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PREFACE

The Present book entitled “Differential Equations, Calculus of Variations
and Special Functions” has been designed so as to cover the unit-wise syllabus of
Mathematics-Third paper for M.A./M.Sc. (Previous) students of Vardhaman
Mahaveer Open University, Kota. It can also be used for competitive examinations.
The basic principles and theory have been explained in a simple, concise and lucid
manner. Adequate number of illustrative examples and exercises have also been
included to enable the students to grasp the subject easily. The units have been
written by various experts in the field. The unit writers have consulted various
standard books on the subject and they are thankful to the authors of these refer-

ence books.



Unit1: Non-Linear Ordinary Differential Equations of
Particular Forms and Riccati’s Equation

Structure of the Unit

1.0 Objective
1.1 Introduction
1.2 Exact Non-Linear Differential Equation
1.3 Riccati’s Equation
1.3.1 General solution of Riccati’s equation
1.3.2 Theorem
1.3.3 Method of solution of Riccati’s equation when one particular solution is known
1.3.4 Method of solution of Riccati’s equation when two particular solutions are known

1.3.5 Method of solution of Riccati’s equation when three particular solutions are known
2

d
1.4 Equation of the form d—; =f(»)
X

1.5 Equations not containing y directly

1.6 Equation not containing x directly

1.7 Equations in which y appears in only two derivatives whose orders differ by two
1.8 Equations in which y appears in only two derivatives whose orders differ by unity
1.9 Homogeneous Equation

1.10  Summary

1.11  Answers of Self-Learning Exercise

1.12  Exercise

1.0  Objective

The purpose of this unit is to discuss various methods for solving some particular forms of sec-
ond and higher order non-linear differential equations. The methods for solving exact non-linear differen-

tial equations and Riccati’s equation are also discussed.
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1.1 Introduction

In earlier classes we studied a great deal about linear differential equations of second and higher
orders when coefficient may or may not be constant. It is a known fact that due to superimposition of
linearly independent solutions, it is easy to solve linear differential equation and we have well established
theories for such types of equations.

On the other hand, the non-linear differential equations are difficult to handle. In the case of some
first order equations, we have well established methods. However, there is no known general method
for solving second and higher order non linear differential equations. It is only some particular forms that
may be reduced to linear equations by suitable transformation and integrated to yield compact results.
The aim of this unit is to study those easily integrable non-linear equations.

Next we shall discuss the general solution of Riccati’s equation. The solution of this equation

when one, two or three particular solutions are known will also be discussed.

1.2 Exact Non-linear Differential Equations

There is no simple method for testing the exactness of non-linear differential equations as in the
case of linear equations. One possible method is that if the terms of the equation be grouped, by inspec-
tion, in such a way that they become perfect differential and their integrals may be written directly. The
other method of obtaining the integral of an exact differential equation, which is applicable both for linear
and non-linear equations is explained below.

Let s = f'(x) be a differential equation of n™ order. If it is an exact deferential equation it should

n

be derived merely by differentiation, so as to contain in the first degree. Now we write the equa-

dx"

n—1

tion in the form sdx = f (x) dx and will integrates assuming that as if were the only variable in the

n—1
X

n

differential equation and is its differential coefficient.

n
X
Denoting the result by s, then sdx — ds, will contain differential coefficients at the most upto

n—1

(n—1)™order. Restriction of taking as the only variable should be removed while finding ds, .

]
Repeating the above process as many times as necessary, we shall finally get
sdx —ds —ds,—...=0
or ds +ds, +..=sdx
On integration, we get
s, t+s, o=l sdx =11 (x) dx

2



Ex.1. Show that the differential equation
3 2
y+3xd—y+2y L + x2+2y2ﬂ —dy=0
dx dx dx ) dx

is an exact equation and find its first integral.

Sol. The given equation can be written as

2 2 3
sdxz{ﬂ %+2y2%%+2y(%j +3x%+y}dx= 0

Now here the first three terms are the differentiation of

2
22 (2)
dx dx

2
2dy | ofdy
So putting 5= {x o U\

On differentiation, we get

2 3 2
ds, :{X2M+2xﬂ+2y(ﬂj +2y2ﬂﬂ}dx

dx? dx dx dx dx*
Thus sdx —ds, z[y+xﬂ}dx _____
dx
Again the terms on R.H.S. are the differentiation ofxy, so putting
S, =Xy

On differentiation, we get

A
dx

From (1) and (2), we finally get
sdx —ds, —ds, =0
which on integration gives
s, +s,= constant
This relation shows that the given equation is exact and the first integral will be given by

2
) dy z(dy]
X- =+ - | +xy=c.
dx Y dx 4

Ex.2. Solve the following differential equation :

. dzy dy . dy
2sin x —-+2c0s x ——+2sin x—+ 2y cos x =cos x
dx dx dx

Sol. We can writte the given equation as

2
sdx = 2sinxd—;}+2005xﬂ+2sinxd—y+2ycosx dx = cos x dx
dx dx dx



. d
Here first term of above equation will arise from the differentiation of 2sin x d_ic;’ SO putting

§; =2sin x@
dx
oh il ds, = 2sinxd—2y+200sxd—y dx
which implies that 1 2 x
. dy
Thus sdx —ds, = 2s1nxd—+2ycosx dx
X
Again putting
s,=2ysinx

On differentiation, we get

ds, = [2sinxﬂ+ 2ycosx} dx
dx

S sdx —ds, —ds, =0
This shows that the given equation is exact and on integrating, we get

s]+s2=Isdx=fcosxdx

or 2sinxﬂ+2ysinx:sinx+2cl
dx
d—y+y—l+c cosec X
of dx 2

This 1s a linear differential equation of first order whose integrating factor (/.F.) is e*
Thus its solution is

y.(I.F.)= j(%+clcosec x]([.F.)a?x+c2

1
or ye' = Ee" +clfexcosec xdx+c,

d’y dy Y’ dy
2 2. .
Ex.3. Solve 2 x“cos y?—Zx sin y(aj + x cos ya—smy—logx

Sol. The given equation is

2 2
sdx = {2x2 cosy%—bc2 siny(ﬂj +xcosy;l—y—siny} dx =logx dx
X x

dx
Let §; = 2x2 cosyd—y
dx
d?y 2 . (dy] dy
ds, =| 2x% cos y—= —2x*sin y| —= |+ 4xcos y—= |dx
So that 1 { y I y pe y Ir



sdx —ds, = [—3x cos yﬂ —sin y} dx
dx
Again let s,=—3xsiny
dy .
So that ds, =| =3x cosyd— —3siny |dx
X

sdx—ds —ds,=2sinydx
Hence the equation is not exact.

So dividing the given equation (3) by x?, we get

dzy . dy]2 1 dy 1 . log x
sdx=|2cosy—=-2siny| — | +—cosy———siny |dx =—=—dx
l: ydx2 y(dx X ydx x2 4 x2
d
Now let s = 2cosy—y
dx
dzy . dy]2
ds, =|2cosy—=-2siny| — | |dx
so that 1 { y i y(dx

sdx —ds, = [lcos yﬂ—%sin y} dx
X d

X X
. L.
Again let 8§, = ;sm y
1 1 .
So that ds, = [— cosyﬂ ——5sin y} dx
X dx x

sdx —ds, —ds, =0
Hence the equation is exact, and

log x

2
X

ds, +ds, = sdx = dx
Integrating we get

1
51+, :J‘x—zlogxa’x+c1

1 . 1
2cosyd—y+—s1ny:——(logx+1)+c1 _____
dx x X
Let sin y = u. Then
cosyp & -3
dx dx
.. (4) reduces to
du l:——(logx+l)+c—l .....
dx 2x X 2



which is linear with

1 ldx
IF.=erx =4x
Hence the solution of (5) is

u&:_ljwdﬁﬁj&dﬂ%
2 X 2

. 1 w/2 c
or \/;SIHy:—EI(W+1)e dw+?1x3/2+cz’wherewzlogx

w2 w2 | € 312

=—(w+1)e"" +2e x7+e,

:—(logx+1)\/;+2\/;+c3—1x3/2 +c,

. c _
or smy:—logx+1+?1x+c2x 12

which is the required solution.
2 2
Ex.4. Solve xzyd—':+(xd—y—y) =0
dx dx
Sol. The given equation is

2 2
sdxs{xzy%+x2(ﬂj —2xy%+y2}dx=0

x dx x
dy
L s, =xy—
et : Y dx
Yy dyY dy
ds, =| x* +x’ +2xy— |d
— s, {xy > x(dj xydx}x
_ dy 2
So that sdx—ds, =| —4xy—+y~ |dx
dx
Again let s, =—2xy*
d
So that ds, = {—4xy—y— 2y’ }dx
dx

sdx —ds, —ds, = 3y* dx
Hence the equation is not exact.

Therefore dividing the given equation (6) by x*, we get

2 2 2
sdx = yd_y_'_(d_yj _2_yﬂ+y_2 dx=0
dx x dx x

Now let S =y—



d’y (dyY
ds, =| yEL [ 2| |a
Then S) {y I ( dxj X

2ydy )
So that sdx —ds, =| —————+= |dx
x dx x
2 2
Let s, =—2 sothat ds, :(—2—yﬂ+y—2]dx
X x dx x
Hence sdx —ds, —ds, =0
or ds +ds,=sdx=0
or s, ts,=c
d 2
or . 7
dx x
2
y dy du
Let u=-— sothat y—=—
© 2 7 dx dx
Hence equation (7) becomes
du 2
— ——U=C, 8
G (8)
—Z/X)dx 1
which is linear with /.F.= ej( e =
X
Thus solution of (8) is
2
;—2= —C;]+c2 or %z x(—¢, +¢,x)
or y*=x(Ax — B),

where 4 and B are arlitrary corstants.

1.3  Riccati’s Equation

Originally, the name Riccati’s equation was given to the differential equation

dy

—+by’ =" 1
g T Ee (D
where b are ¢ are constants. Equation (1) can be written in the form
yotbyr=exm )

where suffixes denotes differentiation w.r.t. x
The more general form of (2) is
xy,—ay+by=cx» L 3)
which can be easily reduced to the form
by using the substitution # = x“ and then changing the variable y to u by substitution y = ut.
7



The Equation (4) can be easily written in the form
y=P+Oy+RYy* (%)
where P, O and R are function ofx.
The equation (5) is known as the generalised Riccati’s equation.
French Mathematician Liouville, in 1841, proved that equation (5) is one of the simplest differ-
ential equation of the first order and first degree that can not, in general be integrated by quadratures.
Due to historical and theoretical importance and its usefulness in Differential Geometry, the studyof Riccati’s

equation becomes quite useful.

1.3.1 General solution of Riccati’s equation

Equation (5) can be reduced to a second order linear differential equation by introducing an-

other dependent variable S such that

S, -1
=—=-5/(RS
Y=%g 0 (6)
On differentiation, we get
y, =-SRS)'+SRS*[RS+RS] L (7)
where a subscript denote differentiation with respect to x.
Substituting (6) and (7) in (5), we get
SZ Rl Sl S]2 Sl S12
=P — |+R
RS RS RS v rs | RSP
or —RS, + RS, = PR’S — OS R
or RS (OR+R)S +PRS=0 . (8)

This is linear differential equation of second order. We know that the general solution of (8) is of
the form
S=Af(x)+Bglxy L. )
where 4 and B are arbitrary constants and f'(x), g(x) are two linearly independent integrals.
Now, from (6) and (9), we get

[4fi+Bg]  (4/B)fi+g

R[Af+Bg] R[(4/B)f+g]

which is of the form

_ Cfl(x)"'g](x) 0
Rl (x)+e(] e (10)

where ¢ = A/B is an arbitrary constant. Hence the general solution of (5) is (10).

y:

1.3.2 Theorem : The cross ratio of any four particular integrals of a Riccati’s equation
is independent of x

Proof : We know that the general solution of Riccati’s equation

y=P+Qv+R* L (11)
8



___dh+g

i y
is of the form Rlef+e] e (12)

wheref, g, /, g are appropriate functions of x and c is an arbitrary constant.
Let p(x), q(x), r(x) and s(x) are four particular solutions of (11) obtained from (12) by giving

four different values of ¢, say a., 3, v, 0.

Then p(x)=- I[:[Lf‘ f+ +g(,g]]

_ [Bfl +g1]
7= R+ o]

_ Ii+al]
)= Ry ve)
[of, + & ]
R[8f+g]

 (a-B)fe - fig]
Then P Rlaf + g][Bf + 2]

=38~ fig]
Ry +¢][8 +¢]

_(a-3)[f& - £8]
R[(xf+g][8f+g]

.- (v-B)[ /2 - fig]
R[yf +g][Bf +g]
(P=q)(r=s)_(a-B)(r-3)
= =k(say
s (rs)—a) (o) p) )
when £ is independent of x. This shows that the cross-ratio of any four particular solutions ofa Riccati’s
equation is independent of x.

s(x)=-

p—S

1.3.3 Method of solution of Riccati’s equation when one particular solutions is known

Let p(x) be the known particular solution of Riccati’s’s equation

y=P+Oy+Ry* (13)
So that p,=P+0Op+Rp,
Let u be the another dependent variable such that

1

y=p(x)+ T e (14)

then equation (13) reduces
u 2
pl—u—§=P+Q(p+—j+R(p2+7p+—zJ ..... (15)



Using (14) and (15) in (13), we get

or

ﬂ:_Q_R{Q_PJrL}

2
u u u u

u +(Q+2pR)u=-R

which is a linear differential equation of first order and first degree in u and x. Its integrating factor is

given by

LF.=¢l@

and hence the required general solution is

ue 1@ 2R dx = [ Ro 1@+ 2Rg) digy 4

where c is an arbitrary constant.

1.3.4 Method of solution of Riccati’s equation when two particular solutions are known

Let p(x) and g(x) be the two know particular solutions of Riccati’s equation

so that

y=P+Qy+Ry
p,=P+0p+Rp’
q,=P+Qq+Rg’

From (16) and (17), we get

or

or

»-p,=(-p) 0+’ -pIR
-, =0-p) [0+ +pR]
By

J:Q+(y+p)R
y=—p

Similarly from (16) and (18), we get

N4 =Q+(y+q)R
y—q

From (19) and (20), we get

=P Nh—4q z(p—q)R
y—-pr y—q

On integration, we get

log (v —p) —log (v ) = ¢ + [(p — ¢) Rex

which is the required general solution.

1.3.5 Method of solution of Riccati’s equation when three particular solutions are known

Let p(x). g(x) and r(x) be the three known particular solutions of Riccali’s equation

and the corresponding values of ¢ be a, 3 and y. Then by Theorem 1.3.2, we can write

y, =P+ Oy + Ry?

[of +g]
R[onf+g]
[Bfl"’gl]

 R[pf+g]
_ [vi+al]

 R[pf+g]

10



(=00 4
then, we have (—a)(p—) =k (constant)

where £ is independent of x. This is the required solution of Riccati’s equation when three particular
solutions are known.

Ex.1. solve y, = cos x — y sin x +)?
Sol. Taking y = sin x so that y, = cos x. Substituting these in the given equation, we get
COS X = €OS X — sin® x + sin® x
This shows that y = sin x is a particular solution of given equation.
) . 1 u,
Now taking y=sinx+— sothat y=cosx——
u u

Using these in given equation, we get

2
u . . 1 . 1
COSX—— = cosx—smx(smx+—)+(s1nx+—)
u u u

u, sinx 1

or —— =t
u u u
du .
or —+uysinx=-1... 21
e (21)

Equation (21) is a linear equation of first order whose integrating factor is
LF, = einxdr = g and hence the solution of (21) is

woesr=c—fewssgy (22)
Now putting the value of
Lo
( y —sin x)

in equation (22), we get

COs X

e—' — C _J‘e*COSde

y—sinx

which 1s the required solution of given equation.

Ex.2. Find the general solution of the Riccati’s equation

d
—y=2—2y+y2
dx

whose one particular solution is (1 + tan x).

Sol. The given equation is

dy 2
—=2-2y+y 2
i y+y (23)
Since (1 + tan x) is a given particular solution then taking
1 1 du
=(l+tanx)+— so that =sec’ x——— .. 24
y=(1+tanx)+- Y S (24)

Putting (24) in (23), we get
l du 1 2tanx

2 - 2
u- dx u u

11



or ﬂ+(2tanx)u:—1

dx
It is a linear differential equation of first order having ntegrating factor
[F — l@tan x)dx — eZlogsecx — SCCZX

Hence the solution is
usec’x=c-Jsec?xdx=c—tanx ... (25)
From (24) and (25), the required general solution is

sec’ x
y=1+tanx+

c—tanx

k
Ex.3. Show that there are two values of the constant for which . is an integral of

X' (v, +?) = 2, and hence obtain the general solution.

Sol. Rewriting the given equation in the standard Riccati’s form as

y=P+Oy+Ry* (26)
2 2
= ? -y (27)
Let p(x) and g(x) are two particular integrals of (26), than by §1.3.4, we have
(r- p)}
log =c+ |(p—q)Rdx
{(y ) [(p-q)Rax (28)
k k
Now let y=— sothat y =-—
X X

Substituting these in (27), we get

2
—%:%—I% or k> —k—-2=0so that. k =2,-1
xr X x

2 1
Hence — and —— are two particular solutions of (27)
X

X
Now taking
p(x)=Zandg(x)=— L. (29)
X X
On comparing (26) and (27), we getR=-1 . (30)

Using (29) and (30) in (28), we get

log -2 _ 10gk+j(%+lj(—l)dx, taking ¢ = log k
X X

xy+1
or logxy_2 =logk —3logx
xy+1
or [xy—2Jx3=k
xy+1

or xX(xy —2) =k (xy + 1), where £ is an arbitrary constant.
12



Ex.4. Show that 1, x, x* are three particular integrals of x (x> — 1) y, +x* — (x* - 1)
y —y* =0, and hence obtain the general solution y (x + k) = x + kx*, k being an
arbitrary constant.

Sol. Re writing the given equation in the standard Riccati’s form as

_ by +1 N 1 )
=T LY x(xz_l)y ..... @31

Now putting y = 1 (one of the three given integrals) so thaty =0, and we get

0=——> +l+ : =0

-1 x x(x2 —1)

This show that y =1 is an particular integral of (1). Similarly we can prove that y=x and y = x?
are also particular integrals of (31).
Now taking px)=1, g(x) =x, r(x) =x*and using § 1.3.5, we get

(l—x)(x2 —y) 1

m ~ k (say)

(1—x)(x2 —y) 1

or —x(l—x)(l—y):;
or k(x* —y) =—x(1-y)
or vk +x)=x+ kx*

which is the required solution.

d*y
1.4  Equation of the Form e =f(»)

d
To find the solution of above equation, we multiply both side by 2 =d , then we get

dx
dy d* d’y dy
2= =2
dx dx? f( )dx

On integration we obtain

(Q] _ij dy+a

dy
— =dx
or [ I f dy + a}
Again integrating, we finally obtain
dy
I Ty =X+ b

\/EUf(y)dy+a}

13



L3 d*
Ex.1. Solve sin’y E{ =cosy

Sol. We can write the given equation as

d 2)’ 2
—- =cosec” ycot y
dx

d
Now multiplying both sides by 2 d_i: and integrating, we get

(@T a—cot? y= asinz?;;coszy
dx sin” y

sin ydy
\/a—(1+a) cos® y

Again integrating, we get the required solution as

_ sin”! ,/H—acosy =x+c
Jl+a a

=dx

or

3d 2J’
Ex.2. Solve y E =c
Sol. We can write the given equation as
d* y_ ¢
IR
.y : dy . ,
Now multiplying both side by 2 I and integrating, we get
2
(ﬂ] - 4a
dx %
Yy

or ﬁ

Again integrating, we get the required solution as
ay*=c+ (ax+ b)?

where a and b are two constants.

Equation not Containing y Directly

In this case general equation is given in the form

d}’ly d}’lfly dy
R s — x|=0
S ( o o] Pl (1)

14



To solve it, the order of equation is depressed by assuming the lowest differential coefficient
present in the equation as a dependent variable. So let
ﬂ_ dzy _d_p dny B dn—lp

dx P d®  dx’ " die™!

therefore equation (1) reduces to

d}’lflp dnflp
, DX =0
f(dxnl dxnfl p

which may be possibly solved for p.

.....

dy
Let =—=0(x
© P dx (I)( )
then the solution is

y= ~l‘d)(x)a’x+c.
d? y : d? y d 2 y
Ex.1. Solve (?] + x?—?ﬂ)
Sol. The given equation does not contain y directly. Here the lowest differential coefficient is
’y
—> . So putting
dx

2 3
d_;; =p and d_';} = d_p )

dx dx dx
We get from the given equation

2
(d_pj +xd—p—p=0
dx dx

_xd_p+d_p2 Clairaut's fc =px+
or p e [Clairaut's form y = px + f(p)]
So its solution is
p=cx+c
d* 5
or — = cx+c
dx
) . dy x?
on integration, —

= cZ—+cx+q
dx

Again integrating, we get the general solution as

x3 X2
yZCZ+C27+C]X+C2

15



dy (ay\
Ex.2. Solve Ef{ﬁy] +4=0

Sol. The given equation does not contain y directly. Here the lowest differential coefficient is

ﬂ S tti
7y - So putting
2
G g O
dx dx*>  dx
We get from the given equation
dp >
2—-—p°+4=0
dx P
2dp
=dx
or pz _4
Integrating
llog p=2 =x+a
2 T p+2
or (»—2)=(p—2) be*, where b = &*.
dy 2be**
=—=2| 1+
or P dx ( l—bezx]

On integration, we get the general solution as
y=2x-2log (1 —be™) +c.

1.6  Equation not Containing x Directly

In this case general equation is given in the form

d}’ly d}’lfly dy
5 y ey ™, =0
/ ( dx" " dx"! dx Y

dy_ dy _dp_dp dv_ dp

Now putting dx At dx dy dx P dy
Py dd’y) d dp)dy
Similarly dx®  dx ( dxt ) dy\" dy) dx

2
d? d
dy dy

2
d’ d
dy dy

16



Hence the given equation reduces to

d}’lflp
=& ..,p,y|=0
f(df‘ 17y]

which may be possibly solved for p.

_dy
Let p—dx—d) (»).
Then the solution is

[~ i

o(»)

d’y dy dvj3

—+2—+4| — | =0
Ex.1. Solve PR ( I

Sol. The given equation does not contain x directly, so substituting

dy _ d)’ ﬂ?
i p> e d -, we get

dp

p—+2p+4p3 =0
dy
dp
.
or 1+2p° 4

On integration, we get

—tan (p\/—)——2y+a

NG)
or tan ™' (p\/E)Zb—%/Ey, where p =24
or ﬁcot(b—%/i y)dy:dx_

Again integrating, we get the general solution as

log sin(b—2\/§ y):—2x+logc
or sin(b—2\/§ y):ce_zx

Ex.2. Solve y(l logy) dzy (1+logy)(d ]2—0
" dx’ dx

Sol. The given equation does not contain x directly, so substituting

dy d’y  dp
dx_p’ 02 —de , we get

dp

1-1 L (1+1 -0
»( %ﬂp@j(+%wp

17



dp .\ (I+logy)
p y(l-logy)
On integration, we get by substituting logy = ¢

or dy=0.

log p=log y+2log(log y—1)+constant

d
or pzcl—izzay(logy—l)2
or & >=a dx
y(logy-1)

Again integrating , we get the general solution as

1
——————=ax+b

(logy—-1)

1-1 =
or ( ogy) ax+b

Equation in which y Appears in only Two Derivatives Whose Orders Differ by

Two.

In this case general equation is given in the form

n n-2

" A"
. dn—zy
Now putting 2 P
dx
d"y d*
so that —3:: —f
dx dx

then the given equation becomes

dZ
f(d_fapax]:()

X

dn—z
which gives p= ,,_;; = d)(x ) .
dx

By successive integration, we can find the value ofy.

d’ d’
Ex.1. Solve —':— n’ —'::eax
dx dx
Sol. In the given equation y appears in two derivatives whose order differs by two. Now sub-

3
stituting d_g = P . So the given equation transforms to
X

18



d’p

2 _  ax

—2 npTe

dx
whose solution will be

3 ax
d _ e
p=—x=q " +e " +——
" (a®=?)
On integration, we get
2 ax

d c cy _

dx~ n n a(a -n )
Again integrating

dy ¢ c e™

D_G 2o t—F———<t+C3x+ey

d 2 2 2 2 2

X n n a’la”—n
which on integration gives the general solution as
ax 2
c c - e X
yz—ge”x ——ée " t T G X HGs
n n a (a —Xx ) 2

1.8

Equation in which y Appears in only Two Derivatives Whose Orders Differ by
Unity

In this case general equation is given in the form

n n—1
f(d_y d y,x]:()

" dx"!
. dn—ly
Now putting P
dx
dy _dp
so that o dx

Hence the given equation reduces to

dp

—, p,x|=0

/ ( ax' ]

This is an equation of first order. We can here easily find the value ofp in terms of x as

_ dn—ly _
dxn—l

By successive integration, we get the general solution.

p d)(x)

19



1
d’y dy T 2
Ex.1. Sol a—=1+| —
X. olve 2 { ( i
Sol. In the given equation y appears in two derivatives whose order differs by unity. Now sub-
stituting
dr_, &y _dp
de T d®  dx

so the given equation transforms to

—_

a® (14 p?)2

dx
dp 1
=—dx
or Jl+p* @
. . -1 X
Integrating sinh P:Z"‘Cl
pzﬂzsinh(£+q]
dx a

Again integrating, we get the general solution as

x
y=a cos h Z+Cl +c,

1.9 Homogeneous Equation

We mean by homogeneous equation that an equation in which all the terms will be of the same
dimensions.

Dimention of a differential equation is calculated as given under

2 2
xﬂ+(Q] +@:2

dx*> \dx) dx
Dim x@ =Dim (xl] = Dim(ylel)
Now dx? x?

Dim (%ﬂ — Dim [(%T] = Dim(y*x7?)

Dim %j = Dim(ylx_1 )

Dim(2)=0
Hence the given equation has the 0 dimension
20



Note :
(@) Derivative in a differential equation does not alter the dimension of the variables x and y.
(b) The dimension ofx is invariably taken as unity.

In such cases suitable transformations are made to lower the order of the equation

2
Ex.1. Solve nx —=(y—x—j

Sol. Here x and y both of dimension unity. There for the given equation is homogeneous of

dimension 2. Substituting y = zx and x = €%, we get

| dz  d’z ( dz] ?
ne | ——+—— |=X2—X| z+——
do do do

o &, 2 (d_]
of do  de* ) \do
: dz .
Now if we put 70 = o, then above equation becomes
( d(l] 2
nla+—|=a
do
or [ ! — lj| do=d0
o-n o
. . 1 a—n
on integrating - log o 0 + constant
o dz : : :
Now substituting o = 20 and then integrating , we get the general solution as
y=n xlog(cl +c—2j
X

1.10 Summary

In this unit, you studied the exactness of differential equation and the method by which we can
solve exact equations. Methods for solution of the standard Riccati’s equation of first order, with one,
two or three known particular solutions were discussed. The methods have been illustrated with the

help of examples.

Self-Learning exercise

1. What do you mean by exact equation ?
2. Write down the Riccati’s equation of first order.

3. Riccati’s equation is a non-linear differential equation. Is it true ?
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1.11

Answers of Self-Learning Exercise

A differential equation which is integrable directly.

d .
d_y =P+Qy+Ry’, where P, O, R are functions ofx or constants.
X

True

1.12

Exercise

. Solve the following differential equations :

d*y (dy Y 2c

2 2 2 s 20

X A I —3 :0 . X =CH X ———

@ Y3 ( o y] y [Ans. Xy" =¢, 5]

d*y _dy dy

®) (2y+x)—5 e +2dx(1 0 =0 [Ans. y* +xy=cx+c,]
d*y . (dyY d +1)°

(C) Cosyd—;j—SIHy(d—zl +COSyd—i:X+1 [Ans. Siny:u_X'i'Cl'FCze_x]
x

Solve the following differential equations :

3 2 2 2. . x4—x_ 2x°
(@) x(l—x )yl =x"+y—2xy°, x” isanintegral [Ans. y—x2 —C—T]
dJ’_l 2 . .
(b) R , tan x is an integral [Ans. y(c—tanx)=ctanx+1]
© Xy =x*y+y*—x* [Ans. y (ce®* — 1) =x + cxe**]
, (x2+c)
d, 1)y, —(2x+1 h™+2x=0,x1 luti Ans. V=
@) x(x—1)y,—(2x+1)y+yh* +2x =0, x is a solution [Ans. ¥ (x+c)]
. Solve:

dZ

@ 2 e _T [Ans. 3x:2al/4(\/;—2cl)(\/;+cl)l/2+c2]

d*y a* 2
) K%?ZO [Ans. ey +y - \/_log(1/cly+«/1+cl ) ac 2x+cz]
Solve :

d2 d
(a) 1_{52:] [Ans. y:cosh(x+cl)+c2]
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> dx dx?
Solve
d 2)’ dy ]2 2
—_— + - —
@y dx® X Y

Solve :
dy ,d7y
— L _ac=—L =0
@ dx* dx?

[Ans. y = cx+(1+c2)log(x—c)+cl]
[Ans. y = —sin”! (cle‘x +c2)]

)5/2

4(cix+a
+Cyx+ 3]

[Ans. V= 15012

[Ans. y* = ¢ sinhy2x+c, ]
[Ans. e? =cx+c,]
[Ans. y* +x* +¢x+c, =0]

[Ans. logy =ce” +cye ']

12
[Ans. cy+n 1+a%c*) =c e
Y 2

[Ans. y=cie™ +ce™™ +c3x+¢4]

[Ans. V=6 +sz+x5/2 {03\/;\/1—4a2 +CT4\H—4a2:|
X

1 1 [y X 1
when a < 5 and V=G +sz+c3x5/2 COS[E 4a’ -1 logc—] when a > 5]
4

. Solve:

d’y dy
_+_:0
(a)xdxz dx

dy d’y
A A,
® dx®  dx?

23
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10.

11.

Solve :

d? dy ) d
@ % Kfﬂ(d_i] = d_;yc [Ans. y? +y* +ex* = c,x']
d’y (dyY . dy 2 2
(b) (2y+X)?+2 Z +2£:2 [AHS. xy+y —Xx =c1x+cz]

By reduction to a linear equation show that the solution of the Riccati’s equation

) dy

x_
dx

+2—2xy+x2y2=0 is

y(x2 + clx) =2x+¢
Show that tan x is one integral of the equation

n=l+y ?
and hence obtain the general solution in the form
y(¢ —tanx)=c¢ tanx+1
where ¢, is a constant.
Determine the curve whose radius of curvature varies as the cube of the length of the normal

intercepted the curve and x-axis. [Ans. c; +¢p” =(cx+4)]

HEin
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Unit 2 : Total Differential Equations

Structure of the Unit
2.0 Objective
2.1 Introduction
2.2.  Necessary and Sufficient Condition for Integrability of the Total Differential Equation
2.2.1 Theorem
2.3 Methods of Solving Total Differential Equations
2.3.1 Method of Inspection
2.3.2 Method for Homogeneous Equations
2.3.3 Working Rule for Solving Homogenous Equations
2.3.4 Method of Auxiliary Equations
2.3.5 General Method
2.4 Geometrical meaning of Pdx + Qdy + Rdz=0
2.5  Equations Containing More Than Three Variables
2.6 Method for Obtaining Solution Involving Four Variables
2.7  Total Differential Equation of Second Order
2.8 Summary
2.9  Answers of Self Learning Exercise

2.10 Exercise

2.0  Objective

In this unit, you will learn various methods for solving different types of total differential equa-
tions. Some of the methods are : Method of inspection, method for homogeneous equations, method of
Auxiliary equations and general method. You will also study the geometrical meaning and method for

solving total differential equations involving three or four variables.

2.1 Introduction

In this unit, we propose to discuss differential equations with one independent variable and more

than one dependent variables.
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n
The expression zuidxi’ where u, i =1, 2 .... n are, in general, functions of some or all of n
i=1

independent variables x , x, .... x_is called a total differential forms in » variables and the equation

is called a total differential equation in n variables x , x, .... x . It is also known as Pfaffian differen-
tial equation.

In the case of two variables, equation (1) may be written as
M(x,y) dx+N(x,y)dy:0 ..... (2)

It is a differential equation of first order and first degree. The necessary and sufficient condition
for its exactness (integrability) is

oM ON
E = 7S 3)
In the case of three variables x, y, z the total differential equation (1) may be written as
Pdx + Qdy + Rdz=0 . 4)

where P, Q and R are functions ofx, y and z. In vector notations, equation (4) may be written as
X-dr=0 where X=(P,Q,R) and dr=(dx, dy, dz).

It is not always possible to integrate equation (4) directly. If however, the equation is such that
there exist a function u (x, ), z) whose total differential du is equal to the left hand side of (4), then only it
is integrated directly. In other cases equations (4) may or may not be integrable.

Now we proceed to find the condition which P, O, R must satisfy, so that equation (4) is inte-

grable. This is also known as condition of integrability.

2.2 Necessary and Sufficient Condition for integrability of the Total Differential

Equation Pdx + Qdy + Rdz = 0.

2.2.1. Theorem:
The necessary and sufficient condition for the total differential equation Pdx + Qdy +
Rdz = 0 to be integrable is

P(%_@]_Q(aﬁ_ﬁzjm(@ﬁ_ﬂ:o
oy 0z ox Oz ox Oy

or X-curl X=0, where X=(P,Q,R)
P O R
9 9 9_,

or ox oy Oz
P O R
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Proof : Condition is necessary :

Let ulx,yz)=C (1)
be an integral of total differential equation
Pdx + Qody + Rdz=0 . 2)

Then total differential du of (1), must be equal to Pdx + Qdy + Rdz, or it multiplied by a factor.
But we know the differentiation of (1) is

du = (a—uj dx + ou dy + (6_u] dz (3)
ox oy oz)
. . ) ou Ou ou
Since (1) is an integral of (2), therefore P, O, R must be proportionalto —, =~ and —.
ox’ Oy 0z
Ou/ox Ou/dy Ou/oz
= = = x’ ) Sa
So, P o g M) (say)
ou ou ou
P = —_— , = —_— . = —_—
mP=—". 1 0 & wk==— .. 4)

From the first two parts of (4), we get

0 O'u 0u _0fou)_ @
SwP)=— == == —(n0)
oy Oyox 0Oxdy Ox\ oy ) Ox
oP 0 0 0
or H—+P - [ @ o2
oy oy ox ox
oP 0 0 0
or H POl pr (5)
oy Ox ox oy
Similarly, we can write
0Q OR 0 0
H L _R =R=-0% (6)
oz Oy oy 0z
OR OP O ou
o o pdE_pole
and H( o 02 j Py O spee (7
Multiplying (5), (6) and (7) by R, P and Q respectively and adding, we get
p| OR _29 _Q(ﬁ_R_ﬁ_P]m 0 _oP)_, ®
oy 0z ox 0Oz ox o)

This is the condition for the integrability of total differential equation (2).
Sufficient Condition :

Now we prove that if the condition (8) is satisfied, then the equation (2) will have a solution of
the form (1).
Now ifthe condition (8) is satisfied for P, O, R ofthe equation (2) then it can be easily verified

that the same condition will hold for the coefficients of
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W Pdx +pQdy + 1w Rdz =0
where p is any function of x, ), z and replacing P, O, R by uP, uQ, uR respectively.
Here, if we treat variable z as constant then the differential equation (2) becomes
Pdx+Qdy = 0.
Now Pdx+ Qdy may be regarded as an exact differential. For if it not so, then an integrating
factor p can be found to make it exact. Thus there is no loss of generality in regarding Pdx + Qdy as an
exact differential. Therefore

[(Pdx+Qdy)=V (say). .. ©)
It follows that
ov oV
p=2" 0="-
o and oy
Differentiating (9), we get
oV oV
Pdx+Qdy =—dx+—d
Ody ™ & y (10

Substituting these values in the given condition (8), we find that

a_V(a_R W] a_V{a_R an]_O

ox | &y ozov | oy | ox  ozox

. VW )L )
ox oy\ oz oy ox\ oz
Wy
ox ox\ Oz B

or V2 )
oy oy\ oz

oV
This shows that a relation independent of x and y exists between V and (g - R] . Conse-

quently o R can be expressed as a function of z and V. That is we can take

oV
——-R= aV .....
& ~R=0(z7) (11)
oV oV oV
Hence Pdx + Qdy + Rdz ngx+gdy+(g—¢]dz

= a—de+a—de+6—de —-0dz
ox oy 0z

=dV —¢dz
Thus (2) may be written as dV — ¢ dz = 0 which is a first order equation in two variables hence
integrable will give equation in two variables.
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Suppose the integral is U(z, V) = ¢, then subestituting the value of ¥ from (9), we get the solu-
tion in the form given by (1).

Thus the condition is sufficient.

2.1.1 Theorem : Prove that the necessary condition for integrability of the total dif-
ferential equation X - dr = Pdx + Qdy + Qdz =0is X - curl X=0.

Proof : Let r=xi+yj + zk, so that
dr=dxi+ dyj + dzk
and X=Pi+ Qj+Rk
Then we have
X-dr=Pdx+Qdy+Rdz L. (12)

Then we see that (12) is satisfied by usual rule of dot product of two vectors X and dr.
Now, we know that

Cunx [ 220 _( ), 4208,
oy 0z ox Oz ox Oy

Now by usual rule of dot product of two vectors, we get

X-Curl x =| R _€ Q(ﬁ_R_ﬁ_P]JrR 29 _op
oy 0z ox Oz ox Oy

which is equal to zero. So the necessary condition is X - curl X=0

2.3  Methods of Solving Total Differential Equation Pdx + Qdy + Rdz =0

Ifthe following condition of integrability

{29) o2 2] 2]
oy 0z ox Oz ox Oy

is satisfied, then the total differential equation may be solved by several methods as given below.
2.3.1 Method of Inspection
If the condition of integrability is satisfied, then sometimes it will be possible to rearrange the

terms of the given equation, by dividing or multiplying by a suitable function, so that it can be ntegrated

directly.
The following list will help to rewrite the given equation in the form of exact differential.
dy—yd
() xdytydv=d () i) 5 E=d 1]
X X
dy—yd _
R L d(l gy] iy “2 L= —d| tan ‘1]
xy X +y X
xdy+ ydx L Xxdy+ydx 1 2 2}
————=d|(lo ————=d|=log|x" +
O (log(x)) o == g(x*+57)
2xydy—y’d g dx—e'd §
(i) I x:d(y_] i) LD d(e]
Xy X y? y
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Ex.1. Show that (2x + y* + 2x7) dx + 2xy dy + x’dz = 0 is integrable (i.e., condition of
integrability is satisfied).

Sol. Comparing the given equation with Pdx + Qdy + Rdz =0

We get, P=2x+y*+2xz ; Q=2xy;R=x?

Now the condition of integrability is

A8 -2 (2 2
oy 0z ox Oz ox Oy
Substituting the values of P, O, R in it, we get
(2x +3y*+2x2) (0—0) —2xy 2x —2x) +x* 2y —2y) =0
Showing that the condition of integrability is satisfied and hence the given equation is integrable.
Ex.2. Solve z+xyz) dx+ (zx+xpz) dy + (xy + xyz) dz=0
Sol. Comparing the given equation with Pdx + Qdy + Rdz=0
We get P=yz+xyz ; O=zx+xyz ; R=xy+txz
Now the condition of integrability is

:yz(l+x){(x+xz)—(x+xy)}—zx(1+y){(y+yz)—(y+xy)}

+xy(1+z){(z+yz)—(z+xz)}
=yz(1+x)x(z=y)—zx(1+y) y(z=x)+xy(1+z2) z(y - x)
—02[{(z= )~ (-0)+ (0 (x(-3) -y x) 2 (v )]
— xyz[0+0] =0

This shows that the given equation is integrable.

Now dividing the whole equation by xyz, then given equation becomes

(l+ljdx+(l+1]dy+(l+ljd2=0
X y z

On integration, we get
logx+x+logy+y+logz+z=C
or log (xyz) +x+y+z=C

which is the required general solution, C being an arbitrary constant.

Ex.3. Solve (*+72—x%)dx—-2xydy—2xzdz=0
Sol. As usual, we see that the condition of integrability is satisfied. Now rearranging the terms
ofthe given equation as

(x2 +y2 +zz)dx =2x%dx + 2xydy+2xzdz
or (x2 +y° +zz)dx = 2x(xdx+ vdy + zdz)
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dx _ 2xdx+2ydy +2zdz

x x*+yr+z?

or
On integration, we get
logx+logc = log(x2 +y2 +zz)
or x2+y2+22:cx
is the required general solution.
Ex.4. Solve (2x*y +2xy*+2xyz+ 1) dx + (x* + Xy + X’z + 2xyz + 2y + 2972 + 1) dy
+(xp?+y +y2+1)dz=0
Sol. As usual, it may be verified that the condition of integrability is satisfied. Now rearranging

the terms of the given equation as
{2xy(x+y+z)+l}dx+{x2 (x+y+z)+2yz(x+y+z)+l}

dy+{y2(x+y+z)+l}dz:0
or (x+y+z)(2xydx+xzdy+2yzdy+y2dz)+dx+dy+dz=0

or (2xydx+x2dy)+(2yzdy+yzdz)+(w] =0
xX+y+z
On integration, we get
xXy+yz+log(x+y+z)=C
This is the required general solution.

)z Xz 1| )
Ex.5. Solve — 2 dx — 2 2 dy —tan (—)dz =0
x“+y x“+y x
Sol. It can be easily verified that the condition of integrability is satisfied. Arranging the terms of
the given equation as
ydx — xdy _dz
(x2 + yz)tauf1 (y] = (13)
X
) aly xdy — ydx .
Taking tan™ | — |=s, so that — >~ ds . Then equation (13) becomes
X
x| 1+ y—z
X
ds dz
or ——=—
sz
Integrating —logs=logz+logc
1
or §=—
cz
1
Le. tan ! (zj =—
x) cz
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b% 1
which gives —~ |=tan| —
X cz

This 1s the required general solution.
2.3.2 Method for Homogeneous Equations
The equation Pdx + Qdy + Rdz = 0 is called a homogeneous equation if P, Q, R are homoge-

neous functions of x, y, z of the same degree. In such a case one variable is separated from the other

two by the substitution
X =uz, y=vz (14)
then dx =udz +zdu, dy=vdz+zdv . (15)
Further, let
P=z"f(u,v), O=z2"f,(u,v) and R=2"f;(u,v) ... (16)

Hence the given equation Pdx + Qdy + Rdz = 0 becomes

ZM {fl (u,v)du+ f, (u,v)dv}+z” {ufl (u,v)+f, (u,v)+ f5 (u,v)}dz =0
On multiplying by z, we get
"2 {fl (u,v)du+ f(u,v) dv} + 7" {ufl (u,v)+f, (u,v)+ f3 (u,v)}dz =0 ... (17)
Now following two cases arise :
Casel: Px+Qy+Rz=0
If Px + Oy + Rz =0 that is by substituting the values ofx, y from (14) and P, O, R from (16) in
it, we find
ZM {ufl (u,v)+vf, (u,v) + f (u,v)} =0
then the coefficient of dz in equation (17) will become zero and hence it reduces to
f(uv)du+ f, (u,v)dv=0 (18)
which can be integrated easily.
Casell : Px+ Qy+Rz#0

In this case the coefficient of dz will not be zero and therefore equation (17) may be written as.

S (u,v)du+ f, (u,v)dv +%:0
{ufy (wv)+fy () + f3 (w,v)} 2 ..(19)

Now since the given equation Pdx + Qdy + Rdz = 0 is integrable so equation (19) will be an

exact differential and hence this equation may be integrated easily.
2.3.3 Working Rule for Solving Homogeneous Equations
(i) First ofall verify the condition of integrability.
(ii) If Px + Qy + Rz =0, then substitute x = uz, y = vz and solve

(@) 1If Px+ Qy+ Rz#0then will be an integrating factor of the homogeneous

Px+Qy+Rz

equation Pdx + Qdy + Rdz = 0. After multiplying this equation by this integrating factor and rearranging

the terms we can integrate the equation by inspection.
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Ex.6. Solve 2dx+(z* = 2yz)dy+(2y* - yz—xz)dz =0
Sol. Comparing the given equation with the standard equation Pdx + Qdy + Rdz = 0, we get
P=22,0=2-2yz, R=2>—yz—xz

The given equation is homogeneous of degree 2. Now first of all we test the condition of inte-

grability
R SERS
oy 0z ox Oz ox Oy

:zz(4y—z—2z+2y)—(z2 —2yz)(—z—22)+(2y2 —yz—xz)(O—O)

= 6yz2 —32° +37° —6yZ2 =0
Hence the condition of integrability is satisfied
Further, Px+Qy+Rz= xzt + yZ2 - 2y22 + 2y22 - y22 —xz2 =0
Therefore, we substitute
X=uz, y=vz
Hence dx =udz + zdu, dy=vdz+ zdv

and the given equation reduces to
z? (udz + zdu) + 27 (1—2v) (vdz + zdv) + 27 (2v2 o u)dz =0

or du+(1-2v)dv=0
Integrating, we get
utv—v*=C
or xz+yz—y*=cz?
This is the required general solution.
Ex.7. Solve (yz +72 ) dx —xzdy+ xydz =0
Sol. On comparing the given equation with Pdx + OQdy + Rdz= 0,
wehave P=yz+ 22, 0=—xz, R=xy
Here the given equation is homogeneous of degree 2 and the condition of integrability is satisfied

(do your self)
Now Let D=Px+Qy+Rz

=x(z+z2)—xyz+xyz=xz(y+z)#0

Multiplying the given equation by integrating factor 1/D, we get

(yz+zz)dx—xzdy+xydz
=0

> = (17)
Now d(D):d[xz(y+z)]:(de+xdz)(y+z)+xz(dy+dz)
or d(D):z(y+z)dx+x(y+2z)dz+xzdy

33



Now rewriting the numerator of (17) as
d(D)—d(D)+(yz+zz)dx—xzdy+xydz = d(D)—2xz(dy+ dz)
.. Equation (17) becomes

d(D) ~ 2xz(dy+dz)

=0
D D

d(D) 2xz(dy+dz) B
or D xz(y+z) -
Integrating, logD—-2log(y+z)=logC
or D=C(y+z)?
or xz(y+tz)=C(y+z)
or xz=C((y+2)

which is the required general solution, C being an arbitrary constant.
Ex.8. Solve (2xz - yz)ﬂbc + (Zyz — xz) dy — (x2 —xy+ y? ) dz=0

Sol. First of we verify the condition of integrability (do yourself). Since the given equation is
homogeneous, so putting
x=uz,y=vz sothat dx=udz+zdu, dy=zdv+vdz ... (18)

Now using these values in given equation, we get

(2uz2 —vzz)(udz+zdu) +(2vz2 —uzz)(vdz+ zdv)—(u222 — vz + vzzz)dz =0
or (2u —v)(uafz+zdu)+(2v—u)(vafz+zdv)—(u2 —uv+v2)dz =0

or z[(Zu—v)du +(2v—u)dv]+[u(2u—v)+v(2v—u)—(u2 —uv+v2ﬂdz =0

or z[2uafu—(udv+vahz)+2vafv]+(u2 —uv+v2)dz= 0
or z[duz—d(uv)+dv2]+(u2—uv+v2)dz=0
dlu?— 2
. o)
u - —uv+v z

On integration, we get

log (> —uv+Vv?) +logz=log C

or z(uz—uv+v2)=C
2 2
X Xy y|_
. (B-22.8)c
z zZ z z

or X—xy+y'=cz
which is the required general solution.
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Ex.9. Solve yi(y+z)dx+ox(x+2)dy+xp(x+y)dz=0

Sol. First of all verify the condition of integrability (do your self). Since the given equation is
homogeneous, we put

X =uz, y=vz sothatdx = zdu + udz, dy = zdv+vd= .. (19)

Substituting these in the given equation, we get

v(v+1)Z (zdu+udz) +u(u+1) 2 (zdv + vdz) + uv (u +v) 2°dz=0
or v+t Ddutu+)yavlZ2+uv(v+t 1) +uu+1)+uv(u+v)]z2dz=0
or Vvt Ddutu@+1)dvlz*+2uv(u+v+1)z22dz=0

Dividing above equation by uv (u + v+ 1) 2%, we get

(v+1)du .\ (u+1)dv +2%

=0
u(u+v+1l) v(u+v+1) z
1 1 1 1
or —_— dl/l+ —_— dv+2%:0
u u+v+l v u+v+l1l z
or d_u+@_du+dv+2£:0
u v u+v+l z

On integration, we get

logu +10gv—10g(u +v+1)+2logz =logC

or wzZ2=Cu+v+1)

XY,z X )

—||=|z"=C| —+=+1 :
or (Zj(z]z (Z - ] by using (9)
or xyz=C((x+y+2)

this is the required general solution.
2.3.4 Method of Auxiliary Equations

Let Pdx+ Qdy + Rdz=0 . (20)
by the given equation. Its condition of integrability is
OR © OR OP oQ oP
p|&_2 —Q(———]+R L _» =0 . 1)
oy 0z ox Oz ox Oy
On comparing (20) and (21), we obtain simultaneous equations, known as auxiliary equations.
de dy B dz
oR 00 _(513_51’] oo op\ 22)
oy Oz ox 0Oz ox Oy

For solving (22) let u = ¢ and v = ¢, be their two integrals. After finding the value of Adu + Bdv
=0 and comparing it with the given equation, the values of 4 and B will be obtained. Integration of Adn

+ Bdv =0, will give the required solution.

. ... OR_00 0R _oP 00 OP
This method will fail if oy oz o oz and ox oy
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Ex.10. Solve xz2dx —zdy + 2ydz =0
Sol. Here the condition of integrability is satisfied (do your self) now given equation is

xzdx —zdy + 2ydz=0 . (23)
Comparing it with Pdx + Qdy + Rdz= 0, we have

P=xz,Q=-z, R=2y

The auxiliary equations of the given equation are

dx B dy B dz
®_0)" (& _2P) (a0 _ar
oy Oz ox 0Oz Ox Oy
dx _ dy _dz

of 241 3xz2 0
d« dy dz
or —=—F=—

1 x2 0

Taking last two terms, we get

dz=0 sothat z=c¢ =u(sayy ... (24)
Taking first two terms, we get
xZ2dx —dy =0
or 2xuldx —2dy =0 [by using (23)]
Integrating, Xu'—-2y=c,=v (say)
or XZ2=2y=v [byusing 23)] = ... (25)

Substituting the values ofu and v from (24) and (25) in Adu + Bdv = 0, we get
Adz + Bd (x*2*-2y) =0
or Adz + B (2xz%dx + 2x*zdz — 2dy) = 0
or 2Bxz*dx — 2Bdy + (4 + 2Bx’2) dz=0 .. (26)
Comparing (23) and (26), we have

xz> = 2szz,—z =-2B

and 2y:A+ZszZ:>B:(%]Z and A:2y—2BxZZ :2y—x222
1 . . .
or B= 5 U and A =—v, [by using (24) and (25)]. Substituting these values
of 4 and B in Adu + Bdv =0, we get

—vdu + (%) udv=0

or ldv = 2(l]du
\% u

On integration, we get
logv=2logu+logc
v=cu* (27)
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Putting the values of # and v from (24) and (25) in (27), we get

2.2 2
Xz"-2y=cz

which is the required general solution.
2.3.5 General Method
StepI: Let the condition of integrability is satisfied for the given equation
Pdx+Qdy+Rdz=0 L. (28)
Step 11 : Treating one of the variables of (28), say z, as a constant then dz = 0 and the given
equation is reduced to
Pdx+ Qdy =0
Integrating it, keeping z as constant. [f necessary the help of an integrating factor may be taken.
Let the result so obtained be

ux,y,2)=f= L (29)
where f'(z) is a function of z alone. This is possible because the arbitrary function f'(z) is con-
stant with respect to x and y.

Step III : Now we differentiate (29) totally with respect to x, ), z and then compare the result
with the given equation (28). We will get a relation between df and dz. If the of df and dz involve func-
tions of x and y, it would be possible to eliminate them with the help of (22). Thus we shall get an equa-
tion in df and dz which will be independent of x and y.

Step IV : The values of /(z) will be obtained by integrating the above equation. After sustituting
it n (32), we get the complete solution.

Remark : General method, for solving the total differential equation of the type

Pdx + Qdy +Rdz=0

should be adopted only when the equations are non-homogeneous and the method of inspection
fails.

Ex.11. Solve 3x%dx +3y*dy — (F* +)y +e¥) dz =0

Sol. Here, the condition of integrability is satisfied. Let us treat z as constant, so that dz = 0.
Then the given equation become

3x%dx + 3y*dy =0
On integration, we get
X+y =f(2) (sayy L. (30)
where the constant of integration has been taken as a function f'(z) as we have treated z as
constant.

Now differentiating (30), we have
3xdx+3y*dy - f'(z)dz=0 .. (31)
Comparing (31) with the given equation, we get
fl(z)=x+y’+e*
or f(z)=f(z)+e* [by using (30)]
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daf

or f =e"" whichis a linear equation having integrating factor as

S
IF = eI (-1)dz _ ¢~ 2. Hence the solution is
f(z)e” = j(ezze_z)dz+c =e’ +c¢

or f(z)=e* +cef

or X4y’ =e* +ce [by using (30)]

Which is the required general, C being an arbitrary constant.
Ex.12. (exy+ez)dx+(eyz+ex)dy+(ey —exy—eyz)dz =0

Sol. Here, the condition of integrability is satisfied. Let us treat z as constant so that dz = 0.

Then the given equation becomes

(exy dx + ezdy) + (eyzdy + ezdx) =0
On integration. we get

ey+edz+efx=f(z) L. (32)
Now differentiating equation (32), we obtain

(exy+ez)dx+(eyz+ex)dy+(ey +ezx)dz =f'(z)dz .. (33)
Comparing (33) with the given equation, we get

e’ +e'x—f'(z)=e" —e'y-e’z

which gives
f'(z)=€e"y+e’z+e'x=f(2) (by 32)
a _

or P f

Integrating, we get
f2)=ce
Putting the value of f(z) from equation (32), we get the required general solution as
ey + &z + ex = ce
Ex.13. Solve Yz (xcos x —sin x) dx + xzz(ycos y—sin y) dy
+xy(ysinx+ xsin y+ xy cos z)dz =0

Sol. Here, the condition of integrability, is satisfied. Let us treat z as constant so that dz = 0.

Then the given equation becomes

y*z(xcosx—sinx)dx+x’z(ycosy—siny)dy =0

XCOosx—sinx ycosy—siny
or " dx + J dy=0

38



sin x sin
or d( ] +d ( ) ] =0
X y
On integration, we get
sinx _ siny
X y
where the constant of integration has been taken as a function f'(z) as we have treated z as

=fz (34)

constant.

as

Now differentiating (34), we get

xcosxz—sinxdx+ycosyz—sinydy:f,(z)dz
x y
or zy* (xcosx—sinx)dx+zx* (ycosy—siny)dy—x’y’z f'(z)dz=0 . (35)

Comparing (35) with the given equation, we have
—x*y*z f'(z)=xy(ysinx+xsin y +xycos z)
_sinx siny

or —Zf’(Z) . )

+cosz = f(z)+cosz [by using (34)]

£+lf— Cosz
dz z

or =T which is a linear equation having integrating factor (IF)

IF = eI (Vz)dz _ ¢°%% — - and the solution is

zf(z):jz(_coszjdz+c:—sinz+c

z

sinx siny .
o - ; " . =c—sinz [by using (34)]

which is the required general solution, ¢ being an arbitrary constant.
Self Learning Exercise-I

1. Write down pfaffian differential equation in » variables.

2. Write the condition when an equation of the type Mdx + Ndy = 0 become exact.
3.  What is the condition of integrability for the equation Pdx + Qdy + Rdz=0?
4

Which equations are called homogeneous ?

