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Unit 5 : Summable Functions, Space of Square

Summable Functions

Structure of the Unit

5.0 Objectives

5.1 Introduction

5.2 Summable functions

5.2.1 The Lebesgue integral of non-negative unbounded functions

5.2.2 The lebesgue integral of arbitrary functions

5.2.3 Absolutely equi-continuous integrals

5.3 The space L2 of  square summable functions

5.4 Summary

5.5 Answers to self-learning exercises

5.6 Exercises

5.0 Objectives

In this unit, we shall generalize the definition of Lebesgue integral to include unfounded measur-

able function and domain can have infinite measure .Those functions, whose Lebesgue integral is a

finite real number are known as, summable functions. To generalize the definition of Lebesgue integral,

we first study integral of a nonnegative unbounded function then we consider functions of arbitrary sign.

Next , we  introduce the concept of square summable functions , and establish that space of square

summable functions is a normal linear space and complete space.

5.1 Introduction

In this unit, we will first define the integral of a nonnegative unbounded measurable functions.

Then, in next part, we will define integral of arbitrary measurable functions i.e. those functions, which

can be written as the difference of two nonnegative valued measurable functions. Next we will study the

passage of limit under sign of integration. In the end of unit , we will define square summable function

and prove that space of square summable functions is Banach space.

5.2 Summable functions

5.2.1 The Lebesgue integral of non-negative unbounded functions :

Given any non-negative unbounded function f on a set E, we will convert it into abounded

function according to the following definition. Let f be a measurable and non-negative function on a
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measurable set Eand let n N. Define the function [f (x)]n on Eby

[f (x)]n

( ) if 0 ( )

if ( )

   
f x f x n

n f x n

i.e. [f (x)]n = min [f (x), n]  x E ,

From the definition it is clean that [ f ]1  [f ]2 ..... and for each n N, [f (x)]n is a bounded

function. Also we have lim
n   [ f (x)]n = f (x) and [ f ]n is measurable therefore it is Lebesgue integrable

on E.

Let f  be a non-negative and measurable function defined on a measurable set E. The Limiting

value (finite or infinite ) lim [ ( )]nEn
f x dx   is called the Lebesgue integral of the function f on the

set E and is denoted by the symbol ( )

E

f x dx .Thus  ( ) lim ( ) .  nn
E E

f x dx f x dx  Further if

 lim ( )  nn
E

f x dx exists, then we say that f  is Lebesgue integrable or summable on the set E. If

E = [a, b] , then we use notation ( ) .

b

a

f x dx
Most of the results of the Lebesgue integral for arbitrary measurable function can be easily prove

by the use of corresponding results for bounded measurable functions. The new definition for integral of

a non-negative function f coincides with the definition given for bounded measurable function earlier be-

cause for sufficiently large n we have [f (x)]n  f (x).

Thus every bounded measurable non-negative functions is summable. It is clear that if a function

is summable of the set E, it is also summable on every subset of E. Further if m ( E ) = 0, every measur-

able function defined on E is summable and ( ) 0.

E

f x dx  Now we discuss other properties

Theorem 1. If a function is summable on E, then it is finite almost every where on E .

Proof. Let f  be a summable function on the set E, we have to prove that f (x) <  a.e. on E.

Let E1 = {x  E | f (x) = }, then [f (x)]n = n,  x E1. Now we know that is A B then

( ) ( ) ,

A B

f x dx f x dx  so using this property, we get

   
1

( ) ( ) .  nn
E E

f x dx f x dx
.....(1)

On set E1, f (x) = , so [f (x)]n = n, we get from (1)

 
1

1( ) . ( )
n

E E

f x dx n dx n m E  
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Here we have to show that m (E1) = 0. Let of possible m (E1) > 0 , then

  1lim ( ) lim . ( )
nx x

E

f x dx n m E   
 ( ) ,

E

f x dx  
which contradicts the fact that f is summable on E. Hence m (E1) is not greater than zero

 m (E1) = 0.

Thus f is finite a.e. on E.

Theorem 2. Let f  be a non-negative measurable function defined on a measurable set E.

If ( ) 0,

E

f x dx   then f (x) = 0 a.e. on E .

Proof. By hypothesis for any n N
 ( ) ( ) 0

n
E E

f x dx f x dx  
But ( ) 0,

E

f x dx   so  ( ) 0,
n

E

f x dx 
therefor by theorem for bounded measurable function [ f (x)]n = 0 a.e. on E .

Let   1

1

| ( ) 0 ,
n

n

E x E f x



       then  m (E1) = 0 .

Since  lim
n [f (x)]n = f (x)  x E   and  [f (x)]n = 0  a.e. on E, therefore f (x) = 0 for

x  E ~ E1. Since m (E1) = 0, so we have f (x) = 0 a.e. on E.

Theorem 3. Let f and g be two non-negative measurable functions on a measurable set E.

(i) If f = g a.e. on E, then  ( ) ( )

E E

f x dx g x dx 
(ii) If f g a.e. on E, then  ( ) ( ) .

E E

f x dx g x dx 
Proof. (i) Since f (x) = g (x) a.e. on E, therefore for each n N, [ f (x)]n = [g (x)]n a.e. on E

and [f]n , [g]n are bounded functions, so by theorem for bounded measurable functions, we have

   ( ) ( )
n n

E E

f x dx g x dx 
Taking Limit n  to both side, we get

   lim ( ) lim ( )
n nn n

E E

f x dx g x dx  
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 ( ) ( )

E E

f x dx g x dx 
(ii) Since f (x)  g (x) a.e. on E, therefore for each n N, [f (x)]n  [g (x)]n a.e. on E. Then

by theorem for bounded measurable function, we have

   ( ) ( )
n n

E E

f x dx g x dx 
Taking Limit n  we obtain ( ) ( ) .

E E

f x dx g x dx 
Theorem 4. If f (x) and g (x) be two non-negative measurable functions on the set E. If

h (x) = f (x) + g (x), then

( ) ( ) ( ) .

E E E

h x dx f x dx g x dx   
Proof. Here h (x) = f (x) + g (x)   x E, so for any n N we have

[ h (x)]n [ f (x)]n + [g (x)]n [h (x)]2n

  ( )
n

E

h x dx     ( ) ( )
n n

E

f x g x dx 
[ ( )] [ ( )]n nE E

f x dx g x dx  
(using theorem for bounded measurable functions)

 
2

( )
E n

h x dx 
Taking Limit n  we have

lim [ ( )]nEn
h x dx  lim [ ( ) ] lim [ ( )]n nE En n

f x dx g x dx   
2lim [ ( )] nEn

h x dx 
 ( ) ( ) ( ) ( )

E E E E
h x dx f x dx g x dx h x dx     

 ( ) ( ) ( )
E E E

h x dx f x dx g x dx   
 ( ) ( ) ( ) .

E E E
f h x dx f x dx g x dx    

Corollary . If   f1,  f2, ... ,  fn are non-negative measurable functions defined on E, then

1 1

( ) ( )
n n

i iE
i i

f x dx f x dx
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Proof. On generalisation of above Theorem 4 for n function  n functions we get the result.

Theorem 5. If f is a non-negative measurable function on a measurable set E and is a

real number them

( ) ( ) .
E E

f x dx f x dx   
Further if f is summable on E, then f is also summable on E .

Proof. The theorem is self proved for  = 0. If  = p  N  then from corollary of theorem 4

for p non-negative measurable functions  f1,  f2, .....,  f p, we have

 
1 1

( ) ( )
p p

i iE E
i i

f x dx f x dx
 

  
Taping f1 = f2 = .... = fp = f, we get

( ) ( )
E E

p f x dx p f x dx  .....(1)

If 
1

q
  for some q N  then by equation (1)

1
( ) ( )

E E
q f x dx f x dx

q
 

 1 1
( ) ( )

E E
f x dx f x dx

q q
  .....(2)

If  is a rational number 
p

q
, then using (1) and (2)

( ) ( )
E E

p p
f x dx f x dx

q q
 

Lastly let  be any irrational number, then there exist rational numbers r, s  Q such that

r < < s, then using theorem and using (3), we get

( ) ( ) ( ) .
E E E

r f x dx f x dx s f x dx    
Taking limits r and s  we have

( ) ( ) .
E E

f x dx f x dx   
Finally, the summability of  f on E follows from the summability of f on E.

Now we shall discuss certain results related with integration of sequence . First we prove the

following Lemma.
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Lemma. Let < fn > be a sequence of non-negative measurable functions. If lim
n  fn (x0) =

f (x0) at a point x0, then for each m N
0 0lim [ ( )] [ ( )] .n m m

n
f x f x 

Proof. If f (x0) > m , then there exists a number n0  N such that fn (x0) > m for all n > n0 and

then

[fn (x0) ]m = m = [f (x0)]m ,       n > n0 .

If f (x0) < m, then there exists a number n0 N such that fn (x0) < m   n > n0 and then

[fn (x0)]m = fn (x0) f (x0) = [f (x0)]m .

If f (x0) = m, then for given > 0 there exists a number n0 N,  such that

fn (x0) > m –   n  >  n0
[For lim

n  fn (x0) = f (x0) =  m  |  fn (x0) – m | < m – < fn (x0) < m + ]

Then m – < [ fn (x0)] m  m   n > n0
 m – < [ fn (x0)]m  m < m +
 | [ fn (x0)]m – m | <   n > n0
 | [ fn (x0)] m – f (x0) | <   n > n0
 | [ fn (x0)] m – [ f (x0)]m | <   n > n0

[ For f (x0) = m  [ f (x0)] m = f (x0)]

  lim
n [ fn (x0)] m =  [ f  (x0)]m.

Thus the Lemma holds in all cases.

Theorem 6. (Fatou’s  Lemma). Let < fn > be a sequence of non-negative measurable func-

tions converger to f  a.e. on the set E, then

 ( ) sup ( )n
E E

f x dx f x dx 
Proof. For any m N, we have from above Lemma

lim [ ( )] [ ( )]n m m
n

f x f x    on E .

Since each of the function [fn (x)]m is bounded by the number m, so by Lebergue bounded

convergence theorem we have

lim [ ( )] [ ( )]nE Em mn
f x dx f x dx   .....(1)
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Also [ fn (x)]m  fn (x)   x E
  [ ( )] ( ) sup ( )n n n

E E Em
f x dx f x dx f x dx    .....( 2)

Taking Lim n  and using (1) in (2), we get

 [ ( )] sup ( )nE Em
f x dx f x dx 

Again taking  n , we get

 ( ) sup ( ) .n
E E

f x dx f x dx 
With the help of above theorem, it is easy to obtain another theorem concerning passage to the

limit under the integral sign.

Theorem 7. (Lebegue monotone convergence theorem ). Let < fn > be an increasing se-

quence of non-negative measurable functions defined on the set E .  If lim
n  fn ( x) = f (x) on E,

then

lim ( ) ( ) .nE En
f x dx f x dx  

Proof. Since < fn > is monotonically increasing sequence, so f1(x)  f2 (x)  f3 (x)  .... .
It is given that lim

n  fn ( x) =  f (x) on E and we know that a monotonically increasing sequence

< fn >  is convergent iff it is bounded and in that case lim
n  fn ( x)  =  Sub <  f n (x) >

 ( ) ( ),nf x f x   x E
 lim ( ) ( )  nE En

f x dx f x dx ......(1)

Now as  lim ( )  nEn
f x dx  exists, so by Fatou’s lemma we have

( ) lim ( )nE En
f x dx f x dx  .....(2)

From (1) and (2) we get

lim ( ) ( )nE En
f x dx f x dx  

Corollary. Let {un} be a sequence of non-negative measurable functions defined on a mea-

surable set E.

If
1

( ) ( ),n

n

u x f x




then

1

( ) ( ) .nE E
n

f x dx u x dx



  



115

Proof. Let  fn (x)

1

( ) ,
n

i

n

u x


   x E  and for each n N.

Then {fn} is on increasing sequence of non-negative measurable functions on E and the result

follows from the main theorem.

Theorem 8. (Countable additivity of the integral  ) Let E be union of a finite or countable

family of pairwise disjoint measurable sets i.e. E =  Ei, Ei Ej = , i j. Then for any non-

negative measurable function f defined on the set E

( ) ( ) .
iE E

i

f x dx f x dx 
Proof. Let Ui be a function defined on E as

( ) for
( )

0 for ~

i
i

i

x Ef x
U x

x E E

  
Then   f (x) = ( )i

i

U x   and by above corollary, we have

( ) ( )iE E
i

f x dx U x dx  ......(1)

Now  ( )i n
U x

 ( ) for

~for0

n

i

f x x E

x E E

   
and therefore [ ( )] [ ( )]

i
i n nE E

U x dx f x dx 
Taking n we get ( ) ( )

i
iE E

U x dx f x dx  .....(2)

From (1) and (2), we get

( ) ( ) .
iE E

i

f x dx f x dx 
5.2.2 Integral of Arbitrary function :

In order to define the Lebergue integral for measurable function that take both positive and negative

values, we shall show that such function can be written as the difference of two non-negative valued

measurable functions.

Let f be any real valued measurable function on E . We define the functions f + and f – called

respectively the positive and negative parts of  f, as f +(x) = max (f (x), 0),   f – (x) = max (– f (x),0),

x  E. For a fixed x  E, we observe that

(i) f (x) >  f + (x) = f (x)   and     f – (x) = 0

(ii) f (x) < 0  f + (x) = 0       and     f – (x) =  – f (x)
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(iii) f (x) = 0  f + (x) = 0      and     f – (x) = 0

(iv) f (x) = f + (x) – f – (x)        and    |  f (x) |  = f + (x) + f – (x)

and since f is a measurable function on E so both f  + and f – are non-negative measurable functions on

E. All the results given in previous section are true for the functions f + and f –. Now we define the

Lebesgue integral for an arbitrary measurable function.

If f  be an arbitrary measurable function defined on measurable set E and f +, f – are the positive

and negative parts of the function f, then we define Lebesgue integral of f on E as

( ) ( ) ( )
E E E

f x dx f x dx f x dx    
The function f is said to be L-integrable or summable on E is both the functions f +and f – are

L-integrable or summable on E.

Theorem 9. A measurable function f is summable on E if and only if | f | is summable and

in this case

( ) | ( ) | .
E E

f x dx f x dx 
Proof. Let f  is summable on E, so ( ) . E f x dx

Now ( ) ( ) ( )
E E E

f x dx f x dx f x dx      [f = f + – f –]

( ) ( ) ( )         E E E
f x dx f x dx and f x dx

 ( ) ( )
E E

f x dx f x dx    
 [ ( ) ( )]

E
f x f x dx   

 ( )
E

f x dx  
 | f | is summable on E .

Conversely let | f | be summable on E .

 | f | = f + + f –, so f + and f – are summable on E. Therefore f +– f – is summable on E.

Hence f is summable on E.

Now, ( )
E

f x dx ( ) ( )
E

f x f x dx    
( ) ( )

E E
f x dx f x dx   

( ) ( )
E E

f x dx f x dx    
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( ) ( )
E E

f x dx f x dx   
( ) ( )

E
f x f x dx    
( )

E
f x dx 

Here ( )
E

f x dx ( ) .f x dx
Theorem 10 : If f and g are summable functions on a set E and c be a constant, then the

functions f g and c.f are also summable and

( ) ( ) ( ) ( )
E E E

f g x dx f x dx g x dx    
and ( ) ( ) ( ) .

E E
cf x dx c f x dx 

Proof : Since f and g are summable functions on E.

 ( )
E

f x dx    and  ( )
E

g x dx  
 ( ) ( )

E E
f x dx f x dx      and ( ) ( )

E E
g x dx g x dx    

 ( ) , ( ) , ( ) , ( )
E E E E

f x dx f x dx g x dx g x dx        are finite.

 ( ) ( ) ( ) ( )
E E E E

f x dx g x dx f x dx g x dx          
 ( ( ) ( ( )

E E
f g x dx f g x dx        

 ( ) ( )
E

f g x dx  
 f  + g is summable on E.

Also ( ) ( )
E

f g x dx ( ) ( )
E

f g x dx 
( ) ( ) ( ) ( )         E E E E

f x dx g x dx f x dx g x dx

( ) ( ) ( ) ( )         E E E E
f x dx f x dx g x dx g x dx

( ) ( )
E E

f x g x dx  
Let  (x) = c f (x)   x E
Case 1 : Let c 0, + (x) = max {c f (x), 0}

= c max {f (x), 0} = c f + (x)

– (x) = max {– cf (x), 0}

= c max {– f (x), 0}

= cf – (x).
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 ( )
E

c f x dx ( ) ( ) ( )
E E E

x dx x dx x dx        
( ) ( )

E E
c f x dx c f x dx   

( ) ( )
E E

c f x dx c f x dx   
( ) ( )

E E
c f x dx f x dx     

( ) .
E

c f x dx 
Case II : If c < 0, +(x) = max {c f (x), 0} = | c | max {– f (x), 0}

= | c |  f – (x)

and – (x) = max {– c f (x), 0}

= | c | max {f (x), 0}

= | c | f +(x).

Therefore ( )
E

c f x dx ( ) ( ) ( )
E E E

x dx x dx x dx        
| | ( ) | | ( )

E E
c f x dx c f x dx   

| | ( ) | | ( )
E E

c f x dx c f x dx   
| | ( )

E
c f x dx 

( ) .
E

c f x dx 
Thus if c R then

( ) ( )
E E

cf x dx c f x dx 
  Summability of f  implies the summability of cf.

Now ( ) ( )
E

f g x dx [ ( 1) ] ( )
E

f g x dx  
( ) ( 1) ( )

E E
f x dx g x dx   

( ) ( 1) ( )
E E

f x dx g x dx   
( ) ( ) .

E E
f x dx g x dx  

  Summability of f and g implies summability of  f – g.
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Theorem 11 : (Finite additivity of the integral) Let the set E can be expressed as a finite

union of pairwise disjoint measurable sets i.e.

1

, , .
n

i i j

i

E E E E i j


    

If function f is summable on each of the sets Ei, then it is also summable on E and

1

( ) ( ) .
i

n

E E
i

f x dx f x dx


 
Proof : Since f is summable on each of the sets Ei so f + and f – are summable on each of the

sets Ei. f 
 + and f  – are non-negative measurable functions on each Ei, therefore we

have
1

( ) ( )
i

n

E E
i

f x dx f x dx 


  .....(1)

and
1

( ) ( )
i

n

E E
i

f x dx f x dx 


  .....(2)

Since R.H.S. terms of (1) & (2) are finite so L.H.S. terms of (1) & (2) are finite. Subtracting (2)

from (1), we get

1

[ ( ) ( )] [ ( ) ( )]
i

n

E E
i

f x f x dx f x f x dx   


   
Hence

1

( ) ( ) .
i

n

E E
i

f x dx f x dx


 
Note : If 

1

,i

i

E E



  Ei Ej = , i j then summability of f on each Ei does not imply the

summability of f on E. However, we have the following theorem.

Theorem 12. Let a set E can be expressed as a countable union of pairwise disjoint mea-

surable sets i.e. 
1

,i

i

E E



  Ei Ej = , i j, then

(i) If f is summable on E, then

1

( ) ( ) ,
iE E

i

f x dx f x dx



 
(ii) If f is summable on each Ei, then f is summable on E if and only if the condition

1

| ( ) |
iE

i

f x dx



    is satisfied.
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Proof. Since f is summable on E therefore f is summable on each set Ei and so f + and f – are

summable on each set Ei and are non negative, so by theorem 9 we have

( )
E

f x dx
1

( )
iE

i

f x dx
 


  .....(1)

( )
E

f x dx
1

( )
iE

i

f x dx
 


  .....(2)

Subtracting (2) from (1)

[ ( ) ( )]
E

f x f x dx 
1

( ) ( )
i iE E

i

f x dx f x dx
  


   
1

[ ( ) ( )]
iE

i

f x f x dx
  


  
 ( )

E
f x dx

1

( ) .
iE

i

f x dx



 
(ii) Since f is summable on each of the set Ei  | f | is summable on each Ei.

  | f | is non-negative measurable function on each Ei.

  By theorem 9, we have

| ( ) |
E

f x dx
1

| ( ) |
iE

i

f x dx



  .....(3)

 | ( ) |
E

f x dx  
1

| ( ) |
iE

i

f x dx



  
Conversely if 

1

| ( ) |
iE

i

f x dx



  
 | ( ) | ,

E
f x dx           [using (3)]

 | f | is summable on E

 f is summable on E.

Theorem 13. Let f be a summable function on set E. Then for given  > 0, there exist a

 > 0 such that

| ( ) | e f x dx

where e is a measurable subset of E with m (e) < .

Proof. Since f is summable on E, therefore | f | is also summable on E. As | f | is a non-negative

valued function on E, given > 0 there exists a number n0  N such that
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0
| ( ) | [| ( ) |] .

2
n

E E
f x dx f x dx

    [For [f (x)]n  f (x)]


0

(| ( ) | [| ( ) |] )
2

n
E

f x f x dx
  .....(1)

Choosing a real number such that  
02n

  and if e is measurable subset of E with m (e) < ,

then we have

0 0 0[| ( ) |] ( )
2

n
E

f x dx n m e n
    .....(2)

From (1) and (2) we have

( )e f x dx
0 0

(| ( ) | [| ( ) |] ) [| ( ) |]n n
e e

f x f x dx f x dx   
0 0

(| ( ) [| ( ) |] ) [| ( ) |]n n
E e

f x f x dx f x dx   
2 2

   

But ( )e f x dx | ( ) |
e

f x dx 
Therefore    | ( ) | .

e
f x dx 

We shall now prove generalization of the Lebesgue theorem on the passage to limit under the

integral sign for bounded function. The theorem is also true for summable function and know as domi-

nated convergence theorem.

Theorem 14. (Lebesgue dominated convergence theorem) Let {fn} be a sequence of mea-

surable functions converging in measure to f. If there exists a non-negative summable function 
such that | fn (x)| (x) a.e. on E for each n N, then

lim ( ) ( ) .nE En
f x dx f x dx  

Proof. Since | fn (x)| (x) a.e. on E,   n N
 | ( ) |nE

f x dx ( )   E x dx n N

  is summable on E, so ( )  E x dx

 | ( ) |nE
f x dx < ,   n N

 Each function fn (x) is summable on E.

Now, we have {fn} is converging in measure to the function f on E, therefore by Reisz’s theo-

rem, a subsequence { }nk
f  converging to f a.e. on E.
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 | f (x)| (x) a.e. on E

 | ( ) | ( )  E E
f x dx x dx

 | f | is summable on E

 f is summable on E

Also we have | fk (x) – f (x) |  | fk (x) | + | f (x) |

 (x) + (x)

= 2(x) a.e. on E   k N
Since  is non-negative summable function, therefore for every  > 0,  > 0 such that.

( )
E

x dx 4

  for all subsets e E with m (e) < .

Take > 0 be real number such that ( ) .
4

m E
   Since {fn} converges in measure to f, so for

given there exists a number n0 such that for k n0

m ({x  E || fk (x) – f (x) | }) < .

For each k N, let us break E into two subsets

Ak = {x  E || fk (x) – f (x) | }

Bk = {x  E || fk (x) – f (x) | <}

Then Ak  Bk = E and Ak  Bk =  for each k N. If k n0 then m (Ak) < , and according

to the choice of 
| ( ) ( ) |

k
k

A
f x f x dx 2 ( )

kA
x dx   2

4 2

    .....(1)

Also for every k N, we have

| ( ) ( ) |
k

k
B

f x f x dx <  m (Bk) 
( )

2
m E

   .....(2)

Adding (3) and (4), we have   k  n0

| ( ) ( ) |
k

k
A

f x f x dx | ( ) ( ) |
2 2k

k
B

f x f x dx
     

 | ( ) ( ) |  kE
f x f x dx .....(3)

Now ( ) ( ) k
E E

f x dx f x dx [ ( ) ( )]k
E

f x f x dx 
| ( ) ( ) |kE

f x f x dx   <  [using (3)]

 lim ( )kEk
f x dx  ( ) .

E
f x dx 
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5.2.3 Absolutely equi-continuous integrals

If < fn > be a sequence of summable functions on the set E, then the sequence of integrals

( )nE
f x dx  of these functions is said to be absolutely equi-continuous if for each  > 0,  > 0

such that   n N
| ( ) |nA

f x dx 
for any measurable set A E with m (A) < .

Theorem 15. (Vitali’s Theorem) : Let < fn > be a sequence of summable functions on a set

E with finite measure. If < fn > converges in measure to f and if the family of integrals of fn is

absolutely equi-continuous, then f is summable on E and

lim ( ) ( ) .nE En
f x dx f x dx  

Proof. Let > 0 be a real number and let .
( )m E

   Since the family on integrals

 ( ) n
E

f x dx  is absolutely equi-continuous, for given > 0 there exist a  > 0 such that for all n N
| ( ) |n

e
f x dx 

for all measurable subsets e of E with m (e) <  .....(1)

Since {fn} converging in measure to the function f, therefore by Reisz’s theorem  a subse-

quence { }
knf  which converges to f a.e. on E.

Now || ( ) | | ( ) || | ( ) ( ) | .
k kn nf x f x f x f x  

It follows that | ( ) |
knf x  converges to | f | a.e. on E.

 for e E with m (e) <  we have by Fatou’s Lemma

| ( ) |e f x dx sup | ( ) |
k

k

n
e

n

f x dx  [using (1)]

 | ( ) |e f x dx <  .....(2)

Now for each k N, we define two sets

Ak = {x  E || fk (x) – f (x) | }

Bk = {x  E || fk (x) – f (x) | <}

 Ak  Bk =  and   Ak  Bk = E    n N.

For a given > 0, n0 N such that   k n0 with m (Ak) <  we have

| ( ) ( ) |
k

k
A

f x f x dx | ( ) | | ( ) |
k k

k
A A

f x dx f x dx  
<  +  = 2 [using (1) and (2)]
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 | ( ) ( ) |
k

kA
f x f x dx < 2 .....(3)

and | ( ) ( ) |
k

kB
f x f x dx <  m (E) =  .....(4)

 ( ) ( )kE E
f x dx f x dx  | ( ) ( ) |kE

f x f x dx 
| ( ) ( ) | | ( ) ( ) |

k k
k k

A B
f x f x dx f x f x dx    

< 2 + 
= 3 .....(5)

 | fk – f | is summable on E

 fk – f is summable on E,

f = fk – (fk – f )

 f is summable on E

From (5), lim ( ) ( ) .kE Ek
f x dx f x dx  

5.2.4 The space of summable functions

We denote by LE or simply by L the space of summable functions on a measurable set E R.

Now we discuss some useful properties of L-space.

L-space is a linear space i.e. (i) f L, g L  f + g  L (ii) c R, f L  c f L (i) &

(ii) follows from the theorem 11.

We define a norm in the space L as

|| f || | ( ) | E f x dx

for any function f L. It is obvious that || f ||  0 and || f || = 0 if and only if f ~ 0 i.e. f =  as element of

the set L (is zero element of space L).

If c is constant then || c f || = | c | || f || obtain from theorem 11.

|| f + g || | ( ) ( ) | E f x g x dx

| ( ) | | ( ) |  E E
f x dx g x dx

= || f || + || g ||

Hence L is a normed space.

Let {fn} be a sequence of functions in L. The sequence {fn} is said to be convergent to f in the

means of order on or simply convergent in mean if lim | ( ) ( ) | 0n
En

f x f x dx    and the sequence

is said to be convergent in norm.
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Theorem 16. Let {fn} be a sequence in L. If {fn} converges in norm to a function f, then

{fn} converges in measure.

Proof. Let us assume that {fn} converges in norm to function f but {fn} does not converge to f

in measure.

Then for some > 0 there is a > 0 such that m ({x E : | fk (x) – f (x)| })  for an

infinite number of values of the index k;   k = k1, k2,..., ki,... .

If we write Ak = {x E : | fk (x) – f (x)| }, then

| ( ) ( ) | | ( ) ( ) |
i i

ki

k k
E A

f x f x dx f x f x dx     
This means that the subsequence { }

ikf  does not converge in mean to f, which is contradiction.

Hence the theorem.

5.3 T he space L2 of square summable functions

In this section we study about the square summable functions and its space L2. We establish that

L2 is a Banach space.

If f is a measurable function defined on a measurable set E R and E f 2 (x) dx exist and finite

then f is said to be a square summable function.

We denote by L2 (E) or simply L2 the space of all square summable functions on the set E.

Generally E is taken as the closed interval [a, b] and in such a case the integral  E f 2 (x) dx is written

as 2 ( ) .
b

a
f x dx

Theorem 17. The space L2 of square summable functions is a linear space.

Proof : To prove L2 is a linear space we have to show that

(i) f, g L2 f  + g L2

(ii) f  L2  c f  L2 , c R.

(i) Let f,  g L2, therefore

2
( )

b

a
f x dx      and    

2
( )

b

a
g x dx ......(1)

 [f (x) – g (x)]2 0

 | f (x)  g (x) |
2 2( ) ( )

2

f x g x
x E

  

 | ( ) |
b

a
f x dx 2 21

[ ( ) ( )]
2

b

a
f x g x dx 

2 21
( ) ( )

2

b b

a a
f x dx g x dx       < (2), [using (1)]
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 | f. g | is summable, which means that f.g. is summable. Now

2
[ ( ) ( )]

b

a
f x g x dx 2 2

[ ( ) 2 ( ) ( ) ( )]  b

a
f x f x g x g x dx

2 2
[ ( ) 2 ( ) ( ) ( )    b b b

a a a
f x dx f x g x dx g x dx

< + 2. + , [using (1) & (2)]

 f  + g L2.

(ii) For c R and f L2 
2

[ ( )
b

a
f x dx  

 2 2 2( ) ( ) ( )   b b

a a
cf x dx c f x dx

 c f  L2.

Which establish that L2 is a linear space.

We shall now establish two inequalities which play an important role in the study of L2 space.

Theorem 18. (Cauchy-Bunyakowski-Schwarty inequality or CBS inequality)

If  f, g L2 then

2
2 2( ) ( ) ( ) ( )

b b b

a a a
f x g x dx f x dx g x dx                 

Proof : For  R and  0

2 2 2 2[ ( ) ( )] ( ) 2 ( ) ( ) ( )
b b b b

a a a a
f x g x dx f x dx f x g x dx g x dx          .....(1)

We know that the quadratic expression A2 + B + C has non negative values for all R if

B2 – 4AC 0 and A > 0. Since the expression on R.H.S. of (1) is non-negative as L.H.S. of (1) is non-

negative for all R,

Hence B2 AC

 2
2 22 ( ) ( ) 4 ( ) ( )

b b b

a a a
f x g x dx f x dx g x dx                 

 2
2 2( ) ( ) ( ) ( ) .                 b b b

a a a
f x g x dx f x dx g x dx

Corollary : If (b – a) < , then every square summable function is summable i.e. L2 L.

Proof : If we take g (x) = 1, f (x) = | f (x) | in CBS inequality, we get

2

| ( ) |   b

a
f x dx

2
| ( ) | 1

b b

a a
f x dx dx

           
2| ( ) | ( )

b

a
f x dx b a    

<  [  f  L2 and (b – a) < ]
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 | ( ) |
b

a
f x dx     

 | f (x) | is summable i.e. | f | L f L.

Theorem 19. (Minkowski’s inequality). If f and g L2, then

1 2 1 2 1 2
2 2 2[ ( ) ( )] ( ) ( ) .

b b b

a a a
f x g x dx f x dx g x dx                  

Proof : By CBS inequality, we have

1 2 1 2
2 2( ) ( ) ( ) ( )            b b b

a a a
f x g x dx f x dx g x dx

 2 22 ( ) ( ) ( ) ( )   b b b

a a a
f x g x dx f x dx g x dx

1 2 1 2
2 2 2 22 ( ) ( ) ( ) ( )

b b b b

a a a a
f x dx g x dx f x dx g x dx              


2

1 2 1 2
2 2 2

[ ( ) ( )] ( ) ( )
                 b b b

a a a
f x g x dx f x dx g x dx

 1/ 2 1 2 1 2
2 2 2[ ( ) ( )] ( ) ( )                   b b b

a a a
f x g x dx f x dx g x dx

Theorem 20. The space L2 is a normed linear space.

Proof : We define a function

 || || : L2 R   as   

1 2

2|| || ( )
     b

a

f f x dx

We observe that

(i) || f || 0   f L2 and

|| f || = 0

1 2
2 ( ) 0

b

a
f x dx    

2
( ) 0f x x E   

( ) 0f x x E   
 f =  (zero function)
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(ii) For c R and || cf ||

1 2
2( ) ( )

b

a
cf x dx    

1 2
2 2 ( )

b

a
c f x dx    

1 2
2| | ( )

b

s
c f x dx    

= | c | || f ||

(iii) By Minkowsky inequality

f, g L2 || f + g || || f || + || g ||

Hence the function || || is norm in the space L2, consequently L2 is normed linear space.

Now we introduce the notion of convergence in norm.

Let {fn} be a sequence in L2. The sequence is said to converge in norm to a function f L2 if

for any arbitrary real number > 0 there exists a number n0 N such that || fn – f || < whenever

n n0 and in such a case we write lim n
n

f f    or  fn f.
The convergence in the mean is also termed as convergence in the mean of order two or the

convergence in the mean square and the expression lim n
n

f f   means that

2lim [ ( ) ( )] 0.
b

nan
f x f x dx  

Theorem 21. Let {fn} be a sequence in L2. If {fn} converges in the mean square to a func-

tion f L2, then {fn} converges in measure to f.

Proof : Let us assume that {fn} converges in the mean square to a function f  but {fn} does not

converges in measure to f. This means that for some > 0 there is a > 0 such that

m ({x [a, b] : | fk (x) – f (x) | }) 
for an infinite number of values k1, k2, ...., ki, .... . For the index k. If we write

ek = {x [a, b] | fk (x) – f (x) | }

then
1

2 2
| ( ) ( ) | | ( ) ( ) |

i i

k

b

k ka
e

f x f x dx f x f x dx   
2.

This means that the subsequence 
1

{ }kf  does not converge in the mean, which is contradiction.

Hence the theorem.

A sequence {fn} in L2 is a Cauchy sequence in L2 if for every > 0 there exist a number

n0 () N, such that m, n n0 (), then || fm – fn || < .
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Theorem 22. If a sequence {fn} in L2 converges in norm to a function f in L2 then it is a

Cauchy sequence.

Proof : Let > 0 be a real number. Since lim n
n

f f   there exists a number n0 () N such

that || fn – f || < whenever n n0. Now if m n0 and n n0, then

|| fm – fn || = || fm – f + f – fn ||

|| fm – f || + || fn – f ||         [Minkowski’s inequality]

< + 
= 2

Hence the theorem.

Theorem 23 : A Cauchy sequence {fn} in L2 converges to an element f in L2

or

Prove that L2 is a complete space.

Proof : Since {fn} is a Cauchy sequence in L2, so for each > 0 there exist a number

n0 ()  N such that if m, n n0 () then

|| fm – fn || <  .....(1)

Then there exist a subsequence  
knf such that

1

1
|| ||

2k kn n k
f f     for k N ....(2)

In CBS inequality on putting 
1

( ) | | 
k kn nf x f f  and g (x) = 1, we get

1 1
| ( ) ( ) | || ||

k k k k

b

n n n na
f x f x dx b a f f    

and therefore using (2)

1 1

1 1

| ( ) ( ) | || ||
k k k kn n n n

k k

f x f x dx b a f f 
 
 

    
  

1

1

2k
k

b a



  
 1

1

| ( ) ( ) |
k k

b

n na
k

f x f x dx



  
and consequently the series 1

1

| |
k k

b

n na
k

f f dx



  is convergent.



130

The series 
1 1

1

| ( ) | ( ) ( )
k kn n n

k

f x f x f x



   converges almost everywhere on [a, b]. Wee

know that every absolutely convergent series is convergent therefore the series

1 1

1

( ) ( ( ) ( ))
k kn n n

k

f x f x f x



 
converges a.e. on [a, b]. This is equivalent to

lim ( )
kn

k
f x  exists a.e. on [a, b]

Let  1 [ , ] lim ( )
kn

k
E x a b f x   

then m ([a, b] ~ E1) = 0.

Now we define a function  f on E = [a, b] as follows :

1
lim ( ) for

( )
for [ , ] ~0

   
kn

k
f x x E

f x
x a b E

Then f is a measurable function and

lim ( ) ( ) 
kn

k
f x f x  a.e. on [a, b].

We shall now show that f L2 and lim . n
n

f f  If k0 is a number such that
0 0 ( ),kn n   then

from (1), we have

2 2
0[ ( ) ( )]

k

b

n na
f x f x dx n n     and k > k0.

Since sequence of functions 
2{( ) }

kn nf f  converges a.e. on E to (fn – f)2 so by Fatou’s Lemma

we have

2 2[ ( ) ( )] lim sup [ ( ) ( )]
k

b b

n n na an
f x f x dx f x f x dx   

 2 2
0[ ( ) ( )]

b

na
f x f x dx n n   

i.e. || fn – f || <   n > n0.

Consequently lim n
n

f f 
Since (fn – f) L2 it follows that

f = fn – (fn – f) L2.

Thus every Cauchy sequence in L2 converges to point in L2. Hence L2 is complete space.

Note : Through this theorem we have proved that L2 is a complete space. As L2 is a normed

linear space, therefore L2 is a Banach space.
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Self-Learning Exercise-1

1. Let 
1

( )f x
x

  for x (0, 1] and f (0) = 0. Then define [ f (x)]n.

2. If f is a non-negative unbounded measurable function defined on a measurable set E, then [f]n is

measurable on E for each n N. [True/False]

3. Let f  be a measurable function defined on a measurable set E. If | f  | is summable on E, then it

is not necessary that f  is summable on E. True/False

4. The space L2 of square summable functions is a linear space. True/False

5. Every square summable function is a summable function. True/False

6. L2-space is not a Banach space. True/False

5.4 Summary

In this unit, we have discussed about summable functions, Lebsgue integral of non-negative

unbounded functions, Lebsgue integral of arbitrary functions, the space L2 of square summable functions

and some important results on these topics.

5.5 Answers to self-learning exercises

1. [f (x)] n 2

1 1
for 1  x

x n

= n   for  0 < x < 2

1

n

= 0   for  x = 0.

2. True. 3. False. 4. True.

5. True. 6. False.

5.6 Exercises

1. Prove that a summable function is finite a.e.

2. If m (E) = 0, then every function f defined on E is summable on E and ( ) 0.
E

f x dx 
3. If f  is summable on E, then it is summable on every subset of E.

