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PREFACE

The Present book entitled “Advanced Algebra” has been designed so as to
cover the unit-wise syllabus of Mathematics-First paper for M.A./M.Sc. (Previous)
students of Vardhaman Mahaveer Open University, Kota. It can also be used for
competitive examinations. The basic principles and theory have been explained in
a simple, concise and lucid manner. Adequate number of illustrative examples and
exercises have also been included to enable the students to grasp the subject easily.
The units have been written by various experts in the field. The unit writers have
consulted various standard books on the subject and they are thankful to the au-

thors of these reference books.



UNIT 1 : Direct Products of Groups

Structure of the Unit

1.0 Objectives

1.1 Introduction

1.2 External direct product

1.3 Theorems on external direct product
1.4 Imternal direct product

1.5  Theorems on internal direct product
1.6 Summary

1.7  Answers to self-learning exercises
1.8  Exercises

1.0  Objectives

This unit introduces a construction process, called direct product of groups, which produces new

larger groups. In this unit we shall study the external direct product of groups and the internal direct

product.

1.1

Introduction

We know what defines a group, several examples of groups, and their subgroups. In this unit we

shall see how we may build new groups from old known ones. This process of constructing new groups,

which is the simplest of many others, is called a direct product.

1.2

External direct product

Definition :

Let G, and G, be any two groups. The Cartesian product of G and G, is given by
G xG, = {(xl,xz) ‘ x €G,x, e GZ},

Itis a group for the binary composition defined as
(xla x2) (yla yz) = (x] yl’ xz}’z)

For (x5 %), V1, 1p) € Gy X G,
This group, denoted as G| x G, is called the external direct product or simply direct product of

G, and G,.



We shall usually write all abstract groups multiplicatively unless stated otherwise.

Let us verify that G; x G, forms a group for the binary composition defined above.
1. Closure property : Since x; € G|,y € G, therefore x, y; € G, as G| is a group. Similarly

Xy ¥y €G,.
Therefore O x) 0 1) =0y vy 4, 0,) € Gy X Gy
for (XI,XZ)EGIXGZ, (ylayz)eGleZ'

2. Associativity : Let (x; x,), (y},1,) and (z}, z) be any three members of (G, * G,). Then
[ (x1,%,) (31> 22) (215 25) =(x31,%,3 )(2, 2, ) (definition of binary composition)
= [(xl)ﬁ ) 215 (sz’2 ) Zz:l
=[x (121).%(12,)] (Associativity in G, and G,)
= (%, %) (0121, 222)

= (xlaxz)[(ylvyz)(zl azz)]

3. Existence of identity element : Let ¢, be the identity element of G| and e, be the identity
clement of G,. Let (x}, x;) be any arbitrary element of G| < G,. Then
(xp, x5) (€1, €p) = (x) €}, x; )
= (X7, X,) (definition of identity elements in G and G,)
Similarly, (), e5) (xq, x5) = (x;, X5)
Thus (e,, e,) is the identity element in G; < G, .
4. Existence of inverse element : Let x; € G, then xl_1 € G, as Gy is a group. Similarly for

x, € G, ,Elxz_1 € G, . Thus for (x|, x,) € G, X G,, E(Xfl,xz_l) € G, xG, such that

(xl’xz)(xl_l’xz_l) =(x1 X% xz_l):(el’ &)

and similarly

(xl_l,xz_l)(xl,xz) =(e.¢)

Thus every element in G| * G, has mverse in G| X G, .
Hence G, % G, s a group.
Order of the group G; % G, : Order of the group G| x G, is the number of ordered pairs in
the cartesian product of G| x G,. It is the product of the number of elements in G, to that of G, .
Thus
(G X Gy) =] Gy x Gy | =]G] |Gy
=0(G)) o(G,)

where | G | denotes the number of elements is G .



Ex.1. Consider two groups (Z,, +,) and (Z5, +3), where Z, = {0, 1} and Z; = {0, 1, 2}.
Then Z, x Zy will be a group of order 6. Thus

Zy x Z3=1{(0,0) (0, 1), (0, 2),(1, 0), (1,1), (1, 2)}

Hence binary composition Z, x Z, is defined as follows :

for

and

eg.

(X1,%5) (V15 ¥5) = (X1 T5 11, X5 T3 15)

(%) (05 1)) =€ 2y X Z3

X1,V € 2y, X9, V9 € Zy.
(LD(,2)=(1+,1,1+;2)

= (0, 0) ctc.

Here (0, 0) will be the identity element.

Ex.2. Let (Z, +) be the additive group of integers and (C,, +) be the multiplicative group

of non-zero complex numbers. Then Z x C is a group under the binary composition defined as

follows :

(xl ) x2) (Vl ) J’z) = (xl TV Xy 'J’Z)

Since 0 is identity in Z and 1 is identity in C,,, therefore (0, 1) is the identity in Z x C,,. For each

(x,y) e ZxC,, (—x, 1) is inverse in Z x C,.

Ex.3. Let (Z, +) be the group of integers, then G = Z % Z is a group under the composi-

tion defined as follows :

(xl’yz) (xz’ y2)=(x1+x27y1 +y2)a V(x] 9y1)9 (x2 7y2) €eG.

1.3  Theorems on external direct product

Theorem 1. Let G; (1 < i < n)be n groups and G is the external direct product of these

groups. Let e; be the identity of the group G,, for eachi(1 <i<n). Then

(i) For each i, H;= {(e|, €y, ... , €, 1, Xjs €; | |, -» €, | X; €G))} is @ normal subgroup of G

(i) H, is isomorphic to G;i.e. H= G,, v i

(iii) Each g € G can be written uniquely as product of elements from H, H,, .... Hn.

Proof : Since G is external direct product of G, G, ..., G,

therefore

G=G,xGyx..xG,

is a group for component wise multiplication,

and

(i) Given that

G={(g;,8 8,18 € G

H;={(e}, ey ... €, 1, X; €, ... €,) | x; € G}

By the definitions of G and H,, it is obvious that /; is a non-empty subset of G . Let a,,

b, € G, then



a=(ey, €y, ..... € 1»a; €, .. 0) and b= (e, ay, ... e 1»b,e ... e)eH..

n 1
-1 — —1
Now, ab ' = (e, ey, o €1, a;5 €141, e €,) (€1, €9, €11, Dy €545 v e,)
_ -1
= (e, €5, -on. € 1> Ajp € 4 s woner e) (e, epe 1,07, e, e,

(by the definition of inverse in G)
=(e;, yynne, a;b e ... e
(by the definition of binary composition in G)
Thus ab~! e H;, whenever a, b € H; (a; bl._1 € G; as G;is a group)
so H, is asubgroup of G.
Now, It g = (g1, &p» -+ &,) € G, then

2ag” = gl,gz....gn)(el,ez,...ei_l,al-,el-H,...en)(gl’gz.mgn)—l

(
(81,828 )(eer.e 1,016, -€,) (gl_l,gz_l, ...g,jl)
_ -1 -1 -1 -1

_(glelgl 2826282 5 - 8i4i8i > £n6n&n )

=(e1,e2...,g,»aigi_l,...en)eHl- (v g.a;€G;)
Thus gag ! € H, wheneverg e Ganda € H,.
Hence H; is a normal subgroup of G, v i
(i) Let us define a mapping f: G, — H;
by f(g) = (e, ey ... €1, 8 € 41> - €,), V& € G;. Obviouslyf is well-defined.
For any a,, b, € G,

f(a;b)= (e}, ey, ...e;_y,a;b, €1, €,)
=(€1, €55 s €y 15 A5 €101, n€)) (€, €5, € 1, D1 €0y, 0 )

(by the definition of composition in G)

=f(a)f (b, (by the definition of /)
Thus /" is a homomorphism.
Let f(a)= f(b) fora, b, € G,
= (e.e5, v e; 1, ;. 4, ...,e,)=(e, e, ... 1,b, e, ...e)

= a;,=b,
Thus f* is one-one.
For each (e, ey, ..., €, 1, a;,€; 4, ..., e,) € H;,3 a, € G, suchthat
f(a) =(ey, ey, € ;5 €15 5€,) € H,;
Thus /" is onto.
Hence / is an isomorphism and H; = G, for each .
(iii) Let g¢=(g1,25,-..8,) €C
ten  g=(g, o, €3, oy e,) (e, &, €3, sy e)..(e,e, ...,e ,g)eH H..H
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thus g can be expressed as product of elements of H |, H,, ... H,.

For uniqueness, let, if possible,
g=(gp, ey €3, ¢,) (€, 8, €3, -.0r€,) ... (€, €5, ..., €, 1, &)
=(gl,e.035,¢,)(€. 25, 63,..¢,)...(€,€,..¢, 1,8, (Where g;, g/ G,)
= (8182:8n) = (8185 81)
= 81788 =8 & =&,
Thus, g € G can be written uniquely as product of elements of H, H,, ... H,,.
Theorem 2. Let G; and G, be groups, then
(i) GxG,=G, xG
@) If Hy = {(s, e))| a € G|} and H, = {(¢;, b)| b € G,}, where e, and e, are identity
elements of G, and G, respectively, then H, and H, are normal subgroups of G, *
G,.
(ii) Hy =Gy and H, = G,
(v) The factor (quotient) group (G, *G,)| H, is isomorphic to G, , and (G| X G,)| H, is
isomorphic to G.
Proof : (i) Let usdefine a mapping
f G XG> G, xGy
such that f'(x;, x,) = (x5, X) Vv (¥}, X,) € G| X G,.
Obviously ¢ is well-defined.
Now, for (x|, x,), (1, ¥,) € G, x G,,

f[(xbxz)(ybbﬂ = f (0, x29,)
= (x5, 1) (by the definition of £ )
=(x2.2) (2. 1)
=/ (5.%) f (31, ,)

thus f* is a homomorphism.

Now, let
S (%) = 1 (3,02
for (x1, x0), (V> ) € Gy x Gy
= (xzaxl):(y2’yl)
= Xy =V, X{ =N
= (xl,x2)=(J/1aJ’2)

thus f* is one-one.



For each (x,, x;) € G, * Gy, x, € Gy, x; € G, 3 (xy, x,) € G, % G, such that
Sxp, %)) = (x5, %)) € G, X G,y
Thus /" is onto.
Hence f'is an isomorphism and G, X G, = G, X G,.
(i) and (iii) are particular cases (n = 2) of theorem 1.
(iv) Let us define

¢:G,xG, > G,
such that

P(x15 1) = X2,V (X1, 0 ) € Gy X Gy
Obviously ¢ is well-defined.
Now, for (x;, x,), (1, ¥,) € G, x G,

O(x1. %) (71.32) =d(xw. x235)
Ry

= (I)(xla x2)¢(y1> J’2)

thus ¢ is 2 homomorphism.
For each x, € G, , (x|, X,) € G| * G,, such that ¢ (x;, x,) =x,, thus ¢ is onto and hence ¢
is an epimorphism.

Now,

ker ¢ ={(gl,g2)eGle2| ¢(g1,g2)=92 er}

={(gl,g2)eG1 XGz‘gz =& EGz}
=H,

Hence by the fundamental theorem on homomorphism, we have

G, xG,
————= =~ (G, xG
kerd f( 1% 2)

G, x G,

=G
H, 2

ie.

Similarly, the other result can be proved.

Theorem 3. Let G be the external direct product of groups G, G,, .... G,. Let
H, = {el,ez,...,el-_l,xi, e[-+1,...,en|xi € Gi}

then

(l) gEG,'Xsz...XGi_IXG.

i+l ><"'X(‘;n

14

(i) IfxeH,ye ijorsamei;tj, then xy = yx.
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G
Proof : (i) We have already shown that G, ~ A and H; < G (theorem 1), so factor group ?
i

exists, as ;can be identified by G,. Let us define a mapping
1G>G xGyx.xG_ xG x..xG,
Such that f(gl, 8y ...,gn) = (gl, 8> - 8i 1> 8it+1» ...,gn)

Obviously f* is well-defined. Now, for (ay, a,, ..., a,), (b}, b,, .., b,) € G , we have

[(a.ay....a,)(b.by..b,)| = f(ay by, ayby,.... a,b,)

n-n
= (161 @y byseees @y By iy Bigenns @y )
=(ay, Ay ooy @1y Ayyaeees @) (Bys By sy By, By Dy)

:f(al , ay ,...,a,,)f(b ) bzv'"bn)

thus f* is homomorphism. Also, f* is onto.

Hence f* is an epimorphism.

Now,

ker f = {(al,az,...,an)

f(al,az,...,an)=(el,ez,...,e,-_l,eM,...,en )}

:{(al,az,...,an)e Gla, :ej,Vj;ti}

=H,=G;
Thus, by the fundamental theorem on homomorphism, we have
G
= /(9),
ker f
G
ie EEGIXGZ .. xG %Gy %...xG,

1
(i) Letx e H,ye Hj, then 3 x; € G,, y; € G] such that
X =(ep, e, s € 1> Xps Cirps s e,) and
y =(ep e, ..., € 15Yj>Cirps s e,), then for i <j and i # j, we have
XY = (€, €95 ees €415 Xjs €1y 15 s €i1>Vp €ips e e,)
= (e, ey, oy € 1> YjrCips e,) (e e € |, X €01, s €,)
Theorem 4. Let G| and G, be two groups. Let H| and H, be normal subgroups of G, and

G, respectively then

() H;xH, <G xG,

—G] XG2 :ixi

® H xH, H, H,



Proof : (i) Since H, is a subgroup of G, and H, is a subgroup of G,, therefore /| x H, is a
subgroup of G| x G,. Now, let (A, h,) € H| X H, and (g, g,) € G| * G,, then

(gl,gz)(hl,hz)(gl,gz )_1 :(g1h1»g2h2)(gl_l,gz_l)

=(g1h1g1_1,g2 hzgz_l)eH1XHz
as glhlgl_IEHp gzhzgz_l‘EHz ( H1<’G19H2<'G2)
Thus H,xH, <G, xG,.
(ii) Let us define a mapping
GGy | G Gy

f’Hlez H, H,
Such that
f[(Hl xHZ)(gl,gz)]=(H1g1,H2 gz)» forg] €G,g €0,
G, xG
Now, for (H1XHz)(x1,xz)=(H1XHz)(J’byz)EHiXHZZ

where x, y,€ G, and x,, y,€ G, , we have
ST < Hy) (xy, %)) (Hy > Hy) (vy, )] = f[(H > Hy) (X1, %) (715 1))
=[I(H x Hy) (x; x5, 5, ¥)]
=[(H, x; ¥y, Hy %y y5)] (by definition of /)
= [(Hy x) Hy yy, Hyxp Hy y,)]
= [(Hy xy, Hy x)) (H, yy, Hy y))]

=fU(H| x Hy) (x},%,) [ (H] X H,) (v}, ¥)],
thus /* is a homomorphism.

Now, let SIH | % Hy) (xp, x5)] = f[(H * Hy) (1, 1,)]
= (H, xy, Hyx)) = (H, y;, H, y,)
= (X1Y1_1,X2J’2_])€H1XH2
-1
= (xlaxz)(ylayz) e HyxH,
= (H\ % H,) (x1, x5) = (H, X H5) (v}, ¥,)

So /" is one-one.

Now, for each

(Hlxl, Hzxz) € ﬁ><i,

1 H,

dx,€ G, x,€ G,, so that



G xG,
H{XH,

such that f[(H, x H,) (x;, x,)] = (H| x,) (H, x,)
Thus 1 is onto.

(x1. x3) € Gy% Gy and (H; X H,) (x,. x,) €

Hence ' is an isomorphism and
6xG, 6 G
H/xH, H, H,

1.4  Internal direct product

Definition : A group G is said to be an internal direct product of'its subgroups H and K if

(i) For h € H, ke K = hk = kh.

(i) G = HK and every element of G can be uniquely expressed as product of an element of H
by an element of K.

Generalization ofthe above definition is as follows :

A group G is said to be an internal direct product of its subgroups H |, H,, ...., H, if,

() a,a,=a;a, fora, € H, a; eHj and i # .

J J
(i) Each g € G can be uniquely expressed as g = iy £, .... h,, where h; € H, (1<i <n).

1.5 Theorems on internal direct product

Theorem 1. Let G be a group and let H, H, ,..., H, be the subgroups of G. Then G is an
internal direct product of H,, H, ..., H, if and only if the following conditions are satisfied :
() H; <G fori=12 ..,n

(i) Hi“[HHsz{e}

j#i
(ii) G=H H,. H,
Proof : (i) Let H, H, ..., H, be subgroups of G satisfying given three conditions (i), (ii) and

(iii). Let | and m be any two integers such that 1 </ <m < n. Obviously [ # m. Now,

Hmr{HHjJ={e} by @)l .. (1

JEm
Now, since / = m, H, C (H Hjj, therefore
JEmM

H,, NH,=le} [by@ .. (2)
Leta, € H, anda; € H; , then



consider the element

-1 -1 (-1 -1
a,, a amal—(am a, am)aleH,

( H,<G,daa'a, €H, and g eHl)
Similarly,

a;llal_lwmal - a;ll (ul_lamal ) <17,
Thus, alala,a cH, NH,
$0 alala,a =e [by (2)]

-1

= (4a,) a,q =e
= a,q=aa, L 3)

Now, given that G =H| H, ... H  [by (iii)], soforeachg € G,3h e H,h,e H,, .. h, €

- suchthat x = h, h, ... h,. Now, we shall show the uniqueness of this product. Let, if possible
X=hyhye.h,= Whi...h,, where il e H;(1<i<n).

T (B ) = (W) (A5 1) (B P ) (i il ) (B ) € H [HH ] by (3]
j=k

By (i), by (W) =e = h=h, k=1,2,..n

Thus, G is the internal direct product of H,, H,, ... H,,.

Converse : Let G is the internal direct product of its subgroups H,, H,, .... H,,.

n

() Leta, € H, andletg=h hy... h,, h; € H,(1 <i<n)and g be any element of G. Since

G is an internal direct product, therefore a, i, = h, a; Vi k, so

— -1 -
g a g = hyhy) ap (b)) =h'ah € Hy
thus, H, <G,k=12,..n.

(i) Let aeH, m(HHjJ

J#i

= aeHiandGEHHj
j#i

= a=aanda=aya,..a,_ya;, ... a forsamea e H,k=1,2,.. n
= a;=a,ay ... @; | Ajyq ... 4,
= ee....eaie... e=a1 Clz... al._l eaiﬂ an
= a; = e (by the uniqueness of expression as product of members of H, H,... , H,)
= a=e,
so Hi“(HHj}{e}-

J#i

10



(i) Since G is an internal direct product of H,, H,, ... H,, therefore G=H, H, .... H, (by the

definition)

Theorem 2. Let G; and G, be two groups. Let G = Gx G,
H, = {(‘%ez)‘a € Gl} =G e}

and H,={(e.b)beG,}={e}xG,
then G is an internal direct product of H, and H,.
Proof : By the definition of /, and /,, it is obvious that /| and H, are subgroups of G.
Let x=(a, e,) € H, and y = (e}, b) € H,, then
xy =(a, e,) (e}, b)
= (ae|, ¢, D)
=(a,b)
and yx = (e, b) (a. e,)
= (e a, be,)
=(a, b)
Hence xy = yx i.c. every element of H; commutes with every element of /,. Now we shall
show that each element of G can be expressed uniquely as a product of an element of /7, by an element
of H,. Let g = (g}, g&,) byany element of G then

g=(g.2)=(g1a.08)=(g.a)(e.2) .. (D

So g € G can be expressed as a product of an element of //; by an element of /,.
Now, let if possible

(8182) =(gl.e;)(e.82)=(gla.e285)
=(gi.&)

= g =g)and & =8>
which shows uniqueness of the expression.

Hence G is an internal direct product of H; and H,.

Theorem 3. Let G be a group. H and K are two subgroups of G such that H and K are
normal in G and H N K= {e}, then

(i) HK is the internal direct product of H and K

(i) HK = H x K

Prof : Since HH 4G and K <G, therefore HK is a subgroup of G. Now let h € H, k €K,

then
K =k (7 ) e K (k' ek,h ek as K <G)
and Kk =(k" k) he H (heHk'n ke H as H<G)
thus K'nlkh eH nK

11



S0 Kl hlkh=e [+ HAK ={e}]
= (hky ™ (kh) =e
= kh = hk

i.e. every element of H commutes with every element of K. Now, let x € HK, then x = Ak for
some b c H, Ik < K.

Let, if possible x = hk = hk

for hyeH k €K

= W'h=kk L (1)
Since h' e H=kk'e H [by 1]

and since kk ' €K = 'he K [byl],

thus h'he HAK and kk'eH K

S0 hl_lh =e and klkl_l =e which gives iy =hand k; = k

Hence each element of HK is unique product of an element of H by an element of K. Thus HK

is the internal direct product of 4 and K.

(ii) Let us define a mapping
f:HK—> HxK
such that f(hk)=(h, k), he H, k€K

Obviously fis well defined, one-one and on to as representation hk € HK is unique.
Now, for &, ky, h, k, € HK, where hy, h, € Hand k,, k, € K, we have

f(hkihky) = f[h(kh)k,]
= (hk)k ]
=f (I bk ky)
=y hy .k Ky ) (by the definition of /')
= (. k) (hy. ks )
=f(mk) f(hk)

s0 f'is homomorphism.
Hence f'is an isomorphism and HK = H x K
Theorem 4. [f HK is the internal direct product of H and K, then
Ij{—K = and P;[—K =K
Proof : Let us define a mapping
[ HK —>H
such that f(hky=h, he H k e K.
12



Obviously ¢ is well-defined.
For hy ky € HK, h, k, € HK, where hy, h, € H, k|, k, € K, we have

f(hl ky hzkz) =f[h1 (kl hz)kzj
=f[h1 (hz kl)k2:|
=f(h1h2 klkZ)
=h, h,
:f(hl k])f(hg k2)
Thus /" is a homomorphism.
Now, for h € H,hk € HK, where k € K, such that /' (hk) = h, so f is onto.
Thus /" is an epimorphism.
Now, ker f ={hk e HK|f (hk)=ecH|
={heHkeK|h=e}
= {k € K}
=K

Thus by the fundamental theorem on homomorphism, we have

Le. — =

Similarly, we can show that
HK _
_H =~
Ex.1. Let G bea cyclic subgroup of order 6 generated by a € G i.e. G = |a].
Let {e, a? a4} =H (say) and {e, a3} = K (say). Obviously H and K are susgroups of G of
order 3 and 2 respectively. We observe that
(i) HK = {ee, e, a’ e, a’ a3, d* e, a* a3}
3 4 5}

={e,a,a2,a>,a ,a

=G

(since a® = 1)

(ii) Since G is cyclic therefore G is abelian, hence H and K are normal subgroups of G.
(iii) HN K = {e}
Thus G is the internal direct product of H and K .

13



Self-learning exercise-1

(i) Define external direct product.
(ij) Define internal direct product.
(iii) Which of the following statement is false.

(a) Externaldirect product and internal direct product of same factors are isomorphic.
(b) 1f G is an internal direct product of H and K then it is not necessary that / and K are
normal subgroups of G.
(c) If HandK are two sub-groups of G such that G is an internal direct product of / and
Kthen H M K= {e}.
(v) If o(H) = 2 and o(K) = 3, then find o(H * K).

1.6

Summary

In this unit we studied about external direct product of groups and internal direct product and

some theorems to understand their properties.

1.7  Answers to self learning exercises
Self-learning exercise-1
1. See text 2. See text
3. (a) True (b) False (c) True 4.6
1.8  Exercises

. If H, K are subgroups of a group G such that G = H x K, show that H = % and K ~—

. IfH, K are normal subgroups of G, show that

. Let Gy, G,, G5 be groups, then show that

() (G, xG,)xGy =G xGyx Gy =G, x(G, xGy)

(i) 0(G,xG, ) =0(Gy)x0(G,)

. If G is the internal direct product of its subgroup H|, H,, .... H,,(n> 1) and H=H, H; .... H,,

then show that G is internal direct product of H, and H also.

. Let G be a group and let G be internal direct product of H, H,, ... H,. Let M be external

drrect product of H,, H,, ... H,. Then show that G = M.

G
H

. Show that S5 cannot be written as internal direct of two non-trivial subgroups.

is isomorphic to a subgroup of —X—

HnNK H K’

OO0
14



UNIT 2 : Isomorphism Theorems, Conjugacy and the
Class equation of a Group

Structure of the Unit

2.0 Objectives

2.1 Introduction

2.2 Group Homomotphism

2.3 Isomorphism

2.4 Conjugate elements and conjugate sets
2.5  Conjugate class

2.6 Normalizer of an element in a group
2.7  Centre of a group

2.8 Class equation for the finite group
2.9 Summary

2.10  Answers to self-learning exercises

2.11  Exercises

2.0  Objectives

In this unit we shall study about
1. Group homomorphism, isomorphism and related important theorems.

2. Conjugate elements, conjugate class and class-equation of a finite group.

2.1 Introduction

We have already studied about the concept of homomorphism of a group at graduation level.
Homomaorphism is a special mapping which preseres the group operation and some group properties.
Isomorphism is a special kind of homomorphism, which is one-one and onto also. There is structural
similarity between two isomorphic groups.

A special relation called conjugacy is an equivalence relation on a group. Equivalence classes

related with this relationare called conjugate classes. Class-equation of a finite group G is a relation

between order of a group G, conjugate classes and normalizer of elements of the group G.

15



2.2 Group homomorphism

Definition : Let (G, *) and (G, %) be two groups. A mapping f from G to G'is said to be a
group homomorphism if
flaxb)y=f(a)+'f(b), Va begd.
This mapping preserves the operations of G and G’although these operations are different. When
there is no ambiguity, we shall write all abstract groups multiplicatively. Thus, the above condition can be

rewrittenas

fab)y=f(a) fib), VabeG.
Kernel of homomorphism : Let f be a group homorphism of a group G to group G”. The

Kernel ofhomomorphism f'is the set defined as follows :
Ker(f)={xe G|f(x)=e"}

where e’is the identity element of G

Thus Kernel of f7is the set of elements of G which are mapped to identity element of G".

Image of homomorphism : Let /' be a group homomorphism of a group G to a group G".
Then image of f'is the set defined as follows :

Im (f)=f(G)={f(x) e G'| x € G}

Iffis onto then f(G) = G’and G'is called homomorphic image of G. Also fis epimorphism.

Ifhomomorphism f'is one-one then it is called monomorphism.

If domain and codomain of f'are same, that is, if G = G, then homomorphism is called endo-

morphism.

2.3  Isomorphism

Definition : A homorphism of agroup G to a group G’is called isomorphism if it is bijective,
that is, one-one and onto.

An isomorphism from G to G is called an automorphism.

The set of all homomorphism from a group G to group G’ is represented by Hom (G, G”) and
the set ofall automorphism is denoted by Aut(G).

If there exists anisomorphism between two groups G and G’, then we say that G and G’ are
isomorphic groups and symbolically it is written as

G=G"
Ex.1. Let (Z, +) be the additive group of integers. Let a mapping
fiZ>7
defined as f(@)=mz, VzelZ

where mis any fined integer, such that m # 0. Show that f'is a monomorphism.

16



Sol. Foranyz,z, € Z, we have

[ +z)=m(z; +2z,) (by the definition of /)
=mz| + mz, (distributive-law)
=f(z) +/(z)

Thus fis homomorphism.

Now, let fz)=f(z)

= mz, =mz,

= Z1=2, (+ m=#0)

thus /'is onc-one.

Hence f'is monomorphism.

Ex.2. Let (R, +) be the additive group of real number and (R*, -) be a multiplicative group
of positive real numbers. Show that a mapping ¢ : R — R, defined by ¢(x) = €* is an isomor-
phism.

Sol.  Obviously ¢ is well-defined. For x,, x, € R, we have

O (x) +2p) =170

=" ™

= (x)) ¢ (xy)
Thus ¢ is a homomorphism.
Now, let O(x) =0 (xy) = e =e”

= X =Xy,

thus ¢ is one-one.

Now, for everyx € R*, 3log,x € R

such that d(log, x) =¢8> = x,
thus ¢ is onto.

Consequently ¢ is an isomorphism.

Ex.3. Show that ¢ : Ry—>R,,, given by ¢ (x) = ¥, Vxe R is an homomorphism, where
R is a multiplicative group of non-zero real numbers. Also find Kernel of ¢.

Sol.  For x|, x, € R, we have

2 22
(I)(xl xz):(xl xz) =X

= (x) ¢ (xp)
then ¢ is 2 homomorphism.
Kernel of ¢ = Ker(¢) = {x € Ry| p(x) =1} {1is identity in R}
={reR,| x2=1}
=i, -1

17



Some important results of Homomorphism and Isomorphism :

Here, we are writing some important results without proof because these have been studied in
under graduate classes.

Theorem 1. Iff: G — G’is a homomorphism then

()  f(e)=e’, where e and e’ are identities of G and G’ respectively.

@ fehH=[w]", vxed

(i) fOM=[f)]", Vxe Gand ¥n € Z.

(iv) Ker fis a normal subgroup of G.

() [is a monomorphism iff Ker f— {e}

Theorem 2. (Natural homomorphism) A group is homomorphic to its quotient group.

Theorem 3. (Fundamental theorem of homomorphism) Every homomorphic image of a
group G is isomorphic to some quotient group of G.

Theorem 4. (Double quotient theorem) Let H and N be two normal subgroups of G such
that H CN, then

NH< G/H and G/H/NH = G/N

Theorem 5. (The diamond isomorphism theorem) Let H and N be two subgroups of G

such that N is normal in G. Then H " N is a normal subgroup of H and
H__HY
HNAN N

Proof : Since N< G, therefore
Nx=xN, Vx e G

= Nx=xN,vVvxeHa Hc G
= NH=HN
thus HN i a subgroup ofG.
Now, we shall show that N <t HN.
Let n € N, then en € HN, (‘+ ee H)
= ne HN

thus N c HN and since N< G, therefore N<t HN also. Hence the quotient group % exists.

Let as consider a mapping

(|):H—>ﬂ
N
defined by Oh):Nh, VxeH

he H> he=h e HN= Nh %

18



Let hy, hy € H, then
¢ (hyhy) = Nhyhy= NhyNhy,=¢ (b)) ¢ (h,)

thus ¢ is a homomorphism.

For each Nx e % ,x € HN, then3 h € Hand n € N such that x = An. Thus for each Nx,

Nx=N (hn)=(Nh)n=(hN)n (- N<G,Na=aN Va € G)
=h (Nn) = hN
=Nh=¢ (h)
Thus ¢ is onto, so

HN
(I)(H)_T

Hence ¢ is an epimorphism.
.y ... . HN
Now, Kemel of =Ker (¢) = {x e H| ¢ (x) =n} (N is identity in T)

={x € H| Nx=N}
={xeH|x e N
=HNN

then by the fundamental theorem, we have

_H

Ker((l))g(l)(H)
. H _HN
o HANN

this proves result (ii).
Since H N N is Kernel of ¢, therefore H N N is a normal subgroup of H. This proves result (i)
Theorem 6. (Zassenhaus Lemma or Butterfly theorem) Let H and N be two subgroups of G
and let H"and N”be two normal subgroups of H and N, respectively. Then
() (HnN N’)H'is normal subgroup of (H " N) H,
(i) (H’m N)N’is normal subgroup of (H N N) N/,
(HAN)H' _ (HAN)N'
(HAN)H' ~ (H'AN)N'

(iit)
Proof : Since intersection of any two subgroups of G is again a subgroup of G, therefore

(HN N)is a subgroup of G. Also, since (H N N) N, therefore H N N is a subgroup of N. Moreover,
(HNN)<(HNN) and N’<N
=> HANAN)NN<IXHNN)NN
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= (HN N)<(HNN)

Similarty, (HNN)<(HNN)
Since product oftwo normal subgroups is again a subgroup, therefore
(HAN)YH'nN)=4 (say),

is a normul subgroup of (I ~ N). So we can form quoticnt group (77 ~ N)/A.

Also since H N N < H, therefore H N N is a subgroup of H and H’is a normal subgroup of
H, so that (H " N)H’is asubgroup of H.

Now consider a mapping

f:(HNNH - (HN N)/A
defined by fy)=Ax,x e HN N,y € H’
Let x, x, € HNN, y, ¥y, € N H’such that
X1X1=%202
= X' x =y elNNNH'=H'nNc4
(cx,x,e HNN= xz_1 x, eHNN= y, yl_l € H N N similarly
nn eH'=x'x cH)

thus X, ! x €4

= Ax|=Ax,

= Sy =Ax,,)
thus _f'is well-defined

For x|, x, € (HN N), y,, ¥, € H’, we have
Sl ) @y = £ 3 3% (55131 %) 7, |

=f[x1 XZ(J’f yZ)} ¥ =x3 yyx, since H'<H

=Ax, x,
=Ax, Ax,
=/ e S ()
thus fis homomorphism.
Now, for each Axe(H " N)/L, x € HN N and we can take any element y € H’such that
Sxy) = Ax

so that /' onto.
Thus f'is an epimorphism.
Ker (/)= fxy € (HA NH'| fiy) = L}
={xye (HNNH'|Lx=L}
={xye (HNNH'|x e L}
20



={xye(HNNH |x=ab,ae HNN’,b e H N N}
={(ab)yy e (HNWN)H |ae (HNN'),b € H,b € N}
={a(by) e (HNWN)H' |ae HNN',b € H}
={ay,lae HNN', by=y, € H"}
(- HhNN'cHNN,ye H ,be H = bye H)
=(HNN)H’
Thus Ker(f') = (HN N”)H”and hence it is normal subgroup of (H N N)H’. Also, by the funda-

mental homomorphism theorem, we have

M = Homorphic Image of
Ker(f)
| (HONH' (1AN)
that is (HAN')H' ET ..... (1)
Similarly we can show that

(HF\N)N' ~(HﬁN)
(HANN' =72 e (2)

By (1) and (2), we get

(HAN)H' (HNN)N'
(HAN')H' ~(H'AN)N'

This completes the proof of the theorem.
Self-learning exercise-1

1. Write whether the following statements are true or false :
() Homomorphism preserves the group operation.
(ii) A homomorphism is said to be an isomorphism if it is onto only.
(iii) In an epimorphism, function is onto.
(iv) Isomorphism is an equivalence relation.
2. Let R, be the multiplicative group of non-zero real numbers and let /: R, — R, defined by
fix)=x* Vxe R, be a homomorphism of R, then find Kernel of /.

2.4  Conjugate element and conjugate set

Let G be a groupand @ € G. Anelement b € G is said to be conjugate to a if there exists an
element g in G such that b = g ag! and it is denoted by b ~ a.
From the definition it is clear that if b ~ a then a~ b as b=gag ' = a = g 'bg. Thus a and b

are said to be conjugate elements and this relation is called conjugacy relation.
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In a similar manner we can define conjugate sets. Two subsets 4 and B of a group G are said to
be conjugate to each other if there exists an element g in G such that
B=gdg! or A=gBg
Theorem 7. Conjugacy on a group G is an equivalence relation.

Proof : We shall show that the conjugacy relation is reflexive, symmetric and transitive. Let a, b,

(i) Reflexive : Let @ € G. Since identity elemente € G,

therefore a=eae!,s0a~a, VacegG,
thus, this relation is reflexive.
(i) Symmetric : Let a, b € G such that a ~ b, then 3 x € G such that

a= xbx!

lax=x"1xbx) x

“lax=(x"1x) b(xlx)

x1

=

=

ax=ebe, eisidentity in G

U 4 Uy

b=xVax=xla@ !, forxle G

which shows that b ~ a. Hence, this relation is symmetric

(iii) Transitive : Let a ~ b and b ~ ¢, then there exist x and y in G such that

a=xbx! and b=ycy!

a=x(yey 1) x7!

a=(y) cy 'x )

a=(xy) c(xy)!

a~c (- xy e G)

U 4 4y

Thus, this relation is transitive. Consequently it is an equivalence relation.

2.5 Conjugate class

Definition : Let G be a group and a € G. Then set of all elements of G that are conjugate to a
is called the conjugate class of a and denoted by c[a]. Thus
clal={x e G|x~a}

={xeG|x=yp 'l yeG}

={ay!|yeG)
Note :
1. Conjugate class of any element a in G is always non-empty. Since ¢ € G and

a=-eae !, thus @ ~ a and hence a € G [a].
2. If G is an abelian group, then
gagl=ggla=ea=a, vVgeG
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thus a has only one conjugate element that is a itself. Thus
Cla] = {a}
3. Since an equivalence relation defined on a set partitions the set, therefore, conjugacy relation

defined on G decomposes G into mutually disjoint equivalence classes. Thus

G=|]cla]

acG
Theorem 8. Any two conjugate classes of a group are either disjoint or identical.
Proof : Let Gbea group and a, b € G.
Let Cla] and C[h] be conjugate classes of a and b respectively. Now, two cases arise,
Case (i) : Claln C[b] = ¢
Case (ii) : Cla]ln C[b] # ¢
If case (i) is true, then both the classes are disjoint and there is nothing to prove.

Let us suppose that case (7i) is true, that is, at least one element is common in C[a] and C[5].

Let it be x. We shall show that both classes are identical, that is, C[a] = C[b], therefore, x ~ a and

x ~ b, so there exist g, 4 € G such that

x=gag! and x=hbh!
So, gag ' =hbh!
g (gag Hg=g \(hbh71) g
¢'9 a(g'g)=(g'h) bh'g)
eae=(g'h) b(g ' h)!

a=yby !, wherey=gh e G

a~b . 3)
Now, let 7 € C [a], then  ~ a and by (3) a ~ b, gives r ~ b.
Thus r € C [b] and henceC [a] c C[b].
Similarly we can obtain  C [a] < C[b].
Consequently, C [a]=C]b].

U 4 ¥ Uy

2.6

Normalizer of an element in a group

Definition : Let G be a group and a € G. Then the normalizer of a is a set consists of those

elements of G which commute with a. It is denoted by Ma). Thus

N(a)={x € G| ax =xa}.
It is easy to verity that N (@) is a subgroup of G.

2.7

Centre of a group

Definition : Let G be a group. The centre of G, denoted by Z (G) is a set consists of those

elements of G, which commute with every element of G, that is,
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Z(G)={xeG|xg=gx, VgelG}.
Note : 1. Z () isa normal subgroup of G.
2. G is abelian iff G = Z (G).
3. By the definitions of N (@) and Z (G), it is obvious that Z (G) c N (a)
4.a € Z(G) & ax = xa, vxeG
& a = xax ™, vx e G

< Cla] = {a;

2.8 Class-equation for the finite group

We shall obtain the class-equation for the finite group G with the help of following theorems.
Theorem 9. Let G be a finite group and b € G

o(G
Then O(C[a]):ﬁ: [G:N(a)],
that is, the number of elements conjugate to ‘a’ in G is equal to the index of the normalizer of a
in G
Proof : Let G bea group and N(a) be the normalizer of a € G, then
N(a)={x e G | ax=ax}
Also, let C (@) be the conjugate class of a, then
C@={ay! | yeG)
We know that the index of N(a) in G is the number of distinct cosets of N(a) in G, that is, if
A={xNa) | x € G}, the set of all distinct cosets of M(a) in G, then

0(G)

o(A):[c;:J\/(a)]:W ..... (1)

Now, we shall show that
o(Cla])=o(4)

Let us consider a mapping

b: A4 - Clal,
defined by b [xN (a)] = xax7, vxeG
Let x,y € G, xN (a), yN (a) € A, such that

xN (a)=yN (a)

= ylx e N(a)
= O a=a () [by the definition of M(a)]
= oy (rax )= (ay™) (e
= e(xax ) =(@ay e (e is identity in G)
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= xax ' =yay™!

= ¢ [XN@)] =6 BN@)],
thus ¢ is well defined.

Again, let

d[xNa)1=olyMa)l,

= xax ' =yay™

= v @ax e =y vay ™) x

= 07 a (=01 alx)

= (v 'x)ae=ea (y 'x)

= G lva=a (7ly)

= ylx e N(a)

= xN (a) =yN (a),

thus ¢ is one-one.
Now, for each z € C [a], z=xax !, for same x € G and then xN (a) € 4 such that
o (xN (a))=xax' =z,
thus ¢ is onto.
Consequently ¢ is bijection. Hence
oA=oCla) L. (2)
From (1) and (2), we have

G
0(Cla)) =[G:N(a)]= %
=index of N (@) in G.

The class-equation :

Theorem 10. Let G be a finite group, then

A= 3, e S T
where D be a set of distinct elements a,, a,,..., a, taken one from each of the conjugate classes
of G
Proof : Since G is finite, therefore the number of distinct conjugate classes of G will be finite,
say n, that is, o(D) = n, where D = {a, a,, ....., a,}. Thus C[a,], C[a,], ....., C[a,] are distinct conju-
gate classes, which partition the group G.

So that G=UC[a]=LnJCa
aeD i=1
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= z m (by the theorem 15)

We know that, x € Z (G) < C [x] = {x}. Thus number of singleton conjugate classes in G is

same as number of elements in Z(G). Therefore equation (1) can be written as

o(G):o[z(G)]+a§ %

aeEZ(G)

Here Z (G) is the center of G. Equation (2) is known as class-equation for finite group G.

Self-learning exercise-2

1. State whether the following statements are true or false :

() Ifais conjugate to b, then b is conjugate to a.
(ii) Ifa~bandb ~ c, then it is not necessary that a ~ c.

(iii) The centre of a group is abelian.

(iv) Normalizer of an element ofa group G is always a normal subgroup of G.
() Ifx € Z(G),then C[x] = {x}

2. Find the partition of G obtained from the relation conjugacy on G.

3. Write class-equation for the finite group G.

2.9  Summary

In this unit we studied homomorphism and isomorphism of the groups, and their important re-

sults. We discussed conjugacy relation, conjugate elements and conjugate class of an element of a group.

We observed that conjugacy is an equivalence relation, which partitions the group. We also obtained the

class equation of a finite group and discussed.

2.10 Answers to self-learning exercises

Self-learning exercise-1

1. (i) true (ii) false (iii) true (iv) true
2. Ker (f) = {1, -1}
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Self-learning exercise-2

1. (i) true (ii) false (iii) true (iv) false (v) true
2. Set of all distinct conjugate classes is partition of G.
o(G)
3. o(G):o Z(G)-I— 2 -
I: :| aeD 0 \_N (Q)J
aeZ(G)

where symbols have their usual meaning.

2.11 Exercises

1. Show that f: Z — G, defined by

1, if x iseven
7(x)= {—1, if xis odd
is an epimorphism, where Z is additive group of integers and G = {1, —1} is a multiplicative
group.
2. Let S, be the symmetric group of order n and G = {1, —1} be a multiplicative group. Then
show that the mapping S, — G, defined by

/(%)=

{1, if x is even permutation

—1,if x is odd permutation

is an epimorphism and find its Kernel also. [Ans. Ker(f) = 4, , alternating group]

3. Iff'is a homomorphism of a group G onto a group G’and g is a homomorphism of G’ onto
G”, then show that g o f'is a homomorphism of G onto G”’.

4. Let f'be a homomorphism of a group G onto G”. Let x € G such that f{x) =x" € G’”. Then
show that Kx = f1(x"), where K = Kernel of /.

5. Show that subgroup N of @ group G is normal ifand only if it is the Kernel of same homomor-
phism.

6. List all the conjugate classes in the symmetric group S5 and verity the class equation

[Ans. CTe] = {e}, ([(123)] = {(123), (132)}, C[(23)] = {(23), (12), (13)}]

7. Ifin a finite group G an element ¢ has exactly two conjugates, prove that G has a normal sub-
group N, other than G and {e}.

8. Ifx € G, where G is a finite group, then show that the number of elements in C[a] is a divisor of
the order of G.

R
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UNIT 3 : Commutators, Derived subgroups,
Solvable Groups and Composition Series

Structure of the Unit

3.0 Objectives

3.1 Introduction

3.2 Commutator

3.3 Derived subgroup

3.4  Subnormal series

3.5 Solvable groups

3.6  Refinement of a subnormal series
3.7  Equivalent subnormal series

3.8 Maximal normal subgroup

3.9  Composition series

3.10  Summary

3.11  Answers to self-learning exercises

3.12 Exercises

3.0 Objectives

In this unit we shall study about Commutators, derived subgroup and a special class of groups
called solvable groups. This unit also introduces subnormal series, composition series and a very impor-

tant theorem called Jordan Holder Theorem.

3.1 Introduction

Commutator of any two elements x and y of a group G is an element of the group which can be
expressed in terms of x, y and their inverses. A group generated by commutators is called derived sub-
group of G. Study of solvable group is needed in the theory of polynomial equations. Series of sub-
groups ofa group G, following some conditions, called subnormal series and composition series are closely

related to solvable groups.
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3.2 Commutator

Definition : Letx and y be any two elements of a group G . The element x' 7! x); denoted
by [x, y], is called commutator of x and y, i.e.
[x, y]=x1 y Ty
Note :
1. Commutator of x and x is e, the identity of G, that is,

[x, x]=x"1x7!

Xx=e
2, Commutator of y and x is inverse of commutator of x and y, that is,
[x I =y gy =y ety = [ 4]
3. The product of two commutators need not be a commutator.
4, The set C = {[x, y] | X,y € G}of all commutators in G may or may not be a subgroup of G.

5. Commutator of x and y can also be defined asxy x ! y!

3.3  Derived subgroup

Definition : Let G be a group. The subgroup generated by the set C of all commutators of
elements of G is said to be derived subgroup of G. It is denoted by G’ or G or [G G]. The sub-
group GU) is the first derived subgroup of G. We can define higher derived subgroups of G. A subgroup
generated by the set of all commutators of elements of G(1) is called first derived subgroup of G and
second derived subgroup of G and denoted by (G(1)” or G®). Similarly, the n" derived subgroup of G
will be G = (G-’

The derived subgroups are also known as commutator subgroups. The series G= G0 > G(1)
5 GO 5.5 GM...... is called derived or commutator series of group G.

Theorem 1. Let G\D be the first derived subgroup of the group G, then GV« G and quo-
tient group G/GW is abelian.

Proof : Let a € G)and g € G, then

g lag=(aa ™) (g lag)
=a(a'glag) e GV
(- ae GO, a7l glag e GO, being the commutator of ¢ and g)

Thu acGD ge G glage GO,
so G isa normal subgroup of G. Hence quotient group G/G(! exists.

Let x,y € G then GV x, G y ¢ G/G and x7! y 1 xy € GO

= x) " xy e GV
- xyGD = (x) G
- GO xy = GWyx [ GD< G, left cost =right cost]
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- GOy GOy = gDy My
Thus G/GU) is abelian.
Note : In general, G a4 gD G < G and GU-D/G™ s abelian.
Theorem 2. Let G be a group. Then it is abelian iff GV = {e}, e being the identity elment
in G.
Proof : First suppose that G is abelian. Let x, y € G, then the commutator of x and y is
xhlgy =5yl gy
=xlex=e
Thus, the set of commutators consists of single element e, so GV = {e}.

Conversely, let G\) = {e}. Let x,y € G, then being the commutator of x and y
x_]y_lxy e G

= xlylxy=e
= Ox) lxy=e
= Xy = yx,

Hence G is abelian.
Theorem 3. Let G be a group and H be a subgroup of G. Then H<1 G and G/H is abelian

iff |G, Gl H.
Proof : Let [G,G] = G’ be the derived subgroup of G and H be a subgroup of G.
First suppose that H is normal in G and quotient group G/H is abelian.

Let x,y € G,thenxH, yH € G/H,
then (xH) (vH) = (vH) (xH)

= xyH = yxH

= Oox) 1 () e H

= xylxyeH

So that CcH

Where C is the set of all commutators. Since G’is generated by C, therefore G'is the smallest
subgroup containing C.

