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PREFACE

The Present book entitled ‘‘Differential Equations, Calculus of Variations

and Special Functions’’ has been designed so as to cover the unit-wise syllabus of

Mathematics-Third paper for M.A./M.Sc. (Previous) students of Vardhaman

Mahaveer Open University, Kota. It can also be used for competitive examinations.

The basic principles and theory have been explained in a simple, concise and lucid

manner. Adequate number of illustrative examples and exercises have also been

included to enable the students to grasp the subject easily. The units have been

written by various experts in the field. The unit writers have consulted various

standard books on the subject and they are thankful to the authors of these refer-

ence books.
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Unit 1 : Non-Linear Ordinary Differential Equations of
Particular Forms and Riccati’s Equation

Structure of the Unit

1.0 Objective

1.1 Introduction

1.2 Exact Non-Linear Differential Equation

1.3 Riccati’s Equation

1.3.1 General solution of Riccati’s equation

1.3.2 Theorem

1.3.3 Method of solution of Riccati’s equation when one particular solution is known

1.3.4 Method of solution of Riccati’s equation when two particular solutions are known

1.3.5 Method of solution of Riccati’s equation when three particular solutions are known

1.4 Equation of the form  
2

2
d y f y
dx



1.5 Equations not containing y directly

1.6 Equation not containing x directly

1.7 Equations in which y appears in only two derivatives whose orders differ by two

1.8 Equations in which y appears in only two derivatives whose orders differ by unity

1.9 Homogeneous Equation

1.10 Summary

1.11 Answers of  Self-Learning Exercise

1.12 Exercise

1.0 Objective

The purpose of this unit is to discuss various methods for solving some particular forms of sec-
ond and higher order non-linear differential equations. The methods for solving exact non-linear differen-
tial equations and Riccati’s equation are also discussed.
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1.1 Introduction

In earlier classes we studied a great deal about linear differential equations of second and higher
orders when coefficient may or may not be constant. It is a known fact that due to superimposition of
linearly independent solutions, it is easy to solve linear differential equation and we have well established
theories for such types of equations.

On the other hand, the non-linear differential equations are difficult to handle. In the case of some

first order equations, we have well established methods. However, there is no known general method

for solving second and higher order non linear differential equations. It is only some particular forms that

may be reduced to linear equations by suitable transformation and integrated to yield compact results.

The aim of this unit is to study those easily integrable non-linear equations.

Next we shall discuss the general solution of Riccati’s equation. The solution of this equation

when one, two or three particular solutions are known will also be discussed.

1.2 Exact Non-linear Differential Equations

There is no simple method for testing the exactness of non-linear differential equations as in the

case of linear equations. One possible method is that if the terms of the equation be grouped, by inspec-

tion, in such a way that they become perfect differential and their integrals may be written directly. The

other method of obtaining the integral of an exact differential equation, which is applicable both for linear

and non-linear equations is explained below.
Let s = f (x) be a differential equation of nth order. If it is an exact deferential equation it should

be derived merely by differentiation, so as to contain 
n

n
d y
dx

 in the first degree. Now we write the equa-

tion in the form sdx = f (x) dx and will integrates assuming that as if 
1

1

n

n
d
dx

y

  were the only variable in the

differential equation and 
n

n
d y
dx

 is its differential coefficient.

Denoting the result by s1 then sdx – ds1 will contain differential coefficients at the most upto

(n – 1 )th order. Restriction of taking 
1

1

n

n
d
dx

y

  as the only variable should be removed while finding ds1.

Repeating the above process as many times as necessary, we shall finally get
sdx – ds1 – ds2 – ... = 0

or         ds1 + ds2  + ... = sdx
On integration, we get

s1 + s2 ... = sdx = f (x) dx
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Ex.1. Show that the differential equation

   
   
   

3 2
2 23 2 2 0dy dy dy d yy + x + y + x + y =

dx dx dx dx

is an exact equation and find its first integral.
Sol. The given equation can be written as

32 2
2 2

2 22 2 3 0d y dy d y dy dysdx x y y x y dx
dx dx dxdx dx

         
   

Now here the first three terms are the differentiation of
2

2 2dy dyx y
dx dx

   
 

So putting
2

2 2
1

dy dys x y
dx dx

      
   

On differentiation, we get
32 2

2 2
1 2 22 2 2

        
   

d y dy dy dy d yds x x y y dx
dx dx dxdx dx

Thus 1
dysdx ds y x dx
dx

     
.....(1)

Again the terms on R.H.S. are the differentiation of xy, so putting
s2 = xy

On differentiation, we get

2
dyds x y dx
dx

    
.....(2)

From (1) and (2), we finally get
sdx – ds1 – ds2 = 0

which on integration gives
s1 + s2 = constant

This relation shows that the given equation is exact and the first integral will be given by
2

2 2 .dy dyx y xy c
dx dx

    
 

Ex.2. Solve the following differential equation :
2

22sin 2cos 2sin 2 cos cos d y dy dyx + x + x + y x = x
dx dxdx

Sol. We can writte the given equation as

2

22sin 2 cos 2sin 2 cos cosd y dy dysdx x x x y x dx x dx
dx dxdx
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Here first term of above equation will arise from the differentiation of 2sin dyx
dx ,  so putting

1 2sin dys x
dx



which implies that
2

1 22sin 2cosd y dyds x x dx
dxdx

 
  
 

Thus 1 2sin 2 cosdysdx ds x y x dx
dx

     
Again putting

s2 = 2y sin x
On differentiation, we get

2 2sin 2 cosdyds x y x dx
dx

    
 sdx – ds1 – ds2 = 0
This shows that the given equation is exact and on integrating, we get

s1 + s2 = sdx = cos x dx

or 1n2sin 2 sin si 2dyx y x x c
dx

  

or 1 c
1 cose
2

dy y c x
dx

  

This is a linear differential equation of first order whose integrating factor (I.F.) is ex

Thus its solution is

   1 2
1. . . cosec . .
2

y I F c x I F dx c    
 

or 1 2
1 cosec
2

x x xy e e c e x dx c  

Ex.3. Solve 
 
 
 

 
22

2 2
22 cos 2 sin cos sind y dy dyx y x y + x y y = log x

dx dxdx
Sol. The given equation is

22
2 2

22 cos 2 sin cos sin logd y dy dysdx x y x y x y y dx x dx
dx dxdx

        
   

.....(3)

Let 2
1 2 cos dys x y

dx


So that
2

2 2
1 22 cos 2 sin 4 cosd y dy dyds x y x y x y dx

dx dxdx
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 1 3 cos sin      
dysdx ds x y y dx
dx

Again let s2 = – 3x sin y

So that 2 3 cos 3sin     
dyds x y y dx
dx

 s dx – ds1 – ds2 = 2sin y dx
Hence the equation is not exact.
So dividing the given equation (3) by x2, we get

22

2 2 2
1 1 log2cos 2sin cos sind y dy dy xsdx y y y y dx dx

dx x dxdx x x

        
   

Now let 1 2cos dys y
dx



so that
22

1 2cos 2sind y dyds y y dx
dx dx

     
   

 1 2
1 1cos sindysdx ds y y dx
x dx x
     

Again let 2
1 sins y
x



So that 2 2
1 1cos sindyds y y dx
x dx x

    

 sdx – ds1 – ds2 = 0
Hence the equation is exact, and

1 2 2
log xds ds sdx dx

x
  

Integrating we get

1 2 12
1 logs s x dx c
x

  

  1
1 12cos sin log 1dyy y x c

dx x x
     .....(4)

Let sin y = u. Then

cos dy duy
dx dx



  (4) reduces to

  11 log 1
2 2 2

cdu u x
dx x x

     .....(5)
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which is linear with
1 1
2. .

dx
xI F e x 

Hence the solution of (5) is

  1
2

log 11
2 2

x x cu x dx x dx c
x


    

or   2 3 21
2

1sin 1
2 3

w cx y w e dw x c     , where w = log x

  2 2 3 21
21 2

3
w w cw e e x c     

  3 21
2log 1 2

3
cx x x x c     

or 1 21
2sin log 1

3
cy x x c x    

which is the required solution.

Ex.4. Solve
22

2
2 0d y dyx y x y

dxdx
    
 

Sol. The given equation is
22

2 2 2
2 2 0d y dy dysdx x y x xy y dx

dx dx dx
        

   
.....(6)

Let 2
1

dys x y
dx




22

2 2
1 2 2d y dy dyds x y x xy dx

dx dx dx
      

   

So that 2
1 4 dysdx ds xy y dx

dx
      

Again let s2 = – 2xy2

So that 2
2 4 2dyds xy y dx

dx
     

 sdx – ds1 – ds2 = 3y2 dx
Hence the equation is not exact.
Therefore dividing the given equation (6) by x2, we get

22 2

2 2

2 0d y dy y dy ysdx y dx
dx dx x dx x

        
   

Now let 1
dys y
dx
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Then
22

1 2

d y dyds y dx
dx dx

     
   

So that
2

1 2

2y dy ysdx ds dx
x dx x

 
    

 

Let
2 2

2 2 2

2so thaty y dy ys ds dx
x x dx x

 
     

 

Hence sdx – ds1 – ds2 = 0
or ds1 + ds2 = sdx = 0
or s1 + s2 = c1

or
2

1 
dy yy c
dx x

.....(7)

Let
2

so that
2
y dy duu y

dx dx
 

Hence equation (7) becomes

1
2du u c

dx x
  .....(8)

which is linear with 
 2

2

1. .
x dx

I F e
x

 

Thus solution of (8) is

 
2

1
2 1 22 or

2
cu yc x c c x

x x
     

or y2 = x(Ax – B),
where A and B are arlitrary corstants.

1.3 Riccati’s Equation

Originally, the name Riccati’s equation was given to the differential equation

2 mdy by cx
dx

  .....(1)

where b are c are constants. Equation (1) can be written in the form
y1 + by2 = cxm .....(2)

where suffixes denotes differentiation w.r.t. x
The more general form of (2) is

xy1 – ay + by2 = cxm .....(3)
which can be easily reduced to the form

  22 m adu b cu z
dt a a

  .....(4)

by using the substitution t = xa and then changing the variable y to u by substitution y = ut.
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The Equation (4) can be easily written in the form
y1 = P + Qy + Ry2 .....(5)

where P, Q and R are function of x.
The equation (5) is known as the generalised Riccati’s equation.
French Mathematician Liouville, in 1841, proved that equation (5) is one of the simplest differ-

ential equation of the first order and first degree that can not, in general be integrated by quadratures.
Due to historical and theoretical importance and its usefulness in Differential Geometry, the study of Riccati’s
equation becomes quite useful.

1.3.1 General solution of Riccati’s equation

Equation (5) can be reduced to a second order linear differential equation by introducing an-
other dependent variable S such that

  11
1

Sy S RS
RS

   .....(6)

On differentiation, we get
y1  = – S2(RS)–1 + S1(RS)–2 [R1S + RS1] .....(7)

where a subscript denote differentiation with respect to x.
Substituting (6) and (7) in (5), we get

2 2
2 1 1 1 1 1

2 2 2 2

S R S S S SP Q R
RS R S RS RS R S

              

or –RS2 + R1S1 = PR2S – QS1R
or RS2 –(QR + R1) S1 + PR2S = 0 .....(8)
This is linear differential equation of second order. We know that the general solution of (8) is of

the form
S = Af (x) + Bg(x) .....(9)

where A and B are arbitrary constants and f (x), g(x) are two linearly independent integrals.
Now, from (6) and (9), we get

 
 

 
 

1 1 1 1/
/

Af Bg A B f g
y

R Af Bg R A B f g
 

   
    

which is of the form

   
   

1 1cf x g x
y

R cf x g x


 
   

.....(10)

where c = A/B is an arbitrary constant. Hence the general solution of (5) is (10).
1.3.2 Theorem : The cross ratio of any four particular integrals of a Riccati’s equation

is independent of x

Proof : We know that the general solution of Riccati’s equation
y1 = P + Qy + Ry2 .....(11)
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is of the form  
1 1cf gy

R cf g


 
 .....(12)

where f1, g1, f, g are appropriate functions of x and c is an arbitrary constant.
Let p(x), q(x), r(x) and s(x) are four particular solutions of (11) obtained from (12) by giving

four different values of c, say , , , .

Then    
 

1 1f g
p x

R f g
 

 
 

   
 

1 1f g
q x

R f g
 

 
 

   
 

1 1f g
r x

R f g
 

 
 

   
 

1 1f g
s x

R f g
 

 
 

Then
  
  

1 1fg f g
p q

R f g f g
  

 
   

  
  

1 1fg f g
r s

R f g f g
   

 
   

  
  

1 1fg f g
p s

R f g f g
   

 
   

  
  

1 1fg f g
r q

R f g f g
  

 
   

Thus
  
  

  
    say

      
 

      
p q r s

k
p s r q

when k is independent of x. This shows that the cross-ratio of any four particular solutions of a Riccati’s
equation is independent of x.

1.3.3 Method of solution of Riccati’s equation when one particular solutions is known

Let p(x) be the known particular solution of Riccati’s’s equation
y1 = P + Qy + Ry2 .....(13)

So that p1 = P + Qp + Rp2

Let u be the another dependent variable such that

  1y p x
u

  .....(14)

then equation (13) reduces

21
1 2 2

1 2 1u pp P Q p R p
u u u u

            
   

.....(15)
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Using (14) and (15) in (13), we get

1
2 2

2 1u Q pR
u u u u

      
or u1 + (Q + 2pR) u = – R

which is a linear differential equation of first order and first degree in u and x. Its integrating factor is
given by

I.F. = e (Q + 2Rq) dx

and hence the required general solution is
ue (Q + 2Rq) dx = Re (Q + 2Rq) dxdx + c

where c is an arbitrary constant.

1.3.4 Method of solution of Riccati’s equation when two particular solutions are known

Let p(x) and q(x) be the two know particular solutions of Riccati’s equation
y1 = P + Qy + Ry2 .....(16)

so that p1 = P + Qp + Rp2 .....(17)
q1 = P + Qq + Rq2 .....(18)

From (16) and (17), we get
y1 – p1 = (y – p) Q + (y2 – p2)R

or y1 – p1 = (y – p) [Q + (y + p)R]

or  1 1y p Q y p R
y p


  
 .....(19)

Similarly from (16) and (18), we get

 1 1y q Q y q R
y q


  
 .....(20)

From (19) and (20), we get

 1 1 1 1y p y q p q R
y p y q
 

  
 

On integration, we get
log (y – p) – log (y – q) = c + (p – q) Rdx

which is the required general solution.

1.3.5 Method of solution of Riccati’s equation when three particular solutions are known

Let p(x). q(x) and r(x) be the three known particular solutions of Riccali’s equation
y1 = P + Qy + Ry2

and the corresponding values of c be ,  and . Then by Theorem 1.3.2, we can write

 
 

1 1f g
p

R f g
 

 
 

 
 

1 1f g
q

R f g
 

 
 

 
 

1 1f g
r

R f g
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then, we have
  
    constant

p q r y
k

r q p y
 


 

where k is independent of x. This is the required solution of Riccati’s equation when three particular
solutions are known.

Ex.1. solve y1 = cos x – y sin x + y2

Sol. Taking y = sin x so that y1 = cos x. Substituting these in the given equation, we get
cos x = cos x – sin2 x + sin2 x

This shows that y = sin x is a particular solution of given equation.

Now taking 1
2

1sin so that cos uy x y x
u u

   

Using these in given equation, we get
2

1
2

1 1cos cos sin sin sinux x x x x
u u u

           
   

or 1
2 2

sin 1u x
u u u

  

or sin 1du u x
dx

   .....(21)

Equation (21) is a linear equation of first order whose integrating factor is
I.F. = esin x dx = e–cos x and hence the solution of (21) is
u. e–cos x = c – e–cos x dx .....(22)

Now putting the value of

 
1
sin

u
y x




in equation (22), we get
cos

cos

sin

x
xe c e dx

y x


 
 

which is the required solution of given equation.
Ex.2.Find the general solution of the Riccati’s equation

22 2
dy

= y + y
dx



whose one particular solution is (1 + tan x).
Sol. The given equation is

22 2dy y y
dx

   .....(23)

Since (1 + tan x) is a given particular solution then taking

  2
1 2

1 11 tan so that sec duy x y x
u u dx

     .....(24)

Putting (24) in (23), we get

2 2

1 1 2tandu x
u dx u u
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or  2tan 1du x u
dx

  

It is a linear differential equation of first order having integrating factor
I.F. = e(2tan x)dx = e2log sec x = sec2 x

Hence the solution is
u sec2 x = c – sec2 x dx = c – tan x .....(25)

From (24) and (25), the required general solution is
2sec1 tan

tan
xy x

c x
  



Ex.3. Show that there are two values of the constant for which 
k
x

 is an integral of

x2 (y1 + y2) = 2, and hence obtain the general solution.
Sol. Rewriting the given equation in the standard Riccati’s form as

y1 = P + Qy + Ry2 .....(26)

2
1 2

2y y
x

   
 

.....(27)

Let p(x) and q(x) are two particular integrals of (26), than by §1.3.4, we have

 
   log
y p

c p q Rdx
y q

 
   

  
 .....(28)

Now let  1 2so thatk ky y
x x

  

Substituting these in (27), we get
2

2
2 2 2

2 or 2 0 so that. 2, 1k k k k k
x x x

       

Hence 
2 1and
x x

  are two particular solutions of (27)

Now taking

   2 1andp x q x
x x

   .....(29)

On comparing (26) and (27), we get R = – 1 .....(30)
Using (29) and (30) in (28), we get

 2 2 1log log 1 , taking log
1

xy k dx c k
xy x x
         

or
2log log 3log
1

xy k x
xy


 


or 32
1

xy x k
xy

 
  

or x3(xy –2) = k (xy + 1), where k is an arbitrary constant.
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Ex.4. Show that 1, x, x2 are three particular integrals of x (x2 – 1) y1 + x2 – (x2 – 1)
y – y2 = 0, and hence obtain the general solution y (x + k) = x + kx2, k being an
arbitrary constant.

Sol. Re writing the given equation in the standard Riccati’s form as

 
2

1 2 2

1 1
1 1

xy y y
x x x x

   
  .....(31)

Now putting y = 1 (one of the three given integrals)  so that y1 = 0, and we get

 2 2
1 10 0

1 1
x

xx x x
    

 

This show that y = 1 is an particular integral of (1). Similarly we can prove that y = x and y = x2

are also particular integrals of (31).
Now taking p(x) = 1, q(x) = x, r(x) = x2 and using § 1.3.5, we get

  
  

2

2

1 1
1

x x y

kx x y

 


   (say)

or
  
   

21 1
1 1

 


  

x x y

x x y k
or k(x2 – y) = – x(1 – y)
or y(k + x) = x + kx2

which is the required solution.

1.4 Equation of the Form  
2

2 =d y f y
dx

To find the solution of above equation, we multiply both side by 2
dy
dx , then we get

 
2

22 2dy d y dyf y
dx dxdx



On integration we obtain

 
2

2dy f y dy a
dx

    
  

or  
1 2

2
/

dy dx
f y dy a


  

Again integrating, we finally obtain

 
1 2

2
/

dy x b
f y dy a
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Ex.1. Solve
2

3
2

d ysin y = cos y
dx

Sol. We can write the given equation as
2

2
2 cosec cotd y y y

dx


Now multiplying both sides by 2
dy
dx  and integrating, we get

2 2 2
2

2
sin coscot

sin
dy a y ya y
dx y

     
 

or 2

sin

(1 )

y dy dx
a a cos y


 

Again integrating, we get the required solution as

11 1sin cos
1

a y x c
aa

      
   

Ex.2. Solve
2

3
2

d yy = c
dx

Sol. We can write the given equation as
2

2 3
d y c
dx y



Now multiplying both side by 2
dy
dx  and integrating, we get

2

2
dy c a
dx y

     
 

or 2

y dy dx
ay c




Again integrating, we get the required solution as
ay2 = c + (ax + b)2

where a and b are two constants.

1.5 Equation not Containing y Directly

In this case general equation is given in the form

1

1 0




 
  

 

n n

n n
d y d y dyf , ,....., , x

dxdx dx .....(1)
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To solve it, the order of equation is depressed by assuming the lowest differential coefficient
present in the equation as a dependent variable. So let

2 1

2 1

n n

n n
dy d y dp d y d pp, , ....,
dx dxdx dx dx



  

therefore equation (1) reduces to

1 2

1 2 0
n n

n n
d p d pf , , ..., p,x
dx dx

 

 

 
  

 

which may be possibly solved for p.

Let  dyp x
dx

  

then the solution is

 y x dx c   .

Ex.1. Solve
 
  
 


23 3 2

3 3 2 = 0d y d y d y+ x
dx dx dx

Sol. The given equation does not contain y directly. Here the lowest differential coefficient is
2

2
d y
dx

. So putting

2 3

2 3andd y d y dpp
dxdx dx

  .

We get from the given equation
2

0dp dpx p
dx dx

     
 

or
2dp dpp x

dx dx
   
 

 [Clairaut`s form y = px + f (p)]

So its solution is
p = cx + c2

or
2

2
2

d y cx c
dx

 

on integration,
2

2
12

dy xc c x c
dx

  

Again integrating, we get the general solution as
3 2

2
1 26 2

x xy c c c x c   
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Ex.2. Solve
 
 
 


22

22 4 0d y dy + =
dxdx

Sol. The given equation does not contain y directly. Here the lowest differential coefficient is
dy
dx . So putting

2

2
dy d y dpp and
dx dxdx

  .

We get from the given equation

22 4 0dp p
dx

  

or 2
2

4
dp dx

p



Integrating

1 2log
2 2

p x a
p


 


or (p – 2) = (p – 2) be2x, where b = e2a.

or
2

2
22 1

1

x

x
dy bep
dx be

 
     

On integration, we get the general solution as
y = 2x – 2 log (1 – be2x) + c.

1.6 Equation not Containing x Directly

In this case general equation is given in the form

1

1, , ... , , 0
n n

n n
d y d y dyf y

dxdx dx





 
  

 

Now putting
2

2,dy d y dp dp dy dpp p
dx dx dy dx dydx

    

Similarly
3 2

3 2
d y d d y d dp dyp

dx dy dy dxdx dx
   

         

22

2
d p dpp p

dydy

  
   
   

`
22

2
2

d p dpp p
dydy
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Hence the given equation reduces to
1

1 , ..., , 0
n

n
d pf p y
dy





 
  

 
which may be possibly solved for p.

Let  .dyp y
dx

 

Then the solution is

 
dy x c

y
 



Ex.1. Solve
    
 

32

2 2 4 0d y dy dy
dx dxdx

Sol. The given equation does not contain x directly, so substituting

,dy d y dpp p
dx dydx

 
2

2 , we get

32 4 0dpp p p
dy

  

or 2 2
1 2

dp dy
p

 


On integration, we get

 11 tan 2 2
2

p y a  

or  1tan 2 2 2 ,p b y    where 2b a

or  2 cot 2 2b y dy dx  .

Again integrating, we get the general solution as

 log sin 2 2 2 logb y x c  

or   2sin 2 2 xb y ce 

Ex.2. Solve         
 

22

21 log 1 log = 0d y dyy y y
dxdx

Sol. The given equation does not contain x directly, so substituting
2

2,dy d y dpp p
dx dydx

  , we get

    21 log 1 log 0dpy y p y p
dy
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or
 
 
1 log

0.
1 log

ydp dy
p y y


 



On integration, we get by substituting log y = t

 log log 2 log log 1 constantp y y   

or  2log 1dyp ay y
dx

  

or  2log 1
dy a dx

y y




Again integrating ,  we get the general solution as

 
1

log 1
ax b

y
  



or   11 log y
ax b

 


1.7 Equation in which y Appears in only Two Derivatives Whose Orders Differ by

Two.

In this case general equation is given in the form
2

2, , 0
n n

n n
d y d yf x
dx dx





 
  

 

Now putting
2

2

n

n
d y p
dx



 

so that
2

2

n

n
d y d p
dx dx



then the given equation becomes
2

2 , , 0d pf p x
dx

 
  

 

which gives  
2

2 .
n

n
d yp x
dx



 

By successive integration, we can find the value of y.

Ex.1. Solve
5 3

2
5 3

axd y d yn = e
dx dx



Sol.  In the given equation y appears in two derivatives whose order differs by two. Now sub-

stituting 
3

3
d y = p
dx

. So the given equation transforms to
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2
2

ax
2

d p n  p = e
dx



whose solution will be

 
3

1 23 2 2

ax
nx nxd y ep c e c e

dx a n
   



On integration, we get

 
2

1 2
32 2 2

ax
nx nxc cd y ee e c

n ndx a a n
   



Again integrating

 
1 2

3 42 2 2 2 2

ax
nx nxc cdy ee e c x c

dx n n a a n
    



which on integration gives the general solution as

 
2

1 2
3 4 53 3 3 2 2 2

ax
nx nxc c e xy e e c c x c

n n a a x
     



1.8 Equation in which y Appears in only Two Derivatives Whose Orders Differ by
Unity

In this case general equation is given in the form

1

1, , 0
n n

n n
d y d yf x
dx dx





 
  

 

Now putting
1

1

n

n
d y p
dx



 

so that
n

n
d y dp .

dxdx


Hence the given equation reduces to

0dpf , p , x
dx

  
 

This is an equation of first order. We can here easily find the value of p in terms of x as

 
1

1

n

n
d yp x .
dx



 

By successive integration, we get the general solution.
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Ex.1. Solve
2

2

  
  

   

1
2 2

1d y dya = +
dxdx

Sol.  In the given equation y appears in two derivatives whose order differs by unity. Now sub-
stituting

2

2
dy d y dpp,
dx dxdx

 

so the given equation transforms to

 
1

2 21dpa p
dx

 

or 2

1

1

dp dx
ap




Integrating 1
1sin xh p c

a
  

1sindy xp h c
dx a

    
 

Again integrating, we get the general solution as

1 2cos xy a h c c
a

    
 

1.9 Homogeneous Equation

We mean by homogeneous equation that an equation in which all the terms will be of the same
dimensions.

Dimention of a differential equation is calculated as given under
22

2 2d y dy dyx
dx dxdx

    
 

Now  
2

1 1
2 2Dim Dim Dimd y yx x y x

dx x
           

 
2 2

2 2Dim Dim Dimdy y y x
dx x


                      

 
 

1 1Dim Dim

Dim 2 0

dy y x
dx

   
 



Hence the given equation has the 0 dimension
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Note :
(a) Derivative in a differential equation does not alter the dimension of the variables x and y.
(b) The dimension of x is invariably taken as unity.
In such cases suitable transformations are made to lower the order of the equation

Ex.1. Solve
2

2
  
 

2
3 d y dynx  = y x

dxdx
Sol. Here x and y both of dimension unity. There for the given equation is homogeneous of

dimension 2. Substituting y = zx and x = e, we get

22
2

2
dz d z dzne xz x z
d dd

                  

or
22

2
dz d z dzn
d dd

            

Now if we put 
dz
d

 


, then above equation becomes

2dn
d
      

or
1 1 d d

n
        

on integrating
1 log constantn
n

 
  



Now substituting 
dz
d

 


 and then integrating , we get the general solution as

1
2log cy n x c
x

   
 

1.10 Summary

In this unit, you studied the exactness of differential equation and the method by which we can
solve exact equations. Methods for solution of the standard Riccati’s equation of first order, with one,
two or three known particular solutions were discussed. The methods have been  illustrated with the
help of examples.

Self-Learning exercise

1. What do you mean by exact equation ?
2. Write down the Riccati’s equation of first order.
3. Riccati’s equation is a non-linear differential equation. Is it true ?
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1.11 Answers of Self-Learning Exercise

1. A differential equation which is integrable directly.

2. 2dy P Qy Ry
dx

   , where P, Q, R are functions of x or constants.

3. True

1.12 Exercise

1. Solve the following differential equations :

(a)
22

2 2
2 3 0d y dyx y x y y

dxdx
     
 

[Ans. 2 5 1
2

2
5
cxy c x  ]

(b)  
2

22 2 1 0d y dy dyy x
dx dxdx

     
 

[Ans. 2
1 2y xy c x c   ]

(c)
22

2cos sin cos 1d y dy dyy y y x
dx dxdx

     
 

[Ans.  2

1 2
1

sin
2

xx
y x c c e


    ]

2. Solve the following differential equations :

(a)  3 2 2 2
11 2 ,x x y x y xy x     is an integral [Ans. 

4 3

2
2

3
x x xc
y x


 


]

(b) 21 ,dy y
dx

   tan x is an integral [Ans.  tan tan 1y c x c x   ]

(c) 3 2 2 2
1x y x y y x   [Ans. y (ce2/x – 1) = x + cxe2/x]

(d)     2
11 2 1 2 0x x y x y yh x      , x is a solution [Ans. 

 
 

2x c
y

x c





]

3. Solve :

(a)
2

2
1d y

dx ay
 [Ans.   1 21 4

1 1 23 2 2x a y c y c c    ]

(b)
2 2

2 2 0d y a
dx y

  [Ans.  2
1 1 1 1 2

1

1 log 1 2c y y c y c y ac x c
c

      ]

4. Solve :

(a)
22

2 1d y dy
dxdx

    
 

[Ans.  1 2cosy h x c c   ]
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(b)  
22

2
21 1 0d y dyx

dxdx
     
 

[Ans.    2
11 logy cx c x c c     ]

(c)
32

2 0d y dy dy
dx dxdx

    
 

[Ans.  1
1 2sin xy c e c    ]

(d)
23 2 2

2
3 2 22 d y d y d yx a

dx dx dx
 

    
 

[Ans. 
 5 2

1
2 32

1

4
15

c x a
y c x c

c


   ]

5. Solve :

(a)
22

2
2

d y dyy y
dxdx

   
 

[Ans. 2
1 2sin 2y c h x c  ]

(b)
22

2 0d y dya
dxdx

   
 

[Ans. 1 2
aye c x c  ]

(c)
22

2 1 0d y dyy
dxdx

    
 

[Ans. 2 2
1 2 0y x c x c    ]

(d)
22

2
2 logd y dyy y y

dxdx
   
 

[Ans. 1 2log x xy c e c e  ]

(e)

1 222 22 2
2

2 2
dy d y dy d yy n a
dx dxdx dx

                       
[Ans.  1 22 2

21 cxcy n a c c e   ]

6. Solve :

(a)
4 2

2
4 2 0d y d ya

dx dx
  [Ans. 1 2 3 4

ax axy c e c e c x c    ]

(b)
4 2

2 2
4 2 0d y d yx a

dx dx
  [Ans. 

5 2 2 24
1 2 3 1 4 1 4cy c c x x c x a a

x
 

       

when  a < 
1
2  and 

5 2 2
1 2 3

4

1cos 4 1 log
2

xy c c x c x a
c

 
    

 
 when a > 

1
2 ]

7. Solve :

(a)
2

2 0d y dyx
dxdx

  [Ans. 1 2logy c x c  ]

(b)
3 2

3 2 2d y d y
dx dx

  [Ans.  5 2
1 2 315 8y x c c x c    ]
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8. Solve :

(a)
22

2 3d y dy dyxy x y
dx dxdx

   
 

[Ans. 2 4 4 4
1 2y y c x c x   ]

(b)  
22

22 2 2 2d y dy dyy x
dx dxdx

     
 

[Ans. 2 2
1 2xy y x c x c    ]

9. By reduction to a linear equation show that the solution of the Riccati’s equation

2 2 22 2 0dyx xy x y
dx

          is

 2
1 12y x c x x c  

10. Show that tan x is one integral of the equation
2

1 1y y 
and hence obtain the general solution in the form

 1 1tan tan 1y c x c x  

where c1 is a constant.
11. Determine the curve whose radius of curvature varies as the cube of the length of the normal

intercepted the curve and x-axis. [Ans.  2
3 1 1 4  c c y c x ]
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Unit 2 : Total Differential Equations
Structure of the Unit

2.0 Objective

2.1 Introduction

2.2. Necessary and Sufficient Condition for Integrability of the Total Differential Equation

2.2.1 Theorem

2.3 Methods of Solving Total Differential Equations

2.3.1 Method of Inspection

2.3.2 Method for Homogeneous Equations

2.3.3 Working Rule for Solving Homogenous Equations

2.3.4 Method of Auxiliary Equations

2.3.5 General Method

2.4 Geometrical meaning of Pdx + Qdy + Rdz = 0

2.5 Equations Containing More Than Three Variables

2.6 Method for Obtaining Solution Involving Four Variables

2.7 Total Differential Equation of Second Order

2.8 Summary

2.9 Answers of Self Learning Exercise

2.10 Exercise

2.0 Objective

In this unit, you will learn various methods for solving different types of total differential equa-
tions. Some of the methods are : Method of inspection, method for homogeneous equations, method of
Auxiliary equations and general method. You will also study the geometrical meaning and method for
solving total differential equations involving three or four variables.

2.1 Introduction

In this unit, we propose to discuss differential equations with one independent variable and more

than one dependent variables.
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The expression 
1

,
n

i i
i

u dx

  where ui , i = 1, 2 .... n are, in general, functions of some or all of n

independent variables x1, x2 .... xn is called a total differential forms in n variables and the equation

1
0

n

i i
i

u dx


 .....(1)

is called a total differential equation in n variables x1, x2 .... xn. It is also known as Pfaffian differen-
tial equation.

In the case of two variables, equation (1) may be written as

   , , 0M x y dx N x y dy  .....(2)

It is a differential equation of first order and first degree. The necessary and sufficient condition
for its exactness (integrability) is

M N
y x

 


  .....(3)

In the case of three variables x, y, z the total differential equation (1) may be written as
Pdx + Qdy + Rdz = 0 .....(4)

where P, Q and R are functions of x, y and z. In vector notations, equation (4) may be written as
X dr = 0    where    X = (P, Q, R)    and    dr = (dx, dy, dz).

It is not always possible to integrate equation (4) directly. If however, the equation is such that
there exist a function u (x, y, z) whose total differential du is equal to the left hand side of (4), then only it
is integrated directly. In other cases equations (4) may or may not be integrable.

Now we proceed to find the condition which P, Q, R must satisfy, so that equation (4) is inte-
grable. This is also known as condition of integrability.

2.2 Necessary and Sufficient Condition for integrability of the Total Differential

Equation Pdx + Qdy + Rdz = 0.

2.2.1. Theorem :
The necessary and sufficient condition for the total differential equation Pdx + Qdy +

Rdz = 0 to be integrable is

0R Q R P Q PP Q R
y z x z x y

                           

or X curl X = 0,     where    X = (P, Q, R)

or
0

P Q R

x y z
P Q R
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Proof : Condition is necessary :
Let u (x, y, z) = C .....(1)
be an integral of total differential equation

Pdx + Qdy + Rdz = 0 .....(2)
Then total differential du of (1), must be equal to Pdx + Qdy + Rdz, or it multiplied by a factor.

But we know the differentiation of (1) is

u u udu dx dy dz
x y z

                  
.....(3)

Since (1) is an integral of (2), therefore P, Q, R must be proportional to 
u
x



, 
u
y

  and 

u
z



.

So,    , , sayu x u y u z x y z
P Q R

     
   

 , ,u u uP Q R
x y z
  

     
   .....(4)

From the first two parts of (4), we get

   
2 2u u uP Q

y y x x y x y x
      

              

or
P QP Q
y y x x

   
    
   

or
P Q Q P
y x x y

    
        

.....(5)

Similarly, we can write

Q R R Q
z y y z

    
        

.....(6)

and
R P P R
x z z x

            
.....(7)

Multiplying (5), (6) and (7) by R, P and Q respectively and adding, we get

0R Q R P Q PP Q R
y z x z x y

                           
.....(8)

This is the condition for the integrability of total differential equation (2).

Sufficient Condition :

Now we prove that if the condition (8) is satisfied, then the equation (2) will have a solution of
the form (1).

Now if the condition (8) is satisfied for P, Q, R of the equation (2) then it can be easily verified
that the same condition will hold for the coefficients of
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   0Pdx Qdy Rdz   

where is any function of x, y, z and replacing P, Q, R by P, Q, R respectively.
Here, if we treat variable z as constant then the differential equation (2) becomes

Pdx+Qdy = 0.
Now Pdx+ Qdy may be regarded as an exact differential. For if it not so, then an integrating

factor can be found to make it exact. Thus there is no loss of generality in regarding Pdx + Qdy as an
exact differential. Therefore

(Pdx + Qdy) = V   (say). .....(9)
It follows that

VP
x





    and   
VQ
y





Differentiating (9), we get
V VPdx Qdy dx dy
x y

 
  

  .....(10)

Substituting these values in the given condition (8), we find that
2 2

0V R V V R V
x y z y y x z x
        

                   

or 0V V V VR R
x y z y x z

                        

or
0

V V R
x x z
V V R
y y z

        
       

This shows that a relation independent of x and y exists between V and 
V R
z

   
. Conse-

quently 
V R
z





 can be expressed as a function of z and V. That is we can take

 ,V R z V
z


  


.....(11)

Hence Pdx Qdy Rdz 
V V Vdx dy dz
x y z

          

V V Vdx dy dz dz
x y z

   
       

dV dz 

Thus (2) may be written as dV – dz = 0 which is a first order equation in two variables hence
integrable will give equation in two variables.
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Suppose the integral is U(z, V) = c, then subestituting the value of V from (9), we get the solu-
tion in the form given by (1).

Thus the condition is sufficient.
2.1.1 Theorem : Prove that the necessary condition for integrability of the total dif-

ferential equation X  dr = Pdx + Qdy + Qdz = 0 is X  curl X = 0.
Proof : Let r = xi + yj + zk, so that

dr = dxi + dyj + dzk
and X = Pi + Qj + Rk
Then we have

X dr = Pdx + Qdy + Rdz .....(12)
Then we see that (12) is satisfied by usual rule of dot product of two vectors X and dr.
Now, we know that

Curl = R Q R P Q PR
y z x z x y

                          
X i j k.

Now by usual rule of dot product of two vectors, we get

Curl = R Q R P Q P Q R
y z x z x y

                           
X X

which is equal to zero. So the necessary condition is  X  curl X = 0

2.3 Methods of Solving Total Differential Equation Pdx + Qdy + Rdz = 0

If the following condition of integrability

0R Q R P Q PP Q R
y z x z x y

                           
is satisfied, then the total differential equation may be solved by several methods as given below.
2.3.1 Method of Inspection
If the condition of integrability is satisfied, then sometimes it will be possible to rearrange the

terms of the given equation, by dividing or multiplying by a suitable function, so that it can be integrated
directly.

The following list will help to rewrite the given equation in the form of exact differential.

(i) x dy + y dx = d (xy) (ii) 2
x dy y dx yd

xx
    

 

(iii) logx dy y dx yd
xy x
    

 
(iv) 1

2 2 tanx dy y dx yd
xx y

      

(v)   logx dy y dx d xy
xy


 (vi)  2 2
2 2

1 log
2

x dy y dx d x y
x y

      

(vii)
2 22xy dy y dx yd

xy x
 

   
 

(viii) 2

x x xye dx e dy ed
yy
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Ex.1. Show that (2x + y2 + 2xz) dx + 2xy dy + x2dz = 0 is integrable (i.e., condition of
integrability is satisfied).

Sol. Comparing the given equation with Pdx + Qdy + Rdz = 0
We get, P = 2x + y2 + 2xz  ;  Q = 2xy ; R = x2

Now the condition of integrability is

0R Q R P Q PP Q R
y z x z x y

                           

Substituting the values of P, Q, R in it, we get
(2x + y2 + 2xz) (0 – 0) – 2xy (2x – 2x) + x2 (2y – 2y) = 0

Showing that the condition of integrability is satisfied and hence the given equation is integrable.
Ex.2. Solve (yz + xyz) dx + (zx + xyz) dy + (xy + xyz) dz = 0
Sol. Comparing the given equation with Pdx + Qdy + Rdz = 0
We get P = yz + xyz   ;   Q = zx + xyz     ;    R = xy + xyz
Now the condition of integrability is

0R Q R P Q PP Q R
y z x z x y

                           

             
      

1 1

1

yz x x xz x xy zx y y yz y xy

xy z z yz z xz

         

    

           1 1 1yz x x z y zx y y z x xy z z y x        

             xyz z y z x y x x z y y z x z y x             

 0 0 0xyz  

This shows that the given equation is integrable.
Now dividing the whole equation by xyz, then given equation becomes

1 1 11 1 1 0dx dy dz
x y z

             
    

On integration, we get
log x + x + log y + y + log z + z = C

or log (xyz) + x + y + z = C
which is the required general solution, C being an arbitrary constant.

Ex.3. Solve (y2 + z2 – x2) dx – 2xy dy – 2xz dz = 0
Sol. As usual, we see that the condition of integrability is satisfied. Now rearranging the terms

of the given equation as

 2 2 2 22 2 2x y z dx x dx xy dy x zdz    

or    2 2 2 2x y z dx x xdx ydy zdz    
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or 2 2 2
2 2 2dx xdx ydy zdz

x x y z
 


 

On integration, we get

 2 2 2log log logx c x y z   

or 2 2 2x y z cx  
is the required general solution.

Ex.4. Solve (2x2y + 2xy2 + 2xyz + 1) dx + (x3 + x2y + x2z + 2xyz + 2y2z + 2yz2 + 1) dy
 + (xy2 + y3 + y2z + 1) dz = 0

Sol. As usual, it may be verified that the condition of integrability is satisfied. Now rearranging
the terms of the given equation as

       
  

2

2

2 1 2 1

1 0

xy x y z dx x x y z yz x y z

dy y x y z dz

         

    

or   2 22 2 0x y z xy dx x dy y zdy y dz dx dy dz        

or    2 22 2 0dx dy dzxy dx x dy yzdy y dz
x y z

  
       

On integration, we get
x2y + y2z + log (x + y + z) = C

This is the required general solution.

Ex.5. Solve
yz xz ydx dy dz

xx y x y
1

2 2 2 2 tan 0        

Sol. It can be easily verified that the condition of integrability is satisfied. Arranging the terms of
the given equation as

 2 2 1tan

ydx xdy dz
y zx y
x






   
 

.....(13)

Taking 1tan ,y s
x

    
 

 so that  
2

2
21

xdy ydx ds
yx
x




 
 

 

. Then equation (13) becomes

or
ds dz
s z

 

Integrating log log logs z c  

or
1s
cz



i.e. 1 1tan y
x cz
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which gives
1tany

x cz
      
   

This is the required general solution.
2.3.2 Method for Homogeneous Equations
The equation Pdx + Qdy + Rdz = 0 is called a homogeneous equation if P, Q, R are homoge-

neous functions of x, y, z of the same degree. In such a case one variable is separated from the other
two by the substitution

x = uz, y = vz .....(14)
then dx = udz + zdu,    dy = vdz + zdv .....(15)
Further, let

   1 2, , ,n nP z f u v Q z f u v   and  3 ,nR z f u v .....(16)
Hence the given equation Pdx + Qdy + Rdz = 0 becomes

           1
1 2 1 2 3, , , , , 0n nz f u v du f u v dv z uf u v vf u v f u v dz     

On multiplying by z, we get

           2 1
1 2 1 2 3, , , , , 0n nz f u v du f u v dv z uf u v vf u v f u v dz      .....(17)

Now following two cases arise :
Case I :  Px + Qy + Rz = 0
If Px + Qy + Rz = 0 that is by substituting the values of x, y from (14) and P, Q, R from (16) in

it, we find

      1
1 2 3, , , 0nz uf u v vf u v f u v   

then the coefficient of dz in equation (17) will become zero and hence it reduces to

   1 2, , 0f u v du f u v dv  .....(18)

which can be integrated easily.
Case II : Px + Qy + Rz  0
In this case the coefficient of dz will not be zero and therefore equation (17) may be written as.

   
      

1 2

1 2 3

, ,
0

, , ,
f u v du f u v dv dz

zuf u v vf u v f u v


 
  ...(19)

Now since the given equation Pdx + Qdy + Rdz = 0 is integrable so equation (19) will be an
exact differential and hence this equation may be integrated easily.

2.3.3 Working Rule for Solving Homogeneous Equations
(i) First of all verify the condition of integrability.
(ii) If Px + Qy + Rz = 0, then substitute x = uz, y = vz and solve

(iii) If Px + Qy + Rz  0 then 
1

Px Qy Rz 
 will be an integrating factor of the homogeneous

equation Pdx + Qdy + Rdz = 0. After multiplying this equation by this integrating factor and rearranging
the terms we can integrate the equation by inspection.
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Ex.6. Solve    z dx z yz dy y yz xz dz2 2 22 2 0     

Sol. Comparing the given equation with the standard equation Pdx + Qdy + Rdz = 0, we get
P = z2, Q = z2 – 2yz, R = 2y2 – yz – xz

The given equation is homogeneous of degree 2. Now first of all we test the condition of inte-
grability

R Q R P Q PP Q R
y z x z x y

                          

       2 2 24 2 2 2 2 2 0 0z y z z y z yz z z y yz xz           

2 3 3 26 3 3 6 0yz z z yz    

Hence the condition of integrability is satisfied

Further, 2 2 2 2 2 22 2 0Px Qy Rz xz yz y z y z yz xz        

Therefore, we substitute
x = uz,  y = vz

Hence dx = udz + zdu,    dy = vdz + zdv
and the given equation reduces to

       2 2 2 21 2 2 0z udz zdu z v vdz zdv z v v u dz       

or du + (1 – 2v) dv = 0
Integrating, we get

u + v – v2 = C
or xz + yz – y2 = cz2

This is the required general solution.

Ex.7. Solve  yz z dx xzdy xydz2 0   

Sol. On comparing the given equation with Pdx + Qdy + Rdz = 0,
we have P = yz + z2, Q = – xz, R = xy
Here the given equation is homogeneous of degree 2 and the condition of integrability is satisfied

(do your self)
Now Let D = Px + Qy + Rz

   = x (yz + z2) – xyz + xyz = xz (y + z)  0

Multiplying the given equation by integrating factor 1/D, we get

 2

0
yz z dx xz dy xy dz

D

  
 .....(17)

Now         d D d xz y z z dx xdz y z xz dy dz        

or      2d D z y z dx x y z dz xz dy    
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Now rewriting the numerator of (17) as

         2 2d D d D yz z dx xzdy xydz d D xz dy dz       

 Equation (17) becomes

   2
0

d D xz dy dz
D D


 

or
   

 
2

0
d D xz dy dz

D xz y z


 


Integrating, log D – 2 log (y + z) = log C

or D = C (y + z)2

or xz (y + z) = C (y + z)2

or xz = C (y + z)
which is the required general solution, C being an arbitrary constant.

Ex.8. Solve      xz yz dx yz xz dy x xy y dz2 22 2 0      

Sol. First of we verify the condition of integrability (do yourself). Since the given equation is
homogeneous, so putting

x = uz, y = vz    so that     dx = udz + zdu,   dy= zdv + vdz .....(18)
Now using these values in given equation, we get

       2 2 2 2 2 2 2 2 22 2 4 0uz vz udz zdu vz uz vdz zdv u z vz v z dz        

or         2 22 2 0u v udz zdu v u vdz zdv u uv v dz        

or          2 22 2 2 2 0z u v du v u dv u u v v v u u uv v dz               

or    2 22 2 0z udu udv vdu vdv u uv v dz        

or    2 2 2 2 0z du d uv dv u uv v dz       

or
 2 2

2 2 0
d u uv v dz

zu uv v

 
 

 

On integration, we get
log (u2 – uv + v2) + log z = log C

or  2 2z u uv v C  

or
2 2

2 2
x x y yz C

z zz z
 

     
 

or x2 – xy + y2 = cz
which is the required general solution.
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Ex.9. Solve      yz y z dx zx x z dy xy x y dz 0     

Sol. First of all verify the condition of integrability (do your self). Since the given equation is
homogeneous, we put

x = uz, y = vz  so that dx = zdu + udz, dy = zdv + vdz .....(19)
Substituting these in the given equation, we get

v (v + 1) z3 (zdu + udz) + u (u + 1) z3 (zdv + vdz) + uv (u + v) z3dz = 0
or [v (v + 1) du + u (u + 1) dv] z4 + [uv(v + 1) + uv (u + 1) + uv (u + v)] z3dz = 0
or [v (v + 1) du + u (u + 1) dv] z4 + 2uv (u + v + 1) z3dz = 0
Dividing above equation by uv (u + v + 1) z4, we get

 
 

 
 

1 1
2 0

1 1
v du u dv dz

u u v v u v z
 

  
   

or
1 1 1 1 2 0

1 1
dzdu dv

u u v v u v z
                

or 2 0
1

du dv du dv dz
u v u v z


   

 
On integration, we get

 log log log 1 2log logu v u v z C     

or uvz2 = C (u + v + 1)

or 2 1x y x yz C
z z z z

          
    

by using (9)

or xyz = C (x + y + z)
this is the required general solution.

2.3.4 Method of Auxiliary Equations
Let Pdx + Qdy + Rdz = 0 .....(20)

by the given equation. Its condition of integrability is

0R Q R P Q PP Q R
y z x z x y

                           
. .....(21)

On comparing (20) and (21), we obtain simultaneous equations, known as auxiliary equations.

dx dy dz
R Q R P Q P
y z x z x y

 
                     

.....(22)

For solving (22) let u = c1 and v = c2 be their two integrals. After finding the value of Adu + Bdv
= 0 and comparing it with the given equation, the values of A and B will be obtained. Integration of Adn
+ Bdv = 0, will give the required solution.

This method will fail if  ,R Q R P
y z x z

   
 

     and 
Q P
x y
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Ex.10. Solve xz3dx – zdy + 2ydz = 0
Sol. Here the condition of integrability is satisfied (do your self) now given equation is

xz3dx – zdy + 2ydz = 0 .....(23)
Comparing it with Pdx + Qdy + Rdz = 0, we have

P = xz3, Q = – z,  R = 2y
The auxiliary equations of the given equation are

dx dy dz
R PR Q Q P
x zy z x y

 
                      

or 22 1 03
dx dy dz

xz
 



or 21 0
dx dy dz

xz
 

Taking last two terms, we get
dz = 0    so that     z = c1 = u (say) ......(24)

Taking first two terms, we get
xz2dx – dy = 0

or 2xu2dx – 2dy = 0 [by using (23)]
Integrating, x2u2 – 2y = c2 = v (say)
or x2z2 – 2y = v [by using (23)] .....(25)
Substituting the values of u and v from (24) and (25) in Adu + Bdv = 0, we get

Adz + Bd (x2z2–2y) = 0
or Adz + B (2xz2dx + 2x2zdz – 2dy) = 0
or 2Bxz2dx – 2Bdy + (A + 2Bx2z) dz = 0 .....(26)
Comparing (23) and (26), we have

3 22 , 2xz Bxz z B   

and 2 12 2
2

y A Bx z B z      
 

  and  2 2 22 2 2A y Bx z y x z   

or
1
2

B u   
 

 and A = – v, [by using (24) and (25)]. Substituting these values

of A and B in Adu + Bdv = 0, we get

1 0
2

vdu udv    
 

or
1 12dv du
v u

   
 

On integration, we get
log 2log logv u c 

v = cu2 .....(27)
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Putting the values of u and v from (24) and (25) in (27), we get
2 2 22x z y cz 

which is the required general solution.
2.3.5 General Method
Step I : Let the condition of integrability is satisfied for the given equation

0Pdx Qdy Rdz   .....(28)
Step II : Treating one of the variables of (28), say z, as a constant then dz = 0 and the given

equation is reduced to
Pdx + Qdy = 0

Integrating it, keeping z as constant. If necessary the help of an integrating factor may be taken.
Let the result so obtained be

u (x, y, z) = f (z) .....(29)
where f (z) is a function of z alone. This is possible because the arbitrary function f (z) is con-

stant with respect to x and y.
Step III : Now we differentiate (29) totally with respect to x, y, z and then compare the result

with the given equation (28). We will get a relation between df and dz. If the of df and dz involve func-
tions of x and y, it would be possible to eliminate them with the help of (22). Thus we shall get an equa-
tion in df and dz which will be independent of x and y.

Step IV : The values of f (z) will be obtained by integrating the above equation. After sustituting
it in (32), we get the complete solution.

Remark : General method, for solving the total differential equation of the type
Pdx + Qdy + Rdz = 0

should be adopted only when the equations are non-homogeneous and the method of inspection
fails.

Ex.11. Solve 3x2dx + 3y2dy – (x3 + y3 + e2z) dz = 0
Sol. Here, the condition of integrability is satisfied. Let us treat z as constant, so that dz = 0.

Then the given equation become
3x2dx + 3y2dy = 0

On integration, we get
x3 + y3 = f (z)          (say) .....(30)

where the constant of integration has been taken as a function f (z) as we have treated z as
constant.

Now differentiating (30), we have

 2 23 3 0x dx y dy f z dz   .....(31)
Comparing (31) with the given equation, we get

  3 3 2zf z x y e   

or     2zf z f z e     [by using (30)]
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or 2zdf f e
dz

  , which is a linear equation having integrating factor as

 1 dz zIF e e   .  Hence the solution is

   2z z z zf z e e e dz c e c    
or   2z zf z e ce 

or 3 3 2z zx y e ce   [by using (30)]
Which is the required general, C being an arbitrary constant.

Ex.12.      x z y x y x ye y e dx e z e dy e e y e z dz 0      

Sol. Here, the condition of integrability is satisfied. Let us treat z as constant so that dz = 0.
Then the given equation becomes

    0x z y ze y dx e dy e zdy e dx   

On integration. we get

 x y ze y e z e x f z   .....(32)

Now differentiating equation (32), we obtain

       x z y x y ze y e dx e z e dy e e x dz f z dz      .....(33)

Comparing (33) with the given equation, we get

 y z y x ye e x f z e e y e z    

which gives

   x y zf z e y e z e x f z                  (by 32)

or
df f
dz



Integrating, we get
f (z) = cez

Putting the value of f (z) from equation (32), we get the required general solution as
exy + eyz + ezx = cez

Ex.13. Solve    2 2cos sin cos siny z x x x dx x z y y y dy  

 sin sin cos 0xy y x x y xy z dz   

Sol. Here, the condition of integrability, is satisfied. Let us treat z as constant so that dz = 0.
Then the given equation becomes

   2 2cos sin cos sin 0y z x x x dx x z y y y dy   

or 2 2
cos sin cos sin 0x x x y y ydx dy

x y
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or
sin sin 0x yd d

x y
      

   
On integration, we get

 sin sinx y f z
x y

  .....(34)

where the constant of integration has been taken as a function f (z) as we have treated z as
constant.

Now differentiating (34), we get

 2 2
cos sin cos sinx x x y y ydx dy f z dz

x y
   

or      2 2 2 2cos sin cos sin 0zy x x x dx zx y y y dy x y z f z dz     .....(35)
Comparing (35) with the given equation, we have

   2 2 sin sin cosx y z f z xy y x x y xy z   

or    sin sin cos cosx yz f z z f z z
x y

              [by using (34)]

or
1 cosdf zf

dz z z
   , which is a linear equation having integrating factor (IF)

as

 1 logz dz zIF e e z    and the solution is

  cos sinzz f z z dz c z c
z

      
 

or
sin sin sinx yz c z

x y
 

   
 

                           [by using (34)]

which is the required general solution, c being an arbitrary constant.

Self Learning Exercise-I

1. Write down pfaffian differential equation in n variables.
2. Write the condition when an equation of the type Mdx + Ndy = 0 become exact.
3. What is the condition of integrability for the equation Pdx + Qdy + Rdz = 0 ?
4. Which equations are called homogeneous ?

2.4 Geometrical Meaning of Pdx + Qdy + Rdz = 0

We know that direction cosines of the tangent at a point (x, y, z) on a curve are proportional to
dx, dy, dz. Therefore, the differential equation Pdx + Qdy + Rdz = 0 .....(1)
signifies that the tangent to a curve at the point (x, y, z) is perpendicular to a line, whose direction co-
sines are proportional to P, Q, R.



40

Whereas the simultaneous equations

dx dy dz
P Q R
  .....(2)

express that the tangent to a curve at a point (x, y, z) is parallel to a line with direction cosines propor-
tional to P, Q, R.

We thus have two sets of curve, and if they intersect, they intersect at right angle. Now we dis-
cuss two cases.

Case I : If the equation Pdx + Qdy + Rdz = 0 is integrable, it means that family of surfaces can
be obtained such that all curves on it are perpendicular to the curves represented by the equation (2) at
all points where curves cut the surface. Since the solution of equation (1) will be of the form (x, y, z) =
C and that of (2) will be of the form f1 (x, y, z) = C1 and f2 (x, y, z) = C2 , it means that in this case an
infinite number of surfaces can be drawn to cut orthogonally a doubly infinite set of curves.

Case II : If equation (1) is not integrable than the curves represented by 
dx dy dz
P Q R
   may

not admit of such a family of orthogonal surfaces.
Ex.1. Solve Find the system of curves satisfying the differential equating.

x yxdx ydy c dz
a b

2 2

2 21 0     ....(3)

which lie on the surface

x y z
a b c

2 2 2

2 2 21   ....(4)

Sol. Equation of the given surface can be written as
2 2 2

2 2 2 1x y z
a b c

   ....(5)

with the help of (3), the given equation can be written as
xdx+ydy +zdz=0

on Integration, we get
x2 + y2 + z2 = k ....(6)

Hence the required system of curves will be given by the intersection of (5) and (6).

Ex.2. Find the differential equation of the family of twisted cubic curves y = ax2,
y2 = bzx. Show that all these curves cut orthogonally the family of ellipsoids
x2 + 2y2 + 3z2 = c2.

Sol. Family of twisted cubic curves as given in question is
y = ax2 .....(7)
y2 = bzx ....(8)

On differentiating (7), we get
dy = 2ax dx
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or dy 2 y dx
x

 [by using (7)]

or 2ydx - xdy = 0 ....(9)
Now similarly, differentiating (8), we obtain

2ydy = b(zdx + xdz)

or
2

2 yydy ( zdx xdz )
zx

   [by using (8)]

or yz dx - 2zx dy + xy dz = 0 ....(10)
From (9) and (10), we get

2 2 2 22
dx dy dz

( zx ) y ( x )yzx y xy
 

   

or 2 2 32
dx dy dz

xyzx y xy
 

 

or 2 3
dx dy dz
x y z
 

which are the required differential equations of the family of curves.
The differential equations of the surfaces which are cut orthogonally by the given curves is

x dx + 2y dy + 3z dz = 0
Integrating, we get

x2 + 2y2 + 3z2 = k = c2 (say)

2.5 Equations Containing More than Three Variables

Let us consider an equation of the form
Pdx + Qdy + Rdz + Tdt =  0 ....(1)

Treating t as constant, so that dt = 0, then equation (1) becomes
Pdx + Qdy + Rdz = 0 ....(2)

Condition of integrability for equation (2) will be

0R Q R P Q PP Q R
y z x z x y

                           
....(3)

Similarly If we take z, x and y as constant, then we get dz = 0, dx = 0, dy =  0. The condition of
integrability in these cases will be

0T Q T P Q PP Q T
y t x t x y

                           
....(4)

0T R T Q R QQ R T
z t y t y z

                            
....(5)

and 0T P T R P RR P T
x t z t z x

                              
....(6)
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Hence we see that in the case of more than three variables, the condition of integrability must be
satisfied for the coefficients of all the terms taken three at a time.