4. If f  is non-negative valued measurable function on [a, b] and if f (x) g (x)   x [a, b]

where g is a summable on [a, b]. Then prove that f  is a summable function.

5. Let the functions f and g be equivalent. If one the integrals exists, then so does the other, and the

two integrals are equal.
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6. If f is summable on [a, b] then show that

( ) ( ) .
b a

a b
f x dx f x dx


  

7. Show that the space L2 of all square summable functions is a metric space.

8. Show that the product of two square summable functions is summable.

9. Let {fn} be a sequence of functions in L2 converges in norm to f. Then for any g L2 show

that

lim ( ) ( ) ( ) ( ) .  b a

a bn
f x g x dx f x g x dx

10. Show that the space L2 of square summable functions is a Banach space.
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Unit 6 : Fourier Series and Coefficients, Parseval’s Identity,
Riesz-Fisher Theorem

Structure of the Unit

6.0 Objectives

6.1 Introduction

6.2 Scalar product

6.3 Hilbert space

6.4 Orthogonal elements

6.5 Orthogonal system

6.6 Fourier series and coefficients

6.7 Closed orthogonal system

6.8 Complete orthogonal system

6.9 Summary

6.10 Answers to self-learning exercises

6.11 Exercises

6.0 Objectives

In this unit we will first define scalar product of two functions in L2 space. With  the help of

scalar product we will define Hilbert space. Hilbert space play very important role in functional analysis.

Next we will study Fourier series and its properties in L2 space. The results related to Fourier series is

very useful in mathematical physics. Parseval’s identity, Bessel’s inequality play an important role in wave

mechanics.

6.1 Introduction

In this unit, we will first study the definition of scalar product of two functions and its properties

in L2 space. Next we will give definition of Hilbert space, orthogonal function and orthonormal system.

Next we will study Fourier series, Bessel’s inequality and Parseval identity. With the help of Parseval

identity we will define closed system. In the last we study Riesz Fischer theorem, complete orthonormal

system and its propertics.
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6.2 Scalar product

The scalar product of two functions f L2 and g L2 denoted as < f, g >, is defined as the

integral of the product of the functions :

< f, g > ( ) ( ) .
b

a
f x g x dx 

By CBS inequality for f, g L2 the scalar product < f, g > has finite value for any two functions

f, g  L2. It is obvious that if one or both functions in a scalar product are replaced by equivalent func-

tions the scalar product does not change.

The scalar product has following properties :

(a) < f, g > = < g, f  >

Proof : < f, g > ( ) ( ) ( ) ( ) ,
b b

a a
f x g x dx g x f x dx g f    

(b) < f + g, h > = < f, h > + < g, h >

Proof : < f + g, h > ( ( ) ( )) ( )
b

a
f x g x h x dx 

( ) ( ) ( ) ( )
b b

a a
f x h x dx g x h x dx  

= < f, h > + < g, h >

(c) < c f, g > = c < f, g > = < f, c g > where c  R

(d) < f, f  >  0   f  L2 and

< f, f  > = 0 iff f = .

Theorem 1. If f, g  L2  then

2 2
| , | || || || ||L Lf g f g  

Proof. From CBS inequality we know that if  f, g  L2 then

2
( ) ( )

b

a
f x g x dx 

   2 2( ) ( )
b b

a a
f x dx g x dx           

 2,f g  2 2

2 2|| || || ||L Lf g

or equivalently | < f, g > |
2 2

|| || || || .L Lf g

6.3 Hilbert space

A Branch space is called a Hilbert space if for any two elements f and g of it there is associ-

ated a real number called their scalar product < f, g > satisfying properties (a) to (d) and the norm of

an element f of it is expressed in terms of scalar product || f || , .f f  

Thus L2 is a real Hilbert space.
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Theorem 2. The scalar product in L2 is a continuous function of its argument that is if

{fn} and {gn} are two convergent sequences in L2 with lim n
n

f


 = f and lim n
n

g


= g then

lim , ,n n
h

f g f g


    

Proof. We have {fn} and {gn} are two convergent sequences in L2 and

lim , lim .n n
n n

f f g g
 

 

Now lim n
n

f f


   for every  > 0,  n0  N such that

|| fn – f || <    n  n0.

 | || fn|| – || f || |  || fn – f ||, so   n > n0, | || fn || – || f || | < 

 {|| fn ||} is a convergent sequence of real numbers and it is bounded, since every convergent

sequence is bounded.

Similarly {|| gn ||} is a convergent and bounded sequence of real numbers.

  K  R s.t. || gn || < K,   n  N

For any n  N, we have

< fn, gn > – < f, g > = < fn, gn > – < f, gn > + < f, gn > – < f, g >

= < fn – f, gn > + < f, gn – g >

 | < fn, gn > – < f, g > |  | < fn – f, gn > | + | < f, gn – g > |

 || fn – f || || gn || + || f || || gn – g || [by theorem 1]

<  K + || f ||  =  [K + || f ||]  0 as n  

 lim
n  < fn, gn > = < f, g >.

6.4 Orthogonal elements

Two functions f and g in L2 [a, b] are said to be orthogonal on the closed interval [a, b],

written as f  g if < f, g > = 0.

Equivalently, two measurable functions f and g defined on the closed interval [a, b] are said to

be orthogonal if

( ) ( ) 0.
b

a
f x g x dx 

Form the properties of the scaler product it follows immediately that

(i) The zero element  is orthogonal to any element f  L2.

(ii) f  f  < f, f > = 0

 || f ||2 = 0

 || f || = 0

 f = .
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(iii) If f is the sum of functions fi (the sum involves a finite or countable number of summands)

such that

f i
i

cf and g  f ;   i, then f  g.

Lemma : If f i
i

f (the sum contains finite or countable number of summands) and if all the

elements fi are pairwise orthogonal, then

|| f ||2 
2

i
i

f

Proof. Using the distributivity property of the scaler product, we have

|| f ||2 = < f, f  >

,i j
i j

f f    ,i j
i j

f f .....(1)

Since fi are pairwise orthogonal, so

< fi , fj > = 0, i  j and therefore form (1) we have

|| f ||2 ,i i
i

f f
2 .i

i
f

Theorem 3. A series 
1

i
i

f



  of pairwise orthogonal elements in L2 is convergent iff the

series of real numbers 2

1
i

i
f




  is convergent.

Proof. First suppose that the series 
1

i
i

f



  is convergent and converges to f (say).

Since fi are pairwise orthogonal

 < fi, fj > = 0   i  j .....(1)

 || f ||2 = < f, f  >
1 1

,i i
i j

f f
 

 
    

1 1
,i j

i j
f f

 

 


1
,i i

i
f f




 using (1)

2

1
i

i
f
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Thus
2 2

1
.i

i
f f






 The series of real numbers 2

1
|| ||i

i
f




  converges to || f ||2.

Conversely, suppose that the series of real numbers 2

1
|| ||i

i
f




  is convergent, we have to show

that the series 
1

i
i

f



  is convergent.

We define the partial sum of the series as :

sn
1

,
n

i
i

f




then {sn} is the sequence of partial sums of series 
1




 i
i

f

Let p > n, || sp – sn||2
2

1 1

p n

i i
i i

f f
 

  

2

1

p

i
i n

f
 

 

1 1
,

p p

i j
i n j n

f f
   

  

1 1
,

p p

i j
i n j n

f f
   

   

1
,

 
  

p

i i
i n

f f [Since fi are pairwise orthogonal]

2

1
|| || .

p

i
i n

f
 

 

 || sp – sn||2 2

1
|| || .

p

i
i n

f
 

   for p > n .....(1)

Since the series 2

1
|| ||i

i
f




  as convergent, so for each  > 0 there exists n0  N such that
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2
0

1
, || || .

p

p n p i
i

s s p n n where s f


       

 2

1
|| ||

 


p

i
i n

f <     p > n .....(2)

Using (2) in (1) we get

|| sp – sn||2 <     p > n

  || sp – sn||2  0 as p, n  and hence || sp – sn||  0 as p, n . This shows that {sn}

is a Cauchy sequence in L2. Since L2 is a complete space, so every Cauchy sequence in L2 converges

to an element in L2 and consequently the sequence {sn} in convergent which means that the series 
1

i
i

f





is convergent.

6.5 Orthonormal system

A system of functions 1, 2, i,... (finite or countable) in L2 [a, b] is called a orthonormal

system on the closed interval [a, b] if

(i)   <i, j > = 0   for   i  j

(ii)  <i, i > = 1   i.e.  || i || = 1   i

An important example of an orthonormal system on the interval [– , ] is the well known trigo-

nometric system of functions,

1 1 1 1 1, cos , sin ,..., cos , sin ,...
2

x x kx kx
    

6.6 Fourier series and coefficients

Let {i} be an orthonormal system of functions in L2. For any function f L2 the scalar prod-

uct ai = < f, i >, i = 1, 2, 3... are called Fourier coefficients of the function f with respect to the

orthonormal system {i} and the series 
1

i i
i

a



  is called Fourier series of f with respect to that

orthonormal system.

Theorem 5. The Fourier series of any function f L2 converses in norm. Further it con-

verges to f if and only if

|| f ||2 2

1
i

i
a
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where ai are the Fourier coefficients of the function f. If ai fi is the Fourier series of the square

summable function with respect to an orthonormal sequence < fn > of square summable functions

then show that

2 2

1
|| ||i

i
a f






Proof. Let 
1




  i i

i
f a  be the Fourier series for the function f, where ai = < f, i >, i N

and {i} be an orthonormal system of functions in L2.

For any n N, let us put

g (x)
1

( ) ( ).
n

i i
i

f x a x


  

Then for any i = 1, 2,..., n, we have

< g, j >
1

( ) ,
n

i i j
i

f x a


     
1

, ,
n

j i i j
i

f a


        

= aj – aj || j ||
2

= aj – aj  1 {Since < i, j > = 0 if i j, || i || = 1}

= 0

< g, j > = 0     j = 1, 2,..., n

 g j i.e. g is orthogonal to all j,  j = 1, 2,..., n.

Thus we have f
1

n

i i
i

g a


   .....(1)

We know that if f1, f2,..., fn,... . are pairwise orthogonal function such that  fi = f  then
2 2|| || || || . i

i
f f

Now from (1) we have

|| f ||2 2 2

1
|| || || ||


   

n

i i
i

g

|| f ||2 2 2 2

1
|| || || ||

n

i i
i

g a


    
2 2

1
|| || , since || || 1

n

i i
i

g a


   

Consequently, 2 2

1
|| ||




n

i i
i

a f      for any   n N.
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Since R.H.S. of above inequality is independent of n, so we have

2 2

1
|| ||




 i

i
a f .....(2)

 The series 2

1
i

i
a




  is convergent [  || f ||2 = < f, f > < ]

 The series 
1

i i
i

a



  converges in norm.

[By Theorem (3) 
1

i i
i

a



  is convergent iff the series 2

1
|| ||i i

i
a




  is convergent i.e. 2

1i
a






is convergent]

 The Fourier series of f L2 converges in norm.

Part II. Let as assume that the Fourier series 
1

i i
i

a



  is convergent and converges to f, there-

fore

f
1

i i
i

a



 

 || f ||2 2

1
|| ||i i

i
a




  [By Lemma]

 || f ||2 2 2

1
|| ||i i

i
a




  [  || i || = 1  i]

2

1
.i

i
a






Conversely suppose that the condition

|| f ||2
2

1
i

i
a




  be fulfilled, writing

h
1

,i i
i

f a



  

we can easily prove that h is orthogonal to i, i = 1, 2,...... .

 f
1

i i
i

h a
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Again from Lemma

|| f ||2 2 2

1
|| || || ||i i

i
h a




    2 2

1
|| || .i

i
h a




 

Since || f ||2 2

1
,i

i
a




  by hypothesis,

we have h =  that is f
1

i i
i

a



 


1

i i
i

a



  converses to f.

Note : The inequality 2

1
i

i
a




 || f ||2 is known as Bessel’s inequality and its particular case

2

1
i

i
a




 = || f ||2 is called Parseval’s identity..

6.7 Closed orthonormal system

An orthonormal system {i} is said to be closed if it satisfies Parseval’s identity 2

1
i

i
a




 = || f ||2

for the function f, where ai are Fourier coefficients for f with respect to i.

Theorem 6. If the orthonormal system {i} is closed and if f and g belong to L2,

then ( ) ( )
b

a
f x g x dx

1
i i

i




  

where i = < f, i >  and  i = < g, i >.

Proof. Since i, i are the Fourier coefficients for the function f and g respectively then i + i
will be the Fourier coefficients of  f  + g.

Therefore || f + g ||2 2

1
( )i i

i




  

 2( ) ( )
b

a
f g x dx 2

1
( )i i

i




  

 2 2[ ( )] 2 ( ) ( ) [ ( )]   
b b b

a a a
f x dx f x g x dx g x dx

2 2

1 1 1
2

  

  
        i i i i

i i i
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Using Parseval’s identity we have

( ) ( )
b

a
f x g x dx  

1
.i i

i




  

Let D L2. The set D is said to be everywhere dense in L2 is every element (function) in L2
is the limit (in norm) of a sequence in D.

Thus a set D L2 is every where dense in L2 iff for any f L2 and for each > 0 there is an

element g D such that || f – g || < .

Theorem 7. Let a set D L2 be everywhere dense in L2. If Parseval’s identity holds for

all functions in D, then the system {i} is closed.

Proof. Let f L2 and 
1

i i
i

a



  be Fourier series of f, where ai = < f, i >.

Let 
1

( )


 
n

n i i
i

S f a  be the partial sum of first n terms of the Fourier series. Then Sn (f ) sat-

isfies following properties.

(i) Sn (c f ) = c Sn (f ) for any c R,

(ii) Sn (f1 + f2) = Sn (f1) + Sn (f2)

(iii) || Snf ||  || f ||

and the last one follows from Bessel’s inequality,

|| Sn ||2 2 2

1
|| || .

n

i
i

a f


 
Since D is dense in L2, so for > 0 a function g D such that

|| f – g || .
3




Then || f – Sn (f ) ||  || f – g || + || g – Sn (g) || + || Sn (g) – Sn (f ) ||

But || Sn (g) – Sn (f ) = || Sn (g – f ) ||  || g – f || 
3


  and therefore

|| f – Sn (f ) ||
2
3


  + || g – Sn (g) ||

and since Paseval’s identity holds for g (x), so for > 0,  n0  N such that

|| f – Sn (f ) || 3


  n > n0.

Hence || f – Sn (f ) ||
2
3 3
 

     n > n0.

This proves the result.
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Theorem 8.  (Riesz-Fisher theorem). Let {i} be an orthonormal system in L2 and {ai} be

sequence of real numbers such that the series 2
ia  is convergent.

Then there exists a function f L2 such that 2 2|| || if a   where ai =  < fi i >   i  N.

Proof. Since the series 2
ia  is convergent, so for given > 0, there exists a number

n0 ()N  such that p > n > n0 imply

Sp – Sn < 2,  where 2

1

p

p i
i

S a


    2 2

1
.

 


p

i
i n

a

Consider a sequence {Sn} in L2 as

Sn (x)
1

( ),
n

i i
i

a x


 

then || Sp – Sn ||2
2

1 1
( ) ( )

p n

i i i i
i i

a x a x
 

    

2

1
( )

p

i i
i n

a x
 

 

2

1
( )

pb
i ia

i n
a x dx

 

    
  


1 1
( ) ( )

p p b
i j i ja

j n i n
a a x x dx

   
    

2 2

1
( )

p b
j ja

j n
a x dx

 
   (  {i} is an orthonormal system)

2 2

1
|| ||

p

j j
j n

a
 

 

2 2

1 
  

p

j
j n

a

 || Sp – Sn || <       p > n > n0.

 {Sn} is a Cauchy sequence in L2 and L2 is a complete therefore  a function  f L2 such

that

lim n
n

S
  = f.
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Now < f, i > ( ) ( )
b

ia
f x x dx   lim ( ) ( )

b
n ia n

S x x dx


 

1
lim ( ) ( )
 

 
   
 
 

nb

j j ia n j
a x x dx

1
( ) ( )





 
   
 
 


b
j j ia

j
a x x dx

2[ ( )]
b

i ia
a x dx   = ai || i ||

2 = ai

 < f, i > = ai,    i  N.

 f
1

lim lim ( )
  

  
n

n i i
n n i

S a x

 || f || 2
2

1
lim ( )
 

 
  

  


b n

i in ia
dxa x

, 1
lim ( ) ( )
 

   
bn

i j i j
n i j a

a a x x dx

2

1
lim
 

 
n

i
n i

a  
2

1




  i

i
a

Thus f  is the required function in L2.

6.8 Complete orthonormal system

An orthonormal system {i} is said to be complete if there is no function in L2 different from

(zero function) which is orthogonal to all function i.

Theorem 9.  An orthonormal system {i} is complete iff it is closed.

Proof. At first we assume that {i} is closed i.e. Parseval’s identity is satisfied. We have to

prove that {i} is complete.

Let f be orthogonal to each i, then

ai = < f, i > = 0,    i N.

As i satisfies Parseval’s identity, so

|| f ||2 2 0ia  

 || f || = 0

 f = (zero function)

 The system {i} is complete.
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Conversely, let {i} is complete, we have to show that {i} is closed.

On the contrary we suppose that {i} is not closed i.e. Parseval’s identity fails for some func-

tion g L2

i.e. 2 2

1
|| ||i

i
a g




 .....(1)

where ai are Fourier coefficients of g with respect to {i}. Using Riesz-Fisher theorem f  L2 such

that

2 2

1
|| || i

i
f a




   and <f, i > = ai   i N .....(2)

Now < f – g, i > = < f, i > – < g, i >

= ai – ai = 0

 f – g is orthogonal to all i. Since {i} is complete, so f – g =  f = g

 || f ||2 = || g ||2 2

1
i

i
a




 [using (2)]

Using (1) we get

|| f ||2  || g ||2

which is contradiction.

Hence in (1) it should be

|| g ||2 = || f ||2 2

1
i

i
a






 {i} is closed.

Corollary : The trigonometric system

1 cos sin cos 2 sin 2 cos sin, , , , ... , ,...
2

x x x x kx kx 
 

       
in L2 [– , ] is complete.

Proof. Let a function f L2 [– , ] be orthogonal to all functions in the trigonometric system.

Then it is also orthogonal to every trigonometric polynomial

0
1

( ) ( cos sin ).


  
n

k k
k

P x a a kx b kx

But the class PT [– , ] of trigonometric polynomials is everywhere dense in L2 [– , ] and

every trigonometric polynomial obviously satisfies Parseval’s identity.

Then by theorem 8 it is closed. Since the system is orthonormal it follows from the above theo-

rem that the system is complete.



146

Self- learning exercise-1

1. < f, f > = 0   f L2 True/False

2. If f and g be any two elements of L2, then < f, g >  0 True/False

3. The zero element   L2 is orthogonal to every element f  L2. True/False

4. If f  L2, then the scalar product ai = < f, i >, i = 1, 2, ..... are called .............. of function f

with respect to orthonormal system {i}.

5. The inequality 2 2

1
|| ||i

i
a f




  is known as ..................... .

6.9 Summary

In this unit we have discussed about scalar product of elements in L2-space, orthogonal elements,

orthogonal system, Fourier series and coefficients, orthonormal system and some important results on

these topics like Bessel’s inequality, Parseval’s identity and Riesz-Fisher Theorem.

6.10 Answers to self-learning exercises-1

1. False 2. False 3. True 4. Fourier coefficients

5. Bessel’s inequality.

6.11 Exercises

1. Let {i} be a complete orthonormal system of functions. If {i} is a system of functions in L2

such that

2

1
[ ( ) ( )] 1.

b
i ia

i
x x dx




   

Then prove that the system {i} is also complete.

2. Let {i} be an orthonormal system and let f L2. Show that of all linear combinations

1
( )

n

i i
i

a x


 , the norm of the difference 
1

n

i i
i

f a


   has the least value, where ai = < f, i

>, i = 1, 2, 3,..., n.

3. State and prove Parseval’s identity.

4. State and prove Bessel’s inequality.

5. If Parseval’s identity holds for all functions 1, x, x2, x3, ... then the system {i} of orthonormal

function is closed prove it.
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UNIT 7 : L p-Spaces, Holder-Minkowski Inequalities, Com-
pleteness of L p-Spaces

Structure of the Unit

7.0 Objectives

7.1 Introduction

7.2 L p-spaces

7.3 Holder-Minkowski inequalities

7.4 Convergence in norm and Cauchy sequence in L p-space

7.5 Completeness of L p-space

7.6 Summary

7.7 Answers to self-learning exercises

7.8 Exercises

7.0 Objectives

In this unit, we will study the spaces which are direct generalization of the space of square sum-

mable functions discussed in the previous unit. Many of classical spaces in analysis of measurable func-

tions and most of the important norms on such spaces have been defined by integrals. The Lebesgue

L p-spaces is one of the such important class of spaces. A complete understanding of these spaces

require a thorough knowledge of the Lebesgue theory of measure and integration, which we have devel-

oped in the proceeding units. These spaces have remarkable properties and are of enormous impor-

tance in analysis as well as its application.

7.1 Introduction

In this unit we will first define L p-space and prove that the L p-space is linear space. Next we

will prove Holder-Minkowski inequalities. In the end, we will prove that L p-space is complete normed

linear space i.e. Banach space.

7.2 L p-spaces

By L p [a, b] or L p [E], we mean a class of all function f such that

(i)  f  is measurable and finite almost everywhere over [a, b],
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(iii) | f | p is integrable over [a, b] for  p > 0

i.e. | ( ) |
b p
a

f x dx      for    p > 0.

We denote by L p or L p [E] or p
EL , the set of all such functions.

Theorem 1. Every pth power summable function on set E is summable on E i.e. L p [E] 

L [E]. But the converse is not true.

Proof : Let f  be a pth power summable function on E.

 | ( ) |p
E

f x dx   .....(1)

Let E1 = {x E | | f (x) | < 1 and E2 = E ~ E1. Since f (x) is bounded on the set E1


1

1| ( ) | 1 ( )
E

f x dx m E  .....(2)

 | f (x) | p 0

    From (1)
1

10 ( ) | ( ) |p
E

m E f x dx   
 0 m (E1) < 

 m (E1)  is finite

From (2),
1

1| ( ) | ( )
E

f x dx m E  
 | f  | is summable on E1.

Now 2 , | ( ) | | ( ) |px E f x f x  


2 2

| ( ) | | ( ) |p
E E

f x dx f x dx 

| ( ) |p
E

f x dx   [ E2E]

 | f | is summable on E2 .....(4)

From (3) and (4) f  is summable on E1 E2  i.e. on E.

 L p L.

The converse of above result is not necessarily true. For example if we consider a function

f (x) = x–1/4   x E = [0, 16], then

16 16 1 4
0 0

32| ( ) |
3

f x dx x dx    
 f  is summable on [0, 16].
But is we take p = 4 then

16 4
0

| ( ) |f x dx
16 1
0

x dx 
= Loge16 – loge0 = 

  4 .Ef L



149

Theorem 2. The L p-space is a linear space.

Proof : In order to prove L p-space is a linear space we will show that

(i)  f Lp, g Lp f  + g Lp,

(ii) f Lp, c R  c f Lp.

Since f, g L p therefore f  and g are measurable functions on E and

| ( ) | , | ( ) |p p
E E

f x dx g x dx     .....(1)

We know that the sum of two measurable functions is a measurable function therefore f  + g is

measurable function on E.

Let E1 = {x E |   | f (x) | | g (x) |}

E2 = {x E |   | f (x) | | g (x) |}

then E1 E2 = E and  E1 E2 = .

Now for all x E1

| f (x) + g (x) | p [| f (x) | + | g (x) | ] p

[| g (x) | + | g (x) | ] p

= 2 p | g (x) | p


1

| ( ) ( ) | p
E

f x g x dx
1
2 | ( ) | .p p

E
g x dx   [ ]pg L


1

| ( ) ( ) |p
E

f x g x dx   

Again, 2 , | ( ) ( ) | 2 | ( ) |p p px E f x g x f x   


2 2

| ( ) ( ) | 2 | ( ) |p p p
E E

f x g x dx f x dx     [ ]pf L


2

| ( ) ( ) |p
E

f x g x dx   .....(3)

Using countable additive property we have

| ( ) ( ) |p
E

f x g x dx 1 2
| ( ) ( ) | | ( ) ( ) |p p

E E
f x g x dx f x g x dx    

<    [using (1) & (2)]
 f  + g L p.

Also | ( ) |p
E

c f x dx | | | ( ) |p p
E

c f x dx 
<            [ ]pf L

 c f  L p.
Let us now define a function || || p : L p R, 0 < p <   as follows :

|| f || p
1

| ( ) | , 0 , .
pp p

E
f x dx p f L      
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7.3 Holder-Minkowski inequalities

Before establishing that above defined mapping || || p  defines a norm on L p, we will prove

Holder-Minkowski inequalities, which are useful in establishing that || || p  is a norm on L p. To prove

Holder inequality we will require the following inequality which is generalization of the inequality between

arithmetic and geometric means.

Lemma : Let 0 < < 1, then prove that a b1–< a + (1 – ) b holds good for any pair of

non-negative real numbers a, b with equality only if a = b.

Proof : If a = 0 = b then inequality is trivial. Now let us take a > 0, b > 0. We define a function

 (t) such that

(t) = (1 – ) + t – t ,    where 0 t < .

 (t) = (1 – t –1).

If  t < 1 then (t) < 0 and if t  > 1 then (t) > 0. This means that the function decreases in

[0, 1] and increases in [1, ) and hence (t) is minimum at t = 1.

 (t) (1)   t [0, )

 1 – + t – t 0

Put t = a/b

1 0a a
b b


     
 

 b  (1 – ) + ab–1 – a 0

 b (1 – ) + a – a b1– 0

 ab1–(1 – ) b + a.

The equality holds good for t = 1  i.e.  a = b.

In the study of L p-spaces an essential role is played by another space Lq where p and q are

non-negative extended real numbers related as

1 1 1,
p q
 

such two numbers p and q are termed as conjugate numbers.
Theorem 4. (Holder inequality) : Let 1 p  and q be a non-negative real number such

that 
1 1 1. 
p q

 If  f L p and g  Lq, then show that

(i) f g  L  i.e. f  g is summable

(ii) | ( ) ( ) |
E

f x g x dx
1 1

| ( ) | | ( ) |
q qp q

E E
f x dx g x dx        

= ||  f || p || g ||q



151

i.e. | ( ) ( ) |
E

f x g x dx || || || ||p qf g 

Further the equality holds iff for some non zero constants  and ,
| f (x) | p = | g (x) | q     a.e.  on  E.

Proof : The proof is obvious when p = 1, q = .

Now take 1 < p <  and consequently 1 < q < . If either f  = 0  a.e. on E or g = 0 a.e. on E

or both, then
1 1

| ( ) | | ( ) || ( ) ( ) | 0
p qp q

E EE
f x dx g x dxf x g x dx          

Let f (x) 0  and  g (x)  0 on E, then

|| f || p
1

| ( ) | 0
pp

E
f x dx     and

|| g || q
1

| ( ) | 0.
qq

E
g x dx   

We have from Lemma, for 0 < < 1 and non-negative real number a, b
a b1– a + (1 – ) b .....(1)

Let 
1 | ( ) | | ( ) |, ,

|| || || ||

p q

p q
p q

f x g xa b
p f g

  

From (1), we get

11 1
| ( ) | | ( ) |
|| || || ||

pp q p

p q
p q

f x g x
f g


   

   
      

11 | ( ) | | ( ) |1
|| || || ||

p q

p q
p q

f x g x
pp f g

    
 


| ( ) | ( ) |
|| || || ||p q

f x g x
f g

1 | ( ) | 1 | ( ) |
|| || || ||

p q

p q
p q

f x g x
p qf g

  1 11
p q

    



1 | ( ) ( ) |

|| || || || Ep q
f x g x dx

f g 
1 1 1 1| ( ) | | ( )|

|| || || ||
p q

p qE E
p q

f x dx g x dx
p qf g

  

1 1 1
p q

  

 | ( ) ( ) |
E

f x g x dx || f || p  || g ||q .....(2)

 f L p  and  g Lqf g L

For equality in (1), we have a = b

 | ( ) | || || | ( ) | || ||p g q p
g pf x g g x f

If we take || || , || ||g p
g pg f   

then ,  will be non-negative constants
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so  | f (x) | p = | g (x) | p.

For equality in (1), we obtain equality in (2).

Theorem 5. (Minkowski’s inequality) : Let f (x) L p and g (x)  L p where p 1, then

||  f  + g || p  || f ||p + || g ||p.

Proof : The theorem is obvious for p = 1. Consider the case when 1 < p < . Let q be conju-

gate to p then 1 1 1.
p q
   Since L p is a linear space therefore

f, g L p  f + g L p (f + g)p/q L p.

On applying the Holder inequality for the functions f (x) and (f (x) + g (x))p/q, we get

| ( ) | | ( ) ( ) |
b p q
a

f x f x g x dx  
1/1

| ( ) | | ( ) ( ) |
 

   
 

qppb qp b q
a a

f x dx f x g x dx

 | ( ) | | ( ) ( ) |
b p q
a

f x f x g x dx    1 1
| ( ) | | ( ) ( ) |

p qb bp p
a a

f x dx f x g x dx   ....(1)

Similarly on applying Holder’s inequality for the functions g (x) and (f (x) + g (x))p/q, we get

| ( ) | | ( ) ( ) |
b p q
a

g x f x g x dx    1 1
| ( ) | | ( ) ( ) |

p qb bp p
a a

g x dx f x g x dx   ....(2)

Adding (1) and (2), we get

| ( ) | | ( ) ( ) | | ( ) | | ( ) ( ) |
b bp q p q
a a

f x f x g x dx g x f x g x dx   

     11 1
| ( ) ( ) || ( ) | | ( ) |

qp p bb b pp p
aa a

f x g x dxf x dx g x dx
         .....(3)

Now  1 1 1 1 pp
p q q
      so that

| f (x) + g (x)| p = | f (x) + g (x) |   | f (x) + g (x) | p–1

= | f (x) + g (x) |   | f (x) + g (x) | p/q

 ( | f (x) | + | g (x) | ) | f (x) + g (x) | p/q

 | ( ) ( ) |
b p
a

f x g x dx | ( ) | | ( ) ( ) | 
b p q
a

f x f x g x dx

| ( ) | | ( ) ( ) |
b p q
a

g x f x g x dx       .....(4)

From (4) in view of (3), we get

| ( ) ( ) |
b p
a

f x g x dx    1 1
| ( ) | | ( ) |

p pb bp p
a a

f x dx g x dx
     

 1| ( ) ( ) |
qb b

a
f x g x dx
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or  
11

| ( ) ( ) |
b q
a

f x g x dx


    1 1
| ( ) | | ( ) |

p pb bp p
a a

f x dx g x dx  

or  1| ( ) ( ) |
pb

a
f x g x dx    1 1

| ( ) | | ( ) |
p pb bp p

a a
f x dx g x dx  

Hence   || f + g || p || f  || p + || g || p.

Theorem 6. Show that the L p-space is a metric space.

Proof : Let f,  g L p. Define the distance function d on L p by

d (f, g)  1|| || ,| ( ) ( ) |   
pb p

p a
f g f x g x  then

[M1] d (f, g)  1|| || 0| ( ) ( ) |   
pb p

p a
f g f x g x [ | ( ) ( ) 1 0]  f x g x

[M2] d (f, g) = 0|| f – g || p = 0

| ( ) ( ) | 0
b p
a

f x g x dx  

| ( ) ( ) | 0pf x g x      a.e.
f (x) = g (x)
f = g  a.e.

M [3] d (f, g) = || f – g || p  1| ( ) ( ) | 
pb p

a
f x g x dx

 1| ( ) ( ) |
pb p

a
g x f x dx  [ | | | |]f g g f  

= d (g, f)

M [4] d (f, g) = || f – g||p = || f – h + h – g || p
 || f – g||p + || h – g || p
= d (f, h) + d (h, g)

or d (f, g) d (f, h) + d (h, g)

Hence L p is a metric space.

Theorem 7 : Show that the L p-space is a normed metric space.

Proof : By theorem 2,L p is linear space. Now we define a function || ||p in Lp as :

|| f ||p : Lp  R such that

1
| ( ) ||| ||

pp p
p E

f x dxf f L    
(i) Since | f (x) | p 0     x E
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1

| ( ) | 0 || || 0
pp

pE
f x dx f     

Lp R such that in L p as :

|| f ||p : L p R such that

Also || f ||p = 0
1

| ( ) | 0
pp

E
f x dx   

| ( ) | 0pf x x E   

( ) 0    f x x E

f  =                  (Zero function in L p)

(ii)  For c R,  f L p

|| c f || p
1

| ( ) |   
pp

E
c f x dx  

1
| ( ) || |    

pp
E

f x dxc

| | || || pc f
(iii) By Minkowsky inequality, we have

|| || || || || || , p
p p pf g f g f g L    

Hence the function || || p satisfies all the axioms of norm i.e. it is norm in L p space.

Therefore L p space is a normed linear space.

7.4 Convergence in norm and Cauchy sequence in L p space

If 1 p <  and {fn} be a sequence in L p space, then sequence {fn} is said to converge in

norm to a function f  L p, if for each > 0,  n0 ()  N such that

0|| || ( ).n pf f n n     

This type of convergence is also known as convergence in the mean of order p when 1 p < .

Let {fn} be a sequence of functions in L p-space, then {fn} said to be a Cauchy sequence, if

for any > 0, there exits n0  N such that

0|| || , .m n pf f m n n    

7.5 Completeness of L p-spaces

Theorem 8 : (Riexz-Fisher). The space L p is complete for p 1.

Proof : In order to prove the theorem, we will show that every Cauchy sequence in L p con-

verges to some element f  in L p. Let {fn} be any Cauchy sequence in L p-space, then for given  > 0

there exists n0 N such that

0|| || , .    m n pf f m n n

Since > 0 is an arbitrary so take 
1 ,
2

  we can find natural number n1 such that
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1
1|| || , .
2m n pf f m n n   

Similarly taking 1 , ,
2k k N    we can find a natural number nk such that

1|| || ,
2

   m n p kkf f m n n

In particular 
1|| || .
2km n p kkf f m n   

Let ,
kk ng f  then we have

11
1|| || || ||
2k kk k p n n p kg g f f

     .....(1)

 1
1 1

1|| || 1
2k k k

k k
g g

 


 

    

 1
1

|| ||k k
k

g g





 is convergent series :

Define g such that

1 1
1

( ) | ( ) | | |k k p
k

g x g x g g





   .....(2)

and  g (x) = , if R.H.S. is divergent.

Now,

 
1

1

1 1
1

lim .| ( ) | ( ) | |

ppp nb bp
k ka an

k
g x dx dxg x g g



     
  

 

or 1 1
1

|| || lim || || || ||



 

 
    

 
p p k k pn k

g g g g [By Minkowski’s inequality]

           1 1 1
1

|| || || || || || 1





    p k k p
k

g g g g [by (1)]

 || g || p is a finite quantity  g L p [a, b]

Let E  = {x [a, b] : g (x) = }.

Now we define a function f  by

f (x) = 0   x  E

and 1 1
1

( ) ( ) ( )k k
k

f x g x g g





          for   x E
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or
1

1 1
1

( ) lim ( )



 

 
   

  

m

k km k
f x g g g    for   x E

        lim ( )m
n

g x


        for   x E.

Thus f (x) = 
lim ( ) for

0

mm
g x x E

x E







 ( ) lim ( )m
m

f x g x


     a.e. in [a, b]

or lim | | 0m
m

g f


     a.e. in [a, b] .....(3)

Also ( )mg x
1

1 1
1

( )
m

k k
k

g g g





  

 | gm |
1

1 1
1

| | ( )
m

k k
k

g g g





  

1 1
1

| | ( ) ,k k
k

g g g g





   

 | gm | g       m N           [by (2)]


1

| ( ) |m
m

g x



  g

 | f |   g

Again | gm – f |  | gm | + | f  |  g + g = 2g

 || gm – f |  2g

Thus there exists a function g L p such that

| gm – f |  2g m,

and lim | | 0m
m

g f


    a.e. in [a, b] .....(4)

Applying Lebesgue dominated convergence theorem, we get

lim | |
b p

mam
g f dx


 lim | |

b p
ma m

g f dx


 

0 0,
b

a
dx    by (4)


1

0lim | |
pb p

mam
g f dx
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 lim || || 0


 m p
m

g f

 lim || || 0 [ ]


  
m mn p m n

m
f f g f

 || ||
2mn pf f 

 

Also || ||
2mm n pf f 

 

 || ||m pf f || ||   
m mm n n pf f f f

|| || || ||   
m mm n p n pf f f f

2 2
 

   

 lim || || 0m p
m

f f


 

or lim p
m

m
f f L


 

Hence L p is complete space.

Note : By theorem we have proved that L p is normed linear space and from above theorem

we have proved that L p is complete space so L p is Banach space.

Ex 1. Show that a sequence of functions in L p-space has a unique limit.

Sol. Let {fn} be a sequence of functions in L p-space. If possible let fn f and fn g.

Then || f  – fn || p = 0, || fn – g || p = 0   as  n .

New || f – g ||p = || f – fn + fn – g || p
= || f – fn || p + || fn – g || p
= 0  as  n              [ fn f,  gn  g]

 ||  f – g ||p < 0|| f – g || p = 0,    since   ||  f – g ||p  0.

 f = g

 lim  fn is unique.

Ex 2. Let < fn > be a sequence of functions belonging to L p-space. If this sequence is

convergent, then it is a Cauchy sequence.

Sol. Let lim .n
n

f f


  Then for each > 0, there exists a number n0 N such that

0|| ||
2n pf f n n

    .....(1)

Now, if n, m 0, then

||  fn – fm ||p = ||  fn – f + f – fm ||p
|| fn – f ||p + || f – fm ||p
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,
2 2
 

                         [using (1)]

 || fn – fm ||p < m, n n0 and hence < fn > is a Cauchy sequence.

Self-learning exercise-1

1. If f, g L p [a, b], then f  – g L p [a, b].  True/False

2. 2 is a self conjugate number. True/False

3. If f L p [a, b] and g f, then g L p [a, b]. True/False

4. || cf ||p = c || f ||p   c R. True/False

5. If f, g L p [a, b]  for p 1,  then || f  + g ||p || f ||p + || g ||p. True/False

7.6 Summary

In this unit we have discussed about L p-spaces, Holder-Minkowaski inequalities, completeness

of L p-spaces and some important results related to these topics.