Hence G'cH
Conversely, Let G’c H, then Cc H. Let

g € G, he H, then

g 'hg =) (g ' hg)

=h(h'glhg) e H
(- he H, CcH)
thus, ge G, he H= glhge H Hence H<G.
Again let x,y € G, then xH, yHe G/H. and
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xlylxyeH (+ Cc H

= Ox)'xye H

= xyH = yxH

= (cH) (vH) = (vH) (xH)
Thus G/H is abelian.

34 Subnormal series

Definition : Let G be a group. A finite series of subgroups H, (l <i< n) of the group G,
written as G=Hy> H > Hy> ... 5 H, = {e}
is said to be a subnormalseries if H,, | < H, fori=0, 1,2, .... (n—1).

Since H,,; < H,, therefore we can form n quotient groups H/H,,,1=0, 1, 2,...,(n-1).

These quotient groups are called factors of the subnormal series. The number 7 is called length
of'this series.

If each subgroup H; is also normal in G, then the above series is called normal series.

A group G always has a subnormal series

G > {e}

which is 2 normal series also. If G is simple then it is the only subnormal (normal) series of G.

3.5 Solvable group

Definition : A group G is said to be solvable if it has a subnormal series as
G=Hy>oH DH,> ... D H ={e}
such that each of'its factors H,/H,, | is an abelian group. This series, then is referred to as a solvable
series for group G.
Ex.1. Show that every finite abelian group is solvable :
Sol.  Let G bea finite abelian group.
Let G=Hyand H| = {e}, then
H, < H and since G is abelian therefore its quotient group is abelian.
Then G has a subnormal series
G= Hyo H = {e}
such that its factor G/ {e} or Hy/H, is abelian. Hence G is solvable.
Ex.2. Show that symmetric group s is solvable.
Sol. We know that alternating group 4, is a normal subgroup of S
Let Vy=1(1), (12)(34), (13)(24), (14) (23)}, then it is easy to verify that V, < A4,.
Thus, we have
Sy 2> Ay 2V, o)}
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obviously it is a subnormal series for S,

Factors of this series S,/ 4, A4,/Vy, V,/{1}, are abelian because

Note : (1). Ifo (G) = prime or (prime)?, then G is abelian
(2). We can easily show that symmetric groups S, and S; are also solvable.

Ex.3. Show that S, is non solvable for n 2 5.

Sol. Alternating group A, is simple for n > 5, that is, it has no proper normal subgroup. This 4,
has only {(1)} as a normal subgroup. So S, has only one subnormal series for n > 5,

S, > 4,> e}

where e = (1), identity permutation in §,. Factor S, /4, is abelian as it has order 2, but the factor
4, /{e} is not abelian.

So S, has no solvable series and hence S, is not solvable for n > 5.

Theorem 4. A group G is solvable iff G = {e}, for some n € N

Proof : First suppose that G is solvable and hence it has a solvable series

G=Hy,> H, o H,>..o H ={¢ .. (1)
Here each H is a subgroup of G, H,,; < H,and H,/H,,, is abelian for i =0, 1,2,...n—1.
We shall now show that G <1/, )
where GO is ith derived subgroup of G.
Since G/H, is abelian therefore Y < H I [by theorem (3)]

Thus statement (2) is true fori = 1.

Let (2) is true fori =r, that is,

G" < H,
= (") < (a,)
- ¢y L 3)
Since H, /H,, isabelian, therefore (H) < H., [by theorem (3)] w(4)
by (3) and (4), we have
GVeH,,.
Thus, the statement (2) is true for every value of i. So, we have
G"Wc H,={e [by (1]
but {e} = G™ always, so G = {e}.
Conversely, suppose that there exists some n € N such that G? = {e}.
We now that G <9 GO and GV / Gl
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is abelian, therefore -G>G9 5. 56" = {e}
is a solvable series for G, Hence G is solvable.
Note : The above result is known as characteristic property of a solvable group and it is con-

sidered as alternate definition of a solvable group.
Theorem 5. Evory subgroup of a solvable group is solvable.
Proof : Let H be a subgroup of a group G,

then HcG=H <G,
then it is easy to show that g 6" vien L. (1)
Since G is solvable, therefore there exists some # € N such that
G = {e} [by theorem (4)]
Since H" = G [by (1]
so that H" <{e}.  but{e} = G" always,
thus H® = {e}.

Hence H is solvable.

Theorem 6. Every homomorphic image of a solvable group is solvable.

Proof : Let G be a solvable group and let /'is an epimorphism of G on to G, then /(G) = G|.
Since G is solvable, then 3 some n € N such that G = {e},

= IGM]=f {e}

= (D] = {e} {f(e) = e,, identity of G, }
(by induction we can verify that f/[GY] = [£(G)]?)

Hence f(G) is solvable.

Corollary : Every quotient group of a solvable group is solvable.
Proof : There exists a natural homomorphism p of G onto G/H, then G/H is a homomorphic
image ofa solvable group G under p. Hence, by above theorem, G/H is solvable.
Theorem 7. Let G be a group and N < G. If N and G/N are solvable then G is solvable.
Proof. Let us suppose that N and G/N are solvable. Then there exists a slovable series for N as
N=NyDN,DN,>D..... N.={ey L. (D
Also a solvable series for G/N as
G G, G, _G, G
N N NN N
such that N,,; < N;, N, /N,,, is abelian for i =0, 1, 2.....k— 1 and
G G, (G6/N)
N N’ (G,/N)
is abelianfor; =0, 1, 2,..., m —1.
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From series (2), we observe that each G, is a subgroup of G and N is a normal subgroup of
each G,.

. Gj+1 Gj .
Now, since T<1 W’ therefore G, <G, forallj=0,1,2,., m—1.

AlSo %— N{=G,=N
’ N _{ } m =1
Then G=G,2G>G,>..G, =N=Ny>oN, >N, >..oN, ={e}

1s a solvable series for G.

Hence G is solvable.

3.6 Refinement of a subnormal series

Definition : Let {/;} and {K;} be two subnormal series of the group G such that
G=HyoH oH,>.H,={¢ .. (1)

and G=K,oK, oK,>..K,={e .. 2
The series {Kj} is called the refinement of the series {//;} if
{Hy, H|, Hy,... H; } = {K(, K|, K;,.... K, | .
Ex.4. The subnormal series Z > 97 > 182  72Z > {0} is a refinement of the subnormal
series Z > 9Z o {0} of group (Z,+).

Ex.5. The subnoraml series Z > 4Z o 8Z D 247 > 727 o {0} is refinement of the sub-
normal series Z > 4Z 5 8Z > {0} of the group (Z, +).

3.7 Equivalent subnormal series

Definition : Two subnoraml series of a group G are said to be equivalent or isomorphic if they

are of same length and have isomorphic factors, that is, if there exists a one to one correspondence

H H H H, | K K K K, ,
between set, of factors H H H g and K K K s _Kn .

n

Theorem 8. (Schreir) Any two subnormal series for the group G have equivalent refine-

ments.
Proof:Let G=H,>H >.>H >H,>.>H, ={ .. Q)
and G=K,oK >.oK, oK, ,o.oK,={¢f . ()
be two subnormal series for G. For H,, H; H,Kj, s by Zassenhaus lemma, we have
(H "K,,)H, < (H~K)H, L 3)
and (H. KK, <(H~K)K., .. (4)

Consider the chain of subgroups, for each i,
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+1 1+l

H =(H K, H, o (H ~nK)K

2(H,NK)H,, > (H "K_ )H, >..

i+l i+l

.D(H,NK, )H,

i+1

- (Hi M Kn)Hi+1 =H,,,
smee K, ={c},(1—]i r‘\.Kn)={e}
Here each subgroup is normal subgroup to the preceding one

Let  H(i,j)=(H, ij)HM,

J+l i+1°

s0 H (i, j+1)=(H, K, ) H

and  H(i,j+1)<H(i,J)

Also H(i,0) H; and H (in)=H, .

Ths H=H,=H(0,0)>H(0,1)>..5H(0.n-1)>..
.DH(0,n)=H =H(L,0)>H(L1)>...

D H(l,n—l) D H(2,0) >..D H(m—l,n—l) - (Hm_l,n) =H, = {e}
is a subnormal series such that it is a refinement of series (1).
Similarly, the subnormal series,
G=K,=K(0,002K(1,0) ..., K(m—-1,0)> ...
. DOK@m0)=K,=K(0,1)DK(I,1)>...
wDKm-1,n-1)DK(m,n-1)=K, = {e}
is a refinement of series (2), Here
K(i.j) = (H,n k) K, K (0.)= K,
and K(m, =K, .

Series (5) and (6) are of same length and by Zassenhaus lemma

H(i,j)  (Hnk)H,,

H(i,j+1) (H "k, )H, (H.Ok)K,

Jj+l
K(i.j)
K(i+1,))

Jj+l

(H, Nk, )K

1N

Thus (5) and (6) have isomorphic factors.

Hence (5) and (6) are equivalent.

[by (3)]

3.8 Maximal normal subgroup

Definition : A normal subgroup M of a group G is said to be a maximal normal subgroup if
M # G and N is normal in G such that M — N < G, then either M = Nor N = G. That is, no proper

normal subgroup N of G contains M.
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Note :

1. If M is a normal subgroup of G, then every normal subgroup of G/M is of the form K/M
where K < G, such that M < K. Thus, M is maximal if G/M is simple.

2. A group is called simple if it does not possess a proper normal subgroup.

Ex.6. A, is a maximal normal subgroup of 'S,

Ex.7. Each subgroup generated by prime integer is maximal normal subgroup of the group
(Z,+).

3.9 Composition series

Definition : A subnormal series G =Hy> H, > H, > ..> H, = {e} ofa group G is called a

G.
composition series if all factors G_l’ i=0,1,2,..n-1, are simple, that is, each G, | is maximal

i+1
normal subgroup of G,. If {/} is a normal series then it is called principal or chief series.

Note :

1. A composition series can not have any further refinement.

2. Every cyclic group of prime order has only one composition series.

3. Composition series is not necessarily unique.

Ex.8. 5,0 A4,>{(1)} is composition series of S, forn>5.

Theorem 9. Every finite group G has a composition series.

Proof : If order of the group G is 2 or 3, then G O {e} is the composition series of G. We shall
prove this theorem by mathematical induction on order of G. Let us assume that the theorem is true for
all those groups whose order is less than the order of G. If G is simple, then the theorem is true as G D
{e} is the only composition series for G. Let G is not simple. Then there exists a proper normal sub-
group H of G. Since o (H) < o (G), then by our assumption A has a composition series

H>H > H,> ..o H, = {e}.

Now, if H is maximal in G then

GoHoH o Hy> ..o H, = {e}
is a composition series for G.

If H is not maximal then o (G/H) is less than o (G), so G/H has a composition series

EDﬁDiD...D%={H}
H H H H
G/H _ G,

Also, =
© Gi+1/H Gi+1

. G/H |
mce, 1SS c
Gi+1/H P
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Gi ..
= q is simple
= G, is maximal in G;
Thus GG, 26,2..2G,=H>H >2H,>.. o H, = {e}
is a composition series for G.
Theorem 10. An infinite abelian group does not have a composition series.

Proof : Let G be an infinite abelian group. Let, if possible, theorem is not true, that is, G has a

composition series. Let

G=G6,0G,2G>2.026,=ey L (1)
. ) ) G, . . Yn
Since G is abelian and is simple forn=0,1, 2, ..... k —1, therefore G simple abe-
n+l i+1
lian group for all n.
Gi’l
So, 0 G = prime number = p, (say)
n+l
for n=0,1,2,.., k1.
o(G, )ol(G)o(G o(G
Now, 0(G) = (G,) 0(G1) 2(03)  0(Gs) [+ o(Gy) =1]

) 0(Gy) 0(Gy)o(Gs)  o(Gy)

{EHEHE(5

Py PPy Pr

=finite number.

It implies that G is finite, which is a contradiction as G is infinite. So our assumption is not true,
and G has no composition series.

Theorem 11. (Jordan-Holder Theorem) Any two composition series for a group G are
equivalent.

Proof : Let G bea group and let

GoH >HyD>..DoH/={e L. (1)

and GoK oKyo..oK, ={e L. 2)

be two composition series for G. Then these series are also subnormal series of G. By schreir
refinement theorem they have equivalent refinement. But (1) is a composition series so it’s refinement is
the series itself. Similarly (2) is also a composition series, so its refinement is the series it self. Hence / =

m and (1) and (2) are equivalent.
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Self-learning exercise-1

1. Define following :
(i) Derived subgroup
(i) Subnormal series
(iii) Solvable group
(iv) Equivalent subnormal series
2. State whether the following statements are true or false :
() Commutator of @ and b = commutator of » and a always.
(i) G isabelian < [G, G] = {e}
(iii) G < G, that is, derived subgroup of G is a normal subgroup of G.
(iv) Ina subnormal series of G, all the subgroups of G must be normal subgroup of G.
(v  Every subgroup of a solvable group is solvable.
(vi) 4 Z is maximal normal subgroup of (Z, +)
(vii) S is a solvable group.
(viii) A,, is maximal normal subgroup of'S, .
(ix) (Z,+) has no composition series.

(x) Anytwo composition series for a finite group G are equivalent.

3.10 Summary

In this unit we have studied commutators and the subgroup generated by commutators is called
derived subgroup. Properties of the derived subgroups have been discussed with the help of theorems.
Subnormal series, solvable series and composition series have also been studied. This unit also intro-

duces solvable group which is useful in theory of equations.

3.11 Answers to self learning exercises

Self learning exercise-1

1. See text.

2. (i) false (ii) true (iii) true (iv) false
(v) true (vi) falsc (vii) false (viii) true
(ix) true (x) true.
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3.12

Exercises

*°

A L o

Show that S, is solvable.

Prove that a solvable group has always a nontrivial abelian normal subgroup.

Show that S is not solvable.

Show that a normal subgroup M of a group G is maximal iff the quotient group G/M is simple.
Show that each subgroup generated by prime integer is maximal in (Z,+).

A group G is solvable if and only if G has a subnormal series with factor groups of prime order.
If H is a simple normal subgroup of a group G and G/H has a composition series, then G has a
composition series.

Show that a direct product of solvable group is solvable.

9. If G/H is abelian, then show that H > G (.

10.

If H is a proper normal subgroup of a group G which has a composition series, then show that

there exists a composition series containing H.

oo
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UNIT 4 : Euclidean Ring

Structure of the Unit

4.0  Qbjectives

4.1 Introduction

4.2 Divisibility is a ring

4.3  Euclideanring

4.4 Unique factorization domain

4.5 Summary

4.6  Answersto self-learning exercises

4.7 Exercises

4.0  Objectives

In this unit we shall study a special kind of a ring called Euclidean ring. We shall also discuss
division in commutative ring, divisors, units, associates and prime elements of a ring.

4.1 Introduction

We have studied in under graduate classes about ring, subring, commutative ring, ring with unity
and integral domains. Euclidean ring is a commutative ring without zero divisors in which a special map-
ping, called Euclidean valuation is defined. Ring (Z, +, .) of integers and the ring of Gaussian integers are
examples of Euclidean ring. Study of Euclidean ring requires the study of divisors, that is, divisibility in a
ring. Concept of divisibility is applicable only on commutative ring. This unit also mtroduces an important
result known as unique factorization theorem.

4.2  Divisibility in a ring

Divisor : Let R be a commutative ring. A non-zero element a of R is called divisor of an element
b € R if there exists ¢ € R such that b = ac. We can also say that a divides b or a is a factor of b.
Symbolically we write it as a | b.

Ifa does not divide b, then we write a | b.

Note : Using the definition of divisor, we can easily obtain the following results :

forx,y,ze R x#0

W) x

(i) x|y, x|z = x[ytz

Y, ylz = x|z

(iii) x|y, = x|my, m € R
(w) x|y, = (%) |y and x| (-p)
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Ex.1. Let (Z, +,.) be a ring of integers, then 2 is divisor of 10, because we can write
10=2.5, 5eZ

But 2 /11, that is, 2 does not divide 11, because
11=2.11/2, but 112 ¢ Z

Fx.2. In ring (Q. +, ) of rational numbers, 9 divides 11 because 11/ & Q such that
11=2.1172

In Q, 11 also divides 2 as
2=11.2/11, and 2/11 € Q.

Greatest common divisor : Let R be commutative ring. Let a, b € R, then anelement ¢ € R
is called greatest common divisor (g.c.d.) of @ and b if ¢ is a common divisor of @ and b and if any other
element x divides both @ and b then x must divide c¢. Symbolically, c is ag.c.d. ofaand b ifc|a, c|b

and ifx |a, x | bthenx | c.

Ex3.Inavring (Z +,.),3isagcd. of 9 and 15, and 5 is a g.c.d. of 10 and 15.

Unit : Let R be acommutative ring with unity element 1 (identity element for the second opera-
tion in R). An element x € R is called unit in R if it has multiplicative inverse in R, that is, if there exists
vy € R such that xy = 1.

Obviously, ifx is unit then y is also unit in R.

Ex.4. In a field every non-zero element is a unit, so in (R, +, .) and (Q, +, .) every non-zero
element is a unit. In (Z, +, .), 1 and —1 are the only units.

Associates : Let R be an integral domain. Two elements x and y of R are said to be associates
if x divides y and y divides x.

Ex.5.1In (Z, +, .), 2 is an associate of 2 and —2.

Prime element : Let R be an integral domain. A non-zero, non-unit element p of R is said to be
prime or irreducible if the only divisors of p are either units or its associates, that is, if p = xy where
X,y € R, then either x is a unit or y is a unit in R. A non-zero element is said to be composite or reduc-
ible if'it is neither a unit nor a prime.

Ifany two elements of R have 1 as their g.c.d., then they are called relatively prime.

Ex.6.In (Z, +,.),£2,+3,£5,... are prime elements while £ 4, £ 6,... are composite ele-
ments. 4 and 9 are relatively prime in Z.

Theorem 1. Let D be an integral domain. Let x and y be two non-zero elements of D,
then x any y are associates if and only if x = ay, where a is a unit element in D.

Proof : First suppose that x and y are associates in an integral domain D. Then by the definition

of associates, x divides yand y divides x. Now
y=>3dbeD suchthat y=bx .. (D
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v|x=3ceD suchthat x=¢ .. 2)
We have to show that ¢ is a unit in D.

Now, xX=cy
= x.1=c (bx)
= x.1=(ch) x
= x(1—-cb)=0
= 1—-ch=0

(~- x#0and D is an integral domain so it is without zero divisors )
= cb=1
= b and c bothare units in D.

Conversely, let x = ay, where a isunit in D, that is, a ! exists in D.

Now, x=ay

= yixo oo (D)
Again, x=ay

= alx=al(ay)

= alx=(alay

= alx=y

= x|ly 2)

By (1) and (2), xand y are associates.

4.3

Euclidean ring

Definition : A commutative ring R without zero divisors is said to be a Euclidean ring if for

every a (#0) € R, there s defined a non-negative integer d(a) such that

() for all a, b € R, with b # 0, there exist ¢ and »in R such that

a = gb +r, where either r =0 or d(r) < d(b) (Division Algorithm)
(i) for all a(#0), b(=0) € R,
d(a) < d(ab)

Here, mapping d: R — {0} — Wis called Euclidean valuation of R, where W is the set of Whole

numbers.

Ex.7. Ring (Z, +, .) of integers is a Euclidean ring for the Euclidean valuation d, defined

byda)=|al|, Va=*0)eZ

Sol. Let a, b betwo non-zero elements of Z, then

d(ab)=|ab |
=lallb]|
2|a|=d(a) Co1bl2])
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hence, d (ab)>d (a)
Let a € Z, b (#0) € Z, then by division algorithm in Z, there exist ¢ and 7 in Z such that
a=qgb+r,
where 0 <r<| b|, that is either r=0 or d () < d (b).
Also, 7 is a commutative ring without zero-divisors. Consequently 7 is a Fuclidean ring.
Ex.8. Every field is a Euclidean ring.
Sol. Fields are trivial example of Euclidean ring. Necessarily field F' is commutative ring without
zero divisors. Let us define a mapping
d:F-{0} > W
such that, d(a)=0, v a(z0) € F.
Let a (#0), b (#0) e F, then, since F is without zero divisors, ab # 0, so
d(ab) =0 = d(a)
Again for a € F, b(#0) € F, there exists
ab~!=¢ (say) in F such that
a=(abHb+0 or a=gb+r, wherer=0
So field Fis a Euclidean ring.
Ex.9. The ring of Gaussian integers is a Euclidean ring.
Sol. 'We know that the set of all Gaussian integers, given by
Z@)={a+ib|a beZ)

is a commutative ring without zero divisors.

Let us define @ mapping
d:Z{)—{0} > Ww
by d(a+ib)y=a*+b%, for a+ib(#0) e Z(i)
obviously d is well defined.

For a; +ib, (#0), a, +ib, (# 0) € Z(i), we have
d (a, +ib)) (ay + iby)=d [(aay — b,b,) + i (@b, + asb,)]

=(a12 +b12)(a§ +b22)
=d(a,+ib)d(a,+iby) .. (1)
>d (a; +ib) [+ d(ay+iby)=a3 +b; =1

Hence, d [(a, + ib)) (ay + iby)] 2 d (a; + ib))
Now, let a + ib € Z (i), ¢ + id (# 0) € Z (i), then

@+ib) (c+idy' =L - piig  (ay)
c+id
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Ifp,q € Z, thenp + ig € Z (i) and
(a+ib)=(p+ig) (c+id)y+0, L. 2)
So division algorithm holds true.

If p, q are not integers, then p + ¢ ¢ Z(i), then choose integers m and 7 such that

|pm|£% and|qn|$%. ..... 3)
Ifwe write (a+ib)y=(ctid)(m+in)+r,
then r=[(a+ib)—(c+id) (m+in)] € Z(i)],
asa+ib, c+id, m+ in e Z(i).
Now, d(ry=d[(a+ib)— (c+id) (m+in)]
=d[(p+iq) (ctid)—(c+id)(m+in)] [by (2)]
=d[(ctid) {(p+iq)—(m+in)]
=d[(ctid) {(p—m)+i(g—n)]
=d[(ctid)d{(p—m)+i(g—n)] [by (D]
=d[(c+id) [(p-m)y*+(q—nY]
=d(c+id)(i+ij [by (3)]
1
=Ed(c+id)
thus d (P <d (c+id)

So, division algorithm holds true in Z (7). Consequently Z (7) is a Euclidean ring.

Ex.10. Every ring of polynomials F [x] over a field F is a Euclidean ring.

Sol. We know that F' (x), the set of all polynomials over a field F, is an integral domain, there-
fore it is a commutative ring without zero divisors. Let us define a mapping d on the set of non-zero
polynomials of £ [x] to set of whole numbers W, defined by

d(p(x)=degp(x), vp X (#0)eFI[x]
Since deg p (x) € W, for p (x) =0, therefore, d (p(x) € W, so d is well defined.
Let a (x), b (x) be two non-zero polynomials of F (x), then a (x) b (x) # 0 as F (x) is without

zero divisors, here 0 is a zero polynomial.

Now, d[a(x)b(x)]=deg[a (x) b (x)]
=dega (x) +deg D (x)
2 deg [a (x)] =dla (x)]
S0 d[a (x) b (x)] =d[a (x)].

Again by the division algorithm of polynomials, for a (x) € F (x), b (x) (# 0) € F (x), there
exist polynomials ¢ (x), 7 (x) € F (x) such that
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a(x)=q (x) b (x) +r(x)
where either 7 (x) = 0 ordeg  (x) <degb (x),

that is, d [r(x)]<d[b (x)].

Hence F (x) is a Euclidean ring.

Theorem 2. Every ideal I in a Euclidean ring R is of the form aR for some a € 1.

Proof : Let d be the Euclidean valuation. If/ is the zero ideal then / = OR, 0 € I, then the theo-
rem is true. Let us suppose that / is not a zero ideal, that is, there exists at least one non-zero element in
it. So, we can choose a non-zero element @ € I such that

da)<d (x), vxx=0)el
Now, we shall show that / =aR = {ar | r € R}.
Let x € 1, then by division algorithm, 3 ¢, » € R such that

X=qa+tr,
where either r=0 o dn)<dey L. (1)
Now, r=x—gqacl (- xelandge R,ael=qa el
Since d(a) is minimum in /, so da)<dry L. 2)

thus, x =qa, that is, every element x of / can be written as ga for same a € I, and ¢ € R. So [ can be
written as aR. Hence [ is a principal ideal of R.

Theorem 3. Every Euclidean ring is a principal ideal domain.

Proof : Let R be a Euclidean ring. Then it is commutative and without zero divisors. In order to
show that it is an integral domain, we have to show that it has unity element. We know that R is an ideal
of'itself. So, by the theorem 2, 3 a € I such that R = aR, that is,

R={ar|r e R}
thus, every element of R can be expressed as some multiple of a. Since a € R so a also can be written

as multiple of itself. So

a=ab, forsome ber L. (D)
Now, let x be any element of R then
x=ac forsome ceR L. 2)
= bx =b(ac)
= (ba)c (by associativity in R)
= (ab)c (by commutativity in R)
=ac (by (1))
=X (by (2))
Thus, bx=x=xb, vxeR

So, b is the unity element in R. Hence R is an integral-domain, that is, every Euclidean ring is an
integral domain. Also, by theorem 2 every ideal of R is a principal ideal. Consequently R is a principal
ideal domain.
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Theorem 4. Let R be a Euclidean ring. a and b be two non-zero elements in R, then a and
b have greatest common divisor ¢ which can be written as (ma + nb), for some m, n € R.
Proof : We know that the subset /, given by
I={pa+qb|p,geRrRy .. (D)
of ring R is an ideal of R generated by the set {@, b}. By the theorem 3, R is a principal ideal domain, so
1 is also a principal ideal. Let / be generated by a single element ¢ € R.

Since / is generated by c, therefore ¢ € [ also, then by (1),

c=ma +nb forsome mneR .. 2)
Also, a, b € Iso3 A, p € R such that

a=\c and b=pc (-0 I=1c))
= cla and c|b

.. ¢ 1s a common divisor of @ and b, let d be any common divisor of @ and b, then
dla and d|b

= dima and d|nb

= d|(ma+nb) = d|c (by (2))

Thus, ¢ is a greatest common divisor of @ and b which can be expressed as (ma + nb) for some
m, n € R.

Theorem 5. Let R be a Euclidean ring. Let x, y, z € R such that x and y are relatively
prime and x divides yz, then x divides z.

Proof : Since x and y are relatively prime, therefore 1 is the greatest common divisor ofx and y.
By the previous theorem4, 1 can be expressed as

1 =mx +ny forsome m,n € R

= l-z=(mx+ny)- -z

z=mxz+nyz L. (D)
Now, given thatx | yz =>x|mz L (2)
also X|x=>x|mxez L. 3)

By (2) and (3), we have
x| (mxz + nyz)

= x|z (by (1))

Theorem 6. Let R be a Euclidean ring and p € R be a prime element such that p | ab,
a, b € R, then either p divides a or p divides b.

Proof : Let us suppose that p | ab and p | a, then we shall show than p | b. Since p is prime
and p | ¢, then p and a are relatively prime, therefore | is the greatest common divisor of p and a.
Then by the theorem 5, we have

plab=p|b.
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Corollary : Ifpis a prime element of @ Euclidean ring R such that p divides the product a,
ay, ..., a, a; € R(i=1,2, .., n), then p divides at least one of a,.

Proof : This follows immediately from theorem 6.

Theorem 7. Let R be a Euclidean ring. Let a and b be two non-zero elements of R such
that b is unit in R, then d (ab) = d (a).

Proof : Let a (#0), b (# 0) € R and b is unit then » has multiplicative inverse in R. By the
definition of Euclidean ring, we have

da<d@) L. (D
Again, for the elements (ab) and (ab) b, we have
d (ab)<d {(ab) b1}
(ra#0,b#0=ab#0 andalso {(ab) b1}20)

= d (ab)<d {a (bb1)}
=d (a) (- bb-1=1)
S0 d(@hy<d@ ()
then by (1) and (2)
d (ab)=d (a)

Theorem 8. Ler a and b be two non-zero elements of a Euclidean ring R such that b is
not a unit in R, then d (ab) > d (a).

Proof : Let 4 is not a unit in a Euclidean ring R. Since a # 0, b # 0 then ab # 0 as R is without
zero divisors.

By the division algorithm in Euclidean ring R, fora € R, ab (#0) € R, 3 q, r € R such that

d=q(@b)y+r L. (D
where either » = 0 or d (r) < d (ab).

Now, if =0, then by (1)

a=q (ab)
= a—q(ab)=0
= a—q(1—gb)=0
= l—gb=0, sincea=0 (- R is without zero divisors )
= gb=1
= q and b are units in R which isa contradiction as b is not a unit, so » # 0, therefore

d (r)<d (ab)

= d (a —gab) <d (ab) (by (1))
= dla(l-gb)]<d(@) L. (2)
Also, d@<dla(l—gb)) L. 3)

(+ 1—gb e Randd (x) <d (xy))
by (2) and (3), we have
d(a) <d(ab).
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Theorem 9. Let R be a Euclidean ring. A non-zero element a € R is a unit iff d(a) = d(1),
where 1 is the unity element of R.
Proof : First suppose that a(# 0) € R is a unit in R, then a is invertible, that is ! exists.
Now, since aa 1=
= d(aaHy=dcvy . (1
By the definition of Euchidean ring, we have
d(a) <d(aa™")

d(a)<d(1) (by(l)) .. 2)
Also a-l=a
= da-)=do . 3)

Again by the definition of Euclidean ring, we have
da-1)>d(1)
= d(a)>d(1) by(3) ... 4)
by (2) and (4), we have
d(a)=d(1)
Conversely : Let us suppose that d(a) = d(1), then we have to show that a is a unit in R. Let,
if possible a is not @ unit in R, then by the theorem &, we have
d)<d(l - a)
= d(1)<d(a)
which is ¢ contradiction as d(a) = d(1). So a is a unit in R.

Theorem 10. Let R be a Euclidean ring, then every non-zero element in R is either a unit
or can be written as the product of a finite number of prime elements of R.

Proof : Let a be a non- zero element of R. If a is unit, then the theorem is true. Now, if a is
prime, then the theorem is again true. Let us suppose that a is neither a unit nor a prime in R. Let d be
the corresponding Euclidean valuation of R. We shall prove the theorem by mathematical induction on
d(a). Letus suppose that the theorem is true for all element » € R for which d(») < d(a). Then we shall
prove the theorem for a, which is a non-unit and reducible element of R. Since « is reducible, therefore

a=xy (D)
where neither x nor y is ¢ unit in R.
Now x, y are not unit in R, then by theorem 8, we have
d(x)<d(o) and di) < d(y)

= dx)<d(a) and d(y) <d(a)

Thus, by induction assumption x and y can be written as a product of finite number of prime
elements of R. Let us suppose that

X=XXy..X, and y=yy, ..,
where x(i=1,2, ..., n)and y(j = 1, 2, ..., m) are prime elements of R. Then by (1)
A=X1X5 e Xy V1 Vg ooe Vs

that is, a has been expressed as a product of finite number of prime elements of R.
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Theorem 11. (Unique Factorization Theorem) Let R be a Euclidean ring. Let a be a non-
zero, non-unit element of R such that
A= X[ Xy oo X TV Va0 V),
where x; (1 <i < m) and Vi (1 <j < n) are prime elements of R. Then m = n and each x; is an
associate of some Y; and each i is an associate of some x,

Proof: Giventhat a=x,xy..x, =y y,..., .. (D

S0 XXXy o X, =X [ Yy Y,
= x, divides at least one y|, y,, ... ¥, (- x, is prime)
Let x; divides y, for same j(1 <j < n). But x, and y; both are prime elements of R. So they
must be associates, that is,
Y= upx where u, is a unit in R.
So, by (1), we have
Xp Xg s Xy =V Vo e Vg (WX Wiy b,
“H I Yy i Y e
= XpX3 e Xy S UL VI Yy oo Vi Vg g o Yy (by cancellation law)
proceed similarly for x,.
If n > m, then afier m steps, the L.H.S. reduces to 1 and R.H.S. becomes a product of some

units of R and (n — m) prime elements. The product of some units and some prime numbers can not be

equal to 1. Therefore n >m is not possible. So

n<m 2)
Interchanging the role of x; and Y proceeding as above, we get
n>m 3)

By (2) and (3), we get m = n. We have also shown that each x; is an associate of some X; and

vice-versa.

4.4 Unique factorization domain

Definition : Let R be an integral domain. Then R is said to be a unique factorization domain
(UFD) if any non-zero element of R is either @ unit or it can be expressed as the product of a finite
number of prime elements and this product is unique up to associates. Thus, ifa € R is a non-zero, non-
unit element, then

() a=xx5..x,,x;(1<i<m)are prime in R

() Ifa=y,y, ..y, also, where ¥ (I <7< n)are prime in R, then m = n and each x; is an

associate of some X; and vice-versa.

Ex.11. Every field F is a unique factorization domain since every non-zero element is in-
vertible with respect to multiplication, that is every non-zero element in F is necessarily a unit.
Rings Z and Z (i) are also unique factorization domain.
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Theorem 12. Every Euclidean ring R is a unique factorization domain.

Proof : By theorem 10, every non-zero, non-unit element can be expressed as the product of a

finite number of prime elements of R and by theorem 11, this factorization is unique. Thus, every Euclid-

ean ring is a unique factorization domain.

UEFD.

Note : Since every Euclidean ring is an integral domain, therefore every Euclidean domain is

Self-learning exercise-1
State which of the following statements are true :
. 2isadivisor of 3 in (Z, +, .).
. 5/2 isadivisorof 11 in (R, +, ).
. 11 is an associate of 11 and —11 in (Z, +, .).
. 5 is a unit element in (R, +, .) but not in (Z, +, .).
. Every ring is a Euclidean ring
. Every Euclidean ring is an integral domain.

. Every ideal ofa Euclidean ring is not necessarily a principal ideal.

@ N SN N AW N -

. A non-zero, non-unit element in a Euclidean ring R can be written as the product of a finite

number of prime elements in R.

4.5

Summary

In this unit we studied about divisors, units, associates and prime elements of a ring which follow

certain properties. We also studied Euclidean ring and properties of Euclidean ring. Every Euclidean ring

is necessarily an integral domain and unique factorization domain. Every field is always an Euclidean ring

so it is UFD also.

4.6

Answers to self-learning exercises

Self-learning exercise-1

. false 2. true 3. tue 4. true
5. false 6. true 7. false 8. true
4.7  Exercises
1. Show that 1, —1, i, —i are units in the ring of Gaussian integers. Also show that (1 +7) is a prime
element in it.
2. Prove that in a Euclidean ring R, ideal generated by {a, b}, where a( 0), b(# 0) € R, is a

principal ideal generated by ¢ € R, where c is a greatest common divisor of @ and b.
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. Show that in a commutative ring R with unity, the product of two units is again a unit in R and the
set of all units of R forms an abelian group.

. Show that in a Euclidean ring R, 1 is an associate of any unit.

. Show that in Euclidean ring R, any two greatest common divisors of elements @ and b € R, are
agsociates.

. Prove that the relation of divisibility in an integral domain is reflexive, transitive but not symmet-
ric.

. Ina commutative ring R with unity, the relation ‘is an associate of 5’ is an equivalence relation on
R

. Show that the ideal / = [p] is a maximal ideal of a Euclidean ring R if and only if p is prime

element of R.

. Prove that every non-zero element in a Euclidean ring R is a unit in R or can be written as a

product of prime elements of R and this product is unique up to associates.

NN
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UNIT 5 : Modules

Structure of the Unit

5.0  Objectives

5.1 Introduction

5.2 Modules

5.3 Elementary properties

5.4 Sub-modules

5.5 Direct sum

5.6 Quotient module

5.7  Module homomorphism

5.8  Isomorphism theorems

5.9  Generation of modules
59.1 Submodule generated by a subset
59.2  Finitely generated module

5.10  Cyclic module

5.11  Summary

5.12  Answers to self-learning exercises

5.13  Exercises

5.0 Objectives

In pervious units we have studied algebraic structures, such as groups and rings. These struc-
tures involve only binary operations in which the product of two elements in the system is again an ele-
ment in the system.

In this unit, we introduce a new algebraic structure-module. A module is an additive abelian group;

a product (scalar multiplication) is defined to associate elements of'a ring to the elements of the module.

5.1 Introduction

In this unit, we introduce notion of modules and its properties. We define submodule, direct sum,
quotient module and cyclic module. Homomorphism is special kind of mapping from an algebraic struc-
ture to similar algebraic structure which preserves the structure. We also study homomorphism of mod-

ules in this unit.
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5.2 Modules

Let (R, +,.) be aring and let M be a non empty set. Then M is called a left R-module or simply
a left module over R if the following are satisfied :

(i) (M, +) is an abelian group

(i) vreRandv meM = rmeM

This law satisfies the following conditions :

D)r(m+n)=rm+rn;

Qr+sym=rm+sm;

Q) (rs)ym=r(sm)

forall, se Rand allm,n € M.
If R has unity element 1 such that |l m=m v m € M,
then M is called a unital module.
In the left R-module the ring elements appears on the left. If in the above definition we replace
r m by mr, then we have a right R-module or simply a right module over R.
In general a left R-module is not a right R-module if R is not commutative ring. However if the
ring R is commutative and M is a left R-module it can be made into a right R-module by defining m » =
rm for all» € R and all m € M. Since we have
(i) (m +n)r =r(m+ n), as defined
= rm-+rn, sine M is left R-module
=mr + nr

(i) m(r+s)=r+s)ym
=rm-+sm
=mr+ms, and

(iii) m(rs)=rs)ym
= (s ) m, since R is commutative
=5 (rm)
=s(mr)
=(mr)s

forally, se Randallm,n e M

Remark . (1) IfR is a field, then a unital module M is a vector space over R.

(2) We shall simply say “R-module M ” in place of “left R-module M ™.

Ex.1. A ring R is an R-module over its subring :

Sol. Let S be a subring of a ring R. Since R is aring, therefore it is an additive abelian group.

Taking the multiplication in R as scalar multiplication we can see that
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vmeR, and Vr € S = rm c R, further

(i)r(m+n)=rm+rnforallmn € R, r € S follows from the left distributive law in R.

(i) (r +s)ym=rm+smforallm € Rand 7, s € S'is a consequence of right distributive law
in R and

(iii) (r sym =r (s m) forall 7, s € Sand m € R follows from associativity in R. Hence R is
an R-module over S.

Ex.2. Let R be any ring. Then R is a module over itself since the scalar multiplication of a
ring element on a module element is just the usual multiplication in the ring R and the three axi-
oms are simply the distributive and associative laws in R .

Ex.3. Let n be a positive integer. Let R be any ring. Then the set of n-tuples R" =
{(rp,ry,..1): ;€ R, i € n} is an R-module under the termwise operations defined by (ry, r,,...r,)
+ (815 89,0 8,) = (rytsy, o, Fs ) and v (ry,...r,) = (rry,.r) forall (ry, ry, .o 1), (S1, 85, ...08,)
€ R"and all s € R.

Sol. Since R" is clearly an abelian group for addition defined above and for the remaining axiom,

we have

@) Alrpry..r) T (s,8y...8,) =r (T s, 1yt sy, +s)
=[r(rt s, riry sy, rr, +s,)]
= (rry + 18y, 1y T ESy,e, 1Y, TTS,)
= (111,17, rm,) T (18, 1Sy, TS,
=r(rpry.. 1) T r(s,s,,.... )

(i) (r+5) (ryry,...ry) = [(r +9)r) (Pt 8)ry, . (r+5)s, ]
= (rry +sry, 1y tsry, 1, ST
=(1rys 1y oo 11y) (87, STy, . ST,)
=r(rpry..r,) t 5 (851,85...5,)

(iii) 18 (r,rg,. 1) = [(rs)r, (rs)ry, ... (rs) 1]
=[r (sry), r (s15), ... 1 (s7,)]

=1 (81, SVy,... ST)

=r[s(r, ry.. 1)l
for all n-tuples and 7, s € R.
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Ex.4. Every additive abelian group is a module over the ring Z of integers.

Sol. Let (M, +) be an abelian group. For any integer a € Z and m € M, we define am as

follows :
m+m+...+m ifa>0
(a times)
am=10 ifa=0
(—=m)+(—m) +...+(-m) ifa<0
(a—times)

Hence 0 is the identify of the additive group M. Clearly a m € M and for the remaing axioms,
we have
(1) If a > 0, then
a(m+n)=(m+n)+(m+n)+...~+(m+ n)(a—times)

=(m+m+ ... tm)y=(n+n+......... +n)
a — times a — times
=am+an
Ifa=0, Then
am+n)=0=0+0=am +an
Ifa < 0, then

a(m+n)={=(m+n)j+t=m+nj+. {—(m+n);
=(m-n)+(m-n)+..+(=m-n)
={m)+(m)+..+(=m}
a — times
+{n)+(=n)+..+(=n)}
a — times
Similarly we can show the remaining axioms.

Hence M is a module over Z.

5.3  Elementary properties

Theorem 1. Let R be a ring and M be an R-module. Then
@ r0=0vreRr
(ii) Om=0vmeM
(iii) (—rym=—-(rm)=r(-m VvreR meM
(iv) r(im—n)=rm—rnvVreRVmneM
(iv) r—sym=rm—-smvr,seRY meM
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Proof : (i) Since 0 + 0 =0, 0 is the identity of M.

= r(0+0)=r0vreRr
= r0+r0=r0
= r0+r0=r0+0
= r0=0 [using cancellation law in M ]
(ii) Here 0 + 0=0
= O+0)m=0mvVvmeM
= O0m+0m=0m+0
= O0m=0
(iii) ForreR, r+(-r)=0
= [r+(r)m=0m
= rm+(—rym=0 [by (ii)]
= (1) m=—(rm)
Similarty
m+(m)y=0 = rim+(m]=r0 =0
= [rm+r(=m)]=0
= [r(=m)]= —(rm)

Hence [r (—m)]= —(rm)=(—r)ymforallr e R, m € M.
(iv) Forre R, m,n € M,
r(m—n) =r[m-+(—n)
=rm+r(-n)
=rm-—rn [from (771)]
() ForrseR meM,
(r=s)m =[r+(-s)]m
=rm+(-s)m
=rm-—sn [from (7ii)]
Theorem 2. Let Ny, N,, ... N; be R-modules over a ring R. Then show that
Ny < Nyx . X N ={(ny, ny, ... ny) :n; € N}
with operations defined as

(ny, Ny, o y) +(my, My, oomy) =+ my, ny+ my, .. 0+ my)

and r(ng,ny,...n)=Fn,rn,, ..rn)
for all (ny, ny, o ), (M, My, .. my) € Ny X Ny X XN
and all r € R, is an R-module.

Proof : Since N}, N,, ... N are additive abelian groups therefore their direct product Ny x N,
X ...x N, is also an additive abelian group for the addition defined in the theorem. The remaining axioms

are as follows :
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() r{(ny, 0y, ... m) +(my, My, ..omy)] =r(ny+my, ny+m,, .0, +m)
=[r(n+m),rny,+m,),..rn +m)
=(rntrmy,rnytrm, ..rn+rm)
=(rng, 1oy, ...rm) H(rmy, rmy, ...rm)
=r Ny, ny, ... my) T r(my, my, ...mp)

(ii) (r+s) (n, ny, ..ny) =[(r+s)n, (r+ts)n, . +s)n]
=(rnytsn,roytsn, ..rntsn)
=(rng.rng ....rn)t(sn,. sn,. ....s5n)
=r(ny, ny, oo 1) T 5(ny, Ny, . 1)

(iii) (r$) (ny, Ny, .. i) =[(rs)ny, (rs)ny, ... (rs) ngl
=[r(sny), r(sny), ... r(sn)]
=r(sny, sny, ....sny)
=rs(np,ny, ...np) |

Hence Ny x N, x .. x N, is an R-module.

5.4 Sub-modules

Let M be an R-module over a ring R, A non void subset NV of M is said to be a submodule of M
if N itself is an R- module under the operations of addition and scalar multiplication given for M re-
stricted to N.

Therefore an R-submodule N of M is a subgroup of M which is closed under the scalar multipli-
cation ¥ m € N, for all» € R and m € N. Remaining axioms for the scalar multiplication then hold in N
as they hold in M .

Every R-module M has the two submodules M and {0}. These are called the trivial submodules
or improper submodules. Any other submodule of M is known as proper submodule. An R-module M is
said to be an irreducible submodule if its only submodules are {0} and M.

We now state and prove a theorem which gives us a criterion for a non-void subset to be a
submodule.

Theorem 3. Let R be a ring and let M be an R-module. A non-void subset N of M is a
sub-module of M if and only if.

(i) x—yeN, forallx,ye N

(ii) rx € N, forallx e N, r € R.

Proof. If N is a submodule of M, then N is an abelian group under addition and is closed under
scalar multiplication. Therefore (i) and (i) hold.

Conversely, let N be non empty subject of M such that (i) and (i) hold.
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(i) implies that V is additive subgroup of M and therefore N itself is an abelian group under
addition.

(i) implies that N is closed under scalar multiplication. The remaining axioms for scalar multipli-
cation hold for all elements in NV as they hold in M .

Hence N is a submodule of M.

Theorem 4. The necessary and sufficient condition for a non-void subset N of an R-mod-

ule M over a ring R with unity to be a submodule of M is that rn + sy € N for all v, s € R and all

X,y eN

Proof. Let N be a submodule of M, then for allr; s € Rand x, y € N, rx, sy € N, Hence
rx+syeN, (- Nis additive subgroup of M)

Conversely, suppose N is a non-void subset of M such that » x +s y € N for all »,s € R and
X,y eN

Taking » = I(unity of R) and s =-1(as 1 e R=>-1 € R)

= l.x+(-1)yeN

= x—-yeN L (1)

Again, taking s = 0, we see that if » € R and x, y € N, then

rx+0yeN
= rxeN (2)

(I)and (2) = Nis a submodule of M.

Theorem S. [f M 1 and M, are submodules of an R-module M, then

(i) M; N M, is asubmodule of M, and

(ii) My + My = {m; + m, :m; € M, m, € M,} is a submodule of M.

Proof. (i) Sine M, and M, are submodules of M, it follows that M, N M, is also a submodule
of M. Movere since M is additive abelian, M| M M, is also additive abelian subgroup of M. To com-
plete the proof, it is sufficient to show that M; N M, is closed for scalar multiplication.

Let reRand x e M| M,.

then x € M, andx € M,.

Nowre Randx e M; = rxe M|, since M, is submodule of M.

Alsor e Randxe M, = rxe M,,since M), is submodule of M.

Hence rx € M n M, Thus M; " M, is a submodule of M.

(i) Let m = x| + x5, n = y; + y, be any two elements of M| + M, then x,y; € M| and
Xy, Yy €M,

Now, m—n =(x;+x)-0; Ty,

= —y)+H =)
Since M, and M, are submodules of M. Therefore x; —y, € Mand x, —y, € M,.
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Thus m—n=@x —y)+tx,-y,) € M; + M,

Also, let reR meM +M,

We have rm=r(x)+xy) = rxg T,

Again since M| and M, are submodules of M, therefore »x; € M| and rx, € M,. Thus rm
M, + M,

Hence M, + M, is submodule of M.

Note : The above results can be generalised to an arbitrary intersection or sum of submodules.
Also it is easy to see that the union of two submodules is a submodule if and only if one is contained in

other.

