoffel symbol relative to the coordinates )*. Since the P(3*), defined by (14.9.2)
is on the geodesic ¢ given by (14.9.1). This must satisfy it, therefore
0+1 ' Leiei=o 14.9.4
ik s (14.9.4)
Q y' =s&', then (14.9.4) becomes
{,l }yiyk 0. (14.9.5)
jk
Equation (14.9.5) holds throughout the space V. It also implies that
{f}:o ath. (14.9.6)
jk
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Since at P, Y0, YK 0.

Hence the Riemannian coordinates are geodesic coordinates with the pole at P,

14.10 Field of parallel vectors (Parallelism of vectors)

The vectors A, constitute a field of parallel vectors along the curve x' =x' (f) ina V), if 4;is a
solution of the differential equation

. i . [ i
Oy _ 4 & _dh [Pl A oo (14.10.1)
St Jodtdt i dt

The concept of parallelism is given by Levi-Civita. These are N-differential equations of first
order, therefore the general solution will involve N-constants. According the theory of differential equa-
tion, if the initial values of 4, are given at a point of the curve these constants will uniquely be deter-
mined, i.e., 4; will be determined uniquely at all other points if it is given at one point of the curve. Thus
we can say that a field of parallel vectors is obtained from a given vector by parallel propagation (dis-
placement) along the curve.

The condition (14.10.1) is in covariant form, we can write it in the contravariant form as

84 8 4 84,
_—= lA. = U—j:O
St St(g ’) & ot

=0. (14.10.2)

= dt_ .....

i i j
dA EA,jabc :dA+ l Akdi
ot Sodt dt |k
Theorem 5. The magnitude of all vectors of a field of parallel vectors is constant.
Proof. If 4 be the magnitude of vector A4°, then

- o

Differentiating with respect to parameter ¢, we find

247 = ail st )= g g A )
- 84"
= 2€(A)glej 8[» N

as the total derivative becomes the intrinsic derivative in the case of scalars (e( 1) & A 4 is a scalar).

Using (14.10.2), we find that

dA
2A— =
dt 0
dA, ,
= )=
= A% = constant
= A = constant.

Hence the theorem.
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Theorem 6. Prove that the geodesic is an auto parallel curve.
Or
Prove that the unit tangent vectors form a field of parallel vectors along a geodesic.

Proof. The differential equation of a geodesic are

d’x {i}dxj dx*
T e -

ds? | jk| ds ds
d [ dx' i)dx/ dx*
- £ + = o
ds\ ds jk| ds ds
o ([dx' \dx/ [i)dx/ dx*
N < R S
ox’\ ds ) ds jk| ds ds
Do (ax ) (i) dd | ax
- S E 2L o
ox’ | ds jk| ds | ds
i J
N a )
ds | ds
5]
) J
= t’jdizo,
o ds

i

which shows that the unit tangent vectors 7' = form a field of parallel vectors along a geodesic.

ds
Hence proved.

14.11 Parallelism of vector of variable magnitude along a curve

We know that 4 or A constitute a field of parallel vectors along the curve x’ = x’ () if their
intrinsic derivative with respect to ¢ is zero. Further from Theorem 5, we find that the magnitude of all
vectors of a field of parallel vectors is constant.

We shall now define the parallelism of two vectors whose magnitude need not to be constant.

“Two vectors at a point are said to be parallel, if their corresponding components are propor-
tional.’

Clearly, a vector B! is called parallel to a vector A’ at each point of a curve c if

Bl = ¢4,
where ¢ is an arbitrary scalar function of arc length s.
Theorem 7. The necessary and sufficient condition for a vector B' of variable magnitude

to suffer a parallel displacement along a curve c is that

i dx’ i
B’jg:Bf(S)
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Proof. Necessary condition : First we suppose that A constitute a field of parallel vectors

along the curve c, then the magnitude of 4’ is constant and

- dx’
A —=0 L. 14.11.1
5] ds ( )
Now, we know that if B’ is parallel to 4 at each point of ¢, then
Bi=¢4 L (14.11.2)
- dx’ N
Thereft B — =(¢4")] —
erefore, Vs ((I) )’j s
j j
—p A dx 8(1). 4 dx
Jods  ox/ ds
:0+@‘£ [using (14.11.1) & (14.11.2)]
ds ¢
o d
=B'—(lo
ds( 8 ¢)
i dx’ i
= B, — :Bf(s), ..... (14.11.3)
< ds
d
where E[logcb(s)] —f. (14.11.4)

This shows that equation (14.11.3) is necessary condition for the vector B’ of variable magni-
tude to suffer a parallel displacement along c.