7.7 Answers to self-learning exercises

1. True 2. True 3. False 4. False 5. False.

7.8 Exercises

1. Define L p-space and prove that L p is a Banach space.

2. A sequence {fn} of functions in L p converges in mean to a function f L p  iff  || fm – fn || 0

as n .

3. If 0 < p < 1 and f, g are non-negative function in L p, then prove that

| ( ) ( ) | || || || || ,p qE
f x g x dx f g  provided that

| ( )| 0,q
E

g x dx   prove it.

4. Prove that the sequence of functions in L p-space has at most one limit.
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8.0 Objectives

In this unit, we define what a topological space is, and we study a number of ways of construct-

ing a topology on a set as to make it into a topological space. We also study some of the elementary

concepts associated with topological spaces. Open and closed sets, limit points are introduced as natu-

ral generalization of the corresponding ideas for the real line and Euclidean space.

8.1 Introduction

The concept of topological space grew out of the study of the real line and Euclidean space and

the study of the continuous function on these spaces. The definition of a topological space that is given in

this unit, was a long time in being formulated. Various mathematicians – Frechet, Hausdorff and others

proposed different definitions over a period of years. It took quite a while before mathematicians settled

on the one that seemed most suitable. The definition finally settled on may seem a bit abstruct but as you

learn the various ways of constructing topological spaces, you will get a better understanding for what

the concept is.

8.2 Topological space

8.2.1.  Definition :

A topological space is a pair (X ; ), where X is non-empty set and  is a family of subsets of

X satisfying :

(T1)    and X  

(T2)   If {G :   } is a family of subsets of X in , where  is an arbitrary index set, then

G G


       is also in .

(T3)   If {Gm : m = 1, 2,..., n , n  N} is a finite collection of subsets of X in , then

H
1

n

i
i

G


        is also in .

The family  is said to be a topology on the set X. Members of  are said to be -open or

simply open subsets of X.

Note 1:  The property (T2) and (T3) are also stated as

(T2)  is closed under arbitrary union

(T3)  is closed under finite intersection.

Note 2 :  The same set X may have different topologies.

Let 1 and 2 be any two topologies on the same set X.
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If 1  2, then 1 is called weaker or coarser then 2 or 2 is called stronger or finer than

1. If 1  2 and 1  2, then 1 is called strictly coarser then 2 or 2 is called strictly finer then

1. 1 and 2 are said to be comparable if either 1  2 or 2  1.

8.2.2. Examples of topologies :

(i)   Discrete topology :

Let X be any set and P(X) be the power set of X, then P(X) is a topology on X called

discrete topology on X. This topology is finest topology on X.

(ii)  Indiscrete topology (Trivial topology) :

Let X be any set, then  = {, X} is a topology on X, it is called indiscrete or trivial topology

on X. This topology is weakest or coarest topology on a set X. For a singleton set

X = {a}, discrete topology and indiscrete topology coincide.

(iii)  Sierpinski space :

Let X = {0, 1}, then  = {, X, {0}} is topology on X. The topological space (X, ) is called

Sierpinski space.

(iv)  Let X = {a, b}, then P (X) = {, X, {a}, {b}},  if we take

(1)  = {, X} (2)  = P (X)

(3)  = {, X, {a}} (4)  = {, X, {b}}

the result is always a topology. If we take

(1)  = {, {a}, {b}} (2)  = {X, {a}, {b}}

(3)  = { {a}} (4)  = {X, {a}}

the result is not a topology.

(v) Let X = {a, b, c}, then

1 = {, X, {a}}

2 = {, X, {a, b}}

3 = {, X, {a}, {a, b}}

4 = {, X, {a}, {b, c}}

5 = {, X, {a}, {b}, {a, b}}

6 = {, X, {b}, {b, c}, {a, b}}

are topologies on X and clearly 3 is strictly finer than 1 and 2, but 1 and 2 are not comparable.

Also 3 and 4 are not comparable. 5 is strictly finer than 3.

Now,  A1= {, X, {a}, {b}} is not a topology on X as {a}, {b}  A1 but their union

{a}  {b} = {a, b}  A1.

Similarly A2= {, X, {a, b}, {b, c}} is not a topology on X as {a, b}, {b, c}  A2 but their

intersection {a, b}  {b, c} = {b}  A2.
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(vi)  Cofinite topology :

Let X be an infinite set. Let  be the family consisting of , X and all subsets G of X, s.t. X G

is finite, then  is a topology on X as

(T1) , X   (by definition)

(T2)  Let {G :   } be a family of -open subsets where  is an arbitrary index set, then we

wish to show G G


   is also -open subset of X. Now G   iff X ~ G is finite.

So X ~ G = X  ~ ~G X G
 

  
 

[Using De-Morgan’s law]

Now each (X ~ G) is finite, since G   and arbitrary intersection of finite sets is also finite so

X ~ G is finite and hence G  .

(T3)   Let G1, G2  , we will show G1  G2  .

To show G1  G2   we have to show that X ~ (G1  G2) is finite.

Now X ~ (G1  G2) = (X ~ G1)  (X ~ G2) [by D’Morgan law]

(X ~ G1) and (X ~ G2) is finite, since G1, G2  and union of two finite sets is also finite so

X ~ (G1  G2) is finite and hence G1  G2  .

Now by above argument it is easy to show that If {Gm : m = 1, 2,..., n} is a finite collection of

subsets of X in , then 
1

.
n

i
i

G 




Thus by above, we can say that  is a topology on X.

Note 1 : In proof of a collection of subsets of X is a topology on X, to show the (T3) condition

in the definition it is sufficient to show that whenever G1, G2   then G1  G2  .

Note 2 : One can similarly define co-countable topology on an uncountable set X.

Note 3 : If X is a finite set, then cofinite topology is same as discrete topology on X. Similarly if

X is a countable set, then co-countable topology on X is same as discrete topology on X.

Note 4 : Cofinite topology is also known as finite complement topology.

(vii) Let (X, d) be metric space. G  X is called an open set if   x  G,  r  R+ such that

open ball B (x, r)  G    x  G. Let  be the family of subsets of X, which are open in the above

sense. Then  is a topology on X and is called usual topology on X or metric topology on X.

(viii) Usual topology on R :

A subset G  R is called an open set if    R+ such that the open interval (x – , x + )  G

  x  G. Let U be the family of subsets G of X, which are open in the above sense. Then U is a

topology on X and is called usual topology on R.
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(ix) Semi interval topology on R :

Let  be the collection of subsets G of R, such that   x  G   r  R+ and [x, x + r)  G.

Then  is called semi interval topology on R. One can of course consider semi-open intervals of the

form (x – r, x] instead  of [x, x + r) in the definition and get another topology on R.

(x) Right | Left hand topology on R :

The topology generated by the family of intervals of the form (a, ) = {x  R : x > a} is called

right hand topology. Similarly the topology generated by the family of intervals of the form

(– , a) = {x  R : x < a} is called left hand topology.

Self-learning exercise-1

1. If X = {a, b}, P (X) = {, x, {a}, {b}}, then which one of the following is a topology ?

(a) T = {, {a}, {b}} (b) T = {X, {a}, {b}}

(c) T = {, {a}} (d) T = {, X}

2. If X = {a, b}, then which one of the following is not a topology ?

(a) T = {, X} (b) T = {, X, {a}}

(c) T = {, X, {b}} (d) T = {, {a}, {b}}

3. Which of the following is a topology on X = {1, 2, 3, 4}

(a) T = {, X, {1}, {2}} (b) T = {, X, {1}, {2, 3}}

(c) T = {, X, {2}, {1, 4}} (d) T = {, X, {1}}

4. If 1 and 2 are topologies on the same set X, then prove that

(i) 1  2 is also a topology

(ii) 1  2 is not a topology on X.

8.3 Closed sets

8.3.1. Definition :

Any set F  X is called closed subset of a topological space (X, ) if X ~ F is open subset of

X.i.e. X ~ F  .

A topological space (X, ) is said to be a door space if every subset of X is either -open or

-closed.

8.3.2.  Example of door space :

Let X = {a, b, c} and

 = {, X, {a, b}, {b, c}, {b}}

then P (X) = {, X, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}}

-open sets : , X, {a, b}, {b, c}, {b}
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-closed sets : , X, {c}, {a}, {a, c}

Thus every subset of X is either -open or -closed.

Note : In analogy with everyday usage, a beginner is likely to think that “closed” is the negation

of  “open”, that is to say, a set is closed if and only if it is not open. But this is not so. The fact is that the

possibilities of a set being open and its being closed are neither mutually exclusive not exhaustive. For

example the null set  and the whole set X are always open as well as closed in every topological space.

On the other hand the set of rational numbers Q is neither open nor closed in the usual topology on R. A

set which is both open and closed is sometimes called a Clopen set.

Theorem 1. Let C be the family of all -closed sets in a topological space (X, ). Then C

has the following properties

(C1)   C, X  C

(C2) C is closed under arbitrary intersections.

(C3) C is closed under finite unions.

Proof. (C1) since X,     X ~ X =  is -closed

   C.

Also X ~  = X      is -closed

 X  C

(C2) Let {C :   } be an arbitrary family of closed sets in C.

Let F C


  , to prove F  C.

Now let G = X ~ C

 C is -closed subset of X     

 G is -open subset of X     

  G
 
  is also -open subset of X [from (T2) property of defi 8.2.1]

  X C
 

  is -open subset of X

 ~X C
 
  is -open subset of X [De-Morgan’s Law]

 F G
 

   is also -open subset of X

 F  C  C is closed under arbitrary intersection.

(C3) Let C1 and C2  C, to prove C1  C2  C.

 C1, C2  C  X ~ C1 and X ~ C2 are -open

 (X ~ C1)  (X ~ C2) is -open
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 X ~ (C1  C2) is -open [De’Morgan’s Law]

 C1  C2 is -closed subset of X

 C1  C2  C    C is closed under finite union.

Theorem 2. Let X be any set and C is a family of subsets of X which satisfy the property

(C1) – (C3) of Theorem 1. Then there exists a unique topology  on X such that C coincides with

the family of closed subsets of (X, ).

Proof. Here we are given a set X (just a bare set with no topology on it) and some collection

C  P (X) of it’s subsets. We are given that property (C1) – (C3) holds for C. We do not know how C

originated, nor do we know whether its members are closed subsets of X. Actually it is meaningless to

talk about closed subsets of X, unless a topology on X is specified.

Now we define a topology  on X consist of complements (in X) of members of C i.e.

 = {B  X : X ~ B  C}

First we show that  is a topology on X

(T1) , X  since CX ~  = X  

and XCX ~ X =   .

(T2) is closed under arbitrary union :

Let {G :   } be any arbitrary collection of subsets of X in  i.e. G       

  X ~ G  C     

 C is closed under arbitrary intersection

  ~X G


 


C

 ~X G


 
 
 
 
 


C [De-Morgan’s Law]

 G







  is closed under arbitrary union.

(T3) is closed under finite intersection :

Let G1, G2  . To prove G1  G2  .

 G1, G2    X ~ G1 and X ~ G2  C

 C is closed under finite union

 (X ~ G1)  (X ~ G2)  C

 X ~ (G1  G2)  C [De’Morgan’s Law]

 G1  G2  

  is closed under finite intersection.
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It is clear that -closed subsets of X are precisely the members of C. Thus  is the required

topology.

8.3.3.  Closure :

The closure of a subset of a topological space is defined as the intersection of all closed subsets

containing it. Or in other words the smallest closed set containing it. If A  X then closure of A is

denoted as A  and defined as

A  =  {C  X : C is closed in X and A  C}

Theorem 3. Let A and B be subsets of a topological space (X, ).

(i) A  is a closed subset of X. More over it is the smallest closed subset of X containing AA

i.e. if F is closed in X and A  F then A   F

(ii)   = 

(iii) A is closed in X iff A  = A

(iv) A A

(v) A B A B  
Proof. (i) and (ii) are immediate consequence of the definition and properties of closed set.

(iii) Let A is closed in X, then A itself is the smallest closed set containing A thus A  = A con-

versely let A  = A, then clearly A is closed as it is equal to the smallest closed set containing A. Thus we
have A is closed in X iff A  = A.

(iv) Since A  is a closed set thus using (iii)

 A A

(v) As A  A  and B  B   A  B  A   B .....(1)

Now by definition A B  is the smallest closed set containing A  B and A   B  is a closed

set being union of two closed sets, thus A B   A   B .....(2)

Now since when A1  A2  A 1  A 2

therefore A  A  B  A   A B .....(3)

B A  B  B   A B .....(4)

(3) and (4)  A   B   A B .....(5)

(2) and (5)  A B  = A   B

8.3.4.  Dense subset :

A subset A  X of a topological space (X, ) is called a dense subset of X if

A  = X

Trivially, the entire set X is always dense in itself.
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Theorem 4. A subset A of a space X is dense in X iff for every non empty open subset G

of X, A  G  .

Proof. Let A is dense in X and G is a non empty open set in X. If A  G = , then

A  X ~ G.

 ~A X G  = X ~ G [G is open so X ~ G is closed in X]

but since A is dense in X so A  = X

 X  X ~ G which is a contradiction, thus A  G  

Conversely assume that A meets every non-empty open subset of X. This clearly means that

the only closed set containing A is X and consequently A  = X.

8.4 Neighbourhood

8.4.1.  Neighbourhood of a point x :
Let (X, ) be a topological space. A subset A  X is called a neighbourhood of a point x  X

if   G   with x  G s.t. G  A. The word neighbourhood is, in short, written as ‘nbd’. From the
definition of nbd it is clear that any open set G  X is nbd of each of its point x  G.

8.4.2.  Deleted neighbourhood :
If A is a nbd of a point x  X, then A ~ {x} is called deleted neithbourhood of x.
8.4.3.  Open neighbourhood :
In any topological space nbd of a point need not be an open set. On the other hand every open

set is nbd of each of its points, such a nbd of a point is called open neighbourhood of that point.
8.4.4.  Neighbourhood of set :
A set N  X is called a nbd of a set A  X if   G   s.t. A  G  N.
8.4.5.  Interior point :
Let  (X, ) be a topological space let x0  A  X. Then x0 is called

-interior or interior point of A if   G   such that x0  G  A i.e. if A is nbd of x0.

8.4.6.  Interior of a set :

Let (X, ) be a topological space and A  X. Then the interior of A is defined to be the set of all

interior points of A. If is denoted as A° or int (A) or int (A). Thus

A° = {x  A : A is a nbd of x}

Theorem 5. A subset of a topological space is open iff it is nbd of each of its points.

Proof. Let (X, ) be a topological space and G  X. First assume G is open. Then by definition

of nbd, G is nbd of each of its points. Conversely assume G is a nbd of each of its point. Then for each

x  G, there is an open set Vx such that x  Vx  G. Clearly then G .x
x G

V


   Since each Vx is open

and G is arbitrary union of open subsets of X thus by property (T2) of definition 8.2.1 G is open.
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Corollary 5.1 :  A subset A of a topological space is open iff

A° = A

Theorem 6.  Let (X, ) be a topological space and A  X. Then A° is the union of all open

sets contained in A. It is also the largest open subset of X contained in A.

Proof : Let U be the family of all open sets contained in A (U is non-empty since U ). Let

.
G U

V G


   We wish to show V = int (A) or A°

Now if x  V, then x  G for some G U. This means A is nbd of x and so x  A°. Con-

versely let x  A°, then there is an open set H such that x  H  A. But then H U and so H V, so

x H  x  V. Thus we have .
G U

V G A


  

This proves first assertion of the theorem and also shows that A° is an open set contained in A.

Now suppose G is an open set contained in A. Then G U and so G A°, thus A° is the

largest open set contained in A.

Theorem 7.  Let (X, ) be a topological space and x  X be arbitrary. Then

(i) there is at least one nbd for x

(ii) for each nbd N of x, x N

(iii) if M is a super set of a nbd N of x, then M is also a nbd of x.

(iv) if N1 and N2 be neighbourhoods of x, then N1  N2 is also a nbd of x.

Proof : (i) x  X  X and X , thus by definition X is a nbd of x. Hence  at least one nbd

for x.

(ii) Let N be a nbd of x  G  s.t. x  G  N  x  N

(iii) Let N be a nbd of x  G  s.t. x  G  N

Now M N thus x  G  N  M  M is also nbd of x.

(iv) Let N1 and N2 be nbds of the same point x, then

G1 G2  s.t. x  G1  N1, x  G2  N2

 x  G1  G2  N1  N2 [  for topology  on X if G1, G2  G1  G2 ]

thus G = G1  G2 s.t. x  G N1  N2, and G .

 N1  N2 is also a nbd of x. [by definition]

8.4.7   Neighbourhood system :

Let (X,) be a topological space. Let x be the set of all neighbourhoods of x in X (with re-

spect to given topology ). The family x is called the neighbourhood system at x.

Now if x is a nbd system at x, then using Theorem 7 we can show that x has following

properties :
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[N0] : x      x  X

[N1] : N x    x  N

[N2] : N x, M  N    M  x
[N3] : N x, M x    N  M  x
[N4] : Nx  M x s.t. M N and M y   y  M

Theorem 8.  [Characterization of a topological space in terms of neighbourhoods] Let

X be a non-empty set and x  X, let there be associated family N (x) of subsets of X, satisfying

the conditions [N0] to [N4] mentioned above. Then there exist a unique topology on X such that

if x is the collection of nbds of x, defined by the topology  on X, then N (x) = x
Proof : Here given that X is a non-empty set, and N (x) be a family of subsets of X satisfying

the condition

[N0] : N (x)      x  X

[N1] : N N (x)    x  N

[N2] : N N (x), M  N    M  N (x)

[N3] : N N (x), M N (x)    N  M  N (x)

[N4] : NN (x)  M N (x) s.t. M N and M N (y)   y  M.

We define as follows :

G  G N (x)         x  G

To prove  is a topology on X

(T1)   Since  contains no point, the statement N (x) for all x  is trivially true.

Since by [N0] N (x)          x  X

 G N (x)          x  X

since X G  thus from [N2]

X N (x)         x  X

 X 

(T2)   Let {G : } be an arbitrary family in 

 G  N (x)          x  G    and        

 G  N (x)          x   {G : }

  G N x x G 
 

   

 G




(T3)   Let G1 G2

 G1  N (x)         x  G1     and   G2  N (x)     x  G2

 G1  G2  N (x)         x  G1  G2,       by [N3]



170

 G1  G2 by defi. of .

Hence  is a topology on X.

Second part : It remains to prove that

N (x) = x

Let N  N (x) be arbitrary. Then by [N4] M  N (x)

such that M N and M N (y)   y  M

 M  by defi. of 

Also M  N (x)  x  M      by [N1]

Now x  M  N    where   M 

 N is a -nbd of x and N x

thus N (x) x .....(1)

conversely let P x  Pis a -nbd of x

 Q    s.t.   x  Q  P

Now Q Q  N (x)         x  Q

Now Q  N (x) and P  Q  P N (x) using [N2]

 x  N (x) .....(2)

from (1) and (2)  x = N (x)

8.4.8 Limit point :

Let A  be a subset of a topological space X and x0  X. Then x0 is called limit point of A if

every open set containing x0 contains at least one point of A other then x0. Limit point is also known as

accumulation point or cluster point.

As examples, in a discrete space no point is a limit point of any set while at the other extreme, in

an indiscrete space, a point x0 is a limit point of any set A provided only that A contains at least one

point besides x0. In the usual topology on R, every real number is a limit of the set of rational numbers,

while the set of integers has no limit point.

8.4.9 Derived set :

Let A be a subset of a topological space (X,). Then the derived set of A, denoted by A, is the

set of all limit points of A in X.

Obviously A depends not only on A but also on the topology under consideration.

Theorem 9.  For a subset A of a topological space (X,), A A A 
Proof : First we claim that  A Ais closed or that X ~ (A A) in open. We do so by

showing that X ~ (A A) is nbd of each of its points. Let

y X ~ (A A)  y A A y A and y  A
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 y is not a limit point of A, there exist an open set V  containing y such V contains no point

of A except possibly y. But y  A, so we have A  V = . We claim A  V is also empty. For, let

z A  V. Then V is an open set containing z, which is a limit point of A, so V  A , which is a

contradiction, so A V =  and hence V  X ~ (A A). This proves that A A is closed and

obviously contains. A i.e.

A A A A A A A A      [  AA is closed]

A A A   .....(1)

For the other way inclusion A A A , it suffices to show that A A , since we already

have A A .

Let , if , then ~y A y A y X A    which is an open set, since A  is always a closed set. But

y is limit point of A so  ~ ,X A A    which is a contradiction since    ~ ~ ,A A X A X A   so

y A thusA A A A A     .....(2)

from (1) and (2) .A A A  

Theorem 10.  Let (X, ) be a topological space and let A, B be non-empty subsets of X,

then

(i) = 

(ii) x  A x  (A ~ {x})

(iii) A B  AB

(iv) (A B) =  AB

(v) (A B)   AB

here A means derived set of A.

Proof : (i) Let x  X be arbitrary and let G be an open set s.t. x  G, then (G ~ {x}) = 

 x is not a limit point of 

 x     x  X    = 

(ii) Let x  A, then (G ~ {x}) A  G , such that x  G. .....(1)

Now (G ~ {x}) (A ~ {x})

= (G  {x}c)  (A  {x}c) [Here {x}c = X ~ {x}]

= G  A  {x}c  {x}c

= G  A  {x}c

= (G  {x}c)  A  by (1)

 x  (A ~ {x})

Thus x  A x  (A ~ {x})

(iii) Let x  A, then

(G ~ {x})  A       G     such that x  G .....(2)
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A B A  (G ~ {x})  B  (G ~ {x})
 B  (G ~ {x})  by (2)
 x  B

thus x  A x  B  A B
thus A B AB
(iv) Since A  A B,  B  A B

 A (A B),   B (A B) from (iii)
 AB (A B) .....(1)
For the converse part let

x  (A B), then we must show that x  AB
we will prove the contra positive of above i.e.

if x  A B    then   x  (A B)
Now x  AB x  A   and   x  B
  open sets G1 and G2  such that x  G1 and x  G2
but (G1 ~ {x})  A =  = (G2 ~ {x})  B
Now x  G1  G2 

[(G1 ~ {x})  A]  [(G2 ~ {x}) B] = 
 [(G1  G2) ~ {x}]  (A B) = 
  an open set G1  G2  s.t. x  G1  G2 and

[(G1  G2 ~ {x})]  (A B) = 
 x  (A B)
thus (A B) A B .....(2)
from (1) and (2) (A B) = AB

(v) Since A B  A and A B B

 (A B) A  and  (A B) B by (iii)

 (A B) A B

8.4.10 Exterior of a set :

The exterior of a subset A of a topological space (X, ) is defined as interior of (X ~ A). Thus

symbolically ext (A) = (X ~ A)°, elements of ext (A) are called exterior points of A.

8.4.11 Boundary set :

The boundary set of a subset A of a topological space (X, ) is the set of all points which

belong neither to the interior of A nor to the exterior of A and is denoted by b (A). Thus symbolically

b (A) = X ~ (A° ext (A))

elements of b (A) are called boundary points of A.
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8.5 Sub Space

8.5.1 Sub space :

Let (X, ) be a topological space and Y  X such that Y . It is natural to inquire whether 

induces a topology on Y and if so how the two topologies are related. Now we define a topology S on Y

by following way, if G is an -open set in X then H = G Y is S-open set in Y i.e.

S = {G Y : G }

First we verify that S is a topology on Y.

(T1) S and Y S

since  Y =  S

X  X Y = Y S [  Y  X  X Y = Y]

(T2)  Let {H : } be a family of subsets of Y in S i.e. H S,  

To show H H S


 

Since H S  G  such that H= G Y, 

 {G : } be arbitrary family of -open sets in X

 G G


  [is a topology on X]

 G Y S G Y S


 
     

 


  G Y S H S 
 

    

 H H S


 

(T3)  Let H1 and H2  S  G1, G2  such that

H1 = G1  Y,    H2 = G2  Y

  is a topology on X  G1  G2 

 (G1 G2)  Y S

 (G1  Y)  (G2  Y)  S

 H1  H2  S

Thus S is a topology on Y called relative topology on Y induce by topology on X. The space

(Y, S) is called subspace of (X, ).
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8.5.2 Hereditary property :

A property of topological space is said to be hereditary if whenever a space has that property,
then so does every subspace of it. A trivial example of a hereditary property is the property of being
either an indiscrete or discrete space i.e. every subspace of indiscrete or discrete space are indiscrete or
discrete space respectively.

8.6 Solved Examples

Ex.1. Suppose is a family consisting of  and all subsets An of N of the form

An = {n, n + 1, n + 2, ...}       n  N

(i) Show that  is a topology on N

(ii) Find open sets containing 2 and 7 respectively.

Sol. (i) To prove that  is a topology on N

(T1) (Given)

N = A1 = {1, 2, 3, ...} 

(T2)  Let {Ai : i } be the family of -open subsets of N. Let A = {Ai : i } here 

being a subsets of N contains a smallest positive integer n0
 A = {Ai : i } = {n0, n0 + 1, n0 + 2, ...}

0nA 

(T3)  Let An, Am for same n, m  N

Now An  Am = {n, n + 1, n + 2, ...}  {m, m + 1, m + 2, ...}

if n < m An  Am = {m, m + 1, m + 2, ...} = Am 

if m < n An  Am = {n, n + 1, n + 2, ...} = An 

  An  Am in every case.

  is a topology on N.

(ii) The open sets containing 2 are
A1 = N = {1, 2, 3, ...}
A2 = {2, 3, 4, ...}

The open sets containing 7 are
A1 = {1, 2, 3, 4, 5, 6, 7, ...}
A2 = {2, 3, 4, 5, 6, 7, 8, ...}
A3 = {3, 4, 5, 6, 7, 8, ...}
A4 = {4, 5, 6, 7, 8, ...}
A5 = {5, 6, 7, 8, 9, ...}
A6 = {6, 7, 8, 9, ...}

A7 = {7, 8, 9, ...}
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Ex.2. Let U be the collection of all subsets G R, having the property that to each x 

G > 0 such that open interval (x – , x + )  G,  x  G.

Show that U is a topology on R (Usual topology).

Sol. (T1) U, since R and  does not contain any element and therefore the condition

x  (x – , x + )  is vacuously true.

R U, since  x  R open interval i.e. > 0 such that x  (x – , x – )  R.

(T2)  Let {G : } be the arbitrary family of subsets of R such that GU .

To prove that G .G U


        Let x  G

 x  G to same . Since GU and x  G thus > 0 s.t.

x (x – , x + ) G G G 


  

 G  U

(T3)  Let G1, G2 U, to prove G1  G2  U

if G1  G2 = , then obviously G1  G2 U, so let us assume G1  G2  and let

x  G1  G2
 x  G1 and x  G2 where G1, G2  U

 1 > 0 and 2 > 0 such that

x (x – 1, x + 1)  G1 and x (x – 2, x + 2)  G2
Let = min {1, 2} then > 0 and

x (x – , x + ) (x – 1, x + 1)  G1
and x (x – , x + ) (x – 2, x + 2)  G2
 x (x – , x + ) G1  G2  G1  G2 U.

Ex.3. Let = {, X, {a}, {a, b}, {a, b, e}, {a, c, d}, {a, b, c, d}} be a topology on

X = {a, b, c, d, e}, then :

(i) List all -open subsets of X

(ii) List all -closed subsets of X

(iii) Find the -open nbds of a

(iv) Find the closure of the sets {a}, {b} and {c}

(v) Find the interior points of the subset A = {a, b, c}

(vi) Which of the sets {a}, {b}, {c, e} are dense in X.

Sol. (i) -open subsets of X are the elements of  namely

, X, {a}, {a, b}, {a, b, e}, {a, c, d}, {a, b, c, d}

(ii) -closed subsets of X are

X – , X – X, X – {a}, X – {a, b}, X – {a, b, e}, X – {a, c, d}, X – {a, b, c, d}



176

ie. X, , {b, c, d, e}, {c, d, e}, {c, d}, {b, e}, {e}

(iii) -open nbds of a are open sets containing a

{a}, {a, b} {a, b, e}, {a, c, d} {a, b, c, d}, X

(iv)  { }a  = {F : F is -close subset s.t. {a}  F} = X,

since X is the only closed subset which contains a

{ }b  = X  {b, c, d, e}  {b, e} = {b, e}

{ }c  = X {b, c, d, e}  {c, d, e}  {c, d} = {c, d}

(v) A° = {G : G , G A} = {a}  {a, b} = {a, b}

(vi) A is called dense in X if ,A X  from (iv) it is clear that { }a X  so {a} is dense in X,

since X X  {  X is closed}

 X is dense in X

but { } { , } { }b b e X b    is not dense in X

also { , } { , , } { , }c e c d e X c e    is not dense in X.

Ex.4. Give examples to show that arbitrary union of closed sets is not necessarily closed

and arbitrary intersection of open sets is not necessarily open in a topological space.

Sol. Let -denote the usual topology U on R

Let Fn 0,
1

n
n

    
         n  N

The Fn is -closed subset of R  n  N

[Since closed intervals are -closed sets in (R, U)]

but
1

n
n

F





1 20, 0, ... [0,1)
2 3

            

= semi open set  closed subset of R

Now let Gn
1 1,

n n
   

 
            n  N

The Gn is -open subsets of R n  N

[Since open intervals are -open sets in (R, U)]

but
1

n
n

G



  

1

1 1 1 1, 1,1 , ...
2 2n n n





           
   



= {0}  open subset of R.

Ex.5. Give two examples of topologies on X = {a, b, c} in which every open set is also a

closed set.
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Sol. (a) Here X = {a, b, c}. Now consider discrete topology (X, D) on X, in which every sub-

set of X is open i.e.

D-open sets are , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}

D-closed sets are X, , {b, c}, {a, c}, {a, b}, {c}, {b}, {a}

thus every D-open set is also D-closed sets.

(b) Consider the topology  = {, X,{a}, {b, c}} on X

-open sets are, X, {a}, {b, c}

-closed sets are X, , {b, c}, {a}

every -open set is also -closed set.

Ex.6. Find three mutually non-comparable topologies for the set X = {a, b, c}.

Sol. Let 1 = {, X, {a}}

2 = {, X, {a, c}}

3 = {, X, {b, c}}

Then the topologies 1, 2 and 3 are mutually non-comparable.

Ex.7. Show that any finite subset of R is closed set for the usual topology U on R.

Sol. Let A = {a1, a2,..., an} be a finite subset of R. First we shall show that {a1} is closed.

Since

R – {a1} = {x  R : x  a1}

= {x  R :  either   x < 1   or  x > a1}

= {x  R : x < a1} {x  R : x > a1}

= (– , a1)  (a1, )

= union of two open rays, since open rays are U-open sets in R

 R – {a1} = union of two U-open sets

= U-open set

 {a1} is U-closed set

Thus every singleton subset of R is closed

Now A = {a1}  {a2}... {an}

= finite union of U-closed sets

= U-closed set [by Theorem 1]

 Every finite subset of R is a U-closed set.

Ex.8. ?Is A B A B    Give reason in support of your answer..

Sol. We know from Theorem 3(v) that A B A B    but .A B A B  

Let A = (0, 1), B = (1, 2) be two open subset of R in usual topology, then A  B =  and so

A B    
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but    0,1 , 1, 2A B 

      0,1 1, 2 1A B A B       

 A B A B  

thus A B A B  
Ex.9. Let = {, X, {1}, {1, 2}, {1, 2, 5}, {1, 2, 3, 4}, {1, 3, 4}} be the topology on

X = {1, 2, 3, 4, 5}

Determine limit points, closure, interior, exterior and boundary of the following sets :

(i) A = {3, 4, 5} (ii) B = {2}.

Sol. -open sets are : , X, {1}, {1, 2}, {1, 2, 5}, {1, 2, 3, 4}, {1, 3, 4}

-closed sets are : , X, {2, 3, 4, 5}, {3, 4, 5}, {3, 4}, {5}, {2, 5}

(i) A = {3, 4, 5}

A  = {F X : F is closed, F A} = {3, 4, 5}

The following sets are open nbds of 1 :

X, {1}, {1, 2}, {1, 2, 5}, {1, 2, 3, 4}, {1, 3, 4}

Now ({1} – {1})  A =     A = 

thus open set G = {1} such that

(G ~ {1}) A = 

 1 is not limit point of A.

Now G = {1, 2} is the open set containing 2 and

(G ~ {2}) A = 

 2 is not limit point of A

-open sets containing 3 are : {1, 2, 3, 4}, {1, 3, 4}, X

Let G1 = {1, 2, 3, 4}, G2 = {1, 3, 4}.

Now (G1 ~ {3})  A = {4} 

(G2 ~ {3})  A = {4} 

 3 is limit point of A

Similarly 4 is limit point of A [prove by your own]

–open set containing 5 are : {1, 2, 5}, X

G = {1, 2, 5} then

(G ~ {5})A = 

 5 is not limit point of A

  derived set A = {3, 4}

Now A° = {G : G A, G } = {} = 
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ext (A) = (X ~ A)° = {1, 2}° = {{1}, {1, 2}, } = {1, 2}

b (A) = X ~ (A°  ext (A)) = X – ({1, 2})

= {3, 4, 5} = A

(ii) B = {2}

-open sets containing 1 : {1}, {1, 2}, {1, 2, 5}, {1, 2, 3, 4}, {1, 3, 4}

Let G = {1}    so   (G ~ {1})  B = 

 1 is not limit point of B.

-open sets containing 2 : {1, 2}, {1, 2, 5}, {1, 2, 3, 4}

Let G = {1, 2}   so   (G ~ {2})  B = 

 2 is not limit point of B

Similarly you can show 3, 4 are also not limit points of B

Now -open sets containing 5 : G1 = {1, 2, 5} and X

(G1 ~ {5}) B = {2} 

(X ~ {5})  B = {2} 

 5 is a limit point of B

  derived set of B = B = {5}

B = {F X : F is -closed and F B}

= {2, 3, 4, 5,}  {2, 5} = {2, 5}

B° = {G : G  and G B} =  {} = 

ext (B) = (X ~ B)° = {1, 3, 4, 5}° = {, {1}, {1, 3, 4}} = {1, 3, 4}

b (B) = X – (B°  ext (B)) = X – ({1, 3, 4})

= {2, 5}

Ex.10. Let  be a topology on a set X consisting of four sets i.e. = {, X, A, B}, where A

and B are non-empty distinct proper subsets of X. What conditions must A and B satisfy ?

Sol. Since A B must also belong to , there are two possibilities :

Case 1 : A B = 

Thus A B can not be A or B; hence A B = X.

Thus the class {A, B} is a partition of X.

Case 2 : A B = A  or   A B = B

In either case, one of the sets is a subset of the other, and the members of are totally ordered

by inclusion : A B  X    or B A  X.
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Ex.11. Consider the following topology on

X = {a, b, c, d, e},  = {, X, {a}, {a, b}, {a, c, d}, {a, b, c}, {a, b, c, d}}

List the member of the relative topology A on A = {a, c, e}

Sol. A = {A G : G } so the members of A are

A X = A A  {a} = {a} A  {a, c, d} = {a, c} A  {a, b, e} = {a, e}

A  =  A  {a, b} = {a} A  {a, b, c, d} = {a, c}

i.e. A  = {, A, {a}, {a, c}, {a, e}}

observe that {a, c} and {a, e} are not open in X, but are relatively open in A i.e. A open.

Self-learning exercise-2

1. Let  be the topology on N consisting of and all subsets An of the form

An = {n, n + 1, n + 2, ...}

when n N :

(i) Determine the closed subsets of (N, ).

(ii) Determine the closure of the sets {7, 24, 47, 85} and {3, 6, 9, 12, ...}.

(iii) Determine those subsets of N, which are dense in N.

2. Let X = {a, b, c, d, e}. Determine wether or not each of the following classes of subsets of X is

a topology on X

(i) 1 = {, X, {a}, {a, b}, {a, c}}.

(ii) 2 = {, X, {a, b, c}, {a, b, d}, {a, b, c, d}}.

(iii) 3 = {, X, {a}, {a, b}, {a, c, d}, {a, b, c, d}}.

3. (i) In discrete topology every point p  X is a limit point of every subset A X T/F

(ii) Discrete topology on a set X  is door topology. T/F

(iii) In indiscrete topology every non-empty subset A X is dense in X. T/F

8.7 Summary

In this chapter we have studied the concept of a topology on a non-empty set X. We have also

discussed various examples of topologies and studied that it is possible to define different topologies on

the same set. We also studied how these topologies are related to each other. We have also studied

about closed sets, closures, derived set, interior, exterior and boundary of a set in a topological space

and proved various theorems on their properties. We have studied a topology can also be defined in

terms of closed sets and neighbourhood systems. Finally we have studied a way of defining a topology

on a subset of a topological space by relative topology.
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8.8 Answers to self-learning exercises

Self-learning exercise-1

1. (d) 2. (d) 3. (d)

4. (ii) Let X = {a, b, c}, 1 = {, X, {a}}, 2 = {, X, {b}}

Then 1 and 2 are topology on X but

12 = {, X, {a}, {b}} is not a topology on X

Self- learning exercise-2

1. (i) A set is closed iff its complement is open. Hence the closed subsets of N are as follows :

, N, {1}, {1, 2}, {1, 2, 3},..., {1, 2, 3,..., m}, ...

(ii) The closure of a set is the smallest closed super set. So

   7, 24, 47,85 1, 2,3,...,85

   3,6,9,12,... 1, 2,3,...  N

(iii) If a subset A of N is infinite, or equivalently unbounded, then A N  i.e. A is dense in N. If

A is finite, then its closure is not N, i.e. A is not dense in N.

2. (i) 1 is not a topology since {a, b}  {a, c}  1

(ii) 2 is not a topology since {a, b, c}  {a, b, d}  2
(iii) 3 is a topology

3. (i) F (ii) T (iii) T

8.9 Exercises

1. Consider the collection  consisting of , N and all subsets of N of from Gn = {1, 2, 3,..., n},

 n  N. Show that  is a topology on N.

2. Consider that topology on N given in Q.1,

(i) List all closed subsets of N

(ii) Find the closure of {2, 3, 6, 12}, {2, 4, 6, ...} and {1, 2, 3, 5, 7, 11, 13, ...}

(iii) Determine those subsets of N, which are dense in N.