5.5 Direct sum

Let M be an R-module and let M;, M,,... M, be submodules of M. Then M is called the direct
sum of M, M,,...M, if every element m € M is uniquely expressible as
m=m; +m,+..+m, where
my € My,myeM,,..m, €M,
Symbolically it is denoted as M = M| @ M,®...,®& M,
Theorem 6. Let M be an R-module and Ny, N,,... N, be submodules of M. Then the fol-
lowing statements are equivalent :
()M=N,®N,® ... DN
(i) Ifn; + ny ...+ m =0, thenn; =n, = ..... =n,=0forn, e N;
(ii) Ny (N +..... + N | + N+ + Ny = {0}
Proof. (i) = (ii) Let M is the direct sum of N, N,,....N, and n| +ny + ...+, =0 forn; €
N, i=1,2..., k. Since every element of M has unique expression, 0 € M, which is written as 0 =0 + 0
+ ...+ 0 implies that n; =n, = ....=n;, = 0.
(i) = (iii) Letx e N, (N| +..... + N, + N;y | +..... + N}) thenx € N, and
xe€(Nytooe # N, + Ny + o N

so these exist n; € Ny, ny € N,, ..... s N 1 €EN_,n; 1 € Ny, oo ng € N,
such that x=ntn, vt ta Tt

= npt nytetn  tEx)tn ot =0

= n= ny,= =—Xx=... =n, =

Since xeN = —xeNl,

i.e. — x is the ith element in the sum. Hence x = 0 and
N, (N;+ ... TN+ Nt +N.= {0}
So (ii) = (iii). Finally, to see that (iii)) = (i), let us assume that for m € M, we have two

different representations.
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Then 0=(my—ny)+(my—ny)+...+(m —ny)

_ mk)
Now (m;—n;) € N;and [(ny—m) + ..... T —m ) (e =M ) T T (1 my)]
€ (N + Nt Nigy T £ Np)
So, (m;—n) e N.AV(Ny + ... N, |+ N+ ... + N, = {0}

= m, =n; v i.Thus m € M has unite representations and hence M is the direct sum of NV,.
Ny, ... N,

5.6  Quotient module

Let M be an R-module and let N be submodule of M. Then the set
M/N={N+x:x € M}
is called quotient module.
We define operations of addition and scalar multiplication as
(N+x)+(N+y)=N+(x+y)
and r(N+x)=N+rx
forallx,y e Mandr € R.
Theorem 7. Let M be an R-module and let N be a submodule of M. Then the set M/N =
{N +x :x € M} is an R-module for addition and scalar multiplication defined as follows :
HWN+x)+(N+ty)=N+(x+y)
(i) r(N+x)=N+rx
foral N+x, N+tye M/Nandr € R.
Proof. Since M is an abelian group under addition +, the quotient group M/N={N + x : x €
M} is defined and is an abelian group with binary operation
(N+x)+(N+y)=N+(x+y),
for all N+x, N+y e M/N.
To see that the scalar multiplication of the ring element 7 on the coset N + x is well defined,
suppose
N+x=N+y = x—-yeN
Since N is an R-submodule, » (x—y) € N
= rx—ryeN
= N+rx=N+ry
and thus scalar multiplication is well defined. It remains to prove the following axioms for an R-module.
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) r(N+x)+(N+p)] =r[N+(x+y)]
=Nt (ty)
=N+rx+ry
=(N+r)+(N+ry)
=r(Ntx)tr@iv-+y

(ii) (r+s)(N+x)=N+(r+s)x
=N+rx+sx
=(N+rx)+(N+sx)
=r(N+x)+r(N+x)

(iii) (rs)(N+x)=N+(rs)x
=N +r(sx)
=r[N+(sx)]
=r[s(N+x)]

forallz, s € Rand for all N+x, N+, € M/N.

5.7 Module homomorphisms

Homomorphism is special kind of mapping from an algebraic structure to similar algebraic struc-
ture which preserves the binary operation. Here we consider homomorphism of modules.

Definition (module homomorphism ) :— Let M and M ' be R-modules. A mapping f: M — M’
is called an R-module homomorphism if

() f(x+y)=fx)+f(), forallx, y € M and

(i) f(rx)=rf(x)forallr € R, x € M and
if R is a ring with unity then we can combine (i) and (i7) as f (r x + s y) =r f(x) + s f (y).

Homomorphism is called module isomorphism if /'is one and onto. Modules M and M "are
said to be isomorphic if there is some R-module isomorphism of M onto A" and we denote M = M '.

An R-module homomorphism is a monomorphism if it is injective, an epimorphism if it is sur-
jective.

An R-module homomorphism f': M — M from an R-module M into itself is known as an endo-
morphism. Further an isomorphism / from M onto itselfis called an automorphism.

Theorem 8. If M and M 'are two R-modules and if f :M — M ' is a homomorphism, then

M f(0)=0eM

(i) f(=x) =—f (%)

(iii) f (x—y)=f (x) = f (v) forallx, y € M.
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Proof. (i) We have

0+0=0
= SO+0)=7(0)
= SO +fO)=f0)+0
= /(0)—0 e M. using cancellation law in A .
(i) for all x € M, we have
xt(=x)=0
= flx+(E=01=,0)=0
= f@) +fE0)]=0eM’
= fExD)=—f()

(iii) For all x, y € M, we have
fa=y)=flx+ )]
=f()+f(=y)
=f(x)—f0) using (i7) above.

Kernel of Homomorphism : Let A/ and M "be two R-modules and - M — M ' be a module
homomorphism. The set of all elements of M which are mapped to zero of M 'is known as Kernel of
homomorphism / and is denoted by Ker (f). Symbolically Ker (/)= {x e M | f(x) =0 € M '}.

Since /(0) =0 € M, therefore 0 € Ker (f).

Theorem 9. Letf: M — M ' be an R-module homomorphism, then

() Ker (f)={xeM|f(x)=0 e M’} is a submodule of M.

(i) Im (f) = {f(x) | x € M'} is a submodule of M.

Proof. (i) Since /(0) =0 M. 1t follows that Ker (f) is non-empty subset of M.

Let x,y € Ker (f) then f (x) = 0, f () = 0.
Since Sa=)=flx+ )]
BASRNAGR))
=) =1
=0

therefore x — y € Ker (f).
Thus x, y € Ker (f) = (x—y) € Ker (f)
Again let 7 € R and x € Ker (f'), then
f(rx)=rf(x)=r0=0 e M 'and therefore r x € Ker (f).
Hence Ker (f') is a submodule of M.
(i5) Since 0 € Mand £ (0) =0 € M ', therefore 0 € Im (f).
Thus Im () is a non-empty subject of M '.
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Letx', y' € Im (f) so that there exist x, y € M,
such that f'(x) =x'and f'(y) =".

Now Xy =) -f(=f(x-y) elm(f)
S0 x'-y" e Im(f)
Thus X,y elm(f) = x—y e Im(f)

Againlet 7 € R and x' € Im (f'), then
rx'=rfx)=f(rx) elm()
= rx' elIm(f)
It follows that Im (f*) is a submodule of M .
Theorem 10. If f: M — M ' is an R-module homomorphism, then f is a monomorphism if
and only if Ker (f') = {0}.
Proof. First let fbe a monomorphism from M to M .

Then f'is one-one.

Let x € Ker (),

then fx)y=0eM’

= S () =1(0)

= x=0 (f being one-one)

Hence Ker (f') contains only 0 € M i.e. Ker (f) = {0}.
Conversely, let Ker (f') = {0}, then let x,y € M be such that /' (x) = f(»),

then SO=r»

= SO -f»=0eM’
= fx=y)=0e M’
= x -y € Ker (f) = {0}
= x-y=0

= X=y

Thus f'is one-one. Since f'is a homomorphism. So it is a monomorphism.

Homy, (M, M ") : We shall now consider the set of all homomorphism from an R-module to
another R-module. Let M and M’ be two R-modules. We denote by Homy, (M, M '), the set of all
homomorphism from M into M '. In this set we shall introduce two operations (i) internal composition,
(ii) scalar multiplication. Here, we assume that R is a ring with unity.

Let f, g € Homy (M, M'), we define the sum f+ g by the rule (f+ g) (x) = f'(x) + g (x) for all
x e M.

Now, x, y € Mand 7, s € R, we have

(fre(rxt+tsy)=f(rx+tsy)+grx+sy)
=rf@)+tsfO)+rg@)+sg®
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=r[fx)+g@]+sf)+gm]
—r(f+ @ +s(+2 )
Thus £+ g is a module homomorphism from M into M "and therefore
/. g e Homy (M, M") = f+g e Homy (M, M")
The above binary operation in Hom 5 (M, M ') is known as point wise addition of morphism.
Theorem 11. Let M and M " be two R-modules. Then the set Homy (M, M'") is an abelian
group under pointwise addition of morphism.
Proof. We have already seen that point wise addition is a binary composition in Homy, (M, M")
ie if f.g e Homp (M,M").
Then f+g e Hom (M, M") defined by (f+ g) (x) =f(x) + g (x) for allx € M.
Now let f, g, h € Hom , (M, M), then for any x € M,
[(f+8)+hl(x) =(+gx) +h(x)
=[fx)+g (@] +h )
=f(x) +[g () +hx)]
=f(x)+ (g+h) ()
—[f+ g+ h)] ()
Hence, F+o9+th=f(g+th)
So, point-wise addition in Hom , (M, M") is associative.
Now, to prove commutativity, we see that for anyx € M
(F+e) () =f(x)+g(x)
=g () /()
=(g+/f)x)
S0, frg=g+f
The zero map 0:M — M’ such that 0 (x) =0,Vx € M is an element of Hom , (M, M ").
Also for any x € Hom , (M, M)
(04 7)(x) =0(x)+f (x) =0+ f (x) = f (x) = O+ f = 1
Thus the zero map is the identity element in Hom , (M, M").
Let for any /'€ Hom , (M, M"), define the map
—fM->M'by(=/) ) =—f(x) yxeM
Then it is obvious that — /'€ Hom p (M, M").
Also for any x € M,
[+ ENT@=F0)+(=f) ()
= f(x)—f(x) =0= 6(x)
Therefore f+(=£)=0
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Thus each element in Hom 5 (M, M) has its additive inverse in Hom , (M, M").
Hence Hom , (M, M) is an abelian group.
Theorem 12. Let R is a commutative ring and r € R, f '€ Hom p (M, M "), then r f € Hom g
(M, M ") defined by (r f) (x) = rf(x) for all x € M and with this scalar multiplication the abelian
group Hom (M, M) is an R-module.
Proof. Letx, y € Mands,, s,, € R, then
(rf) s x+,m)=rf(s;xts,y)
=rls; fx)+s, /()]
=rs f)+rs,f()
=51 f(rx)ts,f(ry)
=5 rf(x)+s2 rf(y)
=51 (/) x) T35, (r /) )
Hence rf: M — M’is an R-module homomorphism. So » /'€ Hom p (M, M").
We need to verify now the remaining R-module axioms
() [r(f+lx =r{+g x
=r[f (x)+gx)]
=rf (x)+trg)
=(rf) )+ (rg) x)
~(rf +rg W

S0, r(ftg =rftrg

(i) [(r+5)f1(x) =(r+s)f(x)
=rf ) +sfx)
=(rfH+6/)
=(f +sf)x)

o (rs)f1) =0s)fx

=r[sf(x)]
=r(sf) (x)

S0 (rs)f=r(sf)

Hence Homy, (M, M) is an R-module.

Theorem 13. Let M be an R-module and let N be a submodule of M. Then the natural

projection map p : M — M / N defined by p (x) = N +x for all x € M is an R-module with Kernel
N.

Proof. Letx, y e Mandr, s € R, then
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p(rx+sy)=N+(rx+sy)
=(N+rx)+(N+sy)
=r(N+x)+s(N+y)
=rp@)*spy)
Thus ¢ is an R-module homomorphism from M to M / N.
Let K be the Kemel of p. Then K= {x € M | ¢ (x) =N}
Now we shall prove that K = N
xeKe px)=N
<> N+tx=N

< xeN

K=N

5.8 Isomorphism theorems

All the isomorphism theorems stated for groups also hold for R-modules. The proofs are similar
to the comresponding theorems for groups.

Theorem 14. (Fundamental theorem an module homomorphism) Let M, M ' be R-mod-
ules andf: M — M ' be an R-module homomorphism. Then Ker (f) is a submodule of M and
M/Ker (f) = Im (f). Equivalently, every homomorphic image of an R-module is isomorphic to some

quotient module.
Proof. Let K be the Kernel of homomorphism f.
By def. K={xeM:f(x)=0}
Since f(0)=0e M’

0 € K and so K is non-empty set.
Let x, y € Kand r € R be arbitrary, then f (x) =0=f(y) and x,y € M.
= x—y € M as (M, +) is an abelian group.
f@=»=f®)-f(»=0-0=0
x,yeKvyzxyek
= K is additive subgroup of M.
reRxeK = reRxeMfx)=0
= rx € M, f(x) =0 by definition of R-modules.
= frx)=rf(x)=r.0=90
= f(rx)=0,rxeM =rxek.
Hence K is submodule of M.
Therefore M/K is well defined. We define a mapping ¢ =M /K — Im (f) s.t. ¢ (K+x) =1 (x)

forallx € M.
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Now this mapping is well defined, since for anyx, y € M
K+x=K+y = x-yekK
f(x—y)zOeM'
f®-f=0

SO =/

¢ (K+x)= ¢ (K+y)

We shall now show that ¢ is an isomorphism.

u v U

Forany K +x. K+v e M/K . we have

¢ (K+x)=(K+y)= f(x)=f0)

= f(x=y)=0eM’
= x-yek
= K+x=K+y

is one-one.

¢ is onto, because for any x' € Im( /'), there exists x € M such that /" (x) = x", which implies
that for each x" € Im( /), these exists K+ x € M /K such that
¢ (K+x)=7(x)
Finally for any K+ x, K+y € M/K and ; s € R,we have
O[r(K+x)+rK+y)]=¢K+rx)(K+ry)
=0 (K+trx+sy)
=f(rx+sy)
=rf() +sf(»)
=r¢p(K+x)+sd(K+y)

.. ¢ is an R-module homomorphism.

ontoIm( /) and thus

;Im(f).

Hence f'is an isomorphism from X

M M
er (f) Ker (/)
Theorem 15. Let M| and M, are sub-modules of an R-module M, then
M +M, M,
M, M M,

Proof. Since M, and M, are submodules of an R-module M, therefore by theorem 5, M| + M,

M, +M
and M, N M, are sub-modules of M. Since M, c M| + M, and M| "M, c M, therefore#
2

and are defined.

1
M, nM,
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M, +M
We define a mapping ¢ : M, — 12

M,
st. ¢ (x)=M,+x=forallx e M,.
Since xeM, => xeM +M,
= ¢(x)—M2+x€ —M1+M2

M,
Therefore the mapping ¢ is well defined.

M, +M

We shall now show that ¢ is a module homomorphism from A, onto 2 with Kernel

2
M, M,.
For any x,y € M, and r, s € R, we have
b (rx+sy) =M, (rx+sy)=(My+rx)+(My+sy)
= r (My=x) +r (My+2) =1 (1) +5 6 ()
.. ¢ is a module homomorphism from M, to M
2

M, +M

To prove ¢ is onto, let M, + x € 2 thenx € M | T M, and there exists a unique

2
representation for x as x; +x, =x,x; € M|, x, € M,.

M +M

Thus for each M,+x e 2 these exists X €M, such that

2
0 (x)) =My+x; =(My+ x5)+x; = Myt (xy +x)) =M, +x

Here ¢ is onto.

We shall now show that Ker (¢p) = M| N M, .

Let x; € M| be such that x; € Ker (¢), then

x,€ Ker(¢p) = ¢ (x)) =M,

= My+x,=M,
= x| €M,
= x; € MM, (. x eM)

Ker (¢p) c M| " M,
Again Letx € M; " M, . Thenx; € M| and x;, € M,
xeM, >M,+x=M,
= ¢ (x) +M2
= x € Ker (¢)
M, "M, < Ker ().
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Thus Ker () = M| N M,.
M, +M,

2

Hence ¢ : M| — is a homomorphism with Ker (¢) = M| N M, and Im (¢) =

M, +M
—L_——L Therefore by fundamental theorem on Module homomorphism, we have
2

M, _ M+M,
M M, M,

5.9 Generation of modules

59.1 Submodule generated by a subset

Let M be an R-module. For any subset A of M, N = < 4 > is called a submodule of M gener-
ated by the subset 4, if N contains A and any submodule K of M which contains 4 also contains V.
Thus the submodule N generated by A4 is the smallest submodule of M which contains A.

If N and K are submodules of M, then the smallest submodule of M containing N U K is called
the submodule generated by N and K.

Theorem 16. The submodule S generated by N and K is the submodule

N+K={a+b|aeNbeK}
Proof. Clearly N+ K is a submodule of M. Also Nc N+ K and K — N+ K, so that
ScN+K

Conversely, foranya € N, b € K, wehavea, be S = a+be S

Thus N+Kc S

consequently S=N+ K.

5.9.2 Finitely generated module.

An R-module M is said to be finitely generated ifit is generated by some finite subset. Thus M is
finitely generated if there exist finite elements a, a,,..., a, € M such that every elementm € N can be
expressed as

m=rya Trya,T... tr,a
Where P T e S, € R
In this case we write

M=< a,,a,,... a, >.

5.10 Cyclic module

An R-module M is called cyclic if there exists an element m € M such that
M=<m>={rm:r e R}

Thus a cyclic R-module is generated by a single element. Here m is called generator of M.
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A submodule N of M is cyclic if it is generated by one element a € M,

ie. N=<a>=Ra={ralacRj}.

Note that if R is a ring with unity and M is an R-module, then for any finite subset
A={a,a,....a,} of M, the set

RA={r a +r,a,+..+r a, |r cR)}.
Theorem 17. Let R be a ring with unity and M be an R-module. Let N be finitely gener-
ated submodule of M generated by a subset A= {a, a, ..... a,} of M. Then
N=RA=Ra, +Ra, +... + Ra,,
Proof. N = RA is the smallest submodule of M which contains 4.
Now since 1 € R, so
la,=a;eRa,i=1,2,.n.

and cach R a; = < a; > is a cyclic submodule of M.

Now, let N.=Ra,i=1,2,..n.

Then N| + N, +..+ N, is just the submodule generated by the set NU N, U ..U N, , and is
the smallest submodule of M containing N, i = 1, 2,... n. But N}, N,,...N, are generated by sets

4,=1a;}, 4,=1{a,}..., 4, = {a,} respectively. So Ny + N, +....+ N, is generated by 4, U

Ay U..UA, ie bythesetd = {a, a,...a,}.

Hence N=RA=N;+ N, +..+N,

=Ra;tRa,+..TRa,

Minimal generating set :

A submodule N of an R-module M may have many different generating sets. I[f Nis finitely gen-
erating submodule then a generating set containing minimum number of elements is called a minimal
generating set for N. The number of elements in a minimal generating set is called the rank of the
submodule M.

Theorem 18. Let R be an Euclidean ring. Then any finitely generated R-module N is the
direct sum of a finite number of cyclic submodules.

Proof. To prove the theorem we use mathematical induction on the rank of N . If the rank of N
is 1, then V is generated by a single element, hence it is cyclic and theorem is proved. Let us assume
that rank of NV is n. Suppose that the theorem is true for all R-modules of rank (n —1) then each module
of rank (n —1) is direct sum of finite number of its cyclic submodules.

Now we shall prove that the theorem is also true for the module N whose rank is n. Assume
{a,, a,,..a,} is a minimal generating set of module N such that, if 7, a,+t,a, +... + ¢, a, = 0 implies
that 7, a, =1, a,=... =t,a,= 0, for ¢; € R then we see that N is the direct sum of N, N,,...N, and
each N, is a cyclic submodule generated by a,. So in this case the theorem is true.
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Now, let {a,, a,....a, } be a minimal generating set for N such that #, a; +t, a,+... +1,a,=0
in which not all of 7, @, t, a,,..., {, a, are zero.
Let in all such relations for minimal generating sets these exists s; € R occurring as a coeficient

such that the Euclidean valuation d (s, ) is the smallest positive integer.

Letitbe {01, Dy,..0,}.

So, that syby+s,by+..+s b=0 L. (1)
Since R is a Buclidean ring and s, 7, € R, there existm, t € R

such that ry=m; s +t,

where either t=0ord () <d(s)).

Multiplying equation (1) by m and subtracting it from | b, + r, b, +... +r, b, = 0. We obtain
by + (ry—mysy) byt... + (r,—m;s,)b,= 0. If 10, then d (¢) <d (s|), which contradicts the fact
that d (s,) is the smallest, so # must be zero and r| = m, 5|, hence s; | r,.

We also prove that s, | s; for i = 2, 3, .....,n. Since s, 5,, € Rand R is a Euclidean ring, so
these exist m,, ¢ € R such that s, = m, s, + 1, where either 1= 0 or d (£) <d (s).

Now b’ = b+ m,b,, by, bs,... b, also generate N.

And s b titbytsy;byt .+, b,

=81(bytmyby) +1bytsy3by + ..+, b,
=81 by +sybyts3by +. 45, b
=0

So that, # occurs as a coefficient in some relation for a minimal generating set. Hence if 7 # 0,
then d (¢) < d (s,) which contradicts the choice of's;.

Therefore ¢ = 0, and hence s | s,. Similarly, it can be shown for other s, i.e. s, | 5;, 1 =2, 3,...n.
We writes;=m;s, .

The following set {5 = b +my by +my by + .. +m b, bs, by,... b} generates the module

N.If N, is the cyclic submodule generated by bl* and if N, is the submodule generated by b,, b, ... b,
then N=N, + N, since bl* , by, ... b, generate N.
Let xeN NN,soxe N andx=r, b1* for some 7| € R.

Also x € Ny, hence  x=ryb,+... +r, b, forry, ry, .7, €R

Thus sy + (=) byt ... (=s,)b,=0,
that is, riby+(rymy=ry) by+ ..+ (ym,—7,)=0
Thus syl rp,ier =ts, forsomet e R.
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Thus, X =s51b =ts bl*
=t[sy(by+myby*+ ..+ m, b,
=t(s;bytsybyt . +5,D,)
=0
hence, Nyn N, = {0} and so, N=N, N,
Again N, is generated by b,, bs, ... b,, so its rank is (n —1) and by the induction assumption N,

is the direct sum of cyclic submodules.

@

Hence N is the direct sum of a finite number of cyclic submodules.
Self-learning exercise-1

State whether the following statements are true or false :
(a) There are two binary operations defined in an R-module.
(b) There is one internal and one external operations defined in an R-module.
(c) Sum of two submodules is a submodule of an R-module.
(d) Union and intersection of two submodules are always submodules of an R-module.
(e) A submodule generated by a subset A of an R-module M is the smallest submodule of M

containing A.

5.11

Summary

In this unit we have studied a new algebraic structure called ‘module’. One binary operation

‘addition’ is defined in it and an external mapping called scalar multiplication is defined to associate ele-

ments ofa ring to the elements of the module. We also studied sum modules, homomorphism of mod-

ules, generation of submodules and cyclic submodules.

5.12 Answers to self-learning exercises
Self-learning exercise-1
1. (a) False (b) True (c) True (d) False (e) True

5.13 Exercises

1. Define module. Prove that every abelian group G is module over the ring of integers.

2. Show that a left ideal M in a ring R is an R-module.

3. Show that the range of homomorphism of an R-module M is a submodule of M.

4. If T : M — N is homomorphism, then 7" is isomorphism if and only if K(7") = {0}, where M

and N are R-module.
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5. Prove that any unital irreducible R-module is cyclic.

. Prove that every ring R is an R-module over itself.

. Let M be an R-module. Ifx € M. Let A (x) = {r € R : r x=0}. Show that A (x) is a left ideal
of R.

. Suppose that R is a ring with unity and that A is a module over R but is not unital. Prove that
these exists anx =0 in M such that » x =0 for all» € R.

. If A is a left ideal of R and if M is an R-module, show that forx e M, A (x)={rx:re A} isa
submodule of M.

oo
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UNIT 6 : Linear Transformation of Vector Spaces

Structure of the Unit
6.0  Objectives
6.1 Introduction
6.2 Linear transformation
6.2.1 Kernel ofa linear transformation
6.2.2 Image ofa linear transformation
6.3 Dual space
6.3.1 Dual basis
6.4  Second dual of a vector space
6.5  Dual map
6.6  Algebra of linear transformations
6.7  Rank and nullity of a linear transformation
6.8 Summary
6.9  Answers to self-learning exercises

6.10  Exercises

6.0  Objectives

In under graduate classes we have studied that a vector space is an additive abelian group, with
a scalar multiplication, defined to associate a scalar from field to vector of the vector space. We also
formulated the concept of homomorphism which we call linear transformation for vector spaces. In or-
der to define a linear transformation between any two vector spaces, it is necessary to suppose that both
vector spaces are defined over the same field. We know that a vector space is always defined over a
field.

6.1 Introduction

In this unit we shall discuss the linear transformation of vector spaces and algebra of linear trans-
formations, dual space, dual basis and their properties. We shall also obtain the relation between basis

and its dual basis, linear map and its dual map.
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6.2 Linear transformation

Let Vand V" be vector spaces over the same field F. A functiont: V' — Vis said to be a linear
transformation if it satisfies the following conditions :

() twtv)y=t)+r(v), vu,veV,

(i) t(owm) = ot (u), vueV and o e F.

In other words, a function # : ¥— Vis said to be a linear transformation if it preserves the
following two basic operations on vector spaces :

(i) vector addition,

(i) scalar multiplication.

However, the conditions (i) and (ii) are equivalent to the following single condition

t (ou + Bv)=at (u) + Pt (v) vueV and a,BeF. ... (1)
Generalising the equation (1), we get

t (Oclvl + a2V2 +...+ anvn): (Xl(Vl) (12(1/2) +...+ Otnt (Vn)

vveV and o;,eF, i=1,2, ... n
The following have the same meaning : linear transformation, linear mapping, vector space ho-
momorphism, linear function.
Note :
1. It o= 0, thenwe have
tOu)=0¢tw)=0
Thus t(0)=0
It shows that a linear transformation maps the zero vector into zero vector, 0’ being the zero
vector of V.
2. Ift: V— V’is onto, then V’is called a homomorphic image of V.
3. Since F'is a vector space over it self, a linear transformation ¢ from ¥ to F, is called a linear
function, and when a linear transformation ¢ from V' to Vitself; it is called a linear operator.
4. A linear transformation 7 : V' — V’is called an isomorphism of /" onto V7, if the map ¢ is
bijective i.e. one-one and onto.
5. Two vector space V and V'’ over the same field F are called isomorphic, if there exists an
isomorphism of V" onto V', we denote it by V= V"
6. If¢ from V' to V’is an isomorphism then it is easy to see that these exist an isomorphism
(inverse off) of V” onto V.
The other similar terms, such as monomorphism, epimorphism, endomorphism and auto-
morphism are also analogous to the corresponding concepts in groups and modules and have their usual

meaning.
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6.2.1 Kernel of a linear transformation :

Let V and V"be two vector spaces over the same field Fand # : V' — V"be a linear transforma-
tion. Then the Kernel of # written as Ker (¢) and is defined as the set of all vectors of  which are
mapped onto the zero vector 0" of V7, that is

Kot ()= {uec V' :t(uy=0"cV'}

Ket(?) is also known as null space of'z.

6.2.2 Image of a linear transformation :

Let VVand V' be any two vector spaces over a field F and 7 : IV — V' be a linear transformation.
The range of ¢, written as im (), is the set of all vectors of V, which are the images of all the vectors of
V, that is

im(@)={tm) eV :.uelV}

im (t) is also known as range space ofz.

Ex.1. Show that the following mapping is linear t : R> — R? given by

tx, 3 2)=(Ex+y), vz eR
Sol. Given thatt: R> — R? such that
[y 2)=@Ex+y), V@ yzekr

I_ﬁt u=(x,y, Z)’ Vz(xlayl’zl) € R3a
then utv=x+x,y+y,z+z), ku=(kx, ky, kz), k € R.
So that t(utv)y=@E+tz,xtx,y+y)

=(z+x+y)+ G x + »p)
=1(x,y,2) t(x},¥1,2))
=t(u)+1(v),
and t (ku) = (kz, kx + ky)
=k(z,x+ty)
=kt (x,y,2)
— kt (u)
Hence ¢ is linear.
Ex.2. Show that the following are not linear
() t:R* — R? defined by t(x, y) = (x3, )
(ii) t : R> = R defined by t(x, y)= | x — y |
Sol. (i) The map ¢ : R> — R? is given by
t(x y)= (2,57
Let u=(x;, y),v=_(x,,) € R?,
then utv=x;+x5,y;ty,)
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so that tu+v)=t(x; +x5, 1)
t(u+v)=((x +x)° 0 +30)7)
thus t(u+v)y#t(u)+1v)
which shows that 7 is not linear.

(ii) Amap 7 : R — R is given by

t(x, y)=x—y|
Let u=(xp, ¥, v=_0x, ¥, € R?
then tu+v)=t(x; +xy ¥ T1y)

=| (g +x2)—0’1 +J’2) |
=| (xl —yl) + (x2 —yz) |
= x =yt 1x—y,]
Thus ¢ (u+v) =t (u) +1(v),
and so 7 is not linear.
Theorem 1. Lett: V — V' be a linear transformation. Then
(i) Ker (¢) is a vector sub space of V, and
(ii) im (1) is a vector sub space of V".
Proof : (i) Giventhat # : — V’be a linear transformation, then from the definition of Ker (7),
we have
Ker(H={uelV:t(m)=0eV’}

where 0 is the zero vector of vector space V.

Since t(0)=0eV’
= 0 € Ker (?) [By definition of Ker ()]
= Ker(?) is a non-empty subset of V.
Let u, ve Ker(¢), a,peF,then
t(w)=0, t(vy=0
Now, t (o + Bv)=oat (u) + Bt (v) [-+ tis lincar]
=al + B0
=0eV’

Thus awu + Bv e Ker (¢), Vu,v € Ker (¢), o, e F
which shows that Ker () is a vector sub space of V.
(i) From the definition of image space im (¢), we have
im{)={t(m)eV:uel}.
Since ¢ (0) =0 € V7, when ever 0 € V' so that im (¢) is a non-empty sub set of V.

Now, let u’, v € im(f) and o, p € F
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Then there exist # and v in " such that
u'=tu), v'=tv)
Now, au’+ Bv” € V, and so
ou’+ Bv'=atu) + Btv)
=t(au + Pv) € im(t)

So, ou’+ Bv’ € im(t), vu,v'eim(t), and o, € F.
Thus im(t) is a vector sub space of V.
Theorem 2. Lett: V — V’be a linear transformation, then
() tis monomorphism if and only if Ker(t) = {0},
(i) If the set {v, v,,..., v,} is linearly dependent then the set {(v|), {(v,),..., t (v,)} is

also linearly dependent.
(ii) 1If the set {(v|), t (Vy),..., t(v,)} is linearly independent then the set {v|, v,,..., v, } is

linearly independent.
(iv) Ifthe set {v|, v,,..., v, } spans V then the set {(v|), t (v,),..., t (v,)} spans V".

Proof : (i) First suppose that ¢ : ' — V”be a monomorphism, i.e.  one-one

To prove that
Ker (1) = {0}.
Let u € Ker(?) be an arbitrary vector, and so
t(w)=0eV’
= t(u) =1(0) [ ()= 10;]
= u=90 [-+ tis one-one]
Thus Ker (1) = {0}.

Conversely suppose that Ker (7) = {0}.
To prove that ¢ is monomorphism.
Letu,v e Vsuchthat ¢(u)=t(v)
t(w-t(»v)=0
t(u—v)=0
u—v e Ker (7)
u-v=_0 [+ Ker (¢)={0}]

u=v

v U 4 Ul

Thus ¢ is monomorphism.
(i) Given that {v,, v,,..., v} be linearly dependent set, then there exist scalars o, a,,...,
a,, € F, not all zero, such that
o vyt oy, tt oy, =0
= t(aqvy to,v, Hot oy ) =1(0)
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= oyt (v)) oyt (vy) totat(v,) =0 [~ tis linear]
which show that {z (v,),  (v,),..., £ (v,)} s linearly dependent set.

(iii) Given that {r (v)), #(v,),..., {(v,)} is linearly independent set. To prove that {v|, v,..., v}
is also linearly independent set. Let there exist scalars o}, a5 ....., a,, € F, such that

o vy o, ttao,y,=0

= t(agvy ta,v, Hot oy ) =1(0)

= ot (v)) T oyt (vy) totat(v,)=0

= a;=a,=.=o, =0 [ (v, t(vy),..., 1(v,)} inlinearly independent]

Thus {v,, v,,..., v, } 1s linearly independent set.

(iv) Given that {v, v,,.., v, } spans V, so for any v € V, these exist scalars o}, a.,,..., o, € F

such that
v=0o4v; oy, to oy,
= (V)= (o vy t o,y + ot ov,)
= o t(v) T oLHv,y) Tt t(v) [~ tis linear]

which shows that each ¢ (v) € im (£) is in the linear combination of vectors £ (v;), £ (v,),..., £ (v,).
Hence {t (vy),  (v5),..., £ (v,)} spans im (7).
Theorem 3. Let V and V' be vector spaces over a field F and B = {by, b,,..., b,} be a
basis for V. Then there exists a unique linear transformation, t: V — V' for any list b/ b, ,..., b,
of vectors in V', such that
tb)=0b', i=12,.,n
Proof : Given that B = {b,, b,,..., b, } be basis for V, so each vector v € V, can be uniquely
expressed as
v=ob +oyby, t.+a b, for o;,eF,i=1,2,.,n
Now, we defineamap ¢: V— V’'by

(v)y=t(o by +oybyt.+ab), vvelV

= albl, + a2b2! +...+ O(,nbn’

n n
Let u = Z ob, w= Z B;b;, forsome o, B, € F,i=1,2,..,n
i=l i=l
and A ueF
n n
Now t O+ pw) =t lz OﬁibiJfHZ Bibi»
i=1 i=l1
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I[Z (Mxi+u[3i)biJ

i=

—

= (7‘0‘1' +up; )bi!

n
i =1

1

=}‘Zn: a; bfﬂLZn: Bibi,
i=1 i=l1

=M (u) + pt (w)
Thus ¢ 1s a linear transformation.
Next, for each b; € B, we have
t(b)=t(0-b;+0-by+..+1-b,+.+0-b)
=0-b'+0-b, +...+1:b' +..4+0-b,
t(b) =b, i=1,2,...,n
Thus t(b) =b/,1(by) =b, ,...,1(b,) = b,

Uniqueness of linear transformation
If possible, suppose s : V' — V" be a another linear transformation such that

s (b)) :bl.', i=1,2, ... N
Now, v v e V, we have
s (v)=(a;by to,b, t.. b))
=ays (b)) +a,s(by) +..tas(b,)
= O'Ibl, + azbz, +...+ O(.nbn'
=t(v), vvelV
Thus s=t
Hence ¢ is a unique linear transformation such that
t(bi)zbi'ﬂ i=1,2,..,n

Theorem 4. Let V and V' be any two vector spaces over the same field F and
B ={b,b,,..., b,} be abasis for Vand B’ {bl',bz',...,bn'} be a set of vectorsin V' Ift:V—>V’
be a linear transformation such that

tb)=b', i=1,2,...,n
Then t is an isomorphism if and only if the set B" is a basis for V"

Proof : We defineamap ¢: V— V' by

t (v) =z(fai b,}

i=l
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n
!
:z a, b, szalbl+ ..... +0Lnb el
i=1

for some a, a.,,..., &, € F.

Then it is clear that # is a linear transformation such that

t(b)=b,  i=1,2,yn
Now first suppose that 7 is an isomorphism. To prove that B” is a basis for V', we show
(i) B' is linearly independent :

Let there exist scalars o, o.,,..., 0, € F

such that b +oub, +.+o,b, =0
at (b)) + oyt (by) +..+ a,t(b,)=1(0)
= t(o by +ouby +.t b )= 1(0)
= oyby to,by + . ta, b, = [+ ¢1s anisomorphism)]
= O =0y = .= 0, = [* B={by, D,,...,b,) is a basis for V]

Thus B’ = {bl',bz',...,bn'} linearly independent.

(ii) B’ spans V"’
Since ¢ is onto, so that for each v/ € V’, there exists v € V such that

v'=t(v)
=t(ay by toa, byt +a,b,)
where v=o,b; to,byt.ta, b eV,
for some Oy, Oy,eeny ) € F,

v'= oyt (b)) + oyt (by) .-t (b,)

’ ’ ’

n-n

Thus each vector v/ € V” is a linear combination of vectors of B”. Which shows that B’

4

spans V.
Hence B'= {bl',bz',...,bn'} is a basis for V.

Conversely assume that B is a basis for }”. To prove that 7 is an isomorphism, we show
(i) t is one-one :

n
Let V= Z o, b; €V, such that
i=1
v e Ker (7)
& tv)=0

= I[Zn: o, b,.J=0
i=l1
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=~ Zaibi,:

& a.=0, i=1,2,.,n [+ B’ isabasis for V"]

= v=_0

So Ker (7) = {0} and thus ¢ is one-one

(ii) t is onto :

Let V=B b +By by +...B, b, €V’

= v'=t(Bby +Byby+..+B,b,) =1 (v),
whenv=0b, +...+Bb, € Viorsome B,,..., B, € F

Thus ¢ is onto.

Hence ¢ is an isomorphism.

Theorem 5. Let V be an n-dimensional vector space over a field F. Prove that V is iso-
morphic to the vector space F", hence also show that any two finite dimensional vector spaces of
the same dimension are isomorphic.

Proof : Let B = {b,, b,,..., b, } be a basis for V, so that each vector v € V can be expressed
uniquely as

v=a,b, +.tob, for o,eFi=1,2,.,n
Now we define amap ¢ : V' — I as
t(v)=t(oyb; +oy,b,+.+ab,)
=(ay, Oy, ) € F', WV E,
To prove that # is an isomorphism.

(i) t is linearly transformation :

Let u,veV and A pek

then u=a;b; +...+tab,

and v=Bby+ ...+ Bb, for a,B;eFi=12, ... , N
So, t(hu+pw)=[Mayby + tob )+ uBby+ .. +B,D)]

=t[(hoy+uPy) by +..o. + (o, + up,)b, ]
= (Aot puBys s Ao, +uB,)
=N (0 eees ) T (B, e B
=M (b + toh )+ B+ +PB,b,)
=t (u) + ut (v)
Thus ¢ is a linear transformation.

Now first suppose that ¢ is an isomorphism. To prove that Bis a basis for V', we show
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(ii) t is one-one :

Let u=a,by .. tob,

and v=B,b, .+ b €V,
a,B,eFi=1,2,.,n

be such that t(u)=t(v)

= Hayby +..+o,b)=tB by +.+B,D,)

= (o), Oysees ) = (Bys Brsens B)

= a;= B oy, =phy., 0, =B,

= u=v

thus 7 is one-one.
(iii) t is onto :
For each (o, a,,..., o)) € F", then there exist v=a,b; +...+ o, b, € V such that
(G5 Olgsenss Ohy) = £(V)
which shows that ¢ is onto.
Hence ¢ : V' — F" is an isomorphism and thus
V= F".
Now let V/and V'’ be any two vector spaces of the same dimension 7, then
V=F" leadsto V' =F"
Since the relation of an isomorphism in an equivalence relation in vector spaces,
SO V=v
Hence any two finite dimensional vector spaces of the same dimension are isomorphic.
Theorem 6. Let V be a finite dimensional vector space over a field F and
B = {v|,v,,..., v} be aset of vectors is V. Then a map
t: F" — Vsuch that t (0, Oy,..., O) = vy Tt oy, (0, 0,..., ) € F7,
is a linear transformation, and
(i) tis monomorphism iff B is linearly independent,
(ii) tis an epimorphism iff B spans V, and
(ifi) t is an isomorphism iff B is a basis for V.
Proof : Let {o, ay,..., @}, {B}, Bysoon B} € F, and A, p € F, then we have
t[A (o, O,y @) F (B, Boses By)]
=t (o +upy, oy, + up,,..., Ao, +up,)
= (o +upy) v .t (o, +uB,) v,
=A (v Hotab )+ By, .t By,
=Mt (04, Ay,..., o)) + ut (By, Bys-oes B,)
Thus 7 is a linear transformation
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(i) First suppose that ¢ is a monomorphism. To prove that the set B is linearly independent,
let there exist scalars o, o,,..., @, € F such that

av, t.toy, = 0

= t (o, Oy, ) =10, 0,..., 0)
= (0, Op,e.s @) = (0, 0,..., 0) [-+ tis monomorphism]
= a;=0,0,=0,..,0, =0

Hence B = {v|, v,,..., v, } is linearly independent.
Conversely suppose that B is linearly independent. To prove that ¢ is monomorphism,
let (o, ay,..., ) and (B, B,..... B,) € F"" such that

(0, Oy ) =1 (B, Boyseess B)

= avyt.to,v, =pb +.+B0b,
= (0 =B v+t (a,-B,)v,=0
= o —py=a,—pB,=.=a,—p,=0
[+ B={v[, Vy..., v,} is linearly independent]
So, a; =B, 0y =By, 0, = B,
Thus (o), Oysers ) = (Bys Bysens B)

Hence ¢ is monomorphism.
(ii) First suppose that 7 is an epimorphism. To prove that the set B spans V.
Since ¢ is an epimorphism (i.e. onto), so that for each vector v € V there exists some
(ay, ay,..., ) € F" such that
V=1(0, Oy,...y OL)
=oyv .. toy,
which shows that each v € V'is a linear combination of vectors of B.
Thus the set B spans V.
Conversely suppose that B spans V, i.e. each vector v € V'is a linear combination of vectors of
B, so that there exist scalars a, a,,...., &, € F such that
v=oyvy tot oy,
= v=10ay, Oy,..., A ), for (o, a,,..., o) € F"
Thus 7 is an epimorphism.

(iii) From (i) and (ii), it is clear that # is an isomorphism iff the set B is a basis for V.
Self-learning exercise-1

1. Take the correct one :
(i) If¢: V— V7is the zero homomorphism (linear transformation), then im(?) is equal to :
(a) {0} o r
(c) V’ (d) none of these
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(i) If £ : R3 (R) > R? (R) is defined by (x|, Xy, ....., X3) = (X[, X,), V¥ (X}, Xy, ceeee X3) € R,
then which of the following alternative is not true for ¢ ?
(a) tis linear transformation (b) tis an isomorphism
(¢) Range (f)=R? (d) Ker(#) ={(0, 0,x3) : x5 € R}.
2. Fill in the blanks
(i) A linear transformation is also known as ....................... .
(i) 1ft: V— V'is a linear transformation, thent(u +v) = ......ccccceeeennee. .
(iii) If t : V' — V"1s a linear transformation, then Ker(f) is a sub space of ...........cc.c........ , and
im(7) is a sub space of .........ccceevennn. .
(iv) If t : V' — V’is monomorphism iff Ker(¢) = ....................... .
(v) If Vand V"’ are finite dimensional vector spaces over the same field F, then V' = V" iff
3. State whether the following statements are true or false :
(i) The identity map on a vector space is a linear transformation.
(i) A linear transformation maps zero to zero.

(i) Sum of two linear transformation is a linear transformation.

6.3  Dual spaces

Let V' be a vector space over a field F. Since F it self is a vector space over F, then a linear
transformation on V' to £is called a linear functional on V.

If V'is a vector space over a field F, then its dual space is the vector space Hom(V, F) which is
consisting of all linear functionals on V. The dual space of V'is denoted by V*.

Theorem 7. Let V be n-dimensional vector space over a field F and B = {b,, b,, ....., b, }
be a basis for V, then for any n scalars Ly, M,,..., A, € F there exists a unique linear functional
f € V* such that

f(b)=2, i=1,2,.,n
Proof : We define a functionf : V' — F by

Q) :f(zn:ai biJ
i=1

n
=Zaiki, for A, eF,
i=1

andv=a,b; +...+a b €V, for a,eF, i=1,2,..,n
1

n n
Now, suppose, u =20ci b;, v=ZBi beV,ua,B;eF,i=12,.,n
i=1 i=1

and A, p € F, we have
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B n n
(O +py) = f ?\,ZOcibi+pZ Bibii|
L =l i=1

:f_ i (% a,-+u5i)bi}

L i=1

= (7‘0‘1'"'“51')7%
-1

i

=LY o xi+p'2 B; A
i=1 i=1

=M )+ /()
Thus f'is a linear functional and f € V*.
Now, b;=0-by+ ...+1-b,+ ... +0-b,

SBY=fO b+ ot 1 b+ +0-b)

Uniqueness of linear functional :
If possible suppose that s : /' — F be a linear functional such that
s(b)=M\, i=1,2,..., %

Now for all v € V, we have

s (v) :s(z o; b,]
)
=2 % 5(b) [- sis linear functional]
=

n
= z ; A
i=1

=fv)
Thus s=f
Hence f'is a unique linear functional such that
f(b)=Ah, i=1,2,..,n
Theorem 8. Let V be a vector space over a field F and B = {b|, b,,..., b, } be a basis for
V. Then the dual space V* has a basis B* = {f|, f5,..., [,,} such that
fl.(bj) = 81.].; Lj=1,2,..,n
where 81’] € Fis a Kronecker delta.
Proof : Let v € V, then
v=A; by +.+A b, wherer A, A €F
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Now we define a functionf; : V' — F by

SV =f(Mb, +..+Ab,)
and =N i=1,2,..,n
To show that f; is a linear functional :

n
Let u = Z a; b,
i=1

and v=2 pBibeV, for o,B,eFi=12,..n

-

i=1

Also let A, p € F, then we have

fi(%u+uv):fi kiaibi-l-uiﬁibi}
L =l i=l

- f f(xaiwmbi}

L i=1

= o + up;

=M D0 (o b))+ Y (B by)
i=1 =1

=Afi)tuf)
Thus f; is a linear functional and so f, f5. ....., 1, e V*E
And since bj=0-b1+ ..... +1~bj+ ...... +0-0,,
we have f; (bj) = 81.]., Lj=1,2, ... , A

Now we shall show that B* = {f|, /5, ....., f, } 1S a basis for dual space V’*.

Since dim V= dim V* = n, so in order to prove that B* is a basis for V*, it is sufficient to show
that B* is linearly independent set.

Let there exist scalars o, a,, ....., &, € F'suchthat o, f} +o,/, +..... to,f, = 0, where

(0 is a zero map

= Zai fi =0
i=1
N (Zai fi](bj>=6<b_,->, j=1,2n
i=1
= >0 fi(b))=0
i=1
n
=1
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= OL]-ZO; j=12,.,n
Hence B = {f{, f5,---,.J,,} 1s linearly independent and thus B* is a basis for }™.

6.3.1 Dual basis

Let B = {b,, b,,..., b, } be a basis of a vector space V(F) , then the basis B* = {f|, /5,..., f,} of
dual space V* defined by
f;(b)= 81.1., Lj=12,.,n
is called the dual basis of B.
Theorem 9. Let V be a finite dimensional vector space over a field F, then for each non-
zero vector v € V. there exists a linear functional f € V* such that
f(v)=0.
Proof : Let B = {b|, b,,..., b,} be a basis for Vand B* = {f, f,,..., f,,} be the dual basis of B
in I*, then by definition of dual basis we have
fi(b)=8; i.j=12..n
there exist unique scalars o}, o,,..., o, € F such that
v=o, b, +.ta,b,
= f; v =fi(aby +..+ab,), i=1,2,.,n

=fi [iaj bj]
=i

j=1
Jiv)=oy
Now, if f(v)=0, Y feV*
= f(»)=0, i=1,2,... N/
= a;=0
= v=0

which is a contradiction, because v # 0. Hence there exists at least one '€ J* such that

f(v)=0.