Sufficiently condition : Conversely suppose that B’ is a vector of variable magnitude, such that

i dx’ i
B’jg :Bf(s). ..... (14.11.5)
Taking A'=B'F(s), . (14.11.6)
- dx’ . J
we have A'ji =(FB') di
< ds J o ds
. J Ayt
_pp P OF g
Jods  ox! ds
; ; dF
=FB' f(s)+B' —
f( ) ds
; dF
=B'| Ff(s)+—|. .. 14.11.7
)+ (14119
Choosing F' such that
Ff(s)+6;—F=0, ..... (14.11.8)
s



because of arbitrary nature of F (s), we find

Al‘j dx
7 ods

which shows that 4’ form a field of parallel vectors along c and is of constant magnitude, then (14.11.6)

=0,

implies that B’ is parallel along c.

14.12 Illustrative examples

Ex.7. Show that the vector B of variable magnitude suffers a parallel displacement along

a curve c if and only if

(8B, —B"ij)ddigzo.

Sol. We know from Theorem 7, that B’ suffers a parallel displacement along c if and only if

Bl‘j dx
7o ds

=B'f(s)-
Taking outer multiplication by B/, we get

g |
Blej%zBlB’f(s). ----- (1)

Interchanging the suffixes i and /, we find

1 dx! ;
BB . _BBf(s). . 2
5] dS f( )
Subtracting (2) from (1), the required result is obtained as

(BfBjj —B"ij)ddigzo. ..... 3)

Theorem 8. (Fundamental theorem of Riemannian geometry).

With a given fundamental tensor of a Riemannian manifold (Riemannian space V), there
exists exactly one symmetric connection with respect to which the parallel displacement preserves
scalar product.

Proof. Let A” and B’ be two unit vectors defined along a curve c in space V' and these vectors

suffer parallel displacement along ¢, then

i dxf

A,j g = O, ..... (1)
i dxf

By—==0. . )

The scalar product of 4’ and B is gl.in B/, where gjj is the given fundamental tensor.

The parallel displacement preserves scalar product if the intrinsic derivative of gjj A" Bl is zero.
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% dxk dxk inj idxk i i ~dxk
We have (gaAB’)kx:[g”’kﬂ“’*gv[fl’% Bl g d| Bl -

Using (1), (2) and Ricci theorem i.e., ik~ 0.
So the R.H.S. is zero and this proves the theorem.

14.13

Self-learning exercises

Define Geodesic.

Write Euler’s condition of calculus of variation.
Define first curvature ?

What is null geodesic ?

What is field of parallel vectors ?

AN O S o o

Write fundamental theorem of Riemannian geometry.

14.14

Summary

Geodesic in a surface is the curve of stationary length on a surface between any two points in its

plane. It is the main point of the study in this chapter. We obtained a differential equation whose solution

will give the geodesic curve. The geodesic coordinates and Riemannian coordinates have also been studied.

14.15

Answers to self-learning exercises

1. §14.2 2.§14.3 3.§14.5
4. §14.6 5.§14.10 6. Theorem 8.

14.16

Exercises

1.

Show that it is always possible to choose a geodesic coordinate system for any V), with an arbi-
trary point P
Obtain the equations of geodesic for the metric

ds® = e (e +dy” +dz? )+ ().

Show that the great circles on sphere are geodesic.

. Obtain the differential equation of geodesic for the metric

ds* = f(x)dx* +dy* +dz” +——dr’ .

1
/(%)
Give an example of a geodesic coordinate system.

oo
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Unit 15 : Riemannian-Christoffel Tensor and its Properties,
Covariant Curvature Tensor, Einstein Space,
Bianchi’s Identity, Einstein Tensor, Flat Space,
Isotropic Point, Schur’s Theorem