(iv) Find the derived set of {1, 3, 5, 7, ...}, {1, 2, 3, 4,} and {1, 4, 9, 16, ...}

(v) Determine interior of {1, 3, 5, 7, ...} and {2, 4, 6, ...}

(vi) Find -open nbds of 5 and 11.

3. Let X be a topological space and let Y and Z be subspaces of X such that Y  Z. Show that the

topology which Y has as a subspaces of X is the same as that which it has as a subspace of Z.

4. Show that a subset A of a topological space X is closed iff A A
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5. Show that a subset A of a topological space X is open iff A° = A.

6. Show that if A is -closed subset of X and x X ~ A, then -nbd M of x such that

M A = 

7. Show that closed intervals are closed set in usual topology on R.

8. Let (X, ) be a topological space, and A, B X. Then show that

(i) ° =  (ii) X° = X

(iii) A B A°  B° (iv) (A°)° = A°

(v)  (A B)° = A°  B° (vi) (A B)°  A°  B°.

9. Let (Y, y) be the subspace of a topological space (X, ) and A Y. Let clY (A) and clX (A)

denote closure of A in y and  topologies on Y and X respectively, then show that

clY (A) = clX (A) Y.

10. Let (Y, y) be the subspace of a topological space (X, ). Then show that every Y-open set is

also -open iff Y is -open.

11. In any topological space, prove that b (A) =  iff A is both open as well as closed.
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Unit 9 : Bases, Sub-bases and Continuity

Structure of the Unit

9.0 Objectives

9.1 Introduction

9.2 Base for a topology

9.3 Subbases

9.4 Local base

9.4.1 First countable space

9.4.2 Second countable space

9.5 Continuous mappings

9.6 Continuity at a point

9.7 Open and closed functions

9.8 Homeomorphism

9.9 Summary

9.10 Answers to self learning exercises

9.11 Exercises

9.0 Objectives

In this unit we have define very important concept of bases and subbases in topology. After read-

ing this unit, you will learn how the concept of bases is very useful in defining and discussing the proper-

ties of a topological space. You will also learn that how the concept of continuity can be generalized in a

topological space. In the end, you will also learn about homeomorphism between topological spaces.

9.1 Introduction

In all the examples of topological spaces in previous chapter, we were able to specify the entire

collection of open-sets. A topology on a set can be a complicated collection of subsets of a set, and it

can be difficult to describe the entire collection, so instead we specify a sub-collection of open sets that

generates the topology. One such collection is called a basis and another is called a sub-basis.

Continuity is of fundamental importance in topology. Indeed it is a basic to much of mathematics.

A topology on a set is a structure that establishes a notion of proximity on the set. Continuous functions
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between topological spaces preserve proximity, reflecting the idea that a continuous function sends points

that are close in one space to point that are close in the other. A continuous bijective function that has a

continuous inverse is called a homeomorphism. Such function provide us with the main notion of topo-

logical equivalence.

9.2 Base for a topology

Let (X, ) be a topological space. A class B of open subsets of X. i.e. B  , is a base for the

topology  iff every open set G   is the union of members of B or equivalently, B  is a base for 

iff for any point p belonging to an open set G, there exist B  B with p  B  G. The elements of B are

referred to as basic open sets.

Ex.1. The set of all open intervals in R form a base for the usual topology on R. For if

G R is open and p  G, then by definition, there exists an open interval (a, b) with

p  (a, b) G.

Similarly the set of all open intervals (r, s) with r and s as rationals also forms a base for

the usual topology on R.

Ex.2. The collection of all open circular discs (i.e., not containing the points on circumfer-

ence) in R2 forms a base for the usual topology on R2.

Ex.3. Consider any discrete space (X, D). Then the class B = {{p} : p  X}of all singleton

subsets of X is a base for the discrete topology D on X. For each singleton set {p} is D-open,

since every A  X is D-open, furthermore, every set is the union of singleton sets.

Ex.4. Let X = {a, b, c}, B = {{a,b}, {b,c}} cannot be a base for any topology on X. Since

{a,b} and {b,c} would them selves be open and therefore their intersection {a, b}  {b, c} = {b}

would also be open, but {b} cannot written as union, of members of B.

Theorem 1. Let B be a collection of subsets of a non empty set X. Then B is a base for

some topology on X iff it satisfy the following two conditions :

(B1) X =  {B : B  B}

(B2) For any B1, B2  B, if x  B1  B2 then  B3  B such that x  B3  B1  B2

Proof. First we assume that B is a base for a topology  on X. Since X is open subset of X, X is

the union of members of B. Hence X is the union of all members of B, i.e. X =  {B : B  B}

Furthermore if B1, B2  B  B1, B2 are -open subsets of X  B1  B2 is also -open subset

of X, since B is a base for , therefore by definition if x  B1  B2  B3  B such that

x  B3  B1  B2. Thus both the condition (B1) and (B2) are satisfied.

Conversely we assume B is the collection of subsets of X satisfying (B1) and (B2). Let  be the

collection of all subsets of X which are unions of members of B. We claim that  is a topology on X.

Observe that B   will be the base for this topology.
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[T1] By (B1) X =  {B : B  B} so X  . Note that  is the union of the empty subclass of B,

i.e.  =  {B : B  B}; hence    and so  setisfies [T1].

[T2] Now let {G :   } be a class of members of . By definition each G is the union of

members of B hence the union G

 is also the union of members B and so .G



 Thus 

satisfies [T2].

[T3]. Let G1, G2  . By definition of  there exist two subclasses {Bi : i  I} and {Bj : j  J}

of B such that 1 i
i I

G B


   and G2 j
j J

B


  [Here I and J are some index sets]. Then

G1  G2 i j
i I j J

B B
 

   
    
   
   
   =  {Bi  Bj : i  I, j  J}

let by [B2], Bi  Bj is the union of members of B hence G1  G2 =  {Bi  Bj : i  I, j  J} is also

the union of members of B and so belongs to , which therefore satisfies [T3].

Hence  is a topology on X, with base B.

Theorem 2. If B is a sub class of , then the following statements are equivalent (i.e. the

two definition given for B to be a base are equivalent)

(i) Each G   is the union of members of B

(ii) For any point p  G, where G is an open set  B  B such that p  B  G.

Proof. (i) (ii)

Let G  is the union of members of B i.e.

i
i I

G B


   when Bi  B  i  I (Index set)

then each point i
i I

p G p B


  

 0i I   such that 
0
,ip B  so    

0i i
i I

p B B G


  

(ii)  (i) Let for each p  G, Bp  B such that
p  Bp  G

then G =  {Bp : p  G} and G is the union of members of B.
Theorem 3. Let B be a base for a topology  on X and let B* be a class of open sets

containing B i.e. B  B*  . Then B* is also a base for .
Proof. Let G be an open subset of X. Since B is a base for (X, ), G is the union of member of

B i.e. i
i I

G B


  where Bi  B. But B  B* hence each Bi  B also belongs to B*. So G is the

union of members of B* and therefore B* is also a base for (X, ).
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Theorem 4. Let B and B* be bases, respectively for topologies  and * on a set X. Let
each B  B is the union of members of B* then * is finer than , i.e.   *.

Proof. Let G  be any -open set, since B is a base for , G is the union of members of B

i.e.
i

i I
G B



  where iB i I  B  (Index set)

But, by hypothesis, each Bi  B is the union of members of B* and so i
i I

G B


   is also the

union of members of B*, which are *-open sets. Hence G is also *-open set i.e. G  * and thus

 *.

9.3 Subbases

Let (X, ) be a topological space. A class S of open subsets of X, i.e. S   is a subbase for the

topology  on X iff finite intersections of members of S form a base for . The elements of S are referred

to as sub-basic open sets.

Example. Let a, b  R be arbitrary such that a < b.

clearly (– , b)  (a, ) = (a, b)

The open intervals (a, b) form a base for the usual topology on R. Hence by definition the

family of infinite open intervals form a subbase for the usual topology on R.

Theorem 5. Any collection A of subsets of a non-empty set X is the subbase for a unique

topology on X. That is, finite intersections of members of A form a base for a topology  on X.

Proof. Let B is the class of finite intersections of member of A. We show that B satisfies the

two conditions [B1] and [B2] in Theorem 1.

[B1] Since X is the intersection of empty collection of members of A and so X =  {B : B  B}

[B2] Let B1, B2  B and x  B1  B2. Then B1, B2 are finite intersection of members of A.

Hence B1  B2 is also a finite intersection of members of A and so B1  B2  B. Hence B is a

base for a unique topology on X for which A is subbase.

9.4 Local Base

Let p be any arbitrary point in a topological space X. A collection Bp of open sets containing p

is called a local base at p iff for each open set G containing p,  B  Bp such that p  B  G.

Example 1. Consider usual topology U on R and point x  R. Then the collection of all

open intervals (x – , x + )    > 0,is a local base at x. Since any open set containing x also

contains an open set (x – , x + ) for some  > 0.

Example 2. Let B be a base for a topology  on X and let x  X. Then the members of the

base B which contains x form a local base at x.
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Theorem 6. A point x in a topological space (X, ) is an limit point of A  X iff each

member of some local base B at x contains a point of A different from x.

Proof. Since x  X is a limit point of A iff

(G ~ {x})  A G  s.t. x  G.

But B  , so in particular

(B ~ {x})  A   B  B

Conversely, we assume (B ~ {x})  A   B  B and let G be any open subset of X

containing x. Then

 B0  B such that x  B0  G. But then

(G ~ {x})  A  (B0 – {x})  A 

 (G ~ {x})  A G  s.t. x  G.

 x is a limits point of A.

9.4.1 First countable space : Let (X, ) be a topological space. The space X is said to satisfy

the first axiom of countability if X has a countable local bare at each x X. The space X, in this case is

called first countable or first axiom space.

9.4.2 Second countable space : Let (X,) be a topological space. The space X is said to

satisfy the second axiom of countability if there exists a countable base for  on X. In this case, the

space X is called second countable or second axiom space.

Example. The collection of all open intervals (r, s) with r and s as rational numbers from

a base B for the usual topology U of R. Since Q is a countable set, so B is a countable base for

U on R.

 (R, U) is second countable space.

Theorem 7. A second countable space is always first countable space, but converse is

not true.

Proof. Let (X, ) be a second countable space with a countable base B.

Let B = {Bn : n  N} when N is set of natural numbers, let x  X be arbitrary and

Lx = {Bn  B : x  Bn}

Then

(i) Lx, being a subset of a countable set B is countable.

(ii) Since members of B are -open sets and so members of Lx, as Lx  B.

(iii) Any G  Lx  x  G [By definition of Lx]

(iv) Let G   be arbitrary such that x  G.

 x  G   B1  B  s.t.  x  B1  G

  B1  Lx  s.t.  x  B1  G [  x  G  B1  B1  Lx]
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 x  G     B1  Lx s.t. B1  G

 Lx is a countable local base at x  X

 X is first countable

Now to show that converse is not true we will give an example of a first countable space which

is not second countable space.

Let  be a discrete topology on an uncountable set X, so that every subset of X is open in X.

Clearly B = {{x} : x  X} is a base for topology  on X and B is not countable. Hence (X, ) is not a

second countable space.

But (X, ) is first countable, since if we take Lx = {{x}}, then evidently Lx is a local base at x 

X. Since for any G   with x  G

 {x} such that x  {x}  G.

Also Lx is a countable local base at x  X as Lx contains only one member {x}.

 (X, ) is first countable.

Illustrative Examples

Ex.1. Let X = {1,2,3,4} and A = { {1, 2}, {2, 4}, {3}}

Determine the topology on X generated by the elements of A and hence determine the base

for this topology.

Sol. Finite intersections of the members of A form the class B given by

B = {{1, 2}, { 3}, {2, 4}, {2},  X}

Now B is a base for some topology on X. The union of the members of  B form the topology 

on X given by

 = {{1, 2}, {3}, {2, 4}, {2}, X, {1, 2, 3},{1, 2, 4},{2, 3, 4}, {2, 3}}

Ex.2. Determine the topology  on the real line R generated by the class A of all closed

intervals [a, a + 1].

Sol. Let  p R , clearly [p, p + 1] and [p – 1, p]  A

Hence [p – 1, p]  [p, p + 1] = {p}

belongs to the topology , i.e. all singleton sets {p}are -open and so  is the discrete topology

on R.

Self-learning exercise-1

1. Let X = { a, b, c, d, e}  and A = {{a, b, c},{c, d},{d, e}}.

Find the topology generated by A. Also find the base of this topology.
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2. Let X = {1, 2, 3, 4, 5} and  = {X}

Then which of following is a local base at 1,2, and 3 respectively.

(i) B1 = {{1, 2}, X} (ii) B2 = {{2, 3}, X} (iii) B3 = {{1, 2, 3}}.

9.5 Continuous mappings

Let (X, ) and (Y, ) are topological spaces. A mapping f from X in to Y is continuous relative to

and , or – continuous or simply continuous iff the inverse image f – 1 [H] of every -open subset

H Y  is a  -open subset of X, i.e. iff H  implies f –1 [H] .

Ex.1. Consider the following topologies on

X = {1, 2, 3, 4} and Y = {a, b, c, d} respectively :

= {X, , {1}, {1, 2}, {1, 2, 3}}, ={Y, , {a}, {b}, {a, b}, {b, c, d}}

Also consider the functions f : X  Y and g : X  y defined by f (1) = b,  f (2) = c, f (3) = d,

f (4) = c and g (1) = a = g (2), g (3) = c, g (4) = d then f is continuous since the inverse of each

member of the topology on Y is a member of the topology on X, we can see

f –1(Y) = X,       f –1 () = ,

f –1 ({a}) =,         f –1 ({b}) = {1}

f –1 ({a, b}) = {1},     f –1 ({b, c, d}) = X

but g is not continuous since {b, c, d}  , i.e. an open subset of Y, but its inverse image

g–1 ({b, c, d}) = {3, 4} is not an open subset of X, i.e. {3, 4}.

Ex.2. Every function f : X  Y (where (X, D) is a discrete topological space and (Y, ) be

any space) is D –  continuous function i.e. every function from a discrete space is always a

continuous function, since if H is any open subset of Y, its inverse f –1 [H] is an open subset of X

as every subset of discrete space is open.

Similarly every function g : X  Y (where (X, ) is any space and (Y, I ) is an indiscrete space)

is  – I continuous, since in indiscrete topology there is only two open subsets of Y, namely Y and  and

for any function g : X  Y g–1 [Y] = X and g–1 () =  which are open subsets of X.

Ex.3. The identity map from (X, ) in to (X, ) is a continuous map.
Sol. Identity map given by f : X  X such that

f (x) = x   x  X
Let G  X be an arbitrary open set.

Then f –1 (G) = {x  X : f (x)  G}
= {x  X : x  G} [  f (x) = x  x  X]
= G (an open set in X)

Thus inverse image of any open set G in X is open in X.

Hence f is a continuous map.
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Theorem 8. A function f : X  Y is continuous iff the inverse of each member of a base B

for Y is an open subset of X.

Proof. Let (X, ) and (Y, ) be topological spaces and f : X  Y be a map. First we assume

that f is continuous map and let B Y such that B B, since B is a base for Y every member of B  is a

member of , i.e. B 

 B is an open subset of Y

Since f : X  Y is continuous, thus f –1[B] is open subset of X.

Conversely we assume that f –1
 [B] is open subset of X B B. To prove : f  is continuous.

Let G be any open subset of Y and since B is base for topology on Y; then i
i

G B


  a union

of  member of B. But

f –1[G]  1 1
i i

i i
f B f B 

 

 
  

  
 

and each f –1 [Bi] is open by hypothesis; hence f –1 [G] is the union of open sets and therefore open.

Accordingly, f is continuous.

Note : Similarly we can prove that if S is a subbase for a topology on Y, then a function

f : X  Y is continuous iff the inverse of each member of S is an open subset of X.

Note 2 : Continuous functions can be characterized by their behavior with respect to closed

sets as followes :

Theorem 9.  A function f : X  Y is continuous iff the inverse image of every closed sub-

set of Y is a closed subset of X.

Proof. Let  (X, ) and (Y, ) be topological spaces and f : X  Y be a map, first we assume

that f is continuous map and let F Y be a closed subset of Y, then Y ~ F is -open subset of Y and

since f is continuous map f –1 [Y ~ F] is open subset of X

 X ~ f –1 [F] is open subset of X

 f –1 [F] is closed subset of X

Conversely we assume that inverse image of a closed subset of Y is closed subset of X. Let G

be an open set of Y

 Y ~ G is a closed subset of Y, by hypothesis

f –1 [Y ~ G] is a closed subset of X

 X ~ f –1 [G] is a closed subset of X

 f –1 [G] is an open subset of X

Accordingly f is a continuous map.
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Theorem 10.  Let f : X  Y be a constant function, say f (x) = x0   x  X, then f is con-

tinuous relative to any topology  on X and any topology  on Y.

Proof. We need to show that the inverse image of any –open subset of Y is a -open subset of

X. Let G   be any open subset of  Y,

Now 01

0

, if
[ ] .

, if
 

   

X x G
f G

x G

In either case f –1 [G] is an open subset of X, since X and  belong to every topology  on X.

Theorem 11.  Let the functions f : X  Y and g : Y  Z are continuous functions. Then the

composition function gof : X  Z is also continuous.

Proof. Let G be an open subset of Z. Then g–1 [G] is open in Y since g is continuous. But f is

also continuous so f –1 [g–1 [G]] = (gof)–1 [G] is open in X.

Thus (gof )–1 [G] is open in X for every open subset G of Z, accordingly gof is continuous.

Theorem 12.  Let {i : i } be a collection of topologies on a set X. If a function f :

XY is continuous with respect to each i, then f is continuous with respect to the intersection

topology i
i

  

Proof. Let G be an open subset of Y. Then by hypothesis, f –1 [G] belongs to each i. Hence

f –1 [G] belongs to the intersection, i.e.  1 ,i
i

f G



     and so f is continuous with respect to .

Theorem 13.  A function f : X Y is continuous iff, for every subset  ,A X f A f A   

Proof. First we assume that f : X  Y is continuous, Now

   f A f A [  B  B  always]

    1 1A f f A f f A        

But  f A  is closed and since f is continuous so  1f f A  
   is also closed, also A  is the smallest

closed set containing A therefore  1A A f f A     

      1f A f A f f f A f A         

  f A f A   

 Conversely, assume  f A f A     for any A  X, and let F be a closed subset of Y, set

A = f –1 [F].
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We wish to show that A is closed subset of X or equivalently A A
Now A A  is always true

   1 1f A f f F f f F F F               .....(i)

Hence  1 1A f f A f F A       

 A A .....(ii)

from (i) and (ii)  A = A  and f is continuous.

9.6 Continuity at a point

A function f : X Y is continuous at a  X iff the inverse image f –1 [H] of every open subset

H  Y containing f (a) is a superset of an pen set G  X containing a or, equivalently, iff the inverse
image of every neighbourhood of f (a) is a neighbourhood of a i.e.,

N  N f (a)  f –1 [N]  Na
Ex.1. Consider the following topology  on X = {1, 2, 3, 4}

 = {, X, {1}, {2}, {1, 2}, {2, 3, 4}}

Let the function f : X X defined as f (1) = 2 = f (3), f (2) = 4 and f (4) = 3. Show that f is

continuous at 4 but not continuous at 3.

Sol. The only open sets containing f (4) = 3 are {2, 3, 4} and X. Now f –1 ({2, 3, 4}) = X =

f –1 (X) which are open in X. Hence f is continuous at 4 since the inverse of each open set f (4) is an

open set containing 4.

Now observe that {1, 2} is an open set containing f (3) = 2 and f –1 [{1, 2}] = {1, 3}. Hence

f  is not continuous at 3 since these exist no open set containing 3 which is contained in {1, 3}.

Ex.2. Let {p} is an open subset of X. Show that for any topological space Y and any

function f : X Y, f is continuous at p  X

Sol. Let H  Y be an open set containing f (p). But

f (p)  H  p  f –1 [H]  {p}  f –1 [H]

Hence f is continuous at p.

Theorem 14.  Let X and Y be topological spaces. Then a function f : X Y is continuous

iff it is continuous at every point p  X.

Proof. First we assume that f is continuous and let p  X be any point. Let H be an open

subset of Y containing  f (p)  f (p)  H  p  f –1 (H) and f –1 (H) is open as f is continuous. Thus f

is continuous at p.

Now suppose f is continuous at every point p  X and let H  Y be open. Now for every

p  f –1 [H] these exist an open set Gp  X such that p  Gp  f –1 [H]. Hence f –1 [H] = U {Gp :

p  f –1 [H]} a union of open sets and thus an open set. Accordingly  f is continuous.
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9.7 Open and closed functions

Open function : If X and Y are topological spaces, then a function f : X  Y is called an open

(or interior) function if the image of every open set is open.

Closed function : If X and Y are topological spaces, then a function g : X  Y is called a

closed function if the image of every closed set is closed.

In general, functions which are open need not be closed and vice versa.

Example. Let f : R  R be a constant function, say f (x) = 1  x  R, where the topology

on both R is usual topology. Then if A  R is a closed subset of R then f (A) = {1} which is

always a closed subset of R, thus f is a closed mapping.

But f is not open, since if we take B = (0, 1) which is open in R, then f (B) = {1}, but {1} is

closed in R, so {1} is not open in R, thus f is not an open mapping.

9.8 Homeomorphism

Let X and Y be topological spaces. A function f : X Y is called a homeomorphism between

X and Y if

(i) f is bijective,

(ii) f is continuous on X to Y,

(iii) f –1 is continuous on Y to X.

In other words we can say that f is a homeomorphism if and only if f is bijective, continuous and

open. Y is said to be a homeomorphic image or simply a homeomorph of X and we write X  Y.

A property which when satisfied by a topological space is also satisfied by every homeomorphic

image of this space, is called a topological property or a topological invariant property.

Theorem 15.  Homeomorphism is an equivalence relation in the family of topological

spaces.

Proof. Homeomorphism is reflexive :

Let (X, ) be a topological space. Then the identity map f : X X given by f (x) = x is bijective

and continuous, for, if G , then f –1 (G) = G , f –1 is also an identity map, which is also continu-

ous, thus f is a homeomorphism, i.e., every topological space is homeomorphic to itself.

Thus homeomorphism is reflexive.

(ii) Homeomorphism is symmetric :

Let f : (X, )  (Y, ) be a homeomorphism.

If we show that f –1 : (Y, )  (X, ) is a homeomorphism we can conclude the symmetry.
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Since f is a homeomorphism

 (1)       f is one-one and onto

(2)  f and f –1 are continuous map

(1)  f –1 is one-one and onto

(2)  f –1 and (f –1)–1 = f are continuous map

 f –1 is homeomorphism

 Homeomorphism is symmetric.

(iii) Homeomorphism is transitive :

Let f : (X, )  (Y, ) and g : (Y, ) (Z, ) be homeomorphism. If we show that gof : (X, )

 (Z, ) is a homeomorphism, we can conclude that homeomorphism is transitive. Now

f and g are homeomorphism

 (a) f and g are one-one and onto

 (b) f and g are continuous maps

 (c) f –1 and g –1 are continuous maps

Now (a)  gof is one-one and onto

(b)  gof is continuous

(c)  (gof)–1 = f –1 og –1 is continuous

 gof is a homeomorphism.

 homeomorphism is transitive.

Thus homeomorphism is an equivalence relation.

Theorem 16.  A one-one onto map f : (X, )  (Y, ) is a homeomorphism iff    f A f A

for any A  X

Proof. Let f : (X, )  (Y, ) be one-one onto map

Let    f A f A  for any A  X

To prove that f is a homeomorphism, For this we must show that

(a) f is one-one onto map (Given) (b) f is continuous (c) f –1 is continuous

Let A  X be arbitrary.

By hypothesis    f A f A

    f A f A .....(i)

and    f A f A .....(ii)

Theorem 13 (i) shows that f is continuous map.

Let B = f (A)  f –1 (B) = A [  f is one-one]



195

Now from (ii)     1 1f f B f f B    

   1B f f B

    1 1f B f B      where   B  Y

Again by Theorem 13 (iii) shows that f –1 is continuous map. Thus (a), (b) and (c) have been

proved and therefore f is a homeomorphism.

Conversely, suppose that f : (X, )  (Y, ) is one-one onto and a homeomorphism.

To prove that  f A  f A  for any A  X

Let A  X be arbitrary and B = f (A)

B = f (A)   f –1 (B) = A [ f is one-one]

since f is continuous, thus by Theorem 13

 f A  f A (iv)

since f –1 is continuous, thus by Theorem 13

 1f B  1f B

  1f f A  
   1f f A

  1f f A  
  A [ f (f –1(A)) = A]

  f A  f A (v)

Thus from (iv) and (v)

 f A  f A

Theorem 17.  A one-one onto continuous map f : (X, )  (Y, ) is a homeomorphism if f

is either open or closed.

Proof. Let f : (X, )  (Y, ) is one-one, onto and continuous map. Also let f is either open or

closed. To prove that f is a homeomorphism, it is enough to show that f –1 is continuous. For this we

have to show that 1 1( ) ( )f B f B   for any B  Y

B  Y  f –1 (B)  X and  1f B  is a closed subset of X

 f is a closed mapping   1f f B 
    is closed

  1f f B 
    1f f B    

(i)

Since  1f B  1f B [A  A  for any set A  X]
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  1f f B 
   1f f B   

 B  1f f B    

 B  1f f B    

 B  1f f B     [using (i)]

  1f B  1f B

 f –1 is continuous

Similarly we can show that if f is open, than f –1 is continuous

Illustrative Examples

Ex.1. Show that characteristic function of A  X is continuous on X iff A is both open

and closed in X.

Sol. Let (X, ) be a topological space and but A  X be arbitrary. The characteristic function

f of A is defined by

 
1 if
0 if


  

x A
f x x A

Now we assume that A is both open and closed.

To prove f is continuous f : X  R (where R is real line with usual topology)

Let G be an open subset of R

f –1 (G) = {x  X : f (x)  G}

  1

if 1 , 0
~ if 0 ,1

if 0,1
if 0,1



 
    
  

A G G
X A G G

f G X G
G

In all case, f –1 (G) is an open set.

 f is continuous.

Conversely, suppose that f is continuous.

To prove that A is both open and closed.

Let G be an open subset of R s.t. 0  G, 1  G.

Then f –1(G) = X~ A

  f is continuous f –1(G) = X ~ A is open

A is closed in X.
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Let H be on open subset of R s.t. 1 H, 0 H

Then f –1 (H) = A

f is continuous  f –1 (H) = A is open in X

 A is both open and closed.

Ex.2. Let X = {0, 1, 2}

 = {, X, {0}, {0, 1}

Let f be a continuous map of X in to itself such that f (1) = 0 and f (2) = 1, what is f (0) =?

Sol. Let f (0) = a, then a = 0, 1, or 2

If a = 1 or 2, then

f –1 (0) = {x  X : f (x) = 0}

= {x  X : x = 1 or 2}

= either {1} or {2}

but {1}   and {2}   but {0}  .

Contrary to the fact that f is continuous

If a = 0, then f –1 (0) = {x  X : f (x) = 0}

= {0, 1}  

Hence f is continuous since inverse of open set {0} is open set {0, 1}  .

Hence f (0) = 0

Self-learning exercise-2

1. Let X = (– 1, 1). Show that X with subspace topology of usual topology on R is homeomorphic

to usual topology on R.

2. Let X = {a, b, c, d} and  = {, X, {a}, {b}, {a, b}, {b, c, d}} let the function f : X  X be

defined as

f (a) = b, f (b) = d, f (c) = b, f (d) = c

(i) Show that f is not continuous at c (ii) Show that f is continuous at d.

9.9 Summary

In this chapter you have learnt the important concepts of bases and subbases of a topological

space. You have learnt that many times it is convenient to define a topological space with the help of

bases and subbases. You have also learnt that we can always define a topology on a set with any collec-

tion of subsets of a set.

This chapter also belongs to the concept of continuity and homeomorphism. You have learnt that

how can we generalize the concept of continuity to any arbitrary topological spaces. You also learnt that
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if two topological spaces are homeomorphic then many properties (known as topological properly) in

those spaces are identical.

9.10 Answers to self-learning exercises

Self-learning exercise–1

1. A = {, X, {c}, {d}, {c, d}, {c, d, e}, {a, b, c, d}}

BA = {{c}, {d}, {c, d, e}, {a, b, c, d}}

2. Local base at 1 : None of B1, B2 and B3
Local base at 2 : B1

Local base at 3 : B3

Self-learning exercise–2

1. Hint : Define f : X R s.t.     tan
2

f x x


Show that f is one-one onto and continuous then also show that f –1 is continuous

2. (i) Hint : Let G = {a, b}  then

f –1 (G) = {a, c} .

9.11 Exercises

1. Show that the map
f : (R, U)  (R, U) given by
f (x)= x2   x  R is not open

2. Show that the map

f : (R, U)  (R, U) given by

 
2

, 1
1, 1 2

4, 2

x x
f x x

x x

 


  
 

is continuous but not open

3. Let f : (X, )  (Y, ) be a map. Show that f is continuous if  is an indiscrete topology.

4. Show that the identity function I : (X, )  (X, *) is continuous iff  is finer then *, i.e. *  .

5. Consider the discrete topology D on X = {1, 2, 3, 4, 5}, find a subbase S of D which does not

contain any singleton set.
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UNIT 10 : Separation Axioms (T0, T1, T2, T4 Spaces)

Structure of the Unit

10.0 Objectives

10.1 Introduction

10.2 T0-axiom of separation (Kolomogorov space)

10.3 T1-axiom or Frechet axiom of separation

10.4 T2-axiom of separation (Hausdorff space)

10.5 Regular space

10.5.1 T3-space

10.5.2 Example of regular space which is not T3-space

10.6 Normal space

10.6.1 T4-space

10.6.2 Example of a normal space which is not T4-space

10.7 Summary

10.8 Answers to self-learning exercises

10.9 Exercise

10.0 Objectives

In this chapter you will read about the separation axioms of Alexandroff and Hopf. You will also

learn about various topological spaces like T0, T1, T2, T3 and T4.

10.1 Introduction

The Ti space nomenclature for i = 1, 2, 3, 4 was introduced by Alexandroff and Hopf. The

word “T ” referes to the German word “Ternugs axiom” which means “Separation axiom”. Many prop-

erties of a topological space X depand upon the distribution of the open sets in the space. A space is

more likely to be separable, or first or second countable, if there are “few” open sets; on the other hand,

an arbitrary function on X to some topological space is more likely to be continuous, or a sequence to

have a unique limit, if the space has “many” open sets.
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10.2 T0-Axiom of separation (Kolomogorov space)

A topological space (X, ) is said to satisfy the T0-axiom of separation if given a pair of distinct

points x, y  X, either

 G      s.t.    x  G,       y  G

or H      s.t     x H,       y  H

In this case the space (X, ) is called  a T0-space (Kolomogorov space)

Examples to T0-space :

1. Every discrete space is T0-space.

2. An indiscrete space containing only one point is a T0-space

3. A cofinite topological space (X, ) on an infinite set X is T0-space.

4. Every metric space is T0-space.

Theorem 1.  A topological space (X, ) is a T0-space if for any distinct arbitrary points

x, y  X, the closure of singleton set {x} and {y} are distinct.

Proof : Let (X, ) be a T0-space and let x, y  X  such that  x y.

To prove { } { }x y

Now x, y  X so by definition of T0-space,

G   such that x  G, y  G  y  X ~ G, x  X ~ G ,

by definition of closure

{ }y  = {F : F is a closed set such that y  F}

Also X ~ G is a closed set containing y

 { }y  X ~ G

but x  X ~ G  x { }y .....(1)

Also {x}  { }x  thus x  { }x .....(2)

from (1) and (2) { } { }x y 

Conversely : Let x, y be any two distinct points of a topological space (X, ).

Also let  { } { }x y .....(3)

To prove (X, ) is a T0-space.

(3)  p  X   such that   { } and { }p x p y  ,

we claim { }.x y

Let if possible { }x y { } { }x y 

{ } { } { } [ ]x y y A A   

{ } { },x y 
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Also { }p x  { }.p y

A contradiction, since { }p y

Hence { }x y

~ { },x X y   also { }, { }y y y X y   

{ }y  is closed so ~ { }G x y  is open, thus we have found an open set G such that x  G

but y  G.

(X, ) is a T0-space.

10.3 T1-Axiom or Frechet axiom of separation

A topological space (X, ) is said to satisfy the T1-axiom of separation if given a pair of distinct

points x, y  X, G, H  s.t. x  G, y  G and y  H, x  H. In this case the space (X, ) is called

T1-space or Frechet space.

Example of T1-space :

1. Every metric space is T1-space.

2. If (X, ) is a cofinite topological space on an infinite space X, then it is T1-space.

Example of T0-space which is not a T1-space :

We define a topology on N such that

(a) , N 

(b) An ,  n  N, where An = {1, 2, 3,..., n}.

Consider m, n  N such that m < n, then m  Am, n  Am. Thus given any two distinct num-

bers m, n  N such that m  n and m < n,  open set Am  such that m  Am, n Am
 (N, ) is a T0-space

But if m  n and m < n, there is no open set, which contains n but does not contain m., Thus

(N, ) is not a T1-space.

Theorem 2.  A topological (X, ) is a T1-space iff {x} is closed  x  X.

Proof : Let (X, ) is a topological space such that {x} is closed  x  X. To prove (X, ) is a

T1-space.

Consider x, y  X such that x y, then by our assumption {x} and {y} are closed sets such

that {x}  {y} = .

 X ~ {x} and X ~ {y} are open sets.

Let G = X ~ {y}, H = X ~ {x},       then   G, H  such that

x  G, y  G    and   y  H, x  H.

 (X, ) is a T1-space.

Conversely, suppose that (X, ) is a T1-space.
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Now we have to prove that {x} is a closed set for each x  X. For that it is sufficient to show

that its complement X ~ {x} is open. Let y be any element of X ~ {x}, then x y. Since (X, ) is a T1-

space and we know that every T1-space is a T0-space, so there exists Gy   such that y  Gy but

x Gy and consequently y  Gy  X ~ {x}. This shows that X ~ {x} is a nbd of each of its points

and hence it is open, that is {x} is closed.

Corollary 1 : A topological space X is a T1-space if and only if every finite subset of X is

closed.

Proof. Let (X, ) be a T1-space and let A = {a1, a2,..., an} be any finite subset of X. Then

ai  X for each i = 1, 2,..., n. Since (X, ) is a T1-space, so every singleton subset of X is closed.

Now A = {a1}  {a2} ... {an}

  A is finite union of closed subsets of X and hence A is closed.

Conversely, suppose that every finite subset of X is closed. Then in particular every singleton

subset of X is closed and hence X is a T1-space.

Corollary 2.  Finite T1-space is a discrete space.

Proof : Let (X, ) be a finite T1-space. Then by Corollary 1, every finite subset of X is a closed

set.

  All subsets of X are closed, since X is finite.

  All subsets of X are open.

  X is a discrete space.

Theorem 3.  A topological space (X, ) is a T1-space iff  contains the co-finite topology

on X. (i.e.  is finer then co-finite topology on X)

Proof : Let (X, ) be a T1-space.

To prove that  contains co-finite topology on X, we have to show that A  such that X ~ A is

finite, where A  X.

Now if A X such that X ~ A is finite, then by Corollary 1 of Theorem 2, X ~ A is a closed

subset of  X  A . Thus  contains co-finite topology.

Conversely : Suppose that contains co-finite topology on X. To prove (X, ) is a T1-space.

Now {x} is a finite subset of X

  X ~ {x} is open in co-finite topology

  X ~ {x} 

  {x} is -closed subset of X

Thus {x} is closed subset of (X, )   x  X, by Theorem 2 (X, ) is a T1-space.
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Theorem 4.  A finite subset of a T1-space has no limit point.

Proof : Let (X, ) be a T1-space let

A = {a1, a2,..., an} be a finite subset of X

To prove that A has no limit point.

X is a T1-space A is closed set

 A contains all its limit point .....(1)

Let ai  A be arbitrary and, we write

Gi = A ~ {ai} = {a1, a2,..., ai–1, ai+1,..., an}

Gi is finite subset of  X Gi is closed  X ~ Gi  is open.

ai  Gi ai X ~ Gi

Thus X ~ Gi is an open set with ai X ~ Gi

Also (X ~ Gi) A = {ai}

By definition of limit point ai is not a limit point, since there is an open subset of X containing ai
does not contain any point of A other than ai.

But ai is an arbitrary point of A.

 Every point of A is not a limit point of A. Now (1) declares that A has no limit point.

Theorem 5.  T1-axiom of separation is hereditary property or Every subspace of a T1-

space is also a T1-space.

Proof : Let (X, ) be a T1-space and (Y, U) is a subspace of (X, ).

i.e. U = {G y : G } and Y X. .....(1)

To prove (Y, U) is a T1-space.

Let x,y  Y be arbitrary s.t. x y

 x, y X    s.t.   x y [  Y X]
  (X, ) is a X1-space.

  G, H    s.t.    x  G, y  G; y  H, x  H

Consequently x  G  Y, y  G y

and x  H  y, y  H  Y

Let G1 = G Y   and   H1 = H Y

 G, H  G1, H1 U

Thus given a pair of distinct points x, y  Y, G1, H1 U such that  x  G1, y  G1, and x 

H1,  y H1.

   (Y, U) is a T1-space.

Theorem 6.  The property of a space being a T1-space is a topological property i.e. the

homeomorphic image of a T1-space is a T1-space.
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Proof : Let (X, ) be a T1-space and let

f : (X, )  (Y, U) is a homeomorphism.

To prove that the T1-space is a topological property, it is enough to prove that (f (X) = Y, U) is

a T1-space.

Let y1, y2  Y be two distinct points of Y such that y1  y2. Since f is a homeomorphism (i.e. f is

one-one onto and bicontinuous).

x1, x2  X   s.t.   y1 = f (x1),    y2 = f (x2)    and    x1  x2.

Since the space (X, ) is a T1-space open sets G, H  such that x1  G, x2  G and

x1  H, x2  H.

Since f is a homeomorphism therefore f-image of an open set is also an open set.

 G1 = f (G)   and    H1 = f (H)

are U-open subset of Y i.e. G1, H1 U.