2.4

Geometrical Meaning of Pdx + Qdy + Rdz =0

We know that direction cosines of the tangent at a point (x, ), z) on a curve are proportional to

dx, dy, dz. Therefore, the differential equation Pdx + Qdy + Rdz=0 .. (1)

signifies that the tangent to a curve at the point (x, ), z) is perpendicular to a line, whose direction co-

sines are proportional to P, O, R.
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Whereas the simultaneous equations
dx dy dz
o E =3 ()
express that the tangent to a curve at a point (x, y, z) is parallel to a line with direction cosines propor-
tionalto P, O, R.

We thus have two sets of curve, and if they intersect, they intersect at right angle. Now we dis-
cuss two cases.

Case I : Ifthe equation Pdx + Qdy + Rdz = 0 is integrable, it means that family of surfaces can
be obtained such that all curves on it are perpendicular to the curves represented by the equation (2) at
all points where curves cut the surface. Since the solution of equation (1) will be of the form¢ (x, ), z) =
C and that of (2) will be of the formf, (x, y, z) = C, and f] (x, ), z) = C,, it means that in this case an

infinite number of surfaces can be drawn to cut orthogonally a doubly infinite set of curves.

dx dy dz
Case II : If equation (1) is not integrable than the curves represented by ) = E = g may

not admit of such a family of orthogonal surfaces.

Ex.1. Solve Find the system of curves satisfying the differential equating.
2 2
xdx+ ydy+c 1__2_y_2 dz=0 ...(3)
a- b
which lie on the surface
x2 2
1-——-==— ()

Sol. Equation of the given surface can be written as
2 2 2
2 2
a- b” ¢

...(5)
with the help of (3), the given equation can be written as
xdx+ydy +zdz=0
on Integration, we get
X+y +2=k ....(6)
Hence the required system of curves will be given by the intersection of (5) and (6).
Ex.2. Find the differential equation of the family of twisted cubic curves y = ax’,
y* = bzx. Show that all these curves cut orthogonally the family of ellipsoids
x*+ 2y +372=¢%

Sol. Family of twisted cubic curves as given in question is

y=ax* (7)

V= bzx ...(8)
On differentiating (7), we get

dy =2ax dx
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or dy =22 dx [by using (7)]
X

or 2ydx - xdy =0 ...(9)
Now similarly, differentiating (8), we obtain
2ydy =b(zdx + xdz)

2

or 2ydy =2 (zdx + xdz ) [by using (8)]
zx
or yzdx-2zx dy+xydz=0 ....(10)
From (9) and (10), we get
dx dy dz

—x%y - —2x)° - (—2zx )2y —(—x)yz
dx dy dz

or

—xzy - —2xy2 - —3xyz
e _dy _dz
or x 2y 3z

which are the required differential equations of the family of curves.

The differential equations of the surfaces which are cut orthogonally by the given curves is
xdx+2ydy+3zdz=0

Integrating, we get
xX*+2)* + 322 =k = ¢* (say)

2.5 Equations Containing More than Three Variables

Let us consider an equation of the form

Pdx+ Qdy+ Rdz+ Tdt= 0 (1)
Treating ¢ as constant, so that df = 0, then equation (1) becomes
Pdx+ Qdy +Rdz=0 w(2)
Condition of integrability for equation (2) will be
P(Z—R—@]—Q(ﬁ—R—ﬁ—P]+R(@—a—P]=O ..(3)
y Oz ox Oz ox Oy

Similarly If we take z, x and y as constant, then we get dz= 0, dx =0, dy= 0. The condition of
integrability in these cases will be

pl oL _9Q _Q(ﬁ_T_ﬁ_P]JrT Q9 _or\_, @
oy ot ox Ot ox Oy
Q(a_T_a_R _R| 9L _9Q) ,[OR_9Q)_, )
oz ot o o oy oz
or oP\ (oT @R\ .(oP OR
R[CL_OF | _p[ L R p[OF_OR)_,
and (8}( o (62 az] (62 6xj +(6)

41



Hence we see that in the case of more than three variables, the condition of integrability must be
satisfied for the coefficients of all the terms taken three at a time.
Here we note that only three of the relations (3), (4), (5) and (6) are independent and the fourth

one can be derived from the remaining three.

2.6 Method for Obtaing Solution Involving Four Variables

If the condition of integrability is satisfied, then the solution the total differential equation can be
obtained by two methods.

Method 1. By Inspection : In this method we can arrange the coefficients in such way that the
given equation is directly integrable.

Method 2. In this method, we take any two of the four variables constant. The equation is inte-
grated and the constant of integration is taken as the function of those variables which were kept con-

stant. The result is compared with the given equation after obtaining its differential and in such a way the
values of constants of integration are obtained. This will give the complete solution.

Ex.1. Solve (2x +y? + 2xz) dx + 2xy dy + X’dz = dt.
Sol. We can write the given equation as
(2x +y*+2xz) dx + 2xy dy + X*dz — dt =0

we can easily verify the condition of integrability as given by equations (3), (4), (5) and (6) of
§2.5.

Now the given equation can be written as 2xdx + ()%dx + 2xy dy) + (2xzdx + x*dz) - dt = 0.
Which on integration gives the complete solution as x> + xy* + x’z - t=c.

Ex.2. Solve z(ytz)dx+z(t-x)dy+y(x-0dz+y(y+2z)det=0

Sol. On comparing the given question by the standard equation Pdx + Qdy + Rdz + Tdt =0,
we get

P=z(y+2),0=z(t—x),R=y(x—1), T=y(y +2)

Here we can easily show that the conditions of integrability (equations (3), (4), (5) and (6) of

§2.5) are satisfied.

Now we solve the given question by treating two variables as constant. Treating y and z as con-

stants so that dy = 0 and dz = 0. Then the given equation reduces to

zZ(y+z)dx+y(y+z)dt=0
or zdx +ydt =0
On integration, we get

zx+yt=f(x,z) (say) L. (7)
Now on differentiation (7), we get

zdx + tdy + xdz + ydt = df
or (y+z) (zdx + tdy + xdz + ydt) = (y + z) df
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or zZy+tzydettly+tz)dy+x(ytz)dz+y(y+2)dt=@p+z2)df ... (8)
Comparing (8) with the given equation, we have

{y +2)dy +x(v +2) dz — (v +2) df = 2(t —x) dy + (x — 1) dz

or (Wy+x2)dy+(ty+xz)dz =(y+z)df

or (ty +x2) (dy +dz) = (v +2)df

or fldy+dz)=(y+z)df [by using (7)]
dt dy+dz

or 7 = f} TS e )

Integration of (9) yields
logf=log(y+z)+logc
or f=cly+2)
or zx+tyt=c(y+z) [byusing (7)]

2.7  Total Differential Equation of Second Degree

It the given equation be of the form
Adx* + Bdy? + Cdz* + 2Ddydz + 2Edzdx + 2Fdxdy = 0
where 4, B, C, D, E and F are functions of x, y, and z then it can be easily resolved into factors, if
ABC+ 2DEF — AD*— BE*— CF*=0
Let the two factors be
Pdx + Qdy+ Rdz=0
and P'dx+Qdy+R'dz=0
The solutions of either of these may be obtained by the methods discussed earlier. The two gen-
eral solutions taken together constitute the complete solution.
Ex.1. Solve (xdx + ydy + zdz)*z = {(zx**) (xdx + ydy + zd7) dz}
Sol. We can factorize the given equation as

(xdx + ydy + zdz) {z(xdx + ydy + zdz) — (Z> —x*—y*) dz} =0

ie., xdx + ydy + zdz=0 (1)
and z(xdx + ydy + zdz) — Z?dz + (xX* +y*) dz=0 .. 2)
On integration of (1), we get

¥ +y +z2=c L 3)

To obtain the integral of (2), the equation may be written as
z(xdx + ydy) + (x* +1y*) dz=0
or Z2(2xdx + 2ydy) + (x* + %) 2zdz =0
On integration, we get
2 +y)=c¢, L (4)
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Hence the required solution is
(P +y+2-c) @+ -c)=0
Self Learning Exercise-11

1. The direction cosines of the tangent at a point (x, y, z) on a curve are proportionalto , , .

2. What is the equation of family of twisted cubic curves ?

2.8  Summary

In this unit, you studied about the condition of integrability of total differential equation and vari-
ous methods for solving it. Now you must be knowing about the geometrical meaning of Pdx + Qdy +
Rdz =0 and methods of finding solution of total differential equation containing three or more than three

variables

2.9  Answers of Self Learning Exercises

Exercise 1

n
1. z u;dx; =0, whereu (i=1,2.......... n) are n functions of some or all of n independent vari-
i=1
ables x , X, ,....., X .
oM _av
2. oy Ox

5 p|R_2 _Q(ﬁ_R_ﬁ_P]JrR R _oP)_,
’ oy 0z ox Oz ox Oy

4. Equation Pdx + Qdy + Rdz =0 is called homogeneous if P, O, R are homogenous functions of
X, v, z of the same degree.

Exercise 11

1. dx,dy, dz
2. y=ax?, y*=bzx

2.10 Exercise

Solve the following differential equations

1. @ +2xy+2xz22+ 1) dx+dy+2zdz=0 [Ans. e"z(x+y+zz):c]
2. xdy—ydx+2x*z2dz=0 [Ans. %+ZZZC]
3. W+aPdx+zdy—(y+a)dz=0 [Ans. z=(x +¢) (v + a)]
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10.

11.
12.

13.
14.
15.

16.

17.

18.

19.

20.
21.
22.
23.
24.

25.

yzdx + zxdy + xy dz=0 [Ans. xyz = c]

(ydx + xdy) (a —z) + xydz=0 [Ans. xy = c(a —z)]
zdz+(x—a)dx={l*-22— (x—a)*}"*dy [Ans. /* — 22— (x —a)*= (y — ¢)?]
zydx = zxdy + y*dz [Ans. x — cy—y logz=0]
yz2(x* — yz) dx + x’z()* — xz) dy + xy (2 —xy) dz= 0 [Ans. x*z + yz2 + x)y* = cxyz]

0P tyzt2)de+ (P +xz+2)dy+ (P +xy+))dz=0
[Ans. xy +yz+zx=c(x +y +2)]
=y -2+ 2y +2xz)dx+ (P -2 —xX*+ 20z +2yx ) dy + (22— x> — y* + 2zx + 2zy)

dz=0 [Ans. x> +)y*+22=c (x+y +2z)]
2 tz)dx—(x+tz)dy+2y—x+2)=0 [Ans. (x +2)*=c(y + z)]
Z(z—y)dx + (z+ x)zdy + x(x + y)dz=0 [Ans. z(x +y) = c(x + 2)]
X y z z
&y =y —y2)dx+ (x> —x2z—-x)dy + (x)? +x*) dz=0 [Ans. ;*‘;*‘;*‘;:C]
O0*tyz)dx + (xz+2)dy+(*—xy)dz=0 [Ans. y(x +z) =c(y + 2)]

0*+ 22+ 2xp+ 2xz2) dx + (X + 22+ 2xy + 2yz) dy + (3 +)* + 2xz + 2y2) dz =0
[Ans. x(7 + 2) + (2 +2%) + 22 + 1) = ]

2xy +2) dx+ (x> +2yz) dy + )» + 2xz) dz=0 [Ans. x*y + y’z+ 2% = ¢]

(mz — ny) dx + (nx — I2) dy + (Iy — mx) dz = 0 [Ans. 2 _ o
mz —ny

(cosx+ey)dx+(ef+ez)dy+e'dz=0 [Ans. €'y + ez+ sinx = c]
x*+2z ¢

2xz(y — z) dx + z(x* + 22) dy + y(x> + 2y) dz =0 [Ans. — =-72]

xdy — ydx — 2x*zdz = 0 [Ans. y=x (¢ —2%)]

(z+z)cosxdx—(z+z)dy+(1-2z*) (y—sinx)dz=0 [Ans. y =sin x — cze )]

y sina dx + x sina. dy— xy sina dz — xy cosa dow =0 [Ans. xy = ¢ sina €°)]

yzdx + 2xzdy — 3xydz = 0 [Ans. x)? = ¢Z°]

(2)? + 4az’x?) xdx + [3y + 2x* + (* + 22)"] ydy + [422 + 2ax* + (> + 22 ] zdz= 0
[Ans. X*y* +ax'z’ +y* +2° + (y2 +zz) =c.]
Find the equation of the curve that passes through the point (3, 2, 1) and cut orthogonally the

family of surfacesx +yz=c
[Ans. > —z2 =3, y+z=3¢"7]

HEin
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Unit 3 : Partial Differential Equations of Second order,
Monge’s Method

Structure of the Unit

3.0 Objective

3.1 Introduction

3.2 Solution of P.D.E. of Second order by Inspection.

33 Exercise — 1

3.4  Monge’s Method for Solving Equation of the Type Rr+ Ss+ Tt=V

3.5 Monge’s Method for Solving Equation of the Type Rr+ Ss + Tt + U(rt —s*) =V
3.6 Summary

3.7  Answers of self-Learning Exercises

3.8 Exercise — 11

3.0 Objective

The purpose of this unit is to discuss partial differential equations of order two with variable co-
efficients. Here you will learn how a large class of second order partial differential equations may be
solved by using the methods applicable for solving ordinary differential equations ? You will also study

Monge’s method for solution of some special type of second order partial differential equations.

3.1 Introduction

A partial differential equation (P.D.E) is said to be of order two, if it involves at least one of the
differential coefficients r, s, t and none of order higher than two. The general form of a second order
partial differential equation in two independent variables x, y is given as

as Fx,v,z,p,q,7,5,6)=0;

T O R

where P—ax,‘]—ay”’—&c_ySZ%’t P
The most general linear partial differential equation of second order in two independent variable
x and y with variable coefficient is given as
Rr+S8s+Tt+Pp+Qq+Zz=F
where R, S, T, P, O, Z, F are functions of x and y only and not all R, S, T are zero.
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3.2 Solution of P.D.E. of Second Order by Inspection

Before taking up the general equation of second degree P.D.E., we discuss the solution of simple
problems which can be integrated merely by inspection. On two successive integral of given P.D.E., we
get the general solution which is a relation in x, y, z. To understand this, we discuss the following prob-
lems.

Ex.1. Solvet+s+q=10

Sol. We can write the given problem as

O o

oy*  Ooxdy Oy

Integrating with respect to y, treating x as constant, we get

—+—+z=[(x) or ptg=fx)—z

which is the form of standard Lagrange’s linear equation Pp + Qg = R, so the auxiliary equation will be
d« dy  dz
11 f(x)-z
from first two terms, we obtain
x-y=c, (constant) (1)
and from first and last terms, we have

dz
E.|.Z:f(x) ..... (2)

which is linear differential equation of first order having integrative factor e*.
Hence the solution of (2) will be
z-e=[f(x) edx + ¢, (constant)
Therefore the required solution of given equation will be (by using (1)]
ze' = ¢(x) =y (x—)
where ¢, 1s a function of ¢, or of (x — ).
Ex.2. Solve t — gx = x*

Sol. We can write the given problem as

oq 2
——gx=x
Py gx=x- 3)

which is linear in q and y having integrating factor e % = ¢~ Therefore the solution of (3) is

g-e”=[x*e”dy+f(x) (asxisconstant)

or q-e?=—xe™+f(x)
or %:—x+f(x)exy
oy

Again integrating with respect to y (treating x as constant), we get.
1
z=—xy+—f(x)e” +¢(x).
X

47



Ex.3. Solve x—t =i2

y

Sol. We can write the given problem as

P: Pz«

ox0oy 8y2 - y2
Integrating with respect to y (treating x as constant), we get
0z 0Oz X
E
ox Oy y
X
or p—qz—;+f(x)

which is the form of standard Lagrange’s linear equation Pp + Qg = R, so the auxiliary equation will be
dx dy dz
-l —xy+/(x)
From first two terms, we obtain
x+y=c (constant) 4)
and from first and last terms, we have

dz:_—xdx+f(x)dx

y
—X

or dz=——dx+ [ (x)dx [by using (4)]
1

or dz:{l— ¢ }dx+f(x)dx

On integrating, we get
z=x+¢ log(c —x)+jf(x)a’x+c2
or z=Xx+¢ 10gy+¢(x)+F(x+y)
where ¢, is a function of ¢, or of (x + ).

Ex.4. Solverx=(n—-1)p

Sol. We can write the given problem as

or 0z x
Now integrating both sides with respect to x treating y as constant, we get

log(%j =(n—-1)logx+log f; ()

X
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1% "
or 8_)Zc:x ] 1()’)

Again integrating w.r.t. x treating y as constant, we obtain

=X () A ()

Ex.5. Solve 2yq + y*t=1

Sol. We can write the given problem as

2yq+y* 4 o
Ay
0( 2\
or 5( q ) =1
Now integrating both side with respect to y treating x as constant, we get
Vg =f,(x)
oz 1
¢=—=—7/i(x)
o vy

Again integrating with respect to y, we obtain

z=—@]f1(x)+fz(x)-

Ex.6. Show that a surface passing through the circle 7 = 0, x> + y* = 1 and satisfying
the differential equation s = 8xy is 7 = (x> +y*)* — 1
Sol. We can write the given differential equation as
0’z 0oz
=—| — |=8xy
oxoy ox\ oy

Integrating with respect to x, we get

2—; =4x’y+f(»)
Again integrating with respect to y, we obtain
z= 2x2y2 +jf(y)a’y+(l)l (x)
or z=2X"y + o, (V)0 (x) L (5)

where b () =]/ (»)dy
where ¢, and ¢, are two arbitrary functions.

Now given circle is

xX*+y*=1,z=0
Putting z=0in (5), we get

2y eMra@=0 ©)
Now, X¥Hr=1= @ +y?)=1?
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or 23+ xt = (7)
On comparing (6) with (7), we get

b, (J’)"'d)l (x) =xt+yt-l
Substituting this in (5), we obtain

z =2x2y2 +x* +y4 -1
2
or z:(x2+y2) -1
Hence the result.

Self-Learning Exercise-I

1. What is the general form of a second order p.d.e. in two independent variables x and y ?
2. The most general linear p.d.e. of second order in two independent variablesx and y is ....... .
3. The solution of r=06x1s.......

3.3

Exercise-1

Solve the following partial differential equations :

. ar=xy [Ans. az=%x3y+xf(y)+F(y)]
Lr= 27 [Ans. z=x"y* +x f(y)+F(y)]
. s—t=xH? [Ans. z=(x+y)logy+ f(x)+F(x+y)]
Lxr+p = 92 [Ans. z=x"y’ +loga f(y)+F(y)]
L yt—q = xy [Ans. Zzéxyzlogy—%xyzy?zf(x)+F(x)]
. logs=x+y [Ans. z=¢"""+ f(y)+ F(x)]
.ptr+s=1 [Ans.z=x+e‘y(—yey+F(y))+e‘yf(x—y)]
. ys+p=cos (x+y)-ysin(x +Y) [Ans. yz = ysin(x+y)+ f(x)+F(y)]
.s=x/v+a [Ans.sz—;logy+axy+f(x)+F(y)]

It may he noted here that a p.d.e.f (x, y, z, p, q, ; s, £) = 0 can he integrated only in special
cases. The most important method of solution, due to Monge, is applicable to a wide class of

such equations but not to all equations.

34

Monge’s Method for Solving Equation of the Type Rr +Ss +Tt =V

Monge’s gives a method for solving p.d.e. of second order of the type
Rr+Ss+1T¢t=V L (1)
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where R, S, T'and V are, in general, functions ofx, y, z, p and ¢. Indeed this a equation of first

degree in 7 s and ¢. To solve such type of equations, first we determine the intermediate integrals. For

this we have
dp = 2 dx + 2 dy
ox oy
or dp = rdx + sdy (2)
dp —sdy
y =—
hence o ...(3)
oq , . 0q
imi dg=—dx+—d
Similarly q Py Py 'y
or dq = sdx +tdy w(4)
. dqg —sdx
hence dy ..(5)

Now, r and ¢ are eliminated from equation (1) with the help of (3) and (5). Thus we get an

equation in s as
R(—dp_s‘ly]wsﬂ(—dq_s‘lx] —y

dx dy
or (Rci]_?afy+T(iq(ix—V(iydx)—s(Rafy2 — Sdydx + dez) =0 ....(6)
Equation (6) will be identically satisfied if we take
Rdpdy + Tdqdx —Vdydx =0 w(7)
and Rdy* — Sdydx + Tdx* = 0 -(8)

which are called Monge’s subsidiary equations and will provide us the intermediate integrals. Here
we note that the equation (8) is quadratic for the ratio dy : dx and therefore can be decomposed into
two linear equations in dx and dy of the form
dy—mdx=0 and dy—m,dx=0

Now combining equations dy —m dx = 0 and (7) with dz = pdx + qdy, two integrals u, = u (x,
¥z p, q)and v, = v (x, ) z p, q) can be obtained. Then we get u, = f(v,) as the first intermediate
integral. Similarly on combining equations dy —m.dx = 0 and (7) with dz = pdx + qdy, and following the
above procedure, the second intermediate integral u, = f, (v,) can be obtained.

From these two intermediate integrals, the values of p and ¢ may be obtained in terms of x and
y and then substituting them in dz = pdx + gdy and integrating it, the complete integral of (1) is obtained.

Ex.1. Solve r = a’t by Monge’s method.

Sol. Comparing the given equation with Rr + Ss + Tt =V, we get R=1,5=0,T=—a%V =0.
The Monge’s subsidiary equations are given by

Rdpdy + Tdqdx —Vdydx =0
and Rdy2 + Sdydx + Tdx* =0
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Substituting the values of R, S, 7' and V, the subsidiary equations will be

dpdy — a*dgdx =0 (9)

dy2 —a*dx* =0 --(10)
Equation (10) may be factorised as

(dy—aa’x) =0 ...(11)
and (dy+adx)=0 (12

Combining equation (11) with subsidiary equation (9), we get
dp (adx)— a*dgdx = 0

or dp—adq=0 (- dx =0, gives trivial solution) ...(13)
Now from (11) and (13) we obtain

y—ax=c¢,p—aq=c,
therefore the first intermediate integral is

(p—aq)= fi(y—ax) (14)

Similarly combining (dy + adx) = 0 with subsidiary equation (9), we get the second intermediate
integral as

(p+aq)=fo(y+ax) ..(15)
Now from above two intermediate integrals (14) and (15) we deduce the value of p and g as.

pz%[f] (y—ax)+f2(y+ax)]

4=5f: (v +ax)~fi(y-av)]

Substituting these values of p and q in dz = pdx + qdy, we get
dy + adx dy —adx
dz=| — +ax)— —ax
- ( 2a jfz(y ) ( 2a ]fl(y )

On integration, we have

e Ly rvan) Loy (o
Hence the required solution is

z=F](y+ax)+F2(y—ax)
Ex.2. Solve r+ (a+b) s+ abt =xy by Monge’s method.
Sol. Comparing the given equation with Rr + Ss + Tt =V, wehave R=1,S=a + b, T=ab, V

= xy. Here Monge’s subsidiary equations

Rdpdy + Tdqdx — Vdydx =0

Rdy* — Sdxdy + Tdx* =0
become dpdy + abdqdx — xydxdy=0 . (16)
and dy*—(a+b)dxdy +abdy*=0 . (17)
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Equation (17) may be factorised as

(dy - bdx)y=0 L (18)
and (dy—adxy=0 L (19)
On integration y—-bx=¢ L (20)
y—ax=c, (21)

Combining equation (18) with subsidiary equation (16), we get
dp (bdx) + abdgdx — xydx (bdx) = 0
or dp+adg—xydx=0
or dp +adq—x(c,+bx)dx=0 [by using (20)]
On integration, we get

¢ .2 b) 3
—+ — — — — =
prad (2]x (Jx “

Xz b 3 .
or p+aq—7(y—bx)— 3 X =C3 [by using (20)]

1Yy - 1,3
+aq—| = |yx"+=bx" =c
or ptraq ( 5 ] Y. 6 3
Therefore the first intermediate integral is
1 1
p+aq—5yx2+gbx3 =filyv-x) (22)
Similarly, the second intermediate integral corresponding to equation (19) is

1 1
p+bq—5yx2+gax3=f2(y—ax) _____ (23)

Now from above two intermediate integrals (22) and (23), we deduce the values of p and g as

p zéxzy—%(a +b)x” + aib[afz (y—ax)-b f, (y—bx)]
and q:lx3+(L][fl(y—bx)—f2(y—ax)]
6 a—-b
Substituting these values of p and g in dz = pdx + gdy, we get
dz:%xzydx—é(a +b)X3dx+(aib)[af2 (y—ax dx —bf, (y—bx)dx)]
1 1
+gx3dy+(a_b) [fl (y—bx)dy—fz(y—ax)dy]
or dZ=%(3x2ydx+x3dy)—é(a+b)x3dx—(bia)[afz(y—ax)dx—bfl (y—bx)dx]
1
——[fl (y—bx)dy—fz(y—ax)dy]

(b-a)
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and V=

1

(b-a)

or dz:ld(x3y)—%(a+b)x3dx+

5 1 (y—ax)(dy—adx)

1
- —bx)(dy—bd
(b_a)fl(y x)(dy - bdx)
Integrating, we get the required solution as
1

z:gx3y—21—4(a+b)x4 +0(y—ax)+¢, (y—bx)

Ex.3. Solve x’r + 2xy s + y’t = 0 by Monge’s method.
Sol. Comparing the given equation with Rr + Ss + Tt =V, we have R =x* § = 2xy, T=)",
0. Hence Monge’s subsidiary equations

Rdpdy + Tdqdx —Vdydx =0

Rdy* — Sdx dy + Tdx* = 0
become

xzdpdy + yqudx =0 (24)
and xzdy2 —2xydy+ yzdx2 =0 . (25)
Equation (25) may be factorised as

(xa’y — ya’x)2 =0
or (xdy - ya’x) =0 (26)
Combining it with the equation (24), we get

xdp (ydx) + y*dg dx =0

or xdp + ydg = 0
or xdp + pdx + qdy + ydq = pdx + qdy
or d(xp)+d(yg)=dz

On integration, we get
pxtqy=z+c

Now equation (26) gives

_:c2
X

Thus the intermediate integral will be
pxtqy=z+f(c)

which is of Lagrange’s form having the subsidiary equations

d _dy__ d
x vy z+f(e)
First two terms gives
X

and the last two terms gives z+ (¢, ) =cy
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Hence required solution is

)

Ex.4. Solve (x—y) (xr—xs—ys—yt) =(x+y) (p—q) by Monge’s method.
Sol. Monge’s subsidiary equations in this case will be

x(x—y)dpdy+y(x—y)dqu—(x+y)(p—q)dxdy:0 ..... 27)
and x(dy)2 +(x+y)dxdy+y(dx)2 =0 . (28)
Factors of equation (28) are

xdy + ydx =0,

which on integration gives Xy =c,
and dx+dy=0,

which on integration gives x +y = c¢,. Combining equation (27) with (xdy + ydx) = 0, we get
(x=»)(dp—dq)=(p—-q)(dc—dy)

On integration, we obtain
P—q
X=y
Therefore the intermediate integral is
P-9)=x-»fw)
for which the Lagrange’s subsidiary equation will be

dx _dy _ dz S (%) (ydx+ xdy)+dz

1 -1 (x—y)f(xy)_ 0
From first two terms, we get

= constant.

From the last two relations, we get x +y=c,

dz+f(xy)d(xy)=0
On integration

z=F (xy) + constant
Hence required solution is

z=F ()T F,(x+y)

Ex.5. Solve q’r — 2pqs + p’t =0 by Monge’s method.
Sol. Monge’s subsidiary equations in this case will be

q’dpdy + p’dgdx=0 . (29)
and qzdy2 +2pqdxdy+ pzdx2 =0 (30)

Factors of equation (30) are
(qdy + pdx)2 =0
or qdy + pdx =0
which on integration gives (after putting in dz = pdx + qdy)
dz=0=z=¢  (constant)
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Now substituting gdy = — pdx in (29), we get
qdp (—pdx)+ p*dgdx =0

or qdp — pdg =10 [dx = 0 will give the trivial solution]
On integration, we get

P_p (constant)
q
Therefore the intermediate integral is
4
—_—= f ( z )
q
or p—qf (z) =0
For which the Lagrange’s subsidiary equation will be
A &y _d
1 —f (z) 0
from first two terms, we get
yv+x f (z) =c
and from last two terms, we get
z=c

1
Hence the required solution is

y+x f(z)=F(z) as c=F(2)

Ex.6. Solve t—r sec’y =2q tan y by Monge’s method.
Sol. Monge’s subsidiary equations in this case will be

—sec’ vdpdy +dgdx —2qtan ydxdy=0 .. (31)
and —sec’ ydy2 +dx*=0 L (32)
Factors of equation (32) are

dx —sec’ydy=0, . (33)

which on integration gives  x — fan y = constant

and dx + sec’ydy=0 . (34)

which on integration gives
X + tan y = constant

Now combining (34) with equation (31), we get

sec’ vdp+dg—2qtany dy =0
On integration, we get

p+qcos’ y=constant = f(x+tany) .. (35)
Similarly, when (33) is combined with (31) , and integrated gives

p-qcos’y=fo(x—tany) (36)
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On solving (35) and (36), we get the values of p and ¢ as

p:%[f] (x+tany)+f2(x—tany)]

q:%seczy[f1 (x+tany)+f2(x—tany)]

Substituting these values in dz = pdx + gdy, we obtain
dz = %[f] (x+tany)+ f5 (x—tany)]dx+%[fl (x+tany)+ f (x—tan y)sec’ ydy}

or 2dz = f;(x+tan y)(dx +sec’ y dy) + f5(x—tan y)(dx —sec’ y dy)
which on integration gives the required solution as

2z=F (x+tany)+F,(x—tany)

3.5 Monge’s Method for Solving Equation of the Type Rr+ Ss + Tt + U (rt—s?)=V

Prof G. Monge gave a method for solving equation

Rr+Ss+Tt+U@t—sH=VvV L. (1)
where R, S, T, U and V are, in general, functions ofx, y, z, p and q.
We know that
dp = @ dx + @ dy
ox oy
or dp = rdx + sdy
dp — sdy
rE——m—mr 2
or o 2)
Similarty
dg = % dx + % dy
ox oy
_ dq —Sdx
therefore 1= T e (3)

Putting the values of » and ¢ from (2) and (3) in (1), we get

R(dp_de]+Ss+T(dq_de]+U{dp_de-dq_de—sz}:V

dx dy dx dy
or (Rdpdy + Tdqdx + Udpdg — Vdxdy) — s (Rdy* — Sdxdy + Tdx*
+ Udpdx + Udgdyy=0 .. (4)
Equation (4) will be identically satisfied if we take
Rdpdy + Tdqdx + Udpdq — Vdxdy=0 .. (%)
and Rdy2 —Sdxdy+T dx* + Udpdx +Udgqdy=0 ... (6)

These simultaneous equations (5) and (6) are known as Monge’s subsidiary equations.
Here the equation (6) can not be factorized. So we will try to factorize
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(Rdy2 —Sdxdy + T dx’ + Udpdx + Ua’qdy) +

..... 7
A (dedy +Tdq dx + Udpdqg — dedy) =0 ™
where A 1s some multiple and is determined later.
Let us suppose that the factors of (7) are
1 A
(Rdy+m1de+m2Udp) dy+—dx+—dq =0 (8)
m m,
On comparing (7) with (8), we obtain
RA
R =
SemT=—(S+av), my=my, o=V )
m
. . RA . .. . .
The last two relations gives m; = T Putting this in the first relation of (9), we obtain
A (UV +RT)+ASU+U*=0 L. (10)

This equation is called A—equation, where A, in general, is a function of'x, , z, p and g.
Now since equation (10) is quadratic in A so suppose that it is satisfied by two values of A say
A, and A, then the factors corresponding to these values will be

RA U U
Rdy+—LTdx+R\dp || dy+—dx+—dg |=0
( y U 1 P][ y R?nl R Q]

m =m _Ry
as 1= =Ty
or (Udy+ledx+klUdp)(de+kley+7ulqu) =0 .. (11)

Similarly corresponding to A, we can obtain
(Udy + A, Tdx +A,Udp)(Udx + hyRdy +A,Udg)=0 ... (12)
Now one factor from (11) and one from (12) will be combined in pairs to get intermediate inte-
grals in the form u = f'(v). We can combine factors as
Udy + M Tdx+ A\, Udp =0
Udx + ,,Rdy + A, Udp =0
and Udx+ A Rdy+\ Udp =0
Udy +\,Tdx+ L, Udp =0
These two pairs will give intermediate integrals provided these total differential equations are
integrable, from which the values of p and ¢g can be determined. Substituting these values of p and ¢g in
dz = pdx + qdy, we get the general solution on integration.
Ex.1. Solve Irt+ds+t+(rt-s)=1
Sol. Comparing the given equation with Rr + Ss+ Tt + U (rt— S*) =V, we have R =3, S=4,

T'=1,U=1, V=1.Then A — quadratic equation
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A (UV +RT)+ASU +U* =0

becomes M2 +40+1=0
1

or (27\,+1)2=0:>}L1=}L2=—5

Hence there is only one intermediate integral given by the equations
Udy +MTdx +\Udp =0
and Udx + h,Rdy + \,Udq =0

On putting above values, we get

1 1
dy+| ——=|dx+| ——=|dp=0
y(zjx(z]p

and dx+(—%j3dy+(—%}dg=0
or —2dy+dx+dp=0
and 3dy—2dx+dqg=0
On integration, we obtain
=2y+x+p=¢
and 3y=-2x+q=c,

Hence the only intermediate integral is
—2y+x+p :f(3y—2x+q)
where f'is any arbitrary function
Now solving (13) and (14) for p and ¢, we get
p=2y—-x+¢
q=-3y+2x+c,
Putting these values of p and g in dz = pdx + gdy, we get
dz = (2y—x+cl)dx+(—3y+2x+c2)dy
or dz:2(ydx+xdy)—xdx—3ydy+cldx+c2dy
On integrating, we obtain the general solution as

z= 2xy—lx2

3 5

where ¢, c,, ¢, are arbitrary constants.
Ex.2. Solve 2s + (rt—s%) =1

Sol. Comparing the given equation with Rr + Ss+ Tt + U (rt— S*) =V, we have R =0, S =2,

T=0,U=1,V=1.
Then the A—quadratic equation

A2 (UV +RT)+ASU +U* =0

becomes A2 +2h+1=0
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giving A=hy=-1
Hence there is only one intermediate integral given by the equations
Udy +MTdx +\Udp =0
and Udx + h,Rdy + \,Udq =0
On putting above values, we get
(dy—dp)=0 and dx—dg =0
Integrating, we obtain
y-p=candx-g=c¢, L. (15)
Hence the only intermediate integral is
(x=q)=f(y-p)
where f'is any arbitrary function.
Now putting the values of p and g from (15) in dz = pdx + qdy, we get

dz=(y—c)dx+(x—c,)dy

or dz:(ydx+xdy)—cldx—czdy
On integrating, we get the general solution as
Z=Xy—CX—Cyy+Cy.
Ex.3. Solve 2r+(p+x)S+yt+y@rt—s’)+q=0
Sol. Comparing the given equation with standard equation we have R=¢, S=(p +x), T=y, U
=yand V' =-gq. Then A—equation

A (UV +RT)+ASU +U* =0

becomes A (-yg+yq)+h(p+x)y+y* =0
Which gives A =— Y _|—¢and A, =c0
p+x

Hence the two intermediate integrals are given as

2 2
y y
ydy— dx — dp=0
(p+x) (p+x)

1
and 0+qgdv+ydg=0 [as k—zO]
2
which gives
p+x
=< and =c
( y ] Q@ =ac
Hence the intermediate integral will be given by
p+x
@=r ( ] ..... (16)
y
Similarly, the second intermediate integral obtained as
ptx=cy (17)
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Substituting the values of p and ¢ from (16) and (17) in dz = pdx + gdy, we get

dz:(c3 —x)dx+lf{p+x]dy
y y

or dz:(c3—x)dx+lf(c—3]dy
Yy o\y

On integration, we get the general solution as

zz@x—%xz +F(%]+G(c3)

Ex.4. Solve (rt — s?) — s (sinx + sin y) = sinx siny
Sol. Comparing the giving equation with standard equation we have R =0, § = — (sinx + siny),
T'=0,U=1, and V= sinx siny. Then A-equation is

A (UV +RT)+AU +U* =0
becomes A* (sinx sin y)—A(sinx+siny)+1=0

which gives A, =coscex and A, =coscey

The first intermediate integral is given by
sinxdy+dp=0, sinydx+dg=0

which are not integrable. The other intermediate integrable is given by
sinydy+dp=0, sinxdx+dg=0

On integration, we get
p—cosy=c, andg-cosx=c,

Hence the intermediate integral will be given by

(p—cosy)=f(g—cosx)
This can not be integrated further unless we know f. Therefore, let us suppose that the arbitrary
function fis linear, i.e.,

(p—cosy)=a(g-cosx)+p .. (18)
where o and [3 are constants.
Lagrange’s subsidiary equations for (18) will be

o by i
I —-a cosy—oacosx+p

From first two terms, we get
Yy +ox =c,
and from the first and last term, we obtain
dz = [ cos(c; — o) —acos x+B |dx
On integration, we get the general solution as
oz +sin y+ o’ sinx—ofx = ocy
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Ex.5. Solve t(A+@)r—2pgzs (1 +pHht+z2(rt—s) +1+p*+¢°=0
Sol. Comparing the given equation with the standard equation, we have R =z (1 + ¢%),

S=-2pqz, T =(1+p2),U =2" and V=(1+102 +q2). Then the A-equation is

APt —20pgz+2z2 =0

or (qu — 2)2 =0
which gives h=—
Pq
Putting the value of A in
Udy+\Tdx+A Udp =0
and Udx+ARdy+AUdg=0
we get
and pgdy + (1 +p’)dx +zdp=0 . (19)
pgdx+ (1 +¢°dy+zdp=0 . (20)
dz=pdx+gqdy L. (21)
Combining (19) and (21), and on integration, we obtain
xtzp=c, L (22)
Similarly by combining (20) and (21), and on integration, we obtain
ytzq=c, L (23)

Putting the values of p and ¢ obtained from (22) and (23) indz = p dx + qdy, we get

dz=(cl_x]dx+(cz_yjdy
z z

Integrating 2% +(c —x)2 +(y-¢, )2 = c,

which is the required solution.

Ex.6. Solve 5r+6s+3t+2(rt—s*)+3=0

Sol. Comparing the given equation with the standard equation, we have R=35, S=6, U=2,
and V' =- 3. Then the A—equation will be

M2 +124+4=0
or (32 +2)" =0

which gives A=A, = _§

There is only one intermediate integral given by the equations

2dy+(—§j-3dx+(—§]-2dp =0

and 2dx+(—§j-5dy+(—§]-2dg=0

or 3dy—-3dx—-2dp=0
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and 3dx—5dy—2dg=0

Integrating,we get 3y -3x-2p=c¢ L. (24)
and 3x-5-2q=¢, L. (25)
Hence the only intermediate integral is

3y-3x-2p=f3x-5-2¢0 .. (26)

where f'is an arbitrary function.

Solving (24) and (25) for p and g, we get
1 1
p 25(3y—3x—cl) and ¢ 25(3x—5y—c2)
Putting p and g in dz = p dx + g dy, we get

dz:%(3y—3x—c1)dx+%(3x—5y—cz)dy

or 2dz = 3 (ydx + xdy) — 3xdx — Sydy — ¢ dx — ¢ dy
Integrating, we get
2z = 3)9;—(%])(2 —(%jyz —GX—Cyyt+ey

which is the required solution. ¢, ¢, and ¢, are arbitrary constants.
Self-Learning Exercise-11

1. For p.d.e. Rr + Ss + Tt =V, the Monge’s subsidiary equations are ................ and ..... ... ..

2. The Monge’s subsidiary equations for p.d.e. r=kt are .... ..... and ..... ..... .
3. The A-equation in Monge’s method for solving p.d.e. ¥+ 3s+ ¢+ (t—s*) =1 i ... ... ...

3.6 Summary

In this unit, you learn about partial differential equations of second order and their solution. You

also studied the solution of two types of P.D.E. by Monge’s method.

3.7 Answers of Self-Learning Exercise

Exercise-I

1. F(x,y,z,p,q,r,s,t)zo
2. Rr+Ss+Tt+Pp+Qq+2Zz=F

3. z=x"+x f(y)+¢(y)
Exercise-11

1. Rdpdy+Tdqdx—-V dydx=0

Rdyz—Sa’ydx+de2 =0
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2. dpdy—Rdgdx=0 and dy* —rdx*=0
3. A7 +30+1=0
3.8 Exercise-II
Solve the following P.D.E by Monge’s method :
1. pt—gs=¢’ [Ans. y=xz + f(2) + F (x)]
2. yr-2ys+t=p+6y [Ans.z=)*—y f(* + 2x) + F () +2x)]
3. 2x7r—Sxys+2y°t+2(px+qy)=0 [Ans.z =f(y) + F (02)]
4. (1+q)2r—2(l+p+q+pq)s+(l+p)2t:0 [Ans.y=f(x+ty+z)+xF(x+y+2)]
S. (gt s=p+ )t [Ans.z=f(x) + ¢ (x tyt+tz)ory—yx+y+z=9¢(x)]
6. r—tcos’xt+ptanx=0 [Ans. 2z =f(y+sinx) — F (y—sinx)]
7. s*—rt=a* [Ans.z =xf, (g —ax) + qy + ¢ (¢ — ax)]
8. ar+bs+ct+e(rt—s*) =b, whereq, b, ¢, e, and h are constants
x* a?
Ans. ez = Xxf (ay+eq—mzx)—7—%+y(ay+eq)+constant}
3/2 3/2
9. 2pr+2qt—4pg (rt—s>) =1 [Ans. 3z=1% 2(01 +x) + 2((:2 +y) +c3}
Solve the following partial differential equations :
10. 2r+ te"— (rt — s*) = 2¢* [Ans.z = e+ bx +)y*—ay + ]
x? 3y2 |
. 3r+s+t+(t—5)+9=0 Ans. z :cy—2xy—?—7+f(c—5x)+F(c)
1 2 ]
12. r+3s+t+@t—s3)=1 [AHS- ZZ—E(X—J/) +F (o) +F (B)-B f2(B)+B A (B)
1
13. (rt—5%) +3s=2 [AHS- XZE(B—OL); y=/f(a)-2g(B): zz{xy—¢(a)+‘P(B)+By}}
1 m
14. gxr+(x +y)s +pyt + xy(rt —s°)=1 —pq [Ans. Z+;y+mx—nlogx=f(x )’)}
g
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Unit 4 : Classification of Linear PDE of Second Order,
Cauchy Problem and Method of Separation
of Variables

Structure of the Unit

4.0 Objective

4.1 Introduction

4.2  Classification of PDE of Second Order

4.3 Classification of Second Order PDE in More Than Two Independent Variables
4.4  Cauchy Problem

4.5 Method of Separation of Variables

4.6 Summary

4.7  Answers to Self-Learning Exercises

4.8 Exercise

4.0 Objective

Partial differential equations generally occur in the problems of physics and engineering. After
studying this unit, you should be able to identify and classify partial differential equations (PDE). You will
have an idea of Cauchy problem. At last you will get knowledge of how to solve the partial differential

equations by method of separation of variables.

4.1 Introduction

The importance of partial differential equations among the topis of applied mathematics has been
recognized for many years. However, the increasing complexity of today’s technology is demanding ofthe
mathematician, the engineer and the scientists, an understanding of the subject previously attained only by
specialists. This unit of partial differential equations (PDE) comprises identification and classification of
PDE. It also presents the principal technique method of separation of variables for constructing solution to
partial differential equation problems. The solved and supplementary problems have the vital role ofapply-

ing reinforcing and sometimes expanding the theoretical concepts.

4.2 Classification of PDE of Second Order

Consider the second order partial differential equation
Rr+Ss+Tt+f(x,y,z,p,q)=0 (1)
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where R, S and T are continuous functions of x and y only possessing continuous partial derivatives. The
PDE can be classified into three categories depending on nature of values of the discriminant S>—4RT.
Thus (1) is known as

(i) Hyperbolic if S*—4RT>0

(i) Parabolic if S>—4RT=0

(i) Elliptic if S?—4RT<0

0%z &’z
Ex. 1: Consider the one dimensional Laplace’s equation 6_2 + 6_2 =01i.e. r+t=0. Compar-
X y

ing it with equation (1), wehave R=1, S = T=0. Hence §* —4RT= 0 and so given equation is parabolic.

0%z oz
Ex. 2 : Consider the one dimensional diffusion equation 8_2 = 5 i.e. r—q=0.Comparing it
28

with equation (1), we have R=1,S=0and T=— 1. Hence $?—4RT =4 > 0 and so given equation is
hyperbolic.

4.3 Classification of a Second Order PDE in More Than Two Independent Variables

A linear second order partial differential equation having more than two independent variables can
suitably be reduced, in general, to a canonical form only when the coefficients are constants. Letx, x.,...,

x_be n independent variables and u be the dependent variable, then such a second order PDE may be

written as

LA o%u 2 Ou
a;; + > bj— + cu=0
Z“ Z_: Y ox;0x ; Z_: ' ox; (1)
i=1 j=1 177" ] j=1 i

where a » bl. and ¢ are constants and a;=a, Now we consider a one-one transformation

=6 (xp Xy x ), i=1,2,..,m w(2)
Then the equation (1) transforms to

n n
Z ZAkZ uik & +F (5] ’§2a----a§n su 9”51 augz 9---9u§n ) = 0 ..... (3)
k=1 I=1
where A = ai (&), (&), (4
The characteristic quadratic O(a) associated with equation (1) in this case is
n n
O(0) = 2, 2.4 % (5)
i=1 j=1
The associated real symmetric matrix in this case will be
a aqp ... Ay
M = a2:1 ary ... ary
: ....(6)
apl App o App




and the characteristic roots “eigenvalues” will be given by
|M—oal|=0 (7

and their nature and signs will determine the type of the given PDE.

Case I : Elliptic PDE : 1f all the eigenvalues are nonzero and of the same sign, the given PDE is
ofelliptic type.

Case 11 : Hyperbolic PDE : 1f all the eigenvalues are nonzero and have the same sign except
precisely one of them, the given PDE is of hyperbolic type.

Case 111 : Ultra Hyperbolic PDE (n > 4) : If all the eigenvalues are nonzero and atleast two of
them are positive and two negative then the given PDE is ofultra hyperbolic type.

Case 1V : Parabolic PDE : 1f any of the eigenvalues is zero, the given PDE is of parabolic type.

Note : As an alternative of finding the eigenvalues of matrix M, which sometimes may be cumber
-some, the classification can be made with the help of by expressing the quadratic form (5) as a sumof
squares. The number of positive and negative squares will be the same as the number of positive and
negative eigenvalues of the associated matrix. Either of the methods, as per convenience, may be chosen
for the classification of partial differential equation.

EX. 1. Determine the nature of following PDE

ox? 6y2
2 2
Sol. 6_; -x° a_j =0
ox oy

Comparing with standard second order PDE, we have
R=1,5=0,T=-x?
S§?—4RT=0—4 (—x?) = 4x?
Since x*>0, therefore given PDE is hyperbolic.
EX. 2. Classify the following PDE as hyperbolic, parabolic or elliptic :
o’z o’z 0’z
+2 =
ox?  oxdy 6y2
Sol. On comparing it with equation (1), we have
R=1,85=2,T=1

Hence the value of discriminant S?—4RT=0

Therefore given PDE is parabolic in nature.
EX. 3. Find the nature of following PDE

0z 8%z o’z oz
+ +5 +x—=0

ox?  oxdy 6y2 oy

Sol. On comparing given equation with standard PDE, we have

R=3,8=2,T=5

So S?—4RT=1-15=-14<0

then given PDE is elliptic in nature.
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. o’z 0%z )\ 0%z
Ex. 4. Show that the equation 5+ 2x oy + (1 -y )8);_2 =0

is elliptic for values of x and in the region x’ + y* < 1, parabolic on the boundary
and hyperbolic outside this region.

Sol. Given equation is

—+2x
6x2 Ox0y

Obviously R=1,8=2x,T=1-)?
Now discriminant is
S?—4ART=4x>—-4(1 —)y) =4(x*+)*— 1)

Given equation is elliptic in nature if

o g

S?—4RT<0
or 4x*+yP - 1)<0 = x¥*+)* <1 (inside boundary)
Given equation is parabolic in nature if
S?—4RT=0
or 4x*+yP - 1)=0 = x*+)*=1 (on boundary)
Given equation is hyperbolic in nature if
S? —4RT >0
or 4x*+y - 1)>0 = x*+)*>1 (outside the boundary)

EX. 5. Classify the following differential equation as to type in the second quadrant
of xy-plane
2 2 2
2 6_u+ 2(x—y)6—u+ y2 +x? 6_u= 0
ox? Ox0y

oy
Sol. : Here R=y1?+x%, S=2(x-y), T =4y +x?

y2+x

Now S~ 4RT =4(x — y)*— 4(x* —)?)
=407+ =20y —y* - x)
=—8xy

In second quadrant, y is positive while x is — negative,therefore
S?—4RT=+ve>0

Hence given PDE is hyperbolic in nature.

Ex. 6. Classify the equations :

0%u 0%u 62u_ 0%u 0%u

+2 + = +
@) ox? 6y2 0z° Ox0y  0yoz

® 62u+62u+62u=l
o 6y2 02

o%u
or*
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Sol. (a) The given PDE can be written as

o%u o%u  0%u o%u o%u

+2 + - - =
ox? ot 82 oxdy ooz
Here a,=1l,a, =2,a, =1,
a,=a,=-1,a,=a,=-1,a,=a, =0,

therefore the quadratic form
0(a)= a;o, o,
becomes O(a)= af +203 +ai —2aq0 — 20,05
2 2 2
=(o—0p)" +(a —a3)" +(0)
here the two shares are positive and one is zero therefore the given PDE is of parabolic type.

Aliter : The associated matrix is

-1 -1 0
M=-1 2 -1
0 -1 1

The eigenvalues of the matrix are given by

M—al|=0

=>(-a)(0*-30)=0 ie.a=0,a=1,a=3
Since one of'the eigenvalues is zero, the given PDE is a parabolic type

(b) The given equation can be written as

o’u 0*u o%u lﬁzu_

+ + -— =0
ox? o’ azr ot
_ _ _ _ 1 N
Here a =l,a,=1,a,=1,a,= - and a;=a,= 0,i#j
Hence the quadratic form
0 (o) =a, o, o,
1 2
becomes Q(Ol) 20612 +O£22 +OC3% —(—054]
c

This shows that the three shares are positive and only one is negative and therefore the given PDE
is ofhyperbolic type.
Ex. 7. Classify the equations
o*u _0%u 0*u 0*u 0*u 0%u

7 +3—+84—+28 + + =0
Ox oy 0z o0yoz 0z0x  OxOy

Sol. Here, a,=l,a,=3,a,=284
a,=a,=1l,a,=a,=14,a,, =a,=8.
The associated matrix is
1 1 8
M=|1 3 14
8 14 84
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The eigenvalues of the matrix are given by
|IM—al|=0
= o’ —98a’+78a—4=0
By Descarte’s rule of signs, The given equation has all the three positive roots and therefore the
given PDE is of elliptic type.
Aliter : The quadratic form
O(a) = a;o, o,

becomes Qo) = af +3a3 +84oc32 +2aq0 +160q03 + 280,05
2
:(al +052 +8a3)2 +{\/§(a2 +3a3)2}+(\/§ a3)

Here all the three squares are positive the given PDE is of elliptic type.

Self -Learning Exercise-1

1. Mark the correct alternative :
(i) The second order PDE Rr +Ss +Tt +f(x, y,z, p, g) =0 is parabolic if
(@) " —4RT>0 (b)) S —4RT=0 (c) S—4RT<0 (d) noneofthese

u  0*u  o%u

(ii) The PDE + + =0 18
ox*  Oxdy 8y2
(a) hyperbolic (b) parabolic (c) elliptic (d) none of'these
2 2 2
(iii) In the region x> > 4y the PDE O +x ou er8 Y-0 s
ox? OxQy 6y2
(a) hyperbolic (b) parabolic (c) elliptic (d) none of'these
2 2 2
(iv) The differential equation 4 Ou -16 0u +9 Ou =0 1is
ox 2 Ox Qy oy 2
(a) hyperbolic (b) parabolic (c) elliptic (d) none of'these

2. Write the condition under which a second order PDE in more than two independent variables is

elliptic.

W

. The region in which the equation (x log y) r+4yt=0 is hyperbolic is...

2 2 2
. Classify the following PDE 424 4 2.4 04 _
ox oxdy 9y

N

o%u 0u o%u
i 5 -9 +4 =0
. Classify the PDE ) oxdy 6y2

N

Classify the PDE 82uﬂ62“eraqurZ%Jr%Jr&t:O
- Classify the ol ovor ol o ox

=)
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4.4 Cauchy Problem

The Cauchy problem is a boundary value problem dealing with the unique solution ofa second
order quasi-linear PDE when its initial value and slope are specified.
Statement : Determine the solution 7 =z(x, y) of the PDE
Rr+Ss+Tt+fix,y,2,p,q) =0 «(1)
where R, S and T are in general functions of x, y, z, p and ¢ such that the solution takes on a given

space curve C, having the parametric equation
x=x(8),y =y(®), z2=2(t) -(2)
z
prescribed value of 7 and n’ where n is the distance measured along the normal to the curve.
The latter set of boundary conditions is equivalent to assuming that the values ofx,y, z, p, g are
determined on the curve, but it be noted that the values ofp and ¢ can not be assigned arbitrarily along the
curve.
Method of solution : The solution of eq. (1) will be some surface, called integral surface,
passing through C. Hence at each point of C, by relations (2) we have
Z.O = px + qyo ..... (3)
which shows that p and g, are not independent.
Thus, the Cauchy problem finds the solution of (1) passing through the integral strip of the first
order formed by the planar elements (x,y,, z,, p,» q,) 0fthe curve C. At every point of the integral strip

P, =PD), q,= q,(D), so that of we differentiate these equation w.r.t. ‘" we find that
po :V).CO +S)./0, qO :SXO +l‘)>0 (4)
Knowing R, S, T, f, Xy, Y0, Po-90- Po-q¢ at each point of C, we may regard equations (1) and

(4) as linear simultaneous equations for the unknowns s, ¢ at each point of C. Solving by Cramer’s’s rule,

we get
r_os_t_ 1
A] Az A3 A ----- (5)
s T f R T f
where A= J:’o 0 —1:90 | A2 =14 0 —1:90
Xo Yo 4o 0 ¥ —4o
R S f
Ay=\x ¥ -pPo| (6)
0 X —4qo
R S T
A=l yo O %)
0 X Yo
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If A #0, we can easily calculate the expressions for second order derivatives r, s and 7 along C.

The third order partial differential coefficient ofz can similarly be calculated at every point of Cby
differentiating (1) w.r.t. x and y respectively, making use of

= ZyxXo + ZxxyyO ----- 3

etc. and solving as above.

Proceeding in this manner, we can calculate partial derivatives of every order ofthe points of C.
The values of the function z at neighbouring points, can be obtained by using Taylor’s Theorem for func-
tions of two independent variables. Thus the Cauchy problem possesses a solution as long as
A # 0. Inthe elliptic case 4RT—5*> 0, so that A # 0 always holds and the derivatives, of all orders, ofz
are uniquely determined.

If A = 0, then the Cauchy’s method of solution breaks down. This critical case leads to the

condition
Ry? = Sip+Tx? =0
or Rdy2 — Sdydx + Tdx? =0 -(9)
At each point (x,y, 0) of T (which is orthogonal projection of the curve C on the plane z=0) the
eq. (9) would give a pair of directions along which A = 0. These directions are called as characteristics.
Thus curves known as characteristic base curves, may be drawn through every point (x,y, 0) of
the base curve I' simply by approximating them by straight line segments whose directions are taken to

coincide with those of the tangents given by the roots of (9), viz.

dy _ S+VS*-4RT
dx 2R
Thus a curve I' in the xy plane satisfying (10) is called a characteristic base curve of the PDE (1),

and the curve C of which it is the projection is called a characteristics curve of the same equation.