Structure of the Unit

15.0 Objective

15.1 Introduction

15.2  Properties of Riemann-Christoffel tensor
15.3  Covariant curvature tensor

15.4  Properties of covariant curvature tensor
15.5 Illustrative examples

15.6  Contraction of Riemann-Christoffel tensor-Ricci tensor
15.7  Curvature invariant-Einstein space

15.8  Einstein tensor

15.9  Riemannian curvature ofa V/; at a point
15.10 Tllustrative examples

15.11 Flat space

15.12 Isotropic point

15.13 Tllustrative examples

15.14 Self-learning exercises

15.15 Summary

15.16 Answers to self-learning exercises

15.17 Exercises

15.0 Objectives

The objective of this unit is to study the commutativity of the process of covariant differentiation
of vectors and hence we define Riemann’s symbols of first and second kinds. The contraction of
Riemann-Christoffel tensor and Ricci tensor are the points of study. In the end Einstein space, Einstein

tensor and flat space are the points of study.
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15.1 Introduction

We have studies that the covariant differentiation of invariant is commutative. Now we shall in-
vestigate this property of commutative nature for covariant differentiation of vectors. For the study let us

take the covariant derivative of an arbitrary covariant vector 4;

04; o
A,-,j=§—z4a {y} ..... (15.1.1)

Differentiating again covariantly with respect to xX, we get

(141/) =ik a_Ai'_Aoc a _Aocj a _Aioc a .
Ok ox™\ ox! ij lik “Jjk
0’4 04 [a o [a
A, =—"——2 — A, —
= PR axkaxd ox® {l] } * ok {l] }

O RIER A

Now interchanging the suffices j and k, we find that

2
P I LY N
T oxd oxt ox/ ik ox’ ik

{-slafliHa-s ) oo

Subtracting (15.1.3) from (15.1.2) and interchanging a., 3, we get

weesa [N e

Since left hand side of (15.1.4) is a covariant tensor of third order and 4 , be the arbitrary

covariant vector in the right hand side, therefore from quotient law it follows that the coefficient of 4, in

R.H.S. must be a mixed tensor of fourth order, contavariant of rank one and covariant of rank three. Let

us denote this quantity by Ry i.e.,

« _ 0 Jo| 0 Ja ol B o B
B N 1519

The tensor RY; defined by (15.1.5) is known as Riemann-Christoffel tensor or mixed cur-

vature tensor and thus, we have

A=Ay = Rg.kAa. ..... (15.1.6)

The symbol R

i 1s also called Riemann’s symbol of second kind.”

% Riemann’s symbol of the first kind is introduced later on.
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Now it is clear that the necessary and sufficient condition for covariant differentiation of a vector

A, to be commutative is that Riemann-Christoffel tensor be identically zero or R, =0.

ijk
Note : Rg.k is formed exclusively from the fundamental tensor gjj and its derivatives upto sec-

ond order. It does not depend on the choice of 4.

15.2 Properties of Riemann-Christoffel tensor

Property—I : The Riemann-Christoffel tensor is skew-symmetric in the last two subscripts, i.e.,
Ry =-Ry. L (15.2.1)
Proof. The result immediately follows from (15.1.5).

Property-II : R},

i has cyclic property in its subscripts, ie.,

Rzk + R?kl + R%l] - O‘ ..... (15.2‘2)

Proof. By definition (15.1.5), we have

« _ 0 Jo| 0 Ja Bl|a ~ Bl | a

Ry=2 {ik} 2 {,Hk}{@} {zstk} ..... (15.23)
« _ 0 Jo| 0 o B||a ~ Bl|a

Ry = o {jl} o {jk}+{jiHB k} {ijBl} ..... (15.2.4)
« 0 Ja| 0 ja Bl|a ~ Bl o

Rkll - axi {k]} ij {kl}—i_{k]}{ﬁl} {kl}{ﬁ]} ..... (1525)

Adding these, we get

Rzk + R?kl + R%l] - O‘ ..... (15.2‘6)

Hence the result follows.

Property-III : R

' vanishes on contraction in o and i, Le.,

R&=0. L (15.2.7)

Proof. In equation (15.2.5) of §15.2 contracting over o and i, we get

Ra_ia_iochBa_Boc
9= ol lak | axk |oj ak| | wllpe[ (15.2.8)

The last two terms cancel out as a and § are dummy indices, therefore using Property—4 of

Christoffel symbols, we get

o(d o (8
R =2 % jog g |--2 L iog g |=0.
o fo(ﬁxk g@j ka(ﬁxf g\/EJ ..... (15.2.9)

15.3 Covariant curvature tensor

The covariant curvature tensor is defined as

erjk :grot Rzk' ..... (15.3‘1)
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It is fourth order covariant tensor and is also called as Riemann tensor. The symbol Rn.jk is
also called Riemann’s symbol of first kind. It is an associate tensor of Riemann-Christoffel tensor.

