
BCA-13

Vardhaman Mahaveer Open University, Kota

Operating System - II

Course Development Committee

Chairman
Prof. (Dr.) Naresh Dadhich
Former Vice-Chancellor
Vardhaman Mahaveer Open University, Kota

Co-ordinator/Convener and Members

Co-ordinator/Convener
Dr. Anuradha Sharma
Assistant Professor,
Department of Botany, Vardhaman Mahaveer Open University, Kota

Members :
1. Dr. Neeraj Bhargava 3. Dr. Madhavi Sinha

Department of Computer Science Department of Computer Science
Maharishi Dyanand University, Ajmer Birla Institute of Technology & Science, Jaipur

2. Prof. Reena Dadhich 4. Dr. Rajeev Srivastava
Department of Computer Science Department of Computer Science
University of Kota, Kota LBS College, Jaipur

5. Dr. Nishtha Kesswani
Department of Computer Science
Central University of Rajasthan, Ajmer

Editing and Course Writing

Editor
Dr. Nishtha Kesswani
Department of Computer Science
Central University of Rajasthan, Ajmer

Academic and Administrative Management

Prof. (Dr.) Vinay Kumar Pathak Prof. (Dr.) B.K. Sharma Prof. P.K. Sharma
 Vice-Chancellor Director (Academic) Director (Regional Services)
Vardhaman Mahveer Open University, Vardhaman Mahveer Open University, Vardhaman Mahveer Open University,
 Kota Kota Kota

Course Material Production

Mr. Yogendra Goyal
 Assistant Production Officer

Vardhaman Mahaveer Open University, Kota

Unit Writers Unit No.
1. Dr. Nishtha Kesswani (1,2)

Department of Computer Science
Central University of Rajasthan, Ajmer

2. Dr. Om Prakash (3,4,5)
Senior Software Consultant & Visiting Professor
University of Rajasthan, Jaipur

3. Dr. Rajesh Dadhich (6,7)
Department of Computer Science
Govt. Polytechnic College, Kota

4. Dr. Bright Keswani (8,9)
Department of Computer Science
S. Gyan Vihar University, Jaipur

Unit Writers Unit No.
5. Sh. Sudesh Kumar Prajapat (10,11)

Department of Computer Science
Indira Gandhi National Tribal University Amarkantak (M.P.)

6. Sh. Sanjay Kumar Anand (12,13)
Department of Computer Science
Central University of Rajasthan, Ajmer

7. Sh. Anubha Jain (14,15)
Department of Computer Science

IIS University, Jaipur

Unit No. Name of Unit Page No.

Unit - 1 Disk Scheduling 1-10

Unit - 2 Linux Operating System 11-23

Unit - 3 Linux Files and Directories 24-37

Unit - 4 Shell Scripts and Programming 38-49

Unit - 5 System Administration in Linux 50-59

Unit - 6 Managing users 60-72

Unit -7 NFS and NIS 73-91

Unit – 8 Distributed Computing 92-104

Unit - 9 Distributed Computing System – An Introduction 105-120

Unit - 10 Distributed File System 121-137

Unit – 11 Message Passing 138-150

Unit – 12 Remote Procedure Calls 151-163

Unit - 13 Real Time System 164-174

Unit -14 Multimedia Systems 175-192

Unit - 15 Windows Operating System- A Case Study 193-209

Vardhaman Mahaveer Open University, Kota

BCA-13

Operating System - II

CONTENTS

Preface

The Course Operating System- II has been specially designed for students already having

some basic knowledge of Operating systems. The text has been designed for versatile and

complete insight into operating systems. This book provides some advanced topics in operating

system presented in an interesting manner.

The text contains 15 Chapters intended primarily for graduate courses. The wide range of

topics covered in the book makes it an excellent handbook on operating systems. It covers

topics such as disk scheduling, NFS and NIS, distributed computing, distributed file system

and message passing. It also covers state of the art operating systems such as Windows and

Linux. Shell Scripts and Programming and Linux System administration have also been

discussed in detail. The text has been supplemented with appropriate Figures for better

understanding.

Extensive references and pointers to the current literature have also been provided for further

reading. Each Chapter ends with self-assessment exercises that can be used for practice.

1

Unit - 1 : Disk Scheduling

Structure of Unit

1.0 Objective

1.1 Introduction

1.2 Disk Scheduling

1.3 Scheduling Algorithms

1.3.1 FCFS

1.3.2 SSTF

1.3.3 SCAN

1.3.4 CSCAN

1.3.5 FSCAN

1.3.6 N-step-SCAN

1.3.7 Multi-Level Queues

1.3.8 Multi Processor Scheduling

1.4 Selection of Algorithms

1.5 Summary

1.6 Self - Assessment Exercise

1.7 References

1.0 Objective

The objective of this unit is to make you aware of some aspects of disk scheduling and scheduling algorithms.

In this unit we will look inside what disk scheduling is. We will take a sneak peak at the “algorithms” in

general and “selection of algorithms” in particular. We will also see how these all correlate to make the Linux

system operative.

1.1 Introduction

The Disk is said to be of two basic types:

1. Fixed head disk- This has one head for each track on the disk and it requires no head

movement time to service a request. This is quite expensive.

2. Movable head disk- This is much more common in use because it has a single head

driven by a stepper motor that can position the head over any desired track on the disk

surface.

The task of scheduling usage of sharable resources by the various processes is one of the important

jobs of operating system as it is responsible for efficient use of the disk drives.

The efficiency of disk drivers means that disks must have fast access time and reasonable bandwidth.

The two major components of access time and bandwidth of disks are:

• Seek time-the time to move the heads to the cylinder containing the desired sector.

• Rotational latency-the additional time to rotate the desired sector to the disk head.

This can be considered very important in case of systems with multi programming as they have a common

file system. The file system is said to be common in multi programmed systems because it is shared by all the

2

users even though each of them may have one’s own file. This common file system may be spread out over

a finite number of disks or it may reside entirely on a single disk.

Thus, all processes that do disk IO are competing for access to the same physical disk or set of physical

disks. Mostly as any given disk can only perform one access at a particular time, if several accesses are

requested on a given disk, some order of service for the requests is established by the OS.

The only exception is that there are two or more independent head assemblies on some disks and so those

can perform two or more service requests at a single time. However, even in this type of cases too, scheduling

is a must if there are more requests outstanding than the available heads to serve them.

Figure 1.1 CPU and IO burst

1.2 Disk Scheduling

It is now clear that there can be number of programs in memory at the same time that results in overlapping

of CPU and I/O.

There are batch programs that run without interaction from user. There may be time shared programs that

run with user interaction. For both of these the common name used is Process for which burst cycle of CPU

characterizes execution of their process, alternatively between CPU and I/O activity. The scheduling makes

selection among the processes in memory that are ready to be executed and makes allocation of the CPU

to one of them. The decision regarding scheduling takes place when a process switches from:

1. Running to waiting state

2. Running to ready state

3. Waiting to ready state

4. Terminates

The scheduling of the above processes is known as nonpreemptive. It must be noted that mostly the scheduling

quantum is not used by almost all processes as shown in Figure 1.2.

3

Figure 1.2 Process Scheduling and burst duration.

1.3 Scheduling Algorithms

1.3.1 First Come First Serve (FCFS)

It is similar to FIFO. It is simple, fair approach but perhaps not the best because of its poor performance as

average queue time may be too long to be served. It is quite difficult to find the average queue and residence

times for this. Of course, the simplest way but if disk accesses are scheduled in an order that takes into

consideration some of the physical characteristics of the disk then system can be improved significantly

throughout. For example, for the following processes request queue 98, 183, 37, 122, 14, 124, 65, 67,

with head pointer 53, total head movement is 640 cylinders.

Figure 1.3 FCFS

4

1.3.2 SSTF: Shortest Seek Time First

It is much more efficient, but leads to starvation. It may be optimal for minimizing queue time, but may be

impossible to be implemented as it tries to predict the scheduled process based on previous history. It

selects the request with the minimum seek time from the current head position. It is a form of SJF scheduling;

may cause starvation of some requests.

The prediction of the time used by the process on its next schedule can be given by

 t(n+1) = w * t(n) + (1 - w) * T(n)

Where, t (n+1) is time of next burst.

t (n) is time of current burst.

T (n) is average of all previous bursts

W is a weighting factor emphasizing current or previous bursts.

For Example, with head pointer at 53, Total head movement:

98 + 183 + 37 + 122 + 14 + 124 + 65 + 67 = 236 tracks or < 30 tracks per access

Figure 1.4 SSTF

But SSTF can be a problem on a heavily used disk. If one request is at the extreme and the other

request is nearer to the centre, the extreme request can be postponed for a long time.

1.3.3 SCAN

The purpose of it is to combine efficiency with fairness. The process starts at one end of the disk with

movement towards the other end, servicing requests until end, where the head movement is reversed

and servicing continues. It is also known as the elevator algorithm because of its working similar to

an elevator services in a building. When it goes up, it requests services in order from floors above it,

but floors below it, are ignored. When it goes down, it only requests services below it. For example,

with head pointer 53, Total head movement is:

98 183 + 37 + 122 + 14 + 124 + 65 + 67 = 208 tracks

5

Figure 1.5 SCAN

1.3.4 C-SCAN: Circular SCAN

This algorithm is similar to SCAN. The only exception is that the disk requests services in one

direction only and “jumps” to the starting of disk when the last track is reached. This results in a more

uniform response time. Since a single large jump may be faster than several smaller ones, overall it

may be more efficient than SCAN. By providing a more uniform wait time and treating the cylinders

as a circular list, it proves better than SCAN. For example, with head pointer 53,

Total head movement:

98 183 + 37 + 122 + 14 + 124 + 65 + 67 = 322 tracks

Figure 1.6 CSCAN

6

1.3.6 FSCAN

With the above discussed algorithms it may be possible that the arm may not move for a considerable

period of time. To avoid this arm stickiness the disk request queue can be segmented, with one segment

being processed at a time completely.

FSCAN is an example of such an approach. It is the policy that uses two sub queues. When a SCAN

begins, all of the requests are in one of the queues, with the other empty. During the scan, requests are

put into the other queue. This means that till all the old requests gets processed, service of the new

requests is deferred.

1.3.7 N-step-SCAN

This policy segments the queue of disk request into sub queues of length N and the processing of these

is one at a time using SCAN. Till the processing of a queue, new requests are added to some other

queue. If requests available are less than N, at the end of scan, then all of them are processed with the

next scan. With larger values of N, the performance approaches similar to SCAN and for N=1, it

approaches FIFO.

1.3.8 Multi-Level Queue

This type of algorithm has multi queues with each queue having its own algorithm. Then priority

based algorithm arbitrates between those multi level queues that can use feedback to move between

queues. This method is flexible but complex. For example:

Figure 1.7 Multi-level queue

7

1.3.8 Multiple Processor Scheduling

We know that there are different rules for heterogeneous or homogeneous processors. For example, sharing

of load in the distribution of work in such a manner that all processors have an equal amount to do work. In

this each processor can schedule from a queue that is ready common or can use an arrangement by master

slave.

1.4 Selection of Algorithms

To determine a particular algorithm, predetermined workload and the performance of each algorithm for

that workload is to be determined. It can be said that

• SSTF is quite common and so naturally, it has a appeal

• The performance of SCAN and C-SCAN is better for system, which places a heavy load on

the disk.

• Performances depend on the types & numbers of requests, which in turn are influenced by the

file-allocation method.

• The algorithm must be written as a separate module of the operating system. It must be allowed

to be replaced with other one, if necessary.

• For default, either SSTF or LOOK is a reasonable choice.

Figure 1.8 Selection of algorithm

1.5 Summary

A number of different scheduling algorithms have been discussed and which one is the best to work that

depends on the application of it. The following table shows the comparison of different types of algorithms

(starting at track 100):

8

The OS with general purpose may use FCFS, CSCAN, preemptive and the OS with real time can opt for

priority, no preemptive as in these OS performance is never obvious and Benchmarking is everything. The

three types of scheduling decisions taken by OS with respect to the execution of process are:

• Long term: finds when new processes are to be admitted to the system.

• Medium term: finds when a program is bought into main memory for execution.

• Short term: finds which ready process will be executed next by the processor.

The choice of algorithm depends on expected performance and on implementation complexity as shown

below:

FIFO SSTF SCAN C-SCAN

Next

track

Accessed

Number

of tracks

traversed

Next

track

accessed

Number

of tracks

traversed

Next

track

Accessed

Number

of tracks

traversed

Next

track

Accessed

Number

of tracks

traversed

55 45 90 10 150 50 150 50

58 03 58 32 160 10 160 10

39 19 55 03 184 24 184 24

18 21 39 16 90 94 18 166

90 72 38 01 58 32 38 20

160 70 18 20 55 03 39 01

150 10 150 132 39 16 55 16

38 112 160 10 38 01 58 03

184 146 184 24 18 20 90 32

Avge seek 27.5 Avge seek 27.5 Avge seek 27.8 Avge seek 35.8

Name Description Remarks

Selection according to requester

RSS Random scheduling For analysis and simulation

FIFO First in First Out Fairest of them all

PRI Priority by process Control outside of queue

management

LIFO Last in First Out Maximize locality and

resource utilization

Selection according to requested ITEM

SSTF Shortest service time first High utilization, small

queues

SCAN Back and forth over disk Better service distribution

CSCAN One way with fast return Lower service variability

N-step-SCAN Scan of N records at a time Service Guarantee

FSCAN N step Scan with N=queue

size at beginning of cycle

Load sensitive

9

1.6 Self - Assessment Exercise

1. What is disk scheduling algorithm?

2. Suppose that a disk drive has 500 cylinders, numbered 0 to 499. The drive is currently serving a

request at cylinder 123, and the previous request was at cylinder 105. The queue of pending

requests, in FIFO order, is

86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130.

3. Starting from the current head position, what is the total distance (in cylinders) that the disk

arm moves to satisfy all the pending requests, for each of the following disk-scheduling

algorithms?

FIFO

SSTF

SCAN (Elevator)

C-SCAN (Modified ELevator)

4. Consider the multilevel feedback queue scheduling algorithm used in traditional Unix systems.

It is designed to favour IO bound over CPU bound processes. How is this achieved? How

does it make sure that low priority, CPU bound background jobs do not suffer starvation?

5. Why would a hypothetical OS always schedule a thread in the same address space over a

thread in a different address space? Is this a good idea?

6. Why would a round robin scheduler NOT use a very short time slice to provide good responsive

application behaviour?

7. Differentiate between pre-emptive and non-pre-emptive scheduling.

8. CPU burst time indicates the time, the process needs the CPU. The following are the set of

processes with their respective CPU burst time (in milliseconds).

 Processes CPU-burst time

 P1 10

 P2 5

 P3 5

Calculate the average waiting time if the process arrived in the following order:

 (i) P1, P2 & P3 (ii) P2, P3 & P1

1.7 References

• Coffman, E. G., Klimko, L. A., and Ryan, B., “Analysis of Scanning Policies for Reducing

Disk Seek Times”, SIAM Journal of Computing, September 1972, Vol 1. No 3.

• Geist, Robert, and Daniel, Stephen, “A Continuum of Disk Scheduling Algorithms”, ACM

Transactions on Computer Systems, February 1987, Vol 5. No. 1.

10

• Gotlieb, C. C. and MacEwen, H., “Performance of Movable-Head Disk Storage Devices”, Journal

of the ACM, October 1983, Vol 20. No. 4.

• Hofri, Micha, “Disk Scheduling: FCFS vs SSTF Revisited”, Communications of the ACM,

November 1980, Vol 23, No. 11.

• Marshall Kirk McKusick, William Joy, Sam Leffler, and R. S. Fabry, “A Fast FileSystem for

UNIX”, ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984, pp. 181-197.

• Oney, Walter C., “Queuing Analysis of the Scan Policy for Moving-Head Disks”, Journal of

the ACM, July 1975, Vol 22. No. 3.

• Teorey, Toby J. and Pinkerton, Tad B., “A Comparative Analysis of Disk Scheduling Policies,”

Communications of the ACM, March 1972, Vol 15. No. 3.

• Wilhelm, Neil C., “An Anomaly in Disk Scheduling: A Comparison of FCFS and SSTF Seek

Scheduling Using an Empirical Model for Disk Accesses”, Communications of the ACM,

January 1976, Volume 9, No. 1.

11

Unit - 2 : Linux Operating System

Structure of Unit

2.0 Objective

2.1 Introduction

2.2 Open Source Software

2.3 Linux System

2.3.1 The Development Model

2.3.2 Hardware and Installation

2.3.3 Advantages & Disadvantages

2.3.4 Command Line Interface

2.3.5 The Basic Commands

2.3.6 The Man Page

2.3.7 Info Pages

2.3.8 File Structure

2.3.9 The Shell

2.4 Summary

2.5 Self - Assessment Exercise

2.6 References

2.0 Objective

The objective of this unit is to make you aware of some aspects of Linux operating system. In this unit we

will look inside the development of Linux operating system as open source software. We will take a sneak

peak at basic commands in general and “file structure” and “shell” in particular. We will also learn about

command line interface.

2.1 Introduction

A Unix-like FREE operating system, Linux has become quite popular with PC users around the world.

Linux is helpful in true multitasking through its virtual memory, shared libraries, memory management,

demand loading and TCP/IP networking. It is distinguished it from other operating systems in the

sense that it’s source code is available as free software under the GNU General Public License

(GPL). This license safeguards and guarantees the freedom of any user to share, modify and again

share the modified software. Some recent surveys regarding customer’s preferences for OS shows the

switching from the Windows NT Operating system to Linux because Linux not needs constant rebooting

and it can be easily used for cost-effective computation. The Linux can be easily configured to look

like Windows and equally work as good as Microsoft Office. Further to that as the Linux source code

is widely available, work-around for hardware defects are reported and patched into the kernel

almost overnight.

2.2 Open Source Software

A software program that tries to manage the software and hardware resource of any computer is called

operating system (OS). The basic tasks of OS includes performing of control and allocation of memory,

prioritizing the processing of instructions, control of input and output devices, facilitation of networking, and

management of files.

12

Unlike earlier OS, today’s OS use a mouse for input with a graphical user interface (GUI). How appropriate

the OS is, it depends specifically on the CPU. Unlike Windows NT, the Linux and BSD only run on almost

any CPU. Since the early 1990s there has been stiff competition between the Microsoft Windows family

and the Unix-like family.

The Unix-like family has diversified operating systems. The major subcategories include System V, BSD,

and Linux. These systems can run on a wide variety of machine architectures and they have been becoming

quite popular in business, as well as at workstations with academic and engineering environments. Some of

the Unix systems like Linux & BSD are free or open source variants and that’s why they are heavily popular.

Over the history, these open source systems have supplanted proprietary ones in most instances.

The Open Source software as the name suggests is open in nature where programmers can read, distribute

and change code, so that day by day the code becomes mature. Programmers can adapt it, fix it, debug it,

and they can do it at a speed that dwarfs the performance of software developers at conventional companies.

The way this developed software becomes more flexible and better than the conventionally developed

software.

The community that contributes to open source software, consists largely of programmers who have been

giving their contribution for over half a decade. As with more users, the more questions are raised so the

Open Source community ensures that answers keep coming, and watches the quality of the answers with a

suspicious eye, which results in ever more stability and accessibility.

As open source software, Linux has accepted the challenge of the fast moving world and with the development

of internet it has grown past the stage where it was almost exclusively an academic system. As a open

source software Linux has been providing more than the operating system. Linux has become the leading

alternative to the Microsoft’s operating systems, which are installed on almost all new personal computers

which use x86-compatible microprocessors.

2.3 Linux system

Unlike Windows, Linux is the best-known example of “open-source” software. The reason is that programs

for it are freely available on the Internet and it can not only be obtained without payment but the users are

also allowed to modify it. However it is not such free that anyone can do whatever what one wants to do

with it. Almost all it is copyrighted by its authors and it’s release has been under a variety of different

licenses, like GNU General Public License or GPL. Under this license anyone is free to modify the Linux

but the source code must be made available under the terms of the GPL after the modification of the

software. However, many components of Linux are released under other similar licenses also like red hat.

2.3.1The Development Model

Linux got its name from Linus Torvalds, who thought to develop some sort of freely available academic

version of UNIX, and promptly started to code. Today, there are thousands of authors, who collaborate

to it through the Internet. Linux Penguin, is the official mascot of the Linux OS that was chosen by

Linus Torvalds himself. The Linux Mascot is a contented, cute and cuddly creature

13

Figure 2.1 The Linux Mascot

In technical terms it is just the core of the operating system, the so called “kernel” because of its interaction

directly with the hardware and supervision of the operation of other programs. But it must be mentioned that

for a working Linux system many other components are also to be included without which it would not be

of much use. The other components include the gcc compiler for programs based on C or C++, the bash

shell, the gzip compression utility, the emacs editor and the tar and make. That means the Linux in its

working condition is a system that consists of a great software and the “kernel” is only a small part of it. In

its packaged form it is called a “distribution”. Some of the popular distributions are Debian GNU/Linux,

Red Hat, Caldera, Slackware and SuSE. Out of these Debian is entirely non-commercial and it’s maintenance

is done by thousands of volunteers from around the world and others are commercial. It is also interesting

to note that all of them may be suitable for users as per their particular use and there is great variation in the

prices of commercial distributions, from less than USD5 to more than USD100.

For all practical purposes, as its name suggests, Linux in fact is a version of Unix. Linux’s modern versions

are designed to be POSIX compliant. So, it can be said that for an experienced Unix user, it is not quite

different from proprietary versions of Unix. However, because of its easier use and as it comes with already

useful installed programs, the Linux is “out of box” than any other proprietary version of Unix.

The following figure depicts the architecture of an operating system like Unix. The Unix can be thought of

composed of layers of software built around the central hardware, which provides basic services to an user.

The layer of software that is nearest to the central hardware and which provides an abstraction of the

hardware to the user, that insulates the user from hardware idiosyncrasies is commonly called the operating

system or the “kernel”. The programs that are built around the “kernel” are independent of the underlying

hardware. Linux per se refers only to the kernel of the operating system.

Figure 2.2 Unix like operating System

14

At first, Linux may seem to be strange to them who are only familiar with commercial, contemporary

desktop operating systems like Windows. The reason of strangeness is the primary user interface, the

command line of the bash shell, multiple copies of which run in different windows and different virtual

screens under the graphical X Window System.

But no one can doubt the extreme power of the bash shell. It not only provides filename completion,

command completion and numerous ways to recalling and editing previous commands but powerful

programming capabilities also. However, as operating systems of Microsoft generally not work on

Linux, moving from Windows to Linux normally requires installing new software.

2.3.2 Hardware Requirements and Installation

To run Linux, the computers must be with x86-compatible processors (i386 or later). Generally,

available hardware is used more efficiently by Linux, but there can be problems with very recent

hardware and with proprietary devices that use nonstandard protocols. Before installing Linux, it is

important to know about the network card, modem, video card, sound card, and printer because

sometimes it is quite difficult to know which hardware part is to be supported by Linux. The hardware

parts with “Win” as name on it almost certainly will not work with Linux.

The working of Linux is often better with “generic” PCs than with big name computer manufacturers.

Relatively some small companies has now started selling computers with preinstalled Linux. It is the

widespread acceptability of the Linux because of which IBM, Dell, and several other large computer

makers have offered support for Linux on selected servers and workstations.

If all hardware is properly identified and supported, it is quite easy to install Linux and once initial

installation of a very basic system is completed the rest of the system can be installed using internet.

2.3.3 Advantages and Disadvantages of Linux

Linux is very stable and multitasks extremely well. In the absence of power failures or hardware

failure or extremely ill-behaved program, a system with Linux never crashes. The system with Linux

can be used for hours without interruption. Across a network, Linux works well and with Linux office

machines can be accessed from home, or from 5000 kilo meters away. Although for text applications

the speed of the network is not much important, for graphical applications a high-speed network is

essential.

Linux is easy to share data, programs, drafts of papers, and even CPU time and its because of this

feature one can put clusters of Linux machines using various types of networking hardware together

with the help of the free Beowulf software.

Linux is cheaper than other commercial operating systems. Not only it is free, but it comes with so

much free software also. Linux makes an ideal operating system for servers because Linux does not

attempt to hide operations or limit its users to do. It is almost infinitely customizable.

The only disadvantage that appears is that Linux does not provide as much commercial software with

it as compared to Microsoft’s popular operating systems.

2.3.4 Command Line Interface

The Command Line Interface is a means of interaction by the user who uses commands for a computer

program in the form of successive command (text). It is better than GUI as it gives more control and

options to the user. Besides this using CLI is faster as only a keyboard is pretty much needed. The CLI is

the primary mean to interact with most early operating systems like DOS, UNIX etc. This usually implemented

15

with a shell, which is a program that works to accept commands as text input and then convert them to

appropriate operating system functions. Although, nowadays CLI is less widely used by users yet it is still

often preferred by advanced computer users, as it often provides a more concise and powerful means to

control any operating system.

Below is screenshot of BASH session:

Figure 2.3 Linux shell

2.3.5 Basic Commands

The basic commands in the form of the quickies are as follows:

Quick start commands Command Meaning

ls Displays a list of files in the current working directory

cd directory change directories

16

passwd change the password for the current user

file filename display file type of file with name filename

cat textfile throws content of textfile on the screen

pwd display present working directory

exit or logout leave this session

man command read man pages on command

info command read Info pages on command

apropos string search the what is database for strings

2.3.6 The Man Page

The manual (man) pages are an overwhelming source of documentation. They are very structured, as

shown in the example given below on: man man.

The man page is usually read in a terminal window either in graphical mode or in text mode.

Example:

Type the following command and press ENTER

yourname@yourcomp ~> man man

After pressing ENTER, the documentation for man will be displayed on screen as:

man(1) man(1)

NAME

man - format and display the on-line manual pages

manpath - determine user's search path for man pages

SYNOPSIS

man [-acdfFhkKtwW] [--path] [-m system] [-p string] [-C config_file]

[-M pathlist] [-P pager] [-S section_list] [section] name ...

DESCRIPTION

man formats and displays the on-line manual pages. If section is specified, man only looks in

that section of the manual.name is normally the name of the manual page, which is typically

the name of a command, function, or file. However, if name contains a slash (/) then man

interprets it as a file specification, like man ./foo.5 or even man /cd/foo/bar.1.gz

See below for a description of where man looks for the manual page files.

OPTIONS

-C config_file

lines 1-27

17

To browse the next page the space bar is used. To go back to the previous page the b-key is used. The man

will usually quit while reaching the end and b is typed to leave the man page before reaching the end.

To manipulate man pages using the available key combinations depend on the pager used in distribution.

Mostly less is used to view the man pages and to scroll around.

It can be seen from the above example that usually a couple of standard sections are contained on each man

page.

• The first line contains the name of the command and the id of the section in which the man page

is going to be located. The man pages are ordered in chapters. There can be multiple man

pages for different Commands. For example, the man page from the system admin section, the

man page from the user section, and the man page from the programmer section.

• To build the index of the man page, the name of the command and a short description are

given. Using the apropos command any given search string can be looked upon..

• A Technical notation of all the options is provided by the synopsis of command by and/or

arguments this command can take. An option can be thought as a way to execute the command.

The argument is what is executed it on. Some commands have no options or no arguments.

Optional options and arguments are put in between “[“ and “]” to indicate that they can be left

out.

• A longer description of the command is given.

• Options with their descriptions are listed. Options can usually be combined.

• Environment describes the shell variables that influence the behaviour of this command.

• Sometimes sections specific to this command are provided.

• A reference to other man pages is given in the “SEE ALSO” section. Experienced users often

switch to the “SEE ALSO” part using the / command followed by the search string SEE and

press Enter.

• Usually there is also information about known bugs (anomalies) and where to report about

new bugs.

• There might also be author and copyright information.

Some commands have multiple man pages. For instance, the passwd command has a man page in

section 1 and another in section 5. By default, the man page with the lowest number is shown.

If another section than the default is to be seen, then, after the man command specify it:

man 5 passwd

If all man pages about a command, one after the other, are to be seen the -a to man is used:

man -a passwd

When the end of the first man page is reached, pressing SPACE again, the man page from the next section

will be displayed

18

2.3.7 The Info Pages

In addition to the man pages, the Info pages could be read about a command, using the info command.

Usually, these contain the most recent information and are somewhat easier to use than man pages. The info

pages for some commands are referred by the man pages.

An example of info page is as shown below:

Get started by typing info info in a terminal window:

The arrow keys can be used to browse through the text. The movement of cursor on a line that starts with

an asterisk can provide the info about the keyword when Enter is pressed.

The P and N keys can be used to go to the previous or next subject. The space bar is used to go to next

page, no matter whether a new subject or an Info page for another command has started. The Q is used

to quit.

2.3.8 File Structure

As in Unix, a simple description is also applicable to Linux, and that is:

“On a system with Unix, everything is a file; if it is not a file, then it is a process.”

However, there are some exceptions like:

• Directories: files that are lists of other files.

• Special files: the mechanism used for input and output.

• Links: a system to make a file or directory visible in multiple parts of the system’s file tree.

File: info.info, Node: Top, Next: Getting Started, Up: (dir)

Info: An Introduction

Info is a program, which you are using now, for reading documentation of computer

programs. The GNU Project distributes most of its on-line manuals in the Info format, so you

need a program called "Info reader" to read the manuals. One of such programs you are using

now.

If you are new to Info and want to learn how to use it, type the command `h' now. It brings

you to a programmed instruction sequence.

To learn advanced Info commands, type `n' twice. This brings you to `Info for Experts',

skipping over the `Getting Started' chapter.

* Menu:

* Getting Started:: Getting started using an Info reader.

* Advanced Info:: Advanced commands within Info.

* Creating an Info File:: How to make your own Info file.

--zz-Info: (info.info.gz)Top, 24 lines --Top-------------------------------

Welcome to Info version 4.2. Type C-h for help, m for menu item.

19

• (Domain) sockets: a special file type, similar to TCP/IP sockets, providing inter-process networking

protected by the file system’s access control.

• Named pipes: act more or less like sockets and form a way for processes to communicate

with each other, without using network socket semantics.

The (ls-l) is used to display the file type. For this the first character of each input line is used as shown below:

The files that are more than just files are some special files like pipes and sockets, but for simplicity, we say

that everything is a file. Services, programmes, images, texts etc all are files. The following table shows the

types of file.

Table: File types

Symbol Meaning

 - Regular file

 d Directory

 l Link

 c Special file

 s Socket

 p Named pipe

 b Block device

The ls –F, is used to indicate the type of file by suffixing file names with one of the characters “/

=*|@”.

Usually, the Linux is thought of in a tree structure as shown below:

Figure 2.4 Linux File system

1aime:~/Documents> ls –l

total 80

-rw-rw-r–1 jaime 1aime 31744 Feb 21 17:56 intro Linux.doc

-rw-rw-r–1 jaime 1aime 41472 Feb 21 17:56 Linux.doc

drwxrwxr-x 2 jaime 1aime 4096 Feb 25 11:50 course

20

The shown tree layout is from RedHat and according to the OS, admin, the mission of the UNIX machine,

the layout may vary.

The tree starts at the slash (/). This directory contains all underlying files and directories. This is called the

root directory also. For example:

Table: Subdirectories of the root directory:

Directory Content

/bin Programs, common & shared by the system, the administrator and the users.

/boot The startup files and the kernel,

/dev Contains references to all the CPU peripheral hardware, represented as files

with special properties.

/etc Most important files are in /etc. The directory is similar to the Control

Panel of Windows

/home Home directories.

/initrd Information for booting.

/lib Library files for all kinds of programs needed by the system.

/lost+found Here are files saved during failures.

/misc For miscellaneous purposes.

/mnt Standard mount point for external file systems.

/net Standard mount point for entire remote file systems

/opt Typically contains extra and third party software.

/proc A virtual file system contains information about system resources.

/root The administrative user’s home directory.

/sbin Programs for use by the system and the system administrator.

/tmp Temporary space for use by the system, cleaned upon reboot,

/usr Programs, libraries, documentation etc. for all user-related programs.

/var Storage for all variable files and temporary files created by users.

In reality, the computer, however, doesn’t get tree-structure and instead first it compares file names and

inode numbers and then makes up a tree-structure. An inode is a kind of serial number that contains

following information about the actual data for making up a file:

• Owner of the file.

emmy:~> cd /

emmy:/> ls

bin/ dev/ home/ lib/ misc/ opt/ root/ tmp/ var/

boot/ etc/ initrd/ lost+found/ mnt/ proc/ sbin/ usr/

21

• File type (regular, directory)

• Permissions on the file Section 3.4.1

• Date and time of creation, last read and change.

• Date and time this information has been changed in the inode.

• Number of links to this file.

• File size

• An address defining the actual location of the file data.

However, no information about the file name and directory is contained by the inode because these are

stored is in the special directory files.

The kernel is just like the heart of the body and the communication between the peripherals and underlying

hardware is managed by it. The kernel also ensures that daemons and processes starting and stopping held

up exactly at the right times. Because of important tasks the kernel has,a special kernel-development mailing

list containing huge information has been added and shared on this subject only.

2.3.9 The Shell

A shell is just like a language of talking to the computer. Unlike GUIs, which are almost always less capable,

the shell is an advanced way of making communications with the system, as under it two-way conversation

and taking initiative is allowed openly. Both communicating partners are equal, so testing of new ideas go

on. The shell allows flexibility and task automation for user.

The different shell types are

• sh or Bourne Shell: this is the original shell related to UNIX environments. The basic shell with few

features is a small program. In POSIX-compatible mode, it is emulated by bash shell.

• bash or Bourne Again Shell: the flexible, intuitive and standard GNU shell is most advisable for

beginners and common users. It is also called superset of the Bourne shell (Bourne Again Shell) as

it is compatible with the Bourne shell.

• csh or C Shell: the syntax of this shell resembles that of the C programming language.

• tcsh or Turbo C Shell: It is a superset of the C Shell, as it enhances user-friendliness and speed.

• ksh or the Korn shell: It is a superset of the Bourne shell but with standard configuration for UNIX

users.

The following features are common in every shell but some commands are only available on systems that

support job control. These commands include jobs, fg, bg etc

The file /etc/shells give an overview of known shells on a Linux system:

mia:~> cat /etc/shells

/bin/bash

/bin/sh

/bin/tcsh

/bin/csh

To know which shell is under use, the following command is used: echo $SHELL

22

 Table 2.1 : Common Features of Shell

Command Meaning

> Redirect output

>> Append to file
< Redirect input

<< “Here” document (redirect input)
| Pipe output
& Run process in background.

; Separate commands on same line
* Match any character(s) in filename
? Match single character in filename

[] Match any characters enclosed
() Execute in subshell
‘ ‘ Substitute output of enclosed command

“ “ Partial quote
‘ ‘ Full quote (no expansion)
\ Quote following character

$var Use value for variable
$$ Process id
$0 Command name

$n nth argument (n from 0 to 9)
$* All arguments as a simple word
Begin comment

bg Background execution
break Break from loop statements
cd Change directories

continue Resume a program loop
echo Display output
eval Evaluate arguments

exec Execute a new shell
fg Foreground execution
jobs Show active jobs

kill Terminate running jobs
newgrp Change to a new group
shift Shift positional parameters

stop Suspend a background job
suspend Suspend a foreground job
time Time a command

umask Set or list file permissions
unset Erase variable or function definitions

wait Wait for a background job to finish

2.4 Summary

The chapter gave an overview of a Linux operating system. First, the major services provided by the

operating system were described. Then, the programs that implement these services are described with a

considerable lack of detail. Topics like File structure, Linux devices, and command line interface (CLI)

system management utilities were included. The advanced Bourne Again Shell (BASH) shell scripting,

including looping and decision making logic structures was also explained.

23

2.5 Self - Assessment Exercise

1. Who owns the data directory in Linux?

2. What command is used to review boot message?

3. What are seven fields in the /etc/passwd file?

4. What account is created when Linux is installed?

5. What is difference between BASH and CSH?

6. Explain the shell structure of Linux.

7. Define Open Source Software? Do you think Linux justifies the definition. Why?

8. Explain Kernel.

9. Which partitioning tool is available in Linux?

10. Differentiate between a process and a programme.

11. Define CLI. Is it better than GUI?

12. What are the types of file system in the Linux?

13. How Linux is different from Unix and Windows.

2.6 References

• Andrew S Tannenbaum and Albert S Woodhull, OperatingSystems: Design and

Implementation, Second Edition, Prentice Hall of India,1997.

• Mark G Sobel, Hands-on Linux, Addison Wesley Longman Publishers,1997.

• Mark G Sobel, A Practical Guide to Linux, Addison Wesley Longman Publishers, 1997.

• The Linux official web site, http://www.linux.org/.

• The Redhat web site, http://www.redhat.com/.

• A feature from the Wired magazine,http://www.wired.com/wired/5.08/linux.html

• The Cathedral and the Bazaar, Eric. S. Raymond,http://www.tuxedo.org/~esr/writings

cathedralbazaar/

• Teyssi_ere, G. (1998). \XploRe 4.0, An interactive statistical computing environment,”

Journal of Applied Econometrics, 13, 673{679.

• Welch, M. and L. Kaufman (1996). Running Linux, Second Edition. Sebastopol, California:

O’Reilly and Associates.

24

Unit - 3 : Linux Files and Directories

Structure of Unit

3.0 Objective

3.1 Introduction

3.2 The File/Directory Hierarchy

3.3 The Path

3.4 The Root Directory

3.5 The File Structure

3.5.1 /bin

3.5.2 /boot

3.5.3 /dev

3.5.4 /ls

3.5.5 /etc

3.5.6 /pwd

3.5.7 /proc

3.5.8 /cd

3.5.9 /mkdir

3.5.10 /rmdir

3.5.11 /cat

3.5.12 /more

3.5.13 /less

3.5.14 /lpr

3.5.15/temp

3.6 Summary

3.7 Self - Assessment Exercise

3.8 References

3.0 Objective

The objective of this unit is to make you aware of files and directories in Linux operating system. In this unit

we will look inside what type of directory is made up of. We will take a sneak peak at the “directories” in

general and “file system” in particular. We will also see how these all correlate to make the Linux system

operative.

3.1 Introduction

A file system is the data structure or method that is used to keep files on a hard disk; that means, the way

of organizing the on the disk. There is a difference between a disk and the file system. There are a few

programs whose operating is directly on the disk; if there exist a file system, it will be seriously destroyed.

There are certain program whose operating is on a file system, and therefore they won’t work on a disk that

doesn’t contain the file system. For a hard disk to be used as a file system, initialization and the writing of

data on the disk is needed.

Mostly the UNIX file structure has a structure of the similar nature, but the exact details vary quite. The

central concepts are:

• superblock: The whole information about the file structure like its size is contained by it.

25

• Inode: All information about a file with the exception of its name is contained by it. The

storage of name is in the directory. An entry of directory has a filename and the representative

number of the file is the inode. The inode has numbers of several blocks that are used for

storing the data in the file.

• Indirect Block: In the inode if more space is needed to store data, the allocation of blocks

is dynamically. These dynamically allocated blocks are called indirect blocks. As the name

suggests, to find the data block, its number is to be found in the indirect block first.

3.2 The File/Directory Hierarchy

Linux, like Unix, has also chosen a single hierarchical directory structure. Everything starts from the root

directory (/), and then expansion takes place into sub”directories.

The sorting of directories in the Linux is in descending manner; from the root directory to the sub directories

according to their importance. The use of the front slashes / is to simply follow the UNIX tradition. Like

Unix, Linux also chooses to be case sensitive.

The majority of Linux files is ‘Second Extended File Systems’, (‘EXT2’). Within these file systems Linux

determines which files are to be stored in which directories programs. In Linux, the documentation of

programs is into:

The merging of all of these is to put the files and directories into and with the system hierarchy:

Figure 3.1 Linux File System Hierarchies

/usr/share/doc/[program- name],

the documentation of man pages is into

 /usr/share/man/man[1- 9]

and info pages into

/usr/share/info.

26

This unified file structure of Linux offers several advantages as shown in the example of the following /usr

directory. This sub”directory has most executables of the system. In Linux, to mount it off another partition,

an innumerable set of protocols such as NFS (Sun) can be chosen. This directory is completely transparent

and local:

“On a system with”Unix, everything is a file; if it is not a file, then it is a process.”

However, there”are some exceptions like:

• Directories: files that are lists of other files.

• Special files: the mechanism used for input and output.

• Links: a system to make a file or directory visible in multiple parts of the system’s file tree.

• (D’main) sockets: a special file type, similar to TCP/IP sockets, providing inter-process

networking protected by the file system’s access control’

• Named pipes: act more or less like sockets and form a way for processes to communicate

with each other, without using network socket semantics.

The (ls-l) is used to display the file type. For this the first character of each input line is used as

shown below:

The files that are more than just files are some special files like pipes and sockets, but for simplicity,

we say that everything is a file. Services, programmes, images, texts etc all are files. The following

table shows the types of file.

Table: File types

Symbol Meaning

 - Regular file

 d Directory

 l Link

 c Special file

 s Socket

 p Named pipe

 b Block device

The ls -F, is used to indicate the type of file by suffixing file names with one of the characters “/=*|@”.

| | shareable | unshareable |

+- - - - ic | /usr | /etc |

| | /opt | /boot |

+- - - - - - - - | /var/mail | /var/run |

| | /var/spool/news | /var/lock |

+- - - - - - - - - +- - cription is applicable to Linux, like Unix is:

jaime:~/Documents1aime-l

total 80

-rw-r–-r-- 1 jaime jaime –44 Feb 21 17:56 intro Linux.doc

-rw-rw-r-- 1 jaime jaime 41472 Feb 21 17:56 Linux.doc

drwxrwxr-x 2 jaime jaime 4096 Feb 25 11:50 course

27

3.3 The Path

The PATH environment variable takes care of giving full path name to the command. Those directories are

listed in the system through this variable where executable files can be found. This way it saves a lot of typing

and memorizing locations of commands.

Naturally, it contains a lot of directories with /bin somewhere in their names. For example the echo command

is used to display the content (“$”) of the variable PATH:

The path starts from the / or root directory. If it starts with a slash then it is called an absolute path, since

there can be no mistake: only one file on the system can comply. In either case it is called relative path. In

relative paths too the . and .. are used to indicate for the current and the parent directory.

3.4 The Root Directory

The following directories, or symbolic links to directories, are required in /, the root directory.

Type Meaning

/bin Essential command binaries

/boot Static files of the boot loader

/dev Device files

/etc Host”specific system configuration

/lib Essential shared libraries and kernel modules

/media Mount point for removeable media

/mnt Mount point for mounting a filesystem temporarily

/opt Add”on application software packages

/sbin Essential system binaries

/srv Data for services provided by this system

/tmp Temporary files

/usr Secondary hierarchy

/var Variable data

It is called the root directory, because it serves like the root of a tree and all directories grow though

it and look like the branches of a tree, as shown below:

Figure 3.2 Root Directory

rogier:> echo $PATH

/opt/local/bin:/usr/X11R6/bin:/usr/bin:/usr/sbin/:/bin

28

3.5 The File Structure

Linux file structure starts with the root directory and it contains the following sub”directories, as shown and

explained below:

Figure 3.3 File and Directory Structure

1.5.1 /bin

This contains many useful commands used by both the administrator and non”privileged users. The shells

like bash, csh, etc are contained by it. Because of this, the binaries are considered to be essential in this

directory. The essential programs contained by it must be available even if only the disk containing / is

mounted. The programs which boot scripts may depend on are also contained by it.

There are no subdirectories in this directory and the location of the following commands is here:

cat Utility to concatenate files to standard output

chgrp Utility to change file group ownership

chmod Utility to change file access permissions

chown Utility to change file owner and group

cp Utility to copy files and directories

date Utility to print or set the system data and time

dd Utility to convert and copy a file

df Utility to report filesystem disk space usage

dmesg Utility to print the kernel message buffer

echo Utility to display a line of text

bin/ dev/ home/ lost+found/ proc/ sbin/ usr/ cdrom/ opt/ vmlinuz boot/ etc/ lib/ mnt/ root/ tmp/

var/ dvd/floppy/ initrd/ /tftpboot

29

false Utility to do nothing, unsuccessfully

hostname Utility to show or set the system’s host name

kill Utility to send signals to processes

ln Utility to make links between files

login Utility to begin a session on the system

ls Utility to list directory contents

mkdir Utility to make directories

mknod Utility to make block or character special files

more Utility to page through text

mount Utility to mount a filesystem

mv Utility to move/rename files

ps Utility to report process status

pwd Utility to print name of working directory

rm Utility to remove files or directories

rmdir Utility to remove empty directories

sed The ‘sed’ stream editor

sh The Bourne command shell

stty Utility to change terminal line settings

su Utility to change user ID

sync Utility to flush filesystem buffers

true Utility to do nothing, successfully

umount Utility to unmount file systems

uname Utility to print system information

3.5.2 /boot

Everything that is required for the boot process is contained by this directory with the exception of

configuration files that are not needed at boot time. This indicates that the data used before the kernel’s

beginning of executing user is stored by it. The data may include redundant master boot records and

some other important files needed to boot. Some of the boot files are:

/boot/boot.0300 backup master boot record

/boot/boot.b the basic boot sector. A symbolic link to one of four files

/boot/boot- bmp.b, /boot/boot- menu.b, /boot/boot- text.b, /boot/boot- compat.b

/boot/chain.b Used to boot non- Linux operating systems.

/boot/config- kernel- version Installed kernel configuration.

/boot/os2_d.b Used to boot to the 0S/2 operating system.

/boot/map Contains the location of the kernel.

/boot/vmlinuz Symbolic link to the kernel.

/boot/grub Contains the GRUB configuration files .

/boot/grub/device.map Maps devices in /dev.

/boot/grub/grub.conf Grub configuration file.

/boot/grub/messages Grub boot- up welcome message.

/boot/grub/splash.xpm.gz Grub boot- up background image.

30

3.5.3 /dev

The special or device files are located in /dev. The very interesting part of this directory is it that highlights

one important aspect of the Linux “everything is a file or a directory.”

This directory has hda1, hda2 etc. files that represent the various partitions on the first master drive of the

system.