Here we note that only three of the relations (3), (4), (5) and (6) are independent and the fourth
one can be derived from the remaining three.

 2.6 Method for Obtaing Solution Involving Four Variables

If the condition of integrability is satisfied, then the solution the total differential equation can be
obtained by two methods.

Method 1. By Inspection : In this method we can arrange the coefficients in such way that the
given equation is directly integrable.

Method 2. In this method, we take any two of the four variables constant. The equation is inte-
grated and the constant of integration is taken as the function of those variables which were kept con-
stant. The result is compared with the given equation after obtaining its differential and in such a way the

values of constants of integration are obtained. This will give the complete solution.

Ex.1. Solve (2x + y2 + 2xz) dx + 2xy dy + x2dz = dt.

Sol. We can write the given equation as
(2x + y2 + 2xz) dx + 2xy dy + x2dz – dt = 0

we can easily verify the condition of integrability as given by equations (3), (4), (5) and (6) of
§2.5.

Now the given equation can be written as 2xdx + (y2dx + 2xy dy) + (2xzdx + x2dz) - dt = 0.
Which on integration gives the complete solution as x2 + xy2 + x2z - t = c.

Ex.2. Solve z (y + z) dx + z (t - x) dy + y (x - t) dz + y (y + z) dt = 0

Sol. On comparing the given question by the standard equation Pdx + Qdy + Rdz + Tdt = 0,
we get

P = z(y + z), Q = z(t – x), R = y(x – t), T = y(y + z)

Here we can easily show that the conditions of integrability (equations (3), (4), (5) and (6) of
§2.5) are satisfied.

Now we solve the given question by treating two variables as constant. Treating y and z as con-
stants so that dy = 0 and dz = 0. Then the given equation reduces to

z(y + z) dx + y(y + z) dt = 0

or zdx + ydt = 0

On integration, we get

zx + yt = f (x, z)    ( say) .....(7)

Now on differentiation (7), we get

zdx + tdy + xdz + ydt = df

or (y + z) (zdx + tdy + xdz + ydt) = (y + z) df
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or z(y + z) dx + t(y + z) dy + x(y + z) dz + y(y + z) dt = (y + z) df .....(8)

Comparing (8) with the given equation, we have

t(y + z) dy + x(y + z) dz – (y + z) df = z(t – x) dy + y(x – t) dz

or (ty + xz) dy + (ty + xz) dz  = (y + z) df

or (ty + xz) (dy + dz)  = (y + z) df

or f (dy + dz) = (y + z) df  [by using (7)]

or
dt dy dz
f y z




 .....(9)

Integration of (9) yields
log f = log (y + z) + log c

or f = c(y + z)
or zx + yt = c(y + z) [by using   (7)]

2.7 Total Differential Equation of Second Degree

It the given equation be of the form
Adx2 + Bdy2 + Cdz2 + 2Ddydz + 2Edzdx + 2Fdxdy = 0

where A, B, C, D, E and F are functions of x, y, and z then it can be easily resolved into factors, if
ABC + 2DEF – AD2 – BE2 – CF2 = 0

Let the two factors be
Pdx + Qdy + Rdz = 0

and Pdx + Qdy + Rdz = 0
The solutions of either of these may be obtained by the methods discussed earlier. The two gen-

eral solutions taken together constitute the complete solution.

Ex.1. Solve (xdx + ydy + zdz)2z = {(z2x2y2) (xdx + ydy + zdz) dz}

Sol. We can factorize the given equation as

(xdx + ydy + zdz) {z(xdx + ydy + zdz) – (z2 – x2 – y2) dz} = 0

i.e., xdx + ydy + zdz = 0 .....(1)
and z(xdx + ydy + zdz) – z2dz + (x2 + y2) dz = 0 .....(2)
On integration of (1), we get

x2 + y2 + z2 = c1 .....(3)

To obtain the integral of (2), the equation may be written as

z(xdx + ydy) + (x2 + y2) dz = 0

or z2(2xdx + 2ydy) + (x2 + y2) 2zdz = 0

On integration, we get

z2(x2 + y2) = c2 .....(4)
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Hence the required solution is

(x2 + y2 + z2 – c1) (z
2x2 + z2y2 – c2) = 0

Self Learning Exercise-II

1. The direction cosines of the tangent at a point (x, y, z) on a curve are proportional to _, _, _.
2. What is the equation of family of twisted cubic curves ?

2.8 Summary

In this unit, you studied about the condition of integrability of total differential equation and vari-
ous methods for solving it. Now you must be knowing about the geometrical meaning of Pdx + Qdy +
Rdz = 0 and methods of finding solution of total differential equation containing three or more than three
variables

2.9 Answers of Self Learning Exercises

Exercise I

1.
1

0
n

i i
i

u dx


 , where ui (i = 1, 2 .......... n) are n functions of some or all of n independent vari-

ables x1, x2 ,....., xn.

2.
M N
y x

 


 

3. 0R Q R P Q PP Q R
y z x z x y

                           

4. Equation Pdx + Qdy + Rdz = 0 is called homogeneous if P, Q, R are homogenous functions of
x, y, z of the same degree.

Exercise II

1. dx, dy, dz
2. y = ax2,  y2 = bzx

2.10 Exercise

Solve the following differential equations

1. (2x2 + 2xy + 2xz2 + 1) dx + dy + 2zdz = 0 [Ans.  2 2xe x y z c   ]

2. xdy – ydx + 2x2z dz = 0 [Ans. 2y z c
x
  ]

3. (y + a)2 dx + zdy – (y + a)dz = 0 [Ans. z = (x + c) (y + a)]
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4. yzdx + zxdy + xy dz = 0 [Ans. xyz = c]
5. (ydx + xdy) (a – z) + xydz = 0 [Ans. xy = c(a – z)]
6. zdz + (x – a) dx = {h2 – z2 – (x – a)2 }1/2 dy [Ans. h2 – z2 – (x – a)2 = (y – c)2]
7. zydx = zxdy + y2dz [Ans. x – cy – y log z = 0]
8. yz2(x2 – yz) dx + x2z(y2 – xz) dy + xy2(z2 – xy) dz = 0 [Ans. x2z + yz2 + xy2 = cxyz]
9. (y2 + yz + z2) dx + (x2 + xz + z2) dy + (x2 + xy + y2) dz = 0

[Ans. xy + yz + zx = c(x + y + z)]
10. (x2 – y2 – z2 + 2xy + 2xz ) dx + (y2 – z2 – x2 + 2yz + 2yx ) dy + (z2 – x2 – y2 + 2zx + 2zy )

 dz = 0 [Ans. x2 + y2 + z2 = c (x + y + z)]
11. 2(y + z) dx – (x + z) dy + (2y – x + z) = 0 [Ans. (x + z)2 = c(y + z)]
12. z(z – y) dx + (z + x)zdy + x(x + y)dz = 0 [Ans. z(x + y) = c(x + z)]

13. (x2y – y3 – y2z) dx + (xy2 – x2z – x3) dy + (xy2 + x2y) dz = 0 [Ans. 
x y z z c
y x x y
    ]

14. (y2 + yz) dx + (xz + z2) dy + (y2 – xy) dz = 0 [Ans. y(x + z) = c(y + z)]
15. (y2 + z2 + 2xy + 2xz) dx + (x2 + z2 + 2xy + 2yz) dy + (x2 + y2 + 2xz + 2yz) dz = 0

[Ans. x(y2 + z2) + y(z2 + x2) + z(x2 + y2) = c]
16. (2xy + z2) dx + (x2 + 2yz) dy + (y2 + 2xz) dz = 0 [Ans. x2y + y2z + z2x = c]

17. (mz – ny) dx + (nx – lz) dy + (ly – mx) dz = 0 [Ans. 
nx lz c
mz ny





]

18. (cos x + exy) dx + (ex + eyz) dy + ey dz = 0 [Ans. eyy + eyz + sin x = c]

19. 2xz(y – z) dx + z(x2 + 2z) dy + y(x2 + 2y) dz = 0 [Ans. 
2 2 2x z c
y z z


 
 ]

20. xdy – ydx – 2x2zdz = 0 [Ans. y = x (c – z2)]
21. (z + z2) cos x dx – (z + z2) dy + (1 – z2) (y – sin x) dz = 0 [Ans. y = sin x – cze–z)]
22. y sin dx + x sin dy – xy sin dz – xy cos d = 0 [Ans. xy = c sin ez)]
23. yzdx + 2xzdy – 3xydz = 0 [Ans. xy2 = cz3]
24. (2y2 + 4az2x2) xdx + [3y + 2x2 + (y2 + z2)–1/2] ydy + [4z2 + 2ax4 + (y2 + z2)–1/2] zdz = 0

[Ans.  2 2 4 2 2 2 2 2 .x y ax z y z y z c      ]

25. Find the equation of the curve that passes through the point (3, 2, 1) and cut orthogonally the
family of surfaces x + yz = c
[Ans. y2 – z2 = 3, y + z = 3ex–3]
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Unit 3 : Partial Differential Equations of Second order,
Monge’s Method

Structure of the Unit

3.0 Objective

3.1 Introduction

3.2 Solution of P.D.E. of Second order by Inspection.

3.3 Exercise – I

3.4 Monge’s Method for Solving Equation of the Type Rr + Ss + Tt = V

3.5 Monge’s Method for Solving Equation of the Type Rr + Ss + Tt + U(rt – s2) = V

3.6 Summary

3.7 Answers of self-Learning Exercises

3.8 Exercise – II

3.0 Objective

The purpose of this unit is to discuss partial differential equations of order two with variable co-

efficients. Here you will learn how a large class of second order partial differential equations may be

solved by using the methods applicable for solving ordinary differential equations ? You will also study

Monge’s method for solution of some special type of second order partial differential equations.

3.1 Introduction

A partial differential equation (P.D.E) is said to be of order two, if it involves at least one of the

differential coefficients r, s, t and none of order higher than two. The general form of a second order

partial differential equation in two independent variables x, y is given as

as F(x, y, z, p, q, r, s, t) = 0 ;

where
2 2 2

2 2, , , ,z z z z zp q r s t
x y x yx y
    

    
    

The most general linear partial differential equation of second order in two independent variable
x and y with variable coefficient is given as

Rr + Ss + Tt + Pp + Qq + Zz = F
where R, S, T, P, Q, Z, F are functions of x and y only and not all R, S, T are zero.
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3.2 Solution of P.D.E. of Second Order by Inspection

Before taking up the general equation of second degree P.D.E., we discuss the solution of simple
problems which can be integrated merely by inspection. On two successive integral of given P.D.E., we
get the general solution which is a relation in x, y, z. To understand this, we discuss the following prob-
lems.

Ex.1. Solve t + s + q = 0
Sol. We can write the given problem as

2 2

2 0z z z
x y yy

  
  
  

Integrating with respect to y, treating x as constant, we get

 z z z f x
y x
 

  
             or                  p + q = f (x) – z

which is the form of standard Lagrange’s linear equation Pp + Qq = R, so the auxiliary equation will be

 1 1
dx dy dz

f x z
 



from first two terms, we obtain
x – y = c1 (constant) .....(1)

and from first and last terms, we have

 dz z f x
dx

  .....(2)

which is linear differential equation of first order having integrative factor ex.
Hence the solution of (2) will be

z ex = f (x) exdx + c2  (constant)
Therefore the required solution of given equation will be (by using (1)]

zex – (x) =  (x – y)
where c2 is a function of c1 or of (x – y).

Ex.2. Solve t – qx = x2

Sol. We can write the given problem as

2q qx x
y


 
 .....(3)

which is linear in q and y having integrating factor e–xdy = e–xy. Therefore the solution of (3) is
q e–xy = x2 e–xy dy + f (x)   (as x is constant)

or q e–xy = –xe–xy + f (x)

or  
  


xyz x f x e

y
Again integrating with respect to y (treating x as constant), we get.

   1 .xyz xy f x e x
x

    



48

Ex.3. Solve xx t
y2=

Sol. We can write the given problem as
2 2

2 2
z z x

x y y y
 

 
  

Integrating with respect to y (treating x as constant), we get

 z z x f x
x y y
 

   
 

or  xp q f x
y

   

which is the form of standard Lagrange’s linear equation Pp + Qq = R, so the auxiliary equation will be

 1 1
dx dy dz

x y f x
 
  

From first two terms, we obtain
x + y = c1 (constant) .....(4)

and from first and last terms, we have

 xdz dx f x dx
y


 

or  
1

xdz dx f x dx
c x


 
                             [by using (4)]

or  
1

1 cdz dx f x dx
c x

 
    

On integrating, we get

   1 1 2logz x c c x f x dx c    
or    1 logz x c y x F x y     

where c2 is a function of c1 or of (x + y).
Ex.4. Solve rx = (n – 1) p
Sol. We can write the given problem as

 
2

1
2
z z

x n
xx

 
 



or

2

2 1
z

nx
z x
x


 




Now integrating both sides with respect to x treating y as constant, we get

   1log 1 log logz n x f y
x
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or  1
1

nz x f y
x





Again integrating w.r.t. x treating y as constant, we obtain

   1 2

nxz f y f y
n

 

Ex.5. Solve 2yq + y2t = 1
Sol. We can write the given problem as

22 1qyq y
y


 


or  2 1y q
y





Now integrating both side with respect to y treating x as constant, we get
y2q = f1(x)

or  12
1zq f x

y y


 


Again integrating with respect to y, we obtain

   1 2
1 .z f x f x
y

 
   

 

Ex.6. Show that a surface passing through the circle z = 0, x2 + y2 = 1 and satisfying
the differential equation s = 8xy is z = (x2 + y2)2 – 1

Sol. We can write the given differential equation as
2

8z z xy
x y x y

   
      

Integrating with respect to x, we get

 24z x y f y
y


 


Again integrating with respect to y, we obtain

   2 2
12z x y f y dy x   

or    2 2
2 12    z x y y x .....(5)

where    2 y f y dy  
where 1  and 2  are two arbitrary functions.

Now given circle is
x2 + y2 = 1,  z = 0

Putting z = 0 in (5), we get
2x2y2 + 2 (y) + 1 (x) = 0 .....(6)

Now, x2 +y2 = 1 (x2 + y2)2 = 12
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or 2x2y2 + x4 +y4 = 1 .....(7)
On comparing (6) with (7), we get

    4 4
2 1 1y x x y     

Substituting this in (5), we obtain
2 2 4 42 1z x y x y   

or  22 2 1z x y  

Hence the result.

Self-Learning Exercise-I

1. What is the general form of a second order p.d.e. in two independent variables x and y ?
2. The most general linear p.d.e. of second order in two independent variables x and y is ....... .
3. The solution of r = 6x is .......

3.3 Exercise-1

Solve the following partial differential equations :

1. ar = xy [Ans.    31
6

az x y x f y F y   ]

2. r =  2y2 [Ans.    2 2z x y x f y F y   ]

3. s – t = x/y2 [Ans.    ( ) logz x y y f x F x y     ]

4. xr + p =  9x2y2 [Ans.    3 3 logz x y a f y F y   ]

5. yt – q =  xy [Ans.    
2

2 21 1log
2 4 2

yz xy y xy f x F x   ]

6. log s = x + y [Ans.    x yz e f y F x   ]

7. p + r + s = 1 [Ans.     y y yz x e y e F y e f x y       ]

8. ys + p = cos (x + y) – y sin (x + y) [Ans.      sinyz y x y f x F y    ]

9. s = x/y + a [Ans.    
2

log
2
xz y axy f x F y    ]

It may he noted here that a p.d.e.f (x, y, z, p, q, r, s, t) = 0 can he integrated only in special
cases.  The most important method of solution, due to Monge, is applicable to a wide class of
such equations but not to all equations.

3.4 Monge’s Method for Solving Equation of the Type Rr + Ss +Tt = V

Monge’s gives a method for solving p.d.e. of second order of the type
Rr + Ss + Tt = V .....(1)
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where R, S, T and V are, in general, functions of x, y, z, p and q. Indeed this a equation of first
degree in  r, s and t. To solve such type of equations, first we determine the intermediate integrals. For
this we have

p pdp dx dy
x y 

 
 

or dp rdx sdy  ....(2)

hence
dp sdyr

dx


 ....(3)

Similarly
q qdq dx dy
x y
 

 
 

or dq sdx tdy  ....(4)

hence
dq sdxt

dy


 ....(5)

Now, r and t are eliminated from equation (1) with the help of (3) and (5). Thus we get an
equation in s as

dp sdy dq sdxR Ss T V
dx dy

        
   

or    2 2 0Rdpdy Tdqdx Vdydx s Rdy Sdydx Tdx      ....(6)

Equation (6) will be identically satisfied if we take
0Rdpdy Tdqdx Vdydx   ....(7)

and 2 2 0Rdy Sdydx Tdx   ....(8)

which  are called Monge’s subsidiary equations and will provide us the intermediate integrals. Here

we note that the equation (8) is quadratic for the ratio dy : dx  and therefore can be decomposed into

two linear equations in dx and dy of the form

1 0dy m dx    and  2 0dy m dx 

Now combining equations dy – m1dx = 0 and (7) with dz = pdx + qdy, two integrals u1 = u1(x,

y, z, p, q) and v1 = v1(x, y, z, p, q) can be obtained. Then we get u1 = f1(v1) as the first intermediate

integral. Similarly on combining equations dy – m2dx = 0 and (7) with dz = pdx + qdy, and following the

above procedure, the second intermediate integral u2 = f2 (v2) can be obtained.

From these two intermediate integrals, the values of p and q may be obtained in terms of x and

y and then substituting them in dz = pdx + qdy and integrating it, the complete integral of (1) is obtained.
Ex.1. Solve r = a2t by Monge’s method.
Sol. Comparing the given equation with Rr + Ss + Tt = V, we get R = 1, S = 0, T = – a2,V = 0.

The Monge’s subsidiary equations are given by
0Rdpdy Tdqdx Vdydx  

and 2 2 0Rdy Sdydx Tdx  
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Substituting the values of R, S, T  and V, the  subsidiary equations will be
2 0dpdy a dqdx  ....(9)

2 2 2 0dy a dx  ....(10)
Equation (10) may be factorised as

  0dy adx  ....(11)

and   0dy adx  ....(12)
Combining equation (11) with subsidiary equation (9), we get

  2 0dp adx a dqdx 

or 0dp adq                  (dx = 0, gives trivial solution) ....(13)
Now from (11) and (13) we obtain

1y ax c  , 2p aq c 
therefore the first intermediate integral is

   1p aq f y ax   ....(14)
Similarly combining (dy + adx) = 0 with subsidiary equation (9), we get the second intermediate

integral as

   2p aq f y ax   ....(15)
Now from above two intermediate integrals (14) and (15) we deduce the value of p and q as.

   1 2
1
2

p f y ax f y ax     

   2 1
1

2
q f y ax f y ax

a
     

Substituting these values of p and q in dz = pdx + qdy, we get

   2 12 2
dy adx dy adxdz f y ax f y ax

a a
          

   
On integration, we have

   2 1
1 1

2 2
     z y ax y ax

a a
Hence the required solution is

   1 2z F y ax F y ax   

Ex.2. Solve r + (a + b) s + abt = xy by Monge’s method.
Sol. Comparing the given equation with Rr + Ss + Tt = V, we have R = 1, S = a + b,T = ab, V

= xy. Here Monge’s subsidiary equations
Rdpdy + Tdqdx – Vdydx = 0
Rdy2 – Sdxdy + Tdx2 = 0

become dpdy + abdqdx – xydxdy = 0 .....(16)
and dy2 – (a + b) dxdy + ab dx2 = 0 .....(17)
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Equation (17) may be factorised as
(dy – bdx) = 0 .....(18)

and (dy – adx) = 0 .....(19)
On integration y – bx = c1 .....(20)

y – ax = c2 .....(21)
Combining equation (18) with subsidiary equation (16), we get

dp (bdx) + abdqdx – xydx (bdx) = 0
or dp + adq – xy dx = 0
or dp + adq – x (c1 + bx) dx = 0                    [by using (20)]
On integration, we get

2 31
32 3

c bp aq x x c        
  

or  
2

3
32 3

x bp aq y bx x c      
 

              [by using (20)]

or 2 3
3

1 1
2 6

p aq yx bx c     
 

Therefore the first intermediate integral is

 2 3
1

1 1
2 6

p aq yx bx f y bx     .....(22)

Similarly, the second intermediate integral corresponding to equation (19) is

 2 3
2

1 1
2 6

p bq yx ax f y ax     .....(23)

Now from above two intermediate integrals (22) and (23), we deduce the values of p and q as

     2 3
2 1

1 1 1
2 6

p x y a b x a f y ax b f y bx
a b

        

and    3
1 2

1 1
6

q x f y bx f y ax
a b

          
Substituting these values of p and q in dz = pdx + qdy, we get

      

     

2 3
2 1

3
1 2

1 1 1
2 6

1 1
6

        

      

dz x ydx a b x dx af y ax dx bf y bx dx
a b

x dy f y bx dy f y ax dy
a b

or          

     

2 3 3
2 1

1 2

1 1 13
6 6

1

dz x ydx x dy a b x dx af y ax dx bf y bx dx
b a

f y bx dy f y ax dy
b a

         

     



54

or         

    

3 3
2

1

1 1 1
6 6

1

dz d x y a b x dx f y ax dy adx
b a

f y bx dy bdx
b a

     


  


Integrating, we get the required solution as

     3 4
1

1 1
6 24

z x y a b x y ax y bx        

Ex.3. Solve x2r + 2xy s + y2t = 0 by Monge’s method.
Sol. Comparing the given equation with Rr + Ss + Tt = V, we have R = x2, S = 2xy, T = y2,

and V = 0. Hence Monge’s subsidiary equations
0Rdpdy Tdqdx Vdydx  

2 2 0Rdy Sdx dy Tdx  
become

2 2 0x dpdy y dqdx  .....(24)

and 2 2 2 22 0x dy xy dy y dx   .....(25)
Equation (25) may be factorised as

 2 0xdy ydx 

or   0xdy ydx  .....(26)

Combining it with the equation (24), we get
xdp (ydx) + y2dq dx = 0

or xdp + ydq = 0
or xdp + pdx + qdy + ydq = pdx + qdy
or d (xp) + d (yq) = dz
On integration, we get

px + qy = z + c1

Now equation (26) gives

2
y c
x


Thus the intermediate integral will be
px + qy = z + f (c2)

which is of Lagrange’s form having the subsidiary equations

 2

dx dy dz
x y z f c
 



First two terms gives

2
y c
x


and the last two terms gives  2z f c cy 
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Hence required solution is

1 2
y yz yf f
z x

       
   

Ex.4. Solve (x – y) (xr – xs – ys – yt) = (x + y) (p – q) by Monge’s method.
Sol. Monge’s subsidiary equations in this case will be

       0x x y dpdy y x y dqdx x y p q dxdy       .....(27)

and      2 2 0x dy x y dxdy y dx    .....(28)

Factors of equation (28) are
xdy + ydx = 0,

which on integration gives xy = c1

and dx + dy = 0,
which on integration gives x + y = c2 . Combining equation (27) with (xdy + ydx) = 0, we get

      x y dp dq p q dx dy    

On integration, we obtain

constant.p q
x y





Therefore the intermediate integral is
(p – q) = (x – y) f (xy)

for which the Lagrange’s subsidiary equation will be

   
  

1 1 0
f xy ydx xdy dzdx dy dz

x y f xy
 

  
 

From first two terms, we get
From the last two relations, we get x + y = c2

dz + f (xy) d (xy) = 0
On integration

z = F1 (xy) + constant
Hence required solution is

z = F1 (xy) + F2 (x + y)
Ex.5. Solve q2r – 2pqs + p2t = 0  by Monge’s method.
Sol. Monge’s subsidiary equations in this case will be

 q2 dpdy + p2dqdx=0 .....(29)
and 2 2 2 22 0q dy pq dx dy p dx   .....(30)
Factors of equation (30) are

 2 0qdy pdx 

or 0qdy pdx 

which on integration gives (after putting in dz = pdx + qdy)

dz = 0  1 constantz c 
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Now substituting qdy = – pdx in (29), we get

  2 0qdp pdx p dqdx  

or qdp – pdq = 0 [dx = 0 will give the trivial solution]
On integration, we get

 constantp b
q


Therefore the intermediate integral is

 p f z
q


or   0p q f z 

For which the Lagrange’s subsidiary equation will be

 1 0
dx dy dz

f z
 


from first two terms, we get

 y x f z c 

and from last two terms, we get
z = c1

Hence the required solution is
   y x f z F z     as   c = F (z)

Ex.6. Solve t – r sec4y = 2q tan y by Monge’s method.
Sol. Monge’s subsidiary equations in this case will be

4sec 2 tan 0ydpdy dqdx q y dxdy    .....(31)

and 4 2 2sec 0y dy dx   .....(32)

Factors of equation (32) are
dx – sec2y dy = 0, .....(33)

which on integration gives x – tan y = constant
and dx + sec2y dy = 0 .....(34)

which on integration gives
x + tan y = constant

Now combining (34) with equation (31), we get
2sec 2 tan 0y dp dq q y dy  

On integration, we get

 2
1cos constant tanp q y f x y    .....(35)

Similarly, when (33) is combined with (31) , and integrated gives

 2
2cos tanp q y f x y   .....(36)



57

On solving (35) and (36), we get the values of p and q as

   1 2
1 tan tan
2

p f x y f x y     

   2
1 2

1 sec tan tan
2

q y f x y f x y     

Substituting these values in dz = pdx + qdy, we obtain

        2
1 2 1 2

1 1tan tan tan tan sec
2 2

dz f x y f x y dx f x y f x y y dy            

or      2 2
1 22 tan sec tan secdz f x y dx y dy f x y dx y dy     

which on integration gives the required solution as

   1 22 tan tanz F x y F x y   

3.5 Monge’s Method for Solving Equation of the Type Rr + Ss + Tt + U (rt – s2) = V

Prof G. Monge gave a method for solving equation
Rr + Ss + Tt + U (rt – s2) = V .....(1)

where R, S, T, U and V are, in general, functions of x, y, z, p and q.
We know that

p pdp dx dy
x y
 

 
 

or dp rdx sdy 

or
dp sdyr

dx


 .....(2)

Similarly
q qdq dx dy
x y
 

 
 

therefore
dq Sdxt

dy


 ......(3)

Putting the values of r and t from (2) and (3) in (1), we get

2                
     

dp sdy dq sdx dp sdy dq sdxR Ss T U s V
dx dy dx dy

or (Rdpdy + Tdqdx + Udpdq – Vdxdy) – s (Rdy2 – Sdxdy + Tdx2

+ Udpdx + Udqdy) = 0 .....(4)
Equation (4) will be identically satisfied if we take

Rdpdy + Tdqdx + Udpdq – Vdxdy = 0 .....(5)

and 2 2 0Rdy S dxdy Tdx Udpdx Udqdy     .....(6)

These simultaneous equations (5) and (6) are known as Monge’s subsidiary equations.
Here the equation (6) can not be factorized. So we will try to factorize
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2 2

0

Rdy S dxdy Tdx Udpdx Udqdy

Rdpdy Tdq dx Udpdq Vdxdy

    

    
.....(7)

where is some multiple and is determined later.
Let us suppose that the factors of (7) are

 1 2
1 2

1 0Rdy m Tdx m Udp dy dx dq
m m

 
     

 
.....(8)

On comparing (7) with (8), we obtain

 1
1

,R m T S V
m

        2 1m m ,    
2

R U
m

 .....(9)

The last two relations gives 1
Rm
U


 . Putting this in the first relation of (9), we obtain

 2 2 0     UV RT SU U .....(10)

This equation is called –equation, where , in general, is a function of x, y, z, p and q.
Now since equation (10) is quadratic in so suppose that it is satisfied by two values of say

1 and 2 then the factors corresponding to these values will be

1
1

1
0R U URdy Tdx R dp dy dx dq

U R R
            

as 1
1 2

Rm m
U


 

or   1 1 1 1 0Udy Tdx Udp Udx Rdy Udq         .....(11)

Similarly corresponding to 2, we can obtain

  2 2 2 2 0Udy Tdx Udp Udx Rdy Udq         .....(12)

Now one factor from (11) and one from (12) will be combined in pairs to get intermediate inte-
grals in the form u = f (v). We can combine factors as

1 1 0Udy Tdx Udp    

2 2 0Udx Rdy Udp    

and 1 1 0Udx Rdy Udp    

2 2 0Udy Tdx Udp    

These two pairs will give intermediate integrals provided these total differential equations are
integrable, from which the values of p and q can be determined. Substituting these values of p and q in
dz = pdx + qdy, we get the general solution on integration.

Ex.1. Solve 3r + 4s + t + (rt – s2) = 1
Sol. Comparing the given equation with Rr + Ss + Tt + U (rt – S2) = V, we have R = 3, S = 4,

T = 1, U = 1, V = 1. Then – quadratic equation
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 2 2 0UV RT SU U     

becomes 24 4 1 0    

or  2
1 2

12 1 0
2

        

Hence there is only one intermediate integral given by the equations

1 1 0Udy Tdx Udp    

and 2 2 0Udx Rdy Udq    

On putting above values, we get

1 1 0
2 2

dy dx dp          
   

and
1 13 0
2 2

dx dy dq          
   

or 2 0dy dx dp   

and 3 2 0dy dx dq  
On integration, we obtain

12y x p c    .....(13)

and 23 2y x q c   .....(14)
Hence the only intermediate integral is

 2 3 2y x p f y x q     

where f is any arbitrary function
Now solving (13) and (14) for p and q, we get

12p y x c  

23 2q y x c   

Putting these values of p and q in dz = pdx + qdy, we get

   1 22 3 2dz y x c dx y x c dy      

or   1 22 3dz ydx xdy xdx ydy c dx c dy     

On integrating, we obtain the general solution as

2 2
1 2 3

1 32
2 2

z xy x y c x c y c     

where c1, c2, c3 are arbitrary constants.
Ex.2. Solve 2s + (rt – s2) = 1
Sol. Comparing the given equation with Rr + Ss + Tt + U (rt – S2) = V, we have R = 0, S = 2,

T = 0, U = 1, V = 1.
Then the quadratic equation

 2 2 0UV RT SU U     

becomes 2 2 1 0    
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giving 1 2 1    
Hence there is only one intermediate integral given by the equations

1 1 0Udy Tdx Udp    

and 2 2 0Udx Rdy Udq    
On putting above values, we get

  0dy dp   and 0dx dq 

Integrating, we obtain
y – p = c1 and x – q = c2 .....(15)

Hence the only intermediate integral is

   x q f y p  
where f is any arbitrary function.

Now putting the values of p and q from (15) in dz = pdx + qdy, we get

   1 2dz y c dx x c dy   

or   1 2dz y dx x dy c dx c dy   

On integrating, we get the general solution as

1 2 3z xy c x c y c    .
Ex.3. Solve 2r + (p + x) S + yt + y (rt – s2) + q = 0
Sol. Comparing the given equation with standard equation we have R = q, S = (p + x), T = y, U

= y and V = – q. Then equation

 2 2 0UV RT SU U     

becomes    2 2 0yq yq p x y y       

Which gives 1 0y
p x

 
     

 and 2  

Hence the two intermediate integrals are given as

   
2 2

0y yy dy dx dp
p x p x

  
 

and 0 0q dy y dq                    
2

1as 0
 

  
which gives

1
p x c

y
 

 
 

 and 2qy c

Hence the intermediate integral will be given by

p xqy f
y

 
  

 
.....(16)

Similarly, the second intermediate integral obtained as

3p x c  .....(17)
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Substituting the values of p and q from (16) and (17) in dz = pdx + qdy, we get

 3
1 p xdz c x dx f dy
y y

 
    

 

or   3
3

1  
    

 

cdz c x dx f dy
y y

On integration, we get the general solution as

 2 3
3 3

1
2

cz c x x F G c
y

 
    

 

Ex.4. Solve (rt – s2) – s (sinx + sin y) = sinx siny
Sol. Comparing the giving equation with standard equation we have R = 0, S = – (sinx + siny),

T = 0, U = 1, and V = sinx siny.  Then -equation is

 2 2 0UV RT U U     

becomes    2 sin sin sin sin 1 0x y x y    

which gives 1 cosce x   and 2 cosce y 

The first intermediate integral is given by
sin x dy + dp = 0,  siny dx + dq = 0

which are not integrable.The other intermediate integrable is given by
sin ydy + dp = 0,     sin xdx + dq = 0

On integration, we get
p – cos y = c1    and q – cos x = c2

Hence the intermediate integral will be given by

   cos cosp y f q x  

This can not be integrated further unless we know f. Therefore, let us suppose that the arbitrary
function f is linear, i.e.,

   cos cosp y q x     .....(18)
where and are constants.

Lagrange’s subsidiary equations for (18) will be

1 cos cos
dx dy dz

y x
 
  

From first two terms, we get

3y x c 
and from the first and last term, we obtain

 3cos cosdz c x x dx      
On integration, we get the general solution as

2
4sin sinz y x x c     
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Ex.5. Solve z (1 + q2) r – 2pqzs (1 + p2) t + z2 (rt – s2) + 1 + p2 + q2 = 0
Sol. Comparing the given equation with the standard equation, we have R = z (1 + q2),

S = – 2pqz,  2 21 ,T p U z    and  2 21V p q   . Then the -equation is

2 2 2 22 0p q pqz z    

or  2 0pq z  

which gives z
pq

 

Putting the value of in
0Udy T dx U dp    

and 0U dx R dy U dq    
we get
and pqdy + (1 + p2) dx + zdp = 0 .....(19)

pqdx + (1 + q2) dy + zdp = 0 .....(20)
dz p dx q dy  .....(21)

Combining (19) and (21), and on integration, we obtain
x + zp = c1 .....(22)

Similarly by combining (20) and (21), and on integration, we obtain
y + zq = c2 .....(23)

Putting the values of p and q obtained from (22) and (23) in dz = p dx + qdy, we get

1 2c x c ydz dx dy
z z
        

   

Integrating    2 22
1 2 3cz c x y c    

which is the required solution.
Ex.6. Solve 5r + 6s + 3t + 2 (rt – s2) + 3 = 0
Sol. Comparing the given equation with the standard equation, we have R = 5, S = 6, U = 2,

and V = – 3. Then the equation will be
29 12 4 0    

or  23 2 0  

which gives 1 2
2
3

    

There is only one intermediate integral given by the equations

2 22 3 2 0
3 3

dy dx dp            
   

and
2 22 5 2 0
3 3

dx dy dq            
   

or 3 3 2 0dy dx dp  
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and 3 5 2 0dx dy dq  

Integrating,we get 3y – 3x – 2p = c1 .....(24)
and 3x – 5y – 2q = c2 .....(25)
Hence the only intermediate integral is

3y – 3x – 2p = f (3x – 5y – 2q) .....(26)
where f is an arbitrary function.

Solving (24) and (25) for p and q, we get

 1
1 3 3
2

p y x c       and     2
1 3 5
2

q x y c  

Putting p and q in dz = p dx + q dy, we get

   1 2
1 13 3 3 5
2 2

dz y x c dx x y c dy     

or 2dz = 3 (ydx + xdy) – 3xdx – 5ydy – c1dx – c2dy
Integrating, we get

2 2
1 2 3

3 52 3
2 2

z xy x y c x c y c           
   

which is the required solution. c1, c2 and c3 are arbitrary constants.

Self-Learning Exercise-II

1. For p.d.e. R r + Ss + Tt = V1 the Monge’s subsidiary equations are ................ and ..... .... ..
.

2. The Monge’s subsidiary equations for p.d.e. r = kt are .... ..... and ..... ..... .
3. The -equation in Monge’s method for solving p.d.e. r + 3s + t + (rt – s2) = 1   is  .... .... ....

3.6 Summary

In this unit, you learn about partial differential equations of second order and their solution. You
also studied the solution of two types of P.D.E. by Monge’s method.

3.7 Answers of Self–Learning Exercise

Exercise-I

1.  , , , , , , , 0F x y z p q r s t 

2. Rr Ss Tt Pp Qq Zz F     

3.    3z x x f y y   

Exercise-II

1. 0R dpdy T dq dx V dy dx  
2 2 0R dy S dy dx Tdx  
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2. 0dp dy R dq dx     and  2 2 0dy r dx 

3. 22 3 1 0   

3.8  Exercise-II

Solve the following P.D.E by Monge’s method :
1. pt – qs = q3 [Ans. y = xz + f (z) + F (x)]
2. y2r – 2ys + t = p + 6y [Ans. z = y3 – y f (y2 + 2x) + F (y2 +2x)]

3.  2 22 5 2 2 0x r xys y t px qy     [Ans. z = f (x2 y) + F (xy2)]

4.      2 21 2 1 1 0q r p q pq s p t        [Ans. y = f (x + y + z) + x F (x + y + z)]

5. (q + 1) s = (p + 1) t [Ans. z = f(x) +(x + y + z) or y – (x + y + z = (x)]
6. r – t cos2 x + p tan x = 0 [Ans. 2z  = f (y + sin x)  – F (y – sin x)]
7. s2 – rt = a2 [Ans. z  = x f1 (q – ax) + qy + (q – ax)]
8. ar + bs + ct + e (rt – s2) = b, where a, b, c, e, and h are constants

   
2 2

1 2 constant
2 2
x ayez xf ay eq m x y ay eq

 
        

 
Ans.

9. 2 pr + 2qt – 4pq (rt – s2) = 1    3 2 3 2
1 2 33 2 2z c x c y c       Ans.

Solve the following partial differential equations :
10. 2r + tex – (rt – s2) = 2ex [Ans. z  = ex + bx + y2 – ay + c]

11. 3r + s + t + (rt – s2) + 9 = 0    
2 232 5

2 2
x yz cy xy f c x F c

 
       

 
Ans.

12. r + 3s + t + (rt – s2) = 1          2
1 2 2 1

1
2

z x y F F f f             
Ans.

13. (rt – s2)  + 3s = 2           1 ; ;
2

x y f g z xy y              
Ans.

14. qxr+(x + y)s + pyt + xy(rt – s2)=1 – pq  1 log mz y mx n x f x y
m

      
Ans.
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Unit 4 : Classification of Linear PDE of Second Order,
Cauchy Problem and Method of Separation
of Variables

Structure of the Unit

4.0 Objective

4.1 Introduction

4.2 Classification  of PDE of Second Order

4.3 Classification  of Second Order PDE in More Than Two Independent Variables

4.4 Cauchy Problem

4.5 Method of Separation of Variables

4.6 Summary

4.7 Answers to Self-Learning Exercises

4.8 Exercise

4.0 Objective

Partial differential equations generally occur in the problems of  physics and engineering. After
studying this unit, you should be able to identify and classify partial differential equations (PDE). You will
have an idea of Cauchy problem. At last you will get knowledge of how to solve the partial differential
equations by method of separation of variables.

4.1 Introduction

The importance of partial differential equations among the topis of applied mathematics has been
recognized for many years. However, the increasing complexity of today’s technology is demanding of the
mathematician, the engineer and the scientists, an understanding of the subject previously attained only by
specialists. This unit of partial differential equations (PDE) comprises identification and classification of
PDE. It also presents the principal technique method of separation of variables for constructing solution to
partial differential equation problems. The solved and supplementary problems have the vital role of apply-
ing reinforcing and sometimes expanding the theoretical concepts.

4.2 Classification  of PDE of Second Order

Consider the second order partial differential equation
Rr + Ss + Tt + f (x, y, z, p, q) = 0 ....(1)
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where R, S and T are continuous functions of x and y only possessing continuous partial derivatives. The
PDE can be classified into three categories depending on nature of values of the discriminant S2 – 4RT.
Thus (1) is known as

(i) Hyperbolic if  S2 – 4RT > 0
(ii) Parabolic if  S2 – 4RT = 0
(iii) Elliptic if  S2 – 4RT < 0

Ex. 1 : Consider the one dimensional Laplace’s equation 
2

2

2

2
z z

x y
 
 

 = 0 i.e. r + t = 0. Compar--

ing it with equation (1), we have R = 1, S = T = 0. Hence S2 – 4RT = 0 and so given equation is parabolic.

Ex. 2 : Consider the one dimensional diffusion equation 
2

2
z z

yx
 


  i.e.  r – q = 0. Comparing it

with equation (1), we have R = 1, S = 0 and T = – 1. Hence S2 – 4RT = 4 > 0 and so given equation is
hyperbolic.

4.3 Classification  of a Second Order PDE in More Than Two Independent Variables

A linear second order partial differential equation having more than two independent variables can
suitably be reduced, in general, to a canonical form only when the coefficients are constants. Let x, x2,...,
xn be n independent variables and u be the dependent variable, then such a second order PDE may  be
written as

2

1 1 1
0

  

 
  

    
n n n

ij i
i j ii j j

u ua b cu
x x x ....(1)

where aij, bi and c are constants and aij = aji. Now we consider a one-one transformation
i = i (x1, x2, ....., xn), i = 1, 2, ....., n ....(2)

Then the equation (1) transforms to

 1 21 2
1 1

, ,...., ; , , ,..., 0
k l n

n n
kl n

k l
A u F u u u u      

 
   .....(3)

where      
i j

kl ij k ix xA a ...(4)

The characteristic quadratic Q() associated with equation (1) in this case is

Q() = 
1 1

n n
ij i j

i j
a

 
    ...(5)

The associated real symmetric matrix in this case will be

11 12 1

21 22 2

1 2

.....

.....

.....

n

n

n n nn

a a a
a a aM

a a a

 
 
   
 
  

   ....(6)
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and the characteristic roots “eigenvalues” will be given by
 | M –  | = 0 ...(7)

and their nature and signs will determine the type of the given PDE.
Case I : Elliptic PDE : If all the eigenvalues are nonzero and of the same sign, the given PDE is

of elliptic type.
Case II : Hyperbolic PDE : If all the eigenvalues are nonzero and have the same sign except

precisely one of them, the given PDE is of  hyperbolic type.
Case III : Ultra Hyperbolic PDE (n 4) : If all the eigenvalues are nonzero and atleast two of

them are positive and two negative then the given PDE is of ultra hyperbolic type.
Case IV : Parabolic PDE : If any of the eigenvalues is zero, the given PDE is of  parabolic type.
Note : As an alternative of finding the eigenvalues of matrix M, which sometimes may be cumber

-some, the classification can be made with the help of by expressing the quadratic form (5) as a sum of
squares. The number of positive and negative squares will be the same as the number of positive and
negative eigenvalues of the associated matrix. Either of the methods, as per convenience, may be chosen
for the classification of partial differential equation.

Ex. 1. Determine the nature of following PDE

2
2 2

2 2
z z= x

x y
 

 

Sol.
2 0

y

2 2

2 2
z zx

x
 

 
 

Comparing with standard second order PDE, we have
R = 1, S = 0, T = – x2

S2 – 4RT = 0 – 4 (–x2) = 4x2

Since x2 > 0, therefore given PDE is hyperbolic.
Ex. 2. Classify the following PDE as hyperbolic, parabolic or elliptic :

02
2 2 2

2 2
z z z

x yx y
  

  
  

Sol. On comparing it with equation (1), we have
R = 1, S = 2, T = 1

Hence the value of discriminant S2 – 4RT = 0
Therefore given PDE is parabolic in nature.

Ex. 3. Find the nature of following PDE

3 2 5 = 0
2 2 2

2 2
z z z z

x
x y yx y

   
  

   

Sol. On comparing given equation with standard PDE, we have
R = 3, S = 2, T = 5

So S2 – 4RT = 1 – 15 = – 14 < 0
then given PDE is elliptic in nature.
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Ex. 4.  Show that the equation  
2 2 2

2
2 2 22 1 0z z zx y

x x y y
  

   
  

is elliptic for values of x and in the region x2 + y2 < 1, parabolic on the boundary
and hyperbolic outside this region.

Sol. Given equation is

 
2 2 2

2
2 2+ 2 + 1 = 0  


  

z z zx y
x yx y

Obviously R = 1, S = 2x, T = 1 – y2

Now discriminant is
S2 – 4RT = 4x2 – 4(1 – y2) = 4(x2 + y2 – 1)

Given equation is elliptic in nature if
S2 – 4RT < 0

or 4(x2 + y2 – 1) < 0   x2 + y2 < 1  (inside boundary)
Given equation is parabolic in nature if

S2 – 4RT = 0
or 4(x2 + y2 – 1) = 0   x2 + y2 = 1  (on boundary)

Given equation is hyperbolic in nature if
S2 – 4RT >0

or 4(x2 + y2 – 1) > 0   x2 + y2 > 1  (outside the boundary)
Ex. 5. Classify the following differential equation as to type in the second quadrant

of xy-plane

 2 0
2 2 2

2 2 2 2
2 2
u u u

y x x y y x
x yx y

  
     

  

Sol. :  Here 2 2R y x  ,  2S x y  , 2 2T y x 

Now S2– 4RT = 4(x – y)2 – 4(x2 – y2)
    = 4(x2 + y2 – 2xy – y2 – x2)
    = – 8xy

In second quadrant, y is positive while x is – negative,therefore
S2 – 4RT = +ve > 0

Hence given PDE is hyperbolic in nature.
Ex. 6.  Classify the equations :

(a)
2 2 2 2 2

2 2 22 2 2  
u u u u u

x y y zx y z
    

   
     

(b)
2 2 2 2

2 2 2 2 2
1u u u u

+ + =  
x y z c t
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Sol. (a) The given PDE can be written as
2 2 2 2 2

2 2 22 2 2 0u u u u u
x y y zx y z

    
    

     
  

Here a11 = 1, a22  = 2, a33  = 1,
a12 = a21 = –1, a23 = a32 = –1, a13 = a31  = 0,

therefore the quadratic form
Q () = aij i j

becomes   2 2 2
1 2 3 1 2 2 32 2 2Q            

     22 2
1 2 2 3 0       

here the two shares are positive and one is zero therefore the given PDE is of parabolic type.
Aliter : The associated matrix is

1 1 0
1 2 1
0 1 1

M
  
    
  

The eigenvalues of the matrix are given by
|M – I | = 0
(1 – ) ( – 3) = 0  i.e.= 0, = 1,  = 3

Since one of the eigenvalues is zero, the given PDE is a parabolic type
(b) The given equation can be written as

2 2 2 2

2 2 2 2 2
1 0

t
u u u u

x y z c
   

   
   

 

Here a11=1, a22 = 1, a33 = 1, a44 = 
2
1

c
  and aij = aji = 0, i   j

Hence the quadratic form
Q () =aij i j

becomes  
2

2 2 2
1 2 3 4

1Q
c

      
 

    

This shows that the three shares are positive and only one is negative and therefore the given PDE
is of hyperbolic type.

Ex. 7. Classify the equations
2 2 2 2 2 2

2 2 23 84 28 16 2 = 0
u u u u u u

y z z x x yx y z
     

    
       

 Sol. Here, a11 = 1, a22 = 3, a33 = 84
a12 = a22 = 1, a23 = a32 = 14, a31 = a13 = 8.

The associated matrix is

1 1 8
1 3 14
8 14 84

M
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The eigenvalues of the matrix are given by

| M – I | = 0

  – 98+ 78 – 4 = 0
By Descarte’s rule of signs, The given equation has all the three positive roots and therefore the

given PDE is of  elliptic type.
Aliter : The quadratic form

Q () = aij i j

becomes Q() = 2 2 2
1 2 3 1 2 1 3 2 33 84 2 16 28            

      22 2
1 2 3 2 3 38 2 3 2          

Here all  the three squares are positive the given PDE is of elliptic type.

Self -Learning Exercise–1
1. Mark the correct alternative :

(i) The second order PDE Rr +Ss +Tt +f (x, y, z, p, q) = 0     is parabolic if
(a) S2 – 4RT > 0 (b) S2 – 4RT = 0 (c) S2 – 4RT < 0 (d) none of these

(ii)The PDE 
2 2 2

2 2+ + = 0
u u u

x yx y
  

  
   is

(a) hyperbolic (b) parabolic (c) elliptic (d) none of these

(iii) In the region x2 > 4y the PDE 
2 2 2

2 2+ + = 0
u u u

x y
x yx y

  
  

   is

(a) hyperbolic (b) parabolic (c) elliptic (d) none of these

(iv) The differential equation   
2 2 2

2 24 16 + 9 = 0
u u u

x yx y
  

  
    is

(a) hyperbolic (b) parabolic (c) elliptic (d) none of these
2. Write the condition under which a second order PDE in more than two independent variables is

elliptic.
3. The region in which the equation  (x log y) r + 4yt = 0  is hyperbolic is...

4. Classify the following PDE 
2 2 2

2 24 + 4 + = 0
u u u

x yx y
  

  

5. Classify the PDE   
2 2 2

2 25 9 + 4 = 0
u u u

x yx y
  

  


6. Classify the PDE  
2 2 2

2 2+ + + 2 + + 6  = 0u u u u ut x u
x t t xt x

    
    



71

4.4 Cauchy Problem

The Cauchy problem  is a boundary value  problem dealing with the unique solution of a second
order quasi–linear PDE when its initial value and slope are specified.

Statement : Determine the solution z = z(x, y) of the PDE
Rr + Ss + Tt + f(x, y, z, p, q) = 0 ...(1)

where R, S and T are in general functions of x, y, z, p and q such that the solution takes on a given
space curve C, having the parametric equation

x = x(t), y = y(t), z = z(t) ...(2)

prescribed value of z and 
z
n



 , where n is the distance measured along the normal to the curve.

The latter set of boundary conditions is equivalent to assuming that the values of x,y, z, p, q are
determined on the curve, but it be noted that the values of p and q can not be assigned arbitrarily along the
curve.

Method of solution : The solution of eq. (1) will  be some surface, called integral surface,
passing through C. Hence at each point of C, by relations (2) we have

0 0z px qy   .....(3)
which shows that p0 and q0 are not independent.

Thus, the Cauchy problem finds the solution of (1) passing through the integral strip of the first
order formed by the planar elements (x0,y0, z0, p0, q0)  of the curve C. At every point of the integral strip
p0 = p0(t), q0 = q0(t), so that of we differentiate these equation w.r.t. ‘t’ we find that

0 0 0 0 0 0,p rx sy q sx ty         ....(4)

Knowing R, S, T, f, 0 0 0 0 0 0, , , , ,x y p q p q     at each point of C, we may regard equations (1) and
(4) as linear simultaneous equations for the unknowns r, s, t at each point of C. Solving by Cramer’s’s rule,
we get

1 2 3

1r s t
   

    .....(5)

where 1 0 0

0 0 0

0
S T f
y p
x y q

  


 

  
,  2 0 0

0 0

0
0

R T f
x p

y q
  



 

 

3 0 0 0

0 00

R S f
x y p

x q
  



  

 
.....(6)

0 0

0 0

0
0

R S T
x y

x y
   

 
.....(7)
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If  0, we can easily calculate the expressions for second order derivatives r0, s0 and t0 along C.
The third order partial differential coefficient of z can similarly be calculated at every point of C by

differentiating (1) w.r.t. x and y respectively, making use of

0 0 0xxx xxyr z x z y    .....(8)
etc. and solving as above.

Proceeding in this manner, we can calculate partial derivatives of every order of the points of C.
The values of the function z at neighbouring points, can be obtained by using Taylor’s Theorem for func-
tions of two independent variables. Thus the Cauchy problem possesses a solution as long as
  0. In the elliptic case  4RT – S2 > 0, so that   0 always holds and the derivatives, of all orders, of z
are uniquely determined.

If  = 0, then the Cauchy’s method of solution breaks down. This critical case leads to the
condition

2 2 0Ry Sxy Tx   

or 2 2 0Rdy Sdydx Tdx   ....(9)
At each point (x,y, 0) of (which is orthogonal projection of the curve C  on the plane z = 0) the

eq. (9) would give a pair of directions along which  = 0. These directions are called as characteristics.
Thus curves known as characteristic base curves, may be drawn through every point (x,y, 0) of

the base curve  simply by approximating them by straight line segments whose directions are taken to
coincide with those of the tangents given by the roots of (9), viz.

2 4
2

dy S S RT
dx R

 
 .....(10)

Thus a curve  in the xy plane satisfying (10) is called a characteristic base curve of the PDE (1),
and the curve C of which it is the projection is called a characteristics curve of the same equation.

Note that characteristics are :
(i) Real and distinct if  S 2 – 4RT  > 0
(ii) Coincident if  S2 – 4RT  = 0  and
(iii) Imaginary if S2 – 4RT <  0
Hence these are two families of characteristics if the given PDE is hyperbolic, one family if it is

parabolic and none if it is elliptic. Thus the Cauchy problem will fail to have unique solution if an arc element
of the base curve  coincides with the characteristics. Consequently, the condition  0 is both necessary
and sufficient to solve the Cauchy problem.7

Characteristic equations :
Corresponding to (1), consider –quadratic

R2 + S + T = 0 ....(11)
when S2 – 4RT  0, eq. (11) has real roots. Then, the ordinary differential equation

 , 0dy x y
dx

  

are called the characteristic equations.
Again the solution of (11) will be characteristic curves or simply the characteristic of the second

order PDE (1).
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4.5 Method of Separation of Variables

For given linear second order partial differential equation
Rr +Ss +Tt +Pp +Qq +Zz = F (x,y) ....(1)

where R, S, T, P, Q, Z and F are functions of independent variables x and y only. Let Z(x,y) be solution of
(1).

The method of separation of variables for this problem is a powerful tool and begins with assump-
tion that Z(x,y) is of the form X(x) . Y(y) i.e.

Z(x,y) = X(x) .Y(y) ....(2)
where X  is function of independent variables x only and Y  is function of independent variables y only.

On substituting (2) in (1) we have

   1 1f D X = g D Y
X Y

 ....(3)

where f (D) and g(D) are quadratic functions of D =
x



 and D =
y



  respectively. This has the effect of

replacing the single PDE with two second order linear ordinary differential equations since LHS of (3) is
function of x alone and the RHS is function of y alone. Since x and y are independent variables, the two
sides of (3) will be equal only if each side is a constant (say ) be

   1 1   f D X g D Y
X Y

or    and    f D X X g D Y Y .....(4)

which can be solved by the methods of ordinary differential equation.
The theory of eigenfunction expansions enters into the treatment of any in homogenous aspect of

the problem. The general solution of equation (4) will depend on the choice of  positive or negative or
zero. In practical problems, the nature of the boundary conditions determine the nature of  and it
becomes an eigenvalue problem.

The method of separation of variables can be employed in a similar manner for more than two
independent variables also.

In the application  of ordinary linear differential equation, we first find the general solution and then
determine the arbitrary constant from the initial values, But the same method is not applicable to problem
involving PDE In method of separation of variables right from the beginning we try to find the particular
solution of PDE which satisfy all or some of the boundary conditions and then the remaining conditions are
also satisfied. The combination of these particular solutions gives the solution of the problem.

Ex. 1. Find the characteristics of
y2r – x2t = 0.

Sol. Given y2r – x2t = 0 ....(5)
Comparing (5) with

Rr + Ss + Tt + f (x, y, z, p, q) = 0, we have .....(6)
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R = y2, S = 0 and T = –x2

Hence S2 – 4RT = 0 – 4y2(–x2) = 4x2y2 > 0
and thus (1) is hyperbolic everywhere except on the coordinate axes x = 0 and  y = 0. The  quadratic is

R2 + S + T = 0  or  y22 – x2 = 0 ....(7)

Solving (7), we get ,x x
y y

     (two district real roots)

Corresponding characteristic equations are

0 and 0dy x dy x
dx y dx y

   

or xdx + ydy = 0  and  xdx – ydy = 0
Integrating, we get

x2 + y2 = C1     and   x2 – y2 = C1

which are required families of characteristics.
Here these are families of circles and hyperbolas respectively.
Ex. 2. Find the characteristics of

x2r + 2xys + y2t = 0 .....(8)
Sol. Comparing (8) with (6) we have

R = x2, S = 2xy and T = y2

Hence S2 – 4RT = 0
and hence (3) is parabolic everywhere. The  quadratic is

2x2 + 2xy + y2 = 0
Solving it we get

 2 0 or ,y yx y
x x

         (two equal roots)

The characteristic equations is

1 10 or 0dy x dy dx
dx y y x

   

Integrating, we get

1
y c
x
    and    1y c x ....(9)

which is the required family of characteristics. (9) represents a family of straight lines passing through the
origin.

Ex. 3. Solve the followings P.D.E.
2

2 , 0 , 0z z x y
yx

 
    


satisfying the boundary conditions
(i) z = 0 when x = 0
(ii) z = 0 when x = 
(iii) z = sin 3x when y = 0
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Sol. Let z(x, y) be solution of given PDE Assume that
z(x, y) = X(x)Y(y)

where X  and Y  be function of only x  and y  respectively.
On substituting the value of z(x, y) = X(x)Y(y) in given PDE, we have

 
2

2
2

1 1 sayd X dY n
X Y dydx

  

then
2

2 2
2 0, 0d X dYn X n Y

dydx
   

Hence  sin ,X a nx     and
2n yy be

where a, b,  are arbitrary constants

Thus z = X(x)Y(y) =  
2

sin n yA nx e , A = ab .....(10)

According to conditions (i) and (ii) given with the problem, from (10), we get
2

0 sin n yA e    and  
2

0 1 sin .n n yA e     Thus = 0 as A  0

Hence 2
sin n yz A nx e  .....(11)

Also by condition (iii), from (11), we get
 sin 3x = A sin nx  A= 1, n = 3

Hence 9sin 3  yz xe
be required solution of given PDE under specified boundary conditions.

Ex. 4. Use the method of separation of variables to solve the equation

  32 ,0 6 xu u u given that u x e
x t

 
  

 
Sol. Let u(x, t) = X(x)T(t) be solution of given PDE where X is a function of x only and T is a

function of t only.

Now
u dX u dTT and X
x dx t dt
 

 
 

On substituting these values in given PDE, we get

2dX dTT X XT
dx dt

 

Dividing by XT, we have

22 1X T n
X T
 
    (say)

Now we have two ordinary differential equations.

2 22and 1X Tn n
X T
 
    

or
2

2 10,
2

T ndX n X and
Tdx
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Sloving these equations, we find that
2

2
1

2
1 2and

  
   

n t
n xX c e T c e

Hence      

2
2 1

2
1 2,

nn x t
u x t X x T t c c e

 
  

  

Under given condition we get 
23

1 26 x n xe c c e 

 c1c2 = 6 and n2 = 3
Thus the required solution of the problem is u(x, t) = 6 e–3x–2t

Ex. 5. Use the method of separation of variables to solve the PDE
2

2 2 0u u u
x yx

  
  

 

Sol. : Let u(x, y) be solution of given PDE. For method of separation of variables, we assume
u(x, y) =X(x) Y(y) .....(12)

where X is function of x only and Y  is function of y only.