Note that characteristics are :

() Realand distinct if S?—4RT >0

(i) Coincident if S?—4RT =0 and

(i) Imaginary if S?—4RT'< 0

Hence these are two families of characteristics if the given PDE is hyperbolic, one family if'it is
parabolic and none ifit is elliptic. Thus the Cauchy problem will fail to have unique solution ifan arc element
ofthe base curve I coincides with the characteristics. Consequently, the condition A # 0 is both necessary
and sufficient to solve the Cauchy problem.7

Characteristic equations :

Corresponding to (1), consider A—quadratic

RZ+SA+T=0 ...(11)

when $?—4RT >0, eq. (11) has real roots. Then, the ordinary differential equation

dy
—+A(x,y)=0
dx " (x y)

are called the characteristic equations.

Again the solution of (11) will be characteristic curves or simply the characteristic of the second
order PDE (1).
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4.5 Method of Separation of Variables

For given linear second order partial differential equation
Rr+S8s +Tt +Pp +Qq +Zz = F (x,) (1)
where R, S, T, P, O, Zand F are functions of independent variables x and y only. Let Z(x,y) be solution of
(1).
The method of separation of variables for this problem is a powerful tool and begins with assump-
tion that Z(x,y) is of the form X(x) . Y(y) i.e.
Z(x,y) = X(x) . Y(») .(2)
where X is function of independent variables x only and Y is function of independent variables y only.
On substituting (2) in (1) we have

1 1
/(D)X =758(D) 3)
0 y_ O .
where f(D) and g(D') are quadratic functions of D = > and D' = & respectively. This has the effect of

replacing the single PDE with two second order linear ordinary differential equations since LHS of (3) is
function of x alone and the RHS is function of y alone. Since x and y are independent variables, the two

sides of (3) will be equal only if each side is a constant (say A) be
1 1
—f(D)X=—g(D")Y=A
(D)X =2g(D)

or f(D)X=rX and g(D)Y=rY .. (4)
which can be solved by the methods of ordinary differential equation.

The theory of eigenfunction expansions enters into the treatment of any in homogenous aspect of
the problem. The general solution of equation (4) will depend on the choice of A positive or negative or
zero. In practical problems, the nature of the boundary conditions determine the nature of A and it
becomes an eigenvalue problem.

The method of separation of variables can be employed in a similar manner for more than two
independent variables also.

In the application of ordinary linear differential equation, we first find the general solution andthen
determine the arbitrary constant from the iitial values, But the same method is not applicable to problem
involving PDE In method of separation of variables right from the beginning we try to find the particular
solution of PDE which satisfy all or some ofthe boundary conditions and then the remaining conditions are
also satisfied. The combination of these particular solutions gives the solution of the problem.

Ex. 1. Find the characteristics of

yrr—xt=0.
Sol. Given Vr—xt=0 ...(5)
Comparing (5) with
Rr+Ss+Tt+f(x, )z p q)=0,wehave .. (6)
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R=)"S=0and T=—x*

Hence S?—4RT=0—-4*(—x*) =4xH*>0
and thus (1) is hyperbolic everywhere except on the coordinate axesx =0 and y =0. The A quadratic is
R+ Sv+T=0 or y»*—x*=0 w(7)

X x
Solving (7), we get A= ;’ _; (two district real roots)

Corresponding characteristic equations are

Q_Fi: and Q_iz()
dx y dx y
or xdx +ydy=0 and xdx—ydy=0

Integrating, we get
¥+)y’=C, and x*-)*=C,
which are required families of characteristics.
Here these are families of circles and hyperbolas respectively.
EX. 2. Find the characteristics of

xr+2xys +y=0 . (8)
Sol. Comparing (8) with (6) we have
R=x* §=2xyand T=)?
Hence S?—4RT=0
and hence (3) is parabolic everywhere. The A quadratic is
A+ 2y +12=0
Solving it we get
2
(Ax+y)"=0 ori= —i,—ﬁ (two equal roots)
The characteristic equations is
DX 0 or Lay-Lax=0
dx y y X
Integrating, we get
Y
M ¢ and y=c¢x ...(9)

which is the required family of characteristics. (9) represents a family of straight lines passing through the
origin.
Ex. 3. Solve the followings P.D.E.
6_2z=§, 0<x<m, y>0
oxt oy
satisfying the boundary conditions
(i) z=0whenx=0
(ii) z=0whenx=nr
(iii) z = sin 3x wheny =0
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Sol. Let z(x, y) be solution of given PDE Assume that

z(x, y) = X(x) (y)
where X and Y be function of only x and y respectively.
On substituting the value ofz(x, y) = X(x)¥(y) in given PDE, we have

1 d*’Xx _1dy _

2
— =——=-n"(sa
2
X Y

then d 7 +n*X =0, d—+n2Y=O

dx dy
Hence X =asin(nx+a), andy=be_”2y

where a, b, o are arbitrary constants
2
Thus z=Xx)Y(y) = Asin(nx +a)e”" V', A=ab .. (10)

According to conditions (i) and (i) given with the problem, from (10), we get

0=A sinae”” and 0=4 (—1)" sinoe™” Thusa=0asA =0

Hence z =4 sin nx e_nzy ----- (11)
Also by condition (7ii), from (11), we get
sin3x=Asmnx=>A4=1,n=3
Hence z =sin 3xe
be required solution of given PDE under specified boundary conditions.
EX. 4. Use the method of separation of variables to solve the equation

ou_ ZZ—I;+ u given that u(x,0)= 6e~3%

ox

Sol. Let u(x, 1) = X(x)7(¢) be solution of given PDE where X is a function of x only and 7'is a
function of 7 only.

ou dX ou dT

—=T—and —=X—
Now ox d o dt
On substituting these values in given PDE, we get

T ax _ 2X dar + XT

dx dt

Dividing by X7, we have

X' 27 2

—="—+l=-n

Y7 (say)
Now we have two ordinary differential equations.

Xl !

Z =—n? and £+1 =—n?

X T

dX | 5 " (n? 41
or —+n"X=0,and —=-

dx T 2
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Sloving these equations, we find that

| n*+1 ;
_n’x 2
X =ce and T =cye

Hence u(x,t):X(x)T(t):clcze g
Under given condition we get ¢ >~ = clcze_”zx
cc,=6andn*=3
Thus the required solution of the problem is u(x, 1) = 6 e

=

EX. 5. Use the method of separation of variables to solve the PDE

o%u _,0u ou

+—=0
6x2 Oox Oy

Sol. : Let u(x, y) be solution of given PDE. For method of separation of variables, we assume

u(x, y) =X(x) ¥(y)
where X is function ofx only and Y is function ofy only.

Nowweh u_ydX du_d¥ du
ow we have W o dy 2
On substituting these values in given problem, we get

2
yd X_zyd_X Xﬂzo
dx? dx

dy

On dividing by XY, we have

X" 2X" Y

X x v’
o X”—2X'+£’:0

X Y
X'-2x' Y,

or 72_7:_1? (say)

From above equalities, we have two ordinary differential equation

X"-2X'+p*X=0 and Y -p’Y=0

2
YdX

dx?

Now consider first differential equation from the above pair of equations i.e

X'-2X +p’X=0
Now auxiliary equation for (13) is

m?*—2m+p*=0

R

Therefore CF =¢ e(“@)x (1—@)x

+cpe
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(1+\/§)x

ie. X =ce +eye
dy 2 dy 2
: &y 2y
Again dy p Y p-ay

logY:p2y+logc3

Y=ceP? (15)

Substituting the values of X'and Y from equation (14) and (15) respectively in (12), we get

(1+\/1—P2 )x (1—1/1— P’ )x oy
+cpe c3e

u(x,y)X(x)Y(y){cle

{Ae(pr - )x + Be(lm)x}epzy

Thus u(xy) =

where A =cc, and B =cc,.
EXx. 6. Solve by the method of separation of variables the PDE

Ou Ou
45+ P 3u, given that u = 3¢>*— e whent=10
Sol. Let u(x, 1) =X(x)7(¢) be solution of given PDE where X is a function of x only and T'is a
function ofonly .

On substituting the value of u(x, ¢) in the given PDE and dividing by X7, we get

AT" X'
—+—=3
T X
AT’ -X'
_—3:_:
P 5% P~ (say)
So we h P43 and — 2 = p?
o we have T p an Y p
ar_ 2+3:>d—T— 3+p2 dt
Now r 7 T | 4
2
— logT:[3+4p ]t+logcl
2
or 7= c1e(p +3)t/4
-X' 2 dX 2
Agai —=p " =>—=—pdx
gain Y p Y p
or logX:—p2x+logc:2
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2
or X=cye P

-px +(p2+3)t/4 b e—pzx +(p2+3)t/4

Hence u(x,t)=XT =cicqe n

The general solution is

u(x,t) _ ane_p2x+(]?2+3)l/4
n=1

By the condition given in the problem, for =0 we have,
O 2
u(x,0)=3e"" e = ane_p x
n=1

So we have, p’=1,b=3 or pP=5b,=-1

Hence the general solution is

u (x,t) — 3N _ e—5x+2t

which required solution of given PDE under specified condition.
Self Learning Exercise—II

1. The equation 4r+S5s+t+p+qg—-2=0
has......... real characteristic family of curves.
2. For one family of characteristic of PDE
Rr+Ss+Tt+f(x, 5z p q)=0
S?—4RTshouldbe.................
3. If$?—4RT <0 for PDE
Rr+Ss+Tt+f(x, 5z p q)=0
thenithas............... real characteristics.
4. IfPDE Rr+S8Ss+Tt+f(x,yzp q)=0
is hyperbolic the number ofreal characteristics will be ...............
5. By the method of separation of variables to solve the one dimensional wave equation

2 2
9z _107z ()=

o * ot

4.6 Summary

In this unit, we get an idea and importance of partial differential equation for physical and practical
problems. We have learnt how we can classify the nature of different equations. Cauchy problem is physi-
cal roblem arise in analysis of physical and mathematical problem . A very powerful tool ‘The method of
separation of variables’is also introduced in this unit. At last for concrete depth in PDE, we have included
the self- learning exercises, illustrative Ex.s and questions for practice.

78



4.7

Answers to Self-Learning Exercises

Exercise — I

1. @) b (i) c (i) a (iv) a

2. See§4 3. xylogy<0

4. Parabolic 5. Hyperbolic

6. Elliptic if #—4x < 0,Hyperbolic if #—4x > 0and Parabolic if ##—4x=0
Exercise — 11

1. 2 2. §*—4RT=0 3. Zero

4. 2 5. X)) T(@®

4.8 Exercise

. Find the characteristics of

(i) 4r+5s+t+p+qg—-2=20 [Ans. y—x=¢,, and y—izcz]
y

i) (sin? x)r + (2cos x)s—t=0 Ans. y+cosecx—cotx=c ;y+cosecx+cotx=c]
y ERd 2

2. Show that the equationu _+ xu, +uy = 0 1s elliptic for x > 0 and hyperbolic for x <0.
3. Find whther the following PDE are parabolic or elliptic

o%u  0%u

(i) x* ———5+u=0 [Ans. Hyperbolic if x > 0, parabolic if x = 0 and elliptic ifx <0 ]
ot~ Ox
2 2 2
i) 1 S Ou O Cu
or? oxot el ox

[Ans. &x <1 for hyperbolic, £x > 1 for elliptic and #x = 1 for parabolic]

. Solve by the method of separation of variables :

ou ou

—=4=; u(0, —8e 3V — Q-3y-12¢
ox oy (0.) [Ans. u (x, y) = 8e ¥
. Solve by the method of separation of variables :
9 dus (x,0)=10e"* —6e~* [Ans. u (x, £) = 10e 3 — 6¢ 20+
ot Ox
- —Vkx | 2
. Solve 2u_— u,= 0 by separation of variables. [Ans. ¥ (x, J’) = (Aef + Be Vi j e ky]
. Solve the following PDE by the method of separation of variables,
© 4u tu=3u and u(0,y)= e [Ans. u (x, y) =¥ Y]
0%u ou {p%t/2
W) —5=2=1u(x0=x(@ax) [Ans. 1 1) = (a—x) ¢ 7))
ox ot
3 4
(i) y'u,+x'u =0 [Ans. 4 (x,y)= cek{(x 3 /4)} ]
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10.

11.

Use the method of separation of variables to solve the equation,

o’u  ou
pe) = 8_y +2u [Ans. u(x,y)=(4cos px+ Bsin px)e_(p2+2)y ]
Solve the method of separation of variables,
ou . ou _
3=4272=0; u(x,0)=4¢"" _ 4 H(32)y
e u(x,0)=4e [Ans. u(x,y)=4e (3/2)y
Solve by method of separation of variables,
ou Ou _ _
B — E— N = y —_ Sy - 2 -
46x+8y 3u ; u(O,y) 4e e [Ans.u(x,y)=4ex y_ex5y]
Solve by method of separation of variables,
ou . 0u
— 42—t yu= — £, 3x — —3x-2¢
= o 0 when u (x, 0) = 6e [Ans. u(x,y)=06e ]

oo
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Unit S : Laplace, Wave and Diffusion Equations And

Canonical Forms

Structure of the Unit

5.0 Objective
5.1 Introduction
5.2 Laplace, Wave and Diffusion Equations
5.2.1 Laplace Equations
5.2.2  Wave Equations
5.2.3 Diffusion Equations
53 Canonical Forms
5.4 Summary
5.5 Answers to Self-Learning Exercises
5.6  Exercise
5.0 Objective

After studying this unit, you should be able to know application of partial differential equations. You

will get an idea of wave, diffusion and Laplace equations in different coordinate system and their solutions.

You will also study the reduction of the second order P.D.E’s to canonical forms.

5.1

Introduction

In physical and engineering application, PDE’s of second order are of utmost significance. These

equations arise in the modelling of vibration of string and membranes, theory of hydraulics, gravitational

and potential problems and so on. Since a comprehensive treatment ofthe subject is not possible in this

unit, we restrict our study to a consideration of some special types of equations.

5.2

Laplace, Wave and Diffusion Equations

arc

In applied mathematics and theoretical physics three types of equations occur frequently. These

(i) Laplace Equation
(ii) Wave Equation and
(iii) Diftfusion Equation.

In many practical problems the solution of these equations may be obtained with the help of sepa-

ration of variables.
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5.2.1 Laplace Equation

One of the most important PDE appearing in theoretical physics is Laplace’s equation. It is
usually written as
vau=0 (1)
where the operator V2, known as Laplacian depends on the coordinate system chosen. It is an elliptic
PDE.

(i) 1nthree dimensions, this equation in Cartesian system of coordinates (x, y, z) is written as

o%u N o%u N o0u B
o’ oyt oz’

o . (2)

(i) 1incylindrical polar coordinates (, 0, z), eq. (2) becomes

Qu lou 10w du_

+t-—+—==0 . 3
ort ror 2ot o2t ©)
(i) 1n antisymmetric case i.e. u is independent of 0, therefore equation (3) reduces to
@ la_u @—0 (4)
52 etz L
(iv) in spherical polar coordinates (, 0, ¢), eq. (2) reduces to
Fu 200 1% cotOou 1 Ju_,
o? ror sree 2 0 Zsin’0op: 0000 )

(v) when u is independent of the azimuthal angle ¢, (5) reduces to

o’u 20u 1 0*u cotO ou
—t——F——+———=0
or® ror »?oe? 2 00

Q(rza—“}r 1 i(sine@—“] 0
or o\ o) smoool" o0, e (6)

(vi) intwo dimensions, Laplace equation is

o*u  0u 0
6x_2 8y_2 =Y (7
in Cartesian coordinates (x, y) and
®u lou 1 0%u
+-—-— =0 . (8)

+ — =
o ror r*oe?
in polar coordinates (7, 0).

Equation (7) is also known as Harmonic equation.
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5.2.2 Wave Equation

The wave equation is
1 ou
c? o

It is hyperbolic PDE. V?is a Laplacian operator which depends on the coordinate system cho-

VZu

sen.
(i) Three dimensional wave equation (sound waves in space) in Cartesian coordinates is
o*u N o%u N o’u 1 d%u
=22 1
o2 ot o o (10)

(ii) Transverse vibrations of a membrane are governed by two dimensional wave equation

o’u  0%u 1 o%u
a2 > 2ot (11)

(iii) Transverse vibrations of a string are governed by the one dimensional wave equation
ou 1 o%u
ox? o

5.2.3 Diffusion Equation or Heat Conduction Equation

The diffusion equation or heat conduction equation in general, is written as

1 Ou
Vi=—= 13
k ot (13)
where u 1s interpreted as temperature. It is parabolic PDE.

The one dimensional diffusion equation, which is very much used, may be written as
u_lou
8)52 k ot
EX. 1. Find the most general functions X(x) and T(t), each of one is variable, such
that u(x, y) = XT satisfies the PDE.

o'u _10u
ox2 kot
Also obtain a solution of the above equation for k =1 and which satisfies the boundary
conditions u=0 whenx=0orr

u=sin3xwhent=0and 0<x<nw
Sol. The given differential equation is

o2 kot e (15)
Let the solution of eq. (15) by method of separation of variables is of the form
ux y=Xxyr»y L. (16)
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Substituting (16) in (15), we get

ddix_ 1ar
X g kT dt

(17)

The expression on LHS ofeq. (17) is a function of independent variable x while on RHS, it is
function of independent variable ¢ only. Both are equal if both are constant and equal to either —#»?, 0 or 2.

Hence three cases arise as follows :

d*Xx dT

Casel: 3 =0 and —=0
dx dt

The solutionwillbe X=Ax+ B and T=C
d*x dT

Case Il : 7~ n’x=0 and & ke
dx dt

The solutionwillbe ~ X= A4e™ + Be™ and T = ek
d>X T

Case III : >+ n’x=0 and ar o
dx dt

The solution is X=Asin(nx+a) and T = gkt

where 4, B, C and «a are arbitrary constants. Since when ¢ — o, u (x, £) — 0, hence case III is most
appropriate solution ofeq. (15). Hence
u(x,t)= Ae R sin (nx+ o)
is the most general solution of given problem
Special case : u(x, )=0whenx=0orn givesa=0
Further u (x, t) =sin 3x when ¢t = 0 gives

sin3x=Asmnx=>A=landn=3

Also k=1
H lution of Pu_ou b
ence solution o axz 8t 1S glVen y

u (x. t)=e” sin 3x
Example 2 : Solve the two dimensional heat conduction equation
Fu_otu_tou
oxt oy’ ko
by the method of separation of variables.
Sol. : Let the solution of (18) is
u(x, y, t)y=X(x) Y(y) 7(¢) ...(19)
Substituting (19) in (18), we get

Jdix 1a% _1dr
X dx*> Y dy* kT dt
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The RHS of (20) is a function of independent variable ‘#’ only whereas LHS is a function of two
independent variables x and y. They are equal if both are constant only. FRHS of(20) is a constant and

sum of two functions of two independent variables then both are constants also. Now three cases arise.

1 d*x 1 d?Y 1 dT
Casel: —— =0, =—=0 and ——=0
X dx Y dy kT dt
The solution of these relations will give
X=ax+b, Y=cy+d and T=e

where a, b, ¢, d and e are arbitrary constants.

1d*X _ 5 1dY_ , g Ldr_ 2

. m-, — n® and ——=

Casell : X 22 % dy2 T dr p
’X 5 d’Y dT 5

or 7 —mX=0, —-nY=0 and —= p“kT
dx dy dt

where m?* + n?* = p?

On solving these equations, we get

2
X= ae™+ b]e*'”", Y= a,ex™ + bze*”" and T = a3ep kt

1dX o 1dY o1 dT o
Case Il : X 22 Y dy2 T dt p
2 2
X d’y dT
or d = +m’X =0, ——+n’Y=0 and —=—p°kT
dx dy dt
where m?+ n*=p*

Solving these equations, we get

2 2
X =¢jcos(mx+c,), Y=c3cos(ny+c,) and T=c5e_(m +n* )kt

Since u(x, y, ) —> 0 as t — oo, therefore case III is most appropriate. Hence solution of (18) which
is linear can be written as
O — —k( m*+n’ )t

u(x,3,t)= Y. D cppcos(mx+c, )eos(ny+c,)e

m=1 n=l
Ex. 3. A thin rectangular plate whose surface is impervious to heat flows has at
t = 0 an arbitrary function f (x, y). Its four edges x=0,x=a,y =0, y = b are kept at zero
temperature. Determine the temperature at a point of the plate as ‘t’ increases.
Sol. Here the temperature U(x, y, ¢) in the plate is governed by the two dimensional heat equation
U o*Uu 1oU
636—2-’_8);—2_;5 ...(21)
with boundary conditions
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U(0,y,t)=0, U(a,y,t)=0, U(x,0,t)=0, U(x,b,t)=0  ..... (22)

and initial condition is

U yt=fecy L (23)
Proceeding similarily to Ex.2, we find that if solution of (21) may be assumed as

U (x. v, 0) =X(x) Y()T(2)
then X=c, cos (mx +c )=A4 cos mxt B sinmx,

Y=A4, cosnx + B, sin nx

and T 143e—k(m2+n2 )t

Using boundary conditions (22), we find that
A,=0,B snma=0,4,=0,B,smnb=0
A, =0=4,smma=sinur and sinnb=sin vr(u, v=1,2,3 ....) as
B/ #0and B,#0
Thus A]:OZAZ,MZﬂ and HZE
a b

Hence the general solution of (21) will be

Z/l2 V2 2
vy —k —az+—b2 't
xy, E EF sin 2 gin Y% ¢

b
u=1v=l
Now under initial condition (23), we have
U(x. .0 Z Z Sm—smﬂ ..... 24)
u=1v=l b
which is a double Fourier series of / (x, »).

4 7 b UmY . VIy
Hence Fy=— J. I S (x y)sm —dxdy (25)

ab X200 a b

Thus (24) is a general solution of (21) under boundary and initial condition (22) and (23) where
constant F'  as given by (25).

EX. 4. By separating the variables, show that the one dimensional wave equation

o*u 1 0*u
6x_2 = c_zat_z ..... (26)
has solution of the form Aexp (i inxtin ct) where A and n are constants.
Sol. Let the solution of (26) is
u(x, £) = X(x) 1T(¢) -.(27)

Substituting (27) in (26), we get

1 de 1 4t
T 2 =-n (say)
X dx T di?
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2 2

X T
d - +n2X =0 and d—2+n202T=0
dx dt

=

Solving these we get

X =t and T=cpe™ ™ L. (28)
Hence from (27) and (28), we get the solution of (26) as

u(x, t)y=A exp (£ inx tin ct)

Ex. 5. Atightly stretched sting which has fixed end points x = 0 and x = lis initially
in a position given by y = k sin® (nx/l). It is released from rest from this position. Find the
displacement y (x, t).

Sol. Since the string is tightly stretched initially between two fixed points and released fromrest, it
will make transverse vibrations in (x, y) plane. The displacement y(x, ¢) of any point on it will be a gov-

erned by the following wave equation

o’y 1 8?
== (29)
ox~ c¢” ot
with the boundary conditions
t>0: 0,H=0=yCLey L. (30)
and the mitial condition
t=0: yx,0)=ksi’(mx7y L. (31)
0
which also implies (—yj =0
Ot Ji=o

Applying the method of separation of variables if solution of (29) is of the form X(x)7(¢) we
find that
X=A4 cos Ax + B sin Ax
and T'= C cos Act + D sin Act ....(32)
Using boundary condition (30), we get

A=0  and BsinM=0:>kz%('.'BiO)(ﬂzl,L&...)
Hence X (x)=A, sin (nn/]) ...(33)
. I i)
Under initial condition P =0, we get D =0 from (32). Therefore
=0

T (1) =B, cos (nrct/l) ....(34)
Hence (33) and (34), we get the general solution of (29) as

v (x,0)=C, sin%cos%ﬁt,n eN

where C =4 B, is anarbitrary constant

Hence y(x.t)= Zyn (x.2)= ch sin%cos nr;ct ..... (35)
n=l1 n=l1
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To determine the constant C, we apply the condition (31) on (35), we get

(2] - in 2]
e PRl

= Cl :%k, C3 :—g and Cy) =Cq =C5=Cq =....0

Hence the required solution is

y(x,1) =ﬂ%m(%)cos(%fj_Sin(37jcos(37tﬂ

EXx. 6. Solve the harmonic equation

axz 6y2 .....

satisfying the conditions
(x 0) 0, (x a)—sin(%)
u(O,y) = u(l,y) =0

Sol. Let the solution of (36) is
u(x, y) = X(x) ¥(y)

Substituting in (36) we get
1 d*X 1d%Y
X a2 Yl
dx dy
1 d*’x  1d?
14 :——ﬂ:—kz(say)
X dx? Y dy2
d>X .
Now — +A2X = 0= X (x)=Acosix+ Bsinkx
dx
Applying u(0,y)=X(0)=0 and u(/, y)=X())=0
we get A=0 and M =nmt or kz’%,neN
thus X, (x)=B,sin (?]
d*y 9 )
Again 7 —LY=0=7Y(y)=Ccoshhy+DsinhhLy
Y
Now u(x,0)=y(0)=0 gives C=0
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thus Y, (y)=D,sin (@]

. [ nmx ) . nm
Hence we have i, (x,) =X, (x)Y,(y)=F,sin (T] sin (Ty]
where F is arbitrary constant. Therefore

u(x,y)=Y F,sin (@]Sin h(@]
n=l1

Now applying the boundary condition
u (x, a) = sin (nx//)

We find that Sml“x =3 F,sin (@] sin A (@j Vx

n=l

Equating coefficients of like terms, we get
F sinh(na/l)=1 and F,=F,=...=0

Hence, the required solutionis

u(x,y) = cosech (n_la] sin (%} sin/ (%)

5.3 Canonical Forms

Let us consider the equations ofthe type
Rr+Ss+Tt+f(x,y,zp q)=0 (1)
where R, S, T are continuous functions ofx and y possessing continuous partial derivatives ofas high as
order as necessary. It is a typical class of semi-linear equations of the type of
Rr+S8Ss+Tt=V
Changing the independent variables x, y to &, ) such that
c=cxy,n=nxy .. )
z=z(&,m) ...(3)
Here it is assumed that &, 1 are doubly differentiable and the transformation from (x, y)—plane

to (§, m)-plane is locally one to one. This requires that the Jacobian of the transformation is

Nnonzero, i.e.

,_olem)_eeon ogon
8(x,y) Ox 0y 0Oy Ox
Now from (2) and (3), we get
0z _GdE o (020 ond),
ox 0§o0x onox \oxof oOxon

_ 0z _0208 0z0n_(080 On0 )
1= "oedy omoy \oyoe oy on
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=

oz _(0g0 o) _(dkd o
ox? \Ox 05 ox on Ox 0§ Ox On

(aa)z 0%z ( e an] 0%z (an]z 0%z aa o [3*)e
SN RS Y Yeu § I e | A ) iy el
ox agz Ox Ox )ocom \ ox 5112 6& ox? | on

o'z (2 0 om0 \(2 0z on =) (0 88)o%z
8x8y ox 8& ox 611 oy 0§ 0oy On ox Oy agz

S =

+(a_§.a_n+@.a_§] 0’z (an an]az L 0% oz ' ez

ox oy ox dy)ogom \ox oy Jon? oxdy 06 oxdy on

| t_azz_(ag o, @ ](ag o, o 2z _(ag}zazz
an - 5 —| A~ ~ '~ || ~ 5
o? oy ot " oy on)\ oy ot o ) \oy) oe?

2 2.2
+(26_a.a_n]£+(6_n] 6_;+ aa o, an =
dQy dy)ocom \ v ) on 6% oy’ i
Now substituting these values in (1), it takes the form

2 2 2
A+a§+2B 0z +Ca§+F(§,ﬂaZa%’%]:0 """ ®)
o2 g on o5 on

where A_R(ax) +S8x 6y+T(6y] ..... (6)

B:Ra—a-@+lS(6a on, on %j 795 o

ox ox 2 55 55 oy oy

C:R(a—n} L N U ) ®)
ox ox Oy oy

z Oz
and (é n,z 2& P ]

is obtained from the transformed form of f(x, y, z, p, ¢) and the remaining terms containing first order
partial derivatives of transformed Rr, Ss, and 7t.

One of the relations satisfied by 4, B, Cand R, S, T which can be easily seen, is
AC - B :%(4RT—S2)J2 ..... (9)

We shall now determine the functional relationship [equations (2)] of € ,my with x and y so that the
transformed equation (5) takes the simplest possible form.
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The procedure is simple when the discriminant $* — 4RT of the quadratic equation (called o
equation)

O(a)=Ro*+Sa+T=0 . (10)

is either positive, negative or zero everywhere. We shall discuss these cases separately. It may benoted

that Q (o) 1s called the ‘characteristic quadratic form’ and the discriminant of the quadratic will determine

the nature of P.D.E. This will depend on the characteristic roots of the associated real symmetric metric.

M= {SI/Z S; 2} ..... (11)

Casel: S*—4RT > 0.
In this case the roots o, and o, of equation (10), which are in general functions ofx and y, would

be real and distinct.
0 0
Let us take —%z o o (12)
ox oy
on on
— =0 —
and o 2 Py ...(13)
then from (6) and (8), we find that
2
08
a=(Rof +Soq+7) 2| =0 14
i 1 ( ay] (14)
5 2
_ 2 oan| _
and C =(Ro3 +sg2+r)( ay] oL (15)
where o, and a., are roots of (10).
The equation (5) reduces to
2
2 i plen 2 %0 (16)
950 o on
Equation (12) 1s a Lagrange’s linear equation of first order, whose subsidary equations are
& _dy _d§
1 —0 0
which gives £ = constant,
dy
— 4 o = 0 ceos 1 7
and PR (17)

Letf,(x, y) = constant be the solution of equation (17) then the general solution of equation (12)
will be

E=f(x») ...(18)
In a similar manner the general solution of equation (13) will be
n=fxy» (19)
where f, = constant and /] = constant are the solution of differential equations
dy dy
—+a; =0, —+a,=0 20
g T =0, ot (20)
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respectively. Relations (18) and (19) are the desired transformations for independent variables which
reduce the given equations (1) to the form (16).

Now from (9), we have

AC—-B* = 1(4RT S2) sgon_agom) Q1)
4 Ox oy Oy Ox

This shows that the sign of (AC — B?) is the same as of (4RT — $°) i.e. it is invariant under
transformation.
Therefore, when 4 = C =0, from (21), we have

2
482 :(52 —4RT) geon_osony (22)
ox 0y Oy Ox

Since we have assumed that S*>4RT, it implies from (22) that B>> 0 i.e. B # 0 and therefore we
may devide both sides of equation (16) by it and write it finally as

0%z —| Emz dz oz 5
oEam 1 2y xm) e (23)
which is the canonical form of equation (1) when $* —4RT> 0.

Case Il : 82 —4RT = 0.

In this case the two roots ofthe quadratic equation (10) are equali.e. o, = o, Therefore one of the

functions, say  will be defined by equation (18) of case I. We may now take 1 to be any suitable function
of x and y which should be independent of € . Therefore, as before, 4 =0 but C# 0. Further, from (21),
since S —4RT =0 we have

B=0

Hence equation (5) reduces to

2
Ca—§+F(én o 82]

o 08’0
0z Cz Oz
or a—%(% n.z Fa ] ..... (24)

which is the canonical form of the equation (1) when $? —4RT=0.

Case III : S*—4RT<0.

This is particularly the same as case I except that the roots of the quadratic equation (10) in this
case are complex. If we proceed in the same manner as we did in case I, we shall arrive at equation (21)
but in this case the variables are not real and in fact complex conjugates. To get a real cononical form we

transform the independent varialdes £ and 1 again be the following relations.
1 1.
=5(&+n), uzgz(n—ﬁ) (25)
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&z o0&z o oz o 1( o0 .0
then Pl isealisw el vl o 4
o o o on o 2\0h
6z oz O o0z op 1[0 .0
— = —t——=—| —+i— |z
on oL om ou on 2(0h du
o'z 1o _,0\&, ) 1o o
Hence a é an 4 87\4 6“ 6}\4 6“ 4 67\, 2 au 240 e (2 6)
and therefore the relation (23) reduces to
oz 0 (&
22 on 3| M NN (27)

which is the Canonical form of equation (1) when S* —4RT <.
Ex. 1. Reduce the equation

o 6y2 - oy
to canonical form and find its general solution.
Sol. Comparing the given equation with the standard form

Rr+Ss+Tt+f(x,y,z,p,q)=0,we get

o2 a2 10
(n_1)2 g 2n z_nyZn 102

R=(n-1y,8=0,T =", f:_ny2n—1%

Here, S*—4RT=4(n—1)*y*" >0 provided n # 1.

Hence the given differential equation is hyperbolic differential equation. The roots of the ai-equa-
tion R&+Sa+T=0

or (n—1) 0> —y*"=0

n n

and o, =—
n—1 2 n—1

Changing the independent variables fromyx, y to & ,n such that & = (x, y), n = f,(x, y) where
J, = constant and f, = constant are the solution of the differential equations

are oy =

@+ oy =0 and d_y+ oy, =0 respectively.
dx dx
These gives f,(x, ) =y""—x= constant
and f(x, ) =y'"+x = constant
Hence E=y'""—x and n=y"+x
Oz 0z 0Oz
Now, pP= e = _8_§ + 5_11
q:@:(l_n)y—n{@ﬁ}
y g o
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&’z &z oz 8%z
r=—5=_572 T2
ok ogon  onm

2 2 2 2
0 _ 0 0 0
t:—jz(n—l)zy 2n §+2 z n ; +n(n_1)y—n—1{6z+6z}
oy o0&~ 95 on o€ om

Therefore, the given equation reduces to

2 2 2 2 2 2

2107z 0"z 0z 2107z 0z 0z
(n—1) -2 +— —(n-1) ~+2 +—
o& o0&on  on o€ 0Eom  on

N B S D B N
n(n l)y {6§+6n} n(n l)y {8§+6n}

2
or —4(n-1y" 0z _
ogon
822 3
or P

which is the required canonical formifn # 1.
The general solution of the above equation may be easily obtained as

2=y (&)+d1(n)

where ¢, and ¢, arbitrary functions of € and n respectively. Changing to original variables we get finally
z=d (yl_n —x) +¢ (yl_n + x)
Note : Ifn = 1, the character of the given differential equation changes. It becomes a parabolic

equation, viz.

622 oz
_+_—

yayz 8_)/_

whose general solution is

0

z=d;(x)logy+¢,(x).
Ex.2. Reduce the equation

oz o’z 9’z

> +2 +t— =
ox ox0y oy
to canonical form and hence solve it.

Sol. Comparing the given equation with the standard form Rr+Ss + Tt + £ (x, y, z, p, ) =0,
we get, R=1,8=2T=1,f=0
Here S?—4RT=4-4=0

Hence the given equation is a parabolic differential equation.

The roots of the a-equation
Ro?+Sa+T=0
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or o’ +20+1=0
are a=-1,-1
Changing the independent variables x, y to &, n where =/, (x, y), such that f, = const. is the

solution of'the differential equation

dx
dy o _

or ——1=0 which gives x — y = const.
dx

Hence E=x—y

We may now take n to be any suitable function of x and y which should be independent of €. Let
n=x+ty

0z 0Oz 05 Oz On 0Oz Oz
Now, T AT A A T T A
ox 0§ Ox oOn ox 0§ On

&y o dy ondy & o
o’z (0 o0 \oz oz) &’z _ 8%z 0°z
==t =t |12 +—
Ox o¢ om)\og om) &g o&on  on
0%z o 0 0z Oz 0’z 0%z

=l —+—||——+—|=—+—
oxdy \ 0 on )\ € om oe2 o’
0%z [ 0 a]( 0z 62]
_2: _— _—
oy o on )\ 0¢ om
0%z 2822 0%z

+
oE2 T OEOM  an?
Therefore the given equation reduces to

R

2
5_§:0
on

which is the required canonical form.

The general solution of equation may be easily obtained as

z=n¢(&)+9, (&)
where ¢, and ¢, are arbitrary functions of €.

Changing to the original variables, we get finally

z:(x+y)¢1 (x—y)+¢z (x—y)
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62z 2 62 .

— =Xx"— o canonical form.

ox

Sol. Comparing the given equation with
Rr+Ss+Tt+f(x,y,2,p,q9)=0,

We get R=1, §=0, T=-x?

Now the roots of the a-equation

Ro?>+Sa+T=0

or a?—x*=0

Ex. 3. Reduce

are a=1tx
Changing the independent variables x, y to &, ) where
¢=/f,(x,y) and m=f (x,y)

such that /, = const. and /) = const. are the solutions of the differential equations.

d
Hence d_y+a1 =0 and —y+oc2 =0
dx dx
d
becomes d_y+x:0 and —y—x:0
dx dx
2 2
Integrating v+ 5 =const. and y — 5 = const.
2 2
X X
Hence =y+— and =y-—
&=y 5 n=y-3

0z Oz 6&4_62 on_ 0z 0Oz

Now o S

Oz _ 0z 6& 0z On_0z oz

oy 8& oy 6n oy 6&_, on

&—(ﬁJri](aZ 62] 2%z, 622+822 oz oz
ox? \ o8& on )\ oe  on oe2 T oEom on? | 0 om
0’z o'y 0%z 0%z
2 +2 + 2
o2 ot otom  on

Therefore the given equation reduces to

2{822 2622 622} 0z 0Oz 2{622 2622 622}_

>~ + — >+ +—
o okom  om? | & om 0¢ 0Eon  on
(5 2
or oEdM  4x*\ 6E  on
o’z 1 (@_@]
of oeon  4(&-n)log om

which is the required canonical form.
96



Ex.4. Reduce the equation

xyr—(x2 —yz)s—xyt+py—qx= 2(x2 —yz)
to canonical form and hence solve it.

Sol. Comparing the given equation with standard form Rr+ Ss + Tt + f (x, v, z, p, ¢) =0, we get

R=xy,§=-(x*-)"), T=—xy
So a-equation Roa?+Sa+T=0
becomes xyal—(x*—y)oa—xy=0
X
or 0‘:—1’_
Xy
d
Hence —y+a1=0 and —+a,=0
dx
d
becomes Q—X:O and 2+2=0
dx x dx y
. _ 2 2 _
Integrating, ==, XY =06
Now, we take E==, n:xz+yz
0z 0z 0 0z O oz 0z
Then L EM__ P &
o 8& ox oOn Ox x° 0§ on
0z _ 0z 6& 0z o 1@4_2 oz
8y 8& oy 6n oy x0g on
2 2 2 2
a—jz(—lz] 5_§+2(2x)(_12] 2 4202 2{ &
ox X o0& Eon 811 5& 67]
2 2 2 2
oz (—lj(ljé Z+{2y(—%j+2x-l} 0z +4xya i—%@
oxoy X 8{3 X x| 0&on on x° 0§
2 2 2 2
a_sz il i n s
a* \x) og*  x ogom on” o
Therefore the given equation reduces to
2 22 0%y (2 2\.2
(x +y ) deon —(y —X )x
2 2\.2
2y 2 e o8
or - T 2
ogon (x2 +y2) (&2 +1)



Integrating (28) w.r.t. £, we get

2_121 J(;zfl)zdiﬂb(n)

i %jil Zf(azdfl) +6(n)

) ;il—z 2.1.1(Zz+1)+2.11,1j&ji1+ +¢(n)
n :_(afﬂ)“"(”)

Integrating it, we get

. (j—“l)¢ (n)+5 (€)

or Z=—xy+¢1(x2+y2)+¢2(zj
X

Self Learning Exercise

1. The Harmonic equationis ....

2 2
1 . . . .

6_21 + 8_? = 1ou is two-dimensional............ equation.

ox~ oy~ kot

3. Write general Laplace’s equation.

4. Write wave equation.

5. Give a common method for solving Laplace, wave and diffusion equations.

5.4

Summary

In this unit, we have covered nature and types of Laplace, wave and diffusion equations and their

solutions under different boundary and initial conditions, with illustrative examples. We have also presented

the canonical form of PDE and its general solution also for hyperbolic, parabolic and elliptic equations.

5.5

Answers of Self-Learning Exercises

2 2
Z—?+2—?:0 2. Diffusion
X Y
5 o’u 1 o%u
- Vu=0 T2 A2

Taxr oo

. Separation of variables
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5.6

Exercise

. Astring is stretched between the fixed point O (x=0) and 4 (x=1) and released at rest from the

position U(x, 0) = A4 sin x. Find the formula for its subsequent displacement U(x ,¢)

[Ans : U (x, t) = A4 cos 7 ct cos mx|

. Astring is stretched between the fixed points (0, 0) and (/, 0). Ifit is released at rest from the initial

2k /
—X ;0 O0<x<—
. [ 2
deflection f(x)=
2k /
—(I-x) ; —<x<I
[ 2
where ‘&’ is arbitrary constant. Find the expression of deflection ofthe string at any instant ‘¢’.
[Ans : U(x,t) _ 8k | sinmx cos mct —lsi 3ﬂcos 3nct
n [ [ 9

. A tightly string stretched string with fixed end points x = 0 and x = = is initially at rest in its

equilibrium position. Ifit is set vibrating by giving to each ofits points an initial velocity

(a—U] =0.03sin x—0.04sin3x
Ot Jio

then find the displacement U (x, #) at any point x and at any instant ¢.

[Ans. U (x,t) =1[0.03sinxsinct—o.01333 sin3xsin3ct]]
c

. Solvey =4y ,y(5,)=0=y(5,1),y (x,0)=0and » = f(x)=5sinnx
tt XX <0

ot
5 . .
[Ans. y (x,t)= S sinmx sin 2nt |
T

o%u

. Solve diffusion equation 8—1; = 8—2, 0<x<t>0

X
u(x,0)=3sinnmnx,u(0,t)=0,ul,t)=0.

[Ans. u(x,1)=3>" e ™ sin nmx |

n=1

. The temperature distribution in a bar of length it which is perfectly insulated at ends x =0 and x =rt

is governed by PDE
ou_u
o ox?
Assuming the initial temperature distribution as u(x, 0) = cos 2x. Find the temperature distribution

at any instant of time. [Ans. u(x, ) = e cos2x]

. A’ homogeneous rod of conducting material of length 100 cm has its ends kept at zero temperature

and the temperature initially is
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10.

11.

12.

13.

( 0) X, 0<x<50
u(x,0)=
100—x, 50<x<100

Find the temperature u(x ,¢) at any time.

_[(2n+1)cn}2t
400 & (-1)" ,n(2n+1)nxe 100

S1
w0 (2n+1Y 100

Solve u, = a’u  under the conditions u (0, £ ) = 0 =u (7, ?), u(x, 0) =x*,0 <x<m, > 0.

[Ans. u(x,t)= ]

[Ans. u(x,?) +4z cosnxe_“znzt]
o*u  du
Solve—+—_0 O<x<mO<y<m
ox? 8y

which satisfies the conditions u (0, y) =u (n, y) =u (x, n) =0and u (x, 0) =sin’ x.

sen)oE e sm(n ) xsinh (20 1)(x-y)
[Ans. u( f nnz_:(Qn 1)[(2n—1)2_y}sinh(2n—1)n

2
Reduce the equation j 6_§ + & = () to canonical form and find its general solution.

oy~ Oy
[Ans. z = ¢, (x)logy +é, (x)]
Reduce the equation
2 2 2
Zaj—nyaZ+x26§— oz x oz
Ox Ox0y oy X 8x y 6y
) . (.2 2 2., .2 2,2
to canonical form and hence solve it. [Ans. z —(x -y )4)1 (x +y )+d)2 (x +y )]

. 822 2 822 .
Reduce the equation — = X~ — to canonical form .
WO 52 ™7 2

Also state the nature of the equation.

[Ans GiE: _ 1 (% —%] E=y+ X n=y ——2 , hyperbolic.]
otom  4(&-m)l g on 2 2
Pz, 0%z .
Reduce the equation — + x —=0to canonical form.
ox? oy
2 2 2
Also find its nature. [Ans. oz + oz__1¢é U= Y,A = X elliptic]
o/ TR W/ 2

oo
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Unit 6 : Eigenvalues, Eigenfunctions and Sturm-Liouville
Boundary Value Probleon

Structure of the Unit
6.0 Objective
6.1 Introduction
6.2  Linear Homogeneous Boundary Value Problem
6.3 Eigenvalues and Eigenfunctions
6.3.1 Eigenvalue
6.3.2 FEigenfunction
6.4 Sturm-Liouville Problem
6.5 Orbnogonality of Eigenfunctions
6.6  Important Theorems for Sturm-Liouville System
6.6.1 Theorem 1
6.6.2 Theorem 2
6.6.3 Theorem 3
6.6.4 Theorem4
6.7 Summary
6.8 Answer to Self-Learning Exercise

6.9 Exercise

6.0 Objective

After completing the present unit, you will get a basic knowledge about eigenvalue and
eigenfunction of boundary value problems. You will study special boundary value problem known as Sturm-
Liouvelle problem and properties of eigenfunctions in later part of unit. The knowledge which you gain

here, can be used to study various special functions that arise in physical and engineering problems.

6.1 Introduction

In the eighteenth century much attention was given to the problem of determing the mathematical
laws governing the notion of a vibrating string with fixed end points. We wish to motivate the physics of
vibrating string. In the last unit, we dealt the wave equation in detail with some other physical problems

where we had derived boundary value problems for seeking non-trivial solution of partial differental equa-
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tions involved in formulating physical problems. In this unit we study the condition of parameter involved
in boundary value problem and corresponding non-trivial solution. We will also see special boundary
value problem, known as Sturm-Liouville problem in detail which helps in studying regular boundary

value problem and special functions in future.

6.2  Linear Homogeneous Boundary Value Problems

In previous unit, we have noticed that most important application of the idea is in boundary value
problems of any type. For second order linear differential equation, boundary value problem is defined
as

Ly=h L. (1)
where L is a second order linear differential operator defined on a finite interval [a, b] and / is a function
in [a, b] and pair of homogeneous boundary conditions of the form

ay@+ay®)+tay@+ay®=y, .. ©)

By@+By®)+By@+By®=y, .. 3)
where a, B, and v, for i = 1, 2 are constants. The problem (1) with boundary conditions (2) and (3) is
known as linear homogeneous boundary value problem. In this problem, we seek all non-trivial func-
tions of y(x) in [a, b] which simultaneously satisfy differential equation (1) and boundary conditions (2)
to (3).

For example, y'+ry=0 . 4)
with boundary conditions

y(0)=0and y(m)=0 L. (%)
is a boundary value problem of above type on the interval [@, b]. The parameter ‘A’ in (4) is free to
assume any real value.

The situation with boundary conditions is quite different from that for initial condition. The initial
value problem is a sophisticated variation of the fundamental theorem of calcalus. The boundary value

problem is rather more subtle.

6.3  Eigenvalues and Eigenfunctions

In previous study, we have considered initial value problem, in which the solution of second or-
der differential equation is sought that satisfies two conditions at a single value of the independent vari-
able. Here we have absolutely different situation for we wish to satsfy one condition at each of two
distinct values of independent variable x. The part of our task is to discover the values of A's for which
problem can be solved for getting non-trivial solution. The solution of given problem in (4) with bound-
ary conditions (5) is not difficult to find. We simply apply the boundary conditions to the general solu-
tion. But we have to analyse the solution for all possible values of'A’s. So, three cases arise as follows.

Case I : A is negative or A <0

Let A =—m?

The given problem (4) with (5) becomes

y'-m>y=0 (1)
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and y(0)=0and y(m)=0
s0, the general solution is
y(x)=ce”+ce™
Now »WW0)=0=c¢ +¢c=0 L. 2)
and Wn)=0=ce"+ce™=0 L. 3)
Equations (2) and (3) give
¢,sinh mn =0 = ¢, = 0 as sinh mm # 0 for m = 0
Hence ¢, = ¢, = 0. Thus we get only one trivial solution exists.

Casell: A =0
The given problem (4) with (5) becomes
yrr =0
and 10) =0 and y(n)=0

Hence the general solution is
yx) =cx+c,
When 3(0) = 0, we have ¢, =0
So Wx) =cx
When y(n) =0, we have ¢, =0
Under given boundary conditions, ¢, = ¢, =0
1.e. we have trivial solution for given problem for this value of A or y =0
Thus, we are restricted to the case in which A is postive for seeking non-trivial solution.
Caselll: A >0

Let A =m?
The given problem (4) with (5) reduces to

y'+my=0 L 9)
and W(0)=0 and y(m) =0

so0, the general solution is
Yx)= ¢, sin mx + ¢, cos mx
for »(0) =0, we have ¢, = 0
Hence ¥(x) = ¢ sinmx
and for y(n) =0, 0 = ¢, = sin mn
Since ¢, # 0 for seeking non-trivial solution, we must have

sin mnt = 0 = sin mn = nw; for some positive integer

or mn=nm;n=1,2,3, ..
or m=n
Hence A = n,n=1,2,3, ... which is known as eigenvalues and corresponding solution is

yx)=c snnx;n=1,2,3, ...
which is called as eigenfunction.
6.3.1 Eigenvalue or Characteristic Value
The values A's, for which given boundary value problem has non-trivial solutions, are called eigen-
values of given problem.
For example A =1, 4, 9, ......n* are eigenvalues of problem (4)
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6.3.2 Eigenfunction or Characteristic Function

The non-trivial solution of given boundary value problem corresponding to particular eigenvalues
is termed as eigenfunction.

For example y (x) = sin x,sin 2x, ...... , SIn 71X, ..... are eigenfunctions for eigenvalues in=1, 4, 9,
..... n?, ...... respectivoly for problem in (4)

It is to be noted here that the eigenvalues are unigely determined by the problem but the
eigenfunctions are not. Any non-zero sealar multiple of eigenfunction is also a eigenfunction.

From the above study, we have three important conclusions for eigenvalues and eigenfunctions
as follows

(i) The eigenvalues form an increasing seauence of positive numbers that approaches oo i.e.

and A, —>0asn—» oo

For example, 1 <4 <9 ...... << in above problem

(i) The n™ eigenfunction vanishes at the end points of the interval and has exactlyn — 1 zeros
inside this interval.

For example, for A =n? y = sin nx vanisheos at the end points of the interval [0, 7] and has
exactly n — 1 zeros inside this interval (0, 7t) in above problem in (4).

(iii) Ify (x) is an eigenfunction for eigenvalue A for given problem, then cy (x) is also eigenfunction
where c is arbitrary constant for same eigenvalue. Hence the eigenfunction corresponding to each eigen-
value is unique except for a multiple of an arbitrary constant factor.

The problems of heat, wave and Laplace in previous unit or many other physical or applied math-
ematical problems are boundary value problems. In solution procedure by seperation of variables for
any problem, notice that we have calculated eigenvalues and corresponding eigenfunctions also.

Ex.1. Find the eigenvalues \'s and corresponding eigenfunctions y (x) for the equa-
tion y'' + Ay = 0 under the boundary condition y(0) = 0 and y(n/2) =0

Sol. We have three cases.

Case I : A is negatve or A <0

Let A=—m?
The given differential equation becomes
yrr _ mZy — 0

whose general solution is
y(x)=ce”+ce™
Now W0)=0=c +c,=0
and W(r/2)=0=ce™+ce™=0
The above thwo equations give us
¢, sinh (mn/2)=0=c¢ =0 (- mn=0)
Thus we get only one trivial solution i.e. y(x) =0
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Case Il : when AL =0

The given problem reduces to

Hence the general solution is

y(x)=cx+tc,
So, under given boundary conditions, ¢, = ¢, =0
which gives trivial solution only i.e. y=0forA=0
Thus A <0 are not eigenvalues for given problem.

Case III : when A is positive or A >0

Let A=m?
Then problem becomes
V' +m’y=0
and (0)=0and y(n/2)=0
The general solution is ¥(x) = ¢, sin mx + ¢, cos mx

When y(0) =0, ¢, = 0 and hence y(x) = ¢, sin mx
When ¥(n/2)=0,0=c, sinn /2

For seeking non-trivial solution, we should have ¢, # 0 then sinn ©/2 =0

or sin mn/2 = nmw; for some positive integer n
= mn/2=nm;n=1,2,3, ...
= m=2n,n=1,2,3, .....
Therefore A=mr=4n’; n=1,2,3, ...
Hence A =4, 16, 36, ........ ,4n? .. are the increasing sequence of eigenvalues. The corre-
sponding eigenfunctions are

yn(x) =sin2nx;n=1,2,3, ...

Ex.2. Find the eigenvalues and eigenfunctions for the boundary value problem y'' +
Ay = 0 under the boundary condition y(a) = 0 and y(b) =0, 0 < a < b; a, b are arbitrary real

constants.
CaseI: A <0 orh =-o?
Given problem reduces to
y'—ary=0
with wa) =0and y(b)=0
The general solution is

y(x) =ce*+ce™

When Wa)=0, ¢ e +cew=0=—ce=c
Wb)=0,ce®+ce=0=—ce=c

Hence, —c et = — clez‘“’

= c](eZ(xa _ ezab) -0

Since a#b,c =0

and hence ¢,=0

which implies y = 0 1.e. only trivial solution exists.
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Casell : If A =0

Given problem reduces to

y'"'=0
with y(a)=0and y(b)=0
The general solution is y(x)=cx+tc,
For y(a) =0, c,a+c,=0and for y(b) =0, c b +c,=0
On subtracting we have c (@a-b)=0
Since a#bc =0

and hence ¢, = 0 and y = 0 i.e. we get only trivial solution.
Case III : When A >0 or A = o2

Given problem becomes, y'+aty=0

With y(a)=0and y(b)=0

The general solution is ¥(x) = ¢ cos o + ¢, sin o

For Wa)=0,0=c cos aa+c,sinoa
For ¥(b)=0,0=c cosab+c,sinab

Non-trivial solution for ¢, and ¢, in above system of equation may exist only when we have

cosaa Ssinoa

cosab sinob

1e. smob—a)=0
or sno(b—a)=smnm;forn=1,2,3, ...
or ob—a)=nn
or a=—Tin=1,23....
b-a

Hence the eigenvalues are

2.2

kn:ocz— nr n=12,3,....
2
(b—a

and correspondingeigenfunctions are

Y (x)=¢; cos X+ ¢, sin x
—a ~a
. nmb nnh
If we suppose that ¢ =Ssin ; and ¢, =cos »
: . . nm
then eigenfurctions are Y, (x)=sin P (b-x)

Ex.3. Find the eigenvalues and eigenfunction for the boundary value problem
V' =2y +hy=0;3(0)=0, p(m) =0

Sol. Put y =¢™

Auxillary equation is m* —2m + A =0

m=1+x+1-A
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Casel:If1-A>00rA <1
The general solution is

(1412 )x (1= x

y (x) =ce
Under given boundary conditions, »(0) =y (7) = 0, we have
¢,=c,=0ory=0

+Cye

So, only trival solution exist i.e. A < 1 does not give any eigenvalue.
Casell: If1-A=00rA=1
The general solution of given problem is
W) =(exte) e
On applying boundary conditions,
¥(0) =0 and y(r) = 0 we have ¢, + ¢,=0
Hence, only trivial solution exists and therefore A = 1 is not an eigenvalue.
Caselll : If 1-A <0orA>1

The general solution is
y= [Acos\/k —1x+ Bsin/A —liex

When »(0) = 0, we have 4 =0 or y(x) = Bsin/A —1xe*

For W) =0, siny/A—1n=0

since €™ # 0 and B # 0 for seeking non-zero solutions.

Hence sin /A —1 n=0=sinnt,n=1,2,3, ....

= A—1=n?

or A=+ lin=1,2,3,...

are required eigenvalues and corresponding eigenfunctions are
yx)=esinnxn=1,2,3, ..

Ex.4. Find the eigenvalues and eigenfunctions for the following boundary value prob-
lem

V'=4y'+(4-91)y=0,y(0) =0,y =0,
where ‘a’ is a positive real constant.

