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COURSE INTRODUCTION

The Present book entitled “Real Analysis and Topology” has been designed
so as to cover the unit-wise syllabus of Mathematics-Second paper for M.A./M.Sc.
(Previous) students of Vardhaman Mahaveer Open University, Kota. It can also be
used for competitive examinations. The basic principles and theory have been
explained in a simple, concise and lucid manner. Adequate number of illustrative
examples and exercises have also been included to enable the students to grasp the
subject easily. The units have been written by various experts in the field. The unit
writers have consulted various standard books on the subject and they are thankful

to the authors of these reference books.



UNIT 1 : Algebra and Algebras of Sets

Structure of the Unit

1.0 Objectives
1.1 Introduction
1.2 Algebra and algebras of sets
1.2.1 Semirings
1.2.2  Algebra (Algebra of sets)
1.2.3 Ring of'sets
1.2.4 o-algebra
1.2.5 o-r1ing
1.2.6 F_and Ys-sets
1.2.7 Borelsets
1.3 Axiom of choice
1.4 Summary
1.5 Answers to self-learning exercises
1.6 Exercises
1.0  Objectives

The study of real analysis affords the students an opportunity not only to impart necessary math-

ematical contents but also expose themselves to both rigor and abstraction. The purpose of writing this

unit has been for students possible to reach this level with enough knowledge of sets and their algebras.

This unit presents the basic material about sets in most non-axiomatic way and will help students pursu-

ing the forth coming units.

1.1

Introduction

The unit begins with the definition of set and various elements of set theory, topological prelimi-

naries and extended real number system. Next part of the unit consists of algebras of sets and related

theorems are also the part of the unit. A brief introduction of axiom of choice concludes the unit.
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1.2 Algebra and algebras of sets

At first we define set and some important results (without proof) related to the sets which will
help students pursuing the forth coming units. It is not possible to define every term used in mathematics,
yet all of the mathematics can be defined in terms of few undefined concepts. One of the basic unde-
fined notion with which we would be dealing with is that of a set. The words like family, collection and
aggregate are used as synonyms for the word set.

A collection of distinct objects such that there exists a clear rule by which we can predict the
presence or absence of a given object in that collection is termed as a set. Thus a set is a well defined
collection of distinct objects. The objects that belong to the set are called its elements or points or
members. For any set 4, the symbol a € 4 denote that a is an element of the set A and the symbol
a ¢ A denote that a is not an element of 4.

A convenient and more compact method to describe a set is the defining-property method. A
defining-property of a set is one that is satisfied by every element of the set. The standard notation for a
set using this property is {x : ....... }, where the dotted line is filled by the defining-property. For example
{x : x is a positive integer less than 10}. For any two sets 4 and B, 4 is said to be a subset of B if
x € A = x € B. We also say that B is a super set of 4 and write it as A — B. The sets A and B are said
to be equal, written as 4 = B if A — B and B — A. The set consisting of no elements is called the empty
set or null set and is denoted by ¢. Note that ¢ is the subset of every set. A set U is said to be the
universal set if all the sets under consideration are the subset of U.

The collection of all the subsets of a set A is called the power set of 4 and is denoted by P (4).
If A and B are any two sets, then their union denoted by 4 U B is a set which consists of all elements
that are in 4 or in B (or in both). The intersection of two sets 4 and B denoted by 4 N B is a set
consisting of all elements that are in 4 as well as in B. The difference of the set 4 and B is denoted by
A — B and consists of all elements that are in 4 but not in B. The Cartesian product of any two non
empty sets 4 and B, denoted by A4 x B, is a set that consists of all ordered pairs (a, b) where a € A and
b € B. The complement of a set 4 with respect to the universal set U is denoted by 4¢ and is a set
consisting of all those elements that are in U but not in 4.

A set A c R is said to be bounded above if there is a real number M such that a < M for all
a € A. The number M is called an upper bound of 4. Note that every number M’ > M is also an
upper bound of 4. The upper bound M of the set A4 is said to be the least upper bound or supremum
of 4 if no number smaller than M is an upper bound of 4. In other words M is the least upper bound of
the non-empty set 4, if

(i) a<M, foralla € A and

(ii) given any positive number €, there is an element @, € 4 such thata, > M — €.
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The set A R is said to be bounded below if there is a real number m such that a > m for all
a € A. The number m is called a lower bound of 4. Every number m” < m is also a lower bound of
A. The lower bound m of the non-empty set A4 is said to be the greatest lower bound or infimum of a if
no number larger that m is a lower bound of 4. We can also say that m is the greatest lower bound of
the non-empty set A4, if

(i) a>m, foralla € 4 and

(ii) given € > 0, there exists an element a, € 4 such thata, <m + €.

We denote the least upper bound of the set A by sup (4) or sup a or sup{a : a € A}. Similarly

acA

the greatest lower bound of 4 is denoted by inf (4) or ing aorinf{a:ae A}.
ae

Note that inf (4) =—sup (— A)

It must by remembered that a set A is said to be bounded if it has a lower bound and an upper
bound. In such a case it has a unique infimum (greatest lower bound) and a unique supremum (least
upper bound).

Two most important relations for the complement of the union and intersection of a collection
{4, : A €A} of sets are due to De-Morgan and are known as De-Morgan’s laws. These laws are

stated below

U4 | =N4

reA reA

and ﬂ 4, | = U 4.

AeA reA

The extended real number system denoted by E*, consists of E! (set R of all real numbers)
together with symbols oo and — oo satisfying the following

(i) o0+ 00 = a0 - 00 = (~ ) (— o0) = o0,

(if) — o0+ () = 00 (~ o6) = — 0 <0

(iii) For each X e E!

—o<x<o

and X+o=00,x—(—00)=00,x+(—0)=—0o0
X — 00 =—00

Also T-T o
0 -0

(iv)0-0=0-(—00)=0

(v) If 0 <x < oo, then x - 00 = 00 and x - (— 0) =— 0

If —0<x<0,thenx (x)=—0

3



and X (—0) =0
(i) IfX € E' and y € E*, then

xty=y+x and x-y=y-x
(vii) None of the following are defined

X
0+ (—w), -0+, —, for X € E*.

0’

It can be observed that if a, b € E* and if a < ¢ for each ¢ > b, then a < b. This is just the
extension of the fact that ifa, b € E! and a <b + e foreach € >0, then a < b.

A set N is said to be a neighborhood (n4d) of a point p, if there exists an open interval I con-
taining p and contained in NV, i.e., p € I < N. In this case the set N— {p} is called the deleted neighbor-
hood of p.

It may be observed that :

(i) Every open interval / is a nhd of each of its points.

(ii) The set N of natural numbers is not a nid of any of its points.

(iii) The set R ofreal numbers is a hnd of each of its points.

A point p is said to be the limit point (or cluster point or accumulation point) ofa set S if every
nhd of the point p contains atleast one point of S other than p.

From the definition of limit point of a point it can be deduced that a point p is a limit point of a
set S if and only if every nhd of p contains infinitely many points of S. Symbolically, a point p is a limit
point of the set S, if for every nhd N of p, we have

N S)—{p}#¢

However in order to show that p is not a limit point of the set S, we need to show that there

exists a nhd N of p such that
NNS=¢

The set of all the limit points of a set S is called the derived set of S and is denoted by D ().
Note that

(i) Every point of the set R of real numbers is a limit point of R and hence D (R) = R.

(it) The set Z of integers has no limit point.

(iii) The set N of natural numbers has no limit point.

(iv) A finite set has no limit point.

Aset G — R is said to be an open set if for each point x € G, there exists a nhd N of x such
that N — G. Equivalently, the set G < R is open if for each x € G, there exists a number € > 0 such that
]x—¢€,x+ e[ < G. It can be shown that the set G is open if it is a nhd of each of its points.

Note that (i) the empty set ¢ is always an open set. Also every open interval is an open set.

(ii) The union of arbitrary family of open sets is an open set.
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(iii) Finite intersection of open sets is an open set.

(iv) The tersection of arbitrary family of open sets need not be an open set.

A subset F' R is said to be a closed set if its complement F € is an open set in R. 4 closed set
may also be defined as :

A subset F' R is said to be a closed set if every limit point of F'is in F; i.e., if D (F) c F.

The empty set ¢ is always a closed set (Note that ¢ is also an open set). Note that

(i) The union of finite number of closed sets is a closed set.

(ii) The union of arbitrary family of closed sets need not be a closed set.

(iii) The intersection of arbitrary family of closed sets is a closed set.

Let S'be a subset of R and /= {G, : A € A} be a family of subsets of R. Then Fis said to be a
cover (covering) of S if

Sc UGX'
reA

If the family F consists of all the open sets (i.e. each G, : A € A is an open sets), then F'is said
to be an open cover (open covering) of S if

sclJa,
AeA

A finite sub collection {Gn_ si=1, 2,...,k} of the family F'= {G, : A € A} of open subsets of R

1s said to be a finite sub cover of S if

k

s<JG, .
i=1

Two sets 4 and B are said to be equipotent if there exists a one-to-one correspondence be-
tween 4 and B. We generally write it 4 ~ B. This relation between the sets is an equivalence relation.
Equipotence is, in some sense, a measure of number of elements in a set. It is natural to try to order sets
according to the number of elements they contain.

A set S is said to be finite if it is empty or equipotent to a set of the form {1, 2,..., n} for some
natural number #. A set that is not finite is said to be an infinite set.

A set S'is said to be a denumerable set (or an enumerable set) if it is equipotent to the set N
of natural numbers. In other words the set S is denumerable if there exists a one-to-one correspondence
from the set N of all natural numbers onto the set S.

A set S which is finite or denumerable is said to be a countable set. If S is not a countable set,
then it is said to be an uncountable set.. Denumerable sets are sometime, referred to as countably
infinite sets. If S is a denumerable set, then S can be written as the indexed set {x; ;i € N}, where

xl.ixjifi;tjforalli,je]\/.



Expressing a denumerable set in this form is called enumeration. This leads us to notice that
every countable set is equivalent to the set N of natural number.

Note that () A set is infinite if and only if it contains a denumerable subset.

(i) The union of two countable sets is a countable set.

(iii) Every infinite set is equipotent (equivalent) to one of its proper sub sets.

(iv) The family of all finite subsets of a countable set is countable.

(v) The union of countable collection of countable sets is countable (i.e. if 4, 4,,..., 4,,,... are

o0
countable sets, then U 4, is countable).

n=1
(vi) Every subset of a countable set is countable.
(vii) The set Q of all rational numbers is countable.
(viii) The set [0, 1] is uncountable.
(ix) The set of all real numbers is uncountable (i.e. the set R is not countable).

(x) The set of all irrational numbers is uncountable.

Self-Learning Exercise—1

The set of positive integers is ............ .

The set of prime numbers is ............. .

The set {2, 22,23,..,2" ..} is ........ .

The set of positive irrational numbers is ......... .

If S'is an uncountable set and 7" a countable subset of S, then S—T'is ..... )
Every uncountable set contains an infinite ........... subset.

The set of positive transcendental numbers is ........ .

Every superset of an uncountable set is ............ .

A S A U T o

The set of all rational numbers in [0, 1] is ......... )
Cantor set : The cantor set, denoted by C in a subset of the closed interval [0, 1] and is
constructed as follows :

Let C, denoted the interval [0, 1] then trisect [0, 1] and remove the middle third open interval

12 1 2
} 33 [ from C,. The set so left behind is C; = [0,5} u[g,l}. Notice that C; is the union of 2l =2

disjomnt closed intervals. Trisect each closed interval in C; and remove from each of them, the middle

third open interval, i.e., remove the open intervals } %,% [ and } g,g [ from the closed intervals

1 2
[O, 5} and [E 5 1} respectively. Let the remaining set after the removal of these open intervals be
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Notice that C, is the union of 22 = 4 disjoint closed intervals. Trisect each closed interval in G,

and remove from each of them the middle third open intervals
122 819 200, ]25 26]
77 2797 7 | 27727 27757 respectively. Let

1 21 2 7 8 1 2 19 20 7 8 25 26
G=0,— |Vl —=,— |Vl =, —= Y| == |V| = — |V == Y| = —= |V]| =1
27 279 9 27 273 327 279 9 27 27

be the set left behind. We see that C; is the union of 23 = 8 disjoint closed intervals. The inductive
process of constructing C, ., form C, is clear now. Trisect each of the 2" disjoint closed intervals of
C,, and remove from each one of them the middle third open interval. This gets us C, | from C,,

which is the union of 2*! disjoint closed intervals. Following figure shows the constructions of the sets
Cyp €, Cyand Gy :

Coe .
0 1
C1 © * d *
1 2 1

3 3
Cz o o o o o 0 o 0
0 a 2 1 2 z 8 1

9 9 3 3 9 9
C3 OO @@ @) @ o S — e v e )
oLrz1 2781 219 207 825 261
2727 9 927 27 3 327 2719 927 27

Clearly C,,, < C, for alln € N. The Cantor set of [0, 1] is thus defined by C = ﬂ C,. We
n=1
see that :

1. the points which are never removed from the interval [0, 1] constitute the Cantor set C.
2. the set Cis a closed subset of R.
3. the total length of the removed intervals from [0, 1] to obtain C is equal to 1.
[Since at the n™ step, we remove 27! open intervals each of length 37, therefore a total length

Znd an 1 &(2Y
271 3 Thus we remove altogether total length equalto » 2" -3 ==>" (5] =1].

n=1 n=l1
As such the set remaining in [0, 1] which infact is the cantor set may seem to be insignificant.

Intuitively, it appears that the only points left in the Cantor set are the end points, i.e.,
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121278
,L,—,—,—,—,—,—,..., which are countable in numbers. But it happens to be a wrong im-

pression. Actually the Cantor set is not countable, i.e., the Cantor set is uncountable.

Now we start this section by introducing the concept of a semiring of sets and its properties. A
semiring of sets is perhaps the simplest family of sets for which theory of measure can be built.

1.2.1 Semirings :

Let X be a nonempty set. A collection § of subsets of X is said to be a semiring if it satisfies the
following properties :

)peB

(ii) IfA,B € §,thend N B € 8, i.e., $ is closed under finite intersections.

(iii) For every subsets 4, B € §, there exist subsets Cy, C,...., C, in § (depending on 4 and

B)suchthat 4 - B=UC and C;n C= ¢ if i #.

Now let § be a semiring of subsets of X. Then a subset 4 of X is said to be a c-set with respect

to § (or simply a o-set) if there exists a sequence {4,,} of pairwise disjoint members of $ such that
A= UAn' If AzUAfa with 4, 4,,..., 4, € § and 4, N Aj = ¢ for i #, then 4 is a o—set (To see it
i=l i=1

we can put A, = ¢ for all i > n). Thus it follows from the above definition of o—set, that if 4, B € §, then
A— B is ao-set.

Theorem 1 : If'§ is a semiring, then the following statements hold :

i=1

sets of § (and hence is a c-set).

(ii) For every {4,} of pairwise disjoint members of §, the set A= U A, is a c-set.
n=1
(iii) Countable union and finite intersection of G-set are c-sets.
Proof : (i) We prove the statement by mathematical induction. For n = 1, the statement holds

true from the definition of semiring. So let the statement be true for some k. Let 4 € $and 4, 4,,...,

k P
Ay, A, € $. Then there exist sets By, B,,..., Bp € § such that B=4 —UA[ = UBl. and
i=l i=1
k+1 p
B;nB;=¢ifi#j. Consequently 4— UAi =B-A,, = U(Bi —Ay,). Thus each B—4; | canbe
i=1 i=1
k+1
written as a finite union of disjoint sets of . Now since B; N Bj = ¢ for i #, it follows that 4 — U 4
i=1
can be written as a finite union of pair wise disjoint sets of §. Thus the statement holds true for £ + 1
sets also. Hence the statement is true for all 7.



(ii) Let {4,,} be a sequence of pairwise disjoint sets of § and 4= U 4,.

n=1

Let By=A,andB, ., =4, - J4 ; n=1
i=1

Then 4= DAn = OBn.
n=1

n=1

It can be observed that B, N Bj = ¢ if i #j. Thus by statement each B; is a o-set and so 4 is a
o-set.

(iii) The statement follows using the property (ii) of the definition of semiring and the above
statement (ii).

There are some natural collection of sets that satisfy properties which are more stronger than
those of'a semiring. One such a collection is algebra of sets.

1.2.2 Algebra (Algebra of sets) :

A nonempty collection $ of subsets of a set X is said to be an algebra of sets (or simply an
algebra) if $ is closed under finite intersections and complementation. Thus the nonempty collection$ is
an algebra of sets if

(i) Ac §,Be § =>ANnBe§

(iJ)AeS=>A4° §.

We shall now show three basic properties in the following theorem.

Theorem 2 : For an algebra of sets §, the following statement hold true.

(o SandXe §

(ii) $ is closed under finite unions and intersections.

(iii) $ is a semiring.

Proof : (i) Since § is nonempty, therefore, there exists some set A € $. Thus by the definition
of algebra of sets, 4 € § andso4d N A € B,ie,dpe §.Aganpe § ==X e g.

(ii) Let A, B € $. Then by definition 4¢, B € § and so A N B¢ € $. Consequently
AN BY)Y e $,ie,AUBe $. Thusif4,Be §,then4d UBandA "B e §.

By taking unions of two sets at a time, we see that if 4, 4,,..., 4, € $,then4, U 4, U...L
Ayie | )4 8. Similary 4, A Ay O 4, i N4 <s

i=1 =

(iii) In order to show that § is a semiring we are only to show that for every 4, B € $, there

exist sets C|, C,,..., C, € § (depending on 4 and B) such that 4 — B = CJC,. and C; N C] = ¢ for all
i=1
i #j. This is obvious in view of the identity 4 — B =A4 M B-.

9



Ex.1. For every nonempty set X the collection $ = {¢, X} of subsets of X is an algebra of
sets. This is the smallest algebra (with respect to the inclusion).

Ex.2. For every nonempty set X, the power set P(X) of X forms an algebra of sets. This is
perhaps the largest possible algebra.

Ex.3. Leta, b € R and let

o[- ¢, if azb
’ {xeR;a<x<b},if a<b

Then the collection § = {[a, b [ : a, b € R} is a semiring of subsets of R, but it is not an algebra
of sets, since for instance [0, 1 [ € $ and [2,3[ € S but [0, I[ U [2,3[ € B.

We now give below the definition of ring of sets, that is something an intermediate notion be-
tween the semirings and algebras of sets.

1.2.3 Ring of sets :

A nonempty collection R of subsets of a set X is said to be a ring of sets (or simply a ring) if
it satisfies the following properties :

(i) Ae R, BeR=> AUBeR

(ii) AcR,BeR= A-BecR.

The property (i) above, can immediately be extended by mathematical induction to any finite

n
number of sets in R, i.e. if 4, 4,,..., A, € R then 4= U A, € R. As an example, if X is a nonempty
i=1

set, then the power set P(X) of X forms a ring of sets.

An immediate consequence from the definition of ring of sets is :

(i) peR,forif4d e R,thend -Aie ¢peR.

(ii) The ring of sets & is closed under the finite intersections of sets, for if 4, B € R, then
A—(A-B)ie AN B e, which can be extended by induction method to any finite number of sets
nR.

Theorem 3 : A nonempty collection R of subsets of a set X is an algebra of sets if and
only if R is aring of sets and X € R.

Proof : First we suppose that R is an algebra of sets. Then for any 4 € R, we have A€ i.e.
X—A4 € R and so by definition4 U A e R ,ie, X e R.

Thus in order to show that R is a ring of sets, we are only to show that if 4, B € &, then
A-Be R.

Now let 4, B € R, then since

A-B=4ANnX-B)=X-(X-A4)UB)
and A, BeR = X-AcR.,BeR

10



= X-4A)uBeR
= X-(X-4)uUB)eRr

Thus A, BeR =A-BeR.

Hence R is a ring of sets.

Conversely, let & be the ring of sets and X € R . Then by definition of ring of sets,

XeR, AeR=>X-4 ie AeR

Thus XeR=AeR

Hence R is an algebra of sets.

Theorem 4 : For any collection ¢ of subsets of a set X there exists a smallest algebra $
of sets which contains € (i.e. there exists an algebra $ containing ¢ which is such that if F is
any algebra containing €, then F contains $.

Proof : Let F' be the family of all algebras of subsets of the set X that contain ¢ and let

S=n{F,F eF}.
Since each Fin F' contains ¢, therefore ¢ is a sub collection of $.

Also $ is an algebra, forif 4, B e $,then4, B € F foreachF € FandsoAUB e F for

eachF ¢ F
= AuBen {F;F eF}
= AuBe§.

Similarly it can be shown that if 4 € §, then 4 € $.

Hence $ is an algebra of sets.

Now from the definition of $, it is clear that F is an algebra containing ¢, then $ c F .
Thus $ is the smallest algebra of sets containing (.

Theorem 5 : Let § be an algebra of sets of a set X and {A,} be a sequence of sets in 3.

Then there exists a sequence {B,} of sets in § such that B; N Bj =¢ifi#jand UBi = UA,
i=1 i=1

Proof : If the sequence {4, } is a sequence containing finite number of sets of §, then the theo-
rem is trivially true. So let {4, } be an infinite sequence of sets of .

Then B =4, N4 NA50..0 A

Since intersections and the complements of the sets in the algebra 8§ are in §, therefore, each
B,e % ;n>1.AlsoB, cA4,foraln>1.

Now let B, and B, € 8 where m <n. Then, B, "B, c A, NB,  (since B, = 4,)

=4, m(An NAf A5 NN A4 m....mA,f_l)

11



:(Am mAfn)m(An NA m....mA,f_l)
=<|>m(An N A m...mA,i_l) =

Thus B, N B, = ¢ for all m <n

Now since B; = 4, for all i > 1,

therefore, 0 B, < [OJ 4 ()
=1 =1

Now let x € UAI..
i=1

= X eAl.forsomeieN.
Let n be the smallest value of 7 for which x e A;.
Then x € B, (from the definition of B,)

— xe U B;
i=1
Thus Ju4<ys )
i=1 i=1
from (1) and (2) we have

DBi:U 4.

i=1 i=1
1.2.4 o-Algebra:
An algebra 8 of subsets of some set X is said to be a 6-algebra if every union of a countable

collection of members of § is in $. That is in addition to $ being an algebra, if for every sequence

{4, } of members of §, the countable union U A4, €8.

n=l

0 o0 ¢
Now since ﬂ 4, = (U Ay ] , it easily follows that a c-algebra of sets is also closed under
n=1

n=l1

countable intersections. Thus a c-algebra can be defined as :
An algebra of sets § is called a g-algebra (or a 6-Boolean algebra or a Borel field) if for every
sequence {4, } of members of 8, the union U 4, and ﬂ A4, €8.
n=1 n=l1
Every collection F of subsets of a nonempty set X is contained in a smallest c-algebra. This

smallest c-algebra which is the intersection of all G-algebras that contain F’, is called the c-algebra gen-
erated by I and is denoted by o (F'). Thus

12



c(F)=n{8:8 isac-algebraand F' e $}.
If 8 is a c-algebra and a family of sets F' of §, satisfies  (B') = $, then B' s called a family of
generators.
Theorem 6 : If f: X — Yis a function and F' is a nonempty family of subsets of y, then
(/T (E) =T (a(E)).
Proof : Since /! (49) = (f~! (D)),

f‘l( § 4; :Gf-l(A,.) and
i i=1

i1

/! (ﬁl 4 |= ﬁf‘l (4),
The above shows that
S ®)={r7(4) : e8]
is a o-algebra whenever $ is a 5-algebra thus /! [o (F] is a c-algebra, where
fTE M o E).
This implies that
s/ '®Nc/Me® L. (1)
Nowlet ¢={Aec(E):/ ) ec(f(E))}.
Then clearly ¢ is a o-algebra, where F' < ¢ < o (F).
Hence ¢ = o (F). This implies that
fTe®)co( T ® L 2)
from (1) and (2) we get

o (f (E) < /(o).
1.2.5 o-ring :

A ring R is said to be a o-ring if R is closed under countable unions and intersections of the

collections of subsets inR. i.e. if {4,} < R, then U A, € R and ﬂ 4, eR.

n=l1 n=l1
It can be observed that a ring (@ o-ring) R is an algebra (a o-algebra) if and only if X eR.
Following is a simple chart that gives the relationships between various families of sets :

o-ring \
algebra/

13
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12.6 E  andG; -sets:

We know that the intersection of any collection (countable or uncountable) of sets in R is closed
and the union of a finite collection of closed sets is closed, but the union of a countable collection of
closed sets need not be closed. Similarly the intersection of a countable collection of open sets need not
be open. This intends us define two new classes of sets F'_-sets and G_-sets.

A set, which is a countable union of closed sets is said to be a Fa-set.

0

1 1
Thus a closed set, an open interval | a, b [ (since ] a, b [ = U[“ ‘;’Z”;D and a countable

n-l
union of F'_-sets, are all the F'_-sets.

A set which is a countable intersection of open sets is called a Gg-set.

Thus an open set, a closed interval [a, b] (Since [a.b] = fﬂ a —%,b +% D and a countable inter-
section of Gg-sets, are all the Gg-sets.

We can notice that the complement of an Fo-set is a Gg-set and conversely also.

1.2.7 Borel sets :

The c-algebra generated by the family of all open sets in R, denoted by B, is called the class of
Borel sets in R. The sets in B are called the Borel sets or R. Thus it can be said that

The collection B of Borel sets is the smallest 6-algebra which contains all of the open sets.
Such a smallest c-algebra does exist. It is also the smallest c-algebra that contains all closed sets and
the smallest G-algebra that contains all open intervals.

The open sets and closed sets are the simple examples of Borel sets. Similarly F' -sets and

Gg-sets are Borel sets.

1.3  Axiom of choice

Although we shall not present here an axiomatic treatment of set theory, one obvious axiom “axiom
of choice” deserves mention. It is clear that when we have a nonempty set, we may always choose a
point from it. This holds for any finite number of non-empty sets. We may choose a point from each set.
Strangely enough when there are infinite number of non-empty sets, the assumption that one can always
choose a point from each set leads to some unintuitive conclusions. The principle can be stated more
precisely as follows :

Let {4, ;A € A} be a collection of non-empty sets. Then for each A € A, we may choose a

point @, € 4,. Equivalently we can say that there exists a function /" : A — U 4, such that
reA

SV =X, €4,.
The function f'is called the choice function. This can be stated in set-theoretic terms as follows :

14



The cartesian product of a non-empty family of non-empty sets is non-empty.

There are few equivalent ways of stating the principle of axiom of choice of which the following

is historically important. “If {4, : A € A} is a non-empty family of pair wise disjoint nonempty sets, then

there exists a set £ U 4, such that E " A4, consists of precisely one point for each A € A.

B » b=

Al

Self-learning exercise-2

A ring R is an algebra of subsets of X if and only if ......... .

A o-ring R is a c-algebra if and only if ......... .

Every algebra of setsis a .......... .

EveryringRisa......... .

.......... is closed under symmetric differences and finite intersections.

If R is nonempty collection of subsets of a set X, thenR is a ........ ifAd,BeR =AU B eRand
A-B ek

A ring R is a o-ring if it is closed under .......... .

Every open set and closed setis a ............ .

If R is a nonempty collection of subsets of set X, then R is ............. if4A, B eR
> ANnBeR and Je R = A eR.

1.4

Summary

The entire unit has been written assuming that the student already has acquaintance with the

concepts of sets, their nature and various set-theoretic operations. It were also presupposed that the

student has enough knowledge of theory of real numbers. In the beginning with a brief introduction of

extended real number system we delt with the problems concerning the size of a set which includes the

definitions and theorems on countable and uncountable sets. We then had introduction to semirings, rings,

algebra of sets, c-algebra and related theorems. Finally the unit ended with the axiom called the axiom

of choice that has a very important place in the development of set theory.

1.5

Answers to self-learning exercises

Self-learning exercise-1

1. countable 2. countable 3. countable
4. uncountable 5. uncountable 6. countable
7. uncountable 8. uncountable 9. countable.

15



Self-learning exercise-2

1. xer 2. XeR 3. ring

4. semiring 5. everyring 6. ring

7. countable unions 8. Borel set 9. an algebra.
1.6  Exercises

. Let 8 be a semiring of subsets of the set X, and ¥ — X. Show that 8 ,={Yn4 ; 4 € 8}isa

semiring of Y.

. Prove that every open interval is a Borel set.
. Prove that a ring R of subsets of a set X is an algebra if and only if X € R.

. Prove that a 6-ring R of subsets of a set X is a -algebra if and only if X ¢ R

. If R is a ring then show that the collection F' = {A eR :AorAe -R-} is an algebra.

HEEn
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Unit 2 : Lebesgue Measures and Measurable Sets

Structure of the Unit
2.0 Objectives
2.1 Introduction
2.2 Length of an interval
2.3 Length of sets
2.4  Measure of a set
2.4.1 Outer measure of set
2.5 Measurable sets
2.5.1 Definition of measurable set
2.5.2 Lebesgue measure of a set
2.6 Non measurable sets
2.7 Summary
2.8  Answers to self-learning exercises

2.9 Exercises

2.0 Objectives

The objective of this unit is to generalize the idea of length by defining the measure on a class of
sets on real line. In real analysis the length is an example of a set function i.e. a function that associates
an extended real number to each set in some class of sets. The concept of the measure of set and mea-
surable sets plays an important role in measure theory. We shall discuss various properties of measur-

able sets that will help us, define measurable function and theory of Leabesgue integration.

2.1 Introduction

In the present unit the definitions of length of an interval and set are given. The outer measure of
an arbitrary set, having certain properties is also defined, which is closely related to the concept of length
of sets and intervals. Next part of the unit consists of the definition of Lebesgue measure of a set. Cer-
tain properties of measurable sets are discussed in detail. Definition of c-algebra and further properties
of measurable sets are also described. Finally the existence of non-measurable sets is discussed through

a theorem.

17
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2.2 Length of an interval

Irrespective of whether an interval / is open or closed, its length, denoted by / (/) is defined to
be the difference of the end points of /. Thus if @ and b are the end points of Z, then its length / (/) is
b —a. In case when a = b, the interval / converts into a point and then its length is zero, where as the
infinite interval has its length co. Therefore the “length” can be considered as a “set function” i.e. a
function that associates an extended real number to each set in some collection of sets. The domain of
this set function is the collection of all intervals. The set function satisfies the following properties :

@) 1(H=0

(ii) 1f {I } is the countable collection of mutually disjoint intervals such that U I, is an

n

interval, then (U [nJ:Z 1(1,)

(iii) For any fixed number x, / (I + x) =/ (I).
The above notion of length can be extended to arbitrary sets. The length of a set can now be
defined as follows :

2.3 Length of sets

Let O be an open set in R. Then O can always be expressed as a countable union of mutually

disjoint open intervals {7}, i.e., O = U I,,. We define the length / (O) of the set O as

1(0)=2. U1,

It obviously follows that if O; and O, are any two open sets in R, such that O; c O,, then
1(0,) <£1(0,) and so for any open set O  [a, b], we have

0</(0)<b-a.
Also for any closed set F — | a, b [,
we have [(F)=b—a—-1(F°),
where F¢=lab[-F

(i.e. the complement of F with respect to the open interval ] a,b [ ). Here we can see that
1(Op< I(F)=0.

The generalization of concept of length to a wider class of sets in R, (the class of all sets in R)
were introduced by “Henri Lebesgue” in 1904, which is both intuitive and has many applications, exten-
sions and abstractions. The following definition is the first step in a generalization, equivalent to Lebesgue’s,

of length.
18
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2.4 Measure of a set E

Let m be a function which associates to each set £ in R, a nonnegative extended real number
m (E), called the measure of £ and satisfies the following properties :

(i) m (E) is defined for all sets £ in P (R),

(ii) If I is an interval in P (R), then m (1) = (),

(iti) For any sequence < E; > of disjoint sets in P (R), (U Eij = Z m(E;) (countable addi-

tivity property),

(iv) For any fixed number x, m (E +x)=m (E) (Translation invariance property)

Construction of a set function which could satisfy all the above four properties was virtually not
feasible. As a result one of the above four properties, were necessarily to be weakened. Henri Lebesgue
weakened the first property and retained the last three of the four properties, saying that measure of the
set need not be defined for all sets £ in R.

The measure of the set could also be defined by replacing the property (iii) of countable addi-
tivity by a weaker property, the finite additivity for each finite sequence < £, > of disjoint sets. One
more possible alternative of property (iii) is countable sub addititivity that is satisfied by the “outer mea-
sure”. Thus it is required to introduce first the “outer measure” which is defined for all sets in R.

2.4.1 Outer measure of a set : Let 4 be a subset of real-numbers and {7} be a countable

collection of open intervals which covers 4 (z’ e Ac U I, ) For each such countable collection, let us

n

consider the sum of the lengths of the intervals in the collection. We define the outer measure m* (A) of

the set A to be the infimum of all such sums and write it as

0 if A=

m* (4) = Inf{zl(ln)’ whereAcU In}, if A#¢.

Hence for each set 4 in R, m* (4) >0 is a unique number and for 4 # ¢.

(i) m*(A)< Y. 1(1,), where {I,} is any countable family of open intervals such that

A CU I, and

(ii) for each number € > 0, there is a countable family {/, } of open intervals such that

ACU I,, and ZI(In)<m*(A)+e.

19
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Theorem 1. (i) If A and B are two sets such that A B, then m* (4) < m* (B).

(ii) for every singleton set A, m* (4) = 0.

(iii) The outer measure is translation invariant i.e. for every set A and for each x € R,
m* (4 + x) =m* (4).

Proof : (i) Given that 4 — B. Let {/, } be a countable family of open intervals such that B < U 1,

n

Then AcBcl]1,
or AclJ 1,
Hence m*(A)< >, 1(1,)

n

Now since the above inequality is true for any countable family of open intervals that covers B,

therefore m* (4) < m* (B).

(ii) Let A = {a} be an arbitrary singleton set.
1 1
Let In:} a——,a+—{
n n
then clearly ael, , neN
therefore A=f{ay 1, neN
2
Also [(I) =— foreachn e N
n
therefore, m* (A)=m* ({a}) =inf {{ (1) ; n € N}
=inf {2 ine N}
n
=0.

(iii) Since for each € > 0, there exists a countable collection {/,} of open intervals such that

Ac U]n and

Untitled-1

2 L) <m*(A)+e 1)

n

Also for any x € R
Ac U I, > A+xc U (1, +x)

therefore, m*(4+x)<> I(1,+x)
=2 1(1)

<m*(A4A)+ € (from (1))
20
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Now since € > 0 is an arbitrary number, so from above we have

m*(A+x)y<m*4) L. 2)
But 4 = (4 + x) — x, therefore using the above result, we have

m* (4 +x)—x)<m* (4+x)
or m* (A <m* 4+ L 3)
From (2) and (3), we get

m* (A +x) = m* (4), for any real number x.
The following theorem answers affirmatively the question, whether the outer measure is a
generalizatiohn of the length function defined for the intervals ?

Theorem 2. The outer measure of an interval is its length.
Proof : We first prove the result, when 7 is a closed finite interval say [a, b]. We know that for

each e >0
€ e
I=|a,blc |la——,a+—
fab)c a-5.avs]

therefore, m*([)SlGa—%,cH%D=b—a+e.

The above is true for each € > 0, therefore, we have
m*(h)<b-a=l() L. (1)
Thus it remains to prove that
m* ([)>2b—a.

Let € > 0 be any given positive numbers. Then there exists a countable collection {/, } of open

intervals that covers [a, b] (i.e. [a,b]c U 1,) such that

m* (D=m*([a,b])>> 1(1,)-« .. )

Now by Heine-Borel theorem, any countable collection of open intervals that covers [a, b] con-
tains a finite sub-collection of open intervals, which also covers [a, b], and since the sum of the lengths
of'the finite sub-collection cannot be greater than the sum of the lengths of the original countable collec-
tion, therefore, it is sufficient to show that the inequality (2) holds good for the finite sub-collection {7, }

which covers [a, b].

Now a € [a, b] and [a, b] c Uf,,, therefore, a € U I, and so there must be one of the in-

n n
tervals /,’s, which contains a.
Let this interval be ] a,, b, [.

Then a <a<b1.

21
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Ifb; <b, then b, € [a, b] and since by & | a;, b; [, there must exist an interval ] a,, b, [ in the
finite sub-collection {/, } such that
byelay by[,ie ay<by<b,

Continuing this way, we get a sequence | ay, by [, 1ay, by [ ..., 14a; by [, of open intervals
from the collection {7, } such that
ai<bi—l<bi ;i=1,2,....,
where b, = a.

Since {/ } is a finite collection, therefore the above process will terminate with some interval

1 a; , b, [, which is possible only when b € ] a;, b, [ ,i.e. whena, <b <b,.

k
Thus, Z 1(1,) ZZ 1(la;, b, )
n i1

=(b;—ay) +(by—ay) +..+ (b —ay)

>bi—a, (v a;<b,_<b)
>b—a (- by>banda, <a)
Thus z I(1,) >b—a

From (2), this shows that
m*()>b—-—a—€
Hence m*h)>b-a . 3)
From (1) and (3) we have
m* (l)=b-a.
Now we consider teh case when / is any finite interval. Then for a given € > 0, we can always
find a closed finite interval J < [ such that / (J) >/ (]) — €

Then I()-e<I()=m*(J)<m* ([) (sinceJis a closed finite interval)
But m* () <1 (1)
therefore, I()—e<m* ()L

The above is true for all € > 0, Hence m™* (1) = [ ().
Finally, we consider the case, when / is an infinite interval. In this case for any positive number
k> 0, these can be found a closed finite interval J c 7 such that / (J) = k.

Then m* (D) >m* (JN)y=1(J))=k
or m* (I) > k.
Since & > 0 is any arbitrary real number, therefore,
m* (1) =0 =1 (I)
or m* (I)=1().

The following theorem is related to the countable sub additivity property of outer measure.

22
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Theorem 3. Let {E, } be a countable collection of sets of real numbers. Then
m*(U En] <> m*(E,)

Proof : If any one of the sets £, in the countable collection is of infinite outer measure, then the
inequality holds true. So let us assume that m* (E,) < oo for eachn € N.

Then for each n € N, and for a given € > 0 there exists a countable collection {/

n,i}n, ; of open

mtervals such that

EncUIn’i and ZZ(In,i)<m*(En)+i

i i

yeculyr )

Also since the countable union of countable sets is countable, so the collection {1, ;}, ;isa

countable collection of open intervals.

Therefore, m*(U Enj <m* U (U I’”D

=§ m*(En)Jre

Since € > 0 is arbitrary, therefore, we have

m*[U EJ szn: m*(E,).

n

Theorem 4. If E is a countable set, then m* (E) = 0.

Proof : Let £ be a countable set. Then £ can be expressed as
E={Xx], Xgpee0sX 5o}

Let E, = {x,}. Then

E = U E, = U {xn } (Countable union of singleton sets {x}).

n

Thus m* (E)=m*(U EJ <D, m*(E,).
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But the outermeasure of the singleton set is always zero, therefore m* (E,) = 0. Hence
m* (E)<0.
Now since for any set £, m* (E) > 0, therefore we have m* (E) = 0.
Note : The sets N, Z and Q of natural numbers, integers and rational numbers are all countable
sets, therefore each of these sets has outer measure zero.
Theorem 5. If A and B are any two disjoint subsets of R, then
m*(AuB)y=m*(AH+m*B .. (D)
Proof : From theorem 3, we know that
m* (4 U B) <m* (4) + m* (B)
Thus we are only to show that
m* (A U B) > m* (A) + m* (B).
Let {/ } be the countable collection of open intervals such that

m*4duB=>Y (1) . )

Since A N B = ¢, therefore, we can always split this countable collection into two disjoint sub-

collections {/” } and {/” } which cover 4 and B respectively

ie. AcU 1, and Bc|J 1)
clearly Ly =L ULy and L EN{L =0
Therefore,zn: 1(1,’,)+§ 1(1,2')=§ 1(1,)
and m* (4) <3 (1)
m* (B) <> 1(1)))

or m* () +m* (B) < 1(1)+ Y. I(1)

= Z 1(1,)

=m*(4UB) (from (2))
or m*(AUB)>m* (A)+m*(B) . 3)
from (1) and (3) we have

m* (A U B)=m* (4) + m* (B).
It can be verified that the converse of the theorem 4 is not always true. We shall show it by an

example given below :
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Problem 1. The cantors set C is uncountable with outer measure zero.
Proof : Let C, be the union of intervals left at the n'" stage during the construction of the cantor’s

set C. Then clearly C, consists of 2" closed intervals, each having length 3. Thus
m*(C,)<2" 37" =(2/3)"
Also each point in C lies in one of the intervals of the union C, , for each n € N, therefore
Cc C, foralln e N.
Thus m*(C)<m*(C,)<(2/3)"
The above is true for each n € N, therefore taking the limits when n — oo , we have
m* (C) =0.
Problem 2. The closed interval [0, 1] is uncountable.
Proof : If possible let the closed interval [0, 1] be countable. Then
m* ([0,1])=0. (since the outer measure of a countable set is zero.)

But m* ([0, 1]1)=1([0,1]) =1,
which is a contradiction. Hence the closed interval [0, 1] is uncountable.

Problem 3. For any two sets A and B, if m* (4) = 0, then m* (4 U B) = m* (B). In
particular, if B < A, then m* (B) =0.

Proof : Let m* (4) = 0. We know that

m* (A U B)<m* (4) + m* (B)

=0+m* (B)
m*(AvVB)<m*®B) L (D
But B c A B, therefore
m*(B)<m*4vwB) . 2)

From (1) and (2), we have
m* (4 U B)=m* (B).
Now if B < A4, then
m* (B)y<m* (4)=0
or m* (B)=0 (since m* (B) =2 0)
Problem 4. For any set A and any € > 0, there exists an open set O such that A — O and
m* (0) <m* (4A) + €.

Proof : Let 4 be any given set, and € > 0 be any positive numbers. Then there exists a

countable collection {/ } of open intervals such that 4 = J 7, and YI(l,)sm*(4)+e . (D)

n

We know that every open interval is an open set and the arbitrary union of open sets is an open

set, therefore if we take O = U I, then O is an open set. Thus 4 < U I, =0 and
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m* (O)=m*(U 1,,]32 1(1,)<m*(A)+e (from (1))

Hence m* (O) < m* (A) + €.

Problem 5. Given any set A in R, there exists Gg— set G > A such that m* (4) = m* (G).
1
Proof : Let 4 be any set of real numbers. Let € =—>0,n € N.Then for each n € N there

exists an open set O, such that 4 = O, and

(using the earlier example)
Now we know that a G — set is the intersection of countable collection of open sets. Thus if we

assume that

G =[) O, then clearly G is a Gs—setandalso 4  G.
Thus m* (4) < m* (G)=m>{ﬂ OHJ

<m *(On) (since ﬂ 0,c O,J

Sm*(A)+%;neN [from (1)]

The above in true for each n, therefore letting n — oo, we have m* (4) = m* (G).

Self-learning exercise-1

1. If {/ } is a countable collection of mutually disjoint intervals such that U I, is an interval, then

I(U 1,,}: ..... .

2. If F is a closed subset of the open interval | a, b [, then the length / (F) of F' is defined

by ......
3. For the sequence < E; > of disjoint sets in the power set P (R), the property

m(LiJ El):lzm(E,.)is called ......

4. Let 4 be a non-empty set of real numbers and {/,} be the countable collection of open

intervals. Then the outer measure m* (A4) of A is defined by
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m* (4) =inf(Zl(1n )] where..... .

The outer measure m* (A4) of the set A is translation invariant, i.e., for each x € R, we have...
The outer measure of an interval is..... .
If E is a countable set, then its outer measure is ..... .

The outer measure of the set of natural numbers is ..... .

° *® 0

The cantor’s set C is uncountable. Its outer measure is ..... .
10. For any two sets 4 and B, if m* (4) =0, thenm* (4 U B) =.......
11. For any set 4 and any given € > O, there exists an open set 0 such that

AcO and m*(A)+ e ... .

2.5 Measurable sets

To begin with, we maintain the assumption that all sets are contained in some bounded interval
X. This restriction will be removed presently. As we have seen, the outer measure m* (E) of a set
E c Xis defined as :

m* (E) = Inf {Z /1, )},
EclUL,
where, {/,} [the countable collection of open intervals] is a member of the family of countable collection
of open intervals.

The inner measure ms (E) of the set E is defined by

msx (E)=m (X) —m* (X- E)

We say that the set £ is measurable if

m* (E) = mx (E)
In other words, the set E is measurable if
m* (E)=m (X) - m* (X - E)

or mX)=m*(E)+m*X-E) .. (D

The above definition of measurability of the set £ is given by Henri Lebesgue.

Since Lebesgue started with the set E contained in the bounded interval X, appropriate
modifications were needed for the unbounded sets. Following definition due to caratheodory does not
require such modifications :

2.5.1 Definition of measurable sets : A set £ is said to be Lebesgue measurable or

simply measurable if for each set 4,
m* (A)y=m*(ANE)y+m*4nE L. 2
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Now since A=ANE)U (AN E

and the function m* is sub additive, we have

m* (A)<m* ANE)y+m*(AnEYy L. 3)
Thus in order that the set E is measurable, we need only to show that
m* (A)y>m*AnEY L 4)

If in Henri Lebesgue’s definition given by (1), we take 4 = X, then the equality (1) converts into

the form

m* (A)y=m* (4 N E) +m* (4 N E°)
which is same as that of given by (2). Thus the definition due to Lebesgue is a special case of the defini-
tion given by caratheodory.

The outer measure is defined for all sets in R, but it does not satisfy, in general, the countable
additivity property. In order that the countable additivity is satisfied, we restrict the domain of definition
for the function m* to some suitable subset M of the power set P (R). The members of this subset M are
called measurable sets that are defined earlier and shown by (2).

The set functionm : M — R* (R* being the extended real number system) obtained by restrict-
ing the set function m* to the subset M of the domain of definition P (R) of m* is called the Lebesgue
measure function for the sets in M. For each £ € M, m (E) is called the Lebesgue measure or
simply measure of the set E.

Theorem 6. (i) If E is a measurable set then E€ is also measurable

(ii) The sets ¢ and R, are measurable sets.

Proof :(i) Let E be a measurable set. Then for each set 4 < R,

m* (A)=m* (4 N E) + m* (4 N E°)
=m* (4 N (E)) + m* (4 N E°)
=m* (4 N E) + m* (4 N (E°)°).

This shows that £¢ is a measurable set.

(ii) For each sct A — R, we have

m* A O )+ m* (4 M §€) = m* (§) + m* (4) (-+ ¢°=Rand 4 < R)

=0+ m* (4)
or m* (A)=m* (A N o)+ m* (4 N ¢°)
showing that ¢ is measurable.
Again m* (A N R) +m* (A N RE)=m* (4) + m* () (- R°=1¢)
=m*(4)+0
Therefore m* (A)=m* (4 N R) + m* (4 N R).

Thus R is measurable.
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Theorem 7. If E is a set such that m* (E) = 0, then E is measurable.

Proof : For any set 4, wehave A " EC E

Therefore m*(ANE)<m*(E)=0 .. (1)
Also ANE‘cA

therefore m*ANEY<m*4 L. 2)
From (1) and (2),

m* (A N E)+m* (4 N E°) <m* (4)
this shows that £ is measurable.
Theorem 8. Every countable set is measurable.
Proof : Let £ be a countable set. Then m* (E) =0
This implies that £ is measurable [by theorem 8]
Theorem 9. The union of two measurable sets is a measurable set.
Proof : Let £, and E, be any two measurable sets. Then for any set 4, applying the measurablity
onk,
m* (A)=m*ANE)+m*(AnES L. (1
Now we select A N E€ for 4 and apply the measurablity on £,. We get
m* (AN E\©)=m* (4N E)NEy))+m* (4N E)NE)Y)
or m* (AN E\©)y=m* (4N E\) N E,))+m* (4N (E° N E)))
or m* (ANE)=m* (AN (ESNE))+m* (AN (E,VE)) ... 2)
[since E,“ N E,X = (E; U E,)9)]
Again selecting 4 N (E; U E,) for 4 and applying the measurablity on £, we get
m* (AN (E, VE))=m* (AN (E,VE) NE)+m* (AN (E,UE)NE/"

But (E\VE)NE=E L 3)
and (E\VE)NE‘=(E NE)V(E,NE])
=dU(E,“NE,)
=E‘NE,
therefore from (3)

m* (AN (E; U E))=m* (AN E)+m* (4N (E°NE),))
=m* (AN E)+m*(ANE;)—m* (4N (E U E,)))
[using (2)]
=m* (A) —m* (4 " (E; U E,)°) [using (1)]
or m* (A)=m* (AN (E; U E,))+m* (AN (E; U E,)°)
this implies that £, U E,, is measurable.
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Theorem 10. The intersection of two measurable sets is also a measurable set.

Proof : Let £, and E, be any two measurable sets. Then £, and E,° are also measurable.
Consequently £, U E,“i.e. (E; N E,)° is measurable. This implies that (£, N E,)) i.e. E; N E, is
measurable.

Theorem 11. If E is a measurable set, then for any set A

m* (E U A) + m* (E N A)=m* (E) + m* (4).

Proof : Since £ is a measurable set, therefore for any set B,

m*By=m* BNE)y+m*(BnEY .. (1
First we take B = 4 and then B=FE U A. Then (1) becomes
m* (A)=m*ANE)y+m*(AnEY .. (2)
and m* (Ew A)=m* (ENA)NE)+m* ((EvA)n E°
Now EvANE=E L 3)
and (EVA)NE‘=(ENE)YU(ANE
=0uUUANE)=ANE*
Therefore from (3)
m* (EA)=m*(E)+m*AnEY .. 4
From (2) and (4)
m* (E U A)=m* (E) + m* (A)—m* (A N E)
or m* (E U A) + m* (EN A)=m* (E) + m* (4).

Theorem 12. The class M of measurable sets is an algebra, i.e., the complement of a mea-
surable set is measurable and the union (and the intersection) of finite collection of measurable
sets is measurable.

Proof : By symmetry between the sets £ and £¢ in the definition of measurablity of the set £,
we know that if E € M (i.e. if E is measurable), then £ € M. Thus in order to prove the theorem, it is

sufficient to prove that if {£, E,,..., E,} is a finite collection of measurable sets, then

CJ E; and ﬁ E,eM.
k=1 k=1

First we prove that if £, and £, € M, then £, U E, € M (i.e. E| and E, arc measurable then
E,| U E, is also measurable). This we have already proved in theorem 9.
Thus £, U E, € M.

n
Now if E= U E,=EUE,U..UE, andifE; € Mfori=1,2,..., n, then by mathematical
k=1

induction, it follows that £ is measurable, i.e. £ € M.
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n
Now we prove that if £, € M ; k=1, 2,..., n, then ﬂ E, € M. We have
k=1

n
E eM;k=12..n=> | E,eM
k=1

:UEkEM (since E € M = E€ € M)

:ﬁ Ek eM
k=1

Hence M is an algebra.
Theorem 13. Let E|, E,,..., E, be a finite sequence of disjoint measurable sets. Then for

any set A,

i=1 i=1

m*[An[L"J EJJ=Z m*(ANE,).

Proof : We shall prove the theorem by in induction.
For n =1, the result holds true, since
LHS=m* (4N E)=RHS.

Assume that the result holds true for (n —1) sets, i.e., let

m*[Aﬂ[U E,}J:nz_l m*(ANE) L (1

i=1 i=1

Adding m* (4 N E,) on both sides of (1), we have,

m(Aﬂ{Ul EiJ]+m*(AﬂEn)=i m*(ANE;)

- o{ofefo g ne

(since E; ;i =1, 2,...,n are all disjoint)
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n
Also E, is measurable, therefore by taking the set 4 N (U E; j , we have
i=1

gl

Thus from (2)

n n

M*(AO[U Ei}]z 2 m*(ANE;)
i=1 i=1

Result : If £, E,,..., E, is a finite sequence of disjoint measurable sets, then

n n
i=1 i=1
The above result can be proved by taking A = R in theorem 14.
Theorem 14. If {En : n € N} is a sequence of disjoint measureble sets, then
i=1 i=1
Proof : We know that for any n € N and for any set 4.
n n
m* AN||J E; ||=D, m*(4NE;)
i=1 i=l
Replacing 4 by R, the above becomes
m*(U Ei}z m*(E) (1)
i=1 i=1
Where E*;i=1,2,..., nare all disjoint.

Also foranyn € N

Therefore m*[CJ EI-J <m* G E;

or > m*(E)<m*| | E [from (1)]
i=1 i=1
The right hand side of the above inequality is independent of 7, therefore letting n — oo, we get

i m*(El-)Sm’{@l El) ..... 2)

i=1
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But we know that

M*(w-&JS > m*(E) 3)
i=1 i=1

Therefore, in view of (2) and (3), we have
m*(@ El} :i m*(E;).
i=1 i=1
Problem 6. If E| and E, are measurable sets then E|— E, is measurable. Also
m* (B, — E,) =m* (E)) —m* (E,), if E,cCE|
Proof : Since £ and E, are measurable, therefore,
E,-E,=E U Ej
is also measurable. Further
E =(E,—~E)UE, (fE,C E))
which is a union of two disjoint measurable sets £, — £, and E,.Therefore,
m* (E))=m* (E| —E,) U E,)
=m* (E; — E,) + m* (E,)
or m* (E, — Ey)=m* (E|) —m* (E,).
Problem 7. If E| and E, are two measurable sets, then
m* (E; U Ey) + m* (E; N E,) = m* (E)) + m* (E,).
Proof : Since £ is a measurable set, therefore for any set 4,
m* (A =m*ANE)+m*(A~E) L (1)
Taking 4 = E| U E, and adding m* (E| N E,) on both sides, (1) becomes
m* (E; U Ey)) +m* (E; N Ey))=m* (E; v E,)) NE))
+m* (B, VE) N E{)+m*(E,NE) ... 2)
But £, = ((E; V E,) N E{) U (E; N E,) is the union of two disjoint measurable sets
(E, Y Ey)) N E{ and E| N E,,, therefore,
m* (E,)=m* (E; Y E)) NE)) U(E, N E),))
=m* (E;, VE,) N E)+m* (E;NE,)
Therefore, (2) is
m* (E; U Ey) + m* (E; N Ey) =m™* (E|) + m* (E,) (since (E; N E) NE|=E)).
Problem 8. If E c | a, b [ is Lebesgue measurable set, then prove that
m(E)+m(E)=b-a.
Proof : We know that, if E < ] a, b [, then
my (E)=b —a—m* (E°)
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But since E is meaurable, therefore,
ms (E) = m* (E) = m (E)
and my (E€)=m* (E°) = m (E°)
Thus we have,
m(E)=b—a—m (E°
or m(E)+m(E)=b—a.
Problem 9. [/ M is a measurable set, then for any set E, prove that
m* (E) = m* (EM) + m* (E — EM), where EM=E N M.
Proof : We know that
E=(EnM)yVU[E-(ENnM]|=EM v (E-EM)
Also EnMYN[E-(EnM)]=EMnN(E-—EM)=¢
that is EM and E — EM are disjoint, therefore, using theorem 5,
m* (E)y=m* (EM v (E — EM)) = m* (EM) + m* (E — EM)

or m* (E)=m* (EM) + m* (E — EM).

Theorem 15. The collection M of measurable sets is a o-algebra.

Proof : We have proved in theorem 12 that the collection M of measurable sets is an algebra. In
order to show that M is a c-algebra, we need to show that if £ is the union of a countable collection of

measurable sets, then £ is measurable.

o0

Let {E, ; n € N} be a countable collection of measurable sets in M and let £ = U E;.
i=1

Then there always exists a sequence {F, } of mutually disjoint measurable sets in M such that

n
Now let B, = U F; . Then the sets B, are measurable (Since the finite union of measurable

i=l
sets in M, is measurable, as M is an algebra) and so B are also measurable. Also B,  E, therefore
E°c Bj.
Now choosing A as the test set and applying the masurability on the set B, (n € N), we have
m* (A)=m* (4 N B,) + m* (A N By)
zm* (4N B,)+m* (4N E) (sinceANE‘cANB,)
n
=m*[Aﬂ(U F,D +m*(ANE®)
i=1
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M-

m*(ANF)+m*(4NE°) (by theorem 13)
1

1

The left hand side of the above inequality is independent of , therefore, letting n — oo
m* (4) > Z *(ANF)+m (AﬂEC)

o]

m*| U (AﬂFi)}m*(AﬂEc)

i=1

= m* AO{D F,.D+m*(AﬂEC)

i=1
=m* (A N E)+m* (4 N E°),

showing that the set £ is measurable, i.e., E € M. Hence M is a c-algebra.

Theorem 16. Every interval is measurable.

Proof : First of all we shall prove that the interval | a, « [ is measurable. Let 4 be any subset of
R and let

A;=ANn]a,oland4,=AN]-o0,al]
Then we shall show that
m* (4) = m* (4,) + m* (4,).
Now if m* (4) = oo, then the result is trivially true, so let m* (4) < . Then for given € >0,

there exists a countable collection {7 } of open intervals that covers 4 (ie. 4 U 1) such that

n

> (1) <m*(4)+e L (1)
Let I'=I Nn]a,0 and [”, =1 N]-o0,al].
Then I'ol” =, Nnla,x[)ud,N]-o,a])
=1, N]—-o, o]
=1
and I’ N 1", = ¢. Therefore,
ly=ray+a”y. 2)
Now A1=Am]a,oo[c£U Injﬂ]a,oo[
=U (1, Na.e)

= 1.
n
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Similarly 4, < | 7. Therefore,
n

o iyt iy 2o Ui {1
:g 1(1,;)+% 1(17)
=3 (1(27) (1)

=>. (1) [from (2)]

<m* (A)+ € [from (1)]
Since € > 0 is an arbitrary positive number, therefore
m* (4,) +m* (4,) <m* (4)
or m* (A)>m* (AN ]a,o[)+m*(AN]—-x,a])
Thus the interval | a, o [ is measurable.

Now since | — o, a] = (] a, [ )¢ and the complement of a measurable set is measurable,

therefore the interval |- oo, a] is measurable.

0

1 .
Also |-, a[= U(]— 0, d ——]j , which is a countable union of measurable sets and so a
n

n=1

measurable set. Therefore, | — o, a [ is a measurable set.

Finally every open interval ] a, b [ can be expressedas Ja, b[=(]—o,b[) N (]a, o] ) and
the intersection of two measurable sets is a measurable set, therefore the open interval | a, b [ is mea-
surable.

In a similar way we can prove that the intervals [a, b], [a, b [and ] a, b] are measurable.

Hence every interval is measurable.

2.5.2 Lebesgue measure of a set :

If E is a measurable set, then the outer measure m* (E) of E is called the Lebesgue measure
of the set E and is denoted by m (E). Thus if E is a measurable set, then m (E) = m* (E). Therefore
the set function m : M — R* is an additive set function an the ¢ -algebra class M of measurable sets
which is the restriction of the set function m* to the family M of measurable sets. For each £ € M,
m (E) = m* (E). The extended real number m (F) is said to be the Lebesgue measure or simply mea-

sure of the set £ € M.
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Problem 10. Every open set is measurable.

Proof : Since every open set is the union of finite or a countable collection of open intervals,
and each open interval is measureable, also the finite union or a countable union of measurable sets is a
measurable set, therefore, each open set is measurable.

Problem 11. Every closed set is measurable.

Proof : Every closed set is the complement of an open set and each open set is measurable,
also the complement of every measurable set is a measurable set, therefore every closed set is measur-
able.