Now we have
2 2

2 2, ,u dX du dY u d XY X Y
x dx dt dy x dx
 

  
 

On substituting these values in given problem, we get

2

2 2 0d X dX dYY Y X
dx dydx

  

On dividing by XY, we have
2 0X X Y

X X Y
  
  

or
2 0X X Y

X Y
  

 

or 22X X Y p
X Y

  
      (say)

From above equalities, we have two ordinary differential equation.
22 0   X X p X    and 2 0Y p Y  

Now consider first differential equation from the above pair of equations i.e.
X– 2X + p2X = 0 .....(13)

Now auxiliary equation for (13) is
m2 – 2m + p2 = 0

2
22 4 4

1 1
2

 
   

p
m p

Therefore    2 21 1 1 1
1 2

p x p x
CF c e c e
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i.e.    2 21 1 1 1
1 2

p x p x
X c e c e

   
  .....(14)

Again
2 2dY dYp Y p dy

dy Y
  

2
3log logY p y c 

2

3
p yY c e .....(15)

Substituting the values of X and Y from equation (14) and (15) respectively in (12), we get

         2 2
21 1 1 1

1 2 3,
P x p x p yu x y X x Y y c e c e c e

    
   
  

Thus u (x,y) 
   2 2

21 1 1 1p x p x p yAe Be e
    

  
  

where A = c1c3  and B = c2c3.
Ex. 6.  Solve by the method of separation of variables the PDE

4 3u u u
t x

 
 

 
, given that u = 3e–x – e–5x  when t = 0

Sol. Let u(x, t) =X(x)T(t) be solution of given PDE where X is a function of x only and T is a
function of only t.

On substituting the value of u(x, t) in the given PDE and dividing by XT, we get

4 3T X
T X
 
 

24 3T X p
T X
 
    (say)

So we have 24 3T p
T

   and 2X p

X


 

Now
2

24 33
4

T dT pp dt
T T

  
      

 


2

1
3log log

4
pT t c

 
   
 

or  2 3 4
1

p t
T c e




Again 2 2X dXp p dx
X X

   

or 2
2log logX p x c  
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or
2

2
p xX c e

Hence      2 2 2 23 4 3 4
1 2,

p x p t p x p t
nu x t XT c c e b e

     
  

The general solution is

   2 2 3 4

1
,

   


 p x p t

n
n

u x t b e

By the condition given in the problem, for t = 0 we have,

 
25

1
,0 3 x x p x

n
n

u x e e b e


  


  

So we have, p2 = 1, b1 = 3   or   p2 = 5, b2 = – 1
Hence the general solution is

  5 2, 3 x t x tu x t e e    

which required solution of given PDE under specified condition.

Self  Learning Exercise–II

1. The equation 4r + 5s + t + p + q – 2 = 0
has ......... real characteristic family of curves.

2. For one family of characteristic of PDE
Rr + Ss + Tt + f (x, y, z, p, q) = 0

S2 – 4RT should be ................
3. If S2 – 4RT < 0 for PDE

Rr + Ss + Tt + f (x, y, z, p, q) = 0
then it has ................ real characteristics.

4. If PDE Rr + Ss + Tt + f (x, y, z, p, q) = 0
is hyperbolic the number of real characteristics will be ...............

5. By the method of separation of variables to solve the one dimensional wave equation

2 2

2 2 2
1z z

x c t
 


 

,  z (x, t) = ..................

4.6 Summary

In this unit, we get an idea and importance of partial differential equation for physical and practical
problems. We have learnt how we can classify the nature of different equations. Cauchy problem is physi-
cal roblem arise in analysis of physical and mathematical problem . A very powerful tool ‘The method of
separation of variables’ is also introduced in this unit. At last for concrete depth in PDE, we have included
the self- learning exercises, illustrative Ex.s and questions for practice.
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4.7 Answers to Self-Learning Exercises

Exercise – I
1. (i) b (ii) c (iii) a (iv) a
2. See § 4 3. xy log y < 0
4. Parabolic 5. Hyperbolic
6. Elliptic if  t2 – 4x < 0,Hyperbolic if  t2 – 4x > 0 and Parabolic if  t2 – 4x = 0

Exercise – II
1. 2 2. S2 – 4RT = 0 3. Zero

4. 2 5. X (x) T (t)

4.8 Exercise

1. Find the characteristics of

(i) 4r + 5s + t + p + q – 2 =  0 [Ans. 1 2, and   
xy x c y c
y

]

(ii) (sin2 x)r + (2cos x)s – t = 0 [Ans. y + cosec x – cot x = c1 ;  y + cosec x + cot x = c2]
2. Show that the equation uxx + xuyy + uy = 0 is elliptic for x > 0 and hyperbolic for x < 0.
3. Find whther the following PDE are parabolic or elliptic

(i) 
2 2

2
2 2 0u ux u

t x
 

  
 

[Ans. Hyperbolic if x > 0, parabolic if x = 0 and elliptic if x < 0 ]

(ii)
2 2 2

2 22 0u u u ut
x t xt x

   
   

   

[Ans. tx < 1 for hyperbolic, tx > 1 for elliptic and tx = 1 for parabolic]
4. Solve by the method of separation of variables :

  34 ; 0, 8 yu u u y e
x y

 
 

  [Ans. u (x, y) = 8e–3y-12x]

5. Solve by the method of separation of variables :

  42 ; ,0 10 6x xu u u u x e e
t x

  
   

 
[Ans. u (x, t) = 10e–(x+3t) – 6e–2(2x+3t)]

6. Solve 2uxx – uy = 0 by separation of variables. [Ans.   2,
kx kx kyu x y Ae Be e   

 
]

7. Solve the following PDE by the method of separation of variables,
(i) 4ux + uy = 3u and   u (0, y) = e–5y [Ans. u (x, y) = e2x – 5y]

(ii)
2

2 2u u
tx

 



; u (x, 0) = x (a – x) [Ans. u (x, y) = x (a – x)  2 2 p te ]

(iii) y3ux + x2uy = 0 [Ans.       3 43 4
,

k x y
u x y ce


 ]
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8. Use the method of separation of variables to solve the equation,

2

2 2u u u
yx

 
 


[Ans.      2 2, cos sin p yu x y A px B px e   ]

9. Solve the method of separation of variables,

 3 2 0 ; ,0 4 xu u u x e
x y

 
  

  [Ans.    3 2, 4 x yu x y e  ]

10. Solve by method of separation of variables,

  54 3 ; 0, 4 y yu u u u y e e
x y

  
   

  [Ans.   2 5, 4 x y x yu x y e e   ]

11. Solve by method of separation of variables,

2u u u
x t
 

 
 

= 0 when u (x, 0) = 6e–3x [Ans.   3 2, 6 x tu x y e  ]
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Unit 5 : Laplace, Wave and Diffusion Equations And
Canonical Forms

Structure of the Unit

5.0 Objective

5.1 Introduction

5.2 Laplace, Wave and Diffusion Equations

5.2.1 Laplace Equations

5.2.2 Wave Equations

5.2.3 Diffusion Equations

5.3 Canonical Forms

5.4 Summary

5.5 Answers to Self-Learning Exercises

5.6 Exercise

5.0 Objective

After studying this unit, you should be able to know application of partial differential equations. You

will get an idea of wave, diffusion and Laplace equations in different coordinate system and their solutions.

You will also study the reduction of the second order P.D.E’s to canonical forms.

5.1 Introduction

In physical and engineering application, PDE’s of second order are of utmost significance. These

equations arise in the modelling of vibration of string and membranes, theory of hydraulics, gravitational

and potential problems and so on. Since a comprehensive treatment of the subject is not possible in this

unit, we restrict our study to a consideration of some special types of equations.

5.2 Laplace, Wave and Diffusion Equations

In applied mathematics and theoretical physics three types of equations occur frequently. These

are

(i) Laplace Equation

(ii) Wave Equation and

(iii)Diffusion Equation.

In many practical problems the solution of these equations may be obtained with the help of sepa-

ration of variables.
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5.2.1 Laplace Equation

One of the most important PDE appearing in theoretical physics is Laplace’s equation. It is
usually written as

2u = 0 .....(1)
where the operator 2, known as Laplacian depends on the coordinate system chosen. It is an elliptic
PDE.

(i)  in three dimensions, this equation in Cartesian system of coordinates (x, y, z) is written as

2 2 2

2 2 2 0u u u
x y z
  

  
  

.....(2)

(ii)  in cylindrical polar coordinates (r, , z), eq. (2) becomes

2 2 2

2 2 2 2
1 1 0   

   
  

u u u u
r rr r z

.....(3)

(iii)  in antisymmetric case i.e. u is independent of , therefore equation (3) reduces to

2 2

2 2
1 0  

  
 

u u u
r rr z

.....(4)

(iv)  in spherical polar coordinates (r, , ), eq. (2) reduces to

2 2 2

2 2 2 2 2 2 2
2 1 cot 1 0

sin
     

    
    

u u u u u
r rr r r r .....(5)

(v)  when u is independent of the azimuthal angle , (5) reduces to

2 2

2 2 2 2
2 1 cot 0    

   
  

u u u u
r rr r r

or 2 1 sin 0
sin

                  
u ur

r r .....(6)

(vi)  in two dimensions, Laplace equation is

2 2

2 2 0u u
x y
 

 
 

.....(7)

in Cartesian coordinates (x, y) and

2 2

2 2 2
1 1 0  

  
 

u u u
r rr r

.....(8)

in polar coordinates (r, ).

Equation (7) is also known as Harmonic equation.
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5.2.2 Wave Equation

The wave equation is
2

2
2 2

1 
 


uu

c t
.....(9)

It is hyperbolic PDE.  is a Laplacian operator which depends on the coordinate system cho-
sen.

(i) Three dimensional wave equation (sound waves in space) in Cartesian coordinates is
2 2 2 2

2 2 2 2 2
1u u u u

x y z c t
   

  
   

.....(10)

(ii) Transverse vibrations of a membrane are governed by two dimensional wave equation
2 2 2

2 2 2 2
1  

 
  

u u u
x y c t .....(11)

(iii)Transverse vibrations of a string are governed by the one dimensional wave equation
2 2

2 2 2
1u u

x c t
 


 

.....(12)

5.2.3 Diffusion Equation or Heat Conduction Equation

The diffusion equation or heat conduction equation in general, is written as

2 1 uu
k t


 


.....(13)

where u is interpreted as temperature. It is parabolic PDE.
The one dimensional diffusion equation, which is very much used, may be written as

2

2
1 




u u
k tx

.....(14)

Ex. 1. Find the most general functions X(x) and T(t), each of one is variable, such
that u(x, y) = XT satisfies the PDE.

u u
k tx

 


2

2
1=

Also obtain a solution of the above equation for k =1 and which satisfies the boundary
conditions u = 0   when x = 0 or 

u = sin 3x when t = 0 and 0 < x < 
Sol. The given differential  equation is

2

2
1u u=
k tx

 


.....(15)

Let the solution of eq. (15) by method of separation of variables is of the form
u (x, t) = X(x) T(t) .....(16)
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Substituting (16) in (15), we get
21 1

2
d X dT

X kT dtdx
....(17)

The expression on LHS of eq. (17) is a function of independent variable x while on RHS, it is
function of independent variable t only. Both are equal if both are constant and equal to either – n2, 0 or n2.
Hence three cases arise as follows :

Case I :
2

2 0
d X
dx

and 0dT
dt



The solution will be  X = Ax + B and T = C

Case II :
2

2
2 0 

d X n x
dx

and 2dT n kt
dt



The solution will be X = Aenx + Be–nx and 2
 n ktT Ce

Case III :
2

2
2 0 

d X n x
dx

and 2dT n kt
dt

 

The solution is X = A sin (nx + ) and 2 n ktT Be
where A, B, C and are arbitrary constants. Since when t , u (x, t)  0, hence case III is most
appropriate solution of eq. (15). Hence

   
2

, sinn ktu x t Ae nx 

is the most general solution of given problem
Special case : u (x, t) = 0 when x = 0 or  gives  = 0
Further u (x, t) = sin 3x when t = 0 gives

sin 3x = A sin nx  A =1 and n = 3
Also k = 1

Hence solution of
2

2
 




u u
tx

 is given by

u (x. t) = e–9t sin 3x
Example 2 : Solve the two dimensional heat conduction equation

u u u
k tx y

2 2

2 2
1  

 
 

.....(18)

by the method  of separation of variables.
Sol. : Let the solution of (18) is

u(x, y, t) = X(x) Y(y) T(t) ....(19)
Substituting (19) in (18), we get

 
2 2

2 2
1 1 1

 
d X d Y dT

X Y kT dtdx dy
....(20)
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The RHS of (20) is a function of independent variable ‘t’ only whereas LHS is a function of two
independent variables x and y. They are equal if both are constant only. If RHS of (20) is a constant and
sum of two functions of two independent variables then both are constants also. Now three cases arise.

Case I :
2 2

2 2
1 1 10, 0 and 0  

d X d Y dT
X Y kT dtdx dy

The  solution of these relations will give
X = ax + b, Y = cy + d   and  T = e

where a, b, c, d and e are arbitrary constants.

Case II :
2 2

2 2 2
2 2

1 1 1, and  
d X d Y dTm n p

X Y kT dtdx dy

or
2 2

2 2 2
2 20, 0 and    

d X d Y dTm X n Y p kT
dtdx dy

where m2 + n2 = p2

On  solving these equations, we get

X = a1e
mx + b1e

–mx, Y = a2exnx + b2e
–nx    and  

2

3
p ktT a e

Case III :
2 2

2 2 2
2 2

1 1 1, and     
d X d Y dTm n p

X Y kT dtdx dy

or
2 2

2 2 2
2 20, 0 and     

d X d Y dTm X n Y p kT
dtdx dy

where m2 + n2 = p2

Solving these equations, we get

     2 2

1 3 5cos , cos and
 

    
m n kt

m nX c mx c Y c ny c T c e

Since u(x, y, t)  0 as t , therefore case III is most appropriate. Hence solution of (18) which
is linear can be written as

       2 2

1 1
, , cos cos

   

 
    k m n t

mn m n
m n

u x y t c mx c ny c e

Ex. 3.  A thin rectangular plate whose surface is impervious to heat flows has at
t = 0 an arbitrary function f (x, y). Its four edges x = 0, x = a, y = 0, y = b are kept at zero
temperature. Determine the temperature at a point of the plate as ‘t’ increases.

Sol. Here the temperature U(x, y, t) in the plate is governed by the two dimensional heat equation

2 2

2 2
1  

 
 

U U U
k tx y

....(21)

with boundary conditions
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       0, , 0, , , 0, ,0, 0, , , 0   U y t U a y t U x t U x b t .....(22)

and initial condition is
U (x, y, t) = f (x, y) .....(23)

Proceeding similarily to Ex.2, we find that if solution of (21) may be assumed as
U (x, y, 0) = X(x) Y(y)T(t)

then X = c1 cos (mx + cm) = A1cos mx+ B1sin mx,
Y = A2 cos nx + B2 sin nx

and  2 2

3
 


k m n tT A e

Using  boundary conditions (22), we find that
A1 = 0, B1 sin ma = 0, A2 = 0, B2 sin nb = 0

 A1 = 0 = A2, sin ma = sin u  and  sin nb = sin  v (u, = 1, 2, 3 ....) as
B1  0 and B2  0

Thus A1 = 0 = A2, 
um
a


   and  



vn
b

Hence the general solution of (21) will be

 

2 2
2

2 2

1 1
, , sin sin

     
 

 

 
uk t
a b

uv
u

u x yU x y t F e
a b

Now under initial condition (23), we have

   
1 1

, , , sin sin



 

   u
u

u x yU x y o f x y F
a b .....(24)

which is a double Fourier series of f (x, y).

 Hence  
0 0

4 , sin sin
 

 
  

a b

uv
x y

u x v yF f x y dxdy
ab a b .....(25)

Thus (24) is a general solution of (21) under boundary and initial condition (22) and (23) where
constant  Fuv  as given by (25).

Ex. 4. By separating the variables, show that the one dimensional wave equation

u u
x c t

2 2

2 2 2
1 


 

.....(26)

has solution of the form  A in x inctexp    where A and n are constants.

Sol. Let the solution of (26) is
u(x, t) = X(x) T(t) ....(27)

Substituting (27) in (26), we get

 
2 2

2
2 2 2

1 1 say  
d X d T n

X dx c T dt
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2 2

2 2 2
2 20 and 0   

d X d Tn X n c T
dx dt

Solving these we get

1 2andin x in ctX c e T c e   .....(28)

Hence from (27) and (28), we get the solution of (26) as
u(x, t) = A exp ( in x  in ct)

Ex. 5.  A tightly stretched sting which has fixed end points x = 0 and x = l is initially
in a position given by y = k sin3 (x/l). It is released from rest from this position. Find the
displacement y (x, t).

Sol. Since the string is tightly stretched initially between two fixed points and released from rest, it
will make transverse vibrations in (x, y) plane. The displacement y(x, t) of any point on it will be a gov-
erned by the following wave equation

2 2

2 2 2
1y y

x c t
 


 

.....(29)

with the boundary conditions
t > 0  :  y(0,t) = 0 = y(l, t) .....(30)

and the initial condition
t = 0 :  y(x,0) = k sin3(x/l) .....(31)

which also implies
0

0
t

y
t 

    

Applying the method of separation of variables if solution of (29) is of the form X(x)T(t) we
find that

X = A cos x + B sin x
and T = C cos ct + D sin ct ....(32)
Using boundary condition (30), we get

A = 0 and   sin 0 0 1, 2,3....nB B n
       


Hence Xn(x) = An sin (n/l) ....(33)

Under initial condition 
0

0
t

y
t 

    
, we get D  = 0 from (32). Therefore

Tn(t) = Bn cos (nct/l) ....(34)
Hence (33) and (34), we get the general solution of (29) as

 , sin cos , 
 

 n n
n x n cty x t C n N

where Cn = An Bn is an arbitrary constant

Hence    
1 1

, , sin cos
 

 

 
  

 
n n

n n

n x n cty x t y x t C .....(35)
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To determine the constant Cn we apply the condition (31) on (35), we get

3

1
sin sin





       
   


 

n
n

x n xk C

or
1

33sin sin sin
4





                      


  
n

n

k x x n xC

 1 3 2 4 5 6
3 , and ....0
4 4

      
kC k C c c c c

Hence the required solution is

  3 3, 3sin cos sin cos
4
                                

k x ct x cty x t

Ex. 6.  Solve the harmonic equation

u u
x y

2 2

2 2 0
 

 
 

.....(36)

satisfying the conditions

   

   




xu x u x a

u y u l y

,0 0, , sin

0, , 0

    
 

  
.....(37)

Sol. Let the solution of (36) is
u(x, y) = X(x) Y(y)

Substituting in (36) we get

 
2 2

2 2
1 1 0 

d X d Y
X Ydx dy

 
2 2

2
2 2

1 1 say    
d X d Y

X Ydx dy

Now  
2

2
2 0 cos sin       

d X X X x A x B x
dx

Applying u (0, y) = X(0) = 0   and   u (l, y)= X(l) = 0

we get A = 0   and  ,     


nn or n N

thus   sin    
 

n n
n xX x B

l

Again  
2

2
2 0 cos sin      

d Y Y Y y C h y D h y
dy

Now u (x, 0) = y(0) = 0  gives  C = 0
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thus   sin    
 

n n
n yY y D

l

Hence we have      , sin sin         
   

n n n n
n x n yu x y X x Y y F h

l l
where Fn is arbitrary constant. Therefore

 
1

, sin sin




        
   

 n
n

n x n yu x y F h
l l

Now applying the boundary condition
u (x, a) = sin (x/l)

We find that
1

sin sin sin




         
   

 n
n

x n x n aF h x
l l l

Equating coefficients of like terms, we get
F1 sinh (a/l) = 1   and   F2 = F3 = .... = 0

Hence, the required solution is

 , cosec sin sin             
     

a x yu x y h h
l l l

5.3 Canonical Forms

Let us consider the equations of the type
Rr + Ss + Tt + f (x, y, z, p, q) = 0 ....(1)

where R, S, T are continuous functions of x and y possessing continuous partial derivatives of as high as
order as necessary. It is a typical class of semi-linear equations of the type of

Rr + Ss + Tt = V
Changing the independent variables x, y to ,  such that

 =  (x, y),  = (x, y) .....(2)
z = z () ....(3)

Here it is assumed that  are doubly differentiable and the transformation from (x, y)–plane
to ( )–plane is locally one to one. This requires that the Jacobian of the transformation is
nonzero, i.e.

 
 

,
0

,
         
    

J
x y x y y x

Now from (2) and (3), we get

z z zp z
x x x x x

                        

z z zq z
y y y y y
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2

2
                               

z z zr
x x x xx

  
2 22 2 2 2 2

2 2 2 22 2 2
                                                       

z z z z z
x x x x x x

2 2

2
                                                 

z z z zs
x y x x y y x y

2 2 2 2

2
z z z z

x y x y x y x y x y
                                               

and
22 2

2 2
                                           

z z z zt
y y y y yy

22 2 2 2

2 2 22
                                             

z z z z
y y y y y      .....(4)

Now substituting these values in (1), it takes the form

2 2 2

2 22 , , , , 0                

z z z z zA B C F z .....(5)

where
22                    

A R S T
x x y y .....(6)

1
2

B R S T
x x x y x y y y

                           
.....(7)

22                     
C R S T

x x y y .....(8)

and  , , , ,     

z zF z

is obtained from the transformed form of f (x, y, z, p, q) and the remaining terms containing first order
partial derivatives of transformed  Rr, Ss, and Tt.

One of the relations satisfied by A, B, C and R, S, T which can be easily seen, is

 2 2 21 4
4

  AC B RT S J .....(9)

We shall now determine the functional relationship [equations (2)] of  with x and y so that the
transformed equation (5) takes the simplest possible form.
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The procedure is simple when the discriminant S2 – 4RT of the quadratic equation (called 
equation)

Q () = R2 + S + T = 0 .....(10)
is either positive, negative or zero everywhere. We shall discuss these cases separately. It may be noted
that Q () is called the ‘characteristic quadratic form’ and the discriminant of the quadratic will determine
the nature of P.D.E. This will depend on the characteristic roots of the  associated real symmetric metric.

2
2

 
  
 

R S
M

S T .....(11)

Case I : S2 – 4RT > 0.
In this case the roots  and  of equation (10), which are in general functions of x and y, would

be real and distinct.

Let us take 1x y
   
 

.....(12)

and 2x y
  
  ....(13)

then from (6) and (8), we find that

 
2

2
1 1 0A R S T

y
        

.....(14)

and  
2

2
2 2 0C R S T

y
        

.....(15)

where  and  are roots of (10).
The equation (5) reduces to

2
2 , , , , 0          

z z zB F z .....(16)

Equation (12) is a Lagrange’s linear equation of first order, whose subsidary equations are

11 0
dx dy d

 


which gives = constant,

and 1 0dy
dx

  ....(17)

Let f1(x, y) = constant be the solution of equation (17) then the general solution of equation (12)
will be

 = f1(x, y) ....(18)
In a similar manner the general solution of equation (13) will be

 = f2(x, y) .....(19)
where f1 = constant and f2 = constant are the solution of differential equations

1 0dy
dx

  ,    2 0dy
dx

  .....(20)
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respectively. Relations (18) and (19) are the desired transformations for independent variables which
reduce the given equations (1) to the form (16).

Now from (9), we have

 
2

2 21 4
4

AC B RT S
x y y x
               

.....(21)

This shows that the sign of (AC – B2) is the same as of (4RT – S2) i.e. it is invariant under
transformation.

Therefore, when A = C = 0, from (21), we have

 
2

2 24 4B S RT
x y y x
              

.....(22)

Since we have assumed that  S2 > 4RT, it implies from (22) that B2 > 0 i.e. B  0 and therefore we
may devide both sides of equation (16) by it and write it finally as

2
1 , , , ,              

z z zz .....(23)

which is the canonical form of equation (1) when S2 – 4RT > 0.

Case II : S2 – 4RT = 0.

In this case the two roots of the  quadratic equation (10) are equal i.e.  =  Therefore one of the

functions, say  will be defined by equation (18) of case I. We may now take to be any suitable function

of x and y which should be independent of  . Therefore, as before, A = 0 but C  0. Further, from (21),

since S2 – 4RT = 0 we have

B = 0

Hence equation (5) reduces to

2

2 , , , , 0           

z z zC F z

or
2

22 , , , ,           

z z zz .....(24)

which is the canonical form of the equation (1) when S2 – 4RT = 0.
Case III : S2 – 4RT < 0.
This is particularly the same as case I except that the roots of the quadratic equation (10) in this

case are complex. If  we proceed in the same  manner as we did in case I, we shall arrive at equation (21)
but in this case the variables are not real and in  fact complex conjugates. To get a real cononical form we
transform the independent varialdes  and  again be the following relations.

   1 1,
2 2

       i ....(25)
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then
1
2
                           

z z z i z

1
2
                           

z z z i z

Hence
2 2 2

2 2
1 1
4 4

                                   

z z z z zi i .....(26)

and therefore the relation (23) reduces to

2 2
32 2 , , , ,z z z zz               

....(27)

which is the Canonical form of equation (1) when S2 – 4RT < 0.
Ex. 1. Reduce the equation

 
2 2

2 2 2 1
2 21 n nz z z

n y ny
yx y

  
  

 
to canonical form and find its general solution.

Sol. Comparing the given equation with the standard form
Rr + Ss + Tt + f (x, y, z, p, q) = 0, we get

 2 2 2 11 , 0, ,n n zR n S T y f ny
y

       


Here, S2 – 4RT = 4(n – 1)2 y2n > 0  provided n  1.
Hence the given differential equation is hyperbolic differential equation. The roots of the -equa-

tion Rd2 + S + T = 0
or (n–1)22 – y2n = 0

are 1 2and
1 1

n ny y
n n


   

 
Changing the independent variables from x, y to  such that  = f1(x, y),  = f2(x, y) where

f1 = constant and f2 = constant are the solution of the differential equations

1 20 and  0   
dy dy
dx dx

    respectively..

These gives f1(x, y) = y1–n – x = constant
and f2(x, y) = y1–n + x = constant
Hence  = y1–n – x  and = y1–n + x

Now,
z z zp
x
     

   

 1 nz z zq n y
y
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2 2 2 2

2 2 22      
     

z z z zr
x

 
2 2 2 22 2

2 2 21 2                  

nz z z zt n y
y    11        

   
n z zn n y

Therefore, the given equation reduces to

   
2 2 2 2 2 22 2

2 2 2 21 2 1 2z z z z z zn n
                                      

   1 11 1n nz z z zn n y n n y               
         

or  
224 1 0zn   
  

or
2

0z 
  

which is the required canonical form if n 1.
The general solution of the above equation may be easily obtained as

   1 1z      
where  and  arbitrary functions of and respectively. Changing to original variables we get finally

   1 1
1 2

      n nz y x y x

Note : If n = 1, the character of the given differential equation changes. It becomes a parabolic
equation, viz.

2

2 0z zy
yy

  


whose general solution is

   1 2logz x y x    .

Ex.2. Reduce the equation

z z z
x yx y

2 2 2

2 22 0  
  

  

to canonical form and hence solve it.
Sol. Comparing the given equation with the standard form Rr + Ss + Tt + f (x, y, z, p, q) = 0,
we get, R = 1, S = 2, T = 1, f = 0
Here S2 – 4RT = 4 – 4 = 0
Hence the given equation is a parabolic differential equation.
The roots of the -equation

R2 + S + T = 0
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or 2 + 2 + 1 = 0

are = – 1, – 1

Changing the independent variables x, y to ,  where = f1 (x, y), such that fi = const. is the

solution of the differential equation

1 0dy
dx

 

or 1 0dy
dx

       which gives x – y = const.

Hence  = x – y

We may now take  to be any suitable function of x and y which should be independent of . Let

 = x + y

Now,
z z z z z
x x x
      

     
      

      
      

      
z z z z z
y y y

2 2 2 2

2 2 22z z z z z z
x

         
               

2 2 2

2 2
z z z z z

x y
        

                 

2

2
z z z

y
      

            

2 2 2

2 22z z z  
  

 

Therefore the given equation reduces to
2

2 0z




which is the required canonical form.
The general solution of equation may be easily obtained as

   2z      

where 1 and 2 are arbitrary functions of .
Changing to the original variables, we get finally

     1 2z x y x y x y      
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Ex. 3. Reduce    
2 2

2
2 2
z zx

x y
 


 

   to canonical form.

Sol. Comparing the given equation with
Rr + Ss + Tt + f (x, y, z, p, q) = 0,

We get R = 1,  S = 0,  T = –x2

Now the roots of the -equation
R2 + S + T = 0

or 2 – x2 = 0
are =  x
Changing the independent variables x, y to , where

= f1 (x, y)     and = f2 (x, y)
such that f1 = const. and f2 = const. are the solutions of the differential equations.

Hence 1 0 
dy
dx

   and   2 0 
dy
dx

becomes 0dy x
dx

     and   0dy x
dx

 

Integrating
2

2
xy   = const. and 

2

2
xy   = const.

Hence
2

2
xy      and   

2

2
xy  

Now,
z z z z zx x
x x x
      

     
      

z z z z z
y y y
      

     
      

2 2 2 2
2

2 2 22
            

                      

z z z z z z z zx
x

2 2 2 2

2 2 22z y z z
y
   

  
  

Therefore the given equation reduces to
2 2 2 2 2 2

2 2
2 2 2 22 2 0

          
                   

z z z z z z z zx x

or
2

2
1

4
z z z

x
   

     

or  
2 1

4
z z z   
      

which is the required canonical form.
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Ex.4. Reduce the equation

   2 2 2 22xyr x y s xyt py qx x y      

to canonical form and hence solve it.
Sol. Comparing the given equation with standard form Rr + Ss + Tt + f (x, y, z, p, q) = 0, we get

R = xy, S = – (x2 – y2), T = – xy
So -equation R 2 + S + T = 0
becomes xy 2 – (x2 – y2) – xy = 0

or ,  
y x
x y

Hence 1 0 
dy a
dx     and   2 0 

dy a
dx

becomes 0dy y
dx x

    and   0 
dy x
dx y

Integrating, 2 2
1 2,  

y c x y c
x

Now, we take 2 2,y x y
x

    

Then 2 2      
      

      
z z z y z zx
x x x x

1 2z z z z zy
y y y x
      

     
      

 
22 2 2 2

2
2 2 2 2 2 3

22 2 4 2                         
z y z y z z y z zx x

x x x x

2 2 2 2

2 2 2 2 2
1 1 12 2 4z y z y z z zy x xy

x y x xx x x
                               

 
22 2 2 2

2
2 2 2

1 12 2 4 2                
z z z z zy y

x xy

Therefore the given equation reduces to

 
222 2 




yx y  2 2 2y x x 

or
2 y



 
   

2 2 2 2

2 22 2 2

1

1

y x x

x y

  
 

  
.....(28)
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Integrating (28) w.r.t. , we get

z
  

 
2

22

1

1
d 

   
 



 
 2 22

2
1 1

d d 
    

   
 

   2 22
12

2 1 11 12 1 1 1
d d          

         
 


z
    2 1


    

 
Integrating it, we get

z =      1 22 1


      
 

or z =  2 2
1 2

yxy x y
x

        
 

Self Learning Exercise
1. The Harmonic equation is ....

2.
2 2

2 2
1u u u
k tx y

  
 

 
 is two-dimensional ........... equation.

3. Write general Laplace’s equation.

4. Write wave equation.

5. Give a common method for solving Laplace, wave and diffusion equations.

5.4 Summary

In this unit, we have covered nature and types of Laplace, wave and diffusion equations and their

solutions under different boundary and initial conditions, with illustrative examples. We have also presented

the canonical form of PDE and its general solution also for hyperbolic, parabolic and elliptic equations.

5.5 Answers of Self-Learning Exercises

1.
2 2

2 2 0u u
x y
 

 
 

2. Diffusion

3. 2 0u  4.
2 2

2 2 2
1u u

x c t
 


 

5. Separation of variables
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5.6 Exercise

1. A string is stretched between the fixed point O (x = 0) and A (x = 1) and released at rest from the
position U(x, 0) = A sin x. Find the formula for its subsequent displacement U(x ,t)

[Ans : U (x, t) = A cos ct cos x]
2. A string is stretched between the fixed points (0, 0) and (l, 0). If it is released at rest from the initial

deflection  
 

2 ; 0
2

2 ;
2

k lx x
lf x
k ll x x l
l

   
   


where ‘k’ is arbitrary constant. Find the expression of deflection of the string at any instant ‘t’.

[Ans :   2
8 sin cos 1 3 3, sin cos ....

9
         

k x ct x ctU x t
l l l l

3. A tightly string stretched string with fixed end points x = 0 and x = is initially at rest in its
equilibrium position. If it is set vibrating by giving to each of its points an initial velocity

0
0.03sin 0.04sin 3



     t

U x x
t

then find the displacement U (x, t) at any point x and at any instant t.

[Ans.    1, 0.03sin sin 0.01333sin 3 sin 3U x t x ct x ct
c

  ]

4. Solve ytt = 4yxx, y (5, t) = 0 = y (5, t), y (x, 0) = 0 and  
0

5sin
t

y f x x
t 

      

[Ans.   5, sin sin 2
2

y x t x t  


]

5. Solve diffusion equation 
2

2
 


 
u u
t x

,  0 < x < l, t > 0

u(x, 0) = 3 sin n x, u (0, t) = 0, u(l, t) = 0.

[Ans.  
2 2

1
, 3 sin


 


  n t

n
u x t e n x ]

6. The temperature distribution in a bar of length which is perfectly insulated at ends x = 0 and x =
is governed by PDE

2

2
 


 
u u
t x

Assuming the initial temperature distribution as u(x, 0) = cos 2x. Find the temperature distribution

at any instant of time. [Ans. u(x, t) = e–4t cos2x]

7. A homogeneous rod of conducting material of length 100 cm has its ends kept at zero temperature

and the temperature initially is



100

  , 0 50
,0

100 , 50 100
 

    

x x
u x

x x
Find the temperature  u(x ,t) at any time.

[Ans.    
 

 
  22 1

100

2 2
0

1 2 1400, sin
1002 1

  
   



  


 


n c
tn

n

n xe
u x t

n
]

8. Solve ut = a2uxx under the conditions ux(0, t ) = 0 = ux(, t), u(x, 0) = x2, 0 < x < , t > 0.

[Ans.     2 23

2
1

1
, 4 cos

3







  

n
a n t

n
u x t n xe

n
]

9. Solve 
2 2

2 2 0 ; 0 ,0 
       

 
u u x y

x y

which satisfies the conditions      0, , , 0    u y u y u x  and   2,0 sinu x x .

[Ans.        
     2

1

sin 2 1 sin h 2 18,
2 1 2 1 sin h 2 1





  


      
 


n

n x n y
u x t

n n y n
]

10. Reduce the equation 
2

2 0z zy
yy

 
 


 to canonical form and find its general solution.

[Ans.    1 2logz x y x    ]

11. Reduce the equation
2 2 2 2 2

2 2
2 22z z z y z x zy xy x

x y x x y yx y
    

   
    

to canonical form and hence solve it. [Ans.      2 2 2 2 2 2
1 2z x y x y x y       ]

12. Reduce the equation 
2 2

2
2 2
z zx

x y
 


 

 to canonical form .

Also state the nature of the equation.

[Ans. 
 

2 2 21 ; ,
4 2 2

   
             

z z z x xy y , hyperbolic.]

13. Reduce the equation 
2 2

2
2 2 0 
 

 
z zx

x y
 to canonical form.

Also find its nature. [Ans. 
2 2 2

2 2
1 , ,

2 2
  

      
  

z z z xy , elliptic]
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Unit 6 : Eigenvalues, Eigenfunctions and Sturm-Liouville
Boundary Value Probleon

Structure of the Unit

6.0 Objective

6.1 Introduction

6.2 Linear Homogeneous Boundary Value Problem

6.3 Eigenvalues and Eigenfunctions

6.3.1 Eigenvalue

6.3.2 Eigenfunction

6.4 Sturm-Liouville Problem

6.5 Orbnogonality of Eigenfunctions

6.6 Important Theorems for Sturm-Liouville System

6.6.1 Theorem 1

6.6.2 Theorem 2

6.6.3 Theorem 3

6.6.4 Theorem 4

6.7 Summary

6.8 Answer to Self-Learning Exercise

6.9 Exercise

6.0 Objective

After completing the present unit, you will get a basic knowledge about eigenvalue and
eigenfunction of boundary value problems. You will study special boundary value problem known as Sturm-
Liouvelle problem and properties of eigenfunctions in later part of unit. The knowledge which you gain
here, can be used to study various special functions that arise in physical and engineering problems.

6.1 Introduction

In the eighteenth century much attention was given to the problem of determing the mathematical
laws governing the notion of a vibrating string with fixed end points. We wish to motivate the physics of
vibrating string. In the last unit, we dealt the wave  equation in detail with some other physical problems
where we had derived boundary value problems for seeking non-trivial solution of partial differental equa-
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tions involved in formulating physical problems. In this unit we study the condition of parameter involved
in boundary value problem and corresponding non-trivial solution. We will also see special boundary
value problem, known as Sturm-Liouville problem in detail which helps in studying regular boundary
value problem and special functions in future.

6.2 Linear Homogeneous Boundary Value Problems

In previous unit, we have noticed that most important application of the idea is in boundary value
problems of any type. For second order linear differential equation, boundary value problem is defined
as

Ly = h .....(1)
where L is a second order linear differential operator defined on a finite interval [a, b] and h is a function
in [a, b] and pair of homogeneous boundary conditions of the form

1 y (a) + 2 y (b) + 3 y(a) + 4 y(b) = 1 .....(2)
1 y (a) + 2 y (b) + 3 y (a) + 4 y (b) = 2 .....(3)

where i, i and i for i = 1, 2 are constants. The problem (1) with boundary conditions (2) and (3) is
known as linear homogeneous boundary value problem. In this problem, we seek all non-trivial func-
tions of y(x) in [a, b] which simultaneously satisfy differential equation (1) and boundary conditions (2)
to (3).

For example, y + y = 0 .....(4)
with boundary conditions

y(0) = 0 and y() = 0 .....(5)
is a boundary value problem of above type on the interval [a, b]. The parameter ‘’ in (4) is free to
assume any real value.

The situation with boundary conditions is quite different from that for initial condition. The initial
value problem is a sophisticated variation of the fundamental theorem of calcalus. The boundary value
problem is rather more subtle.

6.3 Eigenvalues and Eigenfunctions

In previous study, we have considered initial value problem, in which the solution of second or-
der differential equation is sought that satisfies two conditions at a single value of the independent vari-
able. Here we have absolutely different situation for we wish to satsfy one condition at each of two
distinct values of independent variable x. The part of our task is to discover the values of s for which
problem can be solved for getting non-trivial solution. The solution of given problem in (4) with bound-
ary conditions (5) is not difficult to find. We simply apply the boundary conditions to the general solu-
tion. But we have to analyse the solution for all possible values of s. So, three cases arise as follows.

Case I : is negative or < 0
Let  = –m2

The given problem (4) with (5) becomes
y – m2y = 0 .....(1)
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and y(0) = 0 and y() = 0
so, the general solution is

y(x) = c1e
mx + c2e

–mx

Now y(0) = 0  c1 + c2 = 0 .....(2)
and y() = 0  c1e

m + c2e
–m = 0 .....(3)

Equations (2) and (3) give
c1sinh m = 0  c1 = 0 as sinh m  0 for m  0
Hence c1 = c2 = 0. Thus we get only one trivial solution exists.
Case II : = 0
The given problem (4) with (5) becomes

y = 0
and y(0) = 0  and  y() = 0
Hence the general solution is

y(x) = c1x + c2

When y(0) = 0, we have c2 = 0
So y(x) = c1 x
When y() = 0, we have c1 = 0
Under given boundary conditions, c1 = c2 = 0
i.e. we have trivial solution for given problem for this value of  or y  0
Thus, we are restricted to the case in which is postive for seeking non-trivial solution.
Case III : > 0
Let  = m2

The given problem (4) with (5) reduces to
y + m2y = 0 .....(9)

and y(0)= 0 and y() = 0
so, the general solution is

y(x)= c1 sin mx + c2 cos mx
for y(0) = 0, we have c2 = 0
Hence y(x) = c1sin mx
and for y() = 0, 0 = c1 = sin m
Since c1  0 for seeking non-trivial solution, we must have

sin m = 0  sin m = n; for some positive integer
or m = n; n = 1, 2, 3, ....
or m = n
Hence n = n2;n = 1, 2, 3, ........ which is known as eigenvalues and corresponding solution is

yn(x) = c1 sin nx; n = 1, 2, 3, ....
which is called as eigenfunction.

6.3.1 Eigenvalue or Characteristic Value
The values s, for which given boundary value problem has non-trivial solutions, are called eigen-

values of given problem.
For example  = 1, 4, 9, ......n2 are eigenvalues of problem (4)
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6.3.2 Eigenfunction or Characteristic Function
The non-trivial solution of given boundary value problem corresponding to particular eigenvalues

is termed as eigenfunction.
For example yn(x) = sin x, sin 2x, ......, sin nx, ..... are eigenfunctions for eigenvalues in = 1, 4, 9,

..... n2, ...... respectivoly for problem in (4)
It is to be noted here that the eigenvalues are uniqely determined by the problem but the

eigenfunctions are not. Any non-zero sealar multiple of eigenfunction is also a eigenfunction.
From the above study, we have three important conclusions for eigenvalues and eigenfunctions

as follows
(i) The eigenvalues form an increasing seauence of positive numbers that approaches  i.e.

1 < 2 < 3 ....... n .........
and n  as n 

For example, 1 < 4 < 9 ...... < n2 < ......... in above problem
(ii) The nth eigenfunction vanishes at the end points of the interval and has exactly n – 1 zeros

inside this interval.
For example, for n = n2, yn = sin nx vanisheos at the end points of the interval [0, ] and has

exactly n – 1 zeros inside this interval (0, ) in above problem in (4).
(iii) If yn(x) is an eigenfunction for eigenvalue for given problem, then cyn(x) is also eigenfunction

where c is arbitrary constant for same eigenvalue. Hence the eigenfunction corresponding to each eigen-
value is unique except for a multiple of an arbitrary constant factor.

The problems of heat, wave and Laplace in previous unit or many other physical or applied math-
ematical problems are boundary value problems. In solution procedure by seperation of variables for
any problem, notice that we have calculated eigenvalues and corresponding eigenfunctions also.

Ex.1. Find the eigenvalues s and corresponding eigenfunctions yn(x) for the equa-
tion y + y = 0 under the boundary condition y(0) = 0 and y(/2) = 0

Sol. We have three cases.
Case I : is negatve or < 0
Let  = – m2

The given differential equation becomes
y – m2y = 0

whose general solution is
y(x) = c1e

mx + c2e
–mx

Now y(0) = 0  c1 + c2 = 0
and y(/2) = 0  c1e

m/2 + c2e
–m/2 = 0

The above thwo equations give us
c1 sinh (m2) = 0  c1 = 0 (  m  0)
Thus we get only one trivial solution i.e. y(x) = 0
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Case II : when = 0
The given problem reduces to

y = 0
Hence the general solution is

y(x) = c1x + c2

So, under given boundary conditions, c1 = c2 = 0
which gives trivial solution only i.e.  y  0 for = 0
Thus  0 are not eigenvalues for given problem.
Case III : when is positive or > 0
Let  = m2

Then problem becomes
y + m2y = 0 .....(6)

and y(0) = 0 and y(/2) = 0
The general solution is y(x) = c1 sin mx + c2 cos mx
When y(0) = 0, c2 = 0 and hence y(x) = c1 sin mx
When y(/2) = 0, 0 = c1 sinn /2
For seeking non-trivial solution, we should have c1  0 then sinn /2 = 0
or sin m/2 = n; for some positive integer n

 m/2 = n; n = 1, 2, 3, ....
 m = 2n; n = 1, 2, 3, .....

Therefore n = m2 = 4n2  ;    n = 1, 2, 3, .....
Hence n = 4, 16, 36, ........, 4n2 ...... are the increasing sequence of eigenvalues. The corre-

sponding eigenfunctions are
yn(x) = sin 2nx; n = 1, 2, 3, ....

Ex.2. Find the eigenvalues and eigenfunctions for the boundary value problem y +
y = 0 under the boundary condition y(a) = 0 and y(b) = 0, 0 < a < b; a, b are arbitrary real
constants.

Case I :  < 0 or= – 2

Given problem reduces to
y – 2y = 0

with y(a) = 0 and y(b) = 0
The general solution is

y(x) = c1e
x + c2e

–x

When y(a) = 0, c1e
a + c2e

–a = 0  –c1e
2a = c2

y(b) = 0, c1e
b + c2e

–b = 0  –c1e
2b = c2

Hence, –c1e
2a = –c1e

2b

 c1(e
2a – e2b) = 0

Since a  b, c1 = 0
and hence c2 = 0

which implies y  0 i.e. only trivial solution exists.
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Case II : If = 0
Given problem reduces to

y = 0
with y(a) = 0 and y(b) = 0
The general solution is y(x) = c1x + c2

For y(a) = 0, c1a + c2 = 0 and for y(b) = 0, c1b + c2 = 0
On subtracting we have c1 (a – b) = 0
Since a  b, c1 = 0

and hence c2 = 0 and y  0 i.e. we get only trivial solution.
Case III : When > 0 or = 2

Given problem becomes, y + 2y = 0
With y(a) = 0 and y(b) = 0
The general solution is y(x) = c1 cos x + c2 sin x
For y(a) = 0, 0 = c1 cos a + c2 sin a
For y(b) = 0, 0 = c1 cos b + c2 sin b
Non-trivial solution for c1 and c2 in above system of equation may exist only when we have

cos sin
0

cos sin
a a
b b

 


 

i.e. sin (b – a) = 0
or sin (b – a) = sinn ; for n = 1, 2, 3, .....
or (b – a) = n

or ; 1, 2,3,......n n
b a


  


Hence the eigenvalues are

 

2 2
2

2 ; 1, 2,3,......n
n n
b a


    



and correspondingeigenfunctions are

  1 2cos sinn
n ny x c x c x

b a b a
 

 
 

If we suppose that 1 2sin and cosn b n bc c
b a b a
 

 
 

then eigenfurctions are    sinn
ny x b x

b a


 


Ex.3. Find the eigenvalues and eigenfunction for the boundary value problem
y – 2y + y = 0; y(0) = 0, y() = 0

Sol. Put y = emx

Auxillary equation is m2 – 2m + = 0

1 1m   
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Case I : If 1 –  > 0 or< 1
The general solution is

     1 1 1 1
1 2

x x
y x c e c e

   
 

Under given boundary conditions, y(0) = y () = 0, we have
c1 = c2 = 0 or y  0

So, only trival solution exist i.e. < 1 does not give any eigenvalue.
Case II : If 1 – = 0 or = 1
The general solution of given problem is

y(x) = (c1x + c2) e
x

On applying boundary conditions,
y(0) = 0 and y() = 0 we have c1 + c2 = 0
Hence, only trivial solution exists and therefore = 1 is not an eigenvalue.
Case III : If 1– < 0 or > 1
The general solution is

cos 1 sin 1 xy A x B x e       

When y(0) = 0, we have A = 0 or y(x) sin 1 xB xe  

For y() = 0, sin 1 0   
since e  0 and B  0 for seeking non-zero solutions.
Hence sin 1   = 0 = sin n, n = 1, 2, 3, ....
  – 1 = n2

or n = n2 + 1; n = 1, 2, 3, .....
are required eigenvalues and corresponding eigenfunctions are

yn(x) = exsin nx n = 1, 2, 3, .....
Ex.4. Find the eigenvalues and eigenfunctions for the following boundary value prob-

lem
y – 4y + (4 – 9)y = 0, y(0) = 0, y(a) = 0,

where ‘a’ is a positive real constant.
Sol.  The auxillary equation of a given problem is

m2 + 4m + (4 – 9) = 0

 4 16 4 4 9 2 3m         

Case I : when  = 0
The general solution of given problem is

y(x) = e–2x (c1 + c2x)
When y(0) = 0, c1 = 0
or y(x) = c2xe–2x

Also when y(a) = 0, c2ae–2a = 0
Since a > 0, therefore c2 = 0
Hence, y  0 i.e. only trivial solution exists.
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Case II : When > 0
The general solution is

   2 3 3
1 2

x x xy x e c e c e    

On applying boundary condition
y(0) = 0, c1 + c2 = 0 or c2 = – c1

    2 3 3
1

x x xy x c e e e    

Again    2 3 3
10, gives 0a a ay a c e e e     

 c1 = 0  c2 = 0, y  0, only trival solution exists.
For  0, the given problem has no non-zero eigenfunction.
Case III : When < 0
The general solution of given differential equation is

      1 2
2 sin 3 cos 3   xy x e c x c x

Now y(0) = 0 gives c2 = 0

    2 sin 3xy x e x 

Also    2
10 gives sin 3 0ay a c e a  

For non-trivial solution, we have c1  0, then

 sin 3 0a 

or  sin 3 sin ; 1, 2,3, ....a n n   

 3
n
a


 

or
2 2

29
n

a


 

Hence
2 2

2 ; 1, 2,3.....
9
 

  n
n n
a

are the required eigenvalues for given problem. Hence the corresponding eigenfunctions are

  2 sin ; 1,2,3.....x
n

n xy x e n
a

    
 

Ex.5. Find the eigenvalues and eigenfunctions for the following boundary value prob-
lem

y – 3y + 2(1 + ) y = 0, y(0) = 0, y(1) = 0
Sol. Auxillary equation for given differential equation is

m2 – 3m + 2(1 + ) = 0
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Solving, we get  3 9 4 2 1
2

m
     



3 1 8
2 2

 
 

Thus, three cases arise

Case I : When 1 – 8 = 0 or 
1λ =
8

The general solution of equation is
y(x) = e(3/2)x (c1 + c2x)

Now y(0) = 0 gives c1 = 0.
Therefore y(x) = c2x

(3/2)x

Again y(1) = 0 gives c2 = 0
Hence, y  0 is the only trivial solution of the given problem.

Case II : when 1 – 8> 0 or
1λ <
8

The solution of given equation is

       3 2 1 2 1 8 1 2 1 8
1 2

x x xy x e c e c e       
 

when, y(0) = 0  c1 + c2 = 0 or c2 = – c1

        3 2 1 2 1 8 1 2 1 8
1

x x xy x c e e e       
 

or    3 2
1

1 82 sin
2

xy x c e h x
  

   
 

Again      3 2
1

1 81 0 1 2 sin 0
2

  
     

 
y y c e h

 c1 = 0
Therefore c2 = 0. Hence y(x)  0,

Thus for 1
8

  , only trivial solution exists.

Case III : when 1 – 8 < 0 or
1λ >
8

The solution is

   3 2
1 2

8 1 8 1sin cos
2 2

xy x e c x c x
    

  
 

Now for y(0) = 0, we have c2 = 0
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   3 2
1

8 1sin
2

xy x c e x 


Also    3 2
1

8 11 0 sin 0
2

xy c e  
  

For seeking non-trivial solution, we have c1  0

therefore
8 1sin 0

2
 



or
8 1sin sin ;

2
n 

   for positive integral n


2 28 1 4 18 1 2 ; 1,2,3,....

2 8n
nn n n   

        

are required eigenvalues and corresponding eigenfunctions are yn(x) = e(3/2)x sin nx (n  N)

6.4 Sturm-Liouville Problem

A boundary value problem consisting of second order homogeneous linear differential equation
of the form

      0d dyp x q x r x y
dx dx

          
.....(1)

where p, q  and r are continuous real valued functions defined on a  x  b such that p has a continuous
derivative, p(x) > 0 and q(x) > 0 and  is a parameher independent of x and two homogenous bound-
ary conditions

A1 y(a) + A2 y(a) = 0 .....(2)
B1 y(b) + A2 y(b) = 0 .....(3)

where A1, A2, B1 and B2 are real constants such that A1 and  A2 are not both zero and B1 and B2 are not
both zero simultaneously, is called Sturm-Liouville problem. All the problems we have discussed in pre-
vious section are Sturm-Liouville problems.

Ex.1. Check whether the boundary value problem
y – y = 0   with    y(0) = 0 = y()

is Sturm-Liouville problem or not
Sol. On comparing with stanard form of Sturm-Liouville problem, we have

p(x) = 1, q(x) = 1, r(x) = 0, a = 0 and b = ;
A1 = B1 = 1 and A2 = B2 = 0

Hence given problem is Sturm-Liouville problem.
Ex.2. Check whether the following boundary value problem

xy + y + (x2 + 1 + ) y = 0
y(0) = 0 and y(L) = 0, L is constant such that L > 1

is Sturm-Liouville problem or not.
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Sol. xy + y + (x2 + 1 + ) y = 0
(xy) + (x2 + 1 + ) y = 0

 p(x) = x, q(x) = 1, r(x) = 1 + x2,a = 0 and B = L;
A1 = 1, B1 = 0, A2 = 0 and B2 = 1

Since p(x) > 0 for 0  x  L
Given boundary value problem is Sturm-Liouville problem
Ex.3. Find the eigenvalues and eigenfunctions of the following Sturm-Liouville prob-

lem

  
 
 

2x 2xd dye + λ +1 e y = 0;
dx dx
y(0) = 0 = y()

Sol. Transform dependent variable from y to u by using transformation
y = e–xu

 x xdy due e u
dx dx

  

Therefore given differential equation reduces to

 2 21 0x x x x xd due e e u e e u
dx dx

            

22 x x xdue e e u
dx

    
 

2
2

2
x x x x xdu d u due e e e u e

dx dxdx
    

      
 

+ e2x  e–xu + e2x e–xu = 0

or
2

2 0
 

   
  

x d ue u
dx

i.e. u + u = 0
and boundary conditions reduce to

u(0) = 0 = u() since e–x  0   x R
we know that n = n2; n = 1, 2, 3, ....

are the eigenvalues for reduced problem and corresponding eigenfunctions are un(x) = sin nx (see §6.3)
Hence n = n2; n = 1, 2, 3, .... are the eigenvalues for given problem and corresponding

eigenfunctions are
yn(x) e–x sin nx ; n N

Ex.4. Solve the following Sturm-Liouville problem
y + y = 0; y(–) = 0, y() = 0

Sol. Let < 0 i.e. = –2

Then given problem becomes
y – 2y = 0; y(–) = 0, y() = 0
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The general solution is y(x) = c1 e
x + c2e

–x

 y(x) = c1ex – c2e
–x

Now y(–) = 0   c1e–– c2e= 0
and y() = 0  c1e– c2e–= 0
For non-trivial solution for c1 and c2 for above system of equations, the coffecient determinant

must vanish. Hence

0
e e

e e

 

 

 


 

 – e– + e–= 0
which is not possible. Hence c1= c2 = 0

Therefore only trivial solution exists  that is y = 0
When = 0.
The general solution is y = c1 x + c2

So, y = c1

For boundary condition y(–) = 0 and y() = 0, c1
= 0

Hence y (x) = c2 is solution
When > 0. Let = 2

Then given problem becomes
y + y = 0

The general solution of the differential equation is
y(x) = c1cos x + c2sin x
y(x) = – c1sin x + c2cos x

An appling boundary condition y(–) = 0, we have c2 = 0
 y(x) = – c1sin x
Again for y() = 0; –c1sin  = 0
Since c1  0; therefore sin = 0, i.e. sin = sin n; n =1,2,3, .....
or = n ; n = 1,2,3, .....
 n= n2 ; n = 1,2,3, .....
are the required eigenvalues and corresponding eigenfunctions are yn(x)  = cos nx
Hence from Case II and Case III, the eigenvalues for given problem are n = 0,1,4,9, .....n2 .....

and corresponding eigenfunctions are yn(x) = 1, cos x, cos2x, cos3x, .....cos nx, .....

6.5 Orthogonality of Eigenfunctions

From previous section, it is very much clear that the Sturm-Liouville problem is advanced boundary
value problem and have non-trivial solution if function p(x) and q(x) are restricted for p (x) > 0 and
q (x) > 0 on [a, b] and iff the parameter takes a certain specific value. These are termed as eigenval-
ues of boundary value problem. They are real numbers that can be arranged in an increasing sequence :
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1 < 2 < ....... <n < n+1< ...... ....(1)
and furthurmore n  as n 

This ordering is desirable to arrange corresponding eigenfunctions
y1 (x), y2 (x), ....., yn (x), yn+1 (x), ... .....(2)

in their own natural order. The eigenfunctions are not unique, but with the boundary conditions, they are
determined up to a non-zero constant factor.

Now, we introduce a new concept in broader context that will assist to understand the property
of various special functions that generally arise in various physical and engineering modelling.

A sequence of eigenfunctions yn (x) in (2) having the property

   
0

0
b

m na n

if m n
y x y x dx

if m n


   


is said to be orthogonal on the interval [a, b].
If n = 1,  n, the function yn (x) are said to be normalized and sequence of eigenfunctions is

known as orthonormal sequence.
If sequence of eigenfunctions yn (x) have the following general property

     
0,

0,


   


b
m na n

m n
q x y x y x dx

m n

then, this sequence is said to be orthogonal with respect to a weight function q (x).

6.6 Important Theorems of Sturm-Liouville Systems

6.6.1 Theorem 1. The eigenvalues of Sturm-Liouville system are real
Proof. We have

      0d dyp x q x r x
dx dx

         
.....(1)

where a1 y (a) + a2 y(a) = 0, and b1y (b) + b2 y (b) = 0 ......(2)
Suppose the p(x), q(x), r(x), a1, a2, b1 and b2 are real, while and y may be complex. Let 

and y  denote complex conjugates of and y respectively. Now we have from (1) and (2)

      0d d yp x q x r x
dx dx

         
.....(3)

where    1 2 0a y a a y a  ,  and    1 2 0 b y b b y b . .....(4)
Multiplying (1) by y  and (3) by y and then subtracting we find that

      d p x yy yy r x yy
dx

        .....(5)

Integrating it from a to b and using boundary conditions (2) and (4), we find that

    0  
b

a
r x yy dx .....(6)

Since r(x) is a non-negative and r(x)  0 for a  x   b, therefore (6) gives
0         is real.
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6.6.2 Theorem 2 : Let m and n be two distinct eigenvalues of the Sturm-Liouville
problem

      0d dyp x q x r x y
dx dx

         
.....(6)

and ym(x) and yn(x) be their corresponding eigenfunctions. Then ym(x) and yn(x) are
orthogonal with respect to the weight function q(x) on the interval a  x   b.

Proof : If m and n are eigenvalues of given Sturm-Liouville problem

          0          p x y x q x r x y x .....(7)

then we have

          0          m m mp x y x q x r x y x .....(8)

and

          0          n n np x y x q x r x y x .....(9)

On multiplying by (8) by yn and (9) ym respectively and on subtracting we get.