Now x1  G, x2  G  y1 = f (x1)  f (G) = G1

and y2 = f (x2)  f (G) = G1

and x1  H, x2  H  y1 = f (x1)  f (H) = H1

and y2 = f (x2)  f (H) = H1

Thus given a pair of distinct points y1, y2  Y,  G1, H1 U such that y1  G1, y2  G1 and

y1  H1,  y2  H1

   (Y, U) is a T1-space.

10.4 T2-Axiom of separation (Hausdorff space)

A topological space (X, ) is said to satisfy the T2-axiom of separation if given a pair of distinct

points x, y  X, G, H  s.t. x  G, y  H, G H = . In this case the space (X, ) is called a T2-

space or Hausdorff space.

Examples of T2-space

Ex.1. Every metric space is a T2-space.

Sol. Let (X, d) be a metric space, then metric topology on X is defined as any subset U  X

is -open subset of X if   x  U > 0 such that open ball B (x, )  U.

To prove (X, ) is a T2-space.

Let x, y  X be any pair of distinct points i.e. x  y,
 x y d (x, y) > 0.  Let = d (x, y).

Let G = B (x, /3)   and   H = B (y, /3)

Then G and H are open subsets of X [  open balls are open subsets] clearly x  G, y  H

and G H = 



205

Thus every metric space is a T2-space.

Ex.2. Every discrete space is a T2-space.

Sol. Let (X, ) be a discrete space and x, y  X be arbitrary such that x y.

By definition of discrete space {x} and {y} are -open sets, obviously

{x} {y} =    and   x  {x}, y  {y}.

Thus disjoint open sets {x} and {y} containing x and y respectively. Consequently (X, ) is a

T2-space.

Ex.3. Cofinite topology on any infinite set X is not a T2-space.

Sol. Let G, H be arbitrary. Then by definition of cofinite topology, X ~ G and X ~ H are

finite subsets of X. Here we have to show that X is not a T2-space. For this it is sufficient to show that 

no pair of disjoint open sets in cofinite topology on X.

Let if possible G and H are disjoint open sets so that

G H =  (G H)c = c

 G c H c = X .....(1)

but
~ finite set

~ finite set

c

c

G X G

H X G

  


  
[  G and H are open in (X, )]

L.H.S. of (1) is union of two finite sets, thus finite set but R.H.S. of (1) is an infinite set X

(Given), which is a contradiction. Thus no pair of disjoint open sets in cofinite topology on X.

Theorem 7.  Every T2-space is a T1-space but the converse in not true.

Proof : Let (X, ) is a T2-space. To prove (X, ) is a T1-space. Let x, y  X such that x y

then by definition of T2-space we can find disjoint open sets G, H  such that x  G,  y  H and

G H =   x  G, y  G and x  H, y  H.

Hence given a pair of distinct points x, y X, such that x y  G, H such that x  G,

y  G and x  H, y  H.

   (X, ) is a T1-space.

To prove converse is not true, consider a cofinite topology on an infinite set X. Then by Theo-

rem 3 (X, ) is a T1-space. But by Example 3 of §10.4 (X, ) is not a T2-space. Thus every T1-space is

not a T2-space.
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Corollary 1. Every singleton set in a T2-space is closed.

Theorem 8.  In a T2-space, a convergent sequence has a unique limit.

Proof : Let (X, ) be a T2-space and <an> is a convergent sequence in X. To prove that the

sequence <an> has a unique limit.

Let if possible <an> does not have a unique limit. Let <an> converge to two distinct points, say

a0, b0  X. Then a0  b0, By definition of T2-space open sets G, H such that

a0 G, b0  H such that G H = .

By definition of convergence

a0  G   n0  N   such that    n  n0  an  G

b0  H   k0  N    such that    n  k0  an  H

Let m0 = max {n0, k0}.

Then  n  m0  an  G, an H  an  G H

 G H 

which is a contradictions since G H = 

Thus the sequence <an> has a unique limit.

Theorem 9.  Let (X, ) be any topological space and let (Y, U) be a Hausdorff space. Let f

and g be continuous mappings of X into Y. Then the set {x  X : f (x) = g (x)} is a closed subset

of X.

Proof : Given (X, ) be any topological space and (Y, U) a Hausdorff space. Let f : X  Y and

g : X Y are continuous maps. Let A = {x  X : f (x) = g (x)}. Now we have to show that A is

closed. For this is sufficient to show that

X ~ A = {x  X : f (x)  g (x)} is open .....(1)

Let x X ~ A be arbitrary, then x  A.

Let f (x) = y1   and   g (x) = y2 then y1  y2 [by (1)]

Further  more y1, y2  Y and (Y, U) is a T2-space, hence G, H U such that  y1  G,

y2  H, G H = .
Since f and g are continuous maps. Hence by definition f –1(G), g–1(H) are open in X, write

W = f –1(G)  g–1(H)
W is also an open set in X [finite intersection of open sets].

y1  G f –1(y1)  f –1(G)  x  f –1(G)

y2  H g–1 (y2)  g –1(H)  x  g–1(H)

 x  f –1(G)  g–1(H) x  W .....(2)

W = f –1(G) g–1(H) W  f –1(G), W  g–1(H)

 f (W)  G, g (W)  H

 f (W) g (W)  G H = 
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 f (W)  g (W) 

but f (W)  g (W)                         [Always]

 f (W)  g (W) = 

 f (y)  g (y)    y  W

 y X ~ A      y  W

 W  X ~ A

Thus for any x  X ~ A, W  such that x  W  X ~ A

 every x  X ~ A is an interior point of X ~ A

 X ~ A is open subset of X

 A is closed subset of X.

Theorem 10.  If f and g are continuous functions on a topological space X with values in

T2-space, Y. Then the set of all points x  X such that f (x) = g (x) is closed. Deduce that if f and

g agree on a dense subset on X, then f = g on the whole X.

Proof : (i) Proof of Ist part is same as Theorem 9.

(ii) Suppose f and g agree on a dense subset P  X so that

f (x) = g (x)    ,x P P X  

f (x) = g (x)  x  P P is closed by case (i)

AlsoP P P X  

 P = X

 f (x) = g (x)      x  X   f = g on the whole X.

Theorem 11.  For any space (X, ), following conditions are equivalent.

(i) X is a T2-space

(ii) For each pair x, y  X, a nbd Ny of y  such that x is not in .yN

(iii) For each x  X, { } ,xx N  where the intersection is taken over all the nbds of x.

Proof : (i)  (ii) Let (X, ) be a T2-space and x, y  X be arbitrary such that x y.

To prove that nbd Ny of y such that .yx N

By definition of T2-space G, H  such that

x  G, y H,      G H = .
y  G, x  G  y  G c, x  G c, G c  is closed.

G H =  H  X ~ G = G c   y  H  G c

y Ny, x Ny, where Ny = G c

 Ny is a closed nbd of y such that x  Ny
But Ny = ,yN    since Ny is closed

 Ny is a closed nbd of y such that .yx N
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(ii)  (iii) Suppose any x, y  X nbd Ny of y such that .yx N

To prove { },xN x  where the intersection is then over all the nbd of x.

By over assumption, there also exist nbd Nx of x such that xy N .

Let B = { :xN  Nx is a nbd of x such that xy N }

xN { : } { }BB B x  
(iii)  (i) Let  x  X, { } ,xx N  where the intersection is taken over all the nbd of x.

To prove X is a T2-space.

Let x, y  X be arbitrary such that x  y.

Now { } xx N .xy N   Also xN  is a closed nbd of x

xy N N  

 a closed nbd xN  of x such that xy N N 

 x  N, y  N where N is closed.
By definition of nbd G  such that x  G  N, y  N

H = X ~ N then H is open and  x  H
y  N y  H

G  N G  (X – N) =  G H = .
   Given x, y  X, G, H  such that x  G, y  H, G H = 
  X is a T2-space.
Theorem 12.  The property of a space being a Haudorff space is a hereditary property

or
Every subspace of a T2-space is a T2-space.
Proof : Let (X, ) be a Hausdoff space and (Y, U) be a sub space of (X, ).
To prove (Y, U) is a Hausdorff space.
Let a pair of elements y1, y2  Y   such that    y1  y2.
Then y1, y2  X   such that    y1  y2. For Y  X
(X, ) is a T2-space, disjoint sets

G1, G2 such that  y1  G1, y2  G2, G1  G2 = .
G1, G2 H1, H2  U, such that  H1 = G1  Y, H2 = G2  Y

H1  H2 = (G1  Y)  (G2  Y) = (G1  G2) Y = .
y1  Y; y1  G1  y1  G1  Y = H1
y2  Y; y2  G2  y2  G2  Y = H2

Thus given a pair of distinct points y1, y2  Y such that y1  y2  disjoint sets H1, H2  U such
that y1  H1, y2  H2, H1  H2 = .

 (Y, U) is a T2-space.
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Theorem 13.  The property of a space being a T2-space is a topological property.

Proof : Let (X, ) be a T2-space and let

f : (X, )  (Y, U)

be a homeomorphism so that any G  f (G) U.

To prove that T2-space is a topological property, it suffices to prove that (f (X) = Y, U) is a

T2-space.

Let y1, y2 is a distinct pair of points in Y such that  y1  y2.

Since f is a bijection  x1, x2  X such that x1  x2 and y1 = f (x1) and y2 = f (x2).

Since (X, ) is a T2-space G, H  such that

x1 G, x2 H, G H = .

Let G1 = f (G), H1 = f (H)  G1, H1  U

and y1 = f (x1)  f (G) = G1
y2 = f (x2) f (H) = H1   and    f (G H) = G1  H1 = 

Thus given a pair of distinct points y1, y2  Y  G1, H1  U such that y1  G1, y2  H1,

G1  H1 = .

 (Y, U) is a T2-space.

10.5 Regular space

A topological space (X, ) is said to be a regular space if given an element x  X and closed set

F X such that x  F, disjoint open sets G1, G2  X  such that  x  G1, F  G2, G1  G2 = .

10.5.1 T3-space :

A regular T1-space is called a T3-space.

10.5.2 Example of regular space which is not T3-space :

Let X = {a, b, c} and topology on X is = {, X, {a}, {b, c}}. Then it is clear that (X, ) is a

topological space.

Clearly {a}, {a, c} are open as well closed subset of (X, ). Now consider a pair of distinct

elements b, c  X. Then only open sets containing either of the elements b, c are X, {b, c} such that

b  X,  b  {b, c}; c  X, c  {b, c}.

Thus there is no open sets G, H  such that

b  G, c G  and  b  H, c  H

  (X, ) is not T1-space

  (X, ) is not a T3-space    [by definition]

Now : Let a  X, {b, c} X    such that  a {b, c}

where {b, c} is closed subset of X {a}, {b, c} -open sets such that



210

a {a}, {b, c}  {b, c}   such that  {a}  {b, c} = .
Also to be any such point  x X and  F X  such that  x  F

G, H  such that   x  G, F G  and G H = .
  (X, ) is a regular space.
Examples of regular space :
1. Every discrete space is regular.
2. Every indiscrete space is regular.

3. Every metric space is regular.

Theorem 14.  Every T3-space is a T2-space.

Proof : Let (X, ) be a T3-space. Then be definition of T3-space, it is a regular T1-space. Now

we have to show that (X, )  is a T2-space. Let x, y be any two elements of X such that x y. Since

(X, ) is a T1-space, so every singletion subset {x} of X is closed. Again, since (X, ) is regular, so

corresponding to closed set {x} and the point y  {x} there exist open sets G and H such that

{x} G, y  H  and   G H = .

 x  G, y  H  and   G H = .

Thus for x, y  X with x  y there exist G, H  such that

x  G, y H   and   G  H = .

Hence (X, ) is a T2-space.

Theorem 15.  A topological space (X, ) is regular iff for every point x of X and every nbd

N of x a nbd M of x such that .M N
OR

A topological space is regular iff the collection of all -closed nbds from a local base at x.

Proof : Let (X, ) be a regular space.

To prove that given a nbd N of x  a nbd M of x s.t. .M N
  (X, ) is a regular space, therefore given a closed set F and an element x  X such that

x  F disjoint open sets G1, G2  X such that x  G1,  F  G2, G1  G2 = .

x  G1 G1 is a nbd of x

G1  G2=G1  X ~ G2

1 2 2~ ~G X G X G   [  X ~ G2 is closed]

 F  G2 X ~ G2  X ~ F

 1G  X ~ F = H (say) .

 F is closed H is open .

 1G  H

x  F x  X ~ F  x  H.
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Thus given a nbd H of x,  a nbd G1 of x such that

x G1 1G   H

Conversely, assume that (X, ) is a topological space such that given a nbd G of an element

x  X, a nbd H of x such that

x  H H  G.

To prove (X, ) is a regular space.

Let F X be a closed set and x  X such that x  F.

Now x  F, F is closed x  X ~ F is open

 X ~ F is nbd of x

 By our assumption, a nbd G of x such that

x  G G   X ~ F .....(1)

Let G = G1  and  X ~ G  = G2

Then G1  G2 = G   ~X G  = G  X ~ G G

= G ~ G = 

x  G x  G1

From (1) ~G X F  X ~ (X ~ F)  X ~ G
 F  G2

 G  is closed  X ~ G  is open  G2 is open. Thus we have shown that given a closed set

F X and a point x  X such that x  F  disjoint open sets G1, G2 such that

x  G1,   F  G2,    G1  G2 = 

(X, ) is a regular space.

Theorem 16.  The property of a space being regular is hereditary property.

Proof : Let (X, ) be a regular space and (Y, U) be a sub space of (X, ). To prove (Y, U) is a

regular space.

Let F be a U-closed subset of Y and p  Y such that p  F.

  F is U-closed subset of Y  K, -closed subset of X such that

F = K Y   also p  Y  X  p  X

such that p K Y  p  K.                            [ ]p Y

Now K is -closed subset of X and p  X such that p  K. As (X, ) is a regular space 

 G1, G2 -open sets such that

p G1, K G2  and  G1  G2 = 

 G1, G2 are -open sets of X

 p G1  Y = H1   and G2  Y = H2 (say)
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 H1, H2 are U-open subsets of Y such that

p H1, K Y  G2  Y = H2

or p H1 and F H2  and

H1  H2 = (G1  Y)  (G2  Y) = (G1  G2)  Y = 

 H1, H2 U-open subsets of Y such that p  H1, F  H2, H1 H2 = 

 (Y, U) is regular.

Corollary : The property of being a T3-space is hereditary.

Theorem 17.  Regularity is a topological property.

Proof : Let (X, ) be a regular space and (Y, U) be any topological space. Let

f : (X, )  (Y, U) be a homeomorphism. To prove (Y, U) is a regular space.

Let y Y and F-U-closed subset of Y such that y  F.
 f : X Y is one-one and onto

  x  X s.t. f (x) = y  x = f –1(y)

f is homeomorphism

 f and f –1 both are continuous.

F Y is U-closed, f is continuous

 f –1(F)  X is -closed.

Now y  F  f –1(y)  f –1(F) x f –1(F).

Now x X such that x  f –1(F), f –1(F) is -closed. By definition of regularity

G, H   such that  x  G, f –1(F)  H,  G H = 

 f (x)  f (G), F  f (H), f (G H) = 

 y  f (G), F  f (H), f (G)  f (H) = 

Since  f –1 is continuous and G, H 

 f (G), f (H) U

 for y  Y and F-U-closed subset of Y such that y  F

G1 = f (G),  G2 = f (H) U  such that  y  G1, F  G2  such that  G1  G2 = 

 (Y, U) is regular.

Corollary : The property of being a T3-space is a topological property.

10.6 Normal space

A topological space (X, ) is said to be normal space if given a pair of disjoint closed sets

C1, C2  X disjoint open sets G1, G2  X  such that C1  G1, C2  G2, G1  G2 = .

10.6.1 T4-space :

A normal T1-space is called a T4-space.
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10.6.2 Example of a normal space which is not T4-space :

Let X = {a, b, c} and = {, X, {a}, {b, c}} then we have already proved that (X, ) is not a
T1-space. Thus (X, ) is not a T4-space.

Now it is easy to show that given a pair of disjoint closed sets {a}, {b, c} X, we can find a
pair of disjoint open sets {a}, {b, c}  X such that closed set {a}  open set {a} and closed set
{b, c}  open set {b, c}.

  (X, ) is a normal space.
Examples of normal space.
1. Every discrete space is normal
2. Every indiscrete space is normal
3. Every metric space is normal.
Theorem 18.  A T4-space is a T3-space.
Proof : Let (X, ) be a T4-space, thus
(i)  (X, ) is a T1-space
(ii) (X, ) is a normal space.
To prove (X, ) is a T3-space, it is sufficient to show that (X, ) is regular, as a regular T1-space

is T3-space.
Let x X, and F be a -closed subset of X such that

x F     x X and (X, ) is T1-space
{x} is a closed subset of X

   x  F {x}  F = 
 {x} and F are disjoint closed subsets of X.

Since (X, ) is a normal space
 G1, G2   such that  {x}  G1, F G2 such that G1  G2 = 

i.e. given a point x  X and a closed subset F X such that x  F
open sets G1, G2  such that x  G1, F G2, G1  G2 = 

(X, ) is a regular space and hence (X, ) is a T3-space.
Note : T4-space   T3-space
but normal space   regular space.
Consider X = {a, b} and T = {, X, {a}} then the space (X, ) is a normal space, as there

does not exist any pair of disjoint closed subsets of X.
(X, ) is not regular as a  X and F = {b} is a closed subset of X such that a  F. But there

does not exist any pair of disjoint open subsets of X, G1 and G2 such that

a  G1, F  G2   and   G1  G2 = .

Thus (X, ) is not regular.
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Theorem 19.  A closed sub space of normal space is a normal space.

Proof : Let (X, ) be a topological space, which is normal and (Y, U) is a closed sub space of

(X, ) Y is -closed subset of X. To prove (Y, U) is normal space.

Let F1, F2  Y be disjoint sets which are closed in Y. Since Y is closed in X, a subset F Y is

closed in Y iff F is closed in X.

  F1 and F2 are disjoint closed subsets of X.

By the property of normal space (X, )

 open sets G1, G2   such that F1  G1, F2  G2, G1  G2 = 

F1  Y, F1  G1 F1  G1  Y = H1 (say)

Similarly      F2  G2  Y = H2 (say)

By definition of sub space topology H1 = G1  Y and H2 = G2  Y are U-open subsets of Y.

Also H1  H2 = (G1  Y) (G2  Y) = (G1  G2) Y = Y = .

Thus given a pair of disjoint closed sets F1, F2 in Y, disjoint U-open subsets H1, H2 of Y such

that F1  H1, F2  H2 and H1  H2 = .

This shows that (Y, U) is a normal space.

Note : Normality is not necessary a hereditary property, but above theorem 19 is a weaker

statement for normal spaces. But property of being a T4-space is hereditary (Proof left as an exercise)

Theorem 20.  Normality is a topological property.

Proof : Let f : (X, )  (Y, U) is a homeomorphism and let (X, ) is a normal space. Then

(Y, U) is homomorphic image of (X, ). To prove (Y, U) is also a normal space.

Let F1, F2 be disjoint U-closed subsets of Y i.e. F1  F2 = . Since f is continuous

 E1 = f –1(F1), E2 = f –1(F2) are -closed subsets of X.

E1  E2 = f –1(F1)  f –1(F2) = f –1(F1  F2) = f –1() = .

 E1 and E2 are disjoint -closed subsets of X, also (X, ) is a normal space -open sets

G1, G2 such that  E1  G1  and  E2  G2, G1  G2 = 

 f –1(F1) G1,    f –1(F2)  G2

 F1  f (G1) = H1,   F2  f (G2) = H2 (say).

Since f is a homeomorphism and G1, G2 are -open subsets of X

 H1 = f (G1)    and    H2 = f (G2) are U-open subsets of Y.

H1  H2 = f (G1)  f (G2) = f (G1  G2) = f () = .

Thus given a pair F1, F2 of disjoint U-closed sets in Y U-open sets H1, H2  U such that

F1  H1, F2  H2, H1 H2 = .

This shows that (Y, U) is also a normal space.

Corollary : The property of being a T4-space is a topological property.
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Theorem 21.  A topological space (X, ) is a normal space iff for any closed set F and an

open set G containing F, there exist an open set V such that F  V  V   G.

Proof : First we assume that (X, ) is a normal space and let G  X be an open set containing a

closed set F i.e. F G X. To prove an open set V  such that F  V  V   G.

G  X is -open X ~ G is -closed.

F (X ~ G) = F X ~ F G = F ~ F = . [  F G]

 F and (X ~ G) are disjoint closed sets in X.

Using normality of (X, ), we can find a pair of disjoint open sets H1, H2  s.t. F  H1,

X ~ G H2, H1  H2 = .

Now H1  H2 =  H1  X ~ H2

1 2 2~ ~H X H X H   [  X ~H2 is closed]

1 2~H X H 

since X ~ G  H2 X ~ H2  X ~ (X ~ G)

 X ~ H2  G

Thus  1 2~ .H X H G 

Thus the set H1 has the following properties :

(a) H1 is -open

(b) F H1

(c) 1H G

Thus an -open set H1 s.t. 1 1 .F H H G  

Conversely, suppose that (X, ) is a topological space such that given a closed set F and an

open set G containing F,  an open set V such that F  V  V   G.

To prove (X, ) is a normal space.

Let F1 and F2 be a pair of disjoint closed sets in X i.e.

F1  F2 =  F1 X ~ F2.

 X ~ F2 is an open set containing a closed set F1.

By hypothesis, another open set V containing F1 such that

F1  V V  X ~ F2

Let U ~X V

  V  is a closed set  U = X ~ V  is an open set

V   X ~ F2 X ~ (X ~ F2)  X ~ V

 F2  U

U  V = V  (X ~ V ) = V  X ~ V  V  = V ~ V = .
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Thus given a pair of disjoint closed sets F1 and F2 in X, open sets V, U such that F1  V,

F2  U and U  V = .

This shows that (X, ) is a normal space.

Self-learning exercise-1

1. Select true or false :

(a) Every discrete space is a T2-space

(b) If  is cofinite topology on an infinite set X, then (X, ) is a T2-space

(c) A cofinite topology on an infinite set X is not T1-space

(d) A T3-space is a T4-space

(e) A singleton subset of T1-space is closed

(f ) Every metric space is normal

10.7 Summary

In this unit you have learnt about various separation axioms. If R = Regular, N = Normal, then

we have seen that :

1. T4 T3 T2 T1 T0

2. T0, T1, T2, T3, R, N, T4, are all topological properties.

3. T0, T1, T2, T3, R, T4, are all hereditary properties. Normality is not hereditary.

10.8 Answers to self-learning exercises

Self-learning exercise-1

(a) T (b) F (c) F (d) F

(e) T (f ) T

10.9 Exercises

1. Prove that every metric space is normal space
2. Prove that every second countable regular space is normal space.
3. Let (X, ) be a T1-space. If * is a topology on X such that *, show that (X, *) is also a

T1-space.
4. Let (X, ) be a Hausdroff space and let f : X X be continuous. Show that the set {x X :

f (x) = x} is closed in X.
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Unit 11 : Compact and Locally Compact Spaces
Structure of the Unit

11.0 Objectives

11.1 Introduction

11.2 Compact Topological spaces

11.2.1 Open cover

11.2.2 Sub-cover

11.2.3 Compact Topological space

11.3 Finite intersection property (FIP)

11.4 Bolzano Weierstrass Property (BWP)

11.5 Locally compact space

11.6 Summary

11.7 Answers to self-learning exercises

11.8 Exercises

11.0 Objectives

In this unit we shall study about the compactness of the topological spaces. For this we have to

understand the concepts of open cover and Sub-cover. There are some types of compactness such as

countable, sequential and local compactness. Only local compactness will be discussed in this unit.

11.1 Introduction

There are some closed surfaces contained in a finite part of three dimensional Euclidean space

like sphere and ellipsoid. The concept of topological compactness is based on this type of surfaces, on

the other-hand some surfaces are not contained in a finite part of the space like paraboloid. In this unit,

compactness of a topological space is studied in terms of open cover and its Sub-cover.

11.2 Compact Topological spaces

11.2.1 Open cover : Let (X, ) be a topological space and let A be a subsets of X.A collection

C = {G | } of open subsets of X is said to be an open cover of A if

.A G
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If C is an open cover of A, then we say that C covers A. Sometimes C is called simply cover

of A.

11.2.2 Sub cover : Let (X, ) be a topological space and C be an open cover of subset A of X.

A sub-collection (subset) C1 of C is said to be a sub-cover of C if C1 covers A.

A cover of A is said to be finite cover if it consists of finite number of open sets. If a cover C has

a finite sub-cover then C is said to be reducible to a finite sub-cover.

11.2.3 Compact Topological space : Let (X, ) be a topological space. A subset A of X is

said to be compact iff every open cover of A has a finite sub-cover, that is, iff every open cover of A is

reducible to a finite sub-cover.

The topological space X is said to be compact iff every open cover of X is reducible to a finite

sub-cover, that is, iff for every collection C = {G | } of -open sets for which

X ,G


 

there exist finitely many open sets 
i

G  (1 i n) form C such that

X
1 2

...
n

G G G     

or X
1

.
i

n

i
G





Ex.1. Let X = {a, b, c} and  be a topology on X such that

 = {, {a}, {b}, {a, b}, X}

then the collection C = {X} is an open cover of X, where as the collection {{a}, {a,b}} is not a

open cover as it does not cover X. Also the collection {{a}, {b}, {c}} is not an open cover of X

as {c} is not t-open set although union of this collection is equal to X.

Ex.2. C1 = {(– n, n) | n  N}

and C2 = {(– 3n, 3n) | n  N}

are U-open covers of R, where U is usual topology on R, the set of real numbers.

Ex.3. Every finite topological space is compact.

Let (X, ) be a topological space where X is finite. Since X is finite therefore  is finite and

hence every open cover of X is finite. We may say that every open cover of X is reducible to a

finite sub-cover. Thus X is compact.

Ex.4. Every indiscrete space is compact.

Let (X, I) be an indiscrete space. For indiscrete space, topology I = {, X}, thus the only

open cover of X is {X}, which is finite, so X is compact. Here X may be infinite.
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Ex.5. Let (X, D) be a discrete topological space, where X is infinite. Let A be an infinite

subset of X, then we can easily verify that A is not compact. Consider a collection C such that

C = {{x} | x  A}.

Obviously C is an open cover of A as {x}  D   x  A and A =  {{x} | x  A}.

This cover is infinite. Evidently it has no finite sub-cover as any sub-collection obtained

by deletion of any member from C will not cover A. Hence A is not compact.

If we replace A by X, then we may say that infinite discrete space is not compact.

Theorem 1. Compactness is not a relative property,

OR

Let Y be a subspace of a topological space (X, ) and A is a subset of Y. Then A is com-

pact relative to X iff A is compact relative to Y.

Proof. Let (X, ) be a topological space and let Y be the subspace of X for the relativized

topology Y  given by

Y = {G  Y | G } .....(1)

Let A  Y and let A be compact relative to X. We shall show that A is compact relative to Y. For

this, let

C = {H | } be a collection of Y-open sets such that

A  {H | } .....(2)

that is C is Y-open cover of A. Since H Y,  G such that

H = G  Y,    .....(3)

from (2) and (3) it follows that A  {G  Y | }

or A  {G | },          (  A  Y)

so that the collection {G | } of -open subsets of X is an open cover of A. Since A is compact

relative to X, this cover is reducible to a finite subcover, that is, there exist finitely many open sets

1 2
, ,... ,

n
G G G   such that

A 
1 2

... .
n

G G G    

Since A  Y, therefore

A  Y 
1 2

...
n

G G G            1 2
...

n
Y G Y G Y G        

(Distributive-law)

1 2
...

n
H H H      (from (3))

or A  
1 2

... .
n

H H H    

This shows that cover C is reducible to finite subcover. Thus A is compact relative to Y.
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Converse : Let A be compact relative to Y. Let

C = {G | }

be a collection of -open subsets of X, which covers A that is

A  {G | }

or A  .G

 .....(4)

Since A  Y, then by (4), we have

,A Y G


 
   

 
  .Y G



  (Distributive law) .....(5)

Since G, therefore Y  GY                (by the definition of Y)

Let  Y  G = H then by (5), we have

,A H


 

where HY    .....(6)

(6) shows that the collection {H | } is an open cover of A relative to Y. Since A is

compact relative to Y, this cover is reducible to a finite subcover, that is, there exist finitely many subsets

(1  i  m) such that

A 
1 2

....
m

H H H          1 2
....

m
Y G Y G Y G        

1 2
....

m
Y G G G        

thus A 
1 2

....
m

G G G              (  A  Y)

which shows that cover C is reducible to a finite sub-cover and hence A is compact relative to X.

Theorem 2. A closed subset of a compact space is compact.

Proof. Let (X, ) be a topological space and let A be a subset of X such that A is closed. We

shall show that A is compact.

Let   C = {G | }  be an open covering of A, where G,   , then

A  G

 .....(1)

Since A is closed therefore (X – A) is open. Now X = (X ~ A)  A, so

(X – A)  G


 
 
 
 = X,             (by (1)) .....(2)

which shows that the collection C together with X – A is an open cover of X. Since X is

compact, therefore this cover is reducible to a finite subcover, that is,
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X = (X – A)
1

,
i

n

i
G



 
 
 
  for some i among  s. .....(3)

From (3), we may conclude that

A 
1

.
i

n

i
G




Hence A is compact.

Theorem 3. Every compact subset of a Hausdorff space is closed.

Proof. Let A be a compact subset of a Hansdorff topological space (X, ). We shall show that

A is closed. For this it is sufficient to show that Ac is open. Let x Ac. Given that X is Hausdorff, so

for every y  A, y  x, there exist open neighbourhoods My and Ny of x and y respectively such that

My  Ny =  .....(1)

Consider the collection C = {Ny | y  A}. Obviously this is an open cover of A. Since A is

compact, therefore this cover is reducible to a finite sub-cover such that

A  
1

,
i

n

y
i

N

  for some   yi  A .....(2)

Associated with each of
1 2
, ,....,

ny y yN N N  we also have open sets 
1 2
, ,....,

ny y yM M M such that

1 2
, ,....,

ny y yx M x M x M   and 
i iy yM N    for i = 1, 2, ...., n.

Let
1

i

n

y
i

M

 = M   and     

1
.

i

n

y
i

N N




Since M is intersection of finite number of open neighbourhoods of x, therefore M is also an

open neighbourhood of x.

Now Let a  N  a 
1

i

n

y
i

N



a  for some
iy iN y A

 a   since
i i iy y yM M N  

 a  M.

Since a is an arbitrary point of N, so M  N = . By (2), we have A  N. Since M  N = ,

therefore A  M = , which shows that M  Ac. Thus, we have obtained that for x  Ac,  an open

neighbourhood M of x such that x  M  Ac, that is, x is an interior point of Ac. Since x is an arbitrary

point of Ac so it is open and hence A is closed.

Corollary : Let A be a compact subset of a Hausclorff space X and let x  Ac. Then, there

exist open sets G and H such that x  G, A  H and G  H = .
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Theorem 4. A continuous image of a compact space is compact.

Proof. Let (X,) and (Y, V) be two topological spaces and let f be a continuous mapping of X

into Y. We have to show that f (X) is compact. Let {H | } be an open over of f (X), then

f (X)   ,


n

H .....(1)

Since f is continuous, therefore f –1 (H) is -open subset of X for each . From (1) we have

X   1 ,f H





which shows that the collection {f – 1 (H) |  } is an open cover of X. Since X is

compact, therefore this cover is reducible to a finite sub cover, that is,

X  1

1
i

n

i
f H




 for some i among ’ s.

or X = f – 1  
1

i

n

i
H



 
 
 


 f (X)
1

,
i

n

i
H





which shows that the cover {H | } of f (X) is reducible to a finite subcover. Hence f (X) is
compact.

Theorem 5. The space (R, U) is not compact, where U is usual topology on R, the set of
real numbers.

Proof. To show (R, U) is not compact, we have to show that there exists an open cover of R

which is not reducible to a finite subcover. Consider the collection

C = {(– n, n) | n  N},

obviously this collection is an open cover of R. Now, we shall show that no finite sub collection of C can

cover R. Let

C = {(– n1, n1), (– n2, n2), ..., (– nm, nm)}

be any finite subcollection of C. Let max {n1, n2, ..., nm} = n0, then obviously n0  (– ni, ni), 1  i 
m, but n0  R.

Thus C does not cover R. So C is not reducible to a finite subcover. Hence (R, U) is not
compact.

Theorem 6. (Heine-Borel Theorem) : A subset of (R, U) is compact iff it bounded and
closed.

Proof. Let A be a subset of R. First suppose that A is closed and bounded. Since A is bounded

therefore there exist two real numbers a and b such that a  b and A  [a, b]. Now, we shall show that
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every closed and bounded interval [a, b] on R is compact. Let I1 = [a, b] and suppose, if possible, I1 is

not compact.

Then there exists an open cover C = {G | } of I1 which is not reducible to a finite

subcover of I1. Now, one of the closed intervals ,
2

a ba  
  

 and ,
2

a b b 
  

 must have no finite subcover..

Let us denote this interval as I2. Again bisecting I2, we obtain a closed interval I3, in a similar manner,

which has no finite subcover. Continuing this process of bisection of intervals, we obtained nested se-

quence of closed intervals {In}. As n , we have length of In as | In |  0 and In has no finite

subcover for every n. By cantor’s intersection theorem,  x  R such that x  {In | n  N}.

Also

x  In  [a, b]  G



 x  G for some .

Since G is -open,   > 0 such that

x  (x – , x + )  G

Take n so large such that

In (x – , x + )  G

(  | In |  0, n  and x  In,   n  N)

which shows that In is covered by G, a single member of cover C. This is a contradiction as In has no

finite subcover for all n  N. Hence [a, b] is compact. Now since A is closed in R, therefore, by the

theorem 2, A is compact.

Converse : Let us suppose that A is compact and consider a collection C = {(x – 1, x + 1) |

x  A}. Obviously C is an open cover of A. Since A is compact therefore this cover is reducible to a

finite subcover, that is,

       A  (x1 – 1, x1 + 1)  (x2 –1, x2 + 1)  ...  (xn –1, xn +1)  for some xi  A .....(1)

Let p = max {x1, x2, ..., xn}

and q = min {x1, x2, ..., xn}.

then (x1 –1, x1 + 1)  (x2 – 1, x2+ 1)  ...  (xn –1, xn + 1)  [q – 1, p +1] .....(2)

By (1) and (2), we have

A  [q – 1, p + 1]

Thus A is bounded. Since R is a Housdorff space and A is compact, therefore by the theorem 3,

A is closed. This completes the proof.

Note : Since compactness is not a relative property (theorem 1) therefore we can consider

-open cover of set A instead of relativized -open cover.
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Ex.6. A compact subset of a non-Hausdorff space need not be closed. Give an example in

favour of this statement.

Sol. Let (X, I) be an indiscrete topology and X has more then one element in it. Since

I = {, X}, that is, only closed subsets of X are  and X it self, so no proper subset of X can be closed.

Let A be any proper subset of X, then it is not closed, but it is compact as only open cover of A is {X}

which is finite.

Ex.7. Give an example of a compact space which is not Haudorff.

Sol. Let X = {a, b, c} and  = {, {a}, {a, b}, X}. Since X is finite therefore it is compact. It is

not Hausdorff because a and b are two disjoint points such that they have no disjoint neighbourhoods.

Ex.8. If (X, ) be a compact topological space then (X,  ) is compact if  is coarser

that .

Sol. Since  is coarser then  so that  . Let {G | } be -open cover for X. Since

   therefore this collection is also -open cover for X. But X is -compact, therefore this -open

cover is reducible to a finite subcover {
i

G  | 1  i  n} which is also -open. Thus X is -compact,

that is, (X, ) is compact.

11.3 Finite intersection property (FIP)

Let C be a collection of sets. Then C is said to have the finite intersection property (FIP) iff

the intersection of members of each finite subcollection of C is non-empty, that is, if C1  C and C1 is

finite then

 {A | A  C1}  .

This collection C of sets is called fixed if it has a non-empty intersection, that is if

 {A | A  C}  

and called free if its intersection is empty, that is, if

 {A | A  C} = .

11.4 Bolzano-weierstrass property (BWP)

A topological space X is said to have Bolzano-weiertrass property (BWP) if every in finite

subset of X has a limit point. A space with BWP is also known as Frechet compact space.

Theorem 7. A topological space X is compact iff every collection of closed subsets of X

with the FIP is fixed, that is, has a non-empty intersection.

Proof. Let (X, ) be a compact topological space and let F = {F | } be a collection of

closed subsets of X having finite intersection property. We shall show that F is fixed, that is, it has a non-

empty intersection. Let, if possible, F is not fixed, that is
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 {F | } =  .....(1)

Taking complement to both sides and using De-Morgan’s law, we have

 { cF  | } = X .....(2)

Since F is closed, therefore cF  is open,  . So, by (2), the collection { cF  | }

is an open cover of X. Since X is compact, therefore, we have

 {
i

cF  | 1  i  n} = X .....(3)

Again, using complement and De-Morgan law, form (3) we have

 {
i

F  | 1  i  n} =  .....(4)

which shows that finite subcollection of the collection F has empty intersection. This contradicts the FIP

of F. Thus

 {F | }  that is F is fixed.

Converse : Let every collection of closed subsets of topological space X, with FIP, is fixed.

We shall show that X is compact. Let C = {G | } be an open cover of X, then we have

G X


 .....(5)

Taking complements and using De-Morgans law, we have
cG



  .....(6)

Thus the collection { cG  | } of closed sets is free, that is, not fixed. So this collection

does not have FIP. For, if it has FIP, then it must be fixed (by our assumption). Hence there exist a finite

subcollection of the collection { cG  | } having empty intersection, that is,

1
,

i

n
c

i
G



      for some i among  s.


1

i

n

i
G X



      (De-Morgan’s law)

which shows that cover C of X is reducible to a finite sub-cover of X. Hence X is compact.

Theorem 8. A topological space is compact if and only if  every class of closed sets with

empty intersection has a finite subclass with empty intersection.