Problem 12. For any set A there exists a measurable set E containing A such that

m* (4) = m (E).

. : .. 1 .
Proof : We know that for a given set 4 and a given positive number € =—, there exists an

open set G, such that 4 = G, and

m*(Gn)Sm*(A)‘F%; neN (1

Now, since each G, is an open set (n € N) therefore each G, is measurable (n € N).

Thus m* (Gn) =m (Gn)
Let E= ﬂ Gn

Since the countable intersection of measurable sets is a measurable set, therefore it is clear that

E is a measurable set

Now E= m Gn c Gn
n=1
therefore m*(E) <m*(G,)
1
or m(E) <m*(4) + i eEN [using (1)]

[Since E is measurable so m™* (E) = m (E)].
The left hand side of the above inequality is independent of n, therefore letting n — oo
mEY<m*4 L 2)
But 4 ¢ E, therefore
m* ) <m*(E)y=m(E&) L. 3)
In view of (2) and (3), we have

m* (4)=m (E).
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Theorem 17. Every Borel set is measurable.

Proof : Let B be a Borel set. Then B is obtained by using countable union and intersection of
open sets or closed sets. Since every open interval is measurable and a countable union of measurable
sets is measurable, therefore every open set is measurable. Also a set is closed if and only if its comple-
ment is open and the complement of a measuable set is measurable, therefore every closed set is mea-
surable. Thus every open set and closed set is measurable. Now B is obtained by using the countable

union and intersection of open and closed sets, therefore B is measurable.

Self-learning exercise-2
If X'is a bounded interval and £ — X, then m* (E) + m,(X—E)=.....
E is a measurable, if for any set 4, m* (A N E) + m* (A N E) < ...
The set R of reals is .... .

If £ is a countable set, then £ is ... .

A

If E is a measurable set, then for any set 4,
m*(EUA)+m*(ENA)=....

6. IfE, E,, ..., E, is a finite sequence of disjoint measurable sets, then

7. For the finite sequence £, E,...., E, of disjoint measurable sets,

8. IfE, and E, are measurable sets, then m™* (£,) —m™* (E,) = .....
9. If/isaninterval, then/is.... .
10. Opensetisa.....
11. Closed setisa.... .
Theorem 18. Let < E;> be an infinite decreasing sequence of measurable sets, that is,

E,DE,DE;..... Let m (E)) <o for at least one i € N. Then

mUﬁE]=hmnﬂEﬁ.

. N—>00
i=1

Proof : Let k be the least positive integer such that m (£,) < . Then clearly m (E;) < o for
alli > k.

Let E=E

38

Untitled-1 38 10-05-2014, 12:26



and F;=E,~E.,

Then the sets F; are pairwise disjoint and measurable. Also

k
Therefore, —m (E, - E) =m(GFzJ =im(Fl)

i=k i=k
=2 m(E;~Ey.,)
i=k

But E,=EVU(E,—FE) and E,=E, U(E,-E;,))
therefore m(E)=m(E)+m(E, —E) and m(E)=m(E, )+ m(E,—E; )

Thus (1) becomes
m(E) = m (E) =Y (m(E)=m(E,y))
i=k

= lim (m(Ek ) - m(En+1))

n—®0

= m(Ek)— lim m(En)
n—o
Now, since m (E;) < o, therefore

m (E) = lim m(E,)

n—»0

n—>®0

. o (6] < (e,

Theorem 19. Let < E;> be an infinite increasing sequence of measurable sets, that is,

E, CE, CE3 C ..... Then

o| U] - )

n—0
=1

Proof : If m (E;) = oo for some k € N, then the result holds good, since

m[GEI-JZm(Ek):

i=l

and m (E,) = o for each n > k. So let m (E;) < oo for eachi € N.
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o0
Let E=\JE and F,-E,, E

]

Then the sets F; are pairwise disjoint and measurable sets. Also

or m (E)—m (E;) = lim Y [m(E;;)-m(E)]
n—»0 i=1

= lim [m E,.)- (El)]

n—>0

= lim m(E, . )-m(E)

n—>0

Thus m (E) = lim m(E,)

n—>0

. | Ut - n(e,)

n—®

Theorem 20. Let E be a measurable set. Then for any real number x, the translation

E + x is also measurable. Further more m(E + x) = m (E).

Untitled-1

Proof : Since E is measurable, therefore for any set 4,
m* (A)=m* (A N E)+m* (4 N E°)
or m*(A+x)=m*[(ANE)+x]+m*[(4 N E°)+x]

(since m* is translation invariant)

Also we can varify that
ANE)y+x=A+x)n(E+Xx)
and ANE)Y+x=(4+x)N(E°+x)
therefore, m*(A+x)=m*[(4+x)N(E+x)]+m*[(4+x) N (E°+x)]

Now replacing A with A — x, we obtain
m* (A)=m*[A N (E+x)]|+m*[4A N (E°+x)]
or m*(A)=m*[A N (E+x)]+m*[4 N (E+x)°].
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This implies that £ + x is measurable.
Now since m*(E +x)=m*(E)

therefore, m (E+x)=m (E).

2.6 Non-measurable sets

In the study of real analysis, most of the sets, we come across are measurable. But there are
non-measurable sets also given by many mathematicians. The non-measurable sets can not be constructed
without assuming the validity of axiom of choice. We shall discuss an example of non-measurable set
through a theorem. But before proving it we shall define certain preliminaries.

Definition (sum modulo 1) : Let x and y be any two real numbers in [0, 1 [, then the sum

modulo 1 of x and y, denoted by + is defined by

° {x+y if x+y<l1
x+y=

x+y-11if x+y=>1

Definition (Translate modulo 1) : Let £ be a subset of [0, 1 [. Then the translate modulo 1
of E by y is the set defined by

E-T—yz{z:Z:x-T-y, er}.
It can be verified that :

(i) x,ye[0,1[= x—T—ye[O,l[.

(ii) + is commutative and associative also.

Theorem 21. There exists a non-measurable set in the interval [0, 1].

Proof : Let [0, 1 [ be the interval and let x, y € [0, 1 [. We define an equivalence relation on
the set [0, 1 [ by saying that x and y are equivalent and write x ~ y if and if x — y is a rational number.
This relation partitions the interval [0, 1 [ into mutually disjoint classes £ with the property that any two
elements of the some class differ by a rational number, whereas those belonging to different classes dif-
fer by an irrational number. Thus

[0,1[VE,.

Since the set of rational numbers in [0, 1 [ is countable, therefore each £ is a countable set.
Also since [0, 1 [ is not countable, therefore the class of sets £, is uncountable.

By axiom of choice, we now construct a set P in [0, 1 [ consisting just one element x,, from

each £ . Then P [ 0, 1 [. We shall show that this set P is non-measurable.
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Let <r,>be a sequence of rational numbers in [0, 1 [, with 7, = 0. We define
P=P | r, ieN where P, =P
We shall first show that {P;} is a sequence of pairwise disjoint sets.

Letx € P, Pj, then there exist elements p,, p;€ P such that

X=Pp 4 1iTP 1 0
inplies that p,— p; is a rational number. This shows that p; and P belong to the some set £, . But since
P consists of only one element from each E , therefore we must have i = j. Thus if i # j, then
PN P] = ¢.

Now since P, < [0, 1 [, therefore UPz‘ <foaf., . (D
i=1

Letx € [0, 1 [. Thenx € E for some a. Since P consists of just one element from each £,

therefore either x € P = P or there exists an element p; € P such that x — p; is a rational number say r;

or x=p; ; r;=>x € P,;forsome i

= xel| JB

s

N
I
—_

Thus o<y ?)
i1

In view of (1) and (2), we have

Uz =[o1]

Now we show that P is non-measurable. If P is measurable, then each P, is measurable and

m(P)=m(P+r)=m(P) ; i=0,1,2,.. (since m is translation invariant.)

Ths n{@e}m([m[)

or > m(B)=1
or > m(P)=1

i=1
This leads to contradictory statements.

S I R B

Hence P 1s a non-measurable set.
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2.7  Summary

In this unit we discussed the definitions of length of an interval, outer measure of the set, measur-
able sets and their measure. We also studied various properties of measurable sets through theorems

and examples. In the last we proved that there exist non-measurable sets also.

2.8 Answers to self-learning exercises

Self-learning exercise-1

1. 2U(1,) 2. b—a—1(F° 3. countable additivity property
n
4. AcJ1, 5. m* (4 +x) = m* (4) 6. its length
n
7. zero 8. zero 9. zero
10. m* (B) 11. m*(0)

Self-learning exercise-2

1. m(X) 2. m*(A) 3. measurable
n
4. measurable 5. m*(E) + m* (4) 6. Y m*(ANE,)
i=1
n
7. Zm*(Ei) 8. m*(E,—E,) 9. measurable
i=1
10. measurable set 11. measurable set.

2.9 Exercises

Show that is countably additive on disjoint measurable sets.
Show that family of measurable sets is a c-algebra of sets in P (R).

Show that the inner measure of a set £ cannot exceed its outer measure.

0 B b=

Prove the existence of a subset of R that is not measurable.

0

5. If<E,>is a sequence of measurable sets with m* (E;) =0 ; i € N, then prove that UEi isa
i=1
measurable set and has its measure zero.

oo
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UNIT 3 : Measurable Functions and Convergence of
Sequences of Measurable Functions

Structure of the Unit
3.0  Objectives
3.1 Introduction
3.2 Measurable functions
3.2.1 Definition of measurable function
3.3  Algebra of measurable functions
3.4  Borel measurable functions
3.5 Almost every where property
3.5.1 Almost every where convergence
3.6  Supremum and infimum of a sequence
3.7  Convergence of sequences of functions
3.7.1 Convergence in measure
3.7.2  Almost uniform convergence
3.8 Summary
3.9  Answers to self-learning exercises

3.10 Exercise

3.0 Objectives

The purpose of writing this unit is to introduce the functions defined on a given measurable set.
Actually for the existence of Lebesgue integral of a function, the function must be less restrictive than that
of continuity. This condition gives rise to a new class of functions, known as measurable functions. The

class of measurable functions thus plays an important role in the Lebesgue theory of integration.

3.1 Introduction

In the beginning of the unit the definition of measurable function is given in two different ways,
one by a theorem and other in commonly used form. Operations on measurable functions, properties of
functions that are continuous on measurable sets, convergence almost every where and convergence in

measure of sequences of measurable functions are also discussed in sequal.
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3.2 Measurable functions

We have seen in the earlier unit that all sets are not measurable. Therefore it is important to
know that sets, which are constructed under certain condition are measurable or not. If we start with a
function f; the most important sets that arise from it are listed in the following theorem :

Theorem 1. Let f be an extended real valued function (a function whose values are in the
set of extended real numbers, is called the extended real valued function.), whose domain is a

measurable set E. Then following four statements are equivalent :

(i) For each real number o, the set {x € E: f(x)> o} is measurable.
(ii) For each real number q, the set {x € E:f(x)>a} is measurable.
(iii) For each real number a, the set {x € E: f(x)<a} is measurable.
(iv) For each real number a, the set {x € E: f(x) <o} is measurable.

(v) For each extended real number a, the set  {x € E : f(x) = o} is measurable.
Proof : (i) = (ii) Since

o]

(xeE: f(x)>a} :ﬂ{er:f(x)>q_l}
n

n=1
and the intersection of countable collection of measurable sets is a measurable set, therefore
{x € E: f(x) > a} is a measurable set.
(ii) = (i) Since

freE: /(0> a) :D{er;f(x>2a+l}
n

n=1
and the countable union of measurable sets is a measurable set, therefore {x € £ : f(x) > a} is a
measurable set.
(ii) = (iii) Since
xeE: f(x)<a}=E—{xeE:f(x)=a}
and xeE: fx)2a}=E—{xeE . f(x)<a}
and since the deference of two measurable sets is a measurable set, therefore, if the set on one of'the
sides is measurable, then the set on the other side is measurable.
Similarly we can show that (i) = (iv)
(iii) = (iv) Since

xeE: f(x)<a} :ﬁ{er:f(x)q;H_l}

n=1 n

which is a countable intersection of measurable set, therefore {x € E : f(x) < a} is a measur-
able.
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(iv) = (iii) Since

xeE: f(x)<a} :D{er:f(x)ga_l}

n=1 n
is a countable union of measurable set, therefore {x € E : f(x) <a} is a measurable set.

Thus all the first four statements are equivalent.

Now if a is any real number then
xeE: f(x)=a}={xeE: f(x)2a}n{xeE: f(x)<a}
Thus if (i) and (iv) hold true then (v) holds i.e. (ii) and (iv) = (v) for any real number a. Since

o]

{x e E:f(x)=oo} zn{er:f(x)Zn}

n=l1

which is a countable intersection of measurable sets if (ii) holds true. Thus (i) = (iv) for oo = co. Simi-
larly (iv) = (v) for a. =— o0, and we have (ii) and (iv) = (v) for each extended real number .

An extended real valued function f'is said to be Lebesgue measurable or simply measurable
on a measurable set £ (of finite or infinite measure) if it satisfies any one of the first four statements of

theorem 1.

Thus if one restricts himself to measurable functions, then the most important sets, connected

with them are measurable.

We now give a formal and most commonly used definition of measurable function.
3.2.1 Definition of measurable function :

An extended real valued function f on a measurable set £ is said to be Lebesgue measurable or
more precisely measurable on E, if the set {x € E : f(x) > a} is a measurable set for every real number

o.. The measure ofthe set {x € E : f(x) > o} may be finite or infinite.

3.3  Algebra of measurable functions

In this section we shall show that the class of measurable functions is closed under the algebraic
operations namely addition, subtraction, multiplication and division.
Theorem 2. Let f and g be measurable functions defined on a measurable set E, and ¢ be

a constant. Then the functions f+ ¢, cf, —f f+g | f| f2 f- g are measurable. Further if
f

g (x)#0 foreachx € E, then L and — are also measurable.
g g

Proof : Let a be any arbitrary real number. Since f is a measurable function and
xeE:f(x)tc>at=x{x:f(x)>atc},

therefore the function f* * ¢ is measurable.
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Let ¢ # 0 (since if ¢ = 0, then ¢f= 0, a constant function that is always measurable). Then
xeE:(cf)x)>al={xeE:cf(x)>a}

={er:f(x)>g; c>0}
c

or ={er:f(x)<%;c<0}
in both cases the set {x € £ : (¢f) (x) > a} is measurable. Hence ¢f is a measurable function.
In case when ¢ =— 1, then ¢fis measurable implies that — f'is measurable.
In order to show that '+ g are measurable, we shall first show that if f'and g are measurable
functions, then the set {x € E: f(x) > g (x)} is a measurable set.
Now f > g implies that there exists a rational number 7 € Q such that f (x) > > g (x) for each
x e E.
Thus {xeE:f(x)>g(x)} = U[{er:f(x)>r}m{er:g(x)<r}J
reQ
= countable union of measurable set
= a measurable set
Therefore, the set{x € E : f (x) > g (x)} is a measurable set. Now for any real number
a, xeE:(ftg>aj={xek:f(tg>a}={xeE:f(x)>a-g (X))}
Now g is measurable = — g is measurable
= o+ (—g) is measurable for alla. € R
= o — g is measurable
Also fis measurable, therefore the set {x € E : f(x) > o — g (x)} must be a measurable set,
which implies that the set {x € E : (f+ g) (x) > o} is measurable, that is, f+ g is a measurable function.
Now f and g are measurable, so f and — g are measurable. Thus '+ (— g), that is, f — g is
measurable. Hence f'+ g are measurable functions.

For any real number o, we have

E if a<0
E: >a) =
ek /1) >0 {er:f(x)>0L}u{er:f(x)<—oc} if a>0
Now since E is a measurable set and union of two measurable sets is also measurable, there-
fore, the set {x € E : | f| (x) > a} is a measurable set. Thus | /| is a measurable function on E.
To show that /2 is a measurable function we proceed as follows :

for every real number o

E if a<0
.2 =
xeE:f*(x)>a} {er;|f|(x)>\/a; if a>0
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But {er:|f|(x)>\/a}={er:f(x)>\/a}u{xeE:f(x)<—\/a}, therefore,

{x € E:|f|(x)> Jo } is a measurable set (being the union of two measurable sets). Also E is mea-
surable, therefore the set {x € E : /2 (x) > a} is measurable. Hence /2 is measurable.

Now, f'and g are measurable on £

= f+ g and f— g are measurable on £

= (f+ g)? and (f— g)? are measurable on £

= (f+ 2)* — (f— g)* is measurable on E

= i[(f+g)2 —(f—g)z} are measurable on £
=  f-gis measurable on E.

|
Now let g (x) #0, forall x € E. Then — exists for allx € E. Thus for every real a

g
{xeE:g(x)>0} if a=0
{er:&j(x)w}: {er:g(x)>O}O{er:g(x)<é} it >0
{{er:g(x)<O}m{er:g(x)<éHu{er:g(x)>O}if a<0

In all the three cases we observe that the set is {x ek: (1] (x) > oc} 1s measurable. Hence
g

1. . .
— is a measurable function, if g does not vanish for allx € E.

g
Finally if g (x) # 0 for all x € E, then g is measurable implies 1 is measurable.
g
1
Thus f'and — are measurable on £
g
1
= S E is measurable on £
= / is measurable on E.
g

Theorem 3. If f and g are measurable function on a measurable set E, then the set
{x € E:f(x)>g(x)} is a measurable set.

Proof : For each rational number r; € O, we define

A={xeE:f(x)>r,>gx)};, ieN
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or A=xeE:.f()>rinixek:gx) <r;

Then A ; 1s the intersection of two measurable sets and so is a measurable set for eachi € N

Now {xeE:f(x)>g}=|J4

i=1
= Countable union of measurable sets
= a measurable set
Hence {x € E : f(x) > g (x)} is a measurable set.
Ex.1. Show that a function f on a set E is measurable if and only if for any rational num-
berr e Q, the set {x € E : f(x) <r} is measurable.
Sol. Firstly, let the function f* be a measurable function on £. Then for any arbitrary real number
o, the set {x € E: f(x) <a} is a measurable set. But since Q c R, therefore r € Q = r € R, there-
fore {x € E: f(x) <r} is a measurable set for all » € Q.

Conversely, let {x € E : f(x) <r} be a measurable set for all rational numbers » € Q. Set a be

any real number, then

(xeE: f(x)y<a} :U {er:f(x)<r<0L}
reQ

= {xeE:f(x)<rre0}

r<ao

= countable union of measurable set
= a measurable set
Thus the set {x € £ : f(x) <a} is a measurable set. Consequently f* is measurable on E.

Ex.2. Let f be a measurable function on the measurable set E,, for all n € N. Then fis

measurable on the set E, where E = U E,.

n

Sol. Let a be any arbitrary real number. Since f'is measurable on £, for all n € N, therefore,

{x e £, f(x)>a} is ameasurable set, for alln € N.

Now let £ =UEn. Then
xeE:f(x)>a) =fxe |J E,: f(x)>a}
= {xekE,: f(x)>a}

= Countable union of measurable sets
= a measurable set.

Thus {x € E: f(x) > o} is measurable.

Hence f'is measurable on E = U E,.

n
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Ex.3. Show that every constant function on a measurable set E is a measurable function

onkE.
Sol. Let f'(x) = ¢, for all x € E be a constant function on the measurable set £ and a be any
arbitrary real number. Then it is evident that
xeE:f(x)>ao} ={E’ i,f c-
o, if c<a
In both the cases, the {x € E : f(x) > o} is a measurable set as £ and ¢ both are measurable.
Hence f is a measurable function on E.
Ex.4. Show that every function defined on a set E with measure zero is a measurable func-
tion.
Sol. Let f'be a function defined on a measurable set £, where m (E) = 0.
Let o be any real number. Then
(xeE: f(x)>a} CcE
mixeE: f(x)>a}<m(E)=0
mixeE:f(x)>a}=0

{x € E: f(x) > a} is measurable for all real number a.

bl

fis measurable on E.
Ex.5. Prove that the characteristic function ¢ , of a set A is measurable if and only if A is

a measurable set.

Sol. We know that the characteristic function ¢ , of'a set 4 < E'is defined by
1, if xed
b4 @) :{ 0, if xekE-4
Let E be any set such that 4 — £. Then by definition of ¢ , we have 4 = {x € E': ¢, (x) > 0}.
Let ¢, be measurable. Then {x € £': ¢, (x) >0} is measurable i.e., 4 is a measurable set.

Conversely, let A be a measurable set and o be any real number. Then

0, if a>1
(xeE: f(x)>a} =1 4, if 0<ax<l
AV A =E, if a<0

Since every set on the right hand side is a measurable set, it is evident that the set {x € £': ¢,
(x) > o} is measurable. Consequently ¢ , is a measurable function defined on 4.

Ex.6. Give an example to show that the function | | is measurable but f is not measur-
able.

Sol. Let P be a nonmeasurable subset of £ = [0, 1[. Let us define a function f: £ — R, where
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1, if xeP
f(x)z{—l, if xeP
Then the set {x € £ : f(x) > 0} = P is not measurable. Therefore f'is not a measurable function
on E. However | f| is measurable on E, since the set
{erJf@H>a}={E oo
o, if axl
is a measurable set (as both the sets on the right hand side are measurable).
Thus | f/| is a measurable function on the set £ = [0, 1[ where as fis not measurable on E.
Ex.7. Show that a function f is measurable on a measurable set E if and only if its posi-
tive part f* and negative part f ~ are measurable.
Sol. For every extended real valued function £, we define the positive part /™ and the negative

part f~ as follows :

f+=%Ufo]

f==5111-1]

Since f'is measurable on the measurable set £, therefore | /| is also measurable on E. Conse-
quently, from the definitions of / and /~, we observe that both are measurable on E.
Conversely, let /* and f~ be measurable on E. Then f=f* — f~ is also measurable on E.
Ex.8. If f is a measurable function on the measurable set E, then prove that for every
extended real number a, the set {x € E : f(x) = a} is a measurable set but not conversely.
Sol. Let /'be a measurable function on the measurable set £. We first consider the case ot < oo .
Then
xeE:f(x)=a}={xeE: fx)za}n{xeE: f(x)<a}
= intersection of two measurable sets (as f'is measurable)
= a measurable set.
Now we consider the case when oo = co. Then,

o]

xeE:f(x)=a} :n{er:f(x)>n}

n=1
= a countable intersection of measurable sets
= a measurable set.
Similarly we can prove the result when oo = — oo (just replace n by — n)

Conversely, let us take a nonmeasurable subset 4 of R and define function f* as :

x2, if xed

fm={ i |
—-x°, if xeR-4
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We see that the set {x € E: f(x) = o} consists of exactly two elements for each real number o
and so is a measurable set. But the set
{x e R:f(x)>0} =4 - {0}, which is a nonmeasurable set. Hence fis not a measurable
function on R.
Ex.9. Let f be a measurable function on a measurable set D and the function g be defined
by
f (x), if xeD
{ 0, if xeD
Then show that f is measurable if and only if g is measurable.
Sol. First of all, let f be measurable on D. Then for each o € R
(xeE:g(x)>a}={xeD:f(x)>a}, if >0
={xeD:f(x)>a}uD" if a<0
Since D is a measurable set, therefore D¢ is also a measurable set. Also /* is measurable on D,
sois {x € D:f(x)>a}. Thus {x € D : f(x) > a} U D¢ is a measurable set. Consequently g is
measurable on E.
Conversely, let the function g be measurable on £. Then
xeD:f(x)>a}={xeD:gx)>a},
which is a measurable set as g is a measurable function on E. Hence f* is also measurable on D.
Theorem 4. A continuous function defined on a measurable set is always measurable.
However its converse is not always true.
Proof : Let /' be a continuous function defined on a measurable set £. We consider the
following set :
A={x e E: f(x)>a}, where a is any arbitrary real number. We shall show that the above set
A s aclosed set, i.e., D (4) = A [D (A) being the derived set of A]. Let xy € D (4) (i.e. x,, be a limit
point of 4). Then for every neighbourhood G of x,,, we must have
[G— {xo} 1N A # 0
Thus, ifx € [G — {x4}] M 4, then
xel[G-{xp}]NnA=>xe G x#x, and xe 4
=>f(x)2a
Thus, xeGxzxg=>f(0)>a
But 1" is given to be a continuous function, therefore,
S za=f(x) za
=>xy€d
Therefore, xgeD(A)=>xy€4
=D(A)c4A
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that is, every limit point of 4, is in 4, that is, 4 is a closed set.

But every closed set is measurable, therefore 4 is a measurable set.
i.e. A={x € E:f(x) > a} is a measurable set

= f is measurable on E.

To prove that the converse of the theorem is not always true, we consider the function f* on the
interval [0, 2] defined by

1, if xe|0,1{=B (say
gl rel=8 o
2, if xe]l,2]=8
o, it a>2
Then {x €[0,2]:f(x)>a} =1 B, if 1<a<?2

[0,2], if a<l

Since the sets ¢, B¢ and [0, 2] all are measurable, it is clear that f'is measurable on [0, 2], but it
is not continuous in [0, 2] as x = 1 is a point of discontinuity.

Theorem 5. A function f defined on a measurable set E is measurable if and only if for
any open set G < R, f ! (G) is a measurable set.

Proof : Let / be a function defined on a measurable set £ and G be an open subset of the set R
of real numbers.

First of all let /* be measurable on E. We know that every open subset G of R can be expressed

as a countable union of disjoint open intervals, so let

G=J1,, wherel,=1a, b,[

n=1

then 1 (@zD{er:f(x)eIn}
n=l

But S el = f(x)ela,b,[

=a,<f(x)<b,

Therefore, V() :O{er:f(x)>an}m{er:f(x)<bn}

n=1
Now f'is measurable on £, so both sets {x € £': f(x) >a,} and {x € E: f(x) <b,} are
measurable. Since the intersection of two measurable sets is measurable, also the countable union of
measurable sets is a measurable, therefore, /! (G) is a measurable set.

Conversely, let /1 (G) be a measurable set. We take the openset Gas G=]a, 0 [,a>0
Then G ={xecE:f(x)ela, o[}
={xeE:a<f(x)<owo}
={xekE:f(x)>a}
53



Now since /! (G) is a measurable set, therefore, {x € E : f(x) > a} is measurable, which
shows that f'is a measurable function on E.
Theorem 6. If fand g are real valued function defined and measurable on the set R, then
the real valued function
h(x)=F(f(x),g(x),x €R,
which is defined and continuous on the Euclidean space R?, is measurable.
Proof : Let a be any arbitrary real number. Consider the set
Gy =1, 9) : F(p, q) > o
Then G is an open set in R? and so can be expressed as a countable union of open intervals as

follows :
G, =L
n

where I =1{(p,q);p €la,b,[,q€lc,d, [} a,b,c,d €R andneN

Now since f'is a measurable function on R therefore, the sets {x € R: f(x) >a,} and {x € R :
S (x)<b,} are measurable. Consequently the set

xeR:f(x)ela,b[}={xeR:f(x)>a,} "{xeR:f(x)<b,}

is a measurable set (being the intersection of two measurable sets).

Similarly the set {x € R : g (x) € ]c,, d,[} is a measurable set. This implies that the set

xeR:F(f(x),gx) el j={xeR:.f(x)ela,b[} "nixeR:gx) elc,dl[}

is a measurable set.

Further we note that

xeR:h(x)>aj={xeR:(f(x),gx) e G,
:U {xeR:(f(x),g(x))eln}

which is a countable union of measurable sets and so is measurable.
Thus {x € R : 1 (x) > a} is a measurable set. Hence / is a measurable function on R2.
Theorem 7. If g is a measurable function an a set E and f'is a continuous function de-
fined on the range of g, then the composite function fog is a measurable function on E.
Proof : Let G be an open set and g be a measurable function on the set £. Let
A={xeR:g(x) e G}.
Then we shall first prove that 4 is a measurable set,

Since G is an open set, therefore

G=\J 1, where I,=]a,b]|
n

Thus A={xeE:gx) e G} =U {er:g(x)e]n}

n
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or a={J {xeE:g(x)>a,} nxeEig()<b,)

= Countable union of measurable sets
=ameasurableset (1)
Now for any arbitrary number o
(xeE:(fog) (x)>a}={xeE:g(x) e H}
where H={y:f(y)>a}
Now since /" is a continuous function, therefore H is an open set. Consequently the set {x € E :

g (x) € H} is measurable (by (1)).

Hence {x € E: (fog) (x) > o} is measurable. This proves that fog is measurable on E.

3.4 Borel measurable functions

A function f defined on a Borel set £ is said to be a Borel measurable function or simply a
Borel function on £ if for every real number o, the {x € E : f(x) > a} is a Borel set.

Since we know that every Borel set is measurable, therefore if {x € E : f(x) > o} is a Borel
set, then it is a measurable function on £. Thus we note that every Borel function is Lebesgue measur-
able. But every measurable function need not be a Borel function. For example the characteristic func-
tion of a set, which is Lebesgue measurable but a non-Borel set, is Lebesgue measurable but not a
Borel function

It can be proved that

(i) A continuous function defined on a Borel set is Borel measurable function, but the converse is
not always true.
(ii) If f'is a Borel measurable function and B is a Borel set, then /! (B) is a Borel set.
(iii) 1If fand g are Borel measurable functions, then their composite function fog is also Borel mea-

surable, since if we take any arbitrary real number o, then
{x e E:(fog) (x) > o} = {x: f(g (¥) > o}
={x:g(x) e d}
=g ()
where A=A{u:f(u)>a}.
The set A is a Borel set since f is a Borel function. Therefore g~! (4) is a Borel set (using (ii)

above). Hence {x : (fog) (x) > a} is a Borel set. Consequently fog is a Borel function.
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3.5 Almost everywhere property

A property P is said to hold almost everywhere (a.e.) on the set S, if the set of points, where
it fails to hold good is a set of measure zero. Thus in particular we say that /=g a.e. if the function f
and g have the same domain and m ({x : f(x) # g (x)}) = 0. Similarly we say that the sequence <f, >
of functions converges to the function /* a.e. if there is a set £ of measure zero, such that < f, > con-
verges to g for each x not in E.

Theorem 8. Suppose that f and g are two functions defined on the common domain E

and fis measurable on E. If f=g a.e. on E, then g is also a measurable function on E.

Proof : Let E={xeE:f(x)=g )}

and Ey={xeE:f(x)#g((x)}

then E=E VE, and m(E,)=0
Now m(Ey)=0 = E,isameasurable set.

Also since f* is measurable on £, therefore £ is measurable. Consequently £ = £ — E, is mea-
surable.

But /' is measurable on E and E| c E, therefore /* is measurable on £

= {x € £, : f(x) > a} is a measurable set for a. € R

= {x € £, : g (x) > a} is a measurable set, since /' =g onE|.

Now, {x € E, : g (x) > a} C E, and m (E,) = 0, therefore, the set

xek,:gx)>ao}

is a measurable set.

Now, xeE:g>a}={xek :gx)>a}UixekE,:g(x)>a}

(“E=E|VE))

Both the set on the right hand side are measurable and the union of two measurable sets is
a measurable set, therefore {x € £ : g (x) > o} is a measurable set. Hence g is a measurable function
onk.

The sets of measure zero are just unimportant in the theory of Lebesgue measure. Since the
behaviour of measurable functions on the sets of measure zero is of very less meaningful, it becomes

necessary to introduce the following generalization of the ordinary concept of convergence of sequences

of functions.

3.5.1 Almost everywhere convergence :

A sequence < f, > of functions defined on a set £ is said to converge a.e. to a function defined
on E if il_rgolofn (x)=f(x), for all points x € E — E|, where E|  E and m (E,) = 0.

For example if we consider the sequence <f, > of functions on [0, 1], where
[, )=(1"x", forall x e [0, 1], then

<f,> converges a.e. to the function /' = 0 (zero function), everywhere except at x = 1.
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Self-learning exercise-1

. If| f | is a measurable function on a measurable set £, then f ....... .
. The function 1/g is measurable on the set £ only if ....... .
. Iff is measurable on a measurable set £, then whether f'is continuous or not on £ ?

AW N -

. For each extended real number a if the set {x € E : f(x) = o} is a measurable set then f'is
measurable on £; true or false ?

5. Iff is a measurable function on the measurable set £, then for any positive integer &, 1'% is
measurable or not ?

6. If f'and g are two functions on a common domain £ such that f=g a.e. then f'is measurable
if....... .

7. If the function f defined on the measurable set £ is continuous a.e. on E, then ....... .

Theorem 9. (E. Borel) Let f be a measurable function, finite almost everywhere defined

on the closed interval E = [a, b]. Then for all c> 0 and € > 0, there exists a continuous function

¢ defined on E such that
(xeE:[f0)-¢ (|20} <e.

Proof : Let /* be a bounded function. Then there exists a positive number K, such that
|f(x)|<£K forall x € E=|a,b].

Now let ¢ and € be any two arbitrary positive number. We choose a positive integer m, which

. K
is so large that — <o

m
r—1 r
Let E =<xeE:— K<L f(x)£—-K
where r=1-m,2—m,...m—1
d E =lyep: k< <K
an =X € — <f(x)<Ky.

Then all these sets are pairwise disjoint and

g=[ab]= () E.

r=l-m

Now for each r, we choose a closed set B, c E,,, such that

S
m(Er)<m(Br)+E ..... (1)
and, let B= U B,.
r=l-m
Then E-B=J (E.-B.)
r=l-m
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therefore m(E—B)=m ( CJ (E.-B, )]

r=l-m

m

or m(E)—m(E) = Z m(E,—Br)
r=l-m
u € € €
Thus mE)y-mB)<e L. (2)

We now define a function y on the set B, where
v (x) =%K forall xeB,; r=1-m,2-m,..,m.

Then y is a constant function on each B, and since B; N Bj = ¢ for i # j, therefore  is continu-

ous on B.
. r r
Again |\|/(x)|=‘—K‘=—KSK
m m
therefore, |f(x)—\|!(x)|=‘K—LK‘=£|m—r|S£<G
m m m
or [f(x)—vy(x)|<o; forall xeB

We now use the following lemma :

If B is a closed set contained in [a, b] and if y is defined on B which is continuous on B, then
there exists a function ¢ on [a, b] such that :

(i) ¢ is continuous

(i) ¢ (x)=vy (x) forall x € Band

(i) max | ¢ (x) | = max | y (x) |

Using the above lemma, we can define a function ¢ on £ = [a, b] having all these properties.

Further, xeE:|fx)-d(x)|2c}cE-B
therefore, m{xeE:|f(x)—¢(x)|=2c})<m(E)—m(B)
or m({xeE:|f(x)—0(x)|=20})<e. [From (2)]

3.6 Supremum and infimum of a sequence

Let f; and f, be any two real valued functions defined on the common domain E. Then
S*=max (f}, f5) and f, = min (f}, f,) are the real valued functions on £, whose values at any point

x € F are :

S ()= max (f} (x), f; (%))
and S+ (x)=min (f] (x), f; (x)) respectively.
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It can be observed that if /| and f, are measurable functions on the set E, then f/* and f; are

also measurable, for if, a is only arbitrary real number, then
xeE:f*>a={xek:fifx)>aUixeE:f,(x)>a}
and xeE: . fix)>aj=xeE:fif)>a}Nn{xeE:f,(x)>a}
Since f| and f, are measurable functions, therefore, the sets {x € £:f; (x) > o} and {x € R :
/> (x) > a} are measurable sets. Also since union and intersection of two measurable sets are measur-

able. This shows that /* and f. both are measurable functions on E.

If < f;>is a finite sequence of n functions defined on a common domain £, then the function
SHr=max (f, f5..n 1))
and f*=mm(f17 A}E)?]})

are the functions on the same domain E. In case when the sequence < f, > is an infinite se-

quence, sup < f, > and inf < f, > can be defined likewise. For any x € E, the supremum of {f}(x),

n

J5(x),...} is denoted by sup < f, >. We also denote by lim sup < f,, >, the function whose value at x

€ Eislim sup < f,, (x)>. In a similar way we can define inf < f,, > and lim inf < f,, >.

It can be observed that

lim sup < f,, > :inf(sup<fk >)

T\ kzn
inf < f, > =—sup(<—f, >)
n n

and lim inf < £, > =—limsup(<—f, >)
:slrllp(}(gt; < fx >j.

Theorem 10. If<f > is a sequence of measurable functions defined on a measurable set

E, then sup < f, > and inf < f, > are also measurable on E.
n n

Proof : Since f, is a measurable function on the measurable set £ for each n € N, therefore for

any arbitrary real number a,, the set {x € £': f, (x) > a} is measurable subset of £ for each n € N.
Now let g (x) =sup < f, (x)>; xeE
n

and h (x) =inf < f, (x)>; xek
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o0

Now, {er:g(x)>0L}=U {er:fn(x)>oc}

n=1
= Countable union of measurable sets

= a measurable set.

therefore g, i.e. sup < f,, > is a measurable function on E.
n

Now since h (x) =—sup <—f, (x)>; xek

n

therefore, it is clear that 4 i.e. inf < f, > is also a measurable function on E.
n

Theorem 11. Let <f, > be a sequence of measurable functions defined on the measur-

able set E. Then limsup < f, > and liminf < f, > are also measurable on E.
n n

Proof : Let us define
g, =sup < fi >
k>n
and h =inf < f, >
n k>n fk
then, limsup< f, > =inf < g, >
n n
and liminf < f, > =sup<h, >
n

n
We have already proved in the last theorem that g, and 4, are measurable on the set E. Once

again with the help of same theorem inf < g, > and sup </, > i.e. limsup < f, > and liminf < f, >

are measurable on E.
Note : If <f, > is a sequence of measurable functions defined on the measurable set £ and if
lim f, does exist, then

limsup < f, > =liminf < f, >=lim f,
n n

Now since limsup < f, > and lim ir;f < f, > are measurable if < f, > is a sequence of mea-
n

surable function. Hence lim £, is also a measurable function on E.

Theorem 12. [f < f > is a convergent sequence of measurable functions defined on a
measurable set E, then the limit function of < f, > is measurable.

Proof : Suppose that <f > is a convergent sequence of measurable functions defined on the
measurable set £, that converges to the limit function ' on E. We wish to prove that f'is a measurable
function on E.

Since <f, > is convergent, therefore, either </ > is a monotonic increasing or a monotonic

decreasing sequence.
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If<f, > is a monotonic increasing sequence then we know that
limf, =sup < f, >
n
Similarly if < f, > is a monotonic decreasing sequence, then
limf, =inf < £, >.
n

Thus in order to prove the theorem we need to prove that sup < f, > and inf < f, > are mea-
n n

surable on E.

Now let g=sup<f,> and h=inf<f >.

Then for any real number o

[ee]

xeE:gx>al =U {er:fn(x)>oc}

n=1
= a countable union of measurable sets
= a measurable set.

Hence {x € £ : g (x) > a} is a measurable set and so g is measurable on £.

Now h=inf < f, >=-sup<—f, >

n

Thus 4 is also measurable on E as g is measurable.

Therefore both sup < f, > and inf < f, > are measurable on £, that is, the limit function f'is
n n

measurable on E.
Self-learning exercise-2

1. Iff| and f, are real valued measurable on the common domain £, then /* = max (f}, f5) is also
measurable on £. Whether £, = min ( f;, f,) is measurable on £ ?

2. Let < f, > be a sequence of measurable functions defined on a measurable set £. Then

lim[sup < f,, >] is defined by ........ .

3. Let <f, > be a sequence of measurable functions defined on the measurable set £. Then lim £,

IS ..... .

4. If <f, > is a sequence of measurable functions on a measurable set £, then limsup < f, > and
n

liminf < f, > are ..... .
n
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3.7 Convergence of Sequences of Functions

When we speak of the theory of real functions, J.E. Littlewood’s third principle about the
measurable functions reminds us the following :

Every convergent sequence of (measurable) functions is nearly uniformly convergent. The
following theorem gives one version of the third principle due to Littlewood.

Theorem 13. Let E be a measurable set, with m (E) < o, and < f, > a sequence of
measurable functions defined on E. Let f be a (real valued) measurable function such that for
eachx € E, f, (x) > f(x). Then for a given € >0 and & > 0, there is measurable set A < E, with
m (A) < 8 and an integer ny, such that for all x € E— A and all n 2 n,,

1S () —f(x) | <e.
Proof : Let G, =ixeE:|f,(0)—f(x)]=¢€}

Since the functions f, and f are measurable, therefore it is clear that G, are measurable.
o0

Let E,=J G,
n=k

= {x:x € G, for some n > k}
={xek:|f,(x)—f(x)]|= e for some n > k}.
It is clear that £, , |  E; and for each x € E, there must be some set £ such that x ¢ E,,

since if we assume that x € E_for all &, then for any fixed &, we have
| f, @) —f(x)| =€ forsomen=>k
which contradicts the fact that f, (x) — f(x). Thus < E; > is a decreasing sequence of mea-

surable sets such that (1] £, =¢ andso lim m(E)=0.
=1 k—0

Thus for a given positive number 6, there exists a positive integer 7, such that
m(E) <06 forall k<n,
and in particular m (Eno ) <O.
that is mixek:|f, (x)-f(x)]= e for somen=n, <3
Now if we take 4 = E, , then m (4) <3
and E-A={xek:|f,(x)—f(x)|<e,foralln=ny}
or If, @) —f(x) ] <€, for alln > n,

and for all xe E—A.

The following theorem is a little modification of the above theorem :
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Theorem 14. Let E be a measurable set of finite measure (i.e. m (E) < o) and <f, > a
sequence of measurable functions defined on E that converge to a real valued function f a.e. on
E. Then for given € >0 and & > 0, there exists a set A C E, with m (4) < and a positive integer
ng such that

|f, @) —fx)|<e, forall xe E—~4 andforall n>n,

Proof : If G is the set of all those points x for which f, (x) - f(x), then clearly m (G) = 0 and
J, (x) = f(x) for all points x € £~ G. Let G| = E — G. Then applying the above theorem, there exists
aset 4, < G|, withm (4,) <0 and a positive integer n,, such that

|f, @) —f(x)|<e, forall xe G;-4, andforall n=>n,
Now since m (G) = 0, therefore taking

A=A4,9 Gand E—A4 =G, — A, the above becomes

|f, ) —f(x)|<e, forall xe E—~4 andforall n>n,

The condition that m (E) < o in the above two theorems is mandatory as can be verified from
the following example.

Ex.10. Show that the condition in the theorem 14 that m (E) < o, can not be relaxed.

Sol. Let £ = {x : x > 0}. Then we have m (E) = co. Let us define a sequence < f, > of func-

tionsf, : E— R,

where fn(X)={ 0 .if 0<x<n
1 if x>n

Construction of such functions shows that each f, is a measurable function for n € N. Thus
<f, > is a sequence of measurable functions defined on E that converges to /= 0. If we take € = 1
and 0 <3 < 1, then there can not exist any set 4 < £ with m (4) < and a positive integer n,, such that

|f, @ —f(x)|<e, forall xe E~A4, andforall n>n,
Hence m (E) has to be finite.
Theorem 15. Let <f, > be a sequence of measurable functions defined on a measurable

set E, that converge pointwise to a function f defined on E. Then f'is a measurable function.

Proof : Let o be any real number and m € N. Let us define the sets

VK,gk)z{xEE:fk(x)>a+l}

m
and Vrﬁzn) :nVI/n(zk); k,ne N
k=n

Since f; is a measurable function for allk € N and o+ (1/ m) is a real number, therefore each

erlk ) is a measurable set and so is V( ),

n
m
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To prove the theorem, we shall show that { xeE: f(x)> oc} = U 1228

Lety € {x € E: f(x)>a}. Then f(y) > o and as such we can always find a natural number m
such that f(y)> att.
m

Now since ]}E};fk (J/) =f()’),

therefore, there exists a positive integer 7, such that

Jr (J’)>0L+% forall k>n,

This implies that yew*)  forall k>n,

or very (since yln = ﬁ W’f’k)J
ke
or ye |J v
Thus yelxeE: f(x)>a}=ye | o)
o bemsdey® L !

Now let vel yn),

n,m

Then ye Vn(z”) forsome m,neN
= yewH) forall kxzn (since p") N W,,gk)]
k=n
Thus fk(y)>oc+i forall k=n
m
1
= li >0 +—
or f(J/) kfgofk (y) OH'm
and so f(y)2(>c+l
m
ie. f)>a
or vel{xE: f(x)>a}
Thus U V,ﬁ”)c{er:f(x)>0L} ..... ()
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from (1) and (2), we have
{xeE:f(x)>a}=J yin)
which shows that f* is measurable.
Theorem 16. (Lebesgue) < f, > be a sequence of measurable functions finite a.e. on a set

E. Let f, (x) > f(x) a.e. on E, and f be finite a.e. on E. Then for each € >0
lim | m({xe £1 £, (x)- £ (x)|2e}) |=0.

n—>®

Proof : Since <f, > converges to f a.e. on E, therefore f'is a measurable function on E.

Now let, A={xe E:|f(x)|=ow}

A= fr e E:|f, ()] =}
and B={er: lim fn(x)=f(x)}.
Then m (A)=m (A,)=m (B)=0

therefore, if we assume F=A4u {ﬂ A4, } UB,
n=l1

then m(F)=0
Now for e >0, let E (e) ={xeE:|fix)-f()]=¢e}

W, ()= E(e)

k=n
and V= W,(e)

Then clearly all these sets are measurable, as each £, is a measurable set. We also see that

W, (€)> W, (€)>.., thatis, < W, (&) > is a monotonically decreasing sequence of measurable sets,

therefore
m[ﬁ w, (e)] ~ 1im m(W, (<))
=l n—o0
or m)=lmm(W,(¢)) . (1)

H—>0

We shall prove that V' F
Letx ¢ F,thenx ¢ 4,x ¢ A, and x ¢ B.

This implies that /'(x) <o, f, (x) <oo for each k € Nand also lim f, (x)= f(x).

n—>0
Thus for given € > 0, there exists a positive integer r,, such that
Il () —f(x)|<e forall k>n,
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=>x¢E, (e) for k>n,

=>x¢g W, (e) for k>n,
=>x ¢V
Thus xgF=>xeV
=>VcF
= m (V) <m(F)
=>m)=0 (since m (F) = 0)
Therefore, from (1)
fim [ (¥, (<))] =0
But since E, (€) c W} (&), therefore
}glolo [m(er: | £, (x)—f(x)| 26)]20.

3.7.1 Convergence in measure :

Let <f, > be a sequence of measurable functions finite a.e. on a measurable set £. Let f'be a

measurable function finite a.e. on E. If for each € >0

lim [m(xeE:| f,(x)-f(x)| 2 €)]=0,

n—w
then the sequence <, > is said to converge in measure to the function /.

We can also say that, a sequence < f, > of measurable functions on a measurable set E is said
to converge in measure to a measurable function f'on the set £, if for each 6 > 0 and € > 0, there
exists a positive integer n, such that

m({xeE:[f,(x)—f(x)|=2e})<3s, foralln>n,,

If the sequence < f, > of measurable functions, converges in measure to the measurable function
£, then the limit f'is always unique. This is evident from the following theorem.

Theorem 17. If <f, > is a sequence of measurable functions defined on a measurable set
E that converges in measure to the function f defined on E, then < f, > converges in measure to
every function g which is equivalent to f.

Proof : Let € > 0 be any positive number, then we can observe that

WeE:f,()-g®|2elcixe Eif@#g@UixeE:|f,0)—f()]|> e}

Therefore,
m({xeE:[f,(0)—gw)[zep)sm({xeE:fx)#gM})+m{xek:|f,x)-f(x)|=e})

But since g is equivalent to £, therefore m ({x € E: f(x) # g (x)}) =0,

Thus we have
m({xeE:[f,(0)-gx[ze)<sm({xeE:|f,x)-f(x)]|2¢€})
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or, lim [m({er:|fn(x)—g(x)|2€})}S lim [m({er:|fn(x)—f(x)|Ze}ﬂ

n—»0 n—®
=0 (since <f, > converges in measure to /')
or, 31_1)130 [m({x €E f,(x)-g(x)|> e})] =0

This shows that < f > converges in measure to the function g.

Theorem 18. If the sequence < f, > of measurable functions defined on a measurable set

E converges in measure to two functions f and g, then these limit functions are equivalent, i.e.,

that

m(ixeE:|f(x)#gx)[})=0.
Proof : Since | f—g|<|f~f, |+ |/, —g|, therefore for each positive number €, we observe

(eE:f0-g@l>elcveE | fO)—f, 0>}
Ul e Eilf, (-2 ()=}
o m(xeE:| f0)-g()|> e <m(x e B IS0, ()= 5

sm(xeE:|f,@-g@]= )

o lim[m({re £/ (x)-g(x)|2€})|< lim [m({erzlf(x)—ﬂ(x)lzf}ﬂ

[\S}

n—

s

But since <, > converges is measure to f'and g, therefore,

lim _m({x eE:| f(x)-1, (%)l zgm -0

n—0

and lim _m({er:m (x)—g(x)|z§m=o

n—>0

[\

Thus we have

m({xeE: | fx)—-gx)|=2h=0 . (1)

B [xeEif ()2 e()) <U {xeE1h ()22}
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Therefore, m ({x e E:f(x)#g (x)})=0

or g~/

There are sequences of measurable functions that converge in measure but fail to converge at
some point. This fact can be understood as “Convergence in measure is more general than convergence
almost everywhere”. First we take an example and then prove a theorem called F. Riesz theorem.

Ex.12. For each n € N, consider n subintervals

o

of the closed interval [0, 1] and designate them as

k-1 k
E :[—,—} k=1,2,.., n foreachn € N.
n o n

We arrange these subintervals as follows :

[0, 1]

Le. By, By, By, By, Esp, Esy, By, e
Let < E, > denote the sequence of the above subintervals.
Now define the characteristic function of £, as
Ju = Ve,
Since m (E,) = 0 as n — oo, we can observe that the sequence < f, > converges in measure to
the zero function, but we also observe that for a given € >0
E, ={xeE[0,1]:|f,(0)]=¢€} foralln e N
Then for each x € [0, 1], £, (x) = 1 for infinite many values of n (by definition of f,). Thus
I (x) - 0 forany x € [0, 1], i.e., the sequence <f > does not converge point wise to zero func-
tion.
Theorem 19. (E Riesz) Let < f, > be a sequence of measurable functions on the set E,
that converges in measure to the function f on E. Then there exists a subsequence < fnk > of

<[, > which converges to fa.e. on E, i.e. lim fnk =f a.e onk.
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Proof : Let < €, > be a monotonically decreasing sequence of positive numbers such that

lim €,=0.Alsolet " &, be an infinite series of positive numbers such that »° 5, =0.

n—»00
n=l1 n=1

Now assume a strictly increasing sequence <n, > of positive integers.
Now since < f, > converges in measure to the function f, therefore, for given €, > 0 and

8, > 0, there is a positive integer n, in the sequence < n; > such that

m({er:|fnI (x)-f(x)]= el})<61
Similarly for €, >0 and 8, > 0, there exists a positive integer n, > n; in the sequence < n; >

such that

m({xeE:1 1, (x)- 1 (x)|2 &) <8,

and so on. In general for €; > 0 and 6, > 0 there exists 1, > 0 such that
m({er:|fnk (x)—f(x)|2€k})<8k

Let Ek:{er:|fnk(x)—f(x)|2€k},

ano E;; neN
k=n

and V=ﬂ w,

Then we observe that < W, > is a dcereasing sequence of measurable sets, i.e.,

Wi, oW,o>.oW, >..andm (W) < oo.

n—»o0

Therefore, m (V) =m(ﬂ Wn]: lim m(Wn)
n=l1

But m(Wn)zm(ﬁ E,Jsi m(E )<Y &
k=n k=

n k=n
Thus m (W,) <o
Hence m (V) = lim m(W,)< lim ) &, = lim §; =0 (by our assumption)
n—>0 n—wo = k—o0

Now we shall prove that the sequence < fnk > converges to f for all points in £ — V.

Letxy € £~ V.Thenx, ¢ V, ie, Xy €W, for some positive integer 1. This implies that
X & {x e E:| f, (x)= 1 (x)[2e ), k2ny
ie. | o (%)= 1 (%0) 1 <& forall k=>n,
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But €,—>0 as koo,

therefore, 1}2}; fnk (xo) = f(xo); xgeE-V
or lll_fgoﬁlk (x):f(x) forall xeE-V
But m (V) =0, therefore the sequence < fnk > converges to fa.e. on E.

Theorem 20. (D.F Egorov) Let E be a measurable set with m (E) < o and < f, > be a

sequence of measurable functions on E that converges to the measurable function f a.e. on E.

Then for every € > 0, there is a measurable set W — E, with m (W) < € such that < f, > con-

verges to funiformly on E— W.

O3 > ...

that

Proof : Let < o;> be a monotonically decreasing sequence of positive numbers (i.e. 6, > o, >
.) which converges to 0.

[o0]
Further let z s; be an infinite series of positive numbers converging to 0.

i=1

Now since for each real number r > 0

lim [m[o {er:fp(x)—f(x)z;»}ﬂ_o

n—o
p=n

therefore for each n € N and for every pair (,, s,) there exists a positive integer k € N such

Let W= [U {er:|fp(x)—f(x)|2csn}}

Then form above
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Therefore, for a given € > 0, there exists a positive integer j € N such that

0
Z Sn <e
n=j

or m(W)< e.

Further if x, € £~ W, thenx, ¢ W

o]

= xogfj U {er:|fp(x)—f(x)|20n}

n=j | p=k

= xoeu {er:|fp(x)—f(x)|ZGn} forall n>j
&
= xgg{er:|fp(x)—f(x)|20n} forall n>; and p>k

= |j;,(x0)—f(x0)|<cn forall n>j and p>k

But since lim &, =0, therefore for a given positive number 1, there exists a positive integer n
n—>0

such that
c,<n forall n>j
This implies that
f@-f@I<n  forall pzk
or |];,(x)—f(x)|<n forall p>k andforall xeE-W

li =
o0 lim £, (1)= /(4
Since 1 does not depend upon x, therefore < f, > converges to funiformly on £ — .

The above theorem gives rise the concept of almost uniform convergence (a.u.) of sequences of

measurable functions, which is defined below :
3.7.2 Almost uniform convergence :

Let <f, > be a sequence of measurable functions on the set £ and /' be a measurable functions
on E. We say that < f, > converges almost uniformly to the function f'and write f, — fa.u., if for a
given € > 0, there exists a set W, with m (W) < € such that <f, > converges to f uniformly on the set
E-W.

Clearly the uniform convergence almost everywhere implies almost uniform convergence on the
set E—W.

Structure of measurable functions : In real analysis, the study of complicated functions be-
comes little simple if they can be represented, exactly or approximately in the form of comparatively
simpler functions, with simple nature. In this section, we shall study theorems on approximating measur-

able functions by means of continuous functions.
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Theorem 21. Let f be measurable function finite a.e. on a measurable set E. Then for

any positive number €, there exists a bounded measurable function g such that

m({xeE: f(x)#g(x)}) < e

Proof : We define A={xeE: f(x)>k} for keN
and B={xeE: f(x)=oo}
then m(B)=0 (since f is finite a.e. on E)

Also sinceA1 :>A2 3A3 o...

and B= ﬂ A,
k=1
therefore, m (B) =m (ﬂ AkJ = lim m(4;)
k=1 k—00
or 1}2}; m( 4y ) =0

Thus for a given € > 0, there exists a positive integer 1, such that m (A,,O ) <e

Now let g be a function on E defined by

f(x), if xeE-4,
g =1, it xed,

Then g is a bounded measurable function since | g (x) | < n

Now since Ay, ={er;f(x)¢g(x)} and m(Ann)<e

therefore, mxekE:f(x)#gx)<e.

Theorem 22 (M. frechet). Let f be a measurable function defined an a set E (or [a, b]).
Then there exists a sequence < g, > of continous functions on R such that < g, > converges to f
a.e.onE.

Proof : Let us consider sequences <2, > and < ¢, > of positive numbers such that

lim 4, =0 and lim o, =0.
n—»0 n—>0

Then by Borel’s theorem, for each n € N and pair (A, 5,), there exists a sequence < ¢, > of

continuous functions defined on E such that
m({xe E:| f(x)—(])n (x) | > Gn}) <A,

Now since lim o, =0 therefore for a given positive number o there exists a positive integer
n—»0

integer n;, € N such that

G,<GC for all nzn,

Thus ek [ f()-9¢,(0)[20ic{xeE: f(X)-9,(x)[20,}
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or m({er :|f(x)—(|)n(x)20})£m({er:f(x)—cn(x)|26n})

or m({er :|f(x)—(|>n(x)20})<kn
- ’}glgo[m({er :|f(x)—¢n(x)20})}<r}£1;kn=0
or nh_r)lgo[m({er :|f(x)—(|)n(x)26})}=0

i.e. the sequence < ¢, > converges in measure to the function /.
Thus by F. Riesz theorem, there exists a subsequence <¢n \ > of <¢, > which also converges to

fa.e onkE.
Now considering g = ¢nk , we get the required result.

Theorem 23 (Lusin). Let f be a measurable function finite a.e. on E = [a, b]. Then given

€ > 0, there exists a function ¢, continous on [a, b] such that

m(xekE : f(x)#¢(x)})<e.
Proof : By frechet’s theorem, there exists a sequence < ¢, > of continuous functions which con-

verges to the function f'a.e. on E. Let € > 0 be any positive number. Then by Egorov’s theorem there

€
exists a measurable set W < E = [a, b], with m (W) < EX such that the sequence < ¢, > converges

uniformly to f'on the set £ — W (E = [a, b]). Then the function f* is continuous on £ — W.

Also for given € > 0, there exists a closed subset /' E — W, such that

m(F) >m (E-W) -3

(S

=m(E)-m (W) -~

=m(E)y- L. (1)
Then the function f'is continuous on F.
We now use the following lemma :
“If F is a closed set contained in £ and if f is a continuous function defined on F, then it is
always possible to define a function ¢ on £, with the properties :
(i) ¢ is continuous on E.
(i) forx e F,f(x)=¢ (x) and
(i) If | f(x)| <M, then|¢ (x)| <M.
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Making use of the above lemma, then
xeE: f)#d(x)} cE-F
= m(xeE: fO)#()}) <m(E-F)
=m (E) —m (F)
< e
Thus m({xeE: f)#p(x)})<e [using (1)]
And if | f(x) | <M, then | ¢ (x) | < M.

Self-learning exercise-3

. Ifa sequence <f, > converges in measure to the function f, then it converges in measure to

every function g which is .... .

. Ifa sequence <f,> of measurable functions converges in measure to the functionf, then s ... .

. If'the sequence < f, > of measurable functions converges in measure to the function /" a.e. on

E,then<f, > ...

. Ifthe sequence < f, > of measurable functions converges in measure to the function /" on E,

then <f, > ... converges pointwise.

. Ifa sequence <f, > of measurable functions converges in measure to the function f, then <f, >

1S ..... .

. If <f > converges to f a.e., < g, > converges to g a.e. and f, = g, a.e. for alln € N,

then .... .

3.8

Summary

In this unit we learnt about the measurable functions and the relation between measurable func-

tion and measurable set. We also discussed the convergence of the sequences of measurable functions

on measurable sets, with different nature, for example convergence a.e., convergence in measure etc.

3.9 Answers to self-learning exercises
Self-learning exercise-1
1. is not necessarily measurable on E. 2. g does not vanish for all points in £.
3. not necessarily. 4. false
5. measurable 6. g is measurable

7. f is measurable on E.
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Self-learning exercise-2

yes

the function whose value at x € E is limsup <f n (x )>
n

measurable

also measurable and equal.