6.4  Second dual of a vector space

Let J"be a finite dimensional vector space over a field /" and }* be its dual space, then the dual
space of I'* is the vector space Hom(V*, F). The dual space of /'* is denoted by V** and it is called
the second dual of V.

Note : For a finite dimensional vector space V, dim V= dim V* and so dim V* =dim J**

= dim V'=dim }J**

Thus V= pE*
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Theorem 10. Let V be a finite dimensional vector space over the field F, then there is a
natural isomorphism of V onto V**,
Proof : We define a function, for fixed vector v € V,
o, 1 V*>F,
by o, (N=1 (). vV feV*
To prove that ¢ is a linear functional from V* to F,
let f, g € V* and A, p € F, then we have
O,00f+ u )= O f+uf) ()
=AM +ugO)
=L o, (1) +1noe)
Thus ¢,, is a linear functional from V* of F, and so ¢,, € V**, which defines a natural map
t:V— I**by
1(v)=¢,, Y vel.

Now to prove that ¢ is an isomorphism, suppose that u, v € Vand A, p € F, we have

O s )= Ot + )

=Af@)+ufO)
=L, + o, v fe V-
Op+ = M, T RO,
Now, t(Au+pw)=d;, 4 v
= A0, t uh,
=At(u)+put(v)
Thus ¢ is a linear map.
tis one-one :
Let there exist u, v € V such that
t(u)=t(v)
= t(u—v)=0 = u-—vekKer(r)
Now, for 0+ u,
o, )=f)=0 forall fel*
Thus tw)= ¢,
1s not a zero map.
Ker (1) = {0}
= u=v

Thus ¢ 1s one-one.
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tis onto :
dim V'=dim J*
= dim J**
i.e. dim V'=dim J**
Also t is a monomorphism from ¥ to V** of the same dimension and so ¢ is an epimorphism
(i.e. onto).
Hence ¢ is an isomorphism. Thus there is a natural isomorphism ¢ from V onto V**.

6.5  Dual map

Let Vand V'’ be finite dimensional vector spaces over the same field ' and B, B’ be the bases
of V'and V"’ respectively and also let B*, B’ * be the dual bases. For each f* € V* and for fixed
t € Hom (V, V"), the map f” ot is a linear transformation form V'to Fi.e. f'ot € V*. Thus the map
J7 — fot defines a function from V' * to V*. This is denoted by 7* and is called the dual map of’z.

Hence if#: V' — V”is a linear transformation, then the map #* : V’* — J* defined as

t*(f")=f"ot € V*, YV fre V™
is a linear transformation and it is called dual map of.

Theorem 11. Let V and V' be finite dimensional vector spaces over a field F and
t: V. — V' be a linear transformation and t* be the dual map of t, then t and t* have the same
rank.

Proof: Letdim V=nand dim V' = m.

V” respectively, such that

b, i=1L2,r
t(by) = .
0, i=r+Lr+2,..,n.

tively, them
fl‘ (b,‘) = Sl'j; Lj=12,..,n

and fp' (bq') =8, DPg=12..m
Since ¢* : V'* — V* be the dual map of 7 and so,

(") =fot € V¥, v fle
N [rn]e) ()

=17 (1(8)))
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'b Jj<r

l

' 0 for j=r+Lr+2,..,n

l

for i,j=12,...,r
otherwise.

fl for i,j=12,..,r
6 otherwise.
for i=1,2,..
Thus for i=r+1,r+2,...n
Hence rank r*=r.

Ilustrative examples

Ex.1. If B= {e;=(1,0), e, = (0, 1)} is the usual basis RZ. Determine its dual basis.
Sol. Let B* = {f|, f5} be the basis dual to B.
To determine the dual basis, we suppose

Si G y)=ax+by, f, (x,y) =cx+dy,

such that filep=1,f1(e)) =0,1(e)=0,7,(ey) = 1.
Now, 1=/, (e)
=/1(1,0)

=q-1+b-0 = a=1
0=1, (e) =1 (0. 1)
0=a-0+b-1 = b=0
0=/3(e})=f(1.0)

=¢c-1+d-0 = ¢=0

and, 1=/, (ey)
=/5(0,1)
=c-0+d-1 = d=1
Thus Heey=x,  fxy=y

Hence B* {f] (x,y) = x, f, (x, y) =y} be the dual basis.
Ex2.If B=1{b;=(-1,1,1),b,=(1,-1, 1), by= (1, 1, 1)} is a basis of V;(R), then find
the basis dual to B.
Sol. Let B* = {f, 1, ,/3} be the basis dual to B so that
fl.(bj)—Sl.j, i,j=12,3.
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Suppose that fiy,2)=ax+aytaz
So (6, 2)=bx + byy+byz

f3063,2)= cpx + ey t+ sz

To ﬁndflz
=

=

f1 (b1)=1
f1GEL L) =1
—a;ta,t a3=1
f1 (b2)=0

fl (1a_1a 1):0
a—a,tay=0
f1 (b3)=0

fi (1, 1,-1)=0

g _ T4 @
1-1 —-1-1 1+1
h _B_9G
= 0 2 2
4 4 _ 494 _
= 0 1 1 K(say)
= a,=0,a,=K,a;=K
Putting these in (1), we get
1
2K=1 = K=—
2
1
Therefore, a;=0, @, = PR as =
ol
Thus, filboy, =0 x4 ytoz
1
=—(y+z).
S(r+2)
. 1 |
Similarly, S, y,2) =2 (x+z), ad fi(xp,2)=—(x+)
Thus the dual basis,

B*={%(y+z),%(x+z),%(x+y)}.
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Ex.3. Let the linear functional f on R is given by f(x, y) = 2x — 5y. For each linear trans-

formationt : R3 > R? find its dual map, where

i) txyz)=x-yytz),
(i) t(x,yz)=x+y+2z 2x+y),
(i) t(x, 3 2)=(x+y,0),
Sol. By definition of dual map, we have
*()=fot
[*(F)] (e y 2) =171t (x, 3, 2)]
() [*(F)] (3 2) =17 (2 (x, 3, 2))
=/ (x=y.y+2)
=2(x—-y)-50+2
=2x—Ty—5z
(it) [*()] (x5 2)=f7(t (x. 3, 2))
=f"(x+y+2z2x+y)
=2(x+y+22)-52x+y)
=—8x—3y+4z
(i) [*(F)] (x, 3 2) =17 (¢ (x, 3, 2))
=f (x+,0)
=2(x+y)-5.0
=2(x+y)

Self-learning exercise-2

. Which is the correct one ?

If V'is a finite dimensional vector space and V* is its dual space, then

(¢) dim V*=dimV (b) dim V* > dim V/
(¢) dim V* <dim V' (d) none of these
. Fill in the blanks :
(i) 1If Vis a finite dimensional vector space, then V* is .............ccc...... to dim V**,

(ii) 1f V'is a vector space, then V** is called ....................... .

. State whether the followings are true or false :

(i) Each linear transformation is a linear functional,
(ii) Each linear functional is a linear transformation.

6.6

Algebra of linear transformations

The set of all linear transformations of 'to V7 (vector spaces over the same field F), is denoted

by Hom (V, V).
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Now we define addition and scalar multiplication operation in Hom (¥, V") as follows :

Lett,t, € Hom(V, V"), we defineamap ¢, +1,: V — V' by

(t; +1) ()= 1,(») + 1, (v), VeV,
and a map (at)): V — V' by
(o )(v) = aur (v) vV veTl,ackF,

Closurness for addition and scalar multiplication in Hom (V, V") :
Let u,veV and A, pe F,we have
() 1) Qu+w)= ¢+ pv) +6,(hu + pv)
=My (1) + a1y () + Aty(n) + )
=Mt T+ 1) @)+ +5) (v).

Thus ¢, + ¢, is a linear transformation of ' to V', and so that ¢, t, € Hom (V, V).

Thus addition of lincar transformation is closed in Hom (V, V7).

Similarly, (at)) (M + ) = ot (A + pv)

= o (M (u) + ut(v)}
= Moy) () + p(oy) ().

Thus o, is a linear transformation of /'to V" and so that az; € Hom (V, V").

Thus scalar multiplication is closed in Hom (V, V7).

Theorem 12. The set Hom (V, V") of all linear transformations of V to V', forms a vector
space over the same field F.

Proof : Let Vand ” be the vector spaces over the same field F.

To prove that the set Hom (V, V") is a vector space over F' under the operations defined as
follows :

(F+e M=) +g),
(of) (V) =a(v), VvV f,g e Hom(V,V"),and a € F.

Now left as an exercise for the reader.

Theorem 13. Let V and V' be any two finite dimensional vector spaces over the same
field F. Then the vector space Hom (V, V") of all linear transformations of V to V', is also finite
dimensional, and

Hom (V, V')=dim V> dim V".

Proof : Suppose that V' be m-dimensional and V' be n-dimensional vector spaces over the field
FandB={b,b,,....b,}, B'= {bl',bz',....,bn'} be the bases of Vand V" respectively.

Let u € V, then we can write uniquely, v=A,b, +..+ X, b, . fork,, h,,..., A, €F.

m-m’

Now we define a map e V— TV’ by
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m
tl.j(v)—tl](gkl bl], Vvel
i=

=\ b/, i=12,..,m
j=12,..,n
It can be easily shown that L is a linear transformation of 'to V’and so that ;€ Hom (V, V).
And it is such that
0 if i#r

t.(b) =

i (0r) b; if i=r
that is, L (b,) =9, b r=1,2,.

where 81.,‘ e Fis Kronecker delta.

, m

Now we shall show that the set of these m n linear transformations,

c z{tij e Hom(V.,V"),

forms a basis for Hom (V, V7).

(i) Cis linearly independent :

Let there exist scalars a; € F, i=

n
such that Za.- t.. =0, where () is zero map

gy

V b, €B,

m n
1
= Z o by by =0
i=l j=1
. !
- a,b; =0
J=1
= OLrj=
for r=12,...,m, and j=1,2,..,n

Hence C is linearly independent.
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(ii) Cspans Hom (V, V") :
Let t € Hom (V, V") be any arbitrary vector, i.e. £ : V' — V", so that
(b)eVv, for r=1,2,..,m

=N tb,) =a, b +o,,b +..+a,,b,
1 4
=Y a,b/, forsome a,;eF.
=
m n
Now, we take, o t; | (b)
-1 -1
m n
=l j=l
m n ,
- Z oy 8 b;

Thus tzz Z%'fij

which shows that each t € Hom (V, V") is a linear combination of vectors of C, and thus C spans
Hom (V, V).
Hence C'is a basis for Hom (V, V"), so that
dim Hom (V,V')=mn
=dim V< dim V’.

6.7 Rank and nullity of a linear transformation

Let Vand V7 be any two vector spaces over the field Fand z: V' — V” be a linear transforma-
tion. Then image of 7 i.e. im(f) is a vector subspace of V” and if it finite dimensional, then the dimension
of this subspace is called the rank of'.

Similarly, Ker(#) is a vector subspace of V" and if it is finite dimensional, then its dimension is
called nullity of z.

Theorem 14. (Sylvester's law of nullity) Let V and V' be vector spaces over the same
field Fand t : V — V' be a linear transformation. If V is finite dimensional, then

dim V = rank (t) + nullity ().
Proof : Given that V" and V" be vector spaces over the field F and V' is finite dimensional.
Let dim V =m and dim Ker(f) =r, then
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r<m [-.- Ker (¢) is a vector subspace of V]
Let B = {b, b,,..., b,} be the basic for Ker (¢).
Since B, is linearly independent set of vectors in V, so that it can be extended to a basis
B=1{b;,b,,....; b, b, 1,... b, } of V.
We claim that the set
By=1t(b,y ), t(b,5),.... t(b,)} 1sa basis ofim(%).
(i) B, is linearly independent :
Let there exist scalars o, |, L., 5,..., O € F, such that
Oy £ (byyq) Tt 0, £(5,) =0
= t(0yy by tta,b )=0 [-- tis linear]
= Oyyp by ot a, b, € Ker (7).
Then, there exist scalars o, ..., o, € F, such that
o b tto, b =ab +.+ab,
= —apbt.t(-a)b.+o,. b, +.+ta b =0
= o =0, =...=0a,=0. [~ B={b;,b,...., b,,} isbasis of V]
Hence B, is linearly independent.
(i) B, spans im (?) :
Let v € im(¥), then there exists v € ¥ such that
v =1(v).
Since v € V, so that exists scalars o, a,,..., o, € F'such that
v=oyb, +.+a,b,
= tw)=t(ob +.+a,b,)
= v'=oyt(b) .. +ot(b,)+o,. b, )+ . ta,tb,)
=0yt (b))t ta,t(b,)
[ by, by, b € Ker (), and so £ (b)) =1 (by) = ... =t (b,) = 0]
which shows that B, spans im (2).
Hence B, = {t (b, ) +...+ 1 (b,,)} is a basis for im(f), and so that
dimim (t)=m—r
=dim V- dim Ker (¢)
= rank (¢)= dim V' —nullity ()
Thus dim V= rank (¢) + nullity (7).
Theorem 15. Let t : V — V' be a linear transformation of rank r and dim V = m,
dim V' = n. Then r < min (m, n), and there exists a basis {bl, b2 ..... bm} of V and a basis

{b,, by'.... b,"} of V'such that
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H(b))=b,’, (b)) =b,", ..., b,) =D,
t(b,.1)=0, tb,.,)=0.,...,b,)=0,
Proof : By Sylvester’s law of nullity, we have
dim V' = rank (¢) + nullity (¢)

m = r+ nullity () [« dm V=m,rankt=r] ... (1)
Obviously r<m
Thus r <min (m, n). [-- im () is a subspace of V' = dim im (¢) < dim V"]

From equation (1), we have
nullity (7) = dim Ker (¢) =m —r,

So assume that {b,., |, b,.,,...., b,,} be a basis of Ker (#), which is a linearly independent set in
V, so it can be extended to a basis {b,, b,,..., b,, b, ,.... b, } of V.

Now {b, b,,..., b} is a lincarly independent set of vectors, because it is a subset of basis.

Let there exist scalars o, a.,, ..., o, € I such that
o, #(b)) + o,t(by) +..+ a.t(b,) =0
Ho by +o,b, +..+a,b)=0
o by +.+ab, e Ker(t)
o, +.+ob. =0, b, *t.ta, b, for a. . ..,0 €F

m
oby +.tob. +(-a. )b, t.F(-a,)b, =0

4 44U

o === )=.=-a,)=0
Hence {#(b,), #(b,), ..., #(b,)} is a linearly independent set, then it can be a part of a basis of V7,
i.e. there exist vectors b/, b,’,..., b, inabasis of V" such that
(b)) =b,t(b,)=b, ... t(h)=b,
and clearly, (b, )=0,24b.,»)=0,..,4b,)=0
[ 1D,y 1D, 9, ..., b, } is abasis of Ker(?)]
Ex.1. Show that the map t : V,(R) — V3(R) defined by
t(a, b)=(a+b, a—b, b)
is a linear transformation. Find range, rank, null space and nullity of t.
Sol. Giventhat?: V,(R) — V5(R) defined by
t(a, by=(a+b,a—b,b), va,beR.

Let x=(a,b)y=(c,d) € V, (R),
and let AueR, then Mx+wel,
() t (hx +w)=t[A(a, b) + p(c, d)]

=t (ha + pc, Ab + ud)

=(ha+ pc+Ab+ud, ha + pc—Ab — nd, Ab + ud)
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=(A(atb),h(a—b),Ab)+ (n(c+d),p(c—d),ud
=A(a+b,a-bb)+u(c+td c—d,d)
=\ (a, b) + ut (c, d)
=\t (x) + ut ().
Which shows that ¢ is a linear transformation
(i) To find range space i.e. im(f) of't :
{(1,0), (0, 1)} is the usual basis of V.

By definition,
t(1,0)=(1+0,1-0,0)=(1, 1,0)
t(0,1)=0+1,0-1,1)=(1,-1,1)
Now, 1(1,0), (0, 1)} is a basis if V,
= vectors (1, 0), (0, 1) spans 7,
= t(1,0),¢(0,1) spans im(¢).
= (1, 1,0), (1,—1, 1) spans im(z).

Also let a, B € R such that
0‘(19 1) O)+ﬁ(1a_1a 1):0:(03 03 0)

= ((X+B,(X—B,B):(0,0,0)
= at+tBf=0,a-B=0,=0
= a=0,8=0

Thus (1, 1, 0), (1, — 1, 1) are linearly independent. Hence {(1, 1, 0), (1, — 1, 1)} is a basis of

range space i.e. im(t).

= dim im(t) =2

= rank (¢) = 2.
(iti) To find null space of 7 i.e. Ker(?) :
Since LV, >V

by Sylvester’s law of nullity, we have
dim V,, = rank(?) + nullity(?)

= 2 =2 + dim Ker(?).
= dim Ker (1)=0

= Ker(7) is a zero space

= Ker()= {(0, 0)}.

Also, dim im(#) = rank(f) = 2

= dim Ker(#) = nullity(7) = 0.

Further im(%) is a subspace of V5(R) generated by the vectors (1, 1, 0), (1, — 1, 1).
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Ex.2. Let t be a linear operator on a vector space V(F ). If 2 = 0, then find the relation
between range space of t and null space of t. Also given an example of a linear operator on V,(R)
such that 2 =0 but t # 0.

Sol. (i) Giventhat #2=0=£2v)=0, vveV

H(t(v))=0
Let t (v) € Ker (¢) vvevV.
But t(vyeim(t), for veV

Thus im (f) < Ker (2).

= rang space of (¢) < null space of'z.

(i) We consider a linear map ¢ : V, (R) — V, (R) defined by
Ha, b)=(0, a) v (a, b) €V,

clearly t#20
Now, t*(a, b) = ((t(a, b))
=10, a)
=(0,0)= 0(a, b)
=X 2(a,b)=0(a, b), for (a,b) eV,
= 2=0.

6.8  Summary

In this unit we have studied linear transformation of vector spaces, which plays a very important
role in the study of vector spaces. We have seen that the set Hom(V, V'”) of all linear transformations of
V'to V"’ forms a vector space itself over field . We have also studied the concept of dual space, second

dual, and dual map.

6.9 Answers to self-learning exercises

Self-learning exercise-1

1. ()(a) (i) (d)
2. (i)vector space homomorphism (ii) tu) +t(v)y (@) V,V’
(iv) {0} ) dim V'=dim V"’
3.)T (ii) T (iii) T
Self-learning exercise-2
1. a 2. (i) equal (ii) second dual
3. (i) false (ii) true
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6.10

Exercises

. Which of the following functionst : R — R? are linear transformations ?

(i) t(a, b)=(l+a,b),
(ii) t(a, b)=(b,a)
(iii) t(a, b) = (a + b, a)
Find the dual basis of the basis
B=1{(1,-1,3),(0, 1,-1), (0, 3, = 2)} for V;(R)
Let ¢ : V— V’be a linear transformation of vector spaces of the same dimension. Then following
statement are equivalent :
(i) tis an isomorphism
(ii) tis injective, i.e. Ket(f) = {0}
(iii) t is surjection i.e. (V)= V"’
(iv) tsends a basis of V' to a basis of V.
Let V and V" be vector spaces over the field F, then prove that the set Hom(V, V") of all linear
transformations of /'to V'’ is a vector space over the field F.
If Vis a finite dimensional vector space over the field /and v, # v, are in V, then prove that
there is an /'€ V* such that f'(v,) # 1 (v,).

oo
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UNIT 7 : Basic Theory of Field Extensions, Simple Extension,
Algebraic and Transcendental Extensions

Structure of the Unit

7.0 Objectives

7.1 Introduction

7.2 Basic theory of field extensions

7.3 Simple field extensions

7.4  Algebraic and transcendental extensions
7.5 Some important examples

7.6 Summary

7.7  Answers to self-learning exercises

7.8 Exercises

7.0  Objectives

After reading this unit you will be able to understand about field extension, simple field exten-

sion, algebraic and transcendental elements, algebraic and transcendental field extensions.

7.1 Introduction

In this unit, we shall take up the study of theory of finite field extensions. The concept of field has
a central place in Algebra. It has wide applications in Linear Algebra and in the Theory of Equations

which deals with the study of roots of polynomials.

7.2  Basic theory of field extensions

We know that a field (F +,.) is a commutative ring with unity in which every nonzero element
has a multiplicative inverse. We also Know that a field has no proper ideal, that is, if/ is an ideal of a
field F, then either /= {0} or /= F.

If 1 € Fis the unity element in F, then the smallest positive integer n such that n.1 = 0 is called
the characteristic of 7. If no such positive integer exist, then characteristic of 7' is said to be zero. The

characteristic of a field is either zero or a prime number.
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A field F is said to be embedded in a field K if F is isomorphic onto a subset of the field K. By
virtue of isomorphism, it readily follows that isomorphic image of /' is a subfield of K. For example, the
field O of rational numbers is embedded in the field R of real numbers which is embedded in the field C
of complex numbers.

If R is a ring, we define a polynomial p (x) with coefficients in R, as

p(x)=ayta;x+ a2x2 + .. ta X"
where a; € R. if a; = 0 for all 7, then it is known as a zero polynomial. The set of all such polynomials
is devoted by R [x] and it is a ring with respect to addition and multiplication of polynomials. R [x] is
known as polynomial ring over R. Further, if R is an integral domain, then so is R [x].

If p (x) is not the zero polynomial, its Leading coefficient is a,, where a, # 0 and @, = 0 for
all i > n, then n is known as degree of p (x) and we write deg p (x) = n. a,x" is called leading term.
A polynomial is constant if and only if its degree is zero. If the leading coefficient, that is, a, = 1, then
polynomial is known as monic polynomial. The notion of prime number can be generalized to polyno-
mials. A nonzero polynomial f'(x) € F [x] is irreducible over field F if deg f (x) > 1 and there is no
factorization of the form f'(x) = g (x) /4 (x) in F [x] such that deg g (x) < deg f'(x) and deg & (x) < deg
f (x). In other words we can say that whenever /' (x) = g (x) /£ (x), where g (x), # (x) € F [x], then
either g (x) € F or & (x) € F. If a polynomial is not irreducible, then it is called reducible. Note that
irreducibility of a polynomial depends on the nature of the field. For example, x2 + 2 is irreducible over
R but reducible over C.

Field extensions

Let F be a field. A field K is called an extension field of /' if K contains £ as a subfield. We
known that every field is a victor space over its subfield, so if K is a field extension of a field F, then K is
a vector space over [”. As a vector space over I, the dimension of K may be finite or infinite. If a vector
space K over a field F is finite. Dimensional, then we say that K is a finite field extension of " and
dimension of K over F'is known as degree of K over F and is denoted by the symbol [K : F]. If dimen-
sion of K over F'is not finite, then we say that K is an infinite extension of 7.

Theorem 1. If K is a finite field extension of a field F and L is a finite field extension of
K, then L is a finite field extension of Fand [L : F]1 = [L : K] [K : F].

Proof : Let B = {a, a,,..., &, } be a basic for L as a vactor space over K, and let C = {f3,
By, B, be a basis of K over F.

Then [L : K] =mand [K : F] = n. We will show that the set of mn products P= {a, B, [ 1 <i
<m ;1 <j<n} is abasis of vactor space L over F, and this will prove the theorem.

Let o be any element of L. Since set B is a basis for L over K, so there exist a,, a,, ... ,a,, € K

m

such that
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m
o=a; ocl+a2a2+...+amamora=2aio¢i ..... @)
i=1
Again, since set C'is a basis for K over F, so for each i = 1, 2,..., m there are elements b,,,

biys...r by, € Fsuchthata, = b,y By + by By + ...+ b, B,

2o+ P
n
or a, = Zbijﬁj ..... 2)
j=l
using (2) in (1) we get o ZZ(Zbi/ ﬁ./)af
i=1\_j=1

= ii% (i)

i=1 j=1
which shows that P spans L as a vector space over F. To see that set P is linearly independent, let us
assume that

m n

ZZ% (aiﬁj) =0, a; € F.

i=1 j=1

= Z[z a jJaiZO ..... 3)

i=1 \_j=1

n
Since B is a basis of L over K and Z a; B; € K, so from (3), we have
j=l

;alj pj=0 (4)

Again, since C is a basis of K over /" and a; € F so from (4) we have a; = Ofor1<i<m, 1<
j<n.

This shows that the set P is linearly independent, and hence P is a basis of L over F. Conse-
quently, [L:Fl=mn=][L:K][K:F]

or [L:F]=[L:K][K:F]

Corollary. If L is a finite extension of a field ' and K is a subfield of L containing F, then [K : F]
divides [L : F]

Proof : Since L is a finite field extension of | so [L : F] is finite. Again, since any set of elements
in L which is linearly independent over K is also linearly independent over / and so [L : K] is finite,
since [K : F] is finite. Since K is a subfield of L containing F, so F'is a subfield of K and hence [K : F is
finite, since every subspace of a finite dimensional vector space is finite. Now by above theorem we

have
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[L:F]=[L:K][K:F]

= [K : F] divides [L : F].

Note that if [L : F] is a prime member, then there exist no field K properly contained in L and
properly containing F. In others wards we can say that, if [L : F] is prime and K is any subfield of L
containing F, then either K =L or L =F.

Ex.1. Let F be an arbitrary field. Since every field is a vactor space over itself, so F is an

extension over itself of degree one as dim F (F) =1.

Ex.2. The field Q(+3) ={a+b3

a,be Q} is a finite extension of Q and

[Q\/g : Q} =2 as the set {l,x/g} is a basis of Q(\/g) over the field Q of rational num-

bers.

Ex.3. The field Q(N2.43) ={a+0V2 + 3 +aV243
of O and [Q(ﬁ,\/g) : Q} =4, since the set {1,\/5,\/5,\/3} is a basis of Q(\/E,\/g) over the field

a,b,c,d e Q} is a finite extension

O of rational numbers.

Also Q(\/E,\/g) is a finite extension of Q(\/g) and [Q(\/E,\/g) : Q(\/g)}: 2, since the
set {1,\/5} is a basis of Q(\/E,\/g) over Q(\/g)

Ex.4. The field C of complex numbers is a finite extension of the field R of real numbers.
Here [C: R] =2, since the set {1, i} is a basis of vector space C (R).

7.3  Simple field extension

Let K be an extension field of a field F and let a be an element of K. We define a family M of
subfields of K as follows :

M ={L | Lisa subfield of K containing both F and a .

M+ ¢, since K e M. Let E=NL , i.e., E isthe intersection of all member of the family M.
LeM

Since, intersection of an arbitrary collection of subfields of a given field is again a subfield of that
field and each number of M contain both F' and a, so E is a subfield of K containing both F and a. Also,
if H is any subficld of K containing both F' and a, then H € M and consequently £ — H. Thus E is the
smallest subfield of K containing both F' and a. The existence of such a subfield leads us to the following
definition.

Let K be an extension field of a field F and a € K, then F (a) is the smallest subfield of K
containing both F and a. We call ' (a) the subfield obtained by adjoining a to #. This description of /
(a) is purely external one. We now give an alternative and more constructive description of " (a). Let
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B={by+ba+ba’+..+b da'b eF, n>0}

that is, B consists of polynomials in a with coefficients from F.

Also, let W= {M

p(a),q(a)eB and q(a)+ O}.

Clearly W is a subfield of K containing both #'and a hence ¥ (0) cWw ... ()

Again, since F (a) is a subfield of K containing both F and a, therefore by virtue of closure
under addition and multiplication on, ' (¢) must contain all elements of the set B and hence it must also
contain all quotients of such elements.

So, WcF@ (2)

from (1) and (2) we get

F(a)=W ={p<a)

4a(a)

An extension K of a field £ is called a simple extension if K = F (a) for some a € K.

p(a).q(a)e F[x] and q(a);tO}.

Similarly, ifa,, a,, ..... ,a, € K, then F (a, a,, ..... , a,,) is the smallest subfield of K containing
a, ay, ..., a,and F. Clearly FF < F (a)) = F (a, ay) < ..... cF(ap, ay, ... ,a,) =K.

Ex.1. The field C of complex numbers is a simple extension of the field R of real numbers,
since R (i)=C.

a+b\/§
C+d\/§

Then K is a field and K = Q(\/E ) is a simple extension of Q.

Ex.2. Let F'= Qand K ={

a,b,c,deQ,cord:ﬁO}

7.4  Algebraic and transcendental extension

Let K be a field extension of a field F, and let o be any element of K. Then a is said to be
algebric over F if it is the root of some nonzero polynomial p (x) € F [x]. Thus, if a is algebric over F,
then there exist scalars a, a;, a,,..... , a, € F'not all zero such that

a0+a1a+a2a2+....+an oa"=0,

that is, 1, o, 0%, ..... , o are lineally dependent. If o is not algebraic over F, that is, if o is not a
root of any such polynomial, then o is called transcendental over F.

The element o € K is said to be algebric of degree n over F, if it satisfies a nonzero polyno-
mial over F' of degree n but no nonzero polynomial of lower degree.

If every element of K is algebric over F, then an extension K over F is called algebric exten-

sion of F. If K is not an algebric extension of F,, if is called a transcendental extension of F.
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Note that the two properties, algebric and transcendental, depend on the given field F. For ex-
ample, the complex number 2 7 i is algebric over the field of real numbers R but transcendental over the
field of rational numbers Q. Also, every element o of a field F is algebric over F, because it is the root
of the polynomial x — a,, which has coefficients in /. Hence every field ' is an algebric extension of
itself.

The two properties for o can be described in terms of the basic homomorphism of F' [x] into
K, i.e.,

¢, : F [x] > K defined by
bo, I/ ()] =/ (@) for /(x) € F[x].

The element o is transcendental over F'if ¢, is injective, i.e., ker ¢, is {0} and algebric over F
otherwise, that is, if Kernel of ¢, is not zero.

A polynomial f'(x) € f[x] of least degree with f (o) = 0 is called the minimal polynomial of a.
To ensure uniqueness of minimal polynomial for o over F, we must impose further restriction that it should
be monic, that is, the coefficient of highest power of x should be one. Ifthe degree of minimal polyno-
mial of aLis 7, then a is said to be an algebric element of degree n over F.

Ex.1. The field R of real numbers is not an algebric extension of the field Q of rational
numbers because m, e are elements of R which are not algebric over Q.

Ex.2. The field C of complex numbers is algebric extension over R.

Ex.3. o = 2i is algebric over R with minimal polynomial x* + 4.

Ex.4. o = 33 is algebric over Q with minimal polynomial x> -3 € Q [x].

Theorem 2. Every finite extension of a field is an algebric extension. But the converse is
not necessarily tree.

Proof : Let K be a finite extension of a field F' and let degree of K over F be n, that is [K : F] =
n. Now we have to show that K is an algebric extension over F. For this it is sufficient to show that
every element of K is an algebraic element over F.

Let a be an arbitrary element of K. Since K is a field, so a, o2,...0" are all belong to K but 1

€ K, so the set {1, a, o%,....., o’} of n + 1 elements of K is linearly dependent because dimension of

K over F is n. Since the set {1, a, o?,...., a’} is linearly dependent, so there exist elements a, a;,
Qy,....., a, in F'not all zero, such that a, + a; a +a, o+ ... +a,a"=0.

This shows that f(x) = aq + a;x+a, X2+t a, x" is a nonzero polynomial in F’ [x] having
o as a root, and so a is an algebric element over F. Since o is any element of K, so every element of K
is algebric over F and hence K is an algebric extension of F.

However, the converse of above is not necessarily true, because if we consider K be the field of
all those complex numbers that are algebraic over Q, then K is an algebraic extension of Q that is not
finite.
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Theorem 3. Let K be a field extension of a field F and let o. € K be algebric over F. Then
any two minimal monic polynomial for a over F are equal.
Proof : Let p(x)=x"+a, xl a, X2+ 4 a,,
and g (x)=x"+b, w1+ b, X2+ 4 b,
be two minimal monic polynomials of degree » for o over F. Then
o' +a, o T ray a2t ta, =0,

and o + b1 a1+ b2 a2+t bn =0.
Hence o + a, a1+ a, o2+t a,= o + b, o1+ b, o2+ + bn
or (a,—b) o1 +(a,— b)) a2 +.+(ab,)=0,

which shows that a is o root of the polynomial

h(x)=(a; - by) x4+ (a, —b,) X2 4+ (a,—b,)
of degree n—1 in F [x], which contradicts the fact that the minimal polynomial for o over F'is of degree
n over F. Hence A (x) must be a zero polynomial. This shows that a, — b, =0, that is a;,= b, for i = 1,
2,...,n and hence p (x) =q (x).

Theorem 4. Let K be a field extension of a field F and let o. € K, where a # 0 and a is
algebric over F. Then there is an irreducible polynomial p (x) € F [x] such that p (&) = 0. This
irreducible polynomial is uniquely determined upto a constant factor in F and is a polynomial of
minimal degree > 1 in F [x] having o as a zero. If f (o) = 0 for f (x) # 0, then p (x) divides f (x).

Proof : Let ¢, be the basic homomorphism of F'[x] into X, that is,

¢y, : F [x] > K defined by
by, [f )]=1 (o) for f(x) € F [x].

Clearly ¢, is a ring homomorphism. Let / = ker ¢, = {f (x) € F'[x] | /(o) = 0}. Since o is
algebric over F, so [ is a nonzero ideal in F' [x]. Again, since F [x] is a principal ideal domain, so / must
be a principal ideal. Since / is a principal ideal, so there exists p (x) € I [x] such that /= <p (x) >.

Now if f (o) = 0 for £ (x) € F [x], which f'(x) =0, then f'(x) € =< P (x) >, so there exists g
(x) € F[x] such that f'(x) = p (x) g (x). This shows that p (x) divides f(x). Clearly, p (x) is a polyno-
mial of minimal degree > 1 having a as a root, and any other such polynomial of the same degree as p
(x) must be of the form A p (x) for some A € F.

Now it remains to show that p (x) is irreducible. Let, if possible p (x) be reducible over F. Then
there exist g (x), 4 (x) in F' [x], such that

p(x)=q (x) h (),

where deg ¢ (x) and deg 4 (x) <deg p (x).

Now p(@)=0 impliesthat ¢ (a) 4 () =0,

So either g (@)=0orh(a)=0,

since K is a field and so it is without zero devises. This contradicts the fact that p (x) is a poly-

nomial of minimal degree > 1 such that p (o) = 0. Hence p (x) is irreducible polynomial.
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Theorem 5. Let K be a field extension of a field F. Then an element a € K is algebric
over F'if and only if F(a) is finite extension of F, that is, [F (a) : F] is finite.

Proof : Let F'(a) be a finite extension of ¥ and let [F (@) : F] = n, a positive integer.

Since F (a) is a field and a € F (a), so a, a,....d" are all belong to F (a), but 1 € F (a), so the

set {1, a, a?

,.,@"} of n+ 1 elements of n-dimensional vector space F' (a) over F must be linearly
dependent.
Hence, there exist o, o), a.,,...,0, € F not all zero such that
ag +oyata, a? +..to, @ =0.
This show that a satisfied a nonzero polynomial
S =ay+a;x+a, x? +.Fa, x" e Fx]
of degree n and hence a is algebric over F.
Conversely, suppose that a is algebric over F and p (x) is the minimal polynomial of a over F'
such that deg p (x) = n. Consider any nonzero element
g@=o0ytaata, a? +..ta, d"inFa].
Then g (xX)=05+a;x+a, x? +...Fta, x" € F [x] and p (x) does not
devise ¢ (x) and consequently greatest common divisor of p (x) and ¢ (x) is 1. So, there exist g (x) and

h (x) € F[x] such that
px)g®+tgx)h(x)=1

= p(agla)+q(a)h(a)=1
= qg@h(@=1, since p(a)=0
= [q (@] =h(a) e F]al.

Hence F'[a] is a field. Since F (a) is the field of quotient of F [a], so F (a) = F [a]. Again, since
a € F(a)and F (a) is a field, so 1, a, @,..,ad" areallin F (@). If for some elements oy, o, Oiy,....Q,
| € F'not all zero such that o, + oy @ + a, a?+.+ o, a1 =0, then a satisfies a nonzero polynomial
of degree < n = deg p (x) of minimal polynomial. This is a contradiction and hence 1, a, a2,..., ! are
linearly independent over F. Let f'(a) = by + bja + b, a+.+ b,, a" be any element of F [a] = F'(a),
then /' (x) =b, + bjx + b, x>+t b, x" € F'[x]. By division algorithm property in /7 [x] there exist g
(x) and r (x) € F [x] such that

J@)=q(x)p X +rx),

where r(x)=0 or deg r (x) < deg p (x).

= f@=q(@p(a)+r(a)

= f(a)=r(a), since p (a)=0.

Let r(x)=cytent.te, a!

since r(x)=0 or deg r (x) <deg p (x)

Thus f@=r(@=cy+cat.+c, arl,
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2 ..., a"!. Hence set {L,a, a,..., a”‘l}

which shows that f'(a) is a linear combination of 1, a, a
is a basis of F' (a) over F'and consequently, [F' (@) : F] =n, which is finite.

Theorem 6. Let K be a field extension of a field F and let o, a.,,..., o, be elements in K
which are algebric over F. Then F' (o, 0,..., &) is a finite extension of 7 and hence an algebric exten-
sion of F.

Proof : Since a;, a.,,..., o, are elements of an extension field K of ' which are algebric over £
$0 F' (0, Qly,..., @0, ) is the smallest subfield of K containing .|, a.,,..., o, and F. By definition of F' (o,
Qy,..., O,)) WE have

Fc F(a)) c F(ay, o) c...c F (0, 0,..0, ) < F (o, ay,...0t, 1, 0 ) K

Since every nonzero polynomial over F'is a nonzero polynomial over F (a;, a.,,...01; ;) asitis a
superfield of F, so o is algebric over F implies that o, is algebric over F' (o, a.,,...;_;) and hence by
theorem 5, we get

[£ (oL, 0,0ty )] () = F (0, O,...0t;) 18 @ finite extension of F' (o, Oy,...01 ;).

Let [F (0, O,...0t) : F (0L, Qy,...0;_;)] = m;, where m, is finite, then

[F (0], Oysee0t)) - FI= [F (04, 0y,enn0n)  F (04, 0,0, )] X [F (0, 0,0, 1) 0 F
(0, Ogyen @, 5)] X oo X [F'(at)) - F]=m, m,_,...m | = finite number, since each m, is finite.

Thus F (o, a,,...0,) is a finite extension of £

Since every finite extension of a field is an algebric extension, so /7 (a, a,...at,) is an algebric
extension of F.

Theorem 7. Let F — K L be three fields. If L is an algebric extension of K and if K is an
algebric extension of F, then L is an algebric extension of F.

Proof : Here we have to show that L is an algebric extension of F. For this we shall show that
every element of L is algebric over F. Let o be any arbitrary element of L. Since L is an algebric exten-
sion of K| so there exists a nonzero monic polynomial

X'+ a, X1+ a, X124+ a, € K[x],a, e K

such that o'+ a, a1+ a, a2+ + a,=0.

Again, since K is an algebric extension of ' and a|, a,,...a, are elements of K, so each of a,,
a,,...a, 1s algebric over F and hence by theorem 6, £ = F'(a,, a,,...a, ) is a finite extension of . Since
a satisfies the polynomial x” + a, K+ a, 24+ a, whose coefficients @, € Efori =1, 2,...,n,
so a is algebric over £ and hence by theorem 6 [E (o) : £] is finite.

Since E is a finite extension of /' and £ (a) is a finite extension of £, so by transitive property of
finite field extension £ (o) is a finite extension of F. Since every finite extension is an algebric extension,
so E (o) is an algebric extension of F and hence a is algebric element over . But o € L, so L is an

algebric extension of F.
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Theorem 8. If F is a field and p (x) be an irreducible polynomial of positive degree over a
field F, then there is an extension K =F [x] / p <x > of F such that [K : F| = deg p (x) and p (x)
has a root in K.
Proof : Let p (x) = oy + oy x + ... + o, x"", where a; € F be an irreducible polynomial in
F [x] of degree n. Since p (x) is irreducible, the principal ideal 7 = < p (x) > is a nonzero prime ideal.
Again, since F'[x] is a principal ideal domain, / is a maximal ideal and hence K = F'[x] / [ is a field.
Let L={I+o|a e F},
then L — K. Now we shall show that L is a subfield of K isomorphic to F. Ifis easy to verify that L is a
subfield of K. Consider a mapping
¢0:F — Ldefinedby ¢ (a)=7/+a forallo € F. Then forall a, f € F, we have
¢ (a+p)=I+(atp)
=([+0)+(I+P)
=¢ (a) + ¢ (B), and
¢ (af)=7+af
=(I+a){+P)
=0 (a) ¢ (B)
This shows that ¢ is a homomorphism. Let
¢ ()=¢ (), then
I+o=71+f, thisimpliesoa—f el
Since I=<p(x)> isaprincipal ideal and o — B € /, so there exist
some g (x)e F [x] such that a—B=px) gx).
Since o — 3 is a constant polynomial,
o) g(x)=0  because p (x) is a polynomial of positive degree, its
product with any other nonzero polynomial cannot be equal to a constant polynomial.
Now g(x)=0 implies o.— 3 =0, that is, oo = [3.
Thus ¢ ()=¢ (B) implies oo = 3 and hence ¢ is one-one.
¢ is clearly onto, since forany /+a € L, o € F
such that o (a)=1+a.
Thus ¢ is an isomorphism and hence L = F.
Since L is a subfield of K and L = F, so F may be regarded as a subfield of K| that is, K is an
extension of F.
Let m=[+x e K, weclaimthatm is a root of
p@=ayto; x+t..+ta x" ink
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Now in K, we have
pm)=I+oy)+U+o)m+.. +{I+a,)m"

=(+oy)+t(U+ta)+x)+. .+ +a,)d +x)
=(I+top)+U+ta)+x)+. .+ +a,)d+x")
= +oy) (I +oyx)+.. +({+a,x")
=l+(opta;x+.. +a, x"
=l+tpx)
=1,since [ =<p(x)>.

But 7+ 0 =1 is the zero element in K, and hence m is a root of p (x) in K.,

Now it remains to show that [K : F] = deg p (x).

We claim that the set S={/+1,[+x,..., 1+x”‘1} is a basis of K. Let

ag(I+ 1) +a; (I+x)+.ta,  [+x")=1

= (T+ap)+T+a,x)+.+T+a, x¥"NH=T
= I+(agta;x+.+a, , =7
= agta;xt.ta, ¥ lel=<p©x) >,

so there exists g (x) € F'[x] such that
aytayxt.ta, 1 =p () g ).
Since left hand side is a polynomial of degree n —1, so
g((x)=0 becauseif g(x)=0,
then deg p (x) g (x) > deg p (x) =n.
Now g (x) = 0 implies
agta;x+t.+ta, 1=,
which is possible only when a; = a; =... ¢, | and hence the set § is linearly independent.
Let 7 + g (x) be any dement of K, then g (x) € F [x]. By division algorithm property in F [x]
there exist ¢ (x) and 7 (x) in £ [x] such that
g)=px)qx) +rx),
where either r(x)=0 or degr(n)<degp (x).
Now I+tg@)=1+t[px) g x) +rx)]
=[/+px) g )]+ [ +rm)]
=[/+r(), since px)gkx)el
=I+(aytax+t.+a,, ¥, since degr (x) <degp (x) =n.
=T +ap) +(I+a x)+.+T+a, "7
=ay(I+1)+a; I +x)+.+a,_| ([+x"T)
= [+ g (x) is expressible as a linear combination of elements of S. But 7/ + g (x) be any
element of K, so every element of K is expressible as a linear combination of element of S and hence S
spans K. This shows that S is a basis of K over /" and consequently dim K (F) =n, i.e, [K: F]| = deg
p ).
112



Corollary : Let p (x) be a polynomial of positive degree over a field . Then there is an exten-
sion field K of /" such that p (x) has a root in K and [K : F] < deg p (x).

Proof : Let degp (x) be n. If p (x) is irreducible over F, then by above theorem there exists an
extension K of F such that p (x) has a root in K and hence [K : F] = n =deg p (x). Again, if p (x) is not
irreducible over F, then there exists irreducible factor g (x) of p (x) in F [x] such that p (x) = g (x)
q (x), for some ¢ (x) € F [x]. Clearly deg g (x) < deg p (x) and again by above theorem there exists
an extension K of F' such that p (x) has a root in K, that is, p (o) = 0 for some o € K. Therefore p (a)
=g (a) q (a) 0, which shows that a is algebric over F of degree n and hence [K : F| <n.

Theorem 9. Let [ (x) be a polynomial of degree n > 1 over a field F, then there exists a
finite extension K of F in which f (x) has n roots such that [K F ] < |n.

Proof : We shall prove the theorem by using induction on the deg f (x) = n. If deg f (x) = 1,

then f(x)is of the formox + B, a, f € Fand a # 0. In this case F can be considered as extension of

itself with [K: F]=1and x= —g € F' is aroot of f(x). Thus the theorem is true when deg £ (x) =1.

Let us assume that the theorem holds, for all polynomials of degree less then n over the field F.
Since f'(x) is a polynomial of degree n over F, so by above corollary there exists an extension L of F
such that /'(x) has a root o in L such that [L : FF] < deg f(x) = n. Again, since o € L is aroot of /'(x) in
L, so over L [x] we have

f(x)=(x—a) g (x), where deg g (x)=n—1.

Since g (x) is a polynomial of degree n — 1 < n over the field L, so by our induction hypothesis
there exists an extension K of L of degree at most [n—1 in which g (x) has n —1 roots in K.

Since K is a finite extension of L and L is a finite extension of F, so by transitive property of
finite field extension K is a finite extension of " and

[K:F] =[K:L][L:K] <|n—=l.n=[n or [K:F] <|n.

Thus we have shows that K is a finite extension of /' of degree at most |n in which f'(x) has n
roots.

Theorem 10. Let K be an extension of a field F. Then the elements in K which are algebric
over F from a subfield of K.

Proof : Let S be a collection of all those elements of K which are algebric over £ Clearly S'is a
subset of K. Here we have to show that S is a subfield of K. For this it is sufficient to show that for all a,

a
b, € S implies a + b, ab and Z(b #0) are all in S. Let @ and b be any two elements of S. Then a and b

are algebric over F implies that b is also algebraic over F'(a), since F' (a) is a super field of F. Since b is
algebric over F (a), so by Theorem 5 [F (a)] (b) = F (a, b) is a finite extension of F (a) and hence
[F (a, b): F (a)] is finite. Again, since a is algebric over F, so [F (a) : F] is finite. Since F — F (a) c F
(a, b), therefore by transitive property of finite field extension, F(a, b) is a finite extension of F. Since

every finite field extension is an algebric field extension, so F'(a, b) is an algebric field extension of F.
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Again, since F (a, b) is afield and a, b are elements in F (a, b), therefore a + b, ab and %(b #0) are
all in F (a, b). Consequentlya b, ab and %(b # O) are all algebric over F and hencea *b, ab and

%(b # O) are all elements of S as required.

Corollary : Let K be an extension of a field F. If @ and b in K are algebric over F of degree m

a
and n respectively, then a £ b, ab and Z(b # 0) are algebric over F’ of degree atmost mn.

Proof : Since « is algebric of degree m and b is algebric of degree n over F, therefore by theo-

rem 8, we get

[F(a):Fl=m and [F (b): F]=n.
Now b is algebric of degree n over F implies b is algebric of degree atmost n over F (a) as
F (a) is asuper field of F. Thus

[(F () (b) : F(@)] =[F (a D) : F] <n.
By transitive property of field extension we get
[F (a, b): F]1=[F (a, b): F(a)] [F (@) : F] £ m n = finite, since m, n are finite.