The properties of R, can easily be studies if we express it in a more suitable form. Substituting

i
the value of Ry in the above definition, we get

I e N MY
%[gm{;}J—Zi—’f{;}—a%ﬂgm{iﬂ
AL A S B

Using properties (15.3.1) and (1 5.3.2) of Christoffel symbols, the above expression reduces to

Ry = a,[ r]= { }([Pj,a]+[aj,r]) —axik[ij,r]—{Z}([rk,a]+[ak,r])

e
0

= — ik, r]— [’Ja”]+{l]}[rk r]- { }[rj,r] ..... (15.3.3)

the remaining terms cancel out by sultable changes of dummy indices. It can further be simplified as
10 (agir " G Ok j_l 0 [ 0g; " 98ir 08
koo Lok Y o ) 2o e o oy
+g% [i7,B] [k, o] - g [ik,B] [17,at]. ... (15.3.4)

Finally, we have

_1| Py N Ogy gy  Ogy
kol adox! o axt ax"ax!  ax' oxt

+ g ([rk,a] [i1.B]~ [, ] [ik.B])s ....(15.3.5)
which is an important formula from the point of view of studying the properties.

15.4 Properties of covariant curvature tensor

Property-I : Rn.jk is skew-symmetric in the pair of first two indices, i.e.,

R ..=—R

rijk = (skew-symmetric property) ... (15.4.1)

irjk
The above result can easily be proved by interchanging » and 7 in (15.3.2) of §15.3.
Property-II : Rrijk is skew-symmetric in the pair of last two indices, i.e.,

R -R (skew-symmetric property) ... (154.2)

rijk - rikj

It can also be proved by interchanging j and & in (15.3.2) of §15.3.

336



Property-III : Rrijk is symmetric in two pairs (first and last) of indices, i.e.,

Rn.jk = Rj,m. (symmetric property) ... (15.4.3)
If may be easily seen from (15.3.2) of §15.3 by interchanging » and j, then i and .
Property-1V : R . has cyclic property in last three indices, i.e.,

R

1y

rije ¥ Ry T Ry =0 (cyclic property) ... (15.4.4)

Proof : We have R,k =8 Ry (15.4.5)

Giving cyclic rotation to i, j, k and adding, we get
R,»,-jk + R,»jk,- + Rrk,-]- =8ra R.ﬁk +8a R.(;ki + 8 R.%;‘/
= 8,0 (B3 + RS +RY, )
=0. [using property-Il of §15.2) .. (15.4.6)
Property-V : (Bianchi’s identity).
The differential property satisfied by covariant derivative states
Rrijk,p + Rrikp,j + Rripj,i =0
+R?kp,] +R10;7],k = O. ..... (15.4.7)

Proof : The identity is proved conveniently, by choosing geodesic coordinate system with the

or equivalently Rl »

pole at P, so that all the Christoffel symbols vanish at P,,. We recollect that by choosing so, the first

covariant derivative of any tensor at P, reduces to the corresponding partial derivative. For example

; oA’
[A’jlup :ia f'j S (15.4.8)
0 x athy
Now I o i o B R (S el 8
' ox’ |ik| ox"* |ij ik| |Bj ij| |Bk
at P, becomes R?.k:i. fx —ik (.x'
TEaxd k] ex® i
2 a 52 a
and R% ) = . - S 15.4.9
( o )aP ox? ox’ {ik} oxP axk {l]} ( )
Similarly, after cyclic rotation to j, k, p, we get
2 2
(RS,) =‘?_k{f*}_ 0 {“} ..... (15.4.10)
Joox) ox® lip] ox’ ox? ik
2 a 2 a
and (R%) == {}— - { } ..... (15.4.11)
Tk oxtox? |if] ox"ox! |ip
Adding these three expressions (15.4.9) to (15.4.11), we get
(R.?}k )’p + (R.‘}k,, ),,- + (R;;‘,,j ) =0. .. (15.4.12)
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Taking inner multiplication by g, and remembering that the fundamental tensor behave like a

constant is covariant differentiation, we obtain

(20 B3) +(2ar Rf;kp)’j +(0r Rj;j)’k ~0.