3.5.4 /ls

The ls means list. It works in a similar way the dir command works in DOS. The typing of ls provides a

listing of all the files in the current directory. There may be “hidden” files whose name start with a dot and to

view them, the -a flag is used with the ls command, i.e. ls -a.

To view further information about the files, the -l flag is used with ls, i.e. ls-1. This command will show the

file permissions and the file size. To have a list of all the subdirectories, the -R flag is used with the ls

command, i.e. ls -R, which is a rough similar to the dir /s command in DOS.

On putting flags together, ls-1aR, one can view all the files in a directory with their permissions/size and

through the subdirectories.

The command ls –al shows a long list of files with their properties and the destinations. The command ls -

latr displays the same files in reversed order. Some examples are:

/dev/cdrom represent Cd rom

/dev/fd0 represent floppy drive.

/dev/dsp represent speaker device.

/dev/lp0 represent printing

/dev/js0 represent Standard game port joystick /dev/dsp represent audio device

krissie:~/mp3> ls

Albums/ Radio/ Singles/ gene/ index.html

krissie:~/mp3> ls -a

./ .thumbs Radio gene/

../ Albums/ Singles/ index.html

krissie:~/mp3> ls -l Radio/

total 8

drwxr-xr-x 2 krissie krissie 4096 Oct 30 1999 Carolina/

drwxr-xr-x 2 krissie krissie 4096 Sep 24 1999 Slashdot/

krissie:~/mp3> ls -ld Radio/

drwxr-xr-x 4 krissie krissie 4096 Oct 30 1999 Radio/

31

 kucing@ubuntu-laptop:~$ pwd --help

 bash: pwd: --: invalid option

 pwd: usage: pwd [-LP]

In order not to use any option to ls most Linux versions has ls aliased to colour-ls by default. Every file

type has given its own color. The standard scheme is in /etc/DIR_COLORS:

3.5.5 /etc

This directory is like the nervous system. All system related configuration files are contained in it or in its

sub”directories. This directory must be back up regularly so that a lot of re”configuration can be saved if

re”installation is needed. No binaries are located here.

For example, /etc/X11/ contains all the configuration files for the X Window System.

3.5.6 /pwd

It stands for “Print Working Directory” (present working directory). It is simply useful to show the directory

in the use at the moment for scripting and referring to said current directory.

Unlike other commands, it is always almost used just by itself,

pwd

It is rarely used with options and never used with file names. This command is used when the name of the

working directory is not shown by the shell. Typing of ‘pwd’ command results in printing of the name of

working directory. This command does have only option of ‘-LP’ to print the same. There are neither ‘-L’

, ‘-P’ options nor ‘—help’ and ‘—version’ options. These options when used with this command would

give you ‘invalid option’ in Ubuntu desktop. For example:

pwd is also useful to confirm that the current directory has been actually changed.

3.5.7 /proc

This is very special directory because it is also a virtual file system and generally referred as a process

information pseudo”file system. This means that no ‘real’ files are there but system information for runtime

like system memory, hardware configuration, etc is there. This is also regarded as a control and information

centre for the kernel. The files located in this can be altered and with this kernel parameters can be read or

edit while the system is running.

Table3.1 Color-ls default color scheme

Color File type

blue directories

red compressed archives

white text files

pink images

cyan links

yellow devices

green executables

flashing red broken links

32

NAME

 cd - Change working directory

SYNOPSIS

 cd ?dirName?

DESCRIPTION

 Changing the current working directory to new dir or to the home directory, if new dir is

not given. The working directory in use is a per-process resource; the cd command changes

it for all interpreters and all threads.

The most distinctive feature this directory’s files is that all files have a size of 0. The exception is of kcore,

mtrr and self files.

The listing of directory looks like as

3.5.8 /cd

The cd directory, as the name suggests, is a type of command used to change directory. The use of cd

command is not quite easy as use of it clearly means the dealing with directory. The man page for cd

command is as given below:

Another convenient feature of cd is the ability for any user to return directly to its home directory by

merely using a tilde as shown below:

cd ~

There are only two options with cd but neither of them is used commonly. The -P option asks cd to use

the physical directory structure and -L option forces it to follow symbolic links.

3.5.9 /mkdir

This directory is just like a folder to keep related files or sub-directories together at one place. The functioning

of it by keeping all files in the proper directory make Linux easier and tidy to manage. The mkdir command

total 525256

dr- xr- xr- x 3 root root 0 Jan 19 15:00 1

dr- xr- xr- x 3 daemon root 0 Jan 19 15:00 109

dr- xr- xr- x 3 root root 0 Jan 19 15:00 170

dr- xr- xr- x 3 root root 0 Jan 19 15:00 173

dr- xr- xr- x 3 root root 0 Jan 19 15:00 178

dr- xr- xr- x 3 root root 0 Jan 19 15:00 2

dr- xr- xr- x 3 root root 0 Jan 19 15:00 3

dr- xr- xr- x 3 root root 0 Jan 19 15:00 4

dr- xr- xr- x 3 root root 0 Jan 19 15:00 421

dr- xr- xr- x 3 root root 0 Jan 19 15:00 425

dr- xr- xr- x 3 root root 0 Jan 19 15:00 433

dr- xr- xr- x 3 root root 0 Jan 19 15:00 439

33

NAME

 mkdir - make directories

SYNOPSIS

 mkdir [OPTION] DIRECTORY...

DESCRIPTION

 Creates the directories

 Mandatory arguments to long options are mandatory for short options too. -m, --

mode=MODE

 set file mode (as in chmod), not a=rwx - umask

 -p, --parents

 no error if existing, make parent directories as needed

 -v, --verbose

 print a message for each created directory

 --help display this help and exit

 --version

 output version information and exit

With the mkdir command multiple directory can also be created. For example:

 bill@slackware:~$ mkdir linux tutorial guide example

 bill@slackware:~$ ls

 example/ guide/

 linux/ programs/

 tutorial/

 bill@slackware:~$

works similar to mkdir command of DOS. The creation of directories with the specified names supplied

after it can be done by using this command. The format is mkdir <directory1 directory2 directory3 ...>.

Although with this a new directory is created, the mkdir command is one of the mostly used commands.

Tthe manual page example of mkdir is as shown below:

3.5.10 /rmdir

To delete or remove unwanted directories, to make it clean and tidy, the rmdir directory is used.

The rmdir is just opposite tool of mkdir. Unlike mkdir, the rmdir command removes directory, but only

empty directory. The man page of rmdir is as follows:

34

Like mkdir, many options are not available with rmdir too. The syntax is similar to the mkdir, rmdir <new

directory>. However, rmdir is not much popular as with it only an empty directory can be deleted and even

if a directory contains small file or child directory, then it is of no use.3.5.11 /cat

3.5.11 /cat

It is one of the most frequently used directories for displaying, combining copies and creating new files for

the text files in use..

The general syntax of cat is

cat [options] [filenames] [-] [filenames]

It is most commonly used to read the contents of files. To view a text file and read it, typing of the cat followed

by a space followed the name of the file will display the contents of a file:

cat file1

The cat is used for together stringing of copies of the contents of files. The oginal files don’t get affected

because concatenation occurs only to the copies. For example with the following command copies of the

contents of the three files file1, file2 and file3 is concatended:

cat file1 file2 file3

The cat is used for creation of files also, especially small files. For example, to create a new file, following

command can be used:

cat > file1

3.5.12 /more

A screen full of a text ûle is displayed with the help of this command. With this a text ûle can be looked

through without invoking an editor, printing the ûle, or trying to pause the terminal. After displaying the text

at a time with this command the text can be searched, scrolled backwards and forwards. However, once a

information passes away, it cant be seen again.

The syntax of this command is:

NAME

 rmdir - remove empty directories

SYNOPSIS

 rmdir [OPTION]... DIRECTORY...

DESCRIPTION

 Remove the directories

 Fail-on-non-empty

 -p, --parents

 Remove DIRECTORY and its ancestors.

 -v, --verbose

 output a diagnostic for every directory processed

 --help display this help and exit

 --version

 output version information and exit

35

more[options]filename

Following are the options that can be used:

Clears the screen before printing the file .

3.5.13 /less

The less command is considered better than more. Like more, a screen of information can be displayed with

it in a text ûle. This command allows quick view of any file or any section of that file. As the whole file is not

required to be loaded in memory, it starts up faster on large files. Unlike the more command, besides

scrolling forward, it can scroll back as well. It just prints the text in the given file, and not allows editing or

manipulating of the text.

 The Syntax is

 less [options] filename

Following are the options that can be used with this command:

-c Clear screen before displaying.

-e
Exit immediately after writing the last line of the last file in the argument

list.

-n Specify how many lines are printed in the screen for a given file.

+n Starts up the file from the given number.

For Example,

more -c index.php

-c Clear screen before displaying.

+n Starts up the file from the given number.

:p Examine the pervious file in the command line list.

:d Remove the current file from the list of files.

For example

less +3 index.php

Start printing from 3rd line of the file.

3.5.14 /lpr

This command is used to print files. To print, the files are named on the command line to be

sent to the printer. The lpr uses the standard input to read the print file if there is no list of

files on the command line.

SYN TAX

lpr [- E] [-P de st ination] [-# num-c opies [-l] [-o option] [-p] [-r] [-C/J/T ti tle]

[f ile (s)]

36

3.5.15 /temp

The temp directory contains mostly those files, which are required temporarily. This is used to create lock

files for storage of data temporarily. However as many of the files in it may be important for running programs

so the files must not be deleted without knowing them as deletion of them may result in a system crash.

Usually, this is cleared out at boot or at shutdown by the local system so that people and programs may not

assume that any files or directories in this directory are preserved between invocations of the program.

3.6 Summary

Proper file permissions are an extremely important part of ensuring that your website is secure. Determining

the correct file permissions for any specific file requires one to know what type of information contained in

the file and the purpose of that information. This chapter explained configuration files and directories on a

Linux system that control user permissions, system applications, daemons, services, and other administrative

tasks in a multi-user, multi-tasking environment. These tasks include managing user accounts, allocating disk

quotas, managing e-mails and newsgroups, and configuring kernel parameters. This chapter also classified

the config files present on a Red Hat Linux system based on their usage and the services they affect.

3.7 Self - Assessment Exercise

1. Describe three different ways of setting the permissions on a file or directory to r—r—r—. Create

a file and see if this works.

2. Change to the home directory of another user directly, using cd ~username.

3. What is the difference between listing the contents of directory play with ls -l and ls -L?

4. Imagine you were working on a system and someone accidentally deleted the ls command (/bin/ls).

How could you get a list of the files in the current directory?

5. Experiment with the options on the ls command. What do the d, i, R and F options do?

3.8 References

• The UNIX programming environment, Brian W. Kernighan, Rob Pike, Prentice Hall, New

Jersey,1984.

OPTIONS

The following options to be used lpr:

-E Forces encryption when connecting to the server.

-p Prints files to the named printer.

-# Sets the number of copies to print from 1 to 100.

-C Sets the job name.

-J Sets the job name.

-T Sets the job name.

-I Specifies that the print file is already formatted for the destination

-o Sets the job name.

37

• Newnes UNIX Pocket Book, Steve Heath, Butterworth”Heinemann, Great Britain, 1998.

• Suse Linux Installation and Configuration, Nazeeh Amin El”Dirghami & Youssef A. Abu Kwaik,

QUE Corporation, USA, 2000.

• Inside Linux, Michael J. Tobler, New Riders Publishing, USA, 2001.

• Linux in a Nutshell 2nd Edition, Ellen Siever, O’Reilly & Associates Inc., CA, USA, 1999

• Using Caldera OpenLinux Special Edition, Allan Smart, Erik Ratcliffe, Tim Bird, David Bandel,

QUE Corporation, USA, 1999.

• Linux System Security (The Administrator’s Guide to Open Source Security Tools), Scott Mann &

Ellen L. Mitchell, Prentice—Hall, New—Jersey, 2000.

• XFree86 For Linux (Uncommon Solutions for the Technical Professional), Aron Hsiao, QUE

Corporation, USA, 1999.

• Complete Idiot’s Guide to Linux Second Edition, Manuel Alberto Ricart, QUE Corporation,

USA, 1999.

• Lions’ Commentary on UNIX 6th Edition with Source Code, John Lions, Peer”to”Peer

Communications Incorporated, USA, 1996.

• The Linux System Administrators’ Guide Version 0.6.1, Lars Wirzenius, liw@iki.fi, Finland,

1998.

• SAMS Teach Yourself Shell Programming in 24 Hours, Sriranga Veerararaghavan, SAMS

Publishing, USA, 1999.

• 433"252 Software Development: Principles and Tools, Zoltan Somogyi, Les Kitchen, The

University of Melbourne, Department of Computer Science and Software Engineering, Australia,

2002.

• The Advanced Linux Pocketbook, Ashton Mills, ashtonmills@bigpond.com, ACP Publishing

Pty Ltd, Australia, 2001.

• http://www.linuxjournal.com/article.php?sid=1104

38

Unit - 4 : Shell Scripts and Programming

Structure of Unit

4.0 Objective

4.1 Introduction

4.2 Shell Variables

4.3 Environment Variables

4.4 Shell Scripts

4.5 Shell Parameters

4.6 Summary

4.7 Self - Assessment Exercise

4.8 References

4.0 Objective

The objective of this unit is to make you aware of some aspects of shell in Linux operating system. In this

unit we will look inside what type of shell is made up of. We will take a sneak peak at the “variables” in

general and “scripts” or “parameters” in particular. We will also see how these all correlate to make the

Linus system operative.

4.1 Introduction

The language understood by the computer is called binary language. However to give instructions using

binary language is quite difficult to read and write. Therefore operating systems have developed a special

program known as Shell.

Shell accepts instructions in English and translates those into binary language understood by computers, as

shown below:

Figure 4.1 Shell

Hence shell can be considered as means of environment provided for user interaction. Shell is a commanding

language interpreter, which executes command read from the standard devices or files.

Following are some most popular shells used by Linux:

 Shell Name Developed by Remark

BASH (Bourne-Again Shell) Brian Fox and Chet Ramey Most common shell in

 Linux. Freeware shell

CSH (C SHell) Bill Joy The C shell’s syntax and

 usage are very similar

 to the C programming

KSH (Korn SHell) David Korn ———

39

The command given from user is used by any of the above and then it is told to Linux O/s what user wants.

The command given by keyboard is called command line interface.

How to use Shell

Following are the commands that are needed to be typed to use shell:

The purpose Syntax of command Example

To know type of shell shell $ echo $SHELL

To see date date $ date

To know system user who $ who

Print working directory pwd $ pwd

List of files in cd ls or dirs $ ls

To create text file cat $ cat > myfile

To text see files cat (file name} $ cat myfile

To display full screen file more(file name} $ more myfile

To rename file mv {file1} {file2} $ mv sales sales99

To send mail to other mail {user-name} $ mail ashish

To create multiple files ln {oldfile}(newfile} $ ln Page1 Book1

To remove file rm $ rm myfile

Read your mail mail $ mail

4.2 Shell Variables

We know that the processing of information or data is kept in RAM. To hold this data, RAM is divided into

small locations, and each of its location is given a unique number called memory address. This memory

address can further be given a unique name by programmer and that is called memory variable or simply

variable. It may take different values, but only one at a time.

Figure 4.2 Shell Variables

40

In Linux, two types of variable are there:

1) System variables – Creation and maintenance by Linux itself defined in CAPITAL LETTERS.

For example

 echo $USER

 echo $PATH

 2) User defined variables (UDV) - Creation and maintenance by user defined in lower LETTERS.

All variables are stored and considered as strings, even if numeric values are assigned to them. As

these are case sensitive, just name should be used while assigning a value to them. No spaces should

be there on either side of the equals sign. The contents of a variable can be accessed within the shell

by preceding its name with a $. For example

If a $variable expression is enclosed in double quotes, when the execution takes place, it’s replaced

with its value. If it is enclosed in single quotes, no substitution takes place. The special meaning of the

$ symbol can be removed by prefacing it with a \.

Some of the important System variables are as given below:

System Variable Meaning

BASH=/bin/bash Our shell name

BASH_VERSION=1.14.7(1) Our shell version name

COLUMNS=80 No. of columns for our screen

HOME=/home/ anurag Our home directory

LINES=25 No. of rows for our screen

LOGNAME= students Our logging name

OSTYPE= Linux Our o/s type : -)

PATH=/usr/bin:/sbin:/bin:/usr/sbin Our path settings

PS1=[\u@\h\W]\$ Our prompt settings

PWD=/home/students/Common Our current working directory

SHELL=/bin/bash Our shell name

USERNAME=anurag User name currently logged in

myname=A [use quotes if the value contains spaces]

myos=Linux

text = 1+2

echoYour name:$myname [A]

echoYour os:$myos [Linux]

echo $text [1+2]

41

To define User Defined Variable the following syntax is used:

Syntax: variablename=value

For example $ no=10 #

To Name variables, the following are the rules to be followed:

(1) The name must begin with underscore or alphanumeric character and it must be followed

by either one or more alphanumeric characters. For example:

HOME, SYSTEM_VERSION

(2) No spaces should be put on either side of the equal sign. For example

$ no=10

(3) To define NULL variable the following is used. For example

$ vech= will print no value

 (4) The symbols ?,* etc, must not be used to name variable.

To print UDV the following syntax is used

Syntax: $variablename

For example $ echo $vech will print ‘Bus’

4.3 Environment Variables

A Linux system is quite complex to keep a lot track of little details that come into play in interactions

with other programs and no user wants to pass on these details to every program that gets run. As a

mechanism, so users develop an environment. The environment can be defined as the conditions of

running a program in a variable manner that is, it can be altered and played by user, as is only right in

a Linux system.

The environment variables are simply a collection of values and variables that are passed to the shell

or to any shell script at the starting of program. Basically, the information contained by them may be

used by the program to modify its behaviour.

The set command is used to display all the shell variables, environment variables, other shell parameters

and any shell function that has been defined. As the set command displays much more variables than

the env command, so every shell contains environment variables.

In all systems like Unix, each has its own set of these variables. At the time of creation of process, a

duplicate environment of its parent process is inherited with the exception for explicit changes that

must be done between execution and running fork. All OS have environment variables; however same

variable names are not used by any of them. The values of environment variables for configuration

purposes can be accessed by the running programme itself.

Environment variables examples include:

• PATH - ls of paths. When a command is typed without the provision of full path, list of

directories is checked if it contains a path that can lead to the command.

• HOME - indicates location of home directory of User in the file system.

42

§ export VARIABLE=value # for bash, Bourne and related shells

§ setenv VARIABLE value # for csh and related shells

• HOME/{.AppName} – To store application settings for programmatic purposes. APPDATA

(roaming), LOCALAPPDATA or PROGRAMDATA (shared between users) is used.

• TERM – Indicates the use of the type of terminal. For example, dumb or vt100.

• PS1- specifies the display of the prompt in the Bourne Shell and its variants.

• MAIL - indicates where mail is to be found.

• TEMP – specifies location of processes/store of temporary files

All environment variables and their values are displayed by the commands set, env and printenv. The set

and env are also used for setting environment variables and are their incorporation is often directly into the

shell. The printenv is used to print a single variable by giving the name of the said variable as the sole

argument to the command.

In Linux, the following commands are used:

• Local to process

Environment variables are local to the process in which they were set. This implies that if two

shell processes are spawned resulting in the change of value of one environment variable, that

change won’t be seen by the other.

• Inheritance

A child process inherits all the environment variables and their values from the parent process

by forking then replacing itself with the program to be called.

• Case-sensitive

The environment variables are case-sensitive.

• Persistence

The persistence of environment variables can be session-wide or system-wide.

Following is the example with the PATH environment variable:

Listing of Environment Variables with set

% set

PA TH=/usr /loc al/lib/qt/bin:/usr/loca l/bin:/usr /bin:/bin :/usr/X11R 6/bin :

/usr /openwin/bin:/usr /ga m es:.:/usr /local/ssh2/bin:/usr/loca l/ssh1/bin:

/usr /sh are/texm f/bin:/usr/loca l/sbin:/usr /sbin:/home/logan/bin

PI PE STAT US=([0]="0")

PP ID=4978

PS 1= '\h:\w\$ '

PS 2= '> '

PS 4= '+ '

PW D=/h om e /logan

QTD IR=/usr/local/lib/qt

RE MO TEHOS T=ninja .tdn

SHE LL=/bin/bash

% un set VAR IA BL E

43

An environment variable is not similar like a shell variable. However a shell variable can become an environment

variable if we run the env command.

The export command makes an environment variable a shell variable. This is done by using the -n option

with that. This does not destroy the variable, but it is no longer remains an environment variable.

However once a shell variable becomes environment variable, it remains an environment variable even if its

value gets changed. Hence, to change its value every time, there is no meaning to use export command on

a variable.

4.4 Shell Scripts

Two different ways can be used for writing shell programs. A sequence of commands can be typed and the

shell can be allowed to execute them interactively. The commands can be stored in a file that can then be

invoked as a program. This way of storing commands in shell is known as Shell Script. In other words it can

be said that a shell script is a collection of commands all working with a little bit of programming syntax

thrown in to it as shown below:

Figure 4.3 Shell Scripting

Shell script is a fundamental part of an operating system and as a ubiquitous feature of UNIX-like OS, it

represents a way of writing certain types of command-line tools. The command-line tools are written in such

a way that the script works on a fairly broad spectrum of computing platforms.

The performance of shell scripts can be limited because they are written in an interpreted language whose

power comes from executing external program. However, they represent a powerful tool to bootstrap other

technologies because they can be executed without any additional effort on every modern operating system.

44

Figure 4.4 Executing Shell Scripts

Shell script

• can take inputs from user, make a file and output them on screen.

• is useful to create own commands.

• saves lots of time.

• can be used to automate some task of day today life.

• with system administration part can be also automated

For example using cat command shell script can be written as follows:

$ cat > first

#

My first shell script

#

clear

echo “Knowledge is Power”

To execute it command to be typed is

$ chmod +x first

$./first

Now “Knowledge is Power” gets printed on screen. To print message of variables general form of echo

command that is used is as follows

45

echo “Message”

echo “Message variable1, variable2....variableN”

To write a shell script is like to ride a bike because learning the basics of shell scripting is similar to learning

of bike. The falling off and scraping happens a lot at first. Shell script is generally considered to be a glue

language, ideal for creating small pieces of code to connect tools together. Shell scripts are usually not the

best choice for complex tasks. In other words it can be said that to write a script is an easy task but it is

rather challenging to write a script that works consistently.

Some common shells, grouped by script syntax are:

Bourne-compatible shells

• sh

• bash

• zsh

• ksh

C-shell-compatible shells

• csh

• tcsh

• bcsh (C shell to Bourne shell translator/emulator)

Due to security reason of files, the execution permission is not given by default to the creator of Shell Script

and to run shell script following two things are to be done as follows:

(1) chmod command as given below is to be used to give execution permission to script

 Syntax: chmod +x shell-script-name

 OR

 Syntax: chmod 777 shell-script-name

(2) script can be run as

 Syntax: ./your-shell-program-name

 For example $./first

Here ‘.’(dot) is command, and it is used in conjunction with shell script. With it current

shell is indicated that the command that is followed by the dot(.) is to be executed in the same shell.

For example

$ bash first

$ /bin/sh first

To run shell script, same directory must be used where the script is created because in different directory,

because of path settings script will not run.

However, this problem too can be overcome. The complete path of script can be specified to run it from

other directories. For example,

46

$ /bin/sh /home/vivek/first

Following are some advanced commands for execution of shell scripts:

1. /dev/null - This is used to send any unwanted output from program.

Syntax is command > /dev/null

For example, output of the command $ ls > /dev/null, is not shown on screen its send to this

special file.

2. Conditional execution (&& and ||)- The && (read as AND) and || (read as OR) are control

operators.

The Syntax for AND is:

command1 && command2

It means that command2 is executed iff command1 returns an exit status of zero.

The Syntax of OR is:

 command1 || command2

It means that command2 is executed iff command1 returns a non-zero exit status.

 3. getopts command-This command checks if a valid command line argument is passed to shell

script or not. It is usually used in loop named while. The

Syntax is:

getopts {optsring} {variable1}

Errors in Shell Scripts

A shell script works usually but sometimes while writing it an error can occur when an

occasionally empty environment variable does not get quoted. Following are the meaning common

errors:

1 means general error

2 means return an exit status.

126 means Command cannot be executed

127 means Command not found

128+N means Command exited with Signal N

47

130 means Command exited with Ctrl+C

255 means exist status out of range

For example,

Change:

echo “shell script.”

to:

echoq “ shell script.”

$./hello.sh

Who are you?

$

The above example shows the error in shell scripts. However, it is interesting to note that the shell script

simply reports the error and in spite of that shell merrily continues running. There are many different sorts of

these type errors the shell reports but continue its running. The one type of error that stops the running of

the shell script is called a syntax error.

It is also to be noted that in the shell what the error is the command not found and the line on which it

occurs. This makes it easier to track down the error and fix it. The example of syntax error is as

follows:

Change:

echo “Shell Script?”

to:

(echo “shell script?”

$./hello.sh

Yes. I am a shell script.

$

.

If there is a syntax error in the shell script, the shell script will abort as soon as the error is encountered

by it and stop running the rest of the script, as it won’t understand what is to be done.

It can be noted in the above example that although the error is in fact at line 4, shell not decides about

it until line 5 and tells us happening of anything wrong. It may prove to be very annoying because it

makes debugging shell scripts painful. When the shell tells about a syntax error at line n, it should be

taken that that the syntax error is somewhere between the line n and the last command the script

managed to execute.

4.5 Shell Parameters

The special variables set by the shell are known as shell parameters, which cannot be modified either by the

user or by a shell script. The most important parameters are the positional parameters:

48

• Positional parameter 0 holds the name of the shell script

• Positional parameter 1 holds the first argument passed to the script

• Positional parameter 2 holds the second argument passed to the script, etc

Except the positional parameter 0, which holds the name of the shell script, the positional parameters are set

to the arguments that are given to the shell script when it gets started.

For example

./myscript.sh argon hydrogen mercury

then positional parameter 0 = ./myscript.sh

1 = argon

2 = hydrogen

3 = mercury

and all the other positional parameters are not set.

The special parameter @ is set to the value of all the positional parameters, starting from the first parameter,

passed to the shell script, each value being separated from the previous one by a space. The value of this

parameter is assessed using the construct ${@}. If it is accessed in double quotes ñ as in “${@}” ñ then

each of the positional parameters will be treated by shell as a separate word.

The special parameter # is set to the number of positional parameters not counting positional parameter

0. Thus it is set to the number of arguments passed to the shell

script, i.e. the number of arguments on the command line when the shell script was run.

$ cd

$ examples/params.sh 0.5 62 38 hydrogen

This script is /home/y250/examples/params.sh

There are 4 command line arguments.

The first command line argument is: 0.5

The second command line argument is: 62

The third command line argument is: 38

Command line passed to this script: 0.5 62 38 hydrogen

4.6 Summary

The AIX® operating system and other UNIX-like operating systems need a way to communicate with the

kernel. This is done is through the use of a shell. shell scripting is something all UNIX® users should learn

how to use. Shell scripting provides with the ability to automate many tasks and can save a great deal of

time. It may seem daunting at first, but with the right instruction you can become highly skilled in it. This

chapter explained how to write shells scripts with programming. An overview of Shell variables and shell

parameters was also given.

4.7 Self - Assessment Exercise

1. Write Script, using case statement to perform basic math operation as follows

+ addition

49

- subtraction

x multiplication

/division

The name of script must be ‘q4’ which works as follows $./q4 20 / 3, Also check for sufficient

command line arguments

2. How to calculate 5.12 + 2.5 real number calculation at $ prompt in Shell ?

3. How to perform real number calculation in shell script and store result to third variable , lets

say a=5.66, b=8.67, c=a+b?

4. Write script to determine whether given file exist or not, file name is supplied as command

line argument, also check for sufficient number of command line argument

5. Write script to determine whether given command line argument ($1) contains “*” symbol or

not, if $1 does not contains “*” symbol add it to $1, otherwise show message “Symbol is not

required”.

6 How do you refer to the arguments passed to a shell script?

7 What is the conditional statement in shell scripting?

8 How do you do number comparison in shell scripts?

9 How do you test for file properties in shell scripts?

4.8 References

• Aeleen Frisch, Essential System Administration, 3rd edition, O’Reilly and Associates, 2002,

• Cameron Newham and Bill Rosenblatt, Learning the Bash Shell, 2nd edition, O’Reilly and

Associates, 1998

• Chet Ramey and Brian Fox, The GNU Bash Reference Manual, Network Theory Ltd, 2003,

• David Medinets, Unix Shell Programming Tools, McGraw-Hill, 1999

• Ellen Siever and the staff of O’Reilly and Associates, Linux in a Nutshell, 2nd edition, O’Reilly

and Associates, 1999,

• Jerry Peek, Tim O’Reilly, and Mike Loukides, Unix Power Tools, 3rd edition, O’Reilly and

Associates,Random House, 2002

• Kernighan, Brian W., Pike, Rob (1984), “3. Using the Shell”, The UNIX Programming

Environment, Prentice Hall, Inc., p. 94.

• Ken Burtch, Linux Shell Scripting with Bash, 1st edition, Sams Publishing (Pearson), 2004,

0672326426.

• Neil Matthew and Richard Stones, Beginning Linux Programming, Wrox Press, 1996

• Paul Sheer, LINUX: Rute User’s Tutorial and Exposition, 1st edition, , 2002

• Stephen Kochan and Patrick Wood, Unix Shell Programming, Hayden, 1990,

50

Unit - 5 : System Administration in Linux

Structure of Unit

5.0 Objective

5.1 Introduction

5.2 The “Root” Account

5.3 Controlled Administrative Access

5.4 Creation of User Account

5.5 Custom Configuration and Administrative Issues

5.6 Setting and Showing Time

5.7 Summary

5.8 Self - Assessment Exercise

5.0 Objective

The objective of this unit is to make you aware of some aspects of system administration in Linux operating

system. In this unit we will look inside what type of administration Linux operating system is made up of. We

will take a sneak peak at the “root” account in general and “su” or “sudo” in particular. We will also see now

time and date is set in Linux Operating system.

5.1 Introduction

The most privileged account on Linux for system administration is “root” account, which makes able to

carry out all types of system administration like adding of accounts, changing of passwords, examination of

log files, installation of software etc. The root is the account, which by default has access to all files and

commands on an OS like Unix/Linux. It is also known as the root user, root account and the super user.

Figure 5.1 The Root Directory

51

5.2 The “Root” Account

The powers, which the root account has on the system, are known as root privileges. This is the most

privileged one and has absolute powers like complete access to all commands and files, ability to

modify the system in desired ways and to revoke and grant access permission for other users. The

root as a term for the all-powerful administrative user is used because the root is the only account,

which has permission to modify any file in the root directory. In turn, it has taken its name from the

fact that the hierarchy in the OS is being designed like an inverted tree-like structure in which all

directories branch off from a single directory that is analogous to the root of a tree.

Figure 5.2 Tree Structure of Linux File System

Linux has a dedicated user account for its administration of system usually known as root and has a UID

(user ID) of 0. The root account has complete access to change anything on the system. To do this su

command is used which temporarily assume the privileges of the root user. E.g.

auser> su

Password: *******

root>

This command is sometimes useful to verify the configuration of another system account also. Alternatively

to fully access the root privileges the sudo command can also be used that allows a system to be configured

to allow certain users to run certain commands as root without having full access. This command logs a lot

of information both about successful and unsuccessful attempts that provides a useful audit trail of root

activities.

52

In the Unix like Operating Systems, each user is assigned an unique identification number, automatically and

this UID is used by the system instead of the user name to identify and keep track of the users. The

echo command is used to find the UID of the current user, i.e.,

echo $UID

The UID for all users including root can also be seen by looking at the command /etc/passwd that is

the configuration file for user data.

However, while using the “root” one has to be most careful as it has no security restrictions imposed

upon it to perform administrative duties without hassle. The OS also assumes that tasks are to be done

without asking any questions. So, if one not remains very careful while using the “root” it means that

it is quite easy to wipe out crucial system files.

Root login is required to perform those actions that change the settings of system for all users or to

modify the accounts of users. The root account is also used for certain system operations. For example

• To add new users to the system and administer the user data.

• To install system software.

• To configure I/O devices. For example, a scanner or a TV tuner card.

• To configure system services like a web or FTP server.

The BASH shell displays ‘#’ as the last character, to serve as a warning to give the absolute power to

the user. Hence the rule of thumb is, unless, necessary absolutely, never sign in as “root”, commands

must be typed carefully and before pressing return, it must be double checked. Immediate Sign off

from the “root” account after accomplishing the task and security of password is must.

5.3 Controlled Administrative Access

To access administrative commands, user must have administrative permissions before logging. The

user that is created during installation is given access to administrative tools automatically.

To perform administrative operations, user must have access rights and to gain such access there are

several ways to do so:

• login as a sudo supported user (gksu),

• unlocking an administrative tool for access (policykit),

• logging in as the root user.

Policy Kit: It is a preferred access method which is used on many administrative tools to provide

access only to specified applications and only to users with administrative access for that application.

The specific application is to be configured for use by policy kit is a must.

Sudo and gksu: The sudo is used for many tasks like software upgrade and installation. Any application

is provided access with it with full administrative authorization but a time limit is imposed to reduce

risk. The gksu command is graphical administrative tool of sudo like the Synaptic Package Manager.

However, with gksu, sudo is still used to perform any command at the root level. For example moving files

to an administrative directory.

53

Root user access, su: This access is although discouraged, but makes a provision of complete control over

the entire system. This is the traditional method to access administrative tools. With the su command any

user can login as the root user if the root user password is known.

5.4 Creation of User Account

The new User account can be created in the following two steps:

1. To actually create the account itself

2. To provide an alias to e”mail address

To create the account itself, initially the username to be assigned to the user is to be decided. It must be at

most 8 characters long. As a next step, other information is to be entered like full name of user, user group,

a user shell, password expiration value and the desired password. The user id and home directory are #

(automatically assigned). The password must be between 6 to 8 characters long and everything should be

entered in lowercase. The exception is the full name of the user that can be entered in a “pleasing format”.

The Case being sensitive, identical case must be used while entering username and password.

Below is an example of adding a user name Arvind Kumar:

mail:~# /sbin/adduser

User to add (^C to quit): Kumar

That name is in use, choose another.

User to add (^C to quit): KumarA

Editing information for new user [kumara]

Full Name: Arvind Kumar

GID [100]:

Checking for an available UID after 500

First unused uid is 859

UID [859]:

Home Directory [/home/smithj]:

Shell [/bin/bash]:

Min. Password Change Days [0]:

Max. Password Change Days [30]: 90

Password Warning Days [15]:

Days after Password Expiry for Account Locking [10]: 0

Password [smithj]:</ FL1539

Retype Password:</ Fl1539

Sorry, they do not match.

Password:</> FL1539

Retype Password:</ FL1539

Information for new user [kumara]:

Name: Arvind Kumar

54

Home directory: /home/smithj

Shell: /bin/bash

Password: <hidden>

Uid: 859 Gid: 100

Min pass: 0 maX pass: 99999

Warn pass: 7 Lock account: 0

public home Directory: no

Type ‘y’ if this is correct, ‘q’ to cancel and quit the program,or the letter of the item you wish to change: Y

The next step is to create the alias for the e”mail account of the user. Either the user’s account name can be

used for e”mail address, or full name can be used to make it “easier”.

To add the e”mail alias, the “/etc/aliases’’ file is to be edited as follows:

mail# pico –w /etc/aliases

To add the new alias, the following format is to be used at the bottom of the file:

Firstname.Lastname:username

For our example, the entry would be as follows:

Arvind.Kumar:kumar

After finishing the addition of alias, <Ctrl>”<X> is pressed to save the file. The “newaliases’’ is typed then

to update the aliases database.

The user account is now created for use

Figure 5.3 System Administration

55

To change a password on behalf of a user, either sign on or “su” to the “root” account and ̀ `passwduser’’

is to be typed then. The system will ask to enter a password but it would not echo to the screen. To change

own password, ̀ `passwd” without specifying a username is to be typed.

To disable a user account, if shadow passwords are in use, edit, as root, the “/etc/shadow’’ file passwords;

in either case, edit the “/etc/passwd’’ file and then the password is replaced and stored in its encrypted form

with a “*’’ asterisk character.

All passwords, regardless of their length are stored as encrypted strings of 13 characters. So just by

replacing the password with a single “*’’ character, the user would not be able to sign in.

To remove a user account, the easiest way is to to use the “userdel’’ command, typed as “root’’. For

example:

/usr/sbin/userdel arvindkumar

The command will remove the username “arvindkumar” both from the file “/etc/passwd’’,, and the

Shadow password format “/etc/shadow’’.

Another way is not to remove an account and rather simply disable it so that, the user may use his/her

accounts again.

5.5 Custom Configuration and Administrative Issues

The root as administrator must know the following administration issues:

a. The “/etc/rc.d/rc.local’’ file is executed upon system start”up and contains any

extra services added to server to be executed upon boot up. These are:

b. The root user is empowered fully, because Unix-like OS has the provision of maximum

flexibility to configure their system.

c. The Unix-like OS taken it granted that the administrator knows about his/her actions exactly

and only such individual(s) use the root account. That means virtually there is no safety net for

the root user in the event of a careless error that could make the entire system inoperative.

d. “linuxconf’’ is an excellent configuration tool that makes many issues easier to do them. It runs

on any means of available display environment like the console, a telnet session, or a GUI”based

tool under X.

A critical means to prevent user from damaging Unix-like OS directly or to increase vulnerability of

such systems to damage by others is to avoid the use of root account except when its necessary

absolutely. In other words it can be said that rather than using root as logging, ordinary user accounts

must be used by the administrators and then commands like kedsu, su and sudo can be used, which

provide root privileges only as needed without requiring a new login.

For example, simply typing of su in the all-text mode and supplying the root password can make root user.

The security while using su can further be increased by using option –c that terminates it.

• `̀ /etc/inetd.conf’’ may look in /etc for any required specific changes

♦ ``/etc/exports’’ contains hosts list who are allowed to mount NFS volumes

♦ ``/etc/lilo.conf’’ has information of the LILO boot loader

♦ ``/etc/sudoers’’ contains users list who are to be given special privileges.

♦ ``/etc/named.boot’’ is for use of DNS

56

The Tasks performed by root account include movement of files or directories in or out of directories of

system, revoking or granting user privileges, copying of files, some repairs of system and installing some

application programs.

5.6 Setting and Showing Time

In Linux, the symbolic link /etc/localtime determines the time zone, which points to a data file that describes

the zone of local time. These files are located at either /usr/lib/zoneinfo or at /usr/share/zoneinfo depending

on type of distribution of Linux used.

For example, on a SuSE system, the link /etc/localtime in New jersy would show /usr/share/zoneinfo/

US/Eastern, the /etc/localtime link on Debian system would point to/usr/lib/zoneinfo/US/Eastern.

If with the/usr/lib or /usr/share directory, user can’t find the zoneinfo directory, either the link find /

usr –print | grep zoneinfo is to be used or your distribution’s documentation is to be contacted.

To set a private time zone, user can set the TZ environment variable. If it is unset, the system time zone

is assumed.

Figure 5.4

The current date and time can be shown by the date command. For example:

 $ date

 Sun Jul 14 21:53:41 EET DST 1996

 $

That time is Sunday, 14th of July, 1996, at about ten before ten at the evening, in the time zone

called ‘’EET DST’’

The date command can also be used to show the universal time. For example,

 $ date -u

 Sun Jul 14 18:53:42 UTC 1996

 $

The date command can also be used to set the kernel’s clock. For example

 # date 07142157

57

 Sun Jul 14 21:57:00 EET DST 1996

 # date

 Sun Jul 14 21:57:02 EET DST 1996

 #

Linux has a time zone package that knows about all existing time zones, and that can easily be updated

when the rules change. The administrator of system just has to select the appropriate time zone. More

to this, each and every user can set his/her own time zone irrespective of different countries over the

Internet.It must also be noted that while each user can have his own time zone, only root can set the

time, the clock is the same for everyone.

The track of time is kept independently by the kernel from the hardware clock. At the booting time,

Linux sets the same time in its own clock as the hardware clock has but, both running of both clocks

is independent. As the kernel clock always shows universal time, it does not know about time

zones at all.

Below is the list of time zone variables.

Time Zone Environment Variables:

TZ Variable GMT Offset Description

GMT0 0 Greewich Mean Time

UTC0 0 Universal Coordinated Time

FST2FDT 2 Fernando De Noronha Std

GST3 3 Greenland Standard Time

BST3 3 Brazil Standard Time

EST3EDT 3 Eastern Brazil Standard Time

NST3:30NDT 3.5 Newfoundland Standard Time/Newfoundland Daylight Time

AST4ADT 4 Atlantic Standard Time/ Atlantic Daylight Time

EST5EDT 5 USA Eastern Standard Time/ Eastern Daylight Time

EST6CDT 5 USA Eastern Standard Time/ Central Daylight Time

CST6CDT 6 USA Central Standard Time/ Central Daylight Time

MST7 7 USA Mountain Standard Time

MST7MDT 7 USA Mountain Standard Time/ Mountain Daylight Time

PST8PDT 8 USA Pacific Standard Time/Pacific Daylight Time, 8 hrs from

GMT

58

AKS9AKD 9 USA Alaska Standard Time/Alaska Daylight Time

YST9YDT 9 Yukon Standard Time/Yukon Daylight Time

HST10 10 USA Hawaiian Standard Time/ Hawaiian Daylight Time

NZST-12NZDT -12 New Zealand Standard Time/ New Zealand Daylight Time

EST-10 -10 Australian Eastern Standard Time

EST-10EDT -10 Australian Eastern Standard Time/Australian Eastern

Daylight Time

CST-9:30 -9.5 Australian Central Standard Time

CST-9:30CDT -9.5 Australian Central Standard Time/Australian Central

Daylight Time

JST-9 -9 Japan Standard Time

KST-9KDT -9 Korean Standard Time

WST-8:00WAS-8WAD -8 Australian Western Standard Time

CCT-8 -8 China Coast Time

HKT-8 -8 Hong Kong Time

JST-7:30 -7.5 Java Standard Time

NST-7 -7 North Sumatra Time

IST-5:30 -5.5 Indian Standard Time

IST-3:30IDT -3.5 Iran Standard Time

MSK-3MSD -3 Moscow Time

SAST-2SADT -2 South Africa Standard Time/South Africa Daylight Time

EET-2EEST -2 Eastern European Time/Eastern European Time Daylight

Savings Time

MET-2METDST -2 Middle European Time/Middle European Time Daylight

Savings Time

CET-1CEST - 1 Central European Time/Central European Time Daylight

Savings Time

WAT-1 -1 West Africa Time

WET0WETDST 0 Western European Time/Western European Time Daylight

Savings Time

The time command is not used to get the system time and it’s instead used to show time how long

anything takes place.

The date command only shows or sets the clock. The clock command too synchronizes the software

and hardware clocks. It is used when the system boots, to read the hardware clock and set the

software clock. To set both clocks, first the software clock is to be set with date command, and then

the hardware clock is to be set using the clock -w command.

59

The -u option to clock tells it that the hardware clock is in universal time.

5.7 Summary

The Chapter described the system administration aspects of using Linux. It is intended for people who

know next to nothing about system administration (those saying “what is it?”), but who have already mastered

at least the basics of normal usage. This chapter didn’t tell one how to install Linux; System administration

covers all the things that one has to do to keep a computer system in usable order. It included things like

backing up files (and restoring them if necessary), installing new programs, creating accounts for users (and

deleting them when no longer needed), making certain that the file system is not corrupted, and so on. If a

computer were, say, a house, system administration would be called maintenance, and would include cleaning,

fixing broken windows, and other such things.

5.8 Self - Assessment Exercise

1. Why Does the Computer Have the Wrong Time?

2. What is su?

3. What is sudo?

4. How can user have access to administrative operations?

5. Why the “root” is called root?

6. How the time is set and shown in Linux?

7. How an account of user is created?

8. Why the “root” account is called super user?

9. Differentiate between su, sudo and gksu?

60

Unit - 6 : Managing users

Structure of Unit

6.0 Objective

6.1 Introduction

6.2 Managing User Account

6.2.1 Adding New User Account

6.2.2 Modifying User Details

6.2.3 Removing User Account

6.2.4 Disabling User Account

6.2.5 Changing Password

6.3 Understanding Password File & Shadow Password File

6.3.1 /etc/passwd file

6.3.2 /etc/shadow file

6.4 Managing Group

6.4.1 The Group File, /etc/group

6.4.2 The Group Shadow File, /etc/group

6.5 Controlling Access to Directories & Files chmod

6.5.1 Types of File & Directory Access

6.5.2 Setting File Protection

6.5.3 Octal Notation

6.5.4 Sticky Bit

6.6 Summary

6.7 Self - Assessment Exercise

6.8 References

6.0 Objective

This unit provides a general overview of Unix user & groups accounts and user authentication. The user

management commands like useradd, userdel and usermod etc are discussed. Here several ASCII

configuration files that store user account information such as /etc/passwd, /etc/shadow, /etc/group

and /etc/gshadow are explained. In the last section of unit controlling access to directories and file

using chmod command are described. The unit focuses on the way managing users in UNIX based

systems.

6.1 Introduction

User account and authentication are two of the most important areas for which system administrator is

responsible. User accounts are the means by which users present themselves to the system, prove that

they are who they claim to be and are granted or denied access to the information and resources on a

system accordingly properly setting up and managing user accounts is one of administrator’s chief

tasks.

Most system provides command live utilities for manipulating user accounts and sometimes groups. The

commands for managing user accounts are provided on many Unix system are: useradd, for adding new

accounts; usermod, for changing settings of existing accounts and userdel for deleting user account.

61

/etc to the directory where all the system administration & configuration command are located user account

information is stored in several ASCII configuration files.

/ etc / password

User account

/etc/shadow

Encoded passwords and password settings.

/etc/group

Group definition and memberships

/etc/gshadow

Group passwords and administration

User on Unix system are open with the files the usual set of permission give to files is rw-r—r—, which lets

other users read the file but not change it any way. In order to charge default permission and set your own,

chmod command is used.