Proof. Let (X, ) be a compact topological space and let {F : } be a family of closed

sets of X such that

I
F
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Taping complements to both sides and using De-Morgan’s law we get
c

I
F X



 .....(1)

Since F is a closed set for each , so cF  is an open set for each . Therefore, form

(1) we can say that { cF  : } is an open covering for a compact space X. So, by compactness of

X there exist finite number of inchices 1, 2 , ... , n in I such that

X
1

n
c

i
F





 Xc
1

cn
c

i
F



 
  
 


 
1

.
n

a
i

F




Conversely, suppose that every family of closed sets with empty intersection has a finite sub-

family with empty intersection. Now we have to show that X is compact. Let {G : } be an open

covering of X. Then

X
I
G



 

 Xc
c

I
G



 
  
 


  .c

I
G



 

This shows that { cG  : I} is a family of closed sets with empty intersection, since each G

in open so each cG  is closed for  I. So, by our assumption there exist a finite subfamily

{
i

cG  : i = 1, 2, ..., n} such that

1
i

n
c

i
F



 


1

i

cn
c

i
G



 
  

 



1

.
i

n

i
G X





Thus every open covering of X has a finite subcover and hence (X, ) is compact.
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Theorem 9. A compact space has Bolzario-weierstrass property.

Proof. Let X be compact space and let A be an infinite subset of X. We have to show that A has

a limit point. Let, if possible, A has no limit point in X. Then for every x  X, there exist an open

neithbourhood Gx of x such that it does not contain any point of A other than (possibly) x. The collec-

tion {Nx | x  X} forms an open cover of X. Since X is compact, therefore this cover is reducible to a

finite subcover of X, that is,

X 
1

,
i

n

x
i

N


  for some xi  X.

Since A  X, therefore

1
i

n

x
i

A N




which shows that A is finite having at most n elements as each 
ixN  has at most one element of A. Which

is contradiction as A is infinite. Hence A has a limit point. So X has BWP.

Theorem 10. In a Hausdorff topological space disjoint compact sets can be separated by

disjoint open sets.

Proof. Let (X, ) be a Hausdorff space and let A, B be any two compact subsets of X such that

A  B = . Let a  A, then a  B. We thus have a point a disjoint from the compact set B. By corol-

lary of Theorem 3 there exist open sets Ga , Ha such that

a  Ga, B  Ha     and   Ga  Ha = 

As a vanis in A form above we get

a
a A

A G


 

This shows that {Ga : a  A} is an open covering for the compact set A. By compactness of A

there exist a1, a2, ..., an all in A such that

1 2
... .

na a aA G G G   

Associated with each of 
1 2
, ,..., ,

na a aG G G we have open sets 
1 2
, ,..., ,

na a aH H H  such

that
1 2
, ,...,

na a aB H B H B H    and 
i ia aG H    for i = 1, 2, ..., n.

Thus we have
1 2

...
na a aA G G G G       (say)

and
1 2

...
na a aB H H H H     (say)

Clearly G and H are open subsets of X.

Since
i ia aG H     for  i = 1, 2, ..., n

and
iaH H          for  i = 1, 2, ..., n
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iaH G   for i = 1, 2, ..., n

Now G  H  1 2
...

na a aH G G G    

     1 2
...

na a aH G H G H G      

=     ... 

= 

 G  H = 

Thus if A and B are disjoint compact sets in a Hausdorff space X, then there exist disjoint open

sets G, H in X such

that A  G, B  H and G  H = .

Theorem 11. A compact Hausderff space in normal.

Proof. Let (X, ) be a compact Hausdorff space. We have to show that (X, ) is normal. Let

F1 and F2 be two disjoint closed sets in X. Since F1 and F2 are closed subsets of a compact space X,

so by Theorem 2, F1 and F2 are two disjoint compact subsets of X. Again, since F1 and F2 are disjoint

compact subsets of a Hausdorff space X, so by Theorem 10 there exist two open subsets G and H of X

such that

F1  G, F2  H   and   G  H = .

Thus disjoint closed sets in X have been separated by disjoint open sets in X and hence (X, ) is

normal.

11.5 Locally compact space

A topological space (X, ) is said to be locally compact if and only if every point of X has a

compact neithbourhood.

Thus X is locally compact space if for every p  X, there is an open set G and a compact set K

such that

p  G  K.

or

A topological space (X, ) is said to be locally compact if and only if every point in X has atleast

one neighbourhood whose closure is compact.

Ex.9. The real line R with usual topology u on R is locally compact, since for each x  R

we have

x  (x – 1, x + 1)  [x – 1, x + 1],

where [x – 1, x + 1] is compact being closed and bounded subset of R.
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Theorem 12. Every compact topological space is locally compact, but converse is not nec-

essarily true.

Proof. Let (X, ) be a compact topological space and let x be an arbitrary point in X. Since X is

an open set, so it is neighbourhood for each x  X. As X is given to be compact, so every point of X

has a compact neighbourhood and hence X is locally compact.

The converse of above theorem is not necessarily true because if we consider the discrete

topological space (X, D = P (X)), where X is an infinite set is not compact space but it is locally com-

pact because D-open set {x} is neighourhood of x. Also {x} being a finite subset of a topological space

is always compact. Hence for each x  X there is a D-open set {x} which is compact such that

x  {x}  {x}. Hence (X, D) is locally compact but not compact.

Theorem 13. Every closed subset of locally compact space is locally compact

or

Every closed subspace of a locally compact space is locally compact.

Proof. Let (X, ) be a locally compact topological space and let Y be any closed subset of X.

Then (Y, y) is a closed subspace of X. Now we have to prove that y is a locally compact space.

Let a be any arbitrary element of Y, then a  X as Y  X. Since X is a locally compact space

and a  X, therefore there exist Ga   and a compact subset K of X such that

a  Ga  K.

 a  Ga  Y  Y  K, since a  Y .....(1)

Since Y is a closed subset of X and Y  K  K, so Y  K is a closed subset of K. Again, since

K is a compact set and we know that every closed subset of a compact space is compact, so Y  K is

a compact subset of K and hence of Y as Y  K  Y. Now

Ga   Ga  Y Y, i.e., Ga  Y

is an open subset of Y. Form (1) we have

a  Ga  Y  Y  K

 Y  K is a neighourhood of a in Y and we have shown that Y  K is compact. Thus corre-

sponding to each a in Y there is a compact neighourhood of a in Y and hence Y is locally compact.

Theorem 14. Every open continuous image of a locally compact space is locally compact.

Proof. Let (X, ) be a locally compact space and let (Y, U) be any topological space. Also, let f

be a an open and continuous function form X into Y. Now we have to show that f (X) is locally compact

subspace of Y. Let y be any element of f (X), then there exists x  X such that f (x) = y.

Since (X, ) is locally compact space and x  X, so there exist an open set G and a compact

set K in X such that
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x  G  K

 y = f (x)  f (G)  f (K) .....(1)

Since f is an open mapping and G is an open subset of X, so f (G) is an open subset of f (X).

Again, since K is a compact subset of X and f is a continuous mapping form X into Y, so f (K) is a com-

pact subset of f (X), as continuous image of a compact set is compact. Hence form (1) we can say that

every point of f (X) has a compact neighourhood in f (X) and hence f (X) is locally compact subspace

of Y.

Self-learning exercise-1

1. Define following :

(i) Open-cover

(ii) Compact space

(iii)Finte intersection property

(iv) Bolzano-weierstrass property

2. Which of the following statements are true :

(a) Every indiscrete space is compact.

(b) Every discrete space is compact.

(c) Every finite space is compact.

(d) A closed subset of a compact space is compact.

(e) Every locelly compact space is compact.

(f) Every closed subsets of a locally compact space is locally compact.

3. Give an example to show that a compact subset of a non- Housdroff space need not to be closed.

11.6 Summary

In this unit, we hove studied have about compactness of the topological space. We observed

that compactness is an absolute property . We have also studied about local compactness and related

theorems.

11.7 Answers to self-learning exercises

Self-learning exercise–1

2. (a), (c), (d), (f) are true.

3. Indiscrete space (X, I), where X consists of more than one point. Let A be proper subset of X,

then A is not closed as only closed sets are  and X. A is compact as only open cover of A is

{X}, which is finite. Also X is not housdroff.
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11.8 Exercises

1. Show that a topological space (X,is compact iff every basic open cover of X has a finite

subcover.

2. Show that cantor’s set is compact.

3. Show that compactness is a topological property.

4. Show that a coofinite topological space (X, tis compact.

5. If  f  be a mapping of a locally compact space X onto a housdorff space Y such that f is continu-

ous as well as open, then Y is locally compact.

6. Show that every closed interval [a, b] is compact with respect to relativised U-topology

for [a, b].

7. Show that no infinite discrete space is compact.

8. Show that the intersection of the members of an arbitrary family of closed and compact subsets

is also closed and compact.
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Unit 12 : One Point Compactification
Structure of the Unit

12.0 Objectives

12.1 Introduction

12.2 Compactification

12.3 One-point compactification

12.4 Summary

12.5 Answers to self-learning exercises

12.6 Exercises

12.0 Objectives

In this unit, you will learn an important concept of compactness named compactification. The

one-point compactification was introduced by Alexandroff and Urysohn in 1924. One-point

compactification allows us to add a single point to a locally compact Hausdorff space X, in order to

obtain a compact Hausdorff space Y containing X  as a subspace.

12.1 Introduction

As we have already studied, compact space and sets have a number of useful properties. For

example;

(i) Compact sets are closed and bounded in a metric space,

(ii) Sequences have convergent subsequences in a compact subset of a metric space,

(iii) Compact metric spaces are complete, and

(iv) Continuous functions on compact spaces attain minimum and maximum values.

Furthermore, we have also studied the useful properties possessed by a Hausdorff space. For

example

(i) Single point sets are closed in a Hausdorff space, and

(ii) Convergent sequences converges to a unique limit in a Hausdorff space.

Unfortunately, we do not always have the advantages afforded by a compact and Hausdorff space

in the topological spaces, we use.

It is possible to embed a non-compact topological space (X,) into a compact space (Y, u) and

then use the properties of Y to gain information about X. Such a space Y is called a compactification

of X.
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12.2 Compactification

A topological space X, is said to be embedded in a topological space Y, if X is homeomorphic to a

subspace of Y. If Y is a compact space, then Y is called a compactification of X. Frequently, the

compactification of a space X is accomplished by adjoining one or more points to X and then defining

an appropriate topology on the enlarged set, so that the enlarged space is compact and contains X as a

subspace.

Ex. Consider the real line R with the usual topology U. We know that the space

(R, U) is not compact. We adjoin two new points, denoted by  and – , to R and call the en-

larged set R* = R {– , } the extended real line. The order relation in R can be extended

toR* by defining – < a < ,   a R. The class of subsets of R* of the form (a, b) = {x R* :

a < x < b}, (a, ] = {x  R* : a < x} and [– , a) = {x  R* : x < a} is a base for a topology u*

on R*. Furthermore the space (R*, u*) is compact space and contain (R, U) as a subspace, and

so it is a compactification of (R, U).

12.3 One-point compactification

Let (X, ) be any topological space. We shall define the Alexandroff or one-point

compactification of (X, ), which we denote by (X, THere :

1. XX where , called the point at infinityis distinct from every other point in X,

i.e. X.

2.  be the collection of all sets U in X such that (i) Uis open in X or (ii) X~ Uis a closed

and compact subset of X,

i.e. T= {UP (X) : Uor X~ Uis a closed and compact subset of X},

where P (X) is power set of X.

Theorem 1. Tis a topology on X.

Proof. :  [T. 1]   Since X~ X= is closed and compact in X,

Thus XT. As is open in X 

 T
thus XTand T.

[T. 2] Let {Gbe any collection of open sets in X. To show

G G T 


 

First assume that G  , then G,  and so

G

 = G    is a topology an X}
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 G G T 


  y definition of T]

If G


   G for some But then by definition. (ii) X~ G

is closed and compact in X.

Now  ~ ~ .X G X G   




thus  ~X G 

  is closed and compact in X.

So  ~ ~X X G G G T    
 

   

[T. 3] Let A, B T
ow if and Bthen A, B and so

A B  A  B T
If and Bthen A B  so that X ~ B is a closed and compact subset of X.

But X ~ B = X ~ B and so X ~ B is a closed in X, thus B  X and hence A  B A B T.

If A and Bthen similarly A B T.

If Aand B, then X~ A and X~ B are both closed and compact subsets of X. But

then (X~ A)X~ B) is closed and compact in X. Also

(X~ A)X~ B) = X~ (A B

 X~ (A B is closed and compact in X

 A  B T.

Thus is all cases A  B T, and therefore by [T.1], [T. 2] and [T. 3], (X,T) is a topologi-

cal space.

Theorem 2. Let (X, T) be the one- point compactifiction of a topological space

(X,), then (X,T) is a compact space.

Proof. : Let C = {Gbe an open cover for X. Then G for some so

that

G = X~ F,    where F, is compact and closed in X

[By definition of (X,T )]

Since C is an open cover of X and F  X  X, thus C is an open cover of F also and F is

compact, thus there exist a finite sub-cover  1 2
, ,...,

n
G G G    of C such that

F = X ~ G 1 2
... .

n
G G G     

ut then  1 2
, , ,...,

n
G G G G     is a finite sub-cover of C covering X. Hence X is compact.



235

Theorem 3. Let (X,T) be the one- point compactifiction of a topological space (X,),

then X is a subspace of X.

Proof. : Let U Tif Uthen U [By definition]  and so we write U= UX.

If UThen UX F, where F is closed and compact in X  [By definition],  then

UX = (X ~ F)  X = X ~ F,        which is open in X.

Thus if U T                      then U X  

ow let V then Vand so V  T.

Hence  T 

Combining (1) and (2) we find that (X, is a subspace of (X, T).

Theorem 4. Let (X,T) be the one-point compactifiction of a topological space (X),

then X  = X

Proof.  Let G be any T-open nbd of . Then G = X – F, where F is compact and closed in

X. But X is non compact and so F X. Hence G X hus  X . Accordingly X  = X.

Theorem 5. Let (X,T) be the one-point compactification of a topological space (X),

then X is a Hausdorff space if and only if is X Hausdroff and locally compact.
Proof. First  assume that X is a Hausdorff space. By Theorem 3, X is a subspace of X and

the property of being Hausdroff is hereditary. Hence X is also Hausdroff. Let x  X, then x and  are

distinct points in X. Since X is Hausdroff, thus there are T-open nbds U of x and V of such that

UV = Hence UX ~ V so that x UX (X ~ V) X = X ~ V. Since U is

- open it follows that X ~ V is a -open nbd of x. But  V and V  T imply that X ~ V = X ~ V

is closed and compact in X. Thus each point x of X has a compact nbd X ~ V in X and so X is locally

compact. Hence we have shown that X is Hausdorff and locally compact.

Conversely, suppose that X is Hausdorff and locally compact. We show that X is Hausdroff.

Let x, y be distinct point of X.

Case 1 : Suppose x,  y X. Since X is Hausdroff we can find -open nbds G of x and H of y

such that G Since  does not belong to G and H we have G and H are also T-open.

Hence X is also Hausdorff.
Case 2 : Suppose x and y = hen x X . Since X is locally compact, we can find a

compact nbd C of x in X. But X is Hausdroff and so the compact subset C of X is closed in X. Hence

by definition V = X ~ C is T-open nbd of Since C is a nbd of x we have x U C, For some

-open set U in X. But then U V = gain, By definition U T. Thus x and y have T- nbds U

and V respectively with U V = and so X is Hausdorff.

Theorem 6. Let (XT) be the one-point compactification of a topological space

(X). Then (X) is  uniquely embedded into (XT) such that X ~ X  is a singleton.
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Proof. Suppose X and Y are two one point compactifications of X. We then have

X~ X = {and Y~ X = {y}.

Define a map h : XY  by

h (x)
,

, .y

x x X
x X

    

Then h is a continuous bijection. We show that h is a homeomorphism. Let U be open in X. If

U  X, the h (U) = U, which is open in Y. If U is an open nbd of , then C = X~ U is closed and

compact in X. Since C is compact, by continuity of h, it follows that h (C) is a compact subset of X. But

X is Hausdorff and so h (C) is closed in X. Thus Y ~ h (C) is open in Y. But h is a bijection and so

h (X~ C) = Y– h (C) . Thus h (U) = h (X~ C) is also open in Y, whence h is an open map.

Therefore h is a homeomorphism of X on to Y. This proves the desired result.

Ex.1. Let R be the set of all real numbers. Show that the set S = {(x, y ); x2 + y2 = 1} in

R 2 is the one point compactification of R and that = (0, 1) is the point at infinity.

Sol. For all (x, y) R2, let f (x, y) = x2 + y2 – 1. Then f  is continuous function on R2 to R.

Also S = f –1 ({0}). But {0} is closed in R. Hence by continuity of f, S is closed in R2.

Moreover, S is a subset of the closed rectangle [–1, 1] × [–1, 1]  R2. Hence S is bounded in

R2. Thus S is closed and bounded subset of R2 consequently S is compact in R2 by Heine-Borel

Theorem.

We have, R is locally compact, since x R lies in some open interval (a, b), which is con-

tained in the compact set [a, b].

Now we have to show that R is embedding in some subset Y of S such that Y = S ~ {where

 We define h : R S – {by

h (x)
2

2 2
2 1,

1 1
Rx x x

x x

 
      

and g : S – {R, by

g (x, y) = 1
x

y
  (x, y)S – {where 

then h and g are continuous,

Also h (g (x, y))  ,
1

xh x y
y

 
   

    [since x2 + y2 =1] and

g (h (x))
2

2 2
2 1,

1 1
x xg x

x x
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These relation imply that g = h –1 and so h–1 is continuous. Hence h is a homeomorphism of
R on

h (R) = S – { S.

h x ( )

(0, 0)

(0, 1)

x

Therefore, S is the one-point compactifiction of R and (0, 1) is the point at-infinity of this

compactification.

Ex.2. The one- point compactification of the plane is homeomorphic to the sphere.

Sol. Let C denote the <x, y > – plane in Euclidean 3-space R3, and let S denote the sphere

with center (0, 0, 1) on the z-axis and radius 1. The line passing through the “North-pole”

(0, 0, 2) S and any point p C intersects the sphere S in exactly one point p  distinct from 

as show in the figure.

Let f : C S be defined by f (p) = p. Then f is, in fact a homeomorphism from the plane C

(which is not compact) on to the subset S – { of the sphere S (which is compact). Hence S is a one-

point compactification of C.

Note : When the plane C is considered to be the complex plane C , then the one-point

compactification C  is called the Riemann sphere or the extended complex plane and the

mapping  f  is known as stereographic projection.
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Self-learning exercise-1

1. The one-point compactification of the interval (0, 1] is ...... .
2. The one-point compactifiction of the interval (0, 1) is homeomorphic to ....... .
3. The one-point compactifiction of the set of complex numbers C is called ..... .

4. In one-point compactifiction of the set of complex numbers C , the point at infinity is mapped

to .......... .

5. Let Y = X  be the one point compactification of X, then X  = ...... .

12.4 Summary

You have learnt a very useful concept of one- point compactification of a topological space in

this unit. You have learnt that by adjoining a point at infinity, the spaces R and C can be made compact

spaces, and with the help of which, important consequences can be drawn.

12.5 Answers to self-learning exercises

1. [0, 1]
2. Circle C(cos 2 t, sin 2 t) : t 

 Extended complex plane

4. North pole N = ( 0, 0, 2) of the sphere S

5. Y.

12.6 Exercises

1. Show that the one-point compactification of unit open interval (0, 1) is homeomorphic to the
circle.

2. Show that the one-point compactification of set of rational numbers Q is not Hausdorff.
3. Let (X,be a topological space and let (X, Tbe its one-point compactifiction, then X is a

dense subset of X if and if X is not compact.
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UNIT 13 : Connected and Locally Connected Spaces
Structure of the Unit

13.0 Objectives

13.1 Introduction

13.2 Separated sets

13.3 Connected space

13.3.1 Connected and disconnected set

13.3.2 Connected and disconnected space

13.4 Locally connected space

13.5 Summary

13.6 Answers to self-learning exercises

13.7 Exercises

13.0 Objectives

In this unit, we shall study about connectedness of a topological space. For this purpose we

shall study separated subsets of a topological space. We shall also discuss locally connectedness of a

topological space.

13.1 Introduction

Connectedness is an important property of the topological space which is significant in the study

of continuity of curves. The connectedness is a topological invariant property. Connected space means a

single piece and when it is stretched or bent without tearing, then it remains a single piece. In this unit,

mathematical formulation of this concept is discussed.

13.2 Separated Sets

Let (X, ) be a topological space. Let A and B be two non-empty subsets of X, then A and B

are said to be -separated or simply separated sets if and only if

A B      and   .A B  

where A  and B  are closures of set A and set B respectively..
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Notes :
1. Two conditions A B    and A B    can be written as single condition

    .A BA B    

2. From the conditions of the separated sets it is clear that A and B are disjoint and neither of

them contains limit point of the other, for, if A and B are separated sets, then

A B     and  .A B  

Now A A A B A B     

AB = 
We know that A A A 

 B A  B A A  

     B A B A B A B A          

 B A 
Similarly we can show that .A B  

Ex.1.  Consider the topological space R of real numbers with usual topology U.

Let A = (1, 2), B = (2, 3], C = [2, 3),

then      1,2 , 2,3 , 2,3 ,A B C  

so A B    and ,A B    hence A and B are separated.

Also, A and C are not separated as  2 ,A C     although they are disjoint. Hence disjoint
sets need not be separated.

Ex.2.  In (R U), the set A = (– , 0) are disjoint but not separated as

     0, 0, 0 .A B       

Theorem 1.  Let (X, ) be a topological space. Let A and B be separated subsets of X and

C A, D B, then C and D are also separated, where C and D are non empty.

Proof : Since A and B are separated so

A B   and  A B   .....(1)
Given that, C A C A   .....(2)

and D B D B   .....(3)

From (1), (2) and (3), we have

C D    and C D  
and thus C and D are separated sets.

Theorem 2.  Let (X, ) be a topological space and (Y, Y) be its subspace. Let A and B be

two subsets of Y, then A and B are Y-separated, if and only if A and B are -separated.

Proof : Let clX (A), clY (A) be -closure and Y-closure of A respectively and clX (B), clY (B)

be -closure and Y-closure of B respectively.
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We know that

clY (A)  Xcl A Y   and    Y Xcl B cl B Y  .....(1)

Now,

A clY (B) = A [clX (B) Y]      [by (1)]

= A clX (B)         (    A Y)

Similarly clY (A) B = clX (A) B

Thus, we have

A clY (B) = A clX (B) =  .....(2)

clY (A) B = clX (A) B =  .....(3)

From (2) and (3), we may conclude that A and B are -separated iff A and B are Y-separated.

Theorem 3.  Two open subsets of a topological space are separated iff they are disjoint.

Proof : Let A and B be two open subsets of the topological space X. First suppose that A and

B are separated then by the definition, A and B are necessarily disjoint.

Conversely, let A and B are disjoint. Since A and B are open then Ac and Bc are closed, then
c cA A   and  c cB B .....(1)

and A B =  A Bc and B Ac

cA B   and cB B  G H G H  

cA B   and cB A      [by (1)]

A B    and .B A  
Thus A and B are separated.
Theorem 4.  Two closed subsets of a topological space are separated iff they are disjoint.

Proof : Let A and B be two closed subsets of the topological space X. Since separated sets are

always disjoint therefore we shall prove that if A and B are disjoint then they are separated. Suppose A

and B are disjoint, then

A B =  .....(1)

Since A and B are closed therefore

A A  and B B .....(2)
From (1) and (2). we have

, .A B A B     
Thus A and B are separated.
Theorem 5.  Two disjoint sets A and B are separated in a topological space X iff they are

both open and closed in the subspace A B.

Proof : Let A and B be two disjoint subsets of the topological space X. First suppose that A

and B are separated.
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Since A and B are separated in X, therefore

A  clX (B) =     and   clX (A) B =  .....(1)

Let A B = Y ;  then closure of A in Y,

clY (A) = clX (A) Y

= clX (A) (A B)

= (clX (A) A) (clX (A) B) (by distribution law)

= A  [   A clX (A) and by (1)]

= A

Thus, clY (A) = A A is closed in Y i.e. in A B

Similarly, we can show that B is closed in A B.

Now, Since A and B are disjoint therefore both are complement of each other in A B, thus

both are open in A B also.

Conversely, suppose that A and B are both open and closed in A B = Y.

Since A is closed in Y, therefore

A = clY (A)

= clX (A) Y

= clX (A) (A B)

= (clX (A) A) (clX (A) B)        (by distribution law)

= A (clX (A) B)                           [   A clX (A)] .....(2)

either clX (A) B =    or   (clX (A) B) A

but A (clX (A) B) = (A B) clX (A)

= clX (A)            (    A B = )

= 

so clX (A) B and A are disjoint so clX (A) B can not be a subset of A so

clX (A) B = . .....(3)

Similarly, we can show that

A clX (B) =  .....(4)

From (3) and (4), A and B are separated in X.

13.3 Connected space

13.3.1 Connected and disconnected set :

Let (X, ) be a topological space. A subset A of X is said to be -disconnected or simply

disconnected iff  G, H  X such that G and H are -separated and A = G  H, that is, iff  two non-

empty subsets G and H of X such that
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(i) ,G H G H     

(ii) A = G H

The set A is said to be connected iff it is not disconnected.

13.3.2 Connected and disconnected space :

A topological space X is said to be disconnected iff it is the union of two separated sets, that is,

iff there exists two non-empty subsets A and B of X such that ,A B A B       and X = A B.
Space X is said to be connected iff it is disconnected. Here (A B) is called disconnection of X.

Theorem 6.  Let (X, ) be a topological space and (Y, Y) be its subspace. A subset A of Y

is Y-disconnected iff it is -disconnected.

Proof : First suppose that A is Y-disconnected, then there exists two Y-separated sets B and C

such that A = B C. By the theorem 2, if B and C are Y-separated, then they are -separated. Thus A

can be expressed as the union of two -separated sets. Hence A is -disconnected. Similarly, using theorem

2, we can prove the converse part of the theorem.

Theorem 7.  A topological X is disconnected iff there exists a proper subset of X which is

both open and closed in X.

Proof : First suppose that G is a proper subset of X such that it is both open and closed. Let

Gc = H, then H is also proper subset of X (G G  X  Gc  X, Gc ).

Also, G Gc = X G H = X .....(1)

and G H = . .....(2)

Since G is both open and closed therefore H is also both open and closed.

Now, G is closed G G 

H is closed ,H H 

thus,

G H = G H   and G H   .....(3)

that is, G and H are separated.

From (1) and (3) we can conclude that X can be expressed as union of two separated sets.

Hence X is disconnected.

Conversely, let X be disconnected, then  two non-empty subsets G and H of X such that

,G H G H      .....(1)

and X = G H. .....(2)

We know that separated sets are disjoint so

G H =  .....(3)

From (2) and (3), Gc = H and G, H are proper subsets of X.
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Now, G H X G H X              H H .....(4)

From (1) and (4), cG H  and since H  is closed, Gc is closed and hence G is open. Similarly

H is open. Since both are complement of each other, therefore both are closed also, thus G is a non-

empty proper subset of X which is both open and closed.

Theorem 8.  A topological space X is disconnected iff X is the union of two non-empty

disjoint open (closed) sets.

Proof : Let X be a topological space. First suppose that X is disconnected. Then, by theorem

7, there exists a non-empty proper subset A of X which is both open and closed. Then Ac is also open

closed. Thus, A and Ac are two non-empty disjoint open (closed) sets such that

X = A Ac.

Conversely, let X be union of two non-empty disjoint open (closed) sets. Let A and B be two

non-empty open (closed) subsets of X such that A B =  and X = A B. Then A = Bc, so A is

closed (open) also as B is open (closed). Thus A is a non-empty proper subset of X which is both open

and closed. Hence by theorem 7, X is disconnected.

Ex.3.  Let X = {1, 2, 3} and = {, {1}, {2, 3}, X}, then {1} is a proper subset of X

which is both open and closed. Hence by theorem 7, X is disconnected.

Ex.4.  Let X = {1, 2, 3} and = {, {1}, {2}, {1, 2}, X}, then closed sets are X, {2, 3},

{1, 3}, {3}, thus there is no proper subset of X which is both open and closed. Hence X is not

disconnected, that is, X is connected space.

Ex.5.  Let X = {a, b, c, d, e} and = {, {a}, {c, d}, {a, c, d} {b, c, d, e}, X}, then X is

disconnected as {a} is a proper subset of X which is both open and closed.

Let Y = {b, d, e} be a subset of X then Y  = {, {d}, Y} is relativized topology for Y. Here 

and Y are only subsets of Y which are both Y-open and Y-closed. Hence is no proper subset of Y which

is both open and closed. Thus Y is connected subset of X.

Ex.6.  Every discrete space containing more than one point is disconnected.

Proof : Let (X, D) be a discrete space containing more than one point. We know that D con-

tains all the possible subsets of X, hence every singleton subset of X is proper subset of X which is both

open and closed. Hence X is disconnected.

Ex.7.  Every indiscrete topological space is connected.

Proof : Let (X, I) be a indiscrete space then I = {, X}, that is, no proper subset of X is both

open and closed. Hence X is not disconnected, so X is connected.

Theorem 9.  Closure of a connected set is connected.

Proof : Let (X, ) be a topological space and Y is subset of X such that Y is connected.
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Let, if possible, closure of Y, i.e. Y  is disconnected. Then there exists a proper subset A of Y
such that A is both open and closed in Y .

A is open in Y   G , such that

A G Y  .....(1)

A is closed in Y   H X,  H is -closed such that

A H Y  .....(2)
Now,

G Y    G Y Y Y Y   

 G Y Y  

= A Y ....(3)

Similarly,

H Y = A Y .....(4)

from (3) and (4)

G Y = H Y .....(5)

Also, since G is -open, therefore G Y is open in Y and since H is -closed, therefore H Y

is closed in Y. Thus G Y and H Y both are open as well as closed in Y. Since Y is connected,

therefore G Y and H Y can not be proper subset of Y, that is, either

G Y =   or   G Y = Y

Case 1. If G Y = and by (3) G Y = A y

 A Y = 

 ,Y Y A     since   A Y .....(6)

  Y Y A 

   is closed in as  is open in soY Y A Y A Y A Y Y A Y A     

 A = 

which contradicts the fact that A is proper.

Case 2. If G Y = Y,    then by (3),

A Y = Y

 Y A

  is closed inY A A A Y A A   

 Y A

But A Y ,   So   A Y
which contradicts the fact that A is proper. Hence Y  is not disconnected, that is Y  is connected.
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Theorem 10.  Let G be a connected subset of a topological space (X, ). Let G A B,

where A and B are separated sets, then either G A or G B.

Proof : Since G A B, so G (A B) = G

 (G A) (G B) = G .....(1)

Now, to shows that G A or G B, we shall show that either

G A = 

or G B = .

Let us suppose that G A  and G B .

Also,

         G A G B G A G B G B G B         

          G A G B G G A B G G           

 A and B are separated, so A B   

    G A G B     .....(2)

Similarly, we can show that

   G A G B     .....(3)

From (2) and (3), we can conclude that G A and G B are separated sets. From (1), G

can be expressed as the union of two non-empty separated sets. This shows that G is disconnected.

Which contradicts the fact that G is connected. So one of the sets G A and G B must be empty.

If G A = , (1)  gives  G B = G G B

and if G B = , (1)  gives  G A = G G A

This completes the proof of the theorem.

Theorem 11.  Let G be a connected subset of a topological space (X, ). Let G A B,

where A and B are disjoint open (closed) subsets of X, then either G A or G B.

Proof : By the theorem 3, A and B are separated if they are disjoint and open. By the theorem

10, G = A B either G A or G B.

Theorem 12.  Let G be a connected subset of a topological space (X,). H is a subset of

X such that ,G H G   then H is connected.

Proof : Let, if possible H be disconnected. Then there exist two separated sets A and B such

that H = A B, then

G H G A B

then by theorem 10, we have

G A   or   G B.
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Suppose G A, then

G A    G B A B   

 , are separated so G B A B A B      

 G B G B       .....(1)

Also H G  A B G H A B    

B G 

G B B   .....(2)

From (1) and (2), B = 

which is a contradiction as A and B is non-empty being separated sets. Thus our assumption is wrong.

Hence H is connected.

Theorem 13.  Union of arbitrary family of connected subset of a topological space is con-

nected if the family is with non-empty intersection.

Proof : Let X be a topological space. Let {G | } be a family of subsets of X such that

G is connected for all . Let

G = {G | }.

We have to show that G is connected. Let, if possible, G is disconnected. Then there exist two

separated sets A and B such that

G = A B .....(1)

Since given collection is with non-empty intersection therefore

 {G | } .

Let x {G | } be arbitrary, then

x G  

and x G = A B                      [by (1)]

 x G  

and x A  or  x B

 x G  A,   ,   if   x A

 G  A  ....(2)

Now, since Gis connected for all , such that

G  A B

where A and B are separated sets, therefore by the theorem 10,

either G  A or  G B .....(3)
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Now, A and B are separated so they are disjoint, thus

A B = ,G A   [by (2)]

 |G A  

G A

G A                     (   A G as G = A B)

B                       (   A B = )

which is contradiction as B is non-empty.

Hence G is connected.

Theorem 14.  Union of arbitrary family of connected subset of a topological space is con-

nected if one member of the family intersects every other member of the family.

Proof : Let {G | } be a family of connected subsets of a topological space X. Also let

0
G be the fixed member of the family such that

0
,    G G

Now, we have to show that G G


   is connected. Let 
0

G G H    , then H is con-

nected for all as it is union of two connected sets having non-empty intersection (by theorem 13)

Now, H

  0

G G 


 

0
G G 



 
  
 


0
a

G G G  
 

 
  

 
 

= G .....(1)

Also, H

  0

G G 


 

0
G G 



 
    
 


(
0

G  intersects G,  , so 
0

G   ).
Thus

H



is connected by theorem 13, being the union of family of connected sets, where family is with non-empty
intersection. Hence by (1) G is connected.
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Theorem 15.  A subset of R is connected iff it is an interval.

Proof : Let A be a connected subset of R. Suppose, if possible, A is not an interval. If A is

empty or singleton set then there is nothing to prove, so let A contains more than are point. Let x, y A

such that x < y and  r R such that x < r < y but r A, as A is not an interval.

Now,

x < r < y x (–  , r),  y (r,  )

x A(–  , r),  y A  (r,  )

Now, [A (–  , r)] [A  (r,  )] = A .....(1)

and [A (–  , r)] [A  (r,  )] = A (–  , r) (r,  )

=   [ (–  , r) (r,  ) =  

Also, since (–  , r) and (r,  ) are open in R, therefore A (– , r) and A (r,  ) are

open in A. So, by (1) and (2), we can conclude that A is union of two disjoint open sets, hence by

theorem 8, A is disconnected, which is a contradiction. Thus A is an interval.

Conversely, suppose that A is an interval. Let if possible A be not connected that is, A is discon-

nected. Then there exist two non-empty disjoint sets G and H, both are closed in A such that

A = G H.

Since G H = and G, H are non-empty therefore we can select two elements x, y R such

that x G, y H and x y, so x, y A also. Without loss of generality, we may assume that x < y.

Since A is an interval and x, y A, therefore

[x, y] A [x, y] G H.

Let p be supremum of G [x, y], then obviously

x p  y

Since p is supremum of G [x, y], therefore for each > 0,   q G [x, y] such that

p – < q  p.                     (by the definition of supremum)

This shows that every neighbourhood of p contains a point of G [x, y] and hence a point of

G. Thus p is an adherent point of G, that is, p is a limit pt. of G or p G. Since G is closed therefore in

both the cases p  G. Since G and H are disjoint therefore p  H. Now, y  H so p  y. Thus from

(1), we have p < y.

Also, 0, p H    (   p is sup. of G [x, y] )

This shows that every neighbourhood of p contains a point of H other than p, as p H. Hence

p is a limit point of H. Since H is closed, so p  H as closed set contains all of its limit point. This is a

contradiction as p  H. So our assumption is wrong. Consequently A is connected.

Corollary : The set R of real numbers is connected.

Proof : Since R is an interval, therefore by the theorem 15, R is connected.
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Theorem 16.  Continuous image of a connected space is connected.

Proof : Let X be a connected topological space and Y be any arbitrary topological space. Let

f : XY be a continuous mapping of X into Y. We have to show that f (X) is connected. Suppose, if

possible,  f (X) is disconnected. Then there exist G1 and G2 ; both open sets in Y such that

f (X) = [G1 f (x)] [G2 f (x)] ......(1)

and G1 f (x), G2 f (x) both are non-empty disjoint, open sets in f (X).

Now, f –1 [(G1 f (X)) (G2 f (X))] = f –1 ()    [G1 f (x), G2 f (X) are disjoint]

 f –1 [(G1 G2)  f (X)] =   (    f –1 

 f –1 (G1)  f –1 (G2) X = 

 f –1 (G1)  f –1 (G2)= [   f –1 (G1)  f –1 (G2) is subset of X]

and f –1 [(G1f ( X ) G2 f ( X ))] = f –1[ f ( X )]             [by (1)]

 f –1[(G1 G2) f ( X ) ] = X

 f –1(G1G2) f –1 [f ( X )] =X

 [ f –1 (G1) f –1 (G2)] X = X

 f –1 (G1) f –1 ( G2 ) = X            (  f –1 (G1)f –1 (G2) is a subset of X)

Since f is continuous, therefore f –1(G1) and f –1(G2) are non-empty open sets in X as G1 and

G2 are non-empty open sets in Y. Thus there exist two non-empty proper open subsets of X which we

disjoint and hence X in a disconnected space, which contradicts the fact that X in connected , hence f

(X) is connected.

Theorem 17. If every two points of a subset A of a topological space X are contained in

some connected subset of A, then A is connected.

Proof : Suppose, if possible A is not connected. Then there exist two non-empty subsets G and

H of X such that ,G H G H      and G Since G  then p  G, q 

and p and q is contained in some connected subset B of A.

Now, B G  B G    or    B H (theorem 11)

either p,  q G    or   p,  q H

Let p, q G, but   q G 

which is a contradiction as G Consistently A is connected.

13.4.3. Component :

A maximal connected subspace C of a topological space X is called a component of X. In other

words, C is component of X iff it is connected and is not contained in any other connected subspace

of X.
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Notes :

1. If a topological space is not itself connected then it can be decomposed into a disjoint class

of maximal connected subspace.

2. Components are always non-empty, since singleton sub- sets of X are always connected.

3. If X is connected then it has only one component, X itself.

4. Each point in X is contained in exactly are component of X.

5. Every component of X is always closed.

13.4 Locally connected space

Definition : A topological space (X, ) is said to be locally connected at a point x  X iff for

every open neighbourhood G of x,  connected open neighborhood H of x such that H  G, that is iff

collection of all connected neighbourhood of x forms a local base at x.