                    0            n m m n m n m ny x p x y x y x p x y x q x y x y x

                                m n m n m n n nq x y x y x y x p x y x y x p x y x

On integrating writh respect to x between a and b, we have

                       
             

b b b
m n m n m n n ma a a

q x y x y x dx y x p x y x dx y x p x y x dx

                    b bb
m n m n m n m naa a

q x y x y x dx y x p x y x y x p x y x dx        

                 
bb

n m n ma a
y x p x y x y x p x y x dx

                    b
m n m n m n m na

q x y x y x dx y b p b y b y a p a y a    

           n m n my b p b y b y a p a y a  

                  b
m n m n m n n ma

q x y x y x dx p b y b y b y b y b       
         m n n mp a y a y a y a y a     

Now define w(x), a Wronskian determinant of the solution or eigenfunctions ym (x) and yn (x) as

 
   
   

       


   


m m
m n n m

n n

y x y x
w x y x y x y x y x

y x y x

So, expression (10) can be written as

               
b

m n m na
q x y x y x dx p b w b p a w a    .....(11)
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For obtaining the orthogonality property

      0
b

m na
q x y x y x dx   for m # n

We seek right hand side of (10) or (11) to vanish, that is
p(b) w(b) – p(a) w(a) = 0

This will certainly happen if the boundary conditions required for a non-trival solution of (7) are

   

   

0 and 0
or

0 and 0

y a y b

y a y b

  


   

.....(12)

Above boundary conditions are special cases of more general boundary conditions.
c1y(a) + c2y(a) = 0 and d1y(b) + d2y(b) = 0 .....(13)

where c1 and c2 donot vanish simultaneously and simillary d1 and d2 do not vanish simultaneously. To
verify that the general boundary condition in (13) really vanishes the right hand side of (11), Let
eigenfunction ym(x) and yn(x) also satify boundary condition (13) i.e.

   1 2 0m mc y a c y a 

   1 2 0n nc y a c y a 

For non-trivial solution of c1 and c2 in above system of equations, the determinant

   
   

 m m

n n

y a y a
w a

y a y a






must vanish. Hence w (a) = 0. Simillarly w(b) = 0.
So right hand side of (11) definitely vanishes and orthogonality of eigenfunctions is validated un-

der suitable boundary condition (13) which are homogeneous in nature. The problem (7) with boundary
condition (13) is known as Sturm-Liouville problem.

The significance of orthogonality property of eigenfunctions of Sturm-Liouville problem is to rep-
resent series expansions of function f (x) in terms of eigenfunctions yn (x) as

f (x) = a1 y1 (x) + a2y2 (x) + ...... + an yn (x) + ...... .
where the cofficient a1, a2 .... an, ..... can be derived using orthogonality property of eigenfunctions.
6.6.3 Theorem 3 :To every eigenvalue of a Sturm-Liouville system there corresponds

only one linearly independent eigenfunction.
Proof. Let if possible, y1 (x) and y2 (x) be two distinct eigenfunctions of the systems, corresponding

to same eigenvalue . In order to prove the linear independence of y1(x) and y2 (x), it is sufficient to
prove that the wronskian

w (x) = 
   
   

1 2

1 2

y x y x

y x y x   is identically zero.

By definition,
w (x) = 1 2 2 1y y y y 
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We have   1 2 2 1w x y y y y   

and from the given boundary conditions
w (a) = w (b) = 0 .....(14)

Since y1(x) and y2(x) are solutions of Sturm-Liouville’s problem, therefore

   1 1 0p y q r y   

and    2 2 0p y q r y    

Eliminating (q + r), we get

       2 1 1 2 2 1 1 2 0y y y y p x y y y y p x       

or         0p x w x p x w x  

or        
0 Cd p x w x w x

p x
    

Since p(x)   0, the boundary condition (14) gives C = 0 for all x. Hence w(x)  0 in [a, b],
which means that, the eigenfunction y1(x) and y2(x) corresponding to same eigenvalue  are linearly in-
dependent.

6.6.4 Theorem 4 : (Expansion of a function in terms of eigenfunctions of Sturm-Liouville
system). If {n(x)} be a set of eigenfunctions of Sturm-Liouville system, then

 
1

n n
n

A x



  converges uniformly to a function f(x) in [a, b] such that

   
1

,n n
n

f x A x a x b



    .....(15)

where
     

   2
,

b
ma

m b
ma

r x f x x dx
A m N

r x x dx


 






.....(16)

Proof. Without taking the proof of convergence, let f(x) is given by (15). Multiplying both sides
of (15) by r(x) m(x), integrating from a to b and changing the order of integration and summation (which
is justified due to uniform convengence of the series) we find that

           
1

b b
m n n ma a

n
r x f x x dx A r x x x dx




     .....(17)

Since the set of eigenfunctions of Sturm-Liouville system are orthogenal in [a, b] w.r.t weight
function r(x), therefore relation (17) reduces to

         2   
b b

m m ma a
r x f x x dx A r x x dx

which gives Am given by (16).
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Ex.1. Compute the eigenvalues and eigenfunctions for boundary value problem

   y y y y2 1 0; 0 0         and y(1) = 0

Also prove that the set of eigenfunctions for the given problem is an orthogonal set.
Sol.  The auxillary equation is m2 + 2m + (1 – ) = 0

or
 2 4 4 1

1
2

m
   

    

Now, three cases arise
Case I : When > 0 or = 2

The general solution of the given differential equation in this case will be

Now  y (x) =    1 1
1 2

xxc e c e
     



For y (0) = 0   c1 + c2 = 0 or  c2 = – c1

      1 1
1

x x
y x c e e

         

Now y (1) = 0 gives     1 1
1 0c e e

         

 c1 = 0
Hence c2 = 0 = c1  y(x)  0 i.e. only trivial solution exists.
Case II : When = 0 :
The general solution is   y(x) = e–x (c1 + c2 x)
For y (0) = 0, we get  c1 = 0. Hence y (x) = c2xe–x

When y (1) = 0, we get c2 e
–1 = 0  c2 = 0.

Thus c1 = c2 = 0, which gives y  0 i.e. only trivial solution exists.
Case III : When < 0 or = – 2

Then general solution is

y (x) = 1 2cos sinxe c x c x     
For y (0) = 0, we have c1 = 0

So   2 sinxy x c e x 

Now, for y(1) = 0, we have 1
2 sin 0c e  

For seeking non-trivial solution of given problem, we have c2  0, so sin 0 

or sin sin ;n    n is positive integer

 n  

 – = n22

 l n= – n22 ; n = 1, 2, 3, ...... .
Hence, corresponding eigenfunctions are

yn (x) = e–x sin nx
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Let ym (x) = e–x sin mx and yn (x) = e–x sin nx are two eigenfunctions corresponding to eigen-
values m = – m22 and n = – n2 2 resectively. Then the integral

   
1 2
0

x
m ne y x y x

1 2
0

sin sin    x x xe e m x e n x dx

1

0
sin sinm x n x dx  

   
1

0

1 cos cos
2

m n x m n x dx       

 
 

 
 

1

0

sin sin1
2

m n x m n x
m n m n

    
  

  

= 0
prompts that ym (x) and yn (x) are orthogonal in [0, 1] with respect to weight function e2x.

Self-Learning Exercise

1. Classify the following problem as boundary value problem or initial value problem
(a)  y – y = 0, y(0) = 0 and y(1) = 0
(b)  y + 2y + 2y = 0, y(0) = 1
(c) (xy) + (9 + 4) y = 0, y(a) = 0, and y(b) = 0, a, b are constonts
(d) 3y + 4y + 2y = 0, y(2) = 5, y(2) = 6

2. Find the eigenvalues n and eigenfunctions yn(x) for y + y = 0 in each of the following bound-
ary conditions
(a)  y(0) = 0, y(1) = 0
(b)  y(–2) = 0, y(2) = 0
(c)  y(–3) = 0, y(0) = 0
(d)  y(1) = 0, y(4) = 0

3. Check whether following boundary value problems are Sturm-Liouville problem or not
(a)  exy + exy + y = 0; y(0) = 0, y(1) = 0

(b)  y + (1 +x)y = 0; y(0) = 0, y(2) + y(2) = 0

(c)  
1   

 
y

x
 + (x + ) y = 0; y(0) + 3y(0) = 0, y(1) = 0

(d)  (xy) + (x2+ 1 – x2)y = 0; y(0) = 0; y(0) + 3y(0) = 0, y(1) + y(1) = 0

(e)  (xy) + (x2+ 1 + ex)y = 0; y(1) = 0; y(1) + 2y(1) = 0; y(2) – 3y(2) = 0

4. Find eigeavalues and corresponding eigenfunction of the following Sturm-Liouville problems.

(a) y+ y  = 0; y (0) = 0 and  y() = 0

(b) y+ y  = 0; y (0) = 0 and  y(L) = 0

(c) y+ y  = 0; y (–) = 0 and  y() = 0
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6.7 Summary

In this unit, we introduced a special type of boundary value problem known as Sturm-Liouville
problem which gives fundamental basics for important concepts like eigenvalue, eigenfunction, orthogo-
nality and Fourier series. These concepts directly involved in solving practical problems arise in physical
and engineering challenges.

6.8 Answer to Self-Learning Exercise

1. (a) Boundary value problem
(b) Initial value problem
(c) Boundary value problem
(d) Initial value problem

2. (a)  2 2 ; 1, 2,3...... sinn nn n y x n x     

(b)    
2 2

; 1,2,3...... sin
16 4n n

n nn y x x L 
    

(c)  
2 2

; 1, 2,3...... sin
9 3n n

n n xn y x 
   

(d)    
2 2

; 1, 2,3...... sin 4
9 3n n

n nn y x x 
    

3. (a) Yes (b) Yes
(c) No, since p(x) is not continuous in [0, 1]
(d) No, since q(x) < 0 in [0, 1]
(d) Yes

4. (a)    
22 1 2 1; ,1,2,3....., sin

4 2
 

   n n
n nn y x x

(b)  
2 2

2
cos; 0,1, 2,3.....,n n

n n xn y x
LL

 
   

(c)  2; 1, 2,3....., cosn nn n y x nx   

6.9 Exercise

1. Find the eigenvalues n and eigenfunction yn (x) for the following boundary value problem
0y y     in each of the following boundary conditions :

(a) y (0) = 0, y (2) = 0 [Ans.  
2

; 1,2,3,......, sin
4 2n n
n nxn y x    ]

(b) y (0) = 0, y (L) = 0 ; L > 0, L is positive constant

[Ans.  
2 2

2 ; 1, 2,3,......, sinn n
n n xn y x

LL
 

    ]



120

(c) y (–L) = 0, y (L) = 0 ; L > 0, L is positive constant

[Ans.    2 2

2 ; 1,2,3,......, sin
24n n

n x Ln n y x
LL

 
    ]

2. Solve the following Sturm-Liouville problem

(a)    0; 1 0, 0d dyx y y y e
dx dx x

      
 

[Ans.    2 ; 1,2,3,......, sin ln | |n nn n y x n x    ]

(b)  2
21 0;

1
    

  

d dyx y
dx dx x

 y(0) = 0 and y(1) = 0  (Hint put x = tan t)

[Ans.    2 116 ; 1,2,3,......, sin 4 tann nn n y x n x    ]

3. Compute the eigenvalues and eigenfunctions for boundary value problem and determine Euclid-
ean space in which a complete set of eigenfunctions for the given problem is an orthogonal set

(a)      1 0; 0 0, 0y y y y       

[Ans. 2 1n n   ; n = 1, 2, 3, ....., yn (x) = sin nx orthogonal in [0,]

(b)      4 4 1 0, 1 0, 1 0y y y y y        

[Ans. 2 2
n n   , yn (x) = 

2

2

sin ; 2, 4,6......
2

cos ; 1,3,5......
2

 
  


x

x

n xe n

n xe n

Orthogonal in (–1, 1) with resepect to function e–x ]

(c)    2 1 0; 0 0y y y y        and   0y  

[Ans. n = – n2 ;  n = 1, 2, 3, ..... ., yn = e–x (n cos nx + sin nx), n = 1, yn = 1. Orthogonal in
[0, ] with respect to weight function e2x ]

4. Find the real eigenvalues and eigenfunctions for the boundary value problem 0y y    ;

y (0) = 0,  1 0y  [Ans.    2 2
0 00; 1; , cos ,n ny x n y x n x n        N ]

5. Find the solution of Sturm-Liouville problem 2
1 0, 1 2y y y x
x x

     

with boundary conditions    1 0 2y y  [Ans. 
1

logsin
log 2n

n

xy B n




 
  

 
 ]

7. Determine the normalized eigenfunctions of the problem 0y y    , y(0) = 0,    1 1 0y y   .

Hence expand the function f (x) = x, 0 1x  , in terms of these normalized eigenfunctions.

[Ans.        
1 2

2 2
1

4sin2 sin , , sin
1 cos 1 cos

n
n n n

nn n n

y x x n N x x




        
      

 ]
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Unit 7 : Variational Problems with Fixed Boundaries and
Euler-Lagrange Equation

Structure of the Unit

7.0 Objective

7.1 Introduction

7.2 Definitions and Fundamental Problems

7.2.1 Functionals

7.2.2 Linear Functionals

7.2.3 Brachistochrone Problem

7.2.4 Problem of Geodesics

7.2 Isoperimetric Problem

7.3 Euler-Lagrange Equation

7.3.1 Basic Lemma

7.3.2 Euler-Lagrange Equation

7.4 Some Elementary Cases of Integrability of Euler-Lagrange Equation

7.4.1 F is independent of y

7.4.2 F is independent of x and y.

7.4.3 F is independent of only  y.

7.4.4 F is a linear function of  y.

7.4.5 F is independent of only x

7.5 Variational Problems for Functionals Involving Several Dependent Variables and Their First

Order Derivatives.

7.6 Summary

7.7 Answers to Self-Learning Exercise

7.8 Exercise
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7.0 Objective

In this unit you will study the methods of finding curves connecting two given points which either
maximizes or minimizes some given integral. You will also know about Euler-Lagrange equation for an
extremal. Variational problems involving several independent variables will also be discussed.

7.1 Introduction

Calculus of variations is a field of mathematics that deals with extremizing functionals as opposed

to ordinary calculus which deals with functions. The origin of calculus of variations was based on famous

“Brachistochrone problem or quickest path problem.” In calculus of variation, we generally encoumter

with the problems where one has to find the maximal and minimal value that is extreme value of special

quantities called functionals.

7.2 Definitions and Fundamental Problems

7.2.1 Functionals : Functionals are variable quantities whose values are determined by choice

of one or several functions. In short, we may say that functionals are functions of functions.

Ex.1. Let the parametric equations of the plane curve be x = x(t), y = y(t), t being the param-

eter. The arc length of the plane curve from P(t0) to Q(t) is given by

s [x(t),y(t)] = 
0

2 2t

t
x y dt  

P   (t  )

Q (t)

0

s

xo

y

Fig. 7.1
where x and y represent the differentiation of x and y with respect to ‘t ’ respectively..
Here s is a functional which is function of functions x(t) and y(t).

7.2.2 Linear Functionals : A functional L [y(x)] satisfying the conditions.

(i) L [cy(x)] = cL [y(x)]

(ii) L [y1(x) + y2(x)] = L [y1(x)] + L[y2(x)]

where c is a arbitrary constant is known as linear functional.
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Ex.2.      
0

,
x

x

dyL y x a x b x y dx
dx

          is a linear functional.

The calculus of variations provides a method for determining maximal and minimal values of
functionals. Such problems are known as variational problems.

Now we deal with three problems of historical importance which influenced the development of
this subject.

7.2.3 Brachistochrone Problem
Suppose P and Q are two points in the plane but not in the same vertical line. Imagine, there is a

thin flexible wire connecting those two points. Suppose P is above Q, and we let a frictionless bead
travel under gravity from P to Q. The Bachistochrone problem (or quickest discent problem) is con-
cerned with determining the path of the bead when it reaches the point Q in the least possible time. This
problem was first introduced by J. Bernaulli in the mid of 17th century and was first solved by Sir Isaac
Newton.

7.2.4 Problem of Geodesics
In general relativity, a geodesic generalizes the concept of straight line to curve spacetime. For

example : Find the curve of shortest length connecting two points in space. If there is no constraints the
solution obviously is a straight line joining the points. However, if the curve is constrained and is to lie on
a surface, then in space, the solution is less obvious and possibly many solutions may exist.

The solutions are called geodesics. In other words a geodesics on a surface is a curve along
which the distance between two points on the surface is a minimum. To find the geodesics on a surface
is a variational involving conditional extremum.

7.2.5 Isoperimetric Problem
In this problem, we required to find a closed plane curve of a given length l bounding a  maximal

area S. Let the parametric equation of the plane curve be x = x(t) , y = y(t), and the curve is traversed
once in anti-clockwise as t increases from t0 to t1, then length l of given curve is

     
1

0

2 2
t

t

l x t y t dt    ......(1)

which is a constant, and enclosed area is given by

 
0

1
2

t

t

S xy yx dt    .....(2)

The problem is to maximize the functional S, given by (2) subject to the condition that the length
l of the curve given by (1) must have a constant value.

7.3 Euler-Lagrange Equation

7.3.1 Basic Lemma : Let M(x) be a continuous function on the internal [a, b]. Suppose

that for any continuous function h(x), we have     0
b

a

M x h x dx   then M(x)  0 on the inter-

val [a,b].
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Proof : Let M(x)  0 (say positive) at a point x  where a  x   b. Since M(x) is continuous
on [a, b], it follows that if M(x)  0. Then M(x) maintains its sign in a certain neighbourhood x0  x  x1

of the point x .
Since h(x) is arbitrary continuous function, we may choose h(x) s.t. h(x) remains positive in

x0   x   x1  while it vanishes outside the interval. Hence, we obtain.

       
1

0

0
xb

a x

h x M x dx h x M x dx   .....(1)

Since the product h(x)M(x) remains positive in [x0, x1] and vanishes outside this interval.

By the hypothesis     0
b

a

h x M x dx  .....(2)

which contradicts (1). This contradiction shows that our assumption M(x)  0 at some point x
must be wrong and so M(x)  0 on [a, b].

7.3.2 Euler-Lagrange Equation : If y(x) is a curve in interval [a, b] which is a twice

differentiable and satisfying the conditions y(a) = y1 and y(b) = y2 and minimizes the functional.

   , ,
b

a

F y x f x y y dx     .....(3)

where dyy
dx

  .

Then the following differential equation must be satisfied

0f d f
y dx y

  
    

.....(4)

Proof. Suppose y  y(x) is a curve which minimizes the functional F. That is, for any permissible
curve y = g(x), F[y(x)]  F[g(x)]. We have to construct a function of one real variable satisfying follow-
ing properties.

1. H() is a differentiable near = 0
2. H(0) is a local minimum for H.
We begin by constructing a variation of y(x). Let be a small real number (positive or

negative). s.t.

     y x y x h x  

where h(x) is a continuous function in [a, b] and h(a) = h(b) = 0.

y

xx = a x = bo

Fig. 7.2
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We can define a function H to be

 H F y x    
Since y(x) minimizes F(y(x)), it follows that it minimizes H(). Since H(0) is minimum value of

H, we know that from ordinary calculus that H(0) = 0.
The function H can be differentiated by using Leibnitz rule, that is

   , ,
b

a

d dH f x y y dx
d d  

 
   

   


 , ,
b

a

f x y y dx 
     .....(5)

Now applying chain rule within the integral, we abtain

y yf f x f f
x y y

 

 

     
     

      

y yf f
y y

 

 

  
   

   

   f fh x h x
y y 

   
 

Substituting the value of f


in the equation (5), we have

     
b

a

dH f fh x h x dx
d y y 

         


Using H(0) = 0, we find that

     0 0
b

a

f fH h x h x dx
y y

        


Integrating by parts, we get

       0 0
bb b

a a a

f f d fH h x dx h x h x dx
y y dx y

                
 

    0
bb

aa

f d f fh x dx h x
y dx y y

      
              


  0
b

a

f d f h x dx
y dx y

   
       
 [Using h(a) = h(b) = 0]

By using lemma, we conclude that

0f d f
y dx y

  
    

.....(6)



126

This equation is called Euler-Lagrange equation.

7.3.5 Remark : The statement of the lemma and its proof donot change if restriction h(a) =

h(b) = 0 is imposed on the function h(x).

7.4 Some Elementary Cases of the Integrability of the Euler-Lagrange Equation

7.4.1. f is independent of y : If f is independent of y, then f is function of (x, y) only. There-

fore 0f
y





. Thus the Euler-Lagrange equation reduces to following form :

0f
y



 .....(1)

Now integrating (1), with respect to y, we obtain a arbitrary curve f = g(x), without any con-
stant and in general, does not satisfy boundary conditions y(a) = y1 and y(b) = y2. Thus this type of
equation does not posses a solution.

7.4.2. f is indpendent of x and y : In this case,

2 2
0f f f f

x y x y y y
   

   
     

.....(2)

From Euler-Lagrange equation

0f d f
y dx y

  
    

, we get

2 2 2

2 0f f f fy y
y x y y y y
       

      
 , ,f f x y y  

From equation (2), we have
2

2 0fy
y
 


.....(3)

This implies that either y = 0 or 
2

2 0f
y





Now y = 0
 y = Ax + B .....(4)

where A and B are arbitrary constants, which is a two parameter family of straight lines. But if 
2

2 0f
y





has one or several real roots y = Kn, then y = Knx + c

which is one parameter family of straight line contained in two parameter family of straight lines. Thus

extremals are all possible straight lines.

7.4.3. f is indpendent of only y : Here f  f(x, y), therefore Euler-Lagrange equation can be

written as
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0d f
dx y

 
   

  as  0f
y






f c
y



 .....(5)

 where c is a constant. Since this relation is independent of y it can be solved for y as a function of x.

Another integration leads to a solution involving two arblitraray  constants which can be obtained by

using given boundary conditions.

7.4.4. f is a linear function of y or f is binearly dependent on y such that f(x, y, y) =

p(x, y) + q(x,y)y

Forming the Euler-Lagrange equation for this particular f, we have

0p q dq p q q q p qy y y
y y dx y y x y y x

                            
.....(7)

for all x and y.
Solution of this problem, in general, not possible because solution does not satisfy given bound-

ary conditions. But if we consider 0p q
y x
 

 
 

, then the expression pdx + qdy becomes exact differen-

tial equation whose solution does not depend on path of extremal and therefore variational becomes

meaningless.

Ex.1. Test for an extremum of the functional

     
1

2 2 2

0

, 0 0, 1 1F y x x y x y dx y y          .....(8)

Sol. Clearly we see that

  2 2 2, ,f x y y x y x y  

is a linear function of y. Now from case 7.4.4, we have p(x,y) = x2y2, q(x,y) = x2

Hence from equation (7), we find that

0p q
y x
 

 
 

 2x2y – 2x = 0

 2x (xy-1) = 0

 xy =1   or    x = 0

Obviously first boundary condition is satisfied by only x = 0, by and second boundary condition

is satisfied by only xy = 1. Both boundary conditions are not satisfied by the curves x = 0 and xy =

1.Thus no solution exist for this problem.
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Ex.2. Test for extremum of the functional

   cos sin
b

a

F y x y xy y dx      .....(9)

with boundary conditions y(a) = y0, y(b) = y1

Sol. For this problem, Euler-Lagrange equation is given by

 sin cos sin 0dy xy y x y
dx

    

or sin cos sin cos 0y xy y y xy y     

Thus, integrand being an exact differential equation. Therefore variational problem becomes  mean-
ingless

7.4.5. f is independent of x : In this case, 0f
x





, therefore Euler-Lagrange equation re-

duces to

 0d ff y
dx y

    

Hence Euler-Lagrange equation has its integral as ff y c
y
 


where c is arbitrary constant

Ex.1. Test for extremum of the functional

  
1

2

0

1 F y x y dy= , y(0) = 0, y(1) = 2

Sol. Using Euler-Lagrange equation, we get

2

2 0
1

d y
dx y

   
  

Integrating with respect to ‘x’, we get

21

y c
y





, where c is arbitray constant

  
2

2 say
1

cy A
c

   


Again integrating with respect to ‘x’

y = Ax + B

y(0) = 0 and y(1) = 2, implies that B = 0, A = 2

Thus y = 2x which is a straight line.
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Ex.2. Test for extremum of the functional

     
1

2 2

0

, 0 1, 1 2F y x y x dx y y         

Sol. Using Euler-Lagrange equation, we get

0f d f
y dx y

  
    

  2 0d y
dx

 

 y
Integrating two times we get y = Ax + B
Using y(0) = 1, y(1) = 2, we get  A = B = 1.
Thus solution is y = x + 1.
Ex.5. (Brachistochrone problem or quickest descent problem)
Find the shape of the curve on which a bead is sliding from rest and accelerated by

gravity will ship (without friction) in least time from one point to another.
Sol. Let us consider a particle P descending from A(0,0) to B(a,b) under gravity along some

curve. We have to determine shape of the curve which gives minimum possible time to descent. Let
P(x,y) be the position of the particle at any time t and having actual arc length s from a point A.

A (0, 0 )

P x, y (  )

B a, b (  )

s

x

y

Fig. 7.3
Under the gravity, the motion of particle is given by

2ds gy
dt

  

 2
dsdt
y g



Hence time T of descent is (from A to B).


0 2

a dsT
y g

  .....(10)

But we know that

2

1ds dy
dx dx
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 21ds y dx  where dyy
dx

 

Putting the value of ds in equation (10), we obtain

2

0

1
2

a yT dx
gy


 

Here f(x, y, y) = 
21

2
y

gy
  f(x)

Now from case (7.4.5), we have

1
fy f c
y
  




2

12

1 1
22 1

y yy c
gygy y

    


   22

1

1
c

y y


 (where 2 12c g c  )

or  2
31y y c   2

3 2where 1c c

Now putting  2 3
3cot sin 1 cos 2

2
cy y c        

Since dy y
dx

 
dydx
y




 32 cos sin
cot

c ddx   




  2
3 32 sin 1 cos 2dx c d c    

Integrating we get

 3
3 4 4

sin 2 2 sin 2
2 2

cx c c c         
 

and  3 1 cos2
2
cy   

If we substitute 2 = , and using intial condition (that is at A(0,0)), we have

c4 = 0 ; and  3 sin
2
cx    , and  3 1 cos

2
cy  

which is equation of the cycloid with radius 3

2
c  of rolling circle and c3 can be obtained by using

appropriate boundary condition.
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Ex.4. (The minimal surface of revolution problem)
Find the curve with fixed boundary revolves such that its rotation about x-axis gener-

ate mininal surface area.
Sol. We know that, surface area of the relvolution is given by

  2
b

a

S y x y ds   

22 1
b

a

y y dx  

Here f(x,y, y ) = 2y 21 y  f(x)

From case (7.4.5), the first integral of Euler’s equation is

1
ff y c
y
 




2
2

12

22 1
1

yyy y c
y




  


 221

y c
y


 (where 1

2 2
cc


 )

 2 2
2

dydx
y c




Integrating with respect to ‘y’ we get

1
2 3

2
cosh yx c c

c
  

  
 

3
2

2
cosh x cy c

c
 

  
 

where c2 and c3 are arbitrary contestants, which is a equation of the “catenary” and the corre-
sponding surface of revolution is called “centroid” of revolution.

7.5 Functionals Involving Several Dependent Variables and Their First Order De-

rivatives.

We now proceed to derive the differential equations that must be satisfied by the twice differen-
tiable functions x1(t), x2(t), ...., xn(t) that extremize the integral

 
2

1

1 2 1 2, ,..... , , ,..... ,
t

n n
t

I f x x x x x x t dt     
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with respect to those functions of x1, x2, ...., xn which  achieve prescribed values at the fixed limits of
integration t1 and t2, where t1 < t2. The superior dot represents ordinary differentiation with respect to
the independent variable t.

We denote the set of actual extremizing functions by x1(t), x2(t), ...., xn(t) and proceed  to form
the one-parameter family of comparison functions

X1(t) = x1(t) +1(t), X2(t) = x2(t) +2(t) ,....., Xn(t) = xn(t) +n(t) .....(2)
where 12nare arbitrary differentiable functions for which
1(t1) = 1(t2) = 2(t1) = 2(t2) = ....= n(t1) = n(t2) = 0 .....(3)

and is the parameter of the family. The condition (3) assures us that every member of each compari-
son family satisfies the required prescribed end point conditions. We see, moreover, that no matter what
the choice of 12n, the set of extremizing functions x1(t), x2(t), ...., xn(t) is a member of each
comparison family for the penameter value = 0. Thus if we form the integral.

   
2

1

1 2 1 2, ,....., , , ,....., ,
t

n n
t

I f X X X X X X t dt      .....(4)

by replacing x1, x2, ...., xn etc, in (4) by X1, X2, ...., Xn etc., respectively, we have that I(0) is the extre-
mum value sought. We therefore conclude that

 0 0I   .....(5)

It follows from (2) that

1 1 1 2 2, , ....,n n n nX x X X X x              .....(6)
Now differentiate (4) with respect to ‘’, we have

2

1

1 1 2 2
1 1 2 2

..... ,
t

n n
n nt

dI f f f f f f dt
d X X X X X X

     
      

              
   

   .....(7)

where we use (2) and (6) to derive the sequence of substitution 1
1,....., n

n
XX

 
   

       


  .

It is clear from (2) and (6) that setting = 0 is equivalent to replaeing X1,X2, ....., Xn, 1 2, ,....., nX X X  

by x2, x2, ...., xn, 1 2, ,..... nx x x    respectively. Thus because of (5), we abtain from (7) on setting = 0

 
2

1

1 1 2 2
1 1 2 2

0 ..... 0
t

n n
n nt

f f f f f fI dt
x x x x x x
     

                     
   

   .....(8)

This last relation holds for all choices of the functions 1(t),2(t), ...., n(t). In particular, it holds
for the special choice in which 2, ...., nare identically zero, but for which 1(t) is still arbitrary, consis-
tent with (3). With this selection of 1,2, ...., nwe integrate by parts the second term of the second
member of (8) to obtain, since 1(t1) = 1(t2) = 0,

2

1

1
1 1

0
t

t

f d f dt
x dt x


   

      
  .....(9)
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Since (9) holds for all, 1 we conclude by applying the basic Lemma that

1 1
0f d f

x dt x
  

    
.....(10)

Through similar treatment of the successive pairs of terms of the second member of (8) we de-
rive like equations, with x1 replaced by x2, ...., xn, Joining these equations with (10), we have

1 1 2 2
0, 0,....., 0

n n

f d f f d f f d f
x dt x x dt x x dt x

         
                      .....(11)

for the system of simultaneaes Euler-Lagrange equations which must be satisfied by the functions x1(t),
x2(t), ....., xn(t) which render the integral (1) an extremum.

Ex.1. Find the extremals of the functional

    
2

2 2

0

2 

π

I y, z = y + z + yz dt

with the boundary conditions  y(0) = 0, y() = –1 ; z(0) = 0, z() = 1
Sol. Here   2 2 2f y,z, y,z ,t y z yz    

Then from equation (11), we can see that

0f d f
y dt y

  
    

0f d f
z dt z
      

or 0y z   and 0z y  .....(12)
Eliminating ‘z’ from this system, we get

  0ivy y   or 
4

4 0d y y
dt

 

Its solution is given by
y = c1 e

t + c2 e
–t + c3 cost + c4 sint .....(13)

where c1, c2, c3 and c4 are arbitrary constants. Now from equation (12) we have

1 2 3 4cos sint tz y c e c e c t c t     .....(14)

Applying the given boundary conditions
y(0) = 0, y() = –1,  z(0) = 0, z() = 1, we find that
c1 = c2 = c3 = 0, c4 = –1.

Hence the extremal curve is the intersection of the surfaces
y = – sin t, z = sin t.

Ex.2. (a) Find the extremum of the function

 
 2

1

1
2 21x

x

y
F y x dx

x
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(b) Show that the curve through (1,0) and (2,1) which minimize

 1 222

1

1 y
dx

x


  is a circle.

Sol. (a) Comparing the given functional with  
2

1

, , ,
x

x

f x y y dx  we get

where  
 

1
2 21

, ,
y

f x y y
x


  .....(15)

Euler-Lagrange  equation is

0f d f
y dx y

  
    

.....(16)

From (15), we have

0f
y





 and 
 

1
2 21

f y
y x y



 

.....(17)

Since 0,f
y





 (16) reduces to 0d f
dx y

 
  

Integrating it, we get 
f c
y





or 21

y c
x y






Thus,  
1

2 21y cx y   .....(18)

Now let tandy y
dx

 

Then (18) yields tan = cx sec
 x = c1 sin where c1 = 1/c
Now dy = tan dx = c1 tancosd = c1 sind
Integrating it, we get  y = –c1 cos + c2

Thus x = c1 sin and y – c2 = – c1cos    or    x2 + (y – c2)
2 = 2

1c .....(19)

which is a family of circle with center at axis.
(b) Proceed exactly as in part (a) upto (19). In the present problem, using the boundary condi-

tions x = 1, y = 0 and x = 2, y = 1, (19) yields
2 2
2 11 c c   and  2 2

2 14 1 c c    giving 1 25, 2c c  .

Hence from (19) the required curve is the circle x2 + (y – 2)2 = 5.
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Ex.3. Obtain the Euler-Lagrange equation for the extremals of the functional

   
2

1

2 2
x

x

y yy + y dx

Sol. Comparing the given functional with  
2

1

x

x

f x, y, y dx , we get

  2 2f x, y, y y yy y     .....(20)
Euler-Lagramge’s equation is

0f d f
y dx y

  
    

.....(21)

From (10), we get 2 2f fy y , y y
y y
      

 

and 2d f y y
dx y

       

Using these values, the required Euler-Lagrange equation (21), becomes

 2 2 0y y y y        or 0y y  

Ex.4. Test for an extremal of the functional

                
2

2 2

0

0 0 1
2

F y x y y dx , y , y




Sol. Comparing the given functional with  
2

0

f x, y, y dx


 , we get

  2 2f x, y, y y y   .....(22)
Euler-Lagrange’s equation is

0f d f
y dx y

  
    

.....(23)

From (22), we have 2 , 2 and 2 .f f d fy y y
y y dx y

            
Using these values, (23) reduces to

–2y – (2y) = 0    or   y+ y = 0

or (D2 + 1) y = 0 where dD
dx

 .....(24)

y = c1 cos x + c2 sin x .....(25)
Using boundary condition, we get

c1 = 0  and  c2 = 1.
Hence, from (25), an extremun can be attained only on the curve y = sin x
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Self-Learning Exercise

1. Is    
0

2 is linear ? Yes / No.
x

x

L y x y dx   

2. Is      
0

2

2 is linear ? Yes / No.
x

x

d yL y x c x y dx
dx

 
     

 


3. As extremal of the functional

   , , ,
b

a

F y x f x y y dx     y(a) = y1 , y(b) = y2 satisfies Euler-Lagrange equation,

which in general is a
(a) linear second order ODE
(b) admits a unique solution
(c) non-linear ODE of order greater than two.
(d) may not admit a solution.

4. The curve of shortest distance between two fixed points is
(a) straight line
(b) circle
(c) parabola
(d) none of these

5. The Euler-Lagrange equation for a functional of the form  ,
b

a

f x y dx is

(a) fy = c1

(b) fy – yfy= c1

(c) fy = c1
(d) none of these

6. The extremizing curve of the brachistochrone problem is a
(a) circle
(b) catenary
(c) cycloid
(d) straight line.

7.6 Summary

The caluclus of variation, which plays an important role in both pure and applied mathematics,

dates from the time of Newton. Development of the subject started mainly with the work of Euler and
Lagrange. In this unit we have solved a number of problem of engineering and physics with the help of
Euler-Lagrange equations.



137

7.7 Answers to Self-Learning Exercises

(1) No (2)  Yes

(3) (d) (4) (a)

(5) (d) (6) (a)

7.8 Exercise

1. Find the extemal of the function  
1 2

0

1 ,yI y x dx
y


     throught the origin and the point (1, 1).

[Ans. y = tan(x/4)]
2. (a) Show that if y satisfies the Euler-Lagrange’s equation associated with the integral

 
2

1

2 2 2 2
x

x

I p y q y dx 

where p(x) and q(x) are known functions, then I has the value   2

1

2 x

x
p yy  

(b) Show that, it y satisfies the Euler-Lagrange’s equation associated with part (a) and if z(x) is an
arbitrary differentiable function for which z(x1) = z(x2) = 0

then  
2

1

2 2 0
x

x

I p y z q yz dx   

3. Prove that the extremal of  1 221
b

a

y y  is the catenary y = a cos h(ax + b)

4. Prove that the extremal of 
2 2

0

y dx
x


  with y(0) = 0 and y(2) = 1 is a parabola.

5. Prove that the extremals of

   
2

1

2 2
x

x

I u x y x y dx   

subject to the condition that

 
2

1

2
x

x

J x y dx k  (a constant)

are the solution of Sturm-Liouville equation

      0d dyu x x x y ,
dx dx

         
   with   y(x1) = y(x2) = 0
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6. Show that the extremum of the functional

2

1

2 2 2 sin
x

x

I y y y x dx,    

is given by 1 2
1 sin
2

x xy c e c e x  

7. Show that the Euler’s equation for the functional

  21
b

a

I f x, y y dx   has the form 2 0
1

y
y x ,y

f
f f

y


    


8. Find an extremal to

   
2 2

1

1
1 0 2 1

y
I dx, y , y

x


  
[Ans. x2 + (y – 2)2 = 5]

9. Find the curve y = (x) which corresponds to the extreme value of

 
2b

n

a

dyF y x x dx
dx

       

[Ans. 
1

1
2 1

1

nc xy c , n
n



  


1 2log 1c x c , n   ]

10. Show that the curve of shortest distance (geodesic) on a right circular cylinder is a Helix or a
generator.

11. Find the extremals of the functional      2 2 22 2
b

a

F y x ,z x yz y y z dx       

Deduce the extremals if a = 0, b = ;        0 0 1 0 0 1y , y , z , z      .

[Ans.    1 2 3 4cos siny c x c x c c x       1 2 3 3 4 12 cos 2 sinz c x c c x c c c x      ]
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Unit 8 : Functionals Dependent on Higher Order Derivatives
and Variational Problems in Parametric Form

Structure of the Unit

8.0 Objective

8.1 Introduction

8.2 Variational Problems Involving Several Higher Order Derivatives

8.3 Variational Problems Involving Functionals Dependent on the Functions of Several Independent

Variables and Dependent Variable

8.4 Variational Problems in Parameteric Form

8.5 Isoperimetric Problem

8.6 Summary

8.7 Answers to self-learning Exercise

8.8 Exercise

8.0 Objective

This unit deals with the functionals dependent on higher order derivatives and functions of more
than one independent variable. The variational problems in parametric form are also included in the present
unit.

8.1 Introduction

In the previous unit, we have discussed the Euler-Lagrange’s equation and various variational
problems having their first order derivatives. In this unit, we will disuss the variational problem with func-
tional dependent on higher order derivatives, several independent variables and variational problem in
parametric form.

8.2 Varitional Problems Involving Several Higher Order Derivatives

Theorem : If the function f contains higher order derivatives, say upto any order n, then

  , , , ...., nf f x y y y .....(1)

and we need to extremize the integral

  
2

1

, , , ...
x

n

x

I f x y y y dx  .....(2)
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where we consider the funciton f is differentiable (n + 2)- times with respect to ‘x’. and also
assume that the boundary conditions are given by

           
1 1 1 1 1 1 1 1

n ny x y , y x y , y x y , ....., y x y      

           
2 2 2 2 2 2 2 2

n ny x y , y x y , y x y , ....., y x y       .....(3)

Then I extremized by  1 0
n

n
n n

f d f d f......
y dx y dx y

     
            

.....(4)

Proof : Let the extremum is attained on the curve y = y(x) and y = y (x) be comparison curve
to extremizing curve y = y (x), and let both of these be 2n times differentiable.

Now we consider

     y x y x x ,  .....(4)

where                1 2 1 2 1 2 0n nx x x x ..... x x            

Obviously y (x,0) = y(x), the extremizing curve.
Now substituting it in equation (1), we get

 I 
  

2

1

x
n

x

f x, y , y ,....., y dx  .....(5)

Since setting = 0 has the effect of replacing  ny , y ,....., y in (5) by the
   ny, y , y ,....., y ,I   must take extreme value when = 0. This happens no matter what particular value

function (x) is involved in (4) and (5). But by elementary calculus, a necessary condition of extremum is
given by I () = 0 ....(6)

Using Leibniz’s rule of differentiation under integral sign, (6) gives.

 I  
  

2

1

x
n

x

d f x, y , y ,....., y dx
d




Now using the chain rule for differentiating functions of several variables, we get

  nd f x, y , y ,....., y
d


  

 n

n

f x f y f y.....
x y y
     

    
    

.....(7)

By using (4), we have

L.H.S. of (7)      
   n

n

f f fx x ........ x
y y y
  

     
   .....(8)

From (8), we get

 I        
   

2

1

0
x

n
n

x

f f fx x ........ x dx
y y y
  

           


which, upon setting = 0 and making use of (6), gives

     
   

2

1

0
x

n
n

x

f f fx x ........ x dx
y y y
  

          
 .....(9)
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where we have used the fact that when = 0,    n ny y, y y ,....., y y    .

Now integrating by parts, we have

 
2

1

x

x

f x
y
 
    

2 2

11

x x

xx

f d fx x dx
y dx y
 

    
         



 
2

1

x

x

d f x dx
dx y


 

    


and  
2

1

x

x

f x dx
y
 
  =    

2 2

11

x x

xx

f d fx x
y dx y

             
 

 
2

1

x

x

d f x
dx y


      

 .....(10)

Again integrating with respect to ‘x’ we get

 2

1

x

x

y x dx
y
 
    

2 2

11

2

2

x x

xx

d f d fx x dx
dx y dx y

 
                            



Thus,  
2

1

x

x

f x dx
y
 
  

2

1

2

2

x

x

d f x dx
dx y


 

   


Similarly  
 

2

1

x
n

n
x

f dx
y


      

2

1

1
x n

n
n n

x

d f x dx
dx y


 

   
 

 ...(11)

Using it in equation (9), we obtain

     
2

1

2 1 0
x n

n
n n

x

f d f d f d f.......... x
y dx y dx y dx y


                             


which gives

   2 1 0
n

n
n n

f d f d f d f...
y dx y dx y dx y

        
                  

.....(12)

8.3 Variational Problem Involving Functionals Dependent on the Functions of

Several Independent Variables and Dependent Variables

In this section, we will discuss the variational problems which is dependent on several depen-
dent and independant variables.

Theorem : If z is a curve which is dependent on x, y and is twice differentiable in its
domain D, and extremize the functional



142

 ,i z x y    , , ,
D

F x y p q dx dy  .....(1)

Then following differential equaiton must be satisfied

0F F F
z x p y q

       
            

.....(2)

where andz zp , q
x y
 

 
 

Proof : Take some admissible surface  z z x, y close to z = z(x,y) and include the surfaces z

= z(x,y) and  z z x, y  in a one-parameter family of surfaces

   z x, y, z x, y z  

where    z z x, y z x, y  

For = 0, we get the surface z = z(x,y), for = 1, we have  z z x, y z is called the varia-
tion of the fucntion z(x,y).

On fucntions of the family z = z(x,y,), the functional I reduces to the fucntion of  which has
an extremum for = 0. Hence, we have

  
0

0I z x , y ,



 

    

The derivative of I [z(x,y,)] with respect to , for = 0 is known as the variation of the func-
tion and is denoted by I. Accordingly, we have

I       
0D

F x, y,z x, y, , p x, y, ,q x, y, dx dy


  




 
  

  


or  z p q
D

F z F p F q dx dy       .....(3)

where  z(x,y,) = z(x,y) +z

 p x, y,
   z x, y,

p x, y p
x





  


and  q x, y,
   z x, y,

q x, y q
y





  


Now, we have

 pF z
x



 pp p

p p
F zF F

z F p F p z
x x x


   

 
    

  

and
 qF z

y




 qq q

q q
F zF F

z F q F q z
y y y


   

 
    

  

Using above two results, we have
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p q
D

F p F q dx dy        p q
D

F z F z dx dy
x y

 
  

    


p q

D

F F
zdx dy

x y


  
    
 .....(4)

where Fp/x is known as total partial derivative with respect to ‘x’. While computing it, y is assumed to
be fixed, but depenence of z, p and q upon x is taken account. Therefore, we have

pF
x



 px pz pp pq
z p qF F F F
x x x
  

   
  

Similarly
qF

y


 qy qz qp qq
z p qF F F F
x y y
  

   
  

Using the well-known Green’s theorem. We have

   p q
D

F z F z dx dy
x y

 
  

   
   0p q

C

F dy F dx z   .....(5)

The last imtegral is equal to zero, since on the contour C the variation z = 0  because all per-
missible surfaces pass through one and same spatial cantour C. Using (5), (4) reduces to

 p q
D

F p F q dx dy  p q
D

F F z dx dy
x y


  

     
 .....(6)

Using (6) in (3), it gives

I z p q
D D

F z dx dy F F z dx dy
x y

 
  

     
 

Hecne the neccessary condtion for I = 0 for an extremum of the functional (2) takes from

0z p q
D

F F F z dx dy
x y


  

     


Since the variation z is arbitrary and the factor is continuous, it follows from the fundamental
lemma of the calculus of variation that on extemizing surface z = z (x,y), we must have

0z p qF F F
x y
 

  
 

 that is 0F F F
z x p y q

       
            

.....(7)

Remark . For the functional

 1 2 nI z x ,x ,....., x     1 2 1 2 1 2n n n
D

F x , x ,.....x , z , p , p ,....., p dx dx .....dx  

where i
i

zp
x



, in exactly similar way, we get from the basic necessery conditon for extremum

I = 0, the following  equation

1
0

n

z pi
ii

F F
x


 



which the function z = z(x1,x2, ...., xn) extremizing the functional I must satisfy.
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8.4 Variational Problems in Parameteric Ferm

In some problems, the requirement of single valuedness is excessively restrictive; for it turns out
that Euler-Lagrange’s equation-derived under assumption that the extremizing function is single valued-
may have for the solution which satisfies the given end point conditions, a relationship in which depen-
dent variable is not a single valued function of the independent variable. One cannot, without further
justificaiton, accept such a solution as valid.

We proceed to show, that the extremizing relationship between a pair of variables x and y is the
same, whether the solution is derived under the assumption that y is a single valued function of x or that
a more general parametric representation is required to express the relation between x and y. We do this
by showing that the solution of Euler-Lagrange equation derived on the basis of the assumption of the
single valuedness of y as a funciton x satisfies also the system of Euler-Lagrange’s equations derived on
the basis of the parametric relationship between x and y.

Under the assumption that y is a single valued funciton of x, the integral to be extremized is given
as

I  
2

1

x

x

f x, y, y dx  .....(1)

where y is required to have values y1 and y2 at x = x1 and x = x2. If instead, we use the parametric
representation x = x(t), y = y(t) where x(tj) = xj and y(tj) = yj for j = 1,2, the integral (1) transformed
to through the relationships

y
dy y
dx x

 



 and dx = x dt .....(2)

where the supirior dot represents differntiation with respect ot ‘t’ .

Therefore I
2

1

t

t

yf x, y, x dt
x

   
 




 .....(3)

The Euler-Lagrange’s equation for (1) is

0f d f
y dx y

  
    

.....(4)

According to § 7.5, the system of Euler-Lagrange’s equation assiociated with (3) can be written
as


g d g
x dt x
      

0 0g d g,
y dt y

  
     

where  g x, y,x, y   f x, y, y x  .....(5)

From (5), we obtain

g f gx,
x x x
  

 
  


 2

f y ff x f y
y yx
     
  





.....(6)
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With the aid of second relation of (2), we obtain

d g d fx f y
dt x dx y

            




f d f fx y
y dx y x

                 
 .....(7)

Further, we obtain from (5)
g f gx,
y y y
  


  


1f fx

y x y
 

 
  


 .....(8)

According to the second relation of (5), we have

d g
dt y
 
  

d fx
dx y

 
   
 .....(9)

Combining this last result with the first of (8), we obtain the pair of equations

g d g
x dt x
      

g d gy ,
y dx y

   
       



g d g
y dt y

  
    

g d gx
y dx y

   
       

 .....(10)

From this result, we conclude that any relationship, single-valued or not, that satisfies the Euler-
Lagrange’s equaiton (4), derived on the basis of an assumed single valued solution y = y(x), satisfies
also the system (5), whose derivation requires no assumption of single-valuedness of y as function of x.

8.5 Isoperimetric Problem

In this section, we seek to derive the differentiable equation which must be satisfied by the funciton
which renders the integral

I  
b

a

f x, y, y dx  .....(1)

an extremum with respect to continuously differentiable functions y = y(x) for which the second integral.

J  
b

a

g x, y, y dx  .....(2)

possesses a given prescribed value, and with y(a) = y1, y(b) = y2 both prescribed boundary conditions
The given functions f and g are twice differentiable with respect to x.

To solve this type of problem, we will use the method of Lagrange’s multiplier. But first of all,
we need to choose suitable extremizing function for this problem. If we choose Y(x) = y(x) + (x)
which is a function of one perameter family. Then it yields the problem, because any change of the value
of the single perameter would in general alter the value of J, whose constancy must be maintained as
prescribed. For this reason we introduce the two perameter family

Y(x) = y(x) + (x) + (x) .....(3)
in which , and are arbitrary differentiable function for which (a) = (a) = 0 and (b) = (b) =
0. These conditions ensures that Y(a) = y(a) = y1 and Y(b) = y(b) = y2 as prescribed, for all values of
parameters and 
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We replace y by Y(x), given by (3), in both equations (1) and (2) so as to form respectively

 1 2I ,   
b

a

f x,Y ,Y dx  .....(4)

and  1 2J ,  =  
b

a

g x,Y ,Y dx .....(5)

Clearly, the parameters and are not independent, because J is to be maintained at a con-
stant value, it is clear from (5) that there is a functional relation between them-namely,

 1 2J ,  = constant (prescribed) .....(6)

Now using, method of Lagranges multipliers, we introduce the function for , 

I       1 2 1 2

b

a

I , J , f x,Y ,Y dx          .....(7)

where, according to (1) and (2),

f  f g  .....(8)

The constant  is the undetermined multiplier whose value remains to be determined by condi-

tions of each individual problem to which the method is applied. Thus for extemizing the value of I  , we
have

1

I 
 2

0I ,


 
  when =  

From (7), with the help of (3), it follows that

j

I 


b

j ja

f Y f Y dx
Y Y

             


b

j j
a

f f dx
Y Y
 

         
 .....(10)

(j = 1,2)

Setting  = = 0, so that according to (3),  Y ,Y   is replaced by  y, y , we thus have that

0j

I 


0
b

j j
a

f f dx
y y
 

          
      (j = 1,2), .....(11)

Note that the symbol 0  indicates that the setting of = = 0. Integrating by parts the sec-

ond term of the integrand of (11), we obtain with aid of boundary conditions that

1

0
b

j
a

f d f dx
y dx y


    
        

 (j = 1,2) .....(12)
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Now using basic lemma, we obtain the differential equation

0f d f
y dx y

   
     

.....(13)

as the Euler-Lagrange’s equation which must be satisfied by the function y(x) which extrimizes (1) under
the restriction that (2) be maintained at a prescribed value.

Ex.1. Find the extremal of the functional

I  
1

2

0

1= y dx ,

under the conditions    0 0 0y = , y    1 1 1 1 1= , y = , y =

Sol. In this problem,

 , , ,f x y y y  21 y 
Therefore, the extremal function is given by solution of the following differential equation

2

2 0f d f d f
y dx y dx y

     
           

  
2

20 0 2 0d y
dx

  


4

4 0d y
dx

 .....(14)

The solution of differential equation (14) is
y = c1 + c2x + c3x

2 + c4x
3

Using the given conditions we easily obtain  y = x
Thus extremal curve is a straight line.
Ex.2 . Find the extremal of the functional.

   I y x   
π

2
2 2 2

0

= dx,y - y + x

   0 1 0 0y = , y = ,  π
2y   π0 12= , y = .

Sol. Comparing the given functional with

 I y x    
π

2
f x, y, y , y dx 

0

=

we get  f x, y, y , y  2 2 2y y x   .....(15)
Using equation

2

2 0f d f d f
y dx y dx y

     
           

.....(16)
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From (15) we get
f
y



2 , 0, 2f fy y
y y
     
  

So (16) reduces to

 
2

22 2 0dy y
dx

      or   
2

4 0d y y
dx

 

or (D4–1)y = 0  where dD
dx

 .....(17)

The auxilliay equation of (17) is

m4 – 1 = 0 m = 1, i

Thus solution of (17) is y = c1e
x + c2e

–x + c3cosx + c4 sin x .....(18)

Using boundary conditions y(0) = 1, y(2) = 0, we get

c1+ c2+ c3 = 1 .....(19)

and 2 2
1 2 4c e c e c

 
  0 .....(20)

Since  0 0y   and   12y     therefore we find that

c1– c2+ c4  = 0 .....(21)

2 2
1 2 3c e c e c

 
  1  .....(22)

Adding (19) and (22), we get

 2 2
1 21 1c e c e

       0

and subtracting (20) from (21), we get

   2 2
1 21 1c e c e

     0

Above two relations give c1 = c2 = 0 and using it in (19) and (21), we get
c4 = 0, c3 = 1

Hence extremum can be attained only on the curve y = cosx
Ex.3 . Find the extremal equation for the following functional

 1 2,  I z x x 1
1 2

         
     


2 2

2
D

=
z z dx dx
x x
 
 

Sol. Here the integrand  f   is a function of two independent variables x1 and x2 , i.e.

1 2
1 2

z zF z, , , x ,x
x x

  
   

2 2

1 2

z z
x x

    
        

.....(23)

Therefore, using the result

1 1 2 2
0F F F

x p x p z
       

             
.....(24)
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where 1
1

zp
x





, and 2
2

zp
x





,

From (23) and (24), we obtain
1 1 2 2

2 2 0z z
x x x x
      

          


2 2

2 2
1 2

0z z
x x
 

 
  ,

which is the familiar Laplace equation.
Ex.4 . Obtain the surface of minimum area, stretched over a given closed curve C, en-

closing the domain D in the xy plane.
Sol. From calculus, we know that the required given problem reduces to find the extremal of the

functional

 I z x, y  

1
2 22

1
D

z z dx dy
x y

                


Now we have F (x, y, z, p1, p2)  1\22 2
1 21 p p   .....(25)

1 1 2 2

0F F F
z x p x p

       
            

, .....(26)

where 1 2and px y
z zp z z
x y
 

   
 

(25) implies

1

0,F F
z p

 


 
   

1 1
2 2 2 22 2

1 1 2 2 1 2
2

1 , 1Fp p p p p p
p

 
     



From (26), we have

   
1 2

1 1
2 2 2 22 2
1 2 1 2

0
1 1

p p
x yp p p p

   
                   

or    
1 1

2 2 2 22 2
0

1 1

yx

x y x y

zz
x yz z z z

   
                  

.....(27)

From (27), we get

     
31

2 2 2 22 211 1 2
2xx x y x x y x xx y yxz z z z z z z z z z

 
      

     
31

2 2 2 22 211 1 2 2 0
2yy x y y x y x xy y yyz z z z z z z z z z
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or           
22

1 2 3 2 1 2 3 22 2 2 2 2 2 2 2

1 1

1 1 1 1
yx

xx yy

x y x y x y x y

zzz z
z z z z z z z z

   
     
             

 3 22 2

2
0

1
x y xy

x y

z z z

z z
 

 

or    2 21 1 2 0xx y yy x x y xyz z z z z z z    

That is

2 22 2 2

2 21 1 2 0z z z z z z z
x y y x x y x y

                                       

whose solution will yield the desired minimal surface.
Ex.5 . Find the closed convex curve of length L that encloses greatest possible area.
Sol. We know that the area of the closed plane curve is given by the integral

I  1
2

b

a

xy yx dt    .....(27)

where x ,dx dyy
dt dt

  .

The total length of the curve is, given by

L
1

2 2 2
b

a

x y dt      .....(28)

has the same value L where L is the length of the plane curve. Now the question is to maximize (extremize)
(27) under the restriction (28), We will use the equation (13) of (§ 8.5), which is given below :

f d f
x dt x

   
    

0 , 0f d f
y dt y

   
     

.....(29)

where f    2 21
2

xy yx x y       .....(30)

From (29) and (30), we have

2 2

1 1 0
2 2

d xy y
dt x y

 
    
  




 

2 2

1 1 0
2 2

d yx x
dt x y

 
    
  




 

From which we obtain, by direct integration with respect to ‘t’,

2 2

xy
x y







 
1 22 2
, yc x c

x y


  




  ......(30)
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From these, we have

   2 2
1 2y c x c  

2 2
2 2

2 2

x y
x y

 
 

   

 

 

Thus we have the well-known result “that the closed curve of given perimeter for which the
enclosed area is a maximum is a circle.”

Ex.6 . (Shape of hanging rope). Find the shape assumed by a uniform rope when sus-
pended by its end from two points. at equal heights.

Q a( , 0)

1

y

x

Fig. 8.1
Sol. Let the rope of lenght 2L be suspended between two points P(–a,0) and Q(a,0) in the

same straight line, as points are at equal heights.
Thus if  denotes the constant mass per unit length of rope, the potential energy of an element of

length ds at (x, – y) is given by (–gy ds) where g is the constant acceleration due to gravrity. Accord-
ingly, the total potential energy of the rope in the arbitrary configuration y = y(x) is given by

I 21
a a

a a

g y ds g y y dx 
 

    .....(31)

where prime represents the differentiation with respect to ‘x’. and taking absolute value.
According to minimum energy principle the equillibrium configuration is supplied by particular

relation y = y(x) for which (31) is a minimum with respect to functions y(x) for which y(a) = 0, y(–a) =
0, and for which the total length of arc

J 21 2
a

a

y dx L


   .....(32)

We may therefore apply the Euler-Lagrange equation to the integrand function

f  2 21 1gy y y      .....(33)

formed from (31) and (32). Since f   is explicitly independent of the variable x, however, we may use
Euler-Lagrange equation and so substitute (30) into (13) (§ 8.5), we easily abtain.

 
2

2
12

1
1

ygy y c
y
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 2

1
1 y




1c
gy 




  21 y
 2

2
1

gy
c

 


 2y
 2

2
1

1
gy

c
 

 

 y
 2 2

1
2
1

gy c
c

  


  
1

2 2
1

c dy dx
gy c 


 

Putting g y += c1cos ht and integrating, we find that 
11

2
1

cosc gyh c x
g c

 


  
  

 
Solving we get

y  21

1

cosh
g x cc

g g c


 


   .....(34)

where c2 is an arbitrary constant of integration.
Thus, according to (34), the shape of a hanging rope is that of a catanary with vertical axis. By

specifying that catenry passing through  (–a,0) and (a,0) and that arc included between these points have
length 2L, we may assign value to constants c1, c2, . appearing in (34).