6.2 Managing User Account

The system administrator has to add, remove and modify users from system and provide the default

environment so that users can get their job done.

6.2.1 Adding New User Account (useradd)

• Adding a new user to the system involves the following tasks:

• Assign the user a user name, a user IDF number, and a primary group, and decide which other

groups she should be a member of (if any). Enter this data into the system user account configuration

files.

• Assign a password to the new account.

• Create a home directory for the user.

• Place initialization files in the user’s home directory.

• Use chown and /or chgrp to give the new user ownership of his home directory and initialization

files.

• Set other user account parameters appropriate for your system (possibly including password aging,

account expiration date, resource limits, and system privileges).

• Grant or deny access to additional system resources as appropriate, using file protections.

• Perform any other site-specific initialization tasks.

• Test the new account

A new user account is created using the useradd command. The useradd command takes the following

form:

Useradd [-c Comment] [-d dir] [-e expire] [-f inactive]

[-g group] [-u uid] [-s shell] loginanme

62

- c Comment

Here you specify the full name or any other textual information such as address of the user. For example:

Useradd –c 123, UIT scheme, Kota

-d dir

Here you specify the home directory of the user. Home directory is the directory where all the files and sub-

directories created by the user will be saved. Usually it is / home / username

(for example, / home/raj)-e expire

This is the ending date for this login. If this field is omitted no expiration date will be used.

For example:

Useradd –e “January 1, 2015”

Or

-e 1/1/2015

-g group_Id

This refers to the primary group to which the user belongs. An existing group name or a numeric ID may be

supplied with this option. – G is used for secondary group.

-u u_ID

UNIX internally uses a numeric ID to refer to each user known as the usrer ID. It is a number in the range

of 0-32767 on older systems and 0-65535 on some new systems. The number 0 is reserved for the root

user.

-s shell

This specifies the full pathname of the login shell, i.e. the sell which must be started when the user logs in.

Loginname

This is the login-name that you want to assign to the user. The login-name or username can be the first name

of the user. The first name with the first letter of the last name, the last name, the first letter of the first name

and the last name and so on. It can be anything but it must be unique in the network and consistent on all

machines, a user is permitted to log into.

Here is useradd command to create user raj:

useradd –g CSE – G ECE, IE – S/bin/csh –d/home/raj – c “Rajesh Dadhich, Lecturer” raj

This command creates user raj, creates home directory / home / raj if it does not already exist. It also places

raj in the CSE group primarily and ECE, IE groups also. H is UID will be next available number on the

system. In comment (using – c option) this tell that account add for Rajesh Dadhich Lecturer.

6.2.2 Modifying User Details (usermod) :

A user’s current attributes may be changed with the usermod command which accept almost all useradd

option. In addition usermod supports –l option used to change the username of an existing user. For example

the login shell of user raj can be set to korn shell with the following command:

63

usermod –s /bin/ksh raj

following command used to change username of an existing user.

usermod – l radhich raj.

6.2.3 Removing User Account (userdel)

Sometimes we may need to remove a user account from the system such as when an employee leaves the

organization. An unneeded user account can be removed using the userdel command. For example the

following commands will delete the account of user raj:

userdel raj

The above command will remove the entry matching raj from the /etc/passwd file and /etc/shadow.

If you want to remove the user’s home directory also use the –r option as follows:

userdel –r raj

6.2.4 Disabling User’s Account

Disabling a user’s account is better than removing it because of the following reasons:

(a) The user may one day require his or her account again or may require one or more files which had

been stored in the/her home directory.

(b) You may need to recover old files of which some might belong to the deleted user’s ID. The files of

disabled users can be recovered by enabling their accounts.

The passwd command with the-I option will mark the login as locked. Once locked, the user will not be

able to log in. The command to lock a user is:

passwd -1 usrname

6.2.5 Changing Password (passwd)

To change the password of a user (say user raj) uses the passwd command as follows.

passwd raj

Note that the system will prompt you to enter the new password.

You can, as an ordinary user, also change your own password. In this case, you do not have to supply your

login name. Just type the command passwd and the system will prompt for the new password.

6.3 Understanding Password File & Shadow Password File

The system keeps track of users via an entry in the password database. This database is maintained in /etc/

passwd file, another method is the shadow format method. In this method, the account information is stored

in both/etc/passwd and /etc/shadow file.

6.3.1 /etc/passwd file

This file /etc/passwd is the system’s master list if information about users and every user account has an

entry within it. Each entry in the password file is a single line. All the lines must have seven fields delimited by

64

colons (:). No comments or blank lines are allowed in this file. This file is readable and having following

form.

Username: x : UID : GID: user information : home_dir: login_shell

An entry in this file will look as follows:

raj : x : 7 : 7 : Rajesh Dadhich : / home/raj : /bin/csh

The description of each of the seven filed in the above line are as follows:

Username: This is a one- to eight-character alpha-numeric filed that re represents the user’s login name.

Password: The user’s password is stored as encrypted string of 13 characters. If this filed is empty is

means that this account has no password and hence password is not required for logging in. In systems

using shadow password formate, this filed contains an “x” character (i.e. password is not stored in

this file).

User ID: This specifies the user ID.

Group ID: We had learned that UNIX file permissions have three fields: owner (user ID), group

(group ID) and others. The Group ID field specifies the default group for files created by this user.

Full Name: Full name of the user.

Home Directory: Usually in the form of /home/username. All user’s personal files, web pages, mail

forwarding etc. will be stored in the directory specified here.

Shell: This field contains the full pathname of the script or program, that is to be started by the login

program, as the shell. If this field is empty, the Bourne shell is used by default.

6.3.2 /etc/shadow file

Most Unix operating systems support a shadow password file: An additional user-account database

file designed to store the encrypted passwords. The /etc/shadow file contain the password filed in an

field expanded format. It is readable only by the root (super user) It cannot be edited directly, but can

be modified by the passwd command. Entries in each line are separated by colon(:)as in the /etc/

passwd file. An entry in the shadow file is as follows:

username : encloded password : changed : minlife : maxlife : warn : inactive : expires : un used

User Name: This name is used to match against the username in the passwd file.

Password: The user’s password is stored as encrypted string of 13 characters. If this field is empty it

means that this account has no password and hence password is not required for logging in.

Password Last-Changed Date : the number of days between January 1,1970 and the date that the

password was last modified. It is stored as an integer value.

Minimum Number of Days between Password Changes: The user is not allowed to change his

password until the number of days specified in this field has passed after the last password change. A

value 0 means that the user may change his password at anytime.

Maximum Number of Days a Password valid: The user in not allowed to change his password until the

number of days specified in this field has passed since the last change. An empty field means the password

will never expire.

65

Number of Days to Warn User to Change Password : Number of days after which a user must be

prompted to change password.

Number of Days the Login May Be Inactive: If the account is inactive for more than this number of

days, the login is considered disabled.

Date when the Login is no Longer Valid: The date after which the login will get expired.

A reserved field for future use: This field is reserved for any future use.

6.4 Managing Group

UNIX groups any mechanism provided to enable arbitrary collections’ of users to share files and

other system resources. As such they provide one of the cornerstones of system security.

6.4.1 The Group File, /etc/group

4Unix groups are a mechanism provided to enable arbitrary collections of users to share files and other

system resources. As such, they provide one of the cornerstones of system security.

4Groups may be defined in two ways:

4Implicitly, by GID; whenever a new GID appears in the fourth filed of the password file, a new group is

defined.

Explicitly, by name and GID, via an entry in the file/etc/group.

Each entry in /etc/group consists of a single line with the following form:

name: *GID:additional-users

The meanings of these fields are as follows:

name

A name identifying the group. Names are often restricted to eight characters.

*

The second field is the traditional group password field, but it now holds some sort of placeholder character.

Group passwords are no longer stored in the group file.

GID

This is the group’s identification number. User groups generally start numbering at 100.*

Additional -user

The field holds a list of users who are members of the group, in addition to those users belonging to the

group by virtue of /etc/passwd who need not be listed). Names must be separated by commas (but no

space may appear within the list).

Note : Usernames and group names are independent of one another, even when the same name is both a

username and a group name. Similarly, UIDs and GIDs sharing the same numerical value have no intrinsic

relation to one another.

Here are some typical entries from an /etc/group file:

Comp1:* : 200 : root, njain, spahuja, sunil

66

Comp2:* : 300:root, dkr, mukul, kavita

The first line defines the comp1 group. It assigns the group id (GID) 200 to this group. Unix allow all users

in the password file with GID 200 plus the additional users njain, spahuja, sunil and root to access this

group’s files. The comp2 group is also defined with GID 300 user d kr, mukul, kavita are member of comp2

group and root is member of both groups.

6.4.2 The Group Shadow File, /etc/gshadow

On same systems, an additional group configuration file is used. The file /etc/gshadow is the group shadow

password file. It contains entries of the form:

group-name : encoded password : group-admins:additional-users

Where group-name is the name of the group, and encoded password is the encoded version of the group

password. Group-admins is a list of users who are allowed to administer the group by changing its password

and modifying memberships within the group (note that being so designated does not make them members

of the specified group. additional-users in almost always a copy of the additional group members list for /

etc/group; it is used by the newgrp command to determine which users can designate this group as their

primary group. Both lists are comma separated and may not contain spaces.

Here are some sample entries from a group shadow file:

comp1 : xxxxx:VSS:LNJ,KKS

The group Comp1 has a group password, and users LNJ and KKS are members of it (as are any users

who have it as their primary group, as defined in /etc/passwd). Its group administrator is user VSS.

On some systems, the newgrp command works slightly differently, depending on the group’s entry in

the group password file:

If the group has no password, newgrp fails unless the user is a member of the specified new group,

either because it is her primary group or because her username is present in the additional members

list in the group shadow password file, /etc/gshadow.

Because secondary group memberships for file access purposes are taken from the /etc/group file, it

makes no sense for a user to appear in the group shadow file but not in the main group file. Omitting a

secondary user defined in /etc/group from the shadow group list prevents him from using newgrp with

that group, which might be desirable in some unusual circumstances.

If the group has a password defined, any user who knows the password can change to this group with

newgrp (the command prompts for the group password).

If the group has a disabled password (indicated by an asterisk in the password field of /etc/gshadow),

no user may change her primary group to that group with newrp.

6.5 Controlling Access to Directories & Files chmod

6.5.1 Types of File and Directory Access

The important issue to consider is how to protect file from unwanted access or how to allow access to those

who need it. The protection on a file is referred to as its file mode on Unix systems. File modes are set with

the chmod command; we’ll look at chmod after discussing the file protection File modes are set with the

chmod command; we’ll look at chmod after discussing the file protection concepts it relies on.

67

Unix supports there types of file access : read, write and execute access (r, w, x). Table 6.1 shows meaning

of these access types.

Table 6.1: File Access Types

AccessMeaning for a file Meaning for a directory

r View file contents. Search directory contents (e.g., use Is).

w Alter file contents. After directory contents (e.g., delete or rename files).

x Run executable file. Make it your current directory (cd to it)

The file access types are fairly straightforward. It you have read access to a file, you can see what’s in it. If

you have write access, you can change what’s in it. If you have execute access and the file is a binary

executable program, you can run it. To run a script, you need both read and execute access, since the shell

has to read the commands to interpret them. When you run a compiled program, the operating system loads

it into memory for you and begins execution, so you don’t need read access yourself.

The corresponding meanings for directories may seem strange at first, but they do make sense. If you have

execute access to a directory, you can cd to it (or include it in a path that you want to cd to). You can also

access files in the directory by name. However, to list all the files in the directory (i.e. to run the ls command

without any arugments), you also need read access to the directory. This is consistent because a directory

is just a file whose contents are the names of the files it contains, along with information pointing to their disk

locations. Thus, to cd to a directory, you need only execute access since you don’t need to be able to read

the directory file itself. In contrast, if you want to run any command lists or use files in the directory via an

explicit or implicit wildcard-e.g., ls without arguments or cat *.dat-you do need read access to the directory

file itself to expand the wildcards.

Table 6.2 illustrates the workings of these various access types by listing some sample commands and the

minimum access you would need to successfully execute them.

Table 6.2 File Protection Examples

Command Minimum access needed

On file Itself On directory file is in

Cd / home / raj N/A x

Is / home / raj/*.c (none) r

r

Is – 1 / home / raj / *.c (none) x

r

cat myfile r x

cat >>myflie w x

rm myfile (none) wx

Some items in this list are worth a second look. For example, when you don’t have access to any of the

component files, you still need only read access to a directory in order to do a simple Is; if you include-l (

68

or any other option that lists file sizes), you also need execute access to the directory. This is because the file

sizes must be determined from the disk information, an action which implicitly changes the directory in

question. In general, any operation that involves more than simply reading the list of filenames from the

directory file is going to require execute access if you don’t have access to the relevant files themselves.

Note especially that write access on a file is not required to delete it; write access to the directory where the

file resides is sufficient (although in this case, you’ll be asked whether to override the protection on the file):

$ rm example

rm : override protection 440 for example? Y

If you answer yes, the file will be deleted (the default response is no). Why does this work? Because

delteting a file actually means removing its entry from the directory file (among other things), which is a form

of altering the directory file, for which you need only write access to the directory. The moral is that write

access to directories is very powerful and should be granted with care.

Given these considerations, we can summarize the different options for protecting directories as shown in

Table 6.3

Table 6.3 Directory Protection Summary

Access granted Resulting availability

_ Does not allow any activity of any kind within the directory or any of its

subdirectories.

(no access)

r- Allow users to list the names of the files in the directory, but does not reveal

any of their attributes (i.e., size, ownership, mode and so on).

(read access only)

x –

(execute access only) Lets users work with programs in the directory specified by full pathname,

but hides all other files.

r-x

(read and execute access) Lets users work with programs in the directory and list the contents of the

directory, but does not allow them to create or delete files in the directory.

-wx

(write and execute access) Used for a drop-box directory. Users can change to the directory and

leave files there, but can’t discover the names of files placed there by others.

The sticky bit is also usually set on such directories (see below).

rwx

(full access) Lets users work with programs in the directory, look at the contents of the

directory, and create or delete files in the directory.

69

6.5.2 Setting File Protection

The chmod command is used to specify the access mode for files:

$ chmod access-string files

Chmod’s second argument is an access string, which states the permission you want to set (or remove) for

the listed files. It has three parts: the code for one or more access classes, the operator, and the code for one

or more access types.

Figure 6.1 illustrates the structure of an access string. To create an access string, you choose one or more

codes from the access class column, one operator from the middle column, and one or more access types

form the third column. Then you concatenate them into a single string (no spaces). For example, the access

string u+w says to add write access for the user owner of the file. Thus, to add write access for yourself for

a file you own (ex1 for example), use:

$ chmod u+w ex1

To add write access for everybody, use the all access class:

$ chmod a+w ex1

To remove write access, use a minus sign instead of a plus sign.

$ chmod a-w ex1

This command sets the permission on the file lead to allow only read access for all users:

$ chmod a=r ex1

If execute or write access had previously been set for any access class, executing this command

removes it.

ACCESS CLASS OPERATOR ACCESS TYPE

One or more of: One or more of:

u +(Add designated access) r

g - (Remove designated access) w

o = (Set exact access specified) x

a (for all 3) —-

Figure 6.1: Constructing an Access String for Chmod

You can specify more than one access type and more than one access class. For example, the access string

g-rw says to remove read and write access from the group access. The access string go=r says to set the

group and other access to read-only (no execute access, no write access), changing the current setting as

needed. And the access string go+rx says to add both read and execute access for both group and other

users.

70

You can also include more than one set of operation-access type pairs for any given access class specification.

For example, the access string u+x-w adds execute access and removes write access for the user owner.

You can combine multiple access strings by separating them with commas (no spaces between them). Thus,

the following command adds write access for the file owner and removes write access and read access for

the group and other classes for the files ex2 and ex3:

$ chmod u+w, og+r-w ex2, ex3

The chmod command supports a recursive option (-R) to change the mode of a directory and all files under

it. For example, if user raj wants to protect all the files under her home directory from everyone else, she can

use the command.

$ chmod – R go-rwx / home/raj

6.5.3 Octal Notation

Instead of the character arguments, one can give numeric arguments to the chmod command. The notation

takes the form of an octal representation of the permissions, and it is assigned like this

Read permission = 4

Write permission = 2

Execute permission = 1

When more than one permissions is associated with a particular user class, the respective number are

added.

For example, if a directory has the read and execute permission for the owner, the octal representation for

the owner’s permission will be 4 + 1 = 5. This exercise is repeated for the other categories (group and

others). The result is a three-digit octal number, with each octal digit describing the permission for each

category. The sequence followed is user, group and others. That is, the first digit represents the permissions

for the user, the second digit for the group and third digit for other. Permission assignment by octal notation

is absolute like the = operator.

For example, instead of the command:

$ chmod a+r ex1

We can give the command

$ chmod 444

4 indicate read permission.

Similarly, instead of the command:

$ chmod ugo+rw ex1

We can give the command

$ chmod 666 ex1

71

6 indicates read and write permission (4+2)

To assign all permissions to the owner, read and write permission to the group; and only executable permission

to others, we can use either of the following two commands:

$ chmod u+rwx, g+rw, o=x ex1

Or

$ chmod 761 ex1

777 signifies all permission and 000 indicates absence of all permissions.

6.5.4 Sticky Bit

We can add a ‘sticky bit’ to a directory to prevent the files within it from getting deleted. With the sticky bit

attached to a file, no one except the owner of the directory and the root user, can delete files from this

directory.

To add the sticky bit to a directory (say games), give the following command:

$ chmod u+t games

If you use ls -l command, you will see the permission of games directory as rwxrwxr – xt. The character‘t’

at the end of the permission signifies that the sticky bit has been set up.

6.6 Summary

A user mean a particular individual who can log in, edit files, run program and otherwise make use of the

system. Each user has username that identifies him, when a adding new user account to system, administrator

assigns the user name a UID (user identification number). The administrator also assigns each new user to

one or more groups : a named collection of users who generally share similar function. Each group has GID

(group identification number); its system way to identifying & defining a group. Every user is a member of

one or more groups.

The system administrator’s (SA) one of the major responsibility is doing user management. He user useradd,

usermod & userdel on command line. The SA also keeps track of users via configurating files known as

password file (/etc/passwd and shadow file (/etc/shadow). He also manages groups through group file (/

etc/group) and group shadow file (/etc/gshadow).

The different types of file and directory access are defined to protect files from unauthorized access. For

setting file protection chmod command popularly used whenever permission related issuses are raised.

6.7 Self - Assessment Exercise

1. Explain the process of creating a new user in the UNIX system.

2. How is it that the /etc / passwd file is updated by ordinary user, using passwd command, even

though the file does not have write permission?

3. Describe the contents of /etc/passwd and /etc/shadow file.

4. Can you add new user without using useradd command? Write steps

5. Explain chmod command with syntax and example. A file has got protection 744 (octal). What

protections does it really have?

72

6.8 References

• Managing NFS & NIS O’ Reilly Hal stern et.al.

• Practical UNIX & internet security O’ Reilly Simso Garfinket et.al .

• Essential system Administration O’ Reilly by Aeleen Frisch.

• www.Linuxhomenetworking.com

73

Unit -7 : NFS and NIS

Structure of Unit

7.0 Objective

7.1 Introduction

7.2 Understanding NFS

7.2.1 File Handles

7.2.2 The Mount Protocol

7.2.3 The NFS Protocol

7.2.4 Hard and Soft Mounts

7.2.5 Connectionless and State Less

7.3 Server Side NFS Security

7.3.1 Limiting Client Access

7.3.2 The Showmount Command

7.4 Client side NFS Security

7.4.1 Improving NFS Security

7.5 Network Information Service(NIS)

7.6 NIS Server and Client

7.7 Implementing NIS

7.7.1 Choosing NIS Domain Name

7.7.2 Physical Server Requirement

7.8 NIS Server

7.8.1 Setting up a NIS Master Server

7.8.2 Initializing the NIS Maps

7.8.3 Setting Up a NIS Slave Server

7.9 NIS Clients

7.9.1 Setting Up NIS Clients

7.10 Summary

7.11 Self - Assessment Exercise

7.12 References

7.0 Objective

This unit contains descriptions of Network File System (NFS) and Network Information Service (NIS)

services; in first part we discuss basic understanding of NFS, File handle, mount & NFS protocols,

configuration file information and NFS security. People consider NFS to be the heart of a distributed

computing environment, because it manages the resource users are most concerned about: their files.

In next part we discuss NIS Server and Clients. The primary function of NIS is managing configuration

information and making it consistent on all machines in the network. NIS provides the framework in

which to use NFS. Once the framework is in place, you add users and their files into it, knowing that

essential configuration information is available to every host.

74

7.1 Introduction

NFS and NIS are high-level networking protocols, built on several lower-level protocols. Network protocols

are typically described in terms of a layered model, in which the protocols are “stacked” on top of each

other. Data coming into a machine is passed from the lowest level protocol up to the highest, and data sent

to other hosts moves down the protocol stack.

The standard model for networking protocols and distributed applications is the International Organization

for Standardization (ISO) seven-layer model shown in Table 7-1.

Table 7-1: The ISO Seven-Layer Model

Layer Name Protocol/ Services

7 Application NFS and NIS

6 Presentation XDR

5 Session RPC

4 Transport TCP or UDP

3 Network IP

2 Data Link Ethernet

1 Physical CAT-5

The Network File System (NFS) and the Network Information Service (NIS) provide mechanisms for

solving “consistent and transparent” access problems. The NFS and NIS protocols were developed

by Sun Microsystems and are now licensed to hundreds of vendors and universities, not to mention

dozens of implementations from the published NFS and NFS specifications. NIS centralizes commonly

replicated configuration files, such as the password file, on a single host. It eliminates duplicate

copies of user and system information and allows the system administrator to make changes from one

place. NFS makes remote file systems appear to be local, as if they were on disks attached to the local

host. With NFS, all machines can share a single set of files, eliminating duplicate copies of files on

different machines in the network. Using NFS and NIS together greatly simplifies the management of

various combinations of machines, users, and file systems.

NFS provides network and file system transparency because it hides the actual, physical location of the file

system. A user’s files could be on a local disk, on a shared disk on a fileserver, or even on a machine located

across a wide-area network. As a user, you’re most content when you see the same files on all machines.

Just having the files available, though, doesn’t mean that you can access them if your user information isn’t

correct. Missing or inconsistent user and group information will break Unix file permission checking. This is

where NIS complements NFS, by adding consistency to the information used to build and describe the

shared file systems. A user can sit down in front of any workstation in his or her group that is running NIS

and be reasonably assured that he or she can log in, find his or her home directory, and access tools such as

compilers, window systems, and publishing packages. In addition to making life easier for the users, NFS

75

and NIS simplify the tasks of system administrators, by centralizing the management of both configuration

information and disk resources.

NFS can be used to create very complex file systems, taking components from many different servers on

the network. It is possible to overwhelm users by providing “everything everywhere,” so simplicity should

rule network design. Simplicity often satisfies the largest number of users, and it makes the system

administrator’s job easier.

7.2 Understanding NFS

NFS (Network File System) exists to allow remote hosts to mount partitions on a particular system and use

them as though they were local file systems. This allows files to be organized in a central location, while

providing the functionality of allowing authorized users continuous access to them. Some of the most notable

benefits that NFS can provide are:

• Local workstations use less disk space because commonly used data can be stored on a single

machine and still remain accessible to others over the network.

• There is no need for users to have separate home directories on every network machine.

Home directories could be set up on the NFS server and made available throughout the network.

• Storage devices such as floppy disks, CDROM drives, and Zip drives can be used by other

machines on the network. This may reduce the number of removable media drives throughout

the network.

Using NFS, client can mount partitions of a server as if they were physically connected to the client.

In addition to allowing remote access to file over the network, NFS allows many (relatively) low-

cost computer systems to share the same high-capacity disk drive at the same time. NFS clients and

servers have been written for many different operating systems.

NFS is nearly transparent. In practice, a workstation user simply logs into the work-station and begins

working, accessing it as if the files were locally stored. In many environments, workstations are set

up to mount the disks on the server automatically at boot time or when files on the disk are first

referenced. NFS also has a network-mounting program that can be configured to mount the NFS disk

automatically when an attempt is made to access files stored on remote disks.

Security problems with NFS:

• NFS is built on top of Sun’s RPC (Remote Procedure Call), and in most cases uses RPC for

user authentication. Unless a secure form of RPC is used, NFS can be easily spoofed.

• Even when Secure RPC is used, information sent by NFS over the network is not encrypted,

and is thus subject to monitoring and eavesdropping. The data can be intercepted and replaced

(thereby corrupting or trojaning files being imported via NFS).

• NFS uses the standard Unix filesystem for access control, opening the networked filesystem to

many of the same problems as a local filesystem.

One of the key design features behind NFS is the concept of server statelessness. Unlike other systems,

there is no “state” kept on a server to indicate that a client is performing a remote file operation. Thus,

if the client crashes and is rebooted, there is no state in the server that needs to be recovered.

76

Alternatively, if the server crashes and is rebooted, the client can continue operating on the remote file as if

nothing really happened – there is no server – side state to recreate.

NFS is based on two similar but distinct protocols: Mount & NFS, both make use of a data object known

as file handle. There is also a distributed protocol for file locking.

7.2.1 File Handles

Each object on the NFS-mounted filesystem is referenced by a unique object called a file handle. A file

handle is viewed by the client as being opaque – the client cannot interpret the contents. However, to the

server, the contents have considerable meaning. The file handles uniquely identify every file and directory on

the server computer.

The Unix NFS server stores three pieces of information inside each file handle.

Filesystem identifier

Refers to the partition containing the file (file identifiers such as inode numbers are usually unique only

within a partition).

File identifier

Can be something as simple as an inode number, used to refer to a particular item on a partition.

Generation count

A number that is incremented each time a file is unlinked and recreated. The generation count ensures

that when a client references a file on the server, that file is, in fact, the same file that the server thinks it is.

Without a generation count, two clients accessing the same file on the same server could produce

erroneous results if one client deleted the file and created a new file with the same inode number. The

generation count prevents such situations from occurring when the file is recreated, the generation number

is incremented, and the second client gets an error message when it attempts to access the older, now

non-existent, file.

Note that the file handle does’t includes a pathname; a pathname is not necessary and is, in fact, subject

to change while a file is being accessed.

7.2.2 The Mount Protocol

The MOUNT protocol is used for the initial negotiation between the NFS client and the NFS server, Using

MOUNT, a client can determine which filesystems are available for mounting and can obtain a token (the

file handle) that is used to access the root directory of a particular filesystem. After that file handle is

returned, it can thereafter be sued to retrieve file handles for other directories and files on the server.

Another benefit of the MOUNT protocol is that you can export only a portion of a local partition to a

remote client, By specifying that the root is a directory on the partition, the MOUNT service will

return its file handle to the client. To the client, this file handle behaves exactly like one for the root of

a partition : reads, writes, and directory lookups all behave the same way.

MOUNT is an RPC service. The service is provided by the mountd or rpc.mountd daemon, which is

started automatically at boot time. MOUNT is often given the RPC program number 100,005. The

standard mountd normally responds to six different requests:

77

Request Effect

NULL Does nothing

MNT Returns a file handle for a filesystem, advises the mount daemon that a

client has mounted the filesystem

DUMP Returns the list of mounted filesystems

UMNT Removes the mount entry for this client for a particular filesystem

UMNTALL Removes all mount entries for this client

EXPORT Return the server’s export list to the client

Although the MOUNT protocol provides useful information within an organization, the information that it

provides could be used by those outside an organization to launch an attack. For this reason, you should

prevent people outside your organization from accessing your computer’s mount daemon. The best way to

do this is by using a host-based or network-based firewall.

The MOUNT protocol is based on Sun Microsystems’ RPC and External Date Representation (XDR)

protocols. (For description RFC 1094)

7.2.3 The NFS Protocol

The NFS protocol takes over where the MOUNT protocol leaves off. With the NFS protocol, a client

can list the contents of an exported filesystem’s directories; obtain file handles for other directories

and files; and even create, read, or modify files (as permitted by Unix permissions).

Here is a list of the RPC functions that perform operations on directories:

Function Effect

CREATE Creates (or truncates) a file in the directory

LINK Creates a hard link

LOOKUP Looks up a file in the directory

MKDIR Makes a directory

READADDR Reads the contents of a directory

REMOVE Removes a file in the directory

RENAME Renames a file in the directory

RMDIR Removes a directory

SYMLINK Creates a symbolic link

These common RPC functions can be used with files:

Function Effect

GETATR Gets a file’s attributes (owner, length, etc.)

SETATTR Sets some of a file’s attributes

READLINK Reads a symbolic link’s path

78

READ Reads from a file

WRITE Writes to a file

In new Versions added a number of additional RPC functions. These new functions allow improved

performance:

Function Effect

ACCESS Determines if a user has the permission to access a particular file or directory

FSINFO Returns static information about a filesystem

FSSTAT Returns dynamic information about a filesystem

MKNOD Creates a device or special file on the remote filsystem

READDIPRLUS Reads a directory and returns the file attributes for each entry in the directory

PATHCONF Returns the attributes of a file specified by the pathname

COMMIT Commits the NFS write cache to disk

All communication between the NFS client and the NFS server is based upon Sun’s RPC system, which

lets programs running on one computer call subroutines that are executed on another. RPC uses Sun’s XDR

system to allow the exchange of information between different kinds of computers. Sun built NFS upon the

Internet User Datagram Protocol (UDP), believing that UDP was faster and more efficient than TCP.

However, NFS required reliable transmission and, as time went on, many tuning parameters were added

that made NFS resemble TCP in many respects, NFS Version 3 allows the use of TCP, which actually

improves performance over low-bandwidth, high-latency links such as modem-based PPP connections

because TCP’s backoff and retransmission algorithms are significantly better than those is NFS.

NIS- NFS-

Network Information System Network Filesystem

RPC-Remote Procedure call -

XDR-External Data Representation

IP-Internet Protocol

Network Transport (e.g., Ethernet)

Figure 7.1: NFS Protocol Stack

7.2.4 Hard and Soft Mounts

If the NFS client still receives no acknowledgment, it will retransmit the request again and again, each time

doubling the time that it waits between retries. If the network filesystem was mounted with the soft option,

the request will eventually time our. If the network filesystem is mounted with the hard option, the client

continues sending the request until the client is rebooted or gets an acknowledgement. Some BSD-derived

versions of Unix also have a spongy option that is similar to hard, except that the stat, lookup, fsstat,

readlink, and readdir operations behave as if they have a soft MOUNT.

NFS uses the mount command to specify whether a filesystem is mounted with the hard or soft option. To

mount a filesystem soft, specify the soft option. For example:

79

/etc/mount – o soft CSE:/big/zbig

This command mounts the directory /big stored on the server called CSE locally in the directory /zbig. The

option-o soft tells the mount program that you wish the filesystem mounted soft.

The mount a filesystem hard, do not specify the soft option:

/etc/mount CSE:/big / zbig

On some systems you need to be explicit that this is an NFS mount. You may also be able to use a URL

format for the path and server. Here are examples of each:

mount –F nfs CSE: /big / zbig

mount nfs://CSE/bin/zbig

Deciding whether to mount a filesystem hard or soft can be difficult because there are advantages and

disadvantages to each option. Diskless workstations often hard-mount the directories that they use to

keep system programs; if a server crashes, the workstations wait until the server is rebooted, then

continue file access with no problem. Filesystems containing home directories are usually hard-

mounted so that all disk writes to those filesystems will be performed correctly.

On the other hand, if you mount many filesystems with the hard option, you will discover that your

workstation may stop working every time any server crashes and won’t work again until it reboots. If

there are many libraries and archives that you keep mounted on your system, but that are not critical,

you may wish to mount them soft. You may also wish to specify the intr option, which is like the hard

option except that the user can interrupt it by typing the kill character (usually Ctrl-C).

As a general rule of thumb, read-only filesystem can be mounted soft without any chance of accidental

loss of data. An alternative to using soft mounts is to mount everything hard (or spongy, when available)

but avoid mounting your nonessential NFS partitions directly in the root directory. This practice will

prevent the Unix getpwd() function from hanging when a server is down.

7.2.5 Connectionless and Stateless

NFS servers are stateless by design, Stateless means that all of the information that the client needs to

mount a remote filesystem is kept on the client, instead of having additional information with the

mount stored on the server. After a file handle is issued for a file, that file handle will remain good

even if the server is shut down and rebooted as long as the file continues to exist and no major changes

are made to the configuration of the server that would change the values (e.g., a file system rebuild or

restore from tape).

Early NFS servers were also connectionless. Connectionless means that the server program does not

keep track of every client that has remotely mounted the filesystem. When offering NFS over a TCP

connection, however, NFS is not connection less there is one TCP connection for each mounted

filesystem.

The advantage of a stateless, connectionless system is that such systems are easier to write and debug.

The programmer does not need to write any code for re-establishing connections after the network

server crashes and restarts because there is no connection that must be re-established. If a client

crashes (or if the network becomes disconnected), valuable resources are not tied up on the server

maintaining a connection and state for that client.

80

A second advantage of this approach is that it scales. That is, a connectionless, stateless NFS serve works

equally well if 10 clients are using a filesystem or if 10,000 are using it. Although system performance suffers

under extremely heavy use, every file request made by a client using NFS should eventually be satisfied, and

there is no performance penalty if a client mounts a filesystem but never uses it.

7.3 Server Side NFS Security

Because NFS allows users on a network to access files stored on the server, NFS has significant security

implications for the server. These implications fall into three broad categories:

Client access

NFS can (and should) be configured so that only certain clients on the network can mount filesystems

stored on the server.

User authentication

NFS can (and should) be configured so that users can access and alter only files to which they have ben

granted access.

Eavesdropping and data spoofing

NFS should (but does not) protect information on the network from eavesdropping and surreptitious

modification.

7.3.1 Limiting Client Access: /etc/exports

The NFS server can be configured so that only certain hosts are allowed to mount filesystems on the

server. This is a very important step in maintaining server security; if an unauthorized host is denied

the ability to mount a filesystem, then unauthorized users on that host should not be able to access the

server’s files. This configuration is controlled by settings in a file. Depending on the version of Unix/

Linux/etc. that you are using, the specific file structure and usage is different.

/etc/exports

Most versions of Unix, use the/etc/exports file to designate which clients can mount the server’s

filesystem and what access those clients can be give. Each line in the/etc/exports file generally has

the form.

directory-options [,more options]

For example, a sample/etc/exports file might look like this:

/-access=math,root=vmou.domain.edu

/usr -ro

/usr/spool/mail-access=math

The directory may be any directory or filesystem on your server. In the example, exported directories

are/, /usr , and/usr/spool/mail.

The options allow you to specify a variety of security-related and performance-related options for

each entry. These include:

access=machinelist

81

Grants access to this filesystem only to the hosts or netgroups specified in machinelist. The names of hosts

and netgroups are listed and separated by colons (e.g., host1:host2:group3).

ro

Exports the directory and its contents as read-only to all clients. This option overrides whatever the file

permission bits are actually set to.

rw=machinelist

Exports the filesystem read-only to all hosts except those listed, which are allowed read/write access to the

filesystem.

root=machinelist

Normally, NFS changes the user ID for requests issued by the superuser on remote machines from 0 (root)

to-2 (nobody). Specifying a list of hosts gives the superuser on these remote machines superuser access on

the server.

anon=uid

Specifies which user ID to use on NFS requests that are not accompanied by a user ID; this might happen

on a DOS client. The number specified is used for both the UID and the GID of anonymous requests. A

value of-2 is the nobody user. A value of-1 usually disallows access.

You should understand that NFS maintains options on a per-filesystems basis, not on a per-directory basis.

If you put two directories in the/etc/exports file that actually reside on the same filesystem, they will use the

same options (usually the options used in the last export listed).

Sun’s documentation of anon states that, “If a request comes from an unknown user, use the given UID as

the effective user ID.” This statement is very misleading; in fact, NFS by default honors “unknown’ user Ids-

that is, UIDs that are not in the server’s /etc/passwd file-in the same way that it honors “known” UIDs

because the NFS server does not ever read the contents of the/etc/passwd file. The anon option actually

specifies which UID to use for NFS requests that are not accompanied by authentication credentials.

Let’s look at the example/etc/exports file again:

/-access=math, root=vmou.domain.edu

/usr -ro

/usr/spool/mail-access=math

This example allows anybody in the group math or on the machine math to mount the root directory of the

server, but only the root user on machine prose. domain.edu has superuser access to these files. The /usr

filesystem is exported read-only to every machine that can get RPC packets to and from this server (usually

a bad idea-this may be a wider audience than the local network). And the/usr/spool/mail directory is exported

to any host in the math netgroup.

7.3.2 The Showmount Command

You can use the Unix command showmount (typically located in /usr/sbin or /usr/etc and present in most

flavours of Unix) to list all of the clients that have probably mounted directories from your server. This

command has the form:

/usr/etc/showmount (options) (host)

82

The options are:

-a Lists all of the hosts and which directories they have mounted

-d Lists only the directories that have been remotely mounted

-e Lists all of the filesystems that are exported;

The showmount command does not tell you which hosts are actually using your exported filesystem; it

shows you only the names of the hosts that have mounted your filesystems since the last reset of the

local log file. Because of the design of NFS, someone can use a filesystem without first mounting it.

7.4 Client side NFS Security

NFS can create security issues for clients as well as for NFS servers. Because the files that a client mounts

appear in the client’s filesystem, an attacker who is able to modify mounted files can directly compromise

the client’s security.

The primary system that NFS uses for authenticating servers is based on IP host addresses and hostnames.

NFS packets are not encrypted or digitally signed in any way. Thus, an attacker can spoof an NFS

client either by posing as an NFS server or by changing the data that is en route between a server and

the client. In this way, an attacker can force a client machine to run any NFS-mounted executable. In

practice, this ability can give the attacker complete control over an NFS client machine.

It’s also wise to avoid mounting device files from the server. The nodev option to mount, if available,

prevents character and block special devices from being interpreted as such on the client.

NFS can also cause availability and performance issues for client machines. If a client has an NFS

partition on a server mounted, and the server becomes unavailable (because it crashed, or because

network connectivity is lost), then the client can freeze until the NFS server becomes available.

Occasionally, an NFS server will crash and restart and-despite NFS’s being a connectionless and

stateless protocol-the NFS client’s file handles will all become stale. In this case, you may find that it

is impossible to unmount the stale NFS filesystem, and your only courses of action may be to forcibly

restart the client computer.

Here are some guidelines for making NFS clients more reliable and more secure:

- Try to configure your system such that it is either an NFS server or an NFS client, but not both.

- Don’t allow your NFS clients to mount from NFS servers from outside your organization.

- Minimize the number of NFS servers that each client mounts. A system is usually far more

reliable and more secure if it mounts two hard disks from a single NFS server, rather than

mounting partitions from two NFS servers.

7.4.1 Improving NFS Security

There are many techniques that you can use to improve overall NFS security:

- Limit the use of NFS by limiting the machines to which filesystems are exported, and limit the

number of filesystems that each client mounts.

- Export filesystems read-only if possible.

- Use root ownership of exported files and directories.

83

- Remove group write permissions from exported files and directories.

- Do not export the server’s executables.

- Do not export home directories.

- Do not allow user to log into the NFS server.

- Set the portmon variable so that NFS requests that are not received from privileged ports will be

ignored.

- Use showmount -e to verify that you are exporting only the filesystem you wise to export to the

hosts specified, and with the correct flags.

7.5 Network Information Service(NIS)

NIS, which stands for Network Information Services, was developed by Sun Microsystems to centralize

administration of UNIX (originally SunOS™) systems. It has now essentially become an industry

standard; all major UNIX like systems (Solaris™, HP-UX, AIX®, Linux, NetBSD, OpenBSD,

FreeBSD, etc) support NIS.NIS was formerly known as Yellow Pages, but because of trademark

issues, Sun changed the name. The old term (and yp) is still often seen and used.

A major problem in running a distributed computing environment is maintaining separate copies of

common configuration files such as the password, group, and hosts files. Ideally, the network should

be consistent in its configuration, so that users don’t have to worry about where they have accounts or

if they’ll be able to find a new machine on the network. The Network Information System (NIS)

addresses these problems.It is a RPC-based client/server system that allows a group of machines

within an NIS domain to share a common set of configuration files. This permits a system administrator

to set up NIS client systems with only minimal configuration data and add, remove or modify

configuration data from a single location.It is a distributed database system that replaces copies of

commonly replicated configuration files with a centralized management facility. Instead of having to

manage each host’s files (like /etc/hosts, /etc/passwd, /etc/group, /etc/others, and so on), you maintain

one database for each file on one central server. Machines that are using NIS retrieve information as

needed from these databases. If you add a new system to the network, you can modify one file on a

central server and propagate this change to the rest of the network, rather than changing the hosts file

for each individual host on the network. For a network of two or three systems, the difference may not

be crucial; but for a large network with hundreds of systems, NIS is life-saving.

7.6 NIS Server and Client

NIS is built on the client-server model. There are three types of hosts in an NIS environment: master

servers, slave servers, and clients. Servers act as a central repository for host configuration information.

Master servers hold the authoritative copy of this information, while slave servers mirror this

information for redundancy. Clients rely on the servers to provide this information to them. Information

in many files can be shared in this manner. The master.passwd, passwd, group, and hosts files are

commonly shared via NIS. Whenever a process on a client needs information that would normally be

found in these files locally, it makes a query to the NIS server that it is bound to instead. With the

distinction between NIS servers and clients firmly established, we can see that each system fits into

the NIS scheme in one of three ways:

84

• A NIS Master Server: This server, analogous to a Windows NT primary domain controller, maintains

the files used by all of the NIS clients. The passwd, group, and other various files used by the NIS

clients live on the master server. It is possible for one machine to be an NIS master server for more

than one NIS domain. However, these will not the case relatively small-scale NIS environment.

• NIS Slave Servers: Similar to the Windows NT backup domain controllers, NIS slave servers

maintain copies of the NIS master’s data files. NIS slave servers provide the redundancy,

which is needed in important environments. They also help to balance the load of the master

server: NIS Clients always attach to the NIS server whose response they get first, and this includes

slave-server-replies.

• NIS Clients: NIS clients, like most Windows NT workstations, authenticate against the NIS

server to log on.

There are several terms and several important user processes that you will come across when attempting to

implement NIS on FreeBSD, whether you are trying to create an NIS server or act as an NIS client:

Term Description

NIS domainname An NIS master server and all of its clients (including its slave

servers) have a NIS domainname. Similar to an Windows NT

domain name, the NIS domainname does not have anything to do

with DNS.

rpcbind Must be running in order to enable RPC (Remote Procedure Call, a

network protocol used by NIS). If rpcbind is not running, it will be

impossible to run an NIS server, or to act as an NIS client.

ypbind “Binds” an NIS client to its NIS server. It will take the NIS

domainname from the system, and using RPC, connect to the server.

ypbind is the core of client-server communication in an NIS

environment; if ypbind dies on a client machine, it will not be

able to access the NIS server.

ypserv Should only be running on NIS servers; this is the NIS server

process itself. If ypserv dies, then the server will no longer be able

to respond to NIS requests (hopefully, there is a slave server to take

over for it). There are some implementations of NIS (but not the

FreeBSD one), that do not try to reconnect to another server if the

server it used before dies. Often, the only thing that helps in this case

is to restart the server process (or even the whole server) or the

ypbind process on the client.

rpc.yppasswdd Another process that should only be running on NIS master servers;

this is a daemon that will allow NIS clients to change their NIS

passwords. If this daemon is not running, users will have to login to

the NIS master server and change their passwords there.

85

7.7 Implementing NIS

For setting up a sample NIS environment Let us assume of a small university lab. This lab, which consists of

15 machines, currently has no centralized point of administration; each machine has its own /etc/passwd and

/etc/master.passwd. These files are kept in sync with each other only through manual intervention; currently,

when you add a user to the lab, you must run adduser on all 15 machines. Clearly, this has to change, so you

have decided to convert the lab to use NIS, using two of the machines as servers.

Therefore, the configuration of the lab now looks something like:

Machine name IP address Machine role

A 20.0.0.2 NIS master

B 20.0.0.3 NIS slave

C 20.0.0.4 Faculty workstation

D 20.0.0.5 Client machine

If you are setting up a NIS scheme for the first time, it is a good idea to think through how you want to go

about it. No matter what the size of your network, there are a few decisions that need to be made.

7.7.1 Choosing NIS Domain Name

This might not be the “domainname” that you are used to. It is more accurately called the “NIS domainname”.

When a client broadcasts its requests for info, it includes the name of the NIS domain that it is part of. This

is how multiple servers on one network can tell which server should answer which request. Think of the NIS

domainname as the name for a group of hosts that are related in some way.

Some organizations choose to use their Internet domainname for their NIS domainname. This is not

recommended as it can cause confusion when trying to debug network problems. The NIS domainname

should be unique within your network and it is helpful if it describes the group of machines it represents. For

example, the CSE department at VMOU might be in the “vmou-cse” NIS domain. For this example,

assume you have chosen the name test-domain.

However, some operating systems (notably SunOS) use their NIS domain name as their Internet domain

name. If one or more machines on your network have this restriction, you must use the Internet domain

name as your NIS domain name.

7.7.2 Physical Server Requirement

There are several things to keep in mind when choosing a machine to use as a NIS server. One of the

unfortunate things about NIS is the level of dependency the clients have on the server. If a client cannot

contact the server for its NIS domain, very often the machine becomes unusable. The lack of user and

group information causes most systems to temporarily freeze up. With this in mind you should make sure to

choose a machine that will not be prone to being rebooted regularly, or one that might be used for development.

The NIS server should ideally be a stand alone machine whose sole purpose in life is to be an NIS server.

If you have a network that is not very heavily used, it is acceptable to put the NIS server on a machine

running other services, just keep in mind that if the NIS server becomes unavailable, it will affect all of your

NIS clients adversely.

86

7.8 NIS Server

An NIS server is a host that contains NIS data files, called maps. Clients are hosts that request information

from these maps. The canonical copies of all NIS information are stored on a single machine called the NIS

master server. The databases used to store the information are called NIS maps. In FreeBSD, these maps

are stored in /var/yp/[domainname], where [domainname] is the name of the NIS domain being served. A

single NIS server can support several domains at once; therefore it is possible to have several such directories,

one for each supported domain. Each domain will have its own independent set of maps.