Sol. The auxillary equation of a given problem is
m*+4m+(4-91)=0

m=—4+[16-4(4-9%) =243 1
Casel: wheniA =0

The general solution of given problem is

y(x)=e? (¢, +cyx)

When »0)=0,¢,=0

or V(x) = cxe™

Also when Wa)=0,cae* =0
Since a > 0, therefore ¢, = 0

Hence, y = 0 1.e. only trivial solution exists.
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lem

Case Il : When A >0

The general solution is
y(x)= e (clee“/ﬂ + cze_z’m)

On applying boundary condition
W0)=0,c,+c,=0o0rc,=—c,

y(x)=ce™ (eNﬂ _ )

Again v(a)=0, gives cje (ee“/E —e_3\/ﬁ) =0

= ¢, =0 ..¢,=0,y=0, only trival solution exists.
For A > 0, the given problem has no non-zero eigenfunction.
Case III : When A <0

The general solution of given differential equation is

y(x)=e? (cl sin(3 M) +c, cos(3 M))

Now »(0)=0givesc,=0
y(x)= e 2¥ sin(3 \/—kx)
Also y(a)=0 gives c;e™* sin(3 \/—ka) =0

For non-trivial solution, we have ¢, # 0, then

sin(3m)=o

or sin(3\/—ka):sinnn;n:1,2,3,....
\/__:ﬂ
3a
2 n’n?
or A=
94>
2.2
Hence Ay =——a—in=123....
9a

Y (x)ze_zx sin(nnx

a

Ex.S. Find the eigenvalues and eigenfunctions for the following boundary value prob-

Y'=3y'+2(1+1) y=0,p(0)=0,y(1)=0
Sol. Auxillary equation for given differential equation is
m?*—3m+2(1+A)=0
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: J_r\/f
Solving, we get = 3+£9-4-2-(1+1)

Thus, three cases arise

1
Casel: When1-8A=0or X=§

The general solution of equation is

M) = e (¢, + ¢)
Now (0) =0 gives ¢, = 0.
Therefore (x) = c xR
Again »(1)=0givesc,=0
Hence, y = 0 1s the only trivial solution of the given problem.

1
CaSCII:When1—8X>00r)\,<§

The solution of given equation is

y(x)= 32 (018(1/2)\/§7»x . cze(‘l/z)mm)

when, W0)=0=¢ +¢,=00rc,=—c,

y(x)= cle(3/2)x (e(l/z)ﬂxx ~ e(—1/2)\/§xxj

or y(x)= 26V sin ( 1;8% ]x
Again p(1)=0 = y(1)=2¢¥ sin (—”‘2&] -0
s ¢, =0
Therefore ¢, = 0. Hence y(x) =0,
Thus for ) < %, only trivial solution exists.
1
CaseIII:when1—8X<00r7»>§
The solution is
_ (32 . V8A-1 V8L —1
y(x)=e ¢ sin X+ ¢y cOs x
2 2

Now for »(0) =0, we have ¢, =0
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y(x):cle(3/ W sin%x
Also y(1)=0 = cle(3/2)x sin 87;_1 =0

For seeking non-trivial solution, we have ¢ # 0

Bh—1

therefore sin S 0
. N8A-1 e
or sin " sin nt; for positive integral n

f 2 2
87; lznn:>\/87u— :2nn:kn=$;n=1,2,3,-m

are required eigenvalues and corresponding eigenfunctions are y (x) = €*?* sin nmx (n € N)

6.4 Sturm-Liouville Problem

A boundary value problem consisting of second order homogeneous linear differential equation

ofthe form

%(p(X)%]{M(X)”(X)]FO ..... ()
where p, ¢ and r are continuous real valued functions defined on a <x < b such that p has a continuous
derivative, p(x) >0 and ¢g(x) > 0 and A is a parameher independent of x and two homogenous bound-
ary conditions
A y@+4,y(@=0 L. 2)
B y(b)+4,y'y=0 L. 3)
where 4, A,, B, and B, are real constants such that 4, and 4, are not both zero and B, and B, are not
both zero simultaneously, is called Sturm-Liouville problem. All the problems we have discussed in pre-
vious section are Sturm-Liouville problems.
Ex.1. Check whether the boundary value problem
Y'=Ay=0 with y0)=0=y(rn)
is Sturm-Liouville problem or not
Sol. On comparing with stanard form of Sturm-Liouville problem, we have
px)=1,9g(x)=1,r(x)=0,a=0and b=m;
A =B =land4,=B,=0
Hence given problem is Sturm-Liouville problem.
Ex.2. Check whether the following boundary value problem
xy)'+y +(E+1+A)y=0
»(0)=0andy (L)=0, L is constant such that L > 1

is Sturm-Liouville problem or not.
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Sol. X' +HyY +EP+1+A)y=0
@) +@+1+2)y=0
px)=x,9(x)=1,r(x)=1+x*,a=0and B=1L;
A=1,B,=0,4,=0and B,=1

Since px)>0for0<x<L

Given boundary value problem is Sturm-Liouville problem

Ex.3. Find the eigenvalues and eigenfunctions of the following Sturm-Liouville prob-

lem

d [ 2xdy 2x
—| e — |+(A+1)e"y=0;
dx( dx] ( ) Y

»(0) =0 = y(n)
Sol. Transform dependent variable from y to u by using transformation
y=e'u
Y e du_ e *u
dx dx
Therefore given differential equation reduces to

i er (e_x % —e_xuj + (k + l)ezxe_xu =0
dx dx

+re¥-eut+eeu=0

dzu
e | —+lu|=0
or l:dxz :l
L.€. '+ u=0

and boundary conditions reduce to
w(0)=0=u(m)sincee*#0 yxerR
we know that A =nin=1,2,3,..
are the eigenvalues for reduced problem and corresponding eigenfunctions are u (x) = sin nx (see §6.3)
Hence A = n*; n =1, 2,3, ... are the eigenvalues for given problem and corresponding
eigenfunctions are
yx)ersinnx;neN
Ex.4. Solve the following Sturm-Liouville problem
Y'+Ay=0;y'(-m)=0,y'(n) =0
Sol. Let A<0ie A=-0o?
Then given problem becomes
y'—aly=0;)'(-n)=0,)(n) =0
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The general solution is y(x)=c e +ce™
V' (x) = coe™ —oc,e™
Now V() =0 = coe*—coae=0
and V() =0 = coae”—cae* =0
For non-trivial solution for ¢, and c, for above system of equations, the coffecient determinant

must vanish. Hence

ae—an _ aean
=0

aean _ ae—(lTC

= _ e&om + 67201%: 0
which is not possible. Hence c=c,=0

Therefore only trivial solution exists thatisy =0
When A =0.
The general solution is y=cx+tc,
So, Y =c
For boundary condition Y(m)=0and y'(n)=0,c =0

Hence y (x) = ¢, is solution
When A > 0. Let A = o?
Then given problem becomes
y'+taly=0
The general solution of the differential equation is
¥(x) = c,cos ax + ¢,sin o
¥'(x) = — c,asin ox + ¢,0.cos o
An appling boundary condition )’(—m) =0, we have ¢, =0
: Y'(x) =—c o sin o
Again for y'(n) = 0; —c a sinam =0
Since ¢, # 0; therefore sinarm =0, i.e. sinan =sinnn ; n=1,2,3, .....
or a=n;n=1,23, ..
A =nin=123, ..
are the required eigenvalues and corresponding eigenfunctions are y (x) = cos nx

Hence from Case Il and Case III, the eigenvalues for given problem are A =0,1,4,9, ....n* .....

and corresponding eigenfunctions are y (x) = 1, cos x, cos2x, €os3x, .....COS Ax, .....

6.5  Orthogonality of Eigenfunctions

From previous section, it is very much clear that the Sturm-Liouville problem is advanced boundary
value problem and have non-trivial solution if function p(x) and g(x) are restricted for p (x) > 0 and
q (x) >0 on [a, b] and iff the parameter A takes a certain specific value. These are termed as eigenval-
ues of boundary value problem. They are real numbers that can be arranged in an increasing sequence :
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and furthurmore 4 — coas n — oo

This ordering is desirable to arrange corresponding eigenfunctions

v, (), 3, (%), ey, X, ¥, )y 2)

in their own natural order. The eigenfunctions are not unique, but with the boundary conditions, they are
determined up to a non-zero constant factor.

Now, we introduce a new concept in broader context that will assist to understand the property
of various special functions that generally arise in various physical and engineering modelling.

A sequence of eigenfunctions y, (x) in (2) having the property

Joom (x)yn(X)dx:{

is said to be orthogonal on the interval [a, b].

0 if m#n

o,#0 if m=n

If ¢ =1, v n, the function y (x) are said to be normalized and sequence of eigenfunctions is
known as orthonormal sequence.

If sequence of eigenfunctions y (x) have the following general property

b 0, m#n
dx =
J.aq(x)ym(x)yn(x) o {ocn;tO, m=n

then, this sequence is said to be orthogonal with respect to a weight function g (x).

6.6 Important Theorems of Sturm-Liouville Systems

6.6.1 Theorem 1. The eigenvalues of Sturm-Liouville system are real

Proof. We have
i[p(x)ﬂ}+[q(x)+kr(x)]=0 1
e go | TLA)TA) =R (1)
where a y (a)+a,y'(a)=0,and by (b)+ b,y ()=0 .. (2)

Suppose the p(x), g(x), r(x), a,, a,, b, and b, are real, while A and y may be complex. Let ),
and y denote complex conjugates of A and y respectively. Now we have from (1) and (2)

d dy =

Ao L]0 G)
where a,y(a)+a,y'(a)=0, and by (b)+by (b)=0. . (4)
Multiplying (1) by ¥ and (3) by y and then subtracting we find that

d - = _

L= ]=0=2)r (0w (5)
Integrating it from a to b and using boundary conditions (2) and (4), we find that

— (b
(x-x)[ar(x)yy dc=0 (6)

Since r(x) 1s a non-negative and 1(x) # 0 for a < x < b, therefore (6) gives
A-L=0=A=A= isreal
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6.6.2 Theorem2: Let A and A be two distinct eigenvalues of the Sturm-Liouville

problem

%{p( dx} [hg(x)+r(x)]y=0 . (6)

and y _(x) and y (x) be their corresponding eigenfunctions. Then y (x) and y (x) are
orthogonal with respect to the weight function ¢(x) on the interval a <x < b.

Proof : If A and A_are eigenvalues of given Sturm-Liouville problem

[p(x)y' ()] +[2g(x)+r(x)]p(x)=0 .. )
then we have

[p(x)y ()] +[ Mg (x)+r(x)]ym(x)=0 .. ®)
and

[P (] +[ha () +r()]r (=0 . 9)

On multiplying by (8) by y and (9) y, respectively and on subtracting we get.

)2 () ()] =3 ()2 (x) 35 ()] + (e =2 ) () 7 () 7, (6) =0
= m—x,,>q<x>ym<x>yn<x>=ym<x>[p<x>y;<x>]’—yn<x>[p<x>y;<x>]’

On integrating writh respect to x between a and b, we have

(O =2) [ 033 ()3, ()= [, ()] ) (0 = 0, () ) ()]
= <>»m—x,,>qu<x>ym<x>y,,<x>dx=[ym<x>p<x>y;<xﬂ’;—Ify;n<x>p<x>y;<x>dx
[ () ()5 ()] +[ 54 () p () 3 () s

= (o 2) [ ()2 (5) 3, (0)dx =2, (6) p(5) 5 () 1, (a) p(a) v ()
5, (6) p(8) i (6) 7, () p(a)} ()

= (=2)[ a5 9 ()2, (3)v = p(0) [ 3, () 5 (6)= 3, (6) v (5)]
a)lvn(@)y,(@)=yu(@)yp(@)] .. (10)

Now define w(x), a Wronskian determinant of the solution or eigenfunctionsy, (x) and y, (x) as

_ym(x) y;n(x)_ )y (x)=y, (x)y (x
W(x)_yn(x) y;l(x) _ym( )yn( ) yn( )ym( )
So, expression (10) can be written as

(A, —kn)I:q(x)ym (x)y,(x)dx=p(b)w(b)-p(a)w(a) ... (11)
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For obtaining the orthogonality property

Ib‘I(x)ym (x)y,(x)dx=0 form#n

a

We seek right hand side of (10) or (11) to vanish, that is
p(b) w(b) — p(a) m(a) =0
This will certainly happen if the boundary conditions required for a non-trival solution of (7) are
y(a)=0 and y(b)=0
or
y'(a)=0 and y'(b)=0
Above boundary conditions are special cases of more general boundary conditions.
cy(@)+cy'(@)=0anddy(b) +dy'(H)y=0 ... (13)
where ¢, and ¢, donot vanish simultaneously and simillary ¢, and d, do not vanish simultaneously. To

verify that the general boundary condition in (13) really vanishes the right hand side of (11), Let
eigenfunction y (x) and y (x) also satify boundary condition (13) i.e.

v (a)+eyy;, (a)=0

cy, (a)+eyy, (a)=0
For non-trivial solution of ¢, and ¢, in above system of equations, the determinant

n(@) ()
va(a) ,(a)
must vanish. Hence w (a) = 0. Simillarly w(b) = 0.

So right hand side of (11) definitely vanishes and orthogonality of eigenfunctions is validated un-
der suitable boundary condition (13) which are homogeneous in nature. The problem (7) with boundary
condition (13) is known as Sturm-Liouville problem.

The significance of orthogonality property of eigenfunctions of Sturm-Liouville problem is to rep-
resent series expansions of function /(x) in terms of eigenfunctions y, (x) as

SX)=ay x)+tay, (x)+... tay (x)+... .

where the cofficienta , a, .... a , ..... can be derived using orthogonality property of eigenfunctions.

6.6.3 Theorem 3 :To every eigenvalue of a Sturm-Liouville system there corresponds

only one linearly independent eigenfunction.

Proof. Let if possible, y, (x) and y, (x) be two distinct eigenfunctions of the systems, corresponding
to same eigenvalue A. In order to prove the linear independence ofy (x) and y, (x), it is sufficient to

prove that the wronskian

»(x) »n(x)

% (x) ¥, (x) is identically zero.

w(x) =

By definition,

w(X) = Yy — Vo
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We have w (X) =1y = YN

and from the given boundary conditions
w(@=w®»=0 L (14)

Since y (x) and y,(x) are solutions of Sturm-Liouville’s problem, therefore
(PJH)’ "‘(‘] +7¥’”))’1 =0

and (pyé)’+(q+kr)y2:0

Eliminating (¢ +A r), we get
(¥ =1v2) p(x) +(¥231 = y12) P'(x) =0

or p(x)w (x)+p'(x)w(x)=0

o A[p(x)w(x)]=0= wlx) =5

Since p(x) # 0, the boundary condition (14) gives C = 0 for all x. Hence w(x) =0 in [a, b],
which means that, the eigenfunction y (x) and y,(x) corresponding to same eigenvalue A are linearly in-
dependent.

6.6.4 Theorem 4 : (Expansion of a function in terms of eigenfunctions of Sturm-Liouville

system). If {$ (x)} be a set of eigenfunctions of Sturm-Liouville system, then

o8}
z A,, (x) converges uniformly to a function f{x) in [a, b] such that
n=l1

f(x)zzAnd)n(x)’ a<x<b (15)
n=1
J ()7 (x)bn ()
where A, = 5 , meN L. (16)
Ia r(x) ¢3n (x)dx

Proof. Without taking the proof of convergence, let f{x) is given by (15). Multiplying both sides
of (15) by r(x) ¢, (x), integrating from a to b and changing the order of integration and summation (which
is justified due to uniform convengence of the series) we find that

o b (ae= 3 A (e )

Since the set of eigenfunctions of Sturm-Liouville system are orthogenal in [a, b] w.r.t weight
function 7(x), therefore relation (17) reduces to

[ 7P () () ()= 4, () 2 (x)
which gives 4 given by (16).
116



Ex.1. Compute the eigenvalues and eigenfunctions for boundary value problem
y'+2y"+(1-1)y=0; y=(0)=0 and y(1)=0

Also prove that the set of eigenfunctions for the given problem is an orthogonal set.

Sol. The auxillary equation is m*+2m + (1 —A)=0

2+ J4-4(1-1) e

or m= =—
2

Now, three cases arise
Casel: When A >0 or A = a?

The general solution of the given differential equation in this case will be

() g

Now y(x)=ce

For y(0)=0 = ¢, +c,=00r ¢,=—c,
()= L L

Now y(1)=0 gives ¢ [e(Hﬁ) _e(lﬁ)} ~0

= c, = 0

Hence ¢, =0=c, = y(x)=01ie. only trivial solution exists.
CaseIl : When A =0:

The general solutionis y(x) =e™ (¢, + ¢, x)

Fory (0) =0, we get ¢, =0. Hence y (x) = c,xe™

Wheny (1)=0,we getc,e' =0 = ¢,=0.

Thus ¢, = ¢, =0, which gives y = 0 i.e. only trivial solution exists.
Case III : When A <0 or A =— o

Then general solution is

y(x)=e" [cl cosv/—Ax+¢, sin ﬂx}
For y(0)=0, wehavec =0
So y(x) = e sin-rx
Now, for y(1) =0, we have cze_l sinv—A =0

For seeking non-trivial solution of given problem, we have ¢, # 0, s0 sin~/—A =0

or sin+/—A = sin nm; 7 is positive integer
= N-A=nm
= — A =n’n?

| =—-nrn’;n=1,2,3,... )
Hence, corresponding eigenfunctions are
Y, (x)=e™ sin nmx
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Lety (x)=e™sinmnxandy, (x)=e™sinnnx are two eigenfunctions corresponding to eigen-

values A =—m’n’ and A =—n* n’ resectively. Then the integral

I; ey, (x)y, (x) = I; e e sinmmx e sin nmx dx

= L; sin mmx sin n7x dx
:I;%[cos(m—n)nx—cos(m+n)nx]dx

1|sin(m—n)mx sin(m+n

1

2 (m—n) (m+n) 0

=0
prompts thaty (x) andy, (x) are orthogonalin [0, 1] with respect to weight function e*.

N—"

Self-Learning Exercise

1. Classify the following problem as boundary value problem or initial value problem
(@ y"—=Ay=0,y(0)=0and y(1)=0
b) y'+2y'+2y=0,(0)=1
() (") +(OAr+4)y=0,y(a)=0,and y(b) =0, a, b are constonts
(d)3y" +4 +2y=0,%(2)=5,y'(2)=6
2. Find the eigenvalues 2, and eigenfunctions y (x) for y"" +2Ay = 0 in each of the following bound-
ary conditions

@ »(0)=0,»(1)=0
(b) ¥(=2)=0,»(2)=0
(©) ¥(=3)=0,»(0)=0
(d) y(1)=0,%(4)=0
3. Check whether following boundary value problems are Sturm-Liouville problem or not

@ ey" +ey +hy=0;3(0)=0,y(1)=0
(B) ¥+ M1 )y =0;'(0) =0, »(2) +»'(2)=0

1 ’
(©) (;y’] +(x+ 1) y=0;1(0)+3y'(0)=0,»(1)=0

(d) () + (2 +1=2Ax)y =0; (0) = 0; »(0) + 3y"(0) =0, »(1) +»'(1) =0
(e) () + (*+ 1+he)y=0;p(1)=0; (1) +2y'(1) =0; u(2) - 3y'(2) =0
4. Find eigeavalues and corresponding eigenfunction of the following Sturm-Liouville problems.
(@y"+Ay =0;y(0)=0and y' (n)=0
() y"+ry =0,y (0)=0and y'(L)=0
©y'+iy =0y (-m)=0and y' (1) =0
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6.7

Summary

In this unit, we introduced a special type of boundary value problem known as Sturm-Liouville

problem which gives fundamental basics for important concepts like eigenvalue, eigenfunction, orthogo-

nality and Fourier series. These concepts directly involved in solving practical problems arise in physical

and engineering challenges.

6.8

Answer to Self-Learning Exercise

. (a) Boundary value problem

(b) Initial value problem
(c) Boundary value problem
(d) Initial value problem

. (@ A znznz;n=1,2,3 ...... y (x)=sinnmx
n n

2.2
(b) kn:n Z n=1,2,3...... yn(x):sin%(yﬁL)
n’n? . NTX
© A, = in=1273.... yn(x):slnT
g n’n? . nm
@\, = ;n=123....y,(x)=sin—(4-x)
. (@) Yes (b) Yes

(c) No, since p(x) is not continuous in [0, 1]
(d) No, since g(x) <0 in [0, 1]

(d) Yes
2
@ A, :(2n:1) ;n=,1,2,3....., y,(x)=sin 2n2+1x
n’n’ COS N TX
B) A, =—5—:n=0,1,23....., y,(x)=

6.9

Exercise

. Find the eigenvalues A and eigenfunction y (x) for the following boundary value problem

y"+ Ay =0 ineach of the following boundary conditions :

@y (0)=0,y (1) =0 [Ans. A, :"7; n=1,2,3,...,, (x) = sin%]
(b)y (0)=0,y(L)=0;L>0, L is positive constant

nm . NTX
[Ans. A = ;n=123,...,y,(x)=sin—1]
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(c) y(-L)=0,y (L)=0;L>0, Lis positive constant

[Ans. A, =

2. Solve the following Sturm-Liouville problem

d( dy) A .
(a)a( dx]-'_ y=0; y(l)zO,y(e )20

[Ans. &, =n*; n=1,2,3,.....,y, (x)=sin(nln|x|)]

®) i((xz"'l)ﬂj"' & y=0; ¥(0)=0and y(1)=0 (Hint put x = tan ¢)
dx dx) x*+1

[Ans. A, =16n°; n=1,2.3,......y, (x)= sin(4n tan~! x)]

3. Compute the eigenvalues and eigenfunctions for boundary value problem and determine Euclid-

ean space in which a complete set of eigenfunctions for the given problem is an orthogonal set
@ y"+(141)y=0; y(0)=0,y(n)=0
[Ans. ), = n—1;n=1,2,3, ... , ¥, (x) = sin nx orthogonal in [0,7]

(b) 4y" =4y +(1+1)y =0,y(-1)=0,»(1)=0

[Ans. A, = n*n’ , ¥, (X)=

Orthogonal in (—1, 1) with resepect to function e *]

@© y"+2y'+(1-1)y=0;»'(0)=0 and y'(n)=0
[Ans. A =—-n*; n=1,2,3, ... Ly, =e*(ncosnx+sinnx), A =1,y = 1. Orthogonal in
[0, ] with respect to weight function e**]

4. Find the real eigenvalues and eigenfunctions for the boundary value problem y"+iy =0;

y(0)=0, y'(1)=0 [Ans. A, =0;y0(x)=1; A, =n’n’,y, (x )=cosnnx,n eN]

1 A
5. Find the solution of Sturm-Liouville problem y" +— ' + >y=0, 1<x<2
X

S 1
with boundary conditions y(1)=0= y(2) [Ans. y=> B, sin (nn IOg ’2‘ ] 1
n=1 0g

7. Determine the normalized eigenfunctions of the problem y” + 1y = 0,(0)=0, »'(1)+y(1)=0.

Hence expand the function f (x) =x, 0 < x <1, in terms of these normalized eigenfunctions.

v - sin
lAns. 7, (x)= {Hcoszr} sinfofla Jon <N =3 (;‘mg_)sm(xr)

Oood
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Unit 7 : Variational Problems with Fixed Boundaries and
Euler-Lagrange Equation

Structure of the Unit

7.0 Objective

7.1 Introduction

7.2 Definitions and Fundamental Problems
7.2.1 Functionals
7.2.2  Linear Functionals
7.2.3  Brachistochrone Problem
7.2.4 Problem of Geodesics
7.2 Isoperimetric Problem

7.3 Euler-Lagrange Equation
7.3.1 Basic Lemma
7.3.2  Euler-Lagrange Equation

7.4  Some Elementary Cases of Integrability of Euler-Lagrange Equation
7.4.1 Fisindependent of )’
7.4.2 Fis independent ofx and y.
7.4.3 Fis independent of only y.
7.4.4 F'is alinear function of y.
7.4.5 Fisindependent of only x

7.5 Variational Problems for Functionals Involving Several Dependent Variables and Their First
Order Derivatives.

7.6 Summary

7.7 Answers to Self-Learning Exercise

7.8 Exercise
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7.0  Objective

In this unit you will study the methods of finding curves connecting two given points which either
maximizes or minimizes some given integral. You will also know about Euler-Lagrange equation for an

extremal. Variational problems involving several independent variables will also be discussed.

7.1 Introduction

Calculus of variations is a field of mathematics that deals with extremizing functionals as opposed
to ordinary calculus which deals with functions. The origin of calculus of variations was based on famous
“Brachistochrone problem or quickest path problem.” In calculus of variation, we generally encoumter
with the problems where one has to find the maximal and minimal value that is extreme value of special

quantities called functionals.

7.2 Definitions and Fundamental Problems

7.2.1 Functionals : Functionals are variable quantities whose values are determined by choice

of one or several functions. In short, we may say that functionals are functions of functions.
Ex.1. Let the parametric equations of the plane curve be x = x(¥), y = y(¢), ¢ being the param-

eter. The arc length of the plane curve from P(#) to O(7) is given by
t [0 .2
s [x(O) (0] = jto \XT YT dt

N

2 Q)
y

P(to)

A\ 4

Fig. 7.1
where xand y represent the differentiation ofx and y with respect to ‘¢’ respectively.

Here s is a functional which is function of functions x(#) and y(?).

7.2.2 Linear Functionals : A functional L [y(x)] satisfying the conditions.
(1) L [ey(x)] = cL [(x)]

(i) L [y,(x) +y,(0] = L [y,(x)] + L[y,(x)]

where c is a arbitrary constant is known as linear functional.
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Ex.2. L[y(x)] = I {a(x)%+ b(x)y}dx, is a linear functional.

X0

The calculus of variations provides a method for determining maximal and minimal values of
functionals. Such problems are known as variational problems.

Now we deal with three problems of historical importance which influenced the development of
this subject.

7.2.3 Brachistochrone Problem

Suppose P and Q are two points in the plane but not in the same vertical line. Imagine, there is a
thin flexible wire connecting those two points. Suppose P is above Q, and we let a frictionless bead
travel under gravity from P to Q. The Bachistochrone problem (or quickest discent problem) is con-
cerned with determining the path of the bead when it reaches the point Q in the least possible time. This
problem was first introduced by J. Bernaulli in the mid of 17" century and was first solved by Sir Isaac
Newton.

7.2.4 Problem of Geodesics

In general relativity, a geodesic generalizes the concept of straight line to curve spacetime. For
example : Find the curve of shortest length connecting two points in space. If there is no constraints the
solution obviously is a straight line joining the points. However, if the curve is constrained and i to lie on
a surface, then in space, the solution is less obvious and possibly many solutions may exist.

The solutions are called geodesics. In other words a geodesics on a surface is a curve along
which the distance between two points on the surface is a minimum. To find the geodesics on a surface
1s a variational involving conditional extremum.

7.2.5 Isoperimetric Problem

In this problem, we required to find a closed plane curve of a given length / bounding a maximal
area S. Let the parametric equation of the plane curve be x = x(7) , y = y(¢), and the curve is traversed

once in anti-clockwise as 7 increases from £ to 7, then length / of given curve is

[= ]]\/(x(t))z +(y'(t))2 a (1)

which is a constant, and enclosed area is given by

S:%t{mdt ..... )

The problem is to maximize the functional S, given by (2) subject to the condition that the length

[ of the curve given by (1) must have a constant value.

7.3  Euler-Lagrange Equation

7.3.1 Basic Lemma : Let M(x) be a continuous function on the internal [a, b]. Suppose

b
that for any continuous function (x), we have I M (x)h(x)dx=0 then M(x) =0 on the inter-

a

val |a,b].
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Proof : Let M(x) # 0 (say positive) at a point ¥ where a < x < b. Since M(x) is continuous
on [a, b], it follows that if M(x) # 0. Then M(x) maintains its sign in a certain neighbourhood x; <x <x
of the point ¥ .

Since A(x) is arbitrary continuous function, we may choose /4(x) s.t. 4(x) remains positive in
x, < x < x, while it vanishes outside the interval. Hence, we obtain.

b X
I h(x)M(x)dsz h(x)M (x)dx>0 (1)
a X0
Since the product /(x)M(x) remains positive in [x, x, ] and vanishes outside this interval.
b
By the hypothesis Ih (x)M(x)dx=0 ()

a
which contradicts (1). This contradiction shows that our assumption M(x) # 0 at some point x
must be wrong and so M(x) =0 on [a, b].

7.3.2 Euler-Lagrange Equation : If y(x) is a curve in interval [a, b] which is a twice
differentiable and satisfying the conditions y(a) = y, and y(b) =y, and minimizes the functional.

b

Fly(x)]=[ f(x.p,0)dx

..... 3)
dy
where y'=—".
s
Then the following differential equation must be satisfied
d
g _4 af. =0 (4)
oy dx\ oy

Proof. Suppose y =)(x) is a curve which minimizes the functional /. That is, for any permissible
curve y = g(x), Fy(x)] < Fg(x)]. We have to construct a function of one real variable satisfying follow-
ing properties.

1. H(e) is a differentiable near e=0

2. H(0) is a local minimum for .
We begin by constructing a variation of y(x). Let € be a small real number (positive or
negative). s.t.

Ve (x) = y(x)+ € h(x)
where A(x) 1s a continuous function in [a, b] and h(a) = h(b) = 0.

AN

4
y

o x=a -
=5,

Fig. 7.2
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We can define a function / to be

H_=F [ Ve (x)]
Since y(x) minimizes F()(x)), it follows that it minimizes H( ). Since H(0) is minimum value of

H, we know that from ordinary calculus that #'(0) =0
The function H can be differentiated by using Leibnitz rule, that is

b
ddeH(e)ziligf(x,yE,yé)dx:l

()
=L (erevi)ax]

Now applying chain rule within the integral, we abtain
U o x o . o o
de ox de 6y€ O0e 6yé Oe

o e O o
dy. 0e 0Oy, Oe

_ o i,
. h)+ 8yéh(x)

o in the equation (5), we have

Substituting the value of p
S

d’;’(:) :j{g h(x)+%h’(x)}dx

Using H'(0) = 0, we find that

H'(0) :H%h(xﬁ%h’(x)}dx: 0

Integrating by parts, we get
“(or d(of 9 ’
j{f _( ]}h(x)dx{ih(x)} -0
© Oy dx oy’ a

flor dfor
_ {5 _ Z(@T/'ﬂ h(x)dx=0 [Using h(a) = h(b) = 0]

[ ——

By using lemma, we conclude that

o 49|
oy dx\ oy
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This equation is called Euler-Lagrange equation.
7.3.5 Remark : The statement of the lemma and its proof donot change if restriction /(a) =

h(b) = 0 is imposed on the function A(x).

7.4  Some Elementary Cases of the Integrability of the Euler-Lagrange Equation

7.4.1. fisindependent of y’ : If fis independent of )’, then f'is function of (x, y) only. There-

fore % = 0. Thus the Euler-Lagrange equation reduces to following form :
y
0
Lo (1)
oy

Now integrating (1), with respect to y, we obtain a arbitrary curve = g(x), without any con-
stant and in general, does not satisfy boundary conditions y(a) = y, and y(b) = y,. Thus this type of
equation does not posses a solution.

7.4.2. fisindpendent of x and y : In this case,

¥y P

ox oy oxoy oyoy' )
From Euler-Lagrange equation

d_d1d|_,

oy dx\ o) » We get

of o*f L of oS
P - - =0 e £ — '
ay 5x8y' ayay’ ay’z [ f = f(-xayay ):I

From equation (2), we have

0
y'—z=0 . 3
aylz ( )
N o O
This implies that either )'" =0 or P 0
Now y'"'=0
= y=Ax+B 4)
. L . o O f
where A and B are arbitrary constants, which is a two parameter family of straight lines. But if 7 =0
y

has one or several real roots y' =K , theny =K x +¢
which is one parameter family of straight line contained in two parameter family of straight lines. Thus
extremals are all possible straight lines.

7.4.3. fisindpendent of only y : Here f =f(x, y'), therefore Euler-Lagrange equation can be

written as
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where c is a constant. Since this relation is independent of y it can be solved for )’ as a function of x.
Another integration leads to a solution involving two arblitraray constants which can be obtained by

using given boundary conditions.
7.4.4. fis a linear function of )’ or f is binearly dependent on )’ such that f(x, y, y') =
P, y) + q(x.)y'

Forming the Euler-Lagrange equation for this particular f, we have

P, % r_ﬂ_ﬁ_h@_‘]yr_{@_h@_% ,]_6_p_6_q:0

oy Oy dx oy Oy ox Oy YT oo ox Q)
for all x and y.
Solution of this problem, in general, not possible because solution does not satisfy given bound-
ary conditions. But if we consider Z_p — Z_q = (), then the expression pdx + gdy becomes exact differen-
y  Ox

tial equation whose solution does not depend on path of extremal and therefore variational becomes
meaningless.

Ex.1. Test for an extremum of the functional

Sol. Clearly we see that
[(xpy) =22y 420y
is a linear function of)’. Now from case 7.4.4, we have p(x,y) =x%7, g(x,y) =x*
Hence from equation (7), we find that

P % _,

oy Ox
= 2xty —2x=0
= 2x (xy-1)=0
= xy=1 or x=0

Obviously first boundary condition is satisfied by only x = 0, by and second boundary condition
is satisfied by only xy = 1. Both boundary conditions are not satisfied by the curves x = 0 and xy =

1.Thus no solution exist for this problem.
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Ex.2. Test for extremum of the functional

F[y(x)]=f[°05y—xy'5i“y]dx ..... )

with boundary conditions y(a) = y,, ¥(b) = y,

Sol. For this problem, Euler-Lagrange equation is given by
. , d .
—sin y —xy’'cos y ——[-xsin y] =0
dx

or —sin y—xy'cos y+siny+xy'cosy =0

Thus, integrand being an exact differential equation. Therefore variational problem becomes mean-

ingless
7.4.5. fisindependent of x : In this case, ZL =(), therefore Euler-Lagrange equation re-
x
duces to
d of
Sl =0
= dx {f Y 6y’}

o

Hence Euler-Lagrange equation has its integralas 1" — )’ P =c

where c is arbitrary constant
Ex.1. Test for extremum of the functional

F(y(x))=[\1+y" . y(0)=0,y(1)=2

0

Sol. Using Euler-Lagrange equation, we get

N A

Integrating with respect to ‘x’, we get

=0

!

Y

T, ¢, wherecis arbitray constant
J1+y

7 = A(say)

Again integrating with respect to ‘x’
y=Ax+B
¥(0) =0 and y(1) =2, implies that B=0, 4 =2
Thus y = 2x which is a straight line.
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Ex.2. Test for extremum of the functional

F[y(x)]=:[[y'2+x2}dx, y(0)=1, y(1)=2

Sol. Using Euler-Lagrange equation, we get

d_4d1T |,
oy dx\ oy
d
——12y"1=0
= dx[ y]
= y'"'=0

Integrating two times we gety=Ax+ B

Using y(0) =1, (1)=2, we get A=B=1.

Thus solutionis y=x+ 1.

EXx.S. (Brachistochrone problem or quickest descent problem)

Find the shape of the curve on which a bead is sliding from rest and accelerated by
gravity will ship (without friction) in least time from one point to another.

Sol. Let us consider a particle P descending from A(0,0) to B(a,b) under gravity along some
curve. We have to determine shape of the curve which gives minimum possible time to descent. Let

P(x,y) be the position of the particle at any time ¢ and having actual arc length s from a point 4.

4(0,0) —x

S

P(xy)

<«

B(a, b)

Fig. 7.3
Under the gravity, the motion of particle is given by

V_ds_ ,_2837

==

di = ds
= J2yg

Hence time 7 of descent is (from 4 to B).

“d
= TZI — (10)
0

But we know that
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= ds =1+ y"dx where y' =

Putting the value of ds in equation (10), we obtain
1+ "7
T = [ ——dx
0 V28

1+y’2

Here f(x, y,y") = # f(x)

Now from case (7.4.5), we have

dx

, 0

a_J{,_f:cl

’ 1 yr ~ 1+y12 ~
= yx\/zgyx\/l_i_yrZ 2gy —A
= y(1+y’2) (where ¢, =—/2g ¢,)
or y(1+y’2):c3 (where 1 :1/c§)

Now putting y' =cotd = y=c,;sin’0= %3(1 —c0s20)

d
Since V= = &=%
dx y
- dy = 2c¢y cos0sin 0dO
cotd
= dx =2cysin® 0d0 = ¢y (1-cos 20)
Integrating we get
x=c;| 0- sin 20 +cy zc—3(2¢9 —sin26)+¢,
2 2
4
and y :5(1—00526)

If we substitute 20 = ¢, and using intial condition (that is at 4(0,0)), we have

]

¢,=0;and x :%(qb—sinq)), and y = (1-cos¢)

which is equation of the cycloid with radius %3 of rolling circle and ¢, can be obtained by using

appropriate boundary condition.
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Ex.4. (The minimal surface of revolution problem)
Find the curve with fixed boundary revolves such that its rotation about x-axis gener-
ate mininal surface area.

Sol. We know that, surface area of the relvolution is given by

b
S[y(x)]zj.bry ds
b
:I2ﬂy 1+ dx

Here f(x,y, y') =2ny 1+ y'? #flx)

From case (7.4.5), the first integral of Euler’s equation is

Of
f yay,—

2 2
N 27 yy1+ ' —Lyzzc1
NIEY%

h C —i
2 (W Cre ¢ 271_)

G

= 2 2
Yy =G

Integrating with respect to ‘y’ we get

x=c,cosh™ [l] +c4
)

y=c cosh[x_%]
)

where ¢, and ¢, are arbitrary contestants, which is a equation of the “catenary” and the corre-

sponding surface of revolution is called “centroid” of revolution.

7.5  Functionals Involving Several Dependent Variables and Their First Order De-

rivatives.

We now proceed to derive the differential equations that must be satisfied by the twice differen-

tiable functions x (¢), x,(?), ...., x (¢) that extremize the integral
)
1
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with respect to those functions of x , x,, ...., x, which achieve prescribed values at the fixed limits of
integration ¢, and 7, where 7, <t,. The superior dot represents ordinary differentiation with respect to
the independent variable ¢.

We denote the set of actual extremizing functions by x,(¢), x,(¢), ..., x (¢) and proceed to form

the one-parameter family of comparison functions

X@O=x0)+eg (), X()=x()+eE(),...X(O)=x()+eE () .. (2)
where €, €, ...., § are arbitrary differentiable functions for which
) =C()=&()=c)=..=¢ ()= )=0 .. 3)

and € is the parameter of the family. The condition (3) assures us that every member of each compari-
son family satisfies the required prescribed end point conditions. We see, moreover, that no matter what
the choice of €, €, ...., § , the set of extremizing functions x,(), x,(7), ...., x (¢) is a member of each

comparison family for the penameter value €= 0. Thus if we form the integral.

by replacing x , x,, ..., x_ete,in (4) by X, X, ...., X etc., respectively, we have that /(0) is the extre-

mum value sought. We therefore conclude that

I’(O):O ..... (5)
It follows from (2) that
X1:x1+€§'1,X2=Xn+€§2, ....,anxn-l-esn ..... (6)

Now differentiate (4) with respect to ‘e’, we have

o E o 2 n+i'n dt,
ax, 2 ax, ax, """ ax,

+

AN

e}
+

d 2l of of
= +—
de {axl‘f‘ 6X1§1

oxX, ) ox,)
where we use (2) and (6) to derive the sequence of substitution [6—1] =£&,..... ,[ s ] =¢,.

It is clear from (2) and (6) that setting €= 0 is equivalent to replacing X, X, ....., X , X}, X5,....., X,
by x,, X, ... X, X{,X,.....%, Tespectively. Thus because of (5), we abtain from (7) on setting €=0

I’(O)Zj(igﬁ‘iél"'igz"' g Eyt ot s Snt g .n]dt:O ..... (8)

ox, 7' ax, ' ox, b ok, ox, " ax,

This last relation holds for all choices of the functions & (¢), ,(?), ...., € (¢). In particular, it holds
for the special choice in which &, ...., € are identically zero, but for which & (¢) is still arbitrary, consis-
tent with (3). With this selection of € , €, ...., & , we integrate by parts the second term of the second
member of (8) to obtain, since & (7)) =&,(z,) =0,

(12 _d (D)
| Lﬁxl dr(axlﬂg‘dt_o ..... ©)

|
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Since (9) holds for all, § we conclude by applying the basic Lemma that

KO/ /A
Ox; dt\ 0x,
Through similar treatment of the successive pairs of terms of the second member of (8) we de-

rive like equations, with x, replaced by x, ...., x , Joining these equations with (10), we have

/A (/A0 /A (/A0 S/ A B/ A D
Ox; dt\ ox, "ox, dt| ox, ox, dt\ ox,
for the system of simultaneaes Euler-Lagrange equations which must be satisfied by the functions x (7),

o () R x (#) which render the integral (1) an extremum.
Ex.1. Find the extremals of the functional

7

I[y,z]= “J’iz +42+ 2z |dt

0
with the boundary conditions y(0) =0, y(n/2) =-1;z(0) =0, z(n/2) =1
Sol. Here f(y,z,,2,t) =" +2* +2yz
Then from equation (11), we can see that

d_41d|_,

Oy dt| dy

%_i[%}_o

Oz dt| oz
or y-z=0and z—y=0 . (12)
Eliminating ‘z’ from this system, we get

y(iV)_yZO or Q—yzo
dt

Its solution is given by

y=c e+c e’ +ccost+c, siié L (13)
where ¢, ¢,, ¢, and ¢, are arbitrary constants. Now from equation (12) we have

z=j=¢e +ce’ —cycost—¢cysint L (14)
Applying the given boundary conditions

(0)=0, y(n/2) =—1, z(0) =0, z(n/2) = 1, we find that

¢, =¢,=¢,=0,¢,=-1.
Hence the extremal curve is the intersection of the surfaces

y=-—sint,z=sint.

Ex.2. (a) Find the extremum of the function

F[y(x)]= [ (r)?,

*1

X
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(b) Show that the curve through (1,0) and (2,1) which minimize

R 12\ V/2
(1+57)
F—

1

dx 1is a circle.

)
Sol. (@) Comparing the given functional with I f (X Vs y’) dx, we get

X

1
(147 )A
Where f(x’y’y’) R ..., (15)
X
Euler-Lagrange equation is
of dfof
g_< == (16)
oy dx\ oy
From (15), we have
9 _ ¢ and %:% ..... (17)
ay Y x (1 +y”? ) 2
0 d|( 9
Since g =0, (16) reduces to — l, =0
oy dx\ oy
. J
Integrating it, we get —— =¢
Oy
_y
or xyl+ "
1
ThUS, y’ = cx(]+y’2)é ..... (18)
Now let Y _ y'=tan6
dx
Then (18) yields tan® = cx secO
= x = c, sinb where ¢ =1/c
Now dy = tanf dx = ¢, tanf cos0d0 = ¢, sinfd0
Integrating it, we get y=—c, cosO + ¢,
Thusx=c sindandy—c,=—ccos0 or X*+(y-c)l=¢ .. (19)

which is a family of circle with center at axis.

(b) Proceed exactly as in part (a) upto (19). In the present problem, using the boundary condi-
tionsx=1,y=0andx=2,y=1, (19) yields

1+c§ :clz and 4+(1—c2)2 :clz giving ¢, :\/g, c, =2.

Hence from (19) the required curve is the circle x*> + (y — 2)*= 5.
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Ex.3. Obtain the Euler-Lagrange equation for the extremals of the functional

X2

[[9* =y +y?]ax

X

Sol. Comparing the given functional with j f (x, V, y’)dx , we get
Sy y)=y"—w'+y"”
Euler-Lagramge’s equation is

o d(a)_
oy dx\ oy
0 0
From (10), we get g =2y-— y’,l, =—y+2)
Oy oy
and 419 =-y'+2)"
dx\ 0y

Using these values, the required Euler-Lagrange equation (21), becomes
2y-y'=(=»'+2y")=0o0r y"-y=0
Ex.4. Test for an extremal of the functional

2

Fly(x)]=[(»*-») y(0)=0, y(zjzl

2

0

7
Sol. Comparing the given functional with j f (x, v, y’) dx , we get
0

[y y)=y"-»
Euler-Lagrange’s equation is

o _d9 |
oy dxloy' )

From (22), we have g —2y,— 9 =2y" and LA 2y".
oy oy’ dx\ oy

Using these values, (23) reduces to
-2y—(2y")=0 or y'"+y=0
d
or (D*+1)y=0where D=—
dx
y=c,cosx+c, sinx
Using boundary condition, we get
¢, =0 and ¢, = 1.

Hence, from (25), an extremun can be attained only on the curve y = sin x
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Self-Learning Exercise

[

Is L] y(x)]= jyzdxislinear?(Yes/No.)
X

x[ 12
Is L[y(x)]: J{%+c(x)y}dx islinear ?(Yes / No.)
x
)

As extremal of the functional

b
F [ y(x)] = j f(x,»,5")dx, y(@) =y, , (b) =y, satisfies Euler-Lagrange equation,

which in general is a

(a) linear second order ODE

(b) admits a unique solution

(c) non-linear ODE of order greater than two.

(d) may not admit a solution.

The curve of shortest distance between two fixed points is
(a) straight line

(b) circle

(c) parabola

(d) none of these

b
The Euler-Lagrange equation for a functional of the form I f(x,y)dxis

@f =
b f,~yf,=c

©/,=¢,
(d) none of these

The extremizing curve of the brachistochrone problem is a
(a) circle

(b) catenary

(c) cycloid

(d) straight line.

7.6

Summary

The caluclus of variation, which plays an important role in both pure and applied mathematics,

dates from the time of Newton. Development of the subject started mainly with the work of Euler and

Lagrange. In this unit we have solved a number of problem of engineering and physics with the help of

Euler-Lagrange equations.
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7.7  Answers to Self-Learning Exercises
(1) No (2) Yes
() (d) 4 @
) (@) (6) @

7.8 Exercise

1
. Find the extemal of the function [ [ y( x)] = I
0

I+y

!

2
dx, throught the origin and the point (1, 1).

[Ans. y = tan(ntx/4)]

. (a) Show that if y satisfies the Euler-Lagrange’s equation associated with the integral

I= f (P*y? +47y" Jdx
where p(x) and g(x) are known functions, then I has the value [(pzyy ,)}:

(b) Show that, it y satisfies the Euler-Lagrange’s equation associated with part (a) and if z(x) is an

arbitrary differentiable function for which z(x ) = z(x,) = 0

2 11

then IzT(p V'z +q2yz)dx:0

b
2\1/2
. Prove that the extremal of fy(l +y 2) is the catenary y = a cos A(ax + b)

a

”2

2
. Prove that the extremal of I y—dx with y(0) = 0 and y(2) = 1 is a parabola.
X
0

. Prove that the extremals of

I= J%[u(x)y’2 —v(x)yzjdx
subject to the condition that

szw(x)yzdx =k

(a constant)

are the solution of Sturm-Liouville equation

d d
Z[u(x)d—))j +[v(x)+20(x)]y=0, with yx)=y()=0
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10.

11.

. Show that the extremum of the functional

I:T[y2+y’2 —2ysin x}dx,

X

. S
is given by y=ce +cye +Esmx

. Show that the Euler’s equation for the functional

1

=0
1+y"”

b
I={f(xy)J1+y” dx has the form f,,—f,., -
Find an extremal to

1+ y
I:!de, y(1)=0, »(2)=1

[Ans. x> + (y — 2)* = 5]

. Find the curve y = ¢(x) which corresponds to the extreme value of

FLy(x)] :j:x" (%f dx

I-n
[Ans. =97

+c,, n#1=¢logx+c,, n=1]
I-n

Show that the curve of shortest distance (geodesic) on a right circular cylinder is a Helix or a

generator.

b
Find the extremals of the functional F[y(x),z(x)] = I(2yz -2y* +y"? + 27 )dx

Deduce the extremals if a = 0, b =T ; y(O) =0, y(ﬂ) =1, Z(O) =0, Z(ﬁ) =-1.

[Ans. y=(cx+c,)cosx+(c; +¢,)sinx z=(c,x+c, +2¢; )cosx +(¢; +¢, —2¢, )sinx |

HEin
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Unit 8 : Functionals Dependent on Higher Order Derivatives
and Variational Problems in Parametric Form

Structure of the Unit

8.0 Objective

8.1 Introduction

8.2 Variational Problems Involving Several Higher Order Derivatives

8.3 Variational Problems Involving Functionals Dependent on the Functions of Several Independent
Variables and Dependent Variable

8.4  Variational Problems in Parameteric Form

8.5 Isoperimetric Problem

8.6 Summary

8.7  Answers to self-learning Exercise

8.8 Exercise

8.0  Objective

This unit deals with the functionals dependent on higher order derivatives and functions of more
than one independent variable. The variational problems in parametric form are also included in the present
unit.

8.1 Introduction

In the previous unit, we have discussed the Euler-Lagrange’s equation and various variational
problems having their first order derivatives. In this unit, we will disuss the variational problemwith func-
tional dependent on higher order derivatives, several independent variables and variational problem in

parametric form.

8.2  Varitional Problems Involving Several Higher Order Derivatives

Theorem : If the function f contains higher order derivatives, say upto any order n, then
f=f (x,y,y',----,y(")) ..... 1)
and we need to extremize the integral

I= T f(x,y,y',...y(")) S )

X

139



where we consider the funciton f'is differentiable (n + 2)- times with respect to ‘x’. and also

assume that the boundary conditions are given by

y(xl)=yl, y'(xl)=yl', y”(xl)=y1”, ..... ,y(")(x1)= yl(")

y(x2)=y2, J"(xz)=y;, y"(xz)=y;’, ..... ,y(")(xz)zyg") ..... (3)
Then 7 extremized by al—i[a—f,] +eeeeret (—l)n 4 [6_f] =0 .. 4)
oy dx\ oy dx"\ oy"

Proof : Let the extremum is attained on the curve y = y(x) and y = y (x) be comparison curve
to extremizing curve y =y (x), and let both of these be 2x times differentiable.

Now we consider

y(x)=y(x)ten(=), . C)
where 77(x, ) =1 (x,)=n"(x)=1"(x%) == (x)=7" (x,) = 0
Obviously y (x,0) = y(x), the extremizing curve.

Now substituting it in equation (1), we get

Since setting €= 0 has the effect of replacing 7,7,..,5"in (5) by the

vy, v, y(") vi (e) must take extreme value when €= 0. This happens no matter what particular value

function n(x) is involved in (4) and (5). But by elementary calculus, a necessary condition of extremum is
given by I(e)=0 ....(6)
Using Leibniz’s rule of differentiation under integral sign, (6) gives.

I'(e) =Xfi€f(x,y,7 ....... ) dx

X

Now using the chain rule for differentiating functions of several variables, we get

d . — o ) X ST o "
—fx7.7,....., =t
def(x,y,y, ¥ ) xoc yoc >0 oe (7)
By using (4), we have
=—n\x)+— X)+........ + X
L.H.S. of (7) ay"( ) ay"( ) Ll (x) . ®)

From (8), we get

I'(€) ZT{%U(X)+%U’(JC)+ ........ +i)n(")(x)}dx=0

X

which, upon setting €= 0 and making use of (6), gives

o o of
j{an(xﬁa—y,n (x)+.eeees +W17( )(x)}dx: 0o 9)

X
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where we have used the fact that when € =0, 5= 3,57 = /..., 7" = y".

.......

Now integrating by parts, we have

Tin’(x) {a—f,n(x) xz —xzdi(%]n(x)dx

oy o ] T
1o
and jg " (x)dx :{%n’(ﬂf Idx{gﬂn(ﬂ
—‘f dx{af}? L (10)

Again integrating with respect to ‘x’ we get

[ 2t {LX(M [a{apoa]

X, a
e [ = [ L
. Yo . owpd ] o
Similarly Jay(n)n dx =(-1) den ay(n)}n(x)dx ..(11)

Using it in equation (9), we obtain

L8] $(2) - er2{ o

of dfof of oy dh o
E‘E(ay] e (ay ]+'"+( ) dx"[ay“’]_o """ (2

8.3  Variational Problem Involving Functionals Dependent on the Functions of

which gives

Several Independent Variables and Dependent Variables

In this section, we will discuss the variational problems which is dependent on several depen-
dent and independant variables.
Theorem : If 7 is a curve which is dependent on X, y and is twice differentiable in its

domain D, and extremize the functional
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i[z(x)]=[[F(xr.pg)tcay (1)
D
Then following differential equaiton must be satisfied
OF O(OF) 0 |(O0F
—l=0zl==° .. (2)
0z ox\dp) oyl oq
=& and =&
where p o’ q o

Proof : Take some admissible surface z =z (x, y) close to z = z(x,y) and include the surfaces z
=z(x,y)and z =Z (x,y) ina one-parameter family of surfaces

z(x,y,a)=z(x,y)+adz

where 5z =2 (x,y)-z(x,»)

For a =0, we get the surface z = z(x,y), for . = 1, we have z = E(x, y) .0z 1s called the varia-

tion of the fucntion z(x,y).
On fucntions of the family z = z(x,), ), the functional I reduces to the fucntion of o, which has
an extremum for oo = 0. Hence, we have

[ail(z (x,y,a))Lo =0

o

The derivative of / [z(x,y,ot)] with respect to a, for a = 0 is known as the variation of the func-
tion and is denoted by 6/. Accordingly, we have

D

a=0

or 8l = [[[ F.oz+F,6p+F,5q axdy
D

where z(x,y,a) = z(x,y) +adz

oz(x,y,a
p(xya) Z%zp(x,y)+a5p
oz(x,y,a
and q(x.y,a) ZZ(T);)ZQ(XJJ’)+055Q
Now, we have
o|F.0 oF o|F.o oF
(pz): LSz+FSp = Fop= (pz)— L5z
Ox ox r r Ox Ox
o(F,0z) aF, o(F,0z) oF,
= o0z+F o6 F oqg= —-—15
and 8y 8y zZ+ 494 = 404 6y ﬁy z

Using above two results, we have
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[[TF, o0+ Foa v avar - U{ (e (Fqéz)}dxdy
_”(aF aFy jézdxdy

where 6Fp/ Ox 1s known as total partial derivative with respect to

‘x’. While computing it, y is assumed to
be fixed, but depenence of z, p and g upon x is taken account. Therefore, we have
oF

o _p o+, Zvp Pyp 2
ox P ox

x 77 ox
OoF Oz
Similarly — =F, +F, —

1 =F +F & +F %
ay @y X qap ay 9 6)/
Using the well-known Green’s theorem. We have

U{ (Féz)+—y(F52)}dxdy = [(F,dy-F,dx)oz=0

The last imtegral is equal to zero, since on the contour C the variation 6z =0 because all per-
missible surfaces pass through one and same spatial cantour C. Using (5), (4) reduces to

H F5p+F5q)dxdy :—J.J.( F +% jézdxdy

Using (6) in (3), it gives

Sl —J.J.Fézdxdy—”.( F +§ jézdxdy

y
Hecne the neccessary condtion for 6/ = 0 for an extremum of the functional (2) takes from

fi{m-grn-5

jézdxa’yzo
dy

Since the variation 0z is arbitrary and the factor is continuous, it follows from the fundamental
lemma of the calculus of variation that on extemizing surface z =z (x,)), we must have

0 0

O % g O[O0 0F
ox ¥ oy 1 0z ox\dp) Oy 6(]
Remark . For the functional

..... (7)
[[z(xl,x2 ....... xn)] :IIIF(xl,xz, ..... X 1Z,Dps Paseees Dy ) AX X 5.,
D
where p; = —, in exactly similar way, we get from the basic necessery conditon for extremum
i
0 1=0, the following equation
n
0
F - —F, =
izzl“ ox;

which the function z = z(x x,,

x ) extremizing the functional I must satisfy.
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8.4 Variational Problems in Parameteric Ferm

In some problems, the requirement of single valuedness is excessively restrictive; for it turns out
that Euler-Lagrange’s equation-derived under assumption that the extremizing function is single valued-
may have for the solution which satisfies the given end point conditions, a relationship in which depen-
dent variable is not a single valued function of the independent variable. One cannot, without further
Justificaiton, accept such a solution as valid.