Topological space X is said to be locally connected iff it is locally connected at each of its

points .

Ex.8. Every discrete space is locally connected.

Sol. Let (X, D) be a discrete space. Since Every subsets of a discrete space is open therefore

{x} is open for every x X . Also {x} is connected being a singleton set. Hence {x} is connected

open neighbourhood of x, which is contained in every open neighbourhood of x. Thus X is locally con-

nected .But a discrete space containing more than one point is disconnected (example 6.)

Ex.9. Give an example of a locally connected space which is not connected.

Sol. A discrete space containing more than one point is not connected but is locally connected

(example 8). Let us consider another example. Let (R, U) be the usual topological space.

Let (a, b) and (c, d) be two disjoint open intervals on real line. Let G = (a, b)  (c, d) and

without loss of generally we may assume that a < b  c < d.

Now, (a, b) is open in R (a, b)  G is open in G

 (a, b) is open in G                  (   (a, b) G )

Similarly, (c, d) is open in G. Thus G is union of two disjoint non-empty open sets, so G is

disconnected. Let x G be arbitray and let A be any open neighbourhood of x in G, then > o such

that

(x – x + ) 

We know that any interval in R is connected ( Theorem 15 ). So (x – , x + connected, and

hence connected in G. Thus every open neighourhood of x in G contains an open connected

neighbourhood of x in G. Hence G is locally connected as x is arbitrary.
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Theorem 18. The image of a locally connected space under a open continuous mapping is
locally connected.

Proof : Let X be a locally connected topological space. Let f  be a open and continuous map-

ping of X onto an arbitrary topological space Y. We have to show f (X) = Y is locally connected.

Let y Y be arbitrary and H be any open neighbourhood of  y in Y. Since y Y = f (X) there-

fore   x X such that y = f (x).

Also f  is continuous, so H  is open in Y f –1 (H) is open in X such that x  f –1(H).

Thus f –1(H) is a open neighbourhood of x. Since X is locally connected,   a connected open

neighbourhood G of x such that

x G f –1 (H)

 f (x) f (G) H

 y f (G)      y = f (x)] ....(1)

Since f  is open,  f  (G) is open set in Y. Also, G is connected in X, so f (G) is connected in Y,

being the continuous image of connected set (by theorem 16). Thus, from (1), each open neighbor-

hood  H of  y contains connected open neighbourhood f (G) of y. Since y is arbitrary element of Y,

therefore Y is locally connected.

Self-learning exercise-1

Find true and false statements :

1. Separated sets are always disjoint.

2. Disjoint non-empty sets are always separated.

3. Two disjoint non-empty sets are separated if both are open.

4. A topological space X is disconnected iff it is union of two non-empty disjoint open sets.

5. Every discrete space is always connected.

6. Every indiscrete  space is always connected.

7. Closure of a connected set is always connected.

8. (R, U) is disconnected.

9. Locally connected space is always connected.

10. Connected space need not be locally connected.

13.5 Summary

In this unit, we have studied about connectedness of a topological space. Different properties of
a connected and disconnected space are studied. Locally connectedness and connectedness are two
independent properties, of a topological space, that is, local connectedness neither implies nor is implied
by connectedness. Also, both are topological properties.
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13.6 Answers to self-learning exercises

1 . true 2. false 3. true 4. true

5.  false 6. true 7. true 8. false

9.  false 10. true.

13.7 Exercises

1. Show that a cofinite topological space X is connected if X is infinite and disconnected if X is

finite.

2. Let A and B be two non-empty subsets of a topological space X, such that both are closed in

A B. If A B and A B are connected then show that A and B a are connected.

3. Show that any finite subset of (R, U) is disconnected.

4. Show that Q the set of rational numbers is disconnected.

5. Show that a space X is connected iff X con not be expressed as the union of two non-empty

disjoint open sets.

6. If f is a continuous mapping of a connected space X onto an arbitrary space Y, then show that Y

is connected.

7. If A and B are subsets of a space X such that both are open or both are closed then show that

A – B and B – A are separated.

8. Let X = {a, b, c,  d,} and  { {b}, {b, c}, {b, c, d},  X}. Then show that X is connected.

9. If (X, is connected space and is a topological on X such that it is coarser than then

show that (X, *) is also connected.
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UNIT 14 : Product and Quotient Spaces
Structure of the Unit

14.0 Objectives

14.1 Introduction

14.2 Product space of two spaces

14.2.1 Product pace and product topology

14.2.2 Projection mappings

14.2.3 Product invariant properties

14.2.4 Product space of finite family of topological spaces

14.3 General product pace

14.3.1 Coordinate

14.3.2 Projection mapping

14.3.3 Embedding

14.3.4 General product space and Tychonoff topology

14.3.5 Finitely short family

14.4 Quotient space and quotient topology

14.4.1 Quotient topology

14.4.2 Partition of a set and quotient map

14.4.3 Quotient space

14.5 Summary

14.6 Answers to self-learning exercises

14.7 Exercises

14.0 Objectives

In this unit, we shall study about product space of two topological spaces and product space of

arbitrary family of topological spaces, related topologies, base, subbase and their properties through re-

lated theorems. We shall also discuss quotient space and quotient topology.
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14.1 Introduction

Cartesian product of two sets and properties of this product is well known. In this unit we shall
study that how can we construct a topology for the cartesian product of two topological spaces. This
product will also be topological space for the constructed topology with the help of open sets of both
the spaces. After study of product of two spaces, we will be able to understand the properties of prod-
uct of finite or countable numbers of topological spaces. After this we shall see that the product of arbi-
trary family of topological space is again a topological space for the topology having certain subbase. A
quotient space and quotient topology need a continuous map called quotient map and an equivalence
relation of the given space.

14.2 Product space of two spaces

14.2.1 Product space and product topology :

Let (X, ) and (Y, V) be two topological space. The topology W whose base is the set

B = {G × H | G , H V} is called the product topology for the cartesian product X × Y and this

product is called product space of the space X and Y.

Thus, (X × Y, W) is a product space for the topology W whose base B is collecting of cartesian

products of -open and V-open sets.

We can verify that B is a base for some topology as follows :

Theorem 1.  Let (X, ) and (Y, V) be two topological spaces. Then the collection B of

cartesian products of -open sets and V-open sets, that is, B = {G × H | G , H V} is a base

for some topology for cartesian product X × Y.

Proof : In order to show that B is a base for some topology on X × Y, it is sufficient to show

that X × Y is the union of members of B and the intersection of any tow members of B is the union of

members of B.

(i) Since X  and Y V, therefore X × Y B and hence X × Y  U {G × H | G × H B}.

Also, U {G × H | G × H B}  X × Y as G × H X × Y G × H B (  G X G 

 and H Y, H  V) consequently

X × Y = U {G × H | G × H B}

(ii) Let G1 × H1 and G2 × H2 be any two members of B, then

(G1 × H1)  (G2 × H2) = (G1  G2) × (H1  H2)  B

(  G1, G2 G1 G2 , H1, H2  V  H1  H2  V, and V being the topologies)

Thus intersection of any two members of B is again a member of B, in other words, intersection

of any two members of B is union of members of B. Hence B is a base for some topology for X × Y.
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Theorem 2.  Let (X, ) and (Y, V) be two topological spaces with bases B1 and B2 respec-

tively. Then

B* = {B1 × B2 | B1 B1, B2 B2}

is a base for the product topology W for X × Y.

Proof : Let N be a W-neighbourhood of (x, y)  X × Y, where (x, y) is an arbitrary element of

X × Y, then we know that

B = {G × H | G , H V}

is a base of W (theorem 1), then there exists a member G × H B such that

(x, y) G × H N      (by the definition of base) .....(1)

Since G  and B1 is a base for , therefore there exist some B1  B1 such that

x  B1  G .....(2)

Again, since H V and B2 is a base for V, there exist B2  B2 such that

y B2  H .....(3)

From (2) and (3), we have

(x, y) B1 × B2  G × H .....(4)

Again, from (1) and (4), we have, for arbitrary (x, y)  X × Y and for any W-neighborhood N

of (x, y), there exists such B1 × B2  B* that

(x, y) B1 × B2  N

This shows that B* is a base for W.

Ex.1. Let X = {1, 2, 3},         = {, {1}, X}

and Y= {a, b, c},          V = {{a}, {a, c}, Y}

Find a base for the product topology W on X × Y.

Sol. Base B1 for  and B2 for V will be as follows :

B1 = {{1}, X}

and B2 = {{a}, {a, c}, Y}

Now, the base for W is given by

B* = {{1} {a},  {1}  {a, c}, {1}  Y, X  {a}, X  {a, c}, X  Y}

= {{(1, a)}, {(1, a), (1, c)}, {(1, a), (1, b), (1, c)}, {(1, a), (2, a), (3, a)},

{(1, a), (2, a), (3, a), (1, c), (2, c), (3, c)}, X  Y}

Theorem 3.  Let (X, ) and (Y, V) be two topological spaces. C and D be sub-bases for 

and V respectively. Then the collection A of all subsets of X × Y of the form C × Y, C C and X ×

D, D  D is a sub-bases for the product topology W on X × Y.

Proof : We shall show that collection C* of finite intersections of members of A form a base for

W on X × Y.
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Now, X × Y C*, being empty intersection of members of A. Let C1, C2,..., Cn  C and D1,

D2,..., Dn  D, then Ci × Y (i = 1, 2,... n) and X × Dj (j = 1, 2,... m) are the members of A. Also, the

finite intersection

(C1 × Y) (C2 × Y) ... (Cn × Y)  (X × D1)  (X × D2) ... (X × Dm) C*

 [(C1  C2 ... Cn) × Y]  [X × (D1  D2 ... Dm)]  C*

(  A × (B C) = (A × B)  (A × C))

 [(C1  C2 ... Cn)  X] × [Y  (D1  D2 ... Dm)]  C*

(  (A ×B)  (C × D) = (A  C) × (B D))


1 1

*C
n m

i i
i j

C D
 

   (  (Ci X,  i, Dj Y,   j) .....(1)

Let B1 and B2 be bases for  and V respectively such that they are generated by the elements

of C and D respectively. Since finite intersection of members of subbase is a member of base, therefore

1
1

B
n

i
i

C


    and    2
1

B
m

j
j

D




Thus 1 2
1 1

B B
n m

i j
i j

C D
 

    .....(2)

From (1) and (2), we have

C* = {B1 × B2 | B1  B1, B2  B2}.

By the theorem 2, C* is a base for product topology W on X × Y. Since C* is obtained from the

finite intersections of members of A, therefore A is a subbase for W.

14.2.2 Projection mappings :

x : X × Y  X       such that x ((x, y)) = x,  (x, y)  X × Y

and y : X × Y  Y        such that y ((x, y)) = y,  (x, y)  X × Y

are called projection mappings of X × Y onto X and Y respectively.

Theorem 4.  Let (X, ) and (Y, V) be two topological spaces and (X × Y, W) be the product

space of X and Y. Then the projection mappings x and y are continuous and open mappings.

Proof : Projection mappings x and y are given as follows :

x : X × Y  X,  x ((x, y)) = x,  (x, y)  X × Y

and y : X × Y  Y, y ((x, y)) = y,  (x, y)  X × Y.

Let G be any -open set in X, then by definition of x, we have

 1 .x G G Y  
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Since G , Y V, therefore G × Y B, the basis of X × Y. Thus, G is open in X,  1
x G  is

open in X  Y, hence x is W –  continuous mapping.

Now let W be any W-open set in X × Y. Then W can be expressed as union of members of base

B for W.

So, W = U {G  H | G , H V, G  H B B}

 x (W) = x [U {G  H | G , H V, G  H B B}]

= U {x (G  H) | G , H V, G  H B B}

= U {G | G , G  H B B} (by the definition of x)

Since union of arbitrary family of open sets is open therefore,

U {G | G , G  H B B} 

 x (W) 

Thus, W is W-open in X  Y, x (W) is -open in X. Hence x is – W continuous and open

mapping.

Similarly, we can prove that y is a continuous and open mapping.

Theorem 5.  Product topology W is the weakest (coarsest) topology for which prodjections

are continuous.

Proof : Let W be any topology for X  Y for which the projection mappings are continuous

and let W be any W-open subset of X  Y, then by the definition of base B for W, we have

W = U {G × H | G , H V and G × H B B}

= U {G  X)  (Y H) | G , H V and G  H B B}

(  G X, H Y)

= U {(G × Y)  (X  H) | G , H V, G × H B B}

= U{ 1
x
  (G)  1

y
  (H) | G , H V and G × H B B}

(by the definition of x and y)

Now,  1 ,Wx G    whenever G , as x is W –  continuous. Similarly  1 .Wy H  

Thus

U { 1
x
  (G)  1

y
  (H) | G , H V and G × H B B}

is W-open and hence W is W-open.

So W  W  W  W which shows that W W. Consequently W is the weakest topology

for which projections are continuous.
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14.2.3 Product invariant properties :

Compactness, countability etc. are product invariant properties for finite products. We shall es-

tablish this fact by proving some theorems.

Theorem 6.  The product space (X × Y, W) is hausdorff if the space (X, ) and (Y, V) are

Hausdorff.

Proof : Let the spaces X and Y be Hausdorff. Let (x1, y1), (x2, y2)  X × Y such that (x1, y1) 

(x2, y2). Then either x1  x2 or y2  y2. Let us suppose that x1  x2. Since X is Hausdorff and x1, x2

are two distinct points of X, therefore there exists two disjoint open neighbourhoods G1 and G2 of x1

and x2 of respectively. Now, G1 × Y and G2 × Y are open subsets of X × Y such that

(x1, y1) G1 × Y,    (x2, y2)  G2 × Y

and (G1 × Y) (G2 × Y) = (G1  G2) × Y =  × Y (  G1  G2 = )

This shows that X × Y is a Hausdorff space.

Theorem 7.  The product space (X × Y, W) is second countable if (X, ) and (Y, V) is sec-

ond countable.

Or

The product space of two second countable spaces is second countable.

Proof : Let X and Y be two second countable spaces. Let B1 and B2 be countable bases for X

and Y respectively. Then by theorem 2, set

B* = {B1 × B2 | B1  B1, B2  B2}

is a base for product space X × Y. Also, since B1 and B2 are countable, therefore B* is also countable.

Thus B* is a countable base for product space X × Y. Hence X × Y is a second countable space.

Theorem 8.  The product space X × Y is connected if and only if X and Y are connected.

Proof : First suppose that X × Y is connected. Mappings

x : X × Y  X,   ((x, y)) = x,  (x, y)  X × Y

and y : X × Y  Y,  ((x, y)) = y,  (x, y)  X × Y

are continuous, then X and Y are continuous images of X × Y. Since continuous image of a connected

space is connected, therefore X and Y are also connected (Theorem 16, unit-13).

Conversely, suppose X and Y are connected spaces. Let (x1, y1), (x2, y2)  X × Y, then

{x1} × Y is homeomorphic to Y and X × {y2} are continuous images of X and Y respectively, hence

{x1} × Y and X × {y2} are connected. Also, since

(x1, y2) [{x1} × Y]  [X × {y2}],

therefore     [{x1} × Y]  [X × {y2}] 
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so, by the theorem 13 (unit-13)

    [{x1} × Y]  [X × {y2}] = E (say),

is connected. Since (x1, y1) and (x2 ,y2) are two arbitrary points of X × Y and are contained in a con-

nected set ({x1} × Y)  (X × {y2}).

Hence X × Y is also connected.

Theorem 9.  The product space (X × Y, W) is compact if and only if each of the spaces

(X, ) and (Y, V) is compact.

Proof : First suppose, X × Y is compact. Since X and Y are continuous images of X × Y under

the projection mappings x and y respectively, therefore X and Y are compact spaces.

Conversely, suppose that X and Y both are compact. In order to show that X × Y is compact,

we shall show that every basic open cover of X × Y is reducible to a finite sub-cover. Let

C = {G × H | }

be a basis open cover of X × Y, where G , HV.

Let x  X, then {x} × Y is homeomorphic to Y and hence it is compact. Since {x} × Y X × Y,

therefore C is a basic open cover of {x} × Y. Since {x} × Y is compact, therefore

{x} × Y  
1

,
i i

n

i
G H 



     for some indices i 

 x ,
i

G i 


1

i

n

i
x G



 = G (x) (say),

where G (x) is open set being the finite intersection of open sets.

 {x} × Y  
1

( ) .
i

n

i
G x H



 

Thus for each x  X, we can get open set G (x) such that the collection {G (x) | x X} is an

open cover of X. Since X is compact, therefore this cover is also reducible to a finite subcover that is,

X  
1

,
m

j
j

G x


   for some   xj X. .....(1)

Each G (xj) is obtained by intersection of -open sets, which are members of C. Let one of then
is ,

x j
G

 then

G (xj) ,
x j

G     for     j = 1, 2,... m.

Hence, from (1), X 
1

x j

m

j
G



 .....(2)
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and for each j (j = 1, 2,..., m)

G (xj) × Y 
1

x ij

n

i
G H 



  .....(3)

From (1), (2) and (3), the collection {
x ij

G H  | j = 1, 2,... m, i = 1, 2,... n} covers X × Y,

which is finite subcover of C. Thus C is reducible to a finite subcover. Hence X × Y is compact.

14.2.4 Product space of finite family of topological spaces :

Let (Xi, i), i = 1, 2,..., n be n topological spaces. Then the collection

B = {G1 × G2 × G3 ×...× Gn | Gi i, i = 1, 2,..., n}

is a base for a topology for X1 × X2 × X3 ×...× Xn. This topology is called product topology and prod-

uct X1 × X2 × X3 ×...× Xn is called product space of finite number of topological spaces.

The mapping 
ix : X1  X2  X3 ... Xn  Xi, such that

ix ((x1, x2, x3 ,..., xn)) = xi,  (x1, x2, x3 ,..., xn) X1  X2  X3    Xn

is called ith projection mapping (or simply ith projection).

Theorems discussed above are also valid for this finite product and projection mappings.

14.3 General product space

Before defining general product topology and space, we shall discuss some notations and defini-

tions related to product of arbitrary collection of sets. Since general product topology is defined in terms

of subbase and subbase is defined in terms of inverse image under projection mappings, therefore, here

we shall define projection mappings of arbitrary product of topological spaces.

14.3.1 Coordinate :

Let {A | } be an arbitrary family of indexed sets, also let product of this family is A, then

A =  {A | }.

An element a of A is a mapping

a :  U {A | }

such that a () = a A,   .

Here a is called th coordinate of a and A is called th coordinate set of the product.

Thus, A = {a | a : x, a ()  A,  }.

14.3.2 Projection mapping :

The mapping : A A,   such that (a) = a,  a A

is called projection mapping on A or th projection of A.
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Let B be a subset of A then the set 1
 (B) is the set of all a  A whose th coordinates are

the members of B and other coordinates are unrestricted. Thus
1
 (B) = {a | a A, (a) = aB}

=  {Y | },

where   Y = B   and   Y = A ().

14.3.3 Embedding :

A mapping f : X Y, which defines a homeomorphism of X onto f (X) is said to be an embed-

ding of a space X into another space Y.

For example, including map i of subspace X of a space Y to space Y, define as i (x) = x,  x 

X is an embedding of X into Y.

14.3.4 General product space and Tychonoff topology :

Let {{X, } | } be an arbitrary family of topological spaces. Let X =  {X | },

then the topology  for product X having the subbase

B* = { 1
  (G) | , G}

is called product topology or Tychonoff topology for X and (X, ) is called general product space or

simply product space of the given spaces.

Notes : 1. Now onwards product topology means the topology generated by the collection of

all sets of the form 1
  (G),  , G.

2. If X is a product of countable collection {X1, X2, X3,...} of topological spaces, then

X =  {Xn | n N},   x X x = (x1, x2,...), xn Xn

and 1
m
 (Gm) = X1 × X2 ×... Xm – 1 × Gm × Xm + 1 × ...

3. 1
  (G) is subbasic open in X. The collection B of all finite intersections of elements of sub-

base B* form a base for topology . Thus if B B, then

B =  {  1 | ,G
      is finite subset of , G}

=  {Y | },   where   Y = X
for all except a finite number of  is in , is a basic open set in X.

4. Every -open set G in product space X will contain a base member B. So all but a finite

number of coordinates of points of G are unrestricted in respective of coordinate spaces.

5. The collection  { G | , G} is also a base for some topology, different from .

Since  is more important than the topology obtained from above collection, therefore definition of gen-

eral product space is not the extension of the definition for product space of two space.
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6. Since G  1
 (G)  B*  1

 (G) , that is inverse image of -open

set is -open, therefore  is continuous mapping.

Theorem 10.  Let X be a product space of an arbitrary collection {(X, ) | } of

topological spaces. Then  is the topology for X iff  is the smallest topology for which the pro-

jections are continuous.

Proof : First suppose that  is the topology for X. We know that each projection map ,

  is continuous (Note 6 of 14.3). Let * be any topology on X such that  is * –  continu-

ous for each . Then for every G, 1
  (G) is *-open, . Thus by the definition of

topology, union of finite intersections of members of the collection { 1
 (G) | , G} is a

member of *. This shows that * as { 1
 (G) | , G} is a subbase of . Hence  is

smallest topology for X such that  is continues for each .

Conversely, suppose that  is the smallest topology for X for which each  is continuous. Let

B* = { 1
 (G) | , G}.

By the property of continuous mapping, if * is topology for X, then all the projections  are

* –  continuous iff B* *. Hence B*  and since  is the smallest topology containing B*, there-

fore  is generated by B*, that is, B* is a subbase for . Hence by the definition of product topology

(14.3.4) ,  is a product topology for X.

Theorem 11.  Let (X, ) be a product space of arbitrary family {(X, ) | } of topo-

logical spaces. Then projection mapping  for  is continuous and open.

Proof : According to note 6 of (14.3)  is continuous for . Now, it remains to show that

 is open, that is,  is  –  continuous for each . For this, we shall show that image of every

-open set in X under  is -open in X. Let B be the base for  and B B be arbitrary. Then (by

note 3 of 14.3),

B =  {Y | },   where Y for each 

and Y = X  for all except a finite number of  s.

Now,  (B) = Y,

that is image of every basic open set of X under  is -open in X. Let G be any -open set in X.

Then G is union of members of base B. Then

G = U {B | B BB}

  (G) =  [U {B | B BB}]

= U { (B) | B BB}
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Since (B) is open set in X for each B B, therefore  (G) is open in X, being the union

of open sets in X.

Thus G  (G) ,    

Hence  is an open mapping for each .

Theorem 12.  Let X be a non-empty product space of arbitrary family {(X, ) | }

of topological spaces. Then a non-empty product subset F =  {F | } is closed in X iff F is

closed in X, for each .

Proof : First suppose that F is -closed for each . Then 1
 (F) is -closed in X,

since is a continuous mapping. Now,

F =  {F | }

=  { 1
 (F) | }

Thus, F is -closed being the intersection of -closed sets.

Conversely, suppose that F =  {F | } is -closed. Let  be arbitrary and

xX be any limit point of F.

Let x X such that (x) = x and  (x) be arbitrary element of F for . Let B be any

basic open set in X such that x B. Since  is open, therefore (B) is open in X and x (B).

Since x is a limit point of F, (B) contains a point a F, that

 (z) =  (x),    for    and   (z) = a.

Obviously z  F and z and x differ in th coordinate, so x z. Thus, every basic open set B in

X contains a point of F different from x. Hence x is a limit point of F, so x F as F is closed. This

shows that  (x)  F xF. Thus F contains all of its limit point, hence F is closed. Since 

was arbitrary, F is closed for each .

Theorem 13.  The product space X =  {X | } is Hausdorff if and only if each

space X is Hausdorff.

Proof : First suppose that X is Hausdorff for each . Let x = {x | } and y = {y |

} be two distinct point of the product space X. Since x y, therefore xy for some 

and x, yX. Since X is Hausdorff and xy, therefore, there exists open neighbourhoods G

and H of x and y respectively such that

G H = , xG, yH

Since  is continuous, therefore 1
 (G) and 1

 (H) are open sets in X such that

x  1
 (G)   and   y  1

 (H) ( (x) = x  and (y) = y)

and 1
 (G) 1

  (H) = 1
 (GH) =  (  GH = )
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Thus for each pair of distinct points x, y X, there exist two disjoint open neighbourhoods of x

and y respectively. Hence X is a Hausdorff space.

Conversely, suppose that X is Hausdorff. Let  be arbitrary and x, yX such that

xy. Let x, y X such that

 (x) = x, (y) = y   and  (x) = (y),

each  except = .

Thus x and y differ only in the th coordinate, and hence x y. Since X is Hausdorff, there exist

open neighourhoods G and H of x and y respectively such that

G H = 

Let B and C be two basic open sets in X such that

x  B  G  and  y C H .....(1)

and B =  {B | }, C = X {C | },

where B, C for each .

Since G H =  B C = 

 (B)  (C) = 

 BC = 

where B and C are open sets in X such that

(x) = xB,   (y) = y C (by (1))

Thus, for two distinct points x, yX, there exist two open set B and C in X such

that

x B,  yC    and    BC= .

Hence X is Hausdordd. Since  was arbitrary therefore X is Hausdorff for each .

Theorem 14.  The product space X =  {X | } is connected if each space X is

connected.

Proof : First suppose that X is connected for each . Let a be a fixed point of the prod-

uct space X, then a = {a | }, where aX, . Let C be the component of X such that

a C. Let

B =  {Y | }

be an arbitrary basic open set, where

Y = G,

for each  and Y = X for all  except a finite number of ’s, 1, 2, 3,... n (say). Let

x = {x | } B.

The set A
1 2

...
n

A A A     
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is the set of all point {p | } such that
p = a  if   1, 2,..., n,

which is homeomorphic to 
1 2

... ,
n

X X X      which is connected (by theorem 8). Hence its
homeomosphic image A is also connected. Since C is maximal connected subset of X, therefore A C.
Then set C contains the point {p | },

p = a  if     1, 2,..., n,
and p = x  for   1, 2,..., n.
This point is in B also. This shows that x C  = C, ( C C  as C is closed being the compo-

nent). Thus X C, but C X so X = C. Since C is connected therefore X is connected.
Conversely,  let X  be connected. Since Xis continuous image of X under the project mapping

, therefore X is connected for each (Theorem 16, Unit 13).

14.3.5. Finitely short family :

A collection C of subsets of a topological space (X, is short iff C does not cover X and C

is finitely short iff no finite subfamily of C covers X. C is said to be a maximal finitely short iff for each

G G C, there exists a finite subfamily C  of C such that union of members of C  together with

G covers X.

Lemma 1. Let M be a maximal finitely short family of open subsets of a topological space

(X, If some member M of M is such that M contains

(G1 G2 Gn),   Gi for    i = 1, 2,...., n,

then for some    i, Gi M.

Proof :We shall prove contra positive of the statement. Let G1, G2 such that G1 M and

G2 M.

Then by the definition of maximal finitely short family, for G1 there exists

M1,  M2,...., Mr M

such that G1 M1 2 r = X .....(1)

and for G2 there existsN1, N2,....Ns M such that
G2  N1 N2  .... Ns = X ......(2)

From (1) and (2), we have

(G1G2)r)N1Ns) = X.
Since M is finitely short, there fore neither G1G2 nor (G1  G2) is contained in any

member of M. Thus we have shown that

“Gi M for i = 1, 2 G1 G2 is not contained in any member of M”

The contra positive of this statement is “ G1 G2 is contained in some member of M  either

G1 M   or  G2 M.”

Thus lemma is true for n = 2 and by finite induction lemma is true for any positive integer n.
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Lemma 2. Let F be a finitely short family of open sets of a topological space (X, ). Then there

exists a maximal finitely short subfamily M of  such that F M.

Proof : Let D be the collection of all finitely short subfamilies of . Then D is partially ordered

set for the relation inclusion. Now, F  D and {F} is an ordered set. By Hausdorff maximal principle,

 a maximal ordered (chain) subfamily D  of D such that {F}  D, which shows that F  D. Let

 D = M, then M  . Let {Mi | i = 1, 2,..., n} be any finite subfamily of M them

Mi M,   i  Mi  Di for some Di  D, for i = 1, 2 ,..., n. .....(1)

Since D  is a chain, there is one i = r (say) such that

Di  Dr ,   i. ......(2)

From (1) and (2), we have, Mi Dr,  i.

Since Dr  D   D, therefore Dr is finitely short family, hence {Mi | i = 1, 2,..., n} does not

cover X, that is, M1  M2 .... Mn  X. Thus M is finitely short. Now we shall show that M is

maximal. Let M is not maximal, then for some G  , G  M and M {G} is still finitely short. Since

 D  = M, M contains each member of D , this show that D  {M  {G}} would be simply

ordered. Since G  M =  D  D  {M  {G}} properly contains D. This is a contradiction as

D is maximal. Thus M is maximal finitely short subfamily of  such that F  M.

Theorem 15. (Alexander subbase Lemona) : A topological space (X, ) is compact iff

every subbasic open cover for X has a finite subcover.

or

A topological space is compact iff each finitely short subfamily of subbasic open sets is

short.

Proof. Let X be compact. Then every open cover for X reducible to a finite subcover, hence

every subbasic open cover must be reducible.

Conversely, suppose that every subbasic open cover for X has a finite subcover. We have to

show that every open cover for X is reducible. We shall prove contra positive of this statement, that is,

each finitely short subfamily of  is short. Let F be any finitely short subfamily of . By lemma 2,  a

maximal finitely short subfamily of . Let it be M. Then F  M. We shall show that M is short.

Let B* be a subbase for . Then (M  B*)  M and M  B* is also finitely short as M is

finitely short. Here M  B* is the collection of members of M which are subbasic open sets. By the

hypothesis M  B* is short, that is,

 (M  B*)  X .....(1)

Let x be any element of  M, then x  M for some M  M. Since M , then  B  B, the

base for , such that

x  B  M. ....(2)
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Since B  B, then E B1, B2, ... , Bm  B* such that

B = B1  B2  ...  Bm .....(3)

From (2) and (3), we have

x  (B1  B2  ...  Bm)  M .....(4)

Then, by lemma 1, Bi  M,   for some  i, .....(5)

Now, by (4), x  Bi .....(6)

Also, Bi  B*, Bi  M      (by (5))   Bi  M  B*

and by (6), x  M  B*  x   (M  B*)

Thus, x   M x   (M  B*)

 (M)   (M  B*)

  M  X (by (1))

This shows that M is short and hence F is short as F  M. Consequently X is compact.

Theorem 16. (Tychonoff Theorem) : Let (X, t) be a product space of arbitrary family of

topological spaces {(X, ) | }. Then X is compact relative to  iff each X is compact

relative to .

Proof. First suppose that X is compact. Since each X is a continuous image of the compact

space X under the projection mapping , therefore X is compact for each .

Conversely, suppose each X is compact. Let

B* = { 1
 (G) | , G}.

By alexander subbase lemma (theorem 15), to show X compact, it is sufficient to show that

each finitely short subfamily of B* is short. Let C be finitely short family such that C  B*. We shall

show that C is short. Let C = {G | G  and 1
  (G)  C}.

Since C is finitely short in X, therefore C is finitely short in X. Also, since X is compact, C is

short, that is, C does not cover X. Then  x  X such that x  G for any G  C. Thus, no x 

X will belong to any member of C, for which  (x) = x. This shows that x  C, that is, C does not

cover X. Hence C is short and consequenly X is compact.

14.4 Quotient space and quotient topology

14.4.1 Quotient topology :

We observed that product topology is the smallest topology for which projection mappings are

continuous (theorem 5, theorem 10). Now we shall see that if f is a function from a space (X, ) onto a

set Y, then there exists the largest topology for Y relative to which function f is continuous, that is, Y can

be topolized. This topology is called quotient topology for Y relative to f and denoted by f. Mapping f

is called quotient map. Now, we shall show that such a topology always exists.
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Theorem 17. Let (X, ) be a topological space and Y be any set. Let f be a mapping of X

onto Y. Then the collection f of all subsets G of Y such that f –1 (G) is open in X is the largest

topology for Y such that f is  – f continuous.

Proof. Let f = {G  Y | f –1 (G)  }. We have to show that f is topology for Y.

(i)    Y and  f –1 () =       f

(ii) Let G1, G2  f  G1, G2  Y         and   f –1 (G1), f –1 (G2)  .

 (G1  G2)  Y   and   f –1 (G)  f –1 (G)  (   is topology)

 (G1  G2)  Y   and   f –1 (G1  G2) 

 G1  G2 f (by the definition of f )

(iii) Let {G | } be any arbitrary collection of members of f. Then f –1 (G)   and G

 Y for each 

  1 ,f G G Y
 

 

 
   

 
 


1 ,f G G Y

 
 

   
    

   
 

 .fG


 
 

 


Consequently f is a topology for Y. Also, since inverse image of every open set in Y is open in

X, hence f is t – f  continuous.

Let  be another topology for Y such that f is  –  continuous,

so H    f –1 (H) 

 H  f (by the definition of f )

   f

Hence f is the largest topology for Y for which f is continuous.

Theorem 18. A subset A of Y is closed in the quotient topology f, relative to f : X  Y iff

f –1 (A) is closed in X.

Proof. A is f-closed (Y – A) is f-open

 f –1 (Y – A) is -open (by the definition of f )

 f –1 (Y) – f –1 (A) is -open

 X – f –1 (A) is -open (  f is onto)

 f –1 (A) is -closed.
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Theorem 19. A subset G of Y is f -open in X iff f –1 (G) is open in X.

Proof. Let (X, ) be a topology space and f is quotient topology for Y relative to f : X  Y.

Let G be f -open in Y, then by the definition of f, f 
–1 (G) is open in X (also by continuity of f ).

Conversely, by the definition of f, G  f if f 
–1 (G)  , that is, if f –1 (G) is open in X, then G

is open in Y.

Theorem 20. Let (X, ) and (Y, V) be two topological spaces. Let f be a continuous map-

ping of X onto Y such that f is either open or closed, then V must be quotient topology for Y (that

is V = f ).

Proof. Case (i). Let f be continuous and open mapping of X onto Y. We know that quotient

topology f for Y is the largest topology for which f is continuous, so V  f.

Now, let G  f  f –1 (G)   (theorem 19)

 f [f –1 (G)]  V (  f is open)

 G  V

 f  V

This shows that V = f , that is, V is the quotient topology for Y.

Case (ii). Let f be continuous and closed mapping of X onto Y. Again, since f is the largest

topology for Y for which f is continuous, therefore V  f .

Let G  f  f –1 (G)   (theorem 19)

 X – f –1 (G) is -closed

 f –1 (Y) – f 1 (G) is -closed (  f is onto, f –1 (Y) = X)

 f –1 (Y – G) is -closed

 f [f –1 (Y – G)] is V-closed (  f is closed)

 Y – G is V-closed

 G is V-open or G  V

 f  V

so, V = f . Hence V is quotient topology for Y.

14.4.2 Partition of a set and quotient map :

Partition P (decomposition) of a non-empty set X is the collection of non-empty disjoint sub-

sets of X whose union is the set X.

Let  be a mapping from X onto P such that  (x) = P  P such that x  P,   x  X. Then 

is called the quotient map (cannonical map or projection map).
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We know that a partition P on X induces an equivalence relation R on X, such that

R = {(x, y) | x, y  X belong to same member of P}

= {(x, y) |  (x) =  (y)}

=  {P × P | p  P}

Conversely, each equivalence relation R on X gives partition P of X, denoted by X/R, quotient

set of X modulo R. Thus,

P = X/R = set of all equivalence classes.

14.4.3 Quotient space :

Let (X, ) be a topological space and R be an equivalence relation  on X.

Let  be the quotient map of X onto the quotient set X/R of X over R so that  (x) = [x], the

equivalence class to which x belongs,   x  X.

Then the X/R with the quotient topology relative to  (that is ) is called quotient space.

Notes :

1. According to definition of quotient topology (14.4.1),  is the largest topology for

X/R for which  is continuous on X, which consists of all subsets G of X/R such that  –1

(G) is open in X.

2. Let A  X, then the set of all points of X which are R-relative of points of A is denoted by R

[A] or [A]. Hence

[A] = R [A] = {y  X | (x, y)  R, for some x  A}

=  {P | P  X/R and P  A  }

3. If x  X, then R [x] = [x] =  (x), where  is the projection of X onto P.

4. If P  X/R, then  –1 (P) =  {P | P  P} and P is -open (closed) in X/R iff

 {P | p  P} or  –1 (P) is -open (closed) in X.

Theorem 21. Let (X, ) be a topological space and X/R be the quotient space of X over R.

Let  be the quotient mapping of X onto X/R, then the following statements are equivalent :

(a)  is an open mapping.

(b) If G is -open in X, then R [G] is -open.

(c) If F is a -closed subset of X, then the union of all members of X/R which are subset of

F is closed in X.

Proof. (a)  (b) : First suppose that  is an open and G be any open subset of X. Then  (G)

is open in X/R, as  is open mapping. Also, since  is continuous, therefore –1 [ (G)] is open in X

and hence R [G] is open in X (  R [G] = –1 [ (G)].

Conversely, let R [G] be open in X,   G  , then –1 [ (G)] is open in X. Thus,  (G) is

open in X/R (by the definition of quotient topology). This shows that  is open.
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(b)  (c) : The union of all those members of X/R which are subsets of F is given by

 {P  X/R | P F} = X – R [X – F] .....(1)

First suppose that R [G] is open,   G   and let F be any -closed subset of X, then X – F is

open in X, hence by the hypothesis, R [X – F] is open in X. So that X – R [X – F] is closed in X. Then

by (1), the union of all those members of X/R which are subsets of F is closed.

Conversely, suppose that for any closed subset F of X, the union of all those members of X/R,

which are subsets of F is closed, that is X – R [X – F] is closed (by (1)). Now, let G be any -open

subset of X, then X – G is closed in X, so that X – R [X – (X – G)] is closed (by the hypothesis), that is

X – R [G] is closed. This shows that R [G] is open.

Theorem 22. Let  be the quotient mapping of the topological space (X, ) onto the quo-

tient space X/R. Then the following statements are equivalent :

(a)  is a closed mapping.

(b) If G is closed in X, then R [G] is closed.

(c) If F is a open subset of X, then the union of all members of X/R which are subset of F is

open.