NIS master and slave servers handle all NIS requests with the ypserv daemon. ypserv is responsible for

receiving incoming requests from NIS clients, translating the requested domain and map name to a path to

the corresponding database file and transmitting data from the database back to the client.

7.8.1 Setting up a NIS Master Server

Setting up a master NIS server can be relatively straight forward, depending on your needs. FreeBSD

comes with support for NIS out-of-the-box. All you need is to add the following lines to /etc/rc.conf,

and system will do the rest for you:

1. nisdomainname=”test-domain”

2. This line will set the NIS domainname to test-domain upon network setup (e.g., after reboot).

3. nis_server_enable = “yes”

4. This will tell system to start up the NIS server processes when the networking is next brought

up.

5. nis_yppasswdd_enable=”yes”

6. This will enable the rpc.yppasswdd daemon which, as mentioned above, will allow users to

change their NIS password from a client machine.

After setting up the above entries, run the command /etc/netstart as superuser. It will set up everything

for you, using the values you defined in /etc/rc.conf. As a last step, before initializing the NIS maps,

start the ypserv daemon manually:

/etc/rc.d/ypserv start

7.8.2 Initializing the NIS Maps

The NIS maps are database files, that are kept in the /var/yp directory. They are generated from

configuration files in the /etc directory of the NIS master, with one exception: the /etc/master.passwd

file. This is for a good reason, you do not want to propagate passwords to your root and other

administrative accounts to all the servers in the NIS domain. Therefore, before we initialize the NIS

maps, you should:

cp /etc/master.passwd /var/yp/master.passwd

cd /var/yp

vi master.passwd

You should remove all entries regarding system accounts (bin, tty, games, etc), as well as any accounts that

you do not want to be propagated to the NIS clients (for example root and any other UID 0 (super user

account).

87

Note: Make sure the /var/yp/master.passwd is having file permission mode 600, by using the chmod

command.

When you have finished, it is time to initialize the NIS maps! FreeBSD system includes a script named

ypinit to do this for you. Note that this script is available on most UNIX Operating Systems, but not on all.

On some UNIX system it is called ypsetup. Because we are generating maps for an NIS master, we are

going to pass the -m option to ypinit. To generate the NIS maps, assuming you already performed the steps

above, run:

vmou# ypinit -m test-domain

Server Type: MASTER Domain: test-domain

Creating an YP server will require that you answer a few questions.

Questions will all be asked at the beginning of the procedure.

Do you want this procedure to quit on non-fatal errors?[y/n: n] n

Ok, please remember to go back and redo manually whatever fails.

If you don’t, something might not work.

At this point, we have to construct a list of this domains YP

servers.

Please continue to add any slave servers, one per line. When you are

done with the list, type a <control D>.

master server : vmou

next host to add: studycenter

next host to add: ^D

The current list of NIS servers looks like this:

vmou

studycenter

Is this correct? [y/n: y] y

[..output from map generation..]

NIS Map update completed.

vmou has been setup as an YP master server without any errors.

ypinit should have created /var/yp/Makefile from /var/yp/Makefile.dist. When created, this file assumes

that you are operating in a single server NIS environment with only FreeBSD machines. Since test-

domain has a slave server as well, you must edit /var/yp/Makefile:

vmou# vi /var/yp/Makefile

You should comment out the line that says

NOPUSH = “TRUE”

(If it is not commented out already.)

88

7.8.3 Setting Up a NIS Slave Server

Setting up an NIS slave server is even simpler than setting up the master. Log on to the slave server and edit

the file /etc/rc.conf as you did before. The only difference is that we now must use the -s option when

running ypinit. The -s option requires the name of the NIS master be passed to it as well, so our command

line looks like:

studycenter# ypinit -s vmou test-domain

Server Type: SLAVE Domain: test-domain Master: vmou

Creating an YP server will require that you answer a few questions.

Questions will all be asked at the beginning of the procedure.

Do you want this procedure to quit on non-fatal errors?[y/n: n]

Ok, please remember to go back and redo manually whatever fails.

If you don’t, something might not work.

There will be no further questions. The remainder of the procedure

should take a few minutes, to copy the databases from vmou.

Transferring netgroup...

ypxfr: Exiting: Map successfully transferred

Transferring netgroup.byuser...

ypxfr: Exiting: Map successfully transferred

Transferring netgroup.byhost...

ypxfr: Exiting: Map successfully transferred

Transferring master.passwd.byuid...

ypxfr: Exiting: Map successfully transferred

Transferring passwd.byuid...

ypxfr: Exiting: Map successfully transferred

Transferring passwd.byname...

ypxfr: Exiting: Map successfully transferred

Transferring group.bygid...

ypxfr: Exiting: Map successfully transferred

Transferring group.byname...

ypxfr: Exiting: Map successfully transferred

Transferring services.byname...

ypxfr: Exiting: Map successfully transferred

Transferring rpc.bynumber...

89

ypxfr: Exiting: Map successfully transferred

Transferring rpc.byname...

ypxfr: Exiting: Map successfully transferred

Transferring protocols.byname...

ypxfr: Exiting: Map successfully transferred

Transferring master.passwd.byname...

ypxfr: Exiting: Map successfully transferred

Transferring networks.byname...

ypxfr: Exiting: Map successfully transferred

Transferring networks.byaddr...

ypxfr: Exiting: Map successfully transferred

Transferring netid.byname...

ypxfr: Exiting: Map successfully transferred

Transferring hosts.byaddr...

ypxfr: Exiting: Map successfully transferred

Transferring protocols.bynumber...

ypxfr: Exiting: Map successfully transferred

Transferring ypservers...

ypxfr: Exiting: Map successfully transferred

Transferring hosts.byname...

ypxfr: Exiting: Map successfully transferred

studycenter has been setup as an YP slave server without any

errors.

Don’t forget to update map ypservers on vmou.

You should now have a directory called /var/yp/test-domain. Copies of the NIS master server’s maps

should be in this directory. You will need to make sure that these stay updated. The following /etc/

crontab entries on your slave servers should do the job:

20 * * * * root /usr/libexec/ypxfr passwd.byname

21 * * * * root /usr/libexec/ypxfr passwd.byuid

These two lines force the slave to sync its maps with the maps on the master server. These entries are not

mandatory because the master server automatically attempts to push any map changes to its slaves. However,

due to the importance of correct password information on other clients depending on the slave server, it is

recommended to specifically force the password map updates frequently. This is especially important on

busy networks where map updates might not always complete.

90

Now, run the command /etc/netstart on the slave server as well, this again starts the NIS server.

7.9 NIS Clients

An NIS client establishes what is called a binding to a particular NIS server using the ypbind daemon.

ypbind checks the system’s default domain (as set by the domainname command), and begins

broadcasting RPC requests on the local network. These requests specify the name of the domain for

which ypbind is attempting to establish a binding. If a server that has been configured to serve the requested

domain receives one of the broadcasts, it will respond to ypbind, which will record the server’s address. If

there are several servers available (a master and several slaves, for example), ypbind will use the address of

the first one to respond. From that point on, the client system will direct all of its NIS requests to that server.

ypbind will occasionally “ping” the server to make sure it is still up and running. If it fails to receive a reply to

one of its pings within a reasonable amount of time, ypbind will mark the domain as unbound and begin

broadcasting again in the hopes of locating another server.

7.9.1 Setting Up NIS Clients

Setting up a FreeBSD machine to be a NIS client is fairly straightforward.

1. Edit the file /etc/rc.conf and add the following lines in order to set the NIS domainname and start

ypbind upon network start up:

2. nisdomainname = “ test-domain”

3. nis_client_enable = “yes”

4. To import all possible password entries from the NIS server, remove all user accounts from your /

etc/master.passwd file and use vipw to add the following line to the end of the file:

5. + : : : : : : : : :

Note: This line will afford anyone with a valid account in NIS server’s password maps an account.

There are many ways to configure your NIS client by changing this line.

6. To import all possible group entries from the NIS server, add this line to your /etc/group file:

 + :* : :

To start the NIS client immediately, execute the following commands as the superuser:

/etc/netstart

/etc/rc.d/ypbind start

After completing these steps, you should be able to run ypcat passwd and see the NIS server’s passwd

map.

7.10 Summary

The Network Information Service (NIS) and Network File System (NFS) are services that allow you to

build distributed computing systems that are both consistent in their appearance and transparent in the way

files and data are shared.

NFS is a distributed file system An NFS server has one or more file systems that are mounted by NFS

clients; to the NFS clients, the remote disks look like local disks. NFS file systems are mounted using the

standard Unix mount command, and all Unix utilities work just as well with NFS-mounted files as they do

91

with files on local disks. NFS makes system administration easier because it eliminates the need to maintain

multiple copies of files on several machines: all NFS clients share a single copy of the file on the NFS server.

NFS also makes life easier for users: instead of logging on to many different systems and moving files from

one system to another, a user can stay on one system and access all the files that he or she needs within one

consistent file tree.

NIS provides a distributed database system for common configuration files. NIS servers manage copies of

the database files, and NIS clients request information from the servers instead of using their own, local

copies of these files. For example, the /etc/hosts file is managed by NIS. A few NIS servers manage copies

of the information in the hosts file, and all NIS clients ask these servers for host address information instead

of looking in their own /etc/hosts file. Once NIS is running, it is no longer necessary to manage every /etc/

hosts file on every machine in the network — simply updating the NIS servers ensures that all machines will

be able to retrieve the new configuration file information.

7.11 Self - Assessment Exercise

1. What do you understand by NFS and NIS? Explain in brief about these services.

2. What is daemon? Enlist the NFS and NIS daemons with their brief functionality.

3. Explain the meaning of file handles, mount protocol, and hard & soft mounts in NFS.

4. Discuss how configuration file /etc/exports is useful in limiting client access. Write and explain all

elements of /etc/exports file entries.

5. Discuss NIS server and client in brief. Write steps of implementing NIS server.

7.12 References

• Managing NFS and NIS O‘ Reilly series by Hal Stern et. al.

• Practical Unix and Internet Security O‘ Reilly series by Simson Garfinkel et. al.

• Essential System Administration O‘ Reilly series by Aeleen frisch

• www.Linuxhomenetworking.com

92

Unit - 8 : Distributed Computing

Structure of Unit

8.0 Objective

8.1 Introduction to Distributed Computing

8.1.1 Examples of Distributed Systems

8.1.2 Hardware and Software Architectures

8.1.3 Multi-Computers

8.1.4 Distributed Operating System

8.1.5 Middleware

8.1.6 Distributed Systems and Parallel Computing

8.1.7 Distributed Systems in Context

8.1.8 The DCE Cloud

8.2 Distributed Process Management

8.3 Message Passing

8.4 Remote Procedure Calls

8.4.1 Definitions

8.4.2 Components of RPC

8.4.3 Specifications Conformance

8.4.4 Facilities Supplied By The RPC

8.4.5 Communication Methodology Using RPC

8.4.6 Advantages of Using DCE RPC

8.4.7 Security Inbuilt in RPC

8.4.8 How RPC Works

8.5 Distributed Memory Management

8.6 Summary

8.7 Self - Assessment Exercise

8.8 References

8.0 Objective

This chapter provides a general overview about

• Distributed Computing

• Distributed Process Management

• Message Passing

• Remote Procedure Calls

• Distributed Memory Management

8.1 Introduction to Distributed Computing

The high volume of networked computers, workstations, LANs has prompted users to move from a simple

end user computing to a complex distributed computing environment. This transition is not just networking

the computers, but also involves the issues of scalability, security etc. A Distributed Computing Environment

herein referred to, as DCE is essentially an integration of all the services necessary to develop, support and

93

manage a distributed computing environment. Despite the advances in processor design, users still demand

more performance. Eventually, single CPU technologies must give way to multiple processors parallel

Computers: it is less expensive to run 10 inexpensive processors cooperatively than it is to buy a new

computer 10 times as fast. This change is inevitable, and has been realized to some extent in the specialization

of subsystems like bus mastering drive controllers. However, the need for additional computational power

has thus far rested solely on advances in CPU technologies.

The present day computing industry depends on the efficient usage of resources. So instead of duplicating

the resources at every node of computing, a remote method of accessing the resources is more efficient and

saves costs. This gave rise to the field of distributed computing, where not only physical resources, but also

processing power was distributed.

Distributed computing was driven by the following factors,

a) Desire to share data and resources

b) Minimize duplication of functionality

c) Increase cost efficiency

d) Increase reliability and availability of resources.

When an organization migrates from networked computing to Distributed Computing a lot of factors are to

be taken into consideration. For example replication of files gives rise to consistency problems, clock

synchronization becomes important, and security is a bigger consideration.

A Distributed Computing Environment addresses all these issues by providing an integrated set of cross

platform, comprehensive services which aids in the development and application of distributed applications.

The following diagram gives a simple view of the DCE architecture,

The DCE cloud refers to the distributed computing environment tools that facilitate distributed computing.

A distributed system is a collection of independent computers that appear to its users as a single

coherent system.

 - Andrew Tannenbaum

D E C Clo ud

Ap p l ica t io n s

Ap p l ica t io n s

Ap p l ica tio n s

Ap p l ica tio n s

94

This certainly is the ideal form of a distributed system, where the “implementation detail” of building a

powerful system out of many simpler systems is entirely hidden from the user.

Unfortunately, when we look at the reality of networked computers, we find that the multiplicity of system

components usually shines through the abstractions provided by the operating system and other software.

In other words, when we work with a collection of independent computers, we are almost always made

painfully aware of this. For example, some applications require us to identify and distinguish the individual

computers by name while in others our computer hangs due to an error that occurred on a machine that we

have never heard of before.

8.1.1 Examples of Distributed Systems

Probably the simplest and most well known example of a distributed system is the collection of Web

servers—or more precisely, servers implementing the HTTP protocol—that jointly provide the distributed

database of hypertext and multimedia documents that we know as the World-Wide Web.

The alternative to using a distributed system is to have a huge centralized system, such as a mainframe. For

many applications there are a number of economic and technical reasons that make distributed systems

much more attractive than their centralized counterparts.

• Cost: Better price/performance as long as commodity hardware is used for the component computers.

• Performance: By using the combined processing and storage capacity of many nodes, performance

levels can be reached that are beyond the range of centralized machines.

• Scalability: Resources such as processing and storage capacity can be increased incrementally.

• Reliability: By having redundant components the impact of hardware and software faults on users

can be reduced.

• Inherent Distribution: Some applications, such as email and the Web (where users are spread

out over the whole world), are naturally distributed. This includes cases where users are geographically

dispersed as well as when single resources (e.g., printers, data) need to be shared.

However, these advantages are often offset by the following problems encountered during the use and

development of distributed systems:

New component: Network: Networks are needed to connect independent nodes and are subject to

performance limitations. Besides these limitations, networks also constitute new potential points of failure.

Security: Because a distributed system consists of multiple components there are more elements that can

be compromised and must, therefore, be secured. This makes it easier to compromise distributed systems.

Software Complexity: As will become clear throughout this course distributed software is more complex

and harder to develop than conventional software; hence, it is more expensive to develop and there is a

greater chance of introducing errors.

8.1.2 Hardware and Software Architectures

A key characteristic of our definition of distributed systems is that it includes both a hardware aspect

(independent computers) and a software aspect (performing a task and providing a service). From a hardware

point of view distributed systems are generally implemented on multicomputers.

From a software point of view they are generally implemented as distributed operating systems or middleware.

95

8.1.3 Multi-computers

A multicomputer consists of separate computing nodes connected to each other over a network.

Multi-computers generally differ from each other in three ways:

1. Node resources: This includes the processors, amount of memory, amount of secondary storage,

etc. available on each node.

2. Network connection: The network connection between the various nodes can have a large impact

on the functionality and applications that such a system can be used for. A multi computer with a

very high bandwidth network is more suitable for applications that actively share data over the

nodes and modify large amounts of that shared data. A lower bandwidth network, however, is

sufficient for applications where there is less intense sharing of data.

3. Homogeneity: A homogeneous multicomputer is one where all the nodes are the same, that is they

are based on the same physical architecture (e.g. processor, system bus, memory, etc.). A

heterogeneous multicomputer is one where the nodes are not expected to be the same.

One common characteristic of all types of multicomputers is that the resources on any particular node

cannot be directly accessed by any other node. All access to remote resources ultimately takes the form of

requests sent over the network to the node where that resource resides.

8.1.4 Distributed Operating System

Figure 2 : A Distributed Operating System

95

96

A distributed operating system (DOS) is a an operating system that is built, from the ground up, to provide

distributed services. As such, a DOS integrates key distributed services into its architecture (Figure 2).

These services may include distributed shared memory, assignment of tasks to processors, masking of

failures, distributed storage, interprocess communication, transparent sharing of resources, distributed resource

management, etc.

A key property of a distributed operating system is that it strives for a very high level of transparency, ideally

providing a single system image. That is, with an ideal DOS users would not be aware that they are, in fact,

working on a distributed system. Distributed operating systems generally assume a homogeneous

multicomputer. They are also generally more suited to LAN environments than to wide-area network

environments.

In the earlier days of distributed systems research, distributed operating systems where the main topic of

interest. Most research focused on ways of integrating distributed services into the operating system, or on

ways of distributing traditional operating system services. Currently, however, the emphasis has shifted

more toward middleware systems. The main reason for this is that middleware is more flexible (i.e., it does

not require that users install and run a particular operating system), and is more suitable for heterogeneous

and wide-area multicomputers.

8.1.5 Middleware

Whereas a DOS attempts to create a specific system for distributed applications, the goal of middleware is

to create system independent interfaces for distributed applications.

As shown in Figure 3 middleware consists of a layer of services added between those of a regular network

OS1 and the actual applications. These services facilitate the implementation of distributed applications and

attempt to hide the heterogeneity (both hardware and software) of the underlying system architectures.

The principle aim of middleware, namely raising the level of abstraction for distributed programming, is

achieved in three ways:

(1) communication mechanisms that are more convenient and less error prone than basic message

passing;

Figure 2 : A Middleware System

97

(2) independence from OS, network protocol, programming language, etc. and

(3) standard services (such as a naming service, transaction service, security service, etc.).

To make the integration of these various services easier, and to improve transparency and system

independence, middleware is usually based on a particular paradigm, or model, for describing

distribution and communication. Since a paradigm is an overall approach to how a distributed system

should be developed, this often manifests itself in a particular programming model such as ’everything

is a file’, remote procedure call, and distributed objects. Providing such a paradigm automatically

provides an abstraction for programmers to follow, and provides direction for how to design and set

up the distributed applications. Paradigms will be discussed in more detail later on in the course.

Although some forms of middleware focus on adding support for distributed computing directly into a

language (e.g., Erlang, Ada, Limbo, etc.), middleware is generally implemented as a set of libraries

and tools that enable retrofitting of distributed computing capabilities to existing programming

languages. Such systems typically use a central mechanism of the host language (such as the procedure

call or method invocation) and dress remote operations up such that they use the same syntax as that

mechanism resulting, for example, in remote procedure calls and remote method invocation.

Since an important goal of middleware is to hide the heterogeneity of the underlying systems (and in

particular of the services offered by the underlying OS), middleware systems often try to offer a

complete set of services so that clients do not have to rely on underlying OS services directly. This

provides transparency for programmers writing distributed applications using the given middleware.

Unfortunately this ’everything but the kitchen sink’ approach often leads to highly bloated systems. As

such, current systems exhibit an unhealthy tendency to include more and more functionality in basic

middleware and its extensions, which leads to a jungle of bloated interfaces. This problem has been

recognised and an important topic of research is investigating adaptive and reflective middleware

that can be tailored to provide only what is necessary for particular applications.

With regards to the common paradigms of remote procedure call and remote method invocations,

Waldo et al. [WWWK94] have eloquently argued that there is also a danger in confusing local and

remote operations and that initial application design already has to take the differences between these

two types of operations into account. We shall return to this point later.

8.1.6 Distributed Systems and Parallel Computing

Parallel computing systems aim for improved performance by employing multiple processors to execute a

single application. They come in two flavours: shared-memory systems and distributed memory systems.

The former use multiple processors that share a single bus and memory subsystem. The latter are distributed

systems in the sense of the systems that we are discussing here and use independent computing nodes

connected via a network (i.e., a multicomputer). Despite the promise of improved performance, parallel

programming remains difficult and if care is not taken performance may end up decreasing rather than

increasing.

8.1.7 Distributed Systems in Context

The study of distributed systems is closely related to two other fields: Networking and Operating Systems.

The relationship to networking should be pretty obvious, distributed systems rely on networks to connect

the individual computers together. There is a fine and fuzzy line between when one talks about developing

networks and developing distributed systems. As we will discuss later the development (and study) of

distributed systems concerns itself with the issues that arise when systems are built out of interconnected

networked components, rather than the details of communication and networking protocols.

98

The relationship to operating systems may be less clear. To make a broad generalization operating systems

are responsible for managing the resources of a computer system, and providing access to those resources

in an application independent way (and dealing with the issues such as synchronization, security, etc. that

arise). The study of distributed systems can be seen as trying to provide the same sort of generalized access

to distributed resources (and likewise dealing with the issues that arise).

8.1.8 The DCE Cloud

It Consists of the Following Components,

a) Distributed File Service

b) Distributed Time Service

c) Security Service

d) Cell Directory Service

e) Threads Service

All these services are achieved by the use of Remote Procedure calls (RPC).

Properties of DCE

A DCE Provides a Global Computing Environment, which can interoperate with other services like DNS

and X.500. This sort of global interoperability provides the much-needed interface for Write Once Run

Anywhere Applications. Also the suite of components is completely integrated and interoperable, which

facilitates the networking of two systems for processing even though they have different hardware and

software configurations.

DCE Cells

A collection of machines, users and resources that are a part of a group and having their own directory

service and security service can be called a DCE Cell. In an organization there may be a large number

of cells, say one for each department.

DCE Remote Procedure Calls (RPC)

The Remote Procedure Call (RPC) in a DCE is the facility that lets users make remote procedure calls and

connect to another system on the DCE. The application programmer is essentially hidden from the fact that

it is a remote procedure call, by the components of RPC.

8.2 Distributed Process Management

Most processes are created and managed by a command interpreter, but any other process may also

create new ones. All that is required is the capability that allows communication with a Kernel. Most

users will have access to the cluster creation capability for the Kernel running on their own workstation;

that is, users can create new processes on their own workstation.

The capability for creating processes on pool processors is typically kept by a “Processor Pool” service

that acts as an agent for running programs on behalf of user processes. Load balancing can be achieved

by the Processor Pool service when it allocates pool processors judiciously. Although clusters rarely move

to a new host after being started up, migration is a central concept in the process management

99

mechanisms. This is became loading new clusters into memory, taking core dumps, making check-

points, and doing remote debugging are all similar to migrating a cluster. In fact, if we can migrate

a cluster from one machine to another, downloading, check-pointing, debugging, etc., should be

simple.

Load balancing by migrating cluster is a poorly understood area and it is dubious whether it is very

useful with the current sort of workstations and net-works. Migrating a five megabyte cluster, for

instance, will take at least seven seconds, because that is how long it takes a fast transport protocol

to copy the

memory contents over a 10 Mbit Ethernet; five megabyte programs are not at all uncommon,

especially as candidates for migration: long-lived clusters are usually large too. Migration is thus rather

expensive and the gain of a migrate operation must be big in order to merit one.

In spite of this, migration can be useful. When a workstation’s owner logs off in the evening, the

workstation can turn itself into a Pool Processor and provide process-execution service to the rest

of the system. When the owner returns in the morning, however, and logs back on, the guest clusters

running there could be nudged off by migrating them away to some other workstation.

8.3 Message Passing

In distributed systems, there are two kinds of fundamental inter-process communication models:

a) Shared Memory and

b) Message Passing.

From a programmer’s perspective, shared memory computers, while easy to program, are difficult to build

and aren’t scalable to beyond a few processors. Message passing computers, while easy to build and scale,

are difficult to program. In some sense, shared memory model and message passing model are equivalent.

One of the solutions to parallel system communication is Distributed Shared Memory (DSM), where memory

is physically distributed but logically shared. DSM appears as shared memory to the applications programmer,

but relies on message passing between independent CPUs to access the global virtual address space.

The message-passing is a common paradigm model for distributed computing, in the sense that it mimics

the behavior in human communications. It is an appropriate paradigm for network services where processes

interact with each other through the exchanges of messages. Message passing requires the participating

processes to be tightly-coupled: throughout their interaction, the processes must be in direct communication

with each other. If communication is lost between the processes (due to failures in the communication link,

in the systems, or in one of the processes), the collaboration fails. The message-passing paradigm is data-

oriented. Each message contains data marshaled in a mutually agreed upon format, and is interpreted as a

request or response according to the protocol. The receiving of each message triggers an action in the

receiving process. It is inadequate for complex applications involving a large mix of requests and responses.

In such an application, the task of interpreting the messages can become overwhelming. A distributed object

is one whose methods can be invoked by a remote process, a process running on a computer connected

via a network to the computer on which the object exists.

100

Distributed Systems 5

The Distributed Object Paradigm

In a distributed object paradigm, network resources are

represented by distributed objects. To request service from a

network resource, a process invokes one of its operations or

methods, passing data as parameters to the method. The

method is executed on the remote host, and the response is sent

back to the requesting process as a return value.

object state data item

object operation

Host A Host B

client process

method call

a distributed object

8.4 Remote Procedure Calls

8.4.1 Definitions

RPC is a powerful technique for constructing distributed, client-server based applications. It is based on

extending the notion of conventional or local procedure calling, so that the called procedure need not exist

in the same address space as the calling procedure. The two processes may be on the same system, or they

may be on different systems with a network connecting them. By using RPC, programmers of distributed

applications avoid the details of the interface with the network. The transport independence of RPC isolates

the application from the physical and logical elements of the data communications mechanism and allows the

application to use a variety of transports.

8.4.2 Components of RPC

The RPC components are

a) The Interface Definition Language and its Compiler: The skeletons and stubs are created by the

IDL and then compiled by the IDL compiler. The server stubs replace the remote part of the

procedure call, and at the server the skeleton replaces the client.

b) Runtime RPC Library: The RPC runtime library is actively involved in the sending and

receiving of remote procedure calls and finding the necessary server services and

communicating between the client and the server.

c) Secure RPC Components: The Secure RPC components work along with the security APIs to

provide authentication and authorization for the remote procedure calls.

d) Name Service Independent APIs: The Name Service Independent (NSI) APIs help in locating

the right server to process the request. It is integrated into the directory services Component to

facilitate the Association and Binding of the Client to the Server.

e) UUID Facilities: This UUID Stands for Universal Unique Identifiers. This is useful to generate

UUIDs, to uniquely identify each server and client on the DCE.

8.4.3 Specifications Conformance

The DCE Architecture conforms to the Network Computing Architecture (NCA) [IRPC] specifications.

Transport independence and hence the OS independence is achieved as the NCA supports both connection

oriented as well as connection independent protocols.

101

8.4.4 Facilities Supplied by the RPC

The following are the facilities that are supplied by the DCE RPC which are shielded from the application

programmer [IRPC]

a) Security services

b) Use of the Directory Service to Find the right server for remote calls

c) Managing the data formats which are different in each cell of the DCE.

d) Management of messages for example its fragmenting and reassembly.

e) The communication protocols used. RPC can communicate over TCP/IP and UDP.

8.4.5 Communication Methodology Using RPC

The Following are the commonly used communication methodologies in RPC.

Creation of the IDL File:

The interface for RPC is defined in the IDL file and not the actual procedures. The IDL file advertises the

input and output of the Services offered by the remote server. The IDL file is written based on the server’s

procedure and then compiled using the IDL compiler. Compilation of the IDL file produce client and server

stubs.

Client’s View of the RPC:

The client is then provided with the Stubs generated by the compilation of the IDL file and it is incorporated

into its procedure calls. A simple procedure call is now converted to a complex RPC over the network.

Server’s View of RPC:

The server side has the subroutine to perform the function as given in the IDL. The server receives the

parameters passed through the IDL and performs the procedure execution and sends back the results

as published in the IDL to the client.

Binding:

The client finds the appropriate server to send the remote call by looking up the server’s services. This is

called Binding .The server when it starts must advertise the services it provides by registering with the

directory services. The client then accesses the directory service to find about the server, which offers its

services and then addresses that server.

8.4.6 Advantages of Using DCE RPC

The following are the advantages that are obtained by using the DCE RPC

Operating System Independence:

The RPC calls do not depend on the underlying OS’s network calls mechanism

Machine Independence:

Even if the machines connecting through RPC are different, RPC can be successfully used as it provides the

instructions in native format for both the client and the server.

Language Independence:

102

Any modern programming language can access the stubs and the skeletons that are produced by the IDL

compiler.

Protocol Independence:

The server when registering with the DCE directory service explicitly states the protocol that it uses. Hence

the clients can use that protocol or access a different server. The connection oriented and connection free

protocols can be interchangeably used.

8.4.7 Security Inbuilt in RPC

The secure RPC is called the Authenticated RPC. There are various levels of authentication,

a) None – No Authentication

b) Connection – Authentication through encryption occurs at the first connection or handshake

c) Call Authentication – The first data packet which is sent to the server is authenticated

d) Packet Authentication – Each packet of data sent through the RPC Interface is authenticated

In addition to these levels packet integrity and privacy can be protected by the use of Cryptographic

Checksums.

8.4.8 How RPC Works

An RPC is analogous to a function call. Like a function call, when an RPC is made, the calling

arguments are passed to the remote procedure and the caller waits for a response to be returned from

the remote procedure. Figure below shows the flow of activity that takes place during an RPC call

between two networked systems. The client makes a procedure call that sends a request to the server

and waits. The thread is blocked from processing until either a reply is received, or it times out. When

the request arrives, the server calls a dispatch routine that performs the requested service, and sends

the reply to the client. After the RPC call is completed, the client program continues. RPC specifically

supports network applications.

Figure 7.5 Remote Procedure Calling Mechanism

103

8.5 Distributed Memory Management

The memory management subsystem is one of the most important parts of the operating system. Since the

early days of computing, there has been a need for more memory than exists physically in a system. Strategies

have been developed to overcome this limitation and the most successful of these is virtual memory. Virtual

memory makes the system appear to have more memory than it actually has by sharing it between competing

processes as they need it.

Advantages:

• Shields programmer from Send/Receive primitives

• Single address space; simpli_es passing-by-reference and passing complex data structures

• Exploit locality-of-reference when a block is moved

• No memory access bottleneck, as no single bus

• Large virtual memory space

• DSM programs portable as they use common DSM programming interface

Disadvantages:

• Programmers need to understand consistency models, to write correct programs

• DSM implementations use async message-passing, and hence cannot be more efficient than

message-passing implementations

• By yielding control to DSM manager software, programmers cannot use their own message-

passing solutions.

Virtual memory does more than just make your computer’s memory go further. The memory management

subsystem provides:

• Large Address Spaces

• Protection

• Memory Mapping

• Fair Physical Memory Allocation

• Shared Virtual Memory

Threads can allocate and de-allocate blocks of memory, called Segments. These segments can be read

and written, and can be mapped into and out of the address space of the process. A process owns at least

one segment, but may have many more of them. Segments can be used for text, data, stack, or any other

purpose the process desires. The operating system does not enforce any particular pattern on segment

usage.

8.6 Summary

Let us sum up the different concepts we have studied till here.

• A distributed computing system is a collection of processors interconnected by a communication

network in which each processor has its own local memory and other peripherals and

communication between any two processors of the system takes place by message passing over

the communication network.

104

• A distributed system includes both a hardware aspect and a software aspect. From a hardware

point distributed systems are multi-computers and from a software view point they are

distributed operating systems or middleware.

• A distributed operating system (DOS) is built, from the ground up, to provide distributed services.

• The message-passing is a common paradigm model for distributed computing, in the sense that it

mimics the behavior in human communications.

• RPC makes the client/server model of computing more powerful and easier to program. When

combined with the ONC RPCGEN protocol compiler clients transparently make remote calls

through a local procedure interface.

• DSM uses simpler software interfaces, and cheaper o_-the-shelf hardware. Hence cheaper

than dedicated multiprocessor systems

8.7 Self - Assessment Exercise

1. Explain the various reasons for designing applications in Distributed Processing system

2. Explain the features of Concurrency Control in Distributed Computing Environment.

3. List down various application areas where distributed computing is used

8.8 References

• John a . Sharp, “ An introduction to distributed and parallel processing”, Blackwell Scientific

Publicaitons.

• Mukesh Singhal, Shivaratri, “Advanced Concepts in Operating System”, Tata McGraw-Hill,

2001

• Nadiminti, Dias de Assunção, Buyya (September 2006). “Distributed Systems and Recent

Innovations: Challenges and Benefitz”. InfoNet Magazine, Volume 16, Issue 3, Melbourne,

Australia.

105

Unit - 9 : Distributed Computing System – An Introduction

Structure of Unit

9.0 Objective

9.1 Introduction

9.1.1 Basic Multiprocessor Models

9.2 Distributed Computing System – An Outline

9.3 Evolution of Distributed Computing System

9.4 Distributed Computing System Models

9.4.1 Minicomputer Model

9.4.2 Workstation – Server Model

9.4.3 Processor – Pool Model

9.5 Security in Distributed Environment

9.5.1 Architecture

9.6 Advantages of Distributed System Over Centralized System

9.7 Disadvantages of Distributed System Over Centralized System

9.8 Issues in Designing a Distributed Operating system

9.9 Summary

9.10 Self - Assessment Exercise

9.11 References

9.0 Objective

This unit covers a new task execution strategy called “Distributed Computing” and the following related

terminologies.

• Distributed Computing System (DCS)

• Distributed Computing models

• Advantages of Distributed computing

• Security

9.1 Introduction

Distributed computing is a method of computer processing in which different parts of a program are run

simultaneously on two or more computers that are communicating with each other over a network. Distributed

computing is a type of segmented or parallel computing, but the latter term is most commonly used to refer

to processing in which different parts of a program run simultaneously on two or more

processors that are part of the same computer. While both types of processing require that a program be

segmented—divided into sections that can run simultaneously, distributed computing also requires that the

division of the program take into account the different environments on which the different sections of the

program will be running. For example, two computers are likely to have different file systems and different

hardware components.

106

An example of distributed computing is BOINC, a framework in which large problems can be divided into

many small problems which are distributed to many computers. Later, the small results are reassembled into

a larger solution. Distributed computing is a natural result of using networks to enable computers to communicate

efficiently. But distributed computing is distinct from computer networking or fragmented computing. The

latter refers to two or more computers interacting with each other, but not, typically, sharing the processing

of a single program. The World Wide Web is an example of a network, but not an example of distributed

computing.

Advancements in microelectronic technology have resulted in the availability of fast, inexpensive

processors, and advancements in communication technology have resulted in the availability of

cost-effective and highly efficient computer networks. The net result of the advancements in

these two technologies is that the price performance ratio has now changed to favor the use of

inter-connected, multiple processors in place of a single, high-speed processor.

9.1.1 Basic Multiprocessor Systems

Two basic types of computer architectures consisting of interconnected, multiple processors can be

distinguished as

1. Tightly Coupled Systems - systems with a single system wide primary memory (address space)

that is shared by all the processors (also referred to as parallel processing systems, multiprocessors,

SMMP - shared memory multiprocessors, SMS - shared memory systems, SMP – symmetric

multiprocessors).

CPU
Shared memory

CPU CPU CPU

Interconnection hardware

2. Loosely Coupled Systems - the systems where processors do not share memory and each processor

has its own local memory (also referred to as distributed computing systems, multicomputer, DMS

- distributed memory systems, MPP – massively parallel processors).

CPU

Local

memory

CPU

Local

memory

CPU

Local

memory

CPU

Local

memory

Communication network

Let us see some points with respect to both tightly coupled multiprocessor systems and loosely coupled

multiprocessor.

• Tightly coupled systems are referred to as parallel processing systems, and loosely coupled

systems are referred to as distributed computing systems, or simply distributed systems.

107

• In case of tightly coupled systems, the processors of distributed computing systems can be located

far from each other to cover a wider geographical area.

• In tightly coupled systems, the number of processors that can be usefully deployed is usually small

and limited by the bandwidth of the shared memory.

• The Distributed computing systems are more freely expandable and can have an almost unlimited

number of processors.

This has provided us with the basic idea of designing distributed operating systems. Although the field is still

immature, with ongoing active research activities, commercial distributed operating systems have already

started to emerge. These systems are based on already established basic concepts.

9.2 Distributed Computing System – An Outline

It is a collection of independent computers (nodes, sites) interconnected by transmission channels, that

appear to the users of the system as a single computer.

Each node of distributed computing system is equipped with a processor, a local memory, and interfaces.

Communication between any pair of nodes is realized only by message passing as no common memory

is available. Usually, distributed systems are asynchronous, i.e., they do not use a common clock and

do not impose any bounds on relative processor speeds or message transfer times.

9.3 Evolution of Distributed Computing System

Early computers were very expensive (they cost millions of dollars) and very large in size (they

occupied a big room). These computers were run from a console by an operator and were not accessible

to ordinary users. The job setup time was a real problem in early computers and wasted most of the

valuable central processing unit (CPU) time. To increase CPU utilization several new concepts were

introduced in the 1950s and 1960s like the batching together of jobs with similar needs before

processing them, automatic sequencing of jobs, off-line processing by using the concepts of buffering

and spooling and multiprogramming. Finally, multiprogramming improved CPU utilization by organizing

jobs so that the CPU always had something to execute.

However, none of these ideas allowed multiple users to directly interact with a computer system and

to share its resources simultaneously. It was not until the early 1970s that computers started to use the

concept of time-sharing to overcome this hurdle. Parallel advancements in hardware technology allowed

reduction in the size and increase in the processing speed of computers, causing large-sized computers

to be gradually replaced by smaller and cheaper ones that had more processing capability than their

predecessors.

The advent of time-sharing systems was the first step was distributed computing systems because

it provided us with two important concepts used in distributed computing systems-

• The sharing of computer resources simultaneously by many users

• The accessing of computers from a place different from the main computer room.

However, in parallel, there were advancements in compute networking technology in the late 1960s

and early 1970s that emerged as two key networking technologies-

• LAN (Local Area Network): The LAN technology allowed several computers located within a

building or a campus to be interconnected in such a way that these machines could exchange

108

3

Distributed Systems

C om p ar is on o f t h ree k i nd s o f m u l t i p le CPU sy st em s

information with each other at data rates of about 10 megabits per second (Mbps). The first high-

speed LAN was the Ethernet developed at Xerox PARC in 1973

• WAN Technology: allowed computers located far from each other (may be in different cities or

countries or continents) to be interconnected in a such a way that these machines could exchange

information with each other at data rates of about 56 kilobits per second (Kbps). The first WAN

was the ARPANET (Advanced Research Projects Agency Network) developed by the U.S.

Department of Defense in 1969.

• ATM Technology: The data rates of networks continued to improve gradually in the 1980s providing

data rates of up to 100 Mbps for LANs and data rates of up to 64 Kbps for WANs. Recently

(early 1990s) there have been another major advancements in networking technology – the ATM

(Asynchronous Transfer Mode) technology. The ATM technology is an emerging technology that is

still not very well established. It will make very high speed networking possible, providing data

transmission rates up to 1.2 gigabits per second (Gbps) in both LAN and WAN environments. The

availability of such high-bandwidth networks will allow future distributed computing systems to

support a completely new class of distributed applications, called multimedia applications, that deal

with the handling of a mixture of information, including voice, video and ordinary data. The merging

of computer and networking technologies gave birth to Distributed computing systems in the late

1970s.

9.4 Distributed Computing System Models

Various models are used for building distributed computing system. These models can be broadly

classifies into five categories-minicomputer, workstation, workstation-server, processor-pool and

hybrid. They are briefly described below.

Distributed System

Comparison of three Kinds of Multiple CPU Systems

9.4.1 Minicomputer Model

Distributed computing system based on this model consists of a few minicomputers (or supercomputers)

interconnected by a communication network. Each minicomputer is connected by several interactive

terminals. Each user is logged on to one specific minicomputer, with access to remote resources

available on other minicomputers. There is a simple extension of the centralized time sharing system.

The example of distributed computing system based on minicomputers is the early ARPA net.

nt Exercise

ent Exercise

109

Mini-

computer

Mini-

computer

Mini-

computer Communication

network

Terminals

Workstation Model (NOW - Network of Workstations, P2P - Peer-to Peer)

Workstation

Communication

network
WorkstationWorkstation

WorkstationWorkstation

General Characteristic:

• System consists of several workstations interconnected by a communication network.

• Every workstation may be equipped with its own disk and serving as a single-user computer.

• In such environment like company‘s office or a university department, at any one time (especially at

night), a significant portion of the workstation are idle, resulting in the waste of large amount of CPU

time.

• Main idea: interconnect all workstations by a high-speed LAN so that idle workstations may be

used to process jobs of users who are logged onto other workstations and do not have sufficient

processing power at their own workstations to get their jobs processed efficiently.

• User logs onto one of the workstations and submits job for execution.

• If the user‘s workstation does not have sufficient processing power for executing the processes of

the submitted job efficiently, it transfers one or more of the processes from the user‘s workstation to

some other workstation that is currently idle and gets the process executed there.

• The result of execution is returned to the user‘s workstation.

• Implementation issues:

– How does the system find an idle workstation?

– How is the process transferred from one workstation to get it executed on another

workstation?

– What happens to a remote process if a user logs onto a workstation that was idle until

now and was being executed a process of another workstation?

110

• Examples of distributed computing systems based on the workstation model:

– Sprite system; experimental system developed at Xerox PARC.

9.4.2 Workstation-Server Model

System consists of a few minicomputers and several workstations (diskless or diskful) interconnected by a

communication network. In addition to the workstation, there are specialized machines running server

processes (servers) for managing and providing access to shared resources.

Each minicomputer is used as a server machine to provide one or more types of service:

– implementing the file system;

– database service;

– print service;

– other types of service.

User logs onto a workstation called his home workstation. Normal computation activities required by the

user‘s processes are performed at the user‘s home workstation. Requests for services provided by special

servers are sent to a server providing that type of service that performs the user‘s requested activity and

returns of requested processing to the user‘s workstation. User‘s processes need not be migrated to the

server machines for getting the work done by those machines.

Workstation

Communication

network
WorkstationWorkstation

WorkstationWorkstation

Mini-

computer

used as

file

server

Mini-

computer

used as

database

server

Mini-

computer

used as

print

server

. . .
Mini-

computer

used as

file

server

The workstation-server model has several advantages:

1. In general, it is much cheaper to use a few minicomputers equipped with large, fast disk that are

accessed over the network than a large number of diskful workstations, with each workstation

having a small, slow disk.

2. Diskless workstations are also preferred to diskful workstations from a system maintenance point

of view. Backup and hardware maintenance are easier to perform with a few large disks than with

many small disks scattered all over a building or campus. Furthermore, installing new releases of

software (such as file server with new functionalities) is easier when the software is to be installed on

a few file server machines than on every workstation.

3. In the workstation-server model, since the file servers manage all files, users have the flexibility to

use any workstation and access the files in the same manner irrespective of which workstation the

111

user is currently logged on. Note that this is not the true with the workstation model, in which the

workstation model, in which each workstation has its local file system, because different mechanisms

are needed to access local and remote files.

4. In the workstation-server model, the request-response protocol is mainly used to access the services

of the server machines. Therefore, unlike the workstation model, this model does not need a process

migration facility, which is difficult to implement. The request-response protocol is known as the

client-server model of communication. In this model, a client process (which in this case resides on

a workstation) sends a request to server process (which in this case resides on a minicomputer) for

getting some services such as reading a unit of a file. The server executes the request and sends

back a reply to the client that contains the result of processing.

5. A user has guaranteed response time because workstations are not used for executing remote

processes. However, the model does not utilize the processing capability of idle workstations.

 9.4.3 Processor-Pool Model

File

server

Run

server

Communication

network

Pool of processors.

...

Terminals

The model is based on the observation that most of the time a user does not need any computer power but

once in a while he may need a very large amount of computing power for a short time.

• The processors are pooled together to be shared by the users as needed.

• The pool of processors consists of a large number of microcomputers and minicomputers attached

to the network.

• Each processor in the pool has its own memory to load and run a system program or an application

program.

• The processors in the pool have not terminals attached directly to them, and users access the

system from terminals that are attached to the network via special devices.

• A special server (run server) manages and allocates the processors in the pool to different

users on a demand basis.

• Appropriate number of processors are temporary assigned to user‘s job by the run server.

• When the computation is completed, the processors are returned to the pool.

When a user submits a job for computation, the run server temporarily assigns an appropriate number of

processors to his or her job. For example, if the user’s computation job is the compilation of a program

having n segments, in which each of the segments can be compiled independently to produce separate

112

relocatable object files, n processors from the pool can be allocated to this job to compile all the n segments

in parallel. When the computation is completed the processors are returned to the pool for use by other

users.

In the processor-pool model there is no concept of a home machines. That is, a user does not log onto a

particular machines but to the system as a whole. This is in contrast to other models in which each user has

a home machine (e.g. a workstation or minicomputer) onto which he or she logs and runs most of his or her

programs there by default. Amoeba and the Cambridge Distributed Computing Systems are examples of

distributed computing systems based on the processor-pool model.

9.5 Security in Distributed Environment

Computing security is, at its core, more than a technical issue: It’s a fundamental business challenge. Managers

have plenty of security alternatives, but little real guidance on making intelligent decisions about them. And

today’s distributed, multivendor, Internet-connected environments encompass more insecure systems and

networks than ever before.

Security in these systems is multilayered and can be tailored to meet company and user-specific

needs Security in Distributed Computing offers the manager of distributed systems a thorough, common-

sense framework for cost-effective computer security.

Security Policy determines precisely which actions the entities in a system are allowed to take and

which ones are prohibited. The security policy can be enforced by following techniques:

ENCRYPTION: Transforming data into coded text that an attacker cannot understand.

AUTHENTICATION: Verifying the claimed identity of different entities.

AUTHORIZATION: Verifying whether the client is allowed to perform the requested service. .