Self-learning exercise-3

1. equivalent to f. 2. unique.
3. converges in measure to / on E. 4. may not
5. fundamental in measure. 6. f=g ae
3.10 Exercises
1. Prove that almost uniform convergence of sequence of measurable functions implies convergence

AN

in measure.

State and prove F. Riesz theorem for measurable functions.

Prove that a real valued function, continuous in an open interval is measurable.
Show that the step function defined on R is measurable.

Ifa function /2 is measurable, then does /" also measurable ?

If /'is measurable on each set £, in the countable collection {£;} of pairwise disjoint measurable

sets. Then show that /* is measurable on U E; also.

1

If <f, > is a sequence of measurable functions, then show that lim sup < fn> and lim inf < fn>
n n

are also measurable.

HEEn
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UNIT 4 : Weierstrass Approximation Theorem and

Lebesgue Integral

Structure of the Unit

4.0  Objectives
4.1 Introduction
4.2 Weierstrass approximation theorem
4.3  Lebesgue integral of bounded function
4.3.1 Partitions of a measurable set
4.3.2 Upper and lower Lebesgue Darboux sums
4.3.3 Upper and lower Lebesgue integrals
4.3.4 Lebesgue integral
4.3.5 Basic properties of Lebesgue integral
4.4  Lebesgue integral of bounded functions over subsets of measurable sets
4.5  Algebra of Lebesgue integrable functions
4.6  Limits of the sequences under the sign of integral
4.7 Summary
4.8  Answers to self-learning exercises
4.9  Exercises
4.0  Objectives

integral of bounded functions, in order to introduce a concept of integration applicable to a wider class

This unit has purposely been written to get students, acquainted with the theory of Lebesgue

of function than that of in Riemann integration.

4.1

Introduction

nomial though it has nothing to do with the theory of Lebesgue integral. Introduction of Lebesgue inte-
grable function along with various properties has been given as the next part of the unit. Theorem related

to countable additivity of Lebesgue integral and finally the Lebesgue bounded convergence theorem are

The unit starts with the Weierstrass’s theorem on approximation of continuous function by a poly-

also the parts of the present unit.
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4.2

Weierstrass approximation theorem

The Weierstrass approximation theorem establishes the fact that a continuous function can be

approximated by a polynomial. Before we take up the Weierstrass theorem, we would prove the fol-

lowing lemma :

Lemma : For each positive integer » and real number x

o (k—nx)* 5 (1-x)"" <2
k=0 4

Proof of the lemma : By the binomial theorem, we have the identity

1+ =Z Cy t*, where Ci = ln
k=0

ln|ln—k

Differentiating the above identity and multiplying by ¢

n
nt(1+oy=1 =2 k-Ci t*
k=0

Once again differentiating the above and multiplying by ¢, we get

nt(1+ 0t enm-DAA-p"=2=Y k*-Cj
k=0

X
Now replacing ¢ by — in (1), (2) and (3) and multiplying each by (1 —x)", we get
oo (1-x)" =1
k=0
> kGt (l—x)n_k =nx
k=0

and > K x* (l—x)n_k =nx(1-x+nx)
k=0

Multiplying (4) by n% x2, (5) by — 2nx and adding the resulting equations to (6), we get

Zn: (k_”x)z G x* (1—x)n_k =nx(1-x)

k=0

But since for all real x

2x-1)220
or 4x(x—1)+1=20
or 4x(1-x)-1<0
or x(1-=x) sl
4
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Therefore, the result (7) becomes

n

> (k—nx)2 x* (l—x)"_k <z
k=0 4

Theorem 1. (Weierstrass approximation theorem) Let f be a real valued continuous func-
tion defined on [0, 1]. Then f can be approximated uniformly to a polynomial p on [0, 1] if for a
given € > 0, there exists a polynomial p such that | f (x) —p (x) | < € for all x € [0, 1].
Or
If f'is a real valued continuous function on [0, 1], then B, (x) — f (x) uniformly wr.t. x as

n — oo, where

n(0-3 f(Eere -0

is the Bernstein polynomial of degree n for the function fon [0, 1].

Proof : Since the function fis continuous on [0, 1], it is uniformly continuous on [0, 1]. Thus for

€
a given positive number €, there exists a positive number  such that | /' (x) —f (y) | < ) for all

x,y € [0, 1] whenever | x —y | <0.
Now let x be any real number in [0, 1].

n

Then since Z cp xf (1—X)n_k =1, forany positive integer n,
k=0
therefore, f(x) = Zn: f(x)c; ok (l_x)n—k
k=0
Thus /&)~ B, (x)] = f(x)cp F (1-x)""
k=0
; k n _k n—k
—Z f(—JCk x"(1-x)
k=0 n
-3 (f (x)=f (Ej)c;: *(1-x)""
k=0 n




<& and X2 denotes the sum over the re-

where X! denotes the sum over those & for which | y k

n
.. . k
maining & for which | x —— | > 8.
n
k n n— l n n—
Now Zl f(x)—f(—j Cp x* (1-x) k<Ez C; X" (1-x) koS
n 215 2
therefore, > f(x)—f[ﬁj cp it (1-x)"" <§ ..... )
n

Also fis continuous on [0, 1], therefore f'is bounded in [0, 1]. Let | f(x) < M for all x € [0, 1].
Then

‘f(X)—f(Ej <M+M=2M

n

<| /(x) \+‘ f(%j

oMy ot (1-x)T

k=0

cp Xt (l—x)n

Thn Y2 ‘ f(x)—f(%)

Ko,
2M n ing the I
RIS [using the lemma]
M
2nd’
Now let n >£2, then
€0
2 k n _k n—k €
> f)=fl |G- (3)

from (1), (2) and (3), we get
|f(x)-B,(x)|<e, forall x e]0, 1]
If we take p (x)=B,(x) forall xe[0,1],

then we get the result.
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Theorem 2. (Weierstrass) Let f be a continuous function defined on the closed interval
[a, D). Then for each € > 0, there is a polynomial p such that | f (x) —p (x) | < € for all x € [a, b].

Proof : If [a, b] =[O0, 1], then theorem holds good (We have just proved in the earlier theo-
rem). So let [a, b] # [0, 1].

Let g be a polynomial function an [0, 1], defined by

go)=flaty-a); yel0,1]
clearly g(0)=f(a) and g (1)=f(b).
Also since fis continuous an [a, b], therefore g is also continuous an [0, 1]. Thus by the previ-

ous theorem there exists a polynomial function ¢ such that for given € >0,

lg0)-qO|<e forall yefo,17 .. (1)
Now ifx € [a, b], then z‘“ e [0, 1].
So by taking y:x_ , we have
b—a
X—a x—a
gw) g(b_a) f(a — a))
=f(x)
Then from (1)
‘f(x)—q(z_aj <e forall x € [a, b]
—a
Nowdeﬁnjng p(x):q(z;aj’ we see

that p is a polynomial function for all x € [a, b]. Then above becomes
|[fx)—px)|<e forall x e |a,b].

4.3  Lebesgue integral of a bounded function

The definition of Lebesgue integral of bounded function almost same as that of the definition of
Riemann integral of functions, except that in Riemann integral we subdivide the closed interval [a, b] into
finite subintervals, where as for Lebesgue integral the subdivision of the interval [a, b] are in much more
general kind of measurable sets. Henry Lebesgue introduced a new concept of integral, called the
Lebesgue integral, based upon the theory of measurable sets and functions, which generalizes the theory
of Riemann integral. Unlike the Riemann integral, the Lebesgue integral proves several useful conver-

gence theorems.
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4.3.1 Partitions of a measurable set :

Let £ be a measurable set. Then a finite collection P = {E|, E,,..., E,,..., E, } of measurable

subsets of £, where

E=UE EnE=¢ forall ij=1,2...n(i#))
i=1 ’

is said to be a measurable partition of the set £. The subsets £}, E,...., E, are called the components of
the measurable partition P.

If P, and P, are any two different measurable partitions of the set £, then P, is said to be a
refinement of the measurable partition P; if every component of P, is contained in some component of
Py, that is, if the components of P, are obtained by breaking up the components of P,. We write as
P, cP,.

Now if {E}, E,,..., £, } and Q = {E"|, E%,..., E’, } are any two measurable partitions of the
same measurable set £, then the partition PQ, whose components are the sets £, N E }, where
i=1,2,..,m;j=1,2,. n,is called the common refinement of the partitions P and Q. Thus

PO={E.NE;i=1,2,.mj=1,2,..,n}

4.3.2 Upper and lower Lebesgue Darboux sums :

Let /" be a bounded measurable function defined on a measurable set E.
Let P={E}, Ey..., E}
be any measurable partition of £. We define,

U, p) =i M, -m(E,)
i=l1

and L(f,P)=i ml,.m(El,),where
i-1

M= sup {f (): x € E},
m;=inf {f(x); x € £}

and m (E;) = Lebesgue measure of ..

The sums U (f, P) and L (f, P) are called the upper and the lower Lebesgue Darboux sums

respectively, corresponding to the measurable partition P of E.
It is clear that L (f, P) < U (f, P), for every measurable partition P of E. Also
L(-f,P=-U(f,P)and U (-f, P)=—L (f, P).
Theorem 3. Let f be a bounded function defined on a measurable set E. If P and P’ are

two measurable partitions of E such that P’ is a refinement of P, then

@ LUPSLLP), @UFP)2U(fP’)
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Proof : Since P’is the refinement of P, therefore P — P’. We shall prove the theorem for the
case when P’is obtained from P by just partitioning one of the component £ ) of P into two disjoint
components £ ; and £ ’}. So if

P=1E, E,...., Ej,..., E,}

is any measurable partition of P, then
P'={E|,Ey,.., E', EV)p. E,}

is the refinement of P. '
Now, let Mj= sup {f (x);x € Ej},
M}Zsup {f(x):er;.},
and M’}=sup {f(x):er’;.}
Then clearly M ;SM] and M ’} SM/.
Also m(Ej)=m(E})+m(E’;.) (sinceE;.uE’}=EjandE}mE’}=¢)
Now U(}‘,P’)=Zn: M;-m(E)+M}; m(E})+ M| m(E})
i=1

i#]

i=1
i#j
= Z Mi m(El)
i=1
=U(, P
Therefore, we have
vegp=uve,eHy L (1
In a similar way, we can show that
L{P<L¢,PHy L 2

With the help of (1) and (2)
L(.P)<SL(f.P)<U(f, P )<U(f P).
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Theorem 4. The lower Lebesgue Darboux sums of any bounded measurable function f on
a measurable set E can not exceed its upper Lebegue sum, i.e., if P, and P, are any two measur-
able partitions of the measurable set E, then

@) L{f,P)SU(f, Py

i) L(f,P)<U(f, P

Proof : Let P ={E,E,. .. E}

and Py={E",E’,, . E}
be any two measurable partitions of the measurable set E.

Let P={E,NE%i=1,2,..,m j=1,2,.,n}.

Then P is a common refinement of P and P, and is a measurable partition of £. Therefore
using theorem 3,

L(LP)SL(LP)SU(P)SU(f, P))

and L(LPY<SL(LP)SU(f,P)SU(f, Py)

which implies that L, P)<U(f, P,)

and L(f,P)<U(f, P)).

From the above theorem, we observe that the family of all lower Lebesgue Darboux sums
L (f, P) corresponding to all the possible measurable partitions P of the measurable set £ is bounded
above by any upper Lebesgue Darboux sum U (f, P).

ie. U=sup. {L (f, P); P being a measurable partition of £} < U(f, P)

Similarly, we observe that the family of all upper Lebesgue Darboux sums U (f, P) correspond-
ing to all possible measurable partitions P of E is bounded below by any lower Lebesgue Darboux sum
L (f, P).i.e. V=mf. {U (f, P); P being a measurable partition of £} > L (f, P).

Thus, U is a lower bound for family of upper Lebesgue Darboux sums and V is an upper bound
for the family of lower Lebesgue Darboux sums. Consequently

L({,P)SULVSU(,P).
4.3.3 Upper and lower Lebesgue integrals :

Let /" be a bounded function defined on a measurable set £ = [a, b]. Then the infimum of all the
upper Lebesgue Darboux sums U (f, P) of the function f corresponding to all the possible measurable
partitions P of E is said to be the upper Lebegue integral of f over £ = [a, b] and is denoted by

b
LI f (x)dx. Thus

b
L J f(x)dx =inf {U (f, P); P being a measurable partition of £ = [a, b]}

83



Similarly, the supremum of all the lower Lebesgue Darboux sums L (f, P) of the function f cor-

responding to all the possible measurable partitions P is said to be lower Lebesgue integral of f over

b
E =[a, b] and is denoted by [, I f ( x)dx. Thus

b
L J‘ f(x)dx =sup {L (f, P); P being a measurable partition of E = [a, b]}.

a

Thus

b
i) L J. f(x)dx<U(f,P); for all measurable partitions P of [a, b]

b
(i) L _[ f(x)dx>L(f,P); forall measurable partitions P of [, b]

b b
(iii) Lj (—f)(x)dx=—Ljf(x)dx (since L (—f, P)=— U(f. P))

b b
() L[ (~f)(x)dx=—L] f(x)dx (since U(~f,P)=~L(f, P))

a
(v) For every given positive number €, there always exists a measurable partition P of the set

E =]a, b] such that
5
U(f.P)<L| f(x)dx+e

(vi) For every given positive number €, there always exists a measurable partition Q of [a, b]

such that

b
L#O) <L f(x)dr—e

4.3.4 Lebesgue integral :

Let / be a bounded function defined on [a, b]. We say that f'is Lebesgue integrable on [a, b] if

and only if

L_}f f(x)dx=Llj f(x)dx.

a
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The common value is said to be the Lebesgue integral or L-integral of the function f over [a, b]

b
and is denoted by j f (x)dx, Thus the bounded function f'on [a, b] is L-integrable over [a, D] if and

only if
LI f(x)dx:.[f(x)dszj f(x)dx

The class of all the bounded functions that are L-integrable over [a, b] is denoted by L [a, b].

In order that a function f defined on an interval is integrable (L-integrable) over that interval, we
must ensure that

(i) fis bounded and

(ii) the interval of integration is finite i.e. neither of the end points of the interval is infinite. If we

b
say that integral j f (x) dx does exist, then this always means that the function f'is bounded and is

integrable over [a, b].
It may also be observed that every bounded function may not be integrable over the interval

[a, b], i.e., there may be a bounded function f'on [a, b] for which

L_}f f(x)dx;tLi)f f(x)dx.

In the following theorem we shall derive necessary and sufficient condition for a bounded func-
tion f'on [a, b] to be L-integrable over [a, b].

Theorem 5. The necessary and sufficient condition for a bounded function f defined on
the interval [a, b], to be L-integrable over [a, b] is that given € > 0, there exists a measurable
partition P of [a, b] such that

U({,P)—L(f,P)<e.

Proof : Necessary condition : Let the bounded function f on [a, b] be L-integrable over

[a, b]. Then

b

L] f(x)dx :Llj f(x)ax L (1)

Now from the definitions of upper and lower Lebesgue integrals, for any arbitrary positive num-

ber €, there exist measurable partitions P; and P, of [a, b], such that
b S
U(t.P)<L| f(x)dx+E ..... 2)
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b
and L(f.P)>L | f(x)dx-§

b
or —L(f,Pz)<_LJ f(x)dx+§ ..... (3)

Let P be the common refinement of the measurable partitions P and P,. Thus P is a measur-
able partition of [a, b].

Then we know that U (f, P)< U (f, P,)

and L{f,P)= L(f,P,)

ie. ~L(f,P)<-L(f, P,)

Then (2) and (3) reduce to

3
U(f. P) <L_£ f(x)dx+§

b
and ~L(P) <-L] f(x)dx+§

Adding the above inequalities, we get

b b
U(f,P)—L(f, P) <LJ f(x)dx—f f(x)dx+e
or U({,P)-L(f,P)< e. [Using (1)]
Sufficient condition : Now let for any given € > 0, there exists a measurable partition P of
[a, b], such that

uif,Pp-L(f,Py<e L. 4)
From the definitions of upper and lower Lebesgue integrals, we know that

b

Lf f(x)dx<U(f.P)

a

b
and LJ f(x)dx=L(f,P)

7 b
ie. L[ f(x)dx<-L(f.P)

Adding these two inequalities

b

b
L{ f(x)dx=L| f(x)dx<U(f,P)=L(f,P)<e [using (4)]
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or L]Z f(x)de<L] f(x)dr+e

b b
or L j f(x)dx< Lj f(x)dx  (since € is arbitrary) .. )
b b
But Lf f(x)ac=f f(x)ax (6)
From (5) and (6)

i.e., [ is Lebesgue integrable over [a, b].
4.3.5 Basic properties of Lebesgue integrals :

In this subsection, we shall show the role played by the measurable functions defined on mea-
surable sets in Lebesgue theory of integration.

Theorem 6. Every bounded measurable function f defined on a measurable set E is L-
integrable over E.

Proof : Since fis bounded on the measurable set E, therefore, there exist numbers £ and K
such that

k<fx)<K forallxeE.
We divide the interval [, K] by means of finite number of points oy, o...., &, such that

k< oy <oy <.<o, =K

and let d=max {a,—o,_q}; [=1,2,.,n
Also define E={xeE:o_|<f(x)<o; i=1,2,.,n}
then each £ is measurable for i = 1, 2,..., n. Also E’; are pairwise disjoint.
Thus P={E,E,,.,E,} isameasurable partition of £.
Let M =sup {f(x):xek;};, i=1,2,..,n
and m=inf{f(x):xeE};, i=1,2,.,n
Then, M, <o, and m;2a, ; forall i=1,2,.,n
Now U(f,P)y=Y, M;m(E)<D> o, m(E;)

i=1 i=1

n n
and L(}‘,P)=Z mim(Ei)ZZ oy m(E;)

i=1 i=1
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Then, U(f,P)—L(f,P)Si (o, =0, y) m(E;)
i-1

N

i=1

[Since E; s are pairwise disjoint subsets of E, therefore, m(E) = z m(E;)]

U(f,P)—L(f,P)<& m(E).

For arbitrary positive number €, taking § < (E , the above reduces to
m(E

Hence

U(f.P)-L(f,P)<e.

This proves that f'is L-integrable over E.
Theorem 7. (First mean value theorem) Let f be a bounded measurable function such

that a < f(x) < b on a measurable set E. Then
a-m(E)S J.F(x)dxﬁb‘m(E).
E

Proof : Since a <f(x) < b for all x € E therefore, for some m € N,

a<f(x)<bh :{a—%}<f(x)<(b+%)

Let o =0¢—l and B=b+l, then
m m
a<f(x)<p forall xekFE.
We divide the closed interval [a, ] by means of points 2, ..., A, , such that
a=Xry<A; <A,<.<A, =P and define

E={xeE: 0 <fM) <k ;k=0,1,2.,n-1}

n—1

Evidently E = U E, andE;N Ej= ¢ foralli=j; i,j=0,1,2,.,n-1
k=0

Also since f'is measurable on E, therefore each £,; k=0, 1, 2..., n — 1 is measurable and so
n—1
m@E=> m(E) (1)
k=0

Thus P {E, E|,..., E, |} is a measurable partition of .

Now as<i <B; £=0,1,2,.,n
= o-m(Ey )<k, m(E,)<B-m(Ey)
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= am(E)<Y, hm(E )<Y, Bom(Ey)
k=0 k=0 k=0
n—1 n-l1 n—l1
= (lz m(E,)< kkm(Ek)SBz m(E,)
k=0 k=0 k=0
n—1
= oc-m(E)S kkm(Ek)SB m(E) [from (1)]

0
Now making max (A,  —A,) — 0, we get A, . | — .. Hence for this partition P,

n—1

U, P) —/;) Do -m(Ey 1;) Ay -m(E)=L(f,P)
ie. U(f,P)=L(f, P)
e, ] /() z m(E,)
Thus (2) is _

oum(E)ij(x)

or (a——j j f(x

When m — oo, the above reduces to

am(E)<Jf

dx <f3-

m(E)

dx<( ;)m(E)

dx<b- m( )

Self-learning exercise-1

. IfP={E,, E,,..., E, } is a measurable partition of the measurable set £, then it is necessary that

i E,=FE and ....... .

i=1

. If P, and P, are any two measurable partitions of the measurable set £, then P, is said to be a

refinement P, if ....... )

. If f is a measurable function on the measurable set £. Then U (f, P) and L (f, P) can be

defined only when ....... .

. If P and Q are the measurable partitions of the measurable set £ such that Q is the refinement of

P, then L (f, P) is always ....... L (f, Q)and U (f, P) is always ....... U(f, 0.

. If f is abounded function on the measurable set £. Then for all measurable partitions P of E,

SL;p{L( S P)}.inf{U(f,P)}.
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6. If upper and lower Lebesgue integrals are defined for the bounded function f on [a, b], then

Li)[ (—f)(x)dxz ....... .

7. If fis a bounded and measurable function defined on a measurable set £, then ....... .

4.4  Lebesgue integral of bounded functions over a subset of measurable set

In this section, we shall prove some theorems related to the Lebesgue integrals of bounded func-
tions, over a subset of real numbers.
Theorem 8. Let A and B be any two disjoint measurable subsets of the measurable set E

and let f be a bounded measurable function (L-integrable) on E. Then
j f(x)dx :j f(x)dx+J f(x)dx
E 4 B

Proof : Since 4 and B are disjoint measurable subsets of £, therefore,
E=4UB and ANnB=¢.
Let P={E|, E,,..., E,} be any measurable partition of £ and suppose that
E'=E, N4, i=1,2,..,n
E"={E'nB;, i=12,..n
Then P%={E"; i=1,2,.,n}
and P’"={E" i=1,2,.,n}
are measurable partitions of 4 and B respectively. Therefore
LKPY <[, f(x)ax<U(f.P)
and L¢Py <[ f(x)dx<U(/,P")

Let P*=P’U P”. Then P" is a measurable partition of £ and is a refinement of P. Thus
L(,PY=L(f,P")+L(f,P")

and U(f,PY=U({,P)+U(f.P")

Thus, L(f,P)=L(f,P)+L(f,P")< ,[ f(x dx+j f(x
<U(/.P)+U(/.P")= (f»P*)

or LGPy f(x)de+ [ f(x)ae<U(f,P)

But since P is a refinement of P, therefore,
L(f,P)<L(f,P") and U(f,P)2U(f. P

Thus above becomes
Lp <[, f(x)de+]| f(x)ax<U(r,P) L (1)
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Also Lp<|, f(x)a<U(rP) L )
From (1) and (2), we have

IE f(x)dx =JA f(x)dx+IB f(x)dx.
Theorem 9. If E is the finite union of pairwise disjoint measurable sets E|, E,,..., E,,

(le, E=E  VE,U..UE and E; U Ej =dforalli#jandi, j=1,2,.,n)and if fis a

bounded measurable function defined on the measurable set E, then

_[ f(x)abc=§1 f(x)dx.

Proof : We shall prove the theorem using the principle of mathematical induction. We know that

when £ = E| U E,, then

[ f(x)axc=[ f(x)dx+ | f(x)ax L 1)

Thus the theorem holds for » = 2.

Let the theorem holds true when £ = E; U E, U..U E, . Then we have

n—1
[reyax L ?)

i=1 E;

[ f(x)dx =
Then for £ = E, U E, U...U E,,, have,
E :(q E,}UE,,
This implies that _
O G A fusing (1)

i
i=1

-1

= -[E, f(x)dx+J.En f(x)dx [using (2)]

i

BN

Il
—_

Il
.Ms

Il
—_

.[E,, f(x)dx.

Hence the theorem holds true when £ = E; U E, U..UE,, ie.

1

IEf(x) dx =§ ‘[Eif(x)dx.

Theorem 10. (Countable additivity of integrals) let f be a bounded measurable function
defined on a measurable set E and E be the union of countable family {E;; i € N} of pairwise

disjoint measurable sets. Then
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jEf(x)dx =§: jE f(x)dx.

Proof : We are given that, the measurable set £ is the union of countable family {£; i € N} of

pairwise disjoint measurable sets, i.e.,

E =

st

Il
—_

E; E,NE;=¢ forall i»j and ijeN.

1

E can be expressed as

i=1 j=n+1

{papo

n
or E=\]JE+R,,
i=1
where R,, = U E;
i=n+1
Then IE f(x)dx = J UE,. f( x)dx+-[Rn+1 f(x)dx (using theorem 8)
i=1

:lZ;: _[Eif(x)defJ‘R f(x)dx (using theorem 9) .....(1)

n+l

Now £ is bounded on E, therefore let there exist numbers a and 8 such that
a<f(x)<PB forall xeR ..

Applying the first mean value theorem,

o-m®R,.) <[ SEd<peom(Rey) )
But R, .= U E;, therefore,
i=n+1

m(Rn+1)=m{D Ei’]= i m(E;) (- E,NE;=¢ foralli=))

i=n+1 i=n+l

Taking the limits on both sides when n — oo

() =l 32 ()0

n—o n—w| .
- i=n+l
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[Since Y m(E;)=m(E), therefore the series ), m(E;) is a convergent series and since
=) i=1

o0
m(R,,)= Y. m(E;) is the remainder of the convergent series after n terms, therefore
i=n+1

lim[ i m(Ei)J is 0]

n o0 .
- i=n+l1

Thus limm(R,)=0 3)

n—x0

Now taking 7 — oo in (2) and using (3)

a-0<lim[ f(x)dx<p-0

n—0 Y44,

or lim JR f(x)dx=0 &)

n—0

Now taking n — oo in (1)

3 [ £ (<)des lim [, f ()

=2 |, f(x)dr+0 (using (4))

Hence jEf(x)dx = i '[Elf(x)dx.

4.5 Algebra of Lebesgue integrable functions

Theorem 11. Let f and g be two bounded measurable functions defined on a measurable
set E. Then
(i) for any arbitrary number k € R, the function k f'is L-integrable over E and

jE(k f)(x)dx = kjEf(x) dx
(ii) f+ g are L-integrable over E and
JE(fig)(x)dx = JEf(x)dinEg(x)dx
Proof : (i) Let k € R be any arbitrary number.
Case 1 When &k =0. In this case the theorem obviously holds true.

Case 2 When k > 0. Since f'is bounded and measurable on E, therefore f'is L-integrable over

E. Thus there exists a measurable partition P of £ such that for given € >0
U(f,P)—L(f,P)<% ..... (1)
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Now £k > 0, therefore (kf) (x) =k f(x)
Thus Ukf,P)=kU(f, P)
and L(kf,P)=kL(f, P)

Then U (kf,P)—L(kf,P)=k[U(f,P)—L(f,P)] <k%:e [using (1)]
or Ukf,P)—L(kf,P)< e
= kfis L-integrable over E, if k> 0.

Case 3 When £ <0. Let £ =— p, where p > 0. Then since f'is bounded and measurable on E,

therefore there exists a measurable partition P of E such that

U(f,P)—L(f,P)<§ ..... )
Now Ukf,P)=U(pf,P)=-pL(f,p)
and Lkf,P)=L(pf,P)=-pU(f,p)
therefore, Ukf,P)-L(kf,P)=—pI[L(f,p)—U(f, P)]
=p[U(p)~L(f; P)] <p-§ [using (2)]
=€
or U (kf, P) — L (kf, P) < €

= kfis L-integrable over E, if k <O0.
Hence for every k € R,
k fis L-integrable over E.

It remains to be shown that

IE(kf)(x)dx :k_[Ef(x)dx.
If £ = 0, then obviously
jE(kf)(x)dx =kjEf(x)dx
If £> 0, then
jE(k £)(x)dx =81113p{L(k f.P)}

=ksup{L(/.P)}

=k[_f(x)dx
and if £ <0, then
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[ (k) (x)dx =Sl;p{L(k f.P)}
=kinf {U(/,P)}

k[ f(x)dx
Thus, for every k € R,

J (k1) (x)dx =k[ f(x)dx
(ii) Since the function f'and g are bounded and measurable on the measurable set £, therefore
the function f g are also bounded and measurable on E. Consequently f + g are L-integrable over E.
Now let P= {E|, Ej,...., E, } be any measurable partition of £ and
M =sup {(f+g)(x);xeE. ;r=1,2,.,n}
M’ =sup {f(x);x ek, ;r=1,2,..,n}
M” =sup {gx);x ek ;r=1,2,..,n}
m.=mf {(f+g)(x);xek, ;r=12,..,n}
m’ =inf{f(x);x e E. ;r=1,2,.,n}

m” =mnfi{gx);xek, ;r=1,2,.,n}

Then SO +g)<M’' +M”, forallxek,
= (ftx)(x)<M’" +M” forallx e E,
= M<M +M” L (3)
Similarty m.2m’' +m” L 4)
Now fand g are bounded and measurable on E, therefore, f, g and f + g are L-integrable over
E and so
L(ﬁP)sjEf(x)deU(f,P) ----- %)
LgP <[ g(x)ax<U(g.,P) . (6)
and L(f+g,P)SJE(f+g)(x)dx3U(f+g,P) ..... (7)
From (5) and (6)
L(f,P)+L(gP) S_[Ef(x)dx+IEg(x)deU(f,P)+U(g,P) ..... (8)
Also U(f+g.P) =Y M,m(E )<Y (M.+M])m(E,) [from (3)]

r=l1 r=1

n
M!m(E,)+Y. M!m(E,)
1 r=I1

Il
M:

=U(,P)+U(g P
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Thus uf+g PHUu¢,p+uvegpr L 9
Similarly, we can show that

L(f+g P2L(,P+L(gP L. (10)
In view of (9) and (10), inequality (7) becomes
L(f,p)+L(g,P)sjE(f+g)(x)dxSU(f,P)+U(g,P) ..... (11)
from (8) and (11)
JE(f+g)(X)dx =_[ f(x)dx+j g(xyax L. (12)
Now [ (/-g)(x)ds =] (f+(-g)(x)ds
=[ (D)) (x)ax
_J f(x dx+IE( [from (12)]
—_[ f X dx+( IJ ( ) [ from result ()]
—J- f x dx IEg ..... (13)
From (12) and (13) we get

IE(fJ_rg)(x)dx =JEf dx+j dx
Theorem 12. If fis a bounded measurable function defined on a measurable set E, then

| f| is L-integrable over E and
I,/ (e < [ |1 () ax

Proof : Since f'is bounded and measurable on the measurable set E, therefore, | /| is also

bounded and measurable on E, and so | /| is L-integrable over E.

Now, let Ei={xeE;f(x)=0}
and Ey={xeE;f(x)<0}
Then E,VE,=E andE;,NE,=¢.
Thus by countable additivity of integrals
[ 7(x)]ax :jE]\ f(x)\dx+jEz\ fEy|ae L (1)
and IE f(x)dx :JEI f(x)dx+IE2f(x)dx

=IE1 ‘f(x) ‘dx—J.Ez‘ f(x) ‘dx

= o) | | [ )= [ | 700
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x)‘dx + x)‘dx

=J.El‘ f(x) ‘dx+_|.E2‘ f(x) ‘dx
=[| £ (x)]ax (from (1)

Hence ‘ IEf(x)dx ‘ SJE‘ f(x) ‘dx.

Problem 1. Let f be a constant function on a measurable set E, where f (x) = c for all

x € E. Then prove that

If(x)dxzc-m(E)

E
Sol. Here f(x)=cforallx € E,

therefore c<f(x)<cforallx e £

= c-m(E)< J f dx<c-m (E ) (by first mean value theorem)
= j f(x)dx =c-m(E).

Problem 2. If f'is a bounded function defined on a measurable set E, and m (E) = 0. Then
show that

Jf de

Sol. Since fis bounded on E, therefore, there exist real numbers a and b such that
alf(x)<bforallx e E

= a-m(E)gj f(x)dx<b-m(E) (by first mean value theorem)
E

= a-OSJf(x)deb-O

= J‘f dx—

Problem 3. Let f and g be bounded measurable functions on a measurable set E and f = g

a.e. on E. Then show that

If(x)dx =J g(x)dx

E E
Sol. Let E={xeE:f(x)=g(x)}
and E,={xeE:f(x)#g(x)}
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then m(E))=0,E, VE,=Eand E, N E, = ¢.

Therefore, I f(x)dx =0and I g(x)dx=0. (problem 2)
E, E,

Also since f(x) =g(x)forallx € £,

therefore, I f(x)dx = J g(x)dx.
El El

Thus J f(x)dx+j f(x)dx = g(x)dx+f g(x)dx

El E2 El Ez

or, J £(x)dr =] g(x)ax (by countable additivity)

E E

Problem 4. Show by an example that the lebesgue integral of a nowhere zero function can
be zero.
Sol. Let f: O — R be the function where f'(x) = 1 for allx € Q. Then f'is nowhere zero. Also

since Q is the set of rational numbers, so a countable set. Therefore m (Q) = 0.

Now 1<f(x)<1,forallx e O

= L-m(Q) <[ f(x)dx<1-m(Q)
0

= 0<| f(x)dx<0
0

= jf(x)deO.
0

Problem 5. Let f be a bounded measurable function on a measurable set E and f (x) > 0

a.e. onE. Ifj f(x)dx =0, then show f(x) =0, a.e. on E.
E

Sol. Let Ey={xeE:f(x)=0;}

M M
and E, = E;—< <=
k {xe k+1 f(x) k}

for all £ € N, where in is a positive number such that /' (x) < M for allx € E.
Then E=UEk;EimEj:(|) foralli=j:i,je N.
k=0
Obviously, for every k € N, the set £, is a measurable set, since fis measurable

on £ and Ek={xeE;f(x)S%}m{er:f(x)>%}

is the intersection of two measurable sets.
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Now E-E,=|JE,

Since, %<f(x)f0rallx €E :keN
+

therefore, by first mean value theorem

—mEk Jf dx<z_[f(x)dx

k+1 0,
=Jf(x)dx
E
=0 (given)
M
Thus ——m(E,)<0 forallke N
k+1

Bt M >0 andm(E)>0 forallkeN
k+1
therefore, —-m(E,) 20

M
From (2) and (3) we get —— il m(E;) =0

or m (E;)=0, forallk e N
or, i m(E,) =

k=1
Thus form (1) m(E—-Ey)=0
Now fx)=0 forallx € E,
therefore f(x)=0 ae onk.

Problem 6. If the function f'is L-integrable over the measurable set E and if f (x) > 0 a.e.

on E, then show that _[ f(x)dx=0.

Sol. We can always assume that f'(x) > 0 for all x € E. Then clearly for every measurable

partition P of E, we have U (f, P) >0

Thus L[ f(x)dx=infU{f.P}2
E
or J.f(x)deO.
E
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Problem 7. If the function f and g are Lebesgue integrable over the measurable set E and

if f(x) <g(x)a.e. onkE, then

_[f(x)dx Sjg(x)dx

E E
Sol. Since f is L-integrable over E,
therefore, — f'is L-integrable over E.

Also g is L-integrable over E. Consequently

g+(f) ie. g—f is L-integrable over E.
Now f(x)<g ) a.e.on E
= gx)—-f(x)=0 a.e. on E

Thus using the result of problem (6), we have

I(g—f)(x)deO

or I[g(x)—f(x)]dxzo
or jg(x)dx—jf(x)dxzo
or J-f(x)dxsjg(x)dx.

Self-learning exercise-2

. If fand g are bounded measurable functions on £ of finite measure, then f=g  a.e. on

EF= ...

ff(x)=k ae onE, thenjf(x)dx:
E

.Iff(x)=1 a.e onk, thenjf(x)dx:
E

Iff<8 ae onkE,then... .

. Let / be a nonnegative measurable function defined on the measurable set £. Then /= 0

a.e.onE, ifand only if ... .

. Let f'be L-integrable over the measurable set £, then a ﬂ f(x)]dx=0= ...
E

4.6

Limits of the sequences under the sign of integral

In this section we shall study the nature of sequences of bounded and measurable functions de-

fined on a measurable set of finite measure.
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Theorem 13. (Lebesgue bounded convergence theorem) Let < f,> be a sequence of
bounded measurable functions defined on a set E of finite measure. If there exists a positive num-
ber M such that | f, (x) | <M for all n € N and for all x € E and if < f, > converges in measure to

a bounded measurable function f on E, then
lim an (x)dx= If(x)dx.
n—>»0
E E

Proof. Since v n € N, f, is bounded and measurable on £ and therefore integrable on £. By

hypothesis, v 6> 0
lim [m({er:\ fn(x)—f(x)‘ZS})}=0 ..... 1)

n—»©
Also <f, > is the sequence of bounded measurable functions on £ such that | f, (x) | < M for
alln e Nand for allx € E,
therefore, we have [f(x)|<M  forallx e E

i.e.  fisabounded measurable function on £ and so is integrable over E. Now for ¢ >0

let, E=xek:|f,(x)-f(x)]|>c}
and Ey={xeE:|f,00—/()| <o}
Then E=E, U E andE, N E, =¢

Also since <f, > is not convergent in £,

therefore, by definition of convergence in measure, we have

31_r>r010m(En)= o 2)
Applying the countable additivity of integrals, we have
H fn(x)—f(x) ‘dx= H fn(x)—f(x) ‘dx+_[ ‘ fn(x)—f(x) ‘dx
E E, £,
Also forallxe g, L 3)
| f,, @) —f(x) | < o, therefore by first mean value theorem
“fn(x)—f(x)‘dx<c-m(E,;)SG-m(E) (since E|, < E)
E,
Thus [[5,()-r()|dc<omE) (4)
E,
Now for € >0, we choose & in such a way that ¢ - m (E) < % Then (4) reduces to
€
;‘ﬂ(x)_f(x)‘dx<5 ..... (5)

Again [, @ =S [<[f, @) [+ fx) | <M+ M, forallx e E
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therefore, |f, X)—=f(x)|<2M, forallx € E
Thus applying first mean value theorem

I fn(x)—fn(x)‘deZM~m(En) """ (6)

£,

But from (2), for given € > 0, there exists a positive integer 7, such that

‘ m(E,)—0 ‘<ﬁf0ralln2no

or m(En)<%

Thus (6) reduces to

J

E,

n

or J
E

n

Using (5) and (7) in (3), we get

J

E

fo () =1 () [de < 200 =

fn(X)—f(X)\dKS ..... %

fo(x)=1(x) ‘dx<§+§:e, for all n > n,,

Thus I[fn(x)—f(x)]dx S}JL; fn(x)—f(x)‘dx<e, foralln > n,

E

= J[ﬁq(x)—f(x)]dx <g,  foralln>n,
E

n—»o0

N lim {j[fn(x)—f(x)]dx}o
- llgrgojﬁl(x)dx—jf(x)dx:O

lim jfn (x)dx :If(x)dx.

or n—»o0

Theorem 14. (Lebesgue dominated convergence theorem) Ler < f > be a sequence of
measurable functions defined on a measurable set E, such that | f, (x) | <y (x) for all x € E and
for all n € N, where y (x) is an integrable function over E. If <, > converges in measure to the

measurable function f on E, then

lim an (x)dx = If(x)dx.
" E
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Proof. Since | f, (x) <y (x) for all x € E and for all n € N, therefore it is clear that f, is
bounded foralln e N, i.e, < fn > is a sequence of bounded measurable functions on £ and so each fn
is integrable over E.

Again < f, > converges in measure to the measurable function f on E, therefore for every &> 0,

lim[m({er:‘fn(x)—f(x)‘ZS})}:O ....... ()

n—0
Now < f > is a sequence of integrable functions over £ that converges in measure to the
function f'on E, therefore fis also integrable over E. Hence f, — fis integrable over E, for alln € N.
Now for any arbitrary number 6 > 0, let
E ={xekE:|f,(x)-f(x)|2c}and
Ey={xeE:|f,(0)-/()| <o}
Thenit is clear that, lim m(£,)=0 ()

n—>®0
and E=E O E, ;E NE =¢
Thus using the countable additive property of integrals we get

J1 £, ()= 7 (x)|dx =[] £, (x)= £ () ‘dx+“ )= (x)|dx (3)

E E

n n

Now for allx € E;

[ ) —f(¥) | <o

therefore, [ £, (x)= 1 (x)|dx<o-m(E}) <o m(E)
i,
Thus yﬁ,(x)—f(x)‘dx<cs~m(E).
If we choose € > 0 such that & - m (E) < § then above reduces to
yﬁ,(X)—f(X)\dK% ..... 4)

Now [f (x)|<wy (x) forall xe E and n € N and by hypothesis

tim | m({xe£:|,(x)=/ (x)| 2o }) | =0
therefore | /()| <y (), forallx € E
Thus £ ) =F ) <[/, [+ <y )Ty (x)=2y (), forallx e £
or, f, (@) —f(x) | <2y (x), forallx € E.
or JM(X)-/”(X)\GJW(X)OIX """ )
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But |f, ) [ <y (x), forallx e Eandn e N

therefore, y((x)>0forallx e £
or j y(x)dx=0
Ef’l
So J\V(x)dx = j\y(x)dx
E E,
Thus from (5)
JIL)=r(x)|av<2] Jw(x)a| (6)
E, E,
Now from (2)

lim [m )] = 0 implies that for A > 0, there exists a positive integer 7, such that

n—»0
|m(E,)—0[<A foralln > n
or m(E,) <\ foralln>n,

Now using the theorem of absolute continuity, we can write

I dx <—
E,

Then from (6)
[14,(x)-7(x) \dx<§ forall n2n, .. )
Eﬂ

Now using (4) and (7) in (3)
I fn(x)—f(x)‘dx<i+ize ;foralln>n,
) 22

or I fo(x)=f(x)|dx<e ;foralln>n,
E

Thus I [fn (x)=/(x) x)‘dx <e
E

or _[ [fn (x)—f(x)]dx <e foralln>n,
E

n—
E

N 1im[j [fn(x)—f(x)]dx}:()
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N lim [ £ (x)dx=[ f(x)ax |=0
E
- gig}oj S (x)dx = f(x)dx.
E E
Theorem 15. Let < f,> be a sequence of measurable functions defined on a measurable
set E, and lim f, (x) =f(x) a.e onkE.
n—>0

Then f'is measurable on E.

Proof. Let B= {x € E; f, (x) # f (x)}. Then by hypothesis, m (B) =0  (since f, > f a.e.)

We define g, (x) = fn(x), ifxeB
0, if xeB
if x¢ B

and g (x) = f(x), it x¢
0, if xeB

Then g, is a measurable function for alln € N.
Also for allx € B, }}1_1)1010gn (x)=0=g(x)and for all x ¢ B,
lim g, (x) = lim f, (x) = / (x) = & (x)

Therefore, < g, > converges point-wise to g on .

Now since each g, is measurable (n € N), therefore, the limit function g is also measurable.
Consequently / is measurable on E.

Problem 8. Let <f, > be a sequence of functions, integrable over the measurable set E,
which converges in mean to a function f on E. Then < f, > converges in measure to the function f.

Sol. Let E={xekE; f,(x)—f(x)]|=0}

where 0 is any arbitrary positive real number. Then

” fn(x)—f(x) ‘deSm(En)

or, §-m(E,) s_ﬂ fo ()= f (x) |dx (wE,cE) .. (1)
E
Also < f, > converges in mean to f, so
lim [ f,(x)= /(&) |ax=0 e 2)
E

Thus from (1)
lim [8-m(E,)]|<0

n—»0
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or lim [8-m(E,)]=0 (- 3>0)

n—»o0

or lim[m(E,)]=0

n—»0

Hence < f, > converges to f'in measure.
Problem 9. Use Lebesgue dominated convergence theorem for the sequence < f, > of

32
measurable functions on [0, 1], where f, (x) = ﬁ forallx € [0, 1]and n € N.
+n°x

3/2 32
Sol. Here, [, ()=—"> L

1+n’x?  x 1+n°x>

1

X

Therefore, £, (x) <y (x), where y (x)= 1 is Lebesgue integrable over [0, 1].
X

Hence by Lebesgue dominated convergence theorem

n—o L n—>0

lim jf,,(x)dx =_1[ [ im /s (x)} dx

1 3/2
:j 1111’1’/1—2)62 dx
o (e l+ntx

1
=[0dx=0
0
1 3/2x
lim dx =0.
Thus n—>o0 ;‘; 1+n’x?
4.7  Summary

In the beginning of the unit we studied about Weirstrass approximation theorem. With the
introduction of upper and lower Lebesgue Darboux sums and then defining upper and lower Lebesgue
integrals, we could define the Lebesgue integral of a bounded function over a measurable set. We also
studied the basic properties of Lebesgue integrals and algebra of Lebesgue integrable functions over a
measurable set E. Finally we were introduced with the Lebesgue bounded convergence and Lebesgue

dominated convergence theorems for sequences of measurable functions on the measurable set.

4.8 Answers to self-learning exercises

Exercise 1

1. Eir\Ej=¢f0ralli¢j.
2. Every component of P, is contained in some component of P,.

3. f is bounded on E.
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<G> 5. <
b
. —L J £ (x)dnx. 7. fis Lebesgue integrable over E.
Exercise 2

. jf(x)dx=jg(x)dx. 2. k-m(E)

E E
. m (E) 4. Jf(x)dxﬁjg(x)dx.

E E

. _[f(x)dx=0 6. /=0 a.e.onkE.

E

4.9

Exercises

. If f'is a bounded measurable function on [a, b] such that f(x) >0 a.e. on [a, b] and if E and F

are measurable subsets of [a, b] such that E — F, then prove that J f (x ) dx < _[ S (x ) dx
E F

. If f'is a nonnegative measurable function on a measurable set £ such thatJ. f dx 0,

E
then prove that /=0 a.e. on E.

. If " is bounded measurable function on [a, b] and if £ and E,, are disjoint measurable subsets

of[a, b], then prove that If dx J f dX + I f

. If E is a measurable subset of [a, b] and f, g are bounded Lebesgue integrable functions on

[a, b] such that f=g a.e. on E, then prove that Jf(x)dx = jf(x) dx
E F

. If £ is the union of a countable family {£;} of pairwise disjoint measurable sets and if/ is Lebesgue

integrable over E, then prove that

jf dx = i If(x)dx.

i=1

. Let <f, >be a Cauchy sequence of functions integrable (in Lebesgue sense) over a measurable

set E of finite measurable, and let ./ (x ) = r}l_f)lc}o I (x ) for allx € E. Then prove that /" is Lebesgue

integrable over £ and

hm_Hf (x)‘dsz.

n—0

oo
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Unit S : Summable Functions, Space of Square
Summable Functions

Structure of the Unit

5.0 Objectives

5.1 Introduction

5.2 Summable functions
5.2.1 The Lebesgue integral of non-negative unbounded functions
5.2.2 The lebesgue integral of arbitrary functions
5.2.3 Absolutely equi-continuous integrals

5.3 The space L, of square summable functions

5.4 Summary

5.5 Answers to self-learning exercises

5.6 Exercises

5.0 Objectives

In this unit, we shall generalize the definition of Lebesgue integral to include unfounded measur-
able function and domain can have infinite measure .Those functions, whose Lebesgue integral is a
finite real number are known as, summable functions. To generalize the definition of Lebesgue integral,
we first study integral of a nonnegative unbounded function then we consider functions of arbitrary sign.
Next , we introduce the concept of square summable functions , and establish that space of square

summable functions is a normal linear space and complete space.

5.1 Introduction

In this unit, we will first define the integral of a nonnegative unbounded measurable functions.
Then, in next part, we will define integral of arbitrary measurable functions i.e. those functions, which
can be written as the difference of two nonnegative valued measurable functions. Next we will study the
passage of limit under sign of integration. In the end of unit , we will define square summable function

and prove that space of square summable functions is Banach space.

5.2 Summable functions

5.2.1 The Lebesgue integral of non-negative unbounded functions :
Given any non-negative unbounded function f'on a set £, we will convert it into abounded

function according to the following definition. Let f be a measurable and non-negative function on a
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measurable set £ and let n € N. Define the function [/ (x)], on £ by

S if 0 f(x)<n
A {n if f(x)>n

ie. [f(0)],=min [f(x),n] vx € E,

From the definition it is clean that [ /], <[f], < ..... and for each n € N, [f (x)], is a bounded

function. Also we have ,}fc}o [/ ()], =/ (x)and [ /], is measurable therefore it is Lebesgue integrable

onk.

Let / be a non-negative and measurable function defined on a measurable set £. The Limiting

value (finite or infinite ) 11_1)11 IE [/ (x)], dx is called the Lebesgue integral of the function f on the
n o0

set £ and is denoted by the symbol If(x)dx .Thusj S (x)dx = lim ” f(x)],Z dx. Further if
% E n—ew o
lim I [ f (x)]n dx exists, then we say that f* is Lebesgue integrable or summable on the set E. If
n—0
E

b
E =1a, b], then we use notation j f(x) dx.

a
Most of the results of the Lebesgue integral for arbitrary measurable function can be easily prove
by the use of corresponding results for bounded measurable functions. The new definition for integral of
a non-negative function f coincides with the definition given for bounded measurable function earlier be-
cause for sufficiently large n we have [f (x)], =/ (x).
Thus every bounded measurable non-negative functions is summable. It is clear that if a function

is summable of the set £, it is also summable on every subset of E. Further if m ( £') = 0, every measur-

able function defined on £ is summable and I f(x) dx =0.Now we discuss other properties
E

Theorem 1. If a function is summable on E, then it is finite almost every where on E .
Proof. Let / be a summable function on the set £, we have to prove that f'(x) <o a.e. on E.

Let E| = {x € E | f (x) = o}, then [/ (x)], = n,v x € E|. Now we know that is 4 — B then

I f(x)dx< I f(x) dx, so using this property, we get
4 B

E

I [/(x0)], dx> I [f ()], dx.

Onset E|, f(x) =, s0 [f(x)], = n, we get from (1)

I [f(x)]n dx > I ndx =nm(E))

E E,
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Here we have to show that m (E) = 0. Let of possible m (£/,) > 0, then

lim [ [£(x)],dx> lim nm(E) = oo
X—>0 E X—>0

= If(x)dx:oo,
E

which contradicts the fact that /'is summable on £. Hence m (E) is not greater than zero
= m(E))=0.
Thus fis finite a.e. on E.

Theorem 2. Let f be a non-negative measurable function defined on a measurable set E.

IfJ' f(x)dx =0, thenf(x)=0a.e.onE.
E

Proof. By hypothesis for anyn € N

[feyac=[[ fx)],dc=0
E E

But [r@ax=0, sof [f()], dx=0,
E E

therefor by theorem for bounded measurable function [ /'(x)], =0 a.e. on £ .

Let Elzfj {er|[f(x)]n¢0}, then m (£,)=0.

n=l1

Since M [£(1)],=f(¥)y x € E and [f(x)],=0 a.e. on E, therefore f (x) = 0 for

x € E~E|. Sincem (E,) =0, so we have f(x) =0 a.e. on E.

Theorem 3. Let f and g be two non-negative measurable functions on a measurable set E.

() Iff=ga.e. onE, then I f(x)dx :I g(x) dx
E E

(@) Iff<ga.e onE, then I f(x)dx < I g(x) dx.
E E

Proof. (i) Since f'(x) = g (x) a.e. on E, therefore for eachn € N, [ f(x)], = [g (x)], a.e. on E

and [f],,, [g], are bounded functions, so by theorem for bounded measurable functions, we have

[ @), de=] [g@)], dx

E E

Taking Limit n — oo, to both side, we get

lim [ [f(x)],dx=lim | [g(x)], dx
n—)OOE n—>0 o
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= | feydv= [ g(xax
E E

(ii) Since f (x) < g (x) a.e. on E, therefore for eachn € N, [f ()], < [g (x)], a.e. on E. Then

by theorem for bounded measurable function, we have

[ @), dv<[[e@], dx

E

Taking Limit n — oo, we obtain I S(x)dx < I g(x) dx.
E E

Theorem 4. If f (x) and g (x) be two non-negative measurable functions on the set E. If
h () = () + g (), then
[ hydc= | f)de+ [ g(x)dx.
E E

E

Proof. Here /1 (x) =f(x) + g (x) v x € E, so for any n € N we have
[A )], <[], +[g ], <[h 0]y,

N [[h], ax < [ ([f],+[g@)],) dx

E E

=[, U@t [ g @)],dx
(using theorem for bounded measurable functions)
< jE[h (x)]2ndx

Taking Limit n — oo, we have

lim [, thGdx < tim [ [f(),]dv+ lim [ [g(x)], dv
< lim jE [h(x)]5,, dx
N jE h(x)dxsjE f(x)dx+jE g (x) dxsjE h (x) dx

N jE h(x)dx:jE f(x)dx+jE g (x) dx

N jE (f+h)xdx=jE f(x)dx+ng(x)dx.

Corollary . If f, /5, ..., f, are non-negative measurable functions defined on E, then
n n
[, fids = Y fix)dx
i=1 i=1
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Proof. On generalisation of above Theorem 4 for # function » functions we get the result.
Theorem 5. If fis a non-negative measurable function on a measurable set E and 1 is a

real number them
jE A (x) dx =\ jE F(x) dx.

Further if f is summable on £, then A f'is also summable on £ .
Proof. The theorem is self proved for A =0.If A=p € N then from corollary of theorem 4

for p non-negative measurable functions f, f, ....., f,, we have

)4 )4
[ ; fi(x)dx = ; [ fixydx
Tapingf1=f2=....=fp=f,weget

IEpf(x)dxzijf(x)dx ..... (1)

1
If A =—for some ¢ € N then by equation (1)
q

o, 1 de= [ f @

= J'E éf(x)dx:éJ'E fax (2)

IfA is a rational number £, then using (1) and (2)
q

J.ng(x) dx =§IE [ (x)dx

Lastly let A be any irrational number, then there exist rational numbers 7, s € Q such that

r <A <s, then using theorem and using (3), we get
rjEf(x) dx < jExf(x)dxs sjEf(x) dx.
Taking limits » — A and s — A, we have
jEx F(x)de=n jEf (x)dx.

Finally, the summability of A f on E follows from the summability of f on E.
Now we shall discuss certain results related with integration of sequence . First we prove the

following Lemma.

112



Lemma. Let <f, > be a sequence of non-negative measurable functions. If nlfc}o Sy (xp) =

S (xy) at a point x, then for each m € N

then

Tim £y, (X0)]m =Lf (o)

Proof. If /' (x;) > m , then there exists a number r, € N such that f, (x,) > m for all n > n, and

[/, &) 1, =m=1f(xp)),,. v n>ngy.

If /' (xy) < m, then there exists a number ny" € N such that f, (x)) <m v n>n, and then

[/ Ceo) =15 Crg) = (xg) = [f (xp)1,,, -

If /' (x) = m, then for given € > 0 there exists a number n,”" € N, such that
Sy () >m— € v on > ong.

[Fornlglso L) =f(x)=m =] f, (x)—m|<e =>m- e<f, (x)) <m+ €]

Then m—e <[f,(x)], < m v n>ny'
= m—e <[f, (x)],,Sm<m+ e

= LS &)l —m| <€ v n>ny'

= [ Gl —f () <€ v n>ny

= |y Gl =[S, | <€ v n>ny

[ Forf(xO) =m= [f(xO)] m zf(xO)]
= i 1, 6ol = L Gl

Thus the Lemma holds in all cases.

Theorem 6. (Fatou'’s Lemma). Let < f, > be a sequence of non-negative measurable func-

tions converger to [ a.e. on the set E, then

[ f(ydx<sup { [AC dx}
Proof. For any m € N, we have from above Lemma

Iim [ ()] =L/ )] onE.

Since each of the function [f, (x)],, is bounded by the number m, so by Lebergue bounded

convergence theorem we have

lim [ [f, (0] dv=[[f@)] dx
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Also [f, ()], <f, () v x € E
= [0 des| fdxcssuwp{f f,0df L (2)
Taking Lim n — oo and using (1) in (2), we get

[LLren dx < sup { [ ) dx}
Again taking n — oo, we get

[, rdx < supff 1, (x)ax}.

With the help of above theorem, it is easy to obtain another theorem concerning passage to the
limit under the integral sign.

Theorem 7. (Lebegue monotone convergence theorem ). Let < f, > be an increasing se-

quence of non-negative measurable functions defined on the set E . If nlfc}o S, (X) =f(x)onE,

then
lim [ f, () de=[ f()
Proof. Since < f, > is monotonically increasing sequence, so f; (x) < f, () <f3 (0) < ...

It is given that ,}fc}o J, (x) = f(x) on E and we know that a monotonically increasing sequence

<f, > is convergent iff it is bounded and in that case '™ £ (x) = Sub< f, (x)>

= Jan(x) < f(x), vV X€EE
N lim [ has<| feoa L (1)

Now as lim J S, (x)dx exists, so by Fatou’s lemma we have
n—w “E

jE f ()dx< lim jE f,xd 2)
From (1) and (2) we get
lim [ f, (dv= [, f(@)dv

Corollary. Let {u, } be a sequence of non-negative measurable functions defined on a mea-
surable set E.

0

D, u,(x)=f(x)

n=l1

then J.E f(x)dx= i IE u, (x) dx.
n=1

114



n

Proof. Let f, (x) = z u; (x), v x € E and for eachn € N.

n=l1
Then {f,} is on increasing sequence of non-negative measurable functions on £ and the result

follows from the main theorem.
Theorem 8. (Countable additivity of the integral ) Let E be union of a finite or countable
Jamily of pairwise disjoint measurable sets i.e. E = U E,, E; N Ej = ¢, i #J. Then for any non-

negative measurable function f defined on the set E

jE (%) dxzz jE £(x)dkx.

Proof. Let Ul be a function defined on £ as

f(x) for xek;

U. p—
i) { 0 for xeE~E

Then f(x)= U;(x) and by above corollary, we have
1
i

[ 7@ dx=3 [[v@a (1)
B [f(x)]n for xekFE
Now (U], _{ 0 for x eE~E;

and therefore [, [ U (¥)], dx=[_ [ f(x)], dx
Taking n — oo, we get J Ry (x) dx = IE foyd e (2)

From (1) and (2), we get
| () dx =Z jE £(x) dx.

5.2.2 Integral of Arbitrary function :

In order to define the Lebergue integral for measurable function that take both positive and negative
values, we shall show that such function can be written as the difference of two non-negative valued
measurable functions.

Let /'be any real valued measurable function on £ . We define the functions f * and /'~ called
respectively the positive and negative parts of 7, as f T(x) = max (f(x), 0), f~ (x) =max (— ' (x),0),

x € E. For a fixed x € E, we observe that
() fO)>0=f"®=f(x) and f~(x)=0
@ f()<0=f"(®=0 and [~(x)=-f(»)

115



(i) f(x)=0 = fT(x)=0 and f (x)=0

@) f)=/TM)~f"&) and | )] =T+ @)
and since f'is a measurable function on E so both / * and f~ are non-negative measurable functions on
E. All the results given in previous section are true for the functions /' * and f~. Now we define the
Lebesgue integral for an arbitrary measurable function.

If/ be an arbitrary measurable function defined on measurable set £ and /', /~ are the positive

and negative parts of the function f; then we define Lebesgue integral of f on E as
_ + _ -
[ rax=[_freode=[ [ (x)dx

The function fis said to be L-integrable or summable on E is both the functions f *and £~ are
L-integrable or summable on E.
Theorem 9. A measurable function f is summable on E if and only if | f| is summable and

in this case
[, reax|< [ 1 rlax
Proof. Let /* is summable on E, so IE f(x)dx <oo.
Now [, f@dr=[, f*@)dv=[, [~ dx [~ f=f*~f]
jE F(x) dx <o :»jE £ (x) dx <0 and jE F(x)dx <o
- jE f*(x)dx+jE F(x)dx <o
= [T @ @lde<on

N jE| f(0)|dx <o

| | 1s summable on £ .
Conversely let | /| be summable on E .

| fl=f*+f,s0f" and f~ are summable on E. Therefore f *— ~ is summable on E.