Ex.7 . Determine the curve of prescribed lengh 2l which joins the points (–a,b) and (a,b)
and has its centre of gravity as low as possible.

Sol. Let P1 P2 be an are joining the given paints (–a,b) and (a,b). The y-coordinate of the centre
of gravity of the required curve is given by

I  
1

2 21 1
2

a

a
a
a

a

a

y ds
y y dx

l
ds







  





where we have used the given constraint; namely

 
1

2 21
a a

a a

ds y dx
 

   2l ,  that is   
1

2 21 1 1
2

a

a

y dx
l 

  .....(35)

The boundary conditions are y(–a) = b, and y(a) = b

Let  F x, y, y    
1 1

2 22 21 1
2 2
y y y
l l
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1

2 21
2

y
y

l


 

where  is the Lagrange’s multiplier. Since F does not contain x, thus from Euler-Lagrange’s equation

FF y c
y

    
    (a constant)

or
    

 

1 22 2

1 22

1

2 2 1

   
  



y y y y c
l l y

 
.....(36)

or
 

 
11 221






y
c

y



where c1 = 2cl. Re-writing the above equation we have

21 y
 2

2
1

y
c


 or  
 

22 2
1

2
1

y cdy
dx c

     
  

Separating variables and then integrating, we get

x
  

1 21 22 2
1

 
 


dyc c

y c
  or  1

1 2
1

cosh yx c c
c
 

 

So that  y 2
1

1
cosh x cc

c


 
  

 
.....(37)

which is a complete solution of equation (36) on [–a,a] and boundary condition will be satisfied by this
solution if and only if

1

b
c
 2

1
cosh a c

c
  

  
 

  and   2

1 1
cosh a cb

c c
  
  

 
that is to say if and only if  (a + c2)/c1 = (a – c2)/c1

Hence c2 = 0. Thus equation (37) reduces to 1
1

cosh xy c
c


 

  
 

.....(38)

This shows curve must be symmetric with respect to y-axis. Thus, we get.

 1 1cosh  ac c b / .....(39)
Using (38) in (35), we get

  1 22
1

1 1 sinh 1
2

a

a

x c dx
l 

 

or  1cos 2
a

a

h x c dx l




or 1 1 1 12 sin ( ) 2 sin ( )c h a c l l c a c   
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From (39), we have

   1 22
1 11 sinhc a c b  /

1 22

1 2
1

1 lc b
c

     
  

  (using (40))

 1 22 2
1c l b  

Thus equation of the curve is given by

y  1 22 2
1

1
cosh x c l b

c
 

    
 

Self-Learning Exercise

1.The possible value of  for which the functional

 I y x    
1

2

0

3 3 1y y dy, y     

can be extremized ?

(a) –1,0 (b) 0,1(c) –1,1 (d) –1,0,1

2. Find Euler-Lagrange’s equation for

I     
2

1

x
k k

x

F x, y,z , y ,z , y ,z ,....., y ,z dx    

8.6 Summary

In this chapter, we obtain solution of some variabtional problems involving higher order deriva-

tives, some functional dependent on some dependent and independent variables. A number of problems

are included to illustrate various concepts of calculus of variation.

8.7 Answer to of Self-Leanning Exercise

(i) (b)

(ii)    

2

2 ....... 1 0
k

k
k k

F d F d F d F
y dx y ydx dx y

       
                   

   

2

2 ....... 1 0
k

k
k k

F d F d F d F
z dx z zdx dx z
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8.8 Exercise

1. Show that the Euler’s equation for the surface area functional

 I u  
2 21 x yu u dx dy



   

is    2 21 2 1 0y xx x y xy x yyu u u u u u u          

2. Find the Euler’s equation for the functional.

I     2 2 2x yu u f x, y u x, y dx xy


    

where is a closed region in the xy-plane and u has continuous partial derivatives.

[Ans :  
2 2

2 2 ]z z f x, y
x y
 

 
 

3. Find the general solution of the extremals

(i)
2 2 2

2 2D

p xy qx y dx dy
 

  
 



(ii)  2

D

xyz ypq xp dx dy 

where p z x , q z y      [Ans : (i) z = c1(y) log x + c2 (y) + (x3/9)

(ii) z = c1(y) – {–c2(y)/2x2} + (yx2/15)]

4. Find the extremal for the functional

   I x t , y t        2

1

1 22 2 2       
t

t

x y a xy yx dt

where a being a constant. [Ans : circles]

5. Find the extremal of the functional

   I x t , y t     
4

2 2

0

2 2xy x y dt ,


   

subject to the initial conditions at t = 0, x = y = 0; at 
4

t   x = y = 1.

[Ans.
sin 2

sin 2
h tx y

h
  ]

6. Find the curve of length L that join the paints (0, 0) and (1, 0) lie above the x-axis, and encloses

the maxinmm area between itself and x-axis.
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[Ans.    2 2 2
1 1x c y c      where 

1 2
2

1 2
1 1
2 4

c ,c     
 

and  is the solution of 
1 sin

2 2
L

 
   
 

]

7. Find the extremals of the isoperimetric problem

   
1

2 2

0

I y x y x dx,      given that    
1

2

0

2 0 0 1 0y dx ; y , y   .

[Ans.  y = sin mx , m = 1,2,3]
8. Find the curve joining two points (x1,y1) and (x2,y2) that yields a surface of revolution of station-

ary area when revolved about the x-axis. [Ans. a circle]
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Unit 9 : Series Solution of Second Order Linear Differential
Equation

Structure of the Unit

9.0 Objective

9.1 Introduction

9.2 Power Series Method

9.2.1 Validity of the Power Series Method

9.2.2 Definitions

9.2.3 Radius of Convergence

9.3 Series Solution Near an Ordinary Point

9.4 Series Solution Near a Regular Singular Point

9.4.1 Working Rule

9.5 Series Solution in Descending Powers of the Independent Variable

9.6 Self-Learning Exercise

9.7 Summary

9.8 Answers to Self-Learning Exercise

9.9 Exercise

9.0 Objective

The main object of this unit is to find the solution of a linear differential equation of second order
with variable coefficients in terms of a series near ordinary and singular points with special reference to
Gauss hypergeometric equation and Legendre equation.

9.1 Introduction

We know about the methods of solving linear differential equations of second order with con-
stant coefficients and in certain cases with variable coefficients. But sometimes, in case of variable coef-
ficients the problem becomes intricate and we are not able to find the solution in a closed form. Under
such situation, we can find a power series in terms of the independent variable x satisfying certain condi-
tions. This method is called the method of solution in series or integration in series. Legendre’s equa-
tion, Hypergeometric equation and Bessel’s equation are the examples whose solutions have been ex-
pressed in the form of a infinite power series eg. the general solution of y + y = 0 is y = a cos x + b
sin x and this may be rewritten as
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2 4 3 5
1 ... ...

2 4 3 5
x x x xy a b x

                
      

This shows that the general solution of the linear differential equation may be expressed by the
superposition of a pair of infinite series.

9.2 Power Series Method

The basic concept of power series method is simple and we will apply this technique to the so-
lution of some second order differential equations.

Let us consider the differential equation

     
2

2 0d y dyP x Q x R x y
dxdx

   .....(1)

where P(x), Q(x) and R(x) are polynomial in x and P(x)  0.
The above equation may be written as

   
2

1 22 0d y dyp x p x y
dxdx

   .....(2)

where p1(x)  
     

 2, and
Q x R x

p x
P x P x

 

To find the solution of the equation (1), we assume a series for y of the form

y = a0 + a1x + a2x
2 + ... 

0

r
r

r
a x




 .....(3)

Now substituting the values of y, dy
dx

 and 
2

2
d y
dx

 in equation (2) and rearranging the terms of

different powers of x, we get an algebraic equation of the type

0 + 1x + 2x
2 + ... = 0 .....(4)

Since equation (4) holds good for all values of x, identically, we obtain

0 = 0 , 1 = 0, 2 = 0 ,..., n = 0 ...

From these equations, we can determine the coefficients a0, a1, a2 ... etc. Putting the values of

a0, a1, a2, ... in the equation (3), we get the required solution which will be clear from the following
example.

Ex.1. Solve in series

 
2

2
21 2 2 0d y dyx x y

dxdx
   

Sol. Let the solution of the equation be
y = a0 + a1x + a2x

2 + ... .....(5)

 dy
dx

= a1 + 2a2x + 3a3x
2 + ...
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and
2

2
d y
dx

= 2a2 + 6a3x + 12a4x
2 + ...

Substituting the values of y, dy
dx

 and 
2

2
d y
dx

 in the given differential equation and simplifying, we

get
2a0 + 2a2 + 6a3x + (12a4 – 4a2)x

2 + (20a5 – 10a3)x
3 + ... = 0

Equating to zero, the coefficients of various powers of x, we obtain

a2 = – a0, a3 = 0, 02
4 5, 0

3 3
aaa a   

Substituting for as in equation (5), we get
4

2
1 0 1 ....

3
xy a x a x

 
      

 
which is the required solution.

9.2.1 Validity of The Power Series Method

In general an infinite series of the form

     20 0 1 0 2 0
0

....r
r

r
a x x a a x x a x x




      

is called a power aseries
Let us consider a differential equation

 
2

2 2
2 2 0d y dyx x x y

dxdx
   

If we assume a solution of the form
y = a0 + a1x + a2x

2 + ...
and solve the equation by the above method, we find that

a0 = 0, a1 = 0, a2 = 0, ...
This shows that the above equation has no series solution and if it is not so then what should be

the conditions under which the above equation admits of the  series solution.

9.2.2 Definitions

The following definitions will help us in establishing the validity of the series methods.
(a) Ordinary and singular points
If P(x0)  0, then x = x0 is called an ordinary point of (1), otherwise a singular point. If

P(x0) = 0, then P1(x) and/or P2(x) become unbounbed as x0  0, such a point is called singular point of eq.
(1). For example, in the Legendre equation

   
2

2
21 2 1 0,d y dyx x n n y

dxdx
    

the point x0 = 0 is an ordinary point because
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  2
0 01 0P x x    at x0 = 0,

while x0 =  1 are the singular points of the Legendre equation.

In Bessel’s equation  
2

2 2 2
2 0d y dyx x x n y

dxdx
     clearly, x0 = 0 is a singular point and all

other points are ordinary points.
It is found that every solution of the eq. (1) at the ordinary point is analytic.
(b) Regular singular point
A singular point x = x0 of (1) is called regular if the following conditions are satisfied

   
 0

0lim
x x

Q x
x x

P x
    

0
0 1lim

x x
x x p x


   = finite

and    
 0

2
0lim

x x

R x
x x

P x
    

0

2
0 2lim

x x
x x p x


   = finite

For more general functions than polynomials, x0 is a regular singular point of equation (1) if the

expressions    
 0

Q x
x x

P x
  and    

 
2

0
R x

x x
P x

  are analytic at x = x0, i.e., they have convergent Taylor’s’s

series expansion about x0.
where P(x), Q(x) and R(x) are polynomials in x and p1(x), p2(x) are defined by eq. (2).

(c) Irregular singular point
Any singular point of the equation (1) which is not a regular singular point is called an irregular

singular point. For example
(i) the differential equation

   
2

2
21 2 1 0d y dyx x x x y

dxdx
      has the singular points x0 = 0, x0 = 1 . It can be easily

seen that x0 = 0 is a regular singular point as

   10
lim 0
x

x p x


  
 20

2lim 0 0
1x

xx
x x

  


and    2
20

lim 0
x

x p x


    
 

2
20

1
lim 0 0

1x

x
x

x x


  



whereas x0 = 1 is an irregular singular point, since

   11
lim 1
x

x p x


  
 21 1

2 2lim 1 lim
11x x

xx
xx x 

       
 does not exist.

(ii) the point x0 = 1 is a regular singular point of the Legendre equation

   
2

2
21 2 1 0,    

d y dyx x n n y
dxdx

 since

   11
lim 1
x

x p x


    
 21

2
lim 1 1

1x

x
x

x
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and    2
21

lim 1
x

x p x


    
 

2
21

1
lim 1 0

1x

n n
x

x


  



In a similar manner, it can be shown that x0 = –1 is also a regular singular point of the Legendre
equation.

(c) Radius of convergence
Whether x0 is ordinary or singular point, the power series method for solving the differential equa-

tion (1) is based on the idea of expressing y as intinite series in powers of (x – x0). Here note that only
convergent series will yield desired solutions, if it exist.

A power series  0
0

r
r

r
a x x




  is said to converge at  a point x, if

 0
0

lim
m

r
rm r

a x x
 

  exists

Obviously if the series converges for x = x0 it may converge for all x or only for some values of x
for which the convergence tests studied in Real analysis may be used.

If there exists a number R  0, such that  0
0

r
r

r
a x x




  converges absolutely for | x – x0 | < R

and diverges for | x – x0 | > R, the number R is caled the Radius of convergence of the series.
For a series that converges no where except at x0, the radius of convergence is said to be zero. If

it converges for all x, we say that radius of convergence is infinite. Also note that 
1

lim ,r
r r

aR
a 

  pro-

vided the limit exists.

9.3 Series Solution Near an Ordinary Point

If x = x0 is an ordinary point of the equation (1), then each solution can be expressed in the form

y      0 0 1 1 2
0

,n
n

n
a x x a y x a y x




   

where a0 and a1 are arbitrary constants and y1 and y2 are linearly independent series solutions which are
analytic at x0.

Following examples will make the method more clear.

Ex.1. Solve in series  
2

2
22 2 2 0.d y dyx x y

dxdx
   

Sol. Since x0 = 0 is an ordinary point   2
0 0 02 0 at 0 ,i e P x x x      we assume the solu-

tion in the form

y  
0 0

0 r r
r r

r r
a x x a x
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Substituting for y, dy
dx

 and 
2

2
d y
dx

 in the given equation, we have

   2 2 1

0 0 0
2 1 2 2 0r r r

r r r
r r r

x a r r x x a rx a x
  

 

  

     
         

     
  

or      2

0 0
2 1 1 2 0r r

r r
r r

a r r x a r r x
 



 
     

Equating to zero, the coefficient of the smallest power of x i.e. xr – 2, we get
 2 ar r(r – 1) – ar – 2(r – 3) (r – 4) = 0

or ar
   

  2
3 4

2 1 r
r r

a
r r 
 




, r  2

This gives a2
0

2
a

 , a3 = 0; a4 = 0; a5 = 0; a6 = 0, .....

This shows that all the coefficients beyond a2 are zero.
Hence the solution of the given equation is given by

y = a0 + a1x + a2x
2

or y
2

0 11 .
2
xa a x

 
    

 

Ex.3. Solve the Legendre’s equation

    d y dyx x n n y
dxdx

2
2

21 2 1 0.    

Sol. Since x0 = 0 is an ordinary point   2
0 0 0. . 1 0 at 0i e P x x x    , therefore we may as-

sume the solution in the form

y  
0 0

0 r r
r r

r r
a x a x

 

 
    .....(1)

so that dy
dx

1

0

r
r

r
a r x





  and 

2

2
d y
dx

   2

0
1 r

r
r

a r r x





 

Putting these values, in the given equation, we get

     2 2 1

0 0 0
1 1 2 1 0r r r

r r r
r r r

x a r r x x a r x n n a x
  

 

  

     
          

     
  

or     2

0 0
1 1 0r r

r r
r r

a r r x a r n r n x
 



 
      

Equating to zero, the coefficient of xr the recurrence relation is given by
ar + 2(r + 2)(r + 1) – ar (r – n) (r + n + 1) = 0
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or ar + 2
  
  

1
,

1 2 r
r n r n

a
r r
  


   where r = 0, 1, 2 ..... .....(2)

The relation (2) gives even and odd coefficients in terms of the one immediately preceding it,
except for a1 and a2 which are arbitrary.

From (1), we find that

a2
 

0
1

2 1
n n

a
 




a4
  

2
2 2 1

3 4
n n

a
  




or a4
     

0
2 1 3

4 3 2 1
n n n n

a
  


  

and a3
  

1
1 2
3 2

n n
a

  




a5
  

3
3 4
5 4

n n
a

  




or a5
      

1
1 3 2 4

5 4 3 2 1
n n n n

a
   


   

and so on.
Putting these coefficients in (1), the solution of the given equation can be written as

y 
      2 4

0
1 2 1 3

1 ...
2 4

n n n n n n
a x x

    
    

 

        3 5
1

1 2 1 3 2 4
...

3 5
n n n n n n

a x x x
      

    
 

 y = a0 y1(x) + a1 y2(x).

9.4 Series Solution Near a Regular Singular Point

If x = x0 is a regular singularity of the equation (1) (§9.2), then at least one of the solutions can
be expressed as

y      0 0 0
0 0

m r m r
r r

r r
x x a x x a x x

 


 
      .....(1)

where ‘m’ may be a positive or negative integer or a fraction and is called the index of the series solu-
tion. This method of solution was suggested by George Frobenius (1849–1917) and is called Frobenius
method. We now discuss the method of solving equation (1) in the neighbourhood of a regular singular
point x = x0. Without loss of generality, we can take x0 = 0. If x0  0, we can transform the equation by
letting x = x0 = z.
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Since x0 = 0 is a regular singular point of the equation (1), its solution can be expressed in the
following form

0
0 0

, where 0m r m r
r r

r r
y x a x a x a

 


 
    .....(2)

9.4.1 Working Rule :

(i) Substitute the value of y, dy
dx

 and 
2

2
d y
dx

 in the given differential equation.

(ii) Rearrange the terms in powers of x and equate to zero the coefficient of lowest power of x.
This gives us a quadratic equation in m which is called the indicial equation.

(iii) Solve the indicial equation. The following cases arise :
(a) The roots of the indicial equation are different and not differing by an integer.
(b) The roots of the indicial equation are equal.
(c) The roots of the indicial equation are different, differing by an integer and also making a

coefficient of y infinite.
(d) The roots of the indicial equation are different, differing by an integer and making a

coefficient of y indeterminate.
(iv) We equate to zero the coefficient of general power of x (e g. xm + r or xm + r – 1 whichever

may be the lowest) in the equation obtained in step (ii). The equation so obtained will be

called the recurrence relation, because it connects together the coefficients am, am – 2 or

am, am – 1 etc.

(v) If the recurrence relation connects am and am – 2, then we, in general, determine a1 by equat-
ing to zero the coefficient of the next higher power. On the other hand, if the recurrence rela-
tion connects am, am – 1, this step may be omitted.

(vi) With the help of the recurrence relation all the as are determined in terms of  a0 and these as
will be put in eq. (2). Then replacing m by m1 and m2 and a0 by a and b respectively, we shall
obtain two independent solutions, say au and bv. Therefore the complete solution of the given

differential equation is given by
y = au + bv, where a and b are arbitrary constants.

The method is illustrated with the help of following examples %

Case I. When the roots m1, m2 of the indicial equation are different and not differing by
an integer, the complete solution is

   
1 2

1 2m my c y c y 

where c1 and c2 are arbitrary constants

Ex.1. Solve in series  d y dyx x x y
dxdx

2
2 2

22 1 0.   

Sol. Here x0 = 0 is a regular singular point as
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 0

lim 0
x

Q x
x

P x
      1 20 0

1lim 0 lim 0
22x x

xx p x x
x 

        
 

 finite

and    
 

2

0
lim 0
x

R x
x

P x
      

2
2 2

2 20 0

1 1lim 0 lim 0
22x x

xx p x x
x 

 
       

 
 finite

therefore we assume the series solution in the form

y 0
0

, 0m r
r

r
a x a





  .....(3)

Substituting for y, dy
dx

 and 
2

2
d y
dx

 in the given equation, we find that

      2 2 1 2

0 0 0
2 1 1 0m r m r m r

r r r
r r r

x a m r m r x x a m r x x a x
  

    

  

     
            

     
  

or    2

0 0
1 2 2 1 0m r m r

r r
r r

a m r m r x a x
 

  

 
         .....(4)

which is an identity. Now equating to zero, the coefficient of smallest power x i.e. xm (put r = 0 in the
first summation) then the equation (4) gives the indicial equation or quadratic equation in m as

a0(m – 1) (2m – 1) = 0
which implies that m = 1, 1/2 as a0  0
so the roots of the indicial equal are different and not differing by an integer.

To obtain the recurrence relation, we equate to zero the coefficient of xm + r and obtain

   2
1

1 2 2 1r ra a
m r m r 
    .....(5)

This formula connects ar with ar – 2. Now we proceed to find a1 as explained in step (v) of
§ 9.4.1. For this purpose, we equate to zero, the coefficient of next higher power of x i.e. xm + 1

(put r = 1 in the first summation), we get
a1[m(2m + 1)] = 0

Since the quantity within the bracket is not zero for any above values of m 11or ,
2

 
 
 

 this gives

a1 = 0
Since a1 = 0, then from (5), we have a3 = a5 = ... = 0.
Also taking r = 2, in (5), we get

a2    0
1

1 2 3
a

m m


 
.....(6)

Next taking r = 4, in (5) and using (6), we obtain

a4      0
1

1 3 2 3 2 7
a

m m m m


   
and so on.
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Putting these values in (3), i.e. y  = xm[a0 + a1x + a2x
2 + a3x

3 + ...] gives

       
2 4

0 1 ...
1 2 3 1 3 2 3 2 7

m x xy a x
m m m m m m

 
          

.....(7)

Putting m = 1, and replacing a0 by a in (7), we get

y 2 41 11 ...
2 5 2 4 5 9

ax x x au          
 (say)

Next putting m = 1/2, and replacing a0 by b, we obtain

y
2 4

1 2 1 ...
2 3 2 3 4 7

 
         

x xbx bv  (say)

Therefore the complete solution is given by
y = au + bv,

where a and b are arbitrary constants.
Ex.2. Solve the Gauss hypergeometric equation

    
2

21 1 0d y dyx x x y
dxdx

         

in series in the neighbourhood of the regular singular point (i) x = 0 (ii) x = 1 and (iii) x = .
Sol. Given

    
2

21 1 0d y dyx x x y
dxdx

          .....(8)

Dividing by x(1 – x), we get

  
   

2

2
1

0
1 1

xd y dy y
x x dx x xdx

     
  

 

Comparing it with y + p1(x) y + p2(x) y = 0, we have

p1(x)   
 

1
1

x
x x

  




  

and p2(x)  1x x





Since x p1(x) and x2 p2(x) both tends to a finite value at x = 0,  so x = 0 is regular singular point
of (8).

Case I. Solution in the neighbourhood of x = 0.
We assume that the given equation (8) has the solution of the form

y 0
0

, 0m r
r

r
a x a





  .....(9)

Substituting the values of  y,  yand yin the given equation (8), we get

    2 2

0
1 m r

r
r

x x a m r m r x
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     1

0
1 0m r m r

r r
r

x a m r x a x


  



 
           

    

or       1

0 0
1 0m r m r

r r
r r

a m r m r x a m r m r x  
 

  

 
           ....(10)

which is an identity. Equating to zero, the coefficient of the smallest power of x i.e. xm – 1 (put
r = 0 in the first summation), we get the indicial equation as

a0m(m – 1 + ) = 0, a0  0
This gives m = 0, 1 – 
To obtain the recurrence relation, we equate to zero the coefficient of x m + r – 1. Then we have

ar(m + r) (m + r –1 + ) – ar –1(m + r –1 + ) (m + r –1 + ) = 0

or ar
  

   1
1 1

1 r
m r m r

a
m r m r

 
 

     


   
.....(11)

For the solution corresponding to m = 0, the recurrence relation (11) reduces to

ar
  

  1
1 1

1 r
r r

a
r r 

   


 
 


from which it follows that

a1 01
a 







,

a2

   
 

   
 1 0

1 1 1 1
2 1 1 2 1

a a
     

  
   

 
   

and so on.
Putting these values and m = 0 and replacing a0 by a in (2) gives

y    
 

21 1
1 ....

1 1 2 1
a x x
  

       

    
  

.....(12)

If we take a = 1 in (12), the series on the right hand side of (12) is called the hypergeometric
series and is represented by 2F1 (, , ; x). Thus we see that 2F1 (, , ; x) is a solution of (8).

For the solution corresponding to m = 1 – , when 1 –  is neither zero nor an integer, the
recurrence relation (11) reduces to.

ar
   

   1
1 1 1 1

1 1 1 r
r r

a
r r

   
   

       


     

or ar

   
  1

1 1
1 r

r r
a

r r 
    


  

 


.....(13)

where = 1 –  +,  = 1 –  + ,  = 2 –  .....(14)
Replacing r = 1, 2, 3, .... successively in (13), we have

a1 01
a 
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a2
  

 
   

 1 0
1 1 1 1

2 1 1 2 1
a a

     
  

        
 

     
 etc.

Hence putting m = 1 – ..., using the above values of a1, a2 ... in (9) and replacing a0 by b gives

y    
 

1 21 1
1 ....

1 1 2 1
bx x x     

  
       

         
.....(15)

If we take b = 1 in (15), the series on the right hand side of (15) would be
x1 – 

2F1 (, ; ; x) i.e. x1 –  2F1 (1 –  + ,1 –  +; 2 –  ; x)
which is another independent solution of (8).
Hence the general solution of (8) is

y = a 2F1 (, ; ; x) + bx1– 2F1 (1 –  + ,1 –  +; 2 –  ; x) ....(16)
which a and b are arbitrary conatants.

Case II. Solution in the neighbourhood of x = 1.
It can be easily see that

   1
1

lim 1
x

x p x


     
 1

1
lim 1

1x

x
x

x x

  
  



  
 finite value

and    2
2

1
lim 1
x

x p x


    
 

2
1

lim 1 0
1x

x
x x


   




 finite value

so x = 1 is also a regular singular point of (8).
If we substitute  = 1 – x in the equation (8), it reduces to

    
2

21 1 1 0d y dy y
dd

                 


.....(17)

On comparing (8) and (17), we find that (17) is the same as (8) except that  is replaced by
+  – +1 and x by .

Hence the solution (16) of (8) near x = 0 will be valid for (17) near  = 0, i.e. near x = 1.
Hence in this case, the required solution will be

y = A2F1 (, ; +  –  + 1; 1 – x)
+ B(1 – x)– +  2F1 (  – , –;  – – + 1; 1 – x) .....(18)

where  –– is neither zero nor an integer
Case III. Solution in the neighbourhood of x = .
To find the solution of the given hypergeometric differential equation (8) for large values of the

independent variable i.e. about x = , we change the independent variable from x to t  with the help of
the following transformation x = 1/t   i.e.,    t = 1/x .....(19)

Clearly large values of x correspond to small values of t. Using the above equation (19), we
rewrite (8) and obtain the transformed equation near t = 0, say

   
2

1 22 0d y dyp t p t y
dxdx

   .....(20)
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Then the given equation (8) is said to have a regular singular point at x =  if the transformed
equation (20) has regular singular point at t = 0.

For x 2
1 1 1or , dtt
t x dx x


   .....(21)

and y 2
2
1 

     
 

dy dy dt dy dyt
dx dt dx dt dtx

.....(22)

Also y
2 2

4 3
2 2 2          

   

d y d dy d dy dt d y dyt t
dx dx dt dx dx dtdx dt

.....(23)

Using (21), (22) and (23), the given equation (8) transforms to

      
2

2
21 2 1 1 0d y dyt t t t t y

dtdt
            .....(24)

To solve (24), let its series solution be

y 0
0

, 0m r
r

r
a t a





  .....(25)

so that   1

0

m r
r

r

dy a m r t
dt


 


   and   

2
2

2
0

1


 


    m r

r
r

d y a m r m r t
dt

Putting these values of y, dy
dt

 and 
2

2
d y
dt

 in (24), we get

    

    

3 2 2

0

1

0 0

1

2 1 1 0


 


 

  

 

   

        



 

m r
r

r

m r m r
r r

r r

t t a m r m r t

t t t a m r t a t   

or        1

0 0
1 0

 
  

 
          m r m r

r r
r r

a m r m r t a m r m r t    .....(26)

which is an identity. Equating to zero, the coefficient of the smallest power of t (put r  = 0, in the first
summation), we get

a0(m –) (m – ) = 0 m = ,  as a0  0
Next equating to zero, the coefficient of  tm + r + 1 in (26), we find that

ar + 1
  

  
1

1 1 r
m r m r

a
m r m r


 

   


     
.....(27)

For the solution, corresponding to m = , the recurrence relation (27) reduces to

ar + 1

   
   

1
1 1 r
r r

a
r r
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from which it follows that a1

 
  0

1
1 1

a
 


  
  

 

a2

  
 

    
  1 0

1 2 1 1 2
2 2 1 2 1 2

a a
       

 
       

        
     

and so on.
Putting these values and replacing a0 by A in (25), gives

y  
 

    
   

21 1 1 1 1
1 ...

1 1 1 2 1 1 1
At t t         

     
        

             

   
 0

1
1

k
k k

k k

tAt
k





 


    

 

or y
   
 0

11 1 1
1

k
k k

k k
A

x k x





            


   

 

or y 2 1
1,1 ; 1 ;       

 
Ax F

x
      .....(28)

By symmetry for m = , we get

y 2 1
1,1 ;1 ;Bx F
x

            
 

.....(29)

Therefore the complete solution of the Gauss hypergeometric equation when  –  is neither
zero nor an integer, is given by

y 2 1
1,1 ;1 ;Ax F
x

            
 

 2 1
1,1 ;1 ;Bx F
x

            
 

Case II. When the roots m1, m2 of the indicial equation are equal, the complete

solution is  m
m

yy c y c
m1

1

1 2 .     

This case is illustrated in the following example :

Ex.3. Solve in series    
2

21 1 5 4 0d y dyx x x y
dxdx

    

Sol. Since x0 = 0 is a regular singular point therefore we assume that the solution is of the form

y
0

m r
r

r
a x





 ,   a0  0 .....(30)

Putting the values for y, dy
dx

 and 
2

2
d y
dx

 in the given equation and rearranging the terms, we get
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   2 21

0 0
2 0m r m r

r r
r r

a m r x a m r x
 

  

 
      .....(31)

Equating to zero, the coefficients of  lowest power of x, the indicial equation gives
a0m

2= 0m = 0, 0 as a0  0.
Since both the values of m are equal so it gives us only one independent solution. Equating to

zero, the coefficient of xm + r, we find that

ar + 1

22
1

      
r

m r a
m r

.....(32)

Which gives a1 0

22
1

    
m a
m

a2 1

2 2

0
3 3
2 1

            
m ma a
m m

and so on.
Hence the solution is given by

y 
2 2 2

2 3
0

2 3 41 ...
1 1 1

                           

m m m ma x x x x
m m m

.....(33)

Putting m = 0 and replacing a0 by a  in (33) gives
y = a [1 + 22x + 32x2 + 42x3 + ...] = au  (say) .....(34)

To get the second solution, we procecd as follows :
Rewriting (33)

2 2
1 2

0
2 3 ....
1 1

m m mm my a x x x
m m

                   
which on differentiation with respect to x gives

   
2 2

1 1
0

2 31 2 ....
1 1

m m mdy m ma mx m x m x
dx m m

                     
and

      
2 22

2 1
02

2 31 1 2 1 ....
1 1

m m md y m ma m m x m mx m m x
m mdx

                       

Putting the values of y, dy
dx

 and 
2

2
d y
dx

 in the left hand side of the given equation, we get

        
2 2

2 2 1
0

2 31 1 1 2 ...
1 1

m m mm mx x a m m x m m x m m x
m m
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2 2

1 1
0

2 31 5 1 2 ...
1 1

m m mm mx a mx m x m x
m m

 
                     

2 2
1 2 2 1

0 0
2 34 ...
1 1

m m m mm ma x x x a m x
m m

                     

The coefficient of remaining powers of x being zero, it can be easily verified by considering the
coefficients one by one.

Thus we may write

   
2

2 2 1
02 1 5 4 md y dyx x x y a m x

dxdx
    

which on partial differentiation with respect to m, gives

   
2

2 1 2 1
0 02 1 5 4 2 logm md dx x x y a mx a m x x

m dxdx
  

      
   

Since the operators are commutative, therefore the above relation may be rewritten as

   
2

2 1 2 1
0 02 1 5 4 2 logm md d yx x x a mx a m x x

dx mdx
   

      
  

Putting m = 0, we get

   
2

2
2

0
1 5 4



             m

d d yx x x
dx mdx

which shows that 
0m

y
m 

 
  

 is a second solution of the given differential equation.

Hence differentiating (33) partially with respect to m, we get

2 2
2

0
2 3log 1 ...
1 1

my m ma x x x x
m m m

                    

       
 
 

0 2
22 12 ...

1 1 1
m mma x x

m m m

               
  

 
 

2
2

33 12 ...
1 1 1

                

mm x
m m m

Putting m = 0 and replacing a0 by b gives

0m

y
m 

 
    2 2 2log 1 2 3 ...b x x x          22 2 1 2 3 1 3 ....      b x x


0m

y
m 

 
     2log 2 1 2 2 3 ... ,b u x x x bv              (say)
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Thus the required solution is
y = au + bv,

where a and b are arbitrary constants.
Case III. When the roots m1, m2 (m1 > m2) of the indicial equation are different and

differing by an integer and also making a coefficient of y infinite.
Working Rule. If the indicial equation has unequal roots, say m1 and m2 (m1 > m2) differing by

an integer and if some of the coefficients of y become infinite when m = m2, we modify the form of y by
replacing a0 by d0(m – m2) where d0  0. Then two independent solutions can be obtained by putting

m = m2 in the modified form of y and y
m



. In this case the solution by putting m = m1 in y is rejected

because it only gives a numerical multiple of the solution obtained by putting m = m2 in modified y. Thus
the complete solution is

y  
2

2

1 2m
m

yc y c
m
     

Ex.4. Solve  
2

2 2
2 1 0d y dyx x x y

dxdx
     in series.

Sol. Given  
2

2 2
2 1 0d y dyx x x y

dxdx
    .....(35)

Since x = 0 is a regular singular point as x p1(x) and x2 p2(x) tends to a finite limit as x  0,
therefore  we assume the solution of the given equation (35) in the form

y 0
0

, 0m r
r

r
a x a





 

then      1 2

0 0
, 1m r m r

r r
r r

y a m r x y a m r m r x
 

   

 

       

Substituting for y, y and y in (35), then it gives

      2 2 1 2

0 0 0
1 1 0m r m r m r

r r r
r r r

x a m r m r x x a m r x x a x
  

    

  
         

or       2

0 0
1 1 0m r m r

r r
r r

a m r m r m r x a x
 

  

 
          

or    2

0 0
1 1 0m r m r

r r
r r

a m r m r x a x
 

  

 
       .....(36)

which is an identity. Equating to zero, the coefficients of the smallest power of x, namely xm (put r = 0 in
the first summation), gives the indicial equation

a0(m + 1) (m – 1) = 0
so that m= 1, – 1 as a0  0 .....(37)
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The roots given by (37) are different and differing by an integer.
To obtain the recurrence relation, we equate to zero, the coefficient of xm +  r and obtain

ar(m + r +1) (m + r –1) + ar – 2 = 0

or ar    2
1

1 1 ra
m r m r 




   
.....(38)

[Since (38) gives the relationship between ar and ar – 2, we proceed to find a1 as explained in
step (v) of § 9.4.1]

Equating to zero, the coefficient of xm + 1 in (36) (put r = 1 in the first summation), we find that
a1(m + 2)m = 0,    giving a1 = 0

Since the quantity within the bracket is not zero for any above values of m.
From (38) and a1 = 0, we have

a1 = a3 = a5 = a7 = ... = 0
Further, taking r = 2 in (38), we get

or a2    0
1

3 1
a

m m
 

 
.....(39)

For r = 4, in (38) and using (39), we find that

a4        
2 02

1 1
5 3 1 3 5

a a
m m m m m

  
    

Putting these values in 
0

,m r
r

r
y a x





   we get

       
2 4

0 2
1 11 ...

1 3 1 3 5
my a x x x

m m m m m

            
.....(40)

Since the factor (m + 1) appears in the denominator, the coefficient of y will be infinite for
m = –1.

To overcome this difficulty, we put a0 = d0(m + 1), of course the condition a0  0 is now vio-
lated, therefore we assume in its place d0  0. The above equation (40) becomes

y        

2 4
0 21 ...

3 3 5
m x xd x m

m m m

 
     

   
.....(41)

Putting m = –1 and replacing d0 by a, we get

y 1 2 4
2

1 1 ...
2 2 4

ax x x au  
       

 (say) .....(42)

The obtain another solution, m = –1 will be substituted in y
m
 

  
 obtained from (41).
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Now
y
m



       

2 4
0 2log 1 ...

3 3 5
m x xd x x m

m m m

 
     

   

         

2
4

0 2 3 2 2
2 11 ...

3 3 5 3 5
m xd x x

m m m m m

         
        

Putting m = –1, replacing d0 by b, the second solution will be obtained as

1m

y
m 

 
  

1 2 4
2

1 1log ...
2 2 4

bx x x x  
      

 
1 2 4

2 2
1 1 2 11 ...

2 42 2 4
bx x x           

2
1 4

2 2 2
5log 1 ...

2 2 4
  

     
  

xbu x bx x

2
1 4

2 2 2
5log 1 ...

2 2 4
xb u x x x         

    
.....(43)

= b v (say)

Hence the complete solution of the given differential equation is

y = au + bv.

Note : If we substitute m = 1 and 0
1
2

d  in (41), we get

y
4

2
2

11 ...
2 4 2 4 6

xx x
          

y
3 5

2 . 2
2 4 2 4 6
x xx u

            

which gives no new independent solution.

Case IV. When the roots m1, m2 of the indicial equation are different and differing by

an integer and also making a coefficient of y indeterminate.

Working Rule. If the indicial equation has two different roots say m1, m2 (m1 > m2) differing by

an integer and if one of the coefficients of y become indeterminate when m = m2, the complete solution

is given by putting m = m2 in y, which contains two arbitrary constants. In this case, the solution obtained

by putting m = m1 in y  is rejected because it only gives a numerical multiple of one of the series con-

tained in the first solution.
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Ex.5. Solve    d y dyx x x x y
dxdx

2
2 2

2 9 0      in series.

Sol. Since x0 = 0 is a regular singular point, we assume the solution in the form

y
0

m r
r

r
a x





 ,   a0  0

then       2 2 2 1

0 0
1 m r m r

r r
r r

x a m r m r x x x a m r x
 

   

 

   
        

      
 

 
0

9 0m r
r

r
x a x






 
   

  


or        1

0 0
1 9 1 0m r m r

r r
r r

a m r m r m r x a m r x
 

  

 
            

or      1

0 0
3 3 1 0m r m r

r r
r r

a m r m r x a m r x
 

  

 
          

which is an identity. Equating to zero, the coefficient of the smallest power of x, namely xm

(putting r = 0 in the first summation), we get
a0(m – 3) (m + 3) = 0,  m = 3,  –3   (    a0  0)

The roots of the equation are different and differing by an integer. To obtain the recurrence rela-
tion, we equate to zero, the coefficient of the general term i.e. xm + r, we get

ar(m + r + 3) (m + r – 3) + ar – 1(m + r) = 0

or ar

 
   13 3 r

m r
a

m r m r 
 


   

.....(44)

Taking m = –3, we get ar

 
  1

3
6 r

r
a

r r 
 




Thus for r = 1, we have a1 0
2

5
a

  and for r = 2, 3, 4, 5, and 6 we have

a2 1 0
1 2 1
8 5 8

a a   

a3 = 0, a4 = 0, a5 = 0 and

a6

 
  5
6 3 0

6 6 6 0
a

 
 


 (inderminate)

and may be taken as a free constant

Also a7 6 8 7 6
4 5 4 5and

7 16 7 16
a a a a  

  


and so on.
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 y 2 3
0 1 2 3

0
...m r m

r
r

a x x a a x a x a x






       

y 3 2 6 7 8
0 1 2 6 7 8 ...x a a x a x a x a x a x         

3 2
0 0 0

2 1 2
5 8 5

x a a x a x       
3 6 7 8

6 6 6
4 4 5 ...
7 7 16

x a x a x a x       

 y 3 2 3 2
0 6

2 2 1 4 4 51 1 ...
5 5 8 7 7 16

                 
a x x x a x x x

This contains two arbitrary constants a0 and a6 and therefore may be taken as the complete so-
lution

Note. If we put m = 3 in (44), we get a series solution

y 3 2
0

4 4 51 ...
7 7 16

a x x x      
which gives no new independent solution.

9.5 Series Solution in Descending Powers of the Independent Variable

Till now we have obtained series solutions in ascending powers of the independent variable. How-
ever, the following cases may arise.

(i) There exists no solution of the form 
0

m r
r

r
a x





 .

(ii) The usual Frobenius method breaks down.
(iii) The series solution obtained by earlier methods does not converge.
In such cases we obtain the series solution in descending powers of the independent variable.

Sometimes, the series solution in descending powers are desirable and are more useful in practice.
Working Rule

(i) We assume a solution of the form 0
0

, 0m r
r

r
y a x a





 

(ii) For indicial equation, we equate to zero the coefficient of the highest power of x in the iden-
tity.

(iii) For recurrence relation, the coefficient of the higher power, in general, in the identity is equated
to zero.

To illustrate the method we consider following examples :
Ex.1. Integrate in descending series the Legendre’s equation or determine the solution of

Legendre’s equation.
Sol. The differential equation of the form

(1 – x2) y– 2x y + n(n + 1) y = 0 .....(1)
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is called the Legendre’s equation, where n  N. Let the series solution  of (1) be of the form

y 0
0

, 0m r
r

r
a x a





  .....(2)

Substituting the values of y, y and y  in the given equation, we get

        2 2 1

0 0 0
1 1 2 1 0m r m r m r

r r r
r r r

x a m r m r x x a m r x n n a x
  

    

  
          

or      2

0 0
1 1 0m r m r

r r
r r

a m r m r x a m r n m r n x
 

  

 
           .....(3)

which is an identity. Equating to zero, the coefficient of the highest power of x, namely xm, (put
r = 0 in the second summation), we get the indicial equation

a0(m – n) (m + n + 1) = 0
Since a0  0 m = n, – (n + 1)

which shows that the roots are different.
To obtain the recurrence relation, we equate to zero the coefficient of xm – r and obtain

ar –2(m – r + 2) (m – r + 1) – ar(m – r – n) (m – r + n + 1) = 0

or ar
  

   2
2 1

1 r
m r m r

a
m r n m r n 

   


    
.....(4)

Here we need to evaluate a1. It can be done by equating to zero, the coefficient of the next
lower power of x i.e. xm – 1, which gives

a1(m – 1 – n) (m + n) = 0
 a1 = 0, since the quantity within the bracket is not zero for any above values of m
Since a1 = 0, then from (4), we have a3 = a5 = .... = 0

Also a2
 

   0
1

2 1
m m

a
m n m n




   

a4
  

    2
2 1
4 3

m m
a

m n m n
 


   

a4
   

     0
1 2 3

2 4 1 3
m m m m

a
m n m n m n m n

  


       
Putting these values in (2), the solution is.

 
  

    
     

2 4

0
1 1 2 3

1 ...
2 1 2 4 1 3

m m m x m m m m x
y a x

m n m n m n m n m n m n

     
    

             
.....(5)

When m = n, replacing a0 by a, in (5) one of the solution is

 
 

   
  

2 41 1 2 3
1 ...

2 2 1 2 4 2 1 2 3
n n n n n n n

y ax x x au
n n n

     
         

 (say) .....(6)
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When y = –(n +1) and replacing a0 by b, in (5) the other solution is

  
 

     
  

1 2 41 2 1 2 3 4
1 ...

2 2 3 2 4 2 3 2 5
n n n n n n n

y bx x x bv
n n n

         
          

 (say) .....(7)

Hence the complete solution is
y = au + bv,

where a and b are arbitrary constants.

Self Learning Exercise

Fill up the blanks :
(1) The ordinary point of (x2 – 1) y + xy – y = 0 is ... ...
(2) For differential equation 2x2y + 7x(x + 1) y – 3y = 0, x = 0 is a ... ... singular point.
(3) The regular and irregular singular points of the differential equation

x2(x + 1)2 y + (x2 – 1) y + 2y = 0
are ........... and ............... respectively

(4) The nature of the point x = 0 for the equation xy + y sin x = 0 is ..... .

9.7 Summary

In this unit you studied the Frobenius method for finding the solution of a linear differential equa-
tion of second order with variable coefficient near ordinary and regular singular points. Various cases of
this important method were discussed and illustrated with the help of examples.

9.8 Answers to Self Learning Exercise

(1) x = 0 (2) Regular (3) x = 0 and x = – 1 (4) Regular singular

9.9 Exercise

Solve the following differential equations in series :
1. (1 – x2) y2 – xy1 + 4y = 0

[Ans.  2 3 5 7
0 1

1 1 11 2 ...
2 8 16

       
 

y a x a x x x x ]

2. (1 – x2) y2 + 2xy1 + y = 0

[Ans. 2 4 6 3 5 7
0 1

1 1 1 1 1 31 ... ...
2 8 18 2 40 560

y a x x x a x x x x              
   

]

3. y2 + x2y = 0

[Ans. 4 8 3 5
0 1

1 1 1 11 ... ...
3 4 3 4 7 8 4 5 4 5 8 9

y a x x a x x x                      
]

4. (2 + x2) y2 + xy1 + (1 + x) y = 0

[Ans. 2 3 4 3 4 5
0 1

1 1 5 1 1 11 ... ...
4 12 96 6 24 24

y a x x x a x x x x              
   

]
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5. 2x(1 – x) y2 + (1 – x) y1 + 3y = 0

[Ans.  2 3 4 1 23 3 31 3 ... 1
1 3 3.5 5 7

y a x x x x bx x           
]

6. x2y2 + xy1 + (x2 – n2) y = 0, when n is not an integer.

[Ans.     
2 41 11 ...

4 1 4 8 1 2
ny ax x x

n n n
      

     

    
2 41 11 ...

4 1 4 8 1 2
nbx x x

n n n
            

]

7. (2x + x3) y2 – y1 – 6xy = 0

[Ans. 2 4 63 3 11 3 ...
5 5 9

y a x x x       
 3 2 2 4 63 3 1 3 1 51 ...

8 8 16 8 16 24
bx x x x           

]

8. 9x(1 – x) y2 – 12y1 + 4y = 0

[Ans. 2 31 1 4 1 4 71 ...
3 3.6 3 6 9

y a x x x          

7 3 2 38 8 11 8 11 141 ...
10 10 13 10 13 16

bx x x x           
]

9. 4xy2 + 2y1 + y = 0

[Ans. 
2 2

1 21 ... 1 ...
2 4 3 5
x x x xy a bx

   
           

   
]

10. x(1 – x) y2 + 3y1 + 2y = 0

[Ans. 
3

2 4 41 1 11 ... ...
2 24 6 12

xy a x x b x x
                

]

11. xy2 + y1 + xy = 0

[Ans. y = ay1 + by2, where 2 4
1 2 2 2

1 11 ...
2 2 4

y x x      
and

2 4 6
2 1 2 2 2 2 2 2

1 1 1 1 1 1log 1 1 ...
2 2 32 2 4 2 4 6

y y x x x x                     
]

12. (x – x2) y2 + (1 – x)y1 – y = 0

[Ans.    2 3 22 2 5log 1 ... 2 ...
4 4 9

y a b x x x x b x x            
]

13. xy2 + (1 + x)y1 + 2y = 0

[Ans.   2 3 23 4 1 3 1 1log 1 2 ... 2 2 2 ...
2 3 2 2 2 3

y a b x x x x b x x
                       

     
]
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14. x(1 – x2) y2 + (1 – 3x2)y1 – xy = 0

[Ans.  
2 2 2

2 4 4
2 2 2

1 1 3 1 21log 1 ... ...
4 1282 2 4

y a b x x x b x x
                 

]

15. x(1 – x) y2 – (1 + 3x)y1 – y = 0

[Ans.     2 3 2log 1 2 2 3 ... 1 5 ...y a b x x x b x x         ]

16. xy2 + xy1 + (x2 – 4)y = 0

[Ans.   2 4 6 8
2 3 3 2
1 1 1log ...

2 4 2 4 6 2 4 6 8
y a b x x x x x        

      

2 2 4 6
2 2 2 2 2 2

1 1 11 ...
2 2 4 2 4 6

bx x x x          
]

17. x(1 – x) y2 – 3xy1 – y = 0

[Ans.     2 3 2log 2 3 ... 1 ...y a b x x x x b x x         ]

18. x2y2 + x(1 + 2x)y1 – 4y = 0

[Ans. 2 2 2 2
0 4

4 2 4 41 1 ...
3 3 5 10

y a x x x a x x x             
   

]

19. (1 – x2)y2 + 2xy1 + y = 0

[Ans. 
3

2 4 5
0 1

1 1 11 ... ...
2 8 2 40

xy a x x a x x
                

]
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Unit 10 : Gauss Hypergeometric Function: its Properties And
Integral Representation

Structure of the Unit

10.0 Objective

10.1 Introduction

10.2 Convergence of the Series

10.3 Special Cases of the Gauss Function

10.4 Integral Representation

10.4.1 Deductions

10.5 Gauss Hypergeometric Differential Equation and Its Solution

10.6 Two Summation Theorems

10.6.1 Theorem 1

10.6.2 Theorem 2

10.7 Summary

10.8 Answers of Self -Learning Exercise

10.9 Exercise

10.0 Objective

The aim of  this unit is to study a special function known as Gauss hypergeometric function. Also
its special cases, properties, convergence conditions and summation theorems such as Gauss’s theorem,
Kummer’s theorem and Vandermonde’s theorem are obtained.

10.1 Introduction

The series

   
 

     
   

2 31 1 1 2 1 2
1 ...

1 2 1 2 3
a a b b a a a b b bab z zz

c c c c c c
     

   
   .....(1)

is called the Gauss series or the Ordinary hypergeometric series. It is usually represented by the symbol

2F1 (a, b ; c ; z), The three quantities a, b and c are called the parameters and z is the variable of the
series. All these four quantities may be any number, real or complex. In the notation 2F1 (.), the left suffix
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2 and the right suffix 1 indicate the number of parameters in the numerator and denominator respec-
tively. If either of the parameters a or b (or both) is a negative integer, the series terminates i.e. it has
only a finite number of terms and becomes in fact a polynomial. Also when c is zero or a negative inte-
ger, the series is not defined.

C.F. Gauss carried out an exhaustive study of this function in a systematic way and Euler dis-
covered many properties of the function.

The function has its importance because of its application in solving various problems arising in
physical and engineering sciences. It is interesting to note that apart from the elementary functions such
as exponential function, logarithmic function, sine and cosine functions etc., it is also possible to derive
Bessel’s functions, Kummer’s confluent hypergeometric function, Bessel polynomials, Hermite polyno-
mials, Jacobi polynomials etc. either as a limiting case or as a special case of this function.

If we introduce the conventional notation (Pochammer symbol)

 n  
       1 2 ... 1 , 1
a n

n n
 

          
 

.....(2)

and  0 1, 0   ,
then the equation (1) can be written in the contracted form

2F1(a,b; c; z) or 2 1
,

;
a b

F z
c

 
 
   

   
 0

n
n n

n n

a b z
c n




  .....(3)

As pointed out earlier, in general a, b, and c are complex parameters and z is a complex vari-
able. If a or b is a negative integer then series terminates. Also c is neither zero nor a negative integer i.e.
c 0,–1,–2, .....

From (1), it follows easily that
(i) 2F1 (a, b; c; 0) =1
(ii) 2F1 (a, b; c; z) = 2F1(b, a; c; z)
The last property indicates that the hypergeometric function is symmetric in the upper param-

eters a and b.

10.2 Convergence of the Series in (3)

To test the convergence of the series in (3), let us apply the D’ Alembert’s ratio test. We see
that

1lim n
n n

u
u




   
 

 
   

1
1 1

1
lim

1

n
n n n

nn n n n

a b z c n
c n a b z


 

 
 



  
 

lim
1n

a n b n z
c n n

 
 

 

z ,
so long as non of a, b, c is zero or a negative interer.
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Therefore, the series converges absolutely within the circle of convergence if | z | <1 and di-
verges outside the circle of convergence i.e. | z | >1, provided that c is neither zero nor a negative inte-
ger. If either or both of a and b is zero or a negative integer, the series terminates, and convergence does
not enter the discussion.

For | z | =1, i.e. on the circle of convergence, the test fails. In this ease, let us compare this
series with the series

nv 1
1

1 ,
n n








where 2  = Re (c – a – b) > 0.

Since lim n
n n

u
v

   
 

1n n

n

a b
n

c n
 

   
 

11 1lim
1 1

c
n n

a b c a bn n

a b n n n n
cn n n n n n



 

  
 

   

 
 

 
 

 
 

111 1 1lim
1 1

c

a b c a bn

n n ca n b n n n
a b c n nn n n n n



 

     
      

      

But we know that  
1lim 1

z

n

n n
z n




 

therefore lim n
n n

u
v

 
     

1lim 0,c a bnn

c
a b   


  
 

because Re (c – a – b –  ) = 2  –  >0, therefore the series in (3) is absolutely convergent on
| z | = 1 when Re (c – a – b) > 0.

To summarise, we conclude that the hypergeometric series (3) or (1) is
(a) absolutely convergent within the circle of convergence | z | < 1
(b) divergent outside the circle of convergence  | z | > 1.
(c) for | z | = 1 i.e. on the circle of convergence, it converges absolutely if Re (c – a – b) > 0. It

also converges conditionally for z = –1 if – 1 < Re (c – a – b)  0, and divergent if Re (c – a – b)

 – 1.

10.3 Special cases of the Gauss function

When a = 1, b = c, the R.H.S. of (1) reduces to

2 11 ..... , | | 1
1

z z z
z

    


which is simply a geometric series. This is why (1) called the hypergeometric series.
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Most of the elementary functions which occur in Mathematical Physics, can be expressed in terms

of the Gauss function. For example,

(i) 2 1 ( , ; ; )F a b b z
 

0

nn

n

a
z

n




        

0
1 .... 1

n

n

z
a a a n

n






      

or 2F1 (a, b; b; z) = (1 – z)–a

This is simply a statement of the Binomial theorem for | z | < 1.

(ii) 2 1 (1,1;2; )F z 
   

0

1 log 1
1

n

n

z
z

n z






 



(iii) For | z | < 1,  
 

2
2 1

11 3 1( ,1; ; ) log
2 2 2 1

z
F z

z z





(iv) Since 2 1
1

1 2 1(1; ;1; ) 1 1 1 .... 1 ,
n

n

z n zF b
b b b b n





                    


therefore, 2 1
0 0

lim 1, ;1;
n

z
b n

z zF b e
b n



 

      
  



(v) 2 1
2 1

1 1 3 1, ; ; sin
2 2 2

F z z
z

   
 

(vi) 2
2 1

1 3,1; ;
2 2

F z   
11 tan z

z


The Legendre polynomial Pn (x) is defined as the coefficient of zn in the expansion, in ascending

powers of z, of (1–2xz + z2)–1/2. By direct expansion, we can prove that the coefficient is in fact

2 1
1 1,1 ;1;
2 2

F n n x     
 = Pn (x). This result is known as Murphy’s formula.

Other elementary special cases are

2 1
1 1, ; ;
2 2

F a a z   
   2 21 11 1

2 2
a a

z z
 

   

2 1
1 , ;2 ;
2

F a a a z   

1 21 1 1
2 2

a
z


     

and  2 1 2 , 1; ;F a a a z    2 11 / 1 az z   

10.4 Integral Representation

If | z | < 1 and if Re (c)> Re (b) > 0, then
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B (b, c – b)  2F1 (a, b ; c ; z)    
1

11

0

1 1c b abt t zt dt    

or 2F1 (a,b;c;z)
 

       
1

11

0

1 1c b abc
t t zt dt

b c b
  

  
    .....(1)

Proof. Let I    
1

11

0

1 1c b abt t zt dt    

     1
11

00

1
r

c bb r

r

a zt
t t dt

r


 



  
Now interchanging the order of integration and summation, we see that

I
   

1
11

0 0

1
r

c bb rr

r

a z
t t dt

r


  



  

   
 

 
0

r
r

r

a zb r c b
c r r





   
 

 

 
       

 0

r
r r

r r

a bb zc b
c c r






   
 

= B (b, c – b) 2F1 (a, b ; c ; z)

10.4.1 Deductions from integral representation

As a consequence of equation (1), we derive the Gauss’s theorem which gives rise to

Vandermonde’s theorem of the hypergeometric function. Kummer’s theorem is also derived. These

theorems are of great importance in the study of various special functions of mathematical physics.

(a) Gauss’s theorem. If Re (c – a – b) > 0, Re (c) > 0, then

 F a,b;c;2 1 1
   
   
c c a b
c a c b

   

   

Prof. Putting z = 1 in the equation (1), we get

 2 1 , ; ;1F a b c
 

     
1

11

0

1 c a bbc
t t dt

b c b
  

 
   

= 
 

   
   

 
c b c a b

b c b c a
    

    

  2 1 , ; ;1F a b c = 
   
   
c c a b
c a c b

   
    .....(2)
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(b) Vandermonde’s theorem

 F n b c2 1 , ; ;1
 
 

n

n

c b
=

c


Prof. If we make a = – n in eq. (2), where n is a positive integer, then we get

 2 1 , ; ;1F n b c
   
   

 
 

n n

n

c c b n c b
c n c b c

    
 
   

(c)  Kummer’s Theorem

 F a b a b  2 1 , ;1 ; 1
 

 

ba b

bb a

      
 

      
 

1 1
2

1 1
2

.....(3)

Prof. To prove (3), we put z – 1 and c = 1 – a + b in equation (1), we abtain

 2 1 , ;1 ; 1F a b a b  
 
     

1
1 2

0

1
1

1
aba b

t t dt
b a

  
 
    fdgdg .....(4)

Putting t2 = u in the above equation (4), we get

 2 1 , ;1 ; 1F a b a b  
 
   

   
1

1 12 1

0

1
1

2 1
aba b

u u du
b a

   
 

   

 
   

 11 2
2 1 1

2

b aa b
bb a a

         
       

 

  2 1 , ;1 ; 1F a b a b  
 

 
 
 

1 / 2 1
1 1 / 2

b a b
b a b

      
    

10.5 Gauss’s Hypergeometric Differential Equation and its Solution

Let  = .dz
dz Then zn = nzn

Therefore, (+ c – 1) zn = n (n + c – 1) zn.

Now y =  2 1 , ; ;F a b c z
   
 0

nn n

n n

a b
z

c n







We have  1c y   
    

 0

1 nn n

n n

n n c a b
z

c n





 


   
 1 1

1
nn n

n n

a b
z

c n
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11 1

0

nn n

n n

a b
z

c n


 





      
 0

nn n

n n

a n b n a b
z

c n





 


= z (+ a) (+ b) y

      
 0

since nn n

n n

a n a b
a y z

c n






 
   

 


Hence y =2F1 (a ,b; c; z) is a solution of differential equation

    1 0, dc z a b y z
dz

             

The above equation can be easily written in the following form

    d y dyz z c a b z ab y
dz dz

      
2

21 1 0 .....(1)

(by employing the relations y = zy and ( – 1) y = z2y) is known as Gauss’s hypergeometric
differential equation.