P

or Rogp T Rty t Ry =0 . (15.4.13)
This is Bianchy identity.
15.5 TIllustrative examples
0°G

Ex.1. Prove that R

1o = —GW for the V, whose line element is ds® = du?® + G* dv?,

where G is a function of u and v.
Or
Show that the component R ,,, of the curvature tensor for a V, with metric
ds? =dx® +f (x, ) dv* equals —laz—f+L(gT )
20xr 4f\ox
Sol. For the metric
ds? = du? + G* dv?,

wehave x!=u x2 =vg=L g22=G2, g,=0, g¢=0. .. (1)
. _1 08, n azgii _ 82ng B O gu
Since Rujt " 2| axox’  ox" ox* ox ok ox" oxd

+g° ([, ] i1, B] [/, ][k B])

the value of R ,,, is given by

1 o’g, g
Rpppp = E£0+ 0- ™ 61;2 1 01;1 +g*" ([12,a][21,B]-[1L,a][22,8])

_ _%%(G2)+g“ (212111 L1][22.1])

+g7 ([12,2][21.2]-[11,2][22,2])

= _li(z(;a_GJ +g'! (0).,. g% (lagil@j

2 Ou ou 2 ox' 2 ox!
10(.0GY 1[0,
= | G— |+ —] =
2 Gu( GuJ 4G* [Gu( )} """ @)
2
L — 3)
ou

Taking G = \/7 and u = x the alternative form may easily be obtained.
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15.6 Contraction of Riemann-Christoffel tensor-Ricci tensor

Theorem 1. The Riemann-Christoffel tensor R, (or mixed curvature tensor) can be con-

ijk
tracted in two different ways-one of these leads to a zero tensor and other to a symmetric tensor
Rl-j, known as Ricci-tensor.

Proof. We have by definition

" _ia 0 Ja Bl|a Bl | a
Ry o ik~ ot ij + it [ Bj - illge) (15.6.1)

(i) Contracting over i and a., i.e., setting i = o, we get

" _ 0 Jo| 0 Ja Bl|a Bl]|a
Rk R PR o + ak| | - wllge[ (15.6.2)

Interchanging the dummy indices o and 3, the last two terms cancel out. Further, using property
of Christoffel symbols

i =gl aalon®)) 2 Galeese)

=0. (15.6.3)
(ii) Contracting over k and a,, i.e., setting k = o, we get

ge 0 Jol| o Jol [BlJo| JBlJel (15.6.4)
Y5 ol lio] e i lia] B i | Ba

Writing, (Ricci tensor)
R =R% =g“R

ija rija o e

The above expression becomes

o
%=l e )2 {J} { : Hsj} {B } (alioe )
..... (15.6.6)
It may easily be observed that, by interchanging i and j in (15.6.6), that
Ry. = le. (symmetric property) ... (15.6.7)

Thus Rl.j is a symmetric tensor and is called Ricci tensor. It is defined by (15.6.5) and (15.6.6).
Notes :

1. The contraction over o and j (j = o) does not yield any new tensor, because

R?ock Rz%oc = Rik

[using skew-symmetric property of Riemann-Christoffel tensor. |

where is Ricci tensor with negative sign.

2. If g is negative, replace log+/g by log\/—g in (15.6.6).

339



15.7 Curvature invariant-Einstein space

The curvature invariant R is defined as

R:g’jR,-j.:R,-". ..... (15.7.1)
A space for which at every point of it
Ry=1Ig;, .. (15.7.2)

Yy .
where [ is an invariant and it is called on Einstein space. The inner multiplication of (15.7.2) by g7 and
using (15.7.1), we get

R=NL L (15.7.3)
Hence for an Einstein space
_ R
R; _ﬁgij' ..... (15.7.4)

15.8 Einstein tensor

It is defined as
, : 1
i il i
G, =8 le_ERSja ..... (15.8.1)
and it has a considerable importance in the theory of relativity.
Theorem 2. The divergence of Einstein tensor vanishes, i.e.,
G.;=0.
Proof. We have from Bianchy identity
Rrijk,p +Rl‘l‘kp,j +Rl‘ipj,k = 0. ...... (15.8‘2)
Taking inner multiplication of the above relation by g/ g’%, we get
ij rk ij _rk ij _rk _
(g g Ry )’p +(g g R, )] + (g g R,y )’k =0. .. (15.8.3)
Using the definition of Ricci tensor and the skew-symmetric property of covariant curvature ten-
sor, we find
ij i rk _
(g./le )’p _(g./Rip )’j _(g Rrp ),k =0.
_(p/\ () =
or (R), (RP),_; (rp ),k =0
—( R/ J
or (R)’P - (Rp ),j * (Rp ),j
or (R),=2R),
o1 1 OR
or R;;,j =ER,p =58x_p, ..... (15.8.4)
where R) =g R, is the associate tensor of Ry,
i i1
Now Gj:Rj_ERSj' ..... (1585)

340



Taking its divergence and using (15.8.4), we get

div(G}) =G,
:(Rj.)’j ~Lsir,
:%R’j_%R’j 0. . (15.8.6)

Hence Proved.