Hence f'is summable on E.

Now, ‘ [ s dx‘ =[[.[ rr@-rw] dx‘

-], @] @

<[], f+(x)dx‘+‘—jEf—(x)dx‘
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=[, ffdx ] (0 dx
=[ [/ @+ s |ax
= jE | f(x)| dx

Here ‘ G dx‘ <| f(x)|dx.

Theorem 10 : If f and g are summable functions on a set E and c be a constant, then the

functions [+ g and c.f are also summable and
[ Utomdx=]_ fdex| g(x)dx
and | (N xdx=c | | ().
Proof : Since f'and g are summable functions on £.

= jE f(x)dx <o and jE g(x)dx < oo

= [ fr@dc-[ fT@dv<o and [, g7 (de~ [, g ()dv <o
> [, STd [ @ [ g (dx, [ g7 (x)dx are finite.

=N jE FHx)dx+ jE gt (x)dx— jEf—(x)dx— jE g~ (x)dx <o

= [ gt @ [ (ST g (vdx <o

= jE (f +g)(x)dx <o

= f + gis summable on E.

Also [L+@md =] (f+g) (vdx
=[ fr@ac+ [ gt de-[ - [ g (0ax
:IE f+(x)dx— IE f- (x)dx+IEg+(x)dx—IE g (x)dx

=] @ +[ g@)dx
Letdo(x)=cf(x) vy xeE
Casel:Let ¢2>0,¢+ (x)=max {cf(x),0}

=cmax {f(x), 0} =cf" (x)

¢~ (x)=max {—cf(x), 0}
=cmax {—f(x), 0}
=cf (x).
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[ crax =], ode=], ¢ de-[ ¢ (x)dx

=jE cf+(x)dx—jE ¢ f 7 (x)dx
=ch f*(x)dx—ch £ (x)dx
:c“E fr x| f—(x)dx]
=ch F(x)dkx.

Case Il : If c<0, ¢T(x) =max {cf(x), 0} =|c|max {—f(x), 0}
=lel /™™

and ¢~ (x)=max {—cf(x),0}
= | ¢ | max {f (x), 0}
=lclf ().

Therefore | ¢/ (Ddx = o dr=[ ¢" @) dr[ ¢ (x)dx
= [ lelf~@de=] lelf* (x)dx
=lelf, /= @dv=[e| [, f*(x)dx
==le|[, J(@)dx

=ch £ (x)dkx.
Thus if ¢ € R then

jE of (x)dx=c jE F(x)dx
.. Summability of / implies the summability of cf.
Now [ (f=@)®dr =] [f+(Dgl (x)dx

=[ f@dr+ | (~Dgx)dx
=[ f@de+ (D] g(xdx

= jE f(x)dx—jE g (x)dkx.
.. Summability of /'and g implies summability of f— g.
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Theorem 11 : (Finite additivity of the integral) Let the set E can be expressed as a finite

union of pairwise disjoint measurable sets i.e.
n
E=\JE,ENE;=¢,i# .

i=1
If function f'is summable on each of the sets E,, then it is also summable on E and

jE f(x)dxzzn: jE F(x)dkx.
=1

Proof : Since f'is summable on each of the sets £ so f * and f~ are summable on each of the

sets ;. f *and f ~ are non-negative measurable functions on each E »» therefore we

have | fTOax=) [ ff@a (1)
=l

and [ f—(x)dxzé jE fTa )

Since R.H.S. terms of (1) & (2) are finite so L.H.S. terms of (1) & (2) are finite. Subtracting (2)
from (1), we get

[ @)= dx= > o 0= f (0

Hence J.E S(x)dx= z IE f(x)dx.
=1

Note : If £ = U E;, E.N Ej = ¢, i #j then summability of /' on each E; does not imply the
i=1

summability of /' on E. However, we have the following theorem.

Theorem 12. Let a set E can be expressed as a countable union of pairwise disjoint mea-

surable sets i.e. E = U E;, E;N Ej =¢,i#], then
i=1
(i) If fis summable on E, then
[ o= ) [ SGar.
(ii) If f'is summable on each E,, then fis summable on E if and only if the condition

Z IE | f () [dx <o s satisfied.
=1
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Proof. Since f'is summable on E therefore f'is summable on each set £; and so f *and f~ are

summable on each set £; and are non negative, so by theorem 9 we have

G O P G — (1)
G O P G — @)
Subtracting (2) from (1)

[ L @)= 1 @)l :; jE FF(x)dx - jE £~ (x)dx

1

=3 LT f (@)l
i=l1

= [ Fodx =i jE f(x)dx.

(i) Since f'is summable on each of the set Ei = | /| is summable on each £,
" | f]1s non-negative measurable function on each £

.. By theorem 9, we have

[ 1700 dx =Zl [Jr@ac 3)
Jol S @dv<o =3 [, 1 /)1 de <

Converselyif ) | ()| dv <o
=1

= jE| f(x)|dx<o,  [using(3)]

= | | 1s summable on £
= f'1s summable on £.
Theorem 13. Let f be a summable function on set E. Then for given € > 0, there exist a

0 > 0 such that

NGRS

where e is a measurable subset of E with m (e) < 0.
Proof. Since f'is summable on E, therefore | /| is also summable on E. As | /| is a non-negative

valued function on £, given € > 0 there exists a number n, € N such that
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[l S v =[ 1)y, dv < S [For [ ()], </ (0]

= U@ @L< (1)
Choosing a real number 6 such that & < i and if e is measurable subset of £ with m (e) <9,

then we have
[ 117 0) 1, dx < ngme) < ngd <§ ..... )

From (1) and (2) we have

I, ] =] SIS, e+ [ 111, d

<[/ @ =1 F N, dx+ [ [1 £ ()1, d

S
<—+—=€
2
But [ S@dx| <[ 1701 dx
Therefore LI f(x)dx|<e.

We shall now prove generalization of the Lebesgue theorem on the passage to limit under the
integral sign for bounded function. The theorem is also true for summable function and know as domi-
nated convergence theorem.

Theorem 14. (Lebesgue dominated convergence theorem) Let {f,} be a sequence of mea-
surable functions converging in measure to f. If there exists a non-negative summable function ¢

such that | £, (¥)| < ¢ (x) a.e. on E for each n € N, then
lim [, (0)dv= [ f(x)d

Proof. Since |/, (¥)| < ¢ (x) a.e.onE, VneN

- [ 15,@)ldx <[ d(x)dx VneN

"+ ¢ 1s summable on £, so IE d(x)dx < o0

= 1@<, vneN

= Each function /), (x) is summable on .
Now, we have {f, } is converging in measure to the function f on £, therefore by Reisz’s theo-

rem, 3 a subsequence { fnk} converging to fa.e. on E.
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= | f(X)]<¢(x)a.e. onE

= [ 1flde< | d(x)dx

= | £ 1s summable on £

= fis summable on £

Also we have [ fi (x) =/ (x) [ <[f () [+ ]/ () |
<o)+ (x)
=20 (x)aee.onE Vke N

Since ¢ is non-negative summable function, therefore for every € >0, 3 6 > 0 such that.

(S
[ o(odx < 5 forall subsets e < £ with m (¢) <5.

S
Take 1 > 0 be real number such that nm(E) < 1 Since {f,} converges in measure to f, so for

given  there exists a number r, such that for k> n,)

m({x € E| f x) —f(x) [ 2n}) <d.
For each k£ € N, let us break E into two subsets
A= Ef - |2}
By={x € E|lfp )~/ ()| <n}
Then 4, U B, = E and A4, N B, = ¢ for each k € N. If k> n;, then m (4;) < J, and according
to the choice of 0

L fe@=folde <[, 2gax <2225 (1)
Also for every k € N, we have
[, | 7= f @)l dx <. m (8 sn-m(E><§ ..... )

Adding (3) and (4), we have V' k> n0
[, 1@ =@l dx 4] | fi) =1 () dv <>+ =e
- jE | fi(0) - f(xX)|dx<e 3)
Now [, fids=[ feode| =| [ 100 s (o
<[ 1AM-fG)]dr < e [using (3)]

N lim jE £ (x) dx :jE £(x) dk.

k—
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5.2.3 Absolutely equi-continuous integrals

If <f,> be a sequence of summable functions on the set E, then the sequence of integrals
JEﬁZ(X)dX of these functions is said to be absolutely equi-continuous if for each € > 0,3 8> 0
suchthat V n e N

[ 17,00 dv<e

for any measurable set A — E with m (4) <0.
Theorem 15. (Vitali's Theorem) : Let < f, > be a sequence of summable functions on a set
E with finite measure. If < f, > converges in measure to [ and if the family of integrals of f, is

absolutely equi-continuous, then fis summable on E and

lim [ f,()dv=[, f(x)d
Proof. Let € > 0 be a real number and let n :i)_ Since the family on integrals

m(E

{ I . (%) dx} is absolutely equi-continuous, for given € > 0 there exist a 6 > 0 such that for alln € N

J1fu@ dx<e
for all measurable subsets e of £ withm (e)<o. . (1)
Since {f,} converging in measure to the function f, therefore by Reisz’s theorem 3 a subse-
quence {/, } which converges to fa.e. on E.
Now 1 £, =1 SO S, ()= F @),
It follows that | /,, (x)| converges to | f] a.e. on E.

... for e — E with m (e) < & we have by Fatou’s Lemma

JL 1S @dx <sup [ | £, (x)]dx<e [using (1)]

— L | f(X)|dx<e )

Now for each k € N, we define two sets
A= e Ef 0 —f@) |2}
By={x € E|lfp )~/ ()| <n}
= Ayn"B,=¢and 4, VB, =E V neN.
For a given 6> 0, 3 n, € N such that ¥ k> ny with m (4;) <6 we have

[, 1= flds <[ 1 fi(olde+[ | f(x)]dx
<e+t+e=2¢ [using (1) and (2)]
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- Lk | fi ()= f(x)|dx <2 L 3)
and jBk D)= f@)|dx <qm@E)=¢ .. 4)
[, fiyax=[, r@ra| <[ 1 40=f (0 dx

=], A= 7l de+ [, 100 - 700 ds

<2e+ e
=3 Ll &)
= | /3 =/ | is summable on £
= Ji—/is summable on E,
f:fk_ (fk_f)

= fis summable on £
From (5), ,}1_?30 IE Jr(x)dx= IE f(x) dx.

5.2.4 The space of summable functions

We denote by L or simply by L the space of summable functions on a measurable set £ R.
Now we discuss some useful properties of L-space.

L-space is a linear space i.e. (i) fe L,ge L=>f+ge L (iijceR fel=>cfel (i &
(ii) follows from the theorem 11.

We define a norm in the space L as

=] 1 £ ldx

for any function f € L. It is obvious that || f|| >0 and || /|| = 0 ifand only if f~ 0 i.e. f=0 as element of
the set L (0 is zero element of space L).

If ¢ is constant then || ¢ f|| = | ¢ | || /|| obtain from theorem 11.

If+gl=[ | /(x)+g)ldr
=[ 1/l dx+] |g(x)|dx
=1/1+lgl

Hence L is a normed space.
Let {f,} be a sequence of functions in L. The sequence {f, } is said to be convergent to fin the

means of order on or simply convergent in mean if |im I | £.(x) = f(x)| dx =0 and the sequence
n—swJdE "

is said to be convergent in norm.
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Theorem 16. Let {f,} be a sequence in L. If {f,} converges in norm to a function f, then
{f,,} converges in measure.
Proof. Let us assume that {f, } converges in norm to function f'but {f,} does not converge to f/

n measure.

Then for some € > 0 there is a 6 > 0 such that m ({x € E : | f; (x) — f(x)| = €}) = 3 for an
infinite number of values of the index k; k= ky, k..., kj,... .

Ifwe write 4, = {x € E: | f, (x) —f (x)| 2 €}, then

[ 1/ )=/ ()] dx> Lk,. | fi, ()= f(x) | dx 28

This means that the subsequence {f, } does not converge in mean to f, which is contradiction.

Hence the theorem.

5.3 Thespace L, of square summable functions

In this section we study about the square summable functions and its space L,. We establish that
L, is a Banach space.

If f is a measurable function defined on a measurable set £ — R and | vf 2 (x) dx exist and finite
then fis said to be a square summable function.

We denote by L, (E) or simply L, the space of all square summable functions on the set E.

Generally E is taken as the closed interval [a, b] and in such a case the integral | vf 2 (x) dx is written

as jb 2 (x)dx.

Theorem 17. The space L, of square summable functions is a linear space.

Proof : To prove L, is a linear space we have to show that

(i) f,gel,=>f+gel,
(i) fel,=> cfel,,ceR
(i) Letf, g € L,, therefore

[[F@dco ad [ P@dr<o L 1)
[f(x)—g ®)]*=0

ALY -S(C RN

= f()-g@)[= >

I:If(x)|dx s%j:[fz(x)Jrgz(x)]dx
—lDbfz(x)deb 2(x)dx} .
20 e a8 <o (2), [using (1)]
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= | /. g | is summable, which means that f.g. is summable. Now
b 2 b2 2
J L @rg@Pdx = [ 117 (x)+2f(x) g (x)+ g (x)]dx

=1/ @dvr 2] f (g @dr+ [ g (x)dx
<o0+2. 00+, [using (1) & (2)]
= f+geL2.

(ij) Force Randf e L, :Ij[fz(x)dx<w

jb (ef)? (x) dx = 2 jb () dx < oo

= cf €L,
Which establish that L, is a linear space.
We shall now establish two inequalities which play an important role in the study of L, space.

Theorem 18. (Cauchy-Bunyakowski-Schwarty inequality or CBS inequality)
If f, g L, then

Ujf(x)g(x)de S[j:fz(x)dx}U:gz (x)dx}
Proof : For A e Rand A #0

jj[xf(x) +g(OPdr =22 jb 20 dx+ 20 jb () g () dx+ jb 2()dx o (1)

We know that the quadratic expression 4A% + BA + C has non negative values for all A € R if
B?—44C<0and 4 > 0. Since the expression on R.H.S. of (1) is non-negative as L.H.S. of (1) is non-
negative for all A € R,

Hence B2 < AC

= [2j;’f(x)g(x)de2 34U:f2(x)dxw:g2 (x)dx}

= [ j” () g(x)de s[ jb fz(x)dx} [ j” e (x)dx}.

Corollary : If (b — a) < o, then every square summable function is summable i.e. L, < L.

Proof : If we take g (x) =1, f (x) =| f (x) | n CBS inequality, we get

Uj|f(x)|de < Ujfz(x)dxq Djl.dx}

| 1/ wa|6-0
< [. feLyand (b—a)<x]
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- Ujf(x)dx@@o

= | f(x)|is summableie. |f|e L =fe L.
Theorem 19. (Minkowski’s inequality). If f and g € L,, then
1/2 1/2

[J‘j[f(x)Jr g ()7 de/z < U: 72(%) dx} U: 22 (x) dx}

Proof : By CBS inequality, we have

1/2

1/2
J:f f(x)g(x)dx < D:fZ(x)dx} [J’:gz (x)dx}
= 2f! fgdes [ PPeder [ g ()

< 2[J‘jf2(x)dx}l/2 Ujgz(x)dx}l/2 +I:f2(x)dx+_[:g2(x)dx
. , b, Ve 1277
= [@rem] dxsﬂ [ @] | [l e wa] }

= [Luersera] <[ rwa] [ [eoa]

Theorem 20. The space L, is a normed linear space.

Proof : We define a function

b 1/2
Ill:L, >R as f{ffz(x)dx}

We observe that
@ fI1z0 v feL,and

12
171=0 | [/ 2| =0

o f2(x)=0 VxeE

< f(x)=0 VxeE
< f=0 (zero function)
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C b 12
(ii) For ¢ € R and lefll=| ] (cf)z(x)dx}

= chzfz (x) dx}l/2

el Peoa]

=[clllfI
(iii) By Minkowsky inequality
fgel,=f+gl<lfl+Igll
Hence the function || - || is norm in the space L,, consequently L, is normed linear space.
Now we introduce the notion of convergence in norm.
Let {f,} be a sequence in L,. The sequence is said to converge in norm to a function f € L, if

for any arbitrary real number € > 0 there exists a number n, € N such that || /, — || < € whenever
n 2 nq and in such a case we write lim f, =/ or Jo— S
n—>0
The convergence in the mean is also termed as convergence in the mean of order two or the

convergence in the mean square and the expression lim f, = /" means that
n—»0

. b b
lim [ [/,(x)= /() dx=0.

Theorem 21. Let {f,} be a sequence in L,. If {f,} converges in the mean square to a func-
tion f € L,, then {f,} converges in measure to f.
Proof : Let us assume that {f, } converges in the mean square to a function /" but {f, } does not
converges in measure to f. This means that for some € > 0 there is a & > 0 such that
m({x € [a, b] 1| f @) —f(x) |2 €}) 2

for an infinite number of values k|, k,, ...., k;, .... . For the index k. If we write

e = x <[4, B] 1/, () —/ (@) |2 <}
(P10 =1 P dez [ 1 (0 f ()P dx

a

then

e

=
This means that the subsequence { k, } does not converge in the mean, which is contradiction.
Hence the theorem.
A sequence {f } in L, is a Cauchy sequence in L, if for every € > 0 there exist a number

ng (€) € N, such that m, n > n (), then || f,, — 1, | < €.
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Theorem 22. If a sequence {f,} in L, converges in norm to a function f'in L, then it is a

Cauchy sequence.

Proof : Let € > 0 be a real number. Since lim f, = f there exists a number n, () € N such
n—0

that || /, — /| < € whenever n 2 n,. Now if m > n and n > n, then
S =S 1= W =S+ =1
S =N NLS =1 [Minkowski’s inequality]
<e+ e
=2e€
Hence the theorem.
Theorem 23 : A Cauchy sequence {f,} in L, converges to an element f'in L,
or
Prove that L, is a complete space.
Proof : Since {f,} is a Cauchy sequence in L,, so for each € > 0 there exist a number

ng(€) € Nsuchthat if m, n>n (€) then

N\ -foll<e .. (1)

k

Then there exist a subsequence { In } such that

1
| s =S | <op forken (2

In CBS inequality on putting f'(x) =| fnk+l — fnk | and g (x) =1, we get

[l @~ fo e <NB=a | £y~ fy, |

and therefore using (2)

Z|fnk+l (x)_fnk(xﬂde\/b—aZHfnkH _fnk ||
k=l p
<b-a iik
k=1 2
b
= z.[a|f”k+|(x)_fnk(x)|dx<00
k=1

a0
b
and consequently the series z J.a |/, My 7, n | dx i convergent.
k=1

129



= The series | f,, ()| +z S, (¥)= 1, (X)| converges almost everywhere on [a, b]. We
k=1

know that every absolutely convergent series is convergent therefore the series

f O+ Sy ()= f,y (X))
k=1

converges a.e. on [a, b]. This is equivalent to

lim f, (x) exists a.e. on [a, b]
k—owo™

Let E = {x ela,b]

lim 7, (x)< oo}
k—o0 " Tk

then  m ([a, b] ~ E,)=0.

Now we define a function fon E =[a, b] as follows :

109 kh_r)n Jn ) for xek
X) = «©
0 for xela,b]~E

Then f'is a measurable function and

klim fnk (x)= f(x) a.e. on[a, b].

We shall now show that f € L, and lim f, = f. If k, is a number such that7 >, (€), then
n—> 0

from (1), we have

I: [fs (x)_fnk (X)]2 dx<e* v n>n, and k> k.

Since sequence of functions {(f, — fnk )2} converges a.e. on £ to (f, — /)? so by Fatou’s Lemma

we have

b ) , b )
o, UaG)=fCoFdx< lim sup [ (£, (1)1, () dv

= [ @@ d<e® Vs

ie. If,—flI<e v n>n,

Consequently lim f,=f

n—0

Since (f, — f) € L, it follows that
f=fy=y-Nely
Thus every Cauchy sequence in L, converges to point in L,. Hence L, is complete space.
Note : Through this theorem we have proved that L, is a complete space. As L, is a normed

linear space, therefore L, is a Banach space.
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Self-Learning Exercise-1

1. Let f(x) :L for x € (0, 1] and /(0) = 0. Then define [ /' (x)],.

Jx
2. Iffis a non-negative unbounded measurable function defined on a measurable set £, then [f], is

measurable on E for eachn € V. [True/False]

3. Let f be a measurable function defined on a measurable set E. If| /| is summable on E, then it

1s not necessary that /* is summable on E. True/False
4. The space L, of square summable functions is a linear space. True/False
5. Every square summable function is a summable function. True/False
6. L,-space is not a Banach space. True/False

5.4  Summary

In this unit, we have discussed about summable functions, Lebsgue integral of non-negative
unbounded functions, Lebsgue integral of arbitrary functions, the space L, of square summable functions

and some important results on these topics.

5.5 Answers to self-learning exercises

1 1
1. V(X)]nzﬁ for n—2£x£1

=n for 0 <x< iz
n
=0 for x=0.
2. True. 3. False. 4. True.
5. True. 6. False.

5.6 Exercises

1. Prove that a summable function is finite a.e.

2. It m (E) =0, then every function f defined on £ is summable on £ and IE S(x)dx=0.

3. Iff is summable on E, then it is summable on every subset of E.

4. Iff is non-negative valued measurable function on [a, b] and if f (x) < g (x) v x € [a, b]
where g is a summable on [a, b]. Then prove that /" is a summable function.

5. Let the functions f and g be equivalent. If one the integrals exists, then so does the other, and the

two integrals are equal.
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10.

If fis summable on [a, b] then show that

b —-a
[ reodx= j_b f(=x)dx.
a
Show that the space L, of all square summable functions is a metric space.
Show that the product of two square summable functions is summable.

Let {f,} be a sequence of functions in L, converges in norm to f. Then for any g € L, show

that

. b a
lim L f(x)g(x)dx:Ib f(x)g(x)dx.

n—0

Show that the space L, of square summable functions is a Banach space.

HEin
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Unit 6 : Fourier Series and Coefficients, Parseval’s Identity,
Riesz-Fisher Theorem

Structure of the Unit

6.0 Objectives

6.1 Introduction

6.2 Scalar product

6.3 Hilbert space

6.4 Orthogonal elements

6.5 Orthogonal system

6.6  Fourier series and coefficients
6.7 Closed orthogonal system
6.8 Complete orthogonal system
6.9 Summary

6.10  Answers to self-learning exercises

6.11 Exercises

6.0 Objectives

In this unit we will first define scalar product of two functions in L, space. With the help of
scalar product we will define Hilbert space. Hilbert space play very important role in functional analysis.
Next we will study Fourier series and its properties in L, space. The results related to Fourier series is
very useful in mathematical physics. Parseval’s identity, Bessel’s inequality play an important role in wave

mechanics.

6.1 Introduction

In this unit, we will first study the definition of scalar product of two functions and its properties
in L, space. Next we will give definition of Hilbert space, orthogonal function and orthonormal system.
Next we will study Fourier series, Bessel’s inequality and Parseval identity. With the help of Parseval
identity we will define closed system. In the last we study Riesz Fischer theorem, complete orthonomal

system and its propertics.
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6.2

Scalar product

The scalar product of two functions ' € L, and g € L, denoted as <f, g >, is defined as the

mtegral of the product of the functions :

b
<fg>=[ /) g dx.

By CBS inequality for f, g € L, the scalar product <, g> has finite value for any two functions

/> g € L,. It is obvious that if one or both functions in a scalar product are replaced by equivalent func-

tions the scalar product does not change.

The scalar product has following properties :

(@ <fg>=<gf>

Proof: <f.g> =[] f(¥) g (W dv=[ g f (x)dx=<g.f >
(b) <f+g h>=<f,h>+<g h>

Proof <frgh==["(f()+g @)h () dx

=" Fe Ry dee [ g) b () d
=<f,h>+<g h>
(0 <cfig>=c<f,g>=<f, cg>whereceR
@) <fif>20vy fe L,and
<f,f >=01iff f=6.
Theorem 1. Iff, g € L, then

< fg>1<l flllgll,

Proof. From CBS inequality we know that if f, g € L, then
b 2 b b
I s <[ rw e [ e a]

22
= <f,g> ISl

or equivalently |<f, g>| S||f||L2|| g ||L2 .

6.3

Hilbert space

A Branch space is called a Hilbert space if for any two elements f'and g of it there is associ-

ated a real number called their scalar product < f, g > satisfying properties (a) to (d) and the norm of

an element f of it is expressed in terms of scalar product || f|| = /< [, f >.

Thus L, is a real Hilbert space.
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Theorem 2. The scalar product in L, is a continuous function of its argument that is if

{f,} and {g,} are two convergent sequences in L, with nlilso fo =fand nlilso g,= g then

lim < f,,g,>=<f,g>

h—0

Proof. We have {f, } and {g,} are two convergent sequences in L, and

lim f, = f,lim g, =g.

n—»0 n—0

Now lim f, = f = for every € >0, 3 n, € N such that

n—>%
If,~fll<ev nzn,
Ll = WA <1 =Sl so s m>ng [ f, I =1/l <€
= {|lf, II} 1s a convergent sequence of real numbers and it is bounded, since every convergent
sequence is bounded.
Similarly {|| g, ||} is a convergent and bounded sequence of real numbers.
= dJKeRst|g,l|<K vneN
For any n € N, we have
<fn 8 >—<f£g>=<f,g,>—<fg,>*t<f,8,>—<f.g>
=<f,-fg,>+<fg,—g>
| <fw 8> —<frg>|sI<f,~f g, >FI<fg,—g>|
<A =fIHlg, T+ 11T g, — gl [by theorem 1]
<eK+|f||-e=€[K+]f|] >0asn—>x

,}fc}o <f,8,>=<fg>

6.4  Orthogonal elements

Two functions f'and g in L, [a, b] are said to be orthogonal on the closed interval [a, b],
written as f L gif<f, g>=0.
Equivalently, two measurable functions f'and g defined on the closed interval [a, b] are said to

be orthogonal if

[ F)g@ode=0.
Form the properties of the scaler product it follows immediately that
(i) The zero element 0 is orthogonal to any element /'€ L,.
(it) fLfe<ff>=0
< |/IP=0
< | f11=0
& f=0.
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(zii) If /is the sum of functions /; (the sum involves a finite or countable number of summands)

such that

f:chiandglf; v i,thenf 1l g.
i

Lemma : Iff = z /; (the sum contains finite or countable number of summands) and if all the
i

elements f; are pairwise orthogonal, then

2
IR =20%1
i
Proof. Using the distributivity property of the scaler product, we have
IfIP=</f>

<Zf2f/> :Zi:;<fi’f/> ..... (1)

Since f; are pairwise orthogonal, so

<f; Jj > =0, i #j and therefore form (1) we have

[vals =2 (/i)

-SIAT

Theorem 3. A series z Ji of pairwise orthogonal elements in L, is convergent iff the
i=1

[ee]
. 2 .
series of real numbers 2” fi |7 is convergent.
i=1

a0
Proof. First suppose that the series z /; 1s convergent and converges to f'(say).
i=1

Since f; are pairwise orthogonal

= <l.,j3.>=0vi¢j ..... (1)

)8

MS

(fi-5)

I M8
I\

l:]

IfIP=<ff>= <

:z<fz’f> using (1)

14

l:
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s 2|/ F=1rT.

a0
= The series of real numbers z | f; > converges to || 1.
i=1

a0
Conversely, suppose that the series of real numbers z | £ II* is convergent, we have to show
i=1

a0
that the series z /; is convergent.
i=1

We define the partial sum of the series as :

sn:Z Jis

i=1

o0
then {s,} is the sequence of partial sums of series z Ji
i=1

2
Letp>n, ||sp—sn|| = Zfl—Zfl

P P
=( > fi 2

i=n+l j=n+1

p p
=2 2 <fuf;>

i=n+l j=n+l
p
= Z <Ji:fi> [Since f; are pairwise orthogonal]
i=n+l
p
2
= > A7
i=n+1
1_ % 2
= Is,=s > = > A7 forp>n L (1)
i=n+1

[ee]
Since the series z | f; ||2 as convergent, so for each € > 0 there exists n, € N such that
i=1
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sp—s <e Vp>n2=ny, where s Z||f|| .

p
= Y Ifill<e vp>n L )
i=n+l1
Using (2) in (1) we get

2
Is,~sP<e v p>n
2 .
= || Sy — s,/ —> 0 as p, n — oo and hence || Sp —s,|/| — 0 as p, n — oo. This shows that {s,}
is a Cauchy sequence in L,. Since L, is a complete space, so every Cauchy sequence in L, converges

a0
to an element in L, and consequently the sequence {s, } in convergent which means that the series z fi
i=1

is convergent.

6.5 Orthonormal system

A system of functions ¢, ¢,, ¢,,... (finite or countable) in L, [a, b] is called a orthonormal

system on the closed interval [a, b] if
(1) <¢l.,¢j>=0 for i#j
(i) <4, 0;>=1 ie [ ¢;]=1Vi

An important example of an orthonormal system on the interval [— 7T, 7] is the well known trigo-

nometric system of functions,

1
sin x,. cos kx,—sin kx, ..

ek

COS X,

1
it

6.6 Fourier series and coefficients

Let {¢,} be an orthonormal system of functions in Z,. For any function /'€ L, the scalar prod-

uct a; =<f, ¢;> i=1, 2, 3... are called Fourier coefficients of the function / with respect to the

orthonormal system {¢;} and the series z a; ¢, is called Fourier series of /' with respect to that
i=1

orthonormal system.
Theorem 5. The Fourier series of any function f € L, converses in norm. Further it con-

verges to [ if and only if
« 2
1P =2 a
i=1
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where a; are the Fourier coefficients of the function f. If Za, f; is the Fourier series of the square
summable function with respect to an orthonormal sequence < f, > of square summable functions

then show that

- 2 2
> a <[ 1]
=1

Proof. Let f = z a; ¢; be the Fourier series for the function f, where @, = <f, ¢,>,i e N
i=1

and {¢,;} be an orthonormal system of functions in L,.

For any n € N, let us put

g (x) :f(x)_z a; b;(x).

i=1

Then for anyi=1, 2,..., n, we have

i=1

<g ;> =<f(X)—i a ¢i’¢j> =</.9; >‘; 4 <4 9;>

-4 2

aj aj” ¢j||
Zaj—aj-l {Slnce<¢l.,¢j>=01fz;tj,||¢l.||=1}
=0

<g, ¢j>:0 vi=1,2,.,n
=gl d)j i.e. g is orthogonal to all d)j, j=1,2,..,n

n
Thus we have f=g+Y a0, .. (1)
i1

We know that if f, /,,..., f,,... . are pairwise orthogonal function such that > Jf; =/ then
AP =0s1

1

Now from (1) we have

n
AP =11gl?+ > llod; 1>

i=l1

L 2~ 2
AR =llgIP+> a llg; IF =Ilgll +> " a; ,since | ¢; =1
i=1

i=l1

n
Consequently, z al <||fiI*> forany neN
i=1

139



Since R.H.S. of above inequality is independent of n, so we have

D — @)
i=1
= The series z a? is convergent [ If1I2=<[f,[><x]

i=1

o0
= The series )" g; ¢; converges in norm.
i=1

a0 [ee] o0
[By Theorem (3) ' a; ¢; is convergent iff the series > lla; o II> is convergent i.e. > a’
i=1 i=1 i=1

1s convergent ]

= The Fourier series of / € L, converges in norm.

a0
Part II. Let as assume that the Fourier series z a; ¢; is convergent and converges to f, there-
i=1

fore
f:z a; ¢,
i=1
= AR = 1la; é; 1P [By Lemma]
i=1
= 112 =2 a1 I [ 1o, 1=1vi]

i=1
o0
¥ a2

i=1

Conversely suppose that the condition

L2 =2 4 be fulfilled, writing
i=1

we can easily prove that / is orthogonal to ¢,, i = 1, 2,...... .

f:h+i a; 9;

i=1
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Again from Lemma

[ee] [ee]

2 2 2 2

AR =R+ a6 1P =l1AIP+Y a.
i=1 i=1

Since /12 =>" a7, by hypothesis,
i=1

we have /4 = 0 that is fzz a; 9;
i=1

0

= z a; ¢; converses to f.

i=1

Note : The inequality z al.z <|| /| is known as Bessel’s inequality and its particular case
i=1

z aiz = | f|I? is called Parseval’s identity.
i=1

0

6.7 Closed orthonormal system

An orthonormal system {¢,} is said to be closed if it satisfies Parseval’s identity z al.z = £
i=1

for the function f, where a; are Fourier coefficients for /' with respect to ¢,.

Theorem 6. [f the orthonormal system {¢,} is closed and if f and g belong to L,,

ten [ f@eds =Y o

i=1

where a;=<f,¢,> and B,=<g, ¢;,>.

Proof. Since o, ¢, are the Fourier coefficients for the function f'and g respectively then o, + f3;

will be the Fourier coefficients of f + g.

Therefore If+gl|? :z (o; +Bi)2
i=1

= U@ =Y @)

i=1

= [ e d2f f)g@dr [ ()

o0 o0 o0
:z 0‘1‘2"‘2 zaiBi+ZBz'2
i=1 i=1 i=1
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Using Parseval’s identity we have

7 f) g@yde = o B,

i=1
Let D < L,. The set D is said to be everywhere dense in L, is every element (function) in L,
is the limit (in norm) of'a sequence in D.
Thus a set D < L, is every where dense in L, iff for any /'€ L, and for each € > 0 there is an
element g € Dsuchthat | f—g| <e.
Theorem 7. Let a set D C L, be everywhere dense in L,. If Parseval’s identity holds for
all functions in D, then the system {¢,} is closed.

Proof. Let f € L, and z a; ¢; be Fourier series of f, where a, = <f, ¢, >.
i=1

n
Let S,(f)= z a; ¢; be the partial sum of first n terms of the Fourier series. Then S, (f') sat-
i=1
isfies following properties.
@) S,(cf)=cS, (f)foranyc e R,
@ S, (fy + 1) =5, F) 5, ()
@) | S <111

and the last one follows from Bessel’s inequality,

n
2 2
1S, 17P=> a < fI.
=1

Since D is dense in L,, so for € >0 3 a function g € D such that

S
||f—g||<§-
Then =S, O I=lf-gll+llg=S,@I+1S,E&-S,I
But 15, @) =S, (O=1S, =) I<l[g-fl <§ and therefore

/=S, (] <% +llg=S,@@ |l

and since Paseval’s identity holds for g (x), so for € >0, 3 n, € N such that

S
||f—Sn(f)||<§ vn>n,.
2e €
Hence ||f—Sn(f)||<T+§:e v n>n,
This proves the result.
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Theorem 8. (Riesz-Fisher theorem). Let {¢;} be an orthonormal system in L, and {a,} be

sequence of real numbers such that the series Y. al-z is convergent.
Then there exists a function f € L, such that || f ||2: > al-z where a;= <f;¢;> VieN.
Proof. Since the series Y al_z is convergent, so for given € > 0, there exists a number
ng(€) € N such that p > n > n, imply

p P
S’p—S’n<ez, where S;v:z al-z = Z al-2<ez.
i=1 i=n+1

Consider a sequence {S,} in L, as

S, (x) =Y a; ¢;(x),

i=1

2
)4 n
then I Sp =S, 12 = Z a; ¢i(x)—z a; ¢;(x)
i=1 i=1
» 2
= Z a; 9;(x)
i=n+1

b | & ’
) { Y g ¢i(x)} dx

i=n+1

p p b
Y2 a6 dx

Jj=n+l i=n+l

L b
=Y a L ¢3(x) dx (** {i} is an orthonormal system)

Jj=n+l

p
2 2
= z a, ||¢/ |

j=n+1

=Y i<

j=n+1

= ||Sp—Sn||<e Vp>n>n,
= {S,} is a Cauchy sequence in L, and L, is a complete therefore 3 a function f € L, such
that
lim S, — f

n—»o0
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Now <fib> = F@ o dx =" tim S, () 4;(x) d

n

ZJf lim (Z a; dz;(x)] ¢; (x) dx

n—»a0 .
J=1

’ (Z a; b, (x)} ,(x) dx

J=1

_ (P 2 - 2 _
~[" @l dv =a, 114,17 =4,
= <f,¢,>=a; Viel.

n

f=1lim S, =1lim Y a ¢,(x)

n—>»0 n—»0 i=1
b [ n 2
- I1£11% = lim I{Z a,.q),.(x)} dx
ey L=l
n b
=lim Y aa; [ ¢ () ;(x)dx
e i,j=1 a
. C 2 S 2
L s

Thus /" is the required function in Z,.

6.8 Complete orthonormal system

An orthonormal system {¢,} is said to be complete if there is no function in L, different from
0 (zero function) which is orthogonal to all function ¢,.
Theorem 9. An orthonormal system {9;} is complete iff it is closed.

Proof. At first we assume that {¢,} is closed i.e. Parseval’s identity is satisfied. We have to

prove that {¢,} is complete.
Let /' be orthogonal to each ¢;, then
a;=<f,¢,>=0, VieNl.

As ¢, satisfies Parseval’s identity, so

IfI?=Xaf =0
= 1£11=0
= f=0 (zero function)

= The system {¢,} is complete.
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Conversely, let {¢,} is complete, we have to show that {¢,} is closed.
On the contrary we suppose that {¢;} is not closed i.e. Parseval’s identity fails for some func-

tiong € L,

. - 2 2
ie. z a; <lgl~ (1)
i=1

where a; are Fourier coefficients of g with respect to {¢,}. Using Riesz-Fisher theorem 3 /'€ L, such
that

1f1P=Y @ and<f,¢.>=a, YieN .. 2)
i=1
Now <f_ga¢l'>:<ﬁ¢[>_<ga¢l’>
Zai—aiZO

= f—gis orthogonal to all ¢,. Since {¢,} is complete,so f-~g=0 = f=g

00 ) '
= IfIP=lglP =Y. a [using (2)]
i=l
Using (1) we get
I/1P<lgl?
which is contradiction.
Hence in (1) it should be
— 2
lgI2=111? =2 4

i=1
= {¢,} is closed.

Corollary : The trigonometric system

{ I cosx sinx cos2x sin2x coskx sinkx }
NN N N N SN/ S
in L, [, ] is complete.
Proof. Let a function /'€ L, [, 7] be orthogonal to all functions in the trigonometric system.

Then it is also orthogonal to every trigonometric polynomial

n
P(x)=ay+ . (a; coskx+by sinkx).
k=1

But the class P [~ w, 7] of trigonometric polynomials is everywhere dense in L, [~ 7, ] and
every trigonometric polynomial obviously satisfies Parseval’s identity.
Then by theorem 8 it is closed. Since the system is orthonormal it follows from the above theo-

rem that the system is complete.
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AW N -

Self- learning exercise-1

<Lf>=0 Vfel, True/False
. If f'and g be any two elements of ,, then <f, g> >0 True/False
. The zero element 6 € L, is orthogonal to every element /'€ L,. True/False
. If f'€ L,, then the scalar product a; =<f, ¢; >, i =1, 2, ..... are called .............. of function f

with respect to orthonormal system {¢;}.

. The inequality zaiz <SP is Known as oo, :

i=1

6.9

Summary

In this unit we have discussed about scalar product of elements in L,-space, orthogonal elements,

orthogonal system, Fourier series and coefficients, orthonormal system and some important results on

these topics like Bessel’s inequality, Parseval’s identity and Riesz-Fisher Theorem.

6.10 Answers to self-learning exercises-1
1. False 2. False 3. True 4. Fourier coefficients
5. Bessel’s inequality.
6.11 Exercises
1. Let {¢,} be a complete orthonormal system of functions. If {;} is a system of functions in L,

such that
> f: [0;(X) =y, ()] dx <1.
i=1

Then prove that the system {y;} is also complete.

. Let {¢,} be an orthonormal system and let /' € L,. Show that of all linear combinations

n

z a; ¢;(x), the norm of the difference
i=1

n

f—z a; 9,

i=1

has the least value, where a; = <f, ¢,

>i=1,2,3,.,n.

3. State and prove Parseval’s identity.

State and prove Bessel’s inequality.
If Parseval’s identity holds for all functions 1, x, x2, x>, ... then the system {9,} of orthonormal

function is closed prove it.

EEEEN
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UNIT 7 : L P-Spaces, Holder-Minkowski Inequalities, Com-

pleteness of L P-Spaces

Structure of the Unit

7.0 Objectives

7.1 Introduction

7.2 L P-spaces

7.3 Holder-Minkowski inequalities

7.4 Convergence in norm and Cauchy sequence in L P-space
7.5 Completeness of L P-space

7.6 Summary

7.7  Answers to self-learning exercises

7.8 Exercises

7.0  Objectives

In this unit, we will study the spaces which are direct generalization of the space of square sum-

mable functions discussed in the previous unit. Many of classical spaces in analysis of measurable func-

tions and most of the important norms on such spaces have been defined by integrals. The Lebesgue

L P-spaces is one of the such important class of spaces. A complete understanding of these spaces

require a thorough knowledge of the Lebesgue theory of measure and integration, which we have devel-

oped in the proceeding units. These spaces have remarkable properties and are of enormous impor-

tance in analysis as well as its application.

7.1

Introduction

In this unit we will first define L P-space and prove that the L P-space is linear space. Next we

will prove Holder-Minkowski inequalities. In the end, we will prove that L P-space 1s complete normed

linear space i.e. Banach space.

7.2

L P-spaces

By L? [a, b] or LP [E], we mean a class of all function f'such that

(i) f is measurable and finite almost everywhere over [a, b],
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(iii) | f|P 1s integrable over [a, b] for p>0
b
ie. L | f(x)|P dx<oo for p>0.

We denote by L or L? [E] or L%, the set of all such functions.

Theorem 1. Every pth power summable function on set E is summable on E i.e. LP [E] C
L [E]. But the converse is not true.

Proof : Let / be a p power summable function on E.

= ol f@Pde<eo (1)
Let E,={x e E||f(x)|<1and E, = E ~ E,. Since f (x) is bounded on the set £,
N [ f@lde<tmE) )
/() |7=0
From (1) O-m(El)SJ.EI | F(x) P dx <o

= 0-m(E) <o
= m (E,) is finite

From (2), [, 1fG)ldx<m(E)) <o

= |/ | is summable on £.

Now Vxe kb, | (0] <]f(x)]°

= [o 1f@ldx<] 17001 dx

<[ 1 F)IP dx <o [+ E,CE]

= | f|is summable ont, 4)
From (3) and (4) / is summable on £, U E, i.e. on E.
LPcL.
The converse of above result is not necessarily true. For example if we consider a function
f(x)=x14y x e E=][0, 16], then

16 _ 16 _1/4 _2
jo |f(x)|dx_j0 x Wy === <o

= f 1s summable on [0, 16].
But is we take p = 4 then
16 4, (16
jo | £ (o) [ dx _jo xldx
=Log,16 —log,0 =
= fely.
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Theorem 2. The L P-space is a linear space.

Proof : In order to prove L P-space is a linear space we will show that
(i) felP,gel’P= f+gelP,

(ii)felP,ce R= cfell.

Since f, g € L P therefore f and g are measurable functions on £ and

[ 1f@Pde<o, [ lg@Pdx<e (1)

We know that the sum of two measurable functions is a measurable function therefore f + g is
measurable function on E.
Lt E={xeE| |[f@I<|g®@])
Ey=ixeE| |f@]>1g®@}
then £, U E,=Eand E;NE,=¢.
Now for allx € E;
S Te@IP<[f()[+][gE)][]7
<[lg@[+[gx)[]?

=27 (g ()"
[o 1/@+g P dxs| 27 [g()| dv<on [ gel’]
= [ /@@ P dv<o @)

Again, VxeE,, | f(x)+g(x)|’<2”| f(x)|F

[o f@+g@IP dx<[ 27| f))F dv<on

~
m
2

N jE | f)+g) P de<o 3)

Using countable additive property we have

[, 1f@+g@l de =, |f()+g@" de+ [, | f()+g)I dx

< o [using (1) & (2)]
= f+gelP.
Also JolefPFde =] lel” | f@)F dx

<@ v fel]

= cf eL?.
Let us now define a function || - ||p :LP >R, 0<p<owo asfollows:

1, =[P e’ 0<peo, rerr.
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7.3  Holder-Minkowski inequalities

Before establishing that above defined mapping || - || » defines a norm on L 7, we will prove
Holder-Minkowski inequalities, which are useful in establishing that || - || » isanormon L 7. To prove
Holder inequality we will require the following inequality which is generalization of the inequality between
arithmetic and geometric means.

Lemma : Let 0 < p < 1, then prove that a* b1™*< i a + (1 — ) b holds good for any pair of
non-negative real numbers a, b with equality only if a = b.

Proof : If a = 0 = b then inequality is trivial. Now let us take a > 0, b > 0. We define a function
¢ (?) such that

d(@=(1-pw+pnt—t", where 0<z<oo
= oL ()= (1 -4,
If £<1then¢’ (/) <0andifz > 1 then ¢’ (£) > 0. This means that the function ¢ decreases in

[0, 1] and increases in [ 1, o) and hence ¢ () is minimum at ¢ = 1.

¢ (@29 (1) v te[0,0)

= l-p+pw—t*>0
Put t=alb
a (a)"
1—p+pz—(zj >0
= bH(A—p)+pabtt—ak>0
= b(l-w+pa—a*b=">0
= ah b H<(1-p) b+ pa.

The equality holds good fort=1 ie. a=5.
In the study of L P-spaces an essential role is played by another space L4 where p and g are

non-negative extended real numbers related as
l + l = 1’
P 4q

such two numbers p and ¢ are termed as conjugate numbers.

Theorem 4. (Holder inequality) : Let 1 < p < and q be a non-negative real number such

1 1
that —+—=1. If fe LP and g € LY, then show that
p 9

(i) f-gel ie f-gissummable

(ii) jE | £(x) g (x)|dx g[ jE £ de/q.[ J.E o) de/q

=11, el
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ie Jlr@eg@lac<|ifll, lel,
Further the equality holds iff for some non zero constants o. and 3,

alfx)|P=B|lgx)|? ae on E.
Proof : The proofis obvious whenp =1, g = 0.

Now take 1 <p < oo and consequently 1 <g <oo. Ifeither f =0 a.e.onEorg=0a.e.onE

or both, then

J, 1r@eelas=0=[[ 1@ ][], 120 ax]]
Let f(x) #0 and g (x) # 0 on E, then

171, =[], 17 P ] >0 and

el =[], 12K ] >0

We have from Lemma, for 0 <p < 1 and non-negative real number a, b

at*pr<pa+d-wbr L (1)
1 p q
Let W=t azlf(x)]l ’ bzlg(x)ql
p IWAYS 1gllg

From (1), we get

1
or ] Nlewe] gilf<x>'p+(1_l]|g(mq
' P P

LIt el 171ty el
S0 1g@| 1]/ 1]g@ { 1_1:1}
= AU, elly ~polirln  a lgll P 4
1 1 1 I 1
e — dx <— P dx+— 94
HprHg”qu|f(x>g(x>|x<p”f”ZJE|f(x>| “quHgLs'g(")' x
:l+l:1
P 9q
= [ lf@e@la<ifi, lel, . )

felP and gelf1= fgel

For equality in (1), we have a = b
= SO lglig=1g) I}

If we take a=|[glE, B=11I5
then o, B will be non-negative constants
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S0 olfG)[P=Pplg) [
For equality in (1), we obtain equality in (2).

Theorem 5. (Minkowski's inequality) : Let f (x) € LP and g (x) € LP where p > 1, then

I f+gl, < 171, + gl

Proof : The theorem is obvious for p = 1. Consider the case when 1 <p < . Let g be conju-

1 1 ) L
gate to p then —+—=1. Since L7 is a linear space therefore

P 4q
figelP= f+gelP=(f+gP4eLP.

On applying the Holder inequality for the functions /' (x) and (/' (x) + g (x)}’/4, we get

1/ 1/q
J, @170+ ds <([7) 1P a p(j” @l dx]

= [ @irre@rta <o a) ([ rwecora) o

Similarly on applying Holder’s inequality for the functions g (x) and (£ (x) + g (x))”4, we get

/
[P 180l Lo va P de <([ e ar) ([0 1700+ g0 as)

Adding (1) and (2), we get

1@ £ @+ g@ P det [ 1g@)] | £@)+g @7 dx

(117 a) (] 1soor a7 (7 1 rcoacor ad)”

1 1
Now —+—:1:p:1+£ so that

p 9 q
SO+ @IP=1/)+g @] 1f0)+g 0|7
/@ +g@] /) +g ()7
<@ 1+120) ) 1)+ () 79
= @@ P < [T )] £+ g1 d

712 1)+ g P ds

From (4) in view of (3), we get

/ /
P seeswras S| (17 rwra) (] 1eor a) |

1/q

)

y
(" 1/ g as)
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L

o ([ roresoraf s o o af o o )

) (I: |f(x>+g(x)|dx)l/p S(J.: | S0P dX)l/p+(Ij | g(x) | dX)l/p

Hence | f+gl, <Ilf Il,+llgll,
Theorem 6. Show that the L P-space is a metric space.

Proof : Let f, g € LP. Define the distance function d on L ? by

y
d(f,g) = ||f—g||,,=(jj | f(x)—g(x) |P) p, then

b I/p
WA 4G9 =1 f~gl,=([" 1/ -g@P) 20 [ 1/ (@0-g(x)120)
M) d(i9 =0 f-gl,=0
o[ 1f0)-g@ ) dr=0

S| f(x)-gx)[P=0 ae

/(=g ()
& f=g ae.
b p
M G911l =([ 1r@ - ]
b Vp
([0 12~ 1oy 1Pas] e 1 gl =g~/
~d(z.)
M) A9~/ gl =/ h+h-gl,

<|f-gl,+lIh-¢ll,
=d({f,h)+d(,g
or d(f,@)<d(f,h)+d(h,g)
Hence L 7 is a metric space.
Theorem 7 : Show that the L P-space is a normed metric space.
Proof : By theorem 2, L 7 is linear space. Now we define a function || - ||p in/lPas:
||f||p : L — R such that

11, ], 1P a]” v rer
(i) Since | f(x) [P>0 v x e E
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= [ 1w a]” 2057, 20

Lp — Rsuchthatin L? as :
11, : L? = R such that

Ao Ifl,=0 = [f, @I ] =0

S| f(x))P=0 VxeE

< f(x)=0=VxekE

&f=0 (Zero function in L P)
(ii) ForceR, felLP

lefll, <[, 1escor a]” =1el[], 17cor a]”
=lcll 1,
(iii) By Minkowsky inequality, we have
I/ +gll, <Ifll, +lgl, VY f.gell
Hence the function || - || » satisfies all the axioms of norm i.e. it is norm in L  space.

Therefore L # space is a normed linear space.

7.4  Convergence in norm and Cauchy sequence in L ” space

If 1 <p <ooand {f } be a sequence in L ? space, then sequence {f,} is said to converge in

norm to a function f'e L7, if for each € >0, 3 n;, (€) € N such that
| S =S, <€ Y nzny(e).

This type of convergence is also known as convergence in the mean of order p when 1 < p < oo,
Let {f,} be a sequence of functions in L P-space, then {f, } said to be a Cauchy sequence, if

for any € >0, there exits n, € N such that

| S = 1 ||p <e Vmnxn,.

7.5  Completeness of L P-spaces

Theorem 8 : (Riexz-Fisher). The space L P is complete for p > 1.
Proof : In order to prove the theorem, we will show that every Cauchy sequence in L ” con-
verges to some element /' in L 7. Let {f, } be any Cauchy sequence in L #-space, then for given € >0

there exists ny € N such that

||fm_fn||p<€ VM,nZnO.
. . ) 1
Since € > 0 is an arbitrary so take €= o> Wecan find natural number 7, such that
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1
Vu=tully <5 ¥ mnzm,

1
Similarly taking €= 2_k’ V k e N, we can find a natural number 7, such that

1
||fm_fn||p<2_k vm’nznk

. 1
In particular IIfm—fnk I, < 2_k YV m=ny.

Let & = f,, > then we have

1
||gk+1_gk||p:||fnk+,_fnk Hp <2_k ..... (1)
o0 a0 1
= dlgm—g <> —=t L (1)
k=1 =1 2
= z || €x41 — &% || is convergent series :
k=1
Define g such that
g=lg @+ lgm-&lp, .. (2)
k=1
and g (x) =oo, if R.H.S. is divergent.
Now,
1
b , )l/l’ i b n po
= lim - .
(g ax) = tim ! CONEREEN
or g, Snlgn (Ilgl lp +2° 1l kst — 8k IIP] [By Minkowski’s inequality]
* k=1
=lell, +2 g —gxll<llall, +1 [by (1)]
k=1
= | g ||p is a finite quantity = g € LP [a, b]
Let E’={xe€[a,b]:g(x)=ow}.
Now we define a function f by
fx)=0 v xekFE’
and f) =g ()+) (gry1—&)  for xgE’
k=1
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m—1

or f(x)= li_r)n |:81 + D (8ra _gk)j| for x ¢ E’
e k=1

= lim g,,(x)
n—»o0

for x ¢ E’.

lim g,(x) for xgE'

Thus fx)= {m—m
0

xekE'

f(x)=lim g, (x) ae in[a,b]

or lim |g,—-f|=0 ae in]a,b]
m—>o0
m—1
Also gn(x) =g1+z (8k+1—8%)
k=1
m—1
= g | <lg |+ (8r1—&r)
k=1
<lg 1+, (81— &) =&
k=1
= g, <g v meN [by (2)]

= > lg.<g

m=l

= f1<g

Again g, f1<1g,|+|fI<g+tg=2¢g

= g, —fl<2¢g

Thus there exists a function g € L # such that

| &, —f1S2g wvm,
and lim |g,—-f|=0

m—>0

a.e.in|a, b]

Applying Lebesgue dominated convergence theorem, we get

m—»o0

. b b ..
lim [ " |g,—f17dc = lim |g,—f dx

b
=[" 0-dx=0, by (4)
a

p
= (g ) lgu-rpr ) =0
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= lim [/ g, -/1,=0
m—»0

= lim ||fnm_f||p =0 [." gm:fn ]
m—>0

m

(S
= Sl <5

S

Also ([ fu=1u, I, <5

V=Sl =l Sy =Sy + o =11,
<N o Ny 41y =11,

S
< —+-—=¢
2
= lim | £, = /[, =0
m—»0
m—>0

Hence L ? 1s complete space.

Note : By theorem we have proved that L 7 is normed linear space and from above theorem
we have proved that L ? is complete space so L # is Banach space.

Ex 1. Show that a sequence of functions in L P-space has a unique limit.

Sol. Let {f,} be a sequence of functions in L -space. If possible let f, — fand f, — g.
Then | f =/, 1 ,=0,1/,-¢gll,=0 as n—c.

New \f~gl,=l/~1, 41,2,
=1/ ~f, 1+l
=0 as n— o [ f,—> ] g, &l
= | fgl,<0=If-gl,=0, since | f-gl,=0.
=f=g

= lim £, is unique.
Ex 2. Let < f, > be a sequence of functions belonging to L P-space. If this sequence is

convergent, then it is a Cauchy sequence.

Sol. Let li_r)n Ju =7 Then for each € > 0, there exists a number n, € N such that
n o0

£ = fll,< § Ynzn, (1)

Now, if n, m > 0, then
I Sy =S =W fy =S+ =S
<ILfy =y + I~ I
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< S+Sec ng (1
S5 = [using (1]

= NS =T ||p < v m, n2nyand hence <f, > is a Cauchy sequence.

Self-learning exercise-1

1. Iff,ge LP[a,b],thenf —ge LP[a,b]. True/False

2. 2 isa self conjugate number. True/False

3. ffelPla,blandg<f,theng ¢ L? [a, b]. True/False

4. ||cf||p=c||f||p v ¢ € R. True/False

5. Iff,geLP[a,b] forp>1, then||f +g ||p > ||f||p + g ||p. True/False
7.6  Summary

In this unit we have discussed about L P-spaces, Holder-Minkowaski inequalities, completeness

of L P-spaces and some important results related to these topics.

7.7

Answers to self-learning exercises

. True 2. True 3. False 4. False 5. False.

7.8

Exercises

. Define L P-space and prove that L 7 is a Banach space.

. Asequence {f,} of functions in L # converges in mean to a functionf e L? iff ||/, —f, | —0

as n — oo.

. If0<p <1 andf, g are non-negative function in L #, then prove that

IE | () g)[dx> || fll, llglly> provided that

[ 120l dx#0, prove it

Prove that the sequence of functions in L P-space has at most one limit.

HEin
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8.0 Objectives

In this unit, we define what a topological space is, and we study a number of ways of construct-
ing a topology on a set as to make it into a topological space. We also study some of the elementary
concepts associated with topological spaces. Open and closed sets, limit points are introduced as natu-

ral generalization of the corresponding ideas for the real line and Euclidean space.

8.1 Introduction

The concept of topological space grew out of the study of the real line and Euclidean space and
the study of the continuous function on these spaces. The definition of a topological space that is given in
this unit, was a long time in being formulated. Various mathematicians — Frechet, Hausdorff and others
proposed different definitions over a period of years. It took quite a while before mathematicians settled
on the one that seemed most suitable. The definition finally settled on may seem a bit abstruct but as you
learn the various ways of constructing topological spaces, you will get a better understanding for what

the concept is.

8.2  Topological space

8.2.1. Definition :

A topological space is a pair (X ; 1), where X is non-empty set and 7 is a family of subsets of
X satisfying :

(T) detandXer

(T) It{G,: L € A} is a family of subsets of X in T, where A is an arbitrary index set, then

G = U G, isalsomt.
AeA

(Ty) 1t{G,,:m=1,2,.,n,n e N} isafinite collection of subsets of X in 7, then

H=ﬂ G; is also in 7.
i=1

The family 7 is said to be a topology on the set X. Members of 1 are said to be t-open or
simply open subsets of X.

Note 1: The property (7,) and (T3) are also stated as

(T%) 7 is closed under arbitrary union

(T%3) 7 is closed under finite intersection.

Note 2 : The same set X may have different topologies.

Let 7, and 7, be any two topologies on the same set X.
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If T, < 1,, then 7, is called weaker or coarser then 1, or 1, is called stronger or finer than
1,. If 1, © 1, and 1, # 1,, then 1, is called strictly coarser then 1, or 1, is called strictly finer then

T,. 7, and 7, are said to be comparable if either 1, < 7, or 7, C 1;.

8.2.2. Examples of topologies :

(i) Discrete topology :

Let X be any set and P(X) be the power set of X, then P(X) is a topology on X called
discrete topology on X. This topology is finest topology on X.

(i) Indiscrete topology (Trivial topology) :

Let X be any set, then T = {¢, X} is a topology on X, it is called indiscrete or trivial topology
on X. This topology is weakest or coarest topology on a set X. For a singleton set
X = {a}, discrete topology and indiscrete topology coincide.

(iii) Sierpinski space :

Let X= {0, 1}, then Tt = {9, X, {0} } is topology on X. The topological space (X, ) is called
Sierpinski space.