We proceed to show, that the extremizing relationship between a pair of variables x and y is the
same, whether the solution is derived under the assumption that y is a single valued function of x or that
a more general parametric representation is required to express the relation betweenx and y. We do this
by showing that the solution of Euler-Lagrange equation derived on the basis of the assumption of the
single valuedness of y as a funciton x satisfies also the system of Euler-Lagrange’s equations derived on
the basis of the parametric relationship between x and y.

Under the assumption that y is a single valued funciton ofx, the integral to be extremized is given

as
1= If(x,y,y’)dx ..... (1)

where y is required to have values y, and y, at x = x, and x = x,. If instead, we use the parametric
representation X = x(¢), y = y(¢) where x(tj) =X, and y(tj) =Y, for j = 1,2, the integral (1) transformed
to through the relationships

,_dy _y .
3 anddx=xdt .. (2)

where the supirior dot represents differntiation with respect ot 2’ .

t .
_ Yl
Therefore I = J-f(x,y,;]xdt ..... 3)
|

The Euler-Lagrange’s equation for (1) is

d_4d1T |,
oy dxloy )

According to § 7.5, the system of Euler-Lagrange’s equation assiociated with (3) can be written

a_g_i(a_g] o %2 _d[o=)_,
ox dt\ ox "oy dt\ oy
where glxyxy)=f(xy)y)x .. (5)

From (5), we obtain

og of . 0 of ) , 0
2 Y%y T T g
ox Ox ox o' x oy

as

144



With the aid of second relation of (2), we obtain

d(og\_.d( . ,of\__J |of _d[o)| o
al2)alg) "Hay dx(ay'ﬂ%x} """ v

Further, we obtain from (5)

og of . Og 8 1_9
% 9 X, —— = g1y . (®)
oy Oy 8y 6y X 8y

According to the second relation of (5), we have

d|(o .d |0
Sl E =i l ..... 9)
dt\ oy dx\ oy
Combining this last result with the first of (8), we obtain the pair of equations
& d(0e)_ [0 d(%
Ox dt\ ox oy dx oy’

og dfo |0g d|og
2L _g =X\ ="/ .. (10)
oy dt\ oy oy dx\ oy

From this result, we conclude that any relationship, single-valued or not, that satisfies the Euler-
Lagrange’s equaiton (4), derived on the basis of an assumed single valued solution y = y(x), satisfies

also the system (5), whose derivation requires no assumption of single-valuedness ofy as function of x.

8.5 Isoperimetric Problem

In this section, we seek to derive the differentiable equation which must be satisfied by the funciton

which renders the integral

b
J. xyy ..... (1)

an extremum with respect to continuously differentiable functions y = y(x) for which the second integral.

b
J zjg(x,y,y’)dx ..... 2)

possesses a given prescribed value, and with y(a) = y,, y(b) = y, both prescribed boundary conditions
The given functions f'and g are twice differentiable with respect to x.
To solve this type of problem, we will use the method of Lagrange’s multiplier. But first of all,
we need to choose suitable extremizing function for this problem. If we choose ¥(x) = y(x) + € n(x)
which is a function of one perameter family. Then it yields the problem, because any change of the value
of the single perameter would in general alter the value of J, whose constancy must be maintained as
prescribed. For this reason we introduce the two perameter family
Y@ =y@ten®ten® .. 3)
in which , n and n, are arbitrary differentiable function for whichn (a) =n,(a) =0 and n (b) =n,(b) =
0. These conditions ensures that Y(a) = y(a) =y, and Y(b) = y(b) = y, as prescribed, for all values of

parameters € and €..
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We replace y by ¥(x), given by (3), in both equations (1) and (2) so as to form respectively

b

I(g,5,) :jf(x,y,y’)dx ..... 4

a

b
and J(e.€,) _[e(xv.¥)ax (5)

a

Clearly, the parameters € and e, are not independent, because J is to be maintained at a con-

stant value, it is clear from (5) that there is a functional relation between them-namely,
J(€,,€,) =constant (prescribed) .. (6)

Now using, method of Lagranges multipliers, we introduce the function for € , €,

b
I’ :I(el,ez)+lJ(e1,ez):If*(x,Y,Y’)dx ----- (7)

a

where, according to (1) and (2),

ff=f+rg L. (8

The constant A is the undetermined multiplier whose value remains to be determined by condi-

tions of each individual problem to which the method is applied. Thus for extemizing the value of 1™, we
have

oI* oI

0 € oe,

=0, when e=e=0 .. )

From (7), with the help of (3), it follows that

[
J a J J
b o o
:Hay Mty }dx ..... (10)
(G=12)

Setting e = €,=0, so that according to (3), (¥,Y") isreplaced by (,)"), we thus have that

ol

6ej

b * *
1L+ Ly lax=0 G=12), .. (11
o ol '

Note that the symbol |O indicates that the setting of € = € = 0. Integrating by parts the sec-
ond term of the integrand of (11), we obtain with aid of boundary conditions that

b af* d af* ~ -
I"{E_E(a_y']]dx_o (=12) . (12)

aq
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Now using basic lemma, we obtain the differential equation

ot _d(a|_,
o o e (13)

as the Euler-Lagrange’s equation which must be satisfied by the function y(x) which extrimizes (1) under
the restriction that (2) be maintained at a prescribed value.
Ex.1. Find the extremal of the functional

I o= [(1+y")dx

2

c'—,—

under the conditions y(O) = 0,y'(0) =1, y(l) =1, y'(l) =1
Sol. In this problem,

f(x, V, yl’ y”) =1+ yrr2
Therefore, the extremal function is given by solution of the following differential equation

o _dfo), & (o
oy dx\ o) dx oy"

2

R 0-0+4[2)]=0
dx
d4
- Cr=0 (14)
dx

The solution of differential equation (14) is
y=c textex’tex
Using the given conditions we easily obtain y =x
Thus extremal curve is a straight line.
Ex.2 . Find the extremal of the functional.

7
I[y(x)]= ![y” -yt Xt
»(0)=1,y'(0)=0,(%) =0,5'(%5)=-1.

Sol. Comparing the given functional with

%
"

I[y( x,y, ¥, y")dx
we get feyy'y") =y?—y*+x* L (15)
Using equation
of d 8f a
- =0 (16)
oy dx| oy dx oy"
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From (15) we get
5,0 oYy
oy oy’ oy"

So (16) reduces to

d o, d’y
—2y+$[2y ]:0 or dx4 —y:O

or (D*-1y=0 wherep=% . 17

dx
The auxilliay equation of (17) is
m—1=0 = m==%1,%+i
Thus solution of (17) isy =ce' + ¢, +c,cosx +¢,sinx .. (18)
Using boundary conditions y(0) =1, y(n/2) = 0, we get
ctete=1 L. (19)

and c]e% + cze_% +c, = o . (20)

Since »'(0)=0 and y'(%) = —1 therefore we find that
¢c-¢te =0 (21)
c]e% —cze_% -, ==-1 (22)
Adding (19) and (22), we get

¢ (1+e%)+c2 [l—e_%} —0
and subtracting (20) from (21), we get

¢ (1—e+%)—c2 (1+e_%) -0
Above two relations give ¢, = ¢, = 0 and using it in (19) and (21), we get
c,=0,c,=1
Hence extremum can be attained only on the curve y = cosx

Ex.3 . Find the extremal equation for the following functional

1z (x%,)] U{ax,] (6xz]2}dxdx

Sol. Here the integrand /* is a function of two independent variables x, and x_, i.e.

2 2
P AN :
y 6x1 ) axz s Mo AND 8x1 axz ..... ( 3)

Therefore, using the result

0 ( OF 0 | OF | oOF
"o oo | e oo t—=0 (24)
X, \Op; ) Ox,\ Op, ) Oz
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0z

/4
where 2 :6_x,’and pz:g’
From (23) and (24), we obtain ox,| ox, | ox,| ox,
e
= 6x]2 6x22 ’

which is the familiar Laplace equation.

Ex.4 . Obtain the surface of minimum area, stretched over a given closed curve C, en-
closing the domain D in the xy plane.

Sol. From calculus, we know that the required given problem reduces to find the extremal of the

functional
nh
oz (oz
1[z(x)] g{“(aj {5] } dxdy
5 a\I\2
Now we have Fx,y,zp,p,) :(1+p1 +p2) ..... (25)
OF 0 ( OF 0 [ OF
— ===/ .. (26)
0z oOx,\Op, ) Oox,\ Op,
=%—z and —@—z
where P1 = PWIRRS P ay
(25) implies
oF oF -¥ OF A
—=0,—=p (l+p’+pi) ?,—=p,(1+pi+p:)
=% p(1+p0+p3) - p,(1+p+p3)
From (26), we have
SCCI R /N A P, _
ox 2. | o 2, o\ =0
(1+p1+p2) Y (1+p1+p2)
0 z, 0 z
or o T —7 = 27)

From (27), we get

z (1+Zj +Zi)_% —%Zx (l+z§ +zi)_é XZ(ZXZU +ZyZyx)

><2(szxy +2z z )z 0

yoyy



2
1 z? 1 z
z - X +z L

or . (1+Zf+zy2)]/2 (1+Zj+Zy2)3/2 o (l+zj+zy2)]/2 (l+zx2+zy2)3/2
2z z z
_ =0
(1+Zj+Zy2)

or ZXX(1+Zi)+Zyy(1+Z§)—2zxzyzxy=O

0’z Oz ’ 0’z ozY 0z 0z 0’z
That is P Ll Bl I S aarn | S Bal I dul*ioasias =0

ox oy oy ox Ox Oy OxOy

whose solution will yield the desired minimal surface.
Ex.5 . Find the closed convex curve of length L that encloses greatest possible area.

Sol. We know that the area of the closed plane curve is given by the integral

b

1
= |\[xyp=xldae 27
1 5 ![xy yx] dt (27)
n ~dx . dy
where X =00 R

The total length of the curve is, given by
b y
L :I[x2+y2] zdt ..... (28)

has the same value L where L is the length of the plane curve. Now the question is to maximize (extremize)
(27) under the restriction (28), We will use the equation (13) of (§ 8.5), which is given below :

Ay, o _d(a)_,
Oox dt\ ox T oy dt\ oy

I, . . ; .
where A za(xy—yx)+l Syt (30)

From (29) and (30), we have
Lo odp 1. A 1,
2y dt 2y /5524_)',2

_lx_i lx+L =0
2 dt| 2 /)'C2+)',2

From which we obtain, by direct integration with respect to ‘¢’,

Ax Ay
y_W =c, X+W—Cz ...... (30)
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From these, we have

2 2
(y—cl)2+(x—cz)2 21{;24—;2}:12

Thus we have the well-known result “that the closed curve of given perimeter for which the
enclosed area is a maximum is a circle.”
Ex.6 . (Shape of hanging rope). Find the shape assumed by a uniform rope when sus-
pended by its end from two points. at equal heights.
y /

1

P(—a, 0)

Fig. 8.1
Sol. Let the rope of lenght 2L be suspended between two points P(—a,0) and Q(a,0) in the
same straight line, as points are at equal heights.
Thus if o denotes the constant mass per unit length of rope, the potential energy of an element of
length ds at (x, — y) is given by (—gy ods) where g is the constant acceleration due to gravrity. Accord-
ingly, the total potential energy of the rope in the arbitrary configuration y = y(x) is given by

1 :J.Ggydszagj.y 1+y'2dx ..... (31)

where prime represents the differentiation ;\L/lith respect to ‘x’a. and taking absolute value.

According to minimum energy principle the equillibrium configuration is supplied by particular
relation y = y(x) for which (31) is a minimum with respect to functions y(x) for which y(a) =0, y(—a) =
0, and for which the total length of arc

J :j 1+y?dx=2L . (32)
We may therefore apply the Euler-Lagrange equation to the integrand function

[ =ogy 1+ + A1+ L (33)
formed from (31) and (32). Since f™ is explicitly independent of the variable x, however, we may use

Euler-Lagrange equation and so substitute (30) into (13) (§ 8.5), we easily abtain.

12

(O'gy+l)[\/li7—\/1+y’2}cl
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= 1+y"” _O'gy+l
, ogy+A
_ (1+y2) _( c2 )
1
(Ggy+l)
= yr2 c2 _1
1
(Ggy+ﬂ,) —c
f— y - c]2
¢ dy dx
= \/(Ggy+ﬂ,)2—cl2

A
m]w:x

C _
Putting 6 g y + A = ¢ cos At and integrating, we find that O'_]g cos /™' [ .
1

Solving we get

oot b opoglize) (34)
cg og G

where c, is an arbitrary constant of integration.

Thus, according to (34), the shape of a hanging rope is that of a catanary with vertical axis. By
specifying that catenry passing through (—a,0) and (a,0) and that arc included between these points have
length 2L, we may assign value to constants ¢, ¢,, A. appearing in (34).

Ex.7 . Determine the curve of prescribed lengh 2/ which joins the points (—a,b) and (a,b)
and has its centre of gravity as low as possible.

Sol. Let P, P, be an are joining the given paints (—a,b) and (a,b). The y-coordinate of the centre

of gravity of the required curve is given by

where we have used the given constraint; namely

a a a 1
[ ds= j(1+y'2)% dx =21, that is %J(HJ”Z)A de=1 (35)

—a

The boundary conditions are y(—a) =b, and y(a)=b

Let F(x,.)) —l(1+y'2 )%

2l

+%(l+y’2 )%
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(y+2‘)(1+yr2)%

21
where A 1s the Lagrange’s multiplier. Since F does not contain x, thus from Euler-Lagrange’s equation
oF
F-y ’(—,] =c (aconstant)
Oy

D) pen)

— X =c

or 21 21 (1+y,2)1/2 ..... (36)
+4) _.
or (147 )1/2 1

where ¢, = 2¢l. Re-writing the above equation we have

L (eA) ﬂ{(yw)z_cf}z

I+y 2 or 2
q dx ¢

Separating variables and then integrating, we get

_ dy
x—clj 2, 72 ta or x:clcosh*1y+1“+c2
{(J""A) _Cl} G
So that y :clcosh[x_czj—l ..... (37)
G

which is a complete solution of equation (36) on [—a,a] and boundary condition will be satisfied by this

solution if and only if
b+ :Cosh{—a—cz} ind b+lzcosh{a—c2}

G a a a

that is to say if and only if (a+c))/c, =(a—c)/c,

X
Hence ¢, = 0. Thus equation (37) reduces to V = cicosh [c_] -A (38)
1

This shows curve must be symmetric with respect to y-axis. Thus, we get.
A =c¢cosh al¢y;-0 L (39)
Using (38) in (35), we get

a

2%[{1+sinh2(x/c])}l/2dx=1

or Icos h(x/c,)dx =21

or 2¢sinh(afe)) =2l = 1=¢sin(ale) .. (40)
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From (39), we have

y) cl{l+s1nh a/cl }1/2—19

1/2
=¢ 1+—2} —b (using (40))

:{c12+12}1/2—b

Thus equation of the curve is given by
_ X (2 5 1/ 2
y —cosh[—q] {01 +1 } +b

Self-Learning Exercise

1.The possible value of a for which the functional

1y(x)] = i (352 +3y" |dy, y(a)=1

can be extremized ?

(a)-1,0 (b) 0,1(c) -1,1 (d)-1,0,1

2. Find Euler-Lagrange’s equation for

X
] = J- F(x:y,Z,y’,z’, yrr’er ““““ y(k),Z(k))dx

X

8.6 Summary

In this chapter, we obtain solution of some variabtional problems involving higher order deriva-
tives, some functional dependent on some dependent and independent variables. A number of problems

are included to illustrate various concepts of calculus of variation.

8.7 Answer to of Self-Leanning Exercise

@ (b

or_afor) dfor) L wdtfor)
(ii) o dx\oy') ax*\o") dx* 6y(k)




8.8

Exercise

Show that the Euler’s equation for the surface area functional
:”1/1+u;2 +u’y2 dx dy
2

. 2\ " P 2\, r _
is (1+uy )uxx 2uy u, uxy+(1+ux )uyy =0

. Find the Euler’s equation for the functional.

1 —JJ[ +u +2f xy) ( )]dxxy

where A is a closed region in the xy-plane and # has continuous partial derivatives.

A azz+a_22_f(x )1
[Ans : a2 8y2 ’
. Find the general solution of the extremals
2 2.2
pPxXy gxy
; ——"——|dxd
o e
2
(i) Lj(xyz+ypq+xp ) dxdy
where p =0z/dx, q=0z/dy [Ans: (i) z=c,(y) logx + ¢, (y) + (x*/9)

(ii) z = c,(y) — {—,(v)/2x*} + (x*/15)]

. Find the extremal for the functional

1Tx(2).5()] :T{(xz+)>2)1/2+a2(x)>—y5C)}dt

where a being a constant. [Ans : circles]

. Find the extremal of the functional

/4
1[x(1).0(0)] = !(xy'+zx2+2y2)dt,

subject to the initial conditions at =0, x=y=0; at # = 2 x=y=1.

sin h2¢

[Ans.* =V = Gn h;r/2]

. Find the curve of length L that join the paints (0, 0) and (1, 0) lie above the x-axis, and encloses

the maxinmm area between itself and x-axis.
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1 12
[Ans. (x=a) +(y-q)" =47 where GQ=50= (12 ——j

1 ) L
. . — =sin| —
and A is the solution of Y (2 ) j ]

7. Find the extremals of the isoperimetric problem

1 1

I[y(x)]zj(y’2+x2)dx, given that jyz dx=2;y(0)=0, y(1)=0.
0 0

[Ans. y =sinmrxx, m =1,2,3]
8. Find the curve joining two points (x,y,) and (x,,y,) that yields a surface of revolution of station-

ary area when revolved about the x-axis. [Ans. a circle]

HEin
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Unit 9 : Series Solution of Second Order Linear Differential
Equation

Structure of the Unit

9.0 Objective

9.1 Introduction

9.2  Power Series Method
9.2.1 Validity of the Power Series Method
9.2.2  Definitions
9.2.3 Radius of Convergence

9.3 Series Solution Near an Ordinary Point

9.4 Series Solution Near a Regular Singular Point
9.4.1 Working Rule

9.5 Series Solution in Descending Powers of the Independent Variable

9.6 Self-Learning Exercise

9.7 Summary

9.8 Answers to Self-Learning Exercise

9.9 Exercise

9.0 Objective

The main object of this unit is to find the solution of a linear differential equation of second order
with variable coefficients in terms of a series near ordinary and singular points with special reference to

Gauss hypergeometric equation and Legendre equation.

9.1 Introduction

We know about the methods of solving linear differential equations of second order with con-
stant coefficients and in certain cases with variable coefficients. But sometimes, in case of variable coef-
ficients the problem becomes intricate and we are not able to find the solution in a closed form. Under
such situation, we can find a power series in terms of the independent variable x satisfying certain condi-
tions. This method is called the method of solution in series or integration in series. Legendre’s equa-
tion, Hypergeometric equation and Bessel’s equation are the examples whose solutions have been ex-
pressed in the form of a infinite power series e-g. the general solution of y"" + y=0isy=acosx +b

sin x and this may be rewritten as
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y:a{l—E+E—..}+b{x—E+E—..}

This shows that the general solution of the linear differential equation may be expressed by the
superposition ofa pair of infinite series.

9.2 Power Series Method

The basic concept of power series method is simple and we will apply this technique to the so-
lution of some second order differential equations.

Let us consider the differential equation

d’ d
P(x)#+Q(x)d—i+R(x)y:0 ..... (1)

where P(x), O(x) and R(x) are polynomial in x and P(x) # 0.
The above equation may be written as

(L s (x)y=0 o
dxz 1 dx \wnM)y=-v L.
0(x) R(x)
where x) =——=, and x)=
p]( ) P(X) pZ( ) P(X)
To find the solution ofthe equation (1), we assume a series for y of the form
y=a,*tax+ax'+ .. :zarxr ..... 3)
r=0
2
Now substituting the values of y, dy and d—;; in equation (2) and rearranging the terms of
dx
different powers ofx, we get an algebraic equation of the type
Ay tAx+ix*+..=0 L 4)

Since equation (4) holds good for all values of x, identically, we obtain
A=0,A=0,1,=0,.,A =0..
From these equations, we can determine the coefficients a, a,, a, ... etc. Putting the values of

a, a, a,, ... in the equation (3), we get the required solution which will be clear from the following

example.
Ex.1. Solve in series
2
(1—x2)d—f—2xd—y+2y= 0
dx dx
Sol. Let the solution of the equation be

y=a,tax+tax*+.. L. %)

@ a, +2ax+ 3a3x2 + ..
dx
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get

dzy _

and 3 2a,+6ax+12ax* + ...
2
Substituting the values of y, % and d—;; in the given differential equation and simplifying, we
x dx
2a,+ 2a, + 6a.x + (12a, — 4a,)x*+ (20a, — 10a,)x’+ ... = 0

Equating to zero, the coefficients of various powers ofx, we obtain

— — _B _ G —
(12——(10,(13—0, (14—?——?,(15—0

Substituting for @'s in equation (5), we get

4
y=a1x+a0(l—x2 —x?]+....

which is the required solution.

9.2.1 Validity of The Power Series Method

In general an infinite series of the form

[e¢]

> a, (x=x0) =ag+a (x—xp)+ay (x—x) +..e
r=0

is called a power aseries
Let us consider a differential equation

2

2d7y (2 \D
X —+{x"=x|—+2y=0
dx? ( )dx g

If we assume a solution of the form
y=a,tax+tax +..
and solve the equation by the above method, we find that
a,=0,a,=0,a,=0, ...

This shows that the above equation has no series solution and if it is not so then what should be

the conditions under which the above equation admits of the series solution.

9.2.2 Definitions

The following definitions will help us in establishing the validity of the series methods.
(a) Ordinary and singular points

If P(x,) # 0, then x = x, is called an ordinary point of (1), otherwise a singular point. If

P(x,) = 0, then P (x) and/or P,(x) become unbounbed as x, — 0, such a point is called singular point of eq.

(1). For example, in the Legendre equation

d’y . dy
(l—xZ)F—2x$+n(n+l)y:0,

the point x, = 0 is an ordinary point because
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P(sy)=1-33 #0 atx, =0,
while x, = £ 1 are the singular points of the Legendre equation.

2
In Bessel’s equation 2 ﬂ.,. x_y+( X2 —n? ) y =0 clearly, x; = 0 is a singular point and all
dx*  dx
other points are ordinary points.

It is found that every solution of the eq. (1) at the ordinary point is analytic.
(b) Regular singular point

A singular point x = x, of (1) is called regular if the following conditions are satisfied

lim (x—xO)Q(x) = lim (x_xo)Pl (x) = finite

) P(x) X=X
. 2 R(x) . 2 .
—_— —_— 1 _ =
and xllgclo(x Xo) PO xgl;()(x Xo)" pa(x) = finite

For more general functions than polynomials, x, is a regular singular point of equation (1) if the

0(x)
P(x)

series expansion about x,,.

2 IK(X . .
and (x - xo) ( ) are analytic at x = x, i.e., they have convergent Taylor’s

P(x)

expressions (x — X )

where P(x), Q(x) and R(x) are polynomials in x and p (x), p,(x) are defined by eq. (2).

(¢) Irregular singular point

Any singular point of the equation (1) which is not a regular singular point is called an irregular
singular point. For example

(i) the differential equation

2

x(x_1)2%+2x2—y+(x—l)y =0 has the singular points x, = 0, x, = 1 . It can be easily
x x

seen that x; = 0 is a regular singular point as
2x

i -0 =lim(x—0)———==0
) 5 _ 1 _ 2 (x—l) _

walm (0 () =l (0 =0

whereas x; = 1 is an irregular singular point, since

2x 2
(v —lim(x=1)—= . — lim| == -
}Clg}(x 1) p; (x) xlir}(x )x(x—l)z }CILI}( ] does not exist.

(ii) the point x, = 1 is a regular singular point of the Legendre equation

dzy dy .
(l—xz)ﬁ—2x$+n(”l+l)y:0, smce

lim(x—1) py (x) =tim(r—1) 2 <

x—1 -l (1 —x° )
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and lim(x—l)2 P (%) zlim(x—l)zl(il(f—;l)):o

x—>1 x—1

In a similar manner, it can be shown that x, = —1 is also a regular singular point of the Legendre
equation.

(¢) Radius of convergence

Whether x is ordinary or singular point, the power series method for solving the differential equa-
tion (1) is based on the idea of expressing y as intinite series in powers of (x — x,). Here note that only

convergent series will yield desired solutions, if it exist.

A power series z a, ( X=X, )r is said to converge at a point x, if
r=0

r .
lim Za x xo) exists
m—o =5

Obviously if the series converges for x = x, it may converge for all x or only for some values of x
for which the convergence tests studied in Real analysis may be used.

If there exists a number R > 0, such that z a, (x—xo )r converges absolutely for | x — x| < R
r=0

and diverges for | x — x| > R, the number R is caled the Radius of convergence of the series.

For a series that converges no where except at x,, the radius of convergence is said to be zero. If

it converges for all x, we say that radius of convergence is infinite. Also note that R = lim
r—»0

, pro-

a,.

vided the limit exists.

9.3  Series Solution Near an Ordinary Point

If x = x, is an ordinary point of the equation (1), then each solution can be expressed in the form

z (x—x) " =agy, (x)+ @y (x),

where a and a are arbitrary constants and y] and y, are linearly independent series solutions which are
analytic at X,
Following examples will make the method more clear.

Ex.1. Solve in series (2 X ) I + ZxE—Z.V =0.

Sol. Since x, = 0 is an ordinary point (z’ -e P(xo) =2 —xg #0atx, = 0) , we assume the solu-

tion in the form

[e¢] o0

v :zar(x—O)xr :za,, x"

r=0 r=0
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2
Substituting for y, % and d—;; in the given equation, we have
X

dx

r=0 r=0

(2-%){% arr(r—l)xr”}zx{i arrxr_l}—Z{garxr} =0

[e¢]

or 2%arr(r—l)xr_z—Zar(r—l)(r—2)xr:0

r=0
Equating to zero, the coefficient of the smallest power ofx i.e. ¥ % we get
2ar(r-1)—a _,(r-3)(r-4)=0

_(r=3)(r-4)

or a =—+~ 72 . r=>2
" 2r (r - 1) r-2
4o
2
This shows that all the coefficients beyond a, are zero.

6

This gives a,==0,a,=0;a,=0;a,

Hence the solution of the given equation is given by

— 2
y=a,Tax+ax

2
or y:a0(1+7]+a1x.

Ex.3. Solve the Legendre’s equation
d? d
(1-*) 5 -2x L n(n+1)y=0.
dx dx

Sol. Since x, = 0 is an ordinary point (i.e. P(xo) =1 —xé #0atx, = 0) , therefore we may as-

sume the solution in the form

o0

y:Zar(x—O)r:za,,xr ..... (1
r=0

r=0
0 2 0
so that ij :Z:arrxr_1 and 4 :zar r(r—l)xr_2
dx =0 dxz =0

Putting these values, in the given equation, we get

(1-%){2% r(r—l)xr_z}—b{gar rxr_l}+n(n+l){iar xr} =0

r=0

[e¢]

or > a, r(r—l)xr_z—Zar(r—n)(r+n+1)xr:0
r=0 r=0

Equating to zero, the coefficient of x” the recurrence relation is given by
a, (r+2)r+1)—a (r-n)(r+n+1)=0
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or ; :(r—n)(r+n+1)
r+2 (r+1)(r+2)

The relation (2) gives even and odd coefficients in terms of the one immediately preceding it,

a,, wherer=0,1,2.... ... (2)

except for a; and a, which are arbitrary.
.. From (1), we find that

a —n(n+1) 4
2-1
a, - (2—n)(2+n+l) a,
3-4
or a4:(n—2)n(n+l)(n+3)
4321
and a, :_(”_1)(""'2) a
3.2
as —(n-3)(n+4) 0
5.4
or asz(n—l)(n—3)(n+2)(n+4) "
5.4.3-2-1
and so on.

Putting these coefficients in (1), the solution of the given equation can be written as

B n(n+l) , (n=2)n(n+1)(n+3) ,
y—ao{l— 2 x“+ 4 X+

+a{x_(n—1)(n+2) 3 (n=1)(n=3)(n+2)(n+4) 5

X"+ A

3 5

y=a,y,(x)+ay,x).

9.4  Series Solution Near a Regular Singular Point

If x = x, is a regular singularity of the equation (1) (§9.2), then at least one of the solutions can
be expressed as

[e¢] o0

y=(x=x)" Ya,(x=x) =X a (x-x)"" . (1)

=0 r=0

where ‘m’ may be a positive or negative integer or a fraction and is called the index of the series solu-
tion. This method of solution was suggested by George Frobenius (1849-1917) and is called Frobenius
method. We now discuss the method of solving equation (1) in the neighbourhood of a regular singular
point x = x,. Without loss of generality, we can take x, = 0. If x, # 0, we can transform the equation by
letting x = x, = z.
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Since x, = 0 is a regular singular point of the equation (1), its solution can be expressed in the

following form
y:meQV x" ZZQV xm+r’ where aq 0 (2)
r=0 r=0

9.4.1 Working Rule :

2
(i) Substitute the value of y, % and d—;; in the given differential equation.
X dx

(i) Rearrange the terms in powers of x and equate to zero the coefficient of lowest power of x.
This gives us a quadratic equation in m which is called the indicial equation.

(iii) Solve the indicial equation. The following cases arise :

(a) The roots of the indicial equation are different and not differing by an integer.

(b) The roots of the indicial equation are equal.

(c) The roots of the indicial equation are different, differing by an integer and also making a
coefficient of y infinite.

(d) The roots of the indicial equation are different, differing by an integer and making a
coefficient of y indeterminate.

(iv) We equate to zero the coefficient of general power of x (e - g. x™*" or x” "~ ! whichever
may be the lowest) in the equation obtained in step (ii). The equation so obtained will be
called the recurrence relation, because it connects together the coefficients a,, a,, , or

a,,a, | etc.

m

(v) If the recurrence relation connects a,, and a, ,, then we, in general, determine @, by equat-
ing to zero the coefficient of the next higher power. On the other hand, if the recurrence rela-
tion connects a,, a, _,, this step may be omitted.

(vi) With the help of the recurrence relation all the a’s are determined in terms of a, and these a’s
will be put in eq. (2). Then replacing m by m, and m, and a, by a and b respectively, we shall
obtain two independent solutions, say au and bv. Therefore the complete solution of the given
differential equation is given by

y=au + bv, where a and b are arbitrary constants.
The method is illustrated with the help of following examples %
Case I. When the roots m , m, of the indicial equation are different and not differing by

an integer, the complete solution is

y=¢ (y)m1 +Cz(y)

n,
where ¢ and ¢, are arbitrary constants
2
Ex.1. Solve in series 2x* d_y_ xd_y+ (1_ xz)y =0.
dx*  dx
Sol. Here x, = 0 is a regular singular point as
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. Q(x) . —-X -1 .

1 — — — — —_— ==

b (x-0) 20 = (e-0) )= e-0) 5 - - e

: 2 R(x) 2 Iy 0\ 1-x? L
and )lcl_%(x 0) P(x) —)lcl_r)%(x 0)" p, (x)—)lcl_r)r})(x 0) (2x2 —2—ﬁmte

therefore we assume the series solution in the form

y = z ax"" a0 L (3)

dy

2
Substituting for y, N and ay
x

> in the given equation, we find that
dx

2x iar(m+r)(m+r—1)xm+r_2}—){iar(m+r)xm+r_1}+(1—x2){§)arxm+r} -

r=0 r=0

or za [ m+r— 1 2m+2r—l)]xm+’”_iar xm+r+2 ~0
r=0

which is an identity. Now equating to zero, the coefficient of smallest power x i.e. x” (put » = 0 in the
first summation) then the equation (4) gives the indicial equation or quadratic equation inm as
a(m-1)2m-1)=0
which implies that m =1, 1/2 as a # 0
so the roots of the indicial equal are different and not differing by an integer.
To obtain the recurrence relation, we equate to zero the coefficient of x” *” and obtain
1
% :(m+r—l)(2m+2r—l) G2 )

This formula connects @ with a__. Now we proceed to find a, as explained in step (v) of
§ 9.4.1. For this purpose, we equate to zero, the coefficient of next higher power ofx i.e. x"*!
(put =1 in the first summation), we get
a[m2m+1)]=0

Since the quantity within the bracket is not zero for any above values of m (1 or Ej , this gives

Since a, = 0, then from (5), we have a,=a,=... = 0.
Also taking ¥ =2, in (5), we get

1
“ e (6)

Next taking » =4, in (5) and using (6), we obtain

— l a
“T mr1)(m+3)(2m+3)(2m+7)

and so on.
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Putting these values in (3),1i.e.y =x"[a, + ax+ax’+ax +..] gives

=qayx"| 1+ x* + x* + (7)
YO T ) 2m+3) (mr)(m+3)2m+3)2m+7) |
Putting m = 1, and replacing a, by a in (7), we get
1
=ax| 1+ x% + 4. =au (sa
4 [ 2-5 2-4-5-9 } (say)
Next putting m = 1/2, and replacing a, by b, we obtain
2 4
bl 4 |=bv (sa
g { 23 2:3-47 (52)

Therefore the complete solution is given by
y=au+bv,
where a and b are arbitrary constants.

Ex.2. Solve the Gauss hypergeometric equation

2
x(l—x)d—y+{y—(1+a+ﬂ)x}%—aﬁy=0

dxz
in series in the neighbourhood of the regular singular point (i) x = 0 (ii) x = 1 and (iii) x = .
Sol. Given
d*y dy
x(I=x)—=+iy-(1+a+B)x;——-afy=0
( )dx2 {r=( Pl ——aPy=0 L ®)

Dividing by x(1 —x), we get
Py {r=(+a+pB)x} &y ap
di? x(l—x) dx x(l—x)y

Comparing it with y"" + p (x) y' + p,(x) y = 0, we have

{7/—(1+a+ﬂ)x}

x(l—x)
ap
x(l—x)

Since x p,(x) and x* p, (x) both tends to a finite value at x = 0, so x = 0 is regular singular point
of (8).
Case L. Solution in the neighbourhood of x = 0.

p,(x) =

and p,(x) =

We assume that the given equation (8) has the solution of the form

y= Zoarxm”, a0 9)
r:

Substituting the values of y, y" and )’ in the given equation (8), we get

(x—xz)l:iar (m+r)(m+r+1)x™"2 |4

r=0
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0

{;/—(1+a+ﬁ)x} l:zar(m+r)xm+r_1:|—aﬁ[2arxm+q=O

r=0
or zoar (m+r)(m+r—l+7/)xm+r_1 - zoar (m+r+a)(m+r+ﬂ)xm+r =0 ...(10)
r= r=

which is an identity. Equating to zero, the coefficient of the smallest power of x i.e. x” ' (put
r=01n the first summation), we get the indicial equation as
am(m—1+v)=0,a,#0
This gives m=0,1-y
To obtain the recurrence relation, we equate to zero the coefficient ofx ™"~ !. Then we have
am+ry(m+tr-l+y)—a _(m+r-1+o)(m+r-1+p)=0

_(m+r—1+a)(m+r—l+ﬂ)
or a = (mrr)(m+r—117) a_y e (11)

For the solution corresponding to m = 0, the recurrence relation (11) reduces to

(r—1+a)(r—l+ﬂ)

a = r—1
r(r—1+;/)
from which 1t follows that
a.
(ll = 1.fao,
(I+a)(1+8) a(l+a)p(1+p)
= a = a,
ST (1+y) 1-2y(1+7)
and so on.

Putting these values and m = 0 and replacing a, by a in (2) gives

1+a-ﬂx+a(l+a)ﬂ(l+ﬂ)
Iy 1-27/(1+7/)

If we take a =1 in (12), the series on the right hand side of (12) is called the hypergeometric

P (12)

y=a

series and is represented by ,F, (a, B, v; x). Thus we see that F, (o, B, v; x) is a solution of (8).
For the solution corresponding to m =1 —vy, when 1 — 7 is neither zero nor an integer, the

recurrence relation (11) reduces to.

(1—7/+r—1+a)(1—7/+r—1+ﬂ)

a = a,_
: (1—7/+r)(1—7/+r—1+7/) r-l
o' +r=1)(p'+r-1
or a =( ,)(ﬂ )ar_l ..... (13)
" r(;/ +r—1)
wherea' =1-y+o, ' =1-y+B,yV=2—-— L. (14)
Replacing r=1, 2, 3, .... successively in (13), we have
4 == ﬁ, 0
l-y



. (a'+1)(p'+1) a'(a'+1)B' (B +1)
= a =
T2+ T 12 ()
Hence putting m =1 —v ..., using the above values of a , a, ... in (9) and replacing a by b gives

"B "(a'"+1)B' (B +1
o p  a(d+)p(p+) o | (15)
1-y' 1-2y'(y'+1)
If we take b =1 in (15), the series on the right hand side of (15) would be

x'F (o By x)iext V F (I—y+o, 1 -y+B;2-y;x)

which is another independent solution of (8).

ap etc.

y=bx"" |1+

Hence the general solution of (8) is
y=aF (a,B;y;x)+bx'" F (1-y+o, 1-y+p;2-7;x) ..(16)
which a and b are arbitrary conatants.
Case II. Solution in the neighbourhood of x =1.

It can be easily see that

{;/—(1+a+ﬂ)x}

li -1 =i -1 = finite val
xl_)ml(x ) 1 (x) x1_>ml(x ) =) finite value
and )lci_)ml(x— 1)2 pr(x) = )lci_>ml(x— 1)2 i(_loiﬂj) = 0 = finite value
so x = 1 1s also a regular singular point of (8).
If we substitute & = 1 —x in the equation (8), it reduces to
d* d
e:(l—e:)g%{mﬁ—y+1—(a+ﬂ+1)5}£—aﬂy=0 ..... (17)

On comparing (8) and (17), we find that (17) is the same as (8) except that y is replaced by
o+ B—y+1andxbyé&.

Hence the solution (16) of (8) near x = 0 will be valid for (17) near £ =0, i.e. near x = 1.

Hence in this case, the required solution will be

y=AF (a,B;a+B-y+1;1-x)
+B(1-x)" P F (y-o,y-B; y—a-PB+1;1-x) .. (18)
where y — o — B is neither zero nor an integer

Case I11. Solution in the neighbourhood of x = co.

To find the solution of the given hypergeometric differential equation (8) for large values of the
independent variable i.e. about x = oo, we change the independent variable from x to # with the help of
the following transformation x=1/t ie, t=1ix .. (19)

Clearly large values of x correspond to small values of z. Using the above equation (19), we

rewrite (8) and obtain the transformed equation near ¢ = 0, say



Then the given equation (8) is said to have a regular singular point at x = oo if the transformed

equation (20) has regular singular point at = 0.

1 1 dt -1
F =—Oor t=—, —=— 21
of * t x dx 2 @h
and Y _ddt -l :—tzﬂ ..... (22)
dx dt dx dt dt
2 2
Also yr =4y 4 (dy] 4 (dy] dt _4dy Lpd 23)
dx? dx \ax) dr \dx) dx dr? dt

Using (21), (22) and (23), the given equation (8) transforms to

2
tz(t—l)%+{2(t—l)—yt+(a+ﬂ+1)}t%—aﬂy=0 ..... (24)

To solve (24), let its series solution be

y=>a. t"" a0 . (25)
r=0
(e 0] (e 0]
so that —— Z (mr) ™! Z a, (m+r)(m+r+1)m2
d d?
Putting these values ofy, d_)t; and ; in (24), we get
dt

(t3 _12) iar(m+r)(m+r_1)tm+r—2

r=0
X a0
+{2(t—1)—;/t+a+ﬁ+l}t > a, (m+r)tm+r—1 —apS ™ =0
r=0 =0
or Zar(m“’—a)(mﬂ”—ﬂ)tm”_Zar(m+l”)(m+’”+1—y)zm+r+l:0 ..... 26)
r=0 b

which is an identity. Equating to zero, the coefficient of the smallest power of ¢ (put » = 0, in the first
summation), we get
am-o)(m-B)=0=>m=a,Basa,#0
Next equating to zero, the coefficient of #”*"* ! in (26), we find that

(m+r)(m+r+1—;/)

r+1 =

(m+r+1—a)(m+r+l—ﬂ)
For the solution, corresponding to m = a, the recurrence relation (27) reduces to

_(a+r)(a+r+l—7/)
o1 = (r+1)(a+r+1-p) @
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a(a+1-y)

from which it follows that a =———>a
1-(a+1-p)
(a+1)(a+2-y) a(a+)(a+1-y)(a+2-y)
2 2(a+2-B8) ' 12(a+1-B)(a+2-B8)
and so on.

Putting these values and replacing @, by A in (25), gives

a(1+a—7/)t+a(a+1)(1+a—y)(l+a—y+l) )
1-(1+a—pB) 1-2(1+a-B)(1+a-p+1)

¥ :At‘{H

i (+a-pB), |k

or y :A(l]“i(a)k(lm_y)k é(%)k

x) (2 (l+a+ﬁ)k

= A® i (@) (+a—y), o

or y =Ax %R (a,1+a—7/;1+a—ﬂ;lj ..... (28)
X

By symmetry for m = 3, we get

y :Bx_ﬂzF](ﬂ,l+ﬂ—;/;l+ﬂ—a;ij ----- (29)

Therefore the complete solution of the Gauss hypergeometric equation when 3 — a is neither

Zero nor an integer, is given by

_ 1 _ 1
y = Ax azFl(a,l+a—;/;l+a—ﬂ;;] + Bx ﬂzFl(ﬂ,l+ﬂ—7/;l+ﬂ—a;;j

Case II. When the roots m , m, of the indicial equation are equal, the complete

0
solution is ¥ =¢; (J’)m1 +o (6_:1) .
ml

This case is illustrated in the following example :

N d’y dy
Ex.3. Solve in series x(l - x)F+ (1— Sx)a—4y =0

Sol. Since x, = 0 is a regular singular point therefore we assume that the solution is of the form

(e 0]
y=>ax"", a0 .. (30)
r=0
) dy d? V. . . .
Putting the values for y, N and —5-in the given equation and rearranging the terms, we get
X dx
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Zoar(m+r)2xm+r_l—Zoar(m+r+2)2xm+r:0 _____ 31)
r= r=

Equating to zero, the coefficients of lowest power of x, the indicial equation gives
am*=0=>m=0,0asa, +0.
Since both the values of m are equal so it gives us only one independent solution. Equating to

zero, the coefficient of x™*”, we find that

+2)?
Which gives a, :(m ] a,

and so on.
Hence the solution is given by

m+2) m+3) m+4)
Y =agx™ |1+ x+ X2+ P o L (33)
m+1 m+1 m+1
Putting m =0 and replacing a by a in(33) gives
y=a[l +2x+3x*+4%*+ .. ]=au (sayy .. (34)
To get the second solution, we procecd as follows :
Rewriting (33)

m (m+2 ’ m+l  [(m+3 ? m+2
y=ap|x + x4 XU+
m+1 m+1

which on differentiation with respect to x gives

dy m-1  [(m+2 g m  [m+3 g m+l
—=aqy| mx" "+ (m+1)x + (m+2)x +oo | and

dx m+1 m+1

. {m(m_nxmz +(m+2]2(m+l)mxm_l +(m+3]2(m+2)(m+l)xm +}

dx? m+1 m+1
. dy d? v . : . .
Putting the values of'y, N and —5-in the left hand side of'the given equation, we get
X dx

m+1 m+1

(x_xz)ao {m(m—l)xm2 +(m+2]2m(m+l)xm_1 +(m+3j2(m+l)(m+2)xm +}
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+(1-5x) ag {mxml +(m+2]2(m+l)xm +(m+3]2(m+2)xm+1 +}

m+1 m+1

m+2 2 1 [(m+3 2 2 2 m-l
—4ay xm+( ] X" +( ] X" = agm X"

m+1

The coefficient of remaining powers of x being zero, it can be easily verified by considering the
coefficients one by one.

Thus we may write

2
(x—xz)d—§+(l—5x)ﬂ—4y = qy m*x™
dx dx
which on partial differentiation with respect to m, gives
0 2 d? d -1 2 _m-1
— (x—x )—+(1—5x)——4 y=2agmx" +aym°x""" logx
om dx? dx

Since the operators are commutative, therefore the above relation may be rewritten as

2\ d* d oy -1 2 _m-1
(x—x )—+(1—5x)——4 —=2aymx"" +aym X" logx
dx? dx om

Putting m =0, we get
2
(x—xz)d—2+(1—5x)i— (6—);]
dx dx om ),

0
which shows that (_y] is a second solution of the given differential equation.
M /) m=0

Hence differentiating (33) partially with respect to m, we get
2 2

a—yzaoxmlogx TN (e I (U e

om m+1 m+1

R Y T Y5 N CE
m+1 (m+1) (m+1) m+1 (m+1) (m+1)
Putting m = 0 and replacing a, by b gives

%Y
(%]mﬁ =blogx |1+2%x +3%x % .| +26| 2(1-2)x+3(1-3)x" +.. |

oy )
(am)mzo zb[ulogx—2(1-2x+2-3x +...)}:bv, (say)
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Thus the required solution is
y=au+bv,
where a and b are arbitrary constants.
Case II1. When the roots m_, m, (m, > m,) of the indicial equation are different and
differing by an integer and also making a coefficient of y infinite.
Working Rule. If the indicial equation has unequal roots, say m and m, (m, > m,) differing by
an integer and if some of the coefficients of y become infinite when m = m,, we modify the form of y by

replacing a, by d (m —m,) where d  # 0. Then two independent solutions can be obtained by putting

m = m, in the modified form ofy and 6_y . In this case the solution by putting m = m, in y is rejected
m
because it only gives a numerical multiple of the solution obtained by putting m = m, in modified y. Thus

the complete solution is

0
y= Cl (y)m2 +02 (é]
m,

2
Ex.4. Solve X2 d_y+ xd_y+(x2 —l)y — () in series.
dx?  dx
2d’y  dy (2
Sol. Given X dx_2+x£+(x —l)y =0 . (35)

Since x = 0 is a regular singular point as x p,(x) and x> p.(x) tends to a finite limit as x — 0,
therefore we assume the solution of the given equation (35) in the form

o0
y=> ax"", ay#0
r=0

(e8] o0
then y'=> a, (m+r)xm+r_l, V'=>a, (m+r)(m+r—1)xm+r_2
r=0 r=0

Substituting for y, 3’ and "' in (35), then it gives

(e 0] . "
D a(mr)(m+r=1)x"""2 11> a, (m""”)xm”_l+(x2—1)2arxm+r _0
=0 r=0 r=0
& o0
or Zar[(m+f’)(m+r—1)+(m+r)—1]xm+r+Zarxm+r+2 _0
r=0 —0
> o0
or X (mrre)(mir-Dx" Y a0 (36)
r=0 r=0

which is an identity. Equating to zero, the coefficients of the smallest power ofx, namely x” (put » =0 in
the first summation), gives the indicial equation
a(m+1)(m-1)=0
so that m=1,-lasaq 0 (37)
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The roots given by (37) are different and differing by an integer.
To obtain the recurrence relation, we equate to zero, the coefficient of x”* " and obtain
am+r+l)(m+r-l)+a _,=0
-1
or a :(m+r+1)(m+r—l) a._, (38)

[Since (38) gives the relationship between a_and a,_,, we proceed to find @, as explained in
step (v) of § 9.4.1]
Equating to zero, the coefficient of x” *! in (36) (put 7= 1 in the first summation), we find that
a, (m+2)ym=0, givinga =0
Since the quantity within the bracket is not zero for any above values ofm.
From (38) and a, = 0, we have
a=a,=a,=a,=..=0

Further, taking =2 in (38), we get

1
or a=————-"———-—a . 39
2= T w3 () @ 9
For =4, in (38) and using (39), we find that
1 1
Qg =——(H = a()

(m+3)(m+3) 2 (ma1)(m+3)* (m+5)

o0
Putting these values in y = " a,x™*", we get
r=0

= anx™ 1= w2+ ! -
¥ =ag {1 ) s 3P reS) } ..... (40)

Since the factor (m + 1) appears in the denominator, the coefficient of y will be infinite for
m=—1.
To overcome this difficulty, we put a, = d (m + 1), of course the condition a, # 0 is now vio-

lated, therefore we assume in its place d # 0. The above equation (40) becomes

2 4
X X
y =dpx" | (m+1)- + - 41)
{ (m+3) " (m+3)*(m+5)
Putting m = —1 and replacing d, by a, we get
-1 1 » 1 4
y =ax |——x"+ X —..|=au (say)y .. (42)
2 72 .4
The obtain another solution, m =—1 will be substituted in (S—yj obtained from (41).
m
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2 4

ay m X X
No —— =dyx" logx|(m+1)— + —..
v mo ) Gs) (m+3)*(m+5)
2
+dopx™ | 1+ r 2 - ! Xt

(m+3)* |(m+3) (m+5) (m+3)*(m+5)

Putting m =1, replacing d, by b, the second solution will be obtained as

0 _ 1 1
(_y] = by ! log){—— X2+ : xt —}
6m m=—1 2 2 4

2
_ X 5 4
=bulogx+bx H+=—- X +..
l: 22 2242 :l

2
_ X 5 4
=blulogx+x LR} i X +..
{ { 72 92 42 H ..... (43)

= b v (say)
Hence the complete solution ofthe given differential equation is

y=au+ bv.

1.
Note : If we substitute m =1 and d; = 5 in (41), we get

1 2 x4
y=x<1- x° 4+ —..
2-4 2.42 .6

X X
y=<ix——+ —.r=—2u
2:4 2.42.6

which gives no new independent solution.

Case IV. When the roots m , m, of the indicial equation are different and differing by

an integer and also making a coefficient of y indeterminate.

Working Rule. If the indicial equation has two different roots say m , m, (m > m,) differing by

an integer and if one of the coefficients of y become indeterminate when m = m., the complete solution

is given by putting m = m, in y, which contains two arbitrary constants. In this case, the solution obtained

by putting m =m_ iny is rejected because it only gives a numerical multiple of one of the series con-

tained in the first solution.
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2
Ex.5. Solve xzd_y+(x+ xz)d_y+(x_9)y= 0 in series.
2 dx

dx

Sol. Since x,, = 0 is a regular singular point, we assume the solution in the form

o0
y=>ax"", a,#0
r=0

then leiéar(m+r)(m+r—1)xm+r—2:|+(x+x2)|:§)ar (m+,,)xm+r—1]
x 9 l:Za x™ :lz
or iar[(m+r)(m+r—1)+(m+r)_9]xm+r+éar (m+r+1)x"™ 4 =0

Z [m+r 3)(m+r+3] m+r+z m+r+l X" —
r=0

or

which is an identity. Equating to zero, the coefficient of the smallest power of x, namely x”
(putting » =0 in the first summation), we get
a(m-3)(m+3)=0, m=3, -3 (- a,#0)
The roots of the equation are different and differing by an integer. To obtain the recurrence rela-
tion, we equate to zero, the coefficient of the general termi.e. X" ", we get
am+r+3)y(m+r-3)+a_(m+r)=0
—(m+r)

= a,, 44
o “ (m+r+3)(m+r—3)ar_1 49

: —(r-3)
Taking m = -3, we get a = a,_q
: r(r—6)

Thus for »= 1, we have g, :_?2 ao and forr=2,3,4,5, and 6 we have

121
27 g5 g
a,=0,a,=0,a,=0and

a0

a —_(6_3)a 9 (inderminate)
°6(6-6) ° 0
and may be taken as a free constant
—4 -5 4.5
Also a, =—acandag=—a7=——a
7 7 6 8 16 7 7.1 6

and so on.
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(e8]
y = ax""=x" [ao +ax+arx* +azx’ +}
r=0

y =x7 [ao +ax + azx2 + a6x6 + a7x7 + a8x8 + J

4 2 12 51 Sl 6 4 7 45 g
=X adnp —— dpX +—-— apnXx +X AgX —— aAgX + aAgX —...
[050850} [6 776" T76°0

This contains two arbitrary constants @ and a, and therefore may be taken as the complete so-
lution

Note. [fwe put m =3 in (44), we get a series solution

4 4.
y = a0x3 [1——x+—5x2 —}

which gives no new independent solution.

9.5 Series Solution in Descending Powers of the Independent Variable

Till now we have obtained series solutions in ascending powers of the independent variable. How-
ever, the following cases may arise.

(e 0]
(i) There exists no solution of the form Z a,x"",
r=0

(i) The usual Frobenius method breaks down.

(iii) The series solution obtained by earlier methods does not converge.

In such cases we obtain the series solution in descending powers of the independent variable.
Sometimes, the series solution in descending powers are desirable and are more useful in practice.
Working Rule

(e8]
(i) We assume a solution of the form y = Z a.x"", ay#0
r=0

(i) For indicial equation, we equate to zero the coefficient of the highest power ofx in the iden-
tity.

(iii) For recurrence relation, the coefficient of the higher power, in general, in the identity is equated
to zero.

To illustrate the method we consider following examples :

Ex.1. Integrate in descending series the Legendre’s equation or determine the solution of

Legendre’s equation.
Sol. The differential equation of the form
(1-x)y'"-2xy'+nn+1)y=0
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is called the Legendre’s equation, where n € N. Let the series solution of (1) be of the form

0
y=>ax""aqgx0 . ()
r=0

Substituting the values ofy'"’, )’ and y in the given equation, we get

(l—xz)Zar(m—r)(m—r—l)xm_r_z—2xz ar(m—r)xm_r_l+n(n+1)zarxm_r:0
r=0 r=0 =0

o S () ) S om0 )
r=0 r=0

which is an identity. Equating to zero, the coefficient of the highest power ofx, namely x”, (put
r=0 in the second summation), we get the indicial equation
a(m-n)(m+n+1)=0
Since a,#0=>m=n,—(n+1)
which shows that the roots are different.
To obtain the recurrence relation, we equate to zero the coefficient ofx”~"and obtain
a_ (m—r+2y(m-r+1)—am-r—n)(m—-r+n+1)=0

(m—r+2)(m—r+l)
P (4)
(m—r—n)(m—r+n+1)
Here we need to evaluate a,. It can be done by equating to zero, the coefficient of the next
lower power of x i.e. x" !, which gives

7

a

a(m—1-n)(m+n)=0

= a, = 0, since the quantity within the bracket is not zero for any above values ofm
Since a, =0, then from (4), we have a, = a,=....= 0

-1
Also a, = e (m )

2 a0

(m—n-2)(m+n-1)

4 (m—2)(m-1) “
N (m—n—4)(m+n—3)

. m(m—1)(m—2)(m-3)

= a
N (m—n—2)(m—n—4)(m+n—1)(m+n—3) 0
Putting these values in (2), the solution is.

m(m—l) X2 N m(m—l)(m—2)(m—3) x4

m—n—2)(m+n—1) (m—n—2)(m—n—4)(m+n—1)(m+n—3)+

yaoxm{l+(

When m = n, replacing a, by a, in (5) one of the solution is

[ e o a2 ]
y=ax {1_2(211—1))6 + 2.4(2’1_1)(2”_3) X —..|=au (say) ... (6)
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When y =—(n +1) and replacing a, by b, in (5) the other solution is

(n+l)(n+2) _2+(n+1)(n+2)(n+3)(n+4) 4
——X X

2-(2n+3) 2-4(2n+3)(2n+5)
Hence the complete solution is

y=by "1+

y=au+ bv,

where a and b are arbitrary constants.

Self Learning Exercise

Fill up the blanks :
(1) The ordinary point of (x*— 1) " +xy' —y=01s ... ...
(2) For differential equation 2x*)"" + 7x(x+ 1)y’ =3y =0,x=01isa... ... singular point.
(3) The regular and irregular singular points of the differential equation
X+ 1Py + (-1 )y +2y=0
are ........... and ............... respectively

(4) The nature of the point x = 0 for the equationxy” +ysinx=01is..... .