This shows that F' (a, b) is a finite extension of F and hence it is also an algebric extension of F.

Since F (a, b) is a field containing @ and b, it follows that a + b, ab, %(b #0) are allin F (q, b). If

a
follows that a * b, ab and g(b * 0) are algebric of degree atmost mn over F.

Self-learning exercise-1

1. Consider the set Q(%) ={a+b §/§+c 25 :a,b,ce Q},then:
(A) [Q%:Q}ﬂ (B) [Q%/?:Q]=3
©) [Q%/g : QJ =1 (D) None of these

2. If L is a field extension of a field F’ such that [L : F] = p, a prime number and if K is any subfield

of L containing F, then :

A K=L B) K=F
(C) KcFclL D)K=LorK=F
3. Ifwis one of the imaginary cube roots of unity, then O (w) is a finite field extension of Q.
(True / False)
4. The field C of complex numbers is not an algebric extension of R. (True / False)

5. The field R (i =J-1 ) is a simple field extension of the field R ofreal numbers and C = R ().
(True / False)
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7.5  Some important examples

Ex.1. If K is a finite extension of degree n = [K : F| over F, then show that every element
u of K has over F a degree which is a divisor of n.

Sol. It is given that K is a finite extension of F such that [K : F]=n. Since u € K, so F (u) isa
simple field extension containing both « and F such that F' — F' (1) — K. Again, since [K : F] is finite, so
[F (u) : F] is also finite as every subspace of a finite dimensional vector space is finite. Since every finite
field extension is an algebraic extension so F'(u) is an algebric extension of F" and hence u is an algebric
element of K over F and consequently [F («) : F| = degree of u.

By theorem1 of this unit we have [K : F]=[K : F (u)] [F (u) : F]

= n=[K:F (u)] x degree of u over F

= degree of u over F'is a divisor of n.

Ex.2. Let Q be the field of rational numbers, then show that Q(\/E, \/5) =0 (\/5 + \/§)

Sol. By definition of simple field extension, we have

Q(ﬁ,\/?)={a+bﬁ+c 3+dﬁﬁa,b,c,deg}
and o(+2. ﬁ)={a+b(ﬁ+ﬁ) a,beQ}.
Since O(V2,4/3) is a field containing both /7 and /3,
50 V2 +3€0(V2,43)
= o(\2+B)co(v2.3) (1)
Since O(V2++3) isafield containing /2 + /3 , therefore
(\/5+J§)'1 c0(v2+43)
which implies V3-V2e0(V2+43).
Now ﬁ=%2f=%(2+ﬁ+ﬁ—ﬁ)eg(ﬁ+ﬁ)
and ﬁ:%zf:%[(%ﬁ)-(ﬁ_z)}eg(mﬁ)
Therefore V2,\3e0(V2+43)
= o(v2.3)co(\2+v3) L )

From (1) and (2), we get
0(+2.3)=0(v2 +4A).
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Ex.3. Let K be an extension of a field F. Let o be an algebric element of odd degree over
F. Show that o is algebric over F and that F (o) = F (0?).

Sol. Since a is an algebric element of odd degree over F, so F'(a) is the extension of F con-
taining both o and F such that [F' (o) : F] = odd number.

Since F (o) is finite extension of F, so F (o) is an algebric extension of F. Again, since F (o) is
a field, so o € F (o), thus o is algebric over F and F (a2) < F (o).

Since a is o root of the polynomial x2 — a2 with coefficient in F and F (o) is a super field of
so o is a root of the polynomial x2 — a2 with coefficients in F (02), so a is algebric of degree at most 2
over F (a?) that is, [F (o) : F (a?)] < 2.

By theorem 1 of'this unit we have

[F (o) : F1=[F (o) : F (a?)] [F (o?) : F]

= [F(a): F(a?)] divides [F (o) : F]

But [F (o) : F(0?)] <2 and [F (o) : F] is odd, then we must have [F () : F(02)] = 1 and
hence F (o) = F(0?).

7.6  Summary

In this unit we have discussed about simple field extension, algebraic and transcendental field

extension and some important results on these topics.

7.7  Answers to self-learning exercises

Self-learning exercise-1

1. (B) 2.(D) 3. True 4. False 5. True.

7.8 Exercises

1. Show that a finite field extension of prime degree is a simple extension.

2. Let K be a field extension of a field F. Let o, B, € K be algebric over F of degree m and n
respectively, and let m, n be relatively prime. Then prove that [ (o, B) : F] =mn.

3. Let K be a finite field extension of a field F. If for any two subfields L, and L, of K containing
F, either L, c L, or L, < L,, show that K is a simple extension of F.

4. Let R be the field of real numbers and O the field of rational numbers. In R, /2 and +/3 are
both algebric over Q. Exhibit a polynomial of degree 4 over Q satisfied by /2 ++/3 .

[Ans. f(x) =x*—10x% + 1]
5. If K is an extension of a field F' of prime degree, then prove that any element in K but not in

generates all of K over F.
oo
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UNIT 8 : Splitting Fields, Normal Extension, Separable
and Inseparable Extensions and Automorphism
of Extensions

Structure of the Unit

8.0  Objectives

8.1 Introduction

8.2  Splitting fields

8.3 Normal extension

8.4  Separable and inseparable extensions
8.5 Perfect field

8.6  Automorphism of extensions

8.7 Fixed field of a group of automorphisms
8.8 Some important examples

8.9 Summary

8.10  Answer to self-learning exercises

8.11  Exercises

8.0  Objectives

After reading this unit you will be able to under stand about splitting fields of a polynomial,
normal extension, separable and inseparable extensions and automorphism of extensions. You will be
also to know that if F'is a field, then every polynomial /'(x) € I [x] has a splitting field, and irreducible
polynomial /' (x) € F'[x] is separable if and only if /" (x) # 0 and every non-constant polynomial over a

field of characteristic zero is separable.

8.1 Introduction

In this unit we shall take up the study of splitting fields of polynomial /' (x) € F'[x], where F'is a
field, normal extension, separable and inseparable extensions and automorphism of extensions. We will
prove some important results related to these topics. In the end of the unit we will discuss some impor-

tant problems related to these topics.
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8.2  Splitting fields

Let K be a field extension of a field /" and Let p (x) be a polynomial in F' [x] of degree n > 1.
Then K is said to be a splitting field of p (x) if p (x) can be factored into # linear factors over K, that
i,

p(x)=a(x—oy) (x—0,)..(x—a,)

where a is a nonzero element of Fand o; € K ;i =1, 2,..., n, and there does not exist any proper
subfield L of K containing F' such that p (x) can be factored into » linear factors over L.

In other words we can say that K is a splitting field of p (x), if K contains all # roots o, a.,....,
a, of p (x) and K= F'(ay, 0y,..., Q).

Ex.1. If wis imaginary cube root of unity, then splitting field of polynomial

B-2e 0 is O(w.2).

Ex.2. If w is imaginary cube root of unity, then x>~1 € Q [x] splits over the field C of
complex numbers but its splitting field is Q(w).

Theorem 1. Let F be a field, then every polynomial of positive degree in F [x] has a split-
ting field.

Proof. Let p (x) € F'[x] be a polynomial of degree n > 1. Now we have to show that p (x) has
a splitting field. We shall prove the theorem by induction on n. If n = 1, then p (x) is a linear, that is,
p (x)=ox+ B with a, B € Fand a # 0. Thus we have

p(x) = oc(x—ﬁj.
o
Hence K = F'is a splitting field of p (x) in this case.

Now assume that the theorem is true for all polynomials of degree less-then 7.
If deg.p (x)=n>1, then let
p W)=px)ppx).pyx L (D
where each of the polynomial on right hand side of (1) is irreducible over F'[x]. If for each /, p,(x) is a
polynomial of degree one, then F itself is a splitting field of p (x). Now suppose that at least one of them
say f; (x) is of degree =2, 1 <i <. These there exists an extension F () containing a root o; of
/f; ). Thus in the field F' (o) we have
P )= (=0 f (),
where deg f(x) = n—1 and f (x) € F (o) [x].
Now, since degree of /(x) is less-then 7, so by over assumption there exists splitting field
[F (a] (0, O,...,00,) = F (04, Oy,...,0,) OFf(X).
Clearly, then K = F' (0o}, 0.5,...,0,) 1s a splitting field of p (x) € F [x].
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Theorem 2. Let F be a field, and let f (x) be a nonzero polynomial in F [x]. Then splitting
field of f (x) is an algebraic extension of F.

Proof. Let degree of /'(x) be n > 1 and let £ be the splitting field of /'(x). Also, let o, a,,...,01,
be the roots of f'(x). Then E'= F' (o, a,,,...,01,). Now we have to show that £ is an algebraic extension
of F. Let

E, =F (o))
E, =E|(a,)=F (o)) (a,) = F (0, 0y)
Ey = E, (a,y) = F (0, o) (03) = F (0, 0y, 03)

E=E =E,  (o,)=F(aya,.a, ) (a,)=F(,0,,...ad,).
Since each o, € £;i =1, 2, ..., n is a root of a nonzero polynomial /' (x) over F, therefore
o, i =1, 2,..,n are all algebraic over F. Since each of the fields F, E| E,,..., E, = E is obtained
on adjoining an algebraic element to its predecessor, so that each of the degree [£] : F], [E, : E|],...
[E,: E,_]is finite. We have
[E:F)=[E:E, ][E, | E, 5l...[E :F]
is finite. Thus F is a finite extension of F'and consequently £ is an algebraic extension of F, since every

finite extension is an algebraic extension.

8.3 Normal extension

Let K be an algebraic extension of a field /. Then K is said to be normal extension of F, if the
splitting field of the minimal polynomial / (x) € F [x] for each element of K is contained in K. In other
words we can say that if K is a normal extension of F and a € K and if / (x) is the minimal polynomial
of o over F [x], then £ (x) can be expressed as a product of linear factors in K [x].

Ex.1. The field of real numbers R is not a normal extension of the field of rational num-
bers Q, because 2Y3 ¢ Rand f(x) = x>-2 € Q [x] is the minimal polynomial for 2V 3 but it does not

split into linear factors in R as other two roots of /' (x) are imaginary.

Ex2. If a = cos%+isin% = ™4 then 0 (0) is a normal extension of Q, because the

b

minimal polynomial for o. is
f(x)=x*+1 € Q [x] and
f)=x4+1 = (%= i) (x*+1)
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(e ) ) )

where a? =i, Ji= o, 2 = a2

and thus x4 +1 =(x—oc)(x+a)(x—oc3)(x+oc3).

This shows that O (o) is the splitting field of /'(x)

Theorem 3. A finite algebraic extension K of a field F is a normal extension of F if K is
splitting field of some polynomial over F.

Proof. It is given that K is a finite algebraic extension of F, so K= F (a,, a,...0,, ), where each
o; € K;i=1, 2,...,n is algebraic over F. Let f{(x), /5(X),..., f,(x) be the minimal polynomials of a.,,

a,...a., over F respectively. Since K is a normal extension of F, so the splitting field of each

100, £5(0);..., f,(x)

is contained in K. Hence K is the splitting field of the polynomial f'(x) =f; (x) £, (x) ... f,, ().

Theorem 4. Let K be a normal extension of a field F and L is an intermediate field, so
that F c L c K, then K is also a normal extension of L.

Proof. It is given that K is a normal extension of a field /" and L is a field such that Fc L c K.
Now we have to show that K is a normal extension of L. For this it is sufficient to show that the splitting
field of the minimal polynomial for each element of K over L is contained in K.

Let a be any element of K and let p (x) and ¢ (x) be the minimal polynomials for o over F and
L respectively. Since ' c L, Therefore f(x) € F [x] implies f(x) € L [x]. Also ¢ (x) is the minimal
polynomial of o over L, then ¢ (x) is a divisor of p (x). This shows that each root of ¢ (x) in K is also a
root of p (x) in K. But each root of p (x) is in K, so it follows that each root of ¢ (x) is in K. Hence K is

a normal extension of L.

8.4  Separable and inseparable extensions

At first we define roots of a polynomial in an extension field. Let K be an extension field of a
field F. Then, an element o0 € K is said to be a root of a polynomial /" (x) € F [x], if f(x) =0. Ifacis a
root of f(x), then (x — a) divides f(x) over K. a is said to be a root of multiplicity m if (x — o))" is a
divisor of f'(x) but (x — o) is not a divisor of £ (x).

If m =1, then a is called a simple root, otherwise it is called a multiple root.

We now define derivative of a polynomial over a field. Let

fxX)=ay+a x+a, X2+t a, x"

be a polynomial of degree » over a field F. Then derivative of f (x) is denoted by /" (x) and is defined
by

f'(x)=a;+2ayx+.+na, x 1,
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Note that the properties of derivative which are true in calculus are not necessarily true here.

Since F'is an arbitrary field, so it may be a field of finite characteristic or it may be a field of
characteristic zero or infinite. If F'is a field of characteristic n # 0, then the derivative of a polynomials
f(x) =x"over Fis nx"! = (n-1) ¥~ =0, since the characteristic of the field is 7, so n-1 = 0. Thus
the derivative of a non-constant polynomial may be zero. Again, if F is a field of characteristic zero,
that is, F is an infinite field and £ (x) is a polynomial of degree n > 1, then f ’ (x) is a polynomial of
degree n— 1.

Theorem 5. Let f (x) and g (x) be any two polynomials over a field F and o. € F, then

) (@) +g @) =f () +g' (),

(ii) (of (x))"= af ’ (x),

(iii) (f (x) g (x))'=f"(x) g (%) +f(x) &' (x).

Theorem 6. Let K be an extension of a field F and let f (x) € F [x] be a polynomial of
degree n>2. Then a. € K is a multiple root of f (x) if and only if a. is a common root of f (x) and
17 (.

Proof. Let o be a multiple root of /(x) of multiplicity m > 2, then

f@)=@x-a)" g(x),gx) € K[x]and g (a) # 0.

Differentiating above with respect to x, we get

S =m (- oyt g (x)+ (- )" g * (x)

= /7 ()=0,
which shows that a is a root of / /(). Thus o is a common root of /' (x) and f*’ (x).

Conversely, suppose that o is a common root off* (x) and /' ”(x). Now we have to show that a
is a multiple root of /* (x). Let, if possible a is the simple root of f* (x), then

f@)= (-a)g @),
where g (x) € K [x] and g (o) # 0.

Taking the derivative of above we get

fTx)=gx)+(x—a)g’(x)

= S (@)=g(a)#0,
which shows that o is not a root of /7 (x). Hence a is a multiple root of f'(x).

Theorem 7. Let I be a field and let [ (x) be an irreducible polynomial in I [x]. Then [ (x)
has a multiple root in some field extension if and only if f ' (x) = 0.

Proof. Let a be a multiple root of /(x) in some field extension K of F. Then by theorem 6, o is
a common root of /' (x) and f * (x). Since f'(x) is an irreducible polynomial over F such that f' (o) = 0

and f“(x) is another polynomial over F such that " (o) = 0, so f'(x) divides f * (x).
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Iff 7 (x) # 0, then deg f” (x) < deg f (x) and hence 1 (x) cannot divide f ” (x), which contradicts
the fact that f'(x) divides f*(x) and hence /"’ (x) = 0.

Conversely suppose that /7 (x) = 0 and o € K be a root of f (x). Then f (ot) = 0 and
f 7 (a) =0. This shows that o is a common root of / (x) and /" (x) in K and hence by theorem 6, o is a
multiple root of £ (x) in K.

Theorem 8. Let F be a field and let f (x) be an irreducible polynomial in F [x], Then if the
characteristic of F is zero, then f (x) has no multiple root in any field extension of F.

Proof. Let degree of /(x) be n > 1. Since characteristic of ' is zero and f'(x) is an irreducible
polynomial of degree n > 1, so deg f/(x) =n —1 > 0 and hence f ’(x) # 0. Hence by above theorem
f(x) can not have a multiple root in any field extension of .

Theorem 9. If F is a field of characteristic p # 0, then the polynomial
fx) =x" —x eF[x],forn >1,

has distinct roots.

Proof. Since Jx) =" .
£/ =p'x? o1
or ff@=p axt-r L (1)

Since F'is a field of characteristic p, so
p-1=(1+1+1+..+upto p terms) =0 and consequently p"-1 = 0.
Therefore form (1) we have
frxy=-w L 2)

From (1) and (2) we see that f(x) and f ” (x) have no nontrivial common factor. Hence by
theorem 6, f'(x) has no multiple root.

Let f'(x) be an irreducible polynomial over a field . Then fis said to be separable over F if all
the roots of /() in its extension field K are simple, that is, f'(x) has no multiple roots in its extension
field K over F.

An arbitrary polynomial over F'is said to be separable over F if each of its irreducible factor is
separable. A polynomial which is not separable is known as inseparable.

By using theorem 7 and 8 on multiple roots of a polynomial and the definition of separable poly-
nomial, we observe that :

(i) an irreducible polynomial /' (x) € f[x] is separable if and only if ' (x) # 0,

(ii) every non-constant polynomial over a field of characteristic zero is separable.

Let K be a field extension of a field . Then an algebraic element a € K over a field F is said to
separable over F, if the minimal polynomial of a over F is separable, that is, if it satisfies a polynomial

over F having no multiple roots.

122



An algebraic extension K of a field F is said to be a separable extension, if every element of
K is separable over F,, otherwise K is said to be an inseparable extension.

As observed above every polynomial over a field of characteristic zero is separable, we see that
every algebraic extension of a field of characteristic zero is a separable extension.

Theorem 10. An irreducible polynomial f (x) over a field of characteristic p > 0, is insepa-
rable if and only if f (x) € F [XP], that is, f (x) is a polynomial in xP.

Proof. Let /' (x) = oy + oy x + o, X2+ a,, x" with a,, # 0 be an irreducible polynomial in

F [x] of degree n > 1. Then

[ (x) =0y + 20, x +.+ 0o, Kl
We know that f(x) is inseparable if and only if /' “(x) = 0. But /'’ (x) = 0 if and only if
ay =0, 20,=0,...,na,=0.

Since the characteristic of F'is p > 0, it follows that each nonzero element is of order p. So, for

any k, 1 <k <n, ko, = 0 and o # 0 implies that p is a divisor of &, i.e., oy, = 0 or k = mp for some

positive integer m. This means, in f(x) if any term is oy xk with oy # 0, then it is of type

Gy 3 = (57 )

So, that

f)=agtx ¥ +a, X+ a, x"’
for some positive integer m. Thus f'(x) € f[¥"].

Theorem 11. A polynomial f (x) is separable if and only it is relative prime to its deriva-
tive, i.e., (f (x), f " (x)) =1.

Proof. By theorem 6, we know that a polynomial /' (x) has a multiple root a ifand only if a is
also a root of /' /(x), that is, /' (x) and /"’ (x) are both divisible by the minimal polynomial for a. Thus by
definition of separable polynomial /' (x) is separable if and only if it is relative prime to its derivative.

Theorem 12. If'F is a finite field of characteristic p, then a— aP is an automorphism of F.

Proof. Let a and b be any two elements of /. Then by binomial theorem we have

(a+bp =a’+ Pea?'b+ Pe,aP b + ..+ Pe,b?.
Since p is characteristic of field F, so for each m with 1 <m <p-1, p dividesPc,,. So that
Pe aP™p™ =0 form=1,2,...p-1.
Hence (a + b)P = a” + bP. Now
cat+tb)=(a+bP=a’+b=c(a)+oc(b)
and c(ab)y=(aby=a’b’=c(a)- c(b).
Thus o is an endomorphism. Farther
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Ker 6 ={ae F|c(a)=0}
={aeF |a” =O}={O}

and hence o is a monomorphism. Since F is a finite field and 6 : ' — F is one-one, so G is also onto.
Hence o is an automorphism.

Theorem 13. Any algebraic extension of a finite field F is a separable extension.

Proof. Let K be any algebraic extension of F. Also let /' (x) be any irreducible polynomial over
F. Now we have to show that f (x) is separable. Let, if possible f (x) be inseparable over F, so by
theorem 10, f'(x) € f[x"]. Let

f@)=by+b P +byx® +.+b x"P

for some b; € F, 0 <i <m. From above theorem we see that « — @’ v a € F'is an automorphism of

F, so wecan find @; € F'such that b; = ¢/ Vi and consequently
f@) =al +alx? +alx* +..+alx"

ro . .
= (ao X+ a4t amx”’) , which shows that f(x) is not ir-

reducible. This is a contradiction and hence f (x) is separable. Thus by definition K is a separable exten-
sion of F.

8.5 Perfect field

A field F is called perfect field if all finite extensions of F are separable.

Theorem 14. Every field of characteristic zero is perfect.

Proof. Let F be a field of characteristic zero. We have to show that F is perfect. For this we
shall show that every finite extension of F' is separable. Let K be any finite extension of F.. In order to
show that K is separable over F, it is sufficient to show that minimal polynomial for each element of K
over Fis separable.

Let o be an arbitrary element of K and let

fX)=ay+ax+ azxz +.+ax" witha, #0
be a minimal polynomial for o over F. Then
S )= a;+2ax ..+ nanx"_l.
Let, if possible f'(x) be inseparable, then
S (x0)=0,
which shows that ma,, = 0 for all m > 1. But Fis a field of characteristic zero, so ma,, = 0 for all
m > 1 is possible only ifa,, = 0 for m > 1. This gives
fx)=ay,
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which is a constant polynomial having a multiple root. But this gives a contradiction because no constant
polynomial has a root. Hence f'(x) has no multiple root, so is separable. Therefore a is separable over F'
and hence 3 K is a separable extension of F. Consequently F is perfect.

Theorem 15. A4 field of characteristic p # 0 such that each element of the field is the p™
power of some member of the same is perfect.

Proof. Let F be a field of characteristic p # 0. We have to show that F is perfect. For this we
shall show that every finite extension of F' is separable. In order to show that K is separable over F, it is
sufficient to show that minimal polynomial for each element of K over F'is separable. Since the minimal
polynomial for each element of K over F is irreducible so we need to show that each irreducible poly-
nomial over F'is separable.

Let f'(x) be any irreducible polynomial over F. Suppose f(x) is inseparable over F, so by theo-
rem 10 f(x) € F [xP], that is,

f(x)=ay+ax+ ax?® +.+a,x""
for some a; € F, 0 <i <m. Then by given condition, corresponding to the elements a, a,...., a, n F
there exist b, by,..., b, in F such that
ay= (b, a;=(b\V...., a,, = (b,,). Therefore

S &) =b +blx? +...+bLx™
0 1 m

= (bo +bx+..+b,x" )p :
This shows that f(x) is not irreducible, which is a contradiction. Thus, every irreducible polyno-
mial over F'is separable and hence, F'is a perfect field.

8.6  Automorphism of extensions

Let K be a field. Then a mapping /: K — K is called an automorphism of K if

(i) fis one-one,

(i) f'is onto,

(iii) f(a+b)=f(a)+f(b) and f(ab)=f(a)f(b)foralla, b, € K.

It can be easily seen that

f©0)=0,/(1)=f(1),f(-a)=-/(a) and
f@h=[f(a)]" forevery 0 #a € K.

If K is a field extension of a field , then an automorphism f of K fixes F point-wise if f (a) = a
for everya € F. In this case fis known as F-automorphism.

Let Aut (K) be the set of all automorphisms of K, then it can be easily seen that Aut (K) is a
group with respect to operation composition of functions. The identity map /- on K is the identity ele-
ment of Aut (K) because
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SO I =f=I;-0 ffor every f Aut (K). We know that if 6 € Aut (K),

then o e Aut (K)

such that c0c! =1 = 100.

Hence every element of Aut (K) is invertible.

Theorem 16. Let K be a field extension of a field F and f (x) € F [x]. If ¢ :K — K is an
automorphism such that ¢ (a) =a v a € F, and if o € K is a root of f (x), then ¢ (o) is also a

root of f (x).

Proof. Let f'(x) = by + by x + b2x2 +.+bx", b e Ffori=0,1,2,.,n Since a is a root of

S (), so
by + bjo+ byo? +..+b o =0

= §(by+bjatbyo? . +b o) = ¢ (0)

or ¢ (by)+ b (byo) + ¢(bya?) +o.t ¢ (b,a") =0

o b by Fo (b)) (W) F+¢(by) ¢ (aD)+.+ (b)) d(a”)=0

or byt+by¢(a)+D, 0 (02) +..+ b, ¢ (a")=0, since ¢ fixes F.

or by + by ¢ (o) + by [d ()] +...+ b, [d ()] = 0.

This shows that ¢ (o) is a root of f(x).

Theorem 17. Let K be a field extension of a field F. Then the set G(K | F) of all automor-
phism of K which heave every element of F fixed is a subgroup of the group Aut (K).

Proof. Since G(K | F) is a set of all automorphism of K which heave every element of /' fixed,
SO

GK[F)={0ec Aut(K)[¢ (@)=a v acF}.

Since the identity automorphism/,- of K is such that /. (x) =x v x € K, so it leaves every
element of /' fixed and hence Iy, € G (K| F) and consequently G (K | F) # ¢. Let ¢, y be any two
elements of G (K | F). Then ¢ (a) =a and y (@) =a for alla € F. Now for all @ € F, we have

@0y (@=0¢ v ()]
=¢[y(a), sincey(@=asoyl(@)=ayacF
=9 (@)
=a

This implies ¢ o y~! € G (K/F) and G (K/F) is a subgroup of Aut (K).

8.7 Fixed field of a group of automorphisms

Let H be a subgroup of the group of all automorphisms of a field K. Then the set
L=1{a e K| (a)=aforall p € H} is called the fixed field of H. We shall show that it is a
subfield of K.
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Theorem 18. Let H be a subgroup of all automorphisms of a field K. Then the fixed field
of H is a subfield of K.
Proof : Let L be a fixed field of A. Then by definition of fixed field we have
L={aeK|d(a)=aforal$ € H}.
Since ¢ (1) =1 and (0) =0, so 1 and 0 are in L and hence L # ¢. Let x and y be any two

elements of L, and ¢ is any element of H. Then

o (x=1)=¢[x+ (=]

=0+
=00)-60)
=X-)

Sox—y e L. Again, letx € L, 0#y € L, then
Oy H=0m®o0™
=9 () [¢ () —1]
=abl,

So ab~! e L. Hence L is a subfield of K.

Theorem 19. If K is a field and if ¢, ¢,,....9, are distinct automorphisms of K, then
it is impossible (o find elements by, b,,..,b, not all zero, in K such that by ¢,(a) + b, h,(a) +...+
b,9,(@=0,foralla € K.

Proof : Let, if possible, we can find elements b,, b,,...,b,, not all zero, in K such that

by 0,(a) + byoy(a) +...+ b9, (@)=0, v ackK .. (1

Among all relations of type (1) we can field a relation which has as few nonzero terms as pos-

sible. After counting again let this minimal relation be
by (@) + byoy(a) +..+ b0, (@=0 L (2)

where b, b,,...b, are all different form zero. If m = 1, then from (2), we get
by ¢,(a)=0, vy ack

= b, ¢,(1)=0,since 1 € K

= by -1=0,since d {(1)=1

= b, =0,
which contradicts over assumption that b, # 0. So, m > 1. Since ¢;# ¢,, so there exists an element
¢ € K such that ¢, (c) #¢,, (¢). Since ca € K for all a € K, so relation (2) will hold good for ca, that
1S,
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by ¢0(ca) + bydy(ca) +...+ b, ¢, (ca)=0foralla e K

or b16,(0) &,(a) + byo,(c) y(@)+...+ b, b, (), (a)=0forallae K ... 3)
Multiplying relation (2) by ¢, (c) and subtracting the result from (3) we get
by [9y(0) = 0y (O)] dy(@)+..+ by, [d,, (©) =y (O] 9, (@=0 ... 4

Ifwe put a= b, [0(c) — ¢,(c)], for i =2,...,m, then a; are in K, a,, = b, [9,,(c) —d,(c)] # 0,

since b, # 0, and ¢, (c) — ¢;(c) # 0. Thus relation (4) may be written as
a, dy(a) +..+a, ¢, (a)=0,foralla e K.

This relation has (m — 1) terms, which contradicts over assumption that (2) is a minimal relation.
This proves the theorem.

Theorem 20. If K is a finite extension of a field F, then the group G (K | F) of F
automorphisms of K is finite and o[G (K | F)] < [K : F].

Proof : Let [K : F] = n and let by, b,,...,b, be a basis of K over F. Suppose we can find
(n + 1) distinct automorphisms ¢y, ¢,,...,0, .| in G (K | F). Consider the following system of homoge-

neous linear equations in7z +1 unknowns x|, x,,...,X, , 1, with coefficients in K.
O (b)) x40, (b)) Xy +ot by (b)) x4, =0
&y (by) x; + 0, (by) x5 ..t (|)n+1 (by) x,,1=0

0y (b)) X, +dy (b )Xyt by (B)X, =0
In this system of linear homogenous equations, the number of equations is less then the number
of unknowns.
Hence this system must have a nontrivial solutions (not all zero) x; = ay, X, = dy,..., X, | =, 14
in K. Thus, we have
a; ¢y (b) +a, &y (b) +..4a, 6, (b)=0fori=1,2,.,n. ... (D
Let u be any element of K. Since the set {b,, b,,...,b, } is a basis of K over F, therefore there
exist ¢; € I, i=1, 2,...n such that
u=cy b +cy byt te, b,
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Now, (I)l (u):(l)l (Cl b] Te b2 t.te, bn)

or ¢ @)= 0, (c; b)) +d,(cy by) +..+ b, (c, b,)

or ¢ (=0, (c)) §1(b)) + 91(cy) ¢1(by) +...+ 9, (c,) ¢, (b))
or Oy @=cy &b +cyi(by) +.. 4 ¢, b, (b)),

since ¢, leaves every element of F' fixed.

Similarly

Oy ()= ¢y Oy(b)) T ¢y Oy(by) +... 4, 0, (b))
Multiplying above equations by a;, a,,...a, , | respectively and adding we get
a; o, () +a, oy(w) +.ta, 0, W) =c la; ¢, (b)) +a, d,(b)) +...
ta, . 0, ()l Fc,[a;d; (b)) +aydy(b,) +..a, b, (b))
=cx0+..+c, X0, [using (1)]
=0.

Thus we conclude that, if ¢, ¢,,...,¢,,; are distinct automorphisms of K, we can find
ay, ay,...a, 1 in K, not all zero, such that a;¢; (u) +a, ¢, (u) +...+a,, 1 ¢,,; (u) =0 forallu € K. By
theorem 19 it is not possible. So, there can not be n + 1 distinct automorphisms in G (K | F) and conse-

quently
o[G(K|F)]<n
Hence, o[G(K|F)]L[K: F].

8.8 Some important examples

Ex.1. Prove that if the complex number z is a root of the polynomial f (x) with real coeffi-
cients, then z , the complex conjugate of z is also a root of [ (x).

Sol . We know that the field C of complex numbers is an extension of the field R of real num-
bers. Let /' (x) € R [x] and z =x + iy be a root of /(x) in C. We have to prove that z =x — iy is also
aroot of f(x) in C.

Consider a mapping ¢ : C — C defined by ¢ (x +iy) = m =x—iyVx+iyeC. Itis easy
to see that ¢ is an automorphism of C. Let a be any element of R, then as an element of C, it can be
written as a + io. Then

d(@)=0¢(at+io)=a—io=a.
Thus ¢ leaves every element of R fixed. Therefore by theorem 16, if z is a root of £ (x) in C,

then ¢ (z) = Z is also a root of /(x) in C.
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Ex.2. Let K be the field of complex numbers and let F be the field of real numbers. Find
G (K | F) and fixed field of G (K | F).
Sol . Let ¢ be an automorphism of K. Then
[0 OF =) ¢ @)
—¢ ()
=9 (1)
=-1
Therefore ¢ (i) = ++/—1 = + ;. If in addition ¢ leaves every real number fixed, then for any x +
iy K, we have
o (x+ip)=0x)+¢ @)
=0 @) +d(D)-00)
=xtiy.

Now, if we take ¢, (x +iy)=x + iy and ¢, (x +iy) = x — iy, then it is easy to see that ¢, and
¢, are automorphisms of K such that ¢, (x) = x and ¢, (x) = x for allx € F. Hence G (K| F) = { ¢,
¢,}. Now, let L be the fixed field of G (K'| ), Then

L ={x+iyeK |¢(x+iy)=x+iyv (S G(K|F)}.
Gy (xtiy)=x+iy

= x—iy=x+1iy
= 2iy=0
= y=0.

Thus fixed field of G (K | F) is F.
Ex.3. Let K be extension of the field of rational numbers Q. Show that any automorphism
of K must leave every element of Q fixed.

Sol . Let ¢ be any automorphism of K and let a be any element of Q0. Now we have to show

that ¢ (@) = a. Following cases arise :

Case 1. When a = 0. In this cas ¢ (a) = 0.

Case 2. When a is a positive integer.

Then ¢ (@=¢(1+1+1+. toaterms)
=¢(1)+¢ (1) +.. to a terms
=1+1+..toaterms
=a

=N b (@=a
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Case 3. When a is a negative integer.

Then a =— m, where m is a positive integer. In this case
d(a)=¢ (—m)=¢[(-1)+ (1) +... to m terms]
=¢ (1) + ¢ (-1) +... to m terms

=(=1)+(-1)+... to m terms

=—m=a
= b (@)=a
Case 4. When a is a rational number of the form =, m, n are integers and n # 0.
In this case !
¢ (a) = 4{@}
n

= ¢ (mn)

=¢ (m) ¢ (nh)

= (m) [¢ (]!

=mnl, by case 1, 2 and 3.

m
=—=a
n
Hence f(a)=aforalla € Q.

Self-learning exercise-1

. The splitting field of polynomialx2 +1 e R [x] is the field R of real numbers. [True | False]

. If F'is a field, then polynomial x2 + x +1 € F [x] has a splitting field. [True | False]

. The field R of real numbers is a normal extension of the field Q of rational numbers. [True |
False]

. Every non-constant polynomial over a field of characteristic zero is separable. [True | False]

. A polynomial f'(x) is inseparable if and only if f (x) and f ’(x) are relative prime. [True | False]

. Every field of characteristic zero is perfect. [True | False]

8.9

Summary

In this unit we have discussed about splitting fields, normal extension, separable and inseparable

extensions, automorphism of extension and some important results on these tropics.
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8.10

Answer to self-learning exercise

Self-learning exercise —1

1. False 2. True 3. False

4. True 5. False 6. Truc

8.11

Exercises

. If Fis a field, then prove that every polynomial f(x) € F'[x] has a splitting field.
. Let F'be a field such that characteristic of /' be p > 0. Also let f(x) = x’— a be a polynomial in

F [x] with no root in F. Then prove that f'(x) is an inseparable polynomial.

. Show that a polynomial f'(x) € F [x] is separable if and only if it is relative prime to its deriva-

tive.

Show that the splitting field of a polynomial x¥’—1 € Q [x], p prime, is of degree p —1 over Q.
Let K = Q(\/E) ={a+b\/§
G(K|F).

a,beQ} and F = Q. Find G (K | F) and fixed field of

oo
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UNIT 9 : Galois Theory

Structure of the Unit

9.0  Objectives

9.1 Introduction

9.2  Galois extension and Galois group

9.3 Fundamental theorem of Galois theory
9.4  Extensions by radicals and solvability
9.5 Summary

9.6  Answer to self-learning exercises

9.7 Exercises

9.0  Objectives

After reading this unit you will be able to under stand about Galois extension and Galois group.
Fundamental theorem of Galois group, Extensions by radicals and solvability of polynomial equations.
You will be also able to know that the general polynomial equation of degree n is not solvable by radi-

cals forn> 5.

9.1 Introduction

In this unit we shall take up the study of Galois theory and prove Fundamental theorem of Galois
theory. We will also prove some important results related to Galois theory.

9.2  Galois extension and Galois group

Let K be a finite ficld extension of a field . Then K is said to be a Galois extension of F, if it
is both normal and separable, that is, if K is a splitting field of some separable polynomial p (x) € F'[x].
Theorem 1. Let K be a Galois extension of a field F. Then the set of all F-automorphisms
of K is a group with respect to operation composition of functions.
Proof. Let G (K| F) be a collection of all F-automorphisms of K. Now we have to show that
G (K | F) 1s a group for composition of automorphisms. Let ¢ and t be any two elements of G (K | F).
Then o tis also an automorphism of K onto K. Now for any a € F, we have
(c D(@=0c(t(a)
=0 (a),sincet(a)=a vy acF
=gqg,sincec(a)=avy aeF
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= (c1)(@avyacF
and hence 6 1 € G (K | F), which shows that composition of F-automorphisms is a binary composition
in G (K | F). Since the identity automorphism /- of K leaves every element of F fixed, so /. € G (K|
F) is the identity element in G (K | F) because for every ¢ a € F,,, we have

cly=c=Iy0c.
Let & be any element of G (K | F). Then 6 ~! is an automorphism of K onto K such that
ool =g = olo.

Now for any a € F, we have 6! (a) = a, since 6 (¢) =a v a € F. This shows that
o' € G(K | F) and hence every element of G (K | F) is invertible.

We know that composition of functions is associative, so for any 6, 1, ¢ € G (K | F) and for
any a € F, we have

o (t9) (@) =0 (1 (¢ ()
=o(t(a)),sincedp (@)a yaeF
=o(a),sincet(a)=a yaeklF
=a,sincec(a)=avyackF

and

{(c1) ¢}(@)=(c7) ¢ (a)
=(c1)a
=o (t(a)
=0o(a)
=qa and hence 6 (1 ¢) = (6 1) ¢,

which shows that composition in G (K | F) is associative. Hence G (K | F) is a group

Note that if K is a Galois extension of a field F, then the group G (K| F) of all F~automorphisms
of K is called the Galois group of K over F.

Theorem 2. Let K be a Galois extension of a field F. Then an element of K which remains
invariant for each member of the Galois group G (K | F) is necessarily a member of F.

Proof. Since K is a Galois extension of field £, so K 1s finite extension of F which is both normal
and separable. Let o be an arbitrary element of K which remains invariant under every member
G(K|F),iec(a)=a vy oce G(K|F). Now we have to show that o € F. Since K is a finite
normal extension of F, so K is the splitting field of some polynomial / (x) € F' [x].

Again, since each finite extension is algebraic, therefore K is algebraic over F and a € K is
algebraic over F. Let p (x) be the minimal polynomial for o over F. As K is normal over F and one root
a of p (x) in K, therefore each root of p (x) belongs to K, i.e., K is the splitting field of p (x) also. Then
K is the splitting field of f (x) p (x) € F [x].
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Let, if possible deg p (x) > 2. Since K is a separable over F and all the roots of p (x) are
distinct in K, so there exists an element 3 € K with 3 # a such that 3 is a root of p (x) over F.

Thus o and B are two distinct roots of an irreducible polynomial p (x) € F'[x], so there exists
an F-isomorphism G : F' (o) = F (B) such that 6 (o) = (B). & can be extended to an F-automorphism
5:K > K, ie., there exists G G(K | F)with 5(at) =B # a so that we arive to a contradiction. Hence
the deg p(x) 22, accordingly deg p (x) =1, i.e., p (x) = x— oo where o € F because p (x) € F [x]
and p (o) = 0.

Theorem 3. The order of the Galois group G (K | F) is equal to the degree of K over
Fie, o[GK|F)]=[K:F].

Proof. Since K is a finite separable extension of F, therefore it is a simple extension of 7. There-
fore there exists an element a € K such that

K=F(a).
Let f'(x) be a minimal polynomial for @ over F' and let deg f (x) = n. Then, we have
[K: F]=n.

As K is reparable over F), the roots of f (x) are all simple. Leta = a|, a,,..., a, be n distinct
root of /(x) in K. Then K= F'(a,) for eachi =1, 2,..., n.

Now for each a;, there exists a F-automorphism ¢, of K such that ¢; (a,) = a; and since a;
generates K over F, so each ¢; is unique. Form Theorem 16 of Unit-8 we know that if ¢ is a F-auto-
morphism of K and a is a root of /(x) in K, then ¢ (a) is also a root of /(x) in K, and hence ¢ (a) = q,
for some i and consequently ¢; = ¢. Hence the Galois group consists of ¢, ¢,,..., ¢,,. Therefore

o[G(K|F]=I[K:F].

Theorem 4. (Artin) Let G be a finite group of automorphisms of a field K. Let F be the

fixed field of G, i.e.
F={xeK|bd () =x,forall p € G}.

Then K is a Galois extension of F with G (K | F) = G.

Proof. Let 0 (G) = n and let ¢, ¢,....,9,, be the distinct elements of G. If a € K, let o, a.,,...,
a,,, be the distinct elements among ¢, (a), ¢, (a),..., ¢, (a) (m < n). If 6 € G, then 5 (), 6 (0),...,
c (a,,), are distinct. Moveover 6 ¢,, G 9,,..., ¢ ¢, are all the elements of G. Hence (), 6 (), ...,

m

G (a,,) is a permutation of o, a,,..., o, Consider /' (x) € K [x] defined by f(x) = H(x —Q; ) Then
i=1

“[T(x-o)=f(x) forall 6 €G.
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Hence f (x) € F [x]. Since all the roots of f (x) lie in K are distinct, so f'(x) € F [x] is a
separable polynomial. Moreover, f (x) € F [x] is irreducible for if g (x) is the minimal polynomial of a
over F, then g (¢, (a)) = ¢, (g (@)) =0, i.e. g (a;) = 0 for all i. This implies f (x) divides g (x) and since
g (x) is irreducible, f'(x) = g (x).

Since f'(a) =0, a is algebraic and separable over F and [F (a) : F] <n =0 (G). Hence K is a
separable extension of F.

To show that K is a finite extension of F, let N be a finite extension of /' such that N = K. Since
N is separable extension of /', N = F (a) for some o € N. Thus [N : F]=[F (o) : F] <n. Choose N is
a finite extension of F' such that [NV : F] has maximum value. We claim that N = K, showing that K is
finite extension of F. Write N = F' (o). Let B € K, and M be the subfield of K generated by N and f3.
Then M is a finite extension of /" and . Then M is a finite extension of F and, by maximality, [M : F] =
[N:F].But[M:F|=[M:N][N:F]and hence [M: N]=1, i.e. M = N. This shows that § € N, for
any B € K, i.e. K< N and hence K= N.

It remains to show that K is normal extension of F. Since K is a separable extension of F, so K

= f(a) for some a € K. Since ¢y, d,,..., ¢, are distinct, ¢, (o), ¢, (a),..., ¢, (o) are distinct. Hence

¢(x) =T 1(x-4,()) e F[x]

i=1
is of degree n and it is the minimum polynomial of o, (o) = a (o, = identity) over F. Thus K is

the splitting field of g (x) € F [x] showing that K is a normal extension of F such that [K : F| = n.

Clearly G — G (K | F). By thecorem 3, G (K | F) has order [K : F]=n=0(G). Hence G=G (K | F).

Theorem 5. Let K be a Galois extension of a field F and let characteristic of F be zero.
Then the fixed field under the Galois group G (K | F) is F itself.

Proof. Since K is a Galois extension of field F, so K is finite, normal and separable extension of
field F. Again, since every finite separable extension is a simple extension of 7 and hence K = F'(a) for
some a € K.

Let £ (x) € F [x] be a minimal polynomial of a and let £ be the splitting field of f (x). Since K is
a normal extension of F, so the splitting field of every polynomial over F is contained in K. Thus we
have ECcK (D)

Also a € E, because E being the splitting field of f'(x) for which f'(a) = 0. Now E is a splitting
field containing F' and a and K = F'(a) is the smallest field containing 7" and a, so

KcE (2)

Form (1) and (2) we get E = K. This shows that K is the splitting field of the minimal polynomial
for a over F. Let deg f (x) = m. Then [K : F] = m. Hence by theorem 3, o [G (K | F)] = m. Now, if
K K| P denotes the fixed field under G (K | F), then by theorem 4, we have

o[K: K¢ pl=0lGK|F)]=m=[K:F].

Hence, K ; K|F)~ F.
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9.3 Fundamental theorem of Galois theory

Theorem 6. Let K be a Galois extension of a field F. Then there exists a one-to-one
correspondence between the set of all subfields of K containing F and the set of all subgroups of
G (K | F). Further, if E is any subfield of K which contains F, then

() [K:E]=0[G(K|E)]and [E : F]=index of G(K | E)in G (K| F),

(i) E is normal extension of F if and only if G (K | E) is a normal subgroup of G (K | F),

(iii) If E is a normal extension of F, then G (E|F) =G (K| F)| G (K | E).

Proof. Let ¢ be a any clement of G (K | £), where L' is any subficld of K containing /. Then
the ¢ leaves every element of £ fixed. Since '  E, so ¢ leaves every element of F' fixed and hence
e GK|F). Thus G(K|E)c G (K|F).

Since both G (K| F) and G (K | E) are subgroups of the groups Aut (K) of all automorphisms
of Kand G (K| E) < G (K| F), it follows that G (K | E) is a subgroup of G (K | F) .

Let H, be the set of all subfields of K containing /" and H, be the set of all subgroups of
G (K | F). Consider a mapping

v : H| — H, defined by
y(E)=G(K|E)foral E € S,.
v is onto, for, it i/ € H,, then H is a subgroup of G (K| F) and let
Ky={xeK|d(x)=xforall¢ € H}

be the fixed field of H. Then K, is a subfield of K. Now ¢ € H implies ¢ € G (K | F), and
hence ¢ (o) = a for all o € F, therefore, F' < K;; and thus K, is a subfield of K containing /" and
hence

v (K;)=G (K| Kp)
= H, by theorem 4.

For one-one, let £ and E, be any two elements of /; such that

v (E) =W (E)

= GK|E)=G(K|E,)
= the fixed field of G (K| E,) = the fixed field of G (K| E,)
or Kot 1)) = Ratr | 2)

which implies £, = E,, since K is a Galois extension of F"and therefore K is also a Galois extension of
E| as well as E),. So by theorem 5, the fixed fields under the Galois groups G (K| E}) and G (K | E,)
are respectively £ and E,. Thus
V(ED=VY(EY=E —E,
and hence y is one-one.
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(i) Since K is a normal extension of ' and E is a subfield of K suchthat Fc Fc K, so K'is a

normal extension of £. Therefore, by Theorem 3, we have
[K:F]l=0(G(K|F))and [K: E]=0 (G (K| E)).
Moreover, [K:F|=[K:E][E:F]

- 0 (G (K| F)) =0 (G(K|E))[E : F]
_o(G(K|F)) | |
= [E:F]_O(G(—K|E))=1ndex0fG(K|E)1nG(K|F).