Theorem 3. An Einstein space V,, (N > 2) has constant curvature (Curvature inva-
riant R).

Proof. Taking inner multiplication of Bianchy identity by g/ g’%, we get

.1 OR
§j=—a—, ..... (15.8.7)
Y 2 axp
where R;,' =g’ R,
In an Einstein space V', we have
R
R, :ngp' ..... (15.8.8)
Taking inner multiplication of it by g, we get
ij R
gk, =5,8"8p
R .
or R; =N8;,. ..... (15.8.9)
Now taking covariant derivative with respect to ¥/, we get
; 1. 1
RP’fZWS;’R’f :ﬁR’p' ..... (15.8.10)

Hence from (15.8.7) & (15.8.8), we conclude that

(l_ija_Rzo, ie., a—R:O, since N > 2.
2 N)ox? ox?

or we can say that R is constant.

Thus Einstein space V; (N > 2) has constant curvature.

15.9 Riemannian curvature of a V', at a point

If A’ and B be any two contravariant vectors at a point of a Vy» then
r 4J pink
R, A"A’B'B
r 4j pipk?’
(grjgik - grkgij)A A’B'B

is called the Riemannian curvature of the space V), associated with the vectors A'and B,

K=

It is an invariant, which is unaltered at a point, when the two vectors determining it are replaced

by any linear combination of them.
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15.10 Illustrative examples

Ex.2. The metric of V, formed by the surface of a sphere of radius a is
ds? = a? do? + a2 sin? 0 d¢?,

in spherical polar coordinates. Show that the curvature of the surface of the sphere is € which

2 b
a
is constant.
Sol. For the metric ds? = a? do? + a2 sin? 0 d¢?,
wehave x!=0, x2=¢, g = a2, gn = a? sin® 0, g,=0, g,=0. .. (1)
Therefore, g= S En_ a*sin0. . 2)
821 82
1 82gzz 2( 1 0gy ’
Now PR TS 0A0 8 |50
2 0x ox 2 oOx
1 6° 1 o ?
:———2( 2Sin2 9)+ﬁ(—(a2 Sin2 G)J
2 00 4a”sin” 0\ 00
= Ryp=a*sin®0. 3)
Ry, a*sin” @ 1
= == ==, (4)

g a*sin’0 a
which is curvature of the surface of the sphere.
Ex.3. Show that the Riemannian of a V, is uniquely determined at each point, and its value

is given by

Sol. In a two-dimensional space, at any point of it, there exists only two independent vectors.
Therefore the Riemannian curvature of a 7, is uniquely determined at each point. In a ¥, the number of

independent components of R, is 1. The value of k can easily be found by choosing the two vectors

rij
whose components are (1, 0) and (0, 1) respectively. Then

1p2 41 p2
Riy,4B"A'B _ Ry
(g11g22 _g12g21)AleAle g

K=

asdAl=1,B2=1.

15.11 Flat space

A space for which the Riemannian curvature is identically zero at every point of'it (i = 0), is

called a flat space.
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Theorem 4. The necessary and sufficient condition for a space V), to be flat is that the

Riemann-Christoffel tensor be identically zero, i.e., Rg.k =0.
Proof : Necessary condition :
Let the space V), be flat, them k = 0 at every point of V', i.e.,
k —
. leA” B/ B'Bf=0,

for all vectors 4’ and B’. From it we cannot jump to the conclusion that R 7 = 0. It must be remem-

ri
bered that in the form Rn.jkA” B/ B B the coefficient of the product 4” 4/ B B is mixed up with the