9.7

Summary

In this unit you studied the Frobenius method for finding the solution of a linear differential equa-

tion of second order with variable coefficient near ordinary and regular singular points. Various cases of

this important method were discussed and illustrated with the help of examples.

9.8 Answers to Self Learning Exercise
(1) x=0 (2) Regular 3) x=0andx=-1 (4) Regular singular
9.9 Exercise

Solve the following differential equations in series :

(=) y,—xy, +4y=0

1 1 1
[Ans. ¥ =q (1—2x2)+a1 (x—§x3 —gxs _E x7...]]

(=X y, +2xy,+y=0

1 , 1 4 1 ¢ j ( 15 1 5 3 4 j
=ay|l-——x"+—x"+—x ... |+a | x—x +—x +——x" +...
[Ans. Y 0( P T 727 "207 Tse0 |

Ly, txy=0

[Ans.yzao(l— ! xt+ ! x8+...j+a1(x— ! x>+ ! xs...]]
3-4 3-4.7-8 4.5 4-5-8-9

L2+ y,txy, +(1+x)y=0

1, 1 53 5 4 15 1 4 1 5
=qy| |l ——x" ——x"+—x" ... |+a | x——x" ——x +—x +...
[Ans. =40 ( 47 127 96 ] : ( 6" 247 24 |
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10.

11.

12.

13.

2x(l-x)y, +(1-x)y, +3y=0

3 2,3 3.3 4 12
=a|l-3x+—x"+—x"+——x +...|+bx""(1—-x
[Ans. Y ( 137 735 5.9 j (1=%)]

x’y, +xy, + (x> —n’) y =0, when n is not an integer.

[Ans. y=ax"1- ! X%+ ! xt -
Y 4(1+n)"  4-8(1+n)(2+n)

+bx " {1—4(11_’1)% - 4.8(1_2)(2_’1)#—..}]

c(2x+ X))y, -y, —6xy=0

3 4 3-1 6 3/2 3 2 3-1 4 3-1-5 6
1 - | T 1= x - X+ X +...
[Ans. y= a( +3x +5x 5'9x + j ( g 216 81624 ]

cx(1 -x)y,— 12y, +4y =0

[Ans. y=a 4l o 14T 5
3 3.6

+bx 3 1+£x 8-11 x>+ 8-11-14 x4 ]
10 10- 13 10-13-16

cAxy, +2y +y=0

2 2
_ X 1/2 X X
[Ans. y—a(l——+— ]+bx ( —+—...]]
2 1[4 13 15
x(1-x)y,+3y, +2y=0
1, 1 4 ¥ 1y
yv=a|ll+—=x"+—x"+... |+b| x+—+—x"+...
[Ans. ( 27 T4 ) ( 6 12 |
W,y txy=0

1 1
[Ans. y =ay, + by,, where y; = (1—?x2 +ﬁX4 —] and

1, 1 1 4 1 1 1)
=ylogx+| =x"———|l+= |x +—————|1+—+—|x " +...

Yo =y log (22 22_42( 2] 22-42-62( > 3j ]]

(x=x)y,+(1-x)y,-y=0
2 2 2-5 3 2

Ans. y=(a+blogx)|1+x+—x"+——x"+... |[+b|2x—x"—...
[Ans. y=( g)( el ]( )i
xp,t(1+x)y +2y=0

_ DY S A )30 e
[Ans.y—(a+blogx)[l 2x+|2x |§x +...]+b{2(2 ij Ig(2+2 3jx +...}]
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14.

15.

16.

17.

18.

19.

(1 -x)y, +(1 =3y, —xy=0

1 1
[Ans. y =(a+blogx) 1+2—2x2+

x(1-x)y,—(1+3x)y, —y=0

.32

1
4

——x " +...|+b| —x
22.4° ] (4

[Ans. y = (a +blogx)(—1-2x2 —2-3x3...)+b(1—x—5x2...)]

xy, txy, + (2 =4)y=0
1 4

1 6

1

[Ans. y=(a +blogx)x_2 {

x(1-x)y,-3xy,-y=0

+bx (1 PR

22

8
- X + X — X +...
224 2246 224768 }

1 1

X — X
22.4° 22.4%.6°

[Ans. y:(a+blogx)(x+2x2 +3x° +...)+b(1+x+x2 +...)]

¥y, +x(1 +2x)y, -4y =0

(1-x)y, +2xy, +y=0

1 1
[Ans. ¥ =ag (I—Exz +§x4 +...)+a1 (

3

X
X——+—x
2

40
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Unit 10 : Gauss Hypergeometric Function: its Properties And
Integral Representation

Structure of the Unit
10.0  Objective
10.1  Introduction
10.2  Convergence of the Series
10.3  Special Cases of the Gauss Function
10.4 Integral Representation
10.4.1 Deductions
10.5  Gauss Hypergeometric Differential Equation and Its Solution
10.6  Two Summation Theorems
10.6.1 Theorem 1
10.6.2 Theorem 2
10.7  Summary
10.8  Answers of Self -Learning Exercise

10.9 Exercise

10.0 Objective

The aim of this unit is to study a special function known as Gauss hypergeometric function. Also
its special cases, properties, convergence conditions and summation theorems such as Gauss’s theorem,

Kummer’s theorem and Vandermonde’s theorem are obtained.

10.1 Introduction

The series

1+a_bHa(a+1)b(b+1)i a(a+1)(a+2)b(b+1)(b+2) 2

c c(c+1) |2+ c(c+l)(c+2) I}+ ..... (D

is called the Gauss series or the Ordinary hypergeometric series. It is usually represented by the symbol
I (a, b ; c;z), The three quantities a, b and c are called the parameters and z is the variable of the

series. All these four quantities may be any number, real or complex. In the notation ' (.), the left suffix
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2 and the right suffix 1 indicate the number of parameters in the numerator and denominator respec-
tively. If either of the parameters a or b (or both) is a negative integer, the series terminates i.e. it has
only a finite number of terms and becomes in fact a polynomial. Also when c is zero or a negative inte-
ger, the series is not defined.

C.F. Gauss carried out an exhaustive study of this function in a systematic way and Euler dis-
covered many properties of the function.

The function has its importance because of its application in solving various problems arising in
physical and engineering sciences. It is interesting to note that apart from the elementary functions such
as exponential function, logarithmic function, sine and cosine functions etc., it is also possible to derive
Bessel’s functions, Kummer’s confluent hypergeometric function, Bessel polynomials, Hermite polyno-
mials, Jacobi polynomials etc. either as a limiting case or as a special case of this function.

If we introduce the conventional notation (Pochammer symbol)

_T(a+n) N
(a), _—F(a) =a(a+1l)(a+2)..(a+n-1),n21 .. (2)
and (OL)O =1l,a#0,

then the equation (1) can be written in the contracted form

a,b © (a) (b) P
Fl(ab;cz F 2 |=y —~p ‘- L 3)
(a,b;c;z)or 5 1( . ] ’E) (o), Ln

As pointed out earlier, in general a, b, and ¢ are complex parameters and z is a complex vari-

able. If a or b is a negative integer then series terminates. Also ¢ is neither zero nor a negative integer i.e.

From (1), it follows easily that

() F (a,b;c;0)=1

@) F (a, b;c,z)=F(b,a;c;z)

The last property indicates that the hypergeometric function is symmetric in the upper param-

eters a and b.

10.2 Convergence of the Series in (3)

To test the convergence of the series in (3), let us apply the D’ Alembert’s ratio test. We see

that
1
lim Y2t i (@ (P =" GAL ‘
n—o| U, Nn—>00 (C)n+1|n_'|‘1 (a)n(b)nzn

. (a+n)(b+n)' z |
nowo| (c+n) n+1‘

2

:| z
so long as non of g, b, c is zero or a negative interer.
183



Therefore, the series converges absolutely within the circle of convergence if | z | <1 and di-

verges outside the circle of convergence i.e. |z | >1, provided that c is neither zero nor a negative inte-

ger. Ifeither or both of @ and b is zero or a negative integer, the series terminates, and convergence does

not enter the discussion.

For | z | =1, 1.e. on the circle of convergence, the test fails. In this ease, let us compare this

series with the series

= 1
2, :ZTS’
n=17
where 25 =Re(c—a—-b)>0.
. |u (a) (b) 1+3
. lim |22| =|~2n>tn,
Since nl_r)fio v (C)nlﬂ n

— lim (a)n (b)n M'nc |I’l_—1nl+6‘

n—w|ln—1-n“ '|n—1-nb (c), mnc_a_b‘

i C(a+n) 1 T(b+n) 1 |n—1ncr(0) n—1 n1+8‘

et T(@) ot @) T(evn) o e

. |n=1a%
But we know that Jﬂor(ﬂn):l
I(c)
therefore o v, T (a ) T ( b ) 1o | e D)

because Re (c—a—b— §)=25—5>0, therefore the series in (3) is absolutely convergent on

|z|=1whenRe (c—a—>b)>0.

To summarise, we conclude that the hypergeometric series (3) or (1) is
(a) absolutely convergent within the circle of convergence |z | <1
(b) divergent outside the circle of convergence |z |> 1.

(c) for | z| =1 i.e. onthe circle of convergence, it converges absolutely if Re (c—a — ) > 0. It

also converges conditionally for z=—1 if — 1 <Re (¢ —a — b) <0, and divergent if Re (¢ — a — b)

10.3 Special cases of the Gauss function

Whena=1, b=c, the R.H.S. of (1) reduces to

which is simply a geometric series. This is why (1) called the hypergeometric series.
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Most of the elementary functions which occur in Mathematical Physics, can be expressed in terms
of the Gauss function. For example,
o0 ( a 0 )"
0 2R (@bbz) = 2" =3 (—a)(-a=1)..(- P ()
n=0 n=0 m
or _F (a,b;bz)=(1-2)"

This is simply a statement of the Binomial theorem for |z | < 1.

< (=2)" 1
@ LF(1,1;2;,-2)= nEZO o =;10g(1+z)
I 3 1 I+z
W Forlzi=l. 2k (E’I;E;ZZ)ZZZlogEI—Z;

2 -1))z"
(iv)  Since 2H (& b919 —1+Z( ]( +Zj(l+(n7jlg,

0 n=0
113 » 1
F|l—,——;z% |=—sin "z
) 2 1(2 272 ] z
1.3 > 1,
] F|—,1,——z"|=—tan "z
i) 21[2 2 } Z

The Legendre polynomial P_(x) is defined as the coefficient of z" inthe expansion, in ascending

powers of z, of (1-2xz + z?)""2. By direct expansion, we can prove that the coefficient is in fact

1 1
L [—n,l +ml; 275 x} =P, (x). This result is known as Murphy’s formula.

Other elementary special cases are

zFl[a a+% %;Z} :%(14_\/})—%4_%(1_\/})—2(;

1 1 1 1-2a
21 [a——,a;Za;z} =[—+—\/1—z}
2 2 2

and  ,F[2a,a+1;a;z] :(1+z)/(l—z)2a+1

10.4 Integral Representation

If| z| < 1 and if Re (c)> Re (b) > 0, then
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1
B(b,c=b) Fi(a b ez =]t (1=0) " (1-zt) " dr
0

I'(c L e y
or F (a,bic;z) ZWV (=) () AL (1
1
Proof. Let I ZIfb_l (1=2) " (1= zt) " dt
0

ﬁ
Il
(=]
~
(=]

=B (b, c—b) F(ab;c;2)
10.4.1 Deductions from integral representation

As a consequence of equation (1), we derive the Gauss’s theorem which gives rise to
Vandermonde’s theorem of the hypergeometric function. Kummer’s theorem is also derived. These
theorems are of great importance in the study of various special functions of mathematical physics.

(a) Gauss’s theorem. If Re (c—a — b) >0, Re (c¢) >0, then

F(C)F(c—a—b)
F(c—a)F(c—b)

F (a,b;c;1) =

Prof. Putting z= 1 in the equation (1), we get

. F (a,b;¢631) Z%!}b—l (l_t)c—a—b_l i

I'(c) I'(b)I'(c—a-b)

. (a,b;c;l) = F(c—a)F(c—b) ..... 2)



(b) Vandermonde’s theorem

,F, (—n,b;c;l) =

Prof. If we make a =—n in eq. (2), where 7 1s a positive integer, then we get
C(c)T(c=b+n), (c-b),

I'(c+n)I(c-b) - (),

F (—n,b;c;l) =
(¢) Kummer’s Theorem

F(l—a+b)1“(1+2)
F(1+b)1“(1+2—a)

Prof. To prove (3), we putz—1 and ¢ = 1 —a + b in equation (1), we abtain

.F, (a,b;1-a+b;—1) =

— L —a
F (a,b;1—a+b;-1) :MI b‘l(l—tz) dt
L(b)T(1-a)s
Putting #=u in the above equation (4), we get
r(1- +b ‘ o
E(a,b;l—a+b;—l) = ? Iub/z l ' du

T(1-a+b) _F@F(l‘“)
20 (b)I(1-a) F(I;H_a]

T[1+(b/2)] T(1-a+b)

F (a,b;l1—a+b;-1) = L(1+b) T(l-a+b/2)

10.5

Gauss’s Hypergeometric Differential Equation and its Solution

d
Let 0 = z—.Then 0 z"= nz"
dz
Therefore,6(6+c—1)z”=n(n+c—1)z”
> (a
Now y=,F (a,b;c;z) Z )
n=0 (Cn
i 1
Wehave  0(6+c-1)y :zn(n+c )(a )"(b)"z"

= (¢),lz

Il
1M
—
<
~

(O -1
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3 (@), (O)ys

n+l =z

2 (o), n

z@+a)©O+b)y

: & (atn)(a), (b)
since (O +a)y= ioi "
soeto =758
Hence y =,F (a,b; ¢, z) is a solution of differential equation
[0(60+c—1)—z(0+a)(0+b)]y=0, o=z

dz

The above equation can be easily written in the following form

2
z(l—z)flz‘:;+{c—(1+a+b)z}fl—'z—aby=0 ..... (1

(by employing the relations 6y =zy’ and (0 — 1) y=z%"") is known as Gauss’s hypergeometric
differential equation.

From the theory of differential equation, it follows that the regular singular points of the above
equation (1) are:

(i) z=0 with exponents 0, 1 —¢

(ii) z=1 with exponents 0, c—a — b

(iii) z = oo with exponents a,b.

For details of the solution of the differential equation (1), students are advised to reter Ex. 2 in
§9.4 of'the last unit.

10.6 Two summation Theorems

In this section, we discuss two theorems concerning elementary series manipulations which are
important techniques in establishing several transformation formulae, summation formulae and in investi-
gating several other properties of hypergeometric functions, Bessel’s functions and Orthogonal polyno-

mials etc.

10.6.1 Theorem 1.

m=0 m=0 n=0

and. z Zﬂ(”am) = ﬂ(n,m+n) ..... (2)
m=0 n=0 m=0 n=0

Proof. Consider the L.H.S. of the equation (1) in which the term »” " has been inserted for

convenience i.e.



Let us collect the powers of u in (3). We introduce new indices of summation s and r by
n=r,m=s—r . 4)

so that ntm=s (%)

The indices n and m now satisfy the inequalitiesm > 0, n > 0.

From (4) and (5), it follows thats —7 > 0,7 > 0or0 < r < s

provided that s is restricted to be a non-negative integer. Thus we have

iia nm u™" ZZQ rs r

m=0 n=0 s=0 r=0
Now putting u = 1 and replacing the dummy indices » and s on the right by » and m respectively,
we get the required result.
In Theorem 1, equation (2) is merely written in reverse order; hence no separate proofis needed.

Theorem 2.
© w [m/2]
Z Za(n,m) =z a(n,m—Zn) ..... (6)
m=0 n=0 m=0 n=0
o [m/2] ® ®

and > g(n,m) =, Y. B(nom+20) (7)
m=0 n=0 m=0 n=0

[m/2]
where the symbol z indicates that » runs from 0 to the greatest integer less than or equal to m/2.
=0

Proof. If we consider
o0 o0
2, 2o (nmp
m=0 n=0

o0 o0
in which u " %" is inserted for convenience, i.e. Z Z (x( n, m)um+2” and taking n = » and

m=0 n=0
m=s—2r sothatm+2n=s.
Sincem >0,n>0,s—2r>0,r> 0fromwhichO < 2r < s and s>0.

Since 0<r < % and r is integral, the index » runs from 0 to the greatest integer s/2. Thus we
obtain

o0 o0
Z Z nm T ZZZOC rs 2r
=0 =0 ,

Now putting u = 1 and replacing the dummy indices » and s on the right by #» and m respectively,

we get the required result (6). Equation (7) is written in reverse order. If we combine the above two

theorems, we find that Z ZY(””") = Z y(n,m—n)



Ex.1. Prove that F [

1 -a —-a
Sol. Taking RHS. =] (1-2) " +(1-2)"

*Z czZ+ z

2 3 |4

+a(a+1)(a+2)(a+3)(a+4) 5 +}
|5

+{1_a2+a(a+1) , a(a+)(a+2) , a(a+1)(a+2)(a+3) ,

:ll:{l+az+a(a+l) 2+a(a+l)(a+2) 3 a(a+1)(a+2)(a+3) 4
2

-z" = -z + z

2 3 |4

_a<a+1)<a+zé<a+3><a+4>zs+,__H

:%{2+a(a+l)zz +a(a+1)(i;2)(a+3)z4+....oo}

= 1+£(a+l)z2 +a(a+1)(a+2)(a+3) Z4+....oo}
2

2-2-2-3

[ ala 1 alfa 1)\ a a 3

222, L)t a ) e

=1+ ; z2 4+ 3 (zz) +.
il ~.2.2.1
(2] 22

aa 11 ,
=, F| == +=:7;2" |= LHS.
2 ‘[2 2 272 } S

Ex.2. Establish the result

,F, [—n,a+n ;€ ;1]=

Sol. Here LHS. =,F[-n,a+n;c;]]

I'(c)T(c—a)
T(c+n)(c—a—n) (by Gauss’s summation Theorem)

F(1-c+a+n)
I'(1-c+a)

(=) (1+a-c),

(c)n Hence proved.

=(-1)"




Ex.3. Prove that

1
B(A4, ¢c—A),F, (a, b; c; ) =J.t;“_1 (1- t)c_;”_1 2Fy (a,b; 5 zt)dt
0

where |7 | <1, A>0,c—A1>0.

1
Sol. Let I= j 1 (l—t)c_k_1 2B (a,b ;A ;zt)dt
0

:(I) A (1=1) E) (azagf)r .(ZI;)F dt

_ ii(“)r (), j‘tk+r—l (1=

Solr (),
_ &2 (a),(b), T(h+r)T(c-2)
_ré) |r (k)r I(c+r)

F(c) r=0 (c)r I£
=B (A c—A),F, (a b ¢ z)
Ex.4. Show that if b > 0,

—(z @ /)2 bt . y
ZZ{;b_l(B/(zb),}b) J'(sind)) [(1+§c0s¢) +(1-Ecos¢) }dd‘)

0

ZFI(a) b ; Zb ; z) =

2
where &= 27—z

Deduce that

1 \“ 1 1 1 1 .,
Fa,b;2b;z )=2|1—-—¢ Fl—a,—a+—;b+—;
2Fi ( ) ( 2 ) 2 ‘(2 2 2 2 r;)

Sol. We know that if| z | <1 and if Re (¢) > Re (b) > 0, then

1
B(b,c—b) F (ab;c;z=[ (1= " (1-z)
0
For ¢ =2b, it reduces to

1

I (a, b;2b;z) = B(b,b)

7 —t)b_l (1—2z) " dt

O ey —

Putting t =sin’0 , we have

2 TP 2b-1 2b-1 .2\
JF (a,b;2b;2) :B(b,b) £ (sin®)™ " (cos0) (l—zsm 6) do
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/2 -a
— 2 [ (5in0)> ™ (cos0)?"! 1—2(1_"0529]} do
0

B(b,b) i 2
w2 1] 2—z+zcos20 | ¢
I sm@ 0s0) —} do-
bb) ¢ 2
2[1-(2/2)T* ™2 ~a
- [ (z/ )] J‘(sine)y)_l(cose)%_1 1+—=—c0s20| do
B(b,b) 0 2—z
_2|1-(2/2) M2 2b-1 -
- [Zbl (bjL) j(s1n26) (1+&cos20) “ad0 (11)
0
where & = 2L .Ifweput 20=¢, then (11) becomes
—Z
)] _ _
F. (a, b; 2b;2) —[zb(lA [(sing) " (1+8cosd) “a9p L. (12)
B(b,b)
In the same way, if we substitute t = cos?0 in (10), we get
)] _ _
F (a, b; 2b; 2) _% [(sing) " (1-gcoso) ‘a9 .. (13)
0

Adding (12) and (13) and applying the property of the definite integral, viz.

s (x)as- 2f F(x)as, if £(20-2)= 1 (3),
0 0, if f(2a—x)=—f(x)

we obtain the desired result

[1-(z/2)]" nfz(sm ¢)2b 1

2b1 (bb) 0

To deduce the second part, we find from example 1 that

F (a,b;2b;2) = |(1+£c0sg) ™ +(1-Eoosp) * |

[(1+§cos¢)_a +(1—§cos¢)_a}: ,F (E’ o

Hence ,F| (a, b; 2b;z) =

af1-z2)7°™ e (aa
(sing) zFl(
el

Expanding F, (&’ cos*}) in terms of its series and integrating with the help of beta function

formula, we have
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a[1-(z2)T" & (a/2), {(a+1)/2} . ™2 . )
2251 B(bob rz(:) 1/2) B 13 x(J;s1n2 1(|>Cos2 o do

F (a, b;2b; z)=

41— z/2] i (4/2) {a+1)/2}ra2r.F(b)F(r+l/2)
R =N or (b+r+1)2)

Applying Legendre’s duphcatlon formula, we get

o @2), [,
:2(1—9 EZ) (,}5 ]r,éll

—a
1 1
F (a,b;2b;z) =2|1-2 FlL &yl pyo g2
1 )(2] 21(222 2E"

Ex.5. Show that if —gs x< g,

i in x 2 1+1nl—1 i'sinzx
s1nnx=nsme 23573 ,2,

-n 1
and cosnx =, F; (% Tn 5 ; sin? x)

Sol. We know that sin nx and cos nx satisfy the following differential equation

2
d—§+n2y=0
dx

Let us transform (14) by the substitution z = sin? x. Then

2
d—u =sin2x and M:2(3032x
dx dx?
dy dy du . dy
- =——-—=s8in2x—
Now, dx du dx du
2
ay _ d (dy] d (sin2x-d—y]
dx?  dx\dx) dx du
dy dzy du
=2c082x—+sin2x - ——-—
du du? dx
2
=2cos 2xﬂ+sin2 ZxQ
du du
.2 \dy ) 2 dzy
:2(1—2s1n x)—+4sm XCcos” x - —=
du du2
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Substituting the value of d_z in (14), it becomes
X

2 2
1
u(l_u)u_k ——u Q_Fn_y:()
du® \2
The above equation may be written as

2
u(l- u)d_+ L(ppn_m) |22, 2
du? |2 2 2 du \2)\ 2
n f—
which is a Gauss’s hypergeometric equation with @ = > b= 7,0 = — . Hence the general solution of

(14) is given by
— . . 1 1 1 1 .
y=A4-F ﬁ,—n;l ;s1n2x +Bsinx »F —+—n,———n;§;sm2x
222 2 2 2 2 2

Since sin zx is the solution

1 1.1 11 .
sinnx =4 ,F E _n — s1n2x +Bsinx ,F| — —n,———n;i;smzx
27 272" 2 2 2

2 2
..... (15)
Forx =0, equation (15) gives A =0
Further
sin nx =B zFl(l+ln,l—ln;§;sin2xj
sin x 2 2 2 2 2

. _[sin®
Now taking limit of both sides as x — 0, and noting that égﬁ)( 0 j =1,

wegetB=n
sinnx = nsinx ,F (l+ln,l—ln ; 3 ; sin? xj
2 2 2 2 2
Again, if y = cos nx, then putting x = 0, we see that 4 = 1, and on differentiating and putting x =0,
we get B =0, which establishes the second part.
Ex.6. Show that

I (a)T(b) LFy (a b ) j j ™ cosh{2,f(wv)z}u v duay
provided Re (a) >0 and Re (b) > 0.

Sol. RH.S

O'—;S

e}
Ie cosh{2 (uv)z}ua_lvb_ldu ayv L (16)
0
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0022rrrr

uvz
But we know that cosh {2 (uv)z} =y —
r=0 lﬁ
Putting this value in the above integral (16), then it breaks up into product of two integrals, and we
have
o 22r S © ©
_ Z J‘ e—uua+r—ldu J‘ e—vvb+r—ldv
—o 2 g 0
227‘

r=0 r22r_1F(r)F(r+;j

(applying Legendre’s duplication formula)

S

o (a),(b), 2

b) 2.

S ey
=T'(a)['(b) ,F (a,b ; % ; z] =L.H.S

Ex.7. Prove that

(@)1 (B)usr e

1
lim —— 2F,(a,b 5 €3 z) "

c»-nT (C)

1
Sol. LHS = lim —— F(c) ZFi(a’b;C;Z)

,F (a+n+1,b+n+1;n+2 H z)

c—>—n

Il
=
NgE
—_
<
~
3
—_




s+n+l

S (%) z
z S+n+; " 1)s+n+1 . an-i_l (Putting 1 S)

s=0

s (D), (a)y (D) (8), =

=~ s (n+2) |[n+1

:(a)n+1(b)n+lz i a+n+1 (b+n+1)5.i
(n+1 =0 "+2) s

:%.Z"” zFl(a+n+l,b+n+1;n+2;Z)
n+

=R.H.S

T 11 2
K=—,F|—,—;1;k
Show that 5 2 1(2 2 )
K_nj_z d¢
Sol. We h -
0% wehave o \J1—k2sin ¢
Putting sin ¢ =/t
lidl‘
then cosd dp = 27
11 1
or dp = ——- dt
2t N1-t

1! 12
K:5£ (=) (1-#%)

. By integral representation of \F', (a, b ; ¢ ;z), we have

1F(;jr(l_;] 11
K == zF](——;l;kzj

- 9

2 r(1) 2°2

Ex.9. Prove that
1
2F](a,b ;€3 z)=B; J. ub_l(l—u)c b 1(1 zu) du,
0

where ¢ > b > 0. Hence prove that

—2/z

2 F(125352)= log{e(l—z)l/z}
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then

Sol. By integral representation of F (a, b ;c;z), we have, if| z| <1 and if Re (¢) > Re (b) > 0,

F(a, b;c;z) :B(b, ) I ub! (l—u)c_b 1(l—zu) “du
1
Now, F(1,2;3;2) :B(12 1)Iu(1—u)0(l—zu) du
)0
1 J]. udu
S B(2.0) g 1-zu
1
ZEJ.{ 1 —l}du
zy 1—zu
1
:z{{——log(l—zu)} —(u):):|
z z 0
:%[—l{log(l—z)—logl}—l}
:%[——log(l—z)—l}
:—%[log(l—z)l/z+10ge}z—g[loge(l—z)l/z}

~loge(1 —z)l/z}_z/z =RHS.

Ex.10. Show that if Re (b) > 0 and if n is a nonnegative integer, then

2" (b
2E[—£a—£+l;b+l;1}= (®),

27 2 2 2 (21))”

1
Sol. LH.S =,k [——, REEAARE 1}

i I“(b)l“(b +2j (b),

F(b"'Z)F(b"'Z"';j (by Gauss’s theorem)

Using Legendre’s duplication formula, we have

T (2b)- 22(“;)_1

221 r{z(b + ’;ﬂ
(5),

(2b),

LHS = -(b)

n

=2" =RHS




Ex.11. Show that

4 -1/2 4
J. xl/2 I:l—xz(t—x)z] dx=1ﬂ:t B l,g;l;t—
0 2 4 4 16
! 12 ) 2 7V2
Sol. Let IZI xl/z(t—X) {l—x (t—x) } dx
0
t w (1/2 x*(t—x
J'xl/z(t_x)—l/z z( )n( ( ) ) dc
0 n=0 Iﬁ
(l/z)n l 2n—l

Putting x = fu, we have

_ i (V2), an F(;””jr(;unj

n=0 Iﬂ F(2+4I’l)

Applying Legendre’s duplication formula for I' (2 +4#n) , we find that

3 r(1+2njr(lj
z n fAn+] 2 2

24T (2n+1)

Again applying the Legendre’s duplication formula and simplifying, we have

gt o k(]

n=0 I— 2 F(;Hijr(nﬂ)
(GGG

_ z 4 n 4 4 n 4 ) t
o (l)n Iﬂ 24n+(3/2)

by e

which completes the solution.



Self-Learning Exercise

1. Define Gauss hypergeometric function in terms of a series.

2. What is circle of convergence for the series representing /' (a, b ;¢ ;2)?
3. F (=nbic;)=..... .

4. F (a,b;1-a+b;—-1)=...... .

5. F (a,b;c;l)=......... .

6. F (a,b;b ;z)=.ccnn. .

z
lim ,F | 1,b;1;— | = ...
7 b0 2 1( b]

8. F (—n,1-b-n;a;l)=....... .

10.7

Summary

In this unit, the function introduced by C.F. Gauss was studied. The important special cases,

properties and convergence conditions of this function were discussed in detail.

10.8 Answers of Self-Learning Exercise
0 a b Zn c—b
1 Z—( ), (), 2. |z|<1 3.( ),
n=0 (c)nlﬂ (c)n
F(l—a+b)F(1+bj
2 [(c)T(c—a-b)
4. b 5. 6. (1-2)*
r(1+b)r(1+2—a] F(c-a)l(c=b)
(a+b-1)
7. & 8. 22
¢ (a), (a+b-1),
10.9 Exercise
1. Define hypergeometric function F (a, b, ¢, z) and state the condition on its elements a, b and ¢
for its convergence.
2. Find representation of following functions in terms of Gauss hypergeometric function :
@ (1+z)n [Ans. F (=n,1;1;-2)]
1 -a -a a 1 a 3
i) —|(1-z) —(1+z } Y 2 R B
i) 5| (1-2)"~(1+2) [Ans. , 1(2+2 SAFER ]]
1
(iii) —log(1+z) [Ans. F (1,1;2;-2)]
z
. 1 1+z 1 3 5
iv) —Ilo [Ans. F(—,l;—;z ]]
2z g(l—z] N2 2
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.y 1 1 3 2

w sin_z [Ans. zFl(— ~;=520]
B 2’272
. 1 3

i) ltan_lz [Ans. 2171(—1 222 |]
z 2 2
3 1

(vii) sinz [Ans. z o F (_;E;_ZZZ ]
1 1

(viii)cos z [Ans. OF]( > _ZZZ ]

. Express complete elliptic integral of the second kind in terms of Gauss’s hypergeometric function
1 1 1 )
—n | =, —=;1:k

[Ans.2 2 1(2 > ]]

2

. Bytransforming the equation d—;; +n? v = 0 to hypergeometric form by the substitution ¢ = sin’ z.,
dx

prove that if ) < z < i then,

nm n n 1 5 . [ nm
cosnz =cos| — | ,F{| =, ——; —; cos” z |[+nsin| — |cosz
2 27 2727 2

b

and sinnz =sin (n_znj »F (

|
Nl:
l\)lr—‘
O
o)
w2
N
N
|
3
(@)
o)
w2
VR
N—
(@)
o)
w2
N

n
2
. Establish the transformation formula

1 1
F, (2a,2b;a+b+5;z)=2F] {a,b;a+b+5;4z(1—z)}

1
provided that a + b + 5 is not zero or anegative integer and if|z| <1 and |4z (1 —z2) | <1

Showh - 2F(abya+b;z)  T(a+b)
+ Showthat 1 —log(1-z)  T(a)T(b)
2 -1/2
. Ifthe complete elliptic integral of the firstkindis K' = j (l—kzsin2 ¢) do,
0

then show that k=2 F Ll lk|<1
2 272
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Unit 11 : Gauss and Confluent Hypergeometric Functions

Structure of the Unit
11.0  Objective
11.1  Introduction
11.2  Linear Transformation Formulas for Hypergeometric Function
11.2.1 Applications
11.3  Differentiation Formulas for Hypergeometric Function
11.4  Linear Relation between solutions of Hypergeometric Equations
11.5  Relations of Contiguity for Hypergeometric Function
11.6  Kummer’s Confluent Hypergeometric Function
11.6.1 Convergency
11.6.2 Differentiation Formulas
11.6.3 Integral Representation
11.6.4 Kummer’s First Transformation
11.7  Summary
11.8  Answers of Self-Learning Exercise

11.9  Exercise

11.0 Objective

In the last unit the Gauss hypergeometric function was introduced and some properties, summa-
tion theorems and convergence conditions for this function were discussed. The aim of this unit is to
study further the hypergeometric function. Precisely you will study the linear transformation formuks, con-
tiguous function relations, differentiation formulas and a linear relation between the solutions of hyper-
geometric differential equation. You will also study the kummer’s confluent hypergeometric function and

important formulas concerned with this function.

11.1 Introduction

Here some more results for the Gauss hypergeometric function (introduced in the last unit) will
be established. In fact linear transformation formulas, contiguous function relations, differentiation formu-
las etc. will be discussed in this unit.Next, the Kummer’s confluent hypergeometric function will be intro-
duced and important formulas for this function will also be established.
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11.2 Linear Transformation Formulas

Result :
If |z/<1 and L<1,then

1-z
(i) , F; (a, b, c; z)=(1_z)—“’2 F (a, c—b, c;ﬁ) ..... (1)
(ii) 1F(a,b, ¢; 2)=(1-2)", Fy (c—a,b; C;ﬁ) ..... )
(iii) , Fy (a, b, c; z)=(1—z)c_a_b2 F (c—a, c—b; c; z) ..... 3)

Proof. (i) We know that by integral representation of » F{(a, b, ¢; z) , if | z| < 1 and if

Re(c) > Re(b) >0
Then B(b,c—b),F(a, bsc;z) = j;tb_l (l—t)c_b_1 (l—tz)_a dt
o T A S i EE (R

=[P e ()

:(1—2)_“I;tc‘b‘1(l—t)b_l (1— a ]_a dt

z—1

:(l—z)_aB(c—b,b) 2] (a,c—b;c; z j

z—1

Thus 2Fi(a,b;e;z) =(1-z) 2171(a,c—b; o ]

(i) Taking LH.S  ,F(a,b;c;2) = ,F(b,a;c;z

(by symmetric properly)
Hence 2K (a,bse;z) :(l—z)_b 2K | c—a, b;c; le
Z—
(iii) From (1), we have ) F{ (a,b;c;z ) =(1-z2) zFl(c ba;c: — j ..... (4)
Z—
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Putting

=yorl-y=(l-2)", wehave

o
Now 25(0—b,a;c;ij =, F(c,bsa;c;y)

=(1-y)?) (c—b, c—a;c;ﬁ] ..... (5)
or ZFI(C—b,a; c;Z:] :(l—z)c_b 2F(e=bc-a;c;z) . (6)

Using (6) in (4), we have
2 F(a,b;c;z) :(l—z)c_a_b 2F(c—a,c=b;c;z)
11.2.1 Applications

1
Ifweset z= ) in the first transformation formula, then

1
zFl(a,b;c;Ej =2%F(a,c=bse;-1) L. 7
The series on the R.H.S. of (7) can be summed in terms of product of gamma functions with the
help of Kummer’s theorem in the following cases :
(i) c=c—a—-b+1 thatis p=1—¢
l+a+b

(ii) c:a—(a—b)+l or ¢=

From the first case, we get

zFl(a,l—a;c;%j =2%F(a,c+a-1;c;-1)

2ar(c)r(1+cz=+a]
zFl(a,l—a;c;%j N l+c—a
F(c+a)F( 7 ]

Further, applying the Legendre’s duplication formula for I'(¢) and I' (¢ + @), then we obtain

o)
? 1( j F(c+a) (l+c aj

In the same way, in the second case, we can prove the following result.

lvath 1] F( Jr(5")
)
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11.3 Differentiation of Hypergeometric Functions

Result : Show that

d b

(i) E[ZFl(a,b;c;x)] =%2Fl(a+1,b+l;c+1;x) _____ (1)
r b

(ii) an [zFl(a,b;c;x)] =%2Fl(a+n, b+ns;c+n;x) . )

Proof of (i), we have

4 plaboc:r) o4 s @),?),

dx 2]71( ’b, ’ ) _dX{’E) (C)r E}
2 (a), (), !
L0, &
2@,
_rzzl(c)r r—1

Since (a)n+l =a(a+1)

Therefore 4 [2Fl (absc; x)] = Z i

d
Z[ZFl(a’b ; c;x)] :ac_b 2R (a+1b+1 5¢c+1;5x)

(i) We prove the result by the principle of mathematical induction

Since by (1), we have
d ab
— 1| »Fl(ab;c; =— LK Lb+1 ; 1;
dx[z 1(absc x)] . 2R (a+1b+1 5c+1;x)

Therefore the result (2) is true for n=1

Suppose that (2) is true for n = m (a fixed positive integer) i.e.

il (4),, (%)
—— | ,F(ab;c;x)| =—22m E(ag+mb+m;c+m:;
" [2 i ( )] (c)m 2R (a+mb+m;c+m;x)
dm+1 d dm . .
Now, ol [2171(61,[9;0;16)] “ x| {2F1(a+m,b+m,0+m,x)}

b
z—m%[zFl(a+m,b+m;c+m ; x)]
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(a)m (b)m (a+m)(b+m)

= (c)m ) ctm 2Fi(a+m+l,b+m+l;c+m+l;x)

(a)m+l (b)m+l

=— " >/ (a+m+l,b+m+l cct+m+l; x)
(c)m+l
Thus result (2) holds for » = m + 1. Hence by P.M.I the result (2) is true for every positive
integer 7.

11.4 Linear Relation between the Solutions of Hypergeometric equations

In the unit 9, we have seen that the differential equation
2
z(1-2) d’y +{c—(1+a+b)z}@—abu =0
dz? dz

has the solutions 4 , F(a,b; ¢ ; z)and Bz 2£] (a+1-c,b+1-c; 2-c; z) which are conver-

gent for | z | < 1 whereas the solutions 4 ,F (a,b ;a+b+1-c;1-z) and B(l—z)c_a_b

K (c -a ,c—b ;1+c—a-b;1- z) ofthe hypergeometric differential equation are convergent for
|1 —z|<1.(Refer Ex.2. §9.4)

Hence there exist an interval (0, 1) in which all the four solutions exist. Since only two solutions
of the second order differential equation are linearly independent, which implies that there may exist a
linear relation between the solutions.

Let the relation be
F(a,b 1 C z) =4 2Fl(a, b,atb—c+1; 1—z)+

B(l—z)c_a_b 2F(c—a,c=b 5 c—a-b+1;1-z) ...(2)
where 4 and B are constants.

Putting z =1 in the above equation (2) and applying the Gauss’s theorem, we have

SF(abicil)= A= EEZ)—Fa()Cr_(Z :z; ..... 3)

where R(c—a-b)>0
Again, if we put z= 0 in (2), then it gives

l=4 F (a,b;a+b—c+1;1)+B F (c-a;c—b; c—a-b+1;1)
or 1= AF(a+b—c+1)F(l—c)+BF(c—a—b+1)F(l—c) ..... @

F(a—c+1)F(b—c+1) F(l—a)F(l—b)
Putting the value of 4 from the equation (3) in the equation (4) we obtain
[(c)T(c—a-b)T(a+b-c+1)'(1-c) I(c—a-b+1)I'(1-c¢)
+
[(c—a)l(c-b)T(a—c+1)[(b—c+1) I(1-¢)r(1-b)
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T()r(1-¢)F(c—a=b)[(1-c+a+b)  pL(c=a=b+)I(1-c)
o T T(e—a)T(1—c+a)T(c—b)[ (1—c+b) r(1-a)T(1-b)

Sincer(z)r(l_z): ' T , therefore
sinmz

sinn(c—a)sinm(c—b) .\ I'(c—a-b+1)I'(1-c¢)
sintesinn(c—a—b) [(1-a)l(1-5)

F(c—a—b+1)F(1—c)B 1_sinTc(c—a)-sinn(c—b)

I(1-a)I'(1-b) sine-sinn(c—a—b)

~ sinte-sinn(c—a—b)-sinn(c—a)sinn(c—b)

sinnc-sinn(c—a—b)

[{cosn(a+b)—cosn(2c—a—b)}—{cosn(b—a)—cosn(2c—a+b)}]

2sin e sin n(c—a—b)

~ cosm(a+b)—cosn(b—a)

2sinncsinn(c—a—b)

sin ma sin th

sin me sinn(c—a—b)

I(1-a)I'(1-b) sin ma sin b
B= F(l—c)l“(c—a—b+1)'sinnc sinn(a+b—c)
Applying sinr, Zm,we have
~ I(1-a)T(1-b) n n
B T(—ar(c—a—b+1) T(a)T(1-a) T(5)T(1-0)
.F(c)F(l—c)F(a+b —c)T(1-a-b+c)
5 :F(c)F(a+b—c)

I'(a)r(2)
Substituting these values of 4 and B in (2), we get the following linear relation :

F(C)F(c—a—b)
Fa3b5¢52)= D(c—a)T(c—b)

»F (a, b;at+b—c+1; l—z)

F(C)F(a+b—c)

r(a)r(5)

(l—z)c_a_b 2Fi(c—a, c=bsc—a-b+1; 1-72)
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11.5 Relations of Contiguity

The functions obtained by increasing or decreasing any one of the parameters of the hypergeo-
metric function F, (a ;b ; ¢ ; z) by unity, are called the functions contiguous to it. In this way, we obtain
the following six functions contiguous to ./, (a;b;c;z):

(i) F(a+)=,F, (a+1; b;c;2)

(ii) F(a-)=,F,(a—1, b;¢;2)

(iii) F (b +) = F, (a,b+1; c;2)

(ivy F(b-)=,F,(a,b-1;¢;72)

(v) F(ct)=,F (a,b;ct152)

(vi) F (¢c—) = F,(a,b; c—1;572)

Now we shall see that the function F, can be connected with any two of its contiguous functions
giving rise to fifteen (that is °C)) relations in this way. These relations were first obtained by Gauss and

are called contiguous function relations.

b n -
—(a)” ( )” 2 0y, thenclearly F= F, = Z S5, . (1)

(), In n0

Now we have

If we write

F(a+)=F (a+1; b; ¢;2)

i

S

—~

>

S S
S

SN:

= a+
=28, [using (1)]

In this way, we obtain the following relations

< (a+n). ~ 2 (a-1)

s (bEn) & (-
F(b+)—n§) ) n,F(b—)—g)—(b_Hn)an

_ - (C) S . & (c—1+n)
P Bern ™ MO By

In proving these relations, the formulae
F(a+n—1) (a—l)
I'(z+1)=2zI(z) and (a—1) = Faoh) (a+n—1)(a)” were used.
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below :

There are fifteen contiguous function relations for the hypergeometric function, which are given

(i) (a-b)F=aF(a+t)-bF(+)

@ (a—-ct+t)F=aF(a+)—(c—-1)F(c-)

(@@ [(a+t(b—c)z]F=a(l-2)F(at)—c'(c—a)(c—-b)zF(c+t)
) (1-2)F=F(a-)-c'(c-b)zF(c+t)

v) (I1-2)F=FMb-)-c'(c—a)zF(c*t)

vi) [2a—c+b-a)z|F=a(l—-2)F(a+)—(c—a)F(a-)

i) (a+b—c)F=a(l-2)F(a+)—(c-b)F(b-)

wiii) (c—a—-b)F=(c—a)F(a—-)-b(1-2)F(b+)

(ix) (b-a)(1-z)F=(c—a)F(a-)—(c-b)F(b-)

x) [l—at(c-b-1Dz]F=(c—a)F(a—-)—(c-1)(1-2)F(c-)
i) [2b—ct(a-c)z|F=b(1-z2)F(b+)—(c-b)F(b-)

i) [b+(a—c)z] F=b(1-z)F(b+t)—c'(c—a)(c—b)zF (c+)
@ii) (b—c+ 1) F=bF(b+)—(c—1)F(c-)

xiv) [1-b+(c—a-1)z] F=(c-b)F(b-)—(c—-1)(1-2)F(c-)
xv) [c=1+(@+b+1-2c)z]F=(c-1)(1-2)F(c-)—c'(c—a)(c—-b)zF(ct)

d
Again since zdi(z”) =nz", writing 0= Z,we have

O(Z”)=nzn and @ +a)z"=(n+a)z2 ()
Hence (0+a)F= ), (n+a)s, . 3)
n=0

< (a+n
Using the relation F'(a+) = z ( jé‘)n

n=0 a
®+a)F=aF@®v (4)
Similarly from ~ F(a+) = ), (aaﬁ]éin and F (h+)= i (b;;"]an
n=0 n=0
O+b)F=bF®B+) (5)
and ©+c—1)=(c-)F(c- .. (6)

Proof. (i) Subtracting (5) from (4), we obtain (i) i.e.,
O®+ta)F-O+b)F=aF(at)-bF(a+t)

= (a-b)F=aF(a+t)-bF(b+)

(ii) Subtracting (6) from (4), we have
O+a)F-O+c-1)F=aF(a+t)—(c-1)F(c-)

= (a-c+l)F=aF(@a+)—(c-1)F(c-)

208



(iii) We know that 0(z") = n 2",

(a+n)(b+n)

But W =n+(a+b—c)+

(c—a)(c—b)m

(c+n)

.. The above equation (7) with the help of (8) is transformed to

OF =Zin8n +(a+b—c)zi6n +Z(c—a)(

n=0 n=0 C n=0 C + n

or (l—z)OF :(a+b—c)zF+c](c a)(c b)zF(c+)

Also from (4), we have OF =—a F+a F(a+)
which implies that (1-z) 0F=—a(1-z) F+a(1-z2) F (a+)
From (9) and (10), we have.

[a(l—z)+(a+b—c)Z]F :a(l—z)F(a+)—c_]

or [a+(b—c)z]F =a(l-z)F(a+)-c"

(iv) Consider 0 F (a—)= i

Since =1-
c+n c+n

Putting this value in the above relation (13), we get

0F(a-) = (a—l)zi(l—w]ésn

= (c+n)
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:(a—l)ziosn _{azl)(e=b)z i( ¢ )]sn

c o\ (c+n
OF(a—) :(a—l)zF—c_](a—l)(a—b)zF(c+) ..... (14)
But in equation (4), if we write (@ — 1) in place of a, we get
0F(a-) =(a-)F—(a-1)F(a=) .. (15)

Combining the equations (14) and (15), we get the required result (iv).
(v) If we interchange a and b in (iv), we obtain (v).

The remaining ten relations can be deduced by making use of the above five relations.

11.6

Kummer’s Confluent Hypergeometric Function

The hypergeometric differential equation is

d’u du
1- +.c-(1+a+b)z{——=abu=0 . 1
2(1=2)+{e=(1+a+b)z}— ()
Replacing z by z /b in (1), we get
z(l—ij d’u + c—(1+1+—a]z ﬂ—au =0
b dZZ b dZ ..... (2)
Now take the limit as 5 — oo, the equation (2) reduces to
d’u du
+ C— ——qau = 0 ..... 3
2z H(e=2)— (3)
whose solution is given by 11)13}10 ,F (a,b;c;%] ..... 4)
The equation (3) is known as the confluent hypergeometric differential equation or Kummer’s
equation.
(b) b(b+1)(b+2)...(b+r-1)
Now, lim —~ = lim
o p5e b7 bow bbb, rtimes

T SO T I Pt I
bh—> © b b b

Hence the solution (4) may be written as
. 2) (@) () (2Y
bhj{}o . (a,b,(?,zj —}%;W 5

()2 (),
Ay

~

),
X i)

The function F\(a; c; z) is called the confluent hypergeometric function.
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Now considering the equation (3), we find that z= 0 is a regular singular point, so if ¢ is neither
zero nor a negative integer, two independent solutions in series of it can be easily found by Frobenius
method described in unit 9

u = F(a cz)
u, =z Fla—c+1;2-¢;2)
Hence the general solution of equation (1) is
u=A F(ac;z)+Bz "\ F(a—c+1;2-¢;z)
where 4 and B are arbitrary constants.

11.6.1 Convergency of the Confluent hypergeometric function.

Ifu and u _ arethe n" and (n + 1)"terms of the series representing confluent hypergeometric
function, then

o, | ] (@), It (e,

@ n () ‘

(c+n)(n+1)
T 04 ) B
nowl oy el (c+n)(n+1)
Hence o] 1 for all z. Thus the series is always convergent.

n

11.6.2 Differentiation of Confluent hypergeometric function.

Results :
5 4 F; (a;c;x) . Fi(a+1;c+1;x)
(i) o 186 1 ; ;

n a
i) — 1Fy (a;c;x) =—2 Fi(a+n;c+n;x
(ii) o ! 1 ( ) ), 1F1( ; 3X)
The proofs of above formulas are similar to formulas given in §11.3 for Gauss hypergeometric
function.

11.6.3 Integral representation for confluent hypergeometric function

If | z| <1 and Re (¢)> Re (a) > 0, then

1

-1 c—a-1 ¢
B (a, c—a) F (a; c;2) =Ita (1-1) e dt
0
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1
L(c) _[t“‘l (1-0) e ar
0

or F,(a; ¢; 2) =F(a)F(c—a_)
_ F(c) 1 a-1(1_ \¢—a-l < (Zt)n
Proof we have R.H.S. —W J. 7 (1-1) ,Z:()Tdt

“r(a)T(c—a) Z)ln  T(c+n)

11.6.4 Kummer’s first transformation

Result :
If ¢ is neither zero nor a negative integer, then F, (a;c;z)=¢ F (c—a;c—23).

Proof : By integral representation of confluent hypergeometric function, we have.

1
B(a,c—c) Fa;c;z) = jta_l (l—t)c_a_1 e dt
0
Using the property of definite integral, we get

1
ezjtcall l‘CI_thl‘
0

—€B c¢—a,a F(c-ac -2
Fi(a.c;—z)=¢& F (a—c a —z)

Ex.1. If m is a positive integer, show that

2 Fy (—m,a+m;c;x) =

and deduce that

——a
(u2—1)2 Ve m a 1
11 1) 2 2)d 2 L\,
272 (” _1)

a
2 Fy [—m,a+m;—+—;———

Sol. RHS. = I'(c)




=x (1-x)* i (c(—l;;n)r (c_alz_m)r (et

r=0

:(l—x)c_aZFl (c+m ,c—a—m;c;x)
But we know by transformation formula
Fo(a b;e;2) :(l—z)c_a_szl (c—a,c=b;c;z)
RHS. = F (-=m,a+m;c; x)=LH.S.

- 1+ )
Deduction. Putting x = IT“ and ¢ = Ta, we obtain the second part of the question.

Ex.2. If m is a positive integer, and | x | > 1, show that

m+1l m+2 -1 (_l)m X" d"

1
2Fl(2’2’1’x2]_ Im ™ {\/x2+1}'

Sol. We know that

G] (2r+1) x 2l

Y

r=0
m+1 m
F(2r +m+1) 2’"F(r+2 jr(r+2+1j
But @D, = r(2r+1) 1
F(r+2jf(r+l)

Putting the value of (27 + 1) in the above relation
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. L (=" (;] 2'"1"(}’+’;1+;]F(r+};+l]x_2r_m‘l
L e
dx r=0 lzr(r+2]1“(r+l)

oy (mALY) (m+2 g2l
:'20( ) ( 2 l( 2|)L

(Again applying Legendre’s duplication formula)

DaclColnes

_1\" ,m+l m _ -
(-1)"x dm(1+x2) 1/2: Z )
Iﬂ dx r=0 (l)rlﬁ
m+l m+2 , -1
= 2171(7,7; ,x—z]

Ex.3. Prove that

;.ic”’ [x"_””’zF] (a, b; c; x)] = (a)m x“' ,F,(a+ m,b; c; x)
m _
Sol. L.H.S. Z:li—m_xa R (a, b x)}
— dm i (a)r (b)r .xa+m+r—1
dx" | =0 (c)rlf
dm
But d—m(x“m”_]) =(a+m+r-1)(a+m+r-2)..(a+ r)xa”_]
X
Z(a+7‘) xa+r—1 — (a+m)r (a)m xa+r—1
m

a+r-1

(a+m) (a) x

Lus -3

=(a)m x¢! B (a+m,b; c;x)
=R.H.S.
Ex4. Prove thatIlfa +b +c > 0, then
F(C)F(a+b—c)

r'(a)r(5)

lim {(1— x)aer_c2 F, (a, b;c; x)} =

x—>1

Sol. LH.S. =lim {(1 - x)a+b_c 2Fi(a,b;c x)}

x—1
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Now applying the transformation formula of

»F(a,b; c;x) :(l—x)c_a_b F(c—a,c—b;c;x)

2

LH.S. =lim {(1 ) _x)c_a_bz

x—1

K (c—a,c—b; c;x)}

zlim{zF] (c—a,c—b; c x)}

x—1

=,F(c—a,c=b;c; L)

I'(c)T b—
_ (012 (a()alj(b) c) (applying Gauss’s theorem)

=R.H.S.

Ex.5. Prove that 1F (a, b; Z) = F(a) J.e_'ta_loFl (—; b; zt)dt
0

Sol. RH.S. =—— [y
0

=\F (a,b;z) =L.H.S.

Self-Learning Exercise

. lim A (a,c;—£]= .....
c

a —» 0
. Write the Kummer’s first transformation for F

. aF (a +)—bF(b+): ......

lim {(1—x)a+b_c ,F (a,b;c;x)} =...

S xol
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11.7 Summary

In this unit we established some important formulae such as differentiation formulas, contiguous
function relations, linear relations etc. for Gauss hypergeometric function introduced in the last unit. We

also introduced and studied Kummer’s confluent hypergeometric function.

11.8 Answers to self-Learning Exercise

. alar)b(brl) (a+2,b+2;c+2:x)
c(c+1)
2. \F(a;c;x)

3. 720 (e) g, (22)
4. \F(a;c;z)=e"\F(c—asc;-2)
5. (a-b)F

[(c)T(a+b-c)
I'(a)T(b)

11.9 Exercise

di’l

n dxn

L Provethat  (b) < e F (asb5x) |=(-1)" (b—a), e\ F (asb+n;x)

2. Show that 1F(a;0;x) = lim ,F (a;b;c;%j

b—0
3. Show that (c), j—[e‘xlF] (a;c;x)] =(-1)"(c—a) e F(a;c+m;x)

xm

(Hint. Use Kummer’s first transformation)

4. If incomplete gamma function is defined by y (a,x) = [ e™+*"'dt, Re(a)> 0.

O —y

Show that y(a,x)= a 'xF, (a;a+1;-x).

5. State Confluent hypergeometric differential equation and explain its solution,
6. Prove that

ﬁz‘*r(i)r(”‘;”’

e
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j,Re(i)>0,Re(z)>0.

o 1
J’tz I Z’IF](a;ﬂ;Z—tJ dt =
0 2 2



10.