(iv) Let X= {a, b}, then P (X) = {9, X, {a}, {b}}, if we take

D =1{¢, X} 2) =P

G) t=1{¢, X, {a}} @) t={¢, X, {b}}
the result is always a topology. If we take

(1) =19, {a}, {b}} 2) t={X {a}, {b}}

G) =1 {a}} (4) t=1{X {a}}

the result is not a topology.
(v) Let X = {a, b, c}, then
T = {0, X, {a}}
T, = {0, X, {a, b}}
= {0, X, {a}, {a, b}}
=1, X, {a}, {b, c}}
5= {9, X, {a}, {b}, {a, b}}
6= 10, X, {b}, {b, ¢}, {a, b}}
are topologies on X and clearly t5 is strictly finer than t; and 1,, but t; and 1, are not comparable.
Also 15 and 7, are not comparable. 15 is strictly finer than t5.
Now, 4,= {¢, X, {a}, {b}} is not a topology on X as {a}, {b} € A, but their union
{a} U {b} ={a, b} ¢ A,
Similarly 4,= {¢, X, {a, b}, {b, c}} is not a topology on X as {a, b}, {b, ¢} € A, but their
intersection {a, b} N {b, c} = {b} & A,.
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(vi) Cofinite topology :
Let X be an infinite set. Let T be the family consisting of ¢, X and all subsets G of X, s.z. X~ G

is finite, then 7 is a topology on X as
(T) ¢, Xer (by definition)

(Ty) Let {G, : L € A} be a family of tT-open subsets where A is an arbitrary index set, then we

wish to show G = U G, is also t-open subset of X. Now G € 1 iff X ~ G is finite.
AeA

So X~G=x~J G =) (¥~G)) [Using De-Morgan’s law]
AeA AeA

Now each (X ~ G, ) is finite, since G, € T and arbitrary intersection of finite sets is also finite so
X ~ G 1s finite and hence G € .

(T3) Let Gy, G, € 1, we will show G, N G, € 1.

To show G, N G, € t we have to show that X ~ (G; N G,) is finite.

Now X~ (G, N Gy)) =X ~G)U (X~G,) [by D’Morgan law]

(X~ G)) and (X ~ G,) is finite, since G, G, € T and union of two finite sets is also finite so
X~ (G; N G,) is finite and hence G; N G, € 1.

Now by above argument it is easy to show that If {G, : m =1, 2,..., n} is a finite collection of

n
subsets of X in T, then ﬂ G er.
i=1

Thus by above, we can say that t is a topology on X.

Note 1 : In proof of a collection of subsets of X is a topology on X, to show the (73) condition
in the definition it is sufficient to show that whenever G|, G, € tthen G; N G, € 1.

Note 2 : One can similarly define co-countable topology on an uncountable set X.

Note 3 : If X is a finite set, then cofinite topology is same as discrete topology on X. Similarly if
X is a countable set, then co-countable topology on X is same as discrete topology on X.

Note 4 : Cofinite topology is also known as finite complement topology.

(vii) Let (X, d) be metric space. G — X is called an open set if v x € G, 3 r € R" such that
openball B (x,”) c G v x € G. Let 1 be the family of subsets of X, which are open in the above
sense. Then 7 is a topology on X and is called usual topology on X or metric topology on X.

(viii) Usual topology on R :

A subset G R is called an open set if 38 € R" such that the open interval (x— §, x + 8) ¢ G
v X € G. Let U be the family of subsets G of X, which are open in the above sense. Then U is a

topology on X and is called usual topology on R.
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(ix) Semi interval topology on R :

Let t be the collection of subsets G of R, such that v x € G 3 r € R" and [x, x + r) c G.
Then 7 is called semi interval topology on R. One can of course consider semi-open intervals of the
form (x — r, x] nstead of [x, x + r) in the definition and get another topology on R.

(x) Right | Left hand topology on R :

The topology generated by the family of intervals of the form (a, ©) = {x € R : x> a} is called
right hand topology. Similarly the topology generated by the family of intervals of the form
(-0, a)={x € R : x<aj} is called left hand topology.

Self-learning exercise-1

1. If X={a, b}, P(X) = {d, x, {a}, {b}}, then which one of the following is a topology ?

(@) T=19, {a}, {b}} () T=1{X, {a}, {b}}
© T={9, {a}} @ T=1{¢, X}
2. If X= {a, b}, then which one of the following is not a topology ?
(@ T={¢, X} ®) T=1{9, X, {a}}
© T=1{9,X, {b}} @) T=19, {a}, {b}}
3. Which of the following is a topology on X = {1, 2, 3, 4}
(@ T=1{9, X, {1}, {2}} () T=1{¢, X, {1}, {2, 3}}
© T=1{$,X {2}, {1,4}} @ T=1{¢9, X, {1}}

4. If 7, and 1, are topologies on the same set X, then prove that
() T, M 1, I1s also a topology

ii) t, U T, 1s not a topology on X.
1 2 pology

8.3 Closed sets

8.3.1. Definition :

Any set F'c X is called closed subset of a topological space (X, 1) if X ~ F'is open subset of
Xie X~F er.

A topological space (X, 7) 1s said to be a door space if every subset of X is either T-open or
t-closed.

8.3.2. Example of door space :

Let X= {a, b, ¢} and

©=1{9, X, {a, b}, {b, c}, {b}}
then PX) =19, X, {a}, {b}, {c}, {a, b}, {b, ¢}, {a, c}}
t-open sets : ¢, X, {a, b}, {b, c}, {b}
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t-closed sets : ¢, X, {c}, {a}, {a, ¢}

Thus every subset of X is either t-open or t-closed.

Note : In analogy with everyday usage, a beginner is likely to think that “closed” is the negation
of “open”, that is to say, a set is closed if and only if it is not open. But this is not so. The fact is that the
possibilities of a set being open and its being closed are neither mutually exclusive not exhaustive. For
example the null set ¢ and the whole set X are always open as well as closed in every topological space.
On the other hand the set of rational numbers @ is neither open nor closed in the usual topology on R. A
set which is both open and closed is sometimes called a Clopen set.

Theorem 1. Let C be the family of all t-closed sets in a topological space (X, t). Then C
has the following properties

CpovelCXxeC

(C,) Cis closed under arbitrary intersections.

(C3) Cis closed under finite unions.

Proof. (C)) since X, ¢ € 1 = X ~X= ¢ is t-closed

= ¢ e C.
Also X~d=X ist-closed
=>XeC
(G, Let {C, : A € A} be an arbitrary family of closed sets in C.

Let F = ﬂ C, ,toprove F € C.
AeA

Cx is 1-closed subset of X v A € A
. G, is t-open subset of X v A € A

= U G, 1s also t-open subset of X [from (7,) property of defi 8.2.1]
ALeA

= U ( X _Cl) is T-open subset of X
AeA

= X ~ ﬂ C, 1s t-open subset of X [De-Morgan’s Law]
LeA

= F = ﬂ G, 1s also t-open subset of X
ALeA

= F € C = Cis closed under arbitrary intersection.
(G3) LetCyand C, € C toprove C; U C, € C.

C,,C,e C=X~C,and X~ C, are t-open

= X~ Cp) N (X~C,)is t-open
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= X~ (Cyu G, is t-open [De’Morgan’s Law]
= C, v C, is t-closed subset of X
= C,V C, € C = Cis closed under finite union.
Theorem 2. Let X be any set and C is a family of subsets of X which satisfy the property
(Cy) — (C3) of Theorem 1. Then there exists a unique topology T on X such that C coincides with
the family of closed subsets of (X, 7).
Proof. Here we are given a set X (just a bare set with no topology on it) and some collection
C c P(X) of it’s subsets. We are given that property (C,) — (C3) holds for C. We do not know how C
originated, nor do we know whether its members are closed subsets of X. Actually it is meaningless to
talk about closed subsets of X, unless a topology on X is specified.
Now we define a topology t on X consist of complements (in X) of members of C i.e.
t={BcX:X~BeC(C}
First we show that t is a topology on X
(T) ¢,Xer since peC=>X~¢=Xen
and XeC=>X~X=¢er.
(T,) 7 is closed under arbitrary union :

Let {G, : L € A} be any arbitrary collection of subsets of Xintie G, et v A €A

= X~G,eCvy hen
C is closed under arbitrary intersection
AeA
= X~ U G, |eC [De-Morgan’s Law ]
LeA
= U G,er
ALeA
= 7 18 closed under arbitrary union.

(T3) 7 is closed under finite intersection :
Let G, G, € 1. To prove G; N G, € 1.
C is closed under finite union

X~G)UX~G,eC

= X~(G, NnGy)eC [De’Morgan’s Law]
= G1 N G2 e
= T 18 closed under finite intersection.

165



It is clear that t-closed subsets of X are precisely the members of C. Thus 7 is the required
topology.

8.3.3. Closure :

The closure of a subset of a topological space is defined as the intersection of all closed subsets
containing it. Or in other words the smallest closed set containing it. [f 4 < X then closure of 4 is
denoted as 4 and defined as

4 =N{CcX:CisclosedinXand 4 c C}

Theorem 3. Let A and B be subsets of a topological space (X, 7).

(i) A is a closed subset of X. More over it is the smallest closed subset of X containing A

i.e. if Fis closedin X and A c F then 4 Cc F
(i)  =¢
(iii) A is closed in X iff 4 = A
) 4=4
V) 4AOB=AUB
Proof. (i) and (ii) are immediate consequence of the definition and properties of closed set.
(iii) Let A is closed in X, then A itself is the smallest closed set containing 4 thus A = A con-

versely let A = A, then clearly 4 is closed as it is equal to the smallest closed set containing 4. Thus we
have A is closed in X iff 4 = 4.

(iv) Since A is a closed set thus using (i)
(4)=4
WAsdc A andBc B =>AUBcAUB . (1)

Now by definition 4 U B is the smallest closed set containing 4 U B and A U B isaclosed

set being union of two closed sets, tus AUB c AU B .. (2)

Now since whenA1 cA,=> Zl c Zz

therefore AcAUB= A < AUB . (3)
BcAUB= B c AUB 4)
R)and@)= AU B < AUB (5)

(2)and (5)= AUB =4 U B

8.3.4. Dense subset :

A subset 4 — X of a topological space (X, 1) is called a dense subset of X if
A=Xx

Trivially, the entire set X is always dense m itself.
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Theorem 4. A subset A of a space X is dense in X iff for every non empty open subset G
of X,An G #¢.

Proof. Let A is dense in X and G is a non empty open set in X. If A N G = O, then
AcX~G.

= AcX~G=X~G [ Gisopenso X ~ G is closed in X]
but since 4 is dense in X so 4 =X

= X c X~ G which is a contradiction, thus 4 U G # ¢

Conversely assume that 4 meets every non-empty open subset of X. This clearly means that

the only closed set containing A is X and consequently 4 = X.

8.4  Neighbourhood

8.4.1. Neighbourhood of a point x :

Let (X, 1) be a topological space. A subset A — X is called a neighbourhood of a point x € X
if 3 G € twithx € Gs.t. G < A. The word neighbourhood is, in short, written as ‘nbd’. From the
definition of nbd it is clear that any open set G — X is nbd of each of its point x € G.

8.4.2. Deleted neighbourhood :

If A is anbd of a point x € X, then 4 ~ {x} is called deleted neithbourhood ofx.

8.4.3. Open neighbourhood :

In any topological space nbd of a point need not be an open set. On the other hand every open
set is nbd of each of its points, such a nbd of a point is called open neighbourhood of that point.

8.4.4. Neighbourhood of set :

Aset Nc XiscalledanbdofasetAcXif 3 Getst Ac G N

8.4.5. Interior point :

Let (X, 1) be a topological space let x, € 4 < X. Then x, is called
T-interior or interior point of 4 if 3 G € tsuch thatx, € G 4 i.e. if 4 is nbd of x,,.

8.4.6. Interior of a set :

Let (X, 1) be a topological space and 4 — X. Then the interior of 4 is defined to be the set of all
interior points of 4. Ifis denoted as A” or int (4) or int_ (4). Thus

A" ={xeA:Aisanbdofx}
Theorem 5. 4 subset of a topological space is open iff it is nbd of each of its points.
Proof. Let (X, 1) be a topological space and G — X. First assume G 1s open. Then by definition

of nbd, G 1s nbd of each of its points. Conversely assume G is a nbd of each of its point. Then for each

x € G, there is an open set V,_such that x € V. < G. Clearly then G = U V. Since each V_ is open
xeG

and G is arbitrary union of open subsets of X thus by property (77,) of definition 8.2.1 G is open.

167



Corollary 5.1 : Asubset A of a topological space is open iff
A =4
Theorem 6. Let (X, t) be a topological space and A — X. Then A° is the union of all open
sets contained in A. It is also the largest open subset of X contained in A.

Proof : Let U be the family of all open sets contained in 4 (U is non-empty since ¢ € U'). Let

V=|J G.We wish to show V'=int (4) or 4°
GeU

Now if x € V, then x € G for some G € U. This means 4 1s nbd of x and so x € 4°. Con-
versely let x € A°, then there is an open set / such that x e H c 4. Butthen H € Uand so Hc V, so

x € H= x € V. Thus we have y — U G=A".
GeU

This proves first assertion of the theorem and also shows that 4° is an open set contained in A.

Now suppose G is an open set contained in 4. Then G € U and so G < A°, thus 4° is the
largest open set contained in A4.

Theorem 7. Let (X, t) be a topological space and x € X be arbitrary. Then

(i) there is at least one nbd for x

(ii) for eachnbd Nofx,x e N

(iii) 1f M is a super set of a nbd N of x, then M is also a nbd of x.

(iv) if N| and N, be neighbourhoods of x, then N; N N, is also a nbd of x.

Proof : (i) x € X< X and X € r, thus by definition X is a nbd of x. Hence 3 at least one nbd

for x.
(ii) Let Nbeanbdof x=>3Getst.xeGcN=>xe N
(iii) Let Nbeanbdof x=3 Getst.xe GC N
Now M > Nthusx € G Nc M = M is also nbd of x.
(iv) Let N, and N, be nbds of the same point x, then
1G,G,etst.xe GicN,xe G,CN,
=>xe G NnG,cN NN, [ fortopologyton Xif G, G, e 1= G, N G, € 1]
thus3G=G;NG,st.xe GC N N N,,and G e 1.
= N; N N, is also anbd of x. [by definition]
8.4.7 Neighbourhood system :
Let (X, 1) be a topological space. Let 1 be the set of all neighbourhoods of x in X (with re-
spect to given topology t). The family 1 . is called the neighbourhood system at x.
Now if 1, is a nbd system at x, then using Theorem 7 we can show that n has following
properties :

168



[Nol: M, #¢ VxelX

[Ml: Nen,=> xeN

[V;]: Nen, MoDN= Men,

[N;] : Nen,Men, = NnMen,

[NJJ: Nen,=>3IMen, st. McNand M e n, VyeM

Theorem 8. [Characterization of a topological space in terms of neighbourhoods| Let
X be a non-empty set and x € X, let there be associated family N (x) of subsets of X, satisfying
the conditions [N,] to [N,] mentioned above. Then there exist a unique topology t on X such that
if m, is the collection of nbds of x, defined by the topology © on X, then N (x) =n,

Proof : Here given that X is a non-empty set, and N (x) be a family of subsets of X satisfying
the condition

[Nol: N #¢ VxelX

[NI: Ne Nx)= xeN

[N;]: NeN(x), MO N= M e N (x)

[N;]: Ne N(x), Me N(x) > NN MeN(x)

[Nf: NeNx)=>3IMeNxst McNandMeN(y) VyeM.

We define 7 as follows :

GeteGe N VxeG

To prove 1 is a topology on X

(T)) Since ¢ contains no point, the statement ¢ € N (x) for all x € ¢ is trivially true.

Since by [Ny] N (x) # ¢ VxekX

= 3G e N(x) VxelX

since. XD G thus from [N, ]

X e N(x) VxelX

= Xen

(T5) Let {G, : A € A} be an arbitrary family in t

= G, € N(x) VxeG, and V Aen

= G, € N(x) V xeuiG, i A en}

= U G, € N(x) Ver G,

AEA AEA

= U G, et

AEA

(Ty) LetGl G2
= G, N vVvxeG and G,eN(x) VxeG,
= G, NG, eN(©x) V xe GyNG,, by [N;]
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= G, N G, € 1 by defi. of 1.
Hence 7 is a topology on X.
Second part : It remains to prove that
N (x)=n,
Let N € N (x) be arbitrary. Then by [N,] 3 M € N (x)
suchtht Mc NandM e N(y)V yeM
= M e 1 by defi. of ©
Also MeNx=xeM byl[N]
Now xeMcN where Men
= Nisat-nbdofxand N e n,
thws Nx)cm, (1)
conversely let P € n, = Pis a t-nbd of x
= dQ0ert st. xeQcP
Now Qet=QeN(x) vV xeQ
Now Qe N(x)and P> Q= P € N(x) using [N,]
= ncNx (2)
from (1) and (2) = n, =N (x)
8.4.8 Limit point :

Let A be a subset of a topological space X and x, € X. Then x, is called limit point of 4 if
every open set containing x,, contains at least one point of 4 other then x,. Limit point is also known as
accumulation point or cluster point.

As examples, in a discrete space no point is a limit point of any set while at the other extreme, in
an indiscrete space, a point x;, is a limit point of any set 4 provided only that 4 contains at least one
point besides x,. In the usual topology on R, every real number is a limit of the set of rational numbers,

while the set of integers has no limit point.
8.4.9 Derived set :

Let 4 be a subset of a topological space (X, ). Then the derived set of 4, denoted by 4", is the
set of all limit points of 4 in X.
Obviously A4 ”depends not only on 4 but also on the topology under consideration.
Theorem 9. For a subset A of a topological space (X, 1), 4= AU A’
Proof : First we claim that 4 U A4’ is closed or that X ~ (4 W A”) in open. We do so by
showing that X ~ (4 U A") is nbd of each of its points. Let
yveX~AuvAd')=yeAuAd'=>ye A andy ¢ 4
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= y is not a limit point of 4, there exist an open set V' € T containing y such } contains no point

of A except possibly y. But y ¢ 4, so we have 4 N V'=¢. We claim 4" " V' is also empty. For, let

z € A’ V. Then V'is an open set containing z, which is a limit point of 4, so V' 4 # ¢, which is a

contradiction, so A’N V= ¢ and hence V< X ~ (4 WU A”). This proves that 4 U A4”is closed and
obviously contains. 4 i.e.

AcAVA S A AUA =AU A [+ AU A is closed]

—AdcAud (1)

For the other way inclusion 4 U A’ < 4, it suffices to show that 4’ 4, since we already

have A c 4.
Let ye d,if yg A, then veX~ A which is an open set, since 4 is always a closed set. But

y is limit point of 4 so (XNZ)QA;&Q which is a contradiction since AcZ:(X~Z)C(X~A),so

yez —=Acd thus Audcd .. (2)
from(1)and (2) = A=AuU 4.
Theorem 10. Let (X, 1) be a topological space and let A, B be non-empty subsets of X,
then
® =9
(i) xeAd'=>x e~ {x})
(iii) AcB=>A'cB’
(ivy (AUB)=A4"UB’
v (ANnB)Yc A’nB’
here A’ means derived set of A.
Proof : (i) Let x € X be arbitrary and let G be an open set s.t. x € G, then (G~ {x}) "o =¢
=> x is not a limit point of ¢
=>x¢¢ vxeX = ¢=0

(ii) Letx e A, then (G~ {x}) "A#¢Vv G € t,suchthatxe G. ... (1)
Now (G~ {xp) N (4~ {x})
= (G X)) An X9 [Here {x}¢ =X~ {xj]
=GNAnN{xi°n {x}¢
=GNAn {x}€
=G ) NA#d by (1)
=>xe (A~ {x})
Thus xeA'=>xe A~ {x})
(iii) Let x € A’, then
(G~{x})mA#=¢ v Gert suchthatxeG .. 2)
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AcCB=AN (G~ {x})cBN (G~ {x})

= BN (G~ {x})#d

=xeB’
thus xeA'=>xeB' =>A'cB’
thus AcB=>A'cB"

(iv) SnceAcAUB, BcAUB
A’'c(4v B), B’'c (4w B) from (iii)
= A’"OUB'c(4vB)
For the converse part let
x € (A U B)', then we must show that x € 4" U B’
we will prove the contra positive of above i.e.
if xegA’"UB’ then x¢ (44U B)’
Now x¢A’'UB'=x¢ A’ and x ¢ B’

= J open sets G, and G, € T suchthatx € G, andx € G,

but (G, ~{x})NA=¢6=(G,~{x}) "B
Nowx e G,U G, e
[(G, ~ {(x}) N A] U [(G, ~ {x}) N B] =
= [(GuGY~InUUB) =}
= Janopenset G, UG, e ts.t.x € G, U G, and
[(G, UGy~ x)] N (A UB) =
= x¢e¢((AduB)
thus (AUB)YcA'UB’
from (1) and (2) = (4 W B)'=A"UB".
(v)SnceAnBcAandANBcB
= (ANnB)Y cA’ and (AN B) B’
= (ANnB)cA'nB".

8.4.10 Exterior of a set :

by (2)

by (iii)

The exterior of a subset 4 of a topological space (X, ) is defined as interior of (X ~ A4). Thus

symbolically ext (4) = (X ~ 4)°, elements of ext (4) are called exterior points of A.

8.4.11 Boundary set :

The boundary set of a subset 4 of a topological space (X, 1) is the set of all points which

belong neither to the interior of 4 nor to the exterior of 4 and is denoted by b (4). Thus symbolically

b (4)=X~ (4° U ext (4))

elements of b (4) are called boundary points of A.
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8.5  Sub Space

8.5.1 Sub space:

Let (X, t) be a topological space and ¥ < X such that ¥ # ¢. It is natural to inquire whether t
induces a topology on Y and if so how the two topologies are related. Now we define a topology S on Y
by following way, if G is an T-open set in X then H= G N Y'is S-open set in Y i.e.

S={GNnY:Ger}

First we verify that S is a topology on Y.

(T) ¢eSandYeS

since dbet=dNnY=¢€eS
Xet=>XnY=YeS [ YcX=2XnNnTY=Y]
(Ty) Let {H, : A € A} be a family of subsets of Yin Si.e. H, € S, VA e A
To show HZU H, €S
rEA

Since H, e SVAeAn=3G, et, VA e asuchthat H, =G, NY, VA € A

= {G, : A € A} be arbitrary family of t-open sets in X
= G= p Gy et [t is a topology on X]
- GmYeS:(U Gk]mYeS

rEn

U (G.nY)es= ] H,eS

AEA AEA

H=|]) H, €S

AEA

—
(T3) Let Hand H, € S = G, G, € T such that
H =G nY, H,=G,nY

Tisatopologyon X = G, NG, et

= (GiNnGy)NYeS
= G N"Hn(G,n Y es
= H n"Hy,eS§

Thus S is a topology on Y called relative topology on Y induce by topology T on X. The space
(7, S) is called subspace of (X, 1).
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8.5.2 Hereditary property :

A property of topological space is said to be hereditary if whenever a space has that property,
then so does every subspace of it. A trivial example of a hereditary property is the property of being
either an indiscrete or discrete space i.e. every subspace of indiscrete or discrete space are indiscrete or

discrete space respectively.

8.6  Solved Examples

Ex.1. Suppose 1 is a family consisting of ¢ and all subsets A, of N of the form
A,={n,n+1,n+2,..} vneN
(i) Show that v is a topology on N
(ii) Find open sets containing 2 and 7 respectively.
Sol. (i) To prove that 1 is a topology on N
(T) ¢ € t(Given)

N=4,=1{1,2,3,..} et
(T,) Let {4;:i € A} be the family of t-open subsets of N. Let 4 = U {4, : i € A} here A

being a subsets of /V contains a smallest positive integer 7,
A=V {4, i e Ay ={nypny+ 1, nyt2,..}
=4, e

(T3) LetA,, A4, €tforsamen, me N

Now A, NA, ={n,n+t1,n+2, . ynimm+1,m+2,..}
fn<m A, NA,={imm+1l,m+2,..}=4 ez
fm<n A, NA,={n,nt1l,n+2, ..} =4 et

= A4, A,, € Tinevery case.

= tisatopology on V.

(ii) The open sets containing 2 are
A;=N=1{1,2,3,..}
A,=12,3,4, ...}

The open sets containing 7 are
A,=11,2,3,4,5,6,7, ...}
A,=12,3,4,5,6,7,8, ...}
A3=13,4,5,6,7,8, ...}
Ay=14,5,6,7,8, ...}
A5=15,6,7,8,9, ..}
Ag=16,7,8,9, ..}
4,=17,8,9, ..}
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Ex.2. Let U be the collection of all subsets G — R, having the property that to each x €
G 36> 0 such that open interval (x —d,x +8) c G, Vx € G.

Show that U is a topology on R (Usual topology).

Sol. (T)) ¢ € U, since ¢ < R and ¢ does not contain any element and therefore the condition
x € (x— 9, x +J) < ¢ is vacuously true.

R € U, since Vx € R 3 open interval i.e. 3 6> 0 such that x € (x — 0, x — ) — R.

(T5) Let {G, : A € A} be the arbitrary family of subsets of R such that G, eU VA € A.

To prove that G:U G, eU. LetxeG

NI
=Xx € Gx to same A € A. Since Gx eUand x € Gx thus 306> 0 s.¢.

xe@x-8,x+8 <G c|) G =G

AEA

= Ge U
(T3) Let Gy, G, € U,toprove Gy, N G, e U
if G, N G, = ¢, then obviously G; N G, € U, so let us assume G; N G, # ¢ and let
xe G NG,
= x e Gy andx € G, where G|, G, e U
= 38, >0 and 6, > 0 such that
xe(x—-98,x+06)c G andx € (x—0,,x+9,) <G,
Let 6 = min {3, d,} then 6> 0 and
xe(x-98,x+td)c(x—-06,x+8) G,
and xe(x-0,x+d)c(x—95,,x+0,) G,
= xe(x-98,x+3)cG;NG, =G NG, e U
Ex.3. Let © = {¢, X, {a}, {a, b}, {a, b, e}, {a, ¢, d}, {a, b, c, d}} be a topology on
X={a,b,c,d, e}, then:
(i) List all T-open subsets of X
(ii) List all t-closed subsets of X
(iii) Find the t-open nbds of a
(iv) Find the closure of the sets {a}, {b} and {c}
(v) Find the interior points of the subset A = {a, b, c}
(vi) Which of the sets {a}, {b}, {c, e} are dense in X.
Sol. (i) T-open subsets of X are the elements of T namely
0, X, {a}, {a, b}, {a, b, e}, {a, c,d}, {a,b,c, d}
(ii) t-closed subsets of X are
X-0, X-X, X-{a},X—{a, b}, X—{a,b,e},X—{a,c,d},X—{a, b, c, d}
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ie. X, 0, {b,c,d, e}, {c,d, e}, {c,d}, {b, e}, {e}
(iii) t-open nbds of a are open sets containing a
{a}, {a, b} {a, b, e}, {a,c,d} {a,b,c,d}, X
(iv) @ =N {F: Fist-close subset s.t. {a} c F} =X,
since X is the only closed subset which contains a
(b} =X (b, c,d, e} N {b, e} = {b, ¢}
@ =Xn{b,c,d, e} N {c,d e} {cd}={cd}
MA°=u{G:Ger,Gc A} ={a} v {a, b} ={a, b}
(vi) A is called dense in X if 4 = X, from (iv) it is clear that {a_} =X so {a} is dense in X,
since X =X { Xis closed}
= Xis dense in X
but  {b}=1{b,e} # X = {b} is not dense in X
also @ ={c,d,e} # X = {c,e} isnot dense in X.
Ex.4. Give examples to show that arbitrary union of closed sets is not necessarily closed
and arbitrary intersection of open sets is not necessarily open in a topological space.
Sol. Let t-denote the usual topology U on R
Let FHZ[O,L} vneN
n+1

The Fn 1s T-closed subset of R Vn e N

[Since closed intervals are t-closed sets in (R, U)]

” 1 2
F, =10,—|ul0,=]|uU..=][0,1
but n=l1 [ 2j| [ 3j| [ )
= semi open set # closed subset of R
-1 1
Now let G,=| vneN
n n
The G, is t-open subsets of R Vn € N

[Since open intervals are t-open sets in (R, U)]
~ 2 (=11 -1 1
G, = ——|=(-L) | —,=|n
o 3 ﬂl(n n] =1) (2 2]

= {0} # open subset of R.
EXx.5. Give two examples of topologies on X = {a, b, c} in which every open set is also a

closed set.
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Sol. (a) Here X = {a, b, c}. Now consider discrete topology (X, D) on X, in which every sub-

set of X'is open i.e.

Since

D-open sets are ¢, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}
D-closed sets are X, ¢, {b, ¢}, {a, ¢}, {a, b}, {c}, {b}, {a}
thus every D-open set is also D-closed sets.
(b) Consider the topology t = {9, X,{a}, {b,c}} on X
T-open sets are ¢, X, {a}, {b, c}
t-closed sets are X, ¢, {b, c}, {a}
= every t-open set is also t-closed set.
Ex.6. Find three mutually non-comparable topologies for the set X = {a, b, c}.
Sol. Let T, =19, X, {a}}
T, =1{, X, {a, c}}
3= {, X, {b, c}}
Then the topologies t;, T, and 15 are mutually non-comparable.
Ex.7. Show that any finite subset of R is closed set for the usual topology U on R.
Sol. Let 4 = {a,, a,,..., a,} be a finite subset of R. First we shall show that {a,} is closed.

R—{a;}=ixeR:x+#a}
={xeR: either x<1 or x>a}
=xeR:x<auUui{xeR:x>a}
= (— 0, a;) U (a}, )
= union of two open rays, since open rays are U-open sets in R
R — {a} = union of two U-open sets
= U-open set
= {a,} is U-closed set
Thus every singleton subset of R is closed
Now A=1a;} v {ay}0..U {a,}
= finite union of U-closed sets
= U-closed set [by Theorem 1]
= Every finite subset of R is a U-closed set.
Ex.8. [s An B = A~ B? Give reason in support of your answer.
Sol. We know from Theorem 3(v) that 4~Bc A~B but AnB < AN B.
Let 4 =(0, 1), B=(1, 2) be two open subset of R in usual topology, then 4 N B = ¢ and so

ANB=¢0=0¢
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but A4=[0,1],B=[1,2]

= ANBZz ANB
thus ANB#ANB
Ex.9. Let t={¢, X, {1}, {1, 2}, {1, 2,5}, {1, 2, 3,4}, {1, 3, 4}} be the topology on
X={1,2,3,4,5}
Determine limit points, closure, interior, exterior and boundary of the following sets :
i A=1{3,4,5} (ii) B = {2}.
Sol. T-open sets are : ¢, X, {1}, {1, 2}, {1, 2,5}, {1, 2, 3,4}, {1, 3,4}
t-closed sets are : 0, X, {2,3,4,5}, {3,4,5}, {3,4}, {5}, {2, 5}
(i) A=1{3,4,5}
4 =N {FcX:Fisclosed, Fo A4} = {3,4,5}
The following sets are open nbds of 1 :

X, {1}, {1, 2}, {1, 2,5}, {1, 2, 3,4}, {1, 3,4}

Now (1} —{1}H) A= oé6n A=¢
thus 3 open set G = {1} such that
(G~{1)nd=¢

= 1 is not limit point of 4.
Now G = {1, 2} is the open set containing 2 and
G~2)nd=¢
= 2 1s not limit point of 4
T-open sets containing 3 are : {1, 2, 3, 4}, {1, 3,4}, X
Let G,=11,2,3,4},G,=1{1, 3, 4}.
Now (G, ~3)nA={4} ¢
Gy~ (3 NA= {4} %
= 3 is limit point of 4
Similarly 4 is limit point of 4 [prove by your own]
T—open set containing 5 are : {1,2,5}, X
G=1{1,2,5} then
(G~ {5})nA4=0
= 5 is not limit point of 4
". derived set 4= {3, 4}
Now A= {G:GcA,Get}=0U{d}=0¢
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@  B={2;

ext(d) = (X ~A)*={1,2;°=v {{1}, {1, 2}, ¢} = {1, 2}

b(A)=X~(4° Uext(4)=X- (U {1,2})
={3,4,5} =4

t-open sets containing 1 : {1}, {1, 2}, {1, 2, 5}, {1, 2, 3, 4}, {1, 3, 4}

Let

G=1{1} so (G~{1}))NnB=¢

= 1 is not limit point of B.

t-open sets containing 2 : {1, 2}, {1, 2, 5}, {1, 2, 3, 4}

Let

G=1{1,2} so (G~{2))nB=¢

= 2 1s not limit point of B

Similarly you can show 3, 4 are also not limit points of B

Now t-open sets containing 5 : G, = {1, 2, 5} and X
(G ~BHNB={12}#¢
(X~ {(5)NB={2} %

= 5 is a limit point of B
.. derived set of B=B’= {5}

B =N {FcX:Fist-closed and F o B}
=1{2,3,4,5} n{2,5} ={2,5}
BP=u{G:Getand Gc B} =U {0} =¢
ext(B)=(X~B)={1,3,4,5}°=0 {0, {1}, {1,3,4}} ={1, 3,4}
b(B)=X—(B°Uext (B) =X—(d U {1,3,4})
=1{2,5}

Ex.10. Let t be a topology on a set X consisting of four sets i.e. T = {$, X, A, B}, where A

and B are non-empty distinct proper subsets of X. What conditions must A and B satisfy ?

Sol. Since 4 N B must also belong to T, there are two possibilities :

Casel:4nB=¢

Thus A U B cannot be 4 or B; hence 4 U B=X.

Thus the class {4, B} is a partition of X.

Case2:AnB=4 or AnB=B

In either case, one of the sets is a subset of the other, and the members of t are totally ordered

byinclusion:pcAcBcX orpcBcAcCX
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Ex.11. Consider the following topology on

X=1{a,b,c,d, e}, t=1{¢, X, {a}, {a, b}, {a,c,d}, {a, b, c}, {a, b, c,d}}

List the member of the relative topology t , on A = {a, c, e}

Sol. 1, ={4 "N G : G € 1} so the members of T, are
ANnX=4 An{a}={a} Anda,c,dy={a,c} An{a, b, e}=1a,e}
ANnd=9¢ Andia, by ={a} An{a,b,c d}={a,c}

i.e. T, =10, 4, {a}, {a, c}, {a, e}}

observe that {a, c} and {a, e} are not open in X, but are relatively open in 4 ie. T, open.

Self-learning exercise-2

. Let 1 be the topology on V consisting of ¢ and all subsets 4, of the form

A,={n,n+1,n+2, ..}
whenn € N:
(i) Determine the closed subsets of (V, ).
(ii) Determine the closure of the sets {7, 24, 47, 85} and {3, 6,9, 12, ...}.

(iii) Determine those subsets of NV, which are dense in V.

. Let X={a, b, c, d, e}. Determine wether or not each of the following classes of subsets of X is

a topology on X

@ =19, X {a}, {a, b}, {a, c}}.

(i) ©y=1{¢, X, {a, b, c}, {a, b,d}, {a, b, c,d}}.
(i) T3 =19, X, {aj, {a, b}, {a, ¢, d}, {a, b, ¢, d}}.

. (i) Indiscrete topology every point p € X is a limit point of every subset A — X T/F
(ii) Discrete topology on a set X # ¢ is door topology. T/F
(iii) In indiscrete topology every non-empty subset A — X is dense in X. T/F
8.7 Summary

In this chapter we have studied the concept of a topology on a non-empty set X. We have also

discussed various examples of topologies and studied that it is possible to define different topologies on

the same set. We also studied how these topologies are related to each other. We have also studied

about closed sets, closures, derived set, interior, exterior and boundary of a set in a topological space

and proved various theorems on their properties. We have studied a topology can also be defined in

terms of closed sets and neighbourhood systems. Finally we have studied a way of defining a topology

on a subset of a topological space by relative topology.
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8.8

Answers to self-learning exercises

Self-learning exercise-1

. (d) 2. (d) 3. (@)
. (ll) Let X= {a’ b’ c}’Tl = {d),ZY, {a}}’ ‘52: {d),ZY, {b}}

Then 1, and 1, are topology on X but
T, UT, = {¢, X, {a}, {b}} is not a topology on X

Self- learning exercise-2

(i) A setis closed iff its complement is open. Hence the closed subsets of V are as follows :
o, N, {1}, {1,2}, {1,2,3},...,{1,2,3,..., m}, ...

(ii) The closure of a set is the smallest closed super set. So
{7,24,47,85} ={1,2,3,...,85}

(3,6,9,12,..} ={1,2,3,.} =N
(iii) 1f a subset 4 of V is infinite, or equivalently unbounded, then 4_ v i.e. 4 is dense in N. If
A 1s finite, then its closure is not &V, i.e. A is not dense in V.
(i) t, is not a topology since {a, b} U {a, c} & 14
(ii) T, is not a topology since {a, b, ¢} N {a, b,d} & 1,
(iit) T4 is a topology
(i) F @i T (i) T

8.9

Exercises

. Consider the collection t consisting of ¢, /V and all subsets of V of from G, = {1, 2, 3,..., n},

v n € N. Show that 1 is a topology on V.

. Consider that topology T on N given in Q.1,

(i) List all closed subsets of N

(ii) Find the closure of {2, 3, 6, 12}, {2,4,6, ...} and {1,2,3,5,7, 11, 13, ...}
(iii) Determine those subsets of /V, which are dense in /V.

(iv) Find the derived set of {1, 3,5, 7, ...}, {1,2,3,4,} and {1, 4,9, 16, ...}
(v) Determine interior of {1, 3,5, 7, ...} and {2,4,6, ...}

(vi) Find t-open nbds of 5 and 11.

. Let X'be a topological space and let ¥ and Z be subspaces of X such that ¥ — Z. Show that the

topology which Y has as a subspaces of X is the same as that which it has as a subspace of Z.

. Show that a subset 4 of a topological space X is closed iff A=A
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10.

11.

Show that a subset 4 of a topological space X is open ift 4° = A.

Show that if 4 is t-closed subset of X and x € X ~ A4, then 3 t-nbd M of x such that
MnA=¢.

Show that closed intervals are closed set in usual topology on R.

Let (X, 1) be a topological space, and 4, B — X. Then show that

@) ¢°=¢ (i) X°=X
(iiij) A= B = A° c B° (iv) (4°)° = A°
(v) (4" B)°=A°B° (vi) (AU B)° > A° U B°.

Let (Y, ‘Ey) be the subspace of a topological space (X, 1) and 4 < Y. Let cly, (4) and cl, (4)

denote closure of 4 in T, and 1 topologies on Y and X respectively, then show that
cy(A)=cly(A)N Y.

Let (Y, ‘Ey) be the subspace of a topological space (X, t). Then show that every Ty-open set is

also t-open iff Y is t-open.

In any topological space, prove that b (4) = ¢ iff 4 is both open as well as closed.

HEin
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Unit 9 : Bases, Sub-bases and Continuity

Structure of the Unit

9.0 Objectives

9.1 Introduction

9.2  Base for a topology

93 Subbases

9.4  Local base
9.4.1 First countable space
9.4.2 Second countable space

9.5 Continuous mappings

9.6 Continuity at a point

9.7 Open and closed functions

9.8  Homeomorphism

9.9 Summary

9.10  Answers to self learning exercises

9.11 Exercises

9.0 Objectives

In this unit we have define very important concept of bases and subbases in topology. After read-
ing this unit, you will learn how the concept of bases is very useful in defining and discussing the proper-
ties of a topological space. You will also learn that how the concept of continuity can be generalized in a

topological space. In the end, you will also learn about homeomorphism between topological spaces.

9.1 Introduction

In all the examples of topological spaces in previous chapter, we were able to specify the entire
collection of open-sets. A topology on a set can be a complicated collection of subsets of a set, and it
can be difficult to describe the entire collection, so instead we specify a sub-collection of open sets that
generates the topology. One such collection is called a basis and another is called a sub-basis.

Continuity 1s of fundamental importance in topology. Indeed it is a basic to much of mathematics.

A topology on a set is a structure that establishes a notion of proximity on the set. Continuous functions
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between topological spaces preserve proximity, reflecting the idea that a continuous function sends points
that are close in one space to point that are close in the other. A continuous bijective function that has a
continuous inverse is called a homeomorphism. Such function provide us with the main notion of topo-

logical equivalence.

9.2  Base for a topology

Let (X, 1) be a topological space. 4 class B of open subsets of X. i.e. B — 1, 1s a base for the
topology 1 iff every open set G € 7 is the union of members of B or equivalently, B — 1 is a base for 1
iff for any point p belonging to an open set G, there exist B € B with p € B — G. The elements of B are
referred to as basic open sets.

Ex.1. The set of all open intervals in R form a base for the usual topology on R. For if
G c Ris open and p € G, then by definition, there exists an open interval (a, b) with

p€(a b)cG

Similarly the set of all open intervals (r, s) with v and s as rationals also forms a base for
the usual topology on R.

Ex.2. The collection of all open circular discs (i.e., not containing the points on circumfer-
ence) in R% forms a base for the usual topology on R>.

Ex.3. Consider any discrete space (X, D). Then the class B = {{p} : p € X}of all singleton
subsets of X is a base for the discrete topology D on X. For each singleton set {p} is D-open,
since every A — X is D-open, furthermore, every set is the union of singleton sets.

Ex.4. Let X={a, b, c}, B= {{a,b}, {b,c}} cannot be a base for any topology on X. Since
{a,b} and {b,c} would them selves be open and therefore their intersection {a, b} " {b, ¢} = {b}
would also be open, but {b} cannot written as union, of members of B.

Theorem 1. Let B be a collection of subsets of a non empty set X. Then B is a base for
some topology on X iff it satisfy the following two conditions :

B)X=U{B:BeB}

(B,) Forany B, B, € B, ifx € By N B, then 3 By € B such thatx € By B, " B,

Proof. First we assume that B is a base for a topology t on X. Since X is open subset of X, X is
the union of members of B. Hence X is the union of all members of B, i.e. X=1U {B : B € B}

Furthermore if B, B, € B = B/, B, are t-open subsets of X = B, M B, is also t-open subset
of X, since B is a base for t, therefore by definition if x € By n B, 3 B; € B such that
x € By © B; N B,. Thus both the condition (B,) and (B,) are satisfied.

Conversely we assume B is the collection of subsets of X satisfying (B,) and (B,). Let 1 be the
collection of all subsets of X which are unions of members of B. We claim that t is a topology on X.

Observe that B — 1t will be the base for this topology.
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[T,] By (B)) X=U {B: B € B} so X € 1. Note that ¢ is the union of the empty subclass of B,
ie. ) =U {B:B e ¢ B}, hence ¢ € 1and so t setisfies [7}].

[T,] Now let {G, : L € A} be a class of members of t. By definition each G, is the union of

members of B hence the union U G, 1s also the union of members B and so U G, et.Thus t
reA reA

satisfies [T,].
[75]. Let Gy, G, € 1. By definition of t there exist two subclasses {B; : i € I} and {Bj :jed}

of B such that G, = U B, and G, = U B; [Here I and J are some index sets]. Then
iel jed

GlmGzz[UBi]m[UBj] =U{B,NB:icljeJ)

iel jed

let by [B,], B; N Bj is the union of members of B hence G; N G, =V {B; N Bj :iel,jeJ}isalso
the union of members of B and so belongs to t, which therefore satisfies [75].

Hence 7 is a topology on X, with base B.

Theorem 2. If B is a sub class of t, then the following statements are equivalent (i.e. the
two definition given for B to be a base are equivalent)

(i) Each G € 1 is the union of members of B

(i) For any point p € G, where G is an open set 3 B € B such thatp € B c G

Proof. (i) = (ii)

Let G € 7 is the union of members of B i.e.

G= U B, when B, € B Vi e I (Index set)
iel
then eachpoint pe G = pe U B;
iel
= Jiy el suchthat p€ B, , so peB,.OcUB,.:G
iel
(ii) = (i) Let for eachp € G, 3 Bp € B such that
p € Bp cG

then G=uU {Bp : p € G} and G is the union of members of B.

Theorem 3. Let B be a base for a topology © on X and let B be a class of open sets
containing B i.e. B < B* 1. Then B” is also a base for t.

Proof. Let G be an open subset of X. Since B is a base for (X, 1), G is the union of member of

Bie G :U B, where B; € B. But B B” hence each B; € B also belongs to B”. So G is the
iel
union of members of B and therefore B” is also a base for (X, 7).

185



Theorem 4. Let B and B™ be bases, respectively for topologies T and 1" on a set X. Let
each B € B is the union of members of B” then t" is finer than t, i.e. T T

Proof. Let G € 1 be any t-open set, since B is a base for 1, G is the union of members of B

ie. G= U B where B, € B Vie I (Index set)

iel
But, by hypothesis, each B; € B is the union of members of B andso G = U B, is also the
iel

union of members of B, which are t"-open sets. Hence G is also t"-open set i.e. G € T and thus

*
T CT.

9.3 Subbases

Let (X, 1) be a topological space. 4 class S of open subsets of X, i.e. § 71 is a subbase for the
topology t on X iff finite intersections of members of §' form a base for t. The elements of S are referred
to as sub-basic open sets.

Example. Let a, b € R be arbitrary such that a <b.

clearly (—o0,b) N (a,»)=(a, b)

The open intervals (a, b) form a base for the usual topology on R. Hence by definition the
family of infinite open intervals form a subbase for the usual topology on R.

Theorem 5. Any collection A of subsets of a non-empty set X is the subbase for a unique
topology on X. That is, finite intersections of members of A form a base for a topology t on X.

Proof. Let B is the class of finite intersections of member of 4. We show that B satisfies the
two conditions [B,] and [B,] in Theorem 1.

[B,] Since X is the intersection of empty collection of members of 4 and so X=U {B : B € B}

[B,] Let B, B, € Band x € B; N B,. Then B, B, are finite intersection of members of 4.

Hence B, M B, is also a finite intersection of members of 4 and so B; N B, € B. Hence B is a

base for a unique topology on X for which A is subbase.

9.4 Local Base

Let p be any arbitrary point in a topological space X. 4 collection Bp of open sets containing p
is called a local base at p iff for each open set G containing p, 3 B € Bp such thatp € Bc G.

Example 1. Consider usual topology U on R and point x € R. Then the collection of all
open intervals (x — €, x+ €) V € >0, is a local base at x. Since any open set containing x also
contains an open set (x — €,x + €) for some € > 0.

Example 2. Let B be a base for a topology Tt on X and let x € X. Then the members of the

base B which contains x form a local base at x.
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Theorem 6. A point x in a topological space (X, 1) is an limit point of A < X iff each
member of some local base B at x contains a point of A different from x.

Proof. Since x € X'is a limit point of 4 iff

(G~{x})mA#d VG erstxeG.

But B c , so in particular

B~{x})mA#=o vV BeB

Conversely, we assume (B ~ {x}) "4 # ¢ V B € B and let G be any open subset of X

containing x. Then
3 B, € Bsuchthatx € By < G. But then
(G~{xp)NMAD(By—{x))nAd#6

= (G~{x})mA#d VG erstxeG.

= x is a limits point of 4.

9.4.1 First countable space : Let (X, 1) be a topological space. The space X is said to satisfy
the first axiom of countability if X has a countable local bare at each x € X. The space X, in this case is
called first countable or first axiom space.

9.4.2 Second countable space : Let (X, 1) be a topological space. The space X is said to
satisfy the second axiom of countability if there exists a countable base for T on X. In this case, the
space X is called second countable or second axiom space.

Example. The collection of all open intervals (v, s) with r and s as rational numbers from
a base B for the usual topology U of R. Since Q is a countable set, so B is a countable base for
Uon R.

= (R, U) is second countable space.

Theorem 7. A second countable space is always first countable space, but converse is
not true.

Proof. Let (X, 1) be a second countable space with a countable base B.

Let B={B, : n € N} when NV is set of natural numbers, let x € X be arbitrary and

L.={B,eB:xeB,}

Then

(i) L,, being a subset of a countable set B is countable.

(ii) Since members of B are t-open sets and so members of L, as L, < B.

(iii) Any G € L, = x € G [By definition of L, |

(iv) Let G € 1 be arbitrary such that x € G.

xeGetr=>31B eB st xeB, G

=3B el st.xeB cG [-xeGeB =B el]
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xeGer=>3B el st B cG

= L is a countable local base at x € X

= X is first countable

Now to show that converse is not true we will give an example of a first countable space which
is not second countable space.

Let t be a discrete topology on an uncountable set X, so that every subset of X is open in X.
Clearly B = {{x} : x € X} is a base for topology T on X and B is not countable. Hence (X, 1) is not a
second countable space.

But (X, 1) is first countable, since if we take L, = {{x}}, then evidently L is a local base at x €
X. Since for any G € Tt withx € G

3 {x} such thatx € {x} c G.
Also L, is a countable local base at x € X as L _contains only one member {x}.

= (X, 7) 1s first countable.

Ilustrative Examples

Ex.1. Let X = {1,234} and A= { {1, 2}, {2,4}, {3}}

Determine the topology on X generated by the elements of A and hence determine the base
for this topology.

Sol. Finite intersections of the members of 4 form the class B given by

B={{1,2}, {3}, {2, 4}, {2}, ¢, X}

Now B is a base for some topology on X. The union of the members of B form the topology t

on X given by
v={{12}, {3}, {2,4}, 0, {2}, X, {1,2,3},{1,2,4},{2, 3, 4}, {2, 3}}

Ex.2. Determine the topology t on the real line R generated by the class A of all closed
intervals [a, a + 1].

Sol. Let p € R, clearly [p,p + 1] and [p—1,p]l € 4

Hence [p—1,p]lN[p,p+1]1={p}

belongs to the topology 1, i.e. all singleton sets {p}are t-open and so 7 is the discrete topology

on R.
Self-learning exercise-1

1. Let X={a,b,c,d e} and 4= {{a, b, c},{c,d},{d,e}}.
Find the topology generated by A. Also find the base of this topology.
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2. Let X=1{1,2,3,4,5}and t={0, {1},{1,2,},{1,2,3},X}
Then which of following is a local base at 1,2, and 3 respectively.

@ By=1{{1,2}, X} (@) By={{2,3}, X} (@) By=1{{1,2,3}].

9.5  Continuous mappings

Let (X, 1) and (¥ ) are topological spaces. A mapping f from X in to Y is continuous relative to
T and p, or T — pu continuous or simply continuous iff the inverse image £~ ! [H] of every p-open subset
HcCY isa t-open subset of X, i.e. iff H € p implies /! [H] € 1.

Ex.1. Consider the following topologies on

X=1{1,2,3,4} and Y= {a, b, c, d} respectively :
=X 0, {1}, {1, 2}, {1, 2, 3}§, n={Y, ¢, {a}, {b}, {a, b}, {b, c, d}}

Also consider the functions f: X — Yand g : X —» y defined by f (1) =b, f(2)=c, f(3) =d,
f@)=candg(l)=a=g(2), g (3) =c, g (4) =d then f is continuous since the inverse of each
member of the topology 1 on Y is a member of the topology T on X, we can see

m=x, T @=9
STah=0, Y =11}
S a b=}, b e d)=X
but g is not continuous since {b, ¢, d} € W, i.e. an open subset of ¥, but its inverse image
g1 ({b, ¢, d})= {3, 4} is not an open subset of X, i.e. {3, 4} & 1.

Ex.2. Every function f: X — Y (where (X, D) is a discrete topological space and (Y, 1) be
any space) is D — 1 continuous function i.e. every function from a discrete space is always a
continuous function, since if H is any open subset of Y, its inverse f ' [H] is an open subset of X
as every subset of discrete space is open.

Similarly every function g : X — Y (where (X, 7) is any space and (¥, /) is an indiscrete space)
is T — I continuous, since in indiscrete topology there is only two open subsets of ¥, namely ¥ and ¢ and
for any function g : X —» Yg ! [Y] =X and g! (¢) = ¢ which are open subsets of X.

Ex.3. The identity map from (X, ) in to (X, 1) is a continuous map.

Sol. Identity map given by /': X — X such that

fx)=x vxeX
Let G < X be an arbitrary open set.
Then 1 G)={xeX: f(x)e G}
={xeX:xe G} [« f(x)=x Vx € X]
= G (an open set in X)
Thus inverse image of any open set G in X is open in X.

Hence f'is a continuous map.
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Theorem 8. A function f: X — Y is continuous iff the inverse of each member of a base B
for Yis an open subset of X.

Proof. Let (X, t) and (Y, p) be topological spaces and f: X — Y be a map. First we assume
that f'is continuous map and let B — Y such that B € B, since B is a base for Y every member of B is a
member of , i.e. B e

= B 1s an open subset of ¥

Since f: X — Yis continuous, thus f~![B] is open subset of X.

Conversely we assume that £ ~! [B] is open subset of X ¥ B € B. To prove : f is continuous.

Let G be any open subset of Y and since B is base for topology on Y; then G = U B; a union
ien

of member of B. But

/G =f‘{U B,} U (5]
ien ien
and each f ! [B,] is open by hypothesis; hence / ~1[G] is the union of open sets and therefore open.
Accordingly, fis continuous.

Note : Similarly we can prove that if S is a subbase for a topology on Y, then a function
f: X — Yis continuous iff the inverse of each member of S is an open subset of X.

Note 2 : Continuous functions can be characterized by their behavior with respect to closed
sets as followes :

Theorem 9. A function f: X — Y is continuous iff the inverse image of every closed sub-
set of Yis a closed subset of X.

Proof. Let (X, 1) and (¥, n) be topological spaces and f: X — Y be a map, first we assume
that f'is continuous map and let /' Y be a closed subset of ¥, then ¥ ~ F'is p-open subset of ¥ and
since fis continuous map /! [Y ~ F] is open subset of X

= X ~f~1[F] is open subset of X

= f~1[F] is closed subset of X

Conversely we assume that inverse image of a closed subset of Y is closed subset of X. Let G
be an open set of ¥

= Y ~ G 1s a closed subset of Y, by hypothesis

f1[Y~ G]is a closed subset of X

= X ~f~1[G]is a closed subset of X

= /71 [G] is an open subset of X

Accordingly f'is a continuous map.
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Theorem 10. Letf: X — Y be a constant function, say f (x) = x, V x € X, then f is con-
tinuous relative to any topology t on X and any topology n on Y.
Proof. We need to show that the inverse image of any p—open subset of Y is a T-open subset of

X. Let G € pu be any open subset of Y,

X, if x,€G

.| _
Now f [G]—{d)’ £ % gG

In either case ! [G] is an open subset of X, since X and ¢ belong to every topology T on X.

Theorem 11. Let the functions f: X — Y and g : Y — Z are continuous functions. Then the
composition function gof : X — Z is also continuous.

Proof. Let G be an open subset of Z. Then g~! [G] is open in Y since g is continuous. But f'is
also continuous so ! [¢7! [G]] = (gof) [G] is open in X.

Thus (gof )"! [G] is open in X for every open subset G of Z, accordingly gof is continuous.

Theorem 12. Let {1, :i € A} be a collection of topologies on a set X. If a function f

X—Y is continuous with respect to each 1, then f is continuous with respect to the intersection

topology 1 = ﬂ T,

Proof. Let G be an open subset of Y. Then by hypothesis, /! [G] belongs to each 7;. Hence

/71 [G] belongs to the intersection, i.e. f -l [G] € ﬂ 1, = 1, and so f'is continuous with respect to .
ien

Theorem 13. A function f: X — Y is continuous iff, for every subset Ac X, [ [Z] cf [A]

Proof. First we assume that /: X — Y is continuous, Now

4] < f[4] [+ Bc B always]

= dcs[s]e s s14]
But f [A] is closed and since fis continuous so f [ f [A]} is also closed, also 4 is the smallest

closed set containing 4 therefore A< A< [~ [f [Aﬂ

= slAe (A s [T e 7 ()

Conversely, assume f [Z } cf [A] for any A — X, and let F be a closed subset of Y, set

A=f"1[F].
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We wish to show that 4 is closed subset of X or equivalently 4= 4

Now A A is always true

L= A R eF-r L 0
Hence ZCf_l[f[Zﬂcf_l[F]:A
= AcA (ii)

from (i) and (ii)) = A = 4 and f'is continuous.

9.6 Continuity at a point

A function f: X — Yis continuous at ¢ € X iff the inverse image f ' [H] of every open subset
H c Y containing f (@) is a superset of an pen set G — X containing a or, equivalently, iff the inverse
image of every neighbourhood of f (a) is a neighbourhood of a i.e.,

NeN =f1[NeN,
Ex.1. Consider the following topology ton X = {1, 2, 3, 4}
T= {0, X, {1}, {2}, {1, 2}, {2,3,4})

Let the function /: X — X defined as /(1) =2 =/ (3), f(2) =4 and f (4) = 3. Show that fis
continuous at 4 but not continuous at 3.

Sol. The only open sets containing f (4) =3 are {2, 3, 4} and X. Now /! ({2,3,4})=X=
/=1 (X) which are open in X. Hence f'is continuous at 4 since the inverse of each open set /' (4) is an
open set containing 4.

Now observe that {1, 2} is an open set containing / (3) =2 and f~! [{1, 2}] = {1, 3}. Hence
f 1s not continuous at 3 since these exist no open set containing 3 which is contained in {1, 3}.

Ex.2. Let {p} is an open subset of X. Show that for any topological space Y and any
function f: X — Y, fis continuous at p € X

Sol. Let H — Y be an open set containing /' (p). But

f(p)eH=pef ' [H = {p)cf ' [H

Hence f'is continuous at p.

Theorem 14. Let X and Y be topological spaces. Then a function f: X — Y is continuous
iff it is continuous at every point p € X.

Proof. First we assume that f'is continuous and let p € X be any point. Let H be an open
subset of ¥ containing f(p) = f(p) € H=p € f~' (H) and /= (H) is open as fis continuous. Thus f
is continuous at p.

Now suppose f'is continuous at every point p € X and let H — Y be open. Now for every
p € f~1 [H] these exist an open set Gp < X such that p € Gp c f~V[H]. Hence f ! [H]= U {Gp :

p €/~ [H]} a union of open sets and thus an open set. Accordingly fis continuous.

192



9.7 Open and closed functions

Open function : If X and Y are topological spaces, then a function /: X — Y is called an open
(or interior) function if the image of every open set is open.

Closed function : If X and Y are topological spaces, then a function g : X — Y is called a
closed function if the image of every closed set is closed.

In general, functions which are open need not be closed and vice versa.

Example. Let f: R — R be a constant function, say f (x) =1 v x € R, where the topology
on both R is usual topology. Then if A < R is a closed subset of R then f (A) = {1} which is
always a closed subset of R, thus fis a closed mapping.

But f'is not open, since if we take B = (0, 1) which is open in R, then f (B) = {1}, but {1} is

closed in R, so {1} is not open in R, thus f is not an open mapping.

9.8 Homeomorphism

Let X and Y be topological spaces. A function f: X — Yis called a homeomorphism between
Xand Yif

(i) fis bijective,

(ii) fis continuous on X to Y,

(iii) £~ is continuous on ¥ to X.

In other words we can say that f'is a homeomorphism if and only if /'is bijective, continuous and
open. Y'is said to be a homeomorphic image or simply a homeomorph of X and we write X = Y.

A property which when satisfied by a topological space is also satisfied by every homeomorphic
image of this space, is called a topological property or a topological invariant property.

Theorem 15. Homeomorphism is an equivalence relation in the family of topological
spaces.

Proof. Homeomorphism is reflexive :

Let (X, 7) be a topological space. Then the identity map /: X — X given by f'(x) = x is bijective
and continuous, for, if G € 1, then f~! (G)= G e 1, ! is also an identity map, which is also continu-
ous, thus f'is a homeomorphism, i.e., every topological space is homeomorphic to itself.