coefficients of 4/ A" B! BK, A" 4/ BX B! and 4/ A" B¥ B, it is fact Rn.Jk + Rﬂrk + erql Jlm which
may be obtained by interchanging the dummy indices as follows :
RyA" 4B B=0 (15.11.1)
Also Ry A" B B=0 (15.11.2)
Ry A" 4B B=0 L (15.11.3)
Ry,#4"BB'=0 (15.11.4)
On addition, (ank ﬂrk+Rrkﬂ+RJkn)A”A/B’ Bk=o0. . (15.11.5)
This implies that for arbitrary AL B
Rrijk + lerk + ergl Jkrl =0.
= Rn.jk R hji +R i ank 0 [using symmetric property]
= 2(Rrijk rlqz) 0,
= Rn.jk = erg'i' [using skew-symmetric property] ..... (15.11.6)
Interchanging i, j and k cyclically in (15.11.6), we get
Rrjki= Rn.jk. ..... (15.11.7)
From (15.11.6) and (15.11.7), we have
Rrijszrjki =Rrkij' ..... (15.11.8)
Now substituting (15.11.8) in the cyclic property-IV of §15.4
Rrijk+Rrjki rkl] =0. Ll (15.11.9)
we find 3Rn.jk— 0
= Rn.jk=0. ..... (15.11.10)
Sil’lCC, Rrijk =8ra Rzk >
and g, is an arbitrary, it implies that
Uk =0. (15.11.11)

Sufficeint condition : Conversely, if R, =0. i.e., R ; =0, then it in clear k = 0.

Hence the theorem.
o e . dx’
Note : Taking inner multiplication of 4, i 0 with R we get
J
LB o
“dt
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54,
i,
= ot

This shows that in a flat space the property of parallelism is independent of the choice of a curve.

Thus parallelism is an absolute property of a flat space.

15.12 Isotropic point

An isotropic point in Riemannian space is a point at which the Riemannian curvature is indepen-
dent of the vectors 4” and B’ associated to it.

It implies that (R~ (g, 8y —g; 814" 4 B'B* =0, .. (15.12.1)

for all vectors A' and B* at the isotropic point.

Now we define a tensor 7 ik by the equation

Trijk = Rrijk -K (grj ik — & g0 (15.2.2)

then (15.2.1) reducesto T, 4" #/ B'B*=0. (15.12.3)

Proceeding parallel to Theorem 4, we conclude from (15.12.3) that will be true for any vectors
A'and B if

Tk & Tiine t T+ Tigi = o. L (15.12.4)
According to (15.12.2) we see that the tensor 7 rijk satisfies the same four properties as by Rn.jk
Viz.
Lok == Tijrs Tre =~ Tritgs ik = Tt
and Tt T ™ T = o L. (15.12.5)
Hence repeating the same steps as in (15.12.3), replacing Rn.jk by T’ rijle WE finally get
L= o. . (15.12.6)

Thus from (15.12.2) to (15.12.6), it follows that at an isotropic point the Riemannian curvature
satisfies the condition
Rrijk= K (grj ik — & g0 (15.12.7)
Now we state an important theorem due to Schur.
Theorem 5. (Schur’s theorem).
If a Riemannian space Vy, (N > 2) is isotropic at each point in a region, then the Rieman-
nian curvature is constant throughout that region.
(Such a space Vy, is called a space of constant curvature).
Proof. We know that if the Riemannian space V', is isotropic at each point in a region, then
Rrijk= K (grj ik — & g (D
where « is the function of coordinates x'.
Taking covariant differentiation of (1) with respect to x’, we get
Rrijk,t= (grj ik — & P (2)

since the covariant derivative of the metric tensor vanishes.
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Permuting the subscripts j, &, ¢ cyclically, we find
Rrikt,j = (grk 8ir — 8ir grt) KJ ..... (3)
and ij’ (g, g;i — &t grj) Kee 4)
Adding equations (2), (3) and (4) and using Bianchi identity, we get
(87 8ik = &7 &) <1t (i &it 8k &) K T (€485 — 81t &) K= 0. . )
Taking inner multiplication by g g™, we find

(N> =508} ), +(8/8) — N&] )ic , + (878 — N} )i, =0

= (N> =N), +(1=N)8/x ; +(1-N) 8, =0
= (I_N)[K’I—FK’;_NKJ]ZO
= 1-»me-~Myx,=0. (6)

But N> 2, therefore k , = 0, but this is simply F = 0. Hence it follows that k is a constant.
’ X

Such a V', is called space of constant curvature. Hence the theorem is proved.