AUDITING: Tracing each and every client’s activity.

The security in distributed systems requires use of a unique, assigned login name for each user. This name

must be used in conjunction with the system provided or created password unique to the user name to gain

access.

The security protocol of distributed systems requires it check the login name and password against its files

along with the access point to authenticate login. The system is unique in that it can accomplish this without

an active server.

Each user has a personally constructed security profile. This profile only allows them access to certain areas

of the files and programs located within the distributed system. This security protocol helps to keep information

confidential by only allowing limited access.

9.5.1 Architecture

Various hardware and software architectures are used for distributed computing. At a lower level, it is

necessary to interconnect multiple CPUs with some sort of network, regardless of whether that network is

printed onto a circuit board or made up of loosely coupled devices and cables. At a higher level, it is

necessary to interconnect processes running on those CPUs with some sort of communication system.

Distributed programming typically falls into one of several basic architectures or categories: Client-server,

3-tier architecture, N-tier architecture, Distributed objects, loose coupling, or tight coupling.

113

• Client-server — Smart client code contacts the server for data, then formats and displays it to the

user. Input at the client is committed back to the server when it represents a permanent change.

• 3-tier architecture — Three tier systems move the client intelligence to a middle tier so that

stateless clients can be used. This simplifies application deployment. Most web applications are 3-

Tier.

• N-tier architecture — N-Tier refers typically to web applications which further forward their

requests to other enterprise services. This type of application is the one most responsible for the

success of application servers.

• Tightly coupled (clustered) — refers typically to a set of highly integrated machines that run the

same process in parallel, subdividing the task in parts that are made individually by each one, and

then put back together to make the final result.

• Peer-to-peer —an architecture where there is no special machine or machines that provide a

service or manage the network resources. Instead all responsibilities are uniformly divided among

all machines, known as peers. Peers can serve both as clients and servers.

• Space based — refers to an infrastructure that creates the illusion (virtualization) of one single

address-space. Data are transparently replicated according to application needs. Decoupling in

time, space and reference is achieved.

Another basic aspect of distributed computing architecture is the method of communicating and coordinating

work among concurrent processes. Through various message passing protocols, processes may communicate

directly with one another, typically in a master/slave relationship. Alternatively, a “database-centric” architecture

can enable distributed computing to be done without any form of direct inter-process communication, by

utilizing a shared database.

9.6 Advantages of Distributed System Over Centralized System

The distributed computing systems are much more complex and difficult to build than traditional centralized

systems (those consisting of a single CPU, its memory, peripherals, and one or more terminals). The increased

complexity is mainly due to the fact that in addition to being capable of effectively using and managing a very

large number of distributed resources, the system software of a distributed computing system should also be

capable of handling the communication and security problems that are very different from those of centralized

systems. For example, the performance and reliability of a distributed computing system depends to a great

extent on the performance and reliability of the underlying communication network. Special software is

usually needed to handle loss of messages, during transmission across the network or to prevent overloading

of the network that degrades the performance and responsiveness to the users. Similarly, special software

security measures are needed to protect the widely distributed shared resources and services against intentional

or accidental violation of access control and privacy constraints.

Despite the increased complexity and the difficulty of building distributed computing systems, the installation

and use of distributed computing systems overweigh their disadvantages. The technical needs, the economic

pressures, and the major advantages that have led to the emergence and popularity of distributed computing

systems are described here.

• Inherently Distributed Applications: Distributed computing systems come into existence in some

very natural easy. For example, several applications are inherently distributed in nature and require

a distributed computing system for their realization. For instance, in an employee database of a

nationwide organization, the data pertaining to a particular employee are generated at the employee’s

114

branch office, and in addition to the global need to view the entire database; there is a local need for

frequent and immediate access to locally generated data at each branch office. Such applications

require that some processing power be available at the many distributed locations for collecting,

preprocessing, and accessing data, resulting in the need for distributed application are a computerized

worldwide airline reservation system, a computerized banking system in which a customer can

deposit/withdraw money from his or her account from any branch of the bank, and a factory

automation system controlling robots and machines all along an assembly line.

• Information Sharing Among Distributed Users: Efficient person-to-person communication facility

by sharing information over great distances is the one more advantage. In a distributed computing

system, the users working at other nodes of the system can easily and efficiently share information

generated by one of the users. This facility may be useful in many ways. For example, two or more

users who are geographically far off from each other can perform a project but whose computers

are the parts of the same distributed computing system.

The use of distributed computing systems by a group of users to work cooperatively is known

as computer-supported cooperative working (CSCW), or groupware.

• Resource Sharing: Information is not the only thing that can be shared in a distributed computing

system. Sharing of software resources such as software libraries and databases as well as

hardware resources such as printers, hard disks, and plotters can also be done in a very

effective way among all the computers and users of a single distributed computing system

• Better Price Performance Ration: This is one of the most important reasons for the growing

popularity of distributed computing system. With the rapidly increasing power and reduction

in the price of microprocessors, combined with the increasing speed of communication networks,

distributed computing systems potentially have a much better price-performance ratio than a

single large centralized system. Another reason for distributed computing systems to be more

cost effective than centralized systems is that they facilitate resource sharing among multiple

computers.

• Shorter Response Times and Higher Throughput: Due to multiplicity of processors,

distributed computing systems are expected to have better performance than single-processor

centralized systems. The two most commonly used performance metrics are response time

and throughput of user processes. That is, the multiple processors of distributed computing

systems can be utilized properly for providing shorter response times and higher throughput

than a single processor centralized system. Another method often used in distributed computing

systems for achieving better overall performance is to distribute the load more evenly among

the multiple processors by moving jobs from currently overloaded processors to lightly loaded

ones.

• Higher Reliability: Reliability refers to the degree of tolerance against errors and component

failures in a system. A reliable system prevents loss of information even in the event of

component failures. The multiplicity of storage devices and processors in a distributed

computing system allows the maintenance of multiple copies of critical information within the system.

With this approach, if one of the processors fails, the computation can be successfully completed at

the other processor, and if one of the storage devices fails, the computations can be successfully

completed at the other processors, and if one of the storage devices fails, the information can still be

used from the other storage device.

115

• Availability: An important aspect of reliability is availability, which refers to the fraction of time

for which a system is available for use. In comparison to a centralized system, a distributed computing

system also enjoys the advantage of increased availability.

• Extensibility and Incremental Growth: Another major advantage of distributed computing systems

is that they are capable of incremental growth. That is, it is possible to gradually extend the power

and functionality of a distributed computing system by simply adding additional resources (both

hardware and software) to the system as and when the need arises. For example, additional

processors can be easily added to the system to handle the increased workload of an organization

that might have resulted from its expansion. Extensibility is also easier on a distributed computing

system because addition of new resources to an existing system can be performed without significant

disruption of the normal functioning of the system. Properly designed distributed computing systems

that have the property of extensibility and incremental growth are called open distributed systems.

• Better Flexibility in Meeting Users Needs: Different types of computers are usually more

suitable for performing different types of computations. For example, computers with ordinary

power are suitable for ordinary data processing jobs, whereas high-performance computers

are more suitable for complex mathematical computations. In a centralized system, the users

have to perform all types of computations on the only available computer.

9.7 Disadvantages of Distributed System Over Centralized System

Technical Issues

If not planned properly, a distributed system can decrease the overall reliability of computations if the

unavailability of a node can cause disruption of the other nodes. Leslie Lamport famously quipped

that: “A distributed system is one in which the failure of a computer you didn’t even know existed can

render your own computer unusable.” Troubleshooting and diagnosing problems in a distributed system

can also become more difficult, because the analysis may require connecting to remote nodes or

inspecting communication between nodes. Many types of computation are not well suited for distributed

environments, typically owing to the amount of network communication or synchronization that would

be required between nodes. If bandwidth, latency, or communication requirements are too significant,

then the benefits of distributed computing may be negated and the performance may be worse than a

non-distributed environment.

Project-related Problems

Distributed computing projects may generate data that is proprietary to private industry, even though the

process of generating that data involves the resources of volunteers. This may result in controversy as

private industry profits from the data which is generated with the aid of volunteers. In addition, some

distributed computing projects, such as biology projects that aim to develop thousands or millions of “candidate

molecules” for solving various medical problems, may create vast amounts of raw data. This raw data may

be useless by itself without refinement of the raw data or testing of candidate results in real-world experiments.

Such refinement and experimentation may be so expensive and time-consuming that it may literally take

decades to sift through the data. Until the data is refined, no benefits can be acquired from the computing

work.

Other projects suffer from lack of planning on behalf of their well-meaning originators. These poorly planned

projects may not generate results that are palpable, or may not generate data that ultimately result in finished,

innovative scientific papers. Sensing that a project may not be generating useful data, the project managers

116

may decide to abruptly terminate the project without definitive results, resulting in wastage of the electricity

and computing resources used in the project. Volunteers may feel disappointed and abused by such outcomes.

There is an obvious opportunity cost of devoting time and energy to a project that ultimately is useless, when

that computing power could have been devoted to a better planned distributed computing project generating

useful, concrete results.

Another problem with distributed computing projects is that they may devote resources to problems that

may not ultimately be soluble, or to problems that are best pursued later in the future, when desktop

computing power becomes fast enough to make pursuit of such solutions practical. Some distributed computing

projects may also attempt to use computers to find solutions by number-crunching mathematical or physical

models. With such projects there is the risk that the model may not be designed well enough to efficiently

generate concrete solutions. The effectiveness of a distributed computing project is therefore determined

largely by the sophistication of the project creators.

9.7.1 Network Operating Systems

There are two Types of Distributed operating systems:

• Network Operating Systems

• Distributed Operating Systems

In the Network operating systems Users are aware of multiplicity of machines. User’s access to resources

of various machines is done explicitly by:

• Remote logging into the appropriate remote machine (telnet, ssh)

• Remote Desktop (Microsoft Windows)

• Transferring data from remote machines to local machines, via the File Transfer

Protocol (FTP) mechanism

9.8 Issues in Designing a Distributed Operating System

In general, designing operating system is more difficult than designing a centralized operating system for

several reasons. In the design of a centralized operating system, it is assumed that the operating system has

access to complete and accurate information about the environment in which it is functioning. In a distributed

system, the resources are physically separated, there is no common clock among the multiple processors,

delivery of messages is delayed, and messages could even be lost. Due to all these reasons, a distributed

operating system doest not have up-to-data, consistent knowledge about the state of the various components

of the underlying distributed system. Despite these complexities and difficulties, a distributed operating

system must be designed to provide all the advantage of a distributed system to its users. That is, the users

should be able to view a distributed system as virtual centralized system that is flexible, efficient, reliable,

secure and easy to use. To meet this requirement, the designers of a distributed operating system must deal

with several design issues. Some of the key design issues are described below.

• Transparency: We saw that one of the main goals of a distributed operating system is to make the

existence of multiple computers invisible (transparent) and provide a single system image to its

users. That is, a distributed operating system must be designed in such a way that a collection of

distinct machines connected by a communication subsystem appears to its users as a virtual uni-

processor. The eight forms of transparency identified by the International Standards Organization’s

Reference Model for Open Distributed Processing [ISO 1992] are access transparency, location

transparency, replication transparency, failure transparency, migration transparency,

location transparency, concurrency transparency performance transparency, and scaling

transparency.

117

• Reliability: In general, distributed systems are expected to be more reliable than centralized systems

due to the existence of multiple instances of resources. However, the existence of multiple instances

of the resources alone cannot increase the systems reliability. Rather, the distributed operating system,

which manages these resources, must be designed properly to increase the systems reliability by

taking full advantage of this characteristic feature of a distributed system.

For higher reliability, the fault-handling mechanisms of a distributed operating system must be designed

properly to avoid faults, to tolerate faults, and to detect and recover from faults. Commonly used

methods for dealing with these issues are briefly described here.

• Flexibility: Another important issue in the design of distributed operating systems is flexibility. The

design of a distributed operating system should be flexible due to the following reasons:

• Ease of modification: From the experience of system designers, it has been found that some

parts of the design often need to be replaced/modified either because some bug is detected in the

design or because the design is no longer suitable for the changed system environment or new-user

requirements. Therefore, it should be easy to incorporate changes in the system in a user-transparent

manner or with minimum interruption caused to the users.

• Ease of enhancement: In every system, new functionalities have to be added from time to time

to make it more powerful and easy to use. Therefore, it should be easy to add new services to the

system.

The most important design factor that influences the flexibility of a distributed operating system is

the model used for designing its kernel. The kernel of an operating system is its central controlling

part that provided basic system facilities. It operates in a separate address space that a user cannot

replace or modify. The two commonly used models for kernels design in distributed operating

systems are monolithic kernel and the micro kernel.

• In monolithic kernel model, the kernel provides most operating system services such as process

management, and inter-process communication. As a result, the kernel has a large, monolithic

structure. Many distributed operating systems that are extensions or imitations of the UNIX operating

system use the monolithic kernel model. This is mainly because UNIX itself has a large, monolithic

kernel.

• In the micro kernel model, the main goal is to keep the kernel as small as possible. Therefore,

in this model, the kernel is a very small nucleus of software that provides only the minimal facilities

necessary for implementing additional operating system services. The only services provided by the

kernel in this model are inter-process communication, low–level device management and some

memory management. All other operating system services, such as file-management, name

management, additional process and memory management activities, and much system call handling

are implemented as a user-levelserver processes.

 Fig 2.6(a) The Monolithic Kernel Model

 Node 1 Node 2 Node n

 …….

Network hardware

User

Applications

Us er

Applications

U ser

A pplications

M onolithic

kernel (i ncludes

m ost OS service s)

M onolithic

k ernel

(includes most

M onolithic

ke rnel (i ncludes

m ost OS servi ces)

118

• Performance: If a distributed system is to be used, its performance must be at least as good as a

centralized system. That is, when a particular application is run on a distributed system, its overall

performance should be better than or at least equal to that of running the same applications on a

single-processor system. However, to achieve this goal, it is important that the various components

of the operating system of a distributed system be designed properly; otherwise, the overall

performance of the distributed system may turn out to be worse than a centralized system.

Fig 2.6(b) The Micro Kernel Model

• Scalability: Scalability refers to the capability of a system to adapt to increased service load. It is

inevitable that a distributed system will grow with time since it is very common to add new machines

or an entire sub-network to the system to take care of increased workload or organizational changes

in a company. Therefore, a distributed operating system should be designed to easily cope with the

growth of nodes and users in the system. That is, such growth should not cause serious disruption of

service or significant loss of performance to users.

 • Heterogeneity: A heterogeneous distributed system consists of interconnected sets of dissimilar

hardware or software systems. Because of the diversity, designing heterogeneous distributed

systems is far more difficult than designing homogenous distributed systems in which each

system is based on the same, or closely related, hardware and software. However, as a

consequence of large scale, heterogeneity is often inevitable in distributed systems. Furthermore,

many users prefer often heterogeneity because heterogeneous distributed systems provide the

flexibility to their users of different computer platforms for different applications.

• Security: In order that the users can trust the system and rely on it, the various resources of a

computer system must be protected against destruction and unauthorized access. Enforcing

security in a distributed system is more difficult than in a centralized system because of the

lack of a single point of control and the use of insecure networks for data communication. In a

centralized system, all users are authenticated by the system at login time, and the system can easily

check whether a user is authorized to perform the requested operation on an accessed resource. In

a distributed system, however, since the client-server model is often used for requesting and providing

services, when a client sends a request message to a server, the server must have some way of

knowing who is the client. This is not so simple as it might appear because any client identification

field in the message cannot be trusted. This is because an intruder (a person or program trying to

obtain unauthorized access to system resources) may pretend to be an authorized client or may

change the message contents during transmission. Therefore, as compared to a centralized system,

enforcement of security in a distributed system has the following additional requirements:

 Node 1 Node 2 Node n

 ….

Server/

Manager

modules

Network hardware

User

Applications

User

Applications

User

applications

Server/
Manager

modules

Server/
Manager

modules

Micro kernel

(has only

minimal

facilities)

Micro kernel

(has only

minimal

facilities)

Micro kernel

(has only

minimal

facilities)

119

1. It should be possible for the sender of a message to know that the intended receiver

received the message.

2 It should be possible for receiver of a message to know that the message was sent

by the genuine sender

3. It should be possible for both the sender and receiver of a message to be guaranteed

that the contents of the message were not changed while it was in transfer.

• Emulation of Existing Operating Systems: For commercial success, it is important that a

newly designed distributed operating system be able to emulate existing poplar operating

systems such as UNIX. With this property, new software can be written using the system call

interface of the new operating system to take full advantage of its special features of distribution,

but a vast amount to already existing old software can also be run on the same system without

the need to rewrite them. Therefore, moving to the new distributed operating system will

allow both types of software to be run side by side.

9.9 Summary

Let us sum up the different concepts we have studied till here.

• The existing models for distributed computing systems can be broadly classified into five

categories, minicomputer, workstation-server, processor-pool and hybrid.

• Distributed computing system is much more complex and difficult to build than the traditional

centralized systems. Despite the increased complexity and the difficulty of buildings, the

installation and the use of distributed computing system are rapidly increasing. This is mainly

because the advantages of distributed computing systems outweigh its disadvantages.

• The main advantages of distributed computing systems are (a) suitability for inherently

distributed applications. (b) Sharing of information among distributed users and sharing of

resources (d) better price performance ratio (e) shorter response times and higher throughout

(f) higher reliability (g) extensibility and incremental growth and (h) better flexibility in meeting

users needs.

• The operating systems commonly used for distributed computing systems can be broadly classified

into two types: network operating systems and distributed operating systems. As compared to

a network operating system, a distributed operating system has better transparency and fault capability

and provides the image of a virtual uniprocessor to the users.

• The main issue involved in the design of a distributed operating system is transparency, reliability,

flexibility, performance, scalability, heterogeneity, security and emulation of existing operating systems.

9.10 Self - Assessment Exercise

1. Differentiate between Centralised approach and Fully Distributed Approach

2. Identify the disadvantages of distributed approach in comparison to Centralised approach.

3. What are the main issues involve in the design of a distributed system.

4. Explain the different models of Distributed Computing.

120

5. What are the security issues related to a system with distributed approach?

9.11 References

• Attiya, Hagit and Welch, Jennifer (2004). Distributed Computing: Fundamentals, Simulations,

and Advanced Topics. Wiley-Interscience. ISBN 0471453242

• http://en.wikipedia.org/wiki/Distributed_computing

• Nadiminti, Dias de Assunção, Buyya (September 2006). “Distributed Systems and Recent

Innovations: Challenges and Benefitz”. InfoNet Magazine, Volume 16,

• Issue 3, Melbourne, Australia

121

Unit - 10 : Distributed File System

Structure of Unit

10.0 Objective

10.1 Introduction

10.2 Features of Good DFS

10.3 File Models & File Accessing Models

10.3.1 Distributed File System Concepts

10.3.2 File Service Type

10.3.3 Naming Issues

10.4 File- Sharing Semantics

10.5 System Design Issue

10.5.1 Name Resolution

10.5.2 Should Server Maintain State?

10.5.3 File Caching Schemes

10.5.4 Fault Tolerance

10.5.5 File Replication

10.6 Design Principle : Andrew File System (AFS)

10.7 Case study:

10.7.1 DCE Distributed File Service.

10.7.2 Sun NFS

10.7.3 OSF

10.8 Summary

10.9 Self - Assessment Exercise

10.10 References

10.0 Objective

This unit covers following aspects:

• Features of Good Distributed File System

• File Models & File Accessing Models

• File- Sharing Semantics

• System Design Issue & Design Principle

10.1 Introduction

A file system is responsible for the organization, storage, retrieval, naming, sharing, and protection of files. A

Distributed File System is a network file system where a single file system can be distributed across several

physical computer nodes. Separate nodes have direct access to only a part of the entire file system, in

contrast to shared disk file systems where all nodes have uniform direct access to the entire storage. Example:

Google file system, CODA, Hadoop.

122

Figure 10.1: Distributed File System

10.2 Features of Good DFS

1) Fault tolerance: Distributed storage is composed of a large number of distributed storage components

(rather than a single storage component). Increasing the number of components affects fault tolerance.

Distributing the components makes the system more faults prone (because of network disruptions).

2) Scalability: The file system should work well in small environments (1 machine, a dozen machines)

and also scale gracefully to huge ones (hundreds through tens of thousands of systems).

3) Transparency: The distributed systems should be perceived as a single entity by the users or the

application programmers rather than as a collection of autonomous systems, which are cooperating.

The users should be unaware of where the services are located and also the transferring from a local

machine to a remote one should also be transparent.

a. Access transparency Clients are unaware that files are distributed and can access

them in the same way as local files are accessed.

b. Location transparency A consistent name space exists encompassing local as well

as remote files. The name of a file does not give it location.

c. Concurrency transparency All clients have the same view of the state of the file

system. This means that if one process is modifying a file, any other processes on the

same system or remote systems that are accessing the files will see the modifications

in a coherent manner.

d. Failure transparency The client and client programs should operate correctly after a

server failure.

e. Heterogeneity File service should be provided across different hardware and

operating system platforms.

f. Replication transparency To support scalability, we may wish to replicate files across

multiple servers. Clients should be unaware of this.

g. Migration transparency Files should be able to move around without the client’s

knowledge.

Other Characteristics Include

1) Network Transparency: Same access operation as if they are local files.

2) Location Independence: The file name should not be changed when the physical location of the

file changes.

123

3) User Mobility: User should be able to access the file from anywhere.

4) File Mobility: Moves files from one place to the other in a running system.

10.3 File models & File Accessing Models

10.3.1 Distributed File System Concepts

A file service is a specification of what the file system offers to clients. A file server is the implementation of

a file service and runs on one or more machines. A file itself contains a name, data, and attributes (such as

owner, size, creation time, access rights). An immutable file is one that, once created, cannot be changed.

Immutable files are easy to cache and to replicate across servers since their contents are guaranteed to

remain unchanged. Two forms of protection are generally used in distributed file systems, and they are

essentially the same techniques that are used in single-processor non-networked systems:

Capabilities

Each user is granted a ticket (capability) from some trusted source for each object to which it has access.

The capability specifies what kinds of access are allowed.

Access Control Lists

Each file has a list of users associated with it and access permissions per user. Multiple users may be

organized into an entity known as a group.

10.3.2 File Service Types

To provide a remote system with file service, we will have to select one of two models of operation. One of

these is the upload/download model. In this model, there are two fundamental operations: read file transfers

an entire file from the server to the requesting client, and write file copies the file back to the server. It is a

simple model and efficient in that it provides local access to the file when it is being used. Three problems

are evident. It can be wasteful if the client needs access to only a small amount of the file data. It can be

problematic if the client doesn’t have enough space to cache the entire file. Finally, what happens if others

need to modify the same file? The second model is a remote access model. The file service provides remote

operations such as open, close, read bytes, write bytes, get attributes, etc. The file system itself runs on

servers. The drawback in this approach is the servers are accessed for the duration of file access rather than

once to download the file and again to upload it.

Another important distinction in providing file service is that of understanding the difference between directory

service and file service. A directory service, in the context of file systems, maps human-friendly textual

names for files to their internal locations, which can be used by the file service. The file service itself provides

the file interface (this is mentioned above). Another component of file distributed file systems is the client

module. This is the client-side interface for file and directory service. It provides a local file system interface

to client software (for example, the vnode file system layer of a UNIX kernel).

10.3.3 Naming Issues

In designing a distributed file service, we should consider whether all machines (and processes) should have

the exact same view of the directory hierarchy. We might also wish to consider whether the name space on

all machines should have a global root directory (a.k.a. super root) so that files can be accessed as, for

example, //server/path. This is a model that was adopted by the Apollo Domain System, an early distributed

file system, and more recently by the web community in the construction of a uniform resource locator

(URL).

124

In considering our goals in name resolution, we must distinguish between location transparency and location

independence. By location transparency we mean that the path name of a file gives no hint to where the file

is located. For instance, we may refer to a file as //server1/dir/file. The server (server) can move anywhere

without the client caring, so we have location transparency. However, if the file moves to server2 things will

not work. If we have location independence, the files can be moved without their names changing. Hence,

if machine or server names are embedded into path names we do not achieve location independence. It is

desirable to have access transparency, so that applications and users can access remote files just as they

access local files. To facilitate this, the remote file system name space should be syntactically consistent with

the local name space. One way of accomplishing this is by redefining the way files are named and require an

explicit syntax for identifying remote files. This can cause legacy applications to fail and user discontent

(users will have to learn a new way of naming their files). An alternate solution is to use a file system

mounting mechanism to overlay portions of another file system over a node in a local directory structure.

Mounting is used in the local environment to construct a uniform name space from separate file systems

(which reside on different disks or partitions) as well as incorporating special-purpose file systems into the

name space (e.g. /proc on many UNIX systems allows file system access to processes). A remote file

system can be mounted at a particular point in the local directory tree. Attempts to access files and directories

under that node will be directed to the driver for that file system.

To summarize, our naming options are:

• machine and path naming (machine:path, ./machine/path).

• mount remote file systems onto the local directory hierarchy (merging the two name spaces).

• provide a single name space which looks the same on all machines.

The first two of these options are relatively easy to implement.

Types of Names

When we talk about file names, we refer to symbolic names (for example, server.c). These names are used

by people (users or programmers) to refer to files. Another “name” is the identifier used by the system

internally to refer to a file. We can think of this as a binary name (more precisely, as an address). On most

UNIX file systems, this would be the device number and inode number. On MS-DOS systems, this would

be the drive letter and FAT index. Directories provide a mapping from symbolic names to file addresses

(binary names).

Typically, one symbolic name maps to one file address. If multiple symbolic names map onto one binary

name, these are called hard links. On inode-based file systems (e.g., most UNIX systems), hard links must

exist within the same device since the address (inode) is unique only on that device. On MS-DOS systems,

they are not supported because file attributes are stored with the name of the file. Having two symbolic

names refer to the same data will cause problems in synchronizing file attributes (how would you locate

other files that point to this data?). A hack to allow multiple names to refer to the same file (whether its on the

same device or a different device) is to have the symbolic name refer to a single file address but that file may

have an attribute to tell the system that its contents contain a symbolic file name that should be dereferenced.

Essentially, this adds a level of indirection: access a file which contains another file name, which references

the file attributes and data. These files are known as symbolic links. Finally, it is possible for one symbolic

name to refer to multiple file addresses. This doesn’t make much sense on a local system1, but can be useful

125

on a networked file system to provide fault tolerance or enable the system to use the file address which is

most efficient.

10.4 File- Sharing Semantics

The analysis of file sharing semantics is that of understanding how files behave. For instance, on most

systems, if a read follows a write, the read of that location will return the values just written. If two

writes occur in succession, the following read will return the results of the last write. File systems that behave

this way are said to observe sequential semantics. Sequential semantics can be achieved in a distributed

system if there is only one server and clients do not cache data. This can cause performance problems since

clients will be going to the server for every file operation (such as single-byte reads). The performance

problems can be alleviated with client caching. However, now if the client modifies its cache and another

client reads data from the server, it will get obsolete data. Sequential semantics no longer hold. One solution

is to make all the writes write-through to the server. This is inefficient and does not solve the problem of

clients having invalid copies in their cache. To solve this, the server would have to notify all clients holding

copies of the data.

Another solution is to relax the semantics. We will simply tell the users that things do not work the same way

on the distributed file system as they did on the local file system. The new rule can be “changes to an open

file are initially visible only to the process (or machine) that modified it.” These are known as session

semantics. Yet another solution is to make all the files immutable2. That is, a file cannot be open for

modification, only for reading or creating. If we need to modify a file, we’ll create a completely new file

under the old name.

Immutable files are an aid to replication but they do not help with changes to the file’s contents (or, more

precisely, that the old file is obsolete because a new one with modified contents succeeded it). We still have

to contend with the issue that there may be another process reading the old file. It’s possible to detect that

a file has changed and start failing requests from other processes. A final alternative is to use atomic transactions.

To access a file or a group of files, a process first executes a begin transaction primitive to signal that all

future operations will be executed indivisibly. When the work is completed, an end transaction primitive is

executed. If two or more transactions start at the same time, the system ensures that the end result is as if

they were run in some sequential order. All changes have an all or nothing property.

10.5 System Design Issue

10.5.1 Name Resolution

In looking up the pathname of a file (e.g. via the namei function in the UNIX kernel), we may choose to

evaluate a pathname a component at a time. For example, for a pathname aaa/bbb/ccc, we would

perform a remote lookup of aaa, then another one of bbb, and finally one of ccc). Alternatively, we

may pass the rest of the pathname to the remote machine as one lookup request once we find that a

component is remote. The drawback of the latter scheme is

(a) The remote server may be asked to walk up the tree by processing .. (parent node)

components and reveal more of its file system than it wants and

(b) Other components cannot be mounted underneath the remote tree on the local system. Because

of this, component at a time evaluation is generally favored but it has performance problems (a lot

more messages). We may choose to keep a local cache of component resolutions.

126

10.5.2 Should Servers Maintain State?

This issue is a topic of passionate debate. A stateless system is one in which the client sends a request to a

server, the server carries it out, and returns the result. Between these requests, no client-specific information

is stored on the server. A stateful system is one where information about client connections is maintained on

the server. In a stateless system:

• Each request must be complete – the file has to be fully identified and any offsets specified.

• Fault tolerance: if a server crashes and then recovers, no state was lost about client connections

because there was no state to maintain.

• No remote open/close calls are needed (they only serve to establish state).

• No wasted server space per client.

• No limit on the number of open files on the server; they aren’t “open” – the server maintains no per-

client state.

• No problems if the client crashes. The server does not have any state to clean up. On a stateful

system:

• requests are shorter (less info to send).

• better performance in processing the requests.

• idempotency works; cache coherence is possible.

• file locking is possible; the server can keep state that a certain client is locking a file (or portion

thereof).

10.5.3 File Caching Schemes

We can employ caching to improve system performance. There are four places in a distributed system

where we can hold data:

1. on the server’s disk

2. in a cache in the server’s memory

3. in the client’s memory

4. on the client’s disk

The first two places are not an issue since any interface to the server can check the centralized cache. It is

in the last two places that problems arise and we have to consider the issue of cache consistency. Several

approaches may be taken: write-through What if another client reads its own cached copy? All accesses

would require checking with the server first (adds network congestion) or require the server to maintain

state on who has what files cached. Write-through also does not alleviate congestion on writes. delayed

writes Data can be buffered locally (where consistency suffers) but files can be updated periodically. A

single bulk write is far more efficient than lots of little writes every time any file contents are modified.

Unfortunately the semantics become ambiguous.

Write on Close

This is admitting that the file system uses session semantics.

Centralized Control

Server keeps track of who has what open in which mode. We would have to support a stateful system and

deal with signalling traffic.

127

10.5.4 Fault Tolerance

In brief, we can say that in a computational system data are processed to produce information. Once

produced, usually these information are stored in a media by the ûle system for further accesses Their

necessity of being accessible implies to provide safe mechanisms for storing and accessing data/information

which claims fault tolerance issues. Besides, in distributed ûle systems, not only local failures (e.g., due

storage devices) should be dealt with, but also other failures inherent to the distributed environment. Following,

we address some issues that are strict related with fault tolerance in distributed ûle systems.

Stateful and Stateless Services

To better understand how fault tolerance can be employed in a distributed ûle system, it is useful to understand

how the services are provided. Distributed ûle systems services can be implemented by using two different

service designs: stateful service or stateless service. These paradigms have contradictory concepts, however

both supply the ûle operations.

Stateful Service

In this type of service, information about ûle operations are kept in the server during all the ûle session. A

communication channel is established between the client and the server when a the client explicitly solicits

the ûle opening. A number (identiûer) is used to deûne the communication channel then this identiûer will be

used to perform ûle operations. To attend its clients, the server copies data from the storage devices to

memory and let them there till the ûle closing.

Stateless Service

On the other hand, the stateless service does not establish a communication channel. Moreover, there is no

necessity for explicit ûle opening and closing: before executing a ûle operation the server will automatically

open and close the ûle. Each request sent to the server must deûne the desired ûle likewise, if a read or write

operation is requested, it must contain the position in the ûle referring to the respective operation.

The usage of the main memory can improve performance whereas memory access is faster than disk one.

The memory can be used for caching in the stateless service but its usage is not obligatory as in stateful

service. As a result to this, stateful service presents an advantage when compared to the stateless one. On

the contrary, the advantage of using the main memory becomes a disadvantage with respect to the fault

tolerance context. If the server crashes, information stored in memory will probably be lost or at least

harder to be recovered.

The consequences of servers and clients failures will depend of the used service. If a stateless server

crashes, the previous ûle sessions will not be disturbed. On the other hand, if the server crashes in a stateful

service, it should be able to recover the ûle session state, likewise it has inconveniences as mentioned

earlier. Focusing on the client failures, in a stateful service the server should be able to realize when it

happens to free the allocated memory. On the contrary, stateless service servers do not need to handle

client faults. However, stateless service clients can experience a situation in which they cannot distinguish a

slow server from a recovering one.

Finally, we can also compare both approaches referring to service overhead. Due to the communication

channel established on the stateful service its overhead is signiûcant lower than the stateless service. The

reason is that in a stateful service it is not necessary to send details about the ûle operation each time a

128

request is sent. Additionally, such a service can be understood as a centralized and coupled service. In

contrast, a stateless service is decentralized and decoupled that delegates service tasks to clients. The great

decentralized participation of clients in stateless service allows to better providing fault tolerance mechanisms

once it is possible to avoid single points of failures.

10.5.5 File Replication

In distributed systems, replication techniques can be employed with different goals. Targeting consistency,

for example, replication is useful for performance issues, e.g., accessing data at the same time or accessing

the data copy whose network communication has a low latency. Replication can also be used for availability

and fault tolerance. moreover, replication means ûle replication in distributed ûle system context. Furthermore,

replication mechanisms should to keep replicas consistent even if they are used to provide fault tolerance. It

implies a fault tolerance trade-off between consistency and performance. The techniques used in replication

should choose one of these characteristics to prioritize.

• Consistency vs. Performance. When a client performs a ûle operation the ûle changes have to be

updated to all its replicas. Consistency protocols manage them, providing atomicity to replica updates.

In other words, these protocols ensure that all replicas of a ûle will correspond to the last change

done in it. To achieve this, consistency protocols must avoid that clients open outdated replicas.

This task is not trivial for distributed ûle systems that deal with mutable data (ûles). By that very fact,

such protocols increase the system overhead which can degrade system performance. Consequently,

the harder the consistency protocol is, the lower the performance that the system will acquire.

• File Replication Location. Another interesting aspect of ûle replication is the place where it will

be replicated. Basically, it is possible to explore two approaches. The ûrst one relies on replicating

them on the same machine - be replicas on the same storage device or on different ones. This

approach can proût a RAID scheme if relied on different medias (hard disks). In opposition, the

second approach concerns replicas in different machines likewise using the network infrastructure

to manage them.

It is important to remember that despite the approach chosen, clients should not care about ûle replication,

i.e., it should be transparent for them. However, details about ûle replication (e.g., number of replicas) can

be exposed to clients if the distributed ûle system allows them to tune it by themselves. Yet, there is the

possibility to provide a hybrid approach that relies on ûle replication on different machines and also taking

advantage of different Medias (in some servers or in all of them). This scenario may increase the system

throughput however, if well tuned, it can offer an environment to build robust fault tolerance services without

degrading the system performance. Moreover, fault tolerance consistency protocols could improve their

performance when relying on this hybrid approach. Fault tolerant mechanisms would proût from different

machines to avoid single points of failure and the consistency protocol could be better performed relying on

faster accesses to local storage devices.

10.6 Design Principle : Andrew File System (AFS)

AFS was developed in the late 80s at CMU. It uses the following design principles:

1. Callbacks: The server records that has the copy of a file.

2. Write-back cache on file close: If a file is modified, the update is propagated to server when the file

is closed. The server then immediately tells all clients who own an old copy.

129

3. Files are cached on each client’s disk. NFS caches only in clients’ memory.

4. Session semantics: Updates are only visible on close.

In UNIX (single machine), updates are visible immediately to other processes that have the file open. In

AFS, everyone who has the file open sees the old version; anyone who opens the file again will see the new

version.

Figure 10.6: AFS Process

When a client opens a file and the file is not on the local disk, the client gets the file from the server and adds

itself on the callback list. When a client closes a file, the client sends the updated copy back to the server

and tells all clients to get the new version on the next open.

If the server crashes, the server loses all the callback states and needs to ask all clients to reconstruct the

callback states.

10.7 Case Study

10.7.1 DCE Distributed File Service.

Distributed Computing Environment

• DCE

A vendor-independent distributed computing environment, DCE was defined by the Open Software

Foundation (OSF), a consortium of computer manufacturers, including IBM, DEC, and Hewlett-

Packard. It is not an operating system, nor is it an application. Rather, it is an integrated set of services

and tools that can be installed as a coherent environment on top of existing operating systems and

serve as a platform for building and running distributed applications.

A primary goal of DCE is vendor independence. It runs on many different kinds of computers, operating

systems, and networks produced by different vendors. For example, some operating systems to which

DCE can be easily ported include OSF/1, AIX, DOMAIN OS, ULTRIX, HP-UX, SINIX, SunOS,

UNIX System V, VMS, WINDOWS, and OS/2. On the other hand, it can be used with any network

hardware and transport software, including TCP/IP, X.25, as well as other similar products. As

shown in Figure 10.7, DCE is middleware software layered between the DCE applications layer and the

operating system and networking layer. The basic idea is to take a collection of existing machines (possibly

from different vendors), interconnect them by a communication network, add the DCE software platform

130

on top of the native operating systems of the machines, and then be able to build and run distributed

applications. Each machine has its own local operating system, which may be different from that of other

machines. The DCE software layer on top of the operating system and networking layer hides the differences

between machines by automatically performing data-type conversions when necessary. Therefore, the

heterogeneous nature of the system is transparent to the applications programmers, making their job of

writing distributed applications much simpler.

 Table 10.7(a): Position of DCE software in a DCE-based distributed system

• DCE Creation?

The OSF did not create DCE from scratch. Instead, it created DCE by taking advantage of work already

done at universities and industries in the area of distributed computing. For this, OSF issued a request for

technology (RFT), asking for tools and services needed to build a coherent distributed computing environment.

To be a contender, a primary requirement was that actual working code must ultimately be provided. The

submitted bids were carefully evaluated by OSF employees and a team of outside experts. Finally, those

tools and services were selected that the members of the evaluation committee believed provided the best

solutions. The code comprising the selected tools and services, almost entirely written in C, was then further

developed by OSF to produce a single integrated package that was made available to the world as DCE.

Version 1.0 of DCE was released by OSF in January 1992.

• DCE Components

As mentioned above, DCE is a blend of various technologies developed independently and nicely integrated

by OSF. Each of these technologies forms a component of DCE. The main components of DCE are as

follows:

1. Threads Package: It provides a simple programming model for building concurrent applications.

It includes operations to create and control multiple threads of execution in a single process and to

synchronize access to global data within an application.

2. Remote Procedure Call (RPC) Facility: It provides programmers with a number of powerful

tools necessary to build client-server applications. In fact, the DCE RPC facility is the basis for all

communication in DCE because the programming model underlying all of DCE is the client-server

model. It is easy to use, is network- and protocol-independent, provides secure communication

between a client and a server, and hides differences in data requirements by automatically converting

data to the appropriate forms needed by clients and servers.

3. Distributed Time Service (DTS): It closely synchronizes the clocks of all the computers in the

system. It also permits the use of time values from external time sources, such as those of the U.S.

National Institute for Standards and Technology (NIST), to synchronize the clocks of the computers

in the system with external time. This facility can also be used to synchronize the clocks of the

computers of one distributed environment with the clocks of the computers of another distributed

environment.

DCE Application

DCE Software

Operating System & Networking

131

4. Name Services: The name services of DCE include the Cell Directory Service (CDS), the Global

Directory Service (GDS), and the Global Directory Agent (GDA). These services allow resources

such as servers, files, devices, and so on, to be uniquely named and accessed in a location-transparent

manner.

5. Security Service: It provides the tools needed for authentication and authorization to protect

system resources against illegitimate access.

6. Distributed File Service (DFS): It provides a system wide file system that has such characteristics

as location transparency, high performance, and high availability. A unique feature of DCE DFS is

that it can also provide file services to clients of other file systems.

The DCE components listed above are tightly integrated. It is difficult to give a pictorial representation of

their interdependencies because they are recursive. For example, the name services use RPC facility for

internal communication among its various servers, but the RPC facility uses the name services to locate the

destination. Therefore, the interdependencies of the various DCE components can be best depicted in

tabular form, as shown in Figure.

Table 10.7(b): Interdependencies of DCE components

• DCE Cells

The DCE system is highly scalable in the sense that a system running DCE can have thousands of computers

and millions of users spread over a worldwide geographic area. To accommodate such large systems, DCE

uses the concept of cells. This concept helps break down a large system into smaller, manageable units

called cells. In a DCE system, a cell is a group of users, machines, or other resources that typically have a

common purpose and share common DCE services. The minimum cell configuration requires a cell directory

server, a security server, a distributed time server, and one or more client machines. Each DCE client

machine has client processes for security service, cell directory service, distributed time service, RPC

facility, and threads facility. A DCE client machine may also have a process for distributed file service if a cell

configuration has a DCE distributed file server. Due to the use of the method of intersection for clock

synchronization, it is recommended that each cell in a DCE system should have at least three distributed

time servers. An important decision to be made while setting up a DCE system is to decide the cell boundaries.

The following four factors should be taken into consideration for making this decision.

1. Purpose: The machines of users working on a common goal should be put in the same cell, as they

need easy access to a common set of system resources. That is, users of machines in the same cell

Component name Other Component used by it

Threads None

RPC Threads, name, security

DTS Threads, RPC, name, security

Name Threads, RPC, DTS, security

Security Threads, RPC, DTS, name

DFS Threads, RPC, DTS, name, security

132

have closer interaction with each other than with users of machines in different cells. For example,

if a company manufactures and sells various types of products, depending on the manner in which

the company functions, either a product-oriented or a function-oriented approach may be taken to

decide cell boundaries [Tanenbaum 1995]. In the product-oriented approach, separate cells are

formed for each product, with the users of the machines belonging to the same cell being responsible

for all types of activities (design, manufacturing, marketing, and support services) related to one

particular product. On the other hand, in the function-oriented approach, separate cells are formed

for each type of activity, with the users belonging to the same cell being responsible for a particular

activity, such as design, of all types of products.

2. Administration: Each system needs an administrator to register new users in the system and to

decide their access rights to the system’s resources. To perform his or her job properly, an

administrator must know the users and the resources of the system. Therefore, to simplify

administration jobs, all the machines and their users that are known to and manageable by an

administrator should be put in a single cell. For example, all machines belonging to the same

department of a company or a university can belong to a single cell. From an administration

point of view, each cell has a different administrator.

3. Security: Machines of those users who have greater trust in each other should be put in the same

cell. That is, users of machines of a cell trust each other more than they trust the users of machines

of other cells. In such a design, cell boundaries act like firewalls in the sense that accessing a

resource that belongs to another cell requires more sophisticated authentication than accessing a

resource that belongs to a user’s own cell.

4. Overhead: Several DCE operations, such as name resolution and user authentication, incur more

overhead when they are performed between cells than when they are performed within the same

cell. Therefore, machines of users who frequently interact with each other and the resources frequently

accessed by them should be placed in the same cell The need to access a resource of another cell

should arise infrequently for better overall system performance Notice from the above discussion

that in determining cell boundaries the emphasis is on purpose, administration, security, and

performance. Geographical considerations can, but do not have to, play a part in cell design. For

better performance, it is desirable to have as few cells as possible to minimize the number of operations

that need to cross cell boundaries. However, subject to security and administration constraints, it is

desirable to have smaller cells with fewer machines and users. Therefore, it is important to properly

balance the requirements imposed by the four factors mentioned above while deciding cell boundaries

in a DCE system.

10.7.2 Sun Network File System (NFS)

Sun’s NFS is one of the most popular and widespread distributed file systems in use today.

The design goals of NFS were:

• Any machine can be a client and/or a server.

• NFS must support diskless workstations (that are booted from the network). Diskless workstations

were Sun’s major product line.

• Heterogeneous systems should be supported: clients and servers may have different hardware and/

or operating systems. Interfaces for NFS were published to encourage the widespread adoption of

NFS.

133

• High performance: try to make remote access as comparable to local access through caching and

read-ahead.

Figure 10.7(c): NFS Architecture

From a transparency point of view NFS offers:

Access Transparency

Remote (NFS) files are accessed through normal system calls; the protocol is implemented under the VFS

(vnode) layer in UNIX.

Location Transparency

The client adds remote file systems to its local name space via mount. File systems must be exported at the

server. The user is unaware of which directories are local and which are remote. The location of the mount

point in the local system is up to the client’s administrator.

Failure Transparency

NFS is stateless; UDP is used as a transport. If a server fails, the client retries.

Performance Transparency

Caching at the client will be used to improve performance

No migration Transparency

The client mounts machines from a server. If the resource moves to another server, the client must know

about the move.

No support for Unix Semantics

NFS is stateless, so stateful operations such as file locking are a problem. All UNIX file system controls

may not be available.

134

Devices

Since NFS had to support diskless workstations, where every file is remote, remote device

files had to refer to the client’s local devices. Otherwise there would be no way to access local devices in a

diskless environment.

• NFS Protocols

The NFS client and server communicate over remote procedure calls (Sun’s RPC) using two protocols: the

mounting protocol and the directory and file access protocol. The mounting protocol is used to request a

access to an exported directory (and the files and directories within that file system under that directory).

The directory and file access protocol is used for accessing the files and directories (e.g. read/write bytes,

create files, etc.). The use of RPC’s external data representation (XDR) allows NFS to communicate with

heterogeneous machines. The initial design of NFS ran only with remote procedure calls over UDP. This

was done for two reasons. The first reason is that UDP is somewhat faster than TCP but does not provide

error correction (the UDP header provides a checksum of the data and headers). The second reason is that

UDP does not require a connection to be present. This means that the server does not need to keep per-

client connection state and there is no need to re-establish a connection if a server was rebooted.