Thus homeomorphism is reflexive.

(ii) Homeomorphism is symmetric :

Let f:(X, 1) —> (¥, n) be a homeomorphism.

If we show that 1 : (¥, ) — (X, 1) is a homeomorphism we can conclude the symmetry.
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Since f'is a homeomorphism
= (1 f'is one-one and onto
) fand f~! are continuous map
(1) = f~!is one-one and onto
2) = f1and (f~1)! = fare continuous map
= f~1 is homeomorphism
= Homeomorphism is symmetric.
(iii) Homeomorphism is transitive :
Letf: (X,t)—> (Y, and g : (¥, n) = (Z, v) be homeomorphism. If we show that gof: (X, 1)
— (Z, v) is a homeomorphism, we can conclude that homeomorphism is transitive. Now
fand g are homeomorphism
= (a) f'and g are one-one and onto
= (b) fand g are continuous maps
= (¢) f! and g ! are continuous maps
Now (a) = gofis one-one and onto
(b) = gof s continuous
(c) = (gofy ! =1 og ! is continuous
= gof'is a homeomorphism.
=> homeomorphism is transitive.

Thus homeomorphism is an equivalence relation.

Theorem 16. A4 one-one onto map f: (X, 1) = (¥ W) is a homeomorphism iff f(A4)= f (Z)

foranyAc X
Proof. Let f: (X, 1) — (¥, 1) be one-one onto map

Let f(Z):f(A) foranyd c X

To prove that f'is a homeomorphism, For this we must show that
(a) fis one-one onto map (Given) (b) f'is continuous (c) /! is continuous

Let A — X be arbitrary.

By hypothesis ~ f ( A ) = m

= fA)er (i)
and fAer@ (ii)
Theorem 13 (i) shows that f'is continuous map.

Let B=fA)=f1(B)=4 [- f1s one-one]
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Nowtrom i) /[ /' (8) ] (17 (8)

= Be f(17(8))

= f! (l_?)cffl (B) where BCY
Again by Theorem 13 (iii) shows that ! is continuous map. Thus (@), (b) and (c) have been

proved and therefore f'is a homeomorphism.

Conversely, suppose that f: (X, t) — (¥, p) is one-one onto and a homeomorphism.

To prove that f(Z) :m foranyd c X
Let A — Xbe arbitraryand B=/f(A)
B=fA)= f1(B)=4 [-. fis one-one]

since fis continuous, thus by Theorem 13

S(4) < 7 (4) ()
since /! is continuous, thus by Theorem 13

S (B) < 17(B)

= [ [f(A)] c f7r(4)
= )] ca [ (1) = 4]
= F(4) =7(4) )

Thus from (iv) and (v)
/() =7 (4)
Theorem 17. A one-one onto continuous map f: (X, 1) — (¥, n) is a homeomorphism if f
is either open or closed.

Proof. Let /: (X, 1) = (¥, n) is one-one, onto and continuous map. Also let f'is either open or

closed. To prove that f'is a homeomorphism, it is enough to show that /! is continuous. For this we

have to show that f~!(B)= f~!(B) foranyBc Y

BcY= /(" (BycXand f7'(B) isa closed subset of X

fis a closed mapping = f [fl (B)} is closed

- @) =rr7s)] 0

Since fﬁl(B) c ! (B) [--Ac 4 foranyset AcX]
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- 7 B)] erlr(8)

= B f] r(B)

- B s (s

- Berr(s) Jusing ()]
= r(B) < 17 (8)

= f~1is continuous

Similarly we can show that if f'is open, than /! is continuous
Hlustrative Examples

Ex.1. Show that characteristic function of A < X is continuous on X iff A is both open
and closed in X.

Sol. Let (X, 1) be a topological space and but A — X be arbitrary. The characteristic function
fof 4 is defined by

1 if xe4d

f(X):{o if xed

Now we assume that 4 is both open and closed.
To prove fis continuous f : X — R (where R is real line with usual topology)

Let G be an open subset of R
SO)={xeX:f(x) € G}

A4 if 1€G, 0¢G

X~A4 if 0eG,1¢G
X if 01eG
6 if 0,1eG

= (6=

In all case, /! (G) is an open set.

= f1s continuous.

Conversely, suppose that f'is continuous.

To prove that 4 is both open and closed.

Let G be an open subset of Rs5.2. 0 € G, 1 ¢ G.
Then (G =X~4

-+ fis continuous = f~1(G) =X ~ 4 is open

= A4 is closed in X.
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Let Hbe onopensubset of Rs.z. 1 e H,0 ¢ H
Then f1H=4
fis continuous = 1 (Hy=4is openin X
= A 1s both open and closed.
Ex.2. Let X=10,1,2}
©={¢, X, {0}, {0, 1}
Let f be a continuous map of X in to itself such that f (1) =0 and f (2) = 1, what is f (0) =?
Sol. Let f(O)=a,thena=0,1, or2
If a=1 or 2, then
STO)={xeX:f(x)=0}
={xeX:x=1or2}
= either {1} or {2}
but {1} ¢ tand {2} ¢ T but {0} € 1.
Contrary to the fact that f'is continuous
If a=0,thenf1(0)={x e X:f(x)=0}
={0,1} e
Hence f'is continuous since mverse of open set {0} is open set {0, 1} € .

Hence f(0) =0

Self-learning exercise-2

1. Let X= (-1, 1). Show that X with subspace topology of usual topology on R is homeomorphic
to usual topology on R.
2. Let X={a, b, c,d} and 1 = {¢, X, {a}, {b}, {a, b}, {b, c,d}} let the function f: X — X be
defined as
f@)=>b,f(b)=d,f(c)=b,f(d)=c

(i) Show that f'is not continuous at ¢~ (ii)) Show that f'is continuous at d.

9.9 Summary

In this chapter you have learnt the important concepts of bases and subbases of a topological
space. You have learnt that many times it is convenient to define a topological space with the help of
bases and subbases. You have also learnt that we can always define a topology on a set with any collec-
tion of subsets of a set.

This chapter also belongs to the concept of continuity and homeomorphism. You have learnt that

how can we generalize the concept of continuity to any arbitrary topological spaces. You also learnt that
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if two topological spaces are homeomorphic then many properties (known as topological properly) in

those spaces are identical.

9.10 Answers to self-learning exercises

Self-learning exercise—1

1L t,=1{0, X, {c}, {d}, {c,d}, {c,d, e}, {a, b, c,d}}
B, = {{c}, d}, {c,d, e}, {a, b, c, d}}

2. Local base at 1 : None of B, B, and B;
Local base at 2 : B,
Local base at 3 : B,

Self-learning exercise—2

T
1. Hint : Define f: X > Rs.t. f(x)= tanEx
Show that f'is one-one onto and continuous then also show that /! is continuous
2. (i) Hint : Let G = {a, b} € tthen
G =1{acer

9.11 Exercises

1. Show that the map
f: (R, U)—> (R, U) given by
f(x)=x% v x € R is not open
2. Show that the map
f: (R, U)— (R, U) given by

x, x<l1
f(x)=41 1<x<2
x2/4,x>2

is continuous but not open
3. Letf: (X, 1) = (¥, ) be a map. Show that f'is continuous if u is an indiscrete topology.
4. Show that the identity function / : (X, T) — (X, T") is continuous iff t is finer then ", i.e. T° C 7.

5. Consider the discrete topology D on X' = {1, 2, 3, 4, 5}, find a subbase § of D which does not

contain any singleton set.

HEin
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UNIT 10 : Separation Axioms (T, T;, T,, T, Spaces)

Structure of the Unit
10.0  Objectives
10.1  Introduction
10.2  Tj)-axiom of separation (Kolomogorov space)
10.3  T-axiom or Frechet axiom of separation
10.4  T,-axiom of separation (Hausdorft space)
10.5 Regular space
10.5.1 T;-space
10.5.2 Example of regular space which is not 75-space
10.6  Normal space
10.6.1 T,-space
10.6.2 Example of a normal space which is not 7,-space
10.7  Summary
10.8  Answers to self-learning exercises

10.9 Exercise

10.0 Objectives

In this chapter you will read about the separation axioms of Alexandroff and Hopf. You will also

learn about various topological spaces like 7\, T}, T5, T5 and 7.

10.1 Introduction

The 7, space nomenclature for i = 1, 2, 3, 4 was introduced by Alexandroff and Hopf. The
word “T” referes to the German word “Ternugs axiom” which means “Separation axiom”. Many prop-
erties of a topological space X depand upon the distribution of the open sets in the space. A space is
more likely to be separable, or first or second countable, if there are “few” open sets; on the other hand,
an arbitrary function on X to some topological space is more likely to be continuous, or a sequence to

have a unique limit, if the space has “many” open sets.
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10.2  7,-Axiom of separation (Kolomogorov space)

A topological space (X, 7) is said to satisfy the 7\-axiom of separation if given a pair of distinct
points x, y € X, either
dGetr st. xeG, yeG
or dHetr st x¢H, yeH
In this case the space (X, 1) is called a 7|y-space (Kolomogorov space)
Examples to 7;-space :
1. Every discrete space is T,-space.
2. An indiscrete space containing only one point is a 7j,-space
3. A cofinite topological space (X, 1) on an infinite set X is 7;-space.
4. Every metric space is 7,-space.
Theorem 1. A topological space (X, 1) is a T\y-space if for any distinct arbitrary points
X,y € X, the closure of singleton set {x} and {y} are distinct.
Proof : Let (X, 1) be a T);-space and let x, y € X such that x # y.
To prove {x}={y}
Now x, y € X'so by definition of 7y-space,
dG et suchthatxe G,ye G=>yeX~G,xe¢ X~G,
by definition of closure
{yt =N {F: Fisaclosed set such that y € F}

Also X ~ G is a closed set containing y

{_y} cX~G
butx¢X~G:>x¢{_y} ..... (1)
Also {x} < {x} thusxe &y L (2)

from (1) and 2) = {x} = {y}

Conversely : Let x, y be any two distinct points of a topological space (X, 7).

Also let b=y (3)
To prove (X, 1) is a Ty-space.

(3)= IpeX suchthat pe{xland p&{y},

we claim x ¢ @
Let if possible xe{y} = xtc i
Sci=01 [~4=4]

:> EC@’

200



Also peixt = pelyh
A contradiction, since p ¢ @
Hence x ¢ {_y}
SxeX~{y},aso yeyl,= ye X -{y}
-+ {y} is closed 0 G =x ~ {y} is open, thus we have found an open set G such that x € G
buty ¢ G.

= (X, 1) is a T|y-space.

10.3 T,-Axiom or Frechet axiom of separation

A topological space (X, 1) is said to satisfy the 7';-axiom of separation if given a pair of distinct
pointsx,y e X, 3G, Hetst.xe G,y ¢ Gandy € H, x ¢ H. In this case the space (X, ) is called
T,-space or Frechet space.

Example of T,-space :

1. Every metric space is T';-space.

2. If (X, 7) is a cofinite topological space on an infinite space X, then it is 7', -space.

Example of 7\,-space which is not a 7';-space :

We define a topology t on /N such that

(@ o, N et

(b) A, €1, vn e N,where d, ={1,2,3,.., n}.

Consider m, n € N such that m <n, thenm € 4, , n ¢ A,,. Thus given any two distinct num-
bers m, n € Nsuchthat m #nand m <n,3openset 4, € tsuchthatme 4, ,n¢ 4,

- (N, 1) is a Tj-space

But if m # n and m < n, there is no open set, which contains n but does not contain m., Thus
(N, 1) is not a T'j-space.

Theorem 2. A topological (X, t) is a T|-space iff {x} is closed y x € X.

Proof : Let (X, 1) is a topological space such that {x} is closed v x € X. To prove (X, 1) is a
T-space.

Consider x, y € X such that x # y, then by our assumption {x} and {y} are closed sets such
that {x} N {y} = ¢.

= X~ {x} and X ~ {y} are open sets.
Let G=X~{y},H=X~{x}, then G, H € tsuch that
xeG,yeG and ye Hx ¢ H.
= (X, 1) is a T;-space.

Conversely, suppose that (X, 1) is a T-space.
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Now we have to prove that {x} is a closed set for each x € X. For that it is sufficient to show
that its complement X ~ {x} is open. Let y be any element of X ~ {x}, then x # y. Since (X, 1) isa T-
space and we know that every T';-space is a T,-space, so there exists Gy € tsuch that y € Gy but
X & Gy and consequently y € Gy c X ~ {x}. This shows that X ~ {x} is a nbd of each of its points
and hence it is open, that is {x} is closed.

Corollary 1 : 4 topological space X is a T -space if and only if every finite subset of X is
closed.

Proof. Let (X, 1) be a T-space and let 4 = {a,, a,,..., a,} be any finite subset of X. Then
a; € Xforeachi=1,2,..., n. Since (X, 1) is a T}-space, so every singleton subset of X is closed.

Now A=1a;} Viay} V..U {a,}

=> A 1s finite union of closed subsets of X and hence 4 is closed.

Conversely, suppose that every finite subset of X is closed. Then in particular every singleton
subset of X'is closed and hence X is a T'|-space.

Corollary 2. Finite T|-space is a discrete space.

Proof : Let (X, 1) be a finite 7'|-space. Then by Corollary 1, every finite subset of X'is a closed
set.

= All subsets of X are closed, since X is finite.

= All subsets of X are open.

= Xis a discrete space.

Theorem 3. A topological space (X, t) is a T|-space iff T contains the co-finite topology
on X. (i.e. T is finer then co-finite topology on X)

Proof : Let (X, 1) be a T'-space.

To prove that t contains co-finite topology on X, we have to show that 4 € t such that X ~ 4 is
finite, where 4 — X.

Now if A < X such that X ~ 4 is finite, then by Corollary 1 of Theorem 2, X ~ 4 is a closed
subset of X = A € 1. Thus 1 contains co-finite topology.

Conversely : Suppose that T contains co-finite topology on X. To prove (X, 1) is a T'|-space.

Now {x} is a finite subset of X'

= X~ {x} is open in co-finite topology

= X~{x}en

= {x} is 1-closed subset of X

Thus {x} is closed subset of (X, 1) v x € X, by Theorem 2 (X, 7) is a T'|-space.
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Theorem 4. A finite subset of a T|-space has no limit point.
Proof : Let (X, 1) be a T'|-space let

A= {a,, ay,..., a,} be a finite subset of X
To prove that 4 has no limit point.

Xis a T|-space = 4 is closed set
= 4 contains all its limit pont .. (1)

Let a; € A be arbitrary and, we write

G;=A~1a;} =1ay, Aypees A 1, Ajyppees Q)
G; is finite subset of X = G; is closed = X ~ G; is open.

a, ¢ G;=> a; € X~ G;

Thus X ~ G; is an open set with ¢; € X~ G;
Also X~G)nA={a;

By definition of limit point a; is not a limit point, since there is an open subset of X containing a;

does not contain any point of 4 other than a;.

But a; is an arbitrary point of 4.
= Every point of 4 is not a limit point of 4. Now (1) declares that 4 has no limit point.

Theorem 5. T,-axiom of separation is hereditary property or Every subspace of a T|-

space is also a T -space.

Proof : Let (X, 7) be a T}-space and (Y, U) is a subspace of (X, 7).

ie. uv={Gny:Getjand Y<X. .. (1)
To prove (¥, U) is a T -space.

Let x,y € Y be arbitrary s.t. x # y

= x,yeX st x#y [ YcJX]
(X, 1) 1s a X -space.

= dG Het st. xeG,yveGyyeH, xeH

Consequently xeGNnY,yeGny

and xeHny,ye HNY

Let G,=GNY and H=HNY

GHetr =>G,H eU
Thus given a pair of distinct points x, y € ¥, 3 G|, H; € Usuchthat x € G|,y ¢ G|, and x ¢

H,, yeH,.

= (¥, U)isa T;-space.
Theorem 6. The property of a space being a T,-space is a topological property i.e. the

homeomorphic image of a T|-space is a T\-space.
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Proof : Let (X, 1) be a T'-space and let
f: (X, 1) > (¥, U) 1s a homeomorphism.

To prove that the 7'|-space is a topological property, it is enough to prove that (f(X) = Y, U) is
a T-space.

Let y,, y, € Y be two distinct points of ¥ such that y, # y,. Since f'is a homeomorphism (i.e. fis
one-one onto and bicontinuous).

dx,xy,eX sty =f(x), y»=f(x) and x;#x,.

Since the space (X, 1) is a T'|-space 3 open sets G, H € t such that x; € G, x, ¢ G and
x, ¢ H,x, e H

Since f'is a homeomorphism therefore /~image of an open set is also an open set.

= G, =f(G) and H,=f(H)
are U-open subset of Yi.e. G, H, € U.

Now x,e€G,x¢G=y =f(x)ef(G)=G,

and =1, ¢ f(G) =G,
and x gH,x,e H=y =f(x) ¢ f(H)=H,
and V=1 (x,y) e f(H)=H,

Thus given a pair of distinct points y,, y, € ¥, 3 G, H; € Usuchthaty, € G, y, ¢ G, and
v € Hy, vy € Hy
= (¥, U)isaT;-space.

10.4 T,-Axiom of separation (Hausdorff space)

A topological space (X, 1) is said to satisfy the 7,-axiom of separation if given a pair of distinct
pointsx,y € X,3G,Hetst.x e G,y e H, G H=¢. Inthis case the space (X, 1) is called a T,-
space or Hausdorff space.

Examples of 7,-space

Ex.1. Every metric space is a T,-space.

Sol. Let (X, d) be a metric space, then metric topology t on X is defined as any subset U < X
is t-open subset of X if v x € U 3 € > 0 such that open ball B (x, €) < U.

To prove (X, 1) is a T,-space.

Let x, y € X be any pair of distinct points i.e. x # ,

x#zy=d(x,y)>0. Let e =d (x, ).

Let G=B(x,€/3) and H=B(y, €/3)

Then G and H are open subsets of X [ open balls are open subsets] clearly x € G,y € H
and G N H=¢.
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Thus every metric space is a T,-space.

Ex.2. Every discrete space is a T,-space.

Sol. Let (X, 1) be a discrete space and x, y € X be arbitrary such that x # y.

By definition of discrete space {x} and {y} are t-open sets, obviously

Xy {yy=¢ and xe {xj,ye {y.

Thus 3 disjoint open sets {x} and {y} containing x and y respectively. Consequently (X, 1) is a
T,-space.

Ex.3. Cofinite topology t on any infinite set X is not a T,-space.

Sol. Let G, H € 1 be arbitrary. Then by definition of cofinite topology, X ~ G and X ~ H are
finite subsets of X. Here we have to show that X'is not a 7,-space. For this it is sufficient to show that 3
no pair of disjoint open sets in cofinite topology on X.

Let if possible G and H are disjoint open sets so that
GNnH=0¢0=(GnNn H" =¢°

>G‘VH*=Xx L. (1)

but [+ G and H are open in (X, 7)]

G¢ = X ~ G = finite set
H¢ = X ~ G = finite set

= L.H.S. of (1) is union of two finite sets, thus finite set but R.H.S. of (1) is an infinite set X
(Given), which is a contradiction. Thus 3 no pair of disjoint open sets in cofinite topology on X.

Theorem 7. Every T,-space is a T\-space but the converse in not true.

Proof : Let (X, 1) is a T,-space. To prove (X, 1) is a T'|-space. Let x, y € X such that x = y
then by definition of 7,-space we can find disjoint open sets G, H € t such thatx € G, y € H and
GNnH=0=> xeG,yeGandx ¢ H,y € H.

Hence given a pair of distinct points x, y € X, such that x # y 3 G, H € t such that x € G,
veg Gandx ¢ H,y € H.

= (X, t)isa T}-space.

To prove converse is not true, consider a cofinite topology t on an infinite set X. Then by Theo-
rem 3 (X, 1) is a T;-space. But by Example 3 of §10.4 (X, 1) is not a T)-space. Thus every T'|-space is

not a 7’,-space.
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Corollary 1. Every singleton set in a T,-space is closed.
Theorem 8. [n a T,-space, a convergent sequence has a unique limit.
Proof : Let (X, 1) be a T,-space and <a,> is a convergent sequence in X. To prove that the
sequence <a,> has a unique limit.
Let if possible <a,> does not have a unique limit. Let <a,> converge to two distinct points, say
ag, by € X. Then a;, # b, By definition of T,-space 3 open sets G, H such that
ayg € G, by € Hsuchthat G N H= ¢.
By definition of convergence
ag € G e t=>3dnyeN such that vnzny,=a,e€ G
bpe Het1=3kye N suchthat vn2ky=a, e H

Let my = max {ng, k}.
Then vnzmy=a, € Ga, e H=>a,e GNH
=>GCNnH=#¢}

which is a contradictions since G N H= ¢.

Thus the sequence <a,> has a unique limit.

Theorem 9. Let (X, t) be any topological space and let (Y, U) be a Hausdorff space. Let f
and g be continuous mappings of X into Y. Then the set {x € X : f (x) = g (x)} is a closed subset
of X.

Proof : Given (X, 1) be any topological space and (Y, U) a Hausdorff space. Let f/: X — Y and
g : X — Y are continuous maps. Let 4 = {x € X : f(x) = g (x)}. Now we have to show that 4 is

closed. For this is sufficient to show that

X~A={xeX:f(x)=g(x)}isopen . (1)
Let x € X ~ A be arbitrary, thenx ¢ 4.
Let S(x)=y, and g(x)=y,theny =y, [by (1)]

Further more y, y, € Yand (Y, U) is a T)-space, hence 3 G, H € U such that y, € G,
v, eH,GNH=¢.
Since f'and g are continuous maps. Hence by definition f~1(G), g"\(H) are open in X, write
w=fUG)ng\(H)
W is also an open set in X [finite intersection of open sets].
v e G=110) ef (G = xefG)
v,eH=gl () eg ) =>xeg(H)
= xef Y\ Gnmng'=xew L )
W= G ng ()= Wef NG, Weg\#H)
f(McGgWcH
fN g cGnH=

U

U
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=  fWMng)co

but dbcfMymng(W) [Always]

=  fMng=¢

=  f#gO) v yeW

= yveX~A4A v yeW

= WcX~A4

Thus foranyx € X~A4,3 W e tsuchthatx e Wc X~ A4

= every x € X ~ 4 is an interior point of X ~ 4

= X ~ A 1s open subset of X

= A 1s closed subset of X.

Theorem 10. If f and g are continuous functions on a topological space X with values in
Ts-space, Y. Then the set of all points x € X such that f (x) = g (x) is closed. Deduce that if f and
g agree on a dense subset on X, then f = g on the whole X.

Proof : (i) Proof of I part is same as Theorem 9.

(ii) Suppose fand g agree on a dense subset P — X so that

f()=gk) vxeP, P=X
f(x)=g((x) vx € P= Pisclosed by case (i)
—P=P Also P=X
=>P=X

= f(x)=gkx) VvxelX = f=gonthe whole X.

Theorem 11. For any space (X, 1), following conditions are equivalent.

(i) Xisa Ty,-space

(ii) For each pairx, y € X, 3 a nbd Ny of y such that x is not in ]\_/y_

(iii) Foreachx € X, {x}= ﬂ]\_/x, where the intersection is taken over all the nbds of x.

Proof : (i) = (ii) Let (X, 1) be a T,-space and x, y € X be arbitrary such that x # y.

To prove that 3 nbd Ny of y such that x ¢ N 3

By definition of 7,-space 3 G, H € © such that

xeG,yeH GnNnH=¢.
veG,xeGet=>yeGxeg G G° isclosed.
GNH=0=>HcX~G=G =>yeHcG*¢
=>ye Ny,x & Ny, whereNyZ G¢
= Ny is a closed nbd of y such that x ¢ Ny
But Ny = Ny, since Ny 1s closed
= Ny is a closed nbd of y such that x ¢ N,,.
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(ii) = (iii) Suppose any x, y € X = 3 nbd Ny of y such that x ¢ ]\_/y.
To prove ﬂ ]\_/x = {x}, where the intersection is then over all the nbd ofx.

By over assumption, there also exist nbd N, of x such that y ¢ N,.

Let B={N,:N_isanbd ofxsuchthat ye N, }
(N, =(){B:BeB}={x}

(iii) = (i) Let vx € X, {x} = ﬂ ]\_/x, where the intersection is taken over all the nbd of x.

To prove Xis a T,,-space.
Let x, y € X be arbitrary such that x # y.
Now {x} =[N, = ye[|N,. Also N, isa closed nbd of x
=>yé ]Vx =N
— Jaclosednbd N ofxsuchthat yg N =N
= x € N,y ¢ N where N is closed.
By definition of nbd 3 G € tsuchthatx e G N,y ¢ N
H=X~NthenHisopenand x ¢ H
yveN=>yeH
GcN=GCNnX-N=0=>GCnH=.
Givenx,y € X,3G,He tsuchthatx e G,y e HLGNH=¢
= Xisa T,-space.
Theorem 12. The property of a space being a Haudorff space is a hereditary property
or
Every subspace of a T,-space is a T,-space.
Proof : Let (X, 1) be a Hausdoff space and (¥, U) be a sub space of (X, 1).
To prove (Y, U) is a Hausdorft space.
Let a pair of elements ~ y,,y, € Y suchthat y,#y,.
Then Y, ¥, € X suchthat y #y, ForYcX
(X, 1) is a T,-space, 3 disjoint sets
G, G, et suchthat y, € G,y, € G5, G; N G, = ¢.
G,G,et=3H,H,eUsuchthat H, =G, N"Y,H,=G,NY
H nH,=(G NG N N=(G,NnGy)NY=¢.
yvie¥y eG =y eGinY=H,
»nety,etG,=>y,eG,nNY=H,
Thus given a pair of distinct points y,, y, € Y such that y, # y, 3 disjoint sets /1, H, € U such
thaty, € H,,y, € H,, H N H, = ¢.
= (¥, U)isa T,-space.
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Theorem 13. The property of a space being a T,-space is a topological property.
Proof : Let (X, 1) be a T),-space and let
[ X)->X0)
be a homeomorphism so that any G € 1 = f(G) € U.
To prove that T,-space is a topological property, it suffices to prove that (f (X) =Y, U) is a
T,-space.
Let y,, v, is a distinct pair of points in ¥ such that y, # y,.
Since f'is a bijection = 3 x, x, € X such that x; # x, and y; = f(x) and y, = f (x,).
Since (X, 1) is a T)-space 3 G, H € 7 such that
x,€Gx,e H,GNH=¢.
Let G, =fG),H=fH=G,H U
and n=r@) ef(G)=G,
v, =f(x) ef(H)=H, and f(GAH)=G,"H =}
Thus given a pair of distinct points y;,y, € ¥ 3 G|, H € Usuchthaty, € G, y, € H|,
G NH =¢.
= (¥, U)isa T,-space.

10.5 Regular space

A topological space (X, 1) is said to be a regular space if given an element x € X and closed set

F < X such that x ¢ F, 3 disjoint open sets G|, G, € X suchthat x € G|, Fc G,, G; N G, = ¢.
10.5.1 T5-space :
A regular T'|-space is called a T5-space.

10.5.2 Example of regular space which is not 75-space :

Let X = {a, b, ¢} and topology t on X'is T = {{, X, {a}, {b, c}}. Then it is clear that (X, 1) is a
topological space.

Clearly {a}, {a, c} are open as well closed subset of (X, t). Now consider a pair of distinct
elements b, ¢ € X. Then only open sets containing either of the elements b, c are X, {b, ¢} such that
belX, be{b,c};ceX, cel{b,c}.

Thus there is no open sets G, H € 7 such that

beG,ceGand beg Hyce H

= (X, 1) is not T'|-space

= (X, 1)isnota T3-space [by definition]

Now : Let aeX, {b,c}cX suchthat a ¢ {b, c}
where {b, c} is closed subset of X 3 {a}, {b, c} T-0open sets such that
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a € {a}, {b,c} c {b, c} suchthat {a} N {b, c} =¢.
Also to be any such point xe Xand F c— X suchthat x ¢ F
3G, He 1t suchthat xe G,Fc G and G H=¢.

= (X, 1) 1s aregular space.

Examples of regular space :

1. Every discrete space is regular.

2. Every indiscrete space is regular.

3. Every metric space is regular.

Theorem 14. Every Ts-space is a T,-space.

Proof : Let (X, 1) be a T5-space. Then be definition of T3-space, it is a regular 7' -space. Now
we have to show that (X, ) is a T,-space. Let x, y be any two elements of X such that x # y. Since
(X, 1) is a T}-space, so every singletion subset {x} of X is closed. Again, since (X, 1) is regular, so
corresponding to closed set {x} and the point y ¢ {x} there exist open sets G and H such that

{x}cG,ye Hand GnH=.
= xeG,yeH and Gn H=¢.
Thus for x, y € X with x # y there exist G, H € 7 such that

xeG,yeH and Gn H=¢.

Hence (X, 7) is a T))-space.

Theorem 15. A topological space (X, ) is regular iff for every point x of X and every nbd
Nof x 3 a nbd M of x such that \f — N.

OR

A topological space is regular iff the collection of all t-closed nbds from a local base at x.

Proof : Let (X, 1) be a regular space.

To prove that given a nbd Nofx 3anbd M ofxs.t. Ay = N.

" (X, 1) 1s a regular space, therefore given a closed set /" and an element x € X such that
x ¢ F 3 disjoint open sets G|, G, < X'such thatx € G|, Fc G,, G; "G, =¢.

x € G;= G, isanbd ofx

GING=0=>G,cX~G,
=G cX~G,=X~G, [ X~G, is closed]

FcG=>X~GcX~F

51 c X~ F=H(say) .
Fis closed = His open .
61 cH
xgF=>xeX~F=x¢eH
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Thus given a nbd H of x, 3 anbd G, of x such that
xe G, c 61 cH
Conversely, assume that (X, 1) is a topological space such that given a nbd G of an element
x € X, 3 anbd H of x such that
xeHc H cG.
To prove (X, 7) is a regular space.
Let ' X be a closed set and x € X such that x ¢ F.
Now x ¢ F, Fis closed= x € X~ Fis open
= X~ Fisnbd of x

. By our assumption, 3 a nbd G of x such that

xeGc gcX~F L (1)
Let G=G, and X~ G =G,
Then G,NG,=Gn (X~G)=GnX .GnG
=G~G=9¢
xe G=>xeG,
From (1) G X~F=2>X~X~F)cX~G
= FcgG,

. G isclosed = X~ G is open = G, is open. Thus we have shown that given a closed set
F < Xand apoint x € X such that x ¢ /'3 disjoint open sets G, G, such that
xeG, FcG,, G nNnG,=¢
= (X, 1) 1s aregular space.
Theorem 16. The property of a space being regular is hereditary property.
Proof : Let (X, 1) be a regular space and (¥, U) be a sub space of (X, t). To prove (¥, U) is a
regular space.
Let F'be a U-closed subset of Yand p € Y such that p ¢ F.
= F'18 U-closed subset of Y = 3 K, t-closed subset of X such that
F=KNY alsopeYcX=>pelX
such that peKnNnY=pegKk [~ peY]
Now K is t-closed subset of X and p € X such that p ¢ K. As (X, 1) is a regular space =
3 Gy, G, t-open sets such that
peG,KcGy, and GG, =¢
G, G, are t-open sets of X'
= peG,NnY=H, and G, N Y= H, (say)
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= H,, H, are U-open subsets of ¥ such that
peH,KNnYcG,nY=H,
or p € H and Fc H, and
HnH,=(G NN (G N=(GNnG)NTY=¢
= i H,, H, U-open subsets of Ysuch that p € H|, Fc H,, H . " H, = ¢
= (Y, U) is regular.
Corollary : The property of being a T5-space is hereditary.
Theorem 17. Regularity is a topological property.
Proof : Let (X, 1) be a regular space and (Y, U) be any topological space. Let
f: (X, 1) > (¥, U) be a homeomorphism. To prove (¥, U) is a regular space.
Let y € Yand F-U-closed subset of Y such that y ¢ F.
f: X — Yis one-one and onto
= AxeXstf@=y=>x=f4y)
/f'1s homeomorphism
= fand £~ both are continuous.
F < Yis U-closed, f is continuous
=  f(F)cXis t-closed.
Now yeF=f1l0)ef\(F)= xef1(F).
Now x € X such that x ¢ f~1(F), f~\(F) is t-closed. By definition of regularity
3G,Het suchthat xe G, f Y (F)cH, GNH=¢
= f®) ef(G)Fcf(H),f(GAH) =}
= yef(G),Fcf(H),f(G) nfH)=b
Since f~!is continuous and G, H € t
=  f(G).f(H)eU
= for y € Y and F-U-closed subset of ¥ such that y ¢ F
3G, =f(G), G,=f(H) € U suchthat y € G, F< G, suchthat G, G,=¢
= (Y, U) 1s regular.
Corollary : The property of being a T5-space is a topological property.

10.6 Normal space

A topological space (X, 1) is said to be normal space if given a pair of disjoint closed sets
C,, ¢, c X3 disjoint open sets G|, G, < X suchthat C, < G, C, € G,, Gy N G, = ¢.

10.6.1 74-space :

A normal T'|-space is called a T,-space.
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10.6.2 Example of a normal space which is not 7-space :

Let X= {a, b, c} and Tt = {¢, X, {a}, {b, c}} then we have already proved that (X, t) is not a
T,-space. Thus (X, 1) is not a T;-space.

Now it is easy to show that given a pair of disjoint closed sets {a}, {b, c} < X, we can find a
pair of disjoint open sets {a}, {b, c} < X such that closed set {a} < open set {a} and closed set
{b, c} — open set {b, c}.

= (X, 1) is a normal space.

Examples of normal space.

1. Every discrete space is normal

2. Every indiscrete space is normal

3. Every metric space is normal.

Theorem 18. A4 Tj-space is a Ty-space.

Proof : Let (X, 1) be a 7,-space, thus

(i) (X, 71)isaT|-space

(ii) (X, 1) 1s a normal space.

To prove (X, 1) is a T5-space, it is sufficient to show that (X, 1) is regular, as a regular T-space
is T5-space.

Let x € X, and F be a t-closed subset of X such that

x¢F v xeXand (X, 1)is T)-space
= {x} is a closed subset of X
xeF={X}nF=¢
= {x} and F are disjoint closed subsets of X.

Since (X, ) 1s a normal space

= G, G, e v suchthat {x} G|, Fc G, suchthat G; " G,=¢
i.e. given a point x € X and a closed subset F' X such that x ¢ F’

Jopen sets Gy, G, € Tsuchthatx e G, FC G,, G, NG, = ¢

= (X, 1) is aregular space and hence (X, 1) is a T5-space.

Note : 7-space = T;5-space

but normal space =% regular space.

Consider X = {a, b} and T = {¢, X, {a}} then the space (X, 7) is a normal space, as there
does not exist any pair of disjoint closed subsets of X.

(X, 7) i1s not regular as a € X and F'= {b} is a closed subset of X such that a ¢ F. But there

does not exist any pair of disjoint open subsets of X, G and G, such that
aeG,FcG, and G, "G, =0.
Thus (X, 1) is not regular.
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Theorem 19. A closed sub space of normal space is a normal space.

Proof : Let (X, 1) be a topological space, which is normal and (¥, U) is a closed sub space of
(X, 1) = Yis 1-closed subset of X. To prove (¥, U) is normal space.

Let F|, F, Y be disjoint sets which are closed in Y. Since Yis closed in X, a subset /' Y'is
closed in Yiff F'is closed in X.

= F| and F, are disjoint closed subsets of X.

By the property of normal space (X, 1)

Jopensets G|, G, € © suchthat F, c G, F, € G,, Gy, G, =0
FicY,FicG = F,cG NY=H (say)

Similarly F, c G, " Y= H, (say)

By definition of sub space topology H, = G; N Y and H, = G, N Y are U-open subsets of Y.

Also HNnH,=(G )N (G N=(GNG)NTY=oNY=¢.

Thus given a pair of disjoint closed sets F'}, F, in ¥, 3 disjoint U-open subsets H,, H, of ¥ such
that ', c H,, F, c H, and H; N H, = ¢.

This shows that (¥, U) is a normal space.

Note : Normality is not necessary a hereditary property, but above theorem 19 is a weaker
statement for normal spaces. But property of being a 7-space is hereditary (Proof left as an exercise)

Theorem 20. Normality is a topological property.

Proof : Let f/: (X, 1) = (¥, U) is a homeomorphism and let (X, 1) is a normal space. Then
(¥, U) 1s homomorphic image of (X, 1). To prove (¥, U) is also a normal space.

Let F'}, F, be disjoint U-closed subsets of Y'i.e. F| N F, = ¢. Since f'is continuous

= E, =f‘1(F1), E, =f‘1(F2) are t-closed subsets of X.

E\NE, :f_l(Fl) mf_l(Fz) =/-1F| N F) =) =9¢.

= [E and E, are disjoint t-closed subsets of X, also (X, 1) is a normal space = 3 t-open sets
Gy, Gysuchthat £, c G| and E, C G,,G;NG,=¢

= SNF)CGy, fTFY <6

= F,cf(G)=H,, F,cf(G,)=H, (say).

Since f'is a homeomorphism and G, G, are t-open subsets of X

= H,=f(G,) and H,=/(G,)are U-open subsets of Y.
HinHy=f(G) N f(Gy) =f(G; NG =f(9)=9.

Thus given a pair F}, F, of disjoint U-closed sets in Y 3 U-open sets H,, H, € U such that
F\cH,F,cH, H nH,=¢.

This shows that (¥, U) is also a normal space.

Corollary : The property of being a 7,-space is a topological property.
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Theorem 21. A topological space (X, ©) is a normal space iff for any closed set I and an
open set G containing F, there exist an open set V such that FCc Vc V < G.

Proof : First we assume that (X, 1) is a normal space and let G — X be an open set containing a
closed set Fi.e. F— G X. To prove 3an openset ¥V € tsuchthat Fc Ve V < G.

G c Xis t-open= X ~ G 1s 1-closed.
FNn(X~G)=FNnX~FNnG=F~F=¢. [ Fc G

. Fand (X ~ G) are disjoint closed sets in X.

Using normality of (X, 1), we can find a pair of disjoint open sets H,, H, € ts.t. ' H|,
X~GcHyH NnH,=¢.

—H cX~H,=X~H, [ X~ H,is closed]
—H cX~H,
since X~GcH,=>X~H,cX~(X~G)

Thus H,c X ~H, cG.

Thus the set /| has the following properties :

(a) H, is T-open

(b) FC H,

© H,cG

Thus 3 an t-openset H, s.t. Fc H, c H,cG.

Conversely, suppose that (X, 1) is a topological space such that given a closed set F'and an

open set G containing F, 3 an openset ¥ suchthat Fc Ve J < G.

To prove (X, 7) is a normal space.

Let /| and F, be a pair of disjoint closed sets in X i.e.
FINnF,=¢=>F cX~F,.

= X~ F, is an open set containing a closed set F.

By hypothesis, 3 another open set V' containing £ such that

FicVcV cX~F,
Let U=X~V
* V isaclosed set .. U=X~ J/ is an open set
VcX~Fy=2X~X~F)cX~V
=>FcU

UNnV=VnX~V)=VAX~VAV =V~V=¢.
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Thus given a pair of disjoint closed sets /', and F, in X, 3 open sets V, U such that /', c V,
FycUandUnV=¢.

This shows that (X, 1) is a normal space.

Self-learning exercise-1

1. Select true or false :
(a) Every discrete space is a 7,-space
(b) If t is cofinite topology on an infinite set X, then (X, 1) is a T),-space
(c) A cofinite topology on an infinite set X is not 7';-space
(d) A Ts-space is a T,-space
(e) A singleton subset of 7'j-space is closed

(f) Every metric space is normal

10.7 Summary

In this unit you have learnt about various separation axioms. If R = Regular, N = Normal, then
we have seen that :

L.T,=>L=>1T,=>T =T,

2.7, T\, T,, T, R, N, T, are all topological properties.

3.1, T), T, T5, R, T}, are all hereditary properties. Normality is not hereditary.

10.8 Answers to self-learning exercises

Self-learning exercise-1

(@ T b) F () F @) F
(e T ) T

10.9 Exercises

1. Prove that every metric space is normal space

2. Prove that every second countable regular space is normal space.

3. Let (X, 1) be a T'|-space. If t* is a topology on X such that T < t*, show that (X, t*) is also a
T-space.

4. Let (X, 1) be a Hausdroff space and let /: X — X be continuous. Show that the set {x € X :
f(x)=x} 1s closed in X.

EEEEN
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Unit 11 : Compact and Locally Compact Spaces

Structure of the Unit
11.0  Objectives
11.1  Introduction
11.2  Compact Topological spaces

11.2.1 Open cover

11.2.2 Sub-cover

11.2.3 Compact Topological space
11.3  Finite intersection property (FIP)
11.4  Bolzano Weierstrass Property (BWP)
11.5 Locally compact space
11.6  Summary
11.7  Answers to self-learning exercises

11.8  Exercises

11.0  Objectives

In this unit we shall study about the compactness of the topological spaces. For this we have to
understand the concepts of open cover and Sub-cover. There are some types of compactness such as

countable, sequential and local compactness. Only local compactness will be discussed in this unit.

11.1 Introduction

There are some closed surfaces contained in a finite part of three dimensional Euclidean space
like sphere and ellipsoid. The concept of topological compactness is based on this type of surfaces, on
the other-hand some surfaces are not contained in a finite part of the space like paraboloid. In this unit,

compactness of a topological space is studied in terms of open cover and its Sub-cover.

11.2 Compact Topological spaces

11.2.1 Open cover : Let (X, 1) be a topological space and let A be a subsets of X.A collection

C={G, |a € A} of open subsets of X'is said to be an open cover of 4 if

Ac UG(X.

aeA
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If C is an open cover of 4, then we say that C covers 4. Sometimes C is called simply cover
of 4.

11.2.2 Sub cover : Let (X, 1) be a topological space and C be an open cover of subset 4 of X.
A sub-collection (subset) C, of C'is said to be a sub-cover of C if C; covers 4.

A cover of 4 1s said to be finite cover if it consists of finite number of open sets. If a cover C has
a finite sub-cover then C is said to be reducible to a finite sub-cover.

11.2.3 Compact Topological space : Let (X, t) be a topological space. A subset 4 of X is
said to be compact iff every open cover of 4 has a finite sub-cover, that is, iff every open cover of 4 is
reducible to a finite sub-cover.

The topological space X is said to be compact iff every open cover of X is reducible to a finite

sub-cover, that is, iff for every collection C= {G | o € A} of t-open sets for which

x=G,.

aeA
there exist finitely many open sets Ga[, (1 £i<n) form C such that

X=G, VG, v..UG,
or X:UG .

Ex.1. Let X = {a, b, ¢} and T be a topology on X such that
T =19, {a}, {b}, {a, b}, X}

then the collection C = {X} is an open cover of X, where as the collection {{a}, {a,b}} is not a
open cover as it does not cover X. Also the collection {{a}, {b}, {c}} is not an open cover of X
as {c} is not t-open set although union of this collection is equal to X.

Ex.2. C,={(nn)|neN;

and C,=1{(-3n, 3n)|n € N}
are U-open covers of R, where U is usual topology on R, the set of real numbers.

Ex.3. Every finite topological space is compact.

Let (X, 1) be a topological space where X is finite. Since X is finite therefore 1 is finite and
hence every open cover of X is finite. We may say that every open cover of X is reducible to a
finite sub-cover. Thus X is compact.

Ex.4. Every indiscrete space is compact.

Let (X, I) be an indiscrete space. For indiscrete space, topology I = {b, X}, thus the only

open cover of X is {X}, which is finite, so X is compact. Here X may be infinite.

218



Ex.S. Let (X, D) be a discrete topological space, where X is infinite. Let A be an infinite
subset of X, then we can easily verify that A is not compact. Consider a collection C such that
C={{x} |x e 4}.
Obviously C is an open cover of Aas {x} € D v x e Aand A =0 {{x} | x € 4}.
This cover is infinite. Evidently it has no finite sub-cover as any sub-collection obtained
by deletion of any member from C will not cover A. Hence A is not compact.
If we replace A by X, then we may say that infinite discrete space is not compact.
Theorem 1. Compactness is not a relative property,
OR
Let Y be a subspace of a topological space (X, t) and A is a subset of Y. Then A is com-
pact relative to X iff A is compact relative to Y.
Proof. Let (X, 1) be a topological space and let Y be the subspace of X for the relativized
topology 1, given by
y=1GnY|Gery L (1)
Let 4 — Y and let A be compact relative to X. We shall show that 4 is compact relative to Y. For
this, let

C={H | a € A} be a collection of Ty-open sets such that

AcVUiH |oeAy L 2)
that is C'is Ty-open cover of 4. Since H | € 1y, 3 G, € T such that
H=G,nY,yoaeA .. 3)
from (2) and (3) it follows that AcuiG,NnY|aeA}
or Acu{G,|a e A}, (-Ac)

so that the collection {G | o € A} of T-open subsets of X is an open cover of 4. Since 4 is compact

relative to X, this cover is reducible to a finite subcover, that is, there exist finitely many open sets
GOcl , Gaz yeees Gaﬂ such that
Ac G, VG, V...UG, .
Since A c Y, therefore
Ac Ym[GOcl UG, U.. uGan] :(YmG(x1 )u(Ychx2 )u u(YmG%)
(Distributive-law)
=H, VH, U..UH, (from (3))

or Ac H, VH, V..UH, .

This shows that cover C is reducible to finite subcover. Thus 4 is compact relative to Y.
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Converse : Let 4 be compact relative to Y. Let
C'={G, laeA}
be a collection of t-open subsets of X, which covers A that is
AcuiG, |ae A}
or Ac U G,. 4)

aeA

Since A c Y, then by (4), we have

Ac Y({ U Ga,} = U [YmGa]. (Distributive law) .. (%)
aeA aeA
Since G, € 1, therefore Y N G € 1y (by the definition of ty)
Let YN G, = Ha, then by (5), we have
Ac U H,,
aeA
where HetyvyaeA L. (6)

(6) shows that the collection {H | o € A} is an open cover of 4 relative to Y. Since 4 is
compact relative to Y, this cover is reducible to a finite subcover, that is, there exist finitely many subsets

(1 £i<m) such that
A c[-[Ocl UH% u....uHam :(YmGOcl )u(Ychx2 )u....u(YmGam)
= Ym[GOcl VG, u....uGam]
thus 4c G, UG, U..UG,  (wAcY
which shows that cover C”is reducible to a finite sub-cover and hence A is compact relative to X.
Theorem 2. A closed subset of a compact space is compact.
Proof. Let (X, 1) be a topological space and let 4 be a subset of X such that 4 is closed. We

shall show that 4 is compact.

Let C={G, |a e A} beanopen covering of 4, where G, € 1, v a € A, then

Ac Yo, L. (1)

aeA

Since A4 is closed therefore (X — A4) is open. Now X' = (X~ 4) U 4, so
(X—A) U (U Galzx, Gby() ?)
aeA

which shows that the collection C together with X — 4 is an open cover of X. Since X is

compact, therefore this cover is reducible to a finite subcover, that is,
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n

X= (X—A)(U G, ], for some o, among o’s. ... (3)
i=1

From (3), we may conclude that

Ac LnJ G, -
i=1

Hence 4 is compact.
Theorem 3. Every compact subset of a Hausdorff space is closed.
Proof. Let A be a compact subset of a Hansdorff topological space (X, t). We shall show that
A 1s closed. For this it is sufficient to show that A€ is open. Let x € 4€. Given that X is Hausdorft, so
for every y € A4, y # x, there exist open neighbourhoods My and Ny of x and y respectively such that
My N Ny =6 (1)
Consider the collection C = {Ny | y € A}. Obviously this is an open cover of 4. Since 4 is

compact, therefore this cover is reducible to a finite sub-cover such that

n
ACUNi, forsome y,e4 . 2)
i=1

Associated with each of N, , N, ,...., N, we also have opensets M, ,M , ,.... M, such that

xeM, ,xeM,,..,xeM, and M, "N, =¢ fori=1,2, ..., n.

n n
Let (1M, =M and |JN, =N.
i=1 i=1

Since M is intersection of finite number of open neighbourhoods of x, therefore M is also an

open neighbourhood of x.

Now Leta e N :anN,

i=1
=ace Nyifor some y; € 4
=a gMy[ (sinceMy[ mNy[ :¢)
=>a¢ M.

Since a is an arbitrary point of N, so M N N = ¢. By (2), we have 4 < N. Since M N N = ¢,
therefore A N M = ¢, which shows that M — A4€. Thus, we have obtained that for x € A€, 3 an open
neighbourhood M of x such that x € M c A€, that is, x is an interior point of A¢. Since x is an arbitrary
point of A€ so it is open and hence 4 is closed.

Corollary : Let 4 be a compact subset of a Hausclorff space X and let x € A€. Then, there
exist open sets G and H such thatx € G, 4 c Hand G " H = ¢.
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Theorem 4. A continuous image of a compact space is compact.
Proof. Let (X, 1) and (¥, V) be two topological spaces and let /' be a continuous mapping of X
into Y. We have to show that /'(X) is compact. Let {H | & € A} be an open over of /' (X), then

n

f&c Yy, e (1)

aeA
Since fis continuous, therefore £~ (H ) 1s T-open subset of X for each a.. From (1) we have

Xg U f_l (ch)’

aeA
which shows that the collection {f ~ ! (H,) | o € A} is an open cover of X. Since X is
compact, therefore this cover is reducible to a finite sub cover, that is,

X = Uf_1 (Ha )for some o,; among o s.

i

C e

= f@ ={UH,,,
i=1

which shows that the cover {H | a € A} of f(X) is reducible to a finite subcover. Hence /' (X) is
compact.

Theorem 5. The space (R, U) is not compact, where U is usual topology on R, the set of
real numbers.

Proof. To show (R, U) is not compact, we have to show that there exists an open cover of R
which is not reducible to a finite subcover. Consider the collection

C={(=nn)|neNj,
obviously this collection is an open cover of R. Now, we shall show that no finite sub collection of C can
cover R. Let
C'={(=np, ny), (—ny, ny), ..., (=0, n, )}

be any finite subcollection of C. Let max {n, n,, ..., n,,} = n,, then obviously ny ¢ (- n,, n;), 1 <i <
m, but n, € R.

Thus C’ does not cover R. So C is not reducible to a finite subcover. Hence (R, U) is not
compact.

Theorem 6. (Heine-Borel Theorem) : 4 subset of (R, U) is compact iff it bounded and
closed.

Proof. Let 4 be a subset of R. First suppose that 4 is closed and bounded. Since 4 is bounded

therefore there exist two real numbers a and b such that a < b and 4  [a, b]. Now, we shall show that

222



every closed and bounded interval [a, b] on R is compact. Let /| = [, b] and suppose, if possible, /; is
not compact.

Then there exists an open cover C = {G_ | a € A} of I} which is not reducible to a finite

subcover of /;. Now, one of the closed intervals [a, a ;b} and [a ; b ,b} must have no finite subcover.

Let us denote this interval as /,. Again bisecting /,, we obtain a closed interval /5, in a similar manner,
which has no finite subcover. Continuing this process of bisection of intervals, we obtained nested se-
quence of closed intervals {/ }. As n — o, we have length of 7, as [/, | — 0 and 7, has no finite
subcover for every n. By cantor’s intersection theorem, 3 x € R such thatx € N {[ | n € N}.

Also

xelnc[a,b]cUGa

aeA
= x € G for some a € A.
Since G is U-open, 3 & > 0 such that
xe(x—-gxt+te)cqG,
Take n so large such that
IL,c(x-gx+te) G,

(o [1,]>0,n—>ocandxel, v neN)
which shows that 7, is covered by G, a single member of cover C. This is a contradiction as /, has no
finite subcover for all # € N. Hence [a, b] is compact. Now since A4 is closed in R, therefore, by the
theorem 2, A4 is compact.

Converse : Let us suppose that 4 is compact and consider a collection C= {(x —1,x + 1) |
x € A}. Obviously C is an open cover of 4. Since 4 is compact therefore this cover is reducible to a

finite subcover, that is,

Ac@x-Lx+Hux-Lx+hHou.. Ulx,-1,x,+1) forsomex; e 4 .. (1)
Let D= max {xq, Xy, ..., X, }
and q=min {xy, Xy, ..., X, }.
then (x,-Lx;+DHux,-1L,x+tHu.. vk, -L,x, +)clg-1,p+l] .. (2)

By (1) and (2), we have
Aclg-1,p+1]
Thus A4 1s bounded. Since R is a Housdorft space and 4 is compact, therefore by the theorem 3,
A is closed. This completes the proof.
Note : Since compactness is not a relative property (theorem 1) therefore we can consider

-open cover of set 4 instead of relativized U-open cover.

223



Ex.6. A compact subset of a non-Hausdorff space need not be closed. Give an example in
favour of this statement.

Sol. Let (X, /) be an indiscrete topology and X has more then one element in it. Since
1= {0, X}, that is, only closed subsets of X are ¢ and X it self, so no proper subset of X can be closed.
Let 4 be any proper subset of X, then it is not closed, but it is compact as only open cover of Ais {X}
which is finite.

Ex.7. Give an example of a compact space which is not Haudorff.

Sol. Let X = {a, b, c} and Tt = {¢, {a}, {a, b}, X}. Since X is finite therefore it is compact. It is
not Hausdorff because a and b are two disjoint points such that they have no disjoint neighbourhoods.

Ex.8. If (X, ©) be a compact topological space then (X, t”) is compact if t" is coarser
that t.

Sol. Since t”is coarser then t so that t’c t. Let {G, | o € A} be t”-open cover for X. Since

1’ < 1 therefore this collection is also t-open cover for X. But X is t-compact, therefore this T-open
cover is reducible to a finite subcover {Ga[, | 1 <i<n} which is also t”-open. Thus X is T -compact,

that is, (X, t”) is compact.

11.3  Finite intersection property (FIP)

Let Cbe a collection of sets. Then C is said to have the finite intersection property (FIP) iff
the intersection of members of each finite subcollection of C is non-empty, that is, if C; < Cand C is
finite then

N{4|4eC}#6.

This collection C of sets is called fixed if it has a non-empty intersection, that is if
N{A|4AeC#0

and called free if its intersection is empty, that is, if
N{4|4 € C}=4¢.

11.4 Bolzano-weierstrass property (BWP)

A topological space X is said to have Bolzano-weiertrass property (BWP) if every in finite
subset of X has a limit point. A space with BWP is also known as Frechet compact space.

Theorem 7. A topological space X is compact iff every collection of closed subsets of X
with the FIP is fixed, that is, has a non-empty intersection.

Proof. Let (X, 7) be a compact topological space and let /= {F, | a. € A} be a collection of
closed subsets of X having finite intersection property. We shall show that F'is fixed, that is, it has a non-

empty intersection. Let, if possible, ' is not fixed, that is
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N{F laeAy=0 L. (1)
Taking complement to both sides and using De-Morgan’s law, we have
UF laeAy=Xx (2)
Since F, is closed, therefore F; is open, v a € A. So, by (2), the collection { F; [ € A}
is an open cover of X. Since X is compact, therefore, we have
U{F, [1<i<ny=x L. (3)
Again, using complement and De-Morgan law, form (3) we have
N{F, |1<i<n}y=¢ L. 4)
which shows that finite subcollection of the collection F has empty intersection. This contradicts the FIP
of F. Thus
N F, | o e A} # ¢ that is Fis fixed.
Converse : Let every collection of closed subsets of topological space X, with FIP, is fixed.
We shall show that X is compact. Let C= {G, | o € A} be an open cover of X, then we have
GLEJA Co=Xx (5)

Taking complements and using De-Morgans law, we have

[16.~¢ ©

aeA
Thus the collection { G, | a € A} of closed sets is free, that is, not fixed. So this collection
does not have FIP. For, if it has FIP, then it must be fixed (by our assumption). Hence there exist a finite

subcollection of the collection { G, | o € A} having empty intersection, that is,

n

C
N G,, =9, for some o, among o' s.
=1

= UGG[ =X  (De-Morgan’s law)
i=1

which shows that cover C of X is reducible to a finite sub-cover of X. Hence X is compact.

Theorem 8. 4 topological space is compact if and only if every class of closed sets with
empty intersection has a finite subclass with empty intersection.

Proof. Let (X, t) be a compact topological space and let {F, : o € I} be a family of closed
sets of X such that

(=6

ael

225



Taping complements to both sides and using De-Morgan’s law we get

Ur=x (1)

acl e

Since F, is a closed set for each a € I, so F; is an open set for each o € 1. Therefore, form

(1) we can say that { F,; : o € I} is an open covering for a compact space X. So, by compactness of

X there exist finite number of inchices a.;, @, ... , o, in I such that

X= U FS
=1

— ) :ﬁFa.

Conversely, suppose that every family of closed sets with empty intersection has a finite sub-
family with empty intersection. Now we have to show that X is compact. Let {G, : o € I} be an open

covering of X. Then

= ¢ =) Gs.

ael
This shows that { G;, : a. € [} is a family of closed sets with empty intersection, since each G,
in open so each G is closed for o € I. So, by our assumption there exist a finite subfamily

{Gél_ :i=1,2,...,n} such that

= UGa.:X'

Thus every open covering of X has a finite subcover and hence (X, 1) is compact.
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Theorem 9. A compact space has Bolzario-weierstrass property.

Proof. Let X be compact space and let A4 be an infinite subset of X. We have to show that 4 has
a limit point. Let, if possible, 4 has no limit point in X. Then for every x € X, there exist an open
neithbourhood G of x such that it does not contain any point of 4 other than (possibly) x. The collec-
tion {N, | x € X} forms an open cover of X. Since X is compact, therefore this cover is reducible to a

finite subcover of X, that is,
n
X :Uin, for some x; € X.
=1
Since A X, therefore
n
AcJn,
i=1
which shows that A4 is finite having at most » elements as each NV x, has at most one element of 4. Which
is contradiction as A4 is infinite. Hence 4 has a limit point. So X has BWP.
Theorem 10. In a Hausdorff topological space disjoint compact sets can be separated by
disjoint open sets.
Proof. Let (X, 1) be a Hausdorff space and let 4, B be any two compact subsets of X such that
AN B=¢.Leta € A4, thena ¢ B. We thus have a point a disjoint from the compact set B. By corol-
lary of Theorem 3 there exist open sets G, H, such that
aeG,BcH, and G,NnH,=¢

As a vanis in 4 form above we get

ACUGa

acA
This shows that {G, : a € A} is an open covering for the compact set 4. By compactness of 4
there exist a,, a,, ..., a, all in 4 such that
AcG, VG, V..UG, .
Associated with each of G,,G, ,...G, ,we have open sets H,,H, ,...H, , such

thatBc H,,BcH, ,..,BcH, and G, "H, =¢ fori=1,2,..,n

Thus we have 4cG, VG, V..UG, =G (say)
and BcH, NH, m...mHaﬂ = H (say)
Clearly G and H are open subsets of X.

Since G, "H, =¢ for i=1,2,...,n
and HcH, for i=1,2,..,n
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HNG, =¢fori=1,2,..,n
Now GmH:Hm(GaluGazu...uGan)
:(HmGal)u(HmGaz)u...u(HmGan)

=0uUdU ..U
=
= GNnH=9¢
Thus if 4 and B are disjoint compact sets in a Hausdorft space X, then there exist disjoint open
sets G, H n X such
that Ac G,BcHand G H=¢.
Theorem 11. 4 compact Hausderff space in normal.
Proof. Let (X, 1) be a compact Hausdorff space. We have to show that (X, t) is normal. Let
F| and F, be two disjoint closed sets in X. Since F'; and F, are closed subsets of a compact space X,
so by Theorem 2, F| and F, are two disjoint compact subsets of X. Again, since /| and F’, are disjoint
compact subsets of a Hausdorff space X, so by Theorem 10 there exist two open subsets G and H of X
such that
F,cG F,cH and GNnH=¢.
Thus disjoint closed sets in X have been separated by disjoint open sets in X and hence (X, 1) is

normal.