From the theory of differential equation, it follows that the regular singular points of the above
equation (1) are:

(i)  z = 0 with exponents 0, 1 – c
(ii) z =1 with exponents 0, c – a – b
(iii) z =with exponents a,b.
For details of the solution of the differential equation (1), students are advised to reter Ex. 2 in

§9.4 of the last unit.

10.6 Two summation Theorems

In this section, we discuss two theorems concerning elementary series manipulations which are
important techniques in establishing several transformation formulae, summation formulae and in investi-
gating several other properties of  hypergeometric functions, Bessel’s functions and Orthogonal polyno-
mials etc.

10.6.1 Theorem 1.

 
m n

n m
 

 
 

0 0
,  

m

m n
n m n



 

  
0 0

, .....(1)

and.  
m

m n
n m



 
 

0 0
,  

m n
n m n

 

 

  
0 0

, .....(2)

Proof. Consider the L.H.S. of the equation (1) in which the term um + n has been inserted for
convenience i.e.

 
0 0

, m n

m n
n m u

 


 
  .....(3)
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Let us collect the powers of u in (3). We introduce new indices of summation s and r by

n = r, m = s – r .....(4)

so that n + m = s .....(5)

The indices n and m now satisfy the inequalities m   0, n   0.

From (4) and (5), it follows that s – r   0, r   0 or 0   r   s

provided that s is restricted to be a non-negative integer. Thus we have

 
0 0

, m n

m n
n m u

 


 
   

0 0
,

s
s

s r
r s r u



 

  
Now putting u = 1 and replacing the dummy indices r and s on the right by n and m respectively,

we get the required result.
In Theorem 1, equation (2) is merely written in reverse order; hence no separate proof is needed.
Theorem 2.

 
m n

n m
 

 
 

0 0
,  

 m

m n
n m n



 

  
2

0 0
, 2 .....(6)

and  
 m

m n
n m



 
 

2

0 0
,  

m n
n m n

 

 

  
0 0

, 2 .....(7)

where the symbol 
 2

0

m

l
 indicates that n runs from 0 to the greatest integer less than or equal to m/2.

Proof. If we consider

  2

0 0
, m n

m n
n m u

 


 
 

in which u m + 2n  is inserted for convenience, i.e.   2

0 0
, m n

m n
n m u

 


 
   and taking n = r  and

m = s – 2r  so that m + 2n = s.
Since m   0, n   0, s – 2r   0, r   0 from which 0   2r   s  and  s0.

Since 0
2
sr   and r  is integral, the index r  runs from 0 to the greatest integer s/2. Thus we

obtain

  2

0 0
, m n

m n
n m u

 


 
    

 2

0 0
, 2

s
s

s r
r s r u



 

  

Now putting u = 1 and replacing the dummy indices r and s on the right by n and m respectively,

we get the required result (6). Equation (7) is written in reverse order. If we combine the above two

theorems, we find that  
0 0

,
m

m n
n m



 

   
 2

0 0
,

m

m n
n m n
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Ex.1. Prove that 2
2 1

1 1, ; ;
2 2 2 2
a aF z   

    1 1 1
2

a az z      

Sol. Taking R.H.S.    1 1 1
2

a az z      

        2 3 41 1 2 1 2 31 1
2 2 3 4

a a a a a a a a a
az z z z

      
      



      51 2 3 4
...

5
a a a a a

z
    

  


     
          2 3 41 1 2 1 2 3

1
2 3 4

a a a a a a a a a
az z z z

     
      


      51 2 3 4
...

5
a a a a a

z
    

  


     2 41 2 31 2 1 ....
2 12

a a a a
a a z z

   
      

 

     2 41 2 3
1 1 ....

2 2 2 2 3
a a a aa a z z

   
         

 22 2

1 1 31
2 2 2 2 2 2 2 2 21 ....1 31 2 1

2 22

a a a a a a

z z

                           
        

2
2 1

1 1, ; ;
2 2 2 2
a aF z     

 L.H.S.

Ex.2. Establish the result

     
 2 1

1 1
, ; ;1

n

n

n

a c
F n a n c

c
  

  

Sol. Here L.H.S.  2 1 , ; ;1F n a n c  

   
   

c c a
c n c a n
  


             (by Gauss’s summation Theorem)

 
 

1
( 1)

1
n c a n

c a
   

 
  

   
 

1 1n

n

n

a c
c

  
 Hence proved.
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Ex.3. Prove that

B(c–) 2F1 (a, b; c; z)    
1

11
2 1

0
1 , ; ;ct t F a b zt dt  

where | z | < 1, > 0, c – > 0.

Sol. Let I =    
1

11
2 1

0
1 , ; ;ct t F a b zt dt  

 
   
 

 1
11

00
1

r
c r r

r r

a b zt
t t dt

r





  



   
   

1
11

0 0
1

r
crr r

r r

a bz t t dt
r


 


 

 

   
 

   
 0

r
r r

r r

a b r cz
r c r





    


  

   
 

   
 0

r
r r

r r

a bc z
c c r





   
 

 
= B (c–) 2F1 (a, b; c; z)

Ex.4. Show that if b > 0,

          2F1(a, b ; 2b ; z) 
  

 
     

2
2 1

2 1
0

2 1 / 2
sin 1 cos 1 cos

2 ,

a
b a a

b
z

d
B b b

 
  



             

where 2
z

z
  


Deduce that

  2
2 1 2 1

1 1 1 1 1, ; 2 ; 2 1 , ; ;
2 2 2 2 2

a
F a b b z z F a a b

          
   

Sol.  We know that if | z | < 1 and if Re (c) > Re (b) > 0, then

B (b, c – b) 2F1 (a, b ; c ; z) =    
1

11

0
1 1c b abt t tz dt     .....(9)

For c = 2b, it reduces to

2F1 (a, b; 2b; z)      
1

11

0

1 1 1
,

b abt t tz dt
B b b

    .....(10)

Putting t = sin2 , we have

2F1 (a, b ; 2b ; z)        
2

2 1 2 1 2

0

2 sin cos 1 sin
,

ab b z d
B b b
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2

2 1 2 1

0

2 1 cos 2sin cos 1
, 2

a
b b z d

B b b

 
              



     
2

2 1 2 1

0

2 2 cos 2sin cos
, 2

a
b b z z d

B b b

 
           

 
     

2
2 1 2 1

0

2 1 2
sin cos 1 cos 2

, 2

a a
b bz z d

B b b z

  
            

 
 

   
2

2 1
2 1

0

2 1 2
sin 2 1 cos 2

2 ,

a
b a

b
z

d
B b b

 
 



        .....(11)

where 
2

z
z

 


. If we put 2= , then (11) becomes

2F1 (a, b; 2b; z)
 

 
   2 1

2 1
0

1 2
sin 1 cos

2 ,

a
b a

b
z

d
B b b

 
 



        .....(12)

In the same way, if we substitute t = cos2in (10), we get

2F1 (a, b; 2b; z)
 

 
   2 1

2 1
0

1 2
sin 1 cos

2 ,

a
b a

b
z

d
B b b

 
 



       .....(13)

Adding (12) and (13) and applying the property of the definite integral, viz.

 
     

   

2

0
0

2 , if 2 ,

0, if 2

a
a f x dx f a x f x

f x dx

f a x f x


 

 


  



we obtain the desired result

2F1 (a, b; 2b; z)
 

 
     

2
2 1

2 1
0

1 2
sin 1 cos 1 cos

2 ,

a
b a a

b
z

d
B b b

 
  



               

To deduce the second part, we find from example 1 that

    2 2
2 1

1 11 cos 1 cos 2 , ; ; cos
2 2 2 2

a a a aF                    

Hence 2F1 (a, b; 2b; z) 
 

 
 

2
2 1 2 2

2 12 1
0

4 1 2 1 1sin , ; ; cos
2 2 2 22 ,

a
b

b
z a aF d
B b b

 




          
 

Expanding 2F1 (
2 cos2) in terms of its series and integrating with the help of beta function

formula, we have
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2F1 (a, b; 2b; z)

 
 

    
 

2
2 2 1 2

2 1
0 0

2 1 24 1 2
sin cos

1 22 ,

a
r r b rr

b
r r

a az
d

rB b b

 





        

 
 

    
 

   
 

2
2 1

0

2 1 24 1 2 1 2
1 2 2 1 22 ,

a
r rr

b
r r

a az b r
r b rB b b

 




       
  

Applying Legendre’s duplication formula, we get

  2

0

12
2

2 1
12
2

a rr
r

r
r

aa
z

rb

 



 
            

 



 2F1 (a, b; 2b; z) 2
2 1

1 12 1 , ; ;
2 2 2 2 2

az a aF b


          
   

Ex.5. Show that if x
2 2
 

   ,

sin nx = n sin x 2F1 
n n x21 1 1 1 3, ; ; sin

2 2 2 2 2
   
 

and n nnx F x2
2 1

1cos , ; ; sin
2 2 2

   
 

.

Sol. We know that sin nx and cos nx satisfy the following differential equation

2
2

2 0d y n y
dx

  .....(14)

Let us transform (14) by the substitution u = sin2 x. Then

du
dx

2

2sin 2 and 2cos 2d ux x
dx

 

Now,
dy
dx

sin 2dy du dyx
du dx du

  

2

2
d y
dx

sin 2d dy d dyx
dx dx dx du

        
   

2

22cos 2 sin 2dy d y dux x
du dxdu

   

2
2

22cos 2 sin 2dy d yx x
du du

 

 
2

2 2 2
22 1 2sin 4sin cosdy d yx x x

du du
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2

2
d y
dx

   
2

22 1 2 4 1dy d yu u u
du du

   

Substituting the value of 
2

2
d y
dx

 in (14), it becomes

 
2 2

2
11 0
2 4

d y dy nu u u y
dudu

      
 

The above equation may be written as

 
2

2
11 1 0
2 2 2 2 2

d y n n dy n nu u u y
dudu

                      

which is a Gauss’s hypergeometric equation with 
1, ,

2 2 2
n na b c

   . Hence the general solution of

(14) is given by

2 2
2 1 2 1

1 1 1 1 1 3, ; ; sin sin , ; ; sin
2 2 2 2 2 2 2 2
n ny A F x B x F n n x         

   

Since sin nx is the solution


2 2

2 1 2 1
1 1 1 1 1 3sin , ; ; sin sin , ; ; sin

2 2 2 2 2 2 2 2
n nnx A F x B x F n n x         

   
.....(15)

For x = 0, equation (15) gives A = 0
Further

sin
sin

nx
x

2
2 1

1 1 1 1 3, ; ; sin
2 2 2 2 2

B F n n x    
 

Now taking limit of both sides as 0x  , and noting that 
0

sinlim 1


    
,

we get B = n

 sin nx = 2
2 1

1 1 1 1 3sin , ; ; sin
2 2 2 2 2

n x F n n x   
 

Again, if y = cos nx, then putting x = 0, we see that A = 1, and on differentiating and putting x = 0,
we get B = 0, which establishes the second part.

Ex.6. Show that

       1 1
2 1

0 0

1
, ; ; cosh 2

2
u a ba b F a b z e u z u v du dv


        

   

provided Re (a) > 0 and Re (b) > 0.

Sol. R.H.S    1 1

0 0
cosh 2u a be u z u v du dv

 
      .....(16)
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But we know that   
2

0

2cosh 2
2

r r r r

r

u v zu z
r




  

Putting this value in the above integral (16), then it breaks up into product of two integrals, and we
have

2
1 1

0 0 0

2
2

r r
u a r v b r

r

z e u du e v dv
r

 
     


   

     
2

0

2
2 1

r
r

r
a r b r z

r




     

 

 
      2

0

2
12 2
2

r
rr r

r

a a b b
z

r r





 
 

   
 



      

 

2 1

2 10

12
2

12
2

r r
r r

rr

a a b b z

r r r






    
 

    
 



 (applying Legendre’s duplication formula)

   
   

0 1
2

r
r r

r
r

a b z
a b

r




  

 
 
 



    2 1
1, ; ; . .
2

a b F a b z L H S     
 

Ex.7. Prove that

                       
   

 11 1
2 1 2 1

1
lim , ; ; 1, 1 ; 2 ;

1
nn n

c n

a b
F a b c z z F a n b n n z

c n
 


     

 

Sol. L.H.S =    2 1
1lim , ; ;

c n
F a b c z

c 

 
   
 0

1lim
r

r r
c n r r

a b z
c c r



 
 

 

   
 0

lim
r

r r
c n r

a b z
c r r



 
 

 

   
 1

r
r r

r n

a b z
n r r
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1
1 1

0 1 1

s n
s n s n

s

a b z
s s n

 
   


 

    (Putting r – n – 1 = s)

       
 

1
1 1

0

1 1
2 1

s n
s n s n

s s

a n a b n b z
s n n

 
 



   
 

 

   
 

   
 

1
1 1

0

1 1
1 2

n s
n n s s

s s

a b z a n b n z
n n s

 
 



   
 

 

   
   11 1

2 1 1, 1 ; 2 ;
1

nn na b
z F a n b n n z

n
       



= R.H.S
Ex.8. It the complete elliptic integral of first kind being

2

0 2 21 sin

dK
k

 


 


Show that 2
2 1

1 1, ; 1 ;
2 2 2

K F k    
 

Sol. We have
2

2 2
0 1 sin

dK
k

 


 


Putting sin t 

then cosd = 
1 1
2

dt
t

or d = 
1 1 1
2 1

dt
t t




 K    
1 1 21 21 2 2

0

1 1 1
2

t t k t dt
  

  By integral representation of 2F1 (a, b ;  c ; z), we have

K
 

2
2 1

1 11
1 1 12 2 , ; 1 ;
2 1 2 2

F k

                 

2
2 1

1 1, ; 1 ; . .
2 2 2

F k R H S    
 

Ex.9. Prove that

       
1

11
2 1

0

1, ; ; 1 1 ,
, ,

c b abF a b c z u u zu du
B b c b

    
where c > b > 0. Hence prove that

   
21

2 1 1,2 ; 3 ; log 1
zzF z e z
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Sol. By integral representation of 2F1 (a, b ; c ; z), we have, if | z | < 1 and if Re (c) > Re (b) > 0,
then

F (a, b; c; z)      
1

11

0

1 1 1,
c b abu u zu duB b c b
    

 

Now, F (1, 2 ; 3 ; z)      
1

0 1

0

1 1 1
2,1

u u zu du
B

  

 

1

0

1
2,1 1

u du
B zu




1

0

2 1 1
1

du
z zu

   
 

   
1

1
0

0

2 1 log 1 zu u
z z

       
   

  2 1 log 1 log1 1z
z z
       

 2 1 log 1 1z
z z
      

   1 12 2log 1 log log 1z zz e e z
z z
         
   

   21log 1
zze z


   = R.H.S.

Ex.10. Show that if Re (b) > 0 and if n is a nonnegative integer, then

 
 2 1

21 1, ; ; 1
2 2 2 2 2

n
n

n

bn nF b
b

       

Sol. L.H.S 2 1
1 1, ; ; 1

2 2 2 2
n nF b       

   1
2

1
2 2 2

nb b b

n nb b

    
 

          
   

(by Gauss’s theorem)

Using Legendre’s duplication formula, we have

L.H.S = 
   

2 1
2

2 1

2 2

2 2
2

nb

n
b

b
b

nb

   
 



 


       
 
 

2 . .
2

n n

n

b
R H S

b
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Ex.11. Show that

   
41 21 2 21 2 2

2 1
0

1 1 31 , ; 1 ;
2 4 4 16

t tx t x x t x dx t F
              



Sol. Let I      1 21 2 21 2 2

0

1
t

x t x x t x dx
   

 
    22

1 21 2

00

1 2
n

t
n

n

x t x
x t x dx

n







  

 
 

1 12 22 2
0 0

1 2 t n nn

n
x t x dx

n

  


  

Putting x = tu, we have

I
 

 
11 12 24 1 2 2

0 0

1 2
1

n nnn

n
t u u du

n

  


  

 
 

4 1

0

3 12 21 2 2 2
2 4

nn

n

n n
t

n n






         
   

 

Applying Legendre’s duplication formula for  2 4n  , we find that

I = 
 

 
4 1

4 1
0

1 121 2 2 2
2 2 1

nn
n

n

n
t

n n







        
   

 


Again applying  the Legendre’s duplication formula and simplifying, we have

I
 

 
 

4 1
4 3 2

0

1 3 1
1 2 1 4 4 2

12 1
2

nn
n

n

n n
t

n n n







              
       

     
 



   

4 1

4 3 2
0

1 1 3 3
4 4 4 4

1 2

n
n n

n
n n

t
n






                
        

   
4

0

1 3
4 41

1 16 sin 42 2

n
n n

n n

t t
n





   
              



4

2 1
1 3, ; 1 ;

2 4 4 16
t tF

 
   

 
which completes the solution.
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Self-Learning Exercise

1. Define Gauss hypergeometric function in terms of a series.
2. What is circle of convergence for the series representing 2F1 (a, b ; c ; z) ?
3. 2F1 (– n, b ; c ; 1) = .............. .
4. 2F1 (a, b ; 1 – a + b ; – 1) = .............. .
5. 2F1 (a, b ; c ; 1) = .............. .
6. 2F1 (a, b ; b  ;  z) = .............. .

7. 2 10
lim 1, ;1;
b

zF b
b

 
 
   = ...

8. 2F1 (– n, 1 – b – n ; a ; 1) = .............. .

10.7 Summary

In this unit, the function introduced by C.F. Gauss was studied. The important special cases,
properties and convergence conditions of this function were discussed in detail.

10.8 Answers of Self-Learning Exercise

1.
   

 0

n
n n

n n

a b z
c n




 2. | z | < 1 3.

 
 

n

n

c b
c


4.
 

 

1 1
2

1 1
2

ba b

bb a

      
 

      
 

5.    
   
c c a b
c a c b

   
   

6. (1 – z)– a

7. ez 8.
 

   
21
1
n

n n

a b
a a b

 

 

10.9 Exercise

1. Define hypergeometric function 2F1 (a, b ; c ; z) and state the condition on its elements a, b and c
for its convergence.

2. Find representation of following functions in terms of Gauss hypergeometric function :
(i)  (1 + z)n [Ans. 2F1 (– n, 1 ; 1 ; – z)]

(ii)    1 1 1
2

a az z
az

    
  [Ans. 2

2 1
1 3, 1 ; ;

2 2 2 2
a aF z   

 
]

(iii)  1 log 1 z
z

 [Ans. 2F1 (1, 1 ; 2 ; – z)]

(iv) 1 1log
2 1

z
z z

 
  

[Ans. 2
2 1

1 3, 1 ; ;
2 2

F z 
 
 

]
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(v)
1sin z

z


[Ans. 2

2 1
1 1 3, ; ;
2 2 2

F z 
 
 

]

(vi) 11 tan z
z

 [Ans. 2
2 1

1 3,1 ; ;
2 2

F z 
 
 

]

(vii)  sin z [Ans. 2
0 1

3 1; ;
2 4

z F z   
 

]

(viii)cos z [Ans. 2
0 1

1 1; ;
2 4

F z   
 

]

3. Express complete elliptic integral of the second kind in terms of Gauss’s hypergeometric function

[Ans. 2
2 1

1 1 1, ; 1 ;
2 2 2

F k   
 

]

4. By transforming the equation 
2

2
2 0d y n y

dx
   to hypergeometric form by the substitution 2sin z  ,

prove that if 0 z    then,

2
2 1

1cos cos , ; ; cos sin cos
2 2 2 2 2

n n n nnz F z n z             
     

2
2 1

1 1 3, ; ;cos
2 2 2 2 2

n nF z   
 

and   2
2 1

1sin sin , ; ;cos cos cos
2 2 2 2 2

n n n nnz F z n z             
     

2
2 1

1 1 3, ; ; cos
2 2 2 2 2

n nF z   
 

5. Establish the transformation formula

2F1 (2a, 2b; a + b + 
1
2 ; z) = 2F1 {a, b; a + b + 

1
2 ; 4z (1 – z)}

provided that a + b + 
1
2  is not zero or a negative integer and if | z | < 1 and | 4z (1 – z) | < 1

6. Show that
 

 
 
   

2 1
1

, ; ;
lim

log 1z

F a b a b z a b
z a b

  


   

7. If the complete elliptic integral of the first kind is    
2 1 22 2

0

1 sin ,K k d
 

    

then show that 2
2 1

1 1, ;1; , | | 1
2 2 2

K F k k      
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Unit 11 : Gauss and Confluent Hypergeometric Functions
Structure of the Unit

11.0 Objective

11.1 Introduction

11.2 Linear Transformation Formulas for Hypergeometric Function

11.2.1 Applications

11.3 Differentiation Formulas for Hypergeometric Function

11.4 Linear Relation between solutions of Hypergeometric Equations

11.5 Relations of Contiguity for Hypergeometric Function

11.6 Kummer’s Confluent Hypergeometric Function

11.6.1 Convergency

11.6.2 Differentiation Formulas

11.6.3 Integral Representation

11.6.4 Kummer’s First Transformation

11.7 Summary

11.8 Answers of Self-Learning Exercise

11.9 Exercise

11.0 Objective

In the last unit the Gauss hypergeometric function was introduced and some properties, summa-
tion theorems and convergence conditions for this function were discussed. The aim of this unit is to
study further the hypergeometric function. Precisely you will study the linear transformation formulas, con-
tiguous function relations, differentiation formulas and a linear relation between the solutions of hyper-
geometric differential equation. You will also study the kummer’s confluent hypergeometric function and
important formulas concerned with this function.

11.1 Introduction

Here some more results for the Gauss hypergeometric function (introduced in the last unit) will
be established. In fact linear transformation formulas, contiguous function relations, differentiation formu-
las etc. will be discussed in this unit.Next, the Kummer’s confluent hypergeometric function will be intro-
duced and important formulas for this function will also be established.
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11.2 Linear Transformation Formulas

Result :

If z  1  and 
z

z



1

1
, then

(i)     a zF a b c z z F a c b c
z

      
2 1 12, , ; 1 , , ;

1
.....(1)

(ii)     b zF a b c z z F c a b c
z

      
2 1 12, , ; 1 , ; ;

1
.....(2)

(iii)      c a bF a b c z z F c a c b c z    2 1 12, , ; 1 , ; ; .....(3)

Proof. (i) We know that by integral representation of  2 1 , , ;F a b c z  , if | z | < 1 and if

   Re Re 0c b 

Then    2 1, , ; ;B b c b F a b c z    1 11
0

1 1c b abt t tz dt    

       1 11
0

1 1 1 1 1c bb at t z t dt       

   1 11
0

1 1b ac bt t z tz dt     

   1 11
0

1 1 1
1

a
a bc b tzz t t dt

z


         

    2 11 , , ; ;
1

a zz B c b b F a c b c
z

       

Thus  2 1 , ; ;F a b c z   2 11 , ; ;
1

a zz F a c b c
z

      

(ii) Taking L.H.S  2 1 , ; ;F a b c z  2 1 , ; ;F b a c z

  2 11 ; ; ;
1

b zz F b c a c
z

      
(by first transformation formula)

  2 11 ; ;
1

b zz F c a b c
z

      
(by symmetric properly)

Hence  2 1 , ; ;F a b c z   2 11 , ; ;
1

b zz F c a b c
z

      

(iii) From (1), we have  2 1 , ; ;F a b c z   2 11 , ; ;
1

a zz F c b a c
z

      
.....(4)
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Putting
1

z y
z




or 1 - y = (1 – z)-1, we have

Now 2 1 , ; ;
1

zF c b a c
z

   
=  2 1 , ; ; ;F c b a c y

   
2 11 , ; ;

1
c b yy F c b c a c

y
   

     
.....(5)

or 2 1 , ; ;
1

zF c b a c
z

       2 11 , ; ;c bz F c b c a c z    ......(6)

Using (6) in (4), we have

 2 1 , ; ;F a b c z    2 11 , ; ;c a bz F c a c b c z    

11.2.1 Applications

If we set 
1
2

z   in the first transformation formula, then

2 1
1, ; ;
2

F a b c 
 
   2 12 , ; ; 1a F a c b c   .....(7)

The series on the R.H.S. of (7) can be summed in terms of product of gamma functions with the
help of Kummer’s theorem in the following cases :

(i) 1c c a b      that is 1b a 

(ii)   1c a a b     or 
1

2
a bc  



From the first case, we get

2 1
1,1 ; ;
2

F a a c  
 

 2 12 , 1 ; ; 1a F a c a c   

2 1
1,1 ; ;
2

F a a c  
 

 

 

12
2

1
2

a c ac

c ac a

    
 

     
 

Further, applying the Legendre’s duplication formula for  c  and  c a  , then we obtain

 2 1
1,1 ; ;
2

F a a c  
 

1
2 2

1
2 2

c c

c a c a

       
   
         

   
In the same way, in the second case, we can prove the following result.

2 1
1 1, ; ;

2 2
a bF a b   

 
 

1 1
2 2
1 1

2 2

a b

a b
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11.3 Differentiation of Hypergeometric Functions

Result :  Show that

(i)  d F a b c x
dx

  2 1 , ; ;  ab F a b c x
c

   2 1 1, 1; 1 ; .....(1)

(ii)  
n

n
d F a b c x
dx

  2 1 , ; ;
   
   n n

n

a b
F a n b n c n x

c
   2 1 , ; ; .....(2)

Proof of (i), we have

 2 1 , ; ;d F a b c x
dx

   
 0

r
r r

r r

a bd x
dx c r





 
  

  


   
 

1

0

r
r r

r r

a b r x
c r






   
 

1

1 1
rr r

r r

a b
x

c r





 



   
 

1 1

0 1

n
n n

n n

a b x
c n


 

 
 

Since   1na   1 na a  ,

Therefore  2 1 , ; ;d F a b c x
dx

  
   

 0

1 1
1

n
n n

n n

a a b b x
c c n





 
 



  2 1 , ; ;d F a b c x
dx

    2 1 1, 1 ; 1 ;ab F a b c x
c

   

(ii) We prove the result by the principle of mathematical induction
Since by (1), we have

 2 1 , ; ;d F a b c x
dx

    2 1 1, 1 ; 1 ;a b F a b c x
c

   

Therefore the result (2) is true for  n = 1
Suppose that (2) is true for n = m (a fixed positive integer) i.e.

 2 1 , ; ;
m

m
d F a b c x
dx

  
   

   2 1 , ; ;m m

m

a b
F a m b m c m x

c
   

Now,  
1

2 11 , ; ;
m

m
d F a b c x
dx




     2 1 , ; ;

m

m
d d F a m b m c m x
dx dx

 
    

  

   
   2 1 , ; ;m m

m

a b d F a m b m c m x
c dx

     

[by equation (4)]
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  m m

m

a b a m b m
c c m

 
 

  2 1 1, 1 ; 1 ;F a m b m c m x     

   
 

1 1

1

m m

m

a b
c
 


   2 1 1, 1 ; 1 ;F a m b m c m x     

Thus result (2) holds for n = m + 1. Hence by P.M.I the result (2) is true for every positive
integer n.

11.4 Linear Relation between the Solutions of Hypergeometric equations

In the unit 9, we have seen that the differential equation

    
2

21 1 0d y duz z c a b z abu
dzdz

       .....(1)

has the solutions A  2 1 , ; ;F a b c z and B z1– c  2 1 1 , 1 ; 2 ;F a c b c c z     which are conver-

gent for | z | < 1 whereas the solutions A  2 1 , ; 1 ; 1F a b a b c z     and  1 c a bB z  

 2 1 , ; 1 ; 1F c a c b c a b z       of the hypergeometric differential equation are convergent for
|1 – z | < 1. (Refer Ex.2. §9.4)

Hence there exist an interval (0, 1) in which all the four solutions exist. Since only two solutions
of the second order differential equation are linearly independent, which implies that there may exist a
linear relation between the solutions.

Let the relation be

 , ; ;F a b c z  2 1 , , 1 ; 1A F a b a b c z     

     2 11 , ; 1 ; 1c a bB z F c a c b c a b z        .....(2)

where A and B are constants.
Putting z = 1 in the above equation (2) and applying the Gauss’s theorem, we have

 2 1 , ; ; 1F a b c =    
   
c c a b

A
c a c b

   

   

.....(3)

where   0R c a b  

Again, if we put z = 0 in (2), then it gives

1 = A 2F1 (a, b; a+b – c+ 1 ; 1) + B 2F1 (c – a; c–b ; c– a – b +1 ; 1)

or 1 = 
   
   

   
   

1 1 1 1
1 1 1 1

a b c c c a b c
A B

a c b c a b
           


         

.....(4)

Putting the value of A from the equation (3) in the equation (4) we obtain

1 = 
   
   

   
   

1 1
1 1

c c a b a b c c
c a c b a c b c

         
         

   
   

1 1
1 1

c a b c
B

c b
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or 1 = 
       
       

1 1
1 1

c c c a b c a b
c a c a c b c b

         
         

   
   

1 1
1 1

c a b c
B

a b
     


   

Since    1
sin

z z
z


   


, therefore

1 =  
   

 
sin sin
sin sin

c a c b
c c a b

   
   

   
   

1 1
1 1

c a b c
B

a b
     


   


   

   
1 1

1 1
c a b c

B
a b

     
    = 

   
 

sin sin
1

sin sin
c a c b
c c a b

    


    

     
 

sin sin sin sin
sin sin

c c a b c a c b
c c a b

         


    

         
 

cos cos 2 cos cos 2
2sin sin

a b c a b b a c a b
c c a b

              
   

   
 

cos cos
2sin sin

a b b a
c c a b

    


   

 
sin sin

sin sin
a b

c c a b
 

 
   

 B = 
   

     
1 1 sin sin

1 1 sin sin
a b a b

c c a b c a b c
     


         

Applying  sin z  =    1z z


  
, we have

B = 
   

           
1 1

1 1 1 1
a b

c c a b a a b b
     

 
           

            
       

2
1 1c c a b c a b c         




B =
   

   
c a b c

a b
   

 

Substituting these values of A and B in (2), we get the following linear relation :

F (a; b; c; z ) = 
   
     c c a b

F a b a b c z
c a c b

   
   

    2 1 , ; 1 ; 1

                                        
   

       c a bc a b c
z F c a c b c a b z

a b
    

       
  2 11 , ; 1 ; 1
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11.5 Relations of Contiguity

The functions obtained by increasing or decreasing any one of the  parameters of the hypergeo-
metric function 2F1 (a; b; c; z) by unity, are called the functions contiguous to it. In this  way, we obtain
the following six functions contiguous to 2F1 (a; b; c; z) :

(i) F (a+) = 2F1 (a+ 1 ;  b; c; z)
(ii) F (a–) = 2F1 (a– 1,  b; c; z)
(iii) F (b+) = 2F1 (a, b + 1;  c; z)
(iv) F (b–) = 2F1 (a, b – 1; c; z)
(v) F (c+) = 2F1 (a b; c + 1; z)
(vi) F (c–) = 2F1 (a b; c – 1; z)
Now we shall see that the function 2F1 can be connected with any two of its contiguous functions

giving rise to fifteen (that is 6C2) relations in this way. These relations were first obtained by Gauss and
are called contiguous function relations.

If we write 
   
 

n
n n

n
n

a b z
c n

   ,  then clearly F = 2F1 
0

n
n




  .....(1)

Now we have
F (a +) = 2F1 (a + 1;  b;  c; z)

   
 0

1 n
n n

n n

a b z
c n






 

   
 0

n
n n

n n

a ba n z
a c n






  

0
n

n

a n
a






  [using (1)]

In this way, we obtain the following relations

F (a +) = 
 

0
n

n

a n
a






 , F (a –) = 

 
 0

1
1 n

n

a
a n








 

F (b +) = 
 
 0

n
n

b n
b






 , F (b –) = 

 
 0

1
1 n

n

b
b n








 

F (c +) = 
 

 0
n

n

c
c n






 , F (c –) =  
 0

1
1 n

n

c n
c





 




In proving these relations, the formulae

   1z z z     and (a – 1)n = 
 
 

1
1

a n
a

  
 

 = 
 

   1
1 n

a
a

a n


 
 were used.
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There are fifteen contiguous function relations for the hypergeometric function, which are given
below :

(i) (a – b) F = a F (a +) – b F (b +)
(ii) (a – c + 1) F = a F (a +) – (c – 1) F (c –)
(iii) [(a + ( b – c) z] F=a (1 – z) F (a +) – c –1 (c – a) (c – b) z F (c +)
(iv) (1 – z) F = F (a – ) – c–1 (c – b) z F (c +)
(v) (1 – z) F = F (b – ) – c–1 (c – a) z F (c +)
(vi) [2a – c + (b – a) z] F = a (1 – z) F (a +) – (c – a) F (a –)
(vii) (a + b – c) F = a (1 – z) F (a +) – (c – b) F (b –)
(viii) (c – a – b) F = (c – a) F (a –) – b (1 – z) F (b +)
(ix) (b – a) (1 – z) F = (c – a) F (a –) – (c – b) F (b –)
(x) [1 – a + (c – b – 1) z] F = (c – a) F (a –) – (c – 1) (1 – z) F (c –)
(xi) [2b – c + (a – c) z] F = b (1 – z) F (b +) – (c – b) F (b –)
(xii) [b + (a – c) z] F = b (1 – z) F (b +) – c–1 (c – a) (c – b) z F (c +)
(xiii) (b – c + 1) F = b F (b +) – (c – 1) F (c –)
(xiv) [1 – b + (c – a – 1) z] F = (c – b) F (b –) – (c – 1) (1 – z) F (c –)
(xv) [c – 1 + (a + b + 1 – 2c) z] F = (c – 1) (1 – z) F (c –) – c– 1 (c – a) (c – b) z F (c +)

Again since  n ndz z n z
dz

 , writing 
dz
dz

  , we have

 n nz nz   and ( + a) zn = (n + a) zn .....(2)

Hence ( + a) F =  
0

n
n

n a



  ......(3)

Using the relation F (a +) =
0

n
n

a n
a





  
 



( + a) F = a F (a +) .....(4)

Similarly from F (a +) =
0

n
n

a n
a





  
 

  and  
0

n
n

b nF b
b





    
 



( + b) F = b F (b +) .....(5)
and ( + c – 1) = (c – 1) F (c –) ......(6)
Proof. (i) Subtracting (5) from (4), we obtain (i) i.e.,

(+ a) F– (+b) F = aF (a+) – b F(a+)
 (a–b) F = aF (a+) – bF(b+)
(ii) Subtracting (6) from (4), we have

(+a) F– (+ c – 1) F = aF (a+) – (c – 1) F (c –)
 (a– c + 1) F = aF (a+) – (c – 1) F (c –)
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(iii) We know that (zn) = n zn,

 F
   
 0

nn n

n n

n a b
z

c n






   
 1 1

nn n

n n

n a b
z z

c n








   
 

1 1

0 1

nn n

n n

a b
z z

c n


 

 

 
      

  0

n
n n

n n

a n a b n b zz
c n c n





 
 



 F
  

 0
n

n

a n b n
z

c n





 
 

 .....(7)

But
  

 
a n b n

c n
 


    

 
...

c a c b
n a b c

c n
 

    
 .....(8)

he above equation (7) with the help of (8) is transformed to

F     
0 0 0

n
n n

n n n

c a c b cz n a b c z z
c c n

  

  

  
      

  

      1z F a b c zF c c a c b z F c         ,

or  1 z F        1a b c zF c c a c b z F c       .....(9)

Also from (4), we have F = –a F +a F(a +)
which implies that (1– z) F = –a (1– z) F +a (1– z) F (a +) .....(10)
From (9) and (10), we have.

   1a z a b c z F              11a z F a c c a c b z F c      

or  a b c z F             11 .a z F a c c a c b z F c       .....(11)

(iv)  Consider      
 

   
 

11 1

1 0 1

1 1
1

n
nn n n n

n nn n

a b a bzF a z
c n c n

 
 

  

 
   

  .....(12)

   11 na


   1 na a 

  F a 
     

  0

1 nn n

n n

a a b n b
z

c n c n





 




   
 0

1 n
n

b n
a z

c n






  

 .....(13)

Since
b n
c n



 1
c b
c n


 


Putting this value in the above relation (13), we get

 F a     
 0

1 1 n
n

c b
a z

c n





 
      





210

    
 0 0

1
1 n n

n n

a c b z ca z
c c n

 

 

  
       

 

 F a        11 1a z F c a a b z F c      .....(14)
But in equation (4), if we write (a – 1) in place of a, we get

 F a       1a F a F a     .....(15)

Combining the equations (14) and (15), we get the required result (iv).
(v) If we interchange aand b in (iv), we obtain (v).
The remaining ten relations can be deduced by making use of the above five relations.

11.6 Kummer’s Confluent Hypergeometric Function

The hypergeometric differential equation is

    
2

21 1 0d u duz z c a b z abu
dz dz

       .....(1)

Replacing z by z /bin (1), we get
2

2

11 1 0z d u a duz c z au
b dz b dz

              
    

.....(2)

Now take the limit as b    , the equation (2) reduces to

 
2

2 0d u duz c z au
dz dz

    .....(3)

whose solution is given by 2 1lim , ; ;
b

zF a b c
b

 
 
 

.....(4)

The equation (3) is known as the confluent hypergeometric differential equation or Kummer’s
equation.

Now,
 

lim r
rb

b
b

    1 2 .... 1
lim

. . .... timesb

b b b b r
b b b r

   


1 2 1lim 1 1 ... 1 1
b

r
b b b 

            
    

Hence the solution (4) may be written as

2 1lim , ; ;
b

zF a b c
b

 
 
 

   
 0

lim
r

r r
b r r

a b z
c r b






   
 



 
 

 
0

lim
r

r r
rb r r

a bz
c r b






 

 
   1 1

0
; ;

r
r

r r

a z F a c z
c r





  

The function 1F1(a; c; z) is called the confluent hypergeometric function.
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Now considering the equation (3), we find that z = 0 is a regular singular point, so if c is neither
zero nor a negative integer, two independent solutions in series of it can be easily found by Frobenius
method described in unit 9

 u1 = 1F1(a; c; z)

u2 = z1–c 1F1(a – c + 1; 2 – c; z)
Hence the general solution of equation (1) is

   1
1 1 1 1; ; 1;2 ;u A F a c z Bz F a c c z    

where A and B are arbitrary constants.

11.6.1 Convergency of the Confluent hypergeometric function.

If un and un–1 are the nth and (n + 1) th terms of the series representing confluent hypergeometric
function, then

un

 
 

n
n

n

a x
c n

     and       
 
 

1
1

1
1

1

n
n

n
n

a xu
c n








 


1n

n

u
u


 
 

 
 

1

11
n n

n n

a cn x
a n c





  


 
  1

a n
x

c n n


 
 


1lim n

n
n

u
u




 
  

lim 0
1n

a n
x

c n n


  

 

Hence 1n

n

u
u
  < 1 for all  z . Thus the series is always convergent.

11.6.2 Differentiation of Confluent hypergeometric function.

Results :

(i)
d F a c x
dx 1 1 ( ; ; )  

a F a c x
c

  1 1( 1; 1; )

(ii) 1 1
n

n
d F (a;c; x)
dx

 
 
  1 1( ; ; )n

n

a
F a n c n x

c
  

The proofs of above formulas are similar to formulas given in §11.3 for Gauss hypergeometric
function.

11.6.3  Integral representation for confluent hypergeometric function

If | z | < 1 and Re (c Re a then

B (ac – a) 1F1 (ac; z)  c aa ztt t e dt  
1

11

0
1
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or  1F1 (ac z)  
 

     c aa ztc
t t e dt

a c a
 

 
   

1
11

0
1

Proof we have R.H.S.
 

       1
11

00
1

n
c aa

n

c zt
t t dt

a c a n


 




 
   

 
   

   
 0

n

n

c a n c az
a c a n c n





    

    

=  1F1 (a; c; z)

11.6.4 Kummer’s first transformation

Result :
If c is neither zero nor a negative integer, then 1F1 (a c z) = ez

 1F1 (cac z).

Proof : By integral representation of confluent hypergeometric function, we have.

B (acc1F1 (ac z)  
1

11

0
1 c aa ztt t e dt  

Using the property of definite integral, we get

 
1

11

0
1 cz c a zte t t e dt   

= e
zB ( c–aa)   1

F1 
(c–a; c; – z)

 1F1 
(a; c; – z) = ez

 1F1 
(a–c; a; – z)

Ex.1. If m is a positive integer, show that

    
      

c ac m a c mc m
m

x x dF m a m c x c x x
m c dx


  

    
 

1
1

2 1
1

, ; ; 1

and deduce that

 
 

1 1
2 2 4 1

2 2 22 1

11
1 1 1 2 2, ; ; 1

12 2 2 2 2
2 2

a
am m

mm

a
a d

F m a m
a dm



 
                       

 

Sol. R.H.S.
 
   

 1
1

0

1 rc ac m
c m r

m
r

c a m xx x dc x
m c rdx

 
 



           


 
 

 1
1

0

1 c ac m
c m r r

m
rm

c a mx x d x
c rdx
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    11

0

1 c rc ac
m r

rm

c r c a m xx x
c r

  



  
 

 
 
 

 1 1

0
1 c ac c rr r

r r

c m c a m
x x x

c r


  



  
  

   121 , ; ;c ax F c m c a m c x    

But we know by transformation formula

2F1 (a,bcz)    121 , ; ;c a bz F c a c b c z    

 R.H.S. =    2F1 (– m, a+ m;c x) = L.H.S.

Deduction. Putting 1
2

x 
  and 1 ,

2
ac 

  we obtain the second part of the question.

Ex.2. If m is a positive integer, and | x | > 1, show that

2 1 2
1 2 1, ;1;

2 2
m mF

x
   

 
 

  1

2

1 1 .
1

m m m

m
x d

m dx x

      
  

Sol.  We know that

( )1/ 22

1

1 x+
1/ 2

2

1
11x
x

=
æ ö÷ç + ÷ç ÷çè ø

1/ 2

2
1 11
x x

-æ ö÷ç= + ÷ç ÷÷çè ø


 1/ 22

1

1 x

  2 1

0

11
2

r r

r

r

x

r

 




   
 

Hence   1/ 221
m

m
d x
dx




  2 1

0

1 1
2

rm
r

m
rr

d x
rdx


 



      
   



       2 1

0

1 1 2 1 2 2 ...... 2
2

r
r m

rr
r r r m x

r


  



         
 



 
  2 1

0

1 2 1
21

r m
mm r r

r

r x

r

  






   
  

But (2r + 1)m = 
 
 

2 1
2 1

r m
r

  
 

 
 

12 1
2 2

1
2

m m mr r

r r

          
   

     
 

Putting the value of (2r + 1)m in the above relation
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  1/ 221
m

m
d x
dx




 

 

2 1

0

1 11 2 1
2 2 2 2

1 1
2

m r m r m

r

r

m mr r x

r r r

   




                
     

     
 



  2 1

0

1 21
2 2

m r r m

r r

r

m m m x

r r

   




        
   

(Again applying Legendre’s duplication formula)

   
   

1 1/ 221
1

m m m

m
x d x

m dx

 


   

 

2 2

0

1 21 1
2 2

1

m r r

r r

r r

m m x

r






        
    

                                                                = 2 1 2
1 2 1, ;1;

2 2
m mF

x
   

 
 

Ex.3. Prove that

     1 1
2 1 2 1, ; ; , ; ;

m
m a

m m

d x F a b c x a x F a m b c x
dx

      


Sol. L.H.S.  1
2 1 , ; ;

m
a m

m
d x F a b c x
dx

    

   
 

1

0

m
a m rr r

m
r r

a bd x
c rdx


  



 
  

  


But  1
m

a m r
m

d x
dx

        11 2 .... a ra m r a m r a r x         

 
   

 
1 1a r a rr m

m
r

a m a
a r x x

a
   

  

 L.H.S.
 
      1

0

a rr
r m

r r

b
a m a x

c r


 


  

   1
2 1 , ; ;a

ma x F a m b c x 

= R.H.S.
Ex4. Prove that If abc0, then

        
   121

lim 1 , ; ;a b c

x

c a b c
x F a b c x

a b
 



   
 

 

Sol. L.H.S.     2 11
lim 1 , ; ;a b c

x
x F a b c x 
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Now applying the transformation formula of

 2 1 , ; ;F a b c x    121 , ; ;c a bx F c a c b c x    

 L.H.S.       121
lim 1 1 , ; ;a b c c a b

x
x x F c a c b c x   


    

  2 11
lim , ; ;
x

F c a c b c x


  

 2 1 , ; ;F c a c b c L  

   
   

c a b c
a b

   


 
(applying Gauss’s theorem)

= R.H.S.

Ex.5. Prove that             1
1 1 0 1

0

1, ; ; ;t aF a b z e t F b zt dt
a


  

 

Sol. R.H.S.  
   
 

1

00

1 r r
t a

r r

z t
e t dt

a b r

 
 



 

 
 
 

1

0 0

1 r
t a r

r r

z
e t dt

a b r


  



  

 
 
   

0

1 r

r r

z
a r dt

a b r




  
 

 1 1 , ;F a b z  = L.H.S.

Self-Learning Exercise

1.  
2

2 12 , ; ; .....d F a b c x
dx

  

2. 2 1lim , ; ; .....
b

xF a b c
b

   
 

3. 1 1lim , ; .....
a

xF a c
c 

   
 

4. Write the Kummer’s first transformation for 1F1

5.     ......aF a bF b   

6.     2 11
lim 1 , ; ; .....a b c

x
x F a b c x 
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11.7 Summary

In this unit we established some important formulae such as differentiation formulas, contiguous

function relations, linear relations etc. for Gauss hypergeometric function introduced in the last unit. We

also introduced and studied Kummer’s confluent hypergeometric function.

11.8 Answers to self-Learning Exercise

1.    
   2 1
1 1

2, 2; 2;
1

a a b b
F a b c x

c c
 

  


2.  1 1 ; ;F a c x

3.      1 / 2
1 2c

cx c J z


4.    1 1 1 1; ; ; ;zF a c z e F c a c z  

5.  a b F

6.
   

   
c a b c

a b
   

 

11.9 Exercise

1. Prove that          1 1 1 1; ; 1 ; ;
n

nx x
n nn

db e F a b x b a e F a b n x
dx

       

2. Show that  1 1 2 1; ; lim ; ; ;
b

xF a c x F a b c
b

   
 

3. Show that          1 1 1 1; ; 1 ; ;
m

mx x
m mm

dc e F a c x c a e F a c m x
dx

       

(Hint. Use Kummer’s first transformation)

4. If incomplete gamma function is defined by    1

0

, , Re 0.
x

t aa x e t dt a  

Show that    1
1 1, ; 1; .aa x a x F a a x  

5. State Confluent hypergeometric differential equation and explain its solution,
6. Prove that

 
   1

1 1
0

1
1 2; ; , Re 0,Re 0.

1 12 2
2 2

zt

az
a ztt e F a dt z

a
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[Hint First replace 1F1 by its integral representation, then change the order of integration, Evalu-
ate the inner integral in terms of the gamma function. Write down the remaining integral in terms
of

2 1

1 1
1 2 2, ; ;1

1 12
2 2

F

a
aa

                               
   

7. Prove that      
   , 1; 1; , ; ; 1, 1; 2;

1
a c b x

F a b c x F a b c x F a b c x
c c


      



8. Prove the following relations :

(i)        1
1, 1; ; , 1, ; , ; 1;

b x
F a b c x F a b c x F a b c x

b


     

(ii)          1, ; ; 1 , ; 1; 1 , ; ;aF a b c x c F a b c x a c F a b c x      

9. Show that

(i)  1 1,2;xe x F x 

(ii)  1 1; ;xx e F a a x
a

    
 

10. Prove the following relations

(i)      ; ; 1; ; ; 1;bF a b x bF a b x x F a b x   

(ii)          1; ; 1 ; 1; 1 ; ;aF a b x b F a b x a b F a b x      
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Unit 12 : Legendre’s Polynomials and Functions Pn(x) and Qn (x)

Structure of the Unit

12.0 Objective

12.1 Introduction

12.2 Legendre’s equation and its Solution

12.3 Definition

12.3.1 Legendre’s Polynomial of Degree n  or Legendre’s Function of First Kind

12.3.2 Legendre’s Function of Second Kind

12.3.3 Values of Pn(x) for n = 0, 1, 2, 3, 4, and 5

12.4 Generating Function for Pn(x)

12.5 Rodrigue’s Formulae for Pn(x)

12.5.1 Alternative form of Rodrigue’s Formula

12.5.2 Application

12.6 Orthogonal Property for Pn(x)

12.7 Recurrence Formulas for Pn(x)

12.8 Cristoffel Expansion

12.8.1 Cristoffel Summation Formula

12.9 Expression for Pn(cos ) in Terms of Cosine Series

12.10 Recurrence Formulae for Qn(x)

12.11 Cristoffel’s Second Summation Formula

12.12 Relations Between Pn(x) and Qn(x)

12.13 Summary

12.14 Answer to Self-Learning Exercise

12.15 Exercise

12.0 Objective

Our aim of this unit is to develop the Legendre Polynomials and to discuss its important
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properties.

12.1 Introduction

Legendre polynomials may be introduced either through solution of a differential equation or
through a generating funcition. We shall discuss both the methods. Legendre polynomials have many
applications to mathematical physics and these applications depend on a number of special properties
which Legendre polynomials possess.

12.2 Legendre Equation and its Solution

The differential equation of the form

 
2

2
21 d yx

dx
  2 1 0dyx n n y

dx
    .....(1)

is called Legendre’s equation, where n is a positive integer. This equation has regular singular points at
x =  1 and x = , whereas all other points are ordinary, one of which be chosen as x = 0 since all
other ordinary points may be transferred at the origin.

The solution of equation (1) in series of descending powers of x can be referred to example
1§ 9.5 of unit 9.

However for sake of completeness we here reproduce the solution of (1).
Let the solution of (1) be

y 0
0

, 0k r
r

r
a x a





  .....(2)

then dy
dx

 1

0

k r
r

r
a x k r


 


 

and
2

2
d y
dx

   2

0
1 k r

r
r

a k r k r x


 


   

Putting the values of y, dy
dx

 and 
2

2
d y
dx

 in (1), we get

        2 2 1

0 0 0
1 1 2 1 0k r k r k r

r r r
r r r

x a k r k r x x a x k r n n a x
  

    

  
          

or             2

0 0
1 1 2 1 0k r k r

r r
r r

a k r k r x n n k r k r k r a x
 

  

 
            

or      2

0 0
1 1 0k r k r

r r
r r

a k r k r x a n k r n k r x
 

  

 
           .....(3)

Equating to zero the coefficient of the highest power of x namely xk in (3), we get
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a0 (n – k)(n + k + 1) = 0
  k = n, –(n + 1) (   a 0  .....(4)

The next lower power of x is k – 1, so we equate to zero the coefficient of xk – 1 in (3) and
obtain

(n – k + 1) (n + k) a1 = 0 .....(5)
For k = n and –(n + 1), neither (n – k + 1) nor (n + k) in zero. thesefore a1 = 0
Next equating to zero the coefficient of xk – r in (3), we have

(k – r + 2) (k – r + 1) ar –2 + (n – k + r) (n + k – r +  1) ar = 0

ar
  

   2
2 1

1 r
k r k r

a
n k r n k r 

   
 

    
.....(6)

Putting n = 3, 5, 7... in (6) and noting that a1 = 0, we have
a1 = a3 = a5 = a7 = ..... = 0 .....(7)

To obtain a2, a4, a6 .... etc, we consider following two cases
Case I. When k = n then (6) becomes

ar
  

  2
2 1

2 1 r
n r n r

a
r n r 
   

 
 

.....(8)

Putting r = 2, 4, 6, .... in (8), we have

a2
 
  0

1
2 2 1
n n

a
n


 


a4
  

 
   

  2 0
2 3 1 2 3

4 2 3 2 4 2 1 2 3
n n n n n n

a a
n n n

    
  

   
and so on

Re-writing (2), we have for k = n
y = a0x

n + a1x
n – 1 + a2x

n – 2 + a3x
n – 3 + a4x

n – 4 + ... ....(9)
Using (7) and the above values of a2, a4, a4, etc in (9) we get

y  
 

    
  

2 4
0

1 1 2 3
....

2 2 1 2 4 2 1 2 3
n n nn n n n n n

a x x x
n n n

     
        

.....(10)

Case II. When k =  –( n + 1)  then (6) becomes

ar
  

  2
1

2 1 r
n r n r

a
r n r 
  


 

.....(11)

Putting r = 2, 4, 6, .... etc., we get

a2
  

  0
1 2

2 2 3
n n

a
n

 




a4

  
 

    
  2 0

3 4 1 2 3 4
4 2 5 2 4 2 3 2 5

n n n n n n
a a

n n n
      

 
   

and so on.
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For k =  – ( n + 1), (2) gives
y = a0x

–n – 1 + a1x
–n – 2 + a2x

–n – 3 + a3x
–n – 4 + a4x

–n – 5 +... ...(12)

Using (7) and the above values of a2, a4, a4, etc. in (12),we find that

  
 

     
  

1 3 5
0

1 2 1 2 3 4
...

2 2 3 2 4 2 3 2 5
n n nn n n n n n

y a x x x
n n n

           
        

....(13)

Thus two independent solutions of (1) are given by (10) and (13). If we take

a0
 1 3 5... 2 1n
n

  


then solution (10) is denoted by Pn(x) and is called Legendre polynomial of first kind and if we take

a0  1 3 5... 2 1
n

n


  
 then solution (13) is denoted by Qn(x) and is called Legender polynomial of

second kind so the general solution of (1) is
   n ny A P x B Q x 

where A and B are arbitrary constants

12.3 Definition

12.3.1 Legendre’s polynomial of degree n or Legendre’s function of first kind

Legendre’s polynomial of degree n is denoted and defined by

     
 

   
  

2 41 3 5... 2 1 1 1 2 3
...

! 2 2 1 2 4 2 1 2 3
n n n

n
n n n n n n n

P x x x x
n n n n

        
       

 
 
   

 2
2

0

2 2
1 ,

2 2

n
r n r

n
r

n r
x

r n r n r





 

 
 .....(1)

where 2
n 
    

2, if is even
1 2, if is odd,

n n
n n

  
.....(2)

12.3.2 Legendre’s Function of Second Kind

This is denoted and defined by

   
!

1 3... 2 1n
nQ x

n


 

    
 

       
   

 1 3 51 2 1 2 3 4
...

2 2 3 2 4 2 3 2 5
n n nn n n n n n

x x x
n n n

           
       

.....(3)

12.3.3 Values of Pn(x) for n = 0, 1, 2, 3, 4 and 5
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Putting n = 0, 1, 2, 3, 4, and 5 in (1), and simplying the expression thus obtained we easily find that

P0(x) = 1, P1(x) = x

P2(x)      2 2
3

1 13 1 , 5 3
2 2

x P x x x    .....(4)

P4(x)  4 21 35 30 3
8

x x    and .....(5)

P5(x)  5 31 63 70 15
8

x x x   .....(6)

12.4 Generating Function for Pn(x)

Result. Show that    
1/ 22

0
1 2 , | | 1, | | 1n

n
n

xh h h P x x h



    

or show that Pn(x) is the coefficient of hn in the expansion of the (1 – 2xh + h2) in ascending

powers of h. (1 – 2xh + h2)–1/2 is called generating function for Legendre polynomial Pn(x).

Proof. Since | h | < 1 and | x |  1, we have

(1 – 2xh + h2)–1/2   1/ 21 2h x h 
    

   221 1 31 2 2 ....
2 2 4

h x h h x h
     



  
     

   111 3.... 2 3 1 3.... 2 1
2 2 ....

2 4.... 2 2 2 4.... 2
n nn nn n

h x h h x h
n n

   
    

  
.....(1)

Now, the coefficient of  hn  in

 
   1 3.... 2 1

2
2 4.... 2

nnn
h x h

n
 




 
   1 3 5.... 2 1

2
2 4 6.... 2

nn
x

n
  


 

 1 3 5 2 1 nn
x

n
   

 .....(2)

Again the coefficient of hn in

 
    111 3.... 2 3

2
2 4.... 2 2

nnn
h x h

n
 


 

 
 

  2 2
1
1 3.... 2 3

1 2
2 1 2 3.... 1

n n
n

n
n x

n
 



         

=    
 

21 3.... 2 1 1
2 2 1

nn n n
x

n n


  



.....(3)

 and so on. Using (2), (3), ....., we see that coefficient of hn in expansion of (1 – 2xh + h2)-1/2,
viz. (1) is given by

   
 

     
  

2 41 3 5 .... 2 1 1 1 2 3
...

2 2 1 2 4 2 1 2 3
n n nn n n n n n n

x x x
n n n n

        
       

= Pn (x)
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Thus we can say that P1(x), P2(x), .... . Will be coefficientts of h, h2, .... in the expansion of
(1 – 2xh + h2)-1/2. Hence we have

(1 – 2x + h2)-1/2 = 1 + h P1(x) + h2P2(x) + h3P3(x)+ ... + hnPn(x) +...

or (1 – 2xh + h2)-1/2  
0

n
n

n
h P x






12.5 Rodrigues Formula for Pn (x)

Result. Show that  21( ) 1
2

n n
n n n

dP x x
n dx

 

Proof. Let y = (x2 – 1)n


dy
dx = n(x2 – 1)n – 1  2x

Multiplying both sidees by (x2 – 1), we get

(x2 – 1)
dy
dx = n(x2 – 1)n   2x =  2nxy

Differentiating (n + 1) times both sides of the above equation and using Leibnitz theorem, we
get

 
2 1

2 1 1
1 22 11 2 2

n n n
n n

n n n
d y d y d yx c x c
dx dx dx

 
 

      

1
1

112 1
n n

n
n n

d y d yn x c
dx dx






 
   

 
Simplifying the above equation, we find that

or    
2 1

2
2 11 2 1 0

n n n

n n n
d y d y d yx x n n
dx dx dx

 

      .....(1)

Let
n

n
d y
dx

= z in (4). Then

   
2

2
21 2 1 0d z dzx x n n z

dxdx
     .....(2)

Now (2) is Legendre’s equation and shows that z is a solution to this equation. Hence one of its
solution be

z = 
n

n
d y
dx

= c Pn(x) .....(3)

where c is constant
To find c, put x = 1 in both sides of (3), therefore
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c Pn(1)
1

n

n
x

d y
dx 

 
  
 

 c
1

n

n
x

d y
dx 

 
  
 

     [   Pn(1) = 1] .....(4)

Again y = (x2 – 1)n = (x – 1)n  (x + 1)n

Differentiating both sides n times by Leibnitz’s theorem, we get

            1
1

1
1 1 1

1 1 ... 1
n n nn n nn

n n n
n n n n

d x d x d xd y x n n x x
dx dx dx dx






  
      

Now putting x = 1 in both sides of above relation, we see that all the terms in RHS except the
last term vanishes since each term contains the factor (x – 1), and also

 1 nn

n
d x

n
dx


Thus  
1

1 1 2
n

n n
n

x

d y n n
dx 

 
    

 
.....(5)

Now using (5) in (4), we find that

2nc n
Substituting the values of y and c in (3), we easily arrive at the Rodrigue’s formula.