(ii) First suppose that £ is a normal extension of F, then we shall show that G (K | E) is
a normal subgroup of G (K | F) . Foranyc € G (K | F) and ¢y € G (K | E) we actually show that
clyoeGK|E).
Let o be an arbitrary element of £. Since £ is a normal extension of £, so that the splitting field
of the minimal polynomial of o over F'is contained in £ and consequently, every conjugate of o over F
is again in E. Since o (o) is conjugate of a for any 6 € G (K | F), then o (o) € E. Thus for any
automorphism y € G (K| E), v (o (o) = (o).
Now (clyo)(@=c"(y(c(@)=0c(c()=a
= clyoceGKI|F)vyoeGK|Fandy € GK|E).
Hence G (K | E) is a normal subgroup of G (K | F).
Conversely suppose that G (K | E) is a normal subgroup of G (K | F), then we shall show that
E is a normal extension of . Let o be an arbitrary element of £ and let p (x) be the minimal polynomial
of a over F. Let L be the splitting field of p (x). Since K is a normal extension of F'so that L — K. If B is
any root of p (x) in L, then B is conjugate of a over F. Therefore there exists an F-automorphism o of
K such that & (o) = 3.
Now G (K | E) is a normal subgroup of G (K | F), thenforc € G (K |F)and y € G (K | E),
we have
clyoeGK|E)=(clyo)(a)=a
= @'y (c(@) =0
= @'y (P)=a, since o(x)=P
= ol (y(P)=a

= vyP)=c(
= vP)=p
= y ek

Thus B € L = P € E and hence L < E. This shows that every splitting field of the minimal
polynomial for o € E over F is contained in £ and hence £ is a normal extension of F.
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(iii) Let E be a normal extension of F. There E = F (o) for some o € E.
Let o be any element of G (K | F).
Let 6’ be the restriction of 6 to £. Then
c’(a)=c(a)foralla € E.
Since o leaves every element of F fixed, therefore ¢’ also leaves every element of F fixed and

hence 6" € G (K | F). Consider a mapping
¢:G(K|F)— G(E|F)defined by
¢ (c)=c’forallc € G(E|F).
Now, for any two 6, 6, € G (K| F), we have
¢(c,0,)=(c/00) L (1)
Since for all ¢ € E, we have
(01 9,) (@ = (0, 5, (@)
=5, (0, (@)
=5, (05 (@)
=5/ (o) (@)
= (o) 0,) (@)
= (0,0,)’ =0/, L (2)
From (1) and (2) we get
¢(0;0y)=0) o)
=0 () ¢ (5y)
= ¢ is a homomorphism.
Let y be any element of G (£ | F), then y (o) is conjugate of o over F, so there exists an F-
automorphism o of K such that ¢ (o) = v (o). Now o and y both are identity mapping on F and £ = F'

(o), so
cl@=wy(a) v aecE=F(a)
v =0c’'= ¢ (o). Hence ¢ is onto.
Further ker(c)={0€G(K|F)‘(I)(G):]}

{oeG(K|F) \c 1}

{G eG(

)=I(a)Va e E}

GEGK|F ‘c aVaeE}

G(K |F).
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Hence by the Fundamental Theorem of Group Homomorphism, we get
GE[F)=G(K|F)|G(K|E).
Note that if K is a finite extension of a field F, then two elements o and 3 of K are said to be
conjugate over F if they have the same minimal polynomial over F.

Ex.1. Show that the Galois group of x*+ 1 e Q[x] is the Klein Jfour-group.
in

Sol. Let £ = Q (o), where a = e4. Since the roots of x* + 1 are o, o

oo and o/, E is
the splitting field of x* + 1 over Q. Again, since x* + 1 is irreducible over O, [E : Q] = 4. Also the
characteristic of Q is zero, so E is a normal separable extension of Q. Thus o( G (E'| Q)) = [E : Q] = 4.
Ifoe GE|Q)and B € E, then B=ay+a; o+ a, o +a; o’ and 6 (B) = a, + a; o () +a, o (0?)
tayo (a?). Hence o is determined by its effect on a.. Since o is a root of x* + 1 therefore 6 (o) is also
aroot ofx* + 1. Again, since there are four elements in G (E | Q), it follows that G (E | Q) = {c), 03,
G5, G,}, Where 6 (o) = o, 65 () = o, o5 () = o’ and o7 () = a’. Note that o3 (03 (@) = o =aq,

=@, so 5§ = o, = identity, 0§ = o, and 0% = 0.

o5 (05 (@) = a?® = a and o, (05 () = o
Therefore, G (E | Q) is the Klein four-group, since every element except the identity has order two.

Ex.2. Let F be a field of characteristic # 2. Let x’>—a € F [x] be an irreducible polynomial
over F. Then its Galois group is of order 2.

Sol. Clearly, if o is one root of 12 — a, then — a. is the other root. So . # — o because charac-
teristic of F # 2. Thus, x2— a is separable over F. The splitting field F (ot) of x2 — a over F is a finite,
separable, and normal extension of degree 2 over F. Thus, o (G (F (o) | F)) =2.

Ex.3. The group G (O (), Q), where o° = 1 and o. # 1, is isomorphic to the cyclic group
of order 4.

Sol. o’ =1= o>~1=0

= (@a-D)(l+a+a2+a?+a*)=0
= l+a+o?2+od+o*=0,since o # 1.
Thus o is a root of a polynomial £ (x) = 1 + x +x% + x> + x* € O [x]. Since f (x) is irreducible

2 3 44

over 0, so [0 () : O] =4. Again, since all the roots of polynomial x° -1 € Q [x] are 1, o, 02, &3, a?,

o, s0 O (o) is the splitting field of x> —1 € O [x] and hence a normal extension of Q. Thus,
o[G0 D]=[Q(): 0] =4
This shows that there are four Q-automorphisms of Q (o). Since {1, o, a%, a3} is the basis of
O (o) over Q, then any element of O (o) is
ap+a,ot azoc2 + a3(x3, a; e Q.
Let G(Q (o) | Q) = { 6}, Gy, O3, 64}. The four O-automorphism of O (o) are as follows :
o, (ag+ a0+ azoc2 + a3a3) =agt+taot azoc2 + a3a3,
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2 = 2 4

=a,+ a,0* + a,at + a0,
o3 (ag+ a0+ azoc2 + a3a3) =ag+ a1a3 + a2a6 + a3a9
=a + a1a3 Taat a3a4,
o, (ay + a0+ a,0? + a;0%) = ay + a0t + a0 + azal?
=a,+t a1a4 + a2a3 + a3a2.
Clearly {o,, 5,, 03, ,} forms a cyclic group of order 4 generated by o, and c;. Hence the

result.

9.4  Extensions by radicals and solvability

We know that there are formulas, giving the roots of a quadratic, cubic and quartic polynomials,
which can be written in terms of radicals of rational expressions of the coefficients. However, there is no
such “quintic formula” i.e. there is no general solution of a fifth-degree equation by radicals.

An extension field £ of a field F'is an extension by radicals or radical extension of 7, if there
are elements a, a.,,..., . € E and positive integers n,, n,,..., n, such that £ = F (o, ,,..., o),
afleFand o} e F (0, Oyyeney ot ), for 1 <i <.

A polynomial p (x) € F'[x] is solvable by radicals over F if the splitting field of p (x) over F/
is a radical extension of F. Thus, if £ is the splitting field of p (x) € F [x] over F, then p (x) is solvable
by radicals over F, if there exists a finite chain of extensions

FcF/ =F(a)clt,=F(u)c,..,.cF.=F,_ (o),

Where o fl eF, a 32 € Fy,...,a, €F, ,suchthat Fc ECF, i.e. theroots of p (x) all
lie in extension field 7.

Theorem 7. Let n be a positive integer, and let F be a field containing all the n'* roots of
unity. Let K be the splitting field of X'* — a € F [x] over F. Then K = F (o), where . is any root of
x"—a, and Galois group G (K | F) is abelian.

27 . [ 2@
Proof. If W= CO0S (7) +sm [7) and o is a root of ¥ — a, then o, ow,...,aw" ! are all

distinct root of /' (x) = X — a. Thus, the splitting field K of /' (x) over F' is K = F (o), since it is the
smallest field containing F" and a. Let o, and o, be any two elements of G (K | F), then 6,, 6, are
automorphisms of K = F' (a) leaving every element of I fixed. Since o € K is a root of x” — a, so &,
(o) and o, () are also roots of x” — a. Therefore, for some i and j, 6, (1) = w and o, () =a w.,
Now (0,0, (@) =5, (5, ()

=0 (o w/)

=0, (o) oy (w/), since o is an automorphism

=awiw/, since o; € F¥
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Similarly we can show that
(0,6) (@) =aw™
Hence 6, 6, =0, 6, v G, 0, € G(K|F). This shows that G (K| F) is abelian.
Theorem 8. Let F be a field of characteristic zero containing all n' roots of unity. If f (x)
€ F [x] is solvable by radicals over F, then the Galois group of f (x) over F is solvable.
Proof. Let f(x) € F [x] be solvable by radicals over F, and let K be the splitting field of /' (x)
over F. Then there exists a finite chain of extensions
FcF/=F(a)clt,=F(ywc.cF.=F _(a0) .. (1)
where afl e F,agz €F,..,ar eF._ suchthat Fc KcC F,;a,,a,,,a, € Kandn, n,,..,n, € N.
Now we have to show that the Galois group G (K | F) is solvable.
Since F has all n” roots of unity, so F' . may be assumed normal extension of F. Since F. is a
normal extension of £, so £, is also a normal extension of each intermediate field F; and further, each F;
is a normal extension of F;_,. Hence by the Fundamental Theorem of Galois Theory we have
GF,|F)<GF.|F) (2)
and G(F,|F ) =G(F, |F.)|6(F|F) .. 3)
Now consider the chain of subgroups
G(F,|F)>G(F,|F)>G(F, |F,)>..5..2G(F, |F,)>{e}
where each subgroup in above chain is a normal subgroup of the preceding one by (2).

By the Theorem 7, each G (F;| F_,) is an abelian group. So by (3) each quotient group
G (F,, | E._l) ‘ G (F,, | Fi) of chain (4) is abelian, being an isomorphic image of an abelian group. Thus
(4) is a solvable series for group G (F,. | F) and hence G (F,. | F) is solvable.

Since F'— K c F,, and K is splitting field of /'(x) over F, so K is a normal extension of /. By

Fundamental Theorem of Galois Theory we have
G(F,|K) < G(F,|F)
and G(K|F =G(F |F)|G(F k) . (5)
Now G(Fr | F ) ‘ G(Fr | K ) is solvable being quotient group of solvable group G (F), | F) and

hence by (5) the Galois group G (K | F) is solvable being isomorphic to a solvable group.

Note that the converse of above theorem is also true.

9.5 Insolvability of the quintic

At first we introduce some definitions and show that the general polynomial of degree 1 has S,
as Galois group.
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Let F'be a field, then F'[x|, x,,...,x, ] is an integral domain in 7 indeterminates x;, x,,...,X, OvVer
F. The associated field of quotients (fractions) is called the field of rational functions in x|, x,,...,.x,
over ' and it is denoted by F (x|, X,,...,x,). Let S, be the symmetric group of degree n acting on the
set {1, 2,...,n}. For each ¢ € §, we can define an automorphism ¢’ of F (x;, x,,...,x,) as follows.
Consider any rational function f'(x,, x5....,x,,). Then

S’ (f (X, Xp5e0X,, ) =f(xc(1), X2 xc(n)).

Thus 6 — ¢’ is a monomorphism of S, into the group of all F~automorphisms of F (x|, X,,...,X, ).
So we can treat S, as a group of F-automorphisms of I (x|, x,,...,x,). Let S be the fixed field under
S,- Each member of S is called a symmetric function.

In other words we can say that a rational function f (x;, x,.,...,x, ) is called symmetric function
if it is not changed by any permutation of the variables , i.e.

S Xg000X,) =f(x6(1), X2y Xo(n) foreveryc e S,.
The elementary symmetric functions in x,, x,,...,x, are defined by

n
i—1

Uy = X Xy T X Xg Tt Xy X3 T X5 Xy Tt X, | X,

a, =X Xy . X,

For example when n = 3, then a; = x| + x5 + X3, @y = X X, t X X3+ X, X3, a3 =X X5 X3 ;
when n =4, then a; = x; +x, + X3 T Xy, @y =X Xy + X X3+ X Xy + Xy X3 + X5 X4 + X3 Xy, @3 =X,
Xy X3 T Xy X3 X4+ X Xy X, T xp X3 x4 and @y = X| Xy X3 Xy

If x,, x,,..., x,, be n indeterminates over any field /' and a,, a,,..., a, be the elementary sym-

metric functions in xy, x,,..., X, then the polynomial

f ) =1;[(x—xi)

=x" — a, X+ a, X2 -

ay X3 +.+ (-1)" a,, is called n™ genetic
polynomial.

Note that if /' (x,, x,,..., X,) is a polynomial in x;, x,,..., x,, which is symmetric, then it is easy
to see that f'is actually a polynomial in a,, a,,..., a,. For example, the polynomial x13 + xg + x33 is sym-

metric inx, X,, X3 and it can be written as al3 —3a,a, +3a;.
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Theorem 10. The general polynomial equation of degree n is not solvable by radicals for
n=35.
Proof. Let F' be a field and a,, a,,..., a, be the elementary symmetric functions in the n

indeterminates x;, X,,..., x,. Let

S ) =H(x_xi)
i=1

= (x—x) (x=x5)... (x—x,)
=x" —ax" " +a " (1) a,
be the general polynomial of degree n, whose roots are the indeterminate x|, x,,..., x,. Note
that /(x) has coefficients in /' (ay, a,...., a,), and factors over F' (x|, X,,..., X,,).
Let K = F (x, x,,..., X)) and S = F'(a,, a,,..., a,)). Clearly K is the splitting field of /'(x) over
F. Since the x; are indeterminate over F, each ¢ € S, induces an automorphism ¢’ of K defined by c”

n

(a) =aforalla € Fando’(x,) = X Again, since H(x —x;) = H(x ~Xo(i) )’ we have 67 (a,) =
i=1

i=1
a, for each i. So ¢’ leaves § fixed. Hence 6" € G (K| ).

Since o(S, ) =|n, so

olG(k|8)2le L (1)
Again, since the splitting field of a polynomial of degree n over S has degree atmost | over S,
so we have o(G(K |S))S|ﬁ ..... )

From (1) and (2) we get 0 (G (K | S )) =|n, and the automorphism ¢’ comparise the full Galois
group G (K| S). Therefore G (K|S)=S,.

But S, is not solvable for n > 5, so G (K| S) is not solvable for n > 5. Hence by Theorem 8, /
(x) is not solvable by radicals over S, when n > 5.

Note that if / (x) € O [x] be a monic irreducible polynomial over Q of degree p, where p is
prime and if /'(x) has exactly two non-real roots in C, then the Galois group of /'(x) is isomorphic to Sp.

Self-learning exercise-1

1. If K is a finite field extension of a field £, then K is a Galois extension of F, if :
(a) K is normal extension
(b) K is separable extension

(c) K is both normal and separable extension

(d) Note of these
2. If K is an extension of a field £, then the identity automorphism /- on a field K leaves every
element of £ fixed. [T/F]
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3. The order of the Galois group G (K | F) is not equal to the degree of K over F. [T/F]

4. The field O (%/5 ) is not a radical extension of the field O of rational numbers. [T/F]

5. The polynomial x° — 8 x + 6 is not solvable by radical over O. [T/F]

6. O (% 3 ) is a radical extension of Q. [T/F]
9.5 Summary

I this unit we have discussed about Galois extension and Galois group, Fundamental theorem of

Galois theory, extensions by radicals and solvability of the quintic and important results on these topics.

9.6

Answers to self learning exercises

Self learning exercise-1

1. (¢) 2. True 3. False 4. False
5. True 6. True

9.7

Exercises

2=

Verify the Fundamental Theorem of Galois Theory for the splitting field x*—2 e O [x].
Show that a finite field is a Galois extension of any of its subfields.

Let K be the splitting field of £ (x) =x*~10 x2 + 1 over Q. Then find G (K | Q).

Show that the following polynomials :

() 3x°—15x+5 € O [«]

(ii))x> —x—1 € Q [x] are not solvable by radicals.

g
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UNIT 10 : Matrices of Linear Maps

Structure of the Unit

10.0  Objectives

10.1  Introduction

10.2  Matrices of linear maps

10.3  Matrices of composite maps

10.4  Matrices of dual maps

10.5  Summary

10.6  Answers to self-learning exercises

10.7 Exercises

10.0 Objectives

This unit provides a general overview of linear transformation and matrices. The objective of this
unit is to establish a relation between linear transformations and matrices. It is possible to represent a
linear transformations by a matrix and conversely by taking a particular basis of a vector space V" and

using the action of a linear transformation from Jto another vector space " on this basis.

10.1 Introduction

This unit introduces matrix of a linear map from a vector space V' to a vector space V"and linear
maps corresponding to matrices defined over a field /. This idea is then used to translate properties of
linear maps to the corresponding properties of matrices. In the case of finite dimensional vector spaces,
calculations with linear transformations are mush easy, because if the images of a linear transformation
are known for any basis of vector space V' then the images of all vectors in V" can be calculated. We use
this property in the introduction of matrices to describe linear maps. In this unit we shall study matrices

of linear maps, composite maps, and of dual maps.

10.2 Matrix of a linear map

Let Vand V"be any two finite dimensional vector spaces over a field /, and B = {b;, b,,...,0,},

B'= {bll, by, --~,bm'} be bases (ordered basis) of ¥ and V'’ respectively. Also let ¢ : ¥ — V' be a linear

transformation (linear map).

Since bj eV = t(bj) € V7, so that there exist scalars a; € F
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m
such that t (b)) =Y a; b, j=1,2,.n
i=1

Then, we have t1(b) =ay, b' +ay b, +..+a,, b,

’ ! ’
t(bz) =a]2 b] +a22 bz +...+am2 bm’
! !

t(bn) =a, bll + Ay b2, + "'+amn bm'7
The matrix of linear map z, in denoted by M, (t) , with respect to the basis B of V" and B’
of V".

The matrix of the coefficients is

ar dp a; a1y
dy  Ap 4 ; Ay
Mg (t)=
(T ) aj; iy
(Al Gy e Gy e gy

Now, if B* = {f}, fyseref,}» B = {fl', fz',...,fm'} be the basis dual to B and B’ respectively,

then foralli=1, 2,....m; j=1,2,...,n, we have

-a[gr

r=l1

= FZ’:‘% 1 (br')

Zgari O
—a,
:[MB, (z)] ;
Thus (My@)], =ay=F[e(b)]. =1 20ms j=1,200m



and is called matrix of the linear map ¢. This matrix depends on the map ¢ as well as on the particular
basis used. Since each vector v of a vector space V over a field /' is a linear map V': F'— V, the entries
of the matrix of a vector v relative to some basis B = {b,, b,,..., b, } of V, and the multiplicative identity

1 € F, as the basis for vector space F, in given by
(M), =f(vD), i=1,2,.m
- f(v.1)
=fi(v)
— ;" coordinate of v relative to basis B of V,

where, B" = {f1s./5>--».f,,} in the basis dual to B.

h(v)

Hence, M((v) = fz(v)

),

This matrix is known as coordinate matrix of vector v relative to basis B.
Similarly for each v € V, ¢ (v) € V"and M (¢ (v)) is coordinate matrix of 7 (v), relative to basis
B’and is given by

UQ))
Moy =| 2 ()

S (1))

where B = {ff, fz,,-.me'} is basis dual to B'.

Given that 4 = [al.j] over Fin which each entry a, is a transformation from F to F, each basis
vector b is a linear transformation form £'to V. Thus the composite b, a,.. f; of the linear transforma-
tions

fo: V—>F,
a.:F—F,
b F—>V,
is a transformation, from V'to V'’ forallr=1, 2,..m and s =1, 2,....n.

Since the sum of a finite number of linear transformation is a linear transformation and so the
suim,
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m n

’
Z z b, a,, [, is a linear transformation from ¥ to ¥’ We denote this sum by ¢, then we

r=1 s=1

have

(MO, =1 (1)

(i 3 a, fsjw,o}

r=1 r=1

<

=f; fbr’ [Za f (bj)ﬂ
| r=I1 s=1

=f 3 b, (i g O, ﬂ
| r=l1 s=1

m
= Z6ir a,
r=1
=a;, 1=1,2,...m; j=1,2,..,n
Hence M} (1)=4.
Thus each m x n matrix 4 = [aij] over field /' with basis B = {b|, b,,...b,} and B’ = {b,’, b,’,
. b, "} of Vand V" respectively, defines a linear transformation z : V' — V” given by
m n ,
t= Zzbr brs f:v’
r=l1 s=l
whose matrix relative to bases B and B’ is matrix A itself. This linear transformation is denoted by
M ~1(4) and is known as map of matrix 4.
Theorem 1. Let V be finite dimensional vector space over a field F with B = {b,, b,,...,
b} as the basis of V, then the matrix of the identity map on Vin given by Mj (I1,)=1I , identity

matrix of order n.

Proof : Let B = {1525+ 1,,} be basis dual to B, then
[Mg (Iv)] . :fi(lv(bj)) =f; (bj)

j

25,.]-, i,j=1,2,..,n

Thus M} (1,)=

n
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Theorem 2. Let V and V' be finite dimensional vector spaces over a field F and B = {b,,
by,..., b,} and B' = {b,', b,',..., b,'} be bases of Vand V'’ respectively, then
(i) The matrix of zero map () on Vis given by
ME (6) =0, . and
(if) the matrix of zero map (). — /' is given by

A~

Mg' (0) :0m><n

Proof : (i) [Mg(())L = £(0))=£(0)=0

Thus My (6) =0, ,, where B ={f, foseer f,,} is the basis dual to B.
(i) (ME(0)] =7 (0p)=7 (0)=0
Thus M (0) 0,., where B” {ff, £ e fm'} is the basis dual to B'.

Ex.1. Lett : R — R2 be a linear transformation defined by
t(a, b)=Qa—3b,a+b), v (a b) € R2
Then find the matrix of t relative to the basis B= {(1, 0), (0, 1)}, B' = {(2, 3), (1, 2)}.
Sol. Since t(a, b)=(2a—3b,a+Db), v (a b) € R?, so that
t(1,00=(2,1)=2(1,0)+1(0, 1)
t(0,1)=(-3,1)=(-3)(1,0)+1(0, 1)

Thus M (t) = Transpose of the coefficient matrix
_{ 2 T _{2 —3}
-3 1 1 1
Similarly (2, 3)=(5,5)
—25(1,2) + (— 15) (2, 3)
1(1,2)=(-4,3)

=18(1,2) + (- 11) (2, 3)

, 25 18
Mg'(t):[—ls —11]

Ex.2. Lett : R3 — R3 be a linear transformation such that,
t(a,b,c)=QBa+c,—2a+b,—a+2b+4c).

So that,

what is the matrix of t in the ordered basis {0, a,,, o3}, where
=(L,0,D),0,=(-1,2,1),a3=(2, 1, 1).
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Sol. Given that 7 : R3 —> R3 is a linear transformation such that

t(a,b,c)=CBa+c,-2a+b,—a+2b+4c)y .. (D)
and, B = {a.}, 0y, a3} is an ordered basis of R3.
Now, t(op)=t(1,0,1)=4,-2,3) .. (2a)
toy)=t(-1,2,1)=(-2,49 .. (2b)
and, t(o)=t(2,1,-)=(7,-3,9 .. (20)
Let xy,z)=Aoytpo,+tve, L 3)
Then X y,2=A(1,0,1)+u(-1,2,1)+v (2,1, 1)
=(A—p+2v,2pt+tuv,A+ptv)

so that, A—pu+2v=x,

2utvov=y,

Atutovo=z

Solving for A, p, v, we get

A =%(—x—3y+52),

u =i(—x+y+z),

1
v=—(xX+y—z).
S(x+y=2)
Putting these in equation (3), we get
% * a3
(x,y,z)=T(—x—3y+52)+7(—x+y+z)+T(2x+2y—22). ..... 4)
Putting x =4, y =-2, z=3 in equation (4), and using 2 (a), we get
o) =3 -2,3) = Loy 2oy~ 5
@)= -23) = a-—m -y (5)
Putting x =2, y=4, z=9 in (4) and using equation 2 (), we get
35 15 7
te)=(2,49="patrom-ca (6)
Putting x =7, y = -3, z =4 in equation (4) and using equation 2 (c), we get
11 3 0
f(0~3)=(7,—3,4)—?0‘1_50‘2+ as L (7)
Hence
(1735 1]
4 4 2
3 15 3
M5 =l-— — —-=
5 (1) 4 4 2
LA
L 2 2 i
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10.3 Matrices of composite map

Theorem 3. Let V, W, U be vector spaces over the same field F. Let

{VJ}’;:] ’ {Wi }lnil

and {ur}le be the bases of V, W and U respectively. If t : V— W, s : W — U are linear transfor-

mations, and A and B are the matrix relative to t and s respectively. Then the matrix relative to
sotis B A.

m
Proof : Let t (vj) = 21: a; w,
=
k
and s (w) => b, u,, for a, b,; € F.
r=1
Now,
(sor) (vj) =5 [t (v . )}
m
=5 a; W
i=1
m
= Z aij S (Wl)
i=1
m k
=2 ay| 2 b,
i=1 r=1
k m
= z Zb i ay u,
r=1 \i=l
k
= Z Cpj Uy,
r=l1
m
where €y = z b, a; is the (7, j)’h entry of matrix BA.
i=1
Hence, M (sot)=BA

=M (s) M (2).
Theorem 4. A linear transformation t : V. — V is invertible iff matrix of t relative to
some bases B of V is invertible.
Proof : First let £ - ¥ — V be invertible, that is there exists 7 ! : ¥ — V. such that
tot7'=1=t"ot
= Mg(tot_l) =Mg([v)=Mg(t_lot)
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= My (MG (") =1=M ()M} (x)
Hence the matrix of t relative to basis B i.e. M5 (¢) is invertible.

Conversely suppose that M5 (¢) is an invertible matrix so that [M H (t)}_l eM,,, (F)

Thus there exists a linear transformation s : ¥V — V', such that

mb(s) =[mE ()]

> ME(e)ME(s) =1=ME (s) M5 (1)
= Mg (tos) =M (1,)=Mf(sot)
= tos=1,=sot

Hence ¢ is invertible.

Theorem 5. Let V and V' be n and m dimensional vector spaces over a field F. Then for
given bases B and B' of V and V" respectively, the function assigning to each linear transforma-
tiont:V — V' its matrix Mp, (¢) relative to bases B, B’ is an isomorphism between the vector
space Hom (V, V") and the space F ™" of all m xn matrices over F i.e.

Hom (V, V)= F ™",

Proof : Let B={b|, b,,..., b,} and B' = {b,", b,',..., b, '} be the bases of V"and V" respec-
tively and B” = V1S e S s BY = S s f )} be the bases dual to B and B” respectively.

We define a mapping ¢ : Hom (V, V') —> F™*" as follows :

¢ (=M} (), vt e Hom (V, V).
It is clear that ¢ is well defined. We shall show that ¢ is an isomorphism
(i) ¢ is a linear transformation :

Lett),t, € Hom (V, V') and &, pu € F, then & t; + u t, € Hom (V, V"), and
My Gnrun)| = [(g+un)(b)]. =1 2ewm j=1,20n

= /! [x t(b;)+ut (bj)]
=2 ﬁ[tl(bj)wf{(tz(b,))}
=K[Mg'(f1)}U+H[Mg(fz)L
:[kMg'(ﬁ)]ij"’[HMg(tz)L

=[aMB () urME (1)) .

ME(Mty+uty) =M Mp () +uMp (1)
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= d(Af+nty) =xd()+ro(s)
Thus ¢ is a linear transformation.
(i) ¢ is one-one : Let ¢, 1, € Hom (V, V") be such that

M (4) =4=]a; ],

and Mp () =B=[t;],

and o ()=0 (%)

- M B (1) =M (1)

- [Mp(0) ]y =[ME(L)] 5 =1 2my j=1, 2
= £ (6 ®)) =f (6 ®))

= a; = bij

= b/ a;= b/ bij

- ;bi' a; =§b{ b,

= t (b)=1t,(b)

= t,=t, onB

= t,=t, onV  [.. Bisabasis for V]

Thus ¢ is one-one.
(iii) ¢ is onto : For each 4 = (al.j) € F™* " there exists a linear transformationt: V' — V'
such that
o) =Mp(t)=A.
Thus ¢ is onto.
Hence ¢ : Hom (V, V") —» F ™" is an isomorphism and so that
Hom (V, V)= F™x",

10.4 Matrices of dual maps

Theorem 6. Let V and V' be finite dimensional vector spaces over a field F with bases B

and B’ respectively. If t : V — V’be a linear transformation, then

ng (t*) = [Mg (Z)T , where t" is the dual map of t and B* and B'" are the bases dual

to B and B’ respectively.

Proof : Let B={b,, by,...,b,} and B' = {b,", by',..., b, '} be the bases of vector space /" and
V' respectively, and B = VAR ACYSy g N B = 155 [, ) be the bases dual to B and B’
respectively.
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Then, we have

t(b)=>b'a;, ayeF, j=12.,n .. (D
=1
so that |
a) 43 ap
Mg'(t) _| %21 92 o)
Amr Ay 7 Ay

It is given that £ in the dual map of#,so " : V7" — V" such that

£ (f=flot,y freV R L )
and fot=21% . i=12..m .. 3)
=
From (2) and (3), we have
& = 2
j=l
T
=2 /(4 )ﬁ.’ i=1,2,m (4)

Equation (1) and (4) depict the effect on the basis vector in bases B and B’ respectively. From
(1) and (4), we have

}
and My ()]
]

N ME () =[mb(1)] .
Theorem 7. Let V, V' and V" be finite dimensional vector spaces over a field F and let B,
B’ and B be there respectively bases. Then for linear transformations t : V— V'and s : V' —
|44
Mg,, (sot)= Mg; (s) Mgr (¢).
Proof : Let B={b|, b,,..., b,},B'={b/', b)',..., bp'} and B"={p",b,",...,b,"} be the bases

for V, V’and V" respectively, and B* = Y1 S0 B" = o, fz',...,fp,} , B" = o s fon }
be the bases dual to B B" and B"' respectively.
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Also let, ME(s) =p, M} (t)=0 and M}, (sot) = R.
Since P Q and R be m xp, p xn and m xn matrices respectively, so PQ and R of same order

m xn matrices.
Now, we have

p
(PQ); =X (P), (), i=1,2ucsm; j=1,2,...m

r=1

S (sen)][# 6]

r=1

Thus PO =R

Hence
Mg; (s) Mgr (1) = Mg” (Sot)
Self-learning exercise —1

1. True/False statements :
(i) If Vand V'’ be finite dimensional vector spaces over the same field , then each linear trans-
formation from V' to V” determines a matrix. [T/F]
(i) Each matrix determines a linear transformation. [T/F]
(iii) Linear transformation determined by a matrix is independent of the choice ofbasis.  [T/F]
2. Fill in the blanks :
(i) Matrix of identify map on ¥, (R) is the ..... matrix of order ..... .
(ii) Linear transformation of identity matrix /5 (R) is the ..... map on ..... .

(ii) Matrix of zero map from V5 (R) to V, (R) is the ..... matrix of order ..... .
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10.5 Summary

In this unit we have studied matrix of a linear transformation, and some particular matrices, such

as matrix of an identity map, matrix of a zero map, matrix of composite map and matrix of a dual map.

10.6 Answers to self-learning exercises

Self-learning exercise-1
1. @)T @@) T (iii) F
2. (i) identity, 4 x 4 (i) identity, R’ (R), (iii) zero, 2 % 3.

10.7 Exercises

1. Describe the matrix of a linear form /' V— F'relative to a basis B to V.

2. Ifthe matrix of a linear transformation 7 - R2— R2, relative to the standard basis

2 -3
B={e,?,e,®} of R is L J,

then find the matrix of 7 relative to the basis C = {(1, 1), (1, —1)}.
3. If the matrix of a linear map ¢ on V5 (C) with respect to the basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)

is
0 1 1
1 0 -1
-1 -1 0

with respect to basis {(1, 1, 1), (-1,0, 1), (1,2, 1)}.?
4. Let V=R3and t: V-V be a lincar map, defined by #(x, v, z) = (x + z, — 2x + y, — x + 2y + 2).
What is the matrix of # with respect to basis {(1,0, 1), (-1, 1, 1),(0, 1, 1)} ?

ooo
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UNIT 11 : Rank and Nullity of Matrices

Structure of the Unit

11.0  Objectives

11.1  Introduction

11.2  Rank and nullity of a matrix

11.3  Invertible matrix

11.4  Change of basis

11.5  Similar matrices

11.6  Eigenvalues and eigenvectors of a linear transformation
11.6.1 FEigenvalues and eigen vectors of a matrix

11.7  Summary

11.8  Answers to self-learning exercises

11.9  Exercises

11.0 Objectives

In this unit, we shall study the notion of a rank and nullity of a matrix in general, which plays an
important role in the solution of linear equations, and also other concepts such as eigenvalues and eigne

vectors of linear maps and their matrices.

11.1 Introduction

In unit-6, we have studied vector spaces, dual spaces, linear transformation of vector spaces,
their rank, nullity and dual maps. In unit 10, matrices of these linear transformations and their properties
have been studied. This unit, further introduces the concept of rank of a matrix through the rank ofthe
corresponding linear transformation and its properties. This unit also provides other related concepts such

as invertible matrices, eigenvalues and eigenvectors, change of basis and similar matrices.

158



11.2 Rank and nullity of a matrix

LetA4 = [al.j] be any m x n matrix over a field F, then we write

R

m

where R; = [a,;, aj5, ..., a;,] is the i row of matrix 4. Similarly, we may write
A=[cy ¢y, ey ],

an -
where ¢ = _ZJ , is the jth column of 4.

Ay

We now consider m rows Ry, R,, ..., R, of matrix 4 as row vectors of the space F", and n
columns ¢y, ¢,, ..., ¢, of matrix 4 as column vectors in F.

The vector subspace generated by row vectors is called the row space of 4 and the vector
subspace generated by column vectors is called the column space of A.

Row rank of a matrix :

The row rank of a matrix 4 is the dimension of the vector subspace of F' ", generated by
Ry, Ry, ..., R, (row space).

Column rank of a matrix :

The column rank of a matrix 4 is the dimension of the vector subspace /™, generated by ¢/, c,,
.-+, ¢, (column space). The rank the matrix 4 is also the rank of the linear transformation? : F”* — F™.
Similarly, nullity of the matrix 4 is also the nullity of the linear transformationz, : F"* — F™.

Theorem 1. Let t, € Hom (F", F™) be the linear transformation corresponding to an
m X n matrix A = [ai].] over a field F, then the rank of t ;, as a linear transformation equals to the
column rank of A.

Proof : Since #, € Hom (#", F™") be the linear transformation, then ¢, F"" — F™ be such that

t(X)=AX, vXeF",

so that ty (eﬁn)) =Ae§.”), for j=1,2,..,n
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=€ "
m
:z el(m) aij EFm,
i=1
where ¢ : is the /™ column vector of matrix 4. Thus ¢ ' 1s the linear transformation which maps the jth
element of the standard ordered basis of F” to the /M column ¢ of the matrix 4. Hence the column
space is the image space i.e. im(Z ;). Therefore the column rank of 4 is the dimension of im(¢ ) i.e. the

rank oftA.

Thus, rank () = column rank of 4.
Note : Since, rank (7 ,) = rank of 4.

But rank (7 ,) = column rank of 4,
Hence, rank of 4 = column rank of A4.

Corollary : For any matrix 4, the row rank of 4, equals to the column rank of A.
Proof : Let V' and V" be vector spaces over a field Fand 7 : V' — V'’ be a linear transformation.

Let the matrix of it is 4. So the matrix of 7 : V”* — V* is AT, where ¢* is the dual map of z.

Since, rank of = columnrank of4 . (1)
So that rank of #* = column rank of A7

=Rowrankof4 . (2)
But rank of = rank of #*

From (1) and (2), we obtain
row rank of 4 = column rank of 4.
Theorem 2. For any matrix A over a field F, rank (A) = rank (47).
Proof : Let Vand V7 be vector space over a field F and B, B” be their respective bases. Also

let7: V'— V'’ be a linear transformation, such that

Mg (t)=4
or M()=A4,
SO rank (f)=rank 4) . (D
Let ¥ : V'* — V* be the dual map of 7,
then rank (f)=rank (#y . (2)
From (1) and (2),

rank (4)=rank (7% . 3)
Also, we have M(t¥)=[M(0)]F

M(t%)=AT,

so that rank (#*) = rank (M(#*))
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=rank(4H . (4)
From (3) and (4), we get
rank (4) = rank (47).

11.3 Invertible matrix

Let A be an n x n square matrix over a field . If there exists an # X n matrix B such that
AB=1, = BA,
then A is called an invertible matrix and B is called inverse of A.
Theorem 3. Let V be a vector space over a field F and B be its basis. Then a linear trans-
formation t . V — V is invertible iff matrix of t relative to basis B is invertible.
Proof : First suppose that # : /”— V'is an invertible linear transformation, then there exists a
linear transformation 7! : 7 — ¥ such that

tor '=I=¢los
= Mg(mfl) =M§(1):M§(f‘ot)
- My (M () =1=m3 ()M (1)
Thus M g (t) is invertible, and
[Mg (z)}_1 = Mg (e).
Conversely suppose that A7 5 () be an invertible matrix. Let [ M2 (’)T be the inverse of

M g (t) . Let [ Mg ( ;)Tl e F"*"_so that there exists a linear transformation s : ¥ — V such that

THOERTHOIR
S MM =1 =M V()
= M3 (sot) =M (1)=Mj (tos)
= sot=1=tos

Thus ¢ is invertible and r~ ! =s.

Theorem 4. Ann % n square matrix A over a field F is invertible iff rank (A) = n.

Proof : First let the matrix 4 be invertible, then there exists an z# x n matrix B over F such that
AB=1,=BA

Now, AB=1,

= Ahas a right inverse

= t,: F" — F" has right inverse

= t,: F" — F"is an epimorphism

161



=

=

rank (¢,)=n

rank (4) = n.
Conversely suppose that,

rank (4)=n

rank (z,)=n

ud Ul

t,: F" — F"is an epimorphism
¢, has a right inverse.

A has a right inverse

Since 7, : F" — F" is an epimorphism

=

=

=

t,: F" — F" is also a monomorphism

ty has a left inverse

A has a left inverse.

Hence the matrix 4 is invertible.

Theorem 5. Prove that the following statements are equivalent for any matrix A € F
(i) A has aleft inverse in F" ™",
(ii) nullity (A)=0

(iii) rank (A)=n

(iv) A has a right inverse in F"" *"

) A has two sided inverse in F" ™"
Proof : Let 7, : F" — F" be the linear transformation corresponding to the matrix 4.

Now, Ahas a left inverse n F* *"*, so t ', has a left inverse.

= t, is a monomorphism

=

L Y

Ker (z,) = {0}

nullity () = 0
nullity (4) = 0
rank (4)=n

t,: F" — F"is an epimorphism
¢, is an isomorphism
t, is invertible transformation
A is invertible matrix
A has a right inverse in /" "
t , has a right inverse
¢, is an epimorphism

t, 18 an isomorphism
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= ¢, has two sided inverse
= A hastwo sided inverse in > )

= Ahasaleftinverse n " (vi)

11.4 Change of basis

Let V be a finite dimensional vector space over a field F. Let B :{bl,bz,..., b } and

n

B' = {bl', by, ...s bn'} be any two bases of V. Suppose ¢ : ¥ — ¥ be a linear transformation, and M (¢)

be the matrix of 7 relative to basis B. Let M 5 (¢) be the matrix 7, relative to basis B’
Let 1}, be the identity map, i.e. I},: V' — V such that
I,(v) =v, vvevr.

Then, for eachj, we have 1, (b j') = bj'

n
:Zaij b;, for a.eF
i=1

= aljb1 + azjb2 +..+ anjbn
Putting j=1, 2, ..., n, we get

b =apbytay by t.ta, b,

b =aypby+apby +.+ayb,

b, =ayb, +tayb,+.+a,b,

The transpose of the above coefficient matrix is called the transition matrix or change of basis
matrix P from basis B to B".

This P=M j,? ' (IV ) is the associated matrix of the identity map which expresses the basis vec-

tors of B’ in terms of the basis vectors of B.

11.5 Similar matrices

Matrices 4 and B of order n over a field F are said to be similar if there exists an invertible

matrix P of order n over I such that
B=P l4P.
Ex.1. Let B= {bl =(1,0),b, :(O,l)} and B' = {bl' =(1,3),b, = (2,5)} be any two bases

of R%. Then
(i) Determine the transition matrix P from the basis B to the basis B’ .

(i) Determine the transition matrix Q from the basis B’ to the bases B.
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Sol. Let/y: R? — R? such that
Iy(v)=v, Vv e R?

then 1(b)) =, =12,

Putj=1, 2, we get
Iy (bf) =b' =(1,3)

—1-(1,0)+3 (0, 1)

b/ =b,+3b,
Iy (bzl) =b,
=(2,95)
=2-(1,0)+5(0, 1)
=2b,+5b,
Thus P =F 2}
35
(i) Now to determine the transition matrix QO from the basis B’ to the basis B, we have
b,=(1,0)
=-5(1,3)+3(2,95)
=-5b, +3b, .
b,=(0,1)
=2(1,3)-1(2,95)
=2b,' - b,
Thus 0- -5 2}
3 -1
Now PO - 1 2 [—5 2}
3 5] 3 -1
[1 0]
[0 1]
=]
Similarly, opP=1
Hence PO=1=QP
Thus Oo=pP!
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Theorem 6. Two matrices over a field F are similar iff they correspond to the same linear
transformation of a vector space V over F to it self, with respect to two different bases.

Proof : Let /' be an n-dimensional vector space over field /" and ¢t € Hom (V, V). Let 1}, be the

identity map from V'to ¥, and P =M} ' (I V) be the transition matrix, where B and B’ are any two

bases of V.

Let A=MF(t) and 4'= M} (¢) are matrices of ¢ relative to bases B and B” respectively.
To prove that 4 and A’ are similar,

now, PlaP=pP'M3

Thus Plap=4"
= A and A’ are similar matrices.
Conversely suppose that 4 and 4’ are similar matrices of order n x n and B be the basis for V/

such that
Mj(t)=4, where B={b,b,,...b,}.
Then we have to show that 4" is matrix of # relative to some new basis of V.
A and A’ are similar matrices, so that there exists an invertible matrix P such that

A’=pl4p (1)

Now, we define a new basis B’ ={b/,b,...,b/} of V, so by definition
P=Mj (Iy)

Now, from equation (1), we have

AEM?’(IV)MB?(OMg,([V)

=M} ().

Thus 4" is the matrix of # relative to some new basis B” of V.

Self-learning exercise-1

1. True/False statements :

(i) Transition matrix from a basis to the same basis is the zero matrix. (T/F)
(ii) Similar matrix are matrices of the same linear transformation (T/F)
(ii) 1f a matrix 4 is similar to a matrix B, then it is not necessary that B is similar to 4. (T/F)

2. Fill in the blanks :
(i) Two square matrices 4 and B of order » are similar iff there exists a ..................... matrix P

order nsuchthat B=.....ccccceeeeun.. .
165



(i) Being similar is an ....................... relation on the set of all » X n matrices having entries in

the same field.

11.6 Eigenvalues and eigenvectors of a linear transformation

Let V be finite dimensional vector space over field F. A non-zero vector v € V'is called an
eigenvector of a linear transformation 7 : /' — V, if there exists A € F such that

t(v)y=vA

If v is an eigenvector of'¢, the corresponding A is called the eigenvalue of 7 corresponding to v.

Eigenspace : The set 5, of all eigenvectors of 7, with eigenvalue A is called the eigenspace
of A.

Theorem 7. Let V be a finite dimensional vector space over a field F. Then the set of all
eigenvectors corresponding to an eigenvalue A of a linear transformation t : V. — V' by adjoin-
ing zero vector to it, is a subspace of V.

Proof : Let S, be the set of all eigenvectors of z, corresponding to eigenvalue A, so that,

S, ={velV:t(v)=vr}.

Since . is an eigenvalue, S, is clearly a non-empty subset of V.

Letu,ve S, = t(u)=uland(v) = vA.

Also let a, B € F, then

t (ou + Bb)= ot (u) + Bt (v) [-+ tis linear]
=ao (uh) + B (vA)

=u(ah) +v (L)

=ua) L+ (VP A

=ua+vp) A

=(autpv)r
= au+ pves,, vu,vesS, and ao,BelF
Thus §, U {0} is a vector subspace of V.

11.6.1 Eigenvalues and eigenvectors of a matrix

Let A4 be an n x n matrix over a field /" and let ¢, : F"" — F" be the linear transformation
corresponding to 4. Then eigenvectors or eigenvalues of matrix A4 are the eigenvectors or eigenvalues of
the linear transformationz, : F" — F".

Theorem 8. Let A be an n X n matrix over a field F. Then a non-zero vector X € F" (or a

column vector X) iff there exists a scalar ) € F such that

AX =X\
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Proof : First suppose that 0 = X € F” is an eigenvector of matrix 4. Then X is an eigenvector

of linear transformation ¢ ’E F" — F"and so there exists a scalar A € F such that

t, (X)=Xh
= AX= X0, [+ 1, (X) = AX]
Conversely suppose that 0 = X € F" such that
AX= X\
= 1y (X)=XA

= Xis an eigenvector of 7

= Xis an eigenvector of 4.

Theorem 9. Let V be a finite dimensional vector space over a field F andt:V — Vbe a
linear transformation. Suppose that v, v,, ..., v, are distinct eigenvectors of t corresponding to
distinct eigenvalues ;‘1’ 7‘2’ e kn.

Then {vy, v,, ..., v, } is a linearly independent set.

Proof : Given that v, v,, ..., v, be the n distinct eigenvectors of # corresponding to the »
distinct eigenvalues &, A, ..., A, respectively.

Then, we have t(v)=v; A, i=1,2, .., n

In order to prove that v, v,, ..., v, are linearly independent, we shall use induction on 7.

The result is clearly true for n = 1, because v| # 0. Let us assume that v, v,, ..., v, where
k < n, are linearly independent.

Now consider the vectors v|, v,, ..., v | € F. Let there exist scalars a;, o, ..., o, | € F'

such that
oyt oy, ttov oy v =00 L (1)
= tlogvy oty toy, v, )=1(0)=0
= tvpPoy ot (v)oy tt (v, Doy =0
= iAoy Aoy Tt (v A Doy =00 (2)

Multiplying equation (1) by A, , | on right and then substracting it from equation (2), we have
Vi Aoyt v =Ry, oy =0
= A=Ay poy == —2Ap D)oy =0 [+ v .., v are linearly independent]
= a; =0, =.=o=0 [vA#zN 1 i=1,2, 0]
Using these in equation (1), we get
Vs 141~ 0
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Thus, vioy Tt vty oy =0
=> o =.=y=a,,=0
=V}, Vy ..o, Vg Vy . are linearly independent.
Hence by induction {v, v,, ..., v, } is linearly independent set.
Theorem 10. Let A be an n < n matrix over a field F, has n distinct eigenvalues \;, i = 1,
2, ..., n, then there exists an invertible matrix P such that
P14P = diag. (A, Xy, ...s 1)
Proof : Suppose that X; € F",i= 1, 2, ..., n be the n distinct eigenvectors of A corresponding
to n distinct eigenvalues A, i = 1, 2, ..., n respectively. Then we have
AX;= X\, i=1,2,..,n
Suppose P = [X;, X,, ..., X, ]. Then it is an n x n matrix over F. Since {X|, X,, ..., X, } is
linearly independent set so rank (P) = n, and P is an invertible matrix.
Now by definition of matrix multiplication, i column of 4P = 4 (i" column of P)
= AX, i=1,2,..,n
Thus AP=[AX,, AX,, ..., AX ]
=X\ Kok, s XA

A 0 ... 0
=[X1’X2""’Xl’l] (:) 7\‘2 " O
0O 0 ... A

= Pdiag (A}, Ay, ..y M)

Thus P 14P=diag (A}, Ay, ..., A,).

Theorem 11. Let V be a finite dimensional vector space over a field F and t . V — V be
a linear transformation. Then

(i) The matrix A of t is a diagonal matrix having the eigenvalues of t as diagonal en-
tries iff A is corresponding to a basis of V consisting of eigenvectors of linear transformation t.

(ii) The eigenvalues of t are exactly the diagonal entries of A and each appearing on the
diagonal as many times as the dimension of its eigenspace.

Proof : (i) Let B = {b,, b,, ..., b,} be a basis of V, consisting of eigenvectors of £: V' — V.