[Hint First replace F by its integral representation, then change the order of integration, Evalu-

ate the inner integral in terms of the gamma function. Write down the remaining integral in terms

of
F(%+a+ljr(lj
(x gphratl 1) 2 2
E s Uy D -
2 2 F(Mljr(aH]
2 2
a(c—b)x
. Prove that F(a,b+1;c+1;x)—F(a,b;c;x):ﬁF(a+l,b+l;c+2;x)
c(c

. Prove the following relations :

@) F(a-1,b-Lc;x)-F(a,b-1cx)= (1_bb)xF(a,b;c+l;x)

@) aF(a+1,b;c;x)—(c—1)F(a,b;c—Lx)=(a+1-c)F(a,b;c;x)

. Show that

@ e -1=xF(1,2;x)

(ii) (1+£]ex =F(a+1a;x)
a

Prove the following relations
(i) bF(a;b;x)=bF (a—1;b;x)+x F(a;b+1;x)
(i) aF (a+1L;b;x)—(b-1)F(a;b-1x)=(a—b+1)F (a;b;x)

HEin
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Unit12: Legendre’s Polynomials and Functions P (x) and Q, (x)

Structure of the Unit

12.0  Objective

12.1  Introduction

12.2  Legendre’s equation and its Solution

12.3  Definition
12.3.1 Legendre’s Polynomial of Degree n or Legendre’s Function of First Kind
12.3.2 Legendre’s Function of Second Kind
12.3.3 Values of P (x) forn=0, 1,2, 3,4, and 5

12.4  Generating Function for P (x)

12.5  Rodrigue’s Formulae for P (x)
12.5.1 Alternative form of Rodrigue’s Formula
12.5.2 Application

12.6 ~ Orthogonal Property for P (x)

12.7  Recurrence Formulas for P (x)

12.8  Cristoffel Expansion
12.8.1 Cristoffel Summation Formula

12.9  Expression for P (cos 0) in Terms of Cosine Series

12.10 Recurrence Formulae for Q (x)

12.11 Cristoffel’s Second Summation Formula

12.12  Relations Between P (x) and Q (x)

12.13 Summary

12.14 Answer to Self-Learning Exercise

12.15 Exercise

12.0 Objective

Our aim of this unit is to develop the Legendre Polynomials and to discuss its important
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properties.

12.1 Introduction

Legendre polynomials may be introduced either through solution of a differential equation or
through a generating funcition. We shall discuss both the methods. Legendre polynomials have many
applications to mathematical physics and these applications depend on a number of special properties

which Legendre polynomials possess.

12.2 Legendre Equation and its Solution

The differential equation of the form

d? d
2 Y Y
(l—x )—2 -2x—+n(n+l)y=0 (1)

is called Legendre’s equation, where 7 1s a positive integer. This equation has regular singular points at
x == 1 and x = oo, whereas all other points are ordinary, one of which be chosen as x = 0 since all
other ordinary points may be transferred at the origin.

The solution of equation (1) in series of descending powers of x can be referred to example
1§9.5 of unit 9.

However for sake of completeness we here reproduce the solution of (1).

Let the solution of (1) be

y= z ax*" aqp=0 L )
r=0
then ﬂ = z arxk_r_l (k _’”)
dx =0
ond 4y =3 a (k=r)(k-r—1)x"2
dx* =0

2
dy and y in (1), we get
dx dx?

Putting the values ofy,

[e¢] o0

(l—xz)Zar (k—r)(k—r—l)xk_r_2 —in a,x" (k—r)+n(n+l)2arxk_r =0

r=0 r=0 r=0

or %ar (k—r)(k—r—l)xk—’”—z +%{n(n+l)—2(k—r)—(k_r)(k_,,_l)} a, o

or Zar(k—r)(k—r—l)xk_r_z+Za,,(n—k+r)(n+k—r+l)xk_r:0 _____ 3)
r=0 r=0

Equating to zero the coefficient of the highest power of x namely x* in (3), we get
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obtain

ay(n—k)(n+k+1)=0
= k=n,—(n+1) (0 a,#0)

The next lower power of x is k — 1, so we equate to zero the coefficient of x*~! in (3) and

(n—k+1)(n+k)a =0
For k=nand —(n + 1), neither (n — k + 1) nor (n + k) in zero. thesefore a, = 0
Next equating to zero the coefficient of x*~"in (3), we have

(k—r+2)(k—r+1a ,t(n—k+try(n+tk—r+ 1)a =0

(k—r+2)(k—r+l)
a =- a,_,
" (n—k+r)(n+k-r+1)
Putting »=3, 5, 7... in (6) and noting that @, = 0, we have

To obtain a), a,, a,.... etc, we consider following two cases
Case 1. When k = n then (6) becomes
(n—r+2)(n—r+1)

o= r(2n—r+1) =2

Putting r=2, 4, 6, .... in (8), we have
n(n-1)

and so on

T (1)@
(n—2)(n-3) n(n-1)(n-2)(n-3)
a4 = az = aO
4(2n-3) 2-4(2n-1)(2n-3)
Re-writing (2), we have for k=n
y=ax"tax"'tax"t+ax"+tax"t+ ..
Using (7) and the above values of a,, a,, a,, etc in (9) we get
y=a,|x" —n(n—_l)x"_2 + n(n=1)(n=2)(n-3) X
2(2n-1) 2-4(2n-1)(2n-3)
Case II. When k= —(n + 1) then (6) becomes
-1
. (n+r—1)(n+r) ‘“
: r(2n+r+1)
Putting r=2,4, 6, .... etc., we get
0 - (n+1)(n+2) 0
2(2n+3)
(n+3)(n+4) (n+1)(n+2)(n+3)(n++4)
a,~" 4 ar =
(2n+5) 2-4(2n+3)(2n+5)

and so on.
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Fork= —(n+1),(2) gives
y=ax" 'tax" Ptax" P tax" ttax O+ ..(12)

Using (7) and the above values ofa,, a,, a,, etc. in (12),we find that

+1)(n+2 +1)(n+2)(n+3)(n+4
(4)(+2) s () 2)0e3)024) s, ]
2(2n+3) 2-4(2n+3)(2n+5)
Thus two independent solutions of (1) are given by (10) and (13). If we take
. _1:3:5..(2n-1)
" [
then solution (10) is denoted by P (x) and is called Legendre polynomial of first kind and if we take

In

T135..(2n+1)

y=a, x—n—l _

a, then solution (13) is denoted by Q (x) and is called Legender polynomial of

second kind so the general solution of (1) is

y=AP,(x)+B0,(x)
where 4 and B are arbitrary constants

12.3 Definition

12.3.1 Legendre’s polynomial of degree n or Legendre’s function of first kind

Legendre’s polynomial of degree # is denoted and defined by

Pn(x)zl.}s_..(zn—l){xn_ n(n-1) n_z+n2(n—1)(n—2)(n—3)xn_4m

n! 2(2n—1)x -4(2n-1)(2n-3)
[2/2] (2n-2r)
= -1 r xn—Zr’
rZ=(:)( ) 2"I£|(n—r)|(n—2r) ..... (1)
nl n/2,if niseven
where [5} “\(n-1)/2,if nisodd, )

12.3.2 Legendre’s Function of Second Kind
This is denoted and defined by

n!

%) =15 )

~(n+1) (n+l)(n+2) —(n+3) (n+1)(n+2)(n+3)(n+4) (n+5)
’ ’ 2(2n+3) " 2-4(2n+3)(2n+5) * B EEE 3)

12.3.3 Values of P (x) for n =0, 1, 2, 3, 4 and 5
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Puttingn =0, 1, 2, 3, 4, and 5 in (1), and simplying the expression thus obtained we easily find that

Pyx)=1, P/(x)=x

P,(x) :%(3)(2 —1)’ Py(x)= %(5?“2 —3x) ..... (4)
P,(x) :%(35x4—30x2+3) and . (5)
P(x) zé(63x5 -70¢+15x) ©6)

12.4 Generating Function for P (x)

Result. Show that (1—2xh+h2)_1/2 = i h"P,(x),| x|<1,|h|<1
n=0

or show that P (x) is the coefficient of /" in the expansion of the (1 — 2xh + h?) in ascending
powers of i. (1 —2xh + h*)™' is called generating function for Legendre polynomial P (x).

Proof. Since | 7| <1 and | x| < 1, we have

(1 2xh+ 122 =[1-h(2x-h)]

— 1 (20 )R (20 )
13....(2n- Lo 13 (2n-1

3 2n23) gyt (1320 o )
2-4..(2n-2) 2-4...(2n)

Now, the coefficient of 4" in

1-3....(2n-1)

n'(2x-h)" = 2x)"
ra2n) BN Sy )
1-3-5-(2n-1)
= I X 2)
Again the coefficient of /" in
: _ 1-3....(2n-
1-3....(2n-3) e (2x—h)n_1 _ ! 3...(2n-3) [—(n—l)Z"_zxn_zJ
2-4...(2n-2) 2"1-2-3....(n-1)

C13..(2n-1) m(n-1) .,

X X
|n 2(2n-1)
and so on. Using (2), (3), ....., we see that coefficient of 4" in expansion of (1 — 2xA + h?)'2,
viz. (1) is given by

1:3-5....(2n-1)| , n(n-1) ,, n(n-1)(n-2)(n-3) ,.4
L Y ey T2a(an-n)(2n-3) _"}:Pn (x)
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Thus we can say that P (x), P,(x), .... . Will be coefficientts of /, 4%, .... in the expansion of
(1 —2xh + h*)"2. Hence we have

(1-2x+ )" =1+hP (x)+h*P,(x) + IPP(x)+ ... + I"P (x) +...

or (1-2xh + 2 = ) h"P, (x)

n=0

12.5 Rodrigues Formula for P, (x)

n
Result. Show that P, (x)= 1 4 (x2 - l)n

Proof. Let y=x2-1)
dy 5
- _ -1 n—1, 2
I n(x ) X

Multiplying both sidees by (x? — 1), we get
dy
2 — 1 —_— = 2 — 1 n., 2 = 2
(x ) I n(x ) - 2x nxy

Differentiating (n + 1) times both sides of the above equation and using Leibnitz theorem, we

get
n+2 n+l n
(xz 1 d Y n+1c1 -2x-d Y n+1c2.2d Y
dxn+2 dxn+1 dxn
n+l n
=2n xd )1;+ e 47
dx"* dx"
Simplifying the above equation, we find that
n+2 n+l n
or (1= N e e (1)
dxn+2 dxn+1 dxn
"y
Let —~=zin(4). Then
2
(1-+?) d—j—zx@m(ml)z:o ..... )
dx dx
Now (2) is Legendre’s equation and shows that z is a solution to this equation. Hence one of'its
solution be
n
=4, P 3)
dx"

where c is constant
To find ¢, put x = 1 in both sides of (3), therefore
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dn
cP (1) {dxﬂ
x=1

d"y
= c= p [~ PMH=11 . (4)
dx B
x=1
Again y=@2-1y=x-1)"-(x+1)"
Differentiating both sides 7 times by Leibnitz’s theorem, we get
" pd" (x+1)" A" (x+1)" n- pd" (x-1)"
Ay _ (g L) 47 (x) (=1 (1) a(x=1)
dx" dx" dx"” dx"

Now putting x = 1 in both sides of above relation, we see that all the terms in RHS except the

last term vanishes since each term contains the factor (x — 1), and also

d" (x— 1)"
dx"

|n
d"y

Thus (dxn] ] =+ n=2"0 (5)

Now using (5) in (4), we find that

c=2"|n
Substituting the values of y and ¢ in (3), we easily arrive at the Rodrigue’s formula.

12.5.1 Alternative form of Rodrigue’s formula

We have

[e¢]

1 —-r r
P (x) P ZO: "e,.D" " (x=1)" D" (x+1)"
i 2 x=1) (x+1\"
SeSEs ©
12.5.2 Application

n

Multiplying (6) by ( > and summing from 7z = 0 to oo, we get

S 5 (T




10 =0 (1m)’ (Lr)?
{usingg éA(k,n) zg :Z()A(k,n+k)}
=0k (—;I;XT_ltjoF] (—;l;%lt] ..... (7

12.6 Orthogonal Property for P, (x)

Result : Prove that

+1
(0 [ P, (x)B,(x)dx=0 ifm=n
-1

+1

2 )
and (ii) I [Pn (x)]z dx = i1 ifm=n
-1

Proof. The Legendre equation is

d’y . dy
(1—x2)y—2x$+n(n+l)y=0

or i{(l—xz)z_y}+n(n+l)y=0 _____ (1)

dx X

Now since P, (x) and P (x) are solutions of (1), hence

d dP
Z{(l—xZ)d_xm}+m(m+l)Pm=0 ..... (2)

d dP,
and Z{(l—xz)d—;}w(ﬂl)%ﬂ ..... (3)

Multiplying (2) by P and (3) by P, and substracting, we get

Pm(x)di{(l—xz)@}— i{(l—xz)%}+{n(n+l)—m(m+l)}f}le =0

X dx " dx

Integrating above w.r.t. x form—1to 1, we get

1Pm (x)%{(l—xz) C;Zl }dx—ijlﬁl%{(l—ﬂ)%} dx +{n(n+1)—m(m+l)}1Pandx= 0

On integration by parts, we get

o) 22] - o o) 2]

-1
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+1 +1
_;’[CZZ’ {(1—;52)%}} dx +{n(n+1)—m(m+l)} J}PmPndx: 0
+1
or (n—m)(n+m+l) IPledx:O
3
+1
= [PBd =0 men (4)

-1

Case II. When m = n. From generating function

(1—2xh+h?) 12 = i R'P(x)y L (5)
n=0

(1—2xh+ h?)12 = i PP (x) (6)
m=0

Multiplying the corresponding sides of (5) and (6), we get

(1= 2ch+ 1)1 =2, D B(x) B, (x) A"

n=0 m=0

Integrating both sides of the above with respect to ‘x” from— 1 to 1,we get

-1

i i {]} B, (x)P,(x) dx} n ::].1(1—2xh +h2) dx (7

Making use of (4), (7) reduces to

i { T TG dx}hzn ) _ﬁ[log(l—b&whz)}

+1

1

:%[log(l+h)—log(l—h)]

Equating coefficients of 72" from both sides, we get

2
2n+1

r]PZ (x)dx =

"

12.7 Recurrence Formulas for P, (x)
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1271 (n+1) P, ,(x)=2n+1)xP (x) —nP, (x), n=,

or  Qu+DxPX)=@m+1P, (X)+nP, (x)
Proof. We know that

(1—2xh+h2)12 = i R'P(x)y L (1)
n=0

Differentiating (1) both sides w.r.z. h, we get

[e¢]

_%(1—2)&1 + hz)_3/2 (—2x+2k) = 2 nh""B,(x)

n=0
or (r—h) (1= 2xh + 12 12 = (1 = 2xh + ) D nh" "B, (x)
n=0
or (x—h) > "B, (x) =(1—-2xh+h) Y nh""P,(x)
n=0 n=0

Equating coefficients of #” from both sides, we get

or xP(x)-P (x)=(n+1)P  (x)-2xnP (x)+(n-1)P ,(x)
or @n+1)xP (x) =(n+1) P, (x)+nP (x)

12.7.2 nP,(x)=xP,(x)— P,_,(x)

Proof.

Differentiating (1) w.r.t. 2’ we get
-3/2 .
—%(1—2)&1 + hz) 2 Coxt2m) = D bR, (x)
n=0

or (x—h)(1=2xh+ > =" " 'B(x) L. )
n=0

Again differentiating (1) w.r.t. x’, we find that

—l(l—2xh + hz)_3/2 x (-2h) =2 h"P, (x)
2 n=0

or h(1 —2xh+ h*)32 = Zh"Pn (x)
n=0
Multiplying by (x — /) on both sides, we get

h(x— h) (1—2xh+h2)_3/2 =(x —h)ih”P,; (x)
n=0
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[e¢]

Using (2), we get 2 nh"B,(x) =(x —h) Y h"P, (x)
n=0 n=0

Equating coefficients of 2" from both sides of the above equation, we get
nP, (x)=xP,(x)=P,_(x)

12.7.3 Qn+1)P(x) =P, ;(x)— P,_(X)n

Proof. From recurrence formulas 12.7.1, we have

@n+1xP (x)=(n+1)P  (x)+nP (x)

n+1

Differentiating it w.r.z.’x’, we get

@n+ 1P x)+2n+ 1xP' (X)=n+ 1P _ (x)+nP (x)

From recurrence 12.7.2, we have
nP (x)=xP' (x)- P _(x)

or xP,(x) =nP,(x)-P,_,(x)
Using (4) in (3), we get
Qn+ 1P x)+Qn+1)[nP(x) + P (x)]=m+DP , (x)+nP ()
or Cnt D+ HP @) =n+1D) P &) -(n+1) P (x)
or @n+1)P(x)=P'  (x)-P' (x)
12.7.4 n+HP =[P,  (xX)-xP' (2]

Proof. From recurrence formulae 12.7.2 and 12.7.3, we have
nP (x)=xP' (x)-P', (x)
@n+HP(x)=P'  (0)-P' ()
Substracting, we get
n+DPE)=P',, (x)-xP' )
12.7.5 1-x)P' (x)=x[P,_,(x)—xP (x)]
Proof. From recurrence formulae 12.7.2, we have
nP (x)=xP' (x)-P', (x)
Multiplying by x, we get ~ nxP (x)=x*P’' (x)—xP’', _(x)
Replacing n by (n — 1) in formula 12.7.4, we have
nP (x)=P' (x)-xP’' | (x)
Substracting (7) from (8), we have
X [P,_ () —xP, ()] = (1 -3)P" (x)
12.7.6 A-x)P'(x)=(n+1)[xP (x)-P,, (x)]
Proof. From recurrence formula 12.7.1, we have
@n+1)xP (x)=(n+1)P  (x)+nP (x)
or (n+ 1)xP (x) +xnP (x)=(n+1)P _ (x)+nP (x)
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or (n+1)[xP(x)-P ,]=nP ©-xPx®] .. 9)
From formula 12.7.5 we have
(1-x)P' x)=n[P, (x)-xP®] .. (10)
From (9) and (10), we easily get
(1-x)P' ()= (m+1IxP,(x)-P, ()]
Self-Learning Exercise—I

(1) The solution of Legendre’s differential equation is known as ......

@ (1-2h+m)? =S ..

n=0
+1
@) [ B (x)B(x)dr= ... (it m # n)
-1
@ P()=...
(5) P (x)isapolynomial of degree ......
1 d " (x2 - l)n
©6) P,(x)= is known as ......
2"n dX"
(7)) x=.... is an ordinary point for Legendre differential equations.

(8) The value of P,(x) is .......

©) (n+1)P,(x)=P,(x)+xP, (x)=...
(10) if n is even/odd, then P (x) is ............ function of x.

12.8

Cristoffel’s Expansion

Result : Prove that
P' =@Qn-1)P +Q2n-5)P +Q2n-9)P, .t...
where P =Px) and P’ =P'(®» |\ .. (1)
The last term of the series will be 3P, or P accordin b as n is even or odd.
Proof : Replacing n by n— 1 inrecurrence formula 12.7. S, we have
P' =Q2n-1)P +pP' [ .. (2)

Writing n — 2, n— 4, and so on in place of n in (2), we ﬁn& that

P' ,=@2n-5)P ,+P'

P' ,=@2n-9)P +P'

1

4

6

P',=5P + P,
, =3P +P',

229



When 7 is even, then adding the relations in (A) and (2), we get
P =2n-1)P +Q@2n-5P +Q2n-9)P +..+3P (. P'(x)=0)
and when # is odd, then
P =@2n-1)P +@2n-5P +2n-9P +...+5P,+P

12.8.1 Ciristoffel’s Summation Formula

Result : Prove that

2 P P -P P
%(2r+1)P,(x)P, (») = (n+1){ it () (yx_y"” )F, (x)} ..... 3)
Proof. Prom recurrence formula 12.7.1, we have
Qr+DxP.x)=@+)P_  (x)+rP _x) L. (4)
@r+)yP)=(r+HP_  »+rP_» (5)

Now multiplying (4) by P (y) and (5) by P (x) and subtracting, we find that
@r+ D= P.®P,0)=(+DIP, () P.0)-P_ ()P ()]
+rMP_ (x)P.O)-PxP_ O .. (6)
Taking =0, 1,2, .... n in (6) and adding the relations column-wise, we get the required result

©)2

12.9 Expression For P, (cos 0) in Terms of Cosine Series

we know that

(1-2xt+&2=>P(x)" (1)
n=0
0, —i0
Taking X =cos0= %
in (1) we easily get

Z(:)Pn (cosO)t" = (1 _ ey 12(1 g0y ()
n=

) . . 1-3..... 2n—1 .
= 1+lte19 +£t2e219 +...+¢t”e’”9 +...
2 2-4

, . . 1-3....(2n—-1 ;
X 1+lte_19 +£t2e‘219 +...+¢t”e"”9 Fo
2 2-4

Now equating coefficients of #” both sides, we get

1.3.5____(2;1—1) (eing +e_i"9)+ 1-3-5....(211—3) 1 (el»(n_z)g +e_l»(n_2)9)

P(cosO)™ 75 4 6., (2n)
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13520 -5) 1'3(ei("‘4)9+e‘i(”‘4)9)+
2:4-6...(2n—4) 2-4

b sy 135e(20-1)
of Aeos O = — e o
2cosn 0+ -2cos(n—2)0+ n(n-1) -2-2cos(n—4)9+
2n-1 (2n-1)(2n-3) 1-2

the above formula is useful in obtaining the integrals involving the products of P (cos 0) and sine and
cosine multiple of 6.

1+z 1 &
Ex.1. Prove that —————= Z (P +P +1)
wWl-xz+z> % a0 !
Sol. We have RHS = z P, +P,,+1
o0 1 o0
np +1
= z z - Py 3
~ 7 ~ n 3)
1
Also I =P +2P 4P Y. .. 4)
n=0
and 22"B =p +zP +2P 4P . . (5)
Substracting (5) from (4), we get
> "B, = Z A A (6)
n=0 n=0
Using (6) in (3), we get
st [genn
n=0 Z Ln=0
1)< P
=|1+— Z"P (x)--2
()5
“|1+= (1—2xz+22)_1/2—l 1
: : [+ =1l
=L.H.S.
Ex.2. Prove that P (1) =1 and P (-1) = (-1)"
Sol. Wehave > W"B,(x) =(1-2xh+m»" . (7

For x=1, we have
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[e¢]

2B (1) =1 —py

n=0

=1+h+hR+. . h=>h"

Equating coefficients of 42" on both sides, we find that P, (1) =1
Also for x =— 1, equation (7) gives

[e¢]

S H'B(-1) =(1+h)'=1—h+R— .+ ()Rt

n=0
DI
n=0
Equating coefficients of 4" on both sides, we get P (1) = (-1)"
Ex.3. Prove that
2n+1)(*-1) P, =n(n+1) (P, ,—P, )

and hence deduce that

2n(n+1)

[ 1) P (B ()= 3y )

-1

Sol. From recurrence relation 12.7.5 and 12.7.6, we have

(1-x)P, =n(P,_,—xP) .. (8)
(1-x»P, =n+1)xP—-P,.) .. 9)
Eliminating xP_ from (8) and (9), we get
1-x2|\P, (1-x?)P,
e
n (n-+1) n-1 n+1
2 !
N #1)(1=x )’ B, +n(1-x7)P, I
n(n +1)
or @n+1)(1-x%)P, =n(n+1)[P ,—P,]
or Qn+1)(2—1)P, =n(n+1) w. -1 .. (10)

This result is known as Beltrami’s relation.
Deduction
Multiplying both sides of (10) by P, _,(x) and integrating w.r.t. “x” from—1 to 1, we find that

1

[(x2 1) By ()2, (3 ) =220 j 1 (5[ P ()= Py () Ja

e 2n +1

Using orthogonal property for Legendre’s polynomials, we get the required integral
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Ex.4. Show that P, (x) = l J. |:xi1 l(x2 —1) cose] do
T
0

where n is a positive integer.
This result is also known that Laplace’s first integral for P (x) .
Proof. We know that

T
a+bcos9 \/a b2

—

, we have a*> > b?
0

Taking a=1—/hx and b=h+/x*—1,then
a?—-b=(1—-hx)>-h(x*-1)=1-2xh+ h?

hus (1) b T 9 -—=
T —
us (1) becomes o(l—hx)ih\/(xz—l)cose \/1—ZXh+h2

do

(l—hx)ih\/(x2 —l) cosf

T
or (1 —2xh + h?)12 = J.
0

T

or nZh P, I[l h{xi (xz—l)cose}}_lde

0

= {(1-nt)" do. where t=x+x*~1cos0

O'—;ﬁl

(1+m+h LR +...)d9

O'—;ﬁl

© T
= [n"t" do

n=0 (
Equating coefficients of /" from both sides, we get

T
P (x) = ItndQ
0

n

T
or P (x) = I[x+ X —10089i| do
0

1
T
Ex.5. Prove that

2n(n+ 1)
(2n—-1)(2n+1)(2n+3)

J.x > i1 Pypdx =

Proof. From Recurrence formulae 12.7.1 we have
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@n+1)xP =(n+1)P +np |
Put (n — 1) and (n + 1) in place of n respectively, we get

@n—-1)xP,  ,=nP +(n-1)P

1 2

@n+3)xP =m+2)P ,+tn+1)P

Multiplying (12) and (13), we get
2n-1)Q@2n+3)x*P P ., =nmn+2)P P ,+nn+1)P
+(m+2)(n-1)P P ,+m-1)PP

Integrating w.r.t. x between limit —1 to +1, we have

2

+1 +1
(2n-1)(2n+3) J X*P, P, dx=n(n+1) I PZdx
-1 -1
+1

(other integrals on the RHS vanish due to integral I BB, dx=0if m#n)
-1

iy 2n(n+1)
2
or (2]’1—1)(21’14'3);[1)(5 P,HIPanx :W
*l 2n(n+1)
2 —
or _le Fuct Bl = (2n-1)(2n+1)(2n+3)
+1 mn

xP P, .dx=
Ex.6. Show that Jl ndn—1 an -1
Proof. From Recurrence relation 12.7.1 we have

@n+1)xP =(n+1)P + nP

n—1

Multiplying (14) by P, and then integrating w.r.t. x from—1 to +1, we get.

+1 +1 +1
(2n+1)J.xPn P,_ydx =(n+1)| P_ B, dx+nI[1D,l_1]2 dx
2 21 -1

Using orthogonal property for Legendre polynomial, we get

1
2n
(2n+l)jl xP,P,_, dx = (2n-1)
+1 )
[ xB, B_jdx- ="
-1 4n2 -1
1 do

Ex.7. Prove that P, ( x) =
Vi

S ey

Sol. Taking a =xt— 1 and p = /5% -1, thena®—b>=1-2xt+ 7
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-1/2 o
i —E(l—§+i2] = ;TZP (x)f"‘l forlarger ... (16)

Ja?-p2 Ut
1 -1
Also 5 :[Z{xi\/xz—lcosd)}—l}

atbcosd

:[t{xi\/ﬁcosd)”_] 1- t{)ﬁﬁcow}

Now integrating (17) both sides w.r.t. ¢ in (0, 1), we get

Y oo —n—] b

j n+l1 dd):.[ dd) - =
0| n= O[x+\/:c08¢} o atbcoso  u2_p?

Using (16) in the above expression, we find that

o { [x +\/:COS ﬂ : S (18)

Equating coefficicents of 7! in (18), we get the required integral (15).

Remark. The integral given by (15) is known as Laplace’s second integral.

T
Ex.8. Evaluate J. B, (cos 9) cosn6 do
0

Sol. By §12.9, we have

1-3-5...(2n-1)
2-4:5..2n

2cos(n—2)0

P (cos6) = [2cosn9+

2n—1

n(n-1) 1.3
+(2n—1)(2n_3)'Ezcos(”“‘)e*-- ..... (19)

Multiplying (19) both sides by cos n 0 and integrating w.r.t 6 in (0, ) we get
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. . —_ n
121 3-5..(2n I)J[2cos2n9+
2:4:5..2n

-cosn@cos(n—2)0+
2n-1

2n(n-1) 1.3

+
(2n-1)(2n-3) 1-2
Using the following orthogonal property for cosine function

0, m#n

O 3

cos mO cos n0 dO =
/2, m=n’

135 (2n-1
1.3-5...(2n-1) 'm 2227 2

we find that 1= D—= ‘T
2-4-6...2n 2 1-2-3... n
1 1
I'ln+—|T'] —
2 2 1 1
= =Bln+—, — |-
I'(n+1) 272

.——cosn Gcos(n—4)6+..}d6

12.10

Recurrence Formulae for Q_ (x)

We have already defined that

\8)

~2"(ln)’ ey (nH1)(n+2) (i3
Qn(x)_ Tl X +—2-(2n+3) X + s

Again above relation can be written as
2n 42y x—(n+2r+1)
Q, @ = '— Z A
2n+3) ..... (2n+2r+1)

Differentiating (2) with respect x, we get

2"n & (n+2r+ l)x_(n+2r+2)

201 Z2 "|r(2n4+3).. (204 27 +1)

Q,(x) =
Putting n — 1 for n, then we get

o (Iﬂ) 0 |(n+2r)x—(n+2r+1)
2741 /52" |r(2n+3).....(2n+2r 1)

Again putting n + 1 fornin (3), we get

Q, ) =-

(I’l s 2) —(n+2r+3)

2”|_
Q) = Z 2" |_(2n+1)(2n+3) ..... (2n+2r+3)

12.10.1 Q,.1—0, 1 =(2n+1)0,
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Proof. Using (1) and (4) above, we get

Q’n H@2r+1) Qn =— 2n|:nl

202 r(2n+3)...(2n+2r +1) [2n+2r+1—(2n+1)]

, x—(n+2r+1)

2"[n i n+?2
120415527 (20 +3).ccooe. (20 + 27 +1)

x(2r)

__2"n i n+2r x U2
D27 r=1(2n+3)......(2n+27 +1)

Putting r—1=s=r=s+1, therefore

2"n & n+2s +2 x )
Q, +2n+1)Q, =- nl— >

0} ()-8

12.10.2 nQ, +(n+1)0,_ =(2n+1)x0,
Proof. Using (1) and (4) above, we get

~(2n —-2"|n i na2r+1 x )
Cn+1x Q-+ 1HQ, = Ylnr1 = 2 (2n+3)....(2n+2r +1)

_2n|£ i "t x—(n+2r+1)
M 2"r(2n+3).....(2n+2r-1)

~ (_1)2n|£ i na 2 x—(n+2r+1)

2041 52| (2043). (204 20 +1)

[(2n+1)x(n+2r+1)x7" = (n+1)-(2n+2r+1)

x2nr

1)2n|£ i n+2r+1 x n+2r+1

2n+1 Z2"[r(2n+3)......(2n+2r +1)
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I_z N2 x —(n+2r+1)
2n+1 22 r=1(20+3)......(20+2r +1)

Lz n42s 42 x —(n+2s+3)
I_ 20 2ls(2n+3)(2n 425 +3)

=nQ,,(x)=L.HS.

12.10.3 (2n+1)xQ, =(n+1)Q,,, +n0,_,
Proof. Integrateing the recurrence relation 12.10.2 w.r.t. x fromx to oo, we get

j:[nQ,;H +(n+1)0, |dx =(2n +1)I:xQ;ldx

or [nQn+1+(n+l 0, 1] 2”"'1[ J Q }

=(2n+1)[xQ, ];O —(2n+ l)ﬁo [Qn+(12—nQ+nl_)de

(by relation 12.10.1)

= (2n +1)[xQn ]x _[Qn+] ]x + [Qn—] ]x
The value of O, |, O or Q ., iszero when x is infinity since they contain only negative integral

power of x, therefore
_nQnH _(n+ 1) erl :—(211 + l)x Qn+ Qn+l - anl
Solving it we easily get the required ralation 12.10.3
12104 (20+1)(1-x%) Q) =n(n+1)(Qyy — Q1)

Sol. Since Q) is a solution of Legendre’s equation, namely

%[(1—x2)%}+n(n+1)y=0

Therefore ;i [(1 xz)Q' }:—" (n+1)0, L (5)

Integrating w.r.t. x both sides of (5) between the limits, oo to x, we have

(1=x7)0, | ==n(n+1)[ 0,ax

or (1-x%)0, (x) ==n(n+))["Qax L. (6)
Integrating both sides of recursence ralation 12.10.1 between the limit oo to x, we get
X
01 =0uy = (2n41)Qpax L (7)

Now, from (6) and (7), we get
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(1—x2)Q,'1 (x) :_n(nﬂ){Qnﬂ (x)-0, (x)}

(2n+1)
(2n+1)(1-x2)0, (x) =n(n+1D)[ 0y ()= Oy (¥)]
12.11 Cristoffel’s Second Summation Formula
Result. (y-x) y (2r+1)P.(x)0,(»)
r=1
=1-(n+1)[ P (¥)Q, (»)-P(x)Qu(»)] .. (1)
Proof : From recurrence formulas for P (x) and Q (x), we have
Qn+1)xP, (x) =(n+1)P(x)+nP(x) .. ()
Cn+1y0,» =(n+1)Q0u(»)+n0, 4 (») .. (3)

Multiplying (2) by O, (v) and (3) by P, (x) and subtracting, we have
@n+1)(x=») P, ()0 M +niP x)0,  0)-0,, WP (X);

=(n+ By (x)0, ()~ B ()0 (¥)} )
Takingn=1,2,3 ...... , nin (4) and adding, we get

:1 27‘+1 Q (y)‘i'{Q](x)H)(y)_QO(y)R(x)}

=—(n+){P ()0, (»)-E (x)0u (»)} .. 5)
Now since O, () =y, @, ) = L, P, (x) = x, P, (x) = 1, therefore (5) gives the required
result (1).

12.12 Relations Between P_(x) and Q_(x)

Result. Prove that = Z 2m+1 )Q (y)

and hence deduce that

P
0, v~ J._]]%dx, (y>1)

! 1(1 xj_l =y (1+x+x2+ +xm+ ]
Proof : Let = =—|1—— = —+..... —_— ...
S ) —x 5 P iz

=y x4ty Xy o

=Ay+ A x+ Azx2 e (Suppose that)y ... (1)

where A’s are constants.

239



Further suppose that f (x) = Z B,F, (X),

m=0
1.23....m (m+1)(m+2)
then we know that B, = 13.5....(2m—1) |:Am+ 2(2m+3) Apy Foee | (2)

Comparing (1) and (3) we get
A,=y7!, 4 :y_2 sy A :y_(mH)

) m PREEER

o[ ) e, ]

B

m~1.3-5-(2m-1) Y 2(2m+3)
=@m+1)0,0)

Hence

Z (2m+1)Q, (y)By(x) 3)

Now multiplying (3) by Pm (%) and integrating w.r.t x in the interval (—1, 1), we find that

J.;Pm(x) dx —j {i 2m+1)P, (x)0,, (y)}dx

:Qm(y)Jil[Pm(x)]2(2m+l)dx [ J‘_lle(n)Pn(x)dxzo,min}
=o (y)'(2m+l)'2m2+l [ jilpnz(x)d":2m2+l}
S B dr=0,(7)

This integral is called the Neumann’s integral for Q ().
Ex.1. Prove that (x2 - 1)(Q,,P,; - P,,Q;,) =c and deduce that

n

i) Qy(x) =%log :i

x+1 1

(i) Qy(x)= Elog
Sol. The Legendre’s equation is
2
(l—xz)d—§—2xd—y+n(n+l)y:0
dx dx

Since P_ (x) and Q_ (x) are both the solution of this equation, therefore

(LA PRAC

dx* dx

+n(n+1)P,(x)=0 (4)
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d? d
and (1_xz)EQn(x)-zxagn(m(m)gn(x):o

Multiplying (2) by O, (x), and (3) by P, (x) and then substracting, we get

(¥ —I)B—;& (1)0,(x)-£, (x50, (x)}

24 0, ()48, (1), ()50, ()| -0
that i ﬂ(—mz){%a(x)-gn (x)—Pn(x)%Qn(x)}}O

Integrating the above w.r.t x, we get

(7 =Py (¥)Q, (x) =P, (x)Q, ()} =¢

1.3...(2n-1)| _, n(n—l)x”_2
Now Pn (x) = T X —m+...
- |n e (n+1)(n+2) x 3
and GO eyt T 223

Putting these values in (7), we get

{1.3 ..... (2"_1){;“"—1 n(n=1)(n-2)x"3 +""Hx |n
13...

|n 2(2n-1) (2n+1)

X[ X

nl (n+1)(n+2)x" . :I ~ |n

TR

) {_(}H_l)x_n_z_(n+l)(n+2)(n+3)x_"_4+ H

T R

13 (2n-1) [, n(n-1)x"? NN }
><_ m X — 2(2;1_]) +...... —C[x—2+x—4+x6 ......

Equating the coefficients of 1/x  from both sides, we get

1-3-(12n-1) |n . ln(n+1)  1.3..(2n-1)

‘nX

|n 1-3--(2n+1) 1.3....(2n+1)>< ln
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+1

" + (n ) =1
(Zn + 1) 2n+1
Substituting ¢ = 1 in (6), we get

=c=

P ()0, (+) -0, (+)2, (¥) ==
A0, ()0 ()P () 1
P2 (x) (+* 1) B ()

- 20

Integrating both sides w.r.t. x between the limit x to oo, we get

2 e

0,(x) . Q) T ar
B(x) w0 B (%) i(xz—l)Pi(x)
dn
. 0,(x) g &)
1 — X
Now xgl;lo Pn(x) )}HOO di’l

n!

= lim

T (2n_1){(—1)n(n+1)(n+2) ..... 2 ) s

X—0 1.3.5.....(2n—1) ]
n!
=0
Thus (8) reduces to
0, (x) :T dx

B(x) (¥ -1)B(x)

(ii) Putting n = 0 in (9) and using P, (x) = 1, we get

0, = [-& :l[logx__l}

x -1 2 x+1

1 x+1)° 1 x+1
=—| log—— | =—=log| —
2 x—1 « 2 x—1




) x+1 ) (1+(1/x))
X fim 1
;}fﬁolog(x—lj o ST (1)

(iit) Taking n = 1 and using P, (x) = x in (9), we get

X

0,(x) = xJ.:xz(jf—l) :xj.:( zl_l—iz]dx

x+1 x
X x—1 X x+1
=——Jlog———-1==log——-—1
2 gx+1 2 gx—

Ex.12. Show that n[ P,0,_—0,P,_,|=1

Sol. We know that

and

@Cn+1)xP =m+1)P  ,+tnP

n-1

Qn+)xQ =m+1)Q. . +nQ , .. (11)

Multiplying (1) by O, and (2) by P and then substracting, we get

or

or

=

where

0 = (n+1)[B1Qn = Ons1 By ]+ [ By 10y = Opi B ]
nlP, O —-0P I=(ntD[P, 0 -0, Pl
faty=ro) .. 12)
S ) = n[ B0y 101

Replacing n by n— 1 in (12), we get

Similarly

Hence

But

or

Jfm) =f(n-1)
fn=1) =f(n=2)=..=f(1)
ft) =fm=fn-1)=..=f(1)

f) =[P0y-0,P ] [+ Po(x)=L P (x)=x]
=x0,- 0,
=x0, ~ (xQ, ~ 1) [+ 0,=x0,-1]
=1

foy =1

n[PnQn—l - QnPn—l] =1
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Self — Learning Exercise—II

d
1. %[(l—xz)%} =

2. Qi’l+1 _Ql’l—l I

3. Legendre’s function of second kind is ...........

12.13

Summary

In this unit we studied the Legendre’s differential equation and its solution as Legendre function
of first and second kinds. We also studied the recurrence relation, generating function, orthogo-

nal property, Rodrigues formulae and other important formulas for these functions.

12.14

Answers to Self Learning Exercises

Exercise - 1

1. Legendre function of first kind 2. P (x)
3.0 4. 1
5. nm 6. Rodrigues formulae
Lo
7. 0 8. E(Sx - 3x)
9. 0 10. Even/odd
Exercise - 11
l. —n(n+1)Q0 (x) 2.2n+1)Q, (%)
3. 0.(x)
12.15 Exercise
1. Provethat P (-x)=(-1)"P (x)and P, (—1)=(-1)".

. Express P (x) =x*+ 2x3 + 2x? — x — 3 in terms of Legendre’s polynomial

8 4 40 1 224
(Ans:2(x) =S (1) 28, (1) 20 (1) Ly (-2, (o)
+1
Show that j B, (x)dx =0 except when n =0 in which case the value of integral is 2.

-1

+1 5
Prove that j(l—x 2)(Pn (x )) dx =
|



5. Showthat P (x)Q ,(x)—0 (x)P ,(x)=x (2n-1)

n(n-1)
6. Prove that xQ,; —Q,;_l =nQ,

7. Prove that

0
3 B (x) " =(1-xt) " 1Ry =5
n=0

8. Prove that

n n 1 1
P (x)=x" F| -2 i1 1-—
5 (1) =" 2 1( 2’ 2 2 le

9. Show that

2(.2
0 n t (x —1)
RG] IR
v

10. Find the values of P, ,,(0), P, (0), P’, (0)and P’, . (0)

[Ans. 0,

11. Establish the Murphy’s formula

l1-x
B, (x)= R (—n, n+l;l; Tj and deduce that

@ B (x)=(=1)" 25 (—n, n+l;l; l-ng
) B (x)=

(c) P, (x) =

@ B,(cos0)=,F (—n, n+l;1; sin2(6/2))

12. Prove that

13. Prove that 245

(-D)"(1/2),

n!



14.

(@

@)

15.

16.

17.

18.

Prove that
XP, = nP, + (20 =3)P, 5 +(2n =T Py_g+ ..

and hence or other wise show that

1 ' 2n
I_lenPn dx = P
1 , 2n
I_lean dx =0 or 7
1 , 2 n
Show that [ [ 7 (x)]"dv=——

I A )
2"|(n+1)/2 |(n-1)/2

1
Show that f B (x)dx

Prove that
1
Ean (x)dx=0,n%# 0 and I_IPO (x)dx =2

Prove that

Py 43P+t (2n=1) P} =(n+1)" P} +(1-x7)(
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Unit 13 : Bessel’s Functions

Structure of the Unit

13.0  Objective

13.1  Introduction

13.2  Definition

13.3  Bessel’s Equation and its solution
13.4  Relation betweenJ (x) andJ (x)
13.5  Generating function

13.6  Recurrence Formulae

13.7  Addition Theorem

13.8  Orthogonal Property

13.9 Integral Representation of Bessel Functions
13.10 An Important Integral

13.11 Summary

13.12 Answers to Self-Learning Exercise

13.13 Exercise

13.0 Objective

In this unit you will learn about Bessel function which besides the solution of the well-known
Bessel’s equation may also be introduced through a generating function. You will also study important

properties for this function.

13.1 Introduction

No other special function have received such detailed treatment in readily available treatises as
have the Bessel functions. These functions were first introduced by F.W. Bessel, who is regarded as the
founder of the modern practical Astronomy. In fact several problems of mathematical physics lead to
Laplace’s equation and in turn converts into Bessel’s equation when there is a cylindrical symmetry. There-
fore Bessel’s function and Bessel’s equation have received great attention.

In this unit, we introduce the Bessel function through the Bessel’s differential equation and gener-
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ating function. We then discuss the important properties (such as Recurrence formulae, orthogonal property,

Addition theorem, integral representations etc.) for this function.

13.2 Definition

13.2.1 Bessel Differential Equation
The differential equation

dzy dy
2 2 2
dxz dx ( )y

is called Bessel’s differential equation of order » where n is non-negative real number.

13.2.2 Bessel’s function of the first kind of order n

It denoted by J (x) and is defined as

% i)

(where n is any non-negative constant)

_(%2) F(l_]
of1| = Ty

F(n+l)

It nis a negative integer, then we put

()= (=1)" -, (%)
u(=x)=(=1)"J, ()

Equations (3) and (4) together define J (x) for all finite x and .
Replacing n by 0 and 1 in (2), we find that

2 4 6
X X X

W)= g e

3 5

X X X
and JI(X):§—22—3+2T426—

13.3 Bessel’s Equation and its Solution

Bessel differential equation is

2
xzd—;j+xﬂ+(x2—n2):0
dx dx

The equation (1) has a regular singular point at x = 0, and an irregular singular point at x = oo,

while all other points are ordinary points. The solution of equation (1) called Bessel’s function will de-

pend upon #. This index » may be non-integer, a positive integer or zero. We discuss three possibilities :

Case L. Solution of (1) for non-integralzz%lues ofn



so that

Here the equation (1) is solved in series by using the well-known method of Frobenius.
Let the series solution of (1) be

o0

y = Zoarxc+r, ao * 0 ..... (2)

o0

d e
From (2), we get _yzz,“r(c‘"”)x+ 1

dx 15
2 ©
and d—;;ZZar (c+r)(c+r—1)x2
A a—
y  d’y
Substitution for y,a, F in (1) gives
x2rZ:(“)ar (c+r)(c+r —1)x6+r—2 _,_x;ar (c+ ,,)xc+r—1 +(x2 _”z)rzz(:)a, e
or za, (C+r)(c+r_1)xc+’ +zar (C+r)xc+r +zar K2 _nzzar =0
r=0 r=0 =0 s
o X[lerr)err—)(err)-nfa 2+ Ya x4 =0
r=0 =
o Xllrremlerren]e T Pax o0 o

Equating to zero the lowest power x i. e, X", we get the indical equation as
(¢ctn)(c—n)a,=0

= c=n,—n as a,#0

So roots of the indical equation are ¢ = n, —n.

Now equating to zero, the coefficient of x**!, we find that
(ctl+n)(ct1l-n)a =0
a, =0 for c=n and —n.

Finally equating to zero the coefficient of x**”, we get
(ctr+n)(ctr-na+a =0

1
or ar:_(c+r+n)(c+r—n)ar_2 """ “4)

Putting =3, 5,7, ..... in (4) and using a, = 0 we find that

1
(c+2+n)(c+2—n)
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1
(c+2+n)(c+2—n)(c+4+n)(c+4—n)

Putting these values in (2), we get

a, = a, and so on .

0
_ c+r _ c c+2 c+4 _ _ _
y—Zarx =agX +a,x" T +aux T+ [asal—a3—a5—0]
r=0

2 4
X X

c+2+n)(c+2—n)+(c+2+n)(c+2—n)(c+4+n)(c+4—n)_m}

or V=apx° {1_(

Replacing ¢ by n and — n, we get

— n x2 x4
ro {1_2-(2n+2)+2-4(2n+2)(2n+4)_ """ } ..... (5)

2 4
— x x
- a x n 1_ + T eeeee
and y=4a { (_2n+2)-2 (2n+2)(—2n+4).2.4 } ..... (6)
The particular solution of the equation (1) obtained from (5) above by taking the arbitrary con-

stant ay = is called the Bessel function of the first kind of order ». It will be denoted by

2"T (n + 1)
J (x). Thus we have

2 4

Tn(x)= 2”1“)(Cn+1) {1_ 4(z+1) T 48(n +x1)(n+2) o } """ )

_ S (_1)” X | _n+2r
or p (x)—gom (E]x ..... (8)

Similarly taking a, = m in (6), we get
~ 0 (_1)” (f]lrn
J”(x)_golﬂ(—nwﬂ) -l ©)

Let n be non-integral. Since n is not an integer and r is always integral, the factor I'(—n+r+ 1)
in (9) is always finite and non-zero (I'(m) is always finite for m # 0 or a negative integer.) Again for
2r < n, (9) shows that J (x) contains negative powers of x. On the other hand, (8) shows that J (x)
does not contain negative power ofx at all. Therefore for x =0, J (x) is finite. While J (x) is infinite, and
so one can not be expressed as constant multiple of the other. Thus we conclude thatJ (x) and J  (x)
are independent solutions of (1) when 7 is not an integer. Thus general solution of Bessel’s equation (1)
when n is not an integer is

y=A4J (x)+BJ (x)
where 4 and B one arbitrary constants.
Case-II. Solution for positive integral values of n and for n =0.

It n is a positive integer, then for ¢ =-n, the recurrence relation (4) gives
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1
a, =—————a

g r(2n—r) r-2

which breaks when = 2n.

Also ifn = 0, the two roots of the indical equation becomes equal and in that case the afore-

mentioned method is not applicable.

In both the cases, the second solution of (1) can be found by using methods mentioned in unit 9.

13.4 Relation between J (x) and J_(x), n being an integer

Result. J_n(x)=(—1)n Jn(x) ----- (1)
Proof. We consider two cases :

Case 1. Let n be a positive integer

We have J,(x)= i =) (ij—n ..... )

S lrT(—n+r+1) 2

Since n>0, so ['(-n+ r+ 1) is infinite. forr=0, 1, ..., n— 1, therefore (2) becomes

I (x):é I_r((_l)r (%Tw

ri'(-n +r+1)

o )m+n X 2m+n
=> (5] (taking r=m + n)

o m+nF(m+1)

0 V x n+2r
; r+n+1)(5]

=(-1)"J,(x) (by definition)
Case Il. Let n <0.

Putting n = —p, where p is a tive integer

Since P > 0, therefore form Case I, we have

Ty (0)=(1Y 7, (x)

or Jp(x):(—l)_p J_, (x)
Putting p =—n, we get the required result.

Hence the relation (1) is true for any integer.

13.5

Generating Function

Theorem. Prove that when n is a positive integer J (x) is the coefficient of 7" in the

X 1
expansion of €XP\ | £~ [( in ascending and decending power of z.
P 4 4
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X 1 Xz x
Proof. We have  exp —( ——) :exp(—j-exp(——]
z z 2 2z
2 2 non n+l pyl
S O [ P [ - ) -t s o
2 2) 12 7 2) |n \2) |n+l

R Lo = ) T I

Multiplying the R.H.S. of (1) term by term, we find that coefficient of z* is

) -3 )

_ °°0 %(g]z ¢ T @

Similarly the coefficient of z in the expansion (1) is

_ % @ +% @2 . 1(2‘12:2 (§]4 = (<1 (%) o 3)

Further, the term independent of z is

2 4
X X

it 10 I @)

Hence relation (1) with help of (2), (3) and (4) may be written as

exp{g(z—éj} _J, (x)+(z—é]]l (x)+(zz -g]% ()4

Since  J (x)=(-1)"J (x), therefore

exp{; (z__j} z L@ )

13.6

Recurrence Formulae for J (x)

13.6.1 xJ' (x)=nJ (x)-xJ . (x)
Proof. We have

0 =S gy

Differentiating above wr:t. x, we get
i I’l+2l’) ( ]Vl+2rl 1
S lrT(n+r+1) 2 2
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0 1Y n+2r-1 - - 271
:nz L(f] le e (—1) x n+ l
= e (n+r+1)2 2 x T T(n+r+1)\2 2
:ﬁ i V (£]n+2r +i (_1)” ({THZ;’]

x 5 lrr( n+r+1) 2 = |(r=-)T(n+r-1){2

I Jn(x)_i L) (gjmsﬂ

X =0 Iﬁ(l’l+S+2
Sy (5) Ty ()
Hence Xy (x)=nJ, (x)=x J, (%)

13.6.2 xJ' (x)=xJ  (x)—nJ (x)

Proof. We have as in formulae 13.6.1

e
i (-1)"(2n+2r-n) (i]’”z” 1

= lrT(n+r+1) \2 2

I it 3 I e s S )

3 EU () (_] )

= lrT(n+r) \2 x
=J1 ()=, (¥)
Hence xJ, (x)=xJ,(x)-nJ,(x)

1363 2J x)=J_,(x)-J, (x)
Proof. Adding recurrence formulae 13.6.1 and 13.6.2, we get the formula 13.6.3.
13.6.4 2nJ, (x)=x[ 4, (x)+ 7,1 (x)]

Proof. Substracting recurrence formula 13.6.2 from 13.6.1, we easily get recurrence formula
13.6.4.

dr _ _
13.6.5 E[x ”Jn(x)]——x "1 (%)
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Proof. By formulas 13.6.1, we have
xJ(x)=nJ,(x)=xJ,,(x)
Multiplying both sides of above by x ~"!, we have
X (x)=nx " (x) = x4 (%)

o (1), () = ()
or ;i[ ", (x )}— —x ", (%)
13.6.6 %[x”Jn (x)]= "7, ()

Proof. By formula 13.6.2, we have

£} ()=, 4 (x)=nJ, (x)
Multiplying both sides of above by x"!, we have

X' (x)=x"T, (x)-nx""T, (x)

or X' (x)+nx" T, (x) = X", (%)
. 4o, ]
Ex.1. Prove that J, /2 \/7 -sin x

Sol. We know that

2 4
X X

J,(x)= 2”1"(n+1){1_2-(2n+2)+ 2-4-(2n+2)(2n+4)

2 X
=, ]—|x-=+=-..
™ 31 51

[2 .
=,[—sinx
™

Ex.2. Show that J (x) is even and odd function for even n and for odd n respectively.
Sol. Replacing x by —x in the definition for Bessel function, we get

254



S e S AT

r=0
(i) If nis even thenJ, (—x) = J,, (x), therefore J, (x) is even.

(ii) Ifn is odd then J,, (—x)=—J, (x), therefore J, (x) is odd.

Ex.3. By using generating function, for Bessel function, show that

(i) cos(xsin 9) =Jy+2J,c0820+2J,cos40+........
(i) sin(xsin®)=2J,sin0+2J,sin30+......
(iii) cosx=Jy—2J, +2J;—u......
(iv) sinx=2J, —2J;+2J; —...........
X 1 =
Sol. We have exp {E(z—zj} = ’;oZan (x)

Letusput ; — . Then

z" —(L] =2isin 0
Z}’l

1
and Zn+—n:2COSI’le
z

From (1), we have
exp(xisin®)=J, +(2isin0)J, (x)+(2c0s20)J, (x)+.........

= cos(xsinB)+isin(xsinB)=J, +2J, cos 20 +2J, cos 40 +
i(2J,sin0+2J;sin30+.....)

Separating real and imaginary parts, we easily arive at relations (i) and (ii).

T
Also on putting 0 = B in () and (i), we get easily the selations (7ii) and (iv).

Exd Provethar 5 x0,(x) 1 (D]=x[R(x)-72a(¥] .. @
and deduce that
x=2JyJ; +6J, Ty + eerrenn +2(n+1)J ey + eereee
Sol. we have L.H.S of (2) = xJ,, (x)Jy,q (x)+xJ, (%) (x)+ T, (X) Ty (x) e 3)
From recurrence relations 13.6.1 and 13.6.2 we have
xJy(x)=nJ,(x)-xJy(x) L. (4)
xJy(x)=-nJd,(x)+xJ,4(x) L. 5
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Puttingnas (n + 1) in (5), we get

XJn+1( ) —(n+1)JnJrl (x)+xJn (x) ..... (6)
Substituting the value of xJ;, (x) and xJ,,, (x) from(4) and (6) in (3), we get.
LHSof(2) = J,(x)[=(n+1)J,, (x)+xJ,(x)]

+Jn+l )[”Jn(x) n+l :|+J Jn+l (x)

=x[ ) (x)=J2 (x) |= RHS0f (2)

This completes the solution of the problem.
Deduction. Putting n=0, 1, 2 ..... respectively in (2) and adding after multiplying by 1, 3, 5
res, we get

d
E[X{JO (x)J; (x)+3J,(x) Ty (x)+5J, (x)J5(x)+...... }]zx _____ (7)
Integrating (7) in the interval (0, x), we get the required result. [after using Ex. 6 (1)]
d n+1
Ex.5. Prove that E[Jz( )+Jn+l ( )J = 2[%"3 (x)— ( . )J3+1 (x)}

d
Sol.  We have E[JZ( xX)+J 5 (x )}
=2J,(x)J; (x)+2J, 0 (x)p () L ®)

From recurrence relation 13.6.1, we have J; (x) = —J x-J,,x 9)
Replacing n by n + 1 in recurrence relation 13.6.2, we find that

S T e e e (10)

Using (9) and (10) in (8), we get

%[Jz( )42 (x) =27, (x)EJn (%)= Ty (x )}+2J,M( )[—"THJM (x)+, (x)}
:2EJ,$( )- ":lJ,%H( )}

which completes the solution of the problem.
Ex.6 Prove: () Jo+2(Jf+J3+J3+..)=1
i) |Jo(x)|<

i) |7, (x)|<27%,(n21)

Sol. From Ex.5 we have

ZC[Jz +J2

n+l

. » (n+l) 5
} 2(XJ . J,Mj ..... (11)

Replacing n by 0,1,2,3, ... in (1), we get
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A2 =2 0—1J12}
dxt . | x
ATy 2]=2 lle—ngz}
dxt . | x X
AT 22 =2 3J§—§J§}
dxt . | x X

and so on.