12.5.1 Alternative form of Rodrigue’s formula

We have

Pn(x)     1 1 1
2

n
n n

n n
d x x

n dx
   

By Leibnitz’s rule we have

Pn(x)    
0

1 1 1
2

n nn n r r
rn

r
c D x D x

n





  

 2

0

1 1
2 2

r n r
n

r
r

x xc




        
   

 .....(6)

12.5.2 Application

Multiplying (6) by 
 2

nt
n

 and summing from n = 0 to , we get

 
 20

n
n

n

P x t

n






2

0 0

1 1 1
2 2

r n rn

n r

nt
x x

n r r
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   2 2
0 0

1 1 1
2 2

r n
n r

n r

x x t
n r

 


 

        
   

 

   
0 0 0 0

using , ,
n

n k n k
A k n A k n k

  

   

 
  

 
   

0 1 0 1
1 1;1; ;1;

2 2
x xF t F t         

   
.....(7)

12.6 Orthogonal Property for Pn (x)

Result : Prove that

(i)     if
1

1

0m nP x P x dx m n




 

and (ii)   if
1

2

1

2
2 1nP x dx m n

n





     

Proof. The Legendre equation is

   
2

2
21 2 1 0d y dyx x n n y

dxdx
    

or    21 1 0d dyx n n y
dx dx

     
 

.....(1)

Now since Pm(x) and Pn(x) are solutions of (1), hence

   21 1 0m
m

dPd x m m P
dx dx

     
 

.....(2)

and    21 1 0n
n

dPd x n n P
dx dx

     
 

.....(3)

Multiplying (2) by Pn and (3) by Pm and substracting, we get

          2 21 1 1 1 0n m
m n n m

dP dPd dP x x P x n n m m P P
dx dx dx dx

             
   

Integrating above w.r.t. x form –1to 1, we get

     
1 1

2 2

1 1

1 1n m
m n

dP dPd dP x x dx P x dx
dx dx dx dx

 

 

        
         

1

1

1 1 0n mn n m m P P dx




    

On integration by parts, we get

     
1 1

2 2

1 1

1 1n m n
m

dP dP dPP x x x dx
dx dx dx

 

 

             
   

1
2

1
1 m

n
dPP x x
dx
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1

2

1

1n mdP dPx dx
dx dx





       
     

1

1

1 1 0m nn n m m P P dx




    

or   1n m n m  
1

1

0m nP P dx







1

1
m nP P dx




 = 0, m  n .....(4)

Case II. When m = n. From generating function

(1 – 2xh + h2)–1/2  
0

n
n

n
h P x




 .....(5)

(1 – 2xh + h2)–1/2  
0

m
m

m
h P x




  .....(6)

Multiplying the corresponding sides of (5) and (6), we get

(1 – 2xh + h2)–1    
0 0

m n
n m

n m
P x P x h

 


 
 

Integrating both sides of the above with respect to ‘x’ from – 1 to 1,we get

     
1 1 12

0 0 1 1

1 2m n
m n

n m
P x P x dx h xh h dx

   

   

      
  

    ..(7)

Making use of (4), (7) reduces to

  
1

2 2

0 1

n
n

n
P x dx h



 

 
 
  

    12

1

1 log 1 2
2

xh h
h




     

   1 log 1 log 1h h
h

     

2 3 2 31 ... ...
2 3 2 3

h h h hh h
h
    

                    

3 52 ...
3 5
h hh

h
 

    
 

 
2

0

2
2 1

n

n
h

n








Equating coefficients of h2n from both sides, we get

 1 2
1 nP x dx



2

2 1n




12.7 Recurrence Formulas for Pn (x)
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12.7.1 (n + 1) Pn + 1 (x) = (2n + 1) xPn(x) – nPn – 1(x),  n  1,

or (2n + 1) xPn(x) = (n + 1) Pn + 1(x) + n Pn – 1(x)

Proof. We know that

(1 – 2xh + h2)–1/2  
0

n
n

n
h P x




 .....(1)

Differentiating (1) both sides w.r.t. h, we get

  3 221 1 2
2

xh h


   (– 2x + 2h)  1

0

n
n

n
nh P x







or (x – h) (1 – 2xh + h2)–1/2 = (1 – 2xh + h2)  1

0

n
n

n
nh P x







or (x – h)  
0

n
n

n
h P x




  = (1 – 2xh + h2)  1

0

n
n

n
nh P x







Equating coefficients of hn from both sides, we get

or xPn(x) – Pn – 1(x) = (n + 1) Pn + 1(x) – 2xn Pn(x) + (n – 1) Pn–1(x)

or (2n + 1) xPn(x) = (n + 1) Pn + 1(x) + nPn – 1(x)

12.7.2              1( ) ( ) ( )n n nnP x xP x P x  

Proof.

Differentiating (1) w.r.t.’h’, we get

  3 221 1 2
2

xh h


   (– 2x + 2h)  1

0

n
n

n
nh P x







or (x – h) (1 – 2xh + h2)–3/2  1

0

n
n

n
nh P x





 .....(2)

Again differentiating (1) w.r.t.’x’, we find that

  3 221 1 2
2

xh h


   × (–2h)  
0

n
n

n
h P x







or h(1 – 2xh + h2)–3/2  '

0

n
n

n
h P x






Multiplying by (x – h) on both sides, we get

h(x – h)   3 221 2xh h


     '

0

n
n

n
x h h P x
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Using (2), we get  
0

n
n

n
nh P x




    '

0

n
n

n
x h h P x




  

Equating coefficients of hn from both sides of the above equation, we get
' '

1( ) ( ) ( )n n nnP x xP x P x 

12.7.3          (2n + 1) Pn(x) ' '
1 1( ) ( )n nP x P x n  

Proof. From recurrence formulas 12.7.1, we have
(2n + 1) xPn(x) = (n + 1) Pn + 1(x) + nPn – 1(x)

Differentiating it w.r.t.’x’, we get
(2n + 1) Pn(x) + (2n + 1) xPn(x) = (n + 1) Pn + 1(x) + nPn – 1(x) .....(3)

From recurrence 12.7.2, we have
nPn(x) = xPn(x) – Pn – 1(x)

or ' ( )nxP x '
1( ) ( )n nnP x P x  .....(4)

Using (4) in (3), we get
(2n + 1) Pn(x) + (2n + 1) [nPn(x) + Pn – 1(x)] = (n + 1)Pn + 1(x) + nPn – 1(x)

or (2n + 1) (n + 1) Pn(x) = (n + 1) Pn + 1(x) – (n + 1) Pn – 1(x)
or (2n + 1) Pn(x) = P n + 1(x) – P n – 1(x)

12.7.4               (n + 1) Pn(x) = [P n + 1(x) – xP n(x)]

Proof. From recurrence formulae 12.7.2 and 12.7.3, we have
nPn(x) = xP n(x) – P n – 1(x) .....(5)

(2n + 1) Pn(x) = P n + 1(x) – P n – 1(x) .....(6)
Substracting, we get

(n + 1) Pn(x) = P n + 1(x) – xP n(x)

12.7.5                  (1 – x2) P n(x) = x [Pn – 1(x) – xPn(x)]

Proof. From recurrence formulae 12.7.2, we have
nPn(x) = xP n(x) – P n – 1(x)

Multiplying by x, we get nxPn(x) = x2P n(x) – xP n – 1(x) .....(7)
Replacing n by (n – 1) in formula 12.7.4, we have

nPn–1(x) = P n(x) – xP n – 1(x) .....(8)
Substracting (7) from (8), we have

x [Pn – 1(x) – xPn(x)] = (1 – x2)P n(x)

12.7.6                    (1 – x2) P n(x) = (n + 1) [xPn(x) – Pn + 1(x)]

Proof. From recurrence formula 12.7.1, we have
(2n + 1) xPn(x) = (n + 1) Pn + 1(x) + nPn – 1(x)

or (n + 1) xPn(x) + xnPn(x) = (n + 1) Pn + 1(x) + nPn – 1(x)
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or (n + 1) [xPn(x) – Pn + 1(x)] = n[Pn – 1(x) – xPn(x)] .....(9)
From formula 12.7.5 we have

(1 – x2) P n(x) = n[Pn – 1(x) – xPn(x)] .....(10)
From (9) and (10), we easily get

(1 – x2) P n(x) = (n + 1)[xPn (x) – Pn + 1(x)]

Self-Learning Exercise–I

(1) The solution of Legendre’s differential equation is known as ......

(2) (1 – 2xh + h2)–1/2 

0
......n

n
h






(3)    
1

1
n mP x P x dx





  .....              (if m  n)

(4) Pn(1) = ......
(5) Pn(x) is a polynomial of degree ......

(6)  
 2 11

2

nn

n n n

d x
P x

n dx


  is known as ......

(7) x = ...... is an ordinary point for Legendre differential equations.
(8) The value of P2(x) is .......

(9)        ' '
11 .....n n nn P x P x xP x   

(10) if n is even/odd, then Pn(x) is ............ function of x.

12.8 Cristoffel’s Expansion

Result : Prove that
P n = (2n – 1) Pn – 1+ (2n – 5) Pn – 3+ (2n – 9) Pn – 5+ .....

where Pn  Pn(x)     and       P n  P n(x) .....(1)
The last term of the series will be 3P1 or P0 according as n is even or odd.
Proof : Replacing n  by n – 1 in recurrence formula 12.7.3, we have

P n = (2n – 1) Pn – 1 + P n – 2 .....(2)
Writing n – 2, n – 4, and so on in place of n in (2), we find that

P n – 2 = (2n – 5) Pn – 3 + P n – 4

P n – 4 = (2n – 9) Pn – 5 + P n – 6

.......  ........       ...........

.......  ........       ........... .....(A)
P 3 = 5P2 + P 1
P 2 = 3P1 + P 0
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When n is even, then adding the relations in (A) and (2), we get

P n = (2n – 1) Pn – 1+ (2n – 5) Pn – 3+ (2n – 9) Pn – 5+ .....+ 3P1 (     P 0(x) = 0)

and when n is odd, then

P n = (2n – 1) Pn – 1+ (2n – 5) Pn – 3+ (2n – 9) Pn – 5+ .....+ 5P2 + P0

(     P 1= 1 = P0)

12.8.1 Cristoffel’s Summation Formula

Result : Prove that

     
0

2 1
n

r r
r

r P x P y


          1 11 n n n nP x P y P y P x
n

x y
  

    
.....(3)

Proof. Prom recurrence formula 12.7.1, we have
(2r + 1) xPr (x) = (r + 1) Pr + 1 (x) + rPr – 1 (x) .....(4)

(2r + 1) yPr (y) = (r + 1) Pr + 1 (y) + rPr – 1 (y) .....(5)

Now multiplying (4) by Pr(y) and (5) by Pr(x) and subtracting, we find that

(2r + 1)(x – y) Pr (x) Pr (y) = (r + 1) [Pr + 1 (x) Pr (y) – Pr + 1 (y) Pr (x)]

   + r[Pr – 1 (x) Pr (y) – Pr (x) Pr – 1 (y)] .....(6)
Taking r = 0, 1, 2 , .... n in (6) and adding the relations column-wise, we get the required result

(3).

12.9 Expression For Pn (cos ) in Terms of Cosine Series

we know that

(1 – 2xt + t2)–1/2  
0

n
n

n
P x t




 .....(1)

Taking x cos
2

i ie e  
  

in (1) we easily get

 
0

cos n
n

n
P t




 = (1 – tei)–1/2(1 – te– i)–1/2 .....(2)

 2 2 1 3..... 2 11 1 31 ... ...
2 2 4 2 4 6.....2

i i n inn
te t e t e

n
    

         

 2 2 1 3..... 2 11 1 31 ... ...
2 2 4 2 4 6.....2

i i n inn
te t e t e

n
      

         

Now equating coefficients of t n both sides, we get

Pn(cos )
 
     

 
    2 21 3 5.... 2 1 1 3 5.... 2 3 1

2 4 6.... 2 2 4 6... 2 2 2
i n i nin inn n

e e e e
n n
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    4 41 3 5..... 2 5 1 3 .....
2 4 6.... 2 4 2 4

i n i nn
e e

n
     

   
   

 

or Pn(cos ) = 
 1 3 5.... 2 1

1 4 6....2
n

n
  
 

×    
    1 1 32cos 2cos 2 2cos 4 ...

2 1 2 1 2 3 1 2
n nnn n n

n n n
  

  
            

the above formula is useful in obtaining the integrals involving the products of Pn(cos ) and sine and
cosine multiple of .

Ex.1. Prove that  12 0

1 1

1
n

n n
n

z P P z
zz xz z







  

 


Sol. We have RHS  1
0

n
n n

n
P P z






 

1
1

0 0

1n n
n n

n n
z P z P

z

 



 

   .....(3)

Also
1

1
0

n
n

n
z P






 = zP1 + z2P2 + z3P3 + .. .....(4)

and
0

n
n

n
z P




 = P0 + zP1 + z2P2 + z3P3 + .. .....(5)

Substracting (5) from (4), we get

1
1

0

n
n

n
z P






 0

0

n
n

n
z P P




  .....(6)

Using (6) in (3), we get

RHS 0
0 0

1n n
n n

n n
z P z P P

z

 

 

 
   

 
 

  0

0

11 n
n

n

Pz P x
z z





    
 



  1 221 11 1 2xz z
z z

      
 

 0 1P 

= L.H.S.
Ex.2. Prove that Pn(1) = 1 and Pn(–1) = (–1)n

Sol. We have  
0

n
n

n
h P x




 = (1 – 2xh + h2)–1/2 .....(7)

For x = 1, we have
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0

1n
n

n
h P




 = (1 – h)–1

= 1 + h + h2 + .... hn 

0

n

n
h






Equating coefficients of hn on both sides, we find that  P1(1) = 1
Also for x = – 1, equation (7) gives

 
0

1n
n

n
h P




 = (1 + h)–1 = 1 – h + h2 – .... + (–1)nhn ....+  .....

 
0

1 n n

n
h




 

Equating coefficients of hn on both sides, we get Pn(–1) = (–1)n

Ex.3. Prove that

(2n + 1) (x2 – 1) nP  = n(n + 1) (Pn + 1 – Pn – 1)
and hence deduce that

       
   

1
2

1
1

2 1
1

2 1 2 3n n
n n

x P x P x dx
n n




 

 
Sol. From recurrence relation 12.7.5 and 12.7.6, we have

(1 – x2) '
nP = n (Pn – 1 –  xPn) .....(8)

(1 – x2) '
nP = (n + 1) (xPn –  Pn + 1) .....(9)

Eliminating xPn from (8) and (9), we get

   
 

2 ' 2 '1 1

1
n nx P x P

n n

 



 = Pn – 1 – Pn + 1

or
    

 

2 ' 2 '

1 1

1 1 1

1
n n

n n

n x P n x P
P P

n n  

   
 



or (2n + 1) (1 – x2) '
nP = n(n + 1) [Pn–1 – Pn+1]

or (2n + 1) (x2 – 1) '
nP = n(n + 1) [Pn+1 – Pn–1] .....(10)

This result is known as Beltrami’s relation.
Deduction
Multiplying both sides of (10) by Pn+1(x) and integrating w.r.t. ‘x’ from –1 to 1, we find that

       
       

1 1
2 '

1 1 1 1
1 1

1
1

2 1n n n n n
n n

x P x P x dx P x P x P x dx
n   

 


     

Using orthogonal property for Legendre’s polynomials, we get the required integral
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Ex.4. Show that    2

0

1 1 cos
n

nP x x x d



        

where n is a positive integer.
This result is also known that Laplace’s first integral for Pn(x) .
Proof. We know that

0 cos
d

a b

 
 2 2

,
a b





 we have a2 > b2 .....(11)

Taking a = 1 – hx   and   b = h 2 1x  , then
a2 – b2 = (1 – hx)2 – h2(x2 – 1) = 1 – 2xh + h2

Thus (11) becomes
    22

0 1 21 1 cos

d

xh hhx h x




   

 

or (1 – 2xh + h2)–1/2

   2
0

θ

1 1 cosθ

d

hx h x


  



or  
0

π n
n

n
h P x




   

1
2

0

1 1 cosθ θh x x d


      


  1

0

1 ht d


  ,   where  2 1cost x x   

 2 2

0

1 ... ...n nht h t h t d     




0 0

n n

n
h t d







 

Equating coefficients of hn from both sides, we get

Pn(x)
0

nt d


 

or Pn(x) 2

0

1 1cos
n

x x d     


 


Ex.5. Prove that

 
     

2
1 1

0

2 1
2 1 2 1 2 3n n

n n
x P P dx

n n n



 



  

Proof. From Recurrence formulae 12.7.1 we have
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(2n + 1) xPn = (n + 1) Pn + 1+npn – 1

Put (n – 1) and (n + 1) in place of n respectively, we get

(2n – 1) xPn – 1 = nPn +(n – 1) Pn – 2 .....(12)

(2n + 3) xPn + 1 = (n + 2) Pn + 2 +(n + 1) Pn .....(13)

Multiplying (12) and (13), we get

(2n – 1) (2n + 3) x2Pn – 1 Pn + 1 = n(n + 2) Pn Pn + 2 + n(n + 1) P2
n

+ (n + 2) (n – 1) Pn + 2 Pn – 2 + (n2 – 1) Pn Pn – 2

Integrating w.r.t. x between limit –1 to +1, we have

     
1 1

2 2
1 1

1 1

2 1 2 3 1n n nn n x P P dx n n P dx
 

 
 

    

(other integrals on the RHS vanish due to integral
1

1

0 ifm nP P dx m n




  )

or      
 

1
2

1 1
1

2 1
2 1 2 3

2 1n n
n n

n n x P P dx
n



 



  



or
1

2
1 1

1
n nx P P dx



 



 
     

2 1
2 1 2 1 2 3

n n
n n n




  

Ex.6. Show that 
1

1 2
1

2
4 1n n

nxP P dx
n









Proof. From Recurrence relation 12.7.1 we have
(2n + 1) xPn = (n + 1) Pn + 1 +  nPn – 1 .....(14)

Multiplying (14) by Pn – 1 and then integrating w.r.t. x from –1 to +1, we get.

 
1

1
1

2 1 n nn xP P dx





     
1 1

2
1 1 1

1 1

1 n n nn P P dx n P dx
 

  
 

   
Using orthogonal property for Legendre polynomial, we get

 
1

1
1

2 1 n nn xP P dx


   
2

2 1
n

n






1

1
1

n nxP P dx





 2
2

4 1
n

n




Ex.7. Prove that  
 

1
20

1

1 cos
n n

d
P x

x x







      

 .....(15)

Sol. Taking a = xt – 1 and 2 1,b t x    then a2 – b2 = 1 – 2xt + t2
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2 2a b




 

1 2
1

2
0

2 11 n
n

n

x P x t
t t t

 
 



     
 


  for large t .....(16)

Also
1
cosa b    1

2 1 cos 1t x x


       

   

1
1

2
2

11cos 1
1cos

t x x
t x x




 
             
 

1

1
20 1cos

n

n
n

t

x x

 





     


.....(17)

Now integrating (17) both sides w.r.t.  in (0, ), we get

1

1 2 2200 0 cos1cos

n

n
n

t dd
a b a bx x

  




 
   

   
          

 

Using (16) in the above expression, we find that

 1 1
1

20 00 1cos

n n
nn

n n

d t P x t
x x

 
   


 

 
 

  
        

  .....(18)

Equating coefficicents of t–n–1 in (18), we get the required integral (15).

Remark. The integral given by (15) is known as Laplace’s second integral.

Ex.8. Evaluate  
0

cos cosnP n d


  

Sol. By §12.9, we have

Pn  (cos ) 
   1 3 5 ... 2 1

2cos 2cos 2
2 4 5 ... 2 2 1

n nn n
n n

        

 
    

1 1 3 2 cos 4 ...
2 1 2 3 1 2

n n
n

n n
 

        
     .....(19)

Multiplying (19) both sides by cos n  and integrating w.r.t  in (0, ) we get
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I 
   2

0

1 3 5 ... 2 1 22cos cos cos 2
2 4 5 ... 2 2 1

n nn n n
n n

            

 
     

2 1 1 3 cos cos 4 ...
2 1 2 3 1 2

n n
n n d

n n
 

        

Using the following orthogonal property for cosine function

0

cos cosm n d


  
0,

2,
m n
m n


  

,

we find that I  
1 3 5 2 1...1 3 5 ... 2 1 2 2 2 22

2 4 6 ... 2 2 1 2 3 ...

n
n

n n

            
   

 

1 1
1 12 2 ,

1 2 2

n
B n

n

                   
.

12.10 Recurrence Formulae for Qn (x)

We have already defined that

 Qn (x) = 
      

 
 

2
1 32 1 2

......
2 1 2 2 3

n
n nn n n

x x
n n

     
     

.....(1)

Again above relation can be written as

Qn (x) = 
 

   

2 1

0

22
2 1 2 2 3 ..... 2 2 1

n rn

r
r

n r xn
n r n n r

  





   
 .....(2)

Differentiating (2) with respect x, we get

Qn (x) = 
   

   

2 2

0

2 12
2 1 2 2 3 ..... 2 2 1

n rn

r
r

n r xn
n r n n r

  



 


   
 .....(3)

Putting n – 1 for n, then we get

Qn–1(x)
     

   

2 1

0

22
2 1 2 2 3 ..... 2 2 1

n rn

r
r

n r xn
n r n n r

  




 

   
 .....(4)

Again putting n + 1 for n in (3), we get

Qn +1(x)
   

     

2 3

0

2 22
2 2 2 1 2 3 ..... 2 2 3

n rn

r
r

n r xn
n r n n n r

  



 
 

   
 .....(5)

12.10.1  1 1 2 1n n nQ Q n Q    
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Proof. Using (1) and (4) above, we get

Qn –1+(2n + 1) Qn = –
 

   

2 1

0

2 2
2 1 2 2 3 ...... 2 2 1

n rn

r
r

n n r x
n r n n r

  




   


     
 

   

2 1

0

2 22 1
2 1 2 2 3 ..... 2 2 1

n rn

r
r

n n r xn
n r n n r

  




  

   


 

   
 

2 1

0

2 2 2 2 1 2 1
2 1 2 2 3 .... 2 2 1

n rn

r
r

n n r x n r n
n r n n r

  




          



 

   
 

2 1

0

2 2 2
2 1 2 2 3 ....... 2 2 1

n rn

r
r

n n r x r
n r n n r

  




  

   


 

   

2 1

1
1

2 2
2 1 2 1 2 3 ...... 2 2 1

n rn

r
r

n n r x
n r n n r

  





 

    


Putting r – 1 = s  r = s + 1, therefore

Qn –1+(2n + 1) Qn 
 

   

2 3

0

2 2 2
2 1 2 2 3 ...... 2 2 3

n sn

s
r

n n s x
n s n n s

  



 
 

   


 '
1nQ x LHS 

12.10.2    1 11 2 1n n nnQ n Q n x Q      

Proof. Using (1) and (4) above, we get

(2n + 1)x Qn– (n + 1) Qn-1
 

 

   

2 2

0

2 2 12 1
2 1 2 2 3 ...... 2 2 1

n rn

r
r

n n r xn x
n r n n r

  



  
  

   


 
 

   

2 1

0

2 21
2 1 2 2 3 ...... 2 2 1

n rn

r
r

n n r xn
n r n n r

  



 
 

   


   

   

2 1

0

1 2 2
2 1 2 2 3 ...... 2 2 1

n n r

r
r

n n r x
n r n n r

  



 


   


       12 1 2 1 1 2 2 1n x n r x n n r         

   

   

2 1

0

1 2 2 1 2
2 1 2 2 3 ....... 2 2 1

n n r

r
r

n n r x nr
n r n n r
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2 1

1
1

2 2
2 1 2 1 2 3 ....... 2 2 1

n n r

r
r

n n n r x
n r n n r

  




 


    


   

   

2 3

0

2 2 2
2 1 2 2 3 ...... 2 2 3

n n s

s
s

n n n s x
n s n n s

  



  


   


 '
1 . . .nnQ x L H S 

12.10.3    n n nn x Q n Q nQ1 12 1 1     
Proof. Integrateing the recurrence relation 12.10.2  w.r.t. x from x to , we get

 ' '
1 11n nx

nQ n Q dx


       '2 1 nx
n xQ dx


  

or  1 11n n x
nQ n Q 

          2 1 n nx x
n xQ Q x dx

     

      

' '
1 1

2 1 2 1
2 1

n n
n x x

Q Q dx
n xQ n

n
  
     

                    (by relation 12.10.1)

      1 12 1 n n nx x xn xQ Q Q  
    

The value of Qn –1, Qn or Qn + 1 is zero when x is infinity since they contain only negative integral

power of x, therefore

–nQn+1 – (n + 1) Qn–1 = – (2n + 1) x Qn + Qn + 1 – Qn – 1

Solving it we easily get the required ralation 12.10.3

12.10.4        n n nn x Q n n Q Q2
1 12 1 1 1      

Sol. Since Qn is a solution of Legendre’s equation, namely

   21 1 0d dyx n n y
dx dx

      

Therefore    2 '1 1n n
d x Q n n Q
dx

      .....(5)

Integrating w.r.t. x both sides of (5) between the limits,  to x, we have

 2 '1
x

nx Q


    1
x

nn n Q dx


   
or    2 '1 nx Q x  1

x
nn n Q dx


    ......(6)

Integrating both sides of recursence ralation 12.10.1 between the limit  to x, we get

1 1n nQ Q   2 1
x

nn Q dx


  .....(7)

Now, from (6) and (7), we get



239

   2 '1 nx Q x      
 

1 11
2 1

n nQ x Q x
n n

n
  

     

     2 '2 1 1 nn x Q x       1 11 n nn n Q x Q x     

12.11 Cristoffel’s Second Summation Formula

Result.          
n

r r
r

y x r P x Q y
1

2 1


 

             n n n nn P x Q y P x Q y1 11 1        ......(1)

Proof : From recurrence formulas for Pn(x) and Qn(x), we have

(2n + 1) x Pn (x)      1 11 n nn P x nP x    .....(2)

(2n + 1) y Qn (y)      1 11 n nn Q y nQ y    .....(3)
Multiplying (2) by Qn (y) and (3) by Pn(x) and subtracting, we have
(2n + 1 ) (x – y) Pn (x) Qn (y) + n {Pn–1 (x) Qn–1 (y) – Qn-1 (y)Pn (x)}

          1 11 n n n nn P x Q y P x Q y    .....(4)
Taking n = 1, 2, 3 ...... , n in (4) and adding, we get

                1 0 0 1
1

2 1
n

r r
r

y x r P x Q y Q x P y Q y P x


   

          1 11 n n n nn P x Q y P x Q y     .....(5)

Now since Q1 (y) = y, Q0 (y) = 1, P1 (x) = x, P0 (x) = 1, therefore (5) gives the required
result (1).

12.12 Relations Between Pn (x) and Qn (x)

Result. Prove that y x
1


     m m
m

m P x Q y
0

2 1




 
and hence deduce that

Qm (y)= 
   mP x

dx y
y x




1

1
, 1

Proof : Let f (x) = 
1

1 1 1 x
y x y y


 

    
 

2
1 1 ..... ......

m

m
x x xy
y y y

  
       

 
1 2 2 3 1...... .......m my x y x y x y           

2
0 1 2 .......A A x A x        (Suppose that) ......(1)

where A’s are constants.
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Further suppose that f (x) =  
0

,m m
m

B P x





then we know that Bm=  
  

  2
1 21.2.3....... ......

1.3.5...... 2 1 2 2 3m m
m mm A A

m m 
  

    
......(2)

Comparing (1) and (3) we get

A0 =  11 2
1, , ...., ,.....m

my A y A y   

 B m =  
     

 
 1 31 2! ......

1 3 5 2 1 2 2 3
m mm mm y y

m m
     

        
= (2m + 1) Qm (y)

Hence
1

y x
     

0
2 1 m m

m
m Q y P x




  .....(3)

Now multiplying (3) by Pm (x) and integrating w.r.t x in the interval (–1, 1), we find that

 1

1

1
mP x dx

y x


        1

1
0

2 1m m m
m

P x m P x Q y dx





 
  

  


     1 2

1
2 1m mQ y P x m dx


     1

1
( ) 0,nPm n P x dx m n


    

    22 1
2 1nQ y m

m
   


 

1 2
1

2
2 1m nP x d

m

   

    1

1

1 1
2 m nP x dx Q y

y x



This integral is called the Neumann’s integral for Qn (y).

Ex.1. Prove that        n n n nx Q P P Q c2 1      and deduce that

(i)
 

n
xn n

Q dx
P x P2 21







(ii)   xQ x
x0

1 1log
2 1






(iii)   x xQ x
x0

1log 1
2 1


 


Sol. The Legendre’s equation is

   
2

2
21 2 1 0d y dyx x n n y

dxdx
    

Since Pn (x) and Qn (x) are both the solution of this equation, therefore

         
2

2
21 2 1 0n n

n
d P x dP x

x x n n P x
dxdx
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and          
2

2
21 2 1 0n n n

d dx Q x x Q x n Q x
dxdx

     .....(5)

Multiplying (2) by Qn (x), and (3) by Pn (x) and then substracting, we get

         
2 2

2
2 21 n n n n

d dx P x Q x P x Q x
dx dx

 
  

 

       2 0n n n n
d dx Q x P x P x Q x
dx dx

     

that is           21 0n n n n
d d dx P x Q x P x Q x
dx dx dx

          
Integrating the above w.r.t x, we get

          2 ' '1 n n n nx P x Q x P x Q x c   .....(6)

Deduction. (i)        
1

' '
2 2 2

11
1n n n n

c cP x Q x Q x P x
x x x


       

2 4 6
1 1 1 ......c
x x x

     
 

.....(7)

Now Pn (x) = 
   

 

21.3.... 2 1 1
...

2 2 1

n
nn n n x

x
n n


  
  

  

and Qn (x) =  
   

 

3
1 1 2

......
1.3..... 2 1 2 2 3

n
n n n xn x

n n

 
   

  
   

Putting these values in (7), we get

    
   

3
11.3..... 2 1 1 2

....
2 2 1 1.3.... 2 1

n
nn n n n x nnx

n n n




         
     

  
 

3
1 1 2

......
2 2 3

n
n n n x

x
n

 
   

   
    1.3.... 2 1

n
n




     
 

4
2 1 2 3

1 .......
2 2 3

n
n n n n x

n x
n

 
 

           
    

   
 

2

2 4 6
1.3...... 2 1 1 1 1 1...... ......

2 2 1

n
nn n n x

x c
n n x x x

                      
Equating the coefficients of 1/x 2 from both sides, we get

 
 

 
 

 1 3 2 1 1 1.3.... 2 1
1 3 2 1 1.3.... 2 1

n n n nnn c
n n n n
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 1

1
2 1 2 1

nnc
n n


   

 

Substituting c = 1 in (6), we get

       ' '
n n n nP x Q x Q x P x 2

1
1x




       
 

' '

2
n n n n

n

P x Q x Q x P x

P x


    2 2

1
1 nx P x




 
 

n

n

Q xd
dx P x

 
   

     2 2
1

1 nx P x




Integrating both sides w.r.t. x between the limit x to , we get

n

n x

Q
P


 
 
     2 21x

n

dx
x P x






or
 
 

 
 

limn n
xn n

Q x Q x
P x P x

    2 21 nx

dx
x P x




 .....(8)

Now
 
 

lim n
x n

Q x
P x

 

 
lim

n

nn

nx
nn

d Q x
dx
d P x
dx




          
 

2 1! 1 1 2 .....2 .......
1.3.5.... 2 1

lim
1.3.5..... 2 1

!
!

n n

x

n n n nx
n

n
n

n

 



   







= 0

Thus (8) reduces to

 
 

n

n

Q x
P x    2 21 nx

dx
x P x




 .....(9)

(ii) Putting n = 0 in (9) and using P0 (x) = 1, we get

Q0 (x) = 
2

1 1log
2 11 xx

dx x
xx

      

1 1 1 1log log
2 1 2 1x

x x +
x x
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1lim log
1x

x
x

 
  

  
 

1 1
lim log 0

1 1x

x
x


 



(iii) Taking n = 1 and using P1 (x) = x in (9), we get

Q1(x) = 
  2 22 2

1 1
11x x

dxx x dx
x xx x

     
  

1 1 1log
2 1 x

xx
x x

    

1 1log 1 log 1
2 1 2 1
x x x x

x x
 

    
 

Ex.12. Show that n n n nn P Q Q P1 1 1    

Sol. We know that
(2n + 1) x Pn = (n + 1) Pn + 1 + n Pn–1 .....(10)

and (2n + 1) x Qn = (n + 1) Qn + 1 + n Qn–1 .....(11)

Multiplying (1) by Qn and (2) by Pn and then substracting, we get

or 0 =     1 1 1 11 n n n n n n n nn P Q Q P n P Q Q P      

or n[Pn Qn –1– Qn Pn –1] = (n + 1)[Pn+1 Qn – Qn+1 Pn]

 f (n + 1) = f (n) .....(12)

where f (n) =  1 1n n n nn P Q Q P 

Replacing n by n – 1 in (12), we get

f (n) = f (n - 1)

Similarly f (n – 1) = f (n – 2) = ... = f (1)

Hence f (n + 1) = f (n)=  f (n – 1) = ... = f (1)

But f (1) = 1 1 00P Q Q P      0 11,P x P x x   

= xQ0 – Q1

= xQ0 – (xQ0 – 1) 1 0 1Q xQ   

= 1

Thus f (n) = 1

or  1 1 1n n n nn P Q Q P  
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Self – Learning Exercise–II

1.  21 ........ndQd x
dx dx

    

2. ' '
1 1 ...........n nQ Q  

3. Legendre’s function of second kind is ...........

12.13 Summary

In this unit we studied the Legendre’s differential equation and its solution as Legendre function

of first and second kinds. We also studied the recurrence relation, generating function, orthogo-

nal property, Rodrigues formulae and other important formulas for these functions.

12.14 Answers to Self Learning Exercises

Exercise - I

1. Legendre function of first kind 2. Pn (x)

3. 0 4. 1

5. n 6. Rodrigues formulae

7. 0 8.  21 5 3
2

x x

9. 0 10. Even / odd

Exercise - II

1. – n (n + 1) Qn (x) 2. (2n + 1) Qn (x)

3. Qn (x)

12.15 Exercise

1. Prove that Pn (– x) = (– 1)n Pn (x) and Pn (– 1) = (– 1)n.

2. Express P (x) = x4 + 2x3 + 2x2 – x – 3 in terms of Legendre’s polynomial

[Ans :            4 3 2 1
8 4 40 1 224
35 5 21 5 105 oP x P x P x P x p x P x     ]

3. Show that  
1

1
0nP x dx





  except when n = 0 in which case the value of integral is 2.

4. Prove that       
 

1 22 '

1

2 1
1

2 1n
n n

x P x dx
n
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5. Show that Pn (x) Qn–2 (x) – Qn (x)Pn–2 (x) = 
 
 
2 1

1
n

x
n n




6. Prove that ' '
1n n nxQ Q nQ 

7. Prove that

   
 

 

2 2
1

1 0 2
0

111 ; ;
2 1

n
n

n

t x
P x t xt F

xt






 
      



8. Prove that

  2 1 2
1 1, ; 1 ; 1

2 2 2
n

n
n nP x x F

x
 

     
 

9. Show that

   2 2

0 1
0

1
; 1 ;

! 4

n
n xt

n

t xP x t
e F

n





 
    
 



10. Find the values of P2n+1(0), P2n (0), P2n (0) and P2n+1 (0)

[Ans. 
       1 1/ 2 1 3 / 2

0, , 0 ,
! !

n n
n n

n n
 

]

11. Establish the Murphy’s formula

  2 1
1, 1 ; 1 ;

2n
xP x F n n     

 
 and deduce that

(a)     2 1
11 , 1 ; 1 ;

2
n

n
xP x F n n      

 

(b)   2 1
1 1, ; 1 ;

2 1

n

n
x xP x F n n

x
            

(c)   2 1
1 1, ;1;

2 1

n

n
x xP x F n n

x
            

(d)     2
2 1cos , 1 ; 1 ; sin / 2nP F n n    

12. Prove that

 
 

2 1 2
2 1/ 2 1 1 1, ; ;

! 2 2 2 2

n n
n

n
x n nP x F n

n x
 

    
 

13. Prove that
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  2
0

0
1

!

n
n xt

n

P x t
e J t x

n





   
 

14. Prove that

   '
2 42 3 2 7 .......n n n nxP nP n P n P      

and hence or other wise show that

(a)
1 '
1

2
2 1n n

nxP P dx
n




(b) 1 '
1

0n mxP P dx


  or 
2

2 1
n

n 

15. Show that  1 2
1 1n

nP x dx
n

    

16. Show that  
    
   

1 2
1
1

1 1

2 1 2 1 2

n

n n

n
P x dx

n n





 


 

17. Prove that

 1
1

0nP x dx


 , n  0 and  1
01

2P x dx



18. Prove that

      2 2 22 2 2 2 2
0 13 ...... 2 1 1 1n n nP P n P n P x P        
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Unit 13 : Bessel’s Functions
Structure of the Unit

13.0 Objective

13.1 Introduction

13.2 Definition

13.3 Bessel’s Equation and its solution

13.4 Relation between Jn (x) and J– n(x)

13.5 Generating function

13.6 Recurrence Formulae

13.7 Addition Theorem

13.8 Orthogonal Property

13.9 Integral Representation of Bessel Functions

13.10 An Important Integral

13.11 Summary

13.12 Answers to Self-Learning Exercise

13.13 Exercise

13.0 Objective

In this unit you will learn about Bessel function which besides the solution of the well-known

Bessel’s equation may also be introduced through a generating function. You will also study important

properties for this function.

13.1 Introduction

No other special function have received such detailed treatment in readily available treatises as

have the Bessel functions. These functions were first introduced by F.W. Bessel, who is regarded as the

founder of the modern practical Astronomy. In fact several problems of mathematical physics lead to

Laplace’s equation and in turn converts into Bessel’s equation when there is a cylindrical symmetry. There-

fore Bessel’s function and Bessel’s equation have received great attention.

In this unit, we introduce the Bessel function through the Bessel’s differential equation and gener-
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ating function. We then discuss the important properties (such as Recurrence formulae, orthogonal property,

Addition theorem, integral representations etc.) for this function.

13.2 Definition

13.2.1 Bessel Differential Equation

The differential equation

 
2

2 2 2
2 0dyd yx x x n y

dxdx
    .....(1)

is called Bessel’s differential equation of order n where n is non-negative real number.

13.2.2 Bessel’s function of the first kind of order n

It denoted by Jn(x) and is defined as

   
 

2

0

1
! 1 2

r n r

n
r

xJ x
r n r





        
 .....(2)

(where n is any non-negative constant)

 
 

2

0 1
2

; 1;
1 4

nx xF n
n

 
        

.....(3)

It n is a negative integer, then we put

     1 n
n nJ x J x  .....(4)

     1 n
n nJ x J x   .....(5)

Equations (3) and (4) together define Jn (x) for all finite x and n.
Replacing n by 0 and 1 in (2), we find that

 
2 4 6

0 2 2 4 4 4 2
...1

2 2 4 2 4 6
x x xJ x      .....(6)

and  
3 5

1 2 2 2
...

2 2 3 2 4 6
x x xJ x    


......(7)

13.3 Bessel’s Equation and its Solution

Bessel differential equation is

 
2

2 2 2
2 0d y dyx x x n

dxdx
    .....(1)

The equation (1) has a regular singular point at x = 0, and an irregular singular point at x = ,
while all other points are ordinary points. The solution of equation (1) called Bessel’s function will de-
pend upon n. This index n may be non-integer, a positive integer or zero. We discuss three possibilities :

Case I. Solution of (1) for non-integral values of n



249

Here the equation (1) is solved in series by using the well-known method of Frobenius.
Let the series solution of (1) be

0
0

, 0c r
r

r
y a x a





  .....(2)

From (2), we get   1

0

c r
r

r

dy a c r x
dx


 


 

and   
2

2
2

0
1 c r

r
r

d y a c r c r x
dx


 


   

Substitution for 
2

2, ,dy d yy
dx dx

 in (1) gives

      2 2 1 2 2

0 0 0
1 0c r c r c r

r r r
r r r

x a c r c r x x a c r x x n a x
  

    

  
         

or       2 2

0 0 0 0
1 0c r c r c r c r

r r r r
r r r r

a c r c r x a c r x a x n a x
   

    

   
          

or     2 2

0 0
1 0c r c r

r r
r r

c r c r c r n a x a x
 

  

 

         

or    2

0 0
0c r c r

r r
r r

c r n c r n a x a x
 

  

 
         .....(3)

Equating to zero the lowest power x i. e, xr, we get the indical equation as
(c + n) (c – n) a0 = 0

 c = n, –n    as   a0  0
So roots of the indical equation are c = n, –n.
Now equating to zero, the coefficient of xc + 1, we find that

(c + 1 + n) (c + 1 – n) a1 = 0

so that a1 = 0   for  c = n  and  –n.
Finally equating to zero the coefficient of xc + r, we get

(c + r + n) (c + r – n) ar + ar–2 = 0

or    2
1

r ra a
c r n c r n  
    .....(4)

Putting r = 3, 5, 7, ..... in (4) and using a1 = 0 we find that
a1 = a3 = a5 = a7 = ..... = 0 .....(5)

Also putting r = 2, 4, 6, ..... in (4) gives

   2 0
1

2 2
a a

c n c n
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    4 0
1 and so on

2 2 4 4
a a

c n c n c n c n


       
.

Putting these values in (2), we get

 2 4
0 2 4 1 3 5

0
..... as 0c r c c c

r
r

y a x a x a x a x a a a


  


       

or               
2 4

0 ....1
2 2 2 2 4 4

c x xy a x
c n c n c n c n c n c n

 
                

Replacing c by n and – n, we get

     
2 4

0 1 .....
2 2 2 2 4 2 2 2 4

n x xy a x
n n n

 
         

.....(5)

and     
2 4

0 1 .....
2 2 2 2 2 2 4 2 4

n x xy a x
n n n

  
            

.....(6)

The particular solution of the equation (1) obtained from (5) above by taking the arbitrary con-

stant 
 0
1

2 1na
n


 

 is called the Bessel function of the first kind of order n. It will be denoted by

Jn (x). Thus we have

 
      

2 4
1 .....

4 1 4 8 1 22 1

n

n n
x x xJ x

n n nn
 

          
.....(7)

or    
 

2

0

1
1 2

r
n r

n
r

xJ x x
r n r






        
 .....(8)

Similarly taking 
 0
1

2 1na
n


 

 in (6), we get

   
 

2

0

1
1 2

r r n

n
r

xJ x
r n r






         
 .....(9)

Let n be non-integral. Since n is not an integer and r is always integral, the factor (–n + r + 1)
in (9)   is always finite and non-zero (m) is always finite for m  0 or a negative integer.) Again for
2r < n, (9) shows that J–n(x) contains negative powers of x. On the other hand, (8) shows that Jn(x)
does not contain negative power of x at all. Therefore for x = 0, Jn(x) is finite. While J–n(x) is infinite, and
so one can not be expressed as constant multiple of the other. Thus we conclude that Jn(x) and J–n(x)
are independent solutions of (1) when  n is not an integer. Thus general solution of Bessel’s equation (1)
when n is not an integer is

y = AJn(x) + BJ–n(x)
where A and B one arbitrary constants.

Case-II. Solution for positive integral values of n and for n = 0.
It n is a positive integer, then for c = –n, the recurrence relation (4) gives
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  2
1

2r ra a
r n r 



which breaks when r = 2n.
Also if n = 0, the two roots of the indical equation becomes equal and in that case the afore-

mentioned method is not applicable.
In both the cases, the second solution of (1) can be found by using methods mentioned in unit 9.

13.4 Relation between Jn(x) and J–n(x),  n being an integer

Result.      1 n
n nJ x J x   .....(1)

Proof. We consider two cases :
Case I. Let n be a positive integer

We have    
 

2

0

1
1 2

r r n

n
r

xJ x
r n r






         
 .....(2)

Since n > 0, so (–n + r + 1) is infinite. for r = 0, 1, ..., n – 1, therefore (2) becomes

   
 

21
1 2

r r n

n
r n

xJ x
r n r






         


 
 

2

0

1
1 2

m n m n

m

x
m n m

 



        
     (taking r = m + n)

   
 

2

0

1
1

1 2

r n r
n

r

x
r r n





         


   1 n
nJ x    (by definition)

Case II. Let n < 0.
Putting n = –p, where p is a tive integer
Since P > 0, therefore form Case I, we have

     1 p
p pJ x J x  

or      1 p
p pJ x J x

 

Putting p = –n, we get the required result.
Hence the relation (1) is true for any integer.

13.5 Generating Function

Theorem. Prove that when n is a positive integer Jn (x) is the coefficient of zn in the

expansion of 
1exp x z

z z
    

  
 in ascending and decending power of z.
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Proof. We have
1exp exp exp

2 2
x xz xz
z z z

               
      

2 12 1
1 .... ....

2 2 2 2 2 1

n nn nx x z x z x zz
n n

                                  

     
12 12

11 1 1
1 .... ....

2 2 2 2 2 1

n nn nn
nzx x z x xz z

n n


 

                                 
....(1)

Multiplying the R.H.S. of (1) term by term, we find that coefficient of  zn  is
2 41 1 1 ....

2 1 2 2 2 2

x n nx x x
n n n

 
                   

 
   

2

0

1
1 2

r n r

n
r

x J x
r n r





        
 .....(2)

Similarly the coefficient of z–n in the expansion (1) is

         
1 22 41 1 1

.... 1
2 1 2 2 2 2

n n nn n n
n

n
x x x J x

n n n

                         
.....(3)

Further, the term independent of z is

 
2 4

02 2 21 ....
2 2 4
x x J x    


.....(4)

Hence relation (1) with help of (2), (3) and (4) may be written as

     2
0 1 22

1 1 1exp ....
2
x z J x z J x z J x

z z z
                  

      

Since J–n(x) = (–1)n Jn(x), therefore

 1exp
2

n
n

n

x z J x z
z





     
  

 .....(5)

13.6 Recurrence Formulae for Jn (x)

13.6.1   xJn (x) = nJn (x) – xJn + 1 (x)

Proof. We have

 nJ x
 
 

2

0

1
1 2

r n r

r

x
r n r





        


Differentiating above w.r.t. x, we get

 nJ x
   

 

2 1

0

1 2 1
1 2 2

r n r

r

n r x
r n r
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2 1

0

1 1
1 2 2

r n r

r

x xn
r n r x

 



         
  

 

2 1

0

1 12
1 2 2

r n r

r

xr
r n r

 



        


 
 

2

0

1
1 2

r n r

r

n x
x r n r





        


 
   

2 1

1

1
1 1 2

r n r

r

x
r n r

 



         


   
 

2 1

0

1
2 2

s n s

n
s

n xJ x
x s n s

 



        


   1n n
n J x J x
x  

Hence      1n n nxJ x nJ x x J x  

13.6.2   xJn (x) = xJn–1 (x) – nJn (x)

Proof. We have as in formulae 13.6.1

 nJ x    
 

2 1

0

1 2 1
1 2 2

r n r

r

n r x
r n r

 



          


   
 

2 1

0

1 2 2 1
1 2 2

r n r

r

n r n x
r n r

 



          


   
 

 
 

2 1 2 1

0 0

1 1 1
1 2 1 2 2

r rn r n r

r r

n r x x xn
r n r r n r x

    

 

                         
 

   
   

 
 

2 1 2

0 0

1 1
2 1 2

r rn r n r

r r

n r x n x
r n r n r x r n r

   

 

                 
 

   
   

2 1

0

1
2

r n r

n
r

n r x n J x
r n r x

 



        


   1n n
nJ x J x
x 

Hence      1n n nxJ x x J x nJ x  

13.6.3     2Jn (x) = Jn–1 (x) – Jn + 1 (x)

Proof. Adding recurrence formulae 13.6.1 and 13.6.2, we get the formula 13.6.3.

13.6.4      1 12 n n nxn J x J x J x    

Proof. Substracting recurrence formula 13.6.2 from 13.6.1, we easily get recurrence formula
13.6.4.

13.6.5    1
n n

n n
d x J x x J x
dx
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Proof. By formulas 13.6.1, we have

     1n n nx J x n J x x J x  

Multiplying both sides of above by x – n–1, we have

     1
1

n n n
n n nx J x nx J x x J x   

  

or      1
1

n n n
n n nx J x nx J x x J x   

   

or    1
n n

n n
d x J x x J x
dx

 
    

13.6.6    1
n n

n n
d x J x x J x
dx    

Proof. By formula 13.6.2, we have

     1n n nx J x x J x n J x  

Multiplying both sides of above by x n–1, we have

     1
1

n n n
n n nx J x x J x nx J x

  

or      1
1

n n n
n n nx J x nx J x x J x

  

or    1
n n

n n
d x J x x J x
dx    

Ex.1. Prove that  1 2
2 sinJ x x
x

 


Sol. We know that

 
       

2 4
1 ...........

2 2 2 2 4 2 2 2 42 1

n

n n
x x xJ x

n n nn
 

            

Puting 
1
2

n   and using 3
2 2

   
 

, we get

 
2 4

1 2
2 1 ...

2 3 3 5 2 4
x x xJ x
 

         

            
3 52 ...

31 51
x xx

x
 

      

             
2 sin x
x




Ex.2. Show that Jn (x) is even and odd function for even n and for odd n respectively.
Sol. Replacing x by – x in the definition for Bessel function, we get

   
 

2

0

1
1 2

r n r

n
r

xJ x
r n r
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2

0

1
1 1

1 2

r n r
n n

n
r

x J x
r n r





          


(i) If n is even then    n nJ x J x  , therefore  nJ x  is even.

(ii) If n is odd then     ,n nJ x J x   therefore  nJ x  is odd.

Ex.3. By using generating function, for Bessel function, show that

(i)   0 2 4cos sin 2 cos 2 2 cos 4 ........x J J J    

(ii)   1 3sin sin 2 sin 2 sin 3 ......x J J    

(iii) 0 2 4cos 2 2 ..........x J J J   

(iv) 1 3 5sin 2 2 2 ...........x J J J   

Sol. We have exp  1
2

n
n

n

x z z J x
z





     
  



                      2
0 1 22

1 1 ......J x z J x z J x
z z

           
   

.....(1)

Let us put iz e  . Then

1 2 sinn
nz i

z
    
 

and
1 2cosn
nz n

z
  

From (1), we have

         0 1 2exp sin 2 sin 2cos 2 .........x i J i J x J x      

    
 

0 2 4

1 3

cos sin sin sin 2 cos 2 2 cos 4

2 sin 2 sin 3 .....

x i x J J J

i J J

        

  

Separating real and imaginary parts, we easily arive at relations (i) and (ii).

Also on putting 2


   in (i) and (ii), we get easily the selations (iii) and (iv).

Ex.4. Prove that        2 2
1 1n n n n

d x J x J x x J x J x
dx          ..... (2)

and deduce that

 0 1 1 2 12 6 ......... 2 1 ......n nx J J J J n J J      

Sol. we have L.H.S of (2)            1 1 1n n n n n nx J x J x x J x J x J x J x      .....(3)

From recurrence relations 13.6.1 and 13.6.2 we have

     1n n nx J x n J x x J x   .....(4)

     1n n nx J x n J x x J x    .....(5)
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Putting n as (n + 1) in (5), we get

       1 11n n nx J x n J x x J x      .....(6)

Substituting the value of  nx J x  and  1nx J x  from (4) and (6) in (3), we get.

L.H.S of (2)  =        11n n nJ x n J x x J x    

         1 1 1n n n n nJ x n J x x J x J x J x      

   2 2
1n nx J x J x      R.H.S of (2)

This completes the solution of the problem.
Deduction.  Putting   n = 0, 1, 2 ..... respectively in (2) and adding after multiplying by 1, 3, 5

res, we get

            0 1 1 2 2 33 5 ......d x J x J x J x J x J x J x x
dx

      .....(7)

Integrating (7) in the interval (0, x), we get the required result. [after using Ex. 6 (i)]

Ex.5. Prove that          2 2 2 2
1 1

1
2n n n n

nd n
J x J x J x J x

dx x x 
        

Sol. We have    2 2
1n n

d J x J x
dx   

       1 12 2n n n nJ x J x J x J x    .....(8)

From recurrence relation 13.6.1, we have   1( ) ( )n n n
nJ x J x J x
x    .....(9)

Replacing n by n + 1 in recurrence relation 13.6.2, we find that

       1 1
1

n n n
n

J x J x J x
x 


    .....(10)

Using (9) and (10) in (8), we get

               2 2
1 1 1 1

12 2n n n n n n n n
d n nJ x J x J x J x J x J x J x J x
dx x x   

                 

   2 2
1

12 n n
n nJ x J x
x x 

    
which completes the solution of the problem.

Ex.6. Prove : (i)  2 2 2 2
0 1 2 3J + 2 J + J + J + ... = 1

(ii)    0 1J x 

(iii)    1 22 1nJ x , n 

Sol. From Ex.5 we have

2 2 2 2
1 1

12n n n n
d n ( n )J J J J
dx x x 

        
.....(11)

Replacing  n  by 0,1,2,3, ... in (1), we get
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2 2 2
0 1 1

12 0d J J J
dx x

        

2 2 2 2
1 2 1 2

1 22d J J J J
dx x x

        

2 2 2 2
2 3 2 3

2 32d J J J J
dx x x

        
... ... ...
... ... ...

and so on.
Adding column-wise and using lim 0n nJ ( x ) ,   we get

 2 2 2
0 1 22 2 0d J J J ....

dx
      .....(12)

Integrating the result (12), we  get
2 2 2
0 1 22J ( x ) J ( x ) J ( x ) ... c      ......(13)

 Putting  n = 0 in (13) and using

0 (0) 1 and (0) 0 for 1,nJ J n  
we obtain 1 + 2(0 + 0 + ......) = c, Thus c = 1

Hence (13) gives 2 2 2
0 1 22 1J ( J J .....)    ....(14)

(ii) From (14) we have  2 2 2 2
0 1 2 31 2 ...J J J J     ....(15)

Since 2 2 2
1 2 3J , J , J ,..... are all positive or zero, (15) gives

 2
0 1J   so that 0 1J ( x ) 

(iii) Also from (14) we have

 2 2 2 2 2 2 2
0 1 2 3 1 11 2 n n nJ J J J ..... J J J ...         

Solving for 2
nJ  we have

   2 2 2 2
0 1 2

1 1
2nJ J J J ...     ....(16)

Since 2 2 2
0 1 2J ,J ,J ,....  are all positive or zero, therefore

(16) gives that 2 1
2nJ   or   1 22 /

nJ x ,  where n  1

Ex.7. Prove that
 
  2

sin πn

n n

J xd 2 n=
dx J x πxJ

    
  

or n nJ J =
sin π2 n
πx



Sol. Since nJ (x) and nJ (x) are solutions of



258

2 2

2 2
1 1 0d y dy n y ,
x dxdx x

 
     

 

therefore
2

2
1 1 0n n n

nJ J J ,
x x

 
      

 
...(17)

and
2

2
1 1 0n n n

nJ J J
x x  

 
      

 
...(18)

Multiplying (17) by nJ and (18) by Jn and substracting, we get

   1 0n n n n n n n nJ J J J J J J J
x          ...(19)

Let n n n nu J J J J .   

Then (19) reduces to
1 10 uu u
x u x


     

Integrating we get log u = log 
a
x  or 

au
x



where a is arbitrary constant or

n n n n
aJ J J J
x   

      
2 41

2 2 2 2 4 2 2 2 42 1

n n
n

n
x xx ....

n . n nn

   




 
             

 
 

 
 
  

1 3
1 2 41

2 2 2 2 4 2 2 2 42 1

n n
n

n
n x n x

nx ....
n . n nn

 
  

    
       

      
2 41

2 2 2 2 4 2 2 2 42 1

n n
n

n
x xx ....

n . n nn

  
          

   
 
  

21
1 41 2

2 2 2 2 4 2 2 4 22 1

nn
n

n
n x( n )x anx ...

n . n n xn


 



 
      

        
.....(20)

Comparing the coefficients of 
1
x on both sides of (20), we get

         
1 2 2

1 1 1
n sin na n n

n n n n n


              

(using    1
sin z

z z 
   


)

Thus 2
2sinn n n n

n n

J J J J n
J x J
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2
2 sinn

n n

Jd n
dx J x J

  
   

 

Self-Learning Exercise-I

1. J0 (x) is a Bessel’s function of order ....... .

2.   ......n n
n

d x J x x
dx

     .

3. Write generating function for Bessel function Jn (x) .
4. J–n (x) = (– 1)n ........ .
5. Write differential equation for the Bessel function Jn (x).

6.    1 1 ...........n nx J x J x       .

7. Jn (x) is even function if n is .......

8.  
0

lim ...........n
nx

x J x




13.7 Addition Theorem

Statement : It n is a positive integer, then

                      
0 1

1
n

r
n n n r r n r r n r

r r
J x y J x J y J x J y J y J x



  
 

      ...(1)

Proof : we have   1exp
2

n
n

n

xJ x z z
z





     
  



  1 1exp
2 2

n
n

n

x yJ x y z z exp z
z z





                
      



   r s
r s

r s
z J x z J y

 

 
  

Now equating the coefficient of  zn on both sides, keeping in mind that the terms containing  zn on
R.H.S. are obtained by taking s = n – r and by making r vary from –  to  thus

     n r n r
r

J x y J x J y





   ...(2)

where n is any integer.

or              
1

0 1
r r

n

n r n r n r n r
r r r n

J x y J x J y J x J y J x J y
 

  
   

      ...(3)

Now    
1

r n r
r

J x J y




    

1

p n p
p

J x J y 


     (writing – r = p)

     
1

1 p
p n p

p
J x J y
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1

1 r
r n r

r
J x J y






  (replacing dummy index p by r) ...(4)

Also    
1

r n r
r n

J x J y



 
    

1
n q q

q
J x J y



 


 (taking r = n+q)

     
1

1 q
n q q

q
J x J y






 

     
1

1 r
n r r

r
J x J y






  ....(5)

Using (4) and (5) in (3), we easily arrive at the addition thorem given by (1).