11.5 Locally compact space

A topological space (X, 1) is said to be locally compact if and only if every point of X has a
compact neithbourhood.

Thus X is locally compact space if for every p € X, there is an open set G and a compact set K
such that

peGck.
or

A topological space (X, 1) is said to be locally compact if and only if every point in X has atleast
one neighbourhood whose closure is compact.

Ex.9. The real line R with usual topology u on R is locally compact, since for each x € R
we have

xe(x-1L,x+tD)c[x—1,x+1],

where [x — 1, x + 1] is compact being closed and bounded subset of R.
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Theorem 12. Every compact topological space is locally compact, but converse is not nec-
essarily true.

Proof. Let (X, 1) be a compact topological space and let x be an arbitrary point in X. Since X is
an open set, so it is neighbourhood for each x € X. As X is given to be compact, so every point of X
has a compact neighbourhood and hence X is locally compact.

The converse of above theorem is not necessarily true because if we consider the discrete
topological space (X, D = P (X)), where X is an infinite set is not compact space but it is locally com-
pact because D-open set {x} is neighourhood ofx. Also {x} being a finite subset of a topological space
is always compact. Hence for each x € X there is a D-open set {x} which is compact such that
x € {x} < {x}. Hence (X, D) is locally compact but not compact.

Theorem 13. Every closed subset of locally compact space is locally compact

or

Every closed subspace of a locally compact space is locally compact.

Proof. Let (X, 1) be a locally compact topological space and let ¥ be any closed subset of X.
Then (Y, ‘Ey) is a closed subspace of X. Now we have to prove that y is a locally compact space.

Let a be any arbitrary element of ¥, then a € X as ¥ — X. Since X is a locally compact space
and a € X, therefore there exist G, € T and a compact subset K of X such that

aeG,ck

= aeG,NYcYnK,sinceaey L (1)

Since Yis a closed subset of X and Y N K — K, so Y K is a closed subset of K. Again, since
K 1s a compact set and we know that every closed subset of a compact space is compact, so ¥ N K is
a compact subset of K and hence of Yas Y N K — Y. Now

G,et=>G,NnYertpie,G,NY
is an open subset of Y. Form (1) we have
aeG,NYcYnNnK

= Y n K is a neighourhood of a in ¥ and we have shown that ¥ m K is compact. Thus corre-
sponding to each a in Y there is a compact neighourhood of a in ¥ and hence Y is locally compact.

Theorem 14. Every open continuous image of a locally compact space is locally compact.

Proof. Let (X, 1) be a locally compact space and let (¥, U) be any topological space. Also, let f
be a an open and continuous function form X into Y. Now we have to show that /' (X) is locally compact
subspace of Y. Let y be any element of /' (X), then there exists x € X such that f'(x) =y.

Since (X, 1) is locally compact space and x € X, so there exist an open set G and a compact

set K in X such that
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xeGckK
= y=f®efGQcf& (D
Since f'is an open mapping and G is an open subset of X, so f (G) is an open subset of /' (X).
Again, since K is a compact subset of X and f'is a continuous mapping form X into ¥, so /' (K) is a com-
pact subset of f (X), as continuous image of a compact set is compact. Hence form (1) we can say that
every point of / (X) has a compact neighourhood in f'(X) and hence f'(X) is locally compact subspace
of Y.

Self-learning exercise-1

1. Define following :
(i) Open-cover
(ii) Compact space
(iii) Finte mtersection property
(iv) Bolzano-weierstrass property
2. Which of'the following statements are true :
(a) Every indiscrete space is compact.
(b) Every discrete space is compact.
(c) Every finite space is compact.
(d) A closed subset of a compact space is compact.
(e) Every locelly compact space is compact.
(f) Every closed subsets of a locally compact space is locally compact.

3. Give an example to show that a compact subset of a non- Housdroff space need not to be closed.

11.6 Summary

In this unit, we hove studied have about compactness of the topological space. We observed
that compactness is an absolute property . We have also studied about local compactness and related

theorems.

11.7 Answers to self-learning exercises

Self-learning exercise—1
2. (a), (¢), (), (f) are true.
3. Indiscrete space (X, /), where X consists of more than one point. Let 4 be proper subset of X,
then A is not closed as only closed sets are ¢ and X. 4 is compact as only open cover of 4 is

{X}, which is finite. Also X is not housdroff.
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11.8

Exercises

N A W N

. Show that a topological space (X, 1) is compact iff every basic open cover of X has a finite

subcover.

. Show that cantor’s set is compact.
. Show that compactness is a topological property.
. Show that a coofinite topological space (X, f) is compact.

. If f be a mapping of a locally compact space X onto a housdorff space Y such that fis continu-

ous as well as open, then Y is locally compact.

. Show that every closed interval [a, b] is compact with respect to relativised U-topology

for [a, b].

. Show that no infinite discrete space is compact.

. Show that the intersection of the members of an arbitrary family of closed and compact subsets

is also closed and compact.

HEin
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Unit 12 : One Point Compactification

Structure of the Unit

12.0  Objectives

12.1  Introduction

12.2  Compactification

12.3  One-point compactification

12.4  Summary

12.5  Answers to self-learning exercises

12.6  Exercises

12.0 Objectives

In this unit, you will learn an important concept of compactness named compactification. The
one-point compactification was introduced by Alexandroff and Urysohn in 1924. One-point
compactification allows us to add a single point to a locally compact Hausdorff space X, in order to

obtain a compact Hausdorft space Y containing X' as a subspace.

12.1 Introduction

As we have already studied, compact space and sets have a number of useful properties. For
example;

(i) Compact sets are closed and bounded in a metric space,

(ii) Sequences have convergent subsequences in a compact subset of a metric space,

(iii) Compact metric spaces are complete, and

(iv) Continuous functions on compact spaces attain minimum and maximum values.

Furthermore, we have also studied the useful properties possessed by a Hausdorff space. For
example

(i) Single point sets are closed in a Hausdorftf space, and

(ii) Convergent sequences converges to a unique limit in a Hausdorft space.

Unfortunately, we do not always have the advantages afforded by a compact and Hausdorft space
in the topological spaces, we use.

It is possible to embed a non-compact topological space (X, t) into a compact space (¥, u) and
then use the properties of ¥ to gain information about X. Such a space Y is called a compactification
of X.
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12.2 Compactification

A topological space X, is said to be embedded in a topological space Y, if X is homeomorphic to a
subspace of Y. If Y is a compact space, then Y is called a compactification of X. Frequently, the
compactification of a space X is accomplished by adjoining one or more points to X and then defining
an appropriate topology on the enlarged set, so that the enlarged space is compact and contains X as a
subspace.

Ex. Consider the real line R with the usual topology U. We know that the space
(R, U) is not compact. We adjoin two new points, denoted by © and — o, to R and call the en-
larged set R* = R U {— oo, oo} the extended real line. The order relation in R can be extended
toR* by defining — oo <a<w, v a € R. The class of subsets of R* of the form (a, b) = {x € R* :
a<x<b},(a,o]={x e R*:a<x}and |-, a)= {x € R* : x <a} is a base for a topology u*
on R*. Furthermore the space (R*, u*®) is compact space and contain (R, U) as a subspace, and

so it is a compactification of (R, U).

12.3 One-point compactification

Let (X, 7) be any topological space. We shall define the Alexandroff or one-point
compactification of (X, t), which we denote by (X, T, ). Here :

1. X =XU {oo}, where oo, called the point at infinity is distinct from every other pomnt in X,
ie.oo ¢ X

2. T be the collection of all sets U in X such that (i) U is open in X or (ii) X_ ~ U'is a closed
and compact subset of X,

ie. I ={UeP(X,):UertorX ~Uisaclosed and compact subset of X},

where P (X)) is power set of X_.

Theorem 1. T is a topology on X .

Proof. : [T.1] Since X ~X = ¢ is closed and compact in X,

Thus X eT _.AsdisopeninX=¢p et

= dbeT,

thus X eT7 and¢peT,.

[T.2] Let {G,: A €} be any collection of open sets in X . To show

G=JG, eT,
AeA

First assume that oo ¢ G, V A € A, then G, €1, V A € Anand so

U G.=Ger {-+ 7t isatopology an X}
reA
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- G=JG eT, [By definition of 7]

reA
If 0 e U G, >we Gu for some p € A . But then by definition. (i) X ~ G,u
reA
is closed and compact in X.
Now N (X, ~G, )= X, ~G,.
reA
thus ﬂ (X 0 ™ GK) is closed and compact in X.
reA
So Xo~(X0~G)=J G =GeT,
reA reA

[T.3] Letd,BeT,
Now ifoo ¢ Aand o ¢ B, then 4, B € 1 and so
ANBet=ANBeT,
Ifoo ¢ Aand oo € B, then 4 € 1, B ¢ tso that X ~ B is a closed and compact subset of X.
ButX ~B=X~BandsoX~BisaclosedinX, thusB e XandhenceANnBet=>4ANBeT,.
Ifo € Aand oo ¢ B, then similarlyA "B €T
Ifo € Aand 0 € B, then X ~ 4 and X ~ B are both closed and compact subsets of X. But
then (X, ~A4) U (X ~ B) is closed and compact in X. Also
X, ~A) VX, ~B)=X_~(ANB)
= X, ~ (4 N B)is closed and compact in X
= ANBeT,.
Thus is all cases 4 N B €T, and therefore by [7.1], [7. 2] and [T. 3], (X, T.) is a topologi-
cal space.
Theorem 2. Let (X, T,) be the one- point compactifiction of a topological space
(X, 1), then (X, T,)) is a compact space.
Proof. : Let C = {G, : . € A) be an open cover for X_. Then oo € Gu for some p € A, s0
that
G,u =X ~F, whereF is compact and closed in X
[By definition of (X, T )]

Since C 1s an open cover of X and F < X — X_, thus C is an open cover of F also and F'is

compact, thus there exist a finite sub-cover {le ,sz s Gy, } of C such that
But then { GM, le ,sz - GM } is a finite sub-cover of C covering X_. Hence X__ is compact.
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Theorem 3. Let (X, T,)) be the one- point compactifiction of a topological space (X, 1),
then X is a subspace of X .

Proof. : Let U e T, ifo ¢ U, then U € t [By definition] and so we write U= U N X.
If oo € U, Then U=X_~ F, where F'is closed and compact in X' [By definition], then
UnX=X, ~F)NX=X~F, which is open in X.

Thus if Ue T, thenUnXet L. (1)
Now let V' e 1,thenoo ¢ Vandso Ve T,.

Hence T, (2)
Combining (1) and (2) we find that (X, 1) is a subspace of (X, T).

Theorem 4. Let (X, T)) be the one-point compactifiction of a topological space (X, 1),
then X =X,

Proof. Let G be any T -open nbd of 0. Then G = X — F, where F'is compact and closed in
X. But X is non compact and so £ # X. Hence G N X # ¢. Thus o € X . Accordingly X =X_.

Theorem S. Let (X, T.) be the one-point compactification of a topological space (X, 1),
then X is a Hausdorff space if and only if is X Hausdroff and locally compact.

Proof. First assume that X is a HausdorfT space. By Theorem 3, X is a subspace of X_ and
the property of being Hausdroff is hereditary. Hence X is also Hausdroff. Let x € X, then x and oo are
distinct points n X_. Since X is Hausdroff, thus there are T -open nbds U of x and V of oo such that
UnV=¢ . Hence Uc X ~Vsothatx e UnXc X ~V)NnX=X~V.Since UNn X 1s
T- open it follows that X ~ V'is a t-open nbd of x. Buto € Vand V' e T imply that X ~ V=X~V
is closed and compact in X. Thus each point x of X has a compact nbd X ~ V'in X and so X is locally
compact. Hence we have shown that X is Hausdorff and locally compact.

Conversely, suppose that X is Hausdorff and locally compact. We show that X_ is Hausdroff.
Let x, y be distinct pomnt of X__.

Case 1 : Suppose x, y € X. Since X is Hausdroff we can find t-open nbds G of x and H of y
such that G N H = ¢. Since oo does not belong to G and H we have G and H are also T_-open.
Hence X is also HausdorfT.

Case 2 : Suppose x # o and y = 0. Then x € X . Since X is locally compact, we can find a
compact nbd C of x in X. But X is Hausdroft and so the compact subset C of X is closed in X. Hence
by definition V=X~ Cis T _-open nbd of c. Since C 1s a nbd of x we have x € U < C, For some
t-open set U m X. But then U N V= ¢. Again, By definition U € T_. Thus x and y have T__- nbds U
and V respectively with U m V'= ¢ and so X is Hausdorft.

Theorem 6. Let (X, T,) be the one-point compactification of a topological space
(X, ©). Then (X, t) is uniquely embedded into (X, T ) such that X~ X is a singleton.
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Proof. Suppose X and Y are two one point compactifications of X. We then have
X, ~X={o}and Y ~X= {ooy}.
Defineamaph: X — Y by

{x,VxeX
h(x) =

0, x=0€X,.

Then £ is a continuous bijection. We show that /4 is a homeomorphism. Let U be open in X__. If
Uc X, the h (U)= U, which is openin Y_. If U is an open nbd of «, then C = X_~ U is closed and
compact in X. Since C is compact, by continuity of 4, it follows that 4 (C) is a compact subset of X. But
X 1s Hausdorff and so 4 (C) is closed in X. Thus Y~ 4 (C) is openin Y. But £ is a bijection and so
h(X,~C)=Y ~h(C). Thus h (U)=h (X, ~ C)is also open in ¥_, whence /4 is an open map.
Therefore £ is a homeomorphism of X onto Y_. This proves the desired result.

Ex.1. Let R be the set of all real numbers. Show that the set S = {(x, y ); x>+ y*= 1} in
R 2 is the one point compactification of R and that « = (0, 1) is the point at infinity.

Sol. For all (x, y) € R, let f (x, y) =x% + y2 — 1. Then f is continuous function on R? to R.
Also S= 71 ({0}). But {0} is closed in R. Hence by continuity of f; S is closed in R2.

Moreover, S is a subset of the closed rectangle [-1, 1] x [-1, 1] = R2. Hence S is bounded in
R2. Thus S is closed and bounded subset of R? consequently S is compact in R? by Heine-Borel
Theorem.

We have, R is locally compact, since x € R lies in some open interval (a, b), which is con-
tained in the compact set [a, b].

Now we have to show that R is embedding in some subset Y of S such that Y= § ~ {00} where

0 =(0,1). We define 4 : R - S— {0} by

2x  x2-1

h(x)Z(xz— Z—]VxeR

+1’x +1

and g:S5-{wo} >R by

2(uy)= 7=y V() €S- le), whereoo=(0.1)

then 4 and g are continuous,

Also h(g(x,y) = h(li] =(x,y) [since x2 +y?=1] and
-y

¥+l x?+1

2
g(h(x»:g( 2 ,"z‘l]zx



These relation imply that g = 4 ~! and so /! is continuous. Hence % is a homeomorphism of

R on
h(R)=S-{w} 8.
(0,1)
/ \{(X)
K 0,0) ] x
Therefore, S is the one-point compactifiction of R and oo = (0, 1) is the point at-infinity of this
compactification.

Ex.2. The one- point compactification of the plane is homeomorphic to the sphere.

Sol. Let C denote the <x, y > — plane in Euclidean 3-space R>, and let S denote the sphere
with center (0, 0, 1) on the z-axis and radius 1. The line passing through the “North-pole”
0 =(0,0,2) € Sand any point p € C intersects the sphere S in exactly one point p’ distinct from oo,

as show in the figure.

Let f: C — S be defined by f (p) = p”. Then f'is, in fact a homeomorphism from the plane C
(which is not compact) on to the subset S — {0} of the sphere S (which is compact). Hence S is a one-
point compactification of C.

Note : When the plane C is considered to be the complex plane ¢, then the one-point
compactification ¢ U {} is called the Riemann sphere or the extended complex plane and the

mapping f is known as stereographic projection.
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2R bd =

Self-learning exercise-1

The one-point compactification of the interval (0, 1] is ...... .

The one-point compactifiction of the interval (0, 1) is homeomorphic to ....... .

The one-point compactifiction of the set of complex numbers ¢ is called ..... .

In one-point compactifiction of the set of complex numbers ¢, the point at infinity is mapped
to ... .

Let Y=X U {0} be the one point compactification of X, then y =...... .

12.4

Summary

You have learnt a very useful concept of one- point compactification of a topological space in

this unit. You have learnt that by adjoining a point at infinity, the spaces R and ¢ can be made compact

spaces, and with the help of which, important consequences can be drawn.

12.5

Answers to self-learning exercises

(7 T "R B S S

- [0, 1]

.Circle C={(cos2nt,sm2nf):te(0,1)} U{,O0)}
. Extended complex plane

. North pole N= (0, 0, 2) of the sphere S

Y

12.6

Exercises

. Show that the one-point compactification of unit open interval (0, 1) is homeomorphic to the

circle.

. Show that the one-point compactification of set of rational numbers Q is not Hausdorff.

. Let (X, ) be a topological space and let (X, 7)) be its one-point compactifiction, then X'is a

dense subset of X if and if X 1s not compact.

HEin
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UNIT 13 : Connected and Locally Connected Spaces

Structure of the Unit

13.0  Objectives

13.1  Introduction

13.2  Separated sets

13.3  Connected space
13.3.1 Connected and disconnected set
13.3.2 Connected and disconnected space

13.4  Locally connected space

13.5 Summary

13.6  Answers to self-learning exercises

13.7 Exercises

13.0 Objectives

In this unit, we shall study about connectedness of a topological space. For this purpose we
shall study separated subsets of a topological space. We shall also discuss locally connectedness ofa

topological space.

13.1 Introduction

Connectedness is an important property of the topological space which is significant in the study
of continuity of curves. The connectedness is a topological invariant property. Connected space means a
single piece and when it is stretched or bent without tearing, then it remains a single piece. In this unit,

mathematical formulation of this concept is discussed.

13.2 Separated Sets

Let (X, 1) be a topological space. Let A and B be two non-empty subsets of X, then 4 and B
are said to be t-separated or simply separated sets if and only if
AnB=¢ and ANB=.
where 4 and B are closures of set 4 and set B respectively.
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Notes :
1. Two conditions 4N B =¢ and 4 N B =¢ can be written as single condition
(4 mE)U(ZﬁB) =¢.
2. From the conditions of the separated sets it is clear that 4 and B are disjoint and neither of
them contains limit point of the other, for, if 4 and B are separated sets, then

AnB=¢ and ANB=4¢.

Now AcAd =ANBcANB=¢
=>ANB=4¢.

We know that A =AuAd

= Bnd =Bn(4u4)

=(BNnA)U(BnA')=¢U(BNnA)=Bn4A

¢ =BnA
Similarly we can show that 4 " B’ = ¢.

Ex.1. Consider the topological space R of real numbers with usual topology U.
Let A=(1,2),B=(2,3],C=[2,3),
then A=[12], B=[23], C=[2.3],

so AnB=¢ and 4N B = ¢, hence 4 and B are separated.

Also, A and C are not separated as 4 NC = {2} # ¢, although they are disjoint. Hence disjoint
sets need not be separated.
Ex.2. In (R U), the set A = (— o, 0) are disjoint but not separated as

ANB=[0,0)N[0,00)={0} = ¢.
Theorem 1. Let (X, 1) be a topological space. Let A and B be separated subsets of X and
Cc A, D c B, then C and D are also separated, where C and D are non empty.

Proof : Since 4 and B are separated so

AnB=¢ and AnB=¢ L. (1)
Given that, CcA=>CcA . 2)
and DcB=DcB (3)

From (1), (2) and (3), we have

CnD=¢and CND=¢
and thus C and D are separated sets.

Theorem 2. Let (X, 1) be a topological space and (Y, ty) be its subspace. Let A and B be
two subsets of Y, then A and B are ty-separated, if and only if A and B are t-separated.
Proof : Let c/y (4), cly (A) be t-closure and ty~closure of 4 respectively and cly (B), cly (B)

be t-closure and ty~closure of B respectively.
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We know that
cly(A) :ch(A)mY and clY(B):ch(B)mY ..... (1)
Now,
AncyB)=An[cly(B)ynY] [by(1)]
=AnNcly(B) (- AcY)
Similarly ~ cly(4) " B=cly(4) "B
Thus, we have
AncdyB)y=¢=Anc,yB=06 L. (2)
cdy(A)nB=¢=clyA)nB=¢ L. 3)
From (2) and (3), we may conclude that 4 and B are t-separated iff 4 and B are t-separated.
Theorem 3. Two open subsets of a topological space are separated iff they are disjoint.
Proof : Let 4 and B be two open subsets of the topological space X. First suppose that 4 and

B are separated then by the definition, 4 and B are necessarily disjoint.

Conversely, let A and B are disjoint. Since A and B are open then A€ and B¢ are closed, then

A¢=4¢ and ge_pge L (1)
and ANB=¢ > A cBand B c A
—~Ac B¢ and - 5° (GCH :>éc]-_l)

= Ac B¢ and g 4¢ [by (D]
AnB=¢ and BN A=
Thus 4 and B are separated.

Theorem 4. Two closed subsets of a topological space are separated iff they are disjoint.
Proof : Let 4 and B be two closed subsets of the topological space X. Since separated sets are
always disjoint therefore we shall prove that if 4 and B are disjoint then they are separated. Suppose 4

and B are disjoint, then

AnB=¢ L (1)
Since 4 and B are closed therefore
A=4ad =5 . (2)

From (1) and (2). we have
ANB=¢, ANB=¢.
Thus 4 and B are separated.
Theorem 5. Two disjoint sets A and B are separated in a topological space X iff they are

both open and closed in the subspace A U B.
Proof : Let 4 and B be two disjoint subsets of the topological space X. First suppose that 4

and B are separated.
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Since 4 and B are separated in X, therefore
AncyB)=¢ and cyA)nB=¢ L. (1)
Let AUB =Y; thenclosure of4in Y,
cy(d) =cly(A)NY
=cly(4) N (4 v B)

= (cly (A) N A) U (cly(A) N B) (by distribution law)
=4 [ A cly(4)and by (1)]
=4

Thus, cly(A)=A = Aisclosedin Yie.in4 U B
Similarly, we can show that B is closed n 4 U B.
Now, Since 4 and B are disjoint therefore both are complement of each other in 4 U B, thus
both are open in 4 U B also.
Conversely, suppose that 4 and B are both open and closedin4 U B =Y.
Since A is closed n Y, therefore
A =cly(4)

=cly(A)NY

=cly(4) N (4 B)

= (cly(A) N A) v (cly (4) N B) (by distribution law)

=AV (cly(4) N B) [ Accly (D] ... (2)
=either cly(A)NB=¢ or (cy(A)NB)c4d
but 4N (cly(A) NB) =(ANB)Ncly(A)

=dNcly(4) (v AnB=¢)
=
so cly (A) N B and A4 are disjoint so ¢/ (4) N B can not be a subset of 4 so
cy(H)mnB=¢. L 3)
Similarly, we can show that
Anc,yB)y=¢ L (4)

From (3) and (4), A and B are separated in X.

13.3 Connected space

13.3.1 Connected and disconnected set :

Let (X, 7) be a topological space. 4 subset A of X is said to be t-disconnected or simply
disconnected iff 3 G, H — X such that G and H are t-separated and 4 = G U H, that is, iff 3 two non-
empty subsets G and H of X such that
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(i) GNnH=¢, GNH =0

(i) A=GUH

The set A4 is said to be connected iff it is not disconnected.

13.3.2 Connected and disconnected space :

A topological space X is said to be disconnected iff it is the union of two separated sets, that is,

iff there exists two non-empty subsets 4 and B of X suchthat AnB=¢p, AnB=¢ and X=4 U B.
Space X is said to be connected iff it is disconnected. Here (4 U B) is called disconnection of X.

Theorem 6. Let (X, t) be a topological space and (Y, ty) be its subspace. A subset A of Y
is Ty-disconnected iff it is t-disconnected.
Proof : First suppose that 4 is ty~disconnected, then there exists two ty-separated sets B and C
such that 4 = B U C. By the theorem 2, if B and C are t,~separated, then they are t-separated. Thus 4
can be expressed as the union of two t-separated sets. Hence A4 is t-disconnected. Similarly, using theorem
2, we can prove the converse part of the theorem.
Theorem 7. A topological X is disconnected iff there exists a proper subset of X which is
both open and closed in X.
Proof : First suppose that G is a proper subset of X such that it is both open and closed. Let
G = H, then H is also proper subset of X (G # ¢, G # X = G = X, G # ).
Also, GsuG¢=X=>GGuH=X L. (1)
and GnH=¢. L. (2)
Since G is both open and closed therefore H is also both open and closed.
Now, Gisclosed =G =G
Hisclosed = H = H,
thus,
GnH=¢=>GnH=¢pand GnH=¢ .. (3)
that is, G and H are separated.
From (1) and (3) we can conclude that X can be expressed as union of two separated sets.
Hence X is disconnected.
Conversely, let X be disconnected, then 3 two non-empty subsets G and H of X such that
GnH=¢, GnH=¢ .. (1)
and X=GuwH L (2)
We know that separated sets are disjoint so
GnH=¢ L 3)
From (2) and (3), G° = H and G, H are proper subsets of X.
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Now, GUH=X=>GUH=X (+HcH) . 4)

From (1) and (4), G¢ = g and since g is closed, G¢ is closed and hence G is open. Similarly
H is open. Since both are complement of each other, therefore both are closed also, thus G is a non-
empty proper subset of X which is both open and closed.

Theorem 8. A topological space X is disconnected iff X is the union of two non-empty
disjoint open (closed) sets.

Proof : Let X be a topological space. First suppose that X is disconnected. Then, by theorem
7, there exists a non-empty proper subset A of X which is both open and closed. Then 4€ is also open
closed. Thus, 4 and A€ are two non-empty disjoint open (closed) sets such that

X=A4uU A

Conversely, let X be union of two non-empty disjoint open (closed) sets. Let A and B be two
non-empty open (closed) subsets of X suchthat A " B=¢ and X =4 U B. Then 4 = B¢, so 4 is
closed (open) also as B is open (closed). Thus 4 is a non-empty proper subset of X which is both open
and closed. Hence by theorem 7, X is disconnected.

Ex3. Let X = {1, 2,3} and © = {¢, {1}, {2, 3}, X}, then {1} is a proper subset of X
which is both open and closed. Hence by theorem 7, X is disconnected.

Ex4. Let X = {1,2,3} and v = {0, {1}, {2}, {1, 2}, X}, then closed sets are X, {2, 3},
{1, 3}, {3}, b thus there is no proper subset of X which is both open and closed. Hence X is not
disconnected, that is, X is connected space.

Ex.S. Let X = {a, b, c,d, e} and 1 = {9, {a}, {c, d}, {a,c,d} {b, ¢, d, e}, X}, then X is
disconnected as {a} is a proper subset of X which is both open and closed.

Let Y= {b, d, e} be a subset of X then 1, = {¢, {d}, Y} is relativized topology for Y. Here ¢
and Y are only subsets of ¥ which are both ty-open and ty~closed. Hence is no proper subset of ¥ which
is both open and closed. Thus Y is connected subset of X.

Ex.6. Every discrete space containing more than one point is disconnected.

Proof : Let (X, D) be a discrete space containing more than one point. We know that D con-
tains all the possible subsets of X, hence every singleton subset of X is proper subset of X which is both
open and closed. Hence X is disconnected.

Ex.7. Every indiscrete topological space is connected.

Proof : Let (X, /) be a indiscrete space then / = {¢, X}, that is, no proper subset of X is both
open and closed. Hence X is not disconnected, so X is connected.

Theorem 9. Closure of a connected set is connected.

Proof : Let (X, 1) be a topological space and Y is subset of X such that Y is connected.
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Let, if possible, closure of ¥ i.e. y is disconnected. Then there exists a proper subset 4 of y
such that 4 is both open and closed in y .

Aisopenin y = 3 G € 1, such that

A=GnY (1)
Aisclosedin y = 3 H c X, His t-closed such that
A=H~Y )
Now,
GNY =Gn(YnY) (vycY)
=(Gm)7)mY
=ANY ...(3)
Similarly,
H"Y=4nY 4)
from (3) and (4)
GnY=HnY (%)

Also, since G is T-open, therefore G M Y'is open in Y and since H is t-closed, therefore H N Y
is closed in Y. Thus G n Y and H m Y both are open as well as closed in Y. Since Y is connected,
therefore G N Y and H M Y can not be proper subset of ¥, that is, either

GNnY=¢ or GNY=Y

Case .IfGNY=¢ andby(3)GNY=4Nny

= ANY=¢

= YcY-A4, since 4cY L. (6)
= 7c(7~A>

= YcY-4 ( Y—Aisclosedin?asAisopenin730()7~A):I7—A)
= A=0

which contradicts the fact that 4 is proper.
Case2. IfGN Y=Y, thenby(3),

ANY=Y
= YcA
= YcA=4 (Aisclosedin7:>z=/l)
= YcA

But AcY, So A=Y

which contradicts the fact that 4 is proper. Hence Y is not disconnected, that is ¥ is connected.
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Theorem 10. Let G be a connected subset of a topological space (X, t). Let G A U B,

where A and B are separated sets, then either G — A or G — B.

Proof : Since GcAUB,soGN(AUB) =G
= GmAHGnAB=6 L (1)
Now, to shows that G — 4 or G — B, we shall show that either
GNnA=¢
or GnNB=4¢.
Let us suppose that G "4 # ¢ and G N B # ¢.
Also,

(GmA)m(GmB)c(GmA)m(émE) ('.'mc(_?ml_?)

- (GmA)m(GmB)c(Gmé)m(AmE):(Gmé)mq):q)

("~ A and B are separated, so AN B =¢)
= (Gna)n(GnB)=0 L )
Similarly, we can show that

(Gnd)n(GnB)=0 L 3)

From (2) and (3), we can conclude that G N 4 and G N B are separated sets. From (1), G
can be expressed as the union of two non-empty separated sets. This shows that G is disconnected.
Which contradicts the fact that G is connected. So one of the sets G N 4 and G N B must be empty.

If GNA=¢,(1) gives GNB=G=GCBhB

and if GNB=¢,(1) gives GNA=G=Gc 4

This completes the proof of the theorem.

Theorem 11. Let G be a connected subset of a topological space (X, ). Let G 4 U B,
where A and B are disjoint open (closed) subsets of X, then either G < A or G C B.

Proof : By the theorem 3, 4 and B are separated if they are disjoint and open. By the theorem
10, G=A4 U B = either Gc 4 or G B.

Theorem 12. Let G be a connected subset of a topological space (X, 1). H is a subset of
X such that G c H — G, then H is connected.

Proof : Let, if possible / be disconnected. Then there exist two separated sets 4 and B such
that H=A4 U B, then

GcH=>GcAUB
then by theorem 10, we have

GcA or GcB.
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Suppose G < 4, then
Ge A :(émB)c(ZmB)

=GNBcCo ( A, Bare separated so 4 N B = (I))

=GnB=¢ (= ¢=GnB) L. (1)
Also HcecG =>AUBcG (- H=AUB)

=BcG

=GnNnB=B (2

From (1) and (2), B=¢
which is a contradiction as 4 and B is non-empty being separated sets. Thus our assumption is wrong.
Hence H is connected.
Theorem 13. Union of arbitrary family of connected subset of a topological space is con-
nected if the family is with non-empty intersection.
Proof : Let X be a topological space. Let {G, | o € A} be a family of subsets of X such that
G, 1s connected for all o.. Let
G=U{G, |aen}
We have to show that G is connected. Let, if possible, G is disconnected. Then there exist two
separated sets 4 and B such that
G=4AvB L (1)
Since given collection is with non-empty intersection therefore
NG, | o e n} #0.
Letx € N {G, | a € A} be arbitrary, then

xeG, v aen

and xeG=4AUB [by (1)]

= xeG, v aen

and xeAdorxeBhB

= xeG, N4, vy aen, if xed

= G, NA#¢, vaen (2)

Now, since G, is connected for all o, such that
G,cAUB
where 4 and B are separated sets, therefore by the theorem 10,

either G,cdor GgcB L. 3)
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Now, 4 and B are separated so they are disjoint, thus

ANB=¢ =G, c A4, Vaen [by (2)]
:>U{Ga|(XEI\}CA
=Gc4
= Gc4 (- AcGasG=4UB)
=Bc¢ (- AnB=¢)

which is contradiction as B is non-empty.

Hence G is connected.

Theorem 14. Union of arbitrary family of connected subset of a topological space is con-
nected if one member of the family intersects every other member of the family.

Proof : Let {G | o € A} be a family of connected subsets of a topological space X. Also let

G, , be the fixed member of the family such that
G, ﬁGao =, Vaen

Now, we have to show that G = U G,, is connected. Let G, WG, =H,, then H_ is con-

oEN

nected for all a as it is union of two connected sets having non-empty intersection (by theorem 13)

Now, U H, = U (Ga UG%)

OEN AEA

(ua. e,

OEN

=Ja, ( Gy, < Ga]

oEN aen

=G (1)
Also, ﬂ H, = ﬂ (Goc - Gao)
OEAN OEAN

=(ﬂ6a]u6%¢¢

OEN

(G, intersects G, Vae n,80 Gy #0).
Thus

U4,

OoEN

is connected by theorem 13, being the union of family of connected sets, where family is with non-enpty
intersection. Hence by (1) G is connected.
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Theorem 15. A subset of R is connected iff it is an interval.
Proof : Let A be a connected subset of R. Suppose, if possible, 4 is not an interval. If 4 is
empty or singleton set then there is nothing to prove, so let A contains more than are point. Letx, y € 4

such that x <y and 3 € R such that x <r<ybutr ¢ 4, as 4 is not an interval.

Now,
x<r<y=xe(—ow,r), ye(r o)
=>xedAdN(—w,r), yeAn(r, ©)
Now, AN (—w,n]uldn(r, o) =4 L. (1)
and AN (—w,)]N[AN(r, )] =AN (=0, )N (r, ©)

=9 [ o, )=0] ... )
Also, since (— «, 7) and (7, «) are open in R, therefore 4 M (-0, 7) and 4 N (r, w0 ) are
open in 4. So, by (1) and (2), we can conclude that 4 is union of two disjoint open sets, hence by
theorem &, A4 is disconnected, which is a contradiction. Thus A4 is an interval.
Conversely, suppose that 4 1s an interval. Let if possible A4 be not connected that is, 4 is discon-
nected. Then there exist two non-empty disjoint sets G and H, both are closed in 4 such that
A=GUH.
Since G N H= ¢ and G, H are non-empty therefore we can select two elements x, y € R such
thatx € G,y € Hand x # y, so x, y € 4 also. Without loss of generality, we may assume that x < y.
Since A4 is an interval and x, y € A4, therefore
[x,y]cAd=[x,y]c GUH.
Let p be supremum of G M [x, y], then obviously
x< p<y
Since p is supremum of G M [x, y], therefore for each € > 0,3 g € G N [x, ] such that
p—<€<qg=<p. (by the definition of supremum)
This shows that every neighbourhood of p contains a point of G M [x, y] and hence a point of
G. Thus p is an adherent point of G, that is, p is a limit pt. of G or p € G. Since G is closed therefore in
both the cases p € G. Since G and H are disjoint therefore p ¢ H. Now, y € H so p # y. Thus from
(1), we have p <y.
Also, Ve>0, p+eeH (- pissup.of G [x,y])
This shows that every neighbourhood of p contains a point of H other than p, as p ¢ H. Hence
p 1s a limit point of H. Since H is closed, so p € H as closed set contains all of its limit point. This is a
contradiction as p ¢ H. So our assumption is wrong. Consequently 4 is connected.
Corollary : The set R of real numbers is connected.

Proof : Since R is an interval, therefore by the theorem 15, R is connected.
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Theorem 16. Continuous image of a connected space is connected.

Proof : Let X be a connected topological space and Y be any arbitrary topological space. Let
f: X—>Y be a continuous mapping of X into Y. We have to show that /' (X) is connected. Suppose, if
possible, f(X) is disconnected. Then there exist G, and G, ; both open sets in ¥ such that

SO=[Gnf@IVIGnAf®Ol . (1
and G; N f(x), G, N f(x) both are non-empty disjoint, open sets in f'(X).

Now, [ [(G NfX)N(GynfNI=/T (@) [+GNf(x), Gy f(X)are disjoint]

=  [TUGING)N fD]=6 - SO =9)

=  SGYN T GYnX=¢

= G fGY=0 [ f71(G) n f71(G,) is subset of X]

and [T (GINS(X) U (Gynf(XN]=/f(X)] [by (D]

=[G UG)Nf(X)]=X

= [NGUG)nTF(X)]=X

= [SNG) UGl NnX=X

=  fGyurl(G)=x (- /(G Uf1(G,) is a subset of X)

Since fis continuous, therefore f ‘I(Gl) and f ‘I(Gz) are non-empty open sets in X as G and
G, are non-empty open sets in Y. Thus there exist two non-empty proper open subsets of X which we
disjoint and hence X in a disconnected space, which contradicts the fact that X in connected , hence f
(X) 1s connected.

Theorem 17. If every two points of a subset A of a topological space X are contained in
some connected subset of A, then A is connected.

Proof : Suppose, if possible 4 is not connected. Then there exist two non-empty subsets G and
HofXsuchthat GNH=¢,GNnH=¢ and GU H=A. Since G# ¢, H# ¢, then 3p € G, g € H
and p and ¢ is contained in some connected subset B of 4.

Now, Bc(GUH)=BcG or BcH (theorem 11)

= eitherp, g€ G or p, qe H

Let p,geGbut ge H=>GNH#¢
which is a contradiction as G N H = ¢. Consistently 4 is connected.

13.4.3. Component :

A maximal connected subspace C of a topological space X is called a component of X. In other

words, C is component of X iff it is connected and is not contained in any other connected subspace

of X.
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Notes :

1. Ifatopological space is not itself connected then it can be decomposed into a disjoint class
of maximal connected subspace.

Components are always non-empty, since singleton sub- sets of X are always connected.

If X is connected then it has only one component, X itself.

Each point in X is contained in exactly are component of X.

A

Every component of X is always closed.

13.4 Locally connected space

Definition : A topological space (X, 7) is said to be locally connected at a point x € X iff for
every open neighbourhood G of x, 3 connected open neighborhood H of x such that H — G, that is iff
collection of all connected neighbourhood of x forms a local base at x.

Topological space X is said to be locally connected iff it is locally connected at each of its
points .

Ex.8. Every discrete space is locally connected.

Sol. Let (X, D) be a discrete space. Since Every subsets of a discrete space is open therefore
{x} 1s open for every x € X . Also {x} is connected being a singleton set. Hence {x} is connected
open neighbourhood of x, which is contained in every open neighbourhood ofx. Thus X is locally con-
nected .But a discrete space containing more than one point is disconnected (example 6.)

Ex.9. Give an example of a locally connected space which is not connected.

Sol. A discrete space containing more than one point is not connected but is locally connected
(example 8). Let us consider another example. Let (R, U) be the usual topological space.

Let (a, b) and (c, d) be two disjoint open intervals on real line. Let G = (a, b) U (c, d) and
without loss of generally we may assume thata <b < ¢ <d.

Now, (a,b)isopenin R = (a, b)) " Gisopenin G

= (a,b)isopenin G (v (@a,b)cG)

Similarly, (¢, d) is open in G. Thus G is union of two disjoint non-empty open sets, so G is
disconnected. Let x € G be arbitray and let 4 be any open neighbourhood of x in G, then 3¢&> o such
that

(x—¢g,xt+te)c A

We know that any interval in R is connected ( Theorem 15 ). So (x — €, x + €) connected, and

hence connected in G. Thus every open neighourhood of x in G contains an open connected

neighbourhood of x in G. Hence G is locally connected as x is arbitrary.
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Theorem 18. The image of a locally connected space under a open continuous mapping is
locally connected.

Proof : Let X be a locally connected topological space. Let f be a open and continuous map-
ping of X onto an arbitrary topological space Y. We have to show f(X) = Y'is locally connected.

Let y € Ybe arbitrary and H be any open neighbourhood of y in Y. Since y € Y = f(X) there-
fore 3 x € Xsuch that y = f(x).

Also f is continuous, so H is open in ¥ = f~! (H) is open in X such that x € /~\(H).

Thus f~'(H) is a open neighbourhood of x. Since X is locally connected, 3 a connected open

neighbourhood G of x such that

xe Gef 1 (H)
= fx)ef(GycH
= vef(G)c H [ yv=f()] (1)

Since f* is open, f (G) is open set in Y. Also, G is connected in X, so /' (G) is connected in ¥,
being the continuous image of connected set (by theorem 16). Thus, from (1), each open neighbor-
hood H of y contains connected open neighbourhood /' (G) of y. Since y 1s arbitrary element of ¥,

therefore Y is locally connected.
Self-learning exercise-1

Find true and false statements :

Separated sets are always disjoint.

Disjoint non-empty sets are always separated.

Two disjoint non-empty sets are separated if both are open.

A topological space X is disconnected iff it is union of two non-empty disjoint open sets.
Every discrete space is always connected.

Every indiscrete space is always connected.

Closure of a connected set is always connected.

(R, U) is disconnected.

e ® AL A WD

Locally connected space is always connected.

[y
S

Connected space need not be locally connected.

13.5 Summary

In this unit, we have studied about connectedness of a topological space. Different properties of
a connected and disconnected space are studied. Locally connectedness and connectedness are two
independent properties, of a topological space, that is, local connectedness neither implies nor is implied

by connectedness. Also, both are topological properties.
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13.6 Answers to self-learning exercises
1. true 2. false 3. true 4. true
5. false 6. true 7. true 8. false
9. false 10. true.
13.7 Exercises
1. Show that a cofinite topological space X is connected if X is infinite and disconnected if X is

finite.
Let 4 and B be two non-empty subsets of a topological space X, such that both are closed in

AU B.IfA N Band A U B are connected then show that 4 and B a are connected.

. Show that any finite subset of (R, U) is disconnected.

Show that Q the set of rational numbers is disconnected.

Show that a space X is connected iff X con not be expressed as the union of two non-empty
disjoint open sets.

If fis a continuous mapping of a connected space X onto an arbitrary space Y, then show that ¥
is connected.

If A and B are subsets of a space X such that both are open or both are closed then show that
A — B and B — A are separated.

Let X={a, b, c, d,} andt={¢, {b}, {b, c}, {b, c,d}, X}. Then show that X is connected.
If (X, 1) is connected space and t* is a topological on X such that it is coarser than t, then

show that (X, t*) is also connected.

HEin
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UNIT 14 : Product and Quotient Spaces

Structure of the Unit
14.0  Objectives
14.1  Introduction
14.2  Product space of two spaces
14.2.1 Product pace and product topology
14.2.2 Projection mappings
14.2.3 Product invariant properties
14.2.4 Product space of finite family of topological spaces
14.3  General product pace
14.3.1 Coordinate
14.3.2 Projection mapping
14.3.3 Embedding
14.3.4 General product space and Tychonoft topology
14.3.5 Finitely short family
14.4  Quotient space and quotient topology
14.4.1 Quotient topology
14.4.2 Partition of a set and quotient map
14.4.3 Quotient space
14.5 Summary
14.6  Answers to self-learning exercises

14.7  Exercises

14.0 Objectives

In this unit, we shall study about product space of two topological spaces and product space of
arbitrary family of topological spaces, related topologies, base, subbase and their properties through re-

lated theorems. We shall also discuss quotient space and quotient topology.
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14.1 Introduction

Cartesian product of two sets and properties of this product is well known. In this unit we shall
study that how can we construct a topology for the cartesian product of two topological spaces. This
product will also be topological space for the constructed topology with the help of open sets of both
the spaces. After study of product of two spaces, we will be able to understand the properties of prod-
uct of finite or countable numbers of topological spaces. After this we shall see that the product of arbi-
trary family of topological space is again a topological space for the topology having certain subbase. A
quotient space and quotient topology need a continuous map called quotient map and an equivalence

relation of the given space.

14.2 Product space of two spaces

14.2.1 Product space and product topology :

Let (X, 1) and (Y, V) be two topological space. The topology W whose base is the set
B={GxH|G €1, H e V} is called the product topology for the cartesian product X x Y and this
product is called product space of the space X and Y.

Thus, (X % ¥, W) is a product space for the topology W whose base B is collecting of cartesian
products of t-open and V-open sets.

We can verify that B is a base for some topology as follows :

Theorem 1. Let (X, t) and (Y, V) be two topological spaces. Then the collection B of
cartesian products of t-open sets and V-open sets, thatis, B = {G*x H| G € t, H € V} is a base
for some topology for cartesian product X x Y.

Proof : In order to show that B is a base for some topology on X x Y, it is sufficient to show
that X x Y'is the union of members of B and the intersection of any tow members of B is the union of
members of B.

(i) Since X € tand Y € V, therefore X x Y € Band hence XX Yc U{G x H| G x H € B}.

Also, U{GXH|GxHeB} e XxYasGXHcXxYVGxHeB(~ GcXVGe
tand Hc Y, V H € V) consequently

XxY=U{GxH|GxHeB}
(i) Let G, x H, and G, x H, be any two members of B, then
(G, xH) N (G, *xHy)=(G;N Gy x(H "H,) B
(- G,G,et=>GNnG,et,H,H,e V=H N H, eV, tand Vbeing the topologies)
Thus intersection of any two members of B is again a member of B, in other words, intersection

of any two members of B is union of members of B. Hence B is a base for some topology for X x Y.
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Theorem 2. Let (X, 1) and (Y, V) be two topological spaces with bases B, and B, respec-
tively. Then
B"={B,xB,|B, € B}, B, € B,}
is a base for the product topology W for X x Y.
Proof : Let N be a W-neighbourhood of (x, y) € X x ¥, where (x, ) is an arbitrary element of
X x Y, then we know that
B={GxH|Get,HeV}

is a base of W (theorem 1), then there exists a member G x H € B such that

(x,y) e GxHcN  (bythe definition of base) ... (1)
Since G € 1 and B is a base for 1, therefore there exist some B € B, such that
xeBcG L (2)
Again, since H € V and B, is a base for V,, there exist B, € B, such that
yeBycH L. 3)
From (2) and (3), we have
x,y)e By xBycGxH .. (4)

Again, from (1) and (4), we have, for arbitrary (x, y) € X x Y and for any W-neighborhood N
of (x, y), there exists such B| x B, € B that

(x,y)e By xB,c N
This shows that B* is a base for W.
Ex.1. Let X={1,2,3}, t={d, {1}, X}
and Y={a, b, c}, V=1{¢ {a}, {a,c}, ¥}
Find a base for the product topology W on X x Y.
Sol. Base B, for T and B, for V" will be as follows :
B ={{1}, X}
and B,={{a}, {a,c}, Y}
Now, the base for Wis given by
B* = {{I}x {a}, {1} x{a,c}, {1} x ¥, Xx {a}, Xx {a,c},Xx Y}
= {(L, 9}, {(1,0), (1, 0}, {(1, @), (1, D), (1, 0)}, {(1, a), (2, @), 3, @)},
{(,a),(2,a),3,a),(1,0),(2,0),3,0)}, Xx 1}
Theorem 3. Let (X, 1) and (Y, V) be two topological spaces. C and D be sub-bases for t
and V respectively. Then the collection A of all subsets of X < Y of the form C x Y, C € C and X %
D, D € D is a sub-bases for the product topology W on X x Y.

Proof : We shall show that collection C* of finite intersections of members of A4 form a base for
WonXxY.
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Now, X x Y e C", being empty intersection of members of 4. Let C}, C,,..., C, € Cand Dy,
D,,...,D, € D,thenC; x Y (i =1, 2,... n) and X x Dj (j=1, 2,... m) are the members of A. Also, the
finite intersection

(C,x N (Cyx NN (C,x V)N (X x D) N (X xDy) NN (XxD )eC
= [(C;NCyn.nC)xYIN[X*x(D;NnDyn..nD )] eC
( AX(BNC)=(AxB)N (AxO)
= [(C;NCn.nC)NX]Ix[YN(D,NnDyn..nD, )] eC
(" (AxB)N(CxD)=(4N C)x (BN D))

= [ Gx[DeC (- (C;cX,vi,D,cY,v) .. (1)
i=1 Jj=1

Let B and B, be bases for T and V respectively such that they are generated by the elements

of C and D respectively. Since finite intersection of members of subbase is a member of base, therefore

ﬁ C,eB, and ﬁ D;eB,

i=l Jj=1

Thus ﬂcixﬂDjEBIXBZ ..... (2)
i=1 j=I

From (1) and (2), we have
C"'={B,xB,|B, € BB, cB,}.
By the theorem 2, C" is a base for product topology W on X x Y. Since C* is obtained from the
finite intersections of members of 4, therefore A4 is a subbase for W.

14.2.2 Projection mappings :

n :XxY—>X suchthat 1w ((x,)))=x, V(x,y) e X*xY
and m, i XxY—>Y  suchthat 7w ((x,y)=y, V(x,y) eXxY
are called projection mappings of X x ¥ onto X and Y respectively.
Theorem 4. Let (X, 1) and (Y, V) be two topological spaces and (X x Y, W) be the product
space of X and Y. Then the projection mappings ©,. and m, are continuous and open mappings.
Proof : Projection mappings 7 and T, are given as follows :
T XY > X 1 ((x))=x V(xy) eXxY
and  m  XxY—>Y,m ((p)=y, V(5y) e XxY
Let G be any t-open set in X, then by definition of & , we have
x

n, (G)=GxY.
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Since G € 1, Y € V, therefore G X Y € B, the basis of X x Y. Thus, G is open in X, n;] (G) 1S
open in X x ¥, hence 7, is W~ 1 continuous mapping.

Now let W be any W-open set in X x Y. Then W can be expressed as union of members of base

B for W.
So, W=U{GxH|Get,HeV,GxHeB'cB}
= T.(WM=n[U{GxH|Ge1r,HeV,GxHe B’ c Bj]
=Uin, (GxH)|Get,HeV,GxHeB'c B}
=U{G|Ge1,GxHeB'cB} (by the definition of 7t )

Since union of arbitrary family of open sets is open therefore,
U{G|Getr,GxHeB'cB} et

= . (W) er

Thus, Wis W-openin X x Y, &t (W) is 1-open in X. Hence 7, is T — W continuous and open
mapping.

Similarly, we can prove that m, is a continuous and open mapping.

Theorem 5. Product topology W is the weakest (coarsest) topology for which prodjections
are continuous.

Proof : Let W’ be any topology for X x Y for which the projection mappings are continuous

and let ¥ be any W-open subset of X x Y, then by the definition of base B for W, we have
W=U{GxH|Ge1t,HeVand Gx H e B'c B}
=U{GNX)x(YNnH)|Getr,HeVand GxH € B'’c B}
(- Gc X, HcY)
=U{(GxYV)NXxH)|Get,HeV,GxHe B’ cB}
= U{n;l (G)n n;l H|Get,HeVand Gx H e B'c B}
(by the definition of 7, and ny)

Now, n' (G)eW', whenever G € 1, as _is W’ t continuous. Similarly n;] (H)ew'.

U{n;l (G) N n;l (H|Get,HeVand G xH € B’c B}
is W"-open and hence W'is W”-open.
So W e W= W e W’which shows that W < W"’. Consequently W is the weakest topology

for which projections are continuous.

258



14.2.3 Product invariant properties :

Compactness, countability etc. are product invariant properties for finite products. We shall es-
tablish this fact by proving some theorems.

Theorem 6. The product space (X x Y, W) is hausdorff if the space (X, t) and (Y, V) are
Hausdorff.

Proof : Let the spaces X and Y be Hausdorff. Let (x, ), (x5, ¥,) € X x Ysuch that (x, y,) #
(x5, ¥,). Then either x; # x, or y, # y,. Let us suppose that x; # x,. Since X is Hausdorff and x, x,
are two distinct points of X, therefore there exists two disjoint open neighbourhoods G, and G, of x,
and x, of respectively. Now, G| x Y and G, x Y are open subsets of X' x ¥ such that

(xpyPe Gy XY, (x,y) G xY

and (G X DNN(GxN=(G NG xY=¢xY (v GNGy=0)

This shows that X x Yis a Hausdorff space.

Theorem 7. The product space (X % Y, W) is second countable if (X, 1) and (Y, V) is sec-
ond countable.

Or

The product space of two second countable spaces is second countable.

Proof : Let X'and Y be two second countable spaces. Let B, and B, be countable bases for X
and Y respectively. Then by theorem 2, set

B*={B,xB,|B, € B}, B, € B,}

is a base for product space X x Y. Also, since B; and B, are countable, therefore B is also countable.
Thus B” is a countable base for product space X x Y. Hence X x Yis a second countable space.

Theorem 8. The product space X x Y is connected if and only if X and Y are connected.

Proof : First suppose that X x Y'is connected. Mappings

T X*XY>X n(xy)=x V(xy) eXxY

and ny:XXY—>Y,7t((x,y))=y,v(x,y)eXXY
are continuous, then X and Y are continuous images of X X Y. Since continuous image of a connected
space is connected, therefore X and Y are also connected (Theorem 16, unit-13).

Conversely, suppose X and Y are connected spaces. Let (x|, ), (x5, ¥,) € X x ¥, then
{x} x Y'is homeomorphic to ¥ and X x {y,} are continuous images of X and Y respectively, hence

{x;} x Yand X x {y,} are connected. Also, since

(X1, 15) € [1x 3 X YT [X X {p,}],
therefore [} < YIN[X > b ] # ¢
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so, by the theorem 13 (unit-13)
[y} x YT O [Xx {y,}]=E (say),

is connected. Since (x;, y;) and (x, ,y,) are two arbitrary points of X x ¥ and are contained in a con-
nected set ({x;} x ¥) U (X % {y,}).

Hence X x Yis also connected.

Theorem 9. The product space (X % Y, W) is compact if and only if each of the spaces
(X, t) and (Y, V) is compact.

Proof : First suppose, X x Y'is compact. Since X and Y are continuous images of X x Y under
the projection mappings 7, and m, respectively, therefore X and Y are compact spaces.

Conversely, suppose that X and Y both are compact. In order to show that X x Y is compact,
we shall show that every basic open cover of X % Y is reducible to a finite sub-cover. Let

C={G, xH, |aeA}

be a basis open cover of X x ¥, where G, e 1, H € V.

Let x € X, then {x} % Y is homeomorphic to ¥ and hence it is compact. Since {x} x Y c X x ¥,

therefore C is a basic open cover of {x} % Y. Since {x} x Y'is compact, therefore

n
{x} xYC U (Ga[, xH, ), for some indices a; € A
=1

= xeG,, Vi

=N xe ﬁ G,, =G (x) (say),

i=1

where G (x) is open set being the finite intersection of open sets.

— {x} x yanJ (G(x)xHai).

i=1
Thus for each x € X, we can get open set G (x) such that the collection {G (x) | x € X} is an

open cover of X. Since X is compact, therefore this cover is also reducible to a finite subcover that is,

XCU G(xj)a forsome x,eXx. L (1)
=1

Each G (xj) is obtained by intersection of T-open sets, which are members of C. Let one of then

is G, , then

X

G(xj)CG(x , for j=1,2,.m.
%)

Hence, from (1), Xc U G, )
e
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and for eachj (j =1, 2,..., m)
G(x)x Y cg Go ¥Hoy (3)

From (1), (2) and (3), the collection {G, xH, |j=1,2,..m,i=1,2,...n} covers X x ¥,
Xj 1
which is finite subcover of C. Thus C is reducible to a finite subcover. Hence X x Y is compact.

14.2.4 Product space of finite family of topological spaces :

Let (X;, 1), i= 1, 2,..., n be n topological spaces. Then the collection
B={G xG,xGyx.xG, |G er,i=1,2,.,n}
is a base for a topology for X; x X, x X5 x...x X . This topology is called product topology and prod-
uct X} x X, x X3 x..x X is called product space of finite number of topological spaces.
The mapping T, : X; x X, x X5 x..x X, = X, such that
T (15 X5 X3 500y X)) = X5, V(X5 X9y X3 500, X)) € X X X x X3 X X X
is called ith projection mapping (or simply ith projection).

Theorems discussed above are also valid for this finite product and projection mappings.

14.3 General product space

Before defining general product topology and space, we shall discuss some notations and defini-
tions related to product of arbitrary collection of sets. Since general product topology is defined in terms
of subbase and subbase is defined in terms of inverse image under projection mappings, therefore, here

we shall define projection mappings of arbitrary product of topological spaces.
14.3.1 Coordinate :
Let {4, | . € A} be an arbitrary family of indexed sets, also let product of this family is 4, then
A=x {4, | € A}.
An element a of 4 is a mapping
a:A—> U4, |he A}
such that aM)=a, ed), VrheA.
Here a, is called Ath coordinate of @ and 4, is called Ath coordinate set of the product.
Thus, A=Rala:A—>x,a(}) € 4;, VA e A}
14.3.2 Projection mapping :
The mapping n, :A— A,, suchthat m, (¢)=a,, Vae4

is called projection mapping on 4 or Ath projection of 4.
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Let B, be a subset of 4, then the set n;l (B,) 1s the set of all a € A whose Ath coordinates are

the members of B, and other coordinates are unrestricted. Thus
m, (B)) ={ala e A, (a)=a, €B,}
=x{Y, |a e A},

where Y, =B, and Y =4, (a#A).

14.3.3 Embedding :

A mapping f/: X — Y, which defines a homeomorphism of X onto f'(X) is said to be an embed-
ding of a space X into another space Y.

For example, including map i of subspace X of a space Y to space ¥, defineasi (x) =x, Vx €

X is an embedding of X nto Y.
14.3.4 General product space and Tychonoff topology :

Let {{X,, 1)} | A € A} be an arbitrary family of topological spaces. Let X = x {X, | A € A},

then the topology t for product X having the subbase
B*= {nil (G|, Gy e}

is called product topology or Tychonoff topology for X and (X, 1) is called general product space or
simply product space of the given spaces.

Notes : 1. Now onwards product topology means the topology generated by the collection of
all sets of the form ;' (G,), A € A, G, € 1,.

2. If X'is a product of countable collection {X;, X,, Xj,...} of topological spaces, then

X=x{X, |neN}, xeX=>x=(x,x,.),x, €X,

and n, (G, =X x Xy % X, xG, XX L%

3. n;l (G,) 1s subbasic open in X. The collection B of all finite intersections of elements of sub-
base B.. form a base for topology t. Thus if B € B, then

B=n{m'(G,)|reA’, A'is finite subset of A, G, € 1, }
=x{Y, |A € A}, where Y, =X,

for all except a finite number of A’ is in A, is a basic open set in X.

4. Every t-open set G in product space X will contain a base member B. So all but a finite
number of coordinates of points of G are unrestricted in respective of coordinate spaces.

5. The collection x { G, | L € A, G, € 1, } is also a base for some topology, different from .
Since 1 is more important than the topology obtained from above collection, therefore definition of gen-

eral product space is not the extension of the definition for product space of two space.
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6. Since G, € 1) = n;l (G,) € B. ct= T,.(G,) € 1, that is inverse image of 1, -open
set is T-open, therefore , is continuous mapping.