Let Ay, A,, ..., A, be the eigenvalues of 7 corresponding to the eigenvectors b, b,, ..., b, re-
spectively. Then

t(bj)=bj A, j=1,2,..,n
Let B* = {f, /5, .... f,,} be the basis dual to B.

Now, forall, j=1, 2, ..., n, we have
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A=[MF(0) | =f )

:fi(bj}‘j)
=fi b)Y
=6ij7»j
A, 0 ... 0
0 2, ... 0
Thus A=].

n
which is a diagonal matrix of# having diagonal elements as eigenvalues ofz.
Conversely suppose that matrix 4 = [a[j] having diagonal elements 1, i =1, 2, ..., n,is a

diagonal matrix, of # relative to basis B= {h|, by, ..., b, } of V.

We have a;=»x\, i=1,2,..,n
and al.j=0, if i#j, Lj=1,2,..,n
and Mg (t)=4
Now, t(b) =2 b, ay. i=1,2,..n
s=1

= blalj + b2a2j +..+ bjajj +..+ bnanj

=0+0+..+ bjajj +..+0

=byay
= bl.j kj
Thus bj, j=1,2, ..., nare ecigenvectors of # corresponding to the eigenvalues Xj, j=1,2,..,n

respectively.

(i) Assume that a non-zero vector v € V is an eigenvector of ¢ with eigenvalue A, then we

have
t(v)=vA

where v=ab +.+a b, for ap,.,o €F

So {i b, aij=(i b; “ijk
i=1 i=1

n

= Zn: t(bi)(xi :zz:l: bi(o“i}\’)

i=



- > b(h-r)a,; =0
i=1
= (A;=2) a; =0, i=1,2,..,n
[- B=1{b|, by, ..., b,} is abasis for V]

Buta;#0,i=1,2, .., n, because v 0.

Thus A=A,

Hence any eigenvalue A of # must be one of the diagonal elements of 4.

Let us assume that an eigenvalue of # appears m times on the diagonal of matrix A. Let us
suppose that first m entries on the diagonal are same, that is, A = A, =..= % =A.

Suppose that § be the subspace of V' spans by the corresponding eigenvectors
b,i=1,2,.,m.

Thus S={Zbioci:ocieF}

i=1
Now {b, b,, ..., b, } is a subset of B and so it is linearly independent and thus dim § = m.

We have to show that § =S, , where §, = {v el t(v) = vk} be the eigenspace of A.

Let wuelS = u=2bi|,ti, W el
i=1

= t(u)z(tibi Hi]
=1

(S m) )

i=1
Hence u is an eigenvector of  corresponding to eigenvalue A and u € S, .

Thus Scs, (1)
Now suppose that ues, = t(u)=ul

But ue S, >ueVlV

n
:>u:z bo;, a;eF
=

Thus, t(zn: b, a‘i] :{Zn: b; a‘i]k
i=1 i=1
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N

= b(h;=1)o; =0
i=1

(Aj—=2) o; =0, i=1,2,..,n [ B={b},b,, .., b,} isabasis for V]

But A#EN if i=mt+1l,m+2, .0,
so that o, =0, if i=m+1l,m+2,.,n,
Thus u :Z bya,eS
i=1
Therefore ScsS L 2)

From equations (1) and (2), we have
§=S, = dim §, =m,
which shows that an eigenvalue A of ¢ appears on the diagonal of 4, as may times as the dimension of its

eigenspace.

11.7 Summary

In this unit we have studied a general over view of the rank, nullity of linear maps as well as of
matrices. We have also studied eigenvalues and eigenvectors of linear maps and of corresponding matri-
ces. Several examples have been solved in this unit to understand the concept introduced, and we have

gone through a variety of problems in exercises to grasp the concept of the topic.

11.8 Answers to self-learning exercises

Self-learning exercise-1

1. () F (ii)) T (iii) F
2. (i) non-singular, P~ 14p (ii) equivalence.

11.9 Exercises

1. Let 4 be an n X n matrix over field F, and has n distinct eigenvalues in F then 4 is similar to a
diagonal matrix.

2. If A4 is an n x n invertible matrix. Then prove that rank (4) = n.

3. Prove that any two similar matrices have the same column rank and the same row rank.

4. The matrix A of linear transformation ¢ : V' — Vis diagonal if 4 is relative to a basis of } consist-

ing of eigenvectors of 7.

HEEn
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UNIT 12 : Determinants of Matrices

Structure of the Unit

12.0  Objectives

12.1  Introduction

12.2  Multilinear and alternating functions

12.3  Determinant function

12.4  Existence and uniqueness of determinants
12.5  Properties of determinant function

12.6  Characteristic polynomial and eigen values
12.7  Summary

12.8  Answers to self-learning exercises

12.9  Exercises

12.0 Objectives

After reading this unit you will be able to learn the importance of determinants of matrices and
their applications, such as, in the solution of system of linear equations and many other in linear algebra.
you will also see that determinant is a function and it is a multilinear alternative form through which vari-

ous properties of determinant of a matrix will be explained.

12.1 Introduction

In previous unit we have been discussing linear transformations and their matrices. This unit in-
troduces the concept of determinant of a matrix and their properties. In this unit we shall study determi-
nant function as a multilinear alternating form, existence and uniqueness of determinants, Cramer’s rule,

characteristic polynomial and eigen values, and Cayley-Hamilton theorem.

12.2 Multilinear and alternating function

Multilinear function :

Afunctionz: V| x V, x.xV, — 8, is called n-multilinear if it is linear in each factor, when the
other entries are kept constant, i.e. foral, i=1,2, ....,.n

(Vs Vo s Vi v+ BV v v,)
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=0 (Vi Vos ey Vi 15 Vi Vig 15 o0s V) )
=BV Vo s Vi VS Vi s e V)
vv,v/ eV, and o,BeF.
Where V), V,, ..., V, , S are vector spaces over the same field F.
ItV;=V,i=1,2, .., n,then tis called an n-multilinear function on }" and if in addition § = F,
then ¢ is called an #-multilinear form on V.
An n-multilinear function # on Vis said to be an alternating function if # (v, v,, ..., v,) =0
when v, = v, fori=1,2, .., n— 1. The multilinear function ¢ on V' is said to be symmetric if

interchanging v; and Vi for any i and j, the value of z (v, v,, ..., v,) does not change.
Alternating form :

An n-multilinear form # on ¥ is said to be an alternating form if

t(vis vy, ey v,)) =0 when v;=v;  fori=1,2,..,n—L

12.3 Determinant function

An n x n determinant function, is a mapping,
det: M, ., (F)— Fsuch that

(i) the det is an n-multilinear alternating form on /", and

(ii) det (1) = 1, where I is the identity matrix of order .

The above mapping is infact, det : F” x F" X x F" — F with two axioms. We also write
det (4) =det (4}, 4, ..., 4,),

where 4, 4,, ..., 4, are the n columns of square matrix 4.

12.4 Existence and uniqueness of determinants

Theorem 1. (Existence). There exists a multilinear function det : (F"*)* — F such that
det (A)=det (4}, 45, ..., 4,)
= peZS: € (P)ap(m Ao(2)2 =+ Dp(n)n> WV A4; € F",
satisfying the axioms of determinant function.
Proof : Suppose that 4, 4,, ..., 4, be the n column vector ina n x n matrix 4 = [aij]' We
shall prove that the above multilinear function satisfy the axioms of a determinant function, that i, det is
an alternating form with det (/) = 1, where / is an identity matrix of order .

Given that det : (F”")" — F such that
det (4) = det (4, 4, ..., 4,)

= Z € (p)ap(l)l ap(Z)Z ap(n)n’ (1)

pES,
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If4=1=(ey, ey, ..., ¢,), then each term in equation (1) is zero except the term corresponding
to the identity permutation i.e.
det (/)= det (e}, e, ..., €,)
R NS R
=1-1-...-1=1
Thus det(h)=1 L 2)
Now to prove that det is an alternating form, let 4 ;= A iy - Then we shall prove that
det (4, 4,,..,4,)=0
Since, A;i=4;
= A= ;4 1y i=1,2,....n
Let p € S, be any odd permutation, then from equation (1),
det () =(=Dauy Gy oy e (3)

Suppose that /= (7, j + 1) be a transposition, then p = o/, for some even permutationc € S, ,

so that
p(H=@hH{H=ct()=cG+H .. (4a)
pG+D=@chH G+ 1)=c(G+1)=c@¢) .. (4b)
p(r=(@©h)(r)=c(h(r)=0c(r) vr#£j,j+1 L. (4c)

For even permutation 6, we have from equation (1),
det (4) = (+1)a6(1)1 aG(Z)Z ac(n)n

= As(1)1 9o(2)2 *+ Yo(j)j Do(j+1)(j+1) *** Yo(n)n
= Ao(iy Do(2)2 Do) j+1) o j+1)j = Yo(n)n [ aj = az’(j+1)i|

= ()1 Fp(2)2 =+ o) +1) Up(j)) ++ Dln)n
[-- F'is commutative]

det (4) = Aot 22 - Ap()j Bp(jstyjot = Gomm e (%)
From equations (3) and (5), we have

det (4) =det (4, 4,, ..., 4,) =0
when A=A, .
Theorem 2. (Uniqueness). Let det and det' be two determinant functions, then for all

column vectors A, A,, ..., 4,, € I,
det (A, 4y, ..., A,) =det' (A}, 45, ..., 4,).
Proof : We define a function A such that
A(Ay, 4y, ... A,) =det (4}, 45, ..., A,) —det’ (4, 4, ..., 4,)
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Since both det and det’ satisfy axioms of determinant function, A is a multilinear function with
A (e, ey ..,e,) =0 and A (4, 4,,..,4,)=0 ifany A4, =Aj fori=j
and A (4,, 4,, ..., 4,) changes sign if any two 4, and 4 ; are interchanged. Here {e,, e, ..., ¢, } be the
standard ordered basis of F”. Now, it is sufficient to show that
A4}, 4, ..,4,)=0
Now, for o € F, we have

Aj= oy e + ;€ +..+ o, e,

n
Now, Ay, Ay, ... A,) =A[Zoc,] €Ay ...s A,,J

r=1

Now using linearity to the first factor, then to second, etc, we get

Ay, Ay s A) =D 0 Ale,, 4y ...y 4,)
r=1

=Z(J(,r1 A{er,zarlz erl’A3 et An}

r=l1 r=l1
n

Oy O A(er,e,,l,A3 s An)

r=1 n=1

Thus A4}, A4y, ..., 4,)=0.
Hence the uniqueness theorem is proved.
Determinant of a matrix :

Let 4 be an n x n matrix. The determinant of matrix 4 is denoted by det (4) or | 4 | and is

defined as follows :

det ()= 4| = 3 €(P) @y G2y - Gy
PES,
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12.5 Properties of determinant function

Let 4 be a matrix of order n X n , then

(@) If any column (row) of 4 is zero, then | A | =0,

(b) Ifhisascalar, then |A 4 |=A"|A4]|

(a) If 4 is a diagonal matrix, then |4 |=ay; ay, ... a,,

Theorem 3. Let A be a matrix of order n x n and let ¢ : n — n, then

@ 2 €(P) @iy 4o2)o(2) -~ Go(njo(n) = (¢) 1 41

pES,

®) 2 =(P) 4y1)o01) u2yp(2)  Uyinyp(m) =< (8) 141
pes,

Proof : There are two cases :

Case (I) when ¢ is not a permutationi.e. ¢ ¢ S,

Then €(0)=0
So that, RH.S.=0
To prove that LHS.=0
Since ¢ is not a permutation so that there exist i, j € {1, 2, ..., n} such that
i#j but 6(H)=0(¢) L. (D

Let 2 = (i, ) € S, be the transposition.
For any p € §,, suppose that ¢ = ph, then

c@=PnH@O=pr@®)=p¢ .. (2a)

s=PH(H=ptr=p® .. (2b)

and c)=Eh) ) =pths)=p(s),se{l,2,...n},s#1i,] ... (2¢)
Since /4 is an odd permutation, so that

c@=ch=cpP)e)=—cp .. 3)

Now, the contribution of the permutations p and o in the L.H.S. of (a) is
& (P) @pmatt) a(216(2) = 9o(01a() Ap( 1)) on)éln)

+€(0) ao1ja(n) o(2)p(2) = Gofi)a() (1) Lol

[ From (1),i # j = ¢(i) = (I)(j)]
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=< (PO
=0

Hence, ZS: e(o) o)a(1) Fp(2)d(2) =+ Dp(n)i(n) = 0
pes,

Case (I) When ¢ is a permutationi.e. ¢ € S, = ol e S,

For any permutationp € S,, Let 6= p¢!

Then e(®)=0

= p=0cd

= p()=c @), i=1,2,..n
Now, pezs € (P) 45(1)s(1) Gp(2)0(2) ** Lo(m)i(n)

= 2. < (00)ag(aupan) Dofp2pz) = Go{s(n))o(n)

ceSs,

= <(o)e (04))%(1)1 A5(2)2 + Ao(n)n

ces,

[on changing the order of factors]

=< (o) Z As(1)1 9o(2)2 *+ Yo(n)n

ceS,

=@ 4]
Similarly part (b) can also be proved.
Theorem 4. Let A be a matrix of order n x n and AT is the transpose of A. Then
| AT|=| A |, where | A | denotes the determinant of A.

Proof : Let A = [al.j] be an n x n order matrix, then we have

|4 = Z € (p)ap(l)l ap(Z)Z ap(n)n

pes,

So that, |AT|= e (P)a1p(1) Byp(2)2 - up(n)
peS,

= 2 (P)ayoq) 2)p(2) - Ahn)oio)

PES,
where ¢ : n — n is the identity permutation.
Thus | AT =< (¢) | 4| [By theorem (3)]
=1-14] [-+ ¢ is an even permutation]
=|4].
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Theorem 5. [f any two rows (columns) of a determinant A are equal, then

|4[=0
Proof : Suppose 4 be an n x n matrix and its 7 and st rows are same, that is
AT = A4S
= a,;=ag, j=1,2,..,n
Now, |A | = z € (p)ap(l)l ap(z)z ap(,.),, ap(s)s ap(n)n
peS,

Let¢:n—>nsuchthat ¢ )=, i=r sand ¢ ()= ¢ (s),

then A= ZS € (P) (141 %p(21(2) =~ Ao(r o) %o(s)éls)  Fo(mpt)
pes,
=e(9)|4]
=04 | [- ¢ is not a permutation, .. € (¢p) =0]
|4|=0.

Theorem 6. Let A and B be any two matrices of n X n order, then
| AB| =[A[-]B].
Proof : Let 4 = [aij] and B = [bij] be two matrices of order n x n over the same field F, then

AB 1s a matrix of order n X n in F, and

n
(4B), = ay by
k=1
By definition of determinant function, we have

| 4B| = > E(p)(AB)p(l)l (AB)p(Z)Z’”(AB)p(n)n

pes,
=2 E(p)[ZAp(l)k Bli"{zAp(n)k Bkn]
pes, k=1 k=1

In these n summations, the index & be replaced respectively by ¢(1), ¢(2), .... ¢ (n), and open-

ing the brackets,

= z E(p) z Z ap(l)(])(l)ap(n)d)(n)bd)(l)lb(l)(n)n
pes, o=l (-1

[-- F'is commutative]



pen”
=[4] ) ()b S0P
dent
=141 2, €(9)b yay1+ Doy
¢6SI1
[€ (¢) =0, when ¢ : n — n is not a permutation|
|AB[ =| A[-|B]

Corollary : An n x n square matrix 4 over a field F'is invertible iff det (4) # 0 and

_ 1
det(A 1) = det(A) .
Proof : First suppose that n x n square matrix 4 is invertible (non-singular), so that A~ exists
and
A4 =1
= det (4471) = det (1)
= det (A) det 4 =1

Thus det (4) #0 and det (4!)= det (4)

Conversely suppose that det (4) # 0. To prove that 4 is invertible. To do this it is sufficient to
prove that p (4) = n i.e. rank p (4) = n. As contradiction suppose that rank (4) # n

ie. p(A) #n

= p(Ad) <n

= Ay, Ay, ..., A, are linearly dependent columns in £™.

= at least one column say 4, out of these n columns is either zero or linear combination of
the previous vector.

Case (I) When 4, = 0, clearly det (4) = 0 which is a contradiction.

Case (II) When 4, is the linear combination of 4, 4,, ..., 4;_;, so that these exist scalars o,

Oy, ..., & € F, such that

i—1
Af = ZAk o,
k=1
= det(4) =det( 4, Ay, A 1 d;r..s 4)

i—l
=det(Al,A2,...Ai_l,ZAk ak,...,A,,)

k=1
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|
—_

=N det( Ay, Ay Ay, Ag s 4))
1

b
Il

det (4) =0

which is again a contradiction of det (4) # 0

Thus the columns of 4 in F'"* are linearly independent

Hence, pA)=n

= A is invertible.

Theorem 7. Let A = (4, A,, ...., 4,) be an n X n square matrix over a field F, where F'is
the i'" column of A. Then
(i) det(4;, 4y, ..., 4;, ..., Aj, ..... A4,)=0, if A4;=0 for some i.
(ii) det (4, ... A;_;, Ai+Mj, Aj..., 4,)

=det (4, ... 4,, ..., 4, ... 4,)

(iii) det (4, 4,, ..., 4,) = 0, if the set {4, 4,, ..., 4, } 1s linearly dependent.
(iv)det (Aa) = o det (A4), for o € F.

i’

(v) multiplying one column of 4 by a scalar a., det (4) multiplies by o..
Proof: (i) Let a € F, then
det = (4,45, ..., 04, ...., 4,)
=odet (4, 4y, .oy 4jy s 4,)
=0, by taking o =0
(ii) This part follows easily by multilinearity and alternating law.
(iii) Given that {4, ..., 4, |, 4., ...., 4,} is linearity dependent, so that some one 4; can be

written as a linear combination of the preceding vectors i.e. there exist scalars

Oy, Oy, -y @; 1 € F, such that
i-1
4; = ZAk o7
k=1
Now, det (4, 4y, ..., 4; 1, 4;, iy A,)

i—1
= det(Al,Az, ""Ai—l’ ZAk Otk,...,An)
k=1

i—1
= Zdet(Al,..., 14.1-_13 Ak)"') An )a‘k
k=1

=0 [ Two columns of 4 are same].
(iv) det (Ao) = det (4, 450, ..., 4,0)
=det(4,,4,,...,4,) "
=det (4) o
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(v) If 4; is multiplied by o, then
det (4, 4y, ..., 4,0, ..., 4,)
=det(4},4,,...,4; ..., 4,) o
=det (4) o
Theorem 8. Let A and B be any two matrices of order n X n. If matrix B is obtained by
(i) interchanging two columns (rows) of A, then
det (B) = —det (A)
or, symbolically,
det [/ (4)] =— det (4).
(ii) Adding to a column (row) of 4 by a scalar multiplier of another column (row) of 4, then
det (B) = det (4) or, symbolically,
det [/ (DM (4)] = det (4).
Proof : Let A = [a;] and B = i) (4),
then Bl.=Aj, szAi and B, =A,,r#1i, j
Now,

det [/ (4)] = det (B)

(S (p)ap(l)l... ap(2)2...ap(i)j "'ap(i)j ...ap(n)n (1)

[+ B;= Aj and Bj =A4)]
Let 7= (i, j) € S, be a transposition, then 2 () =/, 2 (j)=1 and h(r)=r, re {1,2,..,n}
and r #1, J.

Using these in equation (1), we get
det B =det [e(:/) (4)]
= 2 =Pty oy o) o ) ot
pes,

= e (h) det (4)

=—det (4) [/ 1s an odd permutation]
(i) Let B=e@**(4), thenB = A ,r € {1,2, .., n}, r#1,
and B, =4+ kAj
B. =4,
= by =y ¥ m=1,2,...n
B, =4+,
bmi = i + kanj’
vm=1,2,..n
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Then,
det (B) = det [¢® T DA (4)]

= Z (S (p)bp(l)l '"bp(i)i bp(j)j "'bp(n)n

peS,

pes,
+h Z; E(P)ap(l)l‘ (1) ()i~ Lp(n)n
pes,
—det (4)+0
— det (4).

Theorem 9. Let A and B are two similar matrices over the same field F, then
det (4) = det (B).

Proof : Given that 4 and B are similar matrices, so that there exists an invertible matrix P such

that
B =pP4pP!
det (B) = det (PAP™1)
= det (P) det (4) det (P71
= det (P) det (4) det(P)
=det (4)

Theorem 10. (Cramer s rule) Let A be an n % n square matrix over a field F and A, 4,,

... 4, are columns of A, and B = o; A, + ... + «, A, for some a|, a,, ... @, € F, then

1
OLi :Wdet(Al"”Ai—l’B’Ai+17""7 A}’Z)

Proof : We have
det (4, ... 4, |, B, 4; 4, ..., 4,)

= det(Al,...,Ai_l,ZOLiAi, 14.i+1,...,AnJ
i=1

=oydet (4, .., A, Ap A e A) T
taydet (A, ..., A, 4, Ay, Apyy s 4,) F o

+o, det(Ay, ..., A 1, A4,,4; 1., 4,)

n’

= o det (4)
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Thus,
o, = Ldet(Al,...,Ai_l,B, Aiyon4y)
det(A)

Singular matrix : A square matrix 4 is said to be singular if det (4) = 0, and matrix 4 is non-
singular if det (4) # 0.

Determinant rank : Let 4 be an m x n non-zero matrix over a field F. A positive integer 7 is
called the rank of matrix A4, if there exists an 7 X 7 submatrix M of 4 such that det (M) # 0 and if N is
any s X s submatrix of 4 and s > r, then det (V) = 0.

The rank of a zero matrix is defined to be zero.

12.6 Characteristic polynomial and eigenvalue

Theorem 12. Let A be a matrix of order n x n over a field F. Then a scalar \ € F is an
eigenvalue of A iff det (A —\I) = 0.

Proof : Suppose that A is an eigen value of matrix 4 <> There exists a non-zero vector X € F"
such that 4AX = XA

& AX-XM =0

A4-1H)X=0

Ly XN=0 [ty F" = ]

anon-zero X € Ker (¢, ;)

dimker (¢, ,)>0

nullity (¢, , ) >0

rank (¢, , ) <n [By Sylevester’s law of nullity]
rank (A—-Al)<n

det (4 —-AD)=0.

g ¢ ¢ ¢ 0 ¢ 0O

Characteristic Polynomial :
Let A= [al.j] be an n X n matrix over a field Fand A € F. Then

C, () =det(A-11)

a A ap Ay
_| % dyy —h Dn
an ) ann_k
C,)=Cy+C A+..+C A" L (1)
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where C, Cy, ..., C, are scalars in F. This expression C () is called the characteristic poly-
nomial of matrix 4 and the equation C, (1) = 0 is called the characteristic equation of matrix 4. From
theorem (12), it is obvious that eigen values of matrix 4 € M, ., (F) are the roots of the characteristic
polynomial of matrix A4.
Theorem 13. Similar matrices have the same characteristic polynomial and hence the same
eigen values.
Proof : Let 4 and B be similar matrices over the field . Then there exists an invertible matrix P
such that
B=P4 P!
The characteristic polynomial of B is
Cp (M) =det(B—Al)
Putting B = PAP!, we get
Cp (1) =det (PAP! D)
=det(PAP ' —P(\L1)P
=det(P(A—-XI)P)
=detPdet (4—AT7)det(P)

1
=det Pdet(A—-Al
et PAet(A=11) o )
=det(A—-AT)
=C, ()

Hence the similar matrices 4 and B have the same characteristic polynomial. Since the eigen
values of a matrix are roots of the characteristic polynomial, so 4 and B have the same eigen values.

Theorem 14. Let A be an n x n matrix over a field F. Then A and AT have the same eigen
values.

Proof : The eigen values of a matrix 4 are the roots of the characteristic equation of A.

The characteristic equations of 4 and A7 are det (4 —AI ) =0 and (47— AI) =0.

Now,
A-rDT=4T-n1
= det [(A—ADT]=det (AT—11)
= det (A—AD)=det (AT-11) [+ det(@—AI) =det(4—A1I)]
Thus

det (AT—A1)=0 iff det(4—11)=0
Hence every root of det (4 — A 1) = 0 is also a root of det (47 — A ') = 0 and vice-versa. Thus

A and AT have the same eigen values.
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Theorem 15. Let A and B be similar matrices. If X is an eigen vector of A corresponding
to the eigen value )\ , then PX is an eigen vector of B, corresponding to the same eigen value ,
where
B = pAP!
Proof : Given that A is an eigen value of A corresponding to the eigen vector X, so that
AX=XA
Now,
B (PX) = (PAP™") (PX)
=PA(P'P) X
= PAX
=P (4X)
=P (X))
=(PX) A
Thus PX is eigenvector of B corresponding to eigenvalue A.
Theorem 16. (Cayley-Hamilton Theorem) Every square matrix A over a field F has
C, (4) = 0, where C (2) is characteristic polynomial of A. In other words every square matrix A
over a field F satisfies its characteristic equation.
Proof : Let 4 be an n X n matrix and
Cy(A) =det (4-A\)
=Cy+C A+ C, M+ C, A" be its characteristic polynomial,
where C, Cy, ..... , C, are scalars in . Now consider the adjoint of matrix (4 — Al). Since each
entry of matrix (4 — A/ ) is linear is A or a constant, so that each entry of matrix adj (4 — Al) is a
polynomial of degree (n — 1) in A. It is noted that each entry of adj (4 — AI) is the determinant of an
(n—1) x(n—1) submatrix of 4 — AL
Hence, adj (A=A)=By+B A+..+B A"
where By, B|, ...., B, | are n X n square matrices over field . We have
(A-AD)adj (A—A)=det (4—A\) 1
= A-M)(By+BA+...+B, A )=(Cy+CA+.+C ML
Equating the coefficients of the various powers of A on both sides, respectively, we get
AB, = Cy1
AB,—-IB =C, I
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ABy~IB, =C, 1

AB}’I—I _]Bn_z = Cl’l—l 1
~IB, | =C,I

On multiplying the above (n + 1) equations on the right by I, 4, 42, ..., A" respectively and

adding, we get

Col+CiA+Cy A2+ ... +C A" =0
=  C,A)=0

Thus each square matrix 4 over field F, satisfies its characteristic equation.

Self-learning exercise-1

True/False Statements :

(i) A function is bilinear if it is linear in each component. [T/F]
(ii) If\ € Fis ascalar, then | A4 | =A" | 4 |, where 4 be a matrix of order n X n. [T/F]
(iii) If any two rows of a determinant 4 are equal then |4 | =0 [T/F]
Fill in the blanks :

(i) Let 4 and B by any two similar matrices over the same field F, then

12.7

detA=....
(i) A square matrix 4 is called ......... if det (4) = 0 and matrix A4 is called ........ ifdet (4) =0
(iit) The equation C; (A) = det (4 —Al) =0 is called .......... for matrix 4, where A € F.
Summary

In this unit we studied various properties of determinants, their existence and uniqueness. We

have also studied the characteristic polynomial and eigen values of determinants, Cramer’s rule and a

very important result known as the Cayley-Hamilton theorem.

12.8

Answers to self-learning exercises

Self-learning exercise-1

LG T (i) T (i) T

2. (i) detB (ii) singular, non-singular (iii) characteristic equation
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12.9 Exercise

1. Find the characteristic roots and characteristic spaces of the matrix

2 2 0
2 1 1
-7 2 -3

2. Prove that the eigen vectors corresponding to distinct eigen values of a matrix are linearly inde-
pendent.
3. Prove that det (adj A) = [det (4)]"! for an n xn matrix 4, n > 2.

4. Prove that the characteristic polynomial of an n X n triangular matrix 4 = [al.j] is

(@ —2) (ay = M) ... (a,, —M).

NN
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UNIT 13 : Real Inner Product Space-1

Structure of the Unit

13.0  Objectives

13.1 Introduction

13.2  Real inner product space

13.3  Norm ofa vector

13.4  Schwartz inequality

13.5 Triangle inequality

13.6  Orthogonality

13.7  Pythagoras theorem

13.8  Orthonormal set

13.9  Gram-schmidt orthogonalization process
13.10 Summary

13.11 Answer to self-learning exercises
13.12 Exercises

13.0 Objectives

main object is to study vector spaces in which it makes sense to speak of ‘length’ of a vector and of the
‘angle’ between two vectors. Thus we study a certain type of scalar-valued function on pairs of vector,
known as an inner product. One known example of an inner product is the scalar or dot product of
vectors in RZ. A vector space equipped with an inner product is called an inner-product space. After

reading this unit we will be able to understand various properties of these spaces and their usefulness.

In this unit, we consider only real vector spaces, that is vector spaces over the real field. Our

13.1

Introduction

vector and orthogonal vectors. In this unit we shall study some important results, such as, Schwartz’s

inequality, Triangle inequality, Pythagoras theorem and Gram-Schmidt orthogonalization.

This unit introduces the concept of an inner-product, inner-product space, length or norm of a
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13.2 Real inner product space

Let ¥ be a vector space over the real field R. An inner-product on V' is a function < .> :
V' x V' — R which assigns to each pair of vectors (u, v) of V, a real number < u, v > such that the
following are satisfied :
(i) <u,u>2>0and <u, u>=0 if and only if u = 0, (Positive definiteness)
(ii) <u, v>=<vy, u> (symmetry)
(iii) <ou+PBv,w>=a<u, w> + B <v, w>(Linearity)
(¥, <, >) is called a real inner-product space. It is also called a Euclidean space.
In is clear from (i) and (iii) that
<u,av+tBw>=a<u, v>+p <wu, w> so an inner product is linear in each of its
arguments.
Note that <u,v>=0, if u=0 or v=0 orboth u=v=0.
Thus<0,v>=<0vy,v>=0<y,v>=0.
Ex.1.Prove that R" is a real inner-product space with an inner-product defined by
<u,v>=a b, +ayby+..*a,b, L. (1)
where u=(a,, a,,..., a,) and v=<bb,,..., b, >
Sol. We know that R" is a vector space over R. Now we shall show that the product defined in
(1) satisfies all the properties of an inner-product.
(i) Positive definiteness : We have for all u € R".
<u,u>=a;a +...+ a,a,
= al2 +...-i-an2 >0 if u=z0,
and it is zero ifand ifa; = a, =..=a, =0, ie. u=0.
(i) Symmetry : By the definition of product given in (1), we have
<u,v>=a b, +.+a,b,
=bya, +..+ b, a, [multiplicationis commutative in R]
=<y, u>
<y,v>=<vy,u>forall u,veR"
(iii) Linearity : Let u = (a,..., a,), v=(by,..., b,) and w= (cy,..., c,) be n " and a, € R.
Then <au+tBv,w>=(aa +Bby)c, +.+(0a,+pb,)c,
= [(aa)) ¢y t...+ (0a,) ¢, ]+ [(Bby) ¢, +..+(Bb,) ¢,]
=a(a ¢t ta,c)+B b ct.+bec,)
=oa<u,w>+pB<v,w>.
Hence R" is a real inner-product space for the product defined by (1).
The product defined by (1) is called the usual or standard inner product.
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Ex.2. If u=(a,, ay) v=_(by, by € R, then
<u,v>=ab-a,by—a;by+*4a,b, .. (1)
defines an inner-product.
Sol. We know that R? is a vector space over R. We shall now show that the product defined
above satisfies all the properties of an inner-product.
(i) Positive definiteness : For any u = (a,, a,) € R?, we have
<u, u>=alal—azal—alaz+4azaz2

-, 2 2

=(a;-a)*+3a> L )
Now (2) is a sum of two non-negative real numbers. Therefore it is> 0. Thus <u, u>>0
Also <u,u>=0
= (al—a2)2+3a22=0
= (a,-a,)*=0,3a,2=0
= a;—a,=0,a,=0
= a;=0,a,=0,<u=0

(i) Symmetry : We have
<u,v>=a;b,-a,by—a;b,*4a,b,
=bay—bya;—bay,+4b,b,
[By commutativity of multiplication in R]
=<u,v>
(éii) Linearity : For any u = (a,, a,), v= (b, by), w= (¢}, ¢;) in R? and a, B € R, we have
<out+Bv,w>=(aa,t b)) c;—(aayt Bb,) c;— (aa,+ b)) c,
+ 4(aayt Bb,) ¢, [From (1)]
= (aa ¢ — 0a,c;— aa ¢, +4 aa, ¢,)
+ (Bbic; — Bbyc;— Bbycy T4 Bb, cy)
= o (a;c; —ayc1—aycy + ay ¢p) + B (bycy — byey— by +4by ¢y)
=a<u,w>+p<v,w>. [From (1)]
Hence R? the product defined in (1) is an inner-product on R2. Also with respect to this inner
product R? is an inner-product space.
Ex.3. Show that < u, v> = a, b, + a, b, — ay by is not an inner-product on R3 where
u=(a, ay, ay) and v=(by, b,, by).
Sol. Let u = (3,4, 5) # 0. Then
<u,v>=3-3+4-4-5.5=0
and so the positive definiteness property of an inner product is not satisfied.
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Ex.4. Show that <u, v> = a, b; a, b, is not an inner-product on R? where u = (a, a,),

v=(by, by).
Sol. Let a =2 and u=(1, 3), v=(1, 1). Then
au=(2,6)
and we have <wu,v>=1311=3
and <auv>=2-6-1-1=12.

Thus o <u, v>=2-3=61is not equal to < o u, v> and so, the linearity property of an inner

product is not satisfied.

13.3 Norm of a vector

Norm : Let V' be an inner-product space. Then any v € V, the non-negative square root

\J<v,v> is called the norm or the length of the vector v and is denoted as

v =<v,v>
If ||v|=1, forv e V,thenvis called a unit vector.
Ex.5. Find || v || using the usual inner product in R%, where v = (3, 4)
Sol. | v|?=<v,v>=<(3,4),(3,4)>=3-3+4-4=9+16=25Hence || v| =5.
Theorem 1. [f Vis an inner-product space and v € V, then
(i)||v]|20:and || v|=0ifand anyifv=10
@) [fav|=lallv]

Proof. (i) We have

[v[=<v,v> [by def. of norm]
= [v[P=<v,v>
= [v]?=0 [ <y v>20]
= [vI=0

Also<vy v>=0iffv=0
|vIF=0iff v=0 ie |[v|=0 iff v=0.

(i) We have
lav|?=<avav> [By def. of norm]
=a<yav> [by linearly properly]
=oa<yv>
= o || v?
Hence [avi=[allv].

1
Note : If v is any nonzero vector of an inner product space V, then H vV is a unit in V.
v
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1
We have || v || # 0 because v # 0 Therefore H vel.
v

oo G )l
AT, IV

1 1 2
Lt

Therefore S and thus S is a unit vector.
| v] | v]

For example if v= (2, 1, —1) is a vector in R? with standard inner-product, then
[ =} =T+ =6
1 ) 2 1 -1
Therefore ﬁ(za 1, - 1) Le. (%’ﬁ’ﬁ] is a unit vector.
Now we shall prove an elementary but familiar result about real quadratic equations.
Lemma : If a, b, ¢ € R such that a > 0 and f () = at*> + bt + ¢ > 0 for all real numbers ¢,

then b2 < 4ac.

Proof. We have fO=at*+bt+c
=l (a2t2 + abt + ac)
a
1, b b b
=—|(at) +2(at)=+——-—+ac
a( ) ( )2 4 4 }

Since ar> + bt + ¢ >0 forallz € R.

2
Thus MZO
—4a
1 2 2
- E(4ac—b )ZO = b*<4ac (ra>0)

13.4 The Schwartz inequality

Theorem 2. Let V be an inner-product space. Then for arbitrary vectors u, v € V, we have
| <wu,v>[<[ullllv].
Proof. If either u = 0 or v =0 i.e. either || u || or || v || is zero, then both <u, v> =0 and

|l u|l]] v|| =0 so the theorem is true.
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Now let u # 0, Then || u || > 0. Then for any scalar . € R, we have

<ou+tv,outv>=0 [By positive definiteness]
= <ou,ou>t<ou,v>+<you>+<y,v>2>0
= 0L2<u,u>+a<u,v>+oc<v,u>+<v,v>20
= o llulP+2a<u,v>+|v|?>0

Since o2 || u ||* + 20 < u,v > +|| v ||? is a quadratic expression in o with || u |2 > 0 as coeffi-
cient of a2, therefore by lemma, we have
4(<uv>)<4lul? v
= (Su v <lul?| v
= | <u, v <[ull[v]
Corollary : For any real numbers x;, x,, y; and y,

2 9 1/2 2 9 1/2
X3 T x| < (x1 +xz) (Jﬁ +yz) :

Proof. We know that R? is an inner-product space with respect to standard inner-product. There-
fore by Schwarz inequality | <u, v>|<| u|| || v| for allu, v € R?

) SN U N 14
Takmgu=(x1,x2) andv=(y1,y2), we get |x1 Y +tx 0, | S(xl +x2) (y1 +y2)

13.5 Triangle inequality

Theorem 3. For any two vector u and v in an inner-product space V,
fu+vi<fulllv]
Proof. We have
lu+v|P=<u+v,u+v>
=<y u>+2<u,v>+<yy >
[By using linearity and symmetry]
=l ulP+2<uv>+|vIE<[ulF+2 lull [|v]+]v]?
[By Schwartz inequality]
[+ v E=Cllull || v])?
Taking sequence root of both the sides, we get ||u + v | <[ u|| || V]
Theorem 4. For any two vectors u and v in an inner-product space V,
[l =MVl <lfu—v].
Proof. Let | u||=||(u—v)+v | <||u—v| +]| v|, by triangle inequality.
= full=lvi<fu=>i .. (1
Interchanging u and v in the above inequality, we get
[vii=lull<lv-ul=]E1) @-v)|
=l llu=vii=llu-v]|
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= —(Mull=tvib<ffe=vi— 2)
From (1) and (2), we have
E(lull=llvID<llu—-v]
Hence H|M||—||V|HS||U—V||
Theorem 5. Let V be an inner-product space. Prove that for any two vector v, u € V,
()| u+v|*—|u-v]|*=4<u,v>itis known as polarization identity, and
Gi) |u+v|P+]u—v|2=2(u|?+]|v]|>, it is parallelogram law.
Proof. We have ||u+v|?=<u+v,u+v>

=<u,u>+<u,v>+<v,u>+<v,v>

=<y, u>+2<uv>+<y,v> [ <u,v>=<v,u>]
=ulP+2<uv>+vI>2 L (1)
and lutv|P=<u—v,u—v>

=<u,u>+<u’—v>+<—v’u>+<—v,—v>
=<u,u>—<u,v>—<v’u>+(—])2<v’v>
=ulP-2<wv>+vI*> L (2)
From (1) and (2), we get
Nlu+v|?P=||u—v|*=4<u,v>and
futvP+lu—vIP=2(ul?+]v]*)
Hence the theorem.

Self-learning exercise—1

1. Expand :
(1) <u,vy+tv,> (i) <u, kv > (iii)) <u+tvu—v>

2. Ifu=(1,2,4),v=(2,-3,5),w=(4,2,-3) € R3 Then with respect to the usual inner-product
in R3, find
(i) u-v (i)(u+v)-w (iit) || u || @) lu+v]

13.6 Orthogonality

In this section, we shall define the angle between two nonzero vectors of an inner-product space

and orthogonal vectors.

By the Schwartz inequality, we have

e vy
[ullvl

It follows that there exists a unique 0 € [0, 7] such that cos 6 = M Thus 0 is called the

[l

angle between two nonzero vectors  and v, and thus
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‘1M 0<0<m

2
[l v

Ex.6. Find cos 0 for the angle 0 between u= (5, 1) and v = (-2, 3) in Euclidean space R>.

0 =cos

In which quadrant does 0 lie ?
Sol. We have

<u,v>=-10+3=-7,|u|?=25+1=26, || v|*=4+9=13. Thus

(uvy 1 T
[v] Vi3v26 1342

Since 6 is negative, O lies in the second quadrant.

cos 0 :”

u

Orthogonal vectors :
Let 7" be an inner-product space and u, v € V. Then u is said to be orthogonal to v if
<u,v>=0

If u 1s orthogonal to v, then we write # L v. The symmetry of the inner-product implies that
whenever u is orthogonal to v, then v is orthogonal to u, i.e., if u L v, then v | u. Further every vector
u € Vis orthogonal to zero vector, since < u, 0 > = 0. And, obviously zero vector is the only vector
which is orthogonal to itself.

A vector u is perpendicular to a subspace S of an inner-product space Vif forallv € S

<u,v>=0.
Orthogonal subspace :
Two subspaces S| and S, of an inner-product space V are said to be orthogonal if for all u €

S, v eS,, <u,v>=0.

Orthogonal set :

A set of vectors S in an inner-product space V is said to be an orthogonal set, if any two
distinct vectors in it are orthogonal.

If S'is also a basis of ¥, then it is called an orthogonal basis of the inner-product space V.

Theorem 6. Any orthogonal set of nonzero vectors in an inner-product space is linearly
independent.

Proof. Let V' be an inner product space and S be an orthogonal set in V. Let S} = {v,,..., v, }
be a finite subset of S. Suppose for scalars o), a, ... o, In R,

apvyto,v,t.ta v, =0
Taking the inner-product of both sides with v, and using the bilinear properties of the inner-

product, we obtain.
o <V, V>t o, <v, v >tto, <v,v>=<0,v,>=0
= a;p<v, v, >=0
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= a, = 0, since <v,, v; > = 0 because v, # 0.
Taking the inner-product with v,,..., v, in turn, we have a,, = o3 = ... a,, = 0, which implies that
the set S, is linearly independent. Thus every finite subset of S is linearly independent. Hence S is linearly

independent.
Orthogonal complement of a vector :

Let ¥ be an inner-product space and u € V, then the set of all vectors orthogonal to u in V'is
called the orthogonal complement of  and is denoted by u.

Thus ut={veV|<u v>=0}

The symbol ““ wl " is usually read as “ u perpendicular.

It is easy to see that u- is a subspace of V.
Orthogonal complement of a set :

Let S+ be a subspace of an inner-product space V. Then orthogonal complement of S is de-
noted by ST and is defined to be is the set of all vectors in ¥ which are orthogonal to each vector in S.

Thus ST+ ={ve V|<u v>=0forallu € S}

Theorem 7. If' S is a subspace of an inner product space V, then so is St

Proof. Since zero vector is orthogonal to every vector in S, therefore 0 € S*. Hence S is a
non-empty subset of V.

Letv, v, € S+. Then < u, v >=0,<u,v,>=0forallu €.

for any o, B € R, we have

<o FBv,u>=a<v,u>+B<vyu>
=a-0+p0=0

Therefore av, + Bv, € St for all Vi, v,y € St and all o, BeR.

Hence S* is a subspace of V.

Note that § N S+ = {0}, for if u € S~ S, it must be self orthogonal, i.e. < u, u>= 0, which
implies that u = 0.

Orthogonal complement of an orthogonal complement : If S is a subset of an inner product
space ¥, then S is subspace of V. The set of all vectors in ¥ which are orthogonal to each vector of S
is called orthogonal complement of an orthogonal complement and is denoted by S*+. Thus

SJ_J_={VEV‘<V,L{ >=Of0rallueSL} .

Obviousely S+ is a subspace of  and S < S-1.
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13.7 Pythagoras theorem

Theorem 8. Let V be an inner-product space, and u, v, € V be orthogonal to each other.
Then

lu+v|?=]|ul|?+]| v]|> More generally, Let {vi» vy ... v, } be a set of vector in V such
that they are pairwise orthogonal, then

n 2 B n 2
2| =2
i=1 i=1

Proof. We have
lu+v|P=<u+v,utv>
=<y, u>+<u,v>+<v,u>+<vy,v>
=[lulP+2<u,v>+[v|? [ <u,v>=<v,u>]

=|ul?+]|v|* since <u,v>=0asuLv.

2 n n
= Z Vis Z Vi
i=1 i=1

n

n
Further, ‘ z Vi
i=1

I
M:

<Vi’vj> :Z(vi,vi>, since <vi’ Vj>:0,i¢j
i=1

—_

i=l j=

n
2
=2 vl
i=1
Note that if B = {v,, v,,..., v, } is an orthogonal basis of an inner product space V, then any
vector u € V can be expressed as
u=ayvyta, v+t +to, v, L (1)
for some o, a.,,...,0, € R, where each o, is obtained as
<u, vy >=<ayV +..+ oV, V>
=0 <V, VT 0, <y >t o, <V, V>
=0y <v, V>, since=<vl.,vj>=0, i#]

=0y | 1 ||2

_ <”3V1>
Hence 1= ” ., ”2

Similarly, we obtain a, = ﬁ”: Vﬁ2> v, = ﬁl: vT|2>
2 n

Hence expression (1) can also be written as u



13.8 Orthonormal set

Orthonormal set :

Let V be an inner-product space. An orthonormal set of vectors in V'is any set {v,,...,v, }
satisfying conditions :

@vlI=L1<i<m, ie <v,v,>=1

(ii)<vl.,vj>=0,i;tj

i.e. an orthogonal set of vectors in 7 is an orthonormal set if each vector is of unit length.

Orthonormal basis :

A basis {vl, vz,...,vn} of V' is said to be orthonormal basis if we have

<v, vj>=6ijf0r 1<i,j<n.

Theorem 9. Every orthonormal set of vectors is a linearly independent set in an inner-

product space.

Proof : Let {v,, v,,..., v, } be an orthonormal set in an inner product space V.

Suppose z a;v; =0, for o, eR
i=1

Taking the inner product of both sides with each Vp 1 <j < m, we obtain

<Z o; vl-,vj>:< 0,vj >=0

i=l1

= z o; <v,v; >=0 [By linearity property]
i=1

= 2 %8, =0
i=1

= o = 0, for eachj=1,2,..,m

Hence the orthonormal set {v,, v,,..., v, } is linearly independent.
Ex.7. The set of unit vectors {e|, e,,..., e,} in R" is an orthonormal set, where the inner

product is given by

n
<u,v> :Zai bi
i=l1

for vector u=(a, ay,..., a,),v=_(by, by,..., b,) in R".
This set of unit vectors also form an orthonormal basis of R”, with respect to the above inner
product defined in R".
Ex.8. Let {v|, v,,..., v} be an orthogonal basis of an inner product space V. Then the set
{ei}:;l is an orthonormal basis of V, where for each i, 1 <i<n

Vi

v l

¢;
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Theorem 10. [f'S = {v|, v,,..., v, } is an orthonormal set in an inner product space V.

Then for any vector v € V, the vector

n
u :V_Z v, <v,v; >

i=1

is orthogonal to each of the vectors vy, ..., v, and consequently, to the subspace spanned by S.

Proof : For any Vs 1 <j <n,we have

n
<u, V]-> :< V—z V; <V,Vl- >,Vj >
- i=l1

n
=<V Y > <V > <Ly, >

i=1
n

=<V,v; >—z v <w,v; >
i=1

=<v,vj>—<v,vj>=0 ..... (1)
Hence u is orthogonal to each Vi 1<j<n,

To show that u is orthogonal to the subspace [S], let w € [S]. Then there exist a, o, ..., o, in
R such that

n
w=Y ay,

i=1

Now <u, w> =<uz a; Vi> =D o <u,;>=0 [From (11)]

i=1 i=1
Hence u is orthogonal to the subspace [S], spanned by S.
The proves the theorem.

Theorem 11. If B = {uy, u,,..., u,} be an orthonormal basis of an inner product space V

and v € V be any arbitrary vector. Then the coordinates of v relative to the basis B of V are

<vu;>i=1,2,..,nand
n
2
w2 =22 1{ v )]
i=1

n
Proof : Let v=) o u;,
j=1

where o € F are coordinates of v € Vrelative to the basis B = {u,, u,,..., u,,} of V.
Now fori, 1 <i<n

n
=
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—

Thus coordinates of v relative to B are,
o =<y, u; >, 0c2=<v, U, >, ocn=<v, un>.