13.8 Orthogonal Property

Result :  If i and j are  the roots of the equation   0nJ a 

then    
 n i n i

n i

, if i j
x J x J x dx a J a , if i j





 
     

   
 2

20
1

0

2
Proof : Case I : Let i  j i.e. let i and j are different roots of Jn (a) = 0

  0n iJ a     and   0n jJ a  ....(1)

Let     n iu x J x   and    n jx J x   ....(2)
then u and v are Bessel functions satisfying the modified Bessel equation

 
2

2 2 2 2
2 0d y dyx x x n y

dxdx
    

or  2 2 2 2 0x y xy x n y      ...(3)

or  2 2 2 2 0ix u xu x n u      ...(4)

or  2 2 2 2 0jx x x n         ...(5)

Multiplying (4) by  and (5) by u and then substracting we get

     2 2 2 2 0i jx u u x u u x u               

or      2 2
j ix u u u u x u            

or      2 2
j i

dx u u u u x u
dx

              

or    2 2
j i

dx x u u x u
dx

          ...(6)

Integrating (6) w.r.t. x from 0 to a,  we get
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   2 2
00

a a
j i xu dx x u u          ...(7)

Using (2), (7) gives      2 2
0

a
j i n i n jxJ x J x dx   

        
0

a

n j n i n i n jx J x J x J x J x        

       n j n i n i n ja J a J a J a J a        
= 0    [using (1)]

Since i j    the above equation gives

   0
0

a
n i n jxJ x J x dx if i j    ....(8)

Case II : Let i = j (equal roots). Multiplying (4) by 2u, we have

   22 2 2 22 2 2 0ix u u x u x n uu       

or  22 2 2 2 2 2 2 22 0i i
d x u n u x u xu
dx

        

or  22 2 2 2 2 2 2 22 i i
dxu x u n u x u
dx

       ....(9)

Integrating (9) w.r.t. x from 0 to a, we get

 22 2 2 2 2 2 2 2
0 0

2
aa

i ixu dx x u n u x u      ....(10)

Using the relation Jn (0) = 0 and (1) and (2), we have

 2 2
0

2
a

i n ixJ x dx          2 2 22 2 2 2

0

a

n i n i i n i
x

x J x n J x x J x


        

or     22 2 2
0 at

2
a

i n i n i
x a

xJ x dx a J x


        ....(11)

From recurrence relation 13.6.1, we have

     1n n n
d nJ x J x J x
dx x     ...(12)

Replace x by ix in (12), we have

or
 

       1
n i

n i n i
i i

d J x n J x J x
d x x 

      
 

or
 

   1
1 n i

n i n i
i i

d J x n J x J x
dx x 

      
 

     1n i n i i n i
nJ x J x J x
x      
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Now       
2

2
1

at
at

n i n i i n i
x a

x a

nJ x J x J x
x 




                

  2
10 i n iJ a      (by (1))

 
1

2 2
ni iJ a


   ...(13)
Using it in (11), we get

   
2

2 2
10 2

a
n i n i

axJ x dx J a  
Combining these two results we can write

     
2

2
10 2

a
n i n j n i ij

axJ x J x dx J a    

where ij = (kronecker delta) = 
0
1

,i j
,i j


 
.

Ex.1. Prove that    1
   
  cos sinnJ x n x d  where n is a positive integer

Sol. We shall use the following results :

0 0

/ 2,
cos cos sin sin

0,
if m n

m n d m n d
if m n

   
        

  ....(14)

We also proved in Ex. 3(§13.6) that

  0 2 4cos sin 2 cos 2 2 cos 4x J J J     .... ....(15)

and   1 3 5sin sin 2 sin 2 sin 3 2 sin 5x J J J     + ... ....(16)

Multiplying (15) by cos n  and integrating between the limit 0 to , and using (14) we get

 
0

cos sin cos 0x n d


        (if n is odd) ....(17)

and   2
0 0

cos sin cos 2 cos 2
2n n nx n d J n d J J

  
              (if n is even) ....(18)

Again multiplying (16) by sin n  and integrating between the limit 0 to  and using (14), we get

 
0

sin sin sin 0x n d


          (if n is even) ....(19)

and    
0 0

sin sin sin 2 sin 2 2 2n n nx n d J n d J J
 

            (if n is odd) ....(20)

Let n be odd. Adding (17) and (20), we get

   
0

cos sin cos sin sin sin nx n x n d  J


        

or  
0

cos sin nn x d J
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or  
0

1 cos sinnJ n x d


   
  ....(21)

If n is even, then add (18) and (19) to get the required result.
Thus (21) holds for each positive integer n (even as well as odd)
Remark : If n is negative integer so that n = – p, where p is a positive integer. Putting n = – p

in (21) we get

   
0

1 cos sinpJ x p n d


     
  ....(22)

Let     so that d= – d

 R.H.S. of (22)       
01 cos sinp x d


      
 

  
0

1 cos sinp x p d


      
 

   
0

1 cos sin cos sin sin sinp x p p x p d


           

   1
cos sin

p

p x d


   
 

Thus (22) becomes

       
0

1
1 cos sin

p
p

pJ x p x d


    
 

or    
0

1 cos sinnJ x n x d


      
 

Hence the result (22) holds for each integer.

Ex.2. Prove that      
0 0

1 1J x x d x d0 cos sin cos cos
 

     
  

Sol. From Ex.3(§13.6), we have

  0 2 4cos sin 2 cos 2 2 cos 4 ........x J J J     .....(23)
Integrating (23)w.r.t ‘’ between the limit 0 to , we get

or            0 0

1 cos sinJ x x d


  
 

Again replacing by 2
   

 
in (23) and simplifying,we get

cos (x cos ) 0 2 42 cos 2 2 cos 4J J J    ........ ....(24)

Thus    00
cos cos πx d J x


  

   0 0

1 cos cosJ x x d   
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Ex.3. Prove that    
 

 0
2

2
n

n n
n n

dJ x x J x
d x

 

Sol. Substituting the value of  J0 (x) in series in R.H.S, we have

R.H.S  
 

 
 

2

2 0

1
2

1 2

r rn
n

n
r

d xx
r rd x





                 



   
  2

0

1
2

1 2

rn r
n

n r
r

d tx
r rdt





                


   
2

0

1
2

2

r r n
n

r
r

t
x

r r n






 




   
 

2

0

1
1

1 2

r n r
n

r

x
r n r

 



          


     1 n
n nJ x J x  

Ex.3. If, Prove that   0 2 2
0

1axe J bx dx
a b


 




Sol. Using series representation for the Bessel function and changing the order of integration and
summation, we find that

     
 

2
2

0 20 0
0

1 2r r
ax r ax

r

b
I e J bx dx x e dx

r

  




  

     
 

2

2 2 1
0

1 2 2 1r r

r
r

b r

r a






  
                (using the def. of gamma function)

Applying gamma duplication formula for  2 1r   and simplifying, we find that

  2

2
0

1 21
r

r

r

bI
a r a





 
   

 


    
1 22

2 2 2

1 11 b
a a a b


 

      

13.9 Integral Representation of Bessel Functions
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Theorem : Prove that

       1 21 2
1

1 1exp 1 ,
2 2 2

n n
n

x n J x ixt t dt n
 



                
      .....(1)

Proof : We have

R.H.S. of (1)
     1 1 22

0 0

1
r

nr

r

i x
t t dt

r

 


   .....(2)

Since the integrand in (2) is even or odd according as r  is even or odd respectively, therefore

R.H.S 
 
     2 1 1 22 2

0 0

2 1
2

k
nk

k

ix
t t dt

k

 


   

Putting t2 = u and using the formula

   2 1 2 12 2 1 2 1 ,
2

kk k k k           
 

We get

R.H.S. of (1)
 
   

   
12

1 21 2
2

0 0

1
1

2 1 1 2

k k
nk

k
k

x
u u du

k k






 
 

   
  .....(3)

Now evaluating the integral by using the well known definition of Beta function, we get

R.H.S. of (1)
 
 

2

0

11
2 ! 1 2

k k

k

xn
k k n





               


 1
2 2

n

n
x n J x


         
   

Similarly we have

     1 1 22

1

1 1
2 2

n nixt
n

xn J x e t dt
 



        
    .....(4)

Adding (1) and (4) we get

 
     

 
1 1 22

0

2 cos 1 , 1 2
21 2

n n
n

xJ x xt t dt n
n

           
 .....(5)

For sin ,t    eq. (5) gives

 
 

 
/ 2

2

0

2 cos sin cos
21 2

n
n

n
xJ x x d

n


           



Replacing by
2
   

 
 in the above relation, we get
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2

2

0

2 cos cos sin
21 2

n
n

n
xJ x x d

n


           



13.10 An Important Integral

Theorem : Prove that

       
2

2 2
0 1 03 20

4 2a a ax a x J kx dx J ak J ak
k k

   .....(1)

Proof : We know that     1
n n

n n
d x J x x J x
dx 

Replacing x by kx, we get

    1
n n

n n
d x J kx kx J kx
dx  .....(2)

Integrating (2) w.r.t. x in the interval (0, a), we get

   1
0

a
n n

n nx J kx dx a J ka  .....(3)

Now,        2 2 2 3
0 0 0

0 0 0

a a a

x a x J ax dx a x J kx dx x J kx dx    

                                     
3 2

1 10

aa x dJ ak x J kx dx
k k dx

    
[Using (3) with n = 1 for first integral and (2) with n = 1 for second inte-

gral]

      
3

2 2
1 1 100

1 2
a aa J ak x xJ kx x J kx dx

k k
      

      
3 3

2
1 1 22 0

2 aa a dJ ak J ak x J kx dx
k k dxk

   

 
2

22
2a J ax
k

 ....(4)

Also we have the  recurrence  relation

     1 12 n n nnJ x x J x J x     ....(5)

Taking n = 1 and replacing  x by kx in (5), we find that

     2 1 0
2J kx J kx J kx
kx

 

Substituting the value of J2(kx) in (4), we easily get the integral (1).

Self-Learning Exercise-II
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1.    2 2
1 2 1 2J x J x       = .............

2. The relation    1
0 1J x J x  is true /false

3.  1 2 .......J x   

4.  
0

cos sin ..........n x d


   
5.  0 ...., 1J x n 

6.   ...., 1nJ x n 

13.11 Summary

In this unit we studied the Bessel’s differential equation and its solution. Also we proved the im-
portant properties such as recurrence relations, generating function, orthogonal property, integrals repre-
sentation for the Bessel function.

13.12 Answers to Self- Learning Exercises

Exercise-1

1. 0 2. Jn-1(x)

3.  1
2

n
n

n

xexp z J x z
z





     
  

 4. Jn (x)

5.  
2

2 2 2
2 0d y dyx x x n y

dxdx
    6. 2nJn(x)

7. even 8.
1

2 !n n
Exercise-II

1.
2
x 2. true

3.
2 sin x
x

4.  nJ x

5. 1 6. 1 22

13.13 Exercise

1. Prove that  1 2
2 cosJ x x
x 
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2. Prove that  
2

1 2
0

2 1x J x dx


 

3. Prove that  00
2sin

2
t tJ x t x dx 

4. Prove that

(i)    1 1
10

, 1
x n n

n nx J x dx x J x n 
  

(ii)    10

1
2

x n n
n nnx J x dx x J x

n
 

  
5. Use recurrence relations for Bessel’s functions to show that

(i)      0
2 0

J x
J x J x

x


  

(ii)      0 0 34 3 0J x J x J x   

(iii)      0 2 02J x J x J x  
6. Using generating function, prove that

     n r n r
r

J x y J x J y



 

  

7. Prove that

(i)  3 2
2 sin cosxJ x x
x x
   

  

(ii)  3 2
2 cos sinxJ x x
x x
    

  

(iii)  5 2
2 3 sin cos sinxJ x x x
x x x
         

(iii)  5 2
2 3 cos sin cosxJ x x x
x x x
         

8. Prove that                            1 2 4
2 2 4 .....n n n nJ x nJ x n J x n J x
x         

9. prove that     
1 22 2

10
sin

2
a yx ky y x dx J ky

 
 

10. show that            2 4
2 2 4 .....

2n n n n
nJ x J x n J x n J x

x  
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Unit 14 : Hermite Polynomials
Structure of the Unit

14.0 Objective

14.1 Introduction

14.2 Hermite Differential Equation and Its Solution

14.3 Generating Function

14.4 Hypergeometric Form

14.5 Recurrence Formulas

14.6 Rodrigue’s Formula

14.7 Orthogonal Property

14.8 Summary

14.9 Answers to Self-Learning Exercises

14.10 Exercise

14.0 Objective

Here you will study Hermite polynomials its definition and important properties such as recur-

rence relations, generating function, orthogonal property, Rodrigue’s formula etc.

14.1 Introduction

Hermite polynomials occur in the study of wave mechanics and other physical problems. We

start with the Hermite differential equation and its solution. Then we develop and study properties of

Hermite polynomials. We also illustrate the properties with the help of solved problems.

14.2 Hermite Differenential Equation and Its Solution

Hermite’s equation is
2

2 2 2 0d y dyx ny
dxdx

   .....(1)

where n is any integer For solving equation (1), we use Frobenius method.

Let 0
0

, 0k r
r

r
y a x a





  .....(2)
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Now obtain 
dy
dx  and 

2

2
d y
dx

 from (2) and substitute in (1), we get

    2

0
1 2 0k r k r

r
r

a k r k r x k r n x


  



         .....(3)

Equation (3) is an identity. We equate to zero the coefficient of smallest power of x, viz. xk – 2 in
(3) and obtain the indical equation as

a0 k(k –1) = 0

k(k –1) = 0     a0  0 .....(4)

So roots of indical equation are k = 0, 1. They are distinct and differ by an integer.
Again equating to zero the next snallest power of x i.e xk – 1. So we get

a1(k + 1) k = 0 .....(5)
When k = 0, (5) shows that a1 is indeterminate. Hence a0 and a1 can be taken as arbitrary con-

stants.
Equating to zero the coeffcient of xk + r – 2, (3) gives

 
   2
2 2

1r r
k r n

a a
k r k r 

  


   .....(6)

Putting k = 0, we get

 
  2

2 2
1r r

r n
a a

r r 
 


 .....(7)

For r = 2, 4, 6, ......., 2 r in (7), we get

 1 1

2 0 0
1 22 ,

2 1 2
nna a a

  
   



     2 2

4 2 0
2 2 1 2 2

4 3 4
n n n

a a a
  

   


.... .... .... ....

and
     

2 0
1 2 2 ..... 2 2

2

r r

r
n n n r

a a
r

    
 

Next, putting r = 3, 5, 7, ...., 2r + 1, in (7) we get

   1 1

3 1
1 2 1

3
n

a a
 



    2 2

5 1
1 2 1 3

5
n n

a a
  



.... .... .... ....
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and
      

2 1 1
1 2 1 3 ...... 2 1

2 1

r r

r
n n n r

a a
r

    




Putting the above values in (2) with k = 0, we get

       2
2 4 2

0
2 2 2 2 ... 2 221 ..... ....

2 4 2

r
rn n n n n rny a x x x

r

     
      
  

           2
3 5 2 1

1
2 1 2 1 3 2 1 3 ... 2 1

... ...
3 5 2 1

r
rn n n n n n r

a x x x x
r


        
      

  
....(8)

or y = a0 v + a1w, say .....(9)
Since v or w is  not merely a constant, v and w form a fundamental set (i.e. linearly independent)

of solutions of (1). Hence (8) or (9) is the most general solution of (1) with a0 and a1 as two arbitrary
constants.

Remark : In practice we require solution of (1) such that
(i) it is finite for all finite values of x and
(ii) exp (1/2x2) y(x) 0  as  x  
The solution (8) does not satisfy the condition (ii). However, if the series terminate then this con-

dition will be satistied. Replacing r by r + 2 in (7), we get

 
  2

2
1 2r r
r n

a a
r r




  .....(10)

If r is a positive integer, then for r  = n, ar + 2 = 0 ie the series terminates. We now find the solu-
tion of (1) in descending powers of x for n + (set of positive integers)

For k = 0, the equation (2) becomes
y = anx

n + an –2 x
n – 2 + an –4

 xn – 4 + .... .....(11)

From (10) we get   
  2
1 2

2r r
r r

a a
n r 

 
 



Let r = n – 2, n – 4, ...... Then

 
2

1
2 2n n

n n
a a


 


.

   
4 2

1 2 3
2 2 4n n

n n n n
a a

  


 
 and so on

Putting these values in (11) we find that

y 2 4
2

( 1) ( 1)( 2)( 3) ...
2 2 2 2 4

n n n
n

n n n n n na x x x          
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2( 1) ( 1)...( 2 1) ...
2 2 4...2

r
n r

r
n n n r x

r
    

  
  

      2
2

0

1 1 .... 2 1
2 2 4.....2

rn
n r

n r
r

n n n r
a x

r




   


 


Where  

, f is even
2
12 1 , if is odd
2

n i nn

n n


       


Thus  
 2

2
2

0
1

2 2

n
r n r

n r
r

ny a x
r n r





 



Taking an = 2n, then we get

     
 2

2

0

!1 2
2

n
r n r

n
r

ny H x x
r n r




 

 .....(12)

where Hn(x) is called the Hermite polynamial of order n.

14.3 Generating function

Result.   
n

xt t
n

n

te H x
22

0





 n

 valid for all finite x and t.

Proof. We have
22xt te  22xt te e  

   2

0 0

2
sr

r s

txt
r s

 

 


 

    2

0 0

2 1r s
r s

r s

x
t

r s

 


 


 

Let r + 2s = n so that r = n – 2s.
Hence the coefficient of t n (for fixed value of s) is given by

    21 2
2

s n sx
n s s






The total value of t n is obtained by summing over all admisible value of s, and since r = n – 2s,
r  0.

Now as n – 2s  0    or   s  n/2, therefore s goes from 0 to n/2 or from 0 to  1 / 2n
according as n is even or odd.

So total coefficient of tn in the expansion of exp (2xt – t2) is given by
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       22

0

1 2
2

s n sn
n

s

x H x
n s s n








 (From equation (12) of §14.2)


 22

0

nxt t n

n

H x
e t

n







14.4 Hypergeometric Form

We have       2

0

1
2

2

s
n s

n
s

n
H x x

s n s









 .....(1)

Now
 

     
 

21 2
1

2 2 1
sn n sn

n s n s n
    

  
     

2 1 1 2

1 1 2

12
2 2 2

12
2 2 2

n s

n

n ns s

n n

   

  

            
   
          
   





2 12
2 2 2

s

s s

n n         
   

Thus    
       22

0

1 2 1 2
2

s sn
n s s

n
s

x n n
H x x

s





   
 

  0 2
1 12 2 , ; ;

2 2
n n nx F

x
     

 
.....(2)

14.5 Recurrence Formulae

14.5.1.    2xHn(x) = 2nHn – 1(x) + Hn+1 (x)
Proof. We know that

 
22

0

n
xt t

n
n

te H x
n







Differentiating both sides w.r.t. ‘t’, we have

or    
2 1

2

0
2 2

n
xt t

n
n

te x t n H x
n





 

or      
1

0 1
2

1

n n

n n
n n

t tx t H x H x
n n

 

 
 

 
Equating the coefficients of t n on both sides, we get

or      1 1
2 2 1

1n n n
x H x H x H x
n n n  
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or 2x Hn(x) – 2n Hn – 1(x) = Hn + 1(x)
or 2x Hn(x) = 2n Hn – 1(x) + Hn + 1(x).
14.5.2.    Hn(x) = 2nHn – 1(x) (n  1)

Proof. We know that  
22

0

n
xt t

n
n

te H x
n







Differentiating both side w.r.t. ‘x’ we have

 
22

0
2

n
xt t

n
n

tt e H x
n






 

or    
0 0

2
n n

n n
n n

t tt H x H x
n n

 

 

 

Equating the coetticients of t n on both sides, we get

or      1
2 1 1

1 1n n nH x H x H x
n n n n   
 

or Hn(x) = 2n Hn – 1(x)

14.5.3.   Hn(x) = 2xHn – 1(x) – Hn + 1(x)

Proof. Form Recurrence relations 14.5.1 and 14.5.2, we have

2x Hn(x) = 2n Hn – 1(x) + Hn + 1(x) .....(1)

Hn(x) = 2n Hn – 1(x) .....(2)

Shbstracting (2) from (1), we have

or Hn(x) – 2x Hn (x) = –Hn + 1(x)

or Hn(x) = 2x Hn(x) – Hn+1(x)

14.5.4      nH  (x) – 2xHn(x) + 2nHn (x) = 0

Proof. Hermite’s differential equation is
2

2 2 2 0d y dyx ny
dxdx

  

  Hn(x) is the solution of above differential equation, therefore.

Hn(x) – 2x Hn (x) + 2n Hn (x) = 0.

Self-Learning Exercise-I

1. H0(x) = ...... 2. H1(x) = ......

3.  
0

......
n

n
n

t H x
n






4. Write down Hermite differential equation.

5. Hn(x) = ...... 6. Hn(–x) = ......
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Ex.1. Prove that nH  (x) = 4n(n – 1) Hn – 2(x)

Sol. From rcurrence relation 14.5.2, we have

Hn(x) = 2n Hn – 1(x)

Differentiating with respect to x, we get
''
nH (x) = 2n 1

'
nH  (x)

Again using recurrence relation 14.5.2, we find that

nH  (x) = 2n × 2(n – 1) Hn – 2 (x)

= 4n (n – 1) Hn – 2 (x)

Ex.2. Prove that if m < n

   
m m

n
n mm

d H x n H x
n mdx
2



   


Sol. We know that

 
22

0

n
x t t

n
n

te H x
n







or  
22

0

m n m m
xt t

nm m m
n

d t d de H x
ndx dx dx






        

or    22

0
2

mn m
m nx t t

m m
n

d H xt dt e
n dx dx






     

or      
0 0

2
mr n m

m n
r m m

r n

d H xt t dt H x
r n dx dx

 

 

     

or    
0 0

2
mr m n

nm
r m

r n

d H xt tH x
r n dx

 

 

    

If r + m = n

[Note that r  0  n – m  0 or m  n]

or    
0

2
mn n

nm
n m m

n m n

d H xt tH x
n m n dx

 


 

    
 

Equating the coefficient of t n on both sides, we get

   2 1 mm
n

n m m

d H x
H x

n m n dx
  



or    2 mm
n

n m m

d H xn H x
n m dx

  


Ex.3. Prove that
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(i) H2n (0) = (–1)n 
n

n
2

(ii) H2n + 1 (0) = 0
Sol. We have

 
22

0

n
xt t

n
n

t H x e
n







Putting x = 0 in this relation, we get

 
2

0
0

n
t

n
n

t H e
n







  
 

0

rn

r

t

r








  
  2

0

1 r r

r

t
r








Note that R.H.S. contain only the terms of even powers of t. Equating the coefficient of t 2n on
both the sides, we get

   
2

11 0
2

n

nH
n n




or  
 

2

1 2
0

n

n

n
H

n


   2 11 2

2
n n

n

     
 

Further equating the coefficient of t 2n +1 on both the sides, we obtain
 2 1 0 0nH  

Ex.4. Prove that  2 0 0nH    and     2 1
2 1

30 1 2
2

n n
n

n

H 


     
 

Sol. We have

     
 2

2

0

1
2

2

sn
n s

n
s

n
H x x

s n s








Differentiating w.r.t. x, we get

      
 

2 11 2

0

2 1 2
2

2

s n sn

n
s

n x
H x n s

s n s

   




  



Thus      2 2 11

0

1 2 2
2

2 2 1

s n sn

2n
s

n x
H x

s n s

 




 

 

and  
    2 2

0

1 2 1 2
2

2 2

s n sn

2n+1
s

n x
H x

s n s
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Hence  0 02nH  

and  
   1 2 1

0
n

2n+1

n
H

n

 
 

  2 1 31 2
2

n n

n

     
 

(by using gamma duplication formula)

14.6 Rodrigues Formula for Hn(x)

To Prove that    
 n x

n x
n n

d e
H x e

dx



 

2

2
1

Proof. We have

       0 1, ..... .....
0 1

n nH x H x t H x
f x t t

n
    

where    22 22, x txt t xf x t e e e  


     

0

,n
n

nn
t

f x t H x
n H x

nt


 
  

  

  
  2 2

0

x tn x

n n

t

e e
H x

t

 



   
  

 
 

 2
2

0

x tn
x

n
t

e e
t

 



   
  

.....(1)

Let x – t = u that is t = x – u x = u at t = 0

Also x – t = u  t u
 
 

 


 

 
 22

1
n ux tn

n
n n

ee
t u

       
   


 

 
 22

0

1
n xx tn

n
n n

t

ee
t x
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 2

1
n x

n
n

d e

dx



  

From (1), we get    
2

2
1

n x
n x

n n

d e
H x e

dx

 
   

14.7 Orthogonal Property of Hermite Polynomials

Theorem. Prove that    x n
n m mne H x H x dx n 







2

2 where mn is Kronicar delta

or    
2 0

2
x

n m n

if m n
e H x H x dx

n if m n






 



Proof. We know that

 
22

0

n
xt t

n
n

te H x
n







 
22

0

m
xs s

m
m

se H x
s





 

    
2 22 2

0 0

n m
xt t xs s

n m
n m

t se e H x H x
n s

 
 

 
   

    1 1
n mH x H x

n m = Coefficent of tnsm  in the expansion of

2 22 2xt t xs se e 

So    
2x

n me H x H x dx n m






  times the coefficent of tnsm  in the expansion of

2 2 22 2x xt t xs se e e dx


  


 .....(1)

Now
2 2 22 2x xt t xs se e e dx


  




2 2 2 2 2t s x xt rse e


    



 

     2 222 2 2x x t s t s t st se e dx


       



 

     
22 22 2 2x x t s t s t st se e e dx
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 22 x t sste e dx
     



 

22st ue e du






  [where x – (t + s) = u and hence dx = du]

 2

0

2 n
st

n

st
e

n
 




   

0

2n
n n

n
s t

n





 

Here the series on right-hend side contains the terms having the equal powers of t and s. There-
fore the coefficent of tn sm, (m  n) will be zero. Equating the coefficent of tn sm on both sides of above
result,we get

   
2

0x
n me H x H x dx






  where m  n

and from (1), we have

   
2x

n me H x H x dx n m






  
2n

n


        2nn  , where m = n

Hence    
2

2x n
n m mne H x H x dx n  








Ex.1. Prove that  
2

2
12 exp .
4

n n
n

dH x x
dx

          
Sol. We have

 2
22

tx
t x

d e
te

dx



 2

21
2

t x
t x

d e
te

dx


Differentiating w.r.t. x

 2 2 21 2
2

t x txd d e t e
dx dx
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  2 2 21 1
2 2

t x t xd d e t e
dx dx

    


2

2 2 21
2

t x t xd e t e
dx

   
 

Hence by symmetry  for n terms, we get

2 21
2

n
t x n t xd e t e

dx
   
 

.....(2)

Now,

2
2

2
1exp.
4

t xd e
dx

         

2
2

0

1 1
4

n
t x

n

d e
n dx





  
       


  2
2

0

1 1
2

n n
t x

n

d e
n dx





    
 



  2 2

0

1 n
n t x

n
t e

n






                  [from (2)]

 2 2

0

1 n
t x n

n
e t

n






 

 2 2

0

1 nt x

n
e t

n




 

2 22 2t x t x t te e e  

or  
2

2
0

1 1exp. 2
4

n

n

d t x
ndx





         
  

0

n

n
n

t H x
n






Equating the coefficent of tn on both sides we get

 
21 1 1exp. 2

4
n n

n
d x H x
dx n n

          

  
212 exp.

4
n n

n
dH x x
dx

          

which completes the solution of the problem.

Ex.2. Expand xn in a series of Hermite polynomials

Sol. We have

 
22

0

n
xt t

n
n

te H x
n
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22

0

n
xt t

n
n

te e H x
n




 


   

2

0 0 0

2 n n s

n
n n s

xt t tH x
n n s

  

  

 
  

 
  


0

2n n
nx t

n




   2

0 0

n n s

n s

H x
t

n s

 


 


Put n + 2s = m n = m –2s since m – 2s  0.

  2
2

0 0 2

m m
m s

n s

H x t
s m s




 




 

Equating coefficent of tn on both sides

2n nx
n

  2
2

0 2

n
n s

s

H x
s n s








 nx
  2

2

0 2 2

n
n s

n
s

n H x
s n s









Ex.3. Prove that    t n
n nP x e t H xt dt

n 


 

2

0

2

This result is also known as Curzen’s integral.

Sol.We know that        22

0

1 2
2

s n sn

n
s

n x
H x

s n s










  nH xt
     22

0

1 2
2

s n sn

s

n xt
s n s










Now,  RHS = 
    

2
22

00

1 22
2

s n sn
t n

s

n xt
e t dt

s n sn 






  
 

  


    
2

22
2 2

0 0

1 22
2

s n sn
t n s

s

n x
e t dt

s n sn 

 
 






 

Put 2 1 21
2

t dt d    

 R.H.S.      2 12 1
2

0 0

1 21
2

s n sn n s

s

x
e d

s n s
 



    






 

     22

0

1 21 1
2 2

s n sn

s

x
n s

s n s
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  22

0

1
1 2 2

2 1 2

s n sn

s

n sx
s n s





       
   1 2    

       22
2

0

1 2 1 2
2

s n sn
n s

s

x
s n s










= Pn(x)     (by definition of Legendre polynomials)

Ex.4. Show that            2

0
exp 2

n
n s

s
n

H x t
xt t H x t

n






  

Sol. Consider

 
0 0

n s
n s

n s

H x t
n s

 


 
   

0 0

n s sn
n

n s

H x t
n s s



 


 

     
0 0

1 s n s sn
ns

n s

n H x t u
n s t



 

     
 

 

   
0 0

sn n
n s

n s

nH x t
n s t



 

    
 

 

 
0

1
nn

n

n

H x t
n t





   
 



   
0

n
n

n

H x t
n







   22x t te    

  22 22 x txt te e    

 22

0

s
sxt t

s

H x t
e

s







 

Comparing the coeffiecient of 
!

s

s


, we get the required result.

Ex.5. Establish

   
 

 

n
cnn

n

c H x t c c txt F
n xt

2

2 0 2
0

1 41 2 , ; ;
2 2 2 1 2






 
     
  

 .....(3)

Sol. We have
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L.H.S. of (3) 
       22

0 0

1 2
2

s n s nn
n

n s

c x t
s n s



 




 

Now using a well-known result

 
 2

0 0
,

n

n k
A k n



 
   

0 0
, 2 ,

n k
A k n k

 

 
    we get

L.H.S. of (3)
      2

2

0 0

1 2s n n s
n s

n s

c x t
s n

 


 


 

   2n sc     22 n sc s c 

 L.H.S. of (3)  
       2

2

0 0

1 2 2s ns
s n

s n

c t c s xt
s n

 

 

 
 

   
 

2
22

0

1
1 2

s s
c ss

s

c t
xt

s


 




 

But  2sc
2 12

2 2 2
s

s s

c c       
   

Hence L.H.S. of (3)      
 

2

2
0

2 1 2 41 2
1 2

s
c s s

s

c c txt
s xt






 
   
  



 
 

2

2 0 2
1 41 2 , ; ;

2 2 2 1 2
c c c txt F

xt
  

     
  

The relation (3) is called the Braf man’s generating function.

Ex.6. Prove that              
2 2

1 1
0

0
x

y x
n n ne H y dy H e H x 

                 .....(4)

Sol. Using Rodrigue’s formula in the left–hand side of (4), we get

 
2

0

x
y

ne H y dy        2 21

1
0 0

1 1
xx n n

n ny y
n n

d de dy e
dy dy


 



 
     

 


  2

1
0

x
y

ne H y
 

(Using again the Rodrigue’s formula)

   
2

1 10 x
n nH e H x
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Self-Learning Exercise-II

1.      
2

............x
n me H x H x dx if m n






 

2. Write down Rodriques formulas for Hn(x).
3. H2n + 1(0) = ...........

14.8 Summary

In this unit, we studied the Hermite differential equation and Hermile polynomials. We also stud-
ied recurrence relation, generating function, Rodrigue, formula and orthogonal property for Hermite poly-
nomials.

14.9 Answers to Self-Learning Exercises

Exercise I

1. 22xt te 

2.
2

2 2 2 0d y dyx y
dxdx

  

3.  12 nnH x

Exercise II
1. 0

2.    
 2

2
1

n x
n x

n x n

d e
H e

dx



 

3. 0

14.10 Exercise

1. Evaluate    
2x

m nxe H x H x dx





  (m  n) [Ans : 0]

2. Prove that   5 3
5 32 160 120H x x x x  

3. Prove that   2
2 4 2H x x 

4. Express   4 3 22 2 3H x x x x x      in terms of Hermite polynomials.

5. Prove that      1n n nx H n n H x n H x  
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6. Prove that   2 22 12
2

x n
nx e H x dx n n






   
 

7. Show that            
 

1 1
1

0 2 ! 2

n
k k n n n n

k n
k

H x H y H x H y H x H y
k y x n

 










8. Evaluate  
2 21 12n x t n

nx
e e t P x t dt

   [Ans : Hn(x)]

9. Evaluate    
2

,x
m nxe H x H x dt m n

 


 [Ans : 0]

10. If    2 2
n ,xx e Hn x  then prove that

(i)     ,ψ ψ 2 if 1n
m n m nx x dx n m n




  

(ii)     1

0, if 1

ψ ψ 2 , if 1

2 1 , if 1

n
m n

n

m n

x x dx n m n

n m n





 


 


  
   



11. Using the expansion of x n in a series of Hermite polynomials, show that

 
2 2

2e 2x n k
n k

nx H x dx
k
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Unit 15 : Laguerre Polynomials
15.0 Objective

15.1 Introduction

15.2 Definition

15.3 Generating Function for Ln (x)

15.4 Recurrence Formulae for Ln (x)

51.5 Rodrigue’s Formula for Ln (x)

15.6 Orthogonal Property for Ln (x)

15.7 Associated Laguerre Polynomial : Definition

15.8 Generating Function for Associated Laguerre Polynomial

15.9 Recurrence Formulae for Associated Laguerre Polynomial

15.10 Rodrigue’s Formula for Associated Laguerre Polynomial

15.11 Orthogonal Property for Associated Laguerre Polynomial

15.12 Summary

15.13 Answer to Self-Learning Exercises

15.14 Exercise

15.0 Objective

In this unit you will study Laguerre and associated Laguerre polynomials and their important prop-
erties such as generating function, orthogonal property, Rodrigue’s formula, recurrence relations etc.

15.1 Introduction

The purpose of this unit is to introduce and study the Laguerre and associated Laguerre polyno-
mials. We shall state and prove certain important properties associated with these classes of polynomi-
als.

15.2 Laguerre’s Differential Equation and Its Solution

THe Laguerre differential equation of order n is

 
2

2 1 0,d y dyx x ny
dxdx

    .....(1)

where n is a positive integer
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Now we apply the method of Frobenius for its solution which is finite for all values of x and
which tends to  no faster than ex/2 as x .

Proceeding on lines similar to explained in the case of Legendre, and Hermite polynomials, we
find that if we assume the solution of (1) in the form

0

r
r

r
y a x




 .....(2)

then  
 

0 2
0

1
n

r r

r

ny a x
n r r

 


 .....(3)

will be solution of equation (1). Taking a0 = 1, the corresponding solution of equation (1) is known as
Laguerre polynomial of order n, and which is denoted by Ln (x). Thus

   
 20

1
n

r r
n

r

nL x x
n r r

 




 1 1 ; 1;F n x  .....(4)

Some times we take a0 as n , then alternative definition of Laguerre polynomials is

     
 

2

2
0

1
n

r r
n

r

n
L x x

n r r
 


 .....(5)

15.3 Generating Function for Ln (x)

Theorem : Show that

 
1

01

x t
t

n
n

n

e L x t
t

 



 
 

Proof : Using the exponential series we have

1

1

x t
te
t




 0

1 1
1 1

r

r

x t
t r t





     


     1

0

1
1

r
rr r

r
x t t

r


 




 

   
0 0

11 r sr r
s

r s

r tx t
r s

 

 


  

   
 2

0 0

1 r r r s

r s

r s x t

r s

 

 

 
   ....(1)
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For a fixed r, the coefficient of tn is

 
   21

r
r n x

r n r
 



Taking n = r + s.
Now s = n – r and s  0, so r  n.
Hence the total coefficient of tn in (1) is

 
   

 2
0

1 r r

n
s

n x
L x

r n r






 


              (By definition)

Hence
1

1

x t
te
t





 

0

n
n

n
L x t






15.4 Recurrence Relations for Ln (x)

15.4.1          1 11 2 1n n nn L x n x L x n L x     

Proof : From generating function, we have

 
11

1

xt
te

t




 

0

n
n

n
t L x





  .....(1)

Differentiating (1) w.r.t. ‘t’ we get

 1

0

n
n

n
nt L x





      

1 1
2 2

1 1
11 1

xt x t
t t xe e

tt t

 
 

     
   

   
 

 2
0 0

1
1 1

n n
n n

n n

xt L x t L x
t t

 

 
 

 
 

Multiplying both the side by (1 – t)2 we get

   2 1

0
1 2 n

n
n

t t nt L x





        

0 0
1 n n

n n
n n

t t L x x t L x
 

 
   

      1 1

0 0 0
2n n n

n n n
n n n

nt L x nt L x n L x t
  

 

  
   

     1

0 0 0

n n n
n n n

n n n
t L x t L x x t L x

  


  
    

Now equating the coefficent of tn on both sides, we get

               1 1 11 2 1n n n n n nn L x n L x n L x L x L x x L x        

          1 11 2 1n n nn L x n x L x n L x     
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15.4.2      1n n nx L x n L x n L x  

Proof : From generating function

 
0

n
n

n
t L x




  

11
1

xt
te

t



 .....(2)

Differentiating w.r.t. ‘x’ we get

 
0

n
n

n
t L x





  
11

1 1

xt
t te

t t

      

or  
0

n
n

n
t L x





  
01

n
n

n

t t L x
t




 

 

or    
0

1 n
n

n
t t L x





   
0

n
n

n
t t L x




  

or    1

0 0

n n
n n

n n
t L x t L x

 


 

     1

0

n
n

n
t L x





 

Equating the coefficients of tn on both sides, we get

     1 1n n nL x L x L x    

or      1 1 1n n nL x L x L x      .....(3)

Differentiating Recurrence relation 15.4.1, we find that

           1 11 2 1n n n nn L x n x L x L x n L x         .....(4)
Replacing n by (n + 1) in (3), we obtain

     1n n nL x L x L x   .....(5)

Putting the value of  1nL x and  1nL x  from (3) and (5) in (4) we get

     1 n nn L x L x              12 1 n n n nn x L x L x n L x L x        

       n n n nn L x n L x L x L x   

           1
12 n n n n n nnL x L x x L x L x n L x n L x       

On simplification, we get      1n n nx L x n L x n L x  

15.4.3    
1

0

n

n r
r

L x L x




  
Proof : From generating function

 
0

n
n

n
t L x




  

11
1

xt
te

t



 .....(6)

Differentiating (6) w.r.t. ‘x’, we get

or  
0

n
n

n
t L x





  
11

1 1

xt
t te

t t
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   1

0
1 r

n
r

t t L x t





    (using Bionomial theorem)

  1

0 0

r s
n

r s
L x t

 
 

 
   .....(7)

Taking r + s + 1 = n, we have s = n – s – 1. But s  0 therefore r  n – 1

So the total coefficient of tn R.H.S. is  
1

0

n

r
r

L x





Now equating coefficient of tn on both sides in (7), we arrive at the required recurrence relation
15.4.3.

15.5 Rodrigue’s Formula for Ln (x)

Prove that

   
x n

n x
n n

e dL x x e
n dx



Proof : Using Leibnitz’s theorem for n times differentiation, we have

R.H.S.  
x

n n xe D x e
n



 
0

x n
n n r n r x

r
r

e c D x D e
n

 


 

  
   

0
1

x n
rn n rn x

r
r

e nc x e
n n n r

  


  

 

 
 

 
2

2
0

1
xn

rr x

r

ne x e
n r n r




 




 
 

 2
0

1 r rn

n
r

n x
L x

r n r


 




15.6 Orthogonal Property

Prove that

   
0

0,
1,

x
m n mn

if m n
e L x L x dx

if m n



 

   


Proof : From generating function, we have

 
0

n
n

n
t L x




 11

1

x t
te

t





.....(1)
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0

m
m

m
s L x




 11

1

x s
se

s





.....(2)

Multiplying (1) and (2), we get

   
0 0

n m
n m

n m
L x t L x s

 

 
     

1 11 1
1 1

t sx
t se

t s

      
 

    
0 0 0

x n m
m n

n m
e L x L x dx t s

 


 

 
 
  

  

   
1 1

0

1
1 1

t sx
x t se e dx

t s

        
  

   
1

1 1

0

1
1 1

t sx
t se dx

t s

       
  

   

1
1 1

0

1
1 1 1

1 1

t sx
t se

t st s
t s


      

 
 
  

          

  
  

  
1

1 1

0

1 11
1 1 1 1

t sx
t st s

e
t s t s t ts s st


      

      
             

   1 0 1
1 s t ts t ts s st

  
      

    11 1
1

st
st

  


   21 ..... .....nst st st     

Equating the coefficients of tn sn on both sides, we get

 
0

x
m ne L x L dx


  0 if m   n .....(3)

and equating the coefficient of tn sm, we get

 2
0

x
ne L x dx


  
   = 1

That is    
0

1x
n me L x L x dx


               (when m = n) .....(4)

Combining (3) and (4), we get     
0

x
m n mne L x L x dx 


 



292

Ex.1. Prove that

  1 1
1

n
st

n
0

e L t dt =
s s


   

 

Sol. L.H.S.
 
 200

1 r rn
st

r

n t
e dt

r n r












 
   

1 1
2

0 0

1 rn
st r

r

n
e t dt

n r r


  







 

 
  

 
2 1

0

1 1rn

r
r

n r
sn r r 



  





 
 0

11 1
rn

r
r

n
s n r r s


 



0

1 1 1 11
r nn

n
r

r
c

s s s s

         
   


= R.H.S.

Ex.2. Prove that (i) Ln (0) = 1, (ii)  0nL n    and (iii)    1
0

2n
n n

L


 

Sol. We know that

11
1

x t
te

t




 

0

n
n

n
t L x




 ....(5)

Taking x = 0 in (5), we get

or   11 t   
0

0n
n

n
t L






or
0

n

n
t




  

0
0n

n
n

t L





Equating coefficients of tn on both sides, we get

 1 0nL

(ii) From Laguerre differential equation, we have
xy + (1 – x) y + ny = 0

If Ln(x) is the solution of this equation then

       1n n nx L x x L x n L x    = 0
Putting  x = 0, we get

 0nL  0nn L 

1n                       [from (i)]
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Thus  0nL n  

(iii) Differentiating twice w.r.t ‘x’, (1) gives
  21

1 1

xt te t
t t

       
 

0

n
n

n
L x t






Putting x = 0, we get

 
0

0 n
n

n
L t





   32 1t t   .....(6)

Equating the coefficients of tn on both the sides of (6), we find that

 0nL = Coeff. of tn in t2 (1 – t)–3

= Coeff. of  tn – 2 in (1 – t)–3

     
    23 3 1 ..... 3 2 1

1
2

nn
n

      
 



 
 13.4. .....

2 2 2 2
n nn n

n n


  
 

Self-Learning Exercise–1

1. Laguerre’s differential equation is .........

2.  
0

x
m ne L x L dx


  = ..... if m   n

3.  2
0

x
ne L x dx


  
   = ...............

4. Ln (0) = ...............

5. ........ = nLn(x) – nLn–1(x)

6. L0(x) = ...............

7. L1(x) = ...............

8. L2(x) = ...............

15.7 Associated Laguerre Polynomial : Definition

Associated Laguerre polynomials of degree n and order k is denoted and defined as

 k
nL x    1

k
k

n kk
d L x
dx   .....(1)

Now using the series representation for Laguerre polynomials we find that

 k
nL x  1

k
k

k
d
dx

    
 

   2
0

1
n k r r

r

n k
x

n k r r
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   2
0

1 1
kn kk r r
k

r

n k d x
dxn k r r






  

 
 .....(2)

Now
k

r
k

d x
dx

0,

,r k

if r k
r x if r k

r k



   

Hence breaking 
0

n k

r




 into two sums as 

1

0

k

r




 and 

n k

r k




 , we find that

 k
nL x    

 
   

1 1
n k

k r k r k

r k

n k
x

n k r r r k


 




  

  

Let r – k = s, so that r = s + k and when r = k, s = 0 and r = n + k, s = n. Then

 k
nL x  

 
   

2

0
1

n
s k s

s

n k
x

n s s k s





 

 

or  k
nL x  

 
   0

1
n

r r

r

n k
x

n r k r r


 

  .....(3)

15.8 Generating Function for Associated Laguerre Polynomials

Prove that

     1
0

1 exp
11

k n
nk

n

xt L x t
tt






       


Proof : By generating function for Laguerre polynomial, we have

 
1 exp

1 1
xt

t t
 

   
 

0

n
n

n
L x t




 .....(1)

Differentiation both sides of (1) ‘k’ times w.r.t. ‘x’, gives

 
1 exp

1 1

k

k
d xt

t tdx
       

  
0

k
n

nk
n

dt L x
dx






or  
1 exp

1 1 1

kt xt
t t t
           

     
1

0

k kk
n n

n nk k
n n k

d dt L x t L x
dx dx

 

 
  

or  
  11 exp

11

k
k

k
t xt

tt 
    

  0
k

n
nk

n k

dt L x
dx




  .....(2)

Here we use that Ln (x) is a polynomial of degres n so that

  
k

nk
d L x
dx

0 if
non - zero if

n k
n k
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Multiplying by (2) by (–1)k then we get

  1 exp
11

k

k
t xt

tt 
   

    1
k

k n
nk

n k

dt L x
dx




  

   1 exp
11

k

k
t xt

tt 
   

    
0

1
k

k s k
s kk

s

dt L x
dx







  
(Taking s as new variable such that n = s + k i.e. s = n – k so when n = k, s = 0 and when n

tends to, s also tends to )

   1 exp
11

k

k
t xt

tt 
   

    
0

1
k

kk s
s kk

s

dt L x t
dx






 

or   1
1 exp

11 k
xt

tt 
   

    
0

1
k

k n
n kk

n

d L x t
dx






 
( The limit remain same so we can change the variable from s to n)

 
 1

0

1 exp
11

k n
nk

n

xt L x t
tt






    


15.9 Recurrence Relations for  k
nL x

15.9.1      1
1

k k k
n n nL x L x L x
  

Proof : We know that  k
nL x  

 
0

1
n r

r

n k

n r k r r


 

  .....(1)

Replacing n by (n – 1) in (1), we find that

 1
k
nL x

 
   
 

1

0

1 1
1

1

rn
r r

r

n k
x

n r r k r





  
 

   .....(2)

Replacing k by (k – 1) in (1), we get

 1k
nL x

   
0

1 1

1

rn
r

r

n k
x

n r k r r

  


   .....(3)

Using (2) and (3), we have

   1
1

k k
n nL x L x
 

   
 

1

0

1 1

1

rn
r

r

n k
x

n r k r r





  


      
0

1 1

1

r
n

r

r

n k
x

n r k r r

  


  

   
 

1

0

1 1

1

rn
r

r

n k
x

n r k r r





  


      1

0

1 1

1

rn
r

r

n k
x

n r k r r





  


  

   
 

1 1

1

n nn k x

n n k n n
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1

0

1 1

1 1

rn
r

r

n k n kx
n r k r r k r n r





   
 

       
 1 n nx

n




   1

0

1 1r nr nn

r

n k x x
n r k r r n





  
 

 

 
0

1 r rn

r

n k x
n r k r r

 


 

 k
nL x [by (1)]

15.9.2            1 11 2 1k k k
n+ n n-n + L x = n + k + - x L x - n + k L x

Proof : From recurrence relation 15.4.1 for Laguerre polynomial we have

         1 11 2 1n n nn L x n x L x nL x      ...(4)

Replacing n by (n + k) in (4), we get

           1 11 2 2 1n k n x n kn k L x n k x L x n k L x           

Differentiating k times, the above equation becomes

         11 2 2 1
k k

n k n kk k
d dn k L x n k L x
dx dx      

       1

k k

n k n kk k
d dxL x n k L x
dx dx          ...(5)

Using Leibnitz’s theorem, we get

  
k

n kk
d xL x
dx       

1

1 1

k k
k

n k n kk k
d dL x x c L x
dx dx



  

     
1

1

k k

n k n kk k
d dx L x k L x
dx dx



   ...(6)

Using (6) in (5) and then multiplying both sides by (–1)k, we get

     11 1
k

k
n kk

dn k L x
dx    

      1 2 2 1
k

k
n kk

dn k L x
dx          1

k
k

n kk
dx L x
dx  

    
1

1
1 111

k
k

n kk
dk L x
dx




           11
k

k
n kk

dn k L x
dx     ....(7)

But from definition       1
k

kk
n n kk

dL x L x
dx   ....(8)

Using (8) in (7), we get
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       11 2 2 1k k
n nn k L x n k L x    

       1
1 1

k k k
n n nxL x kL x n k L x

     .....(9)

Replaceing n by n + 1 in 15.9.1, we get

     1
1 1

k k k
n n nL x L x L x

  

or      1
1 1

k k k
n n nL x L x L x
   .....(10)

Eliminating 1
1

k
nL 
  from (10) and (9), we get

                  1 1 11 2 2 1k k k k k k
n n n n n nn k L x n k L x x L x k L x L x n k L x           

That is            1 11 2 1k k k
n n nn L x n k x L x n k L x       

15.9.3    k k
n n

d L x L x
dx

1
1


 

Proof : We know that  k
nL x

 
0

1 r rn

r

n k x
n r k r r

 


  .....(11)

Differentiating both side of (11) w.r.t. ‘x’ we get

L.H.S.=  k
n

d L x
dx

   
   

1

0

1 r rn

r

n k rx

n r k r r





 


 

  1

1

1
1

r rn

r

n k x
n r k r r





 


  

  11

0

1
1 1

s sn

s

n k x
n s k s s





 


                      (Taking r – 1 = s)

 
   1

0

1 1 1
1

1 1

s sn

s

n k x

n s k s s





   
 

   

 k
n

d L x
dx  1

1 R.H.Sk
nL x
  

15.10 Rodrigue’s Formula for  k
nL x

Theorem : Prove that

   
x k n

k n k x
n n

e x dL x x x
n dx


 

Sol :

R.H.S.  
x k

n x n ke x D e x
n


 



298

0

x k n
n n r n k r x

r
r

e x c D x D e
n


  


  (by Leibnitz theorem)

 

   
0

1
n k n rx k n rn x

r
r

e x n k xc e
n n k n r

  





 

  

 
0

1
x k k rn

r x

r

e x n n k x e
n r n r k r

 





    

 

 
0

1 r rn

r

n k x
n r k r r

 


 

  L.H.Sk
nL x 

15.11 Orthogonal Property for Associated Laguerre Polynomial

Theorem : Prove that

   x k k k
n m mn

n ke x L x L x dx
n


 

 
0

Proof : Associated Laguerre differential equations is

 
2

2 1 0d y dyx x k ny
dxdx

     .....(1)

Multiplying by k xx e  we have

 
2

2 1 0k x k x k xd y dyx x e x k x e ny x e
dxdx

      

or 1 0k x k xd dyx e n x e y
dx dx

       
.....(2)

Since associated Laguerre polynomial    andk k
m mL x L x  satisfy the equation, therefore

So    1 0k x k k x k
n n

d x e DL x nx e L x
dx

      

and    1 0k x k k x k
m m

d x e D L x m x e L x
dx

       .....(4)

Multiplying (3) by  k
mL x  and (4) by  k

nL x and then substracting, we have

       1 1k x k k k x k k
m n n m

d dL x e x D L x L x e x D L x
dx dx

         

      k x k k
m nm n x e L x L x x  .....(5)

Integrating both sides of (5) w.r.t. ‘x’ from 0 to , we have
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0

k x k k
m nm n x e L x L x dx


      1

0

k x k k
m n

dL x e x D L x dx
dx


    

   1

0

k x k k
n m

dL x e x D L x dx
dx


  

 

       1 1
00

k x k k k x k k
m n m nL x e x D L x L x e x D L x dx

        
       1 1

00
k x k k k x k k
n m n nL x e x D L x L x e x D L x dx

             .....(6)
= 0 if m  n

Hence    
0

0,k x k k
m nx e L x L x dx


   if m  n.

If m = n then we find value of

   
0

k x k k
n nx e L x L x dx


    

0

x k n
k x k x n k

n n
e x dx e L x e x dx

n dx

 
   

   
0

1 k n x n k
nL x D e x dx

n


  

   1

0

1 k n n k x
nL x D x e

n
     

      1

0

k n n k x
nD L x D x e dx


  

   1

0

10 k n n k x
nD L x D x e dx

n


    

    
0

1 n
n k n k x

nD L x x e dx
n


 

  (by symmetry for n terms)

    1 1

0

1
1

n
n n k xx e dx

n


   

 

0

1 n k xx e dx
n


  

n k
n


 .....(7)

Combining (6) and (7), we have

   
0

x k k k
n n mn

n ke x L x L x dx
n
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Ex.1. Prove that      1
t k x k k

n n n
x

e L t dt e L x L x


 
   

Sol. Integrating by parts taking e–t as second function, we get

 t k
n

x

e L t dt


    t k t k
n nx

x

e L t e DL t dt
      

   x k t k
n n

x

e L x e DL t dt


   

   
1

0

n
x k t k

n r
rx

e L x e L t dt
 

 



 
   

 
    

1

0

n
k k
n r

r
DL t L t





   
 



    
1

0

n
t k t k

n r
rx x

e L t dt e L t dt
 

 



   x k
ne L x .....(8)

or  
0

n
t k

n
r x

e L t dt





   x k

ne L x .....(9)

Subtracting (9) from (8), we get

or      
1

0 0
0

n n
t k t k t k

r n r
r rx x x

e L t dt e L t dt e L t dt
  

  

 

     

or  t k
n

x

e L t dt


    
1

0 0

n n
t k t k

r r
r rx x

e L t dt e L t dt
 

 

 

   

or  t k
n

x

e L t dt


   1
x k x k

n ne L x e L 
  [using (9)]

or  t k
n

x

e L t dt


    1
x k k

n ne L x L x
   

Ex.4. Establish the generating functions :

(i)          2

0

11 2
1

t n
n n

n n

x t e J x t L x t 







  


(ii)  
 

   1 1
0

1 ; 1 ;
1 11

nn
nc

n n

cx tF c L x t
tt








      


Sol. (i) We have

   
0

1
1

n
n

n n

L x t


  


 

 0 0

1
1

k k nn

kn k

x t
k n k
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Using  
0 0

,
n k

A k n
 

 
   

0 0
,

n k
A k n k

 

 
   , we get

    
0

1
1

n
n

n n

L x t





   
 0 0

1
1

k n k n

kn k

t x
k n 

 

 




 

 
 0 0 1

kn

n k k

x tt
n k 

 

 




 

 0 1 ;1 ;te F x t    .....(10)
We know that

   
 

2

0 1

2
; 1 ;

1 4

n

n

z zJ z F n
n

 
       

.....(11)

Using (11) in (9) we get the required generating function (i)
(ii) We have

 
 

   
0 1

nn
n

n n

c
L x t



  


   

 0 0

1
1

k k nn
n

kn k

c x t
k n k



 




   

   
 0 0

1
1

k k n k
n k

n k k

c x t
k n

 


 




  

   
 

 
0 01

k n
k n

kk n

c k tc x t
k n

 

 




 

   
   

0
1

1

k
c kk

k k

c x t
t

k 


 




 



  1 1
1 ; 1 ;

11 c
x tF c

tt
     



Ex.5. Prove that          1

0

n

n r n r
r

L x y L x L y    



 

Sol. We have

   1 11 exp 1 exp
1 1
x t y tt t

t t
                

 
      1 11 exp

1
x y t

t
t

     
    

 

Therefore

 1

0

n
n

n
L x y t


 


      

0 0

n n
n r

n r
L x t L y t

 

 
  

   
0 0

n
n

n r r
n r

L x L y t



 

   

Comparing the coefficients of tn, we get the required result.
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Ex.6. Prove that    
     

 

n r rn
rn

n
r r

y y L x
L x y

n r


 







 


 
0

1 1
1

Sol. We know that

 0 1 ; 1 ;te F xy t  
 

 0 1

n
n

n n

L xy t









Now,

 0 1 ; 1 ;te F xy t      1
0 1 ; 1 ;y t yte e F x y t   

   
 0 0

1
1

n r n r
r

n r r

y L x y t
n





 

 




 


 

 0 1

n
n

n n

L x y t

 



     

 0 0

1
1

n r
r

n r r

y t L x yt
n





 

 




 

   
 0 0

1
1

n r n rn
r

n r r

y t L x y
n r







 




  

Comparing the coefficients of tn we get the required result required.

Self-Learning Exercise-II

1. Associated Laguerre differential equation is .........

2.    
0

........x k k k
m ne x L x L x dx


    if  m  n.

3. Ln + k is a Laguerre polynomial of degree ........

4.    1
1 ........k k

n nL x L x
  

15.12 Summary

In this unit we studied the Laguerre and asociated Laguerre polynomials. we also studied the
recurrence relation, generating funciton and orthogonal property for these polynomials.

15.13 Answer to Self-Learning Exercises

Exercise-I

1.  1 0x y x y n y     2. 0
3. 1 4. 1
5.  nx L x 6. 1

7. 1 – x 8.  21 2 4
21

x x 
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Exercise-II

1.  1 0x y x k y n y      2. 0

3. n + k 4.  k
nL x

15.14 Exercise

1. Find the value of

(i)    3 5
0

xe L x L x dx


 [Ans. 0]

(ii)   2
4

0

xe L x dx


    [Ans. 1]

2. Express 10 – 23x + 10x2 – x3 in terms of Laguerre polynomials.
[Ans. L0(x) + L1 (x) + 2L2 (x) + 6L3 (x) ]

3. Prove that      1
y x

n n n
x

e L y dy e L x L x



   

4. Show that       
 

2 1
2

0

1 2
2 3 2

nt
n

n n
n

H t
L n t x dx 

 

5. Show that      
   

0

1 1
1,2,3,......

1

n r n rn
k
n

r

k n x
L x n

r n r k n r

 



   
 

    
6. Prove that

(i)        1 22 2
2 1 2n n

n nH x n L x 

(ii)      2 1 1 2 2
2 1 1 2n n

n nH x n L x
  

7. Show that        
1

221 22
2

0

11 2
2 4

t
n n

n n
n

tx t x H x t x dx L              
 

8. Show that  
   

0 !

n
n ss

n
s

L x
L x

s








  

9. Show that     
 

21

0

2 1x k k
n

n k
e x L x dx n k

n


 


  

10. Prove that      1 1

0 1

x
m m m

n n
m nx t L t dt x L x

m n
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