Adding column-wise and using nl_i)rg) Jn (x)=0, we get

d 2 2 2 _
Z[JO +2JP4203 4. ]=0 (12)
Integrating the result (12), we get
J2(x)+2 [le(x)+J22(x)+...] =c . (13)

Putting » =0 in (13) and using
Jy(0)=1 and J,(0)=0 for n>1,

we obtain 1+2(0+0+...... )=c, Thusc=1

Hence (13) gives  JZ +2(J+J3 +....) = (14)
. 2 2, 12, 2

(ii) From (14) we have J§ =1-2(J7 +J3 +J3 +...) ..(15)

Since le, J22 , J32 ...... are all positive or zero, (15) gives

J§ <1 so that |J0(x)| <1
(iii) Also from (14) we have

Solving for J 3 we have

J? :%(I—J(f)—(J12+J22+...) ..(16)

Since Jg J 12,J 22 ..... are all positive or zero, therefore

1
(16) givesthat J> SE or ‘Jn (x)‘ng”z, where n > 1

d {J_,, (x)} __Zsinnn

Ex.7. Prove that E J. ( x) x Jrf

—2sin nn

4
or Jn J—n =
X

Sol. Since J, (x) and J_, (x) are solutions of
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X
14 1 ! n2
therefore Jp+t= Iyt 1=—|J, =0, ..(17)
X X
J" +lJ’ + l—ﬁ J ,=0
and U xz -n (18)
Multiplying (17) by J_, and (18) by J_and substracting, we get
(J_, I —JnJﬁ,,,)+l(J,n Jy=J,J,)=0 ..(19)
X
Let u=J_,J,-J,J.,.
, 1 u'
Then (19) reducesto #'+—u=0 = —=——
X u X

a a
Integrating we get log u=log Lo u= -

where a is arbitrary constant or

J, J—JJ =2
X

n- —n

1 - x7n+2 x7n+4
27" (-n+1) {x 2.(—2n+2) " 2.4(-2n+2)(-2n+4) _}
1 o (m42)x" (n+4)x""
X———| nx - + —....
2"T (n+1) 2:(2n+2)  2.4(2n+2)(2n+4)

1 xn+2 n+4
- x" - + —.
2”F(n+1) 2-(2n+2) 2.4(2n+2)(2n+4)

X; —nx "1 _(2—n)x1_” + (4—n)x2‘” N
27" (-n+1) 2-(2-2n) 24(2-2n)(4-2n) | x (20)
1
Comparing the coefficients of - on both sides of (20), we get

B ne(—n)] = 2n :2sz’nnn
a_r(n+1)r(—n+1)[ (=n)] aC(m)T(1-n) =

(wing  [(z)[(1-2)=

J_Jy—J,J., 2sinnm
Thus J, nxJ:
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d|(J_, 2sinnm
= — =—
dx| J, mx J 5
Self-Learning Exercise-I

1. J, (x) is a Bessel’s function of order ....... .

2. 0, ()] ="

3. Write generating function for Bessel function/ (x).

4. J (0)=-1..... .

5. Wirite differential equation for the Bessel function./ (x).
6. x[JH( T ( ]— ........... .

7. J, (x)iseven function ifnis .......

s. lvl_lgx J, ( ) =i

13.7 Addition Theorem

Statement : It n is a positive integer, then

1,(5+3)= 29, ()7, L)+ S I, () s 0+, (D) (B} )
Proof : we have ng@ J,(x)z" =exp {g(z _lj}

. nngn (x+7)2" = exp{g(z—ij}exp{g(z—éj}

=3 () Y 2 ()

r=—00 §=—00
Now equating the coefficient of z"on both sides, keeping in mind that the terms containing z*on
R.H.S. are obtained by taking s = n — r and by making r vary from — oo to oo thus

o (x+y)= ZJ XM, ( )

r=

where 7 is any integer.

o L (xt9)= X T (Vs ()3T (DI )+ S LI () )

r=—00 r=0 r=n+l

1
DT (%) (¥) (writing—r=p)

=00

Z
Q
=

M
g
I

\
I

|
8
aS]



=> (-1)" J,(x)J,., (») (replacing dummy index p by ) ...(4)

Ao 3 (1) (9) = Dy (5)J, () Gaking r = nq)
r=n+l1 q=1

=3 (1) s (319, 0) )

Using (4) and (5) in (3), we easily arrive at the addition thorem given by (1).

13.8 Orthogonal Property

Result : If2, and 3, are the roots of the equation J, (ka) =0
0, ifi#j
az 2
=5 I (Aa),if i=j
Proof: Casel: Leti#jie. leta and A, are different roots of J (A a) =0
o J, (x,.a)zo and Jn(Kja):0 (1)

then I:xJn (Xix)Jn (7&,-x)dx=

Let u(x)=J,(rx) and v(x)=J, (Kjx) .(2)

then u and v are Bessel functions satisfying the modified Bessel equation

2
xzd—y+xﬂ+(7\2x2 —nz)yzo

dx*  dx
or xzy"+xy’+(7»2x2 —nz)yzo ..(3)
or x*u" +xu’+(ki2x2 —nz)u =0 .(4)
or x*v" +xv’+(7»j2x2 —nz)v =0 ..(5)

Multiplying (4) by v and (5) by © and then substracting we get

X (vu"—uv")+ x (v —uv') + x° (kiz —ij)uv =0

or x(vu”—uv")+(vu’—uv):x(ka—kiz)uv
d ’ ’ ’ ’
or xa(vu —uv')+(vu —uv):x(}»jz—kiz)uv
d
or xa[x(vu’—uv’)] :x(kj2 —kiz)uv ..(6)

Integrating (6) w.r.t. x from 0 to @, we get
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(7»}2 _xi2)J:xuvdxZ[x(vu’—uv')}g (7

Using (2), (7) gives (1,” =27 ) [ %7, (1%) 7, (%)

a

[0 00) 5 )0, () )] |

= a[Jn (kja)J,’2 (Ma)-J,(ha)d, (kjaﬂ
=0 [using ()]

Since A; # X ; the above equation gives

jo %, (M) g, (hx)de =0 if = j ..(8)
Case Il : Let i =j (equal roots). Multiplying (4) by 2u’, we have

2x%u"u’ + 2x(u’)2 + 2(ki2x2 —n? )uu' =0

or i[xz (u’)2 —n*u? +ki2x2u2}—2ki2xu2 =0
dx
2.2 d 20 1\2 2.2 2.22
or 27\41 xXu _d_ X (H) —nu +}\’i X u (9)
x

Integrating (9) wr:t. x from 0 to a, we get
2Ki2j;xu2dx :[xz(u’)2 —n’u? +7ul.2x2u2}0 ....(10)
Using the relation/ (0) =0 and (1) and (2), we have

2[5 (hpx) = [x 200 ()} =02, ()} #2202, (g )ﬂ

x =0
or 202 [ 32 (hx)dx = a? [{J,; (x,.x)}z} (1)
atx=a
From recurrence relation 13.6.1, we have
d
L (x)]= gj,,, (x) =T, (%) (12)

Replace x by 1.x in (12), we have

d[J,(\x)]  n N .
or i) 0 )Jn(x,.) Tt (Ax)

A; dx Ax

or

= J! (Mx) =2, (hx) = h o (R,%)
X



where 61.], = (kronecker delta) = {

Now [{J;z (kix)}2:| = HEJH (}\'ix) —Aid i (kix)}z:l

atx=a X
atx=a

=[0-27,1 (M) | By (1))

=272 (ha) -(13)
Using it in (11), we get

2
j;fo (h;x)dx = %Jﬁﬂ (ha)
Combining these two results we can write
a a2 b
jo xJ, (Ax)J, (Kjx) dx = TJ”H (kia)Sij

0,i#]
Li#j~

1 .
Ex.1. Prove that J, (x) = EJ. COS(”‘P —Xsin ¢)d¢ where n is a positive integer

Sol. We shall use the following results :

J»n b oo J-n, bsin nddod n/2, ifm=n
cosmdpcosndpdd=| sinmdsinndpdd =
0 0 0, if m=n ...(14)
We also proved in Ex. 3(§13.6) that
cos(xsin¢)=J, +2J, cos2¢+2J, cosdd+ ... ..(15)
and sin(xsin¢) = 2J; sin¢+2J58in 3¢ + 2J5 sin 5¢ + ... ..(16)
Multiplying (15) by cosn¢d and integrating between the limit 0 to 7, and using (14) we get
J;cos(xsin d)) cosndpdd =0 (ifnis odd) ...(17)

T . 9 T
and Io cos (xsin ¢)cos nhd ¢ = ZJ”.[o cos” npdd=2J, 5= nJ, (ifniseven) ..(18)
Again multiplying (16) by sinn¢ and integrating between the limit O to 7 and using (14), we get

| ;sin(xsin ¢)sinngddp=0  (ifnis even) ..(19)

and [ ;‘sin(xsin ¢)sinng do=2J, [ :sin 20 dd=2J,(1/2)=nJ, (ifnis odd) ....(20)
Let n be odd. Adding (17) and (20), we get

J;[cos(xsin ¢)cosn+sin(xsin¢)sinn |do= nJ,

or J;cos(nd)—xsind))dd):an
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or J, :%J.;cos(nd)—xsind))dd) (21)

If n is even, then add (18) and (19) to get the required result.
Thus (21) holds for each positive integer n (even as well as odd)

Remark : If n is negative integer so that n =— p, where p is a positive integer. Putting n =—p

in (21) we get
J, (x)z%f(?cos(—pd)—nsind))dd) .(22)
Let d=n—0 sothatddp =—do

.- RH.S. of (22) :%I:cos{(—p(n—6)—xsin(n—8))}(—d6)
:%I:cos{(pO—xsine)—pn}dG

:%J.:[cos(pG—xsinG)cospn+sin(p9—xSin9)SinP7T]d9

(=1’ :
:—j cos(pB—xsin0)do
T

Thus (22) becomes

(-1)"J,(x) z%j;cos(pe—xsine)de

or J, (x)z%J.:cos(—nG—xsinG)dG

Hence the result (22) holds for each integer.

Ex.2. Prove that J,(x)= lJ.;tcos(xsin ¢)do= lJ.Oncos(xcos ¢)do
T T

Sol. From Ex.3(§13.6), we have

cos(xsing)=J, +2J,c0820+2J, c084p+ .o, ... (23)
Integrating (23)w.r.t ‘¢’ between the limit 0 to 7, we get
1 ¢n .
or Jo(x):EJ.O cos(xsing)d¢

T
Again replacing ¢ by (E - ¢] in (23) and simplifying,we get

cos(xcosh)=J,—2J,c0s2¢+2J,cos4¢........ ...(24)
Thus Joﬂcos(x cos)dy=mnJ,(x)
s Jo(x)= %J.;[cos (xcos¢)do
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Ex.3. Prove that J, (x) = (—2)" x" d’ —Jy (x)

Sol. Substituting the value of J (x) in series in R.H.S, we have

o _dm & () (x)”
RHS  =(-2x) d(xz)”{;)lzf(r““l)b]}

= (~2x)" j; {2%(; ]H

a0
-2 2

S| |r=n2*

'y Er((_;lf,,ﬂ)(%]nm

= (1) Iy (1) =4, (¥)

1
Ex.3. If, Prove that _[ “Jy bx)cbc m
a

Sol. Using series representation for the Bessel function and changing the order of integration and

summation, we find that

I= j “J o (bx)dx = 2%[5952%—%@

_ i (—1) (b/2)" T(2r +1)

= ( I£)2 22 (using the def. of gamma function)

Applying gamma duplication formula for I' (2 +1) and simplifying, we find that

a,-

1 p2 )" 1
a a Ja? +b?

13.9 Integral Representation of Bessel Functions
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Theorem : Prove that

. ()
ﬁ(%) F(n+%)Jn(x)=.|._llexp(ixt)(1—t2) ¢ 2)dt, (:»—%) ..... (1)
Proof : We have
i x) L . n—(1/2)
R.H.S. of (1) ZZ(ZQ !t (-2y"a )

Since the integrand in (2) is even or odd according as » is even or odd respectively, therefore

ilé j “(1- t)n(l/z)dt

Putting # = u and using the formula

|2k =T (2k +1) :22kn1/21“(k+1)1"(k+%],

We get
0 )k 2k
R.H.S. of (1) - Z 22k

1
k=12 (1 \n=(1/2)
k+1) (k+1/2)£“ (1-w)"du 3)

Now evaluating the integral by using the well known definition of Beta function, we get

RHS.of(1)  =vn T(”* ]gk' F((;cl-l)—kn+l) (gk

_Vn (%)F(m+%)J (x)
Similarly we have
-n 1
Jr F(n+%)(§j L= -y e 4
2
Adding (1) and (4) we get
2 XY n—(1/2)
J,(x)= (—] cosxt(1—12 dt,(n>-12)
Jr T[n+(1/2)]\2 £ (1-¢) ©)

For ¢ =sin¢, eq. (5) gives

5 R . N
Jn(x):\/; F[n+(l/2)](5] lcos(xsmd))cos b dd

Replacing ¢ by(g - 4)] in the above relation, we get
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5 Ly 2 N
Jn(x):ﬁf[n+(l/2)](5] {cos(xcosd))sm b do

13.10 An Important Integral

gral]

Theorem : Prove that

2
I:x(az—xz)JO(kx)dx=:§J (ak)—zkiJ (ak) . (1)

d
Proof : We know that —{x”Jn (X)} =x"J,_;(x)

dx
Replacing x by kx, we get
d n _ n
L= () )
Integrating (2) wrt x in the nterval (0, a), we get
[ (e)de =, ba) o)
0

Now, TX(az —xz)Jo (ax)dx = az]ixJo (/’cx)dx—]ixSJO (kx ) dx
0 0 0

a d
ZTJI ak I x* [le )]dx

[Using (3) with n =1 for first integral and (2) withn =1 for second inte-

:%3]1 (ak)—%[{xz (ko)) -2, (lcx)dx}

‘]f (ak)—IJ (ak)+ k—zzj(j%{szz(kx)}dx

2a2

Also we have the recurrence relation

2nJ, ( X[Jn+1 X)+J (x)] ...(5)
Taking n= 1 and replacing x by kx in (5), we find that

2
Ty (k)= 2 () ()
Substituting the value of J (kx) in (4), we easily get the integral (1).

Self-Learning Exercise-I1
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[y

N[ ()T I ()] =

2. Therelation J; (x)=—J, (x) s true /false
3. [ (x)]=
4. [ cos(n0-xsin0)d0=.....
5. [Jo(x)| <21
6. |, (x)| < n2l
13.11 Summary

portant properties such as recurrence relations, generating function, orthogonal property, integrals repre-

In this unit we studied the Bessel’s differential equation and its solution. Also we proved the im-

sentation for the Bessel function.

13.12 Answers to Self- Learning Exercises

Exercise-1
1. 0 2.J (%)
x 1 < "
A el | Sl DAL COL AT
d’y dy
2 22\ _
5. ﬁ+x_x+(x —-n )y—O 6. 2nJ (x)
7 8 :
. even Y
Exercise-11
2
1. — 2. true
X
2 .
3. \|—sinx 4. nJ,(x)
X
5.1 6. H-12
13.13 Exercise

f 2
. Prove that J_l/z (x) =,/[—cosx
X
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/2
2. Prove that J. \/a']l/z(zx)dle
0

3. Prove that I;Jo,lx(t—x) dx = 2sin§

4. Prove that

(i) J:x"+lJn (x)dx=x""J

n+l

(x), n>-1

(ii) J:x_an+1 (x)dx: -x"J, (x)

1
2"|n
5. Use recurrence relations for Bessel’s functions to show that

!

J
i) J2(x) =——°£x) +J5(x)
(i) 4J5(x)+3J)(x)+J;5(x)=0

(iii) 2J5(x) = J, (x) = Jy (x)
6. Using generating function, prove that

0

Jy(x+y)= 2 I (x)/, ()

r=—o

7. Prove that

i) J3a(x)= 2 {sinx —cosx}

™ X

(i) J_3 (x) =— 2 {cosx +sin x}

w |
(iii) J52 (¥) = é{%(sﬁx —cosx]—sinx}
i) 32 (x) = | = {%( % 4 in x] _ cosx}
8. Prove that 7,4 (x)= % [, (x)=(n+2) 0 (x) 4 (+4) g (6) =]
9. prove that [ | ¥sin (ky)(»* -+ )71/2 dx = %Jl (k)
10. show that J,’l(x):%[an ()= (n+2) T, (x)+(n+4) g (%) onn }

HEin
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Unit 14 : Hermite Polynomials

Structure of the Unit

14.0  Objective

14.1  Introduction

14.2  Hermite Differential Equation and Its Solution
14.3  Generating Function

14.4  Hypergeometric Form

14.5  Recurrence Formulas

14.6  Rodrigue’s Formula

14.7  Orthogonal Property

14.8  Summary

14.9  Answers to Self-Learning Exercises
14.10 Exercise

14.0 Objective

Here you will study Hermite polynomials its definition and important properties such as recur-

rence relations, generating function, orthogonal property, Rodrigue’s formula etc.

14.1

Introduction

Hermite polynomials occur in the study of wave mechanics and other physical problems. We

start with the Hermite differential equation and its solution. Then we develop and study properties of

Hermite polynomials. We also illustrate the properties with the help of solved problems.

14.2

Hermite Differenential Equation and Its Solution

Hermite’s equation is

2
df_zxd_hz =0 (1)
dx dx
where 7 is any integer For solving equation (1), we use Frobenius method.
< k+r
Let y=yax", a0 )
r=0
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2

Now obtain d_i and d—;j from (2) and substitute in (1), we get
X

D a, [(k+r)(k+r—1)xk”_2 —2(k+r—n)xk”] =0
r=0

Equation (3) is an identity. We equate to zero the coefficient of smallest power ofx, viz. x*~2 in

(3) and obtain the indical equation as
a,k(k-1)=0
ktk-1)=0 - a,20

So roots of indical equation are £ = 0, 1. They are distinct and differ by an integer.

Again equating to zero the next snallest power ofx i.e x*~!. So we get

a(k+1)k=0

When k=0, (5) shows that a is indeterminate. Hence a and @, can be taken as arbitrary con-

stants.
Equating to zero the coeffcient of x** 72, (3) gives
Z(k +r—-n— 2)
a, = a,_»
(k+r)(k+r—1)
Putting £ =0, we get

2Wr—n—
r(r—l)
Forr=2,4,6,...... ,2rin(7), we get
oo (-1)2tn
2775 BT 2 o>
2(2-n) (-1)* 22n(n-2)
a, =-— a,=-— a,
4.3 |4

and a, =— a,

Next, putting =3, 5,7, ...., 2r+ 1, in (7) we get

(=)' 2! (n-1)
3

(-1)*2% (n-1)(n-3)
5

az = a

as = a
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and a :(—1)r 2" (n=1)(n=3)....(n-2r+1)
2r+1 IM

Putting the above values in (2) with k= 0, we get

y=a {1 2nxz+ X + x+
- 0 I - . T eeeee ceee
12

X+ X 4.+

v {x_ 2(n-1) 5 2*(n-1)(n-3)
3 5 [2r+1

or y=aqvtawsay )

Since v or wis not merely a constant, v and w form a fundamental set (i.e. linearly independent)
of solutions of (1). Hence (8) or (9) is the most general solution of (1) with a and a, as two arbitrary
constants.

Remark : In practice we require solution of (1) such that

(i) it is finite for all finite values of x and

(ii) exp (1/2x*) y(x) > 0 as x > ©

The solution (8) does not satisfy the condition (7). However, if the series terminate then this con-

dition will be satistied. Replacing » by »+ 2 in (7), we get

__2(r=n)
a, ., _(r+1)(r+2) a. (10)

Ifr is a positive integer, then for » =n, a_,, = 0 ie the series terminates. We now find the solu-
tion of (1) in descending powers of x for n €l (set of positive integers)

For £ =0, the equation (2) becomes

y=ax'ta x"’+a Xx"*+.. L. (11)
(r+1)(r+2)
From (10)we get a, =——77"——7>= a,,,
Z(n—r)

Letr=n-2,n—4, ... Then

n-2 =" 2.2 a
-1)(n-2)(n-3
Apy = n(n )2(2"24)(" ) a, and so on

Putting these values in (11) we find that

) =a [xn _n(=D) o n=D(n=2)(1=3) 4

+...
2.2 22.2.4
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N -D'n(n-1)...(n-2r+1) T
2"-2-4.2r

[”/2 r (n 1)...(n—2r+1)

_az

-2
xn r

n .
—,if niseven
[2} )

Wh
= 20 1 o), if nis odd
2
/2]
Thus y=a, > (-1) N U X"

rd 2% |r |n=2r

Taking a =2, then we get

[n/2] =2r
y:Hn( )Z( )rl_ln_zl”(z )” ----- (12)

where H (x) is called the Hermlte polynamlal of order n.

14.3 Generating function

Result. ¥ = z H,(x) valid for all finite x and t.

I_I“

Proof. We have

Letr+2s=mnso that r=n—2s.

Hence the coefficient of #” (for fixed value of s) is given by

()
o ln=2s s
The total value of ¢ " is obtained by summing over all admisible value of's, and since r»=n—2s,
r>0.
Nowasn—25s>0 or s<n/2, therefore s goes from 0 to n/2 or from 0 to (n—1)/2
according as n is even or odd.

So total coefficient of t* in the expansion of exp (2xt — ) is given by
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B2 -1y (2x)" > H
(-1) (2x) _ . (%) (From equation (12) of §14.2)

5=0 n—2s |£ m

2xt—t < Hn(x) n

e =)y 7y
2

14.4 Hypergeometric Form

wewe (- 0 ey 0
Now T T - e
e
et )e( )
#(5)503)
. =Gy §EL ),
R R o

14.5 Recurrence Formulae

14.5.1. 2xH (x)=2nH,_ (x) +H  (x)

Proof. We know that
i’ X ﬁ
€ - z Hn (x)
n=0 n
Differentiating both sides w.r.t. ‘¢, we have
or 2xt t 2x 2t
0 tn 0 frhl
2(x—t —H (x)= H (x
or (x >§)nn<>;n_l ()
Equating the coefficients of #” on both sides, we get
2x 2 1
or IﬂH ( ) n_lanl(x):EHnH(x)
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or 2xH (x)-2nH (x)=H (x)
or 2xH(x)=2nH _(x)+H (%)
145.2. H' (x)=2nH _(x)(n21)

_ — 1"
Proof. We know that e ‘= Z_Hn (x)
n=0 Iﬁ
Differentiating both side w.r.t. ‘x’ we have
(o] n
2. = zt—H,’1 (x)
n=0 1
0 t}’l 0 t}’l
2t —H =>» —H
or }%m a (%) ngo" 2 (%)
Equating the coetticients of " on both sides, we get
2 1, 1 :
or n_lanl(x):EHn(x):n n—1 n(x)

or H (x)=2nH, (x)

1453. H' (x)=2xH _ (x)-H , (x)

Proof. Form Recurrence relations 14.5.1 and 14.5.2, we have
2xH(x)=2nH, (x)+H (%)
H' (x)=2nH (x)

Shbstracting (2) from (1), we have

or H' (x)-2xH (x)=-H _ (x)

or H' (x)=2xH (x)—H_, (x)

14.5.4 H, (x)-2xH' (x) +2nH (x)=0

Proof. Hermite’s differential equation is

2
d—;j -2x @ +2ny =0
dx dx

-+ H (x) 1s the solution of above differential equation, therefore.

H' (x)-2xH' (x)+2nH (x)=0.

Self-Learning Exercise-I

1. Hx)=.. 2. HMX@=...
o0 t}’l
— H =
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Ex.1. Prove that H, (x) =4n(n—1) H _,(x)
Sol. From rcurrence relation 14.5.2, we have
H' (x)=2nH (x)
Differentiating with respect to x, we get
H:Z ()= 2nH;Z_l (%)
Again using recurrence relation 14.5.2, we find that
Hy(x)=2nx2(n-1)H (x)
=4n(n-1)H, ,(x)
Ex.2. Prove that if m <n

d”‘[Hn(x)]= 2"|n H, ,(x)
dx™ n-m """

Sol. We know that

dm x72 0 n m dm
or o }:Ztgﬁ—m[fh (¥)]—=

~ 0 4N dm[H (x)] d™
)" 2 r n
of (20)"-e rg‘) n dx" dx™
m & t o 4n ar [Hn(x)] dm
_H S N
or (2t) Z(:) r ,(x) HZ:(:) n dx™ dx™
” 0 tr+m 0 tn dm [Hn (X)]
N g ()= . L]
or ,;O B r(x) rg)lﬂ dxm
If rtm=n

[Notethatr>0=n—m>0orm<n]

o 7 © 4 dm[Hn(X)]
. H S N St A S |
or gq n-m " (x) —=ln dx™
Equating the coefficient of 7 ” on both sides, we get
_1d"[H,(x)]

n—m - |n dx"

or 2 |n (x) = d” [Hn (x)]
ln—m """ dx"

Ex.3. Prove that
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N
S

() H,, (0)=(-1)"

(i)H,,
Sol. We have

n

0)=0

o0

z (x) ert s

n=0
Putting x = 0 in this relatlon, we get

— 1" )=
20

Note that R.H.S. contain only the terms of even powers of ¢. Equating the coefficient of 7 *" on

both the sides, we get

H,, (0): -

[2n
or H,,(0)= (_12 = =(-1)" 2" G]

Further equating the coefficient of 72 *! on both the sides, we obtain
H,,, (0) =0

Ex.4. Prove that H,,(0)=0 and H,, (0)=(-1)"2"" (%]

Sol. We have

B )l e
()= S o)

Differentiating w.r.t. x, we get

[(n-1)/2] 5 1) n(25) 2!
0= % R
Hén(x)zzg (_1)@%1(—22—1

" Hgnﬂ(x):zi (-1)’|(2n+1)(2x)™""

= s |2n—2s
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Hence H},(0)=0

2n+1

—~
|
—_—
S~
N
—~
~—

and Hén+1 (0) =

B3

3

_ 1 n 22n +1 . . .
- (_ ) P (by using gamma duplication formula)

14.6

Rodrigues Formula for H (x)

()
To Prove that H, (x) = (—1)" ¥ — %

d'xn
Proof. We have
HO (X) Hl(x)t Hn (x) n
JA)=————+————+..... "
f(x ) m I_l + Iﬁ +
where f(xt)= Q217 _ exzef(xft)z
6”f(x t) Hn (x)
=———=|n=H
{ ot" ] Iﬂ Iﬂ n (X)
=0
0" {e_(x‘f)2 x? }
H =
- (%) ot"
=0
G”e_(x_’)2 2
| [ (1)
=0
Letx—t=uthatist=x-u=x=uatt=0
Als Cun 20
Y XxX—t=u= o o
_ane_(x—l)2 i B (_1)” . 8" (e_”2 )
ot" ou"
e )] s 0" (e )
- or" ox"




,d" [ex2}
From (1), we get H, (x) = (_1)” ef —L

14.7

Orthogonal Property of Hermite Polynomials

Theorem. Prove that I e H . (x)H,, (x)dx= 2"|\n\%5,,, where 0 is Kronicar delta

T 2 0 if m#n
or J.e }In(x)PIm(x)d’c={\/;2n|ﬂ lf m=n
Proof. We know that

2Xt7t2:iﬁH}’l (x)

2xi—t2 2xs—s? -t - 5"
= e = ) = (%) D —H,, (%)
n=0 L1 m=0 1S
11
= EEH n (X)H m (x) = Coeflicent of #’s” in the expansion of

erszzf2 i elxsfsz

“ 2
So J e H,(x)H, (x)dx=|n|m times the coefficent of #s” in the expansion of

—00

(o]
2 2 2
- 2xt— 2xs—
J. X xt—t XS—S§ I (1)

—00

0 0

2 2 2 2 2 2
Now J' e ert t ers Sde =e t°—s J'e X“42xt42rs
—0

—00

0
:efz‘zfs2 J' efxz+2x(t+s)+(t+s)27(t+s)2dx

—00



_ o2t T €7|:X7(t+S)Zde

—00

o0

2s —u?
= I e " du [where x — (¢ + s) = u and hence dx = du]

—00

_ ot g =r i%

(o] 2}’1
:\/; Z—Snfn
n=0 n

Here the series on right-hend side contains the terms having the equal powers of # and s. There-
fore the coefficent of ¢ 5™, (m # n) will be zero. Equating the coefficent of #* s on both sides of above

result,we get

I e’szn (x)H,, (x)dx=0 where m#n

and from (1), we have
Je_szn (x)H,, (x)dx =|n |m 2z

—00

n

=|n2"Jr , wherem=n

Hence J.efszn (x)H,, (x)dx =2"|n 7 5,

2
Ex.1. Prove that H,,(x)=2" {exp.[—ld—}} x"

4 dx?
Sol. We have
d eth
( ) — 2teztx
dx
d eZtX
2 dx

Differentiating w.r.t. x

i[li(ehx)} 220
dx| 2 dx
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1d | 1d ( ax\|_ 2 ux
= 2dx[2dx(e )} ¢

2
Ld Y o _ 2 oux
— | e =t"e
= (2 dx]
Hence by symmetry for n terms, we get

(li]n eth — tneth
2 dx

Now,
1 dz 2x S l _ld_z ! 2tx
{exp (zd—]} - ZL( 1o [
=i(_l)n ( 1d T” 2n
n=0 Iﬁ 2dx
S (_1)” 2n 2tx
=Ny
2
2t x = (_1)” 2n
= 2y
2
2t x - 1 2\"
_ Z—n(—t )
n=0
_ 2tx 1 _ertft2
1d*> )| &1 P L

Equating the coefficent of #* on both sides we get

N H,(x)=2" {exp.(—%j—i]}x”

which completes the solution ofthe problem.
Ex.2. Expand x" in a series of Hermite polynomials

Sol. We have

OOtVl

ertftz _ ZEHH (x)

n=0
280
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cx) e [E

R e —;w e
002”” — n+25

= 2 22

Putn+2s=m=n=m-2s since m—2s > 0.

Equating coefficent of # on both sides

27" ~ [1/2] Hn_zs (X)

|n _Zomn—_zs

N8, (x)
- S s n-2s

Ex.3. Prove that P

(xt)dt

D=l

This result is also known as Curzen’s integral.

[7/2] (_1}¢ n-2s
Sol.We know that H, (x)= Z (=1) In(2x)
s=0

s [n=2s

020 (1Y (2 )2
. H, (xt) =§0( l)@l}(ﬁ_z?

0 , [n/Z] 1) n(2x n-2s
o s = 2 fe {z Y ln(2e) }dt

0
_ J'et2n2sdt
0




1
[n/Z] (_l)s (2x)n—23 F(I’I—S-i-] - o
} ;0 s =25 r(1/2)2 [T /2)=4r |

[n/2] (-1)’ (2x)"72$ (1/2),,,

=P (x) (by definition of Legendre polynomials)

[o o] n
Ex.4. Show that Y H,, (x)t"

n=0 Iﬂ

=exp(2xt—t2)Hs(x—t)
Sol. Consider
H, . (x)t"v*

D PP YD e e pa

n=0 s=0

er(t+v)7(t+v)2

2 2v(x=t)-v?
_ v(x—t)-v

:ele—l2 i Hs (X—I)VS

s=0 Iﬁ

: : v’ .
Comparing the coefliecient of —» Weget the required result.
s!

Ex.5. Establish

412
(1-2x1)’

2) < ng(x)tn =(1-2xt) " ,F,

N o
N o
+
N | =
|
|
—~
(O8]
N

Sol. We have
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e (2 (1) (o), (20)" >

LHS. of3) =) Z

n=0 s=0 I_In_2S
Now using a well-known result
0 [i’l/2 o o
D> A(kon) =, Y, A(k.n+2k), we get
n=0 k=0 n=0 k=0

i i (_l)s (C)mzs (2x)n {2

L.H.S.of (3 =
° ( ) n=0 s=0 Iﬁlﬂ
(¢),,, =(c+2s) (c),,
= (-1)(¢), 5 & (c+2s) (2xt)
L.H.S. of (3 = > -
. 2L & b
S (_l)s(c)z >
= 2 1-2xt
2 (2)
_s(e) et
But (ch =27 (2) (272,
L& (¢/2) (e+1/2) a2
=(1-2xt 2 -
Hence L.H.S. of (3) ( ) S_Z(:) ls (l—2xt)2
2
(1-2w)* R &, Sl ¥
2.2 2 (1-2xt)
The relation (3) is called the Braf man’s generating function.
Ex.6. Prove that I e H,(y)dy=H, (0)-¢"H,(x) 4)
0

Sol. Using Rodrigue’s formula in the lefi—hand side of (4), we get

[ om0y = (Lo =y L)

0 dy”

(Using again the Rodrigue’s formula)

—H, (0)—¢ " H, ()
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Self-Learning Exercise-11

o0

1. I efszn (x)H,, (x)dx=...... (if m#n)
2. Write down Rodriques formulas for H (x).
3.H, (0)=......

14.8 Summary

In this unit, we studied the Hermite differential equation and Hermile polynomials. We also stud-

ied recurrence relation, generating function, Rodrigue, formula and orthogonal property for Hermite poly-

nomials.

14.9 Answers to Self-Learning Exercises

Exercise 1

1. ertftz
2

2. LY 0 aay-0

dx dx
3. 2nH,  (x)

Exercise 11
1. 0
,d" (eXZ)

2. =(-1)"¢e"

Hyy=(=1)e" —
3.0

14.10 Exercise

1. Evaluate I xe " H, (x)H,(x)dx (m#n) [Ans : 0]
2. Prove that Hs(x)=32x" —160x> +120x
3. Provethat H, (x)=4x" -2
4. Express H (x)=x"+2x> +2x* —x—3 in terms of Hermite polynomials.
5. Provethat xH, (n)=nH,_ (x)+nH,(x)
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10.

I1.

0 L 1
Prove that I e {H, (x)}2 dx:\/;2”|ﬂ(n +5)

—00

Show that i Hy (x) Hy (v) _ Hy (5) Hya (v) = Hya (%) H, ()

= 2%k 2" (y=x)|n
. Evaluate 2”“exzj‘we‘tzt”“Pn (x/t)dt [Ans : H (x)]
Evaluate Jixe_szm (x)H, (x)dt,m=n [Ans : 0]

Iy, (x)=e""?Hn(x),then prove that
0 [ v (x), (x)dx=2"|n7s,,, if m#ntl

) [ wn (), (x)dxd 27 nym, it m=n-1
2" ln+lm, if m=n+l
Using the expansion of x ” in a series of Hermite polynomials, show that

iz
lk

Ijow e X" H, (x)dx =27

HEin
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Unit 15 : Laguerre Polynomials

15.0  Objective

15.1 Introduction

15.2  Definition

15.3  Generating Function for L (x)

15.4  Recurrence Formulae for L (x)

51.5  Rodrigue’s Formula for L, (x)

15.6  Orthogonal Property for L (x)

15.7  Associated Laguerre Polynomial : Definition

15.8  Generating Function for Associated Laguerre Polynomial
15.9 Recurrence Formulae for Associated Laguerre Polynomial
15.10 Rodrigue’s Formula for Associated Laguerre Polynomial
15.11 Orthogonal Property for Associated Laguerre Polynomial
15.12 Summary

15.13 Answer to Self-Learning Exercises

15.14 Exercise

15.0 Objective

In this unit you will study Laguerre and associated Laguerre polynomials and their important prop-

erties such as generating function, orthogonal property, Rodrigue’s formula, recurrence relations efc.

15.1

Introduction

The purpose of this unit is to introduce and study the Laguerre and associated Laguerre polyno-

mials. We shall state and prove certain important properties associated with these classes of polynomi-

als.

15.2

Laguerre’s Differential Equation and Its Solution

THe Laguerre differential equation of order 7 is

dzy dy
x——+(1-x)—+ny=0, 1
dx? ( )dx 4 (1)

where 7 is a positive integer
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Now we apply the method of Frobenius for its solution which is finite for all values of x and
which tends to oo no faster than e”* as x —>co.
Proceeding on lines similar to explained in the case of Legendre, and Hermite polynomials, we

find that if we assume the solution of (1) in the form

y=Yax" )
r=0
then y=a Z(:) (—l)r n—rL(lz)zxr ..... 3)

will be solution of equation (1). Taking a, = 1, the corresponding solution of equation (1) is known as

Laguerre polynomial of order n, and which is denoted by L_(x). Thus

L) =R (1)

:lFI(_n;l; x) ..... 4)

Some times we take a, as |n , then alternative definition of Laguerre polynomials is

L (x)= zw&—)m ..... -

15.3 Generating Function for L _(x)

Theorem : Show that

L (1) x't" & (r+1) ¢
_V:Zo | ; Ki

(D)



For a fixed r, the coeflicient of #*is

Taking n=r+s.
Nows=n—-rands>0,sor<n.

Hence the total coefficient of 7 in (1) is

-y LB

S () |(n-r) o (By definition)

Hence e . Z L, (x)tn

15.4

Recurrence Relations for L (x)

15.4.1 (”+1)Ln+1 (x) = (2n+1—x) L, (x)—nLn_1 (x)

Proof : From generating function, we have

(l—t)e o= i t"L,(x)

" X o«
— n _ I’ZL
Multiplying both the side by (1 —#)* we get
(1—2t+t2) > ont"'L(x) =(1-1)Y "L, (x)-xY ¢"L,(x)
n=0 n=0 n=0
— S ot L, (x)-2) nt"L,(x)+> nL,(x)""
n=0 n=0 n=0

o0

n=0

Now equating the coefficent of 7 on both sides, we get

(n+1)L,,,(x)-2nL,(x)+(n-1)L,_, (x)=L,(x)-L,_, (x)—x L,(x)

= (n+1)L,, (x)=(2n+1-x)L,(x)-nL,(x)
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1542 xL,(x)=nL,(x)-nL,_(x)

Proof : From generating function

* 1
ZO "L, (x) e )

Differentiating w.r.t. ‘x’ we get
o0 xt
> L) =t ()
n=0
o0 , t o0
or z tnLn(x) =TT z tnLn(x)
n=0

o (l—t)i::) L (x) =t io L, (x)

[o 9] [o 9]

or Z " Ly ( 2 L (x) == L (x)

=0 n=0

Equating the coefficients of # on both sides, we get

L (x)-L, (x)=-L,, (x)

or L (x)=L_(x)+L,(x) . (3)
Differentiating Recurrence relation 15.4.1, we find that
(n+1)L,,(x)=(2n+1-x)L,(x)-L,(x)-nL_(x) .. 4)
Replacing n by (n + 1) in (3), we obtain

L(x)=L.,(x)+L,(x) (5)

Putting the value of L/ ( )and L, (x) from(3) and (5) in (4) we get
n+1 [L ()] (2n+1 x) (x)—Ln n[L +L ()]
n L)L < 4L (x)- L, (+)

=2n

n(X)+ Ly (x)-xL; (x)-L,(x)-nL,(x)-nL,_(x)

)5
On simplification, we get x L), (x)=nL, (x)-nL,_(x)

1543 L) (x)= —"f L, (x)

Proof : From generating function

s
~
=
h
=
—~
=
N—
Il
—
—
|
~
~—
Q
T
~
©))
N—"

n=0

Differentiating (6) w.r.t. ‘x’, we get

— R
or > "L(x) = e ! [—}
n=0 -




o0

= (1 —1 )_1 Z L, (x ) t (using Bionomial theorem)

r=0

r=0 s=0
Taking r+s+1=n, wehave s=n—s— 1. But s >0 therefore r<n—1

n—1

So the total coefficient of R .H.S. is —z L, (x)
r=0

Now equating coefficient of 7 on both sides in (7), we arrive at the required recurrence relation

15.4.3.

15.5 Rodrigue’s Formula for L (x)

Prove that

L(x)=1 4 (xe)

Proof : Using Leibnitz’s theorem for # times differentiation, we have

RHS. =

15.6 Orthogonal Property

Prove that

0, if m#*n

.(I;e—me(x)Ln(x)dx=5mn ={1, if m=n

Proof : From generating function, we have

0 xt

z tnLn(x) :%6_1_[
n=0 -

290



o0 XS

> s"L,(x) - Lo )

m=0 1-s

Multiplying (1) and (2), we get

n=0 m=0 | ¢
® Y LA
:(l_t)l(l_s) Iefx e {l—t ”}dx
0
1 X 7x1+f+%s
ol "
! e_x|:1+lt—t+l—s:| :
~(1-0)(1-5) [1}
1=t 1-s5]],

S N () (L NN B e
(1-1)(1-s) [(1+t)(1—s)+t—ts+s—st] .

1

= 0-1
[l—s—t+ts+t—ts+s—st]x[ ]
1 -1
= =(1-st
(1-st) (1=s1)
— 145t +(st) 4ot (s1) +....
Equating the coefficients of #' s” on both sides, we get
Ie (x)L,dx =0ifmzn L. (3)
0
and equating the coefficient of #* 5™, we get
I e [Ln (x)z}dx =1
0
That is [ e L, (x)L, (x)dx=1 (whenm=n) .. (4)
0

Combining (3) and (4), we get | ¢ 'L, (x)L, (x)dx =34,
0
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Ex.1. Prove that

Sol. LHS. =] e

1 & 1 1 Y
=_ e | =2 | =2 1==
23 (-1) =1 (1-5)
=R.H.S.
I} ces ) n(n—l)
Ex.2. Prove that (i) L, (0) =1, (ii) L,(0)=-n and (iii) L}, (0)= 5
Sol. We know that
BETR:
Le 1-t :z t”Ln(x)
l—t n=0

Taking x =0 in (5), we get

o0

or (l—t)_1 =2, 1"L,(0)

n=0

or Z(:) " :Z(:) t"L,(0)
Equating coefficients of 7 on both sides, we get
1=1,(0)

(ii) From Laguerre differential equation, we have
x)'"+(1=x)y +ny=0

If L (x) is the solution of this equation then
xL!(x)+(1-x)L)(x)+nL,(x)=0

Putting x=0, we get

L;(0) =-nt,(0)

=—n-1 [from (7)]
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Thus L (0)=-n
(iii) Differentiating twice w.r.t x’, (1) gives

—xt/(1-t) 2 0
e e IR AT

-t \ 1-¢ =~
Putting x =0, we get
2 Loy —ear (6)
n=0

Equating the coefficients of #* on both the sides of (6), we find that
L'(0) =Coeff. of "in#*(1—-1)7
= Coeff. of " 2in (1 —¢)"

(-3)(=3-1)..{-3-(n-2)+1} ,
B (n—2) (_1)

34....n |n n(n-1)
C|(n-2) 2[p-2 2

Self-Learning Exercise—1

. Laguerre’s differential equation is .........

. J.e*me(x)Lndxz ..... ifm 2 n
0

15.7

Associated Laguerre Polynomial : Definition

Associated Laguerre polynomials of degree n and order £ is denoted and defined as

k _ k dk
Ln(x) _(_1) wl’rﬁk(x) ..... (1)

Now using the series representation for Laguerre polynomials we find that

. k nt+k , ntk
i) =0 S 2 D <n+|f(f-f> )W
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n+k n+k k
=(-1)' -1y hd) 2 der (2)
= (n+k—r) (Iﬁ) Y el
o 0, if r<k
Now ar Tl s
r—k
n+k k-1 n+k
Hence breaking z into two sums as z and z , we find that
=0 r=0 r=k
n+k (n+k)
Lk —(—1 _1 r+k N xrfk
(%) (1) Z,“{ (1) |(n+k—r) lr |(r—k)
Letr—k=s,sothatr=s+kand whenr=+%k,s=0and r=n+ k, s =n. Then
n I’l+k)
k _ 1 s+2k ( ¥
L, (%) s:zo (1) |(n—s) |(s+k) ls
o <3 ()
L = - o 3
or n(x) part |(I’l—7‘) |(k+}’) Iﬁ (3)
15.8 Generating Function for Associated Laguerre Polynomials
Prove that
1 xt = k n
———eXpPy -7~ (= L (x)t
(1—¢)""! { (1—1)} Z;) ()
Proof : By generating function for Laguerre polynomial, we have
1 —xt = "
(l_t)exp{l_t} :;:(:)Ln(x)f ..... (1)
Differentiation both sides of (1) ‘4’ times w.r.t. ‘x’, gives
1 d* xt > d*
_- = — n2 I
(1-1) dx* {GXP{ l—tH <! dxk{ ()
k -1 k 00 k
1 t xt o d nd
= e e e AT B e S
or (—l)kLexp{—x—t} :O+i t”d—k{L (x)} ..... ()
(l_t)k+] l—f = dxk n

Here we use that L (x) is a polynomial of degres n so that

d—k{Ln(x)} :{ 0 if n<k}

dx* non-zero if n>k
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Multiplying by (2) by (—1)* then we get
k

e w-2b ) 3 L, )

k 0 k
t xt k k d
—exp{——} =(-1 £ — 1L (x
= (l_t)kﬂ 1—¢ ( ) S:z() dxk { +k( )}
(Taking s as new variable such that n =s + ki.e. s =n — kso when n =k, s = 0 and when n

tends tooo, s also tends to o)

or (1_:)’”1 eXp{_lx_tz} :g (_l)kci_k{Lmk (x)}"

(- The limit remain same so we can change the variable from s to n)

1 xt - k
————expy—— =) L, (x)t
(l_t)kﬂ { l—f} ,,;) ( )

15.9 Recurrence Relations for L* (x)

159.1 L, (x)+ L' (x)= L5 (x)

L )
Proof : We know that L (x) = Z,) (-1) |n_—|r ke r (1)

Replacing n by (n—1) in (1), we find that

n-1 . (—1)r (n+k-1) .
Ll:hl (x) = ~ (_1) (n_r_|1) Iﬁ qu ..... (2)

7

Replacing k by (k—1) in (1), we get
(-1)"|(n+k-1)

k-1 N r
L'(x) = é‘; e ke, 3)
Using (2) and (3), we have
) n-1 (—1)”|(n+k 1) Ly B
o (x)+ I (x) = oo () |(m+k-1)
() ) S ln—r-)) ks [ L T e
= (—1)r|(n+k—1) . (-1)"|(n+k-1) )
= |(n=r=1) lk+r |r +, ln—r lk+r-1 r

+(—1)n (n+k-1)x"
l@ k+n—1{n
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it (1) |(”+k—1) - n+k (-1)" x"
= X X 4 7
r:0|(n—r—1) |(k+r—1) lr (k+r)(n—r) |n
_”Z‘lt (1) |n+k x" .\ (-1)" x"
CZln=r lk+rlr |n
:Z”: (-1) |n+k x"
= ln=r lk+rlr
~ I () [by (D]
159.2 (n+1)Li,, (x)=(2n+k+1-x)Li (x)-(n+k) L (x)
Proof : From recurrence relation 15.4.1 for Laguerre polynomial we have
(n+1)L,, (x)=(2n+1-x)L,(x)-nL,_(x) ..(4)
Replacing n by (n + k) in (4), we get
(n+k+1) L, (x)=(2n+2k+1-x)L,, (x)—(n+k) L, (x)
Differentiating & times, the above equation becomes
d* d*
(n+k+l)W{Ln+k+l (X)}:(2n+2k+l)ﬁ{l4n+k ()C)}
d* d*
_w{an+k(x)}—(n+k)ﬁ{Ln+k_l(x)} ..(5)
Using Leibnitz’s theorem, we get
dk dk JF!
— Ui (0 = L (Rt e~ (L (4)]
dk dk—l
:xw{[’mk(x)}_'_kdxk—l {Ln+k (x)} -(6)
Using (6) in (5) and then multiplying both sides by (-1, we get
k d*
(1) (n+k+1)—L, 1 (%)
dx
k 1 d* 1 d*
=(-1)" (2n+2k+ )w{Lmk(x)} —(-1) xdx—k{L,Hk(x)}
k1, d¥! k g
(_1) kdxk_l {Ln+k—l+l (x)} (_1) (n+k) k {Ln+k—1 (x)} wee(7)
.. v d*
But from definition  7¥ (x)=(-1) _{ - (x)} ..(8)

Using (8) in (7), we get
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(n+k+1) L, (x)=(2n+2k+1) L} (x)
—xLi (x)+ kL (x)—=(n+ k)L (x)
Replaceing n by n+ 1 in 15.9.1, we get
L (x)+ L () = Ly (%)
oo La()=Lu(x)-L(x) (10)
Eliminating 7%} from (10) and (9), we get
(n+ k1) 2y () = (200 2k + 1) L () = 5 () K|y (0) 28 ()~ (n +K) 2 ()

Thatis (n+1)LL,, (x)=(2n+k+1-x) L} (x)-(n+k) L (%)

d
15.9.3 EL’,‘,(x)=—L’f,f: (x)

Proof : We know that Ir

Differentiating both side of (11) w.r.t. x’ we get
} i - |(n+k) o
- —L =
LHS. dx = |(n=r)|(k+r) |z
no(=1) |n+k X
3 (=) ln+k

ln—r lk+r |r—1

r=l1

n-l )S+1 n+k x°

|n s—1k+s+1|s

(Taking r— 1 =)

[
LM

=t (=1) |(n—1+k+1) x
= |n s—1|k+s+1|s

—-L(x) =-L%(x)=RHS

15.10 Rodrigue’s Formula for L (x)

Theorem : Prove that

x —k dn “x
Lﬁ(x):e IZ _dx" (x"+k X )
Sol :
ex xik n{ —x _n+k
RHS. = ” D (e X )
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= z ”chnfrx’”k -D"e”” (by Leibnitz theorem)

m r=0

15.11 Orthogonal Property for Associated Laguerre Polynomial

Theorem : Prove that

I e_xka’,‘, (x)L’,‘n (x)cbc = Iﬂﬁ
0

Proof : Associated Laguerre differential equations is

x@+(l—x+k)ﬁ+ny:0 (1)
pw =0

Multiplying by *,—* we have

k _—x dzy k _—x dy k _—x
xx'e —2+(1—x+k)x e —+nyx'e" =0
dx dx
d k+1 _—x dyi| k _—x
—|x"e " —|+nx"e =0
or dx[ pe y=v . (2)

Since associated Laguerre polynomial L’fn (x) and L’fn (x) satisfy the equation, therefore

d _ _
So e [xk”e *DIf (x)} +nx*e Ik (x)=0
d _ _
and E[xk”e XDLIfn (x)}+mxke XL],‘” (x)=0 . 4)
Multiplying (3) by L}, (x) and (4) by L}, (x) and then substracting, we have
I (x)%[exxk+l DIf (x)} .y (x)%[e’“xk+l DIf (x)}
=(m-n)x*e™ L} (X)L (x)(x) .. (3)

Integrating both sides of (5) wr¢. ‘x’ from 0 to oo, we have
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T L’; X a efxxk”DL’fn x) |dx
(12 (¥
0

= [Llfn (x)efxkaD LIZ (x) I: — j: L]fn (x)efxxk“D Lﬁ (x)dx

L0 DL () [T+ [T B (e DL (v (6)
=0ifm=n

o0

Hence I xfe ™ X (x) Lt (x)dx =0, ifm=n.

0
If m = n then we find value of

— 8

i -x -x e'x* d’ -x_n
!;xke LY (x) L (x)dx =0 xbe™ I (x) v (e x*k)dx

= O—éz DL (x)D"" (x”*kefx)dx

—~
|
[
~
N

S
N
8

(x) (x’”k e ) dx (by symmetry for 7 terms)

N

(_1)”! xn+k+1—1 e—xdx

E
S8 o—38

xn+k efxdx

s |—
S8

S
+
b

|
B}
I~
~J
-

Combining (6) and (7), we have

I e X Ik (x)L]; (x)dx = n+k )
0

m mn
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Ex.1. Prove that I e_'Ll,‘, (t)dt =e [Ll,‘, (x) - Ll:,—l (x)}

X

Sol. Integrating by parts taking e as second function, we get
T —trk [ -trk ~t yrk
eI (1) di =[—e"L (1)] +j DLk (
X

o0

—e " IF (x)+J e'DL (1) dt

r=0
© n—1 ©
[ 'L (t)ar+y [ e'Li(t)dt =L (x)
X r=0 x
or i J eIt (1)dt =e "L (x)
r=0 x

Subtracting (9) from (8), we get

or Z f TLE(¢ T et (t)a’t—}H T eIk (1)dt=0
=0 x =0

or T e 'L (t)dt =) T e 'Lk (t)dt —ni T e L (t)dt
x r=0 r=0 x

or T 'L, (1)dt o L (x)-e ™ Lt

o [ et = [ 2 (o) (0]

X

Ex.4. Establish the generating functions :

P r(1+a)(xt)'“/2e'1,,(z@)

0
n=0

1 . . Xt | _ ~ (C)n o n
(i) WIFI("’”“"E)‘Z (1+a), ()"

Sol. (i) We have

0

2

L, (x)t
=0 (1+0‘)n =i Lk =k (1+a),

[using (9)]



Using i i A(k,n) :i i A(k,n+k),we get

n=0 k=0 n=0 k=0
© 1 ) 0 0 (—l)kf’Hk xn
z ‘;f(x)t -

n:0(1+a) ré) l;) & Iﬁ(1+a)k

k

B *© ﬂ = (—xt)
20 Ak (iva),
=¢ (F(—;l+a; —xt)

We know that

Using (11) in (9) we get the required generating function (i)
(ii) We have

Ex.5. Prove that L(n“+ﬂ+1) (x+y)=> LI (x)I5_. ()

r=0 -
Sol. We have
(1 - f)ilia exp(—%) (1 _ t)*lfﬂ exp (_ly_tt] _ (1 _t)—l—(a+ﬁ+1) GXP[— (X1+ );)l‘]
Therefore

0 [o 9]

Y L (xa ) =Y 1Y 1 ()"
n=0

n=0 r=0

o0 n
=2 2 L () ()
n=0 r=0
Comparing the coefficients of ', we get the required result.
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Ex.6. Prove that L, (xy) =

r=0 n—r (1+a)r
Sol. We know that
2 Ly (xp) "
1 _. . - n
¢ oF(—;1+a; —xyt) %(l+a)n
Now,
¢ o (= 1+a; —xyt) =l F(-;1+a;-xyi)
I (l_y)” Lit(x)yrtnﬂf
33 )
n=0 r=0 Iﬂ ( +0£)r
2 L (xy)t" © (1=-y)tp & LY (x)(pt
) $EEN &0 2 (0]

Comparing the coefficients of #* we get the required result required.
Self-Learning Exercise-11

1. Associated Laguerre differential equation is .........

2. I e x” Lk (x)dx= ........ if m=#n.

3. Ln ., 1s a Laguerre polynomial of degree ........

4. L () + L (x)= e

15.12 Summary

In this unit we studied the Laguerre and asociated Laguerre polynomials. we also studied the

recurrence relation, generating funciton and orthogonal property for these polynomials.

15.13 Answer to Self-Learning Exercises

Exercise-I

1. xy"+(1-x)y'+ny=0 2.0
1
xL,'Z(x) 1
1 2
7. 1-x 8. E(2—4x+x )
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Exercise-11

1. xy"+(1=x+k)y'+ny=0 2.0

3. ntk 4. L (x)

n

15.14 Exercise

1. Find the value of

(i) J e "Ly (x)Ls(x)dx [Ans. 0]
0

i) [ e[ Ly(x)] dx [Ans. 1]

0
2. Express 10— 23x + 10x? — x*in terms of Laguerre polynomials.
[Ans. L (x) + L, (x) + 2L, (x) + 6L, (x) ]

3. Prove that I e’L, (y)dy =e' [Ln (x)—L,H (x)]

(=1)" Hy, (4/2)
2% (3/2),

t
4. Showthatj L, {n(t—x)}dx:

5. Show that Lk i ( 1) F(k+n+1)

= lr ln=r T(k+n—r+1

6. Prove that
i) Hy, (x)=(-1)" 2" 217" ()
(i) Hy,, (x ( ) = (_l)n 2% |ﬁ Lln/z (xz)

7. Show that j{x(f —x)}_% H,, {x(t —x)}%dx =(-1)"z2™ G] L, [é]

n — Lﬂ
8. Show that L7 (x Z ) (%)
s=0 st
o n+k
9. ShowthatJ' e *x*! {L’,‘l (x)}2 dx = ( B ) (2n+k+1)

10. Prove that | (x—¢)"L (r)dr:ﬂx’”” L (x)

n n
0 m+n+l

EEEEN
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