Further, |v|F=<v,v>

n

=<zl @Y, o uj>

i=1

n n
=2, o <t >

i=1 j=1

- Z o 0 8y [ B is an orthonormal basis]

Self-learning exercise-2

[

. If u is orthogonal to every v € V, then u must be ......... .

N

. Suppose u and v are non-zero in V. Then « and v are orthogonal if ad only if they are ........ .

w

. Whether the following set S of vectors in R3 is orthogonal ?
S={u;=(1,2, 1), uy,=(2,1,-4), u;=(3,-2, 1)}.

4. The .......... vector is the only vector which is orthogonal to itself.

N

. If oo and [ are orthogonal unit vectors (that is, (o, B) is an orthonormal set), what is the distance
between o and 3 ?

6. Find the norm of'the vector v = (1, -2, 5). Also normalise this vector.

13.9 Gram-Schmidt orthogonalization process

We now proceed to give an inductive procedure for constructing an orthonormal basis from a

given set of basis vectors of an inner product space. This procedure is known as the Gram-

Schmidt orthogonalization process.

Theorem 12. Every finite dimensional inner product space has an orthonormal basis.

Proof : Let V'be an n-dimensional inner product space and let B = {v,....... , v} be a basis of
V. From this basis we shall construct an orthonormal set of  vectors. This set is linearly independent.

Therefore the basis which we shall construct would be an orthonormal basis of V.
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We seek n vectors uy,....., u, each of length 1 such that i = j. <u,, ;> = 0. In fact we shall
finally produce them in the following form : u; will be a multiple of v,; u, will be in the linear span of v,
and v, ; u5 in the linear span of v, v, and v; and more generally ; u, in the linear span of v, v,,..., v;.

Since B is a basis of V, it is linearly independent, and so v; # 0 for 1 <i<n.

v
Let u, =7 so that up=0and | u ||=1.

|| Vi

u, is in the linear span of v; and {u,} forms an orthonormal set in V.

Let wy = v, —u; <v,, u; >, w, # 0 because if w, = 0 then v, must be a linear combination of

v}, which is a contradiction since these are basis vectors.

w
So let u, = ”—2 , 80 that || u, || = 1 and it is in the linear span of v, and v,.
W,

Als < W u
0 <U,, Uy >= !
7l [[wy |l
1
1w, ||
1w, ||
1
1w, ||

=0 since |u|=1
Hence {u,, u,} is an orthonormal set in V.
We continue this process and suppose we have constructed an orthonormal set {u, u,, ..., u,.},

r < n of vectors such that these are in the linear span of v, v,, ..., v,.

Let wr+1=vr+1—2ui<vr+1,ui>.
i=1

By theorem 10, we can show that w,.,, is orthogonal to eachu;, i=1, 2, ..., r.

Also w,, # 0 for w,, | = 0 implies that {v|, v,, ..., v} is linearly independent which is a
contradiction.
Wil
So let Uy =— so that =1.
w0 ]

Further u, | # u,, i = 1, 2,..., r. For otherwise v, ; would be a linear combination of
Vi Vaserns V-

Thus inductively, we can construct an orthonormal set {u,, u,....., u,} in V. Since an orthonor-
mal set is always linearly independent and dim V' = n, hence B = {u,, u,,..., u,} forms an orthonormal
basis of the inner product space V.

We will now illustrate the construction used in this theorem by the following example.
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Ex.2. Apply the Gram-Schmidt process to the vectors v; = (1, 0, 1), v, = (1, 0, — 1),

v3=(0, 3, 4) to obtain an orthonormal basis for R3 with the standard inner product.

Sol. We have v P=<v,v>=1-1+0-0+1-1=2
% 1 1
Let VvV = 1 = — 10 —(_ _j
TR A D WA
Now let Wy =Vy — Uy <Vy, Uy>
Si < > =1 1+00+(_1j 0
ince Vo, > =1-—=+0- — |=
2 U 2 2
Therefore Wy =Vy—u; -0 =(1,0,-1)
= ||w2||=\/<w2,w2>=\/1-1+0-O+(—1)(—1)=\/5
w 1
Let U, =—2— ( j
T I W R
Further let W3 = vy — Uy <V Up> — Uy < V3, Uy >
1
we have, <v,, u,>=0- +3-0+4- —
30 4] \/5 \/— 2\/_
—0—L43.044. 2
and <V, Uy = 'E‘F U+ E - 22
Therefore w, =(0,3,4 2\/_ ( j \/5
=034 0 ] o
:(03334)_(250’2)—'—(290’_2)
=(0,3,0)
= | wy || =< wy,wy >=~0-0+3-3+0-0=3
w
Let u, =——=(0,1,0
S sl (010)
Thus {uy, u,, us,}
where ( j (L 0,_—1] and
V272 272
uy=(0,1,0)

is the required orthonormal basis for R3.
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13.10

Summary

In this unit we have studied the concept of length or norm of a vector, scalar valued function

known as inner product and various properties of real inner product space. We also studied some im-

portant theorems, i.e. Schwartz inequality and Gram-Schmidt orthogonalization process.

13.11

Answers self-learning exercises

Self learning exercise-1

L @)<u,v>+<u,v,> (i) k<u,v>  (iii) || u |~ v|?
2. ()16 (i) — 17 (iii) 21 (iv) 91
Self learning exercise-2
1. zero vector 2. perpendicular 3.yesasuy - uy =0,u; - uy3=0,uy - uy; =0
4. zero 5.d(o,B)=|la—PBl| =2
6. ||v|| \/ﬁ normalised vector [ ! 2 5 j
. Vil= 5 = 5 9
J30°430 430
13.12 Exercises
1. Define an inner product and an inner product space.

Let V' be a vector space of real continuous functions on the intervala < ¢ < b. Show that the

following is an inner product on V;

<f,g>:'lf () g(t)dr.

Let V' (R) be a vector space of polynomials with inner product defined by

1
<f,g>:j (1) g(t)dr-
0
Inf(x)=x*+x—-4,g(x)=x—1, then find <f, g>and || g |-

7 1
Ans. < ,g>=— =—
[ f.g 4 gl 3]

If o, B be vectors in a real inner product space such that

Fol[=1BIl
Then prove that (o + B, a—B) =0
Prove that # and v are orthogonal in an inner product space V' if and only if
lu=vIF=llul?+]vI?
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10.

Which of the following defines inner products in V,, (R) ?

() <u,v>=X; 3=V =X +5x%p,

(@) <u,v>=2y+ Xy +x 7, T X,

(D) <u,v>=x1Y;—=2X1 Y, = 2%, ¥, T 5%, 1, [Assume u = < x|, x, >, v=<y, 1, >]
[Ans. (i), (i) are innerproducts and (7ii) is not|

If in an inner product space ||u+ v ||=| u || + || v ||, then prove that the vectors u and v are

linearly dependent.

It u and v are vectors in a real inner product space and if u + v is orthogonal to u — v, then

prove that || u || =] v||.

Prove that two vectors u and v in a real inner product space are orthogonal if and only if

lu+v = lul?+[ v

Let V be an inner product space, and u, v be vectors in V. Show that u = v if and only if

<u,w>=<vy,w>foreverywin V.

oo
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UNIT 14 : Real Inner Product Space-I1

Structure of the Unit

14.0  Objectives

14.1  Introduction

14.2  Bessel’s inequality

14.3  Complete orthonormal set

14.4  Direct sum

14.5 Adjoint of a linear transformation

14.6  Self adjoint linear transformation and matrices
14.7  Summary

14.8  Answers to self-learning exercises

14.9  Exercises

14.0 Objectives

After reading this unit we will be able to understand results on real inner-product spaces related
to orthonormal sets, orthonormal complete sets, adjoint of a linear transformation, self-adjoint linear trans-

formation and the corresponding matrix

14.1 Introduction

This unit is a continuation of the previous unit on real inner product spaces. It introduces some
important theorems, e.g. Bessel’s inequality, Parseval’s identity and their applications. In this unit we shall
study direct sum and their properties, adjoint of a linear transformation, self-adjoint linear transforma-

tion and their matrices.

14.2 Bessel’s inequality

Theorem 1. If {u,, u,, ..., u,} is any finite orthonormal set in an inner product space V

and v is any vector in V, then

1(v,u; Y < [v]P-
i=l1

And equality holds if and only if v is in the subspace generated by {uy, u,, ..., u,}.
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Proof : Given {u,, u,, ..., u,} is a finite orthonormal set.

= <u, u;> =9,

) - - 0 i=zj
ie. Uy U 1 T (D)

Now, consider the vector

where 81.] is kronecker’s dalta

n
W=v=" u <v,u; >
i=1
Evidently wel.
So | wl2=<w,w>
n

n
=(v=2 w;<vou; > v= u;<vu;>
P =t

n
=<V,Y> = <y ><u,v>
-1

n
=Y <vou;><vu;>
J=1

n n
DD <vaup><vu > <upu; >
ol -l

n n
2 2 2
=i =20 [<vu > =20 [<vu; >
i=1 J=1

n n
+Y D <vau><vu; >3
P

n n
2 2
=[vIF =20 1<y >F =3 [<vou; >

i=1 j=1

n
2
+ Z |<wv, u; > | [on summing over i and using (1)]
=

n
2 2
=vIFF =2 [<vu; >
i=1

Since || w? 2, 0, for all w € ¥, we have

n

IvIP =2 [<v,u; > 20
i=1

n

2 2

Hence z |<v,u; >[" <[ v]|
i1
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Further, if the equality holds, then

n

> l<vu > =|v|?
i=1

the equality holds iff | wl*=0
= w=10
= V=Y u<v,u >
i=1

& v is a linear combination of vector uy, u,, ..., u,,

= v is in the subspace generated by u, u,, ..., u,.
Cor. If {uy, u,, ..., u,} is any finite orthogonal set of nonzero vectors in an inner product

space Vand v € V, then

u, . .
Proof: Let v, =——, i=1,2, ..., n. Then {v,, ..., v } is a finite orthonormal set of nonzero
l I : "

|| u

i

vectors in an inner product space V. So by theorem 1, we have

n
2 2
Do l<vaSP < vk (1)
i1
uj
Now <v,v;>={V,
2 |l
! < >
[ L= ()
Using (2) in (1), we have
C 1 2 2
> = <vu > <]
i Nl
2o <v,u > 2
Hence > —=— = < vl
P (]

14.3 Complete orthonormal set

An orthonormal set is said to be complete if it is not contained in any larger orthonormal set.
Thus an orthonormal set {v,} in a inner product space V'is complete if it is not possible to ad-

join a vector v to {v;} in such a way that {v,, v} is an orthonormal set which properly contains {v}.
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Theorem 2. (Parsevals identity) If A = {u,, u,, ..., u,} is any orthonormal set in any fi-
nite dimensional inner product space V, then the following are equivalent :

(i) orthonormal set A is complete.

(i) ifueVand<u u;>=0for1<i<n, thenu=0

(iii) <A > =V, that is A generates V.

n
(iv) ifu € Vithen uzz <u,u; >u;
i=1

v) ifu, vel then

n
<u,v>= z <u,u; ><v,u; > (Parseval’s identity)
i=1

(i) ifu eV then =Y |<uu, >
i=1
Proof : We shall prove the implications in following way :
(i) = (i) = (iii) = (iv) = (v) = (vi) = (i)
(i) = (ii) Let orthonormal set 4 = {uy, u, ..., u,} be complete in V. So that there is no non-
zerou € Vsuchthatu Lu;, 1 < i< nand <u,u>=11ie | u|=1. Moreover {uy, u,, ..., u,} is
not an orthonormal set.

Let u € V'be arbitrary vector such that <u, u;>=0, 1 < i < n. We have to show that u = 0.

u
Let if possible u # 0, then _” T exists and we have

u .
<u,ui>=0:ului:>||—”iui, 1<i<n
u

u
Ao ‘_n ||‘=1

u

u .

= {uy, u,, ..., u,, —— } is an orthonormal set.

[[u]]

= A is not complete, which is a contradiction.

So u=20.

(i) = (iii) Let u € Vand <v,u;>=0,1< i< n, then u = 0. We shall show that 4
generates V, i.e. each vector in V' can be expressed as a linear combination of vectors of 4. Now take
any arbitrary vector v € V then the vector

n
w =v—z u; <v,u; >
i=1
is orthogonal to each u, i.e. <w,u;>=0,1< i< n.
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So w=0 by (i)

n
Consequently V= z u, <v,u; >, and <A4>=V.
i=1

(iii) = (iv) Let u € V, then by (iii), u can be expressed as a linear combination of vector of 4

Le.

N

Now <u, uj> = O Ui, U
i=1
n
=D o <upu;>
i=1
n
=z a;d; =0, 1<i<n

for {uy, u,, ..., u,} is orthonormal

1 if i=j
= <ui,uj>:6ij: 0 if i%)

n
Hence u=z <u,u; >u;
i=1

(iv) = (v) Suppose u, v € V are expressible as

n
u=>y <uu>u
-1

n
v:z <v,u;>u;
—

n

n
Thus <u,v>°= Z ”i<”’ui>’z Up<v,u; >
i=1 =1

= D <wuyup><vou;><uu;>
i J

:Z z <u,ui><v,uj>8ij
i

n
=Y <uu;><v,u >
i=1
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n
(v) = (vi) Suppose u,ve V=<u,v> =z <u,u; ><v,u; >
i=1

Let u =vin (v), we set

n
2
<u,u>=lull =Z <u,u; ><u,u; >
=1

n
Hence fulP= |<u,u; >
i=1

vi)= @ LetueV=|lul2 =Y |<uu>F L (1)
i=1

We shall show that 4 is complete.
Suppose 4 is not complete, then there is some v € V'suchthat | v|[=1andv Lu, 1< i< n.

That is, <v, u;>=0 for 1 < i < n with these values (1) becomes

ie. 1= 0, a contradiction.

Thus 4 = {u,, u,, ..., u,} is a complete orthonormal set in V.

14.4 Direct sum

Let V'be a finite dimensional inner product space and wy, w,, ..., w, are subspaces of V, then V

is called direct sum of wy, w,, ..., w, if every vector v € V' can be uniquely expressed as
v=witwyt . tw,

where w; € Wi, w, e W,, ..., w, € W,

The direct sum is denoted by

V=W, OW,0..0W,

Theorem 3. Let V be a finite dimensional inner product space and W be its subspace.
Then V is direct sum of W and W™

Symbolically V=weo® W-

OR

Let V be a finite dimensional inner product space and W be its subspace. Then prove that
every vector v € V can be uniquely expressed as v=v, + v, where v| € W and v, € W™

Proof : Since W is a subspace of finite dimensional inner product space V, therefore W itself is a
finite dimensional inner product space (its inner product being that of V restricted to /). Thus it has an

orthonormal basis {u, u,, ..., u, }
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n
Let v € V. Then the vector w= V—Z <v,u; > is orthogonal to each u,, for 1 < i < m and
i=1

therefore it is orthogonal to the subspace W.

m
Clearly z u; <v,u; > €W [being linear combination of basis vector]
i=1

Thus for each v € V, we have
m
VEwE Y u<v,u; >
i=1
i.e. v is the sum of a vector of W and a vector of W™-.
Thus V=w+w*+ (1)
Further, if u € W W2, then
ueW and ue W

= <u,u>=0=u=0
Hence wow=¢0y (2)
(1) and (2) implies that

V=weo wt

Corollary. If 7 is any subspace of a finite dimensional inner product space. Then
dim "= dim V' — dim W.
When we have V' = W @ W*, then each vector v € V has a unique representation as
v=v, +v, for same v, € Wand v, € W In such a case v, and v, are called the orthogonal projec-
tions of v on the subspaces W and ™.

Theorem 4. [If W is any subspace of a finite dimensional inner product space V, then

(wyt=w
Proof : Since W is any subspace of V, therefore so is W*. We have
V=weo wt
= dim V= dim W+ dim #* (1)
Since W™ is a subspace of V, therefore again (W*)* is also a subspace of /" and
V=w+-e& (Wt
= dim V=dim w*+dimmw>Hy*- . (2)
(1) and (2) implies that
dmw=dmwmw-H*- . 3)
Letve W.Then<v,u>=0forallu ¢ W*
= ve (Wt [ (W) ={veV:<vu>=0vue W}]
Thus veW=vW)
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WcmwHy- L 4)
Since W and (W™*)* are subspaces of V and W < (W™*)~.
Consequently 7 is a subspace of (W*)* and dim W= dim (W*)*, therefore
W= (W
Ex.1. If W is a subspace of an inner product space R> spanned by
B, =1{(1,0,1),(,2,-2)},
then find a basis of orthogonal complement W*.
Sol. Let u; = (1,0, 1), u, = (1, 2, - 2). Clearly B, is a basis for W. Thus dim = 2.

Since dim W+ dim W4 =dim V,
therefore dim W+ =1.
Let B/=1{v} ={(a, b, c)} be basis for -,

Then it should be orthogonal to B,. Therefore we have
<upvi>=a+tc=0
and <u,, vi>=a+2b-2c=0

Solving there two equations, we set
a=-c and b= éc
2
Thus Bl' = {(—c,%c, cj} is the basis of W™

Theorem 5. Let V be a finite dimensional inner product space. If A = {u, u,, ..., u, } is an

orthonormal basis of a subspace W of 'V, and B = {v,, v,, ..., v, } is an orthonormal basis of W*.

Then {uy, ..., u,, vy, ..., v, } is an orthonormal basis of V.
Proof : Since 4 = {u,, u,, ..., u, } is an orthonormal basis of 17,
1 if i=j
<u,u,>=90; = , for1< i< n.
v o0 if i
Also B = {v|, vy, ..., v, } is an orthonormal basis of #*, so
5 1 if r=s for1 < -
<v,r, > =0, = } orlsr,s< m.
s Tol0 if res

W.w-cV=u,v. eV for 1<i<n1<r<n,

since Wr={veV:<u,v>=0vue W}
any ve W=<uv>=0vueW
= <u,v>=0 for 1<i<n

This is true for every v e W~
Thus <u,v,>=0 for 1<i<n1<r<n,
Thus {uy,u,,..., t,,V|, Vy,..., v, } is an orthonormal set of (n + m) vectors in V. It is linearly
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independent because it is orthonormal set of vectors. We have, now
dim V= dim W + dim W+
=n+m.

Therefore {u,...,,, vy,...,v,, } is an orthonormal basis of V.

14.5 Adjoint of a linear transformation

Let Vand V" be finite dimensional inner product spaces and ¢ : V' — 7’ be a linear transforma-

tion. Then a linear transformation #* : V”— V'is called adjoint of # if
<t*(v)>=<v,t(v)>forallve Vandv' — V"
Theorem 6. Ift| and t, are linear transformations of finite dimensional inner product
spaces VitoV,
then (t + ) =1* + 1™
Proof : Since ¢, : V' — V’and ¢, : V' — V"’ are linear transformations. Therefore so is
L+t VoV
Foranyv € Vand v'— V’, we have
<Vt T ) v>E<vi ()t (v) >
=<vtp(W>+<vit,(v)>
=<y* (), v>+<p*(v),v>
=<uy*() L), v>
=< *+L50)v> L (D
But <Vt T) (W) >=<({ T Lp)* ), v> L (2)
Thus from (1) and (2), we have
() =%+ 1"
Theorem 7. If ¢, and t, are linear transformations of a finite dimensional inner product
spaces V. Then
(1) L)* = 1,* 1,*.
Proof : Since ¢, : V' — Vand t, : V' — V are linear transformations. Therefore so is
Lhity: VoV
For any u, v € V, we have
<(t) 1) (). V) >= <1, (ty W), v>
=<t (u), 4,* (v)>
=<u, ,,* (4;* (v)>
=<u, (L*(ym»m> L (D

But <@t )W, v=<u,(t, ) M> )
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So from (1) and (2), we have
(tl tz)* = tz* tl*.
Adjoint operator :
Let V' be a finite dimensional inner product space and ¢ be a linear operator on V. Then a linear
operator * on V'is said to be an adjoint operator of ¢ if
<t(u),v>=<u,t*(v)> foral wu,vel.
Recall that a linear transformationz : /'— V'is called a linear operator, and we say ¢ is a linear
operator on V.
Theorem 8. Let V be a finite dimensional inner product space. Let t : V — V be a linear
transformation then there exists a unique linear transformation
then t*: V— Vsuch that
<t(u),v>=<u,t*(v)>, forall u,velV

Proof : Let {b|, b,, ..., b, } be an orthonormal basis of V. For v € V, choose

n

vy =Y <t(b),v>b

i=1

n

<t(bl.),v>bl.>

then <b, t*(v)>= <bk,
i1

=Y <t(b),v><b,b >

Now for any u € V, where

A
~
~~
<
:-/
<
V
Il Il
T /(\;\
L = N
I 3
£ -
~ Q
= <
S >
< <
T~ \/

=z o; <b,t*(v)> [by (1)]
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=<z o b, t*(v)>

i=1
=<u, t* (v)>

Thus #* exists.
To show that #* is unique, if possible let there be #,* and #,* such that

<t(u),v>=<u, t;* (v)>
and <t(u),v>=<u,t,*(v)> forall u,vel.
This implies that
<u, (* (v) = <u, 5,* (v)>=0
<u, t;*(v) —t,* (v)>=0, forall uel.
<HFO) —L*W, H*F (V) -6, (v)>=0 forall u=1*()-1,* ()
Hn*(V)-6,*(v) =0, forall vel.

* — *
n"=n

uu ul

Finally, to show that #* is linear, let u, v, w € Vand a, 3 € R.
<u, t* (v + Pw)=<t(u), av+ Pw>

=a<t(u),v>+p<t(u),w>
=a<u, t*(v)>+B<u, t*(w)>
=<u,ot* (v)>+<u,p*(w)>
=<u,at* (V) +pBr*(w)>, forall uel.

Thus Fav+Pwy=ar*(v)+pBr*w), foral u,vel.

It follows that #* is linear.

Theorem 9. It ¢ is a linear map on an inner product space V, then t = () (zero map) if and

onlyif <t(u),v>=0, forallu,veV.
Proof : Let = () (zero map), then

<(t(uw),v)>=< 0 (u),v>=<0,v>=0

conversely, let <t(u),v>=0 forall wu,vel.
Then <t(u),t(u)>=0 for v=t(u)

= t(uy=0 forall uel.
N t=0

14.6 Self-adjoint linear transformation and matrices

Let Vand V” be finite dimensional inner product spaces. A linear transformation¢: V— V'
(linear operator on V) is said to be self-adjoint if
1= r*
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ie. <t(w),v>=<u,t(v)> forall uvel.

A self-adjoint operator is called symmetric or Hermitian according as the space is real inner
product space ¥ (R) or unitary space V' (C).

The identity transformation and the null transformation are symmetric transformations.

A square matrix 4 = [aij] over R is said to be symmetric if A7 = A. A linear transformation
t: V— V, where V is a finite dimensional real inner product space is called skew-symmetric if
t* = —t. It is called skew-Hermitian if the space is unitary V' (C).

A square matrix 4 = [al.j] over R is said to be skew-symmetric if 47 =— 4.

If ¢ is a linear operator on a unitary space V' (C ), such that # #* = ¢* ¢, then ¢ is called normal
operator.

Theorem 10. A linear transformation t from a finite dimensional inner product space V
into itself is symmetric if and only if its matrix A = [al.j] relative to some orthonormal basis B of V
is symmetric.

Proof : Let B = {u, u,, ..., u,} be an orthonormal basis of V. Since 4 = [al.j] is the matrix of ¢

relative to basis B, therefore

n
k=1

First suppose that ¢ : V'— V'is a symmetric transformation. Then we have

<t(u),v>=<u,t(u)> forall u,vel.

= <t(u), uj>=<ui,z‘(uj)> for i,j=12,.. n
Since B is the basis of V.
n n
= D U Uy ) = 3 Ay Uk
k=1 k=1
n n
= z akl<uk,u]>=z akj<uluk>
k=1 k=1
n n
= D @y =2, ay
k=1 k=1
= a;= ay forall i,;
= AT=4

= A is symmetric.
Conversely, let 4 = [al.j] be a symmetric matrix. Then

AT=4
= a;=ag; forall i,j=1,2,.. n

Now, since A4 is the matrix corresponding to the linear transformation ¢ : V' — V relative to the

basis B, therefore, we have
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/\
=
M=
[
&
<
3
-

and <upt(u) >~
n
= ak~ < ui, uk >
k=1
n
= ak] Slk
k=1
Thus, <t(u), u; >=<u, t(uj) > forall i,;=1,2,..,n

Since B = {uy, u,, ..., u, } is the basis of V', hence
<t(u),v>=<u,t(v)> foral wu,velV

It follows that ¢ is symmetric in V.

Theorem 11. A linear transformation t from a finite dimensional inner-product space V
to itself is skew symmetric iff they commute.

Proof : Let ¢, and 7, be two self-adjoint transformations on an inner-product space V.

Let the product ¢, ¢, be a self-adjoint transformation. Then

() =41

= L*u*=tt,

= Ly =41,

= t, and 1, commute.

Conversely suppose that 7, and ¢, commute with each other i.e.

nhhHh=Hty
= (t )" =(t, t)*
=3 (t t,)* = t,* t,*
= (t )5 =1, 1,

= 1, 1, is a self adjoint transformation.

217



Self-learning exercise-1

[

. In an inner product space V, a set of orthogonal vectors is always linearly dependent. (T/F)

N

. In an inner product space ¥, a set of orthonormal vector is always linearly independent.  (T/F)

(]

. Orthonormal vector in an inner product space are unit vectors which are not orthogonal to each
other. (T/F)

4. Let A= {v}, v,, ..., v, } be an orthonormal basis of an inner product space V, then

<vpVv;>=... for ij=12,..n
5. If an inner product space V'is direct sum of its subspaces S and S*, then
SN S§=..
6. Let ¢ be a linear transformation on an inner product space V.
If <t(u),v>=0 forallu,velV
then t=...

More illustrative results
Theorem 12. [If M and N are subspaces of a finite dimensional inner product space V.
Then
(M + N)-=M-n N-
Proof : Anyze M+ Ny} =><zu>=0 YueM+N
<z,x+ty>=0 Vx+tyeM+N
<z,x>+<z,y>=0 where xe M,ye N
<z,x>=0=<z,y> VxeM and VyeNfor<u,v>>20V uyvelV
z is orthogonal to M and N both
zIM and zLN
zeM- and ze Nt
ze M- Nt
Thusanyz € M+ N)* =z e M-~ N+
= M+NrcMtAN- (D

Conversely, let z € M- "N*= z e Mt and z € N-

L L I I

= z is orthogonal to M and N both

— (z,x)=0=(z,y) VxeM and yeN

= <z,x>+<z,y>=0+0=0=<z,x+y>=0 Vx+tyeM+N
= Z is orthogonal to M + N

= ze (M+ N+

zeM-AN = ze M+ N)*
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= M~ANcMm+NnH- (2)
Combining (1) and (2), we get

(M +Nyt= M- A NS
Theorem 13. Let M and N are subspaces of a finite dimensional inner product space V,

then

(M + Nyt = M-+ N*

Proof : We know that
M+NE=MtAN- (D)
Since V'is finite dimensional inner product space and M, N be its subspace. Therefore we have
MH=M
NH=y )

Replacing M and N in (1) by M+ and N+ respectively, we get
(MJ_ +NJ_)J_ — MJ_J_ A NJ_J_

= M-+ NHYL=MAN using (2)
= (M +NHYHE =1~ vy
= M-+ NL= M~ Ny- using (2)

Theorem 14. Let t be a linear transformation on inner product space V. Show that
t=0=<tw),v>=0 Vuvel

Proof : Suppose ¢ is a linear transformation on an inner product space V. Suppose u, v € V.

Suppose t=0

= <t(u),v)=<0(u),v>=<0,v>=0
Conversely let <t(),v>=0 Vuvel

= <t(u),t(u)>=0, where v=t(u)
= t(w=0 vueVlV

= t=0

Theorem 15. Let V and V' be finite dimensional inner product spaces. If t be a linear
transformation from Vto V' and o is a scalar. Then

i (a)y*=at*

(i) (tM*=t

Proof : for any u, v € V, we have

(i) <(at) (u),v>=<at (u),v>

=a<t(u),v>
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=a<u,t*(v)>
=<u, at* (v)>
=<u, (@®)v> L (1)
But <(at) (w),v>=<u, (at)*v> . (2)
Thus from (1) and (2), we have
<u, (at*) v>=<u, (at)* v>

Uniqueness of adjoint

= at* = (at)*

i) -: <u,t(v)>=<t*(u),v>
Also <t*(u),v>=<u, (f)*v>
= <u,t(v)>=<u, (*)*v>
= t=(r*)*

Theorem 16. Show that if t : V — V is a self adjoint linear transformation on an inner
product space V, then s* t s is self-adjoint for every linear transformation s : V. — V. Further if s
is invertible and s* t s is self adjoint, then t is self adjoint.

Proof : Let ¢ be self adjoint so that
t=* (D
(s* t5) = 5% ¥ g**
=s*tts
=s*ts using (1)
Hence s* ¢ s is self adjoint. Again let s be invertible, so that s~ ! and (s*)~ ! exist.
Since s* ¢ 5 is self adjoint, therefore

(s*ts)*=s*ts

= §* 1R g*k = g% (s

= s*Fs=s%ts

= s* % (s D) =s*% £ (ss7 1)
= s*¥*[=s*t1

= (S*)—l §F = (s*)_l % ¢
= It*=1t

= t*=t

=

t is self adjoint.
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Theorem 17. If both t and s are self adjoint linear transformation on an inner product
space V, then ts + st is self adjoint. It both t and s are skew-adjoint, then ts — st is skew-adjoint.
Proof : Let 7 and s both the self adjoint so that
k=t s*=s. L (D
(ts + st)* = (ts)* + (st)*
= S* t* + t* S*
=st+ts
(ts + st)* =ts + st
= s + st is self adjoint. Again let 7 and s both be skew-adjoint so that
t¥=—1t, st=—g
= (ts — st)* = (ts)* — (st)*
= S* t* _ t* S*
=st—1s
=—(ts — st)
(ts — st)* =— (ts — st)
= s¥rs=s5*ts

= (ts — st) is skew-adjoint.

14.7 Summary

In this unit we have studied some important results, such as Bessel’s inequality, Parseval’s iden-
tity, and that a finite dimensional inner product is the direct sum of its subspace and its orthogomal comple-
ment. We also studied self-adjoint linear transformation between finite dimensional inner product spaces

and the results on the corresponding matrix.

14.8 Answers to self-learning exercises

Self learning exercise-1

1. false 2. true 3. false

4. 0., 5. {0} 6. zero map
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14.9

Exercises

® 2 g w»

. Let 7'be a symmetric linear transformation on an inner product space V. Show that

<T(n),a>=0<=T=0.

. If T and S are self-adjoint operators on an inner product space ¥, then 71 is self-adjoint

<= I5=S5T.

. If T'is self-adjoint operator on an inner product space V' (K), then a7 is self-adjoint, o € K <

o real

If T'is a self-adjoint linear transformation on an inner product space ¥ and if 72 (u) = 0, then
T (u)=0.

Suppose < T'(u), v>=0 for every u, v € V. Show that 7= 0

Show that 7* T and TT* are self-adjoint for any operator 7 on V.

Show that 7'+ T* is self-adjoint for any operator 7 on V.

Show that any operator 7 is the sum of a self-adjoint operator and a skew-adjoint operator.

NN
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UNIT 15 : Real Inner Product Space-I111

Structure of the Unit

15.0  Objectives

15.1  Introduction

15.2  Orthogonal linear transformation
15.3  Orthogonal matrix

15.4  Principal axis theorem

15.5 Summary

15.6  Answer to self-learning exercises

15.7 Exercises

15.0 Objectives

This unit is in continuation of the earlier units on real nner-product spaces. After reading this unit
we will be able to understand the importance of orthogonal linear transformation which preserves the
length and angle between two vectors, the corresponding orthogonal matrix and a very important resul,

known as the principal axis theorem.

15.1 Introduction

This unit introduces the concept of orthogonal linear transformation from an inner product-space
to an inner-product space, and many results based on this concept. We shall also study orthogonal ma-
trices and the theorems on orthogonal linear transformations and the orthogonal matrices. We shall also

study the results on eigenvalues of a self-adjomnt linear transformations and the principal axis theorem.

15.2 Orthogonal linear transformation

A linear transformation ¢ : ' — V"’ from an inner product space /' into an inner product space V'’
is said to orthogonal if
<t(u),t(v)>=<u,v>forall u,vel.
Theorem 1. Let V and V' be inner product spaces. Then every orthonormal linear trans-
formation t : V— V' preserves the length and angle between two vectors.
Proof. For any u, v € V' we have
<t),t(v)>=<u,v>

In particular, <t),t(w)>=<u,u>
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= 12 @) [P =1l ul?

= lt@)| =|ul| foral uel.
Thus an orthogonal linear transformation preserves the length.

If fis the angle between two vectors u and v of V, then

Cosez<u’—v>
[l v]

(£(u).1(v))

e [0

Therefore an orthogonal linear transformation preserves the angle also.

Theorem 2. Let V and V'’ be inner product spaces. Then every orthogonal linear transfor-
mation t . V — V’is a monomorphism of vector spaces.

Proof. In order to prove that ¢ : V' — V”is a monomorphism, it is sufficient to prove that
Ker (1) = {0}.

Let v € Ker (f). Thent (v) =0 € V".

Now for any u € V, we have

<u,v>=<t(u),t(v)> (- tis orthogonal)
=<t(u),0>
=0
Thusif v e Ker(f)=><u,v>=0 forall uel.
In particular, <v,v>=0=v=0
Hence veKer(t)y=>v=0
Therefore Ker (1) = {0}.

Hence ¢ is a monomorphism.

The following theorem proves that an orthogonal linear transformation carries an orthogonal list
of vectors to an orthogonal list.

Theorem 3. Let V and V'’ be inner-product spaces. If (uy, u,,...,u,) is an orthonormal list
of vectors in V. Then the list (t (u,), t (uy),..., t (u,)) is orthonormal in V', where t : V. — V' be an
orthogonal linear transformation.

Proof. Since the list (u, u,,...,u,)) is an orthonormal list in ¥, therefore
Li=j
0,i#j

<y up> =9 —{ fori,j=1,2,.n.

Since 7 is orthogonal, therefore
<t (uy, t(uj)>=<ul., u;> fori,j=1,2,..n.

Therefore (¢ (u1),..., u,,)) is an orthonormal list of vectors in V"
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Theorem 4. Let V and V' be inner-product spaces. Then a linear transformation t . V— V'’
is orthogonal if and only if
Ne@ [l =1lull foral uel.
Proof. Let £ : VV— V” be an orthogonal linear transformation. Then

<t(u),t(v)y>=<u,v>forallu,vel.

Thus <t(u),tw)y>=<u,u>
17 @) P = 1] () |
Hence ||t (u)||=1ul,forallu e V.
Conversely, let # : '— V'’ be a linear transformation such that || 7 () | =|| u || forallu € V.

Then we have to show that ¢ is an orthogonal linear transformation.

Let u, v € V. Then
[ e@+v) [ =llutv]
12 Gt v) P = u+v|?
<t(u+v),twtv)y>=<ut+v,u+v>
<t(u)+t(v),t(u)+t(v)>=<u-+v,u+v>, sincetis linear.
<t),tw)>+<t(),tW)>+2<tu),t(v)>=<u,u>+<v,v>+2<u,v>

It @) P+ e IP+2<t@),t()>=|luP+ [ vIF+2<u,v>

N 2

<t(u),t(v)y>=<uy,v>forallu,vel.
Hence ¢ is an orthogonal transformation.
Theorem 5. The composite of two orthogonal transformations, when defined, is an or-
thogonal transformation.
Proof. Let V, V"and V" be finite dimensional inner product spaces and ¢ :V—V” and s”: V' V"
be orthogonal linear transformations;
Then for any u, v € V, we have
<(sof) (u), (sot) (v)>=<st(u), st (v)>
=<t(u),t(v)> (- s is orthogonal)
=<u,v> (- t1s orthogonal)
Hence sot is an orthogonal transformation.
Theorem 6. The inverse of an orthogonal linear transformation, when defined, is an or-
thogonal transformation.
Proof. Let V be a finite dimensional inner product space and #: V' — V be an orthogonal linear
transformation. By theorem 2, ¢ is a monomorphism and hence it is an isomorphism. Therefore ¢ is in-

vertible.
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Let u, v € V, we have
= <tor''(u), tor ' (V)>=<t (), (" )>
=  <uv>=<rl@w),rlwv> (- tis orthogonal)
Hence ¢! is an orthogonal transformation.
Theorem 7. Let V be a finite dimensional inner product space. Then the set of all orthogonal
transformation on V (all automorphism of the inner-product space) is a group.
Proof. Let A (V) be the set of all automorphism of the inner-product space V. By theorem 5, for
any t,, t, € A (V), (t,0t,) € A (V). Therefore 4 (V) is closed.
Since orthogonal transformation are functions and composition of functions is always associa-
tive. Therefore, for any
t, by lbe A(V)  (toty)oty =tio(tots) L (1)
Since
<I,(u).1,(w)>=<u u> forallu € V.
Hence the identify map 7, is an orthogonal transformation. Therefore
Leda» L (2)
t € A (V)= tis an orthogonal transformation on V'
=> ¢ 1s a monomorphism from ¥ into itself [By theorem 2]
= t1s an isomorphism [ t:V>V]
= 1 V> Vexists.
Foranyu,veV
<u,v>=<trt@), et (v)>
=<t ), (et () >
=<tt), ' (v)> (- tis orthogonal)
! is orthogonal transformation.
= eamwmy L (3)
Hence 4 (V) is a group. A (V) is called orthogonal group of V.
Theorem 8. Let B = {u, u,,..., u,} be an orthonormal basis of an inner product space V.
Then a linear transformation t from V to an inner-product space V' is orthogonal if and only if
the set {t (u,), t (uy),..., t (u,)} is orthogonal in V".
Proof. First suppose that # : ”— V’is an orthogonal transformation. Then we have to prove
that {7 (u,), t (4,),...,t (u,))} 1s an orthogonal set.
Let u, v € V, then

<t(u),t(v)y>=<u,v>
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Thus for alli, j=1, 2,...,n.
<t (uy, t(uj) >=<uu;>= 61]'
Since B is an orthogonal basis of V.
Hence {7 (u;), t (uy),..., t (u,)} 1s an orthogonal set in V"
Conversely, let 7 be a linear transformation such that {z (u,), ¢ (u,),..., ¢ (u,)} is an orthogonal
set in /. Then we have to show that ¢ is an orthogonal transformation. In order to prove this it is suffi-

cient to show that || 7 (u) || = || u || for allu € V. Let u € V'be any vector, so for some o; € R, we have

n
i=1

n

= t(u) =Y o, t(u)
i=1

Now, lulP=<u u>

n n
= Z% U, Z% uj
i=1 Jj=1

n n

=2 Z“i“j<“i’“j>

=1 j=1

:Z i“i a5

=1 j=l

= z 0‘1'2 (on summing over;j) ... (1)

and 7 Gu) [P =<1 (u), £ (u) >

= z 0‘1'2 (on summing over;) ... (2)

So from (1) and (2), we have ||t (u) || = || u || for allu € V.

Hence ¢ is orthogonal.
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Theorem 9. If't : V — V is any map from an inner-product space V to itself such that

@)t (0)=0

@) [t -t [[=[lu-v]|

Then ¢ is an orthonormal linear transformation.

Proof. Using (i) and (ii), we have
[ 2@)[[=12@) =0 =]7)—2(0)]

=llu—=0]=[uf

That is, || # (u) || = || u || for allu € V.

Also, using (ii), we get

It @)=t P=lu—v[P=<u-vu—v>

=<y,u>+t<yv>-2<uy,v>

and @)=t =<t@) -t (), 1) —1(v)>

=<t(),t(w)>+<t(),t(v)>-2<t(u),t(v)>

=l t@ P+t P -2<t(),t(v)>

=JulP+IvIF-2<t(@),t(v)>

Thus form (1) and (2), we obtain

<t(u),t(v)y>=<u,v>forallu,vel.

So, ¢ preserves the inner product.

(D)

Let {uy, u,,..., u, } be an orthonormal basis of V, then by theorem 8, {z (u,),  (u,),..., t (u,)} i

an orthonormal basis too.

Let,

n
u :z o, o; €R
i=1

Then coordinates of 7 (u) are <7 (u), ¢ (u;) >,

ie.

Hence ¢ is linear.

t (u) =é<t(u),r(ui)>t(ui)
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15.3 Orthogonal matrix

A square matrix A over R is said to be orthogonal if its columns are orthonormal in the standard
inner product of R”.
Thus a square matrix 4 is orthogonal if C; Cj = 6l.j foralli j =1, 2,...,n, where C; stands for the

i column vector in R”.

n
or z Ay; Ay :Sij foralli, j=1,2,..n.
k=1

Theorem 10. Let V be a finite dimensional inner product space. Then a linear transforma-
tion t : V. — Vis orthogonal if and only if its matrix relative to an orthonormal basis is orthogo-
nal.

Proof. Let B = {u, u,,..., u,} be an orthonormal basis of V"and 4 = [al.j] over R be the matrix

of't relative to the basis B. So that

n
f(ui):z a; Uy, I<i<n.
k=1
Now,  is orthogonal,
= <t(u),t(v)y>=<u,v> forallu,y € V,
Rt <t(ul.),t(uj)>=<ul., u; > iLj=1,2,..,n.

n n
= <Z Ui uk,Zarjur>=6y
k=1 r=1

n n
< 22 i ay(uesu, ) =3
k=1 r=l1
n n
= z zaki a,; Oy =0 (- B is orthonormal basis)
k=1 r=l1
n
= z @ =8y (on summing over )
k=1
= Cl.Cj=6l.j forall i, j=1,2,.., n.
& A 1s orthogonal matrix.

Theorem 11. 4 orthogonal matrix is always non singular.
Proof. Let 4 be an orthogonal matrix. Therefore columns of 4 are orthonormal in standard product
of R". We know that a list of orthonormal vectors in an inner product space is linearly independent.

Consequently rank (4) = n, which implies that | 4 | # 0. Hence A4 is non-singular.
229



Theorem 12. Let V be a finite dimensional inner product space and t € Hom (V, V). Then

linear transformation t is orthogonal if and only if the matrix A of t with respect to an orthonor-
mal basis satisfies the condition ATA = I and AAT =1,

Proof. Let A [al.j] be an orthogonal matrix. Then

Now, <t(u),t(u)>=

—
1M
&
S
=
S
=
\/

:z aj ay By :Zajz.l. =1 (onsummingoverk) ... (1)
j=1 k=1 j=1

n
ki Yo z dy; Uy
r=1

A
-~
~
<
=~
~
~~
S
N
V
Il
/\
N
Q

n
=2 2% ay (uu, )

n n
:z A 7 Oy, :zakl, a,; =0 (on summing overr) .....(2)
k=1 r=l1 k=1

Equation (1) and (2) imply that 474 = I, since the (ik)" entry of A7 is a, . Similarly, 447 = 1.

Conversely, 474 = I, implies that the conditions in (1) and (2) are satisfied and hence
{ ¢ (uy, t (uy),..., t (u,)} is an orthonormal set which is basis of V. Thus ¢ takes an orthonormal basis to
an orthonormal basis, so ¢ is an orthogonal linear transformation.

Theorem 13. The determinant of an orthogonal matrix is £ 1.

Proof : Let 4 be an orthogonal matrix. Then

AAT=1
= Det (447) = Det (I)
= Det (4) Det (47) =1
= Hence Det (4) =+ 1 [-- Det (4) =Det (47)]

15.4 Principal axis theorem

Lemma : The eigenvalues of a self-adjoint linear transformation are real.
Proof : Let V' be a finite dimensional real inner-product space. Letz: V— V be a self-adjoint

linear transformation. Then matrix 4 of ¢ with respect to an orthonormal basis of V, is real symmetric
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matrix. Let A be an eigenvalue of 7, then it is an eigenvalue of 4. Also let X be an eigenvector of 4

corresponding to the eigenvalue A , then we have

AX=X\
. () =)
= X4t =xT 1"
= XTq=xTxn (4 is symmetric and real)
Now XTax=(x"Xx=(x"xp L (1)
Also XTax =x"(ax)=x"(xn)=(x"x)p L )

So, from (i) & (ii), we have
(X7 x)a=(X"x )
= (A_’TX)(X—k)ZO

= A=
Hence A is real, because X #0 and so Y7 xy +¢.

Self-learning exercise-1

1. An orthogonal linear transformation between inner product spaces preserves the lengths, but not

the angle between two vectors. [T/F]

2. If C; and Cj are columns of an orthogonal matrix, then C; Cj = e
3. Matrix A is orthogonal then 47 =471, [T/F]
4. Matrix 4 is orthogonal then 447 = ...... .

Theorem 14. (Principal axis theorem). Let t be a self-adjoint linear transformation on a
finite dimensional inner product space V. Then the matrix of t with respect to some orthonormal
basis is a diagonal matrix whose diagonal elements are eigenvalues of t these are real, and each
appears on the diagonal as many times as its multiplicity.

Proof : We shall prove the theorem by induction on the dimension 7 of inner product space V.

Forn =1, let B= {v,} be an orthonormal basis.

So t(v))=v A, forsome A, €R.

And therefore, v, is an eigenvector of z and A, is the corresponding eigenvalue which is real and
A = {\}. Hence it is true for n = 1.

Now assume that it is true for a vector space whose dimension is (7 — 1). Then we shall show
that it is true for ' whose dimension is n.

Now let W= vlL ={u € V|<u, v, >= 0} be the orthogonal complement of v,. It is sub-
space of V. We shall now show that ¥ is invarient under z. To do so, let v € W. Then
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<v,v;>=0 L (1)

We have <t(v), vi>=<w,t(v)) >, since tis self-adjoint

=<v, v Ap>

=A <v,v>

=0 [from (1)]
Thus t (v) € W.
Henceve W =t(v) e W
Thus ¢ maps vectors of W to vectors of W only. Therefore the restriction of # to W is

t,,: W— Wis also a self adjoint linear transformation.

Now, dim W +dim W =n
= dim W= n — dim W+
= dim W=n—-1, because WL=<{v1}> and dim =1

Hence 7, : W — W is a self adjoint linear transformation from an (7 — 1) dimensional inner-
product space W to itself, therefore by induction assumption there is an orthonormal basis of eigen-
vectors, say {v,, v3, ..., v,} of W for which matrix of 7, is a diagonal matrix. Combining basis
{v;} of WL to basis {vy, V3, ..., v, } Of W so that we have an orthonormal basis of eigenvectors
{Vis V5w v, } OF V, for which matrix of self adjoint 7 is a diagonal matrix and each diagonal element is

an eigenvalue of t, appears as many times as its multiplicity and the eigenvalues of'# are also real.

15.5 Summary

In this unit we have studied orthogonal linear transformation between inner product spaces,
orthogonal matrices related to orthogonal linear transformations and their properties, and a very useful

and fundamental result known as the principal axis theorem.

15.6 Answers to self learning exercises

Self learning exercise-1

1. false 2. 0. 3. true 4. ]

15.7 Exercises

1. Prove that if /| and W, are subspaces of V" such that dim W, = dim W,, then there exists an
orthogonal transformation ¢ such that z (W) = W,.

2. If A is an orthogonal matrix, show that 47 and 4! are orthogonal matrices.

HEin
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