15.13 Illustrative examples

Ex.4. If the metric of a two dimensional flat space is f () [(dx})? + (dx?)?],
where  (r)2 =2+ (x2)2, showthat f(r)=c (r)k, where c and k are constants.
Sol. We have the metric
ds?=f (r) {(dx")* + (D)%},
therefore =/, g»n=/n, g,=0, g=0. .. (1)

The only non-zero component of Rn.jk ina V, is R ,,, which in the present case is given by

1 8%f &2 f 1 o 2 o 2
Riza = _E(le ox! ’ ox? ax? J +g{(§J ’ (Gx_zj """ 2

InaV,, K= Rz
g
For a flat space k=0, i.e.
Rpp;p=0.
O’f , &f _1 (i} N (i}
Hence ood oo f P o2 S 3)
But [=f@E*=aH?+ed% (4)

Therefore, changing (3) to polar coordinates, we get

az_fg@%@f
or*  ror _f or)
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Let, F=logf(r).

Then (5) reduces to

d’F 1dF

+———=0

ar® rdr

d( dF dF

—| r— |=0, ie., r— =k (constant
— o (r dr} Le, r— ( )
or d_F:E, ie., F=Klogi.

dr r A

From (6) and (7), we conclude that 1'(r) = ¢ ()%, where ¢ and k are constants.

Ex.5. Prove that, in space V) of constant curvature «,
(i) Rl.j =—(N-1) Kg;j and
(i) R=—N(N-1)x
Deduce that a space of constant curvature is an Einstein space.
Sol. In the space of constant curvature
() R,»ijsz(g,»j 8ik — &jj 8-
Taking inner product with g, we get
k - k —_
g Rr,-J-k = K(Sjgik gijN)’
Using the definition of Ricci tensor, we have
R =K (1-N) g
(ii) Again taking the inner product of (1) by g7, we get
g'R;=x(1-Ng'g;
= R=x(1-N)N.
From (3) and (4), it follows that
R
Ry- = N 8ij
This shows that a space Vy; (N > 2) of constant curvature is an Einstein space.

Ex.6.InaV,, prove that
R (gij 8rj — 8ij g) =2 Rrijk

and hence that Rg=—2R1212.

In this case, prove also that the components of Ricci tensor are proportional to the com-

ponents of metric tensor that is

g Ry =—Ryppp 8y
Sol. Since a ¥, is isotropic, the equation

Rn.jk= K (g,»j ik — 8ij grk)a

holds throughout any V.
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Using the method of example 5, we get
Rj=-xg, N=2

and =—2K.

From (1) and (3), — 2R,,,-jk= R (g,,j 8k — & &)
= ~ 2R3, =R (g1, 8~ 817"
= —2R,,=Rg.

Now from equation (2), (3) and (4),

R
gRij =—g8; = Riyng;-

2

This gives the required result.

15.14

Self-learning exercises

1. Define Riemann-Christoffel tensor.

2. Write the necessary and sufficeint conditions for covariant differentiation of a vector 4; to

be commutative.

3. Define covariant curvature tensor.

4. What is Ricci tensor ?

5. What is Bianchy identity ?

6. Define Einstein tensor.

7. What is the divergence of Einstein tensor ?

8. What do you mean by flat space ?

9. Write the statement of Schur’s theorem.
15.14 Summary

In this unit we have studied the commutativity of covariant differentiation of vectors and defined

Riemann-Christoffel tensor. On the basis of this we have defined covariant curvature tensor. The prop-

erties of covariant curvature tensor are also given. The contraction in Riemann-Christoffel tensor gives

Ricci tensor. Then the Einstein space has been defined. Bianchy identity and Einstein tensor have also

been studied. The divergence of Einstein tensor vanishes. A space for which Riemann curvature is identi-

cally zero at every point of it, is called flat space.

15.15

Answers to self-learning exercises
1. §15.1 2.§15.1
4. §15.6 5.§154
7. §15.8 8.§ 15.11
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9.§ 15.12



15.16 Exercises

1. Prove that
B/,mn _Bl,nm =R} ,B

Imn™=p>
where Bp is an arbitrary covariant tensor of rank 1 and deduce that R/ is a tensor.
2. Define Riemann’s symbols of first and second kind. If B, are components of a vector, prove that

Bi,jk _Bi,kj = Dg ;'Lk'
3. Show that the space of constant curvature is Einstein space.
4. Fora V, space, prove that
Hence deduce that every V, is an Einstein space.
5. Show that the number of independent components of the covariant curvature tensor in a space
of N-dimension is
1
—N?*(N*-1).
12

oo
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