Proof. This is the dual of the theorem 21. The proof of this theorem can be obtained by the

words open and closed throughout in the proof of theorem 21.

Theorem 23. Let X be a topological space and X/R be a quotient space. If X is compact

and connected then X/R is also compact and connected.

Proof. We known that compactness and connectedness are topological invariant properties. Since

X/R is continuous image of X, therefore it is compact and connected.

Theorem 24. Let (X, ) be a topological space such that X/R is Hausdorff quotient space,

then R is a closed subset of the product space X × X relative to product topology V.

Proof. We shall show that all the limit points of R belong to R, that is, no point of (X × X – R) is

a limit point of R.

Let (x, y)  (X × X – R) (x, y)  R

 (x)   (y)

  open sets G, H in X/R

such that  (x)  G,  (y)  H and G  H = . (  X/R is Hausdorff)

 –1 (G) and –1 (x) are open in X,

and since images of these sets under  are  (–1 (G)) = G and  (–1 (H)) = H, which are disjoint, so

that no member of –1 (G) can be R-related to a member of –1 (H).

 –1 (G) × –1 (H)

is an open neighbourhood of (x, y) which does not contain a point of R.
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 (x, y) is not a limit point of R

 No point of X × X – R can be a limit point of R.

 R is closed.

Ex.2. Give an example to show that the quotient space of a Hausdorff space need not be

a Hausdorff.

Sol. Let (R, u) be the usual topological space, we know that R is a Hausdorff space relative to

usual topology. Let E be a relation on R such that

x E y x – y  Q, the set of rational number.

Obviously E is an equivalence relation. The quotient space R/E will be an indiscrete space, there-

fore it is not Hausdorff.

Self-learning exercise

State whether the following statements are true or false :

(i) The set of all cartesian products of basic open subsets of space X and space Y forms a base for

space X  Y.

(ii) Let (X, ) and (Y, V) be two topological spaces. Then the set {G  H | G  , H  V} is a

base for some topology for product space X x Y.

(iii) Projection mappings of product space are continuous but not open.

(iv) Connectedness and compactness are topological properties.

(v) Let (X, ) be a topological space for all , an arbitrary index set. Then  {G   : 

} is a base for product topology for the product space X =  {X | }.

(vi) Product topology is the strongest topology for which projections are continuous.

(vii) A space X is compact if each finitely short subfamily of subbasic members is short.

(viii) Let (X, ) be a topological space. Then the quotient topology f for a set Y is the smallest topol-

ogy for which function f  is continuous.

(ix) Let X/R be a Hausdorff quotient space of a topological space X. Then R is closed in product

space X  X.

(x) If X is a Hausdorff space then its quotient space X/R is also Hausdorff.

14.5 Summary

In this unit, we have studied about the product space of finite family of topological spaces as
well as product space of an arbitrary family of topological spaces. Product topology of finite product is
defined in terms of a base while product topology for arbitrary product is defined in terms of subbase.
Topological invariant properties of a product space have been discussed. With the help of an equiva-
lence relation on a topological space we defined the quotient topology and quotient topological space.
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14.6 Answers to self-learning exercises

(i) true (ii) true (iii) false (iv) true

(v) false (vi) false (vii) true (viii) false

(ix) true (x) false.

14.7 Exercises

1. Show that the product topology on a non-empty set X  Y is the weak topology for X  Y

determined by the projection mapping x and y from the topology on X and Y.

2. Let y0 be a fixed element of Y and Z = X  {y0}. Then the restriction of projection map x to Z

is a homeomorphism of the subspace Z of X  Y onto X.

3. Let (Xi, i) be topological spaces for i = 1, 2, 3. Show that a mapping  f : X3  X1  X2 is

continuous if and only if 
1

 X f : X3  X1 and 
2

 X f : X3  X2 are continuous.

4. Show that the product space X =  {X | } is T0 iff each coordinate space is T0.

5. Show that the product of each family of locally compact space is locally compact.

6. Show that each coordinate space X of product space X =  {X | } has a quotient

topology induced by the projection mapping .
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UNIT 15 : Nets and Filters

Structure of the Unit

15.0 Objectives

15.1 Introduction

15.2 Net and its convergence

15.2.1 Directed set

15.2.2 Residual subset

15.2.3 Cofinal subset

15.2.4 Net

15.2.5 Eventually net

15.2.6 Frequently net

15.2.7 Convergent net

15.2.8 Cluster point of net

15.3 Ultranet and subnet

15.3.1 Ultranet

15.3.2 Subset

15.3.3 Isotone mapping

15.4 Filter and its convergence

15.4.1 Filter

15.4.2 Finer and coarser filters

15.4.3 Subbase of filter

15.4.4 Filter base

15.4.5 Filter generated by filter base

15.4.6 Base of a filter

15.4.7 Ultrafilter



276

15.4.8 Convergence of a filter

15.4.9 Frequently filter

15.4.10 Limit point of a filter

15.4.11 Cluster point of a filter

15.4.12 Cluster point of a filter base

15.5 Summary

15.6 Answers to self-learning exercises

15.7 Exercises

15.0 Objectives

In this unit, we shall study about convergence of a net, related topic like directed set, subnet,

cluster point etc. Filter is an important topic in topology. We shall discuss about it also.

15.1 Introduction

Net is a generalized sequence whose domain is a directed set. If directed set is particularly set

of natural numbers N, then it is called sequence. Thus net is a general notion while sequence is a particu-

lar type of net. Net is also called generalized sequence or Moor-Smith Family.

15.2 Net and its convergence

15.2.1 Directed set :

A pair (A, ) consisting of a non-empty set A and a binary relation  defined on A such that

(i) a A a a (reflexive)

(ii) a b, b c  a  c (transitive)

(iii)For any two members a and b of A,  a member c  A such that c  a and c  b, is called

directed set. We say that relation  directs A.

Ex.1. Set of natural numbers N and the set of real numbers R are directed by the relation

(greater than or equal to), that is, (N, ) and (R, ) are directed sets in usual sense.

Ex.2. Let P be the collection of all finite subsets of a set A. Then (P, ) is a directed set,

where “X  Y ” denotes “X is superset of Y ” or “X contains Y ”.

Sol. (i) Since each set contains itself, therefore X P X X.

(ii)  By the set theory, X Y, Y Z X Z, for X, Y, Z P.
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(iii) For any two finite sets X, Y P we have X Y P such that (X Y)  X and

(X Y) Y.

Thus the relation  directs P, hence (P, ) is a directed set.

Similar examples : (P, ), for the relation ‘inclusion’ and the collection N (x) of all -

neighbourhoods of x X, where (X, ), is a topological space, for the relation ‘inclusion’ (N (x), ), is

a directed sets.

15.2.2 Residual subset :

Let (A, ) be a directed set and let B A. Then set B is said to be residual subset of the set A

iff there exist an element a0 A such that x a0 x B.

15.2.3 Cofinal subset :

Let (A, ) be a directed set and let B A. Then set B is said to be cofinal subset of the set A

iff for every a A, there exist an element b B such thatb a.

From the definitions it is clear that every residual subset of A is cofinal subset of A. Also, every

cofinal subset of A is directed by  .

Ex.3. Let (N, ) be a directed set, where  is the relation “is greater than or equal

to”, then the subset A = {3, 4, 5, 6,...} is a residual subset of N because  3  N such that x  3

 x  A. It is also cofinal subset of N. The set B = {2, 4, 6,...} is cofinal but bot residual subset

of N. Set B is directed by . Similarly the set of positive even integers is also cofinal and directed

by  .

15.2.4 Net :

Let (A, ) be a directed set and let f : A  X be an arbitrary mapping of A into a set X, then f

is called a net in the X and we denote it by (f, X, A, ) or {f (a) : a  A} or {fa | a  A} . If A = N

and  is the relation “is greater than or equal to”, then the net is called sequence. A net is also called

Moor-Smith family or generalized sequence.

15.2.5 Eventually net :

Let (f, X, A, ) be a net in X and let Y is subset of X. Then the net f is said to be eventually in

Y iff  a residual subset B of the set A such that f (B)  Y, that is, iff  a0  A such that a  AA, a  a0

 fa  Y.

15.2.6 Frequently net :

Let (f, X, A, ) be a net in X and let Y  X. The f is said to be frequently in Y iff  a cofinal

subset B of A such that f (B)  Y, that is, iff for each a  A,  x  A such that x  a and fx  Y.

Note : A Net is frequently in Y iff it is not eventually in Yc or X – Y.
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15.2.7 Convergent net :

Let (X, ) be a topological space and (A, ) be a directed set. A net (f, X, A, ) in X is said to

be convergent at x0  X iff it is eventually in every -open neighbourhood of x0. In other words, we

can say that f converges to x0  X iff for each -open neighbourhood N of x0  an element a0  A

such that  a  A, a  a0  fa  N.

15.2.8 Cluster point of net :

A point x0  X is said to be a cluster point of a net f in space X iff is frequentlly in every open

neighbourhood of x0.

Ex.4. Let (X, I) be an indiscrete space, then show that every net (f, X, A, ) in X con-

verges to x,  x X.

Sol. The only open neighbourhood of  x X is X and fa X,  a A, so net is eventually

in X. Thus net is convergent at x X. Since x is arbitrary, therefore every net in X converges to every

element of X.

Ex.5. Let (X, D) be a discrete space and (f, X, A, ) be any net in X. Show that f con-

verges to x0 X iff net is eventually in {x0}.
Sol. First suppose that net f converges to x0 X, so f is eventually in every D-open

neighbourhood of x0. Since {x0} is D-open neighbourhood of x0, therefore net f is eventually in it.
Now suppose that the net f  is eventually in {x0}. Every neighbourhood of x0 contains the set

{x0}, so net is eventually in every D-open neighbourhood of x0.
Theorem 1.  Let Y be subset of topological space (X, ). The set Y is -open iff no net in

(X – Y) converges to a point in Y.
Proof : First suppose that no net in (X – Y) converges to a point in Y. Suppose, if possible, Y is

not -open, then  y0  Y such that it is not an interior point of Y, that is each neighbourhood N of y0
contains atleast one point of X – Y, that is,

N  (X – Y) ,  N N (y0), .....(1)
where N (y0) be the collection of all neighbourhoods of y0. Now, (N (y0), ) is a directed set, where
 is an inclusion relation. We can choose a point x (N) from N (X – Y) for each N N (y0), as
N  (X – Y) is non-empty for each N (by (1)).

Consider a mapping f : N (y0)  X – Y defined by
f (N) = x (N), N N (y0).

Since N (y0) is a directed set, therefore f is a net in X – Y. Let G be any open neighbourhood of
y0, then for each H N (y0) such that H is a subset of G, then H G and

f (H) = x (H)  H  (X – Y) G, (  H G)

thus  a member G of the directed set N (y0) such that for each

H N(y0), H G f (H) G.
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This shows that net is eventually in every open neighbourhood of y0 as G is arbitrary. Thus  a

net in X – Y converging to y0 Y. This contradicts the fact that no net in X – Y can converge to a point

in Y. Hence Y is open.

Conversely, let Y be open. Suppose if possible,  a net in X – Y converging to a point y0 Y.

Since Y is open therefore it is neighbourhood of y0 and hence net must be eventually in Y. Thus

Y (X – Y)  as net is in X – Y. This is a contradiction. Thus no net in X – Y can converge to a point

in Y.

Theorem 2.  Let Y be subset of topological space (X, ). Then a point x0 X is an accu-

mulation point (limit point) of Y iff a net in Y – {x0} converging to the point x0.

Proof : Let a net (f, Y – (x0), A, ) in Y – {x0} be converging to a point x0 X. Let N be any

-open neighbourhood of x0. Since net f converges to x0, therefore net f is eventually in N, so  a0 A

such that  a A, a a0  fa N. Since net is in Y – {x0} therefore fa x0,  a a0 and

fa Y – {x0}, so N contains a point of Y other than x0. Since N is arbitrary, therefore we can conclude

that every -open neighbourhood of x0 contains a point of Y other than x0. Hence x0 is an accumulation

point of Y.

Conversely, suppose that x0 is an accumulation point of the set Y. Then every neighbourhood of

x0 contains a point of Y other than x0, that is

N  (Y – (x0)) ,  N N (x0)

where N (x0) is a collection of all -neighbourhoods of x0, which is a directed set for inclusion relation.

Since N  (Y – (x0))  0, we may choose a point x (N)  N (Y – {x0}), N  N (x0). Consider a

mapping f : N (x0)  Y – {x0} such that

f (N) = x (N), N N (y0).

Let G be any open neighbourhood of x0, then for each H N (x0) such that H G, that is,

H G we have

f (H) = x (H)  H  (Y – {x0})  H G (  H G),

that is, G N (x0) such that H N (x0), H G  f (H)  G, thus net f in Y – {x0} is eventually in

G. Hence net f converges to x0.

Theorem 3.  Let Y be subset of topological space (X, ), then Y is -closed iff no net in Y

converges to point in X – Y.

Proof : First suppose that no net in Y converges to a point in X – Y. Suppose, if possible, Y is

not -closed. Then  an accumulation point x0 of Y not belonging to Y, that is, x0 X – Y. Now, since

x0 is an accumulation point of Y, then by the Theorem 2, there exists a net in Y – {x0} converging

to x0. Since x0 Y, therefore Y – {x0} = Y, so we can say that there exists a net in Y converging to

x0 X – Y. But this is a contradiction as no net in Y converges to a point in X – Y. Hence Y is -closed.
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Conversely, let Y be a -closed subset of X. Suppose, if possible there exists a net (f , Y, A, )

in Y converging to a point x0 X – Y. Since x0 X – Y, therefore x0 Y, so f is a net in Y – {x0} also.

Then by the Theorem 2, x0 is an accumulation point of Y. Since Y is -closed, therefore all of its limit

points must be in Y, that is x0 Y. This is a contradiction as x0 Y.

Hence no net in Y can converge to a point in X – Y.

Theorem 4.  A topological space is Hausdorff iff every net in the space converge to at

most one point.

Proof : Let (X, ) be a topological space and let every net in X converge to at most one point.

Suppose, if possible, space X is not Hausdorff. Then there exist x, y X such that x y and every

neighbourhood of x has non-empty intersection with every neighbourhood of Y. Let collection of all

neighbourhood of x and y be N (x) and N (y) respectively. Then (N (x), ) and (N (y), ) both are

directed sets for the inclusion relation ..

Let N (x) × N (Y) = M be the Cartesian product of N (x) and N (y). Let (G1, H1) = M1 (say)

and (G2, H2) = M2 (say) be two elements of M, where G1, G2  N (x) and H1, H2  N (y). Consider

a relation , defined as

M1  M2 G1  G2, H1  H2.

Since N (x) and N (y) are directed sets, therefore set M will be directed by the relation , de-

fined as above. Hence (M, ) is a directed set. Since G  H , G  N (x), H  N (y), there-

fore we can choose a point x (G, H)  G H,  (G, H)  M.

Let  f : M X  be a mapping such that

f (G, H) = x (G, H),   (G, H)  M

Let U and V be any neighbourhoods of x and y respectively. Let (G, H)  M such that (G, H) 

(U, V) so that G U and H V so (G H)  (U V), then

f (G, H) = x (G, H)  (G H)  (U V) .....(1)

Also, (U V) U   and  (U V)  V,

thus, f (G, H) U   and  f (G, H)  V,  (G, H)  M, (G, H)  (U, V)

This show that net F is eventually in U and V both. Hence F converges to both x and y. This is

a contradiction so X must be a Hausdorff space.

Conversely, suppose that the space X is a Haudorff space. Let x, y  X such that x y.

Since X is Haudorff, therefore there exist neighbourhoods G and H or x and y respectively such that

G H = . Any net can not be eventually in G and H both as both are disjoint. Thus no net in X can

converge to x and y both. Since x and y are arbitrary elements of X, therefore we can conclude that a

net in X can converge at one point.
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Note : If every sequence in a space X converges to at most one point then space X need not be

Hausdorff as there exists non-Hausdorff space in which every sequence converges to at most one point.

For example, co-countable topological space is not Hausdorff but every convergent sequence has a unique

limit.

Theorem 5.  Let X and Y be two topological spaces. A mapping g : X Y is continuous at

x0 X iff whenever a net (f, X, A, ) converges to x0 X, then the net (g o f, X, A, ) converges

to g (x0) Y.

Proof : First suppose that mapping g is continuous at x0 X and the net fa converges to x0.

We shall show that the net g o f or g (fa) converges to g (x0)  Y. Let H be any open nighbourhood of

g (x0) in Y. Since g is continuous at x0, therefore g–1 (H) is an open neighbourhood of x0. Also, the net

fa converges to x0, so a0 A such that for every a A, a a0  fa g–1 (H)  g (fa) H.

Thus the net g (fa) is eventually in every open neighbourhood of g (x0). Hence the g o f or g (fa) con-

verges to g (x0) in Y.

Conversely, suppose that whenever a net fa converges to a point x0 in X, the net g (fa) con-

verges to g (x0) in Y. We shall show that the mapping g is continuous at the point x0. Suppose, if pos-

sible, g is not continuous at x0, then there exists a open neighbourhood H of g (x0) in Y, such that for

every open neighbourhood N of x0, g (N) is not a subset of H, that is g (N)  H, N N (x0), where

N (x0) is collection of all open neighbourhoods of x0. So, for each N N (x0) there exist a

point xN N such that g (xN)  H. Consider a mapping h : N (x0)  X such that h (N) = xN,

N N (x0). Since N (x0) is directed by the inclusion relation , therefore h is a net in X. Let N be

any open neighbourhood of x0. Then for every G N (x0), such that G N, that is G N, we have

h (G) = xG G N,

thus, NN (x0)

such that for every G N (x0),   G N h (G) N,

so that the net h or {xN | N N (x0)} is eventually in N, which is arbitrary. Hence, the net {xN | N N

(x0)} converges to x0 X.

But the net {g (xN) | N N (x0)} in Y does not converge to g (x0) as H is an open neighbourhood

of g (x0) such that g (xN)  H, N N (x0) (by the choice of xN), that is, the net {g (xN) | N N

(x0)} is not eventually in H.  This is a contradiction. Hence g is continuous at x0  X.

Theorem 6.  Let X  = × {X | } be a product space. A net (f, X, A, ) in X converges

to x0 X iff the ne { (fa) | a  A} converges to  (x) in X for all .

Proof : First suppose that net fa converges to x  X. Since projection mapping  is continu-

ous for all , therefore the net (fa) converges to (x) in X, (by the theorem 5).
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Conversely, suppose that the net (fa) converges to (x),  .

Let  1 1

1 G
     2 2

1 1...
n n

G G G 
        .....(1)

be any basic neighbourhood of x X, where  1
i i

G
   are the members of subbase of product

topology X and 
i

G  is open neighbourhood of  
i

x  in 
i

X  for all i.

Since net (fa) converges to  (x), ; therefore net ( )
i af converges to ( ) .

i
x i   So

for each i,  ai A such that for all a A, a ai   .
i iaf G   

Let a0  ai,   i = 1, 2,..., n, then

 
i af ,

i
G   a a0, a A.

Thus  a0  A such that for every a A, a a0

 
i af i

G  1 ,
i iaf G

     i = 1, 2,..., n

  1 1

1
af G

     2 2

1 1....
n n

G G 
       

 faG (by (1))

Hence the net f is eventually in every open neighbourhood of x X. Consequently net fa
converges to x.

15.3 Ultranet and subnet

15.3.1 Ultranet: A net (f, x, A, ) in a set X is said to be an ultranet or an universalnet iff for

every subset Y of X, the net f is eventually in Y or in its complement Yc. From the definition it is clear that

if an ultranet is frequently in any subset Y of X, then it must be eventually in Y. If f be an ultranet in a

topological space X and x be a cluster point of f, then f will be frequently in every open neighbourhood

of  x and since f is an ultranet, therefore it must be eventually in every open neighbourhood of x. Hence

the net converges to its cluster point x. Thus, every ultranet in a topological space X converges to each

of its cluster points.

15.3.2 Subnet :

Let (f, X, A, ) and (g, X, B, *) be two nets in a set X. The net g is said to be a subnet of the

net f iff there exists a mapping  : B  A defined as

(a) f = g

(b) For every a  A,  an element b  B such that  (p)  a,   p * b in B.

15.3.3 Isotone mapping :

A mapping  of a directed set (A, ) to another directed set (B, *) is said to be an isotone

mapping iff for p, q  A, p  q   (p) *  (q).
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Theorem 7. Let (A, ) and (B, *) be two directed sets and let  be an isotone  mapping

of B to A such that  (B) is cofinal in A. If (f, X, A, ) be a net in X, then f o  is a subnet of the

net f.

Proof. Since mapping  : B  A and f : A  X, therefore mapping f o  : B  X. Let

 f o  = g, then (g, X, B, *) is a net in X. To show that g is a subnet of f it is sufficient to show that for

each a  A,  b  B such that  (x)  a, for every x * b in B.

Since  is an isotone mapping, therefore,

x * y   (x)   (y), x, y  B .....(1)

Also, since  (B) is cofinal in A, therefore, for each a  A,  b  B such that

 (b)  a .....(2)

Now, let x  B such that x * b then by (1)

x * b  (x)   (b)   (x)  a       (by (2))

Thus, for each a  A,  b  B such that

x * b in B  (x)  a in A

consequently g = f o  is a subnet of the net f.

15.4 Filter and its convergence

15.4.1 Filter : A filter F on a non-empty set X is a non-empty collection of subsets of X satisfy-

ing following axioms :

[F1] :  F

[F2] : If A  F and B  A then B  F

[F3] : If A, B  F then A  B  F

Notes :

1. Form [F2] of definition it is clear that X  F always as it is a superset of every member of F.

2. From [F3], A1, A2  F  A1  A2  F. Again if A3  F, by [F3] (A1  A2)  A3 = A1
 A2  A3  F. Thus for A1, A2, A3, ..., An  F  A1  A2  A3  ...  An  F. By

[F1] A1  A2  , A1  A2  A3 , and so on. Thus F is with finite intersection prop-

erty (FIP).

3. Form (2) and form (3), we can conclude that F is closed for finite intersection as empty

intersection of members of F is X  F.

4. The power set P (X) of the set X contains , so it can not be fitter on X. Also, filter can not

be empty, so filter F on X is always a proper subset of P (X), that is, F , F  P (x).

5. Any subset A of X and its complement Ac, both together can not be member of the filter on

X. For if A, Ac F then by [F3], (A  Ac)  F, That is F, which is not possible as

F ([F1]).
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6. A filter F on X has F l P (by (2)). It is said to be free iff it has empty intersection, that is iff
F } = other wise it is said to be fixed.

Ex.6. Let X = {a, b, c, d}, then
F1 = {X}, F2 = {{a}, {a,b}, {a, d}, X}
F3 = {(a, b), X } are filters on X but
F4 = {X},
F5 = {{a}, {b}, X }

are not the filter on X as F4 contains and in F5, {a} b} =  F5.
Ex.7. F = {X} is a filter if X is non empty. It is called indiscrete filter.
Ex.8. Let A0 be a non-empty subset of X, then show that F = {A | A  A0} is a filter on X.
Sol. The collection F is non-empty as A0 A0 so A0 F. Also,
[F1] : Since does not contain A0 (so F.
[F2] : Let A be any member of F and B  A. Since A  F  A  A0 and since B  A  B 

A0, thus B  F.
[F3] : Let A, B  F  A  A0, B  A0  (A  B  A0, Thus A  B  F.
Hence F is a filter
Ex.9. Let X be a topological space and x  X. Let N (x) be the collection of all neighbourhoods

of X. Then N (x) is a filter on X. [It is called neighbouhood filter on X.]
Sol. Since X is neighbourhood of x so X  N (x), hence N (x) is non-empty.
[F1] : Let N  N (x) be arbitrary, then N is a neighbourhood of x, so x  N, that is, N  ,

hence no member of N (x) is empty. Thus   N (x).

[F2] : Let N  N (x) and M  N. Since every superset of a neighbourhood is again a

neighbourhood of a point in X, hence M is also a neighbourhood of x. So M  N (x).

[F3] : Let M, N  N (x). Since intersection of two neighbourhoods is again a neighbourhood,

so M  N  N (x).

Hence N (x) is a filter on X.

Ex.10. Let x0  X and F is the collection of all those subsets of X which contains x0. Then

show that F is a filter on X. [It is called discrete filter].

15.4.2 Finer and coarser filters :

Let F1 and F2 be two filters on a set X. Then F1 and F2 are said to be comparable if either

F1  F2 or F2  F1. If F1  F2, then F2 is said to be finer than F1 or F1 is said to be coarser than

F2. Also if F1  F2, then F2 is strictly finer than F1 or F1 is strictly coarser than F2.

Two filters are said to be comparable iff one is finer than another. If we define a relation 

defined as F1  F2  F1,  F2, then the set of all filters on X is a directed set for the relation defined

above.
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Ex.11. Let X = {1, 2, 3} and

let F1 = {X},

F2 = {{1, 2}, {X}

F3 = {{1}, {1, 2}, X}

F4 = {{2}, {1, 2}, X},

then F1 is coarser than F2, F3, F4. F2 is coarser than F3 or F3 is finer than F2 . F3 and F4 are not

comparable.

15.4.3 Subbase of a filter :

We can construct a filter F on a non-empty set X with the help of a non-empty family C of

subsets of X having some certain properties. Then we say that F is generated by C and C is said to be

subbase of F. Now, we shall discuss that properties of C and method to construct the filter F with the

help of following theorem.

Theorem 8. Let X be a non-empty set and  be any non-empty collection of subsets of X.

Then there exists a filter F on X containing  iff  has the finite intersection property (FIP).

Proof. First suppose that collection C has FIP. Let B be the collection of all possible finite inter-

sections of members of C, that is,

B = {B | B is the intersection of a finite subfamily of C}

and let F = {F | F  B, B  B},

that is, F is a collection of supersets of members of B. Now we shall show that F is a filter on X. Since

C has FIP, therefore members of B are non-empty, that is,  B. By the definition of F it is clear that

F  C and since C is non-empty, therefore F is also non-empty.

[F1] : Since  is not a superset of any member of B ( B), so  F.

[F2] : Let F  F and G  F. Since F  F, therefore it contains a member of B and hence G

must contain that member of B. So that G  F.

[F3] : Let F, G  F, then  A, B  B such that F  A and G  B. Since A and B are mem-

bers of B, therefore they are finite intersection of members of C, so A  B is also a finite intersection of

members of C and hence A  B  B. Now,

(F  G)  (A  B) as F  A and G  B

Thus F  G contains a member of B. Hence F  G  F.

Consequently F is filter on X containing C.

Conversely, let F be a filter on X containing C. We shall show that C has FIP. By the definition

of F  it follows that F contains C  as well as finite intersections of members of C (that is collection B),

as F is closed for finite intersections of its members. Thus no finite intersection of members of C can be

empty, otherwise  F. Hence C has FIP.
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Now we can define subbase as follows :

A non-empty collection C of subsets of X having FIP can generate a filter F on X. This filter F

is said to be generated by C and C is said to be a subbase of F.

Ex.12. Let X = {1, 2, 3} and C = {{1, },{1, 2}}, then construct a filter F on X for which C is

a subbase.

Sol. Since C is with FIP, therefore it can be a subbase for the filter on X. Let A = {A | A is

intersection of a finite subfamily of C}

= { {1}, {1,2},  X },

Since X is empty intersection, so X  A. Now, take all the supersets of members of A in F,

then filter

F = {{1}, {1,2}, {1, 3}, X}.
15.4.4 Filter  base :
A filter base B on a non-empty set X is a non-empty family B of subsets of X satisfying the

following axioms :

[B1] : B

[B2] : if F, G B, then H  B such that H (F G).

From the definition it follows that B does not contain empty set and each finite intersection of

members of B contains a members of B, hence we can conclude that B has FIP.

Ex.13. Show that every filter is a filter base.

Sol. Let F be the filter. Then  F ([B1]).

Also, let F, G  F, then F  G F and since (F G)  (F G), thus [B2] is satisfied.

Consequently F is a filter base.

Theorem 9.  Let C be any non-empty family of subsets of a set X. Then there exists a filter

base on X containing C iff C has FIP.

Proof. First suppose that C has FIP and let B be the collection of all finite intersection of mem-

bers of C, that is,

B = {B | B is the intersection on finite subfamily of C}.

We shall show that B is a filter base on X. Since C  B and C is non-empty, therefore B is also

non-empty.

[B1] : B, since C has FIP.

[B2] : Let F, G  then F and G are finite intersection of members of C and hence

(F G ) B as F G will also be a finite intersection. Thus for F, G ( F G) B such

that ( F G) (F G).

Hence B is a filter base containing C.
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Conversely, suppose that there exists a filter base B on X containing C. Since B is a filter base,
therefore no member of B can be empty and by [B2], the intersection of every finite subfamily of B
contains a member of B which is non-empty. Thus, intersection of every finite subfamily of members of
C also contains a member of B which is non-empty. So finite intersection of members of C can not be
empty. Consequently C has FIP.

15.4.5 Filter generated by Filter base :
A Filter F on a non-empty set X, consisting of all those subsets of X which contain a member of

filter base B is said to be a filter  generated by B.
15.4.6 Base of a  filter :
A subfamily B of filter F on X is said to be a base of F iff every member of F contains a mem-

ber of B.
Note: From above definitions, if follows that a collection B of subsets of X is a base of some

filter on X iff axioms [B1] and [B2] of definitions of filter base are satisfied or in other words a collec-
tion B of subsets of X is a filter base on X iff B is a base of some filter on X.

Ex.14. Let X = {1, 2, 3, 4} and C = {{1, 2},{1, 3}}, then find base and filter taking C as a
subbase.

Sol. Since C has F I P as {1, 2}{2, 3} = {1} therefore it can be a subbase. Taking all
finite intersection of members of C, we get base B as follows :

B = {{1}, {1,2}, {1, 3}, X}.
It is easy to verify that B satisfy [B1] and [B2], hence it is a filter base also.
Now, to get filter F, take all super sets of members of B. Thus

F = {{1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 3, 4}, {1, 2, 4}, X}
Note: This process is discussed in theorem 10 and in example 12 also.
15.4.7 Ultrafilter :
A Filter F an a non-empty set X is said to be an ultrafilter or a maximal filter on X iff there

exists no filter on X strictly finer than F. Thus if F is an ultrafilter then for every filter F  on X, F F
F = F.

A filter base of on ultrafilter is said to be an ultrafilter base.
Ex.15. Let X = {1, 2, 3 }, then

F1 = {{1}, {1, 2}, {1, 3}, X },
F2 = {{2}, {1, 2}, {2, 3}, X },

and F3 = {{3}, {1, 3}, {2, 3}, X },
are ultrafilter an X, while

F4 = { { 1, 2 }, X}
and F5 = { {1, 3}, X}

are not ultrafilter as F4F1  and  F5 F3.
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Theorem 10.  Every filter F on a non-empty set X is contained in an ultrafilter on X.

Proof. Let A be the collection of all those filters on X which contains a filter F on X. Then

A = {M  | M is filter on X such that M F }.

Since F  F, therefore F A and hence A 

Obviously A is a partially ordered set for the inclusion relation. Let B = {F :  } be a

linearly ordered sub set of A. Then for F1, F2 either F1 F2 or F2 F1.

Let H = F FB }.

We shall show that H is also a filter on X.

[F1] : Since FF  B as Fis a filter, , hence H, being the union of all F.

[F2] : Let H H and let G H, then H Ffor some and hence G Fas

F is a filter. Thus G H.

[F3] : Let G, H  H. Then G F and H  F for some F, F  B  either F  F or

F  F. Let us suppose that F F, then G, H F. Since F is a filter, so G  H  F  H.

Hence G  H  H.

Consequently H is a filter on X. H H, HB so H is an upper bound of B. Thus A is a

poset whose every linearly ordered subset has an upper bound. Hence A contains a maximal element

(by Zorn’s lemma} which will be an ultrafilter on X containing F.

15.4.8 Convergence of a filter :

Let F be a filter on a non-empty set X and let A be a subset of X. Then F is said to be eventu-

ally in the set A if and only if A  F. Filter F is said to converge to a point a  X iff F is eventually in

each open neighborhood of a and a is said to be a limit point (or limit) of F and it is written as F  a.

Notes :

1. By the definition it follows that F is eventually in all of its members.

2. If N (a) is the collection of all neighborhoodroods of a then F converges to a iff N (a) F.

3. Since each neighbourhood of a contains an open neighbourhood, therefore by [F2], if F is

eventually in all open neighbourhoods of a then it must be eventually in all neighbourhood of

a. Hence in above definition ‘open neighbourhood’ can be replaced by ‘neighbourhood’.

15.4.9 Frequently filter :

Filter F is said to be Frequently in a subset A of X iff A intersects every member of F, that is,

A F  ,   F F.

Note : F is eventually in A F is frequently in A. But converse is not necessarily true.

For example, Let X = {1, 2, 3} and F = {{1, 2 }, X} then F is frequently in {1} but not eventually

in {1}.
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Theorem 11. A topological space X is haudroff space iff every convergent filter on X has

a unique limit.

Proof. Fist suppose that X is a houdroff space and let F be a filter on X. Let us suppose that F

converges to x, y  X such that x  y. Since x and y are limit points of F, therefore F is eventually in

every neighbourhood of x and in every neighbourhood of y. Let N (x) and N (y) be the collection of all

neighbourhood of x and y respectively. Then N (x) F and N (y)F. Since X is housdorff, therefore

 N  N (x) and M  N (y) such that N M = . But N, M  F as N (x) and N (y) both are subsets

of F and N  M = . This is a contradiction. Hence F has a unique limit. Conversely, suppose that

every convergent filter on X converges to a unique point. Suppose, if possible X is not hausdorff. Then

two distinct points x, y X such that

N M N (x), M N (y).

Since N (x) and N (y) are neighbourhood filters on X, therefore N (x)  N (y) is also a filter on

X. Since every filter is a filter base also and (N (x)  N (Y) )  N (x), (N (x)  N (y)  N (y), there-

fore N (x)  N (y) generates a filter F finer than N (x) and N (y) both. Since filter N (x) contains every

neighbourhood of x, therefore it is eventually in every neighbourhood of x, thus N (x) converges to x

and similarly N (y) converges to Y.

Since N (x)  F, N (y)  F, therefore F converges to x and y both. This is a contradiction.

Hence X is a Housdorff space.

15.4.10 Limit point of a filter base :

A filter base B on X is said to converge to x  X iff the filter generated by B converges to x

and x is called limit point of B.

15.4.11 Cluster point of a filter :

Let F be a filter an a topological space X. A point x X is said to be a cluster point or an

adherent point of F iff F is frequently in each open neighbourhood of x.

15.4.12 Cluster point of a filter base :

Let B be a filter base on a topological space X. A point x X is said to be a cluster point or

an adherent pint of B iff B is frequently in each open neighbourhood of x.

Ex.16. Let X = { 1, 2, 3 } and  X }, then find all cluster points of

filter F1 = {1, 2 }, X } and F2 = { { 2, 3}, X }

Sol. (i) Open neighbourhoods of 1 = {1}, {1, 2}, {1, 3}, X.

Since {1} does not intersect each member of F2 so 1 is not a cluster point of F2. Every open

neighbourhood intersects every member of F1 so 1 is a cluster point of F1.

(ii) open neighbourhood of 2 = { 1, 2 }, X. Every open neighbourhood 2 intersects each mem-

ber of F1 and F2 hence 2 is a cluster point of F1 and F2 both.
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(iii) open neighbourhood of 3 = { 1, 3}, X. Every open neighbourhood of 3 intersects each

member of F1 and F2. Hence 3 is a cluster point of F1 and F2 both. Thus adh F1 = {1, 2, 3} and adh

F2 = {2, 3}.

Self-learning exercise

1. Let X = {a, b, c} and = {a}, {a, b}, X }, Then find limit points and cluster point of the

sequence < a, a, a, a, ...>.

2. Define residual and cofinal subsets of the directed set ( A, ).

3. Give an example to show that a net can converge to several different points.

4. Give an example to show that the set of all cluster points of a net in a topological space need not

be closed.

5. Let X = { a, b, c, d} and let C = {{a, b}, {b, c} then filter whose subbase is C.

6. State that whether the following state meuts are true or false.

(i) A sequence can converge more than are point.

(ii) A net can converge more than are point.

(iii) In a housdorff space every convergent net has a unique limit point.

(iv) A filter contains empty set.

(v) A topological space X is hausdorff then every convergent filter in X has a unique limit but

converse is not necessarily true.

15.5 Summary

In this unit, we have discussed convergence of a sequence, net and filter. We have observed that

net is a generalized sequence. We have studied definitions of limit point, cluster point of net and filter ,

subnet, ultrafilter, filter base and subbase of a filter.

15.6 Answers to self-learning exercises

1. Cluster points = a, b, c and limit points = a, b, c.

2. See definitions.

3. See example 4.

4. Let be cofinite topology on the set of natural numbers N. The mapping f : N such that f

(n) = 2n – 1 is a net in N. The set of cluster points of this net <1, 3, 5, .....> is {1, 3, 5,...}

which is not closed in N.

5. {{b}, {a, b}, {b, c}, {b, d}, {a, b, c} {b, c, d}, {a, b, d} X }.

6. (i) True (ii) True (iii) True

(iv) False (v) False.
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15.7 Exercises

1. Show that every subnet of an ultranet is an ultranet.

2. Show that a mapping g of a space X to a space Y is continuous at x0 X iff every net

(f, X, A, ) converging to x0, the composition mapping g o f : A Y converges to g (x0).

3. Let X be a topological space and let Y be a sub set of X. Then Y is open iff no sequence in

X – Y converges to a point in Y. Prove it.

4. A subset A of a topological space Y is closed iff no net in A converges to a point in X – A.

5. Let (A, ) be a directed set and B be a cofinal subset of A so that B is also directed by . Let

(f, X, A, ) be a net. Then show that restriction map of f to B is a subnet of f.

6. Let X  be any infinite set. Then show that F = {A  X | X – A  is finite } is a filter on X.

7. Let {F |    } be any non-empty family of filters on a non-empty set X. Then show that

intersection of this family that is  {F |    } is also a fitter on X.

8. Let F be a filter on a non-empty set X and let A is a subset of X, then there exists a filter F finer

than F such that A F if and only if A  F  for every F  F.

9. Let X be a topological space and let x X. Then show that local base B (x) at x is a filter

on X.

10. Show that every filter base on a set X is contained in an ultrafilter on X.
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