The lack of UDP error correction is remedied in the fact that remote procedure calls have built-in retry

logic. The client can specify the maximum number of retries (default is 5) and a timeout period. If a valid

response is not received within the timeout period the request is re-sent. To avoid server overload, the

timeout period is then doubled. The retry continues until the limit has been reached. This same logic keeps

NFS clients fault-tolerant in the presence of server failures: a client will keep retrying until the server responds.

• Mounting Protocol

The client sends the pathname to the server and requests permission to access the contents of that directory.

If the name is valid and exported (listed in /etc/dfs/sharetab on System V release 4 versions of UNIX, and

/etc/exports on many other versions) the server returns a file handle to the client. This file handle contains all

the information needed to identify the file on the server: {file system type, disk ID, inode number, and

security info}. Mounting an NFS file system is accomplished by parsing the path name, contacting the

remote machine for a file handle, and creating an in-core vnode at the mount point. A vnode points to an

inode for a local UNIX file or, in the case of NFS, an rnode. The rnode contains specific information about

the state of the file from the point of view of the client.

• Directory and File Access Protocol

Clients send RPC messages to the server to manipulate files and directories. A file is accessed by performing

a lookup remote procedure call. This returns a file handle and attributes. It is not like an open in that no

information is stored in any system tables on the server. After that, the handle may be passed as a parameter

for other functions. For example, a read(handle, offset, count) function will read count bytes from location

offset in the file referred to by handle. The entire directory and file access protocol is encapsulated in sixteen

functions.

These are:

null no-operation but ensure that connectivity exists

lookup lookup the file name in a directory

create create a file or a symbolic link

135

remove remove a file from a directory

rename rename a file or directory

read read bytes from a file

write write bytes to a file

link create a link to a file

symlink create a symbolic link to a file

readlink read the data in a symbolic link (do not follow the link)

mkdir create a directory

rmdir remove a directory

readdurread from a directory

getattr get attributes about a file or directory (type, access and modify times, and access

permissions)

setattr set file attributes

statfs get information about the remote file system

• Accessing Files

Files are accessed through conventional system calls (thus providing access transparency). If you recall

conventional UNIX systems; a hierarchical pathname is dereference to the file location with a kernel function

called namei. This function maintains a reference to a current directory looks at one component and finds it

in the directory, changes the reference to that directory, and continues until the entire path is resolved. At

each point in traversing this pathname, it checks to see whether the component is a mount point, meaning

that name resolution should continue on another file system. In the case of NFS, it continues with remote

procedure calls to the server hosting that file system.

Upon realizing that the rest of the pathname is remote, name will continue to parse one component of the

pathname at a time to ensure that references to and to symbolic links become local if necessary. Each

component is retrieved via a remote procedure call which performs an NFS lookup. This procedure returns

a file handle. An in-core rnode is created and the VFS layer in the file system creates a vnode to point to it.

The application can now issue read and write system calls. The file descriptor in the user’s process will

reference the in-core vnode at the VFS layer, which in turn will reference the in core rnode at the NFS level

which contains NFS-specific information, such as the file handle. At the NFS level, NFS read, write, etc.

operations may now be performed, passing the file handle and local state (such as file offset) as parameters.

No information is maintained on the server between requests; it is a stateless system. The RPC requests

have the user ID and group ID number sent with them. This is a security hole that may be stopped by turning

on RPC encryption.

• Problems

The biggest problem with NFS is file consistency. The caching and validation policies do not guarantee

session semantics. NFS assumes that clocks between machines are synchronized and performs no clock

136

synchronization between client and server. One place where this hurts is in distributed software development

environments. A program such as make, which compares times of files (such as object and source) to

determine whether to regenerate them, can either fail or give confusing results.

Because of its stateless design, open with append mode cannot be guaranteed to work. You can open a file,

get the attributes (size), and then write at that offset, but you’ll have no assurance that somebody else did

not write to that location after you received the attributes. In that case your write will overwrite the other

once since it will go to the old end-of-file byte offset. Also because of its stateless nature, file locking cannot

work. File locking implies that the server keeps track of which processes have locks on the file. Sun’s

solution to this was to provide a separate process (a lock manager) that does keep state.

One common programming practice under UNIX file systems for manipulating temporary data in files is to

open a temporary file and then remove it from the directory. The name is gone, but the data persists because

you still have the file open. Under NFS, the server maintains no state about remotely opened files and

removing a file will cause the file to disappear. Since legacy applications depended on this, Sun’s solution

was to create a special hack for UNIX: if the same process that has a file opens attempts to delete it, it is

instead moved to a temporary name and deleted on close. It’s not a perfect solution, but it works well.

Permission bits might change on the server and disallow future access to a file. Since NFS is stateless, it has

to check access permissions each time it receives an NFS request. With local file systems, once access is

granted initially, a process can continue accessing the file even if permissions change. By default, no data is

encrypted and Unix-style authentication is used (used ID, group ID). NFS supports two additional forms

of authentication: Diffie-Hellman and Kerberos. However, data is never encrypted and user-level software

should be used to encrypt files if this is necessary.

10.7.3 OSF

Distributed file systems are an important component of an overall plan for distributed computing. Two such

plans are currently being promulgated, one by OSF and the other by UI. A high-level view of these plans is

shown in Figure.

Figure 10.7(d): Competing Distributed Architecture Plans

137

UNIX International (UI), with the aid of (a portion of) the computer industry, has devised an overall framework

for an industry-standard distributing computing architecture. The Open Software Foundation (OSF), in the

meantime, has been developing an actual distributed computing architecture, known as DCE (for distributed

computing environment). Fortunately, as it turns out, OSF’s DCE fits within the UI Atlas view of the world.

However, Sun’s ONC (Open Network Computing) also fits within this scheme. The intent of both groups

is that, whatever distributed architecture is adopted, it will support (or be supportable by) most existing

operating systems, not just UNIX. DCE is currently well into development. Two initial, “functionality”

versions of it have been released, and a production-quality release is expected within a year. As a separate

project, OSF is working on DME (distributed management environment), whose concern is the management

of services within a distributed environment.

10.8 Summary

In this unit, we discussed the various distributed file system. A file system is responsible for the organization,

storage, retrieval, naming, sharing, and protection of files. A Distributed File System is a network file system

where a single file system can be distributed across several physical computer nodes. Fault tolerance,

scalability and transparency etc are the features of good distributed file system. Each file has a list of users

associated with it and access permissions per user. Multiple users may be organized into an entity known as

a group. These are managed by the Access Control List. In distributed ûle systems, not only local failures

(e.g., due storage devices) should be dealt with, but also other failures inherent to the distributed environment.

Stateless and stateful services are generally considered in it. At last, we compared various file system like

AFS, NFS etc. in case study.

10.9 Self - Assessment Exercise

1. Briefly explain the features of Good DFS.

2. What do you mean by File System? Explain different File System issues.

3. Explain DCE.

4. Explain the NFS and its protocols.

5. Explain OSF with suitable diagram.

10.10 References

• Distributed Operating Systems by Andrew S. Tenenbaumb

• Distributed File Systems: Concepts and example by ELIEZER LEVY and ABRAHAM

SILBERSCHATZ

138

Unit - 11: Message Passing

Structure of Unit

11.0 Objective

11.1 Introduction

11.2 Features of a Good Message Passing System

11.2.1 Simplicity

11.2.2 Uniform Semantics

11.2.3 Efficiency

11.2.4 Correctness

11.2.5 Other Features

11.3 Desirable issues in IPC by Message Passing & Synchronization

11.3.1 Introduction

11.3.2 Synchronization

11.4 Buffering

11.4.1 Null Buffer (No Buffering)

11.4.2 Strategies

11.5 Multi Datagram Messages

11.5.1 Keeping Track of Lost and Out-of-Sequence Packet in Multidatagram Messages

11.6 Encoding and Decoding of Message Data

11.7 Process Addressing

11.7.1 Methods to Identify a Process (naming)

11.8 Failure handling

11.8.1 Possible Problems in IPC Due to Different Types of System Failures

11.9 Summary

11.10 Self - Assessment Exercise

11.11 References

11.0 Objectives

This chapter provides-

• Features and desirable issues in IPC

• Buffering and different Strategies

• Encoding and decoding of message data

• Process addressing and failure handling

11.1 Introduction

Message passing is a method by which an object sends data to another object or requests other object to

invoke method. This is also known as interfacing. It acts like a messenger from one object to other object

to convey specific instructions. In this model, processes or objects can send and receive messages

(comprising zero or more bytes, complex data structures, or even segments of code) to other processes. By

waiting for messages, processes can also synchronize. In other words we can say that Message Passing is

a system or communication where messages are sent from a sender to one or more recipients. Forms of

139

messages include (remote) method invocation, signals, and data packets. When designing a message passing

system several choices are made:

• Whether messages are transferred reliably

• Whether messages are guaranteed to be delivered in order

• Whether messages are passed one-to-one (unicast), one-to-many (multicast or broadcast),

many-to-one (client–server), or many-to-many (AllToAll).

• Whether communication is synchronous or asynchronous.

Interprocess communication (IPC) basically requires information sharing among two or more processes.

Two basic methods for information sharing are as follows:

• Original sharing, or shared-data approach;

• Copy sharing, or message-passing approach.

Figure 11.2 Message Passing

Two basic intercrosses communication paradigms: the shared data approach and message passing approach.

In the shared-data approach, the information to be shared is placed in a common memory area that is

accessible to all processes involved in an IPC.

In the message-passing approach, the information to be shared is physically copied from the sender

process’s space to the address space of all the receiver processes, and this is done by transmitting the

data to be copied in the form of messages (message is a block of information).

A message-passing system is a subsystem of distributed operating system that provides a set of message-

based IPC protocols, and does so by shielding the details of complex network protocols and multiple

heterogeneous platforms from programmers. It enables processes to communicate by exchanging

messages and allows programs to be written by using simple communication primitives, such as send

and receive.

11.2 Features of a Good Message Passing System

11.2.1 Simplicity

A message passing system should be simple and easy to use. It should be possible to communicate with old

and new applications, with different modules without the need to worry about the system and network

aspects.

140

11.2.2 Uniform Semantics

In a distributed system, a message-passing system may be used for the following two types of interprocess

communication:

• Local Communication, in which the communicating processes are on the same node;

• Remote Communication, in which the communicating processes are on different nodes.

Semantics of remote communication should be as close as possible to those of local communications. This

is an important requirement for ensuring that the message passing is easy to use.

11.2.3 Efficiency

An IPC protocol of a message-passing system can be made efficient by reducing the number of message

exchanges, as far as practicable, during the communication process. Some optimizations normally

adopted for efficiency include the following:

• avoiding the costs of establishing and terminating connections between the same pair of processes

for each and every message exchange between them;

• minimizing the costs of maintaining the connections;

• Piggybacking of acknowledgement of previous messages with the next message during a

connection between a sender and a receiver that involves several message exchanges.

11.2.4 Correctness

Correctness is a feature related to IPC protocols for group communication. Issues related to correctness

are as follows:

• atomicity;

• ordered delivery;

• Survivability.

Atomicity ensures that every message sent to a group of receivers will be delivered to either all of

them or none of them. Ordered delivery ensures that messages arrive to all receivers in an order

acceptable to the application. Survivability guarantees that messages will be correctly delivered

despite partial failures of processes, machines, or communication links.

11.2.5 Other features

• Reliability

• Flexibility

• Security

• Portability

11.3 Desirable Issues in IPC by Message Passing & Synchronization

11.3.1 Introduction

A message is a block of information formatted by a sending process in such a manner that it is meaningful to

the receiving process. It consists of a fixed-length header and a variable-size collection of typed data

objects. The header usually consists of the following elements:

• Address: It contains characters that uniquely identify the sending and receiving processes in the

network.

141

• Sequence Number: This is the message identifier (ID), which is very useful for identifying lost

messages and duplicates messages, in case of system failures.

• Structural Information: This element also has two parts. The type part specifies whether the data

to be passed on to the receiver is included within the message or the message only contains a

pointer to the data, which is stored somewhere outside the contiguous portion of the message. The

second part of this element specifies the length of the variable-size message data.

Figure: 11.4(a) A typical message structure

11.4.2 Synchronization

A central issue in the communication structure is the synchronization imposed on the communicating processes

by the communication primitives. The semantics used for synchronization may by broadly classify as blocking

and nonblocking types. A primitive is said to have nonblocking semantics if its invocation does not block the

execution of its invoker (the control returns almost immediately to the invoker); otherwise a primitive is said

to be of the blocking type.

In case of a blocking send primitive, after execution of the send statement, the sending process is blocked

until it receives an acknowledgement from the receiver that the message has been received. On the other

hand, for nonblocking send primitive, after execution of the send statement, the sending process is allowed

to proceed with its execution as soon as the message has been copied to a buffer.

In the case of blocking receive primitive, after execution of the receive statement, the receiving process is

blocked until it receives a message. On the other hand, for a nonblocking receive primitive, the receiving

process proceeds with its execution after execution of the receive statement, which returns control almost

immediately just after telling the kernel where the message buffer is.

An important issue in a nonblocking receive primitive is how the receiving process knows that the message

has arrived in the message buffer. One of the following two methods is commonly used for this purpose:

• Polling: In this method, a test primitive is provided to allow the receiver to check the buffer status.

The receiver uses this primitive to periodically poll the kernel to check if the message is already

available in the buffer.

• Interrupt: In this method, when the message has been filled in the buffer and is ready for use by the

receiver, a software interrupt is used to notify the receiving process.

A variant of the nonblocking receive primitive is the conditional receive primitive, which also returns control

to the invoking process almost immediately, either with a message or with an indicator that no message is

available.

142

When both the send and receive primitives of a communication between two processes use blocking

semantics, the communication is said to be synchronous, otherwise it is asynchronous. The main drawback

of synchronous communication is that it limits concurrency and is subject to communication deadlocks.

Figure 11.4(b) Synchronous mode of communication

Synchronous mode of communication with both sends and receives primitives having blocking-type

semantics

11.4 Buffering

In the standard message passing model, messages can be copied many times: from the user buffer to

the kernel buffer (the output buffer of a channel), from the kernel buffer of the sending computer

(process) to the kernel buffer in the receiving computer (the input buffer of a channel), and finally

from the kernel buffer of the receiving computer (process) to a user buffer.

11.4.1 Null Buffer (No Buffering)

In this case, there is no place to temporarily store the message. Hence one of the following

implementation strategies may be used:

• The message remains in the sender process’s address space and the execution of the send is delayed

until the receiver executes the corresponding receive.

• The message is simply discarded and the time-out mechanism is used to resend the message after a

timeout period. The sender may have to try several times before succeeding.

143

11.4.2 Strategies

The three types of buffering strategies used in interprocess communication

Figure 11.5 Buffering Strategy

11.4.2.1 Single-Message Buffer

In single-message buffer strategy, a buffer having a capacity to store a single message is used on the receiver’s

node. This strategy is usually used for synchronous communication, an application module may have at most

one message outstanding at a time.

11.4.2.2 Unbounded-Capacity Buffer

In the asynchronous mode of communication, since a sender does not wait for the receiver to be ready,

there may be several pending messages that have not yet been accepted by the receiver. Therefore, an

unbounded-capacity message-buffer that can store all unreceived messages is needed to support

asynchronous communication with the assurance that all the messages sent to the receiver will be

delivered.

11.4.2.3 Finite-Bound Buffer

Unbounded capacity of a buffer is practically impossible. Therefore, in practice, systems using

asynchronous mode of communication use finite-bound buffers, also known as multiple-message buffers.

In this case message is first copied from the sending process’s memory into the receiving process’s mailbox

and then copied from the mailbox to the receiver’s memory when the receiver calls for the message.

When the buffer has finite bounds, a strategy is also needed for handling the problem of a possible buffer

overflow. The buffer overflow problem can be dealt with in one of the following two ways:

144

• Unsuccessful Communication. In this method, message transfers simply fail, whenever there is

no more buffer space and an error is returned.

• Flow-controlled Communication. The second method is to use flow control, which means that

the sender is blocked until the receiver accepts some messages, thus creating space in the buffer for

new messages. This method introduces synchronization between the sender and the receiver and

may result in unexpected deadlocks. Moreover, due to the synchronization imposed, the asynchronous

send does not operate in the truly asynchronous mode for all send commands.

11.5 Multi Datagram Messages

Almost all networks have an upper bound of data that can be transmitted at a time. This size is known as

maximum transfer unit (MTU). A message whose size is greater than MTU has to be fragmented into

multiples of the MTU, and then each fragment has to be sent separately. Each packet is known as a

datagram. Messages larger than the MTU are sent in miltipackets, and are known as multidatagram messages.

11.5.1 Keeping Track of Lost and Out-of-Sequence Packet in Multidatagram Messages

A message transmission can be considered to be complete only when all the packets of the message have

been received by the process to which it is sent. For successful completion of a multidatagram message

transfer, reliable delivery of every packet is important. A simple way to ensure this is to acknowledge each

packet separately (called stop-and-wait protocol). To improve communication performance, a better

approach is to use a single acknowledgment packet for all the packets of a multidatagram message (called

blast protocol). However, when this approach is used, a node crash or a communication link failure may

lead to the following problems:

• One or more packets of the multidatagram message are lost in communication.

• The packets are received out of sequence by the receiver.

An efficient mechanism to cope with these problems is to use a bitmap to identify the packets

of a message.

Figure 11.6 Packets in Multidatagram Messages

145

An example of the use of a bitmap to keep track of lost and out of sequence packets in a multidatagram

message transmission

11.6 Encoding and Decoding of Message Data

A message data should be meaningful to the receiving process. This implies that, ideally, the structure of

program objects should be preserved while they are being transmitted from the address space of the sending

process to the address space of the receiving process. However, even in homogenous systems, it is very

difficult to achieve this goal mainly because of two reasons:

• An absolute pointer value loses its meaning when transferred from one process address space to

another.

• Different program objects occupy varying amount of storage space. To be meaningful, a message

must normally contain several types of program objects, such as long integers, short integers,

variable-length character strings, and so on.

In transferring program objects in their original form, they are first converted to a stream form that is

suitable for transmission and placed into a message buffer. The process of reconstruction of program

object from message data on the receiver side is known as decoding of message data. One of the

following two representations may by used for the encoding and decoding of a message data:

• In tagged representation the type of each program object along with its value is encoded in

the message.

• In untagged representation the message data only contains program object. No information

is included in the message data to specify the type of each program object.

11.7 Process Addressing

Another important issue in message-based communication is addressing (or naming) of the parties

involved in an interaction. For greater flexibility a message-passing system usually supports two

types of process addressing:

• Explicit Addressing: The process with which communication is desired is explicitly named as a

parameter in the communication primitive used.

• Implicit Addressing: The process willing to communicate does not explicitly name a process for

communication (the sender names a server instead of a process). This type of process addressing is

also known as functional addressing.

11.7.1 Methods to Identify a Process (naming)

146

A simple method to identify a process is by a combination of machine_id and local_id. The local_id part is

a process identifier, or a port identifier of a receiving process, or something else that can by used to uniquely

identify a process on a machine. The machine_id part of the address is used by the sending machine’s kernel

to send the message to the receiving process’s machine, and the local_id part of the address is then used by

the kernel of the receiving process’s machine to forward the message to the process for which it is intended.

A drawback of this method is that it does not allow a process to migrate from one machine to another if such

a need arises.

To overcome the limitation of the above method, process can be identified by a combination of the following

three fields: machine_id, local_id and machine_id.

• The first field identifies the node on which the process was created.

• The second field is the local identifier generated by the node on which the process was created.

• The third field identifies the last known location (node) of the process.

Another method to achieve the goal of location transparency in process addressing is to use a two-level

naming scheme for processes. In this method each process has two identifiers: a high-level name that is

machine independent (an ASCII string) and the low-level name that is machine dependent (such as pair

(machine_id, local_id). A name server is used to maintain a mapping table that maps high-level names of

processes to their low-level names.

Figure 11.8 Process Addressing

147

11.8 Failure Handling

During interprocess communication partial failures such as a node crash or communication link failure may

lead to the following problems:

• Loss of Request Message: This may happen either due to the failure of communication link

between the sender and receiver or because the receiver’s node is down at the time the request

message reaches there.

• Loss of Response Message: This may happen either due to the failure of communication link

between the sender and receiver or because the sender’s node is down at the time the response

message reaches there.

• Unsuccessful Execution of the Request: This may happen due to the receiver’s node crashing

while the request is being processed.

11.8.1 Possible Problems in IPC due to Different Types of System Failures

Four-message reliable IPC protocol for client-server communication between two processes works

as follows:

• The client sends a request message to the server.

• When the request message is received at the server’s machine, the kernel of that machine

returns an acknowledgment message to the kernel of the client machine. If the acknowledgment

is not received within the timeout period, the kernel of the client machine retransmits the

request message.

• When the server finishes processing the client’s request it returns a reply message (containing

the result of processing) to the client.

• When the reply is received at client machine, the kernel of that machine returns an

acknowledgment message to the kernel of the server machine. If the acknowledgment message

is not received within the timeout period, the kernel of the server machine retransmits the

reply message.

Figure 11.9(a): Failure Handling (The four message reliable IPC)

148

In client-server communication, the result of the processed request is sufficient acknowledgment that the

request message was received by the server. Based on this idea, a three-message reliable IPC protocol

for client-server communication between two processes works as follows:

• The client sends a request message to the server.

• When the server finishes processing the client’s request, it returns a reply message (containing the

result of processing) to the client. The client remains blocked until the reply is received. If the reply

is not received within the timeout period, the kernel of the client machine retransmits the request

message.

• When the reply message is received at the client’s machine, the kernel of that machine returns an

acknowledgment message to the kernel of the sever machine. If the acknowledgment message is

not received within the timeout period, the kernel of the server machine retransmits the reply message.

Figure 11.9(b): Failure Handling (The three message reliable IPC)

A problem occurs if a request processing takes a long time. If the request message is lost, it will be retransmitted

only after the timeout period, which has been set to a large value to avoid unnecessary retransmission of the

request message. On the other hand, if the timeout value is not set properly taking into consideration the

long time needed for request processing, unnecessary retransmissions of the request message will take

place.

The following protocol may be used to handle this problem:

• The client sends a request message to the server.

• When the request message is received at the server’s machine, the kernel of that machine starts a

timer. If the server finishes processing the client’s requests and returns the reply message to the

client before the timer expires, the reply serves as the acknowledgment of the request message.

Otherwise, a separate acknowledgment is sent by the kernel of the server machine to acknowledge

the request message. If an acknowledgement is not received within the timeout period, the kernel

of the client machine retransmits the request message.

149

• When the reply message is received, at the client’s machine, the kernel of that machine returns an

acknowledgment message to the kernel of the server machine. If the acknowledgment message is

not received within the timeout period, the kernel of the server retransmits the reply message.

A message-passing system may be designed to use the following two-message IPC protocol for client-

server communication between two processes:

• The client sends a request message to the server and remains blocked until a reply is received from

the server.

• When the server finishes processing the client’s request, it returns a reply message (containing the

result of processing) to the client. If the reply is not received within the timeout period, the kernel of

the client machine retransmits the request message.

Figure 11.9(c): Failure Handling

Three message IPC protocol used in many systems for client-server communication

Figure 11.9(d): Failure Handling

150

An example of fault tolerant communication between a client and a server.

The most elementary form of message-based interaction is one-to-one communication (also known as

point-to-point, or unicast communication) in which a single-sender process sends a message to a single-

receiver process. For performance and ease of programming, several highly parallel distributed applications

require that a message-passing system should also provide group communication facility. Depending on

single or multiple senders and receivers, the following three types of group communication are possible:

• One to many (single sender and multiple receivers).

• Many to one (multiple senders and single receivers).

• Many to many (multiple senders and multiple receivers).

One-to-Many Communication

In this scheme, there are multiple receivers for a message sent by a single sender. One-to-many scheme is

also known as multicast communication. A special case of multicast communication is broadcast communication,

in which the message is sent to all processors connected to a network.

One-to-many may refer to:

• Multivalued function, a one-to-many function in mathematics

• Fat link, a one-to-many link in hypertext

• Point-to-multipoint communication, communication which has a one-to-many relation

11.9 Summary

In this unit we have discussed about the message passing. A message is a block of information formatted by

a sending process in such a manner that it is meaningful to the receiving process. Message passing is a

method by which an object sends data to another object or requests other object to invoke method. This is

also known as interfacing. Interprocess communication (IPC) basically requires information sharing among

two or more processes. Two basic methods for information sharing are as follows: Original sharing, or

shared-data approach; and Copy sharing, or message-passing approach. Simplicity, uniform Semantics,

efficiency and correctness are the features of good message passing. At last we discussed the buffering and

its strategies and the multi diagram message.

11.10 Self - Assessment Exercise

1. Explain the good features of Message Passing system.

2. What are the desirable issues in IPC by Message Passing & Synchronization?

3. What is the role of Buffering?

4. Explain Multi Datagram Messages.

5. What are the Methods to Identify a Process (naming) Process Addressing

6. Write down the possible problems in IPC due to different types of system failures.

11.11 References

• Distributed Operating Systems by Andrew S. Tenenbaumb.

• Distributed File Systems: Concepts and example by ELIEZER LEVY and ABRAHAM

SILBERSCHATZ

151

Unit – 12 : Remote Procedure Calls

Structure of Unit

12.0 Objective

12.1 Introduction

12.1.1 Goals

12.2 RPC Model

12.3 Implementing RPC Mechanism

12.4 Stub Generation

12.5 RPC Messages

12.6 RPC Issues

12.6.1 Calling Semantics and Maming

12.6.2 Exception Handling

12.6.3 Communication Protocols

12.6.4 Binding

12.7 Security

12.8 Lightweight RPC

12.9 Summary

12.10 Self - Assessment Exercise

12.11 References

12.0 Objective

After reading this material you will know-

• Understand the RPC and its goal.

• How RPC Mechanism is implemented and how stub is generated.

• Understand different issues which is consider in RPC

• Understand the Secure RPC and Lightweight RPC

12.1 Introduction

RPC is a powerful technique for constructing distributed, client-server based applications. It is based on

extending the notion of conventional or local procedure calling, so that the called procedure need not exist

in the same address space as the calling procedure. The two processes may be on the same system, or they

may be on different systems with a network connecting them. By using RPC, programmers generally avoid

the details of the interface of distributed applications or network. The transport independence of RPC

isolates the application from the physical and logical elements of the data communications mechanism and

allows the application to use a variety of transports.

RPC builds the client/server model and making more powerful and easier program. Basically, Remote

Procedure Call (RPC) is a protocol in which one program can use to request a service from a program

located in another computer in a network without having to understand network details. A procedure

call is also sometimes known as a function call or a subroutine call. The requesting program is a

client and the service-providing program is the server. Like a regular or local procedure call, an RPC

is a synchronous operation requiring the requesting program to be suspended until the results of the

152

remote procedure are returned. However, the use of lightweight processes or threads that share the same

address space allows multiple RPCs to be performed concurrently.

Generally, the program statement that use RPC is compiled into an executable program, a stub is included

in the compiled code that acts as the representative of the remote procedure code. When the program is run

and the procedure call is issued, the stub receives the request and forwards it to a client runtime program in

the local computer. The client runtime program has the knowledge of how to address the remote computer

and server application and sends the message across the network that requests the remote procedure.

Similarly, the server includes a runtime program and stub that interface with the remote procedure itself.

Results are returned the same way.

12.1.1 Goals

Remote Procedure Call (RPC) provides a different prototype/example for accessing network services.

Instead of accessing remote services by sending and receiving messages, a client invokes services by

making a local procedure call. The local procedure hides the details of the network communication.

When making a remote procedure call:

1. The calling environment is suspended, procedure parameters are transferred across the network

to the environment where the procedure is to execute, and the procedure is executed there.

2. When the procedure finishes and produces its results, its results are transferred back to the

calling environment, where execution resumes as if returning from a regular procedure call.

The main goal of RPC is to hide the existence of the network from a program. As a result, RPC doesn’t

quite fit into the OSI model:

1. The message-passing nature of network communication is hidden from the user. The user

doesn’t first open a connection, read and write data, and then close the connection. Indeed, a

client often does not even know they are using the network!

2. RPC often omits many of the protocol layers to improve performance. Even a small performance

improvement is important because a program may invoke RPCs often. For example, on (diskless)

Sun workstations, every file access is made via an RPC.

RPC is especially well suited for client-server (e.g., query-response) interaction in which the flow of

control alternates between the caller and callee. Conceptually, the client and server do not both

execute at the same time. Instead, the thread of execution jumps from the caller to the callee and then

back again.

12.2 RPC Model

The RPC model describes how cooperating processes on different network nodes can communicate

and coordinate activities. The paradigm of RPC is based on the concept of a procedure call in a

programming language. The semantics of RPC are almost identical to the semantics of the traditional

procedure call. The major difference is that while a normal procedure call takes place between

procedures of a single process in the same memory space on a single system, RPC takes place between

a client process on one system and a server process on another system where both the client system

and the server system are connected to a network.

There are several RPC models and implementations. A popular model and implementation is the

Open Software Foundation’s Distributed Computing Environment (DCE). The Institute of Electrical

153

and Electronics Engineers defines RPC in its ISO Remote Procedure Call Specification, ISO/IEC CD

11578 N6561, ISO/IEC, November 1991.

RPC spans the Transport layer and the Application layer in the Open Systems Interconnection (OSI) model

of network communication. This makes it easier to develop an application that includes multiple programs

distributed in a network.

Alternative methods for client/server communication include message queuing and IBM’s Advanced Program-

to-Program Communication (APPC).

The basic operation of RPC is illustrates in Figure 12.2. A normal client application issues a normal procedure

call to a client stub. The client stub receives arguments from the calling procedure and returns arguments to

the calling procedure. An argument may instantiate

-an input parameter,

-an output parameter, or

-an input/output parameter

Here, the term input argument/parameter refers to a parameter which may be either an input parameter or

an input/output parameter, and the term output argument refers to either an output parameter or an input/

output parameter.

The client stub converts the input arguments from the local data representation to a common data

representation, creates a message containing the input arguments in their common data representation,

and calls the client runtime, usually an object library of routines that supports the functioning of the

client stub. The client runtime transmits the message with the input arguments to the server runtime

which is usually an object library that supports the functioning of the server stub. The server runtime

issues a call to the server stub which takes the input arguments from the message, converts them from

the common data representation to the local data representation of the server, and calls the server

application which does the processing.

Figure 12.2: RPC Model

When the server application has completed, it returns to the server stub the results of the processing in

the output arguments. The server stub converts the output arguments from the data representation of the

server to the common data representation for transmission on the network and encapsulates the output

arguments into a message which is passed to the server runtime. The server runtime transmits the

154

message to the client runtime which passes the message to the client stub. Finally, the client stub extracts the

arguments from the message and returns them to the calling procedure in the required local data representation.

In addition to normal procedure call, RPC is a synchronous operation, i.e., the client process is blocked

until processing by the server is complete. This is not acceptable for many applications. As a consequence,

the RPC model is enhanced to include the concept of a lightweight process. A lightweight process (also

known as a thread) is an independent execution path within a normal process. A normal process can consist

of several lightweight processes, each behaving like a normal process from the point of view of CPU use.

However, all lightweight processes of the same process share the same address space. Thus, context

switches between lightweight processes may be done more economically than context switches between

normal processes.

In order to achieve asynchronous operation, a client application initiates an RPC call in a lightweight process

and then proceeds with other processing. The application can recognize the completion of the RPC by

some technique such as a status check or a software interrupt.

12.3 Implementing RPC Mechanism

Basically Remote Procedure is different from the local procedure which refers to the transparency. The

implementation of an RPC mechanism is to achieve the goal of semantic transparency. It is based on the

concept of stubs which provide a perfectly normal procedure call abstraction by concealing from programs

the interface to the underlaw RPC system. Generally, an RPC involves a client process and a server process.

Therefore we conceal the interface of the underlying RPC system from both the client and server processes,

a separate stub procedure is associated with each of the two processes. To hide the existence and functional

details of the underlying network, an RPC communication package is used on both the client and server

sides. The implementation of an RPC mechanism usually involves the following five elements of program:

1. The client

2. The client stub

3. The RPC Runtime

4. The server stub

5. The server

The client, the client stub and one instance of RPC Runtime execute on the client machine, while the server,

the server stub and another instance of RPC Runtime execute on the server machine. The job of each of

these elements is described below.

Client

The client is a user process that initiates a remote procedure call. To make a remote procedure call, the

client makes a perfectly normal local call that invokes a corresponding procedure in the client stub.

Client Stub

The client stub is responsible for carrying out the following two tasks:

1. On receipt of a call request from the client, it packs a specification of the target procedure and the

arguments into a message and then asks the local RPC Runtime to send it to the server stub.

155

2. On receipt of the result of procedure execution, it unpacks the result and passes it to the client.

RPC Runtime

The RPC Runtime handles transmission of messages across the network between client and server machines.

It is responsible for retransmissions, acknowledgments, packet routing and encryption. The RPC Runtime

on the client machine receives the call request message from the client stub and sends it to the server

machine. It also receives the message containing the result of procedure execution from the server machine

and passes it to the client stub.

On the other hand, the RPC Runtime on the server machine receives the message containing the result of

procedure execution from the server stub and sends it to the client machine. It also receives the call request

message from the client machine and passes it to the server stub.

Server Stub

The job of the server stub is very similar to that of the client stub. It performs the following two tasks:

1. On receipt of the call request message from the local RPC Runtime, the server stub unpacks it and makes

a perfectly normal call to invoke the appropriate procedure in the server.

2. On receipt of the result of procedure execution from the server, the server stub packs the result into a

message and then asks the local RPC Runtime to send it to the client stub.

Server

On receiving a call request from the server stub, the server executes the appropriate procedure and results

the result of procedure execution to the server stub.

12.4 Stub Generation

The idea behind RPC is to make a remote procedure call which looks as much as possible like a local one.

In other words, we can say that RPC should be transparent—the calling procedure should not be aware

that the called procedure is executing on a different machine or vice versa. Suppose that a program needs

to read some data from a file. The programmer puts a call to read in the code to get the data.

In a traditional (single-processor) system, the read routine is extracted from the library by the linker and

inserted into the object program. It is a short procedure, which is generally implemented by calling an

equivalent read system call. In other words, the read procedure is a kind of interface between the user code

and the local operating system.

Even though read does a system call, it is called in the usual way, by pushing the parameters onto the stack,

Thus the programmer does not know that read is actually doing something fishy.

RPC achieves its transparency in an analogous way. When read is actually a remote procedure (e.g., one

that will run on the file server’s machine), a different version of read, called a client stub, is put into the

library. Also like the original one, it too, does a call to the local operating system. Only unlike the original

one, it does not ask the operating system to give it data. Instead, it packs the parameters into a message and

requests that message to be sent to the server. Following the call to send, the client stub calls receive,

blocking it until the reply comes back.

When the message arrives at the server, the server’s operating system passes it up to a server stub. A server

stub is the server-side equivalent of a client stub:

156

It is a piece of code that transforms requests coming in over the network into local procedure calls. Typically

the server stub will have called receive and be blocked waiting for incoming messages. The server stub

unpacks the parameters from the Stubs can be generated in one of the following two ways:

Manually

In this method, the RPC implementer provides a set of translation functions from which a user can construct

his or her own stubs. This method is simple to implement and can handle very complex parameter types.

Automatically

This is the more commonly used method for stub generation. Its user Interface Definition Language (IDL) is

used to define the interface between a client and a server. An interface definition is mainly a list of procedure

names that is supported by the interface, together with the types of their arguments and results. This is

sufficient information for the client and server to independently perform compile-time type checking and to

generate appropriate calling sequences.

An interface definition also contains other information that helps RPC reduce data storage and the amount

of data transferred over the network. An interface definition has information to indicate whether each argument

is input, output or both- only input arguments need be copied from client to server and only output arguments

need be copied from server to client. Similarly an interface definition also has information about type definition,

enumerated types and defined constants that side uses to manipulate data from RPC calls making it

unnecessary for both the client and the server to store this information separately.

A server program that implements procedure in an interface is said to export the interface and a client

program that calls procedures from an interface is said to import the interface. When writing a

distributed application, a programmes first writer an interface definition using the IDL. We can then

write the client program that imports the interface and the server program that exports the interface.

The interface definition is processed using an IDL compiler to generate components that can be

combined with client and server programs, without making any changes to the existing compilers. In

particular, from an interface for each procedure in the interface, the appropriate marshaling and

unmarshaling operations in each stub procedure and a header file that supports the data types in the

interface definition. The header file is included in the source files of the client and server programs,

the client stub procedures are compiled and linked with the client program and the server stub procedures

are compiled and linked with the server program. An IDL compiler can be designed to process

interface definitions for use with different languages, enabling clients and servers written in different

languages, to communicate by using remote procedure calls.

To summarize, a remote procedure call occurs in the following steps:

1. The client procedure calls the client stub in the normal way.

2. The client stub builds a message and calls the local operating system.

3. The client’s OS sends the message to the remote OS.

4. The remote OS gives the message to the server stub.

5. The server stub unpacks the parameters and calls the server.

6. The server does the work and returns the result to the stub.

7. The server stub packs it in a message and calls its local OS.

157

8. The server’s OS sends the message to the client’s OS.

9. The client’s OS gives the message to the client stub.

10. The stub unpacks the result and returns to the client.

12.5 RPC Messages

An RPC is initiated by the client, which sends a request message to a known remote server to execute a

specified procedure with supplied parameters. The remote server sends a response to the client, and the

application continues its process. There are many variations and subtleties in various implementations, resulting

in a variety of different (incompatible) RPC protocols. While the server is processing the call, the client is

blocked (it waits until the server has finished processing before resuming execution), unless the client sends

an asynchronous request to the server, such as an XHTTP call.

An important difference between remote procedure calls and local calls is that remote calls can fail because

of unpredictable network problems. Also, callers generally must deal with such failures without knowing

whether the remote procedure was actually invoked. Idempotent procedures (those that have no additional

effects if called more than once) are easily handled, but enough difficulties remain that code to call remote

procedures is often confined to carefully written low-level subsystems.

12.6 RPC Issues

There are various issues that must be addressed:

12.6.1 Calling Semantics and Naming

An important issue in distributed systems is the parameter-passing semantics of remote procedure calls or

remote invocations i.e. how should parameters be passed across machine boundaries? In non-distributed

systems, the programmer typically has a choice of call-by-reference or call-by-value. However, in most

distributed systems, call-by-reference is not possible because addresses cannot be passed across the network;

therefore, call-by-value (or call-by-value-result) must be used.

Still, with call-by-value, the system must be able to transmit the addressed entity, which may be a data type

instance, across the network. The process of placing parameters into a message packet, and later taking

them off and reconstructing the data, is called marshalling in an RPC system. Marshalling can be done in

several ways, depending on the support provided to the programmer by the RPC system.

In some RPC systems, a programmer must explicitly code calls to marshalling procedures, a tedious and

error-prone process. In most systems a stub compiler program reads a high-level specification of a server’s

interface and automatically produces calls to marshalling procedures; these calls are part of the stub called

locally when an RPC occurs. In the Argus system, each abstract data type can be asked to encode itself into

a form suitable for transmission to other systems.

This gives the programmer the flexibility to define a standardized on-the-wire format for a data type. The

major problem is not that call-by-value and call-by-reference are different, but that call-by-value replicates

a data type instance during the duration of the RPC call. Assuming that concurrency exists in a distributed

system, each instance represents a state that is potentially shared among several processes. Concurrent

access to that state must be controlled through a synchronization mechanism, such as monitors. In fact, a

principal objective of abstract data types is the synchronization of shared access, as well as implementation

independence.

158

In a call-by-value RPC, however, the server is not accessing shared state, but is accessing a copy of the

state at the time the argument is accessed; it may be out of date. Similarly, with call-by value- result, the

effect will be the same as call-by-reference only if no other accesses

to that state occurred on the source node in the duration of the call. The result is that all shared instances

must be controlled by servers, since only the server can guarantee sequential access if needed. Having a

data type with concurrency control is not sufficient if an instance of that data type can be passed as a call-

by-value result parameter. This is an issue that exists in centralized systems independent of RPC; however,

the problem is greatly magnified by the existence of true concurrency in distributed systems.

An alternative approach to the problem of calling semantics and naming is the distributed virtual memory

implemented in the Ivy system. In Ivy, a single address space exists across nodes; the memory manager

traps program accesses to shared store and exchanges coherency messages with memory managers on

other nodes. From the programmer’s point of view, distributed processes communicate through shared

memory as they would on a centralized system. Distributed processes can therefore exchange and share

addresses. If one built an RPC system on top of Ivy, call-by-reference could be trivially used for parameter

passing.

In distributed object-oriented systems, it is also possible to have a single object name space that spans

machine boundaries. Each object has a network-wide unique identifier (its ID or address) that can be used

to reference the object in a location independent manner. This obviously implies a level of indirection; all

object references must occur through a descriptor mechanism so that remote references can be detected

and trapped. Given such a mechanism, call-by-reference can be provided easily. In fact, conceptually the

only parameter-passing mechanism in an object oriented system is call-by-object-reference. Thus, to give

someone access to an object, all one does is to pass its address, independent of the location of the object

or the receiver of its address.

The problem with call-by-reference in a distributed object-oriented system is performance. When one

object performs a remote invocation of another, passing it references to parameter objects, the receiver will

probably cause remote invocations when it attempts to invoke those parameters. In many cases, these

remote invocations are unavoidable. However, there are cases in which a call-by-value mechanism would

make more sense with respect to performance. For example, if the parameter object is immutable, then

sending a copy of it would be semantically equivalent to call-by-reference Obviously this can be done for

immutable objects such as integers, as well as for structures of immutable.

It may also be possible to decrease the cost of a remote call-by-reference parameter by moving the parameter

object to the calling site for the duration of the call. The Emerald system has this capability, and moving

objects has been shown to have performance improvement potential, depending on the nature of the

parameter object being moved (e.g. its size and the number of active invocations). Once again, moving an

object is different than call-by-value because the object represents shared state.

Summary of these are given below:

Marshalling:

Ø Parameters must be marshalled into a standard representation.

159

Ø Parameters consist of simple types (e.g., integers) and compound types (e.g., C structures or Pascal

records). Moreover, because each type has its own representation, the types of the various

parameters must be known to the modules that actually do the conversion. For example, 4 bytes of

characters would be uninterpreted, while a 4-byte integer may need to the order of its bytes reversed.

Semantics:

Ø Call-by-reference is not possible that means the client and server don’t share an address space.

That is, addresses referenced by the server correspond to data residing in the client’s address

space.

Ø One approach is to simulate call-by-reference using copy-restore. In copy-restore, call-by-reference

parameters are handled by sending a copy of the referenced data structure to the server, and on

return replacing the client’s copy with that modified by the server.

Ø However, copy-restore doesn’t work in all cases. For instance, if the same argument is passed

twice, two copies will be made, and references through one parameter only changes one of the

copies.

12.6.2 Exception Handling

It refers to -how are errors handled? A major difference between centralized and distributed systems is in

their failure modes. Failures are a difficult matter in distributed systems, and particularly in systems such as

Emerald in which distribution is transparent. In both RPC and distributed object systems, much effort goes

into making remote and local calls identical to the extent possible in each particular system. In general,

hiding the details of distribution from the programmer simplifies the programming of distributed applications.

Failures constitute a notable exception to this rule.

Although it is possible to make local and remote invocations largely identical, it is not possible to make

remote invocations obey all of the properties of local invocations. For example, whereas local procedures

on a single node can raise error conditions, they do not time-out, they do not become temporarily unreachable

and they do not crash independently of the calling procedure. Thus, a local procedure call is typically not

equipped to handle such failures.

12.6.3 Transport/Communication Protocol

It refers to -what transport protocol should be used? Generally, reliable stream protocols are designed for

a different purpose: high throughput. The cost of setting up and terminating a connection is insignificant in

comparison to the amount of data exchanged. Most of the elapsed time is spent sending data.

With RPC, low latency is more important than high throughput. If applications are going to use RPC much

like they use regular procedures (e.g., over and over again), performance is crucial.

RPC can be characterized as a specific instance of transaction-oriented communication, where:

• A transaction consists of a single request and a single response.

• A transaction is initiated when a client sends a request and terminated by the server’s response.

160

A transaction-oriented transport protocol should efficiently handle the following cases:

1. Transactions in which both the request and response messages fit in a single packet. The response

can serve as an acknowledgment, and the client handles the case of lost packets by retransmitting

the original request.

2. Large multi-packet request and response messages, where the data does not necessarily fit in a

single packet. For instance, some systems use RPC to fetch pages of a file from a file server. A

single-packet request would specify the file name, the starting position of the data desired, and the

number of bytes to be read. The response may consist of several pages (e.g. 8K bytes) of data.

A communications link depends on a set of communications protocols. A communications protocol is a

clearly defined set of operational rules and procedures for communications.

Communications protocols include a transport protocol (from the Transport Layer of the OSI network

architecture) such as the Transmission Control Protocol (TCP) or the User Datagram Protocol(UDP);

and the corresponding network protocol (from the OSI Network Layer), such as the Internet Protocol

(IP).

For an RPC client and server to communicate, their RPC runtimes must use at least one identical

communications protocol, including a common RPC protocol, transport protocol, and network protocol.

An RPC protocol is a communications protocol that supports the semantics of the DCE RPC API and

runs over specific combinations of transport and network protocols. DCE RPC provides two RPC

protocols: the connectionless RPC protocol and the connection-oriented RPC protocol.

Connectionless (Datagram) RPC Protocol

This protocol runs over a connectionless transport protocol such as UDP. The connectionless protocol

supports broadcast calls.

Connection-oriented RPC Protocol

This protocol runs over a connection-oriented transport protocol such as TCP.

Each binding uses a single RPC protocol and a single pair of transport and network protocols. Only certain

combinations of communications protocols are functionally valid (are actually useful for interoperation); for

instance, the RPC connectionless protocol cannot run over connection-oriented transport protocols such

as TCP. DCE RPC supports the following combinations of communications protocols:

Ø RPC connection-oriented protocol over the Internet Protocol Suite, Transmission Control Protocol

(TCP/IP)

Ø RPC connectionless over the Internet Protocol Suite, User Datagram Protocol (UDP/IP)

The following table lists the network protocols supported by RPC and the type of RPC connection for

which the protocol is used.