Theorem 10. Let X be a product space of an arbitrary collection {(X,, t,) | L € A} of
topological spaces. Then t is the topology for X iff T is the smallest topology for which the pro-
jections are continuous.

Proof : First suppose that 1 is the topology for X. We know that each projection map =,
V A € A is continuous (Note 6 of 14.3). Let ©* be any topology on X such that T, 18 T - T, continu-
ous for each A € A. Then for every G, € 1,, n;l (Gy)is t"-open, V A € A. Thus by the definition of

topology, union of finite intersections of members of the collection {n;l (G)IreA G, eTy}isa

member of t*. This shows that T " as {n;l (G)) | A € A, G, € 1,} is asubbase of 1. Hence 7 is

smallest topology for X such that , is continues for each A e A.

Conversely, suppose that 1 is the smallest topology for X for which each 7, is continuous. Let
B.={m,'(G,)) | e, G, e1,}.

By the property of continuous mapping, if t* is topology for X, then all the projections T, are
T - T, continuous iff B, 7". Hence B, — 1 and since T is the smallest topology containing B., there-
fore 1 is generated by B, that is, B, is a subbase for 1. Hence by the definition of product topology
(14.3.4) , 1 is a product topology for X.

Theorem 11. Let (X, t) be a product space of arbitrary family {(X,, 1,) | A € A} of topo-
logical spaces. Then projection mapping m, for A is continuous and open.

Proof : According to note 6 of (14.3) m, is continuous for A € A. Now, it remains to show that
T, 1s open, that is, 7, is T, — T continuous for each A € A. For this, we shall show that image of every
T-open set in X under 7, is T, -open in X, . Let B be the base for T and B € B be arbitrary. Then (by
note 3 of 14.3),

B=x{Y, | A e A}, whereY, €1, foreachA € A

and Y, =X, for all except a finite number of A’ s.

Now, T, (B)=7Y, €1y,
that is image of every basic open set of X under 7, is 1,-open in X, . Let G be any t-open set in X.
Then G is union of members of base B. Then

G=U{B|BeB'cB}
= m, (G)=m, [U{B|B € B’c B}]
=U\{m, (B)|B € B'c B}
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Since 7, (B) is open set in X, for each B € B’, therefore , (G) is open in X, , being the union
of open sets in X .

Thus Getr=m (G e, VAieA

Hence 7, is an open mapping for each A € A.

Theorem 12. Let X be a non-empty product space of arbitrary family {(X,, 1)) | L € A}
of topological spaces. Then a non-empty product subset = x {F, |\ € A} is closed in X iff F, is
closed in X,, for each \ € A.

Proof : First suppose that F), is 1, -closed for each A € A. Then n;l (Fy) 1s t-closed in X,
since 7, is a continuous mapping. Now,

F=x{F, | A €A}
= (F) [ L e A}

Thus, F'is t-closed being the intersection of t-closed sets.

Conversely, suppose that F' = x {F, | A € A} is t-closed. Let o € A be arbitrary and
x,, € X, be any limit point of 7.

Let x € X such that 7, (x) =x, and 7, (x) be arbitrary element of F, for A # a.. Let B be any
basic open set in X such that x € B. Since 7, is open, therefore  (B) is open in X, and x, € 7, (B).
Since x,, is a limit point of ¥, 7, (B) contains a point a, € F, that

T, (@)=7m, (x), forA#a and w, (2)=a,.

Obviously z € F and z and x differ in ath coordinate, so x # z. Thus, every basic open set B in
X contains a point of F different from x. Hence x is a limit point of F, so x € F as F'is closed. This
shows that t, (x) € F, = x € F,. Thus F, contains all of its limit point, hence £, is closed. Since o
was arbitrary, £, is closed for each A € A.

Theorem 13. The product space X = x {X, | A € A} is Hausdorff if and only if each
space X, is Hausdorff.

Proof : First suppose that X, is Hausdorff for eachX € A. Letx= {x, |A € A} and y = {y, |
A € A} be two distinct point of the product space X. Since x # y, therefore x_, # y,, for some . € A
and x, y, € X,. Since X is Hausdorff and x , # y , therefore, there exists open neighbourhoods G,
and H of x, and y  respectively such that

G,N"H,=¢,x,€GCG,,y,€H,
Since 7 is continuous, therefore n&l (G,) and n&l (H,) are open sets in X such that
xen'(Gy) and ye n(H) ( m,(x)=x, andm, ()=,
and 7, (G) N, (H,)= 1, (G,nH,)=0 (v Gan H, =0¢)
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Thus for each pair of distinct points x, y € X, there exist two disjoint open neighbourhoods of x
and y respectively. Hence X is a Hausdorff space.
Conversely, suppose that X is Hausdorff. Let o € A be arbitrary and x, y, € X such that
X, %Y, Letx,y € Xsuch that
Ty (=% T, () =y, and m ()=, (),
each A € A except A =a.
Thus x and y differ only in the ath coordinate, and hence x # y. Since X is Hausdorf, there exist

open neighourhoods G and H of x and y respectively such that

GNnH=¢
Let B and C be two basic open sets in X such that
xeBcGad yeCcH L. (1)
and B=x{B, |L e A},C=X{C, | L e A},
where B,, C, € T, for each M.

Since GNnH=0=>BNnC=¢
=>n,(B)nm (CO)=6
=B, NC, =0
where B and C, are open sets in X such that
n, ®X)=x,€B, n,()=y, € C,(by())

Thus, for two distinct points x,, y, € X, there exist two open set B, and C, in X, such

that
x,€B,y,€C, and B, "nC, =¢.
Hence X is Hausdordd. Since o was arbitrary therefore X, is Hausdorff for each A € A.
Theorem 14. The product space X = x {X, | A € A} is connected if each space X, is
connected.

Proof : First suppose that X, is connected for each A € A. Let a be a fixed point of the prod-
uct space X, thena = {a, | A € A}, where q, € X,, VA € A. Let Cbe the component of X such that
a e C. Let

B=x{Y, [\ € A}
be an arbitrary basic open set, where
Y, = Gk €Ty,
foreachA € Aand Y, = X, forall A € A except a finite number of A’s, A, A,, A5,... A, (say). Let
x=1{x, | A € A} € B.
The set A= AM X sz X...X AM
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is the set of all point {p, | A € A} such that
D= ay i A#EX, Ay,s A
which is homeomorphic to XM X sz X...X XM’ which is connected (by theorem 8). Hence its
homeomosphic image A is also connected. Since C is maximal connected subset of X therefore 4 — C.
Then set C contains the point {p, | A € A},
D= a it AEA, A, Ay,

and D =X for A#A|, Ay A

This point is in B also. This shows thatx € C = C, (C = C as C is closed being the compo-
nent). Thus X < C, but C < X'so X = C. Since C is connected therefore X is connected.

Conversely, let X' be connected. Since X, is continuous image of X under the project mapping
7, therefore X, is connected for each A € A. (Theorem 16, Unit 13).

14.3.5. Finitely short family :

A collection C of subsets of a topological space (X, 7) is short iff C does not cover X and C
is finitely short iff no finite subfamily of C covers X. C is said to be a maximal finitely short iff for each
G € 1, G ¢ C, there exists a finite subfamily C” of C such that union of members of C’ together with
G covers X.

Lemma 1. Let M be a maximal finitely short family of open subsets of a topological space
(X, 1). If some member M of M is such that M contains

(G NGyN..nG,), Giet for i=1,2,..,n,
then for some i, G; e M.

Proof :We shall prove contra positive of the statement. Let G|, G, € 1 such that G; ¢ M and
G, M.

Then by the definition of maximal finitely short family, for G, there exists

M, M,,...MeM

such that GuM MU . OM =X L. (1)
and for G, there exists N}, N,,....N; € M such that
GUN N"NN,n..AnN=X . (2)

From (1) and (2), we have
(GINGY) V(MU M,u...UM)U (N UN, U...UN)) =X
Since M is finitely short, there fore neither G, G, € M, nor (G; N G,) is contained in any
member of M. Thus we have shown that
“Gy ¢ Mfori=1,2= G, N G,isnot contained in any member of M’
The contra positive of this statement is “ G; N G, is contained in some member of M = either
G, eM or G,eM”

Thus lemma is true for » = 2 and by finite induction lemma is true for any positive integer .
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Lemma 2. Let F be a finitely short family of open sets of a topological space (X, t). Then there
exists a maximal finitely short subfamily M of t such that F — M.

Proof : Let D be the collection of all finitely short subfamilies of t. Then D is partially ordered
set for the relation inclusion. Now, F € D and {F} is an ordered set. By Hausdorff maximal principle,
3 a maximal ordered (chain) subfamily D’ of D such that {F} < D’, which shows that F € D'. Let
UD’ =M, then M t. Let {M;|i=1,2,..., n} be any finite subfamily of M them

M, e M,V i= M;e D;forsome D, e D, fori=1,2,..,n. .. (1)

Since D’ 1s a chain, there is one i = r (say) such that

Dcpo,.,~vi (2)

From (1) and (2), we have, M;e D,, V i.

Since D, € D’ < D, therefore D, is finitely short family, hence {M;|i =1, 2,..., n} does not
cover X, that is, M| U M, U...U M, # X. Thus M is finitely short. Now we shall show that M is
maximal. Let M is not maximal, then for some G € 1, G ¢ M and M U {G} is still finitely short. Since
w D’ = M, M contains each member of D’ this show that D" U {M U {G}} would be simply
ordered. Since G ¢ M=uU D' = D' U {M U {G}} properly contains D'. This is a contradiction as
D’ is maximal. Thus M is maximal finitely short subfamily of T such that F — M.

Theorem 15. (Alexander subbase Lemona) : A topological space (X, t) is compact iff
every subbasic open cover for X has a finite subcover.

or

A topological space is compact iff each finitely short subfamily of subbasic open sets is
short.

Proof. Let X be compact. Then every open cover for X reducible to a finite subcover, hence
every subbasic open cover must be reducible.

Conversely, suppose that every subbasic open cover for X has a finite subcover. We have to
show that every open cover for X is reducible. We shall prove contra positive of this statement, that is,
each finitely short subfamily of t is short. Let F be any finitely short subfamily of t. By lemma 2, 3 a
maximal finitely short subfamily of 7. Let it be M. Then FF — M. We shall show that M is short.

Let B, be a subbase for t. Then (M n B,) c M and M "N B, is also finitely short as M is
finitely short. Here M M B, is the collection of members of M which are subbasic open sets. By the
hypothesis M N B, is short, that is,

uvMnByXx L (1)

Let x be any element of U M, then x € M for some M € M. Since M € 1, then 3 B € B, the

base for t, such that
xeBcM (2)
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Since B € B, thenE By, B,, ..., B, € B, such that

B=B,nB,n..nB, L. 3)
From (2) and (3), we have
xeB nN"nByn..nB )cM L. (4)
Then, by lemma 1, B;eM, forsomei L. (%)
Now, by (4), xeB, L (6)
Also, B;eB.,B,eM (by(5)) = B;e M B,
and by (6), xeMnB.,=>xeu(Mn B,)
Thus, xeUM=>xeuUMn B,
> UM cuMnB,)
>UM#X (by (1))

This shows that M is short and hence F is short as F — M. Consequently X is compact.

Theorem 16. (Tychonoff Theorem) : Let (X, t) be a product space of arbitrary family of
topological spaces {(X,, 1)) | A € A}. Then X is compact relative to 7 iff each X, is compact
relative (o T,.

Proof. First suppose that X is compact. Since each X, is a continuous image of the compact
space X under the projection mapping 7, , therefore X, is compact for each A € A.

Conversely, suppose each X, is compact. Let

B.={m,'(G)|LeA, G, e1,}.

By alexander subbase lemma (theorem 15), to show X compact, it is sufficient to show that
each finitely short subfamily of B, is short. Let C be finitely short family such that C — B.. We shall
show that C'is short. Let G, = {G, | G, € 1, and n;l (Gy) € C}.

Since C'is finitely short in X, therefore C, is finitely short in X, . Also, since X is compact, C, is
short, that is, C; does not cover X. Then 3 x, € X, suchthatx, ¢ G, forany G, € C,. Thus,no x €
X will belong to any member of C, for which 7, (x) =x, . This shows that x ¢ U C, that is, C does not

cover X. Hence C is short and consequenly X is compact.

14.4 Quotient space and quotient topology

14.4.1 Quotient topology :

We observed that product topology is the smallest topology for which projection mappings are
continuous (theorem 5, theorem 10). Now we shall see that if /s a function from a space (X, t) onto a
set ¥, then there exists the largest topology for Y relative to which function f'is continuous, that is, ¥ can
be topolized. This topology is called quotient topology for Y relative to /'and denoted by T Mapping f

is called quotient map. Now, we shall show that such a topology always exists.
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Theorem 17. Let (X, t) be a topological space and Y be any set. Let f be a mapping of X
onto Y. Then the collection T of all subsets G of Y such that f =) (G) is open in X is the largest
topology for Y such that fis T — tfcontinuous.

Proof. Let = {Gc Y|f1(G) € 1}. We have to show that ‘EfiS topology for Y.

(i) ¢ Yand f1(¢)=¢ ct=dery

(i) Let G, Gyet1, =G, G,cY  and GGy e

=(G;NGy)cY and f1(G)nf(G,) et (- tistopology)
=(G;NGy)cY and (G NG,y)en
=G, NG, e T (by the definition of ‘Ef)

(iii) Let {G, | A € A} be any arbitrary collection of members of T Then /! (Gy) € tand G,

c YforeachA € A

- Ufl(Gk)er,(U ijcy

reA reA

= fl(Uijer,(UGx]cY

reA reA

=N (Uijerf.

Consequently ‘EfiS a topology for Y. Also, since inverse image of every open set in Y is open in
X, hence fis ¢ — T continuous.
Let ' be another topology for Y such that fis T — 1" continuous,
SO Hetv=f1H) e
= He T (by the definition of ‘Ef)
== T
Hence tfis the largest topology for ¥ for which f'is continuous.
Theorem 18. 4 subset A of Y is closed in the quotient topology T relative to f : X — Y iff
7Y (A) is closed in X.

Proof. Ais tf—closed SY-A4)is T-open
< 1 (Y- 4) is t-open (by the definition of ‘Ef)
s @) -1 (4) is t-open
< X—f1(4) is t-open (-.- f1s onto)

< 1 (4) is t-closed.
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Theorem 19. 4 subset G of Y is Tp-open in X iff f~1 (G) is open in X.

Proof. Let (X, 1) be a topology space and T is quotient topology for Y relative to f/: X — Y.

Let G be Tp-open in ¥, then by the definition of T, /! (G) is open in X (also by continuity of /).

Conversely, by the definition oft, G € ‘Efif f~1(G) e 1, that is, if /! (G) is open in X, then G
isopenin Y.

Theorem 20. Let (X, t) and (Y, V) be two topological spaces. Let f be a continuous map-
ping of X onto Y such that f'is either open or closed, then V must be quotient topology for Y (that
is V= ‘Ef).

Proof. Case (i). Let /' be continuous and open mapping of X onto Y. We know that quotient

topology T for Y'is the largest topology for which f'is continuous, so V' Ty

Now, let Gert= f71(G) € 1 (theorem 19)
= [/ (G)] € V(- fis open)
=>GeV
= e vV

This shows that V'= T that 1s, V' is the quotient topology for Y.
Case (ii). Let f be continuous and closed mapping of X onto Y. Again, since T is the largest
topology for Y for which f'is continuous, therefore V' T
Let Gert= G en (theorem 19)
= X—f"1(G) is t-closed
=1 (V) -1 (G) is t-closed (-+ fisonto, £~ (¥Y)=X)
= 1 (Y- G) is t-closed
=11 (Y- G)]is V-closed (- f1s closed)
= Y- Gis V-closed
= Gis V-openor G € V
= T,C V
so, V= T Hence Vis quotient topology for Y.
14.4.2 Partition of a set and quotient map :
Partition P (decomposition) of a non-empty set X is the collection of non-empty disjoint sub-
sets of X whose union is the set X.
Let 7 be a mapping from X onto P such that © (x) =P € Psuchthatx € P, v x € X. Then rt

is called the quotient map (cannonical map or projection map).
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We know that a partition P on X induces an equivalence relation R on X, such that
R={(x,y) | x, y € Xbelong to same member of P}
={ ) [ n () =n @)}
=U{PxPl|peP}
Conversely, each equivalence relation R on X gives partition P of X, denoted by X/R, quotient
set of X modulo R. Thus,
P = X/R = set of all equivalence classes.
14.4.3 Quotient space :
Let (X, 1) be a topological space and R be an equivalence relation on X.
Let & be the quotient map of X onto the quotient set X/R of X over R so that & (x) = [x], the
equivalence class to which x belongs, v x € X.
Then the X/R with the quotient topology relative to 7 (that is 7)) is called quotient space.
Notes :
1. According to definition of quotient topology (14.4.1), t_ is the largest topology for
X/R for which 7 is continuous on X, which consists of all subsets G of X/R such that 7t !
(G) 1s open in X.
2. Let 4 c X, then the set of all points of X which are R-relative of points of 4 is denoted by R
[4] or [4]. Hence
[A]=R[A]={y € X|(x,y) € R, for some x € 4}
=U{P|PeXRand PN A+ ¢}
3. Ifx € X, then R [x] = [x] =t (x), where 7 is the projection of X onto P.
4. If P c X/R,then n ' (P)=U {P|P e P} and P is T.-open (closed) in X/R iff
U {P|p e P} orn!(P)is t-open (closed) in X.
Theorem 21. Let (X, 1) be a topological space and X/R be the quotient space of X over R.
Let © be the quotient mapping of X onto X/R, then the following statements are equivalent :
(a) T is an open mapping.
(b) If G is t-open in X, then R [G] is t-open.
(c) If F' is a t-closed subset of X, then the union of all members of X/R which are subset of
Fis closed in X.
Proof. (a) < (b) : First suppose that 7 is an open and G be any open subset of X. Then «t (G)
is open in X/R, as m is open mapping. Also, since 7 is continuous, therefore 7! [ (G)] is open in X
and hence R [G] is open in X (+ R[Gl=7"'[rn (G)].
Conversely, let R [G] be openin X, v G € T, then w! [n (G)] is open in X. Thus, 7 (G) is
open in X/R (by the definition of quotient topology). This shows that 7 is open.
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(b) < (¢) : The union of all those members of X/R which are subsets of F is given by
U{PeXR|PcF}y=X-R[X-F| .. (1)

First suppose that R [G] is open, v G € 1 and let F be any t-closed subset of X, then X — F'is
open in X, hence by the hypothesis, R [X — F is open in X. So that X — R [X — F]] is closed in X. Then
by (1), the union of all those members of X/R which are subsets of F'is closed.

Conversely, suppose that for any closed subset F' of X, the union of all those members of X/R,
which are subsets of F'is closed, that is X — R [X — F] 1s closed (by (1)). Now, let G be any t-open
subset of X, then X — G is closed in X, so that X — R [X— (X — G)] is closed (by the hypothesis), that is
X — R [G] 1s closed. This shows that R [G] is open.

Theorem 22. Let mt be the quotient mapping of the topological space (X, t) onto the quo-
tient space X/R. Then the following statements are equivalent :

(a) m is a closed mapping.

(b) If G is closed in X, then R [G] is closed.

(c) If F' 1s a open subset of X, then the union of all members of X/R which are subset of F'is
open.

Proof. This is the dual of the theorem 21. The proof of this theorem can be obtained by the
words open and closed throughout in the proof of theorem 21.

Theorem 23. Let X be a topological space and X/R be a quotient space. If X is compact
and connected then X/R is also compact and connected.

Proof. We known that compactness and connectedness are topological invariant properties. Since
X/R is continuous image of X, therefore it is compact and connected.

Theorem 24. Let (X, 1) be a topological space such that X/R is Hausdorff quotient space,
then R is a closed subset of the product space X x X relative to product topology V.

Proof. We shall show that all the limit points of R belong to R, that is, no point of (X x X —R) is
a limit point of R.

Let () e X*xX-R)=(x,y) €R

=>nx)=n(y)
= Jopen sets G, H in X/R
suchthat t (x) € G,n (y) e Hand G N H=¢. (- X/R 1s HausdorfY)
= 1! (G) and = ! (x) are open in X,
and since images of these sets under 7 are 7t (! (G)) = G and © (! (H)) = H, which are disjoint, so
that no member of 1! (G) can be R-related to a member of n~! (H).
=11 (G)x ! (H)

is an open neighbourhood of (x, y) which does not contain a point of R.
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= (x, y) is not a limit point of R
=> No point of X X X — R can be a limit point of R.
= R is closed.
Ex.2. Give an example to show that the quotient space of a Hausdorff space need not be
a Hausdorff.
Sol. Let (R, u) be the usual topological space, we know that R is a Hausdorff space relative to
usual topology. Let E be a relation on R such that
x £y x—y e Q, the set of rational number.
Obviously E is an equivalence relation. The quotient space R/E will be an indiscrete space, there-

fore it is not Hausdorff.
Self-learning exercise

State whether the following statements are true or false :
(i) The set of all cartesian products of basic open subsets of space X and space Y forms a base for
space X' x Y.
(ii) Let (X, 1) and (Y, V) be two topological spaces. Thenthe set {Gx H|Ge 1, He V}isa
base for some topology for product space X x Y.
(iii) Projection mappings of product space are continuous but not open.
(iv) Connectedness and compactness are topological properties.
(v) Let (X,, 1;) be a topological space for all A € A, an arbitrary index set. Then x {G; € T1: X €
A} is a base for product topology for the product space X = x {X, [\ € A}.
(vi) Product topology is the strongest topology for which projections are continuous.
(vii) A space X is compact if each finitely short subfamily of subbasic members is short.
(viii) Let (X, 7) be a topological space. Then the quotient topology T for a set Y is the smallest topol-
ogy for which function /" is continuous.
(ix) Let X/R be a Hausdorff quotient space of a topological space X. Then R is closed in product
space X x X.
(x) If X is a Hausdorff space then its quotient space X/R is also Hausdorff.

14.5 Summary

In this unit, we have studied about the product space of finite family of topological spaces as
well as product space of an arbitrary family of topological spaces. Product topology of finite product is
defined in terms of a base while product topology for arbitrary product is defined in terms of subbase.
Topological invariant properties of a product space have been discussed. With the help of an equiva-

lence relation on a topological space we defined the quotient topology and quotient topological space.
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14.6

Answers to self-learning exercises

() true (ii) true (iii) false (iv) true
(v) false (vi) false (vii) true (viii) false
(ix) true (x) false.
14.7 Exercises
1. Show that the product topology on a non-empty set X x Y is the weak topology for X x Y
determined by the projection mapping ., and m, from the topology on X and Y.
2. Let y, be a fixed element of Y and Z= X x {y,}. Then the restriction of projection map 7 to Z

is a homeomorphism of the subspace Z of X x Y onto X.

Let (X;, t;) be topological spaces for i = 1, 2, 3. Show that a mapping f: X3 — X; x X, is
continuous if and only if 7t X, ° f:X;—> X and Tty © /o X; — X, are continuous.

Show that the product space X = x {X, | A € A} is T iff each coordinate space is 7,

Show that the product of each family of locally compact space is locally compact.

Show that each coordinate space X, of product space X = x {X, | A € A} has a quotient

topology induced by the projection mapping T, .

HEin
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UNIT 15 : Nets and Filters

Structure of the Unit
15.0 Objectives
15.1  Introduction
15.2  Net and its convergence
15.2.1 Directed set
15.2.2 Residual subset
15.2.3 Cofinal subset
15.2.4 Net
15.2.5 Eventually net
15.2.6 Frequently net
15.2.7 Convergent net
15.2.8 Cluster point of net
15.3  Ultranet and subnet
15.3.1 Ultranet
15.3.2 Subset
15.3.3 Isotone mapping
15.4  Filter and its convergence
15.4.1 Filter
15.4.2 Finer and coarser filters
15.4.3 Subbase of filter
15.4.4 Filter base
15.4.5 Filter generated by filter base
15.4.6 Base of a filter

15.4.7 Ultrafilter
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15.4.8 Convergence of a filter
15.4.9 Frequently filter
15.4.10 Limit point of a filter
15.4.11 Cluster point of a filter
15.4.12 Cluster point of a filter base
15.5 Summary
15.6  Answers to self-learning exercises

15.7 Exercises

15.0 Objectives

In this unit, we shall study about convergence of a net, related topic like directed set, subnet,

cluster point etc. Filter is an important topic in topology. We shall discuss about it also.

15.1 Introduction

Net is a generalized sequence whose domain is a directed set. If directed set is particularly set
of natural numbers N, then it is called sequence. Thus net is a general notion while sequence is a particu-

lar type of net. Net is also called generalized sequence or Moor-Smith Family.

15.2 Net and its convergence

15.2.1 Directed set :

A pair (4, ) consisting of a non-empty set A and a binary relation > defined on A such that

(i) a € A= a2 a (reflexive)

(ii) a= b, b>c = a>c (transitive)

(iii) For any two members a and b of A, 3 a member ¢ € 4 such that ¢ > a and ¢ > b, 1s called
directed set. We say that relation > directs A.

Ex.1. Set of natural numbers N and the set of real numbers R are directed by the relation
> (greater than or equal to), that is, (N, =) and (R, =) are directed sets in usual sense.

Ex.2. Let P be the collection of all finite subsets of a set A. Then (P, D) is a directed set,
where “X D Y ” denotes “X is superset of Y " or “X contains Y .

Sol. (i) Since each set contains itself, therefore XY € P = X o X.

(i) By theset theory, XD Y, Yo Z=>X>Z for X, Y, Z e P.
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(iii) For any two finite sets X, ¥ € P we have X U Y € P such that (X U Y) > X and
Xuror

Thus the relation o directs P, hence (P, D) is a directed set.

Similar examples : (P, <), for the relation ‘inclusion’ and the collection N (x) of all t-
neighbourhoods of x € X, where (X, 1), is a topological space, for the relation ‘inclusion’ (N (x), ©), is
a directed sets.

15.2.2 Residual subset :

Let (4, =) be a directed set and let B — A. Then set B is said to be residual subset of the set 4

iff there exist an element ag € A such that x > ag=>x € B.
15.2.3 Cofinal subset :

Let (4, >) be a directed set and let B — 4. Then set B is said to be cofinal subset of the set 4
iff for every a € A4, there exist an element » € B such that b > a.

From the definitions it is clear that every residual subset of 4 is cofinal subset of A. Also, every
cofinal subset of 4 is directed by > -

Ex.3. Let (N, =) be a directed set, where > is the relation “is greater than or equal
to”, then the subset A = {3, 4, 5, 6,...} is a residual subset of N because 3 3 € N such that x > 3
= x € A. It is also cofinal subset of N. The set B= {2, 4, 6,...} is cofinal but bot residual subset
of N. Set B is directed by >. Similarly the set of positive even integers is also cofinal and directed
by >.

15.2.4 Net :

Let (4, =) be a directed set and let /': 4 — X be an arbitrary mapping of 4 into a set X, then
is called @ net in the X and we denote it by (f, X, 4, 2) or {f(a) :a € A} or {f,|a € A} . IfA=N
and > is the relation “is greater than or equal to”, then the net is called sequence. 4 net is also called

Moor-Smith family or generalized sequence.
15.2.5 Eventually net :

Let (f, X, 4, >) be anet in X and let Y is subset of X. Then the net f'is said to be eventually in
Y iff 3 a residual subset B of the set 4 such that /' (B) < ¥, that is, iff 3 a, € 4 such that Va € 4,a>q,
=>f, el

15.2.6 Frequently net :

Let (f, X, A, =) be anet in X and let ¥ < X. The f'is said to be frequently in Y iff 3 a cofinal
subset B of 4 such that /(B) ¥, that is, iff for eacha € 4, 3x € 4 suchthatx>q and f| € Y.
Note : 4 Net is frequently in Y iff it is not eventually in ¥© or X — Y.
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15.2.7 Convergent net :
Let (X, t) be a topological space and (4, >) be a directed set. 4 net (f, X, A, >) in X is said to

be convergent at x, € X iff it is eventually in every t-open neighbourhood of x;,. In other words, we
can say that f converges to x, € X iff for each t-open neighbourhood N of x, 3 an element a, € 4

suchthat Va e 4,a2ay=f, € N.
15.2.8 Cluster point of net :

A point x, € X'is said to be a cluster point of a net /'in space X iff is frequentlly in every open
neighbourhood of x;,.

Ex.4. Let (X, I) be an indiscrete space, then show that every net (f, X, A, >) in X con-
verges to x, Vx € X.

Sol. The only open neighbourhood of vV x € X'is Xand f, € X, V a € 4, so net is eventually
in X. Thus net is convergent at x € X. Since x 1s arbitrary, therefore every net in X converges to every
element of X.

Ex.S. Let (X, D) be a discrete space and (f, X, A, =) be any net in X. Show that f con-
verges to x, € X iff net is eventually in {x}.

Sol. First suppose that net / converges to x, € X, so f is eventually in every D-open
neighbourhood of x,,. Since {x,} is D-open neighbourhood of x, therefore net f'is eventually in it.

Now suppose that the net /" is eventually in {x,}. Every neighbourhood of x, contains the set
{xo}, so net is eventually in every D-open neighbourhood of x;,.

Theorem 1. Let Y be subset of topological space (X, t). The set Y is t-open iff no net in
(X —Y) converges to a point in Y.

Proof : First suppose that no net in (X — Y) converges to a point in Y. Suppose, if possible, ¥ is
not t-open, then 3y, € ¥Y'such that it is not an interior point of ¥, that is each neighbourhood N of y,,
contains atleast one point of X — ¥, that is,

Non(X-D#¢, VNeNOy, .. (1)
where N (y,) be the collection of all neighbourhoods of y,. Now, (N (y,), <) is a directed set, where
c is an inclusion relation. We can choose a point x (N) from N N (X - Y) for each N € N (y,), as
N N (X—-7) is non-empty for each N (by (1)).

Consider a mapping /' N (y,) — X — Y defined by

SN)=x(N), VN e N ().
Since N (y,) is a directed set, therefore /is a net in X — Y. Let G be any open neighbourhood of
¥, then for each H € N (y,)) such that H is a subset of G, then H > G and
fH)y=xH) e HN(X-Y) G, (- Hc G)
thus 3 a member G of the directed set N (y) such that for each
He Ny,),H>G= f(H) € G.
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This shows that net is eventually in every open neighbourhood ofy as G is arbitrary. Thus 3 a
net in X' — Y converging to y, € Y. This contradicts the fact that no net in X' — ¥ can converge to a point
in Y. Hence Y'is open.

Conversely, let Y be open. Suppose if possible, 3 a net in X — ¥ converging to a point y, € Y.
Since Y is open therefore it is neighbourhood of y,, and hence net must be eventually in Y. Thus
YN (X—-7Y)#d¢asnetisinX— Y. This is a contradiction. Thus no net in X — ¥ can converge to a point
mY.

Theorem 2. Let Y be subset of topological space (X, t). Then a point x, € X is an accu-
mulation point (limit point) of Y iff 3 a net in Y — {x,} converging to the point x,

Proof : Let anet (, Y- (xy), 4, 2) in Y — {x,} be converging to a point x, € X. Let N be any
t-open neighbourhood of x. Since net f converges to x,), therefore net /'is eventually in N, so 3 a;, € 4
such that Va € 4, a > ay = f, € N. Since net is in ¥ — {x,} therefore f, # x,, Va > a, and
J, € Y= 1{x,}, so N contains a point of ¥ other than x,. Since N is arbitrary, therefore we can conclude
that every t-open neighbourhood of x;, contains a point of ¥ other than x,,. Hence x;, is an accumulation
pomnt of Y.

Conversely, suppose that x, is an accumulation point of the set Y. Then every neighbourhood of
X, contains a point of ¥ other than x, that is

N =)=, VN e N(xy
where N (x) is a collection of all t-neighbourhoods of x,,, which is a directed set for inclusion relation.
Since N N (Y - (xy)) # 0, we may choose a point x (N) € N (Y — {xy}), VN € N (x,). Consider a
mapping /' N (x,) = ¥ — {x,} such that
SN)=x @), VN e N ().

Let G be any open neighbourhood of x, then for each H € N (x,) such that H — G, that s,

H > G we have

SH)=xH) e HN(Y - {xp})cHcC G (- Hc G),
that is, 3 G € N (x) such that H € N (xy), H> G = f(H) € G, thus net fin Y — {x,} is eventually in
G. Hence net f converges to x,,.

Theorem 3. Let Y be subset of topological space (X, 1), then Y is 1-closed iff no netin Y
converges to point in X — Y.

Proof : First suppose that no net in ¥ converges to a point in X — Y. Suppose, if possible, Y is
not t-closed. Then 3 an accumulation point x, of ¥ not belonging to Y, that is, x, € X — Y. Now, since
X, 18 an accumulation point of ¥, then by the Theorem 2, there exists a net in ¥ — {x,,} converging
to x,. Since x,, ¢ Y, therefore Y — {x,} = Y, so we can say that there exists a net in ¥ converging to

X, € X —Y. But this is a contradiction as no net in Y converges to a point in X — Y. Hence Y is t-closed.
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Conversely, let Y be a t-closed subset of X. Suppose, if possible there exists a net (f, ¥, 4, >)
in ¥ converging to a point x, € X — Y. Since x, € X — ¥, therefore x, ¢ ¥, so fis anet in ¥ — {x,} also.
Then by the Theorem 2, x is an accumulation point of Y. Since Y is t-closed, therefore all of its limit
points must be in ¥, that is x;, € Y. This is a contradiction as x;, ¢ Y.

Hence no net in ¥ can converge to a point mn X — Y.

Theorem 4. A topological space is Hausdorff iff every net in the space converge to at
most one point.

Proof : Let (X, 1) be a topological space and let every net in X converge to at most one point.
Suppose, if possible, space X is not Hausdorff. Then there exist x, y € X such that x # y and every
neighbourhood of x has non-empty intersection with every neighbourhood of Y. Let collection of all
neighbourhood of x and y be N (x) and N () respectively. Then (N (x), <) and (N (y), <) both are
directed sets for the inclusion relation ..

Let N (x) X N (Y) = M be the Cartesian product of N (x) and N (y). Let (G, H;) = M (say)
and (G,, H,) = M, (say) be two elements of M, where G|, G, € N (x) and H,, H, € N (y). Consider
a relation >, defined as

M >2M,< G, c G,, H C H,.

Since N (x) and N (y) are directed sets, therefore set M will be directed by the relation >, de-
fined as above. Hence (M, >) is a directed set. Since GNH# ¢, VG € N (x), VH € N (), there-
fore we can choose a point x (G, H) € G H, V (G, H) € M.

Let f: M — X be a mapping such that

f(G H)=x(G,H), V(G H eM

Let U and V be any neighbourhoods of x and y respectively. Let (G, H) € M such that (G, H) >

(U, V)ysothat Gc Uand Hc Vso (G H) < (UN V), then

f(GH=x(GHe(GnHccUnVr .. (1)
Also, (UnV)ycU and (UNnPV)c,
thus, f(G HeU and f(G,H)yeV, V(G ,H)e M, (G, H)=(U, V)

This show that net F'is eventually in U and ¥ both. Hence F' converges to both x and y. This is
a contradiction so X must be a Hausdorff space.

Conversely, suppose that the space X is a Haudorft space. Let x, y € X such that x # y.
Since X is Haudorff, therefore there exist neighbourhoods G and H or x and y respectively such that
G N H = ¢. Any net can not be eventually in G and H both as both are disjoint. Thus no net in X can
converge to x and y both. Since x and y are arbitrary elements of X, therefore we can conclude that a

net in X can converge at one point.
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Note : If every sequence in a space X converges to at most one point then space X need not be
Hausdorff as there exists non-Hausdorff space in which every sequence converges to at most one point.
For example, co-countable topological space is not Hausdorft but every convergent sequence has a unique
limit.

Theorem 5. Let X and Y be two topological spaces. A mapping g : X — Y is continuous at
xo € X iff whenever a net (f, X, A, 2) converges to x, € X, then the net (g o f, X, A, 2) converges
tog(xy € ¥

Proof : First suppose that mapping g is continuous at x, € X and the net f, converges to x,.
We shall show that the net g o f'or g (f,) converges to g (x,) € Y. Let H be any open nighbourhood of
g (xp) in Y. Since g is continuous at x,, therefore 2! (H) is an open neighbourhood of X, Also, the net
S, converges to x,, so 3 a, € 4 such that foreverya € 4,a2ay=f, € gl H) =g (f,) € H.
Thus the net g (f,) is eventually in every open neighbourhood of g (x,)). Hence the g o for g (f,) con-
verges to g (x,) n Y.

Conversely, suppose that whenever a net f, converges to a point x,, in X, the net g (f,) con-
verges to g (x,) in Y. We shall show that the mapping g is continuous at the point x,,. Suppose, if pos-
sible, g is not continuous at x, then there exists a open neighbourhood H of g (x,) in ¥, such that for
every open neighbourhood N of x,,, g (V) is not a subset of H, that is g (N)  H, V¥ N € N (x,), where
N (x,) is collection of all open neighbourhoods of x,,. So, for each N € N (x,) there exist a
point x,; € N such that g (x,) ¢ H. Consider a mapping % : N (x,) — X such that 2 (N) = x,;,
V' N € N (x,). Since N (x) is directed by the inclusion relation <, therefore / is a net in X. Let N be
any open neighbourhood ofx,,. Then for every G € N (x), such that G — N, that is G > N, we have

h(G)=x;e€ GC N,

thus, INeN(xy)
such that for every GeN(xy), G2N=h(G) eN,
so that the net /2 or {x,, | N € N (x,)} is eventually in N, which is arbitrary. Hence, the net {x,;| N € N
(xp)} converges to x;, € X.

But the net {g (x)) | N € N (x;)} in ¥ does not converge to g (x,) as H is an open neighbourhood
of g (xy) such that g (xy) ¢ H, V N € N (xy) (by the choice of xy), that is, the net {g (x,) | N € N
(xp)} 1s not eventually in /. This is a contradiction. Hence g is continuous at x, € X.

Theorem 6. Let X =x {X, | A € A} be a product space. A net (f, X, A, 2) in X converges
to xy € X iff the ne {m, (f,) | a € A} converges to m, (x) in X, for all \.

Proof : First suppose that net f, converges to x € X. Since projection mapping 7, is continu-

ous for all 2, therefore the net w, (f,) converges to m, (x) inX,, VA € A (by the theorem 5).
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Conversely, suppose that the net 7, (f,) converges to 7, (x), VA € A.

Let ©'(G,) nml (G, )Tl (G, )=¢ .. (1)
be any basic neighbourhood of x € X, where Tc;_wl (Gk;) are the members of subbase of product
topology X and Gx[, is open neighbourhood of 7, (X) in X 5, foralli.

Since net , (f,) converges to T, (x), V A; therefore net . (f,) converges to T (x) Vi. So
for eachi, 3 a; € A suchthat foralla € 4, a>a, = m, (f,)€G, .

Let ag=a; i=1,2,.,n,then

m, (f.) €Gy» VazagaeA

Thus 3 a, € 4 such that for everya € 4, a > a,

m, (fa) € GK; = f, € n;_wl (Gk;)’ i=1,2,...n
= ta eni}(le) mnii(sz)m....m TC?:(GM)

= fa€ G (by (1))
Hence the net f'is eventually in every open neighbourhood of x € X. Consequently net f,

converges to x.

15.3 Ultranet and subnet

15.3.1 Ultranet: 4 net (f, x, A, >) in a set X is said to be an ultranet or an universalnet iff for
every subset ¥ of X, the net f'is eventually in ¥ or in its complement Y*. From the definition it is clear that
if an ultranet is frequently in any subset ¥ of X, then it must be eventually in Y. If f be an ultranet in a
topological space X and x be a cluster point of /, then f will be frequently in every open neighbourhood
of x and since f'is an ultranet, therefore it must be eventually in every open neighbourhood ofx. Hence
the net converges to its cluster point x. Thus, every ultranet in a topological space X converges to each
of'its cluster points.

15.3.2 Subnet :

Let (f, X, 4, 2) and (g, X, B, >*) be two nets in a set X. The net g is said to be a subnet of the
net f'iff there exists a mapping ¢ : B — A defined as

(@) foo=g

(b) Foreverya € A, anelement b € B such that ¢ (p) >a, v p>*b mn B.

15.3.3 Isotone mapping :

A mapping y of a directed set (4, =) to another directed set (B, >*) is said to be an isotone

mapping iff forp, g € 4, p =g =y (p) 2* v (¢).
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Theorem 7. Let (4, =) and (B, =*) be two directed sets and let \y be an isotone mapping
of B to A such that y (B) is cofinal in A. If (f, X, A, >) be a net in X, then f o y is a subnet of the
net f.

Proof. Since mapping v : B - 4 and f: 4 — X, therefore mapping f o v : B - X. Let
fowy =g then (g, X, B, >*)is anet inX. To show that g is a subnet of /it is sufficient to show that for
eacha € 4, 3 b € B such that y (x) > a, for every x >* b in B.

Since v is an isotone mapping, therefore,

x>2*y=>vyx)2y(@),x,yeB L. (1)
Also, since y (B) is cofinal in 4, therefore, for eacha € A, 3 b € B such that
v®»za L 2)

Now, let x € B such that x >* b then by (1)
x2*b=>y@2ybB)=yx)2a  (by(2))
Thus, for eacha € 4, 3 b € B such that
x2*hbimB=>wy(x)=2amn4

consequently g =10 y is a subnet of the net 1.

15.4 Filter and its convergence

15.4.1 Filter : A filter F on a non-empty set X is a non-empty collection of subsets of X satisfy-
ing following axioms :

[F1]: ¢ ¢ F

[F2]:1f4A e Fand B> AthenB € F

[F3]:1fA,B € FthenA B e F

Notes :

1. Form [F2] of definition it is clear that X € F always as it is a superset of every member of F.

2. From[F3], 4,4, € F=> A N A, € F. Againif 45 € F, by [F3] (4, N 4,) N A3 =4,
N Ay, N Ay € F.Thus for 4}, 45, A, ..., 4, e F> A4, N A, "A3;n...N A4, € F. By
[F1]4, "4, # ¢, 4, N Ay N Ay # ¢, and so on. Thus F is with finite intersection prop-
erty (FIP).

3. Form (2) and form (3), we can conclude that F is closed for finite intersection as empty
intersection of members of F'is X € F.

4. The power set P (X) of the set X contains ¢, so it can not be fitter on X. Also, filter can not
be empty, so filter F on X is always a proper subset of P (X), that is, F # ¢, F # P (x).

5. Any subset 4 of X and its complement A€, both together can not be member of the filter on
X. Forif 4, A° € F thenby [F5], (A m A°) € F, That is ¢ € F, which is not possible as
o 2 F ([F))).
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6. A filter F on X has '/ P (by (2)). It is said to be free iff it has empty intersection, that is iff
N {A] A € F } = ¢ other wise it is said to be fixed.
Ex.6. Let X={a, b, c, d}, then
Fy= (X}, F, = {{a}. {ab}, {a.d}, X}
F;={(a, b), X } are filters on X but
Fy=1{¢, X},
Fs={{a}, {b}, X}
are not the filter on X as F, contains ¢ and in Fs, {a} N {b} =¢ & Fs.
Ex.7. F = {X} 1s a filter if X is non empty. It is called indiscrete filter.
Ex.8. Let A be a non-empty subset of X, then show that F= {4 |4 > 4} is a filter on X.
Sol. The collection F is non-empty as 4, > A4, s0 4, € F. Also,
[F,] : Since ¢ does not contain 4, (# ¢), so ¢ ¢ F.
[F,] : Let A be any member of Fand B> 4. Sinced € F = A > Ajand since B> A4 = B>
Ay, thus B € F.
[F3]:Letd,Be F=> A2 A, BoA4y=>(ANB>A4), ThusdNBeF.
Hence F is a filter
Ex.9. Let X be a topological space and x € X. Let N (x) be the collection of all neighbourhoods
of X. Then N (x) is a filter on X. [It is called neighbouhood filter on X']
Sol. Since X is neighbourhood of x so X € N (x), hence N (x) is non-empty.
[F,]: Let N € N (x) be arbitrary, then N is a neighbourhood of x, so x € N, that is, N # ¢,
hence no member of N (x) is empty. Thus ¢ ¢ N (x).
[F,] : Let N € N (x) and M S N. Since every superset of a neighbourhood is again a
neighbourhood of a point in X, hence M is also a neighbourhood ofx. So M € N (x).
[F;] : Let M, N € N (x). Since intersection of two neighbourhoods is again a neighbourhood,
soM >N e N (x).
Hence N (x) is a filter on X.
Ex.10. Let x, € X'and F is the collection of all those subsets of X which contains x,,. Then
show that F is a filter on X. [It is called discrete filter].
15.4.2 Finer and coarser filters :
Let F, and F, be two filters on a set X. Then F; and F, are said to be comparable if either
F,c F,or F, C F;. If F| C F,, then F, is said to be finer than F; or F, is said to be coarser than
F,. Also if F; # F,, then F, s strictly finer than F; or F is strictly coarser than F,.
Two filters are said to be comparable iff one is finer than another. If we define a relation >
defined as F; c F, < F|, 2 F,, then the set of all filters on X 'is a directed set for the relation defined

above.
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Ex.11. Let X=1{1,2,3} and

let F,={X},
Fy={{1,2}, {X;
Fy={{1},{1,2}, X}
Fy= {12}, {1, 2}, X},
then F, is coarser than F,, F;, F,. F, is coarser than F5 or Fj is finer than F, . F5 and F, are not
comparable.

15.4.3 Subbase of a filter :

We can construct a filter F on a non-empty set X with the help of a non-empty family C of
subsets of X having some certain properties. Then we say that F is generated by C and C is said to be
subbase of F. Now, we shall discuss that properties of C and method to construct the filter F with the
help of following theorem.

Theorem 8. Let X be a non-empty set and < be any non-empty collection of subsets of X.
Then there exists a filter F on X containing C iff < has the finite intersection property (FIP).

Proof. First suppose that collection C has FIP. Let B be the collection of all possible finite inter-
sections of members of C, that is,

B = {B| B is the intersection of a finite subfamily of C}

and let F={F|F>B,Be B},
that is, F'is a collection of supersets of members of B. Now we shall show that F'is a filter on X. Since
C has FIP, therefore members of B are non-empty, that is, ¢ € B. By the definition of F it is clear that
F o C and since C is non-empty, therefore F is also non-empty.

[F,] : Since ¢ is not a superset of any member of B (¢ ¢ B), so ¢ & F.

[F,] : Let F € Fand G o F. Since F € F, therefore it contains a member of B and hence G
must contain that member of B. So that G € F.

[F3] : Let F, G € F, then 3 4, B € B suchthat F > 4 and G > B. Since 4 and B are mem-
bers of B, therefore they are finite intersection of members of C, so 4 M B is also a finite intersection of
members of C and hence 4 N B € B. Now,

(FNnG)oAnNnB)asFoAand GO B

Thus F N G contains a member of B. Hence F " G € F.

Consequently F'is filter on X contamning C.

Conversely, let F be a filter on X containing C. We shall show that C has FIP. By the definition
of F it follows that F contains C as well as finite intersections of members of C (that is collection B),
as F'is closed for finite intersections of its members. Thus no finite intersection of members of C can be

empty, otherwise ¢ € F. Hence C has FIP.
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Now we can define subbase as follows :

A non-empty collection C of subsets of X having FIP can generate a filter F on X. This filter F
is said to be generated by C and C 1s said to be a subbase of F.

Ex.12. Let X= {1, 2,3} and C= {{1, },{1, 2}}, then construct a filter F on X for which C is

a subbase.
Sol. Since C is with FIP, therefore it can be a subbase for the filter on X. Let 4 = {4 | 4 1s
intersection of a finite subfamily of C}
= {1} {12}, X},
Since X 1s empty intersection, so X € A. Now, take all the supersets of members of 4 in F,

then filter
F={{1}, {1,2}, {1, 3}, Xj.

15.4.4 Filter base :

A filter base B on a non-empty set X is a non-empty family B of subsets of X satisfying the
following axioms :

[B]]:9¢B

[B,] :if F, G € B, then 3 H € B such that H < (F N G).

From the definition it follows that B does not contain empty set and each finite intersection of
members of B contains a members of B, hence we can conclude that B has FIP.

Ex.13. Show that every filter is a filter base.

Sol. Let F be the filter. Then ¢ ¢ F ([B1]).

Also, let F, G € F, then F " G € F and since (F N G) < (F N G), thus [B2] is satisfied.
Consequently F'is a filter base.

Theorem 9. Let C be any non-empty family of subsets of a set X. Then there exists a filter
base on X containing C iff C has FIP.

Proof. First suppose that C has FIP and let B be the collection of all finite intersection of mem-
bers of C, that s,

B = {B| B is the intersection on finite subfamily of C}.

We shall show that B is a filter base on X. Since C — B and C is non-empty, therefore B is also
non-empty.

[B,]: ¢ ¢ B, since C has FIP.

[B,] : Let F, G € B, then F and G are finite intersection of members of C and hence
(FNG) € Bas Fn G will also be a finite intersection. Thus for F, G € B, 3 ( Fn G) € B such
that ( F N G) < (F N G).

Hence B is a filter base containing C.
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Conversely, suppose that there exists a filter base B on X containing C. Since B is a filter base,
therefore no member of B can be empty and by [B2], the intersection of every finite subfamily of B
contains a member of B which is non-empty. Thus, intersection of every finite subfamily of members of
C also contains a member of B which is non-empty. So finite intersection of members of C can not be
empty. Consequently C has FIP.

15.4.5 Filter generated by Filter base :

A Filter F on a non-empty set X, consisting of all those subsets of X which contain a member of
filter base B is said to be a filter generated by B.

15.4.6 Base of a filter :

A subfamily B of filter F on X is said to be a base of F iff every member of F contains a mem-
ber of B.

Note: From above definitions, if follows that a collection B of subsets of X is a base of some
filter on X iff axioms [B1] and [B2] of definitions of filter base are satisfied or in other words a collec-
tion B of subsets of X is a filter base on X iff B is a base of some filter on X.

Ex.14. Let X= {1, 2, 3,4} and C= {{1, 2},{1, 3}}, then find base and filter taking C as a
subbase.

Sol. Since Chas FI P as {1,2} n {2,3} = {1} # ¢, therefore it can be a subbase. Taking all
finite intersection of members of C, we get base B as follows :

B={{1}, {12}, {1, 3}, X}.
It is easy to verify that B satisfy [B1] and [B2], hence it is a filter base also.
Now, to get filter F, take all super sets of members of B. Thus
F={{1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 3,4}, {1, 2,4}, X}

Note: This process is discussed in theorem 10 and in example 12 also.

15.4.7 Ultrafilter :

A Filter F an a non-empty set X is said to be an ultrafilter or a maximal filter on X iff there
exists no filter on X strictly finer than F. Thus if F is an ultrafilter then for every filter F* on X, F c F”’
= F=F"

A filter base of on ultrafilter is said to be an ultrafilter base.

Ex.15. Let X= {1, 2,3 }, then

Fy= ({1}, {1,2}, {1,3}, X},
F,={{2}, {1,2}, {2,3}, X'},
and Fy={{3},{1,3},{2,3}, X},

are ultrafilter an X, while

F4: { { 1: 2 }:X}
and FSZ{{193}9X}
are not ultrafilter as F,CF, and F5 c F3.
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Theorem 10. Every filter F on a non-empty set X is contained in an ultrafilter on X.
Proof. Let 4 be the collection of all those filters on X which contains a filter F on X. Then
A= {M | M ss filter on X such that M o F' }.

Since F D F, therefore F € A and hence 4 # ¢.

Obviously 4 is a partially ordered set for the inclusion relation. Let B= {F, : o € A} be a
linearly ordered sub set of 4. Then for F|, F, € B, either F| c F, or F, C F,.

Let H=U{F,| F, eB}.

We shall show that H is also a filter on X.

[F,] : Since ¢ ¢ F,, VF, ¢ Bas F, is afilter, VA, hence ¢ ¢ H, being the union of all F,.

[F,] : Let H € H and let G © H, then H € F, for some o € A and hence G € F, c Has
F is a filter. Thus G € H.

[F3] : Let G, H e H. Then G € F, and H € FH for some F,, FH € B = either F, FH or
Fu C F,. Let us suppose that F, — Fu’ then G, H < Fu' Since Fu 1s a filter, so G N H € Fu c H.
Hence G " H € H.

Consequently H is a filter on X. H > H, , V H, € B so H is an upper bound of B. Thus 4 is a
poset whose every linearly ordered subset has an upper bound. Hence A contains a maximal element
(by Zorn’s lemma} which will be an ultrafilter on X containing F.

15.4.8 Convergence of a filter :

Let F be a filter on a non-empty set X and let 4 be a subset of X. Then F'is said to be eventu-
ally in the set 4 if and only if 4 € F. Filter F is said to converge to a point a € X iff F is eventually in
each open neighborhood of a and a is said to be a limit point (or limit) of F and it is written as F' — a.

Notes :

1. By the definition it follows that F is eventually in all of its members.

2. If N (a) is the collection of all neighborhoodroods of a then F converges to a iff N (a)  F.

3. Since each neighbourhood of a contains an open neighbourhood, therefore by [F, ], if F is

eventually in all open neighbourhoods of a then it must be eventually in all neighbourhood of
a. Hence in above definition ‘open neighbourhood’ can be replaced by ‘neighbourhood’.

15.4.9 Frequently filter :

Filter F 1s said to be Frequently in a subset 4 of X iff 4 intersects every member of F, that is,
AnF#¢,v FeF.

Note : F is eventually in A = F is frequently in 4. But converse is not necessarily true.
For example, Let X = {1, 2, 3} and F = {{1, 2 }, X} then F is frequently in {1} but not eventually
in {1}.
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Theorem 11. 4 topological space X is haudroff space iff every convergent filter on X has
a unique limit.

Proof. Fist suppose that X is a houdroff space and let F be a filter on X. Let us suppose that F
converges to x, y € X such that x # y. Since x and y are limit points of F, therefore F is eventually in
every neighbourhood of x and in every neighbourhood of y. Let N (x) and N () be the collection of all
neighbourhood of x and y respectively. Then N (x) — F and N (y) < F. Since X is housdorft, therefore
INeNx)and M € N (y) suchthat Nm M =¢. But N, M € F as N (x) and N (y) both are subsets
of Fand N M = ¢. This is a contradiction. Hence F has a unique limit. Conversely, suppose that
every convergent filter on X converges to a unique point. Suppose, if possible X is not hausdorff. Then
3 two distinct points x, y € X such that

NNM=#d, VNe N(x), VM e N(p).

Since N (x) and N (y) are neighbourhood filters on X, therefore N (x) N N (») is also a filter on
X. Since every filter is a filter base also and (N (x) "N (Y) ) < N (x), (N (x) "N (y) < N (»), there-
fore N (x) N N (y) generates a filter F finer than N (x) and N () both. Since filter N (x) contains every
neighbourhood of x, therefore it is eventually in every neighbourhood ofx, thus N (x) converges to x
and similarly N (y) converges to Y.

Since N (x) — F, N (y) c F, therefore F converges to x and y both. This is a contradiction.
Hence X is a Housdorff space.

15.4.10 Limit point of a filter base :

A filter base B on X'is said to converge to x € X iff the filter generated by B converges to x
and x is called limit point of B.

15.4.11 Cluster point of a filter :

Let F be a filter an a topological space X. 4 point x € X is said to be a cluster point or an
adherent point of F iff F is frequently in each open neighbourhood of x.

15.4.12 Cluster point of a filter base :

Let B be a filter base on a topological space X. 4 point x € X is said to be a cluster point or
an adherent pint of B iff B is frequently in each open neighbourhood of x.

Ex.16. Let X={1,2,3 }andt= {0, {1}, {1, 2}, {1,3}, X}, then find all cluster points of
filter F; =1{1,2 }, X} and F, = { { 2,3}, X}

Sol. (i) Open neighbourhoods of 1 = {1}, {1, 2}, {1, 3}, X.

Since {1} does not intersect each member of F, so 1 is not a cluster point of F, Every open
neighbourhood intersects every member of F; so 1 is a cluster point of F;.

(ii) open neighbourhood of 2 = { 1, 2 }, X. Every open neighbourhood 2 intersects each mem-
ber of F; and F, hence 2 is a cluster point of F; and F, both.
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(iii) open neighbourhood of 3 = { 1, 3}, X. Every open neighbourhood of 3 intersects each
member of F; and F,. Hence 3 is a cluster point of | and F, both. Thus adh F; = {1, 2, 3} and adh
F, = {2, 3}.

Self-learning exercise

1. Let X={a, b, c} and 1 = {¢, {a}, {a, b}, X }, Then find limit points and cluster point of the

sequence <a, a, a, a, ...>.

(]

. Define residual and cofinal subsets of the directed set ( 4, ).

W

. Give an example to show that a net can converge to several different points.

N

. Give an example to show that the set of all cluster points of a net in a topological space need not
be closed.
. Let X=1{a,b,c d} and let C= {{a, b}, {b, c} then filter whose subbase is C.

. State that whether the following state meuts are true or false.

SN W

(i) A sequence can converge more than are point.

(ii) A net can converge more than are point.

(iii) In a housdorff space every convergent net has a unique limit point.

(iv) A filter contains empty set ¢.

(v) A topological space X is hausdorff then every convergent filter in X has a unique limit but

converse is not necessarily true.

15.5 Summary

In this unit, we have discussed convergence of a sequence, net and filter. We have observed that
net is a generalized sequence. We have studied definitions of limit point, cluster point of net and filter ,

subnet, ultrafilter, filter base and subbase of a filter.

15.6 Answers to self-learning exercises

1. Cluster points = q, b, ¢ and limit points =a, b, c.

2. See definitions.

3. See example 4.

4. Let 1 be cofinite topology on the set of natural numbers N. The mapping f : N — N such that f
(n) =2n—11s anet in N. The set of cluster points of this net <1, 3, 5, ....>1is {I, 3, 5,...}

which 1s not closed m V.

5. {{b}, {a, b}, {b, c}, {b,d}, {a, b, c} {b,c,d}, {a, b, d} X}.
6. (i) True (ii) True (iii) True
(iv) False (v) False.
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15.7

Exercises

10.

. Show that every subnet of an ultranet is an ultranet.

. Show that a mapping g of a space X to a space Y is continuous at x, € X iff every net

(f, X, 4, 2) converging to x,, the composition mapping g o /: 4 — Y converges to g (x,).

. Let X be a topological space and let Y be a sub set of X. Then Y is t—open iff no sequence in

X — Y converges to a pont in Y. Prove it.

. A subset A4 of a topological space Y is closed iff no net in 4 converges to a point in X — 4.

. Let (4, >) be a directed set and B be a cofinal subset of 4 so that B is also directed by >. Let

(f, X, A, =) be a net. Then show that restriction map of /'to B is a subnet of /.

. Let X be any infinite set. Then show that F= {4 c X | X— A is finite } is a filter on X.
. Let {F, | A € A } be any non-empty family of filters on a non-empty set X. Then show that

intersection of this family that is N {F), [ A € A } is also a fitter on X.

. Let F be a filter on a non-empty set X and let 4 is a subset of X, then there exists a filter ' finer

than F'such that 4 € F’ifand only if 4 m F # ¢ for every F € F".

. Let X be a topological space and let x € X. Then show that local base B (x) at x is a filter

onX.

Show that every filter base on a set X is contained in an ultrafilter on X.

HEin
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