RPC-Supported Network Protocols

161

Table12.6.3: RPC-Supported Network Protocols

12.6.4 Binding

It refers to -how does the client know who to call, and where the service resides?

The most flexible solution is to use dynamic binding and find the server at run time when the RPC is first

made. The first time the client stub is invoked, it contacts a name server to determine the transport address

at which the server resides.

Binding is the process of establishing communication between two parties. Through binding, the parties

determine the addresses of their partners and the protocols to be used for the communication. On a single

node, modules communicate using procedure call and return, and address each other using virtual addresses;

the binding is performed by the compiler or linker. In a network, there are various choices for how and

when binding is made, and these choices affect both the performance and flexibility of the application. In the

most static case, binding is performed at compile time. That is, the two communicating programs know the

explicit network locations of their partners. In the most general case, binding can be performed at every

interaction. Options exist in the middle that permit trade-offs between flexibility and performance; RPC

systems have typically chosen early binding, which permits call time performance optimizations, whereas

invocation-oriented systems have chosen late binding, which permits flexibility.

12.7 Security

The Lightweight Remote Procedure Call mechanism tries to address the inefficiencies in normal RPC usage

in the common case where small footprint calls are made on the same machine. This is done by avoiding

overhead associated to the execution path required for the complex but infrequent cases.

Small kernel OS aims at placing components in separate domains. An RPC like mechanism is used for

communication. But this ‘one-size fits all’ approach doesn’t account for the real usage pattern: although

the bulk of communication is between domains on the same machine, and small-simple parameters

are involved, the overhead for the heavyweight machinery (marshalling, access validation, scheduling,

dispatch, etc) is still paid.

They provide a communication mechanism designed for concurrency that maintains domain protection

at a lower cost by dispatching a shared argument stack directly to the server domain. Linkage records

are used to facilitate the transfer of control. Security is enforced by Binding Objects, which are

capabilities obtained at bind-time.

The main technique is to optimize the common execution path. The Lightweight RPC caller still calls into a

stub, but instead of a complicated dispatch mechanism, the stub simply uses the A-stack (shared with the

callee) to pass arguments, no unnecessary data copying is done. A-stacks are pre allocated. Execution-

Protocol RPC Type

Transmission Control Protocol (TCP) Connection–oriented

Sequenced Packet Exchange (SPX) Connection–oriented

Named Pipe Connection–oriented

HTTP Connection–oriented

User Datagram Protocol (UDP) Connectionless

Cluster Datagram Protocol (CDP) Connectionless

162

stacks on the server are not associated with A-stacks at bind time, rather dynamically, so that large E-stack

space explosion is avoided. E-stacks are ‘activated’ directly by the kernel, no dispatching overhead. A-

stacks can be shared between procedures in the same interface with similar size requirements. Stubs are

generated in assembly.

There is an upfront cost that is paid at bind time for setting up the A-stacks. Multiple A-stacks allow for

concurrency, but the concurrency limit is bound at bind time. In the uncommon case, RPC like overhead

(marshalling, Modula-stubs, etc) is still involved, so LRPC maintains two coexisting mechanisms.

The shared stack optimization only holds for their language environment, it would not work for the more

common case of C-like languages.

The mechanism fits well into a system that already uses RPC, where communication is done only through

arguments/return values. It is unlikely that one could take it a step further, where local LRPC caller/callee

would also share global data. In a way, they are not comparing apples to apples: the assembly generated

stubs for LRPC increase performance of LRPC, while Modula stubs for RPC decrease the RPC performance;

this blurs comparison of the rest of the mechanisms (which would be more accurate if assembly-generated

stubs were also used for old RPC).

12.8 Lightweight RPC

Lightweight Remote Procedure Call (LRPC) is a communication facility designed and optimized for

communication between protection domains on the same machine. In contemporary small-kernel

operating systems, existing RPC systems incur an unnecessarily high cost when used for the type of

communication that predominates between protection domains on the same machine. This cost leads

system designers to coalesce weakly related subsystems into the same protection domain, trading

safety for performance.

LRPC achieves a level of performance for cross-domain communication that is significantly better

than conventional RPC systems, while still retaining their qualities of safety and transparency. Four

techniques contribute to the performance of LRPC:

Ø Simple control transfer. The client’s thread executes the requested procedure in the server’s

domain.

Ø Simple data transfer. The parameter-passing mechanism is similar to that used by procedure

call. A shared argument stack, accessible to both client and server, can often eliminate redundant

data copying.

Ø Simple stubs. LRPC uses a simple model of control and data transfer, facilitating the generation

of highly optimized stubs.

Ø Design for concurrency. LRPC avoids shared data structure bottlenecks and benefits from the

speedup potential of a multiprocessor.

12.9 Summary

Remote Procedure Call (RPC) is a powerful technique for constructing distributed, client/server based

applications. Client/server is a computational architecture that involves client processes requesting service

from server processes. The client/server software architecture is a versatile, message-based and modular

infrastructure that is intended to improve, usability, flexibility, interoperability, and salability as compared to

centralized, mainframe, time sharing computing.

163

RPC is based on extending the notion of conventional or local procedure calling, so that the called procedure

need not exist in the same address space as the calling procedure. The two processes may be on the same

system, or they may be on different systems with a network connecting them.

By using RPC, programs on networked platforms can communicate with remote (and local) resources.

RPC allows network applications to use specialized kinds of procedure calls designed to hide the details of

underlying networking mechanisms. The complexity involved in the development of distributed processing

is reduced by keeping the semantics of a remote call the same whether or not the client and server are

collocated on the same system.

12.10 Self - Assessment Exercise

1. What are the differences between a local call and a remote call?

2. What are the goals of RPC?

3. Explain the RPC Model with a suitable diagram.

4. Explain different elements used in RPC Process.

5. Write down the steps for generating the RPC.

6. Explain “call by reference” vs. “call by value”.

7. Explain Naming.

8. What are stub and skeleton and why are they needed in remote procedure calls?

9. How does so called marshalling solve the problem of different byte ordering of sender and receiver?

10. Differentiate the Connectionless and Connection-Oriented RPC protocol.

11. Explain the Lightweight RPC.

12.11 References

• Operating System Concepts by Silberschatz Galvin Gagne

• System programming and operating system by D. M. Dhamdhere

• Operating Systems, Madnick, Madnick by Madnick Se

• Operating Systems by I.A. Dhotre

164

Unit - 13 : Real Time System

Structure of Unit

13.0 Objective

13.1 Introduction

13.1.1 Definitions

13.1.2 Aims/Objectives

13.1.3 Major Classification of Real Time System

13.1.4 Example of Real-Time System

13.2 Desirable Characteristics

13.2.1 Real Time System Tasks

13.3 Features of Real-Time Kernel

13.4 Implementation of Real-Time OS

13.4.1 Basic Structure

13.4.2 RTOS Kernel Task

13.4.3 Scheduling Policy

13.4.4 Task Control Block

13.5 Summary

13.6 Self - Assessment Exercise

13.7 References

13.0 Objective

The main objective of this chapter is to know about the real time system. To know the aim and major

classification of it’s along with its examples.

This unit also includes the desirable characteristics of it and features of real-time kernel. Also we

will know the basic architecture of it for implementing the RTOS.

13.1 Introduction

Real-time systems play a considerable role in our society, and they cover a spectrum from the very

simple to the very complex. Examples of current real-time systems include the control of domestic

appliances like washing machines and televisions, the control of automobile engines, telecommunication

switching systems, military command and control systems, industrial process control, flight control

systems, and space shuttle and aircraft avionics.

All of these involve gathering data from the environment, processing of gathered data, and providing

timely response. A concept of ‘time’ is the distinguishing issue between real-time and non-real-time

systems. When a usual design goal for non-real-time systems is to maximize system’s throughput, the

goal for real-time system design is to guarantee, that all tasks are processed within a given time. The

taxonomy of time introduces special aspects for real-time system research.

In other words, we can say that word ‘time’ means that the correctness of the system not only depend

on the logical result of the computation but also on the time at which the results are produced. The

word ‘real’ indicates that the reaction of the system to external events must occur during their evolution.

As a consequence, the system time must be measured using the same time scale used for measuring the

time in the controlled environment

165

Timeliness is the single most important aspect of a real -time system. These systems respond to a series of

external inputs, which arrive in an unpredictable fashion. The real-time systems process these inputs, take

appropriate decisions and also generate output necessary to control the peripherals connected to them. As

defined by Donald Gillies “A real-time system is one in which the correctness of the computations not only

depends upon the logical correctness of the computation but also upon the time in which the result is

produced. If the timing constraints are not met, system failure is said to have occurred.”

It is essential that the timing constraints of the system are guaranteed to be met. Guaranteeing timing

behavior requires that the system be predictable.

Any system in which the time at which output is produced is significant. This is usually because the

input corresponds to some movement in the physical world, and the output has to relate to that same

movement. The lag from input time to output time must be sufficiently small for acceptable timeliness.

Timeliness is a function of the total system: for example- missile guidance requires output within a

few milliseconds of input whereas scheduling of steamships requires responses measured in days.

Real-time systems are usually considered to be those in which the response time is of order

milliseconds. In this context, real time system provides an interactive system where interactive systems

are those with response times of order seconds.

13.1.1 Definitions

Failure is inability to perform according to specification. In the case of real-time systems the ‘failed’

specification may be lack of correctness or the failure to produce the response by the required time.

 A real-time system is one whose correctness is based on both the correctness of the outputs and

their timeliness. The ‘novelty’ here is that the system is time critical.

Definition 1:

A real-time system is one that must process information and produce a response within a specified

time, else risk severe consequences, including failure. That is, in a system with a real-time constraint

it is no good to have the correct action or the correct answer after a certain deadline: it is either by the

deadline or it is useless!

Definition 2 (modified from The Oxford Dictionary of Computing):

Any system in which the time at which output is produced is significant. This is usually because the input

corresponds to some event in the physical world, and the output has to relate to that same event. The lag

from input time to output time must be sufficiently small for acceptable timeliness

Definition 3:

Any information processing activity or system which responds to externally generated input stimuli within a

finite and specified period.

Examples:

Aircraft control, ticket reservation system at airport, over-temperature monitor in nuclear power station,

mobile phone, oven temperature controller, Doppler blood-flow monitor, ECG/arrhythmia monitor.

13.1.2 Aim/Objectives

The objective of real time systems is not to minimize the average response time of a given set of tasks but it

is to meet the individual timing requirements of each task. However short the average response time is,

166

without a scientific methodology, we would never be able to guarantee the individual timing requirements of

each task in all possible circumstances. When several computation activities have different constraints,

average performance has little significance for the correct behaviour of the system

13.1.3 Major Classification of Real Time System

The design of a real -time system must specify the timing requirements of the system and ensure that the

system performance is both correct and timely. The major classification of Real-time systems may be

subdivided into hard and soft, depending on the severity of failure to meet a deadline for output.

The three types of time constraints:

Ø Hard: A late response is incorrect and implies a system failure. An example of such a system is of

medical equipment monitoring vital functions of a human body where a late response would be

considered as a failure.

Basically, it is absolutely imperative that operations are completed within their deadline in this case

if an operation is completed after the time in which it is supposed to then it is considered useless e.g.

systems in space shuttle. In which case if the system did not react within the strict deadline it could

result in serious issues such as the loss of life or damage to the equipment such as the shuttle

crashing. As can be seen in this situation a late response would be pointless.

More specially, we can say that-

Ø Must meet its deadline.

Ø Conflicts with time-sharing systems, not supported by general-purpose operating systems.

Ø Often used as a control device in a dedicated application such as industrial control and robotics

Ø Secondary storage limited or absent, data stored in short term memory, or read-only memory
(ROM).

Other examples of hard real time activities include:

Ø Sensory data acquisition

Ø Detection of critical conditions

Ø Actuator serving

Ø Low level control of critical system components etc.

Ø Soft: Timeliness requirements are defined by using an average response time. If a single computation

is late, it is not usually significant, although repeated late computation can result in system failures. An

example of such a system includes airlines reservation systems.

Although it is emphasised that deadlines are important they are not as strict as in hard real-time systems.

Deadlines in this case can be missed occasionally but the important thing in this type of system is to try

and reduce the amount of deadlines that are missed. Examples of soft real-time systems include operating

systems.

More specifically, we can say that-

Ø A critical real-time task gets priority over the other tasks (Deadline desirable but not mandatory).

Ø Limited utility in industrial control of robotics

167

Ø Useful in applications (multimedia, virtual reality) requiring advanced operating-system features.

Other examples of soft activities include:

Ø The command interpreter of the user interface

Ø Handling input data from a keyboard

Ø Displaying messages on the screen.

Ø Representation of system state variables.

Ø Firm: This is a combination of both hard and soft timeliness requirements. The computation has a

shorter soft requirement and a longer hard requirement. For example, a patient ventilator must

mechanically. Ventilate the patient, a certain amount in a given time period. A few seconds’ delay

in the initiation of breath is allowed, but not more than that.

The processes in the Real time may also be classified as follows:

Ø Hard Real Time Tasks: A real time task is said to be hard if missing its deadline may cause

catastrophic consequences on the environment under control.

Ø Soft Real Time Tasks: A real time task is said to be soft if meeting its deadline is desirable

for performance reasons, but missing its deadline does not cause serious damage to the

environment and does not jeopardize correct system behavior.

All practical systems can be said to be real-time systems because they must produce an output or

respond to the user’s commands within a reasonable amount of time (insurance company responding

to letters, word processor displaying what was typed on the screen, mobile phones responding with

delays that allow ‘comfortable’ conversation). These systems where ‘uncomfortably’ long response

times are a nuisance (such as windows2000) but the system still functions even if deadlines are

sometimes not met are called soft real-time systems. Systems where failure to meet response time

constraints leads to catastrophic system failure (aircraft crashing, car skidding, patient dying before

corrective action is performed) are called hard real-time systems.

13.1.4 Example of Real Time System - MARS

MARS – Maintainable Real time System is a fault tolerant distributed real time system developed at the

University of Vienna to support complex control applications, such as air traffic control systems, railway

switching systems, where hard deadlines are imposed by the control environment. The MARS architecture

consists of a set of computing nodes (clusters) connected through high speed communication channels.

Each cluster is composed of a number of acquisition and processing units (components) interconnected by

a synchronous real time bus, the MARS bus. Each component is a self-contained computer on which a set

of real time application tasks and an identical copy of the MARS operating system are executed. The

MARS configuration is shown as follows:

168

Figure 13.1.4 MARS Structure

The main feature that distinguishes MARS from other distributed real-time operating systems is its deterministic

behavior even in peak-load conditions. Fault-tolerance is achieved at the cluster level through active redundant

components, which are grouped in a set of Fault Tolerant Units (FTUs). High error detection coverage is

achieved by use of software mechanisms at the kernel level and hardware mechanisms at the processor

level.

Within an FTU, a single redundant component fails silently; that is, it either operates correctly or does not

produce any results. This facilitates system maintainability and extensibility since redundant components

may be removed from a running cluster, repaired and integrated later without affecting the operation of the

cluster.

All MARS components have access to a common global time base, the system time, with known

synchronization accuracy. It is used to test the validity of real time information, detect timing errors, control

the access to the real time bus, and discard the redundant information.

The software residing on a MARS component can be split into the following three classes:

Ø Operating System Kernel: its primary goals are resource management and hardware transparency.

Ø Hard Real Time Tasks (HRT): HRT tasks are periodic activities that receive, process, and send

messages. Each instance of a task is characterized by a hard deadline. The set of HRT tasks

consists of application tasks and system tasks, which perform specific functions of the kernel, such

as time synchronization and protocol conversions.

Ø Soft Real Time Tasks (SRT): SRT tasks are activities that are not subject to strict deadlines.

Usually, they are periodic tasks scheduled in background during the idle time of the processor.

Component Component

Component

CI

CI

CI CI

MARS bus MARS bus

MARS bus

Sensor

s

Actuators

Cluste

CI = cluster Interface

169

13.2 Desirable Characteristics

In any real time application, the various control activities can be seen as members of team acting together to

accomplish one common goal, which can be the control of a nuclear power plant or an aircraft. This means

that the tasks are not all independent and it is strictly necessary to support independent address spaces and

a high degree of predictability. Some very important properties that real time systems should have to support

critical applications are:

Ø Timeliness: Results have to be correct not only in their value but also in the time domain. As a

consequence, the operating system must provide specific kernel mechanisms for time management

and handling tasks with explicit time constraints and different criticalness.

Ø Design for Peak Load: Real time systems must not collapse when they are subject to peak load

conditions, so they must be designed to handle all anticipated scenarios.

Ø Predictability: To guarantee a minimum level of performance, the system must be able to predict

the consequence of any scheduling decision. If some task cannot be guaranteed within its time

constraints, the system must notify this fact in advance, so that alternative actions can be planned in

order to cope with the situation.

Ø Fault Tolerance: single hardware and software failures should not cause the system to crash.

Thus, critical components of real time systems have to be designed to be fault tolerant.

Ø Maintainability: the architecture of a real time system should be designed according to a

modular structure to ensure that possible system modifications are easy to perform.

13.2.1 Real Time System Tasks

Periodic and Deadline-oriented Tasks

The period is the amount of time between each iteration of a regularly repeated task. Such repeated

tasks are called periodic tasks. This is the timing constraints within which the system has to perform

the assigned task successfully. That is, real-time system is one that has to meet the timing constraints

to avoid any possible failure. Thus every periodic task has to be finished within the defined period.

It does not mean that a real-time system has to act fast.

Every task has to be deadline-oriented. That is, every task has to be accomplished within the set

deadline. The deadline is a constraint on the latest time at which the operation has to come the end.

Cruise Control

Consider a cruise control mechanism on an automobile. The basic operation of cruise control is to keep the

speed of the vehicle constant. Suppose the driver has selected 60 mph as the desired speed. If the vehicle

is going slower or faster than the selected speed, then the embedded computer sends a signal to the engine

controller to set the speed right. The frequency in which the computer checks whether the current speed of

the vehicle is as per the set speed is called control rate and it is fixed by the control system designer. The

checking frequency, on one side, should meet specifications but on the other side, it should not be obstructive

to system functioning.

Aperiodic Tasks

All real-time tasks need not to be periodic. Aperiodic tasks respond to randomly arriving events. Consider

anti-lock braking. If the driver presses the brake pedal, the car must respond very quickly. The response

170

time is the time between the moment the brake pedal is pressed, and the moment the anti-lock braking

software actuates the brakes. If the response time was one second, an accident might occur. So, the fastest

possible response is desired. But, like the cruise control algorithm, fastest is not necessarily best, because it

is also desirable to keep the cost of parts down by using small microcontrollers. The point here is the

application has to specify a worst-case response time and both the hardware and software has to be

designed to meet the specifications.

13.3 Features of Real-Time Kernel

A kernel is a central component of an operating system. It acts as an interface between the user applications

and the hardware. The sole aim of the kernel is to manage the communication between the software (user

level applications) and the hardware (CPU, disk memory etc).

Typically, a kernel includes an interrupt handler that handles all requests or completed I/O operations that

compete for the kernel’s services, a scheduler that determines which programs share the kernel’s processing

time in what order, and a supervisor that actually gives use of the computer to each process when it is

scheduled.

Following are some basic features of Real-Time Kernel

1. Task Management.

2. Timer Management.

3. Message Management.

4. Memory Management.

Each of these is discussed below.

Task Management

Task management includes the following.

1. Task Creation.

2. Task Scheduling.

3. Task Priorities.

4. Task Deletion (optional)

Task Creation

Ideally task creation should be dynamic that means task creation should be allowed during run-

time. Systems that allow only static task creation (done at compile time by filling in a table for

example) are less flexible, but by no means unusable. Most real-time systems do not require

dynamic task creation, and furthermore, dynamic task creation can be effectively simulated by

creating the maximum number of tasks at compile time, and enabling each as system requirements

demand it.

Task Scheduling

A flexible system will allow task scheduling via events, time-slicing, or cooperation or any mix of the

preceding.

171

Task Priorities

Priority based pre-emptive scheduling is an important feature. Priorities must be real-time responsive,

and preferably dynamic.

Task Deletion

The ability to delete a task is a useful feature in dynamic environments.

Timer Management

Timer management should provide for pause, one-shot timers, periodic timers, and differential timer

management. In addition, it is important that a timer be dispatched as a message to the task that started

the timer. In this way much flexibility is added. For example, message aliasing can be used to allow

task A to start a timer for task B; message cancellation can be used to cancel a timer, and so forth.

Basically, any of the features of the message management system can be used to facilitate timer

management.

Message Management

Messages are used for inter-task communication and the kernel message management system should

have at least the features outlined below.

Message Queuing

Sometimes a burst of requests can be sent to a task and in this case the messages must by save in

a queue so that the task can process each message in turn.

Variable Size Messages

Since messages can have varying amounts data, the kernel should allow for variable size messages.

This can be accomplished by reserving one field of the message for a data pointer. For smaller

data items a fixed block of bytes is typically reserved in the message for convenience.

Wait on a Message

Tasks that expect messages should be able to suspend, if they so desire, until a message arrives;

this is referred to as the ability to “wait” for a message.

Selective Wait on a Message

A task should be able to wait for a particular message, or any one of a list of messages, or for

any message at all regardless of its message id number.

Message Aliasing

Sometimes it is convenient for task A to send a message to task B, but force task B to respond to

task C. This can be done if task A can change to sender field in the message so that when task B

responds to the sender, he really responds to task C.

Timed Wait on a Message

Sometimes you only want to wait so long for a message and then time out.

Peeking

Sometimes it is convenient for a task to peek into its message queue and scan the messages, but

remove none, leaving the queue intact.

172

Message Priorities

Priority refers to the order that means which message will be handled by the server next. Sometimes it

is important to have the ability to assign priorities to messages. Consider task A which has 5 messages

in its queue. If task B determines that an emergency stop is required, and sends task A an

EMERGENCY_STOP message, then without message priorities, this important message would be

number 6 in the queue. However, by sending the message with a higher priority, it can be forced to the

front of the message queue.

Message Identity

It is important for the receiver of a message to know who sent the message so that he can respond if

necessary.

Message Throttling

This feature allows the programmer to specify, on a queue by queue basis, the maximum number of

messages allowed.

Memory Management

The kernel should provide for high speed deterministic memory management. Fixed block

memory management is preferred because of its high speed and the elimination of fragmentation.

In addition to features it has also some responsibilities-

• Thread Scheduling

• Interrupt and exception handling

• Low level processes synchronization

• Recover after a power failure

13.4 Implementation of Real-Time OS

The implementing the Real Time OS depends on various aspects:

13.4.1 Basic Structure

n The most important component of RTOS is its kernel (Monolithic & Microkernel).

n BSP or Board Support Package makes an RTOS target-specific (It’s a processor specific

code onto (processor) which we like to have our RTOS running).

Figure 13.4.1: RTOS Kernel

173

13.4.2 RTOS KERNEL: Tasks

• A task is basic unit of execution in RTOS.

• RTOS scheduler needs to be deterministic ~ O (1) or O (n).

Figure13.4.2: RTOS Kernel Tasks

13.4.3 Scheduling Policy

Scheduling refers to the order which specify the next process. Scheduling policies that are available in a

RTOS are:

• Clock driven

• Priority driven (RMS & EDF)

13.4.4 Task Control Block

The task control block generally refers to the data structure where various tasks are grouped together. This

data structure is called the Task Control Block. The TCB generally contains the-

• Task ID

• Keep track the status of each task

• Signal and events performed by particular task.

• Memory and some system variable etc.

These are illustrated below:

Figure 13.4.4: Task Control Block

TID

SAVED_TASK_STATE

Resource 1(Signals)

Resource 2 (events)

Resource 3 (Shared Memory)

...

System Variables

174

13.5 Summary

Real-Time systems span a large part of computer industry. So far most of the real-time systems research has

been mostly confined to single node systems and mainly for processor scheduling. This needs to be extended

for multiple resources and distributed nodes. Real-time systems are expanding to several other domains

such as automotive industry and embedded real-time systems. Especially the marriage of the Internet with

multimedia applications has opened several new volume applications.

13.6 Self - Assessment Exercise

1. Define Real Time System. Explain the different class of Real Time System

2. What are the desirable characteristics of RTOS? Explain.

3. How Aperiodic tasks is different from periodic tasks?

4. Explain different features of Real Time Kernel.

5. Explain in brief the implementation components of RTOS.

13.7 References

• Operating System Concepts by Silberschatz Galvin Gagne

• System programming and operating system by D. M. Dhamdhere

175

Unit - 14 : Multimedia Systems

Structure of Unit

14.0 Objective

14.1 Introduction

14.1.1 Linear Multimedia

14.1.2 Non Linear Multimedia

14.2 Elements of Multimedia System

14.3 Categories of Multimedia

14.4 Features of Multimedia

14.5 Applications of Multimedia

14.5.1 A few Application Areas of Multimedia

14.5.2 Multimedia in Public Places

14.6 Stages of Multimedia Application Development

14.6.1 Planning and Costing

14.6.2 Designing and Producing

14.6.3 Testing

14.6.4 Delivering

14.7 Compression

14.7.1 Image Compression

14.7.2 Video Compression

14.7.2.1 MPEG

14.7.2.2 DVI/Indeo

14.7.2.3 Optimizing Video Files for CD-ROM

14.8 Requirements of Multimedia Kernels

14.8.1 The Opportunistic Kernel

14.8.2 The Contract Kernel

14.9 CPU Scheduling

14.9.1 Scheduling Disciplines

14.9.1.1 FIFO

14.9.1.2 Shortest Remaining Time

14.9.1.3 Fixed Priority Pre-emptive Scheduling

14.9.1.4 Round-robin Scheduling

14.10 Disk Scheduling

14.10.1 FCFS or First Come First Serve

14.10.2 SSTF or Shortest Seek Time First

14.10.3 C-scan Scheduling

14.10.4 Look Sheduling

14.10.5 Round Robin

14.10.6 Priority Scheduling

14.10.7 Multilevel Queue

14.11 Network Management

14.12 Summary

14.13 Self - Assessment Exercise

14.14 References

176

14.0 Objectives

In this lesson we will learn the preliminary concepts of Multimedia. We will discuss the various benefits and

applications of multimedia. After going through this chapter the reader will be able to :

• Define multimedia

• List the elements of multimedia

• Enumerate the different applications of multimedia

• Describe the different stages of multimedia software development

14.1 Introduction

Multimedia has become an inevitable part of any presentation. It has found a variety of applications right

from entertainment to education. The evolution of internet has also increased the demand for multimedia

content. Multimedia is the media that uses multiple forms of information content and information processing

(e.g. text, audio, graphics, animation, video, interactivity) to inform or entertain the user. Multimedia also

refers to the use of electronic media to store and experience multimedia content. Multimedia is similar to

traditional mixed media in fine art, but with a broader scope. The term “rich media” is synonymous for

interactive multimedia.

The term multimedia describes a wide range of applications that are in popular use today. These include

audio and video files such as MP3 audio files, DVD movies, and short video clips of movie previews or

news stories downloaded over the Internet. Multimedia applications also include live webcasts (broadcast

over the World Wide Web) of speeches or sporting events and even live webcams that allow a viewer in

Manhattan to observe customers at a cafe in Paris. Multimedia applications need not be either audio or

video; rather, a multimedia application often includes a combination of both. For example, a movie may

consist of separate audio and video tracks. Nor must multimedia applications be delivered only to desktop

personal computers. Increasingly, they are being directed toward smaller devices, including personal digital

assistants (PDAs) and cellular telephones. For example, a stock trader may have stock quotes delivered in

real time to her PDA.

Multimedia may be broadly divided into two categories

14.1.1 Linear Multimedia

Linear active content progresses without any navigational control for the viewer such as a cinema presentation.

It is a non-interactive form of multimedia in which a project starts at a beginning and runs through to the end.

Conventional “television” is essentially “linear multimedia” (although switching channels could be said to

involve interactivity). However, there is no ability for the end user to control when elements are to be

delivered. Some multimedia projects are like television in that they present material in a linear fashion from

beginning to end.

Linear multimedia can be distinguished from non-linear multimedia because it has literally no interactivity of

any kind. It lacks any extra features that a user can take advantage of, such as the ability to choose different

options, click on icons, control the flow of the media, or change the pace at which the media is displayed.

The main reason to use linear multimedia over the more interactive and fun non-linear types of multimedia is

to aid in teaching or training. Linear multimedia works exceedingly well for providing information to large

groups of people such as at training sessions, seminars, workplace meetings, or study groups.

177

14.1.2 Non Linear Multimedia

In Non Linear Multimedia the end user is given navigational control to wander through multimedia content

at will. The user can control what is seen and when it will be seen. Non-linear content offers user interactivity

to control progress as used with a computer game or used in self-paced computer based training.

14.2 Elements of Multimedia System

Multimedia means that computer information can be represented through audio, graphics, image, video and

animation in addition to traditional media(text and graphics). Hypermedia can be considered as one type of

particular multimedia application.

· Audio

· Video

· Graphics

· Images

14.3 Categories of Multimedia

Multimedia may be broadly divided into linear and non-linear categories. Linear active content

progresses without any navigation control for the viewer such as a cinema presentation. Non-linear

content offers user interactivity to control progress as used with a computer game or used in self-

paced computer based training. Non-linear content is also known as hypermedia content.

Multimedia presentations can be live or recorded. A recorded presentation may allow interactivity

via a navigation system. A live multimedia presentation may allow interactivity via interaction with

the presenter or performer.

178

14.4 Features of Multimedia

Multimedia presentations may be viewed in person on stage, projected, transmitted, or played locally

with a media player. A broadcast may be a live or recorded multimedia presentation. Broadcasts and

recordings can be either analog or digital electronic media technology. Digital online multimedia may be

downloaded or streamed. Streaming multimedia may be live or on-demand.

Multimedia games and simulations may be used in a physical environment with special effects, with

multiple users in an online network, or locally with an offline computer, game system, or simulator.

14.5 Applications of Multimedia

Multimedia finds its application in various areas including, but not limited to, advertisements, art,

education, entertainment, engineering, medicine, mathematics, business, scientific research and spatial,

temporal applications.

14.5.1 A Few Application Areas of Multimedia

Creative Industries

Creative industries use multimedia for a variety of purposes ranging from fine arts, to entertainment, to

commercial art, to journalism, to media and software services provided for any of the industries listed

below. An individual multimedia designer may cover the spectrum throughout their career. Request for their

skills range from technical, to analytical and to creative.

A presentation using Powerpoint.

Corporate presentations may combine all forms of media content.

Commercial

Much of the electronic old and new media utilized by commercial artists is multimedia. Exciting

presentations are used to grab and keep attention in advertising. Industrial, business to business, and

interoffice communications are often developed by creative services firms for advanced multimedia

presentations beyond simple slide shows to sell ideas or liven-up training..

179

Entertainment and Fine Arts

In addition, multimedia is heavily used in the entertainment industry, especially to develop special effects in

movies and animations. Multimedia games are a popular pastime and are software programs available

either as CD-ROMs or online. Some video games also use multimedia features.

Education

In Education, multimedia is used to produce computer-based training courses (popularly called CBTs) and

reference books like encyclopedia and almanacs. A CBT lets the user go through a series of presentations,

text about a particular topic, and associated illustrations in various information formats. Edutainment is an

informal term used to describe combining education with entertainment, especially multimedia entertainment.

Engineering

Software engineers may use multimedia in Computer Simulations for anything from entertainment to training

such as military or industrial training. Multimedia for software interfaces are often done as collaboration

between creative professionals and software engineers.

Industry

In the Industrial sector, multimedia is used as a way to help present information to shareholders, superiors

and coworkers. Multimedia is also helpful for providing employee training, advertising and selling products

all over the world via virtually unlimited web-based technologies.

Mathematical and Scientific Research

In Mathematical and Scientific Research, multimedia is mainly used for modeling and simulation. For example,

a scientist can look at a molecular model of a particular substance and manipulate it to arrive at a new

substance. Representative research can be found in journals such as the Journal of Multimedia.

Medicine

In Medicine, doctors can get trained by looking at a virtual surgery or they can simulate how the human

body is affected by diseases spread by viruses and bacteria and then develop techniques to prevent it.

14.5.2 Multimedia in Public Places

In hotels, railway stations, shopping malls, museums, and grocery stores, multimedia will become available

at stand-alone terminals or kiosks to provide information and help. Such installation reduce demand on

traditional information booths and personnel, add value, and they can work around the clock, even in the

middle of the night, when live help is off duty.

A menu screen from a supermarket kiosk that provide services ranging from meal planning to coupons.

Hotel kiosk list nearby restaurant, maps of the city, airline schedules, and provide guest services such as

automated checkout. Printers are often attached so users can walk away with a printed copy of the information.

Museum kiosk are not only used to guide patrons through the exhibits, but when installed at each exhibit,

provide great added depth, allowing visitors to browser though richly detailed information specific to that

display.

180

14.6 Stages of Multimedia Application Development

A Multimedia application is developed in stages as all other software are being developed. In multimedia

application development a few stages have to complete before other stages being, and some stages may be

skipped or combined with other stages.

Following are the four basic stages of multimedia project development:

14.6.1 Planning and Costing:

This stage of multimedia application is the first stage which begins with an idea or need. This idea can be

further refined by outlining its messages and objectives. Before starting to develop the multimedia project, it

is necessary to plan what writing skills, graphic art, music, video and other multimedia expertise will be

required. It is also necessary to estimate the time needed to prepare all elements of multimedia and prepare

a budget accordingly. After preparing a budget, a prototype or proof of concept can be developed.

14.6.2 Designing and Producing:

The next stage is to execute each of the planned tasks and create a finished product.

14.6.3 Testing:

Testing a project ensure the product to be free from bugs. Apart from bug elimination another aspect of

testing is to ensure that the multimedia application meets the objectives of the project. It is also necessary to

test whether the multimedia project works properly on the intended deliver platforms and they meet the

needs of the clients.

14.6.4 Delivering:

The final stage of the multimedia application development is to pack the project and deliver the completed

project to the end user. This stage has several steps such as implementation, maintenance, shipping and

marketing the product.

14.7 Compression

Because of the size and rate requirements of multimedia systems, multimedia files are often compressed

from their original form to a much smaller form. Once a file has been compressed, it takes up less

space for storage and can be delivered to a client more quickly. Compression is particularly important

when the content is being streamed across a network connection. In discussing file compression, we

often refer to the compression ratio, which is the ratio of the original file size to the size of the

compressed file. For example, an 800-KB file that is compressed to 100 KB has a compression ratio

of 8:1.

14.7.1 Image Compression

The best image quality at a given bit-rate (or compression rate) is the main goal of image compression,

however, there are other important properties of image compression schemes:

Scalability generally refers to a quality reduction achieved by manipulation of the bitstream or file

(without decompression and re-compression). Other names for scalability are progressive coding or

embedded bitstreams.m Despite its contrary nature, scalability also may be found in lossless codecs,

usually in form of coarse-to-fine pixel scans. Scalability is especially useful for previewing images

while downloading them (e.g., in a web browser) or for providing variable quality access to e.g., databases.

There are several types of scalability:

181

• Quality Progressive or layer progressive: The bitstream successively refines the reconstructed

image.

• Resolution Progressive: First encode a lower image resolution; then encode the difference to

higher resolutions

• Component Progressive: First encode grey; then color.

Region of Interest Coding. Certain parts of the image are encoded with higher quality than others. This

may be combined with scalability (encode these parts first, others later).

Meta Information. Compressed data may contain information about the image which may be used to

categorize, search, or browse images. Such information may include color and texture statistics, small

preview images, and author or copyright information.

Processing Power. Compression algorithms require different amounts of processing power to encode and

decode. Some high compression algorithms require high processing power.

14.7.2 Video Compression

To digitize and store a 10-second clip of full-motion video in your computer requires transfer of an enormous

amount of data in a very short amount of time. Reproducing just one frame of digital video component video

at 24 bits requires almost 1MB of computer data; 30 seconds of video will fill a gigabyte hard disk. Full-

size, full-motion video requires that the computer deliver data at about 30MB per second. This overwhelming

technological bottleneck is overcome using digital video compression schemes or codecs (coders/decoders).

A codec is the algorithm used to compress a video for delivery and then decode it in real-time for fast

playback.

Real-time video compression algorithms such as MPEG, P*64, DVI/Indeo, JPEG, Cinepak, Sorenson,

ClearVideo, RealVideo, and VDOwave are available to compress digital video information. Compression

schemes use Discrete Cosine Transform (DCT), an encoding algorithm that quantifies the human eye’s

ability to detect color and image distortion. All of these codecs employ lossy compression algorithms.

In addition to compressing video data, streaming technologies are being implemented to provide reasonable

quality low-bandwidth video on the Web. Microsoft, RealNetworks, VXtreme, VDOnet, Xing, Precept,

Cubic, Motorola, Viva, Vosaic, and Oracle are actively pursuing the commercialization of streaming technology

on the Web. QuickTime, Apple’s software-based architecture for seamlessly integrating sound, animation,

text, and video (data that changes over time), is often thought of as a compression standard, but it is really

much more than that.

14.7.2.1 MPEG

The MPEG standard has been developed by the Moving Picture Experts Group, a working group convened

by the International Standards Organization (ISO) and the International Electro-technical Commission (IEC)

to create standards for digital representation of moving pictures and associated audio and other data.

MPEG1 and MPEG2 are the current standards.

182

14.7.2.2 DVI/Indeo

DVI is a property, programmable compression/decompression technology based on the Intel i750 chip set.

This hardware consists of two VLSI (Very Large Scale Integrated) chips to separate the image processing

and display functions.

Two levels of compression and decompression are provided by DVI: Production Level Video (PLV) and

Real Time Video (RTV). PLV and RTV both use variable compression rates. DVI’s algorithms can compress

video images at ratios between 80:1 and 160:1. DVI will play back video in full-frame size and in full color

at 30 frames per second.

14.7.2.3 Optimizing Video Files for CD-ROM

CD-ROMs provide an excellent distribution medium for computer-based video: they are inexpensive to

mass produce, and they can store great quantities of information. CDROM players offer slow data transfer

rates, but adequate video transfer can be achieved by taking care to properly prepare your digital video

files.

• Limit the amount of synchronization required between the video and audio. With Microsoft’s AVI

files, the audio and video data are already interleaved, so this is not a necessity, but with QuickTime

files, you should “flatten” your movie. Flattening means you interleave the audio and video segments

together.

• Use regularly spaced key frames, 10 to 15 frames apart, and temporal compression can correct for

seek time delays. Seek time is how long it takes the CD-ROM player to locate specific data on the

CD-ROM disc. Even fast 56x drives must spin up, causing some delay (and occasionally substantial

noise).

• The size of the video window and the frame rate you specify dramatically affect performance. In

QuickTime, 20 frames per second played in a 160X120-pixel window is equivalent to playing 10

frames per second in a 320X240 window.

14.8 Requirements of Multimedia Kernels

We refer to a multimedia environment, consisting of workstations and servers connected by a network

dealing with video and audio streams. These streams require Real Time (RT) handling. Fortunately

the requirements are not so demanding as those in Hard Real Time (HRT) systems. Therefore resources

are easier to obtain and less restrictive in use. This implies a more relaxed behavior of workstation

kernels with respect to timeliness and opens the possibility of having a better average use of resources.

Such a kernel may (1) respond in an opportunistic way by serving the most demanding process

immediately and not caring about the others or it may (2) make flexible Quality of Service (QoS)

contracts with applications. In case of emergency it should be possible to break a contract. Both types

of kernels are considered and (dis)advantages are compared.

We will consider two types of RT kernels:

• Opportunistic kernel

• Contract kernel

183

Sometimes these kernels are also referred to as dynamic or static respectively. In a dynamic kernel no

information about the arrival of tasks is known a priory. Therefore the scheduling decisions have to be made

at the moment a task arrives. In a static kernel however, arrival times and resource usage are known a

priori. So the scheduling decisions can be done off-line. We will give an overview of both kernel types and

will compare the advantages and disadvantages.

14.8.1 The Opportunistic Kernel

In the opportunistic kernel we think of a workstation with a RT kernel that will adapt itself to the immediate

needs of the system as well as possible. The kernel has no knowledge about the behavior of its environment

in the future. It simply serves the most important process until this process has completed or until a more

important process is requesting service. Therefore the kernel is called opportunistic.

In the opportunistic kernel jobs will arrive without a priori knowledge. These are scheduled according to a

priority. This priority is typically derived from parameters as used in classical scheduling policies such as

Static Priority Scheduling, Shortest Process Time, Shortest Slack Time (elapsed time minus its estimated

completion time) or Earliest Deadline First. Among others Liu and Layland proved that a given set of

processes, scheduled by any satisfying scheduling algorithm, could also be scheduled by a deadline driven

algorithm. Without any precautions these techniques may lead to the phenomenon of priority inversion. This

could happen when a high priority task is blocked for a resource that is held by a low priority task. The latter

may not proceed due to its low priority, thus blocking the high priority task.

Depending on the synchronization policy such as the Fixed Priority Protocol, the Basic Inheritance Protocol,

the Priority Ceiling Protocol or the RT Transaction Protocol (RTTP) a dispatcher assigns processes to the

processor(s).

• The Fixed Priority Protocol generally suffers from priority inversion. The Basic Inheritance Protocol,

the Priority Ceiling Protocol and the RT Transaction Protocol provide methods to avoid priority

inversion.

• The Basic Inheritance Protocol does this by inheritance of priority. Low priority processes, owning

shared resources that are also requested by high priority processes, inherit the high priority from the

waiting processes. A primary disadvantage of this scheme is the impossibility of avoiding transitive

waiting.

• The Priority Ceiling Protocol avoids priority inheritance and also transitive waiting. The basic idea is

to make way for high priority jobs, even if it is not certain that they will become active. The rule is

that a medium priority job may not pre-empt a low priority job if the low priority job holds resources

that could be claimed by a high priority job. The priority ceiling associated with a resource is the

highest priority of a job that ever can claim this resource

14.8.2 The Contract Kernel

In the contract kernel a distributed application tries to establish a contract between several parties, such as

a producer (workstation), a network and a consumer (workstation). Of course this can be extended to a

client/server environment. The network is typically an Asynchronous Transfer Mode (ATM) network. Such

a network can give some statistical guarantee of bandwidth and it can support RT behavior under the

assumption that both end systems keep to the contract. The service required by the network is specified by

QoS requirements such as bandwidth, delay, jitter and error rate. However, it might happen that some

thrashing still occurs occasionally. In this type of network HRT guarantees cannot be given. For multimedia

application this is not necessary, as we have indicated already in the introduction.

184

For the periodic processes we can estimate the future needs of processor time and resource usage. A

rational technique would be to compute a schedule at the time a contract is made. However, sporadic

unexpected events might make it difficult to keep to this schedule. This requires some extra adaptability

of our kernel. We might have to push the processor beyond the average agreed values in the contract.

This certainly does not mean that the schedulability criteria of Liu and Layland are not valid any

more. On the contrary, their Rate Monotonic algorithm is still very useful and it can give an easy first

hand impression for admission control of a task.

14.9 CPU Scheduling

In computer science, scheduling is the method by which threads, processes or data flows are given access

to system resources (e.g. processor time, communications bandwidth). This is usually done to load balance

a system effectively or achieve a target quality of service. The need for a scheduling algorithm arises from

the requirement for most modern systems to perform multitasking (execute more than one process at a time)

and multiplexing (transmit multiple flows simultaneously).

The scheduler is concerned mainly with:

• Throughput - The total number of processes that complete their execution per time unit.

• Latency, specifically:

o Turnaround time - total time between submission of a process and its completion.

o Response time - amount of time it takes from when a request was submitted until the

first response is produced.

• Fairness / Waiting Time - Equal CPU time to each process (or more generally appropriate

times according to each process’ priority). It is the time for which the process remains in the

ready queue.

In practice, these goals often conflict (e.g. throughput versus latency), thus a scheduler will implement

a suitable compromise. Preference is given to any one of the above mentioned concerns depending

upon the user’s needs and objectives.

In real-time environments, such as embedded systems for automatic control in industry (for example

robotics), the scheduler also must ensure that processes can meet deadlines; this is crucial for keeping

the system stable. Scheduled tasks are sent to mobile devices and managed through an administrative

back end.

14.9.1 Scheduling Disciplines

Scheduling disciplines are algorithms used for distributing resources among parties which simultaneously

and asynchronously request them. Scheduling disciplines are used in routers (to handle packet traffic) as

well as in operating systems (to share CPU time among both threads and processes), disk drives (I/O

scheduling), printers (print spooler), most embedded systems, etc.

The main purposes of scheduling algorithms are to minimize resource starvation and to ensure fairness

amongst the parties utilizing the resources. Scheduling deals with the problem of deciding which of

the outstanding requests is to be allocated resources. There are many different scheduling algorithms.

In this section, we introduce several of them.

In packet-switched computer networks and other statistical multiplexing, the notion of a scheduling

algorithm is used as an alternative to first-come first-served queuing of data packets.

185

14.9.1.1 FIFO

FIFO is an acronym for First In, First Out, which is an abstraction related to ways of organizing and

manipulation of data relative to time and prioritization. This expression describes the principle of a

queue processing technique or servicing conflicting demands by ordering process by first-come, first-

served (FCFS) behavior: where the persons leave the queue in the order they arrive, or waiting one’s

turn at a traffic control signal.

FCFS is also the jargon term for the FIFO operating system scheduling algorithm, which gives every

process CPU time in the order they come. In the broader sense, the abstraction LIFO, or Last-In-First-

Out is the opposite of the abstraction FIFO organization. The difference perhaps is clearest with

considering the less commonly used synonym of LIFO, FILO (meaning First-In-Last-Out). In essence,

both are specific cases of a more generalized list (which could be accessed anywhere). The difference is not

in the list (data), but in the rules for accessing the content. One sub-type adds to one end, and takes off from

the other, its opposite takes and puts things only on one end

Algorithm:

• Since context switches only occur upon process termination, and no reorganization of the process

queue is required, scheduling overhead is minimal.

• Throughput can be low, since long processes can hog the CPU

• Turnaround time, waiting time and response time can be high for the same reasons above

• No prioritization occurs, thus this system has trouble meeting process deadlines.

• The lack of prioritization means that as long as every process eventually completes, there is

no starvation. In an environment where some processes might not complete, there can be

starvation.

• It is based on Queuing

186

14.9.1.2 Shortest Remaining Time

Shortest remaining time, also known as shortest remaining time first (SRTF), is a scheduling method

that is a preemptive version of shortest job next scheduling. In this scheduling algorithm, the process with the

smallest amount of time remaining until completion is selected to execute. Since the currently executing

process is the one with the shortest amount of time remaining by definition, and since that time should only

reduce as execution progresses, processes will always run until they complete or a new process is added

that requires a smaller amount of time.

Shortest remaining time is advantageous because short processes are handled very quickly. The system also

requires very little overhead since it only makes a decision when a process completes or a new process is

added, and when a new process is added the algorithm only needs to compare the currently executing

process with the new process, ignoring all other processes currently waiting to execute

Algorithm:

With this strategy the scheduler arranges processes with the least estimated processing time remaining to be

next in the queue. This requires advanced knowledge or estimations about the time required for a process

to complete.

• If a shorter process arrives during another process’ execution, the currently running process

may be interrupted (known as preemption), dividing that process into two separate computing

blocks. This creates excess overhead through additional context switching. The scheduler

must also place each incoming process into a specific place in the queue, creating additional

overhead.

• This algorithm is designed for maximum throughput in most scenarios.

• Waiting time and response time increase as the process’ computational requirements increase.

Since turnaround time is based on waiting time plus processing time, longer processes are

significantly affected by this. Overall waiting time is smaller than FIFO, however since no

process has to wait for the termination of the longest process.

• No particular attention is given to deadlines, the programmer can only attempt to make processes

with deadlines as short as possible.

• Starvation is possible, especially in a busy system with many small processes being run.

187

14.9.1.3 Fixed Priority Pre-emptive Scheduling

Fixed-priority pre-emptive scheduling is a scheduling system commonly used in real-time systems. With

fixed priority pre-emptive scheduling, the scheduler ensures that at any given time, the processor executes

the highest priority task of all those tasks that are currently ready to execute.

The pre-emptive scheduler has a clock interrupt task that can provide the scheduler with options to switch

after the task has had a given period—the time slice. This scheduler system has the advantage of making

sure no task hogs the processor for any time longer than the time slice. However this scheduling scheme also

has the downfall of process or thread lockout, as priority is given to higher priority tasks the lower priority

tasks could wait an indefinite amount of time. One common method of arbitrating this situation is the use of

aging. Aging will slowly increment a process/thread(s) priority which is in the wait queue to ensure some

degree of fairness. Most Real-time operating systems (RTOSs) have pre-emptive schedulers. Also turning

off time slicing effectively gives you the non-pre-emptive RTOS.

Algorithm:

The OS assigns a fixed priority rank to every process, and the scheduler arranges the processes in the ready

queue in order of their priority. Lower priority processes get interrupted by incoming higher priority processes.

• Overhead is not minimal, nor is it significant.

• FPPS has no particular advantage in terms of throughput over FIFO scheduling.

• Waiting time and response time depend on the priority of the process. Higher priority processes

have smaller waiting and response times.

• Deadlines can be met by giving processes with deadlines a higher priority.

• Starvation of lower priority processes is possible with large amounts of high priority processes

queuing for CPU time.

14.9.1.4 Round-robin Scheduling

In order to schedule processes fairly, a round-robin scheduler generally employs time-sharing, giving each

job a time slot or quantum (its allowance of CPU time), and interrupting the job if it is not completed by

then. The job is resumed next time a time slot is assigned to that process. In the absence of time-sharing, or

if the quanta were large relative to the sizes of the jobs, a process that produced large jobs would be

favoured over other processes.

Example: If the time slot is 100 milliseconds, and job1 takes a total time of 250 ms to complete, the round-

robin scheduler will suspend the job after 100 ms and give other jobs their time on the CPU. Once the other

jobs have had their equal share (100 ms each), job1 will get another allocation of CPU time and the cycle

will repeat. This process continues until the job finishes and needs no more time on the CPU.

188

Algorithm:

The scheduler assigns a fixed time unit per process, and cycles through them.

• RR scheduling involves extensive overhead, especially with a small time unit.

• Balanced throughput between FCFS and SJF, shorter jobs are completed faster than in FCFS and

longer processes are completed faster than in SJF.

• Poor average response time, waiting time is dependent on number of processes, and not average

process length.

• Because of high waiting times, deadlines are rarely met in a pure RR system.

• Starvation can never occur, since no priority is given. Order of time unit allocation is based

upon process arrival time, similar to FCFS.

14.10 Disk Scheduling

As we know that on a single computer we can perform many operations at a time so that management is

also necessary on all the running processes those are running on the system at a time. With the help or

advent of the multi-programming we can execute many programs at a time. So far controlling and providing

the memory to all the processes operating system uses the concept of disk scheduling.

In this the time of cpu is divided into the various processes and also determines that all the processes will

work properly. So that disk scheduling will specifies that at which time which process will be executed by

the cpu. So that the scheduling means to execute all the processes those are given to a cpu at a time. The

scheduling is used for divide the total time of the cpu between the number or processes so that the processes

can execute concurrently at a single time. For sharing the time or for dividing the total time of the cpu, the

cpu uses the following the scheduling techniques.

14.10.1 FCFS or First Come First Serve

In this jobs or processes are executed in the manner in which they are entered into the computer. In this

operating system creates a queue which contains the sequence order in which they are to be executed

and the sequence in which the cpu will execute the process.. In this all the jobs are performed according

to their sequence order as they have entered. In this the job which had requested first will firstly

performed by the cpu. And the jobs those are entered later will be executed in to their entering order.

14.10.2 SSTF or Shortest Seek Time First

In this technique the operating system will search for the shortest time means this will search which job will

takes a less time of cpu for running. And after examining all the jobs, all the jobs are arranged in the

sequence wise or they are organized into the priority order. The priority of the process will be the total time

which a process will use for execution. The shortest seek time will include all the time means time to enter

and time to completion of the process.

14.10.3 C-scan Scheduling

In the c-scan all the processes are arranged by using some circular list. Circular list is that in which there is

no start and end point of the list means the end of the list is the starting point of the list. In the c-scan

scheduling the cpu will search for the process from start to end and if an end has found then this again start

from the starting process. Because many times when a cpu is executing the processes then may a user wants

189

to enter some data means a user wants to enter some data so that at that situation the cpu will again execute

that process after the input operation. So that c-scan scheduling is used for processing same processes

again and again.

14.10.4 Look Scheduling

In the look scheduling the cpu scans the list from starting to end of the disk in which the various processes

are running and in the look scheduling the cpu will scan the entire disk from one end to the second end.

14.10.5 Round Robin

In the round robin scheduling the time of cpu is divided into the equal numbers which is also called as

quantum time. Each process which is request for execution will consumes the equal number of times of the

cpu and after the quantum time of first process, the cpu will automatically goes to the next process. But the

main problem is that after the completion of the process the time will also be consumed by the process.

Means if a process either or not have some operations to perform the time of cpu will also be consume by

the cpu , so this is the wastage of the time of the cpu.

14.10.6 Priority Scheduling

In this each process have some priorities assign to them, means each and every process will be examined by

using the total time which will be consumed by the process. The total time of the process, and number of

times a process needs some input and output and number of resources will be examines to set the priorities

of the processes. So that all the processes are arranged into the form of these criteria’s and after that they

will be processed by the cpu.

14.10.7 Multilevel Queue

The multilevel queue is used when there are multiple queues for the various different processes as we know

that there are many different types of works those are to be performed on the computers at a time. So that

for organizing the various or different types of queues the cpu maintains the queues by using this technique.

In this all the queues are collected and organized in the form of some functions which they are requesting to

perform. So that the various types of queues are maintained this contains all the processes which have same

type.

Example:

190

14.11 Network Management

Network management refers to the activities, methods, procedures, and tools that pertain to the operation,

administration, maintenance, and provisioning of networked systems.

• Operation deals with keeping the network (and the services that the network provides) up and

running smoothly. It includes monitoring the network to spot problems as soon as possible,

ideally before users are affected.

• Administration deals with keeping track of resources in the network and how they are assigned. It

includes all the “housekeeping” that is necessary to keep the network under control.

• Maintenance is concerned with performing repairs and upgrades—for example, when equipment

must be replaced, when a router needs a patch for an operating system image, when a new

switch is added to a network. Maintenance also involves corrective and preventive measures to

make the managed network run “better”, such as adjusting device configuration parameters.

191

• Provisioning is concerned with configuring resources in the network to support a given service. For

example, this might include setting up the network so that a new customer can receive voice service.

A common way of characterizing network management functions is FCAPS—Fault, Configuration,

Accounting, Performance and Security.

Functions that are performed as part of network management accordingly include controlling, planning,

allocating, deploying, coordinating, and monitoring the resources of a network, network planning, frequency

allocation, predetermined traffic routing to support load balancing, cryptographic key distribution authorization,

configuration management, fault management, security management, performance management, bandwidth

management, Route analytics and accounting management.

 Data for network management is collected through several mechanisms, including agents installed on

infrastructure, synthetic monitoring that simulates transactions, logs of activity, sniffers and real user

monitoring. In the past network management mainly consisted of monitoring whether devices were up or

down; today performance management has become a crucial part of the IT team’s role which brings about

a host of challenges—especially for global organizations.

 A small number of accessories methods exist to support network and network device management. Access

methods include the SNMP, command-line interface (CLIs), custom XML, CMIP, Windows Management

Instrumentation (WMI), Transaction Language 1, CORBA, NETCONF, and the Java Management

Extensions (JMX). Internet service providers (ISP) use a technology known as deep packet inspection in

order to regulate network congestion and lessen Internet bottlenecks.

Schemas include the WBEM, the Common Information Model, and MTOSI amongst others.

Medical Service Providers provide a niche marketing utility for managed service providers; as HIPAA

legislation consistently increases demands for knowledgeable providers. Medical Service Providers

are liable for the protection of their clients confidential information, including in an electronic realm.

This liability creates a significant need for managed service providers who can provide secure

infrastructure for transportation of medical data.

14.12 Summary

• Multimedia is a woven combination of text, audio, video, images and animation.

• Multimedia systems finds a wide variety of applications in different areas such as education,

entertainment etc.

• The categories of multimedia are linear and non-linear.

• The stages for multimedia application development are Planning and costing, designing and producing,

testing and delivery.

• Compression is to reduce size of image or video for better multimedia experience.

• Multimedia kernel performs real Time (RT) handling of streaming.

• Scheduling is the method by which threads, processes or data flows are given access to system

resources

• Scheduling disciplines are algorithms used for distributing resources among parties which

simultaneously and asynchronously request them

192

• The disk scheduling is used for divide the total time of the cpu between the number or processes so

that the processes can execute concurrently at a single time

• Network management refers to the activities, methods, procedures, and tools that pertain to the

operation, administration, maintenance, and provisioning of networked systems

14.13 Self - Assessment Exercise

1. List five applications of multimedia?

2. Five batch jobs A through E arrive at the system at almost the same time and form a queue of A,B,

C, D, E. They have estimated running time of 10, 6, 2, 4 and 8 minutes respectively. Suppose that

RR is used to schedule them. What is the turnaround time for C process? What is the turnaround

time for D process?

3. What is Multimedia Kernel? List its requirements.

4. What is compression?

5. Explain what do you mean by Image compression and video compression?

6. What do you mean by Scheduling?

7. What is CP scheduling? State and explain the algorithms.

8. What is disk scheduling? State and explain the algorithms

9. What do you mean by Network management? Explain.

14.14 References

• Multimedia Making it work” By Tay Vaughan

• “Multimedia in Practice – Technology and applications” By Jeffcoat

• Mullender S.J., Leslie I.M., McAuly D. “Operating Support for Distributed Multimedia”,

Proceedings of Summer Usenix Conference, Boston MA, June 1994.

• Hopper A.: “Pandora, an experimental system for multimedia applications”, ACM Operating

Systems Review, 24 (2), April 1990, pp. 19-34.

• Massalin H.: “Synthesis: An efficient implementation of fundamental operating system

services”, Ph.D. Thesis, Columbia University, 1992.

• Hyden E.A.: “Operating System Support for Quality of Service”, Ph.D. Thesis, University of

Cambridge, Febr. 1994.

• Liu C.L., Layland J.W.: “Scheduling algorithms for multi-processing in a hard-real-time

environment”, J.Ass. Comput. Mach., Vol. 20, Jan. 1973, pp. 46-61

• A. Clemm: Network Management Fundamentals. CiscoPress, 2006

• Fingerpointing, Frustrated Network Engineers, and the Application Performance Blame Game

193

Unit - 15 : Windows Operating System - A Case Study

Structure of Unit

15.0 Objective

15.1 Introduction

15.1.1 32-Bit vs. 64-Bit

15.1.2 Windows 7 Architecture

15.1.3 Key Diagnostics Areas in Windows 7

15.2 Windows File System

15.2.1 Microsoft Windows

15.3 FAT

15.4 NTFS

15.4.1 Internals

15.4.2 Limitations

15.4.3 Comparison Between NTFS and FAT

15.4.4 Some Random Facts

15.4.5 NTFS or FAT?

15.5 More Detailed Comparison

15.6 Summary

15.7 Self - Assessment Exercise

15.8 References

15.0 Objective

In this lesson we will look inside what windows operating system is made up of. We will take a sneak peak

at the windows architecture in general. We will also see what do we mean by Windows file system. We will

then read about FAT and NTFS systems and there comparative analysis.

15.1 Introduction

Windows 7 is built on the Windows Vista core, but Windows 7 has limited the files that load at startup to

help with the core performance of the operating system. They have also removed many of the fluff items that

Windows Vista used, thus allowing for better performance. When Microsoft first released Windows 7 as a

beta, there was a 64-bit version but no 32-bit version. This did not go over well with the Internet bloggers.

I even saw a petition online to have a 32-bit version released. The funny thing is that I also saw a petition

asking Microsoft not to release a 32-bit version. The logic behind this was it would force users and

manufacturers to upgrade everything to 64-bit. Well, Microsoft has released Windows 7 as both a 32-bit

and a 64-bit version.

Microsoft could not just release a 64-bit version of Windows 7. This would alienate many

users with 32-bit computer systems, and it would cost Microsoft a large share of the client-side software

market. Users already have to deal with the PC vs. Mac commercials! So Windows 7 users have a choice

of either 32-bit or 64-bit.

Before going into the architecture in detail, let’s see what we mean by 32-bit and 64-bit

194

15.1.1 32-Bit vs. 64-Bit

When you hear the terms 32-bit and 64-bit, this is referring to the CPU or processor. The number represents

how the data is processed. It is processed either as 2 ̂ 32 or as 2 ̂ 64. The larger the number, the larger the

amount of data that can be processed at any one time. Think of a large highway that has 32 lanes. Vehicles

can travel on those 32 lanes only. When traffic gets backed up, they can only use these lanes, and this can

cause traffic delays. But now think of a 64-lane highway and how many more vehicles can travel on that

highway. This is an easy way of thinking of how 32-bit and 64-bit processors operate. The problem here is

that if you have a 32-lane highway, you can’t just set up 64 vehicles on this highway and let them go. You

need to have the infrastructure to allow for 64 vehicles by having 64 lanes. This is the same with computers.

Your computer has to be configured to allow you to run a 64-bit processor. So what does all of this mean

to the common user or administrator? Well, it’s all about RAM. A 32-bit operating system can handle up to

4 GB of RAM and a 64-bit processor can.

15.1.2 Windows 7 Architecture

If you want to truly know how Windows 7 works and what makes it tick, you need to dig under the hood.

Windows 7 doesn’t boot from an initialization file. Instead, the operating system uses the Windows boot

manager to initialize and start the operating system.

The boot environment dramatically changes the way the operating system starts. The boot environment was

created by Microsoft to resolve several prickly problems related to boot integrity, operating system integrity,

and firmware abstraction. The boot environment is loaded prior to the operating system, making it a pre

operating system environment. As such, the boot environment can be used to validate the integrity of the

startup process and the operating system itself before actually starting the operating system.

The boot environment is an extensible abstraction layer that allows the operating system to work with

multiple types of firmware interfaces without requiring the operating system to be specifically written

to work with these firmware interfaces. Rather than updating the operating system each time a new

firmware interface is developed, firmware interface developers can use the standard programming

interfaces of the boot environment to allow the operating system to communicate as necessary through

the firmware interfaces.

Firmware interface abstraction is the first secret ingredient that makes it possible for Windows 7 to

work with BIOS-based and EFI-based computers in exactly the same way, and this is one of the

primary reasons Windows 7 achieves hardware independence..

The next secret ingredient for Windows 7 hardware independence is Windows Imaging Format (WIM).

Microsoft distributes Windows 7 on media using WIM disk images. WIM uses compression and

single-instance storage to dramatically reduce the size of image files. Using compression reduces the

size of the image in much the same way that Zip compression reduces the size of files. Using single-

instance storage reduces the size of the image because only one physical copy of a file is stored for

each instance of that file in the disk image.

Because WIM is hardware independent, Microsoft can use a single binary for each supported

architecture:

• One binary for 32-bit architectures

195

• One binary for 64-bit architectures

• One binary for Itanium architectures

The final secret ingredient for Windows 7 hardware independence is modularization. Windows 7 uses

modular component design so that each component of the operating system is defined as a separate

independent unit or module. Because modules can contain other modules, various major features of

the operating system can be grouped together and described independently of other major features.

Because modules are independent from each other, modules can be swapped in or out to customize the

operating system environment.

Windows 7 includes extensive support architecture. At the heart of this architecture is built-in

diagnostics and troubleshooting. Microsoft designed built-in diagnostics and troubleshooting to be

self-correcting and self-diagnosing, and failing that, to provide guidance while you are diagnosing

problems.

Windows 7 includes network awareness and network discovery features. Network awareness tracks

changes in network configuration and connectivity. Network discovery controls a computer’s ability

to detect other computers and devices on a network.

Network awareness allows Windows 7 to detect the current network configuration and connectivity

status, which is important because many networking and security settings depend on the type of network

to which a computer running Windows 7 is connected. Windows 7 has separate network configurations

for domain networks, private networks, and public networks and is able to detect:

• When you change a network connection

• Whether the computer has a connection to the Internet

• Whether the computer can connect to the corporate network over the Internet

Unlike all earlier versions of Windows, Windows Firewall in Windows 7 supports connectivity to

multiple networks simultaneously and multiple active firewall profiles. Because of this, the active

firewall profile for a connection depends on the type of connection.

If you disconnect a computer from one network switch or hub and plug it into a new network switch or

hub, you might inadvertently cause the computer to think it is on a different network, and depending on

Group Policy configuration, this could cause the computer to enter a lockdown state in which additional

network security settings are applied. As shown in figure, you can view the network connection status

in the Network and Sharing Center. In Control Panel, under Network and Internet, click Network and

Sharing Center to access this management console.

Windows 7 tracks the identification status of all networks to which the computer has been connected.

When Windows 7 is in the process of identifying a network, the Network and Sharing Center shows

the Identifying Networks state. This is a temporary state for a network that is being identified. After

Windows 7 identifies a network, the network becomes an Identified Network and is listed by its

network or domain name in the Network and Sharing Center.

196

If Windows 7 is unable to identify the network, the network is listed with the Unidentified Network status in

the Network and Sharing Center. In Group Policy, you can set default location types and user permissions

for each network state, as well as for all networks, by using the policies for Computer Configuration under

Windows Settings\Security Settings\Network List Manager Policies.

When you are working with the Network And Sharing Center, you can attempt to diagnose a warning status

by using Windows Network Diagnostics—another key component of the diagnostics and troubleshooting

framework. To start diagnostics, click the warning icon in the network map or click Troubleshoot Problems,

and then click Internet Connections. Windows Network Diagnostics then attempts to identify the network

problem and provide a possible solution.

The Windows diagnostics and troubleshooting infrastructure offers improved diagnostics guidance, additional

error reporting details, expanded event logging, and extensive recovery policies. Although Windows XP

and earlier versions of Windows include some help and diagnostics features, those features are, for the most

part, not self-correcting or self-diagnosing. Windows 7, on the other hand, can detect many types of hardware,

memory, and performance issues and resolve them automatically or help users through the process of

resolving them.

As shown below, Windows diagnostics and troubleshooting features are divided into 15 broad diagnostics

areas. In Group Policy, you can configure how these features work by using the Administrative Templates

policies for Computer Configuration under System\Troubleshooting and Diagnostics.

197

15.1.3 Key Diagnostics Areas in Windows 7

DIAGNOSTIC

AREA
DESCRIPTION REQUIREMENTS

Application
compatibility

Supports the Program Compatibility Assistant
(PCA) for diagnosing drivers blocked due to
compatibility issues. PCA can detect failures
caused by applications trying to load legacy
Windows DLLs or trying to create COM objects
that have been removed by Microsoft. PCA can
detect several types of application installation
failures. These installation failures can be related
to applications that do not have privileges to run as
an administrator but must be installed with
elevated privileges as well as applications that fail
to launch child processes that require elevation. In
this case, PCA provides you with the option to
restart the installer or the update process as an
administrator.

Diagnostic Policy
Service, Program
Compatibility Assistant
Service

Boot

performance

Supports automatic detection and troubleshooting

of issues that affect boot performance. Root causes

of boot performance issues are logged to the event

logs. Can also assist you in resolving related

issues.

Diagnostic Policy

Service

Corrupted file

recovery

Supports automatic detection, troubleshooting, and

recovery of corrupted files. If Windows detects

that an important operating system file is

corrupted, Windows attempts notification and

recovery, which requires a restart in most cases for

full resolution.

Diagnostic Policy

Service

External support

Supports the Microsoft Support Diagnostic Tool

(MSDT) for collecting and sending diagnostic data

to a support professional to resolve a problem.

Msdt.exe is stored in the

%SystemRoot%\System32 folder and through

policy settings can be configured for local and

remote troubleshooting or remote troubleshooting

only.

Diagnostic Policy

Service

Fault-tolerant

heap

Supports automatic detection and correction of

common memory management issues related to

the heap used by the operating system.

Diagnostic Policy

Service

Memory leak

Supports automatic detection and troubleshooting

of memory leak issues. A memory leak occurs if

an application or system component doesn't

completely free areas of physical memory after it

is done with them.

Diagnostic Policy

Service

198

DIAGNOSTIC AREA DESCRIPTION

MSI corrupted file recovery

Supports automatic detection, troubleshooting, and

recovery of corrupted MSI applications. If

Windows detects that application files are

corrupted, Windows attempts notification and

recovery.

Performance PerfTrack

Supports automated tracking and reporting of

responsiveness events to Microsoft's Software

Quality Management (SQM) team.

Resource exhaustion

Supports automatic detection and troubleshooting

to resolve issues related to running out of virtual

memory. Can also alert you if the computer is

running low on virtual memory and identify the

processes consuming the largest amount of

memory, allowing you to close any or all of these

high-resource-consuming applications directly

from the Close Programs To Prevent Information

Loss dialog box. An alert is also logged in the

event log.

Scheduled maintenance

Supports diagnostics that run periodically via the

Task Scheduler to detect and resolve system

problems.

Scripted diagnostics

Supports Action Center and controls whether users

can access troubleshooting content and

troubleshooting tools.

Shutdown performance

Supports automatic detection and troubleshooting

of issues that affect shutdown performance. Root

causes of shutdown performance issues are logged

to the event logs. Can also assist you in resolving

related issues.

Standby/resume performance

Supports automatic detection and troubleshooting

of issues that affect standby/resume performance

on desktop computers. Root causes of

standby/resume performance issues are logged to

the event logs. Can also assist you in resolving

related issues.

System responsiveness

Supports automatic detection and troubleshooting

of issues that affect the overall responsiveness of

the operating system. Root causes of

responsiveness issues are logged to the event logs.

Can also assist you in resolving related issues.

199

Other diagnostics features of Windows 7 include:

• Restart Manager

• Action Center and troubleshooters

• Startup Repair tool

• Performance Diagnostics console

• Windows Memory Diagnostics

In Windows XP and earlier versions of Windows, an application crash or hang is marked as Not

Responding, and it is up to the user to exit and then restart the application. Windows 7 attempts to

automatically resolve the issues related to unresponsive applications by using Restart Manager. Restart

Manager can shut down and restart unresponsive applications automatically. In many cases, this means

that you may not have to intervene to try to resolve issues with frozen applications.

A failed installation and nonresponsive conditions of applications and drivers are also tracked through

Action Center. Should such an event occur, the Action Center notification icon will show a red circle

with an X through it. If you click the notification icon, Windows 7 displays a summary report of

current issues. As discussed previously, you can click the link provided to open a possible solution or

to get more information. If these processes fail, access the Action Center main window and then scroll

down to display the Troubleshooting and Recovery links.

Clicking Troubleshooting opens the Troubleshooting window. As shown in figure above, several

troubleshooters are provided. These troubleshooters can help users quickly resolve common problems

without requiring administrator support. The troubleshooters include:

• Programs for compatibility issues with applications designed for earlier versions of Windows.

• Hardware And Sound for issues with hardware devices, audio recording, and audio playback.

• Network And Internet for issues with connecting to networks and accessing shared folders on

other computers.

200

• Appearance And Personalization for issues with the display appearance and personalization settings.

To quickly resolve display issues with Aero, click Display Aero Desktop Effects.

• System And Security for issues with Windows Update, power usage, and performance. Click Run

Maintenance Tasks to clean up unused files and shortcuts and perform other routine maintenance

tasks.

To resolve startup problems, Windows 7 uses the Startup Repair tool (StR), which is installed automatically

and started when a system fails to boot. After it is started, StR attempts to determine the cause of the startup

failure by analyzing startup logs and error reports. Then StR attempts to fix the problem automatically. If

StR is unable to resolve the problem, it restores the system to the last known working state and then

provides diagnostic information and support options for further troubleshooting.

Startup Repair performs many tests during diagnostics and troubleshooting. These tests can take anywhere

from 5 to 30 minutes or more depending on the configured hardware, and they include these specific tests:

• Check for updates determine whether newly applied updates are affecting startup.

• System disk test determines whether there is a problem with the system disk that is preventing

startup. If so, StR can attempt to repair any missing or corrupt files.

• Disk failure diagnosis Determines whether any of the configured disks have failed.

• Disk metadata test determines whether any of the available disks have a problem with their

metadata that is preventing startup. The metadata associated with a disk depends on how a

disk is partitioned and the file system format of disk partitions.

• Target OS test Determines whether the operating system you are attempting to start has a

specific issue that is preventing startup.

• Volume content check examines the content of disk volumes to ensure that volumes are

accessible.

• Boot manager diagnosis Determines whether there is a problem with the boot manager or boot

manager entries that are preventing startup.

• System boot log diagnosis Examines system boot log entries from previous startups to see if

there are specific errors that might be related to the startup issue.

• Event log diagnosis Examines event log entries to see if there are specific errors that might be

related to the startup issue.

• Internal state check Checks the current internal state of the preboot environment.

• Boot status test Checks the current boot status in the preboot environment.

• Setup state check Determines whether the computer is in a setup state.

• Registry hives test Checks the computer’s registry hives.

• Windows boot log diagnosis Examines the Windows boot log entries to see if there are specific

errors that might be related to the startup issue.

• Bug check analysis performs a basic bug check analysis of the operating system.

• Access control test determines whether access controls in the preboot environment are preventing

startup of the operating system.

201

• File system test (chkdsk) performs a basic file system test using Chkdsk.

• Software install log diagnosis Examines software installation log entries to see if there are specific

errors that might be related to the startup issue.

• Fallback diagnosis determines whether any flags have been set that indicate the computer should

fall back to a previous state to correct the startup issue. If so, StR will attempt to restore the

previous state.

Error detection for devices and failure detection for disk drives also is automated. If a device is having

problems, hardware diagnostics can detect error conditions and either repair the problem automatically or

guide the user through a recovery process. With disk drives, hardware diagnostics can use fault reports

provided by disk drives to detect potential failure and alert you before this happens. Hardware diagnostics

can also help guide you through the backup process after alerting you that a disk might be failing.

Windows 7 can automatically detect performance issues, which include slow application startup, slow boot,

slow standby/resume, and slow shutdown. If a computer is experiencing degraded performance, Windows

diagnostics can detect the problem and provide possible solutions. For advanced performance issues, you

can track related performance and reliability data in the Performance Monitor console, which can be opened

from the Administrative Tools menu.

Windows 7 can also detect issues related to memory leaks and failing memory. If you suspect that a computer

has a memory problem that is not being automatically detected, you can run Windows Memory Diagnostics

manually by completing the following steps:

1. Click Start, type mdsched.exe in the Search box, and then press Enter.

2. Choose whether to restart the computer and run the tool immediately or schedule the tool to run at

the next restart.

3. Windows Memory Diagnostics runs automatically after the computer restarts and performs a standard

memory test. If you want to perform fewer or more tests, press F1, use the Up and Down Arrow

keys to set the Test Mix as Basic, Standard, or Extended, and then press F10 to apply the desired

settings and resume testing.

4. When testing is completed, the computer restarts. You’ll see the test results when you log on.

If a computer crashes because of failing memory and Memory Diagnostics detects this, you are prompted

to schedule a memory test the next time the computer is started.

15.2 Windows File System

A file system (or filesystem) is a means to organize data expected to be retained after a program

terminates by providing procedures to store, retrieve and update data as well as manage the available

space on the device(s) which contain it. A file system organizes data in an efficient manner and is

tuned to the specific characteristics of the device. A tight coupling usually exists between the operating

system and the file system. Some file systems provide mechanisms to control access to the data and

metadata. Ensuring reliability is a major responsibility of a file system. Some file systems allow

multiple programs to update the same file at nearly the same time.

File systems are used on data storage devices, such as hard disk drives, floppy disks, optical discs, or flash

memory storage devices, to maintain the physical locations of the computer files. They may provide access

to data on a file server by acting as clients for a network protocol (e.g. NFS, SMB, or 9P clients), or they

202

may be virtual and exist only as an access method for virtual data (e.g. procfs). This is distinguished from a

directory service and registry.

15.2.1 Microsoft Windows

Windows makes use of the FAT, NTFS, exFAT and ReFS file systems (the latter is only supported and

usable in Windows Server 8; Windows cannot boot from it).

Windows uses a drive letter abstraction at the user level to distinguish one disk or partition from

another. For example, the path C:\WINDOWS represents a directory WINDOWS on the partition

represented by the letter C. Drive C: is most commonly used for the primary hard disk partition, on

which Windows is usually installed and from which it boots. This “tradition” has become so firmly

ingrained that bugs came about in older applications which made assumptions that the drive that the

operating system was installed on was C. The use of drive letters, and the tradition of using “C” as the

drive letter for the primary hard disk partition, can be traced to MS-DOS, where the letters A and B

were reserved for up to two floppy disk drives. This in turn derived from CP/M in the 1970s, and

ultimately from IBM’s CP/CMS of 1967.

15.3 FAT

File Allocation Table (FAT) is the name of a computer file system architecture and a family of industry

standard files systems utilizing it.

The FAT file system is a legacy file system which is simple and robust. It offers good performance

even in light-weight implementations, but cannot deliver the same performance, reliability and

scalability as some modern file systems. It is however supported for compatibility reasons by virtually

all existing operating systems for personal computers, and thus is a well-suited format for data exchange

between computers and devices of almost any type and age from the early 1980s up to the present.

Originally designed in the late 1970s for use on floppy disks, it was soon adapted and used almost

universally on hard disks throughout the DOS and Windows 9x eras for two decades. With the

introduction of more powerful computers and operating systems, and the development of more complex file

systems for them, it is no longer the default file system for usage on hard drives by most modern desktop

operating systems.

203

Today, FAT file systems are still commonly found on floppy disks, solid-state memory cards, flash memory

cards, and on many portable and embedded devices. It is also utilized in the boot stage of EFI-compliant

computers.

The name of the file system originates from the file system’s prominent usage of an index table, the FAT,

statically allocated at the time of formatting. The table contains entries for each cluster, a contiguous area of

disk storage. Each entry contains either the number of the next cluster in the file, or else a marker indicating

end of file, unused disk space, or special reserved areas of the disk. The root directory of the disk contains

the number of the first cluster of each file in that directory; the operating system can then traverse the FAT

table, looking up the cluster number of each successive part of the disk file as a cluster chain until the end of

the file is reached. In much the same way, sub-directories are implemented as special files containing the

directory entries of their respective files.

As disk drives have evolved, the maximum number of clusters has significantly increased, and so the number

of bits used to identify each cluster has grown. The successive major versions of the FAT format are named

after the number of table element bits: 12 (FAT12), 16 (FAT16), and 32 (FAT32). Each of these variants is

still in use. The FAT standard has also been expanded in other ways while generally preserving backward

compatibility with existing software.

A FAT file system is composed of four different sections:

• The Reserved sectors, located at the very beginning.

The first reserved sector (logical sector 0) is the Boot Sector (aka Volume Boot Record (VBR)). It includes

an area called the BIOS Parameter Block (with some basic file system information, in particular its type,

and pointers to the location of the other sections) and usually contains the operating system’s boot loader

code.

Important information from the Boot Sector is accessible through an operating system structure called the

Drive Parameter Block (DPB) in DOS and OS/2. The total count of reserved sectors is indicated by a field

inside the Boot Sector, and is usually 32 on FAT32 file systems.

For FAT32 file systems, the reserved sectors include a File System Information Sector at logical sector 1

and a Backup Boot Sector at logical sector 6. While many other vendors have continued to utilize a single-

sector setup (logical sector 0 only) for the bootstrap loader, Microsoft’s boot sector code has grown to

spawn over logical sectors 0 and 2 since the introduction of FAT32, with logical sector 0 depending on sub-

routines in logical sector 2. The Backup Boot Sector area consists of three logical sectors 6, 7, and 8 as

well. In some cases, Microsoft also uses sector 12 of the reserved sectors area for an extended boot

loader.

• The FAT Region.

This typically contains two copies (may vary) of the File Allocation Table for the sake of redundancy

checking, although rarely used, even by disk repair utilities.

These are maps of the Data Region, indicating which clusters are used by files and directories. In FAT12

and FAT16 they immediately follow the reserved sectors. Typically the extra copies are kept in tight

synchronization on writes, and on reads they are only used when errors occur in the first FAT. In FAT32, it

is possible to switch from the default behavior and select a single FAT out of the available ones to be used

for diagnosis purposes.

204

The first two clusters (cluster 0 and 1) in the map contain special values.

• The Root Directory Region.

This is a Directory Table that stores information about the files and directories located in the root directory.

It is only used with FAT12 and FAT16, and imposes on the root directory a fixed maximum size which is

pre-allocated at creation of this volume. FAT32 stores the root directory in the Data Region, along with files

and other directories, allowing it to grow without such a constraint. Thus, for FAT32, the Data Region starts

here.

• The Data Region.

This is where the actual file and directory data is stored and takes up most of the partition. Traditionally, the

unused parts of the data region are initialized with a filler value of 0xF6 as per the INT 1Eh’s Disk Parameter

Table (DPT) during format on IBM compatible machines, but also used on the Atari Portfolio. 8-inch CP/

M floppies typically came pre-formatted with a value of 0xE5; by way of Digital Research this value was

also used on Atari ST formatted floppies. Amstrad used 0xF4 instead. Some modern formatters wipe hard

disks with a value of 0x00, whereas a value of 0xFF, the default value of a non-programmed flash block, is

used on flash disks to reduce wear. The latter value is typically also used on ROM disks. (Some advanced

formating tools allow to configure the format filler byte.)

The size of files and subdirectories can be increased arbitrarily (as long as there are free clusters) by simply

adding more links to the file’s chain in the FAT. Note however, that files are allocated in units of clusters, so

if a 1 KB file resides in a 32 KB cluster, 31 KB are wasted.

FAT32 typically commences the Root Directory Table in cluster number 2: the first cluster of the Data

Region.

FAT uses little-endian format for all entries in the header (except for, where explicitly mentioned, for some

entries on Atari ST boot sectors) and the FAT(s). It is possible to allocate more FAT sectors than necessary

for the number of clusters. The end of the last FAT sector can be unused if there are no corresponding

clusters. The total number of sectors (as noted in the boot record) can be larger than the number of sectors

used by data (clusters × sectors per cluster), FATs (number of FATs × sectors per FAT), and hidden sectors

including the boot sector: this would result in unused sectors at the end of the volume. If a partition contains

more sectors than the total number of sectors occupied by the file system it would also result in unused

sectors at the end of the volume.

15.4 NTFS

NTFS (New Technology File System) is a proprietary file system developed by Microsoft Corporation for

its Windows line of operating systems, beginning with Windows NT 3.1 and Windows 2000, including

Windows XP, Windows Server 2003, and all their successors to date.

 NTFS supersedes the FAT file system as the preferred file system for Microsoft’s Windows operating

systems. NTFS has several improvements over FAT and HPFS (High Performance File System), such as

improved support for metadata, and the use of advanced data structures to improve performance, reliability,

and disk space utilization, plus additional extensions, such as security access control lists (ACL) and file

system journaling.

205

15.4.1 Internals

NTFS filesystem permissions on a Windows Vista system.

In NTFS, all file data—file name, creation date, access permissions (by the use of access control lists), and

contents—are stored as metadata in the Master File Table. This abstract approach allowed easy addition of

file system features during Windows NT’s development—an interesting example is the addition of fields for

indexing used by the Active Directory software.

NTFS allows any sequence of 16-bit values for name encoding (file names, stream names, index names,

etc.). This means UTF-16 codepoints are supported, but the file system does not check whether a sequence

is valid UTF-16 (it allows any sequence of short values, not restricted to those in the Unicode standard).

Internally, NTFS uses B+ trees to index file system data. Although complex to implement, this allows faster

file look up times in most cases. A file system journal is used to guarantee the integrity of the file system

metadata but not individual files’ content. Systems using NTFS are known to have improved reliability

compared to FAT file systems.

The Master File Table (MFT) contains metadata about every file, directory, and metafile on an NTFS

volume. It includes filenames, locations, size, and permissions. Its structure supports algorithms which

minimize disk fragmentation. A directory entry consists of a filename and a “file ID”, which is the

record number representing the file in the Master File Table. The file ID also contains a reuse count to

detect stale references. While this strongly resembles the W_FID of Files-11, other NTFS structures

radically differ.

206

15.4.2 Limitations

The following are a few limitations of NTFS:

• Compression:

The compression algorithms in NTFS are designed to support cluster sizes of up to 4 kB.

When the cluster size is greater than 4 kB on an NTFS volume, NTFS compression is not

available.

• Maximum cluster size:

The maximum cluster size is 64 kB.

• File names:

File names are limited to 255 UTF-16 code points. Certain names are reserved in the

volume root directory and cannot be used for files. These are $MFT, $MFTMirr,

$LogFile, $Volume, $AttrDef, . (dot), $Bitmap, $Boot, $BadClus, $Secure, $Upcase,

and $Extend. (dot) and $Extend are both directories; the others are files. The NT

kernel limits full paths to 32,767 UTF-16 code points.

• Maximum volume size:

In theory, the maximum NTFS volume size is 264"1 clusters. However, the maximum

NTFS volume size as implemented in Windows XP Professional is 232"1 clusters

partly due to partition table limitations. For example, using 64 kB clusters, the maximum

Windows XP NTFS volume size is 256 TBs minus 64 KBs. Using the default cluster

size of 4 kB, the maximum NTFS volume size is 16 TB minus 4 kB. (Both of these are

vastly higher than the 128 GB limit lifted in Windows XP SP1.) Because partition

tables on master boot record (MBR) disks only support partition sizes up to 2 TB,

dynamic or GPT volumes must be used to create NTFS volumes over 2 TB. Booting

from a GPT volume to a Windows environment requires a system with UEFI and 64-

bit support.

• Maximum file size:

As designed, the maximum NTFS file size is 16 EB (16 × 10246 bytes) minus 1 kB or

18,446,744,073,709,550,592 bytes. As implemented, the maximum NTFS file size is

16 TB minus 64 kB or 17,592,185,978,880 bytes.

• Alternate data streams:

Windows system calls may handle alternate data streams. Depending on the operating

system, utility and remote file system, a file transfer might silently strip data streams.

A safe way of copying or moving files is to use the BackupRead and BackupWrite

system calls, which allow programs to enumerate streams, to verify whether each

stream should be written to the destination volume and to knowingly skip unwanted

streams.

207

15.4.3 Comparison between NTFS and FAT

15.4.4 Some Random Facts

• Fat 16 was developed in 1981 for dos

• Fat 16 was designed to handle floppies

• Fat 32 is an extension of Fat 16

• Fat 32 introduced in service pack 2 of Windows 95

• Operating systems may recognise Fat16, but not Fat 32 (Win NT)

• You can go from FAT to NTFS but not the other way around

• FAT = File Allocation Table

• NTFS = New Technology File System

15.4.5 NTFS or FAT?

If you really only want to choose one way or another, here are two very important considerations:

• For files above 4gb, and hard disks above 32gb, go for NTFS

• For smaller drives, files and better recovery tools go for FAT

• But why not go for both, which is the best option in my opinion.

• Set aside some FAT so that you can run recovery tools, especially scandisk, so that you have

something usable when things go awry, instead of the awful Windows System Tools.

NTFS FAT 16/32

• Default File system In Windows XP,
2k and NT

• Support For Drives over 40gb, Files
over GB

• Allows extended file names, foreign
characters

• Has a severely crippled maintenance
system in chkdsk

• Chkdsk is notoriously slow
• Increased security with file

encryption
• Smaller file clusters, 4kb
• Compression to reduce disk space
• User permissions for files and

folders
• File copies are “undone” if

interrupted, cluster chains is cleaned
• Small files are kept in Master File

Table at the beginning of the drive
• Not compatible with different

operating systems on the same
computer

• Fat 16 not compatible with XP, FAT is
more compatible with other operating
Systems(Windows 95, etc)

• FAT 16 has 8.3 character limitation
• Has better, more and interactive

recovery utilities (scandisk)
• Scandisk is very quick
• Just a space for the OS to read files
• Faster on drives less than 10gb
• FAT 16 cluster size is 32kb
• Cluster chains containing data from

interrupted copies are marked as
damaged

• Master File Table are separate from
files

208

• Then set the rest to NTFS so that you have better security on personal files, support for large files

and drive.

15.5 More Detailed Comparison

15.6 Summary

• Windows 7 is built on the Windows Vista core, but Windows 7 has limited the files that load

at startup to help with the core performance of the operating system

• When you hear the terms 32-bit and 64-bit, this is referring to the CPU or processor. The

number represents how the data is processed

• Windows 7 doesn’t boot from an initialization file. Instead, the operating system uses the

Windows boot manager to initialize and start the operating system

Criteria NTFS FAT32 FAT16

Operating System
Windows NT

Windows 2000
Windows XP

Windows 98
Windows ME

Windows 2000
Windows XP

DOS
All versions of

Microsoft Windows

Limitations

Max Volume Size 2TB 2TB 2GB

Max Files on Volume Nearly Unlimited Nearly Unlimited ~65000

Max File Size
Limit Only by
Volume Size

4GB 2GB

Max Clusters Number Nearly Unlimited 268435456 65535

Max File Name Length Up to 255 Up to 255
Standard - 8.3

Extended - up to
255

File System Features

Unicode File Names Unicode Character Set
System Character

Set
System Character

Set

System Records Mirror MFT Mirror File Second Copy of FAT
Second Copy of

FAT

Boot Sector Location First and Last Sectors First Sector First Sector

File Attributes Standard and Custom Standard Set Standard Set

Alternate Streams Yes No No

Compression Yes No No

Encryption No No No

Object Permissions Yes No No

Disk Quotas No No No

Sparse Files No No No

Reparse Points No No No

Volume Mount Points No No No

Overall Performance

Built-In Security Yes No No

Recoverability Yes No No

Performance
Low on small volumes

High on Large

High on small
volumes

Low on large

Highest on small
volumes

Low on large

Disk Space Economy Max Average
Minimal on large

volumes

Fault Tolerance Max Minimal Average

209

• Windows 7 includes extensive support architecture.

• Windows 7 includes network awareness and network discovery features

• A file system (or filesystem) is a means to organize data expected to be retained after a program

terminates by providing procedures to store, retrieve and update data as well as manage the available

space on the device(s) which contain it.

• File Allocation Table (FAT) is the name of a computer file system architecture and a family of

industry standard files systems utilizing it.

• NTFS supersedes the FAT file system as the preferred file system for Microsoft’s Windows operating

system.

15.7 Self - Assessment Exercise

1. What do you mean by Windows Architecture?

2. What are differences between 32-bit and 64-bit architectures?

3. Explain Key Diagnostics Areas in Windows 7.

4. What is File operating system? Explain.

5. What is a Fat system? Where it is used?

6. What is a NTFS system? Where it is used?

7. Explain limitations of NTFS system.

8. Explain differences between FAT and NTFS file systems.

15.8 References

• O’reilly answers by adfm

• “Windows XP: Format backup drives using NTFS”. Microsoft. September 7, 2006. http://

www.microsoft.com/windowsxp/using/setup/tips/advanced/ntfs.mspx.

• Mark Russinovich. “Inside Win2K NTFS, Part 1”. Microsoft Developer Network. http://

msdn2.microsoft.com/en-us/library/ms995846.aspx. Retrieved 2008-04-18.

• Microsoft TechNet (2003-03-28). “How NTFS Works”. Windows Server 2003 Technical

Reference. http://technet.microsoft.com/en-us/library/cc781134(v=ws.10).aspx. Retrieved

2011-09-12.

• Richard Russon and Yuval Fledel. “NTFS Documentation”. http://dubeyko.com/development/

FileSystems/NTFS/ntfsdoc.pdf. Retrieved 2011-06-26.

• Rick Vanover. “Windows Server 8 data deduplication”. http://www.techrepublic.com/blog/

datacenter/windows-server-8-data-deduplication-what-you-need-to-know/4887. Retrieved

2011-12-02.

• Custer, Helen (1994). Inside the Windows NT File System. Microsoft Press. ISBN 978-1-

55615-660-1.

